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My vast transcendence holds the cosmic whirl;
I am hid in it as in the sea a pearl.

Sri Aurobindo, The Indwelling Universal, Collected Poems.





Preface

This book grew out of lectures given by the first author at Queen’s University
during 2006 and lectures by the second author at the Chennai Mathematical
Institute during 2008. These constitute the first 18 chapters of the book in-
tended to be an introductory course aimed at senior undergraduates and first-
year graduate students. The primary goal of these chapters is to give a quick
introduction to some of the beautiful theorems about transcendental numbers.
We begin with some earliest transcendence theorems and thereafter move to the
Schneider–Lang theorem. This requires some rudimentary background knowl-
edge in complex analysis, more precisely the connection between the growth of
an analytic function and the distribution of its zeros. Since this constitutes an
essential ingredient of many of the transcendence results, we discuss the relevant
features in Chap. 5. We also require some familiarity with elementary algebraic
number theory. But we have tried our best to recall the required notions as
and when we require them. Having proved the Schneider–Lang theorem, we
introduce some of the accessible and essential features of the theory of elliptic
curves and elliptic functions so that the reader can appreciate the beauty of the
primary applications. Thus Chaps. 1–18 essentially comprise the material for
an introductory course.

The second part of the book, namely Chaps. 19–28, are additional topics
requiring more maturity. They grew out of seminar lectures given by both
authors at Queen’s University and the Institute of Mathematical Sciences in
Chennai, India. A major part of these chapters treats the theorem of Baker
on linear independence of linear forms in logarithms of algebraic numbers. We
present a proof of Baker’s theorem following the works of Bertrand and Masser.
Thereafter, we briefly describe some of the applications of Baker’s theorem, for
instance to the Gauss class number problem for imaginary quadratic fields. In
Chap. 21, we discuss Schanuel’s conjecture which is one of the central conjectures
in this subject. We devote this chapter to derive a number of consequences of
this conjecture.

From Chaps. 22 to 26, we concentrate on some recent applications of Baker’s
theorem to the transcendence of special values of L-functions. These L-functions
arise from various arithmetic and analytic contexts. To begin, we give a detailed
treatment of the result of Baker, Birch and Wirsing. This is perhaps the first in-
stance when transcendental techniques are employed to address the delicate issue
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viii Preface

of non-vanishing of a Dirichlet series at special points. In Chap. 25, we specialise
to questions of linear independence of special values of Dirichlet L-functions. In
Chap. 26, we consider analogous questions for class group L-functions.

In Chap. 27, we focus on applications of Schneider’s theorem and Nesterenko’s
theorem to special values of modular forms. These modular forms are a rich
source of transcendental functions and hence potential candidates to generate
transcendental numbers (hopefully “new”). Of course, one can ask about the
possibility of applying transcendence tools not just to modular forms but also
to their L-functions. But this will force us to embark upon a different journey
which we do not undertake here.

Finally, the last chapter is intended to give the reader an introduction to the
emerging theory of periods and multiple zeta values. This is not meant to be
an exhaustive account, but rather an invitation to the reader to take up further
study of these elusive objects. This chapter is essentially self-contained and can
be read independent of the other chapters.

To summarise, we hope that the first part of this book would be suitable for
undergraduates and graduate students as well as non-experts to gain entry into
the arcane topic of transcendental numbers. The last ten chapters would be
of interest to the researchers keen in pursuing the interrelation between special
values of L-functions and transcendence.

To facilitate practical mastery, we have included in each chapter basic exer-
cises that would be helpful to the beginning student.
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Notations and Basic
Definitions

We denote by N the set of non-negative integers, by Z the ring of rational
integers and by Q,R,C the fields of rational numbers, real numbers and complex
numbers, respectively. A number field K is a finite extension of Q contained in
C. Q denotes the algebraic closure of Q in C.

Given an integral domain R containing a field k, a collection of elements
α1, . . . , αn in R is called algebraically dependent over k if there exists a non-
zero polynomial P ∈ k[x1, . . . , xn] such that P (α1, . . . , αn) = 0. Otherwise, the
elements are called algebraically independent over k. The transcendence degree
of a field F over k is the cardinality of a maximal algebraically independent
subset of F over k. Since the transcendence degree over k or its any algebraic
extension is the same, the notion of algebraic independence of complex numbers
over Q or Q is the same. Thus we simply speak of algebraically independent or
dependent complex numbers.

We shall also be concerned with algebraic independence of functions. A
meromorphic function on C is said to be transcendental if it is transcendental
over the field of rational functions C(z). A collection of meromorphic functions
f1, . . . , fn on C is said to be algebraically independent over C if for any non-
zero polynomial P ∈ C[x1, . . . , xn], the function P (f1, . . . , fn) is not the zero
function. Otherwise, the functions are called algebraically dependent. Thus a
function f is transcendental if f and the identity function I(z) = z are alge-
braically independent. Most of the time, we shall simply write functions to be
algebraically independent, the implicit assumption being that the independence
is over C.

This notion can be extended to functions in several variables. A collection of
entire functions f1, . . . , fn on C

d is said to be algebraically independent over C if
for any non-zero polynomial P ∈ C[x1, . . . , xn], the function P (f1, . . . , fn) is not
the zero function. Otherwise, the functions are called algebraically dependent.

We write f(x) = O(g(x)) or equivalently f(x) � g(x) when there exists a
constant C such that |f(x)| ≤ Cg(x) for all values of x under consideration.

Throughout for α �= 0, we define αβ to be equal to eβ logα where we in-
terpret logα as the principal value of the logarithm with argument in (−π, π].
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xiv Notations and Basic Definitions

However, we shall be frequently working with the set of logarithms of non-zero
algebraic numbers and in this set we allow all possible values of log. This forms a
Q-vector space. It is more convenient to realise this as being equal to the set

exp−1(Q
×
), where exp is the familiar exponential map. This description has an

analogous manifestation in the elliptic set-up which we shall come across in the
later chapters.



Chapter 1

Liouville’s Theorem

A complex number α is said to be an algebraic number if there is a non-zero
polynomial f(x) ∈ Q[x] such that f(α) = 0. Given an algebraic number α, there
exists a unique irreducible monic polynomial P (x) ∈ Q[x] such that P (α) = 0.
This is called the minimal polynomial of α. The set of all algebraic numbers
denoted by Q is a subfield of the field of complex numbers. A complex number
which is not algebraic is said to be transcendental.

An algebraic number α is said to be an algebraic integer if it is a root of a
monic polynomial in Z[x]. It is not difficult to see that the minimal polynomial
of an algebraic integer has integer coefficients.

An algebraic number α is said to be of degree n if its minimal polynomial
P (x) has degree n. Equivalently, Q(α) is a finite extension of Q of degree n.

In 1853, Liouville proved a fundamental theorem concerning approximations
of algebraic numbers by rational numbers. This theorem enabled him to con-
struct explicitly some transcendental numbers.

Theorem 1.1 (Liouville) Given a real algebraic number α of degree n > 1,
there is a positive constant c = c(α) such that for all rational numbers p/q with
(p, q) = 1, q > 0, we have

∣
∣
∣
∣
α− p

q

∣
∣
∣
∣
>
c(α)

qn
.

Proof. Let P (x) be the minimal polynomial of α. By clearing the denominators
of the coefficients of P (x), we can get a polynomial of degree n with integer
coefficients which is irreducible in Z[x] and has positive leading term. Let

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ∈ Z[x]

M.R. Murty and P. Rath, Transcendental Numbers, DOI 10.1007/978-1-4939-0832-5 1,
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2 Liouville’s Theorem

be this polynomial. We sometimes refer this as the minimal polynomial of α
over Z. Then

|f(α)− f(p/q)| = |f(p/q)| =
∣
∣
∣
∣

anp
n + an−1p

n−1q + · · ·+ a0q
n

qn

∣
∣
∣
∣
≥ 1

qn
.

If α = α1, . . . , αn are the roots of f , let M be the maximum of the values |αi|.
If |p/q| is greater than 2M , then

∣
∣
∣
∣

p

q
− α

∣
∣
∣
∣
≥M ≥ M

qn
.

If |p/q| ≤ 2M , then
∣
∣
∣
∣
αi − p

q

∣
∣
∣
∣
≤ 3M

so that
∣
∣
∣
∣
α− p

q

∣
∣
∣
∣
≥ 1

|an|qn
∏n
j=2 |αj − p/q| ≥

1

|an|(3M)n−1qn
.

Thus choosing

c(α) = min

(

M,
1

|an|(3M)n−1

)

,

we have the theorem. �

Note that the constant c(α) can be explicitly computed once the roots of
the minimal polynomial of α are given to us. Also it is not difficult to ex-
tend this theorem to complex algebraic numbers of degree n. A multivariable
generalisation of this idea is suggested in Exercise 2.

Using this theorem, Liouville proved that the number

∞∑

n=0

1

10n!

is transcendental. Indeed, suppose not and call the sum α. Consider the partial
sums

pk
qk

:=
k∑

n=0

1

10n!
.

Then it is easily seen that

∣
∣
∣
∣
α− pk

qk

∣
∣
∣
∣
<

c

10(k+1)!

for some constant c > 0. If α were algebraic of degree m say, then by Liou-
ville’s theorem, the left-hand side would be greater than c(α)/10k!m and for k
sufficiently large, this is a contradiction.



Liouville’s Theorem 3

Numbers of the above type are examples of what are called Liouville numbers.
More precisely, a real number β is called a Liouville number if for any non-
negative real number v, the inequality

0 <

∣
∣
∣
∣
β − p

q

∣
∣
∣
∣
<

1

qv

has infinitely many solutions p/q ∈ Q.
In 1909, Axel Thue improved Liouville’s inequality for algebraic numbers

having degree at least 3. More precisely, he proved that if α is algebraic of
degree n > 2, then for any ε > 0, there exists a positive constant c = c(α, ε)
such that for all rational numbers p/q with q > 0 and (p, q) = 1, we have

∣
∣
∣
∣
α− p

q

∣
∣
∣
∣
>

c

qn/2+1+ε
.

Such a theorem has immediate Diophantine applications. To see this, let f(x, y)
be an irreducible binary form of degree n ≥ 3 with integer coefficients. Then
Thue’s theorem implies that the equation

f(x, y) =M

for any fixed non-zero integerM has only finitely many integer solutions. Indeed,
we may write

f(x, y) = an

n∏

i=1

(x− αiy) =M

so that each αi is an algebraic number of degree ≥ 2. Suppose that there are
infinitely many solutions (xm, ym). Without loss of generality, we may suppose
that for infinitely many m, we have

∣
∣
∣
∣

xm
ym

− α1

∣
∣
∣
∣
≤
∣
∣
∣
∣

xm
ym

− αi

∣
∣
∣
∣

for i = 2, . . . , n.

Further by the triangle inequality,
∣
∣
∣
∣

xm
ym

− αi

∣
∣
∣
∣
≥ 1

2

(∣
∣
∣
∣

xm
ym

− αi

∣
∣
∣
∣
+

∣
∣
∣
∣

xm
ym

− α1

∣
∣
∣
∣

)

≥ 1

2
|αi − α1|, for i = 2, . . . , n.

Thus

|M | = |f(xm, ym)| = |an||ynm|
∣
∣
∣
∣

xm
ym

− α1

∣
∣
∣
∣
· · ·
∣
∣
∣
∣

xm
ym

− αn

∣
∣
∣
∣
� |ynm|

∣
∣
∣
∣

xm
ym

− α1

∣
∣
∣
∣
.

By Thue’s theorem, we obtain

|M |
|ym|n � 1

|ym|n/2+1+ε

which is a contradiction for |ym| sufficiently large.



4 Liouville’s Theorem

Thue’s theorem was subsequently improved, first by Siegel to an exponent
2
√
n+ ε and then by Dyson and Gelfond independently to an exponent

√
2n+ ε.

Finally, Roth in 1955 proved that if α is algebraic of degree > 1, then for any
ε > 0, there is a constant c(α, ε) > 0 such that for all rational numbers p/q with
q > 0 and (p, q) = 1, we have

∣
∣
∣
∣
α− p

q

∣
∣
∣
∣
≥ c(α, ε)

q2+ε
.

In view of the classical theory of continued fractions, this result is essentially
best possible.

We end with the following theorem about algebraic independence of certain
Liouville numbers proved by Adams [1]. The proof involves a clever modification
of Liouville’s original idea.

Recall that complex numbers α1, . . . , αn are algebraically dependent if there
exists a non-zero polynomial P (x1, . . . , xn) in n variables with rational coeffi-
cients such that P (α1, . . . , αn) = 0. Otherwise, they are called algebraically
independent. We have the following theorem:

Theorem 1.2 (Adams) Let p and q be two relatively prime natural numbers
greater than 1. Then the two Liouville numbers

α =

∞∑

n=1

1

pn!
and β =

∞∑

n=1

1

qn!

are algebraically independent.

Proof. Assume the contrary and let f(x, y) be a non-zero polynomial with
integer coefficients such that f(α, β) = 0. Suppose that p > q. We consider the
following sequences of rational numbers

RN =

N∑

n=1

1

pn!
=

rN
pN !

and SN =

N∑

n=1

1

qn!.
=
sN
qN !

.

We first note that there are infinitely many N such that f(RN , SN ) �= 0. If not,
then for all N sufficiently large, we have

f

(
N∑

n=1

1

pn!
,

N∑

n=1

1

qn!

)

= 0. (1.1)

Further,

1

p(N+1)!
<

∣
∣
∣
∣
α− rN

pN !

∣
∣
∣
∣
<

2

p(N+1)!
and

1

q(N+1)!
<

∣
∣
∣
∣
β − sN

qN !

∣
∣
∣
∣
<

2

q(N+1)!
. (1.2)

The polynomial f(x, y) can be expressed as

f(x, y) =
∑

I

CI (x− α)i (y − β)j
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where I = (i, j) runs over all pairs of non-negative integers and CI ’s are real
numbers which are zero for all but finitely many I’s. Each such pair I gives
a distinct integer dI := piqj . Among all the pairs I for which CI �= 0, let
I0 = (i0, j0) be such that dI0 is minimal. Then by (1.1) and (1.2), for all
large N ,

0 < |CI0 | ≤
∑

I �=I0
|CI | 2D

(
dI0
dI

)(N+1)!

where D is the total degree of the polynomial f(x, y). Since dI0 < dI , by
choosing N large enough, we arrive at a contradiction. Thus f(RN , SN ) �= 0 for
infinitely many N . For each such N , we have by Exercise 2

|(α, β)− (RN , SN)| ≥ c

pN !D
.

Here |.| is the standard Euclidean norm on R
2. On the other hand, (1.2) gives

|(α, β) − (RN , SN )| ≤ c0
q(N+1)!

.

As N → ∞, this contradicts the lower bound above. �

Evidently, instead of taking two coprime numbers, we can generalise the
above theorem by considering finitely many multiplicatively independent inte-
gers (see Theorem 2 of [1]).

Exercises

1. Show that Liouville’s theorem holds for complex algebraic numbers of
degree n ≥ 2.

2. Let f ∈ Z[x1, . . . , xn] be a non-zero polynomial with degree di in variable
xi. Suppose that f(α) = 0 for some α ∈ R

n. Then show that there
exists a constant c > 0 depending on α and f such that for any β =
(a1/b1, . . . , an/bn) ∈ Q

n, either

f(β) = 0

or
|α− β| ≥ c

bd11 · · · bdnn
.

Here |.| is the standard Euclidean norm on R
n.

3. Show that the set of algebraic numbers is countable.

4. Show that 1+
√−3
2 is an algebraic integer.

5. Find the minimal polynomial of
√
2 +

√
3 over Q.



6 Liouville’s Theorem

6. Show that the number ∞∑

n=0

1

2n2

is irrational.

7. Show that there are uncountably many Liouville numbers.

8. Show that the reciprocal of a Liouville number is again a Liouville number.

9. Show that every real number is expressible as a sum of two Liouville
numbers.



Chapter 2

Hermite’s Theorem

We will begin with the proof that e is transcendental, a result first proved by
Charles Hermite in 1873.

Theorem 2.1 e is transcendental.

Proof. We make the observation that for a polynomial f and a complex num-
ber t,

∫ t

0

e−uf(u)du = [−e−uf(u)]t0 +
∫ t

0

e−uf ′(u)du

which is easily seen on integrating by parts. Here the integral is taken over the
line joining 0 and t. If we let

I(t, f) :=

∫ t

0

et−uf(u)du,

then we see that
I(t, f) = etf(0)− f(t) + I(t, f ′).

If f is a polynomial of degree m, then iterating this relation gives

I(t, f) = et
m∑

j=0

f (j)(0)−
m∑

j=0

f (j)(t). (2.1)

If F is the polynomial obtained from f by replacing each coefficient of f by its
absolute value, then it is easy to see from the definition of I(t, f) that

|I(t, f)| ≤ |t|e|t|F (|t|). (2.2)

M.R. Murty and P. Rath, Transcendental Numbers, DOI 10.1007/978-1-4939-0832-5 2,
© Springer Science+Business Media New York 2014
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8 Hermite’s Theorem

With these observations, we are now ready to prove the theorem. Suppose e is
algebraic of degree n. Then

ane
n + an−1e

n−1 + · · ·+ a1e+ a0 = 0 (2.3)

for some integers ai and a0an �= 0. We will consider the combination

J :=

n∑

k=0

akI(k, f)

with

f(x) = xp−1(x − 1)p · · · (x − n)p

where p > |a0| is a large prime. Using (2.3), we see that

J = −
m∑

j=0

n∑

k=0

akf
(j)(k)

where m = (n+ 1)p− 1. Since f has a zero of order p at 1, 2, . . . , n and a zero
of order p− 1 at 0, we have that the summation actually starts from j = p− 1.
For j = p− 1, the contribution from f is

f (p−1)(0) = (p− 1)!(−1)npn!p.

Thus if n < p, then f (p−1)(0) is divisible by (p − 1)! but not by p. If j ≥ p,
we see that f (j)(0) and f (j)(k) are divisible by p! for 1 ≤ k ≤ n. Hence J is a
non-zero integer divisible by (p− 1)! and consequently

(p− 1)! ≤ |J |.

On the other hand, our estimate (2.2) shows that

|J | ≤
n∑

k=0

|ak|ekF (k)k ≤ Anen(2n)!p

where A is the maximum of the absolute values of the ak’s. The elementary
observation

ep ≥ pp−1

(p− 1)!

gives

pp−1e−p ≤ (p− 1)! ≤ |J | ≤ Anen(2n)!p.

For p sufficiently large, this is a contradiction. �
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Exercises

1. Show that for any polynomial f , we have

∫ π

0

f(x) sinxdx = f(π) + f(0)−
∫ π

0

f ′′(x) sinxdx.

2. Utilise the identity in the previous exercise to show π is irrational as
follows. Suppose π = a/b with a, b coprime integers. Let

f(x) =
xn(a− bx)n

n!
.

Prove that ∫ π

0

f(x) sinx dx

is a non-zero integer and derive a contradiction from this.

3. Use Euler’s identity
∞∑

n=1

1

n2
=
π2

6

to prove that there are infinitely many primes.

4. Use the series
∑∞

n=0 1/n! to show that e is irrational.

5. Show that e is not algebraic of degree 2 by considering the relation

Ae +Be−1 + C = 0, A,B,C ∈ Z,

and using the infinite series for e and e−1 and arguing as in the previous
exercise.

6. Prove that e
√
2 is irrational (Hint: Consider the series expansion for α =

e
√
2 + e−

√
2).



Chapter 3

Lindemann’s Theorem

We will now prove that π is transcendental. This was first proved by
F. Lindemann in 1882 by modifying Hermite’s methods. The proof proceeds
by contradiction. Before we begin the proof, we recall two facts from algebraic
number theory. The first is that if α is an algebraic number with minimal
polynomial over Z given by

anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

then anα is an algebraic integer. Indeed, if we multiply the polynomial by an−1
n ,

we see that
(anα)

n + an−1(anα)
n−1 + · · ·+ a0a

n−1
n = 0

thereby showing that anα satisfies a monic polynomial equation with integer
coefficients. The other roots of the minimal polynomial of α are called the
conjugates of α. Sometimes we write these conjugates as

α(1), α(2), . . . , α(n)

with α(1) = α. The second fact which we require is from Galois theory and the
symmetric polynomial theorem. More precisely, let f(x1, . . . , xn) be a symmet-
ric polynomial in Q[x1, . . . , xn], that is,

f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n))

for any element σ of the symmetric group Sn. If α is an algebraic number of
degree n with conjugates α = α1, . . . , αn, then f(α1, . . . , αn) ∈ Q. Furthermore,
if α is an algebraic integer and f has integer coefficients, then f(α1, . . . , αn) is
necessarily an integer (see Exercise 1). With these remarks, we can proceed to
the proof that π is transcendental.

M.R. Murty and P. Rath, Transcendental Numbers, DOI 10.1007/978-1-4939-0832-5 3,
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12 Lindemann’s Theorem

Theorem 3.1 (Lindemann, 1882 [80]) π is transcendental.

Proof. Suppose not. Then α = iπ is also algebraic. Let α have degree d and
let α = α1, . . . , αd be the conjugates. Let N be the leading coefficient of the
minimal polynomial of α over Z. By our remarks before, Nα is an algebraic
integer. Since

eiπ = −1,

we have
(1 + eα1)(1 + eα2) · · · (1 + eαd) = 0.

The product can be written out as a sum of 2d terms of the form eθ where

θ = ε1α1 + · · ·+ εdαd, εi = 0, 1.

Suppose that exactly n of these numbers are non-zero and denote them by
β1, . . . , βn. Note that these numbers constitute all the roots of a polynomial
with integer coefficients. To see this, it suffices to observe that the polynomial

1∏

ε1=0

· · ·
1∏

εd=0

(x− (ε1α1 + · · ·+ εdαd))

is symmetric in α1, . . . , αd and hence lies in Q[x]. The roots of this polynomial
are β1, . . . , βn and 0 which has multiplicity a = 2d − n. Dividing by xa and
clearing the denominator, we get a polynomial in Z[x] with roots β1, . . . , βn.
Now

(1 + eα1)(1 + eα2) · · · (1 + eαd) = 0

which implies
(2d − n) + eβ1 + · · ·+ eβn = 0.

With I(t, f) as in the previous chapter, we consider the combination

K := I(β1, f) + · · ·+ I(βn, f)

where
f(x) = Nnpxp−1(x− β1)

p · · · (x− βn)
p

and p denotes again a large prime. Thus,

K = −(2d − n)

m∑

j=0

f (j)(0)−
m∑

j=0

n∑

k=1

f (j)(βk)

where m = (n + 1)p − 1. The sum over k is a symmetric function in
Nβ1, . . . , Nβn. Noting that Nβ1, . . . , Nβn are all the roots of a monic polyno-
mial over the integers, we conclude that the summation is a rational integer.
Moreover, the derivatives f (j)(βk) vanish for j < p and the summation for fixed
j ≥ p is divisible by p!. Also for p sufficiently large,

f (p−1)(0) = (p− 1)!(−N)np(β1 · · ·βn)p
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is not divisible by p. In addition, f (j)(0) is divisible by p! for j ≥ p. As in the
previous chapter, let F be the polynomial obtained from f by replacing each
coefficient of f by its absolute value. Proceeding as before, we find that

|K| ≤
n∑

k=1

|βk|e|βk|F (|βk|) ≤ ACp

for some constants A and C. On the other hand, K is a non-zero rational
integer divisible by (p−1)! and hence must be at least as large in absolute value.
Comparing the growth as p tends to infinity gives us the desired contradiction.�

Exercises

1. Let α be an algebraic integer of degree n with conjugates α = α1, . . . , αn.
Suppose for k ≥ 0,

F = F (x1, . . . , xk;α1, . . . , αn) ∈ Z[x1, . . . , xk;α1, . . . , αn].

Further suppose that F is a symmetric function in α1, . . . , αn with coeffi-
cients in the ring Z[x1, . . . , xk]. Then show that F ∈ Z[x1, . . . , xk] when
k > 0 and F ∈ Z when k = 0.

2. A real number α is said to be constructible if, by means of a straightedge, a
compass, and a line segment of length 1, we can construct a line segment of
length |α| in a finite number of steps. Show that if α, β are constructible,
then so are α+β, α−β, αβ and α/β for β �= 0. Thus the set of constructible
numbers forms a subfield of the reals.

3. Show that if α is constructible, so is
√|α|. [Hint: consider the circle

of diameter |α| + 1 with center (12 (1 + |α|), 0) in R
2 and consider the

intersection of the perpendicular drawn at (1, 0) and the circle.]

4. Let F be any subfield of the reals. Call F ×F the plane of F and any line
joining two points in the plane of F a line in F . A circle whose center is
in the plane of F and whose radius is in F will be called a circle in F .
Show that a line F is defined by the equation

ax+ by + c = 0, a, b, c ∈ F

and a circle in F is defined by the equation

x2 + y2 + ax+ by + c = 0, a, b, c ∈ F.

5. From the previous exercise deduce that any constructible number must
necessarily be an algebraic number. Deduce using Lindemann’s theorem
that

√
π is not constructible. Hence, it is impossible to construct using a

straightedge and compass a square whose area is equal to π.
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6. Show that cos(π/9) is algebraic of degree 3 over the rationals.

7. Using Exercise 4, show that a constructible number must necessarily have
degree a power of 2 over the rationals. Conclude that π/3 cannot be
trisected using straightedge and compass.

8. Show that if α is constructible, then it lies in a subfield of R obtained from
Q by a finite sequence of quadratic extensions.

9. Let p be a prime number. Show that if a regular p-gon can be constructed
using straightedge and compass, then p − 1 = 2r for some r. [The con-
verse is also true but more difficult to prove and is a celebrated “teenage”
theorem of Gauss.]



Chapter 4

The
Lindemann–Weierstrass
Theorem

In 1882, Lindemann wrote a paper in which he sketched a general result, special
cases of which imply the transcendence of e and π. This general result was later
proved rigorously by K. Weierstrass in 1885. Before we begin, we make some
remarks pertaining to algebraic number theory. Let K be an algebraic number
field. The collection of algebraic integers in K forms a ring, denoted OK , and
is called the ring of integers of K. The theorem of the primitive element shows
there exists a θ such that K = Q(θ). If θ(1), . . . , θ(r) are all the conjugates of
θ, then one speaks of the conjugate fields K(i) := Q(θ(i)). This gives rise to an
isomorphism σi of fields K � K(i) given by the map σi(θ) = θ(i), which is then
extended to all of K in the obvious way.

Theorem 4.1 (Lindemann–Weierstrass, 1885) If α1, . . . , αs are distinct alge-
braic numbers, then eα1 , . . . , eαs are linearly independent over Q.

Proof. Suppose that we have

d1e
α1 + · · ·+ dse

αs = 0 (4.1)

for some algebraic numbers d1, . . . , ds not all zero. By multiplying an appropri-
ate rational integer, we may assume that d1, . . . , ds are algebraic integers. Fur-
ther, multiplying the above equation with equations of the form

∑s
j=1 σk(dj)e

αj

for all the embeddings σk of the field Q(d1, . . . , ds), we may assume a relation
of the form

a1e
γ1 + · · ·+ ane

γn = 0 (4.2)
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16 The Lindemann–Weierstrass Theorem

where ai’s are rational integers and γi’s are distinct algebraic numbers. We
may further assume that each conjugate of γi is also included in the above
list of algebraic integers. Now if we let K to be the algebraic number field
generated by γ1, . . . , γn and all their conjugates, then it is natural to consider
the “conjugate” functions for real variable t,

Ai(t) := a1e
γ
(i)
1 t + · · ·+ ane

γ(i)
n t.

Since the γj are distinct, these functions are not identically zero (see Exercise 1).
If we let

B(t) =
∏

i

Ai(t) = b1e
β1t + · · ·+ bMe

βM t,

where the product is over all the conjugate functions, then it is clear that the
Taylor coefficients of B(t) are symmetric functions in all of the conjugates and
so are rational numbers by our earlier remarks. Moreover, the bi are rational
integers not all equal to zero. Let N be an integer so that Nβ1, . . . , NβM are
algebraic integers. We now proceed as in the earlier chapters. Consider the
combination

Jr :=

M∑

k=1

bkI(βk, fr)

where

fr(x) = NMp (x− β1)
p(x− β2)

p · · · (x− βM )p

(x− βr)

for 1 ≤ r ≤ M . It is clear that f(x) = f1(x) + · · · + fM (x) is invariant under
Galois action and hence has rational integer coefficients. Now using (2.1), we
see that since B(1) = 0, we have

Jr = −
M∑

k=1

bk

m∑

j=0

f (j)
r (βk),

where m is the degree of fr. Arguing as in the earlier chapters, we note that
the product J1 · · · JM is a Galois invariant algebraic integer, hence an integer.
Further, it is divisible by (p − 1)!, but not by p for suitably chosen large p. In
the other direction, since each |Jr| ≤ (cr)

p for suitable cr, we have

(p− 1)! ≤ Cp

for some constant C. This gives a contradiction for large enough p which com-
pletes the proof. �

The Lindemann–Weierstrass theorem generalises both the Hermite and Lin-
demann’s theorems. Indeed, choosing α1 = 0 and α2 = 1, we retrieve Hermite’s
theorem that e is transcendental. Choosing α1 = 0 and α2 = iπ, we deduce
Lindemann’s theorem. We also have the following corollaries.
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Corollary 4.2 If α �= 0 is algebraic, then eα is transcendental.

Proof. Take α1 = 0 and α2 = α in Theorem 4.1. �

Corollary 4.3 If α �= 0, 1 is algebraic, then logα is transcendental.

Proof. This is immediate from the previous corollary. �

Recall that a collection of n complex numbers β1, . . . , βn is algebraically
independent if there is no non-zero polynomial P (x1, . . . , xn) ∈ Z[x1, . . . , xn]
such that

P (β1, . . . , βn) = 0.

We can deduce from Theorem 4.1 the following assertion.

Theorem 4.4 If α1, . . . , αn are algebraic numbers that are linearly independent
over Q, then

eα1 , . . . , eαn

are algebraically independent.

Proof. Suppose that

eα1 , . . . , eαn

are algebraically dependent. Then we have

∑

i1,...,in

ai1,...,ine
i1α1+···+inαn = 0,

for certain integers ai1,...,in with not all ai1,...,in equal to zero. By Theorem 4.1,
the numbers

i1α1 + · · ·+ inαn

cannot all be distinct. Thus α1, . . . , αn are linearly dependent over Q. �

S. Schanuel has conjectured that if α1, . . . , αn are complex numbers that are
linearly independent over Q, then the transcendence degree of the field

Q(α1, . . . , αn, e
α1 , . . . , eαn)

over Q is at least n. One consequence of this conjecture is that e and π are alge-
braically independent. To see this, consider the field generated by 1, 2πi, e, e2πi

over the rationals. Schanuel’s conjecture predicts that the transcendence degree
of this field is at least 2, which means that e and π are algebraically independent.

Schanuel’s conjecture is one of the central conjectures in the theory of tran-
scendental numbers. We will discuss this conjecture and its many implications
in a later chapter.
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Exercises

1. If α1, . . . , αn are distinct complex numbers, show that the function

a1e
α1t + · · ·+ ane

αnt

is not identically zero whenever the ai’s are not all zero.

2. Show that for any non-zero algebraic number, sinα, cosα, tanα are tran-
scendental numbers. Show the same is true for the hyperbolic functions,
sinhα, coshα and tanhα.

3. Show that arcsinα is transcendental for any non-zero algebraic number α.

4. If c0, c1, . . . is a periodic sequence of algebraic numbers not all zero, then
show that the series ∞∑

n=0

cn
zn

n!

is transcendental for any non-zero algebraic value of z.

5. Show that at least one of π + e , πe is transcendental.



Chapter 5

The Maximum Modulus
Principle and Its
Applications

The maximum modulus principle constitutes an essential tool in transcendence
theory. Let us begin with a proof of this fundamental result. We fix the con-
vention that a function is analytic in a closed set C if it is analytic in an open
set containing C. A region is an open connected set. We consider the follow-
ing version of the maximum modulus principle. The statement is not the most
general, but suffices for our applications.

Theorem 5.1 (The Maximum Modulus Principle) If f is a non-constant ana-
lytic function in a region R, then the function |f | does not attain its maximum
in R. In other words if for some z0 ∈ R, |f(z)| ≤ |f(z0)| for all points z ∈ R,
then f is constant.

Proof. We give two proofs of the theorem. For the first proof we use the fact
that a non-constant analytic map in a region is an open map. Let |f(z0)| =M .
Since |f(z)| ≤ |f(z0)| for all points z ∈ R, the image set f(R) is contained in
the closed disc {z : |z| ≤ M} and intersects the boundary. Hence f(R) is not
open, a contradiction.

For the second proof, for the point z0 in R, consider the Taylor expansion of
f about z0:

f(z0 + reiθ) =
∞∑

n=0

anr
neinθ.

M.R. Murty and P. Rath, Transcendental Numbers, DOI 10.1007/978-1-4939-0832-5 5,
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20 The Maximum Modulus Principle and Its Applications

Parseval’s formula (or just by noting that term by term integration is allowed
as the series converges normally for a fixed r) yields that

1

2π

∫ 2π

0

∣
∣f(z0 + reiθ)

∣
∣
2
dθ =

∞∑

n=0

|an|2r2n.

Thus if z0 is a point where the maximum is attained, we have |a0| =M and

M2 = |a0|2 ≤ |a0|2 + |a1|2r2 + · · · ≤ |f(z0)|2 =M2

so that we are forced to have a1 = a2 = · · · = 0 and f is constant. �

We shall apply the maximum modulus principle mostly to the following
special case: if f is continuous in the closed disc {z : |z| ≤ R} and analytic in
the interior, then the maximum of |f | in the closed disc is necessarily attained
on the boundary. The principle can be used to prove the fundamental theorem
of algebra.

Corollary 5.2 (The Fundamental Theorem of Algebra) If n ≥ 1 and

f(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0

is a polynomial with complex coefficients and an �= 0, then f has precisely n
roots over the complex numbers.

Proof. It suffices to show that f has at least one root for then, we can apply the
division algorithm to reduce the degree of f and apply induction. If f(z) �= 0
for every complex value of z, then 1/f is entire. We will apply the maximum
modulus principle to 1/f . Clearly 1/f(z) tends to zero as |z| tends to infinity.
Thus for any given α, there exists an R such that

1

|f(z)| <
1

|f(α)|
for |z| ≥ R. But we can choose R sufficiently large so as to ensure that |α| < R.
This violates the maximum modulus principle applied to the non-constant func-
tion 1/f . Thus f has a root in C. �

The following two corollaries suggest that the inequality in the maximum mod-
ulus principle can be improved if we have knowledge of zeros of the function
lying inside a disc of radius R.

Corollary 5.3 (Schwarz’s Lemma) Suppose that f is analytic in the closed disc
{z : |z| ≤ R} and f(0) = 0. Then in this disc,

|f(z)| ≤ |f |R(|z|/R),

where |f |R is maximum of |f | on the circle {z : |z| = R} of radius R.
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Proof. The function g(z) = f(z)/z initially defined for 0 < |z| ≤ R can be
analytically extended to |z| ≤ R. Applying the maximum modulus principle to
g gives the result immediately. �

Corollary 5.4 (Jensen’s Inequality) Let f be analytic in {z : |z| ≤ R} and
f(0) �= 0. If the zeros of f in the open disc are z1, z2, . . . , zN , with each zero
being repeated according to multiplicity, then

|f(0)| ≤ |f |R(|z1 · · · zN |/RN ).

Proof. It is easily seen (see Exercise 1 below) that

R2 − zzn
R(z − zn)

has absolute value 1 for |z| = R. Thus, the function

g(z) = f(z)

N∏

n=1

R2 − zzn
R(z − zn)

is analytic on the closed disc of radius R and

|g(z)| = |f(z)|

for |z| = R. The maximum modulus principle implies

|g(z)| ≤ |f |R.

Putting z = 0 gives the result. �

Corollary 5.5 Let f be as in the previous corollary. Let for positive r, ν(r) =
ν(f, r) denote the number of zeros of f in the open disc {z : |z| < r} counted
according to multiplicity. Then,

∫ R

0

ν(x)

x
dx ≤ log |f |R − log |f(0)|.

Proof. Since

log
RN

|z1 · · · zN | =
N∑

n=1

∫ R

|zn|

dx

x
=

∫ R

0

ν(x)

x
dx,

the result is immediate from the previous corollary. �

One of the main consequences of these results is a relationship between the
number of zeros in a disc and the rate of growth of the function. We say that an
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entire function f is of strict order ≤ ρ for a positive real ρ if there is a constant
C > 0 such that for any positive R,

|f(z)| ≤ CR
ρ

whenever |z| ≤ R.

If f is as above, then the greatest lower bound of all ρ for which the above
condition holds is called the order of f .

Corollary 5.6 If f is a non-zero analytic function of strict order ≤ ρ, then the
number of zeros of f inside the disc of radius R ≥ 1 is bounded by ARρ where
A is a constant that depends on f and not on R.

Proof. Suppose that f has a zero of order n at z = 0. Then, g(z) = f(z)/zn is
analytic at z = 0 and g(0) �= 0. Applying the previous corollary, we see that

ν(g,R) log 2 ≤ log |g|2R − log |g(0)|.
Thus,

ν(g,R) log 2 + n logR ≤ log |f |2R − log |g(0)|
from which the result easily follows. �

Exercises

1. Show that for |w| < R, the quotient

R2 − zw

R(z − w)

has absolute value 1 for |z| = R.

2. Let f be a function analytic in |z| ≤ R and non-vanishing there. Show that
the minimum modulus of f , min|z|≤R |f(z)| is attained on the boundary.

3. Let f be analytic in |z| ≤ R with R > 0. Show that

|f (n)(0)| ≤ n!|f |R/Rn.
4. Deduce from the previous exercise that a bounded entire function is con-

stant. (This is a famous theorem of Liouville.)

5. Deduce the fundamental theorem of algebra from Liouville’s theorem.

6. Suppose f is analytic in |z| < 1 with |f(z)| ≤ 1 and f(0) = 0. Then show
that |f ′(0)| ≤ 1 with equality if and only if f(z) = cz where |c| = 1.

7. If f and g are entire functions of order ρ1 and ρ2 respectively, show that
the function fg is of order ρ with ρ ≤ max(ρ1, ρ2). Further, if ρ1 �= ρ2,
then show that fg has order equal to max(ρ1, ρ2).

8. Let f and g be as in the previous exercise. What can you conclude about
the order of f + g?



Chapter 6

Siegel’s Lemma

The following lemma is a fundamental tool in transcendental number theory.

Lemma 6.1 (Siegel) Let aij be integers of absolute value at most A for 1 ≤
i ≤ r, 1 ≤ j ≤ n. Consider the homogeneous system of r equations

n∑

j=1

aijxj = 0, 1 ≤ i ≤ r

in n unknowns. If n > r, there is a non-trivial integral solution satisfying

|xj | ≤ B

where

B = 2(2nA)
r

n−r .

Proof. Let C = (aij) be the matrix associated with the system of equations.
Then C maps R

n into R
r. Moreover, it maps Z

n into Z
r. Let H ≥ 1 be a

real number and Z
n(H) be the set of vectors in R

n with integral co-ordinates
of absolute value at most H . Then clearly C maps Zn(H) into Z

r(nAH). If

(2nAH + 1)r < (2H)n,

then the map cannot be injective. In particular if

(2H)n/r ≥ (2H)(2nA) > 2nAH + 1,
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24 Siegel’s Lemma

then there will be at least two distinct vectors mapping to the same point.
The difference of these two vectors gives a solution to the homogeneous system
satisfying

|xj | ≤ 2H.

Choosing H = (2nA)
r

n−r gives the result. �

We will need a generalisation of this lemma to number fields. To this end, we
review some basic algebraic number theory. Let K be a number field. If α ∈ K
is an algebraic number, then consider the set of all integers m such that mα is
an algebraic integer. The set of such integers contains a non-zero integer by our
earlier remarks (see Chap. 3). Moreover, it is an ideal of Z and hence principal.
The positive generator of this ideal will be called the denominator of α and
denoted d(α). We say d is the denominator of the algebraic numbers α1, . . . , αn
if d is the least common multiple of the numbers d(α1), . . . , d(αn). We will also
define the height of α, denoted H(α), to be the maximum absolute value of all
its conjugates.

The second fact we need is that the ring of integersOK of a number fieldK of
degree t has an integral basis. That is, there are algebraic integers ω1, . . . , ωt ∈
OK such that every element of OK can be written as

a1ω1 + · · ·+ atωt

with ai ∈ Z. Let σ1, . . . , σt be the embeddings of K in C and for any ω ∈ K,
ω(j) = σj(ω) denote its j-th conjugate. The t× t matrix whose (i, j)-th entry is

ω
(j)
i is easily verified to be invertible.

Lemma 6.2 Let αij ∈ OK be algebraic integers of height at most A for 1 ≤
i ≤ r, 1 ≤ j ≤ n. Consider the homogeneous system of r equations

n∑

j=1

αijxj = 0, 1 ≤ i ≤ r

in n unknowns. If n > r, there is a non-trivial OK-integral solution satisfying

H(xj) ≤ B

where
B = C(CnA)

r
n−r .

Here C is an absolute constant that depends only on K.

Proof. Let t be the degree of the number fieldK. We write each of the numbers
αij in terms of an integral basis:

αij =

t∑

k=1

aijkωk, aijk ∈ Z.
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From these equations, we also see that by inverting the t× t matrix

(ω
(
)
k ),

we can solve for the aijk . Thus we see that

|aijk| ≤ C0A

where C0 is a constant depending only on K (more precisely, on the integral
basis ωi’s and the degree t). We write each xj as

xj =
∑




yj
ω


so that the system becomes

n∑

j=1

t∑

k=1

t∑


=1

aijkyj
ωkω
 = 0

with yj
 to be solved in Z. We can write

ωkω
 =

t∑

m=1

ck
mωm, ck
m ∈ Z.

Thus we have,
t∑

m=1

n∑

j=1

t∑

k,
=1

aijkyj
ck
mωm = 0.

Since the ωm’s are linearly independent over Q, the original system is now
equivalent to a new system of equations with ordinary integer coefficients in the
unknowns yj
. More precisely, we get the following homogeneous system of rt
equations

n∑

j=1

t∑


=1

t∑

k=1

aijkck
myj
 = 0, 1 ≤ i ≤ r, 1 ≤ m ≤ t

in the nt unknowns yj
. We can now apply the previous lemma and obtain the
desired result by suitably choosing C which depends only on K. �

We will need one more variation of the previous lemma that will allow the
coefficients to be algebraic numbers instead of algebraic integers.

Lemma 6.3 Let αij ∈ K be algebraic numbers of height at most A for 1 ≤ i ≤
r, 1 ≤ j ≤ n. Consider the homogeneous system of r equations

n∑

j=1

αijxj = 0, 1 ≤ i ≤ r
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in n unknowns. Let di be the denominator for the coefficients of the i-th equation
and let d be the maximum of the di’s. If n > r, there exists a non-trivial OK-
integral solution satisfying

H(xj) ≤ B

where
B = C(CndA)

r
n−r

with C an absolute constant depending only on K.

Proof. We simply multiply the i-th equation by di and then apply the previous
lemma. �

Exercises

1. Let K be an algebraic number field and ω1, . . . , ωn an integral basis for

the ring of integers OK . Show that the matrix (ω
(i)
j ) is invertible.

2. Let α be an algebraic integer such that the height of α is equal to one.
Show that α is a root of unity.

3. A real algebraic integer α > 1 is called a Pisot–Vijayaraghavan number
(or a PV number) if all its other conjugates have absolute value strictly
less than one. Show that there are infinitely many PV numbers.
(Hint: Try using Rouché’s theorem in complex analysis.)

4. For any real x, let ||x|| denote its distance from the nearest integer. Show
that if α is a PV number, then the sequence ||αn|| tends to zero as n tends
to infinity. (It is a longstanding conjecture that the converse is also true,
that is, ||αn|| → 0 for any real α > 1 implies that α is a PV number. This
is known to be true if α is assumed to be algebraic.)

5. Prove the following sharpening of Siegel’s lemma: let aij ∈ Z be integers
satisfying

n∑

j=1

|aij | ≤ Ai, 1 ≤ i ≤ r.

Consider the homogeneous system of r equations

n∑

j=1

aijxj = 0, 1 ≤ i ≤ r

in n unknowns. If n > r, there is a non-trivial integer solution satisfying

|xi| ≤ B,

where
B = (A1 · · ·Ar)1/(n−r).



Chapter 7

The Six Exponentials
Theorem

In this chapter and subsequent chapters, we will use Siegel’s lemma and the
maximum modulus principle to prove transcendence results. We shall begin
with the six exponentials theorem. The proof of this theorem involves the
notion of norm of an algebraic number which we recall. Let K be a number
field and Σ be the set of embeddings of K into C. Then for any α ∈ K, we
define the relative norm NK/Q(α) of α to be

NK/Q(α) =
∏

σ∈Σ

σ(α).

We refer N(α) = NQ(α)/Q(α) to be the norm of α. It is clear that

NK/Q(α) = N(α)d

where d = [K : Q(α)]. When α is an algebraic integer, its norm is a rational
integer. Furthermore when α �= 0, we have the obvious but important inequality:

1 ≤ |NK/Q(α)| ≤ H(α)n−1|α|

where n = [K : Q] and H(α) is the height of α.

Theorem 7.1 Let x1, x2 be two complex numbers linearly independent over Q.
Let y1, y2, y3 be three complex numbers linearly independent over Q. Then at
least one of the six numbers

exp(xiyj), 1 ≤ i ≤ 2, 1 ≤ j ≤ 3,

is transcendental.
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28 The Six Exponentials Theorem

Remark. There is the four exponentials conjecture of Schneider that says the
theorem should still be valid if y1, y2, y3 are replaced by y1, y2 linearly indepen-
dent over Q. We refer to the interested reader a paper of Diaz [44] where he
investigates the interrelation between values of the modular j-function (which
we shall be defining later) and the four-exponential conjecture.
Proof. Suppose that the conclusion of the theorem is false. Let K be an
algebraic number field containing the numbers

exp(xiyj), 1 ≤ i ≤ 2, 1 ≤ j ≤ 3.

Let d be the common denominator for these numbers. We will consider the
function

F (z) =
r∑

i,j=1

aije
(ix1+jx2)z

where the aij ∈ OK will be suitably chosen so that F has a zero at the points

k1y1 + k2y2 + k3y3

with 1 ≤ ki ≤ n and where n is a parameter also to be suitably chosen. This
amounts to solving n3 equations in r2 unknowns. To apply Siegel’s lemma, we
need r2 > n3. The coefficients of the equations are the algebraic numbers

exp((ix1 + jx2)(k1y1 + k2y2 + k3y3))

with denominators bounded by d6rn. By Siegel’s lemma, we can find algebraic
integers aij of height at most

C(Cr2d6rnec0rn)
n3

r2−n3 .

We will choose r2 = (4n)3 so that the aij ’s have height at most ec1n
5/2

. Since
x1, x2 are linearly independent over Q, we see that F is not identically zero.
Moreover, F takes values in K for all integral linear combinations of y1, y2, y3.
Since F is of strict order ≤ 1, not all such integral linear combinations can give
rise to zeros of F since the number of such zeros in a circle of radius R grows like
R3 whereas the number of possible zeros of F grows like R by Jensen’s theorem
discussed in Chap. 5. Alternatively, since the set of numbers k1y1 + k2y2 + k3y3
is not discrete, not all of these can be zeros of F . Let s be the largest positive
integer such that

F (k1y1 + k2y2 + k3y3) = 0 for 1 ≤ ki ≤ s.

Then by construction, s ≥ n. Let

w = k1y1 + k2y2 + k3y3

be such that F (w) �= 0 with some ki = s + 1 and 1 ≤ ki ≤ s+ 1 for all i. Let
us observe that

d6r(s+1)F (w)
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is therefore a non-zero algebraic integer. Hence the absolute value of its norm
is at least one. In addition, we have the height estimate

logH(F (w)) � n5/2 + (s+ 1)r � s5/2.

This means
|F (w)| ≥ C−s5/2

for some positive constant C. We now show that this is a contradiction. Clearly

F (w) = lim
z→w

F (z)
∏

1≤k1,k2,k3≤s

(
w − (k1y1 + k2y2 + k3y3)

z − (k1y1 + k2y2 + k3y3)

)

.

There are s3 terms in the product and the function on the right-hand side is
entire. We want to estimate the size of F (w). We can apply the maximum
modulus principle on the circle of radius R to the entire function on the right-
hand side. We will choose R so as to ensure that |w| < R and

|z − (k1y1 + k2y2 + k3y3)| ≥ R/2

for all z on the circle. Thus

|F (w)| ≤ |F |R(C1s/R)
s3

for some constant C1 > 0. But an easy estimation gives

|F |R � ec1n
5/2+c2rRr2,

for some positive constants c1, c2. Putting everything together gives

log |F (w)| � n5/2 + rR + s3 log(s/R).

We will choose R = s3/2. This contradicts our earlier estimate that

log |F (w)| � −s5/2 logC,
if n is taken sufficiently large. �

Exercises

1. If x1, x2, . . . , xn are linearly independent over Q, show that the functions

ex1t, ex2t, . . . , exnt

are algebraically independent over the complex numbers. [Hint: use
Exercise 1 of Chap. 4.]

2. Show that the functions t and et are algebraically independent over the
field of complex numbers.
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3. Show that at least one of 2π, 3π, 5π is transcendental.

4. Let β ∈ C and suppose that there are three multiplicatively independent
algebraic numbers α1, α2, α3 such that αβ1 , α

β
2 , α

β
3 are algebraic. Show that

β is rational.

5. If p1, p2, p3 are three distinct prime numbers such that px1 , p
x
2 , p

x
3 are inte-

gers, then show that x is a non-negative integer.

6. Imitate the above proof for the four exponential conjecture and find out
where the proof breaks down.

7. Let z ∈ C with |z| ∈ Q and e2πiz ∈ Q. Assuming the four exponential
conjecture, deduce that z ∈ Q.



Chapter 8

Estimates for Derivatives

In numerous transcendence proofs, it is convenient to estimate derivatives of
polynomials evaluated at special points. To this end, we consider a more general
setting.

We introduce some terminology. If P is a polynomial in several variables
with algebraic coefficients, we will write size(P ) for the maximum of the heights
of its coefficients. Given two such polynomials, P and Q, with the latter having
non-negative real coefficients, we will say that Q dominates P if the absolute
value of the coefficient of each of the monomials in P is dominated by the
corresponding coefficient of Q. We will write P ≺ Q if Q dominates P . It is
easily verified that if P1 ≺ Q1 and P2 ≺ Q2, then P1 + P2 ≺ Q1 + Q2 and
P1P2 ≺ Q1Q2. Moreover, if Di is the derivative operator with respect to the
i-th variable and P ≺ Q, then DiP ≺ DiQ. If the total degree of a polynomial
P in n variables is r, then

P ≺ size(P )(1 + x1 + · · ·+ xn)
r.

We also need some facts about derivations. Recall that a derivation D of
a ring R is a map D : R → R such that D(x + y) = D(x) + D(y) and which
satisfies D(xy) = D(x)y + xD(y). Sometimes, we write Dx for D(x) when the
meaning is clear. For instance, if R is the polynomial ring K[x1, . . . , xn], then
the partial derivative ∂/∂xi is a derivation.

If R is an integral domain and K its quotient field, then a derivation D of
R can be extended in the usual way by setting

D(u/v) =
vD(u)− uD(v)

v2
.

If R is a ring with derivation D, then we can define a derivation on the polyno-
mial ring R[x1, . . . , xn] by mapping the polynomial

f(x1, . . . , xn) =
∑

ai1,...,inx
i1
1 · · ·xinn
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32 Estimates for Derivatives

to
fD :=

∑

D(ai1,...,in)x
i1
1 · · ·xinn .

It is easily verified that this is a derivation (see Exercise 2 below).
If L = K[x1, . . . , xn], then the usual partial derivatives

Di :=
∂

∂xi

are derivations which are trivial on K. Conversely if D is a derivation of L
which is trivial on K, then we can write it as a linear combination of the Di’s.
Indeed, we have

D =
∑

i

D(xi)Di

since any such derivation is determined by its values on the polynomials xi. In
fact, an easy induction shows that

D(xmi ) = mxm−1
i D(xi)

and

D(xi11 · · ·xinn ) =

n∑

j=1

Dj(x
i1
1 · · ·xinn )D(xj).

We apply these observations in the more familiar context of C(x1, . . . , xn).
This shows that if P1, . . . , Pn are arbitrary polynomials, then there exists a
unique derivation D∗ such that D∗(xi) = Pi which is trivial on C.

Lemma 8.1 Let K be an algebraic number field and f1, . . . , fn be complex-
valued functions. Let w ∈ C be such that the functions f1, . . . , fn are holomor-
phic in a neighbourhood of w and that the derivative D = d/dz maps the ring
K[f1, . . . , fn] into itself. Assume that fi(w) ∈ K for 1 ≤ i ≤ n. Then there
exists a number C1 having the following property. Let P (x1, . . . , xn) be a poly-
nomial with coefficients in K and of degree deg(P ) ≤ r. If f = P (f1, . . . , fn),
then for all positive integers k,

H(Dkf(w)) ≤ size(P )k!Ck+r1 .

Moreover, the denominator of Dkf(w) is bounded by d(P )Ck+r1 , where d(P ) is
the denominator of the coefficients of P .

Proof. There exist polynomials Pi(x1, . . . , xn) such that

Dfi = Pi(f1, . . . , fn).

Let δ be the maximum of their degrees. By our earlier remarks, there is a unique
derivation D∗ such that

D∗(xi) = Pi(x1, . . . , xn).
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Then for any polynomial P , we have

D∗P (x1, . . . , xn) =
n∑

i=1

Pi(x1, . . . , xn)
∂

∂xi
P (x1, . . . , xn).

The polynomial P is dominated by

size(P )(1 + x1 + · · ·+ xn)
r

and so
∂

∂xi
P (x1, . . . , xn)

is dominated by
size(P )r(1 + x1 + · · ·+ xn)

r.

Now each Pi is dominated by

size(Pi)(1 + x1 + · · ·+ xn)
δ.

Thus, D∗(P ) is dominated by

size(P )Cr(1 + x1 + · · ·+ xn)
r+δ

where

C =

n∑

i=1

size(Pi).

Now we argue similarly for D∗2(P ). We have

D∗2P (x1, . . . , xn) =
n∑

i=1

Pi(x1, . . . , xn)
∂

∂xi
D∗P (x1, . . . , xn).

Since

∂

∂xi
D∗(P ) ≺ size(P )r(r + δ)C(1 + x1 + · · ·+ xn)

r+δ,

we obtain

D∗2(P ) ≺ size(P )r(r + δ)C2(1 + x1 + · · ·+ xn)
r+2δ.

Proceeding inductively, we see that

D∗k(P ) ≺ size(P )Ckr(r + δ) · · · (r + (k − 1)δ)(1 + x1 + · · ·xn)r+kδ.

Observing that for δ > 0 (for δ = 0, the estimates are even easier),

r(r + δ) · · · (r + (k − 1)δ) ≤ δk(r + 1) · · · (r + k) ≤ δk
(r + k)!

r!k!
k! ≤ δk2r+kk!,
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we obtain an inequality of the form

D∗k(P ) ≺ size(P )Cr+k0 k!(1 + x1 + · · ·xn)r+kδ.

If we plug in the values fi(w) for xi in the above, we obtain a bound for
D∗k(f(w)) exactly of the form as required in our lemma. To prove the lemma, we
observe that the map xi 
→ fi is a homomorphism from the ring K[x1, . . . , xn] to
K[f1, . . . , fn] which takes the derivation D∗ to D. Thus D∗k(f(w)) = Dkf(w)
and since all these numbers lie in the fixed number field K, the first assertion
of the lemma follows. The second assertion about the denominator estimate
follows in a similar inductive style. We leave this as an exercise to the reader.
�

Exercises

1. Let R be an integral domain and D a derivation of R. Show that the map
D extends to the field of fractions of R by the definition:

D(x/y) =
yD(x)− xD(y)

y2
.

2. Let D be a derivation on the ring R. Show that the map f 
→ fD (defined
in the beginning) is a derivation on the ring R[x1, . . . , xn].

3. If K is a field, show that the set of all derivations of K, denoted Der(K),
forms a vector space over K if we define

(D1 +D2)(x) := D1(x) +D2(x), (aD)(x) := aD(x),

for D1, D2, D ∈ Der(K), and a ∈ K. Show further that [D1, D2]
:= D1D2 −D2D1 is again a derivation of K.

4. With notation as in the previous exercise, show that

[[D1, D2], D3] + [[D2, D3], D1] + [[D3, D1], D2] = 0,

for any three derivations D1, D2, D3 of K. (This is equivalent to saying
that Der(K) is a Lie algebra.)

5. Let D be a derivation on a field K and consider the function

L(x) =
Dx

x
, x ∈ K×.

Show that L(xy) = L(x) + L(y). This map L is called the logarithmic
derivative.



Chapter 9

The Schneider–Lang
Theorem

In 1934, A.O. Gelfond and T. Schneider independently solved Hilbert’s seventh
problem. This problem predicted that if α and β are algebraic numbers with
α �= 0, 1 and β irrational, then αβ is transcendental. In particular, the number

2
√
2 is transcendental as well as the number eπ, as is seen by taking β = i and

α = −1. Another consequence of the theorem is the transcendence of numbers
such as

logα

log β

whenever logα and log β are linearly independent over the rationals.
In 1962, Serge Lang derived a simple generalisation of the Schneider method

and it is this result we will discuss here. In the subsequent chapters, we will
derive further corollaries of the theorem.

Recall that an entire function f is said to be of strict order ≤ ρ if there is a
positive constant C such that

|f(z)| ≤ CR
ρ

whenever |z| ≤ R. A meromorphic function is said to be of strict order ≤ ρ if it
is the quotient of two entire functions of strict order ≤ ρ.

Theorem 9.1 (Schneider–Lang) Let K be an algebraic number field. Let
f1, . . . , fd be meromorphic functions of strict order ≤ ρ and assume that at least
two of these functions are algebraically independent. Suppose further that the
derivative D = d/dz maps the ring K[f1, . . . , fd] into itself. If w1, . . . , wm are
distinct complex numbers not among the poles of the fi’s such that fi(wk) ∈ K
for all 1 ≤ i ≤ d, 1 ≤ k ≤ m, then m ≤ 4ρ[K : Q].
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36 The Schneider–Lang Theorem

Proof. Let f, g be two functions among f1, . . . , fd which are algebraically
independent. Let

F =
r∑

i,j=1

aijf
igj .

We wish to select coefficients aij ∈ OK such that

DkF (wν) = 0

for 1 ≤ ν ≤ m and 0 ≤ k ≤ n− 1. This amounts to solving the linear system of
mn equations in r2 unknowns:

r∑

i,j=1

aijD
k(f igj)(wν) = 0.

By hypothesis, the numbers

Dk(f igj)(wν ) =
k∑

t=0

(
k

t

)

Dt(f i)(wν)D
k−t(gj)(wν )

are algebraic and lie in K. By Lemma 8.1, we can estimate the size of our
coefficients. Choosing r2 = 2mn, Siegel’s lemma assures that we can find the
desired aij ∈ OK with

H(aij) ≤ en log n+O(n+r).

Since f and g are algebraically independent over K, our function F is not
identically zero. Let s be the smallest integer such that all the derivatives of F
up to order s− 1 vanish at the points w1, . . . , wm but such that DsF does not
vanish at least at one of the wν , say w1. Then s ≥ n and by Lemma 8.1, we
have an estimate for

H(DsF (w1)) ≤ es log s+O(s).

We also know that it has denominator bounded by es log s+O(s). SinceDsF (w1) �=
0, from the height estimate we deduce that

|Ds(F (w1))| ≥ e−2[K:Q]s log s+s log s+O(s).

On the other hand, we can deduce an upper bound for this quantity as follows.
Let h be an entire function of order ≤ ρ so that h(w1) �= 0 and both hf and hg
are entire. Then

G(z) =
h(z)2rF (z)

∏m
ν=1(z − wν)s

m∏

ν=2

(w1 − wν)
s

is entire. Let us note that

lim
z→w1

G(z)

h(z)2r
=
Ds(F (w1))

s!
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because

F (z) =
Ds(F (w1))

s!
(z − w1)

s + · · ·

is its Laurent expansion about z = w1. We note that to estimate |Ds(F (w1))|,
it suffices to estimate G(z) on the circle |z| = R which encloses w1. For this, we
apply the maximum modulus principle to G on the circle with radius R = s1/2ρ

(suitably large) to obtain

|Ds(F (w1))|
s!

� CrR
ρ

R−ms.

Since R = s1/2ρ, we get an upper bound of

e−ms(log s)/2ρ+s log s+rs
1/2c1 .

Recalling that r = O(n1/2), we obtain a contradiction if m > 4ρ[K : Q]. This
completes the proof. �

We now derive some important corollaries of this theorem.

Corollary 9.2 (Hermite–Lindemann Theorem) Let α be a non-zero algebraic
number. Then eα is transcendental.

Proof. Suppose not. Let K be the field generated by α and eα over Q. Let
f1(z) = z and f2(z) = eαz. Then the ring K[f1, f2] is mapped into itself by
the derivative map. Moreover, by Exercise 2 in Chap. 7, the two functions are
algebraically independent. The theorem indicates that there are only finitely
many complex numbers w such that f1(w), f2(w) ∈ K. But we may take the
infinite set w = 1, 2, 3, . . . to derive a contradiction. �

Corollary 9.3 (Gelfond–Schneider Theorem) Let α, β be algebraic numbers
with α �= 0, 1 and β irrational. Then αβ is transcendental.

Proof. Suppose not. Let K be the field generated by α, β, αβ over Q. We apply
the theorem to the two functions f1(z) = ez, f2(z) = eβz. Again, the derivative
maps the ring K[f1, f2] into itself. By Exercise 1 of Chap. 7, we conclude that
f1 and f2 are algebraically independent. Thus f1 and f2 can take on values in
K simultaneously at only a finite number of complex numbers. But this is a
contradiction if we take z = logα, 2 logα, . . .. �

In the subsequent chapters, we will discuss further applications of this impor-
tant theorem to the theory of elliptic functions, abelian functions and modular
functions.
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Exercises

1. If P is a polynomial of degree d, determine the order of the function eP .

2. Prove that if f is an entire function of order ρ, then its derivative f
′
also

has order ρ.

3. Let α, β be algebraic numbers unequal to 0 or 1. Show that

logα

log β

is either rational or transcendental.

4. If α, β are non-zero algebraic numbers such that logα, log β are linearly
independent over Q, then show that they are linearly independent over Q.



Chapter 10

Elliptic Functions

Let ω1, ω2 be two complex numbers which are linearly independent over the
reals. Let L be the lattice spanned by ω1, ω2. That is,

L = {mω1 + nω2 : m,n ∈ Z}.

An elliptic function (relative to the lattice L) is a meromorphic function f on
C (thus an analytic map f : C → CP1) which satisfies

f(z + ω) = f(z)

for all ω ∈ L and z ∈ C. The value of such a function can be determined by its
value on the fundamental parallelogram:

D = {sω1 + tω2 : 0 ≤ s, t < 1 }.

Any translate of D is referred to as a fundamental domain for the elliptic func-
tions relative to L. The set of all such elliptic functions (relative to L) forms a
field and L is called the period lattice or the lattice of periods.

The Weierstrass ℘-function associated with L is defined by the series

℘(z) =
1

z2
+
∑

ω∈L′

{
1

(z − ω)2
− 1

ω2

}

,

where L′ denotes the set of non-zero periods. The associated Eisenstein series
of weight 2k is

G2k(L) :=
∑

ω∈L′
ω−2k.

Theorem 10.1 Let L be a lattice in C. The Eisenstein series G2k is abso-
lutely convergent for all k > 1. The Weierstrass ℘-function associated with L
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40 Elliptic Functions

converges absolutely and uniformly on every compact subset of C\L. It is a
meromorphic elliptic function on C having a double pole at each point of L and
no other poles.

Proof. It is easy to see that

#{ω ∈ L : N ≤ |ω| < N + 1} = O(N).

Hence

∑

ω∈L:|ω|≥1

1

|ω|2k ≤
∞∑

N=1

1

N2k
#{ω ∈ L : N ≤ |ω| < N + 1} �

∞∑

N=1

1

N2k−1
,

from which the first assertion follows. To deal with the convergence of the second
series, we split the series into two parts:

∑

0<|ω|≤2|z|
+
∑

|ω|>2|z|
.

The first sum is a finite sum by our observation above. For the second sum, we
note that ∣

∣
∣
∣

1

(z − ω)2
− 1

ω2

∣
∣
∣
∣
=

∣
∣
∣
∣

z(2ω − z)

ω2(z − ω)2

∣
∣
∣
∣
≤ 10|z|

|ω|3
which converges by the first part of our theorem. Thus the defining series of the
Weierstrass ℘-function converges absolutely and uniformly on every compact
subset of C\L. This proves that ℘ is analytic in the region C\L. Further, we
can compute its derivative and find that

℘′(z) = −2
∑

ω∈L

1

(z − ω)3

from which it is clear that ℘′ is an elliptic function. Thus for any fundamental
period ω (i.e. there exists τ ∈ L such that ω and τ generate L),

℘′(z + ω) = ℘′(z)

and hence we obtain

℘(z + ω) = ℘(z) + c(ω)

for some constant c(ω) which is independent of z. Putting z = −ω/2 and
noting that ℘ is an even function, we find that c(ω) = 0. Finally the series
representation clearly shows the location and multiplicities of the poles. This
completes the proof. �

The next theorem describes a fundamental algebraic relation between ℘
and ℘′.
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Theorem 10.2 The Laurent series for ℘(z) about z = 0 is given by

℘(z) =
1

z2
+

∞∑

k=1

(2k + 1)G2k+2z
2k.

Moreover, for all z ∈ C, z /∈ L we have

℘′(z)2 = 4℘(z)3 − 60G4℘(z)− 140G6.

Proof. We begin by observing that

∞∑

n=0

zn =
1

1− z

for |z| < 1. Upon differentiating both sides, we find that

∞∑

n=0

nzn−1 =
1

(1− z)2
.

Thus,

(1− z)−2 − 1 =
∞∑

n=1

(n+ 1)zn,

a fact we will use below. Let r = min{|w| : w ∈ L′}. Then, for 0 < |z| < r, we
can write

1

(z − ω)2
− 1

ω2
= ω−2[(1− z/ω)−2 − 1] =

∞∑

n=1

(n+ 1)zn/ωn+2.

Summing both sides of this expression over ω ∈ L′, we obtain

℘(z)− 1

z2
=
∑

ω∈L′

∞∑

n=1

(n+ 1)zn/ωn+2.

Interchanging the summations on the right-hand side and noting that for odd
n ≥ 1, the sum

∑

ω∈L′
ω−n−2 = 0

(because both ω and −ω are in L′), we obtain the first assertion of the theorem.
To prove the second assertion, we differentiate the Laurent series to get

℘′(z) = −2z−3 + 6G4z + 20G6z
3 + · · · .

Squaring this, we obtain

℘′(z)2 = 4z−6 − 24G4z
−2 − 80G6 + · · · .
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Cubing the ℘-function, we get

℘3(z) =
(

z−2 + 3G4z
2 + 5G6z

4 + · · · )3
= z−6 + 9G4z

−2 + 15G6 + · · · .

Thus, the function

f(z) = ℘′(z)2 − 4℘(z)3 + 60G4℘(z) + 140G6

is holomorphic at z = 0 and vanishes there. Since f(z + ω) = f(z) for all
ω ∈ L, we have that f vanishes at all points of L. But it is also an elliptic
function which is analytic outside of L. It follows that f is analytic on the
fundamental parallelogram D and thus is an entire function. Since the closure
of D is compact, f is a bounded entire function. By Liouville’s theorem, f is
constant. Since f(0) = 0, this constant must be zero. This completes the proof.
�

The preceding theorem shows that the points (℘(z), ℘′(z)) for z ∈ C\L lie
on the curve defined by the equation

y2 = 4x3 − g2x− g3,

where
g2 = 60G4, g3 = 140G6.

The cubic polynomial on the right-hand side has a discriminant given by

Δ = g32 − 27g23

which we shall show to be non-zero. Such curves are called elliptic curves.
We want to show that the converse is also true. Namely, given (x, y) ∈ C

2

lying on the curve, we can find z such that x = ℘(z) and y = ℘′(z). Indeed, if
the equation ℘(z)− x = 0 has no solution, then 1/(℘− x) is an elliptic function
which is holomorphic on L. By periodicity, we see that it is entire and bounded.
By Liouville’s theorem, it must be a constant, a contradiction since ℘ is not
a constant function. Hence y = ±℘′(z) and since ℘′(z) = −℘′(−z), we may
adjust the sign of z appropriately so as to ensure that (x, y) = (℘(z), ℘′(z)).
This proves:

Theorem 10.3 Let L be a lattice. Let g2, g3 be defined as above. Then all the
complex solutions of the equation

y2 = 4x3 − g2x− g3

are given by (℘(z), ℘′(z)) where ℘ is the Weierstrass ℘-function attached to L
and z ranges over all the complex numbers in C\L.
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Let us now prove the following elementary, but crucial lemma:

Lemma 10.4 Let f be an elliptic function associated with the lattice L and let
reswf denote the residue of f at z = w. If D is a fundamental domain of f
whose boundary ∂D does not contain any pole of f , then

∑

w∈D
reswf = 0.

Further, if ordw denotes the order of f at z = w and ∂D does not contain a
zero of f , then

∑

w∈D
ordwf = 0.

Proof. Let D be a fundamental domain whose boundary does not contain any
pole of f . By Cauchy’s theorem, we have

∫

∂D

f(z)dz = 2πi
∑

w∈D
reswf.

The periodicity of f shows that the line integrals along the opposite sides of the
parallelogram cancel. This proves the first assertion. The second one follows on
applying the first assertion to the elliptic function f ′(z)/f(z). �

There are two more related functions we will look at. The first is the Weier-
strass σ-function attached to the lattice L and defined as

σ(z) := z
∏

ω∈L′

(

1− z

ω

)

ez/ω+z
2/2ω2

.

Since the series ∑

ω∈L′
ω−2−ε

is absolutely convergent for ε > 0, Weierstrass–Hadamard factorisation theory
for entire functions will immediately imply that σ is an entire function of order
two. But without appealing to the general theory of entire functions, it is not
difficult to carry out an explicit hands-on treatment of this function which we
do.

If we formally take the logarithmic derivative of the σ function, we obtain
the Weierstrass ζ-function:

ζ(z) :=
σ′(z)
σ(z)

=
1

z
+
∑

ω∈L′

[
1

z − ω
+

1

ω
+

z

ω2

]

.

The summand on the right can be written as

− 1

ω(1− z/ω)
+

1

ω
+

z

ω2
= −

∞∑

k=2

zk

ωk+1
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for z in a suitable region. By our earlier remarks, we see that the series defining
the function ζ converges absolutely and uniformly for any compact set in C \L.
Thus ζ is an analytic function in C\L. Now exponentiating local primitives of
this function, we see that σ is an entire function. If we differentiate ζ, we obtain

ζ′(z) = − 1

z2
−
∑

ω∈L′

[
1

(z − ω)2
− 1

ω2

]

= −℘(z).

It is easily seen that both σ and ζ are odd functions.
The Weierstrass σ-function has strict order ≤ 3. To see this, let z be a

complex number of absolute value R. Then,

log(1 − z/ω) + z/ω + z2/2ω2 = −
∞∑

k=3

zk

kωk
,

provided |z| = R < |ω|. If |ω| > 2R, then the sum converges absolutely since

∞∑

k=3

|zk/ωk| � |z|3/|ω|3.

Thus, the part of the product defining σ which is restricted to |ω| > 2R converges
absolutely and its logarithm is O(R3). The part of the product over those ω

satisfying |ω| ≤ 2R has O(R2) factors and each factor is O(ReR
2

) from which
the assertion follows. From the product formula, we also see that σ is an entire
function with simple zeros on L and at no other points.

Differentiating the function ζ(z+ω)− ζ(z), we get zero since the ℘-function
is periodic. Thus there exists η(ω) so that

ζ(z + ω) = ζ(z) + η(ω).

It is clear that η is a Z-linear function in ω. Thus, η(2ω) = 2η(ω). The notation
η1 = η(ω1) and η2 = η(ω2) is standard and these are called quasi-periods of ζ.
Thus ζ is not an elliptic function since it is not doubly periodic.

What about σ? From the preceding, we see that

log σ(z + ω) = log σ(z) + η(ω)z + c(ω)

for some function c on the lattice. It is convenient to write this as

σ(z + ω)

σ(z)
= ψ(ω)eη(ω)(z+ω/2)

thereby defining ψ(ω). Suppose first that ω/2 /∈ L. Setting z = −ω/2 above
and using the fact that σ is odd, we see at once that ψ(ω) = −1. On the other
hand,

σ(z + 2ω)

σ(z)
=
σ(z + 2ω)

σ(z + ω)

σ(z + ω)

σ(z)
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and so by applying the functional equation twice and using the fact that η(2ω) =
2η(ω), we get

ψ(2ω) = ψ(ω)2.

In particular if ω/2 ∈ L, we get

ψ(ω) = ψ(ω/2)2.

Thus dividing by 2 until we get some element which is not twice a period, we
get its value to be −1 which upon squaring becomes 1. This proves:

Theorem 10.5

σ(z + ω) = σ(z)ψ(ω)eη(ω)(z+ω/2),

where ψ(ω) = 1 if ω/2 ∈ L and −1 otherwise.

This theorem allows us to factor the ℘-function as a product of σ functions.
Indeed, let us observe that for any a ∈ C, we have

σ(z + a+ ω)

σ(z + a)
= ψ(ω)eη(ω)(z+ω/2)eη(ω)a.

Noting that η(ω)a occurs linearly in the exponent, we see that if a1, . . . , an and
b1, . . . , bn are any two sets of complex numbers satisfying

n∑

i=1

ai =

n∑

i=1

bi,

then the function
n∏

i=1

σ(z − ai)

σ(z − bi)

is periodic with respect to the lattice L and hence an elliptic function. The
converse is also true, namely that any elliptic function can be written as a
product of above type. For example, we have for any a /∈ L,

℘(z)− ℘(a) = −σ(z + a)σ(z − a)

σ2(z)σ2(a)
.

To see this, note that the left-hand side has zeros at z = ±a and all its trans-
lates by L and a double pole at z = 0. There are no other zeros or poles by
Lemma 10.4. The right-hand side is an elliptic function by our earlier remarks
with the zeros and poles of the same order and at the same places. Thus the
quotient is entire and as its value is determined on the fundamental domain, it
is bounded there. By Liouville’s theorem, it is constant. Since σ(z)/z tends to
1 as z tends to zero, we deduce that the constant must be 1 by multiplying both
sides by z2 and taking the limit as z tends to zero. This discussion along with
Exercise 4 proves the following theorem.
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Theorem 10.6 Any elliptic function is expressible as a product of the form

c

n∏

i=1

σ(z − ai)

σ(z − bi)

where c is a constant.

The subject of elliptic functions was developed in the nineteenth century by
the works of Legendre, Gauss, Jacobi, Eisenstein, Kronecker and others. Today
this field has grown naturally into the theory of modular forms, one of the
most active branches of mathematics. We heartily recommend the delightful
little book of Weil [131] which gives a wide-ranging historical perspective of this
topic.

Exercises

1. Show that ζ and η are both odd functions.

2. Show that for any lattice L and k ≥ 2,

G2k(L) = Pk(G4(L), G6(L))

where Pk(x, y) is a polynomial with rational coefficients, independent of
L.

3. Show that the Weierstrass ℘-function has strict order ≤ 3.

4. Prove that for any elliptic function f associated with a lattice L,

∑

w∈D
w ordwf ∈ L.

5. Fix a complex number c. Show that the equation ℘(z) = c has exactly two
solutions in the fundamental parallelogram. If u and v are these solutions,
use the previous exercise to deduce that u+ v ∈ L.

6. Prove that

℘′(z) = −σ(2z)
σ(z)4

.

7. If f is an even elliptic function and u is a zero of order m, show that −u
is also a zero of order m. Prove the same assertion with “zero” replaced
by “pole”. Further, if u = −u in C/L, then m is even.

8. Prove that any even elliptic function f is a rational function in ℘. [Hint:
By the previous exercise, pair up the zeros as ai,−ai and the poles as
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bi,−bi in a fundamental domain, taking care when a pair is same mod L.
Now consider the function

∏

i(℘(z)− ℘(ai))
∏

i(℘(z)− ℘(bi))

and show that it has the same zeros and poles as f .]

9. Conclude from the previous exercise that any elliptic function is a rational
function in ℘ and ℘′.



Chapter 11

Transcendental Values
of Elliptic Functions

The observation that points on a certain elliptic curve can be parametrised by
the values of the ℘-function and its derivative allows us to deduce an important
addition theorem for the ℘-function. Using Lemma 10.4, we will prove the
following addition formula for the ℘-function.

Theorem 11.1 For z1, z2 with z1, z2 and z1 ± z2 /∈ L, we have

℘(z1 + z2) = −℘(z1)− ℘(z2) +
1

4

(
℘′(z1)− ℘′(z2)
℘(z1)− ℘(z2)

)2

.

When z1 = z2 = z, we have

℘(2z) = −2℘(z) +
1

4

(
℘′′(z)
℘′(z)

)2

.

Proof. Let (x1, y1) = (℘(z1), ℘
′(z1)) and (x2, y2) = (℘(z2), ℘

′(z2)) be the
corresponding points on the elliptic curve

y2 = 4x3 − g2x− g3.

Let y = ax+ b be the line through these two points. Thus,

℘′(z1) = a℘(z1) + b, ℘′(z2) = a℘(z2) + b.

Now with a suitably chosen fundamental domain D (so that we can apply
Lemma 10.4), we can ensure that the elliptic function

℘′(u)− a℘(u)− b

M.R. Murty and P. Rath, Transcendental Numbers, DOI 10.1007/978-1-4939-0832-5 11,
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has poles only at z = 0 in D and this pole has order 3. Thus by Lemma 10.4, it
has three zeros in D (counting multiplicities). Working mod L, we already have
two of these zeros, namely u = z1 and u = z2. Let u = t be the third zero. Then

℘′(t) = a℘(t) + b

and by Exercise 4 in the previous chapter (which follows by integrating the

function z f
′

f ), we have

z1 + z2 + t ∈ L.

In addition, we have

(℘′(t))2 = 4℘(t)3 − g2℘(t)− g3.

We conclude that

(a℘(t) + b)2 = 4℘(t)3 − g2℘(t)− g3.

By our analysis, the cubic equation

(ax+ b)2 = 4x3 − g2x− g3

has roots x = ℘(z1), ℘(z2) and x = ℘(t). Since the sum of the roots is a2/4,
we get

℘(z1) + ℘(z2) + ℘(t) = a2/4 =
1

4

(
℘′(z1)− ℘′(z2)
℘(z1)− ℘(z2)

)2

.

Since −t = z1 + z2 mod(L) and ℘(−t) = ℘(t), we deduce the assertion of the
theorem. The second part is obtained by taking limits as z1 tends to z2. This
completes the proof. �

We are now ready to prove the following important application of the
Schneider–Lang theorem.

Theorem 11.2 Let L be a lattice and suppose that g2, g3 are algebraic. Then,
for any algebraic α /∈ L, ℘(α) is transcendental.

Proof. Suppose not. Then ℘′(α) is also algebraic since g2, g3 are algebraic.
Since

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3,

we see upon differentiating the left-hand side and dividing by ℘′(z) that

2℘′′(z) = 12℘(z)2 − g2.

Let K be the algebraic number field generated by g2, g3, α, ℘(α). We apply
the Schneider–Lang theorem to the field K and the functions z, ℘ and ℘′. The
derivative operator maps the polynomial ring generated by these functions into
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itself. These functions are of strict order ≤ 3 by the theory of the Weierstrass
σ and ζ functions discussed in the previous chapter. Moreover the functions
f1(z) = z and f2(z) = ℘(z) are algebraically independent. To see this, suppose
they are algebraically dependent. Then there exists a polynomial P ∈ C[x, y]
such that P (z, ℘) is identically zero. If the x-degree of P is n and n > 0, we
may write this relation as

znPn(℘(z)) + zn−1Pn−1(℘(z)) + · · ·+ P0(℘(z)) = 0

for certain polynomials P0, . . . , Pn. If we take z0 /∈ L with Pn(℘(z0)) �= 0, we
see from the periodicity of ℘(z) that the polynomial

znPn(℘(z0)) + zn−1Pn−1(℘(z0)) · · ·+ P0(℘(z0))

has infinitely many zeros at z0 + ω for ω ∈ L. One can carry out a similar
argument for the case when n = 0. Thus the functions f1 and f2 are algebraically
independent. By the Schneider–Lang theorem, these functions and ℘′ take
values in K simultaneously at only finitely many complex points. But this is
not the case since by the addition formula for the ℘-function, these functions
take values in K at all the points nα /∈ L with n = 1, 2, . . .. This contradicts
the Schneider–Lang theorem. Thus ℘(α) must be transcendental. �

Given a lattice L with invariants g2 and g3, let E be the elliptic curve y2 =
4x3− g2x− g3. As described in the previous chapter, the complex points of this
curve are parametrized by the Weierstrass ℘-function of L.

Conversely, we shall see later that given an elliptic curve of the form y2 =
4x3−Ax−B (where A3− 27B2 �= 0 by definition), there exists a unique lattice
L such that g2(L) = A and g3(L) = B and hence the complex points of this
curve are parametrized by the Weierstrass ℘-function of L. The elements of L
are referred to as periods of the given elliptic curve.

The previous theorem implies that any non-zero period of such an elliptic
curve defined over Q (i.e. g2 and g3 are algebraic) must be transcendental. To
see this note that

℘′(ω1/2) = −℘′(−ω1/2)

since ℘′ is an odd function. But ℘′ is periodic with respect to L and so

℘′(−ω1/2) = ℘′(−ω1/2 + ω1)

so that ℘′(ω1/2) = 0. The same reasoning shows that

℘′(ω2/2) = ℘′((ω1 + ω2)/2) = 0.

From the fact that (℘(z), ℘′(z)) are points on the elliptic curve

E : y2 = 4x3 − g2x− g3,

we immediately see that

℘
(ω1

2

)

, ℘
(ω2

2

)

, ℘

(
ω1 + ω2

2

)
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are the zeros of the cubic equation

4x3 − g2x− g3 = 0.

These are called the two-division points of E. In particular it follows that for
g2, g3 algebraic, all the two-division points are algebraic. Thus dividing any
non-zero period by a suitable power of 2 and using the previous theorem, we
immediately deduce the following fundamental result first proved by Schneider:

Theorem 11.3 Any non-zero period of an elliptic curve

y2 = 4x3 − g2x− g3

with g2 and g3 algebraic is necessarily transcendental.

In other words, if L is the lattice with invariants g2(L) = g2 and g3(L) = g3,
then L ∩ Q = 0. This result could be viewed as the elliptic analogue of the
transcendence of π since 2πi is a “period” of the exponential function ez and ℘
is a higher dimensional generalisation of the exponential function in the sense
that it is doubly periodic.

We end this chapter by noting the following result for future reference.

Proposition 11.4 The numbers ℘(ω1/2), ℘(ω2/2) and ℘((ω1 + ω2)/2) are
distinct.

Proof. Suppose not. Let L be the lattice spanned by ω1, ω2 which are linearly
independent over R. Let us consider the function

f1(z) = ℘(z)− ℘(ω1/2).

This has a double order zero at z = ω1/2 since ℘′(ω1/2) = 0. Since ℘ has a dou-
ble order pole at z = 0 in a suitable translate of the fundamental parallelogram
and no other poles, this accounts for all the zeros of f1 by Lemma 10.4. It fol-
lows that any zero must be congruent to ω1/2 modulo L. If ℘(ω2/2) = ℘(ω1/2),
then we would have ω1 ≡ ω2 modulo L, contrary to their linear independence
over R. Thus ℘(ω1/2) and ℘(ω2/2) are distinct. A similar argument applies for
the other two-division points. �

We immediately deduce:

Proposition 11.5 The discriminant

g32 − 27g23 �= 0.

Proof. It will be convenient to write

e1 = ℘(ω1/2), e2 = ℘(ω2/2), e3 = ℘((ω1 + ω2)/2).

Then the discriminant of the cubic is

g32 − 27g23 = 16(e1 − e2)
2(e1 − e3)

2(e2 − e3)
2

and by the previous proposition, this is non-zero. �
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Exercises

1. If g2, g3 are algebraic, show that for any natural number n, the numbers
℘(ω1/n) and ℘(ω2/n) are algebraic numbers.

2. Let L be a lattice with g2, g3 algebraic. If ℘(α) is transcendental, show
that ℘(nα) is transcendental for every natural number n with nα /∈ L.

3. With L as in the previous exercise, show that if ℘(α) is transcendental,
then so is ℘(n)(α) for every natural number n.

4. Show that the functions ez and ℘ are algebraically independent.

5. Let g2, g3 be algebraic and w be any non-zero period of the elliptic curve
y2 = 4x3 − g2x − g3. Then show that w and π are linearly independent
over Q.



Chapter 12

Periods and Quasiperiods

In the previous chapter, we proved that the fundamental periods ω1, ω2 of a
Weierstrass ℘-function whose corresponding g2, g3 are algebraic are necessarily
transcendental. A similar question arises for the nature of the associated quasi-
periods η1, η2. We shall show that these are also transcendental whenever g2
and g3 are algebraic. To this end, we shall need the following lemmas. Let H

denote the upper half-plane, i.e. the set of complex numbers z with �(z) > 0.

Lemma 12.1 (Legendre Relation) If ω1 and ω2 are fundamental periods such
that ω1/ω2 ∈ H, then

ω1η2 − ω2η1 = 2πi.

Proof. We integrate ζ(z) around a fundamental parallelogram D, shifted
slightly so that the boundary does not contain a period. The only pole of ζ
is at z = 0 with residue 1. Thus By Cauchy’s theorem,

2πi =

∫

∂D

ζ(z)dz.

But ζ(z+ω) = ζ(z)+ η(ω) and hence the line integrals along the opposite sides
of the parallelogram don’t quite cancel, but give the required terms. �

Lemma 12.2 The functions f1(z) = ℘(z) and f3(z) = αz + βζ(z), with α, β
not both zero, are algebraically independent.

Proof. We begin by observing the following facts (see exercises below):

ζ(z1 + z2) = ζ(z1) + ζ(z2) +
1

2

(
℘′(z1)− ℘′(z2)
℘(z1)− ℘(z2)

)
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and

f3(z1 + z2) = f3(z1) + f3(z2) +
β

2

(
℘′(z1)− ℘′(z2)
℘(z1)− ℘(z2)

)

.

Suppose now that f1, f3 are algebraically dependent and

fn3 (z) + a1(z)f3(z)
n−1 + · · ·+ an(z) = 0 (12.1)

with a1, . . . , an rational functions in ℘(z). For rational integers c and d, we have

f3(z + cω1 + dω2) = α(z + cω1 + dω2) + βζ(z + cω1 + dω2)

= f3(z) + α(cω1 + dω2) + β(cη1 + dη2),

by the quasi-periodicity of ζ. We claim that we can choose c, d such that

θ := α(cω1 + dω2) + β(cη1 + dη2) �= 0.

Assume otherwise. Then choosing (c, d) equal to (1, 0) and (0, 1) respectively,
we have

αω1 + βη1 = 0 and αω2 + βη2 = 0.

Multiplying the first equation by η2 and the second one by η1 and subtracting
gives

α(ω1η2 − ω2η1) = 0

which by Legendre’s relation implies α = 0. Similarly we deduce β = 0, contrary
to hypothesis. Thus we can choose c, d such that θ �= 0. It follows by induction
that

f3(z +m(cω1 + dω2)) = f3(z) +mθ,

for every integer m. In (12.1), we replace z by z +m(cω1 + dω2) to get

fn3 (z +m(cω1 + dω2)) + an−1(z)f3(z +m(cω1 + dω2))
n−1 + · · ·+ an(z) = 0,

since the ai’s are rational functions of ℘ which are periodic in ω1 and ω2. In the
fundamental parallelogram, there are only finitely many values of z for which
the functions ai(z) are not analytic. If we choose z = z0 so that it is not one of
these values, we obtain that the polynomial equation

xn + an−1(z0)x
n−1 + · · ·+ a0(z0) = 0

has infinitely many zeros:

f3(z0 +m(cω1 + dω2)) = f3(z0) +mθ, m = 1, 2, . . . ,

since θ �= 0. This is clearly a contradiction. �

We note that the case β = 0 was established in an earlier chapter. Recall
that ω is called a fundamental period of ℘ if there exists another period τ such
that ω and τ generate the associated lattice L.
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Theorem 12.3 Let ω be a fundamental period of ℘ with g2 and g3 algebraic.
Set η0 = 2ζ(ω/2). Then any linear combination of ω and η0 with algebraic
coefficients, not both coefficients zero, is transcendental.

Proof. Suppose not. Suppose αω+βη0 is algebraic where α and β are algebraic
numbers, not both zero. Consider the functions

f1(z) = ℘(z), f2(z) = ℘′(z), f3(z) = αz + βζ(z).

Let K be the algebraic number field generated by α, β and αω + βη0 together
with the roots of the cubic equation

4x3 − g2x− g3 = 0.

Then the ring K[f1, f2, f3] is invariant under the differentiation map. We must
check that at least two of the functions f1, f2, f3 are algebraically independent.
But this is clear from the previous lemma. We have already seen that f1 and f2
are quotients of entire functions of strict order ≤ 3 and the same is true for f3.
We will choose z = (r + 1/2)ω with r ranging over the integers. Since ℘(ω/2)
is a root of the cubic equation

4x3 − g2x− g3 = 0,

we see that f1 takes values in K at these points. We also see that f2 vanishes
at these points. Finally, since

ζ(rω + ω/2) = ζ(ω/2) + η(rω) = η0/2 + rη(ω),

f3((r + 1/2)ω) = αω(r + 1/2) + βη0/2 + βrη(ω).

Since ζ(z + ω) = ζ(z) + η(ω), putting z = −ω/2 and using the fact that ζ is an
odd function, we obtain

ζ(ω/2) = −ζ(ω/2) + η(ω),

which proves that η(ω) = 2ζ(ω/2) = η0. So we obtain

f3((r + 1/2)ω) = (r + 1/2)(αω + βη0)

which lies in K by our assumption. We now have infinitely many complex
numbers at which all these three functions simultaneously take values in K.
This contradicts the Schneider–Lang theorem. �

In particular, we have the following important result proved by Schneider;

Corollary 12.4 If g2, g3 are algebraic, then any non-zero period or quasi-period
is transcendental.
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Exercises

1. Prove that

ζ(2z) = 2ζ(z) +
℘′′(z)
2℘′(z)

.

2. Show that if ℘(α) is algebraic, then ζ(2nα) is a polynomial in ζ(α) with
algebraic coefficients lying in a field of bounded degree over Q.

3. Let L be a lattice with corresponding g2, g3 algebraic. If α is not a period,
show that at least one of ℘(α), ζ(α) is transcendental.

4. Prove the addition formula for the ζ-function:

ζ(z1 + z2) = ζ(z1) + ζ(z2) +
1

2

(
℘′(z1)− ℘′(z2)
℘(z1)− ℘(z2)

)

.



Chapter 13

Transcendental Values
of Some Elliptic Integrals

In the case of trigonometric functions, we can rewrite the familiar identity

sin2 z + cos2 z = 1

as

y2 +

(
dy

dz

)2

= 1

where y(z) = sin z. We can retrieve the inverse function of sine by formally
integrating

dz =
dy

√

1− y2
,

so that

sin−1 z =

∫ z

0

dy
√

1− y2
.

The period of the sine function can also be retrieved from

2π = 4

∫ 1

0

dy
√

1− y2
.

However, we should be cautious about this reasoning since sin−1 z is a multi-
valued function and the integral may depend on the path taken from 0 to z.
With this understanding, let us try to treat the inverse of the elliptic function
℘(z) in a similar way. Indeed, we have

d℘(z)

dz
=
√

4℘(z)3 − g2℘(z)− g3
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from which we intend to recover z as

z =

∫
dx

√

4x3 − g2x− g3

upon setting x = ℘(z).
As we mentioned before, it is an issue whether these integrals are well defined

since they may depend on the path. To make these integrals well defined, we
need to make branch cuts by appealing to the theory of Riemann surfaces.
However, let us attempt to figure out the defect, namely the difference between
integrals over two different paths. Let z0 and z1 be two fixed points and γ be
a piecewise smooth path parametrized by x = x(t), 0 ≤ t ≤ 1, with x(0) = z0
and x(1) = z1. Suppose that the path does not pass through the any of the
zeros of the polynomial 4x3 − g2x− g3. Let y = y(t) be a continuous path such
that the points

(x(t), y(t)), 0 ≤ t ≤ 1

lie on the elliptic curve

E : y2 = 4x3 − g2x− g3

associated with ℘. Let y(0) = v0 and y(1) = v1 be the end points of y(t). Cov-
ering space theory for path lifting ensures that there exists a piecewise smooth
path u(t) such that

x(t) = ℘(u(t)), y(t) = ℘′(u(t)), 0 ≤ t ≤ 1.

Let w0 and w1 be the end points of u(t), that is

℘(w0) = z0, ℘
′(w0) = v0 and ℘(w1) = z1, ℘

′(w1) = v1.

Then we have,

Iγ =

∫

γ

dx

y
=

∫ 1

0

x′(t)
y(t)

dt =

∫ 1

0

℘′(u(t))u′(t)
℘′(u(t))

dt =

∫ 1

0

u′(t) = w1 − w0.

Now let γ1 be another path from z0 to z1 and suppose that the chosen y curve
has the same beginning point v0. Then it is clear that its terminal point is equal
to ±v1. Let Iγ1 =

∫

γ1
dx
y be the integral with respect to this new path γ1. Then

it is not difficult to see that

Iγ1 = Iγ (mod L) or Iγ1 = −Iγ − 2w0 (mod L),

according as the terminal point of the new y curve is v1 or −v1. The upshot of
these discussions is that these integrals are to be interpreted up to the period
lattice L.

These discussions also suggest a recipe to recover the periods of an elliptic
curve y2 = f(x), namely by integrating dx/y along suitably chosen paths where
x = ℘(z).
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For instance, if we integrate from e2 = ℘(ω2/2) to e3 = ℘((ω1 + ω2)/2),
we get

ω1

2
=

∫ e3

e2

dx
√

4x3 − g2x− g3
.

Similarly we have

ω2

2
=

∫ e3

e1

dx
√

4x3 − g2x− g3
.

A similar comment can be made about quasi-periods. Indeed since

ζ′(z) = −℘(z),

we obtain

dζ = −℘(z)dz = − ℘d℘
√

4℘3 − g2℘− g3

which gives upon integration

−η1/2 = −ζ(ω1/2) =

∫ e3

e2

xdx
√

4x3 − g2x− g3
.

Many times it is more convenient to normalise the roots of f(x) and reduce
the curve to the form Eλ : y2 = x(x− 1)(x− λ) with λ �= 0, 1 satisfying |λ| < 1
and |λ− 1| < 1 (see [67], for instance). Then the following integrals

∫ 0

−∞

dx
√

x(x − 1)(x− λ)
and

∫ ∞

1

dx
√

x(x − 1)(x− λ)

determine a fundamental pair of periods for the curve Eλ. We shall come across
such curves in a later chapter.

On the other hand, if the cubic polynomial f(x) = 4x3 − g2x − g3 in the
Weierstrass form is defined over real numbers, then f(x) becomes positive for x
sufficiently large and for such x, the elliptic integral

∫ ∞

x

dt
√

f(t)

is easier to handle (see [46] for further properties of such integrals). In Chap. 16,
we will explicitly evaluate some elliptic integrals of this type.

The subject of elliptic integrals constitutes an independent theme in math-
ematics. The reader may refer to the books [28, 46, 67, 114, 132] for more
comprehensive treatment of the integrals considered in this chapter.

The elliptic integrals can be related to the problem of determining the
circumference of an ellipse. To see this, let us consider the ellipse

x2

a2
+
y2

b2
= 1,
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with a, b real algebraic numbers and 0 < b < a. We would like to calculate the
perimeter of this ellipse. If we parametrize a curve in R

2 by a map

t 
→ (x(t), y(t)),

then as t goes from A to B, the length of the curve traversed is

∫ B

A

√

x′(t)2 + y′(t)2dt

which follows from elementary calculus. Since the ellipse can be parametrized
by the map

t 
→ (a sin t, b cos t)

for 0 ≤ t ≤ 2π, we see that the perimeter of the ellipse is equal to

4

∫ π/2

0

√

a2 cos2 t+ b2 sin2 tdt.

Putting u = sin t, the integral becomes

∫ 1

0

√

a2 − (a2 − b2)u2

1− u2
du.

In case a = b, this becomes aπ/2. But when a �= b, this is not an elementary
function.

Let us set k2 = 1− b2/a2 so that the integral becomes

a

∫ 1

0

√

1− k2u2

1− u2
du.

If we put t = 1 − k2u2, it is easy to see that the circumference is an algebraic
multiple of

∫ 1

1−k2
tdt

√

t(t− 1)(t− (1 − k2))

which resembles a quasi-period. The curve

y2 = t(t− 1)(t− (1− k2))

is not in the Weierstrass form, but can easily be put into that form by changing
t to t+(k2− 2)/3. Making this change of variable shows that the circumference
of an ellipse with algebraic major and minor axes is given by an algebraic linear
combination of a period and a quasi-period of an elliptic curve defined over
Q. Since it is non-zero, by the Schneider–Lang theorem, the circumference is
transcendental. We shall see later that this circumference is related to some
hypergeometric series.

In another set up, the regulator RK of a number field K with positive unit
rank measures the volume of the unit lattice of OK . But the transcendence of
RK is not known except for real quadratic fields. In a later chapter, we shall
see that Schanuel’s conjecture implies that RK is transcendental.
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Exercises

1. If α �= 0 is algebraic, show that tanα is transcendental. Deduce that

∫ α

0

dx

1 + x2

is transcendental for any non-zero algebraic α.

2. Show that if 0 < α ≤ 1 and α is algebraic, then the integral

∫ α

0

dx√
1− x2

is transcendental.

3. Let α be algebraic and satisfy 0 ≤ α ≤ 1. Show that if 0 < k < 1 and k is
algebraic, then the integral

∫ α

0

xdx
√

(1− x2)(1− k2x2)
,

is transcendental. What happens if k = 1? [Hint: put x2 = 1− 1/t.]

4. Prove that the integral
∫ ∞

1

dx√
x3 − 1

is transcendental.



Chapter 14

The Modular Invariant

We begin with a discussion of an important result in complex analysis called
the uniformisation theorem. We have shown how to associate a ℘-function with
a given lattice L. Thus, g2 = g2(L), g3 = g3(L) can be viewed as functions on
the set of lattices. For a complex number z with imaginary part �(z) > 0, let
Lz denote the lattice spanned by z and 1. We will denote the corresponding
g2, g3 associated with Lz by g2(z) and g3(z). Thus,

g2(z) = 60
∑

(m,n) �=(0,0)

(mz + n)−4,

and

g3(z) = 140
∑

(m,n) �=(0,0)

(mz + n)−6.

We set

Δ(z) = g2(z)
3 − 27g3(z)

2

which is the discriminant of the cubic defined by the corresponding Weierstrass
equation. We first prove:

Lemma 14.1 Δ(z) �= 0.

Proof. This is equivalent to showing that the roots of the cubic equation

4x3 − g2(z)x− g3(z) = 0

are distinct. But we have already seen this in Proposition 11.5 of Chap. 11. �
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66 The Modular Invariant

We now introduce the important j-function defined as

j(z) := 1728
g2(z)

3

g2(z)3 − 27g3(z)2

which by the previous lemma is well defined for every z in the upper half-plane.
We will use the modular invariant to address the following question: given two
complex numbers A,B, with A3 − 27B2 �= 0, does there exist a lattice L with
g2(L) = A, g3(L) = B so that its Weierstrass function ℘ satisfies the equation

℘′(z)2 = 4℘(z)3 −A℘(z)−B?

As mentioned in the beginning, we can view g2 and g3 as functions on the
set of lattices. Let L be a lattice spanned by two periods ω1, ω2. If we replace
ω1, ω2 by λω1, λω2 with λ ∈ C

∗, we get another lattice denoted by λL. The
g2, g3 of this new lattice λL get changed by a factor of λ−4 and λ−6 respectively
and the corresponding elliptic curve is

y2 = 4x3 − λ−4g2x− λ−6g3.

However if we change variables and replace x by λ−2x and y by λ−3y, we find
that we are reduced to the same Weierstrass equation as we started with.

Now suppose that L is a lattice generated by ω1, ω2 which are linearly inde-
pendent over R. Hence �(ω1/ω2) �= 0 and by changing signs appropriately, we
can arrange that this lies in the upper half-plane:

H := {z = x+ iy : x, y ∈ R, y > 0}.
Let SL2(Z) be the group consisting of 2 × 2 matrices with integer entries

and determinant 1, that is

SL2(Z) =

{

σ =

(
a b
c d

)

| a, b, c, d ∈ Z, ad− bc = 1

}

.

Then every such σ acts on a basis [ω1, ω2] of L by sending it to

[aω1 + bω2, cω1 + dω2]

which generates the same lattice. Thus, the fundamental periods are not
uniquely determined by the lattice. Conversely, two fundamental pairs [ω1, ω2]
and [ω′

1, ω
′
2] generate the same lattice only if they are congruent modulo the

above action of SL2(Z).
The above action of SL2(Z) on the bases induces an action on the upper

half-plane:
(

a b
c d

)

· z := az + b

cz + d
. (14.1)

Recalling that for any z ∈ H, g2(z) and g3(z) are precisely the g2 and g3 asso-
ciated with the lattice Lz spanned by z and 1, we have

g2

(
az + b

cz + d

)

= (cz + d)4g2(z)
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and

g3

(
az + b

cz + d

)

= (cz + d)6g3(z).

Thus the modular function j(z) satisfies

j

(
az + b

cz + d

)

= j(z)

and hence is invariant under the action of SL2(Z).
We now determine a fundamental domain for the action of SL2(Z) on H.

More precisely, we show that any z in the upper half-plane is equivalent to a
point in the following region

�(z) > 0, −1/2 ≤ �(z) ≤ 1/2, |z| ≥ 1.

This we show as follows. First note that for any z ∈ H and

σ =

(
a b
c d

)

∈ SL2(Z), (14.2)

the imaginary part of σ.z is given by

�(σ.z) = �(z)
|cz + d|2 . (14.3)

Now let us isolate two distinguished elements T and S of SL2(Z) given by

T =

(

1 1
0 1

)

and S =

(

0 −1
1 0

)

. (14.4)

We see that Tz = z + 1 and Sz = −1/z. Let z ∈ H be arbitrary. If �(z) ≥ 1,
repeated application of T ensures that z is equivalent to a point in the above-
mentioned region. If �(z) < 1, we chose

σ =

(

a b
c d

)

∈ SL2(Z) (14.5)

such that |cz + d| is minimum and hence �(σ · z) is maximum (this is possible
as Z is discrete). Let w = σ · z. As before, applying T repeatedly to w ensures
that w and hence z is equivalent to a point z0 with �(z0) ∈ [−1/2, 1/2]. Note
that �(w) = �(z0). We claim that |z0| ≥ 1. For otherwise,

�(S · z0) = �(w)
|z0|2 > �(w),

contradicting the maximality of �(w). Hence any z in the upper half-plane is
equivalent to a point in the region

�(z) > 0, −1/2 ≤ �(z) ≤ 1/2, |z| ≥ 1.

One can show that if two points in this region are equivalent under the action
of SL2(Z), then they lie on the boundary (see exercises below). We call this
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region the standard fundamental domain for the action of SL2(Z) on the upper
half-plane. With a little more effort, one can deduce that SL2(Z) is generated
by the matrices S and T .

Since the modular function j(z) satisfies

j

(
az + b

cz + d

)

= j(z)

and hence is invariant under the action of SL2(Z), it defines a function on the
quotient space H/SL2(Z) to C. We will prove later that the modular function
takes every complex value (in fact, exactly once) on this quotient space. Note
that the value zero implies the vanishing of g2(z). Assuming this fact, we can
complete our proof of the uniformisation theorem as follows.

If we are given (A,B) = (0, B) with B non-zero, we first choose z0 so that
g2(z0) = 0. Since Δ(z0) �= 0, we have g3(z0) �= 0. Now choosing λ such that

λ−6g3(z0) = B,

the lattice [λz0, λ] does the required job.
If A �= 0, we proceed similarly. Let a = B2/A3. Observe that a �= 1/27 since

A3−27B2 �= 0. Choose z0 so that j(z0) = 1728/(1−27a). We can now multiply
g2(z0) and g3(z0) appropriately to arrange λ−6g3(z0) = B and λ−4g2(z0) = A.
This completes the proof.

It remains to show that the j-function takes on every complex number pre-
cisely once. We begin by introducing the Bernoulli numbers. These are defined
by the formal power series expansion:

x

ex − 1
=

∞∑

k=0

Bk
xk

k!
.

For example, B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0 and so on. One can show
that B2k+1 = 0 for k ≥ 1. Clearly these numbers are rational numbers. Our
interest is to relate these to the values of the Riemann zeta function. We follow
the exposition given in [109]. For �(s) > 1, the Riemann zeta function ζ(s) is
defined as

ζ(s) =

∞∑

n=1

1

ns
.

This should not be confused with the Weierstrass ζ-function!
Following Euler, we begin by observing the product expansion for sin z:

sin z = z

∞∏

n=1

(

1− z2

n2π2

)

.

Taking logarithmic derivatives of both sides gives the following expansion for
z /∈ πZ,

cot z =
1

z
+

∞∑

n=1

2z

z2 − n2π2
. (14.6)
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Thus one has the following expansion around the origin,

z cot z = 1− 2

∞∑

n=1

∞∑

k=1

z2k

n2kπ2k
= 1− 2

∞∑

k=1

ζ(2k)
z2k

π2k
. (14.7)

The left-hand side is
iz(eiz + e−iz)
eiz − e−iz

which can be rewritten as

iz(e2iz + 1)

e2iz − 1
= iz +

2iz

e2iz − 1
.

This is easily seen to be

iz +

∞∑

k=0

Bk
(2iz)k

k!
.

We immediately deduce:

Theorem 14.2 If ζ(s) is the Riemann zeta function, then for k ≥ 1,

ζ(2k) = −B2k
(2πi)2k

2(2k)!
.

In particular, each of these values is a transcendental number.

It is interesting to note that this derivation also shows directly that B2k+1 =0
for k ≥ 1 and that (−1)k+1B2k > 0. In particular, we deduce from Theorem
14.2 that

ζ(2) =
π2

6
, ζ(4) =

π4

90
and ζ(6) =

π6

945
.

We would like to relate these observations to the Eisenstein series G4, G6

introduced earlier. From Eq. (14.6), we see that

π cotπz =
1

z
+

∞∑

m=1

(
1

z +m
+

1

z −m

)

.

On the other hand, writing q = e2πiz , we have

π cotπz = π
cosπz

sinπz
= iπ

q + 1

q − 1
= iπ − 2πi

1− q
= iπ − 2πi

∞∑

n=0

qn.

Comparing this with (14.6), we obtain

1

z
+

∞∑

m=1

(
1

z +m
+

1

z −m

)

= iπ − 2πi
∞∑

n=0

qn.
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By successive differentiations of the above, we get the following formula (valid
for k ≥ 2):

Theorem 14.3

∞∑

m=−∞

1

(m+ z)k
=

1

(k − 1)!
(−2πi)k

∞∑

n=1

nk−1qn.

Using this result, we will obtain the following expansion of the Eisenstein
series:

G2k(z) :=
∑

(m,n) �=(0,0)

(mz + n)−2k.

Indeed, separating out m = 0 from m �= 0, we get

G2k(z) = 2ζ(2k) + 2
∞∑

m=1

∑

n∈Z

(mz + n)−2k,

and using the previous theorem with z replaced by mz, and k replaced by 2k,

G2k(z) = 2ζ(2k) +
2(−2πi)2k

(2k − 1)!

∞∑

d=1

∞∑

a=1

d2k−1qad.

If we define the function

σk(n) :=
∑

d|n
dk,

we may write this expansion as follows.

Theorem 14.4

G2k(z) = 2ζ(2k) +
2(2πi)2k

(2k − 1)!

∞∑

n=1

σ2k−1(n)q
n, q = e2πiz.

This is the Taylor expansion of G2k at i∞, once the one-point compactifica-
tion of H is endowed with a suitable Riemann surface structure.

We would like to relate this to g2 and g3 defined earlier. Indeed, an easy
calculation shows that

Δ(z) = (2π)12(q − 24q2 + 252q3 − 1472q4 + · · · ).

The coefficients of the power series in the brackets define the Ramanujan
τ-function. Furthermore, it can be shown that

∞∑

n=1

τ(n)qn = (q − 24q2 + 252q3 − 1472q4 + · · · ) = q

∞∏

n=1

(1− qn)24.
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The Ramanujan τ -function has played a central role in the development of
modern theory of automorphic forms. It is an important conjecture, due to
Lehmer, that τ(n) is never equal to zero.

These expansions for G2k and Δ are enough to prove that the modular func-
tion j takes every complex value precisely once. For this, we view j as a mero-

morphic function on the compactified Riemann surface ̂H/Γ where Γ = SL2(Z).
We refer to [112] for a detailed topological as well as analytic description of this
space. The map

z → q = e2πiz

gives the local parameter at i∞. In other words, for any Γ-invariant analytic
function f on H, we first express f as a function of q by composing with the local
inverse of the map z → q. This defines an analytic function on the punctured
unit disc 0 < |q| < 1. The behaviour of this function at the origin determines the
behaviour of f at i∞. Recalling the definition of j and using the q expansions
for Δ and G4, we have the following q expansion for the j function:

j(z) =
1

q
+ 744 + 196884q+ · · · .

Thus the j function has a simple pole at i∞. Since a meromorphic function on
a compact Riemann surface has an equal number of zeros as poles, we see that
the equation j(z) = c has exactly one solution since j has only a simple pole
at i∞. In other words, the j function defines an analytic isomorphism between

the compact Riemann surface ̂H/Γ and the Riemann sphere CP1.

Finally, let L and L′ be two lattices with the same invariants, i.e. g2(L) =
g2(L

′) and g3(L) = g3(L
′). Then their respective Weierstrass ℘-functions have

the same Laurent expansion at the origin (see Exercise 2 of Chap. 10) and there-
fore must agree everywhere. Thus, they must have the same set of poles and
hence L = L′.

This completes the proof of the uniformisation theorem and we record this as:

Theorem 14.5 Let A,B be two complex numbers such that A3 − 27B2 �= 0.
There exists a unique lattice L with g2(L) = A, g3(L) = B and an associated
℘-function that satisfies

℘′(z)2 = 4℘(z)3 −A℘(z)−B.

As indicated before, we shall call L to be the period lattice of the elliptic
curve y2 = 4x3 −Ax −B.

We now define the j-invariant associated with the elliptic curve

E : y2 = 4x3 −Ax− B

as j(E) = 1728A3/(A3 − 27B2).

Suppose that we are given two period lattices L and L∗ with corresponding
Weierstrass functions ℘ and ℘∗, as well as corresponding g2, g3 and g∗2 , g

∗
3 . We
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would like to determine when the corresponding elliptic curves are isomorphic.
That is, when is there an analytic isomorphism

φ : C/L
∼→ C/M

where φ is also a group homomorphism?
Let us first try to characterise analytic maps between such tori. Since the

natural maps from C to the quotients C/L and C/M are universal covering
maps, any such analytic map

φ : C/L→C/M

lifts to an analytic function φ̃ : C → C. Now for any ω ∈ L, consider the function

fω(z) = φ̃(z + ω)− φ̃(z).

This analytic function is mapped into M and hence is constant. Differentiating,
we see that φ̃′ is an analytic elliptic function with respect to the lattice L and
therefore is also constant. This implies that φ̃(z) is of the form az + b for some
a, b ∈ C. Since φ̃ is the lift of the map φ : C/L→C/M , we see that aL ⊂M . In
other words, every analytic map

φ : C/L→C/M

is necessarily of the form

φ(z + L) = az + b+M

where aL ⊂ M . Clearly, φ is invertible if and only if aL = M . Finally, if we
require φ to be a group homomorphism, then φ(0) = 0 and hence

φ(z + L) = az +M.

We record these observation in the following theorem.

Theorem 14.6 If φ : C/L → C/M is an analytic homomorphism, then
φ(z + L) = αz +M for some complex number α and αL ⊆ M . In particular,
two lattices L and M give rise to isomorphic elliptic curves if and only if there
is a complex number α such that αL =M .

Any non-zero analytic homomorphism between elliptic curves is called an
isogeny. Further, we say two lattices L,M are homothetic if αL = M for some
complex number α. Clearly this is an equivalence relation. The above theorem
says that there is a one-to-one correspondence between isomorphism classes of
elliptic curves over C and homothety classes of lattices of rank 2 over R.

From this theorem, we will deduce that two elliptic curves are isomorphic if
and only if their j-invariants are equal. One way is obvious, namely if E1 and
E2 are isomorphic, then their corresponding lattices are homothetic and hence
j(E1) = j(E2).
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To establish the converse, recall that for a given lattice L, there exists a
basis [ω1, ω2] with τ = ω1/ω2 in the upper half-plane H. Thus any lattice is
homothetic to a lattice of the form Lτ = Zτ +Z where τ ∈ H. Further, for any
two points τ and τ ′ in H, Lτ and Lτ ′ are homothetic if and only if there exists
a σ ∈ SL2(Z) such that σ.τ = τ ′. This means that elements in the quotient
H/SL2(Z) can be identified with the set of lattices up to homothety.

Now let E1, E2 be two elliptic curves with j(E1) = j(E2). Let their corre-
sponding lattices be L and M respectively. Suppose that they have the same j
invariant. By the above theorem, E1, E2 are isomorphic if L and M are homo-
thetic. Recall that for the lattice L, there is a unique point τ in H/SL2(Z) such
that L is homothetic to Lτ = Zτ + Z. Let τ ′ be such point in H/SL2(Z) such
that M is homothetic to Lτ ′. But since j(E1) = j(E2), we have j(τ) = j(τ ′).
By the injectivity of j on H/SL2(Z), we deduce that τ = τ ′. Thus L and M
are homothetic and hence E1 and E2 are isomorphic. This proves:

Theorem 14.7 Two elliptic curves E1 and E2 are isomorphic over C if and
only if j(E1) = j(E2).

Theorem 14.6 allows us to study the endomorphism rings of elliptic curves.
Let E be an elliptic curve with period lattice given by L = [ω1, ω2] with τ =
ω1/ω2 ∈ H. Then as observed before, all analytic homomorphisms

φ : C/L→ C/L

are of the form φ(z+L) = αz+L for some α satisfying αL ⊆ L. In other words,
each endomorphism corresponds to a complex number α satisfying

αω1 = aω1 + bω2, αω2 = cω1 + dω2

for integers a, b, c, d. In particular, α is an eigenvalue of a matrix with integer
entries. Thus it is an algebraic integer of degree at most two over Q. Clearly
End(E) contains an isomorphic copy of Z since the maps z 
→ nz have the
property that nL ⊆ L.

If End(E) is larger than Z, then let α ∈ End(E) be such that α /∈ Z. Working
with the homothetic lattice Lτ = [τ, 1], the above equations read

ατ = aτ + b, α = cτ + d.

This implies
τ(cτ + d) = (aτ + b).

Since α /∈ Z, we have c �= 0. This means that τ is an algebraic number of degree
2 and Q(α) = Q(τ). Note that τ lies in the upper half-plane and therefore
generates an imaginary quadratic field. Hence the ring of endomorphisms of E
can be identified with a subring of the ring of integers of an imaginary quadratic
field.

Thus we may partition elliptic curves into two groups, those whose endo-
morphism ring is isomorphic to Z and those for which it is larger. In the second
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case, as we observed above, the endomorphism ring is a subring of an imaginary
quadratic field Q(τ). Furthermore, such a subring is an order in the imaginary
quadratic field k = Q(τ). We recall that an order O in a number field K is a
subring (with unity) of the ring of integers OK which also contains a Q-basis
of K. In such case, we say E is a CM curve (CM standing for complex mul-
tiplication) and in the former case, we say the curve is non-CM. Points τ in
the standard fundamental domain D for which Q(τ) is an imaginary quadratic
field are sometimes called CM points for obvious reasons. One can be a bit
more precise. If O is such an order in k, then O = Z + fOk for some positive
integer f . This integer f is called the conductor of O.

Now for any order O in a number field K, the group of invertible fractional
ideals of O modulo the subgroup of principal ideals forms a finite abelian group.
This is called the Picard group of O. For instance, if O is equal to the ring of
integers OK , then its Picard group is the usual ideal class group of K.

Let O be an order in an imaginary quadratic field k. Then it is known that
the set of isomorphism classes of elliptic curves E over C whose endomorphism
ring End(E) is equal to O is in bijection with the Picard group of O (see [36],
for instance).

Exercises

1. Show that SL2(Z) is generated by the matrices
(

1 1
0 1

)

and

(
0 −1
1 0

)

.

2. Prove that any two interior points of the region

D = {�(z) > 0, −1/2 ≤ �(z) ≤ 1/2, |z| ≥ 1},
are inequivalent under the action of SL2(Z).

3. Justify the interchange of summations in formula (14.7).

4. Let D∗ be the compactified upper half-plane modulo SL2(Z). Show that
any meromorphic function on D∗ has only a finite number of zeros and
poles.

5. Prove that any meromorphic function f on the upper half-plane satisfying

f

(
az + b

cz + d

)

= f(z)

for all (
a b
c d

)

∈ SL2(Z)

is a rational function in j.

6. If O is an order in an imaginary quadratic field k, then show that O =
Z+ fOk for some positive integer f .



Chapter 15

Transcendental Values
of the j-Function

Let L andM be two lattices with corresponding Weierstrass functions ℘ and ℘∗.
We begin by showing that if ℘ and ℘∗ are algebraically dependent, then there
is a natural number m such mM ⊆ L. Indeed suppose that ℘ and ℘∗ are as
above and there is a polynomial P (x, y) ∈ C[x, y] such that P (℘, ℘∗) = 0. Then
for some rational functions ai(x) and some natural number n, we have

℘(z)n + an−1(℘
∗(z))℘(z)n−1 + · · ·+ a0(℘

∗(z)) = 0.

Choose z0 ∈ C so that ℘∗(z0) is not a pole of the ai(z) for 0 ≤ i ≤ n− 1. This
can be done since the ai(z) are rational functions and so there are only finitely
many values to avoid in a fundamental domain. Then

℘(z0)
n + an−1(℘

∗(z0))℘(z0)n−1 + · · ·+ a0(℘
∗(z0)) = 0.

If ω∗ ∈M , then we get

℘(z0 + ω∗)n + an−1(℘
∗(z0))℘(z0 + ω∗)n−1 + · · ·+ a0(℘

∗(z0)) = 0.

Thus ℘(z0 + ω∗), as ω∗ ranges over elements of M , are also zeros of the poly-
nomial

zn + an−1(℘
∗(z0))zn−1 + · · ·+ a0(℘

∗(z0)) = 0.

In particular, this is true of multiples of ω∗
1 and ω∗

2 . We therefore get infinitely
many roots of the above polynomial equation unless mM ⊆ L for some positive
natural number m. We record these observations in the following.
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Theorem 15.1 Let L and M be two lattices with corresponding Weierstrass
functions ℘ and ℘∗. Then ℘ and ℘∗ are algebraically dependent if and only if
there is some natural number m > 0 such that mM ⊆ L.

Proof. We have already established the “only if” part of this assertion. For the
converse, suppose that mM ⊆ L. Then ℘(mz) is periodic with respect to M .
Thus it is an even elliptic function with respect to M . As noted in an earlier
chapter, this means that it is a rational function in ℘∗. On the other hand,
℘(mz) is also a rational function in ℘(z). Thus, ℘ and ℘∗ are algebraically
dependent. This completes the proof. �

We are now ready to prove the following theorems due to Schneider.

Theorem 15.2 Suppose that ℘ and ℘∗ have corresponding g2, g3 and g∗2 , g∗3
algebraic and assume that they are algebraically independent. Then

℘(z), ℘∗(z)

cannot take algebraic values simultaneously.

Proof. Let us suppose that z0 is such that both ℘(z) and ℘∗(z) are algebraic.
Let K be the field generated by

g2, g3, g
∗
2 , g

∗
3 , ℘(z0), ℘

′(z0), ℘∗(z0), ℘∗′
(z0).

We apply the Schneider–Lang theorem with the functions

℘, ℘′, ℘∗, ℘∗′
.

By hypothesis, ℘ and ℘∗ are algebraically independent. The Schneider–Lang
theorem says that there are only finitely many complex numbers for which all
these functions take algebraic values in K. But this is a contradiction since they
take algebraic values in K for the points nz0 as n runs over an infinite family
of integers. This completes the proof. �

Theorem 15.3 If α is an algebraic number in the upper half-plane which is not
a quadratic irrational, then j(α) is transcendental.

Proof. Let ω1, ω2 be such that ω1/ω2 = α. Suppose that j(α) is algebraic.
Replacing ω1, ω2 by λω1, λω2 we can arrange g2 = 1 if j(α) �= 0 and g3 = 1 if
j(α) = 0. In this way, we can arrange g2, g3 algebraic. Thus without loss of
generality, we may work with a lattice L = [ω1, ω2] with algebraic invariants
such that ω1/ω2 = α. Now let ω∗

1 = αω1, ω
∗
2 = αω2 and denote byM the lattice

spanned by ω∗
1 , ω

∗
2 . Thus, g

∗
2 = α−4g2, and g

∗
3 = α−6g3. Also,

℘∗(αz) = α−2℘(z).

In particular, setting z = ω2/2 gives

℘∗(ω1/2) = α−2℘(ω2/2)



Transcendental Values of the j-Function 77

so that both ℘(ω1/2) and ℘
∗(ω1/2) are algebraic. This contradicts the previous

theorem unless ℘ and ℘∗ are algebraically dependent. By Theorem 15.1, this
means that there is a natural number m such that mM ⊆ L. In particular,

ω∗
1 = aω1 + bω2, ω

∗
2 = cω1 + dω2

for some rational numbers a, b, c, d such that ad − bc �= 0. [This is because,
ω1, ω2 are linearly independent over R, as well as ω∗

1 , ω
∗
2 .] Thus

α

(
ω1

ω2

)

=

(
a b
c d

)(
ω1

ω2

)

which means that α is an eigenvalue of the matrix
(

a b
c d

)

.

Since a, b, c, d are rational numbers, this means that α is a quadratic
irrationality. �

This means that j(α) is transcendental for every algebraic α in the upper
half-plane which is not quadratic. On the other hand, if Q(α) is imaginary
quadratic, that is α is a CM point, one can show that j(α) is indeed an algebraic
number. This is really a chapter in class field theory. We give a brief indication
of why j(α) is algebraic in this case.

Recall that the ring of endomorphisms End(E) of an elliptic curve E is either
Z or an order in an imaginary quadratic field. In the latter case, we say the
curve has complex multiplication.

Let O be any order in the ring of integers of k = Q(α). As we mentioned in
the previous chapter, the set of equivalence classes of invertible fractional ideals
of O forms a multiplicative abelian group called the Picard group of O and there
is a one-to-one correspondence between isomorphism classes of elliptic curves
whose endomorphism ring is isomorphic to O and ideal classes of the Picard
group of O. This correspondence is given by taking an ideal a of a given class
and considering the elliptic curve C/a. It is a standard theorem of algebraic
number theory that this group is finite.

Now consider the lattice L = Zα + Z and let Eα be an elliptic curve whose
period lattice is L. Thus j(Eα) = j(α). Let End(Eα) = O where O is an
order in the ring of integers of k. Now for any automorphism σ of C, let Eσα
denote the curve obtained by applying σ to g2, g3. Clearly j(Eσα) = j(Eα)

σ

and End(Eσα) � End(Eα) = O. But there are only finitely many isomorphism
classes of elliptic curves with a fixed endomorphism ring. Therefore the set of
values j(α)σ as σ ranges over automorphisms of C is a finite set and thus j(α)
is necessarily algebraic. For a more detailed account, see the books by Lang [77]
and Silverman [115].

In fact, if α is an imaginary quadratic irrational, then j(α) is an algebraic
integer. Furthermore, the degree of j(α) is equal to the class number of Q(α)
(see [112] or [115]).
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Let us consider the following interesting example by letting

α =
1 +

√−163

2
.

The field Q(
√−163) has class number one. In fact it is the “largest” imaginary

quadratic field with class number one. More precisely, there exists no squarefree
integer d > 163 such that Q(

√−d) has class number one.
Now for any z in the upper half-plane, the j-function has the following

expansion

j(z) =
1

q
+ 744 + 196884q+ · · ·

where q = e2πiz . In the case z = α, we have

j(α) = −eπ
√
163 + 744− 196884e−π

√
163 + · · ·

Now j(α) must be an ordinary integer as Q(
√−163) has class number one.

Consequently, we have the following curious expression

eπ
√
163 = 262537412640768743.99999999999925 . . .

= (640320)3 + 744 +O
(

e−π
√
163
)

and that j(α) = −(640320)3. Note that eπ
√
163 is a transcendental number by

the Gelfond–Schneider theorem.

Exercises

1. Show that
eπ

√
67 = 147197952743.9999999999 . . .

accurate to ten decimal places.

2. Deduce that

j

(
1 +

√−67

2

)

= −147197952000.

3. Show that j(i) = 1728.

4. Show that j((1 +
√−3)/2) = 0.

5. Let L be a lattice and ℘ be the associated Weierstrass function. Show
that for any complex number α, αL ⊂ L if and only if ℘(αz) is a rational
function in ℘.

6. Show that the group of field automorphisms of C is uncountable. What
about the automorphisms of R?



Chapter 16

More Elliptic Integrals

We will look at two explicit consequences of Schneider’s theorem on the
transcendence of periods of elliptic curves defined over the algebraic numbers.

Let us look at the curve

y2 = 4x3 − 4.

One of the periods is
∫ ∞

1

dx√
x3 − 1

.

This can be related to the classical beta function as follows. Let us first put
x = 1/t to transform the integral to

∫ 1

0

t−1/2(1− t3)−1/2dt.

Putting t3 = u changes it to

1

3

∫ 1

0

u−5/6(1− u)−1/2du =
1

3
B(1/6, 1/2),

where

B(a, b) =

∫ 1

0

ua−1(1− u)b−1du, �(a),�(b) > 0.

Using the following formula for the beta function

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
,
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80 More Elliptic Integrals

one can show that the period is equal to

Γ(1/3)3

24/3π
.

The formula for the beta function is easily derived (see Chap. 18) by putting
u = cos2 θ which transforms the integral into

2

∫ π/2

0

cos2a−1 θ sin2b−1 θdθ.

Thus by Schneider’s theorem, the number

Γ(1/3)3

π

is transcendental.
Another curve to consider is

y2 = 4x3 − 4x.

One of the periods (say ω) is

∫ ∞

1

dx√
x3 − x

.

By what we have proved, this integral is transcendental. Similarly as above, we
find that this is

1

2

∫ 1

0

u−3/4(1− u)−1/2 =
1

2
B(1/4, 1/2).

By the previous identity involving the beta function, we have

ω =
Γ(1/4)2

2
√
2π

.

For the above curve
y2 = 4x3 − 4x,

we have g3 = 0. Since g3(i) = i6g3(i) = 0, its lattice L is given by

L = Z(iω) + Zω.

Clearly this has complex multiplication by Z[i]. Furthermore, this curve
corresponds to the point z = i in the standard fundamental domain and has
j-invariant equal to 1728. We therefore deduce that

∑

(m,n) �=(0,0)

1

(mi+ n)4
=

1

15

Γ(1/4)8

26π2

as this is simply the corresponding Eisenstein series evaluated at i.
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These calculations can be generalised for CM elliptic curves. Indeed, if O is
an order in an imaginary quadratic field K and E is an elliptic curve with CM
by O, then the corresponding lattice L determines a vector space L⊗Q. This is
invariant under the action ofK. Therefore L⊗Q = Kω for some ω ∈ C

× defined
up to elements of K×. In particular, if O = OK is the full ring of integers of
K, ω is given by the Chowla–Selberg formula:

ω = α
√
π

∏

0<a<d,(a,d)=1

Γ(a/d)wχ(a)/4h

where α is an algebraic number, w is the number of roots of unity in K, −d is
the discriminant of K, χ is the quadratic character mod d determined by K and
h is the class number of K. We shall come back to the Chowla–Selberg formula
in Chap. 26.

In the special case of y2 = 4x3 − 4x, the formula gives

α
√
πΓ(1/4)Γ(3/4)−1,

which is in agreement with our earlier formula once we apply the usual functional
equations of the Γ-function to it.

Exercises

1. Show that the beta function B(a, b) can be given in terms of the Γ-function
as Γ(a)Γ(b)/Γ(a+ b) for �(a),�(b) > 0.

2. Define the complete elliptic integral of the first kind by

K(k) =

∫ π/2

0

dθ
√

1− k2 sin2 θ
.

Show that K(1/
√
2) = Γ(1/4)2/4

√
π.

3. The complete elliptic integral of the second kind is given by

E(k) =

∫ π/2

0

√

1− k2 sin2 θdθ.

Show that
E(1/

√
2) = π3/2Γ(1/4)−2 + Γ(1/4)2/8

√
π.

4. Show that
∑

(m,n) �=(0,0)

1

(mρ+ n)6
=

Γ(1/3)18

5.7.28π6
,

where ρ = e2πi/3.



Chapter 17

Transcendental Values
of Eisenstein Series

In this chapter, we will apply the Schneider–Lang theorem to study the
transcendental values of the Eisenstein series introduced in earlier chapters.

Theorem 17.1 Let ℘ be a Weierstrass ℘-function with algebraic invariants
g2, g3 and z0 a complex number which is not a pole of ℘. Then at least one of
the numbers ez0 , ℘(z0) is transcendental.

Proof. Suppose not. Let K be the field Q(g2, g3, e
z0 , ℘(z0), ℘

′(z0)). We
apply the Schneider–Lang theorem to the ring generated by K[f1, f2, f3] where
f1(z) = ez, f2(z) = ℘(z) and f3(z) = ℘′(z). We need to show that f1, f2 are
algebraically independent, but this is easily done (see for instance, Exercise 1).
By Schneider–Lang, there are only finitely many values at which these functions
can simultaneously take values in K. However, since ez0 and ℘(z0) are in K, so
are enz0 and ℘(nz0) for infinitely many n ∈ N. This completes the proof. �

We remark that if ez is replaced by eβz with β algebraic, then a suitable
modification of the proof leads to:

Theorem 17.2 Let ℘ be as above with algebraic invariants g2, g3. Let β �= 0 be
algebraic and z0 a complex number which is not a pole of ℘(z). Then, at least
one of eβz0 , ℘(z0) is transcendental.

Corollary 17.3 At least one of

g2, g3, β, ℘(α), e
βα

is transcendental.
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84 Transcendental Values of Eisenstein Series

In the special case when g2, g3 are algebraic and ℘(α) and eγ are algebraic
with γ �= 0, γ/α is transcendental. If not, we may apply the corollary with
β = γ/α and derive a contradiction. In particular, we deduce that α/π is
transcendental for any algebraic point α of ℘ (i.e. α ∈ C such that ℘(α) is
algebraic). Putting α = ω/2 where ω is a fundamental period, we derive the
transcendence of ω/π. We record this as:

Corollary 17.4 If α is an algebraic point of ℘(z) and β �= 0 is an algebraic
number, then eβα is transcendental. In particular, α/π is transcendental.

Bertrand [17] observed that this result can be used to derive results about
transcendental values of classical Eisenstein series. These were introduced in an
earlier chapter. But we normalise these as follows. For z ∈ H and q = e2πiz

(thus 0 < |q| < 1), let us define the normalised Eisenstein series as

E2k(q) =
G2k(z)

2ζ(2k)

and hence by Theorem 14.4,

E2k(q) = 1− 4k

B2k

∞∑

n=1

σ2k−1(n)q
n.

Then we have

Theorem 17.5 (D. Bertrand) For all complex numbers q with 0 < |q| < 1, at
least one of the numbers E4(q), E6(q) is transcendental.

Proof. Let z ∈ C with �(z) < 0 such that q = ez. Consider the lattice L
spanned by 2πi and z. This is a rank 2 lattice since �(z) �= 0. The corresponding
Weierstrass ℘-function has g2 and g3 given by rational multiples of

∑

(m,n) �=(0,0)

(mz + 2πin)−2k

for k = 2, 3. By Theorem 14.2, we see that g2, g3 are rational multiples of
E4(q), E6(q), respectively, where q = ez. Observe that z = iπ is an algebraic
point of ℘. Since eiπ = −1 is algebraic, this contradicts Theorem 17.1. This
completes the proof. �

We now describe some recent work of Nesterenko that generalises the theorem
of Bertrand and as a consequence proves the algebraic independence of π and eπ.

With Ramanujan, we introduce the Eisenstein series

E2(q) = 1− 24

∞∑

n=1

σ1(n)q
n.



Transcendental Values of Eisenstein Series 85

Nesterenko proved:

Theorem 17.6 ([84]) For each q ∈ C, 0 < |q| < 1, at least three of the numbers

q, E2(q), E4(q), E6(q)

are algebraically independent over Q.

An immediate consequence is the following:

Corollary 17.7 If q is an algebraic number with 0 < |q| < 1, then E2(q),
E4(q), E6(q) are algebraically independent over Q. In particular, each of these
numbers is transcendental.

Another corollary is the following result originally conjectured by Mahler
(see [81]) and first proved by Barré-Sirieix et al. [15] in 1995.

Corollary 17.8 For any τ ∈ H, at least one of the two numbers e2πiτ and j(τ)
is transcendental.

This follows from the identity

j(τ) = 1728
E4(q)

3

E4(q)3 − E6(q)2
, q = e2πiτ

which can be easily derived from the definitions of E4 and E6.
The proof of Barré-Sirieix et al. is based on modular arguments, different

from those developed by Nesterenko. In this set-up, there is a general conjecture
by Manin (see [82]) which states that for any algebraic number α different from
0 and 1 and any τ in the upper half-plane H, at least one of the two numbers
ατ and j(τ) is transcendental. Here, ατ = eτ logα with any fixed choice of a
branch of logarithm. This conjecture is open.

Another important consequence of Nesterenko’s result is:

Corollary 17.9 Let ℘(z) be a Weierstrass ℘-function with algebraic invariants
g2, g3. Let ω1, ω2 be its fundamental periods with ω1/ω2 ∈ H. Let η1, η2 be the
corresponding quasi-periods. Then,

e2πi(ω1/ω2), ω2/π, η2/π

are algebraically independent over Q.

To deduce the corollary from Theorem 17.6, we use the fact that for q =
e2πi(ω1/ω2), we have

E2(q) = 3
ω2

π

η2
π
, E4(q) =

3

4

(ω2

π

)4

g2, E6(q) =
27

8

(ω2

π

)6

g3.

The last two are clear from our previous analysis. The first requires proof
and this is somewhat delicate since E2 is not a modular form (see [77],
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for instance). These formulas imply that E2(q), E4(q), E6(q) are algebraic
over the field Q(ω2/π, η2/π). But by Theorem 17.6, the field generated by
q, E2(q), E4(q), E6(q) has transcendence degree 3. The corollary now follows.
We add that the algebraic independence of the two numbers ω2/π and η2/π
was first established by Chudnovsky.

An interesting situation arises in the complex multiplication case. Let us
first prove the following lemma proved by Masser [83].

Lemma 17.10 Let ℘(z) be a Weierstrass ℘-function with algebraic invariants
g2, g3 and complex multiplication by an order in the imaginary quadratic field k.
Let ω1, ω2 and η1, η2 be certain fundamental periods and quasi periods, respec-
tively. Then ω1 and η1 are algebraic over the field Q(ω2, η2).

Proof. Let K = k(g2, g3). Since τ = ω1/ω2 ∈ k and lies in H, it satisfies an
equation

aτ2 + bτ + c = 0

with co-prime integers a, b, c and a �= 0. Let

cη2 − aτη1 = αω1

for some α in C. We will show that α ∈ K and this will prove the assertion.
Let f be the function defined as

f(z) = −c ζ(az) + aτζ(aτz) + aταz.

Then
f(z + ω2)− f(z) = −caη2 + a2τη1 + aταω2 = 0.

Further since
aτω1 = −bω1 − cω2,

a similar calculation shows that f(z + ω1) = f(z). Thus, f is a doubly periodic
function with respect to the lattice L of ℘ and hence is a rational function in ℘(z)
and ℘′(z). Now for any embedding σ of K(α) in C fixing K, we can construct a
new function fσ by acting σ on the Laurent expansion of f around the origin.
This again is a rational function in ℘(z) and ℘′(z) as σ fixes ℘ and ℘′. Thus

f(z)− fσ(z) = aτz(α− σ(α))

is also an elliptic function and hence α = σ(α). Since σ is arbitrary, we see that
α ∈ K. �

From this and using the Legendre relation

ω1η2 − ω2η1 = 2πi,
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we deduce immediately:

Corollary 17.11 Let ℘(z) be a Weierstrass ℘-function with algebraic invariants
g2, g3 and with complex multiplication by an order of the imaginary quadratic
field K. Let ω be a non-zero period and η the corresponding quasi-period. Then
for any τ ∈ K with �(τ) �= 0, each of these sets

{π, ω, e2πiτ} and {ω, η, e2πiτ}

is algebraically independent over Q.

Applying this corollary to the two elliptic curves

y2 = 4x3 − 4x

and

y2 = 4x3 − 4

considered earlier leads us to:

Corollary 17.12 Each of the sets

{π, eπ,Γ(1/4)}, {π, eπ
√
3,Γ(1/3)}

is algebraically independent over Q. In particular, π and eπ are algebraically
independent. The same holds for π,Γ(1/3) and for π,Γ(1/4).

We reiterate that the algebraic independence of {π, Γ(1/3)} as well as that
of {π, Γ(1/4)} was first established by Chudnovsky. We note that this is the
only known way of deducing the irrationality of Γ(1/3) and Γ(1/4).

By the theory of complex multiplication, we know that for any squarefree
natural number D, there is an elliptic curve with algebraic invariants and with
complex multiplication by an order in Q(

√−D). Thus we deduce:

Corollary 17.13 For any positive integer D, the numbers

π and eπ
√
D

are algebraically independent over Q.

In a later chapter, we shall apply Nesterenko’s result to study the values
taken by modular forms defined over number fields.
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Exercises

1. Show that ez and σ(z) have different orders.

2. If β is algebraic and ℘ is a Weierstrass ℘-function with algebraic invariants,
show that ℘(2πiβ) is transcendental.

3. Prove that ez and the Weierstrass ζ-function are algebraically independent.

4. If α is an algebraic point of the Weierstrass ζ function and β is an algebraic
number, show that eβα is transcendental.

5. If ℘ has algebraic invariants g2, g3, show that η/π is transcendental, where
η is a non-zero quasi-period of ζ.

6. Let y �= 0 be a real number.

(a) Prove that |Γ(iy)|2 = π
y sinh(πy) .

(b) For y rational, show that Γ(iy) is transcendental.

(c) For D > 0 squarefree and any non-zero y in Q(
√
D), show that Γ(iy)

is transcendental.

7. For any non-zero y ∈ Q and n ∈ N, show that Γ(n+ iy) is transcendental.

8. For D > 0 squarefree and non-zero y ∈ Q(
√
D), show that Γ(n + iy) is

transcendental.

9. Let y ∈ R.

(a) Prove that |Γ(12 + iy)|2 = π
cosh(πy) .

(b) For y ∈ Q, show that Γ(12 + iy) is transcendental.

(c) For D > 0 squarefree and y ∈ Q(
√
D), show that Γ(12 + iy) is

transcendental.



Chapter 18

Elliptic Integrals
and Hypergeometric Series

We have already discussed briefly the problem of inversion for the Weierstrass
℘-function. In this way, we were able to recover the transcendental nature of
the periods whenever the invariants g2, g3 were algebraic. We now look at the
calculation a bit more closely. Before we begin, it may be instructive to look at
a familiar example. Clearly, we have

b =

∫ sin b

0

dy
√

1− y2
.

But how should we view this equation? Since sin b is periodic with period 2π, we
can only view this as an equation modulo 2π. If sin b is algebraic, then, we know
as a consequence of the Hermite–Lindemann theorem that b is transcendental.
In this way, we deduce that the integral

∫ α

0

dy
√

1− y2

is transcendental whenever α is a non-zero algebraic number in the interval
[−1, 1].

A similar result can be obtained for incomplete elliptic integrals. Recall that
we have written our elliptic curve as

y2 = 4(x− e1)(x− e2)(x − e3).

M.R. Murty and P. Rath, Transcendental Numbers, DOI 10.1007/978-1-4939-0832-5 18,
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To reiterate, it is appropriate to consider the extended complex plane with the
point at infinity added and to look at paths in this region (see [67]). With this
in mind, as before we obtain

z =

∫ ℘(z)

∞

dx
√

4x3 − g2x− g3

which is again to be interpreted as up to periods.

We will need the following fact: For s with �(s) > 0, we have

Γ(s) =

∫ ∞

0

e−xxs
dx

x
,

and putting x = t2 gives

Γ(s) = 2

∫ ∞

0

t2se−t
2 dt

t
.

We will use this to show the following for a, b > 0.

2

∫ π/2

0

cos2a−1 θ sin2b−1 θdθ =
Γ(a)Γ(b)

Γ(a+ b)
.

Indeed, we calculate

Γ(a)Γ(b) = 4

∫ ∞

0

∫ ∞

0

x2a−1y2b−1 exp(−x2 − y2)dxdy,

and switching to polar co-ordinates, we get that this is

2

∫ ∞

0

r2a+2be−r
2 dr

r
2

∫ π/2

0

cos2a−1 θ sin2b−1 θdθ.

The special case a = b = 1/2 shows that Γ(1/2) =
√
π.

We can consider our elliptic curve in Legendre normal form, that is, of
the form

Eλ : y2 = x(x− 1)(x− λ)

where λ ∈ C\{0, 1}. In fact, this change of variable works over any field of
characteristic not equal to 2. The j-invariant of Eλ is easily computed (see
exercise below):

j(Eλ) =
28(λ2 − λ+ 1)3

λ2(λ− 1)2
.

If we change x to λx and y to λ3/2y, then the curve is isomorphic over C to

y2 = x(x − 1)(x− 1/λ).
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Notice that if λ is algebraic, then the change of variables is again algebraic.
Thus, we may suppose (without any loss of generality) that there is a model for
E with |λ| < 1. We may express the periods (see [67], for instance) as

ω1(λ) =

∫ 0

−∞

dx
√

x(x − 1)(x− λ)

and

ω2(λ) =

∫ ∞

1

dx
√

x(x − 1)(x− λ)
.

We now recall the hypergeometric series: for a, b ∈ C and c ∈ C\N, we define

F (a, b, c; z) =
∞∑

n=0

(a)n(b)n
n!(c)n

zn,

where
(a)n = a(a+ 1) · · · (a+ n− 1), (a)0 = 1.

A straightforward application of the ratio test shows that this series converges
absolutely for |z| < 1 (see exercises below). Thus, it represents an analytic
function in this disc.

It is clear that F (a, b, c; z) = F (b, a, c; z) and that

F (a, b, b; z) = (1 − z)−a.

It is also not hard to see that

F (a, a, 1; z) =

∞∑

n=0

(−a
n

)2

zn.

The hypergeometric series satisfies the following differential equation:

z(1− z)F ′′ + (c− (a+ b+ 1)z)F ′ − abF = 0.

Theorem 18.1 For a complex number λ with |λ| < 1,

2

∫ π/2

0

(1− λ sin2 θ)−1/2dθ = πF (1/2, 1/2, 1;λ).

Proof. We use the binomial theorem to expand the integrand as

(1− λ sin2 θ)−1/2 =

∞∑

n=0

(−1/2

n

)

(−λ)n sin2n θ.

Integrating this term by term and using Exercise 1, we get the result. �

Let us again consider the integral

ω2(λ) =

∫ ∞

1

dx
√

x(x − 1)(x− λ)
.
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Putting x = 1/t, t = s2, s = sin θ in succession, transforms the integral into

∫ 1

0

dt
√

t(1− t)(1 − λt)
= 2

∫ 1

0

ds
√

(1− s2)(1 − λs2)

= 2

∫ π/2

0

dθ
√

1− λ sin2 θ
= πF (1/2, 1/2, 1;λ)

A similar calculation for ω1(λ) shows that the other period is

ω1(λ) =

∫ 0

−∞

dx
√

x(x − 1)(x− λ)
= iπF (1/2, 1/2, 1, 1− λ).

In the case λ = 1/2, observe that ω1(1/2) = iω2(1/2) and hence the quotient
of these two periods is equal to i. An immediate consequence of Schneider’s
theorem is

Theorem 18.2 For algebraic λ with |λ| < 1, both the numbers

πF (1/2, 1/2, 1, λ) and F (1/2, 1/2, 1, λ)

are transcendental.

Proof. The first number is transcendental since it is a period of an elliptic
curve defined over Q. The second number is transcendental since it is this
period divided by π. �

Recall that in calculating the circumference of an ellipse with major axis and
minor axis of lengths a and b, respectively, we show that it is given by

4

∫ π/2

0

√

a2 cos2 θ + b2 sin2 θdθ = 4

∫ π/2

0

√

a2 − (a2 − b2) sin2 θdθ,

as is easily seen by putting cos2 θ = 1− sin2 θ. We can re-write this integral as

4a

∫ π/2

0

√

1− λ sin2 θdθ,

where λ = 1 − b2/a2. We may expand the integral via the binomial theorem
to get

4a

∫ π/2

0

∞∑

n=0

(
1/2

n

)

(−1)nλn sin2n θdθ.

Using the result

2

∫ π/2

0

cos2a−1 θ sin2b−1 θdθ =
Γ(a)Γ(b)

Γ(a+ b)
,
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we see that we may apply this with a = 1/2, b = n+ 1/2 to get

2

∫ π/2

0

sin2n θdθ =
Γ(1/2)Γ(n+ 1/2)

Γ(n+ 1)
.

The last term can be re-written as

Γ(1/2)(n+ 1/2− 1)(n+ 1/2− 2) · · · (n+ 1/2− n)Γ(1/2)

n!
=
π(1/2)n
n!

.

Putting this all together, we obtain:

Theorem 18.3 The circumference of an ellipse with major and minor axes of
lengths a and b, respectively, is

2πa

∞∑

n=0

(
1/2

n

)

(−1)n
(1/2)n
n!

λn

where λ = 1− b2/a2.

The series is in fact a hypergeometric series as is easily seen by noting that

(−1)n
(
1/2

n

)

=
(−1/2)n

n!
.

Thus, the circumference of the ellipse is

2πaF (−1/2, 1/2, 1;λ).

There has been some work in trying to determine for which arguments the
general hypergeometric function takes transcendental values. In the case a, b, c
are rational numbers, with c �= 0,−1,−2, . . ., a theorem of Wolfart states that
if F (a, b, c; z) is not algebraic over C(z) and its monodromy group is not an
arithmetic hyperbolic triangle group, then there are only finitely many values
of z ∈ Q for which F (a, b, c; z) is algebraic.

Exercises

1. Show that for any natural number n,

2

∫ π/2

0

sin2n θdθ = π(−1)n
(− 1

2

n

)

.

2. Show that the area of the ellipse given by

x2

a2
+
y2

b2
= 1

is πab.
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3. Show that the j-invariant of Eλ is given by

j(Eλ) =
28(λ2 − λ+ 1)3

λ2(λ− 1)2
.

4. Determine the radius of convergence for the hypergeometric series.

5. Show that F (a, b, b; z) = (1 − z)−a.

6.

F (a, a, 1; z) =

∞∑

n=0

(−a
n

)2

zn.



Chapter 19

Baker’s Theorem

In this chapter, we will discuss the following theorem due to Baker.

Theorem 19.1 ([8]) If α1, . . . , αm are non-zero algebraic numbers such that
logα1, . . . , logαm are linearly independent over Q, then

1, logα1, . . . , logαm

are linearly independent over Q.

Observe that the case m = 1 is a consequence of the Lindemann–Weierstrass
theorem. The case m = 2 implies the Gelfond–Schneider theorem. In 1980,
Bertrand and Masser [18] proved an elliptic analog of Baker’s theorem. For a
Weierstrass ℘-function with algebraic invariants g2 and g3 and field of endomor-
phisms k, the following set

LE = {α ∈ C : ℘(α) ∈ Q ∪ {∞}}

is referred to as the set of elliptic logarithms of algebraic points on E. Here E
is the associated elliptic curve. Let L be the lattice of periods. The k-linear
space LE is the elliptic analog of the Q-linear space of logarithms of non-zero
algebraic numbers for the exponential case. Bertrand and Masser proved the
following theorem.

Theorem 19.2 Let ℘ be a Weierstrass function without complex multiplication
and with algebraic invariants g2, g3. Let u1, . . . , un be elements in LE such that
u1, . . . , un are linearly independent over Q. Then

1, u1, . . . , un

are linearly independent over Q.
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The analogous theorem for the CM case was earlier established by Masser
[83] and can also be recovered following the techniques employed in the proof
of the above.

As noted by Bertrand and Masser themselves, their method gives an alter-
nate proof of Baker’s theorem. In this chapter, we present their proof of Baker’s
theorem. We also recommend the book by Waldschmidt [125] which includes
several different proofs of Baker’s theorem.

We begin by noting that Baker’s theorem is a consequence of the following
theorem.

Theorem 19.3 (Main Theorem) Let K be a number field of degree d over Q.
Let β1, . . . , βd be a basis for K over Q. Let α1, . . . , αd be non-zero algebraic
numbers. Then

β1 logα1 + · · ·+ βd logαd ∈ Q

if and only if
logα1 = · · · = logαd = 0.

Let us first see how the above theorem implies Baker’s theorem. Let
α1, . . . , αd be non-zero algebraic numbers such that logα1, . . . , logαd are lin-
early independent over Q. Now suppose that

β1 logα1 + · · ·+ βd logαd = γ

where β1, . . . , βd and γ are algebraic numbers. Consider the number field K =
Q(β1, . . . , βd) and let x1, . . . , xn be a Q-basis for K. Let

βi =

n∑

j=1

yijxj

for 1 ≤ i ≤ d, where yij are rational numbers. Thus, we have

n∑

j=1

Ajxj = γ where Aj =

d∑

i=1

yij logαi, 1 ≤ j ≤ n.

But the Aj ’s are logarithms of algebraic numbers as yij ’s are rational num-
bers. By the above theorem, each Aj is necessarily equal to zero. But since
logα1, . . . , logαd are linearly independent over Q, this implies that yij = 0 for
all i and j. Thus βi = 0 for 1 ≤ i ≤ d. Hence the above theorem implies Baker’s
theorem.

Let us now begin the proof of the main theorem. The crucial ingredient in
the proof is the following multi-variable generalisation of the Schneider–Lang
theorem we proved earlier. This was proved by Lang [78]. An entire function
F (z) in r variables, with z = (z1, . . . , zr) ∈ C

r, is said to be of finite order of
growth if

lim sup
R→∞

log log |F |R
logR

<∞,

where |F |R is the supremum of |F (z)| on the closed disc |z| ≤ R.
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Theorem 19.4 ([78]) For integers N > r ≥ 1, let f1, . . . , fN be entire functions
on C

r with finite order of growth and of which at least r + 1 are algebraically
independent. Let K be a number field such that the ring K[f1, . . . , fN ] is mapped
into itself by the partial derivatives ∂

∂z1
, . . . , ∂

∂zr
. Then for any subgroup Γ of

C
r which contains a basis of the complex space C

r, not all the values

fk(z), 1 ≤ k ≤ N, z ∈ Γ

can lie in K.

The proof of the above theorem, though more involved, runs along similar lines
as in the one-dimensional case. We refer to chapter IV of Lang’s book [79] for
the relevant details.

The theory of several complex variables constitutes an essential tool in the
development of modern transcendence theory. We refer to the classic treatise
of Gunning and Rossi [64] for the basic definitions and notions. However for
our purposes, we only need to work with very special type of entire functions,
namely functions of the form

f(z) = ea.z = ea1z1+···+arzr

where a = (a1, . . . , ar) is a fixed vector in C
r. Clearly, these functions have

finite order of growth.
We deduce the following two corollaries of the above theorem. As before, for

x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ C
d, we have the following notation

x.y = x1y1 + · · ·+ xdyd.

Corollary 19.5 Let N, d with N > d be positive integers and x1, . . . , xN be

elements in Q
d
such that at least d+1 of these vectors are linearly independent

over Q. Let y1, . . . , yM be elements in C
d containing a basis for C

d. Then not
all the MN numbers

exi.yj

can be algebraic.

Proof. Consider the N functions

fi(z1, . . . , zd) = exi.z = exi1z1+···+xidzd , 1 ≤ i ≤ N.

We note that at least d + 1 these functions are algebraically independent (see
Exercise 1). Let Γ be the additive subgroup of Cd generated by the vectors
y1, . . . , yM . Suppose that the exi.yj are all algebraic. Let K be the number
field generated by the numbers exi.yj and the coordinates of each of the vectors
xi = (xi1, . . . , xid). Then clearly all the hypotheses of Lang’s theorem are
satisfied. However, for all 1 ≤ i ≤ N and z ∈ Γ, we have fi(z) ∈ K. This
contradicts Lang’s theorem. �
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Corollary 19.6 Let x1, . . . , xd be d elements in Q
d
which are linearly inde-

pendent over Q. Let y1, . . . , yd be elements in C
d linearly independent over C.

For 1 ≤ j ≤ d, let yj = (yj1, . . . , yjd) and suppose that the kth entries of each
of these d vectors, namely y1k, . . . , ydk are all algebraic. Then not all the d2

numbers

exi.yj

can be algebraic.

Proof. As before, let

fi(z) = exi.z

for 1 ≤ i ≤ d and define fd+1(z) = zk, the kth projection function. Let K
be the number field generated by the numbers exi.yj , the co-ordinates xij of
the vectors xi = (xi1, . . . , xid) and the kth coordinates yjk of the vectors yj .
Taking Γ to be the additive group generated by the vectors yj , we see that for
all 1 ≤ i ≤ d+ 1 and z ∈ Γ, fi(z) ∈ K. This again contradicts Lang’s theorem.
�

Let us now prove the main theorem. We have a number field K of degree
d with β1, . . . , βd ∈ K constituting a basis. Further, α1, . . . , αd are non-zero
algebraic numbers such that

λ = β1 logα1 + · · ·+ βd logαd ∈ Q.

Our goal is to prove that

logα1 = · · · = logαd = 0.

Let {σ1, . . . , σd} be the embeddings of K in C. We define the following complex
numbers

λi = σi(β1) logα1 + · · ·+ σi(βd) logαd

for 1 ≤ i ≤ d. Consider the matrix M defined as

M = (σi(βj))1≤i,j≤d .

Note that this matrix is non-singular (see Exercise 2). Thus if each of the λi is
equal to zero, necessarily logαi’s are all equal to zero. So we may assume that
not all the λi’s are equal to zero.

We first consider the case when none of the λi’s are equal to zero, that is

λ1 . . . λd �= 0.

We now construct vectors xi and yj as in Corollary 19.6. First for 1 ≤ i ≤ d,
let

xi = (σ1(βi), . . . , σd(βi)),
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be the vector consisting of all the conjugates of βi in C. Non-singularity of the

matrix M introduced above ensures that these d elements in Q
d
are linearly

independent over Q. Now we define the vectors yj for 1 ≤ j ≤ d as follows:

yj = (λ1σ1(βj), . . . , λdσd(βj)).

Consider the matrix (λiσi(βj))1≤i,j≤d. Its determinant is non-zero, being equal

to det(M)λ1 . . . λd. Thus the d vectors above are linearly independent over C.
If σk is the identity embedding of K, then the kth entries of these d vectors
are given by yjk = λβj which are algebraic numbers for all 1 ≤ j ≤ d. Thus
we are in the situation to apply Corollary 19.6 which implies that not all the
d2 numbers exi.yj can be algebraic. Let us now explicitly evaluate the numbers
xi.yj . We have

xi.yj =
d∑

l=1

σl(βi)λlσl(βj)

=

d∑

l=1

σl(βiβj)λl

=

d∑

l=1

d∑

s=1

σl(βiβj)σl(βs) logαs

=

d∑

s=1

(
d∑

l=1

σl(βiβjβs)

)

logαs.

However, the number As =
∑d
l=1 σl(βiβjβs) is the trace of βiβjβs in K and

hence rational. Thus,

exi.yj = eA1 logα1···+Ad logαd ∈ Q.

This is a contradiction.
In the second case, suppose that some of the λi’s are equal to zero. Without

loss of generality, suppose that

λ1 �= 0, . . . , λr �= 0, λr+1 = · · · = λd = 0

with 1 ≤ r < d. In this case, we define the vectors xi and yj as follows. For
1 ≤ i ≤ d, we define

xi = (σ1(βi), . . . , σr(βi)) ∈ Q
r

and for 1 ≤ j ≤ d, we have

yj = (λ1σ1(βj), . . . , λrσr(βj)) ∈ C
r
.

Note that the rank of the following r × d matrix

M = (λiσi(βj))
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where 1 ≤ i ≤ r and 1 ≤ j ≤ d is equal to r. Thus the d vectors yj do

contain a basis for C
r. Again by Corollary 19.5, not all the d2 numbers exi.yj

can be algebraic. But an explicit evaluation of the numbers xi.yj as above will
show that

exi.yj ∈ Q

for all i and j, hence a contradiction. This completes the proof of the main
theorem and hence Baker’s theorem.

Exercises

1. x1, . . . , xN be N elements in Q
d
which are linearly independent over Q.

Consider the N functions

fi(z1, . . . , zd) = exi.z = exi1z1+···+xidzd , 1 ≤ i ≤ N.

Show that these functions are algebraically independent.

2. Let G be an abelian group and σ1, . . . , σd : G → C
× be d distinct homo-

morphisms. Prove that these functions are linearly independent over C.
Hence conclude that the matrix M in the proof of the main theorem is
invertible.

3. Let α1, α2, . . . , αn be positive algebraic numbers. If c0, c1, . . . , cn are alge-
braic numbers with c0 �= 0, then show that

c0π +

n∑

j=1

cj logαj

is a transcendental number and hence non-zero.

4. Show that ∫ 1

0

dx

1 + x3

is transcendental. Can you generalise to rational functions with algebraic
coefficients? (See [122].)



Chapter 20

Some Applications
of Baker’s Theorem

Let us first derive some important corollaries of Baker’s theorem.

Corollary 20.1 If α1, . . . , αm and β1, . . . , βm are algebraic with αi’s non-zero,
then

β1 logα1 + · · ·+ βm logαm

is either zero or transcendental.

Proof. We proceed by induction on m. This clearly holds for m = 1 by the
Lindemann–Weierstrass theorem. Now assume the validity of the corollary for
m < n. We now proceed to prove it for m = n. Suppose not. Then

β1 logα1 + · · ·+ βn logαn = β0 (20.1)

is algebraic and β0 is non-zero. By Theorem 19.1, logα1, . . . , logαn must be
linearly dependent over Q. That is, there exist rational numbers c1, . . . , cn, not
all zero such that

c1 logα1 + · · ·+ cn logαn = 0. (20.2)

Say that cn �= 0, without any loss of generality. Using this relation, we can
eliminate logαn from our original relation (20.1) and deduce a contradiction
by induction. Indeed, multiplying (20.1) by cn and relation (20.2) by βn and
subtracting, we get that

β′
1 logα1 + · · ·+ β′

n−1 logαn−1 = cnβ0

which is not zero. We can now apply induction to deduce the corollary. �
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Thus any algebraic linear combination of logarithms of algebraic numbers is
either zero or transcendental. The next corollary represents a vast generalisation
of the Gelfond–Schneider theorem.

Corollary 20.2 If α1, . . . , αm and β0, . . . , βm are non-zero algebraic numbers,
then

eβ0αβ1

1 · · ·αβm
m

is transcendental.

Proof. If the number were algebraic and equal to αn+1 say, then we get

β1 logα1 + · · ·+ βm logαm − logαn+1 = −β0 �= 0.

This is a contradiction to the previous corollary. �

Corollary 20.3 αβ1

1 · · ·αβm
m is transcendental for any algebraic numbers

α1, . . . , αm other than 0 or 1 and any algebraic numbers β1, . . . , βm with 1,
β1, . . . , βm linearly independent over the rationals.

Proof. It suffices to show that for any algebraic numbers α1, . . . , αm other
than 0 or 1 and any algebraic numbers β1, . . . , βm linearly independent over the
rationals, we have

β1 logα1 + · · ·βm logαm �= 0.

If we have this for every m, then we can apply this result with m replaced
by m+ 1 and βm+1 = −1 to derive a contradiction (since −1, β1, . . . , βm
are linearly independent over Q). We therefore proceed by induction on m
which is clearly true for m = 1. Suppose we have proved it for n < m. If
logα1, . . . , logαm are linearly independent over Q, then the result follows from
Theorem 19.1. So let us suppose otherwise. Then there are rational numbers
c1, . . . , cm not all zero such that

c1 logα1 + · · ·+ cm logαm = 0.

Without any loss of generality, let us suppose cm �= 0. We may use this relation
to eliminate logαm to obtain

(cmβ1 − c1βm) logα1 + · · ·+ (cmβm−1 − cm−1βm) logαm−1 = 0.

But the m− 1 numbers

cmβ1 − c1βm, . . . , cmβm−1 − cm−1βm

are linearly independent over Q for otherwise,

A1(cmβ1 − c1βm) + · · ·+Am−1(cmβm−1 − cm−1βm) = 0
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for some rational numbers A1, . . . , Am−1 not all zero. But re-arranging this,
we find

cm(A1β1 + · · ·+Am−1βm−1)− (A1c1 + · · ·+Am−1cm−1)βm = 0.

Since β1, . . . , βm are linearly independent over Q, we deduce that A1 = · · · =
Am−1 = 0, a contradiction. This proves the corollary. �

Corollary 20.4 π + logα is transcendental for any algebraic number α �= 0.
eαπ+β is transcendental for any algebraic numbers α, β with β �= 0.

In 1966, Baker proved a quantitative version of his theorem. Such versions
now fall under the general heading of effective lower bounds for linear forms in
logarithms.

Theorem 20.5 ([8]) Let α1, . . . , αm be non-zero algebraic numbers with degrees
at most d and heights at most A. Further, let β0, . . . , βm be algebraic numbers
with degrees at most d and heights at most B ≥ 2. Then, either

Λ := β0 + β1 logα1 + · · ·+ βm logαm

equals zero or |Λ| > B−C where C is an effectively computable constant depend-
ing only on m, d,A and the original determinations of the logarithms.

The estimate for C takes the form C′(logA)κ where κ depends only on m
and C′ depend only on m and d. Let us note that the special case of m = 1 of
the above theorem leads to results of the form

| logα− β| > B−C

for any algebraic number α not zero or 1 and for all algebraic numbers of degree
at most d and heights at most B ≥ 2. Here, C depends only on d and α.
In particular, we can derive results of the form

|π − β| > B−C .

Indeed, N.I. Feldman had already established the above inequality with C of
the order of d log d.

Further, when we restrict to the case when β is a rational number, these
inequalities can be refined. For instance, for π we have the following lower
bound

|π − p/q| > q−42

for all rationals p/q (q ≥ 2). This was established by Mahler. On the other
hand, we have the following lower bound

|eπ − p/q| > q−c log log q

for all rationals p/q and where c is an absolute constant. This was proved by
Baker.

In 1993, Baker and Wüstholz [11] proved a sharper form of these theorems
by offering a quantitative version of Baker’s original theorem. We state a special
case of their theorem.
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Theorem 20.6 ([11]) If β0 = 0 and β1, . . . , βm are integers of absolute value
at most B, then either Λ = 0 or

|Λ| > exp(−(16md)2m+4(logmA) logB).

Finding sharp lower bounds for linear forms in logarithms of algebraic num-
bers constitutes an important theme in transcendence theory. We refer to the
interested reader the book of Baker [9] and the recent monograph of Baker and
Wüstholz [12] for further details.

We now apply Baker’s theory to the study of L(1, χ) where L(s, χ) is the
classical Dirichlet L-function attached to a non-trivial character χ. This is a
prelude to the theme of applying Baker’s theory to more general Dirichlet series
which we take up in later chapters.

Let χ be a non-trivial Dirichlet character mod q with q > 1. For s ∈ C with
Re(s) > 1, let

L(s, χ) =

∞∑

n=1

χ(n)

ns

be the associated Dirichlet L-function. It is classical that L(s, χ) extends to an
entire function and that

L(1, χ) =
∞∑

n=1

χ(n)

n
.

Furthermore, L(1, χ) �= 0 by a theorem of Dirichlet. We are interested in the
algebraic nature of L(1, χ). Now for any such χ, let

χ̂(n) =
1

q

q
∑

m=1

χ(m)e−2πimn/q

be its Fourier transform. By orthogonality, we have

χ(n) =

q
∑

m=1

χ̂(m)e2πimn/q.

Note that χ̂(q) = 0. Now we are ready to prove the following:

Theorem 20.7 If χ is a non-trivial Dirichlet character mod q with q > 1, then
L(1, χ) is transcendental.

Proof. By the previous discussions, we have

L(1, χ) =

∞∑

n=1

χ(n)

n

=

∞∑

n=1

1

n

q−1
∑

m=1

χ̂(m)e2πimn/q
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= −
q−1
∑

m=1

χ̂(m) log(1− e2πim/q).

This is a non-zero linear form in logarithms of algebraic numbers with algebraic
coefficients. By Baker’s theorem, this is transcendental. �

We end the chapter with one of the major applications of Baker’s theory
which is the explicit determination of all imaginary quadratic fields with class
number one. This problem has a venerable history. We recommend the exposi-
tory article of Goldfeld [52] and the recent monograph of Baker and Wüstholz
[12] for a more detailed account of this topic.

Gauss conjectured that the only imaginary quadratic fields Q(
√−d), with

d > 0 and squarefree, that have class number one are given by

d = 1, 2, 3, 7, 11, 19, 43, 67, 163.

In 1967, Baker [8] and Stark [117] independently solved this conjecture. We
indicate below the main features of Baker’s argument using linear forms in
logarithms.

We shall be needing some familiarity with algebraic number theory. We sug-
gest [76, 113] as possible references. Recall that if k/Q is a quadratic extension,
its Dedekind zeta function ζk(s) factors as

ζk(s) = ζ(s)L(s, χ) (∗)

where χ is a quadratic Dirichlet character. In fact if D is the discriminant of k,
then we may write k = Q(

√
D) and χ(n) =

(
D
n

)

is the Kronecker symbol. The
class number formula of Dirichlet can be stated as follows. If k is an imaginary
quadratic field, then

L(1, χ) =
2πh(k)

ωk
√|D| , D < 0

and if k is a real quadratic field,

L(1, χ) =
2h(k) log εk√

D
, D > 0

where h(k) denotes the class number of k and εk is the fundamental unit of k
and ωk is the number of roots of unity in k. We may write (∗) in another way,
using zeta functions attached to binary quadratic forms. Given a form

f(x, y) = ax2 + bxy + cy2

with discriminant D = b2 − 4ac < 0, we may associate the following function

ζ(s, f) =
∑′

m,n

1

f(m,n)s
,
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where the dash indicates (m,n) �= (0, 0). One can show that ζ(s, f) extends
to the entire complex plane, apart from a simple pole at s = 1. Kronecker’s
limit formula explicitly gives the residue and the constant term in the Laurent
expansion of ζ(s, f) at s = 1. Using the standard equivalence between binary
quadratic forms of discriminant D and ideal classes of k, we may write (∗) as

ζk(s) =
1

2

∑

f

ζ(s, f)

where the sum is over a complete set of inequivalent quadratic forms with
discriminant D. In other words,

ζ(s)L(s, χ) =
1

2

∑

f

∑′

m,n

1

f(m,n)s
.

We may twist this by a Dirichlet character χ1 to get

L(s, χ1)L(s, χχ1) =
1

2

∑

f

∑′

m,n

χ1(f(m,n))

f(m,n)s
.

By classical theory, the inner sums are Mellin transforms of modular forms of
weight one. The behaviour at s = 1 of the inner sum can be determined by
Kronecker’s second limit formula (see [77], for instance) when χ1 is non-trivial.
We are especially interested in applying this for the case

χ(n) =

(
D

n

)

and χ1(n) =

(
D1

n

)

with D1 > 0. Using the limit formula, we get

L(1, χ1)L(1, χχ1) =
π2

6

∏

p|D1

(

1− 1

p2

)
∑

f

χ1(a)

a
+
∑

f

∞∑

r=−∞
Are

πirb/D1a (∗∗).

Here for r �= 0,

|Ar| ≤ 2π|r|
√|D|e

−s/aD1

with s = π|r|√
|D| . As regards A0, it is equal to zero if D1 is not a prime power.

On the other hand if D1 is a power of a prime p, then

A0 = − 2πχ1(a)

D1

√|D| log p.

Now suppose Q(
√
D) has class number one. Then by genus theory (see for

example, [113]), if −D > 2, then −D ≡ 3 (mod 4) and is necessarily a prime.
Moreover as the class number is one, there is only one form (up to equivalence)
and which we can take to be

x2 + xy +

(
1−D

4

)

y2.
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By Dirichlet’s class number formula,

L(1, χ1) =
2h1 log ε1√

D1

where h1 is the class number of Q(
√
D1) and ε1 is the fundamental unit attached

to this real quadratic field. The quadratic character χχ1 corresponds to the
imaginary quadratic field

Q(
√

DD1)

and we have

L(1, χχ1) =
h2π

√|DD1|
where h2 is the class number of Q(

√|DD1|).
We will choose D1 appropriately. Assuming |D| > D1 so that (D,D1) = 1,

we obtain from (∗∗),
∣
∣
∣
∣
∣
∣

2h1h2 log ε1 − π

6
D1

√

|D|
∏

p|D1

(

1− 1

p2

)
∣
∣
∣
∣
∣
∣

≤ D1

√|D|
π

∞∑

r=−∞
|Ar|.

If we choose D1 such that it is not a prime power, we are ensured A0 = 0.
We will choose D1 = 21 and D1 = 33 and in both cases Q(

√
D1) has class

number one. Using the upper bounds for |Ar|, we obtain for |D| large enough
and D1 = 21,

∣
∣
∣
∣
h2 log ε2 − 32

21
π
√

|D|
∣
∣
∣
∣
< e−π

√
|D|/100

where h2 is the class number of Q(
√
21D) and ε2 is the fundamental unit of

Q(
√
21). Similarly for D1 = 33, we obtain

∣
∣
∣
∣
h3 log ε3 − 80

33
π
√

|D|
∣
∣
∣
∣
< e−π

√
|D|/100

where h3 is the class number of Q(
√
33D) and ε3 is the fundamental unit of

Q(
√
33). By eliminating the π

√|D| term, we obtain

|35h2 log ε2 − 22h3 log ε3| < 57e−π
√

|D|/100.

The terms h2 and h3 can be bounded effectively by an inequality of the form

h2, h3 < c1
√

|D| log |D|

with c1 effectively computable. By Baker’s theory on lower bounds for linear
forms in logarithms, we have

|35h2 log ε2 − 22h3 log ε3| > B−c
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where B = max(35h2, 22h3) and c is an effectively computable constant
(dependent on ε2 and ε3). We obtain

e−c2 log |D| < |35h2 log ε2 − 22h3 log ε3| < 57e−π
√

|D|/100

from which |D| is effectively bounded. One explicitly determines a bound for
|D| which is of the order of 10500.

Heilbronn and Linfoot had previously shown that there are at most ten
imaginary quadratic fields with class number one and Lehmer had given a lower
bound for the tenth fictitious prime p > 163 such that Q(

√−p) has class number
one. This lower bound was of the order of 109. Later, this lower bound was
improved by Stark [116] who showed that the lower bound is of the order of e10

7

.
Thus comparing with the upper bound obtained before, the classification of all
imaginary quadratic fields with class number one is done.

This method extends to determine effectively all imaginary quadratic fields
with class number two and has been carried out by Baker [8] and Stark [117].
There are precisely 18 such fields.

In 1976, Goldfeld [50, 51] used the theory of elliptic curves to obtain an
effective lower bound for the class number of an imaginary quadratic field. But
his proof was conditional upon the existence of an elliptic curve of Mordell–Weil
rank 3 and whose associated L-series has a zero of order 3. In 1983, Gross and
Zagier [56] found such an elliptic curve. Combining this with Goldfeld’s result
led to the following: for every ε > 0, there is an effectively computable constant
c > 0 such that the class number of Q(

√
D) is greater than c(log |D|)1−ε. In

1984, Oesterlé [90] refined the argument to give the lower bound

1

7000
(log |D|)

∏

p|D
p �=|D|

(

1− [ 2
√
p ]

p+ 1

)

for the class number of the imaginary quadratic field Q(
√
D).

The scenario for class numbers of real quadratic fields is expected to be
different. It is conjectured that there are infinitely many real quadratic fields
with class number one. However, we do not even know if there are infinitely
many number fields with class number one.

Exercises

1. Let P (x) be a polynomial of degree r ≥ 2. Assume that P (x) has algebraic
coefficients and that all of its roots are rational and not integral. Show that

∞∑

n=1

1/P (n)

is either zero or transcendental. [Hint: Consider the partial fraction
decomposition of 1/P (x).]
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2. Show that the conclusion of the previous exercise is still valid for the sum

∞∑

n=1

Q(n)/P (n)

where Q(x) is also a polynomial with algebraic coefficients and the degree
of Q(x) is at most r − 2.

3. Let f be an algebraic-valued function defined on the integers. Suppose
that for some natural number q > 1, we have f(n + q) = f(n) for all
natural numbers n. Suppose further that

q
∑

a=1

f(a) = 0.

Show that ∞∑

n=1

f(n)

n

converges and that it is either zero or a transcendental number.

4. Suppose that the sum

F (z;x) :=
∞∑

n=1

zn

n+ x

converges. If z is algebraic and x is rational, show that the sum is either
zero or a transcendental number.



Chapter 21

Schanuel’s Conjecture

One of the most far reaching conjectures in transcendence theory is the following
due to S. Schanuel:

Schanuel’s Conjecture: Suppose α1, . . . , αn are complex numbers which are
linearly independent over Q. Then the transcendence degree of the field

Q(α1, . . . , αn, e
α1 , . . . , eαn)

over Q is at least n.
This conjecture is believed to include all known transcendence results as

well as all reasonable transcendence conjectures on the values of the exponential
function. Note that when the αi’s are algebraic numbers, this is the Lindemann–
Weierstrass theorem.

In this chapter, we derive some interesting consequences of this conjecture.
We begin with the following special case of Schanuel’s conjecture. This gener-
alises Baker’s theorem. Let us refer to it as the weak Schanuel’s conjecture.

Weak Schanuel’s Conjecture: Let α1, . . . , αn be non-zero algebraic num-
bers such that logα1, . . . , logαn are linearly independent over Q. Then these
numbers are algebraically independent.

This special version itself has strong ramifications. For instance, it suffices
to derive transcendence of special values of a number of L-functions arising from
various analytic and arithmetic contexts.

The following is an important consequence of the weak Schanuel’s conjecture.

Theorem 21.1 Assume the weak Schanuel’s conjecture. Let α1, . . . , αn be non-
zero algebraic numbers. Then for any polynomial f(x1, . . . , xn) with algebraic
coefficients such that f(0, . . . , 0) = 0, f(logα1, . . . , logαn) is either zero or tran-
scendental.

M.R. Murty and P. Rath, Transcendental Numbers, DOI 10.1007/978-1-4939-0832-5 21,
© Springer Science+Business Media New York 2014
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Proof. We use induction on n. For n = 1, it is true by the classical
Lindemann–Weierstrass theorem. Now for n ≥ 2, let f(x1, . . . , xn) be a
polynomial in Q[x1, . . . , xn] with f(0, . . . , 0) = 0. Further, suppose that
A := f(logα1, . . . , logαn) is algebraic. By the weak Schanuel’s conjecture, the
numbers logα1, . . . , logαn are linearly dependent over Q. Then there exists
integers c1, . . . , cn such that

c1 logα1 + · · ·+ cn logαn = 0.

Suppose c1 �= 0. Then logα1 = − 1
c1
(c2 logα2 + · · ·+ cn logαn). Replacing this

value of logα1 in the expression for A, we have

A = g(logα2, . . . , logαn),

where g(x1, . . . , xn−1) is a polynomial with algebraic coefficients in n − 1
variables. Then by induction hypothesis A = 0. This completes the proof. �

Now we proceed to derive some other consequences of Schanuel’s conjecture:

Theorem 21.2 Assume that Schanuel’s conjecture is true. Let α �= 0, 1 be
algebraic. Then logα and log logα are algebraically independent.

Proof. Note that for α ∈ Q\{0, 1}, logα and log logα are linearly independent
over Q. We apply Schanuel’s conjecture to the numbers logα and log logα.
Then we see that the transcendence degree of the field Q(logα, log logα, α) is
two and hence logα and log logα are algebraically independent. �

Theorem 21.3 Assume that Schanuel’s conjecture is true. If α1, . . . , αn ∈ Q

are linearly independent over Q, then π, eα1 , . . . , eαn are algebraically indepen-
dent. In particular, e and π are algebraically independent.

Proof. We apply Schanuel’s conjecture to the Q-linearly independent numbers
α1, . . . , αn and iπ to get the result. �

Theorem 21.4 Assume that Schanuel’s conjecture is true. If α1, . . . , αn are
algebraic numbers such that i, α1, . . . , αn are linearly independent over Q, then
π, eα1π, . . . , eαnπ are algebraically independent.

Proof. Apply Schanuel’s conjecture to the Q-linearly independent numbers
iπ, α1π, . . . , αnπ to get the result. �

Thus Schanuel’s conjecture implies that π and eπ are algebraically indepen-
dent. This has been established unconditionally by Nesterenko.

Theorem 21.5 Assume that Schanuel’s conjecture is true. Then πe is tran-
scendental.
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Proof. By Nesterenko’s result, we know that π and log π are linearly
independent over Q. We apply Schanuel’s conjecture to the Q-linearly
independent numbers 1, iπ and log π to conclude that e, π and log π are
algebraically independent. Now apply Schanuel’s conjecture to the Q-linearly
independent numbers 1, log π, iπ + e log π, e log π. �

Let us define a Baker period to be an element of the Q-vector space spanned
by logarithms of non-zero algebraic numbers.

Theorem 21.6 Assume that Schanuel’s conjecture is true. If α1, . . . , αn are
non-zero algebraic numbers such that logα1, . . . , logαn are linearly independent
over Q, then logα1, . . . , logαn, log π are algebraically independent. In particu-
lar, log π is not a Baker period.

Proof. Since logα1, . . . , logαn are linearly independent over Q, the numbers
logα1, . . . , logαn are algebraically independent by Schanuel’s conjecture.

First suppose that π, logα1, . . . , logαn are linearly dependent over Q, i.e.

π = β1 logα1 + · · ·+ βn logαn,

where βi ∈ Q and not all of them are zero. Without loss of generality,
assume that β1 �= 0. Then π, logα2, . . . , logαn are linearly independent over Q.
Now applying Schanuel’s conjecture to the Q-linearly independent numbers
iπ, logα2, . . . , logαn, log π we see that logα1, . . . , logαn, log π are algebraically
independent.

Next suppose that π and logα1, . . . , logαn are linearly independent over Q.
Then we apply Schanuel’s conjecture to the Q-linearly independent numbers
iπ, logα1, . . . , logαn, log π to get the required result. �

Theorem 21.7 Assume that Schanuel’s conjecture is true. If α is a non-zero
Baker period, then 1/α is not a Baker period. In particular, 1/π is not a Baker
period.

Proof. Since α is a Baker period, we can write

α = β1 log δ1 + · · ·+ βn log δn,

where βi, δi ∈ Q \ {0}. If 1/α is also a Baker period, then

1

α
= γ1 logα1 + · · ·+ γk logαk,

where γi, αi ∈ Q \ {0}. This implies that

1 = f (log δ1, . . . , log δn, logα1, . . . , logαk) , (21.1)

where f is a polynomial in Q [x1, . . . , xn+k] with f(0, . . . , 0) = 0. Then the
right-hand side of (21.1) is either zero or transcendental and hence the result
follows. �
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One can show that Schanuel’s conjecture implies that ee is transcendental
(see Exercise 1). We refer to the papers of Waldschmidt [128] and Brownawell

[22] for an interesting theorem in this context, namely that either ee or ee
2

is
transcendental. This was a conjecture of Schneider.

We note that Kontsevich and Zagier [74] have introduced the notion of
periods. A period is a complex number whose real and imaginary parts are values
of absolutely convergent integrals of rational functions with rational coefficients
over domains in R

n given by polynomial inequalities with rational coefficients.
Clearly all algebraic numbers are periods. On the other hand, π is a period for
it is expressible as

π =

∫ ∫

x2+y2≤1

dxdy.

Further, non-zero Baker periods are examples of transcendental periods. This
follows from Baker’s theorem.

The set of periods forms a ring. It is an open question to determine whether
the group of units of this ring contains only the obvious units, namely the
non-zero algebraic numbers. We shall come back to these periods in the last
chapter.

We now apply Schanuel’s conjecture to study some special values of the
Gamma function.

Theorem 21.8 For any rational number x ∈ (0, 1/2], the number

log Γ(x) + log Γ(1− x)

is transcendental with at most one possible exception.

Proof. Using the reflection property of the gamma function, we have

log Γ(x) + log Γ(1 − x) = log π − log sinπx.

If x1 and x2 are distinct rational numbers with

log Γ(xi) + log Γ(1− xi) ∈ Q, i = 1, 2,

then their difference log sinπx2 − log sinπx1 is an algebraic number. But this is
a non-zero Baker period and hence transcendental. �

The possible fugitive exception in the above theorem can be removed if we
assume Schanuel’s conjecture.

Theorem 21.9 Schanuel’s conjecture implies that

log Γ(x) + log Γ(1− x)

is transcendental for every rational 0 < x < 1.
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Proof. As noticed earlier, Schanuel’s conjecture implies that for any non-zero
algebraic number α, the two numbers eα and π are algebraically independent.
Suppose α = log Γ(x) + log Γ(1 − x) is algebraic. Then eαsin(πx) = π which
contradicts the algebraic independence of eα and π. �

We also have,

Theorem 21.10 Schanuel’s conjecture implies that for any rational x ∈ (0, 1),
at least one of the following statement is true:

1. Both Γ (x) and Γ (1− x) are transcendental.

2. Both log Γ (x) and log Γ (1− x) are transcendental.

Proof. If (1) is true, there is nothing to prove. Without loss of generality,
suppose that Γ(x) is algebraic for some x ∈ Q. Then log Γ(x) is a Baker period.
Since

log Γ(1− x) = − log Γ(x) + log π − log sinxπ,

therefore it follows that log Γ(1− x) is transcendental. �

The logarithms of the gamma function as well as log π are of central impor-
tance in studying the special values of a general class of L-functions.

Finally, we now apply Schanuel’s conjecture in the investigation of some
special values of Dedekind zeta functions. We refer to [58] for a more detailed
account. The relevant details from algebraic number theory can be found in the
books of Lang [76] or Neukirch [88]. Let K be a number field of degree n. For
�(s) > 1, the Dedekind zeta function of K is defined as

ζK(s) =
∑

a

1

N(a)s
,

where the sum is over all the integral ideals of OK , the ring of integers of K.
When K = Q, this is the Riemann zeta function. Analogous to the Riemann
zeta function, ζK(s) is analytic for �(s) > 1 and (s − 1)ζK(s) extends to an
entire function with

lim
s→1+

(s− 1)ζK(s) = Ress=1ζK(s) =
2r1(2π)r2hKRK

ωK
√|dK | ,

where r1 is the number of real embeddings, 2r2 is the number of complex
embeddings, hK is the class number, RK is the regulator (which is known to be
non-zero), ωK is the number of roots of unity in K and dK is the discriminant
of K.

We are interested in the nature of Ress=1ζK(s) and the regulator RK .
Because of the presence of π, the transcendence of one does not imply the
transcendence of the other unless K is a totally real field.
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Theorem 21.11 Assume the weak Schanuel’s conjecture. Let K be a number
field with unit rank at least 1. Then both the regulator RK and Ress=1ζK(s) are
transcendental.

Proof. By the class number formula,

Ress=1ζK(s) =
2r1(2π)r2hKRK

ω
√|dK | ,

where r1 and 2r2 be the number of real and complex embeddings. Let u(j)

be the j-th conjugate of u ∈ K where j runs through the embeddings modulo
complex conjugation. Let

{u1, u2, . . . , ur}
be a set of generators of the ordinary unit group modulo the roots of unity.
Then the regulator RK , up to an algebraic multiple, is given by

∣
∣
∣
∣
∣
∣
∣
∣

1 log |u(1)1 | · · · log |u(1)r |
...

...
...

...

1 log |u(r+1)
1 | · · · log |u(r+1)

r |

∣
∣
∣
∣
∣
∣
∣
∣

.

Clearly, by Theorem 21.1, the regulator RK is transcendental.
Further,

πr2Rk = F
(

log(−1), log |u(1)1 |, . . . , log |u(r+1)
r |

)

where F is a polynomial with algebraic coefficients whose constant term is zero.
Assume that the weak Schanuel’s conjecture is true. Then by Theorem 21.1,
Ress=1ζK(s) is necessarily transcendental. �

In the p-adic set-up, it is conjectured that the p-adic regulator rank of any
number field K is equal to the rank of its unit group (see [89], for instance).
This is referred to as Leopoldt’s conjecture. Waldschmidt [129] has shown that
the p-adic regulator rank is at least half of the expected value.

When K is a totally real field, then Leopoldt’s conjecture is equivalent to the
non-vanishing of the p-adic regulator of K (which is well-defined up to sign).

Leopoldt’s conjecture is known to be true for abelian extensions K|k where
k is either Q or imaginary quadratic (see [5, 24]). The proof in the abelian
case uses the p-adic analog of Baker’s theorem and the notion of Dedekind
determinants. We shall come across these determinants in a later chapter. The
conjecture is open for arbitrary number fields.

We note that Leopoldt’s conjecture is also related to the non-vanishing of
special values of certain p-adic L-functions. We refer to the book of Washington
[130] (see also the work of Colmez [35]) for further details.

One can extend these study to special values of Artin L-functions. The
guideline for such an investigation is a program envisaged by Stark [118]. We
refer to [95] for a more detailed account of Artin L-functions. Let K/k be Galois
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extension of number fields with Galois group G = Gal(K/k). Corresponding to
any finite dimensional representation (φ, V ) of G with character χ, the Artin
L-function is defined by

L(s, χ,K/k) =
∏

P
det(1−N(P)−sφ(σβ)|V Iβ )

−1

where P runs over all the prime ideals in Ok, β is a prime ideal lying over P ,
Iβ is its inertia group and σβ is the associated Frobenius element in the Galois
group. Stark [118] has made the following conjecture:

Conjecture (Stark). Suppose χ does not contain the trivial character χ0 as
a constituent. Then

L(1, χ,K/k) =
W (χ̄)2aπb

(|dk|N(f))1/2
θ(χ̄)R(χ̄).

We refer to the article of Stark for descriptions of the terms involved. Stark
proved the above conjecture for all rational characters.

Theorem 21.12 Assume that the weak Schanuel’s conjecture is true. Then for
any rational nontrivial irreducible character χ, L(1, χ,K/k) is transcendental.

Proof. Let χ be a character as above. Then as proved by Stark

L(1, χ,K/k) =
W (χ̄)2aπb

(|dk|N(f))1/2
θ(χ̄)R(χ̄).

In the expression on the right-hand side, there are two possible transcendental
objects, namely πb and R(χ). But we have a description of the number R(χ).
It is the determinant of an a by a matrix whose entries are linear forms in
logarithms of absolute values of units in K and its conjugate fields. For
instance, when k is equal to Q, the entries of this matrix are given by

cij =
∑

σ∈G
aij(σ) log(|εσ|) where A(σ) = (aij(σ)) is a representation of G

whose character is χ and ε is a Minkowski unit. Since log(−1) = iπ, the residue
is the value of a polynomial of the form mentioned in Theorem 21.1 evaluated
at logarithms of algebraic numbers. It is classical that for any irreducible
character χ of G, for all t ∈ R, L(1 + it, χ,K/k) �= 0 and hence by appealing
to Theorem 21.1, we see that L(1, χ,K/k) is transcendental under the weak
Schanuel’s conjecture. �

For more details and other applications to transcendence of Petersson norms
of certain weight one modular forms, the reader may consult [58].

We end this chapter by mentioning a generalisation of Schanuel’s conjecture.
Let us first set up the preamble which motivates such a generalisation.

The conjecture of Schanuel is about the algebraic independence of the values
of the exponential function. Analogous to the exponential set-up, there has also
been progress in the elliptic world (see the survey article [127], for instance).
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For a Weierstrass ℘-function with algebraic invariants g2, g3 and field of
endomorphisms k, the following set

LE = {α ∈ C : ℘(α) ∈ Q ∪ {∞}}

is referred to as the set of elliptic logarithms of algebraic points on E. Here E is
the associated elliptic curve. Let Ω be the lattice of periods. This k-linear space
LE is the elliptic analog of the Q-linear space of logarithms of non-zero algebraic
numbers for the exponential case. The question of linear independence of elliptic
logarithms, analogous to Baker’s theorem, has been established by Masser for
the CM case [83] and Bertrand and Masser for the non-CM case [18].

The algebraic independence of the values of the Weierstrass ℘-function is
more delicate. When the Weierstrass ℘-function has complex multiplication,
the following analogue of the Lindemann–Weierstrass theorem has been proved
by Philippon [91] and Wüstholz [133].

Theorem 21.13 (Philippon/Wüstholz) Let ℘ be a Weierstrass ℘-function with
algebraic invariants g2 and g3 that has complex multiplication. Let k be its field
of endomorphisms. Let

α1, α2, . . . , αn

be algebraic numbers which are linearly independent over k. Then the numbers
℘(α1), . . . , ℘(αn) are algebraically independent.

For the non-CM case, so far only the algebraic independence of at least n/2
of these numbers is known by the work of Chudnovsky [33].

In his seminal work, Nesterenko proved the following general result (see [86,
Chap. 3, Corollary 1.6]) which involves both exponential and elliptic functions.

Proposition 21.14 Let ℘ be a Weierstrass ℘-function with algebraic invariants
g2 and g3 and with complex multiplication by an order in the field k. If ω is any
period of ℘, η the corresponding quasi-period and τ is any element of k which
is not real, then each of the sets

{π, ω, e2πiτ} {π, η, e2πiτ}
is algebraically independent.

With these background in mind, the following elliptic-exponential extension
of the conjecture of Schanuel has been suggested in [62].

Conjecture: Let ℘ be a Weierstrass ℘-function with algebraic invariants g2
and g3 and lattice Ω. Let k be its field of endomorphisms. Let

α1, α2, . . . , αr, αr+1, . . . αn
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be complex numbers which are linearly independent over k and are not in Ω.
Then the transcendence degree of the field

Q(α1, α2, . . . , αn, e
α1 , . . . , eαr , ℘(αr+1) . . . , ℘(αn))

over Q is at least n.

This conjecture is a special case of a more general conjecture formulated by
Bertolin [16] (one needs to specialise “conjecture elliptico-torique” on p. 206 of
[16] to the case of a single elliptic curve). We will also come across another
elliptic-exponential extension of Schanuel’s conjecture in Chap. 26.

It is worthwhile to mention that Schanuel also formulated an analogous con-
jecture for formal power series. This conjecture was proved by Ax [6] in 1971
which is the following:

Theorem 21.15 (J. Ax) Let y1, . . . , yn ∈ tC[[t]] be n formal power series which
are linearly independent over Q. Then the field extension

C(t)(y1, . . . , yn, exp(y1), . . . , exp(yn))

has transcendence degree at least n over C(t).

Furthermore, in the same paper, Ax considers the following conjecture:

Conjecture: Let y1, . . . , yn ∈ C[[t1, . . . , tm]] be Q-linearly independent. Then
the transcendence degree of the field

Q(y1, . . . , yn, exp(y1), . . . , exp(yn))

over Q is at least n+ r, where r is the rank of the n×m matrix
(
∂yi
∂tj

)

.

Clearly, the original Schanuel’s conjecture involving complex numbers is a
special case of the above. But Ax showed that the Schanuel’s conjecture is
actually equivalent to the above conjecture (see also [34]). Elliptic versions of
Ax’s results have been obtained by Brownawell and Kubota [23].

We end by noting that D. Roy has suggested an alternate algebraic approach
towards the weak Schanuel’s conjecture which is about the algebraic indepen-
dence of logarithms of algebraic numbers.

Let us first formulate the following homogeneous version of the weak
Schanuel’s conjecture: Let α1, . . . , αn be non-zero algebraic numbers such
that the numbers logα1, . . . , logαn are linearly independent over Q. Then for
any non-zero homogeneous polynomial P (X1, . . . , Xn) with rational coefficients,
P (logα1, . . . , logαn) is not equal to zero.

Now let M be an m × n matrix (λij) where each λij is the logarithm of a
non-zero algebraic number for 1 ≤ i ≤ m, 1 ≤ j ≤ n. For each such matrix, let
V be the Q-vector space generated by the mn entries of the above matrix. Let
r be the dimension of this space and let {e1, . . . , er} be a basis. Then

λij =

r∑

k=1

bijkek,
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where bijk ∈ Q and hence the matrix M is given by

∣
∣
∣
∣
∣
∣
∣

∑r
k=1 b11kek · · · ∑r

k=1 b1nkek
...

...
...

∑r
k=1 bm1kek · · · ∑r

k=1 bmnkek

∣
∣
∣
∣
∣
∣
∣

.

We now consider the following formal matrix M(for) given by

∣
∣
∣
∣
∣
∣
∣

∑r
k=1 b11kXk · · · ∑r

k=1 b1nkXk

...
...

...
∑r

k=1 bm1kXk · · · ∑r
k=1 bmnkXk

∣
∣
∣
∣
∣
∣
∣

with entries in the field Q(X1, . . . , Xr) where X1, . . . , Xr are variables.
The rank of this formal matrix M(for) associated with the matrix M is

referred to as the structural rank of M and is independent of the choice of basis
of V .

It is clear that the homogeneous weak Schanuel’s conjecture implies that the
rank of the matrix M is equal to its structural rank. D. Roy proved that the
converse also holds. Here is Roy’s theorem.

Theorem 21.16 (D. Roy) Suppose that for any matrix M with entries in log-
arithms of nonzero algebraic numbers, rank of M is equal to its structural rank.
Then the homogeneous weak Schanuel’s conjecture is true.

In this connection, Roy also proved that for any such matrix M , rank of M
is at least half of its structural rank. Furthermore, by working with matrices
having entries in the Q-vector space generated by 1 and logarithms of alge-
braic numbers, one can link the structural rank of such matrices to the weak
Schanuel’s conjecture. See Chap. 12 of [125] for a detailed discussion about these
results. We note that Roy (see [107]) has also suggested an alternate algebraic
approach towards the original Schanuel’s conjecture.

Finally, Schanuel’s conjecture has been found to have implications in other
contexts like model theory and commensurability of locally symmetric spaces
(see [93, 136] for instance).

Exercises

1. Show that Schanuel’s conjecture implies the four exponentials conjecture.

2. Assuming Schanuel’s conjecture, show that ee is transcendental.

3. Assuming Schanuel’s conjecture, and not using Nesterenko’s theorem,
show that π and log π are algebraically independent.

4. Let β1, . . . , βn be linearly independent algebraic numbers over the
rationals. Suppose that α1, . . . , αm are algebraic numbers such that
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logα1, . . . , logαm are linearly independent over Q. Assuming Schanuel’s
conjecture, show that

eβ1 , . . . , eβn , logα1, . . . , logαm

are algebraically independent over the rationals.

5. Let z1, . . . , zn be complex numbers. Show that z1, . . . , zn are algebraically
independent over the rationals if and only if they are algebraically inde-
pendent over the field of algebraic numbers.

6. Define a sequence of numbers En recursively as follows: E0 = 1 and
En = exp(En−1) for n ≥ 1. Show for any finite subset A of the natural
numbers, the set of numbers Ea with a ∈ A is an algebraically independent
set of numbers, assuming Schanuel’s conjecture.

7. Define a sequence of number Pn recursively as follows: P0 = π, and Pn =
πPn−1 for n ≥ 1. Assuming Schanuel’s conjecture, show that any finite
subset of the set of Pn’s is algebraically independent over the rationals.

8. Show that if α1, . . . , αn are Q-linearly independent algebraic num-
bers, then Schanuel’s conjecture is true. (This is a consequence of the
Lindemann–Weierstrass theorem. See Theorem 4.1 in Chap. 4.)



Chapter 22

Transcendental Values
of Some Dirichlet Series

There is a large collection of Dirichlet series defined purely arithmetically that
have been conjectured to have analytic continuation and functional equations.
Deligne [38] has formulated a far-reaching conjecture regarding the special val-
ues of these series at special points in the complex plane and one would like
to know if these special values are transcendental numbers or not. The most
notable example is the L-function attached to an elliptic curve and the Birch
and Swinnerton-Dyer conjecture. In a lecture at the Stony Brook conference on
number theory in the summer of 1969, Sarvadaman Chowla posed the following
question. Does there exist a rational-valued arithmetic function f , periodic with
prime period p such that

∞∑

n=1

f(n)

n

converges and equals zero? In 1973, Baker, Birch and Wirsing ([10], see also
[29], [31] and [101]) answered this question in the following theorem:

Theorem 22.1 If f is a non-zero function defined on the integers with algebraic
values and period q such that f(n) = 0 whenever 1 < (n, q) < q and the q-th
cyclotomic polynomial is irreducible over Q(f(1), . . . , f(q)), then

∞∑

n=1

f(n)

n
�= 0.

In particular, if f is rational valued, the second condition holds trivially.
If q is prime, then the first condition is vacuous. Thus, the theorem resolves
Chowla’s question. We shall present a proof of this theorem in the next chapter.
In 2001, Adhikari et al. [2] noted that the theory of linear forms in logarithms
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can be used to show that in fact, the sum in the above theorem is transcendental
whenever it converges.

Let us first derive a necessary and sufficient condition for the sum in the
above theorem to converge. To this end, we use the Hurwitz zeta function.
Recall that for real x with 0 < x ≤ 1, this function is defined as the series

ζ(s, x) :=

∞∑

n=0

1

(n+ x)s
,

for �(s) > 1. Note that the series ζ(s, 1) is the familiar Riemann zeta function.
Hurwitz (see [4], for instance) proved that this function extends meromorphi-
cally to the complex plane with a simple pole at s = 1 and residue 1. Moreover,
we have the following important fact:

lim
s→1+

ζ(s, x) − 1

s− 1
= −Γ′(x)

Γ(x)
.

This is easily seen as follows:

lim
s→1+

ζ(s, x)− ζ(s) =
1

x
+

∞∑

n=1

(
1

n+ x
− 1

n

)

.

From the Hadamard factorisation of 1/Γ(z),

1

Γ(z)
= zeγz

∞∏

n=1

(

1 +
z

n

)

e−z/n,

we have by logarithmic differentiation,

−Γ′

Γ
(z) = γ +

1

z
+

∞∑

n=1

(
1

n+ z
− 1

n

)

.

Thus,

lim
s→1+

ζ(s, x) − ζ(s) = −γ − Γ′

Γ
(x).

Observe that in the special case that x = 1, we deduce that

Γ′(1) = −γ.
Recall that by partial summation, we have

ζ(s) = s

∫ ∞

1

[x]

xs+1
dx.

The integral can be written as

s

s− 1
− s

∫ ∞

1

{x}
xs+1

dx,
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so that

lim
s→1+

ζ(s) − 1

s− 1
= 1−

∫ ∞

1

{x}
x2

dx.

This last integral is easily evaluated as

lim
N→∞

∫ N

1

{x}
x2

dx = lim
N→∞

(

logN −
N−1∑

n=1

n

∫ n+1

n

dx

x2

)

= lim
N→∞

(

logN −
N∑

n=2

1

n

)

= 1− γ.

Thus,

lim
s→1+

ζ(s)− 1

s− 1
= γ.

Putting everything together, we obtain

Theorem 22.2

lim
s→1+

ζ(s, x) − 1

s− 1
= −Γ′(x)

Γ(x)
.

Let f be any periodic arithmetic function with period q, that is

f : N → C such that f(n+ q) = f(n) ∀n.
Then for s ∈ C with �(s) > 1, let L(s, f) be defined as

L(s, f) =

∞∑

n=1

f(n)

ns
.

Now running over arithmetic progressions modulo q, we have the following ex-
pression:

L(s, f) = q−s
q
∑

a=1

f(a)ζ(s, a/q), �(s) > 1.

We can write this expression as

L(s, f) = q−s
q
∑

a=1

f(a)

[

ζ(s, a/q)− 1

s− 1

]

+
q−s

s− 1

q
∑

a=1

f(a).

This and partial summation yields the following theorem.

Theorem 22.3 Let f be any periodic arithmetic function with period q. Then
the series

∞∑

n=1

f(n)

n
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converges if and only if
q
∑

a=1

f(a) = 0,

and in the case of convergence, the value of the series is

−1

q

q
∑

a=1

f(a)
Γ′

Γ
(a/q).

This gives us an interesting corollary even in the classical case:

Theorem 22.4 For a non-trivial character χ mod q,

L(1, χ) = −1

q

∑

amod q

χ(a)
Γ′

Γ
(a/q).

Let us now come back to the type of functions considered in the theorem of
Baker, Birch and Wirsing. We are now ready to analyse the series:

∞∑

n=1

f(n)

ns
= q−s

q
∑

a=1

f(a)ζ(s, a/q).

By the previous theorem, we have that

q
∑

a=1

f(a) = 0

is a necessary and sufficient condition for the convergence of the series at s = 1.
So let us assume that f satisfies the above. Then we have the following expres-
sion:

∞∑

n=1

f(n)

n
= −1

q

q
∑

a=1

f(a)
Γ′

Γ
(a/q).

We now try to derive an alternate expression for the above series as we did
for L(1, χ) earlier. As before for any such periodic function f with period q, let

f̂(n) =
1

q

q
∑

m=1

f(m)e−2πimn/q

be its Fourier transform. By orthogonality, we have

f(n) =

q
∑

m=1

f̂(m)e2πimn/q.

Note that

f̂(q) = 0 as

q
∑

a=1

f(a) = 0.
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Carrying out the explicit evaluation for L(1, f) as done earlier for L(1, χ),
we immediately have the following:

Theorem 22.5 Let f be any function defined on the integers and with period q.
Assume further that

q
∑

a=1

f(a) = 0.

Then,
∞∑

n=1

f(n)

n
= −1

q

q
∑

a=1

f(a)
Γ′

Γ
(a/q)

= −
q−1
∑

m=1

f̂(m) log(1− e2πim/q).

Thus, in particular, if f takes algebraic values, the series is either zero or tran-
scendental.

Thus we see that when f takes algebraic values, then the above series is
a linear form in logarithms of algebraic numbers for which Baker’s theorem
applies. In particular, it is either zero or transcendental. The former case is
ruled out in the case when f is rational-valued and f(a) is equal to zero for
1 < (a, q) < q. This is by the theorem of Baker, Birch and Wirsing which we
shall derive in the next chapter. However, this observation allows us to deduce
the following:

Theorem 22.6 Let q > 1. At most one of the φ(q) values

Γ′

Γ
(a/q), 1 ≤ a < q, (a, q) = 1,

is algebraic.

Proof. If we choose two distinct residue classes a, b mod q, and set f(a) = 1,
f(b) = −1 with f zero otherwise, then, f satisfies the conditions of Theo-
rem 22.5. Thus, the sum is either zero or transcendental. However, as noted
earlier, the former case is ruled out by the theorem of Baker, Birch and Wirsing.
Thus, it is transcendental. By the previous theorem, the sum is equal to

1

q

[
Γ′

Γ
(b/q)− Γ′

Γ
(a/q)

]

.

In this way, we see that the difference of any two values in the set

Γ′

Γ
(a/q), (a, q) = 1,

is transcendental. Thus, if there were at least two algebraic numbers in this set,
we derive a contradiction. �
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Presumably, all the numbers in the set are transcendental. However, one
is unable to establish this at present. Using Theorem 22.4, we can “solve” for
Γ′(a/q)/Γ(a/q) using the orthogonality relations for Dirichlet characters. To
this end, we must first evaluate the sum

Sq :=
∑

(a,q)=1

Γ′

Γ
(a/q).

We use the identity

Γ(z)Γ(z + 1/q) · · ·Γ(z + (q − 1)/q) = q1/2−qz(2π)(q−1)/2Γ(qz).

Logarithmically differentiating this and setting z = 1/q, we get

q
∑

a=1

Γ′

Γ
(a/q) = −q log q − γq,

where we have used the fact that Γ′(1) = −γ. Thus,
∑

d|q
Sq/d = −q log q − γq

and we may apply Möbius inversion to solve for Sq:

Sq = −
∑

d|q
μ(d)

( q

d
log

q

d
+ γ

q

d

)

= −γφ(q)−
∑

d|q
μ(d)

q

d
log

q

d
.

We are now ready to prove:

Theorem 22.7 For (a, q) = 1, we have

−φ(q)
q

Γ′

Γ
(a/q) = −Sq

q
+
∑

χ�=χ0

χ(a)L(1, χ).

Proof. This is immediate from the orthogonality relations and our evaluation
of Sq. �

The interesting aspect of this formula is that it can be re-written as follows:

−Γ′

Γ
(a/q) = γ +

q

φ(q)

∑

d|q

μ(d)

d
log

q

d
+

q

φ(q)

∑

χ�=χ0

χ(a)L(1, χ).

Apart from the γ on the right-hand side, we have a linear form in logarithms
with algebraic coefficients and thus we immediately deduce:

Theorem 22.8 For all q > 1 and (a, q) = 1, the number

Γ′

Γ
(a/q) + γ

is transcendental.
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Proof. Baker’s theorem tells us that it is either zero or transcendental. The
former is not possible since Γ′(x)/Γ(x) is a strictly increasing function for x > 0
(see Exercise 5 below). �

Exercises

1. Prove that

ζ(k, a/q) + (−1)kζ(k, 1− a/q) =
(−1)k−1

(k − 1)!

dk−1

dzk−1
(π cotπz)|z=a/q.

2. Show that dk−1

dzk−1 (π cotπz) is πk times a rational linear combination of
expressions of the cotr πz csc2s πz where r + 2s = k.

3. Conclude from the previous exercises that

ζ(k, a/q) + (−1)kζ(k, 1 − a/q) = ikπkαa

where αa is an element in the qth cyclotomic field Q(ζq).

4. Show that for an odd integer k > 1, ζ(k, 1/4) and ζ(k, 3/4) are linearly
independent over Q if and only if ζ(k)/πk is irrational.

5. Show that Γ′(x)/Γ(x) is a strictly increasing function for x > 0.



Chapter 23

The Baker–Birch–Wirsing
Theorem

We now give a detailed proof of the theorem of Baker, Birch and Wirsing
introduced in the previous chapter. We present a somewhat modified version
of their original proof by exploiting the properties of Dedekind determinants.
These determinants have remarkable applications in a number of contexts in
transcendence theory.

Theorem 23.1 Let G be any finite abelian group of order n and F : G → C

be any complex valued function on G. The determinant of the n × n matrix
given by

(

F (xy−1)
)

as x, y range over the group elements is called the Dedekind
determinant of F and is equal to

∏

χ

(
∑

x∈G
χ(x)F (x)

)

,

where the product is over all characters χ of G.

Proof. Let V be the set of all functions from G to C. This is an n-dimensional
Hilbert space over C with an inner product

< g, h >=
1

n

∑

x∈G
g(x)h(x).

Let Ĝ be the set of all characters of G. These form an orthonormal basis for
V . Now consider the linear map T : V → V whose values on a character χ are
given by

T (χ) =

[
∑

x∈G
χ(x)F (x)

]

χ.
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Clearly, the characters of G are eigenvectors of T and determinant of T is
equal to

∏

χ∈Ĝ

(
∑

x∈G
χ(x)F (x)

)

.

Now for every x ∈ G, let δx be the characteristic function of the set {x}. Then
the set of all δx as x runs through elements of G also forms an orthogonal basis
for V . We note that < δx, χ >=

1
nχ(x

−1) for any character χ of G and hence

δx =
1

n

∑

χ∈Ĝ
χ(x−1)χ.

We have

T (δx) =
1

n

∑

χ∈Ĝ
χ(x−1)T (χ)

=
1

n

∑

χ∈Ĝ
χ(x−1)

⎡

⎣
∑

y∈G
χ(y)F (y)

⎤

⎦χ

=
1

n

∑

χ∈Ĝ

∑

y∈G
χ(x−1y)F (y)χ

=
1

n

∑

χ∈Ĝ

∑

z∈G
χ(z−1)F (xz−1)χ

=
∑

z∈G
F (xz−1)

1

n

∑

χ∈Ĝ
χ(z−1)χ =

∑

z∈G
F (xz−1)δz.

Thus the matrix
(

F (xy−1)
)

x,y∈G is simply the matrix of T with respect to the

basis {δx : x ∈ G }. This proves the theorem. �

Let us now prove the Baker–Birch–Wirsing theorem. We are given a non-
zero periodic arithmetic function f with period q. Further, f takes algebraic
values and f(n) = 0 whenever 1 < (n, q) < q. Finally, we are given that the q-th
cyclotomic polynomial is irreducible over Q(f(1), . . . , f(q)). We need to show
that

∞∑

n=1

f(n)

n
�= 0.

Recall that the digamma function ψ(z) for z �= −n with n ∈ N is the

logarithmic derivative Γ′(z)
Γ(z) of the Γ-function and is given by

−ψ(z) = γ +
1

z
+
∑

n≥1

(
1

n+ z
− 1

n

)

.
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As shown in the previous chapter, the series converges if and only if

q
∑

a=1

f(a) = 0

and in which case, we note that

L(1, f) =

∞∑

n=1

f(n)

n
=

−1

q

∑

(a,q)=1

f(a)ψ(a/q)− f(q)ψ(1)

q
.

Since ψ(1) = −γ and
∑q

a=1 f(a) = 0, we have

f(q) = −
∑

(a,q)=1

f(a)

so that

L(1, f) =
−1

q

∑

(a,q)=1

f(a)(ψ(a/q) + γ).

Also

L(1, f) = −
q−1
∑

a=1

f̂(a) log(1− ζaq ),

where f̂ is the Fourier transform of f and ζq = e2πi/q. Let F be the field
Q(f(1), . . . , f(q)) and

log(1− ζα1
q ), . . . , log(1− ζαt

q )

be a maximal F -linear independent subset of

{log(1− ζaq ) | 1 ≤ a ≤ q − 1 }.
Then

log(1 − ζaq ) =

t∑

b=1

Aab log(1− ζαb
q ),

where Aab ∈ F . Then by the given hypothesis, we have

β1 log(1 − ζα1
q ) + · · ·+ βt log(1− ζαt

q ) = 0

where

βb =

q−1
∑

a=1

f̂(a)Aab.

Since f takes values in F , f̂ is algebraic valued. Thus by Baker’s theorem on
linear forms in logarithms, we have

βb =

q−1
∑

a=1

f̂(a)Aab = 0, 1 ≤ b ≤ t.
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Then for any automorphism σ ∈ Gal(F (ζq)/F ), we have

q−1
∑

a=1

σ(f̂(a))Aab = 0, 1 ≤ b ≤ t,

and hence
q−1
∑

a=1

σ(f̂(a)) log(1− ζaq ) = 0.

Let G be the Galois group of the extension F (ζq)/F . We note that G is isomor-
phic to the group (Z/qZ)∗. For (h, q) = 1, let σh ∈ G be such that

σh(ζq) = ζhq .

Define fh(n) := f(nh−1) for (h, q) = 1. Then, we have

∑

(a,q)=1

fh(a) = −fh(q) = −f(q) and σh(f̂(n)) = f̂h(n).

Hence

L(1, fh) =

∞∑

n=1

fh(n)

n
= −

q−1
∑

a=1

f̂h(a) log(1− ζaq )

= −
q−1
∑

a=1

σh(f̂(a)) log(1 − ζaq ) = 0

for all (h, q) = 1. This gives that

L(1, fh) =
−1

q

∑

(a,q)=1

fh(a)(ψ(a/q) + γ) = 0.

Hence by making a change of variable, we have

∑

(a,q)=1

f(a)(ψ(ah/q) + γ) = 0, (23.1)

where it is implied that ah is taken to be the reduced residue class b (mod q)
satisfying

ah ≡ b (mod q).

Now
A := (ψ(ah/q) + γ)(ah,q)=1

is a Dedekind matrix on the group H= (Z/qZ)∗ and its determinant (up to a
sign) is given by

∏

χ∈Ĥ

(
∑

h∈H

χ(h)(ψ(h/q) + γ)

)

.



The Baker–Birch–Wirsing Theorem 135

If we show that the matrix A is invertible, then f vanishes everywhere and we
are done. For a non-principal character χ of H,

∑

h∈H

χ(h) (ψ(h/q) + γ) = −q L(1, χ).

It is classical that L(1, χ) �= 0 for χ �= 1. Thus we need only to verify that

∑

h∈H

(ψ(h/q) + γ) �= 0. (23.2)

Since ψ(x) is an increasing function and ψ(1) = −γ, we have the above identity.
This completes the proof of the theorem.

In a recent work [63], a generalisation of the above theorem has been derived.

Exercises

1. Let q be an odd prime. Using the fact that the numbers

ηa :=
sinπa/q

sinπ/q
, 1 < a < q/2

are multiplicatively independent units in the cyclotomic field, Q(e2πi/q),
show that the numbers

log ηa, 1 < a < q/2

are linearly independent over the field of algebraic numbers.

2. Apply the previous exercise to show that if f is a rational valued even
periodic function with a prime period q, then

∞∑

n=1

f(n)

n
�= 0.

3. If f as an odd rational-valued function periodic function with a prime
period q, then show that

∞∑

n=1

f(n)

n
�= 0.

In fact, when the sum converges, show that it is an algebraic multiple of π.

4. Show that the two conditions in the statement of the Baker–Birch–Wirsing
theorem, namely f(n) = 0 whenever 1 < (n, q) < q and the q-th cyclotomic
polynomial is irreducible over Q(f(1), . . . , f(q)), are both necessary.



Chapter 24

Transcendence of Some
Infinite Series

In this chapter, we investigate the transcendental nature of the sum

∑′

n∈Z

A(n)

B(n)

where A(x), B(x) are polynomials with algebraic coefficients with degA < degB
and the sum is over integers n which are not zeros of B(x). We relate this
question to a conjecture originally due to Schneider. A stronger version of
this conjecture was later suggested by Gel’fond and Schneider. In certain cases,
these conjectures are known and this allows one to obtain some unconditional
results of a general nature.

Let A(x) and B(x) be polynomials in Q[x] with degA < degB so that B(x)
has no integral zeros. We will evaluate the infinite series

∑

n∈Z

A(n)

B(n)
, (24.1)

interpreted as

lim
N→∞

∑

|n|≤N

A(n)

B(n)
.

We seek to determine under what conditions the sum is a transcendental num-
ber. One could also allow B(x) to have integral zeros and exclude these integral
zeros from the sum (24.1). The methods described in this chapter apply to
this general setting also. We will follow the treatment given by Murty and
Weatherby in [100].
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In 1934, Gel’fond [47] and Schneider [110] independently solved Hilbert’s
seventh problem which predicted the following result and which we have seen
before: if α is an algebraic number �= 0, 1 and β is an irrational algebraic number,
then αβ is transcendental. This result has some interesting consequences. For
example, by taking α = −1 and β = −i = −√−1, we deduce the transcendence
of eπ. Similarly, one can deduce the transcendence of eπβ for any real algebraic
number β. Based on their investigations, Gel’fond and Schneider were led to
formulate some general conjectures that provided a concrete goal for researchers
in subsequent decades. Let us begin with the following conjecture of Schneider:

If α �= 0, 1 is algebraic and β is an algebraic irrational of degree d ≥ 2, then

αβ , . . . , αβ
d−1

are algebraically independent.

In 1949, Gel’fond [48] proved that if d ≥ 3, then the transcendence degree of

Q(αβ , . . . , αβ
d−1

)

is at least 2. Thus, in the case d = 3, this proves Schneider’s conjecture. Building
on earlier work of Chudnovsky [33] and Philippon [92], Diaz [43] showed that

tr.deg.Q(αβ , . . . , αβ
d−1

) ≥
[
d+ 1

2

]

.

Thus, we have crossed the “midway” point in our journey towards Schneider’s
conjecture.

Shortly after their solution to Hilbert’s seventh problem, Gel’fond and
Schneider were led to formulate a more general conjecture:

If α is algebraic and unequal to 0, 1, and β is algebraic of degree d ≥ 2, then

logα, αβ , . . . , αβ
d−1

are algebraically independent.

We refer to this assertion as the Gel’fond–Schneider conjecture. We point
out that, as will be seen, for our purposes α is a root of unity and we use these
conjectures only in a special case.

In the study of the transcendence properties of the series (24.1), the case
where the roots of B(x) are rational and non-integral is easy. As will be evi-
dent from the discussion below, the sum in this case is equal to πP (π), where
P (x) ∈ Q[x]. Thus, if all the roots are rational and non-integral, the sum (24.1)
is either zero or transcendental. We seek to establish a similar theorem in the
general case when B(x) has irrational roots.
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One of the main theorems of this chapter is the following:

Theorem 24.1 Let A(x), B(x) ∈ Q[x] with degA < degB, A(x) coprime to
B(x), and A(x) not identically zero. Suppose that the roots of B(x) are given
by −r1, . . . ,−rl ∈ Q \Z and −α1, . . . ,−αk /∈ Q so that all roots are simple and
αi ± αj /∈ Q for i �= j. If k = 0, then the series

S =
∑

n∈Z

A(n)

B(n)

is an algebraic multiple of π. If k ≥ 1, then Schneider’s conjecture implies that
S/π is transcendental and the Gel’fond–Schneider conjecture implies that S and
π are algebraically independent.

Proof. We begin the proof with the following two observations. The first is
that

π cotπx =
∑

n∈Z

1

n+ x
,

which is valid for x /∈ Z. Now,

cotπx = i
eiπx + e−iπx

eiπx − e−iπx
= i

e2πix + 1

e2πix − 1
= i+

2i

e2πix − 1
,

and this will be useful below. The second is that by the theory of partial
fractions, we can write

A(x)

B(x)
=

l∑

m=1

dm
x+ rm

+

k∑

j=1

cj
x+ αj

.

By direct calculation, our series divided by π is equal to

i

⎛

⎝

k∑

j=1

cj
e2πiαj + 1

e2πiαj − 1
+

l∑

m=1

dm
e2πirm + 1

e2πirm − 1

⎞

⎠ ,

where each cj and dm is in Q \ {0}. If all of the roots are rational, the first sum
is empty and S/π is algebraic which proves the first assertion.

Assume that B(x) has at least one irrational root and suppose that the sum
S is an algebraic multiple of π. We have

S/π − i

l∑

m=1

dm
e2πirm + 1

e2πirm − 1
= i

k∑

j=1

cj
e2πiαj + 1

e2πiαj − 1

= i
k∑

j=1

cj + 2i
k∑

j=1

cj
e2πiαj − 1
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so that

k∑

j=1

cj
e2πiαj − 1

=
1

2i

⎛

⎝S/π − i

l∑

m=1

dm
e2πirm + 1

e2πirm − 1
− i

k∑

j=1

cj

⎞

⎠ = θ ∈ Q.

By assumption, [Q(α1, . . . , αk) : Q] = d > 1. Now by the theorem of the
primitive element, there is a β ∈ Q of degree d such that Q(α1, . . . , αk) = Q(β).
Thus, we have the equations

αj =

d−1∑

a=0

ra,jβ
a

where each ra,j ∈ Q. Let us chose an integer M ∈ Z such that

αj =
1

M

d−1∑

a=0

na,jβ
a

where each na,j ∈ Z. Let α = eπi/M . If Schneider’s conjecture is true, then the
numbers

αβ , . . . , αβ
d−1

are algebraically independent and hence

α2β , . . . , α2βd−1

are also algebraically independent. Define xa := α2βa

= e2πiβ
a/M for a =

1, . . . , d− 1 so that

e2πiαj = e
2πi
M

∑d−1
a=0 na,jβ

a

= γjx
n1,j

1 · · ·xnd−1,j

d−1

where γj = e2πin0,j/M is a root of unity.
Making this substitution, we have

θ =

k∑

j=1

cj

γjx
n1,j

1 · · ·xnd−1,j

d−1 − 1
.

This implies that all of the xi’s cancel in some fashion leaving only an algebraic
number. We will now show that this does not occur under the conditions of our
theorem.

Let us examine the function

F (X1, . . . , Xd−1) =

k∑

j=1

cj

γjX
n1,j

1 · · ·Xnd−1,j

d−1 − 1
.

If we can show that F is not constant, then our sum actually contains some
variables and we are done. We show that F is not constant by examining F at
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some special points. Let y be a new indeterminate. For some integral values
e1, . . . , ed−1 to be specified later, let Xi = yei . We have that

F (ye1 , . . . , yed−1) =

k∑

j=1

cj
γjynj ·e − 1

where nj = (n1,j , . . . , nd−1,j) and e = (e1, . . . , ed−1). For any nj ·e < 0, we have

1

γjynj ·e − 1
= −1− 1

γ−1
j y−nj ·e − 1

so that

F (ye1 , . . . , yed−1) = −
∑

nj·e<0

cj +

k∑

j=1

cj
sgn(nj · e)

γ
sgn(nj ·e)
j y|nj·e| − 1

(24.2)

where sgn(x) = 1 if x ≥ 0 and −1 otherwise. If every power of y that appears
in the second sum is different and non-zero, then we can group each summand
over a common denominator and notice that the degree of the numerator will
be less than the degree of the denominator. It is easy to see that if the function
above in (24.2) (as a function of y) is constant, then each cj = 0, which is
a contradiction. Hence, if we can guarantee the condition that each |nj · e|
is different and non-zero, then our function is not constant, and therefore the
transcendental part of our original series does not vanish and we are done.

We now specify e. We wish to choose integers ei such that nj · e �= ±nj′ · e
for j �= j′. We also need each nj · e �= 0 as well. Thus, we need e which
simultaneously satisfies

(nj ± nj′ ) · e �= 0

nj · e �= 0.

To find such an e, we use a lattice point argument. For positive integer D, let
ID = (0, D]. Examine the box BD = Id−1

D which contains a total of Dd−1 lattice
points. We wish to avoid points which satisfy the equations

(nj ± nj′ ) · e = 0

nj · e = 0.

Our conditions on the irrational roots ensure that nj ± nj′ �= 0 so that none of
these equations is trivially satisfied. There are at most Dd−2 lattice points in

BD which satisfy each equation. We have 2

(

k
2

)

equations of the first form

and k equations of the second type. Thus for D large enough, we have at least

Dd−1 −
(

k + 2

(
k
2

))

Dd−2 > 1
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lattice points to choose from for e. Thus, there exists such an e which shows
that our function F is not constant. This shows that θ, and therefore S/π
is transcendental and we have the second assertion of our theorem. To show
the third assertion, we observe that the Gelfond–Schneider conjecture predicts
that the d numbers

log(α), αβ , . . . , αβ
d−1

are algebraically independent. In our setting, this conjecture implies that π and
x1, . . . , xd−1 are algebraically independent which completes the argument. �

The condition that B(x) has only non-integral roots is not a serious con-
straint. In fact, it can easily be removed in some cases if we understand that
we are considering sums

∑′

n∈Z

A(n)

B(n)
(24.3)

where the dash on the sum means that we sum over only those integers n which
are not roots of B(x). More precisely, we now indicate how Theorem 24.1 is
valid (partially) if we remove the restriction that B(x) has no integral roots
and we interpret the sum (24.3) as omitting the integral zeros of B(x). Indeed,
suppose that −n1, . . . ,−nt are all the integral roots of B(x). After expanding
A(x)/B(x) in partial fractions, we encounter three types of sums:

∑′

n∈Z

1

n+ ni
,
∑′

n∈Z

1

n+ ri
and

∑′

n∈Z

1

n+ αi
. (24.4)

Clearly, in relation to transcendence, the first sum above has no effect.
The second and third sums of (24.4) are

π cotπri −
t∑

j=1

1

nj + ri
and π cotπαi −

t∑

j=1

1

nj + αi
.

Since the second sum for each is algebraic, it is clear that when B(x) has at
least one integral zero we will obtain a similar conclusion to the last part of
Theorem 24.1 where there are no integral zeroes. More precisely, in the same
setting of Theorem 24.1 with k ≥ 1, allowing B(x) to possibly have integral
roots, the Gelfond–Schneider conjecture implies that the sum (24.3) and π are
algebraically independent.

Since the Gelfond–Schneider conjecture is still far away from being est-
ablished, and we are somewhat “nearer” to the Schneider conjecture, it is
reasonable to ask what can be said about the number S in the previous theorem
assuming this weaker conjecture. Here one has the following.

Theorem 24.2 Fix nonconstant polynomials A1(x), A2(x), B1(x), B2(x) ∈
Q[x] so that Ai(x) has no common factors with Bi(x), deg(Ai) < deg(Bi)
and the functions A1(x)/B1(x), A2(x)/B2(x) are not scalar multiples. Write
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B(x) = lcm(B1(x), B2(x)) and suppose that B(x) has only simple irrational
roots given by −α1, . . . ,−αk such that αi ± αj /∈ Q for i �= j. If Schneider’s
conjecture is true, then the quotient

(
∑

n∈Z

A1(n)

B1(n)

)

/

(
∑

n∈Z

A2(n)

B2(n)

)

is transcendental.

Proof. We first work with the case that B1(x) and B2(x) are scalar multiples.
Without loss of generality, we can assume that B1(x) = B2(x) = B(x). By
partial fractions we write

A1(x)

B(x)
=

k∑

j=1

cj
x+ αj

and

A2(x)

B(x)
=

k∑

j=1

Cj
x+ αj

for some cj , Cj ∈ Q. As in the proof of Theorem 24.1 , we have

∑

n∈Z

A1(n)

B(n)
= πi(β1 + 2θ1),

∑

n∈Z

A2(n)

B(n)
= πi(β2 + 2θ2)

where

β1 =

k∑

j=1

cj , β2 =

k∑

j=1

Cj , θ1 =

k∑

j=1

cj
e2πiαj − 1

, θ2 =

k∑

j=1

Cj
e2πiαj − 1

.

Theorem 24.1 implies that θ1 and θ2 are transcendental. If the ratio of the two
series is algebraic then

∑

n∈Z

A1(n)

B(n)
− λ

∑

n∈Z

A2(n)

B(n)
= 0

for some algebraic λ �= 0. Thus

2(θ1 − λθ2) = λβ2 − β1.

We now focus on

θ1 − λθ2 =

k∑

j=1

cj − λCj
e2πiαj − 1

.

Similar to the proof of Theorem 24.1, we see that θ1 − λθ2 is algebraic only
if cj − λCj = 0 for each j. This implies that A1(x) = λA2(x) which gives a
contradiction.
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Next we assume that B1(x) �= αB2(x) for any algebraic number α. That is,
without loss of generality, B2(x) has a root R such that B1(R) �= 0. Suppose
that the quotient

(
∑

n∈Z

A1(n)

B1(n)

)

/

(
∑

n∈Z

A2(n)

B2(n)

)

is algebraic. Inserting the appropriate missing factors to each numerator respec-
tively, we have that the quotient

(
∑

n∈Z

Ã1(n)

B(n)

)

/

(
∑

n∈Z

Ã2(n)

B(n)

)

is algebraic. We see that we are in a situation close to the previous case. We
remark that in the previous case, Ai(x) need not be coprime with Bi(x) = B(x).
If there were common factors, some of the (say) cj ’s would simply be zero and
we would still obtain the same contradiction. With this in mind, if the quotient
of series is algebraic, then according to the previous case, there is a non-zero
λ ∈ Q such that

Ã1(x)

B(x)
= λ

Ã2(x)

B(x)

which simplifies to
A1(x)

B1(x)
= λ

A2(x)

B2(x)
.

Since R is a pole of the right side but not the left, we have a contradiction and
we are done. �

A simple corollary of Theorem 24.2 is that by assuming Schneider’s conjec-
ture, along with our condition on the irrational roots of B(x), one can establish
the transcendence of S with “at most one exception”.

Both the Schneider conjecture and the Gelfond–Schneider conjecture are
special cases of the far-reaching Schanuel’s conjecture. As discussed earlier,
this conjecture predicts that if the complex numbers x1, . . . , xn are linearly
independent over Q, then

tr.deg.Q(x1, . . . , xn, e
x1, . . . , exn) ≥ n.

An interesting consequence of this conjecture is that π and e are algebraically
independent. If x1, . . . , xn are algebraic numbers, the assertion of the Schanuel’s
conjecture is the Lindemann–Weierstrass theorem. Beyond this, the general
conjecture seems unreachable at present. However, as mentioned in the intro-
duction, progress has been made on the Schneider conjecture and this allows
one to make a some of these results unconditional. To standardise the setting
throughout, let K1 = Q(α1, . . . , αk), the field generated by the roots of B(x),
and let K2 be K1 adjoin the coefficients of A(x) and B(x). Restricting our-
selves to the case where B(x) has simple roots, the following are unconditional
versions of Theorems 24.1 and 24.2, respectively.
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Theorem 24.3 In the same setting as Theorem 24.1, if [K1 : Q] = 2 or 3,
then S/π is transcendental. If K1 is an imaginary quadratic field, then S is
algebraically independent from π.

Theorem 24.4 In the same setting as Theorem 24.2, if [K1 : Q] = 2 or 3, then
the quotient

(
∑

n∈Z

A1(n)

B1(n)

)

/

(
∑

n∈Z

A2(n)

B2(n)

)

is transcendental.

Here is the proof of the above theorems. Since Schneider’s conjecture is
true for d = 2, 3 (Gel’fond), we immediately have Theorem 24.4 and the first
part of Theorem 24.3. To prove the second part of Theorem 24.3, we invoke the
theorem of Nesterenko [87] discussed before, namely, if Q(

√−D) is an imaginary

quadratic field with D > 0, then π and eπ
√
D are algebraically independent.

Thus, S is algebraically independent from π.
In the above theorems, we restricted ourselves to the case of simple roots.

We can also derive results in the case of multiple roots. For this, we shall need
the following lemma regarding derivatives of the cotangent function.

Lemma 24.5 For k ≥ 2 and x /∈ Z,

dk−1

dxk−1
(π cot(πx)) = (2πi)k

(
Ak,1

e2πix − 1
+ · · ·+ Ak,k

(e2πix − 1)k

)

where each Ai,j ∈ Z with Ak,1, Ak,k �= 0.

Proof. We have that

π cot(πx) = πi + 2πi/(e2πix − 1).

Differentiating this we obtain the result for k = 2. Assuming that the equality
is true for all k < t. Then by induction we have At−1,1, . . . , At−1,t−1 ∈ Z with
At−1,1, At−1,t−1 �= 0 such that

d

dx

(
dt−2

dxt−2
(π cot(πx))

)

= (2πi)t−1 d

dx

(
At−1,1

e2πix − 1
+ · · ·+ At−1,t−1

(e2πix − 1)t−1

)

.

This is equal to

(2πi)t
(

−At−1,1
e2πix

(e2πix − 1)2
− · · · − (t− 1)At−1,t−1

e2πix

(e2πix − 1)t

)

.

By subtracting and adding 1 from each numerator, we have

(2πi)t
(

−At−1,1
e2πix − 1 + 1

(e2πix − 1)2
− · · · − (t− 1)At−1,t−1

e2πix − 1 + 1

(e2πix − 1)t

)
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which equals (2πi)t times

(

− At−1,1

e2πix − 1
− At−1,1

(e2πix − 1)2
− · · · − (t− 1)At−1,t−1

(e2πix − 1)t−1
− (t− 1)At−1,t−1

(e2πix − 1)t

)

and this gives the result. �

Since
∑

n∈Z

1

n+ x
= π cot(πx) = πi +

2πi

e2πix − 1
,

a consequence of Lemma 24.5 is that for each k ≥ 2,

∑

n∈Z

1

(n+ x)k
=

(−1)k−1(2πi)k

(k − 1)!

(
Ak,1

e2πix − 1
+ · · ·+ Ak,k

(e2πix − 1)k

)

(24.5)

for Ak,j ’s as above.
We are now ready to consider the case of multiple roots. Let us start with

the following theorem.

Theorem 24.6 If the Gelfond–Schneider conjecture is true, then for any
A(x), B(x) lying in Q[x] with deg(A) < deg(B) and B(n) �= 0 for any n ∈ Z,
the series

∑

n∈Z

A(n)

B(n)

is either zero or transcendental.

Before we start the proof of the above theorem, it is useful to remark that
if B(x) has only rational (and not integral) roots, then it is not hard to see
from the previous lemma that the value of (24.1) is a polynomial in π with
algebraic coefficients and zero constant term. Thus, again the sum is either zero
or transcendental. So we can focus on the case of irrational roots. Indeed, if
we also allow −n1, . . . ,−nt to be integral roots and understand the sum over Z
excludes these integral roots, we are led to study, as before, sums of three types:

∑′

n∈Z

1

(n+ ni)k
,
∑′

n∈Z

1

(n+ ri)k
and

∑′

n∈Z

1

(n+ αj)k
. (24.6)

The third sum is

(−1)k−1

(k − 1)!
Dk−1(π cotπx)

∣
∣
∣
x=αi

−
t∑

j=1

1

(nj + αi)k
,

and the last sum is algebraic. A similar comment applies for the middle sum,
which turns out to be an algebraic multiple of πk plus a rational number. Finally,
the first sum is easily seen to be a rational multiple of πk plus a rational number.
Thus, in the case that there are integral roots and we sum over those n ∈ Z
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which exclude those roots, we are able to assert the stronger theorem that the
series is either given explicitly as an algebraic number, seen as the sum of the
remainder terms

∑t
j=1 above, or is transcendental under the assumption of

the Gelfond–Schneider conjecture.
We can now proceed to prove Theorem 24.6. Let −α1, . . . ,−αk ∈ Q \ Z

be the roots of B(x) with multiplicities m1, . . . ,mk, respectively. By partial
fractions we write

A(x)

B(x)
=

k∑

j=1

mj∑

l=1

cj,l
(x+ αj)l

.

By Lemma 24.5 we have that
∑

n∈ZA(n)/B(n) is equal to

πi

k∑

j=1

cj,1
e2πiαj + 1

e2πiαj − 1
+ (24.7)

k∑

j=1

mj∑

l=2

cj,l(−1)l−1(2πi)l

(l − 1)!

(
Al,1

e2πiαj − 1
+ · · ·+ Al,l

(e2πiαj − 1)l

)

.

Viewing this as a polynomial in π (with zero constant term), we analyse the
coefficients. By the primitive element theorem, there is an algebraic β of degree
d such that Q(β) = Q(α1, . . . , αk). Thus, as before, we can write each

αj =
1

M

d−1∑

a=0

na,jβ
a

for some integers M,na,j so that

e2πiαj =

d−1∏

a=0

e2πina,jβ
a/M .

Let α = eπi/M so that we have that each coefficient of a given power of

π in (24.7) lies in the field Q(αβ , . . . , αβ
d−1

). Since the Gelfond–Schneider

conjecture implies that π, αβ , . . . , αβ
d−1

are algebraically independent, we con-
clude that the sum is either zero or transcendental. This completes the proof of
Theorem 24.6.

One also has the following theorem in this context.

Theorem 24.7 Let A(x), B(x) ∈ Q[x] with deg(A) < deg(B), and A(x)
coprime to B(x). Suppose that the roots of B(x) are −r1, . . . ,−rt ∈ Q \ Z

and −α1, . . . ,−αk /∈ Q with k ≥ 1. Let N be the maximum order of all the
irrational roots and suppose that for distinct αi, αj of order N , αi ± αj /∈ Q. If
the Gelfond–Schneider conjecture is true, then the series

∑

n∈Z

A(n)

B(n)

and π are algebraically independent.
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Proof. The case that N = 1 is dealt with in Theorem 24.1, so assume that
N > 1. Let v1, . . . , vt and m1, . . . ,mk be the orders of the roots respectively.
By partial fractions we have

A(x)

B(x)
=

k∑

j=1

mj∑

l=1

cj,l
(x+ αj)l

+

t∑

s=1

vs∑

u=1

ds,u
(x+ rs)u

for some algebraic numbers cj,l, ds,u. By Lemma 24.5 the series

∑

n∈Z

A(n)/B(n)

equals

πi

k∑

j=1

cj,1
e2πiαj + 1

e2πiαj − 1

+
k∑

j=1

mj∑

l=2

cj,l(−1)l−1(2πi)l

(l − 1)!

(
Al,1

e2πiαj − 1
+ · · ·+ Al,l

(e2πiαj − 1)l

)

+πi

t∑

s=1

ds,1
e2πirs + 1

e2πirs − 1

+
t∑

s=1

vs∑

u=2

ds,u(−1)u−1(2πi)u

(u − 1)!

(
Au,1

e2πirs − 1
+ · · ·+ Au,u

(e2πirs − 1)u

)

.

We view this sum as a polynomial in π. We examine the coefficient of πN . Note
that the rational roots contribute algebraic numbers to this coefficient so we
ignore them for now. We focus on the transcendental portion of this coefficient
which comes from the irrational roots part of the above sum. That is, ignoring

the common factor of (−1)N−1(2i)N

(N−1)! , we examine

∑

ord(αj)=N

cj,N

(
AN,1

e2πiαj − 1
+ · · ·+ AN,N

(e2πiαj − 1)N

)

.

We proceed similar to the proof of Theorem 24.1 and let

M,β, d, na,j , α, γj , xa, Xa, y

and e be as described there. By showing that there is an e so that the function

F (y) =
∑

ord(αj)=N

cj,N

(
AN,1

γjynj·e − 1
+ · · ·+ AN,N

(γjynj·e − 1)N

)

=
∑

ord(αj)=N

cj,N

(
AN,1(γjy

nj ·e − 1)N−1 + · · ·+AN,N
(γjynj·e − 1)N

)
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is not constant, we show that the original coefficient of πN is transcendental.
By the remarks made above (24.2), we can assume that each nj · e is positive
(or else we could remove an algebraic number as we see in (24.2)). Note that
we can choose e such that each nj · e is distinct and non-zero. Thus, after
placing everything over a common denominator, we have a function in y whose
numerator has smaller degree than the denominator. If this function is constant
(and therefore equal to zero), it is easy to see that this implies that each cj,N
is zero which is a contradiction. Thus the coefficient of πN is transcendental.
Write

S =
∑

n∈Z

A(n)

B(n)
= CNπ

N + · · ·+ C1π

where each Ci ∈ Q(αβ , . . . , αβ
d−1

) and CN /∈ Q. Similar to before, the Gelfond–
Schneider conjecture implies algebraic independence of π and the coefficients,
Cj , thus S is transcendental and in fact algebraically independent with π. �

In the case of multiple roots, these methods allow one to obtain the following
theorem. It can be viewed as a natural generalisation of Euler’s classical theorem
that ζ(2k) ∈ π2k

Q, where ζ(s) is the Riemann zeta function. As before, let
K1 = Q(α1, . . . , αk), the field generated by the roots of B(x), and K2 be K1

adjoin the coefficients of A(x) and B(x).

Theorem 24.8 Let A(x), B(x) be polynomials with algebraic coefficients,
degA < degB, and A(x) is co prime to B(x). Let K1 be either an imagi-
nary quadratic field or Q. If B(x) has no integral roots, then

∑′

n∈Z

A(n)

B(n)

is either zero or transcendental. If B(x) has at least one integral root, then the
sum is either in K2 or transcendental. If B(x) has at least one irrational root
and all irrational roots satisfy the conditions of Theorem 24.1 that αi ± αj /∈ Q

for i �= j, then the sum is transcendental.

Proof. Suppose first that K1 = Q and that B(x) has no integral roots.
Using (24.5), the sum of the series is πP (π) for some polynomial P (x) ∈ Q̄[x].
If P (x) is identically zero, the sum is zero. If P (x) is not identically zero, then,
the sum is a non-constant polynomial in π and hence transcendental. Suppose
now that K1 is an imaginary quadratic field Q(

√−D) with D > 0 and B(x) has

no integral roots. Again using (24.5) and the identity
∑

n∈Z
1

(n+x) = πi e
2πix+1
e2πix−1 ,

our sum is of the form

πR(π, eπ
√
D/M )

where R(x, y) is a rational function with algebraic coefficients which is poly-
nomial in x and M is the same as was defined in the proof of Theorem 24.1.
If R(x, y) is identically zero, the sum is zero. If it is not identically zero, by
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Nesterenko’s theorem, it is transcendental since π and eπ
√
D are algebraically

independent. This completes the first part of the proof.
To treat the case that B(x) may have integer roots, we argue as in the earlier

theorems. In this context, we inject the observation made earlier with the three
sums (24.6) from which it was deduced that the sum in question is of the form

πP (π) + πR(π, eπ
√
D/M ) + algebraic number,

where the algebraic number lies in the field K2 being essentially a finite sum of
terms of the form

cj,l
(nt + αj)l

,
ds,u

(nt + rs)u
,

ep,q
(nt − np)q

where nt is an integral root, αj is an irrational root, rs is a rational root, np is an
integral root not equal to nt, and cj,l, ds,u, ep,q are the coefficients arising from
the partial fractions decomposition of A(x)/B(x). It is clear that the algebraic
number is an element of K2. Thus, if P (x)+R(x, y) = 0, then the sum is in K2,
otherwise the sum is transcendental by the earlier argument using Nesterenko’s
Theorem.

Finally, if the irrational roots of B(x) satisfy the conditions of Theorem 24.1,
then R(x, y) depends on the variable y in which case we can conclude the sum
is transcendental. �

There are easily identifiable situations when one can say definitively that
the sum is transcendental. For example, as in Theorem 24.8, if the irrational
roots of B(x) satisfy the conditions of Theorem 24.1 and generate an imaginary
quadratic field, then the sum is transcendental. But there are other cases when
the conditions of Theorem 24.1 may not be satisfied and still, one can check
directly that the sum is transcendental. (See for example, Exercise 2 below.)

Another illustration is given by a problem investigated by Bundschuh. In
1979, Bundschuh [26] studied the series

∑

|n|≥2

1

nk − 1
(24.8)

and showed using Schanuel’s conjecture that all of these sums are transcenden-
tal numbers for k ≥ 3. An examination of his proof shows that the “weaker”
Gelfond–Schneider conjecture is sufficient to deduce his result. The methods de-
scribed in this chapter allows one to deduce unconditionally that the sum (24.8)
is transcendental for k = 3, 4 and 6.

Exercises

1. Show that
∑

n∈Z

2n− 1

n2 − n− 1
= 0.
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2. Prove that

∑

n∈Z

1

An2 +Bn+ C
=

2π√
D

(

e2π
√
D/A − 1

e2π
√
D/A − 2(cos(πB/A))eπ

√
D/A + 1

)

is transcendental if A,B,C ∈ Z and −D = B2 − 4AC < 0. Deduce that
the value of the sum is a transcendental number.

3. From the previous exercise, deduce by taking appropriate limits that
ζ(2) = π2/6.

4. Deduce a formula for

∑

n∈Z

1

(An2 +Bn+ C)k

by treating the sum as a function of a continuous variable C and differen-
tiating the right-hand side with respect to C.

5. Show that at least one of

∞∑

n=2

1

n3 + 1
or

∞∑

n=2

1

n3 − 1
,

is transcendental.

6. Show that for k = 2, the sum (24.8) is a telescoping sum equal to 3/2.

7. Show that for k = 4, the sum (24.8) is equal to

7

4
− π

2
cothπ,

and that it is transcendental.



Chapter 25

Linear Independence
of Values of Dirichlet
L-Functions

We have seen before that for any non-trivial Dirichlet character χ mod q, L(1, χ)
is transcendental. In this chapter, we study the possible Q-linear relations
between these values of L(1, χ) as χ ranges over all non-trivial Dirichlet char-
acters mod q with q > 2. More precisely, following [97], we will prove the
following:

Theorem 25.1 The Q-vector space generated by the values L(1, χ) as χ ranges
over the non-trivial Dirichlet characters (mod q) has dimension ϕ(q)/2.

We note that the analogous question for the dimension of the Q-vector space
generated by these special values is not yet resolved except in certain special
cases. For instance, when (q, ϕ(q)) = 1, we know that the dimension of the
Q-vector space generated by these L-values is ϕ(q) − 1.

An important ingredient in the proof of the above theorem is the properties of
a set of real multiplicatively independent units in the cyclotomic field discovered
by K. Ramachandra (see Theorem 8.3 on p. 147 of [130] as well as [103]).
We shall give the details along the course of the proof.

We begin with a straightforward result from group theory which is an
interesting variant of Artin’s theorem on the linear independence of the irre-
ducible characters of a finite group G. As usual, we can define an inner product
on the space C(G) of complex-valued functions on G. Indeed, if f, g ∈ C(G),
then

(f, g) =
1

|G|
∑

x∈G
f(x)g(x).

M.R. Murty and P. Rath, Transcendental Numbers, DOI 10.1007/978-1-4939-0832-5 25,
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Lemma 25.2 Let G be a finite group. Suppose that
∑

χ�=1

χ(g)uχ = 0

for all g �= 1 and all irreducible characters χ �= 1 of G. Then uχ = 0 for all
χ �= 1.

Proof. For any irreducible character ψ �= 1, we can multiply our equation by
ψ(g)/|G| and sum over g �= 1 to obtain

0 =
1

|G|
∑

g �=1

ψ(g)
∑

χ�=1

χ(g)uχ =
∑

χ�=1

uχ

(

(χ, ψ)− ψ(1)χ(1)

|G|
)

.

Thus, by the orthogonality relations,

0 = uψ − ψ(1)

|G|
∑

χ�=1

uχχ(1) = uψ − ψ(1)

|G| S (say).

Hence, for every g �= 1, we have

0 =
1

|G|
∑

χ�=1

χ(g)χ(1)S.

Recalling that
1

|G|
∑

χ

χ(g)χ(1) = 0

unless g = 1, we deduce that S = 0. Hence uχ = 0 for all χ �= 1 as desired. �

Let us record the following version of Baker’s theorem which is amenable for
our applications.

Lemma 25.3 If α1, . . . , αn ∈ Q\{0} and β1, . . . , βn ∈ Q, then

β1 logα1 + · · ·+ βn logαn

is either zero or transcendental. The latter case arises if logα1, . . . , logαn are
linearly independent over Q and β1, . . . , βn are not all zero.

As before, for all purposes we interpret log as the principal value of the
logarithm with the argument lying in the interval (−π, π].

In particular, if logα1, . . . , logαn are linearly independent over Q, then they
are linearly independent over Q.

As an application of the above lemma, we first prove the following:

Lemma 25.4 Let α1, α2, . . . , αn be positive algebraic numbers. If c0, c1, . . . , cn
are algebraic numbers with c0 �= 0, then

c0π +
n∑

j=1

cj logαj

is a transcendental number and hence non-zero.
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Proof. Let S be such that {logαj : j ∈ S} is a maximal Q-linearly independent
subset of

logα1, . . . , logαn.

We write π = −i log(−1). We can re-write our linear form as

−ic0 log(−1) +
∑

j∈S
dj logαj ,

for algebraic numbers dj . By Baker’s theorem, this is either zero or transcen-
dental. The former case cannot arise if we show that

log(−1), logαj , j ∈ S

are linearly independent over Q. But this is indeed the case since

b0 log(−1) +
∑

j∈S
bj logαj = 0

for integers b0, bj, j ∈ S implies that b0 is necessarily zero. This is because the
sum

∑

j∈S bj logαj is a real number since each αj is a positive real number.
But then bj = 0 for all j. This completes the proof. �

One of the crucial ingredients for the proof of our theorem is the following:

Theorem 25.5 Let fe be an even algebraic valued periodic function defined
over integers with period q. Suppose it is supported at co-prime classes (mod q)
with

∑q
a=1 fe(a) = 0. Then L(1, fe) �= 0 unless fe is identically zero. Moreover,

L(1, fe) is an algebraic linear combination of logarithms of multiplicatively inde-
pendent units of the q-th cyclotomic field. In particular, if fe is not identically
zero, then L(1, fe) is transcendental.

Proof. The proof involves a different approach to the original problem of
Chowla. The strategy is to write any periodic function as the sum of an even
and odd function. Let us consider an algebraic-valued function f supported on
the co-prime classes (mod q) with

q
∑

a=1

f(a) = 0.

We want to write f as
f = fe + fo

where fe is even (i.e. fe(−n) = fe(n)) and fo is odd (i.e. fo(−n) = −fo(n)).
Since the characters form a basis for the space of such functions, we can write

f =
∑

χ�=1

cχχ.



156 Linear Independence of Values of Dirichlet L-Functions

Here the sum is over non-trivial Dirichlet characters χ (mod q). Note that the
trivial character is absent because

q
∑

a=1

f(a) = 0.

Thus, we obtain the desired decomposition for f by considering

fe =
∑

χ even,χ�=1

cχχ,

and

fo =
∑

χ odd

cχχ.

We recall that Ramachandra (see Theorem 8.3 on p. 147 of [130] as well as [103])
discovered a set of real multiplicatively independent units in the cyclotomic field.
Let us denote these units by ξa (with 1 < a < q/2 and (a, q) = 1) following
the notation of [130]. A fundamental property of these units is that it enables
us to obtain an expression for L(1, χ) for an even non-trivial character χ which
is amenable for applying Baker’s theory. More precisely, one has the following
formula: for even χ with χ �= 1, we have

L(1, χ) = Aχ
∑

1<a<q/2

χ(a) log ξa, (25.1)

where Aχ is a non-zero algebraic number. See the proof of Theorem 8.3 on
p. 149 in [130] for deriving this expression. We note that this can be regarded
as the cyclotomic analogue of one of the main theorems of [102] in the case of
an imaginary quadratic field (see also [103]).

To elaborate, let ζ be a primitive q-th root of unity and following Ramachan-
dra [102], define

ηa =
∏

d|q,d �=q,(d,q/d)=1

1− ζad

1− ζd
.

Setting

da =
1

2
(1− a)

∑

d|q,(d,q/d)=1,d �=q
d,

one sees that ξa = ζdaηa lies in the real subfield Q(ζ + ζ−1). These are the
multiplicatively independent units for 1 < a < q/2 with (a, q) = 1. Following
the calculation on p. 149 in [130], we see that

q
∑

a=1

χ(a)
∑

d|q,(d,q/d)=1,d �=q
log |1− ζadq |
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is a non-zero algebraic multiple of L(1, χ). This easily leads to the formula (25.1)
above. For a more detailed theory, we direct the reader to Theorems 8, 9 and 12
in [102] (see also [98] for an application in a different set-up). Thus we have

L(1, fe) =
∑

χ even,χ�=1

cχL(1, χ)

=
∑

χ even,χ�=1

cχAχ

⎛

⎝
∑

1<a<q/2

χ(a) log ξa

⎞

⎠

=
∑

1<a<q/2

⎛

⎝
∑

χ even,χ�=1

Aχcχχ(a)

⎞

⎠ log ξa.

Since the ξa’s are multiplicatively independent, the log ξa’s are linearly inde-
pendent over Q. By Baker’s theorem, they are linearly independent over Q.
Consequently, L(1, fe) = 0 if and only if

∑

χ even,χ�=1

Aχcχχ(a) = 0, 1 < a < q/2.

Now the even characters of (Z/qZ)∗ can be viewed as characters of the group
(Z/qZ)∗/{±1}. Thus by Lemma 25.2 and since Aχ �= 0, we deduce that cχ = 0
for all even χ. This proves the theorem. �

As an immediate corollary, we deduce the following result in the classical
case:

Corollary 25.6 L(1, χ), as χ ranges over non-trivial even characters mod q,
are linearly independent over Q.

We remark that the above corollary together with Schanuel’s conjecture
implies the algebraic independence of the L(1, χ) as χ ranges over the even
Dirichlet characters mod q.

Finally, we shall need the following observation which we leave as an exercise.

Lemma 25.7 For any odd Dirichlet character χ, L(1, χ) is an algebraic multi-
ple of π.

We can now prove the main result of the chapter. As noted above, for odd
characters, each L(1, χ) is equal to an algebraic multiple of π. However for an
even non-trivial character, as we have seen before, L(1, χ) is a non-zero algebraic
multiple of

q
∑

a=1

χ(a)
∑

d|q,(d,q/d)=1,d �=q
log |1− ζadq |.

Thus in view of Lemma 25.4, the Q-space generated by the even L(1, χ) values
is linearly disjoint from that generated by the odd L(1, χ) values. Since for any
odd character χ, L(1, χ) �= 0, this proves our main theorem.
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Exercises

1. Prove that for any odd Dirichlet character χ mod q, L(1, χ) is an algebraic
multiple of π.

2. Prove Artin’s theorem that the irreducible characters of a finite group are
linearly independent over the field of complex numbers.

3. Show that Schanuel’s conjecture implies that the numbers L(1, χ), where
χ ranges over the non-trivial even Dirichlet characters mod q, are alge-
braically independent.

4. Without appealing to the Ramachandra units, show directly that for any
non-trivial even Dirichlet character χ mod q, L(1, χ) an algebraic linear
combination of logarithms of positive algebraic numbers.

5. Show that for any prime p, the numbers L(1, χ), where χ runs over the
non-trivial Dirichlet characters mod p, are linearly independent over Q.



Chapter 26

Transcendence of Values
of Class Group L-Functions

In this chapter, we consider the analog of the question discussed in Chap. 25 for
class group L-functions. We refer to the original work [96] for further details.

Let K be an algebraic number field and f a complex-valued function of the
ideal class group HK of K. Here, we consider the Dirichlet series

L(s, f) :=
∑

a

f(a)

N(a)s
, (26.1)

where the summation is over all integral ideals a of the ring of integers OK of K.
If f is identically 1, then L(s, f) is the Dedekind zeta function of K. If f is a
character χ of the ideal class groupHK ofK, then L(s, χ) is a Hecke L-function.

Let us begin with the following theorem. We have seen a similar result in
Chap. 22.

Theorem 26.1 L(s, f) extends analytically for all s ∈ C except possibly at
s = 1 where it may have a simple pole with residue a non-zero multiple of

ρf :=
∑

a∈HK

f(a).

The series (26.1) converges at s = 1 if and only if ρf = 0.

Proof. Since f is a function on the ideal class group, we have

L(s, f) =
∑

C∈HK

f(C)ζ(s,C)

M.R. Murty and P. Rath, Transcendental Numbers, DOI 10.1007/978-1-4939-0832-5 26,
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where

ζ(s,C) =
∑

a∈C

1

N(a)s
.

It is classical (see [76]) that each ζ(s,C) extends to all s ∈ C with the
exception of s = 1, where it has a simple pole with residue

2r1(2π)r2RK

w
√|dK | ,

where r1 is the number of real embeddings, 2r2 is the number of complex
embeddings and RK is the regulator of K. We conclude that L(s, f) extends
analytically to all s ∈ C apart from a simple pole at s = 1 with residue

2r1(2π)r2RK

w
√|dK |

∑

C

f(C).

Thus, L(s, f) is analytic at s = 1 if and only if ρf = 0. To study the convergence
of the Dirichlet series L(s, f) at s = 1, we proceed as follows. The number of
ideals with norm ≤ x and lying in a fixed class C is well known to be (see [76]),

2r1(2π)r2RK

w
√|dK | x+O(x

d
d+1 ), (26.2)

where d is the degree of K over Q. Letting

S(x) =
∑

N(a)≤x
f(a),

we have by the general technique of partial summation (see p. 17 of [94]) that

L(s, f) = s

∫ ∞

1

S(x)

xs+1
dx,

for �(s) > 1. Now,

S(x) =
∑

C∈HK

∑

a∈C,N(a)≤x
f(a) =

∑

C∈HK

f(C)

(

2r1(2π)r2RK

w
√|dK | x+ O(x

d
d+1 )

)

which is easily seen to be

2r1(2π)r2RKρf

w
√|dK | x+O(x

d
d+1 ).

Hence, by partial summation, it follows immediately that the Dirichlet series
L(s, f) converges at s = 1 if and only if ρf = 0. This completes the proof. �
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Thus in the case that the series converges at s = 1, it makes sense to consider
the Dirichlet series

L(1, f) =
∑

a

f(a)

N(a)
.

Our goal in this chapter is to investigate special values of L(s, f) at s = 1
when K is an imaginary quadratic field and f takes algebraic values. In partic-
ular, we will investigate the transcendental nature of L(1, χ) when χ is an ideal
class character.

The basic tools are Kronecker’s limit formula and Baker’s theory of linear
forms in logarithms. In particular, we will show that the values L(1, χ) are
linearly independent over Q as χ ranges over non-trivial characters of the ideal
class group (modulo the action of complex conjugation on the group of charac-
ters). This is analogous to the result we discussed in Chap. 25.

We will use Kronecker’s limit formula as discussed in the works of Siegel
[113], Ramachandra [102] and Lang [77]. We cannot give an in-depth discussion
about these topics, but shall be content with a brief review.

Let Δ(z) be the discriminant function:

Δ(z) = (2π)12 q

∞∏

n=1

(1− qn)24 = (2π)12η(z)24, q = e2πiz.

Here η24 is the Ramanujan cusp form.
Now let K be an imaginary quadratic field and let b be an ideal of OK .

If [β1, β2] is an integral basis of b with �(β2/β1) > 0, we define

g(b) = (2π)−12(N(b))6Δ(β1, β2),

where

Δ(ω1, ω2) := ω−12
1 Δ

(
ω2

ω1

)

.

One can verify (as on p. 109 of [102]) that g(b) is well defined and does not
depend on the choice of integral basis of b. Furthermore, g(b) depends only on
the ideal class b belongs to in the ideal class group (see Lemma 2 of [102], also
p. 280 of [77]). Thus, if C is an ideal class, we write g(C) for the common value
g(b) as b ranges over the elements of the class C.

Let dK be the discriminant of K and w denote the number of roots of unity
in OK . As before, writing

ζ(s,C) =
∑

a∈C

1

N(a)s

for the ideal class zeta function, we have by Kronecker’s limit formula

ζ(s,C) =
2π

w
√|dK |

(
1

s− 1
+ 2γ − log |dK | − 1

6
log |g(C−1)|

)

+O(s− 1), (26.3)

as s→ 1+. (Note that there is a sign error in formula (2) on p. 280 of [77].)
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Proposition 26.2 If C1 and C2 are ideal classes, then g(C1)/g(C2) is an
algebraic number lying in the Hilbert class field of K.

Proof. This follows immediately from Lemma 3 of [30] and is a classical result
from the theory of complex multiplication. �

Furthermore, we have

Proposition 26.3 Let KH be the Hilbert class field of K. Now if p is a prime
ideal of K and σp is the Frobenius automorphism in Gal(KH/K), then for any
ideal b, g(b)/g(OK) ∈ KH and we have

σp (g(b)/g(OK)) = g(p−1b)/g(p−1OK), g(b)/g(OK) = g(b−1)/g(OK).

Proof. The first part is the content of Theorem 1 on p. 161 of [77]. The action
of complex conjugation is easily deduced from the equation j(b) = j(b) for the
j-function �

For imaginary quadratic fields, by a deeper analysis we will show the
following:

Theorem 26.4 Let K be an imaginary quadratic field and f : HK → Q

be not identically zero. Suppose that ρf = 0. Then, L(1, f) �= 0 unless
f(C) + f(C−1) = 0 for every ideal class C ∈ HK . Moreover, L(1, f)/π is
a Q-linear combination of logarithms of algebraic numbers. In particular,
L(1, f)/π is transcendental whenever L(1, f) �= 0.

This result has several interesting corollaries. Before giving a proof of the
above theorem, let us first derive these consequences.

Corollary 26.5 Let K be an imaginary quadratic field and χ a non-trivial char-
acter of the ideal class group of K. Then, L(1, χ)/π is a non-zero Q-linear
combination of logarithms of algebraic numbers and hence transcendental.

Proof. To prove this corollary, we begin by noting that in the caseK is an imag-
inary quadratic field, the formulas become simple and we can apply Kronecker’s
limit formula. In this situation, when the series converges, we have by (26.3)

L(1, f)

π
=

−1

3w
√|dK |

∑

C∈HK

f(C) log |g(C−1)|. (26.4)

Now we invoke Proposition 26.2. Indeed, by this proposition, we have for the
identity class C0, that g(C

−1)/g(C0) is algebraic. Thus, as ρf = 0, we have

L(1, f)

π
=

−1

3w
√|dK |

∑

C∈HK

f(C) log |g(C−1)/g(C0)|, (26.5)

for any fixed class C0 of HK . Specialising to the case f = χ, where χ is a
non-trivial character of the ideal class group HK , and using the theorem that
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L(1, χ) �= 0, we deduce Corollary 26.5 by virtue of Baker’s theorem. This
completes the proof. �

Since complex conjugation acts on the group of ideal class characters we see
by a simple calculation that L(1, χ) = L(1, χ) for any ideal class character χ.
We denote by H∗

K a set of orbit representatives under this action. Now we have:

Corollary 26.6 Let K be an imaginary quadratic field and HK its ideal class
group. The values L(1, χ) (as χ ranges over the non-trivial characters of H∗

K)
and π are linearly independent over Q.

Proof. Suppose that
∑

χ�=1,χ∈H∗
K

cχL(1, χ) ∈ Qπ,

for some cχ ∈ Q. Then, setting

f =
∑

χ�=1,χ∈H∗
K

cχχ,

we have L(1, f)/π is algebraic. Since ρf = 0, we can apply Theorem 26.4 and
deduce that f is identically zero. By the independence of characters, this means
that each cχ is zero. �

Thus in the special case that the ideal class group HK is an elementary
abelian 2-group, the corollary implies that the L(1, χ) as χ ranges over the
non-trivial characters of HK are linearly independent over Q.

Theorem 26.4 also implies that at most one such L(1, χ) is algebraic. Indeed,
the following corollary follows directly from Corollary 26.6 since two algebraic
numbers are linearly dependent over Q.

Corollary 26.7 All of the values L(1, χ) as χ ranges over the non-trivial char-
acters of H∗

K , with at most one exception, are transcendental.

The elimination of this singular possibility, in other words, the proof of
transcendence of L(1, χ) for all non-trivial χ seems difficult and is related to
Schanuel’s conjecture. Indeed, a “weaker” version of Schanuel suffices for our
purposes. This is the conjecture that logarithms of algebraic numbers which
are linearly independent over Q are algebraically independent. Assuming the
“weaker” Schanuel’s conjecture which was discussed in an earlier chapter, one
can show the transcendence of L(1, χ) for all non-trivial χ.

We now come to the proof of Theorem 26.4. In view of (26.5) and Baker’s
theorem, the only part of Theorem 26.4 that remains to be proved is the non-
vanishing of L(1, f) subject to the hypothesis of the given theorem. To this end,
we will require three lemmas.

Lemma 26.8 Let K be an imaginary quadratic field and f : HK → Q. Then,
L(1, f) = 0 implies that L(1, fσ) = 0 for any Galois automorphism σ of
Gal(Q/Q).
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Proof. Equation (26.5) expresses L(1, f)/π as a linear form of logarithms of
algebraic numbers. Now choose a maximal set of Q-linearly independent num-
bers from {log |g(C−1)/g(C0)| : C ∈ HK}. Denote this set by logα1, . . . , logαt.
Thus,

log |g(C−1)/g(C0)| =
t∑

j=1

x(C, j) logαj ,

where the x(C, j)’s are rational numbers. Hence

L(1, f) = − π

3w
√|dK |

t∑

j=1

∑

C∈HK

f(C)x(C, j) logαj .

If L(1, f) = 0, then Baker’s theorem gives that

∑

C∈HK

f(C)x(C, j) = 0, j = 1, 2, . . . , t.

Since the x(C, j)’s are rational numbers, we deduce that for every Galois auto-
morphism σ,

∑

C∈HK

fσ(C)x(C, j) = 0, j = 1, 2, . . . , t.

Consequently, L(1, fσ) = 0. �

The next lemma allows us to reduce the proof of Theorem 26.4 to the case
when f is rational-valued.

Lemma 26.9 Let M be the algebraic number field generated by the values of f .
Let r = [M : Q] and choose a basis β1, . . . , βr of M over Q and write

f(C) =

r∑

i=1

βifi(C),

with fi(C) rational. Then, L(1, f) = 0 implies L(1, fi) = 0 for i = 1, 2, . . . , r.

Proof. Let M = M (1), . . . ,M (r) be the conjugate fields of M . The map
x → x(j) from M to M (j) extends to a Galois automorphism σj of Gal(Q/Q).
Thus,

fσj (C) =
r∑

i=1

β
(j)
i fi(C).

Clearly, the matrix (β
(j)
i ) is invertible since β1, . . . , βr is a basis, and we can

express fi(C) as a Q-linear combination of the fσj (C). By Lemma 26.8, we
have that L(1, f) = 0 implies L(1, fσj ) = 0 for every j. Thus, L(1, fi) = 0 for
1 ≤ i ≤ r, as desired. �
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Lemma 26.10 If f is rational-valued and L(1, f) = 0, then f(C)+ f(C−1) = 0
for every ideal class C.

Proof. If L(1, f) = 0, then

∑

C∈HK

f(C) log |g(C−1)/g(C0)| = 0.

Clearing denominators, we may suppose that f is integer-valued. Exponentiat-
ing the above expression gives

∏

C∈HK

∣
∣
∣
∣

g(C−1)

g(C0)

∣
∣
∣
∣

f(C)

= 1.

To remove the absolute values, we square the expression and pair up C with
C−1 and re-arrange it to deduce that

∏

C

[
g(C)

g(C0)

]f(C)+f(C−1)

= 1.

Each of the factors in the product is an algebraic number and applying Propo-
sition 26.3, we see that

∏

C

[
g(p−1C−1)

g(p−1C0)

]f(C)+f(C−1)

= 1,

for any prime ideal p of OK . Taking absolute values and then logarithms, we
conclude that

∑

C

(f(C) + f(C−1)) log |g(p−1C−1)/g(p−1C0)| = 0,

for every prime ideal p. By the Chebotarev density theorem, the p−1’s range
over all elements of HK as p ranges over all prime ideals of OK .

We view these equations as a matrix equation

DF = 0

where F is the transpose of the row vector (f(C) + f(C−1))C∈HK and D is the
“Dedekind-Frobenius” matrix whose (i, j)-th entry is given by

log g(C−1
i Cj)/g(C

−1
i )

with Ci,Cj running over the elements of the ideal class group. The first column
of D is the zero vector and we can re-write our matrix equation as

D0F0 = 0
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where F0 is the transpose of the row vector (f(C) + f(C−1))C �=1 and D0 is the
matrix obtained from D by deleting the row and column corresponding to the
identity element. By the theory of the Dedekind determinants discussed earlier
(see also p. 71 of [130]), the determinant of D0 is

∏

χ�=1

(
∑

a

χ(a) log g(a−1)

)

�= 0,

since by formula (26.4), each factor is up to a non-zero scalar, L(1, χ), which is
non-zero. Thus, f(C) + f(C−1) = 0 for all C �= C0. Since

∑

C

f(C) + f(C−1) = 0,

we deduce that f(C0)+ f(C
−1
0 ) = 2f(C0) = 0 as well. This completes the proof.

�

The proof of Theorem 26.4 can now be given as follows. First, if f is rational-
valued, we are done by the previous lemma. Lemma 26.9 allows us to reduce to
the rational-valued case. This completes the proof.

When χ is a genus character, one can relate L(1, χ) to classical Dirichlet
L-functions attached to quadratic characters [113]. Let us first recall the rel-
evant notions. As before, let K be an imaginary quadratic field with discrim-
inant D < 0. Real-valued characters of the ideal class group of K are called
genus characters. These characters can be extended to functions on the ideal
classes of OK in the obvious way. Such extended characters take on only the
values 0, ±1. By a classical theorem of Kronecker, they have a simple des-
cription. For each factorisation D = D1D2 with D1, D2 being fundamental
discriminants, we define a character χD1,D2 by setting it to be

χD1,D2(p) =

{

χD1(N(p)) if (p, D1) = 1

χD2(N(p)) if (p, D2) = 1.
(26.6)

One can show that this is well defined and that it defines a character on the
ideal class group. We refer the reader to p. 60 of [113] for the background on
genus characters. We have the Kronecker factorisation formula:

L(s, χD1,D2) = L(s, χD1)L(s, χD2).

Corresponding to the factorisation D = 1 ·D, we get

L(s, χ1,D) = ζ(s)L(s, χD).

The left-hand side is ζK(s) and so we can write
∑

C∈HK

ζ(s,C) = ζ(s)L(s, χD).

This identity could have been derived in other ways. Applying the Kronecker
limit formula (26.3), and comparing the constant term in the Laurent expansion
of both sides, we obtain as in [113]:
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Proposition 26.11

γL(1, χD) + L′(1, χD) =
2π

w
√|dK |

∑

C∈HK

(

2γ − log |dK | − 1

6
log |g(C−1)|

)

.

Using Dirichlet’s class number formula, we deduce:

Corollary 26.12

L′(1, χD)
L(1, χD)

= γ − log |dK | − 1

6h

∑

C∈HK

log |g(C)|,

where h denotes the order of HK .

In particular, we deduce the following interesting result.

Theorem 26.13 For any ideal class C,

L′(1, χD)
L(1, χD)

− γ +
1

6
log |g(C)|

is a Q-linear combination of logarithms of algebraic numbers.

We will make fundamental use of the following result of Nesterenko [86]
which we recall again.

Proposition 26.14 For any imaginary quadratic field with discriminant −D
and character χD, the numbers π, eπ

√
D and

D∏

a=1

Γ(a/D)χD(a),

are algebraically independent over Q.

Now we have all the ingredients ready to prove the following.

Theorem 26.15 Let K be an imaginary quadratic field with character χD.
Then,

exp

(
L′(1, χD)
L(1, χD)

− γ

)

and π are algebraically independent. Here γ is Euler’s constant.

Proof. We shall first analyse the asymptotic behaviour of the formula in Corol-
lary 26.12 using the theory of Hurwitz zeta functions. Recall that the Hurwitz
zeta function ζ(s, x) is defined by the series

ζ(s, x) :=

∞∑

n=0

1

(n+ x)s
.
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This series converges for �(s) > 1 and Hurwitz showed how one can extend it
to the entire complex plane apart from s = 1 where it has a simple pole with
residue 1. Given a Dirichlet character χ mod q, we can write

L(s, χ) =
∞∑

n=1

χ(n)

ns
= q−s

q
∑

a=1

χ(a)ζ(s, a/q).

Thus,

L′(s, χ) = −(log q)q−s
q
∑

a=1

χ(a)ζ(s, a/q) + q−s
q
∑

a=1

χ(a)ζ′(s, a/q).

Using the well-known formulas

ζ(0, x) =
1

2
− x, ζ′(0, x) = log(Γ(x)/2π),

where the differentiation is with respect to the s-variable, we deduce that

L(0, χ) =

q
∑

a=1

χ(a)(1/2− a/q),

and

L′(0, χ) = −(log q)L(0, χ) +

q
∑

a=1

χ(a) log Γ(a/q), (26.7)

since
∑q

a=1 χ(a) = 0. If χ is odd and primitive, L(s, χ) satisfies a functional
equation of the form

AsΓ((s+ 1)/2)L(s, χ) = �A1−sΓ((2− s)/2)L(1− s, χ),

where � (called the root number) is a complex number (see p. 71 of [37]) and
A =

√

q/π. We also recall that for quadratic characters χ, the root number �
is 1. We logarithmically differentiate this expression to obtain:

logA+
1

2
ψ((s+ 1)/2) +

L′

L
(s, χ) = − logA− 1

2
ψ((2 − s)/2)− L′

L
(1− s, χ),

where ψ(s) denotes the digamma function, which is the logarithmic derivative
of the gamma function. Putting s = 1 into the formula, and using (see, for
example, p. 301 of [99])

ψ(1) = −γ, ψ(1/2) = −γ − 2 log 2

we deduce
L′

L
(1, χ) = −2 logA+ γ + log 2− L′

L
(0, χ). (26.8)

Now we specialise our discussion to quadratic characters associated with an
imaginary quadratic field K. Such a character is necessarily odd and if K has
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discriminant −D, then this character, which we denote by χD is a primitive
character modulo D. In this situation, we have from the functional equation

L(0, χD) = 2hD/wD, (26.9)

where hD and wD denote the class number and number of roots of unity of K.
Thus, injecting formula (26.7) into (26.8), we get on exponentiating,

exp

(
L′(1, χD)
L(1, χD)

− γ

)

= (2D/A2)

D∏

a=1

Γ(a/D)−χD(a)wD/2hD .

By Proposition 26.14 and the fact that A =
√

D/π, Theorem 26.15 is now
immediate. �

Thus we have from the above theorem that

exp

(
L′(1, χD)
L(1, χD)

− γ

)

is transcendental. In particular,

L′(1, χD)
L(1, χD)

�= γ,

for any D. More generally, we have:

Corollary 26.16
L′(1, χD)
L(1, χD)

− γ

is not equal to logarithm of an algebraic number.

From the theorem, we can also deduce the following curious corollary.

Corollary 26.17 If for some D, we have L′(1, χD) = 0, then eγ is transcen-
dental.

It is unlikely that such a D exists for a variety of reasons. But this seems
difficult to prove. We shall have the occasion to come back to this theme at the
end of this chapter.

Theorem 26.15 allows one to connect this non-vanishing question to spe-
cial values of the Γ-function via the Chowla–Selberg formula. Indeed, the
proof of Theorem 26.15 leads to a simple proof of the Chowla–Selberg formula
which we spell out now. We can combine the calculations done previously with
Corollary 26.12 to deduce the Chowla–Selberg formula:

∏

C∈HK

g(C)1/3 =

(
1

2πD

)2hD D∏

a=1

Γ(a/D)wDχD(a).
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Let us analyse the left-hand side of this equation following [55]. Let E
be an elliptic curve with complex multiplication by an order in the imaginary
quadratic field K = Q(

√−D). Formula (3) of [55] states that any period of E,
up to an algebraic factor, is given by the right-hand side of the above equation.
In other words,

f(χD) :=

D∏

a=1

Γ(a/D)χD(a)

is equal to a product of a power of π and a power of the period of the CM elliptic
curve attached to the full ring of integers of Q(

√−D) (up to an algebraic factor).
More generally, we can define for any character χ (mod D),

f(χ) =

D∏

a=1

Γ(a/D)χ(a).

Let q|D and χ be a real primitive character (mod q). Let χ∗ denote the character
obtained by extending χ to residue classes (mod D). Then, it is not hard to see
that f(χ∗) is (up to a non-zero algebraic factor) equal to f(χ). Indeed, recall
that

Γ(z)Γ(z + 1/q) · · ·Γ(z + (q − 1)/q) = q1/2−qz(2π)(q−1)/2Γ(qz).

Thus, f(χ∗) =

D∏

a=1

Γ(a/D)χ
∗(a) =

q
∏

a=1

[Γ(a/D)Γ((a+ q)/D) · · ·Γ((a+ (D/q − 1)q)/D)]χ(a)

=

q
∏

a=1

[Γ(a/q)(2π)(D/q−1)/2(D/q)1/2−a/q]χ(a)

= f(χ)(D/q)
∑q

a=1(1/2−a/q)χ(a).

Since χ is a real character, the exponent of D/q is rational and so the second
factor is algebraic and non-zero. Consequently, f(χ) and f(χ∗) are equal apart
from a non-zero algebraic factor. Let us record this remark here since it will be
used later.

One can consider a more general situation where one considers functions f
defined on ray class groups and similar formulas and results can be derived (see
[98], for instance).

These investigations naturally lead to the study of possible transcendence of
special values of the Γ-function. As we have seen before, not much is known in
this context. While Γ(1/2) =

√
π is transcendental by the theorem of Linde-

mann, the transcendence of Γ(1/3) and Γ(1/4) was established by Chudnovsky
[32] in 1976. Recently, Grinspan [53] and Vasilev [124] independently showed
that at least two of the three numbers π,Γ(1/5),Γ(2/5) are algebraically inde-
pendent. Very likely, all of the three numbers are algebraically independent.
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Apart from these results, no further results are known regarding the transcen-
dence of the Γ-function at rational, non-integral arguments. Thus, in this con-
text, the following theorem is of interest.

Theorem 26.18 Let q > 1 and q|24. Let a be coprime to q. There exists a
finite set S and a collection of pair-wise non-isogenous CM elliptic curves Ej,
j ∈ S defined over Q with fundamental real periods ωj such that Γ(a/q) lies in
the field generated over Q by π and the ωj. In particular, if π and the ωj’s are
algebraically independent, then Γ(a/q) is transcendental.

Proof. For each odd quadratic character χD, we have an associated imaginary
quadratic extension kD. Thus, f(χ) is defined for any odd quadratic charac-
ter. We can associate a CM elliptic curve ED, with ring of endomorphisms
isomorphic to the ring of integers of kD. Let ωD be the real period of ED. The
Chowla–Selberg formula expresses

D∑

a=1

χD(a) log Γ(a/D)

as a Q-linear form in log π, logωD and the logarithm of a non-zero algebraic
number. For any divisor q of 24, every non-trivial Dirichlet character mod q is
quadratic. Noting that

∑

χ even

χ(a) = ϕ(q)/2,

if a ≡ ±1(mod q) and zero otherwise, we deduce that

∑

χ odd

χ(a) =

⎧

⎪⎨

⎪⎩

ϕ(q)/2 if a ≡ 1(mod q)

−ϕ(q)/2 if a ≡ −1(mod q)

0 otherwise.

By considering the combination

∏

χ odd

f(χ)χ(b)

where the product is over odd characters (mod q), we find

∏

χ odd

f(χ)χ(b) =

q
∏

a=1

Γ(a/q)
∑

χ odd χ(ab).

Since for any divisor q of 24, b2 ≡ 1(mod q) for any b coprime to q, we have
ab ≡ 1(mod q) implies a ≡ b(mod q). Thus,

∑

χ odd

χ(ab) =

⎧

⎪⎨

⎪⎩

ϕ(q)/2 if a ≡ b(mod q)

−ϕ(q)/2 if a ≡ −b(mod q)

0 otherwise.
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and we deduce that

Γ(a/q)Γ(1− a/q)−1

is the product of an algebraic number, a power of π and a product of powers of
periods of non-isogenous elliptic curves. On the other hand,

Γ(a/q)Γ(1− a/q)

is a product of π and an algebraic number. Thus, we deduce that Γ(a/q) is (up
to an algebraic factor) a product of a power of π and periods of non-isogenous
elliptic curves. This completes the proof. �

To summarise, the key point here is that the non-trivial Dirichlet characters
(mod 24) are all quadratic which allows the use the Chowla–Selberg formula
as stated before to express Γ(a/q) as a product of π and periods of various
non-isogenous elliptic curves.

Before moving on in our discussion, we observe this amusing corollary of the
above theorem:

Corollary 26.19 All of the numbers

Γ(1/8),Γ(3/8),Γ(5/8),Γ(7/8)

are transcendental with at most one exception.

Proof. To prove this, we suppose that at least two of the numbers, Γ(a/8),
Γ(b/8) (say), among

Γ(1/8),Γ(3/8),Γ(5/8),Γ(7/8)

are algebraic. By the proof of the previous theorem, we can write each term as a
product of powers of π and periods ω1 and ω2 of two non-isogenous CM elliptic
curves. By taking appropriate powers of Γ(a/8),Γ(b/8), we deduce that their
quotient, which is algebraic, is a product of powers of π and ω1. By the result
of Chudnovsky [32], we know that π and ω1 are algebraically independent. This
completes the proof. �

Recall that Schanuel’s conjecture predicts that if x1, . . . , xn are linearly
independent over Q, then the transcendence degree of the field

Q(x1, . . . , xn, e
x1 , . . . , exn)

is at least n. At the end of Chap. 21, an elliptic-exponential extension of this
conjecture has been spelt out. The previous theorem motivates the following
variant of Schanuel’s conjecture.

Suppose that x1, . . . , xn are linearly independent over Q. Let ℘2, . . . , ℘n
be the Weierstrass ℘-functions attached to non-isogenous CM elliptic curves
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E2, . . . , En defined over Q. If x2, . . . , xn are not contained in the poles of the
℘i, 2 ≤ i ≤ n, then, the transcendence degree of the field

Q(x1, . . . , xn, e
x1 , ℘2(x2), . . . , ℘n(xn))

is at least n.
Thus, choosing x1 = πi and xj = ωj/2 with the ωj as in Theorem 26.18, the

conjecture allows us to deduce that π and the ωj’s are algebraically independent.
The above conjecture is also a special case of a more general conjecture of

Grothendieck (see [39]). This conjecture asserts that the transcendence degree
of the field generated by the periods of an algebraic variety is equal to d where
d is the dimension of the Hodge group of the variety. In our case, we consider
the variety

X = P
1 × E2 × · · · × En

where Ei are pairwise non-isogenous elliptic curves with complex multiplication.
The Hodge group of H2(P1)⊗ · · · ⊗H1(En) is isomorphic to

Gm ×
n∏

i=2

(RKi/QGm)1,

where Ki is the imaginary quadratic field corresponding to Ei and the super-
script denotes elements of norm 1. The dimension of this group is n.

It is clear from the preceding discussions that the non-vanishing of certain
Dirichlet series is connected with linear independence of special values of
L-series. Such a theme was explored in a classical context in [61].

Also it highlights the pivotal role played by L′(1, χ) with χ a Dirichlet char-
acter, more precisely the vanishing of L′(1, χ) for any Dirichlet character χ
(mod q). In this context, we shall derive an analytic result about the number
of χ �= χ0 (mod q) for which L′(1, χ) = 0

For this we shall use the following result of Y. Ihara, K. Murty and M.
Shimura which is Theorem 5 of [68].

Proposition 26.20 Let Λ0(1) = 1 and Λ0(n) = 0 for n > 1. Define for k ≥ 1,

Λk(n) =
∑

n1···nk=n

Λ(n1) · · ·Λ(nk),

where Λ denotes the von Mangoldt function. Set

μ(a,b) :=

∞∑

n=1

Λa(n)Λb(n)

n2
.

Then, for q prime and any ε > 0

Ta,b :=
∑

χ�=χ0

P (a,b)

(
L′

L
(1, χ)

)

= (−1)a+bμ(a,b)ϕ(q) +O(qε),

where P (a,b)(z) = zazb.
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It is easy to see that the series for μ(a,b) converges. Indeed, Λ(n) ≤ log n so
that Λk(n) ≤ dk(n)(log n)

k, where dk(n) denotes the number of factorisations
of n as a product of k natural numbers. Consequently, Λk(n) = O(nε) for
any ε > 0.

We now have the following theorem:

Theorem 26.21 For q prime, the number of χ �= χ0 (mod q) for which
L′(1, χ) = 0 is O(qε) for any ε > 0.

Proof. We apply the previous proposition with a = b = k and a = b = 2k. An
application of the Cauchy–Schwarz inequality to the sum

∑

χ�=χ0

P (k,k)

(
L′

L
(1, χ)

)

shows that for any k ≥ 1,

#{χ �= χ0 : L′(1, χ) �= 0} ≥ T 2
k,k

T2k,2k
.

Let us note that

T 2
k,k = (μ(k,k))2ϕ(q)2 +O(ϕ(q)qε)

and that

(μ(k,k))2 =
∑

n1,n2

Λk(n1)
2Λk(n2)

2

n2
1n

2
2

=

∞∑

n=1

(Λ2
k � Λ

2
k)(n)

n2
,

where

(f � g)(n) :=
∑

d|n
f(d)g(n/d),

is the Dirichlet convolution. Now, if d(n) denotes the number of divisors of n,

Λ2k(n)
2 = (Λk � Λk)

2(n) =

⎛

⎝
∑

d|n
Λk(d)Λk(n/d)

⎞

⎠

2

≤ d(n)
∑

d|n
Λ2
k(d)Λ

2
k(n/d) = d(n)

(

Λ2
k � Λ

2
k

)

(n),

by an application of the Cauchy–Schwarz inequality. As d(n) = O(nε) for any
ε > 0, we obtain

μ(2k,2k) =

∞∑

n=1

Λ2
2k(n)

n2
≤

∞∑

n=1

(Λ2
k � Λ

2
k)(n)

n2−ε .

Putting

Gk(s) =

∞∑

n=1

(Λ2
k � Λ

2
k)(n)

ns
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we conclude

T 2
k,k

T2k,2k
≥ Gk(2)ϕ(q)

2 +O(ϕ(q)qε2 )

Gk(2 − ε1)ϕ(q) +O(qε2)

for any ε1, ε2 > 0. Choosing k = 2 and noting that

G2(2− ε1) = G2(2) +O(ε1),

we conclude that

T 2
k,k

T2k,2k
≥ ϕ(q) +O(qε).

The result immediately follows from choosing ε1 = 1/q. �

It is unlikely that one can show the non-vanishing of L′(1, χ) in general using
such analytic methods.

The question of non-vanishing of L′(1, χ) arises in other contexts like the
following. Let K be an algebraic number field and ζK(s) its Dedekind zeta
function. It is well known that ζK(s) has a simple pole at s = 1 with residue λK .
Here,

λK =
2r1(2π)r2hKRK

w
√|dK | ,

where r1 is the number of real embeddings of K and 2r2 is the number of non-
real embeddings of K, hK , RK , w and dK are the class number, regulator, the
number of units of finite order and discriminant, respectively, of K. Let us set

gK(s) = ζK(s)− λKζ(s).

Then, gK(s) is analytic at s = 1. In [111], Scourfield asked if for any field
K �= Q we have gK(1) = 0. This question is really about non-vanishing of linear
combinations of derivatives of L-functions.

To see this, we write
ζK(s) = ζ(s)FK(s),

where FK(s) is a product of certain Artin L-series. Using Brauer’s induction
theorem and the non-vanishing of Hecke L-series at s = 1, it is easily seen that
FK(s) is analytic at s = 1. Consequently, FK(1) = λK and since

ζK(s)− λKζ(s) = ζ(s)(FK(s)− λK),

we see that gK(1) = F ′
K(1). If K̂ denotes the normal closure of K over Q, and

G = Gal(K̂/Q), one can express FK(s) as a product of Artin L-series attached
to irreducible characters of G. Indeed, if H = Gal(K̂/K), ζK(s) is the Artin
L-series attached to the character IndGH 1. If χ is an irreducible character of G,
we have by Frobenius reciprocity,

cχ := (IndGH 1, χ) = (1, χ|H)
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which is the multiplicity of the trivial character in χ restricted to H . Thus, cχ
is a non-negative integer and we have

FK(s) =
∏

χ�=1

L(s, χ)cχ ,

where the product is over the non-trivial irreducible characters of G. Hence,

F ′
K(1)

FK(1)
=
∑

χ�=1

cχ
L′

L
(1, χ).

In the special case K/Q is Galois, cχ = χ(1). Thus, in the Galois case, the
question of non-vanishing of gK(1) is equivalent to the non-vanishing of

∑

χ�=1

χ(1)
L′

L
(1, χ).

If K = Q(ζq) is the q-th cyclotomic field, with ζq being a primitive q-th root
of unity, then Ihara et al. [68] have investigated the asymptotic behaviour of
this sum. They proved that

lim
q→∞,q prime

1

φ(q)

∑

χ�=χ1

L′

L
(1, χ) = 0.

So the question of non-vanishing of gK(1) is a bit delicate and cannot be deduced
from this limit theorem.

The non-vanishing of L′(1, χ) seems to be intimately linked with arithmetic
questions. For example, if K/Q is quadratic, then FK(s) = L(s, χD) where χD
is the quadratic character attached to K. In this case, Scourfield’s question
reduces to the question of whether L′(1, χD) = 0 for any such χD. As we
mentioned before, it is unlikely that such a χD exists.

Exercises

1. Using (26.2), show that the series (26.1) admits a meromorphic continu-
ation to �(s) > d

d+1 with at most a simple pole at s = 1. Moreover, the
simple pole exists if and only if ρf �= 0.

2. Show that the character χD1,D2 given by (26.6) is well defined.

3. Prove that ζ′(0, x) = log(Γ(x)/2π).

4. Prove the class number formula (26.9).

5. Show that the function

g(b) = (2π)−12(N(b))6Δ(β1, β2)

considered in the chapter is well defined and does not depend on the choice
of integral basis of b. Furthermore, show that g(b) depends only on the
ideal class b belongs to in the ideal class group.
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6. Show that L(1, χ) = L(1, χ) for any non-trivial ideal class character χ of
an imaginary quadratic field.

7. For any integer a, find the value of

∑

χ even

χ(a)

where χ runs over even Dirichlet characters mod q. Derive also an expres-
sion for ∑

χ odd

χ(a)

where χ runs over odd Dirichlet characters mod q.



Chapter 27

Transcendence of Values
of Modular Forms

In this chapter, we will apply the results of Schneider and Nesterenko to
investigate the values of modular forms at algebraic arguments. Any reasonable
account of the fascinating subject of modular forms will require us to embark
upon a different journey which we cannot undertake in the present book. We
refer to the books [42, 70, 75] for comprehensive accounts of this subject.
However for the purposes of this chapter, we shall be needing very little input
from the theory of modular forms.

As we have been observing throughout, the naturally occurring transcenden-
tal functions like the exponential function and the logarithm function take tran-
scendental values when evaluated at algebraic points, except for some obvious
exceptions. This is also exhibited by the Weierstrass-℘ function associated with
an elliptic curve defined over number fields. We also expect other transcendental
functions like the gamma function and Riemann zeta function to exhibit similar
properties.

We will now investigate this phenomena for modular forms which are a rich
source of transcendental functions. We begin by fixing some notations and
recalling the various results in transcendence relevant for our study.

Let H denote the upper half-plane. For z ∈ H, we have the following func-
tions

E2(z) = 1− 24

∞∑

n=1

σ1(n)e
2πinz ,

M.R. Murty and P. Rath, Transcendental Numbers, DOI 10.1007/978-1-4939-0832-5 27,
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E4(z) = 1 + 240
∞∑

n=1

σ3(n)e
2πinz ,

E6(z) = 1− 504

∞∑

n=1

σ5(n)e
2πinz ,

where σk(n) =
∑

d|n d
k. We also have the j-function given by

j(z) = 1728
E4(z)

3

E4(z)3 − E6(z)2
.

We call an element α in the upper half-plane to be a CM point if it generates
a quadratic extension over the field of rational numbers. It is known, from
classical theory of complex multiplication, that if z ∈ H is a CM point, then
j(z) is an algebraic number lying in the Hilbert class field of Q(z). For instance,
we have j(i) = 1728 while j(ρ) = 0 where ρ = e2πi/3.

For algebraic points in the upper half-plane, we have already seen the
following result of Schneider:

Theorem 27.1 (Schneider) If z ∈ H is algebraic, then j(z) is algebraic if and
only if z is CM.

Much later, Chudnovsky ([32], see also [33]) in 1976 showed that if z ∈ H, then
at least two of the numbers E2(z), E4(z), E6(z) are algebraically independent.
Chudnovsky’s theorem proves that Γ(1/3) and Γ(1/4) are transcendental. In
1995, Barré-Sirieix et al. [15] made a breakthrough in transcendence theory by
proving the long-standing conjecture of Mahler and Manin according to which
the modular invariant J(e2πiz) := j(z) assumes transcendental values at any
non-zero complex (or p-adic) algebraic number e2πiz in the unit disc. Note
that such a z is necessarily transcendental. Finally, Nesterenko [84] provided
a fundamental advance by generalising both the results of Chudnovsky and
Barré-Sirieix–Diaz–Gramain–Philibert.

Theorem 27.2 (Nesterenko) Let z be a point in the upper half-plane. Then at
least three of the four numbers

e2πiz, E2(z), E4(z), E6(z)

are algebraically independent.

We note that the result of Schneider does not follow from the theorem of
Nesterenko. As pointed out by Nesterenko [86, p. 31], both his and Schneider’s
theorem will follow from the following conjecture:

Conjecture 27.3 Let z be a point in the upper half-plane and assume that at
most three of the following five numbers

z, e2πiz, E2(z), E4(z), E6(z)
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are algebraically independent. Then z is necessarily a CM point and the field

Q(e2πiz, E2(z), E4(z), E6(z))

has transcendence degree 3.

Let us now begin by considering the nature of zeros of modular forms.
Investigations of such zeros have been carried out by Rankin and Swinnerton-
Dyer [104], Kanou [69], Kohnen [73] and Gun [57] (see also [13, 45, 49]). Let us
again recall that a CM point is an element of H lying in an imaginary quadratic
field. Also every modular form is assumed to be non-zero and for the full
modular group. However, the arguments carry over to higher levels.

Recall that any such modular form f has a q-expansion at infinity of the
form f(z) =

∑∞
n=0 af (n)e

2πinz for z ∈ H. The af (n)
′s are called the Fourier

coefficients of f . We shall only consider modular forms whose Fourier coefficients
are all algebraic.

To study the algebraic nature of values taken by modular forms, we need
to define an equivalence relation on the set of all modular forms with algebraic
Fourier coefficients. We define two such modular forms f and g to be equivalent,
denoted by f ∼ g, if there exist positive natural numbers k1, k2 such that
fk2 = λgk1 with λ ∈ Q

∗
. Furthermore, for the purpose of this chapter, we

shall denote Δ to be the Ramanujan cusp form (or the normalised discriminant
function), i.e.

Δ(z) = q

∞∏

n=1

(1 − qn)24 = η(z)24, q = e2πiz .

Therefore, it is also equal to

Δ(z) =
E4(z)

3 − E6(z)
2

1728
.

One has the following theorem.

Theorem 27.4 Let f be a non-zero modular form of weight k for the full modu-
lar group SL2(Z). Suppose that the Fourier coefficients of f are algebraic. Then
any zero of f is either CM or transcendental.

Proof. Let f be a non-zero modular form of weight k for SL2(Z) with algebraic
Fourier coefficients. Let g be the function defined as

g(z) =
f12(z)

Δk(z)
,

where Δ is the Ramanujan cusp form of weight 12. Thus g is a modular function
of weight 0 and hence is a rational function in j. Since Δ does not vanish on
H, g is a polynomial in j. Further, since f has algebraic Fourier coefficients,
g(z) = P (j(z)) where P (x) is a polynomial with algebraic coefficients. If α is a
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zero of f , then P (j(α)) = 0 and hence j(α) is algebraic. Thus by Schneider’s
theorem, α is either CM or transcendental. This completes the proof. �

As before, let Δ be the unique normalised cusp form of weight 12 for the full
modular group. Then the above theorem easily extends to the following and
hence we skip the proof.

Theorem 27.5 Let f be as in the above theorem, not equivalent to Δ and
α ∈ H be an algebraic number such that f12(α)/Δk(α) is algebraic. Then α is
necessarily a CM point.

We note that the above theorem does not say anything about the transcen-
dental zeros of f . However, when f is the Eisenstein series Ek, we have some
more information about the location of their zeros. For instance, all the zeros
of Ek up to SL2(Z) equivalence were shown to lie in the arc

{eiθ | π/2 ≤ θ ≤ 2π/3}
by Rankin and Swinnerton-Dyer [104].

It is worthwhile to point out that for cusp forms, the situation is rather
different. Here we have a result due to Rudnick [108] which is as follows: let
{fk} be a sequence of L2-normalised holomorphic cusp forms for SL2(Z) such
that fk is of weight k, the order of vanishing of fk at the cusp is o(k) and
the masses yk|fk(z)|2dV (z) (where dV (z) stands for the normalised hyperbolic
measure on the fundamental domain) tend in the weak star topology to c dV (z)
for some constant c > 0. Then the zeros of fk (in the fundamental domain)
are equidistributed with respect to dV (z). If the sequence fk consists of nor-
malised Hecke eigenforms ordered by increasing weight, then recent works of
Soundararajan [119] and Holowinsky [65] (see also [66]) show that Rudnick’s
hypothesis is satisfied and consequently, zeros of normalised Hecke eigenforms
become uniformly distributed in the standard fundamental domain as the weight
tends to infinity.

If f is equivalent to Δ and α is CM, then f(α) is transcendental by the
theorem of Schneider. On the other hand, if α ∈ H is non-CM algebraic, the
conjecture of Nesterenko mentioned before will imply the transcendence of f(α).
Thus, it is clear that while investigating the nature of values of modular forms
at algebraic numbers in H, we need to consider the values at CM points and
non-CM points separately.

Theorem 27.6 Let α ∈ H be such that j(α) ∈ Q. Then e2πiα and Δ(α) are
algebraically independent.

Proof. Since j(α) is algebraic, Δ(α) is transcendental. For, algebraicity of
Δ(α) will imply that j(α)Δ(α) = E4(α)

3 is algebraic and hence both E4(α)
and E6(α) are algebraic. This will contradict Chudnovsky’s theorem. Now
suppose that e2πiα = q and Δ(α) are algebraically dependent. Since Δ(α)
is transcendental, there exists a non-zero polynomial P (X) =

∑

i piX
i where
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pi’s are polynomials in Δ(α) with algebraic coefficients such that P (q) = 0.
Thus q is algebraic over the field Q(E4(α), E6(α)). Since j(α) is algebraic,
transcendence degree of Q(E4(α), E6(α)) is one which is also the transcendence
degree of Q(E4(α), E6(α), q). This will contradict Nesterenko’s theorem. �

As a consequence of the above theorem, we now have the following:

Theorem 27.7 Let α ∈ H be such that j(α) ∈ Q. Then for a non-zero modular
form f for SL2(Z) with algebraic Fourier coefficients, f(α) is algebraically ind-
ependent with e2πiα except when f(α) = 0.

Proof. Suppose that f(α) is not equal to zero. Since the non-zero number
f12(α)/Δk(α) is a polynomial in j(α) with algebraic coefficients, it is algebraic.
Thus the fields Q(q, f(α)) and Q(q,Δ(α)) have the same transcendence degree
and hence the theorem follows from the previous theorem. �

We note that there exist transcendental numbers α for which j(α) is
algebraic. This is a consequence of CM theory and surjectivity of the j
function. As mentioned before, an algebraic α for which j(α) is algebraic is a
CM point. In this case, Δ(α) can be explicitly expressed as a power of period
of an elliptic curve defined over Q.

For a non-CM algebraic number, one has the following theorem:

Theorem 27.8 For α ∈ H, let Sα be the set of all non-zero modular forms f
of arbitrary weight for SL2(Z) with algebraic Fourier coefficients such that f(α)
is algebraic. If α ∈ H is a non-CM algebraic number, then Sα has at most one
element up to equivalence.

Proof. Let f and g be modular forms in Sα of weight k1 and k2, respec-
tively, where α is a non-CM algebraic number in H. Thus both f(α) and g(α)
are algebraic and by Theorem 27.4, neither is equal to zero. We consider the
modular form F = fk2(α)gk1 −gk1(α)fk2 of weight k1k2. By Theorem 27.4, any
zero of this modular form is either CM or transcendental. Since α is non-CM
and algebraic, we get a contradiction unless F is identically zero. This means
that f and g are equivalent in the sense defined before. �

The existence of the fugitive exceptional class in the above theorem can be
ruled out if we assume the conjecture of Nesterenko alluded to before. Further,
all these theorems extend to higher levels and also to quasi-modular forms. We
refer to [59] for further details.

Exercises

1. Show that E6(
√−1) = 0. Deduce that eπ, E2(

√−1) and E4(
√−1) are

algebraically independent.



184 Transcendence of Values of Modular Forms

2. Recalling that

E2

(
az + b

cz + d

)

= (cz + d)2E2(z) +
6c(cz + d)

πi
,

show that E2(
√−1) = 3/π. Deduce from the previous exercise that π and

eπ are algebraically independent.

3. Show that

ω :=

∫ ∞

1

dt√
t3 − t

=
Γ(1/4)2

2
√
2π

.

Using the theory of complex multiplication, compute the value of E4(
√−1)

in terms of powers of Γ(1/4) and π. Conclude that π, eπ and Γ(1/4) are
algebraically independent.

4. Let f be a non-zero modular form with algebraic Fourier coefficients and
α be an algebraic number in H which is not CM. Assuming Nesterenko’s
conjecture, show that f(α) is transcendental.

5. Prove that the functions E4 and E6 are algebraically independent.

6. Using the Schneider–Lang theorem, prove that Δ(τ) is transcendental
for any CM point τ . Here Δ is the normalised discriminant function
considered in this chapter.



Chapter 28

Periods, Multiple Zeta
Functions and ζ(3)

In this chapter, we will examine some of the emerging themes in the theory
of transcendental numbers. The most fascinating is the “modular connection”
linking it with the theory of modular forms. We have met a part of this con-
nection in the earlier chapters. In this chapter, we will indicate some other
relations.

The connection between the theory of modular forms and transcendental
number theory goes back at least a century with the advent of the theory of
complex multiplication. More recently there are several major contributions,
notably by Nesterenko, relating these two themes of number theory. In addition
to this, there is the mysterious proof of Roger Apéry [3] showing the irrationality
of ζ(3) which has been somewhat “explained” by Beukers [20] using the theory
of modular forms. However, it is not easy to find an exposition of this theme
at the graduate student level or even the senior undergraduate level. It is the
purpose of this chapter to highlight this theme and to bring out the salient
features of the subject for further study. This chapter is self-contained and can
be read independent of the other chapters.

The Algebra of Periods

To keep this chapter self-contained, let us recall that a complex number α is
said to be algebraic if it satisfies a non-zero polynomial equation with rational
coefficients. Otherwise, we say the number is transcendental. It was not until
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1851, when Liouville using a clever approximation argument managed to give
explicit constructions of transcendental numbers. For instance, he showed that

∞∑

n=0

1

10n!

is transcendental. In 1873, Georg Cantor showed that the algebraic numbers
are countable and the real numbers are uncountable. Thus the set of tran-
scendental numbers is uncountable. But deciding whether a given number is
transcendental is often a very difficult question. For instance, e was shown to
be transcendental by Charles Hermite in 1873 and π was proved transcendental
by Lindemann in 1882. In view of the 1734 result proved by Euler, this means
that the special values of the Riemann zeta function at even natural numbers
are transcendental since

2ζ(2k) = 2
∞∑

n=1

1

n2k
= − B2k

(2k)!
(2πi)2k.

A similar result is not known for odd values of the Riemann zeta function. In
1978, Apéry surprised the mathematical community by presenting a mysterious
proof that ζ(3) is irrational. After more than 25 years, we can explain some
aspects of his proof using the theory of modular forms, but cannot say we
understand the proof completely or why it worked. The purpose of this chapter
is to explore this theme in some detail and also present it from the context of
the theory of periods.

A period, as defined by Kontsevich and Zagier [74], is a complex number
whose real and imaginary parts are values of absolutely convergent integrals
of rational functions with rational coefficients over domains in R

n given by
polynomial inequalities with rational coefficients. The set of periods is denoted
by P .

In the above definition, we can replace rational functions and rational coef-
ficients by algebraic functions and algebraic coefficients, respectively, without
changing the original set of periods P . This is because we can introduce more
variables into the integration process.1√

2 is a period since √
2 =

∫

2x2≤1

dx.

All algebraic numbers are periods. The simplest transcendental number which
is a period is π since

π =

∫

x2+y2≤1

dxdy.

1A more precise definition can be given as follows. Let X be a smooth quasi-projective
variety, Y ⊂ X a subvariety, ω a closed algebraic n-form on X vanishing on Y , and all defined
over Q. Let C be a singular n-chain on X(C) with boundary contained in Y (C). Then the
integral

∫
C
ω is called a period.
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The set of periods P contains the algebraic numbers and many interesting tran-
scendental numbers like π. Note that the set of periods is countable and hence
the set of numbers which are not periods is uncountable. However we do not
have an explicit number which has been shown to be a non-period. For instance,
is e a period? How about Euler’s constant γ? Most likely, these numbers are
not periods. An open question is if 1/π is a period.

It is clear that the set of periods forms a ring under addition and multipli-
cation. Again, it is not known whether this ring has any units other than the
obvious ones, namely the non-zero algebraic numbers. We recommend the orig-
inal article of Kontsevich and Zagier [74] as well as the account by Waldschmidt
[126] for further details (see also the paper by Ayoub [7] in this context).

An important class of periods is supplied by the special values of the Riemann
zeta function and more generally the multiple zeta values.

The Riemann zeta function ζ(s) is defined for �(s) > 1 by the Dirichlet
series

ζ(s) =

∞∑

n=1

1

ns
.

More generally, one can define the multiple zeta function,

ζ(s1, s2, . . . , sr) =
∑

n1>n2>···>nr≥1

1

ns11 n
s2
2 · · ·nsrr

and study it as a function of the r complex variables s1, . . . , sr. Here, we will be
concerned with the theory of special values of these functions, or more precisely,
the multiple zeta values ζ(s1, . . . , sr) with s1, s2, . . . , sr positive integers and
s1 ≥ 2 in order to ensure convergence.

One can express these as periods, in the sense defined above. For example,
we have

ζ(k) =

∫

1>t1>···>tk>0

dt1
t1

· · · dtk−1

tk−1

dtk
1− tk

,

as is easily verified by direct integration. Also,

ζ(2, 1) =

∫

1>t1>t2>t3>0

dt1
t1

dt2
1− t2

dt3
1− t3

.

Similarly, we define inductively the iterated integral of continuous differential
forms φ1, . . . , φm on [a, b] as

∫ b

a

φ1 · · ·φm :=

∫ b

a

φ1(t)

∫ t

a

φ2 · · ·φm

with the convention that the value is 1 when m = 0. If we define two differential
forms

ω0 =
dt

t
, ω1 =

dt

1− t
,
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then one can easily show that

ζ(s1, . . . , sr) =

∫ 1

0

ωs1−1
0 ω1 · · ·ωsr−1

0 ω1.

By a theorem of Chen in algebraic topology, the product of such integrals is
again a linear combination of such integrals given by the “shuffle product”.

With respect to the transcendental nature of the multiple zeta values, Zagier
[134] has made the following conjecture. Let Vk be the Q-vector space in R

generated by the multiple zeta values ζ(s1, . . . , sr) with weight s1+ · · ·+sr = k.
Set V0 = Q, V1 = 0. Clearly, V2 = Qπ2. Then, using the shuffle relations, we
see that

VkVk′ ⊆ Vk+k′ .

If we denote by V the Q-vector space generated by all the Vk’s, then Goncharov
conjectures that

V = ⊕∞
k=0Vk.

Zagier predicts that if dk = dimVk, then for k ≥ 3,

dk = dk−2 + dk−3 with d0 = 1, d1 = 0, d2 = 1.

In other words,
∞∑

k=0

dkt
k =

1

1− t2 − t3
.

It is generally suspected that this conjecture would imply the algebraic inde-
pendence of π, ζ(3), ζ(5), . . .. If we let ck be the coefficient of tk of the rational
function on the right-hand side of the above conjectural formula, then it is
now known by the work of Terasoma [121] as well as the work of Deligne and
Goncharov [40] that

dk ≤ ck.

Note that while one expects the dimensions dk of the spaces Vk to grow
exponentially in k, we do not have a single example of a space Vk with dimension
at least 2. In this context, in a recent work [61], it has been established that a
conjecture of Milnor about Hurwitz zeta values implies that infinitely many of
these Vk’s have dimension at least 2.

We end this section by mentioning a recent result due to Brown [21]. In this
work, he proves a conjecture by Hoffman which states that every multiple zeta
value is a Q-linear combination of ζ(n1, . . . , nr) where ni ∈ {2, 3}. In particular,
Brown’s result is a sweeping generalisation of the works of Terasoma, Deligne
and Goncharov. An essential ingredient in the proof of Brown was supplied
by Zagier [135] which involves a formula for the special multiple zeta values
of the form ζ(2, . . . , 2, 3, 2, . . . , 2) as rational linear combinations of products
ζ(m)π2n with m odd. The works of Terasoma, Deligne, Goncharov as well
as Brown involve rather deep algebraic geometry, more precisely the theory of
mixed Tate motives. We can do no better than to direct the interested reader
to the beautiful Bourbaki talks of Cartier [27] and Deligne [41]. One wonders if
there are simpler, more direct proofs of the results of Brown.
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Apéry’s Proof Revisited

There are many expositions of Apéry’s proof of the irrationality of ζ(3) (see, for
example, [123]). We begin by giving a streamlined version of Apéry’s proof and
then analyse it from the standpoint of modular forms.

Apéry begins by considering the recursion

n3un + (n− 1)3un−2 = (34n3 − 51n2 + 27n− 5)un−1.

Let An be the sequence obtained by setting A0 = 1, A1 = 5 and let Bn be
the sequence obtained by setting B0 = 0 and B1 = 6. Thus, if we let P (n) =
34n3 − 51n2 + 27n− 5, then

n3An + (n− 1)3An−2 = P (n)An−1,

n3Bn + (n− 1)3Bn−2 = P (n)Bn−1.

Multiplying the first equation by Bn−1 and the second by An−1 and subtracting,
we deduce that

n3(AnBn−1 −An−1Bn) = (n− 1)3(An−1Bn−2 −An−2Bn−1).

Iterating, we find

n3(AnBn−1 −An−1Bn) = A1B0 −A0B1 = −6.

Then, Apéry made some remarkable claims. First he asserted that An’s are all
integers. Further, he claimed that Bn’s are rational numbers such that

2 lcm[1, 2, 3, . . . , n]3Bn

are all integers. Finally, one has the following explicit formulas:

An =

n∑

k=0

(n

k

)2
(
n+ k

k

)2

,

Bn =

n∑

k=0

(n

k

)2
(
n+ k

k

)2

cn,k

where

cn,k =

n∑

j=1

1

j3
−

k∑

j=1

(−1)j

2j3

(
n

j

)−1(
n+ j

j

)−1

.

It turns out that explicit expressions for the An’s and the Bn’s are not needed
to prove the irrationality of ζ(3). In fact, from the recursion above, we see that

Bn
An

− Bn−1

An−1
=

6

n3AnAn−1
.
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From the explicit expressions for An and Bn, we can deduce that Bn/An tends
to ζ(3). Indeed,

Bn = An

n∑

j=1

1

j3
−

n∑

k=0

k∑

j=1

(−1)j

2j3

(
n
k

)2
(
n+k
k

)2

(
n
j

)(
n+j
j

) .

We will show that

n2 ≤ j3
(
n

j

)(
n+ j

j

)

.

This is clear for j = n since

n3

(
2n

n

)

≥ n2.

For 1 ≤ j ≤ n− 1, we have

n ≤
(
n

j

)

≤
(
n+ j

j

)

so that

n2 ≤
(
n

j

)(
n+ j

j

)

≤ j3
(
n

j

)(
n+ j

j

)

.

Thus, ∣
∣
∣
∣
∣
∣

Bn −An

n∑

j=1

1

j3

∣
∣
∣
∣
∣
∣

≤ An
2n

,

from which the assertion that Bn/An tends to ζ(3) follows. One can be a bit
more precise. We have by summing

∞∑

k=n

(
Bk+1

Ak+1
− Bk
Ak

)

= 6

∞∑

k=n

1

(k + 1)3AkAk+1
.

ζ(3)− Bn
An

= 6
∞∑

k=n

1

(k + 1)3AkAk+1

so that ∣
∣
∣
∣
ζ(3)− Bn

An

∣
∣
∣
∣
� 1

A2
n

.

We need to estimate the growth of An. Again, from the recursion this is easily
done. If we divide the recursion by n3 and take the limit as n tends to infinity,
we observe that

An ∼ Cn

where Cn satisfies
Cn + Cn−2 = 34Cn−1.
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The latter recurrence is easily solved and we see that Cn is asymptotically αn

where α = (1 +
√
2)4 = 17 + 12

√
2 is the larger root of

X2 − 34X + 1 = 0.

Finally, we need to prove the assertion about the denominators of Bn. To this
end, we observe that

(
n
k

)2
(
n+k
k

)2

j3
(
n
j

)(
n+j
j

) =

(
n
k

) (
n+k
k

)(
n−j
n−k
)(

n+k
k−j
)

j3
(
k
j

)2 ,

simply by writing out the binomial coefficients. Thus, we need to investigate
the power of a fixed prime p that can appear in the denominator, namely the
power of p in

j3
(
k

j

)2

.

But this is easily done by observing that

ordp

(
k

j

)

=

[log k/ log p]
∑

t=0

[k/pt]− [j/pt]− [(k − j)/pt].

It is elementary to see that

[x+ y]− [x]− [y] ≤ 1

with equality if and only if {x} + {y} ≥ 1, where {x} denotes the fractional
part of x. In particular, we see that the above summation can begin from
t = ordp(j) + 1 which gives us

ordp

(
k

j

)

≤ [log k/ log p]− ordp(j).

Thus,

ordp

(

j3
(
k

j

)2
)

≤ ordp(j) + 2[log k/ log p] ≤ 3[log k/ log p],

from which we deduce the statement about denominators. Now suppose that
ζ(3) is rational say C/D, with C,D co prime integers. Then, for the non-zero
integer, we have the following estimate (from the Prime Number Theorem):

2Dlcm[1, 2, . . . , n]3|Anζ(3)−Bn| � e3(n+o(n))(1 +
√
2)−4n.

For n large, this is a contradiction because

e3 < (1 +
√
2)4 = 33.970563 . . . .
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In the above proof, the recursion formulas for An and Bn were used in two
places. We remark that we can eliminate the second use of the recursion where
we derived An ∼ αn. Such an estimate was needed only to get a final upper
bound that led to the contradiction. To this end, a simpler estimate suffices if
we observe that for n even, we have

An ≥
(

n

n/2

)(
3n/2

n/2

)

.

One can see that

An ≥ c02
5n/n4

for some constant c0 and this suffices to get the desired contradiction since

e3 = 20.085537 . . . < 32 = 25.

Another approach was taken recently by Nesterenko [85]. Following earlier
work of Gutnik, he considers the rational function

R(z) =
(z − 1)2 · · · (z − n)2

z2(z + 1)2 · · · (z + n)2
.

The function R can be expanded into partial fractions:

R(z) =
n∑

k=0

(
Bk2

(z + k)2
+

Bk1
z + k

)

.

It is easy to see that

Bk2 = (z + k)2R(z)|z=−k =

(
n+ k

k

)2 (n

k

)2

,

and

Bk1 =
d

dz
((z + k)2R(z))|z=−k = −2Bk2

⎛

⎝

n∑

j=1

1

k + j
−

n∑

j=0,j �=k

1

k − j

⎞

⎠ .

It is clear from these expressions that Bk2 is integral and that DnBk1 is integral
where

Dn =
∏

p≤n
p[log 2n/ log p].

If we choose a large enough contour C, then the Cauchy residue theorem shows
that

1

2πi

∫

C

R(z)dz =

n∑

k=0

Bk1 = 0,
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since R(z) = O(|z|−2). Using this fact, we deduce that

I :=

∞∑

v=1

R′(v) =
n∑

k=0

∞∑

v=1

(

−2
Bk2

(v + k)3
− Bk1

(v + k)2

)

= anζ(3) + bn,

where

an = −2

n∑

k=0

Bk2

and

bn =

n∑

k=0

k∑

r=1

(

2Bk2r
−3 +Bk1r

−2
)

so that an and D3
nbn are integers. On the other hand, one can write down an

integral expression for this as

I =
1

2πi

∫

�(s)=C

( π

sinπz

)2

R(z)dz.

To see this, we truncate the integral from C + iT to C − iT with T = N + 1/2,
N a positive integer > n tending to infinity. We deform the contour to the
rectangle whose vertices are given by (C,−T ), (T,−T ), (T, T ), and (C, T ). On
the boundary of the rectangle, 1/ sin2 πz is bounded and R(z) = O(1/T 2). Thus
we compute the contribution from the residues: for z = k, k a positive integer,
we have

( π

sinπz

)2

=
1

(z − k)2
+O(1)

and

R(z) = R(k) +R′(k)(z − k) +O((z − k)2),

so that

Resz=k

(( π

sinπz

)2

R(z)

)

= R′(k),

from which the formula is easily deduced. Finally, using the method of steepest
descent, Nesterenko shows that

I =
π3/223/4

n3/2
(
√
2− 1)4n+2(1 + o(1))

as n tends to infinity. From this fact, the irrationality of ζ(3) is easily deduced,
as before.

Yet a third proof by Beukers [19] uses the family of polynomials

Pn(x) =
1

n!

dn

dxn
xn(1− x)n
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which is easily seen to have integral coefficients. By straightforward integration,
it is easy to see that for r > s,

∫ 1

0

∫ 1

0

xrysdxdy

1− xy

is a rational number whose denominator is divisible by d2r = [1, 2, . . . , r]2.
Similarly,

−
∫ 1

0

∫ 1

0

xrys log xy dxdy

1− xy

is a rational number whose denominator is divisible by d3r. If r = s, then it is
clear that

∫ 1

0

∫ 1

0

xryrdxdy

1− xy
= ζ(2)−

(

1 +
1

22
+ · · ·+ 1

r2

)

and

−
∫ 1

0

∫ 1

0

xryr log xy dxdy

1− xy
= 2

(

ζ(3)−
(

1 +
1

23
+ · · ·+ 1

r3

))

.

Indeed, considering the integral

∫ 1

0

∫ 1

0

xr+tys+tdxdy

1− xy

we see that it is

∞∑

k=0

1

(k + r + t+ 1)(k + s+ t+ 1)

=
1

r − s

∞∑

k=0

(
1

k + s+ t+ 1
− 1

k + r + t+ 1

)

which telescopes to give the first part of the assertion fo r > s. If we differentiate
with respect to t and set t = 0, we can deduce the second assertion. In case
r = s, we put t = 0 to deduce the formula for ζ(2). If we differentiate with
respect to t and set t = 0, we deduce the formula involving ζ(3). Beukers then
looks at the integral

−
∫ 1

0

∫ 1

0

log xy

1− xy
Pn(x)Pn(y)dxdy

which by our observations above is

(Cn +Dnζ(3))d
−3
n

with Cn, Dn integers. Since

− log xy

1− xy
=

∫ 1

0

dz

1− (1− xy)z
,
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the integral in question is

∫ 1

0

∫ 1

0

∫ 1

0

Pn(x)Pn(y)dxdydz

1− (1 − xy)z
.

An n-fold integration by parts with respect to x gives that the integral is equal to

∫ 1

0

∫ 1

0

∫ 1

0

(xyz)n(1− x)nPn(y)dxdydz

(1 − (1− xy)z)n+1
.

A change of variable z = 1−w
1−(1−xy)w followed by an n-fold integration by

parts with respect to y gives that the integral is equal to

∫ 1

0

∫ 1

0

∫ 1

0

(xyw)n(1− x)n(1− y)n(1 − w)n

(1− (1− xy)w)n+1
dxdydw.

It turns out that the integral is bounded by

2(
√
2− 1)4nζ(3).

This can be deduced by noting that

(xyw)(1 − x)(1 − y)(1− w)

(1− (1− xy)w)

is bounded by (
√
2− 1)4 in the given region. Since the integral is non-zero, this

with the other estimates for dn gives the final result.

Picard–Fuchs Differential Equations

and Modular Forms

Suppose we consider differential equations of the type

y(n) + a1(z)y
(n−1) + · · ·+ an(z)y = 0

where the ai are rational functions over the field of complex numbers (say)
and y is a function of z. We would like to know when the equation admits
n independent algebraic solutions. The complex numbers for which at least
one of the rational functions ai is not defined are called singular points of the
differential equation and form a finite set S. At any non-singular point z0,
we may find a basis for the solution space of the differential equation at z0.
If we choose a closed path u beginning at z0 contained in P

1\S and analytically
continue these solutions along this path, we find that when we return to z0, we
will have another basis of solutions. The change of basis matrix ρ(u) depends
only on the homotopy class of u and thus we may associate with each element
of the fundamental group π1(P

1\S, z0), an element of GL(n,C). This defines
a representation of π1(P

1\S, z0) and is called the monodromy representation
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of the fundamental group. If we fix another non-singular point z1, then the
monodromy representation is conjugate to the earlier one. Thus the image of
the monodromy representation is well defined in GL(n,C) up to conjugacy and
this we call the monodromy group of the differential equation.

In relation to singular points, one needs to make a distinction between a
regular singular point and an irregular singular point. Given our differential
equation, we say that a complex number z0 is a regular singular point (see [54],
for instance) if

lim
z→z0

(z − z0)
iai(z)

exists for i = 1, 2, . . . , n. The point ∞ is called a regular singularity if

lim
z→∞ ziai(z)

exists and is finite for i = 1, 2, . . . , n. The differential equation is called Fuchsian
if every point of P1 is either non-singular or regular singular. It turns out that all
the solutions of a Fuchsian equation are algebraic if and only if the monodromy
group is finite.

It might be instructive to consider an example. Let us look at

z2y′′ +
1

6
zy′ +

1

6
y = 0.

It is readily verified that z1/2 and z1/3 are independent solutions of this equation.
Observe that both solutions are algebraic. If we take the set of solutions
{z1/2, z1/3} which constitutes a basis and analytically continue this pair of
solutions around a closed path containing zero, we get another basis of solu-
tions {−z1/2, e2πi/3z1/3}. The change of basis matrix is represented by

( −1 0

0 e2πi/3

)

.

In this way, it is not difficult to see that the monodromy group is generated by
this matrix which has order 6 and thus finite.

If we consider the equation

z2y′′ − zy + y = 0

then the two independent solutions are {z, z log z}, where the second solution
is not algebraic. It is not hard to see that the monodromy is generated by the
matrix

(

1 2πi
0 1

)

which is infinite cyclic.
An important class of Fuchsian equations is provided by the hypergeometric

differential equation defined by

z(z − 1)y′′ + [(a+ b+ 1)z − c]y′ + aby = 0
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where a, b, c are real. The Euler–Gauss hypergeometric function

F (a, b, c; z) :=

∞∑

n=0

(a)n(b)n
(c)nn!

zn

where (x)n = x(x + 1) · · · (x + n − 1) is a solution. The points 0, 1 and ∞ are
regular singular points. In 1873, Schwarz determined the list of a, b, c for which
the monodromy group is finite and this list is called Schwarz’s list. For instance,
F (a, 1, 1; z) = (1 − z)−a is algebraic. The Chebyshev polynomials defined by
Tn(cos z) = cosnz are given by

F (−n, n, 1/2; (1− z)/2).

A similar formula exists for Legendre polynomials.
In our context, the Apéry recurrence relation can be translated into a differ-

ential equation. If we set

f(t) =
∞∑

n=0

unt
n

then, we find the recurrence is equivalent to

(z4 − 34z3 + z2)y′′′ + (6z3 − 153z2 + 3z)y′′ + (7z2 − 112z + 1)y′ + (z − 5)y = 0.

It turns out that the solution space of this differential equation is spanned by
the squares of a second-order equation which is

(t3 − 34t2 + t)y′′ + (2t2 − 51t+ 1)y′ +
1

4
(t− 10)y = 0.

We will now indicate briefly the “modular proof” of Beukers [20]. He begins
with an elementary observation. Suppose that

f0(t), f1(t), . . . , fk(t)

are power series in t with rational coefficients. Suppose further that the
n-th coefficient has denominator dividing dn[1, 2, . . . , n]r for some fixed d and r.
Suppose that there are real numbers θ1, . . . , θk such that

f0(t) + θ1f1(t) + · · ·+ θkfk(t)

has radius of convergence ρ and that infinitely many of its Taylor coefficients
are non-zero. If ρ > der, then at least one of the θ1, . . . , θk is irrational.

To prove this, write

fi(t) =

∞∑

n=0

aint
n.

Let ε > 0, and choose n large so that

|a0n + θ1a1n + · · ·+ θkakn| < (ρ− ε)−n.
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If all the θi are rational, let D be the common denominator. Then,

Sn := Ddn[1, 2, . . . , n]r|a0n + θ1a1n + · · ·+ aknθk|

is an integer smaller than

Ddn[1, 2, .., n]r(ρ− ε)−n.

By the prime number theorem [1, 2, . . . , n] < e(1+ε)n for large n and so by the
hypothesis, we see that Sn vanishes for n sufficiently large.

With this general observation in mind, we consider the following.

Proposition 28.1 [20] Let

F (z) =

∞∑

n=1

anq
n

be such that

F (−1/Nz) = w(−iz
√
N)kF (z),

where w = ±1. Let

f(z) =

∞∑

n=1

an
nk−1

qn,

and let

L(s, F ) =

∞∑

n=1

an
ns
.

Finally, set

h(z) = f(z)−
(k−3)/2
∑

r=0

L(k − r − 1, F )(2πiz)r/r!.

Then

h(z)−D = (−1)k−1w(−iz
√
N)k−2h(−1/Nz).

Here D = 0 if k is odd and otherwise equal to

(2πiz)k/2−1 L(k/2, F )

(k/2− 1)!

if k is even. Further, L(k/2, F ) = 0 if w = −1.

Proof. We apply a lemma of Hecke (as in [20]) to deduce that

f(z)− w(−1)k−1(−iz
√
N)k−2f(−1/Nz) =

k−2∑

r=0

L(k − r − 1, F )

r!
(2πiz)r.
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Splitting the summation on the right-hand side into sums over r < k/2 − 1,
r > k/2− 1 and possibly r = k/2− 1, and applying the functional equation

L(k − r − 1, F )

r!
= w(−1)k(−i

√
N)k−2(−1/N)k−r−2(2πi)k−2r−2 L(r + 1, F )

(k − r − 2)!
,

we obtain the result. �

Note that the function f above is the Eichler integral associated with F . We
apply this theorem to the following:

40F (z) = E4(z)− 36E4(6z)− 28E4(2z) + 63E4(3z)

and
24E(z) = −5E2(z) + 30E2(6z) + 2E2(2z)− 3E2(3z).

Here E4 and E2 are the usual Eisenstein series:

E4(z) = 1 + 240

∞∑

n=1

σ3(n)q
n, q = e2πiz ,

E2(z) = 1− 24
∞∑

n=1

σ1(n)q
n,

where

σk(n) =
∑

d|n
dk.

For a quick introduction to the notions of modular forms relevant here, we
suggest the masterly article of Zagier in [25]. Let Γ1(6) be the subgroup of the
full modular group SL2(Z) defined by

{(
a b
c d

)

: a, b, c, d ∈ Z, ad− bc = 1, a ≡ d ≡ 1(mod 6), c ≡ 0(mod 6)

}

.

One can show that F is a modular form of weight 4 on Γ1(6) and that

F (−1/6z) = −36z4F (z)

and F (i∞) = 0. Also E is a modular form of weight 2 on Γ1(6) and

E(−1/6z) = −6z2E(z).

The Dirichlet series corresponding to L(s, F ) is

6(1− 62−s − 7.22−s + 7.32−s)ζ(s)ζ(s − 3).

Define f(z) by

(d/dz)3f(z) = (2πi)3F (z).
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This is the Eichler integral associated with F . Further, f(i∞) = 0. An appli-
cation of the proposition gives

6z2(f(−1/6z)− L(3, F )) = −(f(z)− L(3, F )).

Since ζ(0) = −1/2), we have

L(3, F ) = 6(−1/3)ζ(3)ζ(0) = ζ(3)

and therefore

6z2(f(−1/6z)− ζ(3)) = −(f(z)− ζ(3)).

Multiplication by E(−1/6z) = −6z2E(z) gives

E(−1/6z)(f(−1/6z)− ζ(3)) = E(z)(f(z)− ζ(3)).

The field of modular functions for the group Γ1(6) is generated by

t(z) =

(
Δ(6z)Δ(z)

Δ(3z)Δ(2z)

)1/2

= q

∞∏

n=0

(1 − q6n+1)12(1− q6n+5)−12,

where

Δ(z) = q

∞∏

n=1

(1− qn)24

is Ramanujan’s cusp form of weight 12 for the full modular group. From this,
we see that

q = t+ 12t2 + 222t3 + · · · .
Also,

E(z) = 1 + 5q + 13q2 + · · ·
and hence

E(t) = 1 + 5t+ 73t2 + 1445t3 + · · · .
Similarly,

E(t)f(t) = 6t+ (351/4)t2 + (62531/36)t3 · · · .
By construction, one notes that E(t) has integral coefficients and that

E(t)f(t) =

∞∑

n=0

ant
n

has coefficients which are rational and an[1, 2, . . . , n]
3 are integers.

Here we are working with the power series E(t)f(t) and E(t). By appealing
to the earlier observation of Beukers about power series with rational coefficients
and exploiting the identity

E(−1/6z)(f(−1/6z)− ζ(3)) = E(z)(f(z)− ζ(3)),

we deduce the irrationality of ζ(3).
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It is interesting to note that the coefficients of these two power series are
precisely the Apéry numbers and the recurrence relations now become irrelevant.
However, the recurrence relations can be derived from the following general
principle of expressing modular forms as solutions of linear differential equations.

If F (z) is a modular form of weight k and t(z) is a modular function, then
F (t) (locally) satisfies a differential equation of order k + 1. This seems to
be a “folklore” theorem. There is a memoir of Stiller [120] that discusses this
theorem in some detail. We provide a short summary of the ideas involved.

Suppose for the sake of simplicity, we have a modular form f of weight 2 for
some subgroup Γ of SL2(Z). If we consider the three-dimensional vector space
spanned by f(z), zf(z) and z2f(z), then it is easy to see that γ ∈ Γ acts on this
vector space in the obvious way. For example,

γ · f(z) = f

(
az + b

cz + d

)

= (cz + d)2f(z) = c2z2f(z) + 2cdzf(z) + d2f(z),

and it is not difficult to see that

γ ·
⎛

⎝

z2f(z)
zf(z)
f(z)

⎞

⎠ =

⎛

⎝

a2 2ab b2

ac ad+ bc bd
c2 2cd d2

⎞

⎠

⎛

⎝

z2f(z)
zf(z)
f(z)

⎞

⎠ .

If we denote the matrix on the right-hand side of the equation by

M = Sym2(γ),

then a direct verification shows that it is of determinant one. Writing F (z) =
(z2f(z), zf(z), f(z)), the above formula reads as

γ.F (z) =MF (z).

Now let us consider f as a function of t. Then, one verifies that

d

dt
F (γz) =M

d

dt
F (z)

by checking it for each of the entries, noting that t is Γ-invariant. Further, the
same is true for the higher t-derivatives. If we are trying to find the differential
equation satisfied by three functions f2, f1, f0 say, then we begin by assuming
it is of the form

y′′′ + a2(t)y
′′ + a1(t)y

′ + a0(t)y = 0.

If we let f0(t) = f(t), f1(t) = tf(t), f2(t) = t2f(t) and would like to deter-
mine the differential equation these functions satisfy, then by Cramer’s rule, we
can write down a0(t), a1(t), a2(t) in the obvious way using determinants. For
instance, one of the coefficients is given by the determinant

∣
∣
∣
∣
∣
∣

f ′
0 f ′′

0 f ′′′
0

f ′
1 f ′′

1 f ′′′
1

f ′
2 f ′′

2 f ′′′
2

∣
∣
∣
∣
∣
∣

.
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Thus we do obtain a differential equation of order 3. This differential equa-
tion has coefficients in terms of our solutions f0, f1, f2. The action of γ on
them is the same as multiplying by the symmetric square matrixM of γ having
determinant one. Thus the coefficients are Γ-invariant meromorphic functions
and therefore must be algebraic functions of t. Hence we are done. This equation
is called the Picard–Fuchs differential equation associated with X(Γ).

In our case, we take the weight 2 form

g(z) =
η(2z)7η(3z)7

η(z)5η(6z)5

where η denotes the Dedekind η-function. Then g is a modular form of weight
2 for Γ1(6) and is equal to the function E in Beukers’ proof. Again, let t be the
function

t(z) =

(
Δ(6z)Δ(z)

Δ(3z)Δ(2z)

)1/2

= q

∞∏

n=0

(1 − q6n+1)12(1− q6n+5)−12.

Treating g as a function of t, we can derive a third-order differential equation.
From this differential equation, we can recover the recursion defining the integral
Apéry numbers. The integrality is a consequence of the observation that both
g(z) and t(z) have integral q-expansions and that t(z) is normalised (i.e. starts
with q).

On the other hand, the recursion and divisibility properties of the rational
Apéry numbers are more involved as they are related to the function F intro-
duced before in Beukers’ proof. This function is defined as

40F (z) = E4(z)− 36E4(6z)− 28E4(2z) + 63E4(3z),

and which being a modular form of weight 4, satisfies a differential equation of
order 5.

However as suggested by Beukers himself, it is more convenient to work with
the function fg where f is the Eichler integral associated with F . Expressing
fg as a function of t and working with the associated differential equation, we
can recover the recurrence formula for the rational Apéry numbers as well as
the divisibility properties enjoyed by their denominators. We recommend the
article of Zagier in [25] for a more elaborate account.

The theme of expressing modular forms as functions of modular functions
and thereby realising them as solutions of linear differential equations of finite
order constitutes a venerable theme. The imprints of this can be traced in the
works of past masters like Gauss, Fricke, Klein, Poincare, Ramanujan, etc. As
we have seen before, the fact that the C-algebra generated by the Eisenstein
series E2, E4 and E6 is closed under differentiation constitutes an essential
ingredient in the work of Nesterenko.

Finally, it is not clear if any of these proofs of irrationality of ζ(3) can yield
irrationality of other odd zeta values like that of ζ(5). However, we do have the
following theorem of Rivoal [14, 105] which is the most general result in this
context.
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Theorem 28.2 Given any ε > 0, there exists an integer N = N(ε) such that
for all n > N , the dimension of the Q-vector space generated by the numbers

1, ζ(3), . . . , ζ(2n− 1), ζ(2n+ 1)

exceeds
1− ε

1 + log 2
logn.

In particular, Rivoal proved that infinitely many odd zeta values are irra-
tional. Concerning the individual odd zeta values, Rivoal [106] himself showed
that at least one of the nine numbers

ζ(5), ζ(7), . . . , ζ(21)

is irrational. This was sharpened by Zudilin [137] who showed that at least one
among the four numbers

ζ(5), ζ(7), ζ(9), ζ(11)

is irrational. Thus the irrationality, let alone transcendence, of odd zeta values
seems to be a very hard question.

Finally, in this mysterious modular-transcendence conundrom, one can ask
about nature of the values taken by the L-functions associated with modular
forms. Indeed, Kohnen [71] (see also [60, 72]) has made general conjectures
regarding special values of L-series attached to modular forms of weight 2k for
the full modular group. These conjectures when applied to classical Eisenstein
series imply the transcendence of ζ(2k + 1)/π2k+1 for all k ≥ 1. But this is a
different journey which we do not undertake here.
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unipotents, in Séminaire Bourbaki, vol. 2000/2001, Astérisque No. 282,
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