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Preface

This book began with a question asked by Professor Luis T. Aguilar to Professor
Leonid Fridman in 2005: How can I generate oscillations of low frequency and
particular amplitude using variable structure control?

Coincidentally, this question was asked in the right place and at the right
time, because in 2005, Professors Igor Boiko and Leonid Fridman completed
their research on the second-order sliding mode control algorithms in frequency
domain [13, 14, 16–18], resulting in the possibility of calculating the amplitude
and frequency of chattering in systems with second-order sliding mode controllers.
They discovered that describing functions (DF) of the second-order sliding mode
control algorithms could shift the point characterizing the oscillatory mode resulting
from chattering to the second and third quadrants of the complex plane. With the
discovery of this property, a straightforward logical conclusion could be made that
the problem of generation of self-oscillations (SO) with desired amplitude and
frequency could be defined as an inverse problem with respect to the one previously
studied. Motivated by this question, Professor Rafael Iriarte found his subject of
research in this area too.

Usually, the DF of a single-valued nonlinearity is located on the negative part
of the real axis of the complex plane. So for the design of SO in such a situation,
only dynamic compensators can be employed, but the possibility of compensators
to shape the Nyquist plot of the plant is very limited.

Therefore, the idea that the controller itself could be designed in such a way that
its DF (negative reciprocal of the DF) might be placed in any desired point of the
complex plane was conceived. This idea serves as the basis for the main subject of
this book.

In this book, the two-relay controller (TRC) is proposed, which is intended for
the generation of SO in dynamic systems. A remarkable feature of this controller
is the possibility, with a simple change of controller gains, for one to produce the
DF in every phase angle between 0 and 360ı, which corresponds to the crossing
of the Nyquist plot of the plant and the negative reciprocal of the DF of the
controller in any desired point. This point would define the SO produced in the
system containing the plant and the controller. The design procedures for TRC are
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proposed using three different methodologies based on the following: DF, Poincaré
maps, and locus of a perturbed relay system (LPRS) method. Three strategies
of robustification of generated SO are also proposed. The theoretical results are
illustrated by experiments on SO generation in four underactuated systems: wheel
pendulum, Furuta pendulum, three-link robot, and three-degrees-of-freedom (3-
DOF) helicopter. The experiments are recorded with available video recordings
presented in the following web links:

– https://www.youtube.com/watch?v=t_1DcUdwFGE
– https://www.youtube.com/watch?v=MwXVQXlbJMQ
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Notations and Acronyms

TRC Two-relay control
SO Self-oscillation
DF Describing function
SOSM Second-order sliding modes
HOSM High-order sliding modes
LPRS Locus of a perturbed relay system
DOF Degree(s) of freedom
AOS Asymptotic orbital stability

R The set of real numbers
R

n The set of all n-dimensional vector with real numbers
R

m�n The set of all m � n matrices with real elements
C The set of complex numbers
j Imaginary unit
d.p; S/ Distance between the point p and the set S (infx2S jp � xj)
q 2 R

n Joint position vector
Pq 2 R

n The time derivative of the joint position vector
c1; c2 Two-relay controller gains
A1 Amplitude of the oscillation
! Frequency of the oscillation
˝ Particular or desired value of frequency of the oscillation
t Time
N.A; !/ Describing function depending on the amplitude and frequency of the

oscillation
s Frequency domain complex variable s D j!
W.s/ Transfer function
� Ratio of the two-relay controller gains
T Period of a signal
� Actuated states vector
� Unactuated states vector
�?1 ; �

? Fixed point of Poincaré map
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x Notations and Acronyms

t2; Nt2 Hypothetical boundary crossing times in Poincaré map construction
�0 Constant term in the error signal
�p Sum of periodic terms of Fourier series of the error signal
u0 Constant term in the control signal
up Sum of periodic terms of Fourier series of the control signal
y0 Constant term in the output signal
yp Sum of periodic terms of Fourier series of the output signal
� Asymmetric duty in two-relay controller
L.!; �/ Operative function for LPRS computation
J.!/ LPRS complex function
AL.!/ Modulus of the transfer function jW.j!/j
Au Amplitude of the control signal (first harmonic)
� Constant value that provides a fraction of the period T of a signal t D �T,

� 2 Œ�0:5I 0:5�
au Amplitude of the control signal
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Chapter 1
Introduction

Oscillations play an important role in many areas of life and science. Many
technical and biological systems involve modes that can be considered as self-
excited oscillations. Various types of periodic motions can usually be considered
as oscillations. Examples range from the planetary motion to internal combustion
engine work and oscillations used in radio technology. Walking gait being a kind
of functional motion under some simplifying conditions can also be considered as a
specific oscillation. The given examples show that some of these periodic motions
occur naturally, and some—in engineering systems—require specific methods of
generation.

1.1 State of the Art

1.1.1 Overview

Researchers have been investigating and applying limit cycle behavior to many
different engineering fields since a long time ago. We can find several research
works on this subject (see, e.g., [74]), but in the present book, we will focus on limit
cycles induced by relay feedback systems only. In this monograph, we consider
generation of one of the simplest types of a functional motion: a periodic motion.
The systems that we consider in the book are underactuated and non-minimum-
phase systems that are a challenging object for the stated task. Current representative
works on periodic motions and orbital stabilization of underactuated systems
involve finding and using a reference model as a generator of limit cycles (see,
e.g., [10, 68]), in which the problem of obtaining a periodic motion is considered as
a servo problem. Orbital stabilization of underactuated systems finds applications
in the coordinated motion of biped robots [23, 45, 70], gymnastic robots, electrical

© Springer International Publishing Switzerland 2015
L.T. Aguilar et al., Self-Oscillations in Dynamic Systems, Systems & Control:
Foundations & Applications, DOI 10.1007/978-3-319-23303-1_1

1



2 1 Introduction

converters [2, 66], and others (see, e.g., [41, 81] and references therein). On the other
hand, we can find a lot of systems where self-oscillations can be produced within
the system itself, such as biological systems [21, 27], chemical processes [43, 91],
solid-state electronics [72, 75], nuclear systems [50, 56], among others [6, 60].

In power electronics applications, the idea of self-oscillating switching is used
in dc–dc inverters [22, 59, 66]. This allows one to ensure nearly zero sensitivity
to load changes and high performance. Such inverters are attractive to operate in
dc–ac converters since two buck–boost dc–dc inverters are commonly used. Several
topologies were proposed for these converters, for example, a buck–boost dc–ac
inverter using a double-loop control for a buck–boost dc–dc converter was designed
in [76]. In [94] a self-sustained oscillating controller for power factor correction
circuits was presented.

In particular, one of the most interesting applications of self-oscillation is to
develop motion planning algorithms which allow an underactuated robot to execute
reliable maneuvers under small-amplitude and high-frequency control which is
a challenge in mechanical systems. The formulation is different from typical
formulation of the output tracking control problem for fully actuated mechanical
systems [89] where the reference trajectories can be arbitrarily given. This difficulty
comes from the complexity of underactuated systems that are neither feedback nor
input-state linearizable. In this problem, special attention to the selection of the
desired trajectory is required too. Different approaches to orbital stabilization are
available in the literature that are discussed below.

1.1.2 Tools for Generation of Self-Oscillations Used
in this Book

In this book, we will use traditional methods of analysis of periodic solutions of
relay systems and chattering in sliding mode control systems [13, 14, 16, 36–38, 88].

They could be divided in two groups: the frequency-domain approach and the
state-space approach.

The main method we will use in this book is a describing function method
(see, e.g., [8, 31, 42, 87, 90]). From the DF method, we discovered the idea of the
TRC (Section 2.4). The DF method is used to find the approximate value of TRC
parameters of desired SO. Loeb criteria based on DF is used for stability analysis of
generated oscillations.

Traditionally Poincaré maps (point mappings) (see [36–38, 49, 64, 90] and
references therein) are used as the sufficient and/or necessary conditions for
existence and stability of periodic motions. In Chapter 3 of this book, Poincaré
maps are firstly used for generation of SO with desired period and amplitude.
Poincaré maps gives the formulas for exact values of parameters for TRC together
with sufficient and necessary conditions for existence and sufficient conditions for
stability of generated SO.
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In Chapter 4 locus of a perturbed relay system (LPRS)[13, 14, 16] is used to find
theoretically exact values of TRC parameters and investigate stability of generated
periodic solutions LPRS.

1.1.3 Generation Methods Self-Oscillations

There are several methods for generation of SO. For example, in [80] a constructive
tool for generation and orbital stabilization of periodic motion in underactuated
nonlinear system through virtual constraint approach was introduced. In [41]
asymptotic tracking for an unactuated link by finding conditions for the existence of
a set of outputs that yield a system with a one-dimensional exponentially stable zero
dynamics was demonstrated. In [69] and [78], an asymptotic harmonic generator
was introduced through a modified Van der Pol equation tested on a friction
pendulum to solve the swing-up problem for an inverted pendulum. In [10], a set
of exact trajectories of the nonlinear equations of motion, which involve inverted
periodic motions, was derived. There are several applications of the abovementioned
procedures in the literature (see, e.g., [10, 20, 82, 83] and references therein). In [1],
a method for SO based on a two-relay controller interconnected to a linear system
applied to an underactuated system was proposed.

The research given in [13, 14, 16–18], where analysis of the second-order sliding
mode algorithms in frequency domain was made, provides means for computations
of the amplitude and frequency of chattering in systems governed by the second-
order sliding mode controllers. It was discovered in the above-noted research that the
negative reciprocal DF of the second-order sliding mode algorithms can be placed in
the second and third quadrants of the complex plane—depending on the controller
parameters. Usually, negative reciprocal of the DF of a single-valued nonlinearity is
located on the negative part of the real axis of complex plane. So for the design of the
SO in such situation, only dynamic compensators can be used. But the possibility
of shaping the Nyquist plot of the plant through the use of compensators is very
limited. The possibility of placement of the negative reciprocal DF using the control
algorithm parameters to have it cross the Nyquist plot of the plant in any desired
point is an idea that lies in the foundation of the presented SO design.

The present monograph provides a study of such situations, where conventional
methods of exciting oscillations are unsuitable, and proposed a new method named
the two-relay controller (TRC) . The main purpose of the book is to demonstrate the
capabilities of the two-relay controller to induce SO in dynamic systems with wide
range of desired amplitudes and frequencies. With respect to the problem of analysis
of oscillations, the problem of generation of self-oscillations (SO) with desired
amplitude and frequency is an inverse problem. Still, solution is nontrivial, and
knowledge of analysis does not answer the question of how to design a controller
producing SO with desired amplitude and frequency.
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The specific feature of the TRC is that one can rotate its negative reciprocal
DF within 360 degrees range through a simple change of controller gains, which
allows for obtaining the intersection point with the Nyquist plot of the plant in any
desired location. Therefore, the central contribution of the book is related to the
design procedures of self-oscillation with desired frequency and amplitude using
TRC. This design is done through three different methodologies DF, Poincaré maps,
and locus of a perturbed relay system (LPRS) method. It should be pointed out
that standard methods for design of SO usually rely on the plant being a double
integrator.

In this book, underactuated systems are considered as systems with internal
(unactuated) dynamics with respect to the actuated variables. It allows us to propose
a method of generating a self-oscillation in underactuated systems where the same
behavior can be seen via second-order sliding mode (SOSM) algorithms, that is,
generating self-excited oscillations using the same mechanism as the one that
produces chattering. However, the generalization of the SOSM algorithms and the
treatment of the unactuated part of the plant as additional dynamics result in the
oscillations that may not necessarily be fast and of small amplitude.

The main results of the book are summarized as follows:

• A two-relay controller is used to generate self-excited oscillations in linear
closed-loop systems. The required frequencies and amplitudes of periodic
motions are produced without tracking of precomputed trajectories. It allows
for generating a wider (than the original twisting algorithm with additional
dynamics) range of frequencies and encompassing a variety of plant dynamics.

• An approximate approach based on the describing function is proposed to find the
values of the controller parameters allowing one to obtain the desired frequencies
and the output amplitudes.

• A design methodology based on LPRS that gives exact values of controller
parameters for the linear plants is developed.

• An algorithm that uses Poincaré maps and provides the values of the controller
parameters ensuring the existence of the locally orbitally stable periodic motions
is proposed.

• Necessary conditions for orbital asymptotic stability of desired self-oscillations
are given.

• The theoretical results are validated numerically and experimentally via the tests
on the laboratory underactuated pendulums such as inertia wheel pendulum and
Furuta pendulum. The computed gains of the TRC allow for the existence of a
periodic motion of the required frequency and amplitude around the pendulum
upright position (which gives the non-minimum-phase system case) in wide
ranges of frequencies and amplitudes.
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1.2 Generation of Self-Excited Oscillations: A Describing
Function Approach

Self-excited oscillations can occur only in nonlinear systems. A system Px D f .x/
oscillates when it has a nontrivial periodic solution x.t C T/ D x.t/ for some T > 0.
A periodic motion that may arguably occur in a marginally stable linear system
cannot be stable: due to the scalability of solutions in linear systems, there is no
unique periodic solution in a marginally stable system; every disturbance would
drive the process to a different periodic motion. Despite the theoretical existence
of periodic solutions, marginally stable linear systems cannot have limit cycles—
isolated closed-loop trajectories with certain domains of attraction.

Normally, for the possibility of producing oscillations by a system, the following
conditions must be satisfied:

• The system must have a dynamic part that can be linear or nonlinear
• The system must have a nonlinear part (nonlinearity), which may be static

(single-valued or hysteretic) or dynamic nonlinearity
• The system must have a feedback between the dynamic part and the nonlinearity

ensuring their connections in a loop (Fig. 1.1)

If the dynamic part does not contain nonlinearities and, therefore, can be
described by a transfer function, then oscillations in the system can be found from
the harmonic balance equation:

W.j˝0/N.a0;˝0/ D �1; (1.1)

where W.s/ is the transfer function of the dynamic part, N is the DF of the nonlinear
part,˝0 is the frequency, and a0 is the amplitude of the oscillations.

However, not all self-oscillating systems are usually given by the diagram of
Fig. 1.1. There are some that are formally designed using different principles. One
of them is presented in the following section.

Fig. 1.1 Feedback loop with
dynamic and nonlinear part
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Fig. 1.2 Transformed Van der Pol system

1.2.1 Analysis of Van der Pol Equation

The Van der Pol oscillator is an example of such a system whose equation is given by

Rx C ˛.x2 � 1/Px C x D 0: (1.2)

However, the following transformation (adopted from [44]) allows us to present
the dynamic system (1.2) in the format given by Fig. 1.1. The transformed system
is presented in Fig. 1.2. We further assume that a symmetric oscillation exists in
system (1.2), and signal x.t/ is close to a sinusoid:

x.t/ D a0 sin.˝0t/: (1.3)

The time derivative of the output signal is

Px.t/ D a0˝0 cos.˝0t/:

Therefore, the output of the nonlinear part is

u D �x2 Px D �a20 sin2.˝0t/a0˝0 cos.˝0t/

D �a30˝0

2
.1 � cos.2˝0t// cos.˝0t/

D �a30˝0

4
.cos.˝0t/ � cos.3˝0t//:

(1.4)

One can see from (1.4) that u.t/ contains the third harmonic. Let us analyze now the
frequency response properties of the linear dynamic part. The magnitude frequency
response (magnitude Bode plot) of the dynamic part is the same as that of the
better known transfer function ˛=.s2 C ˛s C 1/ because the two poles are complex
conjugate:
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Fig. 1.3 Magnitude Bode
plot of the Van der Pol system

M.!/ D 20 log
˛

j.j!/2 � j!˛ C 1j
D 20 log

˛
p
.1 � !2/2 C !2˛2

:
(1.5)

The magnitude Bode plot of the linear part is given in Fig. 1.3. One can see that
the linear part has low-pass filtering properties. Thus, we might expect that the
third harmonic term in (1.4), when propagated through the linear part, would be
attenuated, so that the output signal x.t/ would be close to a sinusoid. Therefore, our
initial assumption about the sinusoidal shape of signal x.t/makes sense, and we can
disregard the third harmonic in analysis of signals propagation for the considered
system.

We can define the DF of the relay nonlinearity as the complex gain that describes
the propagation of the first harmonic in x.t/ through the nonlinearity. Disregarding
the third harmonic in u.t/, we can write for the control signal

u.t/ � �a30˝0

4
cos.˝0t/:

Considering the fact that x.t/ D a0 sin.˝0t/ and Px.t/ D a0˝0 cos.˝0t/, we rewrite
u.t/ as follows:

u.t/ � �a20
4

Px.t/:

Recalling that s D j! in the Laplace domain represents differentiation, we write for
the DF:

N.a; !/ D j
a2

4
!; (1.6)

where a and ! are arbitrary amplitude and frequency (arguments of the DF).
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Fig. 1.4 Equivalent Van der Pol system

Amplitude and frequency in Van der Pol equation can be found from the
harmonic balance condition (1.1):

j
a20
4
˝0

˛

�˝2
0 � j˛˝0 C 1

D �1: (1.7)

Block diagram of the equivalent dynamics of the system under the assumption of
the sinusoidal shape of x.t/ due to the low-pass filtering properties of the linear part
is presented in Fig. 1.4. Solution of (1.7) provides the following results: a0 D 2,
˝0 D 1.

One can see from the analysis given above that the original Van der Pol equations
can be transformed into the format that satisfies the three conditions mentioned
above. The transformed model includes a nonlinearity represented by the DF (1.6),
a linear part, and their connections in a loop.

Through the analysis of the self-excited oscillations in Van der Pol equation, the
harmonic balance (see (1.1)) application was illustrated. It allows for another form
of the equation (1.1) that is convenient in many practical computations and which
we are going to use below:

� 1

N.a0;˝0/
D W.j˝0/: (1.8)

The function that appears in the left-hand side of this equation is the negative
reciprocal of the DF. The solution of equation (1.8) has a simple graphical
interpretation, especially if the DF depends only on the amplitude (N D N.a/).
If the frequency response of the dynamic (linear) part is depicted as a Nyquist
plot in the complex plane and the negative reciprocal is depicted as a function of
amplitude a, then the point of intersection of the two curves yields the periodic
solution (approximately—because only the first harmonic is accounted for). Many
practically important nonlinearities encountered in oscillatory systems are single-
valued or hysteretic nonlinearities.

Formula (1.8) can also be a foundation of a method of exciting periodic
motions in mechanical and other physical systems, when the plant is available,
and oscillations can be excited by including nonlinearities in the controller. For
the single-valued nonlinearities, negative reciprocal DF coincides with the real
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axis of the complex plane. For hysteretic nonlinearities, negative reciprocal DF is
usually located in the third quadrant (for positive hysteresis) or second quadrant (for
negative hysteresis) of the complex plane.

1.2.2 The Problem of Self-Oscillations in Systems Containing
Double Integrator

There are some “difficult” systems, in which the use of feedback having a single-
valued nonlinearity (e.g., relay) may not produce a desirable result. Let us illustrate
it by the following example.

Consider the double integrator closed by the relay feedback:

Rx D � sign.x/: (1.9)

Assume that a periodic motion may exist in system (1.9) and find parameters
(amplitude and frequency) of this periodic motion. Assume that a periodic solution
of frequency ! (period T D 2	=!) exists. In this case the second derivative if the
output is given as a square wave:

Rx D
(

1 if 0 < t � T=2

�1 if T=2 < t � T:
(1.10)

In formula (1.10), we associate initial time with the switch of the relay control from
�1 to C1. The symmetric solution for Px is found via integration of (1.10) on each
interval, with proper constant term selection:

Px D
(

t � T=4 if 0 < t � T=2

3T=4 � t if T=2 < t � T;
(1.11)

and in the same way, we find the symmetric periodic solution for x.t/—via taking
an integral of (1.11):

x D
(

t2=2 � Tt=4 if 0 < t � T=2

3Tt=4� t2=2� T2=4 if T=2 < t � T:
(1.12)

We can now check the switching conditions for the relay from formula (1.12). One
can see that x.0/ D x.T/ D 0 and x.T=2/ D 0. Therefore, the switching of the
relay (right-hand side of (1.10)) is ensured at time t D 0 and t D T=2. Thus, a
periodic motion of period T, indeed, exists in this system. However, we also see that
this periodic motion may exist for any value of period T, because for every given
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T equations (1.11), (1.12) remain valid. In fact, the frequency that will be actually
produced in the system would depend on the initial conditions x.0/, Px.0/ (note: time
t D 0 is not the same time as in formulas (1.11), (1.12)).

We can see that relay control cannot produce a stable periodic motion in the
double integrator system. Instead, we have infinite number of periodic solutions,
each of those depend on initial conditions.

Consider another example—also containing a double integrator. The following
model represents the vertical channel of a helicopter dynamics (height control in the
autonomous application):

Rx D 1

m
.v � Fg/

Pv D 1

Ta
.Kau � v/

(1.13)

where x.t/ is the height, m is the helicopter mass, v.t/ D Ft is the thrust, Fg D mg is
the gravity force, Ka and Ta are gain and time constant of motor-propeller dynamics,
respectively, and u.t/ is the controller command. We attribute the dynamics given
by the transfer function Ka=.Tas C 1/ to motor-propeller dynamics, and the whole
dynamic model of the helicopter height channel can be presented as the block
diagram in Fig. 1.5. Nyquist plot of the helicopter dynamics is schematically
presented in Fig. 1.6. One can see that the plot begins in the second quadrant for zero

Fig. 1.5 Block diagram of helicopter dynamics

Fig. 1.6 Nyquist plot of helicopter dynamics
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frequency and then with frequency increase continues to the first quadrant and ends
in the origin with infinite frequency. The plot does not have points of intersection
with the real axis. Thus, generation of self-excited oscillations by means of inclusion
of a single-valued nonlinearity in the feedback is impossible. The question that may
arise is: how one could excite self-oscillations in this system. These oscillations may
be used for controller auto-tuning or as a part of a maneuvering motion (we review
below application of the tracking principle for this purpose). One possible way of
doing this would be through the use of a relay with negative hysteresis. However,
with application of this approach, there may be issues in finding a proper hysteresis
value that would ensure the existence of self-excited periodic motions. And also,
there may be issues with stability of these periodic motions.

The present monograph provides a study of such situations, where conventional
methods of exciting oscillations are unsuitable, and proposes a new method named
the two-relay controller.

1.2.3 Why Not Tracking?

Another quite obvious method of producing periodic motions in a physical system
would be through tracking. For this purpose, a closed-loop system must be
organized, which should include a feedback controller, so that the system might
track external signals. With this arrangement, the system may track not only periodic
but any external signal that is applied to its input. This looks like an advantage over
the method of exciting self-oscillations. Let us, however, analyze and compare these
two methods in some detail.

We shall consider that the dynamic part is linear and attributed to the plant, and
the nonlinear part is attributed to the controller. Therefore, in the considered option,
the nonlinear part is simply not present, because the selected method of generating
oscillations is through the use of tracking, that is, the use of a linear controller.
The presence of some nonlinearities in the dynamic part is possible and may only
insignificantly change the situation if these nonlinearities are relatively small.

We consider the following example of generating oscillation through the use
of the relay feedback having an ideal (non-hysteretic) relay as the first option and a
tracking system having the same dynamic linear part as the second option. Assume
that the system has the dynamic linear part given by the transfer function Wl.s/.
Nyquist plot of this transfer function is presented in Fig. 1.7. Consider the design of
the simplest type of a feedback controller—the proportional one. The controller is
characterized by only one parameter—proportional gain Kc. Due to the requirement
of the closed-loop stability, we must design controller with gain Kc that satisfies the
following inequality:

KcjWl.j!	/j < 1; (1.14)
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Fig. 1.7 Nyquist plot

where !	 is the phase crossover frequency of the linear part, that is, the frequency
corresponding to 180 deg of the phase lag of the linear part.

In fact, for providing proper performance, not only the above constraint must
hold, but a certain gain margin must be ensured. Normally, the gain margins used in
practice are always larger than two. Therefore, if we assume this minimum value,
we can rewrite formula (1.14) as follows:

KcjWl.j!	/j D 0:5: (1.15)

Therefore, the proportional gain Kc can be chosen simply as

Kc D 0:5=jWl.j!	/j:

As a result of the use of the formula for finding the closed-loop transfer function

Wcl.j!/ D KcWl.j!/

1C KcWl.j!/
; (1.16)

which can be rewritten considering (1.15) as

Wcl.j!/ D 0:5Wl.j!/=jWl.j!	/j
1C 0:5Wl.j!/=jWl.j!	/j ; (1.17)

such characteristics of tracking quality as the phase lag and the closed-loop system
gain at the frequency of the input signal can be considered:


cl.!/ D arg Wcl.j!/
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Fig. 1.8 Closed-loop characteristics at low frequencies

Fig. 1.9 Closed-loop characteristics at high frequencies

and

Mcl.!/ D jWcl.j!/j:

Good tracking quality would be characterized by the following values of 
cl and
Mcl.!/: 
cl � 0 (
cl < 0), that is having small phase lag, and Mcl.!/ � 1,
i.e., having nearly unity closed-loop gain. We can illustrate by vector diagrams
the mechanism of producing the closed-loop characteristics at different frequencies
(Figs. 1.8 and 1.9). We should note that at low frequencies ! of the input signal, the
ratio jWl.j!/j=jWl.j!	/j is greater than one and of the order of a few units (for non-
integrating dynamic linear part), whereas at frequencies close to the phase crossover
frequency (high frequencies), this ratio is close to one. Figure 1.8 illustrates the
mechanism of producing the closed-loop system phase lag at low frequencies and
Fig. 1.9 at high frequencies. The closed-loop gain can also be estimated using
Figs. 1.8 and 1.9 as a ratio of the lengths of vectors QWl.j!/ D 0:5Wl.j!/=jWl.j!	/j
and 1 C 0:5Wl.j!/=jWl.j!	/j D 1 C QWl.j!/. One can see that the angle j
clj
in Fig. 1.8 can be small, but this angle in Fig. 1.9 can never be small. Therefore,
while fairly good tracking property is possible for low-frequency input signals, it
is absolutely impossible for high-frequency signals (frequency close to the phase
crossover frequency).
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Fig. 1.10 Single-valued
relay dynamics

On the other hand, we can consider generation of self-excited oscillations
through the use of a nonlinear (relay in the considered example) feedback
(Fig. 1.10). Again, we shall consider the same dynamic linear part having the
transfer function Wl.s/. According to the harmonic balance equation (1.1),
oscillations are generated at the frequency, where the phase lag of the linear
part is equal to 180 deg, because the DF of the ideal relay is N.a/ D 4h=.	a/,
where h is the relay amplitude, that is at the phase crossover frequency! Whatever
is practically impossible with the use of the tracking principle can be easily
achieved with the self-oscillation. Frequencies other than !	 can also be generated
through self-oscillations if proper values of hysteresis are selected in the relay.
This monograph, in particular, considers methods of producing self-oscillations
of various frequencies. The tracking principle has its own advantages, of course,
with the main one being the possibility of tracking different shapes, whereas with
the self-oscillation, the shape is hardly controllable. But in the aspect of achieving
high frequencies of produced oscillations, the principle of self-excited oscillation is
advantageous.

Some systems, in particular those containing double integrators, require oscilla-
tions in a wide bandwidth corresponding to the third quadrant of the Nyquist plane.
So it becomes difficult or practically impossible with tracking to reach the set of
desired frequencies. This book describes how one can generate self-oscillations in a
wide range of frequencies using TRC.

1.3 Organization of the Book

1.3.1 Contents of the Book

The book consists of an introduction and three parts, and it is organized as follows.

• Part I. In this part, we focused in the design of SO using the two-relay controller.
In Chapter 2, we use the describing function method to obtain a set of equations
for the values of controller parameters, which provide the required amplitude
and frequency of SO. Additionally, stability of the periodic solution is analyzed
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through the Loeb-like criterion. In Chapter 3, the Poincaré method, which is a
recognized tool for analysis of the existence of limit cycles, is used as a design
of the TRC that would ensure specified SO. A set of algebraic equations is
presented, and a theorem on stability of a limit cycle is formulated as well.
The last method for the design, the locus of a perturbed relay system (LPRS),
that is normally used for conventional relay systems, is extended to the TRC in
Chapter 4 and is used to compute the exact values of the controller parameters.
An example for the inertia wheel pendulum is presented through Part I in
Chapters 2–4.

• Part II. This part is focused on robustification of generation of periodic motions.
Two approaches are presented: (a) by using the sliding mode control and
(b) through disturbance identification. They are given in Chapters 5 and 6,
respectively. Chapter 5 presents an alternative strategy in the problem of gen-
erating SO with disturbances rejected. Such strategy includes generation of SO
using the TRC and the model of the plant as external generator of trajectories
injected to a robust closed-loop system using a variable structure controller.
In particular, second-order and high-order sliding mode controls are used in
Chapter 5. In Chapter 6, the problem of robust output-based generation of
self-oscillations in nonlinear uncertain underactuated systems is addressed.
Disturbance identification vector is used as a part of the control input to exactly
reject matched disturbances.

• Part III. This part is concerned with applications to underactuated systems. The
results of the first six chapters are summarized in illustrative applications from
Chapters 7 through 9. The Furuta pendulum is under study in Chapter 7. In
Chapter 8, we illustrate the methodology using a 3-DOF underactuated robot
with two control inputs. In Chapter 9, we illustrate the capability of the TRC to
generate SO in a system containing a double integrator. We use an application of
a 3-DOF helicopter to demonstrate the results. Finally, in Chapter 10 is devoted
to the use of TRC in electronics.

This monograph is complemented with four appendices providing additional
material about DF, LPRS, Poincaré map, and output feedback control.

1.3.2 How to Read the Book?

The intended audiences of this book are researchers and graduated students
interested in the problems of tracking and generation of self-excited periodic
motion of electromechanical systems including non-minimum-phase systems, such
as underactuated robots.

We try to make the book self-contained with respect to the following subjects:

• Describing function method,
• LPRS,
• Poincaré maps.
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We assume that there might be four different categories of readers:

• Readers having a good knowledge of all above-listed topics, who can start
reading the book from Chapter one.

• Readers well familiar with frequency-domain methods (describing function and
LPRS), who can start reading the book from Appendix C containing basic
concepts of Poincaré maps (see, e.g., [49, Ch. 7]) to better understand Chapter
three.

• Readers having also a good knowledge of Poincaré maps, who can start
reading the book from Appendices A and B concerned with basics material
about describing function method and LPRS (the interested reader can consult
[14, 35, 57] for a comprehensive study on the matter).

• We strongly recommend the beginner readers to start reading the book from
Appendices.

Readers interested in the output feedback control might find it useful to review
Appendix D. Interested readers can also review supplementary material about
underactuated mechanical systems in [24, 30, 41], in particular about modeling
and linearization methods. Basic knowledge of sliding mode control is required for
Chapter five (see [84, 89], for instance).

Enjoy reading!
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Design of Self-Oscillations Using

Two-Relay Controller



Chapter 2
Describing Function-Based Design of TRC
for Generation of Self-Oscillation

Abstract The TRC for the design of a self-excited oscillation of a desired
amplitude and frequency in linear plants is presented. An approximate approach
based on the DF method aimed at finding the TRC gains is given. The proposed
approach is illustrated by experiments on an inertia wheel pendulum.

2.1 Introduction

The describing function (DF) method is a convenient method of finding approximate
values of the frequency and the amplitude of periodic motions in the systems with
linear plants driven by relay controllers. In this chapter, DF will be used as a tool
for the design of self-excited oscillations of a desired amplitude and frequency
in linear plants by means of the variable structure controller named the two-relay
controller (TRC).

The proposed approach is based on the fact that all relay algorithms (see, e.g.,
[14]) produce periodic motions. In this Chapter, we aim to use this property for the
purpose of generating a relatively slow motion with a significantly high amplitude.

This chapter is organized as follows. We present the TRC in Section 2.2.
In Section 2.3, we develop the DF-based analysis for a linear plant with the two-
relay control. Section 2.4 provides formulas for computation of the two-relay
controller parameters. In Section 2.5, we proceed with the analysis of orbital
stability of oscillations in the closed-loop system. In Section 2.6, we illustrate the
design methodology through an example of the inertia wheel pendulum, which is a
two-degrees-of-freedom underactuated mechanical system.

2.2 The Two-Relay Controller

Consider the following nonlinear system:

Px D f .x; u/ (2.1)
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where x.t/ 2 R
n is the state and u.t/ 2 R is the control input. Let us introduce the

following control, which will be further referred to as the two-relay control (TRC):

u D �c1 sign.y/� c2 sign.Py/: (2.2)

It is proposed in this book for the purpose of excitation of a periodic motion. The
constants c1 and c2 are parameters chosen in such a way that the scalar output of the
system

y D h.x/ (2.3)

has a steady periodic motion with the desired frequency and amplitude. The output
h.x/ is assumed at least twice differentiable.

Let us assume that the two-relay controller has two independent parameters
c1 2 C1 � R and c2 2 C2 � R, so that the changes to those parameters result
in the respective changes of the frequency ˝ 2 W � R and the amplitude
A1 2 A � R of the self-excited oscillations. Then we can note that there exist
two mappings F1 W C1 � C2 7! W and F2 W C1 � C2 7! A , which can be rewritten
as F W C1 � C2 7! W � A � R

2. Assume that mapping F is unique. Then there
exists an inverse mapping G W W �A 7! C1 �C2. The objective is, therefore, (a) to
obtain mapping G using a frequency-domain method for deriving the model of the
periodic process in the system, (b) to prove the uniqueness of mappings F and G for
the selected controller, and (c) to find the ranges of variation of ˝ and A1 that can
be achieved by varying parameters c1 and c2.

The analysis and design objectives lead to the two mutually inverse problems that
correspond to the mappings F and G, respectively. The design problem is formulated
as follows: find the parameter values c1 and c2 in (2.2) such that the system (2.1) has
a periodic motion with the desired frequency˝ and desired amplitude of the output
signal A D A1. Therefore, the main objective of this research is to find mapping G to
be able to select (tune) c1 and c2 values. In the following section, we will investigate
the periodic solution through the DF method for the two-relay controller.

2.3 Describing Function of the Two-Relay Control

Consider the linear or linearized plant be given by

Px D Ax C Bu
y D Cx

; x 2 R
n; y 2 R (2.4)

which can be represented in the transfer function form as follows:

W.s/ D C.sI � A/�1B:
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Fig. 2.1 Relay feedback system using two-relay controller

Let us assume that matrix A has no eigenvalues at the imaginary axis and the relative
degree of (2.4) is greater than 1.

Let us consider the variable structure controller (2.2) named above as the two-
relay controller. The describing function, N, of the variable structure controller (2.2)
is the first harmonic of the periodic control signal divided by the amplitude of the
harmonic signal y.t/:

N.A; !/ D !

	A1

Z 2	=!

0

u.t/ sin.!t/dt C j
!

	A1

Z 2	=!

0

u.t/ cos.!t/dt (2.5)

where A1 is the amplitude of the input to the nonlinearity (of y.t/ in our case) and
! is the frequency of y.t/. However, the analysis of the TRC can utilize the fact that
it is a combination of two relay nonlinearities, for which the DFs are known. The
TRC can be viewed as the parallel connection of two ideal relays where the input to
the first relay is the output variable and the input to the second relay is the derivative
of the output variable (see Fig. 2.1). For the first relay, the DF is

N1.A1/ D 4c1
	A1

;

and for the second relay, it is

N2.A2/ D 4c2
	A2

;

where A2 is the amplitude of dy=dt. Also, let us take into account the relationship
between y and dy=dt in the Laplace domain, which gives the relationship between
the amplitudes A1 and A2: A2 D A1˝ . Hereinafter,˝ denotes the desired frequency
of the oscillation. Using the notation of the TRC algorithm (2.2), we can rewrite this
equation as follows:
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Taking the magnitude of both sides of the above equation, we get

jW.j˝/j D 	A1

q
�c21 C c22

4.c21 C c22/
D 	A1

4

1
q
.c21 C c22/

: (2.12)

Finally, we obtain an expression for the amplitude of the oscillations as follows:

A1 D 4

	
jW.j˝/j

q
c21 C c22: (2.13)

Therefore, the c1 and c2 values can be computed as follows:

c1 D

8
<̂

:̂

	
4

A1jW.j˝/j
�p

1C �2
��1

if ˝ 2 Q2 [ Q3

�	
4

A1jW.j˝/j
�p

1C �2
��1

elsewhere
(2.14)

c2 D � � c1: (2.15)

2.5 Orbital Asymptotic Stability

To begin, let us recall the concepts of orbital stability and asymptotical orbital
stability. First, let us define

OC.x0; t0/ D fx 2 R
njx D Nx.t/; t � 0; Nx.t0/ D x0g (2.16)

as a positive orbit through the point x0 for t � t0.
According to [93], the concepts of orbital stability and asymptotical orbital

stability read as follows:

Definition 2.1 (Orbital stability). Nx is said to be orbitally stable if, given " > 0,
there exists a ı D ı."/ > 0 such that, for any other solution, y.t/, of (2.1) satisfying
jNx.t0/� y.t0/j < ı then d.y.t/;OC.x0; y0// < ", for t > t0.

Definition 2.2 (Asymptotic orbital stability). Nx is said to be asymptotically
orbitally stable if it is orbitally stable and for any other, y.t/, of (2.1), there exists a
constant b > 0 such that, if jNx.t0/�y.t0/j < b, then limt!1 d.y.t/;OC.x0; y0// D 0.

The conditions of the existence of a periodic solution in a system with the TRC can
be derived from analysis of Nyquist plot (see Fig. 2.2). Obviously, every system with
a plant of relative degree three and higher would have a point of intersection with the
negative reciprocal of the DF of the TRC, and therefore, a periodic solution would
exist. The stability of the solution can be proven through the Loeb-like criterion
[8, 39].
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Proposition 2.1. If the following inequality holds:

Re
h1

h2 C N @ ln W.s/
@s

ˇ
ˇ
ˇ
sDj˝

< 0 (2.17)

where

h1 D 4

	A21
.c1 C jc2/; h2 D 4c2

	A1˝

then the periodic solution of (2.2), (2.4) is locally orbitally asymptotically stable.

Proof. To investigate the stability of the solution of the system (2.2), (2.4), we
consider the system transients due to small perturbations of this solution when A1 is
quasi-statically varied to .A1 C�A1/. As in the proof of Loeb criterion, we assume
that the harmonic balance equation still holds for slight perturbations, so a damped
oscillation of the complex frequency j˝C.��Cj�˝/ corresponds to the modified
amplitude .A1 C�A/

N.A1 C�A; j˝ C .�� C j�˝// � W.j˝ C .�� C j�˝// D �1 (2.18)

where the DF N.A1;˝/ is given by formula (2.6). The nominal solution is
determined by zero perturbations: �� D �˝ D �A D 0. Considering the
variations around the nominal solution defined by ˝ and A1, we follow the idea
of the proof of Loeb criterion: if �A is positive, it is expected that the oscillation
must be converging, which is equivalent to � < 0, and vice versa, if �A is negative
then � > 0. This can be summarized in the value of � D ��=�A being negative.
For that purpose, take the derivative of (2.18) with respect to �A as follows:

�
dN.�A; ��;�˝/

d�A

ˇ
ˇ
ˇ
ˇ
�AD0

� W.j˝/

C dW.��;�˝/

d�A

ˇ̌
ˇ
ˇ
�AD0

� N.A;˝/

�
�A D 0:

(2.19)

Take the derivatives of N.A1;˝/ and W.j˝/ considering them composite functions

dN

d�A

ˇ
ˇ
ˇ
ˇ
�AD0

D � 4

	A21
.c1 C jc2/C

�
d�

d�A
C j

d�˝

d�A

�
4c2
	A1˝

(2.20)

dW

d�A

ˇ
ˇ
ˇ̌
�AD0

D dW

ds

ˇ
ˇ
ˇ̌
sDj˝

�
d��

d�A
C j

d�˝

d�A

	
: (2.21)
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Solving (2.19) for (.d��/=.d�A/ C j.d�˝/=.d�A/) with the account of (2.20)
and (2.21), we can obtain an analytical formula. Considering only the real part of
this formula, we obtain (2.17). �

In the above-given proof, as well as in the proof of the theorem given below, we
assume that the harmonic balance condition still holds for small perturbations of
the amplitude and the frequency. This is a certain idealization of the actual process,
which, however, allows us to obtain an important result in a very simple way. Under
this assumption, the oscillation can be described as a damped one, with the following
logical construction: if the damping parameter is negative at a positive increment
of the amplitude and positive at a negative increment of the amplitude, then the
perturbation will vanish, and the oscillations converge to the limit cycle, and limit
cycle is OAS. We formulate and prove the following theorem, which would be more
convenient in a practical analysis of orbital stability of the periodic motion and
design the TRC.

Theorem 2.1. Suppose that for the values of the c1 and c2 given by (2.14)–(2.15),
there exists a corresponding periodic solution to the system (2.2)–(2.4). If

d arg W

d ln!

ˇ
ˇ
ˇ̌
!D˝

� � c1c2
c21 C c22

(2.22)

then the abovementioned periodic solutions to the system (2.2)–(2.4) are OAS.

Proof. The approach for the stability analysis of the periodic motions is similar
to the one proposed in [57]. Let us write the harmonic balance equation for the
perturbed motion:

fN1.A1 C�A1/C Œj˝ C .�� C j�˝/�N2.A2 C�A2/g
�W.�� C j.˝ C�˝// D �1

where A2 D ˝A1. The Laplace variable for the damped oscillation is s D j˝ C
.��C j�˝/. Take the derivative of both sides of this equation with respect to�A1:

@N1
@�A1

ˇ
ˇ̌
ˇ
�A1D0

� W.j˝/C @N2
@�A1

ˇ
ˇ̌
ˇ
�A1D0

� j˝W.j˝/

C dW

dS

ˇ
ˇ
ˇ
ˇ
sDj˝

�
d��

d�A1
C j

d�˝

d�A1

	
� N1.A1/

CN2.A2/

�
d��

d�A1
C j

d�˝

d�A1

	
W.j˝/

CN2.A2/

"

j˝
dW

ds

ˇ
ˇ
ˇ
ˇ
sDj˝

�
d��

d�A1
C j

d�˝

d�A1

	#

D 0



2.5 Orbital Asymptotic Stability 27

where

@N1
@�A1

D � 4c1
	A21

I and
@N2
@�A1

D � 4c2
	A22

˝ D � 4c2
	˝A21

:

Thus, the following equation is obtained

� 4c1
	A21

W.j˝/ � j
4c2
	A21

W.j˝/ D
�

d��

d�A1
C j

d��

d�A1

	
�

(

�N1.A1/
dW

ds

ˇ
ˇ
ˇ
ˇ
sDj˝

� N2.A2/

"

W.j˝/C j˝
dW

ds

ˇ
ˇ
ˇ
ˇ
sDj˝

#)

:

Express the quantity d��
d�A1

C j d�˝
d�A1

from that equation

d��

d�A1
C j

d�˝

d�A1
D W.j˝/Œc1 C jc2�

A1
n
c1

dW
ds

ˇ
ˇ
sDj˝

C c2
h
1
˝

W.j˝/C j dW
ds

ˇ
ˇ
sDj˝

io

D 1

A1

(
d ln W

ds

ˇ
ˇ
ˇ
ˇ
sDj˝

C c2
˝

c1 � jc2
c21 C c22

)

„ ƒ‚ …
�

:

Then for the inequality

d��

d�A1
< 0 (2.23)

to be true, the following should hold:

Re
1

A1�
< 0 or Re� < 0: (2.24)

Then for the real part of �, we can write

Re
d ln W

ds

ˇ
ˇ
ˇ
ˇ
sDj˝

C c1c2
˝.c21 C c22/

< 0: (2.25)

Representation of the transfer function in the exponential format and differentiation
with respect to s yield

d arg W

d!

ˇ
ˇ
ˇ
ˇ
!D˝

< � c1c2
˝.c21 C c22/

(2.26)
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or finally

d arg W

d ln!

ˇ
ˇ
ˇ̌
!D˝

< � �

�2 C 1
: (2.27)

Therefore, the stability of the periodic motion is determined just by the slope of the
phase characteristic of the plant, which must be steeper than a certain value for the
oscillation to be asymptotically stable. �

In the example considered below, we illustrate the use of the DF method for
design.

Example 2.1. Consider the following linear system:

Px1 D x2

Px2 D �x1 � 3x2 C u

y D x1

(2.28)

where x1.t/; x2.t/ are the states and y.t/ is the output, in which we are interested to
induce self-oscillation with amplitude A1 D 0:1 and frequency ˝ D 4 rad/s via the
TRC u.t/ given by (2.2). Formulas (2.14), (2.15) provide the values of the controller
parameters that must be used. In these formulas, the transfer function corresponding
to the equations of the above system is given by

W.s/ D 1

s2 C 3s C 1
: (2.29)

The magnitude of the above transfer function and its real and imaginary parts are,
respectively,

jW.j!/j D 1
p
.1 � !2/2 C 9!2

;

RefW.j!/g D 1 � !2

.1 � !2/2 C 9!2
;

ImfW.j!/g D �3!
.1 � !2/2 C 9!2

:

(2.30)

For the desired frequency and amplitude, we can explicitly get values of the plant
frequency response: RefW.j4/g D �0:0407 and ImfW.j4/g D �0:0325. From
the fact that the desired frequency of oscillations is located in the third quadrant
and the computed value of � D �0:80, we find through (2.14)–(2.15), the values of
controller parameters: c1 D 1:1781 and c2 D �0:9425. The periodic output signal
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Fig. 2.3 Period output response of the example linear system (2.28) enforced by the TRC (2.2)

is plotted in Fig. 2.3, where the amplitude of the system output produced through
simulations matches the desired amplitude, whereas the frequency of this signal
shows some deviation from the desired value: ˝ D 3:6 rad/s. This discrepancy is
expected due to the approximate nature of the DF method.

To check if the periodic solution is stable, we need to find the derivative of the
phase characteristic of the plant with respect to the frequency

d arg W.j!/

d ln!

ˇ
ˇ
ˇ
ˇ
sDj˝

D � 3˝2 C 3

˝4 C 7˝2 C 1
: (2.31)

The stability condition (2.27) for the system becomes

� 3˝2 C 3

˝4 C 7˝2 C 1
� � �

�2 C 1
: (2.32)

We note that the left-hand side of (2.32) is �0.1382 and the right-hand side is
0.1220. Therefore, the system (2.2), (2.28), with c1 D 1:1781 and c2 D �0:9425, is
orbitally asymptotically stable.
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2.6 The Inertia Wheel Pendulum: An Example

The inertia wheel pendulum (IWP) is a pendulum that has a rotating inertia wheel
(see Fig. 2.4). The pendulum itself is not actuated but the wheel is, so that the system
is controlled via the wheel. For experimental verification of the presented theoretical
results, an inertia wheel pendulum manufactured by Quanser, Inc., is used. The
dynamics of IWP (see [12]) is given as follows:

�
J1 J2
J2 J2

� �Rq1
Rq2
�

C
�

h sin q1
0

�
D
�
0

1

�

: (2.33)

In the above equation, q1.t/ 2 R is the absolute angle of the pendulum, counted
clockwise from the vertical downward position; q2.t/ 2 R is the absolute angle of
the disk; t 2 R is the time; J1; J2, and h are positive physical parameters, which
depend on the geometric dimensions and the inertia–mass distribution; and 
 2 R

is the controlled torque applied to the disk (see Fig. 2.4).
The design objective is formulated as follows: find parameter values of c1 and

c2 (2.2) of the TRC using the algorithm provided in Subsection 2.4, such that the
output

y D q1 (2.34)

Fig. 2.4 Inertia wheel
pendulum

q1

q2 τ
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of system (2.33) produces a periodic motion with the desired frequency ˝ and
desired amplitude A1. Notice that the model of the plant is nonlinear, while the
method for gain adjustment requires that the plant should be linear. Therefore, lin-
earization of plant dynamics (2.33) is required, which is the subject of the following
subsection.

2.6.1 Linearization of IWP dynamics

The inertia wheel pendulum has underactuation degree one, and according to [41],
it is locally exact linearizable through a change of variable that is also aimed at
ensuring local stability of its zero dynamics. Let us note that the zero dynamics
describes the internal dynamics of a system Px D f .x/, with vector x 2 R

n, when its
output y is identically equal to zero (cf. [47, p. 162]).

Let us consider the following change of variable

p1 D q1 � 	 C J�1
1 J2q2

� D J1 Pq1 C J2 Pq2 C Kp1

where K > 0 is a constant. It is easy to verify that

J1 Pp1 D �� K p1

while

P� D KJ�1
1 J2 Pq2 � h sin.q1/C K Pq1;

R� D �h cos.q1/Pq1 � KJ�1
1 h sin.q1/;

«� D R.q1; Pq1/C H.q1/


where

H.q1/ D h cos.q1/

J1 � J2
;

R.q1; Pq1/ D 
Pq21 C H.q1/
�

h sin.q1/ � hK

J1
Pq1 cos.q1/:

(2.35)

Hence, we can consider


 D H�1.q1/ .u � a0� � a1 P� � a2 R� � R.q1; Pq1// ; (2.36)

where H.q1/ is nonsingular about the equilibrium point Œq?1 Pq?1 �T D Œ	 0�T and
a0; a1, and a2 are positive constants. Introducing the new state coordinates x D
Œx1 x2 x3�T D Œ� P� R��T , we obtain
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2

4
Px1
Px2
Px3

3

5 D
2

4
0 1 0

0 0 1

�a0 �a1 �a2

3

5

2

4
x1
x2
x3

3

5C
2

4
0

0

1

3

5 u; (2.37)

Pp1 D � K

J1
p1 C 1

J1
y; y D �

1 0 0



x: (2.38)

The corresponding transfer function of (2.37) is

Wp.s/ D 1

s3 C a2s2 C a1s C a0
; s D j! (2.39)

where ! is the frequency. The magnitude of the above transfer function is

jWp.j!/j D
ˇ
ˇ
ˇ̌ 1

.j!/3 C a2.j!/2 C a1.j!/C a0

ˇ
ˇ
ˇ̌

D 1
p
.a0 � a2!2/2 C !2.a1 � !2/2

:

(2.40)

For plant parameters a0 D 350, a1 D 155, and a2 D 22, the desired frequency
˝ D 2 and the desired amplitude A1 D 0:007, we explicitly obtain jWp.j2/j D
0:0025.

2.6.2 Gains Adjustment

Since we are interested in presenting the final results for the original coordinates q1
and q2, we start with computing of an approximation for the amplitude of oscillation
of the pendulum. From the equality Pp1 C J�1

1 Kp1 D J�1
1 �.t/, we know that p1

exponentially converges to a periodic function, with convergence rate regulated by
varying K.

Taking into account only the first harmonic and letting the steady value for �.t/
be �.t/ � A1 sin.˝ t/, we can compute the approximate value for p1.t/ in the steady
periodic motion in the form

p1.t/ � A1q
J21˝

2 C K2

sin

�
˝ t C arg

�
1

jJ1˝ C K

�	
:

Now using the equation P�.t/ � ˝A1 and the equation h sin .q1r/ D P� � K Pp1, one
can conclude that q1 exponentially converges to a steady periodic motion—provided
the oscillations are small.
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Finally, for q1 close enough to 	 , we have sin .q1/ � 	 � q1, so that

q1.t/ � 	 � ˝A1
h

cos .˝ t/ � ˝A1

h
q

J21˝
2 C K2

sin

�
˝ t C arg

�
1

jJ1˝ C K

�	
:

(2.41)

This expression gives us an estimate of the amplitude of the oscillations of the
pendulum established around the point of 	:

A � ˝A1
h

h

s

1C 1

J21˝
2 C K2

: (2.42)

Since q2 D J1.p1 � .	 � q1//=J2, the amplitude of the steady periodic motion of q2
can be estimated as well.

The gains c1 and c2 of the TRC algorithm (2.2) are found using the procedure
given in Section 2.4 for ˝ D 2 rad/s and A1 D 0:007 being the desired frequency
and amplitude, respectively. The results of the computation through equations (2.14)
and (2.15) are c1 D 2 and c2 D �0:1. Figure 2.5 shows also that the frequency of
the oscillations is located in the third quadrant. Block diagram of the controller is
presented in Figure 2.6.

Nyquist Diagram
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Fig. 2.5 Nyquist plot of the linearized model of the inertia wheel pendulum
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Fig. 2.6 Block diagram to generate the auto-oscillation using the TRC controller with the
linearized IWP model

2.6.3 Bounded Input Problem

Due to the necessity use of various actuators that feature limited power, the aspect of
constrained control is of practical interest in the considered problem. Let us assume
that the actuator has limitations on the developed torque, with maximum torque
being umax, therefore leading to

juj � umax: (2.43)

Formulas (2.14)–(2.15) may give relatively large values of c1 and c2, which exceed
the maximum allowable torque umax. To take into account the lower and upper
bounds on the torques, we can use equations (2.14)–(2.15), (2.43), to write the
following inequality:

juj D jc1.A1;˝/C c2.A1;˝/j
D j.1C �/c1.A1;˝/j

D
ˇ
ˇ
ˇ
ˇ.1C �/

�
	

4

A1
kW.j˝/k

�p
1C �2

��1�ˇˇ
ˇ
ˇ
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D
ˇ
ˇ
ˇ̌RefW.j˝/g C ImfW.j˝/g

kW.j˝/k2
ˇ
ˇ
ˇ̌ A1	
4

� umax: (2.44)

From the above equation, it is possible to find a range of frequencies ˝min � ˝ �
˝max corresponding to a particular desired amplitude A1 that would satisfy (2.44).
The values of ˝min and ˝max are the minimum and maximum desired frequency
that can chosen for the system (2.33) without saturating the actuator power. In fact,
only in this range simultaneous requirements to the frequency and the amplitude can
be satisfied.

For the linearized model of the inertia wheel pendulum (2.39), we obtain

RefW.j˝/g D a0 � a2˝
2

.a0 � a2˝
2/2 C .a1˝ � ˝3/2

ImfW.j˝/g D ˝3 � a1˝

.a0 � a2˝
2/2 C .a1˝ � ˝3/2

:

(2.45)

Therefore, it is possible to select from equations (2.44)–(2.45) a range of the
desired amplitudes A1 and frequencies ˝ , such that the inequality (2.44) holds.
By considering the formula

�
RefW.j˝/g C ImfW.j˝/g

kW.j˝/k2
	

A1	
4

„ ƒ‚ …
h.˝/

D umax (2.46)

we find that the upper bound ˝max can be obtained from the following equation:

	A1F1.˝max/C 4umaxF2.˝max/ D 0; (2.47)

where

F1.˝/ D �
.a0 � a2˝

2/2 C .a1˝ � ˝3/2

 � �a0 � a1˝ � a2˝

2 C˝3



F2.˝/ D .a0 � a2˝
2/2 C .˝3 � a1˝/

2:

Similarly, the lower bound ˝min can be obtained by considering the following
equation:

	A1F1.˝min/ � 4umaxF2.˝min/ D 0: (2.48)

For example, choosing A1 D 1:0 and umax D 10 and solving the set of algebraic
equations (2.47)–(2.48), we find that ˝min D 8:2 rad/s and ˝max D 9:5 rad/s
are the minimum and maximum frequency that should be chosen in order to not



36 2 Describing Function-Based Design of TRC for Generation of Self-Oscillation

7 7.5 8 8.5 9 9.5 10 10.5 11
0

20

40

60

80

100

120

Desired frequency

h(
Ω

)

A
p
=0.25

A
p
=0.5

A
p
=1.0

A
p
=2.0

A
p
=3.0

Fig. 2.7 Attainable desired frequencies for several amplitudes, DF-based design where dotted line
corresponds to the h.˝/ value where umax level can be reached

saturate the control input. The range of attainable desired frequencies, for a set of
possible desired output amplitudes, is depicted in Figure 2.7. Dotted line in the same
figure indicates the h.˝/ value where umax level can be reached, that is, for the same
desired amplitude, it can be seen from the figure that the frequency to be chosen is
˝ D 9:25 rad/s.

2.6.4 Simulation Results

The simulation was done for the model of the laboratory inertia wheel pendulum
from Mechatronics Control Kit, prototype manufactured by Quanser, Inc., shown in
Fig. 2.4. The parameter values used in simulations are as follows: J1 D 4:572�10�3,
J2 D 2:495 � 10�5, h D 0:3544. Parameters of the linearized system are K D
1� 10�4, a0 D 350, a1 D 155, and a2 D 22. Figure 2.6 shows the block diagram of
the overall controller (2.36).

For simulations, the initial conditions for the IWP were set to q1.0/ D 3:1 rad and
q2.0/ D 0 rad, and all the velocity initial conditions were set to Pq1.0/ D Pq2.t/ D 0

rad/s. Figure 2.8 shows the self-excited periodic motion of the pendulum (state q1).
Some discrepancy between the desired and actual values of frequency and amplitude
can be attributed to the approximate nature of the DF method.
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Fig. 2.8 Oscillation motion generated at ˝ D 2	 rad/s and A1 D 0:007 generated by the
two-relay controller with the linearized IWP plant under parameters c1 D 2, c2 D �0:1,
K D 1� 10�4 , a0 D 350, a1 D 155, and a2 D 22

2.7 Concluding Remarks

A two-relay controller is proposed for generation of self-excited oscillations with
a desired amplitude and frequency of the system output signal. A methodology of
the TRC design that ensures generation of oscillations of the desired frequency and
amplitude in the system is proposed. The developed methodology is illustrated by an
example of controller design for an inertia wheel pendulum. Values of the controller
parameters are approximately computed through application of the DF method and
verified through simulations. Another important issue for implementation purposes
was covered in this chapter that is to find the set of desired frequencies were the
computed parameters avoids the input saturation.



Chapter 3
Poincaré Map-Based Design

Abstract In this chapter, Poincaré maps were used, to the best knowledge of
the authors, for the first time as a design tool: to find controller parameters that
provide the desired amplitude and frequency of the periodic motion of in systems
having nonlinear plants, through the use of the TRC. We present application to
an underactuated mechanical system via generating a self-excited oscillation of a
desired amplitude and frequency of the unactuated position variable. Poincaré map
design provides values of the TRC parameters and ensures local orbital stability
of the periodic motions, for an arbitrary mechanical plant. The proposed approach
is illustrated by the controller design for and experiments on the inertia wheel
pendulum.

3.1 Introduction

The Poincaré maps are successfully used to ensure the existence and stability
of periodic motions. In this chapter, an algorithm that provides the values of
the controller parameters and guarantees the local asymptotic orbital stability of
periodic motions for an arbitrary mechanical plant through the use Poincaré maps is
presented.

In Appendix C, readers can find basic definitions and theorems concerning
Poincaré maps. In Section 3.2, we provide the Poincaré map-based design for a
linear system. Section 3.3 gives the Poincaré map analysis for an arbitrary two-
degrees-of-freedom underactuated system where orbital asymptotical stability of
the limit cycle is provided. In particular, we describe the procedure of finding the
coefficients of the two-relay controller, from the given amplitude and frequency,
using the linearized Euler–Lagrange dynamic model. In Section 3.4 an example
of controller design for the inertia wheel pendulum is provided. We conclude the
chapter with providing comments and remarks in Section 3.5.

© Springer International Publishing Switzerland 2015
L.T. Aguilar et al., Self-Oscillations in Dynamic Systems, Systems & Control:
Foundations & Applications, DOI 10.1007/978-3-319-23303-1_3
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3.2 Poincaré Map-Based Design of the Gains of the TRC
for Linearized Model

The design objectives considered in this chapter are formulated as finding the values
of parameters c1 and c2 of the two-relay controller (3.12) that ensure a self-excited
periodic motion y.t/ in the closed-loop system comprising a linear plant, with a
desired frequency ˝ and amplitude A1.

Px D Ax C Bu
y D Cx

; x 2 R
n; y 2 R: (3.1)

To construct the Poincaré map, one has to choose a surface of section S in the state
space R

n and consider the points of successive intersections of a given trajectory
with this surface. Switching occurs on the level surfaces defined by

S1 D fx W y > 0; Py D 0g; S2 D fx W y D 0; Py < 0g
S3 D fx W y < 0; Py D 0g; S4 D fx W y D 0; Py > 0g: (3.2)

The space R
n is divided into four regions by R1; : : : ;R4 defined as

R1 D fx W y > 0; Py > 0g; R2 D fx W y > 0; Py < 0g;
R3 D fx W y < 0; Py < 0g; R4 D fx W y < 0; Py > 0g: (3.3)

Depending on the state, the system is governed by one of the four models defined by

M1 W Px D Ax C B.c1 C c2/;

M2 W Px D Ax C B.c1 � c2/;

M3 W Px D Ax � B.c1 C c2/;

M4 W Px D Ax C B.�c1 C c2/:

The solution of M1 on the time interval Œ0I t1�, where t1 is the transition time from S1
to S2, subject to the initial condition of x.0/ D �p, where “.�/p” stands for “periodic”,
such that (without loss of generality)

y.0/ D C x.0/ D C �p D 0;

Py.0/ D C .A x.0/C B u/ D C A �p < 0;
(3.4)

is given by

x.t/ D eAtx.0/C
Z t

0

eA
d
Bu:
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Integral of the exponent of the state matrix is given by

Z t

0

eA
d
 D
1X

iD1
Ai�1ti=iŠ D A�1.eAt � I/

The control in (3.4) is given by u D c1 C c2. The transition to S2 and switching to
u D c1 � c2 is ensured under the technical transversality condition

Ry.t1/ D CA2 �k > 0: (3.5)

Under this condition, the trajectory will enter the region R2, and since the matrix A
is Hurwitz, it will reach either S3 or return back to S2. We will assume for now that
the latter does not happen.

Analogously, the four state transitions initiated at �k D �p are given by

�k D eAt1�k C A�1.eAt1 � I/B.c1 C c2/;

��
k D eAt2�k C A�1.eAt2 � I/B.c1 � c2/;

��
k D eAt3��

k � A�1.eAt3 � I/B.c1 C c2/;

�kC1 D eAt4��
k � A�1.eAt4 � I/B.c1 � c2/;

(3.6)

where t2 is the time interval between S2 and S3, t3 is the time interval between S3
and S4, and t4 is the time interval between S4 and S1.

The fixed point of the Poincaré map, corresponding to an isolated periodic
solution of system (3.1) driven by the two-relay controller, is determined by
equation �kC1 D �k D �p. Skipping the sequential numbers of switching in (3.6)
and using the principle of symmetry, one can write the following: ��

p D ��p. For the
T-periodic (symmetric) solution, we will use the following notation: t1 D t3 D �1;

t2 D t4 D �2 D T=2 � �1.
The equation for the fixed point together with the switching conditions can be

rewritten as follows:

� �p D eA�2�p C A�1.eA�2 � I/B.c1 � c2/ (3.7)

and, with the help of y.0/ D Py.�1/ D 0 and CB D 0,

�p D eA�1�p C A�1.eA�1 � I/B.c1 C c2/
C�p D 0; CA�p D 0; CA�p < 0; CA2�p > 0:

(3.8)

We assume in (3.7) and (3.8) that there are no additional switches on intervals
t 2 .0I t1/ and t 2 .t1I t2/, respectively, since Py < 0 initially and y monotonically
decreases from zero and cannot cross zero before Py changes sign at t D t1. This
condition can be easily verified after parameters �1 and �2 are determined.
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We need now to formalize the condition ensuring transition from S2 to S3 without
leaving R2. Defining two hypothetical (for the fixed control input u D c1 � c2)
boundary crossing times as Nt2 and t2, we can write for them:

t2 D min
˚
t > 0 W C



eAt�p C A�1.eAt � I/B.c1 � c2/

� D 0
�

and

Nt2 D min
˚
t > 0 W CA



eAt�p C A�1.eAt � I/B.c1 � c2/

� D 0
�
:

Hence, we require that the following condition holds

t2 < Nt2 (3.9)

to ensure that our analysis of the limit cycle with exactly four switches is correct.
In the case when the transition time is sufficiently small, dropping smaller-order
terms in the definitions of t2 and Nt2, one can derive the following simplified
approximate algebraic assumption1

0 < t2 � � 2CA2�p

CA3�p C c2 � c1
<

s
2C�p

�CA2�p
� Nt2:

Let us now proceed with defining the amplitude and frequency of the oscillations.
Formulas (3.7) and (3.8) can be considered as a system of algebraic equations for

design of the two-relay controller providing for the system (3.1) the desired periodic
solution of a given frequency ˝ and amplitude A1. Taking into account that

y.�1/ D C�p D A1; �1 C �2 D 	=˝ D T=2 (3.10)

we can reduce (3.7), (3.8), and (3.10) to a system of five nonlinear algebraic
equations with five unknown variables: c1; c2; �1, and the first and the second
coordinates of the vector �p: Once the system of equations is solved, the two-relay
controller gains that are found from this solution would provide the desired periodic
motion of the system (3.1), unless the corresponding solution encounters singularity
of the control transformation. This can be summarized as follows.

Theorem 3.1. If the system of equations (3.7), (3.8), and (3.10) has an isolated
solution satisfying (3.9), the desired amplitude A1 is sufficiently small, and there are
no additional switches on intervals t 2 .0I t1/ and t 2 .t1I t2/, then the closed-loop
system (3.1), (3.12) has the desired periodic solution.

1Here we have used the identities CA�p D 0; CB D CAB D 0; and CA2B D 1 and dropped the
third-order terms in the series expansions for the matrix exponents.
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Note, however, that (3.7), (3.8), and (3.10) is a system of nonlinear algebraic
equations that might be hard to solve. It may not even have any solutions for
particular values of A1 and ˝ . This issue requires a special treatment.

It turns out that the linearity of the (transformed) plant and the fact that the control
in the periodic motion can be represented as a sum of two relay controls, in which the
response of the plant can be found as a linear combination (sum) of the two periodic
relay controls of amplitudes c1 and c2, allow for a reduction of the complexity of
the original problem.

3.3 General Poincaré Map Approach Generated by TRC

Consider the Euler–Lagrange equation [5]

M.q/Rq C N.q; Pq/ D Bu; (3.11)

where q.t/ 2 R
n is the vector of joint positions; B D Œ0.n�1/ 1�T ; M.q/ is the n � n

inertia matrix which is symmetric positive definite for all q (see, e.g., [5, p. 67]);
N.q; Pq/ is the n � 1 vector that contains the Coriolis, centrifugal, and gravitational
torques; and u.t/ 2 R is the two-relay control (TRC) given by

u D �c1 sign.y/ � c2 sign.Py/; (3.12)

where c1 and c2 are parameters designed such that the scalar output of the system

y D h.q/ (3.13)

has a steady periodic motion with desired amplitude and frequency. Here, the
parameters c1 and c2 are constants to be found via Poincaré maps. It is assumed
that velocities Pq.t/ 2 R

n of the joints can be measured.
Let us assume without loss of generality that the actuated degrees of freedom are

represented by the elements of � D Œ�1 �2�
T 2 R

2 and the unactuated degrees of
freedom are represented by the elements of � D Œ�1 �2�

T 2 R
2n�2 and let us define

the output y D �1. Then, system (3.11) can be represented in the state-space form by

2

6
6
4

P�1
P�2
P�1
P�2

3

7
7
5 D

2

66
6
6
6
6
4

�2�
��1

m fM22.�1; �1/Œu � N1.�; �/�
C M12.�1; �1/N2.�; �/g

�

�2�
��1

m f � M12.�1; �1/Œu � N1.�; �/�
� M11.�1; �1/N2.�; �/g

�

3

77
7
7
7
7
5

D

2

6
6
4

�2
f1.�; �; u/

�2

f2.�; �; u/

3

7
7
5 (3.14)

where�m D M11.�1; �1/M22.�1; �1/� M12.�1; �1/M12.�1; �1/.
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Fig. 3.1 Partitioning of the state space and the Poincaré map

Control law (3.12) exhibits switches on the surface �1 D 0 and �2 D 0. Let us
consider the sets (see Fig. 3.1):

S1 D f.�1; �2; �1; �2/ W �1 > 0; �2 D 0g
S2 D f.�1; �2; �1; �2/ W �1 D 0; �2 < 0g
S3 D f.�1; �2; �1; �2/ W �1 < 0; �2 D 0g
S4 D f.�1; �2; �1; �2/ W �1 D 0; �2 > 0g:

(3.15)

The space R
n is divided by S1; : : : ; S4, into four regions R1; : : : ;R4, as follows:

R1 D f.�1; �2; �1; �2/ W �1 > 0; �2 > 0g;
R2 D f.�1; �2; �1; �2/ W �1 > 0; �2 < 0g;
R3 D f.�1; �2; �1; �2/ W �1 < 0; �2 < 0g;
R4 D f.�1; �2; �1; �2/ W �1 < 0; �2 > 0g

(3.16)

with f1 < 0 for all �1; �2; �;2 R1[R2 and f1 > 0 for all �1; �2; � 2 R3[R4. Assume
that f1 and f2 are differentiable in the set Ri, i D 1; : : : ; 4:Moreover, suppose that the
values of the functions of fk, (k D 1; 2) in the sets Ri could be smoothly extended
till their closures NRi. Considering Œ�1 �2�T , let us derive the Poincaré map from
'1.�/ D .�1; 0/, where �1 > 0, into '2.�/ D .0; �2/, where �2 < 0 (see region R2 in
Fig. 3.1). Let �01 > 0 and denote as

�C
1 .t; �

0
1; �

0; c1; c2/; �
C
2 .t; �

0
1; �

0; c1; c2/
�C
1 .t; �

0
1; �

0; c1; c2/; �
C
2 .t; �

0
1; �

0; c1; c2/
(3.17)
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the solution of the system (3.14) with the initial conditions

�C
1 .0; �

0
1; �

0; c1; c2/ D �01; �
C
2 .0; �

0
1; �

0; c1; c2/ D 0;

�C.0; �;1�
0; c1; c2/ D �0: (3.18)

Let Tsw.�; �; c1; c2/ be the smallest positive root of the equation

�C
1 .Tsw; �

0
1; �

0; c1; c2/ D 0 (3.19)

and such that d�C
1 .Tsw; �

0
1; �

0; c1; c2/=dt D �C
2 .Tsw; �

0
1; �

0; c1; c2/ < 0, that is, the
functions

Tsw.�
0
1; �

0; c1; c2/; �C
1 .Tsw; �

0
1; �

0; c1; c2/;

�C
2 .Tsw; �

0
1; �

0; c1; c2/; �C.Tsw; �
0
1; �

0; c1; c2/;

are smooth functions of their arguments.
Now, let us derive the Poincaré map from the sets '2.�/ D .0; �2; �

0
1/, where

�2 < 0, into the sets '3.�/ D .�1; 0; �
0
1/ where �1 < 0 (see region R3 in Fig. 3.1).

To this end, denote as

�C
1p.t; �

0
1; �

0; c1; c2/; �
C
2p.t; �

0
1; �

0; c1; c2/; �
C
p .t; �

0
1; �

0; c1; c2/; (3.20)

the solution of the system (3.14) with the initial conditions

�C
1p.T

C
sw.�

0
1; �

0; c1; c2/; �
0; �0; c1; c2/ D 0;

�C
2p.T

C
sw.�

0
1; �

0; c1; c2/; �
0; �0; c1; c2/ D �C

2 .T
C
sw.�

0
1; �

0; c1; c2/; �
0
1; �

0; c1; c2/;

�C
p .T

C
sw.�

0
1; �

0; c1; c2/; �
0; �0; c1; c2/ D �C

1 .T
C
sw.�

0
1; �

0; c1; c2/; �
0
1; �

0; c1; c2/:
(3.21)

Let TC
p .�; �; c1; c2/ be the smallest root satisfying the restrictions TC

p > TC
sw > 0 of

the equation

�C
2p.T

C
p ; �

0
1; �

0; c1; c2/ D 0 (3.22)

and such that d�C
2 .T

C
p /=dt D f1.TC

p ; �1; �2; �; c1; c2/ < 0, that is, the functions

Tp.�
0
1; �

0; c1; c2/; �C
1 .Tp; �

0
1; �

0; c1; c2/;

�C
2 .Tp; �

0
1; �

0; c1; c2/; �C
1 .Tp; �

0
1; �

0; c1; c2/;

�C
2 .Tp; �

0
1; �

0; c1; c2/
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smoothly depend on their arguments. Therefore, we have designed the map

�C.�01; �0; c1; c2/ D
"
�C
1 .T

C
p .�

0
1; �

0; c1; c2/; �01; �
0; c1; c2/

�C.TC
p .�

0
1; �

0; c1; c2/; �01; �
0; c1; c2/

#

: (3.23)

The map ��.�01; �0; c1; c2/ of '3.�/ D .�1; 0; �
0/, �1 < 0 together with the time

constant TC
p < T�

sw < T�
p can be defined by the similar procedure.

Therefore the desired periodic solution corresponds to the fixed point of the
Poincaré map

�
�?1
�?

�
���.T�

p ; �
?
1 ; �

?; c1; c2/ D 0: (3.24)

Finally, to complete the design of periodic solution with desired period T�
p D 2	=˝

and amplitude �?1 D A1, one needs to solve the set of algebraic equations with
respect to c1, c2, and �0:

�
A1
�?

�
���.2	=˝ ;A1; �?; c1; c2/ D 0;

��
2p.2	=˝ ;A1; �

?; c1; c2/ D 0;

(3.25)

where c1 and c2, are unknown parameters. Stability of the designed periodic motion
can be verified through the following theorem.

Theorem 3.2. Suppose that for the given value of amplitude A1 and value of
frequency ˝ , there exist c1 and c2 such that the Poincaré map �.�01; �

0; c1; c2/ has
a fixed point Œ�?1 ; �

?�, where T�
p D 2	=˝ , �?1 D A1, and the condition

�
�
�
��
@��.�1; �; c1; c2/

@.�1; �/

ˇ
ˇ
ˇ
ˇ
.A1;�?/

�
�
�
��
< 1 (3.26)

holds. Then, the system (3.14) has an orbitally asymptotically stable limit cycle with
a desired period 2	=˝ and amplitude A1.

3.4 The Inertia Wheel Pendulum—TRC Gains Tuning
for Generating SO

Let us consider the dynamic model of the inertia wheel pendulum

�
J1 J2
J2 J2

� �Rq1
Rq2
�

C
�

h sin q1
0

�
D
�
0

1

�

: (3.27)
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As we explain in Subsection 2.6.1, the linearization of the above dynamics results in

2

4
Px1
Px2
Px3

3

5 D
2

4
0 1 0

0 0 1

�a0 �a1 �a2

3

5

2

4
x1
x2
x3

3

5C
2

4
0

0

1

3

5 u; (3.28)

Pp1 D � K

J1
p1 C 1

J1
y; y D �

1 0 0



x (3.29)

where p1 D q1 � 	 C J�1
1 J2q2 and x1 D J1 Pq1 C J2 Pq2 C Kp1.

Let us begin with the mapping from '1 into the set '2 where the linearized system
(3.28) takes the form

dx1
dt

D x2

dx2
dt

D x3

dx3
dt

D �a0x1 � a1x2 � a2x3 � c1 C c2:

(3.30)

Solution of (3.30) on the time interval Œ0;Tsw� subject to the initial conditions

xC
1 .x

0; c1; c2/ D x01 > 0; xC
2 .x

0; c1; c2/ D 0; xC
3 .x

0; c1; c2/ D x03

is given by the following formulas:

xC
1 D � 1

350
c1 C 1

350
c2

„ ƒ‚ …
�1

C
�
1

150
c1 � 1

150
c2 C 7

3
x01 C 1

15
x03

	

„ ƒ‚ …
�2.x

0
1;x

0
3;c1;c2/

e�10t

C
�

� 1

42
c1 C 1

42
c2 � 25

3
x01 � 1

6
x03

	

„ ƒ‚ …
�3.x

0
1;x

0
3;c1;c2/

e�7t C
�
1

50
c1 � 1

50
c2 C 7x01 C 1

10
x03

	

„ ƒ‚ …
�4.x

0
1;x

0
3;c1;c2/

e�5t

(3.31)

xC
2 D �10�2.x01; x03; c1; c2/e�10t � 7�3.x

0
1; x

0
3; c1; c2/e

�7t

� 5�4.x
0
1; x

0
3; c1; c2/e

�5t (3.32)

xC
3 D 100�2.x

0
1; x

0
3; c1; c2/e

�10t C 49�3.x
0
1; x

0
3; c1; c2/e

�7t

C 25�4.x
0
1; x

0
3; c1; c2/e

�5t; (3.33)

where

Tsw.x
0
1; x

0
3; c1; c2/ D ln z .z D et/ (3.34)
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is obtained as the smallest positive root of the equation

xC
1 .Tsw; x

0
1; x

0
3; c1; c2/ D �1z

10 C �4z
5 C �3z

3 C �2 D 0; (3.35)

where �2 D �2.x01; x
0
3; c1; c2/; �3 D �3.x01; x

0
3; c1; c2/, and �4 D �4.x01; x

0
3; c1; c2/. Let

us proceed with the mapping from '2 into '3 where the system (3.28) takes the form

dx1
dt

D x2

dx2
dt

D x3

dx3
dt

D �a0x1 � a1x2 � a2x3 C c1 C c2:

(3.36)

Solution of (3.36) on the time interval ŒTsw;Tp� subject to the initial conditions

xC
1sw D xC

1p D 0

xC
2sw D xC

2p D �10�2e�10Tsw � 7�3e
�7Tsw � 5�4e

�5Tsw

xC
3sw D xC

3p D 100�2e
�10Tsw C 49�3e

�7Tsw C 25�4e
�5Tsw

is given by

xC
1p D 1

350
c1 C 1

350
c2

„ ƒ‚ …
�1p

C
�

� 1

150
c1 � 1

150
c2 C 4

5
xC
2sw C 1

15
xC
3sw

	

„ ƒ‚ …
�2p.x

0
1;x

0
3;c1;c2/

e�10.t�Tsw/

C
�
1

42
c1 C 1

42
c2 � 5

2
xC
2sw � 1

6
xC
3sw

	

„ ƒ‚ …
�3p.x

0
1;x

0
3;c1;c2/

e�7.t�Tsw/

C
�

� 1

50
c1 � 1

50
c2 C 17

10
xC
2sw C 1

10
xC
3sw

	

„ ƒ‚ …
�4p.x01;x

0
3;c1;c2/

e�5.t�Tsw/ (3.37)

xC
2p D �10�2pe�10.t�Tsw/ � 7�3pe�7.t�Tsw/ � 5�4pe�5.t�Tsw/ (3.38)

xC
3p D 100�2pe�10.t�Tsw/ C 49�3pe�7.t�Tsw/ C 25�4pe�5.t�Tsw/; (3.39)
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where �2p D �2p.x0; c1; c2/; �3p D �3p.x0; c1; c2/, �4p D �4p.x0; c1; c2/, and

Tp.x
0; c1; c2/ D ln zp C Tsw .zp D e.t�Tsw// (3.40)

results are obtained as the smallest positive root of equation

xC
2p.Tp; x

0; c1; c2/ D �5�4pz5p � 7�3pz3p � 10�2p D 0: (3.41)

Then, the Poincaré map can be written as

�C
1 .Tp.x

0; c1; c2/; x
0; c1; c2/

D
"

�1 C �2e�10Tp C �3e�7Tp C �
�5Tp

4

100�2e�10Tp C 49�3e�7Tp C 25�
�5Tp

4 ;

#
(3.42)

with the fixed point of this mapping being

�
�

x01
x03

�
D �C

1 .Tp.x
0; c1; c2/; x

0; c1; c2/;

which yields

.x01/
? D �

8
ˆ̂̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

�1 C
�
1

150
c1 � 1

150
c2 C 1

15
x03

	
e�10Tp

C
�

� 1

42
c1 C 1

42
c2 � 1

6
x03

	
e�7Tp

C
�
1

50
c1 � 1

50
c2 C 1

10
x03

	
e�5Tp

9
>>>>>>>>=

>>>>>>>>;

1C 7
3
e�10�T � 25

3
e�7�T C 7e�5�T

;

.x03/
? D �

8
ˆ̂
ˆ̂̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

100

�
� 1

150
c1 � 1

150
c2 C 7

3
x01

	
e�10Tp

C49
�
1

42
c1 C 1

42
c2 � 25

3
x01

	
e�7Tp

C25
�

� 1

50
c1 � 1

50
c2 C 7x01

	
e�5Tp

9
>>>>>>>>=

>>>>>>>>;

1C 20
3

e�10�T � 49
6

e�7�T C 5
2
e�5�T

;

where �T D Tp � Tsw. To complete the design, one needs to provide the set of
equations to find c1 and c2 in terms of the known parameters Tp and x01. Toward
this end, we obtain from the above equations that c1 and c2 are the solutions of the
following set of equations:
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c2 � c1 D

8
ˆ̂
<̂

ˆ̂̂
:

�
�
1C 7

3
e�10Tp � 25

3
e�7Tp C 7e�5Tp

	
.x01/

?

C
�

� 1

15
e�10Tp C 1

6
e�7Tp � 1

10
e�5Tp

	
.x03/

9
>>>=

>>>;

1
350

� 1
150

e�10Tp C 1
42

e�7Tp � 1
50

e�5Tp
; (3.43)

c1 C c2 D

8
ˆ̂̂
<

ˆ̂̂
:

�
�
1C 20

3
e�10Tp � 49

6
e�7Tp C 5

2
e�5Tp

	
.x03/

?

C
�

�700
3

e�10Tp C 1225

3
e�7Tp � 175e�5Tp

	
.x01/

9
>>>=

>>>;

� 2
3
e�10Tp C 7

6
e�7Tp � 1

2
e�5Tp

: (3.44)

Then, for a given period T1 C T2 D 2	=˝ and amplitude x01 D A1 we obtain that

c1 D 2:0623 and c2 D �2:5258: (3.45)

Finally, we need to check the orbital stability, i.e., verify if the following condition
holds:

�
�
�
�
��

@�C
1 ..x

0
1/
?; .x03/

?; c1; c2/

@.x01; x
0
3/

ˇ
ˇ
ˇ
ˇ
ˇ
.x01/

?;.x03/
?

�
�
�
�
��

D
�
�
�
�
�
��
�
�
�
�

2

6
6
66
6
4

@�
C

11 ..x
0
1/
?;.x03/

?;c1;c2/

@x01

ˇ
ˇ
ˇ
ˇ
.x01/

?;.x03/
?

@�
C

11 ..x
0
1/
?;.x03/

?;c1;c2/

@x03

ˇ
ˇ
ˇ
ˇ
.x01/

?;.x03/
?

@�
C

21 ..x
0
1/
?;.x03/

?;c1;c2/

@x01

ˇ
ˇ
ˇ
ˇ
.x01/

?;.x03/
?

@�
C

21 ..x
0
1/
?;.x03/

?;c1;c2/

@x03

ˇ
ˇ
ˇ
ˇ
.x01/

?;.x03/
?

3

7
7
77
7
5

�
�
�
�
�
��
�
�
�
�

< 1;

(3.46)

where

@�C
11..x

0
1/
?; .x03/

?; c1; c2/

@x01

ˇ
ˇ
ˇ
ˇ̌.x01/?;.x03/?

D 
�10�2e�10Tp � 7�3e
�7Tp � 5�4e

�5Tp
� @Tp

@x01

C 7

3
e�10Tp � 25

3
e�7Tp C 7e�5Tp

� 0:0374;

(3.47)
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@�C
11..x

0
1/
?; .x03/

?; c1; c2/

@x03

ˇ
ˇ
ˇ̌
ˇ.x

0
1/
?;.x03/

?

D 
�10�2e�10Tp � 7�3e
�7Tp � 5�4e

�5Tp
� @Tp

@x03

C 1

15
e�10Tp � 1

6
e�7Tp C 1

10
e�5Tp

� 5:0153� 10�4;
(3.48)

@�C
21..x

0
1/
?; .x03/

?; c1; c2/

@x01

ˇ
ˇ̌
ˇ
ˇ.x

0
1/
?;.x03/

?

D 
�1000�2e�10Tp � 343�3e�7Tp � 125�4e�5Tp
� @Tp

@x01

C 700

3
e�10Tp � 1225

3
e�7Tp C 175e�5Tp

� 0:7997;

(3.49)

@�C
21..x

0
1/
?; .x03/

?; c1; c2/

@x03

ˇ
ˇ
ˇ
ˇ̌.x01/?;.x03/?

D 
�1000�2e�10Tp � 343�3e�7Tp � 125�4e�5Tp
� @Tp

@x03

C 20

3
e�10Tp � 49

3
e�7Tp C 5

2
e�5Tp

� �0:0069:
(3.50)

The partial derivatives @Tsw=@x01, @Tsw=@x03, @Tp=@x01, and @Tp=@x03 are given by

@Tsw

@x01
D

7
3
z�11 � 25

3
z�8 C 7z�6 � 7

3
z�1 C 25

3
z2 � 7z4

10�1z9 C 5�4z4 C 3�3z2 C 5�4z�6 C 7�3z�8 C 10�2z�11 � 2:0123

@Tsw

@x03
D

1
15

z�11 � 1
6
z�8 C 1

10
z�6 C 1

15
z�1 � 1

6
z2 � 1

10
z4

10�1z9 C 5�4z4 C 3�3z2 C 5�4z�6 C 7�3z�8 C 10�2z�11 � 0:0593
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@Tp

@x01
D 1

zp
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ˆ̂
ˆ̂
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ˆ̂̂
:̂

.�17
2

z5p C 35

2
z3p � 8C 17

2
z�5
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2
z�7
p C 8z�10

p /
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2sw
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�. 1
2

z5p � 7

6
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3
� 1

2
z�5
p C 7

6
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3
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p /
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3sw
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>>>>=

>>>>;

100�2pz�11
p C 49�3pz�8

p C 25�4pz�6
p C 21�3pz2p C 25�4pz4p

C @Tsw

@x01
� 4:2460

@Tp

@x03
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zp
�
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ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

.�17
2

z5p C 35

2
z3p � 8C 17

2
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p � 35

2
z�7
p C 8z�10

p /
@xC
2sw

@x03

�. 1
2

z5p � 7

6
z3p C 2

3
� 1

2
z�5
p C 7

6
z�7
p � 2

3
z�10
p /

@xC
3sw

@x03

9
>>>>=

>>>>;

100�2pz�11
p C 49�3pz�8

p C 25�4pz�6
p C 21�3pz2p C 25�4pz4p

C @Tsw

@x03
� 0:0521:

Using (3.46), we obtain

�
�
�
��
�

@�C
1 ..x

0
1/
?; .x03/

?; c1; c2/

@.x01; x
0
3/

ˇ
ˇ
ˇ
ˇ̌
.x01/

?;.x03/
?

�
�
�
��
�

D
�
�
��

�
0:0374 5:0153� 10�4
0:7997 �0:0069

���
�� D 0:8007;

where kAk D p
�maxfATAg. Therefore, according to Theorem C.1 it is verified that

the periodic solution is asymptotically stable.

3.5 Comments

Poincaré map is a recognized method for analysis of the existence of limit cycles in
nonlinear systems. In this chapter, Poincaré maps are used for the controller design,
particularly for the TRC gain design/tuning. The advantage of Poincaré maps is
that one can obtain sufficient and necessary conditions of the existence of periodic
solutions exactly. Application of this method to controller design allows one to
produce exact values of the TRC gains that ensure the desired periodic motion.
Sufficient conditions of local OAS are given too. Moreover, it should be pointed out
that Poincaré maps are normally used for analysis of limit cycles in relay feedback
systems, but now Poincaré maps are used as a design method. Poincaré map-based
design for the two-relay controller gains is proposed in this chapter. Essentially,
we deal with the design of a periodic motion in underactuated mechanical systems
via generating a self-excited oscillation of a desired amplitude and frequency by
means of the TRC but now using Poincaré maps to find the coefficients c1 and
c2 of the TRC. Therefore, this tool is appropriate to satisfy the goal defined in
Chapter 1. Moreover, Poincaré maps provides the values of the controller parameters
ensuring the existence of the locally orbitally stable periodic motions for an arbitrary
mechanical plant. Experimental verification of the presented results of TRC design
for the inertia wheel pendulum is presented below.



Chapter 4
Self-Oscillation via Locus of a Perturbed Relay
System Design (LPRS)

Abstract The Poincaré map considered above is a precise tool to find gains of the
TRC. The drawback of this approach is in its complexity, which entails extensive
computations. This chapter presents an alternative approach—based on the LPRS
method, which in the solution of the analysis problem provides exact values of
the parameters of self-excited oscillations and a precise solution of the input–
output problem, when the plant is linear. Application of this method involved the
use of specific computation formulas available within the LPRS method. Unlike
other publications on the LPRS method that were focused on analysis, this chapter
provides LPRS-based design of self-excited periodic motions. The experiments with
inertia wheel pendulum are presented below to illustrate the results of this design.

4.1 Introduction

In Chapter 2, we reviewed the describing function method and its use for the
design of TRC. The describing function provides an approximate approach to
finding the values of the controller parameters of the TRC from the requirements
to the frequency and amplitude of the output signal. Therefore, exact values of the
actual frequency and the amplitude would be different from the desired values,
if the TRC is designed through the describing function approach. On the other
hand, the Poincaré map-based design, given in the previous chapter, provides an
exact value of the parameters, but its computation can be complicated and tedious.
The locus of a perturbed relay system (LPRS) method presented in this chapter
provides an exact solution of the periodic problem in discontinuous control systems,
including finding exact values of the amplitude and the frequency of the self-excited
oscillation.

Section 4.2 gives introduction to the LPRS and its use for analysis of a system
with TRC. Section 4.3 provides the infinite series version of the LPRS analysis for
the two-relay controller. In Section 4.4 we solve the inverse problem, that is, the
final formulas to compute the gains of the TRC are provided. An example for the
inertia wheel pendulum is provided in Section 4.5. In Section 4.6 the linearized
Poincaré map-based analysis of orbital stability is given. We conclude the chapter
with comments in Section 4.7.

© Springer International Publishing Switzerland 2015
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4.2 LPRS-Based Analysis of a System with TRC

The LPRS method was developed in [13] as a method of analysis and design of relay
feedback systems. This method cannot be applied to the system with TRC directly,
since the two-relay control assumes a four-level relay control versus two levels of
the conventional relay system. However, after some modifications, the methodology
of [14] can be used in the considered case too.

The LPRS proposed in [13] provides an exact solution of the periodic and input–
output problems in a relay feedback system having a plant

Px D Ax C Bu
y D Cx

; x 2 R
n; y 2 R (4.1)

and the control given by

u D sign.r � y/;

where r 2 R is the set point (input signal).
Because the subject of our research is self-excited oscillation, we can assume

r D 0 and disregard for a while input–output properties of the system. Also, the
control law under TRC is given as a sum of two discontinuous components:

u D �c1 sign.y/� c2 sign.Py/: (4.2)

We can extend the coverage of the LPRS method in comparison with its original
formulation [13] considering the following features of the system. The control
provided by TRC can be represented as a sum of two relay controls, and the output of
the system can be considered as a superposition of the system reaction to these two
relay controls—due to the linear character of the plant. Therefore, as an auxiliary
step, let us find the Poincaré map and its fixed point in the system with one relay.
Assume that the control is

u D � sign.y/: (4.3)

Then for the part of the period for which u D 1, the state vector changes according to

x.t/ D eAt�p C A�1.eAt � I/B; (4.4)

where �p is the initial value of the state vector.
Assume that a symmetric periodic process of period T occurs in the system (4.1),

(4.3). Then at time t D T=2 the state vector is

x.T=2/ D eAT=2�p C A�1.eAT=2 � I/B; (4.5)
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which must be equal to ��p to provide a fixed point of the Poincaré map for the
symmetric motion. Therefore, the solution of the equation ��p D x.T=2/, where
x.T=2/ is given by (4.5), provides the fixed point

�p D .I C eAT=2/�1A�1.I � eAT=2/B: (4.6)

Now let us introduce a function, which would provide the value of the system output
in a periodic motion of the frequency ! D 2	=T at the time t D �T, where
t D 0 corresponds to the control u.t/ switch from �1 to C1, and � 2 Œ�1=2I 1=2�,
subject to the control amplitude being 	=4 (this value of the amplitude, which is the
ratio between the amplitude of the first harmonic of the square pulse signal and the
amplitude of the pulses, is used to comply with the LPRS method [13]). Taking into
account (4.4) and (4.5), let us define this function as follows:

L.!; �/ D 	

4
CfeA�T�p C A�1 
eA�T � I

�
Bg

D 	

4
C
n
eA� 2	!

�
I C eA 	

!

��1
A�1

�
I � eA 	

!

�

C A�1
�

eA� 2	! � I
�o

B:

(4.7)

Parameter � is related to �1 and �2, from the previous chapter, in the following way:

�1 D �T

and

�2 D T=2 � �1 D .0:5 � �/T:

Now consider periodic control u.t/ as a sum of two periodic square pulse controls
u1.t/ and u2.t/ of amplitudes c1 and c2, respectively. Assume that control u2.t/ leads
with respect to u1.t/ by time t D �T, where � 2 Œ�0:5I 0:5�. Then for the system
output y.t/ at the time of the switch from �c1 to Cc1 of the control u1.t/, with y.t/
being the system response to the periodic control u.t/ of frequency ˝ , we can write
the following formula, which is a superposition of the responses to the two controls:

y.0/ D 4c1
	

L.˝ ; 0/C 4c2
	

L.˝ ; �/: (4.8)

In the same way, we can write the formula for the derivative of the system output at
the time of the switch of the control u2.t/ from �c2 to Cc2:

Py.��T/ D 4c1
	

L1.˝ ;��/C 4c2
	

L1.˝ ; 0/; (4.9)
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where function L1 would correspond to the linear plant for the output being the
derivative of y.t/ and given by Py D CPx D CAx.

Considering the equations of the closed-loop system (4.1), (4.2), one would
notice that the condition y.0/ D 0 represents the switching condition for the first
relay, and the condition Py.��T/ D 0 represents the switching condition for the
second relay, which are equations (3.8). Therefore, the fixed point of the Poincaré
map for the system (4.1), (4.3) can be written as a set of two algebraic equations
with two unknowns ˝ and � as follows:

c1L.˝ ; 0/C c2L.˝ ; �/ D 0 (4.10)

c1L1.˝ ;��/C c2L1.˝ ; 0/ D 0: (4.11)

Representing the periodic solution in the format of the LPRS can simplify the
solution of equations (4.10), (4.11). This simplification comes from a specific
transformation of the system: we shall consider that the feedback through Py.t/ is
closed and the feedback through y.t/ is open, thus giving a SISO plant, and find
the response of this plant to the discontinuous control of frequencies from a certain
frequency range in the same way as it was done for a linear plant. A methodology of
analysis similar to the one of [13] can now be used. With this approach, at the step
of computation of LPRS, the frequency ˝ is known, which reduces the problem to
the solution of one nonlinear algebraic equation for � . At the second step, after
LPRS is computed, the actual frequency ˝ is determined via finding the point
of intersection of the LPRS with the real axis (because the relay does not have
hysteresis). Considering the definition of LPRS [13] as a function of !, let us write
an expression for the imaginary part of the LPRS as follows:

Im J.!/ D L.!; 0/C c2
c1

L.!; �/: (4.12)

The value of � in (4.12) is found from equations (4.10), (4.11), which are reduced
to one equation (! is fixed):

� .�/ D L.!; 0/L1.!;��/ � L.!; �/L1.!; 0/ D 0 (4.13)

that can be solved via simple numeric algorithms.
In the present analysis, the real part of LPRS is not used in calculations, as it

reflects the transfer properties of relay feedback systems [13], which are not being
analyzed. The LPRS analysis of the system would include the steps of finding the
value of parameter � and computing the LPRS point for every frequency ! from the
range of interest, plotting the LPRS in the complex plane and finding the point of its
intersection with the real axis.

Since function L.!; �/ provides the value of the system output in a periodic
motion at time �T, finding the amplitude of the oscillations is equivalent to finding
the maximum of L as follows:
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A1 D max
t2Œ0IT�

�
4c1
	

L.˝ ; t=T/C 4c2
	

L.˝ ; � C t=T/

�
: (4.14)

However, the problem of finding the amplitude can be simplified if instead of the
true amplitude given by (4.14) the amplitude of the fundamental frequency (first
harmonic) can be used. In this case, using the rotating phasor concept, the control
can be represented as a sum of two rotating vectors having amplitudes 4c1=	 and
4c2=	 , with the angle 2	� between them. The amplitude of the control vector
will be

au D 4

	

q
c21 C c22 C 2c1c2 cos.2	�/ (4.15)

and the amplitude of the output (with account of only the first harmonic) will be

A1 � 4

	

q
c21 C c22 C 2c1c2 cos.2	�/ jW.˝/j; (4.16)

where ˝ is the frequency of the periodic motion and W.s/ D C.sI � A/�1B is the
transfer function of the plant. It should be noted that this approximation based on
the first harmonic is more accurate than the standard describing function approach,
used in Chapter 2, because the frequency of the oscillations is computed exactly.

The presented LPRS analysis can be used as a foundation for an alternative
design of the gains of the TRC given by (4.2).

4.3 Computation of LPRS for the Two-Relay Controller
Based on Infinite Series

The LPRS is defined as a characteristic of the response of a linear part to an
unequally spaced pulse control of variable frequency in a closed-loop system [13].
This method requires a computational effort but will provide an exact solution. An
infinite series formula for LPRS computation for a conventional linear plant was
proposed in [14]. For a conventional linear plant having the transfer function W.s/,
the LPRS can be computed as follows:

J.!/ D
1X

kD1
.�1/kC1 RefW.jk!/g C j

1X

kD1

1

2k � 1
Im fWŒj.2k � 1/!�g: (4.17)

The frequency of the periodic motion in the system with the conventional relay
control (with an ideal relay) as well as in the system with the TRC algorithm (4.2)
can be found from the following equation [13] (see Fig. 4.1):

Im J.˝/ D 0:
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Fig. 4.1 LPRS and
oscillation analysis

In fact, we are considering the plant being nonlinear, with the second relay
transposed to the feedback in this equivalent plant. Let us rewrite the function
L.!/ that was found instrumental in finding a response of the nonlinear plant to
the periodic square-wave pulse control in the format that involves infinite series:

L.!; �/ D
1X

kD1

1

2k � 1.sinŒ.2k � 1/2	��RefWŒ.2k � 1/!�g

C cosŒ.2k � 1/2	�� ImfWŒ.2k � 1/!�g/:
(4.18)

The function L.!; �/ denotes a linear plant output (with a coefficient) at the instant
t D �T (with T being the period: T D 2	=!) if a periodic square-wave pulse signal
of unity amplitude is applied to the plant

L.!; �/ D 	y.t/

4c

ˇ
ˇ
ˇ
ˇ
tD2	�=!

with � 2 Œ�0:5; 0:5� and ! 2 Œ0;1�, where t D 0 corresponds to the control switch
from �1 to C1.

With L.!; �/ available, we obtain the following expression for ImfJ.!/g of the
equivalent plant:

ImfJ.!/g D L.!; 0/C c2
c1

L.!; �/: (4.19)
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The value of the time shift � between the switching of the first and second relay can
be found from the following equation:

Py.�/ D 0:

As a result, the set of equations for finding the frequency ˝ and the time shift � is
as follows:

c1L.˝ ; 0/C c2L.˝ ; �/ D 0 (4.20)

c1L1.˝ ;��/C c2L1.˝ ; 0/ D 0: (4.21)

The amplitude of the oscillations can be found as follows. The output of the
system is

y.t/ D 4

	

1X

iD1
fc1 sinŒ.2k � 1/˝ C 'L..2k � 1/˝/�

C c2 sinŒ.2k � 1/˝ t C 'L..2k � 1/˝/

C .2k � 1/2	��gAL..2k � 1/˝/

(4.22)

where 'L.!/ D arg W.!/, which is a response of the plant to the two square pulse-
wave signals shifted with respect to each other by the angle 2	� . Therefore, the
amplitude is

A1 D max
t2Œ0I2	=!�

y.t/: (4.23)

As before, in many situations instead of the true amplitude, we can use the amplitude
of the fundamental frequency component (first harmonic) as a relatively precise
estimate. In this case, we can represent the input as the sum of two rotating vectors
having amplitudes 4c1=	 and 4c2=	 , with the angle between the vectors 2	� .
Therefore, the amplitude of the control signal (first harmonic) is

Au D 4

	

q
c21 C c22 C 2c1c2 cos.2	�/; (4.24)

and the amplitude of the output (first harmonic) is

A1 D 4

	

q
c21 C c22 C 2c1c2 cos.2	�/AL.˝/; (4.25)

where AL.!/ D jW.j!/j. We should note that despite using approximate value for
the amplitude in (4.25), the value of the frequency is exact. Expressions (4.20),
(4.25) if considered as equations for ˝ and A1 provide one with mapping F.
This mapping is depicted in Fig. 4.2 as curves of equal values of ˝ and A1 in
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Fig. 4.2 Plot of c1 vs c2 for arbitrary frequencies ˝1 < ˝ < ˝5 and amplitudes a1 < A1 < a10

the coordinates c1. From (4.20), one can see that the frequency of the oscillations
depends only on the ratio c2=c1 D �. Therefore,˝ is invariant with respect to c2=c1:
˝.�c1; �c2/ D ˝.c1; c2/. It also follows from (4.25) that there is the following
invariance for the amplitude: A1.�c1; �c2/ D �A1.c1; c2/. Therefore, ˝ and A1 can
be manipulated independently in accordance with mapping G considered below.

4.4 LPRS as Design Method

It follows from formulas (4.10) and (4.11) that the frequency of the self-excited
periodic motions in the two-relay controller is invariant to the ratio c1=c2. Therefore,
for the desired value of the oscillation frequency ˝ , coefficients c1 and c2 cannot be
determined from (4.10), (4.11) uniquely. Using � as the notation for this ratio and
applying the desired frequency of oscillations ˝ instead of generic frequency!, we
can rewrite (4.12) as an equation for �:

Im J.˝/ D L.˝ ; 0/C �L.˝ ; �/ D 0; (4.26)

where � is found from (4.13) at ! D ˝ . With � computed numerically and

� D � L.˝ ; 0/

L.˝ ; �/
; (4.27)



4.5 The Inertia Wheel Pendulum: Gain Tuning Based on LPRS Design 61

the necessary values of the relay amplitudes that provide the desired frequency ˝

and amplitude A1 of the oscillations are computed as

c1 � 	

4

A1
jW.j˝/j

1
p
1C 2� cos.2	�/C �2

; (4.28)

c2 � 	

4

A1
jW.j˝/j

�
p
1C 2� cos.2	�/C �2

: (4.29)

The approximate nature of formulas (4.28) and (4.29) is due to the use of the
amplitude of the first harmonic instead of the true amplitude. This approach is
acceptable in many applications, as was discussed above.

4.5 The Inertia Wheel Pendulum: Gain Tuning
Based on LPRS Design

Let us consider now an inertia wheel pendulum as a plant in the system with TRC
algorithm to illustrate the use of the formulas based on the LPRS method. As in
the previous chapters, the goal of our design is to compute the values of parameters
c1 and c2 of the TRC algorithm (4.2). However, this time the design is based on
formulas (4.28) and (4.29). Let us start from the linearized model of the IWP (3.27):

2

4
Px1
Px2
Px3

3

5 D
2

4
0 1 0

0 0 1

�a0 �a1 �a2

3

5

2

4
x1
x2
x3

3

5C
2

4
0

0

1

3

5 u; (4.30)

Pp1 D � K

J1
p1 C 1

J1
y; y D �

1 0 0



x (4.31)

where p1 D q1 �	C J�1
1 J2q2 and x1 D J1 Pq1C J2 Pq2C Kp1. We select the following

desired parameters of the self-excited periodic motion of the pendulum: ˝ D 2

rad/s and A1 D 0:007 being the frequency and amplitude, respectively. The constant
parameters are a0 D 350, a1 D 155, a2 D 22, K D 1 � 10�4, J1 D 4:572 � 10�3,
and J2 D 2:495�10�5. The corresponding transfer function of the linearized model
presented above is

W.s/ D 1

s3 C 22s2 C 155s C 350
:

Figure 4.3 illustrates the LPRS for the linearized model of the inertia wheel
pendulum (4.30) highlighting the location of J.˝/ D 0:0014 � j0:0022. We now
solve the set of equations (4.12) and (4.13) for the given ˝ considering c2=c1 and
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Fig. 4.3 The LPRS for the linearized model of the inertia wheel pendulum

� as unknown variables. We obtain � D 0:328, and using Eq. (4.7), we compute
L.˝ ; 0/ D �0:0022 and L.˝ ; �/ D 0:0021. Finally, using (4.27)–(4.29), we get

c1 D 2:0626; c2 D 2:2037: (4.32)

4.6 Linearized Poincaré Map-Based Analysis of Orbital
Stability

Let us now proceed with the analysis of orbital stability of periodic motions in
a system with the TRC algorithm, based on the exact approach provided by the
LPRS method. Similar to the results of Chapters 3 and 4, necessary and sufficient
conditions for orbital exponential stability of the limit cycle are derived from the
analysis of the linearized Poincaré map.

Let us use (3.6) to analyze the deviation of a trajectory initiated on the surface S1
at x.0/ D �k D �pCı� from a periodic trajectory corresponding to �p for sufficiently
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small initial deviations ı�. Using the equation in (3.6) for �k, the equation in (3.8)
for �p, and the Taylor expansion eAt1 D eA�1 C eA�1A�t C O



�t2

�
, �t D t1 � �1,

one can proceed as follows:

�k D eAt1 .�p C ı�/C A�1.eAt1 � I/B.c1 C c2/

D 

eA�1 C eA�1A�t

�
.�p C ı�/C O



�t2

�

C A�1 
eA�1 C .eA�1 � I C I/A�t � I
�

B.c1 C c2/

so that

�k D eA�1


ı�CAı��t

�C.ICA�t/�p C B.c1Cc2/�t C O


�t2

�
:

Now, since CA�k D CA�p D 0, premultiplying the previous equation by CA yields

CAeA�1


ı�CAı��t

�C CA.A�p C B.c1 C c2//�tDO


�t2

�
:

From this equation, one immediately concludes that �t D O.ı�/ and obtains an
estimate for t1 D �1 C�t that can be substituted back as follows:

�k D �p C ı� D �p C '1ı� C O.ı2�/;

where

'1 D
�

I � v1CA

CAv1

	
eA�1 ; v1 D A�p C B.c1 C c2/: (4.33)

Following the second equation in (3.6) and computing t2 using C��
k D C�p D 0,

one, in a similar way, obtains

��
k D ��p C ı�� D ��p C '2ı� C O.ı2�/;

where

'2 D
�

I � v2C

Cv2

	
eA�2; v2 D A�p C B.c1 � c2/: (4.34)

Following the third equation in (3.6) and computing t3 using CA��
k D CA�p D 0,

one obtains

��
k D ��p C ı�� D ��p C '3ı�� C O.ı2�/;

where '3 D '1.
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Following the last equation in (3.6) and computing t4 using C�kC1 D C�p D 0,
one obtains

�kC1 D �p C '4ı�� C O.ı2�/;

where '4 D '2.
Finally, for small ı� D �k � �p we can write the following formula: �kC1 � �p D

˚ � .�k � �p/C O.ı2�/, with

˚ D .'2 � '1/2: (4.35)

Formula (4.35) provides a linearized Poincaré map. Therefore, the conditions of
orbital asymptotic stability of the self-excited periodic motions in the system with
the TRC algorithm can be formulated as the following theorem, the proof of which
is provided above.

Theorem 4.1. Suppose that the selected parameters c1 and c2 of the TRC algorithm
(4.2) result in a closed-loop system that generates a periodic motion of the outputs
of the plants (2.33), (2.36). This solution is orbitally exponentially stable if and only
if all eigenvalues of the matrix ˚ , defined by (4.33), (4.34), and (4.35), are located
inside the unit circle.

4.7 Comments

An LPRS-based analysis of a system with the TRC algorithm is presented in this
chapter. The LPRS method is extended to the two-relay control. The presented
approach provides exact values of the TRC parameters necessary for generation of
the desired self-excited periodic motion, for linear plants. The main advantage of the
presented approach over the Poincaré map-based design is that simple explicit and
exact formulas for the values of the two-relay controller gains can be derived. These
formulas are obtained in the chapter. An example of designing a TRC algorithm for
an inertia wheel pendulum is presented.



Part II
Robustification of Self-Oscillations

Generated by Two-Relay Controller



Chapter 5
Robustification of the Self-Oscillation via Sliding
Modes Tracking Controllers

Abstract In this chapter, a strategy was proposed to generate SO in a nonlinear
system operating under uncertain conditions. This strategy involves algorithm
generating SO using the TRC for a nominal model of the plant, as external generator
of reference trajectories. The objective is to design a robust closed-loop system,
via variable structure control, capable of tracking such trajectories. Two robust
algorithms are revisited: second-order and high-order sliding mode controllers.
Stability proof of the closed-loop system with SOSM is also revisited. Results are
illustrated on an IWP.

5.1 Introduction

Maintaining a periodic motion of an underactuated pendulum in the upright position
around its unstable equilibrium point is a complex task. We show in Chapters 2
through 4 that the two-relay controller produces oscillations in the scalar output of
an underactuated system where the desired amplitude and frequency are reached by
choosing the controller gains properly. In these chapters, we assume that the system
is free from disturbances and friction; however, those assumptions are not realistic
for real physical systems. In this chapter, a reference model is developed, based
on the two-relay controller, to generate a set of desired trajectories, particularly
for the inertia wheel pendulum. After that, a robust tracking controller is designed.
Poincaré-map-based design is used to obtain the corresponding parameter values
of the TRC. Then a second-order sliding mode tracking controller is used which is
capable of tracking the prescribed reference trajectory.

This idea of reference and tracking is illustrated by designing the tracking control
for the inertia wheel pendulum under the presence of disturbances and friction using
a second-order sliding mode control. It should be pointed out that the tracking
control problem for underactuated systems is different from that for fully actuated
mechanical systems, where the reference trajectory can be arbitrarily given in
its configuration space, because underactuated systems are not full-state feedback
linearizable due to insufficient number of actuators. Therefore, a special attention
is required in the selection of the desired trajectory for the systems under study.

© Springer International Publishing Switzerland 2015
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Different ideas have been proposed in the literature as Grizzle et al. [41] who
demonstrate asymptotic tracking for an unactuated link by finding conditions for
the existence of a set of outputs that yields a system with a one-dimensional
exponentially stable zero dynamics. In Orlov et al. [69] and Santiesteban et al. [78],
an asymptotic harmonic generator was introduced through a modified Van der Pol
equation tested on a friction pendulum to solve the swing-up problem for an inverted
pendulum.

We start the chapter by describing the reconfiguration of the closed-loop system
and synthesis of a second-order sliding mode controller to ensure robustness
against disturbances. Section 5.2 gives motivating material about the importance
of robustification in the TRC scheme given in Part I. In Section 5.3, the perturbed
dynamic model is described and problem formulation is given. In Section 5.4,
the reference model with two-relay controller is introduced to generate a set of
desired trajectories for the inertia wheel pendulum which oscillates around the
upright position, where the equilibrium point is unstable in the absence of feedback.
Poincaré maps will be used to compute the coefficients of the TRC. In Section 5.5,
we present a sliding mode controller, with a feedback from the rotor velocity, to
achieve finite-time exact tracking controller of the desired output against unmatched
perturbation. Finally, Section 5.6 illustrates the performance of the algorithm by
experiments, and Section 5.7 presents some comments.

5.2 Idea for Robustification

Let us note that in examples presented in Part I, the self-oscillations were generated
in an inertia wheel pendulum through the two-relay controller, without tracking
control. Consequently, the closed-loop system becomes sensitive to disturbances
and uncertainties of the model. The proposed framework for trajectory generation
under the same methodology and the robust state-feedback tracking controller and
its experimental verification constitute the scope of the chapter. Here, we assume
that the deviation of the frequency and amplitude of the periodic trajectory at
the output of the closed-loop structure proposed in Chapter 2 with respect to the
desired ones depend on the uncertainties of the parameters of the model because
computation formulas for the two values of the two-relay controller (c1 and c2)
include the inertia, length of the link, and masses, only, while viscous friction level
is not considered in the formulas, which however exists in the system. Now, the
proposed scheme is robust with respect to the effect of the viscous friction and
external disturbances which will be rejected using a second-order sliding mode
tracking controller.



5.4 Generation of Nominal Trajectories 69

5.3 Inertia Wheel Pendulum Under Disturbances
and Friction

Let us consider the dynamics of an inertia wheel pendulum augmented with viscous
friction and disturbances:

�
J1 J2
J2 J2

� �Rq1
Rq2
�

C
�

h sin q1
fs Pq2

�
D
�
0

1

�

 C w: (5.1)

In the above equation, fs > 0 is the viscous friction coefficient and w D Œw1 w2�T

are the external disturbances affecting the system. An upper bound Mi > 0 (i D 1; 2)
to the magnitude of the disturbances is supposed to be known a priori

sup
t

jwi.t/j � Mi; i D 1; 2: (5.2)

The control objective is to find torque 
 such that

lim
t!1 kq1r.t/ � q1.t/k D lim

t!1 k�.t/k D 0 (5.3)

where �.t/ 2 R stands for the pendulum position error and q1r.t/ is the desired
trajectory of the pendulum. The desired trajectory is designed such that qr.t/, Pqr.t/,
and Rqr.t/ 2 R

2 exist and are bounded.

5.4 Generation of Nominal Trajectories

In this section, we will find the set of trajectories qr.t/ 2 R
2 such that the inertia

wheel pendulum can follow around its upright position, that is, kqr1 � 	k � A1
where A1 is the desired amplitude of the periodic trajectory of the pendulum (qr1).
Let us start by explaining how to find these trajectories. To begin with, let us
consider the dynamics of the wheel pendulum in terms of the reference positions
and velocities .qr; Pqr/ without considering the viscous friction force

�
J1 J2
J2 J2

� �Rq1r

Rq2r

�
C
�

h sin q1r

0

�
D
�
0

1

�

r: (5.4)

We need to find the reference torque 
r 2 R to produce a set of desired periodic
motions of the underactuated link (y D q1r) such that the output has a periodic
motion with desired frequency and amplitude. As will be shown later, account of
viscous friction is not required in the above equation since it acts as a damper which
helps to achieve asymptotic stability of the closed-loop system. Throughout this
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chapter, we confine our research to desired oscillations around the upright position
of the pendulum which corresponds to the more difficult case due that the open-loop
system has an unstable zero dynamics .

Following the procedure described in Section 2.6, we have


r D H�1.q1r/ .ur � a0� � a1 P�� a2 R�� R.q1r; Pq1r// ; (5.5)

where H.qr/ is nonsingular for the equilibrium point Œq?1r Pq?1r�
T D Œ	 0�T and where

a0; a1, and a2 are positive constants. Introducing the new state coordinates x D
Œx1 x2 x3�T D Œ� P� R��T , we obtain

2
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Px1
Px2
Px3

3

5 D
2
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�a0 �a1 �a2
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5 ur; (5.6)

Pp1 D � K

J1
p1 C 1

J1
yr; yr D �

1 0 0



x: (5.7)

The following two-relay controller is proposed for the purpose of exciting SO
in (5.4):

ur D �c1 sign.yr/� c2 sign.Pyr/ (5.8)

where c1 and c2 are scalar parameters designed such that the scalar-valued function
output yr.t/ has a periodic motion with the desired frequency ˝ and amplitude A1.
Let us note that the difference between (5.8) and the second-order sliding mode
controller given, for example, in [53] is that c1 is not constrained to be positive and
greater than c2.

The gains c1 and c2 will be found by Poincaré map-based design given in
Chapter 3. To verify the existence of the orbit, the following algebraic equations
need to be solved

�
x01
x03

�
��C.2	=˝;A1; x?; c1; c2/ D 0

x�
2p.2	=˝;A1; x

?; c1; c2/ D 0

(5.9)

where

��.2	=˝;A1; x?; c1; c2/ D
"

x�
1 .T

�
p .x

0; c1; c2/; x0; c1; c2/
x�
3 .T

�
p .x

0; c1; c2/; x0; c1; c2/

#

: (5.10)



5.5 Tracking of the SO Generated by the TRC 71

Here, T�
p D 2	=˝, x?1 D A1, and x0 D .x01; 0; x

0
3/ are the initial conditions.

Precisely, the desired periodic solution corresponds to the fixed point of the Poincaré
map

�
x?1
x?3

�
��.T�

p ; x
?; c1; c2/ D 0:

The orbital stability of (5.4), (5.8) was verified by using Theorem 3.2.

5.5 Tracking of the SO Generated by the TRC

Since the pendulum is influenced by the acceleration of the wheel, it may happen
that the wheel velocity saturates after a while. It is thus desirable to try to achieve
the dual goals of stabilizing the pendulum around the desired trajectory and to
keep the wheel velocity bounded by introducing a feedback from the rotor velocity.
In this section, we will design a feedback law which ensures (5.3) while providing
boundedness of Pq2.t/ and attenuating external disturbances where the reference
signal qr.t/ 2 R

2 is computed online from (5.4), (5.5), and (5.8).

5.5.1 Twisting Tracking Control

The control law is based on the assumption that q.t/ 2 R
2 and Pq.t/ 2 R

2 are
measurable. Let the tracking error be given by

�.t/ , q1r.t/ � q1.t/

PQq2.t/ , Pq2r.t/ � Pq2.t/:
(5.11)

Due to (5.1)–(5.8), the error dynamics are then governed by

R� D Rq1r C J2
�

�
h sin.q1r � �/ � fs.Pq2r � PQq2/

�
� J2
�
.w1 � w2/C J2

�



RQq2 D Rq2r � J2
�

h sin.q1r � �/C J1
�

fs.Pq2r � PQq2/� 1

�
.J1w2 � J2w1/� J1

�



(5.12)

where� D .J1 � J2/J2. Under the following control law,


 D ��
J2

�
˛1 sign.�/C ˛2 sign. P�/C ˇ1� C ˇ2 P� � � sign.PQq2/

�

� h sin.q1r � �/C fs.Pq2r � PQq2/� �

J2
Rq1r (5.13)
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with parameters such that

˛1 > ˛2 > 2MJ2�
�1 C �; ˇ1; ˇ2; � > 0; (5.14)

and using the identity J1 Rq1r C J2 Rq2r D �h sin.q1r/, the error dynamics (5.12) are
feedback transformed to

R� D �˛1 sign.�/ � ˛2 sign. P�/� ˇ1� � ˇ2 P� C � sign.PQq2/� J2
�
.w1 � w2/

(5.15)

RQq2 D h

J2
sin.q1r � �/ � h

J2
sin.q1r/� 1

�
.J1w2 � J2w1/

C J1
J2

�
˛1 sign.�/C ˛2 sign. P�/C ˇ1� C ˇ2 P� � � sign.PQq2/

�
: (5.16)

In Theorem 5.1, we will revise that kPQq2k is uniformly bounded. Throughout this
chapter, solutions of above system are defined in the sense of Filippov [34] as that
of a certain differential inclusion with a multivalued right-hand side.

To verify that Œ�e P�e PQqe
2�

T D 0 2 R
3 is an equilibrium point of the unperturbed

closed-loop system, note from (5.15) that

� sign.PQq2/ D ˛1 sign.�/C ˛2 sign.0/C ˇ1�:

since P�e D 0. Substituting the above equation into (5.16) together with RQq2 D 0, we
find that �e D 0. Figure 5.1 shows the block diagram of the two-relay controller for
real-time trajectory generation for orbital stabilization of inertia wheel pendulum.

Theorem 5.1. The controller introduced in (5.13) subject to parameters tuning
rule (5.14) ensures local asymptotic stability of the equilibrium point 'e D
Œ�e P�e PQqe

2�
T D 0 2 R

3.

Proof. We break the proof into two steps.
1. Boundedness of trajectories. First, we need to prove that PQq2 does not escape to
infinity in finite time. To this end, let us represent (5.15)–(5.16) in the following
form:

P' D A' C g.';w/ (5.17)

where ' D Œ� P� PQq2�T and

A D

2

6
4

0 1 0

�ˇ1 �ˇ2 0
J1
J2
ˇ1

J1
J2
ˇ2 0

3

7
5 ; (5.18)
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Fig. 5.1 Block diagram of the two-relay controller for real-time trajectory generation for orbital
stabilization of inertia wheel pendulum

g.';w/ D
2

6
4

0

�˛1 sign.�/ � ˛2 sign. P�/C � sign.PQq2/
h
J2
Œsin.q1r � �/ � sin.q1r/�C J1

J2
.˛1 sign.�/C ˛2 sign. P�/ � � sign.PQq2//

3

7
5

�
2

4
0

J2
�
.w1 � w2/

1
�
.J1w2 � J2w1/

3

5 : (5.19)

Consider the following similarity transformation

� D T�1' (5.20)
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where T is any invertible matrix such that T�1AT is a diagonal matrix whose
elements are the eigenvalues of A. Substituting (5.17) into the time derivative of
(5.20), we obtain

P� D T�1AT„ƒ‚…
A

� C T�1g.T�;w/ (5.21)

where

A D
2

4
��1 0 0

0 ��2 0
0 0 0

3

5 ; T D

2

6
4

��2
ˇ1

��1
ˇ1
0

1 1 0

� J1
J2

� J1
J2
1

3

7
5 (5.22)

where

�1;2 D 1

2
ˇ2 	 1

2

q
ˇ22 � 4ˇ1

are positive for any positive value of ˇ1 and ˇ2. It follows from (5.2) that

J2
�
.w1 � w2/ � J2

�
kw1 � w2k � 2

J2
�

M

1

�
.J1w2 � J2w1/ � 1

�
kJ1w2 � J2w1k � 2

J1
�

M;

therefore, the following upper bound for g.T�/ is obtained as follows:

kg.T�;w/k � 2h

J2
C J1

J2
.˛1 C ˛2 C �/C 2J1

�
M

„ ƒ‚ …
"0

: (5.23)

Note that "0 depends on the choice of ˛1, ˛2, and � . Consider now the following
Lyapunov function

V D 1

2
�T�: (5.24)

The time derivative of V along the solution of the closed-loop system (5.21)–(5.22)
yields

PV D �T P� D �TA� C �T T�1g.T�;w/: (5.25)

Since A is negative semidefinite, we have

PV � kT�1jkg.T�;w/kk�k � "0kT�1kk�k: (5.26)
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Let W.t/ be a solution of the differential equation

PW D "0kT�1kp
2W; W.0/ D 1

2
k�.0/k2; ) W.t/ D

 p
2

2
"0kT�1kt C W.0/

!2
:

(5.27)

The comparison lemma [49] will be essential in the proof and reads as follows.

Lemma 5.1 (Comparison Lemma). Consider the scalar differential equation

Pu D f .t; u/; u.t0/ D u0 (5.28)

where f .t; u/ is continuous in t and locally Lipschitz in u, for all t � 0 and
all u 2 J � R. Let Œt0;T/ (T could be infinity) be the maximal interval of
existence of the solution u.t/, and suppose u.t/ 2 J for all t 2 Œt0;T/.Let v.t/
be a continuous function whose upper right-hand derivative DCv.t/ satisfies the
differential inequality

DCv.t/ � f .t; v.t//; v.t0/ � u0 (5.29)

with v.t/ 2 J for all t 2 Œt0;T/. Then, v.t/ � u.t/ for all t 2 Œt0;T/.
Then, by the comparison lemma, the solution '.t/ is defined during the time

interval from 0 to ts and satisfies

k'.t/k � kTkk�.t/k � kTkp
2V � kTk

�
"0kT�1kts C p

2W.0/
�

„ ƒ‚ …
�

: (5.30)

We can conclude that '.t/ does not escape to infinity in finite time.
2. Finite-time convergence of .�; P�/ to the origin. Now, we will demonstrate that
.�; P�/ reach the origin asymptotically. To this end, we consider the Lyapunov
function

V1 D 1

2
.ˇ1 C "ˇ2/�

2 C "� P� C 1

2
P�2 C ˛1j� j

which is positive definite and radially unbounded almost everywhere if the constant
" satisfies

1

2
ˇ2 � 1

2

q
ˇ22 C 4ˇ1 < " <

1

2
ˇ2 C 1

2

q
ˇ22 C 4ˇ1: (5.31)

It is straightforward to show that

PV1 � �"ˇ1�2 � .ˇ2 � "/ P�2 � .˛2 � � � 2J2�
�1M/j P� j

� ".˛1 � ˛2 � � � 2J2�
�1M/j� j:

(5.32)
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The function PV1 will be negative definite provided that (5.14) and ˇ2 � " > 0

are satisfied. Then, by invoking [67, Th. 4.4] with parameters given in (5.14), it
is concluded that (5.3) is reached in finite-time ts.

Finally, we will prove that PQq2 tends to the origin on the interval Œts;1/. To this
end, note that the remaining dynamics of the velocity error of the wheel is

RQq2 D �J1J
�1
2 � sign.PQq2/:

For the Lyapunov function V2.PQq2/ D J�1
1 J2jPQq2j, we have

PV2.PQq2/ D ��:

Therefore PV2.PQq2/ will be negative definite for all t � ts. This completes the proof.

5.5.2 HOSM Tracking Controller

Our goal is to design a controller that ensures exact tracking of q1r in spite of the
uncertainty and disturbances present in the real plant with respect to the reference
model. Due to some structural properties noted in [41], the inertia wheel pendulum
(IWP) model can be transformed to the strict-feedback form. Thus the design
algorithm reported in [28] can be applied. Following [41], the strict-feedback form
of the IWP model is

Pz1 D �h sin.q1/

Pq1 D J�1
1 z1 � J�1

1 J2z2

Pz2 D h sin.q1/

J1 � J2
C J1

J2.J1 � J2/



(5.33)

where Pq2 D z2.
The design procedure given in [28, 29] is based on the so-called quasi-continuous

HOSM (QC-HOSM) algorithms [54]. The main advantage of these algorithms is
that they allow to reduce the gain of the discontinuous control as compared with their
direct application. The gain reduction is achieved by constructing virtual controls in
which part of the equivalent control is included. It is done through the use of the
known nominal part of the system. Due to uncertainties and disturbances, the exact
construction of the equivalent control is impossible; nevertheless, a QC-HOSM
is also introduced in each virtual control in order to reject those unknown terms.
Each virtual control requires some degree of smoothness, determined by its relative
degree with respect to the control input, which is achieved via introduction of the
discontinuous term through a proper number of integrators which in turn define
the order of the QC-HOSM used. For the IWP, the design starts from the state z2 in
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(5.33) as a virtual controller, 
1.q1/, for the state q1, which has relative degree two,
of the system (5.33). Since the desired tracking signal is q1r, it has a smooth second
derivative and fulfills the smoothness condition for the hierarchic design.
Step 1: The first sliding surface is chosen as �1.t/ , q1.t/ � q1r.t/. The 2-sliding
homogeneous quasi-continuous controller is included in 
1.q1/


1.q1/ D J1J
�1
2 fJ�1

1 z1 C u1;1g

Pu1;1 D �˛1 P�1 C j�1j1=2 sign.�1/

j P�1j C j�1j1=2 :
(5.34)

The derivative P�1 is calculated by means of the following robust differentiator [53]:

Ps0 D ��2L1=2js0 � �1j1=2 sign.s0 � �1/C s1

Ps1 D ��1L sign.s1 � Ps0/:
(5.35)

Step 2: Now for state z2, �2 , z2 � 
1.q1/


 D J2J
�1
1 fh sin.q1/C .J1 � J2/u2;1g

u2;1 D �˛2 sign.�2/:
(5.36)

Remark 5.1. Note that in the sliding mode

Pq2 D z2 D J1J
�1
2

�
J�1
1 z1 C

Z
Pu1;1.s/ds

�
;

and due to chattering analysis [55], it can be proved that the term inside the integral
is bounded due to the absolute continuity of the desired trajectory. Thus it can be
proved that Pq2 remains bounded; nevertheless, the bound depends on the initial
conditions q1.t0/; Pq1.t0/.

5.6 Experimental Study

5.6.1 Experimental Setup

In this section, we present experimental results using the laboratory inertia wheel
pendulum manufactured by Quanser Inc., depicted in Figure 2.4 where J1 D 4:572�
10�3, J2 D 2:495� 10�5, and h D 0:3544 (see [7]). The viscous friction coefficient
fs D 8:80�10�5 was identified by applying the procedure from [48]. The controller
was implemented using MATLAB/Simulinkr 2007 running on a personal computer
with AMD A4-3400, 2.70 GHz, 2 GB processor. The resolution of each encoder is
1000 counts/rev. The PCI Multifunction I/O board Sensoray 626 from Sensoray
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was used for the real-time control system, and it consists of four channels of 14-bit
D/A outputs and six quadrature 24-bit encoders. The resolution of each encoder is
1000 counts/rev. The amplifier of the motor accepts a control input from the D/A
converter in the range of ˙10V. The sampling time was 1 � 10�3 s.

5.6.2 Experimental Results

Experiments were carried out to achieve the orbital stabilization of the unactuated
link (pendulum) q1 around the equilibrium point q? D Œ	 0�T . The parameters of
the linearized systems are K D 1 � 10�4, a0 D 350, a1 D 155, and a2 D 22 that
were chosen to have a matrix A, in (5.6), (5.7), with negative and real eigenvalues
which simplifies analytical computation of the solution for the system of differential
equations. Setting ˝ D 2	 rad/s and A1 D 0:07 as desired frequency and
amplitude, respectively, we have c1 D 2 and c2 D �2:5 which have been computed
via Poincaré map-based design (5.9). Details on the computation of c1 and c2 are
given in Chapter 3. The reference signal is shown in Figure 5.2.

The initial conditions for the inertia wheel pendulum, selected for the simula-
tions, were q1.0/ D 3 rad and q2.0/ D 0 rad, whereas all the velocity initial
conditions were set to Pq1.0/ D Pq2.0/ D 0 rad/s. The controller gains were selected
as follows: ˛1 D 4, ˛2 D 2, ˇ1 D 260, ˇ2 D 60, and � D 0:15.

Experimental results for the inertia wheel pendulum, driven by the sliding mode
tracking controller (5.13), are presented in Figure 5.3(a) for the disturbance-free
case and 5.3(b) for the perturbed case. In order to test the robustness of the orbitally
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Fig. 5.2 Periodic reference signal at ˝ D 2	 rad/s and A1 D 0:07 generated by the two-relay
controller reference model under the parameters c1 D 2, c2 D �2:5, K D 1 � 10�4, a0 D 350,
a1 D 155, and a2 D 22
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Fig. 5.3 Tracking error of the underactuated link � and velocity error of the disk (PQq2) without
disturbances (a) and with random disturbances (b)

stabilizing controller (5.13), external disturbances were randomly added by lightly
hitting the pendulum at time instants t1 � 120 s and t2 � 128 s. Figure 5.4 shows
the response of the closed-loop system to these disturbances under � D 0 where
velocity of the motor is higher than 822 rad/s, which is the maximum motor speed.

5.7 Comments and Remarks

A state-feedback sliding mode tracking control problem for underactuated mechan-
ical systems is presented in this chapter. The self-oscillations to be tracked were
obtained using TRC for the nominal system. The desired trajectory is of the
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Fig. 5.4 Time response of the underactuated link q1 around the desired trajectory (dashed) under
� D 0

pendulum centered at the upright position, where the open-loop plant becomes a
non-minimum-phase system. The idea was applied to the IWP in an upright position.
The developed sliding mode controllers drive the trajectories of the IWP into a
set of inverted desired trajectories which have been generated by a IWP reference
model governed by the TRC. The parameters of the controller were found by using
Poincaré map-based design. Two important features were obtained: a) the rejection
of the viscous friction effects and external disturbances and b) imperfections due
to uncertainties in the desired computed self-excited oscillation were avoided since
the trajectory was generated for the output of the inertia wheel pendulum reference
model plus the two-relay controller dynamics. Stability analysis of the closed-loop
system was verified through Lyapunov stability theorems. Experimental verification
is implemented for a laboratory prototype. It demonstrates the effectiveness of the
developed approach.



Chapter 6
Output-Based Robust Generation
of Self-Oscillations via High-Order Sliding
Modes Observer

Abstract In this chapter, a high-order sliding mode (HOSM) observer is used to
estimate the states of the system and identify the theoretically exact uncertain-
ties/perturbations in finite time. After that, the estimated values of uncertainties
are used for compensation. This scheme is used for output-based SO generation
considering a TRC and a linearized model of the plant. The proposed scheme
ensures robust oscillations with prescribed amplitude and frequency for the real
system. The theoretical results are illustrated by simulations in an inverted wheel
pendulum.

6.1 Introduction

The approach proposed in Chapters 3–4 is used for the generation of desired self-
oscillation in linear time-invariant systems. Some linearization of system in this
case is needed. The linearization could be exact as in [41] or local (not exact)
[46]. However, all types of linearization strategies rely on the availability of a
model which perfectly match the real system. In other words, it cannot deal with
uncertainties. Moreover, the aforementioned methods consider that the full state is
accessible.

The usage of high-order sliding mode (HOSM) observer allows theoretically
exact estimation of the states for strongly observable systems with bounded unknown
inputs. Moreover, for the strongly observable systems with Lipschitz uncer-
tainties/perturbations, HOSM observers are able to identify theoretically exactly
uncertainties/perturbations [9].

Moreover, the identified values of uncertainties/perturbations when they are
matched can be used for robustification of predesigned system trajectory [32].

In this chapter, we will use the HOSM observers for robustification of desired
SO designed with methodology of Chapters 3 and 4. Thus, the proposed approach
ensures robust generation of self-oscillations with desired frequency and magnitude
in the presence of matched uncertainties/perturbations and linearization errors.

© Springer International Publishing Switzerland 2015
L.T. Aguilar et al., Self-Oscillations in Dynamic Systems, Systems & Control:
Foundations & Applications, DOI 10.1007/978-3-319-23303-1_6
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The following methodology is used in this chapter:

• The original model of the system should be linearized.
• The gains of the TRC, tuned by methods of Chapters 3 and 4 to generate nominal

SO with desired period and amplitude.
• A theoretically exact and finite-time estimation of the state and identification of

the uncertainties/perturbations is carried by means of an HOSM observer.
• The estimated state and identified uncertainties are used to counteract matched

uncertainties/perturbations and linearization errors.

This chapter is organized as follows. Section 6.2 is devoted to the presentation
of the HOSM observer for the state estimation and unknown inputs identification.
This section also motivates the problem about the designed formulas for the TRC
(2.14)–(2.15) to obtain the desired frequency and amplitude oscillations based on
LPRS methodology for an unperturbed nominal system. Additionally, robust exact
compensation-based linearization controller is synthesized. We illustrate the results
for the inertia wheel pendulum in Section 6.3. Performance issue of the robust
two-relay controller is illustrated in a simulation study in Section 6.4. Finally, in
Section 6.5, some concluding remarks are given.

6.2 HOSM Observation and Uncertainties Compensation

Let us consider the nonlinear time-invariant system

Px D f .x/C g.x/.
 C w/

ym D h.x/
(6.1)

where x is the state, ym 2 R
p (p < n) is the measured output and it is the only

information available for feedback, 
 2 R is the control input, w 2 R is the
disturbance vector, and f .x/ is a locally Lipschitz function. Hereinafter, it is assumed
that w.t/ is uniformly bounded, that is, there exists a constant wC > 0 such that

jwj � wC; j Pw.t/j � wC;8t � 0: (6.2)

It is also assumed that f .0/ D 0 and h.0/ D 0.
Due to the criteria for using any method for computing the gains of the TRC, let

us consider the linearized system

Px D Ax C B
 C Bw

y D Cx
(6.3)

for the system (6.1) where

A D @f

@x
.0/; B D g.0/; C D @h

@x
.0/: (6.4)



6.2 HOSM Observation and Uncertainties Compensation 83

Here, A, B, and C are matrices with nominal parameters. Let us assume that the
triplet .A;C;B/ does not contain invariant zeros. Thus an unknown input observer
can be constructed (see Bejarano and Fridman [9] for further details).

First, a dynamic auxiliary system is proposed to bound the observation error, i.e.,
PQx D AQx C Bu C L.ym � CQx/, Qx 2 R

n; the gain L is designed such that QA WD A � LC
is Hurwitz. Let e D x � Qx whose dynamics follows

Pe D QAe C Bw (6.5)

with ye D Ce.
Now, the error vector will be represented as an algebraic expression of the output

and its derivatives. To this aim, a decoupling algorithm is involved in order to get
rid of the effects of the unknown input vector w.

Starting with M1 WD C and J1 WD .M1B/?, let M� be defined in a recursive way
in the following form:

M� D
�
.M��1B/?M��1 QA

M1

�
J��1 D .M��1B/?

�
J��2 0
0 Ip

�
:

Due to .A;B;C/ does not contain invariant zeros, there exists a unique positive
integer � � n such that the matrix M� generated recursively satisfies the condition
rank.M�/ D n (see [9]). Therefore, the following algebraic expression can be
constructed:

e D d��1

dt��1MC
�

�
J��1 0
0 Ip

�
2

6
4

ye
:::

yŒ��1�
e

3

7
5

„ ƒ‚ …
Y

(6.6)

where

yŒi�e D
Z t

0

� � �
Z 
i

0

yed
i � � � dt:

Thus, a real-time HOSM differentiator is used to provide finite time differentia-
tion of Y; see (D.6). It is given by

Pzi;0 D �0�
1
� jzi;0 � Yij �

�C1 sign.zi;0 � Yi/C zi;1

Pzi;j D �j�
1
��j jzi;jC1 � Pzi;j�1j

��j
� sign.zi;j � Pzi;j�1/C zi;jC1 (6.7)

Pzi;� D ��� sign.zi;� � Pzi;��1/
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with j D 1; � � 1, � is the differentiator order. The differentiator input Yi for i D 1; n
represents the components of Y. The gain � is a Lipschitz constant of Y.�/, that is,
jRej < � .

Hence, the vector e in (6.6) is recovered from the .� � 1/-th sliding dynamics,
that is, e D z��1 holds for t � T. Consequently, the next expression holds:

Ox WD z��1 C Qx (6.8)

where Ox 2 R
n is the estimated value of x for all t � T.

6.2.1 Generation of SO in a Nominal System

Consider the linearized plant given by

Px D Ax C B.u C w/

yo D ho.x/
(6.9)

where x 2 R
n is the state vector, yo 2 R is the oscillating output, and u 2 R is the

two-relay input control given by

u D �c1 sign.yo/� c2 sign.Pyo/: (6.10)

Matrices A, B, and C are of appropriated dimensions, and c1 and c2 are scalar
parameters. Let us assume that matrix A has no eigenvalues at the imaginary axis
and the relative degree of (6.9) is greater than one.

The goal is to obtain the values of the gains c1 and c2 in the TRC (6.10) to provide
a prescribed oscillation at the output of the system with the desired amplitude A1
and frequency ˝ in spite of the existing matched disturbances w. Since the LPRS
formulas (4.28)–(4.29) depend on the parameters of the plant, consequently, a
deviation in any parameter of the real plant or non-considered dynamics results in
discrepancies of the output with respect to the expected frequency and amplitude of
the oscillation.

Here, the LPRS-based design from Chapter 4 is performed to specify the TRC
parameter values in order to get oscillations of desired amplitude and frequency. In
order to obtain the desired amplitude and frequency by means of the LPRS method,
it is required a linear model of the plant which is typically nonlinear. For that
reason, a robust algebraic observer is designed to estimate the states and identify
the discrepancies between the real nonlinear plant and the linearized model.
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6.2.2 Uncertainties Compensation

Consider the observation error dynamics (6.5), where Pe can be obtained from the
HOSM differentiator (6.7), i.e., the equality z� D Pe is accomplished for all t > T.
Hence, working out (6.5), it yields to

Ow D BC.z� � QAz��1/ (6.11)

where Ow 2 R
m represents the identified value of w.

Theorem 6.1. Consider the output-based two-relay controller (6.10) plus a distur-
bance compensator Ow


 D �c1 sign.yo/� c2 sign.Pyo/ � Ow (6.12)

for the nonlinear system (6.1) where Ow is governed by the disturbance observer
(6.11). Then, the closed-loop system (6.1), (6.10) has a robust oscillation against
matched disturbances.

6.3 Application to the Inertia Wheel Pendulum

We first rewrite the model (5.1) in the state-space form (6.1) with x.t/ D
Œq1 q2 Pq1 Pq2�T . Hence, by means of Taylor expansion around the upright equilib-
rium point x� D Œ	 0 0 0�T , it yields to

Px D

2

6
6
6
4

0 0 1 0

0 0 0 1
h

J1�J2
0 0 0

� h
J1�J2

0 0 0

3

7
7
7
5

„ ƒ‚ …
A

x C

2

6
6
6
4

0

0

� 1
J1�J2

J1
J2.J1�J2/

3

7
7
7
5

„ ƒ‚ …
B

.
 C w/ (6.13)

ym D
�
1 0 0 0

0 1 0 0

�

„ ƒ‚ …
C

x: (6.14)

The parameters of the IWP are J1 D 4:572 � 10�3, J2 D 2:495 � 10�5, and
h D 0:4594 (see [12]).

Note that the triplet .A;C;B/ does not contain invariant zeros and � D 2.
Therefore, an unknown input observer can be constructed. First, a Luenberger
observer is necessary to bound the error trajectories. The observer gain
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L D

2

66
4

42 0

0 6

541:0325 0

�101:0325 8

3

77
5

is such that the eigenvalues of QA are Œ�4 � 2 � 22 � 20�.
The system (6.14) has a canonic observability form. That is why the usage of

the decoupling algorithm is not needed. This means that the procedure of HOSM
observer design is reduced to application of the second-order HOSM differentiator
to the Luenberger auxiliary system bounding observation error. As a consequence,
the differentiator input Y.t/ yields to

Y.t/ D

2

6
6
4

0 0 1 0

1 0 25:6 0:9

0 0 0 1

0 1 1:06 22:3

3

7
7
5

�
yeR t

0
ye.
/d


�
:

The second-order HOSM differentiator is given by

Pz0 D �0�
1
3 jz0 � Yj 23 sign .z0 � Y/C z1

Pz1 D �1�
1
2 jz1 � Pz0j 12 sign.z1 � Pz0/C z2

Pz2 D �2� sign.z2 � Pz1/:
(6.15)

For our case, the HOSM gains are � D 83:9 � 103 and �i D f1:1; 1:5; 2g.
Theorem 6.1 ensures robustness of the generated SO in the system (6.1), (6.10).

Figure 6.1 shows a block diagram summarizing the proposed method. Starting
from the nonlinear model affected by uncertainties, a HOSM observer is designed
to estimate the state and perturbations. Such values are involved in the synthesis of
a robust exact linearization control law.

Fig. 6.1 Synthesis of the self-oscillation generation procedure
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6.4 Simulation Results

Simulations were carried out to achieve periodic motion in an IWP. We seek for
orbital stabilization of the non-actuated link q1 (pendulum) around the equilibrium
point x? D Œ	 0 0 0�T .

Setting ˝ D 2	 rad/s and A1 D 0:07 as desired frequency and amplitude,
respectively, we have c1 D 2 and c2 D �2:5. Figure 6.2 depicts the results
when an unknown viscous friction is acting on the actuator. Without identification
and compensation of its effects, the oscillation achieved is far from the desired
one (dotted line). On the other hand, when the unknown viscous friction w.t/ D
0:1Pq.t/ is identified and compensated, the output oscillation has the prescribed
amplitude and frequency. Figure 6.3 shows self-oscillation generation under a
periodic perturbation w.t/ D 0:1 sin.1:3t/. Dotted line shows the results when a
robust linearization technique based on disturbance identification is applied, and
solid line shows the oscillation when disturbance is not compensated. It can be
noticed in both figures the effectiveness of the disturbance identification via HOSM.

Fig. 6.2 Self-oscillation generation under the presence of viscous friction (w D 0:1Pq). Dotted
line shows the results when a robust linearization technique based on disturbance identification is
applied, and solid line shows the oscillation when the viscous friction is not compensated
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Fig. 6.3 Self-oscillation generation under a periodic perturbation (w D 0:1 sin.1:3t/). Dotted
line shows the results when a robust linearization technique based on disturbance identification
is applied, and solid line shows the oscillation when disturbance is not compensated

6.5 Comments

The problem of robust output-based generation of self-oscillations in nonlin-
ear uncertain underactuated systems is addressed. A high-order sliding mode
(HOSM) observer is used to estimate the states of the system and identify the
uncertainties/perturbations. Hence, the estimated values of uncertainties are used
for compensation. The proposed scheme compensates theoretically exactly the
mismatch between the linearized model and the real plant. In this manner, using
LPRS method for computation of the TRC gains ensures robust oscillations with
prescribed amplitude and frequency.
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Chapter 7
Generating Self-Oscillations in Furuta
Pendulum

Abstract This chapter illustrates the DF, Poincaré maps, and LPRS to obtain
the desired amplitude and frequency of SO of an experimental Furuta pendulum.
The problem becomes more complicated when oscillations are around an open-
loop unstable equilibrium point that corresponds to the upright position of the
pendulum. Recalling that TRC design requires linear model of the plant, such
linearization was made through Taylor expansion around an unstable equilibrium
point. The experimental results illustrate motions at several velocities (frequency)
and maximum position (amplitude), and then TRC supply, for generic SO of a wide
range of frequencies.

7.1 Introduction

One of the problems that we address in the book is the motion control of
underactuated mechanical systems which still remains as an interesting application
problem in engineering, mainly when we are dealing with non-minimum-phase
systems which are dynamical systems with unstable zero dynamics [49].

Let the underactuated mechanical system, which is a plant in the system where a
periodic motion is supposed to occur, be given by the Lagrange equation [85]:

M.q/Rq C H.q; Pq/ D B1u (7.1)

where q.t/ 2 R
n is the vector of joint positions; u.t/ 2 R is the vector of applied

joint torques; B1 D Œ0.n�1/ 1�T is the input that maps the torque input into the joint
coordinates space; M.q/ 2 R

n�n is the symmetric positive-definite inertia matrix;
and H.q; Pq/ 2 R

n is the vector that contains the Coriolis, centrifugal, gravity, and
friction torques. The TRC (2.2) is proposed for the purpose of exciting a periodic
motion where c1 and c2 are parameters designed such that the position of a selected
link of the plant has a steady periodic motion with the desired frequency and
amplitude.

Academic pendulums with rotational links are the class of systems that can
be governed by (7.1) (see, e.g., [30]), and those pendulums, without a stabilizing
control law, have multiple equilibrium points and they can exhibit a homoclinic
orbit. However, under initial conditions close to any equilibrium points or in

© Springer International Publishing Switzerland 2015
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Fig. 7.1 The experimental Furuta pendulum system

the presence of Coulomb and viscous frictions, might exist both the stable and
unstable equilibrium points. Typically, inducing a periodic motion around a stable
equilibrium point is known as swing-up. Throughout this monograph, we will
address three problems: inducing a periodic motion around an unstable equilibrium
point, analysis of the periodic orbit, and robustification of the output against
matched disturbances.

Let us start with the Furuta pendulum or rotary inverted pendulum, illustrated in
Figure 7.1, which consists of a driven arm which rotates in the horizontal plane and
a pendulum attached to that arm which is free to rotate in the vertical plane.

In this chapter, we present generation of self-oscillation at the upper position,
that is, around the open-loop unstable equilibrium point. Following the same
methodology as inertia wheel pendulum, we linearize the nonlinear system but now
using Taylor linearization. For practical reasons, we include a stabilizing part to add
certain degree of robustness turning out the equilibrium point of the system, without
the TRC, locally asymptotically stable. To obtain the gains of the TRC, the DF and
LPRS formulas, given in Section 2.4, were applied. We present experimental results
in Section 7.4 using the laboratory Furuta pendulum from Quanser Inc.

7.2 Description of the Plant and Problem Formulation

Generally, the equations of motion of the Furuta pendulum described by

M.q/Rq C H.q; Pq/ D B
 (7.2)

were specified by applying the Euler–Lagrange formulation [25]. Here, q D
Œq1 q2�T is a vector that includes the arm rotation angle (q1) and the pendulum angle
(q2), and 
 2 R is the applied torque; B D Œ0 1�T is the input that maps the torque
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input to the space of joint coordinates. The matrix M.q/ 2 R
2�2 which is symmetric

positive definite and H.q; Pq/ 2 R
2 denoting the vector that contains the Coriolis,

centrifugal, and gravity torques are explicitly given by

M.q/ D
"

M11.q/ M12.q/

M12.q/ M22.q/

#

; H.q; Pq/ D
"

H1.q; Pq/
H2.q; Pq/

#

(7.3)

with

M11.q/ D Jeq C Mpr2 cos2.q1/;

M12.q/ D �1
2

Mprlp cos.q1/ cos.q2/;

M22.q/ D Jp C Mpl2p;

H1.q; Pq/ D �2Mpr2 cos.q1/ sin.q1/Pq21 C 1

4
Mprlp cos.q1/ sin.q2/Pq22

H2.q; Pq/ D 1

2
Mprlp sin.q1/ cos.q2/Pq21 C Mpglp sin.q2/

where Mp D 0:027 Kg is mass of the pendulum, lp D 0:153 m is the length of
pendulum center of mass from pivot, Lp D 0:191 m is the total length of pendulum,
r D 0:0826 m is the length of arm pivot to pendulum pivot, g D 9:810 m/s2 is
the gravitational acceleration constant, Jp D 1:23 � 10�4 Kg-m2 is the pendulum
moment of inertia about its pivot axis, and Jeq D 1:10�10�4 Kg-m2 is the equivalent
moment of inertia about motor shaft pivot axis.

The problem is formulated as follows: find the parameter values c1 and c2 in the
two-relay controller

u D �c1 sign.y/ � c2 sign.Py/; (7.4)

following the algorithm provided in Subsection 2.4, such that the output

y D q2 (7.5)

of system (7.2), (7.3) has a periodic motion with the desired frequency ˝ and
desired amplitude A1. It can be noted that the model of the plant is nonlinear, while
the method for gain adjustment requires that the plant be linear; therefore, we will
focus in linearization of (7.2), (7.3) in the next subsection.
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7.3 Linearization

Self-oscillation was carried out to achieve the orbital stabilization of the unactuated
link (the pendulum) y D q2 around the equilibrium point q? D Œ	 0�T . The equation
of motion of the Furuta pendulum (7.2), (7.3) is linearized around q? 2 R

2 and
by virtue of the instability of the linearized open-loop system, a state-feedback
controller uf D �Kx and x D Œq � q? Pq�T 2 R

4 is designed such that the
compensated system has an overshoot of 8 and gain crossover frequency at 10 rad/s
(see Bode diagram in Figure 7.2 for the open-loop system); that is, the control input


 D uf C u (7.6)

is composed of a stabilizing part, adding certain degree of robustness, and the two-
relay controller u.t/. The purpose of uf .t/ is to give the possibility to initialize the
system in any point around the equilibrium point q?. Thus, the matrices Acl, B, and
C of the linear system (2.4) are

Acl D

2

6
6
66
6
4

0 0 1 0

0 0 0 1

�6:591 125:685 �6:262 25:525

3:031 �112:408 2:879 �11:737

3

7
7
77
7
5
; B D

2

6
6
66
6
4

0

0

56:389

�25:930

3

7
7
77
7
5
; C D

2

6
6
66
6
4

0

1

0

0

3

7
7
77
7
5

T

(7.7)
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Fig. 7.2 Bode plot of the open-loop system
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where Acl D A � BK is Hurwitz. The corresponding transfer function of the linear
system (2.4), (7.7) is given by

W.s/ D �25:93s2 � 0:0297s C 0:0104

s4 C 18s3 C 119s2 C 342s C 360
s D j!: (7.8)

The real and imaginary part of the above complex function are

RefW.j!/g D .0:01043� 25:93!4/.!4 � 119!2 C 359:9/

.!4 � 119!2 C 359:9/2 C .119! � 18!3/2
(7.9)

ImfW.j!/g D .1:776 � 10�14!3 � 0:02973!/.!4 � 119!2 C 359:9/

.!4 � 119!2 C 359:9/2 C .119! � 18!3/2 : (7.10)

7.4 Experimental Study

7.4.1 Experimental Setup

It consists of a 24-Volt DC motor that is coupled with an encoder and is mounted
vertically in the metal chamber. The L-shaped arm, or hub, is connected to the
motor shaft and pivots between ˙180 degrees. At the end, a suspended pendulum
is attached. The pendulum angle is measured by the encoder. As illustrated in
Figure 7.1, the arm rotates about z-axis and its angle is denoted by q1.t/, while the
pendulum attached to the arm rotates about its pivot and its angle is called q2.t/.
The experimental setup includes a PC equipped with an NI-M series data acqui-
sition card connected to the NI Educational Laboratory Virtual Instrumentation
Suite (NI-ELVISr) workstation from National Instrument. The controller was
implemented using LabVIEWr programming language allowing debugging, virtual
oscilloscope, automation functions, and data storage during the experiments. The
sampling frequency for control implementation has been set to 400 Hz.

7.4.2 Experimental Results

For the experiments, we set initial conditions sufficiently close to the equilibrium
point q? 2 R

2. The output y D q2.t/ is driven to a periodic motion for several
desired frequencies and amplitudes. The desired frequencies (˝) and amplitudes
(A1) obtained from experiments by using the values of c1 and c2 computed by means
of the DF and LPRS are given in Tables 7.1 and 7.2, respectively.

Gains computation based on DF: For the selected set of desired frequencies ˝
provided in Table 7.1 we need to compute RefW.j˝/g and ImfW.j˝/g to locate
the quadrant of where the desired frequency is located. Figure 7.3 illustrates
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Table 7.1 Computed c1 and c2 values for several desired frequencies using
describing function method

Desired ˝ Desired A1 c1 c2 Experimental ˝ Experimental A1
7 0.10 0.19 0.23 6.28 0.11

8 0.20 0.30 0.61 7.40 0.22

9 0.25 0.25 0.93 8.30 0.20

10 0.30 0.14 1.32 9.00 0.35

Table 7.2 Computed c1 and c2 values for several desired frequencies LPRS

Desired ˝ Desired A1 c1 c2 Experimental ˝ Experimental A1
7 0.10 0.1856 0.2001 6.48 0.10

8 0.20 0.2589 0.5269 7.10 0.22

9 0.25 0.2450 0.9796 8.50 0.20

10 0.30 0.1134 1.65 9.20 0.35
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Fig. 7.3 Nyquist plot of the linearized model of Furuta pendulum and describing function in an
arbitrary desired frequency (˝ D 25 rad/s)

the Nyquist plot of the linearized model of Furuta pendulum highlighting the
describing function. Immediately one can apply equations (2.10), (2.14)–(2.15)
to straightforward obtain the gains c1 and c2 provided in same Table. Verifying
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Fig. 7.4 LPRS plot of the linearized model of Furuta pendulum in an arbitrary desired frequency
(˝ D 25 rad/s)

conditions of Theorem 2.1, inequality (2.22) holds for the chosen frequencies
and amplitudes, thus asymptotical stability of the periodic orbit was established
by Theorem 2.1.

Gains computation based on LPRS: For the selected set of desired frequencies
˝ and amplitudes A1 provided in Table 7.1, we need formulas (4.28)–(4.29) to
obtain c1 and c2, respectively. The TRC gains were obtained under � D 0:3.
Figure 7.4 shows the LPRS plot of the linearized plant.

In Figure 7.5, experimental oscillations for the output y, for fast (˝1 D
25 rad/s) and slow motions (˝2 D 10 rad/s), are displayed. Note that certain
imperfections appear in the slow motion graphics in Figure 7.5, which are attributed
to the Coulomb friction forces, and the dead zone. Also, in some modes, natural
frequencies of the pendulum mechanical structure are excited and manifested as
higher-frequency vibrations.

7.5 Conclusion and Remarks

A TRC for generation of self-excited oscillations with desired output amplitude and
frequencies for the Furuta pendulum is proposed. Values of the controller gains are
computed through the DF-based model of periodic motions. Necessary conditions
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Fig. 7.5 Steady state periodic motion of each joint where (a) is the periodic motion at ˝1 D 25

rad/s and (b) is the periodic motion at ˝2 D 10 rad/s

for the local orbital asymptotic stability of the desired SO are also obtained from the
DF-based model. The effectiveness of the proposed design procedures is supported
by experiments carried out on the Furuta pendulum from Quanser Inc., for a wide
range of frequencies.



Chapter 8
Three Link Serial Structure Underactuated
Robot

Abstract This chapter is devoted to generate SO with desired amplitude and
frequency in a three-underactuated system with two control inputs. Existence of
periodic orbit was also verified. The periodic orbit will be generated at the upper
position that is where the open-loop equilibrium point is unstable.

8.1 Introduction

This chapter is devoted to the solution of a periodic balancing problem for a three-
link underactuated mechanical manipulator introduced in [41], whose first link is
not actuated whereas the second and third joints are actuated (see Fig. 8.1). Taking
advantage on results of Boiko [14], demonstrating that if the relative degree of the
plant is higher than two, a periodic motion may occur in the system with SOSM
controllers. We apply TRC to drive the manipulator to a periodic motion with
desired amplitude and frequency. We also analyze the motion that occurs around the
equilibrium point of manipulator with the TRC to show the existence of periodic
motions. In the forthcoming study, we resort to describing function method to
provide the approximate values of periodic and amplitudes of oscillation of the
underactuated system driven by the TRC.

The chapter is organized as follows. Section 8.2 gives the dynamic model of
the 3-DOF underactuated robot and the problem statement is also defined. In
Section 8.3, the linearized model of the plant and procedure to obtain the gains
via DF is given. In Section 8.4, the simulation results are given. We conclude the
chapter with comments.

8.2 Description of the 3-DOF Underactuated Robot
and Problem Statement

Here we will focus in the orbital stabilization of a 3-DOF underactuated robot,
depicted in Fig. 8.1, consisting of three point masses connected by three rigid,

© Springer International Publishing Switzerland 2015
L.T. Aguilar et al., Self-Oscillations in Dynamic Systems, Systems & Control:
Foundations & Applications, DOI 10.1007/978-3-319-23303-1_8
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Fig. 8.1 The Three-link
serial structure underactuated
robot L3

L2

L1

q3

q2

q1

τ3

τ2

massless links, with the links joined by an actuated revolute joint. The connection to
the pivot is unactuated and frictionless. The equation of motion in such mechanism
is given by

M.q/Rq C N.q; Pq/ D B
 (8.1)

where q.t/ is the 3 � 1 vector of joint positions; 
.t/ is the 2 � 1 vector of applied
joint torques (n > m), t 2 R is the time, B D Œ0 I�T ; M.q/ is the 3 � 3 symmetric
positive-definite inertia matrix; and N.q; Pq/ is the 3 � 1 vector that contains the
Coriolis, centrifugal, and gravity torques. We will assume that the measurements of
Pq are available.

The equation motion of the three-link serial structure, governed by (8.1), was
specified by applying the Euler–Lagrange formulation [25, 41] where

M.q/ D
2

4
m11.q/ m12.q/ m13.q/
m12.q/ m22.q/ m23.q/
m13.q/ m23.q/ m33.q/

3

5 ; N.q; Pq/ D
2

4
N1.q; Pq/
N2.q; Pq/
N3.q; Pq/

3

5 (8.2)

with
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m11.q/ D .m1 C m2 C m3/L
2
1 C .m2 C m3/L

2
2 C m3L

2
3 C 2.m2 C m3/L1L2 cos.q2/

C 2m3L2L3 cos.q3/C 2m3L1L3 cos.q2 C q3/;

m12.q/ D .m2 C m3/L1L2 cos.q2/C .m2 C m3/L
2
2 C m3L

2
3 C m3L1L3 cos.q2 C q3/

C 2m3L2L3 cos.q3/;

m13.q/ D m3L
2
3 C m3L1L3 cos.q2 C q3/C m3L2L3 cos.q3/;

m22.q/ D .m2 C m3/L
2
2 C m3L

2
2 C m3L2L3 cos.q2 C q3/C m3L2L2 cos.q3/;

m23.q/ D m3L
2
3 C m3L2L3 cos.q3/;

m33.q/ D m3L
2
3I

N1.q; Pq/ D �.m2 C m3/L1L2 sin.q2/Pq2.Pq1 C Pq2/ � .m2 C m3/L1L2 sin.q2/Pq1 Pq2
� m3L1L3 sin.q2 C q3/.Pq2 C Pq3/2 � 2m3L1L3 sin.q2 C q3/Pq1.Pq2 C Pq3/
� 2m3L2L3 sin.q3/.Pq1 C Pq2/Pq3 � m3L2L3 sin.q3/Pq23 C m1L1g cos.q1/

C m2g cos.q1/C m2gL2 cos.q1 C q2/C m3gL1 cos.q1/

C m3gL2 cos.q2 C q3/C m3gL3 cos.q1 C q2 C q3/;

N2.q; Pq/ D �.m2 C m3/L1L2 sin.q2/Pq1 Pq2 � m3L1L3 sin.q2 C q3/Pq1.Pq2 C Pq3/
� m3L2L3 sin.q2 C q3/.Pq1 C Pq2 C Pq3/Pq3 � m3L2L3 sin.q2 C q3/Pq3
C m2L1L2 sin.q2/Pq1.Pq1 C Pq2/C m3L1L3 sin.q2 C q3/Pq1.Pq1 C Pq2 C Pq3/
C m2gL2 cos.q1 C q2/C m3gL2 cos.q1 C q2/

C m3gL3 cos.q1 C q2 C q3/;

N3.q; Pq/ D �m3L1L3 sin.q2 C q3/Pq1.Pq2 C Pq3/
� m3L2L3 sin.q2 C q3/.Pq1 C Pq2/.Pq2 C Pq3/
C m3L1L3 sin.q2 C q3/.Pq1 C Pq2 C Pq3/
C m3L2L3 sin.q2/.Pq1 C Pq2/.Pq1 C Pq2 C Pq3/
C m3gL3 cos.q1 C q2 C q3/:

Here, L1 D L2 D 0:4m and L3 D 0:3 m are the length of the links 1 through 3
starting from the pivot, and m1 D 6:4Kg, m2 D 13:6Kg, and m3 D 12:0Kg are the
point masses of each link.

We first consider the state representation of (8.1) with a dynamic extension [41]:

d

dt

2

4
q
Pq
#

3

5

„ƒ‚…
x

D
2

4
Pq

�M�1.q/N.q; Pq/C M�1.q/B
.q; Pq; #/
0

3

5

„ ƒ‚ …
f .x/

C
2

4
0

0

1

3

5

„ƒ‚…
g.x/

u (8.3)
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where u.t/ is the variable structure control which is designed such that the scalar-
valued function output

y D h.q/: (8.4)

has a steady-state periodic motion with desired frequency and amplitude. The
above representation makes possible the linearization of a class of underactuated
mechanical systems where the addition of an extra dynamics makes the zero
dynamics [46] one-dimensional and exponentially stable [41, 52]; on the other hand,
this extra dynamics also can be seen as the influence of an actuator [15].

For the underactuated plant (8.1), we must show the existence of periodic motion
and provide the gains of the TRC

u.t/ D �c1 sign.y/� c2 sign.Py/ (8.5)

to excite dynamics of the non-actuated link with oscillations with certain frequency
and amplitude. In the next section, we summarize the DF gain design for the TRC
by considering the linearized model of the plant.

8.3 The TRC Gains Computation

The output y D q3 is chosen to produce a periodic motion at the end effector. The
procedure to obtain the gains c1 and c2 using the DF algorithm in order to excite the
output y is as follows.

1. First, the equation of motion of the underactuated robot (8.1) is linearized around
the equilibrium point q? D Œ1:0472 1:4522 � 1:4522�T and Pq? D 0 2 R

3

[41]. The open loop is unstable, so we design a state-feedback controller to place
the eigenvalues arbitrarily at �3. Thus, the linear system, with states x D Œq �
q? Pq #�T 2 R

7, is given by (2.4) with

A D

2

6
6
6
66
6
6
6
6
4

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

�393:026 �250:587 �92:341 �432:856 �311:502 �105:683 0

544:519 346:565 130:977 603:491 434:430 149:424 0

�38:806 �23:563 �18:230 �55:616 �40:413 �19:774 0

0 0 0 0 0 0 0

3

7
7
7
77
7
7
7
7
5

B D �
0 0 0 �0:0034 �0:0190 0:0728 1
T

;

C D �
0 0 1 0 0 0 0



:

(8.6)
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Fig. 8.2 Nyquist plot of the 3-DOF underactuated robot

The corresponding transfer function is

W.s/ D 0:0728s5 C 0:8423s4 C 3:818s3 C 8:032s2 C 6:578s C 3:908 � 10�12

s.s6 C 18:2s5 C 138s4 C 558:2s3 C 1270s2 C 1541s C 778:9/
(8.7)

The Nyquist plot of W.s/ is shown in Fig. 8.2.
2. Setting the scalars ˝ and A1, the gains c1 and c2 can be obtained from

equations (2.10) and (2.14)–(2.15) which can be numerically computed using
the MATLAB/SIMULINKr CONTROL Toolbox commands nyquist, real,
and imag.

8.4 Simulation Results

The initial positions are q1.0/ D 1:1 rad, q2.0/ D 1:42 rad, and q3.0/ D �1:8 rad
for the joints 1, 2, and 3, respectively, and Pq.0/ D 0 2 R

3 rad/s. For the 3-DOF
robot, we select A1 D 0:15 as desired amplitude of oscillations and ˝ D 5 rad/s
(see Bode diagram in Fig. 8.3 for the open-loop system) as desired frequency.

Two steps for finding c1 and c2 via DF given in the previous section are as
follows:

1. For the selected frequency ˝ , we have RefW.j˝/g D �8:6 � 10�4 and
ImfW.j˝/g D �0:0018; therefore, ˝ belongs to the third quadrant (Q3).
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Fig. 8.3 Bode plot of the open-loop system

2. Using (2.10) we have � D �2:0322. Finally, using (2.14)–(2.15), we obtain
c1 D 26:59 and c2 D �54:08.

To check if the periodic solution is stable, find the derivative of the phase
characteristic of the plant with respect to the frequency; we need to verify the
following inequality:

d arg W

d ln!

ˇ
ˇ
ˇ
ˇ
!D˝

� � c1c2
˝.c21 C c22/

: (8.8)

Computing the left-hand side (8.8), we have d arg W=d ln! D �0:1263, while
the right-hand side is d arg W=d ln! D 0:0660. Therefore, the system is orbitally
asymptotically stable.

Figure 8.4 shows the motion of the joint positions for the closed-loop systems
using the TRC. Figure 8.5 gives a better picture of the amplitude and frequency of
the oscillations by plotting the steady-state output trajectory between 15 and 20 s.

Figure 8.6 shows the input torques for the TRC. The peak torque magnitude on
the limit cycle is about 60 N-m that is compatible with the torque of the prototype
given in [41]. Finally, Fig. 8.7 illustrates the phase portraits of .q3; Pq3/ revealing the
limit cycle behavior of the closed-loop systems generated for the TRC with initial
conditions inside and outside the limit cycle.
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8.5 Comments and Remarks

This chapter has addressed the problem of orbital stabilization of a underactuated
system around an unstable equilibrium point. The generation of self-oscillations is
made through TRC. The transient process converges to a stable limit cycle where
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the describing function method is used to compute the gain values of the TRC in
order to generate SO. It is worth noting that no reference model or periodic desired
signal is required to generate the motion of the robot, thus avoiding an extra work
in the localization of particular orbits for underactuated mechanical systems. The
proposed study can lead to some research topics. Among them is the analysis and
generation of SO for more complex systems as the coordinated motion in certain
class of legged or walking robots [40, 70] where Poincaré maps play an important
role. The problem the model of the plant was taken from the paper of Grizzle et
al. [41] with the purpose of solving it via the TRC. The results were identical but
required lower computational efforts, which may be attractive for engineers working
on the matter.



Chapter 9
Generation of Self-Oscillations in Systems
with Double Integrator

Abstract In this chapter, a self-oscillation is generated in a double integrator with
application to a 3-DOF experimental helicopter with two control inputs. Two TRCs
were used to generate periodic motion at the pitch, roll, and yaw angles. The
amplitude and frequency of oscillations depend on the value of the coefficient of the
TRC whose formulas were synthesized through the DF method. The performance of
the proposed controller, applied to an underactuated 3-DOF helicopter, was verified
by simulations.

9.1 Introduction

In the present chapter, we will focus on the SO of a 3-DOF helicopter prototype
with two control inputs depicted in Fig. 9.1 which is a class of system with
double integrator. Specifically, the prototype under study is a rigid body with
a spherical joint at the suspension point. Rotation of the prototype is permitted
around the suspension point in any direction. There are two propellers, which
are symmetrically attached at the end of the body and which can be actuated
individually. A counterweight is installed at the other end so that the gravitational
forces become negligible.

Several researcher addressed the regulation problem of similar helicopter proto-
type (see, e.g., [33, 95] and the references therein); however, few works can be found
related to the solution of the tracking or self-oscillations problem. For instance,
Meza et al. [61] and Westerberg et al. [92] solve the tracking control problem of
the 3-DOF helicopter prototype, operating under uncertain conditions, where virtual
constraints approach [80] is applied for planning of periodic motions. It is important
to mention that there are many research works related with the tracking control
problem for another class of helicopters, for example, the tracking control problem
for small-scale unmanned helicopters [73] and the takeoff and landing problem
of scaled helicopter where a specified trajectory is defined with respect to a fixed
reference frame [65].

The present chapter presents the capability of the two-relay controller to generate
self-oscillations in the 3-DOF helicopter under study. These oscillations may be
used as a part of a maneuvering motion (we figured out that the tracking principle
may be unusable for this purpose). The TRC is a variable structure system consisting

© Springer International Publishing Switzerland 2015
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Fig. 9.1 3-DOF helicopter prototype

of two relays that depend on the output and its time derivative and two coefficients
whose values are related with the amplitude and frequency of oscillations.

The chapter is structured as follows. Section 9.2 presents the dynamic model of
the 3-DOF helicopter and the problem statement is defined. In Section 9.3, double
two-relay controllers are applied—one is used to generate a periodic motion at the
elevation angle and the other is for the rotation and direction angles. Effectiveness of
the proposed method was verified by simulations in Section 9.4. Finally, conclusions
are provided in Section 9.5.

9.2 Dynamic Model of 3-DOF Helicopter
and Problem Statement

The mathematical model of the laboratory prototype of the 3-DOF helicopter drawn
from the user’s manual [71] is given by

Je
R� D Kf .Ff C Fb/Lb � FgLb (9.1)

Jd R
 D Kf .Ff � Fb/Lh (9.2)

Jt R D �Kp sin.
/Lb (9.3)

where �.t/ 2 R is the elevation angle, 
.t/ 2 R is the direction angle,  .t/ 2 R is
the rotation angle, Je is the moment of inertia of the system about the elevation axis,
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Table 9.1 Parameter values
of the experimental 3-DOF
helicopter

Parameter Value Units

Lb 0.66 m

Lh 0.177 m

Je 0.91 Kg–m2

Jd 0.0364 Kg–m2

Jt 0.91 Kg–m2

Kf 0.5 N/V

Kp 0.686 N

Fg 0.686 N

Jd is the moment of the helicopter inertia about the pitch or directional axis, Jt is the
moment of the helicopter inertia about the travel or rotation axis, the manipulated
variables used for control are forces exerted by the DC motors denoted as Ff .t/ and
Fb.t/, respectively; Kf is the force constant of the motor/propeller combination, Lb

is the distance from the pivot point to the helicopter body, Fg is the gravitational
force, Lh is the distance from the pitch axis to the either motor, and Kp is the force
required to maintain the helicopter in flight. The parameters of the helicopter, taken
from Quanser, Inc., 3-DOF helicopter manual, are given in Table 9.1.

For the purpose of decomposing the 3-DOF underactuated system (9.1)–(9.3)
into two subsystems, actuated independently, let us introduce the control inputs
u0
1 D Ff C Fb and u0

2 D Ff � Fb. Then, setting �1 D � , �2 D P� , 
1 D 
, 
2 D P
,
 1 D  ,  2 D P , and a D Kf LbJ�1

e , b D LbFgJ�1
e , c D Kf LhJ�1

d , d D KpLbJ�1
t ,

system (9.1)–(9.3) takes the form

P�1 D �2; P�2 D �b C au0
1 (9.4)

P
1 D 
2; P
2 D cu0
2 (9.5)

P 1 D  2; P 2 D �d sin.
1/: (9.6)

In the design, we will take into account the dynamics of each DC motors whose
transfer function is given by

Wa.s/ D k

Js C 1
(9.7)

where k and J are positive nominal parameters and it is assumed that its values are
the same in each motor.

The objective is to induce a periodic motion at the output y D Œ�1 
1  1�
T of the

system (9.4)–(9.6), with desired amplitude A1 and frequency ˝ using the two-relay
controller.

Let us recall that is not possible to generate SO in a system with double integrator
as W.s/ D 1=s2 since isolated point of intersection between the Nyquist plot and
the describing function does not exist. However, for a system with double integrator
plus the actuator dynamics as
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W.s/ D 1

s2.s C 1/
(9.8)

it is possible to generate SO using the TRC

u D �c1 sign.y/� c2 sign.Py/ (9.9)

Figure 9.2 shows the Nyquist plot and the DF of system using the TRC. Notice now
that intersection of the DF with the Nyquist plot can occur; therefore, oscillations
now can be induced as illustrated in same figure.

9.3 Main Result

9.3.1 Periodic Motion of the Elevation Angle

Equations (9.4), (9.7), describing the pitch dynamics, constitute an independent
subsystem. For the design, notice that

u0
1 D Ff C Fb D Wa.s/.Vf C Vb/ D Wa.s/u1 (9.10)

where Vf and Vb stand for the armature voltages applied to the front and back
motors.

The following two-relay controller

u1 D �˛1 sign.�1/ � ˛2 sign.�2/ (9.11)

is proposed to generate self-oscillations at the output y� D �1. Here, ˛1 and ˛2 are
scalar parameters that must be computed according to the procedure provided in
Section 2.4.

To begin with, Nyquist plot of the open-loop system (see Fig. 9.3) involving
the elevation and actuator dynamics is presented in Fig. 9.4(a). This Nyquist plot,
generated using the linear analysis tool from MATLAB/SIMULINKr, illustrates
that plot is found in the third quadrant only.

The linear model considered for design purposes is

W� .s/ D ak

s2.Js C 1/
: (9.12)

The real and imaginary parts of the above transfer function are
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and using two-relay controller

RefW� .j!/g D ak

!2

�
1

1C J2!2

	

ImfW� .j!/g D ak

!2

�
J!

1C J2!2

	
:

(9.13)
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Fig. 9.3 Block diagram of the open-loop system involving the actuator and the elevation dynamics

The straightforward formulas to compute ˛1 and ˛2, derived from (2.14)–(2.15), are

˛1 D 	

4
A�

˝2
�

ak
;

˛2 D J˝�˛1

(9.14)

where A� and ˝� are the desired elevation amplitude and frequency, respectively.
We shall consider that the harmonic balance condition still holds for small

perturbations of the amplitude and the frequency with respect of the periodic motion.
In this case the oscillation can be described as a damped one. If the damping
parameter will be negative at a positive increment of the amplitude and positive
at a negative increment of the amplitude, then the perturbation will vanish and the
limit cycle will be asymptotically stable.

From Theorem 2.1, the condition to guarantee that periodic solution is orbitally
asymptotically stable, for the system under study, is

d arg W�

d ln!

ˇ
ˇ
ˇ
ˇ
!D˝

� �
 
	

4
A�

˝2
�

ak

!
J˝�

1C J˝�

: (9.15)

Note that for any ˝� and A� the condition of orbital stability holds.

9.3.2 Periodic Motion of Rotation and Direction Angles

The next goal is to induce self-oscillation at the rotation and direction angles. We
can now proceed analogously to the previous subsection if we consider the direction
dynamics. First, note that

u0
2 D Ff � Fb D Wa.s/.Vf � Vb/ D Wa.s/u2: (9.16)

The following control input is proposed to generate periodic motion at the direction
angle
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u2 D �ˇ1 sign.
1/ � ˇ2 sign.
2/ (9.17)

where ˇ1 and ˇ2 are the scalar coefficients of the TRC to be tuned according to
(2.14) and (2.15).
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The linear model, involving the direction and actuator dynamics, considered for
design purposes is

W
.s/ D ck

s2.Js C 1/
: (9.18)

The Nyquist plot of the open-loop system is also presented in Fig. 9.4(b). Therefore,
the formulas to compute ˇ1 and ˇ2 are

ˇ1 D 	

4
A


˝2



ck
;

ˇ2 D J˝
ˇ1

(9.19)

where A
 and ˝
 are the desired elevation amplitude and frequency, respectively.
Of course, the condition to guarantee that periodic solution is orbitally asymptoti-
cally stable, for the subsystem under study, is

Re
d arg W


d ln!

ˇ
ˇ̌
ˇ
!D˝

� �
 
	

4
A


˝2



ck

!
J˝


1C J˝


: (9.20)

9.4 Simulation Results

The periodic motion of each axis of the helicopter was verified in simulation by
applying the two-relay controller presented in Section 2.4. The constant parameters
of the motors are J D 0:5 and k D 10. The initial conditions of each angle were set
to �1.0/ D 0:2 rad, 
1.0/ D 0:01 rad, and  1.0/ D 0:8 rad while the initial velocity
conditions were set to �2.0/ D  2.0/ D 
2.0/ D 0 rad/s. For the simulation,
we chose A� D 0:8 and A
 D 1 as desired amplitudes and ˝� D 1:5 rad/s and
˝
 D 0:5 rad/s as desired frequencies.

The constant ˛1 D 4:873 ˛2 D 3:655 and ˇ1 D 3:23 ˇ2 D 1:62 were obtained
from formulas (9.14) and (9.19), respectively.

Figure 9.5 shows the periodic motion of the elevation � , direction 
, and rotation
 angles of the 3-DOF helicopter prototype. Figure 9.6 illustrates the real control
inputs Vf D .u1 C u2/=2 and Vb D .u1 � u2/=2.

9.5 Conclusions

In this chapter we propose the two-relay control method to induce SO in a
double integrator with an actuator dynamics. Particularly, we find application in
3-DOF underactuated helicopter where dynamics of the actuators have an important
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influence on the system. Generation of the SO at each degree of freedom at the
same time is considered. The framework is a two-stage procedure involving periodic
motion. The first stage allows us to select a feasible periodic motion for the elevation
angle by using the reduced-order dynamics. The second stage implies an self-
oscillation of the direction angle. It should be pointed out that rotation angle '
has a natural period motion consisting in the rotation of the body around the axis.
Generation of self-oscillation at different frequencies and amplitudes for each angle
is a complex problem because of the coupling between models. Our results show
how the simple proposed control algorithm, known as two-relay controller, solves
the mentioned problem. The effectiveness of the proposed method is demonstrated
by numerical simulations.
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Fig. 9.5 Oscillatory
responses of each output of
the 3-DOF underactuated
helicopter
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Chapter 10
Fixed-Phase Loop (FPL)

Abstract There exist a number of applications in which oscillations must be
produced at a certain phase shift with respect to a reference signal. Phase-lock loop
(PLL) is widely used for this purpose. PLL uses a closed-loop control principle
for tracking the required phase shift. Another solution, which uses an open-loop
control principle for the phase angle, can be realized on the TRC considered in this
book. This solution is named here a fixed-phase loop (FPL). FPL is an oscillator
consisting of a TRC and a low-pass (LP) filter that generates a periodic voltage
signal of the frequency corresponding to a certain specified phase lag of the LP filter.
Regardless of the LP filter connected in a loop with the TRC, oscillations are always
produced at the same phase lag value. Two different circuits are considered: without
and with an additional integrator. The purpose of the considered self-oscillating
circuit is to produce a periodic reference signal at the output of the filter with desired
frequency and amplitude. Sufficient conditions for orbital asymptotic stability of the
closed-loop system is verified through the Poincaré map. The two FPL circuits are
illustrated by simulations and experiments.

10.1 Introduction

In electronics, the idea of using self-oscillating circuits is used in many applications.
In dc–dc inverters [59], self-oscillating principle is used because of nearly zero
sensitivity to load changes and high performance. Such inverters are attractive to
operate in dc–ac converters where two buck–boost dc–dc inverters are commonly
used. Several topologies have been proposed to design these converters, for
example, Sanchis et al. [77] design a buck–boost dc–ac inverter using a double-
loop control for the buck–boost dc–dc converter. Youssef and Jain [94] present
a self-sustained oscillating controller for power factor correction circuits. Several
circuit topologies for nonconventional dc–ac inverters are illustrated in J. Lai
[51]. Recently, Albea et al. [3] designed an autonomous oscillator using energy-
shaping methodology for a nonlinear boost inverter whose topology was originally
presented by Cáceres and Barbi [19]. Very often in these and other applications,
oscillations must be produced at a certain phase shift with respect to a reference
signal. Phase-lock loop (PLL) is widely used for this purpose. PLL uses a closed-
loop control principle for tracking the required phase shift. Another solution, which

© Springer International Publishing Switzerland 2015
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uses an open-loop control principle for the phase angle, can be realized on the
TRC considered in this book. This solution is named here a fixed-phase loop (FPL).
FPL is an oscillator consisting of a TRC and a low-pass (LP) filter that generates a
periodic voltage signal of the frequency corresponding to a certain specified phase
lag of the LP filter. Regardless of the LP filter connected in a loop with the TRC,
oscillations are always produced at the same phase lag value.

Analysis of the TRC interconnected with a second-order linear plant, for
example, to induce low voltage at the output of the plant is unsuitable for dc–ac
power conversion purposes due to the limitations of linear amplifiers configured as
relays and differentiators. In this chapter, we use the first approach in the application
of the two-relay controller [1] in dc–ac power converters. We start our investigation
by using a buck converter topology interconnected with a bridge-type circuit which
is used to obtain the sinusoidal output voltage. Reference signal will be injected
through the output of the interconnection between the TRC and a linear or nonlinear
plant, which will be referred to as a two-relay system.

The chapter is devoted to the design of an FPL and organized as follows. At
first gain synthesis, upper bound estimate, and sufficient conditions for orbital
asymptotic stability are presented in Section 10.2 for the TRC. TRC design
formulas are produced in Section 10.2.1. Experimental study of an FPL is given in
Section 10.2.3. After that, analogue realization, including design formulas, is given
in Section 10.3. Finally, Section 10.4 presents some conclusions.

10.2 Design of TRC for FPL

Assume that linear dynamics in the FPL is of second order. Consider the stable
second-order transfer function

W.s/ D 1

s2

!20
C 2�s

!0
C 1

(10.1)

interconnected with a two-relay controller

u D �c1 sign.y/� c2 sign.Py/ (10.2)

where � > 0 is the damping factor, !0 > 0 is the natural frequency, s D j! is the
complex variable, and c1 and c2 are scalar coefficients designed such that the output
of the system y.t/ has a steady periodic motion voltage with desired frequency ˝

and amplitude A1.
Contrary to Chapters 7–9, the TRC (10.2) is considered in this section as a device

for generating a periodic voltage signal. The desired amplitude and frequency of
the signal at the output of the filter W.s/ are produced through tuning c1 and c2.
However, there is a possibility of obtaining excessively large required values of c1
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and c2. This may result in the necessity of a very high amplitude of the switched
control u.t/. To avoid this, we need to account for natural physical limits on the
produced voltage and choose the desired A1 2 Œ0;Amax

1 .umax/� such that

sup
t�0

ju.t/j � umax (10.3)

where umax > 0 is the maximum control input level.

10.2.1 Synthesis of TRC under Input Saturation

We now proceed with analyzing the FPL with a two-relay controller under input
saturation. The reason for this is the necessity of avoiding unrealistic selection of
c1 and c2 which would correspond to high required amplitude values of the output
voltage.

The right-hand sides of formulas

c1 D

8
<̂

:̂

	
4

A1jW.j˝/j
�p

1C �2
��1

if ˝ 2 Q3

�	
4

A1jW.j˝/j
�p

1C �2
��1

if ˝ 2 Q4

(10.4)

c2 D � � c1; (10.5)

with

� D c2
c1

D � ImfW.j˝/g
RefW.j˝/g ; (10.6)

can be expressed in terms of the parameters of the filter natural frequency !0 and
damping � and the required .A1;˝/. Here, Q3 and Q4 are defined as the third
and fourth quadrants of the complex plane, respectively. We express the real and
imaginary part of (10.1) in terms of the desired frequency, damping, and natural
frequency which are given by

RefW.j˝/g D .!20 � ˝2/w20
!40 C 2˝2.2�2 � 1/!20 C ˝4

(10.7)

ImfW.j˝/g D � 2�˝!30

w40 C 2˝2.2�2 � 1/!20 C ˝4
(10.8)

where the denominator of the above equations are positive since the transfer function
W.s/ is stable. The magnitude of W.j!/ at the desired frequency ˝ is
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kW.j˝/k D !20q
.!20 � ˝2/2 C 4.�˝!0/2

: (10.9)

Therefore, coefficients c1 and c2 can be computed from (10.4)–(10.9) as follows:

c1 D 	

4
Ap �

 
˝2 � !20
!20

!

(10.10)

c2 D �	Ap�˝

2!0
(10.11)

where the Nyquist quadrant identification is no longer required.

10.2.2 Upper Bound Estimates

Let us now solve the inverse problem and determine the upper bound estimate for
the generated signal amplitude Amax

1 . To this end, note from (10.2) that inequality
(10.3) is equivalent to

jc1j C jc2j � umax: (10.12)

It follows from (10.10)–(10.12) that

juj D jc1j C jc2j D 	

4

j!20 � ˝2j
!20

A1 C 	�˝

2!0
A1 � umax; (10.13)

and therefore, by setting jc1j C jc2j D umax, we have

Amax
1 D 4

	

 
!20

j!20 � ˝2j C 2�!0˝

!

umax: (10.14)

Moreover, one can conclude that if the closed-loop system (10.1)–(10.2) is orbitally
asymptotically stable then

sup kyss.t/k � Amax
1 (10.15)

where yss.t/ is the steady state response of the output y.t/. We can now summarize
our investigation into the possibility of providing necessary amplitudes of the
generated oscillation as the following two statements.

Theorem 10.1. Suppose that the closed-loop system, consisting of a stable second-
order transfer function (10.1) and the two-relay controller (10.2), is orbitally
asymptotically stable. Then for any A1 2 Œ0;Amax

1 �, where Amax
1 2 A � R is given

by (10.14), there exists a positive constant u� � umax such that supt�0 ju.t/j � u�.
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Theorem 10.2. Suppose that the coefficients c1 and c2 of the TRC produce a
FPL that induces a periodic trajectory, i.e., (10.1)–(10.2). This periodic solution
is orbitally exponentially stable if and only if all the eigenvalues of the matrix ˚ ,
defined by (4.33)–(4.35), are located inside the unit circle.

Proof. The proof is given in Subsection 4.6 and it is therefore omitted here.

Let us illustrate the above theorem by applying it to the system (10.1) whose
state-space representation is

d

dt

�
x1
x2

�
D
�

0 1

�!20 �2�!0
�

„ ƒ‚ …
A

�
x1
x2

�

„ƒ‚…
x

C
�
0

!20

�

„ƒ‚…
B

u (10.16)

y D �
1 0



„ƒ‚…
C

�
x1
x2

�
(10.17)

where A is Hurwitz without eigenvalues on the imaginary axis. Introduce

'1 D 1

2
p
�2 � 1

"
p11 � v1;1

v1;2
p21 p12 � v1;1

v1;2
p22

0 0

#

(10.18)

'2 D 1

2
p
�2 � 1

"
0 0

q21 � v2;2
v2;1

q11 q22 � v2;2
v2;1

q12

#

(10.19)

where

v1 D
�
v1;1
v1;2

�
D
�

0

!20 j�p1j C !20.c1 C c2/

�

v2 D
�
v2;1
v2;2

�
D
�

�p2

2�!0j�p2j C !20.c1 � c2/

�

p11 D
�
�� C

p
�2 � 1

�
e�1�1 C

�
� C

p
�2 � 1

�
e�2�1

p12 D �e�1�1 C e�2�1

p21 D �!0p12
p22 D

�
� C

p
�2 � 1

�
e�1�1 C

�
�� C

p
�2 � 1

�
e�2�1

q11 D
�
�� C

p
�2 � 1

�
e�1�2 C

�
� C

p
�2 � 1

�
e�2�2

q12 D �e�1�2 C e�2�2

q21 D �!0q12
q22 D

�
� C

p
�2 � 1

�
e�1�2 C

�
�� C

p
�2 � 1

�
e�2�2 :
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The parameters �1 D ��!0 � !0
p
�2 � 1 and �2 D ��!0 C !0

p
�2 � 1 are the

eigenvalues of A. Conditions given in (3.8) were taken into account in v1 and v2, i.e.,
�p1 < 0, �p2 D 0, �p1 D 0, and �p2 < 0. Substituting (10.18)–(10.19) into (4.35)
yields

˚ D 1

16.�2 � 1/2
�
˚11 ˚12
0 0

�
(10.20)

whose eigenvalues are 0 and ˚11=16.�2 � 1/2 where

˚11

D �
�
!0 C v2;2

v2;1
�2

	
e�1T=2 C

�
!0 C v2;2

v2;1
�1

	
e�1�1C�2�2

C
�
!0 C v2;2

v2;1
�2

	
e�1�2C�2�1 �

�
!0 C v2;2

v2;1
�1

	
e�2T=2: (10.21)

Finally, according to Theorem 10.2, if 16.�2 � 1/2 > k˚11k, then the orbit
of the closed-loop system (10.1)–(10.2) will be asymptotically stable. Under the
assumption that �i < 0, i D 1; 2 are real, the following upper bound holds

k˚11k � 2

ˇ
ˇ̌
ˇ!0 C v2;2

v2;1
�1

ˇ
ˇ̌
ˇC 2

ˇ
ˇ̌
ˇ!0 C v2;2

v2;1
�2

ˇ
ˇ̌
ˇ

� 4!0

�
1C .� C

p
�2 � 1/

ˇ
ˇ
ˇ
ˇ
v2;2

v2;1

ˇ
ˇ
ˇ
ˇ

	
: (10.22)

10.2.3 Experimental Results

The experimental setup for the FPL includes a second-order filter, which is realized
as the unity-gain Sallen–Key low-pass filter [58]. Its transfer function is given by

W.s/ D 1

!2c R1R2C1C2s2 C !cC1.R1 C R2/s C 1
; (10.23)

where !c is the cutoff frequency. Therefore, it follows from (10.1) that

!0 D 1

!c
p

R1R2C1C2
and � D C1.R1 C R2/

2
p

R1R2C1C2
: (10.24)

Our objective, at this stage, is to induce a periodic voltage signal at the output
of the filter y.t/ with A1 D 10 V and ˝ D 60 Hz as desired voltage and
frequency, respectively. Simulation and experimental results were obtained using
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Fig. 10.1 Nyquist plot of the second-order filter

MATLAB/SIMULINKr and National Instruments MULTISIM 10.0r software
packages.

For the simulations, we choose � D 0:9, !0 D 150, and !c D 500 rad/s to
realize the second-order transfer function (10.1). By selecting ˝ D 377 rad/s and
umax D 80, we find from (10.14) that the maximum amplitude is Amax

1 D 10:3507.
For the experiments, we choose A1 D 10 V. Selecting R1 D R2 D 1 M˝ and using
equations (10.24), we find that C1 D 12 pF and C2 D 15 pF.

Now, following the procedure given in Section 10.2.1 to compute c1 and c2,
we first find, by plotting the Nyquist plot of the second-order filter (10.1), that the
desired frequency belongs to the third quadrant, i.e., ˝ 2 Q3 (see Fig. 10.1). Since
Refj377g D �0:1091 and ifj377g D �0:0928 and by using (10.4), (10.5), we find
that c1 D 41:7584 and c2 D �35:5314.

Figure 10.2 shows the output voltage y.t/ of the filter demonstrating that the
required amplitude and frequency can be realized.

10.3 Analogue Realization of Fixed-Phase Loop (FPL)

Phase-lock loops (PLL) [4] are used in many applications for tracking periodic
signals with a specified phase shift. Usually PLL is a circuit synchronizing an output
signal, generated by an oscillator, with a reference or input signal in frequency
as well as in phase [11]. PLLs are particularly found in communications, control,
power electronics, servo-systems, and digital signal processors.
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Fig. 10.2 Simulation of the output of the second order filter
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Fig. 10.3 Electric circuit diagram for TRC (non-inverting)

As shown in the previous section, a circuit having similar to PLL functionality
can be produced by using the TRC in combination with an LP filter. It was named
an FPL. However, having in mind an analogue realization of an FPL, one can notice
that the differentiator implementation may be problematic due to amplification of
the noise component. A better option in this respect would be the use of the serially
connected TRC and an integrator. In fact, this serial connection transforms into a
parallel connection of an integrator and a relay and a relay. A few schematics of this
design are presented below that were experimentally tested, simulated and found
suitable as realizations of the FPL.

The first TRC schematic is given in Fig. 10.3.
Its working principle can be described as follows. The first relay is imple-

mented on the first operational amplifier having two Zener diodes in the feedback.
The integrator is implemented on the second operational amplifier; the integral
time constant is R2C. Amplifier on Opamp 3 is necessary to invert the voltage. It
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should be noted that this inverting amplifier is necessary only if the frequency of
the self-exited oscillation needs to be generated in the third quadrant of the Nyquist
plot of the plant (LP filter). In this case, the signals from the first Opamp and the
fourth Opamp are summed. If the inverter is not used, then the output signal of
the fourth Opamp is subtracted from the output of the first Opamp, and oscillations
are generated in the fourth quadrant of the Nyquist plot of the plant (LP filter).
The second relay is realized on the fourth Opamp. Potentiometer R4 is used as a
voltage divider between the outputs of the two relays: V1 and V2. To find the model
of the divider circuit, one should take into account the fact that the inverting input
of the fifth amplified is at zero potential. Therefore, the three resistances: the part of
R4 from the tap point to the upper terminal (denoted below as R8), the part of R4
from the tap point to the bottom terminal (denoted below as R7), and R5 have a
Y-connection. Equating the sum of currents arriving at the tap point of R4 to zero,
we find the following relationship:

V3 D
V1
R8

C V2
R7

1
R8

C 1
R7

C 1
R5

(10.25)

and the output of TRC:

Vout D �V3 � R6
R5

D �
V1
R8

C V2
R7

R5
R8

C R5
R7

C 1
� R6: (10.26)

Considering that R8 D ˛R4 and R2 D .1 � ˛/R4, with ˛ 2 Œ0; 1� being the
potentiometer position (assuming linear characteristic), we rewrite the expression
for output voltage as

Vout D
�

V1
˛R4

C V2
.1 � ˛/R4

	
� �R6

R5
�

1
˛R4

C 1
.1�˛/R4

�
C 1

D 1

R4

�
V1
˛

C V2
1 � ˛

	
� �R6

R5
R4



1
˛

C 1
1�˛

�C 1

D
�

V1
˛

C V2
1 � ˛

	
� �R6

R5


1
˛

C 1
1�˛

�C R4
: (10.27)

If R4 is small (R4 
 R5), then the potentiometer works as a linear voltage divider:

Vout � �
�

V1
˛

C V2
1 � ˛

	
˛.1 � ˛/R6

R5

D � ..1 � ˛/V1 C ˛V2/ � R6
R5
: (10.28)
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Fig. 10.4 Electric circuit diagram for TRC (inverting)

Another schematic of TRC is presented in Fig. 10.4. It has a non-inverting voltage
repeater built on operational amplifier 5. Because of the high input resistance, the
output voltage is simply V3:

Vout D V3: (10.29)

And since the current through R4 is i D V1�V2
R4

, the TRC output voltage is

Vout D V3 D V2 C i.1 � ˛/R4 D V2 C V1 � V2
R4

.1 � ˛/R4

D V2 C .1 � ˛/V1 � .1 � ˛/V2

D .1 � ˛/V1 C ˛V2: (10.30)

If the amplitudes of V1 and V2 are equal to c, then

c1 D .1 � ˛/c (10.31)

and

c2 D ˛c: (10.32)

The describing function of the controller is

N.a/ D � h

	a
.c1 � jc2/ D � hc

	a
.1 � ˛ � j˛/: (10.33)

The minus in (10.33) is due to inverting.
The phase shift provided by the circuit in Fig. 10.4 (disregarding inversion) is

� D � arctan
�
� ˛

1 � ˛

�
: (10.34)
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Fig. 10.5 Simplified TRC circuit (inverting)

The total phase shift (including inversion) is

� D �	 � arctan
� ˛

1 � ˛

�
: (10.35)

Therefore, the phase shift can be regulated by the potentiometer R4, which will not
result in a change of any other parameter. The value of the phase shift is determined
only by the position of R4 and will be the same for every circuit connected in the
loop with the controller: the frequency of oscillations will be different, but it will
correspond to a specific (determined by position of R4) phase.

A simplified circuit is provided in Fig. 10.5. The circuit given by R2 and C is not
an integrator, but a first-order low-pass filter with transfer function

Wf .s/ D 1

R2Cs C 1
:

If the frequency of the input signal (of the oscillations in the loop) is high enough, so
that R2C! � 1, then this circuit would act as an integrator with Wf .s/ � 1=R2Cs.

It can be noted that the LP filter included in the loop with TRC to form an
FPL circuit must be inverting for the non-inverting TRC and non-inverting for
the inverting TRC to ensure proper phase relationship necessary for generating an
oscillation. Therefore, for the circuit Fig. 10.3, the LP filter can be built on one
inverting operational amplifier. An example of this circuit is given in Fig. 10.6.
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Fig. 10.6 Second-order filter
circuit used as plant
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Fig. 10.7 Output voltage responses for circuit of Fig. 10.5 coupled to circuit of Fig. 10.6: (a)
voltage at the output of the plant and (b) voltage signal at the output of the TRC

10.3.1 Simulations and Experiments

PSpice simulations of circuits Fig. 10.5 and Fig. 10.6 connected in a loop are
presented in Fig. 10.7.

Realization of the circuit Fig. 10.3, having parameters R1 D R2 D R3 D R4 D
R5 D R6 D 10 k˝ , C1 D 1 �F, R7 D 100 k˝ , R8 D 51 k˝ , Zener diodes all for 9:1
V, all operational amplifiers LM348N, and of the circuit Fig. 10.6 having parameters
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Fig. 10.8 Output of TRC in FPL; lowest position of potentiometer R4

Fig. 10.9 Output of TRC in FPL; lower-intermediate position of potentiometer R4

R1 D 10 k˝ , L1 D 10 mH, R2 D 10 k˝ , C1 D 1 uF was done to produce a FPL.
The results of experimental testing of this FPL are given in Figs. 10.8, 10.9, 10.10,
10.11.
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Fig. 10.10 Output of TRC in FPL; upper-intermediate position of potentiometer R4

Fig. 10.11 Output of TRC in FPL; upper position of potentiometer R4
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10.4 Conclusions

In this chapter a fixed-phase loop (FPL) is presented. FPL consists of the TRC and
an arbitrary plant having low-pass filtering properties (an LP filter). The FPL has
the remarkable property of generating oscillations at a fixed (specified) phase lag of
the LP filter, so that if the filter is replaced with another one the oscillations will be
again generated at the same phase lag of the second PL filter. The authors believe
that this property of the FPL can be used in practice.

A few examples of FPL circuits are presented. The circuits are provided with
formulas relating the RLC elements and the characteristics of the FPL and illustrated
by simulations and experiments.



Appendix A
Describing Function

Describing Function (DF) is a classical tool for analyzing the existence of limit
cycles in nonlinear systems based in the frequency-domain approach. Although
this method is not as general as the analysis for linear system is, it gives good
approximated results for relay feedback systems.

The idea of the method using the scheme presented in Fig. A.1 is to obtain the
DF of the single-input–single-output control block, which is assumed nonlinear, and
according to [39] the definition of DF is the complex fundamental-harmonic gain of
a nonlinearity in the presence of a driving sinusoid. Consider the input signal of the
control block as �.t/ D A sin.!t/ and its output signal, presented by its Fourier
representation, as

u.t/ D a0
2

C
1X

nD1
Œan cos.n!t/C bn sin.n!t/�:

A restriction for this approach is that in the above scheme only one block can be
nonlinear, so a common case might be considering the plant to be linear and allowing
the control block to be the nonlinear part, covering in such a way a wide variety of
real engineering problem like saturation, dead zones, Coulomb friction or backlash.
Also linear plant has to be time invariance and regarding the approximation of
the output u.t/ via its Fourier representation, the analysis is done with null offset
(a0 D 0) and taking only the first harmonic (n D 1) of the Fourier series of this
signal:

u.t/

�.t/
' a1 cos.!t/C b1 sin.!t/

A sin.!t/
(A.1)

due to this last consideration, most of the information of u.t/ has to be contained in
the first harmonic term, otherwise approximation will be extremely poor, for achiev-
ing this, the linear element must have low-pass properties (filtering hypothesis), it
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Fig. A.1 Basic scheme for DF analysis

means that

jG. j!/j � jG. jn!/j n D 2; 3; : : :

Using the trigonometric identity a1 cos.!t/C b1 sin.!t/ D
q

a21 C b21 sin.!t C 
/,
where 
 D arctan.a1=b1/, in Eq. (A.1), we get

u.t/

�.t/
'
q

a21 C b21 sin.!t C 
/

A sin.!t/
:

According to [39] the describing function N.A; !/ is defined as the ratio of
the phasor representation of output component at frequency ! and the phasor
representation of input component at frequency !, that is

N.A; !/ D

�q
a21 C b21

	
e j.!tC
/

Aej!t
D 1

A
.b1 C ja1/ (A.2)

where the coefficients a1 and b1 of the first harmonic of Fourier representation are
given by

a1 D !

	

Z 2	=!

0

u.t/ cos.!t/dt; b1 D !

	

Z 2	=!

0

u.t/ sin.!t/dt:

Finally, substituting a1 and b1 into (A.2) yields to

N.A; !/ D !

	A

Z 2	=!

0

u.t/ sin.!t/dt C j
!

	A

Z 2	=!

0

u.t/ cos.!t/dt: (A.3)
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Fig. A.2 Relay feedback using single-relay control

A.1 Describing Function of a Single-Relay

Let us first investigate the existence of periodic solution of a single-relay control
given by (see Fig. A.2)

u.t/ D
(

�c if 	
!
< t < 0

c if 0 < t < 	
!
:

(A.4)

Using (A.3) yields

N.A; !/ D 4c

	A
(A.5)

where A and ! are the amplitude and frequency of the output y.t/, respectively.



Appendix B
The locus of a perturbed relay system (LPRS)

B.1 Asymmetric oscillations in relay feedback systems

The locus of a perturbed relay system (LPRS) method of analysis is similar from
the methodological point of view to the DF method. It is designed to imitate the
methodology of analysis used in the DF-based approach. Some concepts (like the
notion of the equivalent gain) are also similar. However, the LPRS method is exact
and the notions that are traditionally used within the DF method are redefined, so
that in the LPRS analysis similar notions are used in the exact sense.

Let us consider the SISO relay feedback system, that has a constant input,
described by the following equations:

Px.t/ D Ax.t/C Bu.t/
y.t/ D Cx.t/;

(B.1)

where A 2 R
n�n, B 2 R

n�1 and C 2 R
1�n are matrices, A is nonsingular, x 2 R

n�1
is the state vector, y 2 R

1 is the system output and u 2 R
1 is the control defined as

follows:

u.t/ D

8
ˆ̂<

ˆ̂
:

Ch if e.t/ D r0 � y.t/ � b
or e.t/ > �b ; u.t�/ D h

�h if e.t/ D r0 � y.t/ � �b
or e.t/ < b ; u.t�/ D �h

(B.2)

where r0 is a constant input to the system, e is the error signal, h is the relay
amplitude, 2b is the hysteresis value of the relay and u.t�/ D lim

�!0;�>0
u.t � �/ is

the control at the time instant immediately preceding time t. We shall consider that
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time t D 0 corresponds to the time of the error signal becoming equal to the positive
half-hysteresis value (subject to Pe > 0): e.0/ D b and call this time the time of relay
switch from �h to h.

We can also represent the linear part of the relay feedback system (B.1) by the
transfer function Wl.s/:

Wl.s/ D C.Is � A/�1B: (B.3)

We shall assume that the linear part is strictly proper, i.e., the relative degree
of Wl.s/ is 1 or higher, which is a valid assumption for all physically realisable
systems.

If the input to the system is a constant value r0 W r.t/ � r0, then an asymmetric
periodic motion occurs in the relay feedback system, so that each signal has a
periodic term with zero mean value and a nonzero constant term: u.t/ D u0 C up.t/,
y.t/ D y0 C yp.t/, e.t/ D e0 C ep.t/, where subscript 0 refers to the constant
term, and subscript p refers to the periodic term of the function. The periodic term
represents the sum of all periodic terms (harmonics) in the Fourier series expansion
for respective signal. The constant term is the averaged value of the signal on the
period.

The constant input signal r0 can be quasi-statically (slowly) slewed from a certain
negative value to a positive value, so that at each value of the input signal the
system establishes a stable oscillation, and the values of the constant terms of
the error signal and of the control signal are measured. Then the constant term
of the control signal can be considered as a function of the constant term of the
error signal. This dependance would give the bias function u0 D u0.e0/, which
would be not a discontinuous but a smooth function. The described smoothing
effect is known as the chatter smoothing phenomenon. The derivative of the mean
control with respect to the mean error taken in the point of zero mean error e0 D 0

(corresponding to zero constant input) provides the equivalent gain of the relay kn.
The equivalent gain of the relay can be used as a local approximation of the bias
function: kn D du0=de0je0D0 D lim

r0!0
.u0=e0/.

B.2 Computation of the LPRS

B.2.1 Computeation of LPRS from matrix state space
description

A complex function of frequency ! named the locus of a perturbed relay system
(LPRS) was introduced in [13] for analysis of self-excited oscillations in and
external signal propagation through the relay system as follows:
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Fig. B.1 LPRS and analysis
of relay feedback system

J.!/ D �0:5C
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I � e
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I � e
	
! A
�

A�1B;
(B.4)

where ! 2 Œ0;1/. An LPRS plot is presented in Fig. B.1.
It was proved in [13] and [14] that the frequency˝ of the self-excited oscillations

can be computed through solving the equation:

Im J.˝/ D �	b

4h
; (B.5)

and the equivalent gain kn, which describes propagation of constant signals (or sig-
nals slowly varied with respect to the self excited oscillation) can be computed as:

kn D � 1

2Re J.˝/
: (B.6)

Both values provided by formulas (B.5) and (B.6) are exact. LPRS also offers a
convenient graphic interpretation of finding the frequency˝ and the equivalent gain
kn (Fig. B.1). The point of intersection of the LPRS and the horizontal line, which
lies at the distance of 	b=.4h/ below (if b > 0/ or above (if b < 0) the horizontal
axis (line “�	b=4h”), allows for computation of the frequency of the oscillations
and of the equivalent gain kn of the relay.
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B.2.2 Computation of the LPRS from transfer function

A different formula for J.!/ was derived in [14] for the case of the linear part given
by a transfer function. Through application of the Fourier series, it was proved that
LPRS can also be computed as the following infinite series:

J.!/ D
1X

kD1
.�1/kC1ReWl.k!/C j

1X

kD1

1

2k � 1
ImWlŒ.2k � 1/!�: (B.7)

Another technique of LPRS computation is based on the possibility of derivation
of analytical formulas for the LPRS of low-order dynamics. It is a result of the
additivity property that LPRS possesses, which can be formulated as follows.

Additivity property. If the transfer function Wl.s/ of the linear part is a sum of n
transfer functions: Wl.s/ D W1.s/CW2.s/C� � �CWn.s/ then the LPRS J.!/ can be
calculated as a sum of the n component LPRS: J.!/ D J1.!/CJ2.!/C� � �CJn.!/,
where Ji.!/ .i D 1; : : : ; n/ is the LPRS of the relay system with the transfer function
of the linear part being Wi.s/.

The considered property offers a technique of the LPRS computation based on
the expansion of the process transfer function into partial fractions. Therefore, if
Wl.s/ is expanded into the sum of first and second order dynamics then LPRS
J.!/ can be calculated through the summation of the component LPRS Ji.!/

corresponding to each of the component transfer functions, subject to analytical
formulas for the LPRS of first and second order dynamics. Formulas for J.!/ of first
and second order dynamics were derived in [14]. They are presented in Table B.1.

B.2.3 Some properties of the LPRS

Some important properties of the LPRS as a frequency-domain characteristic are
related with the boundary points corresponding to zero frequency and infinite
frequency. The initial point of the LPRS (which corresponds to zero frequency)
can be found through formula (B.4). It can be noted that the limit of function J.!/
for ! tending to zero can be found as follows. First the following two limits must

be evaluated: lim
!!0

h
2	
!
..I � e

2	
! A/�1e 	

! A
i

D 0, lim
!!0

�
.I C e

	
! A/�1.I � e

	
! A/


 D I.

Then the limit for the LPRS can be written as follows:

lim
!!0

J.!/ D
h
�0:5C j

	

4

i
CA�1B (B.8)

The product of matrices CA�1B in (B.8) is the negative value of the gain of the
transfer function. Therefore, for a nonintegrating linear part of the relay feedback
system, the initial point of the corresponding LPRS is (0:5K;�j	=4K), where K is
the static gain of the linear part.
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Table B.1 Formulas of the LPRS J.!/

Transfer fun. W.s/ LPRS J.!/
K
s 0� j 	

2K
8!

K
TsC1

K
2
.1� ˛ csch˛/� j 	K

4
tanh.˛=2/

˛ D 	=.T!/
Ke�
s

TsC1
K
2
.1� ˛e� csch˛/C j 	K

4

�
2e�˛e�

1Ce�˛ � 1
�

˛ D 	
T! ; � D 


T
K

.T1sC1/.T2sC1/
K
2
Œ1� T1=.T1 � T2/˛1 csch˛1 � T2=.T2 � T1/˛2 csch˛2/�

�j 	K
4
=.T1 � T2/ŒT1 tanh.˛1=2/� T2 tanh.˛2=2/�

˛1 D 	=.T1!/; ˛2 D 	=.T2!/
K

s2C2�sC1
K
2
Œ.1� .B C �C/=.sin2 ˇ C sinh2 ˛/�

�j 	K
4
.sinh ˛ � � sinˇ/=.cosh ˛ C cosˇ/

˛ D 	�=!; ˇ D 	.1� �2/1=2=!; � D ˛=ˇ

B D ˛ cosˇ sinh ˛ C ˇ sinˇ cosh ˛;

C D ˛ sinˇ cosh ˛ � ˇ cosˇ sinh˛
Ks

s2C2�sC1
K
2
Œ�.B C �C/� 	=! cosˇ sinh˛�=.sin2 ˇ C sinh2 ˛/�

�j 	K
4
.1� �2/�1=2 sinˇ=.cosh ˛ C cosˇ/

˛ D 	�=!; ˇ D 	.1� �2/1=2=!; � D ˛=ˇ

B D ˛ cosˇ sinh ˛ C ˇ sinˇ cosh ˛;

C D ˛ sinˇ cosh ˛ � ˇ cosˇ sinh˛
Ks

.sC1/2
K
2
Œ˛.� sinh ˛ C ˛ cosh ˛/= sinh2 ˛ � j0:25	˛=.1 C cosh ˛/�

˛ D 	=!
Ks

.T1sC1/.T2sC1/
K
2
=.T2 � T1/Œ˛2 csch˛2 � ˛1 csch˛1�

�j 	K
4
=.T2 � T1/Œtanh.˛1=2/� tanh.˛2=2/�

˛1 D 	=.T1!/; ˛2 D 	=.T2!/

To find the limit of J.!/ for ! tending to infinity, the following two limits of the
expansion into power series of the exponential function must be considered:

lim
!!1 exp

�	
!

A
�

D lim
!!1

1X

nD0

.	=!/n

nŠ
An D I

and

lim
!!1

(
2	

!

�
I � exp

�
2	

!
A
	��1)

D lim
�D 2	

! D!0

f�ŒI � exp.�A/��1g D �A�1:

These limits show that the end point of the LPRS for ! ! 1 for nonintegrating
linear parts is the origin:

lim
!!1 J.!/ D 0C j0: (B.9)



Appendix C
Poincaré map

C.1 Basic concepts in Poincaré maps

Consider a time-invariant system

Px D f .x/ (C.1)

where x.t/ 2 R
n is the state. Let Nx.t/ be its T-periodic solution starting from x0.

Introduce a smooth surface S by the equation s.x/ D 0 where s W R
n 7! R is

a smooth scalar function and assume it intersects the trajectory in x0 transversely,
that is, s.x0/ D 0, rs.x0/TF.x/ ¤ 0. We will call such a surface the transverse
surface or cross-section across x0. It can be shown that the solution starting from
x 2 S D fx W s.x/ D 0g close to x0 will cross the surface s.x/ D 0 again at least
once. Let Nt.x/ be the time of the first return and P.x/ 2 S be the point of the first
return.

Let us recall, that a periodic orbit of a nonlinear system Px D f .x/, with a vector
state x.t/ 2 R

n, is an invariant set which is determined by an initial condition xp and
a period T. Here T is defined as the smallest time T > 0 for which ˚.xp;T/ D xp

where ˚.x; t/ stand for the solution operator ([26, p. 49]). A periodic orbit that is
isolated (there no exist any other periodic orbit in its neighborhood) is named limit
cycle.

Definition C.1 (Poincaré map [35]). The mapping x 7! P.x/ is called Poincaré
map or return map.

For later use, the following Theorem for asymptotic orbital stability based on
Poincaré maps read as follows.

Theorem C.1. Let Nx.t/ be a T-periodic solution, x.t0/ D x0; S be the smooth cross-
section across x0 and P be the corresponding Poincaré map.
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If for any " > 0 there exists ı > 0 such that x.t/ 2 S, jx � x0j < ı implies
jP.x/� x0j < ", then Nx.t/ is orbitally stable. If, in addition, Pn.x/ ! x0 as n ! 1,
then Nx.t/ is AOS.

If all n � 1 eigenvalues of the linearized Poincaré map � 7! @P.�/=@x, � 2 S
have the absolute values less than 1, then Nx.t/ is asymptotically orbitally stable.

If the linearized Poincaré map has at least one eigenvalue with an absolute value
greater than one then Nx.t/ is orbitally unstable.

Proof. The proof is provided by Fradkov and Pogromsky [35] and it is therefore
omitted.

Readers can review supplementary material and examples about Poincaré maps
in [79][Chap. 7].



Appendix D
Output Feedback

D.1 State observer design

To maintain the estimation error bounded, the following linear observer for (6.4),
(6.9)

PQx D AQx C B2
 C L.y � Qy/ (D.1)

is considered. Here, Qy D CQx and L must be designed such that the matrix QA WD
.A � LC/ is Hurwitz. Let e.t/ WD x.t/ � Qx.t/. Thus, e.t/ enters to a ball Bı.E0/
centered at the equilibrium point E0 with radius ı > 0 in finite-time Te, such that

ke.t/k � eC for all t > Te:

Now, let us decouple the unknown inputs from the successive derivatives of the
output of the linear estimation error system defined as ye D y � Qy.

Definition D.1 (Strong observability [86]). The system

Px.t/ D Ax.t/C B2u.t/;

y.t/ D Cx.t/C Du.t/;
(D.2)

it is called strongly observable if for all x0 2 � 
 R
n and for every input function u,

the following holds:

yu.t; x0/ D CeAtx0 C
Z t

0

CeA.t�
/B2u.
/d
 C Du.t/ D 0 (D.3)

for all t � 0 implies x0 D 0.
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Consider the output distribution matrix C and deriving a linear combination of
the output ye, ensuring that the derivative of this combination is unaffected by the
uncertainties, that is,

d

dt
.CB1/

?ye.t/ D .CB1/
?C QAe.t/; (D.4)

and construct the extended vector

�
d
dt .CB1/?ye

ye

�
D
�
.CB1/?C QA

C

�

„ ƒ‚ …
M

e:

Rearranging terms, the following equation is obtained

Me D d

dt

�
.CB1/? 0

0 I2

� �
ye.t/R
ye.t/dt

�
:

Since .A;C;B2/ is strongly observable, the matrix M has full row rank (see Molinari
[62]). This implies that the above algebraic equation has an unique solution for e.t/,
that is

e.t/ D d

dt
MC

�
.CB1/

? 0

0 I

� �
ye.t/R
ye.t/dt

�

„ ƒ‚ …
�.t/

(D.5)

where MC WD .MTM/�1MT . From the above expression, the reconstruction of x.t/
is equivalent to the reconstruction of e.t/. Hence, a real time high-order sliding mode
differentiator will be used. The HOSM differentiator is given by

Pz0 D ��k�
1

kC1 jz0 � � j k
kC1 sign.z0 � �/C z1

Pz1 D ��k�1�
1
k jz1 � Pz0j k�1

k sign.z1 � Pz0/C z2

:::

Pzk�1 D ��1� 1
2 jzk�1 � Pzk�2j 12 sign.zk�1 � Pzk�2/C zk

Pzk D ��0� sign.zk � Pzk�1/:

(D.6)

The values of the parameters �0; �1; : : : ; �k are chosen separately by recursive
methods provide for the convergence of the .k �1/th-order differentiator commonly
obtained by computer simulation [53], obtaining a finite-time T such that the identity
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zi.t/ D di�.t/

dti
(D.7)

holds for every i D 0; 1; : : : ; k. The parameter � is a Lipschitz constant of R�.t/,
which is defined as

� � k QAkeC C kBkwC: (D.8)

The vector e.t/ can be reconstructed from the first order sliding dynamics. Thus, we
achieve the identity z1.t/ D e.t/, and consequently

Ox.t/ WD z1.t/C Qx.t/ for all t � T

where Ox.t/ represents the estimated value of x.t/. Therefore, the identity

Ox.t/ � x.t/; (D.9)

is achieved for all t � T.

Definition D.2 ([63]). Given the system:

Px.t/ D Ax.t/C Bu.t/; y.t/ D Cx.t/ x.0/ D x0; (D.10)

the invariant zeros of the above system are the set of all the eigenvalues � such that

�
� � A B

C 0

� �
x
u

�
D
�
0

0

�
(D.11)

as a solution for some scalar u and non-zero x.
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