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Introduction

In 1920 Łukasiewicz introduced his three valued logic ([223]), the first model of
multiple-valued logic. The n-valued propositional logic for n > 3 was constructed
in 1922 and the ℵ0-valued Łukasiewicz-Tarski logic in 1930 ([224]). The first com-
pleteness theorem for ℵ0-valued Łukasiewicz-Tarski logic was given by Wajsberg
in 1935. As a direct generalization of two-valued calculus, Post introduced in 1921
an n-valued propositional calculus distinct from that of Łukasiewicz ([239]).

In the early 1940s Gr.C. Moisil was the first to develop the theory of n-
valued Łukasiewicz algebras with the intention of algebraizing Łukasiewicz’s logic
([226, 227]), but an example of A. Rose from 1956 established that for n ≥ 5 the
Łukasiewicz implication can no longer be defined on a Łukasiewicz algebra. Conse-
quently, the structures introduced by Moisil are models for Łukasiewicz logic only
for n= 3 and n= 4. These algebras are now called Łukasiewicz-Moisil algebras or
LM algebras for short ([14]).

The loss of implication has led to another type of logic, today called Moisil
logic, distinct from the Łukasiewicz system. The logic corresponding to n-valued
Łukasiewicz-Moisil algebras was created by Moisil in 1964. The fundamental con-
cept of Moisil logic is nuancing. During 1954–1973 Moisil introduced the θ -valued
LM algebras without negation, applied multiple-valued logics to switching theory
and studied algebraic properties of LM algebras (representation, ideals, residuation)
([228]). Moisil’s works have been continued by many mathematicians ([149, 151]).
A. Iorgulescu introduced and studied θ -valued LM algebras with negation ([170]),
while V. Boicescu defined and investigated n-valued LM algebras without negation
([13]).

Today these multiple-valued logics have been developed into fuzzy logics, which
connect quantum mechanics, mathematical logic, probability theory, algebra and
soft computing.

In 1958 Chang defined MV-algebras ([38]) as the algebraic counterpart of ℵ0-
valued Łukasiewicz logic and he gave another completeness proof of this logic
([39]).

An MV-algebra is an algebra (A,⊕,−,0) with a binary operation ⊕, a unary
operation − and a constant 0 satisfying the following equations:
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viii Introduction

(MV1) (x ⊕ y)⊕ z= x ⊕ (y ⊕ z);
(MV2) x ⊕ y = y ⊕ x;
(MV3) x ⊕ 0= x;
(MV4) (x−)− = x;
(MV5) x ⊕ 0− = 0−;
(MV6) (x− ⊕ y)− ⊕ y = (y− ⊕ x)− ⊕ x.

Studies on MV-algebras have been developed in [5–8, 22, 77, 81, 87, 89, 91, 120,
139, 146, 147, 153, 213, 214, 217–219, 247].

Starting from the systems of positive implicational calculus, weak systems of
positive implicational calculus and BCI and BCK systems, in 1966 Y. Imai and K.
Iséki introduced the BCK-algebras ([168]).

In 1977 R. Grigolia introduced MVn-algebras to model the n-valued Łukasiewicz
logic ([157]) and it was proved that there is a connection between n-valued
Łukasiewicz algebras and MVn-algebras ([171–173, 191, 216]).

One of the most famous results in the theory of MV-algebras was Mundici’s
theorem from 1986 which states that the category of MV-algebras is equivalent to
the category of Abelian �-groups with strong unit ([229]).

The non-commutative generalizations of MV-algebras called pseudo-MV alge-
bras were introduced by G. Georgescu and A. Iorgulescu in [135] and [137] and
they can be regarded as algebraic semantics for a non-commutative generalization
of a multiple-valued reasoning ([215]). The pseudo-MV algebras were introduced
independently by J. Rachůnek ([241]) under the name of generalized MV-algebras.

A. Dvurečenskij proved in [97] that any pseudo-MV algebra is isomorphic with
some interval in an �-group with strong unit, that is, the category of pseudo-MV
algebras is equivalent to the category of unital �-groups.

Residuation is a fundamental concept of ordered structures and categories and
Ward and Dilworth were the first to introduce the concept of a residuated lattice as
a generalization of ideal lattices of rings ([262]). The theory of residuated lattices
was used to develop algebraic counterparts of fuzzy logics ([256]) and substructural
logics ([234]).

A residuated lattice is defined as an algebra A= (A,∧,∨,�,→,�, e) of type
(2,2,2,2,2,0) satisfying the following conditions:

(A1) (A,∧,∨) is a lattice;
(A2) (A,�, e) is a monoid;
(A3) x � y ≤ z iff x ≤ y → z iff y ≤ x � z for any x, y, z ∈ A (pseudo-

residuation).

A residuated lattice with a constant 0 (which can denote any element) is called a
pointed residuated lattice or full Lambek algebra (FL-algebra, for short). If x ≤ e

for all x ∈A, then A is called an integral residuated lattice. An FL-algebra A which
satisfies the condition 0≤ x ≤ e for all x ∈A is called FLw-algebra or bounded in-
tegral residuated lattice ([129]). In this case we put e = 1, so that an FLw-algebra
will be denoted (A,∧,∨,�,→,�,0,1). Clearly, if A is an FLw-algebra, then
(A,∧,∨,0,1) is a bounded lattice.

In order to formalize the multiple-valued logics induced by continuous t-norms
on the real unit interval [0,1], P. Hájek introduced in 1998 a very general multiple-
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valued logic, called Basic Logic (or BL) ([158]). Basic Logic turns out to be a com-
mon ingredient in three important multiple-valued logics: ℵ0-valued Łukasiewicz
logic, Gödel logic and Product logic. The Lindenbaum-Tarski algebras for Basic
Logic are called BL-algebras ([23, 82, 220–222, 255–257]). Apart from their log-
ical interest, BL-algebras have important algebraic properties and they have been
intensively studied from an algebraic point of view.

The well-known result that a t-norm on [0,1] has residuum if and only if the
t-norm is left-continuous makes clear that BL is not the most general t-norm based
logic. In fact, a weaker logic than BL, called Monoidal t-norm based logic (MTL,
for short) was defined in [117] and proved in [197] to be the logic of left-continuous
t-norms and their residua. The algebraic counterpart of this logic is MTL-algebra,
also introduced in [117].

G. Georgescu and A. Iorgulescu introduced in [136] the pseudo-BL algebras as
a natural generalization of BL-algebras in the non-commutative case. A pseudo-BL
algebra is an FLw-algebra which satisfies the conditions:

(A4) (x → y)� x = x � (x � y)= x ∧ y (pseudo-divisibility);
(A5) (x → y)∨ (y → x)= (x � y)∨ (y � x)= 1 (pseudo-prelinearity).

Properties of pseudo-BL algebras were deeply investigated by A. Di Nola, G.
Georgescu and A. Iorgulescu in [85] and [86]. Some classes of pseudo-BL algebras
were investigated in [143] and the corresponding propositional logic was established
by Hájek in [158] and [159].

A more general structure than the pseudo-BL algebra is the weak pseudo-BL
algebra or pseudo-MTL algebra introduced by P. Flondor, G. Georgescu and A.
Iorgulescu in [122]. Pseudo-MTL algebras are FLw-algebras satisfying condition
(A5) and they include as a particular case the weak BL-algebras which is an alter-
native name for MTL-algebras.

Properties of pseudo-MTL algebras are also studied in [46, 144, 181].
An FLw-algebra which satisfies condition (A4) is called a divisible residuated

lattice or bounded R�-monoid. Properties of divisible residuated lattices were stud-
ied by A. Dvurečenskij, J. Rachůnek and J. Kühr ([105, 111, 205, 240]).

Pseudo-BCK algebras were introduced in 2001 by G. Georgescu and A.
Iorgulescu ([138]) as non-commutative generalizations of BCK-algebras. Proper-
ties of pseudo-BCK algebras and their connection with other fuzzy structures were
established by A. Iorgulescu in [179–182].

For a guide through the pseudo-BCK algebras realm we refer the reader to the
monograph [186].

Another generalization of pseudo-BL algebras was given in [148], where pseudo-
hoops were defined and studied. Pseudo-hoops were originally introduced by Bos-
bach in [15] and [16] under the name of complementary semigroups. It was proved
that a pseudo-hoop has the pseudo-divisibility condition and it is a meet-semilattice,
so a bounded R�-monoid can be viewed as a bounded pseudo-hoop together with
the join-semilattice property. In other words, a bounded pseudo-hoop is a meet-
semilattice ordered residuated, integral and divisible monoid.

Other topics in multiple-valued logic algebras have been studied in [34, 36, 92,
132, 141, 150, 248].
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The notion of a state is an analogue of a probability measure and it has a very
important role in the theory of quantum structures ([108]). The basic idea of states is
an averaging of events (elements) of a given algebraic structure. Since in the case of
Łukasiewicz∞-valued logic the set of events has the structure of an MV-algebra, the
theory of probability on this logic is based on the notion of a state defined on an MV-
algebra. Besides mathematical logic, Riečan and Neubrunn studied MV-algebras
as fields of events in generalized probability theory ([250]). Therefore, the study
of states on MV-algebras is a very active field of research ([40, 83, 84, 119, 133,
246]) which arises from the general problem of investigating probabilities defined
for logical systems.

States on an MV-algebra (A,⊕,− ,0) were first introduced by D. Mundici in
[230] as functions s :A−→ [0,1] satisfying the conditions:

s(1)= 1 (normality);
s(x ⊕ y)= s(x)+ s(y) if x � y = 0 (additivity),

where x � y = (x− ⊕ y−)−.
They are analogous to finitely additive probability measures on Boolean algebras

and play a crucial role in MV-algebraic probability theory ([249]).
States on other commutative and non-commutative algebraic structures have been

defined and investigated by many authors ([20, 21, 102, 133, 134, 140, 142, 258,
259]).

The aim of this book is to present new results regarding non-commutative
multiple-valued logic algebras and some of their applications. Almost all the results
are based on the author’s recent papers ([42–75]).

The book consists of nine chapters.
The Chap. 1 is devoted to pseudo-BCK algebras. After presenting the basic

definitions and properties, we prove new properties of pseudo-BCK algebras with
pseudo-product and pseudo-BCK algebras with pseudo-double negation. Examples
of proper pseudo-BCK algebras, good pseudo-BCK algebras and pseudo-BCK lat-
tices are given, and the orthogonal elements in a pseudo-BCK algebra are charac-
terized. Finally, we define the maximal and normal deductive systems of a pseudo-
BCK algebra with pseudo-product and we study their properties.

In Chap. 2 we recall the basic properties of pseudo-hoops, we introduce the no-
tions of join-center and cancellative-center of pseudo-hoops and we define and study
algebras on subintervals of pseudo-hoops. Additionally, new properties of a pseudo-
hoop are proved.

Chapter 3 is devoted to residuated lattices. We investigate the properties of the
Boolean center of an FLw-algebra and we define and study the directly indecom-
posable FLw-algebras. One of the main results consists of proving that any linearly
ordered FLw-algebra is directly indecomposable. Finally, we define and study FLw-
algebras of fractions relative to a meet-closed system.

In Chap. 4 we present some specific properties of other non-commutative
multiple-valued logic algebras: pseudo-MTL algebras, bounded R�-monoids,
pseudo-BL algebras and pseudo-MV algebras. As main results, we extend to the
case of pseudo-MTL algebras some results regarding prime filters proved for
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pseudo-BL algebras. The Glivenko property for a good pseudo-BCK algebra is
defined and it is shown that a good pseudo-hoop has the Glivenko property.

Chapter 5 deals with special classes of non-commutative residuated structures:
local, perfect and Archimedean structures. The local bounded pseudo-BCK(pP)
algebras are characterized in terms of primary deductive systems, while the per-
fect pseudo-BCK(pP) algebras are characterized in terms of perfect deductive sys-
tems. One of the main results consists of proving that the radical of a bounded
pseudo-BCK(pP) algebra is a normal deductive system. We also prove that any
linearly ordered pseudo-BCK(pP) algebra and any locally finite pseudo-BCK(pP)
algebra are local. Other results state that any local FLw-algebra and any locally
finite FLw-algebra are directly indecomposable. The classes of Archimedean and
hyperarchimedean FLw-algebras are introduced and it is proved that any locally fi-
nite FLw-algebra is hyperarchimedean and any hyperarchimedean FLw-algebra is
Archimedean.

Chapter 6 is devoted to the presentation of states on multiple-valued logic alge-
bras. We introduce the notion of states on pseudo-BCK algebras and we study their
properties. One of the main results consists of proving that any Bosbach state on
a good pseudo-BCK algebra is a Riečan state, however the converse turns out not
to be true. We also prove that every Riečan state on a good pseudo-BCK algebra
with pseudo-double negation is a Bosbach state. In contrast to the case of pseudo-
BL algebras, we show that there exist linearly ordered pseudo-BCK algebras having
no Bosbach states and that there exist pseudo-BCK algebras having normal filters
which are maximal, but having no Bosbach states.

Some specific properties of states on FLw-algebras, pseudo-MTL algebras,
bounded R�-monoids and subinterval algebras of pseudo-hoops are proved.

A special section is dedicated to the existence of states on the residuated struc-
tures, showing that every perfect FLw-algebra admits at least a Bosbach state and
every perfect pseudo-BL algebra has a unique state-morphism.

Finally, we introduce the notion of a local state on a perfect pseudo-MTL algebra
and we prove that every local state can be extended to a Riečan state.

In Chap. 7 we generalize measures on BCK algebras introduced by A. Dvurečen-
skij in [94] and [108] to pseudo-BCK algebras that are not necessarily bounded. In
particular, we show that if A is a downwards-directed pseudo-BCK algebra and m

a measure on it, then the quotient over the kernel of m can be embedded into the
negative cone of an Abelian, Archimedean �-group as its subalgebra. This result
will enable us to characterize nonzero measure-morphisms on downwards-directed
pseudo-BCK algebras as measures whose kernel is a maximal filter. We study state-
measures on pseudo-BCK algebras with strong unit and we show how to character-
ize state-measure-morphisms as extremal state-measures or as state-measures whose
kernel is a maximal filter. In particular, we show that for unital pseudo-BCK alge-
bras that are downwards-directed, the quotient over the kernel can be embedded into
the negative cone of an Abelian, Archimedean �-group with strong unit. We gener-
alize to pseudo-BCK algebras the identity between de Finetti maps and Bosbach
states, following the results proved by Kühr and Mundici in [211] who showed that
de Finetti’s coherence principle, which has its origins in Dutch bookmaking, has
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a strong relationship with MV-states on MV-algebras. We also generalize this for
state-measures on unital pseudo-BCK algebras that are downwards-directed.

Chapter 8 is devoted to generalized states on residuated structures. The study
of these generalized states is motivated by their interpretation as a new type of se-
mantics for non-commutative fuzzy logics. Usually, the truth degree of sentences
in a fuzzy logic is a number in the interval [0,1] or, more generally, an element
of an FLw-algebra. Similarly, for generalized states, the probability of sentences is
evaluated in an arbitrary FLw-algebra.

We define the generalized states of type I and type II and generalized state-
morphisms and we study the relationship between them. We prove that any perfect
FLw-algebra admits strong type I and type II states. Some conditions are given for
a generalized state of type I on a linearly ordered bounded R�-monoid to be a state
operator. The notion of a strong perfect FLw-algebra is introduced and it is proved
that any strong perfect FLw-algebra admits a generalized state-morphism. The no-
tion of a generalized Riečan state is also introduced and the main results are proved
based on the Glivenko property defined for the non-commutative case. The main re-
sults consist of proving that any order-preserving type I state is a generalized Riečan
state and in some particular conditions the two states coincide. We introduce the no-
tion of a generalized local state on a perfect pseudo-MTL algebra A and we prove
that, if A is relatively free of zero divisors, then every generalized local state can be
extended to a generalized Riečan state.

Chapter 9 deals with residuated structures with internal states. We define the
notions of state operator, strong state operator, state-morphism operator, weak state-
morphism operator and we study their properties. We prove that every strong state
pseudo-hoop is a state pseudo-hoop and any state operator on an idempotent pseudo-
hoop is a weak state-morphism operator. It is proved that for an idempotent pseudo-
hoop A a state operator on Reg(A) can be extended to a state operator on A. One of
the main results of this chapter consists of proving that every perfect pseudo-hoop
admits a nontrivial state operator. Other results compare the state operators with
states and generalized states on a pseudo-hoop. Some conditions are given for a state
operator to be a generalized state and for a generalized state to be a state operator.

We hope that this book will be useful to graduate students and researchers in the
area of algebras of multiple-valued logics.

I wish to firstly thank my adviser George Georgescu for guiding many of my
steps in this field.

This manuscript owes a lot to Afrodita Iorgulescu for her careful reading and
remarks.

I am also in debt to Anatolij Dvurečenskij for his suggestions and fruitful collab-
orations.

On a personal note, I am very grateful to my parents for all their support and
encouragement over the years.

Last but not least I wish to thank my husband for his wonderful companionship.

Lavinia Corina CiunguIowa City, USA
May 2013
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Chapter 1
Pseudo-BCK Algebras

BCK algebras were originally introduced by K. Isèki in [194] with a binary opera-
tion ∗ modeling the set-theoretical difference and with a constant element 0, that is,
a least element. Another motivation is from classical and non-classical propositional
calculi modeling logical implications. Such algebras contain as a special subfamily
the family of MV-algebras where some important fuzzy structures can be studied.
For more about BCK algebras, see [167, 174–179, 182–187, 189, 192, 193, 225].

Pseudo-BCK algebras were introduced by G. Georgescu and A. Iorgulescu in
[138] as algebras with “two differences”, a left- and right-difference, instead of one
∗ and with a constant element 0 as the least element. In [112], a special subclass of
pseudo-BCK algebras, called Łukasiewicz pseudo-BCK algebras, was introduced
and it was shown that each such algebra is always a subalgebra of the positive cone
of some �-group (not necessarily Abelian). The class of Łukasiewicz pseudo-BCK
algebras is a variety whereas the class of pseudo-BCK algebras is not; it is only a
quasivariety because it is not closed under homomorphic images. Nowadays pseudo-
BCK algebras are used in a dual form, with two implications, → and � and with
one constant element 1, that is the greatest element. Thus such pseudo-BCK alge-
bras are in the “negative cone” and are also called “left-ones”. Further properties of
pseudo-BCK algebras and their connection with other fuzzy structures were estab-
lished by A. Iorgulescu in [179–182]. For a guide through the pseudo-BCK algebras
realm, see the monograph [186]. Studies on pseudo-BCK algebras were also devel-
oped in [107, 163, 190, 206, 208–210].

In this chapter we prove new properties of pseudo-BCK algebras with pseudo-
product and pseudo-BCK algebras with pseudo-double negation and we show that
every pseudo-BCK algebra can be extended to a good one. Examples of proper
pseudo-BCK algebras, good pseudo-BCK algebras and pseudo-BCK lattices are
given and the orthogonal elements in a pseudo-BCK algebra are characterized. Fi-
nally, we define the maximal and normal deductive systems of a pseudo-BCK alge-
bra with pseudo-product and we study their properties.

L.C. Ciungu, Non-commutative Multiple-Valued Logic Algebras,
Springer Monographs in Mathematics, DOI 10.1007/978-3-319-01589-7_1,
© Springer International Publishing Switzerland 2014
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2 1 Pseudo-BCK Algebras

1.1 Definitions and Properties

Definition 1.1 A pseudo-BCK algebra (more precisely, reversed left-pseudo-BCK
algebra) is a structure A = (A,≤,→,�,1) where ≤ is a binary relation on A,
→ and � are binary operations on A and 1 is an element of A satisfying, for all
x, y, z ∈A, the axioms:

(psBCK1) x → y ≤ (y → z) � (x → z), x � y ≤ (y � z)→ (x � z);
(psBCK2) x ≤ (x → y) � y, x ≤ (x � y)→ y;
(psBCK3) x ≤ x;
(psBCK4) x ≤ 1;
(psBCK5) if x ≤ y and y ≤ x, then x = y;
(psBCK6) x ≤ y iff x → y = 1 iff x � y = 1.

A pseudo-BCK algebra A = (A,≤,→,�,1) is commutative if →=�. Any
commutative pseudo-BCK algebra is a BCK-algebra.

In the sequel we will refer to the pseudo-BCK algebra (A,≤,→,�,1) by its
universe A.

Proposition 1.1 The structure (A,≤,→,�,1) is a pseudo-BCK algebra iff the
algebra (A,→,�,1) of type (2,2,0) satisfies the following identities and quasi-
identity:

(psBCK′
1) (x → y) � [(y → z) � (x → z)] = 1;

(psBCK′
2) (x � y)→[(y � z)→ (x � z)] = 1;

(psBCK′
3) 1→ x = x;

(psBCK′
4) 1 � x = x;

(psBCK′
5) x → 1= 1;

(psBCK′
6) (x → y = 1 and y → x = 1) implies x = y.

Proof Obviously, any pseudo-BCK algebra satisfies (psBCK′
1)–(psBCK′

6).
Conversely, assume that an algebra (A,→,�,1) satisfies (psBCK′

1)–(psBCK′
6).

Applying (psBCK′
3) and (psBCK′

1) we get:

x �
[
(x → y)� y

]= (1→ x) �
[
(x → y) � (1→ y)

]= 1.

Similarly, by (psBCK′
4) and (psBCK′

2) we have:

x → [
(x � y)→ y

]= (1 � x)→ [
(x � y)→ (1 � y)

]= 1.

Applying (psBCK′
3) and (psBCK′

2) we have:

x → x = 1→ (x → x)= (1 � 1)→ [
(1 � x)→ (1 � x)

]= 1.

Similarly, by (psBCK′
4) and (psBCK′

1) we get:

x � x = 1 � (x � x)= (1→ 1)�
[
(1→ x) � (1→ x)

]= 1.

Moreover, if x → y = 1 then x � y = x � [(x → y) � y] = 1 and similarly, if
x � y = 1 then x → y = x →[(x � y)→ y] = 1.
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Fig. 1.1 Example of proper pseudo-BCK algebra

It follows that x → y = 1 iff x � y = 1.
We deduce that the relation ≤ defined by x ≤ y iff x → y = 1 is a partial order

on A which makes (A,≤,→,�,1) a pseudo-BCK algebra. �

In the sequel, we shall use either (A,≤,→,�,1) or (A,→,�,1) for a pseudo-
BCK algebra.

Example 1.1 Consider A= {o1, a1, b1, c1, o2, a2, b2, c2,1}with o1 < a1, b1 < c1 <

1 and a1, b1 incomparable, o2 < a2, b2 < c2 < 1 and a2, b2 incomparable. Assume
that any element of the set {o1, a1, b1, c1} is incomparable with any element of the
set {o2, a2, b2, c2} (see Fig. 1.1).

Consider the operations →, � given by the following tables:

→ o1 a1 b1 c1 o2 a2 b2 c2 1
o1 1 1 1 1 o2 a2 b2 c2 1
a1 o1 1 b1 1 o2 a2 b2 c2 1
b1 a1 a1 1 1 o2 a2 b2 c2 1
c1 o1 a1 b1 1 o2 a2 b2 c2 1
o2 o1 a1 b1 c1 1 1 1 1 1
a2 o1 a1 b1 c1 o2 1 b2 1 1
b2 o1 a1 b1 c1 c2 c2 1 1 1
c2 o1 a1 b1 c1 o2 c2 b2 1 1
1 o1 a1 b1 c1 o2 a2 b2 c2 1

� o1 a1 b1 c1 o2 a2 b2 c2 1
o1 1 1 1 1 o2 a2 b2 c2 1
a1 b1 1 b1 1 o2 a2 b2 c2 1
b1 o1 a1 1 1 o2 a2 b2 c2 1
c1 o1 a1 b1 1 o2 a2 b2 c2 1
o2 o1 a1 b1 c1 1 1 1 1 1
a2 o1 a1 b1 c1 b2 1 b2 1 1
b2 o1 a1 b1 c1 b2 c2 1 1 1
c2 o1 a1 b1 c1 b2 c2 b2 1 1
1 o1 a1 b1 c1 o2 a2 b2 c2 1
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Then (A,≤,→,�,1) is a proper pseudo-BCK algebra.

We recall the definition of an �-group. The language of lattice-ordered groups
(�-groups) involves both the group operations and the binary lattice operations.

By a lattice-ordered group (�-group) we will mean an ordered group (G,≤)

such that (G,≤) is a lattice. The �-group G is called an �u-group if there exists
an element u > 0 such that for any x ∈G there is an n ∈ N such that x ≤ nu. The
element u is called a strong unit.

For details regarding �-groups we refer the reader to [2, 12, 76].

Example 1.2 Let (G,∨,∧,+,−,0) be an �-group.
On the negative cone G− = {g ∈G | g ≤ 0} we define:

g → h := h− (g ∨ h)= (h− g)∧ 0,

g � h := −(g ∨ h)+ h= (−g + h)∧ 0.

Then (G−,≤,→,�,0) is a pseudo-BCK algebra.

Remark 1.1 (Definition of union) Let (Ai,≤,→i ,�i ,1i )i∈I be a collection of
pseudo-BCK algebras such that:

(i) 1i = 1 for all i ∈ I ,
(ii) Ai ∩Aj = {1} for all i, j ∈ I , i �= j .

Let A=⋃
i∈I Ai and define:

x → y :=
{

x →i y if x, y ∈Ai, i ∈ I

y otherwise,

x � y :=
{

x �i y if x, y ∈Ai, i ∈ I

y otherwise.

Then (A,≤,→,�,1) is a pseudo-BCK algebra called the union of the pseudo-
BCK algebras (Ai,≤,→i ,�i ,1i )i∈I .

Note that the notion of union defined above is not related to the notion of ordinal
sum defined in Chap. 2.

Proposition 1.2 In any pseudo-BCK algebra A the following properties hold:

(psbck-c1) x ≤ y implies y → z≤ x → z and y � z≤ x � z;
(psbck-c2) x ≤ y, y ≤ z implies x ≤ z;
(psbck-c3) x → (y � z)= y � (x → z), x � (y → z)= y → (x � z);
(psbck-c4) z≤ y → x iff y ≤ z � x;
(psbck-c5) z→ x ≤ (y → z)→ (y → x), z � x ≤ (y � z) � (y � x);
(psbck-c6) x ≤ y → x, x ≤ y � x;
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(psbck-c7) 1→ x = x = 1 � x;
(psbck-c8) x → x = x � x = 1;
(psbck-c9) x → 1= x � 1= 1;
(psbck-c10) x ≤ y implies z→ x ≤ z→ y and z � x ≤ z � y;
(psbck-c11) [(y → x) � x]→ x = y → x, [(y � x)→ x]� x = y � x.

Proof

(psbck-c1) Since x ≤ y, applying (psBCK6), (psBCK1) and (psBCK4) we get 1 =
x → y ≤ (y → z) � (x → z), so (y → z) � (x → z)= 1 for all z ∈A.
Applying (psBCK6) again we get y → z≤ x → z.
Similarly, y � z≤ x � z.

(psbck-c2) By (psbck-c1), x ≤ y implies y → z ≤ x → z. Since y ≤ z we have
y → z= 1, so x → z= 1. Applying (psBCK6) we get x ≤ z.

(psbck-c3) Applying (psBCK1) we have y → x ≤ (x → z) � (y → z) and by
(psbck-c1) we get [(x → z) � (y → z)]� u≤ (y → x) � u for any u ∈A.
From this inequality, replacing z with u � z, x with x � z and u with (u �
x) � [y → (u� z)] we get

[[
(x � z)→ (u � z)

]
�

[
y → (u � z)

]]
�

[
(u � x) �

[
y → (u � z)

]]

≤ [
y → (x � z)

]
�

[
(u � x) �

[
y → (u � z)

]]
.

By (psBCK1) we have u � x ≤ (x � z)→ (u � z) and applying (psbck-c1) it
follows that the left-hand side of the above inequality is equal to 1.
Thus the right-hand side is also equal to 1, so y → (x � z)≤ (u � x) � [y →
(u � z)].
Replacing x with y → z and u with x we get

y → [
(y → z) � z

]≤ [
x � (y → z)

]
�

[
y → (x � z)

]
.

But, by (psBCK2) we have y ≤ (y → z) � z, so y →[(y → z) � z] = 1.
It follows that [x � (y → z)]� [y → (x � z)] = 1.
Therefore x � (y → z)≤ y → (x � z).
On the other hand, by (psBCK2) we have x ≤ (x � z)→ z and applying (psbck-
c1) we get [(x � z)→ z]� (y → z)≤ x � (y → z).
By (psBCK1) we have y → x ≤ (x → z) � (y → z) and replacing x with x � z

we get y → (x � z)≤ [(x � z)→ z]� (y → z)≤ x � (y → z).
We conclude that x → (y � z)= y � (x → z).
Similarly, x � (y → z)= y → (x � z).

(psbck-c4) From z≤ y → x, by (psBCK2) and (psbck-c1) we have

y ≤ (y → x) � x ≤ z � x.

Similarly, from y ≤ z � x we get z≤ (z � x)→ x ≤ y → x.
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(psbck-c5) Applying (psBCK1) we have y → z≤ (z→ x) � (y → x) and accord-
ing to (psbck-c1) we get

[
(z→ x)� (y → x)

]→ (y → x)≤ (y → z)→ (y → x).

By (psBCK2) it follows that z → x ≤ [(z → x) � (y → x)] → (y → x), and
applying (psbck-c2) we conclude that z→ x ≤ (y → z)→ (y → x).
Similarly, from y � z ≤ (z � x) → (y � x) we get z � x ≤ (y � z) �
(y � x).

(psbck-c6) Since y ≤ 1= x → x, it follows by (psbck-c4) that x ≤ y � x.
Similarly, from y ≤ 1= x � x we get x ≤ y → x.

(psbck-c7) By (psbck-c6) we have x ≤ 1→ x and x ≤ 1 � x.
By (psBCK2) we get 1≤ (1→ x) � x and 1≤ (1 � x)→ x.
It follows that (1 → x) � x = 1 and (1 � x) → x = 1, so 1 → x ≤ x and
1 � x ≤ x. Thus 1→ x = x = 1 � x.

(psbck-c8) and (psbck-c9) are consequences of the axiom (psBCK6).
(psbck-c10) Applying (psbck-c7), (psBCK6) and (psBCK1) we have:

z→ y = 1 � (z→ y)= (x → y) � (z→ y)≥ z→ x and

z � y = 1→ (z � y)= (x � y)→ (z � y)≥ z � x.

(psbck-c11) By (psBCK2) we have y ≤ (y → x) � x and y ≤ (y � x)→ x.
Applying (psbck-c1) we get

[
(y → x) � x

]→ x ≤ y → x and
[
(y � x)→ x

]
� x ≤ y � x.

On the other hand, by (psBCK2) we have:

y → x ≤ [
(y → x)� x

]→ x and y � x ≤ [
(y � x)→ x

]
� x.

We conclude that

[
(y → x)� x

]→ x = y → x and
[
(y � x)→ x

]
� x = y � x. �

Proposition 1.3 Let (A,≤,→,�,1) be a pseudo-BCK algebra.
If

∨
i∈I xi exists, then so does

∧
i∈I (xi → y) and

∧
i∈I (xi � y) and we have:

(psbck-c12) (
∨

i∈I xi)→ y =∧
i∈I (xi → y), (

∨
i∈I xi) � y =∧

i∈I (xi � y).

Proof If we let x =∨
i∈I xi , it follows that xi ≤ x and applying (psbck-c1) we have

x → y ≤ xi → y for all i ∈ I . Let z be a lower bound of {xi → y | i ∈ I }. Then, by
(psbck-c4), z ≤ xi → y implies xi ≤ z � y for all i ∈ I , so x ≤ z � y. Applying
(psbck-c4) again, we get z≤ x → y.

Thus x → y is the g.l.b. of {xi → y | i ∈ I }.
We conclude that

∧
i∈I (xi → y) exists and (

∨
i∈I xi)→ y =∧

i∈I (xi → y).
Similarly,

∧
i∈I (xi � y) exists and (

∨
i∈I xi) � y =∧

i∈I (xi � y). �
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Fig. 1.2 Example of bounded pseudo-BCK algebra

Definition 1.2 If there is an element 0 of a pseudo-BCK algebra (A,≤,→,�,1),
such that 0 ≤ x (i.e. 0 → x = 0 � x = 1), for all x ∈ A, then 0 is called the zero
of A. A pseudo-BCK algebra with zero is called a bounded pseudo-BCK algebra
and it is denoted by (A,≤,→,�,0,1).

Example 1.3 Consider A= {0, a, b, c,1} with 0 < a,b < c < 1 and a, b incompa-
rable (see Fig. 1.2).

Consider the operations →, � given by the following tables:

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

� 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b 0 a 1 1 1
c 0 a b 1 1
1 0 a b c 1

Then (A,≤,→,�,0,1) is a bounded pseudo-BCK algebra. (As we will see later,
A is even a pseudo-BCK lattice.)

Let (A,≤,→,�,0,1) be a bounded pseudo-BCK algebra. We define two nega-
tions − and ∼: for all x ∈A,

x− := x → 0, x∼ := x � 0.

In the sequel we will use the following notation:

x−− = (
x−

)−; x∼∼ = (
x∼

)∼; x−∼ = (
x−

)∼; x∼− = (
x∼

)−
.

Example 1.4 Let (G,∨,∧,+,−,0) be an �-group with a strong unit u≥ 0. On the
interval [−u,0] we define:

x → y := (y − x)∧ 0, x � y := (−x + y)∧ 0.

Then ([−u,0],≤,→,�,−u,0) is a bounded pseudo-BCK algebra with x− =
−u − x and x∼ = −x − u. In a similar way, ((−u,0],≤,→,�,0) is a pseudo-
BCK algebra that is not bounded.
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Example 1.5 Let (G,∨,∧,+,−,0) be an �-group with a strong unit u≥ 0. On the
interval [0, u] we define:

x → y := (u− x + y)∧ u, x � y := (y − x + u)∧ u.

Then ([0, u],≤,→,�,0, u) is a bounded pseudo-BCK algebra with x− = u − x

and x∼ = −x + u. If on [0, u] we set →1=� and �1=→, then ([0, u],≤,→1,

�1,0, u) is isomorphic with ([−u,0],≤,→,�,−u,0) under the isomorphism
x �→ x − u, x ∈ [0, u].

Proposition 1.4 In a bounded pseudo-BCK algebra the following hold:

(psbck-c13) 1− = 0= 1∼, 0− = 1= 0∼;
(psbck-c14) x ≤ x−∼, x ≤ x∼−;
(psbck-c15) x → y ≤ y− � x−, x � y ≤ y∼ → x∼;
(psbck-c16) x ≤ y implies y− ≤ x− and y∼ ≤ x∼;
(psbck-c17) x → y∼ = y � x− and x � y− = y → x∼;
(psbck-c18) x−∼− = x−, x∼−∼ = x∼;
(psbck-c19) x → y−∼ = y− � x− = x−∼ → y−∼ and x � y∼− = y∼ → x∼ =

x∼− � y∼−;
(psbck-c20) x → y∼ = y∼− � x− = x−∼ → y∼ and x � y− = y−∼ → x∼ =

x∼− � y−;
(psbck-c21) (x → y∼−)∼− = x → y∼− and (x � y−∼)−∼ = x � y−∼.

Proof

(psbck-c13) Since 0 ≤ 0, by (psBCK6) we get 0 → 0 = 1 and 0 � 0 = 1, that is,
0− = 1 and 0∼ = 1.
Taking x = 1 and y = 0 in (psBCK2) we have 1 ≤ (1 → 0) � 0, hence (1 →
0) � 0 = 1. Thus by (psBCK6) we get 1 → 0 ≤ 0, so 1 → 0 = 0, i.e. 1− = 0.
Similarly, 1∼ = 0.

(psbck-c14) This follows by taking y = 0 in (psBCK2).
(psbck-c15) Applying (psBCK1) for z= 0 we get:

x → y ≤ (y → 0) � (x → 0)= y− � x− and

x � y ≤ (y � 0)→ (x � 0)= y∼ → x∼.

(psbck-c16) From x ≤ y, applying (psbck-c1) we get y → 0≤ x → 0, so y− ≤ x−.
Similarly, y∼ ≤ x∼.

(psbck-c17) By (psbck-c15), (psbck-c14) and (psbck-c1) we get:

x → y∼ ≤ y∼− � x− ≤ y � x− and x � y− ≤ y−∼ → x∼ ≤ y → x∼.

In the above inequalities we change x and y obtaining:

y → x∼ ≤ x � y− and y � x− ≤ x → y∼.

Thus x → y∼ = y � x− and x � y− = y → x∼.
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(psbck-c18) By (psbck-c14) and (psbck-c16) we get x∼−∼ ≤ x∼ and x−∼− ≤ x−.
By (psbck-c14), replacing x with x∼ and x− we get x∼ ≤ x∼−∼ and x− ≤
x−∼−, respectively. Thus x∼−∼ = x∼ and x−∼− = x−.

(psbck-c19) By (psbck-c17) we have: y � x− = x → y∼.
Replacing y with y− we get: y− � x− = x → y−∼.
Replacing x by x−∼ in the last equality we get: y− � x−∼− = x−∼ → y−∼.
Hence applying (psbck-c18) it follows that: y− � x− = x−∼ → y−∼.
Thus x → y−∼ = y− � x− = x−∼ → y−∼.
Similarly, x � y∼− = y∼ → x∼ = x∼− � y∼−.

(psbck-c20) The assertions follow by replacing in (psbck-c19) y with y∼ and y with
y−, respectively and applying (psbck-c18).

(psbck-c21) Applying (psbck-c3) and (psbck-c19) we have:

1= (
x → y∼−

)
�

(
x → y∼−

)= x → ((
x → y∼−

)
� y∼−

)

= x → ((
x → y∼−

)∼− � y∼−
)= (

x → y∼−
)∼− �

(
x → y∼−

)
.

Hence (x → y∼−)∼− ≤ x → y∼−.
On the other hand, by (psbck-c14) we have x → y∼− ≤ (x → y∼−)∼−, thus
(x → y∼−)∼− = x → y∼−. Similarly, (x � y−∼)−∼ = x � y−∼. �

We recall some notions and results regarding pseudo-BCK semilattices (see
[209]).

Definition 1.3 A pseudo-BCK join-semilattice is an algebra (A,∨,→,�,1) such
that (A,∨) is a join-semilattice, (A,→,�,1) is a pseudo-BCK algebra and x →
y = 1 iff x ∨ y = y.

Remark 1.2 It is easy to show that an algebra (A,∨,→,�,1) of type (2,2,2,0) is
a pseudo-BCK join-semilattice if and only if (A,∨) is a join-semilattice and (A,→,

�,1) satisfies (psBCK′
1)–(psBCK′

5) and the following identities:

(psBCK′
7) x ∨ [(x → y) � y] = (x → y) � y;

(psBCK′
8) x → (x ∨ y)= 1.

Definition 1.4 A pseudo-BCK meet-semilattice is an algebra (A,∧,→,�,1) such
that (A,∧) is a meet-semilattice, (A,→,�,1) is a pseudo-BCK algebra and x →
y = 1 iff x ∧ y = x.

Remark 1.3 It is easy to show that an algebra (A,∧,→,�,1) of type (2,2,2,0)

is a pseudo-BCK meet-semilattice if and only if (A,∧) is a meet-semilattice and
(A,→,�,1) satisfies the identities (psBCK′

1)–(psBCK′
5) and the identities:
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(psBCK′′
7) x ∧ [(x → y)� y] = x;

(psBCK′′
8) (x ∧ y)→ y = 1.

Example 1.6 Given a pseudo-hoop (A,�,→,�,1) (see Chap. 2), then (A,∧,

→,�,1) is a pseudo-BCK meet-semilattice, where x ∧ y = x � (x � y) =
(x → y)� x.

In the sequel by a pseudo-BCK semilattice we mean a pseudo-BCK join-
semilattice.

Definition 1.5 Let (A,≤,→,�,1) be a pseudo-BCK algebra. If the poset (A,≤)

is a lattice, then we say that A is a pseudo-BCK lattice.
A pseudo-BCK lattice is denoted by (A,∧,∨,→,�,1).

Example 1.7 Consider the bounded pseudo-BCK algebra (A,≤,→,�,0,1) from
Example 1.3. Since (A,≤) is a lattice, it follows that A is a pseudo-BCK lattice.

Let A be a pseudo-BCK algebra. For all x, y ∈A, define:

x ∨1 y = (x → y) � y, x ∨2 y = (x � y)→ y.

Proposition 1.5 In any bounded pseudo-BCK algebra A the following hold for all
x, y ∈A:

(1) 0∨1 x = x = 0∨2 x;
(2) x ∨1 0= x−∼, x ∨2 0= x∼−;
(3) 1∨1 x = x ∨1 1= 1= 1∨2 x = x ∨2 1;
(4) x ≤ y implies x ∨1 y = y and x ∨2 y = y;
(5) x ∨1 x = x ∨2 x = x.

Proof

(1) 0∨1 x = (0→ x) � x = 1 � x = x and similarly 0∨2 x = x.
(2) x ∨1 0= (x → 0) � 0= x−∼ and similarly x ∨2 0= x∼−.
(3) We have: 1∨1 x = (1→ x)� x = 1 and x∨1 1= (x → 1) � 1= 1, so 1∨1 x =

x ∨1 1= 1. Similarly, 1∨2 x = x ∨2 1= 1.
(4) x ∨1 y = (x → y)� y = 1 � y = y. Similarly, x ∨2 y = y.
(5) This follows from the definitions of ∨1 and ∨2. �

Proposition 1.6 In any bounded pseudo-BCK algebra A the following hold for all
x, y ∈A:

(1) x ∨1 y−∼ = x−∼ ∨1 y−∼ and x ∨2 y∼− = x∼− ∨2 y∼−;
(2) x ∨1 y∼ = x−∼ ∨1 y∼ and x ∨2 y− = x∼− ∨2 y−;
(3) (x−∼ ∨1 y−∼)

−∼ = x−∼ ∨1 y−∼ and (x∼− ∨2 y∼−)
∼− = x∼− ∨2 y∼−.
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Proof

(1) Applying (psbck-c19) we have:

x ∨1 y−∼ = (
x → y−∼

)
� y−∼ = (

x−∼ → y−∼
)
� y−∼ = x−∼ ∨1 y−∼;

x ∨2 y∼− = (
x � y∼−

)→ y∼− = (
x∼− � y∼−

)→ y∼− = x∼− ∨2 y∼−.

(2) Applying (psbck-c20) we have:

x ∨1 y∼ = (
x → y∼

)
� y∼ = (

x−∼ → y∼
)
� y∼ = x−∼ ∨1 y∼;

x ∨2 y− = (
x � y−

)→ y− = (
x∼− � y−

)→ y− = x∼− ∨2 y−.

(3) Applying (psbck-c21) we have:

(
x−∼ ∨1 y−∼

)−∼ = [(
x−∼ → y−∼

)
� y−∼

]−∼ = (
x−∼ → y−∼

)
� y−∼

= x−∼ ∨1 y−∼;
(
x∼− ∨2 y∼−

)∼− = [(
x∼− � y∼−

)→ y∼−
]∼− = (

x∼− � y∼−
)→ y∼−

= x∼− ∨2 y∼−. �

Proposition 1.7 In any pseudo-BCK algebra the following hold for all x, y ∈A:

(psbck-c22) (x ∨1 y)→ y = x → y and (x ∨2 y) � y = x � y.

Proof This is a consequence of the property (psbck-c11). �

Lemma 1.1 Let A be a pseudo-BCK algebra. Then:

(1) x ∨1 y (y ∨1 x) is an upper bound of {x, y};
(2) x ∨2 y (y ∨2 x) is an upper bound of {x, y}
for all x, y ∈A.

Proof

(1) By (psBCK2) we have x ≤ (x → y)� y.
Since by (psbck-c6), y ≤ (x → y) � y, we conclude that x, y ≤ x ∨1 y.
Similarly we get x, y ≤ y ∨1 x.

(2) Similar to (1). �

Definition 1.6 Let A be a pseudo-BCK algebra.

(1) If x ∨1 y = y ∨1 x for all x, y ∈A, then A is called ∨1-commutative;
(2) If x ∨2 y = y ∨2 x for all x, y ∈A, then A is called ∨2-commutative.

Lemma 1.2 Let A be a pseudo-BCK algebra.
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(1) If for all x, y ∈ A, x ∨1 y (y ∨1 x) is the l.u.b. of {x, y}, then A is ∨1-
commutative;

(2) If for all x, y ∈ A, x ∨2 y (y ∨2 x) is the l.u.b. of {x, y}, then A is ∨2-
commutative.

Proof

(1) Suppose that for all x, y ∈ A, x ∨1 y (y ∨1 x) is the l.u.b. of {x, y}. Then by
Lemma 1.1, for all x, y ∈ A we have y ∨1 x ≤ x ∨1 y and x ∨1 y ≤ y ∨1 x.
Applying (psBCK5) we get x ∨1 y = y ∨1 x. Thus A is ∨1-commutative.

(2) Similar to (1). �

Proposition 1.8 Let A be a pseudo-BCK algebra.

(1) If A is ∨1-commutative, then x ∨1 y is the l.u.b. of {x, y}, for all x, y ∈A;
(2) If A is ∨2-commutative, then x ∨2 y is the l.u.b. of {x, y}, for all x, y ∈A.

Proof

(1) Let x, y ∈A. According to Lemma 1.1, x ∨1 y is an upper bound of {x, y}. Let
z be another upper bound of {x, y}, i.e. x ≤ z and y ≤ z. We will prove that
x ∨1 y ≤ z. Indeed, applying Proposition 1.5(4) and taking into consideration
that A is ∨1-commutative we have:

x ∨1 y → z= x ∨1 y → y ∨1 z= x ∨1 y → z∨1 y

= (
(x → y)� y

)→ (
(z→ y) � y

)
.

According to (psBCK1) we have (b→ c) � (a → c)≥ a → b and replacing a

with z→ y, b with x → y and c with y we get:

(
(x → y)� y

)→ (
(z→ y) � y

)≥ (z→ y)� (x → y)

≥ x → z
(
by (psBCK1)

)
.

Hence x ∨1 y → z ≥ x → z= 1 (since x ≤ z). It follows that x ∨1 y → z= 1,
thus x ∨1 y ≤ z. We conclude that x ∨1 y is the l.u.b. of {x, y}.

(2) Similar to (1). �

Theorem 1.1 If A is a pseudo-BCK algebra, then:

(1) A is ∨1-commutative iff it is a join-semilattice with respect to ∨1 (under ≤);
(2) A is ∨2-commutative iff it is a join-semilattice with respect to ∨2 (under ≤).

Proof This is a consequence of Lemma 1.2 and Proposition 1.8. �

Corollary 1.1 Let A be a pseudo-BCK algebra. Then:

(1) If A is ∨1-commutative, then x ∨1 y ≤ x ∨2 y, y ∨2 x for all x, y ∈A;



1.1 Definitions and Properties 13

(2) If A is ∨2-commutative, then x ∨2 y ≤ x ∨1 y, y ∨1 x for all x, y ∈A.

Proof

(1) According to Lemma 1.1, x ∨2 y, y ∨2 x are upper bounds of {x, y}. By Propo-
sition 1.8, x ∨1 y is the l.u.b. of {x, y}, thus x ∨1 y ≤ x ∨2 y, y ∨2 x.

(2) Similar to (1). �

Definition 1.7 A pseudo-BCK algebra is called sup-commutative if it is both ∨1-
commutative and ∨2-commutative.

Theorem 1.2 A pseudo-BCK algebra is sup-commutative iff it is a join-semilattice
with respect to both ∨1 and ∨2.

Proof This follows from Theorem 1.1. �

Corollary 1.2 If A is a sup-commutative pseudo-BCK algebra, then x∨1 y = x∨2 y

for all x, y ∈A.

Proof By Corollary 1.1, x ∨1 y ≤ x ∨2 y and x ∨2 y ≤ x ∨1 y, hence x ∨1 y =
x ∨2 y. �

Lemma 1.3 In a ∨1-commutative (∨2-commutative) bounded pseudo-BCK algebra
A, we have x−∼ = x (x∼− = x, respectively), for all x ∈A.

Proof Replacing y with 0 in the identity x ∨1 y = y ∨1 x, we get (x → 0) � 0 =
(0→ x) � x, i.e. x−∼ = x.

Similarly, replacing y with 0 in x ∨2 y = y ∨2 x, we get x∼− = x. �

Corollary 1.3 Let A be a sup-commutative, bounded pseudo-BCK algebra. Then
x−∼ = x∼− = x, for all x ∈A.

Proof This follows by replacing y with 0 in the equality x ∨1 y = x ∨2 y and ap-
plying Lemma 1.3. �

In a bounded pseudo-BCK algebra A, define, for all x, y ∈A:

x ∧1 y := (
x− ∨1 y−

)∼
,

x ∧2 y := (
x− ∨2 y−

)∼
.

Lemma 1.4 Let A be a pseudo-BCK algebra. Then for all x, y ∈A:

(1) x ∧1 y (y ∧1 x) is a lower bound of {x−∼, y−∼};
(2) x ∧2 y (y ∧2 x) is a lower bound of {x∼−, y∼−}.
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Proof

(1) By Lemma 1.1 we have x−, y− ≤ x− ∨1 y−, hence x ∧1 y = (x− ∨1 y−)∼ ≤
x−∼, y−∼. Thus x ∧1 y is a lower bound of {x−∼, y−∼}.

(2) Similar to (1). �

Proposition 1.9 Let A be a bounded pseudo-BCK algebra.

(1) If A is ∨1-commutative, then x ∧1 y (y ∧1 x) is the g.l.b. of {x, y} and x ∧1 y =
y ∧1 x, for all x, y ∈A;

(2) If A is ∨2-commutative, then x ∧2 y (y ∧2 x) is the g.l.b. of {x, y} and x ∧2 y =
y ∧2 x, for all x, y ∈A.

Proof

(1) By Lemma 1.3, x−∼ = x and y−∼ = y. Hence by Lemma 1.4, x ∧1 y is a lower
bound of {x, y}. Now let z be another lower bound of {x, y}, i.e. z ≤ x, y. It
follows that x−, y− ≤ z−, thus z− is an upper bound of {x−, y−}. Since A is
∨1-commutative, by Proposition 1.8, x− ∨1 y− is the l.u.b. of {x−, y−}, hence
x− ∨1 y− ≤ z−. Thus z= z−∼ ≤ (x− ∨1 y−)∼ = x ∧1 y, i.e. x ∧1 y is the g.l.b.
of {x, y}. Since A is ∨1-commutative, we have x− ∨1 y− = y− ∨1 x−, hence
by definition it follows that x ∧1 y = y ∧1 x, for all x, y ∈A.

(2) Similar to (1). �

Corollary 1.4 Let A be a bounded pseudo-BCK algebra.

(1) If A is ∨1-commutative, then A is a lattice with respect to ∧1, ∨1;
(2) If A is ∨2-commutative, then A is a lattice with respect to ∧2, ∨2.

Proof This follows by Propositions 1.8 and 1.9. �

Theorem 1.3 A bounded sup-commutative pseudo-BCK algebra A is a lattice with
respect to both ∨1, ∧1 and ∨2, ∧2 (under ≤) and for all x, y we have:

x ∨1 y = x ∨2 y, x ∧1 y = x ∧2 y.

Proof By Corollary 1.4, A is a lattice with respect to both ∧1, ∨1 and ∧2, ∨2.
By Corollary 1.2, x ∨1 y = x ∨2 y for all x, y ∈ A. By Proposition 1.9 we get:
x ∧2 y ≤ x ∧1 y and x ∧1 y ≤ x ∧2 y, hence x ∧1 y = x ∧2 y for all x, y ∈A. �

We recall that a downwards-directed set (or a filtered set) is a partially ordered
set (A,≤) such that whenever a, b ∈ A, there exists an x ∈ A such that x ≤ a and
x ≤ b.

Dually, an upwards-directed set is a partially ordered set (A,≤) such that when-
ever a, b ∈A, there exists an x ∈A such that a ≤ x and b ≤ x.

If X is a set, then a net in X will be a set {xi | i ∈ I }, where (I,≤) is an upwards-
directed set.
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We say that a pseudo-BCK algebra A satisfies the relative cancellation property,
(RCP) for short, if for every a, b, c ∈A,

a, b ≤ c and c→ a = c→ b, c � a = c � b imply a = b.

We note that a pseudo-BCK algebra A that is sup-commutative and satisfies the
(RCP) condition is said to be a Łukasiewicz pseudo-BCK algebra (see [112]).

Example 1.8 The pseudo-BCK algebra A from Example 1.3 is downwards-directed
with (RCP).

Proposition 1.10 Any downwards-directed sup-commutative pseudo-BCK algebra
has (RCP).

Proof Consider a, b, c ∈A such that a, b ≤ c and c→ a = c→ b, c � a = c � b.
There exists an x ∈A such that x ≤ a, b.

By (psbck-c1), from a ≤ c it follows that c � x ≤ a � x.
According to Proposition 1.5(4) and (psbck-c3) we have:

a � x = (c � x)∨1 (a � x)= (a � x)∨1 (c � x)

= [
(a � x)→ (c � x)

]
� (c � x)= [

c �
[
(a � x)→ x

]]
� (c � x)

= [
c � (a ∨2 x)

]
� (c � x)= [

c � (x ∨2 a)
]
� (c � x)

= (c � a) � (c � x).

Similarly, b � x = (c � b) � (c � x)= (c � a)� (c � x)= a � x.
We have: a = x ∨2 a = a ∨2 x = (a � x) → x = (b � x) → x = b ∨2 x =

x ∨2 b= b.
Thus A has (RCP). �

1.2 Pseudo-BCK Algebras with Pseudo-product

Definition 1.8 A pseudo-BCK algebra with the (pP) condition (i.e. with the pseudo-
product condition) or a pseudo-BCK(pP) algebra for short, is a pseudo-BCK algebra
(A,≤,→,�,1) satisfying the (pP) condition:

(pP) For all x, y ∈A, x � y exists where

x � y =min{z | x ≤ y → z} =min{z | y ≤ x � z}.

Example 1.9 Take A = {0, a1, a2, s, a, b,n, c, d,m,1} with 0 < a1 < a2 < s <

a,b < n < c,d < m < 1 (see Fig. 1.3).
Consider the operations →, � given by the following tables:
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Fig. 1.3 Example of bounded pseudo-BCK(pP) algebra

→ 0 a1 a2 s a b n c d m 1
0 1 1 1 1 1 1 1 1 1 1 1
a1 a1 1 1 1 1 1 1 1 1 1 1
a2 a1 a1 1 1 1 1 1 1 1 1 1
s 0 a1 a2 1 1 1 1 1 1 1 1
a 0 a1 a2 m 1 m 1 1 1 1 1
b 0 a1 a2 m m 1 1 1 1 1 1
n 0 a1 a2 m m m 1 1 1 1 1
c 0 a1 a2 m m m m 1 m 1 1
d 0 a1 a2 m m m m m 1 1 1
m 0 a1 a2 m m m m m m 1 1
1 0 a1 a2 s a b n c d m 1

� 0 a1 a2 s a b n c d m 1
0 1 1 1 1 1 1 1 1 1 1 1
a1 a2 1 1 1 1 1 1 1 1 1 1
a2 0 a1 1 1 1 1 1 1 1 1 1
s 0 a1 a2 1 1 1 1 1 1 1 1
a 0 a1 a2 m 1 m 1 1 1 1 1
b 0 a1 a2 m m 1 1 1 1 1 1
n 0 a1 a2 m m m 1 1 1 1 1
c 0 a1 a2 m m m m 1 m 1 1
d 0 a1 a2 m m m m m 1 1 1
m 0 a1 a2 m m m m m m 1 1
1 0 a1 a2 s a b n c d m 1
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Then (A,≤,→,�,0,1) is a bounded pseudo-BCK(pP) algebra. The operation �
is given by the following table:

� 0 a1 a2 s a b n c d m 1
0 0 0 0 0 0 0 0 0 0 0 0
a1 0 0 0 a1 a1 a1 a1 a1 a1 a1 a1
a2 0 a1 a2 a2 a2 a2 a2 a2 a2 a2 a2
s 0 a1 a2 s s s s s s s s

a 0 a1 a2 s s s s s s s a

b 0 a1 a2 s s s s s s s b

n 0 a1 a2 s s s s s s s n

c 0 a1 a2 s s s s s s s c

d 0 a1 a2 s s s s s s s d

m 0 a1 a2 s s s s s s s m

1 0 a1 a2 s a b n c d m 1

Remark 1.4 Any bounded linearly ordered pseudo-BCK algebra satisfies the (pP)
condition. If the pseudo-BCK algebra is not bounded this result is not always valid.
Indeed, let (Q,≤,+,−,0) be the additive group of rationals with the usual linear
order and take A = {x ∈ Q | −√2 < x ≤ 0}. Then (A,→,0) is a linearly ordered
BCK-algebra with x → y =min{0, y − x}.

We have {z ∈A | (−1)≤ (−1)→ z=min{0, z+ 1}} =A.
Thus (−1)� (−1)=minA does not exist in (A,→,0).

Example 1.10

(1) If (A,≤,→,�,0,1) is the bounded pseudo-BCK algebra from Example 1.3,
then:

min{z | b ≤ a → z} =min{a, b, c,1} and

min{z | a ≤ b � z} =min{a, b, c,1}
do not exist. Thus b� a does not exist, so A is not a pseudo-BCK(pP) algebra.

(2) If (A,≤,→,�,0,1) is the subreduct of an FLw-algebra (see Chap. 3), then it
is obvious that A is a bounded pseudo-BCK(pP) algebra.

Example 1.11 Consider A= {0, a, b, c,1} with 0 < a < b, c < 1 and b, c incompa-
rable (see Fig. 1.4).

Consider the operations →, � given by the following tables:

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 1 1 1
b 0 a 1 c 1
c 0 b b 1 1
1 0 a b c 1

� 0 a b c 1
0 1 1 1 1 1
a 0 1 1 1 1
b 0 c 1 c 1
c 0 a b 1 1
1 0 a b c 1
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Fig. 1.4 Example of pseudo-BCK algebra without (pP) condition

Then (A,≤,→,�,0,1) is a bounded pseudo-BCK algebra.
Since (A,≤) is a lattice, it follows that A is a pseudo-BCK lattice.
We can see that c� b=min{z | c ≤ b→ z} =min{b, c,1} does not exist.
Hence A is a pseudo-BCK lattice without the (pP) condition.

Remark 1.5 It is easy to see that from the definition of the (pP) property, in any
pseudo-BCK(pP) algebra we have:

(psbck-c23) x ≤ y → (x � y), x ≤ y � (y � x).

Theorem 1.4 The (pP) condition is equivalent to the (pRP) (pseudo-residuation
property):

(pRP) For all x, y, z the following holds

x � y ≤ z iff x ≤ y → z iff y ≤ x � z.

Proof Assume that the (pP) condition holds.
From x � y ≤ z, applying (psbck-c10) we have y → x � y ≤ y → z and by

(psbck-c23) we get x ≤ y → z. It is easy to see that x ≤ y → z implies x � y ≤ z.
Thus x � y ≤ z iff x ≤ y → z and similarly, x � y ≤ z iff y ≤ x � z.
So, (pRP) also holds.
Conversely, suppose that (pRP) is satisfied.
Since x � y ≤ x � y, by (pRP) we have x ≤ y → x � y, so x � y ∈ {z | x ≤

y → z}.
But from x ≤ y → z, by (pRP) we have x � y ≤ z, and we conclude that min{z |

x ≤ y → z} = x � y.
One can prove similarly that min{z | y ≤ x � z} = x � y.
Thus the (pP) condition is also satisfied. �

Theorem 1.5 Let (A,≤,→,�,1) be a pseudo-BCK(pP) algebra. Then the alge-
bra (A,�,1) is a monoid, i.e. � is associative with identity element 1.

Proof For an arbitrary element u ∈ A, applying Theorem 1.4, (psbck-c4) and
(psbck-c3) we have:
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(x � y)� z≤ u iff x � y ≤ z→ u iff x ≤ y → (z→ u) iff

y ≤ x � (z→ u) iff y ≤ z→ (x � u) iff

y � z≤ x � u iff x � (y � z)≤ u.

It follows that (x � y)� z= x � (y � z), hence � is associative.
By (psbck-c23) we have y ≤ x → y � x, so for y = 1 we get 1 ≤ x → 1 � x.

Thus x → 1� x = 1, that is, x ≤ 1� x. On the other hand, 1� x ≤ x, so 1� x = x.
Similarly, x � 1= x, that is, 1 is the identity element.

We conclude that (A,�,1) is a monoid. �

Remark 1.6 A partial ordered residuated integral monoid (porim, for short) is a
structure (A,≤,�,→,�,1), where (A,≤) is a poset with greatest element 1,
(A,�,1) is a monoid and x� y ≤ z iff x ≤ y → z iff y ≤ x � z, for all x, y, z ∈A.

Applying Theorems 1.5, 1.4 and (psBCK4), it follows that every pseudo-
BCK(pP) algebra is a porim.

On the other hand, one can easily prove that every porim is a pseudo-BCK(pP)
algebra (see Remark 3.2).

Theorem 1.6 Pseudo-BCK(pP) algebras are categorically isomorphic to porims.

Proof This follows from Remark 1.6. �

Proposition 1.11 In any pseudo-BCK(pP) algebra the following properties hold:

(psbck-c24) x � y ≤ x, y;
(psbck-c25) (x → y)� x ≤ x, y, x � (x � y)≤ x, y;
(psbck-c26) x ≤ y implies x � z≤ y � z, z� x ≤ z� y;
(psbck-c27) x → y ≤ (x � z)→ (y � z), x � y ≤ (z� x) � (z� y);
(psbck-c28) x � (y → z)≤ y → (x � z), (y � z)� x ≤ y � (z� x);
(psbck-c29) (y → z)� (x → y)≤ x → z, (x � y)� (y � z)≤ x � z;
(psbck-c30) x → (y → z)= (x � y)→ z, x � (y � z)= (y � x) � z;
(psbck-c31) (x� z)→ (y� z)≤ x → (z→ y), (z� x) � (z� y)≤ x � (z � y);
(psbck-c32) x → y ≤ (x � z)→ (y � z)≤ x → (z→ y), x � y ≤ (z� x) � (z�

y)≤ x � (z � y);
(psbck-c33) (xn−1 → xn) � (xn−2 → xn−1) � · · · � (x1 → x2) ≤ x1 → xn and

(x1 � x2)� (x2 � x3)� · · · � (xn−1 � xn)≤ x1 � xn.

Proof

(psbck-c24) Applying (psbck-c6) we have:

x ≤ y → x, so x � y ≤ x and y ≤ x � y, so x � y ≤ y.

(psbck-c25) By (psbck-c24) we have (x → y)� x ≤ x.
Since (x → y) � x = min{z | x → y ≤ x → z} and taking into consideration
that x → y ≤ x → y we get (x → y)� x ≤ y. Similarly, x � (x � y)≤ x, y.
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(psbck-c26) Applying (psbck-c23) we have x ≤ y ≤ z→ y � z, so by (pRP) we get
x � z≤ y � z. Similarly, z� x ≤ z� y.

(psbck-c27) Taking into consideration (psbck-c25), (psbck-c26) and (pRP) we have
(x → y)� x ≤ y, so [(x → y)� x] � z≤ y � z.
Thus x → y ≤ (x � z)→ (y � z) and similarly x � y ≤ (z� x)� (z� y).

(psbck-c28) Applying (psbck-c25) we get x � (y → z)� y ≤ x � z and by (pRP)
we have x � (y → z)≤ y → (x � z).
Similarly, (y � z)� x ≤ y � (z� x).

(psbck-c29) By (psbck-c25) and (pRP) we have

(y → z)� (x → y)� x ≤ (y → z)� y ≤ z, so (y → z)� (x → y)≤ x → z.

Similarly (x � y)� (y � z)≤ x � z.
(psbck-c30) For any u we have:

u≤ x → (y → z) iff u� x ≤ y → z iff (u� x)� y ≤ z iff

u� (x � y)≤ z iff u≤ (x � y)→ z, so x → (y → z)= (x � y)→ z.

Similarly, x � (y � z)= (y � x) � z.
(psbck-c31) From y � z≤ y, applying (psbck-c10) and (psbck-c30) we get

x � z→ y � z≤ x � z→ y = x → (z→ y).

Similarly, (z� x) � (z� y)≤ x � (z � y).
(psbck-c32) This is a consequence of properties (psbck-c27) and (psbck-c31).
(psbck-c33) This follows from (psbck-c29) by induction. �

Proposition 1.12 In a bounded pseudo-BCK(pP) algebra the following hold:

(psbck-c34) x � 0= 0� x = 0;
(psbck-c35) y− � (x → y)≤ x− and (x � y)� y∼ ≤ x∼;
(psbck-c36) x− � x = 0 and x � x∼ = 0;
(psbck-c37) x → y− = (x � y)− and x � y∼ = (y � x)∼;
(psbck-c38) x ≤ y− iff x � y = 0 and x ≤ y∼ iff y � x = 0;
(psbck-c39) x ≤ y− iff y ≤ x∼;
(psbck-c40) x ≤ x∼ → y and x ≤ x− � y.

Proof

(psbck-c34) From x ≤ 0 → 0 = 1 and x ≤ 0 � 0 = 1 we get x � 0 ≤ 0 and 0 �
x ≤ 0. Thus x � 0= 0� x = 0.

(psbck-c35) This follows from (psbck-c29) for z= 0.
(psbck-c36) From x → 0≤ x → 0 we get (x → 0)� x ≤ 0, so x− � x = 0.

Similarly, x � x∼ = 0.
(psbck-c37) Applying (psbck-c30) we get:

x → y− = x → (y → 0)= x � y → 0= (x � y)−.
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Similarly, x � y∼ = (y � x)∼.
(psbck-c38) Assume x ≤ y−. Applying (psbck-c26) we get x � y ≤ y− � y = 0, so

x � y = 0. Conversely, if x � y = 0, by (psbck-c23) we get x ≤ y → (x � y)=
y → 0= y−. Similarly, x ≤ y∼ iff y � x = 0.

(psbck-c39) This follows from (psbck-c38).
(psbck-c40) Since 0≤ y, we have x � x∼ ≤ y, so x ≤ x∼ → y.

Similarly, x ≤ x− � y. �

Proposition 1.13 In every bounded pseudo-BCK lattice A we have:

(psbck-c41) (x ∨ y)− = x− ∧ y−, (x ∨ y)∼ = x∼ ∧ y∼;
(psbck-c42) (x ∧ y)− ≥ x− ∨ y− and (x ∧ y)∼ ≥ x∼ ∨ y∼;
(psbck-c43) (x ∨ y)−∼ ≥ x−∼ ∨ y−∼ and (x ∨ y)∼− ≥ x∼− ∨ y∼−.

Proof

(psbck-c41) According to (psbck-c12), for all x, y, z ∈A we have:

(x ∨ y)→ z= (x → z)∧ (y → z) and (x ∨ y)� z= (x � z)∧ (y � z).

Taking z= 0 we get (x ∨ y)− = x− ∧ y− and (x ∨ y)∼ = x∼ ∧ y∼.
(psbck-c42) By x ∧ y ≤ x and x ∧ y ≤ y we get x− ≤ (x ∧ y)− and y− ≤ (x ∧ y)−,

respectively. Thus (x ∧ y)− ≥ x− ∨ y−. Similarly, (x ∧ y)∼ ≥ x∼ ∨ y∼.
(psbck-c43) Applying (psbck-c41) and (psbck-c42) we get:

(x ∨ y)−∼ = (
x− ∧ y−

)∼ ≥ x−∼ ∨ y−∼ and

(x ∨ y)∼− = (
x∼ ∧ y∼

)− ≥ x∼− ∨ y∼− . �

Proposition 1.14 In any pseudo-BCK(pP) lattice the following hold:

(1) x � (
∨

i∈I yi)=∨
i∈I (x � yi) and (

∨
i∈I yi)� x =∨

i∈I (yi � x);
(2) y → (

∧
i∈I xi)=∧

i∈I (y → xi) and y � (
∧

i∈I xi)=∧
i∈I (y � xi);

(3) (
∨

i∈I xi)→ y =∧
i∈I (xi → y) and (

∨
i∈I xi) � y =∧

i∈I (xi � y),

whenever the arbitrary meets and unions exist.

Proof

(1) Since yi ≤∨
i∈I yi for all i ∈ I , according to (psbck-c26) we get x � yi ≤ x �

(
∨

i∈I yi) for all i ∈ I . It follows that
∨

i∈I (x � yi)≤ x � (
∨

i∈I yi).
On the other hand, x � yi ≤ ∨

i∈I (x � yi) for all i ∈ I , so yi ≤ x �∨
i∈I (x � yi) for all i ∈ I . If follows that

∨
i∈I yi ≤ x �

∨
i∈I (x � yi), that

is, x � (
∨

i∈I yi)≤∨
i∈I (x � yi).

Thus x � (
∨

i∈I yi)=∨
i∈I (x � yi).

Similarly, (
∨

i∈I yi)� x =∨
i∈I (yi � x).
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(2) For any u ∈A we have the following equivalences:

u≤ y →
(∧

i∈I

xi

)
iff u� y ≤

∧

i∈I

xi iff u� y ≤ xi for all i ∈ I iff

u≤ y → xi for all i ∈ I iff u≤
∧

i∈I

(y → xi).

Therefore, y → (
∧

i∈I xi)=∧
i∈I (y → xi).

Similarly, y � (
∧

i∈I xi)=∧
i∈I (y � xi).

(3) For any u ∈A we have the following equivalences:

u≤
(∨

i∈I

xi

)
→ y iff u�

(∨

i∈I

xi

)
≤ y iff

∨

i∈I

(u� xi)≤ y iff

u� xi ≤ y for all i ∈ I iff u≤ xi → y for all i ∈ I iff

u≤
∧

i∈I

(xi → y).

Therefore, (
∨

i∈I xi)→ y =∧
i∈I (xi → y).

Similarly, (
∨

i∈I xi) � y =∧
i∈I (xi � y). �

1.3 Pseudo-BCK Algebras with Pseudo-double Negation

Definition 1.9 A bounded pseudo-BCK algebra (A,≤,→,�,0,1) has the (pDN)
(pseudo-Double Negation) condition if it satisfies the following condition for all
x ∈A:

(pDN) x−∼ = x∼− = x.

Example 1.12 Let (G,∨,∧,+,−,0) be a linearly ordered �-group and let u ∈G,
u < 0. Define:

x → y :=
{

0 if x ≤ y

(u− x)∨ y if x > y,

x � y :=
{

0 if x ≤ y

(−x + u)∨ y if x > y.

Then A= ([u,0],→,�,0= u,1= 0) is a pseudo-BCK(pDN) algebra.

Example 1.13 Consider the structure (A,≤,→,�,0,1) given in Fig. 1.5.
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Fig. 1.5 Example of pseudo-BCK(pDN) algebra that is not lattice

The operations → and � on A= {0, a, b, c, d,1} are defined as follows:

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d 1 1 1
b c c 1 1 1 1
c a a d 1 d 1
d b c b c 1 1
1 0 a b c d 1

� 0 a b c d 1
0 1 1 1 1 1 1
a c 1 c 1 1 1
b d d 1 1 1 1
c b d b 1 d 1
d a a c c 1 1
1 0 a b c d 1

Then (A,≤,→,�,0,1) is a pseudo-BCK(pDN) algebra that is not lattice.

Example 1.14 Any sup-commutative bounded pseudo-BCK algebra is a pseudo-
BCK(pDN) algebra (see Corollary 1.3).

Proposition 1.15 Let A be a pseudo-BCK(pDN) algebra. Then for all x, y ∈A the
following hold:

(psbck-c44) x → y = y− � x−, x � y = y∼ → x∼;
(psbck-c45) x∼ → y = y− � x;
(psbck-c46) (x → y−)∼ = (y � x∼)−.

Proof

(psbck-c44) This is a consequence of (psbck-c19).
(psbck-c45) This follows from (psbck-c44) replacing x with x∼.
(psbck-c46) Applying (psbck-c16), condition (pDN), (psbck-c4) and (psbck-c44), for

any z ∈A we have:
(
x → y−

)∼ ≤ z iff z− ≤ x → y− iff x ≤ z− � y− = y → z iff

y ≤ x � z= z∼ → x∼ iff z∼ ≤ y � x∼ iff
(
y � x∼

)− ≤ z.

Thus (x → y−)∼ = (y � x∼)−. �

Proposition 1.16 In every pseudo-BCK(pDN) lattice A we have:

(psbck-c47) (x− ∨ y−)∼ = (x∼ ∨ y∼)− = x ∧ y.
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Proof By (psbck-c41) we have (x− ∨ y−)∼ = x−∼ ∧ y−∼ = x ∧ y.
Similarly, (x∼ ∨ y∼)− = x ∧ y. �

Proposition 1.17 Let A be a pseudo-BCK(pDN) algebra and x, y ∈A.
If x ∧ y exists, then x− ∨ y−, x∼ ∨ y∼ exist and:

(psbck-c48) (x ∧ y)− = x− ∨ y−, (x ∧ y)∼ = x∼ ∨ y∼.

Proof Since x ∧ y ≤ x, y, we get x−, y− ≤ (x ∧ y)−. It follows that (x ∧ y)− is an
upper bound of x− and y−. Let u be an arbitrary upper bound of x− and y−, that is,
x−, y− ≤ u. Since A satisfies condition (pDN), we get u∼ ≤ x, y, so u∼ ≤ x ∧ y.
Finally we get (x ∧ y)− ≤ u, so (x ∧ y)− is the least upper bound of x− and y−.
Thus x− ∨ y− exists and (x ∧ y)− = x− ∨ y−.

Similarly, x∼ ∨ y∼ exists and (x ∧ y)∼ = x∼ ∨ y∼. �

Corollary 1.5 In every pseudo-BCK(pDN) lattice A we have:

(psbck-c49) (x− ∧ y−)∼ = (x∼ ∧ y∼)− = x ∨ y.

Let (A,≤,→,�,0,1) be a pseudo-BCK(pDN) algebra. Define on A a new op-
eration · as follows:

x · y := (
x → y−

)∼ = (
y � x∼

)− for all x, y ∈A.

This operation is well-defined by (psbck-c46).

Lemma 1.5 Let (A,≤,→,�,0,1) be a pseudo-BCK(pDN) algebra. For any
x, y, z ∈A:

x ≤ y implies x · z≤ y · z and z · x ≤ z · y.

Proof We have x · z= (x → z−)∼ and y · z= (y → z−)∼. From x ≤ y and (psbck-
c1) we get y → z− ≤ x → z−.

Applying (psbck-c16) we have (x → z−)∼ ≤ (y → z−)∼, that is, x · z≤ y · z.
Similarly, x ≤ y implies y � z∼ ≤ x � z∼, so (x � z∼)− ≤ (y � z∼)−, that is,

z · x ≤ z · y. �

Proposition 1.18 Let (A,≤,→,�,0,1) be a pseudo-BCK(pDN) algebra. The fol-
lowing conditions are equivalent:

(pDN-C1) x · y ≤ z iff x ≤ y → z iff y ≤ x � z;
(pDN-C2) x · y =min{z | x ≤ y → z} =min{z | y ≤ x � z};
(pDN-C3) y → z=max{x | x · y ≤ z} =max{x | y · x ≤ z}.

Proof

(pDN-C1) ⇒ (pDN-C2) Since x ·y ≤ x ·y, by (pDN-C1) we have x ≤ y → (x ·y).
If z satisfies x ≤ y → z, then by (pDN-C1) we get x ·y ≤ z. Thus x ·y =min{z |
x ≤ y → z}. Similarly, x · y =min{z | y ≤ x � z}.
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(pDN-C2) ⇒ (pDN-C1) If x · y ≤ z, then applying (psbck-c10) we have y → (x ·
y)≤ y → z. Taking into consideration that, by (pDN-C2), x ≤ y → (x · y), we
get x ≤ y → z.

(pDN-C1) ⇒ (pDN-C3) Since y → z ≤ y → z, by (pDN-C1) we get (y → z) ·
y ≤ z. If x satisfies x · y ≤ z, then by (pDN-C1) we have x ≤ y → z.
Thus y → z=max{x | x · y ≤ z}.

(pDN-C3) ⇒ (pDN-C1) If x · y ≤ z, then by (pDN-C3) we get x ≤ y → z and
applying Lemma 1.5 it follows that x · y ≤ (y → z) · y. Since by (pDN-C3) we
also have (y → z) · y ≤ z, we get x · y ≤ z.
The rest of the proof is similar. �

Proposition 1.19 Let (A,≤,→,�,0,1) be a pseudo-BCK(pDN) algebra. Then:

x → y = (
x · y∼)−

, x � y = (
y− · x)∼

.

Proof Since x · y = (x → y−)∼ = (y � x∼)− and x∼− = x = x−∼, we get

(
x · y∼)− = (

x → y∼−
)∼− = x → y and

(
y− · x)∼ = (

x � y−∼
)−∼ = x � y.

�

Proposition 1.20 Let (A,≤,→,�,0,1) be a pseudo-BCK(pDN) algebra. Then
for all x, y, z ∈A:

x · y ≤ z iff x ≤ y → z iff y ≤ x � z.

Proof We will apply the properties (psbck-c4) and (psbck-c44):

x · y ≤ z iff
(
x → y−

)∼ ≤ z iff z− ≤ x → y− iff x ≤ z− � y− = y → z

and

x · y ≤ z iff
(
y � x∼

)− ≤ z iff z∼ ≤ y � x∼ iff y ≤ z∼ → x∼ = x � z.

�

Theorem 1.7 A bounded pseudo-BCK algebra (A,≤,→,�,0,1) satisfying con-
dition (pDN) has the (pP) condition and:

x � y = (
x → y−

)∼ = (
y � x∼

)−
, x → y = (

x � y∼
)−

,

x � y = (
y− � x

)∼
.

Proof By Propositions 1.20 and 1.18, it follows that A satisfies the (pP) condition.
If we let x � y = min{z | x ≤ y → z} = min{z | y � z = x · y}, it follows that
x � y = x · y = (x → y−)∼ = (y � x∼)−. �
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Theorem 1.8 Let (A,≤,→,�,0,1) be a bounded pseudo-BCK algebra. The fol-
lowing are equivalent:

(a) A has the (pDN) condition;
(b) x → y = y− � x− and x � y = y∼ → x∼;
(c) x∼ → y = y− � x and x− � y = y∼ → x;
(d) x− ≤ y implies y∼ ≤ x and x∼ ≤ y implies y− ≤ x.

Proof

(a) ⇒ (b) By (psbck-c19) we have:

x → y = x → y−∼ = y− � x− and x � y = x � y∼− = y∼ → x∼.

(b) ⇒ (c) By (psbck-c17) we have: x∼ → y−∼ = y− � x∼−.
Applying (b) we get: x∼ → y = y− � x∼− and y− � x = x∼ → y−∼.
Thus x∼ → y = y− � x. Similarly, x− � y = y∼ → x.

(c) ⇒ (d) If x− ≤ y, then x− � y = 1. Applying (c) we get y∼ → x = 1, that is,
y∼ ≤ x. Similarly, x∼ ≤ y implies y− ≤ x.

(d) ⇒ (a) From x− ≤ x− and (d) we have x−∼ ≤ x. Taking into consideration
(psbck-c14) we get x−∼ = x. Similarly, x∼− = x.

Thus A satisfies the (pDN) condition. �

Theorem 1.9 If (A,≤,→,�,0,1) is a pseudo-BCK(pDN) algebra, then the fol-
lowing are equivalent:

(a) (A,≤) is a meet-semilattice;
(b) (A,≤) is a join-semilattice;
(c) (A,≤) is a lattice.

Proof

(a) ⇒ (b) Consider x, y ∈A. Since A is a meet-semilattice, x− ∧y− exists. Apply-
ing (psbck-c48), it follows that x−∼ ∨ y−∼ exists, that is, x ∨ y exists.
Thus A is a join-semilattice.

(b) ⇒ (c) Because A is a join-semilattice it follows that x− ∨ y− exists for all
x, y ∈A. Hence by (psbck-c47), x ∧ y = (x− ∨ y−)∼. Thus x ∧ y exists, so A is
a lattice.

(c) ⇒ (a) This is obvious, since A is a lattice. �

Proposition 1.21 In every pseudo-BCK(pDN) lattice the following hold:

(1) y → (
∧

i∈I xi)=∧
i∈I (y → xi);

(2) y � (
∧

i∈I xi)=∧
i∈I (y � xi).

Proof This is a consequence of Proposition 1.14(2), since every pseudo-BCK(pDN)
lattice is a pseudo-BCK(pP) lattice. We give another proof for this result.
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Applying (psbck-c17) and Proposition 1.3 we have:

y → (
x−1 ∨ x−2

)∼ = (
x−1 ∨ x−2

)
� y− = (

x−1 � y−
)∧ (

x−2 � y−
)

= (
y → x−∼1

)∧ (
y → x−∼2

)= (y → x1)∧ (y → x2).

By (psbck-c47) we have (x−1 ∨ x−2 )∼ = x1 ∧ x2.
Hence y → (x1 ∧ x2)= (y → x1)∧ (y → x2).
By induction we get assertion (1).
(2) Similar to (1). �

Remark 1.7 If the pseudo-BCK lattice A does not have the property (pDN), then
the results of Proposition 1.21 do not hold. Indeed, in the pseudo-BCK lattice A

from Example 1.3 we have a → (a ∧ b)= a → 0= 0, while (a → a)∧ (a → b)=
1∧ b= b. Thus a → (a ∧ b) �= (a → a)∧ (a → b).

Proposition 1.22 In every pseudo-BCK(pDN) lattice the following conditions are
equivalent:

(C1) (x ∧ y)→ z= (x → z)∨ (y → z) and (x ∧ y) � z= (x � z)∨ (y � z);
(C2) z→ (x ∨ y)= (z→ x)∨ (z→ y) and z � (x ∨ y)= (z � x)∨ (z � y).

Proof

(C1) ⇒ (C2) By the second identity from (C1) we have:
(
x− ∧ y−

)
� z− = (

x− � z−
)∨ (

y− � z−
)
.

Applying (psbck-c17) and (psbck-c49) we get:
(
x− ∧ y−

)
� z− = z→ (

x− ∧ y−
)∼ = z→ (x ∨ y).

By (psbck-c44) we have:
(
x− � z−

)∨ (
y− � z−

)= (z→ x)∨ (z→ y).

Thus z→ (x ∨ y)= (z→ x)∨ (z→ y).
Similarly, from the first identity of (C1) we get the second identity from (C2).

(C2) ⇒ (C1) By the second identity from (C2) we get:

z− �
(
x− ∨ y−

)= (
z− � x−

)∨ (
z− � y−

)
.

Applying (psbck-c45) and (psbck-c44) we have:
(
x− ∨ y−

)∼ → z= (x → z)∨ (y → z).

By (psbck-c47), it follows that (x ∧ y)→ z= (x → z)∨ (y → z).

Similarly, from the first identity of (C2) we get the second identity from (C1). �
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Remark 1.8 The class of pseudo-BCK(pDN) lattices satisfying the conditions (C1)
and (C2) is not empty. Indeed, one can see that every pseudo-MV algebra satisfies
these conditions (see Chap. 4).

Theorem 1.10 Let A be a pseudo-BCK lattice such that at least one of the following
identities holds:

(C1
1 ) (x ∧ y)→ z= (x → z)∨ (y → z);

(C2
1 ) (x ∧ y) � z= (x � z)∨ (y � z).

Then (A,∧,∨) is distributive.

Proof Let u= (x ∨ y)∧ (x ∨ z). Obviously, x ≤ u and y ∧ z≤ u.
It follows that u is an upper bound of x and y ∧ z.
Let v be an arbitrary upper bound of x and y ∧ z, that is, x ≤ v and y ∧ z ≤ v.

By Proposition 1.3 we get:

(x ∨ y)→ v = (x → v)∧ (y → v)= y → v and

(x ∨ z)→ v = (x → v)∧ (z→ v)= z→ v.

If the identity (C1
1 ) is satisfied, then we have:

[
(x ∨ y)→ v

]∨ [
(x ∨ z)→ v

]= (y → v)∨ (z→ v)= (y ∧ z)→ v = 1 and
[
(x ∨ y)∧ (x ∨ z)

]→ v = [
(x ∨ y)→ v

]∨ [
(x ∨ z)→ v

]= 1,

that is, (x ∨ y)∧ (x ∨ z)≤ v, so u≤ v.
Thus u is the least upper bound of x and y ∧ z.
We conclude that x ∨ (y ∧ z)= (x ∨ y)∧ (x ∨ z), that is, (A,≤) is distributive.
Similarly, if (C2

1 ) is satisfied, we get the same conclusion. �

Corollary 1.6 If (A,∧,∨,→,�,0,1) is a pseudo-BCK(pDN) lattice satisfying
(C1) or (C2), then (A,∧,∨) is distributive.

Proof If A satisfies C1, then it satisfies (C1
1 ) and (C2

1 ), so A is distributive.
If A satisfies (C2), since by Proposition 1.22 (C1) is equivalent to (C2), it follows

that A is distributive. �

1.4 Good Pseudo-BCK Algebras

Definition 1.10 A bounded pseudo-BCK algebra A is called good if it satisfies the
following condition for all x ∈A:

(good) x−∼ = x∼−.

We remark that any pseudo-BCK(pDN) algebra is good.
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Example 1.15 The bounded pseudo-BCK algebras from Examples 1.4 and 1.5 are
good pseudo-BCK algebras.

Remark 1.9 Any bounded pseudo-BCK algebra can be extended to a good one. In-
deed, consider the bounded pseudo-BCK algebra A= (A,≤,→,�,0,1) and an el-
ement 01 /∈A. Consider a new pseudo-BCK algebra A1 = (A1,≤,→1,�1,01,1),
where A1 =A∪ {01} and the operations →1 and �1 are defined as follows:

x →1 y :=
⎧
⎨

⎩

x → y if x, y ∈A

1 if x = 01, y ∈A1
01 if x ∈A,y = 01,

x �1 y :=
⎧
⎨

⎩

x � y if x, y ∈A

1 if x = 01, y ∈A1
01 if x ∈A,y = 01.

One can easily check that A is a subalgebra of A1 and A1 is a good pseudo-BCK
algebra.

Example 1.16 Consider the pseudo-BCK algebra A from Example 1.3. Since
(a−)∼ = 1 and (a∼)− = a, it follows that A is not good. A can be extended to the
good pseudo-BCK algebra A1 = (A1,≤,→,�,0,1), where A1 = {0, a, b, c, d,1}
(in the construction given in Remark 1.9 we replaced c by d , b by c, a by b, 0 by a

and 01 by 0, so 0 < a < b, c < d < 1 and b, c are incomparable). The operations →
and � are defined as follows:

→ 0 a b c d 1
0 1 1 1 1 1 1
a 0 1 1 1 1 1
b 0 a 1 c 1 1
c 0 b b 1 1 1
d 0 a b c 1 1
1 0 a b c d 1

� 0 a b c d 1
0 1 1 1 1 1 1
a 0 1 1 1 1 1
b 0 c 1 c 1 1
c 0 a b 1 1 1
d 0 a b c 1 1
1 0 a b c d 1

One can easily check that A1 is a good pseudo-BCK algebra.
Moreover, we can see that

min{z | c ≤ b→ z} =min{b, c, d,1} and min{z | b ≤ c � z} =min{b, c, d,1}

do not exist. Thus c� b does not exist, so A1 does not satisfy the (pP) condition.
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Fig. 1.6 Example of good pseudo-BCK(pP) lattice

Example 1.17 Consider the pseudo-BCK lattice A from Example 1.9. Since
(a−1 )

∼ = a2 and (a∼1 )− = a1, it follows that A is not good. A can be extended
to the good pseudo-BCK algebra (see [182]) A1 = (A1,≤,→,�,0,1), where
A1 = {0, a1, a2, b2, s, a, b,n, c, d,m,1} with 0 < a1 < a2 < b2 < s < a,b < n <

c,d < m < 1 (see Fig. 1.6).
The operations → and � are defined as follows:

→ 0 a1 a2 b2 s a b n c d m 1
0 1 1 1 1 1 1 1 1 1 1 1 1
a1 0 1 1 1 1 1 1 1 1 1 1 1
a2 0 a2 1 1 1 1 1 1 1 1 1 1
b2 0 a2 a2 1 1 1 1 1 1 1 1 1
s 0 a1 a2 b2 1 1 1 1 1 1 1 1
a 0 a1 a2 b2 m 1 m 1 1 1 1 1
b 0 a1 a2 b2 m m 1 1 1 1 1 1
n 0 a1 a2 b2 m m m 1 1 1 1 1
c 0 a1 a2 b2 m m m m 1 m 1 1
d 0 a1 a2 b2 m m m m m 1 1 1
m 0 a1 a2 b2 m m m m m m 1 1
1 0 a1 a2 b2 s a b n c d m 1
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� 0 a1 a2 b2 s a b n c d m 1
0 1 1 1 1 1 1 1 1 1 1 1 1
a1 0 1 1 1 1 1 1 1 1 1 1 1
a2 0 b2 1 1 1 1 1 1 1 1 1 1
b2 0 a1 a2 1 1 1 1 1 1 1 1 1
s 0 a1 a2 b2 1 1 1 1 1 1 1 1
a 0 a1 a2 b2 m 1 m 1 1 1 1 1
b 0 a1 a2 b2 m m 1 1 1 1 1 1
n 0 a1 a2 b2 m m m 1 1 1 1 1
c 0 a1 a2 b2 m m m m 1 m 1 1
d 0 a1 a2 b2 m m m m m 1 1 1
m 0 a1 a2 b2 m m m m m m 1 1
1 0 a1 a2 b2 s a b n c d m 1

One can easily check that A1 = (A1,≤,→,�,0,1) is a good pseudo-BCK(pP)
lattice. The operation � is given by the following table:

� 0 a1 a2 b2 s a b n c d m 1
0 0 0 0 0 0 0 0 0 0 0 0 0
a1 0 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1
a2 0 a1 a1 a1 a2 a2 a2 a2 a2 a2 a2 a2
b2 0 a1 a2 b2 b2 b2 b2 b2 b2 b2 b2 b2
s 0 a1 a2 b2 s s s s s s s s

a 0 a1 a2 b2 s s s s s s s a

b 0 a1 a2 b2 s s s s s s s b

n 0 a1 a2 b2 s s s s s s s n

c 0 a1 a2 b2 s s s s s s s c

d 0 a1 a2 b2 s s s s s s s d

m 0 a1 a2 b2 s s s s s s s m

1 0 a1 a2 b2 s a b n c d m 1

Proposition 1.23 In any good pseudo-BCK(pP) algebra the following properties
hold:

(1) (x∼ � y∼)− = (x− � y−)∼;
(2) x−∼ � y−∼ ≤ (x � y)−∼.

Proof

(1) Applying (psbck-c37) and (psbck-c17) we have:

(
x∼ � y∼

)− = x∼ → y∼− = x∼ → y−∼ = y− � x∼−

= y− � x−∼ = (
x− � y−

)∼
.

(2) Because the pseudo-BCK(pP) algebra is good, by (psbck-c25), we have:
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(x � y)−∼ = (x � y)∼− ≥ x∼− � (
x∼− � (x � y)∼−

)

= x∼− � (
x∼− � (x � y)−∼

)

= x∼− � (
x∼− �

(
x → y−

)∼)
.

Applying (psbck-c30) we get:

x∼− �
(
x → y−

)∼ = x∼− �
((

x → y−
)
� 0

)= (
x → y−

)� x∼− � 0

= [(
x → y−

)� x∼−
]∼ = [(

x∼− → y−
)� x∼−

]∼

(by (psbck-c19) replacing y with y− we have x → y− = x−∼ → y−).
Applying (psbck-c25) we have (x∼− → y−)� x∼− ≤ y−, hence [(x∼− →

y−)� x∼−]∼ ≥ y−∼. Thus

(x � y)−∼ ≥ x∼− � (
x∼− �

(
x → y−

)∼)= x∼− � [(
x∼− → y−

)� x∼−
]∼

≥ x∼− � y−∼. �

Proposition 1.24 Let (A,≤,→,�,0,1) be a good pseudo-BCK algebra. We de-
fine a binary operation ⊕ on A by x ⊕ y := y∼ → x∼−. Then for all x, y ∈ A the
following hold:

(1) x ⊕ y = x− � y∼−;
(2) x, y ≤ x ⊕ y;
(3) x ⊕ 0= 0⊕ x = x∼−;
(4) x ⊕ 1= 1⊕ x = 1;
(5) (x ⊕ y)−∼ = x ⊕ y = x−∼ ⊕ y−∼;
(6) ⊕ is associative.

Proof

(1) This follows by (psbck-c19), second identity, replacing x with x−.
(2) Since x ≤ x∼− ≤ y∼ → x∼−, it follows that x ≤ x ⊕ y.

Similarly, y ≤ y∼− ≤ x− � y∼−, so y ≤ x ⊕ y.
(3) x ⊕ 0= 0∼ → x∼− = 1→ x∼− = x∼−.

Similarly, 0⊕ x = x∼ → 0∼− = x∼ → 0= x∼−.
(4) 1⊕ x = x∼ → 1∼− = x∼ → 1= 1. Similarly, x ⊕ 1= 1.
(5) Applying (psbck-c21), we get:

(x ⊕ y)−∼ = (
y∼ → x∼−

)−∼ = y∼ → x∼− = x ⊕ y.

We also have: x−∼ ⊕ y−∼ = (y−∼)∼ → (x−∼)−∼ = y∼ → x−∼ = x ⊕ y.
(6) Applying (psbck-c21) and (psbck-c3) we get:

(x ⊕ y)⊕ z= (
x− � y∼−

)⊕ z= z∼ → (
x− � y∼−

)∼−

= z∼ → (
x− � y∼−

)= x− �
(
z∼ → y∼−

)= x− � (y ⊕ z)

= x− � (y ⊕ z)∼− = x ⊕ (y ⊕ z). �
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Proposition 1.25 If (A,≤,→,�,0,1) is a good pseudo-BCK(pP) algebra, then

x ⊕ y = (
y− � x−

)∼ = (
y∼ � x∼

)−
.

Proof This follows by applying (psbck-c37). �

As in [242] for the case of bounded R�-monoids, a good pseudo-BCK(pP) alge-
bra A which satisfies the identity (x � y)−∼ = x−∼ � y−∼ for all x, y ∈A will be
called a normal pseudo-BCK(pP) algebra.

If A is a pseudo-BCK(pP) algebra, then for any n ∈N, x ∈A we put x0 = 1 and
xn+1 = xn � x = x � xn.

If A is a good pseudo-BCK algebra, then for any n ∈ N, x ∈ A we put 0x = 0
and (n+ 1)x = nx ⊕ x = x ⊕ nx (the latter equality is a consequence of Proposi-
tion 1.24(6)).

Proposition 1.26 If (A,≤,→,�,0,1) is a normal pseudo-BCK(pP) algebra, then
the following hold for all x, y ∈A and n ∈N:

(1) (x � y)− = y− ⊕ x− and (x � y)∼ = y∼ ⊕ x∼;
(2) ((x � y)n)− = n(y− ⊕ x−) and ((x � y)n)∼ = n(y∼ ⊕ x∼);
(3) (xn)− = nx− and (xn)∼ = nx∼.

Proof

(1) Applying Proposition 1.25 we have:

(x � y)− = (x � y)−∼− = (
x−∼ � y−∼

)− = y− ⊕ x−;
(x � y)∼ = (x � y)∼−∼ = (

x∼− � y∼−
)∼ = y∼ ⊕ x∼.

(2) For n= 2, applying (1) we get:

(
(x � y)2)− = [

(x � y)� (x � y)
]− = [

(x � y)� (x � y)
]−∼−

= [
(x � y)−∼ � (x � y)−∼

]− = (x � y)−∼− ⊕ (x � y)−∼−

= (x � y)− ⊕ (x � y)− = (
y− ⊕ x−

)⊕ (
y− ⊕ x−

)

= 2
(
y− ⊕ x−

)
.

By induction we get ((x � y)n)− = n(y− ⊕ x−).
Similarly, ((x � y)n)∼ = n(y∼ ⊕ x∼).

(3) This follows from (2) for y = 1. �

Definition 1.11 Let A be a good pseudo-BCK algebra. If x, y ∈A, we say that x is
orthogonal to y, denoted x ⊥ y, iff x−∼ ≤ y∼. We can define a partial operation +
on A, namely if x ⊥ y, then x + y := x ⊕ y.
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Lemma 1.6 Let A be a good pseudo-BCK algebra. Then the following properties
hold for all x, y ∈A:

(1) x ⊥ y iff y−∼ ≤ x−;
(2) x ⊥ x− and x + x− = 1;
(3) x∼ ⊥ x and x∼ + x = 1;
(4) x ⊥ 0 and x + 0= x∼−;
(5) 0⊥ x and 0+ x = x∼−;
(6) if x ≤ y, then x ⊥ y−, y∼ ⊥ x and x + y− = y → x−∼, y∼ + x = y � x∼−;
(7) if x ⊥ y, then x−∼ ⊥ y−∼;
(8) x− ⊥ y− iff x∼ ⊥ y∼.

Proof

(1) x ⊥ y iff x−∼ ≤ y∼ iff y−∼ ≤ x−∼− = x−.
(2) Since x−∼ ≤ x−∼ = (x−)∼, it follows that x ⊥ x− and

x + x− = x−∼ → x−∼ = 1.

(3) Similarly, from x−∼ ≤ x−∼ = (x∼)− we get that x∼ ⊥ x and

x∼ + x = x∼ → x∼−∼ = x∼ → x∼ = 1.

(4) Since x−∼ ≤ 1= 0∼, it follows that x ⊥ 0 and

x + 0= 0∼ → x∼− = 1→ x∼− = x∼−.

(5) Since x−∼ ≤ 1= 0−, it follows that 0⊥ x and

0+ x = x∼ → 0∼− = x∼ → 0= x∼−.

(6) Since x ≤ y, we have y− ≤ x−, that is, (y−)−∼ ≤ x−, so x ⊥ y−.
Moreover, x + y− = y−∼ → x−∼ = y → x−∼ (by (psbck-c19)).
Similarly we have y∼ ≤ x∼, so (y∼)−∼ ≤ x∼, that is, y∼ ⊥ x and y∼ + x =

x∼ → y∼−∼ = x∼ → y∼ = y � x∼− (by (psbck-c17)).
(7) x ⊥ y implies x−∼ ≤ y∼, so (x−∼)−∼ ≤ (y−∼)∼, that is, x−∼ ⊥ y−∼.
(8) x− ⊥ y− iff x−−∼ ≤ y−∼ iff x− ≤ y−∼ iff (y∼)−∼ ≤ (x∼)− iff x∼ ⊥ y∼. �

Proposition 1.27 In a good pseudo-BCK(pP) algebra A the following are equiva-
lent for all x, y ∈A:

(a) x ⊥ y;
(b) y−∼ � x−∼ = 0.

Proof

x ⊥ y iff y−∼ ≤ x− = x−∼− iff y−∼ ≤ x−∼ → 0 iff

y−∼ � x−∼ ≤ 0 iff y−∼ � x−∼ = 0. �
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Proposition 1.28 Let A be a good pseudo-BCK(pP) algebra and x, y ∈A such that
x ⊥ y. Then the following hold:

(1) y � x = 0;
(2) xn ⊥ ym for all n,m ∈N.

Proof

(1) Since x ⊥ y, then y−∼ � x−∼ = 0. Taking into consideration that x ≤ x−∼ and
y ≤ y−∼, we get y � x ≤ y−∼ � x−∼ = 0, so y � x = 0.

(2) From xn ≤ x and ym ≤ y, it follows that (xn)−∼ ≤ x−∼ and (ym)−∼ ≤ y−∼.
Hence (ym)−∼ � (xn)−∼ ≤ y−∼ � x−∼ = 0, so (ym)−∼ � (xn)−∼ = 0 and
applying Proposition 1.27 we get that xn ⊥ ym. �

Definition 1.12 Let A be a good pseudo-BCK algebra.

(1) We say that x is N-orthogonal to y, denoted x ⊥no y, if x− ≤ y−∼.
(2) A has the strong orthogonality property ((SO) for short), if x ⊥ y implies

x ⊥no y for all x, y ∈A such that x �= 0 and y �= 0.

Remark 1.10 If A is a good pseudo-BCK algebra, then:

(1) x ⊥no y iff y∼ ≤ x−∼;
(2) x ⊥no y iff x− ⊥ y− (and according to Proposition 1.6(8) we also have x ⊥no y

iff x∼ ⊥ y∼);
(3) x ⊥no 1 and 1⊥no x for all x ∈A;
(4) x ⊥no 0 iff x− = x∼ = 0;
(5) 0⊥no x iff x− = x∼ = 0.

Remark 1.11 Let A be a good pseudo-BCK algebra.
Then A has the (SO) property iff x− = y−∼ iff y∼ = x−∼ for all x �= 0 and

y �= 0.

1.5 Deductive Systems and Congruences

Definition 1.13 Let A be a pseudo-BCK algebra. The subset D ⊆ A is called a
deductive system of A if it satisfies the following conditions:

(DS1) 1 ∈D;
(DS2) for all x, y ∈A, if x, x → y ∈D, then y ∈D.

Lemma 1.7 Let A be a pseudo-BCK algebra. Then D ⊆ A with 1 ∈D is a deduc-
tive system of A if and only if it satisfies the condition:

(DS′2) for all x, y ∈A, if x, x � y ∈D, then y ∈D.
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Proof Assume that D ⊆A is a deductive system of A.
First of all we observe that, if x ∈D, y ∈A such that x ≤ y, then x → y = 1 ∈D,

hence by (DS2), y ∈D.
If x, x � y ∈D, then according to (psBCK2) we have x ≤ (x � y)→ y.
Hence (x � y)→ y ∈D and by (DS2) we get y ∈D.
Thus (DS2) implies (DS′2). Similarly, (DS′2) implies (DS2). �

The deductive system D of a pseudo-BCK algebra A is called proper if D �=A.
Obviously, the deductive system D is proper iff 0 /∈D iff there is no x ∈A such that
x, x− ∈D iff there is no x ∈A such that x, x∼ ∈D.

Definition 1.14 A deductive system D of a pseudo-BCK algebra A is said to be
normal if it satisfies the condition:

(DS3) for all x, y ∈A, x → y ∈D iff x � y ∈D.

Remark 1.12 In [208] a normal deductive system is called a compatible deductive
system.

We will denote by DS(A) the set of all deductive systems and by DSn(A) the set
of all normal deductive systems of a pseudo-BCK algebra A.

Obviously, {1}, A ∈DS(A), DSn(A) and DSn(A)⊆DS(A).

Definition 1.15 Let A be a pseudo-BCK(pP) algebra. A subset ∅ �= F ⊆A is called
a filter of A if it satisfies the following conditions:

(F1) x, y ∈ F implies x � y ∈ F ;
(F2) x ∈ F , y ∈A, x ≤ y implies y ∈ F .

Proposition 1.29 Let A be pseudo-BCK(pP) algebra and F a nonempty subset
of A. Then the following are equivalent:

(a) F is a deductive system of A;
(b) F is a filter of A.

Proof

(a) ⇒ (b) Assume that F is a deductive system of A.
Consider x, y ∈ F . According to (psbck-c30), and taking into consideration
(DS1), we have x → (y → x � y)= x � y → x � y = 1 ∈ F .
Since x, y ∈ F , applying (DS2) it follows that y → x � y ∈ F and finally
x � y ∈ F .
Thus (F1) is satisfied.
If x ∈ F , y ∈A such that x ≤ y, then x → y = 1 ∈ F . Hence, by (DS1), we get
y ∈ F , that is, (F2). We conclude that F is a filter of A.

(b) ⇒ (a) Assume that F is a filter of A.
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Since F is a nonempty subset of A, there exists an x ∈ F and obviously, x ≤ 1.
Hence, by (F2), it follows that 1 ∈ F . Thus (DS1) is satisfied.
Consider x, y ∈A such that x, x → y ∈ F . According to (F1), (x → y)�x ∈ F .
Since by (psbck-c25) (x → y) � x ≤ y, applying (F2) we get y ∈ F , that is,
(DS2).
Thus F is a deductive system of A. �

We will denote by F(A) the set of all filters and by Fn(A) the set of all normal
filters of a pseudo-BCK(pP) algebra A.

It follows that in the case of a pseudo-BCK(pP) algebra A we have DS(A) =
F(A) and DSn(A)=Fn(A).

By Proposition 1.29, in the case of pseudo-BCK algebras we will use the notion
of a deductive system, while for pseudo-BCK(pP) algebras and its particular cases
(pseudo-hoops, FLw-algebras, pseudo-MTL algebras, R�-monoids, pseudo-BL al-
gebras) we can use both notions of deductive system and filter.

Definition 1.16 A deductive system is called maximal or an ultrafilter if it is proper
and is not strictly contained in any other proper deductive system.

We make the following definitions:

Max(A)= {F | F is a maximal deductive system of A} and

Maxn(A)= {F | F is a maximal normal deductive system of A}.
Clearly, Maxn(A)⊆Max(A).

Example 1.18 Consider the pseudo-BCK algebra A from Example 1.3.

(1) The deductive systems of A are the following: D1 = {a, c,1}, D2 = {b, c,1},
D3 = {c,1} and D4 = {1}.

(2) D1 and D2 are maximal deductive systems.
(3) D3 is a normal deductive system.
(4) D1 and D2 are not normal deductive systems (b→ a = a ∈D1, while b � 0=

0 /∈D1 and a � 0= b ∈D2, while a → 0= 0 /∈D2).

Example 1.19 In the pseudo-BCK algebra A1 from Example 1.16, the set D =
{a, b, c, d,1} is a maximal normal deductive system.

Proposition 1.30 If A is a bounded pseudo-BCK(pP) algebra, then the sets

A−
0 =

{
x ∈A | x− = 0

}
and A∼

0 =
{
x ∈A | x∼ = 0

}

are proper deductive systems of A.

Proof If x, y ∈A−
0 , then (x � y)− = x → y− = x → 0= x− = 0, so x � y ∈A−

0 .
If x ∈A−

0 , y ∈A such that x ≤ y, then y− ≤ x− = 0, so y− = 0, that is, y ∈A−
0 .

Because 0 /∈A−
0 , we conclude that A−

0 is a proper deductive system of A.
Similarly for the case of A∼

0 . �
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Proposition 1.31 Let A be a bounded pseudo-BCK algebra and H ∈ DSn(A).
Then:

(1) x− ∈H iff x∼ ∈H ;
(2) x ∈H implies (x−)− ∈H and (x∼)∼ ∈H .

Proof

(1) This follows by taking y = 0 in the definition of a normal deductive system.
(2) From x ∈ H and x ≤ (x−)∼ we get (x−)∼ ∈ H , that is, x− � 0 ∈ H . Hence

x− → 0 ∈H , so (x−)− ∈H . Similarly, (x∼)∼ ∈H . �

Proposition 1.32 Any proper deductive system of a pseudo-BCK algebra A can be
extended to a maximal deductive system of A.

Proof This is an immediate consequence of Zorn’s lemma. �

Example 1.20

(1) Let A be the pseudo-BCK(pP) algebra from Example 1.9, D1 = {s, a, b,n, c, d,

m,1} and D2 = {a2, s, a, b,n, c, d,m,1}. Then: DS(A) = {{1},D1,D2,A},
DSn(A)= {{1},D1,A}, Max(A)= {D2} and Maxn(A)= ∅.

(2) In the case of the pseudo-BCK(pP) algebra A1 from Example 1.17, with D1 =
{a1, a2, b2, s, a, b,n, c, d,m,1}, D2 = {b2, s, a, b,n, c, d,m,1} and D3 = {s, a,

b,n, c, d,m,1}, we have: DS(A1) = {{1},D1,D2,D3,A1}, DSn(A1) = {{1},
D1,D3,A1}, Max(A1)= {D1} and Maxn(A1)= {D1}.

Let A be a good pseudo-BCK(pP) algebra. The notion dual to that of a filter is
that of an ideal.

Definition 1.17 An ideal of a good pseudo-BCK(pP) algebra A is a nonempty sub-
set I of A satisfying the conditions:

(I1) If x, y ∈ I , then x ⊕ y ∈ I .
(I2) If x ∈A, y ∈ I , x ≤ y, then x ∈ I .

Recall that, if A is a pseudo-BCK(pP) algebra, then for any n ∈ N, x ∈ A we
put x0 = 1 and xn+1 = xn � x = x � xn. If A is bounded, the order of x ∈ A,
denoted ord(x), is the smallest n ∈ N such that xn = 0. If there is no such n, then
ord(x)=∞.

Definition 1.18 For every subset X ⊆ A, the smallest deductive system of A con-
taining X (i.e. the intersection of all deductive systems D ∈ DS(A) such that
X ⊆ D) is called the deductive system generated by X and it will be denoted by
[X). If X = {x} we write [x) instead of [{x}).

Lemma 1.8 Let A be a bounded pseudo-BCK(pP) algebra and x, y ∈A. Then:
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(1) [x) is proper iff ord(x)=∞;
(2) if x ≤ y and ord(y) <∞, then ord(x) <∞;
(3) if x ≤ y and ord(x)=∞, then ord(y)=∞.

Proof

(1) [x) is proper iff 0 /∈ [x) iff xn �= 0 for all n ∈N iff ord(x)=∞.
(2) and (3) follow from the fact that x ≤ y implies xn ≤ yn for all n ∈N. �

Let A be a pseudo-BCK algebra.
Given an integer n≥ 1, we define inductively

x →0 y := y, x →n y := x → (
x →n−1 y

)
, n≥ 1 and

x �0 y := y, x �n y := x �
(
x �n−1 y

)
, n≥ 1.

Lemma 1.9 Let (A,→,�,1) be a pseudo-BCK algebra. Then [∅)= 1 and for any
∅ �=X ⊆A we have:

(1)

[X)= {
a ∈A | x1 →

(· · ·→ (xn → a) · · · )= 1

for some x1, . . . , xn ∈X and n≥ 1
}

= {
a ∈A | x1 �

(· · ·� (xn � a) · · · )= 1

for some x1, . . . , xn ∈X and n≥ 1
};

(2)

[x)= {
a ∈A | x →n a = 1 for some n≥ 1

}

= {
a ∈A | x �n a = 1 for some n≥ 1

}
.

Proof It is clear that [∅)= 1.

(1) Let Y = {a ∈A | x1 → (· · · → (xn → a) · · · )= 1, x1, . . . , xn ∈X,n≥ 1}.
Obviously, 1 ∈ Y . Consider a, a � b ∈ Y , i.e.,

x1 →
(· · ·→ (

xm → (a � b)
) · · · )= 1 and

y1 →
(· · ·→ (yn → a) · · · )= 1

for some x1, . . . , xm, y1, . . . , yn ∈X, m,n ∈N.
Applying (psbck-c3) we get inductively

a �
(
x1 →

(· · ·→ (xm → b) · · · ))= x1 →
(· · ·→ (

xm → (a � b)
) · · · )= 1.

Hence a ≤ x1 → (· · · → (xm → b) · · · ).
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Applying (psbck-c10) we get inductively

1= y1 →
(· · · → (yn → a) · · · )

≤ y1 →
(· · ·→ (

yn →
(
x1 →

(· · · → (xm → b) · · · ))) · · · ).
It follows that y1 → (· · · → (yn → (x1 → (· · · → (xm → b) · · · ))) · · · )= 1, so
b ∈ Y . Thus Y ∈DS(A).

Moreover, we can see that X ⊆ Y and Y ⊆ D whenever D ∈ DS(A), so
Y = [X), which proves that Y = [X). Similarly,

[X)= {
a ∈A | x1 �

(· · ·� (xn � a) · · · )= 1, x1, . . . , xn ∈X,n≥ 1
}
.

(2) This follows from (1). �

Proposition 1.33 If A is a pseudo-BCK(pP) algebra and X ⊆A, then

[X)= {a ∈A | a ≥ x1 � x2 � · · · � xn for some n≥ 1 and x1, x2, . . . , xn ∈X}.

Proof If we put

X′ = {a ∈A | a ≥ x1 � x2 � · · · � xn for some n≥ 1 and x1, x2, . . . , xn ∈X},
it is obvious that X′ is a filter of A which contains X.

Taking into consideration Proposition 1.29, X′ is a deductive system of A con-
taining X, that is, [X)⊆X′.

Now let Y ∈DS(A) such that X ⊆ Y . If a ∈X′, then there are x1, x2, . . . , xn ∈X

such that x1 � x2 � · · ·� xn ≤ a. Since x1, x2, . . . , xn ∈ Y , it follows that x1 � x2 �
· · · � xn ∈ Y , so a ∈ Y . Hence X′ ⊆ Y .

We conclude that X′ ⊆⋂{Y | Y ∈DS(A),X ⊆ Y } = [X).
Thus X′ = [X), that is,

[X)= {a ∈A | a ≥ x1 � x2 � · · · � xn for some n≥ 1 and x1, x2, . . . , xn ∈X}.�

Remark 1.13 Let A be a pseudo-BCK(pP) algebra. Then:

(1) If X is a deductive system of A, then [X)=X.
(2) [x)= {y ∈ A | y ≥ xn for some n≥ 1} ([x) is called a principal deductive sys-

tem).
(3) If D is a deductive system of A and x ∈A \D, then

D(x)= [
D ∪ {x})

= {
y ∈A | y ≥ (

d1 � xn1
)� (

d2 � xn2
)� · · · � (

dm � xnm
)

for some m≥ 1, n1, n2, . . . , nm ≥ 0, d1, d2, . . . , dm ∈D
}
.

Lemma 1.10 Let A be a pseudo-BCK(pP) algebra and D a proper deductive sys-
tem of A. Then the following are equivalent:
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(a) D is maximal;
(b) for all x ∈A, if x /∈D then [D ∪ {x})=A.

Proof

(a) ⇒ (b) Obviously, D ⊆ [D∪{x}), D �= [D∪{x}). Since D is maximal, it follows
that [D ∪ {x})=A.

(b) ⇒ (a) Suppose that there exists a proper deductive system E of A such that
D ⊂E and D �=E. It follows that there is an x ∈E \D and applying (b) we get
that [D ∪ {x})= A. But [D ∪ {x})⊆ E, hence E = A. Thus E is not proper, a
contradiction. Therefore D ∈Max(A). �

Proposition 1.34 If D1, D2 are nonempty subsets of a pseudo-BCK(pP) algebra A

such that 1 ∈D1 ∩D2, then

[D1 ∪D2)=
{
x ∈A | x ≥ (

d1 � d ′1
)� (

d2 � d ′2
)� · · · � (

dn � d ′n
)

for some n≥ 1, d1, d2, . . . , dn ∈D1, d
′
1, d

′
2, . . . , d

′
n ∈D2

}
.

Proof Let H = {x ∈ A | x ≥ (d1 � d ′1)� · · · � (dn � d ′n) for some d1, d2, . . . , dn ∈
D1, d

′
1, d

′
2, . . . , d

′
n ∈D2}. We prove that H ∈DS(A). Let x ∈H , y ∈A, x ≤ y.

Since x ≥ (d1 � d ′1)� · · · � (dn � d ′n) for some d1, d2, . . . , dn ∈D1, d ′1, d ′2, . . . ,
d ′n ∈D2, we have y ≥ (d1 � d ′1)� · · · � (dn � d ′n), that is, y ∈H .

For x, y ∈ H there exist n,m ≥ 1, d1, d2, . . . , dn, e1, e2, . . . , em ∈ D1, d ′1, d ′2,
. . . , d ′n, e′1, e′2, . . . , e′m ∈D2 such that

x ≥ (
d1 � d ′1

)� · · · � (
dn � d ′n

)
, y ≥ (

e1 � e′1
)� · · · � (

em � e′m
)
.

We get x � y ≥ (d1 � d ′1) � · · · � (dn � d ′n) � (e1 � e′1) � · · · � (em � e′m), so
x � y ∈H . Thus H ∈DS(A).

Since 1 ∈D1 ∩D2, we deduce that D1,D2 ⊆H (if x ∈D1, then x ≥ x � 1 with
1 ∈D2, so x ∈H ; if x ∈D2, then x ≥ 1� x with 1 ∈D1, so x ∈H ).

Hence D1 ∪D2 ⊆H , so it follows that [D1 ∪D2)⊆H .
Now let D ∈DS(A) such that D1 ∪D2 ⊆D.
If x ∈ H , then there are d1, d2, . . . , dn ∈ D1, d ′1, d ′2, . . . , d ′n ∈ D2 such that x ≥

(d1 � d ′1)� · · · � (dn� d ′n). Since d1, d2, . . . , dn, d
′
1, d

′
2, . . . , d

′
n ∈D, it follows that

(d1 � d ′1)� · · · � (dn � d ′n) ∈D, hence x ∈D.
Thus H ⊆D, so H ⊆⋂{D ∈DS(A) |D1 ∪D2 ⊆D} = [D1 ∪D2).
We conclude that [D1 ∪D2)=H . �

Lemma 1.11 Let A be a pseudo-BCK(pP) algebra and H ∈DSn(A). Then:

(1) For any x ∈A and h ∈H , there is an h′ ∈H such that x � h≥ h′ � x;
(2) For any x ∈A and h ∈H , there is an h′′ ∈H such that h� x ≥ x � h′′.

Proof

(1) Let y = x � h. Then x � h= y ≥ (x → y)� x.
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But h≤ x � x � h= x � y. Since h ∈H , it follows that x � y ∈H .
Because H is a normal filter we have h′ = x → y ∈H . Thus x�h≥ h′ � x.

(2) Let y = h� x. Then h� x = y ≥ x � (x � y). But h≤ x → h� x = x → y.
Since h ∈H , it follows that x → y ∈H . Because H is a normal filter we have
h′ = x � y ∈H . Thus h� x ≥ x � h′. �

Lemma 1.12 Let A be a bounded pseudo-BCK(pP) algebra, H a normal proper
deductive system of A and x ∈A. Then the following are equivalent:

(a) there exists an h ∈H such that x ≤ h−;
(b) there exists an h ∈H such that x � h= 0;
(c) there exists an h ∈H such that x ≤ h∼;
(d) there exists an h ∈H such that h� x = 0.

Proof

(a) ⇔ (b) and (c) ⇔ (d) are obvious.
(b) ⇒ (d) Assume that there exists an h ∈ H such that x � h = 0. According to

Lemma 1.11, there exists an h′ ∈H such that x� h≥ h′ � x, hence h′ � x = 0.
(d) ⇒ (b) Similar to (b) ⇒ (d). �

Proposition 1.35 Let A be a pseudo-BCK(pP) algebra, H ∈ DSn(A) and x ∈ A.
Then

H(x)= [
H ∪ {x}) = {

y ∈A | y ≥ h� xn for some n ∈N, h ∈H
}

= {
y ∈A | y ≥ xn � h for some n ∈N, h ∈H

}

= {
y ∈A | xn → y ∈H for some n≥ 1

}

= {
y ∈A | xn � y ∈H for some n≥ 1

}
.

Proof Let y ∈ H(x). Then y ≥ (h1 � xn1) � (h2 � xn2) � · · · � (hm � xnm) for
some m≥ 1, n1, n2, . . . , nm ≥ 0, h1, h2, . . . , hm ∈H , by Remark 1.13(3).

If m= 1, then y ≥ h1 � xn1 and we take h= h1 and n= n1.
If m= 2, then y ≥ (h1 � xn1)� (h2 � xn2)= h1 � (xn1 � h2)� xn2 .
According to Lemma 1.11, there is an h′2 ∈H such that xn1 � h2 ≥ h′2 � xn1 .
Hence y ≥ h1� (h′2�xn1)�xn2 = (h1�h′2)�xn1+n2 and we take h= h1�h′2

and n= n1 + n2. By induction we get y ≥ h� xn for some n ∈N, h ∈H .
Similarly, y ≥ xn � h for some n ∈N, h ∈H . Thus

H(x)= {
y ∈A | y ≥ h� xn for some n ∈N, h ∈H

}

= {
y ∈A | y ≥ xn � h for some n ∈N, h ∈H

}
.

If y ∈ H(x), then h � xn ≤ y for some n ≥ 1, h ∈ H . Thus h ≤ xn → y, hence
xn → y ∈H .

Conversely, assume that h= xn → y ∈H for some n≥ 1.
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We also have (h� xn)→ y = h→ (xn → y)= h→ h= 1, hence h� xn ≤ y.
Therefore, y ∈H(x) and we conclude that

H(x)= {
y ∈A | xn → y ∈H for some n≥ 1

}
.

Similarly, H(x)= {y ∈A | xn � y ∈H for some n≥ 1}. �

Corollary 1.7 Let A be a pseudo-BCK(pP) algebra and H a proper normal deduc-
tive system of A. Then the following are equivalent:

(a) H ∈Maxn(A);
(b) for all x ∈A, if x /∈H , then for any y ∈A, xn → y ∈H for some n ∈N, n≥ 1;
(c) for all x ∈A, if x /∈H , then for any y ∈A, xn � y ∈H for some n ∈N, n≥ 1.

Proof

(a) ⇒ (b) Since H is maximal, by Lemma 1.10, [H ∪{x})=A and applying Propo-
sition 1.35 we get the assertion (b).

(b) ⇒ (a) Let x ∈ A \ H . By (b), for all y ∈ A we have xn → y ∈ H for some
n ∈ N, n ≥ 1. Since (xn → y) � xn ≤ y, by Proposition 1.35 it follows that
y ∈ [H ∪ {x}). Hence [H ∪ {x}) = A. Applying Lemma 1.10 we get that H ∈
Maxn(A).

(a) ⇔ (c) Similar to (a) ⇔ (b). �

Proposition 1.36 If A is a pseudo-BCK(pP) algebra and D1,D2 ∈DSn(A), then

[D1 ∪D2)= {x ∈A | x ≥ u� v for some u ∈D1, v ∈D2}.

Proof By Proposition 1.34 we have:

[D1 ∪D2)=
{
x ∈A | x ≥ (

d1 � d ′1
)� (

d2 � d ′2
)� · · · � (

dn � d ′n
)

for some n≥ 1, d1, d2, . . . , dn ∈D1, d
′
1, d

′
2, . . . , d

′
n ∈D2

}
.

Put d = (d1 � d ′1)� (d2 � d ′2)� · · · � (dn � d ′n)= d1 � (d ′1 � d2)� · · · � (d ′n−1 �
dn)� d ′n.

By Lemma 1.11, there is a d ′′2 ∈D2 such that d ′1 � d2 ≥ d2 � d ′′2 . Hence

d ≥ d1 � d2 �
(
d ′′2 � d3

)� · · · � (
dn � d ′n

)
.

Similarly, there is a d ′′3 ∈D2 such that d ′′2 � d3 ≥ d3 � d ′′3 , so

d ≥ d1 � d2 � d3 �
(
d ′′3 � d4

)� · · · � (
dn � d ′n

)
.

Finally, d ≥ d1�d2�d3�· · ·�dn�d ′′n with d1, d2, . . . , dn ∈D1, d ′′n ∈D2. Taking
u= d1 � d2 � d3 � · · · � dn, v = d ′′n , we get x ≥ d ≥ u� v with u ∈D1, v ∈D2. �

Definition 1.19 A bounded pseudo-BCK(pP) algebra A is locally finite if for every
x ∈A, x �= 1 we have ord(x) <∞.
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Proposition 1.37 Let A be a bounded pseudo-BCK(pP) algebra. The following are
equivalent:

(a) A is locally finite;
(b) {1} is the unique proper deductive system of A.

Proof According to Lemma 1.8(1), A is locally finite iff for every x ∈ A \ {1},
[x)=A iff {1} is the unique proper deductive system of A. �

Theorem 1.11 If D is a proper deductive system of a bounded pseudo-BCK(pP)
algebra A, then the following are equivalent:

(1) D ∈Max(A);
(2) for any x /∈D there is a d ∈D, n,m ∈N, n,m≥ 1 such that (d � xn)m = 0.

Proof

(a) ⇒ (b) Since D ∈ Max(A) and x /∈ D, we have [D ∪ {x}) = A, so 0 ∈ [D ∪
{x}). By Remark 1.13 it follows that there exist m ≥ 1, n1, n2, . . . , nm ≥ 0,
d1, d2, . . . , dm ∈D such that

(
d1 � xn1

)� (
d2 � xn2

)� · · · � (
dm � xnm

)≤ 0, so
(
d1 � xn1

)� (
d2 � xn2

)� · · · � (
dm � xnm

)= 0.

Taking n=max{n1, n2, . . . , nm} and d = d1 � d2 � · · · � dm ∈D we get
(
d � xn

)m ≤ (
d1 � xn1

)� (
d2 � xn2

)� · · · � (
dm � xnm

)= 0.

It follows that (d � xn)m = 0.
(b) ⇒ (a) Assume that there is a proper deductive system E of A such that D ⊂E,

D �= E. Then there exists an x ∈ E such that x /∈ D. By the hypothesis, there
exist d ∈D, n,m ∈ N such that (d � xn)m = 0. Since x, d ∈ E, it follows that
0 ∈E, hence E =A which is a contradiction. Thus D ∈Max(A). �

Theorem 1.12 If H is a proper normal deductive system of a bounded pseudo-
BCK(pP) algebra A, then the following are equivalent:

(a) H ∈Maxn(A);
(b) for any x ∈A, x /∈H iff (xn)− ∈H for some n ∈N;
(c) for any x ∈A, x /∈H iff (xn)∼ ∈H for some n ∈N.

Proof

(a) ⇒ (b) If x /∈H , then [H ∪ {x})=A, hence 0 ∈ [H ∪ {x}).
According to Proposition 1.35, there exists an n ∈ N and an h ∈ H such that
h� xn ≤ 0. Then h≤ xn → 0= (xn)−, i.e. (xn)− ∈H .
Conversely, consider x ∈ A such that (xn)− ∈ H for some n ∈ N and assume
x ∈H . Then xn → 0 ∈ H and taking into consideration that xn ∈ H , we get
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0 ∈H . This means that H is not a proper deductive system, which is a contra-
diction. Hence x /∈H .

(b) ⇒ (a) Assume there is a proper deductive system F such that H ⊂ F and
H �= F . Then there is an x ∈ F such that x /∈ H . Hence (xn)− ∈ H ⊂ F for
some n ∈N . It follows that xn ∈ F and xn � (xn)− = 0 ∈ F , which contradicts
the fact that F is a proper deductive system. Thus H ∈Max(A).

(a) ⇔ (c) Similar to (a) ⇔ (b). �

Proposition 1.38 If A is a bounded pseudo-BCK(pP) algebra and D = A \ {0} ∈
Max(A), then A is good.

Proof Obviously (0−)∼ = (0∼)− = 0. Assume x > 0, that is, x ∈D. If x−, x∼ ∈D

it follows that x− � x, x � x∼ ∈D, that is, 0 ∈D, a contradiction.
Thus x− = x∼ = 0, hence (x−)∼ = (x∼)− = 1. Therefore, (x−)∼ = (x∼)− for

all x ∈A, so A is a good pseudo-BCK(pP) algebra. �

Proposition 1.39 Let A be a bounded pseudo-BCK(pP) algebra, D ∈Max(A) and
x, y ∈A. Then:

(1) y /∈D and y � x = x implies x = 0;
(2) y /∈D and x � y = x implies x = 0.

Proof

(1) Consider x ∈ A, y ∈ A \D such that y � x = x. Assume x > 0 and consider
E = {z ∈ A | z � x = x}. First we prove that E is a proper deductive system
of A. Obviously, 1, y ∈ E and 0 /∈ E. Consider z ∈ A such that y → z ∈ E, so
(y → z)� x = x. Since (y → z)� y � x = (y → z)� x = x, it follows that
x = [(y → z)� y] � x ≤ z� x ≤ x. Thus z� x = x, hence z ∈ E. Therefore
E is a proper deductive system. Since y ∈ E and D is maximal, it follows that
y ∈D, a contradiction. Thus x = 0.

(2) Similar to (1). �

A congruence on a pseudo-BCK algebra (A,→,�,1) is an equivalence relation
compatible with the operations →, �. The set of all congruences of A is denoted
by Con(A). The class of pseudo-BCK algebras is not closed under homomorphic
images. In other words, there exist congruences θ ∈ Con(A) such that the quotient
algebra (A/θ,→,�,1/θ) is not a pseudo-BCK algebra, as we can see in the fol-
lowing example (Example 2.2.3 in [208]).

Example 1.21 Let (G, ·,−1,1,∨,∧) be an �-group with an order-unit u ∈G+ and
put v = u−1. Then for every g ∈G there exists an n ∈N with vn ≤ g ≤ v−n, hence
for every g ∈G− the maximum max{n ∈ N | g ≤ vn} exists and we shall denote it
by m(g).

Let X = {xi | i ∈ N} and Y = {yi | i ∈ N} be two infinite sequences, and put
A=G− ∪X ∪ Y . In order to turn A into a pseudo-BCK algebra we define the two
binary operations → and � as follows (where g,h ∈G−):
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Fig. 1.7 Example of pseudo-BCK algebra whose homomorphic image is not pseudo-BCK algebra

(1) g → h := h ·(g∨h)−1 = (h ·g−1)∧1 and g � h := (g∨h)−1 ·h= (g−1 ·h)∧1;
(2) xi → g = xi � g = yi → g = yi � g := 1;
(3) g → xi = g � xi := xi+m(g) and g→ yi = g � yi := yi+m(g);
(4)

xi → xj = xi � xj = yi → yj = yi � yj :=
{

1 if i ≤ j

vi−j if i > j ;
(5) xi → yj = yi+1 → yj , xi � yj = yi+1 � yj , yi → xj = xi+1 → xj and yi �

xj = xi+1 � xj .

A straightforward verification yields that (A,→,�,1) is a pseudo-BCK algebra
(see Fig. 1.7).

It can easily be seen that the equivalence Φ with the partition {G−,X,Y } as well
as Ψ with the partition {G−,X ∪ Y } is a congruence on (A,→,�,1) with kernel
G− = [1]Φ = [1]Ψ .

At the same time, A gives an example of a pseudo-BCK algebra whose homo-
morphic image is not a pseudo-BCK algebra. Specifically, A/Φ does not satisfy the
quasi-identity (psBCK′

6), since X→ Y = Y →X =G− and X �= Y .

A congruence θ ∈ Con(A) such that the quotient algebra (A/θ,→,�,1/θ)

is a pseudo-BCK algebra is called in [208] a relative congruence. With any
H ∈ DSn(A) we associate a binary relation ≡H on A by defining x ≡H y iff
x → y, y → x ∈H iff x � y, y � x ∈H .

The quotient of A by ≡H will be denoted A/H . For any x ∈ A, let x/H be the
congruence class x/≡H

of x, hence A/H = {x/H |x ∈A}.
Denote by θH the congruence ≡H .

Proposition 1.40 For a given H ∈DSn(A) the relation θH is a congruence on A.

Proof Obviously, θH is reflexive and symmetric.
Assume x ≡H y and y ≡H z. By (psBCK1) we have:
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x → y ≤ (y → z) � (x → z) and

x � y ≤ (y � z)→ (x � z).

Since x → y ∈H , it follows that (y → z) � (x → z) ∈H .
From y → z ∈H and (y → z) � (x → z) ∈H we get x → z ∈H .
Similarly, x � z ∈H . In the same manner, from

z→ y ≤ (y → x) � (z→ x) and

z � y ≤ (y � x)→ (z � x)

we get z→ x ∈H and z � x ∈H .
Thus x ≡H z, that is, θH is transitive.
Hence θH is an equivalence relation on A.
We prove now that θH is compatible with → and �.
Consider (x, y), (a, b) ∈ θH . Applying (psBCK1) we have:

x → y ≤ (y → a) � (x → a) and

y → x ≤ (x → a) � (y → a).

Since x → y, y → x ∈H , it follows that (y → a) � (x → a) ∈H and (x → a) �
(y → a) ∈H . Hence (x → a, y → a) ∈ θH .

According to (psbck-c5) we have

a → b ≤ (y → a)→ (y → b) and

b→ a ≤ (y → b)→ (y → a).

Since a → b, b→ a ∈H , it follows that (y → a)→ (y → b) ∈H and (y → b)→
(y → a) ∈H . Thus (y → a, y → b) ∈ θH .

Due to the transitivity of θH we get (x → a, y → b) ∈ θH , that is, θH is compat-
ible with →. We can prove similarly that θH is compatible with �. �

Proposition 1.41 If H ∈DSn(A), then:

(1) θH is a relative congruence of (A,→,�,1), that is, A/θH becomes a pseudo-
BCK algebra with the natural operations induced from those of A;

(2) If A is a pseudo-BCK(pP) algebra, then θH is compatible with �.

Proof

(1) If [x]θH
→[y]θH

= [1]θH
and [y]θH

→[x]θH
= [1]θH

, then [x → y]θH
= [1]θH

and [y → x]θH
= [1]θH

, so that recalling H = [1]θH
we have x → y, y → x ∈

H and (x, y) ∈ θH , that is, [x]θH
= [y]θH

.
Thus the quotient algebra A/θH is a pseudo-BCK algebra.

(2) If x ≡θH
y and a ≡θH

b, we will prove that x � a ≡θH
y � b and a � x ≡θH

b� y.
From x ≥ (x → y)� x and a ≥ (b→ a)� b, it follows that x � a ≥ (x →

y)�x� (b→ a)�b. Since b→ a ∈H , by Lemma 1.11 there exists an h′ ∈H
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such that x� (b→ a)� b ≥ h′ � x� b. It follows that x� a ≥ (x → y)�h′ �
x � b, hence (x → y)� h′ ≤ x � b→ x � a. Since (x → y)� h′ ∈H , we get
that x � b→ x � a ∈H . Similarly, x � a → x � b ∈H , so x � a ≡θH

x � b.
One can analogously show that x � b≡θH

y � b, hence x � a ≡θH
y � b.

We prove in the same manner that a� x ≡θH
b� y.

We conclude that θH is compatible with �. �

Corollary 1.8 If A is a pseudo-BCK(pP) algebra and H ∈DSn(A), then A/θH is
a pseudo-BCK(pP) algebra.

Lemma 1.13 If H is a normal deductive system of a bounded pseudo-BCK(pP)
algebra A, then:

(1) x/H = 1/H iff x ∈H ;
(2) x/H = 0/H iff x− ∈H iff x∼ ∈H ;
(3) x/H ≤ y/H iff x → y ∈H iff x � y ∈H .

Proof

(1) x/H = 1/H iff x → 1,1→ x ∈H iff x ∈H .
(2) x/H = 0/H iff x → 0,0→ x ∈H iff x− ∈H iff x∼ ∈H .
(3) x/H ≤ y/H iff x/H → y/H = 1/H iff (x → y)/H = 1/H iff x → y ∈H iff

x � y ∈H . �

Proposition 1.42 If H is a proper normal deductive system of a bounded pseudo-
BCK(pP) algebra A, then the following are equivalent:

(a) H ∈Maxn(A);
(b) A/H is locally finite.

Proof H is maximal iff the condition (b) from Theorem 1.12 is satisfied. This con-
dition is equivalent to: for any x ∈ A, x/H �= 1/H iff (xn)−/H = 1/H for some
n ∈N iff (x/H)n = 0/H for some n ∈N iff A/H is locally finite. �

Definition 1.20 Let A and B be two bounded pseudo-BCK(pP) algebras. A func-
tion f : A−→ B is a homomorphism if it satisfies the following conditions, for all
x, y ∈A:

(H1) f (x � y)= f (x)� f (y);
(H2) f (x → y)= f (x)→ f (y);
(H3) f (x � y)= f (x) � f (y);
(H4) f (0)= 0.

Remark 1.14 If f : A −→ B is a bounded pseudo-BCK(pP) algebra homomor-
phism, then one can easily prove that the following hold for all x ∈A:

(H5) f (1)= 1;
(H6) f (x−)= (f (x))−;
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(H7) f (x∼)= (f (x))∼;
(H8) if x, y ∈A, x ≤ y, then f (x)≤ f (y).

The kernel of f is the set Ker(f )= f−1(1)= {x ∈A | f (x)= 1}.
The function πH : A −→ A/H defined by πH (x) = x/H for any x ∈ A is a

surjective homomorphism which is called the canonical projection from A to A/H .
One can easily prove that Ker(πH )=H .

Proposition 1.43 If f :A−→ B is a bounded pseudo-BCK(pP) algebra homomor-
phism, then the following hold:

(1) Ker(f ) is a proper deductive system of A;
(2) f is injective iff Ker(f )= {1};
(3) If G ∈DS(B), then f−1(G) ∈DS(A) and Ker(f )⊆ f−1(G).

If G ∈DSn(B), then f−1(G) ∈DSn(A). In particular Ker(f ) ∈DSn(A);
(4) If f is surjective and D ∈DS(A) such that Ker(f )⊆D, then f (D) ∈DS(B).

Proof

(1) We have f (1) = 1, so 1 ∈ Ker(f ). Let x, y ∈ A such that x, x → y ∈ Ker(f ),
that is, f (x)= 1 and f (x → y)= 1. It follows that 1= f (x)→ f (y)= f (y),
so y ∈Ker(f ). Thus Ker(f ) is a deductive system of A. Since f (0)= 0 �= 1, it
follows that 0 /∈Ker(f ). Hence Ker(f ) is a proper deductive system.

(2) Suppose that f is injective and x ∈Ker(f ). It follows that f (x)= 1= f (1), so
x = 1. Conversely, suppose that Ker(f ) = {1} and x, y ∈ A such that f (x) =
f (y). It follows that f (x)→ f (y)= 1, that is, f (x → y)= 1. Thus x → y ∈
Ker(f ), so x → y = 1, that is, x ≤ y. Similarly we get y ≤ x and we conclude
that x = y. Thus f is injective.

(3) If G ∈ DS(B), then 1 ∈ G. Hence f (x) = 1 ∈ G for all x ∈ Ker(f ), so
Ker(f ) ⊆ f−1(G). Let x1, x2 ∈ A such that x1 ≤ x2 and x1 ∈ f−1(G). It fol-
lows that f (x1) ≤ f (x2) and f (x1) ∈ f (f−1(G)) ⊆ G, so f (x1) ∈ G. Thus
f (x2) ∈G and x2 ∈ f−1(G), so f−1(G) ∈DS(A).

Suppose G is normal. Then x → y ∈ f−1(G) iff f (x → y) ∈G iff f (x)→
f (y) ∈ G iff f (x) � f (y) ∈ G iff f (x � y) ∈ G iff x � y ∈ f−1(G), so
f−1(G) is normal. Since {1} is a normal deductive system of B , it follows that
f−1({1})=Ker(f ) is normal.

(4) Since 1 ∈D, we have 1= f (1) ∈ f (D). Let y1 ∈ f (D), y2 ∈ B such that y1 →
y2 ∈ f (D). It follows that there is an x1 ∈D such that y1 = f (x1). Since f is
surjective, there is an x2 ∈ A such that y2 = f (x2). We have y1 → y2 ∈ f (D)

iff f (x1)→ f (x2) ∈ f (D) iff f (x1 → x2) ∈ f (D) iff x1 → x2 ∈ f−1(D).
Taking into consideration that f−1(D) ∈ DS(A) and x1 ∈ f−1(D), it fol-

lows that x2 ∈ f−1(D), that is, y2 = f (x2) ∈ f (D). Thus f (D) ∈DS(B). �

Proposition 1.44 If f : A −→ B is a surjective bounded pseudo-BCK(pP) alge-
bra homomorphism, then there is a bijective correspondence between {D | D ∈
DS(A),Ker(f )⊆D} and DS(B).
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Proof By Proposition 1.43, for any D ∈ DS(A) such that Ker(f ) ⊆ D and G ∈
DS(B) there is a correspondence D �→ f (D) and G �→ f−1(G) between the two
sets.

We have to prove that f−1(f (D))=D and f (f−1(G))=G. Since f is surjec-
tive, it follows that f (f−1(G))=G. Obviously, D ⊆ f−1(f (D)) always holds.

Suppose that x ∈ f−1(f (D)), then f (x) ∈ f (D), so there is a x′ ∈D such that
f (x) = f (x′). It follows that f (x′)→ f (x) = 1, so f (x′ → x) = 1, that is, x′ →
x ∈Ker(f )⊆D. From x′, x′ → x ∈D we get x ∈D. Thus f−1(f (D))=D. �

Corollary 1.9 If D ∈DSn(A), then:

(1) πD(E) ∈DS(A/D), where E ∈DS(A) such that D ⊆E;
(2) The correspondence E �→ πD(E) is a bijection between {F | F ∈ DS(A),

D ⊆ F } and DS(A/D).

Proof

(1) This follows from Proposition 1.43(3).
(2) This follows from Proposition 1.44. �

Proposition 1.45 If D,H ∈ DSn(A) such that H ⊆ D, then D ∈ Max(A) iff
πH (D) ∈Max(A/H).

Proof We will apply Theorem 1.12. Suppose that D ∈ Max(A) and let y ∈ A/H ,
y /∈ πH (D). It follows that there is an x ∈ A such that y = πH (x) = x/H . Obvi-
ously, x /∈D. Since D ∈Max(A), it follows that:

(
xn

)− ∈D for some n ∈N iff πH

((
xn

)−) ∈ πH (D) for some n ∈N iff

πH

((
(x/H)n

)−) ∈ πH (D) for some n ∈N iff
(
yn

)− ∈ πH (D) for some n ∈N.

Thus πH (D) ∈Max(A/H). The converse can be proved in a similar way. �

Corollary 1.10 If H is a proper normal deductive system of a bounded pseudo-
BCK(pP) algebra A, then there is a bijection between {D |D ∈ Max(A),H ⊆D}
and Max(A/H).

Proposition 1.46 If P is a proper normal deductive system of a bounded pseudo-
BCK(pP) algebra A, then the following are equivalent:

(a) for all x, y ∈A, ((x�y)n)− ∈ P for some n ∈N implies (xm)− ∈ P or (ym)− ∈
P for some m ∈N;

(b) for all x, y ∈A, ((x�y)n)∼ ∈ P for some n ∈N implies (xm)∼ ∈ P or (ym)∼ ∈
P for some m ∈N.
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Proof This is obvious taking into consideration that, since P is a normal deductive
system, x− ∈ P iff x∼ ∈ P for all x ∈A. �

Definition 1.21 A proper normal deductive system of a bounded pseudo-BCK(pP)
algebra A is called primary if it satisfies one of the equivalent conditions from
Proposition 1.46.

Remark 1.15 If the bounded pseudo-BCK(pP) algebra A is normal, then its primary
deductive systems can be dually characterized by means of the operation ⊕. Indeed,
if P is a proper normal deductive system of A, applying Proposition 1.26 we have:

(
(x � y)n

)− = n
(
y− ⊕ x−

)
,

(
xm

)− =mx− and
(
ym

)− =my−

for all n,m ∈N.
Therefore, a proper normal deductive system P of the normal pseudo-BCK(pP)

algebra A is primary if it satisfies the following condition for all x, y ∈A:

if n
(
y− ⊕ x−

) ∈ P for some n ∈N, then

mx− ∈ P or my− ∈ P for some m ∈N.

Obviously, the above condition is equivalent to the following:

if n
(
y∼ ⊕ x∼

) ∈ P for some n ∈N, then

mx∼ ∈ P or my∼ ∈ P for some m ∈N.

Proposition 1.47 Let A be a bounded pseudo-BCK(pP) algebra and P a primary
deductive system of A. Then the following are equivalent:

(a) for all x ∈A, (xn)− ∈ P for some n ∈N implies ((x−)m)− /∈ P for all m ∈N;
(b) for all x ∈A, (xn)∼ ∈ P for some n ∈N implies ((x∼)m)∼ /∈ P for all m ∈N.

Proof Since P is primary, it is a normal deductive system. Hence x− ∈ P iff x∼ ∈ P

for all x ∈A and the assertion follows immediately. �

Definition 1.22 A primary deductive system of a bounded pseudo-BCK(pP) alge-
bra A is called perfect if it satisfies one of the equivalent conditions from Proposi-
tion 1.47.

Proposition 1.48 If P is a perfect primary deductive system of a bounded pseudo-
BCK(pP) algebra A, then:

(1) for all x ∈A, (xn)− ∈ P for some n ∈N iff ((x−)m)− /∈ P for all m ∈N;
(2) for all x ∈A, (xn)∼ ∈ P for some n ∈N iff ((x∼)m)∼ /∈ P for all m ∈N.

Proof

(1) The first implication follows immediately, since P is perfect.
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Consider x ∈ A such that ((x−)m)− /∈ P for all m ∈ N. By (psbck-c36),
x− � x = 0, so ((x− � x)m)− = 0− = 1 ∈ P for all m ∈ N. Since P is pri-
mary, it follows that ((x−)n)− ∈ P or (xn)− ∈ P for some n ∈ N. Taking into
consideration that ((x−)n)− /∈ P for all n ∈N, we conclude that (xn)− ∈ P for
some n ∈N.

(2) Similar to (1). �

Definition 1.23 Let A be a bounded pseudo-BCK(pP) algebra and X ⊆A\ {0}. We
say that an element x ∈A is:

(i) an X-left zero divisor if there is a y ∈X such that x � y = 0;
(ii) an X-right zero divisor if there is a y ∈X such that y � x = 0;

(iii) an X-zero divisor if there are y1, y2 ∈X such that x � y1 = y2 � x = 0.

If X =A \ {0}, then an X-zero divisor is called a zero divisor of A.

The element 0 is called the trivial zero divisor.
The set of all X-left zero divisors, X-right zero divisors and X-zero divisors of

A will be denoted by Xl-Div(A), Xr -Div(A) and X-Div(A), respectively.
By Div(A) we will denote the set of all zero divisors of A.

Remark 1.16 Let A be a bounded pseudo-BCK(pP) algebra and X ⊆A\{0}. Then:

(1) 0 ∈Xl-Div(A)∩Xr -Div(A) and 1 /∈Xl-Div(A)∪Xr -Div(A);
(2) if x ∈Div(A) and y ∈A such that y ≤ x, then y ∈Div(A);
(3) if x, y ∈Div(A), then x � y, y � x ∈Div(A).

Proposition 1.49 Let A be a bounded pseudo-BCK(pP) algebra satisfying the con-
ditions: Div(A)= {0}, ord(x)=∞ and x− = x∼ = 0 for all x ∈ A \ {0}. Then any
proper normal deductive system of A is perfect.

Proof We first prove that any proper normal deductive system P of A is primary.
Let x, y ∈A and consider the following cases:

(1) If x, y > 0, then x� y > 0, so ord(x� y)=∞. It follows that (x� y)n �= 0 for
all n ∈N. Hence ((x � y)n)− = 0 /∈ P .

(2) If x = 0, then ((x � y)n)− = 0− = 1 ∈ P for all n ∈ N. Moreover, (xm)− =
0− = 1 ∈ P for all m ∈N.

(3) If y = 0, then ((x � y)n)− = 0− = 1 ∈ P for all n ∈N. Then we have (ym)− =
0− = 1 ∈ P for all m ∈N.

Thus P is a primary deductive system of A.
Since xn �= 0 for all x ∈A \ {0}, it follows that (xn)− = 0 /∈ P for all n ∈N.
For x = 0 we have (0n)− = 1 ∈ P for all n ∈ N and ((0−)m)− = 0 /∈ P for all

m ∈N. Thus P is a perfect deductive system of A. �
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Example 1.22

(1) It is a simple routine to check that the normal deductive system D =
{s, a, b,n, c, d,m,1} of the bounded pseudo-BCK(pP) algebra A from Exam-
ple 1.9 is primary, but D is not perfect: (a2

1)− = 0− = 1 ∈D and ((a−1 )2)− =
(a2

1)− = 0− = 1 ∈D.
(2) According to Proposition 1.49, the normal deductive systems D1 = {a1, a2, b2,

s, a, b,n, c, d,m,1} and D3 = {s, a, b,n, c, d,m,1} of the pseudo-BCK(pP) al-
gebra A1 from Example 1.17 are perfect deductive systems.



Chapter 2
Pseudo-hoops

A generalization of pseudo-BL algebras was given in [148], where the pseudo-hoops
were defined and studied. Pseudo-hoops were originally introduced by Bosbach in
[15] and [16] under the name of complementary semigroups. It was proved that
a pseudo-hoop has the pseudo-divisibility condition and it is a meet-semilattice,
so a bounded R�-monoid can be viewed as a bounded pseudo-hoop together with
the join-semilattice property. In other words, a bounded pseudo-hoop is a meet-
semilattice ordered residuated, integral and divisible monoid.

In this chapter we present the main notions and results regarding pseudo-hoops
from [148], we prove new properties of these structures, we introduce the notions
of a join-center and cancellative-center of a pseudo-hoop and we define and study
algebras on subintervals of pseudo-hoops.

2.1 Definitions and Properties

Definition 2.1 A pseudo-hoop is an algebra (A,�,→,�,1) of the type (2,2,2,0)

such that, for all x, y, z ∈A:

(psHOOP1) x � 1= 1� x = x;
(psHOOP2) x → x = x � x = 1;
(psHOOP3) (x � y)→ z= x → (y → z);
(psHOOP4) (x � y) � z= y � (x � z);
(psHOOP5) (x → y)� x = (y → x)� y = x � (x � y)= y � (y � x).

In the sequel, we will agree that � has higher priority than the operations →, �,
and those higher than ∧ and ∨.

If the operation� is commutative, or equivalently→=�, then the pseudo-hoop
is said to be hoop. Properties of hoops were studied in [1, 10, 15, 16].

On the pseudo-hoop A we define x ≤ y iff x → y = 1 (equivalent to x � y = 1)
and ≤ is a partial order on A.

In the sequel we will refer to the pseudo-hoop (A,�,→,�,1) by its universe A.
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Proposition 2.1 In every pseudo-hoop (A,�,→,�,1) the following hold:

(pshoop-c1) x � y ≤ z iff x ≤ y → z iff y ≤ x � z (pseudo-residuation);
(pshoop-c2) (A,�,1) is a monoid and x ≤ y implies x� z≤ y� z, z� x ≤ z� y;
(pshoop-c3) (A,≤) is a meet-semilattice with

x ∧ y = (x → y)� x = (y → x)� y = x � (x � y)

= y � (y � x) (pseudo-divisibility);
(pshoop-c4) the element 1 is the greatest element of A and

1→ x = 1 � x = x, x → 1= x � 1= 1;
(pshoop-c5) x ≤ (x → y) � y, x ≤ (x � y)→ y;
(pshoop-c6) x → y ≤ (y → z) � (x → z), x � y ≤ (y � z)→ (x � z).

Proof

(pshoop-c1) We have x � y ≤ z iff x � y → z = 1 iff x → (y → z) = 1 iff x ≤
y → z. Similarly, x � y ≤ z iff y ≤ x � z.

(pshoop-c2) By (psHOOP1), 1 is the neutral element of A.
Consider u ∈A. We have:

(x � y)� z≤ u iff x � y ≤ z→ u iff

x ≤ y → (z→ u)= y � z→ u iff x � (y � z)≤ u.

It follows that (x � y)� z= x � (y � z), so � is associative.
Thus (A,�,1) is a monoid.
From y� z≤ y� z we have y ≤ z→ y� z. Since x ≤ y, we get x ≤ z→ y� z,
hence x � z≤ y � z. Similarly, z� x ≤ z� y.

(pshoop-c3) From x → y ≤ x → y and y → x ≤ y → x we get (x → y)� x ≤ y

and (y → x)� y ≤ x, respectively. Hence, if we denote x ∧ y = (x → y)� x =
(y → x)� y, it follows that x ∧ y is a lower bound of {x, y}.
Let u be another lower bound of {x, y}, that is, u≤ x and u≤ y.
From u→ x = 1= u→ u we get (u→ x)� u≤ u≤ y.
But (u→ x)� u= (x → u)� x, hence (x → u)� x ≤ y, so x → u≤ x → y.
We have (x → u)� x = (u→ x)� u= 1� u= u.
It follows that u = (x → u) � x ≤ (x → y) � x = x ∧ y. Thus x ∧ y is the
greatest lower bound of {x, y} with respect to the order ≤.
We conclude that every pseudo-hoop is a meet-semilattice with respect to the
order ≤, where the meet operation is given by

x ∧ y = (x → y)� x = (y → x)� y = x � (x � y)= y � (y � x).

(pshoop-c4) Taking y = 1 in the equality x ∧ y = (x → y)� x = (y → x)� y, we
get x ∧ 1= (x → 1)� x = 1→ x. It follows that 1→ x = x ∧ 1≤ x.
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On the other hand, from x � 1= x we have x ≤ 1→ x.
Hence 1→ x = x and similarly 1 � x = x.
It follows that x = 1→ x = (x → 1)� x = x ∧ 1≤ 1 for all x ∈A.
We conclude that 1 is the greatest element of A.
From 1� x = x ≤ 1 we get 1≤ x → 1. But x → 1≤ 1, hence x → 1= 1.
Similarly, x � 1= 1.

(pshoop-c5) From (x → y)� x = x ∧ y ≤ y, we get x ≤ (x → y) � y.
Similarly, from x � (x � y)= x ∧ y ≤ y, we have x ≤ (x � y)→ y.

(pshoop-c6) Applying (pshoop-c3), we get:

(y → z)� (x → y)� x = (y → z)� (x ∧ y)≤ (y → z)� y = y ∧ z≤ z.

It follows that (y → z)� (x → y)≤ x → z, so x → y ≤ (y → z) � (x → z).
Similarly, x � y ≤ (y � z)→ (x � z). �

Proposition 2.2 Every pseudo-hoop is a pseudo-BCK(pP) algebra which is a meet-
semilattice satisfying the pseudo-divisibility property.

Proof Suppose that (A,�,→,�,1) is a pseudo-hoop.
We will prove that (A,≤,→,�,1) is a pseudo-BCK(pP) algebra.

(psBCK1) follows from (pshoop-c6);
(psBCK2) follows from (pshoop-c5);
(psBCK3) follows from (psHOOP2);
(psBCK4) follows from (pshoop-c4);
(psBCK5) and (psBCK6) follow by the definition of ≤ and from the fact that ≤ is a

partial order on A.

The (pP) condition is a consequence of (pshoop-c1) and Theorem 1.4.
Thus (A,≤,→,�,1) is a pseudo-BCK(pP) algebra. �

It follows that all properties proved for a pseudo-BCK(pP) algebra are also valid
in the case of pseudo-hoops.

Definition 2.2 A bounded pseudo-hoop is an algebra (A,�,→,�,0,1) such that
(A,�,→,�,1) is a pseudo-hoop and 0≤ x for all x ∈A.

Proposition 2.3 ([148]) In any pseudo-hoop A, the following property holds for all
x, y ∈A:

(pshoop-c7) [((y → x) � x)→ y] → (y → x) = y → x and [((y � x)→ x) �
y]� (y � x)= y � x.

Proof Let z = (y → x) � x. By (pshoop-c5) and (psbck-c22) we have y ≤ z and
z→ x = y → x. It follows that
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(z→ y)→ (y → x) = (z→ y)→ (z→ x)= (z→ y)� z→ x = (z∧ y)→ x

= y → x.

Similarly, [((y � x)→ x) � y]� (y � x)= y � x. �

Let (A,�,→,�,0,1) be a bounded pseudo-hoop.
We define two negations − and ∼: for all x ∈A, x− := x → 0, x∼ := x � 0.
A bounded pseudo-hoop A is called good if x−∼ = x∼− for all x ∈A.
If x−∼ = x∼− = x for all x ∈A, then the bounded pseudo-hoop A is said to have

the pseudo-double negation condition, (pDN) for short.
Obviously, any bounded pseudo-hoop with (pDN) is good.

Proposition 2.4 If A is a good pseudo-hoop, then for all x, y ∈A:

(pshoop-c8) (x−∼ → x)∼ = (x−∼ � x)− = 0;
(pshoop-c9) (x → y)−∼ = x−∼ → y−∼ and (x � y)−∼ = x−∼ � y−∼;
(pshoop-c10) (x ∧ y)−∼ = x−∼ ∧ y−∼;
(pshoop-c11) x → y− = x−∼ → y− and x � y∼ = x−∼ � y∼.

Proof

(pshoop-c8) From 0 ≤ x applying (psbck-c10) we get x−∼ → 0 ≤ x−∼ → x, that
is, x− ≤ x−∼ → x. Hence (x−∼ → x)∼ ≤ x−∼.
It follows that:

(
x−∼ → x

)∼ = (
x−∼ → x

)∼ ∧ x−∼ = x−∼ � [
(x−∼ �

(
x−∼ → x

)∼]

= x−∼ � [(
x−∼ → x

)� x−∼
]∼ = x−∼ � (

x−∼ ∧ x
)∼

= x−∼ � x∼ = 0

(we applied the axiom v� (v � u)= u∧v for v = x−∼ and u= (x−∼ → x)∼).
Similarly, x−∼ � 0 ≤ x−∼ � x, so x∼ ≤ x−∼ � x. Hence (x−∼ � x)− ≤
x−∼.
Therefore

(
x−∼ � x

)− = (
x−∼ � x

)− ∧ x−∼ = [
x−∼ → (

x−∼ � x
)−]� x−∼

= [
x−∼ � (

x−∼ � x
)]− � x−∼ = (

x−∼ ∧ x
)− � x−∼

= x− � x−∼ = 0.

Thus (x−∼ → x)∼ = (x−∼ � x)− = 0.
(pshoop-c9) Applying the axioms of a pseudo-hoop we have:

(x ∧ y)� (y � 0)≤ y � (y � 0)= y ∧ 0= 0.

But x ∧ y = (x → y)� x, hence (x → y)� x � (y � 0)≤ 0.
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It follows that x � (y � 0)≤ (x → y) � 0. Applying (psbck-c1) we get
[
(x → y)� 0

]→ 0≤ x � (y � 0)→ 0= x → [
(y � 0)→ 0

]
.

Thus (x → y)−∼ ≤ x → y−∼. On the other hand we have:

(
x → y−∼

)−∼ = (
x � y∼

)−−∼ = (
x � y∼

)− = x → y−∼.

Replacing x with x → y−∼ and y with x → y in the above identity we have:

(
x → y−∼

)→ (x → y)−∼ = [(
x → y−∼

)→ (x → y)−∼
]−∼

.

Since x → y ≤ (x → y)−∼, applying (psbck-c10) we get:
(
x → y−∼

)→ (x → y)−∼ ≥ (
x → y−∼

)→ (x → y), so
[(

x → y−∼
)→ (x → y)−∼

]−∼ ≥ [(
x → y−∼

)→ (x → y)
]−∼

.

Taking into consideration the above identity and applying (psHOOP3) we get:

(
x → y−∼

)→ (x → y)−∼ ≥ [(
x → y−∼

)→ (x → y)
]−∼

= [(
x → y−∼

)� x → y
]−∼ = (

x ∧ y−∼ → y
)−∼

.

But x ∧ y ≤ y ≤ y−∼, hence by (psbck-c1) we have y−∼ → y ≤ x ∧ y−∼ → y.
Applying (pshoop-c8) we get:

(
x → y−∼

)→ (x → y)−∼ ≥ (
y−∼ → y

)−∼ = 0− = 1.

It follows that (x → y−∼)→ (x → y)−∼ = 1, that is, x → y−∼ ≤ (x → y)−∼.
We conclude that (x → y)−∼ = x → y−∼.
From (psbck-c19) we have x → y−∼ = x−∼ → y−∼, hence (x → y)−∼ =
x−∼ → y−∼. Similarly, (x � y)−∼ = x−∼ � y−∼.

(pshoop-c10) From x ∧ y ≤ x, y we get (x ∧ y)−∼ ≤ x−∼, y−∼.
Hence (x ∧ y)−∼ ≤ x−∼ ∧ y−∼.
On the other hand, applying Proposition 1.23 and (pshoop-c9) we have:

(x ∧ y)−∼ = (
(x → y)� x

)−∼ ≥ (x → y)−∼ � x−∼

= (
x−∼ → y−∼

)� x−∼ = x−∼ ∧ y−∼.

We conclude that (x ∧ y)−∼ = x−∼ ∧ y−∼.
(pshoop-c11) Applying (psbck-c19), (pshoop-c9) and (psbck-c37) we have:

x−∼ → y− = x−∼ → y−−∼ = (
x → y−

)−∼

= (
(x � y)−

)−∼ = (x � y)− = x → y−.

Similarly, x � y∼ = x−∼ � y∼. �
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Proposition 2.5 ([148]) Let A be a pseudo-hoop and I an arbitrary set. Then:

(1) x � (
∨

i∈I yi)=∨
i∈I (x � yi);

(2) (
∨

i∈I yi)� x =∨
i∈I (yi � x);

(3) x ∧ (
∨

i∈I yi)=∨
i∈I (x ∧ yi),

whenever the arbitrary unions exist.

Proof

(1) Since yi ≤∨
i∈I yi for all i ∈ I , it follows that x � yi ≤ x � (

∨
i∈I yi) for all

i ∈ I . Thus
∨

i∈I (x � yi)≤ x � (
∨

i∈I yi).
Let z ∈A such that

∨
i∈I (x� yi)≤ z. It follows that x� yi ≤ z for all i ∈ I ,

so yi ≤ x � z for all i ∈ I . Thus
∨

i∈I yi ≤ x � z, so x � (
∨

i∈I yi)≤ z.
So, for any z ∈ A, we have proved that

∨
i∈I (x � yi) ≤ z implies x �

(
∨

i∈I yi)≤ z.
Taking z=∨

i∈I (x � yi), we get x � (
∨

i∈I yi)≤∨
i∈I (x � yi).

We conclude that x � (
∨

i∈I yi)=∨
i∈I (x � yi).

(2) Similar to (1).
(3) From yi ≤∨

i∈I yi , we get x ∧ yi ≤ x ∧∨
i∈I yi for all i ∈ I .

Hence
∨

i∈I (x ∧ yi)≤ x ∧ (
∨

i∈I yi).
Conversely, we have:

x ∧
(∨

i∈I

yi

)
=

(∨

i∈I

yi

)
∧ x =

(∨

i∈I

yi

)
�

(∨

i∈I

yi � x

)

=
∨

i∈I

(
yi �

(∨

i∈I

yi � x

))
.

From (psbck-c1) we have
∨

i∈I yi � x ≤ yi � x for all i ∈ A, so yi �
(
∨

i∈I yi � x)≤ yi � (yi � x)= yi ∧ x = x ∧ yi for all i ∈ I .
It follows that

∨

i∈I

(
yi �

(∨

i∈I

yi � x

))
≤

∨

i∈I

(x ∧ yi), so x ∧
(∨

i∈I

yi

)
≤

∨

i∈I

(x ∧ yi).

Thus x ∧ (
∨

i∈I yi)=∨
i∈I (x ∧ yi). �

Proposition 2.6 ([148]) Let A be a pseudo-hoop and H ⊆ A. The following are
equivalent:

(a) H is a compatible deductive system;
(b) H is a normal filter (i.e. x �H =H � x for all x ∈A).

Proof

(a) ⇒ (b) Consider y ∈ x �H , y = x � h with x ∈A and h ∈H .
It follows that x � h= y = x ∧ y = (x → y)� x.
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From h≤ x � x � h= x � y and h ∈H we have x � y ∈H .
Since H is a compatible deductive system of A, we get x → y ∈H .
Consequently, if we let h′ = x → y, it follows that y = h′ � x ∈H � x.
Thus x �H ⊆H � x.
Similarly, H � x ⊆ x �H , so x �H =H � x for all x ∈A.

(b) ⇒ (a) Assume x � y ∈H , so x ∧ y = x � (x � y) ∈ x �H =H � x, that is,
x ∧ y = h� x for some h ∈H .
It follows that x → y = x → x ∧ y = x → h� x. Since h ≤ x → h � x and
h ∈H , we get x → y ∈H . Similarly, from x → y ∈H we get x � y ∈H .
Thus H is a compatible deductive system of A. �

If x, y ∈A, then we define the pseudo-joins of x and y by:

x ∪1 y = (
(x → y)� y

)∧ (
(y → x) � x

)
,

x ∪2 y = (
(x � y)→ y

)∧ (
(y � x)→ x

)
.

We will also use the notation:

x ∨1 y = (x → y)� y and x ∨2 y = (x � y)→ y.

Obviously, x ∪1 y = (x ∨1 y)∧ (y ∨1 x) and x ∪2 y = (x ∨2 y)∧ (y ∨2 x).

Proposition 2.7 ([148]) In any bounded pseudo-hoop A the following hold:

(1) x ∪1 0= x ∪2 0= 0∪1 x = 0∪2 x = x;
(2) x ∪1 1= x ∪2 1= 1∪1 x = 1∪2 x = 1;
(3) x ∪1 x = x ∪2 x = x.

Proof

(1) x ∪1 0= ((x → 0) � 0)∧ ((0→ x)� x)= x−∼ ∧ x = x (by (psbck-c14)).
Similarly, x ∪2 0= 0∪1 x = 0∪2 x = x.

(2) x ∪1 1= ((x → 1) � 1)∧ ((1→ x)� x)= 1∧ 1= 1.
Similarly, x ∪2 1= 1∪1 x = 1∪2 x = 1.

(3) This is obvious. �

Proposition 2.8 ([148]) In any bounded pseudo-hoop A the following hold:

(1) x ∪1 y = y ∪1 x and x ∪2 y = y ∪2 x;
(2) x, y ≤ x ∪1 y and x, y ≤ x ∪2 y;
(3) x ≤ y iff x ∪1 y = y;
(4) x ≤ y iff x ∪2 y = y.

Proof

(1) This is obvious.
(2) By (pshoop-c5) and (psbck-c6) we have x, y ≤ (x → y) � y and x, y ≤ (y →

x)→ x. Hence x, y ≤ x ∪1 y. Similarly, x, y ≤ x ∪2 y.
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(3) If x ≤ y, then (x → y)� y = 1 � y = y.
Hence x ∪1 y = y ∧ [(y → x) � x] = y, since by (pshoop-c5), y ≤ (y →

x) � x.
Conversely, suppose that x ∪1 y = y.
It follows that x ∧ y = x ∧ (x ∪1 y)= x, by (2). Thus x ≤ y.

(4) Similar to (3). �

Proposition 2.9 ([148]) Let A be a pseudo-hoop. The following are equivalent:

(a) ∪1 is associative;
(b) for all x, y, z ∈A, x ≤ y implies x ∪1 z≤ y ∪1 z;
(c) for all x, y, z ∈A, x ∪1 (y ∧ z)≤ (x ∪1 y)∧ (x ∪1 z);
(d) ∪1 is the join operation on A.

Proof

(a) ⇒ (d) We have x, y ≤ x ∪1 y, so x ∪1 y is an upper bound of {x, y}.
Let z ∈A such that x, y ≤ z. By (a), (x ∪1 y)∪1 z= x ∪1 (y ∪1 z).
From y ≤ z and (pshoop-c5) we have:

y ∪1 z= (
(y → z) � z

)∧ (
(z→ y) � y

)= (1 � z)∧ (
(z→ y) � y

)= z.

It follows that x ∪1 (y ∪1 z)= x ∪1 z= ((x → z) � z)∧ ((z→ x) � x)= z.
Thus x ∪1 y ≤ (x ∪1 y) ∪1 z = z. Hence x ∪1 y is the l.u.b. of {x, y}, so x ∨ y

exists and x ∨ y = x ∪1 y.
(d) ⇒ (a) Applying (d) we have (x ∪1 y) ∪1 z= (x ∨ y)∨ z= x ∨ (y ∨ z)= x ∪1

(y ∪1 z).
Thus ∪1 is associative.

(b) ⇒ (d) We have x, y ≤ x ∪1 y, so x ∪1 y is an upper bound of {x, y}.
Let z ∈A such that x, y ≤ z. From x ≤ z, applying (b) we obtain:

x ∪1 y ≤ z ∪1 y = (
(z→ y) � y

)∧ (
(y → z) � z

)= z.

We conclude that x∪1 y is the l.u.b. of {x, y}, so x∨y exists and x∨y = x∪1 y.
(d) ⇒ (b) Let x, y, z ∈A such that x ≤ y.

It follows that x ∪1 z= x ∨ z≤ y ∨ z= y ∪1 z.
(c) ⇒ (d) We have x, y ≤ x ∪1 y, so x ∪1 y is an upper bound of {x, y}.

Let z ∈A such that x, y ≤ z. We have x ∪1 (y ∧ z)≤ (x ∪1 y)∧ (x ∪1 z).
Since x ∪1 z= ((x → z) � z)∧ ((z→ x) � x)= z, we get x ∪1 y ≤ (x ∪1 y)∧
z≤ z. Thus x ∪1 y is the l.u.b. of {x, y}, so x ∨ y exists and x ∨ y = x ∪1 y.

(d) ⇒ (c) For all x, y, z ∈A, x ∪1 (y ∧ z)= x ∨ (y ∧ z).
Obviously, y ∧ z≤ y implies x ∨ (y ∧ z)≤ x ∨ y.
From x ≤ x ∨ z and y ∧ z≤ z≤ x ∨ z we get x ∨ (y ∧ z)≤ x ∨ z.
It follows that x ∨ (y ∧ z)≤ (x ∨ y)∧ (x ∨ z).
Hence x ∪1 (y ∧ z)= x ∨ (y ∧ z)≤ (x ∨ y)∧ (x ∨ z)= (x ∪1 y)∧ (x ∪1 z). �

Proposition 2.10 ([148]) Let A be a pseudo-hoop. The following are equivalent:
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(a) ∪2 is associative;
(b) for all x, y, z ∈A, x ≤ y implies x ∪2 z≤ y ∪2 z;
(c) for all x, y, z ∈A, x ∪2 (y ∧ z)≤ (x ∪2 y)∧ (x ∪2 z);
(d) ∪2 is the join operation on A.

Proof The proof is similar to that of Proposition 2.9. �

Remark 2.1 Suppose that ∪1 is associative. By Proposition 2.9 it follows that ∪1 is
the join operation on A, that is, ∨ exists and ∨=∪1.

Applying Proposition 2.5(3) we get that (A,∧,∨) is a distributive lattice.
The same result is obtained using ∪2 and Proposition 2.10.

Theorem 2.1 Every bounded locally finite pseudo-hoop has property (pDN).

Proof Let A be a bounded locally finite pseudo-hoop and x ∈ A. If x = 0, then
0−∼ = 0∼− = 0. Suppose x �= 0. We prove that x−∼ = x. By (psbck-c14) we have
x ≤ x−∼. Suppose that x−∼ � x, hence x−∼ → x �= 1. Since A is locally finite,
there is an n ∈N, n≥ 1, such that (x−∼ → x)n = 0. We have:

(
x−∼ → x

)→ x− = (
x−∼ → x

)→ x−∼− = (
x−∼ → x

)→ (
x−∼ → 0

)

= (
x−∼ → x

)� x−∼ → 0= (
x ∧ x−∼

)→ 0

= x → 0= x−,
(
x−∼ → x

)2 → x− = (
x−∼ → x

)→ ((
x−∼ → x

)→ x−
)

= (
x−∼ → x

)→ x− = x−.

By induction we get (x−∼ → x)n → x− = x−. Thus 0→ x− = x−, so x− = 1.
Hence x ≤ x−∼ = 0, that is, x = 0, a contradiction. Therefore x−∼ ≤ x, so
x−∼ = x. Similarly, x∼− = x. Thus A satisfies (pDN). �

We recall the notion of an ordinal sum of pseudo-hoops.
Let A1 and A2 be pseudo-hoops such that A1 ∩A2 = {1}. We set A= A1 ∪A2

and we define the operations �, →, � on A as follows:

x � y :=

⎧
⎪⎨

⎪⎩

x �i y if x, y ∈Ai, i = 1,2

x if x ∈A1 \ {1}, y ∈A2

y if x ∈A2, y ∈A1 \ {1}

x → y :=

⎧
⎪⎨

⎪⎩

x →i y if x, y ∈Ai, i = 1,2

y if x ∈A2, y ∈A1 \ {1}
1 if x ∈A1 \ {1}, y ∈A2
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x � y :=

⎧
⎪⎨

⎪⎩

x �i y if x, y ∈Ai, i = 1,2

y if x ∈A2y ∈A1 \ {1}
1 if x ∈A1 \ {1}, y ∈A2.

Then (A,�,→,�,1) is a pseudo-hoop called the ordinal sum of A1 and A2
and we denote it by A = A1 ⊕ A2. The construction can of course be extended to
arbitrarily many systems of pseudo-hoops.

Definition 2.3 A pseudo-hoop A is called:

(1) simple if {1} is the unique proper normal filter of A;
(2) strongly simple if {1} is the unique proper filter of A.

Obviously, any strongly simple pseudo-hoop is simple.
When A is a hoop, since filters and normal filters coincide, the notions of simple

and strongly simple hoop coincide.

Proposition 2.11 ([148]) For any pseudo-hoop A the following are equivalent:

(a) A is strongly simple;
(b) for all x ∈A, if x �= 1 then [x)=A;
(c) for all x, y ∈A, if x �= 1 then there exists an n ∈N, n > 0, such that y ≥ xn;
(d) for all x, y ∈A, if x �= 1 then there exists an n ∈N, n > 0, such that x →n y = 1

for some n ∈N, n≥ 1;
(e) for all x, y ∈A, if x �= 1 then there exists an n ∈N, n≥ 1, such that x �n y = 1

for some n ∈N, n > 0.

Proof (a) ⇔ (b) is obvious.
By Lemma 1.9 and Proposition 1.33 any one of the conditions (c), (d) and (e) is

equivalent to condition (b). �

Lemma 2.1 ([148]) In any strongly simple pseudo-hoop A the following hold for
all x, y ∈A:

(1) y → x = x implies x = 1 or y = 1;
(2) y � x = x implies x = 1 or y = 1.

Proof

(1) Consider x, y ∈ A such that y → x = x. Applying (psHOOP3), it follows by
induction that yn → x = x for all n ∈ N, n > 0. If y �= 1, then according to
Proposition 2.11(c), there exists an n0 ∈ N, n0 > 0, such that yn0 ≤ x, that is,
yn0 → x = 1. Hence x = 1.

(2) Similar to (1). �

Definition 2.4 A pseudo-hoop (A,�,→,�,1) is said to be cancellative if the
monoid (A,�,1) is cancellative, that is, x � a = y � a implies x = y and a � x =
a� y implies x = y for all x, y, a ∈A.
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Proposition 2.12 ([148]) A pseudo-hoop A is cancellative iff the following identi-
ties hold:

(C1) y → x � y = x;
(C2) y � y � x = x,

for all x, y ∈A.

Proof Suppose that A is cancellative.
It follows that x � y = y ∧ (x � y)= (y → x � y)� y, hence x = y → x � y.
Similarly, y � x = y ∧ (y � x)= y � (y � y � x), hence x = y � y � x.
Conversely, suppose that A satisfies (C1) and (C2).
If x�z= y�z, then applying (C1) twice we get x = z→ x�z= z→ y�z= y.
Similarly, from z � x = z � y and (C2) it follows that x = z � z � x = z �

z� y = y. �

Example 2.1 ([148]) Let G= (G,∨,∧,+,−,0) be an arbitrary �-group and G− be
the negative cone of G, that is, G− = {x ∈G | x ≤ 0}.

On G− we define the following operations:

x � y := x + y,

x → y := (y − x)∧ 0,

x � y := (−x + y)∧ 0.

Then G− = (G−,�,→,�,0) is a cancellative pseudo-hoop.
We shall verify the conditions (psHOOP1)–(psHOOP5).
Consider x, y, z ∈G−.

(psHOOP1) x � 0= x + 0= x = 0+ x = 0� x.
(psHOOP2) x → x = x � x = 0∧ 0= 0.
(psHOOP3) x � y → z= [z− (x + y)] ∧ 0= (z− y − x)∧ 0 and

x → (y → z) = [
(z− y)∧ 0− x

]∧ 0= (z− y − x)∧ (−x)∧ 0

= (z− y − x)∧ 0

(since −x ≥ 0, we have (−x)∧ 0= 0). Thus x � y → z= x → (y → z).
(psHOOP4) Similar to (psHOOP3).
(psHOOP5) (x → y)� x = (y − x)∧ 0+ x = y ∧ x.

Similarly, (y → x)� y = x ∧ y, x � (x � y)= y ∧ x, y � (y � x)= x ∧ y.
Thus (x → y)� x = (y → x)� y = x � (x � y)= y � (y � x).
It follows that G− is a pseudo-hoop.
We will verify conditions (C1) and (C2).
If x, y ∈G−, then y → x � y = (x + y − y)∧ 0= x ∧ 0= x and y � y � x =

(−y + y + x)∧ 0= x ∧ 0= x.
Thus G− is a cancellative pseudo-hoop.
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Proposition 2.13 ([148]) Let A be a cancellative pseudo-hoop. Then for all
x, y, z ∈A the following hold:

(1) x → y = x � z→ y � z and x � y = z� x � z� y;
(2) x � z≤ y � z iff x ≤ y and z� x ≤ z� y iff x ≤ y.

Proof

(1) By (C1) and (psHOOP3) we get

x → y = x → (z→ y � z)= x � z→ y � z.

By (C2) and (psHOOP4) we get

x � y = x � (z � z� y)= z� x � z� y.

(2) Applying (1), x � z≤ y � z iff x � z→ y � z= 1 iff x → y = 1 iff x ≤ y.
The second inequality can be proved in the same way. �

Definition 2.5 A pseudo-hoop (A,�,→,�,1) is said to be Wajsberg if it satisfies
the following conditions:

(Wa1) (x → y) � y = (y → x) � x;
(Wa2) (x � y)→ y = (y � x)→ x,

i.e. x ∨1 y = y ∨1 x and x ∨2 y = y ∨2 x.

Remark 2.2 Taking y = 0 in (Wa1) and (Wa2), it follows that a bounded Wajsberg
pseudo-hoop satisfies (pDN).

Example 2.2 ([148]) Let G = (G,∨,∧,+,−,0) be an arbitrary �-group. For an
arbitrary element u ∈G, u≥ 0 define on the set G[u] = [0, u] the operations:

x � y := (x − u+ y)∨ 0,

x → y := (y − x + u)∧ u,

x � y := (u− x + y)∧ u.

Then G[u] = (G[u],�,→,�, u) is a bounded Wajsberg pseudo-hoop.
Indeed, we check the conditions (psHOOP1)–(psHOOP5).

(psHOOP1) x � u= (x − u+ u)∨ 0= x ∨ 0= x and u� x = (u− u+ x)∨ 0=
x ∨ 0= x, since x ≥ 0.

(psHOOP2) x → x = x � x = u∧ u= u.
(psHOOP3) Applying the properties of an �-group we have:

x � y → z = [
(x − u+ y)∨ 0

]→ z

= [
z− (x − u+ y)∨ 0+ u

]∧ u
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= (z− y + u− x + u)∧ (z+ u)∧ u

= (z− y + u− x + u)∧ u and

x → (y → z) = [
(y → z)− x + u

]∧ u= [
(z− y + u)∧ u− x + u

]∧ u

= (z− y + u− x + u)∧ (u− x + u)∧ u

= (z− y + u− x + u)∧ u.

Thus (x � y)→ z= x → (y → z).
(psHOOP4) Can be proved in a similar way as (psHOOP3).
(psHOOP5) We have:

(x → y)� x = [
(x → y)− u+ x

]∨ 0= [
(y − x + u)∧ u− u+ x

]∨ 0

= [
(y − x + u− u+ x)∧ (u− u+ x)

]∨ 0= (y ∧ x)∨ 0

= y ∧ x.

Similarly, (y → x)� y = x ∧ y, x � (x � y)= y ∧ x, y � (y � x)= x ∧ y.
Thus (x → y)� x = (y → x)� y = x � (x � y)= y � (y � x).
It follows that G[u] = (G[u],�,→,�, u) is a pseudo-hoop.
Obviously, it is bounded.
We will prove that G[u] satisfies conditions (Wa1) and (Wa2).
Let x, y ∈G[u]. We have:

(x → y)� y = [
u− (x → y)+ y

]∧ u= [
u− (y − x + u)∧ u+ y

]∧ u

= [
(u− u+ x − y + y)∨ (u− u+ y)

]∧ u

= (x ∨ y)∧ u= x ∨ y and

(y → x)� x = [
u− (y → x)+ x

]∧ u= [
u− (x − y + u)∧ u+ x

]∧ u

= [
(u− u+ y − x + x)∨ (u− u+ x)

]∧ u

= (y ∨ x)∧ u= y ∨ x = x ∨ y.

Thus (x → y) � y = (y → x) � x, hence G[u] satisfies (Wa1).
We can similarly prove that condition (Wa2) is also satisfied.
Therefore G[u] = (G[u],�,→,�, u) is a bounded Wajsberg pseudo-hoop.

Proposition 2.14 ([148]) Let A be a Wajsberg pseudo-hoop. Then for all x, y ∈ A

the following hold:

(cw1) x ∪1 y = (x → y) � y = (y → x) � x;
(cw2) x ∪2 y = (x � y)→ y = (y � x)→ x;
(cw3) ∪1 and ∪2 are associative;
(cw4) x ∨ y = x ∪1 y = x ∪2 y.
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Proof

(cw1) This follows from the definition of ∪1 and (Wa1).
(cw2) This follows from the definition of ∪2 and (Wa2).
(cw3) If x ≤ y and z ∈ A, then applying (psbck-c1) twice we get y → z ≤ x → z

and (x → z) � z≤ (y → z) � z, that is, x ∪1 z≤ y ∪1 z.
By Proposition 2.9, ∪1 is associative. Similarly, ∪2 is associative.

(cw4) This follows by Remark 2.1. �

Corollary 2.1 If A is a Wajsberg pseudo-hoop, then

x ∨ y → y = x → y and x ∨ y � y = x � y

for all x, y ∈A.

Definition 2.6 A pseudo-hoop A is called basic if it satisfies the following condi-
tions:

(Ba1) (x → y)→ z≤ ((y → x)→ z)→ z;
(Ba2) (x � y) � z≤ ((y � x) � z) � z.

We say that a pseudo-hoop is representable if it can be represented as a subdirect
product of linearly ordered pseudo-hoops (see Chap. 3).

It is straightforward to verify that any linearly ordered pseudo-hoop and hence
any representable pseudo-hoop is basic.

Proposition 2.15 ([148]) Let A be a basic pseudo-hoop. For any x, y, z ∈ A, the
following hold:

(1) (x → y)∪1 (y → x)= 1 and (x � y)∪2 (y � x)= 1;
(2) x → y = (x ∪1 y)→ y and x � y = (x ∪2 y) � y;
(3) (x ∪1 y)→ z= (x → z)∧ (y → z) and (x ∪2 y) � z= (x � z)∧ (y � z).

Proof

(1) Let u = (x → y) ∪1 (y → x). According to (Ba1) we have (x → y) → u ≤
((y → x)→ u)→ u. Applying Proposition 2.8(2) we have x → y, y → x ≤ u,
hence (x → y) → u = (y → x) → u = 1. It follows that 1 ≤ 1 → u = u, so
u= 1, that is, (x → y)∪1 (y → x)= 1. Similarly, (x � y)∪2 (y � x)= 1.

(2) Since x ≤ x ∪1 y, applying (psbck-c1) we get (x ∪1 y)→ y ≤ x → y.
From (pshoop-c5) and (psbck-c1) it follows that

x → y ≤ (
(x → y) � y

)→ y ≤ (x ∪1 y)→ y,

since x ∪1 y = ((x → y) � y)∧ ((y → x) � x)≤ (x → y) � y.
Hence x → y = (x ∪1 y)→ y.
We can prove in the same manner that x � y = (x ∪2 y) � y.
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(3) Since x, y ≤ x ∪1 y, applying (psbck-c1) we have (x ∪1 y)→ z ≤ x → z and
(x ∪1 y)→ z≤ y → z. Hence (x ∪1 y)→ z≤ (x → z)∧ (y → z).

Let u= [(x → z)∧ (y → z)]� [(x ∪1 z)→ z]. We will prove that u= 1.
We have:

[
(x → z)∧ (y → z)

]� [
(x ∪1 y)→ y

]� (x ∪1 y)

= [
(x → z)∧ (y → z)

]� [
(x ∪1 y)∧ y

]

= [
(x → z)∧ (y → z)

]� y ≤ (y → z)� y = y ∧ z≤ z, so
[
(x → z)∧ (y → z)

]� [
(x ∪1 y)→ y

]≤ (x ∪1 y)→ z.

It follows that (x ∪1 y)→ y ≤ [(x → z)∧ (y → z)]� [(x ∪1 y)→ z] = u.
Applying (2) it follows that x → y = (x ∪1 y)→ y ≤ u, that is, (x → y)→

u= 1.
Similarly, (y → x)→ u= 1.
By (Ba1) we get 1= (x → y)→ u≤ ((y → x)→ u)→ u= 1→ u= u, so

u= 1.
Hence (x → z)∧ (y → z)≤ (x ∪1 z)→ z.
We conclude that (x ∪1 y)→ z= (x → z)∧ (y → z).
Similarly, (x ∪2 y) � z= (x � z)∧ (y � z). �

Proposition 2.16 ([148]) Let A be a basic pseudo-hoop. Then, for any x, y ∈ A,
x ∨ y exists and x ∨ y = x ∪1 y = x ∪2 y. The lattice (A,∧,∨) is distributive.

Proof We have x, y ≤ x ∪1 y and x, y ≤ x ∪2 y. Let z ∈ A such that x, y ≤ z, that
is, x → z= y → z= 1.

According to Proposition 2.15(3) we have (x ∪1 y)→ z= (x → z)∧ (y → z)=
1∧ 1= 1, so x ∪1 y ≤ z. Similarly, x ∪2 y ≤ z. Thus x ∨ y = x ∪1 y = x ∪2 y.

Finally, applying Proposition 2.5(3) we conclude that (A,∧,∨) is a distributive
lattice. �

Proposition 2.17 ([148]) Let A be a pseudo-hoop. The following are equivalent:

(a) A is a basic pseudo-hoop;
(b) ∪1 and ∪2 are associative and (x → y)∪1 (y → x)= 1 for all x, y ∈A;
(c) ∪1 and ∪2 are associative and (x � y)∪2 (y � x)= 1 for all x, y ∈A.

Proof

(a) ⇒ (b) Applying Proposition 2.16 it follows that ∨ = ∪1 = ∪2 is the join oper-
ation on A. Taking into consideration Propositions 2.9 and 2.10 we get that ∪1

and ∪2 are associative. The second assertion follows by Proposition 2.15(1).
(b) ⇒ (a) By Remark 2.1 we have ∨=∪1 =∪2. Applying (psbck-c24) and (psbck-

c12) we get
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(
(x → y)→ z

)� (
(y → x)→ z

) ≤ (
(x → y)→ z

)∧ (
(y → x)→ z

)

= (
(x → y)∨ (y → x)

)→ z= 1→ z= z.

Hence ((x → y)→ z)≤ ((y → x)→ z)→ z, that is, (Ba1).
(Ba2) can be proved similarly.

(a) ⇔ (c) follows in the same manner as (a) ⇔ (b). �

Proposition 2.18 ([148]) In any basic pseudo-hoop A the following hold:

(1) x � (y ∧ z)= (x � y)∧ (x � z) and (y ∧ z)� x = (y � x)∧ (z� x);
(2) (x → y)→ (y → x)= y → x and (x � y) � (y � x)= y � x.

Proof

(1) According to Proposition 2.16, ∨ exists, ∨=∪1 =∪2 and (A,∧,∨) is distribu-
tive. Applying Propositions 2.15, 2.5 we get:

(x � y)∧ (x � z) = [
(x � y)∧ (x � z)

]� 1

= [
(x � y)∧ (x � z)

]� [
(y � z)∨ (z � y)

]

= [(
(x � y)∧ (x � z)

)� (y � z)
]

∨ [(
(x � y)∧ (x � z)

)� (z � y)
]

≤ [
x � y � (y � z)

]∨ [
x � z� (z � y)

]

= [
x � (y ∧ z)

]∨ [
x � (z∧ y)

]= x � (y ∧ z).

On the other hand, from x� (y ∧ z)≤ x� y and x� (y ∧ z)≤ x� z we get
x � (y ∧ z)≤ (x � y)∧ (x � z).

Thus x � (y ∧ z)= (x � y)∧ (x � z) and similarly (y ∧ z)� x = (y � x)∧
(z� x).

(2) According to (psbck-c6) we have y → x ≤ (x → y)→ (y → x).
Applying Proposition 2.15, we have

1 = (y → x)∪1 (x → y)

= [(
(y → x)→ (x → y)

)
� (x → y)

]

∧ [(
(x → y)→ (y → x)

)
� (y → x)

]
.

Hence (x → y)→ (y → x)≤ y → x.
Thus (x → y)→ (y → x)= y → x.
Similarly, (x � y) � (y � x)= y � x. �

Proposition 2.19 ([148]) Any Wajsberg pseudo-hoop is a basic pseudo-hoop.

Proof Let x, y ∈A. By (pshoop-c7), (Wa1) and (psbck-c22) we have:
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y → x = [(
(y → x)� x

)→ y
]→ (y → x)

= [(
(x → y)� y

)→ y
]→ (y → x)= (x → y)→ (y → x).

Applying (cw1) we get

(x → y)∪1 (y → x) = (
(x → y)→ (y → x)

)
� (y → x)

= (y → x) � (y → x)= 1.

By (cw3) it follows that ∪1 and ∪2 are associative and applying Proposition 2.17
we get that A is a basic pseudo-hoop. �

Proposition 2.20 ([148]) Let A be a basic pseudo-hoop satisfying the conditions:

y → x = x implies x = 1 or y = 1 and

y � x = x implies x = 1 or y = 1

for all x, y ∈A. Then A is a linearly ordered Wajsberg pseudo-hoop.

Proof Consider x, y ∈A. Applying Proposition 2.18(2) we have (x → y)→ (y →
x) = y → x. Taking into consideration the hypothesis, we get x → y = 1 or y →
x = 1, that is, x ≤ y or y ≤ x. It follows that A is a linearly ordered pseudo-hoop.

We will now prove that A is a Wajsberg pseudo-hoop.
Let x, y ∈ A. If x = y, then (Wa1) is obvious. Assume x �= y. Since A is linear,

we can suppose that x < y. It follows that (x → y) � y = 1 � y = y.
By (pshoop-c7) we have [((y → x) � x) → y] → (y → x) = y → x, so by

hypothesis and the fact that y → x �= 1, we get ((y → x) � x) → y = 1, hence
(y → x) � x ≤ y. But, from (pshoop-c5) we have y ≤ (y → x) � x, so (y →
x)� x = y. Hence (x → y)� y = (y → x)� x.

Thus A satisfies (Wa1). Similarly, A satisfies (Wa2).
We conclude that A is a Wajsberg pseudo-hoop. �

Corollary 2.2 Every strongly simple basic pseudo-hoop is a linearly ordered Wajs-
berg pseudo-hoop.

Proof This follows from Lemma 2.1 and Proposition 2.20. �

Example 2.3 ([148]) The pseudo-hoop G− from Example 2.1 is a basic pseudo-
hoop. Indeed, consider x, y, z ∈G−. We have

(x → y)→ z= (
z− (x → y)

)∧ 0= (
z− (y− x)∧ 0

)∧ 0= [
(z− x+ y)∨ z

]∧ 0.

Similarly, (y → x)→ z= [(z− y + x)∨ z] ∧ 0. It follows that:
(
(y → x)→ z

)→ z = [
z− ((

(z− y + x)∨ z
)∧ 0

)]∧ 0

= [(
z− (z− y + x)∨ z

)∨ z
]∧ 0
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= [(
(z− x + y − z)∧ 0

)∨ z
]∧ 0

= [
(z− x + y − z)∨ z

]∧ (0∨ z)∧ 0

= [
(z− x + y − z)∨ z

]∧ 0.

Since z≤ 0, we have 0≤−z, hence z− x + y ≤ z− x + y − z. Thus

(x → y)→ z = [
(z− x + y)∨ z

]∧ 0≤ [
(z− x + y − z)∨ z

]∧ 0

= (
(y → x)→ z

)→ z.

It follows that G− satisfies (Ba1) and similarly G− satisfies (Ba2).
We conclude that G− is a basic pseudo-hoop.

Example 2.4 The pseudo-hoop G[u] from Example 2.2 is a basic pseudo-hoop. In-
deed, we have proved that G[u] is a Wajsberg pseudo-hoop and applying Proposi-
tion 2.19 it follows that G[u] is a basic pseudo-hoop.

Definition 2.7 An element a of a pseudo-hoop A is said to be an idempotent if
a2 = a. The set of all idempotents of A is denoted by Id(A).

A pseudo-hoop A is called an idempotent pseudo-hoop if Id(A)= A, that is, all
elements of A are idempotent.

On the other hand, an idempotent pseudo-hoop A is a Gödel pseudo-hoop, that
is, a pseudo-hoop with condition (Gödel) (a� a = a for all a ∈A).

Lemma 2.2 (Proposition 3.1 in [106]) If a ∈ Id(A), then for all x ∈A we have:

(1) a � x = a ∧ x = x � a;
(2) a → x = a � x.

Proof

(1) We have:

a� x ≤ a ∧ x = a� (a � x)= a � a� (a � x)= a� (a ∧ x)≤ a � x.

Thus a� x = a ∧ x and similarly x � a = a ∧ x.
(2) For an arbitrary z ∈A we have:

z≤ a → x iff z� a ≤ x iff a� z≤ x iff z≤ a � x,

that is, a → x = a � x. �

Remark 2.3

(1) Representable Brouwerian algebras are idempotent basic hoops and generalized
Boolean algebras are idempotent Wajsberg hoops ([198]).

(2) Any bounded idempotent pseudo-hoop A is good.
Indeed, applying the identity a → x = a � x for x = 0, we get a− = a∼, so

a−∼ = a−− = a∼− for all a ∈A.
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2.2 Join-Center and Cancellative-Center of Pseudo-hoops

We introduce the notions of join-center and cancellative-center of a pseudo-hoop
and we prove some of their properties.

Definition 2.8 If A is a pseudo-hoop, then the set JC(A)= {a ∈A | a∨ x exists for
all x ∈A} is called the join-center of A.

Obviously, 1 ∈ JC(A) and, if A is bounded, then 0 ∈ JC(A).
If A is a Wajsberg pseudo-hoop, then JC(A)=A.

Definition 2.9 If A is a pseudo-hoop, then the set CC(A) = {a ∈ A | x � a =
y � a implies x = y and a � x = a � y implies x = y for all x, y ∈A} is called the
cancellative-center of A.

Obviously, 1 ∈ CC(A) and 0 /∈ CC(A).
If A is a cancellative pseudo-hoop, then CC(A)=A.

Proposition 2.21 If A is a pseudo-hoop and a ∈ CC(A), then the following hold
for all x ∈A:

(1) a → (x � a)= x;
(2) a � (a � x)= x.

Proof

(1) We have x � a = a ∧ (x � a)= (a → (x � a))� a.
Taking into consideration that a ∈ CC(A), we get a → (x � a)= x.

(2) Similarly, from a � x = a ∧ (a � x) = a � (a � (a � x)) we have a �
(a � x)= x. �

Corollary 2.3 If A is a pseudo-hoop and a ∈ CC(A), then

an → an+1 = an � an+1 = a for all n ∈N.

Proof Applying Proposition 2.21(1) and (psHOOP3) for x = a, a2, a3, . . . we get:

a = a → a2 = a → (
a → a3)= a2 → a3 = a2 → (

a → a4)

= a3 → a4 = · · · = an → an+1.

Similarly, by Proposition 2.21(2) and (psHOOP4) we get a = an � an+1. �

Proposition 2.22 If A is a pseudo-hoop and a ∈ CC(A), then the following hold
for all x, y ∈A:

(1) x → y = (x � a)→ (y � a);
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(2) x � y = (a� x) � (a � y);
(3) x ≤ y iff x � a ≤ y � a iff a � x ≤ a� y.

Proof

(1) Applying Proposition 2.21(1) and (psHOOP3) we get:

x → y = x → (
a → (y � a)

)= (x � a)→ (y � a).

(2) Similarly, x � y = x � (a � (a � y))= (a� x)� (a � y).
(3) Applying (1) we have x � a ≤ y � a iff (x � a)→ (y � a)= 1 iff x → y = 1

iff x ≤ y. Similarly, applying (2) we get a� x ≤ a� y iff x ≤ y. �

2.3 Algebras on Subintervals of Pseudo-hoops

The problem of introducing an MV-algebra structure and a pseudo-MV algebra
structure on subintervals of algebras was solved in [37] and respectively in [195]
and [196]. It was proved in [105] that for a bounded R�-monoid or a pseudo-BL
algebra A, for any a, b ∈ A, a ≤ b, the subinterval [a, b] can be endowed with a
structure of the same kind as that on A. For the case of an FLw-algebra A it was
proved in [55] that, if a, b with a ≤ b belonging to the Boolean center of A, then the
subinterval [a, b] of A can be endowed with a structure of an FLw-algebra. In this
section we will establish some conditions on a, b ∈A for the subinterval [a, b] of A

to be endowed with a structure of a pseudo-hoop.

Theorem 2.2 Let (A,�,→,�,0,1) be a bounded pseudo-hoop and a ∈ JC(A).
Then the algebra A1

a = ([a,1],�1
a,→1

a,�1
a, a,1) is a bounded pseudo-hoop, where

x �1
a y := (x � y)∨ a, x →1

a y := x → y and x �1
a y := x � y.

Proof First, we observe that a ≤ y ≤ x → y, x � y implies x → y, x � y ∈ [a,1]
for all x, y ∈ [a,1]. We will check conditions (psHOOP1)–(psHOOP5) from the
definition of a pseudo-hoop:

(psHOOP1) For all x ∈ [a,1] we have:

x �1
a 1 = (x � 1)∨ a = x ∨ a = x and

1�1
a x = (1� x)∨ a = x ∨ a = x.

(psHOOP2) x →1
a x = x → x = 1 and x �1

a x = x � x = 1;
(psHOOP3)

x �1
a y →1

a z = (x � y)∨ a → z= (x � y → z)∧ (a → z)

= (x � y)→ z= x → (y → z)= x →1
a

(
y →1

a z
)

(since a ≤ z, it follows that a → z= 1).
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(psHOOP4) can be proved in a similar way as (psHOOP3).
(psHOOP5) Since (x → y)� x = (y → x)� y = x � (x � y)= y � (y � x), we

get

[
(x → y)� x

]∨ a = [
(y → x)� y

]∨ a

= [
x � (x � y)

]∨ a = [
y � (y � x)

]∨ a,

that is,

(
x →1

a y
)�1

a x = (
y →1

a x
)�1

a y = x �1
a

(
x �1

a y
)= y �1

a

(
y �1

a x
)
.

Thus A1
a = ([a,1],�1

a,→1
a,�1

a, a,1) is a bounded pseudo-hoop. �

Obviously, A=A1
0 and {1} =A1

1.

Theorem 2.3 Let (A,�,→,�,0,1) be a bounded pseudo-hoop, a ∈ CC(A) and
Aa

0 = ([0, a],�a
0,→a

0,�a
0,0, a), where: x �a

0 y := x � (a � y), x →a
0 y := (x →

y)� a and x �a
0 y := a � (x � y). Then Aa

0 is a bounded pseudo-hoop.

Proof We will verify the axioms of a pseudo-hoop:

(psHOOP1) For all x ∈ [0, a] we have:

x �a
0 a = x � (a � a)= x � 1= x and

a �a
0 x = a � (a � x)= a ∧ x = x.

(psHOOP2) For all x ∈ [0, a] we have:

x →a
0 x = (x → x)� a = 1� a = a and

x �a
0 x = a� (x � x)= a� 1= a.

(psHOOP3) First of all we note that x �a
0 y = (a → x)� y.

Indeed, from (a → x)� a � (a � y) = (a → x)� a � (a � y) we get (a ∧
x)� (a � y)= (a → x)� (a ∧ y). Hence x � (a � y)= (a → x)� y, that is,
x �a

0 y = (a → x)� y.
Applying the rules of calculus in pseudo-hoops, we get:

x �a
0 y →a

0 z= x →a
0

(
y →a

0 z
)

iff

(a → x)� y →a
0 z= x →a

0 (y → z)� a iff
[
(a → x)� y → z

]� a = [
x → (y → z)� a

]� a iff

(a → x)� y → z= x → (y → z)� a iff

(a → x)→ (y → z)= x → (y → z)� a.
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For any u ∈A we have:

u≤ (a → x)→ (y → z) ⇒ u� (a → x)≤ y → z

⇒ u� (a → x)� a ≤ (y → z)� a

⇒ u� (a ∧ x)≤ (y → z)� a

⇒ u� x ≤ (y → z)� a

⇒ u≤ x → (y → z)� a.

Conversely,

u≤ x → (y → z)� a ⇒ u� x ≤ (y → z)� a

⇒ u� (a ∧ x)≤ (y → z)� a

⇒ u� (a → x)� a ≤ (y → z)� a

⇒ u� (a → x)≤ y → z

⇒ u≤ (a → x)→ (y → z).

Since u is arbitrary, it follows that (a → x)→ (y → z)= x → (y → z)� a.
Thus x �a

0 y →a
0 z= x →a

0 (y →a
0 z).

(psHOOP4) This can be proved in a similar way as (psHOOP3).
(psHOOP5) For all x, y ∈ [0, a] we have:

(
x →a

0 y
)�a

0 x = (
y →a

0 x
)�a

0 y iff
[
(x → y)� a

]�a
0 x = [

(y → x)� a
]�a

0 y iff

(x → y)� a� (a � x)= (y → x)� a� (a � y) iff

(x → y)� (a ∧ x)= (y → x)� (a ∧ y) iff

(x → y)� x = (y → x)� y.

The last identity is true, since (A,�,→,�,0,1) is a pseudo-hoop. The remain-
ing identities in (psHOOP5) can be proved in a similar manner as the above.
We conclude that Aa

0 is a bounded pseudo-hoop. �

Theorem 2.4 Let (A,�,→,�,0,1) be a bounded pseudo-hoop, a, b ∈ CC(A) ∩
JC(A), a ≤ b and Ab

a = ([a, b],�b
a,→b

a,�b
a, a, b), where: x �b

a y := (x � (b �
y))∨a, x →b

a y := (x → y)�b and x �b
a y := b� (x � y). Then Ab

a is a bounded
pseudo-hoop.

Proof According to Theorem 2.2, the algebra ([a,1],�1
a,∧,∨,→1

a,�1
a, a,1) with

the operations x �1
a y = (x � y) ∨ a, x →1

a y = x → y and x �1
a y = x � y is a
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bounded pseudo-hoop. Let x, y ∈ [a, b]. Since x ≤ b, by (psbck-c1) we have b →
y ≤ x → y, hence

(x → y)� b ≥ (b→ y)� b= b ∧ y ≥ a.

Similarly, b � y ≤ x � y, so:

b� (x � y)≥ b� (b � y)= b ∧ y ≥ a.

By Theorem 2.3 it follows that the algebra ([a, b],�b
a,→b

a,�b
a, a, b) is a

bounded pseudo-hoop with the operations:

x �b
a y = x �1

a

(
b �1

a y
)= x �1

a (b � y)= (
x � (b � y)

)∨ a,

x →b
a y = (

x →1
a y

)�1
a b= (x → y)�1

a b= (
(x → y)� b

)∨ a = (x → y)� b,

x �b
a y = b�1

a

(
x �1

a y
)= b�1

a (x � y)

= (
b� (x � y)

)∨ a = b� (x � y). �



Chapter 3
Residuated Lattices

Residuation is a fundamental concept of ordered structures and the residuated lat-
tices, obtained by adding a residuated monoid operation to lattices, have been ap-
plied in several branches of mathematics, including �-groups, ideal lattices of rings
and multiple-valued logics. The study of commutative residuated lattices was initi-
ated in the late 1930s by Krull, Dilworth and Ward ([93, 204, 261, 262]) and recently
they have been investigated in [35, 121, 145, 152, 165].

Non-commutative residuated lattices, sometimes called pseudo-residuated lat-
tices, biresiduated lattices or generalized residuated lattices, are the algebraic coun-
terparts of substructural logics, i.e. logics which lack at least one of the three struc-
tural rules, namely contraction, weakening and exchange.

In this book residuated lattice means non-commutative residuated lattice.
Complete studies on residuated lattices were developed by Ono, Jipsen, Galatos,

Tsinakis and Kowalski ([3, 11, 124–126, 129, 200, 235–237]). Particular cases of
residuated lattices are the full Lambek algebras (FL-algebras), integral residuated
lattices and bounded integral residuated lattices (FLw-algebras).

In the present chapter we investigate the properties of a residuated lattice and
the lattice of filters of a residuated lattice, we study the Boolean center of an FLw-
algebra and we define and study the directly indecomposable FLw-algebras. We
prove that any linearly ordered FLw-algebra is directly indecomposable and any
subdirectly irreducible FLw-algebra is directly indecomposable. Finally, the FLw-
algebras of fractions relative to a meet-closed system is introduced and investigated.

3.1 Definitions and Properties

We recall some basic notions and results regarding residuated lattices and FLw-
algebras and we give examples of proper FLw-algebras.

Definition 3.1 A residuated lattice is an algebra A = (A,∧,∨,�,→,�, e) of
type (2,2,2,2,2,0) satisfying the following axioms:

(A1) (A,∧,∨) is a lattice;
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(A2) (A,�, e) is a monoid (i.e. � is associative, with identity element e);
(A3) x � y ≤ z iff x ≤ y → z iff y ≤ x � z for any x, y, z ∈ A (pseudo-

residuation).

(Our notation differs slightly from that of [129]; we write x → y and x � y

instead of y/x and x\y, respectively.)
Note that generally, e is not the top element of A.
We will agree that, in the absence of parentheses, the operation � is performed

first, followed by →, � and ∧, ∨.
In the next proposition we prove some properties of residuated lattices (see [11,

129, 200]).

Proposition 3.1 In any residuated lattice (A,∧,∨,�,→,�, e) the following
hold:

(rl-c1) if x ≤ y, then x � z≤ y � z and z� x ≤ z� y;
(rl-c2) x � (

∨
i∈I yi)=∨

i∈I (x � yi) and (
∨

i∈I yi)� x =∨
i∈I (yi � x);

(rl-c3) y → (
∧

i∈I xi)=∧
i∈I (y → xi) and y � (

∧
i∈I xi)=∧

i∈I (y � xi);
(rl-c4) (

∨
i∈I xi)→ y =∧

i∈I (xi → y) and (
∨

i∈I xi) � y =∧
i∈I (xi � y),

whenever the arbitrary meets and unions exist.

Proof

(rl-c1) From y � z ≤ y � z we have y ≤ z→ y � z and taking into consideration
that x ≤ y we get x ≤ z→ y � z.
Hence x � z≤ y � z and similarly z� x ≤ z� y.

(rl-c2), (rl-c3), (rl-c4) follow similarly as in Proposition 1.14. �

Proposition 3.2 In any residuated lattice (A,∧,∨,�,→,�, e) the following
hold:

(rl-c5) (x → y)� x ≤ y and x � (x � y)≤ y;
(rl-c6) x � (y → z)≤ y → (x � z) and (y � z)� x ≤ y � (z� x);
(rl-c7) (y → z)� (x → y)≤ x → z and (x � y)� (y � z)≤ x � z;
(rl-c8) x → y ≤ (y → z) � (x → z) and x � y ≤ (y � z)→ (x � z);
(rl-c9) x → y ≤ (z→ x)→ (z→ y) and x � y ≤ (z � x)� (z � y);
(rl-c10) x → y ≤ (x � z)→ (y � z) and x � y ≤ (z� x) � (z� y);
(rl-c11) x → (y → z)= (x � y)→ z and x � (y � z)= (y � x)� z;
(rl-c12) x ≤ (x → y) � y and x ≤ (x � y)→ y;
(rl-c13) e→ x = e � x = x;
(rl-c14) x → x ≥ e and x � x ≥ e;
(rl-c15) (x → y)� (z→ e)≤ (z� x)→ y and (z � e)� (x � y)≤ (x � z) � y;
(rl-c16) (x → x)� x = x and x � (x � x)= x;
(rl-c17) (x → x)2 = x → x and (x � x)2 = x � x;
(rl-c18) z� (x ∧ y)≤ (z� x)∧ (z� y) and (x ∧ y)� z≤ (x � z)∧ (y � z);
(rl-c19) x → (y � z)= y � (x → z) and x � (y → z)= y → (x � z);
(rl-c20) y � (x → e)≤ x → y and (x � e)� y ≤ x � y.
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Proof

(rl-c5) From x → y ≤ x → y we get (x → y)� x ≤ y and from x � y ≤ x � y

we have x � (x � y)≤ y.
(rl-c6) Applying (rl-c5) we have (y → z) � y ≤ z, and by (rl-c1) it follows that

x � (y → z)� y ≤ x � z. Thus x � (y → z)≤ y → (x � z).
Similarly, (y � z)� x ≤ y � (z� x).

(rl-c7) Applying (rl-c5) we have:

(y → z)� (x → y)� x ≤ (y → z)� y ≤ z, hence

(y → z)� (x → y) ≤ x → z.

Similarly, x � (x � y)� (y � z) ≤ y � (y � z) ≤ z, hence (x � y)� (y �
z)≤ x � z.

(rl-c8) This follows from (rl-c7).
(rl-c9) Applying (rl-c5) we have (x → y)� (z → x)� z ≤ (x → y)� x ≤ y, so

(x → y)� (z→ x)≤ z→ y and finally x → y ≤ (z→ x)→ (z→ y).
Similarly, x � y ≤ (z � x) � (z � y).

(rl-c10) Applying (rl-c5) we get (x → y)�x�z≤ y�z, hence x → y ≤ (x�z)→
(y � z). Similarly, x � y ≤ (z� x) � (z� y).

(rl-c11) For any u ∈A we have:

u≤ x → (y → z) iff u� x ≤ y → z iff (u� x)� y ≤ z iff

u� (x � y)≤ z iff u≤ (x � y)→ z,

so x → (y → z)= (x � y)→ z.
Similarly, x � (y � z)= (y � x) � z.

(rl-c12) The inequalities follow applying (rl-c5).
(rl-c13) For any u ∈A we have u≤ e→ x iff u� e ≤ x iff u≤ x.

Thus e→ x = x and similarly e � x = x.
(rl-c14) From x ≤ x we get e� x ≤ x, hence e ≤ x → x.

Similarly, x � e ≤ x implies e ≤ x � x.
(rl-c15) Applying (rl-c6) and (rl-c11) we have:

(x → y)� (z→ e)≤ z→ (x → y)� e= z→ (x → y)= z� x → y.

Similarly, (z � e)� (x � y)≤ (x � z) � y.
(rl-c16) From x → x ≤ x → x we get (x → x)� x ≤ x.

On the other hand, from e ≤ x → x we have x ≤ (x → x)� x.
Thus (x → x)� x = x. Similarly, x � (x � x)= x.

(rl-c17) Applying (rl-c7) we have (x → x)2 = (x → x)� (x → x)≤ x → x.
On the other hand, from e ≤ x → x we get x → x ≤ (x → x)2, hence (x →
x)2 = x → x. Similarly, (x � x)2 = x � x.

(rl-c18) From x ∧ y ≤ x and x ∧ y ≤ y, it follows that z � (x ∧ y) ≤ z � x and
z� (x ∧ y)≤ z� y. Thus z� (x ∧ y)≤ (z� x)∧ (z� y).
Similarly, (x ∧ y)� z≤ (x � z)∧ (y � z).
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(rl-c19) For any u ∈A we have:

u≤ x → (y � z) iff u� x ≤ y � z iff y � u� x ≤ z iff

y � u≤ x → z iff u≤ y � (x → z).

Thus x → (y � z)= y � (x → z). Similarly, x � (y → z)= y → (x � z).
(rl-c20) By (rl-c5) we have (x → e)� x ≤ e and applying (rl-c1) we get y � (x →

e)� x ≤ y � e= y. Hence y � (x → e)≤ x → y.
Similarly, from x � (x � e)≤ e we get x � (x � e)� y ≤ e� y = y, so (x �
e)� y ≤ x � y. �

Example 3.1 ([124]) Let (G,∨,∧,�,−1 , e) be an �-group.
Define: x → y := y � x−1 and x � y := x−1 � y.
Then (G,∧,∨,�,→,�, e) is a residuated lattice.

Example 3.2 ([200]) Let (A,∧,∨,�,→,�, e) be a residuated lattice and A− =
{x ∈ A | x ≤ e}. Then the negative cone of A is defined as (A−,∧,∨,�,→A− ,

�A− , e), where x →A− y := (x → y) ∧ e and x �A− y := (x � y) ∧ e. It is easy
to check that (A−,∧,∨,�,→A− ,�A− , e) is again a residuated lattice.

Proposition 3.3 If a residuated lattice (A,∧,∨,�,→,�, e) has a bottom element
0, then it also has a top element 1 and for every x ∈A the following hold:

(1) x � 0= 0� x = 0;
(2) 0→ x = 0 � x = 1;
(3) x → 1= x � 1= 1.

Proof

(1) Since 0 is a bottom element, we have 0≤ x � 0, hence x� 0≤ 0, so x� 0= 0
for all x ∈ A. Similarly, from 0 ≤ x → 0 we get 0� x ≤ 0, that is, 0� x = 0.
Thus x � 0= 0� x = 0.

(2) First of all we show that 0→ 0= 0 � 0. Indeed, for any u ∈A we have:

u≤ 0→ 0 iff u� 0≤ 0 iff u� 0= 0 iff

0� u= 0 iff u≤ 0 � 0.

It follows that 0→ 0= 0 � 0.
Take 1 = 0 → 0 = 0 � 0. From x � 0 = 0 we get x ≤ 0 → 0 = 1 for all

x ∈A. Hence 1 is the top element of A.
Now, from 1� 0= 0≤ x we get 1≤ 0→ x, so 0→ x = 1.
Similarly, from 0� 1= 0≤ x, we have 1≤ 0 � x, hence 0 � x = 1.

(3) Since 1� x ≤ 1, we have 1≤ x → 1, hence x → 1= 1.
Similarly, from x � 1≤ 1 we get 1≤ x � 1, that is, x � 1= 1. �
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A residuated lattice A with a constant 0 (which can denote any element) is called
a pointed residuated lattice or full Lambek algebra (FL-algebra, for short). If x ≤ e

for all x ∈A, then A is called an integral residuated lattice.
Clearly, an integral residuated lattice is a porim.

Remark 3.1 If (A,∧,∨,�,→,�, e) is a residuated lattice, then x ≤ y iff x → y ≥
e iff x � y ≥ e.

Indeed, x ≤ y iff e� x ≤ y iff e ≤ x → y. Similarly, x ≤ y iff e ≤ x � y.
If (A,∧,∨,�,→,�, e) is an integral residuated lattice, then x ≤ y iff x → y =

x � y = e.

Remark 3.2 Every porim is a pseudo-BCK(pP) algebra.
Indeed, (psBCK1) and (psBCK2) can be proved in the same way as (rl-c8) and

(rl-c12), respectively. The remaining axioms of a pseudo-BCK algebra are conse-
quences of Remark 3.1.

An FL-algebra A which satisfies the condition 0≤ x ≤ e for all x ∈A is called an
FLw-algebra or bounded integral residuated lattice. According to Proposition 3.3,
in this case we have e= 1, so that an FLw-algebra will be denoted (A,∧,∨,�,→,

�,0,1). Clearly, if A is an FLw-algebra, then (A,∧,∨,0,1) is a bounded lattice.
A totally ordered FLw-algebra is called a chain or linearly ordered FLw-algebra.
An FLw-algebra is commutative if the operation � is commutative (iff →=�)

and we shall call such algebras FLew-algebras.
In the sequel we will refer to the FLw-algebra (A,∧,∨,�,→,�,0,1) by its

universe A.

Example 3.3 Consider A = {0, a, b, c,1} with 0 < a < b < c < 1 and the opera-
tions �, →, � given by the following tables:

� 0 a b c 1
0 0 0 0 0 0
a 0 0 0 a a

b 0 0 0 b b

c 0 a a c c

1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a b 1 1 1 1
b b c 1 1 1
c 0 a b 1 1
1 0 a b c 1

� 0 a b c 1
0 1 1 1 1 1
a b 1 1 1 1
b b b 1 1 1
c 0 b b 1 1
1 0 a b c 1

Then (A,∧,∨,�,→,�,0,1) is an FLw-algebra.

Example 3.4 The bounded pseudo-BCK(pP) lattice (A,∧,∨,�,→,�,0,1) from
Example 1.9 is a proper FLw-algebra.

Example 3.5 The good pseudo-BCK(pP) lattice (A1,∧,∨,�,→,�,0,1) from
Example 1.17 is a proper good FLw-algebra.
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Remark 3.3

(1) According to Theorem 1.4, any bounded pseudo-BCK(pP) lattice is an FLw-
algebra.

(2) Taking into consideration (rl-c8), (rl-c12), Proposition 3.3 and Remark 3.1, it
follows that any FLw-algebra is a bounded pseudo-BCK(pP) lattice.

Theorem 3.1 Bounded pseudo-BCK(pP) lattices are categorically isomorphic with
FLw-algebras.

Proof This is a consequence of Remark 3.3. �

Recall that x− = x → 0 and x∼ = x � 0.

Proposition 3.4 In any FLw-algebra the following hold:

(rl-c21) x → y = x → (x ∧ y) and x � y = x � (x ∧ y);
(rl-c22) if x ∨ y = 1, then for each n ∈N, n≥ 1, xn ∨ yn = 1;
(rl-c23) x ∨ (y � z)≥ (x ∨ y)� (x ∨ z);
(rl-c24) x ∨ y ≤ [(x → y) � y] ∧ [(y → x) � x];
(rl-c25) x ∨ y ≤ [(x � y)→ y] ∧ [(y � x)→ x];
(rl-c26) xm ∨ yn ≥ (x ∨ y)mn for all m,n ∈N, m,n≥ 1;
(rl-c27) (x−∼ ∨ y−∼)−∼ = (x−∼ ∨ y)−∼ = (x ∨ y)−∼ and (x∼− ∨ y∼−)∼− =

(x∼− ∨ y)∼− = (x ∨ y)∼−.

Proof

(rl-c21) By (psbck-c25) we have (x → y)� x ≤ x ∧ y, so x → y ≤ x → (x ∧ y).
Applying (psbck-c10), x ∧ y ≤ y implies x → (x ∧ y)≤ x → y.
Thus x → y = x → (x ∧ y). Similarly, x � y = x � (x ∧ y).

(rl-c22) If x ∨ y = 1, then x = x � 1= x � (x ∨ y)= x � x ∨ x � y ≤ x2 ∨ y.
Hence (x2 ∨ y)∨ y ≥ x ∨ y = 1, so x2 ∨ y = 1.
It follows that y = 1� y = (x2 ∨ y)� y = x2 � y ∨ y � y ≤ x2 ∨ y2.
Thus x2 ∨ (x2 ∨ y2)≥ x2 ∨ y = 1, so x2 ∨ y2 = 1.
Now we have 1= x ∨ y = x2∨ y2 = (x2)2∨ (y2)2 = ((x2)2)2∨ ((y2)2)2 = · · · .
We conclude that x2n ∨ y2n = 1 for all n ∈N, n≥ 1.
Taking into consideration that n≤ 2n we get xn ∨ yn ≥ x2n ∨ y2n = 1.
Thus xn ∨ yn = 1 for all n ∈N, n≥ 1.

(rl-c23) Applying (rl-c2) we have:

(x ∨ y)� (x ∨ z) = (
(x ∨ y)� x

)∨ (
(x ∨ y)� z

)

= (
(x � x)∨ (y � x)

)∨ (
(x � z)∨ (y � z)

)

≤ (x ∨ x)∨ (
x ∨ (y � z)

)= x ∨ (y � z).

(rl-c24) From (x → y)� x ≤ y we have x ≤ (x → y) � y.
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Taking into consideration that y ≤ (x → y) � y, we get x ∨ y ≤ (x → y) � y.
From (y → x)� y ≤ x we get y ≤ (y → x) � x.
Since x ≤ (y → x) � x, we get x ∨ y ≤ (y → x) � x.
Thus x ∨ y ≤ [(x → y) � y] ∧ [(y → x) � x].

(rl-c25) Similar to (rl-c24).
(rl-c26) Applying (rl-c23), we show that x ∨ yn ≥ (x ∨ y)n for all n ∈N, n≥ 1.

For n= 1, it is obvious that x ∨ y ≥ x ∨ y.
For n= 2 we have: x ∨ y2 ≥ (x ∨ y)� (x ∨ y)= (x ∨ y)2.
Suppose that x ∨ yn ≥ (x ∨ y)n and we have:

x∨yn+1 = x∨ (yn�y)≥ (x∨yn)∨ (x∨y)≥ (x∨y)n∨ (x∨y)= (x∨y)n+1.

We conclude that x ∨ yn ≥ (x ∨ y)n for all n ∈N, n≥ 1.
It follows that:

xm ∨ yn ≥ (xm ∨ y)n = (y ∨ xm)n ≥ ((y ∨ x)m)n = (y ∨ x)mn = (x ∨ y)mn.

(rl-c27) Applying (psbck-c41) we have:

(x−∼ ∨ y−∼)−∼ = (x−∼− ∧ y−∼−)∼

= (x− ∧ y−)∼ = ((x ∨ y)−)∼ = (x ∨ y)−∼ and

(x−∼ ∨ y)−∼ = (x−∼− ∧ y−)∼

= (x− ∧ y−)∼ = ((x ∨ y)−)∼ = (x ∨ y)−∼.

Similarly, (x∼− ∨ y∼−)∼− = (x∼− ∨ y)∼− = (x ∨ y)∼−. �

Theorem 3.2 Let (A,∧,∨,�,→,�,0,1) be an FLw-algebra. Then the algebra
A′

a = ([a,1],∧,∨,→,�,�1
a, a,1) is an FLw-algebra, where x�1

a y := (x�y)∨a

for all x, y ∈ [a,1].

Proof We will check the conditions (A1)–(A3) from the definition of an FLw-
algebra:

(A1) Obviously, ([a,1],∧,∨, a,1) is a bounded lattice with smallest element a and
greatest element 1.

(A2) Since x�1
a 1= (x�1)∨a = x∨a = x and 1�1

a x = (1�x)∨a = x∨a = x,
it follows that 1 is the unit element in ([a,1],�1

a,1).
For any x, y, z ∈ [a,1] we have:

(
x �1

a y
)�1

a z = ((
(x � y)∨ a

)� z
)∨ a

= (
(x � y � z)∨ (a � z)

)∨ a

= (x � y � z)∨ (
(a � z)∨ a

)

= (x � y � z)∨ a,
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x �1
a

(
y �1

a z
) = (

x � (
(y � z)∨ a

))∨ a

= (
(x � y � z)∨ (x � a)

)∨ a

= (x � y � z)∨ (
(x � a)∨ a

)

= (x � y � z)∨ a.

Thus �1
a is associative.

It follows that ([a,1],�1
a,1) is a monoid.

(A3) x �1
a y ≤ z⇒ (x � y)∨ a ≤ z⇒ x � y ≤ z⇒ x ≤ y → z and y ≤ x � z.

Conversely, x ≤ y → z⇒ x � y ≤ z and considering that a ≤ z we get (x �
y)∨ a ≤ z∨ a = z⇒ x �1

a y ≤ z.
Similarly, from y ≤ x � z we get x �1

a y ≤ z.
We conclude that A1

a is an FLw-algebra.
It is trivial to see that A=A1

0 and {1} =A1
1. �

The next result is proved in a similar manner as in [110] for the case of bounded
R�-monoids.

Proposition 3.5 In any locally finite FLw-algebra the following hold:

(1) 0 < x < 1 iff 0 < x− < 1;
(1′) 0 < x < 1 iff 0 < x∼ < 1;
(2) x− = 0 iff x = 1;
(2′) x∼ = 0 iff x = 1;
(3) x− = 1 iff x = 0;
(3′) x∼ = 1 iff x = 0.

Proof

(1) Consider 0 < x < 1 and let n > 0 be the least integer such that xn = 0.
It follows that xn−1 �= 0 and xn−1�x = xn = 0, hence 0 < xn−1 ≤ x → 0= x−.
If x− = 1, then 0 < x ≤ x−∼ = 0, a contradiction. Thus 0 < x− < 1.
Conversely, consider 0 < x− < 1, so 0 < x−∼ < 1 and 0≤ x ≤ x−∼.
If x = 0, then x− = 1, which is a contradiction. Thus 0 < x < 1.

(2) Assume x− = 0. If x < 1, then similarly as in (1) we get 0 < x−, a contradic-
tion. Hence x = 1. Conversely, if x = 1, then x− = 0.

(3) Assume x− = 1, so x−∼ = 0. Taking into consideration that x ≤ x−∼, we get
x = 0. Conversely, if x = 0, then x− = 1.

(1′), (2′), (3′) can be proved in a similar way to (1), (2) and (3), respectively. �

For any FLw-algebra A, we make the following definitions:

Reg(A) := {
x ∈A | x = x−∼ = x∼−

}
,

Id(A) := {x ∈A | x � x = x}.
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Proposition 3.6 If x ∈ Id(A) and y ∈A, then:

(x → y)� x = y � x and x � (x � y)= x � y.

Proof Taking z= x in (psbck-c27) we get x → y ≤ x�x → y�x. Since x�x = x,
it follows that x → y ≤ x → y � x, so (x → y)� x ≤ y � x. On the other hand,
from y ≤ x → y we get y � x ≤ (x → y)� x. Thus (x → y)� x = y � x.

The second identity follows similarly from the second inequality (psbck-c27).
�

Proposition 3.7 If for all x, y ∈A:

(x → y)� x = y � x or x � (x � y)= x � y,

then A= Id(A).

Proof Taking y = x in any of the two identities and applying (rl-c16), we get x �
x = x for all x ∈A. Hence A= Id(A). �

Example 3.6 If A is the FLw-algebra from Example 3.4, then Id(A)= {0, a2, s,1}
and Reg(A)= {0,1}.

Definition 3.2 The distance functions on the FLw-algebra A are the functions
d1, d2 :A×A−→A defined by:

d1(x, y) := (x → y)∧ (y → x)= x ∨ y → x ∧ y;
d2(x, y) := (x � y)∧ (y � x)= x ∨ y � x ∧ y.

Proposition 3.8 The two distance functions satisfy the following properties:

(1) d1(x, y)= d1(y, x) and d2(x, y)= d2(y, x);
(2) d1(x, y)= 1 iff x = y iff d2(x, y)= 1;
(3) d1(x,0)= x− and d2(x,0)= x∼;
(4) d1(x,1)= x = d2(x,1);
(5) d1(x, y)≤ d2(x

−, y−);
(6) d2(x, y)≤ d1(x

∼, y∼);
(7) d1(x, y)≤ d1(x

∼−, y∼−);
(8) d2(x, y)≤ d2(x

−∼, y−∼);
(9) d2(x

−, y−)= d1(x
−∼, y−∼);

(10) d1(x
∼, y∼)= d2(x

∼−, y∼−).

Proof

(1) This is obvious.
(2) d1(x, y)= 1⇔ x → y = 1 and y → x = 1⇔ x ≤ y and y ≤ x ⇔ x = y.

Similarly, d2(x, y)= 1⇔ x = y.



88 3 Residuated Lattices

(3) By the definition of the distance functions we have:

d1(x,0) = (x → 0)∧ (0→ x)= x− ∧ 1= x−;
d2(x,0) = (x � 0)∧ (0 � x)= x∼ ∧ 1= x∼.

(4) Similarly we get:

d1(x,1) = (x → 1)∧ (1→ x)= 1∧ x = x;
d2(x,1) = (x � 1)∧ (1 � x)= 1∧ x = x.

(5) By (psbck-c15) we have:

d1(x, y)= (x → y)∧ (y → x)≤ (
y− � x−

)∧ (
x− � y−

)= d2
(
x−, y−

)
.

(6) By (psbck-c15) we have:

d2(x, y)= (x � y)∧ (y � x)≤ (
y∼ → x∼

)∧ (
x∼ → y∼

)= d1
(
x∼, y∼

)
.

(7) By (5) and (6) we get d1(x, y)≤ d2(x
−, y−)≤ d1(x

−∼, y−∼).
(8) Similarly, d2(x, y)≤ d1(x

∼, y∼)≤ d2(x
∼−, y∼−).

(9) By the above properties we get:

d2
(
x−, y−

)≤ d1
(
x−∼, y−∼

)≤ d2
(
x−∼−, y−∼−

)= d2
(
x−, y−

)
,

hence d2(x
−, y−)= d1(x

−∼, y−∼).
(10) Similarly, d1(x

∼, y∼) ≤ d2(x
∼−, y∼−) ≤ d1(x

∼−∼, y∼−∼) = d1(x
∼, y∼),

hence d1(x
∼, y∼)= d2(x

∼−, y∼−). �

3.2 The Lattice of Filters of an FLw-Algebra

Recall that a nonempty subset F of a lattice L is a filter of L if it satisfies the
conditions: (i) x, y ∈ F implies x ∧ y ∈ F and (ii) x ∈ F , y ∈ L, x ≤ y implies
y ∈ F .

Let (A,∧,∨,�,→,�,0,1) be an FLw-algebra. We recall that (see Defini-
tion 1.15) a nonempty set F of A is called a filter of A if the following conditions
hold:

(F1) If x, y ∈ F , then x � y ∈ F ;
(F2) If x ∈ F , y ∈A, x ≤ y, then y ∈ F .

Remark 3.4 If F is a filter of A, then:

(F3) 1 ∈ F .
(F4) If x ∈ F , y ∈A, then y → x ∈ F , y � x ∈ F .
(F5) If x, y ∈ F , then x ∧ y ∈ F .
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Remark 3.5

(1) Any filter of A is a filter for the lattice (A,∧,∨), but the converse is not true.
Indeed, let F be a filter of an FLw-algebra A and x, y ∈A. Since x� y ∈ F and
x � y ≤ x ∧ y, we get x ∧ y ∈ F , so F is a filter of the lattice (A,∧,∨).

Consider now A= {0, a, b, c,1}where 0 < a < b < c < 1 and the operations
�, →, � are given by the following tables:

� 0 a b c 1
0 0 0 0 0 0
a 0 0 0 0 a

b 0 0 0 0 b

c 0 0 a a c

1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a c 1 1 1 1
b b c 1 1 1
c b c c 1 1
1 0 a b c 1

� 0 a b c 1
0 1 1 1 1 1
a c 1 1 1 1
b c c 1 1 1
c a c c 1 1
1 0 a b c 1

Then (A,∧,∨,�,→,�,0,1) is an FLw-algebra (we will see later that it is a
pseudo-MTL chain).

One can easily prove that F = {c,1} is a filter of the lattice (A,∨,∧), but F

is not a filter of the FLw-algebra A (c ∈ F , but c� c= a /∈ F ).
(2) In FLw algebras filters coincide with deductive systems, being pseudo-BCK(pP)

algebras.

Proposition 3.9 Let A be an FLw-algebra. Then [x∨y)= [x)∩[y) for all x, y ∈A.

Proof Consider z ∈ [x ∨ y), so z≥ (x ∨ y)n for some n≥ 1. It follows that z ≥ xn

and z≥ yn for some n≥ 1, that is, z ∈ [x) and z ∈ [y).
Thus z ∈ [x)∩ [y), so [x ∨ y)⊆ [x)∩ [y).
Conversely, if z ∈ [x) ∩ [y), then z ∈ [x) and z ∈ [y), so z ≥ xn and z ≥ ym

for some n,m ≥ 1. Applying (rl-c26) we get z ≥ xn ∨ ym ≥ (x ∨ y)mn, that is,
z ∈ [x ∨ y). Hence [x)∩ [y)⊆ [x ∨ y). Thus [x ∨ y)= [x)∩ [y). �

If F1 and F2 are filters of A, we define F1 ∧ F2 = F1 ∩ F2 and F1 ∨ F2 =
[F1 ∪ F2).

Recall that, if F ∈ F(A) and x ∈ A \ F we denote [F ∪ {x}) by F(x). Then
according to Propositions 1.35 and 1.36 we have F(x)= F ∨ [x).

Definition 3.3 Let L= (L,∧,∨) be a lattice.

(1) For every y, z ∈ L, the relative pseudocomplement of y with respect to z, pro-
vided it exists, is the greatest element x such that x ∧ y ≤ z. It is denoted by
y ⇒ z (i.e. y ⇒ z=max{x | x ∧ y ≤ z}).
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(2) L is said to be relatively pseudocomplemented provided the relative pseudo-
complement y ⇒ z exists for every y, z ∈ L.

(3) A Heyting algebra is a relatively pseudocomplemented lattice with 0, i.e. it is
bounded.

If L is a relatively pseudocomplemented lattice, then ⇒ can be viewed as a
binary operation on L and there exists the greatest element, 1, of the lattice: 1 =
x ⇒ x for all x ∈ L. Consequently, we have the following equivalent definition,
with �=∧:

Definition 3.4

(1) A relatively pseudocomplemented lattice is an algebra L = (L,∧,∨,⇒,1),
where (L,∧,∨,1) is a lattice with greatest element and the binary operation
⇒ on L satisfies: for all x, y, z ∈ L, x ≤ y ⇒ z if and only if x ∧ y ≤ z.

(2) A Heyting algebra is an alternative name for a bounded relatively pseudocom-
plemented lattice. For any x ∈ L, the element x∗ = x ⇒ 0 is called the pseudo-
complement of x.

Remark 3.6

(1) A Brouwer algebra is the dual of a Heyting algebra (∨ instead of ∧, ≥ instead
of ≤, y → z=min{x | z≤ x ∨ y} instead of y ⇒ z).

(2) Recall that Gödel algebras are Heyting algebras verifying the condition (x ⇒
y)∨ (y ⇒ x)= 1 and that the Gödel t-norm and its associated residum (impli-
cation) on [0,1] are:

x �G y := min{x, y} = x ∧ y,

x →G y :=
{

1 if x ≤ y

y if x > y.

(Gödel implication).
Note also that a proper Heyting algebra (i.e. which is not a Gödel algebra) is

not linearly ordered.
(3) An FLw-algebra A satisfying A= Id(A) is a Heyting algebra.

According to [9], a complete lattice is a Heyting algebra if and only if it satisfies
the identity

a ∧
(∨

i∈I

bi

)
=

∨

i∈I

(a ∧ bi).

Let A be an FLw-algebra.
The proof of the next result is similar to that in [30] for the case of pseudo-BL

algebras.
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Theorem 3.3 (F(A),∧,∨,⇒, {1},A) is a complete Heyting algebra, that is,

F ∧
(∨

i∈I

Gi

)
=

∨

i∈I

(F ∧Gi)

for any filter F and for any family of filters {Gi}i∈I of A.

Proof We have F ∧ (
∨

i∈I Gi) =∨
i∈I (F ∧Gi) iff F ∩ [⋃i∈I Gi) = [⋃i∈I (F ∩

Gi)) for any filter F and for any family of filters {Gi}i∈I of A.
Clearly, [⋃i∈I (F ∩Gi))⊆ F ∩ [⋃i∈I Gi).
Conversely, if x ∈ F ∩ [⋃i∈I Gi), then x ∈ F and there exist i1, i2, . . . , im ∈ I ,

xij ∈Gij (1≤ j ≤m) such that x ≥ xi1 � · · · � xim .
By (rl-c23) we have x = x ∨ (xi1 � · · · � xim)≥ (x ∨ xi1)� · · · � (x ∨ xim).
Since x∨xij ∈ F ∩Gij for every 1≤ j ≤m, it follows that x ∈ [⋃i∈I (F ∩Gi)),

hence F ∩ [⋃i∈I Gi)⊆ [⋃i∈I (F ∩Gi)). Thus F ∩ [⋃i∈I Gi)= [⋃i∈I (F ∩Gi)),
that is, F ∧ (

∨
i∈I Gi)=∨

i∈I (F ∧Gi). �

Proposition 3.10 If F1,F2 ∈Fn(A) then:

(1) F1 ∧ F2 ∈Fn(A);
(2) F1 ∨ F2 ∈Fn(A).

Proof

(1) We have F1∧F2 = F1 ∩F2. Consider x, y ∈A such that x → y ∈ F1 ∩F2, that
is, x → y ∈ F1 and x → y ∈ F2. It follows that x � y ∈ F1 and x � y ∈ F2,
hence x � y ∈ F1 ∩ F2.

Similarly, x � y ∈ F1 ∩ F2 implies x → y ∈ F1 ∩ F2 = F1 ∧ F2.
Hence F1 ∧ F2 ∈Fn(A).

(2) Let x, y ∈A such that x → y ∈ F1∨F2 = [F1∪F2). By Proposition 1.36, there
are u ∈ F1, v ∈ F2 such that u� v ≤ x → y.

Hence (u� v)� x ≤ y, so u� (v� x)≤ y.
Applying Lemma 1.11, there is a v′ ∈ F2 such that v� x ≥ x � v′.
It follows that y ≥ (u� x)� v′.
Similarly, there is a u′ ∈ F1 such that u� x ≥ x � u′, so y ≥ x � (u′ � v′).
We get u′ � v′ ≤ x � y, hence x � y ∈ F1 ∨ F2.
Similarly, x � y ∈ F1 ∨ F2 implies x → y ∈ F1 ∨ F2.
Thus F1 ∨ F2 ∈Fn(A). �

Proposition 3.11 If (Fi)i∈I is a family of normal filters of A, then:

(1)
∧

i∈I Fi ∈Fn(A);
(2)

∨
i∈I Fi ∈Fn(A).

Proof Similar to the above argument. �
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As a consequence of the above result we get:

Theorem 3.4 Fn(A) is a complete sublattice of (F(A),⊆).

Proposition 3.12 For a given H ∈ Fn(A) the relation θH =≡H is a congruence
on A.

Proof According to Propositions 1.40 and 1.41, θH is an equivalence relation com-
patible with →, � and �.

Consider (x, y), (a, b) ∈ θH .
We have x → y, y → x, x � y, y � x ∈ H and a → b, b → a, a � b, b �

a ∈H .
From y ≤ y ∨ b, applying (psbck-c10), it follows that x → y ≤ x → y ∨ b, so

x → y ∨ b ∈ H . Similarly, from b ≤ y ∨ b we get a → b ≤ a → y ∨ b, hence
a → y ∨ b ∈H .

According to (rl-c4) we have x ∨ a → y ∨ b= (x → y ∨ b)∧ (a → y ∨ b) ∈H .
We can prove similarly that y ∨ b→ x ∨ a, x ∨ a � y ∨ b, y ∨ b � x ∨ a ∈H .
Thus x ∨ a ≡θH

y ∨ b. We conclude that θH is compatible with ∨.
From x ∧ a ≤ x, applying (psbck-c1) we get x → y ≤ x ∧ a → y.
Hence x ∧ a → y ∈H .
Similarly, from x ∧ a ≤ a we have a → b ≤ x ∧ a → b, so x ∧ a → b ∈H .
Since by (rl-c3) we have x ∧ a → y ∧ b= (x ∧ a → y)∧ (x ∧ a → b), it follows

that x∧a → y∧b ∈H . Similarly, y∧b→ x∧a, x∧a � y∧b, y∧b � x∧a ∈H .
Thus x ∧ a ≡θH

y ∧ b. Hence θH is compatible with ∧.
We conclude that θH is a congruence on A. �

3.3 Boolean Center of an FLw-Algebra

Let (A,∧,∨,0,1) be a bounded lattice. Recall that (see [4, 156]) an element a ∈A

is said to be complemented if there is an element b ∈ A such that a ∨ b = 1 and
a∧b= 0; if such an element b exists, it is called a complement of a. We will denote
the set of all complemented elements in A by B(A). Complements are generally
not unique unless the lattice is distributive. In FLw-algebras however, although the
underlying lattices need not be distributive, the complements are unique.

If a has a unique complement, we shall denote this complement by a′.

Proposition 3.13 Let (A,∧,∨,�,→,�,0,1) be an FLw-algebra and suppose
that a ∈A has the complement b ∈A. Then the following hold:

(1) if c is a complement of a in A, then c= b;
(2) a− = a∼ = b and b− = b∼ = a;
(3) a2 = a.
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Proof

(1) Since b and c are complements of a, it follows that a ∨ b = 1 = a ∨ c and
a ∧ b= 0= a ∧ c. Hence c= c� 1= c� (a ∨ b)= (c� a)∨ (c� b)= c� b

(since c� a ≤ c ∧ a = 0, we have c� a = 0).
Similarly, b= 1� b= (a ∨ c)� b= (a� b)∨ (c� b)= c� b. Thus b= c.

(2) We have:

a� b ≤ a ∧ b = 0, so a ≤ b→ 0= b− and b ≤ a � 0= a∼;
b� a ≤ b ∧ a = 0, so b ≤ a → 0= a− and a ≤ b � 0= b∼.

But, a− = a− � 1= a− � (a ∨ b)= (a− � a)∨ (a− � b)= a− � b.
Hence a− � b = a− ≥ a− ∧ b and using the fact that a− � b ≤ a− ∧ b, we

get a− = a− � b= a− ∧ b, so b ≥ a− ∧ b= a−.
Thus a− = b and similarly a∼ = b.

(3) Applying (rl-c2) we get:

a = a� (a ∨ b)= a2 ∨ (a � b)= a2

(since a � b ≤ a ∧ b= 0). �

Let B(A) be the set of all complemented elements of the lattice L(A) =
(A,∧,∨,0,1). The set B(A) is called the Boolean center of A.

Lemma 3.1 Let A be an FLw-algebra. Then the following are equivalent:

(a) x ∈ B(A);
(b) x ∨ x− = 1 and x ∧ x− = 0;
(c) x ∨ x∼ = 1 and x ∧ x∼ = 0.

Proof

(a) ⇒ (b) Since x ∈ B(A), there exists a y ∈A such that x ∨ y = 1 and x ∧ y = 0.
Hence x− = x− � 1 = x− � (x ∨ y) = (x− � x) ∨ (x− � y) = x− � y, so
y ≥ x− � y = x−. On the other hand, because y� x ≤ x ∧ y = 0, it follows that
y � x = 0, so y ≤ x−. Thus x− = y, that is, x ∨ x− = 1 and x ∧ x− = 0.

(b) ⇒ (a) Obviously.
(a) ⇒ (c) Similar to (a) ⇔ (b). �

Corollary 3.1 If x ∈ B(A), then:

(1) (x−)2 = x− and (x∼)2 = x∼;
(2) x → x− = x � x− = x− and x → x∼ = x � x∼ = x∼;
(3) x− → x = x− � x = x∼ → x = x∼ � x = x.
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Proof We have:

(1) x− = x− � 1= x− � (x− ∨ x)= (x−)2 ∨ (x− � x)= (x−)2; x∼ = 1� x∼ =
(x ∨ x∼)� x∼ = (x � x∼)∨ (x∼)2 = (x∼)2.

(2) and (3) follow from (rl-c24) and (rl-c25), taking into consideration that x∨x− =
x ∨ x∼ = 1 and applying (psbck-c6). �

Corollary 3.2 If x ∈ B(A), then x−∼ = x∼− = x.

Proof Since x and x−∼ are complements of x−, then by Proposition 3.13 it follows
that x−∼ = x. Similarly, x∼− = x. �

Proposition 3.14 If a ∈ B(A) and x ∈A, then the following hold:

(1) a � x = x � a = a � x � a;
(2) a− � x = x � a− = a− � x � a− = a∼ � x � a∼ = a∼ � x = x � a∼.

Proof

(1) Applying the properties of an FLw-algebra we get:

a� x = a� x � 1= a� x � (
a ∨ a∼

)

= (a � x � a)∨ (
a� x � a∼

)= a � x � a

(we applied the fact that a� x � a∼ ≤ a� a∼ = 0, so a � x � a∼ = 0).
Similarly, x � a = a� x � a.

(2) We have:

a− � x = a− � x � 1= a− � x � (
a− ∨ a

)

= (
a− � x � a−

)∨ (
a− � x � a

)= a− � x � a−

(since a− � x � a ≤ a− � a = 0, we have a− � x � a = 0).

x � a∼ = (
a∼ ∨ a

)� (
x � a∼

)

= (
a∼ � x � a∼

)∨ (
a� x � a∼

)= a∼ � x � a∼

(since a � x � a∼ ≤ a � a∼ = 0, it follows that a� x � a∼ = 0).
The assertion follows taking into consideration that a− = a∼. �

Proposition 3.15 If a ∈ B(A), then the filters [a), [a−) and [a∼) are normal.

Proof Since a2 = a, we have:

[a)= {
x ∈A | xn ≤ a for some n ∈N, n≥ 1

}= {x ∈A | a ≤ x}.
It follows that:
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x → y ∈ [a) iff a ≤ x → y iff a� x ≤ y iff

x � a ≤ y iff a ≤ x � y iff x � y ∈ [a).

Thus [a) is a normal filter of A. Using the identities (a−)2 = a− and (a∼)2 = a∼,
it follows that [a−)= {x ∈A | a− ≤ x} and [a∼)= {x ∈A | a∼ ≤ x}.

We prove in a similar manner that [a−) and [a∼) are normal filters of A. �

Proposition 3.16 Let A be an FLw-algebra, x ∈ B(A) and n ∈ N, n≥ 1. Then the
following are equivalent:

(a) xn ∈ B(A);
(b) x ∨ (xn)− = 1 and x ∨ (xn)∼ = 1.

Proof

(a) ⇒ (b) Let xn ∈ B(A). By Lemma 3.1 we have xn ∨ (xn)− = 1. Since xn ≤ x,
we get 1= xn ∨ (xn)− ≤ x ∨ (xn)−, so x ∨ (xn)− = 1.
Similarly, x ∨ (xn)∼ = 1.

(b) ⇒ (a) Since x ∨ (xn)− = 1, by (rl-c22) we have xn ∨ ((xn)−)n = 1.
Because ((xn)−)n ≤ (xn)−, we get 1 = xn ∨ ((xn)−)n ≤ xn ∨ (xn)−, so xn ∨
(xn)− = 1.
Similarly xn ∨ (xn)∼ = 1, so by (psbck-c41) we get (xn)− ∧ (xn)∼− = 0.
Because xn ≤ (xn)∼− we get (xn)− ∧ xn ≤ (xn)− ∧ (xn)∼− = 0, so (xn)− ∧
xn = 0.
From xn ∨ (xn)− = 1 and xn ∧ (xn)− = 0 it follows that xn ∈ B(A). �

Proposition 3.17 If x ∈ A, n ∈ N, n ≥ 1 such that xn ∈ B(A) and xn ≥ x− ∨ x∼,
then x = 1.

Proof From xn ≥ x− ∨ x∼ we get xn ≥ x− and xn ≥ x∼.
Hence (xn)∼ ≤ x−∼ and (xn)− ≤ x∼−, respectively.
Since xn ∈ B(A), by Proposition 3.16 we have:

1 = x ∨ (
xn

)− ≤ x ∨ x∼− = x∼− and

1 = x ∨ (
xn

)∼ ≤ x ∨ x−∼ = x−∼,

so x∼− = x−∼ = 1, that is, x− = x∼ = 0.
Applying (psbck-c30) we have:

(
x2)− = (x � x)− = x � x → 0= x → (x → 0)= x → x− = x → 0= x−

and similarly (x2)∼ = x∼, so (x2)− = (x2)∼ = 0.
Recursively we get (xn)− = (xn)∼ = 0. Hence 1= x ∨ (xn)− = x ∨ 0= x. �
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3.4 Directly Indecomposable FLw-Algebras

Recall that (see [19]), if A is an algebra and θ1, θ2 ∈ Con(A), then θ1 ◦ θ2 is the
binary relation on A defined by (x, y) ∈ θ1 ◦ θ2 iff there exists a z ∈ A such that
(x, z) ∈ θ1 and (z, y) ∈ θ2. If θ1, θ2 ∈ Con(A) such that θ1 ◦ θ2 = θ2 ◦ θ1 we say
that θ1 and θ2 are permutable. An algebra A is called congruence permutable if
θ1 ◦ θ2 = θ2 ◦ θ1 for all θ1, θ2 ∈ Con(A).

According to [200] every FLw-algebra is congruence permutable.
For any algebra A, two permutable congruences θ1, θ2 of A are complementary

factor congruences if θ1 ∨ θ2 = 1 and θ1 ∧ θ2 = 0 (1 and 0 are top and respectively
bottom elements in the lattice Con(A)).

The mapping pi : A1 × A2 −→ Ai , i ∈ {1,2}, defined by pi((a1, a2)) = ai is
called the projection map on the ith coordinate of A1 ×A2.

An algebra A is directly indecomposable if A is not isomorphic to a direct prod-
uct of two nontrivial algebras.

A subdirect representation of an algebra A with factors Ai is an embedding f :
A−→∏

i∈I Ai such that each fi = pi ◦ f is onto Ai for all i ∈ I . A is also called
a subdirect product of Ai . An algebra A is subdirectly irreducible iff it is nontrivial
and for any subdirect representation f : A −→∏

i∈I Ai , there exists a j ∈ I such
that fj is an isomorphism of A onto Aj .

An algebra A is said to be simple if it has a two element congruence lattice.
In what follows we recall some results from [19].
For i ∈ {1,2}, the mapping pi : A1 ×A2 −→ Ai is a surjective homomorphism

from A=A1 ×A2 to Ai . Furthermore, in Con(A1 ×A2), Ker(p1) and Ker(p2) are
permutable and Ker(p1)∩Ker(p2)= 0, Ker(p1)∨Ker(p2)= 1.

If θ1, θ2 are complementary factor congruences of an algebra A, then A ∼=
A/θ1 × A/θ2. As a consequence, an algebra A is directly indecomposable iff the
only complementary factor congruences on A are 0 and 1.

A subdirectly irreducible algebra is directly indecomposable.
Every algebra is isomorphic to a subdirect product of subdirectly irreducible al-

gebras (Birkhoff’s theorem).

Proposition 3.18 Let A be an FLw-algebra and a ∈ B(A). Then the congruences
θ[a) and θ[a−) form a pair of complementary factor congruences.

Proof We proved in Proposition 3.15 that [a) and [a−) are normal filters of A, so
θ[a) and θ[a−) are congruences on A.

Since every FLw-algebra is congruence permutable, it follows that the congru-
ences θ[a) and θ[a−) are permutable. Hence we have to prove that θ[a) ∩ θ[a−) = {1}
and θ[a) ∨ θ[a−) = A with the join defined in the lattice of filters of A. In the proof
of Proposition 3.15 we showed that [a)= {x ∈ A | x ≥ a} and [a−)= {x ∈ A | x ≥
a−}. We have x ∈ [a)∩ [a−) iff x ≥ a and x ≥ a− iff x ≥ a∨a− = 1, so x = 1, that
is, [a)∩ [a−)= {1}.

Since [a) ∨ [a−) = [{x ∈ A | x ≥ a} ∪ {x ∈ A | x ≥ a−}), applying Proposi-
tion 1.36 we get [a)∨ [a−)= {x ∈A | x} ≥ a� a− = {x ∈A | x ≥ 0} =A. �
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Corollary 3.3 If A is an FLw-algebra and a ∈ B(A), then the congruences θ[a) and
θ[a∼) form a pair of complementary factor congruences.

Proof This follows from the fact that [a∼)= [a−). �

Theorem 3.5 A nontrivial FLw-algebra A is directly indecomposable iff B(A) =
{0,1}.

Proof As mentioned above, an FLw-algebra A is directly indecomposable iff the
only factor congruences on A are 0 and 1. By Proposition 3.18, the number of pairs
of complementary factor congruences coincides with the number of elements of
B(A). Thus A is directly indecomposable iff B(A) has only two elements, that is,
B(A)= {0,1}. �

Corollary 3.4 A simple FLw-algebra is subdirectly irreducible and a subdirectly
irreducible FLw-algebra is directly indecomposable.

Proof This follows from the definitions of simple and subdirectly irreducible alge-
bras and applying Theorem 3.5. �

Example 3.7 If A is the FLw-algebra from Example 3.3, we can see that B(A) =
{0,1}, so it is directly indecomposable.

Proposition 3.19 Any linearly ordered FLw-algebra is directly indecomposable.

Proof Let A be a linearly ordered FLw-algebra and a ∈ B(A). By Lemma 3.1 we
have a∨a− = 1. Since A is linearly ordered, it follows that a ≤ a− or a− ≤ a, hence
a = 1 or a− = 1. If a− = 1, we get 1 = a− = a → 0, so 1� a ≤ 0, that is, a = 0.
Thus a ∈ {0,1}. We conclude that B(A) = {0,1} and according to Theorem 3.5 it
follows that A is directly indecomposable. �

In what follows we give some applications of the above results.
The next two results are proved in a similar way as in [201] for the case of

commutative FLw-algebras (FLew-algebras).

Proposition 3.20 If A is an FLw-algebra and a ∈ B(A), then a�x = x�a = a∧x

for all x ∈A.

Proof According to Birkhoff’s theorem, A is isomorphic to a subdirect product of
subdirectly irreducible algebras. Consider the isomorphisms fi (i ∈ I ) which define
the subdirect representation of A with the factors Ai (i ∈ I ). Applying Theorem 3.5
we get that fi(a) ∈ {0,1}, so fi(a) � fi(x) = fi(a) ∧ fi(x) for all i ∈ I . Hence
fi(a � x)= fi(a)� fi(x)= fi(a)∧ fi(x)= fi(a ∧ x) for all i ∈ I . Thus a � x =
a ∧ x. Similarly, x � a = x ∧ a = a ∧ x. �
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Proposition 3.21 If A is an FLw-algebra, then B(A) is the universe of a Boolean
subalgebra of A.

Proof We have to prove that (B(A),∧,∨) is distributive and closed under the oper-
ations ∧, ∨, �, → and �.

For distributivity, we must prove the identity a ∧ (b ∨ c)= (a ∧ b)∨ (a ∧ c)

for all a, b, c ∈ B(A). Applying Proposition 3.20 we get:

a ∧ (b ∨ c)= a � (b ∨ c)= (a� b)∨ (a� c)= (a ∧ b)∨ (a ∧ c).

By the hypothesis there exist a′, b′ ∈A such that:

a ∧ a′ = 0, a ∨ a′ = 1, b ∧ b′ = 0, b ∨ b′ = 1.

We prove that a′ ∨ b′ is the complement of a ∧ b:

(a ∧ b)∧ (
a′ ∨ b′

) = (
a ∧ b ∧ a′

)∨ (
a ∧ b ∧ b′

)= 0∨ 0= 0;
(a ∧ b)∨ (

a′ ∨ b′
) = (

a′ ∨ b′ ∨ a
)∧ (

a′ ∨ b′ ∨ b
)= 1∧ 1= 1.

Similarly, we prove that a′ ∧ b′ is the complement of a ∨ b:

(a ∨ b)∧ (
a′ ∧ b′

) = (
a′ ∧ b′ ∧ a

)∨ (
a′ ∧ b′ ∧ b

)= 0∨ 0= 0;
(a ∨ b)∨ (

a′ ∧ b′
) = (

a ∨ b ∨ a′
)∧ (

a ∨ b ∨ b′
)= 1∧ 1= 1.

Thus a ∧ b, a ∨ b ∈ B(A).
If a, b ∈ B(A), then a� b= a ∧ b ∈ B(A), so B(A) is closed under �.
If b′ is the complement of b, then b′ = b− = b∼ and applying Corollary 3.2 we

have b−∼ = b∼− = b. It follows that:

a → b = a → b∼− = (a� b∼)− ∈ B(A) and

a � b = a � b−∼ = (b− � a)∼ ∈ B(A).

Hence B(A) is closed under → and �.
We conclude that B(A) is a Boolean subalgebra of A. �

Corollary 3.5 (De Morgan’s laws) (a ∨ b)′ = a′ ∧ b′ and (a ∧ b)′ = a′ ∨ b′.

Corollary 3.6 (B(A),∧,∨) is a De Morgan lattice.

Proposition 3.22 If A is an FLw-algebra, then the following hold for all a, b ∈
B(A) and x, y ∈A:

(b1) (x → a)� x = x � (x � a)= a ∧ x;
(b2) (a → x)� a = a� (a � x)= a ∧ x;
(b3) (x → y)� a = [(x � a)→ (y � a)] � a;
(b4) a � (x � y)= a � [(a � x) � (a � y)].
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Proof

(b1) By (psbck-c25) we have (x → a)� x, x � (x � a)≤ a ∧ x.
Since a ≤ x → a, x � a, we get

a � x ≤ (x → a)� x and x � a ≤ x � (x � a).

Applying Proposition 3.20, it follows that a ∧ x ≤ (x → a)� x, x � (x � a).
Therefore (x → a)� x = x � (x � a)= a ∧ x.

(b2) Similar to (b1).
(b3) By (psbck-c27) we have (x → y)� a ≤ [(x � a)→ (y � a)] � a.

Conversely, by (psbck-c25) we have:
[
(x � a)→ (y � a)

]� (x � a)≤ y � a ≤ y

and taking into consideration that x � a = a� x, we get
[
(x � a)→ (y � a)

]� (a� x)≤ y.

Hence [(x � a)→ (y � a)] � a ≤ x → y.
By right multiplication with a and applying the fact that a2 = a, we get:

[
(x � a)→ (y � a)

]� a ≤ (x → y)� a.

Thus (x → y)� a = [(x � a)→ (y � a)] � a.
(b4) Similar to (b3). �

Proposition 3.23 If A is an FLw-algebra, then the following hold for all a, b ∈
B(A) and x, y ∈A:

(b5) (a → b)� x = [(x � a)→ (x � b)] � x;
(b6) x � (a � b)= x � [(a � x)� (b� x)];
(b7) a → (x → y)= (a → x)→ (a → y);
(b8) a � (x � y)= (a � x)� (a � y);
(b9) if x, y ≤ a, then x � (a � y)= (a → x)� y.

Proof

(b5) Applying (rl-c3) we have:
[
(x � a)→ (x � b)

]� x = [
(x � a)→ (x ∧ b)

]� x

= [
(x � a → x)∧ (x � a → b)

]� x

= (x � a → b)� x

= [
x → (a → b)

]� x = (a → b)∧ x

= (a → b)� x

(we also applied (psbck-c30), (b1) and the fact that a → b ∈ B(A)).
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(b6) Similarly, applying (rl-c3), (psbck-c30) and (b2) we get:

x � [
(a� x)� (b� x)

] = x � [
(a � x)� (b ∧ x)

]

= x � [
(a � x � b)∧ (a � x � x)

]

= x � (a � x � b)

= x � [
x � (a � b)

]= x ∧ (a � b)

= x � (a � b).

(b7) Applying (psbck-c30) and (b2) we have:

a → (x → y) = (a� x)→ y = a ∧ x → y

= (a → x)� a → y = (a → x)→ (a → y).

(b8) Similar to (b7).
(b9) Applying (b1) and (b2) we get:

x � (a � y) = (a ∧ x)� (a � y)= a� (a � x)� (a � y)

= (a → x)� a� (a � y)= (a → x)� (a → y)� a

= (a → x)� (a ∧ y)= (a → x)� y. �

Proposition 3.24 If A is an FLw-algebra, then the following hold for all a, b ∈
B(A) and x, y ∈A:

(b10) a ∨ (x � y)= (a ∨ x)� (a ∨ y);
(b11) a ∧ (x � y)= (a ∧ x)� (a ∧ y);
(b12) (a �1 x)�2 a = a for all �1,�2 ∈ {→,�}.

Proof

(b10) Applying (rl-c2) we get:

(a ∨ x)� (a ∨ y) = [
(a ∨ x)� a

]∨ [
(a ∨ x)� y

]

= [
(a ∨ x)∧ a

]∨ [
(a � y)∨ (x � y)

]

= a ∨ (a � y)∨ (x � y)= a ∨ (x � y)

(since a� y ≤ a, we have a ∨ (a � y)= a).
(b11) Applying the properties of an FLw-algebra we have:

(a ∧ x)� (a ∧ y) = (a � x)� (a � y)= a� (x � a)� y

= a� (x ∧ a)� y = a� (a ∧ x)� y = a� (a� x)� y

= a2 � x � y = a� (x � y)= a ∧ (x � y).
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(b12) Applying (psbck-c10), (psbck-c1) and Corollary 3.1(3) we have:

a → 0≤ a → x and (a → x)→ a ≤ (a → 0)→ a = a− → a = a.

Since by (psbck-c6) a ≤ (a → x)→ a, we get (a → x)→ a = a.
Thus we have proved (b12) for �1 =�2 =→.
The other cases can be proved in the same way. �

In [105] a bounded R�-monoid structure was defined on the subintervals [a, b] of
the interval [0,1] for all a, b ∈ [0,1], a ≤ b (recall that a bounded R�-monoid is an
FLw-algebra (A,∧,∨,�,→,�,0,1) satisfying the pseudo-divisibility condition:
(x → y)� x = x � (x � y)= x ∧ y for all x, y ∈A).

In the case of an FLw-algebra we can endow the subinterval [a,1] with the
structure of an FLw-algebra for all a ∈ A (Theorem 3.2). We will prove that, if
a, b ∈ B(A), then the subintervals of the forms [0, a] and [a, b] can also be endowed
with an FLw-algebra structure.

Theorem 3.6 Let (A,∧,∨,�,→,�,0,1) be an FLw-algebra, a ∈ B(A) and
Aa

0 = ([0, a],∧,∨,�a
0,→a

0,�a
0,0, a), where: x �a

0 y := x � (a � y), x →a
0 y :=

(x → y)� a and x �a
0 y := a� (x � y). Then Aa

0 is an FLw-algebra.

Proof We will verify the axioms of an FLw-algebra.

(A1) It is clear that ([0, a],∧,∨,0, a) is a bounded lattice with smallest element 0
and greatest element a.

(A2) Since for all x ∈ [0, a] we have

x �a
0 a = x � (a � a)= x � 1= x and

a�a
0 x = a � (a � x)= a ∧ x = x,

it follows that a is a unit with respect to �a
0.

Associativity can be proved by applying (b9) and (b2):

x �a
0

(
y �a

0 z
) = (a → x)� (

y �a
0 z

)= (a → x)� y � (a � z)

= (
x �a

0 y
)� (a � z)= (

x �a
0 y

)�a
0 z.

Thus ([0, a],�a
0, a) is a monoid with unit a.

(A3) Consider x, y, z ∈ [0, a] such that x �a
0 y ≤ z, that is,

(a → x)� y ≤ z and x � (a � y)≤ z.

It follows that a → x ≤ y → z and a � y ≤ x � z, hence

(a → x)� a ≤ (y → z)� a = y →a
0 z and

a � (a � y) ≤ a� (x � z)= x �a
0 z.
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Thus x = a ∧ x = (a → x)� a ≤ y →a
0 z and y = a ∧ y = a � (a � y) ≤

x �a
0 z.

Conversely, suppose x ≤ y →a
0 z= (y → z)� a. It follows that:

x �a
0 y = x � (a � y)≤ (y → z)� a � (a � y)

= (y → z)� (a ∧ y)= (y → z)� y ≤ y ∧ z≤ z.

In a similar way, from y ≤ x �a
0 z we get x �a

0 y ≤ z.
Thus Aa

0 is an FLw-algebra. �

Theorem 3.7 Let (A,∧,∨,�,→,�,0,1) be an FLw-algebra, a, b ∈ B(A), a ≤ b

and Ab
a = ([a, b],∧,∨,�b

a,→b
a,�b

a, a, b), where: x �b
a y := (x � (b � y)) ∨ a,

x →b
a y := (x → y)� b and x �b

a y := b� (x � y). Then Ab
a is an FLw-algebra.

Proof According to Theorem 3.2, the algebra ([a,1],�1
a,∧,∨,→1

a,�1
a, a,1) with

the operations x �1
a y = (x � y)∨ a, x →1

a y = x → y and x �1
a y = x � y is an

FLw-algebra. Let x, y ∈ [a, b]. Since x ≤ b, by (psbck-c1) we have b→ y ≤ x → y,
hence (x → y)� b ≥ (b→ y)� b= b ∧ y ≥ a.

Similarly, b � y ≤ x � y, so b� (x � y)≥ b� (b � y)= b ∧ y ≥ a.
By Theorem 3.6 it follows that the algebra ([a, b],∧,∨,�b

a,→b
a,�b

a, a, b) is an
FLw-algebra with the operations:

x �b
a y = x �1

a (b �1
a y)= x �1

a (b � y)= (x � (b � y))∨ a,

x →b
a y = (x →1

a y)�1
a b= (x → y)�1

a b= ((x → y)� b)∨ a = (x → y)� b,

x �b
a y = b�1

a (x �1
a y)= b�1

a (x � y)= (b� (x � y))∨ a = b� (x � y).

�

3.5 FLw-Algebras of Fractions Relative to a Meet-Closed System

In this section we introduce the FLw-algebra of fractions relative to a meet-closed
system. For more on this subject see [24–29, 31–33, 252].

Let (A,∧,∨,�,→,�,0,1) be an FLw-algebra.

Definition 3.5 A nonempty subset S ⊆ A is called a meet-closed system in A if
1 ∈ S and x, y ∈ S implies x ∧ y ∈ S.

S(A) will denote the set of all meet-closed systems of A (obviously, {1},A ∈
S(A)).

Consider the relation ΘS on A defined by (x, y) ∈ ΘS iff there exists e ∈ S ∩
B(A) such that x ∧ e= y ∧ e.

Lemma 3.2 The relation ΘS is a congruence on A.
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Proof Reflexivity holds: (x, x) ∈ΘS , since x ∧ 1= x ∧ 1 and 1 ∈ S ∩B(A).
Symmetry is also straightforward: (x, y) ∈ ΘS iff there exists an e ∈ S ∩ B(A)

such that x ∧ e= y ∧ e iff (y, x) ∈ΘS .
We prove transitivity:

(x, y) ∈ ΘS iff there exists an e ∈ S ∩B(A) such that x ∧ e= y ∧ e.

(y, z) ∈ ΘS iff there exists an f ∈ S ∩B(A) such that y ∧ f = z∧ f.

Consider g = e ∧ f which belongs to S ∩B(A) and we have:

x ∧ g = x ∧ (e ∧ f )= (x ∧ e)∧ f = (y ∧ e)∧ f

= (y ∧ f )∧ e= (z∧ f )∧ e= z∧ g,

which proves transitivity.
We now prove that ΘS is compatible with the operations: ∧, ∨, �, →, �.
If (x, y) ∈ΘS , (z, t) ∈ΘS , where x, y, z, t ∈A, then we need to prove that:

(x ∧ z, y ∧ t), (x ∨ z, y ∨ t), (x � z, y � t), (x → z, y → t), (x � z, y � t) ∈ΘS.

By the definition of ΘS we know that there exist e, f ∈ S ∩ B(A) such that
x ∧ e= y ∧ e and z∧ f = t ∧ f .

Let g = e ∧ f , so g ∈ S ∩B(A).
Compatibility with ∧:

(x∧ z)∧g = (x∧ z)∧ (e∧f )= (x∧ e)∧ (z∧f )= (y∧ e)∧ (t ∧f )= (y∧ t)∧g,

so (x ∧ z, y ∧ t) ∈ΘS .
We now prove the compatibility with ∨. Applying (rl-c2), we get:

(x ∨ z)∧ g = (x ∨ z)� g = g� (x ∨ z)= (g� x)∨ (g� z)

= (g ∧ x)∨ (g ∧ z)= [
(e ∧ f )∧ x

]∨ [
(e ∧ f )∧ z

]

= (y ∧ g)∨ (t ∧ g)= (y � g)∨ (t � g)= (y ∨ t)� g = (y ∨ t)∧ g,

so (x ∨ z, y ∨ t) ∈ΘS .
For the compatibility with �, applying (b11) we have:

(x � z)∧ g = g ∧ (x � z)= (g ∧ x)� (g ∧ z)= (e ∧ f ∧ x)� (e ∧ f ∧ z)

= (y ∧ e ∧ f )� (t ∧ e ∧ f )= (y ∧ g)� (t ∧ g)= (y � t)∧ g,

so (x � z, y � t) ∈ΘS .
We check the compatibility with →, taking into consideration (b3):

(x → z)∧ g = (x → z)� g = [
(x � g)→ (z� g)

]� g

= [
(x ∧ g)→ (z∧ g)

]� g = [
(y ∧ g)→ (t ∧ g)

]� g
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= [
(y � g)→ (t � g)

]� g = (y → t)� g

= (y → t)∧ g,

so (x → z, y → t) ∈ΘS .
Finally, for the compatibility with �, applying (b4) we have:

(x � z)∧ g = g ∧ (x � z)= g� (x � z)= g� [
(g� x)� (g� z)

]

= g� [
(g ∧ x)� (g ∧ z)

]= g� [
(g ∧ y) � (g ∧ t)

]

= g� [
(g� y) � (g� t)

]= g� (y � t)= g ∧ (y � t)

= (y � t)∧ g,

so (x � z, y � t) ∈ΘS . �

Remark 3.7 For x ∈A, denote by x/S the equivalence class of x relative to ΘS and
let A[S] =A/ΘS . Let pS :A→A[S], pS(x) := x/S.

Then A[S] is an FLw-algebra with 0= 0/S, 1= 1/S and for every x, y ∈ S we
have:

x/S ∨ y/S := (x ∨ y)/S,

x/S ∧ y/S := (x ∧ y)/S,

x/S � y/S := (x � y)/S,

x/S → y/S := (x → y)/S,

x/S � y/S := (x � y)/S.

Hence pS is an onto morphism of FLw-algebras.

Remark 3.8

(1) If 0 ∈ S, then A[S] = 0.
Indeed, since 0 ∈ S ∩ B(A) and x ∧ 0 = y ∧ 0, it follows that (x, y) ∈ ΘS ,

for all x, y ∈A.
(2) If S ∩B(A)= {1}, then A[S] =A.

Indeed, (x, y) ∈ΘS iff x ∧ 1= y ∧ 1 iff x = y, that is, A[S] =A.
(3) pS(S ∩B(A))= {1}.

Indeed, s ∧ s = 1∧ s for all s ∈ S ∩B(A), so s/S = 1/S = 1.

Definition 3.6 A[S] is called the FLw-algebra of fractions relative to the meet-
closed system S.

Example 3.8 Consider the FLw-algebra A from Example 3.3. Obviously, B(A) =
{0,1}.

For any meet-closed system S which contains 0 (for example S = {0, a,1}) we
have A[S] = 0.
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For any meet-closed system S such that 0 /∈ S (for example S = {a, b,1}) we
have A[S] =A.

Theorem 3.8 Let A′ be an FLw-algebra and let f : A → A′ be a morphism of
FLw-algebras such that f (S ∩B(A))= {1}.

There exists a unique morphism of FLw-algebras f ′ : A[S] → A′ such that the
following diagram is commutative (that is, f ′ ◦ pS = f ):

A[S]
f ′

A′

A

pS

f

Proof Consider pS(x)= pS(y) with x, y ∈ A. It follows that (x, y) ∈ΘS and thus
there exists an e ∈ S ∩B(A) such that x ∧ e= y ∧ e.

Hence f (x ∧ e) = f (y ∧ e) and since f is a morphism of FLw-algebras we
obtain: f (x)∧ f (e)= f (y)∧ f (e) and using the fact that f (e)= 1 we get f (x)=
f (y).

It follows that the map f ′ : A[S] → A defined by f ′(x/S)= f (x) for all x ∈ A

is correctly defined. It is also easy to check that f ′ is a morphism of FLw-algebras
and f ′ ◦ pS = f . The unicity of f ′ follows from the fact that f is an onto map. �

Remark 3.9 If A is a pseudo-MTL algebra (see Definition 4.1), then A[S] is a
pseudo-MTL algebra too. Moreover, if A is a pseudo-BL algebra (see Defini-
tion 4.5), then A[S] is also a pseudo-BL algebra. Indeed:

(x/S → y/S)∨ (y/S → x/S) = (x → y)/S ∨ (y → x)/S

= (
(x → y)∨ (y → x)

)
/S = 1/S = 1,

(x/S � y/S)∨ (y/S � x/S) = (x � y)/S ∨ (y � x)/S

= (
(x � y)∨ (y � x)

)
/S = 1/S = 1,

x/S ∧ y/S = (x ∧ y)/S = (
(x → y)� x

)
/S

= (x → y)/S � x/S = (x/S → y/S)� x/S,

x/S ∧ y/S = (x ∧ y)/S = (
x � (x � y)

)
/S

= x/S � (x � y)/S = x/S � (x/S � y/S).

So A[S] is a pseudo-BL algebra of fractions relative to the meet-closed system.
(See Chap. 4 for pseudo-MTL algebras and pseudo-BL algebras.)

Definition 3.7

(1) A subset I of a bounded lattice (L,∧,∨,0,1) is called an ideal if it satisfies the
conditions:
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(LI1) 0 ∈ I ;
(LI2) if a, b ∈ I , then a ∨ b ∈ I ;
(LI3) if a ∈ I and b ≤ a, then b ∈ I .

(2) An ideal I of L is called prime if a ∧ b ∈ I implies a ∈ I or b ∈ I .

Let (A,∧,∨,�,→,�,0,1) be an FLw-algebra and P be a prime ideal of the
underlying lattice L(A). So P �=A and S =A \P is a meet-closed system in A. We
denote by AP the algebra A[S] and we put IP = {x/S|x ∈ P }.

Lemma 3.3 Let x ∈A such that x/S ∈ IP . Then x ∈ P .

Proof From x/S ∈ IP it follows that there exists a y ∈ P such that x/S = y/S

which means that there exists an e ∈ S ∩ B(A) such that x ∧ e = y ∧ e ≤ y, hence
x ∧ e ∈ P . Since P is prime and e ∈ S =A \ P , it follows that x ∈ P . �

Proposition 3.25 The set IP is a proper prime ideal of the underlying lattice
L(AP ).

Proof Since 0 ∈ P , it follows that 0 ∈ IP .
Let x, y ∈ P , so x/S ∨ y/S = (x ∨ y)/S ∈ IP . Now, let x ∈ P , y ∈ A such that

y/S ≤ x/S. This implies y/S → x/S = 1/S, thus (y → x)/S = 1/S, which means
there exists an e ∈ S ∩ B(A) such that e ∧ (y → x)= e ∧ 1= e, hence e ≤ y → x.
Thus e � y ≤ x, which means e ∧ y ≤ x. It follows that e ∧ y ∈ P , so y ∈ P and
thus y/S ∈ IP . Hence IP is an ideal of AP .

We prove now that IP �=AP . Assume IP =AP and so 1/S ∈ IP , hence 1 ∈ P by
Lemma 3.3. But this implies P =A, which is a contradiction. Finally, we prove that
IP is prime. Consider x, y ∈ P such that x/S∧y/S ∈ IP . It follows that (x∧y)/S ∈
IP , so using Lemma 3.3 we get x ∧ y ∈ P .

Since P is prime, we get x ∈ P or y ∈ P so x/S ∈ IP or y/S ∈ IP .
We conclude that IP is a proper prime ideal of the underlying lattice L(AP ). �



Chapter 4
Other Non-commutative Multiple-Valued Logic
Algebras

In this chapter we present some specific properties of other non-commutative
multiple-valued logic algebras: pseudo-MTL algebras, bounded R�-monoids,
pseudo-BL algebras and pseudo-MV algebras. As main results, we extend to the
case of pseudo-MTL algebras some results regarding the prime filters proved for
pseudo-BL algebras.

4.1 Pseudo-MTL Algebras

In order to capture the logic of all left-continuous t-norms and their residua, Esteva
and Godo ([117]) introduced the Monoidal T-norm based Logic (MTL for short).
Jenei and Montagna proved in [197] that MTL is standard complete, i.e. it is com-
plete with respect to the semantics given by the class of all left-continuous t-norms
and their residua. Esteva and Godo also developed the algebraic counterpart of this
logic, that is, MTL-algebra (bounded integral commutative prelinear residuated lat-
tice). P. Flondor, G. Georgescu and A. Iorgulescu have independently introduced
MTL-algebra under the name weak-BL algebra. They have also introduced the weak
pseudo-BL algebra also called a pseudo-MTL algebra ([122]) which is an FLw-
algebra satisfying pseudo-prelinearity condition.

In fact, there are two important residuated structures which derive from an FLw-
algebra:

– Pseudo-MTL algebra, which is an FLw-algebra together with the pseudo-
prelinearity condition (studied in [122, 181, 232, 233]);

– Divisible FLw-algebra or bounded R�-monoid, which is an FLw-algebra together
with the pseudo-divisibility condition (investigated in [111, 181, 205, 240]).

Therefore, all the properties of an FLw-algebra hold in a pseudo-MTL algebra, so in
this section we will focus on some specific properties of this structure by extending
some similar properties proven in the case of pseudo-BL algebras.

We will also give an example of a pseudo-MTL algebra which is not a chain and
an example of a locally finite pseudo-MTL algebra.

L.C. Ciungu, Non-commutative Multiple-Valued Logic Algebras,
Springer Monographs in Mathematics, DOI 10.1007/978-3-319-01589-7_4,
© Springer International Publishing Switzerland 2014
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Definition 4.1 A pseudo-MTL algebra is an algebra A= (A,∧,∨,�,→,�,0,1)

of type (2,2,2,2,2,0,0) satisfying the following conditions:

(psMTL1) (A,∧,∨,0,1) is a bounded lattice;
(psMTL2) (A,�,1) is a monoid;
(psMTL3) x � y ≤ z iff x ≤ y → z iff y ≤ x � z for any x, y, z ∈A;
(psMTL4) (x → y)∨ (y → x)= (x � y)∨ (y � x)= 1.

In other words, a pseudo-MTL algebra is an FLw-algebra which satisfies the
pseudo-prelinearity condition (psMTL4).

A pseudo-MTL algebra A is proper if it does not satisfy the pseudo-divisibility
condition, that is, A is not a pseudo-BL algebra (see Sect. 4.3).

Example 4.1 The FLw-algebra (A,∧,∨,�,→,�,0,1) from Example 3.3 is a
pseudo-MTL chain.

Remark 4.1 Consider the pseudo-MTL chain A from Example 4.1.

(1) One can easily prove that A is not a pseudo-BL algebra because:

(b→ a)� b �= b� (b � a).

(2) A is a good pseudo-MTL chain.

The following propositions describe some specific properties of pseudo-MTL
algebras.

Proposition 4.1 ([186]) In any pseudo-MTL algebra A the following properties
hold:

(psmtl-c1) (x ∧ y)− = x− ∨ y− and (x ∧ y)∼ = x∼ ∨ y∼;
(psmtl-c2) x ∨ y = [(x → y) � y] ∧ [(y → x)� x] and x ∨ y = [(x � y)→ y] ∧

[(y � x)→ x].

Proof

(psmtl-c1) From (rl-c21) we have x → y = x → x ∧ y and applying (psbck-c15) we
get: x → y = x → x ∧ y ≤ (x ∧ y)− � x−.
Hence (x ∧ y)− � (x → y)≤ x−.
Changing x and y in the above inequality we also get: (x∧y)−�(y → x)≤ y−.
Applying (rl-c2), it follows that:

(x ∧ y)− = (x ∧ y)− � 1= (x ∧ y)− � [
(x → y)∨ (y → x)

]

= [
(x ∧ y)− � (x → y)

]∨ [
(x ∧ y)− � (y → x)

]≤ x− ∨ y−.

On the other hand, according to (psbck-c42) we have x− ∨ y− ≤ (x ∧ y)−.
Hence (x ∧ y)− = x− ∨ y−. Similarly, (x ∧ y)∼ = x∼ ∨ y∼.
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(psmtl-c2) Denote by u the right term of the equality.
By (rl-c24) we have x ∨ y ≤ [(x → y) � y] ∧ [(y → x) � x] = u.
On the other hand, applying (rl-c2) we have:

u= 1� u= [
(x → y)∨ (y → x)

]� u= [
(x → y)� u

]∨ [
(y → x)� u

]
.

But,

(x → y)� u= (x → y)� [[
(x → y)� y

]∧ [
(y → x) � x

]]

≤ (x → y)� (
(x → y) � y

)≤ y
(
by (rl-c5)

)
.

Similarly, (y → x)� u≤ x.
It follows that u= [(x → y)� u] ∨ [(y → x)� u] ≤ y ∨ x = x ∨ y.
We conclude that x ∨ y = [(x → y) � y] ∧ [(y → x) � x].
Similarly, x ∨ y = [(x � y)→ y] ∧ [(y � x)→ x]. �

Proposition 4.2 In any pseudo-MTL algebra A the following properties hold:

(psmtl-c3) (x → y)→ z ≤ ((y → x)→ z)→ z and (x � y) � z ≤ ((y � x) �
z) � z;

(psmtl-c4) (x → y)→ z ≤ ((y → x)→ z) � z and (x � y) � z ≤ ((y � x) �
z)→ z;

(psmtl-c5) (x → y)n ∨ (y → x)n = 1 and (x � y)n ∨ (y � x)n = 1, for all n ∈N,
n≥ 1.

Proof

(psmtl-c3) Applying (psbck-c25) and (rl-c4) we get:

[
(x → y)→ z

]� [
(y → x)→ z

]≤ [
(x → y)→ z

]∧ [
(y → x)→ z

]

= [
(x → y)∨ (y → x)

]→ z= 1→ z= z.

Thus (x → y)→ z≤ ((y → x)→ z)→ z.
Similarly, (x � y) � z≤ ((y � x)� z) � z.

(psmtl-c4) This can be proved in a similar way as (psmtl-c3).
(psmtl-c5) This follows from (rl-c22), since (x → y)∨ (y → x)= 1 and (x � y)∨

(y � x)= 1. �

We will present some interesting results regarding the locally finite pseudo-MTL
algebras and some examples of normal filters of a pseudo-MTL algebra. These ex-
amples will be used in later chapters.

Example 4.2

(1) Consider the pseudo-MTL chain from Example 4.1. Since ord(c) =∞, it fol-
lows that A is not locally finite.
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(2) Consider the algebra (A,∧,∨,�,→,�,0,1) from Example 3.5.
Then A is a pseudo-MTL chain and we have:

ord(0)= 1, ord(a)= 2, ord(b)= 2, ord(c)= 3.

Thus A is a locally finite pseudo-MTL chain.

Remark 4.2

(1) In Proposition 39 in [212] it is proved that every locally finite pseudo-MV alge-
bra is commutative.

(2) In Corollary 4.10 in [143] it is proved that every locally finite pseudo-BL alge-
bra is an MV-algebra, so it is commutative.

(3) In Theorem 3.10 in [110] it is proved that every locally finite bounded R�-
monoid is an MV-algebra, so it is commutative.

(4) By the above example we proved that there exist locally finite pseudo-MTL
algebras which are non-commutative.

Remark 4.3 It is known that, if A is a locally finite pseudo-BL algebra A, then
x−∼ = x∼− = x for all x ∈ A, i.e. condition (pDN) holds (see Proposition 4.9 in
[143]). This result does not hold in the case of pseudo-MTL algebras. Indeed, in the
pseudo-MTL algebra A from Example 3.5 we have b−∼ = c �= b.

Example 4.3 Consider the filter F = {c,1} of the pseudo-MTL chain A from Exam-
ple 4.1. Since b→ a = c ∈ F and b � a = b /∈ F , it follows that F is not a normal
filter of A.

Definition 4.2 A proper filter P of A is called prime if for all x, y ∈ A, x ∨ y ∈ P

implies x ∈ P or y ∈ P .

The set of all prime filters of A will be denoted by Spec(A). We also denote by
Specn(A) the set of all prime normal filters of A. Clearly, Specn(A)⊆ Spec(A).

Example 4.4 ([182]) Consider A = {0, a, b, c,1} with 0 < a < b < c < 1 and the
operations �, →, � given by the following tables:

� 0 a b c 1
0 0 0 0 0 0
a 0 a a a a

b 0 a a a b

c 0 a b c c

1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 1 1 1
b 0 b 1 1 1
c 0 b b 1 1
1 0 a b c 1

� 0 a b c 1
0 1 1 1 1 1
a 0 1 1 1 1
b 0 c 1 1 1
c 0 a b 1 1
1 0 a b c 1

A= (A,∧,∨,�,→,�,0,1) is a proper pseudo-MTL chain. We have:

F(A)= {{1}, {c,1}, {a, b, c,1},A}
, Fn(A)= {{1}, {a, b, c,1},A}

,
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Max(A)= {{a, b, c,1}}, Maxn(A)= {{a, b, c,1}},
Spec(A)= {{1}, {c,1}, {a, b, c,1}}, Specn(A)= {{1}, {a, b, c,1}}.

Obviously, in this case we have Maxn(A)=Max(A).

In the examples of FLw-algebras and pseudo-MTL algebras that have been pre-
sented, all proper filters are prime. The pseudo-MTL algebra in the next example
has a proper filter which is not prime.

Example 4.5 Let A = {0, a, b, c,1} with 0 < a < b, c < 1, but where b and c are
incomparable. Consider the operations �, →, � given by the following tables:

� 0 a b c 1
0 0 0 0 0 0
a 0 0 a 0 a

b 0 0 b 0 b

c 0 a a c c

1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a b 1 1 1 1
b 0 c 1 c 1
c b b b 1 1
1 0 a b c 1

� 0 a b c 1
0 1 1 1 1 1
a c 1 1 1 1
b c c 1 c 1
c 0 b b 1 1
1 0 a b c 1

Then (A,∧,∨,�,→,�,0,1) is a proper pseudo-MTL algebra. Clearly, A is not a
pseudo-MTL chain.

Obviously, P = {c,1} is a prime filter of A. Consider the filter F = {1} of A.
Since b ∨ c= 1 ∈ F , but b, c /∈ F , it follows that F is not a prime filter of A. Thus:

F(A)= {{1}, {b,1}, {c,1},A}
, Fn(A)= {{1},A}

,

Max(A)= {{b,1}, {c,1}}, Maxn(A)= ∅,
Spec(A)= {{b,1}, {c,1}}, Specn(A)= ∅.

Proposition 4.3 If P is a proper filter of A, then the following properties are equiv-
alent:

(a) P is prime;
(b) for all x, y ∈A, x → y ∈ P or y → x ∈ P ;
(c) for all x, y ∈A, x � y ∈ P or y � x ∈ P .

Proof

(a) ⇒ (b) This follows by the definition of a prime filter, taking into consideration
that (x → y)∨ (y → x)= 1 ∈ P .

(b) ⇒ (a) Assume that x ∨ y ∈ P and for example x → y ∈ P .
Since x ∨ y = [(x → y) � y] ∧ [(y → x) � x] ∈ P we get (x → y) � y ∈ P .
Thus y ∈ P . Similarly, if y → x ∈ P we get x ∈ P .
We conclude that P is prime.

(a) ⇔ (c) This follows similarly as (a) ⇔ (b). �
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Corollary 4.1 If P is a prime filter and Q is a proper filter such that P ⊆Q, then
Q is a prime filter.

Proof Consider x, y ∈ A. Since P is a prime filter, by Proposition 4.3 we get x →
y ∈ P or y → x ∈ P , so x → y ∈Q or y → x ∈Q.

Thus Q is also a prime filter. �

The next result was proved in [85] in the case of a pseudo-BL algebra without
using the pseudo-divisibility axiom, so the proof is also valid for a pseudo-MTL
algebra.

Theorem 4.1 (Prime filter theorem) Let A be a pseudo-MTL algebra, F ∈ F(A)

and let I be an ideal of the bounded lattice (A,∧,∨,0,1) such that F ∩ I = ∅.
Then there exists a prime filter P of A such that F ⊆ P and P ∩ I = ∅.

Proof Let H = {H ∈ F(A) | F ⊆ H and H ∩ I = ∅}. A routine application of
Zorn’s lemma shows that H has a maximal element, P . Suppose that P is not a
prime filter of A. Then there are a, b ∈ A such that a → b /∈ P and b → a /∈ P . It
follows that the filters [P ∪ {a → b}) and [P ∪ {b→ a}) are not in H. Hence there
exist c ∈ I ∩ [P ∪ {a → b}) and d ∈ I ∩ [P ∪ {b→ a}).

By Remark 1.13(3), c ≥ (s1 � (a → b)p1)� · · · � (sm � (a → b)pm), for some
m≥ 1, p1, . . . , pm ≥ 0 and s1, . . . , sm ∈ P and d ≥ (t1 � (b→ a)q1)� · · · � (tn �
(b→ a)qn), for some n≥ 1, q1, . . . , qn ≥ 0 and t1, . . . , tn ∈ P .

Let s = s1 � · · · � sm and t = t1 � · · · � tn. It follows that s, t ∈ P .
Let p =max{pi | i = 1, . . . ,m} and q =max{qi | i = 1, . . . , n}.
Then c ≥ ∏m

i=1(s � (a → b)p) = [s � (a → b)p]m and d ≥ ∏n
i=1(t � (b →

a)q)= [t � (b→ a)q ]n. Now let u= s� t and r =max{p,q}. It follows that u ∈ P

and c ≥ [u� (a → b)r ]m, d ≥ [u� (b→ a)r ]n.
Applying (rl-c26), (rl-c2) and (rl-c22) we get:

x = c ∨ d ≥ [
u� (a → b)r

]m ∨ [
u� (b→ a)r

]n

≥ ([
u� (a → b)r

]∨ [
u� (b→ a)r

])mn

= (
u� [

(a → b)r ∨ (b→ a)r
])mn = (u� 1)mn = umn ∈ P.

Thus x ∈ P . Since I is an ideal, we have x ∈ I , that is, P ∩ I �= ∅, a contradiction.
We conclude that P is a prime filter. �

Corollary 4.2 Let F be a filter of A and a ∈ A \ F . Then there is a prime filter P

of A such that F ⊆ P and a /∈ P .

Proof Consider I = {x ∈A | x ≤ a}.
We prove that I is an ideal of the lattice L(A) and F ∩ I = ∅.
First we will verify the axioms of a lattice ideal (Definition 3.7):
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(LI1) Since 0≤ a, it follows that 0 ∈ I .
(LI2) If x, y ∈ I , we have x ≤ a and y ≤ a, so x ∨ y ≤ a, that is, x ∨ y ∈ I .
(LI3) If x ∈ I and y ≤ x, we have y ≤ a, so y ∈ I .

Suppose that F ∩ I �= ∅, that is, there is an x ∈ F ∩ I . It follows that x ≤ a and
x ∈ F , so a ∈ F which is a contradiction. Thus F ∩ I = ∅.

According to the prime filter theorem, there is a prime filter P of A such that
F ⊆ P and P ∩ I = ∅. Since a ∈ I , it follows that a /∈ P . �

Corollary 4.3 Let a ∈A, a �= 1. Then there is a prime filter P of A such that a /∈ P .

Proof This follows by Corollary 4.2 where F = {1}. �

Corollary 4.4 Every proper filter F is the intersection of those prime filters which
contain F . In particular,

⋂
Spec(A)= {1}.

Proof Since F is a proper filter, then there is an a ∈A \ F and according to Corol-
lary 4.2 there is a prime filter P of A such that F ⊆ P .

Thus F is the intersection of those prime filters which contain F .
If F = {1}, we obtain

⋂
Spec(A)= {1}. �

Corollary 4.5 Max(A)⊆ Spec(A).

Proof Consider F ∈ Max(A). Since F is a proper filter of A, by Corollary 4.2 it
follows that there exists a prime filter F of A such that F ⊆ P .

Because P is a proper filter, it follows that F = P , so F is a prime filter of A,
that is, F ∈ Spec(A). Thus Max(A)⊆ Spec(A). �

Proposition 4.4 The set of proper filters including a prime filter P of A is a chain.

Proof Consider the proper filters P1, P2 of A such that P ⊆ P1 and P ⊆ P2, so
P ⊆ P1 ∩ P2. By Corollary 4.1, P1 ∩ P2 is a prime filter of A.

Assume there exist x ∈ P1 \ P2 and y ∈ P2 \ P1. Since x ∈ P1 and x ≤ x ∨ y, it
follows that x ∨ y ∈ P1. Similarly, from y ∈ P2 and y ≤ x ∨ y we have x ∨ y ∈ P2.
Thus x ∨ y ∈ P1 ∩ P2. Hence x ∈ P1 ∩ P2 or y ∈ P1 ∩ P2 which is a contradiction.

We conclude that P1 ⊆ P2 or P2 ⊆ P1, that is, the set of proper filters including
P is a chain. �

Proposition 4.5 A pseudo-MTL algebra A is a chain if and only if every proper
filter of A is prime.

Proof Assume A is a chain and let P be a proper filter of A. Consider x, y ∈A such
that x ∨ y ∈ P . Since A is a chain we have x ≤ y or y ≤ x, that is, x ∨ y = x or
x ∨ y = y. Hence x ∈ P or y ∈ P , so P is prime.

Conversely, since P = {1} is a proper filter of A, it follows that P is prime.
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Let x, y ∈ A. Since (x → y) ∨ (y → x) = 1 ∈ P , we get x → y = 1 or y →
x = 1. It follows that x ≤ y or y ≤ x, that is, A is a chain. �

Definition 4.3 An element p < 1 of a bounded lattice (A,∧,∨,0,1) is said to be
meet-irreducible if p = x ∧ y implies p = x or p = y.

Theorem 4.2 If P is a proper filter of the lattice F(A), then the following are equiv-
alent:

(a) P is prime;
(b) P is meet-irreducible in the lattice F(A);
(c) if x, y ∈A such that x ∨ y = 1, then x ∈ P or y ∈ P ;
(d) for all x, y ∈A \ P there is a z ∈A \ P such that x ≤ z and y ≤ z;
(e) if x, y ∈A and [x)∧ [y)⊆ P , then x ∈ P or y ∈ P .

Proof We will follow the idea used in [30].

(a) ⇒ (b) Let P1,P2 ∈F(A) such that P1 ∧ P2 = P .
Since P ⊆ P1 and P ⊆ P2, by Proposition 4.4 we have P1 ⊆ P2 or P2 ⊆ P1.
Hence P = P1 or P = P2. Thus P is meet-irreducible.

(b) ⇒ (a) Consider x, y ∈A such that x ∨ y ∈ P . We have:

P(x)∩ P(y)= (
P ∨ [x)

)∩ (
P ∨ [y)

)= P ∨ ([x)∩ [y)
)= P ∨ [x ∨ y)= P.

Since P is meet-irreducible, it follows that P = P(x) or P = P(y).
Hence x ∈ P or y ∈ P , that is, P is a prime filter.

(a) ⇒ (c) This is obvious, since 1 ∈ P .
(c) ⇒ (a) Let x, y ∈ A. Since (x → y)∨ (y → x)= 1, we get x → y ∈ P or y →

x ∈ P . By Proposition 4.3 it follows that P is prime.
(a) ⇒ (d) Let P be a prime filter of A and x, y ∈ A \ P . Suppose for every z ∈ A

with x ≤ z and y ≤ z we have z ∈ P . Then for z= x ∨ y, since x, y ≤ z, we get
x ∨ y ∈ P . Hence x ∈ P or y ∈ P , a contradiction. Thus there exists a z ∈A \P

such that x ≤ z and y ≤ z.
(d) ⇒ (b) Suppose there exist F1,F2 ∈ F(A) such that P = F1 ∩ F2 and P �= F1,

P �= F2. Hence there exist x ∈ F1 \ P and y ∈ F2 \ P . By hypothesis, there
is a z ∈ A \ P such that x ≤ z and y ≤ z. It follows that z ∈ F1 ∩ F2 = P , a
contradiction. Thus P is meet-irreducible in F(A).

(d) ⇒ (e) Consider x, y ∈A such that [x)∩ [y)⊆ P and suppose x, y /∈ P .
By the hypothesis, there is a z ∈ A \ P such that x ≤ z and y ≤ z. Hence z ∈
[x)∩ [y)⊆ P , so z ∈ P , a contradiction. Thus x ∈ P or y ∈ P .

(e) ⇒ (a) Let x, y ∈A such that x ∨ y ∈ P . It follows that [x ∨ y)⊆ P .
Since [x ∨ y) = [x) ∩ [y), we have [x) ∩ [y) ⊆ P . By the hypothesis, we get
x ∈ P or y ∈ P , that is, P is a prime filter of A. �

Proposition 4.6 Any locally finite pseudo-MTL algebra A is a chain.
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Proof Let x, y ∈A such that x ∨ y = 1. Applying (psmtl-c2), we get:

1= x ∨ y = [
(x → y) � y

]∧ [
(y � x)→ x

]≤ (x → y) � y,

so (x → y) � y = 1, that is, x → y ≤ y. Taking into consideration that y ≤ x → y,
we get x → y = y. Suppose that x �= 1. Since A is locally finite, there is an n ∈ N

such that xn = 0. We have:

y = x → y = x → (x → y)= x2 → y = · · · = xn → y = 0→ y = 1.

Thus x ∨ y = 1 iff x = 1 or y = 1. But, for all x, y ∈ A we have (x → y) ∨ (y →
x)= 1, so, applying the above result we get x → y = 1 or y → x = 1. Hence x ≤ y

or y ≤ x. We conclude that A is a chain. �

Remark 4.4 If H is a maximal and normal filter of a pseudo-MTL algebra A, then it
is a natural problem to determine whether A/H is a linearly ordered pseudo-IMTL
algebra (involutive pseudo-MTL algebra, i.e. a pseudo-MTL algebra satisfying con-
dition (pDN)).

Consider x/H,y/H ∈A/H . Since any maximal filter of A is also a prime filter
(see Corollary 4.5), by Proposition 4.3 it follows that for x, y ∈A we have x → y ∈
H or y → x ∈H . Thus by Lemma 1.13, x/H ≤ y/H or y/H ≤ x/H , that is, A/H

is a linearly ordered pseudo-MTL algebra. Moreover, since x → y ∈ H iff x �
y ∈H , it follows that (x → y)/H = (x � y)/H , so x/H → y/H = x/H � y/H

for all x, y ∈ A, that is, A/H is an MTL-algebra. We also have x−∼/H = x/H iff
(x−∼ → x) ∧ (x → x−∼) ∈H iff x−∼ → x ∈H (because x ≤ x−∼ for all x ∈ A,
so x → x−∼ = 1).

Similarly, x∼−/H = x/H iff x∼− → x ∈ H . We conclude that A is a linearly
ordered IMTL algebra if and only if A satisfies the property:

x−∼ → x ∈H and x∼− → x ∈H for all x ∈A.

In the case of the pseudo-MTL algebra A from Example 4.4 with the maximal and
normal filter H = {a, b, c,1}, the above condition is satisfied, so A/H is a linearly
ordered IMTL algebra, more precisely, A/H = {0,1}, where 0 = 0/H and 1 =
1/H .

4.2 Bounded Residuated Lattice-Ordered Monoids

Bounded residuated lattice-ordered monoids (bounded R�-monoids) are a common
generalization of pseudo-BL algebras and Heyting algebras, i.e. the algebras behind
fuzzy and intuitionistic reasoning.

Definition 4.4 A bounded R�-monoid or divisible residuated lattice is an algebra
(A,∧,∨,�,→,�,0,1) of type (2,2,2,2,2,0,0) satisfying the following condi-
tions:
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(R�1) (A,�,1) is a monoid;
(R�2) (A,∧,∨,0,1) is a bounded lattice;
(R�3) x � y ≤ z iff x ≤ y → z iff y ≤ x � z for all x, y, z ∈A;
(R�4) (x → y)� x = x � (x � y)= x ∧ y for all x, y ∈A.

In other words, a bounded R�-monoid is an FLw-algebra satisfying the pseudo-
divisibility condition (R�4). Properties of bounded R�-monoids have been studied
by J. Rachůnek, J. Kühr, A. Iorgulescu and A. Dvurečenskij ([110, 186, 205, 240,
244]). In this section we will recall some properties of bounded R�-monoids which
do not hold in the case of pseudo-MTL algebras, and hence of FLw-algebras.

In order to present some examples of bounded R�-monoids (see [176]), we
consider the linearly ordered set Ln+1 = {0,1,2, . . . , n}, n ≥ 1, organized as a
lattice with ∧ = min and ∨ = max and organized as a left-MV algebra Ln+1 =
(Ln+1,�,− , n) with:

x � y =max{0, x + y − n}, x → y =min{n,y − x + n}, x− = x → 0.

We also consider the non-linearly ordered MV-algebra:

L2×2 = {0, a, b,1} ∼= L2 ×L2 = {0,1} × {0,1},
where 0 < a,b < 1 and a, b are incomparable whose tables are the following:

� 0 a b 1
0 0 0 0 0
a 0 a 0 a

b 0 0 b b

1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 a b 1

We recall that a pseudo-Product algebra is a pseudo-BL algebra A which satisfies
the following conditions for all x, y, z ∈A ([181]):

(pP1) x ∧ x− = 0 and x ∧ x∼ = 0;
(pP2) (z−)− � [(x � z)→ (y � z)] ≤ x → y and (z∼)∼ � [(z� x) � (z� y)] ≤

x � y.

Example 4.6 ([182]) If A is a non-linearly ordered pseudo-MV algebra or pseudo-
Product algebra, then the ordinal sums A⊕ L2, A⊕ L3, A⊕ L4 are proper, good
R�-monoids.

Example 4.7 ([182]) If A is a proper pseudo-MV algebra or a proper pseudo-BL
algebra, then the ordinal sum L2×2 ⊕A is a proper, good R�-monoid.

Proposition 4.7 ([186]) Let A = (A,∧,∨,�,→,�,0,1) be a bounded R�-
monoid. Then

(divrl-c1) x ∧ (
∨

i∈I yi)=∨
i∈I (x ∧ yi),

whenever the arbitrary union exists.
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Proof Applying (rl-c2) we have:

x ∧
(∨

i∈I

yi

)
=

(∨

i∈I

yi

)
�

(∨

j∈I

yj � x

)
=

∨

i∈I

[
yi �

(∨

j∈I

yj � x

)]
.

Since yi ≤ ∨
j∈I yj for all i ∈ I , applying (psbck-c1) we get

∨
j∈I yj � x ≤

yi � x. Hence yi � (
∨

j∈I yj � x)≤ yi � (yi � x)= yi ∧ x.
It follows that

∨
i∈I [yi � (

∨
j∈I yj � x)] ≤∨

i∈I (x ∧ yi).
Thus x ∧ (

∨
i∈I yi)≤∨

i∈I (x ∧ yi).
On the other hand, from yi ≤∨

j∈I yj we have x∧yi ≤ x∧∨
j∈I yj for all i ∈ I .

Thus
∨

i∈I (x ∧ yi) ≤ x ∧∨
i∈I yi . We conclude that x ∧∨

i∈I yi = ∨
i∈I (x ∧

yi). �

Corollary 4.6 ([186]) If (A,∧,∨,�,→,�,0,1) is a bounded R�-monoid, then
L(A)= (A,∧,∨) is a distributive lattice.

Proposition 4.8 In any bounded R�-monoid A the following holds for all x, y,

z ∈A:

(divrl-c2) (x → y)→ (x → z)= (y → x)→ (y → z) and (x � y) � (x � z)=
(y � x)� (y � z).

Proof Applying (psbck-c30) we have:

(x → y)→ (x → z)= (x → y)� x → z= x ∧ y → z= y ∧ x → z

= (y → x)� y → z= (y → x)→ (y → z).

Similarly,

(x � y)� (x � z)= x � (x � y)� z= x ∧ y � z= y ∧ x � z

= y � (y � x)� z= (y � x) � (y � z). �

Proposition 4.9 (Lemma 3.7 in [110]) In every bounded R�-monoid A we have:

(1) z→ x = z→ y and x, y ≤ z imply x = y;
(2) z � x = z � y and x, y ≤ z imply x = y;
(3) If A is linearly ordered, then z→ x = z→ y �= 1 implies x = y;
(4) If A is linearly ordered, then z � x = z � y �= 1 implies x = y.

Proof

(1) We have x = z∧ x = (z→ x)� z= (z→ y)� z= z∧ y = y.
(2) Similar to (1).
(3) If z→ x = z→ y �= 1, then z �≤ x, z �≤ y, hence x < z, y < z.

Applying (1) we get x = y.
(4) Similar to (3). �
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Remark 4.5 (Theorem 11.1.1 in [186]) For any pseudo-BCK(pP) lattice (A,∧,∨,

→,�,0,1) the pseudo-divisibility condition is equivalent to properties (1) and (2)
from Proposition 4.9.

Proposition 4.10 In every locally finite bounded R�-monoid we have:

(1) For y < 1, x � y = x implies x = 0.
(2) For y < 1, y � x = x implies x = 0.

Proof This follows from Proposition 1.39, taking into consideration that in a locally
finite bounded pseudo-BCK(pP) the only maximal filter is D = {1}. �

Proposition 4.11 (Proposition 3.11 in [110]) Let A be a bounded R�-monoid.

(1) If F is a maximal filter of A, then F is prime;
(2) If F is a normal and maximal filter of A, then for all x, y ∈A:

(x → y)∨ (y → x) ∈ F and (x � y)∨ (y � x) ∈ F.

Remark 4.6 In [199] the notion of a generalized BL-algebra (GBL-algebra for
short) is defined as a residuated lattice satisfying the pseudo-divisibility condition
and it is proved that every finite GBL-algebra is commutative. Since a bounded
R�-monoid is a bounded integral generalized BL-algebra, every finite bounded R�-
monoid is commutative.

Proposition 4.12 Every bounded Wajsberg pseudo-hoop is a bounded R�-monoid.

Proof Let (A,�,→,�,0,1) be a bounded Wajsberg pseudo-hoop.
Condition (R�1) follows by (pshoop-c2).
According to Proposition 2.14 for every x, y ∈ A, x ∨ y exists, thus (A,∨,∧,

0,1) is a bounded lattice, hence (R�2) is satisfied.
Conditions (R�3) and (R�4) follow from the properties (pshoop-c1) and (pshoop-

c3), respectively.
We conclude that A is a bounded R�-monoid. �

Corollary 4.7 Every finite bounded Wajsberg pseudo-hoop is commutative.

Proof This is a consequence of Remark 4.6 and Proposition 4.12. �

4.3 Pseudo-BL Algebras

G. Georgescu and A. Iorgulescu introduced in [136] the pseudo-BL algebras as
a natural generalization of BL-algebras for the non-commutative case. A pseudo-
BL algebra is an FLw-algebra which satisfies the pseudo-divisibility and pseudo-
prelinearity conditions. Properties of pseudo-BL algebras were deeply investigated
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by A. Di Nola, G. Georgescu and A. Iorgulescu in [85] and [86]. Some classes of
pseudo-BL algebras were investigated in [143] and the corresponding propositional
logic was established by Hájek in [158] and [159].

Definition 4.5 A (left-)pseudo-BL algebra is an algebra A = (A,∧,∨,�,→,�,

0,1) of type (2,2,2,2,2,0,0) satisfying the following conditions:

(psBL1) (A,∧,∨,0,1) is a bounded lattice;
(psBL2) (A,�,1) is a monoid;
(psBL3) x � y ≤ z iff x ≤ y → z iff y ≤ x � z for any x, y, z ∈A;
(psBL4) (x → y)� x = x � (x � y)= x ∧ y for all x, y ∈A;
(psBL5) (x → y)∨ (y → x)= (x � y)∨ (y � x)= 1.

In other words, a pseudo-BL algebra is a divisible residuated lattice (bounded R�-
monoid) satisfying the pseudo-prelinearity axiom as well as a pseudo-MTL algebra
satisfying the pseudo-divisibility axiom.

Example 4.8 ([85]) Let (A,�,⊕,− ,∼ ,0,1) be a left-pseudo-MV algebra (see Def-
inition 4.6). We define two implications corresponding to the two negations:

x → y = y ⊕ x− = (
x � y∼

)− and x � y = x∼ ⊕ y = (
y− � x

)∼

for any x, y ∈A. Then (A,∨,∧,�,→,�,0,1) is a pseudo-BL algebra.

We will see that a pseudo-BL algebra (A,∧,∨,�,→,�,0,1) is a pseudo-MV
algebra if and only if it satisfies property (pDN).

Example 4.9 ([85]) Consider an arbitrary �-group (G,∨,∧,+,−,0) and u ∈ G,
u≤ 0. If we define:

x � y := (x + y)∨ u,

x− := u− x,

x∼ := −x + u,

x → y := (y − x)∧ 0,

x � y := (−x + y)∧ 0,

x ⊕ y := (x − u+ y)∧ 0,

then ([u,0],∨,∧,�,→,�,0= u,1= 0) is a pseudo-BL algebra.

Theorem 4.3 ([148]) Bounded basic pseudo-hoops are termwise equivalent to
pseudo-BL algebras.

Proof Let (A,�,→,�,0,1) be a bounded basic pseudo-hoop. According to
Proposition 2.16, ∨ is defined and ∨ = ∪1 = ∪2, and by Proposition 2.17, (x →
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y) ∨ (y → x) = 1, (x � y) ∨ (y � x) = 1 for all x, y ∈ A. Since A is a meet-
semilattice, it follows that (A,∧,∨,�,→,�,0,1) is a pseudo-BL algebra.

Conversely, if (A,∧,∨,�,→,�,0,1) is a pseudo-BL algebra, then conditions
(psHOOP1)–(psHOOP5) are satisfied, thus A is a bounded pseudo-hoop. Applying
Proposition 2.17, it follows that A is a bounded basic pseudo-hoop. �

Since any pseudo-BL algebra is a bounded basic pseudo-hoop, a pseudo-MTL
algebra and a divisible FLw-algebra, all the properties and results presented in the
previous sections are also valid in the case of pseudo-BL algebras.

In this section we will mention some specific properties which will be used in
later chapters.

Proposition 4.13 ([85]) In any pseudo-BL algebra we have:

(psbl-c1) If x ∨ y = 1, then x � y = x ∧ y.
(psbl-c2) z� (x ∧ y)= (z� x)∧ (z� y) and (x ∧ y)� z= (x � z)∧ (y � z).
(psbl-c3) z� (x1 ∧ x2 ∧ · · · ∧ xn)= (z� x1)∧ (z� x2)∧ · · · ∧ (z� xn) and (x1 ∧

x2 ∧ · · · ∧ xn)� z= (x1 � z)∧ (x2 � z)∧ · · · ∧ (xn � z).
(psbl-c4) If d1 and d2 are the two distance functions from Definition 3.2, then

d1(x, y)= (x → y)� (y → x) and d2(x, y)= (x � y)� (y � x)

for all x, y ∈A.

Proof

(psbl-c1) According to (psmtl-c2) we have

1= x ∨ y = [
(x � y)→ y

]∧ [
(y � x)→ x

]
.

Thus (x � y)→ y = 1, hence x � y ≤ y.
It follows that x ∧ y = x � (x � y)≤ x � y.
Since x � y ≤ x ∧ y, we conclude that x � y = x ∧ y.

(psbl-c2) Applying (rl-c21), (psbck-c27) and (psbck-c6) we get:

x � y = x � x ∧ y ≤ z� x � z� (x ∧ y)

≤ (z� x � z� y)�
[
z� x � z� (x ∧ y)

]

and similarly y � x ≤ (z� y � z� x)� [z� y � z� (x ∧ y)].
But according to (divrl-c2) we have

(z� x � z� y)�
[
z� x � z� (x ∧ y)

]

= (z� y � z� x) �
[
z� y � z� (x ∧ y)

]
.

It follows that 1= (x � y)∨ (y � x)≤ (z� x � z� y) � [z� x � z� (x ∧
y)].
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Thus (z� x � z� y) � [z� x � z� (x ∧ y)] = 1, that is,

z� x � z� y ≤ z� x � z� (x ∧ y).

Hence (z � x)� (z � x � z � y) ≤ z � (x ∧ y), that is (z � x) ∧ (z � y) ≤
z� (x ∧ y).
On the other hand, by (rl-c18) we have

z� (x ∧ y)≤ (z� x)∧ (z� y), hence z� (x ∧ y)= (z� x)∧ (z� y).

Similarly, (x ∧ y)� z= (x � z)∧ (y � z).
(psbl-c3) This follows from (psbl-c2) by induction.
(psbl-c4) This follows by (psbl-c1), taking into consideration (psBL5). �

Remark 4.7 In [86] it was asked whether every pseudo-BL algebra is good. This
problem was solved in [113], by proving that there are uncountable many varieties
of pseudo-BL algebras which are not good. We recall that every linearly ordered
pseudo-BL algebra is good ([98]) and every linearly ordered pseudo-hoop is good
([99]).

Proposition 4.14 If A is a good pseudo-BL algebra, then

(x � y)−∼ = x−∼ � y−∼.

Proof Applying (psbl-c2), (psbck-c37), (pshoop-c11) and (psbck-c36) we have:

(x � y)−∼ = (x � y)−∼ ∧ y−∼ = [
y−∼ → (x � y)−∼

]� y−∼

= [
y−∼ → (

y � x∼
)−]� y−∼ = [

y−∼ → (
y−∼ � x∼

)−]� y−∼

= [
y−∼ � (

y−∼ � x∼
)]− � y−∼ = (

y−∼ ∧ x∼
)− � y−∼

= (
y−∼− ∨ x−∼

)� y−∼ = (
y− ∨ x−∼

)� y−∼

= (
y− � y−∼

)∨ (
x−∼ � y−∼

)= 0∨ (
x−∼ � y−∼

)

= x−∼ � y−∼. �

Corollary 4.8 Every good pseudo-BL algebra is normal.

Proposition 4.15 In every locally finite pseudo-BL algebra A we have:

(1) x � z= y � z �= 0 implies x = y;
(2) z� x = z� y �= 0 implies x = y.

Proof

(1) Assume x �= y. Then x ∧ y < y or x ∧ y < x.
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In the first case we have y → x = y → x ∧ y < 1.
Applying (psbl-c2) and by hypothesis we get

(x ∧ y)� z= (x � z)∧ (y � z)= x � z.

Since x ∧ y = (y → x)� y, we have

x � z= (x ∧ y)� z= (y → x)� (y � z)= (y → x)� (x � z).

Taking into consideration that y → x < 1, applying Proposition 4.10 we get
x � z= 0, which is a contradiction. Therefore x = y.

For the case x ∧ y < x we get the same result.
(2) Similar to (1). �

Let A be a pseudo-BL algebra. Recall that ([86]):

– B(A) is the Boolean algebra of all complemented elements in the distributive
lattice L(A)= (A,∧,∨,0,1) of A;

– Reg(A) := {x ∈A | x = x−∼ = x∼−};
– Id(A) := {x ∈A | x � x = x}.

Proposition 4.16 Let A be a pseudo-BL algebra, x ∈ Id(A) and y ∈ A. Then the
following hold:

(1) x � y = x ∧ y = y � x;
(2) x ∧ x− = x ∧ x∼ = 0;
(3) x → y = x � y;
(4) x− = x∼.

Proof

(1) We have:

x ∧ y = x � (x � y)= x � x � (x � y)= x � (x ∧ y)= (x � x)∧ (x � y)

= x ∧ (x � y)= x � y.

Similarly, x ∧ y = y � x.
(2) Applying (1) we get x ∧ x− = x− � x = 0 and x ∧ x∼ = x∼ � x = 0.
(3) Since u ≤ x → y iff u� x ≤ y iff x � u ≤ y iff u ≤ x � y for any u ∈ A, it

follows that x → y = x � y.
(4) This follows from (3) where y = 0. �

Proposition 4.17 ([86]) If A is a pseudo-BL algebra, then B(A)= Reg(A)∩ Id(A).

Remark 4.8 The pseudo-BL algebras presented in this section are in fact left-
pseudo-BL algebras. For the sake of completeness we also define the notion of a
right-pseudo-BL algebra as a structure AR = (AR,∨R,∧R,⊕R,→R,�R,0R,1R)

of type (2,2,2,2,2,0,0) satisfying the following axioms:
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(rpsBL1) (AR,∨R,∧R,0R,1R) is a bounded lattice;
(rpsBL2) (AR,⊕R,0R) is a monoid;
(rpsBL3) z≤R x ⊕R y iff y →R z≤R x iff x �R z≤R y for any x, y, z ∈AR ;
(rpsBL4) (x →R y)⊕R x = x ⊕R (x �R y)= x ∧R y for all x, y ∈AR ;
(rpsBL5) (x →R y)∧R (y →R x)= (x �R y)∧R (y �R x)= 0R .

For other results regarding pseudo-BL algebras we refer the reader to [85, 86]
and [143].

4.4 Pseudo-MV Algebras

(Right-)pseudo-MV algebras were introduced by G. Georgescu and A. Iorgulescu
in [135] and [137] as a generalization of MV-algebras, that is, a non-commutative
extension of MV-algebras. An equivalent definition of pseudo-MV algebras was
presented by J. Rachůnek in [241]. The notion of left-pseudo-MV algebras was
introduced and studied in [122].

A. Dvurečenskij proved in [97] that any pseudo-MV algebra is isomorphic with
some unit interval Γ (G,u)= {x ∈G | 0≤ x ≤ u}, where (G,u) is an �-group with
strong unit u. Then the category of unital �-groups is equivalent to the category of
pseudo-MV algebras.

In this section we will point out some basic definitions and results concerning
pseudo-MV algebras. For unproven results or unexplained notions we refer the
reader to [88, 100, 122, 128, 135, 137, 169, 188, 207, 238, 241].

In the sequel, an �u-group will be a pair (G,u) where (G,∨,∧,+,−,0) is an
�-group and u is a strong unit of G.

For each x ∈G, let x+ = x ∨ 0, x− = (−x) ∨ 0, and |x| = x+ + x−. It follows
that x = x+ − x−.

Proposition 4.18 ([9]) In any �-group G the following hold:

(1) |(x ∨ z)− (y ∨ z)| ≤ |x − y|;
(2) |(x ∧ z)− (y ∧ z)| ≤ |x − y|;
(3) |x + y| ≤ |x| + |y|;
(4) |x+ − y+| ≤ |x − y|;
(5) |x− − y−| ≤ |x − y|.

Example 4.10 ([96]) Let G be the group of all matrices of the form

A=
(

ξ α

0 1

)

where ξ,α ∈ R, ξ > 0 and the group operation is the usual multiplication of matri-
ces. We denote A by (ξ,α).

Then A−1 = (1/ξ,−α/ξ) and (1,0) is the neutral element.
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If we define G+ := {(ξ,α) | (i) ξ > 1 or (ii) ξ = 1 and α ≥ 0}, then G with the
positive cone G+ is a linearly ordered �-group with strong unit U = (2,0).

Now we will recall an important construction in the theory of �-groups, namely
the lexicographic product ([9]). If H is a linearly ordered group and G is an �-group,
then the lexicographic product of H and G is H×lex G := (H×G,≤,+,−, (0,0)),
where +, − and ≤ are defined as follows:

(x1, y1)+ (x2, y2) := (x1 + x2, y1 + y2),

(x1, y1)− (x2, y2) := (x1 − x2, y1 − y2),

(x1, y1)≤ (x2, y2) iff (i) x1 ≤ x2 or (ii) x1 = x2 and y1 ≤ y2.

Definition 4.6 ([122]) A left-pseudo-MV algebra is a structure (AL,�L,⊕L,−L ,
∼L,0L,1L) of type (2,2,1,1,0,0) such that the following axioms are satisfied for
all x, y, z ∈AL:

(lpsMV1) x �L (y �L z)= (x �L y)�L z;
(lpsMV2) x �L 1L = 1L �L x = x;
(lpsMV3) x �L 0L = 0L �L x = 0L;
(lpsMV4) 0−L

L = 1L, 0∼L

L = 1L;
(lpsMV5) (x−L �L y−L)∼L = (x∼L �L y∼L)−L ;
(lpsMV6) x �L (x∼L ⊕L y) = y �L (y∼L ⊕L x) = (x ⊕L y−L) �L y = (y ⊕L

x−L)�L x;
(lpsMV7) x ⊕L (x−L �L y)= (x �L y∼L)⊕L y;
(lpsMV8) (x−L)∼L = x;

where x ⊕L y := (y−L � x−L)∼L = (y∼L � x∼L)−L .

Example 4.11 ([85]) Let us consider an arbitrary �-group (G,∨,∧,+,−,0) and let
u′ ∈G, u′ ≤ 0. Define:

x′ �L y′ := (
x′ + y′

)∨ u′,

x′−L := u′ − x′, x′∼L =−x′ + u′,

x′ ⊕L y′ := (
x′ − u′ + y′

)∧ 0.

Then (AL = [u′,0],�L,⊕L,−L ,∼L ,0L = u′,1L = 0) is a left-pseudo-MV algebra.

If (AL,�L,⊕L,−L ,∼L ,0L,1L) is a left-pseudo-MV algebra, we make the defi-
nition:

x →L y := (
x�Ly∼L

)−L = y⊕Lx−L, x �L y := (
y−L�Lx

)∼L = x∼L⊕Ly.

Proposition 4.19 ([122]) In any left-pseudo-MV algebra A the following properties
hold:
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(lpsmv-c1) (x−L)∼L = x = (x∼L)−L ;
(lpsmv-c2) x ∧L y = x �L (x∼L ⊕L y) = x �L (x �L y) = y �L (y∼L ⊕L x) =

(x ⊕L y−L)�L y = (y ⊕L x−L)�L x = (x →L y)�L x;
(lpsmv-c3) x ∨L y = x ⊕L (x−L �L y)= y ⊕L (y−L �L x)= (x �L y∼L)⊕L y =

(y �L x∼L)⊕L x = (x →L y)�L y = (x �L y)→L y;
(lpsmv-c4) x ≤L y iff y−L �L x = 0L iff x �L y = 1L iff x∼L ⊕L y = 1L iff x =

y �L (y∼L ⊕L x) iff y = y ⊕L (y−L �L x) iff y �L x−L = 1L iff x →L y = 1L

iff x ⊕L y∼L = 0L, 0L ≤ x ≤ 1L;
(lpsmv-c5) (AL,∧L,∨L,0L,1L) is a bounded distributive lattice;
(lpsmv-c6) x ⊕L 0L = 0L ⊕L x = x and x ⊕L 1L = 1L ⊕L x = 1L;
(lpsmv-c7) x �L y = (y−L ⊕L x−L)∼L = (y∼L ⊕L x∼L)−L = (x →L y−L)∼L =

(y �L x∼L)−L ;
(lpsmv-c8) x ⊕L (y ⊕L z)= (x ⊕L y)⊕L z;
(lpsmv-c9) z≤L x ⊕L y iff x−L �L z≤L y iff z�L y∼L ≤L x and x �L y ≤L z iff

x ≤L z⊕L y−L = y →L z iff y ≤L x∼L ⊕L z= x �L z;
(lpsmv-c10) (x ⊕L y−L) ∨L (y ⊕L x−L) = (x∼L ⊕L y) ∨L (y∼L ⊕L x) = 1L =

(y →L x)∨L (x →L y)= (y �L x)∨L (x �L y);
(lpsmv-c11) (y �L x∼L)∧L (x �L y∼L)= (y−L �L x)∧L (x−L �L y)= 0L.

Corollary 4.9 If (AL,�L,⊕L,−L ,∼L ,0L,1L) is a left-pseudo-MV algebra, then
(AL,∧L,∨L,�L,→L,�L,0L,1L) is a pseudo-BL algebra.

Definition 4.7 A (right-)pseudo-MV algebra is a structure (A,⊕,�,− ,∼ ,0,1) of
type (2,2,1,1,0,0) such that the following axioms hold for all x, y, z ∈A:

(psMV1) x ⊕ (y ⊕ z)= (x ⊕ y)⊕ z;
(psMV2) x ⊕ 0= 0⊕ x = x;
(psMV3) x ⊕ 1= 1⊕ x = 1;
(psMV4) 1− = 0, 1∼ = 0;
(psMV5) (x− ⊕ y−)∼ = (x∼ ⊕ y∼)−;
(psMV6) x ⊕ (x∼ � y)= y ⊕ (y∼ � x)= (x � y−)⊕ y = (y � x−)⊕ x;
(psMV7) x � (x− ⊕ y)= (x ⊕ y∼)� y;
(psMV8) (x−)∼ = x;

where x � y := (y− ⊕ x−)∼.

We consider that the operation � has priority over the operation ⊕.
In the sequel by a pseudo-MV algebra we mean a right-pseudo-MV algebra.

Example 4.12 ([137]) Consider an arbitrary �-group G and let u ∈G, u≥ 0. If we
put by definition:

AR = Γ (G,u) := {x ∈G | 0≤ x ≤ u},
x ⊕ y := (x + y)∧ u,

x− := u− x,
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x∼ := −x + u,

x � y := (x − u+ y)∨ 0,

then (AR = Γ (G,u),⊕,− ,∼ ,0, u) is a pseudo-MV algebra.

Example 4.13 ([116]) Let A ⊂ R × R, A = {(1, y) | y ≥ 0} ∪ {(2, y) | y ≤ 0} and
0= (1,0), 1= (2,0). For all (a, b), (c, d) ∈A define:

(a, b)⊕ (c, d) :=
⎧
⎨

⎩

(1, b+ d) if a = c= 1
(2, ad + b) if ac= 2 and ad + b ≤ 0
(2,0) otherwise,

(a, b)− :=
(

2

a
,−2b

a

)
, (a, b)∼ =

(
2

a
,− b

2a

)
.

Then (A,⊕,�,− ,∼ ,0,1) is a pseudo-MV algebra, where (a, b) � (c, d) :=
((c, d)− ⊕ (a, b)−)∼.

Example 4.14 ([96]) Let G= (Z×Z×Z,+, (0,0,0),≤) be the Scrimger 2-group.
The group operation + is defined by:

(k1,m1, n1)+ (k2,m2, n2) :=
{

(k1 +m2,m1 + k2, n1 + n2) if n2 is odd
(k1 + k2,m1 +m2, n1 + n2) if n2 is even.

The neutral element is 0= (0,0,0) and

−(k,m,n) :=
{

(−m,−k,−n) if n is odd
(−k,−m,−n) if n is even.

The order relation on G is (k1,m1, n1)≤ (k2,m2, n2) iff

(i) n1 < n2 or (ii) n1 = n2, k1 ≤ k2,m1 ≤m2.

Then

(k1,m1, n1)∨ (k2,m2, n2)=
⎧
⎨

⎩

(k1, k2, n1) if n1 > n2
(k1 ∨ k2,m1 ∨m2, n1 ∨ n2) if n1 = n2
(k2,m2, n2) if n1 < n2.

One can check that G is a non-Abelian �-group which is not linearly ordered and
that u= (1,1,1) is a strong unit of G. The positive cone of G is

G+ = Z×Z×Z
+
>0 ∪Z

+ ×Z
+ × {0}.

The corresponding pseudo-MV algebra has the form

A= Γ (G,u)= Z
+ ×Z

+ × {0} ∪Z≤1 ×Z≤1 × {1}
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with:

(k,m,0)− := (1− k,1−m,1),

(k,m,0)∼ := (1−m,1− k,1),

(k,m,1)− := (1−m,1− k,0),

(k,m,1)∼ := (1− k,1−m,0),

(k1,m1,0)⊕ (k2,m2,0) := (k1 + k2,m1 +m2,0),

(k1,m1,0)⊕ (k2,m2,1) := (
(m1 + k2)∧ 1, (m2 + k1)∧ 1,1

)
,

(k1,m1,1)⊕ (k2,m2,0) := (
(k1 + k2)∧ 1, (m1 +m2)∧ 1,1

)
,

(k1,m1,1)⊕ (k2,m2,1) := (1,1,1).

Proposition 4.20 ([137]) In any pseudo-MV algebra the following properties hold:

(psmv-c1) x � y = (y∼ ⊕ x∼)−;
(psmv-c2) (x∼)− = x;
(psmv-c3) x ⊕ x∼ = 1, x− ⊕ x = 1;
(psmv-c4) (x ⊕ y)− = y− � x−, (x ⊕ y)∼ = y∼ � x∼;
(psmv-c5) (x � y)− = y− ⊕ x−, (x � y)∼ = y∼ ⊕ x∼;
(psmv-c6) x ⊕ y = (y− � x−)∼ = (y∼ � x∼)−;
(psmv-c7) x∼ � y ⊕ y∼ = y∼ � x ⊕ x∼.

Proposition 4.21 ([137]) In a pseudo-MV algebra A the following are equivalent:

(a) x− ⊕ y = 1;
(b) y∼ � x = 0;
(c) y = x ⊕ x∼ � y;
(d) x = x � (x− ⊕ y);
(e) there is an a ∈A such that y = x ⊕ a;
(f) x � y− = 0;
(g) y ⊕ x∼ = 1.

We define x ≤ y iff one of the above equivalent conditions holds and “≤” defines
an order relation on A ([137]). Moreover, A is a distributive lattice with the lattice
operations defined as below:

x ∨ y := x ⊕ x∼ � y = y ⊕ y∼ � x = x � y− ⊕ y = y � x− ⊕ x,

x ∧ y := x � (
x− ⊕ y

)= y � (
y− ⊕ x

)= (
x ⊕ y∼

)� y = (
y ⊕ x∼

)� x.

Proposition 4.22 ([137]) In a pseudo-MV algebra A the following hold:

(psmv-c8) x ≤ y implies a⊕ x ≤ a ⊕ y, x ⊕ a ≤ y ⊕ a;
(psmv-c9) x � y ≤ z iff y ≤ x− ⊕ z iff x ≤ z⊕ y∼;
(psmv-c10) x � y ≤ x ∧ y ≤ x ⊕ y ≤ x ∨ y.
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In the sequel we will use the notation:

0x := 0, (n+ 1)x := nx ⊕ x for n≥ 1.

Proposition 4.23 ([137]) In a pseudo-MV algebra A the following hold:

(psmv-c11) x ⊕ (y ∧ z)= (x ⊕ y)∧ (x ⊕ z), (y ∧ z)⊕ x = (y ⊕ x)∧ (z⊕ x);
(psmv-c12) x ⊕ (y ∨ z)= (x ⊕ y)∨ (x ⊕ z), (y ∨ z)⊕ x = (y ⊕ x)∨ (z⊕ x);
(psmv-c13) x � y− ∧ y � x− = 0;
(psmv-c14) x∼ � y ∧ y∼ � x = 0;
(psmv-c15) if x ⊕ y = x ⊕ z and x � y = x � z, then y = z;
(psmv-c16) if y ⊕ x = z⊕ x and y � x = z� x, then y = z;
(psmv-c17) if x ∧ y = 0, then nx ∧ ny = 0 for all n ∈N, n≥ 1.

Remark 4.9 ([122])

(1) If (AL,�L,⊕L,−L ,∼L ,0L,1L) is a left-pseudo-MV algebra, then (AL,⊕L,

�L,∼L ,−L ,0L,1L) is a right-pseudo-MV algebra.
(2) If (AR,⊕R,�R,−R ,∼R ,0R,1R) is a right-pseudo-MV algebra, then (AR,�R,

⊕R,∼R ,−R ,0R,1R) is a left-pseudo-MV algebra.

Remark 4.10 ([85]) Let (AR,⊕R,�R,−R ,∼R ,0R,1R) be a right-pseudo-MV alge-
bra and let →R , �R be two implications defined by:

x →R y := y �R x−R and x �R y := x∼R �R y.

Then (AR,∨R,∧R,⊕R,→R,�R,0R,1R) is a right-pseudo-BL algebra.

Remark 4.11

(1) Every locally finite bounded R�-monoid is a linearly ordered MV-algebra (The-
orem 3.10 in [110]).

(2) If H is a maximal and normal filter of a bounded R�-monoid A, then A/H is a
linearly ordered MV-algebra (Theorem 3.12 in [110]).

Proposition 4.24 ([85]) Let (A,∧,∨,�,→,�,0,1) be a pseudo-BL(pDN) alge-
bra (i.e. x−∼ = x∼− = x for all x ∈A). Define the operation ⊕ on A by

x ⊕ y := (
y− � x−

)∼ = (
y∼ � x∼

)− = x− � y = y∼ → x.

Then (A,�,⊕,− ,∼ ,0,1) is a pseudo-MV algebra.

Corollary 4.10 ([85]) A pseudo-BL algebra A is a pseudo-MV algebra if and only
if A has condition (pDN).

Remark 4.12 To be more precise, we have:
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(1) A left-pseudo-BL algebra (AL,∧L,∨L,�L,→L,�L,0L,1L) is a left-pseudo-
MV algebra iff (x−L)∼L = (x∼L)−L = x for all x ∈ AL, where x−L = x → 0L

and x∼L = x � 0L.
(2) A right-pseudo-BL algebra (AR,∨R,∧R,⊕R,→R,�R,0R,1R) is a right-

pseudo-MV algebra iff (x−R )∼R = (x∼R )−R = x for all x ∈ AR , where x−R =
x → 1R and x∼R = x � 1R .

Proposition 4.25 Any locally finite pseudo-BL algebra is a locally finite MV-
algebra.

Proof According to Proposition 2.1, any locally finite pseudo-BL algebra satisfies
(pDN), so it is a pseudo-MV algebra. �

Proposition 4.26 Let A be a pseudo-BL algebra and H a normal filter of A. The
following are equivalent:

(a) H is a maximal filter;
(b) A/H is a locally finite MV-algebra.

Proof This follows from Propositions 1.42 and 4.25. �

Theorem 4.4 Pseudo-MV algebras are termwise equivalent to bounded Wajsberg
pseudo-hoops.

Proof According to Corollary 4.9 and Remark 4.10 every pseudo-MV algebra A

is a pseudo-BL algebra satisfying x ∨ y = (y → x) � x = (y � x) → x for all
x, y ∈A. (Since x ∨ y = y ∨ x, we have x ∨ y = (x → y) � y = (x � y)→ y for
all x, y ∈ A.) Conversely, if a pseudo-BL algebra A satisfies the above condition,
then for y = 0 we get x−∼ = x∼− = x for all x ∈A, hence, by Proposition 4.24, A

is a pseudo-MV algebra. Applying Theorem 4.3 it follows that pseudo-MV algebras
are termwise equivalent to bounded basic pseudo-hoops satisfying x ∨ y = (y →
x)� x = (y � x)→ x.

Obviously, any pseudo-hoop satisfying x ∨ y = (y → x) � x = (y � x) → x

is a Wajsberg pseudo-hoop and by Proposition 2.19 any Wajsberg pseudo-hoop is a
basic pseudo-hoop.

We conclude that pseudo-MV algebras are termwise equivalent to bounded Wa-
jsberg pseudo-hoops. �

Dvurečenskij proved that any pseudo-MV algebra is isomorphic to some unit
interval Γ (G,u) defined by the formulas given in Example 4.12 and the category of
unital �-groups is categorically equivalent to the category of pseudo-MV algebras.

Theorem 4.5 (Theorem 3.9, Theorem 6.9 in [97]) Let (A,⊕,�,− ,∼ ,0,1) be a
pseudo-MV algebra. Then there exists an �-group G with strong unit u such that A

and Γ (G,u) are isomorphic pseudo-MV algebras. The category of unital �-groups
is categorically equivalent to the category of pseudo-MV algebras.
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Let (A,⊕,�,− ,∼ ,0,1) be a pseudo-MV algebra. Dvurečenskij defined a partial
addition + on A: x + y is defined iff x ≤ y−, and in this case x + y := x ⊕ y (see
[95, 108]). Obviously, x + y is defined iff x ≤ y− iff y ≤ x∼.

Proposition 4.27 (Proposition 6.4.2 in [108]) The following properties hold in any
pseudo-MV algebra A:

(1) x + 0= x = 0+ x for any x ∈A;
(2) x + x∼ = 1= x− + x for any x ∈A;
(3) if x− + y = 1, then y = x;
(4) if x + y = 1, then y = x∼ and x = y−.

On a pseudo-MV algebra A we define two distance functions d̄1, d̄2 :A×A→A

as follows:

d̄1(x, y) := x � y− ⊕ y � x−, d̄2(x, y) := x∼ � y ⊕ y∼ � x.

Proposition 4.28 ([137]) In a pseudo-MV algebra A the following hold:

d̄1(x, y)= x � y− ∨ y � x−, d̄2(x, y)= x∼ � y ∨ y∼ � x.

In [85] the following connections between the distances d̄1, d̄2 on the pseudo-MV
algebra (A,⊕,�,− ,∼ ,0,1) and the distances d1, d2 on the corresponding pseudo-
BL algebra are proved:

d̄1(x, y)= (
d1(x, y)

)−
and d̄2(x, y)= (

d2(x, y)
)∼

for all x, y ∈A.

Definition 4.8 ([212]) The order of an element x, denoted ord(x), is the least n ∈N

such that nx = 1, if such n exists, and ∞ otherwise.

Proposition 4.29 ([212]) In any pseudo-MV algebra the following hold:

(1) ord(x−)= ord(x∼);
(2) ord(x)= ord(x−−)= ord(x∼∼).

Definition 4.9 ([137]) A nonempty subset I of a pseudo-MV algebra A is called an
ideal if the following conditions are satisfied:

(psmv-I1) if x ∈ I and y ∈A, y ≤ x, then y ∈ I ;
(psmv-I2) if x, y ∈ I , then x ⊕ y ∈ I .

An ideal I is normal if the following condition holds:
(psmv-I3) for every x, y ∈ A, y � x− ∈ I iff x∼ � y ∈ I (or, equivalently, x →R

y ∈ I iff x �R y ∈ I ).
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An ideal I of A is called proper if I �=A. An ideal I of A is called maximal if it is
proper and for each ideal J �= I , if I ⊆ J , then J =A.

An ideal I of A is called principal if there is an element a ∈A such that I is the
ideal generated by {a}, i.e. I = (a] = {x ∈A|x ≤ na for some n ∈N}.

Associated with any normal ideal I of A is a congruence defined by:

x ≡I y iff d̄1(x, y) ∈ I iff d̄2(x, y) ∈ I.

Denote by x/I the congruence class of an element x ∈A and by A/I the set of con-
gruence classes of A. Then A/I becomes a pseudo-MV algebra with the operations
induced by those of A. We notice that x/I = 0/I iff x ∈ I .

Definition 4.10 A nonempty subset I of a pseudo-MV algebra A is called a filter if
the following conditions are satisfied:

(psmv-F1) if x ∈ I and y ∈A, y ≥ x, then y ∈ I ;
(psmv-F2) if x, y ∈ I then x � y ∈ I .

Remark 4.13 J. Rachůnek introduced in [241] the so called non-commutative MV-
algebras which are in fact equivalent to pseudo-MV algebras. The equivalence
is given by the fact that if (A,⊕,�,− ,∼ ,0,1) is a pseudo-MV algebra, then
(A,⊕,�′,− ,∼ ,0,1), where x �′ y = y � x, is a non-commutative MV-algebra.

Conversely, if (A,⊕,�,− ,∼ ,0,1) is a non-commutative MV-algebra, then
(A,⊕,�′,− ,∼ ,0,1), where x �′ y = y � x, is a pseudo-MV algebra.

Remark 4.14 The notions of “right-” and “left-” algebras are connected with the
right-continuity of a pseudo-t-conorm and with the left-continuity of a pseudo-t-
norm, respectively (see [122]). The statement “⊕ is a pseudo-t-conorm on the poset
(A,≤,0) with smallest element 0” is equivalent to the statement “the algebra (A,≤,

⊕,0) is a partially ordered, integral right-monoid”. Dually, the statement “� is a
pseudo-t-norm on the poset (A,≥,1) with greatest element 1” is equivalent to the
statement “the algebra (A,≥,�,1) is a partially ordered, integral left-monoid” (see
[179, 181, 186]). Initially, pseudo-MV algebras were defined as “right” algebras,
while pseudo-BL algebras were defined as “left” algebras. For this reason, in the
present book by pseudo-MV algebras we mean right-pseudo-MV algebras, while
in the case of pseudo-BL algebras, pseudo-MTL algebras, FLw-algebras, pseudo-
hoops and pseudo-BCK algebras we choose to work with “left” algebras.

4.5 The Glivenko Property

Glivenko proved that a proposition is classically demonstrable if and only if its
double negation is intuitionistically demonstrable ([154]). In other words, classical
propositional logic can be interpreted in intuitionistic propositional logic.
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Versions of both the logical and algebraic formulations of Glivenko’s theorem
have been intensively studied ([127, 129, 254]).

In this section we define the Glivenko property for multiple-valued logic alge-
bras.

For a bounded pseudo-BCK algebra (A,→,�,0,1) we define

Reg(A) := {
a ∈A | a−∼ = a∼− = a

}
.

Obviously, 0,1 ∈ Reg(A).
One can easily see that A satisfies the (pDN) condition if and only if A= Reg(A).
Moreover, if A is good, then Reg(A) = {a ∈ A | a−∼ = a} and a−∼, a∼− ∈

Reg(A).

Proposition 4.30 If (A,→,�,0,1) is a good pseudo-BCK algebra, then:

(1) x ⊕ y ∈ Reg(A) for all x, y ∈A;
(2) x ∨1 y, x ∨2 y ∈ Reg(A) for all x, y ∈ Reg(A);
(3) x → y, x � y ∈ Reg(A) for all x, y ∈ Reg(A);
(4) (Reg(A),→,�,0,1) is a subalgebra of A.

If A is a good pseudo-hoop, then

(5) x ∧ y ∈ Reg(A) for all x, y ∈ Reg(A).

If A is a good pseudo-MTL algebra, then

(6) x ∨ y ∈ Reg(A) for all x, y ∈ Reg(A).

If A is a good pseudo-BL algebra, then:

(7) x � y ∈ Reg(A) for all x, y ∈ Reg(A);
(8) (Reg(A),∧,∨,�,→,�,0,1) is a subalgebra of A.

Proof

(1) This follows from Proposition 1.24(5).
(2) This follows from Proposition 1.6(3).
(3) Applying (psbck-c21), if x, y ∈ Reg(A) then:

x → y = x → y∼− = (
x → y∼−

)∼− = (x → y)∼−,

x � y = x � y−∼ = (
x � y−∼

)−∼ = (x � y)−∼.

(4) This follows by (3) and from the fact that 0,1 ∈ Reg(A).
(5) By (pshoop-c10).
(6) By (psbck-c41) and (psmtl-c1).
(7) This follows from Proposition 4.14.
(8) This follows by (3), (5), (6), (7) and from the fact that 0,1 ∈ Reg(A). �

Theorem 4.6 In any good pseudo-BCK algebra A the following are equivalent:

(a) (x−∼ → x)−∼ = (x−∼ � x)−∼ = 1 for all x ∈A;
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(b) (x−∼ → x)− = (x−∼ � x)∼ = 0;
(c) (x → y)−∼ = x → y−∼ and (x � y)−∼ = x � y−∼ for all x, y ∈A;
(d) the mapping f : A −→ Reg(A) defined by f (x) = x−∼ is a surjective mor-

phism of pseudo-BCK algebras.

Proof

(a) ⇔ (b) This is obvious.
(a) ⇒ (c) Applying (psbck-c15) and (psbck-c19) we have:

x → y ≤ y− � x− = x → y−∼.

Hence, by (psbck-c21) we get:

(x → y)−∼ ≤ (
x → y−∼

)−∼ = x → y−∼.

Conversely, from (psbck-c5) we have:

y−∼ → y ≤ (
x → y−∼

)→ (x → y).

Taking into consideration that x → y ≤ (x → y)−∼ and (psbck-c10) we have:

(
x → y−∼

)→ (x → y)≤ (
x → y−∼

)→ (x → y)−∼.

Applying (a) and (psbck-c21), we get:

1= (
y−∼ → y

)−∼ ≤ [(
x → y−∼

)→ (x → y)−∼
]−∼

= (
x → y−∼

)→ (x → y)−∼.

It follows that (x → y−∼)→ (x → y)−∼ = 1, so x → y−∼ ≤ (x → y)−∼.
We conclude that (x → y)−∼ = x → y−∼.
Similarly, (x � y)−∼ = x � y−∼.

(c) ⇒ (a) Applying (c) we have:

(
x−∼ → x

)−∼ = x−∼ → x−∼ = 1 and
(
x−∼ � x

)−∼ = x−∼ � x−∼ = 1.

(c) ⇒ (d) From (c) and applying (psbck-c19), we have:

f (x → y)= (x → y)−∼ = x → y−∼ = x−∼ → y−∼ = f (x)→ f (y),

f (x � y)= (x � y)−∼ = x � y−∼ = x−∼ � y−∼ = f (x) � f (y).

Hence f is a morphism from A to Reg(A).
Moreover, for an arbitrary y ∈ Reg(A), taking x = y−∼, we have: f (x) =
(y−∼)−∼ = y−∼ = y, thus f is a surjective morphism.



134 4 Other Non-commutative Multiple-Valued Logic Algebras

(d) ⇒ (c) If f : A −→ Reg(A) defined by f (x) = x−∼ is a morphism, we have:
f (x → y)= f (x)→ f (y), that is, (x → y)−∼ = x−∼ → y−∼.
Since by (psbck-c19) we have x−∼ → y−∼ = x → y−∼, it follows that (x →
y)−∼ = x → y−∼. Similarly, (x � y)−∼ = x � y−∼. �

Definition 4.11 We say that a good pseudo-BCK algebra A has the Glivenko prop-
erty if it satisfies one of the equivalent conditions from Theorem 4.6.

Remark 4.15 By (psbck-c19), in any good pseudo-BCK algebra A satisfying the
Glivenko property the following hold:

(x → y)−∼ = x−∼ → y−∼,

(x � y)−∼ = x−∼ � y−∼

for all x, y ∈A.

Example 4.15

(1) The good FLw-algebra A from Example 4.4 has the Glivenko property.
(2) The good FLw-algebra A from Example 4.1 does not satisfy the Glivenko prop-

erty. Indeed, (b � a)−∼ = b �= 1= b � a−∼.
(3) Any pseudo-BCK(pDN) algebra has the Glivenko property.

Remark 4.16

(1) Any good pseudo-hoop has the Glivenko property.
Indeed, if A is a good pseudo-hoop, then according to (pshoop-c9), the fol-

lowing hold for all x, y ∈A:

(x → y)−∼ = x−∼ → y−∼, (x � y)−∼ = x−∼ � y−∼.

Applying (psbck-c19) it follows that

(x → y)−∼ = x → y−∼, (x � y)−∼ = x � y−∼.

Thus any good pseudo-hoop satisfies the Glivenko property.
(2) Any good R�-monoid has the Glivenko property.

Remark 4.17

(1) It is obvious that the property (pshoop-c9) holds in any good FLw-algebra with
(pDN).

(2) The property (pshoop-c9) does not hold in any good FLw-algebra. Indeed, if
A is the good FLw-algebra from Example 4.1, we have (b � a)−∼ = b �= 1 =
b−∼ � a−∼.



Chapter 5
Classes of Non-commutative Residuated
Structures

In this chapter we study special classes of non-commutative residuated structures:
local, perfect and Archimedean structures. The local bounded pseudo-BCK(pP)
algebras are characterized in terms of primary deductive systems, while the per-
fect pseudo-BCK(pP) algebras are characterized in terms of perfect deductive sys-
tems. One of the main results consists of proving that the radical of a bounded
pseudo-BCK(pP) algebra is normal. We also prove that any linearly ordered pseudo-
BCK(pP) algebra and any locally finite pseudo-BCK(pP) algebra are local. Other
results state that any local FLw-algebra and any locally finite FLw-algebra are di-
rectly indecomposable. The classes of Archimedean and hyperarchimedean FLw-
algebras are introduced and it is proved that any locally finite FLw-algebra is hyper-
archimedean and any hyperarchimedean FLw-algebra is Archimedean.

5.1 Local Pseudo-BCK Algebras with Pseudo-product

Definition 5.1 A pseudo-BCK(pP) algebra is called local if it has a unique maximal
deductive system.

In this section by a pseudo-BCK(pP) algebra we mean a bounded pseudo-
BCK(pP) algebra, even though some notions and properties are also valid for un-
bounded pseudo-BCK(pP) algebras.

We define:

D(A) := {
x ∈A | ord(x)=∞}

and D(A)∗ := {
x ∈A | ord(x) <∞}

.

Obviously, D(A)∩D(A)∗ = ∅ and D(A)∪D(A)∗ =A.
We also remark that 1 ∈D(A) and 0 ∈D(A)∗.
Let A be a pseudo-BCK(pP) algebra and D ∈DS(A). We will use the following

notation:

D∗− :=
{
x ∈A | x ≤ y− for some y ∈D

}
,

D∗∼ :=
{
x ∈A | x ≤ y∼ for some y ∈D

}
.

L.C. Ciungu, Non-commutative Multiple-Valued Logic Algebras,
Springer Monographs in Mathematics, DOI 10.1007/978-3-319-01589-7_5,
© Springer International Publishing Switzerland 2014

135

http://dx.doi.org/10.1007/978-3-319-01589-7_5


136 5 Classes of Non-commutative Residuated Structures

Proposition 5.1 Let A be a local pseudo-BCK(pP) algebra. Then:

(1) any proper deductive system of A is included in the unique maximal deductive
system of A;

(2) A−
0 := {x ∈A | x− = 0} and A∼

0 := {x ∈A | x∼ = 0} are included in the unique
maximal deductive system of A.

Proof

(1) This is an immediate consequence of Zorn’s lemma.
(2) This follows from Proposition 1.30 and (1). �

Theorem 5.1 Let A be a pseudo-BCK(pP) algebra. Then the following are equiva-
lent:

(a) D(A) is a deductive system of A;
(b) D(A) is a proper deductive system of A;
(c) A is local;
(d) D(A) is the unique maximal deductive system of A;
(e) for all x, y ∈A, ord(x � y) <∞ implies ord(x) <∞ or ord(y) <∞.

Proof

(a) ⇒ (b) Since ord(0) = 1, we have 0 /∈ D(A), so D(A) is a proper deductive
system of A.

(b) ⇒ (a) This is obvious.
(a) ⇒ (e) Consider x, y ∈A such that ord(x � y) <∞, so x � y /∈D(A).

Since D(A) is a deductive system of A, it follows that x /∈D(A) or y /∈D(A).
Hence ord(x) <∞ or ord(y) <∞.

(e) ⇒ (a) Because 1 ∈ D(A) it follows that D(A) is nonempty. Consider x, y ∈
D(A), that is, ord(x)=∞ and ord(y)=∞. By (e) we get ord(x � y)=∞, so
x � y ∈ D(A). Consider x ∈ D(A) and y ∈ A such that x ≤ y. It follows that
xn > 0 for all n ∈N. Since xn ≤ yn we get yn > 0 for all n ∈N, so ord(y)=∞,
that is, y ∈D(A). Thus D(A) is a deductive system of A.

(d) ⇒ (c) This follows by the definition of a local pseudo-BCK(pP) algebra.
(c) ⇒ (d) If M is the unique maximal deductive system of A, then by Lemma 1.8

and Proposition 5.1 we have x ∈M iff [x)⊆M iff [x) is proper iff ord(x)=∞
iff x ∈D(A). Hence M =D(A).

(d) ⇒ (a) This is obvious.
(a) ⇒ (d) Since 0 /∈D(A), it follows that D(A) is a proper deductive system of A.

Let F be a proper deductive system of A. Consider x ∈ F . Since [x) ⊆ F , we
have that [x) is a proper deductive system of A, so by Lemma 1.8 it follows that
ord(x)=∞. Hence x ∈D(A), so F ⊆D(A). Thus D(A) is the unique maximal
deductive system of A. �

Corollary 5.1 If A is a local pseudo-BCK(pP) algebra, then:

(1) for any x ∈A, ord(x) <∞ or [ord(x−) <∞ and ord(x∼) <∞];
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(2) D(A)∗− ⊆D(A)∗ and D(A)∗∼ ⊆D(A)∗;
(3) D(A)∩D(A)∗− =D(A)∩D(A)∗∼ = ∅.

Proof

(1) Let x ∈A. Since x�x− = x∼�x = 0, it follows that ord(x�x−)= ord(x∼�
x)= ord(0)= 1 <∞. By Theorem 5.1(e) we get (1).

(2) Let x ∈ D(A)∗−. This means that there is a y ∈ D(A) such that x ≤ y−.
Since ord(y) =∞, by (1) we get that ord(y−) < ∞. Hence ord(x) < ∞, so
x ∈D(A)∗. Thus D(A)∗− ⊆D(A)∗. Similarly, D(A)∗∼ ⊆D(A)∗.

(3) This follows from (2), taking into consideration that D(A)∩D(A)∗ = ∅. �

Example 5.1 Consider the pseudo-BCK(pP) algebra A from Example 1.9. One can
easily check that D(A) = {a2, s, a, b,n, c, d,m,1} and it is a deductive system of
A, so A is a local pseudo-BCK(pP) algebra.

Proposition 5.2 Any linearly ordered pseudo-BCK(pP) algebra is local.

Proof Assume that A is a linearly ordered pseudo-BCK(pP) algebra and consider
x, y ∈ A such that ord(x � y) < ∞. Since A is linearly ordered, we have x ≤ y

or y ≤ x. Assume that x ≤ y. It follows that x � x ≤ x � y, so ord(x � x) <∞.
Hence ord(x) <∞. Similarly, from y ≤ x we get ord(y) <∞. Thus according to
Theorem 5.1(e), A is a local pseudo-BCK(pP) algebra. �

Proposition 5.3 Any locally finite pseudo-BCK(pP) algebra is local.

Proof We have D(A)= {1}, so D(A) is a deductive system of A. Applying Theo-
rem 5.1, it follows that A is local. �

Theorem 5.2 Any local FLw-algebra is directly indecomposable.

Proof Let A be a local FLw-algebra and a ∈ B(A). Since a− = a∼, according to
Corollary 5.1 we get that ord(a) <∞ or ord(a−) <∞. It follows that there exists
an n ∈ N, n ≥ 1, such that an = 0 or (a−)n = 0 (in fact, there exist n1, n2 ∈ N,
n1, n2 ≥ 1, such that an1 = 0 or (a−)n2 = 0, and we take n=min{n1, n2}). Since by
Proposition 3.13 and Corollary 3.1 we have an = a and (a−)n = a−, it follows that
a = 0 or a− = 0. If a− = 0, then a−∼ = 1 and by Corollary 3.2 we get a = a−∼ = 1.
Thus a ∈ {0,1}, hence B(A)= {0,1}. By Theorem 3.5 it follows that A is directly
indecomposable. �

Theorem 5.3 Any locally finite FLw-algebra is directly indecomposable.

Proof Let A be a locally finite FLw-algebra. According to Proposition 5.3, it follows
that A is local and applying Theorem 5.2 we conclude that A is directly indecom-
posable. �



138 5 Classes of Non-commutative Residuated Structures

Proposition 5.4 If P is a proper normal deductive system of a pseudo-BCK(pP)
algebra A, then the following are equivalent:

(a) P is primary;
(b) A/P is a local pseudo-BCK(pP) algebra;
(c) P is contained in a unique maximal deductive system of A.

Proof

(a) ⇔ (b) Applying Theorem 5.1(e) and Lemma 1.13(2), we have: A/P is lo-
cal iff [for all x, y ∈ A, ord(x/P � y/P ) < ∞ implies ord(x/P ) < ∞ or
ord(y/P ) < ∞] iff [for all x, y ∈ A, (x/P � y/P )n = 0/P for some n ∈ N

implies (x/P )m = 0/P or (y/P )m = 0/P for some m ∈N] iff [for all x, y ∈A,
(x � y)n/P = 0/P for some n ∈ N implies xm/P = 0/P or ym/P = 0/P for
some m ∈ N] iff [for all x, y ∈ A, ((x � y)n)− ∈ P for some n ∈ N implies
(xm)− ∈ P or (ym)− ∈ P for some m ∈N] iff P is primary.

(a) ⇔ (c) By (a)⇔ (b), P is primary iff A/P is local iff A/P has a unique maximal
deductive system. By Corollary 1.10 there is a bijection between Max(A/P ) and
{D |D ∈Max(A),P ⊆D}. It follows that P is primary if and only if there is a
unique maximal deductive system of A containing P . �

Theorem 5.4 If A is a pseudo-BCK(pP) algebra, then the following are equiva-
lent:

(a) A is local;
(b) any proper normal deductive system of A is primary;
(c) {1} is a primary deductive system of A.

Proof

(a) ⇒ (b) Let H be a proper normal deductive system of A. By Theorem 5.1(d),
D(A) is the unique maximal deductive system of A. Hence H ⊆ D(A) and
according to Proposition 5.4 it follows that H is primary.

(b) ⇒ (c) Since {1} is a proper normal deductive system of A, by (b) we get that
{1} is primary.

(c) ⇒ (a) Since {1} is primary, applying Proposition 5.4 it follows that A/{1} is
local. Taking into consideration that A∼=A/{1}, it follows that A is local. �

5.2 Perfect Residuated Structures

5.2.1 Perfect Pseudo-BCK Algebras with Pseudo-product

Definition 5.2 A bounded pseudo-BCK(pP) algebra A is called perfect if it satisfies
the following conditions:

(1) A is a local good pseudo-BCK(pP) algebra;
(2) for any x ∈A, ord(x) <∞ iff [ord(x−)=∞ and ord(x∼)=∞].
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Proposition 5.5 Let A be a local good pseudo-BCK(pP) algebra. Then the follow-
ing are equivalent:

(a) A is perfect;
(b) D(A)∗− =D(A)∗∼ =D(A)∗.

Proof

(a) ⇒ (b) Since A is a local pseudo-BCK(pP) algebra, applying Corollary 5.1(2)
we get D(A)∗− ⊆D(A)∗ and D(A)∗∼ ⊆D(A)∗.
Conversely, consider x ∈ D(A)∗, that is, ord(x) < ∞. By the definition of a
perfect pseudo-BCK(pP) algebra we get ord(x−) =∞ and ord(x∼) =∞, that
is, x−, x∼ ∈D(A). Applying the properties x ≤ x∼− and x ≤ x−∼ we get x ∈
D(A)∗− and x ∈D(a)∗∼. It follows that D(A)∗ ⊆D(A)∗− and D(A)∗ ⊆D(A)∗∼,
respectively. Thus D(A)∗− =D(A)∗ and D(A)∗∼ =D(A)∗.

(b) ⇒ (a) Consider x ∈A such that ord(x) <∞, that is, x ∈D(A)∗.
Since D(A)∗− = D(A)∗, there exists a y ∈ D(A) such that x ≤ y−, so y−∼ ≤
x∼. By y ≤ y−∼ and ord(y)=∞, we get ord(y−∼)=∞. From y−∼ ≤ x∼ we
get ord(x∼) =∞. Since D(A)∗∼ = D(A)∗, there exists a y ∈ D(A) such that
x ≤ y∼, so y∼− ≤ x−. By y ≤ y∼− and ord(y) =∞, we get ord(y∼−) =∞.
From y∼− ≤ x− we get ord(x−)=∞.
Conversely, consider x ∈A such that ord(x−)=∞ and ord(x∼)=∞.
Since A is local, by Corollary 5.1(1) it follows that ord(x) <∞.
Thus A is a perfect pseudo-BCK(pP) algebra. �

Corollary 5.2 If A is a perfect pseudo-BCK(pP) algebra, then

D(A)∗ = {
x− | x ∈D(A)

}= {
x∼ | x ∈D(A)

}
.

Example 5.2

(1) Consider the pseudo-BCK(pP) algebra A from Example 1.9. Since A is not
good, it follows that it is not a perfect pseudo-BCK(pP) algebra.

(2) If A1 is the good pseudo-BCK(pP) algebra from Example 1.17, we have
D(A1) = {a1, a2, b2, s, a, b,n, c, d,m,1} and D(A1)

∗ = {0}. It is easy to see
that D(A1) is a deductive system of A1. Since ord(0−)= ord(0∼)=∞, it fol-
lows that A1 is a perfect pseudo-BCK(pP) algebra.

Proposition 5.6 Let A be a good pseudo-BCK(pP) algebra and P a proper normal
deductive system of A. Then the following are equivalent:

(a) P is a perfect deductive system of A;
(b) A/P is a perfect pseudo-BCK(pP) algebra.

Proof By Proposition 5.4, A/P is local iff P is primary. Also, A/P is perfect iff
the following condition is satisfied:

ord(x/P ) <∞ iff
[
ord

(
(x/P )−

)=∞ and ord
(
(x/P )∼

)=∞]
.
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But, applying Lemma 1.13, we have:

ord(x/P ) <∞ iff (x/P )n = 0/P for some n ∈N iff
[(

xn
)− ∈ P for some n ∈N and

(
xn

)∼ ∈ P for some n ∈N
]
.

We also have:

ord
(
(x/P )−

)=∞ iff
(
(x/P )−

)m �= 0/P for all m ∈N iff
((

x−
)m)−

/∈ P for all m ∈N.

Taking into consideration the definition of a perfect deductive system it follows
that (a) ⇔ (b). �

Theorem 5.5 If A is a local good pseudo-BCK(pP) algebra, then the following are
equivalent:

(a) A is perfect;
(b) any proper normal deductive system of A is perfect;
(c) {1} is a perfect deductive system of A.

Proof

(a) ⇒ (b) Let D be a proper normal deductive system of A. Since A is local, by
Theorem 5.4 it follows that D is primary. Let x ∈ A such that (xn)− ∈ D for
some n ∈ N and suppose that ((x−)m)− ∈ D for some m ∈ N. Since D is
proper, [(xn)−), [((x−)m)−) ⊆ D are also proper deductive systems of A. By
Lemma 1.8(1) it follows that ord((xn)−)= ord(((x−)m)−)=∞. Since A is per-
fect, ord(xn) <∞ and ord((x−)m) <∞, hence ord(x) <∞ and ord(x−) <∞,
contradicting the fact that A is perfect.
Thus (xn)− ∈ D for n ∈ N implies ((x−)m)− /∈ D for all m ∈ N, that is, D is
perfect.

(b) ⇒ (c) This is obvious, since {1} is a proper normal deductive system of A.
(c) ⇒ (a) Since {1} is a perfect deductive system of A, applying Proposition 5.6 it

follows that A/{1} is perfect. Taking into consideration that A∼= A/{1} we get
that A is perfect. �

Definition 5.3 Let A be a pseudo-BCK(pP) algebra. The intersection of all maximal
deductive systems of A is called the radical of A and is denoted by Rad(A). The
intersection of all maximal normal deductive systems of A is called the normal
radical of A and is denoted by Radn(A).

It is obvious that Rad(A) and Radn(A) are proper deductive systems of A and
Rad(A)⊆ Radn(A).

Proposition 5.7 If A is a local pseudo-BCK(pP) algebra, then Rad(A)=D(A).
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Proof By Theorem 5.1 it follows that D(A) is the unique maximal deductive system
of A, so Rad(A)=D(A). �

Example 5.3 Consider the perfect pseudo-BCK(pP) A1 from Example 1.17. One
can easily check that

Rad(A1)= Radn(A1)=D(A1)= {a1, a2, b2, s, a, b,n, c, d,m,1}.

Lemma 5.1 Let A be a local pseudo-BCK(pP) algebra and x ∈ Rad(A)∗, y ∈A.

(1) If y ≤ x, then y ∈ Rad(A)∗;
(2) x � y ∈ Rad(A)∗.

Proof

(1) Since x ∈ Rad(A)∗, there exists an n ∈ N such that xn = 0. But y ≤ x, so
yn ≤ xn. It follows that yn = 0, that is, ord(y) <∞. Hence y ∈ Rad(A)∗.

(2) This follows from (1), taking into consideration that x � y ≤ x. �

Lemma 5.2 Let A be a pseudo-BCK(pP) algebra.

(1) If A is local, then x ∈ Rad(A) implies x−, x∼ ∈ Rad(A)∗;
(2) If A is perfect, then x ∈ Rad(A)∗ implies x−, x∼ ∈ Rad(A). �

Proof

(1) Let x ∈ Rad(A). If x− ∈ Rad(A) or x∼ ∈ Rad(A), then x−�x ∈ Rad(A) or x�
x∼ ∈ Rad(A), respectively. It follows that 0 ∈ Rad(A), a contradiction. Hence
x−, x∼ ∈ Rad(A)∗.

(2) Let x ∈ Rad(A)∗. If x− ∈ Rad(A)∗ or x∼ ∈ Rad(A)∗, then ord(x−) < ∞ or
ord(x∼) <∞, respectively. By definition of a perfect pseudo-BCK(pP) algebra
it follows that ord(x)=∞, a contradiction. Thus x−, x∼ ∈ Rad(A). �

Corollary 5.3 If A is a perfect pseudo-BCK(pP) algebra, then x ∈ Rad(A) implies
x−−, x−∼, x∼−, x∼∼ ∈ Rad(A).

Theorem 5.6 If A is a perfect pseudo-BCK(pP) algebra, then Rad(A) is a normal
deductive system of A.

Proof We have to prove that x → y ∈ Rad(A) iff x � y ∈ Rad(A) for all x, y ∈A.
Consider x, y ∈A such that x → y ∈ Rad(A) and suppose x � y /∈ Rad(A).

From y ≤ y−∼ we get x → y ≤ x → y−∼ (by (psbck-c14) and (psbck-c10)).
Since Rad(A) is a deductive system of A, it follows that x → y−∼ ∈ Rad(A), that
is, (x � y∼)− ∈ Rad(A) (by (psbck-c37) and from the fact that A is good).

Hence x � y∼ ∈ Rad(A)∗.
On the other hand, from x � y /∈ Rad(A), it follows that x � y ∈ Rad(A)∗.
Since x ≤ x−∼, by (psbck-c1) we get x−∼ � y ≤ x � y, so x−∼ � y ∈

Rad(A)∗ (by Lemma 5.1). By (psbck-c40) we have x∼ ≤ x∼− � y, so x∼ ∈
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Rad(A)∗, that is, x ∈ Rad(A). But y ≤ x � y, so y ∈ Rad(A)∗, that is, y∼ ∈
Rad(A). Since Rad(A) is a deductive system of A and x, y∼ ∈ Rad(A), we get
x � y∼ ∈ Rad(A) which is a contradiction. Thus x → y ∈ Rad(A) implies x � y ∈
Rad(A).

Similarly, x � y ∈ Rad(A) implies x → y ∈ Rad(A) and we conclude that
Rad(A) is a normal deductive system of A. �

Corollary 5.4 If A is a perfect pseudo-BCK(pP) algebra, then Rad(A)= Radn(A).

Corollary 5.5 If A is a perfect pseudo-BCK(pP) algebra, then A/Rad(A) is perfect
too.

Proof By Theorem 5.6, Rad(A) is a proper normal deductive system of A and by
Theorem 5.5 it follows that Rad(A) is perfect. Applying Proposition 5.6 we get that
A/Rad(A) is a perfect pseudo-BCK(pP) algebra. �

Remark 5.1 If the pseudo-BCK(pP) algebra A is not perfect, then the result proved
in Theorem 5.6 is not always valid. Indeed, consider the pseudo-BCK(pP) algebra A

from Example 1.9. Since A is not good, it is not a perfect pseudo-BCK(pP) algebra.
Moreover, D(A) = {a2, s, a, b,n, c, d,1} is the unique maximal deductive system
of A, so Rad(A) = D(A). But D(A) is not a normal deductive system (a1 � 0 =
a2 ∈D(A), while a1 → 0= a1 /∈D(A)).

For a pseudo-BCK(pP) algebra A we define A+ := {x ∈A | x > x− ∨ x∼}.

Proposition 5.8 If A is a linearly ordered pseudo-BCK(pP) algebra, then
Rad(A)⊆A+.

Proof Consider x ∈ Rad(A) and suppose that x /∈ A+, that is, x ≯ x− ∨ x∼. Since
A is a chain, it follows that x ≤ x− ∨x∼. Taking into consideration that Rad(A) is a
deductive system of A, we get that x− ∨x∼ ∈ Rad(A), so x� (x− ∨x∼) ∈ Rad(A).
Applying (rl-c2) we have (x� x−)∨ (x� x∼) ∈ Rad(A) and since x� x∼ = 0, we
get x � x− ∈ Rad(A). It follows that (x � x−)� x ∈ Rad(A), hence 0 ∈ Rad(A), a
contradiction. Thus x ∈A+ for all x ∈ Rad(A), so Rad(A)⊆A+. �

Corollary 5.6 A+ is a deductive system of the linearly ordered pseudo-BCK(pP)
algebra A iff A+ = Rad(A).

Theorem 5.7 If A is a linearly ordered pseudo-BCK(pP) algebra, then Rad(A)=
{x ∈A | xn > x− ∨ x∼ for all n ∈N, n≥ 1}.

Proof Consider x ∈ Rad(A). Then xn ∈ Rad(A)⊆A+, that is, xn > (xn)− ∨ (xn)∼
for all n ∈N, n≥ 1. From xn ≤ x we get x− ≤ (xn)− and x∼ ≤ (xn)∼, so x−∨x∼ ≤
(xn)− ∨ (xn)∼ < xn.
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Conversely, consider x ∈ A such that xn > x− ∨ x∼ for all n ∈ N, n ≥ 1. We
have xn �= 0 for all n ∈ N (if xn = 0, we get 0 = xn > x− ∨ x∼, a contradiction).
Therefore [xn) is a proper deductive system of A. Since A is linearly ordered, the
union of all its proper deductive systems is the unique maximal deductive system
Rad(A) of A. Thus x ∈ [xn)⊆ Rad(A). �

Remark 5.2 ([232]) If A is an MTL-algebra, then Rad(A) = {x ∈ A | xn >

x− for all n ∈N, n≥ 1}.

Remark 5.3 Let A be a pseudo-BCK(pP) algebra.
Then Rad(A) ∩ Rad(A)- Div(A) = ∅. Indeed, suppose that there exists an x ∈

Rad(A)∩Rad(A)- Div(A). It follows that there exist y1, y2 ∈ Rad(A) such that x�
y1 = y2 � x = 0. Hence 0 ∈ Rad(A), so Rad(A) is not proper, a contradiction.

Definition 5.4 A pseudo-BCK(pP) algebra is said to be relatively free of zero divi-
sors if Rad(A)- Div(A)= {0}.

Lemma 5.3 If the perfect pseudo-BCK(pP) algebra A is relatively free of zero di-
visors and x ∈ Rad(A), y ∈ Rad(A)∗, then x ⊥ y or y ⊥ x if and only if y = 0.

Proof Suppose that there exist x ∈ Rad(A) and y ∈ Rad(A)∗ such that x ⊥ y. Ac-
cording to Proposition 1.28 we have y � x = 0. Since A is relatively free of zero
divisors, it follows that y = 0. Similarly, if y ⊥ x we have x � y = 0, so y = 0. On
the other hand x ⊥ 0 and 0⊥ x, hence the assertion is completely proved. �

Proposition 5.9 If a perfect pseudo-BCK(pP) algebra A has no nontrivial zero di-
visors, then Rad(A)=A \ {0}.

Proof Obviously, Rad(A) = A \ {0} is equivalent to Rad(A)∗ = {0}. Consider x ∈
Rad(A)∗, that is, ord(x) < ∞. Let n ∈ N, n > 1 be the smallest integer such that
xn = 0. Then x � xn−1 = 0 with xn−1 �= 0. Since A has no nontrivial zero divisors,
it follows that x = 0. Thus Rad(A)∗ = {0} and we are done. �

Example 5.4

(1) The perfect pseudo-BCK(pP) algebra A from Example 4.4 is relatively free of
zero divisors.

(2) The non-perfect pseudo-BCK(pP) algebra A from Example 4.5 is relatively free
of zero divisors.

(3) Consider the pseudo-BCK(pP) algebra A from Example 4.5 and X =
{b, c,1} ⊆ A. Since a � c = 0 with c ∈ X, it follows that a is a X-left zero
divisor of A. From b � a = 0 with b ∈ X we get that a is an X-right zero
divisor of A.

Lemma 5.4 If A is a perfect pseudo-BCK(pP) algebra and x, y ∈ Rad(A), then
x �⊥ y.
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Proof Suppose that there exist x, y ∈ Rad(A) such that x ⊥ y. According to Propo-
sition 1.27 we have y−∼ � x−∼ = 0. Since y−∼, x−∼ ∈ Rad(A) and Rad(A) is
a deductive system of A, it follows that y−∼ � x−∼ ∈ Rad(A), so 0 ∈ Rad(A), a
contradiction. Thus x �⊥ y. �

Proposition 5.10 If A is a perfect pseudo-BCK(pP) algebra, then Rad(A)∗ is an
ideal of A.

Proof We verify the axioms from Definition 1.17:

(I1) If x, y ∈ Rad(A)∗, then according to Proposition 1.25 we have x ⊕ y =
(y− � x−)∼. Since y−, x− ∈ Rad(A) and Rad(A) is a deductive system of
A, it follows that y− � x− ∈ Rad(A). Thus (y− � x−)∼ ∈ Rad(A)∗, that is,
x ⊕ y ∈ Rad(A)∗.

(I2) Consider y ∈A and x ∈ Rad(A)∗ such that y ≤ x.
From y ≤ x we get x− ≤ y−. Since x− ∈ Rad(A) and Rad(A) is a deductive
system of A we have y− ∈ Rad(A), that is, y ∈ Rad(A)∗. �

Recall that, if A is a pseudo-BCK(pP) algebra, then a subset B ⊆A is a subalge-
bra of A if B is closed under the operations of A.

Proposition 5.11 Let A be a pseudo-BCK(pP) algebra and B be a subalgebra of A.
Then Radn(B)⊆ Radn(A)∩B .

Proof First, we prove that if H ∈Maxn(A), then H ∩B ∈Maxn(B).
One can easily prove that H ∩ B is a deductive system of B . Since 0 /∈ H , it

follows that H ∩ B is proper. For any x ∈ A, applying Theorem 1.12 we have that
x /∈ H iff (xn)− ∈ H for some n ∈ N. Then for any x ∈ B , since (xn)− ∈ B for
all n ∈ N, we have x /∈ H ∩ B iff (xn)− ∈ H ∩ B for some n ∈ N. Thus H ∩ B ∈
Maxn(B).

It follows that Radn(B)⊆⋂{H ∩B |H ∈Maxn(A)} = Radn(A)∩B . �

Corollary 5.7 If A is a perfect pseudo-BCK(pP) algebra and B a perfect subalge-
bra of A, then Rad(B)⊆ Rad(A)∩B .

Remark 5.4 If A is an MTL-algebra and B a subalgebra of A, it was proved in [232]
that Rad(B)= Rad(A)∩B .

This result does not hold for pseudo-MTL algebras, so it does not hold for
pseudo-BCK(pP) algebras (FLw-algebras).

Indeed, consider the pseudo-MTL algebra A in Example 4.4. According to The-
orem 3.2, (B = [b,1],�1

b,→,�, b,1) is a subalgebra of A (where x �1
b y =

(x � y) ∨ b for all x, y ∈ [b,1]). One can easily check that Rad(A) = {a, b, c,1}
and Rad(B)= {c,1}, hence Rad(A)∩B = {b, c,1} �= Rad(B).

Moreover, A and B are perfect pseudo-BCK(pP) algebras, so Rad(A)= Radn(A)

and Rad(B)= Radn(B). Hence Radn(B) �= Radn(A)∩B .
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Remark 5.5 The proof of the above mentioned result is based on the congruence
extension property (CEP, for short). A class A of algebras of the same type has CEP
if for every algebra A in A, every subalgebra B of A and every congruence θ on B ,
there exists a congruence Θ on A such that Θ ∩B2 = θ .

It was proved in [129] that the class of FLw-algebras does not satisfy CEP.
In order to prove this, the FLw-algebra (A= {0, a, b, c,1},∧,∨,�,→,�,0,1)

with 0 < a < b < c < 1 and the operations �, →, � given by the following tables
was considered:

� 0 a b c 1
0 0 0 0 0 0
a 0 0 0 0 a

b 0 a b b b

c 0 a b c c

1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a a 1 1 1 1
b a a 1 1 1
c a a b 1 1
1 0 a b c 1

� 0 a b c 1
0 1 1 1 1 1
a c 1 1 1 1
b 0 a 1 1 1
c 0 a b 1 1
1 0 a b c 1

One can easily check that (B = {b, c,1},�,→,�, b,1) is a subalgebra of A and
that B has the non-trivial congruence θ = {{c,1}, {b}}. Suppose that there exists a
non-trivial congruence Θ on A such that Θ ∩ B2 = θ , so cΘ 1. It follows that
(a → a � c)Θ (a → a � 1), that is, a Θ 1. Hence a � cΘ 1� 1, so 0Θ 1. Thus Θ

is the trivial congruence on A and we can conclude that the class of FLw-algebras
does not satisfy CEP.

By contrast, it was proved in [129] that the class of FLew-algebras satisfies CEP,
hence the class of MTL-algebras has this property too. More precisely, if a variety
of the class A of FLw-algebras (A,∧,∨,�,→,�,0,1) satisfies the identity (x ∧
e)k � y = y� (x ∧ e)k for some k ∈N, k ≥ 1, then A satisfies CEP. This is the case
for the variety CRL of FLew-algebras.

Since the FLw-algebra from the above example is a pseudo-MTL algebra, it fol-
lows that the class of these algebras also does not satisfy CEP.

5.2.2 Perfect Pseudo-MTL Algebras

Since a pseudo-MTL algebra is a pseudo-BCK(pP) algebra, a perfect pseudo-MTL
algebra is defined in the same way as a perfect pseudo-BCK(pP) algebra. All prop-
erties and results presented in the previous section for perfect pseudo-BCK(pP) al-
gebras are also valid in the case of perfect pseudo-MTL algebras. In this section we
will investigate some specific results for perfect pseudo-MTL algebras.

Proposition 5.12 If A is a perfect pseudo-MTL algebra, then for any x, y ∈
Rad(A), x− � y− = x∼ � y∼ = 0.

Proof We will follow the idea used in [30] for the case of pseudo-BL algebras.
Let x, y ∈ Rad(A). Proving x− � y− = 0 is equivalent to proving that (x− �

y−)∼ = 1. Suppose (x− � y−)∼ �= 1. By Corollary 4.3, there exists a prime de-
ductive system P such that (x− � y−)∼ /∈ P , that is, y− � x−∼ /∈ P . Since



146 5 Classes of Non-commutative Residuated Structures

P is prime, by Proposition 4.3 it follows that x−∼ � y− ∈ P , or equivalently
x−∼ � y−∼− ∈ P . Hence x−∼ � y−−∼ ∈ P , so (y−− � x−∼)∼ ∈ P .

By Proposition 1.32, there is a maximal deductive system M such that P ⊆M .
Since A is perfect, we have M = Rad(A). Obviously, u = y−− � x−∼ /∈ P (if

u ∈ P , since u∼ ∈ P , we get 0 = u� u∼ ∈ P , hence P is not a proper deductive
system, a contradiction). Thus y−− � x−∼ /∈ Rad(A).

By Theorem 5.6 we have that Rad(A) is a normal deductive system, so ap-
plying Theorem 1.12, there is an n ≥ 1 such that [(y−− � x−∼)n]− ∈ Rad(A).
Let z = (y−− � x−∼)n, so z− ∈ Rad(A). Since x, y ∈ Rad(A), by Corollary 5.3
we have y−−, x−∼ ∈ Rad(A), so y−−, x−∼ ∈ Rad(A), hence z ∈ Rad(A). Thus
z, z− ∈ Rad(A) and 0= z− � z ∈ Rad(A), that is, Rad(A) is not a proper deductive
system, a contradiction. We conclude that x− � y− = 0.

Similarly, x∼ � y∼ = 0. �

Corollary 5.8 Let A be a perfect pseudo-MTL algebra.

(1) If x, y ∈ Rad(A)∗, then x � y = y � x = 0;
(2) If x ∈ Rad(A) and y ∈ Rad(A)∗, then x− ≤ y− and x∼ ≤ y∼;
(3) If x ∈ Rad(A), then x− ≤ x−− ∧ x−∼ and x∼ ≤ x−∼ ∧ x∼∼.

Proof

(1) Since x, y ∈ Rad(A)∗, it follows that x−, y− ∈ Rad(A) and applying Propo-
sition 5.12 we get x−∼ � y−∼ = 0. Taking into consideration the fact that
x ≤ x−∼ and y ≤ y−∼, we get x � y ≤ x−∼ � y−∼ = 0. Hence x � y = 0.
Similarly, y � x = 0;

(2) From x, y∼ ∈ Rad(A), by Proposition 5.12 we get x− � y∼− = 0.
Because y ≤ y∼−, we have x− � y ≤ x− � y∼− = 0, so x− � y = 0. Hence

x− ≤ y−. Similarly, x∼ ≤ y∼;
(3) From x ∈ Rad(A), it follows that x−, x∼ ∈ Rad(A)∗. Since A is good, we get

from (2) that x− ≤ x−−, x−∼ and x∼ ≤ x−∼, x∼∼. It follows that x− ≤ x−− ∧
x−∼ and x∼ ≤ x−∼ ∧ x∼∼. �

Proposition 5.13 If A is a perfect pseudo-MTL algebra and x, y ∈ Rad(A)∗, then
x ⊥ y and y ⊥ x.

Proof Since x, y ∈ Rad(A)∗, it follows that y−, x− ∈ Rad(A). Hence y−∼ �
x−∼ = 0. By Proposition 1.27, we get x ⊥ y. Similarly, y ⊥ x. �

Proposition 5.14 Let A be a perfect pseudo-MTL algebra, x ∈ Rad(A) and y ∈
Rad(A)∗. Then:

(1) if x ⊥ y or y ⊥ x, then y2 = 0;
(2) if x ⊥ y, then y ∈ Rad(A)l- Div(A);
(3) if y ⊥ x, then y ∈ Rad(A)r - Div(A).
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Proof

(1) According to Corollary 5.8 we have x− ≤ y−. On the other hand, since x ⊥ y,
we get y � x = 0. It follows that y ≤ x− ≤ y−, that is, y2 = 0.

Similarly, from x∼ ≤ y∼ and x � y = 0 we get y ≤ x∼ ≤ y∼, so y2 = 0.
(2) Obviously, x �= 0. Since x ⊥ y, we get y � x = 0, that is, y ∈ Rad(A)l- Div(A).
(3) Similarly, from y ⊥ x we have x � y = 0, so y ∈ Rad(A)r - Div(A). �

5.2.3 Perfect Pseudo-MV Algebras

In this subsection we recall some notions and results regarding the local and perfect
pseudo-MV algebras (see [212]).

If A is a pseudo-MV algebra, we denote by D(A) the set {x ∈A|ord(x)=∞}.
Obviously, 0 ∈D(A).

Lemma 5.5 If A is a pseudo-MV algebra, then:
{
x ∈A|x ≥ y− for some y ∈D(A)

}= {
x ∈A|x ≥ y∼ for some y ∈D(A)

}
.

We define

D(A)∗ := {
x ∈A|x ≥ y− for some y ∈D(A)

}

= {
x ∈A|x ≥ y∼ for some y ∈D(A)

}
.

Obviously, 1 ∈D(A)∗.

Definition 5.5 A pseudo-MV algebra is called local if for every x, y ∈ A the fol-
lowing condition holds: ord(x ⊕ y) <∞ implies ord(x) <∞ or ord(y) <∞.

Remark 5.6 If A is local, then ord(x) <∞ or ord(x−) <∞.

Proposition 5.15 Let A be a pseudo-MV algebra. The following are equivalent:

(a) A is local;
(b) D(A) is an ideal of A;
(c) D(A) is a proper ideal of A;
(d) D(A) is the unique maximal ideal of A.

Proposition 5.16 If A is a local pseudo-MV algebra, then:

(1) D(A)∗ is a filter of A;
(2) D(A)∩D(A)∗ = ∅.

Definition 5.6 A local pseudo-MV algebra A is called perfect if for any x ∈ A,
ord(x) <∞ iff [ord(x−)=∞ and ord(x∼)=∞].
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Proposition 5.17 If A is a local pseudo-MV algebra, then the following are equiv-
alent:

(a) A is perfect;
(b) A=D(A)∪D(A)∗.

Definition 5.7 The intersection of all maximal ideals of a pseudo-MV algebra is
denoted by Rad(A) and it is called the radical of A.

Corollary 5.9

(1) If A is a local pseudo-MV algebra, then Rad(A)=D(A);
(2) A local pseudo-MV algebra A is perfect iff A= Rad(A)∪Rad(A)∗.

Proposition 5.18 If A is a perfect pseudo-MV algebra, then:

(1)

Rad(A)∗ = {
x ∈A | ord(x) <∞}= {

x− | x ∈ Rad(A)
}

= {
x∼ | x ∈ Rad(A)

};
(2) x � y = 0 for all x, y ∈ Rad(A);
(3) if x ∈ Rad(A) and y ∈ Rad(A)∗, then x ≤ y;
(4) (Rad(A),⊕,0) is a cancellative monoid.

Proposition 5.19 If A is a perfect pseudo-MV algebra, then Rad(A) is a normal
ideal of A.

Proof We have to prove that y � x− ∈ Rad(A) iff x∼ � y ∈ Rad(A).
Assume that y � x− ∈ Rad(A). If x∼ � y /∈ Rad(A), then x∼ � y ∈ Rad(A)∗.
Hence (x∼ � y)− ∈ Rad(A), so y− ⊕ x ∈ Rad(A).
Since x, y− ≤ y− ⊕ x, we get x, y− ∈ Rad(A), so x−, y ∈ Rad(A)∗. Because

Rad(A)∗ is a filter, it follows that y � x− ∈ Rad(A)∗ which is a contradiction, so
x∼ � y ∈ Rad(A).

Similarly, x∼ � y ∈ Rad(A) implies y � x− ∈ Rad(A).
Thus Rad(A) is a normal ideal of A. �

Example 5.5 Let Z be the Abelian �-group of integers, G an �-group, g0 ∈G+ and
A= Γ (Z×lex G, (1, g0)) where Z×lex G is the lexicographic product of Z and G.
One can easily prove that

A= {
(0, g) | g ∈G+}∪ {

(1, g) | g ≤ g0
}

and D(A)= {
(0, g) | g ∈G+}

.

Obviously, D(A) is an ideal of A, so A is a local pseudo-MV algebra.
Because ord((0, g))=∞ for all g ∈G+ and ord((1, g)) = 2 for all g ≤ g0, we

conclude that A is a perfect pseudo-MV algebra.
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5.3 Archimedean Residuated Structures

The Archimedean property was stated by Archimedes in the following form: “. . . the
following lemma is assumed: that the excess by which the greater of (two) unequal
areas exceeds the less can, by being added to itself, be made to exceed any given
finite area” ([164]).

This is one of the most beautiful axioms of classical arithmetic.
In the case of the field of real numbers, the Archimedean property can be for-

mulated as follows: for any real numbers x and y with x > 0, there exists an n ∈N

such that nx > y.
The aim of this section is to extend the Archimedean property to the case of FLw-

algebras. We will also define the hyperarchimedean FLw-algebras, proving that ev-
ery hyperarchimedean FLw-algebra is Archimedean and every locally FLw-algebra
is hyperarchimedean.

We recall the notions of Archimedean �-groups, MV-algebras and pseudo-MV
algebras.

An �-group G is Archimedean if for 0≤ x, y ∈G, nx ≤ y for all n ∈ N implies
x = 0.

Proposition 5.20 (Theorem 6.1.32 in [108]) In any MV-algebra A the following
conditions are equivalent:

(a) Rad(A)= {0};
(b) nx ≤ x− for all n ∈N implies x = 0;
(c) nx ≤ y− for all n ∈N implies x ∧ y = 0;
(d) nx ≤ y for all n ∈N implies x � y = x,

where nx := x1 ⊕ · · · ⊕ xn with x1 = · · · = xn = x.

Definition 5.8 An MV-algebra A is Archimedean in Dvurečenskij’s sense [108] if it
satisfies condition (b) of Proposition 5.20 and A is Archimedean in Belluce’s sense
[6] if it satisfies condition (d) of Proposition 5.20.

By Proposition 5.20 the two definitions of Archimedean MV-algebras are equiv-
alent.

Definition 5.9 ([97]) A pseudo-MV algebra A is said to be Archimedean if the ex-
istence of na := a1 + a2 + · · · + an, where a1 = a2 = · · · = an = a ∈ A, for any
integer n≥ 1, entails that a = 0.

Theorem 5.8 (Theorem 4.2 in [97]) Any Archimedean pseudo-MV algebra is com-
mutative, that is, an MV-algebra.

Proposition 5.21 In any FLw-algebra the following are equivalent:

(a) xn ≥ x− ∨ x∼ for any n ∈N implies x = 1;
(b) xn ≥ y− ∨ y∼ for any n ∈N implies x ∨ y = 1;
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(c) xn ≥ y− ∨ y∼ for any n ∈ N implies x → y = x � y = y and y → x = y �
x = x.

Proof

(a) ⇒ (b) Take x, y ∈A such that xn ≥ y− ∨ y∼ for any n ∈N.
By the properties of FLw-algebras and by hypothesis we have:

(x ∨ y)− = x− ∧ y− ≤ y− ≤ y− ∨ y∼ ≤ xn ≤ (x ∨ y)n and

(x ∨ y)∼ = x∼ ∧ y∼ ≤ y∼ ≤ y− ∨ y∼ ≤ xn ≤ (x ∨ y)n,

hence (x ∨ y)n ≥ (x ∨ y)− ∨ (x ∨ y)∼ for any n ∈N.
Thus by (a), we get x ∨ y = 1.

(b) ⇒ (a) Consider x ∈A such that xn ≥ x− ∨ x∼ for any n ∈N.
Applying (b) for y = x we get x ∨ x = 1, hence x = 1.

(b) ⇒ (c) Assume that xn ≥ y− ∨ y∼ for any n ∈N.
Applying (b), it follows that x ∨ y = 1. But, for x, y ∈A we have:

x ∨ y ≤ [
(x → y) � y

]∧ [
(y → x) � x

]
,

x ∨ y ≤ [
(x � y)→ y

]∧ [
(y � x)→ x

]
.

Since x ∨ y = 1, it follows that:

[
(x → y) � y

]∧ [
(y → x)� x

] = 1 and
[
(x � y)→ y

]∧ [
(y � x)→ x

] = 1,

hence (x → y) � y = 1 and (x � y)→ y = 1.
From (x → y) � y = 1 we have x → y ≤ y and taking into consideration that
y ≤ x → y, we obtain x → y = y. Similarly, x � y = y.
In a similar way we can prove that y → x = y � x = x.

(c) ⇒ (a) Consider x ∈A such that xn ≥ x− ∨ x∼ for any n ∈N.
Applying (c) for y = x we get x → x = x, hence x = 1. �

Definition 5.10 An FLw-algebra is called Archimedean if one of the equivalent con-
ditions from Proposition 5.21 is satisfied.

Example 5.6 Take A= {0, a, b, c,1} where 0 < a < b, c < 1 and b, c are incompa-
rable. Consider the operations �, →, � given by the following tables:

� 0 a b c 1
0 0 0 0 0 0
a 0 0 0 a a

b 0 a b a b

c 0 0 0 c c

1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a c 1 1 1 1
b c c 1 c 1
c 0 b b 1 1
1 0 a b c 1

� 0 a b c 1
0 1 1 1 1 1
a b 1 1 1 1
b 0 c 1 c 1
c b b b 1 1
1 0 a b c 1
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Then (A,∧,∨,�,→,�,0,1) is an FLw-algebra.
We have:

0n = 0 � 0− ∨ 0∼ = 1∨ 1= 1, n≥ 1,

an = 0 � a− ∨ a∼ = c ∨ b= 1, n≥ 2,

bn = b � b− ∨ b∼ = c ∨ 0= c, n≥ 1,

cn = c � c− ∨ c∼ = 0∨ b= b, n≥ 1,

1n = 1≥ 1− ∨ 1∼ = 0∨ 0= 0, n≥ 1.

Obviously: a � a− ∨ a∼ = c ∨ b= 1.
We conclude that, xn ≥ x− ∨ x∼ for all n ∈N, n≥ 1, implies x = 1. Hence A is

an Archimedean FLw-algebra.

Definition 5.11 If A is an FLw-algebra, then an element x ∈ A is called
Archimedean if there is an n ∈ N, n ≥ 1, such that xn ∈ B(A). An FLw-algebra
A is called hyperarchimedean if all its elements are Archimedean.

Example 5.7 Consider the FLw-algebra A from Example 3.4.
Since a2

1 = 0 ∈ B(A), it follows that a1 is Archimedean.
By contrast, an

2 = a2 /∈ B(A) for all n ∈N, n≥ 1, so a2 is not Archimedean.
Thus A is not a hyperarchimedean FLw-algebra.

Proposition 5.22 Any locally finite FLw-algebra is hyperarchimedean.

Proof Let A be a locally finite FLw-algebra and x ∈A. Hence there exists an n ∈N,
n≥ 1, such that xn = 0 ∈ B(A). It follows that any element x of A is Archimedean,
so A is hyperarchimedean. �

Proposition 5.23 Any hyperarchimedean FLw-algebra is Archimedean.

Proof Let A be a hyperarchimedean FLw-algebra and x ∈ A such that xn ≥ x− ∨
x∼ for any n ∈ N. Since A is hyperarchimedean, there exists an m ∈ N, m ≥ 1,
such that xm ∈ B(A). According to Proposition 3.17 it follows that x = 1, so A is
Archimedean. �

Corollary 5.10 Any locally finite FLw-algebra is Archimedean.

Proof This follows from Propositions 5.22 and 5.23. �

Example 5.8 Consider again the pseudo-MTL algebra A from Example 4.1. Since
cn = c ≥ 0 = c− ∨ c∼ for all n ≥ 1 and c �= 1, it follows that A is not an
Archimedean pseudo-MTL algebra.
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Example 5.9 The pseudo-MTL algebra A from Example 3.5 is locally finite, so it
is Archimedean.

We give an example of an Archimedean pseudo-MTL algebra which is not a
chain and is not a hyperarchimedean pseudo-MTL algebra.

Example 5.10 Consider the pseudo-MTL algebra A from Example 4.5.
Since a2 = 0 ∈ B(A), it follows that a is Archimedean.
By contrast, bn = b /∈ B(A) for all n ∈N, n≥ 1, so b is not Archimedean.
Thus A is not a hyperarchimedean pseudo-MTL algebra.
We have:

0n = 0 � 0− ∨ 0∼ = 1∨ 1= 1, n≥ 1,

an = 0 � a− ∨ a∼ = b ∨ c= 1, n≥ 2,

bn = b � b− ∨ b∼ = 0∨ c= c, n≥ 1,

cn = c � c− ∨ c∼ = b ∨ 0= b, n≥ 1

1n = 1≥ 1− ∨ 1∼ = 0∨ 0= 0, n≥ 1.

We conclude that, if xn ≥ x− ∨ x∼ for all n ∈N, n≥ 1, then x = 1.
Hence A is an Archimedean pseudo-MTL algebra.

Remark 5.7 By Examples 5.9 and 5.10 we have proved that, in general, an
Archimedean FLw-algebra is not commutative. This result seems to be important,
taking into consideration the known results in the case of other structures: any
Archimedean �-group is Abelian (Theorem 10.19 in [12]) and any Archimedean
pseudo-MV algebra is an MV-algebra, so it is commutative (Theorem 4.2 in [97]).

Remark 5.8 Obviously, an FLew-algebra is Archimedean if it satisfies one of the
following equivalent conditions:

(a) xn ≥ x− for any n ∈N implies x = 1;
(b) xn ≥ y− for any n ∈N implies x ∨ y = 1;
(c) xn ≥ y− for any n ∈N implies x → y = y and y → x = x.

We will give below an example of Archimedean FLew-algebra.

Example 5.11 (Example 19.3.1 in [178]) Consider A = {0, a, b, c, d,1} with 0 <

a < b, c < d < 1 and b, c incomparable. Define the operations �, → by the follow-
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ing tables:

� 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 0 0 0 a

b 0 0 0 0 0 b

c 0 0 0 0 0 c

d 0 0 0 0 0 d

1 0 a b c 1 1

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 1 1 1 1
b d d 1 d 1 1
c d d d 1 1 1
d d d d d 1 1
1 0 a b c d 1

Then (A,∧,∨,�,→,0,1) is a proper bounded FLew-algebra.
Indeed, since (b→ c)� b = 0 �= a = b ∧ c, it follows that the condition (B4) is

not satisfied, so A is neither a BL-algebra nor a divisible FLw-algebra.
Moreover, (b→ c)∨ (c→ b)= d �= 1, so A is not an MTL-algebra.
In fact, A is a bounded FLew-algebra with weak nilpotent minimum (WNM) and

(C∨) conditions:

(WNM): (x � y)− ∨ [
(x ∧ y)→ (x � y)

]= 1,

(C∨): x ∨ y = [
(x → y)→ y

]∧ [
(y → x)→ x

]
.

We have:

0n = 0 � 0− = 1, n≥ 1,

an = 0 � a− = d, n≥ 2,

bn = 0 � b− = d, n≥ 2,

cn = 0 � c− = d, n≥ 2,

dn = 0 � d− = d, n≥ 2,

1n = 1≥ 1− = 0, n≥ 1.

We conclude that, if xn ≥ x− for all n ∈ N, n ≥ 1, then x = 1. Hence A is an
Archimedean FLew-algebra.



Chapter 6
States on Multiple-Valued Logic Algebras

If a trial is governed by the laws of classical logic, then the set of its associated
events has the structure of Boolean algebra and based on this principle classical
probability theory was developed. A probability (Boolean state) on a Boolean alge-
bra (B,∧,∨,−,0,1) is a function m : B −→ [0,1] such that:

m(x ∨ y)=m(x)+m(y), if x ∧ y = 0;
m(1)= 1.

In order to develop a probability theory starting from a logical system, it is nec-
essary to solve two problems:

– to establish an algebraic structure on the set of events;
– to define an appropriate notion of probability (state).

The sets of events will always have the structure of the Lindenbaum-Tarski alge-
bra associated to the logical system, however establishing a sound notion of proba-
bility is more difficult. In the classical case the definition of probability is based on
the existence of a binary additive operation: the Boolean join ∨ in the case of prob-
abilities defined on Boolean algebras and the MV-sum ⊕ in the case of probabilities
on MV-algebras. If the algebras of events are not endowed with this kind of sum,
then we can approach the problem in two ways:

(i) by defining a pseudo-sum which satisfies some of the usual properties of the
sum, and by defining the probability by the “additivity” property;

(ii) by stipulating some rules which determine how the probability behaves relative
to certain event operations (such as implication).

Approach (i) was taken by Riečan in [245] and this led to the Riečan states
on pseudo-BL algebras ([131]), bounded R�-monoids ([110, 111]), FLw-algebras
([49]) and bounded pseudo-BCK algebras ([52, 67]).

Approach (ii) was used in the above mentioned papers to define the Bosbach
states based on the implication operations on pseudo-BL algebras, bounded R�-
monoids, FLw-algebras and bounded pseudo-BCK algebras, respectively.
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The states on �-groups with strong unit are studied in [155].
A state on an �-group (G,u) with strong unit u is a function s :G −→ R such

that:

s(g1 + g2)= s(g1)+ s(g2) for all g1, g2 ∈G;
s(g)≥ 0 for all g ∈G+;
g(1)= 1.

It is known that any Abelian �-group (G,u) with strong unit u possesses at least
one state (Sect. 4 in [155]).

The states on an MV-algebra (A,⊕,−,0) were first introduced by D. Mundici
in [230] as an averaging of the truth-value in Łukasiewicz logic. A state on an MV-
algebra is defined as a function s :A−→ [0,1] satisfying the conditions:

s(1)= 1 (normality);
s(x ⊕ y)= s(x)+ s(y), if x � y = 0 (additivity),

where x � y = (x− ⊕ y−)−.
There exists a bijective correspondence between the set of states on an MV-

algebra and the set of states on (G,u), where (G,u) is an �u-group such that
Γ (G,u)= A (Theorem 15.2.10 in [89]). As a consequence, every MV-algebra ad-
mits at least one state.

The states on MV-algebras have been entirely studied in [203, 249, 250].
In the case of non-commutative structures, the states were first introduced for

pseudo-MV algebras in [96] and it was proved that any linearly ordered pseudo-
MV algebra possesses a unique state and that there exists a pseudo-MV algebra
having no states on it.

The notion of a Bosbach state on pseudo-BL algebras was defined in [131] using
an identity studied by Bosbach in residuation groupoids ([17]). The Riečan state
was also defined on a good pseudo-BL algebra in [131], which extends the additive
measures introduced by Riečan for BL-algebras in [245]. It was proved that every
Bosbach state is a Riečan state, but the converse was an open question. It was also
proved in [131] that the existence of a state-morphism on a pseudo-BL algebra is
equivalent to the existence of a maximal filter which is normal. Based on this result,
in [98] it was proved that every linearly ordered pseudo-BL algebra admits a state.
The notion of state was extended in [111] to the case of bounded R�-monoids and
it was shown that the Bosbach and Riečan states on good R�-monoids coincide.
In [208] the states on a pseudo-BCK semilattice were defined and it was proved
that any Bosbach state on a good pseudo-BCK semilattice is a Riečan state, but the
converse is not true.

In this chapter we will present the notion of a state for pseudo-BCK algebras
([52, 67]). One of the main results consists of proving that any Bosbach state on a
good pseudo-BCK algebra is a Riečan state, but the converse turns out not to be true.
Some conditions are given for a Riečan state on a good pseudo-BCK algebra to be
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a Bosbach state. In contrast to the case of pseudo-BL algebras, we show that there
exist linearly ordered pseudo-BCK algebras having no Bosbach states and that there
exist pseudo-BCK algebras having normal deductive systems which are maximal,
but having no Bosbach states.

Some specific properties of states on FLw-algebras, pseudo-MTL algebras,
bounded R�-monoids and subinterval algebras of pseudo-hoops are proved.

A special section is dedicated to the existence of states on the residuated struc-
tures, showing that every perfect FLw-algebra admits at least a Bosbach state and
every perfect pseudo-BL algebra has a unique state-morphism.

Finally, we introduce the notion of a local state on a perfect pseudo-MTL algebra
and we prove that every local state can be extended to a Riečan state.

Many results in this and the following chapters are based on the notion of the
standard MV-algebra.

The standard MV-algebra, denoted [0,1]Ł, is the interval [0,1] of reals, equipped
with the operations:

x ⊕Ł y :=min{x + y,1}, x �Ł y :=max{x + y − 1,0},
x ∧ y :=min{x, y}, x ∨ y :=max{x, y},
x →Ł y := x− ⊕Ł y =min{1− x + y,1} (Łukasiewicz implication),

x− : x →Ł 0= 1− x,

for all x, y ∈ [0,1].

6.1 States on Bounded Pseudo-BCK Algebras

Definition 6.1 A Bosbach state on a bounded pseudo-BCK algebra A is a function
s :A−→ [0,1] such that the following conditions hold for any x, y ∈A:

(B1) s(x)+ s(x → y)= s(y)+ s(y → x);
(B2) s(x)+ s(x � y)= s(y)+ s(y � x);
(B3) s(0)= 0 and s(1)= 1,

where + is the usual addition of real numbers.

Example 6.1 Consider the bounded pseudo-BCK lattice A1 from Example 1.16.
The function s : A1 −→ [0,1] defined by: s(0) := 0, s(a) = s(b) = s(c) = s(d) =
s(1) := 1 is a unique Bosbach state on A1.

Now we present an example of a bounded linearly ordered pseudo-BCK alge-
bra having a unique Bosbach state. On the other hand, not every linearly ordered
pseudo-BCK algebra admits a Bosbach state (see Example 6.6).

Example 6.2 Consider the bounded pseudo-BCK lattice A from Example 4.4. The
function s : A−→ [0,1] defined by: s(0) := 0, s(a)= s(b)= s(c)= s(1) := 1 is a
unique Bosbach state on A.
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Not every bounded pseudo-BCK algebra has Bosbach states.

Example 6.3 Consider the bounded pseudo-BCK lattice A from Example 1.3. One
can prove that A has no Bosbach states. Indeed, assume that A admits a Bosbach
state s such that s(0) = 0, s(a) = α, s(b) = β , s(c) = γ , s(1) = 1. From s(x) +
s(x → y)= s(y)+ s(y → x), taking x = a, y = 0, x = b, y = 0, and x = c, y = 0,
respectively, we get α = 1, β = 0, γ = 1.

On the other hand, taking x = b, y = 0 in s(x)+ s(x � y) = s(y)+ s(y � x)

we get β + 0= 0+ 1, so 0= 1 which is a contradiction. Hence A does not admit a
Bosbach state.

Proposition 6.1 Let A be a bounded pseudo-BCK algebra and s be a Bosbach state
on A. For all x, y ∈A, the following properties hold:

(1) s(y → x)= 1+ s(x)− s(y)= s(y � x) and s(x)≤ s(y) whenever x ≤ y;
(2) s(x ∨1 y)= s(y ∨1 x) and s(x ∨2 y)= s(y ∨2 x);
(3) s(x ∨1 y−∼)= s(x−∼ ∨1 y−∼) and s(x ∨2 y∼−)= s(x∼− ∨2 y∼−);
(4) s(x−∼ ∨1 y)= s(x ∨1 y−∼) and s(x∼− ∨2 y)= s(x ∨2 y∼−);
(5) s(x−∼)= s(x)= s(x∼−);
(6) s(x−)= 1− s(x)= s(x∼).

Proof

(1) This is straightforward.
(2) By Proposition 1.7 and property (1), we have s(x → y) = s(x ∨1 y → y) =

1+ s(y)− s(x ∨1 y) and s(y → x)= s(y ∨1 x → x)= 1+ s(x)− s(y ∨1 x).
Then s(x → y)= s(y)+ s(y → x)− s(x)= s(y)+ 1+ s(x)− s(y ∨1 x)−

s(x) proving s(x ∨1 y)= s(y ∨1 x). Similarly, s(x ∨2 y)= s(y ∨2 x).
(3) This follows from Proposition 1.6.
(4) This follows from (2) and (3).
(5) Since x−∼ = x ∨1 0, by (2) we have

s
(
x−∼

)= s(x ∨1 0)= s(0∨1 x)= s
(
(0→ x) � x

)= s(x).

In a similar way, we have s(x)= s(x∼−).
(6) s(x−)= s(x → 0)= s(0)− s(x)+ s(0→ x)= 1− s(x).

Similarly, s(x∼)= 1− s(x). �

Proposition 6.2 Let A be a bounded pseudo-BCK algebra and let s : A−→ [0,1]
be a function such that s(0)= 0, s(x ∨1 y)= s(y ∨1 x) and s(x ∨2 y)= s(y ∨2 x)

for all x, y ∈A. Then the following are equivalent:

(a) s is a Bosbach state on A;
(b) for all x, y ∈A, y ≤ x implies s(x → y)= s(x � y)= 1− s(x)+ s(y);
(c) for all x, y ∈A, s(x → y)= 1− s(x ∨1 y)+ s(y) and s(x � y)= 1− s(x ∨2

y)+ s(y).
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Proof

(a) ⇒ (b) This follows from Proposition 6.1(1).
(b) ⇒ (c) This follows from the inequalities x, y ≤ x ∨1 y and x, y ≤ x ∨2 y.
(c) ⇒ (a) Using (c), we get:

s(x)+ s(x → y) = s(x)+ 1− s(x ∨1 y)+ s(y)

= 1− s(y ∨1 x)+ s(x)+ s(y)= s(y)+ s(y → x).

Similarly,

s(x)+ s(x � y) = s(x)+ 1− s(x ∨2 y)+ s(y)

= 1− s(y ∨2 x)+ s(x)+ s(y)= s(y)+ s(y � x).

Moreover, by (c) we have:

s(1)= s(x → x)= 1− s(x)+ s(x)= 1.

Thus s is a Bosbach state on A. �

Proposition 6.3 Let A be a bounded pseudo-BCK algebra and s be a Bosbach state
on A. For all x, y ∈A, the following properties hold:

(1) s(x−∼ → y)= s(x → y−∼) and s(x∼− � y)= s(x � y∼−);
(2) s(x → y−∼) = s(y− � x−) = s(x−∼ → y−∼) = s(x−∼ → y) and s(x �

y∼−)= s(y∼ → x∼)= s(x∼− � y∼−)= s(x∼− � y);
(3) s(x∼ → y−∼)= s(x∼ → y) and s(x− � y∼−)= s(x− � y).

Proof

(1) Using Propositions 6.2(c) and 6.1(4), we have:

s
(
x−∼ → y

) = 1− s
(
x−∼ ∨1 y

)+ s(y)

= 1− s
(
x ∨1 y−∼

)+ s
(
y−∼

)= s
(
x → y−∼

)
.

Similarly, s(x∼− � y)= s(x � y∼−).
(2) This follows by (psbck-c19) and (1).
(3) Applying Proposition 6.1(4) we get:

s
(
x∼ → y−∼

) = 1− s
(
x∼ ∨1 y−∼

)+ s
(
y−∼

)= 1− s
(
x∼−∼ ∨1 y

)+ s(y)

= 1− s
(
x∼ ∨1 y

)+ s(y)= s
(
x∼ → y

)
.

Similarly, s(x− � y∼−)= s(x− � y). �

Proposition 6.4 Let s be a Bosbach state on a bounded pseudo-BCK algebra A.
Then for all x, y ∈A, we have:
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(1) s(x ∨1 y)= s(x ∨2 y);
(2) s(x → y)= s(x � y).

Proof

(1) First we prove the equality for y ≤ x. Applying Propositions 6.1(2) and 1.5(4),
we have s(x ∨1 y)= s(y ∨1 x)= s(x) and s(x ∨2 y)= s(y ∨2 x)= s(x), that
is, s(x ∨1 y)= s(x ∨2 y).

Assume now that x and y are arbitrary elements of A. Using Proposi-
tion 6.1(2) again and the first part of the proof, we have

s(x ∨1 y) = s
(
x ∨1 (x ∨1 y)

)= s
(
(x ∨1 y)∨1 x

)

= s
(
(x ∨1 y)∨2 x

)≥ s(y ∨2 x)

= s(x ∨2 y)= s
(
y ∨2 (x ∨2 y)

)

= s
(
(x ∨2 y)∨1 y

)≥ s(x ∨1 y).

(2) This follows immediately from Proposition 6.2(c) and the first equation. �

Proposition 6.5 Let s be a Bosbach state on a bounded pseudo-BCK algebra A.
Then for all x, y ∈A, we have:

(1) s(x− → y−)= s(y−∼ → x−∼);
(2) s(x∼ → y∼)= s(y∼− → x∼−).

Proof

(1) By (psbck-c15) we have x− � y− ≤ y−∼ → x−∼, so by Proposition 6.4(2) and
Proposition 6.1(1) it follows that:

s
(
x− → y−

) = s
(
x− � y−

)≤ s
(
y−∼ → x−∼

)≤ s
(
x−∼− � y−∼−

)

= s
(
x− � y−

)= s
(
x− → y−

)
.

Thus s(x− → y−)= s(y−∼ → x−∼).
(2) Similar to (1). �

Proposition 6.6 Let s be a Bosbach state on a bounded pseudo-BCK algebra A.
Then for all x, y ∈A, we have:

(1) s(x → y)= s(x−∼ → y−∼);
(2) s(x � y)= s(x∼− � y∼−). �

Proof

(1) By Proposition 6.3(2) we have s(x → y−∼)= s(x−∼ → y−∼).
From y ≤ y−∼ and (psbck-c10) we get x → y ≤ x → y−∼, hence

s(x → y)≤ s
(
x → y−∼

)= s
(
x−∼ → y−∼

)
.
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On the other hand, by x ≤ x−∼ and (psbck-c1) we have x−∼ → y ≤ x → y,
so using Proposition 6.3(2) again we get

s
(
x−∼ → y−∼

)= s
(
x−∼ → y

)≤ s(x → y).

We conclude that s(x → y)= s(x−∼ → y−∼).
(2) Similar to (1). �

Definition 6.2 Let A be a bounded pseudo-BCK algebra. A state-morphism on A

is a function m :A−→ [0,1] such that:

(SM1) m(0)= 0;
(SM2) m(x → y)=m(x � y)=m(x)→Ł m(y) for all x, y ∈A.

Proposition 6.7 Every state-morphism on a bounded pseudo-BCK algebra A is a
Bosbach state on A.

Proof It is obvious that m(1)=m(x → x)=m(x)→Ł m(x)= 1.
We also have:

m(x)+m(x → y) = m(x)+m(x)→Ł m(y)=m(x)+min
{
1−m(x)+m(y),1

}

= min
{
1+m(y),1+m(x)

}

= m(y)+min
{
1−m(y)+m(x),1

}

= m(y)+m(y)→Ł m(x)=m(y)+m(y → x).

Similarly, m(x)+m(x � y)=m(y)+m(y � x).
Thus s is a Bosbach state on A. �

Proposition 6.8 Let A be a bounded pseudo-BCK algebra. A Bosbach state m on
A is a state-morphism if and only if:

m(x ∨1 y)=max
{
m(x),m(y)

}

for all x, y ∈A, or equivalently,

m(x ∨2 y)=max
{
m(x),m(y)

}

for all x, y ∈A.

Proof In view of Proposition 6.4, the two equations are equivalent. If m is a state-
morphism on A, then by Proposition 6.7, m is a Bosbach state.

Using the relation m(x → y)= 1−m(x ∨1 y)+m(y), we obtain:

m(x ∨1 y)= 1+m(y)−m(x → y)= 1+m(y)− (
m(x)→Ł m(y)

)

= 1+m(y)−min
{
1−m(x)+m(y),1

}

= 1+m(y)+max
{−1+m(x)−m(y),−1

}=max
{
m(x),m(y)

}
.
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For the converse, assume that m is a Bosbach state on A such that

m(x ∨1 y)=max
{
m(x),m(y)

}
for all x, y ∈A.

Then, again using the relation m(x → y)= 1−m(x ∨1 y)+m(y), we have:

m(x → y) = 1+m(y)−max
{
m(x),m(y)

}

= 1+m(y)+min
{−m(x),−m(y)

}

= min
{
1−m(x)+m(y),1

}=m(x)→Ł m(y).

Similarly, m(x � y)=m(x)→Ł m(y).
Thus m is a state-morphism on A. �

Example 6.4 Consider the pseudo-BCK algebra A = {0, a, b, c,1} from Exam-
ple 1.11. The function m :A−→ [0,1] defined by:

m(0) := 0, m(a)=m(b)=m(c)=m(1) := 1

is a unique Bosbach state on A.
In addition, m(x ∨1 y)=m(x ∨2 y)=max{m(x),m(y)} for all x, y ∈ A, hence

m is also a state-morphism on A.

The set Ker(s) := {a ∈ A | s(a) = 1} is called the kernel of the Bosbach state s

on A.

Proposition 6.9 Let A be a bounded pseudo-BCK algebra and let s be a Bosbach
state on A. Then Ker(s) is a proper and normal deductive system of A.

Proof Obviously, 1 ∈Ker(s) and 0 /∈Ker(s).
Assume that a, a → b ∈Ker(s). We have 1= s(a)≤ s(a∨1 b), so s(a∨1 b)= 1.
It follows that 1= s(a → b)= 1− s(a ∨1 b)+ s(b)= s(b).
Hence b ∈Ker(s), so Ker(s) is a proper deductive system of A.
By Proposition 6.4(2), s(a � b)= s(a → b), and this proves that Ker(s) is nor-

mal. �

Lemma 6.1 Let s be a Bosbach state on a bounded pseudo-BCK algebra A

and K = Ker(s). In the bounded quotient pseudo-BCK algebra (A/K,≤,→,�,

0/K,1/K) we have:

(1) a/K ≤ b/K iff s(a → b)= 1 iff s(a ∨1 b)= s(b) iff s(a ∨2 b)= s(b);
(2) a/K = b/K iff s(a → b)= s(b→ a)= 1 iff s(a)= s(b)= s(a ∨1 b) iff s(a �

b)= s(b � a)= 1 iff s(a)= s(b)= s(a ∨2 b).
Moreover, the mapping ŝ :A/K →[0,1] defined by ŝ(a/K) := s(a) (a ∈A)

is a Bosbach state on A/K .
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Proof

(1) It follows easily that: a/K ≤ b/K iff (a → b)/K = a/K → b/K = 1/K =K

iff a → b ∈K iff s(a → b)= 1.
As s(a → b)= 1−s(a∨1 b)+s(b), we get a/K ≤ b/K iff s(a∨1 b)= s(b).
Similarly, a/K ≤ b/K iff (a � b)/K = a/K � b/K = 1/K = K iff a �

b ∈K iff s(a � b)= 1.
As s(a � b)= 1− s(a∨2 b)+ s(b), we get a/K ≤ b/K iff s(a∨2 b)= s(b).

(2) This follows easily from (1).

The fact that ŝ is a well-defined Bosbach state on A/K is now straightforward.
�

Proposition 6.10 Let s be a Bosbach state on a bounded pseudo-BCK algebra A

and let K =Ker(s). For every element x ∈A, we have

x−∼/K = x/K = x∼−/K,

that is, A/K satisfies the (pDN) condition.

Proof We have x ≤ x−∼. By the definition of a Bosbach state and Proposi-
tion 6.1(5), we have

s
(
x−∼ → x

)= s(x)+ s
(
x → x−∼

)− s
(
x−∼

)= s
(
x → x−∼

)= s(1)= 1.

Hence x−∼/K = x/K . In a similar way, we prove the second equality. �

Remark 6.1 Let s be a Bosbach state on a bounded pseudo-BCK algebra A. Ac-
cording to the proof of Proposition 6.10, we have

s
(
x−∼ → x

)= 1= s
(
x∼− → x

)
and s

(
x−∼ � x

)= 1= s
(
x∼− � x

)
.

Proposition 6.11 Let s be a Bosbach state on a bounded pseudo-BCK algebra A.
Then A/K is ∨1-commutative as well as ∨2-commutative, where K = Ker(s). In
addition, A/K is a ∨-semilattice and good.

Proof Since s is a Bosbach state, A/K is a pseudo-BCK algebra.
We denote x/K by x̄, x ∈ A. Then ŝ, defined by ŝ(a) := s(a) (a ∈ A), is a

Bosbach state on A/K .

(1) We show that if x̄ ≤ ȳ, then x̄ ∨1 ȳ = ȳ = ȳ ∨1 x̄.
By Proposition 1.5(4), we have x̄ ∨1 ȳ = ȳ.
We have to show that s((y ∨1 x)→ y)= 1.
By Proposition 6.1(1), we have

s(y ∨1 x) = s
(
(y → x) � x

)= ŝ
(
(ȳ → x̄) � x̄

)= 1+ ŝ(x̄)− ŝ(ȳ → x̄)

= 1+ ŝ(x̄)− [
1+ ŝ(x̄)− ŝ(ȳ)

]= ŝ(ȳ)= s(y).
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Therefore, using Proposition 6.1(2),

s
(
(y ∨1 x)→ y

) = ŝ
(
(ȳ ∨1 x̄)→ ȳ

)= 1+ ŝ(ȳ)− ŝ(ȳ ∨1 x̄)

= 1+ ŝ(ȳ)− ŝ(x̄ ∨1 ȳ)= 1+ ŝ(ȳ)− ŝ(ȳ)= 1.

Hence x̄ ∨1 ȳ = ȳ = ȳ ∨1 x̄ holds for x̄ ≤ ȳ.
(2) Now we show that x̄ ∨1 ȳ = ȳ ∨1 x̄ holds for all x, y ∈A.

By (1), we have

x̄ ∨1 ȳ = x̄ ∨1 (x̄ ∨1 ȳ)= (x̄ ∨1 ȳ)∨1 x̄ ≥ ȳ ∨1 x̄ = ȳ ∨1 (ȳ ∨1 x̄)

= (ȳ ∨1 x̄)∨1 ȳ ≥ x̄ ∨1 ȳ.

Hence x̄ ∨1 ȳ = ȳ ∨1 x̄ for all x, y ∈ A. This implies that A/K is ∨1-
commutative. In a similar way we prove that A/K is ∨2-commutative, that is,
A/K is sup-commutative. By Theorem 1.2, A/K is a ∨-semilattice. Moreover,
according to Proposition 6.10, A/K is good. �

An MV-state on an MV-algebra A is a mapping s :A→[0,1] such that s(1)= 1
and s(a ⊕ b)= s(a)+ s(b) whenever a � b= 0. Every MV-algebra admits at least
one MV-state, and due to [131], every MV-state on A coincides with a Bosbach state
on the BCK algebra A and vice versa.

We note that the radical, Rad(A), of an MV-algebra A is the intersection of all
maximal ideals of A ([41]).

Theorem 6.1 Let s be a Bosbach state on a bounded pseudo-BCK algebra A and
let K =Ker(s). Then (A/K,⊕,−,0/K), where

a/K ⊕ b/K := (
a∼ → b

)
/K and (a/K)− := a−/K,

is an Archimedean MV-algebra and the map ŝ(a/K) := s(a) is an MV-state on this
MV-algebra.

Proof By Propositions 6.10 and 6.11, A/K is a good pseudo-BCK algebra that
is a ∨-semilattice and ŝ on A/K is a Bosbach state such that Ker(ŝ) = {1/K}. By
Proposition 3.4.7 in [208], (A/K)/Ker(ŝ) is term-equivalent to an MV-algebra, that
is, it is Archimedean and ŝ is an MV-state on it.

Since A/K = (A/K)/Ker(ŝ), the same is also true for A/K , and this proves the
theorem. �

We recall that if a bounded pseudo-BCK algebra A is good, in view of Proposi-
tion 1.24, we can define a binary operation ⊕ via x⊕ y = x∼ → y∼− = y− � x∼−
that corresponds to an “MV-addition”. And for any pseudo-MV algebra A we know,
[96], that an MV-state is a state-morphism iff m(a ⊕ b) = m(a) ⊕Ł m(b) for all
a, b ∈A. Inspired by this we can characterize state-morphisms as follows.
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Lemma 6.2 Let m be a Bosbach state on a bounded pseudo-BCK algebra A. The
following statements are equivalent:

(a) m is a state-morphism;
(b) m(a∼ → b−∼)=min{m(a)+m(b),1} for all a, b ∈A;
(c) m(b− � a∼−)=min{m(a)+m(b),1} for all a, b ∈A.

Proof

(a) ⇒ (b) Assume that m is a state-morphism on A. Since m is a Bosbach state, by
Proposition 6.3(3) we have

m
(
a∼ → b−∼

) = m
(
a∼ → b

)=m
(
a∼

)→Ł m(b)

= m(a)− →Ł m(b)=min
{
m(a)+m(b),1

}
.

(b) ⇒ (a) Applying Proposition 6.6 and (b) we have

m(a → b) = m
(
a−∼ → b−∼

)=min
{
m

(
a−

)+m(b),1
}

= min
{
1−m(a)+m(b),1

}=m(a)→Ł m(b).

Similarly, m(a � b)=m(a)→Ł m(b).
Moreover, taking a = b= 0 in (b) we get m(0)= 0.
Hence m is a state-morphism.

In the same way we can prove that (a) ⇔ (c). �

Proposition 6.12 Let s be a Bosbach state on a bounded pseudo-BCK algebra A.
The following are equivalent:

(a) s is a state-morphism;
(b) Ker(s) is a normal and maximal deductive system of A.

Proof

(a) ⇒ (b) We will follow the idea used in Proposition 3.4.10 in [208].
Let s be a state-morphism. We show that [Ker(s)∪ {a})=A for any a /∈Ker(s).
Take a /∈Ker(s) and an arbitrary x ∈A. Since [0,1] is a simple MV-algebra and
s(a) �= 1, it follows that [s(a))= [0,1], so s(a)→n s(x)= 1 for some n ∈N.
But we have s(a)→n s(x)= s(a →n x) and hence a →n x ∈Ker(s).
Now, 1= (a →n x) � (a →n x)= a →n ((a →n x) � x), where a, a →n x ∈
Ker(s) ∪ {a}, which means that x ∈ [Ker(s) ∪ {a}). Thus [Ker(s) ∪ {a}) = A,
proving that Ker(s) is a maximal deductive system of A.

(b) ⇒ (a) Let K =Ker(s). According to Theorem 6.1, A/K = (A/K)/Ker(ŝ) is a
BCK algebra that is term equivalent to an MV-algebra. Assume F is a deductive
system of A/K and let K(F) = {a ∈ A | a/K ∈ F }. Then K(F) is a deduc-
tive system of A containing K . The maximality of K implies K = K(F) and
F = {1/K}. By Theorem 6.1, A/K can be assumed to be an Archimedean MV-
algebra having only one maximal deductive system, {1/F }. Therefore A/K is
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an MV-subalgebra of the MV-algebra of the real interval [0,1]. This yields that
the mapping a �→ a/K (a ∈A) is the Bosbach state s that is a state-morphism.

�

Lemma 6.3 Let m be a state-morphism on a bounded pseudo-BCK algebra A and
K =Ker(m). Then:

a/K ≤ b/K if and only if m(a)≤m(b);
a/K = b/K if and only if m(a)=m(b).

Proof By Proposition 6.7 it follows that m is a Bosbach state on A. Applying
Lemma 6.1, a/K ≤ b/K iff m(b)=m(a ∨1 b).

But m(a ∨1 b)=max{m(a),m(b)} and hence m(a)≤m(b).
The second assertion follows from the first one. �

Proposition 6.13 Let m be a state-morphism on a bounded pseudo-BCK algebra A.
Then (m(A),⊕,−,0) is a subalgebra of the standard MV-algebra ([0,1],⊕,−,0)

and the mapping a/Ker(m) �→m(a) is an isomorphism of A/Ker(m) onto m(A).

Proof Since m is a state-morphism, it is a homomorphism of (A,→,�,0,1) onto
(m(A),→,→,0,1). Hence A/Ker(m)∼=m(A). �

Proposition 6.14 Let A be a bounded pseudo-BCK algebra and m1, m2 be two
state-morphisms such that Ker(m1)=Ker(m2). Then m1 =m2.

Proof The assertion holds in the case of pseudo-MV algebras (Proposition 4.5 in
[96]).

By Proposition 6.7, m1 and m2 are two Bosbach states. The conditions yield
A/Ker(m1) = A/Ker(m2), and as in the proof of Proposition 6.12, we have that
A/Ker(m1) is in fact an MV-subalgebra of the MV-algebra of the real interval [0,1].
But Ker(m̂1) = {1/K} = Ker(m̂2). Hence, by Proposition 4.5 in [96], m̂1 = m̂2,
consequently, m1 =m2. �

Definition 6.3 Let A be a bounded pseudo-BCK algebra. We say that a Bosbach
state s is extremal if for any 0 < λ < 1 and for any two Bosbach states s1, s2 on A,
s = λs1 + (1− λ)s2 implies s1 = s2.

Summarizing the previous characterizations of state-morphisms, we have the fol-
lowing result.

Theorem 6.2 Let s be a Bosbach state on a bounded pseudo-BCK algebra A. Then
the following are equivalent:

(a) s is an extremal Bosbach state;
(b) s(x ∨1 y)=max{s(x), s(y)} for all x, y ∈A;
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(c) s(x ∨2 y)=max{s(x), s(y)} for all x, y ∈A;
(d) s is a state-morphism;
(e) Ker(s) is a maximal deductive system.

Proof The equivalence of (b)–(e) was proved in Propositions 6.8 and 6.12.

(d) ⇒ (a) Let s = λs1 + (1− λ)s2, where s1, s2 are Bosbach states and 0 < λ < 1.
Then Ker(s) = Ker(s1) ∩ Ker(s2) and the maximality of Ker(s) gives that
Ker(s1) and Ker(s2) are maximal and normal deductive systems. (e) yields that
s1 and s2 are state-morphisms and Proposition 6.14 entails s1 = s2 = s.

(a) ⇒ (d) Let s be an extremal state on A. Define ŝ by Lemma 6.1 on A/Ker(s). We
assert that ŝ is an extremal MV-state on the MV-algebra A/Ker(s). Indeed, let
m̂= λμ1 + (1− λ)μ2, where 0 < λ < 1 and μ1 and μ2 are states on A/Ker(s).
There exist two Bosbach states s1 and s2 on A such that si(a) := μi(a/Ker(s)),
a ∈ A for i = 1,2. Then s = λs1 + (1 − λ)s2 which gives s1 = s2 = s, thus
μ1 = μ2 = ŝ. Since A/Ker(s) is in fact an MV-algebra, we conclude from The-
orem 6.1.30 in [108] that ŝ is a state-morphism on A/Ker(s). Consequently, so
is s on A. (The equivalence (a) ⇔ (d) was proved in Theorem 6.1.30 in [108]
for the case of bounded commutative BCK-algebras, hence it also holds for MV-
algebras.) �

We present the following characterization of the existence of Bosbach states on
a bounded pseudo-BCK algebra.

Theorem 6.3 Let A be a bounded pseudo-BCK algebra. The following statements
are equivalent:

(a) A admits a Bosbach state;
(b) there exists a normal deductive system F �= A of A such that A/F is termwise

equivalent to an MV-algebra;
(c) there exists a normal and maximal deductive system F such that A/F is

termwise equivalent to an MV-algebra.

Proof

(a) ⇒ (b) If m is a Bosbach state, then, according to Theorem 6.1, the normal de-
ductive system F =Ker(m) satisfies (b).

(b) ⇒ (a) If A/F is an MV-algebra, then it possesses at least one MV-state, say μ.
The function m(a) := μ(a/F) (a ∈A) is a Bosbach state on A.

(a) ⇒ (c) If A possesses at least one state, by the Krein-Mil’man Theorem,
∂eBS(A)= SM(A) �= ∅. Then there is a state-morphism m on A and by The-
orem 6.2(e), the deductive system F = Ker(m) is maximal and normal, so by
Theorem 6.1, F satisfies (c).

(c) ⇒ (a) The proof is the same as that of (b) ⇒ (a). �

Remark 6.2 In the case of pseudo-BL algebras and bounded R�-monoids the exis-
tence of a state-morphism is equivalent to the existence of a maximal filter which is
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normal (see [131] and [110], respectively). This result is based on the fact that, if A

is one of the above mentioned structures and H is a maximal and normal filter of A,
then A/H is an MV-algebra.

In the case of pseudo-BCK algebras this result is not true, as we can see in the
next examples.

Example 6.5 Consider the bounded pseudo-BCK algebra A = {0, a, b,1} with
→=� given by the following table:

→ 0 a b 1
0 1 1 1 1
a b 1 1 1
b b b 1 1
1 0 a b 1

Then F = {1} is a unique proper deductive system of A. Moreover, F is evidently
normal. But A∼=A/{1} is not an MV-algebra and in view of Theorem 6.3, A has no
Bosbach states.

Example 6.6 Consider A = {0, a, b, c,1} with 0 < a < b < c < 1 and the opera-
tions →, � given by the following tables:

→ 0 a b c 1
0 1 1 1 1 1
a b 1 1 1 1
b b c 1 1 1
c 0 a b 1 1
1 0 a b c 1

� 0 a b c 1
0 1 1 1 1 1
a b 1 1 1 1
b b b 1 1 1
c 0 b b 1 1
1 0 a b c 1

Then (A,≤,→,�,0,1) is a good pseudo-BCK lattice. But there is no Bosbach
state on A. Indeed, assume that A admits a Bosbach state s such that s(0) = 0,
s(a)= α, s(b)= β , s(c)= γ , s(1)= 1. From s(x)+ s(x → y)= s(y)+ s(y → x),
taking x = a, y = 0, x = b, y = 0 and x = c, y = 0, respectively we get α = 1/2,
β = 1/2, γ = 1. On the other hand, we have:

s(a)+ s(a � b) = s(a)+ s(1)= 1/2+ 1= 3/2,

s(b)+ s(b � a) = s(b)+ s(b)= 1/2+ 1/2= 1,

so condition (B2) does not hold.
Thus there is no Bosbach state, in particular, no state-morphism on A.

Remark 6.3 The previous Examples 6.5 and 6.6 of bounded linearly ordered state-
less pseudo-BCK algebras exhibit another difference between bounded pseudo-
BCK algebras and bounded pseudo-BL algebras since every linearly ordered
pseudo-BL algebra admits a Bosbach state (see [98, 104]).
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Remark 6.4 We say that a net of Bosbach states {sα} converges weakly to a Bosbach
state s if s(a)= limα sα(a) for every a ∈A. According to the definition of Bosbach
states, the set of Bosbach states is a (possibly empty) compact Hausdorff topological
space in the weak topology.

Extremal Bosbach states are very important because they generate all Bosbach
states: by the Krein–Mil’man Theorem, Theorem 5.17 in [155], every Bosbach state
is a weak limit of a net of convex combinations of extremal Bosbach states.

Let BS(A), ∂eBS(A) and SM(A) denote the set of all Bosbach states, all ex-
tremal Bosbach states, and all state-morphisms on (A,≤,→,�,0,1), respectively.

Theorem 6.2 says

∂eBS(A)= SM(A)

and they are compact subsets of BS(A) in the weak topology.

Let A be a bounded pseudo-BCK algebra and x, y ∈ A. We recall that x is or-
thogonal to y, denoted x ⊥ y, iff x−∼ ≤ y∼ (see Definition 1.11). If x ⊥ y, we
define a partial operation + on A by x + y := x ⊕ y = y∼ → x∼−.

Definition 6.4 Let A be a good pseudo-BCK algebra. A Riečan state on A is a
function s :A−→ [0,1] such that the following conditions hold for all x, y ∈A:

(R1) if x ⊥ y, then s(x + y)= s(x)+ s(y);
(R2) s(1)= 1.

The notion of a Riečan state extends the additive measures introduced by Riečan
for BL-algebras ([245]).

Proposition 6.15 If s is a Riečan state on a good pseudo-BCK algebra A, then the
following properties hold for all x, y ∈A:

(1) s(x−)= s(x∼)= 1− s(x);
(2) s(0)= 0;
(3) s(x−∼)= s(x∼−)= s(x−−)= s(x∼∼)= s(x);
(4) if x ≤ y, then s(x)≤ s(y) and s(y → x−∼)= s(y � x∼−)= 1+ s(x)− s(y);
(5) s((x ∨1 y)→ x−∼)= s((x ∨1 y) � x−∼)= 1− s(x ∨1 y)+ s(x) and s((x ∨2

y)→ x−∼)= s((x ∨2 y)� x−∼)= 1− s(x ∨2 y)+ s(x);
(6) s((x ∨1 y)→ y−∼)= s((x ∨1 y) � y−∼)= 1− s(x ∨1 y)+ s(y) and s((x ∨2

y)→ y−∼)= s((x ∨2 y)� y−∼)= 1− s(x ∨2 y)+ s(y).

Proof

(1) Since x ⊥ x− and x + x− = 1, we have: s(x)+ s(x−)= s(1)= 1, so s(x−)=
1− s(x). Similarly, s(x∼)= 1− s(x).

(2) This follows from the fact that 0⊥ 0 and 0+ 0= 0.
(3) Applying the fact that x ⊥ 0 and x + 0 = x∼−, we get s(x) = s(x∼−) and

similarly the other equalities.
(4) Since x ≤ y, it follows that x ⊥ y− and x + y− = y → x−∼.
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Hence s(x)+ s(y−)= s(y → x−∼), so s(x)− s(y)= s(y → x−∼)− 1≤ 0,
that is, s(x)≤ s(y). We get s(y → x−∼)= 1+ s(x)− s(y).

Similarly, from x ≤ y we have y∼ ⊥ x and y∼ + x = y � x∼− and we get

s
(
y � x∼−

)= 1+ s(x)− s(y).

(5) This follows from (4), since x ≤ x ∨1 y and x ≤ x ∨2 y.
(6) This follows from (4), since y ≤ x ∨1 y and y ≤ x ∨2 y. �

Theorem 6.4 Any Bosbach state on a good pseudo-BCK algebra is a Riečan state.

Proof Let A be a good pseudo-BCK algebra and s be a Bosbach state on A. Assume
x ⊥ y, that is, x−∼ ≤ y∼. We have: s(y∼)+ s(y∼ → x−∼)= s(x−∼)+ s(x−∼ →
y∼). Since s(x−∼ → y∼) = 1, we get: 1 − s(y) + s(y∼ → x−∼) = s(x) + 1, so
s(y∼ → x−∼)= s(x)+ s(y).

Thus s(x ⊕ y)= s(x)+ s(y).
Since by hypothesis s(1)= 1, it follows that s is a Riečan state on A. �

Remark 6.5 The converse is not true in general, as we can see in the next example,
which shows that there exists a Riečan state on a good pseudo-BCK algebra A that is
not a Bosbach state. Moreover, the good pseudo-BCK algebra A from this example
has no Bosbach states.

Example 6.7 Consider A = {0, a, b, c,1} with 0 < a < b < c < 1 from Exam-
ple 6.6. Then (A,≤,→,�,0,1) is a good pseudo-BCK algebra. The function
s :A−→ [0,1] defined by

s(0) := 0, s(a) := 1/2, s(b) := 1/2, s(c) := 1, s(1) := 1

is a unique Riečan state. Indeed, the elements x, y ∈ A with x ⊥ y are those given
in the table below:

x y x−∼ y∼ x + y

0 0 0 1 0
0 a 0 b b

0 b 0 b b

0 c 0 0 1
0 1 0 0 1
a 0 b 1 b

a a b b 1
a b b b 1
b 0 b 1 b

b a b b 1
b b b b 1
c 0 1 1 1
1 0 1 1 1
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On the other hand, as was shown in Example 6.6, A has no Bosbach states.
We can see that the kernel of s is the set {c,1}, which is a deductive system but

not normal.

Example 6.8 The bounded pseudo-BCK algebra A in Example 6.5 has no Bosbach
states, but the function s : A−→ [0,1] such that s(0) := 0, s(a)= s(b) := 1/2 and
s(1) := 1 is a unique Riečan state on A.

The next example is in accordance with Theorem 6.4.

Example 6.9 Consider again the good pseudo-BCK algebra A1 from Example 1.16.
We claim that the Bosbach state s : A1 −→ [0,1] defined by s(0) := 0, s(a) =
s(b) = s(c) = s(d) = s(1) := 1 is also a Riečan state on A1. Indeed, the elements
x, y ∈A1 with x ⊥ y are those given in the table below:

x y x−∼ y∼ x + y

0 0 0 1 0
0 a 0 0 1
0 b 0 0 1
0 c 0 0 1
0 d 0 0 1
0 1 0 0 1
a 0 1 1 1
b 0 1 1 1
c 0 1 1 1
d 0 1 1 1
1 0 1 1 1

One can easily check that s is a Riečan state.

Theorem 6.5 Let A be a pseudo-BCK(pDN) algebra and s be a Riečan state on A

such that s(x ∨1 y)= s(y ∨1 x) and s(x ∨2 y)= s(y ∨2 x) for all x, y ∈A. Then s

is a Bosbach state on A.

Proof Let s be a Riečan state on a good pseudo-BCK(pDN) algebra A. According
to Proposition 6.15(2) we have s(0)= 0. Since y−∼ = y for all y ∈ A, by Proposi-
tion 6.15(6) we get s((x ∨1 y)→ y)= 1− s(x ∨1 y)+ s(y) and s((x ∨2 y)→ y)=
1− s(x ∨2 y)+ s(y). Applying Proposition 1.7, we have:

s(x → y)= 1− s(x ∨1 y)+ s(y) and s(x � y)= 1− s(x ∨2 y)+ s(y).

Finally, by Proposition 6.2 it follows that s is a Bosbach state on A. �

Corollary 6.1 Riečan states on Wajsberg pseudo-hoops with (pDN) coincide with
Bosbach states.
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Proof This follows from Theorem 6.5, taking into consideration that in any Wajs-
berg pseudo-hoop A we have s(x ∨1 y)= s(y ∨1 x) and s(x ∨2 y)= s(y ∨2 x) for
all x, y ∈A. �

Corollary 6.2 Riečan states on locally finite Wajsberg pseudo-hoops coincide with
Bosbach states.

Proof According to Theorem 2.1 every locally finite pseudo-hoop satisfies the
(pDN) condition. The assertion follows from Corollary 6.1. �

Theorem 6.6 Let A be a good pseudo-BCK algebra satisfying the identities:

(x → y)−∼ = (x ∨1 y)→ y−∼,

(x � y)−∼ = (x ∨2 y) � y−∼.

If s is a Riečan state on A such that s(x ∨1 y) = s(y ∨1 x) and s(x ∨2 y) =
s(y ∨2 x) for all x, y ∈A, then s is a Bosbach state on A.

Proof Let s be a Riečan state on a good pseudo-BCK algebra A. According to
Proposition 6.15(2) we have s(0)= 0. Applying Proposition 6.15(3), (6) we get:

s(x → y) = s
(
(x → y)−∼

)= s
(
(x ∨1 y)→ y−∼

)= 1− s(x ∨1 y)+ s(y) and

s(x � y) = s
(
(x � y)−∼

)= s
(
(x ∨2 y) � y−∼

)= 1− s(x ∨2 y)+ s(y).

Thus, by Proposition 6.2, it follows that s is a Bosbach state on A. �

Example 6.10 Consider again the good pseudo-BCK lattice A1 from Example 1.16.
One can check that A1 satisfies the identities from Theorem 6.6. Hence every Riečan
state s on A1 satisfying the conditions s(x∨1 y)= s(y∨1 x) and s(x∨2 y)= s(y∨2
x) for all x, y ∈A1, is a Bosbach state on A1.

Moreover, we have:

0∨1 0 = 0∨2 0= 0;
0∨1 x = 0∨2 x = x and x ∨1 0= x ∨2 0= 1, for all x ∈A1 \ {0,1};
1∨1 x = x ∨1 1= 1∨2 x = x ∨2 1= 1 for all x ∈A1.

It follows that the function s :A1 −→ [0,1] defined by s(0) := 0, s(a)= s(b)=
s(c) = s(d) = s(1) := 1 satisfies the conditions s(x ∨1 y) = s(y ∨1 x) and s(x ∨2
y)= s(y ∨2 x) for all x, y ∈A1. Then according to Theorem 6.6, s is a Riečan state
on A1, which is in accordance with Example 6.9.

Example 6.11 Let A be the good pseudo-BCK algebra from Example 6.6. One
can easily check that A satisfies the two identities from Theorem 6.6. According
to Example 6.7, the function s : A −→ [0,1] defined by s(0) := 0, s(a) := 1/2,
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s(b) := 1/2, s(c) := 1, s(1) := 1 is the unique Riečan state on A. But s(a ∨2 b)=
s(b) = 1/2, while s(b ∨2 a) = s(c) = 1, so s(a ∨2 b) �= s(b ∨2 a). It follows that
s does not satisfy the conditions from Theorem 6.6. Moreover, we have shown in
Example 6.7 that s is not a Bosbach state on A.

6.2 Bosbach States on Subinterval Algebras of a Bounded
Pseudo-hoop

Since every pseudo-hoop is a pseudo-BCK(pP) algebra, the results regarding the
states on bounded pseudo-BCK algebras presented in the previous section are also
valid for bounded pseudo-hoops. In this section we will study the restrictions of
Bosbach states on the subinterval algebras of bounded pseudo-hoops.

Proposition 6.16 Let (A,�,→,�,0,1) be a bounded pseudo-hoop, a ∈ CC(A)

and s be a Bosbach state on A. Then the following hold:

(1) s((x → y)� a)= s(a)+ s(x → y)− 1;
(2) s(a � (x � y))= s(a)+ s(x � y)− 1.

Proof

(1) Applying Proposition 2.21(1) and (B1) we get:

s(a)+ s(x → y) = s(a)+ s
(
a → (

(x → y)� a
))

= s
(
(x → y)� a

)+ s
((

(x → y)� a
)→ a

)

= s
(
(x → y)� a

)+ 1

(since (x → y)� a ≤ a, it follows that ((x → y)� a)→ a = 1).
Thus s((x → y)� a)= s(a)+ s(x → y)− 1.

(2) The proof is similar to (1), applying Proposition 2.21(2) and (B2). �

Lemma 6.4 Let (A,�,→,�,0,1) be a bounded pseudo-hoop, a ∈ CC(A) and s

be a Bosbach state on A. Then the following hold for all n ∈N:

(1) s(an+1)= s(an)+ s(a)− 1;
(2) s(an)= ns(a)− n+ 1.

Proof

(1) By (B1) we have s(an)+ s(an → an+1)= s(an+1)+ s(an+1 → an).
Since an+1 ≤ an, we have an+1 → an = 1 and applying Corollary 2.3 we

get s(an)+ s(a)= s(an+1)+ s(1), so s(an+1)= s(an)+ s(a)− 1.
(2) This follows from (1) by induction. �
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Proposition 6.17 Let (A,�,→,�,0,1) be a bounded strongly simple pseudo-
hoop, a ∈ CC(A) and s be a Bosbach state on A. If a �= 1, then s(a) �= 1.

Proof Since A is strongly simple and a �= 1, by Proposition 2.11 it follows that
[a)=A. Hence 0 ∈ [a) and according to Remark 1.13(2) there exists an m ∈N such
that am = 0. Suppose that s(a) = 1. Then, applying Lemma 6.4(2), from s(am) =
ms(a)−m+ 1 we get 0= 1, a contradiction. Thus s(a) �= 1. �

In what follows, Aa
0, A1

a and Ab
a (a ≤ b) will be the subinterval algebras on a

bounded pseudo-hoop A introduced in Chap. 2.

Theorem 6.7 Let (A,�,→,�,0,1) be a bounded pseudo-hoop, a ∈ JC(A) and s

be a Bosbach state on A. If s(a) �= 1, then s1
a : [a,1] −→ [0,1], s1

a(x) := s(x)−s(a)
1−s(a)

is a Bosbach state on A1
a .

Proof We verify the defining conditions of a Bosbach state:

(B1)

s1
a(x)+ s1

a

(
x →1

a y
) = s1

a(x)+ s1
a(x → y)

= s(x)− s(a)

1− s(a)
+ s(x → y)− s(a)

1− s(a)

= s(x)+ s(x → y)− 2s(a)

1− s(a)

= s(y)+ s(y → x)− 2s(a)

1− s(a)

= s(y)− s(a)

1− s(a)
+ s(y → x)− s(a)

1− s(a)

= s1
a(y)+ s1

a(y → x)

= s1
a(y)+ s1

a

(
y →1

a x
)
.

(B2) This can be proved similarly as (B1).
(B3) Obviously, s1

a(a)= 0 and s1
a(1)= 1.

Thus s1
a is a Bosbach state on A1

a . �

Corollary 6.3 Let (A,�,→,�,0,1) be a bounded strongly simple pseudo-hoop,
a ∈ CC(A)∩ JC(A), a �= 1 and s be a Bosbach state on A.

Then s1
a : [a,1] −→ [0,1], s1

a(x) := s(x)−s(a)
1−s(a)

is a Bosbach state on A1
a .

Proof This follows from Proposition 6.17 and Theorem 6.7. �
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Theorem 6.8 Let (A,�,→,�,0,1) be a bounded pseudo-hoop, a ∈ CC(A) and
s be a Bosbach state on A. If s(a) �= 0, then sa

0 : [0, a] −→ [0,1], sa
0 (x) := s(x)

s(a)
is a

Bosbach state on Aa
0 .

Proof We verify the defining conditions of a Bosbach state.

(B1) Applying Proposition 6.16(1) we get

sa
0 (x)+ sa

0

(
x →a

0 y
) = sa

0 (x)+ sa
0

(
(x → y)� a

)

= s(x)

s(a)
+ s((x → y)� a)

s(a)

= s(x)+ s(a)+ s(x → y)− 1

s(a)

= s(y)+ s(a)+ s(y → x)− 1

s(a)

= s(y)

s(a)
+ s((y → x)� a)

s(a)

= sa
0 (y)+ sa

0

(
y →a

0 x
)
.

(B2) This can be proved in a similar way by applying Proposition 6.16(2).
(B3) Obviously, sa

0 (0)= 0 and sa
0 (a)= 1.

Thus sa
0 is a Bosbach state on Aa

0. �

Theorem 6.9 Let (A,�,→,�,0,1) be a bounded pseudo-hoop, a, b ∈ CC(A) ∩
JC(A), a ≤ b and s be a Bosbach state on A. If s(a) �= s(b), then sb

a : [a, b] −→
[0,1], sb

a (x) := s(x)−s(a)
s(b)−s(a)

is a Bosbach state on Ab
a .

Proof We verify the defining conditions of a Bosbach state in the same way as in
the above theorem:

(B1)

sb
a (x)+ sb

a

(
x →b

a y
) = sb

a (x)+ sb
a

(
(x → y)� b

)

= s(x)− s(a)

s(b)− s(a)
+ s((x → y)� b)− s(a)

s(b)− s(a)

= s(x)− 2s(a)+ s(b)+ s(x → y)− 1

s(b)− s(a)

= s(y)+ s(y → x)+ s(b)− 2s(a)− 1

s(b)− s(a)

= s(y)− s(a)

s(b)− s(a)
+ s(b)+ s(y → x)− s(a)− 1

s(b)− s(a)
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= s(y)− s(a)

s(b)− s(a)
+ s((y → x)� b)− s(a)

s(b)− s(a)

= sb
a (y)+ sb

a

(
(y → x)� b

)= sb
a (y)+ sb

a

(
y →b

a x
)
.

(B2) Similar to (B1).
(B3) Obviously, sb

a (a)= 0 and sb
a (b)= 1.

Thus sb
a is a Bosbach state on Ab

a . �

6.3 States on FLw-Algebras

In this section we establish some properties of states on FLw-algebras, pseudo-MTL
algebras, bounded R�-monoids and pseudo-BL algebras. We prove that in the case
of a good FLw-algebra satisfying the Glivenko property, Riečan and Bosbach states
coincide. As a consequence, Riečan states on good R�-monoids coincide with Bos-
bach states. It is proved that there is a bijection between the state-morphisms on a
pseudo-BL algebra and its maximal and normal filters.

Proposition 6.18 Let A be an FLw-algebra and let s : A −→ [0,1] be a function
such that s(1)= 1. Then the following are equivalent:

(a) 1+ s(x ∧ y)= s(x ∨ y)+ s(d1(x, y)) for all x, y ∈A;
(b) 1+ s(x ∧ y)= s(x)+ s(x → y) for all x, y ∈A;
(c) s(x)+ s(x → y)= s(y)+ s(y → x) for all x, y ∈A,

where + is the usual addition of real numbers.

Proof

(a) ⇒ (b) If a ≤ b, then a ∧ b= a, a ∨ b= b, a → b= 1 and

d1(a, b)= (a → b)∧ (b→ a)= 1∧ (b→ a)= b→ a,

hence by the hypothesis, 1+ s(a)= s(b)+ s(b→ a).
Letting a = x ∧ y and b= y, it follows that

1+ s(x ∧ y)= s(y)+ s(y → x ∧ y)= s(y)+ s(y → x)

(here we applied (rl-c21)).
(b) ⇒ (c) s(x)+ s(x → y)= 1+ s(x ∧ y)= 1+ s(y ∧ x)= s(y)+ s(y → x).
(c) ⇒ (a) We have that d1(x, y)= x ∨ y → x ∧ y, hence, applying the hypothesis

we get that:

s(x ∨ y)+ s
(
d1(x, y)

)= s(x ∨ y)+ s(x ∨ y → x ∧ y)

= s(x ∧ y)+ s(x ∧ y → x ∨ y)= s(x ∧ y)+ s(1)

= 1+ s(x ∧ y)

(x ∧ y ≤ x ∨ y implies x ∧ y → x ∨ y = 1). �
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Proposition 6.19 Let A be an FLw-algebra and let s : A −→ [0,1] be a function
such that s(1)= 1. Then the following are equivalent:

(a) 1+ s(x ∧ y)= s(x ∨ y)+ s(d2(x, y)) for all x, y ∈A;
(b) 1+ s(x ∧ y)= s(x)+ s(x � y) for all x, y ∈A;
(c) s(x)+ s(x � y)= s(y)+ s(y � x) for all x, y ∈A.

Proof The proof is similar to that of Proposition 6.18. �

Proposition 6.20 Let A be an FLw-algebra and s :A−→ [0,1] such that s(0)= 0.
Then the following are equivalent:

(a) s is a Bosbach state on A;
(b) for all x, y ∈A, y ≤ x implies s(x → y)= s(x � y)= 1− s(x)+ s(y);
(c) for all x, y ∈A, s(x → y)= s(x � y)= 1− s(x ∨ y)+ s(y).

Proof

(a) ⇒ (b) This follows from (B1) and (B2).
(b) ⇒ (c) Applying (b), since y ≤ x ∨ y and x ∨ y → y = x → y, it follows that:

s(y)+ s
(
y → (x ∨ y)

)= s(x ∨ y)+ s
(
(x ∨ y)→ y

)= s(x ∨ y)+ s(x → y),

so s(x → y)= 1−s(x∨y)+s(y) and similarly s(x � y)= 1−s(x∨y)+s(y).
(c) ⇒ (a) Using (c), we get:

s(x)+ s(x → y) = s(x)+ 1− s(x ∨ y)+ s(y)

= 1− s(y ∨ x)+ s(x)+ s(y)= s(y)+ s(y → x).

Similarly,

s(x)+ s(x � y) = s(x)+ 1− s(x ∨ y)+ s(y)

= 1− s(y ∨ x)+ s(x)+ s(y)= s(y)+ s(y � x).

Moreover, by (c) we have: s(1)= s(x → x)= 1− s(x)+ s(x)= 1.
Thus s is a Bosbach state on A. �

Proposition 6.21 Let s be a Bosbach state on an FLw-algebra A. Then for all
x, y ∈A the following properties hold:

(rl-b1) s(d1(x, y))= s(d2(x, y));
(rl-b2) s(x � y)= 1− s(x → y−) and s(y � x)= 1− s(x � y∼);
(rl-b3) s(x)+ s(y)= s(x � y)+ s(y− → x);
(rl-b4) s(x)+ s(y)= s(y � x)+ s(y∼ � x);
(rl-b5) s(x → y)= s(x−∼ → y−∼) and s(x � y)= s(x∼− � y∼−).
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Proof

(rl-b1) By Propositions 6.18 and 6.19,

s
(
d1(x, y)

)= 1+ s(x ∧ y)− s(x ∨ y)= s
(
d2(x, y)

)
.

(rl-b2) By Proposition 6.1(6) we have s((x � y)−)= 1− s(x � y).
But (x � y)− = x → y−, so s(x � y)= 1− s(x → y−).
Similarly, s(y � x)= 1− s((y � x)∼)= 1− s(x � y∼).

(rl-b3) Applying (B1) and (rl-b2) we have:

s(x � y)+ s
(
y− → x

) = s(x � y)+ s(x)+ s
(
x → y−

)− s
(
y−

)

= s(x � y)+ s(x)+ 1− s(x � y)− 1+ s(y)

= s(x)+ s(y).

(rl-b4) Applying (B2) and (rl-b2) we have:

s(y � x)+ s
(
y∼ � x

) = s(y � x)+ s(x)+ s
(
x � y∼

)− s
(
y∼

)

= s(y � x)+ s(x)+ 1− s(y � x)− 1+ s(y)

= s(x)+ s(y).

(rl-b5) Applying Proposition 6.20, (rl-c27) and Proposition 6.1(5) we get:

s
(
x−∼ → y−∼

) = 1− s
(
x−∼ ∨ y−∼

)+ s
(
y−∼

)

= 1− s
((

x−∼ ∨ y−∼
)−∼)+ s

(
y−∼

)

= 1− s
(
(x ∨ y)−∼

)+ s
(
y−∼

)

= 1− s(x ∨ y)+ s(y)= s(x → y).

Similarly, s(x � y)= s(x∼− � y∼−). �

Corollary 6.4 Let s be a Bosbach state on an FLw-algebra A. Then for all x, y ∈A

the following properties hold:

(1) s(x → y)= s(x → y−∼)= s(y− � x−)= s(x−∼ → y−∼)= s(x−∼ → y);
(2) s(x � y)= s(x � y∼−)= s(y∼ → x∼)= s(x∼− � y∼−)= s(x∼− � y);
(3) s(x∼ → y)= s(y− � x∼−)= s(x∼ → y−∼)= s(y− � x).

Proof

(1) and (2) follow from Proposition 6.3(2) and (rl-b5).
(3) Replacing x with x∼ in (1) we get:

s
(
x∼ → y

)= s
(
x∼ → y−∼

)= s
(
y− � x∼−

)= s
(
x∼ → y−∼

)= s
(
x∼ → y

)
.

From (2) we have s(x � y)= s(y∼ → x∼), so s(y � x)= s(x∼ → y∼).
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Replacing y by y− it follows that s(y− � x)= s(x∼ → y−∼).
Finally, we conclude that:

s
(
x∼ → y

)= s
(
y− � x∼−

)= s
(
x∼ → y−∼

)= s
(
y− � x

)
. �

Example 6.12 Consider the good FLw-algebra A1 from Example 3.5.
The function s :A1 →[0,1] defined by:

s(0) := 0,

s(a1) = s(a2)= s(b2)= s(s)= s(a)= s(b)

= s(n)= s(c)= s(d)= s(m)= s(1) := 1

is the unique Bosbach state on A1.

Proposition 6.22 Let s be a Bosbach state on an FLw-algebra A. Then the follow-
ing properties hold for all x, y ∈A:

(1) x/Ker(s)= y/Ker(s) iff s(x ∧ y)= s(x ∨ y);
(2) If s(x ∧ y)= s(x ∨ y), then s(x)= s(y)= s(x ∧ y).

Proof

(1) According to Lemma 6.1 and Proposition 6.18(a) we have:

x/Ker(s)= y/Ker(s) iff d1(x, y) ∈Ker(s) iff

s
(
d1(x, y)

)= 1 iff s(x ∧ y)= s(x ∨ y).

(2) Since s(x ∧ y) ≤ s(x), s(y) ≤ s(x ∨ y) it follows by hypothesis that s(x) =
s(y)= s(x ∧ y). �

Proposition 6.23 Let s be a Bosbach state on a pseudo-MTL algebra A. Then the
following properties hold for all x, y ∈A:

(mtl-b1) s(d1(x, y)) = s(d1(x → y, y → x)) and s(d2(x, y)) = s(d2(x � y,

y � x));
(mtl-b2) s(d1(x

−, y−))= s(d1(x
∼, y∼))= s(d1(x, y));

(mtl-b3) s(x− → y−)= s(x∼ → y∼)= 1+ s(x)− s(x ∨ y);
(mtl-b4) s(x− → y−)= s(y−∼ → x−∼) and s(x∼ → y∼)= s(y∼− → x∼−);
(mtl-b5) s(x)+ s(y)= s(x ∨ y)+ s(x ∧ y);
(mtl-b6) x ∨ y = 1 implies 1+ s(x ∧ y)= s(x)+ s(y);
(mtl-b7) 1 + s(d1(x, y)) = s(x → y) + s(y → x) and 1 + s(d2(x, y)) = s(x �

y)+ s(y � x);
(mtl-b8) 1+ s(x)+ s(y)= s(d1(x, y))+ s((x → y)→ y)+ s((y → x)→ x) and

1+ s(x)+ s(y)= s(d2(x, y))+ s((x � y) � y)+ s((y � x) � x).
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Proof

(mtl-b1) By Proposition 6.18(a) and by the pseudo-prelinearity condition it follows
that:

1+ s
(
d1(x, y)

) = 1+ s
(
(x → y)∧ (y → x)

)

= s
(
(x → y)∨ (y → x)

)+ s
(
d1(x → y, y → x)

)

= 1+ s
(
d1(x → y, y → x)

)
.

Thus s(d1(x, y))= s(d1(x → y, y → x)).
Similarly, s(d2(x, y))= s(d2(x � y, y � x)).

(mtl-b2) Applying Proposition 6.18(a), Proposition 6.1(6) and taking into consider-
ation (psbck-c41) and (psmtl-c1), we get:

s
(
d1

(
x−, y−

)) = 1+ s
(
x− ∧ y−

)− s
(
x− ∨ y−

)

= 1+ s
(
(x ∨ y)−

)− s
(
(x ∧ y)−

)

= 1− s(x ∨ y)+ s(x ∧ y)= s
(
d1(x, y)

)
.

Similarly, s(d1(x
∼, y∼))= s(d1(x, y)).

(mtl-b3) Applying Proposition 6.18(b), Proposition 6.1(6) and taking into consid-
eration (psbck-c41) and (psmtl-c1), we get:

s(x ∨ y)+ s
(
x− → y−

) = s(x ∨ y)+ 1+ s
(
x− ∧ y−

)− s
(
x−

)

= s(x ∨ y)+ s
(
(x ∨ y)−

)+ s(x)= 1+ s(x),

hence s(x− → y−)= 1+ s(x)− s(x ∨ y).
Similarly, s(x∼ → y∼)= 1+ s(x)− s(x ∨ y).

(mtl-b4) By (psbck-c15) and by Proposition 6.4(2) it follows that:

s
(
x− → y−

) = s
(
x− � y−

)≤ s
(
y−∼ → x−∼

)≤ s
(
x−∼− � y−∼−

)

= s
(
x− � y−

)= s
(
x− → y−

)
.

Thus s(x− → y−)= s(y−∼ → x−∼).
Similarly, s(x∼ → y∼)= s(y∼− → x∼−).

(mtl-b5) Applying Proposition 6.1(5) and taking into consideration (psbck-c41) and
(psmtl-c1), we have:

s(x ∨ y)+ s(x ∧ y) = s
(
(x ∨ y)−∼

)+ s
(
(x ∧ y)−∼

)

= s
(
x−∼ ∨ y−∼

)+ s
(
x−∼ ∧ y−∼

)
.

Applying (mtl-b3) we get:

s
(
x−∼ ∨ y−∼

)= 1+ s
(
x−∼

)− s
(
x−∼− → y−∼−

)= 1+ s(x)− s
(
x− → y−

)
.
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By Proposition 6.18(b) and (mtl-b4) we obtain:

s
(
x−∼ ∧ y−∼

)= s
(
y−∼

)+ s
(
y−∼ → x−∼

)− 1= s(y)+ s
(
x− → y−

)− 1.

Hence s(x−∼ ∨ y−∼)+ s(x−∼ ∧ y−∼)= s(x)+ s(y).
We conclude that s(x)+ s(y)= s(x ∨ y)+ s(x ∧ y).

(mtl-b6) This follows from (mtl-b5).
(mtl-b7) This follows by (mtl-b6) and the pseudo-prelinearity condition.
(mtl-b8) Since y ≤ x → y and x ≤ y → x, applying Proposition 6.1(1) we get:

1+ s(y) = s(x → y)+ s
(
(x → y)→ y

)
,

1+ s(x) = s(y → x)+ s
(
(y → x)→ x

)
.

Adding these two equalities and applying (mtl-b7) we have:

1+ s(x)+ s(y) = −1+ s(x → y)+ s(y → x)

+ s
(
(x → y)→ y

)+ s
(
(y → x)→ x

)

= s
(
d1(x, y)

)+ s
(
(x → y)→ y

)+ s
(
(y → x)→ x

)
.

Similarly, 1+ s(x)+ s(y)= s(d2(x, y))+ s((x � y) � y)+ s((y � x) � x).
�

Proposition 6.24 If s is a Bosbach state on a pseudo-MTL algebra A, then for all
x, y ∈A the following are equivalent:

(a) x/Ker(s)= y/Ker(s);
(b) s(x ∧ y)= s(x ∨ y);
(c) s(x)= s(y)= s(x ∧ y).

Proof

(a) ⇔ (b) We have:

x/Ker(s)= y/Ker(s) iff d1(x, y) ∈Ker(s) iff s
(
d1(x, y)

)= 1.

But, according to Proposition 6.18(a) we have 1 + s(x ∧ y) = s(x ∨ y) +
s(d1(x, y)), so x/Ker(s)= y/Ker(s) iff s(x ∧ y)= s(x ∨ y).

(b) ⇒ (c) Since s(x ∧ y) ≤ s(x), s(y) ≤ s(x ∨ y), applying (b) we get s(x) =
s(y)= s(x ∧ y).

(c) ⇒ (b) According to (mtl-b5) we have s(x) + s(y) = s(x ∨ y) + s(x ∧ y) and
applying (c) we get s(x ∧ y)= s(x ∨ y). �

Proposition 6.25 Let s be a Bosbach state on a bounded R�-monoid A. Then the
following properties hold for all x, y ∈A:

(divrl-b1) s(d1(x, y)) ≤ s(d1(x → y, y → x)) and s(d2(x, y)) ≤ s(d2(x � y,

y � x));
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(divrl-b2) s(d1(x
−, y−))≥ s(d1(x, y)) and s(d1(x

∼, y∼))≥ s(d1(x, y));
(divrl-b3) s(d2(x

−, y−))≥ s(d2(x, y)) and s(d2(x
∼, y∼))≥ s(d2(x, y));

(divrl-b4) if x ≤ y, then s(y)− s(x)= s(y � x−)= s(x∼ � y).

Proof

(divrl-b1) By Proposition 6.18(a) it follows that:

1+ s
(
d1(x, y)

) = 1+ s
(
(x → y)∧ (y → x)

)

= s
(
(x → y)∨ (y → x)

)+ s
(
d1(x → y, y → x)

)

≤ s(1)+ s
(
d1(x → y, y → x)

)= 1+ s
(
d1(x → y, y → x)

)
.

Thus s(d1(x, y))≤ (d1(x → y, y → x)).
Similarly, s(d2(x, y))≤ s(d2(x � y, y � x)).

(divrl-b2) Applying Proposition 6.18(a), Proposition 6.1(6) and taking into consid-
eration (psbck-c41) and (psbck-c42), we get:

s
(
d1

(
x−, y−

)) = 1+ s
(
x− ∧ y−

)− s
(
x− ∨ y−

)

≥ 1+ s
(
(x ∨ y)−

)− s
(
(x ∧ y)−

)

= 1− s(x ∨ y)+ s(x ∧ y)= s
(
d1(x, y)

)
.

Similarly, s(d1(x
∼, y∼))≥ s(d1(x, y)).

(divrl-b3) This follows in a similar manner as (divrl-b2).
(divrl-b4) Applying (rl-b2), (psbck-c19) and Corollary 6.4 we get:

s
(
y � x−

)= 1− s
(
x− � y−

)= 1− s
(
y−∼ → x−∼

)= 1− s(y → x).

By (B1) and x ≤ y it follows that s(y → x)= 1+ s(x)− s(y).
Thus s(y � x−)= s(y)− s(x) and similarly s(x∼ � y)= s(y)− s(x). �

Theorem 6.10 Let A be a good FLw-algebra satisfying the Glivenko property. Then
every Riečan state on A is a Bosbach state.

Proof Let s be a Riečan state on A, so s(0)= 0 and s(1)= 1.
Consider y ≤ x. Then applying Proposition 6.15(3), (4) we have:

s(x → y)= s
(
(x → y)−∼

)= 1− s(x)+ s
(
y−∼

)= 1− s(x)+ s(y).

Similarly, s(x � y)= 1− s(x)+ s(y).
Applying Proposition 6.20 it follows that s is a Bosbach state on A. �

Remark 6.6 Since any good R�-monoid satisfies the Glivenko property (Re-
mark 4.16), it follows that Riečan states on good R�-monoids coincide with Bosbach
states. This result was proved in [111], showing that every extremal Riečan state on
a good R�-monoid is an extremal Bosbach state and applying the Krein-Mil’man
Theorem.
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As we already mentioned (Remark 6.2), in the case of pseudo-BL algebras and
bounded R�-monoids the existence of a state-morphism is equivalent to the exis-
tence of a maximal filter which is normal. In what follows we will prove this fact
for the case of pseudo-BL algebras (see [131]).

Proposition 6.26 Let A be a pseudo-BL algebra and H a normal and maximal
filter of A. Then there is a unique state-morphism s on A such that Ker(s)=H .

Proof Since by Proposition 4.26 A/H is a locally finite MV-algebra, according to
[38] we can suppose that A/H is an MV-subalgebra of [0,1]Ł. Then the mapping s :
A−→A/H defines a state-morphism on A such that Ker(s)=H . The uniqueness
of s follows from Proposition 6.14. �

Corollary 6.5 The function s �→ Ker(s) establishes a bijection between the state-
morphisms on a pseudo-BL algebra A and the normal and maximal filters of A.

Example 6.13 (Example 2.5 in [131]) Consider A= {0, a, b,1} with 0 < a < b < 1
and define the operations �, → by the following tables:

� 0 a b 1
0 0 0 0 0
a 0 0 a a

b 0 a b b

1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

Then (A,∧,∨,�,→,0,1) is a BL-algebra denoted by BL4A ([260]).
The function s :A→[0,1] defined by s(0) := 0, s(a) := 1

2 , s(b) := 1, s(1) := 1
is the unique Bosbach state on BL4A.

On the other hand we can see that F = {b,1} is the unique maximal filter of A.
(F is also normal, since in a BL-algebra every filter is normal.)

Example 6.14 (Example 4.13 in [109]) Consider A= {0, a, b, c,1} with 0 < a,b <

c < 1 and a, b incomparable (see Fig. 1.2) and let �, → be the operations given by
the following tables:

� 0 a b c 1
0 0 0 0 0 0
a 0 a 0 a a

b 0 0 b b b

c 0 a b c c

1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

Then (A,∧,∨,�,→,0,1) is a proper bounded commutative R�-monoid (since
(a → b)∨ (b→ a)= c �= 1, it follows that A is not a BL-algebra).

Moreover, Fa = {a, c,1} and Fb = {b, c,1} are the unique maximal (and normal)
filters of A. The only extremal states on A are sa and sb where Ker(sa) = Fa and
Ker(sb)= Fb. Every Bosbach state on A is a convex combination of sa and sb .
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Finally, given a Riečan state s on a good FLw-algebra A, we will construct a
Riečan state on A/Ker(s).

Theorem 6.11 Let A be a good FLw-algebra. If s is a Riečan state on A, then the
function ŝ : A/Ker(s)→ [0,1] defined by ŝ(x/Ker(s)) := s(x) is a Riečan state on
A/Ker(s).

Proof First, we prove that ŝ is well-defined.
Indeed, if x/Ker(s) = y/Ker(s), then by Proposition 6.22 it follows that s(x ∧

y)= s(x ∨ y). Then by Proposition 6.18(a) we have s(d1(x, y))= 1.
It follows that d1(x, y) ∈Ker(s) and similarly, d2(x, y) ∈Ker(s).
Thus x ≡Ker(s) y.
Moreover, if x ≡Ker(s) y, then s(x)= s(y).
Indeed, x ≡Ker(s) y is equivalent to s(x → y) = s(y → x) = 1 and by Proposi-

tion 6.18(c) it follows that s(x)= s(y).
Applying the method used in [110] we prove now that ŝ is a Riečan state on

A/Ker(s).
First we recall that if x̂ ≤ ŷ, then there is an element x1 ∈ x̂ such that x1 ≤ y.
Indeed, it suffices to take x1 = x ∧ y.
Assume that x̂ ⊥ ŷ, that is, ŷ−∼ ≤ x̂−, hence x̂−∼ ≤ ŷ−∼∼ = ŷ∼−∼ = ŷ∼, so

x̂−∼ ≤ ŷ∼. Consider x1 ∈ x̂−∼ such that x1 ≤ y∼. Hence x−∼1 ≤ y∼, so x1 ⊥ y.
Therefore:

ŝ(x̂ + ŷ) = ŝ
((

ŷ∼ � x̂∼
)−)= ŝ

(((
y∼ � x∼

)−)ˆ)= s
((

y∼ � x∼
)−)= s(x ⊕ y)

= s
(
x−∼ ⊕ y−∼

)= ŝ
(
x̂1 + ŷ−∼

)= s
(
x1 + y−∼

)= s(x1)+ s
(
y−∼

)

= s(x)+ s(y)= ŝ(x̂)+ ŝ(ŷ).

(We took into consideration that x1 ≡Ker(s) x implies s(x1)= s(x).) �

6.4 On the Existence of States on Residuated Structures

In this section we will investigate the existence of states on some classes of FLw-
algebras, pseudo-MTL algebras and pseudo-BL algebras.

Theorem 6.12 Any perfect pseudo-BL algebra admits a unique state-morphism.

Proof According to Proposition 6.26, if H is a normal and maximal filter of
a pseudo-BL algebra A, then there is a unique state-morphism on A such that
Ker(s) = H . On the other hand, a perfect pseudo-BL algebra has a unique maxi-
mal filter, namely Rad(A). By Theorem 5.6, Rad(A) is a normal filter of A. Thus, if
A is a perfect pseudo-BL algebra, then Rad(A) is the unique normal and maximal
filter of A. Hence a perfect pseudo-BL algebra admits a unique state-morphism. �
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Theorem 6.13 Any perfect FLw-algebra admits a Bosbach state.

Proof Let A be a perfect FLw-algebra, so A = Rad(A) ∪ Rad(A)∗. Consider the
map s :A−→ [0,1] defined by

s(x) :=
{

1 if x ∈ Rad(A)

0 if x ∈ Rad(A)∗.

We will show that s is a Bosbach state on A. Obviously, s(1)= 1 and s(0)= 0.
In order to prove the conditions (B1) and (B2) we consider the following cases:

(1) x, y ∈ Rad(A).
Obviously, s(x) = s(y) = 1. Since Rad(A) is a filter of A and x ≤ y → x,

y ≤ x → y, it follows that x → y, y → x ∈ Rad(A). Hence s(x → y)= s(y →
x)= 1.

Similarly s(x � y) = s(y � x) = 1, so the conditions (B1) and (B2) are
verified.

(2) x, y ∈ Rad(A)∗.
In this case s(x) = s(y) = 0 and we will prove that x → y, y → x ∈

Rad(A). Indeed, suppose that x → y ∈ Rad(A)∗. Since x ≤ x−∼, it follows
that x−∼ → y ≤ x → y, so x−∼ → y ∈ Rad(A)∗. But, x− ≤ x−∼ → y, hence
x− ∈ Rad(A)∗, that is, x ∈ Rad(A), which is a contradiction. It follows that
x → y ∈ Rad(A) and similarly, y → x ∈ Rad(A). Hence s(x → y) = s(y →
x)= 1. In the same way we can prove that s(x � y)= s(y � x)= 1, so (B1)
and (B2) are verified.

(3) x ∈ Rad(A), y ∈ Rad(A)∗.
Obviously, s(x) = 1 and s(y) = 0. Because x ≤ y → x we get y → x ∈

Rad(A).
We show that x → y ∈ Rad(A)∗. Indeed, suppose that x → y ∈ Rad(A).
Because y ≤ y−∼ we have x → y ≤ x → y−∼, so x → y−∼ ∈ Rad(A). This

means that (x� y∼)− ∈ Rad(A), that is, x� y∼ ∈ Rad(A)∗. On the other hand,
since Rad(A) is a filter of A and x, y∼ ∈ Rad(A) we have x � y∼ ∈ Rad(A),
a contradiction. We conclude that x → y ∈ Rad(A)∗, so s(x → y) = 0 and
s(y → x)= 1. Similarly, s(x � y)= 0 and s(y � x)= 1.

Thus conditions (B1) and (B2) are verified.
(4) x ∈ Rad(A)∗ and y ∈ Rad(A).

Obviously, s(x)= 0 and s(y)= 1.
Since y ≤ x → y, it follows that x → y ∈ Rad(A).
We show that y → x ∈ Rad(A)∗. Indeed, suppose that y → x ∈ Rad(A).
From x ≤ x−∼ we get y → x ≤ y → x−∼, so y → x−∼ ∈ Rad(A). Hence

(y � x∼)− ∈ Rad(A), that is, y � x∼ ∈ Rad(A)∗. But y, x∼ ∈ Rad(A), so y �
x∼ ∈ Rad(A), a contradiction. It follows that y → x ∈ Rad(A)∗, so s(y → x)=
0 and s(x → y)= 1. Similarly, s(y � x)= 0 and s(x � y)= 1.

Hence (B1) and (B2) are verified. �
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Example 6.15 The pseudo-MTL algebra in Example 4.4 is a perfect pseudo-MTL
algebra with Rad(A) = {a, b, c,1} and Rad(A)∗ = {0} and it admits the Bosbach
state s :A→[0,1], s(0) := 0, s(a)= s(b)= s(c)= s(1) := 1.

Remark 6.7 It was proved in [98] that every linearly ordered pseudo-BL algebra
admits a Bosbach state. We say that a pseudo-BL algebra A is representable if it
can be represented as a subdirect product of linearly ordered pseudo-BL algebras. It
follows that every representable pseudo-BL algebra admits a Bosbach state.

6.5 Local States on Perfect Pseudo-MTL Algebras

In this section we introduce the notion of a local state on a perfect pseudo-MTL
algebra A and we prove an extension theorem for this type of state. More precisely
we prove that, if A is relatively free of zero divisors, then any local state on A can
be extended to a Riečan state on A.

Definition 6.5 If A is a perfect pseudo-MTL algebra, then a local state (or local
additive measure) on A is a function s : Rad(A)∗ −→ [0,∞) satisfying the condi-
tions:

(ls1) s(x ⊕ y)= s(x)+ s(y) for all x, y ∈ Rad(A)∗;
(ls2) s(0)= 0.

According to Proposition 5.10 it follows that the function s is well defined, i.e.
x ⊕ y ∈ Rad(A)∗ for all x, y ∈ Rad(A)∗.

Example 6.16

(1) The function s : Rad(A)∗ −→ [0,∞), s(x) := 0 for all x ∈ Rad(A)∗ is a local
state on the perfect pseudo-MTL algebra A.

(2) If S is a Riečan state on the perfect pseudo-MTL algebra A, then s := S|Rad(A)∗
is a local state on A.

If s is a local state on the perfect pseudo-MTL algebra A, then we define the
function s∗ : Rad(A)−→ [0,∞) by s∗(x) := 1− s(x− ⊕ x∼) for all x ∈ Rad(A).

Proposition 6.27 If s is a local state on the perfect pseudo-MTL algebra A, then
the following hold for all x, y ∈ Rad(A)∗:

(1) s(x−∼)= s(x);
(2) s(x)+ s(y−−)= s((y− � x∼)−) and s(x)+ s(y∼∼)= s((x− � y∼)∼);
(3) s(y−−)+ s((x− � y∼)∼)= s(y∼∼)+ s((y− � x∼)−);
(4) s(x)≤ s((x− � x∼)−), s(x)≤ s((x− � x∼)∼).
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Proof

(1) Since x ⊥ 0 and x ⊕ 0= x−∼, it follows that s(x−∼)= s(x).
(2) Since y ∈ Rad(A)∗, we have y−−, y∼∼ ∈ Rad(A)∗, so according to Proposi-

tion 5.13 we have x ⊥ y−− and y∼∼ ⊥ x. It follows that:

x ⊕ y−− = y−−∼ → x∼− = (
y−−∼ � x∼

)− = (
y− � x∼

)−
,

y∼∼ ⊕ x = y∼∼− � x∼− = (
x− � y∼∼−

)∼ = (
x− � y∼

)∼
.

Thus s(x)+ s(y−−)= s((y− � x∼)−) and s(x)+ s(y∼∼)= s(x− � y∼)∼.
(3) This follows from (2).
(4) This follows by setting y = x in (2) and taking into consideration that

s(x−−), s(x∼∼)≥ 0. �

Proposition 6.28 If s is a local state on the perfect pseudo-MTL algebra A, then
the following hold for all x, y ∈ Rad(A):

(1) s∗(1)= 1;
(2) s∗(x−∼)= s∗(x);
(3) s∗(x ⊕ y)= 1− [s(y− � x−)+ s(y∼ � x∼)];
(4) 1+ s∗(x)≤ s∗(x−−)+ s∗(x∼∼);
(5) s∗(x ⊕ y) = s∗(x) + s∗(y) iff s(y− � x−) = s(y∼ � x∼) = 0 and s(x−) +

s(x∼)+ s(y−)+ s(y∼)= 1;
(6) min{s(x−), s(x∼)} ≤ 1

2 .

Proof

(1) s∗(1)= 1− s(1− ⊕ 1∼)= 1− s(0⊕ 0)= 1− s(0)= 1.
(2) This follows immediately from the definition of s∗ and (psbck-c18).
(3) Since x ∈ Rad(A), x ≤ x ⊕ y and Rad(A) is a filter of A, we have x ⊕ y ∈

Rad(A). It follows that (x⊕ y)−, (x⊕ y)∼ ∈ Rad(A)∗, hence (x⊕ y)− ⊥ (x⊕
y)∼.

By the definition of s∗ we get

s∗(x ⊕ y)= 1− s
(
(x ⊕ y)− ⊕ (x ⊕ y)∼

)= 1− [
s
(
(x ⊕ y)−

)+ s
(
(x ⊕ y)∼

)]
.

Taking into consideration the identities:

s
(
(x ⊕ y)−

) = s
((

y− � x−
)∼−)= s

(
y− � x−

)
and

s
(
(x ⊕ y)∼

) = s
((

y∼ � x∼
)−∼)= s

(
y∼ � x∼

)

we get s∗(x ⊕ y)= 1− [s(y− � x−)+ s(y∼ � x∼)].
(4) We have

s∗
(
x−−

)= 1− s
(
x−−− ⊕ x−−∼

)= 1− s
(
x−−−

)− s
(
x−

)
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and similarly

s∗
(
x∼∼

)= 1− s
(
x∼∼− ⊕ x∼∼∼

)= 1− s
(
x∼

)− s
(
x∼∼∼

)

(here we applied the fact that x, y ∈ Rad(A) implies x−−−, x−−∼, x∼∼−,

x∼∼∼ ∈ Rad(A)∗, so x−−− ⊥ x−−∼ and x∼∼− ⊥ x∼∼∼).
Thus s∗(x−−) + s∗(x∼∼) = 1 − [s(x−−−) + s(x∼∼∼)] + s∗(x), so 1 +

s∗(x)≤ s∗(x−−)+ s∗(x∼∼).
(5) Applying (3) we get:

s∗(x ⊕ y)= s∗(x)+ s∗(y) iff

1+ s
(
y− � x−

)+ s
(
y∼ � x∼

)= s
(
x− ⊕ x∼

)+ s
(
y− ⊕ y∼

)
iff

1+ s
((

y− � x−
)⊕ (

y∼ � x∼
))= s

((
x− ⊕ x∼

)⊕ (
y− ⊕ y∼

))
.

Since 1+s((y−�x−)⊕(y∼�x∼))≥ 1 and s((x−⊕x∼)⊕(y−⊕y∼))≤ 1,
we get that:

s∗(x ⊕ y)= s∗(x)+ s∗(y) iff

s
((

y− � x−
)⊕ (

y∼ � x∼
))= 0 and

s
((

x− ⊕ x∼
)⊕ (

y− ⊕ y∼
))= 1 iff

s
(
y− � x−

)= s
(
y∼ � x∼

)= 0 and

s
(
x−

)+ s
(
x∼

)+ s
(
y−

)+ s
(
x∼

)= 1.

(6) We have s∗(x)= 1−s(x−⊕x∼)= 1−[s(x−)+s(x∼)], so s(x−)+s(x∼)≤ 1.
Thus min{s(x−), s(x∼)} ≤ 1

2 . �

Theorem 6.14 (Extension theorem) Let A be a perfect pseudo-MTL algebra which
is relatively free of zero divisors. Then every local state on A can be extended to a
Riečan state on A.

Proof Let s : Rad(A)∗ −→ [0,∞) be a local state on A and the function S :A−→
[0,1] defined by

S(x) :=
{

1 if x ∈ Rad(A)

s(x)∩ [0,1] if x ∈ Rad(A)∗.

We prove that S is a Riečan state on A. More precisely, since it is obvious that
S(1)= 1, we must prove that for all x, y ∈A such that x ⊥ y, we have S(x + y)=
S(x)+ S(y).

Consider the following cases:

(1) x, y ∈ Rad(A).
According to Lemma 5.4, x �⊥ y.
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(2) x ∈ Rad(A) and y ∈ Rad(A)∗.
Applying Lemma 5.3 we get x ⊥ y iff y = 0. We have S(x+y)= S(x+0)=

S(x ⊕ 0) = S(x−∼) = 1 (since x−∼ ∈ Rad(A)). On the other hand, S(x) +
S(y)= S(x)+ S(0)= 1+ s(0)= 1. Thus S(x + y)= S(x)+ S(y).

(3) x ∈ Rad(A)∗ and y ∈ Rad(A).
Applying Lemma 5.3 we get x ⊥ y iff x = 0. We have S(x+y)= S(0+y)=

S(0⊕ y)= S(y−∼)= 1 and S(x)+ S(y)= S(0)+ S(y)= s(0)+ 1= 1.
Thus S(x + y)= S(x)+ S(y).

(4) x, y ∈ Rad(A)∗.
By Proposition 5.13 it follows that x ⊥ y and by the definition of a local

additive measure we have:

S(x+y)= S(x⊕y)= s(x⊕y)∩[0,1] = (
s(x)+ s(y)

)∩[0,1] = S(x)+S(y).

Thus S is a Riečan state on A. �

We call S the extension of the local state s.

Example 6.17 If s is the local state from Example 6.16(1), then the function S :
A −→ [0,1] defined by S(x) := 1 for all x ∈ Rad(A) and S(x) := 0 for all x ∈
Rad(A)∗ is an extension of s.

Theorem 6.15 Let A be a perfect pseudo-MTL algebra relatively free of zero divi-
sors. The extension S of a local state s on A is a Bosbach state on A if and only if
s(x)= 0 for all x ∈ Rad(A)∗.

Proof According to Theorem 6.13, the map s :A→[0,1] defined by

s(x) :=
{

1 if x ∈ Rad(A)

0 if x ∈ Rad(A)∗

is a Bosbach state on A.
Conversely, let A be a free of zero divisors perfect pseudo-MTL algebra, s be

a local additive measure on A and S the extension of s. We will investigate the
conditions for S to be a Bosbach state on A. Obviously, S(1)= 1 and S(0)= 0. In
order to check the conditions (B1) and (B2) from the definition of a Bosbach state
(Definition 6.1), we consider the following cases:

(1) x, y ∈ Rad(A).
Obviously, S(x)= S(y)= 1. Since Rad(A) is a filter of A and x ≤ y → x,

y ≤ x → y, it follows that x → y, y → x ∈ Rad(A).
Hence S(x → y)= S(y → x)= 1.
Similarly S(x � y) = S(y � x) = 1, so conditions (B1) and (B2) are veri-

fied.
(2) x, y ∈ Rad(A)∗.
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We will prove that x → y, y → x ∈ Rad(A). Indeed, suppose that x →
y ∈ Rad(A)∗. Since x ≤ x−∼, it follows that x−∼ → y ≤ x → y, so x−∼ →
y ∈ Rad(A)∗. But x− ≤ x−∼ → y, hence x− ∈ Rad(A)∗, that is, x ∈ Rad(A),
which is a contradiction. It follows that x → y ∈ Rad(A) and similarly, y →
x ∈ Rad(A). Hence S(x → y)= S(y → x)= 1. In the same way we can prove
that S(x � y)= S(y � x)= 1, so (B1) and (B2) are verified iff s(x)= s(y) for
all x, y ∈ Rad(A)∗. Since s(0)= 0, it follows that (B1) and (B2) are verified iff
s(x)= 0 for all x ∈ Rad(A)∗.

(3) x ∈ Rad(A), y ∈ Rad(A)∗.
Obviously, S(x) = 1 and S(y) = s(y). As x ≤ y → x, we get y → x ∈

Rad(A).
We show that x → y ∈ Rad(A)∗. Indeed, assume that x → y ∈ Rad(A).
Since y ≤ y−∼ we have x → y ≤ x → y−∼, so x → y−∼ ∈ Rad(A). This

means that (x� y∼)− ∈ Rad(A), that is, x� y∼ ∈ Rad(A)∗. On the other hand,
since Rad(A) is a filter of A and x, y∼ ∈ Rad(A) we have x � y∼ ∈ Rad(A),
a contradiction. We conclude that x → y ∈ Rad(A)∗, so S(x → y)= s(x → y)

and S(y → x) = 1. Similarly, S(x � y) = s(x � y) and S(y � x) = 1. Thus
conditions (B1) and (B2) are verified iff s(x → y)= s(y) and s(x � y)= s(y).
For y = 0, from the first identity we get s(x−)= s(0)= 0 and replacing x with
y∼ we have s(y−∼)= 0. By Proposition 6.27(1) it follows that s(y)= 0.

(4) x ∈ Rad(A)∗, y ∈ Rad(A).
Obviously, S(x) = s(x) and S(y) = 1. Since y ≤ x → y, we get x → y ∈

Rad(A).
We show that y → x ∈ Rad(A)∗. Indeed, assume that y → x ∈ Rad(A).
From x ≤ x−∼ we have y → x ≤ y → x−∼, so y → x−∼ ∈ Rad(A). This

means that (y � x∼)− ∈ Rad(A), that is, y � x∼ ∈ Rad(A)∗. But y, x∼ ∈
Rad(A), so y � x∼ ∈ Rad(A), a contradiction. Hence y → x ∈ Rad(A)∗, so
S(y → x) = s(y → x) and S(x → y) = 1. Similarly, S(y � x) = s(y � x)

and S(x � y) = 1. It follows that conditions (B1) and (B2) are verified iff
s(x) = s(y → x) and s(x) = s(y � x). Taking x = 0 in the first identity, we
have s(y−)= 0 and replacing y with x∼ it follows that s(x−∼)= 0. Applying
Proposition 6.27(1) we get s(x)= 0. �



Chapter 7
Measures on Pseudo-BCK Algebras

In this chapter we generalize the measures on BCK-algebras introduced by
Dvurečenskij and Pulmannova in [94] and [108] to pseudo-BCK algebras that are
not necessarily bounded. In particular, we show that if A is a downwards-directed
pseudo-BCK algebra and m a measure on it, then the quotient over the kernel of m

can be embedded into the negative cone of an Abelian, Archimedean �-group as its
subalgebra. This result will enable us to characterize nonzero measure-morphisms
as measures whose kernel is a maximal deductive system.

7.1 Measures on Pseudo-BCK Algebras

Consider the bounded BCK(P) algebra AŁ = ([0,1],≤,→Ł,0,1), where→Ł is the
Łukasiewicz implication x →Ł y =min{1−x+y,1} (i.e. the standard MV-algebra
([0,1],�Ł,− ,1)).

Definition 7.1 Let (A,≤,→,�,1) be a pseudo-BCK algebra. If m :A−→ [0,∞)

is such that for all x, y ∈A:

(1) m(x → y)=m(x � y)=m(y)−m(x) whenever y ≤ x, then m is said to be a
measure;

(2) if 0 ∈A and m is a measure with m(0)= 1, then m is said to be a state-measure;
(3) if m(x → y) = m(x � y) = max{0,m(y) − m(x)}, then m is said to be a

measure-morphism;
(4) if 0 ∈ A, m(0)= 1 and m is a measure-morphism, then m is said to be a state-

measure-morphism.

Of course, the function vanishing on A is always a (trivial) measure.
We note that our definition of a measure (a state-measure) defines a map that

maps a pseudo-BCK algebra that is in the “negative cone” to the positive cone of
the reals R. For a relationship with the previous type of Bosbach state see the second
part of the present section and Remark 7.4.
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Example 7.1 Let (G,∨,∧,∨,+,−,0) be an �-group with negative cone G− (see
Example 1.2). Assume that m is a positive-valued function on G− that preserves
addition in G−. Then m is a measure on the bounded pseudo-BCK algebra G−, and
conversely if m is a measure on G−, then m is additive on G− and positive-valued.

We recall that not every negative cone, even of an Abelian �-group, admits a
nontrivial measure. For an example see Example 9.6 in [155].

Proposition 7.1 Let m be a measure on a pseudo-BCK algebra A. For all x, y ∈A,
we have:

(1) m(1)= 0;
(2) m(x)≥m(y) whenever x ≤ y;
(3) m(x ∨1 y)=m(y ∨1 x) and m(x ∨2 y)=m(y ∨2 x);
(4) m(x ∨1 y)=m(x ∨2 y);
(5) m(x → y)=m(x � y).

Proof

(1) Since 1≤ 1 we get m(1)=m(1→ 1)=m(1)−m(1)= 0.
(2) Since x ≤ y it follows that m(y → x)=m(x)−m(y), so m(x)−m(y)≥ 0.
(3) First, let x ≤ y. Then by Proposition 1.5(4), we have m(x ∨1 y)=m(y). Using

the property of measures, we have:

m
(
(y ∨1 x)→ x

)=m(x)−m(y ∨1 x)=m(x)−m
(
(y → x)� x

)

=m(x)−m(x)+m(y → x)

=m(x)−m(x)+m(x)−m(y)

=m(x)−m(y),

giving m(y ∨1 x) = m(y). Hence m(x ∨1 y) = m(y ∨1 x) = m(y), whenever
x ≤ y.

Now let x, y ∈ A be arbitrary. Using the first part of the present proof and
(2), we have:

m(x ∨1 y)=m
(
x ∨1 (x ∨1 y)

)=m
(
(x ∨1 y)∨1 x

)≤m(y ∨1 x)

=m
(
y ∨1 (y ∨1 x)

)=m
(
(y ∨1 x)∨1 y

)≤m(x ∨1 y).

Thus m(x ∨1 y)=m(y ∨1 x) for all x, y ∈A.
In a similar way we prove that m(x ∨2 y)=m(y ∨2 x).

(4) First, again let x ≤ y. Then m(x ∨1 y) = m(y) and m(y) = m(x ∨2 y) =
m(y ∨2 x). This gives m(x ∨1 y)=m(x ∨2 y)=m(y).

Now let x, y ∈A be arbitrary. Using (3), we have:

m(x ∨1 y)=m
(
x ∨1 (x ∨1 y)

)=m
(
x ∨2 (x ∨1 y)

)=m
(
(x ∨1 y)∨2 x

)

≤m(y ∨2 x)=m(x ∨2 y)=m
(
x ∨2 (x ∨2 y)

)=m
(
(x ∨2 y)∨2 x

)

=m
(
(x ∨2 y)∨1 x

)≤m(y ∨1 x)=m(x ∨1 y).

It follows that m(x ∨1 y)=m(x ∨2 y).
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(5) According to Proposition 1.7 and (4),

m(x → y)=m
(
(x ∨1 y)→ y

)=m(y)−m(x ∨1 y)

=m(y)−m(x ∨2 y)=m
(
(x ∨2 y) � y

)=m(x � y). �

Lemma 7.1 Let m be a state-measure on a bounded pseudo-BCK algebra A. Then
for all x ∈A, we have m(x−)=m(x∼)= 1−m(x).

Proof Since 0≤ x, we have:

m
(
x−

)=m(x → 0)=m(0)−m(x)= 1−m(x).

m
(
x∼

)=m(x � 0)=m(0)−m(x)= 1−m(x). �

Proposition 7.2 Let A be a pseudo-BCK algebra. Then:

(1) y ≤ x implies m((x → y) � y) = m((x � y)→ y) = m(x) whenever m is a
measure on A;

(2) if m is a measure on A, then Ker0(m)= {x ∈A |m(x)= 0} is a normal deduc-
tive system of A;

(3) any measure-morphism on A is a measure on A.

Proof

(1) From y ≤ x → y we get

m
(
(x → y) � y

)=m(y)−m(x → y)=m(y)− (
m(y)−m(x)

)=m(x).

Similarly, m((y � x)→ x)=m(x).
(2) According to Proposition 7.1(1), 1 ∈Ker0(m).

Assume that x, x → y ∈Ker0(m).
Since x ≤ x ∨1 y, by Proposition 7.1(2), we have 0=m(x)≥m(x ∨1 y), so

m(x ∨1 y)= 0.
In addition, 0=m(x → y)=m((x∨1 y)→ y)=m(y)−m(x∨1 y)=m(y),

so y ∈Ker0(m). (Here we applied the fact that y ≤ x ∨1 y and Proposition 1.7.)
Thus Ker0(m) is a deductive system of A.
The normality of Ker0(m) follows from Proposition 7.1(5).

(3) We have m(1)=m(1 → 1)= max{0,m(1)−m(1)} = 0, so if y ≤ x then 0 =
m(1) = m(y → x) = max{0,m(x) − m(y)} and m(x) ≤ m(y), thus m(x →
y)=max{0,m(y)−m(x)} =m(y)−m(x).

Similarly, m(x � y)=m(y)−m(x). �

Example 7.2 Consider the bounded pseudo-BCK lattice A1 from Example 1.16.
The function m : A1 −→ [0,∞) defined by: m(0) := 1, m(a) = m(b) = m(c) =
m(d) = m(1) := 0 is the unique measure on A1. Moreover, m is even a state-
measure on A1.

Proposition 7.3 Let A be a bounded pseudo-BCK algebra. If M is a Bosbach state,
then m := 1−M is a state-measure.
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Proof Let y ≤ x, that is, y → x = y � x = 1.
By Proposition 6.1(1), M(x → y)=M(x � y)= 1−M(x)+M(y).
It follows that:

m(x → y)=m(x � y)= 1−M(x → y)=M(x)−M(y)

= 1−M(y)− (
1−M(x)

)=m(y)−m(x).

Since by (B3) m(0)= 1−M(0)= 1, we conclude that m is a state-measure. �

Proposition 7.4 Let A be a bounded pseudo-BCK algebra. If m is a state-measure
on A, then M := 1−m is a Bosbach state on A.

Proof We have: y ≤ x ∨1 y and using the definition of the measure, we get

m
(
(x ∨1 y)→ y

)=m
(
(x ∨1 y) � y

)=m(y)−m(x ∨1 y).

Using Proposition 1.7, we have: x ∨1 y → y = x → y, so we get m(x → y) =
m(y)−m(x ∨1 y).

Similarly, m(y → x)=m(x)−m(y ∨1 x).
In the same way we get:

m(x � y)=m(y)−m(x ∨2 y) and m(y � x)=m(x)−m(y ∨2 x).

According to Proposition 7.1(3) we have m(x ∨1 y) = m(y ∨1 x), so m(x) +
m(x → y)=m(y)+m(y → x).

Similarly, m(x)+m(x � y)=m(y)+m(y � x).
Therefore:

M(x)+M(x → y)=M(y)+M(y → x) and

M(x)+M(x � y)=M(y)+M(y � x).

Furthermore, M(0)= 0 by the hypothesis and M(1)= 1 by Proposition 7.1(1).
Thus M is a Bosbach state. �

If A is a bounded pseudo-BCK algebra, in a similar way as for Bosbach states,
we can define extremal state-measures, as well as the weak-topology. Denote the set
of state-measures by SM1(A), the set of state-measure-morphisms by SMM1(A),
and the set of extremal state-measures by ∂eSM1(A), respectively.

Theorem 7.1 Let A be a bounded pseudo-BCK algebra. Define a map Ψ :
SM1(A) → BS(A) by Ψ (m) := 1 − m, m ∈ SM1(A). Then Ψ is an affine-
homeomorphism such that m is a state-measure-morphism if and only if Ψ (m) is a
state-morphism. In particular, m is an extremal state-measure if and only if m is a
state-measure-morphism.

Proof Propositions 7.3–7.4 show that Ψ is a bijection preserving convex combina-
tions and weak topologies.
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If, say, s is a state-morphism on A, i.e. s(x → y) = min{1 −m(x)+m(y),1},
then it is straightforward to show that m= 1− s is a state-measure-morphism on A,
i.e. m(x → y)=max{m(y)−m(x),0} (likewise for the second arrow �).

In view of Theorem 6.2, we see that a state-measure is extremal iff it is a state-
measure-morphism. �

Remark 7.1 As a corollary of Theorem 7.1 and Remark 6.4, we have that if A is a
bounded pseudo-BCK algebra, then

∂eSM1(A)= SMM1(A).

Theorem 7.2 Let m be a measure on a pseudo-BCK algebra A.
Then A/Ker0(m) is a pseudo-BCK algebra and the mapping m̂ : A/

Ker0(m) −→ [0,+∞) defined by m̂(x̄) := m(x), x̄ := x/Ker0(m) ∈ A/Ker0(m),
is a measure on A/Ker0(m), and A/Ker0(m) is sup-commutative.

Proof By Proposition 7.1(5) we have m(x → y)=m(x � y).
According to Proposition 7.2(2), Ker0(m) is a normal deductive system of A.
Consider x̄ = ȳ. Then x → y, y → x ∈Ker0(m) and m(x → y)=m((x∨1 y)→

y)= 0=m(y)−m(x ∨1 y), so m(y)=m(x ∨1 y).
Similarly, m(x)=m(y ∨1 x). But m(y)=m(x ∨1 y)=m(y ∨1 x)=m(x).
Hence m̂ is a well-defined function on A/Ker0(m).
To show that m̂ is a measure, assume ȳ ≤ x̄. By Proposition 1.5(4), ȳ ∨1 x̄ = x̄.
Then m̂(x̄ → ȳ)=m(x → y)=m((x ∨1 y)→ y)=m(y)−m(x ∨1 y).
But m(x ∨1 y)=m(y ∨1 x)= m̂(ȳ ∨1 x̄)= m̂(x̄)=m(x).
Therefore m̂(x̄ → ȳ)= m̂(ȳ)− m̂(x̄). Similarly, m̂(x̄ � ȳ)= m̂(ȳ)− m̂(x̄).
In the same way as in the proof of Proposition 6.11 we can show that A/Ker0(M)

is both ∨1-commutative and ∨2-commutative. �

In view of Theorem 6.1 and Theorem 7.1 we know that if m is a state-measure
on a bounded pseudo-BCK algebra A, then A/Ker(m) is in fact an MV-algebra, so
that according to Mundici’s famous representation theorem, [41], A/Ker(m) is an
interval in an �-group with strong unit. In the following result we generalize this
�-group representation of the quotient for measures on unbounded pseudo-BCK
algebras that are downwards-directed.

Theorem 7.3 Let m be a measure on an unbounded pseudo-BCK algebra A that
is a downwards-directed set. Then the arrows → and � on A/Ker0(m) coincide.
Moreover, there is a unique (up to isomorphism) Archimedean �-group G such that
A/Ker0(m) is a subalgebra of the pseudo-BCK algebra G− and A/Ker0(m) gen-
erates the �-group G.

Proof We note that if a is an arbitrary element of A, then ([a,1],≤,→,�, a,1) is
a pseudo-BCK algebra.

We define K0 := Ker0(m). Given x, y ∈ A, choose an element a ∈ A such that
a ≤ x, y. If m(a)= 0, then a/K0 = (x → y)/K0 = (x � y)/K0 = 1/K0.
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Assume m(a) > 0 and define ma(z) :=m(z)/m(a) for any z ∈ [a,1]. Then ma

is a state-measure on [a,1] and in view of Theorem 7.1, sa := 1−ma is a Bosbach
state on [a,1].

Theorem 6.1 entails that [a,1]/Ker(sa) can be converted into an Archimedean
MV-algebra. In particular, (x → y)/Ker(sa) = (x � y)/Ker0(sa). This yields
sa((x → y) → (x � y)) = 1 and m((x → y) → (x � y)) = 0. In a similar way,
m((x � y)→ (x → y))= 0. This proves →/Ker0(m)=�/Ker0(m).

In addition, we can prove that, for all x, y ∈A,
(
(x → y)∨ (y → x)

)
/Ker0(m)= 1/Ker0(m)= (

(x � y)∨ (y � x)
)
/Ker0(m).

It is clear that if m= 0, then Ker0(m) = A and A/Ker0(m)= {1/Ker0(m)}, so
that the trivial �-group G= {0G}, where 0G is a neutral element of G, satisfies our
conditions.

Therefore, let m �= 0. By Lemma 4.1.8 in [208], A/Ker0(m) is a distributive lat-
tice. As in Proposition 1.10 we can show that A/Ker0(m) satisfies the (RCP) condi-
tion, and therefore, A/Ker0(m) is a Łukasiewicz BCK algebra, see [112]. Therefore,
[103, 112], there is a unique (up to isomorphism of �-groups) �-group G such that
A/Ker0(m) can be embedded into the pseudo-BCK algebra of the negative cone
G−. Moreover, A/Ker0(m) generates G.

Since the arrows in A/Ker0(m) coincide, we see that G is Abelian, and since
every interval [a/K0,1/K0] is an Archimedean MV-algebra, so is G. �

Remark 7.2 We note that if m is a measure-morphism on A, then:

(1) m(u→n x)=max{0,m(x)− nm(u)} for any n≥ 0;
(2) m(x1 → (· · · → (xn → a) · · ·))=max{0,m(a)−m(x1)− · · · −m(xn)}.
Proposition 7.5 Let m be a measure-morphism on a pseudo-BCK algebra A such
that m �= 0. Then Ker0(m) is a normal and maximal deductive system of A.

Proof Since m is a measure-morphism, then by Proposition 7.2(2), Ker0(m) is a
normal deductive system.

Choose a ∈ A such that m(a) �= 0. Let F be the deductive system generated by
Ker0(m) and by the element a. Let z ∈ A be an arbitrary element of A. There is an
integer n≥ 1 such that (n− 1)m(a) ≤m(z) < nm(a). By Remark 7.2(1), we have
that m(a →n z) = max{0,m(z) − nm(a)} = 0, so z ∈ F and A ⊆ F proving that
Ker0(m) is a maximal deductive system. �

If m �= 0 is a measure on a bounded pseudo-BCK algebra A, then passing to a
state-measure sm(a) := m(a)/m(1), a ∈ A, and using Theorem 7.1, we see that m

is a measure-morphism iff Ker0(m) is a maximal deductive system.
The same result is true for unbounded pseudo-BCK algebras that are downwards-

directed:

Theorem 7.4 Let m �= 0 be a measure on an unbounded pseudo-BCK algebra A

that is downwards-directed. Then m is a measure-morphism if and only if Ker0(m)

is a maximal deductive system.
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Proof By Proposition 7.5, Ker0(m) is a maximal deductive system of A.
Suppose now Ker0(m) is a maximal deductive system of A. In view of Theo-

rem 7.3, A/Ker0(m) can be embedded as a subalgebra into the pseudo-BCK alge-
bra G−, where G− is the negative cone of an Abelian and Archimedean �-group
G that is generated by A/Ker0(m). Let m̂(a/Ker0(m)) := m(a) (a ∈ A). Then
Ker0(m̂)= {1/Ker0(m)} and 0G := 1/Ker0(m) is the neutral element of G.

Fix an element a ∈A with m(a) > 0. Since Ker0(m) is maximal in A, Ker0(m̂)=
{1/Ker0(m)} is maximal in A/Ker0(m) and consequently, {1/Ker0(m)} is a max-
imal deductive system of the pseudo-BCK algebra G− because A/Ker0(m) gener-
ates G. Therefore the �-ideal L := {0g} = {1/Ker0(m)} is a maximal �-ideal of G.

We recall that every maximal �-ideal, L, of an �-group is prime (a, b ∈G+ with
a ∧ b = 0 implies a ∈ L or b ∈ L), whence G/L is a linearly ordered �-group (see
e.g. Proposition 9.9 in [76]).

Since G = G/L, G is Archimedean and linearly ordered, and by the Hölder
theorem, Theorem 24.16 in [76], G is an �-subgroup of the �-group of real num-
bers, R. Let s be the unique extension of m̂ onto G, then s is additive on G and
s(g) ≥ 0 for any g ∈ G−. Since G is an �-subgroup of R, s is a unique additive
function on G that is positive on the negative cone (see Example 7.1) with the prop-
erty s(a/Ker0(m)) = m(a) > 0 for our fixed element a ∈ A. Because A/Ker0(m)

can be embedded into R
−, we see that s is a measure-morphism on G−.

Consequently, m is a measure-morphism on A. �

Proposition 7.6 Let m1 and m2 be two measure-morphisms on a downwards-
directed pseudo-BCK algebra A such that there is an element a ∈ A with m1(a)=
m2(a) > 0. If Ker0(m1)=Ker0(m2), then m1 =m2.

In addition, let a ∈ A be fixed. If m is a measure-morphism on A such that
m(a) > 0, then m cannot be expressed as a convex combination of two measures
m1 and m2 such that m1(a)=m2(a)=m(a).

Proof

(1) By Theorem 7.4, A/Ker0(m1)= A/Ker0(m2) is a pseudo-BCK subalgebra of
R
−. The condition m1(a)=m2(a) > 0 entails m̂1 = m̂2, so m1 =m2.

(2) Let m = λm1 + (1 − λ)m2 where m1 and m2 are measures on A such that
m1(a)=m2(a)=m(a) and 0 < λ < 1. Then Ker0(m)⊆Ker0(m1)∩Ker0(m2).
The maximality of Ker0(m) entails that both Ker0(m1) and Ker2(m) are maxi-
mal ideals and by Theorem 7.4, we see that m1 and m2 are measure-morphisms
on A. The condition m1(a)=m2(a)=m(a) yields by (1) that m=m1 =m2.

�

Proposition 7.7 Let m be a state-measure on a good pseudo-BCK algebra A. Then
M := 1−m is a Riečan state on A.

Proof Let x, y be such that x ⊥ y, that is, y−∼ ≤ x− and using the fact that m is a
measure, we obtain m(x− → y−∼)=m(x− � y−∼)=m(y−∼)−m(x−).
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Now, because A is good we get m(x− → y∼−)=m(y)− 1+m(x), which im-
plies M(x⊕ y)=M(x)+M(y). Since M(1)= 1−m(1)= 1, we conclude that M

is a Riečan state on A. �

Proposition 7.8 Let A be a pseudo-BCK(pDN) algebra and s be a Riečan state
on A. Then S := 1− s is a state-measure.

Proof Let s be a Riečan state on A.
Consider y ≤ x. Changing x to y in Proposition 6.15(5) we get:

s
(
(y ∨1 x)→ y−∼

)= s
(
(y ∨1 x) � y−∼

)= 1− s(y ∨1 x)+ s(y).

But according to Proposition 1.5(4) we have y ∨1 x = x, so

s
(
x → y−∼

)= s
(
x � y−∼

)= 1− s(x)+ s(y).

Taking into consideration the (pDN) condition we get

s(x → y)= s(x � y)= 1− s(x)+ s(y).

It follows that S(x → y)= S(x � y)= S(y)− S(x).
Moreover, we have S(0)= 1, so S is a state-measure on A. �

Remark 7.3 We can also define a measure as a map m :A−→ (−∞,0] such that

m(x → y)=m(x � y)=m(x)−m(y) whenever y ≤ x.

Properties (2) of Proposition 7.1 and (1) of Proposition 7.2 become:

(2′) m(x)≤m(y) whenever x ≤ y and m is a measure on A;
(1′) y ≤ x implies m((x → y) � y)=m((x � y)→ y)=−m(x) whenever m is

a measure on A.

If m(0)= 0 then m is a state on A.
Proposition 7.3 will be modified so that m= 1+M .
Consider again the bounded pseudo-BCK lattice A1 from Example 1.16.
The function m : A1 −→ (−∞,0] defined by: m(0) := −1, m(a) = m(b) =

m(c)=m(d)=m(1) := 0 is the unique measure on A1.

Remark 7.4 If a pseudo-BCK algebra is defined on the negative cone, as in Exam-
ples 1.2 and 1.4, we map the negative cone to the positive cone in R. According to
the second definition, we map the negative cone to negative numbers.

7.2 Pseudo-BCK Algebras with Strong Unit

In this section we will study state-measures on pseudo-BCK algebras with strong
unit. We apply the results of the previous section to show how to characterize state-
measure-morphisms as extremal state-measures, or as those with the maximal de-
ductive system. In particular, we show that for unital pseudo-BCK algebras that are
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downwards-directed, the quotient over the kernel can be embedded into the negative
cone of an Abelian, Archimedean �-group with strong unit.

According to [108], we say that an element u of a pseudo-BCK algebra A is
a strong unit if, for the deductive system F(u) = [u) of A that is generated by u,
we have F(u)= A. For example, if (A,≤,→,�,0,1) is a bounded pseudo-BCK
algebra, then u= 0 is a strong element. If G is an �-group with strong unit u ≥ 0,
then the negative cone G− is an unbounded pseudo-BCK algebra with strong unit
−u.

Remark 7.5 We note that a deductive system F of a pseudo-BCK algebra with a
strong unit u is a proper subset of A if and only if u /∈ F .

By a unital pseudo-BCK algebra we mean a pair (A,u) where A is a pseudo-
BCK algebra with a fixed strong unit u. We say that a measure m on (A,u) is
a state-measure if m(u) = 1. If, in addition, m is a measure-morphism such that
m(u) = 1, we also call it a state-measure-morphism. We denote by SM(A,u)

and SMM(A,u) the set of all state-measures and state-measure-morphisms on
(A,u), respectively. The set SM(A,u) is convex, i.e. if m1,m2 ∈ SM(A,u) and
λ ∈ [0,1], then m := λm1 + (1 − λ)m2 ∈ SM(A,u); it could be empty. A state-
measure m is extremal if m= λm1 + (1− λ)m2 for λ ∈ (0,1) yields m=m1 =m2.
We denote by ∂eSM(A,u) the set of all extremal state-measures on (A,u).

Example 7.3 Let G be an �-group with strong unit u≥ 0. Then a mapping m on G−
is a state-measure on (G−,−u) if and only if (i) m :G− → [0,∞), (ii) m(g+ h)=
m(g)+m(h) for g,h ∈G−, and (iii) m(−u)= 1. A state-measure m is extremal if
and only if m(g ∧ h)=max{m(g),m(h)}, g,h ∈G− (see Proposition 4.7 in [96]).
In addition, (−u)→n g = (g + nu)∧ 0 for any n≥ 1.

Let Ω �= ∅ be a compact Hausdorff topological space and let B(Ω) be the Borel
σ -algebra of Ω generated by all open subsets of Ω . Any element of B(Ω) is said to
be a Borel set, and any σ -additive (signed) measure is said to be a Borel measure.

Let P(Ω) denote all probability measures, that is, all positive regular Borel mea-
sures μ ∈M(Ω) such that μ(Ω)= 1.

We recall that a Borel measure μ is called regular if

inf
{
μ(O) : Y ⊆O,O open

}= μ(Y )= sup
{
μ(C) : C ⊆ Y,C closed

}

for any Y ∈ B(Ω).

Example 7.4 Let Ω �= ∅ be a compact Hausdorff topological space and let C(Ω) be
the set of all continuous functions on Ω . Then C(Ω) is an �-group with respect to
the pointwise ordering and usual addition of functions and the element u = 1, the
constant function equal to 1, is a strong unit. According to the Riesz Representation
Theorem, see e.g. p. 87 in [155], a mapping m :A−→ [0,∞) is a state-measure on
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(C(Ω)−,−1) if and only if there is a unique regular Borel probability measure μ

on B(Ω) such that

m(f ) := −
∫

Ω

f (x)dμ(x), f ∈ C(Ω)−,

and vice-versa, given a regular Borel probability measure μ, the above integral al-
ways defines a state-measure.

If Ω is a separable space, then a state-measure is extremal if and only if it
is a state-measure-morphism if and only if μ = δx for some point x ∈ Ω , where
δx(M)= 1 iff x ∈M , and δx(M)= 0 otherwise, so m(f )= f (x).

Definition 7.2 We say that a net of state-measures {mα} converges weakly to a state-
measure m if m(a)= limα mα(a) for every a ∈A.

Proposition 7.9 The state spaces SM(A,u) and SMM(A,u) are compact Haus-
dorff topological spaces.

Proof If SM(A,u) is void, the statement is evident. Thus suppose that (A,u)

admits at least one state-measure. For any state-measure m and any x ∈ A we
have by Proposition 1.7: m(u → x) = m((u ∨1 x) → x) = m(x) − m(u ∨1 x).
But u ≤ u ∨1 x, hence m(u ∨1 x) ≤ m(u) = 1, so m(u → x) ≥ m(x) − 1 and
m(x)≤m(u→ x)+ 1. Therefore

m(x)≤m(u→ x)+ 1≤m
(
u→2 x

)+ 2≤ · · · ≤m
(
u→n−1 x

)+ n− 1.

Since u is strong, given x ∈ A, let nx denote an integer nx ≥ 1 such that
u→nx x = 1. Then u≤ u→nx−1 x and m(u→nx−1 x)≤m(u)= 1. Consequently,
m(x) ≤ m(u→nx−1 x)+ nx − 1 ≤ nx . Hence SM(A,u) ⊆∏

x∈A[0, nx]. By Ty-
chonoff’s Theorem, the product of closed intervals is compact. The set of state-
measures SMM(A,u) can be expressed as an intersection of closed subsets of
[0,∞)A, namely of the following sets (for x, y ∈A):

Mx,y =
{
m ∈ [0,∞)A |m(x → y)=m(x � y)=m(y)−m(x)

}
, x ≤ y,

Mx =
{
m ∈ [0,∞)A |m(x)≥ 0

}
,
{
m ∈ [0,∞)A |m(u)= 1

}
.

Therefore SM(A,u) is a closed subset of the given product of intervals, and hence,
it is compact.

Similarly, the set of state-measure-morphisms SMM(A,u) is a subset of∏
x∈A[0, nx] and it can be expressed as an intersection of closed subsets of [0,∞)A,

namely of the following sets (for x, y ∈A):

Mx,y =
{
m ∈ [0,∞)A |m(x → y)=m(x � y)=max

{
0,m(y)−m(x)

}}
,

Mx =
{
m ∈ [0,∞)A |m(x)≥ 0

}
,
{
m ∈ [0,∞)A |m(u)= 1

}
.

Therefore SMM(A,u) is a closed subset of the given product of intervals, and
hence, it is compact. �
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Proposition 7.10 Let u be a strong unit of a pseudo-BCK algebra A and m be a
measure on A. Then m vanishes on A if and only if m(u)= 0.

Proof Assume m(u)= 0. Then m(u→ x)=m((u∨1 x)→ x)=m(x)−m(u∨1 x).
But u≤ u∨1 x, hence 0≤m(u∨1 x)≤m(u)= 0, so m(x)=m(u→ x) and

m(x)=m(u→ x)=m
(
u→2 x

)= · · · = (
m→n x

)=m(1)= 0

when u→n x = 1 for some integer n≥ 1.
If now m(u) > 0, then m does not vanish trivially on A. �

Lemma 7.2 Let m1, m2 be state-measure-morphisms on a unital pseudo-BCK al-
gebra (A,u). If Ker0(m1)=Ker0(m2), then m1 =m2.

In addition, any state-measure-morphism cannot be expressed as a convex com-
bination of other state-measure-morphisms.

Proof The sets m1(A) = {m1(a) | a ∈ A} and m2(A) = {m2(a) | a ∈ A} of real
numbers can be endowed with a total operation ∗R such that (m1(A),∗R,0) and
(m2(A),∗R,0) are subalgebras of the BCK algebra ([0,∞),∗R,0) in the sense of
Chap. 5 in [108], where s ∗R t = max{0, s − t}, s, t ∈ [0,∞). The number 1 is a
strong unit in all such algebras.

If we let m̂1 and m̂2 be the state-measure-morphisms on the quotient pseudo-
BCK algebras A/Ker0(m1) and A/Ker0(m2) defined by m̂i(a/Ker0(mi))=mi(a),
we have again m̂i(A/Ker0(mi))=mi(A) for i = 1,2.

Define a mapping φ :m1(A)→m2(A) by φ(m1(a))=m2(a) (a ∈A). It is pos-
sible to show that this is a BCK-algebra injective homomorphism. By Lemma 6.1.22
in [108], this means that m1(A)=m2(A), that is, m1(a)=m2(a) for all a ∈A.

Suppose now that m = λm1 + (1− λ)m2, where m, m1, m2 are state-measure-
morphisms and λ ∈ (0,1). Then Ker0(m) ⊆ Ker0(m1) ∩ Ker0(m2). By Proposi-
tion 7.5, all kernels Ker0(m), Ker0(m1), Ker0(m2) are maximal deductive systems,
so Ker0(m) = Ker0(m1) = Ker0(m2) and by the first part of the present proof,
m=m1 =m2. �

Proposition 7.11 Let u be a strong unit of a pseudo-BCK algebra A and let J be
a deductive system of A and J0 := J ∩ [u,1]. Then J0 is a deductive system of the
pseudo-BCK algebra ([u,1],≤,→,�, u,1). If F(J0) is the deductive system of A

generated by J0, then

F(J0)= F. (∗)

Moreover, J0 is maximal in [u,1] if and only if J is maximal in A.

Proof Suppose that J is a deductive system of A. Then J0 := J ∩ [u,1] is evidently
a deductive system of [u,1]. It is clear that F(J0)⊆ F .

On the other hand, take x ∈ J . Since u is a strong unit, by Lemma 1.9, there is
an integer n≥ 1 such that u→n x = 1= u→ (· · · → (u→ x) · · ·).

Set xn = u∨1 x and xn−i = u∨1 (u→i x) for i = 1, . . . , n− 1.
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An easy calculation shows that xi ∈ J0 for any i = 1, . . . , n.
Moreover, u → (u → (· · · → (u → x) · · ·)) = x1 → (x2 → (· · · → (xn →

x) · · ·))= 1 which by Lemma 1.9 proves x ∈ F(J0).
Now let J be a maximal deductive system of A. Assume that F is a deductive

system of [u,1] containing J0 with F �= [u,1], and let F̂ (F ) be the deductive system
of A generated by F .

Then F ⊆ F̂ (F )∩ [u,1].
If now x ∈ F̂ (F )∩[u,1], there are f1, . . . , fn ∈ F such that f1 → (· · · → (fn →

x) · · ·)= 1 giving x ∈ F . Hence F = F̂ (F )∩ [u,1].
We assert that F̂ (F ) is a deductive system of A containing J , and F̂ (F ) �= A.

If not, then u ∈ F̂ (F ) and therefore by Lemma 1.9, there are x1, . . . , xn ∈ F such
that x1 → (· · · → (xn → u) · · ·) = 1. If we set zn = xn ∨1 u and zn−i = xn−i ∨1
(xi → (· · · → (xn → u) · · ·)), for i = 1, . . . , n− 1, then each zi belongs to F and
z1 → (· · · → (zn → u) · · ·)= 1 which implies u ∈ F , which is a contradiction.

The maximality of J entails J = F̂ (F ). Since J0 ⊆ F = F̂ (F ) ∩ [u,1] = J ∩
[0,1] = J0. That is, J0 is a maximal deductive system of [u,1] as was claimed.

Assume now that J0 is a maximal deductive system of [u,1] and let G �=A be a
deductive system of A containing J . Then G0 :=G ∩ [u,1] is a deductive system
of [u,1] containing J0, and by (∗), we get G= F(G0). We assert u /∈G0. Suppose
the converse. Then u ∈ G and for any x ∈ A, there is an integer n ≥ 1 such that
u→n x = u→ (· · · (u→ x) · · ·)= 1 proving x ∈G, so A⊆G, which is absurd.

The maximality of J0 entails J0 =G0 and in view of (∗), we have J = F(J0)=
F(G0)=G, thus J is a maximal deductive system of A. �

Proposition 7.12 Let m be a state-measure on a unital pseudo-BCK algebra (A,u),
and let mu be the restriction of m onto the interval [u,1]. Then mu is a state-
measure-morphism on ([u,1],≤,→,�, u,1).

Consider the following conditions:

(a) m is a state-measure-morphism on (A,u);
(b) mu is a state-morphism on [u,1];
(c) Ker0(m) is a maximal deductive system of (A,u);
(d) Ker0(mu) is a maximal deductive system of [u,1].

Then (b), (c), (d) are mutually equivalent and (a) implies each of the conditions
(b), (c) and (d).

Proof Let mu be the restriction of m to [u,1]. Then mu is a state-measure on [u,1]
and Ker0(mu)=Ker0(m)∩ [u,1]. Due to Proposition 7.11 we have

F
(
Ker0(mu)

)=Ker0(m).

(a) ⇒ (b) This is evident.
(b) ⇔ (d) This follows from Theorem 6.2(d)–(e).
(b) ⇔ (c) We have Ker0(mu)=Ker0(m)∩ [u,1].

Then by Proposition 7.11, we have the equivalence in question. �
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Theorem 7.5 Let (A,u) be an unbounded unital pseudo-BCK algebra that is
downwards-directed and let m be a state-measure on (A,u). Then there is a unique
(up to isomorphism) Abelian and Archimedean �-group G with strong unit uG > 0
such that the unbounded unital pseudo-BCK algebra (A/Ker0(m),u/Ker0(m)) is
isomorphic to the unbounded unital pseudo-BCK algebra (G−,−uG).

Proof Let mu, be the restriction of m to the interval [u,1]. By Theorems 7.1 and 6.1,
the quotient [u,1]/Ker0(mu) can be converted into an MV-algebra, and in view
of Ker0(mu) = Ker0(m) ∩ [u,1] we have that [u,1]/Ker0(mu) is isomorphic to
[u/Ker0(m),1/Ker0(m)] = [u,1]/Ker0(m), so that both can be viewed as isomor-
phic MV-algebras. Let G be the �-group guaranteed by Theorem 7.3 that is gener-
ated by A/Ker0(m).

Therefore uG := −(u/Ker0(m)) is a strong unit for G and 0G := 1/Ker0(m) is
the neutral element of G.

By Mundici’s famous theorem [41], the unital �-group (G,uG) is the same for
[u,1]/Ker0(mu) and [u,1]/Ker0(m). If now g ∈G−, then g = g1+· · ·+gn, where
g1, . . . , gn ∈ [u,1]/Ker0(m). The set of elements g ∈G− such that g ∈A/Ker0(m)

is a pseudo-BCK algebra containing A/Ker0(m). Furthermore, because A/Ker0(m)

generates G, this implies that the pseudo-BCK algebra (G−,−uG) is isomorphic to
the unital pseudo-BCK algebra (A/Ker0(m),u/Ker0(m)). �

Theorem 7.6 Let m be a state-measure on a unital pseudo-BCK algebra (A,u)

that is downwards-directed and let mu be the restriction of m to the pseudo-BCK
algebra [u,1]. The following statements are equivalent:

(a) m is a state-measure-morphism on (A,u);
(b) mu is a state-morphism on [u,1];
(c) Ker0(m) is a maximal deductive system of (A,u);
(d) Ker0(mu) is a maximal deductive system of [u,1];
(e) m is an extremal state-measure on (A,u);
(f) mu is an extremal state-measure on [u,1].

Proof By Theorem 7.12, (b), (c), (d) are mutually equivalent and (a) implies each
of the conditions (b), (c), (d). Theorem 7.4 entails that (c) implies (a). From Theo-
rem 6.2 we see that (b) and (f) are equivalent. Proposition 7.6 gives (a) implies (e).

(e) ⇒ (a) Let m be an extremal state-measure on (A,u). Define m̂(a/Ker0(m)) :=
m(a) (a ∈ A). We assert that m̂ is extremal on the unital pseudo-BCK algebra
(A/Ker0(m),u/Ker0(m)). Indeed, if m̂= λμ1 + (1− λ)μ2, 0 < λ < 1, where
μ1 and μ2 are two state-measures on (A/Ker0(m),u/Ker0(m)), then there are
two state-measures m1, m2 on (A,u) such that m̂1 = μ1 and m̂2 = μ2. Hence
m= λm1 + (1− λ)m2 yielding m1 =m2 and μ1 = μ2.
By Theorem 7.5, A/Ker0(m) is isomorphic to the pseudo-BCK algebra
(G−, uG), where G− is the negative cone of an Abelian and Archimedean �-
group G that is generated by A/Ker0(m) and the element uG := −(u/Ker0(m))

is a strong unit for G.
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Similarly as in the proof of Theorem 7.4, m̂ can be extended to a state-measure,
s, on (G−, u/Ker0(m)) so that s can be extended to an additive function denoted
again by s on the whole unital �-group (G,−(u/Ker0(m))) that is positive on
G− and s(u/Ker0(m))= 1.
Moreover, s is extremal on (G,−(u/Ker0(m))) which by Theorem 12.18 in
[155] is possible if and only if Ker0(m̂)= {1/Ker0(m)} is a maximal deductive
system of the unital pseudo-BCK algebra (A/Ker0(m),u/Ker0(m)).
Since the mapping a �→ a/Ker0(m) is surjective, this implies that Ker0(m) is a
maximal deductive system of (A,u). By the equivalence of (c) and (a) we have
that m is a measure-morphism. �

As a direct consequence of Theorem 7.6 and the Krein-Mil’man Theorem we
have:

Corollary 7.1 Let (A,u) be a unital pseudo-BCK algebra that is downwards-
directed. Then

∂eSM(A,u)= SMM(A,u)

and every state-measure on (A,u) is a weak limit of a net of convex combinations
of state-measure-morphisms.

7.3 Coherence, de Finetti Maps and Borel States

In this section, we will generalize to pseudo-BCK algebras the relation between
de Finetti maps and Bosbach states, following the results proved by Kühr and
Mundici in [211] who showed that de Finetti’s coherence principle, which has its
origin in Dutch bookmaking, has a strong relationship to MV-states on MV-algebras.
We then generalize this to state-measures on unital pseudo-BCK algebras that are
downwards-directed.

We recall the following definitions and notation used in [211]. Let A be a
nonempty set and let W be a fixed system of maps from [0,1]A. We endow W
with the weak topology induced from the product topology on [0,1]A. By convW
and clW we denote the convex hull and the closure of W , respectively. In addition,
if W is convex, ∂eW will denote the set of all extremal points of W . We note that
the weak topology of Bosbach states is in fact the relativized product topology on
[0,1]A.

Definition 7.3 ([211]) Let A′ = {a1, a2, . . . , an} be a finite subset of A. Then a map
β :A′ −→ [0,1] is said to be coherent over A′ if

for all σ1, σ2, . . . , σn ∈R, there is a V ∈W s.t.
n∑

i=1

σi

(
β(ai)− V (ai)

)≥ 0.

By a de Finetti map on A we mean a function β : A −→ [0,1] which is coherent
over every finite subset of A. We denote by FW the set of all de Finetti maps on A.
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An interpretation of Definition 7.3 is as follows [211]: Two players, the book-
maker and the bettor, wager money on the possible occurrence of elementary events
a1, . . . , an ∈ A. The bookmaker sets a betting odd β(ai) ∈ [0,1], and the bettor
chooses stakes σi ∈ R. The bettor pays the bookmaker σiβ(ai), and will receive
σiV (ai) from the bookmaker’s possible world V . As scholars, we can assume that
σi may be positive as well as negative. If the orientation of money transfer is given
via bettor-to-bookmaker, then the inequality in Definition 7.3 means that the book-
maker’s book should be coherent in the sense that the bettor cannot choose stakes
σ1, . . . , σn which ensure that he will win money for every V ∈W .

Remark 7.6 Let A be a bounded pseudo-BCK algebra and denote by BS(A) the
set of Bosbach states on A and by W the set of state-morphisms on A. Note that,
according to Theorem 6.2, W coincides with the set of extremal Bosbach states, and
by the Krein-Mil’man Theorem,

BS(A)= cl conv ∂eBS(A)= cl convSM(A).

Theorem 7.7 Let A be a bounded pseudo-BCK algebra and let W = SM(A) �= ∅.
Then

FW = BS(A).

Proof According to Theorem 6.2 and Remark 6.4, W is closed. Now we can apply
Proposition 3.1 in [211] since we have W ⊆ BS , ∂eBS =W (⊆W), W closed. So
we get BS =FW . �

Theorem 7.7 has an important consequence, namely that every Bosbach state (if
it exists) on a bounded pseudo-BCK algebra is a de Finetti map coming from the set
of [0,1]-valued functions on A, generated by the set of state-morphisms. Moreover,
applying Remark 7.6 we have that this de Finetti map is exactly the weak limit of a
net of convex combinations of state-morphisms.

There is also another relationship concerning the representability of Bosbach
states via integrals.

Let A be a bounded pseudo-BCK algebra and let W = SM(A). Every element
a ∈A determines a (continuous) function fa :W →[0,1] via

fa(V ) := V (a), V ∈W .

Definition 7.4 We say that a mapping s : A −→ [0,1] is a Borel state (of W) if
there is a regular Borel probability measure μ defined on the Borel σ -algebra of the
topological space W generated by all open subsets of W such that

s(a)=
∫

W
fa(V )dμ(V ).

Let BW be the set of all Borel states of W .
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Theorem 7.8 Let A be a bounded pseudo-BCK algebra. For any Bosbach state s

on A, there is a Borel probability measure μ on B(W) such that

s(a)=
∫

W
fa(V )dμ(V ).

Proof Since W = SM(A) is closed (see Remark 6.4), by Theorem 4.2 in [211] we
have W ⊆ BW , ∂eBW ⊆W and FW = BW . Therefore by Theorem 7.7, BS(A)=
BW , i.e. every Bosbach state is a Borel state on A. �

We note that if we set Ω = BS(A), then for any a ∈ A, the function ã :
BS(A) −→ [0,1] defined by ã(s) := s(a), s ∈ SB(A), is continuous. Therefore,
we can strengthen Theorem 7.8 as follows.

Theorem 7.9 Let A be a bounded pseudo-BCK algebra. For any Bosbach state s

on A, there is a unique Borel probability measure μ on B(BS(A)) such that

s(a)=
∫

SM(A)

ã(x)dμ(x).

Proof Suppose that the set of all Bosbach states on A is nonempty. By the
Krein-Mil’man Theorem (Remark 7.6), the set of extremal Bosbach states is also
nonempty and it coincides with the set of state-morphisms. Define F0 :=⋂{Ker(s) |
s ∈ SM(A)}. In view of Theorem 6.1, Lemma 6.2 and Proposition 6.12, F0
is a normal ideal, and similarly as in Theorem 6.1, we can show that A/F0
is an Archimedean MV-algebra, and for any Bosbach state s on A, the map-
ping ŝ(a/F0) = s(a) (a ∈ A) is an MV-state (= Bosbach state) on A/F0; we set
ā := a/F0 (a ∈ A). Moreover, the state spaces BS(A) and BS(A/F0) are affinely
homeomorphic compact nonempty Hausdorff topological spaces under the mapping
s ∈ BS(A) �→ ŝ ∈ SB(A/F0) (i.e. they are homeomorphic in the weak topologies of
states preserving convex combinations of states). In addition, the compact subsets
of extremal Bosbach space are also homeomorphic under this mapping. By [202],
on the Borel σ -algebra B(BS(A)), there is a unique Borel probability measure μ

such that

s(a)= ŝ(a/F0)=
∫

SM(A/F0)

˜̄adμ.

This integral can be rewritten identifying the compact spaces and Borel σ -algebras
in the form

s(a)=
∫

SM(A)

ã(x)dμ(x). �

It is interesting to note that de Finetti was a great propagator of probabilities
as finitely additive measures. The main result of [202] and Theorem 7.9 state that
whenever s is a Bosbach state, it generates a σ -additive probability such that s is
in fact an integral over this Borel probability measure. Thus Theorem 7.9 joins de
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Finetti’s “finitely additive probabilities” with σ -additive measures on an appropriate
Borel σ -algebra.

We now generalize Theorem 7.7 and Theorem 7.8 to unbounded pseudo-BCK
algebras that are downwards-directed.

Theorem 7.10 Let (A,u) be a pseudo-BCK algebra that is downwards-directed
and let W = SMM(A,u) �= ∅. Then

FW = SM(A,u).

Proof This follows from Theorem 7.6 and using the same steps as those in Theo-
rem 7.7. �

Theorem 7.11 Let (A,u) be a pseudo-BCK algebra that is downwards-directed.
For any state-measure m on (A,u), where W = SMM(A,u) �= ∅, there is a Borel
probability measure μ on B(W) such that

m(a)=
∫

W
fa(V )dμ(V ).

Proof This follows from Theorem 7.6 and it follows steps analogous to those in
Theorem 7.8. �



Chapter 8
Generalized States on Residuated Structures

In the case of states on multiple-valued logic algebras, the domain of a state varied,
while the codomain remained the real interval [0,1] with its additive structure. On
the other hand, in the theory of probability models ([123, 253]), the probability
is seen as a new kind of semantics. Instead of the validity of sentences (events)
one studies the probability of their achievement. For multiple-valued logics it is
more profitable to study the truth degree of sentences instead of their validity. In
many cases, the evaluation of the truth degree of sentences is made in an abstract
structure (MV-algebra, BL-algebra, etc.), and not in the standard algebra [0,1] (see
for example [158]). This point of view suggests that we define a probability with
values in an abstract algebra (in our case, an FLw-algebra). This chapter begins
by showing that in the definition of a Bosbach state the MV-algebra structure was
used for the codomain of the state. We found several equivalent conditions which
define a Bosbach state, and these conditions are expressed in terms of FLw-algebra
operations. If we replace [0,1], the standard MV-algebra, with an arbitrary FLw-
algebra or FLew-algebra, the equivalence of these conditions is no longer preserved.
In fact, the group of equivalent conditions splits into two parts. The conditions as
a whole are not equivalent, but within each subgroup the equivalence is preserved.
Each of the two groups of equivalent conditions leads to a notion of a generalized
Bosbach state. In this way the notions of a generalized Bosbach state of type I and
of type II appear.

We distinguish two kinds of generalized states; namely we define generalized
states of type I and II, we study their properties and we prove that every strong type
II state is an order-preserving type I state. We prove that any perfect FLw-algebra
admits a strong type I and type II state. Some conditions are given for a generalized
state of type I on a linearly ordered bounded R�-monoid to be a state operator.

We introduce the notion of a generalized state-morphism and we prove that any
generalized state morphism is an order-preserving type I state and, under certain
conditions, an order-preserving type I state is a generalized state-morphism. The
notion of a strong perfect FLw-algebra is introduced and it is proved that any strong
perfect FLw-algebra admits a generalized state-morphism. The notion of a general-
ized Riečan state is also given, and the main results are proved based on the notion of
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the Glivenko property defined in the non-commutative case. The main results con-
sist of proving that any order-preserving type I state is a generalized Riečan state
and in certain circumstances the two states coincide. We introduce the notion of a
generalized local state on a perfect pseudo-MTL algebra A and we prove that, if A

is relatively free of zero divisors, then every generalized local state can be extended
to a generalized Riečan state. The notions of extension property and Horn-Tarski
property are introduced for a pair (A,L) of FLw-algebras with L complete and it is
proved that under some conditions, if the pair (Reg(A),L) has the extension prop-
erty or Horn-Tarski property, then the pair (A,L) has these properties too. Finally,
we outline how the generalized states give an approach to the theory of probabilistic
models for non-commutative fuzzy logics associated to a pseudo t-norm.

8.1 Generalized Bosbach States on FLw-Algebras

Starting from the observation that in the definition of a Bosbach state the standard
MV-algebra structure for its codomain was used, for the case of FLw-algebras the
notion of a state was generalized as a function with values in an FLw-algebra ([74,
75]). Properties of generalized states are useful for the development of an algebraic
theory of probabilistic models for non-commutative fuzzy logics.

In this section we define the generalized Bosbach state of types I and II and we
study their properties. The notion of a strong generalized Bosbach state is introduced
and it is proved that any perfect FLw-algebra admits a strong type I and type II state.
Some conditions are given for a generalized state of type I on a linearly ordered
bounded R�-monoid to be a state operator.

Let A be an FLw-algebra and s : A −→ [0,1] be a function such that s(0) = 0
and s(1) = 1. It was proved in Propositions 6.18 and 6.19 that the following are
equivalent for all x, y ∈A:

(P 1
1 ) 1+ s(x ∧ y)= s(x ∨ y)+ s(d1(x, y));

(P 1
2 ) 1+ s(x ∧ y)= s(x)+ s(x → y);

(P 1
3 ) s(x)+ s(x → y)= s(y)+ s(y → x)

and the following are also equivalent for all x, y ∈A:

(P 2
1 ) 1+ s(x ∧ y)= s(x ∨ y)+ s(d2(x, y));

(P 2
2 ) 1+ s(x ∧ y)= s(x)+ s(x � y);

(P 2
3 ) s(x)+ s(x � y)= s(y)+ s(y � x).

One can easily check that:

(I ) The condition (P 1
1 ) is equivalent to each of the following conditions:

(I1) s(d1(x, y))= s(x ∨ y)→Ł s(x ∧ y);
(I2) s(x ∨ y)= s(d1(x, y))→Ł s(x ∧ y).

(II) The condition (P 1
2 ) is equivalent to each of the following conditions:



8.1 Generalized Bosbach States on FLw-Algebras 211

(II1) s(x → y)= s(x)→Ł s(x ∧ y);
(II2) s(x)= s(x → y)→Ł s(a ∧ b).

(III) The condition (P 1
3 ) is equivalent to the following condition:

(III1) s(x → y)→Ł s(y)= s(y → x)→Ł s(x).

Similarly, we can prove that:

(I ′) The condition (P 2
1 ) is equivalent to each of the following conditions:

(I ′1) s(d2(x, y))= s(x ∨ y)→Ł s(x ∧ y);
(I ′2) s(x ∨ y)= s(d2(x, y))→Ł s(x ∧ y).

(II′) The condition (P 2
2 ) is equivalent to each of the following conditions:

(II′1) s(x � y)= s(x)→Ł s(x ∧ y);
(II′2) s(x)= s(x � y)→Ł s(x ∧ y).

(III′) The condition (P 2
3 ) is equivalent to the following condition:

(III′1) s(x � y)→Ł s(y)= s(y � x)→Ł s(x).

The above equalities suggest an extension of the definition of a Bosbach state re-
placing the standard MV-algebra ([0,1],min,max,�Ł,→Ł,0,1) with an arbitrary
FLw-algebra.

In the sequel, (A,∧,∨,�,→,�,0,1) and (L,∧,∨,�,→,�,0,1) are FLw-
algebras and s :A−→ L is an arbitrary function.

(We use the same notation for the operations in both structures, but the reader
should be aware that they are different.)

By d1A, d2A and d1L, d2L we denote the distance functions in the FLw-algebras
A and L, respectively (see Definition 3.2).

Proposition 8.1 If s(0)= 0 and s(1)= 1, then the following are equivalent:

(i) for all a, b ∈A, s(d1A(a, b))= s(a ∨ b)→ s(a ∧ b) and s(d2A(a, b))= s(a ∨
b)� s(a ∧ b);

(ii) for all a, b ∈ A with b ≤ a, s(a → b)= s(a)→ s(b) and s(a � b)= s(a) �
s(b);

(iii) for all a, b ∈A, s(a → b)= s(a)→ s(a∧b) and s(a � b)= s(a) � s(a∧b);
(iv) for all a, b ∈A, s(a → b)= s(a∨b)→ s(b) and s(a � b)= s(a∨b) � s(b).

Proof Let a, b ∈A.

(i) ⇒ (ii) Assume b ≤ a. Then we have:

d1A(a, b)= a → b, so

s(a → b)= s
(
d1A(a, b)

)= s(a ∨ b)→ s(a ∧ b)= s(a)→ s(b)
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and

d2A(a, b)= a � b, so

s(a � b)= s
(
d2A(a, b)

)= s(a ∨ b) � s(a ∧ b)= s(a) � s(b).

(ii) ⇒ (i) Since a ∧ b ≤ a ∨ b, we have:

s
(
d1A(a, b)

) = s(a ∨ b→ a ∧ b)= s(a ∨ b)→ s(a ∧ b) and

s
(
d2A(a, b)

) = s(a ∨ b � a ∧ b)= s(a ∨ b) � s(a ∧ b).

(ii) ⇒ (iii) Applying (rl-c3) we have a → b= a → a ∧ b and a � b= a � a ∧ b.
Since a ∧ b ≤ a, we get:

s(a → b) = s(a → a ∧ b)= s(a)→ s(a ∧ b) and

s(a � b) = s(a � a ∧ b)= s(a) � s(a ∧ b).

(iii) ⇒ (ii) Assume b ≤ a, so a ∧ b= b. It follows that:

s(a → b) = s(a)→ s(a ∧ b)= s(a)→ s(b) and

s(a � b) = s(a) � s(a ∧ b)= s(a) � s(b).

(ii) ⇒ (iv) Applying (rl-c4) we have a ∨ b→ b= a → b and a ∨ b � b= a � b.
Since b ≤ a ∨ b, we get:

s(a → b) = s(a ∨ b→ b)= s(a ∨ b)→ s(b) and

s(a � b) = s(a ∨ b � b)= s(a ∨ b)� s(b).

(iv) ⇒ (ii) Let b ≤ a, so a ∨ b= a. It follows that:

s(a → b) = s(a ∨ b)→ s(b)= s(a)→ s(b) and

s(a � b) = s(a ∨ b) � s(b)= s(a) � s(b). �

Proposition 8.2 If s(0)= 0 and s(1)= 1, then the following are equivalent:

(i) for all a, b ∈ A, s(a ∨ b) = s(d1A(a, b)) → s(a ∧ b) = s(d2A(a, b)) �
s(a ∧ b);

(ii) for all a, b ∈A s(a)= s(a → b)→ s(a ∧ b)= s(a � b)� s(a ∧ b);
(iii) for all a, b ∈A with b ≤ a, s(a)= s(a → b)→ s(b)= s(a � b)� s(b);
(iv) for all a, b ∈A, s(a ∨ b)= s(a → b)→ s(b)= s(a � b) � s(b);
(v) for all a, b ∈ A, s(a → b) → s(b) = s(b → a) → s(a) and s(a � b) �

s(b)= s(b � a) � s(a).

Proof Let a, b ∈A.
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(i) ⇒ (iii) Assume b ≤ a, thus:

a ∨ b= a, a ∧ b= b, d1A(a, b)= a → b, d2A(a, b)= a � b.

Hence s(a)= s(a → b)→ s(b) and s(a)= s(a � b)� s(b).
(iii) ⇒ (i) Taking into consideration that d1A(a, b) = a ∨ b → a ∧ b, d2A(a, b) =

a ∨ b � a ∧ b and a ∧ b ≤ a ∨ b, we have:

s(a ∨ b) = s(a ∨ b→ a ∧ b)→ s(a ∧ b)= s
(
d1A(a, b)

)→ s(a ∧ b) and

s(a ∨ b) = s(a ∨ b � a ∧ b)� s(a ∧ b)= s
(
d2A(a, b)

)
� s(a ∧ b).

(ii) ⇒ (iii) Assume b ≤ a, so a ∧ b= b.
Hence s(a)= s(a → b)→ s(b)= s(a � b)� s(b).

(iii) ⇒ (ii) Applying the properties a ∧ b ≤ a, a → a ∧ b = a → b, a � a ∧ b =
a � b we get:

s(a) = s(a → a ∧ b)→ s(a ∧ b)= s(a → b)→ s(a ∧ b) and

s(a) = s(a � a ∧ b)� s(a ∧ b)= s(a � b)� s(a ∧ b).

(iii) ⇒ (iv) Since b ≤ a∨ b, a∨ b→ b= a → b and a∨ b � b= a � b, we have:

s(a ∨ b) = s(a ∨ b→ b)→ s(b)= s(a → b)→ s(b) and

s(a ∨ b) = s(a ∨ b � b)� s(b)= s(a � b) � s(b).

(iv) ⇒ (v) By (iv) we have:

s(a → b)→ s(b) = s(a ∨ b)= s(b ∨ a)= s(b→ a)→ s(a) and

s(a � b) � s(b) = s(a ∨ b)= s(b ∨ a)= s(b � a)� s(a).

(v) ⇒ (iii) Assume b ≤ a. Thus

s(a) = 1→ s(a)= s(1)→ s(a)= s(b→ a)→ s(a)= s(a → b)→ s(b) and

s(a) = 1 � s(a)= s(1) � s(a)= s(b � a) � s(a)= s(a � b)� s(b). �

Definition 8.1 Let (A,∧,∨,�,→,�,0,1) and (L,∧,∨,�,→,�,0,1) be FLw-
algebras and s : A −→ L an arbitrary function such that s(0) = 0 and s(1) = 1.
Then:

1. s is called a generalized Bosbach state of type I (or briefly, a state of type I or a
type I state) if it satisfies the equivalent conditions from Proposition 8.1.

2. s is called a generalized Bosbach state of type II (or briefly, a state of type II or
a type II state) if it satisfies the equivalent conditions from Proposition 8.2.

3. A generalized type I, II state s is called a strong type I, II state if s(a → b) =
s(a � b) for all a, b ∈A.

Example 8.1 Any FLw-algebra morphism s :A−→ L is an order-preserving type I
state.
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Example 8.2 ([114]) If A is a bounded R�-monoid, then a state operator on A is
a function σ : A −→ A such that for any x, y ∈ A the following conditions are
satisfied:

(1) σ(0)= 0;
(2) σ(x → y)= σ(x)→ σ(x ∧ y) and σ(x � y)= σ(x) � σ(x ∧ y);
(3) σ(x � y)= σ(x)� σ(x � x � y)= σ(y → x � y)� σ(y);
(4) σ(σ (x)� σ(y))= σ(x)� σ(y);
(5) σ(σ (x)→ σ(y))= σ(x)→ σ(y) and σ(σ (x) � σ(y))= σ(x) � σ(y);
(6) σ(σ (x)∨ σ(y))= σ(x)∨ σ(y).

Taking x = y = 1 in (2), it follows that σ(1)= 1.
Since σ(0) = 0, σ(1) = 1 and condition (2) of the above definition is condi-

tion (iii) in Proposition 8.1, it follows that any state operator σ on a bounded
R�-monoid is a type I state. Moreover, it was proved in [114] that x ≤ y implies
σ(x)≤ σ(y), thus σ is an order-preserving type I state.

Example 8.3 Let A be the FLw-algebra from Example 4.4, L be the FLw-algebra
from Example 4.1 and s :A−→ L, s(0) := 0, s(a)= s(b)= s(c)= s(1) := 1. One
can easily check that s is a type I state and a type II state.

Example 8.4 Let A be the FLw-algebra from Example 4.4 and consider the func-
tions:

s1 :A−→A, s1(0) := 0, s1(a) := a, s1(b) := b, s1(c) := c, s1(1) := 1,

s2 :A−→A, s2(0) := 0, s2(a)= s2(b)= s2(c)= s2(1) := 1.

One can easily check that s1 is a type I state, while s2 is a strong type I state and
a strong type II state.

Remark 8.1 Not all type I states are order-preserving, and not all order-preserving
type I states are type II states. Indeed, consider the following example of an FLew-
algebra A= {0, a, b, c, d,1}, with the following partial order relation and operations
([186]):
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→ 0 a b c d 1
0 1 1 1 1 1 1
a 0 1 b c c 1
b c 1 1 c c 1
c b 1 b 1 a 1
d b 1 b 1 1 1
1 0 a b c d 1

� 0 a b c d 1
0 0 0 0 0 0 0
a 0 a b d d a

b 0 b b 0 0 b

c 0 d 0 d d c

d 0 d 0 d d d

1 0 a b c d 1

Consider the maps s1, . . . , s6 :A→A presented in the table below:

x 0 a b c d 1
s1(x) 0 a 0 1 a 1
s2(x) 0 a b c d 1
s3(x) 0 1 0 1 1 1
s4(x) 0 1 b c c 1
s5(x) 0 1 c b b 1
s6(x) 0 1 1 0 0 1

The type I states from A to A are si , with i ∈ 1,6. Out of these, the only order-
preserving ones are s2, s3, s4, s5 and s6. Indeed, s1 is not order-preserving, as c ≤ a

and s1(c)= 1 > s1(a)= a.
The type II states from A to A are s3, s4, s5 and s6.

The next proposition generalizes to FLw-algebras the following result from
[263]: if A and L are FLew-algebras, then every type II state s : A −→ L is an
order-preserving type I state.

Proposition 8.3 Every strong type II state is an order-preserving type I state.

Proof Since b ≤ (a → b) � b and b ≤ (a � b) → b, applying (psbck-c11) and
Proposition 8.2(iii), (iv) we have:

s
(
(a → b) � b

) = s
((

(a → b) � b
)→ b

)→ s(b)

= s(a → b)→ s(b)= s(a ∨ b) and

s
(
(a � b)→ b

) = s
((

(a � b)→ b
)
� b

)
� s(b)

= s(a � b) � s(b)= s(a ∨ b).

From b ≤ a → b and b ≤ a � b we get:

s(a → b) = s
(
(a → b) � b

)
� s(b)= s(a ∨ b) � s(b) and

s(a � b) = s
(
(a � b)→ b

)→ s(b)= s(a ∨ b)→ s(b).

Since s is strong, we have:

s(a → b)= s(a � b)= s(a ∨ b)→ s(b)= s(a ∨ b)� s(b).
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Taking into consideration Proposition 8.1(iv), it follows that s is a type I state.
By Proposition 8.2(iii), s is order-preserving. �

Remark 8.2 In the case when L is the standard MV-algebra [0,1], order-preserving
type I states s : A −→ [0,1] coincide with Bosbach states on A, as the identities
(iii) from Proposition 8.1 are equivalent to the identities (II1) and (II′1), and type II
states s :A−→ [0,1] coincide with Bosbach states on A, as the identities (v) from
Proposition 8.2 are equivalent to the identities (III1) and (III′1).

Remark 8.3 Let A, B , L be FLw-algebras, s : B −→ L be a function and f :A−→
L be an FLw-algebra morphism. Then by Proposition 8.1(iii), if s is a type I state,
then s ◦ f :A−→ L is a type I state, and if, moreover, s is order-preserving and f

is order-preserving, then s ◦ f is order-preserving. By Proposition 8.2(ii), if s is a
type II state, then s ◦ f is a type II state.

In the sequel we will use the notation s(a)− instead of (s(a))− and s(a)∼ instead
of (s(a))∼.

Proposition 8.4 If s is a type I state, then for all a, b ∈A the following hold:

(1) s(a−)= s(a)− and s(a∼)= s(a)∼;
(2) s(a−−) = s(a)−−, s(a∼∼) = s(a)∼∼, s(a−∼) = s(a)−∼ and s(a∼−) =

s(a)∼−;
(3) s(a ∨ b)→ s(a)= s(b)→ s(a ∧ b) and s(a ∨ b) � s(a)= s(b) � s(a ∧ b);
(4) s(a−∼ → a)= s(a)−∼ → s(a) and s(a∼− � a)= s(a)∼− → s(a);
(5) s((a ◦1 b) ◦2 b)= s(a ◦1 b) ◦2 s(b), where ◦1,◦2 ∈ {→,�};
(6) s((a ◦1 b) ◦2 b)= (s(a ∨ b) ◦1 s(b)) ◦2 s(b), where ◦1,◦2 ∈ {→,�};
(7) s(a∨b)→ s(a)∧ s(b)= s(a)∨ s(b)→ s(a∧b) and s(a∨b) � s(a)∧ s(b)=

s(a)∨ s(b) � s(a ∧ b);
(8) s(a → a� b)� s(a)≤ s(a � b) and s(a)� s(a � a� b)≤ s(a � b).

Proof

(1) s(a−)= s(a → 0)= s(a)→ s(0)= s(a)→ 0 = s(a)− and similarly s(a∼)=
s(a)∼.

(2) This follows from (1).
(3) This follows from Proposition 8.1(iii), (iv).
(4) By (psbck-c14), Proposition 8.1(ii) and (2).
(5) By (psbck-c6) and Proposition 8.1(ii).
(6) By (psbck-c6) and Proposition 8.1(ii), (iv).
(7) From (rl-c4) we have

x ∨ y → z= (x → z)∧ (y → z), x ∨ y � z= (x � z)∧ (y � z)

and from (rl-c3) we get

z→ x ∧ y = (z→ x)∧ (z→ y) and z � x ∧ y = (z � x)∧ (z � y),

for all x, y, z ∈A.
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Applying the above formulas and (3) we get:

s(a ∨ b)→ s(a)∧ s(b) = (
s(a ∨ b)→ s(a)

)∧ (
s(a ∨ b)→ s(b)

)

= (
s(a)→ s(a ∧ b)

)∧ (
s(b)→ s(a ∧ b)

)

= s(a)∨ s(b)→ s(a ∧ b).

Similarly,

s(a ∨ b)� s(a)∧ s(b) = (
s(a ∨ b)� s(a)

)∧ (
s(a ∨ b) � s(b)

)

= (
s(a) � s(a ∧ b)

)∧ (
s(b) � s(a ∧ b)

)

= s(a)∨ s(b) � s(a ∧ b).

(8) By Proposition 8.1(ii) we have

s(a → a� b)= s(a)→ s(a � b) and s(a � a� b)= s(a) � s(a � b).

Applying (psbck-c25) we get:

s(a → a� b)� s(a) = (
s(a)→ s(a � b)

)� s(a)≤ s(a � b) and

s(a)� s(a � a � b) = s(a)� (
s(a) � s(a � b)

)≤ s(a � b). �

Proposition 8.5 If s is an order-preserving type I state, then for all a, b ∈ A the
following hold:

(1) s(a)� s(b)≤ s(a � b);
(2) s(a)� s(b)− ≤ s(a � b−) and s(a)� s(b)∼ ≤ s(a � b∼);
(3) s(a → b)≤ s(a)→ s(b) and s(a � b)≤ s(a) � s(b);
(4) s(a → b)� s(b→ a)≤ d1L(s(a), s(b)) and s(a � b)� s(b � a)≤ d2L(s(a),

s(b));
(5) s(d1A(a, b))≤ d1L(s(a), s(b)) and s(d2A(a, b))≤ d2L(s(a), s(b)).

Proof

(1) Obviously, b ≤ a � a� b, hence s(b)≤ s(a � a� b).
Applying Proposition 8.4(8) we get s(a)� s(b) ≤ s(a)� s(a � a � b) ≤

s(a � b).
(2) This follows from Proposition 8.4(1) and (1).
(3) By Proposition 8.1(iii) we get s(a → b)= s(a)→ s(a ∧ b).

Since a ∧ b ≤ b, we have s(a ∧ b)≤ s(b) and by (psbck-c10) it follows that
s(a)→ s(a ∧ b)≤ s(a)→ s(b). Thus s(a → b)≤ s(a)→ s(b).

Similarly, s(a � b)≤ s(a) � s(b).
(4) Applying (3) and (psbck-c24) we get:

s(a → b)� s(b→ a)≤ (
s(a)→ s(b)

)� (
s(b)→ s(a)

)

≤ (
s(a)→ s(b)

)∧ (
s(b)→ s(a)

)= d1L

(
s(a), s(b)

)
.
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Similarly, s(a � b)� s(b � a)≤ d2L(s(a), s(b)).
(5) By (3) we have:

s
(
d1A(a, b)

) = s
(
(a → b)∧ (b→ a)

)≤ s(a → b)∧ s(b→ a)

≤ (
s(a)→ s(b)

)∧ (
s(b)→ s(a)

)= d1L

(
s(a), s(b)

)

(from x ∧ y ≤ x, y, we have s(x ∧ y) ≤ s(x), s(y), hence s(x ∧ y) ≤ s(x) ∧
s(y)).

Similarly, s(d2A(a, b))≤ d2L(s(a), s(b)). �

Proposition 8.6 Let s be a type II state. Then for all a, b ∈A the following hold:

(1) a ≤ b implies s(a)≤ s(b);
(2) s(a)= s(a−)− and s(a)= s(a∼)∼;
(3) s(a−∼)= s(a∼−)= s(a)= s(a)−∼ = s(a)∼−;
(4) s(a → b)= s((a → b)→ b)→ s(b) and s(a � b)= s((a � b) � b)� s(b);
(5) s(a → b)= s((a → b) � b)� s(b) and s(a � b)= s((a � b)→ b)→ s(b);
(6) s(a−)= s(a)∼ and s(a∼)= s(a)−.

Proof

(1) By (psbck-c6) and Proposition 8.2(iii) we have

s(a)≤ s(b→ a)→ s(a)= s(b).

(2) Since 0≤ a, by Proposition 8.2(iii) we get

s(a)= s(a → 0)→ 0= s
(
a−

)→ 0= s
(
a−

)−
.

Similarly, s(a)= s(a � 0) � 0= s(a∼)� 0= s(a∼)∼.
(3) By (2) and (psbck-c18) we get:

s
(
a−∼

) = s
(
a−∼−

)− = s
(
a−

)− = s(a) and

s
(
a∼−

) = s
(
a∼−∼

)∼ = s
(
a∼

)∼ = s(a).

We also have:

s(a)−∼ = s
(
a−

)−∼− = s
(
a−

)− = s(a) and

s(a)∼− = s
(
a∼

)∼−∼ = s
(
a∼

)∼ = s(a).

(4) This follows from (psbck-c6) and Proposition 8.2(iii).
(5) Similar to (4).
(6) Applying (5) and (3) we have

s
(
a−

) = s(a → 0)= s
(
(a → 0) � 0

)
� s(0)= s

(
a−∼

)∼ = s(a)∼ and

s
(
a∼

) = s(a � 0)= s
(
(a � 0)→ 0

)→ s(0)= s
(
a∼−

)− = s(a)−. �
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Proposition 8.7 If A and L are bounded R�-monoids and s :A−→ L is an order-
preserving type I state, then for all a, b ∈A the following hold:

(1) s(a � b)= s(a → a� b)� s(a)= s(a)� s(a � a� b);
(2) s(a ∧ b)= s(a → b)� s(a)= s(a)� s(a � b).

Proof

(1) One can easily check that a � b ≤ a ∧ b ≤ d1A(a, b) ≤ a → b and a � b ≤
a ∧ b ≤ d2A(a, b)≤ a � b. It follows that:

s(a → a� b)� s(a) = (
s(a)→ s(a � b)

)� s(a)

= s(a)∧ s(a � b)= s(a � b) and

s(a)� s(a � a� b) = s(a)� (
s(a) � s(a � b)

)

= s(a)∧ s(a � b)= s(a � b).

(2) Since a → a ∧ b= a → b and a � a ∧ b= a � b, we have:

s(a → b)� s(a) = s(a → a ∧ b)� s(a)= (
s(a)→ s(a ∧ b)

)� s(a)

= s(a)∧ s(a ∧ b)= s(a ∧ b) and

s(a)� s(a � b) = s(a)� s(a � a ∧ b)= s(a)� (
s(a) � s(a ∧ b)

)

= s(a)∧ s(a ∧ b)= s(a ∧ b). �

Theorem 8.1 If A is a linearly ordered bounded R�-monoid and s :A−→A is an
order-preserving type I state such that s2(x) = s(x) ≤ x for all x ∈ A, then s is a
state operator on A.

Proof Applying the hypothesis and the definition of a type I state, we will verify
axioms (1)–(6) from the definition of a state operator.

(1) s(0)= 0:
This follows from the definition of a type I state.

(2) s(a → b)= s(a)→ s(a ∧ b) and s(a � b)= s(a) � s(a ∧ b):
This is condition (iii) from Proposition 8.1.

(3) s(a � b)= s(a)� s(a � a � b)= s(b→ a � b)� s(b):
From Proposition 8.7(1) we have s(a � b)= s(a)� s(a � a� b).
Similarly as in the proof of Proposition 8.7(1), we have:

s(b→ a�b)� s(b)= (
s(b)→ s(a�b)

)� s(b)= s(b)∧ s(a�b)= s(a�b).

(4) s(s(a)� s(b))= s(a)� s(b):
Since s(x)≤ x for all x ∈A we have s(s(a)� s(b))≤ s(a)� s(b).
On the other hand, from Proposition 8.5(1), replacing a with s(a) and b with

s(b) we get s2(a)�s2(b)≤ s(s(a)�s(b)), that is, s(a)�s(b)≤ s(s(a)�s(b)).
Thus s(s(a)� s(b))= s(a)� s(b).



220 8 Generalized States on Residuated Structures

(5) s(s(a)→ s(b))= s(a)→ s(b) and s(s(a) � s(b))= s(a) � s(b):
Since A is linearly ordered we consider the cases:

(a) b ≤ a, so s(b)≤ s(a). According to condition (ii) from Proposition 8.1 we
get s(s(a)→ s(b))= s2(a)→ s2(b)= s(a)→ s(b).

(b) a ≤ b, so s(a)≤ s(b). It follows that s(a)→ s(b)= 1, thus

s
(
s(a)→ s(b)

)= s(a)→ s(b)= s(1)= 1.

Similarly, s(s(a) � s(b))= s(a) � s(b).
(6) s(s(a)∨ s(b))= s(a)∨ s(b).

Assume a ≤ b, hence s(a)≤ s(b), so s(a)∨ s(b)= s(b). It follows that

s
(
s(a)∨ s(b)

)= s2(b)= s(b)= s(a)∨ s(b).

Similarly, if b ≤ a, then s(b)≤ s(a), so s(a)∨ s(b)= s(a). Hence

s
(
s(a)∨ s(b)

)= s2(a)= s(a)= s(a)∨ s(b).

We conclude that s is a state operator on A. �

Example 8.5 If A is a bounded R�-monoid, then the identity s := idA is a type I state
satisfying the condition s2(x)= s(x)= x for all x ∈A. Thus s is a state operator on
A (in this case in Theorem 8.1, A does not need to be linearly ordered).

Remark 8.4

(1) It was proved in [114] that any state operator σ on a linearly ordered bounded
R�-monoid satisfies the condition σ 2 = σ .

(2) If A is an arbitrary bounded R�-monoid and σ : A −→ A is an R�-endomor-
phism satisfying the condition σ 2 = σ , then it is called a state-morphism oper-
ator. If σ is a state operator satisfying the condition σ(x � y)= σ(x)� σ(y),
then it is called a weak state-morphism operator and it was proved that any
weak state-morphism operator is a state operator. We can see that condition
s2(x) = s(x) ≤ x for all x ∈ A from Theorem 8.1 can be replaced with condi-
tions s(x�y)= s(x)� s(y) for all x, y ∈A and s2 = s. Indeed, from axiom (4)
of the definition of a state operator we have: s(s(a)� s(b))= s2(a)� s2(b)=
s(a)� s(b).

Proposition 8.8 Let A and L be FLw-algebras and let s :A−→ L be a type I and
type II state. Then for all a, b ∈A the following hold:

(1) s((a → b)→ b)= s((b→ a)→ a);
(2) s((a � b)� b)= s((b � a)� a).

Proof According to Proposition 8.4(5) and Proposition 8.2(v) we have:

(1) s((a → b)→ b)= s(a → b)→ s(b)= s(b→ a)→ s(a)= s((b→ a)→ a).
(2) s((a � b)� b)= s(a � b) � s(b)= s(b � a)� s(a)= s((b � a)� a). �
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Proposition 8.9 Let s :A−→ L be an order-preserving type I state or strong type
II state. Then Ker(s) is a proper and normal filter of A.

Proof One can easily check that 1 ∈Ker(s) and 0 /∈Ker(s).
Consider a, b ∈ A such that a, a → b ∈ Ker(s), that is, s(a) = 1 and s(a →

b)= 1.
Assume that s is an order-preserving type I state.
Applying Proposition 8.1(iii) we get:

1= s(a → b)= s(a)→ s(a ∧ b)= 1→ s(a ∧ b)= s(a ∧ b)≤ s(b).

Thus s(b)= 1, that is, b ∈Ker(s), so Ker(s) is a proper filter of A.
Assume a → b ∈Ker(s), that is, s(a → b)= 1.
From Proposition 8.1(iii) we get s(a)→ s(a ∧ b)= 1, so s(a)≤ s(a ∧ b).
Hence s(a � b)= s(a) � s(a ∧ b)= 1. Thus a � b ∈Ker(s).
Similarly, a � b ∈Ker(s) implies a → b ∈Ker(s).
We conclude that Ker(s) is a normal filter.
Let s be a strong type II state (not necessarily order-preserving).
By Proposition 8.2(v) we have:

s(b)= 1→ s(b)= s(a → b)→ s(b)= s(b→ a)→ s(a)= s(b→ a)→ 1= 1.

Thus b ∈Ker(s), so Ker(s) is a proper filter of A.
Since s(a → b)= s(a � b), it follows that Ker(s) is a normal filter. �

Proposition 8.10 Let s : A −→ L be an order-preserving type I state or strong
type II state. Then in the quotient FLw-algebra (A/Ker(s),∧,∨,�,→,�,0Ker(s),

1Ker(s)) we have:

(1) a/Ker(s) ≤ b/Ker(s) iff s(a → b)= 1 iff s(a � b)= 1 iff s(a)= s(a ∧ b) iff
s(b)= s(a ∨ b);

(2) a/Ker(s)= b/Ker(s) iff s(a)= s(b)= s(a ∧ b)= s(a ∨ b).

Proof We have

a/Ker(s)≤ b/Ker(s) iff

(a → b)/Ker(s)= a/Ker(s)→ b/Ker(s)= 1/Ker(s)=Ker(s) iff

s(a → b)= 1.

Similarly,

a/Ker(s)≤ b/Ker(s) iff

(a � b)/Ker(s)= a/Ker(s) � b/Ker(s)= 1/Ker(s)=Ker(s) iff

s(a � b)= 1.
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(1) Assume that A is an order-preserving type I state.
According to Proposition 8.1(iii) we get:

s(a → b)= 1 iff 1= s(a)→ s(a ∧ b) iff s(a)≤ s(a ∧ b).

Since s(a ∧ b)≤ s(a), it follows that s(a → b)= 1 iff s(a)= s(a ∧ b).
Similarly, s(a � b)= 1 iff s(a)= s(a ∧ b).
On the other hand, by Proposition 8.1(iv) we have:

s(a → b)= 1 iff 1= s(a ∨ b)→ s(b) iff s(a ∨ b)≤ s(b).

But s(b)≤ s(a ∨ b), hence s(a → b)= 1 iff s(b)= s(a ∨ b).
Similarly, s(a � b)= 1 iff s(b)= s(a ∨ b).
Suppose that s is a strong type II state.
By Proposition 8.2(ii) we have s(a → b) = 1 iff s(a) = 1 → s(a ∧ b) =

s(a ∧ b).
By Proposition 8.2(iv) we have s(a → b) = 1 iff s(a ∨ b) = 1 → s(b) =

s(b).
(2) This follows from (1). �

Theorem 8.2 If L satisfies the (pDN) condition and s : A −→ L is an order-
preserving type I state, then A/Ker(s) satisfies the (pDN) condition.

Proof According to Proposition 8.4(2) and taking into consideration that L satisfies
the (pDN) condition, we have:

s
(
a ∨ a−∼

) = s
(
a−∼

)= s(a)−∼ = s(a) and

s
(
a ∨ a∼−

) = s
(
a∼−

)= s(a)∼− = s(a).

Applying Proposition 8.10 we get a−∼/Ker(s)= a∼−/Ker(s)= a/Ker(s).
Thus A/Ker(s) satisfies the (pDN) condition. �

Theorem 8.3 If s : A −→ L is a strong type II state, then A/Ker(s) satisfies the
(pDN) condition.

Proof Applying Proposition 8.6(3) we get:

s
(
a ∨ a−∼

)= s
(
a−∼

)= s(a) and s
(
a ∨ a∼−

)= s
(
a∼−

)= s(a),

hence by Proposition 8.10 it follows that a−∼/Ker(s)= a∼−/Ker(s)= a/Ker(s).
We conclude that A/Ker(s) satisfies the (pDN) condition. �

Theorem 8.4 Any perfect FLw-algebra admits a strong type I and type II state.
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Proof Let A be a perfect FLw-algebra, so A = Rad(A) ∪ Rad(A)∗. Consider the
map s :A−→ L defined by

s(x) :=
{

1 if x ∈ Rad(A)

0 if x ∈ Rad(A)∗.

Obviously, s(1)= 1 and s(0)= 0.
We consider the following cases:

(1) a, b ∈ Rad(A).
Obviously, s(a)= s(b)= 1. Since Rad(A) is a filter of A and b ≤ a → b, it

follows that a → b ∈ Rad(A). Hence s(a → b)= 1. Similarly, s(a � b)= 1.
In the same way, from a ≤ a ∨ b it follows that a ∨ b ∈ Rad(A), so

s(a ∨ b)= 1.
Thus condition (iv) from Proposition 8.1 and condition (iv) from Proposi-

tion 8.2 are verified.
(2) a, b ∈ Rad(A)∗.

In this case, s(a)= s(b)= 0 and we will prove that a → b, a � b ∈ Rad(A).
Indeed, suppose that a → b ∈ Rad(A)∗. Since a ≤ a−∼, it follows that a−∼ →
b ≤ a → b, so a−∼ → b ∈ Rad(A)∗. But a− ≤ a−∼ → b, hence a− ∈ Rad(A)∗,
that is, a ∈ Rad(A), which is a contradiction. It follows that a → b ∈ Rad(A)

and similarly, a � b ∈ Rad(A). Hence s(a → b)= s(a � b)= 1.
Since a ∧ b ≤ a, we have a ∧ b ∈ Rad(A)∗, so s(a ∧ b)= 0.
We can see that condition (iii) from Proposition 8.1 and condition (ii) from

Proposition 8.2 are verified.
(3) a ∈ Rad(A) and b ∈ Rad(A)∗.

Obviously, s(a)= 1 and s(b)= 0.
We show that a → b ∈ Rad(A)∗. Indeed, suppose that a → b ∈ Rad(A).
Because b ≤ b−∼, we have a → b ≤ a → b−∼, so a → b−∼ ∈ Rad(A). This

means that (a� b∼)− ∈ Rad(A), that is, a� b∼ ∈ Rad(A)∗. On the other hand,
since Rad(A) is a filter of A and a, b∼ ∈ Rad(A) we have a � b∼ ∈ Rad(A), a
contradiction. We conclude that a → b ∈ Rad(A)∗, so s(a → b)= 0.

Similarly, s(a � b) = 0. Since a ∧ b ≤ b, we have a ∧ b ∈ Rad(A)∗, so
s(a ∧ b)= 0.

Thus condition (iii) from Proposition 8.1 and condition (ii) from Proposi-
tion 8.2 are verified.

(4) a ∈ Rad(A)∗ and b ∈ Rad(A).
Obviously, s(a)= 0 and s(b)= 1.
Since b ≤ a → b it follows that a → b ∈ Rad(A), so s(a → b)= 1.
Similarly, s(a � b) = 1. From b ≤ a ∨ b we get a ∨ b ∈ Rad(A), so s(a ∨

b)= 1.
Thus condition (iv) from Proposition 8.1 and condition (iv) from Proposi-

tion 8.2 are verified.
We conclude that s is a type I and type II state.
Since we have proved that s(a → b) = s(a � b) for all the above cases, it

follows that s is strong. �
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Remark 8.5 The generalized states look similar to internal states which have been
defined and investigated for MV-algebras ([119]), BL-algebras ([72]), bounded R�-
monoids ([114]) and bounded pseudo-hoops ([64]). It has been proved that if A is
one of these structures and σ : A −→ A is an internal state on A, then σ(A) is a
subalgebra of A.

This property does not hold for FLw-algebras. Indeed, consider the FLw-algebra
A and the type I and type II state s4 from Remark 8.1. We can see that s4(b)∨s4(c)=
b ∨ c= a /∈ s4(A)= {0, b, c,1}, hence s4(A) is not closed under ∨.

Proposition 8.11 Let A be a linearly ordered FLw-algebra and s be an order-
preserving type I state or a type II state on A. Then s(A) is linearly ordered.

Proof According to Proposition 8.6(a), any type II state is order-preserving.
Let x, y ∈ s(A), thus there exist a, b ∈A such that x = s(a) and y = s(b). Since

A is linearly ordered, we have a ≤ b or b ≤ a. Taking into consideration that s is
order-preserving, it follows that x = s(a)≤ s(b)= y or y = s(b)≤ s(a)= x. Hence
s(A) is linearly ordered. �

8.2 Generalized State-Morphisms

We introduce the notion of generalized state-morphism and we prove that any gen-
eralized state morphism is an order-preserving type I state. We also prove that, in
certain particular conditions, an order-preserving type I state is a generalized state-
morphism. The notion of a strong perfect FLw-algebra is introduced, and it is proved
that any strong perfect FLw-algebra admits a generalized state-morphism.

Throughout this section, A and L are FLw-algebras.
Consider the arbitrary function s :A−→ L and the properties:

(sm0) s(0)= 0 and s(1)= 1;
(sm1) s(a ∨ b)= s(a)∨ s(b) for all a, b ∈A;
(sm2) s(a ∧ b)= s(a)∧ s(b) for all a, b ∈A;
(sm3) s(a → b)= s(a)→ s(b) and s(a � b)= s(a) � s(b) for all a, b ∈A;
(sm4) s(a � b)= s(a)� s(b) for all a, b ∈A.

Lemma 8.1 If s :A−→ L is an order-preserving type I state, then:

(1) (sm1) implies (sm3);
(2) (sm2) implies (sm3).

Proof

(1) Applying Proposition 8.1(iv) we have:

s(a → b) = s(a ∨ b)→ s(b)= (
s(a)∨ s(b)

)→ s(b)

= (
s(a)→ s(b)

)∧ (
s(b)→ s(b)

)= s(a)→ s(b) and



8.2 Generalized State-Morphisms 225

s(a � b) = s(a ∨ b)� s(b)= (
s(a)∨ s(b)

)
� s(b)

= (
s(a) � s(b)

)∧ (
s(b) � s(b)

)= s(a) � s(b).

(2) Applying Proposition 8.1(iii) we get:

s(a → b) = s(a)→ s(a ∧ b)= s(a)→ (
s(a)∧ s(b)

)

= (
s(a)→ s(a)

)∧ (
s(a)→ s(b)

)= s(a)→ s(b) and

s(a � b) = s(a) � s(a ∧ b)= s(a) �
(
s(a)∧ s(b)

)

= (
s(a) � s(a)

)∧ (
s(a) � s(b)

)= s(a) � s(b). �

Lemma 8.2 Let L be an FLw-algebra satisfying the (pDN) condition and s :A−→
L be an order-preserving type I state. Then (sm2) implies (sm1).

Proof According to Proposition 8.4(1) and (psbck-c41) we have:

s(a ∨ b)− = s
(
(a ∨ b)−

)= s
(
a− ∧ b−

)= s
(
a−

)∧ s
(
b−

)

= s(a)− ∧ s(b)− = (
s(a)∨ s(b)

)−
.

Hence s(a ∨ b)−∼ = (s(a)∨ s(b))−∼.
Since L satisfies the (pDN) condition, it follows that s(a ∨ b)= s(a)∨ s(b). �

Lemma 8.3 Let s :A−→ L be an order-preserving type I state. Then:

(1) (sm3) implies s(a� b)− = (s(a)� s(b))− and s(a� b)∼ = (s(a)� s(b))∼ for
all a, b ∈A;

(2) If L satisfies the (pDN) condition, then (sm3) implies (sm4).

Proof

(1) Applying Proposition 8.4(1) and (psbck-c37) we have:

s(a � b)− = s
(
(a � b)−

)= s
(
a → b−

)= s(a)→ s
(
b−

)= s(a)→ s(b)−

= (
s(a)� s(b)

)−
.

Similarly,

s(a � b)∼ = s
(
(a � b)∼

)= s
(
b � a∼

)= s(b) � s
(
a∼

)= s(b) � s(a)∼

= (
s(a)� s(b)

)∼
.

(2) This follows by (1) and the (pDN) condition. �

Definition 8.2 Let A and L be FLw-algebras. A function s :A−→ L is a general-
ized state-morphism if it satisfies conditions (sm0)–(sm3).
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Example 8.6 Let A be the FLw-algebra from Example 4.4 and L an arbitrary
FLw-algebra. Consider the function s : A −→ L, s(0) := 0, s(a) = s(b) = s(c) =
s(1) := 1. One can easily check that s is a generalized state-morphism.

Proposition 8.12 Any generalized state-morphism is an order-preserving type I
state.

Proof According to Proposition 8.1(ii), a generalized state-morphism is a type I
state. By (sm1)–(sm3) the generalized state-morphism is a lattice morphism, so it is
an order-preserving function. �

Proposition 8.13 Let s :A−→ L be an order-preserving type I state. If A/Ker(s)
is totally ordered, then s is a generalized state-morphism.

Proof We check conditions (sm0)–(sm3).

(sm0) This follows from the definition of a type I state.
(sm1)–(sm2) Let a, b ∈ A. Since A/Ker(s) is totally ordered, it follows that

a/Ker(s)≤ b/Ker(s) or b/Ker(s)≤ a/Ker(s).
Suppose a/Ker(s) ≤ b/Ker(s), thus, by Proposition 8.10, s(a → b) = 1 and
s(a � b)= 1. By Proposition 8.1(iii), (iv) we have:

1= s(a → b)= s(a)→ s(a ∧ b)= s(a ∨ b)→ s(b).

Hence s(a)≤ s(a ∧ b)≤ s(a ∨ b)≤ s(b), so s(a ∨ b)= s(a)∨ s(b) and s(a ∧
b)= s(a)∧ s(b).

(sm3) By Lemma 8.1, (sm1) implies (sm3).
Thus s is a generalized state-morphism. �

Proposition 8.14 Let s :A−→ L be a generalized state-morphism and L be totally
ordered. Then A/Ker(s) is totally ordered.

Proof Let a, b ∈A. Since L is totally ordered, it follows that s(a)≤ s(b) or s(b)≤
s(a), that is, s(a → b)= s(a)→ s(b)= 1 or s(b→ a)= s(b)→ s(a)= 1.

Hence a/Ker(s)≤ b/Ker(s) or b/Ker(s)≤ a/Ker(s).
Thus A/Ker(s) is totally ordered. �

Proposition 8.15 Let s : A −→ L be an order-preserving type I state and L be
totally ordered. Then s is a generalized state-morphism iff A/Ker(s) is totally or-
dered.

Proof This follows from Propositions 8.13 and 8.14. �

Definition 8.3 A perfect FLw-algebra is said to be strong perfect if Rad(A)∗ is
closed under ∨.
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Theorem 8.5 Any strong perfect FLw-algebra admits a generalized state-
morphism.

Proof Let A be a strong perfect FLw-algebra, so A= Rad(A)∪Rad(A)∗.
Consider the map s :A→ L defined by

s(x) :=
{

1 if x ∈ Rad(A)

0 if x ∈ Rad(A)∗.

Obviously, s(1)= 1 and s(0)= 0, so condition (sm0) is verified.
Similarly as in Theorem 8.4 we will consider the following cases:

(1) a, b ∈ Rad(A).
Since a, b, a ∧ b, a ∨ b, a → b, a � b ∈ Rad(A), we have

s(a)= s(b)= s(a ∧ b)= s(a ∨ b)= s(a → b)= s(a � b)= 1

and the conditions (sm1)–(sm3) are verified.
(2) a, b ∈ Rad(A)∗.

It follows that a, b, a ∧ b ∈ Rad(A)∗. Since Rad(A)∗ is closed under ∨, we
also have a ∨ b ∈ Rad(A)∗, so s(a)= s(b)= s(a ∧ b)= s(a ∨ b)= 0.

We proved in Theorem 8.4 that a → b, a � b ∈ Rad(A), thus s(a → b) =
s(a � b)= 1.

It is easy to see that conditions (sm1)–(sm3) are satisfied.
(3) a ∈ Rad(A), b ∈ Rad(A)∗.

Obviously, s(a)= 1 and s(b)= 0. From a ∧ b ≤ b ∈ Rad(A)∗ it follows that
a ∧ b ∈ Rad(A)∗, so s(a ∧ b)= 0. Similarly, since a ≤ a ∨ b and a ∈ Rad(A),
we get a ∨ b ∈ Rad(A), thus s(a ∨ b) = 1. It was proved in Theorem 8.4 that
a → b, a � b ∈ Rad(A)∗, hence s(a → b)= s(a � b)= 0.

Conditions (sm1)–(sm3) are again satisfied.
(4) a ∈ Rad(A)∗, b ∈ Rad(A).

Obviously, s(a)= 0 and s(b)= 1. From a ∧ b ≤ a ∈ Rad(A)∗ it follows that
a ∧ b ∈ Rad(A)∗, so s(a ∧ b)= 0. Similarly, since b ≤ a ∨ b and b ∈ Rad(A),
we get a ∨ b ∈ Rad(A), thus s(a ∨ b) = 1. It was proved in Theorem 8.4 that
a → b, a � b ∈ Rad(A), hence s(a → b)= s(a � b)= 1.

In this case conditions (sm1)–(sm3) are also satisfied. Thus s is a generalized
state-morphism on A. �

Remark 8.6 The FLw-algebra A from Example 4.4 is perfect with Rad(A) =
{a, b, c,1} and Rad(A)∗ = {0}. Obviously, Rad(A)∗ is closed under ∨, so A is a
strong perfect FLw-algebra. Let L be an arbitrary FLw-algebra. According to The-
orem 8.5 the function s :A→ L defined by

s(x) :=
{

1 if x ∈ {a, b, c,1}
0 if x = 0
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is a generalized state-morphism on A.
As we can see, it is the generalized state-morphism from Example 8.6.

8.3 Generalized Riečan States

We introduce the notion of a generalized Riečan state and we show that any order-
preserving type I state is a generalized Riečan state. Special conditions are given
which force the two notions to coincide. Some of the main results are proved using
the notion of the Glivenko property defined for the non-commutative case.

In this section A and L will be considered to be good FLw-algebras.
We recall that if a, b ∈ A, then a is orthogonal to b, denoted by a ⊥ b, if

b−∼ ≤ a−.

Definition 8.4 The function m : A −→ L is said to be orthogonal-preserving if
m(a)⊥m(b) whenever a ⊥ b.

Definition 8.5 An orthogonal-preserving function m :A−→ L is called a general-
ized Riečan state iff the following conditions are satisfied for all a, b ∈A:

(GR1) m(1)= 1;
(GR2) if a ⊥ b, then m(a ⊕ b)=m(a)⊕m(b).

Example 8.7 Consider again the FLw-algebra A from Example 4.4.
One can easily check that x−∼ = x∼− for any x ∈A, so A is a good FLw-algebra.
We claim that the function m : A→ A defined by: m(0) := 0, m(a) = m(b) =

m(c)=m(1) := 1 is a generalized Riečan state on A.
Indeed, the elements x, y ∈A with x ⊥ y are those given in the table below:

x y x− y−∼ x ⊕ y m(x ⊕ y) m(x)⊕m(y)

0 0 1 0 0 0 0
0 a 1 1 1 1 1
0 b 1 1 1 1 1
0 c 1 1 1 1 1
0 1 1 1 1 1 1
a 0 0 0 1 1 1
b 0 0 0 1 1 1
c 0 0 0 1 1 1
1 0 0 0 1 1 1

One can easily check that m is a generalized Riečan state.

Proposition 8.16 Let m : A −→ L be a generalized Riečan state. Then, for all
a, b ∈A the following hold:

(1) m(a)⊕m(a−)=m(a∼)⊕m(a)= 1;
(2) m(a−)−∼ =m(a)− and m(a∼)∼− =m(a)∼;
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(3) if L satisfies the (pDN) condition, then m(a−)=m(a)−, m(a∼)=m(a)∼ and
m(a−∼)=m(a);

(4) m(0)= 0;
(5) if b ≤ a, then m(a)− ≤m(b)− and m(a)∼ ≤m(b)∼;
(6) if L satisfies the (pDN) condition, then b ≤ a implies m(b)≤m(a).

Proof

(1) Since a ⊥ a− and a∼ ⊥ a, applying (psbck-c36) we get:

m(a)⊕m
(
a−

) = m
(
a⊕ a−

)=m
((

a−∼ � a∼
)−)

= m
((

a∼− � a∼
)−)=m

(
0−

)=m(1)= 1,

m
(
a∼

)⊕m(a) = m
(
a∼ ⊕ a

)=m
((

a− � a∼−
)∼)

= m
((

a− � a∼−
)∼)=m

(
0∼

)=m(1)= 1.

(2) From a ⊥ a− it follows that m(a)⊥m(a−), so m(a−)−∼ ≤m(a)−.
On the other hand,

1=m(1)=m
(
a ⊕ a−

)=m(a)⊕m
(
a−

)=m(a)− �m
(
a−

)−∼
,

hence m(a)− ≤m(a−)−∼.
Thus m(a−)−∼ =m(a)− and similarly, m(a∼)∼− =m(a)∼.

(3) m(a−)=m(a)− and m(a∼)=m(a)∼ follow from (2).
The identity m(a−∼)=m(a) follows from m(a−)=m(a)− replacing a with

a∼ and applying the (pDN) condition for L.
(4) Putting a = 0 in (2) we get 1−∼ =m(0)−, so m(0)− = 1, that is, m(0)→ 0= 1.

It follows that m(0)≤ 0, thus m(0)= 0.
(5) From Lemma 1.6(6), b ≤ a implies b⊥ a−, so m(b)⊥m(a−).

Applying (2) we get m(a)− = m(a−)−∼ ≤ m(b)−. Similarly, m(a)∼ ≤
m(b)∼.

(6) This follows by (5). �

Theorem 8.6 Any order-preserving type I state is a generalized Riečan state.

Proof Let s : A −→ L be an order-preserving type I state and a, b ∈ A such that
a ⊥ b. It follows that a−∼ ≤ b∼.

Since s is order-preserving, we get s(a−∼)≤ s(b∼).
Applying Proposition 8.4(1), (2) we get s(a)−∼ ≤ s(b)∼.
Hence s(a)⊥ s(b), thus s is orthogonal-preserving.
By Proposition 8.1(ii) we have:

s(a ⊕ b)= s
(
b∼ → a∼−

)= s
(
b∼

)→ s
(
a∼−

)= s(b)∼ → s(a)∼− = s(a)⊕ s(b).

We conclude that s is a generalized Riečan state. �
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Remark 8.7 There exist generalized Riečan states which are not type I or type II
states. Indeed, let A be the FLw-algebra from Example 4.1. The generalized Riečan
states m :A−→A are the following:

x

0 a b c 1

m1(x) 0 a b c 1
m2(x) 0 a b 1 1
m3(x) 0 b b c 1
m4(x) 0 b b 1 1

m1, m2, m3, m4 are generalized Riečan states on A, but m1 is the only type I
state.

Theorem 8.7 If A satisfies the (pDN) condition and m : A−→ L is a generalized
Riečan state such that for all a ∈A, m(a−)=m(a)− and m(a∼)=m(a)∼, then m

is an order-preserving type I state.

Proof From m(a−)=m(a)− and m(a∼)=m(a)∼ we get m(a−∼)=m(a)−∼. Let
a, b ∈A with b ≤ a, so b−∼ ≤ a−∼.

It follows that b⊥ a−, so m(b)⊥m(a−), that is, m(b)⊥m(a)−.
Similarly we have a∼ ⊥ b, hence m(a)∼ ⊥m(b).
Applying the (pDN) condition of A we get:

b⊕ a− = a−∼ → b∼− = a → b,

a∼ ⊕ b = a∼− � b−∼ = a � b.

It follows that:

m(a → b) = m
(
b⊕ a−

)=m(b)⊕m
(
a−

)=m(b)⊕m(a)−

= m(a)−∼ →m(b)−∼ =m
(
a−∼

)→m
(
b−∼

)=m(a)→m(b);
m(a � b) = m

(
a∼ ⊕ b

)=m
(
a∼

)⊕m(b)=m(a)∼ ⊕m(b)

= m(a)−∼ � m(b)−∼ =m
(
a−∼

)
� m

(
b−∼

)=m(a) � m(b).

By Proposition 8.1(ii), m is a type I state.
From m(b) ⊥ m(a−) it follows that m(b)−∼ ≤ m(a)−∼, that is, m(b−∼) ≤

m(a−∼).
Thus m(b)≤m(a), so m is order-preserving. �

Corollary 8.1 If A and L satisfy the (pDN) condition and m :A−→ L is a gener-
alized Riečan state, then m is an order-preserving type I state.

Proof This follows from Theorem 8.7 and Proposition 8.16(3). �
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Proposition 8.17 If A and L are good FLw-algebras and m : Reg(A) −→ L is a
generalized Riečan state on Reg(A), then M :A−→ L defined by:

M(x) :=m
(
x−∼

)

is a generalized Riečan state on A such that M|Reg(A) =m.

Proof Obviously, M(1)= 1.
Consider a, b ∈A such that a ⊥ b, that is, a−∼ ≤ b∼.
It follows that a−∼−∼ ≤ b−∼∼. Hence a−∼ ⊥ b−∼.
Thus a⊕ b exists iff a−∼ ⊕ b−∼ exists.
Since, by Proposition 1.24(5), (a⊕b)−∼ = a⊕b, it follows that a⊕b ∈ Reg(A).

Moreover, a−∼ ⊕ b−∼ = (b−∼∼ � a−∼∼)− = (b∼ � a∼)− = a⊕ b.
Hence M(a ⊕ b)=m(a−∼ ⊕ b−∼)=m(a−∼)⊕m(b−∼)=M(a)⊕M(b).
We conclude that M is a generalized Riečan state on A. �

Example 8.8 Let A be the FLw-algebra from Example 4.1.
Then Reg(A)= {0, b,1} and m : Reg(A)−→A is a generalized Riečan state on

Reg(A). One can easily check that M :A−→A defined by M(x) :=m(x−∼) is the
generalized Riečan state m4 on A from Remark 8.7.

Theorem 8.8 If A has the Glivenko property and L satisfies the (pDN) condition,
then any generalized Riečan state m :A−→ L is an order-preserving type I state.

Proof Let m :A−→ L be a generalized Riečan state and a, b ∈A such that b ≤ a.
By Lemma 1.6(6) it follows that b⊥ a− and a∼ ⊥ b.

Taking into consideration the definition of the operation ⊕ and (psbck-c19) we
have: b⊕ a− = a−∼ → b∼− = a → b−∼ and a∼ ⊕ b= a∼− � b−∼ = a � b−∼.

Hence, by the Glivenko property we get:

m(a → b) = m(a → b)−∼ =m
(
(a → b)−∼

)=m
(
a → b−∼

)=m
(
b⊕ a−

)

= m(b)⊕m
(
a−

)=m(a)−∼ →m(b)∼− =m(a)→m(b),

m(a � b) = m(a � b)−∼ =m
(
(a � b)−∼

)=m
(
a � b−∼

)=m
(
a∼ ⊕ b

)

= m
(
a∼

)⊕m(b)=m(a)−∼ � m(b)∼− =m(a) � m(b)

(since L satisfies the (pDN) condition).
According to Proposition 8.1(ii) and Proposition 8.16(6), m is an order-

preserving type I state. �

Corollary 8.2 If A is a good R�-monoid and L satisfies the (pDN) condition, then
any generalized Riečan state m :A−→ L is an order-preserving type I state.

Proof This follows from Theorem 8.8, taking into consideration that any good R�-
monoid satisfies the Glivenko property (Remark 4.16). �
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Corollary 8.3 If A has the Glivenko property, L satisfies the (pDN) condition and
m :A−→ L is a generalized Riečan state on A, then Ker(m) is a proper and normal
filter of A.

Proof This follows from Theorem 8.8 and Proposition 8.9. �

Lemma 8.4 If A has the Glivenko property, L satisfies the (pDN) condition and m :
A−→ L is a generalized Riečan state on A, then a ≡Ker(m) b implies m(a)=m(b).

Proof We know that a ≡Ker(m) b is equivalent to m(a → b)=m(b→ a)= 1.
From m(a → b)= 1 and Proposition 8.1(iii) we get m(a)≤m(a ∧ b).
Since a ∧ b ≤ a, according to Proposition 8.16 we have m(a ∧ b)≤m(a).
Thus m(a) = m(a ∧ b). Similarly, from m(b → a) = 1 and Proposition 8.1(iii)

we get m(b)=m(a ∧ b).
Hence m(a)=m(b). �

Theorem 8.9 If A has the Glivenko property, L satisfies the (pDN) condition and
m is a generalized Riečan state on A, then the function m̂ :A/Ker(m)→ L defined
by m̂(x/Ker(m)) :=m(x) is a generalized Riečan state on A/Ker(m).

Proof First we prove that m̂ is well-defined.
Indeed, if a/Ker(m) = b/Ker(m), then by Proposition 8.10(2) it follows that

m(a ∧ b) = m(a ∨ b). By Theorem 8.8, m is an order-preserving type I state and
applying Proposition 8.1(i) it follows that m(d1(a, b))= 1 and m(d2(a, b))= 1.

Hence d1(a, b) ∈Ker(m) and d2(a, b) ∈Ker(m). Thus a ≡Ker(m) b.
We prove now that m̂ is a generalized Riečan state on A/Ker(m).
We remark that if a/Ker(m) ≤ b/Ker(m), then there is an element a1 ∈

a/Ker(m) such that a1 ≤ b. Indeed, it suffices to take a1 = a ∧ b.
Assume that a/Ker(m)⊥ b/Ker(m), that is, (a/Ker(m))−∼ ≤ (b/Ker(m))∼.
It follows that a−∼/Ker(m)≤ b∼/Ker(m).
Take a1 ∈ a−∼/Ker(m) such that a−∼1 ≤ b∼, that is, a1 ⊥ b and a1 ⊥ b−∼.
Therefore, applying Lemma 8.4, Proposition 1.24(5) and Proposition 8.16(3) we

get:

m̂
(
a/Ker(m)⊕ b/Ker(m)

) = m̂
(((

b/Ker(m)
)∼ � (

a/Ker(m)
)∼)−)

= m̂
((

b∼ � a∼
)−

/Ker(m)
)=m

((
b∼ � a∼

)−)

= m(a ⊕ b)=m
(
a−∼ ⊕ b−∼

)

= m̂
((

a/Ker(m)
)−∼ ⊕ (

b/Ker(m)
)−∼)

= m̂
(
a1/Ker(m)⊕ (

b/Ker(m)
)−∼)

= m
(
a1 ⊕ b−∼

)=m(a1)⊕m
(
b−∼

)=m(a)⊕m(b)

= m̂
(
a/Ker(m)

)⊕ m̂
(
b/Ker(m)

)
. �
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8.4 Generalized Local States on Perfect Pseudo-MTL Algebras

In this section we introduce the notion of a generalized local state on a perfect
pseudo-MTL algebra A and we prove an extension theorem for this type of state.
More precisely we prove that, if A is relatively free of zero divisors, then any gen-
eralized local state on A can be extended to a generalized Riečan state on A.

In this section A and L will be perfect pseudo-MTL algebras.

Definition 8.6 A generalized local state on A is an orthogonal-preserving function
s : Rad(A)∗ −→ L satisfying the conditions:

(GLS1) s(x ⊕ y)= s(x)⊕ s(y) for all x, y ∈ Rad(A)∗;
(GLS2) s(0)= 0.

Remark 8.8 For all x, y ∈ Rad(A)∗ we have x ⊕ y = (y∼ � x∼)−.
Since x∼, y∼ ∈ Rad(A) and Rad(A) is a filter of A, it follows that y∼ � x∼ ∈

Rad(A), that is, (y∼ � x∼)− ∈ Rad(A)∗. Thus the function s is well defined.

Example 8.9

(1) The function s : Rad(A)∗ −→ L, s(x) := 0 for all x ∈ Rad(A)∗ is a generalized
local state on the perfect pseudo-MTL algebra A.

(2) If m is a generalized Riečan state on the perfect pseudo-MTL algebra A, then
s :=m|Rad(A)∗ is a generalized local state on A.

Proposition 8.18 If s is a generalized local state on A, then the following hold for
all x, y ∈ Rad(A)∗:

(1) s(x−∼)= s(x)−∼;
(2) s(x)⊕ s(y−∼)= s(x−∼)⊕ s(y);
(3) s(x)≤ s((x∼ � x∼)−).

Proof

(1) Since x ⊥ 0, we have x ⊕ 0= x−∼.
On the other hand, s(x ⊕ 0) = s(x) ⊕ s(0) = s(x) ⊕ 0, thus s(x−∼) =

s(x)−∼.
(2) Since x, x−∼, y−∼ ∈ Rad(A)∗, we have x ⊥ y−∼ and x−∼ ⊥ y.

Hence s(x)⊕ s(y−∼)= s(x⊕ y−∼)= s((y−∼∼ � x∼)−)= s((y∼ � x∼)−)

and s(x−∼)⊕ s(y)= s(x−∼ ⊕ y)= s((y∼ � x−∼∼)−)= s((y∼ � x∼)−).
It follows that s(x)⊕ s(y−∼)= s(x−∼)⊕ s(y).

(3) Replacing y with x in the identity s(x) ⊕ s(y−∼) = s((y∼ � x∼)−), we get
s(x)⊕ s(x−∼)= s((x∼ � x∼)−).

Since s(x)≤ s(x)⊕ s(x−∼), we have s(x)≤ s((x∼ � x∼)−). �

Theorem 8.10 (Extension theorem) Let A be a perfect pseudo-MTL algebra which
is relatively free of zero divisors. Then every generalized local state on A can be
extended to a generalized Riečan state on A.
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Proof Let s : Rad(A)∗ −→ L be a generalized local state on A and the function
m :A−→ L defined by

m(x) :=
{

1 if x ∈ Rad(A)

s(x) if x ∈ Rad(A)∗.

We prove that m is a generalized Riečan state on A. More precisely, since it is
obvious that m(1)= 1, we must prove that for all x, y ∈A such that x ⊥ y, we have
m(x ⊕ y)=m(x)⊕m(y).

Consider the following cases:

(1) x, y ∈ Rad(A). According to Lemma 5.4, x �⊥ y.
(2) x ∈ Rad(A) and y ∈ Rad(A)∗. Applying Lemma 5.3 we get x ⊥ y iff y = 0. We

have m(x⊕ y)=m(x⊕ 0)=m(x−∼)= 1 (since x−∼ ∈ Rad(A)). On the other
hand, m(x)⊕m(y)=m(x)⊕m(0)= 1⊕ s(0)= 1⊕ 0= 1.

Thus m(x ⊕ y)=m(x)⊕m(y).
(3) x ∈ Rad(A)∗ and y ∈ Rad(A). Applying Lemma 5.3 we get x ⊥ y iff x = 0. We

have:

m(x ⊕ y) = m(0⊕ y)=m
(
y−∼

)= 1 and

m(x)⊕m(y) = m(0)⊕m(y)= s(0)⊕ 1= 0⊕ 1= 1.

Thus m(x ⊕ y)=m(x)⊕m(y).
(4) x, y ∈ Rad(A)∗. By Proposition 5.13 it follows that x ⊥ y and by the definition

of a generalized local state we have

m(x ⊕ y)= s(x ⊕ y)= s(x)⊕ s(y)=m(x)⊕m(y).

Thus m is a generalized Riečan state on A. �

We call m the extension of the generalized local state s.

Corollary 8.4 Let A be a perfect pseudo-MTL algebra relatively free of zero di-
visors. If A and L satisfy the (pDN) condition, then any generalized local state
s : Rad(A)∗ −→ L can be extended to an order-preserving type I state.

Proof This follows by applying Theorem 8.10 and Corollary 8.1. �

Corollary 8.5 Let A be a perfect pseudo-MTL algebra relatively free of zero divi-
sors. If A has the Glivenko property and L satisfies the (pDN) condition, then any
generalized local state s : Rad(A)∗ −→ L can be extended to an order-preserving
type I state.

Proof This follows from Theorems 8.10 and 8.8. �

Example 8.10 If s is the generalized local state from Example 8.9(1), then the func-
tion m : A −→ L defined by m(x) := 1 for all x ∈ Rad(A) and m(x) := 0 for all
x ∈ Rad(A)∗ is an extension of s.
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8.5 Extension of Generalized States

In this section we discuss possible generalizations of the Horn-Tarski extension the-
orem ([166]) for the case of generalized states. Such extension theorems will be
useful when proving certain completeness theorems of Gaifman type ([123]) in the
context of the theory of probabilistic models for fuzzy logics.

We recall that an FLw-algebra is complete if it is complete as a lattice, that is, all
its subsets have both a supremum (join) and an infimum (meet).

Definition 8.7 Let A and L be FLw-algebras, L complete. Let B be an FLw-
subalgebra of A and s : B −→ L be a generalized Riečan state (or type I state,
or type II state). Consider the functions s∗ :A→ L and s∗ :A−→ L defined by:

s∗(a) := sup
{
s(x) | x ∈ B,x ≤ a

}
for any a ∈A;

s∗(a) := inf
{
s(x) | x ∈ B,a ≤ x

}
for any a ∈A.

s∗ is called the interior state and s∗ the exterior state of s.

Lemma 8.5 For any a ∈A, s∗(a)≤ s∗(a).

Definition 8.8 The pair (A,L) satisfies the extension property of states (EP) if for
any FLw-subalgebra B of A and for any generalized Riečan state s : B → L there
exists a generalized Riečan state s′ :A−→ L with s′|B = s.

Definition 8.9 The pair (A,L) satisfies the Horn-Tarski property (HT) if for any
FLw-subalgebra B of A, for any generalized Riečan state s : B −→ L, and for any
a ∈A, r ∈ [0,1], the following are equivalent:

(i) s can be extended to a generalized Riečan state s′ :A→ L such that s′(a)= r ;
(ii) s∗(a)≤ r ≤ s∗(a).

According to Lemma 8.5, (HT) implies (EP).

Remark 8.9 According to the Horn-Tarski theorem ([166]), any pair (A, [0,1]Ł)

where A is a Boolean algebra and [0,1]Ł is the standard MV-algebra, satisfies prop-
erty (HT).

Remark 8.10 According to Kroupa’s theorem ([202]), any pair (A, [0,1]Ł), where
A is an MV-algebra, satisfies property (EP).

Theorem 8.11 Let A and L be good FLw-algebras with L complete satisfying the
(pDN) condition. If (Reg(A),L) has property (HT) (or (EP)), then (A,L) has prop-
erty (HT) (or (EP), respectively).

Proof Assume that (Reg(A),L) has property (HT). Let B be an FLw-subalgebra of
A, s : B → L be a generalized Riečan state, a ∈A and r ∈ [0,1]. We will show the
equivalence of conditions (i), (ii) in Definition 8.9.
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(i) ⇒ (ii) Assume that there exists a generalized Riečan state s′ : A → L which
extends s and s′(a) = r . For any x, y ∈ A with x ≤ a ≤ y, we have s′(x) ≤
s′(a)≤ s′(y), so s(x)≤ r ≤ s(y). It follows that s∗(a)≤ r ≤ s∗(a).

(ii) ⇒ (i) Assume s∗(a) ≤ r ≤ s∗(a). Consider Reg(B) and Reg(A) and define
m = s|Reg(B). Reg(B) is an FLw-subalgebra of Reg(A) and m is a generalized
Riečan state. Consider the interior state m∗ : Reg(A)→ L and the exterior state
m∗ : Reg(A)→ L associated with m. For any x ∈ Reg(A):

m∗(x) = sup
{
m(u) | u ∈ Reg(B),u≤ x

}≤ s∗(x);
m∗(x) = inf

{
m(v) | v ∈ Reg(B), x ≤ v

}≥ s∗(x).

Consequently, for any x ∈ Reg(A) we have m∗(x) ≤ s∗(x) ≤ r ≤ s∗(x) ≤
m∗(x). Consider a−∼ ∈ Reg(A). As (Reg(A),L) has property (HT), there ex-
ists a generalized Riečan state m′ : Reg(A) → L such that m′|Reg(B) = m and
m′(a−∼) = r . Consider the function s′ : A −→ L defined by s′(x) = m′(x−∼)

for any x ∈ A. According to Proposition 8.17, s′ is a generalized Riečan state
on A. For any x ∈A, according to Proposition 8.16 we have: s′(x)=m′(x−∼)=
m(x−∼)= s(x−∼)= s(x). Also, s′(a)=m′(a−∼)= r .
The other assertion can be proved similarly. �

Corollary 8.6 Let A be a Heyting algebra. Then (A, [0,1]Ł) has property (HT).

Proof Reg(A) is a Boolean algebra (according to Glivenko’s Theorem) and
(Reg(A), [0,1]Ł) has property (HT) (according to Remark 8.9). �

Corollary 8.7 Let A be a BL-algebra. Then (A, [0,1]Ł) satisfies (EP).

Proof Reg(A) is an MV-algebra and (Reg(A), [0,1]Ł) satisfies (EP) (according to
Remark 8.10). �

8.6 Logical Aspects of Generalized States

The non-commutative propositional logics psMTL and psMTLr were studied by Há-
jek in [160] and [161]. The language of both logical systems is based on the binary
connectors ∧, ∨, &, →, � and the truth constant ⊥. We will consider the axiomati-
zation of psMTL and psMTLr from [160, 161] and [162]. In [197] the standard com-
pleteness theorem of psMTLr is proved. The algebraic structures of psMTL are the
psMTL-algebras, and those of psMTLr are the representable psMTL-algebras, char-
acterized by Kühr’s axioms [205]. The predicate calculi psMTL∀ and psMTLr∀,
associated with the propositional systems psMTL and psMTLr, were introduced in
[162] (see also [90]). The standard completeness theorem of psMTLr∀ was proved
in [90].

Let C be a schematic extension of psMTLr (in the sense of [118]). The predicate
calculus C∀ associated with C preserves the axioms of C and, moreover, has the
following axioms for the quantifiers:
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(Ax.1) ∀xϕ(x)→ ϕ(t) where the term t can be substituted for x in ϕ(x);
(Ax.2) ϕ(t)→∃xϕ(x) where the term t can be substituted for x in ϕ(x);
(Ax.3) ∀x(ϕ →ψ)→ (ϕ →∀xψ) (x is not free in ϕ);
(Ax.4) ∀x(ϕ � ψ)� (ϕ � ∀xψ) (x is not free in ψ );
(Ax.5) ∀x(ϕ →ψ)→ (∃xϕ →ψ) (x is not free in ψ );
(Ax.6) ∀x(ϕ � ψ)� (∃xϕ � ψ) (x is not free in ψ);
(Ax.7) ∀x(ϕ ∨ ν)→ (∀xϕ ∨ ν) (x is not free in ν).

The deduction rules of C∀ are those of C plus the generalization:

ϕ

∀xϕ
(G).

We fix a schematic extension C of psMTLr. We denote by E the set of the sen-
tences of C∀ and by E/∼= {ϕ̂|ϕ ∈ E} the Lindenbaum-Tarski algebra of C∀. E/∼
is a psMTLr-algebra which satisfies the algebraic form of C∀.

In the following we present a starting point for the development of a theory of
probabilistic models for the non-commutative fuzzy logics described above.

Let D ⊆E such that:

• D contains all the formal theorems of C∀;
• D is closed under the connectors ∨, ∧, &, →, �;
• ⊥∈D.

Then D/∼= {ϕ̂|ϕ ∈D} is a subalgebra of E/∼.
We fix an FLw-algebra L.

Definition 8.10 A function μ :D → L is called a logical probability of type I on D

if for any ϕ,ψ ∈D:

(P1) if  ϕ then μ(ϕ)= 1;
(P2) μ(ϕ →ψ)→ (μ(ϕ)→ μ(ψ))= 1;
(P3) μ(ϕ � ψ)� (μ(ϕ) � μ(ψ))= 1;
(P4) μ(ϕ →ψ)= μ(ϕ)→ μ(ϕ ∧ψ);
(P5) μ(ϕ � ψ)= μ(ϕ) � μ(ϕ ∧ψ).

Similarly, we define the logical probabilities of type II and of Riečan type.
In the sequel we will only use logical probabilities of type I which we will simply

call logical probabilities.

Lemma 8.6 Let μ :D→ L be a logical probability and ϕ,ψ ∈D. Then:

(i) if  ϕ →ψ then μ(ϕ)≤ μ(ψ);
(ii) if  ϕ � ψ then μ(ϕ)≤ μ(ψ);

(iii) if  ϕ ↔ψ then μ(ϕ)= μ(ψ);
(iv) if  ϕ � ψ then μ(ϕ)= μ(ψ).

According to Lemma 8.6, we can define a function μ̃ :D/∼−→ L by μ̃(ϕ̂) :=
μ(ϕ) for any ϕ ∈ D. Then μ̃ is a monotone type I state. Based on this fact, the
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properties of type I states (for example those described in Proposition 8.4) can be
transferred to logical probabilities.

Let U be a set of new constants and C∀(U) the language obtained from C∀ by
adding the constants from U too. Denote by E(U) the set of sentences from C∀(U)

and by E(U)/∼ the Lindenbaum-Tarski algebra associated to C∀(U). It is obvious
that E/∼ is an FLw-subalgebra of E(U)/∼.

In the sequel, we assume that the FLw-algebra L is complete.
We fix a logical probability μ :D → L and U a set of new constants. We define

the functions μ∗ :E(U)→ L and μ∗ :E(U)→ L as follows, for any ϕ ∈E(U):

μ∗(ϕ) := sup
{
μ(ψ) |ψ ∈D, ψ → ϕ

};
μ∗(ϕ) := inf

{
μ(ψ) |ψ ∈D, ϕ →ψ

}
.

We consider the monotone type I state μ̃ : D/∼ −→ L associated to μ, the
interior state (μ̃)∗ : E(U)/∼ −→ L and the exterior state (μ̃)∗ : E(U)/∼ −→ L

(defined in the previous section).

Lemma 8.7 For any sentence ϕ ∈ E(U), μ∗(ϕ) = (μ̃)∗(ϕ/∼) and μ∗(ϕ) =
(μ̃)∗(ϕ/∼).

Definition 8.11 We say that the language C∀ has the property (HT) if for any set U

of new constants, the Lindenbaum-Tarski algebra E(U)/∼ has the property (HT).

Lemma 8.8 Assume that C∀ has the property (HT). Let μ : D −→ L be a logical
probability, U a set of new constants, θ ∈ E(U) and r ∈ [0,1]. The following are
equivalent:

(a) There exists a logical probability ν : E(U) −→ L such that ν|D = μ and
ν(D)= r ;

(b) μ∗(θ)≤ r ≤ μ∗(θ).

Proof We apply Lemma 8.7. �

Let U be a set of new constants and m : E(U) −→ L a logical probability. We
introduce the following conditions for the pair (U,m):

(G∃) For any new formula φ(x) of C∀(U),

m
(∃xφ(x)

)= sup

{

m

(
n∨

i=1

φ(ai)

) ∣∣∣∣ n ∈ ω,a1, . . . , an ∈U

}

.

(G∀) For any new formula φ(x) of C∀(U),

m
(∀xφ(x)

)= inf

{

m

(
n∧

i=1

φ(ai)

) ∣∣∣∣ n ∈ ω,a1, . . . , an ∈U

}

.
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Properties (G∃) and (G∀) were inspired by Gaifman’s conditions on the proba-
bility models of the first-order logics [123]. The pair (U,m) is called a probabilistic
structure on C∀ if it satisfies the conditions (G∃) and (G∀). The probabilistic struc-
ture (U,m) is a model of the logical probability μ :D −→ L if m|D = μ.

Definition 8.12 We say that the system of the logic C∀ satisfies Gaifman’s com-
pleteness theorem (GC Th) if any logical probability μ :D −→ L admits a model.

Remark 8.11 According to [123], the classical predicate calculus satisfies (GC Th).
In [133], it was proved that the infinite-valued Łukasiewicz predicate logic Ł∀ sat-
isfies (GC Th).

Conditions (HT) and (GC Th) are important in the development of a theory of
probabilistic models for the logical system C∀. In the sequel, we will try to present
a few ideas in this direction.

Let (U,u) and (V , v) be two probabilistic structures for C∀. We say that (V , v)

is an elementary extension of (U,u) and we write (U,u) " (V , v) if U ⊆ V and
for any ϕ ∈ E(U), u(ϕ) = v(ϕ). The probabilistic structures (U,u) and (V , v)

are elementarily equivalent if for any ϕ ∈ E, u(ϕ) = v(ϕ). In this case we write
(U,u)≡ (V , v).

Remark 8.12 Suppose C∀ is the classical first order logic. Let U be a set of new
constants and E0(U) the set of quantifier-free sentences of C∀. In [123] the following
result has been proved: any logical probability μ : E0(U) −→ [0,1] extends in a
unique way to a logical probability μ̂ : E(U) −→ [0,1] which satisfies Gaifman’s
conditions (G∀) and (G∃). An important open problem is to prove some similar
results for various systems C∀. This would allow us to define a notion of probabilistic
substructure and to develop a good part of the probabilistic theory models (see [130]
for probabilistic models of classical finite order logic).

Consider a family (Uα,uα)α<λ indexed by the ordinals α < λ such that:

• for any α < λ, Uα is a nonempty set;
• Uα ⊆Uβ for any α ≤ β < λ;
• for any α < λ, uα :E(Uα)→ L is a logical probability;
• uβ |E(Uα) = uα , for any α ≤ β < λ.

Let U =⋃
α<λ Uα and u :E(U)−→ L be the function defined by u(φ)= uα(φ),

if φ ∈ E(Uα). It is obvious that u is well defined. Furthermore, u|E(Uα) = uα , for
any α < λ. We will denote the pair (U,u) by

⋃
α<λ(Uα,uα).

Proposition 8.19

(i) If (Uα,uα) satisfies (G∀) for any α < λ, then (U,u) satisfies (G∀).
(ii) If (Uα,uα) satisfies (G∃) for any α < λ, then (U,u) satisfies (G∃).
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Proof

(i) Consider the sentence ∀xφ(x) ∈ E(U), so there exists an ordinal α < λ with
∀xφ(x) ∈ E(Uα). Let a1, . . . , an ∈ U , so there exists a β < λ such that α ≤ β

and a1, . . . , an ∈Uβ . Then  ∀xφ(x)→∧n
i=1 ϕ(ai) in the language C∀(Uβ) so,

according to Lemma 8.6(i), we have u(∀xϕ(x)) ≤ u(
∧n

i=1 ϕ(ai)). In this way
we obtain the inequality u(∀xϕ(x)) ≤ inf{u(

∧n
i=1 ϕ(ai)) | n ∈ ω,a1, . . . , an ∈

U}.
The converse inequality follows:

u
(∀xϕ(x)

) = uα

(∀xϕ(x)
)= inf

{

uβ

(
n∧

i=1

ϕ(ai)

) ∣∣
∣∣ n ∈ ω,a1, . . . , an ∈Uβ

}

= inf

{

u

(
n∧

i=1

ϕ(ai)

) ∣∣∣
∣ n ∈ ω,a1, . . . , an ∈Uβ

}

≥ inf

{

u

(
n∧

i=1

ϕ(ai)

) ∣∣∣∣ n ∈ ω,a1, . . . , an ∈U

}

.

(ii) Similar to (i). �

A sequence of probabilistic structures (Uα,uα)α<λ is called elementary if
(Uα,uα) " (Uβ,uβ) for any α ≤ β < λ. If (Uα,uα)α<λ is an elementary se-
quence of probabilistic structures then, according to Proposition 8.19, (U,u) =⋃

α<λ(Uα,uα) is another probabilistic structure and (Uα,uα) " (U,u) for any
α < λ.

Theorem 8.12 Assume that C∀ satisfies (HT) and (GC Th).
Let (U,u) and (V , v) be two elementarily equivalent probabilistic structures.

Then there exists a probabilistic structure (W,w) such that (U,u) " (W,w) and
(V , v)" (W,w).

Proof Consider the sentences ϕ(
→
a ) ∈ E(U), ψ(

→
b ) ∈ E(V ) with

→
a= (a1, . . . , an)

in Un and
→
b= (b1, . . . , bm) in V m. Assume that  ϕ(

→
a )↔ ψ(

→
b ) in C∀(U ∪ V ).

Let
→
x= (x1, . . . , xn) and

→
y= (y1, . . . , ym) with {x1, . . . , xn} ∩ {y1, . . . , ym} = ∅.

We notice that  ϕ(
→
a )↔∀ →

x ϕ(
→
x ) in C∀(U),  ψ(

→
b )↔∀ →

y ψ(
→
y ) in C∀(V ), so

 ∀ →
x ϕ(

→
x )↔ ∀ →

y ψ(
→
y ) in C∀(U ∪ V ). But ∀ →

x (ϕ
→
x ) and ∀ →

y ψ(
→
y ) belong

to E, so  ∀ →
x ϕ(

→
x )↔∀ →

y ψ(
→
y ) in C∀. Because (U,u)≡ (V , v), it follows that

u(ϕ(
→
a ))= u(∀ →

x ϕ(
→
x ))= v(∀ →

y ψ(
→
y ))= v(ψ(

→
b )).

Let ϕ = ϕ(
→
a ) ∈ E(V ) \ E(U), where

→
a= (a1, . . . , an) has components in V .

We will show that there exists a logical probability μ : E(U ∪ V ) → L such that
μ|E(U) = u and μ(ϕ) = v(ϕ). Since C∀ satisfies (HT) and using Lemma 8.8, it is
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enough to prove the inequality u∗(ϕ)≤ v(ϕ)≤ u∗(ϕ), where u∗ :E(U ∪ V )−→ L

and u∗ :E(U ∪ V )−→ L are the functions defined before Lemma 8.7.
Let  ψ → ϕ(

→
a ) in C∀(U ∪ V ) with ψ ∈ E(U). Because ϕ(

→
a ) ↔ ∀ →

x ϕ(
→
x )

and ∀ →
x ϕ(

→
x ) ∈ E we have u(ψ) ≤ u(∀ →

x ϕ(
→
x ))= v(ϕ(

→
x ))= v(ϕ), by applying

Lemma 8.6 and the fact that (U,u) ≡ (V , v). It follows that u∗(ϕ) ≤ v(ϕ). The
inequality v(ϕ)≤ u∗(ϕ) can be proved similarly.

Using the above, by transfinite induction, we construct a logical probability ν :
E(U ∪V )−→ L such that ν|E(U) = u and ν|E(V ) = v. Applying property (GC Th)
to ν, we get that there exists a probability structure (W,w) such that U ∪V ⊆W and
w|E(U) = ν|E(U) = u and w|E(V ) = ν|E(V ) = v. So (U,u) " (W,w) and (V , v) "
(W,w). �

The notions and results from this section suggest the possibility of developing a
probabilistic theory of models for C∀ logics. Such investigations should start from
the literature of the probabilistic theory of models for the classical predicate calculus
(in particular the works [123, 253]).

The following open problems could be investigated:

1. Robinson’s consistency theorem (p. 114 in [251]) is a result of the classical the-
ory of models that can be expressed in terms of pure semantics. The goal is to
be able to easily give a similar statement for the case of C∀ logics. For exam-
ple, consistency theories from Robinson’s theorem will be replaced with logical
probabilities. The proof of this assertion will require the existence of a Gaifman
type completeness theorem ([123]) (which holds, for example, in the case of the
probabilistic models of Łukasiewicz logics [133] and it can use the basic proba-
bilistic structures). A consistency theorem of such type has not been proved even
for the case of classical probabilistic models.

2. The omitting types theorem is another important result from the classical the-
ory of models which could be expressed in terms of logical probabilities and
of the above mentioned probability structures. We mention that a version of the
omitting types theorem was proved in the case of some multiple-valued logics
in [231]. However, a probabilistic version of the omitting types theorem has not
been proved even in the case of classical predicate logics.

3. The Lowenheim-Skolem type theorems (in the case of probabilistic models for
classical logic, this topic has been investigated in [123, 253]).

4. Ultraproducts of probabilistic models of C∀ logics (the case of ultraproducts of
classical probabilistic models has been studied in [253]).

5. Model-completion and model-companion of a logical probability and existential
complete probabilistic structures (in the case of classical probabilistic models,
this subject has been studied in [133]).



Chapter 9
Pseudo-hoops with Internal States

Flaminio and Montagna ([119]) endowed the MV-algebras with a unary operation
called an internal state, or a state operator, satisfying some basic properties of states
and the new structures are called state MV-algebras. Di Nola and Dvurečenskij pre-
sented the notion of a state-morphism MV-algebra which is a stronger variation
of a state MV-algebra ([78]). Subdirectly irreducible state-morphism MV-algebras
have been characterized in [80], and some classes of state-morphism MV-algebras
were presented in [79]. The notion of a state operator was extended by Rachůnek
and Šalounová in [243] to the case of GMV-algebras (pseudo-MV algebras). State
operators and state-morphism operators on BL-algebras were introduced and inves-
tigated in [72] and subdirectly irreducible state-morphism BL-algebras were stud-
ied in [101]. Recently, Dvurečenskij, Rachůnek and Šalounová presented state R�-
monoids and state-morphism R�-monoids ([114, 115]). A general approach of state-
morphism algebras was presented in [18].

In this chapter we study these concepts for the more general fuzzy structures,
namely the pseudo-hoops, and we present state pseudo-hoops and state-morphism
pseudo-hoops. We define the notions of a state operator, strong state operator, state-
morphism operator and weak state-morphism operator and we study their properties.
We prove that every strong state pseudo-hoop is a state pseudo-hoop and any state
operator on an idempotent pseudo-hoop is a weak state-morphism operator. It is
proved that for an idempotent pseudo-hoop A, a state operator on Reg(A) can be
extended to a state operator on A. One of the main results of the chapter consists
of proving that every perfect pseudo-hoop admits a state operator. Other results
compare the state operators with states and generalized states on a pseudo-hoop.
Some conditions are given for a state operator to be a generalized state and for a
generalized state to be a state operator.
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9.1 State Pseudo-hoops

In what follows (A,�,→,�,0,1) will be a bounded pseudo-hoop.

Definition 9.1 A state pseudo-hoop is a pair (A,σ ) where A is a bounded pseudo-
hoop and σ : A −→ A is a mapping, called a state operator, such that for any
x, y ∈A the following conditions are satisfied:

(S1) σ(0)= 0;
(S2) σ(x → y)= σ(x)→ σ(x ∧ y) and σ(x � y)= σ(x) � σ(x ∧ y);
(S3) σ(x � y)= σ(x)� σ(x � x � y)= σ(y → x � y)� σ(y);
(S4) σ(σ (x)� σ(y))= σ(x)� σ(y);
(S5) σ(σ (x)→ σ(y))= σ(x)→ σ(y) and σ(σ (x) � σ(y))= σ(x) � σ(y).

Ker(σ ) := {x ∈A | σ(x)= 1} is called the kernel of σ .
A state operator is called faithful if Ker(σ )= 1.

Proposition 9.1 If (A,σ ) is a state pseudo-hoop, then for all x, y ∈A the following
hold:

(1) σ(1)= 1;
(2) σ(x−)= σ(x)− and σ(x∼)= σ(x)∼;
(3) x ≤ y implies σ(x)≤ σ(y);
(4) σ(x � y)≥ σ(x)� σ(y); if x � y = 0, then σ(x � y)= σ(x)� σ(y); if A is

good and y ⊥ x, then σ(x � y)= σ(x)� σ(y);
(5) σ(x � y∼) ≥ σ(x)� σ(y)∼ and σ(y− � x) ≥ σ(y)− � σ(x); if x ≤ y, then

σ(x � y∼)= σ(x)� σ(y)∼ and σ(y− � x)= σ(y)− � σ(x);
(6) σ(x ∧ y)= σ(x)� σ(x � y)= σ(y → x)� σ(y);
(7) σ(x → y) ≤ σ(x) → σ(y) and σ(x � y) ≤ σ(x) � σ(y); if x and y are

comparable, then σ(x → y)= σ(x)→ σ(y) and σ(x � y)= σ(x) � σ(y);
(8) σ(x → y) � σ(y → x) ≤ d1(σ (x), σ (y)) and σ(x � y) � σ(y � x) ≤

d2(σ (x), σ (y));
(9) σ 2(x)= σ(x);

(10) if A is good, then: σ(x ⊕ y)≤ σ(x)⊕ σ(y); σ(σ (x)⊕ σ(y))= σ(x)⊕ σ(y);
if x ⊥no y, then σ(x ⊕ y)= σ(x)⊕ σ(y); σ(x ⊕ x−)= σ(x∼ ⊕ x)= 1;

(11) σ(A)= {x ∈A | σ(x)= x};
(12) σ(x → y) = σ(x) → σ(y) iff σ(y → x) = σ(y) → σ(x) iff σ(x � y) =

σ(x)� σ(y) iff σ(y � x)= σ(y)� σ(x);
(13) σ(σ (x)∧ σ(y))= σ(x)∧ σ(y);
(14) σ(σ (x) ∨1 σ(y)) = σ(x) ∨1 σ(y) and σ(σ (x) ∨2 σ(y)) = σ(x) ∨2 σ(y);

σ(x ∨1 y) ≤ σ(x) ∨1 σ(y) and σ(x ∨2 y) ≤ σ(x) ∨2 σ(y); if x and y are
comparable, then σ(x ∨1 y)= σ(x)∨1 σ(y) and σ(x ∨2 y)= σ(x)∨2 σ(y);

(15) if σ is faithful, then x < y implies σ(x) < σ(y);
(16) if σ is faithful, then either σ(x)= x or σ(x) and x are not comparable;
(17) if A is linearly ordered and σ is faithful, then σ(x)= x for all x ∈A.



9.1 State Pseudo-hoops 245

Proof

(1) σ(1)= σ(0→ 0)= σ(0)→ σ(0∧ 0)= 1.
(2) Applying (S2) we get:

σ
(
x−

) = σ(x → 0)= σ(x)→ σ(x ∧ 0)= σ(x)→ σ(0)

= σ(x)→ 0= σ(x)−.

Similarly for σ(x∼)= σ(x)∼.
(3) By (pshoop-c3) we get x = y� (y � x), so σ(x)= σ(y� (y � x))= σ(y)�

σ(y � y � (y � x))≤ σ(y).
(4) From x � y ≤ x � y we get y ≤ x � x � y, so by (3) we have σ(y)≤ σ(x �

x � y).
Applying (S3) we get: σ(x � y)= σ(x)� σ(x � x � y)≥ σ(x)� σ(y).
If x � y = 0, then σ(x � y)= 0, so σ(x � y)= σ(x)� σ(y)= 0.
If A is good and y ⊥ x, by Proposition 1.28 we have x � y = 0, hence

σ(x � y)= σ(x)� σ(y)= 0.
(5) σ(x � y∼)≥ σ(x)� σ(y)∼ and σ(y− � x)≥ σ(y)− � σ(x) follow from (4)

and (2).
If x ≤ y we have y∼ ≤ x∼, y− ≤ x−, so x�y∼ ≤ x�x∼ = 0 and y−�x ≤

x− � x = 0. It follows that σ(x � y∼)= σ(y− � x)= 0, hence σ(x � y∼)=
σ(x)� σ(y)∼ = 0 and σ(y− � x)= σ(y)− � σ(x)= 0.

(6)

σ(x ∧ y) = σ
(
x � (x � y)

)= σ(x)� σ
(
x �

(
x � (x � y)

))

= σ(x)� σ(x � x ∧ y)= σ(x)� σ(x � y) and

σ(x ∧ y) = σ
(
(y → x)� y

)= σ
(
y → (

(y → x)� y
))� σ(y)

= σ(y → x ∧ y)� σ(y)= σ(y → x)� σ(y).

(7) By (S2) and (psbck-c10) we have:

σ(x → y) = σ(x)→ σ(x ∧ y)≤ σ(x)→ σ(y) and

σ(x � y) = σ(x) � σ(x ∧ y)≤ σ(x) � σ(y).

If x ≤ y, then σ(x)≤ σ(y) and σ(x → y)= σ(x)→ σ(x ∧ y)= σ(x)→
σ(x)= 1.

We also have σ(x)→ σ(y)= 1, thus σ(x → y)= σ(x)→ σ(y).
Similarly, σ(x � y)= σ(x) � σ(y).
If y ≤ x, then x ∧ y = y and the equalities follow from (S2).

(8) By (7) we have σ(x → y) ≤ σ(x) → σ(y) and σ(y → x) ≤ σ(y) → σ(x),
hence σ(x → y)� σ(y → x)≤ d1(σ (x), σ (y)).

Similarly, σ(x � y)� σ(y � x)≤ d2(σ (x), σ (y)).
(9) Applying (1) and (S4) we have:

σ 2(x)= σ
(
σ(x)

)= σ
(
σ(x)� σ(1)

)= σ(x)� σ(1)= σ(x).
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(10) From σ(y− � x−) ≥ σ(y−)� σ(x−) we get (σ (y−)� σ(x−))∼ ≥ (σ (y− �
x−))∼.

Applying (2) it follows that (σ (y)− � σ(x)−)∼ ≥ σ((y− � x−)∼).
Thus σ(x ⊕ y)≤ σ(x)⊕ σ(y).
By (2) and (9) we get:

σ
(
σ(x)⊕ σ(y)

) = σ
((

σ(y)− � σ(x)−
)∼)= (

σ
(
σ
(
y−

)� σ
(
x−

)))∼

= (
σ
(
y−

)� σ
(
x−

))∼ = (
σ(y)− � σ(x)−

)∼

= σ(x)⊕ σ(y).

Obviously, σ(x ⊕ 0)= σ(x)⊕ σ(0) and σ(0⊕ x)= σ(0)⊕ σ(x).
Since x ⊥no y, we have x− ⊥ y−, so by (4) and (2) we have

σ
(
y− � x−

)= σ
(
y−

)� σ
(
x−

)= σ(y)− � σ(x)−.

Hence

σ(x ⊕ y) = σ
((

y− � x−
)∼)= (

σ
(
y− � x−

))∼ = (
σ(y)− � σ(x)−

)∼

= σ(x)⊕ σ(y).

For the last assertion we have:

σ
(
x ⊕ x−

) = (
σ
(
x−∼ � x∼

)−)= (
σ
(
x∼− � x∼

))− = (
σ(0)

)− = 1 and

σ
(
x∼ ⊕ x

) = (
σ
(
x− � x∼−

)∼)= (
σ
(
x− � x−∼

))∼ = (
σ(0)

)∼ = 1.

(11) Let y ∈ σ(A), so there exists an x ∈A such that y = σ(x).
Hence σ(y)= σ 2(x)= σ(x)= y. It follows that y ∈ {x ∈A | σ(x)= x}.
Conversely, if y ∈ {x ∈A | σ(x)= x} it follows that y ∈ σ(A).

(12) Suppose σ(x → y) = σ(x)→ σ(y). Applying (S2), (6) and (pshoop-c3) we
get:

σ(y → x) = σ(y)→ σ(y ∧ x)= σ(y)→ σ(x → y)� σ(x)

= σ(y)→ (
σ(x)→ σ(y)

)� σ(x)= σ(y)→ σ(x)∧ σ(y)

= σ(y)→ σ(x).

Similarly, if σ(y → x)= σ(y)→ σ(x), then σ(x → y)= σ(x)→ σ(y).
Suppose again that σ(x → y) = σ(x) → σ(y), so σ(y → x) = σ(y) →

σ(x).
Then we have:

σ(x � y) = σ(x) � σ(x ∧ y)= σ(x) �
(
σ(y → x)� σ(y)

)

= σ(x) �
((

σ(y)→ σ(x)
)� σ(y)

)= σ(x) � σ(x)∧ σ(y)

= σ(x) � σ(y).

Similarly, if σ(x � y)= σ(x) � σ(y), then σ(x → y)= σ(x)→ σ(y).
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Finally, we can prove in the same manner that σ(x � y) = σ(x) � σ(y)

implies σ(y � x)= σ(y) � σ(x).
(13) Applying (6), (9), (S5) and (pshoop-c3) we get:

σ
(
σ(x)∧ σ(y)

) = σ 2(x)� σ
(
σ(x)� σ(y)

)= σ(x)� (
σ(x) � σ(y)

)

= σ(x)∧ σ(y).

(14) Applying (S5) and (9) we get:

σ
(
σ(x)∨1 σ(y)

) = σ
((

σ(x)→ σ(y)
)
� σ(y)

)= σ
(
σ(x)→ σ(y)

)
� σ(y)

= (
σ(x)→ σ(y)

)
� σ(y)= σ(x)∨1 σ(y).

Similarly, σ(σ (x)∨2 σ(y))= σ(x)∨2 σ(y).
The second part follows applying (7) twice.

(15) By (3) x < y implies σ(x)≤ σ(y). Suppose σ(x)= σ(y). From (S2) it follows
that σ(y → x)= σ(y)→ σ(x)= 1, that is, y → x ∈Ker(σ )= {1}. Thus y →
x = 1, hence y ≤ x, a contradiction. It follows that σ(x) < σ(y).

(16) Consider x ∈A such that σ(x) �= x and let x and σ(x) be comparable.
We have x < σ(x) or σ(x) < x, so σ(x) < σ(x), a contradiction. It follows

that either σ(x)= x or σ(x) and x are not comparable.
(17) Since A is linearly ordered it follows that x and σ(x) are comparable.

Hence by (16), σ(x)= x. �

Corollary 9.1 Let (A,σ ) be a linearly ordered state pseudo-hoop. Then for all
x, y ∈A the following hold:

(1) σ(x → y)= σ(x)→ σ(y) and σ(x � y)= σ(x) � σ(y);
(2) σ(x ∨1 y)= σ(x)∨1 σ(y) and σ(x ∨2 y)= σ(x)∨2 σ(y);
(3) if A has (SO) property, then:

σ
(
x ⊕ y−

) = σ(x)⊕ σ
(
y−

)
and σ

(
y∼ ⊕ x

)= σ
(
y∼

)⊕ σ(x) or

σ
(
y ⊕ x−

) = σ(y)⊕ σ
(
x−

)
and σ

(
x∼ ⊕ y

)= σ
(
x∼

)⊕ σ(y).

Proof

(1) This follows from Proposition 9.1(7).
(2) This follows from Proposition 9.1(14).
(3) Consider the following cases:

(a) If x = 0, then applying Proposition 1.24(3) and Proposition 9.1(2) we have:

σ
(
0⊕ y−

) = σ
(
y−∼−

)= σ
(
y−

)= σ(y)− and

σ(0)⊕ σ
(
y−

) = 0⊕ σ
(
y−

)= σ
(
y−

)∼− = σ(y)−.

Thus σ(x ⊕ y−)= σ(x)⊕ σ(y−) and similarly σ(y∼ ⊕ x)= σ(y∼)⊕
σ(x).
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(b) If y = 0, then according to Proposition 1.24(4) we have:

σ
(
x⊕0−

)= σ(x⊕1)= σ(1)= 1 and σ(1)⊕σ
(
y−

)= 1⊕σ
(
y−

)= 1.

Thus σ(x ⊕ y−)= σ(x)⊕ σ(y−) and similarly σ(y∼ ⊕ x)= σ(y∼)⊕
σ(x).

(c) Assume x �= 0, y �= 0 and x ≤ y.
According to Proposition 1.6(6), x ⊥ y− and y∼ ⊥ x.
Applying Proposition 9.1(10) we have

σ
(
x ⊕ y−

)= σ(x)⊕ σ
(
y−

)
and σ

(
y∼ ⊕ x

)= σ
(
y∼

)⊕ σ(x).

Similarly, if x �= 0, y �= 0 and y ≤ x we get

σ
(
y ⊕ x−

)= σ(y)⊕ σ
(
x−

)
and σ

(
x∼ ⊕ y

)= σ
(
x∼

)⊕ σ(y). �

Proposition 9.2 Let (A,σ ) be a state pseudo-hoop. Consider the properties:

(a) σ(x → y)= σ(x)→ σ(y) or σ(x � y)= σ(x) � σ(y) for all x, y ∈A;
(b) σ(x ∧ y)= σ(x)∧ σ(y) for all x, y ∈A;
(c) σ(x � y)= σ(x)� σ(y) for all x, y ∈A;
(d) σ(x ∨1 y)= σ(x)∨1 σ(y) and σ(x ∨2 y)= σ(x)∨2 σ(y) for all x, y ∈A.

Then:

(a) is equivalent to (b);
(a) implies (c) and (d).

Proof According to Proposition 9.1(12), σ preserves → iff it preserves �.

(a) ⇒ (b) By Proposition 9.1(6) and (pshoop-c3) we have:

σ(x ∧ y)= σ(x)� σ(x � y)= σ(x)� (
σ(x)� σ(y)

)= σ(x)∧ σ(y).

(b) ⇒ (a) Applying (S2) we get:

σ(x → y)= σ(x)→ σ(x ∧ y)= σ(x)→ (
σ(x)∧ σ(y)

)= σ(x)→ σ(y).

Similarly, σ(x � y)= σ(x)� σ(y).
(a) ⇒ (c) By (psHOOP3) we have:

σ(x � y)→ σ(z) = σ(x � y → z)= σ
(
x → (y → z)

)

= σ(x)→ (σ (y)→ (
σ(z)

)= (
σ(x)� σ(y)

)→ σ(z).

Taking z= σ(x)� σ(y) we get:

σ(x � y)→ σ
(
σ(x)� σ(y)

) = (
σ(x)� σ(y)

)→ σ
(
σ(x)� σ(y)

)

= (
σ(x)� σ(y)

)→ (
σ(x)� σ(y)

)= 1.

Thus σ(x � y)≤ σ(σ (x)� σ(y))= σ(x)� σ(y).
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Applying Proposition 9.1(4), we get σ(x � y)= σ(x)� σ(y).
(a) ⇒ (d) This follows by the definitions of ∨1 and ∨2, applying (a). �

Let A be a bounded pseudo-hoop and σ :A−→A be a mapping such that for all
x, y ∈A:

(S′3) σ(x � y)= σ(y− ∨1 x)� σ(y)= σ(x)� σ(x∼ ∨2 y).

Definition 9.2 A mapping σ : A−→ A is called a strong state operator on A if σ

satisfies conditions (S1), (S2), (S′3), (S4), (S5).
A pair (A,σ ) such that A is a bounded pseudo-hoop and σ is a strong state

operator on A is called a strong state pseudo-hoop.
A state operator σ is called a C-state operator if it satisfies the following condi-

tion:

(C) σ(x ∨1 y)= σ(y ∨1 x) and σ(x ∨2 y)= σ(y ∨2 x).

A pair (A,σ ) such that A is a bounded pseudo-hoop and σ is a C-state operator on
A is called a C-state pseudo-hoop.

If a C-state operator is strong, then we call it a C-strong state operator.

Remark 9.1 Every state Wajsberg pseudo-hoop is a C-state Wajsberg pseudo-hoop.

Proposition 9.3 Let A be a bounded pseudo-hoop. If σ : A −→ A is an order-
preserving mapping satisfying condition (C), then σ(x ∨1 y) = σ(x ∨2 y) for all
x, y ∈A.

Proof First we prove the equality for y ≤ x.
Applying Proposition 1.5(4) and condition (C) we get:

σ(x ∨1 y)= σ(y ∨1 x)= σ(x) and σ(x ∨2 y)= σ(x),

i.e., σ(x ∨1 y)= σ(x ∨2 y).
Assume now that x and y are arbitrary elements of A. Using again Proposi-

tion 1.5(4), condition (C) and the first part of the proof, we get:

σ(x ∨1 y) = σ
(
x ∨1 (x ∨1 y)

)= σ
(
(x ∨1 y)∨1 x

)

= σ
(
(x ∨1 y)∨2 x

)≥ σ(y ∨2 x)

= σ
(
x ∨2 (y ∨2 x)

)≥ σ(x ∨2 y)

= σ
(
y ∨2 (x ∨2 y)

)= σ
(
(x ∨2 y)∨2 y

)

≥ σ(x ∨1 y).

Thus σ(x ∨1 y)= σ(x ∨2 y). �

Corollary 9.2 If σ is a C-state operator, then σ(x ∨1 y)= σ(x ∨2 y).
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Theorem 9.1 Every strong state pseudo-hoop is a state pseudo-hoop.

Proof Consider the strong state pseudo-hoop (A,σ ) and x, y ∈A.
Taking into consideration that y− ≤ y → x and x∼ ≤ x � y we get:

y− ∨1 (y → x)= y → x and x∼ ∨2 (x � y)= x � y.

Then applying (S′3) we have:

σ(x ∧ y)= σ
(
x � (x � y)

)= σ(x)� σ
(
x∼ ∨2 (x � y)

)= σ(x)� σ(x � y).

It follows that σ(x � y)= σ(x ∧ (x � y))= σ(x)� σ(x � (x � y)).
Similarly, σ(x ∧ y) = σ((y → x)� y) = σ(y− ∨1 (y → x))� σ(y) = σ(y →

x)� σ(y), so σ(x � y)= σ((x � y)∧ y)= σ(y → (x � y))� σ(y).
Thus condition (S′3) implies condition (S3), hence σ is a state operator on A. �

Proposition 9.4 If σ is a strong state operator on a bounded pseudo-hoop A such
that x∼ ≤ y or y− ≤ x for some x, y ∈A, then σ(x � y)= σ(x)� σ(y).

Proof Since σ is a strong state operator, it satisfies the condition

σ(x � y)= σ
(
y− ∨1 x

)� σ(y)= σ(x)� σ
(
x∼ ∨2 y

)
.

According to Proposition 1.5(4), y− ≤ x implies σ(y−∨1 x)= σ(x) and x∼ ≤ y

implies σ(x∼ ∨2 y)= σ(y). Thus σ(x � y)= σ(x)� σ(y). �

Proposition 9.5 If σ is a state operator on a linearly ordered bounded pseudo-hoop
A, then σ is a pseudo-hoop endomorphism such that σ 2 = σ .

Proof Since (A,σ ) is a linearly ordered state pseudo-hoop, according to Corol-
lary 9.1, σ preserves → and �. Applying Proposition 9.2, it follows that σ pre-
serves �. Taking into consideration that σ also preserves the constants 0 (by (S1))
and 1 (by Proposition 9.1(1)), we conclude that σ is an endomorphism. Condition
σ 2 = σ follows from Proposition 9.1(9). �

Proposition 9.6 If (A,σ ) is a state pseudo-hoop, then σ(A) is a subalgebra of A.

Proof By (S4), (S5), (S1) and Proposition 9.1(1), σ(A) is closed under the opera-
tions �, →, �, 0, 1. Thus σ(A) is a subalgebra of A. �

Definition 9.3

(1) A state operator σ on a bounded pseudo-hoop A is called a weak state-morphism
operator on A if for all x, y ∈A:

(S6) σ(x � y)= σ(x)� σ(y).

In this case (A,σ ) is called a weak state-morphism pseudo-hoop.
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(2) A bounded pseudo-hoop endomorphism σ : A −→ A is said to be a state-
morphism operator if σ 2 = σ .

Obviously, a state-morphism operator is always a weak state-morphism operator.

Example 9.1 ([114])

(1) If A is a bounded pseudo-hoop, then the identity idM is a state operator on A.
(2) Let A be a bounded pseudo-hoop and B = A×A. Then the mappings σ1, σ2 :

B −→ B such that σ1(x1, x2) := (x1, x1), σ2(x1, x2) := (x2, x2) are state-
morphism operators on the bounded pseudo-hoop B .

Remark 9.2 From Propositions 9.2 and 9.4 it follows that:

(1) If σ is a state operator on A preserving → or preserving �, then σ is a weak
state-morphism operator and a state-morphism operator.

(2) If σ is a strong state operator on a bounded pseudo-hoop A such that x∼ ≤ y or
y− ≤ x for all x, y ∈A, then σ is a weak state-morphism operator.

Proposition 9.7 If A is a bounded cancellative pseudo-hoop, then any state opera-
tor σ on A is a weak state-morphism operator.

Proof According to (S3) and taking into consideration that in a cancellative pseudo-
hoop y → x � y = x, we get:

σ(x � y)= σ(y → x � y)� σ(y)= σ(x)� σ(y).

Thus σ is a weak state-morphism operator on A.
(The proof for the case x � x � y = y is similar.) �

Theorem 9.2 If A is a bounded idempotent pseudo-hoop, then any state operator
σ on A is a weak state-morphism operator and a state-morphism operator.

Proof Consider x, y ∈A. Since they are idempotent, so are σ(x) and σ(y).
Hence, applying the property of idempotent elements and Proposition 9.1(4) we

get:

σ(x ∧ y)= σ(x � y)≥ σ(x)� σ(y)= σ(x)∧ σ(y).

On the other hand, σ(x ∧ y)≤ σ(x)∧ σ(y)= σ(x)� σ(y).
Thus σ(x ∧ y)= σ(x � y)= σ(x)� σ(y)= σ(x)∧ σ(y).
Hence σ is a weak state-morphism operator on A.
Since ∧ is preserved, according to Proposition 9.2((a) ⇔ (b)), one of →, � is

preserved as well. It then follows from Proposition 9.1(12) that the other arrow is
also preserved. The constants 0 and 1 are preserved by (S1) and Proposition 9.1(1),
respectively. Thus σ is an endomorphism on A.

Since from Proposition 9.1(9) we have σ 2 = σ , it follows that σ is also a state-
morphism operator on A. �
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Proposition 9.8 If σ is a state operator on a bounded pseudo-hoop A, then Ker(σ )

is a normal filter of A.

Proof Since σ(1)= 1, it follows that 1 ∈Ker(σ ).
Consider x, y ∈Ker(σ ). Then σ(x�y)≥ σ(x)�σ(y)= 1, hence σ(x�y)= 1,

that is, x � y ∈ Ker(σ ). If x ∈Ker(σ ) and y ∈A are such that x ≤ y, then we have
1= σ(x)≤ σ(y), that is, y ∈Ker(σ ).

Thus Ker(σ ) is a filter of A.
Let x, y ∈A such that x → y ∈Ker(σ ), so σ(x → y)= 1.
Applying (S2) we get σ(x)→ σ(x ∧ y)= 1, hence σ(x)≤ σ(x ∧ y).
Therefore σ(x) = σ(x ∧ y) and applying again (S2) we have σ(x � y) =

σ(x)� σ(x ∧ y)= 1. Thus x � y ∈Ker(σ ).
Similarly, x � y ∈Ker(σ ) implies x → y ∈Ker(σ ) and we conclude that Ker(σ )

is a normal filter of A. �

9.2 On the Existence of State Operators on Pseudo-hoops

In this section we investigate the existence of state operators, proving that every
perfect pseudo-hoop admits a nontrivial state operator.

In what follows A will be a bounded pseudo-hoop.
We recall that any bounded idempotent pseudo-hoop A is good (Remark 2.3).

Proposition 9.9 Let (A,σ ) by an idempotent state pseudo-hoop. Then:

(1) σ(x ∧ y)= σ(x � y)= σ(x)� σ(y)= σ(x)∧ σ(y) for all x, y ∈A;
(2) σ(x → y)= σ(x)→ σ(y) and σ(x � y)= σ(x) � σ(y) for all x, y ∈A;
(3) (x � y)−∼ = (x ∧ y)−∼ = x−∼ ∧ y−∼ = x−∼ � y−∼ for all x, y ∈A.

Proof

(1) This follows from the proof of Theorem 9.2.
(2) By Proposition 9.2 it follows that σ(x → y) = σ(x) → σ(y) or σ(x � y) =

σ(x) � σ(y) for all x, y ∈ A, which are equivalent according to Proposi-
tion 9.1(12).

(3) Since A is idempotent, x � y = x ∧ y for all x, y ∈A.
Applying (pshoop-c10) we get:

(x � y)−∼ = (x ∧ y)−∼ = x−∼ ∧ y−∼ = x−∼ � y−∼. �

Proposition 9.10 Let (A,σ ) be a state pseudo-hoop and x, y ∈ Reg(A). Then:

(1) σ(x) ∈ Reg(A);
(2) if A is good, then x ⊕ y, x ∧ y, x → y, x � y, x ∨1 y, x ∨2 y ∈ Reg(A);
(3) if A is idempotent, then x � y ∈ Reg(A).
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Proof

(1) By Proposition 9.1(2) we have:

σ(x)−∼ = σ
(
x−∼

)= σ(x) and σ(x)∼− = σ
(
x∼−

)= σ(x),

thus σ(x) ∈ Reg(A).
(2) Applying Proposition 1.25 we get:

(x ⊕ y)−∼ = ((
y− � x−

)∼)−∼ = (
y− � x−

)∼ = x ⊕ y.

From the goodness property we have (x ⊕ y)∼− = (x ⊕ y)−∼ = x ⊕ y.
Thus x ⊕ y ∈ Reg(A).
Applying (pshoop-c10) we have (x∧y)−∼ = x−∼∧y−∼ = x∧y, so x∧y ∈

Reg(A).
By (pshoop-c9) we have:

(x → y)−∼ = x−∼ → y−∼ = x → y and

(x � y)−∼ = x−∼ � y−∼ = x � y.

Thus x → y, x � y ∈ Reg(A).
As a consequence, it follows that x ∨1 y, x ∨2 y ∈ Reg(A).

(3) From Proposition 9.9 we have (x � y)−∼ = x−∼ � y−∼ = x � y, so x � y ∈
Reg(A). �

Lemma 9.1 Any state operator σ on a locally finite pseudo-hoop is faithful.

Proof Assume that there exists an x with 0 < x < 1 such that σ(x)= 1. Then there
is an integer n≥ 1 such that xn = 0, hence 0= σ(0)= σ(xn)≥ σ(x)n = 1, a con-
tradiction. Thus σ is faithful. �

Proposition 9.11 If A is a strongly simple locally finite basic pseudo-hoop, then
the identity is the unique state operator on A.

Proof Let σ be a state operator on A. By Lemma 9.1 it follows that σ is faithful.
Since every strongly simple basic pseudo-hoop is linearly ordered (Corollary 2.2),
applying Proposition 9.1(17), we get σ(x)= x for all x ∈A. �

Theorem 9.3 Let A be an idempotent pseudo-hoop and σ : Reg(A)→ Reg(A) be
a state operator on Reg(A). Then the mapping σ̃ :A→A defined by

σ̃ (x) := σ
(
x−∼

)

is a state operator on A such that σ̃|Reg(A) = σ .
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Proof Obviously, σ̃ (0)= σ(0)= 0, so condition (S1) is verified.
Applying (pshoop-c9) and Proposition 9.9 we get:

σ̃ (x → y) = σ
(
(x → y)−∼

)= σ
(
x−∼ → y−∼

)= σ
(
x−∼

)→ σ
(
x−∼ ∧ y−∼

)

= σ
(
x−∼

)→ σ
(
(x ∧ y)−∼

)= σ̃ (x)→ σ̃ (x ∧ y).

Similarly, σ̃ (x � y)= σ̃ (x) � σ̃ (x ∧ y), so σ̃ satisfies (S2).
By Proposition 9.9 we also have:

σ̃ (x � y) = σ
(
(x � y)−∼

)= σ
(
x−∼ � y−∼

)= σ
(
x−∼

)� σ
(
x−∼ � x−∼ � y−∼

)

= σ
(
x−∼

)� σ
(
x−∼ � (x � y)−∼

)= σ
(
x−∼

)� σ
(
(x � x � y)−∼

)

= σ̃ (x)� σ̃ (x � x � y).

Similarly, σ̃ (x � y)= σ̃ (y → x � y)� σ̃ (y), hence σ̃ satisfies (S3).
For condition (S4) we have:

σ̃
(
σ̃ (x)� σ̃ (y)

) = σ
((

σ
(
x−∼

)� σ
(
y−∼

))−∼)= σ
(
σ
(
x−∼

)−∼ � σ
(
y−∼

)−∼)

= σ
(
σ
(
x−∼

)� σ
(
y−∼

))= σ
(
x−∼

)� σ
(
y−∼

)= σ̃ (x)� σ̃ (y)

thus it is verified too.
Finally we have:

σ̃
(
σ̃ (x)→ σ̃ (y)

) = σ
((

σ
(
x−∼

)→ σ
(
y−∼

))−∼)= σ
(
σ
(
x−∼

)−∼ → σ
(
y−∼

)−∼)

= σ
(
σ
(
x−∼

)→ σ
(
y−∼

))= σ
(
x−∼

)→ σ
(
y−∼

)

= σ̃ (x)→ σ̃ (y)

and similarly σ̃ (σ̃ (x) � σ̃ (y))= σ̃ (x) � σ̃ (y), that is, condition (S5) for σ̃ .
We conclude that σ̃ is a state operator on A.
If x ∈ Reg(A), then σ̃ (x)= σ(x−∼)= σ(x), so σ̃|Reg(A) = σ . �

Corollary 9.3 If A is an idempotent pseudo-hoop, then any state operator on
Reg(A) can be extended to a state operator on A.

Theorem 9.4 Every perfect pseudo-hoop admits a nontrivial state operator.

Proof Let A be a perfect pseudo-hoop, so A= Rad(A) ∪ Rad(A)∗. We will prove
that the map σ :A→A defined by

σ(x) :=
{

1 if x ∈ Rad(A)

0 if x ∈ Rad(A)∗

is a state operator on A.
Obviously, σ(0)= 0, hence (S1) is satisfied.
We consider the following cases:
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(1) a, b ∈ Rad(A).
Obviously, σ(a)= σ(b)= 1. Since Rad(A) is a filter of A and b ≤ a → b, it

follows that a → b ∈ Rad(A). Hence σ(a → b)= 1. Similarly, σ(a � b)= 1.
From the definition of a filter we have a� b, a ∧ b ∈ Rad(A).
Thus σ(a)= σ(b)= σ(a → b)= σ(a � b)= σ(a ∧ b)= σ(a� b)= 1.
Since a� b ∈ Rad(A) and a� b ≤ a � a� b, a� b ≤ b→ a� b it follows

that a � a� b, b→ a� b ∈ Rad(A), so σ(a � a� b)= σ(b→ a� b)= 1.
One can easily check that conditions (S2)–(S5) are satisfied.

(2) a, b ∈ Rad(A)∗.
In this case, σ(a) = σ(b) = 0 and we will prove that a → b, a � b ∈

Rad(A). Indeed, suppose that a → b ∈ Rad(A)∗. Since a ≤ a−∼, it follows
that a−∼ → b ≤ a → b, so a−∼ → b ∈ Rad(A)∗. But a− ≤ a−∼ → b, hence
a− ∈ Rad(A)∗, contradicting condition (ii) in the definition of a perfect pseudo-
hoop (a ∈ Rad(A)∗ = D(A)∗ iff a− ∈ Rad(A) = D(A)). It follows that a →
b ∈ Rad(A) and similarly a � b ∈ Rad(A). Hence σ(a → b)= σ(a � b)= 1.

From a ∧ b ≤ b, a� b ≤ b, we get a ∧ b, a� b ∈ Rad(A)∗, thus σ(a ∧ b)=
σ(a� b)= 0.

We can see that conditions (S2)–(S5) are also verified.
(3) a ∈ Rad(A), b ∈ Rad(A)∗.

Obviously, σ(a)= 1 and σ(b)= 0.
We show that a → b ∈ Rad(A)∗. Indeed, suppose that a → b ∈ Rad(A).
Because b ≤ b−∼, we have a → b ≤ a → b−∼, so a → b−∼ ∈ Rad(A). This

means that (a� b∼)− ∈ Rad(A), that is, a� b∼ ∈ Rad(A)∗. On the other hand,
since Rad(A) is a filter of A and a, b∼ ∈ Rad(A) we have a � b∼ ∈ Rad(A), a
contradiction. We conclude that a → b ∈ Rad(A)∗, so σ(a → b)= 0.

Similarly, a � b ∈ Rad(A)∗, so σ(a � b)= 0.
Since a ∧ b ≤ b, a� b ≤ b, we have a ∧ b, a� b ∈ Rad(A)∗, so σ(a ∧ b)=

σ(a� b)= 0.
Moreover, a ∈ Rad(A) and a � b ∈ Rad(A)∗ implies a � a � b ∈ Rad(A)∗,

hence σ(a � a� b)= 0.
It is easy to see that conditions (S2)–(S5) are satisfied.

(4) a ∈ Rad(A)∗ and b ∈ Rad(A).
Taking into consideration that b ≤ a → b, b ≤ a � b we have a → b, a �

b ∈ Rad(A). From a ∧ b, a� b ≤ a we get a ∧ b, a� b ∈ Rad(A)∗.
Hence σ(a) = 0, σ(b) = 1, σ(a ∧ b) = σ(a � b) = 0, σ(a → b) = σ(a �

b)= 1.
Applying case (3), b ∈ Rad(A) and a � b ∈ Rad(A)∗ implies b → a � b ∈

Rad(A)∗, so σ(b→ a� b)= 0.
Thus conditions (S2)–(S5) are also satisfied.
We conclude that σ is a state operator on A, that is, (A,σ ) is a state pseudo-

hoop. �

Remark 9.3 The state operator σ defined in Theorem 9.4 is a C-state opera-
tor. Indeed, in cases (1), (3) and (4) in the proof of Theorem 9.4 we have
a ∨1 b, b ∨1 a, a ∨2 b, b ∨2 a ∈ Rad(A), so σ(a ∨1 b) = σ(b ∨1 a) = 1 and
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σ(a ∨2 b)= σ(b ∨2 a)= 1. In case (2), a ∨1 b, b ∨1 a, a ∨2 b, b ∨2 a ∈ Rad(A)∗,
hence σ(a ∨1 b)= σ(b ∨1 a)= 0 and σ(a ∨2 b)= σ(b ∨2 a)= 0.

Thus σ is a C-state operator.

9.3 State Operators and States on Pseudo-hoops

States on bounded pseudo-hoops have been investigated in [56]. In this section we
show that there is a close connection between state operators and states on pseudo-
hoops.

Theorem 9.5 Let σ be a state operator on the bounded pseudo-hoop A preserving
→ or �. If s is a Bosbach state on A, then the mapping sσ :A→[0,1] defined by
sσ (x) := s(σ (x)) is a Bosbach state on A.

Proof Obviously, sσ (0)= 0 and sσ (1)= 1, so (B3) is verified.
It is sufficient to assume that just one of the arrows →, � is preserved, the

preservation of the other one is then implied by Proposition 9.1(12).
Assume σ preserves →. It follows that:

sσ (x)+ sσ (x → y) = s
(
σ(x)

)+ s
(
σ(x → y)

)= s
(
σ(x)

)+ s
(
σ(x)→ σ(y)

)

= s
(
σ(y)

)+ s
(
σ(y)→ σ(x)

)= s
(
σ(y)

)+ s
(
σ(y → x)

)

= sσ (y)+ sσ (y → x).

Thus sσ satisfies (B1) and similarly sσ satisfies (B2).
It follows that sσ is a Bosbach state on A. �

Corollary 9.4 Let (A,σ ) be a linearly ordered state pseudo-hoop and s be a Bos-
bach state on A. Then the mapping sσ :A→[0,1] defined by sσ (x) := s(σ (x)) is a
Bosbach state on A.

Proof According to Corollary 9.1, σ preserves → and �, hence by Theorem 9.5,
sσ is a Bosbach state on A. �

Corollary 9.5 Let (A,σ ) be an idempotent state pseudo-hoop and s be a Bosbach
state on A. Then the mapping sσ : A → [0,1] defined by sσ (x) := s(σ (x)) is a
Bosbach state on A.

Proof By Proposition 9.9, σ preserves → and �, hence by Theorem 9.5, sσ is a
Bosbach state on A. �

Theorem 9.6 Let A be a bounded pseudo-hoop and σ be a state operator on A

preserving → or �. If s is a Bosbach state on Reg(A), then the mapping s̃σ :A→
[0,1] defined by s̃σ (x) := s(σ (x−∼)) is a Bosbach state on A.
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Proof Obviously, sσ (0)= 0 and sσ (1)= 1, so (B3) is verified.
If σ preserves one of the arrows →, �, then by Proposition 9.1(12) the second

one is also preserved. Assume σ preserves →.
Applying (pshoop-c9), we have:

s̃σ (x)+ s̃σ (x → y) = s
(
σ
(
x−∼

))+ s
(
σ
(
(x → y)−∼

))

= s
(
σ
(
x−∼

))+ s
(
σ
(
x−∼ → y−∼

))

= s
(
σ
(
x−∼

))+ s
(
σ
(
x−∼

)→ σ
(
y−∼

))

= s
(
σ
(
y−∼

))+ s
(
σ
(
y−∼

)→ σ
(
x−∼

))

= s
(
σ
(
y−∼

))+ s
(
σ
(
y−∼ → x−∼

))

= s
(
σ
(
y−∼

))+ s
(
σ
(
(y → x)−∼

))

= s̃σ (y)+ s̃σ (y → x).

Thus s̃σ satisfies condition (B1).
Similarly, s̃σ (x) + s̃σ (x � y) = s̃σ (y) + s̃σ (y � x), so condition (B2) is also

satisfied. It follows that s̃σ is a Bosbach state on A. �

Theorem 9.7 Let A be a good pseudo-hoop satisfying the (SO) property, σ be a
state operator and s be a Riečan state on A. Then the mapping sσ : A → [0,1]
defined by sσ (x) := s(σ (x)) is a Riečan state on A.

Proof Obviously, sσ (1)= 1.
It is easy to check that sσ (x⊕0)= sσ (x)+ sσ (0) and sσ (0⊕x)= sσ (0)+ sσ (x).
Consider x, y ∈A such that x �= 0, y �= 0 and x ⊥ y. It follows that σ(x)⊥ σ(y).
By the (SO) property we have x ⊥no y and applying Proposition 9.1(10) we get

σ(x ⊕ y)= σ(x)⊕ σ(y). Hence:

sσ (x⊕ y)= s
(
σ(x⊕ y)

)= s
(
σ(x)⊕σ(y)

)= s
(
σ(x)

)+ s
(
σ(y)

)= sσ (x)+ sσ (y).

Thus sσ is a Riečan state on A. �

Theorem 9.8 Let A be a good pseudo-hoop with the (SO) property and τ be a state
operator on A. If s is a Riečan state on Reg(A), then the mapping s̃τ : A→ [0,1]
defined by s̃τ (x) := s(τ (x−∼)) is a Riečan state on A.

Proof Since s is a Riečan state on Reg(A), according to Proposition 6.15(3),
s(x−∼)= s(x) for all x ∈ Reg(A).

Obviously, s̃τ (1)= 1, s̃τ (x ⊕ 0)= s̃τ (x)+ s̃τ (0) and s̃τ (0⊕ x)= s̃τ (0)+ s̃τ (x).
Consider x, y ∈A such that x �= 0, y �= 0 and x ⊥ y.
It follows that x−∼ ⊥ y−∼ (Proposition 1.6(7)).
Hence by the (SO) property, x−∼ ⊥no y−∼.
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Since (x ⊕ y)−∼ = x−∼ ⊕ y−∼ (Proposition 1.24(5)), applying Proposi-
tion 9.1(10) we get:

s̃τ (x ⊕ y) = s
(
τ
(
(x ⊕ y)−∼

))= s
(
τ
(
x−∼ ⊕ y−∼

))= s
(
τ
(
x−∼

)⊕ τ
(
y−∼

))

= s
(
τ
(
x−∼

))⊕ s
(
τ
(
y−∼

))= s̃τ (x)+ s̃τ (y)

(since s is a Riečan state and from x−∼ ⊥ y−∼ it follows that τ(x−∼)⊥ τ(y−∼)).
Thus s̃τ is a Riečan state on A. �

9.4 State Operators and Generalized States on Pseudo-hoops

The concept of generalized states has been extended to the case of pseudo-BCK
algebras and pseudo-hoops ([68]). In this section we investigate the connection be-
tween state operators and generalized states on a pseudo-hoop. Some conditions are
given for a state operator to be a generalized state and for a generalized state to be a
state operator.

Let A be a bounded pseudo-hoop and s : A−→ A be an arbitrary function such
that s(0) = 0 and s(x ∨1 y) = s(y ∨2 x) for all x, y ∈ A. Then s is said to be a
generalized Bosbach state of type I or a type I state if it satisfies one of the following
equivalent conditions:

(bsI1) for all x, y ∈ A with x ≥ y, s(x → y) = s(x) → s(y) and s(x � y) =
s(x) � s(y);

(bsI2) for all x, y ∈A, s(x ∨1 y)= s(x → y)� s(y) and s(x ∨2 y)= s(x � y)→
s(y);

(bsI3) for all x, y ∈A, s(x → y) � s(y)= s(y � x)→ s(x) and s(1)= 1;
(bsI4) for all x, y ∈A with x ≥ y, s(x)= s(x → y)� s(y)= s(x � y)→ s(y);
(bsI5) for all x, y ∈A, s(x → y)= s(x ∨1 y)→ s(y) and s(x � y)= s(x ∨2 y) �

s(y);
(bsI6) for all x, y ∈ A, s(x → y) = s(x) → s(x ∧ y) and s(x � y) = s(x) �

s(x ∧ y).

Proposition 9.12 Let A be a bounded pseudo-hoop and s : A −→ A be an order-
preserving type I state on A. Then the following hold for all a, b ∈A:

(1) s(a � b)= s(b→ a � b)� s(b)= s(a)� s(a � a� b);
(2) s(a)� s(b)≤ s(a � b).

Proof

(1) Since a� b ≤ a, b, applying (bsI1) we have:

s(b→ a� b)� s(b) = (
s(b)→ s(a � b)

)� s(b)

= s(b)∧ s(a � b)= s(a � b) and
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s(a)� s(a � a� b) = s(a)� (
s(a) � s(a � b)

)

= s(a)∧ s(a � b)= s(a � b).

(2) From a ≤ b→ a � b we have s(a)≤ s(b→ a� b).
Applying (1) we get: s(a)� s(b)≤ s(b→ a� b)� s(b)= s(a � b). �

Let A be a bounded pseudo-hoop and s : A−→ A be an arbitrary function such
that s(0) = 0 and s(x ∨1 y) = s(y ∨2 x) for all x, y ∈ A. The function s is said to
be a generalized Bosbach state of type II or a type II state if it satisfies one of the
following equivalent conditions:

(bsII1) for all x, y ∈ A with x ≥ y, s(x → y) = s(x) � s(y) and s(x � y) =
s(x)→ s(y);

(bsII2) for all x, y ∈A, s(x∨1 y)= s(x → y)→ s(y) and s(x∨2 y)= s(x � y) �
s(y);

(bsII3) for all x, y ∈A, s(x → y)→ s(y)= s(y � x)� s(x) and s(1)= 1;
(bsII4) for all x, y ∈A with x ≥ y, s(x)= s(x → y)→ s(y)= s(x � y) � s(y);
(bsII5) for all x, y ∈A, s(x → y)= s(x∨1 y) � s(y) and s(x � y)= s(x∨2 y)→

s(y);
(bsII6) for all x, y ∈ A, s(x → y) = s(x) � s(x ∧ y) and s(x � y) = s(x) →

s(x ∧ y).

Let A be a bounded Wajsberg pseudo-hoop and s :A−→A be a mapping satis-
fying s(0)= 0, s(1)= 1 and s(x ∨1 y)= s(y ∨2 x). Then:

(1) s is a type I state iff s(d1(x, y)) = s(x ∨ y) → s(x ∧ y) and s(d2(x, y)) =
s(x ∨ y) � s(x ∧ y);

(2) s is a type II state iff s(d1(x, y)) = s(x ∨ y) � s(x ∧ y) and s(d2(x, y)) =
s(x ∨ y)→ s(x ∧ y).

Let A be a bounded pseudo-hoop. An endomorphism h : A −→ A satisfying
the condition h(x ∨1 y) = h(y ∨2 x) for all x, y ∈ A is called a generalized state-
morphism. If, moreover, h(x → y)= h(x � y) for all x, y ∈ A, then h is a strong
generalized state-morphism.

A mapping m : A −→ A is called a generalized Riečan state iff the following
conditions are satisfied for all x, y ∈A:

(rs1) m(1)= 1;
(rs2) for all x, y ∈A, if x ⊥ y, then m(x)⊥m(y) and m(x ⊕ y)=m(x)⊕m(y).

Proposition 9.13 Every C-state operator on a bounded pseudo-hoop is a type I
state.

Proof Let σ be a state operator on a bounded pseudo-hoop A.
From (S1) we have σ(0)= 0.
By condition (C) and Proposition 9.3 we get σ(x ∨1 y)= σ(y ∨2 x).
Since condition (S2) in the definition of a state operator is condition (bsI6), it

follows that σ is a type I state on A. �
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Corollary 9.6 Every perfect pseudo-hoop admits a type I state.

Proof According to Theorem 9.4 and Remark 9.3, every perfect pseudo-hoop has
a C-state operator, hence by Proposition 9.13 every perfect pseudo-hoop admits a
type I state. �

Proposition 9.14 Let (A,σ ) be an idempotent state pseudo-hoop such that σ(x ∨1
y)= σ(y ∨2 x). Then σ is a generalized state-morphism on A.

Proof This follows by Propositions 9.9 and Proposition 9.2. �

Proposition 9.15 Let (A,σ ) be a linearly ordered state pseudo-hoop such that
σ(x ∨1 y)= σ(y ∨2 x). Then σ is a generalized state-morphism on A.

Proof This follows by Corollary 9.1 and Proposition 9.2. �

Proposition 9.16 If (A,σ ) is a good state pseudo-hoop satisfying the (SO) prop-
erty, then σ is a generalized Riečan state on A.

Proof From Proposition 9.1(1) we have σ(1)= 1, that is, (rs1).
It is easy to check that σ(x ⊕ 0)= σ(x)⊕ σ(0) and σ(0⊕ x)= σ(0)⊕ σ(x).
Consider x, y ∈A such that x �= 0, y �= 0 and x ⊥ y.
From the (SO) property we have x ⊥no y and applying Proposition 9.1(10), we

get σ(x ⊕ y)= σ(x)⊕ σ(y), so (rs2) is verified too.
Thus σ is a generalized Riečan state on A. �

Theorem 9.9 If A is a linearly ordered bounded pseudo-hoop and s : A −→ A is
an order-preserving type I state such that s2(x)= s(x)≤ x for all x ∈ A, then s is
a state operator on A.

Proof Applying the hypothesis and the definition of a type I state, we will verify
axioms (S1)–(S5) from the definition of a state operator.

(S1) s(0)= 0:
This follows from the definition of a type I state.

(S2) s(a → b)= s(a)→ s(a ∧ b) and s(a � b)= s(a) � s(a ∧ b):
This is the condition (bsI6).

(S3) s(a � b)= s(a)� s(a � a � b)= s(b→ a � b)� s(b):
This follows from Proposition 9.12(1).

(S4) s(s(a)� s(b))= s(a)� s(b):
Since s(x)≤ x for all x ∈A we have s(s(a)� s(b))≤ s(a)� s(b).
On the other hand, from Proposition 9.12(2), replacing a with s(a) and b with
s(b) we get s2(a)� s2(b) ≤ s(s(a) � s(b)), that is, s(a)� s(b) ≤ s(s(a)�
s(b)).
Thus s(s(a)� s(b))= s(a)� s(b).



9.4 State Operators and Generalized States on Pseudo-hoops 261

(S5) s(s(a)→ s(b))= s(a)→ s(b) and s(s(a) � s(b))= s(a) � s(b):
Since A is linearly ordered we consider the cases:

(a) b ≤ a, so s(b) ≤ s(a). According to condition (bsI1) we get s(s(a) →
s(b))= s2(a)→ s2(b)= s(a)→ s(b).

(b) a ≤ b, so s(a) ≤ s(b). It follows that s(a) → s(b) = 1, thus s(s(a) →
s(b))= s(a)→ s(b)= s(1)= 1.

Similarly, s(s(a) � s(b))= s(a) � s(b).
We conclude that s is a state operator on A. �

Theorem 9.10 If A is a linearly ordered bounded pseudo-hoop and s :A−→A is
an order-preserving type I state such that s2 = s and s(x � y)= s(x)� s(y) for all
x, y ∈A, then s is a weak state-morphism operator on A.

Proof The axioms (S1), (S2), (S3) and (S5) are verified in a similar way as in Theo-
rem 9.9.

For axiom (S4) we have: s(s(a)� s(b))= s2(a)� s2(b)= s(a)� s(b).
Since s(x � y) = s(x)� s(y) for all x, y ∈ A, it follows that s is a weak state-

morphism operator on A. �

Theorem 9.11 Let σ be a C-state operator on the bounded pseudo-hoop A pre-
serving → or �. If s : A−→ A is a type I (type II) state on A, then sσ : A−→ A

defined by sσ (x) := s(σ (x)) is a type I (type II) state on A.

Proof Obviously, sσ (0)= s(σ (0))= s(0)= 0.
We remark again that, if σ preserves one of the arrows →, �, then by Proposi-

tion 9.1(12) the second one is also preserved.
Since σ is a C-state operator on A, applying Corollary 9.2 we have:

sσ (x ∨1 y)= s
(
σ(x ∨1 y)

)= s
(
σ(x ∨2 y)

)= sσ (x ∨2 y).

On the other hand, from σ(x∨2 y)= σ(y∨2 x), we get sσ (x∨2 y)= sσ (y∨2 x).
Hence sσ (x ∨1 y)= sσ (y ∨2 x).
Let s be a type I state on A, so it satisfies (bsI1).
Consider y ≤ x. It follows that σ(y)≤ σ(x) and taking into consideration that σ

preserves →, we get:

sσ (x → y) = s
(
σ(x → y)

)= s
(
σ(x)→ σ(y)

)= s
(
σ(x)

)→ s
(
σ(y)

)

= sσ (x)→ sσ (y).

Similarly, sσ (x � y)= sσ (x) � sσ (y) for all x, y ∈A.
Hence sσ satisfies (bsI1), thus it is a type I state on A.
Suppose s is a type II state on A, so it satisfies (bsII1).
Assume y ≤ x, so σ(y)≤ σ(x). Since σ preserves →, we get:
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sσ (x → y) = s
(
σ(x → y)

)= s
(
σ(x)→ σ(y)

)= s
(
σ(x)

)
� s

(
σ(y)

)

= sσ (x) � sσ (y).

Similarly, sσ (x � y)= sσ (x)→ sσ (y) for all x, y ∈A.
Thus sσ satisfies (bsII1), hence it is a type II state on A. �

Corollary 9.7 Let (A,σ ) be a linearly ordered C-state pseudo-hoop and s be a type
I (type II) state on A. Then the mapping sσ : A−→ A defined by sσ (x) := s(σ (x))

is a type I (type II) state on A.

Proof According to Corollary 9.1, σ preserves → and �, hence by Theorem 9.11,
sσ is a type I (type II) state on A. �

Corollary 9.8 Let (A,σ ) be an idempotent C-state pseudo-hoop and s be a Bos-
bach state on A. Then the mapping sσ : A → A defined by sσ (x) := s(σ (x)) is a
type I (type II) state on A.

Proof By Proposition 9.9 we have σ(x ∧ y)= σ(x)∧ σ(y). According to Proposi-
tion 9.2, σ preserves → or �, hence by Theorem 9.11, sσ is a type I (type II) state
on A. �

Remark 9.4 The state operator σ from Corollaries 9.7 and 9.8 is an endomorphism
satisfying condition (C). Moreover, σ(A) is a Wajsberg sub-pseudo-hoop of A.
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88. Di Nola, A., Dvurečenskij, A., Tsinakis, C.: Perfect GMV-algebras. Commun. Algebra 36,

1221–1249 (2008)
89. Di Nola, A., Georgescu, G., Leuştean, I.: MV-algebras. Manuscript
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