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Preface

This book is an introductory text to the methods and tools that are nowadays widely
used and accepted in the mathematical epidemiology literature. It is intended to start
from a beginner level and accelerate to research level. It targets upper undergraduate
mathematics students, and mathematics, physics, and engineering graduate students.
The book will also be suitable for mathematics researchers who wish to build a
background and advance to research level in mathematical epidemiology. The book
is expected to be useful to mathematical epidemiologists as a reference text.

Chapter 1 discusses some historical aspects of modeling infectious diseases. It
also introduces a number of epidemiological concepts with their definitions. Finally,
Chap. 1 includes general ideas about the modeling process, how we go from a bio-
logical question to a mathematical model, and how we answer biological questions
based on conclusions from the model. Chapter 2 introduces the basic epidemic mod-
els without demography as well as a comparison to data. Simple single-equation
epidemic models are analyzed. Chapter 3 deals with how and when demographic
variables are included in epidemic models. It also includes complete analysis of the
basic SIR model with demography. Analysis of planar systems is presented. Hopf
bifurcation is introduced and applied to a model with saturating incidence. Chapter 4
brings in vector-borne diseases and treats their modeling in the context of ordinary
differential equations (ODEs) and delay-differential equations. Chapter 5 is devoted
to building more complex models with various components. Most of the widespread
techniques for the computation of the reproduction number are introduced and il-
lustrated on examples. Chapter 6 discusses statistical techniques for fitting models
to data and for selecting the model that best represents the data. The first six chap-
ters use standard and relatively elementary mathematical techniques and may be
appropriate for a more general audience.

Chapters 7–11 treat more advanced epidemiological models and build appropri-
ate mathematical techniques that are more involved. Chapter 7 is devoted to the
mathematical analysis of complex epidemiological models. Global stability is con-
sidered via Lyapunov functions. The possibility of multiple equilibria via backward
bifurcation is also introduced. Chapter 8 is devoted to multistrain interactions. The
chapter begins by establishing the competitive exclusion principle. Furthermore,
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it introduces mechanisms for coexistence. Analysis of multistrain models is il-
lustrated. Chapter 9 is devoted to modeling control strategies in the context of
single-strain and multistrain diseases. Herd immunity and proportion vaccinated are
introduced. The chapter discusses the phenomenon of strain replacement. Optimal
control techniques are presented and applied to specific examples. Chapter 10 in-
troduces the most basic ecological models such as predation and competition and
includes the spread of a disease in animal populations subject to predation or compe-
tition. Complex dynamical behavior such as chaos is shown in a three-dimensional
system of ODEs. Chapter 11 focuses on zoonotic diseases in general and avian in-
fluenza in particular. Basic models of avian influenza are introduced and compared
to data. Control strategies are evaluated. Nonautonomous modeling is treated.

Chapters 16–14 are devoted to partial differential equation (PDE) age-structured
epidemic modeling. Chapter 16 introduces host–age structured models. After a
brief introduction of age-structured population models, the chapter proceeds by dis-
cussing age-structured SIS (susceptible–infected–susceptible) and SIR (susceptible–
infected–removed) models. Chapter 13 introduces a basic SI model with age since
infection. Pease’s influenza model is also discussed, and oscillations are obtained.
Chapter 14 is devoted to immuno-epidemiological modeling. It includes immuno-
logical modeling, linking within-host models to epidemiological models and com-
putation of relevant reproduction numbers. Chapter 15 is devoted to spatial aspects
of epidemiology. Multipatch models with Lagrangian and Eulerian movement are
considered. Furthermore, simple diffusion models are introduced, and a rabies epi-
demic model with diffusion is discussed. Chapter 13 introduces the basic epidemic
models in a discrete setting. It also includes tools for local analysis of discrete dy-
namical systems. More complex discrete models are built, and the next-generation
approach for the computation of the reproduction number in discrete settings is dis-
cussed.

This book is intended as a comprehensive text on mathematical epidemiology.
However, it does not include some important topics that are an integral part of the
subject. Two important topics that are missing are stochastic epidemic modeling and
network disease modeling. These were not included to keep the length of the book
within limits and because of the limited expertise of the author in those specific
topics. There are several books that focus on these topic separately and involve
epidemic modeling.

Chapters from this book can be used as an upper undergraduate or graduate text,
as well as for summer courses. Chapters 1–6 are appropriate for an undergraduate
course on mathematical epidemiology or as a supplemental text to an undergraduate
mathematical biology class. Chapters 2–11 and 16 are appropriate for an introduc-
tory graduate class on mathematical epidemiology. Chapters 16–15 are more ad-
vanced and are appropriate for a PDE-focused graduate mathematical biology class.
Exercises are provided after each chapter to help the reader understand and retain
the material as well as to develop necessary skills to advance to research.
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Chapter 1
Introduction

1.1 Epidemiology

Epidemiology is the subject that studies the patterns of health and illness and
associated factors at the population level. The word “epidemiology” is derived from
the Greek terms epi, which means “upon,” demos, which means “ people,” and
logos, which means “study.” This etymology implies that the subject of epidemi-
ology applies only to human populations. The role of father of epidemiology is
often assigned to the Greek physician Hippocrates (460–377 B.C.E.), who described
the connection between disease and environment [83]. The term “epidemiology”
appears to have first been used to describe the study of epidemics in 1802 by the
Spanish physician de Villalba in Epidemiologia Espanola [30]. Until the twentieth
century, epidemiological studies were mostly concerned with infectious diseases.
Nowadays, the leading causes of deaths worldwide are diseases such as stroke and
coronary heart disease [132], positioning diseases that do not transmit from one
person to another as a central concern of epidemiology. Among infectious diseases,
those that dominate worldwide as a cause of death include lower respiratory inf-
ections (such as pneumonia) and HIV. In this book, we will be concerned with
mathematical modeling of infectious diseases.

1.2 Classification of Infectious Diseases

An infectious disease is a clinically evident illness resulting from the presence
of a pathogenic microbial agent. The microbial agent causing the disease can be
bacterial, viral, fungal, parasitic, or it can be toxic proteins, called prions. Infec-
tious diseases caused by bacteria include tuberculosis and pneumonia; viral diseases
include HIV and influenza; the most widespread fungal diseases are dermatomy-
coses; parasitic infections are caused by macroparasites such as protozoa,
helminths, trematodes, and cestodes. An example of a prion-caused disease is
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2 1 Introduction

Creutzfeldt–Jakob disease. Communicable diseases are infectious diseases that can
be transmitted from one infectious person to another, directly or indirectly. Often,
we do not make a distinction between infectious diseases and communicable dis-
eases, since many of the infectious diseases are in fact communicable diseases.
However, there are diseases that are infectious but not communicable. Tetanus is an
example of such a disease. Transmittable diseases are infectious diseases that can
be transmitted from one person to another through unnatural routes. For instance,
Creutzfeldt–Jakob disease can be passed from one patient to another through surgi-
cal instruments or transplants. Nonetheless, the distinction between infectious dis-
eases, communicable diseases, and transmittable diseases is subtle, and infectious
diseases are often called communicable diseases or transmittable diseases because
of their potential to be transmitted from one person to another.

Transmission of infectious diseases may occur through a variety of pathways.
According to the means of transmission, infectious diseases are classified as follows:

• Person-to-person transmitted diseases are diseases that require direct or
indirect contact. Direct contact includes touching or sexual contact. Diseases
that are transmitted through sexual contact are called sexually transmitted dis-
eases. Sexually transmitted diseases include HIV, gonorrhea, and syphilis. Indi-
rect contact includes exchange of an infected object, blood, or other body fluids.
Influenza can be transmitted through indirect contact.

• Airborne transmission occurs on inhalation of infected air. Airborne transmit-
ted diseases include influenza, smallpox, measles, chickenpox, and tuberculosis.

• Food- and waterborne diseases are transmitted through ingestion of contami-
nated food or water. Cholera is a waterborne disease. Foodborne diseases include
salmonella and stomach flu.

• Vector-borne diseases are transmitted by a vector, most often an arthropod such
as a mosquito or tick, or a mollusk such as a snail. Examples of vector-borne
diseases are malaria, dengue, and West Nile virus, which are transmitted by
mosquitoes.

• Vertical transmission occurs when a disease is transmitted through the placenta
from a mother to a child before or at birth. Examples of such diseases are HIV,
hepatitis B, syphilis, rubella, and herpes simplex virus.

For modeling purposes, we distinguish four types of transmission: direct, when
the causative pathogen is transmitted from one person to another; vector-transmitted,
when the causative agent is transmitted from a vector to a human; environmental
transmission, when a human becomes infected through contact with a pathogen
present in the environment; and vertical, when the pathogen is transmitted from
mother to child at birth. Person-to-person and airborne diseases are usually mod-
eled as directly transmitted when transmission occurs through contact between
one person and another. What constitutes a “contact” sufficient for transmission
in these diseases depends on the specific disease. In sexually transmitted diseases,
sexual contact is necessary, while airborne diseases, which are often modeled as dir-
ectly transmitted, require a certain degree of physical proximity without the neces-
sity of touching. Modeling vector-borne transmission requires the inclusion of the
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dynamics of the vector in addition to the dynamics of the infected individuals.
Environmentally transmitted diseases are typically modeled by separately model-
ing the dynamics of the virus in the environment and the transmission that occurs
on contact between an individual and the free pathogen.

A pathogen reservoir is an ecological niche in which a pathogen lives and
multiplies. Such a reservoir plays a significant role in the spread of the pathogen.
According to their reservoir, the microbial agents are classified as human, animal,
and environmental. Human pathogens circulate mostly among humans, and humans
play a role in their transmission. Animal pathogens have vertebrate animals as a
reservoir, and circulate primarily among animals. Epidemiologically, this is sig-
nificant, because many such pathogens adapt to infect humans through animal-to-
human transmission. Infections that spread from vertebrate animals to humans are
called zoonoses. Environmental pathogens multiply primarily in the environment
(typically water and soil) and spread from there to animal and human populations.

Many infectious diseases have more than one pathway of transmission. For
instance, HIV is primarily transmitted through sexual contact, but it can also be
transmitted by blood transfusion or needle sharing. Furthermore, HIV can be trans-
mitted vertically at birth from an infected mother to her child. Avian influenza H5N1
is primarily transmitted through direct contact with infected poultry and rarely dir-
ectly from human to human. However, significant evidence now exists that H5N1
can persist in the environment, and the environmental route of transmission is gain-
ing more importance.

1.3 Basic Definitions in the Epidemiology of Infectious Diseases

There are a number of concepts in epidemiology strictly related to infectious dis-
eases. These concepts play an important role in the construction of mathematical
models by adding various features to the model. Some of the most widely used
concepts are listed below. Others will be introduced as new models are discussed.

• Exposed Individuals. When a healthy individual who is vulnerable to contract-
ing a disease makes a potentially disease-transmitting contact, that individual
becomes exposed. Exposed individuals may or may not develop the disease.
These individuals are typically not infectious. In mathematical models, we of-
ten assume that all exposed individuals eventually develop the disease.

• Infected and Infectious Individuals. If the pathogen establishes itself in an
exposed individual, then that individual becomes infected. Infected individuals
who can transmit the disease are called infectious. Infected individuals may not
be infectious during the entire time of being infected.

• Latent Individuals. These are individuals that are infected but not yet infec-
tious. The latent period is defined as the time from infection to when the host is
able to transmit the infectious agent to another individual.

• Incubation Period. The incubation period is the period between exposure to an
infectious agent and the onset of symptoms of the disease. In infectious diseases,
the incubation period is the time required for the infectious agent to multiply
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to a threshold necessary to produce symptoms or laboratory evidence of infec-
tion. The incubation period does not necessarily coincide with the latent period.
For instance, in influenza, individuals become infectious approximately one day
before they exhibit visible flu symptoms.

• Incidence. Incidence is defined as the number of individuals who become ill
during a specified interval of time (e.g., one year). Sometimes, incidence is the
number of individuals who become ill during a specified interval of time divided
by the total population. In most cases, incidence is determined from the number
of clinical cases, which underestimates the true incidence, since it ignores the
subclinical cases.

• Prevalence. The prevalence of a disease is the number of people who have the
disease at a specific time. Sometimes, prevalence is defined as the number of
people who have the disease at a specific time divided by the total population
size.

• Case Fatality Proportion (CFP). The case fatality proportion is given as the
ratio of people who die of a disease to those who contract it. For instance, as of
June 27, 2014, 667 people have been diagnosed with H5N1 avian influenza, and
393 of them have died. The CFP is 0.59.

• Disease-Induced Mortality. Disease-induced mortality is the number of people
who have died from the disease in one unit of time (e.g., one year) divided by the
entire population.

This list is by no means exhaustive. More complete lists of terms used in infec-
tious disease epidemiology can be found in the many excellent books on this subject
(e.g., [56]).

1.4 Historical Remarks on Infectious Diseases
and Their Modeling

The first significant epidemic described by historians was the plague of Athens,
which struck the city of Athens in 430–426 B.C.E. The most precise description of
that plague was provided by the scientific historian Thucydides (460–400 B.C.E.) in
his History of the Peloponnesian War. His description is based on personal experi-
ence and includes symptoms, progression of the disease, and numbers of deaths. The
causative agent of the plague of Athens is still being debated [131, 134]. Hippocrates
(459–337 B.C.E.), in his treatise Epidemics, delineates the factors that affected the
spread of disease at that time. In 165–180 C.E., the Roman Empire and Egypt were
affected by smallpox. Tens of millions of people died [5].

One of the most well documented epidemics that devastated Europe was the
Black Death. The Black Death spread throughout the Mediterranean and Europe
and is estimated to have killed about 50–100 million people in the years 1348–
1350 [5]. Recent DNA evidence from victims in Europe suggests that the pathogen
responsible was the Yersinia pestis bacterium, which causes several forms of
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plague [69]. The Black Death pathogen reappeared in Europe in multiple locations
into the nineteenth century. Another disastrous epidemic attacked the Aztec popula-
tion in the sixteenth century. This smallpox epidemic killed an estimated 35 million
people. In the early twentieth century, an influenza pandemic killed an estimated 20
million of the world’s population. At present, we still have significant outbreaks of
epidemics: The Bombay plague 1905–1906, the 2003 severe acute respiratory syn-
drome (SARS), and the H1N1 swine flu pandemic of 2009. Threats of epidemics
and pandemics exist continually, since viruses mutate very quickly and can jump
species barriers, infecting humans, potentially on a mass scale.

Although epidemiology itself has a long history, the mathematical study of dis-
eases and their spread is only about 350 years old. The first statistical study of infec-
tious diseases is attributed to John Graunt (1620–1674), whose 1663 book Natural
and Political Observations Made upon the Bills of Mortality was concerned with
methods of public health statistics. A century later, Daniel Bernoulli used mathe-
matical methods to analyze mortality from smallpox. In 1766, he published what
is now considered the first epidemiological model (reviewed in [22]). Bernoulli ar-
gued that inoculation with live virus obtained from a mild case of smallpox would
reduce the death rate and thereby increase the population, even if the inoculation
itself might occasionally be fatal. A contemporary reformulation of Bernoulli’s ap-
proach in terms of differential equations is given in [55].

In the mid nineteenth century, Louis Pasteur made remarkable breakthroughs in
the causes and prevention of disease. He reduced mortality from puerperal fever and
created the first vaccines for rabies and anthrax. His medical discoveries provided
direct support for the germ theory of disease. Around the same time, the founder
of modern bacteriology, Robert Koch, identified the specific causative agents of tu-
berculosis, cholera, and anthrax, thus giving experimental support to the concept of
infectious disease. He was also famous for the development of Koch’s postulates. In
the late 1800s, science could finally explain the mechanism of how one becomes ill.
The concept of passing a bacterial disease through contact between an infected in-
dividual and a healthy one became known. This paved the way for the mathematical
modeling of infectious diseases.

Mathematical modeling of infectious diseases made significant strides with the
work of William Hamer, in the early twentieth century. He was looking for an exp-
lanation of the recurrence of measles. It appears that Hamer was the first to use
the mass action law in modeling infectious diseases. But it is Sir Ronald Ross
who is considered the father of modern mathematical epidemiology. He did pio-
neering work on malaria and discovered that it is transmitted between humans and
mosquitoes. For his work on malaria, Ross received the Nobel Prize in 1902. Sir
Ronald Ross was concerned with prevention of malaria. Despite his contributions,
he could not convince his contemporaries that malaria could be eradicated simply by
reducing the number of mosquitoes. In the second edition of his book The Preven-
tion of Malaria, published in 1911, he developed mathematical models of malaria
transmission and derived a threshold quantity, nowadays known as the basic repro-
duction number. In Ross’s time, mathematical modeling of infectious diseases was
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not well accepted. Nonetheless, Ross was a supporter of the use of mathematical
tools in epidemiology. A British Medical Journal quotes him as follows [71]:

As a matter of fact all epidemiology, concerned as it is with the variation of disease from
time to time or from place to place, must be considered mathematically, however many
variables are implicated, if it is to be considered scientifically at all. To say that a disease
depends upon certain factors is not to say much, until we can also form an estimate as to how
largely each factor influences the whole result. And the mathematical method of treatment
is really nothing but the application of careful reasoning to the problems at issue.

Mathematical epidemiology was raised to a new level by the model of the spread
of infectious diseases, published by Kermack and McKendrick in 1927. In their joint
article “A contribution to the mathematical theory of epidemics” [84], Kermack and
McKendrick published for the first time a deterministic epidemic model that inc-
luded susceptible, infected, and removed individuals, much like the one we will
discuss in Chap. 2. In fact, their model is an age-since-infection model, whose con-
temporary version is discussed in Chap. 13. Their model does not include natural
birth and death rates and, consequently, models only disease outbreaks. To capture
epidemic modeling of diseases that can become established in a population and per-
sist, Kermack and McKendrick published Part II and Part III of their “A contribution
to the mathematical theory of epidemics” in 1932 and 1933 respectively. Because of
their seminal importance to mathematical epidemiology, the Kermack–McKendrick
fundamental trilogy of papers was reprinted in 1991 [85, 86, 87].

Mathematical modeling of infectious diseases gained importance in the 1980s
with the advent of the HIV epidemics. Since then, a very large number of models
have been created, analyzed, and employed to study the spread of infectious disease.
Today, mathematical epidemiology has a steady presence in the research literature,
and mathematical modeling is making significant contributions to mathematics and
public health [74, 75, 162].

1.5 General Approach to Modeling

A mathematical model is a description of a system using mathematical tools and
language. The process of developing mathematical models is called mathematical
modeling. We will be concerned with modeling infectious diseases and their spread
in populations, but in principle, mathematical modeling can be applied to any sys-
tem, biological or otherwise. Mathematical models are developed to help explain
a system, to study the effects of its various components, and to make predictions
about their behavior.

The modeling process, schematically depicted in Fig. 1.1, requires translation of
a biological scenario into a mathematical problem. The modeling process typically
begins with a clear description of the processes based on the scientist’s understand-
ing of the system. The translation into mathematical equations should be made with
a specific goal or biological question in mind. Then the verbal description of the
system is encoded in mathematical equations. The model should incorporate only
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Fig. 1.1 Modeling diagram

those features that are relevant to the specific goal or biological question in mind.
Once the model is formulated, it can be investigated with a number of mathematical
tools:

• it may be analyzed to produce critical quantities that govern the overall behavior
of the solutions;

• it may be fitted to available data or used to stimulate experiments that can produce
data;

• parameters of the model may be estimated;
• it may be simulated to understand how important each parameter is to the solu-

tion.

After the model has been understood, we must interpret its results in the light of
the biological scenario considered and potentially seek the answer of the biological
question that was set forth at the beginning. At the very least we must address these
questions: What did we learn about the real world from the model? Is our model’s
message supported by the information about the system?

Mathematical models usually consist of parameters and variables that are con-
nected by relationships. Variables are abstractions of the system’s properties that
can be quantified or measured. Models can be classified in multiple ways:

• Linear/nonlinear. A model is classified as nonlinear if it contains a nonlinear de-
pendence on the variables (e.g., a product of variables). Otherwise, it is classified
as linear. The models we will construct and use in this book will be nonlinear.
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• Static/dynamic. A dynamic model accounts for time-dependent changes in the
state of the system, while a static model calculates system quantities assuming
that it does not change in time and thus is time-invariant. Dynamic models typi-
cally employ differential equations or difference equations. The models that we
will consider in this book will be dynamic models.

• Discrete/continuous. Discrete models treat time or system states as discrete.
Continuous models incorporate time and system states as continuous.

• Deterministic/stochastic. A deterministic model is one in which every set of
variable states is uniquely determined by the parameters in the model and the
initial state of the variables. Stochastic models are characterized by randomness,
and variable states are described by probability distributions. The models that
we will consider in this book will be deterministic models, although stochastic
epidemic models have also been developed and used in the literature.

In this book we will primarily use differential equation models to model the dis-
tribution of infectious diseases in a population. The main modeling tool will be
ordinary differential equations, but we will introduce epidemic models of delay-
differential equations, age-since-infection structured partial differential equations,
age-structured partial differential equations, and diffusion partial differential
equations. We will also discuss discrete epidemic models. Several types of models
used for epidemic modeling will be left out, primarily stochastic epidemic models
and network models. For these, you may consult some excellent books and book
chapters on the subject (e.g., [7, 124]).

Mathematical models are of great importance in the natural sciences, including
biology and epidemiology. They help us to gain new understanding about a system,
organize and make sense of biological data, obtain the response behavior of the
system, seek optimal performance and intervention strategies, and make predictions
about the system. Mathematical models of infectious diseases are the focal point of
this book.



Chapter 2
Introduction to Epidemic Modeling

2.1 Kermack–McKendrick SIR Epidemic Model

Introduction to epidemic modeling is usually made through one of the first epidemic
models proposed by Kermack and McKendrick in 1927, a model known as the SIR
epidemic model [84].

2.1.1 Deriving the Kermack–McKendrick Epidemic Model

When a disease spreads in a population, it splits the population into nonintersecting
classes. In one of the simplest scenarios, there are three such classes:

• The class of individuals who are healthy but can contract the disease. These are
called susceptible individuals or susceptibles. The size of this class is usually
denoted by S.

• The class of individuals who have contracted the disease and are now sick with it,
called infected individuals. In this model, it is assumed that infected individuals
are also infectious (see Chap. 1 for distinction between infected and infectious
individuals). The size of the class of infectious/infected individuals is denoted by
I.

• The class of individuals who have recovered and cannot contract the disease
again are called removed/recovered individuals. The class of recovered individu-
als is usually denoted by R.

The number of individuals in each of these classes changes with time, that is,
S(t), I(t), and R(t) are functions of time t. The total population size N is the sum of
the sizes of these three classes:

N = S(t)+ I(t)+R(t).

© Springer Science+Business Media New York 2015
M. Martcheva, An Introduction to Mathematical Epidemiology,
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To formulate a model, we have to make assumptions to simplify reality. The first
assumption for the Kermack–McKendrick model is that infected individuals are also
infectious. The second assumption of the model is that the total population size
remains constant.

Epidemiological models consist of systems of ODEs that describe the dynamics
in each class. One of the simplest models involves the dynamics of susceptible,
infectious, and recovered individuals. The model was first proposed by Kermack
and McKendrick in 1927 [84].

To derive the differential equations, we consider how the classes change over
time. When a susceptible individual enters into contact with an infectious individual,
that susceptible individual becomes infected with a certain probability and moves
from the susceptible class into the infected class. The susceptible population de-
creases in a unit of time by all individuals who become infected in that time. At the
same time, the class of infectives increases by the same number of newly infected
individuals. The number of individuals who become infected per unit of time in
epidemiology is called incidence, and the rate of change of the susceptible class is
given by

S′(t) =−incidence.

How can we represent the incidence? Consider one infectious individual. Assume:

• cN is the number of contacts per unit of time this infectious individual makes.
Here we assume that the number of contacts made by one infectious individual
is proportional to the total population size with per capita contact rate c.

• S
N is the probability that a contact is with a susceptible individual. Thus,

• cN S
N is number of contacts with susceptible individuals that one infectious in-

dividual makes per unit of time. Not every contact with a susceptible individual
necessarily leads to transmission of the disease. Suppose p is the probability that
a contact with a susceptible individual results in transmission. Then,

• pcS is number of susceptible individuals who become infected per unit of time
per infectious individual.

• β SI is the number of individuals who become infected per unit of time (inci-
dence). Here we have set β = pc.

If we define λ (t) = β I, then the number of individuals who become infected per
unit of time is equal to λ (t)S. The function λ (t) is called the force of infection. The
coefficient β is the constant of proportionality called the transmission rate constant.
The number of infected individuals in the population I(t) is called the prevalence of
the disease.

There are different types of incidence depending on the assumption made about
the form of the force of infection. One form is called mass action incidence. With
this form of incidence, we obtain the following differential equation for susceptible
individuals:

S′(t) =−β IS.

The susceptible individuals who become infected move to the class I. Those indi-
viduals who recover or die leave the infected class at constant per capita probability
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per unit of time α , called the recovery rate. That is, αI is the number of infected
individuals per unit of time who recover. So,

I′(t) = β IS−αI.

Individuals who recover leave the infectious class and move to the recovered class

R′(t) = αI.

Thus, the whole model is given by the following system of ODEs:

S′(t) = −β IS,

I′(t) = β IS−αI,

R′(t) = αI. (2.1)

To be well defined mathematically, this system is equipped with given initial condi-
tions S(0), I(0), and R(0).

When we formulate a model, we need to be concerned with the units of the
quantities involved. Units are also helpful when we estimate parameters from data.
The units of both sides of the above equations must be the same. All derivatives have
units number of people per unit of time (why?). Hence, each term on the right-hand
side should have the same units. From the first equation, we see that since I and S
have units number of people, the units of β must be 1/[number of people×unit of
time]. Since β = pc and p is a probability, which has no units, the units of c must
be 1/[number of people×unit of time]. Thus the contact rate cN has units 1/unit of
time. Similarly, from the second equation, we see that the units of α are 1/unit of
time, so the term αI has units number of people/unit of time.

Loosely speaking, a differential equation model such as the model (2.1) is well
posed if through every point (initial condition), there exists a unique solution. Dif-
ferential equation models must be well posed to be mathematically acceptable and
biologically significant. Because the dependent variables in the model denote phys-
ical quantities, for most models in biology and epidemiology, we also require that
solutions that start from positive (nonnegative) initial conditions remain positive
(nonnegative) for all time.

We denote by N the total population size at time zero N = S(0)+ I(0)+R(0).
Adding all three equations in system (2.1), we obtain N′(t) = S′(t)+ I′(t)+R′(t) =
0. Hence, N(t) is constant and equal to its initial value, N(t) = N. This model is
called the SIR model or SIR system. It is a special type of model called a compart-
mental model, because each letter refers to a “compartment” in which an individual
can reside. Each individual can reside in exactly one compartment and can move
from one compartment to another. Compartmental models are schematically de-
scribed by a diagram often called a flowchart. Each compartment in a flowchart is
represented by a box indexed by the name of the class. Arrows indicate the direction
of movement of individuals between the classes. The movement arrows are typically
labeled by the transition rates (see Fig. 2.1).
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Fig. 2.1 Flowchart of the Kermack–McKendrick SIR epidemic model
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Fig. 2.2 Left: shows the prevalence monotonically decreasing. Right: shows the prevalence first
increasing and then decreasing to zero

2.1.2 Mathematical Properties of the SIR Model

The Kermack–McKendrick epidemic model (2.1) has very distinctive dynamics.
Because S′ < 0 for all t, the number of susceptible individuals is always declining,
independently of the initial condition S(0). Since S(t) is monotone and positive, we
have

lim
t→∞

S(t) = S∞.

The number of recovered individuals also has monotone behavior, independently of
the initial conditions. Since R′ > 0 for all t, the number of recovered individuals is
always increasing. Since the number of recovered is monotone and bounded by N,
we have

lim
t→∞

R(t) = R∞.

On the other hand, the number of infected individuals may be monotonically de-
creasing to zero, or may have nonmonotone behavior by first increasing to some
maximum level, and then decreasing to zero (see Fig. 2.2). The prevalence first starts
increasing if I′(0) = (β S(0)−α)I(0)> 0. Hence, a necessary and sufficient condi-
tion for an initial increase in the number of infecteds is β S(0)−α > 0, or

β S(0)
α

> 1.

This sudden increase in the prevalence and then a decline to zero is a classical model
of an epidemic or outbreak. Threshold conditions for an epidemic to occur are
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common in epidemiology, and we will discuss them in detail later on. To determine
the limits S∞ and R∞, we divide the equation for S and the equation for R. Hence,

dS
dR

=−β
α

S.

Solving, we have

S = S(0)e−
β
α R ≥ S(0)e−

β
α N > 0.

We conclude that S∞ > 0. The quantity S∞ is called the final size of the epidemic.
We see that the epidemic does not end, because all susceptible individuals have
been infected and are now immune. Some individuals always escape a disease—an
observation that was made in practice is also confirmed by the SIR model.

Finally, we show that the epidemic dies out. If

lim
t→∞

I(t) = I∞,

then I∞ = 0. This is evident from the plots in Fig. 2.2, but a mathematical argument
can establish the result for all parameters. To see this, we integrate the first equation
in (2.1):

∫ ∞

0
S′(t)dt = −β

∫ ∞

0
S(t)I(t)dt,

S∞ − S0 = −β
∫ ∞

0
S(t)I(t)dt,

S0 − S∞ = β
∫ ∞

0
S(t)I(t)dt,

S0 − S∞ ≥ β S∞

∫ ∞

0
I(t)dt. (2.2)

The last inequality implies that I(t) is integrable on [0,∞). Hence, limt→∞ I(t) = 0.
The Kermack–McKendrick model is based on several assumptions: (1) There are

no births and deaths in the population. (2) The population is closed, that is, no one
from the outside enters the population, and no one leaves the population, and finally,
(3) All recovered individuals have complete immunity and cannot be infected again.
These assumptions seem very restrictive, but within limits, they can be satisfied. We
will see a specific example in Sect. 2.3. Diseases that lead to permanent immunity
and are well modeled by the SIR epidemic model are most diseases typical of child-
hood years, often called childhood diseases. These include chickenpox, smallpox,
rubella, and mumps.

To solve the system, we first notice that the variable R does not participate in the
first two equations. Thus we can consider only the equations for S and I, which are
coupled, and leave out the equation for R. The variable R can then be obtained in
this model from the relation R = N − S− I:
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S′(t) = −β IS,

I′(t) = β IS−αI. (2.3)

Dividing the two equations, we obtain

I′

S′
=

β SI−αI
−β SI

=−1+
α
β S

.

Separating the variables, we have

I′ =
(
−1+

α
β S

)
S′.

Integrating leads to

I =−S+
α
β

lnS+C,

where C is an arbitrary constant. Thus, the orbits of the solution are given implicitly
by the equation

I+ S− α
β

lnS =C. (2.4)

The Kermack–McKendrick model is equipped with initial conditions: S0 = S(0)
and I0 = I(0). Those are given. We also have that limt→∞ I(t) = 0, while S∞ =
limt→∞ S(t) gives the final number of susceptible individuals after the epidemic is
over. The above equality holds both for (S0, I0) and for (S∞,0). Thus,

I0 + S0 − α
β

lnS0 =C.

Consequently,

I0 + S0 − α
β

lnS0 = S∞ − α
β

lnS∞.

Rearranging terms, we get

I0 + S0 − S∞ =
α
β
(lnS0 − lnS∞).

Therefore,

β
α

=
ln S0

S∞

S0 + I0 − S∞
. (2.5)

We note that since S(t) is a decreasing function, we have S∞ < S0 + I0. The implicit
solution also allows us to compute the maximum number of infected individuals
that is attained. This number occurs when I′ = 0, that is, when

S =
α
β
.
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From

I + S− α
β

lnS = I0 + S0 − α
β

lnS0,

substituting the expression for S and moving all terms but I to the right-hand side
leads to

Imax =−α
β
+

α
β

ln
α
β
+ S0 + I0 − α

β
lnS0. (2.6)

Here Imax is the maximum number of infected individuals reached in the epidemic.
It signifies the maximum severity of the epidemic. If we are able to estimate Imax for
a newly occurring infectious disease, we will know when the number of infections
will begin to decline.

2.2 The Kermack–McKendrick Model: Estimating
Parameters from Data

When we are given specific disease and time series data for it, we can estimate the
parameters of the SIR model and compare the solution of the model with the data.
This section follows the description in [27]. See [27] for a different example.

2.2.1 Estimating the Recovery Rate

For many diseases, information about the mean duration of the exposed period or the
infectious period can easily be obtained. For instance, for influenza, the duration of
the infectious period is 3–7 days with mean 4–5 days. How can that help us estimate
the recovery rate α? To approach that question, let us assume that there is no inflow
in the infectious class and a certain number of individuals I0 have been put in the
infectious class at time zero. Then the differential equation that gives the dynamics
of this class is given by

I′(t) =−αI, I(0) = I0.

This equation can be easily solved. Therefore, the number of people in the infectious
class at time t is given by

I(t) = I0e−αt .

Consequently,

I(t)
I0

= e−αt
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for t ≥ 0 gives the proportion of people who are still infectious at time t, or in
probability language, it gives the probability of being still infectious at time t. We
can compute the fraction of individuals who have left the infectious class,

1− e−αt ,

or in probability terms,

F(t) = 1− e−αt t ≥ 0

is the probability of recovering/leaving the infectious class in the interval [0, t).
Clearly, F(t) is a probability distribution (if defined as zero for t < 0). The prob-
ability density function is f (t) = dF/dt. Consequently,

f (t) = αe−αt .

Note: f (t) = 0 for t < 0. Furthermore, the average time spent in the infectious class
is given by the mean (expected value of a random variable X , denoting time to
exiting the infectious class),

E[X ] =

∫ ∞

−∞
t f (t)dt.

Therefore, computing that integral yields

∫ ∞

−∞
t f (t)dt =

∫ ∞

−∞
tαe−αt dt =

1
α
.

Thus we conclude that

mean time spent in the infectious class = 1
α .

For influenza, we are sick with it for 3–7 days. Say that the mean time spent as
infectious is 5 days. Thus the recovery rate, measured in units of [days]−1, is 1/5.

Estimating the transmission rate β is quite a bit more difficult. Estimating β is
possible for the Kermack–McKendrick model, because that model is relatively sim-
ple. In particular, we can obtain an implicit solution. An implicit solution is rarely
obtainable for epidemic models, and estimating parameters for epidemic models
requires techniques different from the one presented below. We will discuss these
techniques in Chap. 6.
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2.2.2 The SIR Model and Influenza at an English Boarding
School 1978

In January and February 1978, an epidemic of influenza occurred in a boarding
school in the north of England. The boarding school housed a total of 763 boys, all
of whom were at risk during the epidemic. The spring term began on January 10.
The boys returned from their Christmas vacation spent at many different locations in
the world. A boy returning from Hong Kong exhibited elevated temperature during
the period 15–18 January. On January 22, three boys were sick. Table 2.1 gives the
number of boys ill on the nth day beginning January 22 (n = 1).

Table 2.1 Daily number of influenza-infected boys

Day No. infecteda Day No. infected

3 25 9 192
4 75 10 126
5 227 11 71
6 296 12 28
7 258 13 11
8 236 14 7

aData taken from “Influenza in a Boarding School,” British Medical Journal, 4 March 1978

The number of boys who escaped influenza was 19. The average time spent sick
was 5–6 days. However, since boys were isolated in the infirmary, they spent per-
haps about 2 days as infectious. A swab taken from some of the boys revealed that
they were infected with H1N1 influenza A virus. The staff of the boarding school
remained healthy, with only one staff member displaying symptoms of illness.

These data give the following values: S3 = 738, I3 = 25, S∞ = 19.
From the computations above, we have

β
α

=
ln S3

S∞

S3 + I3 − S∞
=

ln 738
19

763− 19
= 0.00491869. (2.7)

We measure time in days. We take t0 = 0 to be January 21. The first datum is
given on January 22, which gives t = 1. We have that tend = 14 is the February 4,
1978.

We take the infective period to be 2.1 days. This value can be obtained as the
best fit as values around 2 days are tried with the procedure below. After we fix the
duration of the infectious period, we compute α as the reciprocal of the time spent
as an infectious individual (infectious period):

α =
1

2.1
= 0.476.

From Eq. (2.7) and using the value for α , we can obtain the value for β :
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β = 0.004918α = 0.004918 ∗ 0.476= 0.002342.

From Eq. (2.6) for the Imax, we can estimate the maximum number of infectives
during the epidemic. First, notice that α/β = 203.306. Thus,

Imax =−203.306+ 203.306ln203.306+ 738+25−203.306ln738 = 298.

Notice that the data give the maximum number of infective individuals as 296. We
illustrate the fit between the model and the data in Fig. 2.3.
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Fig. 2.3 English boarding school influenza epidemic: agreement between Kermack–McKendrick
SIR epidemic model and data

2.3 A Simple SIS Epidemic Model

We want to relax the assumption for permanent immunity after recovery to model
diseases that can infect us repeatedly, such as influenza. We may assume in the sim-
plest scenario that individuals who recover become immediately susceptible again.
Thus, individuals who are susceptible may become infected (and infectious) and
then recover into being susceptible again. The model is described with the flowchart
in Fig. 2.4.

The model takes the form

S′(t) = −β IS+αI,

I′(t) = β IS−αI. (2.8)

System (2.8) is called an SIS epidemic model and is perhaps the simplest model in
mathematical epidemiology. Here, if N = S+ I and we add the two equations, we
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Fig. 2.4 Flowchart of a simple SIS epidemic model

again obtain N′ = 0. Hence the total population size is N, where N is a constant
in time. The system is equipped with initial conditions S(0) and I(0), so that N =
S(0)+ I(0).

2.3.1 Reducing the SIS Model to a Logistic Equation

Because the total population size is constant and known, the system (2.8) can be
reduced to a single equation. This technique is commonly used for the reduction of
the dimension of an epidemiological model. We express S as S=N−I and substitute
it in the second equation. The resulting equation is a variant of the logistic equation:

I′(t) = β I(N − I)−αI. (2.9)

We rewrite this equation in the form of a logistic equation,

I′(t) = rI

(
1− I

K

)
,

where r = β N −α and K = r/β . To see this, first factor out I and then r = β N −
α . The logistic equation is one of the classical models in population dynamics. It
typically models the total population size of a population of individuals. We will use
it later on for models in which the total population size does not remain constant.
The parameter r is often referred to as the growth rate. We can see that r can be
positive or negative, so we consider two cases.

r < 0 If the growth rate is negative, r < 0, then the number of infected individ-
uals I(t) tends to 0 as t → ∞. To see this, notice that if r < 0, then K < 0.
Hence,

I′(t)≤ rI(t).

The solutions of this simple differential inequality are I(t) = I(0)ert , and
they approach zero for r < 0. This implies that if r < 0, the disease grad-
ually disappears from the population on its own.

r > 0 The logistic equation can be solved, and in this case, we need to solve it to
have an explicit expression for I(t). The logistic equation is a differential
equation of separable type. It is solved by a method called separation of
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variables. To separate the variables I and t, we move all terms that contain
I to the left-hand side of the equation, and all terms that contain t, namely
dt, to the right-hand side:

1

I
(
1− I

K

)dt = rdt.

Notice that while dividing by
(
1− I

K

)
, we have assumed that I(t) �= K.

But I(t) = K is a solution of the original logistic equation. On the other
hand, I = K is not a solution of the derived equation above, so it will have
to be artificially added to the solution set.
Using partial fraction decomposition, we can integrate both sides of that
equation: ∫ (

1
I
+

1
K − I

)
dI = r

∫
1dt.

Hence,

ln
I

|K − I| = rt +C,

where C is an arbitrary constant of integration, and the absolute value in
the logarithm is necessary, since we can compute logarithms only of pos-
itive values, but we do not know whether K − I is positive. To determine
C, we use the initial conditions. Assuming that the initial conditions are
given at 0, we have

ln
I(0)

|K − I(0)| =C.

Replacing C with the above expression, we obtain

ln
I

|K − I| − ln
I(0)

|K − I(0)| = rt.

Hence,

ln
I|K − I(0)|
I(0)|K − I| = rt.

The absolute values above can be disregarded, since K − I(0) and K − I
have the same sign: they are both positive or both negative. Taking an
exponent, we obtain

I
K − I

=
I(0)

K − I(0)
ert .

Finally, we solve for I to obtain an explicit solution for I(t) in terms of the
initial conditions, r and K:

I(t) =
KBert

1+Bert ,
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where B = I(0)/(K − I(0)). We see from this that

lim
t→∞

I(t) = K,

and the disease remains in the population indefinitely.

The threshold condition r > 0 can be rewritten as R0 > 1, where

R0 =
β N
α

is called basic reproduction number of the disease. Mathematically, the reproduction
number plays the role of a threshold value for the dynamics of the system and the
disease. If R0 > 1, the disease remains in the population, and the number of infect-
eds stabilizes around K. In this case, we say that the disease has become endemic
in the population. This implies that the simple SIS model is a model of endemic dis-
ease. If R0 < 1, the number of infecteds gradually declines to zero, and the disease
disappears from the population.

Epidemiologically, the reproduction number gives the number of
secondary cases one infectious individual will produce in a population
consisting only of susceptible individuals.

To see this interpretation in the formula for R0, notice that the number of new
cases per unit of time produced by all infectious individuals is given by the inci-
dence β SI. If there is only one infectious individual, we have I = 1, and the number
of secondary cases produced by one infectious individual will be β S. If the entire
population consists of susceptible individuals, we have S = N. Hence, the number
of secondary cases one infectious individuals will produce in a unit of time is β N.
Since one infectious individual remains infectious for 1/α time units, the number
of secondary cases it will produce during its lifespan is R0 = β N/α .

2.3.2 Qualitative Analysis of the Logistic Equation

The information we derived about the behavior of the solutions was obtained from
the explicit solution. Many single-equation models in biology cannot be solved ex-
plicitly. We need tools to deduce the properties of the solutions directly from the
differential equation. These tools can readily be extended to systems of equations.

From the explicit solution of the logistic equation, we saw that in the long run,
the disease will become endemic and persist in the population if R0 > 1. We also
learned that in the long run, the number of infected individuals in the population
will be approximately K = (β N −α)/β . Furthermore, if R0 < 1, the disease will
die out. Ideally, we would like to be able to obtain such results without having to
solve the equation explicitly.
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A nonlinear differential equation model with constant coefficients typically has
time-independent solutions, that is, solutions that are constant in time. Such solu-
tions are called equilibrium points. Equilibrium points play an important role in the
long-term behavior of the solutions. They are easy to find from the differential equa-
tion even if we don’t know the explicit solution, since their derivative with respect
to time is zero. Thus, for the equation dI

dt = f (I), the equilibria are the solutions of
the equation f (I) = 0. We set the right-hand side of Eq. (2.9) equal to zero:

β I(N − I)−αI = 0.

This equation has two solutions, I∗1 = 0 and I∗2 = K, which give the two equilib-
rium points. The equilibrium I∗1 always exists. In the mathematical epidemiology
literature, the equilibrium I∗1 is referred to as a disease-free equilibrium, since the
disease is not present in the population, and the entire population is susceptible.
The equilibrium I∗2 exists only if R0 > 1. The equilibrium I∗2 is called an endemic
equilibrium, since the disease is present in the population.

In the case R0 > 1, both I1(t) = 0 and I2(t) = K are solutions to Eq. (2.9). Since
the model is well posed, no other solution can cross them. So solutions that start in
the interval (0,K) stay in that interval for all time:

0 < I(0)< K =⇒ 0 < I(t)< K.

Furthermore, solutions that start from a value above K stay above K:

I(0)> K =⇒ I(t)> K.

If 0 < I(t) < K, then f (I) > 0, which means that dI
dt > 0. This means that the so-

lutions in that interval are increasing functions of time. Since I(t) is increasing and
bounded, it follows that I(t) converges to a finite limit as t → ∞. To deduce the
behavior of the derivative, we use the following corollary.

Corollary 2.1 (Thieme [151]). Assume that f (t) converges as t → ∞. Assume also
that f ′(t) is uniformly continuous. Then f ′(t)→ 0 as t → ∞.

It can be shown (see (2.10) below) that the second derivative d2I
dt2 is continuous

and bounded. Hence, the corollary above implies that I′(t)→ 0 and the limit of I(t),
say L, satisfies the equilibrium equation f (L) = 0. This implies that L = 0 or L = K.
Since I(t) is positive and increasing, we have I(t)→ K as t → ∞. If I(0)> K, then
I(t) > K for all t. Thus, dI

dt < 0, and I(t) is decreasing and bounded below by K.
Similar reasoning as above implies that I(t)→ K.

We can further investigate the concavity of the solutions by looking at the second
derivative:

d2I
dt2 = r

(
1− 2I

K

)
dI
dt

= r2
(

1− 2I
K

)
I

(
1− I

K

)
. (2.10)

For solutions in the interval 0 < I(t)< K, the second derivative changes sign when
I(t) crosses the horizontal line y = K

2 . Thus, for values of t such that I(t) < K
2 , the
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Fig. 2.5 Solutions to the logistic equation (2.9) converge to the endemic equilibrium

second derivative of I is positive, and I(t) is concave up. For values of t for which
I(t) > K

2 , the second derivative of I is negative, and I(t) is concave down. This is

illustrated in Fig. 2.5. For solutions for which I(t)> K, the second derivative d2I
dt2 is

positive. Consequently, I(t) is decreasing and concave up.

2.3.3 General Techniques for Local Analysis of Single-Equation
Models

We saw that if R0 < 1, then all solutions of Eq. (2.9) approach the unique equi-
librium I∗ = 0. That is, all solutions converge to zero, I(t) → 0, for every initial
condition I(0)> 0. In this case, we say that the disease-free equilibrium is globally
stable. In the case R0 > 1, there are two equilibria: the disease-free I∗1 = 0 and the
endemic equilibrium I∗2 = K. We see that all solutions that start from I(0)> 0 move
away from the disease-free equilibrium. Hence, the disease-free equilibrium in this
case is unstable. At the same time, all solutions that start from I(0)> 0 approach the
endemic equilibrium I∗2 = K. In this case, we call the endemic equilibrium globally
stable.

For many models, even models given by a single equation, we may not be able to
solve the equation(s) explicitly or perform detailed analysis of the behavior of the
solutions. In addition, if there are multiple endemic equilibria, there may not be a
globally stable equilibrium. In these cases, the concept of a locally stable equilib-
rium is an applicable and useful tool. Loosely speaking, an equilibrium is locally
asymptotically stable if solutions that start close to the equilibrium approach that
equilibrium as t → ∞. Stability of a nonlinear system can often be inferred from the
stability of a corresponding linear system obtained through the process of lineariza-
tion. For a general differential equation
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x′(t) = f (x), (2.11)

x∗ is an equilibrium if and only if f (x∗) = 0. The idea of the linearization is to
shift the equilibrium to zero. Thus, we denote by u(t) = x(t)− x∗ the perturbation
that gives the deviation of a solution of (2.11) from an equilibrium. Solutions of
(2.11) starting from a neighborhood of x∗ approach x∗ if u(t) approaches zero. The
perturbation u(t) is assumed small. Notice that u(t) can be positive or negative, even
if x(t)> 0. We have x(t) = u(t)+x∗. We replace x(t) with its equal in the differential
equation and expand f around x∗ in a Taylor series, assuming that f is sufficiently
differentiable:

u′(t) = f (x∗)+ f ′(x∗)u(t)+
f ′′(ξ )

2!
(u(t))2,

where ξ is between x∗ and x∗ + u(t). Assuming that f has two continuous deriva-
tives, the second derivative f ′′ is bounded, and the last term in the expansion with
(u(t))2 is small and can be neglected. Since x∗ is an equilibrium, we also have
f (x∗) = 0. Thus, the equation for the perturbations becomes

u′(t) = f ′(x∗)u(t). (2.12)

This is the linearized equation of the nonlinear equation (2.11). This equation is
linear in the dependent variable u(t). The quantity f ′(x∗) is a given known constant.
If we define λ = f ′(x∗) then the linearized equation becomes

u′(t) = λ u(t),

whose solution is u(t) = u(0)eλ t . These solutions approach ∞ or −∞ exponentially,
depending on u(0), if λ > 0 and approach zero if λ < 0. Thus, if λ < 0, then
u(t) → 0. Hence, x(t)− x∗ → 0 or x(t) → x∗ as t → ∞. We conclude that solu-
tions of (2.11) that start from an initial condition that is sufficiently close to the
equilibrium converge to this equilibrium if λ < 0. In this case, the equilibrium x∗
is called locally asymptotically stable. If λ > 0, then |u(t)| → ∞, and x(t) moves
away from the equilibrium x∗. In this case, the equilibrium x∗ is called unstable.
We summarize this result in the following theorem.

Theorem 2.1. An equilibrium x∗ of the differential equation x′(t) = f (x) is locally
asymptotically stable if f ′(x∗)< 0 and is unstable if f ′(x∗)> 0.

This theorem does not tell us anything about the stability of the equilibrium x∗ if
f ′(x∗) = 0. An equilibrium for which f ′(x∗) �= 0 is called hyperbolic. If f ′(x∗) = 0,
the equilibrium is called nonhyperbolic.

We apply Theorem 2.1 to the logistic version of Eq. (2.9). If R0 < 1, we found
only one equilibrium I∗1 = 0. If R0 > 1, we found two equilibria: I∗1 = 0 and I∗2 = K.
We compute the derivative of f (I),

f ′(I∗) = r

(
1− I∗

K

)
− r

K
I∗,
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and its value of each equilibrium,

f ′(0) = r f ′(K) =−r.

We conclude that if R0 < 1, the disease-free equilibrium is locally asymptotically
stable. If R0 > 1, the disease-free equilibrium is unstable, while the endemic equi-
librium is locally asymptotically stable.

The problem of determining equilibria and their stability has a very elegant
graphical solution. For the equation x′ = f (x), if we plot the function f (x) as a
function of x, then the places where f (x) intersects the x-axis give the equilibria.
The stability of each equilibrium can then be read off the graph from the slope of
the graph as it passes through the equilibrium. If the slope of the tangent line to the
graph at the point of the equilibrium is positive, then that equilibrium is unstable;
if the slope of the tangent is negative, then that equilibrium is locally stable. If the
slope of the tangent to the graph at the equilibrium is zero, then the stability of that
equilibrium cannot be inferred from the graph. To illustrate this concept, consider
the equation x′ = f (x), where f (x) is plotted in Fig. 2.6. The equilibria and their
stability are explained in the figure caption.
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Fig. 2.6 Graph of the function f (x). Figure shows that equilibria are x∗1 = 0, x∗2 = 5, and x∗3 = 8.5.
The equilibrium x∗1 is locally stable because the slope of the tangent to x∗1 is negative. The slope
of the tangent to x∗2 is zero, so its stability cannot be determined from the graph. Equilibrium x∗3 is
unstable, since the slope of the tangent to x∗3 is positive

2.4 An SIS Epidemic Model with Saturating Treatment

We illustrate the concepts of the previous section on an SIS model with saturating
treatment/recovery rate. Suppose that in model (2.8), the per capita recovery rate
α depends on treatment. In this case, we may assume that treatment resources are
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limited and the per capita treatment rate α is not constant, but is decreasing with
the number of infected individuals. A reasonably simple form of such a function
would be

α(I) =
α

1+ I
,

where the constant α is the treatment/recovery rate when there are few infectives.
We use this function in model (2.8) to obtain the following SIS model with saturat-
ing treatment:

S′(t) = −β IS+
αI

1+ I
,

I′(t) = β IS− αI
1+ I

. (2.13)

System (2.13) is called an SIS epidemic model with saturating treatment. Here, if
N = S+ I and we add the two equations, we again obtain N′ = 0. Hence the total
population size is N, where N is a constant in time. The system is equipped with
initial conditions S(0) and I(0), so that N = S(0)+ I(0).

2.4.1 Reducing the SIS Model with Saturating Treatment
to a Single Equation

Since the total population size in model (2.13) is a given constant, we may write
S(t) = N − I(t) and substitute it in the second equation of system (2.13). Therefore,
we obtain a single equation in the number of infected individuals:

I′(t) = β I(N − I)− αI
1+ I

. (2.14)

In principle, Eq. (2.14) is a separable equation and can be solved. However, to il-
lustrate common methodologies, we will try to investigate the properties of this
equation without solving it. First, we look for the equilibria. We denote by f (I) the
right-hand side:

f (I) = β I(N − I)− αI
1+ I

.

To find the equilibria, we set f (I) = 0. Clearly, I∗1 = 0 is an equilibrium. This gives
the disease-free equilibrium of the equation. To look for endemic equilibria, we
cancel one I and we rewrite the equation f (I) = 0 as an equality of two functions:

β (N − I) =
α

1+ I
.

This equation can be rewritten as a quadratic equation, which can have zero, one,
or two positive roots. We will investigate graphically the options and the conditions
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for each to occur. We rewrite the above equation as

(N − I)(1+ I) =
α
β
. (2.15)

Let g(I) = (N − I)(1+ I). Then g(I) is a parabola that opens downward. Clearly,

g(0) = N. The right-hand side of the above equation is y =
α
β

and can be graphed

as a horizontal line.

• If g(0) = N >
α
β

, then Eq. (2.15) always has a unique positive solution I∗2 . Then

the system (2.13) has one endemic equilibrium. We define the reproduction num-
ber of the system as

R0 =
β N
α

.

Hence, if R0 > 1, there is a unique endemic equilibrium. We illustrate this situ-
ation in Fig. 2.7.
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Fig. 2.7 Graph of the function g(I) and the horizontal line y =
α
β

. The figure shows the existence

of a unique intersection for positive I, giving a unique positive equilibrium

• If g(0) = N <
α
β

, then Eq. (2.15) has either two or zero solutions. In this case,

R0 < 1.

To specify additional conditions so that Eq. (2.15) has two positive solutions, we
must notice that we need two things to happen:
(1) The maximum of the parabola must be to the right of the y-axis. The parabola
intersects the x-axis at the points N and −1. Hence, its maximum occurs at their
average,

Im =
N − 1

2
> 0.
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This poses the requirement that N > 1. (2) The line y =
α
β

must lie below the

maximum of the parabola. That is, we must have

(N − Im)(1+ Im)>
α
β
. (2.16)

Therefore, if R0 < 1, N > 1, and condition (2.16) are satisfied, then the sys-
tem (2.13) has two endemic equilibria I∗11 and I∗12; otherwise, it has no endemic
equilibria. We illustrate these two situations in Fig. 2.8.
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Fig. 2.8 Graph of the function g(I) and the horizontal line y =
α
β

. Left: the existence of two

intersections for positive I, giving two positive equilibria. Right: no intersections of the function

g(I) and the horizontal line y =
α
β

. Thus, there are no positive equilibria

2.4.2 Bistability

To decide the stability of equilibria, we have to derive the sign of f ′(I∗) for each
equilibrium I∗. That may not be an easy task to do analytically. Fortunately, the
stability of the equilibria can be read off the graph of the function f (I) for each
of the three cases above. If R0 < 1 and there are no nontrivial equilibria, then all
solutions of Eq. (2.15) are attracted by the disease-free equilibrium. So the disease-
free equilibrium is globally stable in this case. For each of the other two cases, we
graph the function f (I) in Fig. 2.9. Looking at Fig. 2.9, we see that in the case R0 >
1 (left figure), we have f ′(0) > 0. Hence, the disease-free equilibrium is unstable.
Furthermore, f ′(I∗2 ) < 0. Hence, the endemic equilibrium is locally stable. We can
argue, as we did in the case of the logistic equation, that the equilibrium is globally
stable. In the case R0 < 1, there are three equilibria: I∗1 = 0, I∗11 < I∗12. For solutions
I(t) that start from I(0) = I0 satisfying 0 < I0 < I∗11, we have 0 < I(t) < I∗11 for all
t. Furthermore, f (I) < 0 for such solutions (the graph of f (I) is below the x-axis),
so that dI

dt < 0. Hence, I(t) is decreasing and limt→∞ I(t) = 0. For solutions I(t)
that start from I(0) = I0 satisfying I∗11 < I0 < I∗12, we have I∗11 < I(t)< I∗12 for all t.
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Fig. 2.9 Graph of the function f (I). Left: the case R0 > 1 and the existence of two intersections
for nonnegative I, giving two nonnegative equilibria. Right: the case R0 < 1 and three intersections
of the function f (I) and the x-axis, giving three nonnegative equilibria. Stabilities explained in text

Furthermore, f (I) > 0 for such solutions (the graph of f (I) is above the x-axis), so
that dI

dt > 0. Hence, I(t) is increasing and limt→∞ I(t) = I∗12. For solutions I(t) that
start from I(0) = I0 satisfying I∗12 < I0, we have I∗12 < I(t) for all t. Furthermore,
f (I) < 0 for such solutions (the graph of f (I) is below the x-axis), so that dI

dt < 0.
Hence, I(t) is decreasing and limt→∞ I(t) = I∗12. We notice that depending on the
initial conditions, we have solutions that converge to the disease-free equilibrium
and solutions that converge to the endemic equilibrium. Such a situation is called
bistability. In this case, there is no globally stable equilibrium. The region 0 <
I0 < I∗11 is called a domain of attraction of the disease-free equilibrium. The region
I∗11 < I0 is called a domain of attraction of the endemic equilibrium.

Problems

2.1. Show that the model (2.1) is well posed.

2.2. Use a computer algebra system to graph the solutions (2.4).

2.3. The simplest model of malaria assumes that the mosquito population is at equi-
librium and models the proportion of the infected humans I with the following equa-
tion:

I′ =
αβ I

αI + r
(1− I)− μI,

where r is the natural death rate of mosquitoes, μ is the death rate of humans, β is
the transmission rate from infected mosquitoes to susceptible humans, and α is the
transmission rate from humans to mosquitoes.

(a) Compute the reproduction number of malaria.
(b) Find the equilibria of the model and their stabilities.
(c) Use a computer algebra system to graph several solutions.
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2.4. Consider the model of malaria in Problem 2.3 and assume that saturating treat-
ment is applied:

I′ =
αβ I

αI + r
(1− I)− μI− γI

A+ I
,

where r is the natural death rate of mosquitoes, μ is the death rate of humans, β
is the transmission rate from infected mosquitoes to susceptible humans, α is the
transmission rate from humans to mosquitoes, γ is the treatment rate, and A is the
half-saturation constant.

(a) Compute the reproduction number of malaria with saturating treatment.
(b) Find the equilibria of the model and the conditions for their existence.
(c) Find the stabilities of the equilibria.
(d) Use a computer algebra system to graph several solutions.

2.5. Consider the SIS model with constant population size N and saturating inci-
dence in the size of the susceptibles:

S′(t) = − β IS
1+σS

+αI,

I′(t) =
β IS

1+σS
−αI. (2.17)

(a) Reduce the SIS model to a single equation.
(b) Determine the threshold condition for the existence of endemic equilibria.
(c) Use a computer algebra system to plot the solutions of (2.17) for N = 100, β =

0.5, σ = 0.01, α = 0.05.

2.6. Consider the SIS model with constant population size N:

S′(t) = − β I pS
1+σ Iq +αI,

I′(t) =
β I pS

1+σ Iq −αI. (2.18)

(a) Reduce the SIS model to a single equation.
(b) For the case p< 1, q= p−1, determine the threshold condition for the existence

of endemic equilibria.
(c) For the case p > 1, p = q, determine the threshold condition for the existence of

endemic equilibria.

2.7. Plague in Eyam [27]
The Derbyshire village of Eyam, England, suffered an outbreak of bubonic plague
in 1665–1666. The source of that plague was believed to be the Great Plague of
London. The village is best known for being the “plague village” that chose to iso-
late itself when the plague was discovered there in August 1665 rather than let the
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infection spread. Detailed records were preserved. The initial population of Eyam
was 350. In mid-May 1666, nine months after the beginning of the epidemic, there
were 254 susceptibles and 7 infectives. The data about the epidemic in the remain-
ing months are given in Table 2.2. The infective period of the bubonic plague is 11
days.

(a) Estimate α
(b) Use the implicit solution of the SIR model to estimate β .
(c) Plot S and I alongside the data. Do they fit?

2.8. A first-order differential equation is given by x′(t) = f (x), where f (x) is defined
by Fig. 2.10.

(a) Determine the equilibria of the model x′ = f (x).
(b) Determine the local stabilities of the equilibria of the model x′ = f (x).
(c) Graph the solutions x(t) of the model x′ = f (x) as a function of time.
(d) What is the limit

lim
t→∞

x(t)

if x(0) = 15? What about if x(0) = 1?

Table 2.2 Number of susceptible and infected individuals during the Great Plague of Eyam

Date 1666 No. susceptible No. infected

Mid-May 254 7
July 3/4 235 14.5
July 19 201 22
August 3/4 153.5 29
August 19 121 21
September 3/4 108 8
September 19 97 8
October 3/4 Unknown Unknown
October 20 83 0

2 4 6 8 10 12
x

-300

-200

-100

100

200

300

f( x )

Fig. 2.10 Graph of the function f (x)



Chapter 3
The SIR Model with Demography: General
Properties of Planar Systems

3.1 Modeling Changing Populations

Models that do not explicitly include births and deaths occurring in the population
are called epidemic models without explicit demography. They are useful for epi-
demic modeling on a short time scale, particularly for modeling epidemic outbreaks
such as influenza. Omitting population change requires that the disease develop on
a much shorter time scale than the period in which significant change in the popula-
tion size can occur (such as births and deaths). This is valid for fast diseases like the
childhood diseases and influenza. On the other hand, there are slow diseases, such
as HIV, tuberculosis, and hepatitis C, that develop for a long period of time even on
an individual level. In this case, the total population does not remain constant for
long periods of time, and the demography of the population cannot be ignored.

To incorporate the population change in epidemic models, we need population
models of the growth of the human population. There are several classical popula-
tion models that are typically considered in the literature.

Population growth is the rate of change in a population over time, and it can
be approximated as the change in the number of individuals of any species in a
population per unit time. The study of growth and change of human populations is
called demography. Modeling and projecting the growth of human populations is in
general not a simple matter, but for the purposes of epidemic modeling, we will use
several simple population models.

3.1.1 The Malthusian Model

The Malthusian model, sometimes called the exponential model, is essentially
an exponential growth model based on the assumption that the rate of change
of a population is proportional to the total population size. The model is named
after the Reverend Thomas Malthus (1766–1834), who authored An Essay on
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the Principle of Population, one of the earliest and most influential books on
populations. The Malthusian model is based on the following assumptions: (1) All
individuals are identical, that is, they are not classified by age, sex, or other charac-
teristics. (2) The environment is constant in space and time, in particular, resources
are unlimited. With these assumptions, if N(t) is the total population size, and b is
the per capita birth rate, while μ is the per capita death rate, then the Malthusian
model becomes

N′(t) = bN(t)− μN(t) = rN(t), (3.1)

where r = b− μ is the population growth rate. The solution to this equation is an
exponential N(t) = N(0)ert . The population is growing exponentially if r > 0, dec-
reasing exponentially if r < 0, and constant if r = 0.

We compare the performance of population models with world population data.
Table 3.1 gives the world’s human population since 1950.

Table 3.1 World population size 1950–2010a

Year Population Year Population

1950 2,556,505,579 1980 4,452,686,744
1952 2,635,724,824 1982 4,615,366,900
1954 2,729,267,486 1984 4,776,577,665
1956 2,834,435,383 1986 4,941,825,082
1958 2,947,380,005 1988 5,114,949,044
1960 3,042,389,609 1990 5,288,828,246
1962 3,139,645,212 1992 5,456,405,468
1964 3,280,890,090 1994 5,619,031,095
1966 3,420,438,740 1996 5,779,990,768
1968 3,562,227,755 1998 5,935,741,324
1970 3,712,813,618 2000 6,088,683,554
1972 3,867,163,052 2002 6,241,717,680
1974 4,017,615,739 2004 6,393,120,940
1976 4,161,423,905 2006 6,545,884,439
1978 4,305,496,751 2008 6,700,765,879
– – 2010 6,853,019,414

a Data taken from http://www.census.gov/ipc/www/idb/worldpop.php

With the simple population models in this section, many methods for estimating
the parameters can work. One of the most powerful methods, however, is calibra-
tion or curve fitting. Curve fitting is the process of identifying the parameters of a
curve, or mathematical function, that has the best fit to a series of data points. We
discuss more thoroughly fitting epidemic models to data in Chap. 6. Here we only
compare the population models with the available data.

Calibration is greatly expedited through the use of software such as Mathematica,
Matlab, or R to fit the model to the data. For the Malthusian model, we have an
explicit solution, and we can fit the solution function to the data. Since the initial
condition for the data is not at zero, the solution to the Malthus model becomes
N(t) = Aer(t−1950). We fit both A and r. Fitting in Mathematica can be done with the

http://www.census.gov/ipc/www/idb/worldpop.php
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command NonlinearModelFit. The result of the fit of the world population
data to the Malthusian model is given in Fig. 3.1, where the population is taken in
millions.
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Fig. 3.1 World population data alongside Malthusian model predictions. The estimated values of
the parameters are A = 2676.29 and r = 0.0163. The least-squares error of the fit is E = 402,533

3.1.2 The Logistic Model as a Model of Population Growth

The Malthus model assumes that the population’s per capita growth rate is constant
and that the population has unlimited resources by which to grow. In most cases,
however, populations live in an environment that has a finite capacity to support only
a certain population size. When the population size approaches this capacity, the per
capita growth rate declines or becomes negative. This property of the environment
to limit population growth is captured by the logistic model. The logistic model
was developed by the Belgian mathematician Pierre Verhulst (1838), who suggested
that the per capita growth rate of the population may be a decreasing function of
population density:

1
N(t)

N′(t) = r

(
1− N

K

)
,

which gives the classical logistic model that we studied in Chap. 2. At low densi-
ties N(t) ≈ 0, the population growth rate is maximal and equals r. The parameter
r can be interpreted as the population growth rate in the absence of intraspecific
competition. The population growth rate declines with population number N and
reaches 0 when N = K. The parameter K is the upper limit of population growth,
and it is called the carrying capacity of the environment. It is usually interpreted
as the quantity of resources expressed in the number of organisms that can be sup-
ported by those resources. If population number exceeds K, then population growth
rate becomes negative, and population declines. The logistic model has been used
unsuccessfully for the projection of human populations. The main difficulty appears
to be determining the carrying capacity of a human population. It is believed that
human populations do not have a carrying capacity, and even if they do, that the
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carrying capacity is not constant. For those reasons, the logistic model is rarely
used to model human populations. However, when compared to population data, the
logistic equation usually performs admirably in modeling the data for short periods
of time. We use the logistic model to model the world population data. The results
are given in Fig. 3.2.
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Fig. 3.2 World population data alongside logistic model predictions. The estimated values of the
parameters are K = 13,863.9 and r = 0.0247. The least-squares error of the fit is E = 56,659.3

3.1.3 A Simplified Logistic Model

The third model of population growth is a simplified version of the logistic model. It
assumes constant birth rate, independent of population size. It also assumes constant
per capita death rate. The model becomes

N′(t) = Λ − μN.

Here Λ is the total birth rate, and μ is the per capita natural death rate. Then μN is
the total death rate. This model can be solved. The solution is

N(t) = N0e−μt +
Λ
μ
(1− e−μt).

It is not hard to see that if t → ∞, then N(t) → Λ
μ . This limit quantity is called

the limit population size. The simplified logistic model is the one most often used
to model population dynamics in epidemic models. However, its performance with
data is modest. We illustrate how the simplified logistic model fits the world pop-
ulation data in Fig. 3.3. We saw in Chap. 2 that if T is the time spent is a class (or
a compartment), then the per capita rate at which the individuals leave that class
(compartment) is given by 1

T . So if the per capita recovery rate was α , then

α =
1
T
,
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Fig. 3.3 World population data alongside the simplified logistic model predictions. The estimated
values of the parameters are μ = 5.54 × 10−12 and Λ = 68.5, and we have preset N(1950) =
2556.5. The least-squares error of the fit is E = 703,482

or equivalently, 1
α is the time spent in the infectious compartment. Similar reason-

ing can be applied to the compartment “life.” If μ is the natural death rate, then 1/μ
should be the average lifespan of an individual human being. From fitting the sim-
plified logistic model to world data, we estimated μ = 5.54× 10−12, which gives a
lifespan of 1.8× 1011 years—quite unrealistic. If the lifespan is limited to biologi-
cally realistic values, such as a lifespan of 65 years, then the fit becomes worse.

3.2 The SIR Model with Demography

To incorporate the demographics into the SIR epidemic model, we assume that all
individuals are born susceptible. Individuals from each class die at a per capita death
rate μ , so the total death rate in the susceptible class is μS, while in the infective
class, it is μI, and in the removed class, it is μR. The epidemic model with demog-
raphy becomes

S′(t) = Λ −β IS− μS,

I′(t) = β IS−αI− μI,

R′(t) = αI− μR. (3.2)

We add the three equations to obtain the total population. The model of the total
population is N′(t) = Λ − μN, where N = S + I + R. The population size is not
constant, but it is asymptotically constant, since N(t)→ Λ

μ as t → ∞.
When the population is nonconstant and the incidence is proportional to the prod-

uct of I and S, we say that the incidence is given by the law of mass action, analo-
gously to terms from chemical kinetic models, whereby chemicals react by bumping
randomly into each other. For this reason, this incidence is called the mass action
incidence:
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mass action incidence = β SI.

Another type of incidence that is very commonly used in epidemic models is the
standard incidence. It is similar to the mass action incidence, but it is normalized
by the total population size. In particular,

standard incidence =
β SI
N

.

The mass action incidence and the standard incidence agree when the total pop-
ulation size is a constant, but they differ if the total population size is variable. Mass
action incidence is used in diseases for which disease-relevant contact increases
with an increase in the population size. For instance, in influenza and SARS, con-
tacts increase as the population size (and density) increase. Standard incidence is
used for diseases for which the contact rate cannot increase indefinitely and is lim-
ited even if the population size increases. This is the case in sexually transmitted
diseases, where the number of contacts cannot increase indefinitely.

We notice as before that the first two equations in (3.2) are independent of the
third, and we consider the two-dimensional system

S′(t) = Λ −β IS− μS,

I′(t) = β IS−αI− μI, (3.3)

where R = N − S− I. Mathematically, the SIR system can be written in the general
form

S′(t) = f (S, I),

I′(t) = g(S, I). (3.4)

This is a system of differential equations with two equations and the two unknowns S
and I. The incidence term makes both f and g nonlinear functions. So system (3.4)
is a nonlinear system of differential equations. System (3.4) is also autonomous,
since f and g do not depend explicitly on the time variable; that is, the coefficients
of system (3.3) are constants and not functions of time.

What are the units of the quantities in this model? Since S is measured in number
of people, it follows that S′ is measured in number of people per unit of time. The
total birth rate Λ is measured in number of people born per unit of time. The per
capita death rate μ is measured in [unit of time]−1. Thus, μS is measured again in
number of people per unit of time. The most difficult term is β IS. Since the force of
infection β I is a per capita rate, it has units [time]−1. Consequently, the transmission
coefficient β must have units of [number of people× time]−1.
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A customary transformation of the system (3.3) that simplifies the system and
reduces the number of parameters is often performed. There is a simplification that
consists in a change of variables that transforms both the independent variable and
the dependent variables into nondimensional quantities. Hence, we say that we have
transformed the system into a nondimensional form.

Two parameters have units [unit of time]−1: α and μ . Since t is in [unit of time],
we have to multiply t by one of the rates to obtain a unitless quantity. It is best
to define τ = (α + μ)t. Observe that τ is a dimensionless quantity. Because of
the nature of the change, this change will remove the parameter multiplying I. Let
N(t) = N( τ

α+μ ) = N̂(τ). Similarly, I(t) = Î(τ). By the chain rule, we have

dŜ
dτ

=
1

α + μ
dS
dt

,

dÎ
dτ

=
1

α + μ
dI
dt

.

(3.5)

We rescale the Ŝ and Î variables with the total limiting population size. Hence x(t) =
μ Ŝ
Λ and y(t)= μ Î

Λ . The new dependent variables x(τ) and y(τ) are also dimensionless
quantities. The system for them becomes

x′ = ρ(1− x)−R0xy,
y′ = (R0x− 1)y,

(3.6)

where

ρ = μ/(α + μ) R0 =
Λβ

μ(α + μ)
are both dimensionless parameters. The notation R0 is not random. As we will see
later, this dimensionless quantity is indeed the reproduction number. Notice that we
have reduced the number of parameters from five to two. The dimensionless form of
the SIR model with demography is equivalent to the original one, since the solutions
of both systems have the same long-term behavior.

3.3 Analysis of Two-Dimensional Systems

We cannot solve the SIR model with demography analytically, but we can obtain
some information about the behavior of the solutions. The long-term behavior of
the solutions is particularly important from an epidemiological perspective, since
we would like to know what will happen to the disease in the long run: will it die
out, or will it establish itself in the population and become endemic?
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3.3.1 Phase-Plane Analysis

We write the system (3.6) in general form

x′ = f (x,y),
y′ = g(x,y),

(3.7)

where f (x,y) = ρ(1− x)−R0xy and g(x,y) = (R0x− 1)y. To answer the question
above, we have to investigate the long-term behavior of the solutions. Instead of con-
sidering x(τ) and y(τ) as functions of τ , or equivalently, S(t) and I(t) as functions
of t, we treat τ as a parameter and consider the curves in the (x,y)-plane, obtained
from the points (x(τ),y(τ)) as τ varies as a parameter. By considering the solution
curves in the (x,y)-plane, we say that we are considering the phase plane.

Definition 3.1. Curves in the phase plane representing the functional relation
between x and y, with τ as a parameter, are called orbits or trajectories.

The long-term behavior of the trajectories depends largely on the equilibrium
points, that is, on time-independent solutions of the system. Equilibrium points are
solutions for which x′ = 0 and y′ = 0.

Definition 3.2. All points (x∗,y∗), where x∗ and y∗ are constants that satisfy the
system

f (x∗,y∗) = 0,

g(x∗,y∗) = 0, (3.8)

are called equilibria or singular points.

For the dimensionless SIR model with demography, we have

ρ(1− x)−R0xy = 0,

(R0x− 1)y = 0. (3.9)

We have that if y = 0, that is, there are no infectives, then x = 1; that is, everyone
is susceptible. This gives the first equilibrium in the (x,y)-plane, (1,0). This is the
disease-free equilibrium. The disease-free equilibrium is also a boundary equilib-
rium, since it lies on the boundary of the feasible region x ≥ 0, y ≥ 0. If y �= 0,
then from the second equation, we have x = 1/R0. From the first equation, we have
y = ρ(1− 1/R0). Thus the second equilibrium is the point

E =

(
1
R0

,ρ
(

1− 1
R0

))
.

This is the endemic equilibrium. The endemic equilibrium exists only in the case
R0 > 1. This equilibrium is also called an interior equilibrium.
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System (3.6) allows us to compute the slope at each point of a trajectory in the
(x,y)-plane. The parameter τ can be eliminated by dividing the equations in system
(3.6):

dy
dx

=
g(x,y)
f (x,y)

.

This quotient is defined for all points in the (x,y)-plane except the equilibria. For
any nonequilibrium point (x0,y0) in the phase plane, we can compute the expression

dy
dx

|(x0,y0) =
g(x,y)
f (x,y)

which gives the slope of the trajectory in the (x,y)-plane, with tangent vector

( f (x0,y0),g(x0,y0))
T .

This vector also gives the direction of the trajectory. The tangent vector is not def-
ined at the equilibria, since the flow stops at those points and they are fixed points.
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x0.0
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Fig. 3.4 The vector field of the dimensionless SIR model alongside solutions of the model for
several initial conditions

The collection of tangent vectors defines a direction field. The direction field
can be used as a visual aid in sketching a family of solutions called a phase-plane
portrait or a phase-plane diagram. A phase-plane portrait of the dimensionless
SIR model is given in Fig 3.4. The creation of the whole phase portrait is a tedious
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job and is done only by computer. An easier method to obtain information about
the direction of the flow is to analyze the direction of the flow along the x-zero and
y-zero isoclines, or nullclines.

Definition 3.3. The x-zero isocline or x-nullcline for the system (3.7) is the set of all
points in the (x,y)-plane satisfying

f (x,y) = 0.

The y-zero isocline or y-nullcline for the system (3.7) is the set of all points in the
(x,y)-plane satisfying

g(x,y) = 0.

We can determine the nullclines for the dimensionless SIR model. Setting
ρ(1− x)−R0xy = 0 gives the x-nullcline

y =
ρ
R0

1− x
x

.

Setting (R0x− 1)y = 0 gives two y-nullclines: y = 0, which is the x-axis, and the
vertical line x = 1

R0
. The points where an x-nullcline intersects a y-nullcline give the

equilibrium points of the system. There are two scenarios for the SIR dimensionless
system.

R0 < 1 In this case, there is only one intersection of an x-nullcline and a
y-nullcline. The x-nullcline intersects the y-nullcline y = 0 at the point
(1,0), the disease-free equilibrium. Since 1/R0 > 1, the y-nullcline
x = 1/R0 does not intersect the x-nullcline in the positive quadrant.

R0 > 1 In this case, there are two intersections of an x-nullcline and a y-nullcline.
In the first intersection, the x-nullcline intersects the y-nullcline y = 0
at the point (1,0), which represents the disease-free equilibrium. In the
second intersection, since 1/R0 < 1, the y-nullcline x = 1/R0 inter-
sects the x-nullcline 1/R0 < 1 at the point E , which gives the endemic
equilibrium.

To determine the direction of the vector field along the nullclines, we can use the
following general rules:

1. On the x-nullclines, the tangent vector is

(0,g(x0,y0))
T

and is parallel to the y-axis. The direction of the tangent is given by the sign of
g(x0,y0). If g(x0,y0)> 0, the direction vector points upward. If g(x0,y0)< 0, the
directional vector points downward.

2. On the y-nullclines, the tangent vector is

( f (x0,y0),0)
T
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and is parallel to the x-axis. The direction of the tangent vector is determined by
the sign of f (x0,y0). If f (x0,y0) > 0, the direction vector points to the right. If
f (x0,y0)< 0, the direction vector points to the left.

We determine the direction field along nullclines for the dimensionless SIR
model. We consider the case R0 > 1. The case R0 < 1 is similar. The results are
illustrated in Fig. 3.5.

1. On the x-nullcline, the tangent vector is (0,g(x0,y0))
T , where (x0,y0) is a point

on the nullcline. The tangent vector is parallel to the y-axis. Since g(x0,y0) =
(R0x0 − 1)y0 and y0 > 0, the sign of g(x0,y0) is determined by the first term
in the product. Thus, if x0 < 1/R0, then g(x0,y0) < 0, and the vector points
downward. If x0 > 1/R0, then g(x0,y0)> 0, and the vector points upward.

2. On the y-nullclines, the tangent vector is ( f (x0,y0),0)T , where (x0,y0) is a point
on a y-nullcline. The tangent vector is parallel to the x-axis. Since there are two
y-nullclines, we consider two cases:
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Fig. 3.5 Phase-plane analysis of the dimensionless SIR model. Nullclines and the direction of the
vector field along them

y = 0 On the nullcline y = 0, f (x0,y0) = ρ(1− x0). We have f (x0,y0) > 0
if x0 < 1, and the tangent vector points to the right. Furthermore, we
have f (x0,y0)< 0 if x0 > 1, and the tangent vector points to the left.

x = 1
R0

On the y-nullcline x = 1
R0

, we have f (x0,y0) = ρ
(

1− 1
R0

)
− y0. We

have that y0 > ρ
(

1− 1
R0

)
if the point (x0,y0) is on the y-nullcline
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above the intersection of the y-nullcline with the x-nullcline. Hence,
f (x0,y0) < 0, and the tangent vector points to the left. Furthermore,

we have that y0 < ρ
(

1− 1
R0

)
if the point (x0,y0) is on the y-nullcline

below the intersection of the y-nullcline with the x-nullcline. Hence,
f (x0,y0)> 0, and the tangent vector points to the right.

3.3.2 Linearization

Just as with first-order nonlinear equations, we can obtain information about the
behavior of the solutions near an equilibrium through linearization. If (x∗,y∗) is
an equilibrium, we consider the perturbation of a solution starting from an initial
condition close to the equilibrium:

u(τ) = x(τ)− x∗ v(τ) = y(τ)− y∗.

We note again that u(τ) and v(τ) are functions of τ but are not necessarily nonneg-
ative. Writing x(τ) = u(τ) + x∗, y(τ) = v(τ) + y∗, and substituting in the original
system, we obtain

u′ = f (u+ x∗,v+ y∗),
v′ = g(u+ x∗,v+ y∗). (3.10)

Assuming that f and g have at least second-order continuous partial derivatives, we
expand in a Taylor series using the theorem for functions of two variables. We show
that expansion for f ; the process for g is the same.

f (u+ x∗,v+ y∗) = f (x∗,y∗)+ fx(x
∗,y∗)u(τ)+ fy(x

∗,y∗)v(τ)
+ fxx(x

∗,y∗)u2(τ)/2+ fxy(x
∗,y∗)u(τ)v(τ)

+ fyy(x
∗,y∗)v2(τ)/2+ · · · . (3.11)

The terms with the second partial derivatives are multiplied by u2, uv, and v2, all
second-order terms in the perturbations. If the perturbations are small, u ≈ 0 and
v ≈ 0, then the second-order terms are even smaller, so we may ignore them. Thus,

u′ ≈ f (x∗,y∗)+ fx(x∗,y∗)u(τ)+ fy(x∗,y∗)v(τ),
v′ ≈ g(x∗,y∗)+ gx(x∗,y∗)u(τ)+ gy(x∗,y∗)v(τ).

(3.12)

Since (x∗,y∗) is an equilibrium, f (x∗,y∗) = 0 and g(x∗,y∗) = 0. We obtain the lin-
earized system

u′ = fx(x∗,y∗)u(τ)+ fy(x∗,y∗)v(τ),
v′ = gx(x∗,y∗)u(τ)+ gy(x∗,y∗)v(τ).

(3.13)
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The matrix of the partial derivatives of the functions f (x,y) and g(x,y) is called the
Jacobian matrix. The matrix of the system above is the Jacobian matrix evaluated at
an equilibrium (x∗,y∗). All entries of this matrix are given constants:

J =

(
fx(x,y) fy(x,y)
gx(x,y) gy(x,y)

)
|x=x∗,y=y∗ (3.14)

An important result, called the Hartman–Grobman theorem justifies draw-
ing conclusions about a nonlinear system from studying the linearized system. The
Hartman–Grobman theorem says roughly that the solutions of an n×n autonomous
system of ordinary differential equations in a neighborhood of a steady state look
“qualitatively” just like the solutions of the linearized system (3.13) near the point
(0,0). This result holds only when the equilibrium is a hyperbolic equilibrium,
that is, when none of the eigenvalues of J have zero real part.

3.3.3 Two-Dimensional Linear Systems

The linearized system (3.13) can be written in the form

u′ = au(τ)+ bv(τ),
v′ = cu(τ)+ dv(τ), (3.15)

where a,b,c,d are given constants. The system (3.15) is a two-dimensional linear
homogeneous system. The behavior of solutions of such systems has been com-
pletely studied. In this subsection, we review what is known about two-dimensional
linear systems. The equilibria of linear two-dimensional systems are solutions to the
linear system of equations

au(τ)+ bv(τ) = 0,

cu(τ)+ dv(τ) = 0. (3.16)

Such systems always have (0,0) as a solution. The equilibrium (0,0) is the only
equilibrium if the matrix

A =

(
a b
c d

)
(3.17)

of the system is invertible, that is, DetA �= 0. We will assume that this condition
holds, because if it doesn’t, there is a continuum of equilibria. Thus, we assume that
ad − bc �= 0. If the matrix A is obtained from the linearization and is the Jacobian
evaluated at an equilibrium (x∗,y∗), the condition DetJ �= 0 means that the equi-
librium is isolated; that is, there is a disk around it that does not contain other
equilibria. Looking for exponential solutions of the linearized system (3.15), we set

u(τ) = ūeλ τ v(τ) = v̄eλ τ ,
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where ū and v̄ are nonzero constants. Substituting in the system and canceling eλ τ ,
we obtain the following system for ū and v̄:

aū+ bv̄ = λ ū,
cū+ dv̄ = λ v̄.

(3.18)

This is a linear homogeneous system for ū and v̄. We want this system to have a
nonzero solution, since our perturbations should be nonzero. This can happen only
if the determinant of the system is zero, so we have

∣∣∣∣a−λ b
c d−λ

∣∣∣∣= 0. (3.19)

By expanding the determinant (a−λ )(d−λ )−bc= 0, we obtain the characteristic
equation of the linearized system:

λ 2 − pλ + q = 0, (3.20)

where p = a+ d = TrJ, and q = ad − bc = DetJ. Thus p is the trace and q is the
determinant of the Jacobian matrix. The solutions of the characteristic equation are
called the eigenvalues of the Jacobian matrix. The main question that we address is
when the perturbations u and v approach zero, in which case the equilibrium (x∗,y∗)
will be locally asymptotically stable. Given the eigenvalues, we have three cases for
the solution of the system of perturbations (3.15).

Case 1 The eigenvalues of the Jacobian are real and distinct, say λ1 and λ2. In this
case, the solution of the system (3.15) is given by

u(τ) = C1eλ1τ +C2eλ2τ ,

v(τ) = C3eλ1τ +C4eλ2τ , (3.21)

where C1, . . . ,C4 are arbitrary constants. Clearly, in this case, u → 0 and
v → 0 if and only if λ1 < 0 and λ2 < 0.

Case 2 The eigenvalues of the Jacobian are real and equal, say λ . In this case, the
solution of the system (3.15) is given by

u(τ) = C1eλ τ +C2τeλ τ ,

v(τ) = C3eλ τ +C4τeλ τ , (3.22)

where C1, . . . ,C4 are arbitrary constants. Clearly, in this case, u → 0 and
v → 0 if and only if λ < 0.

Case 3 The eigenvalues of the Jacobian are complex conjugates, say λ1 = ξ +η i
and λ2 = ξ − η i. In this case, the real solution of the system (3.15) is
given by

u(τ) = C1eξ τ sinητ +C2eξ τ cosητ,
v(τ) = C3eξ τ sinητ +C4eξ τ cosητ, (3.23)
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where C1, . . . ,C4 are arbitrary constants. Clearly, in this case, u → 0 and
v → 0 if and only if ξ < 0; that is, the eigenvalues have negative real part.

We summarize this result in the following widely used theorem.

Theorem 3.1. A necessary and sufficient condition for an equilibrium to be locally
asymptotically stable is that all eigenvalues of the Jacobian have negative real part.

For two-dimensional systems, there is a simple necessary and sufficient condition
that all eigenvalues of a matrix have negative real part.

Theorem 3.2. Assume that J is a 2× 2 matrix with constant entries and DetJ �= 0.
Assume that J has been obtained as a linearization around the equilibrium (x∗,y∗).
Then the equilibrium (x∗,y∗) is locally asymptotically stable if and only if

TrJ < 0 and DetJ > 0.

The equilibrium (x∗,y∗) is unstable if and only if

TrJ > 0 or DetJ < 0.

Remark 3.1. The asymptotic stability of the equilibrium (x∗,y∗) of the nonlinear
system is equivalent to the asymptotic stability of the (0,0) equilibrium of the lin-
ear system obtained from the linearization around the equilibrium (x∗,y∗). The only
exception occurs when Tr J = 0 and Det J > 0. In this case, the characteristic equa-
tion has eigenvalues with zero real part. Consequently, the (0,0) equilibrium of the
linear system may be stable, but there are no implications for the stability of the
(x∗,y∗) equilibrium of the nonlinear system.

The origin of a two-dimensional linear system can be classified as one of four types:
node, spiral, saddle, or center. In addition, the origin can be classified as stable or
unstable. This classification depends on whether the eigenvalues are real or complex,
positive or negative when real, or with positive or negative real part when complex.
We have the following cases:

Node The origin is said to be a node if the eigenvalues are real and of the same
sign. If the two eigenvalues are negative, the node is a stable node. If both
eigenvalues are positive, the node is an unstable node. If the eigenvalues
are real and equal, the node that corresponds to them is called degenerate.
If two eigenvectors correspond to the double eigenvalue, the degenerate
node is called proper. If only one eigenvector corresponds to the double
eigenvalue, the degenerate node is called improper.

Saddle The origin is a saddle if the eigenvalues are real and of opposite sign.
A saddle is always unstable.

Spiral The origin is a spiral (or focus) if the eigenvalues are complex with
nonzero real part. If the real part is negative, the focus is a stable focus; if
the real part is positive, the focus is an unstable focus.
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Center The origin is a center if the eigenvalues are complex with zero real part
(purely imaginary). In this case, every orbit is periodic. The center is stable
but not asymptotically.

The type of the equilibrium can be inferred from the coefficients of the characteristic
equation (3.20). See Table 3.2.

Table 3.2 Relations between the coefficients of the characteristic equation and the type of the
equilibrium

Coefficients Trace and determinant Type

q < 0 DetJ < 0 Saddle (unstable)
q > 0, p < 0, Δ = p2 −4q ≥ 0 DetJ > 0, Tr J < 0 Stable node
q > 0, p < 0, Δ = p2 −4q < 0 DetJ > 0, Tr J < 0 Stable focus
q > 0, p > 0, Δ = p2 −4q ≥ 0 DetJ > 0, Tr J > 0 Unstable node
q > 0, p > 0, Δ = p2 −4q < 0 DetJ > 0, Tr J > 0 Unstable focus
q > 0, p = 0 DetJ > 0, Tr J = 0 Center

3.4 Analysis of the Dimensionless SIR Model

We saw that the dimensionless SIR model (3.6) has two equilibria. The disease-
free equilibrium (1,0) always exists, while the endemic equilibrium E exists only if
R0 > 1.

3.4.1 Local Stability of the Equilibria of the SIR Model

The local stability of equilibria is determined by the eigenvalues of the Jacobian
computed at that equilibrium. The Jacobian of the dimensionless SIR model at an
equilibrium (x∗,y∗) is

J =

(−ρ −R0y∗ −R0x∗
R0y∗ R0x∗ − 1

)
. (3.24)

To obtain the stability of the disease-free equilibrium, we evaluate J at (1,0):

J =

(−ρ −R0

0 R0 − 1

)
. (3.25)

The two eigenvalues are λ1 = −ρ and λ2 = R0 − 1. Since the matrix is upper tri-
angular, the eigenvalues are the diagonal entries of the matrix. The first eigenvalue
is clearly negative. The second eigenvalue is negative if R0 < 1. In this case, the
disease-free equilibrium is a stable node. The second eigenvalue λ2 is positive if
R0 > 1. In this case, the disease-free equilibrium is unstable. It is a saddle.
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The next step is to investigate the local stability of the endemic equilibrium. We
consider the Jacobian at the endemic equilibrium:

J =

(−ρ −R0y∗ −R0x∗
R0y∗ R0x∗ − 1

)
. (3.26)

We notice that from the equilibrium equations we have R0x∗ −1 = 0. The Jacobian
becomes

J =

(−ρ −R0y∗ −R0x∗
R0y∗ 0

)
. (3.27)

By inspection, the trace of this matrix is negative, Tr J =−ρ−R0y∗ < 0. The deter-
minant is given by DetJ =R2

0 x∗y∗ > 0. By Theorem 3.2, the endemic equilibrium
is locally asymptotically stable.

To determine the type of the endemic equilibrium, we consider the characteristic
equation ∣∣∣∣−ρ −R0y∗ −λ −R0x∗

R0y∗ −λ

∣∣∣∣= 0. (3.28)

Expanding the determinant, we obtain the characteristic equation of the endemic
equilibrium:

λ 2 +(ρ +R0y∗)λ +R2
0x∗y∗ = 0.

Since the endemic equilibrium is explicitly known, we can express the coefficients
of the characteristic equation in terms of the parameters of the system:

ρ +R0y∗ = ρ +R0ρ
(

1− 1
R0

)
= ρR0,

R2
0x∗y∗ = R2

0
1
R0

ρ
(

1− 1
R0

)
= ρ(R0 − 1). (3.29)

The characteristic equation becomes

λ 2 +ρR0λ +ρ(R0− 1) = 0.

Hence the roots of the characteristic equation are λ1,2 = (−ρR0 ±
√

Δ )/2, where
Δ = (ρR0)

2 − 4ρ(R0 − 1). Hence if Δ > 0, the characteristic equation has two
negative real roots, and the endemic equilibrium is a stable node. If Δ < 0, then the
characteristic equation has two complex conjugate roots with negative real part. The
endemic equilibrium in this case is a stable focus. The dependent variables x(τ) and
y(τ) tend to the endemic equilibrium through damped oscillations (see Fig. 3.6).
We can compute an approximate period of the oscillation by noting that the mean
infectious period 1

α is much shorter than the mean lifespan 1
μ . That implies that

α � μ and ρ ≈ 0. Hence ρ2 is very small and can be neglected. Neglecting the
quadratic roots for ρ from the expression for the roots of the characteristic equa-
tion, we obtain λ1,2 =−ρR0/2± i

√
ρ(R0 − 1) = ξ ±η i. Then the solutions of the

linearized problem are of the form Ceξ τ cosητ , that is, functions that oscillate with
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Fig. 3.6 Damped oscillations in the proportion of infectives x(τ) of the dimensionless SIR model;
ρ = 0.01, R0 = 2

decreasing amplitude and approximate period equal to 2π/η . Thus, the solution
exhibits damped oscillations with period T given by

T =
2π√

ρ(R0 − 1)
.

The following theorem summarizes the results on existence and stability of equilib-
ria of the SIR model with demography.

Theorem 3.3. Assume R0 < 1. Then there exists a unique equilibrium, the disease-
free equilibrium (1,0), which is locally stable. If R0 > 1, there are two equilibria:
the disease-free equilibrium (1,0), which is unstable, and the endemic equilibrium
E , which is locally asymptotically stable.

3.4.2 The Reproduction Number of the Disease R0

The expression for R0 in terms of the original parameters of the system is

R0 =
βΛ

μ(α + μ)
.

The parameter R0 is the reproduction number of the disease.
Epidemiologically, the reproductive number of the disease tells us how many sec-

ondary cases one infected individual will produce in an entirely susceptible popula-
tion during its period as an infective. Can we see this in the expression that givesR0?

1. Notice that a population that consists of only susceptible individuals has Λ
μ indi-

viduals in the long run.
2. Notice that α + μ is the rate at which individuals leave the infective class. This

means that the average time spent as an infective individual is 1
α+μ time units.
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3. The number of transmissions per unit of time is given by the incidence rate β IS.
If there is only one infective, I = 1, and everybody else is susceptible, S = Λ

μ ,

then the number of transmissions by one infective per unit of time is βΛ
μ .

4. Thus, the number of transmissions that one infective individual can make during
the entire time he/she remains infective if everybody else is susceptible is

βΛ
μ(α + μ)

.

And this is exactly R0.

The reproduction number of the disease has the following threshold role:

1. If R0 < 1, then there exists only the disease-free equilibrium. It can be shown
that it is attractive, so that every solution of the ODE system approaches this
equilibrium, and the disease disappears from the population.

2. If R0 > 1, then there are two equilibria: the disease-free equilibrium and the
endemic equilibrium. The disease-free equilibrium is not attractive in the sense
that solutions of the ODE system that start very close to it tend to move away.
The endemic equilibrium is attractive, so that solutions of the ODE system app-
roach it as time goes to infinity. Thus, in this case, the disease remains endemic
in the population.

3.4.3 Forward Bifurcation

The expression for the endemic equilibrium E shows that the dimensionless quantity
corresponding to infective individuals y∗ is a function of the disease reproduction
number R0. It is customary to plot the infective individuals (or y∗) as a function
of R0 in the positive (x,y)-plane, where the x-axis is the reproduction number R0,
and the y-axis is the equilibrium level of the infective individuals y∗. This produces a
bifurcation diagram called a forward bifurcation diagram, since the endemic equi-
librium bifurcates “forward” and exists only for values of the reproduction number
greater than one. We have

y∗ =

{
0 for all R0 < 1

ρ
(

1− 1
R0

)
R0 > 1.

(3.30)

The plot is given in Fig. 3.7.
We plot the locally stable equilibria with solid lines and the unstable equilibria

with dashed lines. Hence, since the disease-free equilibrium y∗ = 0 is locally asymp-
totically stable for R0 < 1, it is plotted with a solid line. The endemic equilibrium
is also locally asymptotically stable for R0 > 1 and is also plotted with a solid line.
The disease-free equilibrium is unstable for R0 > 1, and it is plotted with a dashed
line.
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Fig. 3.7 Forward bifurcation diagram with respect to the reproduction number. Continuous lines
denote stable equilibria. Dashed lines denote unstable equilibria

3.5 Global Stability

An equilibrium is called globally stable if it is stable for almost all initial conditions,
not just those that are close to it. Global stability of an equilibrium cannot always
be proved. An equilibrium that is locally stable may be globally stable if there are
no other locally stable equilibria coexisting with it. For the SIR model, we have two
cases. In the case R0 < 1, the disease-free equilibrium is the only equilibrium, and it
is locally asymptotically stable. It may be expected that it is also globally stable. We
establish that in the next subsection. In the case R0 > 1, the endemic equilibrium is
the only locally stable equilibrium, so we may expect that it is also globally stable.
We establish that later.

3.5.1 Global Stability of the Disease-Free Equilibrium

Global stability of the disease-free equilibrium can be established for many models,
particularly for models for which the disease-free equilibrium is the only equilib-
rium when R0 < 1. We note that global stability of the disease-free equilibrium
cannot be established for all models. Establishing global stability for the SIR model
is perhaps possible through many different techniques. We present one that works
well for many models, including partial differential equation models.

Theorem 3.4. Assume R0 < 1. Then the disease-free equilibrium is globally stable.

Proof. Working again with the dimensionless SIR model (3.6), we first notice that
if x(0)> 1, then x′(τ)< 0, so x(τ) is a decreasing function if x > 1. Assume τ0 > 0
exits such that x(τ0) = 1; then x′(τ0) < 1 and x(τ) ≤ 1 for all τ ≥ τ0. If x(0) ≤ 1,
we may take τ0 = 0. We consider the equation for y(τ):

y′(τ) = (R0x− 1)y(τ). (3.31)
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For τ ≥ τ0, we have

y′(τ)≤ (R0 − 1)y(τ).

Integrating, we have y(τ)= y(τ0)e(R0−1)(τ−τ0). Hence if R0 < 1, then limτ→∞ y(τ)=
0. It is somewhat more cumbersome to see that x → 1. First, we notice that
limsupτ→∞ x ≤ 1. We need limsup, since we do not know that the limit actually
exists. From the equation for x, we have

x′ ≤ ρ(1− x),

which can be solved in the same way as the corresponding equality would be solved.
We have

x(τ) ≤ e−ρτx(0)+ρ
∫ τ

0
e−ρ(τ−s)ds.

Hence limsupτ→∞ x ≤ 1. On the other hand, since limτ→∞ y = 0, this implies that
for every ε , there exists τ0 > 0 such that y ≤ ε for τ > τ0. For these values of τ , we
have

x′ ≥ ρ(1− x)− εR0x.

Integrating the inequality, we obtain

x(τ)≥ e−(ρ+εR0)τ x(0)+ρ
∫ τ

0
e−(ρ+εR0)(τ−s)ds.

This inequality implies that

liminf
τ→∞

x ≥ ρ
ρ + εR0

.

Since the inequality holds for every ε , this means that liminfτ→∞ x≥ 1. Furthermore,
the liminf and the limsup are the same, the limit as τ → ∞ of x exists, and

lim
τ→∞

x = 1.

This completes the proof of the global stability of the disease-free equilibrium. �


3.5.2 Global Stability of the Endemic Equilibrium

We consider again the dimensionless SIR model

x′ = ρ(1− x)−R0xy,
y′ = (R0x− 1)y.

(3.32)
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This is a planar system. There is theory developed specifically for planar systems
that can facilitate understanding of the solution behavior and the proof of global sta-
bility. To introduce the main results of that theory, consider a general planar system

x′ = f (x,y) x(0) = u0
1,

y′ = g(x,y) y(0) = u0
2.

(3.33)

Let u(t) = (x(t),y(t)) be a solution curve with initial condition u0 = (u0
1,u

0
2).

Definition 3.4. The omega limit set of the point u0, denoted by ω(u0), consists of
all points a ∈ R2 for which there is a sequence t j, j = 1,2, . . . , such that

u(t j)→ a t j → ∞.

Definition 3.5. A homoclinic orbit is a trajectory of a flow of a dynamical system
that joins a saddle equilibrium point to itself. A heteroclinic orbit (sometimes called
a heteroclinic connection) is a path in phase space that joins two different equilib-
rium points.

A manifold is a mathematical space that on a small scale resembles Euclidean space
of a specific dimension. For instance, a line and a circle are one-dimensional mani-
folds, while a plane and a sphere are two-dimensional manifolds.

Definition 3.6. A separatrix is a phase curve that meets a hyperbolic equilibrium
point or connects the stable and unstable manifolds of a pair of equilibrium points.
A separatrix marks a boundary between sectors with phase curves with different
properties.

Definition 3.7. A separatrix cycle consists of the union of a finite number of equi-
libria p j for j = 1, . . . ,m and separatrices Γj such that the flow on Γj is from p j to
p j+1 and pm+1 = p1.

Definition 3.8. A compound separatrix cycle or a graphic is the union of a finite
number of compatibly oriented separatrix cycles.

The types of omega limit sets for an arbitrary orbit of a planar system is given by
the following theorem.

Theorem 3.5 (Poincaré–Bendixson Trichotomy). Assume that X ⊆ R2, where X
is an open set, contains only finitely many equilibria. Let u(t) be a solution in X that
is defined and bounded on [0,∞) with ω(u0)⊆ X. Then one of the following holds:

1. ω(u0) consists of an equilibrium.
2. ω(u0) is a periodic orbit.
3. ω(u0) a graphic.

Assume that X is the open first quadrant. If R0 > 1, then the dimensionless SIR
model has a unique equilibrium in X , the endemic equilibrium. Hence, the omega
limit set of every initial point in X is the endemic equilibrium, a potential periodic
orbit, or a graphic. To rule out possible periodic orbits and graphics inside X , one
can use the Dulac–Bendixson criterion, which applies to planar systems only.
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Theorem 3.6 (Dulac–Bendixson Criterion). Let Z ⊆ X be open and simply con-
nected. Assume the following:

1. The functions f and g are continuously differentiable on Z.
2. There exists a function D : Z → R, continuously differentiable on Z, such that

∂ (D f )
∂x

+
∂ (Dg)

∂y

is either strictly positive almost everywhere on Z or strictly negative almost ev-
erywhere on Z.

Then Z contains no periodic orbits or graphics.

Definition 3.9. The function D is called the Dulac function.

If D ≡ 1, then the Dulac criterion is refereed to as the Bendixson criterion.

Theorem 3.7. Assume R0 > 1. The system (3.6) has no periodic orbits or graphics
in R2

+.

Proof. We will apply the Dulac–Bendixson criterion. Let Z = X be the open first
quadrant. Let f (x,y) = ρ(1− x)−R0xy and g(x,y) = (R0x− 1)y. Applying the
Dulac–Bendixson criterion directly with D = 1 gives

∂ f
∂x

+
∂g
∂y

=−ρ −R0y+R0x− 1.

This expression has unspecified sign, which potentially may change. The term that
disrupts the definiteness of the sign is R0x. Thus, we have to “eliminate” this term.
This suggests that we use D(x,y) = 1/y. We take Z to be the open first quadrant.
Then D is continuously differentiable in Z. Furthermore, we have

∂D f
∂x

+
∂Dg
∂y

=−ρ
y
−R0 < 0.

Thus, the system has no periodic orbits or graphics in the open first quadrant. This
implies that choices two and three of the Poincaré–Bendixson theorem are ruled out
as an option. �

The next theorem shows the global stability of the endemic equilibrium for system
(3.6).

Theorem 3.8. Assume R0 > 1. The endemic equilibrium (x∗,y∗) of system (3.6) is
globally stable whenever I(0)> 0.

Proof. We apply Poincaré-Bendixson theorem. First, we have to show that all so-
lutions of system (3.6) are bounded. To see this, we add the two equations in (3.6).
Set ρ̂ = min{ρ ,1}. Then

x′+ y′ ≤ ρ − ρ̂(x+ y).
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Hence,

x+ y ≤ κe−ρ̂t +
ρ
ρ̂
(1− e−ρ̂t),

where κ is the value of the initial condition. We obtain that

limsup
t

(x+ y)≤ ρ
ρ̂
,

that is, solutions remain bounded. We conclude that the first quadrant is positively
invariant with respect to the solutions of (3.6) and contains the omega limit set
of every initial condition. Therefore, we can apply Poincaré–Bendixson theorem.
When R0 > 1, if y(0) = 0, then the solutions will stay on the x-axis and converge
to the disease-free equilibrium. If y(0) > 0, that is, u0 = (x(0),y(0)) ∈ X , then we
claim that the disease-free equilibrium does not belong to the omega limit set of u0.
Suppose the disease-free equilibrium belongs to ω(u0). Then, since the disease-free
equilibrium is an unstable saddle, it has a stable manifold that is given by the x-axis.
That is the case, because each solution that starts from y(0) = 0, that is, that starts on
the x-axis, stays on the x-axis and converges to the disease-free equilibrium. Hence,
the stable manifold of the disease-free equilibrium is not in X . Hence, ω(u0) would
have to contain another equilibrium, namely the endemic equilibrium. But since the
endemic equilibrium is locally asymptotically stable, every solution that gets close
to it, stays close to it. Therefore, the disease-free equilibrium does not belong to
ω(u0). Hence, the omega limit set of u0 consists of the endemic equilibrium only.
All solutions with I(0)> 0 converge to the endemic equilibrium. �


3.6 Oscillations in Epidemic Models

In the previous sections, we saw that the most basic SIR epidemic model has a
unique endemic equilibrium, which is globally stable if R0 > 1. This means that
every solution converges to a stationary state. On the other hand, many times, the
incidence or the prevalence data of various diseases exhibit periodicity. This is par-
ticularly true of childhood diseases. For instance, data on measles in New York City
for the period 1928–1963 suggests that the disease persisted in the form of peri-
odic outbreaks. That can be clearly seen from the monthly case data on measles for
New York City, illustrated in Fig. 3.8.

Can simple epidemic models capture the oscillations exhibited in data? That
would be the case if the epidemic model had a stable periodic solution. System
(3.7) has a periodic solution (or a cycle) if there is an orbit (x(t),y(t)) such that
x(t +T ) = x(t) and y(t +T ) = y(t) for some appropriate value T , called the period.
The cycle is stable if solutions that start from close initial conditions converge to the
cycle. It is well known that ODE models that reduce to a one-dimensional dynam-
ical system do not have cycles, and cannot capture oscillations in data. However,
planar ODE systems, including planar epidemic models, can exhibit periodicity.
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Fig. 3.8 Monthly case data for measles for New York City in the period 1928–1963. The data are
given as data points. The continuous curve is an interpolation. The figure clearly shows recurrent
outbreaks

The periodic solutions typically arise from a single endemic equilibrium that loses
stability through a bifurcation called a Hopf bifurcation. Hopf bifurcations occur
when a pair of complex conjugate eigenvalues of the linearization around a nontriv-
ial fixed point cross the imaginary axis of the complex plane with nonzero speed. In
that case, a stable limit cycle may bifurcate from the fixed point, which at the same
time loses stability. Hopf bifurcations occur in planar ODE systems as well as in
higher-dimensional systems.

The existence of a periodic solution can be deduced from the Hopf bifurcation
theorem, which we state below for planar systems. To introduce the theorem, we
need to restate the problem (3.7) to include a parameter. We write the system (3.7)
in the form

x′ = f (x,y; μ),
y′ = g(x,y; μ), (3.34)

where we explicitly acknowledge that f and g depend on the parameter μ . Further-
more, let (x∗(μ),y∗(μ)) be an equilibrium of the system (3.34) that also depends on
the parameter. We linearize the system (3.34) around the equilibrium (x∗(μ),y∗(μ)).
The Jacobian of the linearization is given by

J(x∗(μ),y∗(μ)) =
(

fx(x∗,y∗; μ) fy(x∗,y∗; μ)
gx(x∗,y∗; μ) gy(x∗,y∗; μ)

)
. (3.35)

Assume that the Jacobian has eigenvalues λ± = α(μ)± iβ (μ), where i =
√−1. In

terms of the trace of the Jacobian, TrJ, and determinant of the Jacobian, DetJ, the
eigenvalues are given by

λ± =
TrJ ±

√
(TrJ)2 − 4DetJ

2
. (3.36)
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For a Hopf bifurcation to occur, we must have, for some parameter value μ = μ0,
that the following conditions hold:

TrJ(x∗(μ0),y
∗(μ0)) = 0,

DetJ(x∗(μ0),y
∗(μ0)) > 0. (3.37)

When these conditions are satisfied, the eigenvalues of the Jacobian are purely imag-
inary. If in addition to the above conditions, the transversality condition is satisfied,

d
dμ

α(μ)|μ=μ0
= d �= 0, (3.38)

then a Hopf bifurcation occurs at the bifurcation point (x∗(μ0),y∗(μ0); μ0). At such
a Hopf bifurcation for some μ near μ0, small-amplitude oscillations (limit cycles)
bifurcate from the equilibrium solution. The amplitude of these oscillations ap-
proaches zero as μ approaches μ0. Hopf theory guarantees the existence of such
periodic orbits for μ ≈ μ0 only; it does not guarantee the existence of the oscilla-
tions for μ farther away from μ0.

To state the Hopf bifurcation theorem, we rewrite system (3.34) in the form

x′ = j11(μ)x+ j12(μ)y+ f1(x,y; μ),
y′ = j21(μ)x+ j22(μ)y+ g1(x,y; μ), (3.39)

where j11(μ)= fx(x∗,y∗; μ), j12(μ)= fy(x∗,y∗; μ), j21(μ)= gx(x∗,y∗; μ), j22(μ)=
gy(x∗,y∗; μ). The complete Hopf bifurcation theorem, which is given below, gives
also a third condition that is rarely checked.

Theorem 3.9 (Hopf Bifurcation Theorem). Let f and g in (3.34) have continuous
third-order derivatives in x and y. Assume that (0,0) is an equilibrium of (3.39) and
that the Jacobian matrix J defined by (3.35) is valid for all values of μ ≈ μ0. In
addition, assume that the eigenvalues of J are α(μ)± iβ (μ). Suppose in addition
that for μ = μ0, the following conditions hold:

1. Nonhyperbolicity condition: α(μ0) = 0 and β (μ0) = ω �= 0.
2. Transversality condition: the eigenvalues cross the imaginary axis with nonzero

speed

d
dμ

α(μ)|μ=μ0
= d �= 0. (3.40)

3. Genericity condition: a �= 0, where

a =
1

16
( fxxx + fxyy + gxxy + gyyy)

+
1

16ω
( fxy( fxx + fyy)− gxy(gxx + gyy)− fxxgxx + fyygyy) ,

(3.41)

where fxy =
∂ 2 f
∂x∂y |μ=μ0(x

∗,y∗), etc.

Then system (3.34) has a periodic solution for μ > μ0 if ad < 0 and for μ < μ0 if
ad > 0. In the case ad < 0, the bifurcation is called supercritical, and the bifurcating
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periodic solution is stable. In the case ad > 0, the bifurcation is called subcritical,
and the bifurcating periodic solution is unstable. An approximate period of the pe-
riodic solution is given by

T =
2π
ω

.

Before we continue with an example of Hopf bifurcation, we summarize the
options for the stability of an equilibrium in a planar system based on the use of
the trace and the determinant of the Jacobian. This theorem gives a quick and very
efficient way to deduce the stability of an equilibrium.

Theorem 3.10. Consider the planar system

x′ = f (x,y),
y′ = g(x,y),

(3.42)

and let (x∗,y∗) be an equilibrium of that system. Then the Jacobian of system (3.42)
evaluated at that equilibrium is given by

J(x∗,y∗) =
(

fx(x∗,y∗) fy(x∗,y∗)
gx(x∗,y∗) gy(x∗,y∗).

)
. (3.43)

The following results give the stability of the equilibrium (x∗,y∗):

1. Equilibrium (x∗,y∗) is locally asymptotically stable if and only if TrJ < 0 and
DetJ > 0.

2. Equilibrium (x∗,y∗) is a saddle if and only if DetJ < 0.
3. Equilibrium (x∗,y∗) loses stability and undergoes Hopf bifurcation if and only if

for some value of the parameter μ , called μ0, the following hold:

TrJ(x∗(μ0),y
∗(μ0)) = 0,

DetJ(x∗(μ0),y
∗(μ0)) > 0. (3.44)

In addition, we must also have

dTrJ
dμ

|μ=μ0 �= 0.

To illustrate the application of the Hopf bifurcation theorem, we consider a sim-
ple modification of the SIR model (3.3). Assume that the transmission coefficient of
infection β is not constant but linear in the number of infecteds: β (1+ νI), where
ν > 0 is a parameter. This means that either the contact rate increases with the
number of infectious individuals or the probability of transmission does so. Thus,
new infections occur at a much faster pace compared to the standard mass action
incidence. The model becomes [6]

S′(t) = Λ −β (1+νI)IS− μS,

I′(t) = β (1+νI)IS− (α + μ)I, (3.45)
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where we have omitted the equation for recovered individuals R. We will investigate
this model without nondimensionalizing it. The total population size N = S+ I+R
satisfies N′ = Λ − μN. We assume that the initial total population size is given by

N0 = S0+ I0+R0. The disease-free equilibrium E0 =
(

Λ
μ ,0
)

of model (3.45) always

exists. The reproduction number of the model (3.45) is given by

R0 =
Λβ

μ(μ +α)
. (3.46)

It can be shown (see Problem 3.3) that the disease-free equilibrium is locally stable
if R0 < 1 and unstable if R0 > 1.

The endemic equilibria of the system are solutions to the following system:

Λ −β (1+νI)IS− μS = 0,

β (1+νI)S− (α + μ) = 0. (3.47)

From the second equation, we see that β (1+νI)S = (α + μ). Substituting this ex-
pression into the first equation, we can express S in terms of I:

S =
Λ
μ
− μ +α

μ
I. (3.48)

Hence, substituting in β (1+ νI)S = (α + μ), we obtain the following quadratic
equation for I:

(1+νI)

[
Λ
μ
− μ +α

μ
I

]
=

μ +α
β

. (3.49)

If we denote by f (I) the parabola on the left-hand side of (3.49), then the endemic
equilibria of model (3.45) are given by the intersections of the parabola with the
horizontal line y = (μ +α)/β (see Fig. 3.9). If f (0)> (μ +α)/β , or equivalently,
if R0 > 1, then there is always a unique (positive) equilibrium E ∗ = (S∗, I∗). That
is the scenario that is shown in Fig. 3.9. If f (0) < (μ +α)/β , or equivalently, if
R0 < 1, then there may be two equilibria if the maximum of the parabola occurs
to the right of the y-axis and the horizontal line lies below the maximum of the
parabola. Since the maximum of the parabola is achieved at

Im =
1

2ν

[
Λν

μ +α
− 1

]
,

the maximum of the parabola is to the right of the y-axis if and only if Im > 0. Hence,
there will be two endemic equilibria if the maximum of the parabola is above the
horizontal line, that is, if

(1+νIm)

[
Λ
μ
− μ +α

μ
Im

]
>

μ +α
β

. (3.50)
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Fig. 3.9 The graph shows intersections of the function f (I) with the horizontal line y= (μ +α)/β
in Eq. (3.49). Each intersection gives one nontrivial equilibrium of the model (3.45). The figure
shows the case R0 > 1, and there is a unique (positive) equilibrium I∗

If two endemic equilibria exist, we denote them by E1 = (S∗1, I
∗
1 ) and E2 =

(S∗2, I
∗
2 ), where I∗1 < I∗2 and the corresponding value of S is computed from (3.48).

The stability of the equilibria is given by the Jacobian

J =

(−β (1+νI)I− μ −β νIS− (μ +α)
β (1+νI)I β νIS

)
, (3.51)

where we have used the equality β (1+ νI)S = (α + μ) to simplify the Jacobian.
The characteristic equation of the Jacobian |J −λ I| = 0 is a quadratic polynomial
in λ given by

λ 2 +Bλ +C = 0, (3.52)

where B and C are given by

B = μ +β (1+νI)I−β νIS

C = β (1+νI)I(μ +α)− μβ νIS, (3.53)

and I is any equilibrium. We note that the endemic equilibria differ in the slope of
the tangent line to the curve of f (I) at each equilibrium. In particular, if R0 > 1,
the slope of the tangent at the equilibrium satisfies f ′(I∗) < 0. When there are two
equilibria, we have f ′(I∗1 )> 0 while f ′(I∗2 )< 0. The slope of f (I) is given by

f ′(I) =
μ +α

μ

[
Λν

μ +α
− 1− 2νI

]
.

On the other hand, C can be rewritten in the form (where S has been replaced with
(3.48))
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C = (μ +α)β I

[
1+ 2νI− Λν

μ +α

]
.

It is evident from the above two expressions that the sign of C is opposite the sign of
f ′(I). Hence, if R0 > 1, the unique endemic equilibrium I∗ gives C > 0. When R0 <
1 and there are two equilibria, we have for the lower one C < 0 and for the upper
one C > 0. Hence, when two equilibria are present, the lower one E1 is unstable,
since C < 0 means that the characteristic equation (3.52) has one positive and one
negative root. The local stability of E ∗ and E2 depends on the sign of B. If B > 0,
then each of these equilibria is stable. However, for some value of the parameter
ν = ν0, we may have

μ +β (1+ν0I)I−β ν0IS = 0,

and then a Hopf bifurcation may occur. To see that this condition may hold, we
exhibit a specific numerical example. To decide on parameter values, we first decide
on a time unit. We will measure time in years. Since 1/μ gives an average lifespan
of individuals, if we take μ = 0.2, that will give a lifespan of 5 years. For the human
population, that lifespan will be adequate for some childhood diseases. The lifespan
can describe well many animal populations. Furthermore, 1/α corresponds to a
duration of infectiousness. Hence, if we take α = 26, that will correspond to duration
of infectiousness of about 2 weeks. The remaining parameters are taken as β =
0.005 and Λ = 1250. We think of B(ν) = μ + β (1+ νI)I − β νIS as a function
of the parameter ν . Since these parameters give R0 = 1.19275, we focus on the
stability of the endemic equilibrium E ∗. We note that I∗ and S∗ are also functions of
ν . We plot B(ν) against ν in Fig. 3.10.

We check the transversality condition for E ∗ also numerically. We notice that the
real part of the eigenvalues of (3.52) is given by

ℜ(λ ) =
−(μ +β (1+νI)I−β νIS)

2
.
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Fig. 3.10 The graph of B(ν) shows clearly that B changes sign as the parameter ν passes through
the critical value ν0 = 0.000846293
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To differentiate ℜ(λ ) with respect to ν , we have to differentiate B(ν) with respect
to ν and evaluate the results at ν = ν0. Figure 3.10 suggests that

dB(ν)
dν

|ν=ν0 < 0.

Differentiating the real part of the roots of the characteristic equation (3.52), we
have

∂ℜ(λ )
∂ν

=−1
2

dB(ν)
dν

|ν=ν0 > 0.
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Fig. 3.11 The graph shows oscillations in the (S, I)-plane that converge to a periodic orbit. Initial
conditions are S(0) = 40,000, I(0) = 15. The plot is made for t ≥ 200

Hence, the transversality condition is satisfied. Assuming a �= 0, we may con-
clude from the Hopf bifurcation theorem that a periodic solution bifurcates from
the stable endemic equilibrium E ∗. We cannot conclude that the bifurcation is su-
percritical or subcritical without computing a. Therefore, we do not know whether
the bifurcating solution is stable. We checked the stability of the bifurcating os-
cillatory solution numerically. We chose ν = 0.00117. The equilibrium is given
by E ∗ = (5191,8). The real part of the roots of the characteristic equation is
ℜ(λ ) = 0.054228. From the simulations we performed, it appears that the bifur-
cating oscillatory solution in this case is stable (see Fig. 3.11), and the number of
susceptible and infected individuals tend to a periodic orbit.

Problems

3.1. Census data for the population of the United States (in millions) are given in
Table 3.3. Fit each of the three population models, Malthus model, logistic model,
and constrained logistic model, to the data and determine the least-squares error.
Which model fits the data best?
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Table 3.3 Population of the US (in millions)

Year Population (million) Year Population (million)

1790 3.9 1910 92.0
1800 5.3 1920 105.7
1810 7.2 1930 122.8
1820 9.6 1940 131.7
1830 12.9 1950 150.7
1840 17.1 1960 179.0
1850 23.1 1970 205.0
1860 31.4 1980 226.5
1870 38. 6 1990 248.7
1880 50.2 2000 281.4
1890 62.9 2010 310.0
1900 76.0 – –

3.2. Consider the following SIS epidemic model with disease-induced mortality γ:

S′ = Λ −β IS+αI− μS,

I′ = β IS− (α + γ + μ)I, (3.54)

where S is the number of susceptibles, I is the number of infected, β is the trans-
mission rate, α is the recovery rate, Λ is the birth rate, μ is the natural death rate.

(a) Sketch the nullclines of the system and the direction of the vector field along
them. Confirm your results by plotting the vector field with solutions.

(b) Determine the reproduction number and equilibria of the system.
(c) Calculate the Jacobian of each equilibrium and determine the stability.
(d) Use the Dulac criterion to rule out periodic solutions.
(e) Use the Poincaré–Bendixson theorem to show convergence to equilibrium.

3.3. Consider model (3.45):

S′(t) = Λ −β (1+νI)IS− μS,

I′(t) = β (1+νI)IS− (α + μ)I, (3.55)

where S is the number of susceptibles, I is the number of infected, β is the trans-
mission rate, α is the recovery rate, Λ is the birth rate, μ is the natural death rate,
and ν is a proportionality constant.

(a) Derive the reproduction number R0 for that model.

(b) Show that the disease-free equilibrium
(

Λ
μ ,0
)

is locally stable if R0 < 1 and

unstable if R0 > 1.
(c) Argue that if R0 > 1, there is always a unique endemic equilibrium.
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3.4. Non-dimensionalization
Consider the SIS model with saturating incidence in the size of the susceptibles.

S′(t) = Λ − β IS
1+σS

+αI− μS,

I′(t) =
β IS

1+σS
− (α + μ)I. (3.56)

(a) What are the units of the parameters?
(b) Rescale the system above into a nondimensional system both in the time vari-

able and in the dependent variables.
(c) Determine conditions for the existence of an endemic equilibrium.

3.5. Multiple Equilibria
Consider the following SIS epidemic model with disease-induced mortality γ:

S′ = Λ − β IS
A+ I2 +αI− μS,

I′ =
β IS

A+ I2 − (α + γ + μ)I, (3.57)

where S is the number of susceptibles, I is the number of infected, β is the trans-
mission rate, α is the recovery rate, Λ is the birth rate, μ is the natural death rate.

(a) Determine the reproduction number and equilibria of the system.
(b) Sketch the nullclines of the system and the direction of the vector field along

them. Confirm your results by plotting the vector field with solutions.
(c) Calculate the Jacobian of each equilibrium and determine the stability.
(d) Use the Dulac criterion to rule out periodic solutions.

3.6. Fox Rabies
The following model has been proposed to model fox rabies [26]:

S′ = rSe−aS −β IS− μS,

I′ = β IS− (α + μ)I, (3.58)

where S is the number of susceptibles, I is the number of infected, β is the transmis-
sion rate, α is the disease-induced death rate, r and a are constants associated with
declining with population size per capita birth rate re−aS, and μ is the natural death
rate.

(a) Determine the reproduction number and equilibria of the system.
(b) Sketch the nullclines of the system and the direction of the vector field along

them. Confirm your results by plotting the vector field with solutions.
(c) Calculate the Jacobian of each equilibrium and determine the stability.
(d) Use the Dulac criterion to rule out periodic solutions.
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3.7. Hopf Bifurcation
The following model has been proposed to model the saturating contact rate:

S′ = rS

(
1− S

K

)
− β IS

1+αS
− μS,

I′ =
β IS

1+αS
− (γ + μ)I, (3.59)

where S is the number of susceptibles, I is the number of infected, β is the trans-
mission rate, α is a parameter that measures the inhibitory effect, γ is the recovery
rate, r and K are constants associated with the logistic population growth, and μ is
the natural death rate.

(a) Determine the reproduction number and equilibria of the system.
(b) Calculate the Jacobian of each equilibrium and determine the stability.
(c) Use the Hopf bifurcation theorem to show the presence of periodic solutions.

Use a computer algebra system to graph the periodic solution in the phase plane
together with the vector field.



Chapter 4
Vector-Borne Diseases

4.1 Vector-Borne Diseases: An Introduction

A vector-borne disease is one in which the pathogenic microorganism is transmitted
from an infected individual to another individual by an arthropod or other agent,
sometimes with vertebrate animals serving as intermediary hosts. The transmission
of vector-borne diseases to humans depends on three factors: (1) the pathogenic
agent; (2) the arthropod vector; (3) and the human host. Mathematical models of
vector-borne diseases typically take into account the dynamics of the vectors as well
as the dynamics of the humans, and occasionally the dynamics of the intermediate
animal host.

4.1.1 The Vectors

In epidemiology, a vector is a living carrier that transmits an infectious agent from
one host to another. Vectors do not get ill from the disease, and once infected, they
remain infected throughout the remainder of their lives. By common usage, vectors
are considered to be invertebrate animals, usually arthropods. Technically, however,
vertebrates can also act as vectors, including foxes, raccoons, and skunks, which
can all transmit the rabies virus to humans via a bite. Arthropods account for over
85% of all known animal species, and they are the most important disease vec-
tors. Examples of common vectors are mosquitoes, flies, sand flies, lice, fleas, ticks,
mites, and cyclops, which transmit a huge number of diseases. Many such vectors
feed on blood at some or all stages of their lives. When the arthropod feeds on blood,
the parasite enters the blood stream of the host. Table 4.1 gives the most common
vectors and the diseases they transmit.
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Table 4.1 Examples of vectors and diseases they transmit

Vector Diseases Comment

Flies Bubonic plague Flies
Mosquitoes Malaria Anopheles genus
Mosquitoes Avian malaria, dengue, chikungunya Aedes genus
Tsetse flies African sleeping sickness Include 34 species of genus Glossina
Kissing bugs Chagas diseases Triatominae subfamily of Reduviidae
Ticks Lyme disease, babesiosis Genus Ixodes
Sand flies Leishmaniasis, bartonellosis, Subfamily Phlebotominae

sandfly fever
Ticks, lice Bacterial Rickettsia

4.1.2 The Pathogen

The pathogen of the vector-borne diseases can fall in one of four categories:

• Protozoa: A number of vector-borne diseases are caused by protozoa. The most
notable example is malaria, which is caused by the Plasmodium parasite. The
Plasmodium parasite has a complex life cycle that occurs in both the mosquito
vector and the human host. Other vector-borne diseases caused by protozoa are
trichomoniasis, leishmaniasis, and sleeping sickness.

• Bacteria: Bacterial vector-borne diseases include Lyme disease, plague, tick-
borne relapsing fever, and tularemia.

• Virus: Most of the vector-borne diseases are caused by viruses. Most notable
examples include dengue, chikungunya, eastern equine encephalitis, Japanese
encephalitis, West Nile encephalitis, caused by the West Nile Virus, Yellow fever,
and others. The viruses transmitted by arthropod vectors are known collectively
as arboviruses.

• Helminth: An example of a vector-borne disease cased by helminths (worms) is
lymphatic filariasis, which is transmitted by mosquitoes.

4.1.3 Epidemiology of Vector-Borne Diseases

We summarize in Table 4.2 the primary examples of vector-borne diseases, the
pathogens that cause them, the vectors that transmit them, and the human popu-
lation at risk.

The majority of vector-borne diseases persist in nature by utilizing a vertebrate
host. For a small number of vector-borne diseases, such as malaria and dengue,
humans are the major host, with no significant animal reservoirs. The vector receives
the pathogen from an infected host and transmits it either to an intermediary animal
host or directly to the human host. The different stages of the pathogen’s life cycle
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Table 4.2 Primary examples of vector-borne diseasesa

Population at
Disease Pathogen Vector risk (millions) Prevalence

Malaria Plasmodium spp. Anopheles mosquito 2100 270 million
Schistosomiasis Schistosome flatworms Water snails 600 260 million
Dengue Dengue virus Aedes mosquitoes 2000 50–100

million/yearb

Leishmaniasis Leishmania spp. Sand flies 12 350 million
Lymphatic filariasis Nematode worms Mosquito 900 65.5 million
River blindness Onchocerca volvulus Black fly 90 17.8 million
African trypano- Trypanosoma brucei spp. Tsetse fly 50 0.025
somiasis million/year
Chagas diseases Trypanosoma cruzi spp. Kissing bug 100 6.5 million

ahttp://www.ciesin.org/TG/HH/v-bd.html
bData for dengue taken from [24]

occur during this process and are intimately dependent on the availability of suitable
vectors and hosts.

Key components that determine the occurrence of vector-borne diseases include:

• the abundance of vectors and intermediate and reservoir hosts;
• the prevalence of disease-causing pathogens suitably adapted to the vectors and

the human or animal host;
• the local environmental conditions, especially temperature and humidity;
• the resilience behavior and immune status of the human population.

Vector-borne diseases are prevalent in the tropics and subtropics and are rela-
tively rare in temperate zones. Lyme disease and Rocky Mountain spotted fever per-
sist in temperate regions, including the United States. There are different patterns
of vector-borne disease occurrence. Parasitic and bacterial diseases, such as malaria
and Lyme disease, tend to produce a high disease incidence but do not cause major
outbreaks. An exception to this rule is plague, a bacterial disease that does cause
outbreaks. In contrast, many vector viral diseases, such as yellow fever, dengue, and
Japanese encephalitis, commonly cause major epidemics.

There has been a worldwide resurgence of vector-borne diseases since the 1970s,
including malaria, dengue, yellow fever, plague, leishmaniasis, sleeping sickness,
West Nile encephalitis, Lyme disease, Japanese encephalitis, Rift Valley fever, and
Crimean-Congo hemorrhagic fever. Reasons for the emergence or resurgence of
vector-borne diseases include:

• the development of insecticide and drug resistance;
• decreased resources for surveillance, prevention, and control of vector-borne dis-

eases;
• population growth;
• urbanization;

http://www.ciesin.org/TG/HH/v-bd.html
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• changes in agricultural practices;
• deforestation;
• increased travel.

Changes in the distribution and population size of important arthropod disease vec-
tors have also been observed. For instance,

• The yellow fever mosquito, Aedes aegypti, has reestablished itself in parts of the
Americas where it had been presumed to have been eradicated.

• The Asian tiger mosquito, Aedes albopictus, was introduced into the Americas
in the 1980s and has spread to Central and South America;

• The black-legged tick, Ixodes scapularis, an important transmitter of Lyme dis-
ease and other pathogens, has gradually expanded its range in parts of eastern
and central North America.

4.2 Simple Models of Vector-Borne Diseases

Historically, the first mathematical models of infectious diseases were derived at the
beginning of the twentieth century. These models were developed by Ross and Mac-
Donald to capture the dynamics of malaria and inform public health officials at that
time how to combat malaria. Mathematical models of malaria have since become
a guiding tool in the process of development and use of models in understanding
infectious disease epidemiology and guiding control measures.

4.2.1 Deriving a Model of Vector-Borne Disease

Transmission in malaria, as in other vector-borne diseases, involves at least two
species—the vector and the human host. The simplest model for the vector is an SI
model, since most vectors once infected do not recover. Let us denote the susceptible
vectors by Sv and the infected vectors by Iv. A susceptible vector becomes infected
by biting an infected human IH at a biting rate a and probability of transmission of
the disease given by p. The dynamical system that describes the vector is

S′v = Λv − paSvIH − μSv,

I′v = paSvIH − μIv, (4.1)

where Λv is the birth rate of the vectors, and μ is the death rate. Since the vectors
such as the mosquito usually have a very short life cycle, demography should be
included. The dynamics of the total vector population size Nv = Sv+ Iv is then given
by the simplified logistic equation N′

v = Λv − μNv, whose solution can be obtained
in explicit form. Since Nv(t) is essentially a given function of t, we may express
the number of susceptible vectors in terms of infected vectors Sv = Nv − Iv and
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replace it in the second equation of system (4.1), thus essentially reducing the two-
dimensional vector system to one equation:

I′v = pa(Nv(t)− Iv)IH − μIv. (4.2)

We turn now to the system for the humans. Humans generally recover from the
disease, but for most vector-borne diseases, recovery is not permanent, and the rec-
overed individual can become infected again. As a starting point, we model the
transmission of a vector-borne disease in humans with an SIS model. Some of the
vector-borne diseases, such as chikungunya, occur as outbreaks, and in this case,
omitting births and deaths for humans is acceptable. Other vector-borne diseases,
such as malaria, are endemic, and inclusion of demography in the human portion of
the model is necessary. We begin with the simplest human model—an SIS model
without demography. Susceptible humans in class SH become infected when bitten
by an infectious vector. If we assume that infected vectors bite at the same rate
as susceptible vectors, namely a, and q is the probability of transmission, then the
model takes the form

S′H = −qaSHIv +αIH ,

I′H = qaSHIv −αIH, (4.3)

where α is the recovery rate. The total human population size NH is constant. We
can reduce the human system by replacing the susceptible humans SH with SH =
NH − IH in the second equation. The system (4.3) reduces to the following equation:

I′H = qa(NH − IH)Iv −αIH . (4.4)

The system for the infected vectors and infected humans becomes

I′v = pa(Nv(t)− Iv)IH − μIv,

I′H = qa(NH − IH)Iv −αIH . (4.5)

The right-hand side of this system depends on the unknown dependent variables
Iv and IH , and the known function of time Nv(t). This makes the right-hand side
explicitly dependent on time, and the model nonautonomous.

Definition 4.1. A differential equation model y′ = f (t,y) is called nonautonomous
if the right-hand-side function f (t,y) depends explicitly on t.

Nonautonomous models are harder to analyze and are often not subjected to the
rules of autonomous models that we investigate in this book. However, system (4.5)
depends on time only through the function Nv(t), which has a limit as time goes to
infinity, namely,

Nv(t)→ Λv

μ
= Nv.
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Suppose we replace system (4.5) with the following limiting system:

I′v = pa(Nv − Iv)IH − μIv,

I′H = qa(NH − IH)Iv −αIH. (4.6)

The limiting system (4.6) is an autonomous system, which is easier to analyze.
Nonautonomous models whose limiting system is an autonomous model are called
asymptotically autonomous.

The main question that remains is whether the global dynamics of system (4.6)
are similar to the dynamics of the original nonautonomous system (4.5). If the
answer is yes, then we may investigate system (4.6), for which a number of tools
exist, and draw conclusions about system (4.5). The following theorem gives a pos-
itive answer to this question for planar systems.

Theorem 4.1 (Thieme [150]). Assume that x′ = f (t,x) is a nonautonomous system
such that x ∈ R2 and y′ = g(y) is the limiting autonomous system. Let ω be the
ω-limit set of a forward bounded solution x of the nonautonomous system. Assume
that there exists a neighborhood of ω that contains at most finitely many equilibria
of the autonomous system. Then the following trichotomy holds:

1. ω consists of an equilibrium of the autonomous system.
2. ω is a union of periodic orbits of the autonomous system and possible centers

that are surrounded by periodic orbits of the autonomous system lying in ω .
3. ω contains equilibria of the autonomous system that are cyclically chained to

each other in ω by orbits of the autonomous system.

First, we show that all solutions of the nonautonomous system (4.5) are bounded.
Indeed, suppose for some t∗ that Iv(t∗) > Nv(t∗). Then I′v(t∗) < 0, and Iv(t) is
decreasing for all t for which it exceeds Nv(t). Hence, Iv(t) ≤ max{Iv(0),Nv(t)}.
Similar reasoning shows that IH(t) is bounded.

Since all solutions of the nonautonomous system (4.5) are bounded, the above
theorem implies that the ω-limit set of the nonautonomous system can be obtained
from investigation of the ω-limit set of the autonomous system (4.6). We focus on
the investigation of the global behavior of the solutions of system (4.6).

System (4.6) is often recast in terms of proportions. If we set x = IH/NH and
z = Iv/Nv, then the system for the proportions becomes

z′ = pa(1− z)x− μz,

x′ = qam(1− x)z−αx, (4.7)

where m = Nv/NH is the proportion of vectors to humans, and a has absorbed a
multiple of the total human population.
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4.2.2 Reproduction Numbers, Equilibria, and Their Stability

We will derive reproduction numbers and the equilibria for the original dimensional
system (4.6). To compute equilibria, we set the system equal to zero:

pa(Nv − Iv)IH − μIv = 0,

qa(NH − IH)Iv −αIH = 0. (4.8)

The system clearly has the disease-free equilibrium E = (0,0). To compute the
reproduction number and investigate the stability of the disease-free equilibrium,
we consider the Jacobian of the system (4.6):

J =

(−μ paNv

qaNH −α

)
. (4.9)

The disease-free equilibrium is stable if TrJ = −μ −α < 0, which is clearly satis-
fied, and also if DetJ = μα − pqa2NvNH > 0. This last condition, rewritten as an
expression whose value is less than 1, that is, R0 < 1, gives the reproduction number
of a vector-borne disease, where

R0 =
pqa2NvNH

μα
.

We see that the local stability/instability of the disease-free equilibrium is connected
to the basic disease reproduction number R0, which identifies the threshold for the
local stability of the disease-free equilibrium. The disease-free equilibrium is locally
asymptotically stable (the disease dies out) if R0 < 1, and unstable if R0 > 1. This
is a critical parameter for control of the disease, since if R0 > 1, introduction of a
small amount of disease into the population may cause it to evolve into an endemic
prevalence.

The disease reproduction number R0 is one of the main epidemiological indi-
cators of whether a disease can successfully invade and persist in a population. In
vector-borne diseases, just as in directly transmitted diseases, the disease reproduc-
tion number gives the number of secondary infections of humans that one infective
human individual may produce in a population of susceptible human individuals.
The classical approach of Kermack and McKendrick derives R0 from the condition
for local stability of the disease-free equilibrium. Other approaches are possible, and
will be discussed later.

Transmission of vector-borne diseases involves two transmission cycles, namely
human to vector and vector to human, and each of these transmission processes may
be characterized by its own disease reproduction number. These two numbers may
be combined to form a single dimensionless number that indicates whether, and to
some extent how seriously, the human–vector system is open to invasion by the par-
asite. The Kermack–McKendrick–MacDonald approach places one infected human
in a population of susceptible vectors; there will result RH secondary infected vec-
tors. Similarly, placing one infected vector in a population of susceptible humans
will produce RM infected humans, where
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RH =
paNv

α
, RM =

qaN
μ

.

To understand these definitions, consider the incidence term in the equation for the
vectors pa(Nv − Iv)IH , which gives the number of secondary infections of vectors
IH infected humans will produce per unit of time. Then, one infected human will
produce paNv infected vectors in an entirely susceptible vector population per unit
of time. One infected human is infectious for 1/α time units; hence we obtain RH .
Similar reasoning leads to RM. To account for the secondary human infections that
one infected human will produce, we notice that one infected human will produce
RH infected vectors, each of which will produce RM infected humans, giving

R0 =RHRM

secondary human infections. This expression gives the classical reproduction num-
ber of vector-borne diseases.

To compute the endemic equilibrium, we consider again system (4.8). This sys-
tem is nonlinear in Iv and IH and not easy to solve directly. To simplify the solution,
we adopt the substitution X = 1/IH , Z = 1/Iv, which transforms the system into a
linear inhomogeneous system of equations for X and Z:

pa(NvZ − 1)− μX = 0,

qa(NHX − 1)−αZ = 0. (4.10)

Solving this linear system, we obtain

Z =
qa
α
(NH X − 1).

Substituting Z in the first equation and solving for X , we obtain X in terms of the par-
ameter values. Further substituting X in the equation for Z, we obtain the following
equilibrium:

IH = NH
R0 − 1

paNH
μ +R0

, Iv = Nv
R0 − 1

qaNv
α +R0

. (4.11)

From these expressions, it is clear that the endemic equilibrium exists and is positive
if and only if R0 > 1. From the expressions above, we can easily compute the values
of the equilibrium for the proportions x and z.

Next, we investigate the local stability of the endemic equilibrium. This can be
obtained from the Jacobian matrix at the endemic equilibrium, which is obtained
from the linearization of system (4.6) around the endemic equilibrium. The Jacobian
is given by the matrix

J =

(−paIH − μ pa(Nv − Iv)
qa(NH − IH) − qaIv−α

)
. (4.12)
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The trace of the matrix is negative: TrJ =−paIH −μ −qaIv−α < 0. To determine
the sign of the determinant, notice that

pa(Nv − Iv) = μIv/IH ,

qa(NH − IH) = αIH/Iv. (4.13)

From these equations, it follows that paqa(Nv − Iv)(NH − IH) = αμ . This iden-
tity simplifies the determinant of the Jacobian and helps determine its sign: DetJ =
(paIH+μ)(qaIv+α)−paqa(Nv − Iv)(NH − IH) = (paIH+μ)(qaIv+α)−αμ > 0.
Hence, the endemic equilibrium is locally stable. To determine the type of the
equilibrium point that gives the endemic equilibrium, we look at the characteristic
equation |J −λ I|= 0, which takes the form

λ 2 − (paIH + μ + qaIv+α)λ +(paIH + μ)(qaIv+α)−αμ = 0.

The discriminant of this quadratic polynomial can be written as Δ = (paIH + μ −
qaIv −α)2 + 4αμ > 0. We conclude that the endemic equilibrium is a stable node
for all parameter values. One can establish the Dulac criterion for the system (4.6)
and show global stability of the endemic equilibrium (see Problem 4.3).

4.3 Delay-Differential Equation Models of Vector-Borne Diseases

Delay-differential equations differ from ordinary differential equations in that the
derivative at every point in time depends on the solution at prior times. The simplest
constant delay equations have the form

x′(t) = F(t,x(t),x(t − τ1),x(t − τ2), . . . ,x(t − τk)),

where the time delays τ j are positive constants. Additional information is required
to specify a system of delay-differential equations. Because the derivative in the
equation above depends on the solution at the previous time t −τ j, it is necessary to
provide an initial history function, or a vector of functions, to specify the value of
the solution before time t = 0.

Interest in such systems often arises when traditional pointwise modeling as-
sumptions are replaced by more realistic dependence of the rate of change on the
prior population numbers, for example when the birth rate of a population is af-
fected by prior levels of the population rather than by only the current levels. In
vector-borne diseases, delays naturally occur because of the incubation period of the
pathogen in the vector and the humans. Inclusion of the incubation period in the vec-
tor, also called the extrinsic incubation period, is particularly important, because
the length of the incubation period in the vector is often of duration comparable to
the mean lifespan of the vector. The fact that vectors may or may not survive the
extrinsic incubation period affects significantly the dynamics of the infectious dis-
ease. This makes imperative the inclusion of the extrinsic incubation period and the
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probability that the vector survives that period as a delay in the Ross–MacDonald
model introduced in the previous section. We can further include the incubation
period of the pathogen in the human as a second constant delay.

Let the incubation period of the pathogen in a vector have duration τ1. Thus,
of those vectors infected τ1 units of time ago, only a proportion pa[Nv − Iv(t −
τ1)]IH(t − τ1)e−μτ1 are infectious at the present time t. The exponent e−μτ1 is the
probability that the vector survives the extrinsic incubation period. Similarly, let
incubation period of the pathogen in the human have duration τ2. Thus, of those
humans infected τ2 units of time ago, only a proportion qa[NH − IH(t − τ2)]Iv(t −
τ2)e−ατ2 are infectious at the present time t. The exponent e−ατ2 is the probability
that a human remains infected during the entire incubation period. The delay vector-
borne model takes the form [140]

I′v = pae−μτ1(Nv − Iv(t − τ1))IH(t − τ1)− μIv,

I′H = qae−ατ2(NH − IH(t − τ2))Iv(t − τ2)−αIH . (4.14)

4.3.1 Reducing the Delay Model to a Single Equation

Scientists often use various methods to reduce the dimension of a system. The newly
obtained system does not necessarily have the same dynamical behavior as the orig-
inal one, but it is still useful for obtaining initial insights from a simpler model.

The reduction is typically based on the assumption that the lifespan of the vector
is much shorter than that of the humans, that is, we assume that μ � α , which
leads to much faster equilibration of the dynamics of the vector population. This
assumption is common for vector-borne diseases transmitted by mosquitoes, such
as malaria. Furthermore, we assume that the incubation period is approximately
equal to the extrinsic incubation period, that is, τ1 = τ2. This is certainly the case
in malaria, where the incubation period in humans typically lasts between 10 days
and 4 weeks. The extrinsic period is often temperature-dependent, but it lasts 10–18
days. With the assumption that the two incubation periods are the same, the model
above becomes [111]

I′v = pae−μτ(Nv − Iv(t − τ))IH(t − τ)− μIv,

I′H = qae−ατ(NH − IH(t − τ))Iv(t − τ)−αIH. (4.15)

Furthermore, since the vector dynamics have reached equilibrium, we have I′v = 0.
At equilibrium, the population numbers at time t and t − τ are approximately the
same. Hence, from the first equation, we have

Iv(t − τ) =
pae−μτNvIH(t − τ)

pae−μτIH(t − τ)+ μ
.
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Substituting Iv in the second equation, we obtain the following single delay equation
for the dynamics of the humans:

I′H =
pa2qe−ατe−μτ NvIH(t − τ)

pae−μτIH(t − τ)+ μ
(NH − IH(t − τ))−αIH. (4.16)

It is helpful to normalize this equation by setting x = IH/NH . The equation becomes

x′ =
pa2qme−ατe−μτ x(t − τ)

pae−μτx(t − τ)+ μ
(1− x(t − τ))−αx(t), (4.17)

where as before, m = Nv/NH , and aNH has been replaced again by a.
Delay equations, just like ODEs, have equilibria. The value x∗ is an equilibrium

of model (4.17) if it satisfies the equation

pa2qme−ατe−μτ x∗

pae−μτx∗+ μ
(1− x∗)−αx∗ = 0. (4.18)

This equation clearly has the solution x∗ = 0, which gives the disease-free equilib-
rium. To investigate the stability of the disease-free equilibrium, we linearize the
equation. We look for a solution x(t) = x∗+y(t), where y(t) is the perturbation, and
x∗ = 0. This means that we have to replace x with y and linearize the nonlinear term.
Notice that

1
pae−μτx(t − τ)+ μ

=
1

μ( pa
μ e−μτ y(t − τ)+ 1)

≈ 1
μ

[
1− pa

μ
e−μτy(t − τ)

]
.

Hence, the linearization around the disease-free equilibrium is given by

y′ =
pa2qme−ατ e−μτy(t − τ)

μ
−αy(t).

Looking for a solution of the form y(t) = ȳeλ t , we obtain the following characteristic
equation:

λ +α =
pa2qme−ατe−μτ e−λ τ

μ
.

The above equation is a transcendental equation, that is, an equation containing
a transcendental function of λ , namely eλ τ . If we think of λ as a real variable, the
left-hand side of the above equation is an increasing linear function of λ , while the
right-hand side is a decreasing function of λ . This equation always has a unique real
solution, which is positive if and only if R0 > 1, where we define the reproduction
number R0 to be

R0 =
pa2qme−ατe−μτ

μα
. (4.19)

So if R0 > 1, the disease-free equilibrium is unstable. If R0 < 1, the unique real
eigenvalue is negative. We show that all other eigenvalues, which are complex,
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have negative real part. Assume that we have an eigenvalue λ = b+ ci, where i
is the imaginary unit, that has nonnegative real part, that is, b ≥ 0. Then |λ +α| =√
(b+α)2 + c2 ≥ b+α ≥ α . At the same time,

∣∣∣∣∣
pa2qme−ατe−μτ e−λ τ

μ

∣∣∣∣∣
=

pa2qme−ατe−μτ |e−λ τ |
μ

=
pa2qme−ατe−μτ e−bτ

μ

≤ pa2qme−ατe−μτ

μ
, (4.20)

which gives a contradiction to the fact that R0 < 1, that is, α > pa2qme−ατ e−μτ

μ .
Hence, the disease-free equilibrium is locally asymptotically stable if R0 < 1. We
note that if R0 = 1, then λ = 0 is an eigenvalue, and we cannot use this argument to
draw any conclusions. We consider again the equation for the equilibria. Canceling
x∗, we see that the nontrivial endemic equilibria satisfy the equation

pa2qme−ατe−μτ

pae−μτx∗+ μ
(1− x∗)−α = 0. (4.21)

Multiplying by the denominator, we obtain a linear equation in x∗, which can be
solved to give the unique endemic equilibrium:

x∗ =
R0 − 1

pa
μ e−μτ +R0

. (4.22)

It is clear from this expression that the endemic equilibrium exists and that it is
positive if and only if R0 > 1.

To investigate the stability of the endemic equilibrium, we linearize around it. Set
x(t) = x∗+y(t), where y(t) is the perturbation of the endemic equilibrium. The per-
turbation y can take positive and negative values. Furthermore, to simplify the not-
ation, we will set Q = pa2qme−ατe−μτ and P = pae−μτ . Substituting in the delay
equation (4.17), we obtain the following equation for the perturbation:

y′(t) =
Q(x∗+ y(t − τ))

P(x∗+ y(t − τ))+ μ
[1− x∗− y(t − τ)]−α(x∗+ y(t)). (4.23)

Taking into account the equation for the equilibrium

Qx∗(1− x∗)
Px∗+ μ

= αx∗ (4.24)
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and linearizing as in the case of the disease-free equilibrium, we obtain the following
equation for the perturbation y:

y′(t) =
Q(1− x∗)y(t − τ)

Px∗+ μ
− Qx∗

Px∗+ μ

[
P(1− x∗)y(t − τ)

Px∗+ μ
+ y(t − τ)

]
−αy(t).

(4.25)
This equation can be simplified as follows:

y′(t) =
Q(1− x∗)y(t − τ)

Px∗+ μ

[
1− Px∗

Px∗+ μ

]
− Qx∗y(t − τ)

Px∗+ μ
−αy(t). (4.26)

Using the equation for the equilibrium (4.24) and the fact that R0 = Q/(αμ), we
obtain the following simplified linearized equation:

y′(t) =
αμ

Px∗+ μ
(1−R0x∗)y(t − τ)−αy(t). (4.27)

Looking for an exponential solution y(t) = ȳeλ t , we obtain a characteristic equation
of the form

λ +α =
αμ

Px∗+ μ
(1−R0x∗)e−λ τ . (4.28)

If R0x∗ < 1, the coefficient in front the term e−λ τ is positive and less than α , which
corresponds to the case R0 < 1 in the characteristic equation for the disease-free
equilibrium. A similar argument can be used to show that all roots of (4.28) have
negative real parts, and the endemic equilibrium is locally asymptotically stable. We
summarize these results in the following theorem:

Theorem 4.2. If R0 < 1, the delay-differential equation (4.17) has only the disease-
free equilibrium x∗ = 0, which is locally asymptotically stable. If R0 > 1, the delay-
differential equation (4.17) has a disease-free equilibrium and a unique endemic
equilibrium x∗. If R0 > 1, the disease-free equilibrium is unstable. The endemic
equilibrium is locally asymptotically stable if in addition, R0x∗ < 1.

4.3.2 Oscillations in Delay-Differential Equations

If R0x∗ > 1, then the coefficient on the right-hand side of the characteristic equation
(4.28) is negative, and the equation can have as principal eigenvalues (eigenvalues
with the largest real part) a pair of complex conjugate eigenvalues. However, as
a parameter changes, this pair of principal eigenvalues may cross the imaginary
axis, giving rise to a stable oscillatory solution. At the same time, the principal
eigenvalues start having positive real part, and the endemic equilibrium becomes
unstable. This process that gives rise to a stable oscillatory solution is called (as
in the ODE case) Hopf bifurcation. The result, valid for ODEs, is also valid for
delay-differential equations. For delay-differential equations, it is given in the Hopf
bifurcation Theorem below:
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Theorem 4.3. Consider the delay-differential equation

x′(t) = F(x(t),x(t − τ1), . . . ,x(t − τn−1),μ), (4.29)

where μ is a parameter. Suppose the following conditions hold:

(a) F is analytic in x and μ in a neighborhood of (x∗,μ0) in ℜn ×ℜ.
(b) F(x∗,μ) = 0 for μ in an open interval containing μ0, and x(t) = x∗ is an iso-

lated stationary solution of (4.29).
(c) The characteristic equation of (4.29) has a pair of complex conjugate eigenval-

ues λ and λ̄ such that λ (μ) = b(μ)+ iω(μ), where ω(μ0) =ω0 > 0, b(μ0) = 0
and b′(μ0) �= 0.

(d) The remaining eigenvalues of the characteristic equation have strictly negative
real parts.

Then the delay-differential equation (4.29) has a family of Hopf periodic solutions.

One can apply Theorem 4.3 to show rigorously that a Hopf bifurcation occurs in
Eq. (4.17). Instead, we will build a specific numerical example of such an oscilla-
tory solution. To find sustained oscillations in Eq. (4.17), we need to find values of
the parameters for which such oscillations occur. We begin from the characteristic
equation (4.28), which we simplify further and write as

λ +α = ρe−λ τ , (4.30)

where ρ = αμ
Px∗+μ (1−R0x∗). We recall that we have assumed that ρ < 0. Let λ =

b+ iω . We separate the real and the imaginary parts:

b+α = ρe−bτ cos[ωτ]
ω = −ρe−bτ sin[ωτ]. (4.31)

Now we ask whether we can find parameters α > 0 and ρ < 0 such that the system
above has positive solution b > 0 and ω > 0. We solve in terms of α and ρ :

α = −b−ω cot[ωτ]
ρ = −ωebτ csc[ωτ]. (4.32)

As we have seen earlier, some of the parameters that have physical meaning can
be estimated in advance, or at least reasonable biological ranges can be determined
for them. In the equations above, we assume values for b (b = 0.396053) and τ
(τ = 1) and interpret α and ρ as functions of ω . Using a computer algebra system,
we can make a parametric plot of α and ρ in the (α,ρ)-plane. This plot is shown in
Fig. 4.1. We pick a value for ω, say ω = 2.47471. From system (4.32), we obtain the
values α = 2.74766 and ρ =−5.94512. The value of α corresponds to an infectious
period of 1/2.74766= 0.3639 years, which is a reasonable duration for Plasmodium
falciparum malaria. Now we have to assume values of the remaining parameters,
so that the combined value of ρ is as given. We assume the value μ = 12, which
gives 1 month as the duration of the vector’s lifespan. This duration is realistic for
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mosquitoes. Furthermore, we have to find Q and P such that the following system is
valid:

Q(1− x∗)
Px∗+ μ

= α,

μα(1−R0x∗)
Px∗+ μ

= ρ . (4.33)

Fig. 4.1 Parametric plot of α and ρ in the (α ,ρ)-plane as given by Eq. (4.32). The values of b and
τ are taken as b = 0.396053, τ = 1. The value of τ , which is equal to 1 year, is rather high for
Plasmodium falciparum malaria. The plot is made for 2 ≤ ω ≤ 3

Dividing these two equations, we have

R0(1− x∗)
1−R0x∗

=
α
ρ
.

From here, assuming a value of R0x∗, we can compute R0:

R0 =R0x∗+
α
ρ
(1−R0x∗).

If we take R0x∗ = 5, then R0 = 6.84869. From here, we can compute x∗ = 0.73.
Finally, Q =R0αμ = 225.816. From the second equation in system (4.33), we de-
termine P = 13.9498. With these parameters, we plot the solution of Eq. (4.17) in
Fig. 4.2. The trajectory in Fig. 4.2 suggests that the endemic equilibrium is indeed
unstable. However, the trajectory is not periodic. It is aperiodic, suggesting the pres-
ence of chaos in model (4.17). What is chaos? There are many definitions. Perhaps
the most useful in biology is the following [148]:

Definition 4.2. Chaos is aperiodic long-term behavior in a deterministic system that
exhibits sensitive dependence on initial conditions.
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Fig. 4.2 Plot of the solution of Eq. (4.17) with P= pae−μτ = 13.9498, Q= Pqame−ατ = 225.816,
τ = 1, α = 2.74768, μ = 12, and initial condition x(0) = 0.73. The resulting trajectory is aperiodic,
suggesting the presence of chaotic behavior

This definition has several components:

1. Aperiodic long-term behavior means that there are trajectories that do not set-
tle down to fixed points, periodic orbits, or quasiperiodic orbits as t → ∞. For
practical purposes, we require that these aperiodic orbits not be too rare.

2. Deterministic means that the system has no random or noisy inputs.
3. Sensitive dependence on initial conditions means that nearby trajectories separate

exponentially fast.

From Fig. 4.2, we see that the delay malaria model (4.17) has solutions that are ape-
riodic; that is, their trajectory does not repeat even when run for a long time. Further-
more, the trajectories exhibit sensitive dependence on initial data. If we start very
close to the trajectory above, the two trajectories “coincide” for a certain amount of
time, called the time horizon, after which they completely diverge, and one looks
nothing like the other. The sensitive dependence is illustrated in Fig. 4.3. The exi-
stence of sensitive dependence on initial conditions in simple but chaotic models
means that we have lost the ability to make long-term predictions. However, we
can still make short-term predictions based on chaotic models. Chaotic behavior
emerges from periodic behavior through a process called period doubling. This sug-
gests that if we decrease the bifurcation parameter, which in delay models is usually
taken to be the delay τ , we will obtain a regular periodic solution. This is indeed
the case. Figure 4.4 shows a periodic trajectory produced with the same parameters
as above and τ = 0.6. We see that even first-order deterministic delay models can
exhibit chaotic behavior and sustained oscillations. ODE models need three depen-
dent variables to exhibit chaotic behavior, and at least two dependent variables to
produce oscillations.

Why is it important to have models that can have oscillatory solutions? Many
vector-borne diseases give periodic values for the incidence or the prevalence of the
disease in humans. There are two types of periodic behavior exhibited by vector-
borne incidence/prevalence data:
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Fig. 4.3 Plot of two solutions of Eq. (4.17) with P = pae−μτ = 13.9498, Q = Pqame−ατ =
225.816, τ = 1, α = 2.74768, μ = 12, and initial conditions x1(0) = 0.73 and x2(0) = 0.730001.
The two close trajectories coincide for a while and then diverge, suggesting sensitive dependence
on the initial conditions

1. Seasonality is a periodic behavior that corresponds to the seasons in a given
region. Since vector demographic and disease characteristics depend on the tem-
perature and humidity, many vector-borne diseases, particularly those transmit-
ted by mosquitoes, are transmitted more effectively and show higher numbers of
cases in warm and rainy seasons. This gives periodic behavior that repeats every
year. This is the most common periodicity exhibited by vector-borne diseases. It
is typically modeled by periodic forcing in the vector demographic characteris-
tics (such as vector birth and death) and results in nonautonomous models with
periodic coefficients.

2. Interannual periodicity in disease prevalence or incidence occurs when the cor-
responding disease characteristics repeat with a period of two or more years.
Interannual periodicity is much rarer and not well understood. There could be a
number of reasons producing this behavior, but some may be internal and should
be modeled with autonomous differential equation models such as those consid-
ered here.

4.3.3 The Reproduction Number of the Model with Two Delays

In this subsection, we compute the reproduction number of the vector-borne disease
model with two delays introduced earlier in this section:

I′v = pae−μτ1(Nv − Iv(t − τ1))IH(t − τ1)− μIv,

I′H = qae−ατ2(NH − IH(t − τ2))Iv(t − τ2)−αIH . (4.34)

The disease-free equilibrium in the above model is E0 = (0,0). Linearizing around
the disease-free equilibrium by setting Iv = x + 0 and IH = y+ 0, we obtain the
equations for the perturbations:
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x′ = pae−μτ1Nvy(t − τ1)− μx(t),

y′ = qae−ατ2NHx(t − τ2)−αy(t). (4.35)

Looking for exponential solutions, we obtain the following eigenvalue problem:

λ x = pae−μτ1Nvye−τ1λ − μx,
λ y = qae−ατ2NHxe−τ2λ −αy.

(4.36)
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Fig. 4.4 Plot of a periodic solution of Eq. (4.17) with P = pae−μτ = 13.9498, Q = Pqame−ατ =
225.816, τ = 0.6, α = 2.74768, μ = 12, and initial condition x(0) = 0.73

This is a linear system for x and y. The only way this system can have a nonzero
solution is if the determinant is zero. We obtain

∣∣∣∣ −(λ + μ) pae−μτ1Nve−τ1λ

qae−ατ2NHe−τ2λ −(λ +α)

∣∣∣∣= 0. (4.37)

This expression gives the following characteristic equation:

(λ + μ)(λ +α) = pae−μτ1Nve−τ1λ qae−ατ2NHe−τ2λ . (4.38)

We define

R0 =
pae−μτ1Nvqae−ατ2NH

αμ
.

It is clear that Eq. (4.38) has a real positive solution if R0 > 1. If R0 < 1, we
have |(λ + μ)(λ +α)| ≥ αμ for every λ with nonnegative real part. At the same
time, |pae−μτ1Nve−τ1λ qae−ατ2NHe−τ2λ | ≤ pae−μτ1Nvqae−ατ2NH for λ with non-
negative real part. Hence, Eq. (4.38) has no solutions λ with nonnegative real part.
We conclude that for R0 > 1, the disease-free equilibrium is unstable, while if
R0 < 1, all solutions λ of (4.38) have negative real part. Therefore, the disease-
free equilibrium is locally asymptotically stable.
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4.4 A Vector-Borne Disease Model with Temporary Immunity

Most vector-borne diseases lead to acquired immunity as a result of exposure. This
immunity is partial and often temporary. This is in particular the case with malaria
and dengue. In this section we build a vector-borne disease model whereby recov-
ered individuals are immune but gradually lose immunity and become susceptible
again. The model with permanent immunity was one of the early models of malaria.
While malaria does not confer permanent immunity after infection, other vector-
borne diseases, such as yellow fever, do. The model with permanent immunity is
a nested model and is obtained from the model with waning immunity by setting
the rate of loss of immunity to zero. To introduce the model, let Sv and Iv be the
susceptible and infected vectors, and S, I, and R susceptible, infected, and recov-
ered humans. The vector is modeled with an SI epidemic model. The model for the
vector becomes

S′v = Λv − paSvI − μvSv,

I′v = paSvI − μvIv, (4.39)

where p, q, and a have the same meaning as before, and μv denotes the vector death
rate. The total population size of the vector satisfies

N′
v = Λv − μvNv,

and it is asymptotically constant, that is, Nv(t) → Λv
μv

. The model for the host is an
SIRS epidemic model:

S′ = Λ − qaSIv− μS+ γR,

I′ = qaSIv− (μ +α)I,

R′ = αI − (μ + γ)R, (4.40)

where μ is the host natural death rate, Λ is the host birth rate, α is the recovery rate,
and γ is the rate of loss of immunity. If γ = 0, then the model is one with permanent
immunity. The parameters q and a have the same meaning as before. The total host
population size satisfies the equation

N′ = Λ − μN,

and it is also asymptotically constant. The model has five equations. Using tech-
niques as before, we may reduce the model to three equations by eliminating the
equation for the susceptible vectors and, say, the equation for the recovered hosts.
The reduced model has the form

I′v = pa(Nv − Iv)I − μvIv,

S′ = Λ − qaSIv− μS+ γ(N− S− I),

I′ = qaSIv− (μ +α)I, (4.41)
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where Nv = Λv
μv

and N = Λ
μ . To compute the reproduction number of the model

(4.41), we have to compute the disease-free equilibrium and evaluate the Jacobian
there. To compute the disease-free equilibrium, we set the time derivatives equal to
zero. We obtain the nonlinear system

pa(Nv − Iv)I − μvIv = 0,

Λ − qaSIv− μS+ γ(N− S− I) = 0,

qaSIv− (μ +α)I = 0. (4.42)

Setting I = 0, we obtain that Iv = 0. From the second equation, we then have S = N.
Thus, the disease-free equilibrium is given by E0 = (0,N,0), where the variables are
ordered as in system (4.41). Stability of the disease-free equilibrium is given by the
Jacobian:

J =

⎛
⎝ −μv 0 paNv

−qaN −μ − γ −γ
qaN 0 −(μ +α)

⎞
⎠ . (4.43)

We look at the characteristic equation given by |J − λ I| = 0. If we expand by the
second column, the second-row, second-column entry gives an eigenvalue λ1 =
−(μ + γ)< 0. The remaining eigenvalues are the eigenvalues of the matrix

J1 =

(−μv paNv

qaN −(μ +α)

)
. (4.44)

This matrix has eigenvalues with negative real part if and only if its trace is negative
and its determinant is positive. We have TrJ1 = −μv − (μ +α) < 0. The condi-
tion that the determinant has to be positive gives μv(μ +α)− paNvqaN > 0. That
condition can be rewritten as R0 < 1, where the reproduction number is given by

R0 =
paNvqaN
μv(μ +α)

.

Acknowledgements A portion of this chapter was previously published in [111]. Martcheva and
Prosper [111] contains additional interpretations of delay models of vector-borne diseases as a tool
for modeling unstable malaria.

Problems

4.1. Delayed Logistic Model
The delayed logistic equation is given by

x′(t) = rx(t)

(
1− x(t − τ)

K

)
.

(a) Find the equilibria of the delayed logistic equation.
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(b) Establish the stabilities of the equilibria.
(c) Use the Hopf bifurcation theorem to find an example of oscillations in the

delayed logistic equation. Use a computer algebra system to simulate the
oscillations.

4.2. Dependence of Equilibrium on R0

For the model with two delays

I′v = pae−μτ1(Nv − Iv(t − τ1))IH(t − τ1)− μIv,

I′H = qae−ατ2(NH − IH(t − τ2))Iv(t − τ2)−αIH , (4.45)

do the following:

(a) Compute the endemic equilibrium E ∗.
(b) Express the endemic equilibrium in terms of the reproduction number R0.
(c) Choose parameter values and graph the prevalence I∗H and I∗v in the endemic

equilibrium as functions of the reproduction number R0.
(d) Based on the graph in (c), hypothesize how the equilibrial prevalences depend

on R0. Show that your hypothesis is correct for all parameter values.

4.3. Delayed SIR Model
Use the methodology described in this chapter to analyze the stability of equilibria
of the delayed SIR model. Do oscillations occur?

S′(t) = Λ − μS−β S(t)I(t),

I′(t) = β S(t − τ)I(t − τ)− (μ +α)I(t),

R′(t) = αI(t)− μR(t). (4.46)

4.4. Global Stability
Consider the model given in (4.6):

I′v = pa(Nv − Iv)IH − μIv,

I′H = qa(NH − IH)Iv −αIH. (4.47)

(a) Use Dulac’s criterion to rule out periodic orbits in the model.
(b) Use the Poincaré–Bendixson theorem to show global stability of the endemic

equilibrium.

4.5. Vector-Borne Disease Model
Consider the following model of vector-borne disease with temporary immunity:

S′(t) = Λ − μS− β NvS(t)I(t)
βvI(t)+ μv

+ γR(t),

I′(t) =
β NvS(t)I(t)
βvI(t)+ μv

− (μ +α)I(t),

R′(t) = αI(t)− (μ + γ)R(t). (4.48)
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(a) Explain how the above model was obtained from the model (4.39) and (4.40).
(b) Reduce the model to a two equation-model by eliminating the R(t) variable.
(c) Find all equilibria of the two-dimensional model and their stabilities.
(d) Draw phase portraits for the cases R0 > 1 and R0 < 1.

4.6. Saturating Incidence
Consider the SIS model with saturating incidence:

S′(t) = Λ − β I(t)S(t)
1+α1S(t)+α2I(t)

+ γI− μS,

I′(t) =
β I(t − τ)S(t − τ)

1+α1S(t − τ)+α2I(t − τ)
− (γ + μ)I. (4.49)

(a) Determine the reproduction number R0 and the disease-free equilibrium of the
model above.

(b) Determine biologically sensible parameters that give a reproduction number
R0 > 1. Use a computer algebra system to simulate the model with this param-
eter set. Vary the delay parameter τ . Do the dynamics of the model change?

(c) Show that if R0 < 1, the disease-free equilibrium is locally stable. Furthermore,
show that if R0 > 1, the disease-free equilibrium is unstable.

(d) Determine conditions for the existence of an endemic equilibrium.

4.7. Elasticity
The elasticity of quantity Q with respect to a parameter p is defined as

εp =
∂Q
∂ p

p
Q
, (4.50)

where Q is any quantity and p is any parameter. Consider the quantity

R0 =
pae−μτ1Nvqae−ατ2NH

αμ
.

The elasticity says that 1% change in the parameter p leads to εp% change in Q. If
εp > 0, then Q is increasing with p; if εp < 0, then Q is decreasing with p.

(a) Compute the elasticities of R0 with respect to the parameters p, q, a, μ , α . To
which parameter is the reproduction number most sensitive?

(b) List a set of control measures applied to malaria. Which parameters does each
control measure affect?

4.8. Maturation Delays
The following model has been proposed for the transmission of a vector-borne dis-
ease transmitted by mosquitoes [59]:
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dMS

dt
= rMs(t − τ)e−d jτ e−αNM(t)−βmMS(t)I(t)− dMS(t),

dMS

dt
= βmMS(t)I(t)− dMi(t),

dS
dt

= −βhMi(t)S(t),

dI
dt

= βhMi(t)S(t)− (μ +ν)I, (4.51)

where MS is the number of susceptible mosquitoes, Mi is the number of infected
mosquitoes, S is the number of susceptible hosts, and I is the number of inf-
ected hosts. The parameters have the following meanings: r is the maximum daily
mosquito-egg production rate, d j is the death rate of juvenile mosquitoes, d is the
death rate of adult mosquitoes, βm and βh are the two transmission rates, μ is the
recovery rate of the hosts, and ν is the disease-induced death rate.

(a) Explain what biological scenario is modeled by the delay in this model.
(b) Find the differential equation model satisfied by the total mosquito population

size. Compute the equilibria of this model.
(c) Determine the stabilities of the equilibria of the differential equation model

satisfied by the total mosquito population size.

4.9. Temporary Immunity of Fixed Length
When individuals are subjected to temporary immunity of fixed length, the standard
Kermack–McKendrick model with delay becomes

S′(t) = −β S(t)I(t)+ γI(t− τ),
I′(t) = β S(t)I(t)− γI(t),

R′(t) = γI(t)− γI(t− τ). (4.52)

(a) Notice that the total population size is constant. Reduce the system to an SI
system.

(b) Compute the reproduction number and the equilibria of the system.
(c) Determine the stability of the disease-free equilibrium.
(d) Determine the linearized equation around the endemic equilibrium. Analyze the

stability of the endemic equilibrium. Does Hopf bifurcation occur?



Chapter 5
Techniques for Computing R0

5.1 Building Complex Epidemiological Models

In the previous chapters, we introduced and studied the simplest epidemic models:
the SIR model, the SIS model, and the Ross–MacDonald model of vector-borne
disease. The baseline SI, SIS, SIR, and SIRS epidemic models can be extended to
incorporate more realistic features of the disease, various control strategies, and het-
erogeneities of the host and the pathogens. As the models become more complex,
their flowcharts also become more complex, with more compartments and transi-
tions. Developing a flowchart of a complex model that is both clear and informative
is more of an art than a science. Furthermore, as more realistic features are incor-
porated in the models and the systems become higher-dimensional, we need better
tools for the computation of the reproduction number R0. In this chapter, we build
models with more realism and introduce techniques for the computation of the re-
production number.

The baseline SI, SIS, and SIR models are developed based on essential compo-
nents of the infectious disease transmission process: the presence of susceptible and
infectious individuals. However, for many diseases, the natural progression of the
disease may contain various other components that affect the disease transmission,
and ultimately the conclusions we will make from the model.

5.1.1 Stages Related to Disease Progression

The most important stages of the disease other than susceptible and infectious
that affect transmission are the (1) exposed/latent stage; (2) asymptomatic stage;
(3) carrier stage; (4) passive immunity stage.

1. Exposed/Latent Stage. For many diseases, the infected individuals do not become
immediately infectious, as assumed in the SIS and SIR models. The pathogen
needs time to replicate and establish itself in the new host. The time during which
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an individual is infected but not yet infectious is called the latent period. As an
additional compartment in epidemiological models, the latent period is denoted
by E(t) or by L(t). We note that the incubation period of a pathogen is the period
between infection and onset of symptoms. The lengths of the latent and incuba-
tion periods do not necessarily coincide. For instance, in influenza, the onset of
symptoms begins one day after infected individuals have become infectious; that
is, the incubation period is one day longer than the latent period. The exposed
(latent) period usually follows the susceptible stage. If we introduce a latent pe-
riod in the SI model, the resulting model is an SEI model; if we introduce a latent
period in the SIR model, the resulting model is an SEIR model. Similarly, we can
have SEIS and SEIRS models based respectively on SIS and SIRS models. The
SEIR model takes the form

S′(t) = Λ −β SI− μS,

E ′(t) = β SI− (η + μ)E,
I′(t) = ηE − (α + μ)I,
R′(t) = αI− μR, (5.1)

where η is the per capita rate of becoming infectious. We recall that 1/η is
approximately the length of the latent period. The flowchart of the SEIR model
is given in Fig. 5.1.

Fig. 5.1 Flowchart of the SEIR model. Demographic rates are not included

2. Asymptomatic Stage. The asymptomatic compartment is usually included to
incorporate asymptomatic infection. Asymptomatic infection, also often called
subclinical infection, is an infection without symptoms. Individuals with asymp-
tomatic infection are still infectious and contribute to the distribution of the dis-
ease. However, because they do not show symptoms, they are much harder to
detect. Asymptomatic infection has been shown to exist for many diseases, in-
cluding HIV, malaria, dengue, measles, polio, and influenza. An asymptomatic
compartment is typically included as an alternative to the infectious compart-
ment I. The asymptomatic compartment is denoted by A(t). Exposed indi-
viduals progress to the symptomatic infectious compartment with probability
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p, and to the asymptomatic infectious compartment with probability (1 − p).
Asymptomatic individuals are typically assumed to be infectious at a reduced
transmission rate qβ :

S′(t) = Λ −β S(I+ qA)− μS,

E ′(t) = β S(I+ qA)− (η + μ)E,
I′(t) = pηE − (α + μ)I,
A′(t) = (1− p)ηE− (γ + μ)A,
R′(t) = αI+ γA− μR. (5.2)

The parameter γ gives the recovery rate of the asymptomatic individuals. Often,
the symptomatic infectious period is longer than the asymptomatic: 1/γ < 1/α .
A flowchart of the model with asymptomatic infection is shown in Fig. 5.2.

Fig. 5.2 Flowchart of the SEIR model with asymptomatic stage model. Demographic rates are not
included

3. Carrier Stage. A carrier stage is incorporated to account for individuals who are
otherwise healthy but harbor and transmit the pathogen. Carriers show no symp-
toms or signs of infection, but the disease microorganisms can be recovered from
their nose, throat, or feces. Carrier individuals contribute to the distribution of
the disease without being sick themselves. Alternatively, a pathogen carrier may
be someone who has been infected and was not treated because the infection was
asymptomatic, or was incompletely treated. Several viral and bacterial diseases
exhibit a carrier stage. Viral diseases, such as viral hepatitis and poliomyelitis,
and bacterial diseases, including diphtheria and meningococcal meningitis, often
have a carrier stage. The carrier compartment is usually denoted by C(t). An
SIRS model with carrier stage is included below:

S′(t) = Λ −β S(I+ qC)− μS+ρR,

C′(t) = β S(I+ qC)− (η + γ + μ)C,
I′(t) = ηC− (α + μ)I,
R′(t) = αI + γC− (μ +ρ)R. (5.3)
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Individuals are assumed to enter the carrier stage upon infection. Then some
progress to being infected and infectious, while others recover from the pathogen
without ever being infected. A flowchart of the model is given in Fig. 5.3.

Fig. 5.3 Flowchart of the SCIRS model. Demographic rates are not included

4. Passive Immunity Stage. Passive immunity is the transfer of active immunity in
the form of antibodies from one individual to another. Passive immunity can
occur naturally, when maternal antibodies are transferred to the fetus through
the placenta or in the milk during breastfeeding. Passive immunity can also be
induced artificially, when high levels of antibodies specific for a pathogen or
toxin are transferred to nonimmune individuals. Mathematical models typically
involve natural passive immunity. The passive immunity stage is often denoted
by M(t), and it is added to the system before individuals become susceptible. An
MSIR model with passive immunity has the form

M′(t) = Λ −ρM− μM,

S′(t) = ρM−β SI− μS,

I′(t) = β SI− (α + μ)I,
R′(t) = αI − μR, (5.4)

where ρ is the per unit of time rate of loss of maternal antibodies. We assume
that babies are completely protected by the maternal antibodies and cannot get
infected.

5.1.2 Stages Related to Control Strategies

Besides involving compartments related to the various disease-progression stages,
basic baseline SI, SIS, SIR, and SIRS models may involve compartments associ-
ated with the various strategies applied for control of the disease. Disease-control
strategies involve (1) quarantine/isolation; (2) vaccination; (3) treatment.
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1. Quarantine/isolation. Quarantine is compulsory isolation, typically to contain
the spread of a disease. The word comes from the Italian (seventeenth-century
Venetian) quarantena, meaning a 40-day period. Quarantine is applied to indi-
viduals who have come into contact with an infectious individual and may or
may not be infected. Isolation is confinement of an infectious individual that res-
tricts that individual’s contact with healthy susceptible individuals. Isolation is
applied to infectious individuals only. The class of quarantines/isolated individu-
als is typically denoted by Q(t). An SIQR model is given below. Standard, rather
than mass-action, incidence is assumed [61]. We note that the “total” population
size consists of all individuals that participate in the mixing. We call all individ-
uals that participate in the mixing active individuals, and denote the size of the
active class by A(t) = S(t)+ I(t)+R(t):

S′(t) = Λ −β SI/A− μS,

I′(t) = β SI/A− (α + γ + μ)I,
Q′(t) = γI − (η + μ)Q,

R′(t) = αI +ηQ− μR. (5.5)

SIQR models are appropriate to model childhood diseases. Quarantine has been
found to destabilize the epidemic and lead to sustained oscillations in the dy-
namics of childhood diseases [61]. A flowchart of the SIQR model is given in
Fig. 5.4.

Fig. 5.4 Flowchart of the SIQR model. Demographic rates are not included

2. Treatment. Treatment is the care provided to reduce morbidity and mortality of
an infectious disease. Treatment usually includes administering medication that
mitigates symptoms and helps the immune system fight the pathogen. A treat-
ment compartment T (t) has been included in standard SEI epidemic models as a
class that replaces the class of recovered individuals, making the model an SEIT
model. Since patients often do not complete the full regimen of treatment, treat-
ment may or may not be successful, and leads to the individual being successfully
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treated with probability q or relapsing to the exposed/latent class with probability
p, where p+q= 1. The model with treatment is presented below, and it captures
the dynamics of a disease such as tuberculosis [60]:

S′(t) = Λ −β1SI/N − μS,

E ′(t) = β1SI/N+β2T I/N − (μ +κ + r1)E + pr2I,

I′(t) = κE − (r2 + μ)I,
T ′(t) = r1E + qr2I −β2T I/N − μT, (5.6)

where r1 is the treatment rate of exposed individuals, r2 is the treatment rate
of infectious individuals, and κ is the progression to the infectious state. The
presence of relapsing individuals leads to ambiguity in the computation of the
reproduction number, which we will discuss later. A flowchart of the model is
given in Fig. 5.5.

Fig. 5.5 Flowchart of the SEIT model. Demographic rates are not included

3. Vaccination. Vaccination is the administration of generally dead or weakened
antigenic material (a vaccine) to produce immunity to a disease. There are two
main ways to incorporate vaccination in an epidemic model. In the first approach
vaccine is administered to individuals who are entering the system. A proportion
p of entering individuals enters the susceptible class, while a proportion 1− p
enters the recovered/immune class. In the second approach, susceptible individ-
uals are continuously being vaccinated and move to the vaccinated class V (t).
Vaccination may provide complete or partial immunity to the disease. We will
consider vaccination in more detail in Chap. 9.
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5.1.3 Stages Related to Pathogen or Host Heterogeneity

The impact of host or pathogen heterogeneities on the dynamics of the disease has
been a longstanding question of interest in mathematical epidemiology. We will
consider the following heterogeneities:

1. Pathogen Genetic Heterogeneities. Many pathogens are represented by multiple
genetically distinct variants. The presence of the variants has implication for the
disease progression and control as different pathogen variants respond differently
to the control measures. To study pathogen heterogeneities, two-strain and mul-
tistrain models have been developed. The simplest SIS model with two strains
includes the number of infected with strain one I1 and the number of infected
with strain two I2:

S′(t) = Λ −β1SI1 −β2SI2 − μS+α1I1 +α2I2,

I′1(t) = β1SI1 − (μ +α1)I1,

I′2(t) = β2SI2 − (μ +α2)I2. (5.7)

We address the interplay between pathogen heterogeneity and disease transmis-
sion dynamics in Chap. 8. A flowchart of the two-strain model above is given in
Fig. 5.6.

Fig. 5.6 Flowchart of the two-strain model. Demographic rates are not included

2. Host Heterogeneities. Host heterogeneities in susceptibility and infectivity asso-
ciated with host genetic differences can lead to models with multiple host species.
For instance, in avian influenza, the pathogen can infect both wild birds and do-
mestic birds. These two categories of birds can have very different demographic
characteristics as well as different characteristics with respect to the disease. To
account for the differences, a simple SI model should have two susceptible pop-
ulations Sw and Sd and two infected populations Iw and Id . The multihost single-
pathogen model takes the form
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S′w(t) = Λw −β11SwIw −β12SwId − μwSw,

I′w(t) = β11SwIw +β12SwId − (μw +αw)Iw,

S′d(t) = Λd −β21SdIw −β22SdId − μdSd,

I′d(t) = β21SdIw +β22SdId − (μd +αd)Id . (5.8)

A flowchart of the model is given in Fig. 5.7.

Fig. 5.7 Flowchart of the two-strain model. Demographic rates are not included

3. Age and Space Heterogeneities. Age and space heterogeneities are introduced
respectively by the age of the host and the presence of a spatial component in
the transmission of the disease. Age and space heterogeneities can be incorpo-
rated in the model as a continuous component, which results in partial differential
equations, or as a discrete component, which results in larger systems of ordi-
nary differential equations. These heterogeneities will be discussed in Chaps. 16
and 15.

5.2 Jacobian Approach for the Computation of R0

We saw in the previous chapters that mathematically, the reproduction number R0

gives a threshold condition for the stability of the disease-free equilibrium. Imposing
conditions for stability leads to an expression for the reproduction number. This
general approach can also be applied in more complex models. In particular, we
compute the Jacobian of the system at the disease-free equilibrium, and we pose the
condition that all eigenvalues of the corresponding characteristic equation must have
negative real parts. In the two-dimensional case, this requirement follows from the
conditions that TrJ < 0 and DetJ > 0. In the higher-dimensional case, this theorem
does not apply, but one can often reduce the characteristic equation to the two-
dimensional case using the properties for manipulation of matrices. Even when we
have a unique condition for the stability of the disease-free equilibrium, rewriting
this condition in the form of a reproduction number can often be done in more than
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one way. It is typically expected that the expression for the reproduction number
should satisfy the following conditions.

The reproduction number should:

• Be nonnegative for nonnegative parameter values;
• Be zero if there is no transmission;
• Be interpretable as the number of secondary infections.

5.2.1 Examples in Which the Jacobian Reduces to a 2×2 Matrix

As a first higher-dimensional example, we consider the SIRS model with carrier
stage (5.3). The disease-free equilibrium for that model is given as E0 = (Λ

μ ,0,0,0),
where the variables are arranged in the same way as the equations in the system.
Computing the Jacobian at the disease-free equilibrium gives

J =

⎛
⎜⎜⎝

−μ −qβ S∗ −β S∗ ρ
0 qβ S∗− (η + γ + μ) β S∗ 0
0 η −(α + μ) 0
0 γ α −(μ +ρ)

⎞
⎟⎟⎠ , (5.9)

where S∗ = Λ/μ . If we consider |J −λ I| = 0, we can expand the matrix in terms
of the first column. This will give an eigenvalue λ1 = −μ . Then we can ex-
pand the remaining matrix around the last column. This will give an eigenvalue
λ2=− (μ +ρ). The remaining two eigenvalues are the eigenvalues of the following
matrix:

J1 =

(
qβ S∗− (η + γ + μ) β S∗

η −(α + μ)

)
. (5.10)

Now we can apply the usual conditions that guarantee that the eigenvalues of J1

have negative real part. In particular, we want TrJ1 < 0 and DetJ1 > 0. The second
inequality gives −[qβ S∗− (η + γ +μ)](α +μ)−ηβ S∗ > 0. This condition gives a
reproduction number in the form

R0 =
qβ S∗

η + γ + μ
+

ηβ S∗

(η + γ + μ)(α + μ)
.

We notice that the condition R0 < 1 implies both TrJ1 < 0 and DetJ1 > 0. There-
fore, if R0 < 1, the disease-free equilibrium is locally asymptotically stable. If
R0 > 1, the disease-free is unstable. There are multiple ways to rewrite the inequal-
ity DetJ1 > 0 as a reproduction number, but the expression above is preferred, be-
cause it has a clear interpretation as the number of secondary cases. To see this, first
we notice that the reproduction number consists of the sum of two terms. The first
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term gives the number of secondary infections produced by one carrier, and the
second term gives the number of secondary infections produced by an infectious
individual. Since qβ SC is the incidence of a carrier, the number of secondary in-
fections that one carrier will produce in an entirely susceptible population per unit
of time is qβ S∗. The time units spent in the carrier compartment is 1/(η + γ + μ).
Hence, the first term gives the number of secondary infections produced by a carrier
in an entirely susceptible population during its lifetime as a carrier. Similarly, β SI is
the incidence of an infected individual. Hence, the number of secondary infections
that one infectious individual will produce in an entirely susceptible population per
unit of time is β S∗. The number of time units spent in the carrier compartment is
1/(α +μ). The newly infected individual becomes a carrier, and the fraction of car-
riers that survive the carrier stage and become infected is η/(η+γ+μ). We see that
the second term gives the number of secondary infections produced by an infectious
individual in an entirely susceptible population during its lifetime as infectious.

5.2.2 Routh–Hurwitz Criteria in Higher Dimensions

For many higher-dimensional models, the Jacobian computed at the disease-free
equilibrium cannot be reduced to a 2×2 matrix. The characteristic polynomial then
has degree three or higher. In this case, the reproduction number can be obtained
from the constant term. Whether the reproduction number is greater or less than 1
determines the sign of the constant term. Nonetheless, we still need tools that give
necessary and sufficient conditions for the eigenvalues to have negative real parts.
These conditions are given by the Routh–Hurwitz criterion, which is stated in the
following theorem:

Theorem 5.1 (Routh–Hurwitz Criteria). Consider the nth-degree polynomial with
real constant coefficients

P(λ ) = λ n + a1λ n−1 + · · ·+ an−1λ + an.

Define n Hurwitz matrices using the coefficients ai of the characteristic polynomial:

H1 = (a1) H2 =

(
a1 1
a3 a2

)
H3 =

⎛
⎝a1 1 0

a3 a2 a1

a5 a4 a3

⎞
⎠

and

Hn =

⎛
⎜⎜⎜⎜⎜⎝

a1 1 0 0 · · · 0
a3 a2 a1 1 · · · 0
a5 a4 a3 a2 · · · 0
...

...
...

... · · · ...
0 0 0 0 · · · an

⎞
⎟⎟⎟⎟⎟⎠
,
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where a j = 0 if j > n. All roots of the polynomial P(λ ) are negative or have negative
real part if and only if the determinants of all Hurwitz matrices are positive:

DetHj > 0, j = 1, . . . ,n.

For n = 2, the Routh–Hurwitz criterion simplifies to a1 > 0 and a1a2 > 0. We
note that a3 = 0 in H2. These conditions are equivalent to a1 > 0 and a2 > 0 and
are analogous to the conditions we applied before: TrJ < 0 and DetJ > 0. The
Routh–Hurwitz criteria for polynomials are given in Table 5.1. A necessary but not

Table 5.1 Routh–Hurwitz criteria

n Coefficient signs Additional conditions

2 a1 > 0, a2 > 0 –
3 a1 > 0, a2 > 0, a3 > 0 a1a2 > a3

4 a1 > 0, a2 > 0, a3 > 0, a4 > 0 a1a2a3 > a2
3 +a2

1a4

5 a1 > 0, a2 > 0, a3 > 0, a4 > 0, a1a2a3 > a2
3 +a2

1a4,
a5 > 0 (a1a4 −a5)(a1a2a3 −a2

3 −a2
1a4)> a5(a1a2 −a3)

2 +a1a2
5

sufficient condition for the roots of the polynomial P(λ ) to be negative or have
negative real part is that all coefficients be strictly positive. This is required in the
column labeled Coefficient signs in Table 5.1.

We use the Routh–Hurwitz criterion to derive the reproduction number for the
SEIR model with asymptomatic stage (5.2). The disease-free equilibrium in that
model is given by E0 = (S∗,0,0,0,0), where S∗ =Λ/μ . The Jacobian at the disease-
free equilibrium is

J =

⎛
⎜⎜⎜⎜⎝

−μ 0 −β S∗ −qβ S∗ 0
0 −(η + μ) β S∗ qβ S∗ 0
0 pη −(α + μ) 0 0
0 (1− p)η 0 −(γ + μ) 0
0 0 α γ −μ

⎞
⎟⎟⎟⎟⎠ . (5.11)

Expanding the determinant of the characteristic equation |J − λ I| = 0 by the first
column and then by the last column, we obtain two of the eigenvalues of J: λ1 =−μ
and λ2 = −μ . The remaining three eigenvalues are the eigenvalues of the 3× 3
matrix

J1 =

⎛
⎝−(η + μ) β S∗ qβ S∗

pη −(α + μ) 0
(1− p)η 0 −(γ + μ)

⎞
⎠ . (5.12)

The characteristic equation takes the form
∣∣∣∣∣∣
−(η + μ +λ ) β S∗ qβ S∗

pη −(α + μ +λ ) 0
(1− p)η 0 −(γ + μ +λ )

∣∣∣∣∣∣= 0.
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Expanding the determinant, we have

(η + μ +λ )(α + μ +λ )(γ + μ +λ )
−(1− p)ηqβ S∗(α + μ +λ )− pηβ S∗(γ + μ +λ ) = 0. (5.13)

This leads to the following cubic equation in λ :

P(λ ) := λ 3 + a1λ 2 + a2λ + a3 = 0,

where the coefficients are the following expressions of the parameters:

a1=α +μ +γ +μ +η +μ ,
a2=(α +μ)(η +μ)+(α +μ)(γ +μ)+(γ +μ)(η +μ)−(1− p)ηqβ S∗− pηβ S∗,
a3=(α +μ)(η +μ)(γ +μ)−(μ +α)(1− p)ηqβ S∗−(γ +μ)pηβ S∗.

The conditionR0 < 1 should be equivalent to the condition a3 > 0. Hence, we define
R0 as follows:

R0 =
(1− p)ηqβ S∗

(η + μ)(γ + μ)
+

pηβ S∗

(α + μ)(η + μ)
.

It is easy to see that the condition a3 > 0 is equivalent to the condition R0 < 1. Fur-
thermore, if R0 > 1, then a3 < 0. Since limλ→∞ P(λ ) = ∞, the equation P(λ ) = 0
has a real positive solution, and the disease-free equilibrium is therefore unstable.
It remains to see that if R0 < 1, the disease-free equilibrium is locally asymptoti-
cally stable. In particular, we have to show that in this case, the equation P(λ ) = 0
has only negative roots or roots with negative real part. To see this, we use the
Routh–Hurwitz criteria for dimension three. The Routh–Hurwitz conditions for sta-
bility for dimension three are listed in Table 5.1. We see that from the condition
R0 < 1, it follows that a3 > 0. Clearly a1 > 0. The conditionR0 < 1 also gives (η +
μ)(γ + μ) > (1− p)ηqβ S∗ and (α + μ)(η + μ)> pηβ S∗. These two inequalities
imply that a2 > 0. Finally, we need to show that a1a2 > a3. Since (η +μ)(γ +μ)>
(1− p)ηqβ S∗ and (α + μ)(η + μ)> pηβ S∗, we have that a1a2 > (η + μ)(γ + μ)
(α + μ). On the other hand, it is clear that a3 < (η + μ)(γ + μ)(α + μ). Conse-
quently,

a1a2 > (η + μ)(γ + μ)(α + μ)> a3.

The Routh–Hurwitz criterion then implies that the disease-free equilibrium is lo-
cally asymptotically stable if R0 < 1. Mathematically, the above definition of R0

is sound. To be sound epidemiologically, the reproduction number should be inter-
pretable as the number of secondary cases. To see this, first notice that the repro-
duction number is a sum of two terms. The first term gives the number of secondary
infections of asymptomatic individuals produced by one asymptomatic individual.
Indeed, qβ S∗ is the number of newly exposed individuals generated by one asymp-
tomatic individual per unit of time in an entirely susceptible population. A fraction
(1− p)η/(η + μ) survives the exposed stage and progresses to the asymptomatic
stage. One asymptomatic individual remains asymptomatic and infects other indi-
viduals as asymptomatic for 1/(γ + μ) units. Hence,
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Ra =
(1− p)ηqβ S∗

(η + μ)(γ + μ)

is the number of secondary infections that one asymptomatic individual will produce
in an entirely susceptible population during its lifespan as asymptomatic. Similarly,
β S∗ is the number of newly exposed individuals generated by one infectious indi-
vidual per unit of time in an entirely susceptible population. A fraction pη/(η +μ)
survives the exposed stage and progresses to the infectious stage. One infectious
individual remains infectious to susceptible individuals for 1/(α +μ) units. Hence,

Rs =
pηqβ S∗

(η + μ)(α + μ)

is the number of secondary infections that one symptomatic infectious individual
will produce in an entirely susceptible population during its lifespan. Finally, R0 =
Ra +Rs.

5.2.3 Failure of the Jacobian Approach

The Jacobian approach works well for models in which the necessary and sufficient
conditions for stability of the Jacobian can be reduced to a single condition. We saw
this in the case that the Jacobian can be reduced to a 2× 2 matrix. The fact that the
trace is negative is either automatically satisfied or follows from the requirement
that R0 < 1, or that the determinant be positive. That, unfortunately, is not always
the case. In some cases, the fact that the trace is negative is a completely indepen-
dent condition, and it is not automatic, nor it does follow from the condition that the
determinant should be positive. This situation occurs predominantly in models with
host heterogeneities. For instance, problems with defining the reproduction number
via the Jacobian approach will occur if the model has male and female susceptible
individuals, or the pathogen is spreading in several genetically distinct host popula-
tions.

To illustrate the difficulties with defining the reproduction number via the Ja-
cobian approach, we consider the wild bird–domestic bird avian influenza model
above. The system is given in Eq. (5.8). The disease-free equilibrium in that system
is given by E0 = (S∗w,0,S∗d ,0), where S∗w = Λw/μw and S∗d = Λd/μd , and the vari-
ables are ordered as in the system. The Jacobian at the disease-free equilibrium is
given by

J =

⎛
⎜⎜⎝

−μw −β11S∗w 0 −β12S∗d
0 β11S∗w − (μw +αw) 0 β12S∗d
0 −β21S∗d −μd β22S∗d
0 β21S∗d 0 β22S∗d − (μd +αd)

⎞
⎟⎟⎠ . (5.14)
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This Jacobian has two obvious eigenvalues: λ1 =−μw and λ2 =−μd . The remain-
ing eigenvalues are the eigenvalues of the 2× 2 matrix

J1 =

(
β11S∗w − (μw +αw) β12S∗d

β21S∗d β22S∗d − (μd +αd)

)
. (5.15)

The conditions that eigenvalues of this matrix are negative or have negative real part
are that the trace be negative and the determinant be positive, that is,

β11S∗w − (μw +αw)+β22S∗d − (μd +αd)< 0,

(β22S∗d − (μd +αd))(β11S∗w − (μw+αw))−β12S∗wβ21S∗d > 0. (5.16)

The second inequality implies that β11S∗w − (μw +αw) and β22S∗d − (μd +αd) must
have the same sign but does not imply that they both need to be negative. If we
assume that they are both negative, then the first inequality holds, but the second
may or may not hold. It does not seem obvious how to define R0 for this Jacobian
so that inequalities (5.16) are both valid.

5.3 The Next-Generation Approach

The idea for the next-generation approach rests on the observation that R0 is char-
acterized by regarding the infection transmission as producing offspring in an epi-
demiological sense, that is, giving birth to a new infected individual. In that sense,
the infection process can corresponded to a demographic process with consecutive
generations of infected individuals. If subsequent generations are growing in size,
that signifies an epidemic. The growth factor per generation then gives the potential
for growth. The mathematical characterization of this factor is R0. For compartmen-
tal models of ordinary differential equations, where the traits are taken into account
in discrete categories, one can define a matrix that relates the number of newly in-
fected individuals in the various categories in consecutive generations. This matrix
is called the next-generation matrix and was introduced by Diekmann and Heester-
beek in 1990 [54]. The reproduction numberR0 is then defined as the spectral radius
of the next-generation matrix.

Several techniques have been developed to derive the next-generation matrix
from compartmental models. We introduce these techniques below and present a
number of examples to illustrate their application.

5.3.1 Van den Driessche and Watmough Approach

This method consists in a technique for the derivation of the next-generation matrix
from ordinary differential equation compartmental models for disease transmission.



5.3 The Next-Generation Approach 105

We will divide the compartments into two broad categories: infected compartments
and noninfected (healthy) compartments. A compartment is called an infected com-
partment if the individuals in that compartment are infected. Compartments where
individuals are infected but not infectious (such as latent individuals) are also among
the infected compartments. The remaining compartments in which the individuals
are not infected are the noninfected compartments. Assume that there are n infected
compartments and m noninfected compartments, so the entire ordinary differential
equation model has m+ n dependent variables. Let x be the vector of dependent
variables in the infected compartments, and let y be the vector of variables in the
noninfected compartments. We have x ∈ Rn and y ∈ Rm. The method below was
introduced in [159]. We then proceed with the following steps:

1. First, we arrange the equations so that the first n components of the ODE sys-
tem correspond to the infected compartments. Thus, we write the original ODE
system as

x′i = fi(x,y), i = 1, . . .n,

y′j = g j(x,y), j = 1, . . . ,m. (5.17)

2. Second, we split the right-hand side in the infected compartments in the follow-
ing way:

x′i = Fi(x,y)−Vi(x,y), i = 1, . . . ,n,

y′j = g j(x,y), j = 1, . . . ,m, (5.18)

where

• Fi(x,y) is the rate of appearance of new infections in compartment i;
• Vi(x,y) incorporates the remaining transitional terms, namely births, deaths,

disease progression, and recovery.

We note that this decomposition in infected and noninfected compartments as
well as the decomposition into F and V may not be unique. Different decom-
positions may correspond to different interpretations of the disease process and
may lead to somewhat different expressions of the reproduction number. The
decomposition should satisfy the following properties:

• Fi(0,y) = 0 and Vi(0,y) = 0 for y ≥ 0 and i = 1, . . . ,n. The first condition
says that all new infections are secondary infections arising from infected
hosts. The second condition says that there is no immigration of susceptible
individuals into the disease compartments.

• Fi(x,y)≥ 0 for all x,y ≥ 0.
• Vi(x,y) ≤ 0 whenever xi = 0, for i = 1, . . . ,n. Each component Vi represents

the net outflow of a compartment and must give inflow only (that is, be nega-
tive) if the compartment is empty.

• ∑n
i=1Vi(x,y)≥ 0 for all x,y≥ 0. The total outflow of all infected compartments

is positive.
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3. Assume that the disease-free system

y′ = g(0,y)

has a unique disease-free equilibrium E0 = (0,y0) such that all solutions with
initial conditions of the form (0,y) approach (0,y0) as t → ∞. Determine the
disease-free equilibrium E0.

4. Determine the matrices F and V with components

F =

[
∂Fi(0,y0)

∂x j

]
and V =

[
∂Vi(0,y0)

∂x j

]
.

These matrices appear from the linearization of the system (5.18) around the
disease-free equilibrium. It can be shown that

∂Fi(0,y0)

∂y j
=

∂Vi(0,y0)

∂y j
= 0

for every pair (i, j). This implies that the linearized equations for the infected
compartments x while computed at the disease-free equilibrium are decoupled
from the remaining equations. The linearized system for the infected compart-
ments can be written as

x′j = (F −V )x,

where the F and V matrices are defined above.
5. The next-generation matrix is defined as

K = FV−1

and
R0 = ρ(FV−1),

where ρ(A) denotes the spectral radius of A.

Definition 5.1. The spectral radius of a matrix A is defined as the maximum of the
absolute values of the eigenvalues of A:

ρ(A) = sup{|λ | : λ ∈ σ(A)} ,

where σ(A) denotes the set of eigenvalues of A.

It can be shown that V is a nonsingular M-matrix.

Definition 5.2. A matrix A is called an M-matrix if:

• A has the Z-pattern, that is, the off-diagonal elements of A are nonpositive.
• The inverse of A exists and has nonnegative elements: A−1 ≥ 0.

Since V is an M-matrix, V−1 ≥ 0, that is, V−1 has only nonnegative entries. Since
F also has only nonnegative entries, the next-generation matrix K = FV−1 is also
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nonnegative. That implies that the next-generation matrix has its spectral radius as
an eigenvalue (by the Perron–Frobenius theorem), and there are no other eigenvalues
with larger modulus. This largest positive eigenvalue gives R0. Hence,

The reproduction number R0 is computed as the largest positive eigen-
value of the next-generation matrix.

Furthermore, it can be shown that the reproduction number thus defined has
the usual mathematical properties expected from a quantity called the reproduction
number, that is, if R0 < 1, the disease-free equilibrium is locally asymptotically
stable; otherwise, it is unstable. The disease-free equilibrium is locally asymptoti-
cally stable if all eigenvalues of the matrix F −V have negative real part, that is, the
spectral bound of the matrix F −V is negative.

Definition 5.3. The spectral bound of a matrix A is given by the maximum real part
of all eigenvalues, that is,

m(A) = sup{Re λ : λ ∈ σ(A)} .

The correspondence between the spectral bound of the linearized matrix F −V and
the spectral radius of the next-generation matrix FV−1 is given in the following
theorem:

Theorem 5.2. We have the following equivalent statements:

• m(F −V)< 0 if and only if ρ(FV−1)< 1;
• m(F −V)> 0 if and only if ρ(FV−1)> 1.

Depending on the interpretation of the disease processes in the model, the next-
generation approach can result in a number of decompositions into matrices F and
V , and consequently, the next-generation matrix is usually not unique. Alternative
next-generation matrices result in different expressions for the reproduction num-
ber R0. Often, the expressions for the reproduction number obtained from the next-
generation approach are different from the expressions obtained from the Jacobian
approach. All these different definitions of R0 lead to different values for the repro-
duction number, although all values of R0 are always simultaneously greater than
one or smaller than one. The advantage of the next-generation approach is that it
can lead to a threshold quantity, a reproduction number, even when the Jacobian ap-
proach fails. For instance, the next-generation approach will give an R0 for model
(5.8). The disadvantage of the next-generation approach is that the reproduction
number obtained through this technique is often hard to interpret as the number of
secondary cases generated by one infectious individual.
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5.3.2 Examples

In this subsection, we discuss a number of examples that showcase the strengths and
weaknesses of the next-generation approach.

5.3.2.1 A Model of a Vector-Borne Disease

The first example that we consider here is the model of a vector-borne disease with
waning immunity that we first introduced at the end of Chap. 4. We include the
model here for reference. Let Sv and Iv be respectively the susceptible and infected
vectors. Furthermore, if I is the number of infected humans, the equations for the
vector dynamics are given by

S′v = Λv − paSvI − μvSv,

I′v = paSvI − μvIv, (5.19)

where p is the probability of transmission given a bite of a susceptible vector on an
infectious human, and a is the vector biting rate. Furthermore, μv denotes the vector
death rate. The total population size of the vector satisfies

N′
v = Λv − μvNv,

and it is asymptotically constant. Let limt Nv(t) = Nv. The model for the host is an
SIRS epidemic model, where S are the susceptible humans, I the infected humans,
and R the recovered humans:

S′ = Λ − qaSIv− μS+ γR,

I′ = qaSIv− (μ +α)I,

R′ = αI − (μ + γ)R, (5.20)

where μ is the host natural death rate, Λ is the host birth rate, α is the recovery
rate, and γ is the rate of loss of immunity. If γ = 0, then the model is one with
permanent immunity. The parameter q is the probability of transmission given a bite
of an infected vector on a susceptible human. The total host population size satisfies
the equation

N′ = Λ − μN,

and it is asymptotically constant; that is, limt→∞ N(t) =N. The reproduction number
that we computed for this model using the Jacobian approach is given by

R0 =
paNvqaN
μv(μ +α)

.
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This reproduction number has a clear interpretation as the number of secondary
cases one infectious host individual will produce in an entirely susceptible host pop-
ulation. To see this, notice that

• paSv is the number of secondary infections of vectors by one infected host indi-
vidual per unit of time.

• paNv is the number of secondary infections of vectors by one infected host indi-
vidual per unit of time in an entirely susceptible vector population.

• 1/(μ +α) is the lifespan of an infected host individual. Hence,

RH =
paNv

(α + μ)

is the number of secondary infections of vectors one infected host individual
will produce in an entirely susceptible vector population during its lifespan as
infectious.

• Similar reasoning gives that

Rv =
qaN
μv

is the number of secondary infections of hosts one infected vector will produce
in an entirely susceptible host population during its lifespan as infectious.

• The product RHRv gives the number of secondary infections one infective host
will produce in an entirely susceptible host population during its lifespan as in-
fectious, that is, it gives R0.

We see that R0 defined as the productRHRv has a clear interpretation as the number
of secondary infections. Now we apply the next-generation approach to compute the
reproduction number. We recall that system (5.19)–(5.20) has a unique disease-free
equilibrium: E0 = (Nv,0,N,0,0), where Nv and N are the susceptible vector and
host populations in the absence of infection. The infected compartments are Iv and
I, ordered (Iv, I). The nonlinear terms with new infection F and the outflow term
V are given by

F =

(
paSvI
qsSIv

)
and V =

(
μvIv

(α + μ)I

)
. (5.21)

This gives the following linearized matrices F and V , computed at the disease-free
equilibrium:

F =

(
0 paNv

qsN 0

)
and V =

(
μv 0
0 (α + μ)

)
. (5.22)

Since V is diagonal, inverting V is straightforward:

V−1 =

⎛
⎜⎝

1
μv

0

0
1

(α + μ)

⎞
⎟⎠ . (5.23)
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Hence, the next-generation matrix is

K = FV−1 =

⎛
⎜⎝

0
paNv

α + μ
qaN
μv

0

⎞
⎟⎠=

(
0 RH

Rv 0

)
. (5.24)

We see that the entries of the next-generation matrix are RH , the number of sec-
ondary infections that one infected host produces in an entirely susceptible vector
population during its lifespan as infective, and Rv, the number of secondary infec-
tions that one infected vector produces in an entirely susceptible host population
during its lifespan as infective. The reproduction number of the vector–host system
is then given by the principal eigenvalue of the next-generation matrix K. Consider-
ing |K −λ I|= 0 gives the following equation for the eigenvalues of K:

λ 2 −RHRv = 0.

Hence, the next-generation reproduction number is given by

RNG
0 =

√
RHRv.

We see that the reproduction number obtained via the Jacobian approach R0 is the
square of the reproduction number obtained via the next-generation approach:

R0 = (RNG
0 )2.

Only R0 gives the number of secondary infections that one infective host individual
will produce in an entirely susceptible host population during its lifespan as infec-
tive. The concept of the next-generation approach is different. It defines the repro-
duction number as the number of secondary infections generated per stage. Because
the vector-borne disease transmission processes involves two stages, host→ vector
transmission and vector→ host transmission, the reproduction number should re-
flect the average number of secondary infections for each of the transmission stages,
whether the initial infective individual is a human or a vector. Thus, the geometric
mean of the two secondary infection numbers is used for RNG

0 , and the total repro-
duction number is used for the two stages R0. Note that R0 is the square of the per
stage reproduction number RNG

0 . We note that we have

R0 > 1 iff RNG
0 > 1,

R0 = 1 iff RNG
0 = 1,

R0 < 1 iff RNG
0 < 1.

Because the quantity obtained as a threshold from the next-generation approach is
hard to interpret as the number of secondary cases, some researchers believe that it
should not be called a reproduction number.
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5.3.2.2 A Model with Treatment and Relapse

In this section, we consider the SEI model with treatment and relapse that we int-
roduced earlier through system (5.6). The model illustrates how one can obtain erro-
neous results if the processes that lead to new infections are not properly identified.
The ambiguity in that this particular model comes from the fact that individuals in
the infectious compartment get treated, and a proportion q move to the treated/re-
covered class, while a proportion p do not complete treatment and relapse to the
latent/exposed class. This causes an inflow in the compartment of latent individuals
that may be interpreted as new infections. Thus, we have two options: (1) View the
relapse term pr2I as new infections. (2) View the relapse term as existing infection.
We apply the next-generation approach under these two scenarios and obtain two
different reproduction numbers. It is customary in the mathematical epidemiology
literature to denote the reproduction number in the presence of a control strategy,
such as treatment, by Rc rather than R0. The infected compartments are E and I.
The disease-free equilibrium is given by (Λ

μ ,0,0,0), where the variables are ordered
as (S,E, I,T ).

View Relapse Term pr2I as New Infections

Under this scenario, the right-hand side in infection compartments E and I gives the
following F and V , where the relapse pr2I is viewed as new infections:

F =

(
β1SI/N +β2T I/N + pr2I
0

)
and V =

(
(μ +κ + r1)E

−κE +(r2 + μ)I

)
.

Evaluating the derivatives of F and V at the disease-free equilibrium leads to the
following matrices F and V :

F =

(
0 β1 + pr2

0 0

)
and V =

(
(μ +κ + r1) 0

−κ (r2 + μ)

)
.

(5.25)
One can use a computer algebra system to invert V :

V−1 =

⎛
⎜⎝

1
μ +κ + r1

0

κ
(μ +κ + r1)(μ + r2)

1
μ + r2

⎞
⎟⎠ .

We note that the matrix V is an M-matrix. It follows from the general theory that the
inverse of V should always have nonnegative elements. The next-generation matrix
is then given by

K = FV−1 =

⎛
⎝ κβ1 +κ pr2

(μ +κ + r1)(μ + r2)

β1 + pr2

μ + r2
0 0

⎞
⎠ .
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One of the eigenvalues of this matrix is 0. The other one, which gives the reproduc-
tion number, is

RNG1
c =

κβ1 +κ pr2

(μ +κ + r1)(μ + r2)
.

One can interpret this reproduction number as a sum of two quantities. The first one,

κβ1

(μ +κ + r1)(μ + r2)
, (5.26)

gives the number of secondary infections one infective individual will produce in an
entirely susceptible population during its lifespan. Indeed, β1S/N + β2T/N is the
number of secondary infections that one infectious individual will produce in a unit
of time. If the population is entirely susceptible, then S/N = 1, while T/N = 0. The
lifespan of an infectious individual is 1/(μ + r2). Hence,

β1

(μ + r2)

is the number of secondary infections produced by one infectious individual in an
entirely susceptible population during its lifespan. However, only a fraction κ/(μ +
κ+r1) survives the exposed period and moves to the infectious stage. Therefore, the
number of secondary infectious individuals produced by one infectious individual in
an entirely susceptible population during its lifespan is given by (5.26). The fraction

κ pr2

(μ +κ + r1)(μ + r2)

gives the fraction of infected individuals who relapse, survive the exposed period,
and become infectious again. This fraction does not give new infections. It is some-
what difficult to argue that if we turn off the transmission process, that is, if we as-
sume β1 = β2 = 0, then the reproduction number may still be positive, even though
in this case, the reproduction number is less than 1, and the disease will eventually
die out.

View Relapse Term pr2I as Existing Infections

Under this scenario, the right-hand side in infection compartments E and I gives
the following F and V , where the relapse pr2I is viewed as existing infections and
becomes a part of V :

F =

(
β1SI/N +β2T I/N
0

)
and V =

(
(μ +κ + r1)E − pr2I
−κE +(r2 + μ)I

)
.
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Evaluating the derivatives of F and V at the disease-free equilibrium leads to the
following matrices F and V :

F =

(
0 β1

0 0

)
and V =

(
(μ +κ + r1) −pr2

−κ (r2 + μ)

)
. (5.27)

Using a computer algebra system to invert V yields

V−1 =

⎛
⎜⎜⎝

μ + r2

(μ +κ + r1)(μ + r2)−κ pr2

pr2

(μ +κ + r1)(μ + r2)−κ pr2

κ
(μ +κ + r1)(μ + r2)−κ pr2

μ +κ + r1

(μ +κ + r1)(μ + r2)−κ pr2

⎞
⎟⎟⎠ .

We note that again, the matrix V is an M-matrix. The next-generation matrix is
given by

K =FV−1 =

⎛
⎝ κβ1

(μ +κ + r1)(μ + r2)−κ pr2

β1(μ +κ + r1)

(μ +κ + r1)(μ + r2)−κ pr2
0 0

⎞
⎠ .

One of the eigenvalues of this matrix is 0. The other one gives the reproduction
number in this case:

RNG2
c =

κβ1

(μ +κ + r1)(μ + r2)−κ pr2
.

Although the denominator involves a term of negative sign, it is not hard to see that
the denominator is positive, since p < 1. So the reproduction number this defined
is always nonnegative. The challenge here lies in the epidemiological interpretation
of RNG2

c . To interpret this reproduction number, we have to rewrite it in appropriate
form. We introduce the following proportions:

h1 =
κ

μ +κ + r2
and h2 =

pr2

μ + r2
. (5.28)

The fraction h1 gives the fraction of exposed individuals who survive the exposed
state and become infectious, and h2 is the fraction of infected individuals who re-
lapse to the exposed stage. Furthermore, we notice that we can rewrite the current
reproduction number as

RNG2
c =

β1κ
(μ +κ + r1)(μ + r2)

[
1

1− h1h2

]

=
β1κ

(μ +κ + r1)(μ + r2)
(1+ h1h2 + h2

1h2
2 + . . .).

(5.29)
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Hence, the reproduction number can be written as an infinite sum of reproduction
numbers:

RNG2
c =

∞

∑
n=0

Rn
c =

∞

∑
n=0

β1h1

μ + r2
hn

1hn
2,

where

Rn
c =

β1h1

μ + r2
hn

1hn
2

is the reproduction number of an individual who relapses exactly n times and goes
through the infectious stage exactly n+ 1 times. Indeed, for

R0
c =

β1h1

μ + r2
,

β1 is the number of secondary infections one infected individual will produce in
an entirely susceptible population per unit of time. An individual in the class I is
infectious for 1/(μ + r2) units of time. Of those who become infected and progress
to the exposed stage, only a fraction κ/(μ +κ + r1) survive the exposed class and
become infectious. Furthermore, in

R1
c =

β1h1

μ + r2
h1h2,

the number β1h1
μ+r2

gives the number of secondary infectious individuals that one in-
fectious individual will produce. A fraction h2 of them will survive the infectious
period and relapse to the exposed class, and a fraction h1 of those will survive the
exposed class and become infectious again. Thus, Rn

c gives the number of secondary
infections that one infected individual who will relapse exactly n times will produce
in an entirely susceptible population.

5.3.2.3 A Multihost Model

In this subsection, we consider the multihost model introduced in (5.8). We saw that
the Jacobian approach fails to produce a unique threshold condition that serves as
a necessary and sufficient condition for the stability of the disease-free equilibrium.
Here, we show that the next-generation approach leads to a reproduction number
derived as the principal eigenvalue of the next-generation matrix. The general theory
implies that this reproduction number serves as the usual necessary and sufficient
threshold condition for the stability of the disease-free equilibrium.

To apply the next-generation approach, we consider system (5.8). The infected
classes in this model are (Iw, Id), ordered as shown. The vector of new infections F
and outflow vector V are given by

F =

(
β11SwIw +β12SwId

β21SdIw +β12SdId

)
and V =

(
(μw +αw)Iw

(μd +αd)Id

)
.
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The disease-free equilibrium in this model is given by S∗w = Λw/μw, I∗w = 0, S∗d =
Λd/μd , and I∗d = 0. We take the derivatives of F and V and evaluate at the disease-
free equilibrium to obtain matrices F and V :

F =

(
β11S∗w β12S∗w
β21S∗d β22S∗d

)
and V =

(
(μw +αw) 0

0 (μd +αd)

)
.

Inverting V , we obtain the following next-generation matrix:

K =

⎛
⎜⎜⎜⎝

β11S∗w
μw +αw

β12S∗w
μd +αd

β21S∗d
μw +αw

β22S∗d
μd +αd

⎞
⎟⎟⎟⎠=

⎛
⎝R11 R12

R21 R22

⎞
⎠ .

We see that the next-generation matrix is a full-rank matrix, that is, a matrix of
rank two. Consequently, it will have two nonzero eigenvalues. Furthermore, the
next-generation matrix is a matrix of reproduction numbers. In particular, β11S∗w

μw+αw
gives the number of secondary infections that one infected wild bird will produce
in an entirely susceptible population of wild birds during its lifespan as infectious;
β12S∗w
μd+αd

gives the number of secondary infections that one infected domestic bird will
produce in an entirely susceptible population of wild birds during its lifespan as

infectious;
β21S∗d

μw+αw
gives the number of secondary infections that one infected wild

bird will produce in an entirely susceptible population of domestic birds during

its lifespan as infectious;
β22S∗d

μd+αd
gives the number of secondary infections that one

infected domestic bird will produce in an entirely susceptible population of domes-
tic birds during its lifespan as infectious. We denote these reproduction numbers by
R11, R12, R21, and R22. The reproduction number of the whole wild bird–domestic
bird system is given by the principal eigenvalue of the next-generation matrix K. The
reproduction number R0 is the larger root of the equation

(R11 −λ )(R22 −λ )−R12R21 = 0.

Hence, the reproduction number is given by

R0 =
R11 +R22 +

√
(R11 +R22)2 − 4(R11R22 −R12R21)

2
.

This reproduction number derived by the next-generation approach serves as a
threshold condition for the stability of the disease-free equilibrium, but it is diffi-
cult to interpret epidemiologically.
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A Special Case

The problem with the interpretation of R0 above may be resolved by assuming
that the transmission rates are separable. Suppose that the transmission rates are
products of the infectivity rate of infectious individuals and the susceptibility of
the susceptible individuals. In particular, if aw and ad are the susceptibilities of
susceptible wild and domestic birds respectively, and bw and bd are the infectivities
of the infected wild and domestic birds, then β11 = awbw, β12 = awbd , β21 = adbw,
and β22 = adbd . In this case, the determinant of the next-generation matrix is zero,
that is,

R11R22 =R12R21,

and the reproduction number is given by the sum of the reproduction number of an
infected wild bird in the wild bird population and the reproduction number of an
infected domestic bird in the domestic bird population:

R0 =R11 +R22.

5.3.3 The Castillo-Chavez, Feng, and Huang Approach

Another variation of the next-generation approach, introduced in [36], suggests that
we split the epidemic system into three groups of compartments: compartments of
noninfected individuals, compartments of infected but not infectious individuals
(such as exposed/latent individuals), and compartments of infectious individuals.
If the epidemic system has no compartments of infected but not infectious individu-
als, then this approach is somewhat similar to the previous one, although it does not
require us to decide which infections are new.

5.3.3.1 The Method

Let X ∈ Rr be the vector whose components are the susceptible, recovered, and
other classes of noninfected individuals. Let Y ∈ Rs be the vector of latent and other
stages that are infected but do not transmit the disease. Finally, let Z ∈ Rn be the
vector whose components are classes of infected individuals who are infectious and
transmit the disease. The epidemic system splits into three groups of equations:

X ′ = f (X ,Y,Z),

Y ′ = g(X ,Y,Z),

Z′ = h(X ,Y,Z). (5.30)

Let V0 = (X∗,0,0) be the disease-free equilibrium. We have

f (X∗,0,0) = g(X∗,0,0) = h(X∗,0,0) = 0.
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We make the following assumption:

h(X ,0,0) = 0 for every X ≥ 0.

The method is applied in the following steps:

• Linearize g(X∗,Y,Z) = 0 as a function of Y and Z; that is, neglect all higher-order
terms in Y and Z. The linearized equation takes the form

g1(X
∗,Y,Z) = 0,

and it is linear in Y and Z.
• Solve g1(X∗,Y,Z) = 0 in terms of Y :

Y = g̃(X∗,Z).

• Substitute Y in the function h to obtain the composite function

h(X∗, g̃(X∗,Z),Z).

• Take the Jacobian of this composite function with respect to the Z variables, and
evaluate it at Z = 0:

A = DZh(X∗, g̃(X∗,0),0).

• Rewrite the matrix A in the form A =M−D, where M ≥ 0, D > 0, and the matrix
D is diagonal. If m(A) is the spectral bound of A, and ρ(A) the spectral radius of
A, we have the following result:

Theorem 5.3. The following are equivalent:

1. m(A)< 0 if and only if ρ(MD−1)< 1.
2. m(A)> 0 if and only if ρ(MD−1)> 1.

This theorem says that ρ(MD−1) has the threshold properties of the reproduction
number.

• Define the basic reproduction number as the spectral radius of the matrix MD−1:

R0 = ρ(MD−1).

As a consequence of the theorem, we have that if R0 < 1, the disease-free equi-
librium is stable, while if R0 > 1, it is unstable.

5.3.3.2 An Example: The Treatment and Relapse Model

We consider the treatment and relapse model (5.6). With the van den Driessche
and Watmough approach, we obtained two possible reproduction numbers for that
system, and we argued that the second one is more sensible. It is interesting to
know what reproduction number will result from the Castillo-Chavez, Feng, Huang
method. We use model (5.6) to illustrate this latter method.
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First, we define the various groups of variables. In particular, we have X = (S,T ),
Y =(E), and Z =(I), where X , Y , and Z have the same meaning as before. We notice
that

h(X ,0,0) = 0.

Furthermore, the disease-free equilibrium is given by V0 = (Λ
μ ,0,0,0). As a first

step, we consider the equation g(X∗,Y,Z) = 0. We obtain

β1S∗I/N − (μ +κ + r1)E + pr2I = 0,

where N = S∗+E + I. Multiplying both sides of this equation by N, we have

β1S∗I− (μ +κ + r1)E(S
∗+E + I)+ pr2I(S∗+E + I) = 0.

We linearize this equation by neglecting the higher-order terms. The linearized equa-
tion becomes

β1S∗I− (μ +κ + r1)ES∗+ pr2IS∗ = 0.

Solving for E gives

E =
β1I+ pr2I
μ +κ + r1

=: g̃(X∗,Z).

The next step is replacing the expression for E in the function h(X∗,E, I). We obtain

h(X∗, g̃(X∗, I), I) =
κβ1I+κ pr2I

μ +κ + r1
− (r2 + μ)I.

Differentiating this function of I with respect to I and setting I = 0 to evaluate at the
disease-free equilibrium, we have

∂
∂ I

h(X∗, g̃(X∗,0),0) =
κβ1 +κ pr2

μ +κ + r1
− (r2 + μ).

Here, the matrix A consists of one element only:

A =

(
κβ1 +κ pr2

μ +κ + r1
− (r2 + μ)

)
.

Thus,

M =

(
κβ1 +κ pr2

μ +κ + r1

)

and D = (r2 + μ). Hence,

R0 = ρ(MD−1) =
κβ1 +κ pr2

(μ +κ + r1)(r2 + μ)
.

This means that we obtain the first version of the reproduction number, RNG1
0 .
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Problems

5.1. Congenital Malaria
Malaria is a vector-borne disease transmitted by mosquitoes. A percentage of the
pregnant women who are infected with malaria give birth to malaria-infected new-
borns. We consider the model of vector-borne disease with temporary immunity and
incorporate into it vertical transmission. The model for the vector is as before:

S′v = μv − paSvI− μvSv,

I′v = paSvI− μvIv, (5.31)

where the total population size of the vector is Sv+ Iv = 1. The model for the human
population incorporates the vertical transmission:

S′ = μ(S+σ I+R)− qaSIv− μS+ γR,

I′ = (1−σ)μI+ qaSIv− (μ +α)I,

R′ = αI− (μ + γ)R. (5.32)

The model for humans also assumes that the total human population is S+ I+R= 1.
The new parameter σ gives fraction of newborns that are healthy.

(a) Draw a flowchart of the model (5.31)–(5.32).
(b) Use the Jacobian approach to compute the basic reproduction number of the

model (5.31)–(5.32). Attempt to interpret R0 epidemiologically.
(c) Use the next-generation approach to compute the basic reproduction number of

the model (5.31)–(5.32). Attempt to interpret R0 epidemiologically.

5.2. SEIR Model with Asymptomatic Stage
Consider the SEIR model with asymptomatic stage (5.2).

(a) Use van den Driessche and Watmough next-generation approach to compute the
basic reproduction number. Interpret the expression for R0 epidemiologically.

(b) Use the Castillo-Chavez, Feng, and Huang next-generation approach to compute
the basic reproduction number. Interpret the expression for R0 epidemiologi-
cally.

5.3. SCIRS Model with Carrier Stage
Consider the SCIRS model given in (5.3).

(a) Use the Jacobian approach to determine the reproduction number and the stabil-
ity of the disease-free equilibrium. Interpret the expression for R0 epidemiolog-
ically.

(b) Use van den Driessche and Watmough next-generation approach to compute the
basic reproduction number. Interpret the expression for R0 epidemiologically, if
different from the above.

(c) Use the Castillo-Chavez, Feng, and Huang next-generation approach to compute
the basic reproduction number.
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5.4. SIQR Model Isolation
Consider the SIQR model given in (5.5).

(a) Use the Jacobian approach to determine the reproduction number and the stabil-
ity of the disease-free equilibrium. Interpret the expression for R0 epidemiolog-
ically.

(b) Use van den Driessche and Watmough next-generation approach to compute the
basic reproduction number. Interpret the expression for R0 epidemiologically, if
different from the above.

(c) Use the Castillo-Chavez, Feng, and Huang next-generation approach to compute
the basic reproduction number.

5.5. SI Model of Avian Influenza
Consider the SI model with wild and domestic birds given in (5.8).

(a) Use van den Driessche and Watmough next-generation approach to compute the
basic reproduction number. Can you interpret the expression for R0 epidemio-
logically.

(b) Use the Castillo-Chavez, Feng, and Huang next-generation approach to compute
the basic reproduction number.

(c) Take β11 = 0.0001, β22 = 0.0005, μw = 0.1, μd = 0.5, αw = αd = 365/10,Λw =
20000,Λd = 10000. Plot the reproduction number computed in part (a) as a
function of the cross-transmission rate β12 for various values of β21. How does
cross transmission affect the persistence of the disease?

5.6. Model with Quarantine and Isolation

(a) Based on the (5.5) model considered in this chapter, compose a model with quar-
antine, isolation, and exposed periods. Explain the meanings of the parameters.
Draw a flowchart of the model.

(b) Use van den Driessche and Watmough next-generation approach to compute the
basic reproduction number. Can you interpret the expression for R0 epidemio-
logically?

(c) Plot the reproduction number as a function of two variables: the quarantine rate
and the isolation rate. What epidemiological conclusions can you draw from this
plot?

5.7. HIV/AIDS Model with Treatment and Prevention
Consider a model of HIV/AIDS with treatment and prevention:

S′ = Λ − (1− p)
β1SI+β2ST +β3SA

N
− μS,

I′ = (1− p)
β1SI+β2ST +β3SA

N
− (μ +ρ +σ)I,

T ′ = ρI− (μ + γ)T,
A′ = σ I+ γT − (μ + d)A, (5.33)
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where S is the number of susceptible individuals, I is the number of HIV-infected
but not treated individuals, T is the number of HIV-infected but treated individuals,
and A is the number of individuals with AIDS. The meanings of the parameters
are as follows: p is the proportion protected by condom use, β1, β2, and β3 are the
transmission rates of the infected, treated, and AIDS individuals respectively, ρ is
the treatment rate, σ is the progression rate to AIDS without treatment, γ is the
progression rate to AIDS with treatment, and d is the disease-induced death rate.

(a) Draw a flowchart of the model.
(b) Use the Jacobian approach to determine the reproduction number and the stabil-

ity of the disease-free equilibrium. Interpret the expression for R0 epidemiolog-
ically.

(c) Use the van den Driessche and Watmough next-generation approach to compute
the basic reproduction number. Interpret the expression for R0 epidemiologi-
cally, if different from the above.

(d) Verify that R0 decreases with increasing p and ρ . Compute the critical fraction
of condom use pc so that R0(pc) = 1. Plot pc as a function of σ . Interpret what
you observe epidemiologically.



Chapter 6
Fitting Models to Data

6.1 Introduction

In the previous chapters, we have learned to develop both simple and complex
epidemic models and to perform some partial analysis on them, such as computing
the reproduction number. It has become clear that multiple models can be developed
to describe a particular epidemic. Which models are good, which are bad, and how
can we discriminate among them? Much of the answer to this question is in the
realm of statistics, but we will introduce some basic techniques here to address such
a question.

After composing a model, perhaps one of the most important steps is to com-
pare the model with data or perform what is often referred to as validation. Model
validation is the process of determining the degree to which a mathematical model is
an accurate representation of the real-world data [133]. An excellent introduction to
model validation can be found in [68]. In mathematics, validation is often not used
with the majority of models analyzed, which are never connected to data. Link-
ing our models to data is necessary, for it helps us not only to gain more confi-
dence in the model that we have created, but also to obtain realistic estimates of the
parameters.

In Chap. 2, we used data on influenza in an English boarding school to estimate
the parameters, so the number of cases predicted by an SIR model compared well
with the data. This example is a good illustration of how models can be connected
to data, but the approach taken relies heavily on the fact that an implicit solution to
the SIR model can be obtained. In Chap. 3, we fitted a number of single-equation
demographic models to the world population data, but we again used the fact that
the solutions to these models could be explicitly obtained. This is not the case with
most models that we create or encounter. In this chapter, we approach the problem
from a general perspective.

We assume that we have data in the form of a time series for one or more of the
classes in the model. Data could be given on the prevalence of the disease, as was
the example with influenza in the English boarding school; it may be given on the
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Fig. 6.1 Least-squares residuals. The red points are the given data points

incidence; and sometimes, it may be given on the number of recovered individuals.
We recall that curve-fitting or calibration is the process of identifying the parameters
of the model so that the solution best fits the data. What does it mean for a solution
to best fit the data? Clearly, ideally, we would like the solution to pass through all
the data points. This type of fit is called interpolation. However, interpolation is
not always the best approach to fit real data, since the data may contain errors, and
capturing every tiny change in them may be impractical. A better way to fit the
solution to the data is the least-squares approach. In the least-squares approach,
we assume that the time coordinates of the data are exact, but their y-coordinates
may be noisy or distorted. We fit the solution curve through the data (see Fig. 6.1)
so that the sum of the squares of the vertical distances from the data points to the
point on the curve is as small as possible. In particular, suppose we are fitting the
prevalence I(t), and we are given the data {(t1,Y1), . . . ,(tn,Yn)}. Then we consider
the sum-of-squares error:

SSE =
n

∑
j=1

(Yj − I(t j))
2.

The sum-of-squares error SSE is a function of the parameters of the model. So the
basic problem is to identify the parameters such that the SSE is as small as possible:

SSE −→ min .

Minimizing the SSE is an optimization problem with its own difficulties. Dif-
ferential equation epidemic models are typically nonlinear and cannot be solved
explicitly. Hence, the resulting minimization problem is also highly nonlinear. As
a result, in the general case, this problem is solved numerically with the use of
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computer algebra systems such as Mathematica, Matlab, and R. The code requires
two basic components: a differential equation solver and a minimization routine.
The minimization is typically performed iteratively. The user specifies initial par-
ameter values, and the computer solves the differential equations with those param-
eter values, evaluates the SSE, and improves the parameter values so that the SSE
is reduced. This process is repeated a number of times until the SSE no longer be-
comes smaller. One important difficulty is that the minimization process is local, so
depending on the initially specified parameter values, a minimum may occur for dif-
ferent sets of parameter values, and the minimal value of the SSE may be different.
In practice, it may be advisable to check several sets of initial parameter values and
use the smallest SSE obtained.

6.2 Fitting Epidemic Models to Data: Examples

In this section, we will consider a number of examples of fitting ODE epidemic
models to data. Of course, one interesting question is, where do the data come from?
There are several ways of acquiring epidemic data. First, a mathematician can work
with biologists or epidemiologists who can collect the data. This is typically possible
for limited datasets in limited locations. Comprehensive long-term datasets are usu-
ally collected by various health organizations such as the World Health Organization
(WHO), Centers for Disease Control and Prevention (CDC), and various founda-
tions. Because these datasets are often collected with taxpayer money, they are pub-
lic and can be obtained by requesting them from the health organization or perhaps
obtained online. For instance, if you go to the WHO Data and Statistics website
http://www.who.int/research/en/, there are a number of important diseases listed
with data and statistics about them. Suppose we are interested in the cholera epi-
demic that occurred in Haiti after the devastating earthquake of January 2010. The
central WHO website gives only the number of yearly cases by country. If we need
more resolution, if, for instance, we need monthly or weekly cases, we can google
“cholera data monthly.” We may find the data on the Pan American Health Organiza-
tion website http://new.paho.org/hq/images/Atlas IHR/CholeraHispaniola/atlas.html.
The third possible approach is to obtain the data from published articles. Data in ar-
ticles are often published as plots. Hence, if we want the actual coordinates, we need
to extract them from the plots. There are many routines that can be used to extract
values for the points in a plot. One is PlotDigitizer http://plotdigitizer.sourceforge.net.
Matlab also has capabilities to extract data values from a plot. To use Matlab, down-
load Matlab’s grabit.zip from the web and unzip it to obtain the Matlab file
grabit.m. Then follow the instructions at http://extractdata.blogspot.com/on how
to use it. This is the way we obtained the data on influenza in the English boarding
school.

http://www.who.int/research/en/
http://new.paho.org/hq/images/Atlas_IHR/CholeraHispaniola/atlas.html
http://plotdigitizer.sourceforge.net
http://extractdata.blogspot.com/
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6.2.1 Using Matlab to Fit Data for the English Boarding School

As described in Chap. 2, in January–February 1978, an epidemic of influenza
occurred in a boarding school in the north of England. The boarding school housed
a total of 763 boys, who were at risk during the epidemic. On January 22, three boys
were sick. The table below gives the number of boys ill on the nth day after January
22 (n = 1).

To fit with Matlab, we do not need to know the final size of the epidemic. Once
we have the data (Table 6.1), the first question that we have to answer is, what
model we should fit to the data? Since these are outbreak data, we need an epidemic

Table 6.1 Daily number influenza infected boys

Day No. infecteda Day No. infected

3 25 9 192
4 75 10 126
5 227 11 71
6 296 12 28
7 258 13 11
8 236 14 7

a Data taken from “Influenza in a Boarding School,” British Medical Journal, 4 March 1978

model without demography. As we discussed in Chap. 2, the SIR model without
demography is appropriate for this case. We recall the model:

S′(t) =−β S(t)I(t),
I′(t) = β S(t)I(t)−αI(t),

(6.1)

where we have omitted the recovered class.
The next question that we need to address is which model parameters we should

fit and which we should pre-estimate and fix. Potentially, we can fit α , β , and
the initial conditions—four parameters altogether. We can pre-estimate α from the
duration of infectiousness, and the two initial conditions from the given data. For
instance, we know from the data that I(3) = 25, and therefore S(3) = 738. The dur-
ation of infectiousness is 2–4 days, so we may take α = 0.3. Even if we plan to fit all
these parameters, pre-estimating what we can is useful with the initial guess of the
parameters. In addition, to derive the initial guesses for the remaining parameters
before using Matlab to fit, we may use Mathematica’s Manipulate command. In
Mathematica, we can fix S(3), I(3), and α to the above values and “manipulate” β
to obtain a good agreement with the data. Say we set the value β = 0.0025. With
these initial values, we may use Matlab to fit. Below is the Matlab code used for the
fitting.
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1 function BSFluFittingv1
2 % This function fits the first set of BSfludata to and ...

SIR model
3

4

5 clear all
6 close all
7 clc
8

9 load BSfludat.txt % loading data
10

11 format long % specifying higher precision
12

13 tdata = BSfludat(:,1); % define array with t-coordinates ...
of the data

14

15 qdata = BSfludat(:,2); % define array with y-coordinates ...
of the data

16

17 tforward = 3:0.01:14; % t mesh for the solution of the ...
differential equation

18

19 tmeasure = [1:100:1101]'; % selects the points in the ...
solution

20 % corresponding to the t values ...
of tdata

21

22

23 a = 0.3;
24 b = 0.0025; % initial values of parameters to be fitted
25

26

27

28

29

30

31 function dy = model_1(t,y,k) % DE
32

33

34 a = k(1); % Assignes the parameters in the ...
DE the current

35 % value of the parameters
36 b = k(2);
37

38

39 dy = zeros(2,1); % assigns zeros to dy
40

41 dy(1) = - b * y(1) * y(2); % RHS of ...
first equation

42 dy(2) = b * y(1) * y(2) - a * y(2); % RHS of ...
second equation

43

44

45 end
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46

47 function error_in_data = moder(k) % computing the error ...
in the data

48

49

50

51

52

53

54 [T Y] = ode23s(@(t,y)(model_1(t,y,k)),tforward,[738.0 ...
25.0]);

55

56 % solves the DE; output is ...
written in T and Y

57

58

59 q = Y(tmeasure(:),2); % assignts the y-coordinates of ...
the solution at

60 % at the t-coordinates of tdata
61

62

63

64 error_in_data = sum((q - qdata).ˆ2) %computes SSE
65

66 end
67

68

69

70 k = [a b]; % main routine; assigns initial values of ...
parameters

71

72

73 [T Y] = ode23s(@(t,y)(model_1(t,y,k)),tforward,[738.0 ...
25.0]);

74

75 % solves the DE with the initial values of ...
the parameters

76

77 yint = Y(tmeasure(:),2);
78

79 % assigns the y-coordinates of the solution ...
at tdata to yint

80

81 figure(1)
82 subplot(1,2,1);
83 plot(tdata,qdata,'r.');
84 hold on
85 plot(tdata,yint,'b-'); % plotting of solution and ...

data with initial
86 % guesses for the parameters
87 xlabel('time in days');
88 ylabel('Number of cases');
89 axis([3 14 0 350]);
90
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91

92

93

94 [k,fval] = fminsearch(@moder,k); % minimization routine; ...
assigns the new

95 % values of parameters ...
to k and the SSE

96 % to fval
97

98

99 disp(k);
100

101 [T Y] = ode23s(@(t,y)(model_1(t,y,k)),tforward,[738.0 ...
25.0]);

102 % solving the DE with the final ...
values of the

103 % parameters
104

105 yint = Y(tmeasure(:),2); % computing the y-coordinates ...
corresponding to the

106 % tdata
107

108 subplot(1,2,2)
109 plot(tdata,qdata,'r.');
110 hold on
111 plot(tdata,yint,'b-');
112 xlabel('time in days'); % plotting final fit
113 ylabel('Number of cases');
114 axis([3 14 0 350]);
115

116

117 end

We run the Matlab code above. It tells us that the original SSE is equal to
7.2 ∗ 104. After the optimization, the newly computed parameters are α = 0.465
and β = 0.00237. The new SSE is 4 ∗ 103. We can run the code, taking as an ini-
tial guess the parameters we computed in Chap. 2, and Matlab will improve on
those, too. In general, the use of computer algebra systems such as Mathematica
and Matlab is the best approach to obtain a good fit of the model solution to the
data. The newly computed value of α gives the duration of the infectious period
as 1/α = 2.15 days. This infectious period is meaningful, since infected students
showing symptoms were quarantined. We should always ask ourselves whether the
computed parameters have a sensible biological interpretation. If that is not the case,
we should refit, using upper and lower bounds for the parameters.

Using Mathematica’s NonlinearModelFit command, we fitted the model to
the data and obtained the same best-fitted parameters as Matlab. One advantage of
Mathematica’s NonlinearModelFit is that it can provide many types of statis-
tics that can help us judge the goodness of the fit. One such statistic is the residuals.
The residuals are defined as the differences between the y-coordinates of the data
points and the corresponding value of the solution. In particular,

residuals = {Yj − I(t j)| j = 1, . . . ,n}.
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The best-fitted solution with Mathematica and the data are plotted in Fig. 6.2(left).
The residuals are plotted in Fig. 6.2(right).

If the fit is good, the residuals should be randomly distributed. Examining the
residuals in Fig. 6.2(right), we can conclude that the fit is reasonably good. Mathe-
matica can also provide 95% confidence intervals. A 95% confidence interval (CI)
is an interval calculated from many observations, in principle different from data
set to data set, that 95% of the time will include the parameter of interest if the
experiment is repeated. The CI for the above fitting are [0.4257,0.5037] for α and
[0.0022099,0.00254] for β .
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Fig. 6.2 The left figure shows the fit of an SIR model with the English boarding school data.
The right figure shows the distribution of the residuals of the fit in the left figure. Residuals are
randomly distributed. Mathematica plots residuals in time starting from t = 1 rather than starting
from t = 3

6.2.2 Fitting World HIV/AIDS Prevalence

Human immunodeficiency virus (HIV) infection is a disease of the immune system
caused by the HIV virus. HIV is transmitted primarily via unprotected sexual
intercourse, contaminated blood transfusions, and from mother to child during preg-
nancy, delivery, or breastfeeding (vertical transmission). After entering the body, the
virus causes acute infection, which often manifests itself with flulike symptoms. The
acute infection is followed by a long asymptomatic period. As the illness progresses,
it weakens the immune system more and more, making the infected individual much
more likely to get other infections, called opportunistic infections, that are atypical
for healthy individuals. There is no cure or vaccine against HIV; however, antiretro-
viral treatment can slow the course of the disease and may lead to a near-normal life
expectancy.

Because people with HIV now live longer, even though the incidence of HIV is
declining, the number of individuals infected with HIV or having advanced-stage
AIDS is still slowly increasing worldwide. The United Nations, in their Millennium
Development Goals Report 2010, gives the number of people living with HIV [122]
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as well as the incidence and the number of deaths from HIV worldwide. We include
the prevalence data in Table 6.2.

Our main objective is to determine a model that can be fitted to the data. The sim-
plest HIV model is the SI epidemic model with disease-induced mortality. However,
this model does not fit the data well. The main reason for that, perhaps, is the fact
that a simple SI model has an exponentially distributed time spent in the infectious
stage, that is, the probability of surviving in the stage declines exponentially. That is
not very realistic for HIV, where the infectious stage is long and the duration is sub-
ject to significant variation. That requires that the distribution of the waiting time in
the infectious class have a nonzero mode. To incorporate this effect, a typical app-
roach is to use Erlang’s “method of stages.” This approach is primarily applied with
stochastic HIV models, but its deterministic variant requires the infectious period to
be represented as a series of k stages such that the durations of stay in each stage

Table 6.2 Prevalence (in millions) of HIV worldwide 1990–2011. 1990 gives t = 0

Year Time (in years) Prevalence Year Time (in years) Prevalence

1990 0 7.3 2001 11 29.0
1991 1 9.2 2002 12 30.0
1992 2 11.3 2003 13 30.8
1993 3 13.5 2004 14 31.4
1994 4 15.9 2005 15 31.9
1995 5 18.3 2006 16 32.4
1996 6 20.6 2007 17 32.8
1997 7 22.7 2008 18 33.4
1998 8 24.6 2009 19 33.3
1999 9 26.3 2010 20 34.0a

2000 10 27.8 2011 21 34.0a

a Other sources

are independent identically distributed exponential variables [79]. To this end, we
divide the infectious class I(t) into four subclasses: I1(t), I2(t), I3(t), I4(t) with an
exit rate γ . Individuals in all four stages are infectious and can infect susceptible
individuals S(t). Denote by I(t) the sum of all infectious classes:

I(t) = I1(t)+ I2(t)+ I3(t)+ I4(t).

We further assume that the force of infection λ (t) is nonmonotone and is given by

λ (t) = β e−αI(t)/N(t)I(t)/N(t),

where N(t) denotes the total population size:

N(t) = S(t)+ I1(t)+ I2(t)+ I3(t)+ I4(t).
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This force of infection is sensible for HIV, since as the infection spreads, it is likely
that the remaining susceptible individuals become more cautious about their con-
tacts and potential exposure to HIV, and the force of infection begins to decline.

The flowchart of the model is given in Fig. 6.3. The model becomes

S′(t) = Λ −λ (t)S(t)− μS(t),
I′1(t) = λ (t)S(t)− (γ + μ)I1(t),
I′2(t) = γI1(t)− (γ + μ)I2(t),
I′3(t) = γI2(t)− (γ + μ)I3(t),
I′4(t) = γI3(t)− (γ + μ)I4(t).

(6.2)

The last exit rate γ from the class I4 is considered to be disease-induced mortality.
To fit the model to the data, we first have to decide in what units to fit. The data are

given in millions, and as such, they are neither too large nor too small as numbers.
If the numbers we fit are too large or too small, the round-off errors may be large,
and the fit may be bad. Therefore, we need to use units that make our numbers
reasonable. Furthermore, we will fit in years. After we have decided on the units,
we have to decide which parameters to fit, and which to pre-estimate. This decision
may have significant impact on the fit. We decide to fix Λ and μ as well as the
initial values. The current natural mortality rate of humans can be taken to be 1/70.
Because the current world population size is 7 billion, that is, 7000 million, then if
we take that to be the equilibrium population, we have 7000 = Λ/μ . We estimate
that Λ = 100 million people per year. We further assume that in 1990, all individuals
infected with HIV were actually in class I1. Hence, S(0) = 6992.7 and I1(0) = 7.3
million people. We set the remaining initial conditions to zero. In this fitting, we
do not fit the initial conditions. We fit α , β , and γ . We fit both with Mathematica
and Matlab, but this time, the best-fitted parameters are slightly different. Matlab
obtains α = 260.4972, β = 0.334547, and γ = 0.339958755. The SSE = 0.47 with
these parameters. Mathematica’s best-fitted parameters with their standard errors

Table 6.3 Mathematica’s best-fitted parameters with standard errors and 95% CI

Parameter Estimate Standard error 95% Confidence interval

α 253.567 5.84757 [241.282,265.853]
β 0.332276 0.00298656 [0.326002,0.338551]
γ 0.349035 0.00700517 [0.334318,0.363753]

and 95% CI are given in Table 6.3. These results from Mathematica are obtained
when the initial values of the parameters are the results from Matlab α = 260, β =
0.33, and γ = 0.3399. The standard errors are small, so the parameters are well
identified. The fit obtained by Mathematica is shown in Fig. 6.4 together with the
residuals. The residuals do not look random, which suggests that a different model
might capture the shape of the data better. Nonetheless, the residuals are small, and
the fit is reasonably good. We interpret the best-fitted parameters. The only fitted
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Fig. 6.3 Flowchart of the HIV model
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Fig. 6.4 Left: the solution with the best-fitted parameters alongside the data for the HIV model.
Right: the residuals of the fit in the left figure

parameter that has biological meaning is γ , where 1/γ is the time spent in each of
the infectious classes. Since γ ≈ 0.34, it follows that 1/γ = 2.94. Hence, the time
spent in each class is approximately three years, which is reasonable.

6.3 Summary of Basic Steps

When you prepare to fit a mathematical model to data, think about the following
basic steps in the fitting process:

1. Examine your data. Are the values involved too large or too small? If yes, deter-
mine units that allow you to work with average-size numbers.
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2. Choose your model. Is your model sensible for the disease you are modeling?
Should your model include demography? Decide whether your data are epidemic
or endemic. What is the time span modeled?

3. Decide which model parameters to fit and which to pre-estimate and fix. Don’t
forget that the initial conditions for the differential equations are also in the
parameter set. Never fit more parameters than the number of data points.

4. Choose initial guesses for the parameters that will be fitted. Use biological sense
or prefit using Mathematica’s Manipulate.

5. Perform the fit. Plot the solution alongside the data and examine the fit. Does
the solution agree with the data? Plot the residuals. Are the residuals small and
random? If they are not random, you may need a better model.

6. Determine the best-fitted parameters. Interpret them biologically. Do they make
sense? If not, refit specifying upper and lower bounds for those parameters.

7. Determine the standard errors and 95% CI. Are they small? If they are not small,
that may mean that some of the parameters are unidentifiable. Refit, fixing some
more parameters.

There are a number of reference books and manuals that describe guidelines on
fitting models to data. Further information on this topic can be found in [119, 68].

6.4 Model Selection

In mathematics, the model is typically postulated. Assuming the model, further anal-
ysis and simulations are performed with it. The model is derived from first princi-
ples, but how do we know that the model is reasonable? One way to justify our
model is to confront it with data. If the model is reasonable and fits the data, then
we may accept that is a reasonable model to work with. However, given a biological
scenario, multiple models can be created. For instance, in modeling HIV, we can set
up a regular SI model, a regular SI model with vertical transmission, an SI model
with k stages of infectious individuals, where k can vary, and an SI model with k
stages and vertical transmission. We would like to know which model is the best
model, so that we may further work with it. If we are given data, we can confront
all models with the data and decide which model best describes the data.

Definition 6.1. Model selection is the task of selecting a mathematical model from
a set of candidate models, given data.

In model selection, we assume the data and look for the model that best describes
the data. A set of candidate models has to be determined by the researcher. All can-
didate models must be reasonable for the epidemiological scenario being modeled.
Once the set of candidate models has been selected, the mathematical analysis can
be performed to choose the best model. One way that comes first to mind to com-
pare the models is to arrange them by SSE. The model with the least SSE best fits
the data. However, it is well known that the more parameters we fit, the better we
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can capture the data, but the additional parameters we fit may not represent anything
useful. A good selection criterion must balance two points: (1) goodness of fit; (2)
simplicity (parsimony) of the model. In other words, a good selection technique
must choose the simplest model that best fits the data. There are many statistical
criteria that may be used to decide on the best model. Some of these are the Akaike
information criterion (AIC), the Bayesian information criterion (BIC), and cross-
validation. A good book on model selection is [31]. One of the most frequently used
selection criteria is the AIC [4], which we introduce here.

6.4.1 Akaike Information Criterion

The Akaike information criterion (AIC) is a criterion for model selection that com-
pares multiple competing models, taking into account both the SSE and the number
of parameters being fitted.

Definition 6.2. The Akaike information criterion (AIC) is a measure of the relative
goodness of fit of a mathematical model.

The AIC does not tell us, however, whether a models is reasonable or whether it
fits the data. Computation of the AIC is not difficult. Mathematica’s
NonlinearModelFit will compute the AIC automatically. It is computed us-
ing the number of fitted parameters (including the initial conditions if they are being
fitted) and the SSE.

For a given model, the AIC is calculated as

AIC = n

[
ln

(
SSE

n

)]
+ 2k, (6.3)

where n is the number of data points in the data set, k is the number of
parameters fitted plus one, and SSE is the least-squares error.

Given a set of candidate models, we compute the AIC for each model and each
fit. The best model is the one with the smallest AIC. The AIC is smaller if the SSE
is smaller, that is, the model fits the data well, and smaller if k is smaller, that is, the
number of parameters fitted is smaller. Hence, the AIC penalizes the fitting of too
many parameters and discourages overfitting.

The AIC has its foundations in information theory. If we assume that the data are
generated by some process P that is unknown and we have J candidate models to
represent the process M1 . . .MJ , the AIC is a measure of the loss of information
by representing the actual process P with the model M j. Hence, the model M j

that minimizes the information loss, that is, has the smallest AIC, should represent
the unknown process. The AIC, however, is only an estimate of the information
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loss, and as an estimate, it is valid only asymptotically, that is, only if the number
of parameters fitted is much smaller than the number of data points in the data set.
As a rule of thumb, the data set is large enough for the AIC to be used if

n
K

≥ 40, (6.4)

where K is the number of parameters in the most complex model among the compet-
ing models, and n as before is the number of data points in the data set. If (6.4) does
not hold, then a modified version of the AIC, called the corrected AIC, or AICc, is
recommended. The AICc was first derived by Hurvich and Tsai [77].

For a given model, the AICc is calculated as

AICc = n

[
ln

(
SSE

n

)]
+ 2k+

2k(k+ 1)
n− k− 1

, (6.5)

where n is the number of data points in the data set, k is the number of
parameters fitted plus one, and SSE is the least-squares error.

Mathematica’s NonlinearModelFit will also compute the AICc automati-
cally. Formula (6.5) suggests that the AICc includes a greater penalty for the num-
ber of parameters fitted. Since the AICc converges to the AIC as n gets large, it is
recommended that the AICc be used instead of the AIC regardless of the size of the
sample [32]. Using the AIC instead of the AICc when the sample size is not much
larger than the number of parameters fitted increases the risk of selecting a model
with too many parameters, that is, it increases the risk of overfitting. However, the
AIC or the AICc must be used consistently for all models in the model set.

The AIC and AICc are of arbitrary scale and are difficult to interpret. There-
fore, different measures are considered in the decision process of which models are
supported by the data and which are not. Once the model with the minimal AIC
(or AICc) is selected, then we can compute the distance of the remaining models
to the model with the minimal AIC (or AICc). If AICmin is the AIC or AICc of the
model with the minimal AIC, then

The distances of the AIC or AICc for any model to the model with mini-
mal AIC or AICc is defined as

Δ j = AIC j −AICmin, (6.6)

where AIC j is the AIC or AICc of the jth model M j, and AICmin is the
AIC or AICc of the model with minimal AIC.
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The values Δ j are important for interpreting which of the competing models in
the model set have relative support in the data. A practical rule of thumb that can be
applied is the following [31]:

• Models having Δ j ≤ 2 have substantial support in the data.
• Models having 4 ≤ Δ j ≤ 7 have considerably less support in the data;
• Models having Δ j > 10 have essentially no support in the data.

Another useful measure of the support a model has by the data are the Akaike
weights, wj . The Akaike weights [31] give the probability of a model, given the data
and the models in the model set.

The Akaike weight of the ith model Mi is defined as follows:

wi =
e−Δi/2

∑J
j=1 e−Δ j/2

. (6.7)

We compute the Akaike weights for all models in the model set. The Akaike
weights must sum to one: ∑J

i=1 wi = 1. If the best-fitted model has an Akaike weight
wi > 0.9, then robust inferences can be made using just the best-fitted model. If none
of the models has a weight wi > 0.9, then several models might need to be used for
multimodel inferences. See [31] for information on multimodel inference.

We note that both the Δ j’s and the Akaike weights provide support for one model
over other models in the model set, but that support depends on the model set and
the data at hand.

6.4.2 Example of Model Selection Using AIC

To illustrate model selection, we will use the data for the influenza epidemic in the
English boarding school. We postulate six models in our candidate model set for
model selection. We want to check whether our preferred fitted SIR model without
demography in Sect. 6.2.1 is better or worse then other candidate models. We call the
fitted SIR model without demography model number one, M1. Because influenza
has an exposed period of several days, it is sensible to consider an SEIR model.
We define the model M2 as (we omit the recovered class)

M2 :

⎧⎨
⎩

S′(t) =−β S(t)I(t),
E ′(t) = β S(t)I(t)−αE(t),
I′(t) = αE(t)− γI(t).

(6.8)
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We will fit model M2 two ways. First we will fix all initial conditions and fit β , α ,
and γ . Then, we increase the number of parameters that we are fitting and we fit not
only β , α , and γ , but also the initial number of exposed individuals E(3). Another
common class of individuals in the spread of influenza is the class of asymptomatic
individuals. Asymptomatic individuals do not get treated but spread the disease at
a much lower rate. The coefficient of reduction is denoted by q. The model with
asymptomatic individuals, called model M3, takes the form

M3 :

⎧⎪⎪⎨
⎪⎪⎩

S′(t) =−β S(t)(I(t)+ qA(t)),
E ′(t) = β S(t)(I(t)+ qA(t))− (α+ k)E(t),
I′(t) = αE(t)− γI(t),
A′(t) = kE(t)−νA(t),

(6.9)

where k is the rate at which individuals progress to the asymptomatic stage and ν
is the recovery from the asymptomatic class. In the first fitting with this model, we
fit α , β , γ , q, k, and ν , that is, six parameters. In the second fitting, we fit α , β , γ ,
A(3), q, k, and ν . We take S(3) = 763− 25.0− 20.0−A(3), where we have taken
E(3) = 20.0. As a result of the fitting, we obtain that the estimate of k is very small,
so k ≈ 0. This suggests that in this case of influenza, there were no asymptomatic
individuals. In general, these two fits are not good, since the standard errors and
the confidence intervals are very large. We may be overfitting by fitting so many
parameters (see Table 6.4). The last model that we will consider in the candidate
models set includes all stages as before plus an isolated class denoted by Q(t). The
model takes the form

M4 :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S′(t) =−β S(t)(I(t)+ qA(t)),
E ′(t) = β S(t)(I(t)+ qA(t))− (α+ k)E(t),
I′(t) = αE(t)− (γ + d)I(t),
A′(t) = kE(t)−νA(t),
Q′(t) = dI(t)−ρQ(t),

(6.10)

where d is the rate of isolating the infectious individuals and ρ is the recovery rate
from the isolated class. Parameters fitted in this model are α , β , γ , d, q, k, ρ and ν ,
a total of eight parameters.

Table 6.4 Model selection table

Model Fitted parameters SSE AIC AICc Δ AICc wi

M1 α ,β 4028.26 75.79 78.79 0 0.61
M2 α ,β ,γ 2952.62 74.07 79.78 0.99 0.37
M2 α ,β ,γ ,E(3) 3077.81 76.56 85.56 6.77 0.021
M3 6 param.a 4077.19 83.94 111.94 33.15 3.85*10−8

M3 A(3) and 6 param.a 3083.26 82.59 130.59 51.8 3.44*10−12

M4 8 param.b 3166.42 84.91 174.91 96.12 8.17*10−22

a α , β , γ , q, k, and ν
b α , β , γ , d, q, k, ρ , and ν
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We fitted the models using Mathematica. Mathematica computes the SSE. We use
formula (6.3) to compute the AIC. Since the ratio of the number of data points to
the number of parameters fitted is less than forty, we need to actually use the AICc.
We use formula (6.5) to compute the AICc for each model. The results are listed in
Table 6.4. Notice that the model with the lowest AIC is M2, with three parameters
fitted, while the model with the lowest AICc is M1. Further, we compute ΔAICc
for all models. Following the rule of thumb, we conclude that models M1 and M2

with three parameters fitted have substantial support in the data; model M2 with
four parameters fitted has considerably less support in the data, and models M3 and
M4 have no support in the data. This does not mean that models M3 and M4 are
bad models but it simply means that M3 and M4 cannot be used to interpret and
make inferences from this specific set of data. Looking at the Akaike weights, we
see that the probability of model M1 is 0.61, the probability of model M2 with three
parameters is 0.37, about twice smaller. The sum of the probabilities of these two
models is over 0.9, so these are the models that must be used for inference. The
remaining models have no support in the data.

6.5 Exploring Sensitivity

Estimation of parameters and initial conditions through fitting is often subject to
variation. The pre-fixed parameters are selected from a range, and consequently, the
fitted parameters may vary in a range. Varying the parameters varies the output of
the model, but which parameters have the most significant impact on that output?

Definition 6.3. The goal of sensitivity analysis is to decide qualitatively which
parameters are most influential in the model output.

Sensitivity analysis can be performed on a dynamical system or on static quanti-
ties such as the reproduction number or equilibrial prevalence.

6.5.1 Sensitivity Analysis of a Dynamical System

To perform sensitivity analysis of a dynamical system, we assume that the differen-
tial equations depend on a parameter p:

y′i(t) = fi(y1, . . . ,yn, t, p) i = 1, . . . ,n.

The parameter may be one of the coefficients in the system or one of the initial
conditions. The solution of the initial value problem can be thought of as a function
of both the time variable t and the parameter p: yi(t, p), i = 1, . . . ,n.

Definition 6.4. A parameter is called sensitive if small changes in the value of the
parameter produce large changes in the solution of the differential equations.
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To consider the change in the solution with respect to the parameter, we look at the
derivative of the solution with respect to the parameter. Thus, we introduce the new
variables

Zi =
∂yi

∂ p
i = 1, . . . ,n.

The differential equations for the variables Zi are obtained as follows:

Z′
i =

∂Zi

∂ t
=

∂
∂ t

(
∂yi

∂ p

)
=

∂
∂ p

(
∂yi

∂ t

)
.

Hence, we have

Z′
i =

∂
∂ p

fi(y1(t, p), . . . ,yn(t, p), t, p).

Applying the chain rule, we have

Z′
i =

∂ fi

∂ p
+

n

∑
j=1

∂ fi

∂y j

∂y j

∂ p
.

Therefore, the differential equations for the Zi’s become

Z′
i =

∂ fi

∂ p
+

n

∑
j=1

∂ fi

∂y j
Z j. (6.11)

To complete the system for the variables Zi, we have to derive the initial conditions.
The quantity Zi(0) is the following limit:

Zi(0) = lim
Δ p→0

yi(0, p+Δ p)− yi(0, p)
Δ p

.

There are two distinct cases:

Case 1 The parameter p is not an initial condition. Then yi(0, p+Δ p)−yi(0, p) =
0 for all i. Hence, Zi(0) = 0 for i = 1, . . . ,n.

Case 2 The parameter p is an initial condition for yk(0) = p. In this case, as in
Case 1, we can derive that Zi(0) = 0 for all i �= k. For i = k, yk(0, p+Δ p)−
yk(0, p) = Δ p. Hence the limit is equal to 1. Therefore, Zk(0) = 1.

To determine the sensitivity of the solution with respect to parameter p, we solve
the system

y′i = fi(y, t, p), i = 1, . . . ,n,
yi(0) = yi

0,

Z′
i =

∂ fi

∂ p
+

n

∑
j=1

∂ fi

∂y j
Z j, i = 1, . . . ,n,

Zi(0) = 0,
Zk(0) = 1, if yk(0) = p.

(6.12)
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In the approach above, we vary only one parameter. This is the case when we
perform local sensitivity analysis.

Definition 6.5. Local sensitivity analysis is a sensitivity analysis that examines the
change in the output values that result from change in one input value (parameter).
Global sensitivity analysis examines the change in the output values that result from
changes in all parameter values over the parameters’ ranges.

To perform global sensitivity analysis we have to expand the system above to
include all parameter values. This is clearly a very computationally intensive prob-
lem, particularly for large models. A good review of local and global sensitivity
analysis for differential equations is given in [53].

Instead of solving the differential equation system (6.12), a common approach
in practice to local sensitivity is to fix all parameters except p and solve the differ-
ential equation model for several values of the parameter p. We took this approach
ininvestigating the sensitivity with respect to α and β for the best-fitted model, the
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Fig. 6.5 Left: sensitivity of the solution of the SIR model with respect to the transmission coeffi-
cient β . Right: sensitivity of the solutions of the SIR model with respect to the recovery rate α

SIR model, for the case of influenza in the English boarding school. The best-fitted
parameters were α ≈ 0.46 and β ≈ 0.00237. We fix α at 0.46 and we vary β with
values β = 0.001,0.002,0.004. The corresponding graphs are plotted in Fig. 6.5.

Figure 6.5 shows that the prevalence is quite sensitive to the variation in the trans-
mission rate β . As β decreases, the peak becomes less pronounced and moves to the
right. For β small enough, there will be no peak, and the solution will decrease di-
rectly to zero. To obtain the right plot in Fig. 6.5, we fix β at 0.00237 and vary α
for values α = 0.36,0.46,0.56. The figure shows that the prevalence is also sen-
sitive to α . When α increases, the peak becomes less pronounced, and the width
of the graph becomes smaller, that is, the epidemic reaches a lower maximum and
disappears faster.
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6.5.2 Sensitivity and Elasticity of Static Quantities

In epidemiology, important static quantities depend on the parameters of the differ-
ential equation model. Such quantities are the reproduction number, the equilibrial
prevalence, and the equilibrial incidence. Once we estimate the parameters from the
fitting, we can compute the values of these important static quantities. More impor-
tantly, we often would like to know how these quantities respond to changes in the
parameters. The changes in the output quantity Q with respect to a parameter p is
measured by the derivative of this quantity with respect to the parameter.

The sensitivity of quantity Q with respect to the parameter p is given by

S p
Q =

∂Q
∂ p

.

This definition of sensitivity is local because the sensitivity is computed while
all parameters, including parameter p, are kept at their estimated values. Despite its
simplicity, however, this approach does not fully explore the input space, since it
does not take into account the simultaneous variation of input parameters. Another
drawback of this definition of sensitivity is that it depends strongly on the magnitude
of p and the quantity Q. In this respect, a much more useful concept is elasticity,
which gives the percentage change in the quantity Q with respect to the percentage
change in the parameter p. In particular,

The elasticity of quantity Q with respect to the parameter p is given by

ε p
Q =

∂Q
∂ p

p
Q

≈ %ΔQ
%Δ p

.

The sensitivity or elasticity of Q with respect to p is positive if Q is increasing
with respect to p, and negative if Q is decreasing with respect to p.

6.5.2.1 Computing Elasticities of R0 for the HIV Model

In Sect. 6.2.2, we introduced a model of HIV, and we fitted it to world prevalence
data. We will illustrate computing the elasticities by computing the elasticities of
R0 in the model (6.2). We first perform analysis of the model (6.2) to derive R0.
The disease-free equilibrium of this model is E0 = (Λ

μ ,0,0,0,0). The Jacobian at
the disease-free equilibrium is given by
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J(E0) =

⎛
⎜⎜⎜⎜⎝

−μ −β −β −β −β
0 β − (μ + γ) β β β
0 γ −(μ + γ) 0 0
0 0 γ −(μ + γ) 0
0 0 0 γ −(μ + γ)

⎞
⎟⎟⎟⎟⎠ . (6.13)

To obtain the characteristic polynomial and the eigenvalues, we subtract λ along the
diagonal. We see that one of the eigenvalues is −μ . The other eigenvalues are the
solutions of the following characteristic polynomial:

(μ + γ +λ )4 = β (μ + γ +λ )3 +β γ(μ + γ +λ )2 +β γ2(μ + γ +λ )+β γ3.

Dividing by the left-hand side, we obtain 1 = G (λ ), where

G (λ ) =
β

(μ + γ +λ )
+

β γ
(μ + γ +λ )2 +

β γ2

(μ + γ +λ )3 +
β γ3

(μ + γ +λ )4 .

We define the reproduction number R0 = G (0), that is,

R0 =
β

(μ + γ)
+

β γ
(μ + γ)2 +

β γ2

(μ + γ)3 +
β γ3

(μ + γ)4 . (6.14)

If R0 > 1, then the characteristic equation has a real positive root. This is the case
because G (0) =R0 > 1, and G (λ ) is a decreasing function of λ , assumed real, with
limλ→∞ G(λ ) = 0. If, however, R0 < 1, then all roots have negative real parts. To
see this, assume that there is λ with nonnegative real part: ℜλ ≥ 0. Then

|G (λ )| ≤ β
|μ + γ +λ | +

β γ
|μ + γ +λ |2 +

β γ2

|μ + γ +λ |3 +
β γ3

|μ + γ +λ |4
≤ G (ℜλ )≤ G (0) =R0 < 1. (6.15)

Hence, |G (λ )|< 1, and such a λ cannot be a solution to the characteristic equation.
Interpreting the reproduction number is simple. The first term gives the number

of secondary cases generated by an I1 infectious individual; the second term has two
components: γ/(μ + γ) gives the probability of moving to class I2, and β/(μ + γ)
gives the number of secondary cases generated by infectious individuals in class I2.
The interpretation of the remaining two terms is similar.

In computing the elasticities, it is not hard to see that

εβ
R0

= 1.

Computing the derivative of the reproduction number with respect to γ gives us

∂R0

∂γ
=− 4β γ3

(μ + γ)5 =−8.9272.
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Furthermore, the elasticity of R0 with respect to γ is

εγ
R0

=
−4γ4

(μ + γ)4 + γ(μ + γ)3 + γ2(μ + γ)2 + γ3(μ + γ)
=−0.9.

The fact that εγ
R0

= −0.9 means that 1% increase in γ will produce 0.9% decrease
in R0. The elasticities suggest that the magnitudes of the impacts of β and γ on the
reproduction number of HIV are approximately the same.

Problems

6.1. Influenza in an English Boarding School
The West Country English Boarding School housed 578 boys. An epidemic of
influenza began on January 15, 1978. The epidemiological scenario is described
in [139]. The numbers of cases by day are given in Table 6.5, where day 1 is Jan-
uary 16, 1978. Write a computer program to fit an SIR model to the data. Plot the

Table 6.5 Influenza in an English boarding school

Time (in days) Number cases Time Number cases Time Number cases

1 2 11 53 21 13
2 5 12 55 22 14
3 10 13 58 23 11
4 12 14 – 24 12
5 14 15 52 25 9
6 15 16 42 26 7
7 – 17 40 27 5
8 31 18 30 28 4
9 42 19 23 29 2
10 45 20 19 30 1
– – – – 32 1

solution with the data and the residuals.

6.2. Mumps in Iowa
The United States experienced a multistate mumps outbreak involving predomi-
nantly Midwest states in 2006. The outbreak in Iowa began in the week of January
28, 2006, and continued until the week of September 30, 2006. The cases in Iowa
are given in Table 6.6∗.

Write a computer program to fit an SIR model to the data. Plot the solution with
the data and the residuals.

6.3. Influenza in an English Boarding School
The West Country English Boarding School housed 578 boys. An epidemic of
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Table 6.6 Mumps in Iowa, 2006

Time (in weeks) Number cases Time (in weeks) Number cases Time (in weeks) Number cases

Jan. 28 13 Apr. 22 255 July 15 5
Feb. 5 6 Apr. 29 194 July 22 2
Feb. 11 7 May 6 117 July 29 3
Feb. 18 4 May 13 97 Aug. 5 3
Feb. 25 31 May 20 64 Aug. 12 1
Mar. 4 27 May 27 19 Aug. 19 3
Mar. 11 45 June 3 28 Aug. 26 4
Mar. 18 81 June 10 14 Sep. 2 1
Mar. 25 118 June 17 7 Sep. 9 1
Apr. 1 236 June 24 9 Sep. 16 2
Apr. 8 292 July 1 7 Sep. 23 1
Apr. 15 251 July 8 9 Sep. 30 1

∗ Data taken from http://www.idph.state.ia.us/adper/common/pdf/mumps (no longer active)

influenza began on January 15 1978. The epidemiological scenario is described in
[139]. The numberd of cases by day are given in the Table 6.5, where day 1 is Jan-
uary 16, 1978.

(a) Write a computer program to fit an SEIR model to the data. Plot the solution
with the data and the residuals.

(b) Hold all parameters fixed and plot the solutions for three different values of the
transmission rate β , recovery rate from the exposed class, and the recovery rate
from the infectious class. What conclusions can you draw?

6.4. Fitting the Number of People Living with HIV in the UK
The table below gives the number of people living with HIV in the UK.

Table 6.7 Number of people living with HIV in the UK

Year Number cases Year Number cases Year Number cases

1990 21,000 1997 29,000 2004 61,000
1991 22,000 1998 31,000 2005 66,000
1992 23,000 1999 35,000 2006 72,000
1993 23,000 2000 39,000 2007 77,000
1994 24,000 2001 43,000 2008 82,000
1995 25,000 2002 51,000 2009 85,000
1996 26,000 2003 55,000 2010 91,000

(a) Fit model (6.2) to the data above. Recall that Λ and μ have to be pre-fixed in
accord with the population of the UK.

(b) Investigate the sensitivity of R0 with respect to γ . What conclusions can you
draw?

http://www.idph.state.ia.us/adper/common/pdf/mumps
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(c) Hold β and μ fixed and plot I1(t), I2(t), I3(t), I4(t), and I(t) for three different
values of γ .

(d) Hold γ and μ fixed and plot I1(t), I2(t), I3(t), I4(t), and I(t) for three different
values of β .

6.5. Fitting the Number of People Living with HIV in the UK
Table 6.7 gives the number of people living with HIV in the UK. Consider the
following HIV model with treatment [129]:

S′(t) = Λ −λ (t)S(t)− μS(t),

I′(t) = λ (t)S(t)− (μ +α + γ)I(t),
T ′(t) = αI(t)− (μ +ρ)T(t),
A′(t) = γI(t)+ρT(t)− (μ + d)A(t), (6.16)

where

λ (t) =
β1I(t)+β2T (t)+β3A(t)

N(t)
,

and N(t) = S(t)+ I(t)+T(t)+A(t) is the total population size, α is the treatment
rate, γ is the rate of progression of untreated individuals to AIDS, ρ is the rate of
progression of treated individuals to AIDS, d is the disease-induced death rate.

(a) Fit the above model to the data in Table 6.7 by fitting βi, i = 1,2,3, α , γ , ρ , and
d. Pre-fix Λ and μ by determining the population of the UK.

(b) Perform sensitivity analysis of I(t) and T (t) with respect to βi, i = 1,2,3, α , γ ,
and ρ .

(c) Compute R0. Perform elasticity analysis of R0 with respect to βi, i = 1,2,3, α ,
γ , and ρ .

6.6. Fitting the Incidence of TB in the United States
After a mild increase in tuberculosis (TB) cases in the United States in the late
1980s and the beginning of the 1990s, the incidence (number of new cases per year)
of TB has been steadily declining. Table 6.8 gives the TB incidence starting in 1990.

Table 6.8 Number of new cases of TB in USAa

Year Number cases Year Number cases Year Number cases

1990 25,701 1998 18,287 2006 13,732
1991 26,283 1999 17,500 2007 13,286
1992 26,673 2000 16,309 2008 12,905
1993 25,107 2001 15,945 2009 11,537
1994 24,205 2002 15,055 2010 11,182
1995 22,727 2003 14,835 2011 10,528
1996 21,210 2004 14,499 2012 –
1997 19,751 2005 14,068 2013 –

a http://www.cdc.gov/tb/statistics/reports/2010/default.htm

http://www.cdc.gov/tb/statistics/reports/2010/default.htm
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(a) Fit the following TB model (6.17) to the data above:

S′(t) = Λ −β1SI/N− μS,

E ′(t) = β1SI/N+β2TI/N − (μ +κ + r1)E + pr2I,

I′(t) = κE − (r2 + μ)I,
T ′(t) = r1E + qr2I −β2T I/N − μT, (6.17)

where T (t) is the number of treated individuals, I(t) is the number of individuals
with active TB, E(t) is the number of exposed, r1 is the treatment rate of exposed
individuals, r2 is the treatment rate of infectious individuals, and κ is the progression
to the infectious state. We assume that p+ q = 1.
Hint: (1) You should be fitting the incidence β1SI/N + β2T I/N to the data. (2)
You may fit the initial conditions or take them as follows: S(0) = 290,000,000,
E(0) = 25,000, I(0) = 25,000, T (0) = 22,000.

(b) Investigate the sensitivity of I(t) with respect to β1, β2, κ , r1, r2, p, and q.
Interpret your findings epidemiologically.

(c) Compute R0 (see Chap. 5). Investigate the elasticity of R0 with respect to the
parameters.

6.7. Fitting the Incidence of Malaria in India
The new cases of malaria in India were slowly increasing in the second half of
the 1980s. In 1997, India implemented new control strategies, and the number of
malaria cases has been decreasing ever since. Table 6.9 gives India’s population
along with malaria cases for the period 1985–2011.

Table 6.9 Number of new cases of malaria in Indiaa (in millions)

Year Population Number cases Year Population Number cases

1985 726 1.864 1999 948.66 2.28
1986 737 1.792 2000 970 2.032
1987 753.55 1.66 2001 984.58 2.085
1988 766.92 1.85 2002 1025.56 1.84
1989 769.32 2.05 2003 1027.16 1.87
1990 784.42 2.019 2004 1044.74 1.915
1991 808.1 2.12 2005 1007.2 1.82
1992 824.14 2.13 2006 1064 1.77
1993 833.89 2.21 2007 1089.8 1.51
1994 861.73 2.51 2008 982 1.53
1995 878.96 2.988 2009 943.93 1.56
1996 905.71 3.04 2010 1024.66 1.6
1997 884.72 2.66 2011 1059.8 1.31
1998 907.3 2.223 2012

ahttp://www.searo.who.int/entity/malaria/data/en/

http://www.searo.who.int/entity/malaria/data/en/
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(a) Fit the logistic equation to India’s population size:

P′(t) = rP(t)

(
1− P(t)

K

)
.

(b) Fit the following malaria model to the data:

C′(t) = b(1− ξ H(t− τ))(P(t)−C(t)− I(t))y(t)− (ν+ μ)C(t),
I′(t) = νC(t)− (λ P(t)+ γP(t)H(t− τ)+ μ)I(t),
y′(t) = ρ(1− ξ H(t− τ))(1− y(t))I(t)− (d+ηH(t − τ))y(t), (6.18)

where C(t) is the number of symptomatic cases, I(t) is the number of infectious
individuals, and y(t) is the proportion of mosquitoes. The function H(t − τ) is the
Heaviside function. Pre-estimate the value of τ so that τ gives the middle of 1997
(mid-1997). In mid-1997, after the new measures were implemented, b and ρ de-
creased while d increased.
Hint: You must fit the incidence b(1− ξ H(t − τ))(P(t)−C(t)− I(t))y(t) to the
number of new cases of malaria. It may be easier if you take ξ and η equal to zero,
then fit the remaining parameters to the 1985–1996 data. Fix those parameters at
their values and fit ξ and η to the 1997–2011 data [106].

6.8. Model Selection with Influenza in Boarding School Data
For the data in Table 6.5, compose SIR, SEIR, SIQR, SEIQR, SEIAR models, where
Q is the number of isolated and A is the number of asymptomatic. Fit the five models
to the data and perform model selection using AIC and Akaike weights.

6.9. Model Selection with HIV Data
For the data in Table 6.7, compose five models with one through five possible infec-
tious classes (see the model with four infectious classes in (6.2)). Fit the five models
to the data and perform model selection using AIC and Akaike weights.



Chapter 7
Analysis of Complex ODE Epidemic Models:
Global Stability

7.1 Introduction

In Chap. 2, we introduced the basic SIR and SIS models and developed tools and
techniques for their analysis. In Chap. 5, we saw that incorporating more realism
into the models leads to more complex epidemic models with multiple compart-
ments. The mathematical tools developed for the global analysis of the SIS and SIR
models are unsuitable for models of dimension three or greater. For instance, the
Dulac criterion, used to rule out oscillations, and Bendixon’s theorem can be ap-
plied only to planar systems and are not valid in higher dimensions. In this chapter,
we develop new tools that are applicable to any number of dimensions.

Much of the local analysis that we performed for the SIR model can be per-
formed for higher-dimensional systems. That is, we again have to look at equilib-
ria, which are classified into a disease-free equilibrium and endemic equilibria, and
then consider the linearization around those equilibria by evaluating the Jacobian J.
For higher-dimensional systems, the principle for showing stability, namely that all
eigenvalues of the characteristic equation

|J−λ I|= 0

have negative real parts or are negative, still holds. This is guaranteed by the
Hartman–Grobman theorem [155] and by the fact that zero is an asymptotically
stable solution of a linear system with constant coefficients if and only if all eigen-
values have negative real part [28]. These results hold for multidimensional systems
of ODEs.
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7.2 Local Analysis of the SEIR Model

We illustrate the analysis, which is somewhat more elaborate, on the SEIR model.
The SEIR model is another classical epidemiological model, which incorporates a
compartment of exposed individuals, E(t), where the individuals are infected but
not infectious. With S(t) denoting the number of susceptible individuals, I(t) the
number of infectious individuals, and R(t) the number of recovered individuals, the
model takes the form

S′ = Λ −β SI− μS,

E ′ = β SI− (μ + γ)E,
I′ = γE − (μ +α)I,

R′ = αI − μR. (7.1)

To determine the equilibria of this model, we set the derivatives equal to zero and
solve the system

0 = Λ −β SI− μS,

0 = β SI− (μ + γ)E,
0 = γE − (μ +α)I,

0 = αI − μR. (7.2)

This system has a disease-free equilibrium, which is obtained by setting I = 0, E0 =
(Λ

μ ,0,0,0). To find the endemic equilibria, we solve for E in the third equation,

E =
μ +α

γ
I,

and we substitute into the second equation to obtain

β S =
(μ + γ)(μ +α)

γ
.

Hence

S =
(μ + γ)(μ +α)

β γ
.

From the first equation, we have

I =
Λ
β S

− μ
β

=
Λγ

(μ + γ)(μ +α)
− μ

β
=

μ
β
(R0 − 1).

We define the basic reproduction number as

R0 =
Λβ γ

(μ + γ)(μ +α)μ
. (7.3)
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The reproduction number is positive; it is zero if there is no transmission, that is,
β = 0, and it can be interpreted as the number of secondary cases. In particular, we
can see that Λ/μ is the number of susceptible individuals in a disease-free popula-
tion, βΛ/(μ(μ +α)) is the number of secondary cases produced by one infectious
individual during its lifespan as infectious, and γ/(μ + γ) is the fraction of new
infections that survive the exposed period and actually become infectious.

From the reproduction number, we have the following result:

Proposition 7.1. The system has a unique disease-free equilibrium E0. If R0 > 1,
the system also has a unique endemic equilibrium E ∗ = (S∗,E∗, I∗,R∗), where

S∗ =
(μ + γ)(μ +α)

β γ
, E∗ =

μ +α
γ

μ
β
(R0 −1), I∗ =

μ
β
(R0 −1), R∗ =

α
β
(R0 −1).

To investigate the local stability, we consider the Jacobian of the system (7.1).
We have

J =

⎛
⎜⎜⎝

−β I− μ 0 −β S 0
β I −(μ + γ) β S 0
0 γ −(μ +α) 0
0 0 α −μ

⎞
⎟⎟⎠ . (7.4)

To determine the local stability of the disease-free equilibrium, we evaluate the Ja-
cobian at E0:

J(E0) =

⎛
⎜⎜⎝

−μ 0 −β S 0
0 −(μ + γ) β S 0
0 γ −(μ +α) 0
0 0 α −μ

⎞
⎟⎟⎠ . (7.5)

Subtracting λ along the main diagonal, we see that the characteristic equation
|J(E0)−λ I|= 0 has two roots equal to −μ . The remaining roots are the solution to
the following equation:

∣∣∣∣−(μ + γ +λ ) β S
γ −(μ +α +λ )

∣∣∣∣= 0. (7.6)

This leads to the following quadratic characteristic equation:

(μ + γ +λ )(μ +α +λ )−β γ
Λ
μ

= 0.

From here, it is not hard to see that this equation has one positive real root if R0 > 1,
and two negative real roots or two complex conjugate real roots with negative real
parts if R0 < 1. This leads to the following classical result regarding the disease-free
equilibrium.

Proposition 7.2. If R0 < 1, then the disease-free equilibrium E0 is locally asymp-
totically stable. If R0 > 1, the disease-free equilibrium is unstable.
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To investigate the stability of the endemic equilibrium E ∗, we evaluate the Jacobian
at the endemic equilibrium. We obtain the following characteristic equation:

∣∣∣∣∣∣∣∣

−β I− μ −λ 0 −β S 0
β I −(μ + γ +λ ) β S 0
0 γ −(μ +α +λ ) 0
0 0 α −(μ +λ )

∣∣∣∣∣∣∣∣
= 0. (7.7)

Expanding by the last column, we see that the characteristic equation has one root
equal to −μ . The remaining roots are solutions to the following equation:

∣∣∣∣∣∣
−β I− μ −λ 0 −β S

β I −(μ + γ +λ ) β S
0 γ −(μ +α +λ )

∣∣∣∣∣∣= 0. (7.8)

Expanding the determinant, we have, after some simplification, the following poly-
nomial characteristic equation:

[β I∗+ μ +λ ][μ + γ +λ ][μ +α +λ ] = β S∗γ(μ +λ ). (7.9)

One approach here to showing that all solutions to the above equation have negative
real parts is to use the Routh–Hurwitz criterion (Chap. 5). We will apply a somewhat
trickier but faster method to establish the same result. The question is whether the
above equation has solutions with nonnegative real part. Assume that there is a λ
with nonnegative real part, ℜλ ≥ 0. Then, we can divide by λ + μ and take the
absolute value of both sides of the equation. We have

|β I∗+ μ +λ ||μ + γ +λ ||μ +α +λ |
|μ +λ | = β γS∗. (7.10)

Recall the value of S∗. Hence, we have

β γS∗ = (μ + γ)(μ +α).

From the left-hand side in Eq. (7.10), we have that

|β I∗+ μ +λ |
|μ +λ | > 1

for all values of λ real or complex, as long as ℜλ ≥ 0. If λ = x+ yi, where i is the
imaginary unit, then

|β I∗+ μ +λ ||μ + γ +λ ||μ +α +λ |
|μ +λ |

> |μ + γ +λ ||μ +α +λ | ≥ |μ + γ + x||μ +α + x|

≥ (μ + γ)(μ +α) = β γS∗. (7.11)
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This means that for λ with ℜλ ≥ 0, the left-hand side of Eq. (7.10) is always grater
than the right-hand side. Hence, the characteristic equation cannot have such solu-
tions. We have established the following result:

Proposition 7.3. Assume R0 > 1. Then the endemic equilibrium E ∗ is locally
asymptotically stable.

7.3 Global Stability via Lyapunov Functions

For higher-dimensional systems, there are several techniques that could establish
the global stability of an equilibrium. One of the most commonly used is the Lya-
punov function. Lyapunov functions are scalar functions that may be used to prove
the global stability of an equilibrium. They are named after the Russian mathemati-
cian Aleksandr Mikhailovich Lyapunov, who proposed the theory in his doctoral
dissertation [98].

7.3.1 Lyapunov–Kasovskii–LaSalle Stability Theorems

Let x∗ be an equilibrium of x′ = f (x), where f : Rn → Rn.

Definition 7.1. A scalar function V (x) such that V : Rn → R is called radially
unbounded if

V (x)→ ∞ if ||x|| → ∞.

One significant property of Lyapunov functions is that they are positive definite
in the entire space.

Definition 7.2. Let V be a continuous scalar function, that is,

V : Rn → R.

The function V is called positive definite on the entire space if

• V (x∗) = 0,
• V (x)> 0 for x �= x∗,

where x∗ is an equilibrium of the autonomous system x′ = f (x). We define the
derivative of V (x) along the solutions of the system of differential equations as

V ′(x) =
d
dt

V (x(t)) =
∂V
∂x

dx
dt

.

Now we can state Lyapunov’s theorem for global stability of the equilibrium x∗.
For a proof of Lyapunov’s, theorem see [41].
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Theorem 7.1 (Lyapunov’s Stability Theorem). If a function V (x) is globally pos-
itively definite and radially unbounded, and its time derivative is globally negative,

V ′(x)< 0 for all x �= x∗,

then the equilibrium x∗ is globally stable.

Definition 7.3. If a function V (x) exists that satisfies the conditions of Theorem 7.1,
then this function is called a Lyapunov function.

There are no established rules for finding a Lyapunov function, and often find-
ing a Lyapunov function is tricky and computationally intensive (but see [146]).
However, if a Lyapunov function is found, it can establish the global stability of an
equilibrium.

Lyapunov’s Theorem requires that the derivative of a Lyapunov function with
respect to t be strictly negative; however, we can often show only nonpositivity.
In this case, an extension of Lyapunov’s theorem was given by LaSalle [93] and
Krasovskii [91].

Theorem 7.2 (Krasovkii–LaSalle Theorem). Consider the autonomous system
x′ = f (x), where x∗ is an equilibrium, that is, f (x∗) = 0. Suppose there exists a
continuously differentiable function V : Rn → R and that this function is positive
definite on the entire space and radially unbounded and that it satisfies

V ′(x)≤ 0 for all t and all x ∈ Rn.

Define the invariant set
S = {x ∈ Rn|V ′(x) = 0}.

If S contains only the equilibrium x∗, then the equilibrium x∗ is globally stable.

7.3.2 Global Stability of Equilibria of the SEIR Model

We illustrate the application of Lyapunov’s theorem by showing global stability
of the disease-free equilibrium and the endemic equilibrium for the SEIR model
in (7.1).

Proposition 7.4. Assume R0 < 1. Then the disease-free equilibrium is globally
asymptotically stable.

Proof. We approach the problem by constructing a Lyapunov function. We will con-
sider the SEIR model on the space of the first three variables only (S,E, I). It is clear
that if the disease-free equilibrium for the first three equations is globally stable,
then R(t)→ 0, and the disease-free equilibrium for the full SEIR model is globally
stable.



7.3 Global Stability via Lyapunov Functions 155

Consider the following candidate for a Lyapunov function on R3
+. It is suffi-

cient to work with R3
+, because we are interested in working with only the positive

orthant.

V = κ
(

S− S∗− S∗ ln
S
S∗

)
+

1
μ + γ

E +
1
γ

I, (7.12)

where κ > 0 is to be determined and S∗ = Λ
μ . First, it is not hard to see that V = 0 at

the disease-free equilibrium. To establish that V > 0 for all (S,E, I) �= (Λ
μ ,0,0), it is

enough to notice that

κS∗
(

S
S∗

− 1− ln
S
S∗

)
> 0,

because the function g(x) = x− 1− lnx achieves a global minimum at x = 1 and
g(1) = 0. Hence g(x) > 0 for all x > 0 and x �= 1. So the first term is positive. The
remaining two terms are also clearly positive. The coefficients of E and I are chosen
in such a way that the negative term in the E ′ equation cancels with the positive
term in the I′ equation in (7.1). Furthermore, V is also clearly radially unbounded.
We take the derivative of V with respect to t:

d
dt

V = κ
(

1− S∗

S

)
S′+

1
μ + γ

E ′+
1
γ

I′

= κ
(

1− S∗

S

)
[Λ −β SI− μS]+

1
μ + γ

(β SI−(μ + γ)E)+
1
γ
(γE−(μ +α)I)

= 2κΛ −β κSI−κμS−Λ 2κ
μS

+
Λβ κ

μ
I+

β
μ + γ

SI− μ +α
γ

I,

(7.13)

where after differentiation, we have used equations (7.1) to replace the derivatives
with the right-hand sides. The last line is obtained by multiplying out. We have sev-
eral positive terms for which we need to compensate. If we choose κ = 1/(μ + γ),
then the SI terms have the same coefficient and opposite signs, so they cancel each
other. We combine the two I-terms and the remaining terms as follows:

d
dt

V =−κΛ
(

Λ
μS

+
μS
Λ

− 2

)
+

μ +α
γ

(R0 − 1)I. (7.14)

Since R0 < 1, the last term is nonpositive. The first term is more interesting. If we
set a =Λ/(μS), then we have a+1/a−2. We claim that this expression is positive

a+
1
a
− 2 =

a2 − 2a+ 1
a

=
(a− 1)2

a
> 0.

Hence we have V ′ < 0 for all (S,E, I) �= (S∗,0,0). Therefore, by Lyapunov’s
theorem, the disease-free equilibrium is globally asymptotically stable. �


for every a > 0, a �= 1. Indeed,
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Now we consider the endemic equilibrium. The endemic equilibrium is unique and
locally stable whenever it exists. For R0 > 1, the only other equilibrium is E0, which
is unstable. This suggests that the endemic equilibrium may be globally stable.
Indeed, that is the case. The global stability of the endemic equilibrium for the SEIR
model was first established by Li and Muldowney [96] using different techniques.
The global stability of the endemic equilibrium of the SEIR model via a Lyapunov
function was fist established by Korobeinikov and Maini [89]. We will establish this
result via a Lyapunov function. Before we state the main result, we include a lemma
that is very helpful in establishing the negativity of the time derivative of a candidate
Lyapunov function.

Lemma 7.1. Assume that x1, . . . ,xn are n positive numbers. Then their arithmetic
mean is greater than or equal to their geometric mean. In particular,

x1 + · · ·+ xn

n
≥ n

√
x1 . . .xn.

Theorem 7.3. Assume R0 > 1. Then the endemic equilibrium is globally asymptot-
ically stable.

Proof. We consider again only the first three components of system (7.1), (S,E, I).
We assume that they belong to the positive orthant R3

+. We define a Lyapunov func-
tion

V = κ1

(
S− S∗− S∗ ln

S
S∗

)
+κ2

(
E −E∗ −E∗ ln

E
E∗

)
+κ3

(
I − I∗− I∗ ln

I
I∗

)
,

(7.15)
where κ1 > 0, κ2 > 0, and κ3 > 0 will be determined later. Notice that V = 0 when
(S,E, I) = (S∗,E∗, I∗) and V > 0 otherwise; V is also radially unbounded. What
remains to be proved is that the derivative of V with respect to t is negative. We
differentiate with respect to t and replace S′, E ′, and I′ with their equals from (7.1):

dV
dt

= κ1

(
1− S∗

S

)
S′+κ2

(
1− E∗

E

)
E ′+κ3

(
1− I∗

I

)
I′

= κ1

(
1− S∗

S

)
(Λ −β SI− μS)+κ2

(
1− E∗

E

)
(β SI− (μ + γ)E)

+ κ3

(
1− I∗

I

)
(γE − (μ +α)I).

(7.16)

One of the classical first steps here is to replace Λ with its equal from the equilibrium
equations, that is, Λ = β S∗I∗+μS∗. Then μS∗−μS can be combined with the first
term in the product to yield a negative term. We multiply out all other products:
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dV
dt

= − κ1
(S− S∗)2

S
+κ1β S∗I∗ −κ1β SI−κ1β

S∗2I∗

S
+ κ1β S∗I +κ2β SI−κ2(μ + γ)E

− κ2β
E∗SI

E
+κ2(μ + γ)E∗+κ3γE −κ3(μ +α)I−κ3γ

I∗E
I

+κ3(μ +α)I∗.

(7.17)

Now we can see that if κ1 = κ2, then −κ1β SI can be canceled with κ2β SI. Also,
where we have fractions, we multiply and divide by the equilibrium value:

dV
dt

= −κ1
(S− S∗)2

S
+κ1β S∗I∗ −κ1β

S∗2I∗

S
+κ1β S∗I−κ2(μ + γ)E

−κ2β S∗I∗
E∗SI
ES∗I∗

+κ2(μ + γ)E∗+κ3γE −κ3(μ +α)I−κ3γE∗ I∗E
IE∗

+κ3(μ +α)I∗.
(7.18)

We want to combine all constant terms with all fractional terms, because all constant
terms are positive, and all fractional terms are negative. First, we notice that since
κ1 = κ2, we have β S∗I∗ = (μ + γ)E∗ from the corresponding equilibrium equation.
We need to choose κ3 such that

κ3(μ +α)I∗ = κ2(μ + γ)E∗.

Hence, κ3 = κ2
μ+γ

γ . We pull out κ1β S∗I∗ from all terms. We have

dV
dt

= − κ1
(S− S∗)2

S
+κ1β S∗I∗

[
3− S∗

S
− E∗SI

ES∗I∗
− I∗E

IE∗

]

+ (κ1β S∗−κ3(μ +α))I+(κ3γ −κ2(μ + γ))E.
(7.19)

Because κ3 = κ2(μ + γ)/γ , the last two terms in the formula above are zero. We
may now choose κ1 = κ2 = 1. Then

κ3 =
μ + γ

γ
.

In this case, the derivative of the Lyapunov function becomes

dV
dt

=− (S− S∗)2

S
+β S∗I∗

[
3− S∗

S
− E∗SI

ES∗I∗
− I∗E

IE∗

]
. (7.20)

The first term above is clearly negative unless S = S∗. We argue that the second term
is also negative. Indeed, we will apply Lemma 7.1. Let
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x1 =
S∗

S
x2 =

E∗SI
ES∗I∗

, x3 =
I∗E
IE∗ .

Then, notice that x1x2x3 = 1. According the the lemma, the arithmetic mean is larger
than the geometric mean. Therefore,

S∗

S
+

E∗SI
ES∗I∗

+
I∗E
IE∗ ≥ 3.

Hence, the second term is nonpositive, and it is zero whenever (S,E, I)= (S∗,E∗, I∗).
We have

dV
dt

≤ 0.

We now have to apply the Krasovkii–LaSalle theorem. We consider the set where
the Lyapunov function is equal to zero:

S = {x ∈ Rn|V ′(x) = 0}.

It is clear that V ′ = 0 if and only if

S = S∗ and
S∗

S
+

E∗SI
ES∗I∗

+
I∗E
IE∗ = 3.

Since S = S∗, then dS
dt = 0, and from the first equation in system (7.1), we can con-

clude that I = I∗. Finally, from the second equality above, we have

E∗

E
+

E
E∗ = 2.

It is easy to see that this equality holds if and only if E = E∗. Hence, the set S
consists of the singleton (S∗,E∗, I∗). This concludes the proof. �


7.4 Hopf Bifurcation in Higher Dimensions

The Hopf bifurcation theorem that we stated in Chap. 3 is valid in higher dimen-
sions. We will use it here without restating it. The characteristic equation of higher-
dimensional ODE systems is a polynomial equation of degree n. The Hopf bifurca-
tion theorem requires that for some value of a parameter, this equation have a purely
imaginary root and all other roots have negative real part. The following theorem
gives a necessary and sufficient condition for this to happen [57]:

Theorem 7.4. Let p(λ ), where λ ∈ C, be a polynomial of degree n with real
coefficients:

p(λ ) = a0λ n + a1λ n−1 + · · ·+ an−1λ + an,
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with a0 > 0. Let Δ1,Δ2, . . . ,Δn be the Hurwitz determinants for the polynomial p(λ ).
Then p(λ ) has a pair of distinct roots, −iω and iω , on the imaginary axis, and all
other roots are in the left half-plane if and only if

an > 0, Δn−1 = 0, Δn−2 > 0, . . . ,Δ1 > 0.

We recall that the n× n matrix

H =

⎛
⎜⎜⎜⎜⎜⎝

a1 a3 a5 . . . . . .
a0 a2 a4 . . . . . .
0 a1 a3 a5 . . .
0 a0 a2 a4 . . .

. . .

⎞
⎟⎟⎟⎟⎟⎠

(7.21)

is called a Hurwitz matrix. The ith-order principal minor of H is called the ith
Hurwitz determinant Δi.

To illustrate Hopf bifurcation in higher dimensions, we consider a specific exam-
ple that focuses on recurrent outbreaks in childhood disease. It has been long since
observed that the incidence of some childhood diseases like measles and chickenpox
experiences oscillations [130]. The question whether these oscillations can be cap-
tured by an autonomous ODE model was first investigated by Feng and Thieme [61],
who considered an SIQR model to approach the problem. To introduce the model,
let S(t), I(t), Q(t), and R(t) be the numbers of susceptible, infected/infectious, iso-
lated, and recovered individuals. We assume that isolated individuals do not mix in
the population, and we define the active population A(t) = S(t)+ I(t)+R(t). The
total population as usual is denoted by N(t). The model is as follows:

S′ = Λ − β SI
A

− μS,

I′ =
β SI
A

− (μ + γ)I,

Q′ = γI− (μ + ξ )Q,

R′ = ξ Q− μR. (7.22)

The model assumes that the isolation is perfect, that is, that everybody who becomes
infectious is isolated and that isolated individuals cannot infect. We will show that
the endemic equilibrium of this model is not always stable, but it can undergo a Hopf
bifurcation that leads to a stable oscillatory solution. That, in particular, means that
the endemic equilibrium is not globally stable.

It is not hard to see that the model has two equilibria: a disease-free equilibrium
E0 = (Λ

μ ,0,0,0) and an endemic equilibrium E ∗ = (S∗, I∗,Q∗,R∗). To obtain the
endemic equilibrium, we introduce the fractions s = S∗/A∗, i = I∗/A∗, q = Q∗/A∗,
and r = R∗/A∗. Clearly, s+ i+ r = 1 and

N∗

N∗ −Q∗ =
S∗

A∗ +
I∗

A∗ +
Q∗

A∗ +
R∗

A∗ = 1+ q.
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The endemic equilibrium is a solution of the following system:

0 = Λ − β SI
A − μS,

0 = β SI
A − (μ + γ)I,

0 = γI − (μ + ξ )Q,

0 = ξ Q− μR. (7.23)

With the new notation, the last three equations from the system become

0 = β si− (μ + γ)i,
0 = γi− (μ + ξ )q,
0 = ξ q− μr. (7.24)

Hence,

s =
μ + γ

β
q =

γ
μ + ξ

i. (7.25)

From the first equation in (7.23), we have (recall N∗ = Λ
μ )

Λ
μ

=
S∗

μ
(μ +β i).

Subtracting Q∗ from both sides, we have

Λ
μ
−Q∗ =

S∗

μ
(μ +β i)−Q∗.

Dividing by the left-hand side, we have

1 =
s
μ
(μ +β i)− q.

We replace s and q from (7.25) and solve for i to obtain

i =
μ(μ + ξ )

μ2 + μξ + γξ

(
1− 1

R0

)

and

q =
μγ

μ2 + μξ + γξ

(
1− 1

R0

)
,

where R0 =
β

μ+γ is the reproduction number of the disease. Define κ = 1+q. Then
from N∗/(N∗ −Q∗) = 1+ q = κ , we have

Q∗ =
κ − 1

κ
N∗.
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Hence, N∗ −Q∗ = N∗
κ . Therefore,

S∗ =
sN∗

κ
I∗ =

iN∗

κ
, R∗ =

(1− s− i)N∗

κ
.

We summarize the result in the following proposition:

Proposition 7.5. The system (7.22) has a unique disease-free equilibrium E0. If
R0 > 1, the system also has a unique endemic equilibrium E ∗.

To determine the stability of equilibria, we consider the Jacobian of the system.
System (7.22) is rather complex. We rewrite it in terms of S, I,Q,N:

S′ = Λ − β SI
N −Q

− μS,

I′ =
β SI

N −Q
− (μ + γ)I,

Q′ = γI− (μ + ξ )Q,

N′ = Λ − μN. (7.26)

With the notation introduced above, we have

J =

⎛
⎜⎜⎝

−μ −β i −β s −β si β si
β i β s− (μ + γ) β si −β si
0 γ −(μ + ξ ) 0
0 0 0 −μ

⎞
⎟⎟⎠ . (7.27)

The Jacobian computed at the disease-free equilibrium gives

J(E0) =

⎛
⎜⎜⎝

−μ −β s 0 0
0 β s− (μ + γ) 0 0
0 γ −(μ + ξ ) 0
0 0 0 −μ

⎞
⎟⎟⎠ . (7.28)

The characteristic equation |J(E0)−λ I| = 0 has two eigenvalues equal to −μ and
one eigenvalue equal to −(μ + ξ ). The last eigenvalue is β s− (μ + γ). Since s = 1
for the disease-free equilibrium, this eigenvalue is negative if and only if R0 < 1.
Therefore, we have the following typical result.

Proposition 7.6. AssumeR0 < 1. Then the disease-free equilibrium is locally asymp-
totically stable. If R0 > 1, the disease-free equilibrium is unstable.

To determine the stability of the endemic equilibriumE ∗, we consider the charac-
teristic equation |J−λ I|= 0. This characteristic equation has one eigenvalue equal
to −μ . The remaining eigenvalues are solutions of the following equation:

J =

∣∣∣∣∣∣
−μ −β i−λ −β s −β si

β i −λ β si
0 γ −(μ + ξ +λ )

∣∣∣∣∣∣= 0, (7.29)
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where we have used the fact that β s− (μ + γ) = 0 for the endemic equilibrium.
Expanding the determinant, we have

λ (μ +β i+λ )(μ + ξ +λ )+β siγβ i+β 2si(μ + ξ +λ )− γβ si(μ +β i+λ ) = 0.

Expanding along the powers of λ , we have the following cubic polynomial:

λ 3 + a1λ 2 + a2λ + a3 = 0, (7.30)

where

a1 = 2μ +β i+ ξ ,
a2 = (μ +β i)(μ + ξ )+β 2si− γβ si,

a3 = β 2si(μ + ξ )− γβ siμ . (7.31)

We show that Hopf bifurcation occurs in the following theorem:

Theorem 7.5. Assume R0 > 1. Then the endemic equilibrium E ∗ can become un-
stable through a Hopf bifurcation leading to an oscillatory solution of system (7.22).

Proof. First, we use Theorem 7.4 to show the presence of purely imaginary roots.
The constant term in a3 is positive if and only if

β 2si(μ + ξ )> γβ siμ .

However, since we require R0 > 1, this means that β > μ + γ , and the above condi-
tion trivially holds for all parameter values for which R0 > 1. Second, Δ1 = a1 > 0.
In fact, for R0 > 1, we have all there coefficients positive:

a1 > 0, a2 > 0, a3 > 0.

It remains to show that Δ2 can become zero. We have

Δ2 =

∣∣∣∣a1 a3

1 a2

∣∣∣∣= a1a2 − a3. (7.32)

Hence,

Δ2 =−γβ si(μ +β i+ ξ )+ (μ+β i)(μ + ξ )(2μ +β i+ ξ )+β 2si(μ +β i).

To show that for some parameter values, Δ2 can become zero, we consider Δ2

as a function of γ . We consider time in days and we set μ = 0.000039, β = 1.6,
ξ = 1/7. We then plot Δ2 as a function of γ in Fig. 7.1. The figure shows that
Δ2 = 0 for γc = 0.607825. We also see that for these parameter values,

∂Δ2

∂γ
|γ=γc < 0.
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Fig. 7.1 Δ2 as a function of γ . The figure clearly shows that Δ2(0.607825) = 0. Thus, the critical
value of γc is 0.607825. For those parameter values, R0 ≈ 2.6

Next, to satisfy the conditions of the Hopf theorem, we have to show that the real
part of the leading root crosses the imaginary axis with nonzero speed. In particu-
lar, it remains to show that if λ = α(γ) + iω(γ) is a solution to the characteristic
equation (7.30), and α(γc) = 0, then

∂α(γ)
∂γ

|γ=γc �= 0.

To see this, first observe that from the characteristic equation (7.30) for γ = γc, we
have

−iω3
0 − a1ω2

0 + ia2ω0 + a3 = 0,

where ω0 = ω(γc). Separating the real and the imaginary parts, each of which must
be equal to zero, we have

ω2
0 = a2.

Next, we differentiate the characteristic equation with respect to γ:

[3λ 2 + 2a1λ + a2]
dλ
dγ

+
∂a1

∂γ
λ 2 +

∂a2

∂γ
λ +

∂a3

∂γ
= 0.

Now we evaluate this equation at γ = γc, λ = iω0:

[−3ω2
0 + 2a1iω0 + a2]

dλ
dγ

− ∂a1

∂γ
ω2

0 +
∂a2

∂γ
iω0 +

∂a3

∂γ
= 0.
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Fig. 7.2 Oscillations of the SIQR model with μ = 0.000039, ξ = 1/7, Λ = 1000, β = 1.6, and
γ = 0.61

Solving for dλ/dγ and using ω2
0 = a2 to eliminate ω0, we have

dλ
dγ

|γ=γc =
−a2

∂a1
∂γ + ∂a3

∂γ + i
√

a2
∂a2
∂γ

2(a2 − ia1
√

a2)
. (7.33)

Multiplying the denominator by the complex conjugate, we have

dλ
dγ

|γ=γc =
[−a2

∂a1
∂γ + ∂a3

∂γ + i
√

a2
∂a2
∂γ ][a2 + ia1

√
a2]

2(a2
2 + a2

1a2)
. (7.34)

Hence, the real part of the derivative is given by

ℜ
dλ
dγ

|γ=γc =
(−a2

∂a1
∂γ + ∂a3

∂γ )a2 − a1a2
∂a2
∂γ

2(a2
2 + a2

1a2)
.

Canceling a2, we have

ℜ
dλ
dγ

|γ=γc =
−[ ∂a1a2

∂γ − ∂a3
∂γ ]

2(a2 + a2
1)

=
− ∂Δ2

∂γ

2(a2 + a2
1)

> 0.

This completes the proof. �

We illustrate the oscillations in the model in Fig. 7.2.
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7.5 Backward Bifurcation

Until now, we have investigated models in which at the critical value of the repro-
duction numberR0 = 1, an endemic equilibrium bifurcates and exists when R0 > 1.
In this case, if we plot I∗ as a function of R0, the bifurcation is forward. However,
there are cases in which the bifurcating endemic equilibrium exists for R0 < 1.
It this case, it is said that backward bifurcation occurs. In the case of backward
bifurcation, there is a range of the reproduction number

R∗
0 <R0 < 1,

where there are at least two endemic equilibria, typically at least one of which is
stable. In this case, the disease-free equilibrium is not globally stable when R0 < 1,
and the infection can persist even if the reproduction number is less than one. The
phenomenon of backward bifurcation has serious consequences for disease control.

7.5.1 Example of Backward Bifurcation and Multiple Equilibria

To illustrate the phenomenon, we consider the following SEI model, in which ex-
posed individuals can become reinfected. A version of this model incorporating
treatment was proposed in [60] to model tuberculosis (TB), which is caused by the
bacterium mycobacterium tuberculosis (MTB). The causative agent is spread by
aerosol droplets produced by infectious people when they speak, sneeze, or cough.
Once the bacterium enters the body, it often forms a granuloma and remains dormant
potentially for many years. Infected individuals with granulomas are not infectious,
and they form the class of exposed individuals. Exposed individuals can progress to
active TB, where they become infectious, either naturally or through a new infection
with TB, a process called reinfection. The model takes the form

S′ = Λ −β
SI
N

− μS,

E ′ = β
SI
N

− pβ
EI
N

− (μ +α)E,

I′ = pβ
EI
N

+αE − μI, (7.35)

where S, E , and I are susceptible, exposed, and individuals with active TB; α is the
rate of progression to active TB; and pβ is the transmission rate at reinfection. We
note that standard incidence is used.

The disease-free equilibrium is obtained from setting I = 0. Then, we obtain

E0 = (
Λ
μ
,0,0).
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To determine the reproduction number, we look at the stability of the disease-free
equilibrium. First, we will derive the generic form of the Jacobian. In the case of
standard incidence, one has to keep in mind that N is variable and N = S+E + I.
Therefore, the Jacobian takes the form

J =

⎛
⎜⎜⎜⎜⎝

−β
I
N

+β
SI
N2 −μ β SI

N2 −β S
N +β SI

N2

β
I
N

−β
SI
N2 + pβ

EI
N2 −β SI

N2 − pβ I
N + pβ EI

N2 − (μ +α) β S
N −β SI

N2 − pβ E
N + pβ EI

N2

−pβ
EI
N2 pβ I

N − pβ EI
N2 +α pβ E

N − pβ EI
N2 −μ

⎞
⎟⎟⎟⎟⎠ .

(7.36)

Evaluating the Jacobian at the disease-free equilibrium, we have

J(E0) =

⎛
⎝−μ 0 −β

0 −(μ +α) β
0 α −μ

⎞
⎠ . (7.37)

The Jacobian at the disease-free equilibrium has one eigenvalue equal to −μ . The
remaining eigenvalues have negative real part if and only if

(μ +α)μ −αβ > 0.

This leads to the following reproduction number:

R0 =
αβ

μ(μ +α)
.

In interpreting the reproduction number, we notice that β/μ is the number of sec-
ondary infections that one infectious individual will produce in an entirely suscepti-
ble population during its lifespan as infectious, and α/(μ+α) is the probability that
a newly infected individual will survive the exposed period and become infectious.

To consider the endemic equilibria, we notice that from the equation for the total
population size, we have Λ = μN. The equations for the endemic equilibria are then
given by

0 = μN −β
SI
N

− μS,

0 = β
SI
N

− pβ
EI
N

− (μ +α)E,

0 = pβ
EI
N

+αE − μI. (7.38)

Because we are using standard incidence, the computations can be simplified if
one sets

s =
S
N

e =
E
N

i =
I
N
.
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With this notation, the system for the equilibria becomes

0 = μ(1− s)−β si,

0 = β si− pβ ei− (μ +α)e,

0 = pβ ei+αe− μ i. (7.39)

This system does not necessarily have a unique solution that can be obtained explic-
itly. The general approach in this case is to express s and e in terms of i. Using the
first and the third equations in system (7.39), we have

s =
μ

β i+ μ
e =

μ i
pβ i+α

. (7.40)

Now one needs to replace s and e in equation two in system (7.39); however, equa-
tion two can be simplified first if added to equation three:

0 = β si− μe− μ i.

Now we eliminate s and e from the above equation to obtain

β μ i
β i+ μ

− μ2i
pβ i+α

= μ i.

Since we are looking for endemic equilibria, we have i �= 0, and we can divide the
above equation by μ i:

β
β i+ μ

− μ
pβ i+ μ

= 1. (7.41)

Rewriting this equation as a quadratic equation in i, we have

pβ 2i2 +(αβ + μ pβ + μβ − pβ 2)i+αμ + μ2 −αβ = 0.

Recall the reproduction number R0. Dividing the above equation by β , we can
rewrite it in the form

pβ i2 +(α + μ + μ p− pβ )i+α
(

1
R0

− 1

)
= 0. (7.42)

Since R0 = αβ/(μ(μ +α)), we want to express the above equation in terms of
R0 and i. To this end, we have to replace one of the parameters that participates in
Eq. (7.42) with R0. This parameter must be a part of R0, and it is typically taken to
be β . Thus, we have

β =
R0μ(μ +α)

α
.
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Substituting β in Eq. (7.42), we obtain the following equation in R0 and i:

p
R0μ(μ +α)

α
i2 +(α + μ + μ p− p

R0μ(μ +α)

α
)i+α

(
1
R0

− 1

)
= 0. (7.43)

Multiplying by α/(μ(μ +α)), we obtain the following simplified equation:

pR0i2 +

(
α
μ
+

pα
μ +α

− pR0

)
i+

α2

μ(μ +α)

(
1
R0

− 1

)
= 0. (7.44)

We notice that the above equation has a unique positive solution when R0 > 1,
since the constant term is negative. We may consider Eq. (7.44) to define a curve
in the (R0, i) positive quadrant. This curve has one of two distinctive shapes (see
Fig. 7.3). In the left figure, the endemic equilibrium curve bifurcates forward, giving
a nontrivial endemic equilibrium when R0 > 1. This bifurcation is characterized by
positive slope, that is, if we consider locally i as a function of R0, the derivative at
the critical value (R0, i) = (1,0) is positive:

∂ i
∂R0

|R0=1,i=0 > 0.
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Fig. 7.3 Forward bifurcation and backward bifurcation of endemic equilibria. The left figure shows
forward bifurcation at the critical value R0 = 1, in which case an endemic equilibrium exists if and
only if R0 > 1. The right figure shows backward bifurcation at the critical value R0 = 1, in which
case there are two endemic equilibria for R∗

0 <R0 < 1 and one endemic equilibrium if R0 ≥ 1

In the right figure, the endemic equilibrium curve bifurcates backward, giving a
nontrivial endemic equilibrium when R0 > 1 and two nontrivial equilibria for
R∗

0 <R0 < 1. This bifurcation is characterized by negative slope, that is, if we
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consider locally i as a function of R0, the derivative at the critical value (R0, i) =
(1,0) is negative:

∂ i
∂R0

|R0=1,i=0 < 0.

We can use this inequality to derive a necessary and sufficient condition on the
parameters such that backward bifurcation occurs. To obtain this condition, we com-

pute the derivative
∂ i

∂R0
|R0=1,i=0 by differentiating Eq. (7.44) implicitly. In partic-

ular, differentiating implicitly with respect to R0, we have

pi2 + pR02i
∂ i

∂R0
− pi+

(
α
μ
+

pα
μ +α

− pR0

)
∂ i

∂R0
− α2

μ(μ +α)R2
0

= 0.

Now we evaluate at R0 = 1 and i = 0, and we solve for the derivative to get

∂ i
∂R0

|R0=1,i=0 =

α2

μ(μ+α)(
α
μ + pα

μ+α − p
) .

This derivative can be negative if and only if the denominator is negative. Hence, we
obtain the following necessary and sufficient condition for backward bifurcation:

α
μ
+

pα
μ +α

− p < 0,

which can be solved for p to obtain

p >
α(μ +α)

μ2 .

Recall that 1/α is the duration of the exposed period, and 1/μ is the lifespan
of humans. Since the duration of the exposed period is smaller than the lifespan
of humans, we may expect for realistic parameters to have α > μ . So backward
bifurcation occurs only if p > 1. In other words, unless the infection at reinfection
is more likely than the regular infection, backward bifurcation cannot occur. This is
known not to be the case in reality [100]. Thus, backward bifurcation in this model
is possible, but not for realistic parameter values.

In the remaining part of this subsection we will establish the stability of equilib-
ria. Stability of equilibria, when multiple equilibria are present, is nontrivial. Typi-
cally for R0 > 1, the unique equilibrium is locally asymptotically stable. However,
for R0 < 1, the two endemic equilibria have different stabilities. Most commonly,
the lower one with smaller i is unstable, while the upper one with larger i is locally
asymptotically stable. If more than two equilibria are present, typically their stabil-
ities alternate, with the lowest one being unstable when R0 < 1 and the lowest one
being locally stable whenR0 > 1. This requires us to find a property of the equilibria



170 7 Analysis of Complex ODE Epidemic Models: Global Stability

that separates one of the classes of equilibria from the other. We will return to this
question later. Now we consider the characteristic equation of the endemic equilib-
rium. From (7.36), we have (recall the notation)
∣∣∣∣∣∣
−β i+β si−μ −λ β si −β s+β si

β i−β si+ pβei −β si− pβ i+ pβei− (μ +α)−λ β s−β si− pβe+ pβei
−pβei pβ i− pβei+α pβe− pβei−μ −λ

∣∣∣∣∣∣= 0.

(7.45)

Adding the first row to the second row and the third row to the second row, we obtain
the following equation:

∣∣∣∣∣∣
−β i+β si− μ−λ β si −β s+β si

−(μ +λ ) −(μ +λ ) −(μ +λ )
−pβ ei pβ i− pβ ei+α pβ e− pβ ei− μ−λ

∣∣∣∣∣∣= 0. (7.46)

We can factor −(μ+λ ) from the second row, and we see that one of the eigenvalues
of the characteristic equation is −μ . This simplification often works with epidemic
models that do not involve disease-induced mortality. The remaining eigenvalues
are solutions of the equation

∣∣∣∣∣∣
−β i+β si− μ−λ β si −β s+β si

1 1 1
−pβ ei pβ i− pβ ei+α pβ e− pβ ei− μ−λ

∣∣∣∣∣∣= 0. (7.47)

Expanding the determinant, we have

− (β i(1− s)+ μ +λ )(pβ e(1− i)− μ−λ − pβ i(1− e)−α)

− β si(pβ e(1− i)− μ−λ + pβ ei)

− β s(1− i)(pβ i(1− e)+α+ pβ ei) = 0. (7.48)

Canceling the quadratic terms simplifies the equation to

(β i(1− s)+ μ +λ )(pβ i− pβ e+ μ+α +λ )+β si(−pβ e+ μ+λ )
−β s(1− i)(pβ i+α) = 0.

Further simplifications lead to the following equation:

(β i−β s+ μ +λ )(pβ i+α)+ (β i+ μ+λ )(−pβ e+ μ+λ ) = 0.

Denote by F (λ ) the left-hand side of the equation above. Thus, the characteristic
equation becomes F (λ ) = 0. Then,

F (0) = (β i−β s+ μ)(pβ i+α)+ (β i+ μ)(−pβ e+ μ).
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Now we return to the question of distinguishing between alternative equilibria.
Recall that all equilibria are solutions of Eq. (7.41). We define

f (i) =
β

β i+ μ
− μ

pβ i+ μ
− 1.

The key observation is that alternative equilibria differ by the sign of the slope of
f (i) when computed for each specific equilibrium. When R0 > 1, f (i) is a dec-
reasing function of i with f (0) > 0. Thus at the equilibrium value i∗ that satisfies
f (i∗) = 0, we also have f ′(i∗) < 0. When R0 < 1, we have f (0) < 0. Thus, if two
distinct equilibria exist, the function f (i) should increase to cross the x-axis and then
decrease to cross it again. This gives two solutions of the equation f (i) = 0: i∗1 and i∗2
with i∗1 < i∗2. At the first equilibrium, f (i) is increasing, so we have f ′(i∗1)> 0. At the
second equilibrium, f (i) is decreasing, so we have f ′(i∗2)< 0. The main observation
that we have to make is that

F (0)∼ f ′(i).

Thus, the sign of f ′ computed at a specific endemic equilibrium determines the
sign of F (0). Deriving the relationship above is the trickiest part of the proof. To
simplify matters, we notice that Eq. (7.41) gives

β (pβ i+α)− μ(β i+ μ)= (β i+ μ)(pβ i+α).

We use this equality to replace the corresponding term in F (0), and F (0) becomes

F (0) = (β i+ μ)(μ − pβ e)+β (pβ i+α)− μ(β i+μ)−β s(pβ i+α).

Then, using the expressions for s and e in (7.40), we have

F (0) = (β i+ μ)
μα

pβ i+α
+β (pβ i+α)− μ(β i+ μ)− β μ

β i+ μ
(pβ i+α),

where

μ − pβ e = μ − pβ μ i
pβ i+α

=
μα

pβ i+α
.

Collecting terms in F (0), we have

F (0) = β (pβ i+α)

[
1− μ

β i+ μ

]
− μ(β i+ μ)

[
1− α

pβ i+α

]

= β (pβ i+α)
β i

β i+ μ
− μ(β i+ μ)

pβ i
pβ i+α

= β i(pβ i+α)(β i+ μ)
[

β
(β i+ μ)2 −

pμ
(pβ i+α)2

]

= −i(pβ i+α)(β i+ μ) f ′(i). (7.49)
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In the last equality, we have taken into account that

f ′(i) =−β
[

β
(β i+ μ)2 −

pμ
(pβ i+α)2

]
.

Now we have that the following statements hold:

• F (0)> 0 iff f ′(i)< 0.
• F (0) = 0 iff f ′(i) = 0.
• F (0)< 0 iff f ′(i)> 0.

We first note that in the case F (0) = 0, the characteristic equation F (λ ) = 0
has a solution λ = 0. In this case, the stability of the equilibrium in question cannot
be determined. However, the case F (0) = 0 occurs if and only if f ′(i∗) = 0. Since
f (i∗) = 0 and f ′(i∗) = 0, it follows that i∗ is a solution of the equation f (i) = 0 of
higher multiplicity.

Definition 7.4. A root i∗ of the equation f (i) = 0 is called simple if f ′(i∗) �= 0.
A root i∗ of f (i) = 0 is called a root of higher multiplicity if f ′(i∗) = 0.

Hence, we conclude that if a root i∗ is of higher multiplicity, then we cannot deter-
mine its stability. In what follows, we will assume that all roots of the equilibrium
equation f (i) = 0 are simple roots. In that case, there are two possibilities.

Case 1. Let i∗ be an equilibrium for which f ′(i∗) < 0, that is, F (0) > 0. Then
such an equilibrium is locally asymptotically stable. Indeed, rewrite F (λ ) in the
form

F (λ ) = (λ +β i+ μ)(λ + μ − pβ e+ pβ i+α)−β s(pβ i+α).

Suppose F (λ ) = 0 has a solution λ with ℜλ = x≥ 0 and ℑλ = y. Then, noticing
that μ − pβ e ≥ 0, we have

|F (λ )| ≥ |λ +β i+ μ ||λ + μ − pβ e+ pβ i+α|−β s(pβ i+α)

≥√(x+β i+μ)2+y2
√
(x+μ − pβ e+ pβ i+α)2 + y2 −β s(pβ i+α)

≥ (x+β i+ μ)(x+ μ− pβ e+ pβ i+α)−β s(pβ i+α)
=F (ℜλ )≥F (0)> 0.

(7.50)

This is a contradiction. Hence, the equationF (λ ) = 0 cannot have solutions with
ℜλ ≥ 0. This implies that all solutions of the equation F (λ ) = 0 have negative
real part. Hence, the equilibrium i∗ is locally asymptotically stable.

Case 2. Let i∗ be an equilibrium for which f ′(i∗) > 0, that is, F (0) < 0. Then
such an equilibrium is unstable. Indeed, if we think that F (λ ) is a function of a
real variable λ , then F (0) < 0, and since F (λ ) is a quadratic polynomial, we
have that

lim
λ→∞

F (λ ) = ∞.
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Hence, there must be a real positive λ ∗ such that F (λ ∗) = 0. Therefore, the
equilibrium i∗ is unstable.

We summarize these conclusions in the following theorem.

Theorem 7.6. If R0 > 1, then system (7.35) has a unique endemic equilibrium that
is locally asymptotically stable. If R0 < 1 and

p <
α(μ +α)

μ2 ,

then system (7.35) has no endemic equilibria. If R∗
0 <R0 < 1 and

p >
α(μ +α)

μ2 ,

then system (7.35) has two endemic equilibria. The one with the smaller number of
infecteds, E1, is unstable, while the other, with a higher number of infecteds, E2, is
locally asymptotically stable.

7.5.2 Castillo-Chavez and Song Bifurcation Theorem

The approach given in the previous subsection to determine the direction of the
bifurcation at the critical point (R0, i) = (1,0) is applicable only when a unique
equation for the number/proportion of infected individuals can be derived, and that
equation is reasonably simple to differentiate. As an alternative to this approach, a
Theorem by Castillo-Chavez and Song [38] can be used that determines the direc-
tion of the bifurcation at the critical value of a parameter.

Theorem 7.7 (Castillo-Chavez and Song). Consider the following general system
of ODEs with a parameter φ :

dx
dt

= f (x,φ), f : Rn ×R → Rn, f ∈ C2(Rn ×R), (7.51)

where 0 is an equilibrium point of the system, that is, f (0,φ) ≡ 0 for all φ . Assume
the following:

A1. A =Dx f (0,0)=
(

∂ fi
∂x j

(0,0)
)

is the linearization matrix of system (7.51) around

the equilibrium 0 with φ evaluated at 0. Zero is a simple eigenvalue of A , and
other eigenvalues have negative real parts.

A2. The matrix A has a nonnegative right eigenvector w and a left eigenvector v
each corresponding to the zero eigenvalue.
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Let fk be the kth component of f and

a =
n

∑
k,i, j=1

vkwiwj
∂ 2 fk

∂xi∂x j
(0,0)

b =
n

∑
k,i=1

vkwi
∂ 2 fk

∂xi∂φ
(0,0). (7.52)

The local dynamics of the system around 0 are completely determined by the signs
of a and b:

i. a > 0,b > 0. When φ < 0 with |φ | � 1, 0 is locally asymptotically stable, and
there exists a positive unstable equilibrium; when 0 < φ � 1, 0 is unstable, and
there exists a negative and locally asymptotically stable equilibrium.

ii. a < 0,b < 0. When φ < 0 with |φ | � 1, 0 is unstable; when 0 < φ � 1, 0 is
locally asymptotically stable, and there exists a positive unstable equilibrium;

iii. a > 0,b < 0. When φ < 0 with |φ | � 1, 0 is unstable, and there exists a locally
asymptotically stable negative equilibrium; when 0 < φ � 1, 0 is stable, and a
positive unstable equilibrium appears;

iv. a < 0,b > 0. When φ changes from negative to positive, 0 changes its stabil-
ity from stable to unstable. Correspondingly, a negative unstable equilibrium
becomes positive and locally asymptotically stable.

Particularly, if a > 0 and b > 0, then a backward bifurcation occurs at φ = 0.

Remark 7.1. In practice, the following two observations are important.

1. The equilibrium 0 is actually the disease-free equilibrium, φ is one of the param-
eters in the reproduction number, and the critical value of φ is the value of the
parameter that makes the reproduction number equal to one.

2. Since the disease-free equilibrium has positive entries, the right eigenvector w
need not be nonnegative. Components of the right eigenvector w that correspond
to positive entries in the disease-free equilibrium could be negative. However,
components that correspond to zero entries in the disease-free equilibrium should
be nonnegative.

To illustrate this theorem, we apply it to determine the condition for backward
bifurcation in model (7.35). We set x1 = S, x2 = E , and x3 = I. System (7.35)
becomes

x′1 = Λ −β
x1x3

x1 + x2 + x3
− μx1,

x′2 = β
x1x3

x1 + x2 + x3
− pβ

x2x3

x1 + x2 + x3
− (μ +α)x2,

I′ = pβ
x2x3

x1 + x2 + x3
+αx2 − μx3. (7.53)
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The role of the parameter φ is played by β with a critical value obtained from
R0 = 1, which is given by

β ∗ =
μ(μ +α)

α
.

The disease-free equilibrium is given by [x∗1 =
Λ
μ ,x

∗
2 = 0,x∗3 = 0]. The linearization

around the disease-free equilibrium evaluated at β ∗ is given by (see (7.37))

A =

⎛
⎝−μ 0 −β ∗

0 −(μ +α) β ∗
0 α −μ

⎞
⎠ . (7.54)

The characteristic equation is |A −λ I|= 0, which expanded gives −(μ +λ )[(μ +
α +λ )(μ +λ )−β ∗α = 0. The solutions of this equation, taking into account that
β ∗α = μ(μ +α), are λ1 = −μ , λ2 = −(2μ +α), and λ3 = 0. Hence 0 is a sim-
ple eigenvalue of Dx f . To compute a right eigenvector w, we consider the system
A w = 0. Assume w = (x,y,z). The system becomes

− μx−β ∗z = 0,

−(μ +α)y+β ∗z = 0,

αy− μz = 0. (7.55)

We see that from the last two equations, we have

y =
μ
α

z.

The last two equations hold for every value of z and for y computed in terms of z
from above. From the first equation, we have

x =−μ +α
α

z,

where we have replaced β ∗ with its equal. Hence the right eigenvector is w =
[−(μ +α),μ ,α], where we have taken z = α to simplify the expressions for the
components. We notice that the first component of w is negative but that is accept-
able, since it corresponds to the first entry of the disease-free equilibrium, which is
strictly positive. Next, we compute the left eigenvector. We have to solve vA = 0.
We set v = (x,y,z), and the system becomes

− μx = 0,

−(μ +α)y+αz = 0,

−β ∗x+β ∗y− μz = 0. (7.56)

From the first equation, we have that x = 0. One solution of the remaining system
is v = [0,α,(μ + α)], where we have taken into account the expression for β ∗.
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Since the first component of v is zero, we don’t need the derivatives of f1. From the
derivatives of f2 and f3, the only ones that are nonzero are the following:

∂ 2 f2

∂x2∂x3
=−(1+ p)

β ∗

x∗1
,

∂ 2 f2

∂x2
3

=−2
β ∗

x∗1
,

∂ 2 f3

∂x2∂x3
= p

β ∗

x∗1
,

∂ 2 f2

∂x3∂β ∗ = 1. (7.57)

Hence, for backward bifurcation we need the following conditions to hold:

a = w3

[
2v2w2

∂ 2 f2

∂x2∂x3
+ v2w3

∂ 2 f2

∂x2
3

+ 2v3w2
∂ 2 f3

∂x2∂x3

]
> 0,

b = v2w3 = α2 > 0. (7.58)

The second condition always holds. From a > 0, we have

2v2w2
∂ 2 f2

∂x2∂x3
+ v2w3

∂ 2 f2

∂x2
3

+ 2v3w2
∂ 2 f3

∂x2∂x3
> 0,

which gives

2
β ∗

x∗1

[−αμ(1+ p)−α2+ μ(μ +α)p
]
> 0.

This last inequality holds if and only if

p >
α(μ +α)

μ2 ,

which is exactly the same condition for backward bifurcation that we previously
obtained.

Problems

7.1. Lyapunov Function for an SIS Model
The following SIS model with disease-induced mortality has been studied in [50]:

S′ = Λ −β SI− μS+φ I,
I′ = β SI− (φ + μ +α)I,

(7.59)

where φ is the recovery rate and α is the disease-induced mortality.

(a) The disease-free equilibrium is (S0,0), where S0 =Λ/μ . The reproduction num-
ber of the model is

R0 =
Λβ

μ(φ + μ +α)
.
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Use the following Lyapunov function to show that the disease-free equilibrium
is globally stable whenever R0 ≤ 1:

V (S, I) =
1
2
[(S− S0)+ I]2 +

(α + 2μ)
β

I.

(b) Show that the model has a unique endemic equilibrium E ∗ = (S∗, I∗), given by

S∗ =
Λ

μR0
I∗ =

μ(φ +α + μ)
β (α + μ)

(R0 − 1) .

Show that the endemic equilibrium is locally asymptotically stable.
(c) Use the following Lyapunov function to show that the endemic equilibrium is

globally stable:

V (S, I) =
1
2
[(S− S∗)+ (I− I∗)]2 +

α + 2μ
β

(
I − I∗− I∗ ln

I
I∗

)
.

Hint: You have to use the equations for the equilibrium.

7.2. Lyapunov Function for an SIRS Model
The following SIRS model with disease-induced mortality has been studied in [50]:

S′ = Λ −β SI− μS+ γI,
I′ = β SI− (κ + μ +α)I,
R′ = κI− (μ + γ)R,

(7.60)

where κ is the recovery rate, α is the disease-induced mortality, and γ is the loss of
immunity rate.

(a) The disease-free equilibrium is (S0,0,0), where S0 = Λ/μ . The reproduction
number of the model is

R0 =
Λβ

μ(κ + μ +α)
.

Use the following Lyapunov function to show that the disease-free equilibrium
is globally stable whenever R0 ≤ 1:

V (S, I,R) =
1
2
[(S− S0)+ I+R]2 +

α + 2μ
β

I+
α + 2μ

2κ
R2.

(b) Show that the model has a unique endemic equilibrium E ∗ = (S∗, I∗,R∗),
given by

S∗ =
Λ

μR0
,

I∗ =
μ(κ +α + μ)(μ + γ)

β [κμ +(α + μ)(μ + γ)]
(R0 − 1) ,

R∗ =
κμ(κ +α + μ)

β [κμ +(α + μ)(μ + γ)]
(R0 − 1) . (7.61)

Show that the endemic equilibrium is locally asymptotically stable.
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(c) Use the following Lyapunov function to show that the endemic equilibrium is
globally stable:

V (S, I,R) =
1
2
[(S− S∗)+ (I− I∗)+ (R−R∗)]2 +

α + 2μ
β

(
I − I∗− I∗ ln

I
I∗

)

+
α + 2μ

2κ
(R−R∗)2 . (7.62)

Hint: You have to use the equations for the equilibrium.

7.3. Lyapunov Function for an SEIS Model
The following SEIS model has been studied in [88]:

S′ = μ −β SI− μS+ γI,

E ′ = β SI− (μ +α)E,

I′ = αI − (μ + γ)I, (7.63)

where γ is the recovery rate, and α is the rate of progression to infectiousness.

(a) The disease-free equilibrium is (1,0,0). The reproduction number of the model is

R0 =
αβ

(γ + μ)(μ +α)
.

Use the following Lyapunov function to show that the disease-free equilibrium
is globally stable whenever R0 ≤ 1:

V (S, I,R) = (S− 1− lnS)+E +
α + μ

α
I.

(b) Show that the model has a unique endemic equilibrium E ∗ = (S∗,E∗, I∗),
given by

S∗ =
1
R0

,

E∗ =
(μ + γ)

(μ + γ +α)

(
1− 1

R0

)
,

I∗ =
α

(μ + γ +α)

(
1− 1

R0

)
. (7.64)

Show that the endemic equilibrium is locally asymptotically stable.
(c) Use the following Lyapunov function to show that the endemic equilibrium is

globally stable:

V (S,E, I) =
(
S− S∗− S∗ ln S

S∗
)
+
(
E −E∗ −E∗ ln E

E∗
)

α+μ
α
(
I− I∗ − I∗ ln I

I∗
)
. (7.65)

Hint: You have to use the equations for the equilibrium.
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7.4. Lyapunov Function for a Vector–Host Model
The following vector–host model with disease-induced mortality has been studied
in [51]:

S′h = μNh −κShIv − μSh+ γIh,

I′h = κShIv − (μ + γ)Ih,

S′v = ηNv −β SvIh −ηSv,

I′v = β SvIh −ηIv, (7.66)

where γ is the recovery rate, μ is the birth/death rate of humans, and η is the
birth/death rate for vectors.

(a) The disease-free equilibrium is (Nh,0,Nv,0). The reproduction number of the
model is

R0 =
κβ NhNv

η(μ + γ)
.

Use the following Lyapunov function to show that the disease-free equilibrium
is globally stable whenever R0 ≤ 1.

V (Sh, Ih,Sv, Iv) =

(
Sh −Nh −Nh ln

Sh

Nh

)
+ Ih

+
(γ + μ)

β Nv

(
Sv −Nv −Nv ln

Sv

Nv

)
+ Iv. (7.67)

(b) Show that the model has a unique endemic equilibrium E ∗ = (S∗, I∗,R∗),
given by

S∗h =
Nh((μ + γ)R0 +κNv)

(κNv + μ + γ)R0
,

I∗h =
η(μ + γ)

β [κNv + μ + γ]
(R0 − 1) ,

S∗v =
Nv(κNv + μ + γ)
(κNv +(μ + γ)R0

,

I∗v =
Nv(μ + γ)

β [κNv +(μ + γ)R0]
(R0 − 1) . (7.68)

Show that the endemic equilibrium is locally asymptotically stable.
(c) Use the following Lyapunov function to show that the endemic equilibrium is

globally stable:

V (Sh, Ih,Sv, Iv) = c1

(
Sh−S∗h−S∗h ln

Sh

S∗h

)
+c2

(
Ih−I∗h−I∗h ln

Ih

I∗h

)

+ c3

(
Sv−S∗v−S∗v ln

Sv

S∗v

)
+c4

(
Iv−I∗v − I∗v ln

Iv

I∗v

)
, (7.69)

where c1 = c2 = β S∗vI∗h and c3 = c4 = κS∗hI∗v .
Hint: You have to use the equations for the equilibrium.



180 7 Analysis of Complex ODE Epidemic Models: Global Stability

7.5. Oscillations in a Malaria Vector Model
Let U(t) be the class of fertilized nourished reproducing female vectors, W (t) the
class of fertilized but nonreproducing vectors in quest of a blood meal, and let V (t)
represent the vectors that have just laid eggs and are resting [125]. The total vector
population is given by Nv = V +U +W . Let H be the population of humans at the
breeding site, assumed constant. Consider the following model:

U ′ = pτHW − (a+ μ)U,

V ′ =
aρU

Q+U
+ aU −

(
μ +

bH
H +K

)
V,

W ′ =
(

bH
H +K

)
V − (μ + τH)W, (7.70)

where 0 ≤ p ≤ 1 is the probability that a mosquito will succeed in taking a blood
meal and τ is the contact rate; a, b, K, Q, and, ρ are positive constants.

(a) Determine the equilibria of the system.
(b) Show that the unique nontrivial equilibrium can become destabilized, and oscil-

lations are possible.

7.6. Backward Bifurcation in an SIS Model with Education
The following SIS model with education was proposed in [67].

S′1 = μ(1−κ)−ψS1+ δS2 −β1S1I+α(1−σ)I− μS1,

S′2 = μκ +ψS1− δS2 −β2S2I +ασ I− μS2,

I′ = (β1S1 +β2S2)I − (α + μ)I, (7.71)

where S1 are the usual susceptibles, while S2 are the educated susceptibles, I are the
infectious individuals, μ is the fertility–mortality parameter with fraction κ going
into the educated class, ψ is the transmission rate from the normal to the educated
state, δ is the transition rate from the educated to normal state, β1 and β2 are the
transmission rates to normal and educated susceptibles.

(a) Compute the disease-free equilibrium and the reproduction number of the model.
Show that the disease-free equilibrium is locally stable if R0 < 1 and unstable
if R0 > 1.

(b) Reduce the equations for the endemic equilibria to a single equation in I∗. Show
that backward bifurcation can occur. Derive a necessary and sufficient condition
for this to happen.

(c) Use Theorem 7.7 to show that backward bifurcation occurs.

7.7. Backward Bifurcation in an SIR Model with Saturating Treatment
The following SIR model with education was proposed in [170].
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S′ = Λ − β SI
1+κI

− μS,

I′ =
β SI

1+κI
− (μ + γ + ε)I− αI

ω + I
,

R′ = γI +
αI

ω + I
− μR, (7.72)

where S are the susceptibles, I are the infectious individuals, and R are the recovered;
μ is the mortality parameter, γ is the recovery rate, ε is the disease-induced death
rate, α , ω , and κ are positive constants.

(a) Compute the disease-free equilibrium and the reproduction number of the model.
Show that the disease-free equilibrium is locally stable if R0 < 1 and unstable
if R0 > 1.

(b) Reduce the equations for the endemic equilibria to a single equation in I∗. Show
that backward bifurcation can occur. Derive a necessary and sufficient condition
for this to happen.

(c) Use Theorem 7.7 to show that backward bifurcation occurs.

7.8. Backward Bifurcation in an SEI Risk-Structured Model
The following SEI model with education was proposed in [66].

S′l = (1− p)Λ +ψhSh − β SlI
N

− (μ +ψl)Sl ,

S′h = pΛ +ψlSl − κβ ShI
N

− (μ +ψh)Sh,

E ′ =
β (Sl +κSh)I

N
− (μ +σ)E,

I′ = σE − (μ + γ + δ )I, (7.73)

where Sl are the low-risk susceptibles, Sh are the high-risk susceptibles, E are the
exposed individuals, and I are the infectious individuals; μ is the mortality parame-
ter, γ is the recovery rate, ψl and ψh are transition rates between low- and high-risk
susceptible classes, δ is the disease-induced death rate, σ is the transition rate to
infectiousness, and κ is a positive constant.

(a) Compute the disease-free equilibrium and the reproduction number of the model.
Show that the disease-free equilibrium is locally stable if R0 < 1 and unstable
if R0 > 1.

(b) Use Theorem 7.7 to show that backward bifurcation occurs. Derive a condition
for backward bifurcation.



Chapter 8
Multistrain Disease Dynamics

8.1 Competitive Exclusion Principle

The causative agents of diseases, such as viruses and bacteria, may be represented
by multiple variants, called by the general name strains (or subtypes). The presence
of multiple strains of a pathogen complicates our ability to combat the disease. For
instance, in influenza, it is believed that each strain imparts permanent immunity,
but drift evolution creates new strains, and in a new flu season, we can contract the
disease again. There are other diseases whose causative agents are represented by
multistrain pathogens. For example, Haemophilus influenzae, which is responsible
for a range of infections, is represented by six serotypes: a, b, c, d, e, and f, as well
as some variants that are not typeable. Streptococcus pneumonae is represented by
90 serotypes. Dengue virus has four serotypes. In this chapter, we study models with
multiple strains.

In ecology, the competitive exclusion principle is one of the main principles that
govern species competition. The principle was first formulated as a law in the 1930s
by the Russian ecologist Georgy Gause [64], who discovered it based on laboratory
experiments. In short, the principle can be stated as complete competitors cannot
coexist. In this section, we introduce through models the epidemiological context of
this principle.

8.1.1 A Two-Strain Epidemic SIR Model

To account for the genetic variability of the pathogen, we investigate an SIR
epidemic model with multiple strains. The the two-strain model has the follow-
ing compartments: S(t) is the number of susceptible individuals at time t, I1(t) is
the number of individuals infected by strain one, I2(t) is the number of individuals
infected by strain two, and R(t) is the number of recovered individuals. We assume

© Springer Science+Business Media New York 2015
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Fig. 8.1 A flowchart of an SIR model with two strains and perfect immunity

that each strain, once contracted, imparts permanent immunity to itself and to the
other strain.

Susceptible individuals can become infected either by strain one at a transmis-
sion rate β1 or by strain two at a transmission rate β2. Those infected with strain
one recover at a rate α1, and those infected with strain two recover at a rate α2.
Susceptible individuals are recruited at a rate Λ . Individuals in all classes die at a
natural death rate μ . The model is given below. The flowchart of the model is given
in Fig. 8.1:

S′ = Λ −β1
SI1

N
−β2

SI2

N
− μS,

I′1 = β1
SI1

N
− (μ +α1)I1

I′2 = β2
SI2

N
− (μ +α2)I2

R′ = α1I1 +α2I2 − μR (8.1)

The total population size N is given by N(t) = S(t)+ I1(t)+ I2(t)+R(t). Adding
the equations above, we see that the equation of the total population size is the
simplified logistic N′(t) = Λ − μN.

The next step will be to compute the equilibria. Working with a standard in-
cidence allows us to consider the equilibrium equations of the proportions. For
the equilibrial values of the variables S, I1, I2, and R, we set s = S/N, i1 = I1/N,
i2 = I2/N, r = R/N. Since N satisfies the equation 0 =Λ −μN, and hence Λ = μN,
the equations for the equilibrium proportions are given by
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0 = μ −β1si1 −β2si2 − μs,
0 = β1si1 − (μ +α1)i1,
0 = β2si2 − (μ +α2)i2,
0 = α1i1 +α2i2 − μr.

(8.2)

Model (8.1) has three equilibria. The model has a disease-free equilibrium in which
neither strain one nor strain two is present. At the disease-free equilibrium, we
have s = 1, i1 = 0, i2 = 0,r = 0. Hence, the disease-free equilibrium in the original

variables is given by E0 =
(

Λ
μ ,0,0,0

)
. In contrast to single-strain models, multi-

strain models have multiple reproduction numbers, one for each strain. To define
the reproduction numbers associated with strain one and strain two, we have to look
at the local stability of the disease-free equilibrium. Computing the Jacobian at the
disease-free equilibrium yields

J =

⎛
⎜⎜⎝

−μ −β1 −β2 0
0 β1 − (μ +α1) 0 0
0 0 β2 − (μ +α2) 0
0 α1 α2 −μ

⎞
⎟⎟⎠ . (8.3)

The characteristic equation |J −λ I|= 0 has one double eigenvalue λ1 = λ2 =−μ ,
and the following two eigenvalues:

λ3 = β1 − (μ +α1),

λ4 = β2 − (μ +α2). (8.4)

The disease-free equilibrium is locally asymptotically stable if λ3 < 0 and λ4 < 0.
We notice that the eigenvalue λ3 is associated with strain one and gives rise to the
reproduction number of strain one, R1. The eigenvalue λ4 is associated with strain
two and gives rise to the reproduction number of strain two, R2. Thus, we define

R1 =
β1

μ +α1
, R2 =

β2

μ +α2
. (8.5)

We have the following result:

Proposition 8.1. The disease-free equilibrium of system (8.1) is locally asymptoti-
cally stable if both reproduction numbers are less than 1, that is if

R1 < 1 R2 < 1.

The disease-free equilibrium is unstable if at least one of the above inequalities is
reversed.
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8.1.2 The Strain-One- and Strain-Two-Dominance Equilibria
and Their Stability

A strain-one-dominance equilibrium is a boundary equilibrium in which strain one
is present i1 �= 0, while strain two is not present i2 = 0. From the second equation in
(8.2), we have

s =
μ +α1

β1
=

1
R1

.

We need s < 1 for it to be a proper fraction. Thus, for a strain-one-dominance equi-
librium to be meaningful, we need R1 > 1. To compute the value of the infected
individuals with strain one, we start from the first equation:

μ
s
= β1i1 + μ .

Replacing s with 1/R1 and solving for i1, we have

i1 =
μ

(μ +α1)R1
=

μ
μ +α1

(
1− 1

R1

)
,

r =
α1

μ
i1 =

α1

μ +α1

(
1− 1

R1

)
. (8.6)

The strain-one-dominance equilibrium is given by

E1 =

(
1
R1

Λ
μ
,

μ
μ +α1

(
1− 1

R1

)
Λ
μ
,0,

α1

μ +α1

(
1− 1

R1

)
Λ
μ

)
.

A strain-two-dominance equilibrium is a boundary equilibrium in which strain two
is present i2 �= 0, while strain one is not present i1 = 0. A strain-two-dominance
equilibrium exists if and only if R2 > 1. The strain-two-dominance equilibrium is
given by

E2 =

(
1
R2

Λ
μ
,0,

μ
μ +α2

(
1− 1

R2

)
Λ
μ
,

α2

μ +α2

(
1− 1

R2

)
Λ
μ

)
.

An equilibrium for which both strain one and strain two are present, that is, i1 �= 0
and i2 �= 0, is called a coexistence equilibrium. The equilibrium value of s in a
coexistence equilibrium satisfies the following two equations, which are obtained
from (8.2):

0 = β1s− (μ +α1),

0 = β2s− (μ +α2). (8.7)

The first equation requires

s =
μ +α1

β1
=

1
R1

.
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The second equation requires

s =
μ +α2

β2
=

1
R2

.

These two expressions for s can be consistent if and only if R1 = R2. Hence, in
the generic case in which the two strains have different reproduction numbers, a
coexistence equilibrium does not exist.

To investigate the stability of the dominance equilibria, we consider the Jacobian
at an equilibrium E = (s, i1, i2,r). Because N(t) is asymptotically constant, we treat
it as constant. It can be checked that this does not change the results.

J =

⎛
⎜⎜⎝

−β1i1 −β2i2 − μ −β1s −β2s 0
β1i1 β1s− (μ +α1) 0 0
β2i2 0 β2s− (μ +α2) 0

0 α1 α2 −μ

⎞
⎟⎟⎠ .

(8.8)

To determine the local stability of a strain-one-dominance equilibrium, we consider
the Jacobian at that equilibrium:

J(s, i1,0,r) =

⎛
⎜⎜⎝

−β1i1 − μ −β1s −β2s 0
β1i1 β1s− (μ +α1) 0 0

0 0 β2s− (μ +α2) 0
0 α1 α2 −μ

⎞
⎟⎟⎠ .

(8.9)

The Jacobian has one eigenvalue λ1 =−μ , and another

λ2 = β2s− (μ +α2) = (μ +α2)

(
R2

R1
− 1

)
.

The eigenvalue λ2 is called the growth rate of strain two when strain one is at
equilibrium. The remaining eigenvalues of the strain-one-dominance equilibrium
are the eigenvalues of the 2× 2 matrix

(−β1i1 − μ −β1s
β1i1 β1s− (μ +α1)

)
. (8.10)

We notice that the entry in the second row, second column in the matrix above is
β1s−(μ+α1) = 0, since s= 1/R1. Hence, the above matrix has Tr = −β1i1−μ < 0
and Det = β1sβ1i1 > 0. Thus, the eigenvalues of the above matrix are negative or
have negative real part. We conclude that the local stability of the dominance equi-
librium E1 depends on the sign of the eigenvalue λ2. A dominance equilibrium E1 is
locally asymptotically stable if and only if λ2 < 0. Consequently, the dominance
equilibrium E1 is locally asymptotically stable if and only if R2 < R1, that is,
when strain one has a larger reproduction number than strain two. By symmetry,
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a dominance equilibrium E2 is locally asymptotically stable if and only if R2 >R1,
that is, when strain two has a larger reproduction number than strain one. We sum-
marize these results in the following theorem:

Theorem 8.1. A strain- j-dominance equilibrium exists if and only if R j > 1. If
R1 >R2, then the strain-one-dominance equilibrium is locally asymptotically sta-
ble. If R1 <R2, it is unstable. If R1 <R2, then the strain-two-dominance equilib-
rium is locally asymptotically stable. If R1 >R2, it is unstable. Coexistence is not
possible outside of the degenerate case R1 =R2.

Figure 8.2 gives the competitive outcomes for the two strains. The competitive
outcomes are also listed in Table 8.1.

Table 8.1 Competitive outcomes for the two-strain model (8.1)

Region Long-term behavior Competitive outcome

R1 < 1, R2 < 1 I1(t)→ 0, I2(t)→ 0 Both strains die out
R1 > 1, R2 < 1 I1(t) persists, I2(t)→ 0 Strain 1 dominates
R1 < 1, R2 > 1 I1(t)→ 0, I2(t) persists Strain 2 dominates
R1 > 1, R2 > 1, R1 >R2 I1(t) persists, I2(t)→ 0 Strain 1 dominates
R1 > 1, R2 > 1, R1 <R2 I1(t)→ 0, I2(t) persists Strain 2 dominates

Fig. 8.2 Strain-one and strain-two dominance regions. The 45◦ line is the line R1 = R2. Above
that line is the region R2 > R1, where strain two outcompetes strain one. Below this line is the
region R2 <R1, where strain one outcompetes strain two
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8.1.3 The Competitive Exclusion Principle

Theorem 8.1 and Table 8.1 state that based on local results, we can conclude that
when two strains in the population compete, the strain with the larger reproduction
number outcompetes the other strain and drives it to extinction. This local result is
the foundation of the competitive exclusion principle. However, for the competi-
tive exclusion principle to hold, this result has to be global, that is, it has to hold for
all values of the initial conditions. In this subsection, we will establish the global
validity of the competitive outcomes in Table 8.1. First, we formulate the competi-
tive exclusion principle for n strains.

Competitive Exclusion Principle:
When n strains compete in a population, the strain with the largest
reproduction number outcompetes the other strains and drives them to
extinction.

The global results that support the competitive exclusion principle are formulated
and established in the following theorem [29]:

Theorem 8.2. If R1 < 1 and R2 < 1, then the DFEis globally asymptotically stable.
If R1 > 1 and/or R2 > 1, then the strain with the largest reproduction number
persists, and the other one dies out. Coexistence is not possible outside of the
degenerate case R1 =R2.

Proof. First, assume that R1 < 1. Then from Eq. (8.1), we have

I′(t)≤ β1I1 − (μ +α1)I1 = (μ +α1)(R1 − 1)I1,

where we have used the fact that S/N ≤ 1. It is clear from the above inequality that
if R1 < 1, then I1(t)→ 0 as t → ∞. A similar result holds if R2 < 1. This establishes
the global stability of the disease-free equilibrium.

Now if at least one of the reproduction numbers is larger than one, we proceed
as follows. Assume R1 >R2. Since the system is symmetric with respect to strain
one and strain two, we can derive results similar to those in the case R1 <R2. To
see this, set

ξ (t) =
Iβ2
1

Iβ1
2

.

Differentiating ξ with respect to time yields

ξ ′ =
β2Iβ2−1

1 I′1Iβ1
2 −β1Iβ2

1 I′2Iβ1−1
2

[Iβ1
2 ]2

.



190 8 Multistrain Disease Dynamics

Substituting I′1 and I′2 from the model equation (8.1), the numerator of ξ ′ becomes

β2Iβ2−1
1 Iβ1

2 [β1I1s− (μ +α1)I1]−β1Iβ2
1 Iβ1−1

2 [β2I2s− (μ +α2)I2]

= β2Iβ2
1 Iβ1

2 [β1s− (μ +α1)]−β1Iβ2
1 Iβ1

2 [β2s− (μ +α2)]

= Iβ2
1 Iβ1

2 [β1β2s−β2(μ +α1)−β1β2s+β1(μ +α2)]

= Iβ2
1 Iβ1

2 (μ +α1)(μ +α2)[R1 −R2]. (8.11)

Thus, the differential equation for ξ becomes

ξ ′(t) =
Iβ2
1 Iβ1

2 (μ +α1)(μ +α2)[R1 −R2]

[Iβ1
2 ]2

.

Hence, ξ satisfies the differential equation ξ ′ = νξ , where ν = (μ + α1)(μ +
α2)[R1 −R2]. The solution to this equation is given by ξ (t) = ξ (0)eνt . Therefore,
ξ (t) → ∞ as ν > 0. Since I1 is bounded, the only way that could happen is if
I2(t)→ 0 as t → ∞.

�

Question: What do strains compete for? Answer: The strains compete for

susceptible individuals.
Ecological Interpretation of the Competitive Exclusion Principle: From an

ecological perspective, the two strains can be viewed as two consumers competing
for a common “resource”—the susceptible individuals. The competitive exclusion
principle in this case states that only the consumer that can persist on the lower
value of the resource persists; the other one is excluded. The resource that each
strain needs to persist is s = S/N. For strain one, the value of the resource needed
for persistence is s = 1/R1. For strain two, the value of the resource needed for
persistence is s = 1/R2. Thus, the strain with the larger reproduction number can
persist on a lower value of the resource.

8.2 Multistrain Diseases: Mechanisms for Coexistence

In various natural environments, many species of microorganisms stably coexist for
long periods of time by interacting with each other. For example, in tuberculosis,
drug-sensitive and drug-resistant variants of the causative agent have been around
for a while. Dengue’s four serotypes also coexist in nature. So, if the outcome of
the simplest multistrain model (8.1) is competitive exclusion, what causes the long-
term coexistence of pathogen variants? Several mechanisms have been identified as
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causing stable coexistence of pathogens in epidemic models. Such mechanisms are
called trade-off mechanisms.

8.2.1 Mutation

Mutations are changes in the DNA or RNA sequence of a microorganism. Mutations
are caused by errors that occur during DNA or RNA replication. Microorganisms
(such as viruses) that use RNA as their genetic material have rapid mutation rates,
which can be an advantage, since those pathogens evolve constantly and rapidly, de-
veloping different antigenic characteristics and thus evading the defensive responses
of the human immune system.

Mutation is accounted for in epidemic models through a term that transfers in-
dividuals infected with one of the strains into individuals infected with the other.
To illustrate how mutation is treated in epidemic models, we introduce a two-strain
SIR epidemic model with mutation. The model is very similar to the competitive

Fig. 8.3 Flowchart of a two-strain SIR epidemic model with mutation

exclusion model (8.1) but includes the mutation of strain-one-infected individuals
into strain-two-infected individuals at a mutation rate ρ . The flowchart of the model
is given in Fig. 8.3.

The model, first introduced in [25], is given below. The notation is the same as
in model (8.1):
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S′ = Λ −β1
SI1

N
−β2

SI2

N
− μS,

I′1 = β1
SI1

N
− (μ +α1 +ρ)I1,

I′2 = β2
SI2

N
− (μ +α2)I2 +ρI1,

R′ = α1I1 +α2I2 − μR. (8.12)

We mention that mutation incorporated in this way is modeled as a continuous
event.

8.2.2 Superinfection

Superinfection is the process by which an individual that has previously been in-
fected by one pathogen variant becomes infected with a different strain of the
pathogen, or another pathogen at a later point in time. The second strain is as-
sumed to “take over” the infected individual immediately. Thus this individual
becomes infected with the second strain of the pathogen.

Superinfection is accounted for in epidemic models through a term that transfers
individuals infected with one of the strains into individuals infected with the other.

Fig. 8.4 Flowchart of a two-strain SIR epidemic model with superinfection

To illustrate how superinfection is treated in epidemic models, we introduce a two-
strain SIR epidemic model with superinfection. The model is very similar to the
competitive exclusion model (8.1) but includes the superinfection of individuals
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infected with strain one by individuals infected with strain two. The transmission
rate β2 at superinfection is reduced or enhanced by δ . If δ < 1, then the transmission
rate β2 is reduced; if δ > 1, then the transmission rate is enhanced. The flowchart of
the model is given in Fig. 8.4.

The model, first introduced in [126], is given below. Notation is the same as in
model (8.1):

S′ = Λ −β1
SI1

N
−β2

SI2

N
− μS,

I′1 = β1
SI1

N
− δβ2

I1I2

N
− (μ +α1)I1,

I′2 = β2
SI2

N
+ δβ2

I1I2

N
− (μ +α2)I2,

R′ = α1I1 +α2I2 − μR. (8.13)

In the above model, individuals infected with strain two can superinfect individuals
infected with strain one. That is, individuals infected with strain one who come into
contact with individuals infected with strain two can become immediately infected
with strain two. One open question with the superinfection model (8.13) is what
happens if the superinfection goes in both directions. To investigate this option,
suppose in addition to strain two superinfecting strain one in the model above, we
have that strain one also superinfects strain two. Hence model (8.13) takes the form

S′ = Λ −β1
SI1

N
−β2

SI2

N
− μS,

I′1 = β1
SI1

N
− δβ2

I1I2

N
+ δ1β1

I1I2

N
− (μ +α1)I1,

I′2 = β2
SI2

N
+ δβ2

I1I2

N
− δ1β1

I1I2

N
− (μ +α2)I2,

R′ = α1I1 +α2I2 − μR. (8.14)

It can be seen that the two superinfection terms in each of the equations for I′1 and
I′2 are the same except for their coefficients. This means that they can be combined.
For instance,

−δβ2
I1I2

N
+ δ1β1

I1I2

N
= (−δβ2 + δ1β1)

I1I2

N
.

The constant coefficient is either positive or negative. If it is negative, it can be
written as

−δβ2 + δ1β1 =−δ̂β2.

Hence, the equation for I′2 takes the same form as in system (8.13). The expression in
the equation for I′2 in (8.14) is the same but with the opposite sign. We conclude that
the symmetric system (8.14) is mathematically equivalent to the asymmetric system
(8.13). For that reason, typically only the asymmetric system (8.13) is investigated.



194 8 Multistrain Disease Dynamics

8.2.3 Coinfection

Coinfection is the process of infection of a single host with two or more pathogen
variants (strains) or with two or more distinct pathogen species. Coinfection with
multiple pathogen strains is particularly common in HIV, but it occurs in many
other diseases. Coinfection with multiple pathogen species is also thought to be
a very common occurrence. Particularly widely distributed combinations are HIV
and tuberculosis, HIV and hepatitis, HIV and malaria, and others. Coinfection is
of significant importance because it may have negative effect both on the health of
the coinfected individuals as well as on the public health in general. For instance, a
coinfection of a human or a pig with human influenza strain and H5N1 strain may
result in a pandemic strain, causing a widespread deadly pandemic.

To model coinfection, we need to introduce a new dependent variable, namely
J(t), the number of coinfected individuals in the population. The model again is built
on the basis of the competitive exclusion model (8.1), but with a coinfected class J.
Individuals infected with strain one can become coinfected with strain two and move
to the coinfected class, and similarly for individuals originally infected with strain
two. A typical assumption is that the probability of a susceptible individual getting
infected with both strains simultaneously is too small and can be neglected. Both
infected individuals with strain one and coinfected individuals can infect with strain
one, and similarly with strain two. Recovery in a coinfection model is complex.
Jointly infected individuals can recover from strain one, thereby moving to the class
I2, or they can recover from strain two and move to the class I1. The possibility that
jointly infected individuals recover from both classes also exists. In that case, they
move to the recovered class R.

Fig. 8.5 Flowchart of a two-strain SIR coinfection model
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The flowchart of the model is given in Fig. 8.5. The model, previously introduced
in [113], takes the form

S′ = Λ −β1
S(I1 + J)

N
−β2

S(I2 + J)
N

− μS,

I′1 = β1
S(I1 + J)

N
− δ2β2

I1(I2 + J)
N

− (μ +α1)I1 + γ2J,

I′2 = β2
S(I2 + J)

N
− δ1β1

(I1 + J)I2

N
− (μ +α2)I2 + γ1J,

J′ = δ1β1
(I1 + J)I2

N
+ δ2β2

I1(I2 + J)
N

− (μ + γ1 + γ2 + γ3)J,

R′ = α1I1 +α2I2 + γ3J− μR. (8.15)

Here some of the new parameters have the following meanings: δi is a coefficient
of reduction/enhancement of infection during coinfection, αi is the recovery rate
of strain i during a single-strain infection, γi is the recovery rate of strain i during
coinfection, and γ3 is the recovery of jointly infected individuals from both strains
simultaneously.

Fig. 8.6 A flowchart of a two-strain model with cross-immunity

8.2.4 Cross-Immunity

Cross-immunity is a form of immunity in which prior infection with one variant of
the pathogen renders partial protection against another variant of the same pathogen
or a different pathogen. Cross immunity, just like coinfection, can apply to strains
of the same microorganism or can apply to different pathogen species. In the first
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case, the most notable example is influenza, where infection with one strain of-
ten provides some sort of immunity to other influenza strains. Mathematical mod-
els also have suggested that short-lived cross-immunity may exist among the four
dengue serotypes [2]. In terms of cross-protective immunity between two distinct
pathogens, mathematical models have suggested that such may exist between lep-
rosy and tuberculosis [99]. Another example of cross-reactivity that has been con-
firmed in humans is one that involves the influenza virus and the hepatitis C virus
[165].

To introduce the model, besides the traditional classes S, I1, and I2, there are
also the classes of the recovered individuals from strain i, denoted by Ri, the class
J2 of individuals recovered from strain one and now infected with strain two, and
symmetrically, the class J1 recovered from strain two and now infected with strain
one, and finally, the class R of individuals recovered from both strains. The cross-
immunity that strain i provides to strain j is incorporated in σ j.

The flowchart of the model is given in Fig. 8.6. The model, previously introduced
in [37], takes the form

S′ = Λ −β1
S(I1 + J1)

N
−β2

S(I2 + J2)

N
− μS,

I′1 = β1
S(I1 + J1)

N
− (μ +α1)I1,

R′
1 = α1I1 −σ2β2

R1(I2 + J2)

N
− μR1,

J′1 = σ1β1
R2(I1 + J1)

N
− (μ +α1)J1,

I′2 = β2
S(I2 + J2)

N
− (μ +α2)I2,

R′
2 = α2I2 − δ1β1

(I1 + J)I2

N
− μR2,

J′2 = σ2β2
R1(I2 + J2)

N
− (μ +α2)J2,

R′ = α1J1 +α2J2 − μR. (8.16)

There are other trade-off mechanisms that are known to induce coexistence of
multiple pathogens. What causes coexistence of pathogens is still an open question
of particular interest. Several articles review the literature devoted to multistrain
interaction [109, 152]. Multistrain interactions play a particularly important role,
since most diseases that are still a public health concern today are caused by very
mutable pathogens.
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8.3 Analyzing Two-Strain Models with Coexistence: The Case
of Superinfection

In this section, we consider a simple model of a disease without recovery where
the strains interact through superinfection. An example of a disease that can be
described by the model is HIV. In modeling HIV, we need to include disease-induced
mortality and standard incidence to account for the fact that the contacts do not grow
linearly with the population size. The model with superinfection takes the form

S′ = Λ −β1
SI1

N
−β2

SI2

N
− μS,

I′1 = β1
SI1

N
− δβ2

I1I2

N
− (μ +α1)I1,

I′2 = β2
SI2

N
+ δβ2

I1I2

N
− (μ +α2)I2. (8.17)

8.3.1 Existence and Stability of the Disease-Free and Two
Dominance Equilibria

Most of the analysis of multistrain models follows the analysis of single-strain mod-
els. In particular, multistrain models also have a disease-free equilibrium, that is, an
equilibrium in which none of the strains is present. If we set the derivatives to zero,
the system for the equilibria satisfies

Λ −β1
SI1

N
−β2

SI2

N
− μS = 0,

β1
SI1

N
− δβ2

I1I2

N
− (μ +α1)I1 = 0,

β2
SI2

N
+ δβ2

I1I2

N
− (μ +α2)I2 = 0. (8.18)

For the disease-free equilibrium, we have I1 = 0 and I2 = 0. This gives S = Λ
μ .

Hence, the disease-free equilibrium is E0 =
(

Λ
μ ,0,0

)
. To compute the reproduction

numbers of each strain, we look at the stability of the disease-free equilibrium. The
Jacobian takes the form

J =

⎛
⎝−μ −β1 −β2

0 β1 − (μ +α1) 0
0 0 β2 − (μ +α2)

⎞
⎠ . (8.19)
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This gives the following two reproduction numbers of strain one and strain two:

R1 =
β1

μ +α1
, R2 =

β2

μ +α2
. (8.20)

Setting I j = 0, we can compute the dominance equilibrium of strain i for i �= j = 1,2.
We obtain the following two dominance equilibria that correspond to each strain:

E1 =

(
Λ
μ

1
R1

,
Λ
μ

(
1− 1

R1

)
,0

)
, E2 =

(
Λ
μ

1
R2

,0,
Λ
μ

(
1− 1

R2

))
. (8.21)

It is clear from the expressions for the equilibria that the dominance equilibrium for
strain i exists and is positive if and only if Ri > 1.

We summarize our observations thus far in the following two theorems:

Theorem 8.3. The disease-free equilibrium E0 always exists. In addition, there is
a dominance equilibrium corresponding to strain one, E1, if and only if R1 > 1.
Analogously, there is a dominance equilibrium corresponding to strain two, E2, if
and only if R2 > 1.

Regarding the stability of the disease-free equilibrium, we have the following
result:

Proposition 8.2. If R1 < 1 and R2 < 1, then the disease-free equilibrium is locally
stable. If R1 > 1 and/or R2 > 1, then the disease-free equilibrium is unstable.

Because this result always holds, it is somewhat customary to define an overall
reproduction number. In particular, R0 is defined as follows:

R0 = max{R1,R2}. (8.22)

This definition is consistent with the next-generation approach for defining the
reproduction number as the maximum element in the spectrum of the next-generation
matrix.

To investigate the local stability of the dominance equilibria, we consider the
Jacobian of system (8.17). Since this model uses standard incidence and the denom-
inator is strictly nonconstant, we need to be careful in computing the Jacobian. In
particular, we need to keep in mind that N = S+ I1+ I2 and differentiate the denom-
inator too. The generic form of the Jacobian is given by

J =

⎛
⎝ j11 −β1s+β1si1 +β2si2 β1si1 −β2s+β2si2

β1i1 −β1si1 +δβ2i1i2 j22 −β1si1 −δβ2i1 +δβ2i1i2
β2i2 −β2si2 −δβ2i1i2 −β2si2 +δβ2i2 −δβ2i1i2 j33

⎞
⎠ ,

(8.23)

where

j11 = −β1i1 +β1si1 −β2i2 +β2si2 − μ ,

j22 = β1s−β1si1 − δβ2i2 + δβ2i1i2 − (μ +α1),

j33 = β2s−β2si2 + δβ2i1 − δβ2i1i2 − (μ +α2), (8.24)

and s = S/N, i1 = I1/N, and i2 = I2/N evaluated at the respective equilibria.
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The local stability of the equilibrium E1 is given by the Jacobian evaluated at E1:

J1 =

⎛
⎝−β1i1 +β1si1 − μ −β1s+β1si1 β1si1 −β2s

β1i1 −β1si1 β1s−β1si1 − (μ +α1) −β1si1 − δβ2i1
0 0 β2s+ δβ2i1 − (μ +α2)

⎞
⎠ .

(8.25)

Two entries in the last row are zeros, while the third one gives an eigenvalue of the
3×3 matrix J1:

λ1 = β2s+ δβ2i1 − (μ +α2).

The other two eigenvalues are the eigenvalues of the submatrix

J11 =

(−β1i1 +β1si1 − μ −β1s+β1si1
β1i1 −β1si1 β1s−β1si1 − (μ +α1)

)
. (8.26)

We notice that since s = 1/R1, we have β1s− (μ +α1) = 0. This kind of simplifi-
cation is typical for epidemic models, and one should always remember to simplify
the Jacobian. The matrix J11 takes the form

J11 =

(−β1i1 +β1si1 − μ −β1s+β1si1
β1i1 −β1si1 −β1si1

)
. (8.27)

To determine the stability of the matrix J11, we apply Theorem 3.2 from Chap. 3.
Since this is a 2×2 matrix, its eigenvalues will have negative real parts if TrJ11 < 0
and DetJ11 > 0. We can easily see that TrJ11 =−β1i1+β1si1−μ−β1si1 =−β1i1−
μ < 0. Furthermore, we note that −β1i1 +β1si1 =−β1i1(1− s)< 0. Hence, the j11

entry in J11 is negative. Similarly, the j12 entry is negative, the j21 entry is positive,
and j22 < 0. This implies that DetJ11 = j11 j22 − j12 j21 > 0. Thus the eigenvalues
of submatrix J11 have negative real parts. Therefore, stability of E1 is determined
by the sign of the eigenvalue λ1. The equilibrium E1 will be locally asymptotically
stable if and only if λ1 < 0, that is, if and only if

β2s+ δβ2i1 − (μ +α2)< 0. (8.28)

Replacing s and i1 with their respective values, we have

β2
1
R1

+ δβ2

(
1− 1

R1

)
< μ +α2.

As with the reproduction number, we rewrite this inequality as a quantity smaller
than one:

R2

R1
+ δR2

(
1− 1

R1

)
< 1.
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The quantity on the left-hand side of the above inequality is called the invasion
reproduction number or invasion number of strain two at the equilibrium of strain
one, and it is denoted by R̂1

2 . Hence, we define the invasion reproduction number as

R̂1
2 =

R2

R1
+ δR2

(
1− 1

R1

)
. (8.29)

Mathematically, the invasion number gives a threshold for the stability of a domi-
nance equilibrium. Since the eigenvalue λ1 gives the growth rate of strain two when
strain one is at equilibrium, and we have

λ1 < 0 ⇐⇒ R̂1
2 < 1,

it follows that equilibrium E1 is locally asymptotically stable if and only if R̂1
2 < 1.

Thus, strain two cannot grow when strain one is at equilibrium if and only if R̂1
2 < 1.

In this case, we say that strain two cannot invade the equilibrium of strain one.

Epidemiologically, the invasion number of strain two at the equilibrium
of strain one gives the number of secondary infections one individual
infected with strain two will produce in a population in which strain one
is at equilibrium during its lifetime as infectious.

Just like the reproduction number, the invasion reproduction number must be
positive and interpretable. Sometimes, meeting these two conditions simultaneously
may be a challenge. However, R̂1

2 is clearly positive. For the interpretation, we
consider the invasion number in the form (see (8.28))

R̂1
2 =

β2s
μ +α2

+
δβ2i1
μ +α2

.

β2
SI2

N
+ δβ2

I1I2

N
Gives the number of secondary infections that I2 individuals

can produce per unit of time.
β2s+ δβ2i1 Gives the number of secondary infections that one strain-

two-infected individual can produce per unit of time when
the proportion of susceptibles is s and the proportion of
those infected with strain one is i1 at equilibrium.

β2s+ δβ2i1
μ +α2

Gives the number of secondary infections that one strain-

two-infected individual can produce during its lifetime as
infectious in a population where strain one is at equilibrium.

We note that
β2s

μ +α2
gives the number of secondary infections of susceptible

individuals, while
δβ2i1
μ +α2

gives the number of secondary infections of strain-one-

infected individuals. Therefore, the invasion number counts also the infections of
already infected individuals.
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Next we consider the stability of the dominance equilibrium of strain two, E2.
This stability is governed by the invasion number of strain one at the equilibrium
of strain two. Using (8.23) we derive the Jacobian at E2:

J2 =

⎛
⎝−β2i2 +β2si2 − μ −β1s+β2si2 −β2s+β2si2

0 β1s− δβ2i2 − (μ +α1) 0
β2i2 −β2si2 −β2si2 + δβ2i2 β2s−β2si2 − (μ +α2)

⎞
⎠ .

(8.30)

Looking at the second row of J2, we see that one of the eigenvalues is

λ2 = β1s− δβ2i2 − (μ +α1).

The other two eigenvalues are the eigenvalues of the matrix obtained by deleting the
second row and second column of J2:

J22 =

(−β2i2 +β2si2 − μ −β2s+β2si2
β2i2 −β2si2 β2s−β2si2 − (μ +α2)

)
. (8.31)

Since s = 1/R2, as before we have β2s− (μ +α2) = 0. This simplifies the matrix
to the form

J22 =

(−β2i2 +β2si2 − μ −β2s+β2si2
β2i2 −β2si2 −β2si2

)
. (8.32)

Similar reasoning as before shows that the entries of that matrix have the following
signs: j11 < 0, j12 < 0, j21 > 0 and j22 < 0. From here, it is easy to see that TrJ < 0
and DetJ > 0. Hence, Theorem 3.2 in Chap. 3 implies that the eigenvalues of the
matrix J22 have negative real parts. Therefore, the stability of E2 is determined by
the sign of the eigenvalue λ2. The equilibrium E2 is locally asymptotically stable if
and only if λ2 < 0, that is, if and only if

β1s− δβ2i2 − (μ +α1)< 0. (8.33)

Solving the inequality so that we have 1 on the RHS, we obtain

β1s
δβ2i2 + μ +α1

< 1. (8.34)

Replacing the values of s and i2 from E2, we obtain the following invasion number:

R̂2
1 =

β1
1
R2

δβ2

(
1− 1

R2

)
+ μ +α1

. (8.35)

As before, the epidemiological interpretation of R̂2
1 is that it gives the number of

secondary infections that one strain-one-infected individual can produce in a pop-
ulation where strain two is at equilibrium. Rewriting inequality (8.33) in the form
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(8.34) means that we treat the rate of infection of the unique strain-one infectious in-
dividual by individuals infected by strain two as a decrease of the “lifespan” of that
individual infected with strain one. Equilibrium E2 is locally asymptotically stable
if and only if

λ2 < 0 ⇐⇒ R̂2
1 < 1.

That is, equilibrium E2 is stable when the growth rate λ2 of strain one when strain
two is at equilibrium is negative, that is λ2 < 0, or equivalently, when the invasion
number of strain one, R̂2

1 , is less than 1, that is, when strain one cannot invade
the equilibrium of strain two. These results can be summarized in the following
theorem:

Theorem 8.4. Let R1 > 1 and R2 > 1.

1. The dominance equilibrium of strain one E1 is locally asymptotically stable if and
only if R̂1

2 < 1, that is, if and only if strain two cannot invade the equilibrium of
strain one.

2. The dominance equilibrium of strain two E2 is locally asymptotically stable if and
only if R̂2

1 < 1, that is, if and only if strain one cannot invade the equilibrium of
strain two.

In the competitive exclusion case considered in Sect. 8.1, if R1 > 1 and R2 > 1,
then exactly one of the dominance equilibria was stable. Here, if R̂2

1 > 1, R̂1
2 > 1,

then they are both unstable. In this case, we will see that there may also be an equi-
librium in which both strains are present. Such an equilibrium is called an interior
equilibrium or a coexistence equilibrium.

8.3.2 Existence of the Coexistence Equilibrium

Under some conditions, system (8.17) has equilibria in which both strains are
present. If E ∗ = (S∗, I∗1 , I

∗
2 ) is an equilibrium, then if I∗1 �= 0 and I∗2 �= 0, this equi-

librium is called a coexistence equilibrium. Coexistence equilibria are nontrivial
solutions of the system (8.18). To solve this system, we first rewrite it in terms of
the proportions. Let s = S/N, i1 = I1/N, and i2 = I2/N. From system (8.18), we can
compute the equation of the total population size:

Λ − μN−α1I1 −α2I2 = 0.

Thus,
Λ
N

= μ +α1i1 +α2i2.

Dividing each equation in (8.18) by N and using the above expression, we arrive at
the following system for the proportions:
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μ +α1i1 +α2i2 −β1si1 −β2si2 − μs = 0,

β1si1 − δβ2i1i2 − (μ +α1)i1 = 0,

β2si2 + δβ2i1i2 − (μ +α2)i2 = 0. (8.36)

Since i1 �= 0 and i2 �= 0, we can cancel them in the second and third equations. Then
we use the second and third equations to express i1 and i2 in terms of s:

i1 =
(μ +α2)−β2s

δβ2
i2 =

β1s− (μ +α1)

δβ2
. (8.37)

From the equation for the total population size N = S+I1+I2, we have a correspond-
ing equation for the proportions s+ i1 + i2 = 1. We substitute expressions (8.37) in
s+ i1+ i2 = 1, take a common denominator, and obtain the following equation for s:

δβ2s+(μ +α2)−β2s+β1s− (μ +α1) = δβ2.

This equation can be solved for s, and it gives the following value:

s =
δβ2 +(μ +α1)− (μ +α2)

δβ2 −β2 +β1
.

At this point, we do not know whether the expression for s is positive or less than 1.
We also want i1 > 0 and i2 > 0. To see this, for i1, we have

i1 =
μ +α2

δβ2
− 1

δ
δβ2 +(μ +α1)− (μ +α2)

δβ2 −β2 +β1
.

We want i1 > 0. Consequently, canceling δ , which is positive, we want

1
R2

− δβ2 +(μ +α1)− (μ +α2)

δβ2 −β2 +β1
> 0.

Now we take a common denominator:

1
R2

(δβ2 −β2 +β1)− (δβ2 + μ +α1)+ (μ +α2)

δβ2 −β2 +β1
> 0.

Combining terms in the numerator, we have

−δβ2(1− 1
R2

)− (μ +α1)− 1
R2

β2 +
1
R2

β1 +(μ +α2)

δβ2 −β2 +β1
> 0.

We notice that − 1
R2

β2 +(μ +α2) = 0, so the above expression simplifies to

i1 =
(δβ2(1− 1

R2
)+ (μ +α1))[R̂

2
1 − 1]

δβ2 −β2 +β1

1
δ
.
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We conclude that i1 > 0 if and only if one of the following holds:

Case 1. R̂2
1 > 1 and δβ2 −β2 +β1 > 0.

Case 2. R̂2
1 < 1 and δβ2 −β2 +β1 < 0.

Next, we want i2 > 0, that is, we want

β1

δβ2

δβ2 +(μ +α1)− (μ +α2)

δβ2 −β2 +β1
− μ +α1

δβ2
> 0.

Factoring out (μ +α1)/δβ2, we have

μ +α1

δβ2

(
R1

δβ2 +(μ +α1)− (μ +α2)

δβ2 −β2 +β1
− 1

)
> 0.

Here we note that if we could show that i2 > 0, that would imply that s > 1/R1, and
consequently s would also be positive. In addition, if s > 0, i1 > 0, and i2 > 0, then
they are all necessarily less than 1, since s+ i1 + i2 = 1. Taking again a common
denominator and noticing that R1(μ +α1)− β1 = 0, we see that the expression
in the parentheses above becomes

δβ2(R1 − 1)+β2−R1(μ +α2)

δβ2 −β2 +β1
> 0.

Hence,

(μ +α2)R1[R̂
1
2 − 1]

δβ2 −β2 +β1
> 0.

We conclude that i2 > 0 if and only if one of the following conditions holds:

Case 1. R̂1
2 > 1 and δβ2 −β2 +β1 > 0.

Case 2. R̂1
2 < 1 and δβ2 −β2 +β1 < 0.

We may summarize these results in the following theorem:

Theorem 8.5.

1. Let δβ2 −β2 +β1 > 0. Then a unique coexistence equilibrium exists if and only
if R̂1

2 > 1 and R̂2
1 > 1, that is, if each strain can invade the equilibrium of the

other.
2. Let δβ2 −β2 +β1 < 0. Then a unique coexistence equilibrium exists if and only

if R̂1
2 < 1 and R̂2

1 < 1, that is, if neither strain can invade the equilibrium of the
other.

Simulations suggest that the coexistence equilibrium in the case R̂1
2 > 1 and R̂2

1 > 1
is locally asymptotically stable, while the one in the case R̂1

2 < 1 and R̂2
1 < 1 is

unstable.
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Fig. 8.7 Plot of the invasion regions in the (R1,R2)-plane. Parameters are taken as μ = 0.1,
α1 = 0.5, α2 = 0.1, δ = 0.3

8.3.3 Competitive Outcomes, Graphical Representation,
and Simulations

The invasion reproduction numbers play a critical role in determining the compet-
itive outcomes between the two strains. The potential competitive outcomes have
been summarized in Table 8.2.

Table 8.2 Competitive outcomes when coexistence is possible

Region Long-term behavior Competitive outcome

R̂2
1 > 1,R̂1

2 < 1 I1(t) persists, I2(t)→ 0 Strain 1 dominates
R̂2

1 < 1,R̂1
2 > 1 I1(t)→ 0, I2(t) persists Strain 2 dominates

R̂2
1 > 1,R̂1

2 > 1 I1(t) persists, I2(t) persists Strains coexist
R̂2

1 < 1,R̂1
2 < 1 I1(t) persists or I2(t) persists Depends on initial conditions

It can be seen that R̂1
2 and R̂2

1 are functions of R1 and R2. Since the curves R̂1
2 =

1 and R̂2
1 = 1 in the (R1,R2)-plane separate the different regions of competitive

outcomes, it is customary to graph them to illustrate the zones of coexistence and
competitive exclusion. Figure 8.7 illustrates the case with a coexistence region.
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Fig. 8.8 Plot of the invasion regions in the (R1,R2)-plane. Parameters are taken as μ = 0.1,
α1 = 0.5, α2 = 0.1, δ = 0.3

Remarks:
1. Notice that in Fig. 8.7, the area of dominance of strain two is much larger than

that of strain one. This is to be expected, since strain two can infect even individ-
uals infected with strain one.

2. Furthermore, notice that strain one eliminates strain two only if R1 > R2. In
contrast, strain two can eliminate strain one if R2 > R1 but also if R2 < R1.
Thus, in the case of superinfection, the principle that the strain with the maximal
reproduction number excludes the one with the lower reproduction number is no
longer valid. Thus a strain (strain two) with suboptimal reproduction number can
dominate in the population. This occurs in the case with superinfection, because
the two reproduction numbers do not take into account the cases of strain-two
infection that are produced through superinfection. Thus, in the absence of su-
perinfection, strain one will eliminate strain two, because it has a larger reproduc-
tion number. In the presence of superinfection, however, strain two superinfects
individuals infected with strain one, and this gives the competitive advantage to
strain two even if its reproduction number is lower.

3. When δβ2 − β2 + β1 < 0, the plot of the curves has a similar appearance (see
Fig. 8.8). The difference between Figs. 8.7 and 8.8 is that the higher curve is
R̂1

2 = 1, and the lower curve is R̂2
1 = 1. Thus, in the region between the curves,
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we have
R̂1

2 < 1 and R̂2
1 < 1.

In that region, there is a coexistence equilibrium, but it is unstable. However,
both of the boundary equilibria E1 and E2 are locally asymptotically stable.
What is observed in simulations is that the solution converges either to E1 or
to E2, depending on the initial conditions. Thus, depending on the initial con-
ditions, either strain one persists or strain two persists. This effect is some-
times called bistable dominance. In ecology, the same effect is called priority
effects or founder control, since the species that is in the better position originally
dominates.

8.4 Computing the Invasion Numbers Using
the Next-Generation Approach

In the previous section, we used the Jacobian approach to compute the invasion
numbers. As with the reproduction number, the Jacobian approach can be difficult
or impossible to use. The next-generation approach, originally developed for the
computation of the reproduction number, can be adapted to facilitate the computa-
tion of the invasion numbers.

8.4.1 General Description of the Method

The method provides a technique for the derivation of the next-generation matrix
of strain i from ordinary differential equation compartmental models for disease
transmission. The system is divided into compartments with two broad categories:
infected with strain-i compartments and noninfected/infected with strain- j compart-
ments. A compartment is called an infected with strain i compartment if the indi-
viduals in that compartment are infected with strain i. Notice that we do not require
these individuals to be infectious. The remaining compartments in which the indi-
viduals are not infected or are infected with strain j are the noninfected/infected
with strain j compartments. Assume that there are n infected with strain i compart-
ments and m noninfected/infected with train j compartments, so the entire ordinary
differential equation model has m+ n dependent variables. Let x be the vector of
dependent variables in the infected with strain i compartments, and let y be the vec-
tor of variables in the noninfected/infected with strain j compartments. We have
x ∈ Rn and y ∈ Rm. We then proceed as follows:

1. First, we arrange the equations so that the first n components of the ODE system
correspond to the infected with strain i compartments. Thus, we write the original
ODE system as
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x′k = fk(x,y), k = 1, . . .n,

y′j = g j(x,y), j = 1, . . . ,m. (8.38)

2. Second, we split the right-hand side in the infected with strain i compartments in
the following way:

x′k = Fk(x,y)−Vk(x,y), k = 1, . . . ,n,

y′j = g j(x,y), j = 1, . . . ,m, (8.39)

where

• Fk(x,y) is the rate of appearance of new infections with strain i in compart-
ment k;

• Vk(x,y) incorporates the remaining transitional terms, namely, births, deaths,
disease progression, and recovery.

We note that just as in the case with the reproduction number, this decomposition
into infected with strain i and noninfected/infected with strain j compartments as
well as the decomposition into F and V may not be unique. Different decom-
positions may correspond to different interpretations of the disease process and
may lead to somewhat different expressions for the invasion number of strain i.
The decomposition should satisfy the following properties:

• Fk(0,y) = 0 and Vk(0,y) = 0 for y ≥ 0 and k = 1, . . . ,n. The first condition
says that all new infections with strain i are secondary infections arising from
infected with strain i hosts. The second conditions says that there is no im-
migration of susceptible individuals/individuals infected with strain j into the
infected with strain i compartments.

• Fk(x,y)≥ 0 for all x,y ≥ 0.
• Vk(x,y)≤ 0 whenever xk = 0, for k = 1, . . . ,n. Each component Vk represents

the net outflow of an infected with strain i compartment and must give inflow
only (that is, be negative) if the compartment is empty.

• ∑n
k=1Vk(x,y)≥ 0 for all x,y ≥ 0. The total outflow of all infected with strain i

compartments is positive.

3. Assume that the system in the absence of strain i,

y′ = g(0,y),

has a unique nontrivial strain- j-dominance equilibrium E0 j = (0,y0) such that
all solutions with initial conditions of the form (0,y) approach (0,y0) as t → ∞.
Determine the strain- j-dominance equilibrium E0 j.

4. Determine the matrices F and V with components

F =

[
∂Fk(0,y0)

∂x j

]
and V =

[
∂Vk(0,y0)

∂x j

]
.
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These matrices appear from the linearization of the system (8.39) around the
equilibrium of strain j. It can be shown that

∂Fk(0,y0)

∂y j
=

∂Vk(0,y0)

∂y j
= 0

for every pair (k, j). This implies that the linearized equations for the infected
with strain i compartments x computed at the equilibrium of strain j are decou-
pled from the remaining equations. The linearized system for the infected with
strain i compartments can be written as

x′ = (F −V)x,

where the matrices F and V are defined above.
5. The next-generation matrix of strain i is defined as

K = FV−1

and
R̂ j

i = ρ(FV−1),

where ρ(A) denotes the spectral radius of A.

As before, it can be shown that V is a nonsingular M-matrix. Since V is an M-matrix,
V−1 ≥ 0, that is, V−1 has only nonnegative entries. Since F also has only nonneg-
ative entries, the next-generation matrix of strain i, K = FV−1, is also nonnegative.
This implies that the next-generation matrix of strain i has its spectral radius given
by R̂ j

i , R̂ j
i is an eigenvalue of K, and there is no other eigenvalue with larger mod-

ulus. Hence,

The invasion number R̂ j
i is computed as the largest positive eigenvalue

of the next-generation matrix of strain i.

Remark: Condition 3 above is needed to guarantee that if R̂ j
i < 1, the strain- j-

dominance equilibrium is locally asymptotically stable. However, on many occasions
that is not true. Even if R̂ j

i < 1, the strain- j equilibrium may become unstable, say
through Hopf bifurcation. For that reason, in defining the invasion numbers, con-
dition 3 is relaxed. If condition 3 is not valid, then the only inference that can be
made from the invasion number is that if R̂ j

i > 1, then the equilibrium of strain j is
unstable.
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8.4.2 Example

As an example we consider a two-strain model of influenza with isolation [128]. In-
fluenza strains interact through cross-immunity. To introduce the model, let S denote
susceptible individuals, I j individuals infected with strain j, Q j individuals infected
with strain j and quarantined, R j individuals recovered from strain j, Jk individuals
infected with strain k after recovery from strain j, and W individuals recovered from
both strains. The model is a modification of model (8.16). It takes the form

S′ = Λ −β1
S(I1 + J1)

A
−β2

S(I2 + J2)

A
− μS,

I′1 = β1
S(I1 + J1)

A
− (μ +α1 + δ1)I1,

Q′
1 = δ1I1 − (μ + γ1)Q1,

R′
1 = α1I1 + γ1Q1 −σ2β2

R1(I2 + J2)

A
− μR1,

J′1 = σ1β1
R2(I1 + J1)

A
− (μ +α1)J1,

I′2 = β2
S(I2 + J2)

A
− (μ +α2 + δ2)I2,

Q′
2 = δ2I2 − (μ + γ2)Q2,

R′
2 = α2I2 + γ2Q2 − δ1β1

(I1 + J)I2

A
− μR2,

J′2 = σ2β2
R1(I2 + J2)

A
− (μ +α2)J2,

W ′ = α1J1 +α2J2 − μW, (8.40)

where A denotes the active population A = N−Q1−Q2. We define the reproduction
numbers as

R1 =
β1

μ + δ1 +α1
and R2 =

β2

μ + δ2 +α2
.

The model is symmetric with respect to strains one and two, so the two inva-
sion numbers will also be symmetric. First, we need to compute the strain-one-
dominance equilibrium. All infected classes associated with strain two will be set to
zero. That is, I2 = Q2 = R2 = J2 = W = 0. From the last equation, we deduce that
J1 = 0. The last six equations in system (8.40) are trivially satisfied. The strain-one-
dominance equilibrium satisfies the system

Λ −β1
SI1

A
− μS = 0,

β1
SI1

A
− (μ +α1 + δ1)I1 = 0,

δ1I1 − (μ + γ1)Q1 = 0,

α1I1 − μR1 = 0. (8.41)
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From the last two equations above, we can express Q1 and R1 in terms of I1:

Q1 =
δ1I1

μ + γ1
= κ1I1 and R1 =

α1I1

μ
. (8.42)

From the first two equations, we obtain the following system:

Λ − μS− (μ +α1 + δ1)I1 = 0,

β1
S
A
− (μ +α1 + δ1) = 0. (8.43)

From these two equations, and S
A + I1

A + R1
A = 1 we obtain

S
A

=
1
R1

,

I1

A
=

μ
μ +α1

(
1− 1

R1

)
. (8.44)

Clearly, the strain-one-dominance equilibrium exists if and only if R1 > 1. To apply
the next-generation approach and compute the invasion number of strain two, we
notice that the variables associated with strain-two infection are variables I2, Q2,
and J2. Thus, we have x = (I2,Q2,J2); y denotes the remaining variables. We rewrite
the equations for these three variables as a difference of a new-infections term and
an outflow term: x′ =F (x,y)−V (x,y), where

F =

⎛
⎜⎜⎜⎝

β2
S(I2 + J2)

A
0

σ2β2
R1(I2 + J2)

A

⎞
⎟⎟⎟⎠ and V =

⎛
⎝ (μ +α2 + δ2)I2

−δ2I2 +(μ + γ2)Q2

(μ +α2)J2

⎞
⎠ . (8.45)

We define the matrices F and V :

F =

⎛
⎜⎜⎜⎝

β2
S∗

A∗ 0 β2
S∗

A∗
0 0 0

σ2β2
R∗

1

A∗ 0 σ2β2
R∗

1

A∗

⎞
⎟⎟⎟⎠ and

V =

⎛
⎝ μ +α2 + δ2 0 0

−δ2 μ + γ2 0
0 0 μ +α2

⎞
⎠ . (8.46)

We first notice that V is a M-matrix. It has the Z sign pattern. Also, the transpose
of V , V T , satisfies V T u > 0, where u = (1,1,1)T . Hence, V−1 > 0. The matrix V is
not diagonal, and it is a 3× 3 matrix, so it is most easily inverted with the help of a
computer algebra system. We obtain



212 8 Multistrain Disease Dynamics

V−1 =

⎛
⎜⎜⎜⎜⎜⎝

1
μ +α2 + δ2

0 0

v21
1

μ + γ2
0

0 0
1

μ +α2

⎞
⎟⎟⎟⎟⎟⎠
, (8.47)

where

v21 =
δ2(μ +α2)

(μ +α2 + δ2)(μ +α2)(μ + γ2)
.

Hence,

FV−1 =

⎛
⎜⎜⎜⎜⎝

β2S∗

(μ +α2 + δ2)A∗ 0
β2S∗

(μ +α2)A∗
0 0 0

σ2β2R∗
1

(μ +α2 + δ2)A∗ 0
σ2β2R∗

1

(μ +α2)A∗

⎞
⎟⎟⎟⎟⎠ . (8.48)

We know that R̂1
2 = ρ(FV−1). It is not hard to compute that the invasion number is

given by

R̂1
2 =

β2S∗

(μ +α2 + δ2)A∗ +
σ2β2R∗

1

(μ +α2)A∗ ,

where S∗/A∗ and R∗
1/A∗ are the values of the strain-one equilibrium.

Problems

8.1. Show that the definition of the reproduction number R0 in the two-strain case
given by (8.22) follows from the next-generation approach (see Chap. 5).

8.2. Write a code to simulate model (8.17).

(a) Using Fig. 8.7 and the parameters given in it, choose values of R1 and R2 such
that strain two has a lower reproduction number but outcompetes strain one.

(b) Using Fig. 8.8 and the parameters given in it, choose values of R1 and R2 such
that strain one outcompetes strain two or vice versa depending on the initial
conditions.

8.3. Saturating Incidence
Consider a model of two strains with saturated incidence [97]:

S′ = Λ − β1SI
1+ a1N

− β2SJ
1+ a2N

− μS,

I′ =
β1SI

1+ a1N
− (μ +α1)I,

J′ =
β2SJ

1+ a2N
− (μ +α2)J. (8.49)
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(a) Compute the disease-free equilibrium and the reproduction numbers of the two
strains.

(b) Compute the two dominance equilibria. Investigate their stability and define the
two invasion numbers.

(c) Show that if both invasion numbers are greater than one, there is a coexistence
equilibrium.

8.4. Saturating Per Capita Treatment Rates
Consider a model of two strains with saturated treatment rate:

S′ = Λ − β1SI
N

−β2
SJ
N

− μS,

I′ =
β1SI

N
− μI− α1I2

A+ I+ J
,

J′ =
β2SJ

N
− μJ− α2J2

B+ I+ J
. (8.50)

(a) Compute the disease-free equilibrium and the reproduction numbers of the two
strains.

(b) Compute the two dominance equilibria. Investigate their stability, and define the
two invasion numbers.

(c) Show that if both invasion numbers are greater than one, there is a coexistence
equilibrium.

8.5. Two Strains with Mutation
Consider a model of two strains with mutation:

S′ = Λ − β1SI
N

− β2SJ
N

− μS,

I′ =
β1SI

N
− (μ +α1 +m)I,

J′ =
β2SJ

N
− (μ +α2)J +mI. (8.51)

(a) Compute the disease-free equilibrium and the reproduction numbers of the two
strains.

(b) Compute the dominance equilibrium of strain J. Show that there is no domi-
nance equilibrium of strain I. Investigate local stability of the dominance equi-
librium. Define the appropriate invasion number.

(c) Show that there is a coexistence equilibrium.

8.6. Consider the model (8.15).

(a) Compute the reproduction numbers of the two strains.
(b) Compute the two dominance equilibria.
(c) Use the next-generation approach to compute the invasion reproduction num-

bers.
(d) Draw the regions of dominance and coexistence in the (R1,R2)-plane.
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8.7. Consider the model (8.16).

(a) Compute the reproduction numbers of the two strains.
(b) Compute the two dominance equilibria.
(c) Use the next-generation approach to compute the invasion reproduction num-

bers.
(d) Draw the regions of dominance and coexistence in the (R1,R2)-plane.

8.8. Two-Strain SIS Model with Delays
Consider an SIS model with two strains. Assume that each strain has its own incu-
bation period. This gives the following two-strain epidemic model with two delays:

S′ = Λ −β1SI−β2SJ− μS+α1I +α2J,

I′ = e−μτ1β1S(t − τ1)I(t − τ1)− (μ +α1)I,

J′ = e−μτ2β2S(t − τ2)J(t − τ2)− (μ +α2)J. (8.52)

(a) Compute the disease-free equilibrium and the reproduction numbers of the two
strains. Determine the stability of the disease-free equilibrium.

(b) Compute the dominance equilibria of strain I and strain J. Investigate local sta-
bility of the dominance equilibria. Define the appropriate invasion numbers.

(c) Show that there is no coexistence equilibrium.

8.9. Two-Species Model of Malaria
Malaria is caused by four species of the genus Plasmodium. Consider the following
model, which includes two of the species:

I′1 =
α1β1NvI1

β1I1 +β2I2 + μV
(NH − I1 − I2)− (δ + r1)I1,

I′2 =
α2β2NvI2

β1I1 +β2I2 + μV
(NH − I1 − I2)− (δ + r2)I2, (8.53)

where Nv is the total vector population and NH is the total human population (assume
constant), μv is the vector natural mortality, δ is the human natural mortality, αi for
i = 1,2 are the transmission rates from vector to human, and βi for i = 1,2 are the
transmission rates from human to vector. The ri are the appropriate recovery rates.

(a) Compute the disease-free equilibrium and the reproduction numbers of the two
malaria species.

(b) Compute the dominance equilibria of species I1 and species I2. Investigate local
stability of the dominance equilibria. Define the appropriate invasion numbers.

(c) Determine whether there exists a coexistence equilibrium.



Chapter 9
Control Strategies

9.1 Introduction

Measures for prevention and control of infectious diseases include vaccination,
treatment, quarantine, isolation, and prophylaxis.

Prophylaxis is the series of measures taken to prevent a specific infectious
disease. These measures can be as simple as hand-washing with soap and water,
or wearing protective gear, or taking a medication to prevent a disease. Treatment
is the use of an agent, procedure, or regimen, such as a drug, or bed rest in an attempt
to cure or mitigate a disease. Nowadays, for most infectious diseases, medications
exist that can cure or lessen the impact of the diseases, while improving the life of
the patients. Diseases for which medications can offer a cure include malaria and
tuberculosis. Diseases for which medications offer relief but not a cure include HIV
and genital herpes.

Vaccination is the process through which killed (inactivated) or weakened
microorganisms are placed into the body. Our immune system recognizes vaccine
agents as foreign. That triggers an immune response, and antibodies against them
are developed. As a result, if the same types of microorganisms enter the body again,
they will be destroyed much faster by the antibodies. Thus, an individual that is im-
munized is protected against the disease. If a large majority of people are vaccinated,
it is much more difficult for an outbreak of disease to occur, let alone spread. This
effect is called herd immunity.

Vaccination is one of the greatest achievements of public health. Vaccination has
led to the complete eradication of smallpox worldwide, and a near eradication of
polio. Table 9.1 gives the reduction of disease load in the United States as a result
of widespread vaccination campaigns.

Vaccines do not guarantee complete protection from a disease. There remains the
possibility that a vaccinated person may get the disease. Even if the host develops
antibodies, some pathogens can mutate (the common cold and influenza viruses are
highly efficient at this), and in any case, the immune system might still not be able
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Table 9.1 Achievements of vaccination in the United Statesa

Disease Baseline years Cases/year Cases in 1998 % Decrease

Smallpox 1900–1904 48,164 0 100
Diphtheria 1920–1922 175,885 1 100
Pertussis 1922–1925 147,271 6,279 95.7
Tetanus 1922–1926 1,314 34 97.4
Poliomyelitis 1951–1954 16,316 0 100
Measles 1958–1962 503,282 89 100
Mumps 1968 152,209 606 99.6
Rubella 1966–1968 47,745 345 99.3
Hib 1985 20,000 54+71 99.7

aSource: CDC, Morbidity and Mortality Weekly Report (MMWR) 48(12), 1999. Achievements
of Public Health, 1900–1999: Impact of Vaccines Universally Recommended for Children—US,
1990–1998

to defeat the infection. The degree to which vaccinated individuals are protected
against the disease is called efficacy of the vaccine.

Quarantine and isolation are two measures by which exposed or infectious
individuals are removed from the population to prevent further spread of the infec-
tion. Quarantine is applied to seemingly healthy but potentially infected individuals,
while isolation is applied to already infectious individuals. Isolation has been used
and is being used to control many dangerous diseases. Quarantine is applied less
often. It is one of the first response methods that can be used in an extreme emer-
gency. Quarantine was implemented during the SARS epidemic of 2002–2003.

The reproduction number, computed for mathematical models involving con-
trol strategies, depends on the control strategies, and it is often called a controlled
reproduction number.

9.2 Modeling Vaccination: Single-Strain Diseases

There are two points in which vaccination models can differ from one another. The
first is that some models assume that vaccination is equivalent to going through
the disease and treats vaccinated individuals as recovered individuals. Thus an SIR
model can include vaccinated individuals without an additional class. Other models
assume that vaccinated individuals have to be separated into a vaccinated class V .
The second point of distinction is that some classes of models assume that individ-
uals enter the system at a point of their life when they either get vaccinated or skip
vaccination and enter the system as susceptibles. This is more or less accurate for
school children. Other models allow for continuous vaccination of individuals while
in the system.
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9.2.1 A Model with Vaccination at Recruitment

Assume that we have a perfect vaccine, whereby everybody who is vaccinated is
completely protected. Suppose we vaccinate at recruitment into the system a fraction
p of individuals. So if μN is the recruitment term, a fraction pμN goes directly into
the recovered class, and a proportion qμN, where q = 1− p, enters the susceptible
class. Thus the SIR model with vaccination becomes

dS
dt

= qμN −β SI− μS,

dI
dt

= β SI− (μ +α)I,

dR
dt

= pμN +αI− μR.

(9.1)

The equation of the total population size here is N′(t) = 0, and the total popula-
tion size is constant, N = S0 + I0 +R0. The disease-free equilibrium, obtained from
setting the derivatives equal to zero and I = 0, is given by E0 = (qN,0, pN). Thus, if

R0 =
β N

α + μ

is the reproduction number in the absence of vaccination (p = 0), then qR0 is the
reproduction number of the disease in the presence of vaccination. Consequently,
vaccination has reduced the original reproduction number by the fraction q.

Question: What fraction, p, of the population must be vaccinated so that the
reproduction number of the disease is reduced below 1?

To answer this question, we need qR0 < 1. Replacing q with 1− p and solving
the inequality for p, we obtain that p > p̂, where

p̂ = 1− 1
R0

.

Consequently, if a fraction p̂ of the population is successfully vaccinated, then the
disease will not spread in the population. In effect, the whole population will be
protected. This is a manifestation of the herd immunity.

9.2.2 A Model with Continuous Vaccination

Most diseases for which vaccination is successful have a recovered (immune) stage.
After all, vaccination works with the immune system more or less as the disease
does, so if the disease does not provide immunity, how could vaccination? How-
ever, there are diseases for which it is justified to consider vaccination in addition
to an SIS model, that is, a model where recovery brings the individual back to
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the susceptible class. One such disease is tuberculosis, which imparts very short-
lived immunity. Another situation occurs with bacterial infections with Neisseria
meningitidis and Streptococcus pneumoniae. Both these bacteria can exist in the
host without causing disease, a scenario, called carriage. Both carriers and infected
(sick) people can transmit the microorganism, so from the point of view of dis-
ease transmission, they can be considered indistinguishable and modeled with one
class. Carriage and disease impart immunity against the disease but probably not
so much against carriage. Thus individuals who become completely pathogen-free
can be counted as susceptible (at least for carriage). In both cases, there are vac-
cines, at least against some variants of the microorganisms, and an SIS model with
vaccination may be appropriate.

9.2.2.1 An SIS Model with Vaccination

Let V (t) denote the number of vaccinated individuals, and ψ the per capita vacci-
nation rate. Vaccination is applied only to healthy individuals, so only susceptible
individuals get vaccinated. In this model, we also take into account the fact that vac-
cines are rarely perfect, and some of the vaccinated individuals can become infected
and infectious even though they have been vaccinated. That happens at a reduced
transmission rate β δ , where 0 ≤ δ ≤ 1 is the reduction coefficient. If δ = 0, then
vaccinated individuals cannot get infected, and the vaccine is perfect. This implies
that the vaccine efficacy is ε = 1. If δ = 1, then vaccinated individuals get infected
just like susceptible individuals, and the vaccine plays no protective role. In that
case, the vaccine efficacy is ε = 0.

We list the parameters and the variables in the Table 9.2.

Table 9.2 List of parameters, variables, and their meanings

Notation Meaning

Λ Birth/recruitment rate into the population
μ Per capita natural death rate
β Per capita transmission rate
γ Per capita recovery rate
χ Proportion of individuals who recover to the vaccinated class
1− χ Proportion of individuals who recover to the susceptible class
ψ Per capita vaccination rate
ε = 1−δ Vaccine efficacy
S(t) Number of susceptible individuals
I(t) Number of infected individuals
V (t) Number of vaccinated individuals
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The model takes the form

dS
dt

= Λ − β SI
N

− (μ +ψ)S+ χγI,

dI
dt

=
β SI
N

+
β δVI

N
− (μ + γ)I,

dV
dt

= ψS− β δVI
N

+(1− χ)γI− μV.

(9.2)

The flowchat of the model is given in Fig. 9.1.
The disease-free equilibrium is given by

E0 =

(
Λ

μ +ψ
,0,

Λψ
μ(μ +ψ)

)
.

Since the equation of the total population is N′(t) = Λ − μN, the equilibrium total
population size is N = Λ

μ . Thus the proportions of susceptible and vaccinated in the
disease-free population are given by

s0 =
μ

μ +ψ
, v0 =

ψ
μ +ψ

.

9.2.2.2 The Reproduction Number and the Critical Vaccination Proportion

To compute the reproduction number, we compute the Jacobian at the disease-free
equilibrium:

Fig. 9.1 Flowchart of the model with continuous vaccination with imperfect vaccine
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J (E0) =

⎛
⎝−(μ +ψ) −β s0 + χγ 0

0 β s0 +β δv0 − (μ + γ) 0
ψ −β δv0 +(1− χ)γ −μ

⎞
⎠ .

The Jacobian has two negative eigenvalues, −μ and −(μ +ψ). The third eigen-
value is given by β s0 +β δv0 − (μ + γ). Thus we define the reproduction number in
the presence of vaccination as

R(ψ) =
β (μ + δψ)

(μ + γ)(μ +ψ)
.

The reproduction number of the disease in the absence of vaccination is obtained by
letting ψ = 0, and is given by

R0 =
β

μ + γ
.

In interpreting the reproduction number, we notice that β SI
N gives the number

of secondary infections of susceptible individuals per unit of time. The number of
secondary infections of susceptible individuals per unit of time for one infectious
individual will be β S

N . The proportion of susceptibles in a disease-free population
is S

N = s0 = μ
μ+ψ . Since 1

μ+γ is the time spent as an infectious individual, the first

term in R(ψ), given by β μ
(μ+γ)(μ+ψ) , gives the number of secondary infections of

susceptible individuals that one infected individual can produce in a disease-free
population. Similarly, β δVI

N gives the number of secondary infections of vaccinated
individuals per unit of time. The number of secondary infections of vaccinated in-
dividuals per unit of time for one infectious individual will be β δV

N . The proportion
of vaccinated individuals in a disease-free population is V

N = v0 = ψ
μ+ψ . Since 1

μ+γ
is the time spent as an infectious individual, the second term in R(ψ), given by

β δψ
(μ+γ)(μ+ψ) , gives the number of secondary infections of vaccinated individuals that
one infected individual can produce in a disease-free population.

One can see that the reproduction number in the presence of vaccination is a
decreasing function of the vaccination rate ψ . Thus, the higher the vaccination rate,
the smaller the reproduction number. Furthermore,

lim
ψ→∞

R(ψ) = δR0.

Thus, if the vaccine efficacy ε is not high enough (that is, δ is not small enough),
then even if we vaccinate everybody, we may not be able to eradicate the disease.
In other words, we cannot bring R(ψ) below 1, since the vaccinated individuals can
become infected.

Question: What is the critical proportion of individuals that should be vaccinated
if the vaccine is continuously applied and imperfect?

A critical vaccination proportion p̂ε for the eradication of a disease with imper-
fect vaccination exists only if δR0 < 1, that is, if the vaccine efficacy satisfies
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ε >

(
1− 1

R0

)
. (9.3)

If δR0 < 1, then there exists a critical vaccination level ψ∗ such that R(ψ∗) = 1.
This critical vaccination level for eradication of the disease is given by

ψ∗ =
(R0 − 1)μ
1− δR0

.

The proportion vaccinated in the population is given by ψ/(μ +ψ). We conclude
that

The critical proportion of the population that needs to be vaccinated with
vaccine with efficacy ε is given by

p̂ε =
1
ε

(
1− 1

R0

)
.

In words, the critical proportion of the population that needs to be vac-
cinated with imperfect vaccine is the critical population that needs to be
vaccinated with perfect vaccine divided by the vaccine efficacy.

We note that the formula above is an extension of the critical vaccination propor-
tion to imperfect vaccines. If the vaccine is perfect, that is, if ε = 1, then we obtain
the customary formula for the critical vaccination proportion for perfect vaccines.

Table 9.3 gives the estimates of R0 before the introduction of vaccination. Most
data on the reproduction number before vaccination are from England, Wales, and
the USA [10]. The table gives the critical vaccination fraction with perfect vaccines,
vaccine efficacies of the most common vaccines used in the USA, and the critical
vaccination fractions with imperfect vaccines. It can be seen from the table that the
current vaccines are incapable of eliminating pertussis, and may be useful in elimi-
nating polio and diphtheria if a sufficient proportion of the population is vaccinated.
In fact, polio has been eliminated in the developed countries for which the repro-
duction number before vaccination and vaccine efficacies are most accurate.

9.2.2.3 Backward Bifurcation in the Imperfect Vaccination Model

The critical threshold above gives only the proportion that has to be vaccinated so
that the reproduction number in the presence of vaccination is below one. However,
imperfect vaccines have the disadvantage that they lead to backward bifurcation, and
endemic equilibria exist and are stable even when the reproduction number in the
presence of vaccination is below one. The main reason for the backward bifurcation
is the fact that imperfect vaccination creates two classes of susceptible individuals
with different susceptibilities—the naive susceptible and the vaccinated susceptible.
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Table 9.3 Diseases and their eradication vaccination levels

Disease R0 p̂,% Vaccine efficacya p̂ε ,%

Smallpox 3–5 67–80 0.75b 89–100
Measles 12–13 92 0.75–0.95 97–100
Mumps 4–7 75–86 0.75–0.95 79–100
Rubella 6–7 83–86 0.75–0.95 87–100
Chickenpox 9–10 89–90 0.8–0.95 94–100
Pertussis 13–17 92–94 0.8–0.9 –
Poliomyelitis 6 83 0.9–0.99 84–92
Diphtheria 4–6 75–83 0.87–0.96 78–95

ahttp://www.whale.to/vaccines/efficacy.html
bVaccine efficacy never measured in clinical trials

To obtain a necessary and sufficient condition for backward bifurcation, we com-
pute the endemic equilibria. First, we consider the equations for the proportions
(s = S

N , i = I
N , v = V

N ):

0 = μ −β si− (μ +ψ)s+ χγi,
0 = β si+β δvi− (μ + γ)i,
0 = ψs−β δvi+(1− χ)γi− μv.

(9.4)

Expressing s from the first equation and v from the third equation yields

s =
μ + χγi

β i+ μ +ψ
, v =

ψs+(1− χ)γi
β δ i+ μ

,

and substituting them in the second equation, we obtain a quadratic equation in i:

β (μ + χγi)(β δ i+ μ + δψ)+β δ (1− χ)γi(β i+ μ+ψ)

= (μ + γ)(β δ i+ μ)(β i+ μ+ψ). (9.5)

If we think of β as a function of i, that is, β (i), and we differentiate implicitly the
above equation, we obtain for β ′ at the critical value i = 0 the following expression:

β ′(0)

=
β{δ (μ + γ)(μ +ψ)+ μ(μ + γ)− χγ(μ+ δψ)−β δ μ − δ (1− χ)γ(μ +ψ)}

μ(μ + δψ)
.

The bifurcation at the critical value i = 0 (R(ψ) = 1) is backward if and only if
β ′(0)< 0, that is, if and only if the parameters satisfy the following condition:

δ (μ + γ)(μ +ψ)+ μ(μ + γ) < χγ(μ + δψ)+
(μ + γ)(μ +ψ)δ μ

μ + δψ
+δ (1− χ)γ(μ +ψ).

To plot the dependence of i on R(ψ), we rewrite the equation for i as a quadratic
equation in i, Ai2+Bi+C = 0, where after dividing by β in (9.5), the coefficients are

http://www.whale.to/vaccines/efficacy.html
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Fig. 9.2 The graph shows that the equilibrium value of i exhibits backward bifurcation as a func-
tion of the vaccine-dependent reproduction number. The parameters are taken as follows: μ = 0.01,
γ = 3, χ = 1, δ = 0.1, ψ = 1

A = β δ μ ,
B = μ(μ + γ)+ δ (μ + γ)(μ +ψ)−β μδ − (μ + δψ)χγ − δ (1− χ)γ(μ +ψ),
C = μ(μ +ψ)(1−R(ψ)).

(9.6)
We express these coefficients as functions of R(ψ) and eliminate β :

A =R(ψ)ηδ μ ,
B = μ(μ + γ)+ δ (μ + γ)(μ +ψ)−R(ψ)ημδ − (μ + δψ)χγ − δ (1− χ)γ(μ +ψ),
C = μ(μ +ψ)(1−R(ψ)),

(9.7)

where η = (μ+γ)(μ+ψ)
(μ+δψ) . We illustrate the backward bifurcation in Fig. 9.2.

Imperfect vaccines lead to backward bifurcation. It is not hard to see that in the
model above, backward bifurcation does not occur if the vaccine is perfect, δ = 0.
Also, if there is no vaccination ψ = 0, then backward bifurcation does not occur.
In this case, it can be seen that if R0 < 1, the disease-free equilibrium is globally
stable.

The presence of backward bifurcation means that in practice, if we vaccinate
with imperfect vaccine, we may need to reduce the vaccine reproduction number
not below one but below a much smaller value under which there are no endemic
equilibria. Thus, it may appear that vaccinating with imperfect vaccine makes the
task of controlling the disease harder rather than easier. However, it must be noted
that at the same time, vaccination increases the parameter space of the remaining
parameters where the vaccine-dependent reproduction number is below one, and
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the disease-free equilibrium is locally stable. To illustrate this idea, assume that μ ,
ψ , and δ are given and fixed. Then in the absence of vaccination, the region in
the (γ,β )-plane where the disease-free equilibrium is stable is given by μ + γ > β ,
since there, R0 < 1. In the presence of vaccination, the region of local stability of
the disease-free equilibrium is given by

μ +ψ
μ + δψ

(μ + γ)> β ,

which is a larger region, since the fraction (μ +ψ)/(μ + δψ) is greater than one.

9.3 Vaccination and Genetic Diversity of Microorganisms

When a pathogen is represented by several variants, they may not all be included in
the vaccine. The strains that are included in the vaccine are called vaccine strains.
The number of strains included in the vaccine is called vaccine valency. For instance,
the flu vaccine is trivalent, that is, it contains three strains.

The immunity that a vaccine creates is specific to those strains that are included
in the vaccine. The vaccine may provide partial immunity, or no immunity at all,
to strains that are not included in the vaccine. That makes impossible the eradica-
tion of diseases whose causative agents mutate and that are represented by multiple
variants.

Biologists report an increase of genetic diversity after the introduction of vacci-
nation [142]. In terms of modeling, this says that vaccination should cause coexis-
tence of pathogen variants, in other words, vaccination is a coexistence mechanism.
To see this, we consider the model above with two strains. We assume that one of the
strains is a vaccine strain with respect to which the vaccine is perfect. With respect
to the other strain, the vaccine offers only partial protection. The model with two
strains and vaccination becomes

dS
dt

= Λ − β1SI
N

− β2SJ
N

− (μ +ψ)S+ χγI+αJ,

dI
dt

=
β1SI

N
+

β1δVI
N

− (μ + γ)I,
dJ
dt

=
β2SJ

N
− (μ +α)J,

dV
dt

= ψS− β1δVI
N

+(1− χ)γI− μV,

(9.8)

where I(t) is the number infected with the first strain, and J(t) is the number infected
with the second strain. The parameter α is the per capita recovery rate from the sec-
ond strain. Recovered individuals from the second strain go to the susceptible class,
because only susceptible individuals can become infected with the second strain.
The second strain is assumed to be the vaccine strain. The reproduction number of
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the first strain is as before:

R1(ψ) =
β1(μ + δψ)

(μ + γ)(μ +ψ)
.

The reproduction number of the second strain is

R2(ψ) =
β2μ

(μ +α)(μ +ψ)
.
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Fig. 9.3 The left figure illustrates that the number infected with strain one, I(t), and the number
infected with strain two, J(t), may tend toward a coexistence equilibrium when ψ = 0.5. The right
figure illustrates that if ψ = 0, strain two eliminates strain one. The remaining parameters used
for these figures are β1 = 6, β2 = 4.5, γ = 0.8, α = 0.5, μ = 0.1, χ = 1.0, δ = 0.04, Λ = 5.
The corresponding reproduction numbers are given by R1(ψ) = 1.333 and R2(ψ) = 1.25. The
reproduction numbers in the absence of vaccination are R1 = 6.66667 and R2 = 7.5

Proving the existence of a unique coexistence equilibrium is possible but not trivial.
So to see the coexistence, we do a simulation. Figure 9.3 illustrates the coexistence.

Question: What causes the coexistence? We can answer this question by exam-
ining the parts for the model that cause the coexistence. In particular, we examine
the equations for the coexistence equilibrium:

0 = μ −β1si−β2s j− (μ +ψ)s+ χγi+α j,
0 = β1si+β1δvi− (μ + γ)i,
0 = β2s j− (μ +α) j,
0 = ψs−β1δvi+(1− χ)γi− μv,

(9.9)
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where as before, s, i, j, v denote the proportions. If δ = 0, then from the second and
third equations, we have

s =
μ + γ

β1
, s =

μ +α
β2

.

Clearly these two expressions for s are equal in very special cases, but not in gen-
eral. So coexistence does not occur. Thus a necessary condition for coexistence is
the imperfection of the vaccine. If there is no vaccination, that is, ψ = 0 and χ = 1
(no recovery to the vaccinated class), then v = 0, and s must satisfy the same two
expressions. So coexistence does not occur. Thus vaccination, and particularly vac-
cine imperfections, are the cause of coexistence.

When a disease is caused by a pathogen of multiple variants, not all of them are
included in a vaccine (for various reasons). Vaccination is carried out under several
scenarios:

1. Vaccination is carried against the dominant subtype. For instance, Haemophilus
influenzae is represented by six serotypes: a, b, c, d, e, f, but before vaccination
was instituted, serotype b caused most disease. Vaccination is now carried out
against serotype b.

2. Vaccination is carried out against several strains that account for most cases. For
instance, Streptococcus pneumoniae is represented by more than 90 serotypes,
but only 23 of the most common ones are included in the polysaccharide vaccine.

3. When possible, vaccination is carried out against all subtypes (possibly one by
one). For instance, poliomyelitis (caused by poliovirus, PV) is represented by
three serotypes. Vaccination against each one is necessary, but polio has been
nearly eradicated.

When vaccination is carried out against only one or more but not all of the
pathogen variants, what is observed is decline in the number of disease cases caused
by those variants included in the vaccine. At the same time, disease cases caused by
other pathogen variants not included in the vaccine rise. This phenomenon is called
strain (serotype) replacement (Table 9.4). The main mechanism by which serotype
replacement occurs is that the vaccine has differential effectiveness: it is very effec-
tive with respect to some strains, and very little effective, or not effective at all, with
respect to other strains. Thus vaccinated individuals are removed from the suscep-
tible pool of the vaccine strains but effectively added to the susceptible pool of the
nonvaccine strains, since the vaccine strains can no longer infect them.

That differential effectiveness of the vaccine leads to strain replacement can
be seen from model (9.8). We illustrate this in Fig. 9.4. We note that the over-
all prevalence before vaccination is greater than the prevalence after vaccination.
Thus replacement cannot completely “erase” what is being gained from vaccina-
tion. However, strain replacement is undesirable, because it still takes from what
could have been gained.

Since differential effectiveness of the vaccine leads to replacement, vaccine
developers have tried to make vaccines less differentially effective. One way to
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Table 9.4 Reported increases in nonvaccine strains after vaccination [109]

Disease Vaccine Increase in Region

H. influenzae Hib Nontype b Alaska
Hib Type f m. states, US
conj. Hib Type a Brazil
conj. Hib Noncapsulated UK

S. pneumoniae PCV-7 NVT Finland
PCV-7 NVT (carriage) US
PCV-7 Serogroups 15 and 33 US PMPSG, US
PCV-7 NVT (AOM) Pittsburgh
PPV-23 12F∗, 7F, 22F, 7C Alaska

N. meningitidis A-C vaccine Serogroup B Austria
A-C vaccine Serogroup B Europe
A-C vaccine Serogroup B Cuba
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Fig. 9.4 The left figure illustrates that the number infected with strain one I(t) tends to zero and the
number infected with strain two J(t) tends toward an endemic equilibrium when ψ = 0. The right
figure illustrates that if ψ = 0.7, then strain one eliminates strain two. The remaining parameters
used for these figures are β1 = 6, β2 = 4.5, γ = 0.8, α = 0.5, μ = 0.1, χ = 1.0, δ = 0.04, Λ = 5.
The corresponding reproduction numbers are given by R1(ψ) = 1.06667 and R2(ψ) = 0.9375.
The reproduction numbers in the absence of vaccination are R1 = 6.66667 and R2 = 7.5

do that is to include (if possible) more strains in the vaccine. That has been the
case with pneumococcal polysaccharide vaccine, which originally contained very
few serotypes of Streptococcus pneumoniae but now contains 23. That is still many
fewer than the 90 serotypes that exist. A new approach is to target surface proteins
that are common in all 90 serotypes.

Question: Suppose we can produce a vaccine that is perfect with respect to all
strains. Will we eliminate strain replacement?

The answer is expected to be affirmative if differential effectiveness is the
mechanism behind strain replacement. Although such perfect vaccines do not yet
exist, we can address this question with mathematical models. Consider the model
of superinfection. We add vaccination with a perfect vaccine to this model. Thus,
the model becomes
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dS
dt

= Λ −β1
SI
N

−β2
SJ
N

− (μ +ψ)S+ γ1I + γ2J,

dI
dt

= β1
SI
N

+β1δ
IJ
N

− (μ + γ1)I,

dJ
dt

= β2
SJ
N

−β1δ
IJ
N

− (μ + γ2)J,

dV
dt

= ψS− μV,

(9.10)

where N = S+ I + J +V is the total population. Notice that vaccinated individuals
cannot become infected with any of the strains. It turns out, however, that strain
replacement still occurs. We illustrate this in Fig. 9.5. What is causing it? If the vac-
cine is not “differentially effective,” how does it differentiate between the strains?
In what follows, we address these questions.
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Fig. 9.5 The left figure illustrates that the number infected with strain one, I(t), tends to a nonzero
equilibrium, and the number infected with strain two, J(t), tends to zero when ψ = 0. The right
figure illustrates that if ψ = 1.75, then strain two eliminates strain one. The remaining parameters
used for these figures are β1 = 12, β2 = 15, γ1 = 0.5, γ2 = 0.5, μ = 0.1, δ = 0.03, Λ = 5

The reproduction numbers of the two strains are given by

Ri(ψ) =
βiμ

(μ + γi)(μ +ψ)
, i = 1,2.

Note that they are both decreasing functions of the vaccination rate ψ . In addition,
they do not depend on superinfection, and particularly on the coefficient of reduction
or enhancement δ , since superinfection does not lead to infection of susceptible
individuals.

The corresponding invasion reproduction numbers, however, are not independent
of the superinfection process, since they measure the number of secondary infec-
tions one strain-i infected individual will produce in a population in which strain j
is at equilibrium. To compute the invasion numbers, we first compute the two domi-
nance equilibria. The dominance equilibrium of strain one is given by E1 = (s, i,0,v)
with

E1 =

(
1
R1

,1− 1
R1(ψ)

,0,
ψ
μ

1
R1

)
,
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where Ri = Ri(0). The dominance equilibrium of strain two is given by E2 =
(s,0, j,v) with

E2 =

(
1
R2

,0,1− 1
R2(ψ)

,
ψ
μ

1
R2

)
.

The invasion reproduction number of strain one is obtained from differentiating the
right-hand side of the equation for I with respect to I (to get the respective diagonal
entry in the Jacobian). We get β1s+β1δ j− (μ + γ1). We substitute s and j from E2.
Therefore, the invasion reproduction number of the first strain is given by

R̂1 =
R1

R2
+ δR1

(
1− 1

R2(ψ)

)
.

An important observation here is that as the vaccination rate ψ increases, R̂1

decreases. Thus, vaccination decreases the invasion capabilities of the first strain.
To obtain the invasion reproduction number of strain two, we differentiate the

right-hand side of the equation for J with respect to J (to get the respective diagonal
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Fig. 9.6 The graph shows the invasion reproduction numbers R̂1 and R̂2 as functions of ψ .
Clearly, R̂1 is a decreasing function ofψ . In contrast, R̂2 is an increasing function ofψ . The pa-
rameters are taken as follows: β1 = 12, β2 = 15, μ = 0.1, γ1 = 0.5, γ2 = 0.5, δ = 0.03

entry in the Jacobian). We get β2s−β1δ i− (μ + γ2). We substitute s and i from E1.
Therefore, the invasion reproduction number of the second strain is given by

R̂2 =
(μ + γ2)

R2
R1

(μ + γ2)+ (μ + γ1)R1δ
(
1− 1

R1(ψ)

) .

In contrast, the invasion reproduction number of the second strain is an increas-
ing function of the vaccination rate. Hence, vaccination increases the invasion
capabilities of the second strain. The reason for this effect is that when the two
strains coexist, increasing the vaccination rate decreases the number of those in-
fected with strain 1. That, in turn, reduces the superinfections, which take away from
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the infections with the second strain. This produces an overall effect of increase in
infections with the second strain.

We illustrate the trend with increasing ψ in the two invasion reproduction num-
bers in Fig. 9.6. Figure 9.6 also shows that there is a vaccination level ψ∗

1 such
that for ψ < ψ∗

1 , the following conditions are satisfied: R̂2 < 1 and R̂1 > 1 (while
R1(ψ) > 1 and R2(ψ) > 1). In this case, strain one, which can invade the equi-
librium of strain two, dominates, since strain two cannot invade the equilibrium of
strain one. Then there is a vaccination level ψ∗

2 such that for ψ∗
1 < ψ < ψ∗

2 , the
following conditions are satisfied: R̂2 > 1 and R̂1 > 1. In this case, both strains
can invade each other’s equilibrium, and therefore, they coexist. For vaccination
levels ψ > ψ∗

2 , the following conditions are satisfied: R̂2 > 1 and R̂1 < 1. In this
case, strain two, which can invade the equilibrium of strain one, dominates, since
strain one cannot invade the equilibrium of strain two. Thus, replacement of strain
one, which dominated without vaccination, has occurred. The replacing strain is
strain two.

9.4 Modeling Quarantine and Isolation

Quarantine and isolation are typically modeled by introducing separate classes into
the model. Isolation is more often employed as a control strategy in epidemic models
than quarantine. Isolated infected individuals move to a separate class Q. A simple
extension of the SIR model with isolation will take the form

dS
dt

= Λ −β
SI

N −Q
− μS,

dI
dt

= β
SI

N −Q
− (μ +σ + r2)I,

dQ
dt

= σ I− (μ + r1)Q,

dR
dt

= r2I+ r1Q− μR.

(9.11)

We note here that in standard incidence, the total active population is N −Q.
Epidemic models with isolation have been considered with respect to different

diseases. Isolation has been found to destabilize the dynamics and lead to oscilla-
tions [61, 73] (see Chap. 7). As a result, isolation has been suggested as a potential
intrinsic mechanism responsible for the recurrent outbreaks of childhood diseases
[61].

The controlled reproduction number of model (9.11) is given by

Rc =
β

μ +σ + r2
.
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Fig. 9.7 The figure shows the controlled reproduction number as a decreasing, concave up, func-
tion of σ for several values of β . The smaller the β , the steeper the decline in Rc

The reproduction number is a decreasing function of the isolation rate σ . The critical
isolation rate that gives R0 = 1 is given by σ∗ = β − μ − r2. The reproduction
number as a function of σ is plotted in Fig. 9.7.

The disease prevalence at equilibrium is given by

I∗ =
ΛRc(Rc − 1)

β (Rc − 1)+ μ(1+ p)Rc
,

where

p =

(
r2

μ
+

r1σ
μ(μ + r1)

)
.

The prevalence is also a decreasing function of σ , at least when Rc > 1. However,
Fig. 9.8 suggests that the nonzero endemic equilibrium exists even if Rc < 1. It can
be shown that this equilibrium is unstable and that for Rc < 1 the disease-free equi-
librium is globally stable.

To design a model with quarantine and isolation, we need to express in terms
of equations the events that happen in reality. Susceptible individuals S come into
a contact with infectious I and exposed E individuals and move to the exposed
class E . At the same time, the contacts of infectious individuals are traced. Some of
the traced individuals happen to be susceptible, and others happen to be exposed.
Traced susceptible individuals move to the quarantine class Q1 at a rate ρ . Traced
exposed individuals move to the quarantine class at a rate ρ . Quarantined individuals
either show no symptoms and after the end of the quarantine return to the susceptible
class, or they become sick and move to the isolated class Q2:
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Fig. 9.8 The figure shows the prevalence as a decreasing, concave up function of σ and an increas-
ing function of β . The smaller the β , the steeper the decline in prevalence

dS
dt

= Λ −β
S(I+ qE)

N −Q
−ρS− μS+η1Q1,

dE
dt

= β
S(I+ qE)

N −Q
−ρE − (μ + γ)E,

dQ1

dt
= ρS+ρE− (μ +η1 +η2)Q1,

dI
dt

= γE − (μ +σ + r2)I,

dQ2

dt
= σ I +η2Q1 − (μ + r1)Q2,

dR
dt

= r2I + r1Q2 − μR.

(9.12)

Quarantined and isolated individuals do not participate in the total active popu-
lation, so the total active population in the denominator of the standard incidence is
given by N −Q1 −Q2 = N −Q, where Q = Q1 +Q2. Infectious and isolated indi-
viduals recover and move to the recovered class R. The meaning and the values of
the parameters are given in Table 9.5.

The controlled reproduction number is given by

Rc =
β γ

(γ +ρ + μ)(r2 +σ + μ)
+

qβ
γ +ρ + μ

.

In interpreting the controlled reproduction number, we notice that the first term is
the number of secondary infections generated by the infectious individuals, and the
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Table 9.5 Parameter meanings and parameter values [120]

Parameter Parameter meaning Value

Λ Recruitment rate 240 people/day
β Transmission rate 0.25 per day
ρ Quarantine rate 1/10 per day
μ Natural death rate 1/(70*365) per day
γ Rate of developing symptoms 1/6 per day
σ Isolation rate 1/5 per day
η1 Rate of return to susceptible class 1/10 per day
η2 Rate of progression to infectiousness 1/6.5 per day
r1 Recovery rate for isolated individuals 1/20 per day
r2 Recovery rate for infectious individuals 1/25 per day
q Reduction of infectivity of exposed individuals 0.8 (variable)

second term is the number of secondary infections generated by exposed individu-
als; γ/(γ +ρ + μ) is the proportion of exposed individuals who move to the infec-
tious class.

We plot the region Rc > 1 for two values of q = 0.5 and q = 0.8 in Fig. 9.9.
The region for q = 0.8 is larger and asymmetric. We plot the point with coordinates
given in Table 9.5 in red. That point belongs to the region Rc > 1; hence for the
quarantine and isolation rates in Table 9.5, the disease will not be eradicated. We
would like to compute the values of quarantine and isolation rates that will represent
the smallest change from the values in Table 9.5 but will lead to eradication of the
disease. For that reason, we compute the point on the curve Rc = 1 that is closest to
the red point. To do that, let the black point have coordinates (x,y). The square of
the distance between the two points is given by

(x− 0.1)2 +(y− 0.2)2,

where (0.1,0.2) are the coordinates of the red point. Furthermore, we replace ρ with
x and σ with y in Rc. From the equation Rc = 1, we express σ (or y) as a function
of ρ (or x): y = f (x). Substituting y in the distance formula, we obtain the square of
the distance as a function of x:

(x− 0.1)2 +( f (x)− 0.2)2.

To minimize that function, we differentiate with respect to x and set the derivative
to zero. This leads to the equation

(x− 0.1)+ ( f (x)− 0.2) f ′(x) = 0.

In the case q = 0.5, the black point has coordinates (0.12214,0.214265); in the
case of q = 0.8, the black point has coordinates (0.180881,0.242281). From these
coordinates, we need to see how we need to change the quarantine and isolation
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Fig. 9.9 Both figures illustrate the region Rc > 1, the epidemic situation with a red point, and the
closest point on the curve Rc = 1 in black. The left figure does so for q = 0.5, while the right figure
gives the same scenario for q = 0.8

rates to achieve elimination. The optimal new periods for quarantine and isolation
are given by 1/c, where c is a coordinate of a black point. These optimal periods
that will lead to elimination are listed in Table 9.6.

Table 9.6 Optimal periods for quarantine and isolation

Strategy q = 0.5 q = 0.8

1/ρ 8.19 days 5.53 days
1/σ 4.67 days 4.13 days

This table suggests that in the case q = 0.8, the contact tracing and quarantin-
ing should improve dramatically from 10 days to 5.5 days, while isolation should
improve from 5 days to 4 days, in order for the disease to be eliminated.

9.5 Optimal Control Strategies

In previous sections, we considered control strategies to be constant in time, but
in reality, control strategies are variable in time. The mathematical theory used to
derive optimal control strategies that vary in time is called optimal control theory.
In this section, we introduce the basic principles and illustrate them with examples.
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9.5.1 Basic Theory of Optimal Control

Optimal control is applied to differential equation models in normal form. Here we
will be concerned with ordinary differential equation models. We consider a system
of ODEs

x′(t) = f(x(t)),
x(0) = x0,

(9.13)

where the given initial condition is x0 ∈ R
n, and f : Rn → R

n. The unknown vector
is x : [0,∞)→R

n.
Now we generalize the setup and suppose that the right-hand side depends on a

parameter u : [0,∞) → A, where A ⊂ R
m, that is allowed to depend on time u(t).

Thus the system above becomes

x′(t) = f(x(t),u(t)),
x(0) = x0,
x(T ) free.

(9.14)

The variable u(t) is called control, and in the presence of the control, the solution
x(t) depends on the control. The trajectory that corresponds to the control u(t) is
called a corresponding response of the system.

To make this presentation more specific, we recast some of the models for
vaccination and isolation from this chapter in the framework of control. For instance,
in model (9.2), the “control” is the vaccination, given by the vaccination rate ψ .
Hence, the right-hand side of (9.2) depends on the dependent variables and the con-
trol parameter ψ . Now we let ψ vary with time, and we replace it with u(t). We
obtain the following problem with control:

dS
dt

= Λ − β SI
N

− (μ + u(t))S+ χγI,

dI
dt

=
β SI
N

+
β δV I

N
− (μ + γ)I,

dV
dt

= u(t)S− β δVI
N

+(1− χ)γI− μV.

(9.15)

Here the control is given by u : [0,∞)→R+.
We introduce the set of admissible controls

A = {u(t) ∈ L1(0,T )|u(t) ∈ A}.

As posed, problem (9.14) does not have a solution, since the control may be arbi-
trary. We need to find the best control in some sense. For disease-control models,
we need to find the control in such a way that we minimize the prevalence and/or
minimize the cost of controlling the disease. To make this more specific, we define
a payoff functional:
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C [u] :=
∫ T

0
g(x(t),u(t))dt, (9.16)

where x(t) solves (9.14) for the specified control u(t). The function g : Rn ×A →R

is given. The terminal time T is given as well. The function g is called the running
payoff. We need to solve the following optimal control problem: find a control u∗(t)
that minimizes the payoff functional, that is,

C [u∗] = min
u∈A

C [u].

If such a control u∗(t) exists, it is called an optimal control. The optimal control
together with the corresponding solution gives the optimal control pair (x∗,u∗).

The first question that must be addressed is whether an optimal control pair
(x∗(t),u∗(t)) exists. The question of existence is settled by the following theorem
[143]:

Theorem 9.1 (Filippov–Cesari Existence Theorem). For all (t,x) ∈ R
n+1, define

the set
N(t,x) = {(g(x,u)+ ξ , f(x,u)) : ξ ≤ 0,u ∈ A} .

Suppose that

1. N(t,x) is convex for every (t,x).
2. A is compact.
3. There exists a constant K > 0 such that ||x(t)|| ≤ K for all t ∈ (0,T ) and all

admissible pairs (x,u).

Then there exists an optimal pair (x∗(t),u∗(t)), where u∗(t) ∈A .

If a solution exists, it can be found with Pontryagin’s minimum principle [143].
First, one introduces a time-varying Lagrange multiplier vector λ (t), whose ele-
ments are called the adjoint variables of the system. Next, the Hamiltonian H is
defined for all t ∈ [0,T ] by

H(x(t),u(t),λ (t)) = g(x(t),u(t))+
n

∑
i=1

λi(t) fi(x(t),u(t)). (9.17)

The Pontryagin minimum principle is as follows.

Theorem 9.2 (Pontryagin’s Minimum Principle). For the optimality of control
u∗(t) and corresponding trajectory x∗(t) with t ∈ [0,T ], it is necessary that there
exist a nonzero adjoint vector function λ ∗(t) that is a solution to the adjoint system

λ ′(t) =−∂H(x(t),u(t),λ (t))
∂x

λ (T ) = 0,
(9.18)

so that
H(x∗(t),u∗(t),λ ∗(t)) = min

u∈A
H(x∗(t),u(t),λ ∗(t)).
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Thus, the necessary conditions for optimizing the Hamiltonian are [117]:

∂H
∂u

= 0 =⇒ gu +
n

∑
i=1

λi(t)( fi)u = 0, optimality equation,

λ ′
i (t) =−∂H(x(t),u(t),λ (t))

∂xi
=⇒ λ ′

i (t) =−gxi −
n

∑
i=1

λi(t)( fi)xi , adjoint equation,

λ (T ) = 0, transversality condition.
(9.19)

We note that for minimization, we must also have

∂ 2H
∂u2 ≥ 0 at u∗.

The following theorem gives sufficient conditions for the existence and unique-
ness of the optimal pair [143]:

Theorem 9.3 (Mangasarian Theorem). Suppose

1. A is convex.
2. The partial derivative ∂g/∂u j and ∂ fi/∂u j all exist and are continuous.
3. The pair (x∗(t),u∗(t)) satisfies all conditions of the Pontryagin minimum

principle.
4. H(t,x,u) is concave down in (x,u) for all t ∈ [0,T ].

Then the pair (x∗(t),u∗(t)) solves the problem. If H(t,x,u) is strictly concave down
in (x,u), then the solution is unique.

There are several excellent books that introduce optimal control theory applied
to biological systems [13, 94]. We illustrate the application of the existence theo-
rem and Pontryagin’s minimum principle to finding the optimal control in the next
subsection.

9.5.2 Examples

In this subsection we consider two examples of application of optimal control to
epidemic models. The first example is an SIS model with treatment.

9.5.2.1 SIS Model with Treatment

The model assumes constant total population size N. In this case, the susceptible
individuals can be represented as S = N − I, and the 2×2 system can be reduced to
a single equation:

I′(t) = β (N − I)I− (μ + γ)I− u(t)I,
I(0) = I0,
I(T ) free,

(9.20)
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where β is the transmission rate, μ is the natural death rate, and γ is the natural
recovery rate without treatment. The term u(t)I models the additional recovery rate
due to treatment. The set of admissible controls is

A = {u(t) ∈ L1(0,T )|0 ≤ u(t)≤Umax},

where Umax < ∞ is a positive constant. We are applying optimal control theory to
determine the “best” treatment regime that will minimize the prevalence and the
cost of applying the treatment. In particular, we seek a control u∗ that minimizes the
payoff functional

C [u∗] = min
u∈A

∫ T

0
(w1I(t)+ u2(t))dt, (9.21)

where w1 is a constant cost of minimizing prevalence, and u2 requires us to minimize
the treatment, and also the cost of applying it. We assume that the cost of treatment
is nonlinear and takes a quadratic form.

We first prove the existence of an optimal control pair. We use the Filippov–
Cesari theorem.

Proposition 9.1. The optimal control problem (9.20)–(9.21) has a solution.

Proof. Let N(t,x) be defined as in Theorem 9.1. Let y1,y2 ∈ N(t,x). To show that
N(t,x) is convex for each (t,x), we will show that the line connecting y1 and y2 lies
entirely in N(t,x). Hence, we have to show that

αy1 +(1−α)y2 ∈ N(t,x) for every α ∈ [0,1].

The fact that yi ∈ N(t,x) implies that there exist ξ1,ξ2 ≤ 0 and control vectors
u1(t),u2(t) ∈ A such that

yi = {g(x,ui)+ ξi, f(x,ui)} for i = 1,2.

Then, we have

α(g(x,u1)+ ξ1)+ (1−α)(g(x,u2)+ ξ2)

= α(w1I(t)+ u2
1(t))+ (1−α)(w1I(t)+ u2

2(t))+αξ1 +(1−α)ξ2

= w1I(t)+αu2
1 +(1−α)u2

2+αξ1 +(1−α)ξ2. (9.22)

Letting u3 =
√

αu2
1 +(1−α)u2

2, we notice that u3 ∈ A. Furthermore, letting ξ3 =

αξ1 +(1−α)ξ2, we notice that ξ3 ≤ 0. Thus, the first component of the convex
combination belongs to N(t,x). Next, we check the second component:

α( f (x,u1)+ (1−α) f (x,u2)

= α(β (N − I)I− (μ + γ)I− u1(t)I)+ (1−α)(β (N− I)I− (μ + γ)I− u2(t)I)

= β (N − I)I− (μ + γ)I− (αu1(t)+ (1−α)u2)I. (9.23)
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Letting u4 =αu1(t)+(1−α)u2, we notice that u4 ∈ A. We conclude that the convex
combination αy1+(1−α)y2 is in N(t,x). Clearly, A is compact. Next, we show that
the solution of (9.20) is bounded. Indeed,

I′(t)≤ β (N − I)I.

We have that I(t)≤ supt Î, where Î is the solution of the equation Î′(t) = β (N − Î)Î.
Thus, supt I(t) ≤ max{I0,N}. If I0 ≤ N, then maxt{I(t)} ≤ N. This concludes the
proof. �


To apply Pontryagin’s minimum principle, we define the Hamiltonian:

H(I(t),u(t),λ (t)) =w1I(t)+u2(t)+λ (t)(β (N− I(t))I(t)−(μ+γ)I(t)−u(t)I(t)).

Posing the necessary conditions from Pontryagin’s principle, we have first that u∗
must be a critical point of the Hamiltonian, that is, we must have ∂H/∂u = 0. This
leads to the following condition on the optimal control: 2u−λ (t)I(t) = 0. Hence,
we have

u∗(t) =
λ (t)I(t)

2
.

Next, we check that the critical point is indeed a minimum: ∂ 2H/∂u2 = 2 > 0. The
adjoint system is given by

λ ′(t) =−w1 −λ (t)(β (N − I(t))−β I(t)− (μ+ γ)− u(t)),
λ (T ) = 0.

(9.24)

Since u∗ must belong to A , we must have

u∗(t) = min

{
Umax,max

{
0,

λ (t)I(t)
2

}}
. (9.25)

To find the optimal control and the prevalence that corresponds to it, we must solve
the system

I′(t) = β (N − I)I− (μ + γ)I− u∗(t)I,
I(0) = I0,
λ ′(t) =−w1 −λ (t)(β (N − I(t))−β I(t)− (μ+ γ)− u∗(t)),
λ (T ) = 0,

(9.26)

where u∗ is given by (9.25). System (9.26) cannot be solved by hand, and numerical
methods must be used. Both Mathematica and Matlab can be used. Mathematica’s
NDSolve can take in boundary conditions, and system (9.26) can be directly input
into it. The optimal control and the respective solution are plotted in Fig. 9.10.

Matlab requires use of numerical methods to solve the system of differential
equations. The forward–backward sweep method [94] is often employed in this
case. It combines the forward application of a fourth-order Runge–Kutta method
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Fig. 9.10 The left figure shows the optimal control u∗(t). The right figure shows the controlled
prevalence I∗(t) and the original prevalence I(t)

for the original system with the backward application of a fourth-order Runge–Kutta
method for the adjoint system. The Matlab code for system (9.26) is included in the
appendix.

9.5.2.2 Two-Strain Model with Vaccination

The second model is the model with two strains and vaccination given in Eq. (9.10).
The control u(t) replaces the vaccination rate ψ . The model with control becomes

dS
dt

= Λ −β1
SI
N

−β2
SJ
N

− (μ + u(t))S+ γ1I+ γ2J,

dI
dt

= β1
SI
N

+β1δ
IJ
N

− (μ + γ1)I,

dJ
dt

= β2
SJ
N

−β1δ
IJ
N

− (μ + γ2)J,

dV
dt

= u(t)S− μV.

(9.27)

The set of admissible controls is

A = {u(t) ∈ L1(0,T )|0 ≤ u(t)≤Umax}.

We are applying optimal control theory to determine the “best” vaccination regime
that will minimize the the prevalence and the cost of applying the vaccination. In
particular, we seek a control u∗ that minimizes the payoff functional

C [u∗] = min
u∈A

∫ T

0
(w1I(t)+w2J(t)+w3uS(t)+ u2(t))dt,

where w1,w2 are constant costs of minimizing prevalence, and the term uS intends to
minimize the number of vaccines used with constant weight w3. Finally, u2 requires
us to minimize the vaccination rate, and also the cost of vaccination. We assume that
the cost of vaccination is nonlinear and takes a quadratic form.
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To apply Pontryagin’s minimum principle, we define the Hamiltonian:

H = w1I +w2J+w3uS+ u2+λS

(
Λ −β1

SI
N

−β2
SJ
N

− (μ + u(t))S+ γ1I+ γ2J

)

+λI

(
β1

SI
N

+β1δ
IJ
N

− (μ + γ1)I

)

+λJ

(
β2

SJ
N

−β1δ
IJ
N

− (μ + γ2)J

)
+λV (uS− μV).

(9.28)

Again, applying the necessary conditions from Pontryagin’s principle, we have
first that u∗ must be a critical point of the Hamiltonian, that is, we must have
∂H/∂u = 0. This leads to the following condition on the optimal control: 2u−
λS(t)S(t)+ λV(t)S(t)+w3S(t) = 0. This leads to the following expression for the
control:

u∗(t) =
(λS(t)−λV(t)−w3)S(t)

2
.

Next, we check that critical point is indeed a minimum: ∂ 2H/∂u2 = 2 > 0. The
adjoint system is given by

λ ′
S(t) =−w3u−λS

(
β1

I
N
+β1

SI
N2 −β2

J
N
+β2

SJ
N2 − (μ + u)

)

−λI

(
β1

I
N
−β1

SI
N2 −β1δ

IJ
N2

)

−λJ

(
β2

J
N
−β2

SJ
N2 +β1δ

IJ
N2

)
−λV u

λ ′
I (t) =−w1 −λS

(
β1

S
N
+β1

SI
N2 +β2

SJ
N2 + γ1

)

λI

(
β1

S
N
−β1

SI
N2 +β1δ

J
N
−β1δ

IJ
N2 − (μ + γ1)

)

λJ

(
−β2

IJ
N2 −β1δ

J
N
+β1δ

IJ
N2

)

λ ′
J(t) =−w2 −λS

(
β1

SI
N2 −β2

S
N
+β2

SJ
N2 + γ2

)

−λI

(
−β1

SI
N2 +β1δ

I
N
−β1δ

IJ
N2

)

−λJ

(
β2

S
N
−β2

SJ
N2 −β1δ

I
N
+β1δ

IJ
N2 − (μ + γ2)

)

λ ′
V (t) = μλV

λ (T ) = 0; λI(T ) = 0; λJ(T ) = 0; λV (T ) = 0.

(9.29)
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From the equation for λV and its boundary condition, we see that λV = 0. Hence,
the optimal control is characterized by the following formula:

u∗(t) = min

{
Umax,max

{
0,

(λS(t)−w3)S(t)
2

}}
.

The optimal control and the solution with and without control are plotted in
Fig. 9.11. We note that in the case w3 �= 0, the control is zero for some of the control
interval.
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Fig. 9.11 The left figure shows the optimal control u∗(t). The right figure shows the controlled
prevalence I∗(t) and J∗(t) and the original prevalences I(t) and J(t) in dashed. Parameters are
β1 = 12;β 2 = 15;γ1 = 0.5;γ2 = 0.5; μ = 0.1;δ = 0.03;Λ = 500;w1 = 1;w2 = 1;w3 = 0.01

Appendix

In this appendix we include the Matlab code that executes the forward–backward
sweep for system (9.26) [94].

1

2 function ocmodel1
3 % This function computes the optimal control
4 % and the corresponding solution using forward-backward ...

sweep
5 clc;
6 clear all;
7

8

9 test = -1;
10

11 Δ = 0.001; %set tolerance
12 N = 100; %number of subdivisions
13 h = 1/N; %step
14 t = 0:h:1; % t-variable mesh
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15

16 u = zeros(1,length(t)); %initialization
17 x = zeros(1,length(t));
18 lam = zeros(1,length(t));
19

20 x(1) = 10; %initial value assigned to x(0)
21

22 beta = 0.05; %parameters
23 mu = 0.01;
24 gamma = 0.5;
25 P = 100;
26 w1 = 1;
27

28

29 while (test<0) % while the tolerance is reached, repeat
30 oldu = u;
31 oldx = x;
32 oldlam = lam;
33

34 for i=1:N %loop that solve the forward ...
differential equation

35 k1 = beta*(P-x(i))*x(i) -(mu + gamma)*x(i) - ...
u(i)*x(i);

36 k2 = beta*(P-x(i)-0.5*k1*h)*(x(i)+0.5*k1*h) - ...
(mu+gamma)*(x(i)+0.5*k1*h)...

37 -0.5*(u(i)+u(i+1))*(x(i)+0.5*k1*h);
38 k3 = beta*(P-x(i)-0.5*k2*h)*(x(i)+0.5*k2*h) - ...

(mu+gamma)*(x(i)+0.5*k2*h)...
39 -0.5*(u(i)+u(i+1))*(x(i)+0.5*k2*h);
40 k4 = beta*(P-x(i)-k3*h)*(x(i)+k3*h) - ...

(mu+gamma)*(x(i)+k3*h)...
41 -u(i+1)*(x(i)+k3*h);
42

43 x(i+1) = x(i) + (h/6)*(k1+2*k2+2*k3+k4);
44

45 end
46

47 for i=1:N %loop that solves the backward ...
differential equation of the adjoint system

48 j = N + 2 -i;
49 k1 = ...

-w1-lam(j)*(beta*(P-x(j))-beta*x(j)-(mu+gamma) ...
- u(j));

50 k2 = ...
-w1-(lam(j)-0.5*k1*h)*(beta*(P-x(j)+0.5*k1*h) ...
-(mu+gamma) -0.5*(u(j)+u(j-1)));

51 k3 = ...
-w1-(lam(j)-0.5*k2*h)*(beta*(P-x(j)+0.5*k2*h) ...
-(mu+gamma) -0.5*(u(j)+u(j-1)));

52 k4 = -w1 -(lam(j)-k3*h)*(beta*(P-x(j)+k3*h) ...
-(mu+gamma) - u(j-1));

53

54 lam(j-1) = lam(j) - (h/6)*(k1+2*k2+2*k3+k4);
55
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56 end
57

58 u1 = min(100,max(0,lam.*x/2));
59 u = 0.5*(u1 + oldu);
60

61 temp1 = Δ*sum(abs(u)) - sum(abs(oldu - u));
62 temp2 = Δ*sum(abs(x)) - sum(abs(oldx - x));
63 temp3 = Δ*sum(abs(lam)) - sum(abs(oldlam -lam));
64

65 test = min(temp1,min(temp2,temp3));
66

67 end
68

69 figure(1) %plotting
70 plot(t,u)
71

72

73 figure(2)
74 plot(t,x)
75

76 end

Problems

9.1. Consider the model with perfect vaccination

dS
dt

= Λ −β SI− (μ +ψ)S,

dI
dt

= β SI− (μ + γ)I,
dV
dt

= ψS− μV + γI.

(9.30)

(a) Compute the reproduction number and investigate the stability of the disease-
free equilibrium.

(b) Compute the endemic equilibrium. Does backward bifurcation occur?
(c) Determine the stability of the endemic equilibrium.
(d) Compute the fraction of the population pc that needs to be vaccinated to eradi-

cate the disease.

9.2. Consider the model with perfect vaccination

dS
dt

= (1− p)π −β SI− μS,

dI
dt

= β SI− (μ + γ)I,
dV
dt

= pπ − μV + γI,

(9.31)
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where π is the recruitment rate.

(a) Compute the reproduction number and investigate the stability of the disease-
free equilibrium.

(b) Compute the endemic equilibrium.
(c) Determine the stability of the endemic equilibrium.
(d) Compute the fraction of the population pc that needs to be vaccinated to eradi-

cate the disease.

9.3. Consider the model with perfect vaccination

dS
dt

= (1− p)π −β SI− μS,

dI
dt

= β SI+ δβVI− (μ + γ)I,
dV
dt

= pπ − δβVI − μV + γI,

(9.32)

where π is the recruitment rate.

(a) Compute the reproduction number and investigate the stability of the disease-
free equilibrium.

(b) Compute the endemic equilibrium.
(c) Compute the fraction of the population pc that needs to be vaccinated to eradi-

cate the disease.

9.4. Consider the model with imperfect vaccination

dS
dt

= Λ −β SI− (μ +ψ)S,

dI
dt

= β SI+σβVI− (μ + γ)I,
dV
dt

= ψS−σβVI− μV + γI.

(9.33)

(a) Compute the reproduction number and investigate the stability of the disease-
free equilibrium.

(b) Compute the equation for the endemic equilibria. Derive the condition for back-
ward bifurcation to occur.

(c) Simulate the model and show that even if R0(ψ)< 1, the solution may converge
to an endemic equilibrium.

(d) Consider the model

dS
dt

= Λ −β (1−ηH(t− τ1)+ηH(t − τ2))SI− (μ +ψ)S,

dI
dt

= β (1−ηH(t − τ1)+ηH(t − τ2))SI

+σβ (1−ηH(t− τ1)+ηH(t − τ2))V I− (μ + γ)I,
dV
dt

= ψS−σβ (1−ηH(t− τ1)+ηH(t − τ2))V I− μV + γI,

(9.34)



246 9 Control Strategies

where H(t − τ) is the Heaviside function. The added term (1−ηH(t − τ1) +
ηH(t − τ2)) models temporary control measures such as movement restriction,
which are adopted at time τ1 and lifted at time τ2. Show that with the parameters
from part (c), after the lifting of the control measures, the solution may converge
to the disease-free equilibrium.

9.5. Vaccine Strain in the Case of Mutation
Consider the following model with mutation:

S′ = Λ − β1SI
N

− β2SJ
N

− μS,

I′ =
β1SI

N
− (μ +α1 +m)I,

J′ =
β2SJ

N
− (μ +α2)J+mI.

(9.35)

Assume R2 < 1. A vaccine is being designed, but it may include only one of the
strains. In that case, the vaccine will be perfect with respect to the vaccine strain
and not effective at all with respect to the other. Which of the strains should be the
vaccine strain so that the vaccine eliminates both strains?

9.6. Asymptomatic Spread of Avian Influenza
Consider the following model of avian influenza with vaccination and asymptomatic
stage:

dS
dt

= Λ −β S(I+ qA)− (μ +ψ)S,

dI
dt

= β S(I+ qA)− (μ +ν)I,
dV
dt

= ψS−ηV(I+ qA)− μV + γA,

dA
dt

= ηV (I+ qA)− (μ + γ)A,

(9.36)

where A are the asymptomatic individuals infected with avian influenza after imper-
fect vaccination, and V are the vaccinated individuals.

(a) Compute the disease-free equilibrium and the reproduction number R0(ψ). De-
termine the stability of the disease-free equilibrium based on the reproduction
number.

(b) Is the reproduction number an increasing, decreasing, or nonmonotone function
of ψ . What is the epidemiological significance of your observation?

9.7. Backward Bifurcation with Perfect Vaccination
Consider the following model of vaccination in a disease with vertical transmission:
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dS
dt

= (1− p)π +(r1S+ r2ηI)

(
1− S+ I

K

)
−β SI− μS,

dI
dt

= r2(1−η)I
(

1− S+ I
K

)
+β SI− (μ +α)I,

dV
dt

= pπ − μV,

(9.37)

where the vaccine is applied at the entry point to the population, and a fraction p
is being vaccinated; r1 and r2 are the reproduction rates of susceptible and infected
individuals respectively, η is the fraction of the progeny of infected individuals that
are susceptible.

(a) Compute the disease-free equilibrium and the reproduction number R0(p). De-
termine the stability of the disease-free equilibrium based on the reproduction
number.

(b) Derive an equation for the endemic equilibrium. Show that backward bifurcation
may occur, even though the vaccine is perfect.

9.8. Saturating Treatment Rates and Vaccination
Consider a model of two strains with saturated per capita treatment rate:

S′ = Λ − β1SI
N

− β2SJ
N

− (μ +ψ)S,

I′ =
β1SI

N
− μI− α1I2

A+ I+ J
,

J′ =
β2SJ

N
− μJ− α2J2

B+ I+ J
,

V ′ = ψS− μV.

(9.38)

(a) Compute the disease-free equilibrium and the reproduction numbers of the two
strains.

(b) Show that there is a unique dominance equilibrium corresponding to each strain.
Investigate the stability of the dominance equilibria and define the two invasion
numbers.

(c) How does the vaccination rate ψ affect the invasion numbers?

9.9. Saturating Incidence
Consider a model of two strains with saturated incidence and perfect vaccination:

S′ = Λ − β1SI
1+ a1N

− β2SJ
1+ a2N

− (μ +ψ)S,

I′ =
β1SI

1+ a1N
− (μ +α1)I,

J′ =
β2SJ

1+ a2N
− (μ +α2)J,

V ′ = ψS− μV.

(9.39)

(a) Compute the disease-free equilibrium and the reproduction numbers of the two
strains.
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(b) Compute the two dominance equilibria. Investigate their stability and define the
two invasion numbers.

(c) How does vaccination rate ψ affect the invasion numbers?

9.10. Cross-Immunity
Consider a model of two strains with cross-immunity and vaccination:

S′ = Λ −β1
S(I1 + J1)

A
−β2

S(I2 + J2)

A
− (μ +ψ)S,

I′1 = β1
S(I1 + J1)

A
− (μ +α1 + δ1)I1,

Q′
1 = δ1I1 − (μ + γ1)Q1,

R′
1 = α1I1 + γ1Q1 −σ2β2

R1(I2 + J2)

A
− μR1,

J′1 = σ1β1
R2(I1 + J1)

A
− (μ +α1)J1,

I′2 = β2
S(I2 + J2)

A
− (μ +α2 + δ2)I2,

Q′
2 = δ2I2 − (μ + γ2)Q2,

R′
2 = α2I2 + γ2Q2 − δ1β1

(I1 + J)I2

A
− μR2,

J′2 = σ2β2
R1(I2 + J2)

A
− (μ +α2)J2,

W ′ = α1J1 +α2J2 − μW,
V ′ = ψS− μS.

(9.40)

(a) Compute the disease-free equilibrium and the reproduction numbers of the two
strains.

(b) Compute the two dominance equilibria.
(c) Use the next-generation approach to compute the two invasion numbers.
(d) Are the invasion numbers increasing, decreasing, or nonmonotone functions of

ψ? What are the epidemiological consequences of this observation?

9.11. Optimal Control
Create an optimal control analogue of model (9.8).

(a) Prove that the optimal control problem has a solution.
(b) Derive the equations for application of Pontryagin’s minimum principle.
(c) Write a Matlab code to find the optimal control solution and the optimal control.

9.12. Optimal Control
Create an optimal control analogue of model (9.11).

(a) Prove that the optimal control problem has a solution.
(b) Derive the equations for application of Pontryagin’s minimum principle.
(c) Write a Matlab code to find the optimal control solution and the optimal control.



Chapter 10
Ecological Context of Epidemiology

10.1 Infectious Diseases in Animal Populations

Infectious disease pathogens affect numerous animal populations. An animal popu-
lation, by definition, is a collection of individuals of the same species occupying the
same habitat. A species is a group of individuals who generally breed among them-
selves and do not naturally interbreed with members of other groups. Fortunately,
familiar baseline models of infectious diseases in humans such as the SI, SIS, SIR,
SIRS models also can be used to model diseases in animal populations. There are
some very important distinctions, however, that we will discuss below.

Why is it important to study diseases in animal populations?

• The simplest and most obvious reason is that a nonhuman species, such as species
of fish, birds, and other mammals, represents a much simpler biological system
for scientific study than the human species. These species can often be manip-
ulated for better understanding of its properties and dynamics. One such exam-
ple, in which population dynamics principles were validated through experiments
with a beetle population is given in [47].

• There is also a practical reason to study animal diseases. Historically, human dis-
eases have been inextricably linked to epidemics in animal populations. Rapid
expansion of civilization in the last few millennia has increased the contact at
the human–animal interface, through urban and agricultural expansion that en-
croaches on wildlife habitats, domestication of cattle and other livestock, or sim-
ply by keeping pets. Because of such close intimacy between humans and non-
human animals, viruses and bacteria that cause various animal diseases continu-
ously “jump across the species barrier” and infect humans. Recent examples in-
clude HIV, whict came from monkeys; SARS, which came from bats; and avian
flu H5N1, which was first found in wild birds. In fact, about 60% of all human
infectious diseases have their origin in animal species, and about three-quarters
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of all emerging infectious diseases of humans—those that are occurring for the
first time in humans—have been traced back to nonhuman species. Thus, under-
standing disease dynamics and ways to control disease in animal populations has
tremendous human health implications.

• Another practical reason to study disease in natural populations is that the dis-
ease can be a regulator of a population, leading to control of dangerous pests
[11, 114]. Furthermore, parasites can have substantial effect on community com-
position [76].

Epidemic models of human populations assume that the population being con-
sidered is a closed population, completely separate from the rest of the world. This
is rarely true for animal populations. Each animal species is a part of an intricate
web of ecological interactions. Interacting populations that share the same habitat
form a community. Two fundamental community interactions are competition for
resources and predation. Such interspecies interactions impart complex feedback
on the dynamics of the diseases in the population that is studied. This necessitates
the integration of the principles of infectious disease epidemiology and community
ecology.

There are several ways in which the disease dynamics within a population are
influenced by the interaction with other species in the community. Here are some of
the major ways in which the community interactions influence the host–pathogen
dynamics:

• Often, a single pathogen simultaneously infects many different species in the
community. Even if the pathogen is completely removed from a given host, it
may survive in the other hosts and can reinfect the original host. This is of partic-
ular concern if one of the species being infected is humans, while another species
is an animal species.

• Intense competition of the focal host species with the other species in the com-
munity can bring down the host population size to threateningly small levels, and
a pathogen attack can eventually drive it to extinction.

• Predation of the host by other species in the community can regulate pathogen
outbreaks in the host species.

Conversely, host–pathogen interactions can feed back and impact the community
by weakening the competitive abilities of the affected species.

In this chapter, we will consider the interrelation between infectious diseases and
the two principal community interactions: predation and competition. Predation, or
predator–prey interactions, refers to the feeding on the individuals of a prey species
by the individuals of a predator species for the survival and growth of the predator.
Some common examples of predator–prey interactions are big fish eating small fish,
birds feeding on insects, and cats eating rats and mice. The predator itself can be of
two types—a specialist predator, whose entire feeding choice is restricted to a single
prey species, and a generalist predator that feeds on many different prey species.
The dynamics of a specialist are strongly coupled to those of the prey, so that any
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rise or fall of the population size of the prey triggers a consequent rise or fall in the
population size of its predator. The interaction between a specialist predator and its
prey is modeled by the familiar Lotka–Volterra predator–prey model. By contrast,
the dynamics of a generalist predator are only weakly coupled to any particular
focal prey species and may not be influenced by the dynamics of the prey. The
predation of a focal species by a generalist predator can be modeled by a predator-
added mortality on the prey.

10.2 Generalist Predator and SI-Type Disease in Prey

We can begin studying the effect of predation on disease growth in a host population
by considering a host to the disease that is also a prey to a generalist predator. We
will model the disease dynamics in the prey by the familiar SI epidemic model that
we have used for humans. We will also assume that the predator is a “complete
generalist,” so that any change of the predator’s population size P is caused by other
factors and is independent of the dynamics of the focal prey that we are studying.
In mathematical terms, we do not need another equation for the rate of change of
P, and P is not a dynamic variable but enters the SI model via the death rate of the
prey population as a free parameter. Then we have the following system modeling
the dynamics of a host–pathogen interaction with predation:

S′(t) = Λ −β SI− μ(P)S,

I′(t) = β SI− μ(P)I, (10.1)

where Λ is the prey birth rate, β is the transmission parameter, and μ(P) is the prey
death rate, which is split into two components:

μ(P) = μ0 + μP(P).

The constant μ0 is a parameter that lumps death rate from the disease, other natu-
ral causes, accidental factors, and so on. The function μP(P) is the predation-added
mortality of the prey that depends on the predator abundance P, taken as a param-
eter. For simplicity, we assume that μP increases linearly with P, that is, μP = aP,
where the parameter a denotes the rate at which the predator captures its prey. In
general, there should be two different capture rates: aS and aI , for susceptible and
infected individuals. For instance, the predator may be able to capture physically
weak infected prey more easily than susceptible prey, that is, aI > aS. Here we shall
consider two extreme kinds of predation: selective predation, in which the predator
attacks only one prey type, leaving the other one alone, and indiscriminate preda-
tion, in which the predator attacks all prey types nonpreferentially. For instance, in
selective predation of infected prey alone, we have aI > 0, as = 0, and in indiscrim-
inate predation, we have aS = aI = a.
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10.2.1 Indiscriminate Predation

In this subsection, we assume that the predator preys indiscriminately on all prey
types. Hence,

μ(P) = μ0 + aP.

We obtain the familiar equation N′(t) = Λ − μ(P)N for the total population size
of the prey. From this equation, the equilibrium total population size of the prey
becomes

N∗ =
Λ
μ

=
Λ

μ0 + aP
.

So N∗ decreases with increasing predator numbers P, as expected. Furthermore, we
can solve for the equilibrium number of infected individuals:

I∗ =
βΛ − (μ0 + aP)2

β (μ0 + aP)
. (10.2)

Throughout this chapter, we will call I∗ the disease load, and the fraction of the
infected individuals in the total prey population size will be called the prevalence:

p =
I∗

N∗ .

From the expressions above for the disease load and the total population size, we
have that the prevalence is given by

p∗ =
βΛ − (μ0 + aP)2

βΛ
. (10.3)

From (10.2) and (10.3), we see that both the disease load and the prevalence are
decreasing functions of the predator numbers P. The condition for pathogen estab-
lishment requires that the numerators of (10.2) and (10.3) be positive, which gives
the familiar threshold condition

R0 =
βΛ

(μ0 + aP)2 > 1. (10.4)

We see again that the reproduction number of the disease is a decreasing function
of the predation level P. We can derive a minimum equilibrium host population size
N∗

min that is needed to support the pathogen in the host. To do this, we replace the
term μ0 + aP in the expression for R0 above by Λ/N∗ and obtain the inequality

N∗ > N∗
min =

√
Λ
β
.

Thus, I∗ = 0 and p∗ = 0 when N∗ < N∗
min. We have the following interesting result:
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While the direct effect of the predator is to harm the prey by increasing
its mortality rate, predation can indirectly benefit the prey by keeping its
population size low and thereby ruling out epidemic outbreaks.

10.2.2 Selective Predation

In the previous subsection, we assumed indiscriminate predation, whereby the
predator’s capture rate a is the same for both susceptible and infected prey. In this
subsection, we want to see what happens under selective predation, that is, when the
predator attacks either the susceptible prey alone aS > 0,aI = 0, or the infected prey
alone, aS = 0,aI > 0. Even though the first scenario is less likely, it can occur in
certain situations such as the infected prey hiding in burrows to avoid predation, or
the predator may deliberately avoid infected prey to prevent infecting itself. In the
case of selective predation of susceptible prey alone, the model (10.1) becomes

S′(t) = Λ −β SI− (μ0 + aSP)S,

I′(t) = β SI− μ0I. (10.5)

The equilibrium disease load is given by

I∗ =
βΛ − μ0(μ0 + aSP)

β μ0
.

We see that the equilibrium disease load decreases linearly with increasing predator
numbers P. To obtain the equilibrium prey population size, we solve for S∗ from the
second equation above to obtain

S∗ =
μ0

β

and then use the fact that N∗ = S∗+ I∗. We obtain

N∗ =
βΛ − μ0aSP

β μ0
.

Hence, the equilibrium prevalence is given by

p∗ =
I∗

N∗ =
βΛ − μ0(μ0 + aSP)

βΛ − μ0aSP
= 1− μ2

0

βΛ − μ0aSP
.
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From the last expression, we see that p∗ is also decreasing with increasing P. The
threshold predation level for which p∗ = 0 is

Pcrit =
βΛ − μ2

0

μ0aS
.

We note that the denominator of p∗ is positive for all P < Pcrit.
For the case of selective predation on infected prey alone, the system becomes

S′(t) = Λ −β SI− μ0S,
I′(t) = β SI− (μ0 + aIP)I.

(10.6)

Following steps similar to those have taken previously, we get an expression for the
prevalence p∗ as follows:

p∗ =
I∗

N∗ =
βΛ − μ0(μ0 + aIP)
βΛ + aIP(μ0 + aIP)

.

We see again that the prevalence is decreasing with increasing P. So the qualitative
nature of the result—predation lowers epidemic outbreaks in the prey—is similar to
the case of indiscriminate predation discussed in the previous subsection.

In summary, with an SI model, we see that predation reduces disease load and
prevalence in the prey population, irrespective of whether the predator selectively
attacks either susceptible or infected prey, or indiscriminately preys on both prey
types. The main reason is that the incidence rate β SI, which gives the rate at which
new infections appear in the host, depends bilinearly on both the susceptible and
infected prey. Therefore, whether the predator eats selectively or indiscriminately,
it always reduces the incidence β SI, and hence the disease level in the prey pop-
ulation. In the next section, we discuss disease in prey with permanent recovery,
and investigate the impact of the predator on the disease load and prevalence of the
disease in the prey population.

10.3 Generalist Predator and SIR-Type Disease in Prey

In this section, we consider an SIR model with predation by a generalist preda-
tor. The presence of a recovered class of individuals makes a difference. Since the
number of recovered individuals R does not directly contribute to the disease trans-
mission, the predation of the recovered prey can have only an indirect effect on dis-
ease growth. The addition of a recovered class will give very different conclusions
based on the different dietary choices of the predator. We consider the following
SIR model with predation of a generalist predator:

S′(t) = Λ −β SI− μ(P)S,

I′(t) = β SI− (α + μ(P))I,

R′(t) = αI− μ(P)R. (10.7)
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The prey death rate μ(P) is defined as before, μ(P) = μ0 + aP. This is the death
rate for indiscriminate predation. We will consider two cases of selective predation:
predation on infected prey alone, aI > 0,aS = aR = 0, and predation on recovered
prey alone, aR > 0,aS = aI = 0.

10.3.1 Selective Predation

We begin with selective predation on infected prey:

S′(t) = Λ −β SI− μ0S,

I′(t) = β SI− (α + μ0 + aIP)I,

R′(t) = αI− μ0R. (10.8)

Solving for the disease load in the endemic equilibrium, we have

I∗ =
βΛ − μ0(α + μ0 + aIP)

β (α + μ0 + aIP)
.

We compute the basic reproduction number from the requirement that I∗ > 0,

R0 =
βΛ

μ0(α + μ0 + aIP)
, (10.9)

and the condition R0 > 1. It is clear that both the disease load and the basic repro-
duction number decrease with predation level P. We need to know the total prey
population size at equilibrium N∗ to find out the prevalence p∗ = I∗/N∗. We solve
for S∗ and R∗ and compute N∗ = S∗+ I∗+R∗:

N∗ =
βΛ(α + μ0)+ μ0aIP(α + μ0 + aIP)

β μ0(α + μ0 + aIP)
.

The equilibrium prevalence is then given by

p∗ =
I∗

N∗ =
μ0[βΛ − μ0(α + μ0 + aIP)]

βΛ(α + μ0)+ μ0aIP(α + μ0 + aIP)
.

It can be seen that p∗ decreases with increasing predator numbers P at a rate faster
than linear. Similar results can be obtained in the case of selective predation on
susceptible individuals only, that is, aS > 0,aI = aR = 0. Selective predation on sus-
ceptible prey decreases the incidence of the disease β SI and therefore also decreases
the disease load and the prevalence.

Now we turn to selective predation of the predator on the recovered individuals,
that is, aR > 0,aS = aI = 0. The model becomes
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S′(t) = Λ −β SI− μ0S,

I′(t) = β SI− (α + μ0)I,

R′(t) = αI− (μ0 + aRP)R. (10.10)

The equilibrium disease load is

I∗ =
βΛ − μ0(α + μ0)

β (α + μ0)
.

This is an interesting result—the disease load is independent of the predation level
P and remains constant with change of P. This happens because both susceptible
and infected prey are ignored by the predator, and therefore the incidence rate β SI
is unaffected by predation, and so is the disease load I∗. Furthermore, the condition
I∗ > 0 gives the basic reproduction number R0:

R0 =
βΛ

μ0(α + μ0)
, (10.11)

which is also independent of the predation level P. An implication of this result is
that if the inequality R0 > 1 holds in the absence of predation P = 0, it does not
change thereafter with increasing P, and thus the pathogen never becomes extinct
as a result of predation. The equilibrium prey population size N∗ is obtained as the
sum N∗ = S∗+ I∗+R∗,

N∗ =
βΛ(α + μ0 + aRP)+αaR(α + μ0)

β (α + μ0)(μ0 + aRP)
,

which then gives equilibrium prevalence:

p∗ =
I∗

N∗ =
(μ0 + aRP)[βΛ − μ0(α + μ0)]

βΛ(α + μ0 + aRP)+αaRP(α + μ0)
.

Unlike I∗ and R0, the prevalence p∗ depends on P, because the equilibrium total
prey population size N∗ depends on P. The behavior of p∗ with increasing P∗ is not
so obvious, so we consider the derivative of p∗ with respect to P:

d p∗

dP
=

αaR[βΛ − μ0(α + μ0)]
2

[βΛ(α + μ0 + aRP)+αaRP(α + μ0)]2
.

This shows that d p∗/dP > 0, and therefore, if the prevalence is positive in the
absence of predation, i.e., R0 > 1, it increases continuously with P. This result is
not entirely surprising in light of the fact that the disease load I∗ remains constant
with increasing prevalence. Since we can expect that the total population size N∗
decreases with increasing P, we should expect that the ratio, the prevalence p∗, is
increasing with P.

Therefore, once the pathogen is established in the prey, R0 > 1, the prevalence
decreases with increasing predation level P when the predator selectively attacks
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susceptible or infected prey only. In contrast, prevalence increases with increasing
predation level P when the predator attacks preferentially the recovered prey. This
last result, although counterintuitive, can be explained by the fact that by attacking
recovered prey alone, the predator decreases total population size without impacting
the incidence of the disease β SI.

10.3.2 Indiscriminate Predation

As a last case, we consider indiscriminate predation, that is, aS = aI = aR = a. The
system in this case becomes

S′(t) = Λ −β SI− (μ0 + aP)S,

I′(t) = β SI− (α + μ0 + aP)I,

R′(t) = αI− (μ0 + aP)R. (10.12)

Solving for the equilibrium level of the disease load, we obtain

I∗ =
βΛ − (μ0 + aP)(α + μ0 + aP)

β (α + μ0 + aP)
.

The condition that the disease load has to be positive, I∗ > 0, gives the following
basic reproduction number of the disease:

R0 =
βΛ

(μ0 + aP)(α + μ0 + aP)
.

We see that the reproduction number is decreasing with increasing predation level
P. In this case, we can obtain an equation for the total population size. Adding all
equations in (10.12), we obtain

N′(t) = Λ − (μ0 + aP)N.

From the above equation, we obtain the equilibrium total prey population size

N∗ =
Λ

μ0 + aP
. (10.13)

We can derive the minimum prey population size N∗
min needed for persistence of

the pathogen by plugging (10.13) into the expression for R0 and using the condi-
tion R0 > 1:

N∗ > N∗
min =

1
β
(α + μ0 + aP).
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Thus, the pathogen is extinct, I∗ = 0, when R0 ≤ 1 and equivalently N∗ ≤ N∗
min. We

can obtain the equilibrium prevalence:

p∗ =
I∗

N∗ =
(μ0 + aP)[βΛ − (μ0 + aP)(α + μ0 + aP)]

βΛ(α + μ0 + aP)
. (10.14)

It is clear from this expression that the prevalence p∗ is not monotone with respect
to the predation level P. Looking at the derivative d p∗/dP,

d p∗

dP
=

βΛα − 2(μ0 + aP)(α + μ0 + aP)2

βΛ(α + μ0 + aP)2 ,

we see that no clear conclusion can be drawn about the sign, and it will depend on
the value of the predator population size P. Since for P large enough, the numerator
and the whole derivative d p∗/dP are negative, if for P = 0 we have

βΛα > 2μ0(α + μ0)
2,

then d p∗/dP > 0 for small P and d p∗/dP < 0 for large P. Hence, we can expect a
humped-shaped plot of the prevalence p∗, increasing for small P and decreasing for
large P.

Thus, we are faced with an intriguing situation. The basic reproduction number
R0 and the disease load I∗ decrease with increasing predation pressure P, which
tends to give the impression that the epidemic in the prey is weakened in the pres-
ence of predation. However, prevalence p∗, which gives another measure of the
disease in the population, increases, at least for low predation level P. The reason
is that even though both I∗ and N∗ both decrease with increasing P, N∗ falls faster
than I∗ for low values of P, and therefore the ratio I∗/N∗, which gives the preva-
lence, increases for those values of P. In other words, while both the population size
of the prey and the number of infective hosts are depressed under indiscriminate
predation, the proportion of infective individuals in the population increases for low
levels of P. The epidemiological significance of this result is that the overall disease
burden in the population is reduced, but the risk that a randomly chosen individual
is infected can increase with predation, at least at small predation levels.

10.4 Specialist Predator and SI Disease in Prey

Specialist predators prey on a given species, which is our focal species. The dynam-
ics of a specialist predator are closely linked to those of the prey. These dynamics are
those described by the Lotka–Volterra predator–prey model. In the next subsection,
we discuss various types of predator–prey models.
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10.4.1 Lotka–Volterra Predator–Prey Models

The Lotka–Volterra predator–prey model was initially proposed by Alfred J. Lotka
in the theory of autocatalytic chemical reactions in 1910. In 1925, Lotka used the
equations to analyze predator–prey interactions in his book Elements of Physical
Biology, deriving the equations that we know today. Vito Volterra, who was inter-
ested in statistical analysis of fish catches in the Adriatic, independently investigated
the equations in 1926. The equations are based on the observation that the predator–
prey dynamics are often oscillatory. The Lotka–Volterra model makes a number of
assumptions about the environment and evolution of the predator and prey popula-
tions:

• The prey population finds ample food at all times.
• The food supply of the predator population depends entirely on the prey popula-

tion.
• The rate of change of population is proportional to its size.
• During the process, the environment does not change in favor of one species, and

genetic adaptation is sufficiently slow.

The prey population size N(t) grows exponentially in the absence of the predator
and dies only as a result of predation. Thus the prey equation takes the form

N′(t) = rN − γNP,

where P(t) is the predator population size, and r is the growth rate of the prey. The
rate of predation on the prey is assumed to be proportional to the rate at which
the predators and the prey meet, and it is described by a mass action term γNP.
The predator depends entirely for food on the supply of prey and will die exponen-
tially if no prey is available at a natural death rate d. The equation for the predator
takes the form

P′(t) = εγNP− dP,

where ε is the conversion efficiency of the predator, that is, ε is a measure of the
predator metabolic efficiency by which the biomass of the prey eaten is converted
into biomass of the predator. The Lotka–Volterra predator–prey model takes the
form

N′(t) = rN − γNP,

P′(t) = εγNP− dP.
(10.15)

The term γNP is called the predation term. The per capita rate at which the predator
consumes the prey, γN in this model, is called the predator’s functional response.
The predator’s functional response term in this model is linear in the prey popula-
tion size N. This model also assumes that there is no interference among predators in
finding prey. In other words, encounters of predators do not reduce the efficiency of
search for prey. Mathematically, this is expressed in the fact that the predation term
is linear in P. The combination of the assumption of linear functional response and
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that of no interference between predators leads to a term proportional to the product
NP, which is the mass action predation term. The predator–prey model (10.15) has
an extinction equilibrium E0 = (0,0). The model also has one coexistence equilib-
rium

E =

(
d
εγ

,
r
γ

)
.

It can be shown that the orbits of the predator–prey system (10.15) are closed
curves around the coexistence equilibrium (see Fig. 10.1). Since the solutions are
closed orbits, they are periodic. From the direction of the vector field, it can be
seen that the solution curves in the (N,P)-plane run counterclockwise. Thus, the
maximum prey population comes about one-quarter of a cycle before the maxi-
mum predator population. The predator population’s fluctuations follow those of
the prey population through time. That is, the prey population begins to increase
while the predator population is still decreasing, and the prey population decreases
while the predator population is still increasing. The classic (and simplest) expla-
nation of these cycles is that the predator drives the changes in the prey population
by catching and killing its members, and the prey as the predator’s sole food supply
drives the predator’s population changes, but a lag between the population responses
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Fig. 10.1 Predator–prey cycles in the (N,P)-plane. The vector field shows that the orbits are tra-
versed counterclockwise
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of predator and prey cause the two cycles to be out of phase. However, this expla-
nation has been challenged, and it may not be the only viable explanation for the
pattern.

The Lotka–Volterra model represents one of the early triumphs of mathematical
modeling, because it captures the oscillatory behavior observed in natural predator–
prey systems with a specialist predator. Unfortunately, the model cannot explain
these oscillations, because the oscillations in the model are structurally unstable,
that is, small changes to the model can significantly change the qualitative behavior
of the model, e.g., it can stabilize the oscillations. Ideally, we would like the oscil-
lations in the model to be structurally stable, that is, if we make small changes to
the model to better reflect reality, the qualitative predictions of the model remain the
same, and in particular, the model continues to exhibit oscillations.

The first modification in the Lotka–Volterra model that is natural to be considered
is the possibility that the prey population is self-limiting, that is, the prey in the
absence of the predator grows logistically. The model becomes

N′(t) = rN

(
1− N

K

)
− γNP,

P′(t) = εγNP− dP, (10.16)

where K is the carrying capacity of the prey in the absence of the predator. The
dynamical behavior of model (10.16) is very different from that of model (10.15).
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Fig. 10.2 Predator–prey dynamics in the (N,P)-plane. The vector field shows convergence toward
the prey-only equilibrium (left) or convergence to the predator–prey coexistence equilibrium (right)

Model (10.16) has three equilibria. The first equilibrium corresponds to the extinc-
tion of both predator and prey, and is called the extinction equilibrium, given by
E0 = (0,0). The Jacobian of the extinction equilibrium, also called the community
matrix, has one positive and one negative eigenvalue, signifying that the extinction
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equilibrium is always a saddle and therefore always unstable. The second equi-
librium corresponds to the extinction of the predator only and persistence of the
prey population alone. This equilibrium is called the predator-extinction equilib-
rium or semitrivial (boundary) equilibrium, and is given by E1 = (K,0). The com-
munity matrix of the prey-only equilibrium is upper triangular and has λ1 =−r and
λ2 = εγK − d. Hence, the prey-only equilibrium is locally asymptotically stable if
and only if

εγK
d

< 1. (10.17)

The third equilibrium corresponds to a predator–prey coexistence equilibrium. The
equilibrium is given by

E ∗ =
(

d
εγ

,
r
γ

(
1− d

εγK

))
,

which exists if and only if εγK
d > 1. The Jacobian around the coexistence equilibrium

has negative trace and positive determinant. Hence, the coexistence equilibrium
is locally asymptotically stable. Dulac’s criterion can be used to rule out oscil-
lations for this model. It can be shown that if condition (10.17) holds, then the
prey-only equilibrium globally stable. If condition (10.17) does not hold, then the
predator–prey coexistence equilibrium is globally stable (see Fig. 10.2). Lotka–
Volterra predator–prey models have been discussed in multiple texts [90, 27].

10.4.2 Lotka–Volterra Model with SI Disease in Prey

The predator–prey dynamics described by the above models can be impacted by the
presence of a disease. The disease may affect the prey, it may affect the predator,
or it may affect both the predator and the prey if it is caused by a pathogen that
can jump the species barrier. We will consider here a prey population that is subject
to predation and impacted by a disease. As a baseline model of the predator–prey
dynamics we use the Lotka–Volterra model with self-limiting prey population size
and linear functional response. This model exhibits simple dynamics—global con-
vergence to a prey-only equilibrium or to a predator–prey coexistence equilibrium.
We will see that the introduction of disease in the prey can lead to much more com-
plex dynamics, namely oscillation and even chaos.

In addition to the assumptions for the predator–prey Lotka–Volterra model with
self-limiting prey population size, we also assume the following:

• The disease is transmitted only in the prey and does not affect the predator.
• Infected prey do not recover from the disease—the disease is of SI type for the

prey.
• Attack rates of the predator for healthy and infected prey may be different.
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• Infected prey does not reproduce but participates in the competition for resources,
so it participates in self-limitation.

Assuming that the prey population size N is divided into susceptible S and infective
prey I, the Lotka–Volterra model (10.16) with disease in the prey becomes

S′(t) = rN

(
1− N

K

)
− γSSP−β SI,

I′(t) = β SI− γIIP− μ0I,

P′(t) = ε(γSS+ γII)P− dP, (10.18)

where γS and γI are the predation rates of susceptible and infected prey, β is the
transmission rate of the disease in the prey, and μ0 is the natural or disease-induced
death rate of infected prey. The natural death rate of susceptible prey is incorporated
into the self-limiting logistic term.

Model (10.18) is difficult to analyze, so for analysis, we introduce a slightly
simplified model:

S′(t) = rS

(
1− N

K

)
− γSSP−β SI,

I′(t) = β SI− γIIP− μ0I,

P′(t) = ε(γSS+ γII)P− dP. (10.19)

Below, we list the equilibria of the system (10.19). The stability of these equi-
libria depends on the Jacobian (community matrix) evaluated at the corresponding
equilibrium. The community matrix at a generic equilibrium is given by

J =

⎛
⎝ r
(
1− N

K

)− r S
K − γSP−β I −r S

K −β S −γSS
β I β S− γIP− μ0 −γII

εγSP εγIP ε(γSS+ γII)− d

⎞
⎠ .

(10.20)

The system (10.19) has four equilibria, three boundary and one interior equilibrium:

1. Extinction or trivial equilibrium: E0 = (0,0,0). The trivial equilibrium always
exists, but it is always unstable, since the community matrix has an eigenvalue
r > 0.

2. Disease-free and predator-free equilibrium: E1 = (K,0,0). This equilibrium also
always exists. If we define a disease reproduction number in the absence of preda-
tor

R0 =
β K
μ0

and predator invasion number in the absence of disease

R0
P =

εγSK
d

,
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then the equilibrium E1 is locally asymptotically stable if

R0 < 1 and R0
P < 1

and unstable if either inequality is reversed.
3. Predator-free endemic equilibrium in which the disease persists in the prey but

the predator dies out, E2 = (S2, I2,0), where

S2 =
μ0

β
I2 =

r
(

1− 1
R0

)
r
K +β

.

The equilibrium E2 exists if and only if R0 > 1. The equilibrium E2 is locally
asymptotically stable if and only if the invasion number of the predator in the
presence of disease is less than one, Rp < 1, where the invasion number of the
predator in the presence of the disease is

RP =
ε
d

⎛
⎝γS

μ0

β
+ γI

r
(

1− 1
R0

)
r
K +β

⎞
⎠ .

4. Predator–prey disease-free equilibrium, where the disease dies out and the preda-
tor and the prey coexist disease-free: E3 = (S3,0,P3), where

S3 =
d

εγS
P3 =

r
γS

(
1− 1

R0
P

)
.

The disease-free predator–prey coexistence equilibrium E3 exists if and only if
the predator invasion number in the absence of disease satisfies R0

P > 1. This
equilibrium is locally asymptotically stable if and only if the disease reproduction
number in the presence of the predator is less than one: R1 < 1, where

R1 =
β d

εγS(γIP3 + μ0)
.

5. Predator–prey–disease coexistence equilibrium: E ∗ = (S∗, I∗,P∗). The system
for the coexistence equilibrium is given by

r

(
1− N

K

)
− γSP−β I = 0,

β S− γIP− μ0 = 0,

ε(γSS+ γII)− d = 0. (10.21)

The system for the interior equilibrium is a linear system, and if it has a nonneg-
ative solution, that solution is unique under the assumption that the determinant
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is not zero. The system can be solved, but the expressions obtained do not offer
much insight. So we take a different approach. The conditions for existence of a
positive equilibrium are stated in the following theorem:

Theorem 10.1. Assume R0 > 1 and R0
P > 1. Assume also that

Rp > 1, R1 > 1, and R0
P <R0.

Then there exists a unique positive interior equilibrium E ∗ = (S∗, I∗,P∗).

Proof. To see the claim, notice that from the second and third equations, we can
express I and P as functions of S:

P(S) =
β S− μ0

γI
, I(S) =

d − εγSS
εγI

. (10.22)

We use the first equation in system (10.21) to define the following function:

f (S) = r

(
1− S+ I(S)

K

)
− γSP(S)−β I(S).

Since RP > 1, we have I(S2)≤ I2 and P(S2) = 0. Hence,

f (S2) = r

(
1− S2 + I(S2)

K

)
− γSP(S2)−β I(S2)≥ r

(
1− S2 + I2

K

)
−β I2 = 0.

(10.23)

Similarly, since R1 > 1, we have I(S3) = 0, P(S3) =
β S3−μ0

γI
≥ P3. Hence,

f (S3) = r

(
1− S3

K

)
− γSP(S3)≤ r

(
1− S2

K

)
− γSP3 = 0. (10.24)

Therefore, f (S2) ≥ 0, f (S3) ≤ 0, and there must be a unique solution S∗ in the
interval (S2,S3). The condition R0

P <R0 implies that S2 < S3 and S2 < S∗ < S3.
Since I(S) is a decreasing function of S, we have I(S∗)> I(S3) = 0. At the same
time, P(S) is an increasing function of S, so we have P(S∗)> P(S2) = 0. Hence,
I∗ = I(S∗)> 0 and P∗ = P(S∗)> 0. This completes the proof. �

We note that an interior equilibrium may exist if

Rp < 1, R1 < 1, and R0
P >R0.

Concerning the stability of the coexistence equilibrium, we consider that the charac-
teristic equation of the Jacobian J is given by |J−λ I|= 0. We obtain the following
cubic polynomial:

λ 3 + a1λ 2 + a2λ + a3 = 0,
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where

a1 = rS∗/K,

a2 = γSS∗εγSP∗+ εγIP
∗γI I

∗+β I∗(rS∗/K +β S∗),

a3 = εP∗γI I
∗rS∗/K(γI − γS). (10.25)

The following result is immediate:

Theorem 10.2. The interior equilibrium is locally stable if γI > γS. If γI < γS, the
interior equilibrium is unstable.

We highlight the main conclusion:

The presence of a disease in the prey and a preferential predation of sus-
ceptible individuals can destabilize otherwise stable predator–prey dy-
namics.

In the case γS > γI , model (10.18) can exhibit very complex behavior. Since our
premise is that the disease destabilizes the otherwise stable predator–prey dynamics,
we investigate how the dynamics of the predator–prey-disease system change when
the transmission rate is varied while all other parameters are kept fixed. The fixed
parameters are listed in Table 10.1.

Table 10.1 Fixed parameter values used in simulations

Parameter Interpretation Value

r Prey growth rate 2
K Prey carrying capacity 1,000
μ0 Disease-induced death rate 0.001
ε Predator conversion efficiency 0.2
γI Attack rate on infectious prey 1.0
γS Attack rate on susceptible prey 9.1
d Predator death rate 0.2

For β = 6.2, we observe a closed periodic orbit of period one, which signifies
the fact that the periodic orbit makes one loop around the central point (equilibrium)
before starting to repeat itself. We illustrate this situation in Fig. 10.3.

As the transmission rate of the disease increases, the dynamics of the system
become more and more complex. The system undergoes a process called period-
doubling. A period-one periodic solution bifurcates into a period-two periodic
solution, that is, a solution that loops twice around the central point. A period-
two solution bifurcates into a period-four solution. Such a solution is exhibited
in Fig. 10.4. Period-doubling is a common route to chaotic behavior. The period-
doubling bifurcations are usually depicted by a bifurcation diagram in which all
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Fig. 10.3 Period-one cycle. The left figure shows (S, I,P)-space. The right figure shows the (I,P)-
plane. Parameters taken from Table 10.1; β = 6.2

parameters are held fixed except one. Bifurcation diagrams are a common tool for
analyzing the behavior of dynamical systems. They are created by running the equa-
tions of the system, holding all but one of the variables constant and varying the
last one. Then a graph is plotted of the points that a particular value for the changed
variable visits after transient factors have been neutralized. Chaotic regions are indi-
cated by filled-in regions of the plot. A bifurcation diagram for the predator–prey–
disease dynamical system is shown in Fig. 10.5. For β large enough, the system
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Fig. 10.4 Period-four cycle. The left figure shows the (S, I,P)-space. The right figure shows the
(I,P)-plane. Parameters taken from Table 10.1; β = 6.54
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Fig. 10.5 Bifurcation diagram for the system (10.18). Parameter β is plotted on the horizontal
axis; P is plotted on the vertical axis. Parameters taken from Table 10.1

exhibits chaos, which is characterized by aperiodic behavior and sensitive depen-
dence on the initial data (Chap. 4). Orbits converge to a chaotic attractor, which is
plotted in Fig. 10.6. The attractor has two wings, one of which largely resides in
the (S,P)-plane and the other in the (I,P)-plane. Projection of the attractor on the
(S, I)-plane is minimal. The dynamics of infected individuals exhibit random spikes
modeling outbreak disease, rather than endemicity. The predator persists but also
exhibits spikes that coincide with the spikes of the infected prey.

10.5 Competition of Species and Disease

Predation, which we considered in the previous sections, is one of the interactions in
the ecological community, and it is certainly the most dynamic interaction. For many
years, however, competition has been thought to be the main mode of interaction.
There is no question that competition is a very important community interaction.
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Fig. 10.6 Strange attractor for the system (10.18). Parameter β = 9.5. Other parameters taken from
Table 10.1

10.5.1 Lotka–Volterra Interspecific Competition Models

Lotka and Volterra also developed competition models. Lotka–Volterra competition
models describe the competition between two or more species for limited resources.
Such competition is called interspecific competition, which is contrasted with in-
traspecific competition, which is competition among individuals of one species for
limited resources. Lotka–Volterra models are representatives of the interference
competition models, whereby the increase in the size of one species is assumed to
decrease the other species per capita growth rate [90].

We review here the classical Lotka–Volterra competition model considered in
[90]. Readers are directed to that source for more detailed discussion of mathe-
matical models of ecology. To introduce the classical Lotka–Volterra model, con-
sider two species with population size N1(t) and N2(t) respectively. Each species is
assumed to grow logistically in the absence of the other with a growth rate ri and
carrying capacity Ki, i = 1,2:

N′
1(t) = r1N1

(
1− N1 +α12N2

K1

)
,

N′
2(t) = r2N2

(
1− N2 +α21N1

K2

)
. (10.26)
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In these equations, individuals of the second species decrease the per capita growth
rate of the individuals of the first species and vice versa. Because the two species
are different, the effect of the second species on the first may be stronger or weaker
than the effect of the first species on the second. To account for this effect, a pair
of competition coefficients α12 and α21 that describe the strength of the effect of
species two on species one and vice versa are introduced.

The system has at most four equilibria. Clearly, it has the extinction equilibrium
E0 = (0,0) and two semitrivial equilibria corresponding to the dominance of each
species: E1 = (K1,0) and E2 = (0,K2). Finally, under appropriate conditions, there
is a unique coexistence equilibrium satisfying the system

N1 +α12N2 = K1,

α21N1 +N2 = K2. (10.27)

This is a linear system in the unknowns N1 �= 0 and N2 �= 0. The solution is given by

N∗
1 =

α12K2 −K1

α12α21 − 1
, N∗

2 =
α21K1 −K2

α12α21 − 1
.

This solution exists and is positive under appropriate conditions, which we will
discuss later. Local stability of equilibria is determined from the community matrix,
which in the general case at arbitrary equilibrium is given by the matrix

J =

⎛
⎝

r1

K1
(K1 −N1 −α12N2)− r1

K1
N1 −α12

r1

K1
N1

−α21
r2

K2
N2

r2

K2
(K2 −N2 −α21N1)− r2

K2
N2

⎞
⎠ .

(10.28)

The community matrix for the extinction equilibrium has the eigenvalues λ1 = r1

and λ2 = r2, which are both real and positive. Thus the extinction equilibrium is
always an unstable node. The community matrix at the dominance equilibrium of
species one is

J(K1,0) =

(−r1 −α12r1

0
r2

K2
(K2 −α21K1)

)
. (10.29)

Thus, one of the eigenvalues is λ1 = −r1, and it is negative. The other eigenvalue
is λ2 = r2

K2
(K2 −α21K1). The sign of this eigenvalue depends on the sign of K2 −

α21K1. Thus, the equilibrium E1 is a stable node or a saddle. Symmetrically, the
eigenvalues of the community matrix of the equilibrium E2 are λ1 =

r1
K1
(K1−α12K2)

and λ2 = −r2. The sign of the first eigenvalue depends on the sign of K1 −α12K2.
The equilibrium E2 is also either a stable node or a saddle. Finally, to simplify the
community matrix of the coexistence equilibrium, we notice that at the coexistence
equilibrium, we have

K1 −N∗
1 −α12N∗

2 = 0, K2 −N∗
2 −α21N∗

1 = 0.
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Thus, the community matrix becomes

J(N∗
1 ,N

∗
2 ) =

⎛
⎝ − r1

K1
N1 −α12

r1

K1
N1

−α21
r2

K2
N2 − r2

K2
N2

⎞
⎠ . (10.30)
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Fig. 10.7 Phase portrait of two competing species. Species one has K1 = 100. Species two has K2 =
250. The black continuous trajectory converges to equilibrium E1 = (100,0). The black dashed
trajectory starts from a different initial condition and converges to equilibrium E2 = (0,250)

The trace of the above matrix is clearly negative. The determinant is given as
follows:

detJ =
r1

K1

r2

K2
N∗

1 N∗
2 (1−α12α21).

Thus, the sign of the determinant depends on the sign of the expression 1−α12α21.
If 1−α12α21 > 0, then the coexistence equilibrium is a stable node or a stable focus.
It can be checked that the discriminant of the characteristic polynomial λ 2 + pλ +
q = 0, is given by

Δ = p2 − 4q =

(
r1

K1
N∗

1 +
r2

K2
N∗

2

)2

− 4
r1

K1

r2

K2
N∗

1 N∗
2 (1−α12α21)> 0.
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Hence, the coexistence equilibrium in this case is a stable node. If 1−α12α21 < 0,
then the coexistence equilibrium is a saddle. There are four distinct cases that
encompass all possibilities. They are centered on the position of the nullclines.
Species-one nullclines (x-nullclines) are N1 = 0 and N1 +α12N2 = K1. Symmet-
rically, species-two nullclines (y-nullclines) are N2 = 0 and α21N1 +N2 = K2. There
are four cases.

Case 1. K1 > α12K2 and K2 < α21K1. In this case, there is no interior equilibrium,
since the numerators of N∗

1 and N∗
2 have opposite signs. The boundary

equilibrium E1 is a stable node, while the boundary equilibrium E2 is a
saddle (unstable). All orbits tend to (K1,0) as t → ∞. Thus, species one
persists at carrying capacity, while species two becomes extinct.

Case 2. K1 < α12K2 and K2 > α21K1. This is a symmetric case to Case 1. In this
case, again there is no interior equilibrium. The boundary equilibrium E1

is a saddle (unstable), while the boundary equilibrium E2 is a stable node.
All orbits tend to (0,K2) as t → ∞. Thus, species two persists at carrying
capacity, while species one becomes extinct.

Case 3. K1 < α12K2 and K2 < α21K1. These two inequalities imply that 1 <
α12α21. Thus the interior equilibrium exists. However, since the deter-
minant of the community matrix evaluated at the interior equilibrium is
negative,

DetJ(N∗
1 ,N

∗
2 )< 0,

the community matrix has two real eigenvalues of opposite sign (q <
0). Therefore, the coexistence equilibrium is a saddle. At the same time,
both semitrivial equilibria E1 and E2 are stable nodes. In this case, the
coexistence of the two species is again impossible. One of the species
always outcompetes and eliminates the other. However, the winner of the
competition is determined by the initial conditions. We recall that this
dependence on the initial conditions is called the founder effect. This is
another example of bistability. Solution orbits that start from the upper
part of the plane converge to the equilibrium E2, while those that start
from the lower part converge to the equilibrium E2 (see Fig. 10.7).

Case 4. K1 > α12K2 and K2 > α21K1. In this case, 1 > α12α21, and the interior
equilibrium also exists. The community matrix at the interior equilibrium
has negative trace and

DetJ(N∗
1 ,N

∗
2 )> 0.

Therefore, the coexistence equilibrium is locally asymptotically stable.
It can be further shown that it is a stable node. The community matrices of
the two semitrivial equilibria have one positive eigenvalue and one nega-
tive eigenvalue. Hence, the two semitrivial equilibria are saddle points. In
this case, every orbit that starts from the interior tends to the coexistence
equilibrium as t → ∞.
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In Cases 1 and 2, we say that competitive exclusion occurs. That means that one of
the species excludes the other and dominates by itself. We recall that the principle
of competitive exclusion was first formulated by Gause in 1934 [64] on the basis of
experimental evidence.

10.5.2 Disease in One of the Competing Species

How will the outcome of the competition between two species be influenced if one
of the species is plagued by a disease? Models of two competing species with dis-
ease have been considered before and they have shown that the presence of the
disease tends to destabilize the dynamics of the interaction of the species [160].
We consider model (10.26), and we assume that a disease is spreading among
species one. Then the population of species one N1(t) is split into the number of
susceptible individuals S(t) and the number of infected individuals I(t). We have
N1(t) = S(t)+ I(t). We assume that the growth rate of species one, r1, is the growth
rate of the susceptible individuals but that infected individuals have a different, pos-
sibly lower, growth rate rI (rI < r1). The transmission of the disease happens at a
rate β SI. Model (10.26) can be modified as follows:

S′(t) = S

(
r1 − r1N1 + r1α12N2

K1

)
−β SI,

I′(t) = I

(
rI − r1N1 + r1α12N2

K1

)
+β SI,

N′
2(t) = r2N2

(
1− N2 +α21N1

K2

)
. (10.31)

We notice that in the equation for S, we have multiplied through by r1. In the equa-
tion for I, we first multiply by r1 and then replace the first occurrence by the re-
production rate rI . However, the intraspecies interference term remains the same.
To simplify the appearance of system (10.31), we rewrite it in the form

S′(t) = S (r1 − a11N1 − a12N2)−β SI,

I′(t) = I (rI − a11N1 − a12N2)+β SI,

N′
2(t) = N2 (r2 − a22N2 − a21N1) , (10.32)

where we have set a11 = r1/K1, a12 = r1α12/K1, a21 = r2α21/K2, and a22 = r2/K2.
System (10.32) is a three-dimensional competitive Lotka–Volterra system. No-

tice that if we set I = 0, the second equation is trivially satisfied, and system (10.31)
reduces to system (10.26). We consider the equilibria of the system (10.32). First,
there is an extinction equilibrium of the system E0 = (0,0,0). Next, there are three
vertex equilibria: E1 = (K1,0,0), E2 = (0,rIK1/r1,0), and E3 = (0,0,K2). Next we
investigate equilibria that have one component equal to zero:
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• Equilibrium E12 is an equilibrium in which the disease is present in species one
but species two is absent:

E12 =
1

β 2 ((r1 − rI)a11 − rIβ ,(rI − r1)a11 + r1β ,0).

This equilibrium exists when the following inequalities are satisfied:

rIβ < (r1 − rI)a11 < r1β .

See Problem 10.4 for further details.
• EquilibriumE13 is an equilibrium in which species one is present with susceptible

individuals only and species two is also present:

E13 =
1
Δ
(r1a22 − r2a12,0,r2a11 − r1a21) =

(
K1 −α12K2

1−α12α21
,0,

K2 −α21K1

1−α12α21

)
,

where Δ = a11a22−a12a21 is the determinant of the matrix of coefficients. Hence,
the existence and stability of equilibrium E13 is exactly the same as the existence
and stability of the coexistence equilibrium of the two species.

• Equilibrium E23 is an equilibrium in which species one is present with infected
individuals only and species two is also present:

E23 =
1
Δ
(0,rIa22−r2a12,0,r2a11−rIa21)=

(
0,

rI
r1

K1 −α12K2

1−α12α21
,

K2 − rI
r1

α21K1

1−α12α21

)
,

where Δ = a11a22 − a12a21 has the same meaning as above. Hence, the exis-
tence and stability of equilibrium E23 can be derived in a similar way to that of
the existence and stability of the coexistence equilibrium of the two species. See
Problem 10.5.

The system has a unique interior equilibrium E ∗ = (S∗, I∗,N∗
2 ), where (see [160])

S∗ =
1

a22β 2 (Δ(r1 − rI)−β (a22rI − a12r2)),

I∗ =
1

a22β 2 (β (a22r1 − a12r2)−Δ(r1 − rI)),

N∗
2 =

1
a22β

(β r2 − a21(r1 − rI)). (10.33)

We notice that S∗+ I∗ = (r1 − rI)/β . The interior equilibrium is feasible if the re-
production number of the second species satisfies

R2 =
β r2

a21(r1 − rI)
> 1.

In addition, we need the following double inequality to hold:
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a22r1 > Δ
r1 − rI

β
+ a12r2 > a22rI .

To investigate the stability of the interior equilibrium, we consider the community
matrix at the interior equilibrium:

J =

⎛
⎝ −a11S∗ −a11S∗ −β S∗ −a12S∗

−a11I∗+β I∗ −a11I∗ −a12I∗
−a21N∗

2 −a21N∗
2 −a22N∗

2

⎞
⎠ . (10.34)

Here we have used the equations of the equilibria to simplify the Jacobian. Namely,
we have used

(r1 − a11N1 − a12N2)−β I = 0,

(rI − a11N1 − a12N2)+β S = 0,

r2 − a22N2 − a21N1 = 0. (10.35)

Next, we consider the characteristic equation |J −λ I|= 0. Expanding the determi-
nant, we obtain the following cubic characteristic polynomial:

λ 3 + c1λ 2 + c2λ + c3 = 0,
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Fig. 10.8 Oscillatory simulation of susceptible species one, S(t), infected species one, I(t), and
species two, N2(t). The susceptible species one have been shifted in the plot with 1.5 units down,
that is, what is plotted is S(t)−1.5. Parameters are r1 = 25, rI = 14, r2 = 36, a11 = 10, a12 = 17,
a21 = 15.3, a22 = 21.6, β = 5 [160]. The oscillatory solution is stable for some initial conditions.
Those used to produce the figure are S(0) = 2, I(0) = 0.231667, N2(0) = 0.108333
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where

c1 = a22N∗
2 + a11

r1 − rI

β
,

c2 = ΔN∗
2

r1 − rI

β
+β 2S∗I∗,

c3 = β 2S∗I∗a22N∗
2 . (10.36)

Clearly, if Δ > 0, then c1 > 0, c2 > 0, and c3 > 0. Furthermore, it is not hard to
see that c1c2 > c3. The Routh–Hurwitz criterion then implies that all roots of the
characteristic polynomial have negative real part. Hence the interior equilibrium
is locally asymptotically stable. However, if Δ < 0, there is a possibility of Hopf
bifurcation and the emergence of a periodic solution. The locally stable periodic
solution is illustrated in Fig. 10.8.

Animal populations are subject to a number of ecological interactions. Introduc-
ing disease in one or more of the interacting populations is an interesting area of
exploration often referred to as ecoepidemiology.

Acknowledgements The first part of this chapter is based on lecture notes that Manojit Roy
developed and delivered in the Biomathematics Seminar.

Problems

10.1. Competition of Strains under Predation
Consider that a generalist predator is feeding on a prey infected by a pathogen rep-
resented by two strains. The model takes the form

S′(t) = Λ −β1SI1 −β2SI2 − (μ0 + aSP)S,

I′1(t) = β1SI1 − (μ1 + a1P)I1,

I′2(t) = β2SI2 − (μ2 + a2P)I2. (10.37)

(a) Is coexistence of the strains possible in this model? Show competitive exclusion.
(b) Determine which strain dominates depending on the predation level P.

10.2. Competition of Strains under Predation
Consider that a specialist predator is feeding on a prey infected by a pathogen rep-
resented by two strains. The model takes the form

S′(t) = Λ −β1SI1 −β2SI2 − (μ0 + γSP)S,

I′1(t) = β1SI1 − (μ1 + γ1P)I1,

I′2(t) = β2SI2 − (μ2 + γ2P)I2,

P′(t) = ε(γSPS+ γ1PI1 + γ2PI2)− dP.

(10.38)
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(a) Is coexistence of the strains possible in this model? Determine the coexistence
equilibrium and the conditions under which it exists.

(b) Use a computer algebra system to simulate the coexistence of the strains. How
does changing the predator’s predation rates γ1 and γ2 affect the competition of
the strains?

10.3. Specialist Predator with Disease in Predator
Consider the following model of a specialist predator with disease in the predator.
The number of prey is given by N(t). The susceptible predators are given by S(t),
and the infected predators by I(t):

N′(t) = rN

(
1− N

K

)
− γSNS− γINI,

S′(t) = εSγSNS−β SI− dSS,
I′(t) = εIγINI +β SI− dII.

(10.39)

(a) Find the equilibria of the system.
(b) Compute the reproduction number of the disease in the predator. Determine the

stability of the semitrivial equilibria.
(c) Compute the interior equilibrium. When is the interior equilibrium locally

asymptotically stable? Does Hopf bifurcation occur?

10.4. Epidemic Model with Vertical Transmission
Consider model (10.32) with species two absent. Assume r1 > rI :

S′(t) = S (r1 − a11N1)−β SI,
I′(t) = I (rI − a11N1)+β SI.

(10.40)

(a) Find the equilibria of model (10.40). Under what conditions does each equilib-
rium exist?

(b) Determine the local stabilities of each equilibrium.
(c) Use a computer algebra system to draw the phase portrait in each of the cases

above.
(d) Explain how the vertical transmission is incorporated in the model.

10.5. Equilibria of Lotka–Volterra Competition Model with Disease
Consider the model (10.32). Assume r1 > rI .

(a) Find the trivial and semitrivial equilibria of model (10.32). Under what condi-
tions does each equilibrium exist?

(b) Determine the local stabilities of each equilibrium. Determine the corresponding
conditions for stability/instability.

(c) Use a computer algebra system to simulate model (10.32). Set β = 0. Determine
parameter values such that E13 is locally stable. Start increasing β . How does the
increase in the prevalence of the disease affect the competitive ability of species
one?
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10.6. Mutualism
Mutualism is an interaction between species that is mutually beneficial for the
species involved [90]. Consider the following Lotka–Volterra mutualism model:

N′
1(t) = r1N1

(
1− N1 −α12N2

K1

)
,

N′
2(t) = r2N2

(
1− N2 −α21N1

K1

)
. (10.41)

Assume r1 > 0,r2 > 0,K1 > 0,K2 > 0. In this case, it is said that the mutualism is
facultative.

(a) Find the equilibria of model (10.41). Under what conditions does each an equi-
librium exist?

(b) Show that in the coexistence equilibrium, species persist at densities larger than
their respective carrying capacities. What does that mean biologically?

(c) Determine the local stabilities of each equilibrium. Determine the corresponding
conditions for stability/instability.

(d) Draw a phase portrait in each of the cases α12α21 < 1 and α12α21 > 1. Show
that in the case α12α21 > 1, orbits may become unbounded.

10.7. Mutualism with Disease
Consider the mutualism model with disease in one of the species [161]. Let N1(t)
be the density of species one, S(t) the number of susceptible individuals, and I(t)
the number of infected individuals of species two:

N′
1(t) = N1(r1 − a11N1 + a12(S+ I)),

S′(t) = S(rS + a21N1 − a22(S+ I))−β SI,

I′(t) = I(rI + a21N1 − a22(S+ I))+β SI, (10.42)

where rS > rI , and all parameters are positive.

(a) Find the trivial and semitrivial equilibria of model (10.42). Under what condi-
tions does each an equilibrium exist?

(b) Determine the local stabilities of each equilibrium. Determine the corresponding
conditions for stability/instability.

(c) Determine the interior equilibrium of the system.
(d) Determine the stability of the interior equilibrium.

10.8. Specialist Predator with a Two-Strain Disease in Predator
Consider the following model of a specialist predator with disease in predator repre-
sented by two strains. The number of prey is given by N(t). The susceptible preda-
tors are given by S(t), the predators infected by strain one are denoted by I1(t), and
the predators infected by strain two are denoted by I2(t):
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N′(t) = rN

(
1− N

K

)
− γSNS− γI1NI1 − γI2NI2,

S′(t) = εSγSNS−β1SI1 −β2SI2 − dSS,

I′1(t) = εI1γI1NI1 +β1SI1 − dI1I1,

I′2(t) = εI2γI2NI2 +β2SI2 − dI2I2. (10.43)

(a) Find the semitrivial equilibria of the system above.
(b) Compute the reproduction numbers of the two strains in the predator. Determine

the stability of the semitrivial equilibria.
(c) Is there a coexistence equilibrium for that system?



Chapter 11
Zoonotic Disease, Avian Influenza,
and Nonautonomous Models

11.1 Introduction

Zoonotic diseases are contagious diseases that are transmitted between animals and
humans. These diseases are caused by bacteria, viruses, parasites, fungi, and prions
that are carried by animals and insects.

Zoonotic diseases include vector-borne diseases but also diseases transmitted by
vertebrate animals. For some zoonotic diseases, humans are a host that can pass on
the pathogen to the animals or to the environment, while for others, the humans are a
dead-end host. Examples of the first type are cholera, ebola, and malaria. Examples
of the second kind are Rift Valley fever, hantavirus, West Nile virus, and avian
influenza.

Zoonotic diseases play a very important role among human communicable dis-
eases. In a review of more than 1400 pathogens known to infect humans, it was
found that more than 61% were zoonotic [149]. Zoonotic diseases often serve as a
starting point of many pathogens that jump the species barrier and become effec-
tively human-to-human transmissible. Such diseases are called emergent diseases.

One of the most dangerous zoonotic pathogens is avian influenza H5N1. Avian
influenza is transmitted from birds to humans. As of May 2014, H5N1 has infected
more of 600 humans, 60% of whom have died. Besides the high mortality, what
makes H5N1 dangerous is the possibility for the pathogen to mutate or reassort into
a highly human-to-human transmissible flu pathogen with high mortality. In such a
case, a world pandemic would occur, but since humans have no prior exposure to the
H5 subtype of influenza A, mortality may be higher than it was in the 2009 H1N1
pandemic, caused by the “swine flu.”

© Springer Science+Business Media New York 2015
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11.2 Modeling Avian Influenza

Modeling zoonotic diseases in general, and avian influenza in particular, involves
modeling transmission in several species. Many of the zoonotic diseases involve
multiple species. For instance, the avian influenza pathogen infects wild birds, do-
mestic birds, humans, and many animal species such as pigs and cats. One has to
decide which species are important to the transmission.

In the case of avian influenza, we typically want to address questions related
to human health. Humans are a dead-end host for H5N1, but H5N1 transmits to
humans from domestic birds. It transmits effectively in birds and is endemic in the
poultry populations in some countries.

11.2.1 Simple Bird–Human Avian Influenza Model

One of the simplest models of avian influenza (AI) was proposed by Iwami [80],
following whom, we model transmission in poultry and the spillover to humans.
H5N1 is very deadly for chickens. Mortality reaches 90–100% typically within 48 h
[40]. This suggests that a simple SI model with disease-induced mortality is a good
tool to model the transmission within poultry.

Domestic Birds:
{

S′d(t) = Λd −βdSdId − μdSd,
I′d(t) = βdSdId − (μd +νd)Id ,

(11.1)

where Sd is the number of susceptible birds, Id is the number of infected birds, Λd

is the recruitment rate, μd is the poultry natural death rate, νd is the disease-induced
death rate, and βd is the transmission coefficient among poultry. Humans become
infected from touching infected uncooked poultry products. The spillover model for
humans takes the form

Humans:
{

S′(t) = Λ −β SId − μS,
I′(t) = β SId − (μ +ν)I, (11.2)

where S is the number of susceptible humans, I is the number of infected humans,
Λ is the recruitment rate for humans, μ is the human natural death rate, ν is the
disease-induced death rate for humans, and β is the transmission coefficient from
infected poultry to humans.

The dynamics of the solutions to model (11.1)–(11.2) are not very different from
those of the SI poultry model. The model has a reproduction number

Rd =
Λdβd

μd(μd +νd)
.

IfRd < 1, then all solutions approach the disease-free equilibrium: E0 =(Λd
μd
,0, Λ

μ ,0).
If Rd > 1, then all solutions approach the endemic equilibrium E ∗ = (S∗d , I

∗
d ,S

∗, I∗),
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where

S∗d =
μd +νd

βd
, I∗d =

μd

βd
(Rd − 1) , S∗ =

Λ
β I∗d + μ

I∗ =
β S∗I∗d
μ +ν

.

We see that if β �= 0, then the outcome of the disease in humans is a direct conse-
quence of the outcome of the disease in poultry.

11.2.2 Parameterizing the Simple Avian Influenza Model

One of the main ingredients in developing models is determining reasonable param-
eter values for the model. We fix the time unit in years. The reason for that will
become clear later. Determining parameters is typically done through fitting. Model
(11.1)–(11.2) has eight parameters and four unknown initial conditions. The main
data source is the cumulative number of H5N1 human cases given by the World
Health Organization [166]. We give the data in Table 11.1.

Table 11.1 Number of cumulative human cases of H5N1 in units 105

Year Time Cases Year Time Cases

2005 0 0.00047 2010 5 0.00467
0.5 0.00108 5.5 0.005

2006 1 0.00148 2011 6 0.00516
1.5 0.00229 6.5 0.00562

2007 2 0.00263 2012 7 0.00576
2.5 0.00318 7.5 0.00607

2008 3 0.00351 2013 8 0.00610
3.5 0.00387 8.5 0.00633

2009 4 0.00395 2014 9 0.0065
4.5 0.00436

If the data are taken at half-year intervals, that will give 19 data points, poten-
tially not enough to fit all parameters and initial conditions. A better approach is
to predetermine some of the parameters. The Food and Agriculture Organization
of the United Nations (FAO) publishes statistics on livestock [58]. FAO gives that
in 2012, there were 24 billion units of poultry worldwide [58]. We set the world’s
poultry population at 2400× 107. Iwami [81] gives the mean lifespan of poultry to
be two years. That translates into μd = 0.5. Since the entire population Λd/μd is
equal to 2400 we have Λd = 1200 in units of 107 per year. Iwami [81] also uses
mean infectious period for domestic birds of 10 days, that is, νd = 36.5 years−1.

The natural lifespan of humans throughout the world varies significantly from
country to country. We take an average value of human lifespan to be 65 years.
Therefore, μ = 1/65. The world human population has been on average approxi-
mately 6.5 billion over these 10 years. That gives a value of Λ = 1000 births per
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year in units of 105 individuals. Finally, we preestimate some of the initial condi-
tions: Sd(0) = 2400, I(0) = 0.0007 and S(0) = 65000.

Alternatively, one can get the information about the poultry and the human pop-
ulation of only the affected countries, of which there are 16. Data exist in the same
data sources. This is left as an exercise (see Problem 11.1).

To determine βd , β , Id(0), we fit the model (11.1)–(11.2) to the data, and we esti-
mate Id(0) = 0.3936, β = 0.000000035327684, and βd = 0.015489231377. The fit
is given in Fig. 11.1. The Matlab code that executes the fitting is given in the
appendix.

2006 2007 2008 2009 2010 2011 2012 2013 2014
time

200

300

400

500

600

Cases

Fig. 11.1 Fit of model (11.1)–(11.2) to cumulative number of human cases of H5N1 given in
Table 11.1

The estimated reproduction number with the fitted data is Rd = 1.00471.

11.2.3 Evaluating Avian Influenza Control Strategies

Control strategies that are currently in place have the goal of delaying or preventing
the emergence of a pandemic H5N1 strain. These measures currently involve the
following [108]:

• Vaccination of poultry;
• Culling/destroying infected and potentially exposed poultry;
• Reducing contact with poultry by wearing protective gear;
• Isolation of humans infected with H5N1 and tracing the source of infection of

the isolated individuals;
• Increasing biosecurity of poultry rearing;
• Education of poultry workers and health personnel.
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Multiple control measures are applied differently in different countries. Evaluat-
ing their overall effectiveness is not a trivial task. Typically, this is done by collect-
ing the opinions of experts. Here we present a more objective approach. Suppose the
goal of the control measures is to reduce the number of cases of H5N1 in humans,
that is, the goal is to minimize I∗. Each of the control measures impacts certain par-
ameter values. We evaluate the change that a 1% change in a parameter p makes on
I∗ through the concept of elasticity. Recall that the elasticity of I∗ with respect to
the parameter p is given by

εp =
∂ I∗

∂ p
p
I∗
, (11.3)

where

I∗ =
Λ

μ +ν
β μd(Rd − 1)

β μd(Rd − 1)+ μβd
.

We use Mathematica to compute the elasticities with the above-evaluated parame-
ters. The elasticities are listed in Table 11.2.

Table 11.2 Table of elasticities of I∗

Parameter Elasticity Parameter Elasticity

βd 212.454 β 1
μd −215.338 μ − 1.00042
νd −210.569 ν − 0.999579
Λd 213.454 Λ 1

From this table, we see directly that control measures that are applied to poultry
and affect poultry parameters are much more effective in influencing the prevalence
in humans than control measures applied to humans. This result seems robust and
independent of the model [108]. To compare the control measures, we determine
which parameters each control measure would affect. For instance, culling affects
μd and νd . Culling with repopulation affects μd , νd , and Λd . Vaccination affects βd

and νd . Wearing protective gear affects β . We define the overall effect of the control
measure to be the sum of efficacies of the effect of the measure on each affected
parameter. For instance, culling with repopulation increases Λd and increases μd

and νd . Hence, the overall efficacy is 213.454− 210.569− 215.338 = −212.453.
We will take this number as an absolute value. We summarize the overall effects
of each control measure in Table 11.3. The affected parameters in the educational
control measure are hard to pinpoint and are omitted.

Table 11.3 suggests that culling without repopulation is the most effective strat-
egy, but it is rarely applied. Without it, culling with repopulation and biosecurity
are the two most efficient strategies, followed by vaccination. The low rank of
vaccination comes from the fact that vaccination leads to asymptomatic diseases
and increases the lifespan of infected poultry. At low levels, vaccination effectively
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Table 11.3 List of control measures and their efficacies

Control measure Affected parameters Overall efficacy Rank

Culling w/o repopulation μd , νd 425.907 1
Culling with repopulation μd ,νd ,Λd 212.453 3
Vaccination βd , νd , β 2.885 4
Biosecurity βd 212.454 2
Protective gear β 1 5
Isolation ν 0.999579 6

supports higher prevalence. One caveat that we should mention is that the actual
control measures do not necessarily affect all parameters with 1% change. Pinpoint-
ing the exact change is not trivial.

11.3 Seasonality in Avian Influenza Modeling

It has been known for a long time that human influenza exhibits seasonality in the
temperate zones. In more tropical climates, human flu shows more complex patterns.
The reasons for the human flu seasonality remain unknown.

Avian influenza H5N1 affects many countries with different climates, and yet
it exhibits seasonality similar to the human flu in temperate climates. This can be
easily seen from the monthly human cases in Fig. 11.2.

Figure 11.2 shows that most of the cases occur in the period from December
through March, and there are very few cases in the summer months. Moreover, in
humans, seasonality can also be observed in H5N1 poultry outbreaks. To capture
seasonality, we have to measure t in days or in months. Our preference will be to
measure t in days.

11.3.1 An Avian Influenza Model with Seasonality

The cause of seasonality in H5N1 is completely unknown. Some authors have
hypothesized that seasonality is intrinsic and should be modeled with autonomous
models whose endemic equilibria can be destabilized and exhibit oscillations [107].
A more likely scenario is that seasonality is extrinsic. Perhaps the transmission rate
βd is not a constant, but a periodic function of t, or the survivability of H5N1 in
the environment is periodic. A recent study considered a number of potential extrin-
sic mechanisms and their combinations as possible drivers of seasonality in H5N1
[157]. The study performed model selection on the resulting seven models and found
out that Iwami’s model with periodic transmission rate is the best fit to the cumula-
tive number of human cases. We introduce that model here:
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Fig. 11.2 Number of human cases of H5N1 by month. Data taken from [166]

Domestic Birds:
{

S′d(t) = Λd −βd(t)SdId − μdSd ,
I′d(t) = βd(t)SdId − (μd +νd)Id ,

(11.4)

where the parameters have the same meanings as above. Seasonality is captured
through a periodic transmission rate given by the periodic function

βd(t) = κ1 sin

(
2π
365

(t +ω)

)
+κ2. (11.5)

Here κ1 is the amplitude, ω is the horizontal shift, and κ2 is the vertical shift. We
want κ1 < κ2, so that βd(t)> 0. The spillover model for humans takes the form

Humans:
{

S′(t) = Λ −β SId − μS,
I′(t) = β SId − (μ +ν)I. (11.6)

Model (11.4)–(11.6) is well justified. As before, it can be fitted to the cumulative
number of human cases of H5N1. We show the fit in Fig. 11.3, where we fitted
the data through December 2009. These data are called calibration data. Then we
extended the solution and plotted it alongside the incoming new data, called test
data. It can be seen that the model describes well the incoming new data.

Model (11.4)–(11.6) is a model whose parameter βd is an explicit function of the
independent variable t. We have not considered models of this type before. Recall,
however, that models in which one or more parameters are given functions of the
independent variable are called nonautonomous.
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An important class of nonautonomous models consists of those in which the
parameters are periodic functions of the independent variable.

Definition 11.1. Models in which one or more parameters are periodic functions of
the independent variable are called periodic or seasonally forced models.
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Fig. 11.3 Cumulative number of human cases of H5N1 in days

Methods for nonautonomous models include the Poincaré map and Floquet
theory. We direct the reader to the many excellent books that cover this topic [155].

11.3.2 Tools For Nonautonomous Models

There are many tools that are designed to facilitate the study of nonautonomous
periodic dynamical systems. Nonautonomous periodic dynamical systems are to a
large extent analogous to autonomous dynamical systems. Here we explore two such
tools.

11.3.2.1 The Poincaré Map

The Poincaré map was developed to study the intersection of the solution flow of a
periodic orbit with the transversal cross section S. It is a tool for investigation of the
n-dimensional dynamical system

x′ = f (t,x). (11.7)
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The Poincaré map is defined as the point of return of the periodic orbit to S.

Suppose the flow φ generated by (11.7) is T -periodic, that is, φ(t +
T,x0) = φ(t,x0), and the cross section S of dimension n−1 is transversal
to the vector field. Then the Poincaré map P(x) : V ⊂ S → S associates
point x0 in V with its point P(x0) of the first return of the flow to S (see
Fig. 11.4).

Fig. 11.4 A schematic description of the Poincaré map

The Poincaré map is relatively simple to study, but on the other hand, many of its
properties are correlated to the properties of the flow. For instance, the stability of x
of the map P(x) corresponds to the stability of the solution flow φ(t,x). If the solu-
tion flow has n (m) eigenvalues with negative (positive) real part, then the linearized
map DP(x) has n (m) eigenvalues with modulus smaller (bigger) than one [155].
We utilize this property of the Poincaré map below.
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11.3.2.2 Floquet Theory

Floquet theory provides another tool for investigating the local stability of solutions
of periodic dynamical systems. Let

x′ = A(t)x, x(0) = x0, (11.8)

be a linear nonautonomous periodic system, that is, A(t +T) = A(t).

Definition 11.2. A matrix

Φ(t) = [x1(t), . . . ,xn(t)],

where each column vector x j(t) is an independent solution of x′ = A(t)x, is called a
fundamental matrix of x′ = A(t)x.

By definition,

Φ ′(t) = A(t)Φ(t).

Theorem 11.1 (Floquet). Each fundamental matrix of the T-periodic system x′ =
A(t)x can be written as

Φ(t) = P(t)eBt ,

where P(t) is T -periodic, P(t +T) = P(t), and B is an n× n constant matrix.

The proof of this theorem can be found in [155] and is omitted. The following
corollary shows the connection between a nonautonomous periodic linear system
and the corresponding autonomous linear system.

Corollary 11.1. The periodic system x′ = A(t)x is equivalent to the constant-
coefficient system y′ = By.

Definition 11.3. The matrix C = eBT is called a monodromy matrix. The eigenvalues
λ of the matrix B are called Floquet exponents. The eigenvalues ρ = eλ T of the
matrix C are called characteristic multipliers.

11.3.2.3 Overview of Methods for Computing R0 in Periodic Models

When a nonautonomous system of differential equations is large, the analytical form
of the reproduction number is difficult to compute. In this case, approximate meth-
ods must be used. Approximate methods compute an approximate value for the
reproduction number. There are two types of approximate methods: analytical and
computational. Among the analytical approximate methods is a method developed
by Bacaër [19]. With this method, one calculates successive approximations of the
reproduction number. Of course, analytically, one can compute perhaps two or three
approximations, but these seem to be good enough. The advantage of the method is
that one obtains an explicit formula for the approximate R0.
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The reproduction number for periodic models has been more carefully defined
in [164], in which the author proves its threshold properties and also gives an algo-
rithm for its numerical computation. We notice that these results hold only when the
coefficients of the nonautonomous model are periodic.

Another approach to computing the reproduction number is discussed in [45].
This approach is both approximate and exact for simpler models. The exact approach
is very reminiscent of the approach we use below in this chapter for the computa-
tion of the reproduction number. Further discussion of the reproduction numbers
including examples in which these computed reproduction numbers fail to provide
a threshold for seasonally forced models can be found in [103].

11.3.3 Analyzing the Avian Influenza Model with Seasonality

Analyzing nonautonomous models is harder than analyzing autonomous models.
For most of the nonautonomous models, even computing the reproduction number
is a nontrivial task, and numerical methods must be used.

The model for domestic birds (11.4) can be separated from the full systems and
investigated independently. The model is simple enough so that we can compute the
reproduction number. The disease-free equilibrium of the model is time-independent
and is given by E0 = (Λd

μd
,0). We linearize around the disease-free equilibrium. Let

x(t) be the perturbation of Sd , and y(t) the perturbation in Id . After dropping the
quadratic terms and using the equations for the disease-free equilibrium to simplify,
the system for the perturbations becomes

⎧⎪⎨
⎪⎩

x′(t) =−βd(t)
Λd

μd
y(t)− μdx(t),

y′(t) = βd(t)
Λd

μd
y(t)− (μd +νd)y(t).

(11.9)

The second equation separates from the first. It is a linear equation with nonconstant
coefficients. It can be solved explicitly. The solution is given by

y(t) = y(0)e

∫ t

0

(
βd(s)

Λd

μd
− (μd +νd)

)
ds
. (11.10)

To define the basic reproduction number, we first introduce the average of a per-
iodic function over its period.

Definition 11.4. If f (t) is a periodic function of period T , then the average of f is
given by

< f >=
1
T

∫ T

0
f (s)ds
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Proposition 11.1. If f (t) is a periodic function of period T , then

lim
t→∞

1
t

∫ t

0
f (s)ds =< f > .

Proof. Let t ∈ [nT,(n+ 1)T). Then t = nT + ε , where ε ∈ [0,T ). Furthermore,

∫ t

0
f (s)ds =

∫ nT

0
f (s)ds+

∫ nT+ε

nT
f (s)ds = n

∫ T

0
f (s)ds+

∫ ε

0
f (s)ds.

Dividing by t = nT + ε and taking the limit n → ∞, we have

lim
t→∞

1
t

∫ t

0
f (s)ds =

1
T

∫ T

0
f (s)ds.

This completes the proof. �

Returning to Eq. (11.10), we see that

y(t) = y(0)e

⎛
⎝1

t

∫ t

0

(
βd(s)

Λd

μd
− (μd +νd)

)
ds

⎞
⎠ t

≈ y(0)e
(<βd>

Λd
μd

−(μd+νd))t

(11.11)

for t large enough. The expression on the right-hand side goes to ±∞ if and only if

< βd >
Λd

μd
− (μd +νd)> 0.

That prompts us to define the following reproduction number:

R0 =
< βd > Λd

μd(μd +νd)
. (11.12)

We note that βd(t) is periodic with period 365 days. Hence T = 365. Clearly, we
have the following traditional result:

Proposition 11.2. If R0 < 1, then y(t) → 0, and the disease-free equilibrium is
locally asymptotically stable. If R0 > 1, then |y(t)| → ∞, and the disease-free equi-
librium is unstable.

Furthermore, we can show that the disease-free equilibrium is globally stable.
Indeed, we have the following result.

Proposition 11.3. If R0 < 1, then Id(t)→ 0 as t → ∞.

Proof. Adding the two equations, we have N′
d(t) = Λd − μdNd − νdId , where

Nd = Sd + Id. This implies that N′
d(t) ≤ Λd − μdNd . We have shown before that in

this case, limsupt Nd(t)≤ Λd
μd

. Given ε > 0 such that
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R0(ε) =
< βd >

(
Λd
μd

+ ε
)

μd +νd
< 1,

there exists t0 such that for every t > t0, we have Nd(t) <
Λd
μd

+ ε . Since βd(t) is

periodic, we can take t0 = nT and move the dynamical system so that Nd(t)<
Λd
μd

+ε
is valid for all t > 0. Considering the equation for Id , we have

I′d(t)≤ [β (t)
(

Λd

μd
+ ε
)
− (μd +νd)]Id(t).

Solving this linear inequality, we have

Id(t)≤ Id(0)e

∫ t

0
[β (s)

(
Λd

μd
+ ε
)
− (μd +νd)]ds

.

Thus, if R0(ε)< 1, we have Id(t)→ 0 as t → ∞. �


11.3.4 The Nonautonomous Avian Influenza Model with νd = 0

The nonautonomous model (11.4) is very simple but capable of very complex
behavior. To remove some of that complexity, in this subsection we analyze the
model with νd = 0. In this special case, the model can be reduced from a system of
two equations to a single equation. In particular, we consider the system

Domestic Birds:
{

S′d(t) = Λd −βd(t)SdId − μdSd,
I′d(t) = βd(t)SdId − μdId .

(11.13)

Adding the two equations, we obtain the equation of the total population size:

N′
d(t) = Λd − μdNd .

We know that the solution satisfies Nd(t) → Λd
μd

. Let us assume for simplicity that

Sd(0)+ Id(0) =
Λd
μd

. Then Nd(t) =
Λd
μd

for all t. In this case,

Sd(t) =
Λd

μd
− Id(t).

From the second equation in (11.13) we obtain the following single equation in Id :

I′d(t) = βd(t)(Nd − Id(t))Id(t)− μdId(t), (11.14)
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where to simplify notation, we have set Nd = Λd
μd

. It can be shown as before that the
reproduction number of this model is (see Problem 11.3)

R0 =
< βd > Λd

μ2
d

,

and the disease-free equilibrium is E0 =(0). Equation (11.14) is a periodic Bernoulli
equation [151] and has been studied before.

The main result for that equation is that it has a unique periodic solution ξ (t)
if R0 > 1. This periodic solution is globally asymptotically stable. We state these
results in the following theorems:

Theorem 11.2. Let βd(t) be periodic of period T . Assume also R0 > 1. Then equa-
tion (11.14) has a unique periodic solution ξ (t).
Proof. We consider Eq. (11.14) on the domain Ω = {Id : Id ∈ [0,Nd ]}. To show the
existence of a periodic solution, we use the Poincaré map P . The Poincaré map
P maps the interval [0,Nd ] into itself. The Poincaré map is defined as follows. Let
Id(0) = I0. Then

P(I0) = Id(T, I0),

where Id(t, I0) is the solution of Eq. (11.14) that starts at I0. In other words, P
corresponds to the initial value I0, the value of the solution at time t = T . Because of
the properties of solutions to ODEs, the Poincaré map is one-to-one. Furthermore,
it can be shown that it is continuously differentiable. It is not hard to show that
P(0) = 0 and P(Nd)< Nd . The number Ip ∈ [0,Nd ] is an initial value of a periodic
solution if and only if P(Ip) = Ip, that is, if and only if Ip is a fixed point of the
Poincaré map. Therefore, in order to show existence of a positive periodic solution
of Eq. (11.14), we have to show that the Poincaré map has a fixed point. Define

v(t) =
∂ Id

∂ I0
(t, I0).

Then the derivative of the Poincaré map is given as follows:

P ′(I0) =
∂ Id

∂ I0
(T, I0) = v(T ).

To obtain the derivative of the Poincaré map, we differentiate equation (11.14) with
respect to I0. In this case, we obtain a differential equation in v:

v′(t) = v(t)[βd(t)(Nd − Id(t, I0))− μd −βd(t)Id(t, I0)]. (11.15)

Differentiating the initial condition Id(0) = I0 with respect to I0, we obtain that
v(0) = 1. The differential equation for v can be solved, which gives the following
expression for the derivative of the Poincaré map:

P ′(I0) = e
∫ T

0 [βd(t)(Nd−Id(t,I0))−μd−βd(t)Id (t,I0)]dt .
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Clearly P ′(I0)> 0, and hence the Poincaré map is increasing. Thus, if I1 and I2 are
two initial conditions satisfying I1 < I2, then we have P(I1)<P(I2). Furthermore,

P ′(0) = eT (<βd>Nd−μd).

Since R0 > 1, this means that the exponent is positive. Therefore,P ′(0)> 1. Hence
for I0 small enough,

P(I0)−P(0)
I0

≈P ′(0)> 1.

That implies that for I0 small enough, P(I0)> I0. Since, P(Nd) < Nd , this means
that the function P(I0)− I0 changes sign in the interval (0,Nd). Hence, there must
exist Ip such that it becomes zero, that is, P(Ip) = Ip.

To show uniqueness, we assume there are two distinct periodic solutions Ip1 and
Ip2 . Without loss of generality, we may assume Ip1 < Ip2 . First, we note that if Ip is
a periodic solution that satisfies model (11.14), then (see Problem 11.5)

∫ T

0
[βd(t)(Nd − Id(t, Ip))− μd]dt = 0. (11.16)

Second, for Ip1 and Ip2 , we have

|Ip1 − Ip2 |= |P(Ip1)−P(Ip2)|= |P ′(Im)||Ip1 − Ip2|, (11.17)

where Im satisfies Ip1 < Im < Ip2 . Furthermore, we have

P ′(Im) =e
∫ T

0 [βd(t)(Nd−Id(t,Im))−μd−βd(t)I(t,Im)]dt

< e
∫ T

0 [βd(t)(Nd−Id(t,Ip1 ))−μd−βd(t)Id (t,Im)]dt

< e−
∫ T

0 [βd(t)Id (t,Im)]dt < 1. (11.18)

Thus, we obtain a contradiction with (11.17). The contradiction is a result of the
assumption that we have two distinct positive periodic solutions. �

Theorem 11.3. Let βd(t) be periodic of period T . Assume also R0 > 1. Then the
unique periodic solution ξ (t) of Eq. (11.14) is globally stable, that is, if Id(t, I0) is
any solution starting from Id(0) = I0, then

lim
t→∞

|Id(t, I0)− ξ (t)|= 0. (11.19)

Proof. To complete the proof of the theorem, we have to establish the convergence
to the periodic solution. We again assume R0 > 1, and we consider the solutions
of Eq. (11.14). Let Id(t) be an arbitrary solution starting from the initial condition
Id(0) = I0. We recall that Ip is the initial condition for the periodic solution. We
assume that Ip �= I0. We have two choices, P(I0)> I0 and P(I0)< I0. We assume
P(I0) < I0. The other case can be addressed in a similar way. Since the Poincaré
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map is increasing, we have Pn(I0) < Pn−1(I0). Hence the sequence Pn(I0) is a
decreasing sequence. Since it is bounded from below, it must converge to a limit:

lim
n→∞

Pn(I0) = I∞.

It is not hard to see that the number I∞ is a fixed point of the Poincaré map P(I∞) =
I∞. But the Poincaré map of model (11.14) has only two fixed points, I∞ = 0 and
I∞ = Ip. Assume that I∞ = 0. Then for some N, the number PN(I0) is small enough
that from the properties of the Poincaré map, we have PN+1(I0)>PN(I0), which
contradicts the fact that the sequence is decreasing. Therefore, I∞ = Ip. Conse-
quently, the limit (11.19) holds. This completes the proof of the theorem. �


11.3.5 The Full Nonautonomous Avian Influenza Model

The nonautonomous model with νd �= 0 is a two-dimensional system and cannot be
reduced to a single equation. Unlike autonomous two-dimensional models, which
can exhibit only oscillations, two-dimensional nonautonomous models are capable
of exhibiting chaotic behavior. This is the case with model (11.4). For small νd ,
the unique oscillatory solution is still stable, but as νd increases, period-doubling
occurs, and the solution transitions to a chaotic solution. This can be seen in the
bifurcation diagram in Fig. 11.5.

The chaotic solution exhibits the pattern typical for H5N1 outbreak. We show
this in Fig. 11.6

Acknowledgements The author thanks Necibe Tuncer for help with fittings.

Appendix

In this appendix, we include Matlab code that fits model (11.1)–(11.2) to the data in
Table 11.1.

1 function Ch11fitting_model1
2

3 clear all
4 close all
5 clc
6

7 load AFluDatCumHalf14.txt %Imports the data file
8

9 tdata = AFluDatCumHalf14(:,1);
10 qdata = AFluDatCumHalf14(:,2);
11
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0.26 0.28 0.30 0.32 0.34 0.36
0

20

40

60

80

nd

I d

Fig. 11.5 Period-doubling and transition to chaos as νd increases. Parameters for the Figure are
ΛD = 1020, μd = 1/(2∗356), κ1 = 0.00005111486, κ2 = 0.00032621758, ω = 127
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Fig. 11.6 Chaotic solution exhibits outbreak pattern. Parameters as in Fig. 11.5. In addition,
νd = 0.35
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12 tforward = (0:0.01:9)';
13 tmeasure = [1:50:901]';
14

15 format long
16

17 function dy = model_1(t,y,k)
18

19 Lb = 1200;
20 L = 1000;
21 mb = 1/2;
22 nb = 36.5;
23 mu = 1/65;
24 nu = 36.5;
25

26 dy = zeros(5,1);
27

28 dy(1) = Lb -k(1)*y(1)*y(2)-mb*y(1);
29 dy(2) = k(1)*y(1)*y(2)-(nb+mb)*y(2);
30 dy(3) = L - k(2)*y(3)*y(2)-mu*y(3);
31 dy(4) = k(2)*y(3)*y(2)-(mu+nu)*y(4);
32 dy(5) = k(2)*y(3)*y(2);
33

34 end
35

36 function q = model1(k,tdata)
37

38 [T,Y] = ode23s(@(t,y)(model_1(t,y,k)),tforward,
39 [2400 k(3) 65000 0.0007 ...

.0007]);
40

41 q = Y(tmeasure(:),5);
42

43 end
44

45 k = [0.0158 0.00000001063 0.9]; % Initial values for ...
parameters

46

47 lb = [0.0 0.0 0.0];
48

49

50

51 for i = 1:5
52

53 [k,resnorm] = lsqcurvefit(@model1,k,tdata,qdata,lb,[],...
54 optimset('Disp','iter','TolX',10ˆ(-20),'TolFun',10ˆ(-20)))
55 end
56

57

58 [T,Y] = ode15s(@(t,y)(model_1(t,y,k)),tforward,[2400 ...
59 k(3) 65000 .0007 .0007]);
60

61

62

63 figure(1)



11.3 Seasonality in Avian Influenza Modeling 299

64

65 plot(tdata,qdata,'r.');
66 hold on
67 plot(tforward,Y(:,5),'b-');
68

69

70 end
71

72 end

Problems

11.1. For model (11.1)–(11.2), obtain a list of the countries that have human cases
from the main source of data [166]. Use [58] to obtain the number of poultry units
for these countries. Use [167] to determine the human population of the affected
countries. Parameterize model (11.1)–(11.2) with these data.

11.2. Consider the AI model with pandemic strain [80]

Domestic Birds:
{

S′d(t) =Λd −βdSdId − μdSd ,
I′d(t) = βbSdId − (μd +νd)Id .

(11.20)

The spillover model for humans with pandemic strain takes the form

Humans:

⎧⎨
⎩

S′(t) = Λ −β SId −βZSZ− μS,
I′(t) = β SId − (μ +ν +ρ)I,
Z′(t) = ρI+βZSZ− (μ +νZ)Z.

(11.21)

where Z is the number of individuals infected by the pandemic strain.

(a) Compute the reproduction numbers of the avian and the pandemic strains.
(b) Fit the model to the data in Table 11.1. Take νz = 36.5. Estimate the reproduction

numbers from the fit. The reproduction number of the pandemic strain should
be between 1.5 and 3.

(c) Compute the invasion number of the pandemic strain.
(d) Compute the elasticity of the pandemic invasion number with respect to I∗d .

Culling facilitates invasion, but how pronounced is that effect?

11.3. Consider the reproduction number

R0 =
< βd > Λd

μ2
d

.

Using the periodicity properties of sin, simplify it as much as possible.
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11.4. Show that model (11.14) has as a reproduction number

R0 =
< βd > Λd

μ2
d

.

11.5. Prove equality (11.16).

11.6. Let β (t), μ(t), and γ(t) be periodic with period T . Consider the model

I′(t) = β (t)(1− I(t))I(t)− (μ(t)+ γ(t))I(t).

(a) Compute the reproduction number of this model.
(b) Show that R0 computed in (a) gives a threshold, that is, the DFE is locally

asymptotically stable if R0 < 1 and unstable if R0 > 1.
(c) Sow that the DFE is globally asymptotically stable if R0 < 1.

11.7. Let β (t), μ(t), and γ(t) be periodic with period T . Consider the model (see
Problem 11.6)

I′(t) = β (t)(1− I(t))I(t)− (μ(t)+ γ(t))I(t).

(a) Show that the model has a unique periodic solution if R0 > 1.
(b) Show that the periodic solution is globally asymptotically stable.

11.8. Let β (t), μ(t), and γ(t) be periodic with period T . Consider the two-strain
model

I′1(t) = β1(t)(1− I1(t)− I2(t))I1(t)− (μ1(t)+ γ1(t))I1(t),
I′2(t) = β2(t)(1− I1(t)− I2(t))I2(t)− (μ2(t)+ γ2(t))I2(t).

(11.22)

(a) Define the reproduction number of each strain.
(b) Let ξ1(t) and ξ2(t) be the periodic solutions of strain one alone and strain two

alone. Define the invasion numbers of strain one and strain two.

Hint: You have to look at the stability of the solution (ξ1(t),0). Define the Floquet
exponent for strain two and read off the invasion number.



Chapter 12
Age-Structured Epidemic Models

12.1 Introduction

Chronological age is perhaps one of the most important factors distinguishing
individuals in a population that needs to be incorporated in population and epidemic
models. Undoubtedly, vital characteristics such as birth and death rates differ
markedly among the individuals of various ages. Age is also a key to capturing
important mixing patterns in epidemic models. For instance, in childhood diseases,
children predominantly mix with other children in similar age groups as well as
with the individuals of the age groups of their parents and grandparents. Children
are at greatest risk for contracting malaria and exhibiting strongest symptoms and
highest death rate, yet malaria affects all age groups. Incidence of HIV is highest in
the age groups from age twenty to age forty-five. Endemic models that incorporate
births and deaths should also preferably incorporate age structure, since with time,
the age profile of the population may change, and that may affect the dynamics of
the disease.

Age-structured epidemic models are built on the basis of age-structured popula-
tion models. There are several excellent introductory texts for age-structured pop-
ulation models [78, 46]. For completeness, we will introduce here first the linear
age-structured population model. Most epidemic models use the linear model as a
baseline population model.

12.2 Linear Age-Structured Population Model

The Malthusian model, which is also linear, considers a homogeneous population
in which individuals are not distinguished by age [104]. The linear age-structured
model is a strict analogue of the Malthusian model but allows for variability in age.
As in the Malthusian model, the age-structured model considers a single popula-
tion, not stratified by sex, which is isolated (no emigration and immigration) and

© Springer Science+Business Media New York 2015
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lives in an invariant habitat, that is, the birth and death rates can be assumed time-
independent. The only characteristics by which individuals in the population differ
is age.

Models that structure the population by age can be continuous or discrete. In this
chapter, we will consider the continuous age-structured model. Because age and
time are considered two independent variables, the resulting continuous models
are cast as partial differential equation models. It was the physician A.G. McK-
endrick who first considered an age-structured PDE model for the dynamics of a
one-sex population [115]. Earlier age-structured models were developed by Sharpe
and Lotka [144, 3] but they were formulated as integral equations of Volterra
type. We will first introduce McKendrick’s age-structured PDE model, and then
derive Lotka’s model.

12.2.1 Derivation of the Age-Structured Model

McKendrick model introduces two independent variables: age a and time t. The
distribution of the female population can be described by a function u(a, t) that
denotes the age-density of individuals at age a at time t. We assume a∈ [0,a†], t ≥ 0,
where a† denotes the maximal age, which may be assumed infinite. If a† = ∞, then
we assume that u(a, t) = 0 for all sufficiently large values of a. The function gives
“density” rather than numbers, because the number of individuals of ages between
a and a+ΔA, where Δa is a small increment, at time t is approximately u(a, t)Δa.
Thus, the total number of individuals of ages in the interval [a1,a2] at time t is given
by the integral ∫ a2

a1

u(a, t)da.

Respectively, the total number of individuals in the population or the total popula-
tion size at time t is given by

P(t) =
∫ a†

0
u(a, t)da.

Consider a cohort of individuals, that is, a group of individuals of age in an in-
terval of length Δa. The number of individuals in that cohort is u(a, t)Δa. If a
small interval of time Δ t elapses, then those individuals who where of age a at
time t will be of age a+Δ t, and time is t +Δ t. The number of these individuals is
u(a+Δ t, t+Δ t)Δa. This is the same cohort. Their new number, however, is smaller
than their original number, since some of these individuals will have died. We as-
sume that the members of the population leave the population only by death. We
denote the age-specific per capita mortality rate by μ(a). Then the number of indi-
viduals that die at age [a,a+Δa] at time t is μ(a)u(a, t)Δa. For the whole interval
of time Δ t, that number would be μ(a)u(a, t)ΔaΔ t. The balance law can be written
as
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u(a+Δ t, t+Δ t)Δa− u(a, t)Δa=−μ(a)Δ tu(a, t)Δa. (12.1)
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Fig. 12.1 Data on age-specific probability of survival in the United States in 2007. The data are
taken from the life tables in the U.S. Vital Statistics Reports [15]. Data are interpolated to show the
continuous curve

Dividing both sides by ΔaΔ t, we obtain a difference quotient on the left-hand side:

u(a+Δ t, t+Δ t)− u(a, t)
Δ t

=−μ(a)u(a, t). (12.2)

We take the limit as t → 0. If u(a, t) is a differentiable function with respect to each
variable, we have

lim
Δ t→0

u(a+Δ t, t +Δ t)− u(a, t)
Δ t

= lim
Δ t→0

u(a+Δ t, t +Δ t)− u(a, t+Δ t)
Δ t

+ lim
Δ t→0

u(a, t +Δ t)− u(a, t)
Δ t

= ua(a, t)+ ut(a, t). (12.3)

We obtain McKendrick’s equation, also referred to as the McKendrick–von Foerster
equation, since it was later derived by von Foerster (1959) in the context of cell
biology [63]:

ua(a, t)+ ut(a, t) =−μ(a)u(a, t). (12.4)

The mortality rate is connected to the probability of survival (Fig. 12.1). Let π(a)
be the probability of survival from birth to age a. Suppose we start from a cohort
of newborns of size P. Then π(a)P gives the number of individuals from the cohort
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who are of age a. Similarly, π(a+Δa)P gives the number of individuals from the
cohort who are of age a+Δa. Then π(a+Δa)P−π(a)P is the number of individ-
uals who have died in the age interval Δa. We have

π(a+Δa)P−π(a)P =−μ(a)π(a)PΔa.

Canceling P and dividing by Δa, we have

π(a+Δa)−π(a)
Δa

=−μ(a)π(a).

Taking the limit as Δa → 0 and assuming that the probability of survival π(a)
is a differentiable function, we obtain the following ordinary differential equation
for π(a):
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Fig. 12.2 Data on age-specific mortality in the United States in 2007. The data are taken from life
tables of the the U.S. Vital Statistics Reports [15] as explained in the text. The age-specific function

fitted to the data is μ(a) =
0.748123a
(110−a)2

π ′(a) =−μ(a)π(a).

Since π(0) is the probability of survival until age 0, we may assume that π(0) = 1.
Solving the initial value problem, we have the following constitutive form for the
probability of survival until age a:

π(a) = e−
∫ a

0 μ(s)ds.

We further assume that the probability of survival until age a1 is independent of the
probability of survival until age a2. If a2 > a1, we have
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π(a2) = π(a1)e
−∫ a2

a1 μ(s)ds. (12.5)

Thus, e−
∫ a2

a1 μ(s)ds is the probability that an individual will survive from age a1 to age
a2. Age-dependent mortality μ(a) can be found in the national vital statistics files
[121], but it is advisable that it be estimated from the life tables and the probability
of survival. From the formula (12.5), we have

∫ a2

a1

μ(s)ds = ln

(
π(a1)

π(a2)

)
.

Hence approximately [12],

μ(a1) =
1

a2 − a1
ln

(
π(a1)

π(a2)

)
.

Computing the discrete values of μ(a), we may obtain a typical form of the age-
specific mortality function. The age-specific mortality data for the United States in
2007 and a function μ(a) that fits them are given in Fig. 12.2.

Remark 12.1. If a† < ∞, then we must have

lim
a→a†

π(a) = 0,

which means that no one survives until the maximal age. That, in turn, implies that

lim
a→a†

μ(a) = ∞.

Equation (12.4) is a first-order linear partial differential equation. It is defined on
the domain

D = {(a, t) : a ≥ 0, t ≥ 0},
that is, in the first quadrant. We will need conditions on the boundary of the domain
to complete the model. In particular, we need to specify the age density for the initial
population distribution at time t = 0:

u(a,0) = u0(a),

where u0(a) is a given function. The function u0(a) is called the initial population
density. It is assumed that u0(a)≥ 0. Furthermore,

P0 =

∫ a†

0
u0(a)da < ∞,

where P0 is the initial total population size.
The value u(0, t) is the number of newborns at time t. To model the birth pro-

cess, we introduce the age-specific per capita birth rate β (a). Since there are
u(a, t)Δa females in the population with ages in the interval [a,a+Δa], it follows
that β (a)u(a, t)Δa gives the number of births to females of age [a,a+Δa] at time t.
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Therefore, the total number of births at time t is the sum of all births at all ages:
∑i β (ai)u(ai, t)Δa. Taking the limit as Δa → 0, we obtain an integral in place of the
sum. Thus, the total birth rate is given by

B(t) =
∫ a†

0
β (a)u(a, t)da,

which also gives the total number of newborns at time t. That is, we have

u(0, t) =
∫ a†

0
β (a)u(a, t)da.

Data on fertility for the United States in 2010 and a typical form of birth rate are
given in Fig. 12.3.

The full McKendrick–von Foerster age-structured population model takes the
form ⎧⎪⎨

⎪⎩
ua(a, t)+ ut(a, t) =−μ(a)u(a, t),
u(0, t) =

∫ a†

0
β (a)u(a, t)da,

u(a,0) = u0(a).

(12.6)

The condition specified on the boundary a = 0, that is, u(0, t), is called a boundary
condition. Since the boundary condition is not specified through a given function
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Fig. 12.3 Data on age-specific fertility rate in the United States in 2010. The data are taken from
the U.S. Vital Statistics Reports [70]. The age-specific function fitted to the data is β (a) = 8.151∗
10−7(a−4.48268)10e−0.459a

but through an equation that depends on the entire unknown function u(a, t), this
boundary condition is referred to as a nonlocal boundary condition. The condition
giving a value to u(a,0) is called an initial condition.
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12.2.2 Reformulation of the Model Through the Method
of the Characteristics. The Renewal Equation

Model (12.6) can be recast in an integral equation form, a form first derived by
Sharpe and Lotka [3, 144]. To obtain the integral equation form, we must inte-
grate the partial differential equation in model (12.6). That can be done through the
method of characteristics. The method of characteristics typically applies to first-
order hyperbolic partial differential equations. The method identifies curves, called
characteristics, along which the partial differential equation reduces to an ordinary
differential equation. Then the ordinary differential equation can be integrated from
some initial data given on a suitable curve. Finally, the solution of the ordinary dif-
ferential equation can be transformed into a solution for the original PDE.

An important step in the method of characteristics is identifying the character-
istics of the PDE. This is relatively simple for almost linear PDEs. For an almost
linear PDE of the form

c1(x,y)
∂u
∂x

+ c2(x,y)
∂u
∂y

= c0(x,y,u)

in parameterized form, the characteristics are given by

dx
ds

= c1(x,y),

dy
ds

= c2(x,y). (12.7)

Therefore, in our case we have

da
ds

= 1,
dt
ds

= 1.

Dividing the one of the equations by the other, we have dt/da = 1. Hence t = a+c,
where c is an arbitrary constant. This implies that the characteristics are lines of
slope 1, called characteristic lines of the PDE. What is the practical significance
of the characteristic lines? The value of u(a, t) along the characteristic lines models
one cohort of individuals. Thus the value of u(a, t) is determined by previous values
of u(a, t) along the characteristics, and in particular by the value of u where the
characteristic line crosses the boundary of D .

The integral formulation can be derived from the partial differential equation
through a rigorous procedure, called integration along the characteristic lines.
To apply the procedure, we fix a point (a0, t0) in the first quadrant. We parameterize
the characteristic line that goes through that point. If we denote by s the parameter
for the fixed point (a0, t0) and a variable s, then u(a0 + s, t0 + s) gives the value of
u along the characteristic line. Define v(s) = u(a0 + s, t0 + s). Then the derivative
along the characteristic line can be written as
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dv
ds

= ua + ut .

We let also μ̄(s) = μ(a0 + s). Then the partial differential equation in model (12.6)
can be written as the following ordinary differential equation along the characteristic
line:

dv
ds

=−μ̄(s)v(s).

This ODE can easily be solved to give

v(s) = v(0)e−
∫ s

0 μ̄(τ)dτ . (12.8)

Now we have to interpret this solution in terms of u and two variables a and t.
We consider two cases:

1. a0 ≥ t0. The solution (12.8) gives, in the original variables,

u(a0 + s, t0 + s) = u(a0, t0)e
−∫ s

0 μ(a0+τ)dτ . (12.9)

Now we specify our original point to have been fixed on one of the boundaries.
Since we are in the case a0 ≥ t0, we must take t0 = 0. Then s = t and a0 = a− t.
The choice of s and a0 is made in such a way that a0 + s = a and t0 + s = t. With
these specifications, from (12.9) we obtain the solution in the case a0 ≥ t0, that
is, the solution when a ≥ t:

u(a, t) = u(a− t,0)e−
∫ t
0 μ(a−t+τ)dτ ,

= u(a− t,0)e−
∫ a
a−t μ(σ)dσ ,

= u0(a− t)
π(a)

π(a− t)
. (12.10)

2. a0 < t0. Again
u(a0 + s, t0 + s) = u(a0, t0)e

−∫ s
0 μ(a0+τ)dτ . (12.11)

Now we set a0 = 0. Then s = a, t0 = t − a. Substituting above, we get for a < t,

u(a, t) = u(0, t − a)e−
∫ a

0 μ(τ)dτ = B(t − a)π(a).

So finally, the solution of the PDE can be written in the form

u(a, t) =

⎧⎨
⎩

u0(a− t)
π(a)

π(a− t)
a ≥ t,

B(t − a)π(a) a < t.
(12.12)

This would have been an explicit solution of the partial differential equation if
B(t) were a given function. However, B(t) depends on u(a, t). Thus, this represen-
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tation is another equation for u(a, t). This representation is not easy to work with,
since it is an equation for a function of two variables. It is customary to rewrite this
representation in the form of an equation for the function B(t). To do that, we sub-
stitute the expression for u(a, t) from (12.12) into the formula for B(t). We have two
cases:

Case a† < ∞: In this case, we have

B(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ t

0
β (a)π(a)B(t − a)da+

∫ a†

t
β (a)

π(a)
π(a− t)

u0(a− t)da

t ≤ a†,∫ a†

0
β (a)π(a)B(t − a)da t > a†.

(12.13)

Case a† = ∞: In this case, we have only t < ∞. Therefore, we have the following
equation for B(t):

B(t) =
∫ t

0
β (a)π(a)B(t − a)da+F(t), (12.14)

where F(t) is a given function:

F(t) =
∫ ∞

t
β (a)

π(a)
π(a− t)

u0(a− t)da=
∫ ∞

0
β (a+ t)

π(a+ t)
π(a)

u0(a)da.

Equation (12.14) is a linear Volterra integral equation of convolution type with ker-
nel K(a) = β (a)π(a). The function K(a) is sometimes referred to as a maternity
function [78]. Equation (12.14) is called the renewal equation or Lotka equation.
If we can solve (12.14) and determine B(t) from it, then we can obtain u(a, t) from
(12.12).

12.2.3 Separable Solutions. Asymptotic Behavior

The McKendrick–von Foerster model (12.6) is a linear model. Thus its solutions
are not necessarily bounded but grow or decay to zero nearly exponentially in time.
It can be shown that all solutions approach in time a separable solution. Separable
solutions for partial differential equation are solutions that can be written as a prod-
uct of two functions: a function of age and a function of time, that is, the solution
can be written in the form u(a, t) = T (t)φ(a). It can be shown (see Problem 12.4)
that the time-dependent function T (t) is actually an exponential function. Hence,
the separable solutions of the model (12.6) are of the form

u(a, t) = eλ tφ(a).
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To find the separable solutions, we have to find the number λ and the function
φ(a). To find λ and φ(a), we substitute in the differential equation of model (12.6).
Therefore, we have

eλ tφ ′(a)+λ eλ tφ(a) =−μ(a)eλ tφ(a),

where the prime denotes a derivative with respect to a. After canceling eλ t , we
obtain the differential equation for the function φ(a):

φ ′(a)+λ φ(a) =−μ(a)φ(a).

This is a first-order linear ordinary differential equation, which can be explicitly
solved. The solution is given by

φ(a) = φ0e−λ aπ(a),

where the constant φ0 = φ(0) is unknown and will be specified later. Hence, we
have the following form for the solution u(a, t):

u(a, t) = φ0eλ te−λ aπ(a).

We seek to satisfy the boundary condition in model (12.6):

φ0eλ t = φ0eλ t
∫ a†

0
β (a)e−λ aπ(a)da.

Therefore, λ should be identified in such a way that the equation below is satisfied.

The characteristic equation of the McKendrick–von Foerster model is
∫ a†

0
β (a)e−λ aπ(a)da = 1. (12.15)

This is a transcendental equation, and it can have multiple solutions for λ that
are real and complex. It turns out that the Eq. (12.15) has a unique real solution if
β (a) is positive on some positive interval:

Lemma 12.1. Assume β (a) ≥ β̂ > 0 for a ∈ [a1,a2]. Then there is a unique real
solution λ ∗ such that Eq. (12.15) holds.

The unique real solution λ ∗ of Eq. (12.15) gives the growth rate of the population for
the age-structured model (12.6). It is similar to the population growth rate derived
from the Malthusian model.

Definition 12.1. The parameter λ ∗ is called a Malthusian parameter or growth rate
of the population.
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Proof. Define

f (λ ) =
∫ a†

0
β (a)e−λ aπ(a)da.

Because β (a) � β̂ > 0 on a nonzero interval, it follows that f (λ ) is a strictly de-
creasing function of λ . The function f (λ ) may not be defined for all values of λ ,
particularly if a† = ∞. Assume that f (λ ) is defined and continuous on the interval
(−L,∞). We have

lim
λ→−L

f (λ ) = ∞ lim
λ→∞

f (λ ) = 0.

Hence, there is a unique real value λ ∗ that satisfies f (λ ∗) = 1. �


The net reproduction rate of the population is defined as

R =

∫ a†

0
β (a)π(a)da.

The following relationship between the net reproduction rate and the growth rate
of the population exists:

R > 1 ⇐⇒ λ ∗ > 0,

R = 1 ⇐⇒ λ ∗ = 0,

R < 1 ⇐⇒ λ ∗ < 0, (12.16)

where R gives the number of progeny that one female in the population produces
during her lifespan. If R > 1, that is, one individual produces more than one indi-
vidual, we have λ ∗ > 0, and the population is growing.

Finally, we can identify φ0 from the initial condition. Recall that P0 =
∫ a†

0 u0(a)da
and u(a,0) = u0(a). On the other hand, u(a, t) = φ0eλ ∗t e−λ ∗aπ(a). Therefore,

∫ a†

0
u0(a)da = φ0

∫ a†

0
e−λ ∗aπ(a)da.

Hence,

φ0 =

∫ a†
0 u0(a)da∫ a†

0 e−λ ∗aπ(a)da
. (12.17)

In the following example, we compute λ ∗.

Example 12.1. Suppose

β (a) = β̄ ae−ca,

μ(a) = μ , (12.18)
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where β̄ , c, and μ are given constants. Take a† = ∞. Compute the growth rate of the
population λ ∗ and the net reproduction rate R.

Solution: The growth rate λ ∗ is a solution to the following equation:
∫ ∞

0
β (a)e−μae−λ ada = 1.

Replacing β (a), we have

β̄
∫ ∞

0
ae−cae−μae−λ ada = 1.

Collecting terms, we obtain

β̄
∫ ∞

0
ae−(c+μ+λ )ada = 1.

Computing the integral (think under what conditions this is possible), we have

β̄
(λ + μ + c)2 = 1. (12.19)

The function

f (λ ) =
β̄

(λ + μ + c)2

is defined and continuous on the interval (−(μ + c),∞). Thus L = μ + c. Further-
more, we have

lim
λ→∞

f (λ ) = 0 lim
λ→−(μ+c)

f (λ ) = ∞.

Then there is a unique real solution in the interval (−(μ+c),∞). Solving Eq. (12.19),
we obtain

λ ∗ =
√

β − (μ + c).

Define

R = f (0) =
β̄

(μ + c)2 .

From the expressions for R and λ ∗, we can see that R > 1 if and only if λ ∗ > 0.

12.3 Age-Structured SIS Epidemic Models

Age-structured epidemic models are often formulated around the basic linear
McKendrick–von Foerster model. Because the total population in that model has
three modes of change, exponential growth, exponential decay, and constant, we
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have to be careful in incorporating disease dynamics. The mass action incidence is
intrinsically nonlinear and suggests that the model should exhibit convergence to an
equilibrium. For consistency, we take the total population size to be constant. This
means that we take the age-specific birth and death rate in such a way that R = 1 or
the growth rate of the population is zero. In particular, this assumption leads to the
condition ∫ a†

0
β (a)π(a)da = 1. (12.20)

That is an appropriate assumption for age-dependent models with no disease-
induced mortality.

12.3.1 Introduction of the SIR Age-Structured Epidemic Model

We begin with one of the simplest age-structured epidemic models, the SIR model.
Because chronological age is a heterogeneity characteristic of all individuals in the
population, all epidemic classes have to be structured by age. Hence, s(a, t) denotes
the density of susceptible individuals of age a at time t, and i(a, t) denotes the
density of infected/infectious individuals of age a at time t, and r(a, t) denotes the
density of recovered individuals of age a at time t. The age-dependent density of the
total population u(a, t) is given by

u(a, t) = s(a, t)+ i(a, t)+ r(a, t).

As before, the densities of the susceptible and infective individuals imply that
s(a, t)Δa denotes the number of susceptible individuals of age in the interval
[a,a+Δa] at time t, and i(a, t)Δa denotes the number of infected individuals of
age in the interval [a,a+Δa] at time t, and similarly for r. Hence, the total numbers
of susceptible, infective, and recovered individuals are

S(t) =
∫ a†

0
s(a, t)da, I(t) =

∫ a†

0
i(a, t)da, R(t) =

∫ a†

0
r(a, t)da.

The total population size is defined as

P(t) = S(t)+ I(t)+R(t)=
∫ a†

0
u(a, t)da.

The change of each epidemic class is given in the same way as the change of the
total population density u(a, t) in the McKendrick–von Foerster equation, that is, as
a sum of the age derivative and the time derivative: The right-hand side of an age-
structured epidemic model is similar to the right-hand side of the corresponding
ODE epidemic model, but all rates are age-dependent, and recruitment is incorpo-
rated as a boundary condition at age zero. Following these guidelines, we can write
the age-specific SIS epidemic model as
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sa + st = −λ (a, t)s(a, t)− μ(a)s(a, t),
ia + it = λ (a, t)s(a, t)− (μ(a)+ γ(a))i(a, t),
ra + rt = γ(a)i(a, t)− μ(a)r(a, t), (12.21)

where λ (a, t) is the age-specific force of infection, which depends on the infected
individuals, μ(a) is the age-specific natural mortality rate, and γ(a) is the recovery
rate.

The general form of the force of infection is given by the expression

λ (a, t) = ρ(a)i(a, t)+
∫ a†

0
k(a,τ)i(τ, t)dτ. (12.22)

Several special cases of the force of infection have been considered in the literature.
The intracohort mixing case assumes that individuals of a certain age infect individ-
uals of the same age only. It is obtained from the above formula with k(a,τ) = 0. In
this case,

λ (a, t) = ρ(a)i(a, t).

Purely intracohort mixing may be appropriate for some childhood diseases. Purely
intercohort mixing occurs when the mixing occurs among all age classes. It is ob-
tained from the formula above with the assumption that ρ(a) = 0. In this case, the
force of infection is given by the formula

λ (a, t) =
∫ a†

0
k(a,τ)i(τ, t)dτ.

In this general case, the mixing kernel k(a,τ), which gives the rate of transmission
between a susceptible of age a and infective of age τ , does not allow for the com-
putation of an explicit reproduction number. Hence, often in practice, it is assumed
that the mixing kernel is of separable form, that is, that it can be written as

k(a,τ) = k1(a)k2(τ).

Like the model for the total population size, the age-structured epidemic model
(12.21) is also defined in the first quadrant, and initial and boundary conditions
should be specified for the given model to be completely defined. The boundary
conditions are specified at age a = 0. We may assume that all newborns are suscep-
tible, in which case we specify

s(0, t) =
∫ a†

0
β (a)u(a, t)da,

i(0, t) = 0,

r(0, t) = 0, (12.23)

where β (a) is the age-specific birth rate. On the other hand, we may assume that
some of the newborns are born infected, that is, that the disease exhibits vertical
transmission, in which case we specify
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s(0, t) =
∫ a†

0
β (a)[s(a, t)+ r(a, t)+ (1− q)i(a, t)]da,

i(0, t) = q
∫ a†

0
β (a)i(a, t)da,

r(0, t) = 0, (12.24)

where 0 ≤ q ≤ 1 is called a vertical transmission parameter. Finally, we have to
specify initial conditions. These are usually given age-specific functions that specify
the distribution of the susceptible and infected individuals at the starting time:

s(a,0) = s0(a) i(a,0) = i0(a) r(a,0) = r0(a).

Model (12.21), like its age-independent counterpart, also has equilibria. In the
next section, we discuss the equilibria and the reproduction number in the purely
intercohort case without vertical transmission.

12.3.2 Equilibria and Reproduction Number

As before, equilibria are time-independent solutions of model (12.21) that also sat-
isfy the boundary conditions. In the current example, we will take a† = ∞. In partic-
ular, these are age-specific densities s(a) and i(a) such that

sa = −λ (a)s(a)− μ(a)s(a),
ia = λ (a)s(a)− (μ(a)+ γ(a))i(a),
ra = γ(a)i(a)− μ(a)r(a),

s(0) =
∫ ∞

0
β (a)u(a)da,

i(0) = 0,

r(0) = 0, (12.25)

where the force of infection is given by

λ (a) = k1(a)
∫ ∞

0
k2(τ)i(τ)dτ = λ̂k1(a).

We note that the number λ̂ denotes the integral. We should keep in mind that the
number λ̂ is not given, it depends rather on the number of infected individuals,
which is to be determined.

System (12.25) clearly has a disease-free equilibrium as a solution: i(a) = 0,
r(a) = 0, λ̂ = 0, and s(a) = s(0)π(a), where s(0) is an arbitrary constant and

π(a) = e−
∫ a

0 μ(τ)dτ .
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To find the endemic equilibria, we may assume that λ̂ �= 0. The equation for the
density of susceptible individuals s(a) can be solved to give

s(a) = s(0)e−
∫ a

0 (λ̂ k1(s)+μ(s))ds. (12.26)

If we add the three equations in (12.25), we obtain

ua =−μ(a)u(a).

We may solve this equation as before to get u(a) = u(0)π(a), where u(0) is an
arbitrary constant. It can be shown that u(0) = φ0 from (12.17), where λ ∗ = 0.
Consequently (see (12.20),

s(0) = φ0

∫ ∞

0
β (a)π(a)da = φ0.

Hence, s(0) is also the constant φ0. Since s(a) is given, to obtain the nonzero density
of the infective individuals, we have to solve the equation for the infectives. To do
that, we move the outflow terms from the right-hand side to the left-hand side and
multiply by the appropriate integration factor:

e
∫ a

0 (μ(σ)+γ(σ))dσ [ia +(μ(a)+ γ(a))i(a)] = λ̂ k1(a)s(a)e
∫ a

0 (μ(σ)+γ(σ))dσ .

Then the left-hand side can be written as a complete derivative:

d
da

[
e
∫ a

0 (μ(σ)+γ(σ))dσ i(a)
]
= λ̂ k1(a)s(a)e

∫ a
0 (μ(σ)+γ(σ))dσ .

We can rename the variable in the above equation from a to η . We then integrate
from 0 to a. On the left-hand side, we have an integral after a derivative. Evaluating
the integral, we have

e
∫ a

0 (μ(σ)+γ(σ))dσ i(a)− i(0) = λ̂
∫ a

0
k1(η)s(η)e

∫ η
0 (μ(σ)+γ(σ))dσdη .

From the boundary conditions, we conclude that i(0) = 0. We multiply by the recip-
rocal of the integration factor to get

i(a) = λ̂
∫ a

0
k1(η)s(η)e−

∫ a
η (μ(σ)+γ(σ))dσdη .

Replacing s(η) with its value, we obtain the final form of the infected individu-
als i(a):

i(a) = φ0λ̂ π(a)
∫ a

0
k1(η)e−

∫ η
0 λ̂k1(s)dse−

∫ a
η γ(σ)dσ dη . (12.27)

We notice that this form is not explicit, because it depends on λ̂ , which is still to be
determined. To compute λ̂ , we replace i(a) in the definition of λ̂ . Hence,
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λ̂ = φ0λ̂
∫ ∞

0
k2(a)π(a)

∫ a

0
k1(η)e−

∫ η
0 λ̂k1(s)dse−

∫ a
η γ(σ)dσ dηda.

Since λ̂ �= 0, we may cancel to obtain the following equation for λ̂ :

1 = φ0

∫ ∞

0
k2(a)π(a)

∫ a

0
k1(η)e−

∫ η
0 λ̂k1(s)dse−

∫ a
η γ(σ)dσ dηda.

Define the right-hand side of this equation as a function of λ̂ :

G (λ̂ ) = φ0

∫ ∞

0
k2(a)π(a)

∫ a

0
k1(η)e−

∫ η
0 λ̂k1(s)dse−

∫ a
η γ(σ)dσ dηda.

If the function k1(a) is nonzero on some interval, then G (λ̂ ) is a strictly decreasing
function of λ̂ . Hence, if the equation G (λ̂ ) = 1 has a positive solution, that solution
must be unique. Furthermore,

lim
λ̂→∞

G (λ̂ ) = 0.

Therefore, the existence of a positive solution of the equation G (λ̂ ) = 1 depends
on the value of G (0). We define that value as the basic reproduction number of the
disease:

R0 = φ0

∫ ∞

0
k2(a)π(a)

∫ a

0
k1(η)e−

∫ a
η γ(σ)dσ dηda. (12.28)

We conclude that if R0 > 1, then there is a unique positive solution λ̂ ∗ > 0 of the
equation G (λ̂ ) = 1. To that solution λ̂ ∗, there correspond unique nonzero values
s∗(a) and i∗(a). The value of r(a) can be computed from r∗(a) = u(a)− s∗(a)−
i∗(a). We have the following result:

Proposition 12.1. Model (12.21) has a unique disease-free equilibrium
E0 = (φ0π(a),0,0). If R0 > 1, the model also has a unique endemic equilibrium
E ∗ = (s∗(a), i∗(a),r∗(a)).

12.3.3 Local Stability of the Disease-Free Equilibrium

In this section, we study the local stability of the equilibria. The approach is sim-
ilar to the ODE models. We need to linearize around an equilibrium. To the sys-
tem (12.21) we will associate the linear system for the perturbations around an
equilibrium. We will consider only the first two equations of system (12.21). We
will replace the equation for r with the equation for the total population size. Let
s(a, t) = s∗(a)+ x(a, t), i(a, t) = i∗(a)+ y(a, t) and u(a, t) = u∗(a)+ p(a, t), where
x(a, t), y(a, t), and p(a, t) are the perturbation of the equilibrium. For now, s∗ and i∗
denote a generic equilibrium that could be the disease-free or the endemic equilib-
rium. Plugging in the expressions for s(a, t) and i(a, t), we obtain
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s∗a + xa + xt = −(λ ∗(a)+ λ̃(a, t))(s∗(a)+ x(a, t))

−μ(a)(s∗(a)+ x(a, t)),

i∗a + ya + yt = (λ ∗(a)+ λ̃(a, t))(s∗(a)+ x(a, t))

−(μ(a)+ γ(a))(i∗(a)+ y(a, t)),

u∗a + pa + pt = −μ(a)(u∗(a)+ p(a, t)),

s∗(0)+ x(0, t) =
∫ ∞

0
β (a)(u∗(a)+ p(a, t))da,

i∗(0)+ y(0, t) = 0,

u∗(0)+ p(0, t) =
∫ ∞

0
β (a)(u∗(a)+ p(a, t))da, (12.29)

where

λ ∗(a) = k1(a)
∫ ∞

0
k2(a)i

∗(a)da

λ̃ (a, t) = k1(a)
∫ ∞

0
k2(a)y(a, t)da. (12.30)

Using the equations for the equilibria (12.25), we can simplify the above equations
for the perturbations to the following system:

xa + xt = −λ ∗(a)x(a, t)− λ̃(a, t)s∗(a),
−λ̃(a, t)x(a, t)− μ(a)x(a, t),

ya + yt = λ ∗(a)x(a, t)+ λ̃(a, t)s∗(a)+ λ̃(a, t)x(a, t),
−(μ(a)+ γ(a))y(a, t),

pa + pt = −μ(a)p(a, t),

x(0, t) =
∫ ∞

0
β (a)p(a, t)da,

y(0, t) = 0,

u(0, t) =
∫ ∞

0
β (a)p(a, t)da. (12.31)

Finally, to obtain a linear system of the above system, we drop the nonlinear
quadratic terms:

xa + xt = −λ ∗(a)x(a, t)− λ̃(a, t)s∗(a)− μ(a)x(a, t),
ya + yt = λ ∗(a)x(a, t)+ λ̃(a, t)s∗(a)− (μ(a)+ γ(a))y(a, t),
pa + pt = −μ(a)p(a, t),

x(0, t) =
∫ ∞

0
β (a)p(a, t)da,

y(0, t) = 0,

p(0, t) =
∫ ∞

0
β (a)p(a, t)da. (12.32)



12.3 Age-Structured SIS Epidemic Models 319

This is the linearized system for the perturbation of an equilibrium. Because this
system is linear, it has separable solutions in which the time-dependent function is
an exponential, just like the Mckendrick–von Foerster model. We look for those so-
lutions in the form x(a, t) = eρt x(a), y(a, t) = eρt y(a), and p(a, t) = eρt p(a). The a-
dependent functions x(a), y(a), and p(a) are different from their a- and t-dependent
counterparts, but we adopt that notation for convenience. Substituting the time-
dependent solutions with the separable ones, and after canceling eρt , we arrive at
the following system:

xa +ρx = −λ ∗(a)x(a)− λ̃(a)s∗(a)− μ(a)x(a),
ya +ρy = λ ∗(a)x(a)+ λ̃(a)s∗(a)− (μ(a)+ γ(a))y(a),
pa +ρ p = −μ(a)p(a),

x(0) =
∫ ∞

0
β (a)p(a)da,

y(0) = 0,

p(0) =
∫ ∞

0
β (a)p(a)da. (12.33)

This is a linear eigenvalue problem, the same one that we obtain for ODEs. We want
to find a number ρ and x(a), y(a), p(a) that are nonzero and solve the above prob-
lem. In the ODE case, we take the characteristic equation, which is an appropriate
determinant set equal to zero. Here we can obtain the characteristic equation by
gradually eliminating x(a), y(a), and p(a).

We derive the characteristic equation of the disease-free equilibrium: system
(12.33) for the disease-free equilibrium takes the form

xa +ρx = −λ̃(a)φ0π(a)− μ(a)x(a),
ya +ρy = λ̃(a)φ0π(a)− (μ(a)+ γ(a))y(a),
pa +ρ p = −μ(a)p(a),

x(0) =
∫ ∞

0
β (a)p(a)da,

y(0) = 0,

u(0) =
∫ ∞

0
β (a)p(a)da. (12.34)

We recall that

λ̃ (a) = k1(a)
∫ ∞

0
k2(a)y(a)da = λ̃ k1(a),

where λ̃ denotes the integral. We note again that λ̃ is a number that is not known.
We notice that in system (12.34), the equation for y separates from all others. We
may solve it using similar techniques as before.

y(a) = λ̃ φ0

∫ a

0
k1(η)π(η)e−

∫ a
η (μ(s)+γ(s)+ρ)dsdη

= λ̃ φ0π(a)
∫ a

0
k1(η)e−

∫ a
η (γ(s)+ρ)dsdη . (12.35)
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Substituting in the expression for λ̃ , we obtain

λ̃ = λ̃ φ0

∫ ∞

0
k2(a)π(a)

∫ a

0
k1(η)e−

∫ a
η (γ(s)+ρ)dsdηda.

Next, since λ̃ is nonzero, we may cancel it to obtain the following characteristic
equation for ρ :

1 = φ0

∫ ∞

0
k2(a)π(a)

∫ a

0
k1(η)e−

∫ a
η (γ(s)+ρ)dsdηda. (12.36)

This equation has both real and complex solutions for ρ . The right-hand side is a
function of ρ , say

H (ρ) = φ0

∫ ∞

0
k2(a)π(a)

∫ a

0
k1(η)e−

∫ a
η (γ(s)+ρ)dsdηda.

We notice that
H (0) =R0.

For ρ real, H (ρ) is a decreasing function of ρ if k1(a)≥ 0 is not identically zero.
Hence, if we had R0 > 1, that would imply H (0)> 1. Since

lim
ρ→∞

H (ρ) = 0,

the equation H (ρ) = 1 has a unique real solution ρ∗ > 0. In this case, the disease-
free equilibrium is unstable.

Consider now the case R0 < 1. In this case, the equation H (ρ) = 1 also has a
unique real solution, but ρ∗ < 0. We show that all remaining complex solutions have
real part that is negative. Assume that there is a complex solution ρ = ξ1 + iξ2 such
that ξ1 ≥ 0. Then, using Euler’s formula for complex numbers, we have

|H (ρ)| ≤ φ0

∫ ∞

0
k2(a)π(a)

∫ a

0
k1(η)e−

∫ a
η γ(s)ds|e−ρ(a−η)|dηda

= φ0

∫ ∞

0
k2(a)π(a)

∫ a

0
k1(η)e−

∫ a
η γ(s)dse−ξ1(a−η)

×|cos(ξ2(a−η))− isin(ξ2(a−η))|dηda

≤ H (ξ1)≤H (0) =R0 < 1. (12.37)

In particular, this means that for every ρ = ξ1+iξ2 with ξ1 ≥ 0, we have |H (ρ)|< 1.
Therefore, such a ρ cannot be a solution of the equation H (ρ) = 1. Consequently,
that equation has complex solutions with negative real part only. This implies that
the disease-free equilibrium is locally asymptotically stable in this case. We have
established the following theorem:

Theorem 12.1. If R0 < 1, the disease-free equilibrium is locally asymptotically sta-
ble. If R0 > 1, the disease-free equilibrium is unstable.
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Once we find a ρ that is a characteristic value, to that ρ corresponds a nonzero y(a)
given by (12.35). The values for x(a) and p(a) can also be computed.

Investigating the stability of the endemic equilibrium is rather cumbersome, and
we omit it.

12.4 Numerical Methods for Age-Structured Models

Partial differential equation models, such as the ones considered in this section,
cannot be solved analytically or even directly by a computer algebra system. One
has to use numerical methods to obtain a discrete form of the model, which can
then be coded in some programming language. Numerical methods solve a PDE
approximately, not exactly. The methods used in solving age-structured models can
be separated into several classes:

• finite-difference methods for the PDE model;
• the method of lines, in which the age variable is discretize, while the time variable

is not, so the PDE system is converted to a large system of ODEs;
• discretization methods applied to the Lotka–Volterra integral form of the model.

12.4.1 A Numerical Method for the McKendrick–von
Foerster Model

In this section, we introduce a finite difference method for solving age-structured
PDE models. We will demonstrate the method on the McKendrick–von Foerster
model (12.6). Finite difference methods approximate the solution at a number of
points in the domain. Typical of these methods is that the derivative is approximated
by a finite difference quotient. To introduce the method, we begin by discretizing
the domain

D = {(a, t) : 0 ≤ a ≤ a†, t ≥ 0}.
We cannot compute to infinite time and age, so if a† = ∞, we take a number A < ∞
as a maximal age and a number T < ∞ as a maximal time. We divide the age direc-
tion and the time direction into equally spaced points. Since age and time progress
together, it is reasonable to choose the step, that is, the distance between two points,
to be the same in both directions. Thus, we take

Δa = Δ t.

Then all the points in the age and time direction can be computed as

ai = iΔ t tn = nΔ t.
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We set

M =

[
A
Δ t

]
, N =

[
T
Δ t

]
,

Fig. 12.4 Mesh for the finite difference numerical method. The derivative is computed as a differ-
ence of the values of the function along the characteristic line

where [·] denotes the integer part of the expression. We may modify A and T a little
so that without loss of generality, we may assume that

A = MΔ t T = NΔ t.

This discretization generates a square mesh in the domain D . The solution is com-
puted at the points of that mesh u(ai, tn). In fact, the numerical method computes
approximations to the solution at the mesh points:

un
i ≈ u(ai, tn).

The numerical method is generated by discretizing the differential equation, the
boundary condition, and the initial condition. We evaluate the differential equation
at a = ai+1 and t = tn. We have

∂u
∂a

(ai+1, tn)+
∂u
∂a

(ai+1, tn) =−μ(ai+1)u(ai+1, tn).

We replace the partial derivatives with difference quotients. The derivative in a
is replaced by a backward difference quotient, while the derivative in t is replaced
by a forward difference quotient:

un
i+1 − un

i

Δ t
+

un+1
i+1 − un

i+1

Δ t
=−μi+1un

i+1.
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Since when we replace the partial derivatives with the difference quotient we make
errors, we use the approximate solution notation un

i . We notice that the left-hand
side of this equation can be significantly simplified. We obtain (see Fig. 12.4)

un+1
i+1 − un

i

Δ t
=−μi+1un

i+1. (12.38)

This gives a discretization of the partial derivatives along the characteristic lines.
Thus, the sum of the two partial derivatives is approximated by a difference quotient
along the characteristic line, much like the one we used to derive the McKendrick–
von Foerster model [see (12.1)]. This is a viable numerical method for the partial
differential equation. However, this method is explicit, that is, the values of u at time
level n are used to compute the values at time level n+ 1, but the right-hand side of
the equation is computed at time level n. Explicit methods have various shortcom-
ings, one of which being that the method approximates the exact solution for only
very small values of Δ t. This is somewhat inconvenient. For that reason, expres-
sion (12.38) is reformulated as an implicit method. That requires us to evaluate the
right-hand side at level n+1. Thus, we obtain the following finite difference method
along the characteristic lines:

un+1
i+1 − un

i

Δ t
=−μi+1un+1

i+1 . (12.39)

The above equation is a simple linear equation that can be solved for un+1
i+1 :

un+1
i+1 =

un
i

1+ μi+1Δ t
.

Hence, if we know all values at time level n, we can compute all values at time level
n+1 except the first one. To start the process, we must know all values at time level
zero. We can compute all values at time level zero from the initial condition. The
values of u at time level zero are initialized by

u0
i = u0(ai), i = 0, . . . ,M.

Finally, to approximate the newborns, we discretize the boundary condition. The
boundary condition is given by an integral. There are many methods to discretize
integrals. However, since the derivative is discretized with a method that is not very
accurate, using a highly accurate method (like Simpson’s method) for the integral is
not necessary. We will approximate the integral with the right endpoint rule. After
we have computed all other values at time level n, we compute the newborns at time
level n:

un
0 =

n

∑
i=1

βiu
n
i Δ t,

where β (ai) = βi. We obtain the following:



324 12 Age-Structured Epidemic Models

Numerical method for the McKendrick–von Foerster model:
⎧⎪⎪⎨
⎪⎪⎩

un+1
i+1 =

un
i

1+ μi+1Δ t
, i = 0, . . . ,M− 1; n = 0, . . .N − 1;

u0
i = u0(ai), i = 0, . . . ,M;

un
0 = ∑n

i=1 βiun
i Δ t n = 1, . . . ,N.

(12.40)

The method we discuss here has numerous strengths: it preserves the positivity
of the solution, it is implicit and therefore approximates the solution for all time
steps, it can be solved explicitly (no linear or nonlinear solvers are necessary), and
it very easy to code.

12.4.2 Numerical Method for the Age-Structured SIR Model

A numerical method for the age-structured SIR epidemic model (12.21) can be
obtained that is similar to the method for the McKendrick–von Forster model. How-
ever, there is one significant difference. The right-hand side of the model is non-
linear. Thus, if we evaluate the entire right-hand side at the next time to obtain an
implicit method, the resulting equation for the next time level will become nonlinear
and very hard to solve. Hence, to obtain an implicit method and a linear equation
for the next time level, we partially linearize the nonlinear term. We illustrate these
concepts below. As before, we begin by discretizing the domain

D = {(a, t) : 0 ≤ a ≤ a†, t ≥ 0}.
We take a number A < ∞ as a maximal age (if a† = ∞) and a number T < ∞ as a
maximal time. We divide the age direction and the time direction into equally spaced
points. We discretize the space and time direction with the same the step,

Δa = Δ t.

Then all the points in the age and time direction can be computed as

ai = iΔ t tn = nΔ t.

We set

M =

[
A
Δ t

]
, N =

[
T
Δ t

]
,

where [·] denotes the integer part of the expression. We may modify A and T a little
so that without loss of generality, we may assume that

A = MΔ t T = NΔ t.

This discretization generates a square mesh in the domain D .
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As before, we replace the sum of partial derivatives by a difference quotient along
the characteristic lines. In particular,

sa + st ≈
sn+1

i+1 − sn
i

Δ t
,

ia + it ≈
in+1
i+1 − ini

Δ t
,

ra + rt ≈
rn+1

i+1 − rn
i

Δ t
. (12.41)

We evaluate the right-hand side at ai+1 and tn and approximate. As a first step, we
have

sn+1
i+1 − sn

i

Δ t
= −λ n

i+1sn
i+1 − μi+1sn

i+1,

in+1
i+1 − ini

Δ t
= λ n

i+1sn
i+1 − (μi+1 + γi+1)i

n
i+1,

rn+1
i+1 − rn

i

Δ t
= γi+1ini+1 − μi+1rn

i+1, (12.42)

where λ n
i+1 is the force of infection evaluated at time level n. Here we can easily

solve for level n+ 1, but the solution will be nonnegative and will approximate
the continuous solution only for a very small step Δ t. Thus, to make the method
implicit, we replace

sn
i+1 ≈ sn+1

i+1 , ini+1 ≈ in+1
i+1 , rn

i+1 ≈ rn+1
i+1 ,

while keeping λ n
i+1 evaluated at level n. We obtain the following system approxi-

mating the differential equations:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

sn+1
i+1 − sn

i

Δ t
=−λ n

i+1sn+1
i+1 − μi+1sn+1

i+1 ,

in+1
i+1 − ini

Δ t
= λ n

i+1sn+1
i+1 − (μi+1 + γi+1)i

n+1
i+1 i = 0, . . . ,M− 1, n = 0, . . . ,N − 1,

rn+1
i+1 − rn

i

Δ t
= γi+1in+1

i+1 − μi+1rn+1
i+1 .

(12.43)

This system is linear in sn+1
i+1 , in+1

i+1 , rn+1
i+1 and can be easily solved. It is easy to verify

that the solutions are nonnegative, and if all equation are added, the equation for the
total population size can be obtained. At the same time, the method still possesses
the good properties of the implicit schemes. We approximate the integral in the force
of infection with a right-hand sum

λ n
i+1 = ki+1

1

M

∑
j=1

k j
2injΔ t.
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The initial and boundary conditions can be similarly discretized:

⎧⎪⎪⎨
⎪⎪⎩

sn+1
0 = ∑M

j=1 β ji
n+1
j Δ t n = 0, . . . ,N − 1,

in+1
0 = 0,

rn+1
0 = 0,

s0
j = s0(a j), i0j = i0(a j), r0

j = r0(a j), j = 0, . . . ,M.

(12.44)

In conclusion, we would like to point out that this method is convergent, that is,
approximations of the solution converge to the true solution as CΔ t → 0 as t → 0,
where C is an appropriate constant. In numerical analysis, in this case often it is
said that the numerical method is convergent of order O(Δ t). Changing the method
for the approximation of the derivative, the method for the approximation of the
integrals, or the way we approximated the right-hand side can produce variations of
the above method. Any numerical method is acceptable if it is convergent at least
of order O(Δ t). Methods for proving that a numerical method is convergent can
be found in a number of papers that discuss numerical methods for age-structured
population models [14, 118].

Problems

12.1. For the age-structured mortality function fitted in Fig. 12.2,

μ(a) =
0.748123a
(110− a)2 ,

compute the probability of survival π(a).

12.2. Growth Rate of the Population
Consider the McKendrick–von Foerster model (12.6). Assume μ(a)= μ , a constant.
Furthermore assume β (a) = β̄e−αa, where β̄ and α are constants. Assume a† = ∞.

(a) Compute the growth rate of the population λ ∗ in terms of μ , β̄ , and α .
(b) Compute the net reproduction rate of the population R in terms of μ , β̄ , and α .

12.3. Growth Rate of the Population
Consider the McKendrick–von Foerster model (12.6). Assume μ(a)= μ , a constant.
Furthermore, assume

β (a) =
{

0 0 ≤ a < A,
β̄ e−αa a > A,

(12.45)

where β̄ and α are also constants. Assume also a† = ∞.

(a) Compute the growth rate of the population λ ∗ in terms of μ , β̄ , and α if β̄ A = 1.
(b) Compute the net reproduction rate of the population R in terms of μ , β̄ , and α .
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(c) What is the biological meaning of A? How does A affect the growth rate λ ∗
and the reproduction rate R of the population (are they increasing or decreasing
functions of A)? Why does that make sense biologically?

12.4. SIR Model with Vertical Transmission
For the SIR model with vertical transmission, assume a† = ∞,

sa + st = −λ (a, t)s(a, t)− μ(a)s(a, t),
ia + it = λ (a, t)s(a, t)− (μ(a)+ γ(a))i(a, t),
ra + rt = γ(a)i(a, t)− μ(a)r(a, t), (12.46)

with initial and boundary conditions:

s(0, t) =
∫ a†

0
β (a)[s(a, t)+ r(a, t)+ (1− q)i(a, t)]da,

i(0, t) = q
∫ a†

0
β (a)i(a, t)da,

r(0, t) = 0. (12.47)

(a) Compute the disease-free equilibrium and the disease reproduction number of
the model.

(b) Linearize around the disease-free equilibrium and show that the disease-free
equilibrium is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

12.5. SIS Model
For the SIS model, assume a† = ∞,

sa + st = −λ (a, t)s(a, t)− μ(a)s(a, t)+ γ(a)i(a, t),
ia + it = λ (a, t)s(a, t)− (μ(a)+ γ(a))i(a, t), (12.48)

with initial and boundary conditions

s(0, t) =
∫ a†

0
β (a)[s(a, t)+ i(a, t)]da,

i(0, t) = 0. (12.49)

(a) Compute the disease-free equilibrium and the disease reproduction number of
the model.

(b) Linearize around the disease-free equilibrium and show that the disease-free
equilibrium is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

12.6. Age-Structured SIR Vector-Borne Model
For the SIR model of a vector-borne disease, assume a† = ∞. The dynamics of the
vector population are given by

V ′
S(t) = Λv −λH(t)VS(t)− dVS,

V ′
I (t) = λH(t)VS(t)− dVI(t), (12.50)
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where λH(t) is the force of infection generated by humans and is given by

λH =

∫ ∞

0
k2(a)i(a, t)da.

The equations for the humans are given by

sa + st = −λv(a, t)s(a, t)− μ(a)s(a, t),
ia + it = λv(a, t)s(a, t)− (μ(a)+ γ(a))i(a, t),
ra + rt = γ(a)i(a, t)− μ(a)r(a, t), (12.51)

where
λv(a, t) = k1(a)VI(t)

with initial and boundary conditions

s(0, t) =
∫ a†

0
β (a)[s(a, t)+ r(a, t)+ i(a, t)]da,

i(0, t) = 0,

r(0, t) = 0. (12.52)

(a) Compute the disease-free equilibrium and the disease reproduction number of
the model.

(b) Linearize around the disease-free equilibrium and show that the disease-free
equilibrium is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

12.7. For the age-structured model of a vector-borne disease in Problem 12.6:

(a) Devise a numerical method to solve the problem. Use a Runge–Kutta (Runge–
Kutta methods can be found in standard numerical analysis textbooks) method
to discretize the equations for the vector.

(b) Show that the solution of your numerical scheme is nonnegative.
(c) Write a code for your numerical method and simulate the solution.

12.8. SIR Model with Two Strains
For the SIR model with two strains, assume a† = ∞. The model is introduced as
follows:

sa + st = −λ1(t)s(a, t)−λ2(t)s(a, t)− μs(a, t),

i1a + i1t = λ1(t)s(a, t)− (μ + γ1)i
1(a, t),

i2a + i2t = λ2(t)s(a, t)− (μ + γ2(a))i
2(a, t),

ra + rt = γ1i1(a, t)+ γ2(a)i
2(a, t)− μr(a, t), (12.53)

where

γ2(a) =

{
0 a < A
γ2 a > A

(12.54)
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and the remaining parameters are assumed constant. The force of infections are
given by

λ1(t) = k1

∫ ∞

0
i1(a, t)da, λ1(t) = k2

∫ ∞

0
i2(a, t)da.

Furthermore, the model is equipped with initial and the following boundary condi-
tions:

s(0, t) =
∫ a†

0
β (a)[s(a, t)+ r(a, t)+ i1(a, t)+ i2(a, t)]da,

i1(0, t) = 0,

i2(0, t) = 0,

r(0, t) = 0. (12.55)

(a) Compute the disease-free equilibrium and the disease reproduction number of
the model.

(b) Write a numerical method to approximate the solution of the problem.
(c) Show that your solution of the numerical scheme is nonnegative.
(d) Write a computer program to simulate the model.



Chapter 13
Class-Age Structured Epidemic Models

13.1 Variability of Infectivity with Time-Since-Infection

Many diseases progress quickly. Once infected, an individual goes through a short
incubation period and becomes infectious. In a matter of days, this individual has
either recovered or is dead. That is the case with influenza, which many have expe-
rienced. Other diseases with short span are SARS, meningitis, plague, and many of
the childhood diseases. We will call such diseases quickly progressive diseases. See
Table 13.1 for a more extensive list of quickly progressive diseases. In modeling
such diseases, it is acceptable to ignore host vital dynamics and to assume that the
infectivity of infectious individuals is constant throughout their infectious period.

Other diseases infect their hosts for a long time, sometimes for the duration of the
lifespan of the host. Examples of such diseases include HIV/AIDS, tuberculosis, and
hepatitis C. These diseases necessarily include a long-term latent or chronic stage.
Such diseases are called slowly progressive diseases. Table 13.1 contains a list of
slowly progressive diseases. Models of slowly progressive diseases should include
host demography.

Evidence exists that the infectivity, that is, the probability of infection, given a
contact, may vary in time since the moment at which the infectious individual has
become infected. This variability exists with fast diseases but is far more important
with slow diseases. Infectivity for several common diseases is plotted in Fig. 13.1.
The problem of variability of infectivity with time-since-infection has been studied
most extensively in HIV. The California Partners’ Study examined 212 females hav-
ing regular sexual contacts with their HIV-infected male partners. Couples were fol-
lowed for different durations (duration of exposure) up to 100 months. All partners
were already infected before the contact began. Only about 20% of the females were
eventually infected. Shiboski and Jewell [145] use the data to estimate a time-since-
infection-dependent infectivity. No explicit form of the function is given. Generally,
it is accepted that the viral load in HIV-infected patients is correlated with their in-
fectivity. Since the viral load is high right after infection, and then during the time
when AIDS develops, the infectivity is assumed to be higher for those two periods,
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Table 13.1 Slow and fast diseases

Slow diseases Length of infection Fast diseases Length of infection

HIV/AIDS Lifelong Influenza 2–10 days
Hepatitis C Lifelonga Measles 10–12 days
Tuberculosis Lifelonga Mumps 12–25 days
Genital herpes Lifelong Rubella 3–4 weeks
Hepatitis B Lifelong Chicken pox 17–30 days
Cervical cancer (HPV) Lifelong Dengue fever 10–30 days
Malaria 200a days Ebola 3–6 weeks

aIf not treated
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Fig. 13.1 Infectivity for the fast disease influenza [35] and the slow disease HIV [42]

and generally lower during the latent stage of the infection. Shiboski and Jewell’s
functions do not possess these properties, presumably because infected individuals
were already past their acute stage when they were enrolled in the study. Shiboski
and Jewell’s functions first increase from 0 to 40 months after infection, and then
rapidly decrease, so that they are nearly zero at 90 months after infection.

In fact, the very first epidemic model developed by Kermack and McKendrick
[84] structures the infected individuals by the time-since-infection (also called age
of infection). Kermack and McKendrick’s motivation for inclusion of infection-age
was not only that infectivity may change with infection-age but also that the pos-
sibility of recovery or death may depend on the time elapsed since infection. In
modeling with ODEs, it is implicitly assumed that the time to recovery or death
is exponentially distributed. This assumption may be weakened if infection-age is
incorporated into the model. Although Kermack-McKendrick’s age-since-infection
model did not include birth and natural death in the population, more recent age-
since-infection models of slowly progressive diseases include demography.
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13.2 Time-Since-Infection Structured SIR Model

In this section, we consider a continuous version of the Kermack–McKendrick time-
since-infection structured model. Because mass action incidence is used, the model
can be used to describe diseases such as influenza and childhood diseases, but it is
not suitable for HIV.

13.2.1 Derivation of the Time-Since-Infection Structured Model

Since infectivity for infectious individuals varies with the time since infection (see
Fig. 13.1), we must keep track of the time that has elapsed since infection for each
infected individual. Let τ denote the time-since-infection. The time-since-infection
begins when an individual becomes infected and progresses with the chronological
time t. Let i(0, t) denote the number of individuals who have just become infected
at time t. All individuals who become simultaneously infected make up one disease
“cohort,” that is, they have experienced the same life event together, namely getting
infected with the disease. As time progresses, this group of people has the same
time-since-infection τ . Let i(τ, t) be the density of infected individuals with time-
since-infection τ at time t. The fact that i(τ, t) is a density means that i(τ, t)Δτ
is the number of individuals with time-since-infection in the interval (τ,τ +Δτ).
Suppose that time Δ t elapses. Then the same group of individuals who at time t had
time-since-infection in the interval (τ,τ +Δτ), now at time t +Δ t have time-since
infection in the interval (τ +Δ t,τ +Δτ +Δ t). The number of those individuals is
given by i(τ+Δ t, t+Δ t)Δτ . Adding all individuals in all infection-age classes gives
the total infected population:

I(t) =
∫ ∞

0
i(τ, t)dτ.

Since this is the same group of individuals, their numbers might have changed in
the interval (t, t +Δ t) as a result of two possible events: some of them might have
recovered, and other might have left the system due to natural causes (e.g., death).
We assume that the lifespan of individuals in the system is exponentially distributed,
and equal for susceptible, infected, and recovered individuals. Thus, susceptible,
infected, and recovered individuals leave the system at a constant rate. Denote by
μ the per capita rate at which individuals leave the system. The number of infected
individuals who leave the system in the time interval (t, t +Δ t) is given by

μΔ ti(τ, t)Δτ,

where i(τ, t)Δτ is the number of people in the age interval (τ,τ + Δτ), and
μ i(τ, t)Δτ is the number of people in that age interval who leave the system at time
t. To model the number of individuals who recover in the time interval (t, t +Δ t),
we denote the per capita recovery rate by γ . We will assume that the recovery rate
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depends on the time-since-infection τ: γ(τ). Following a similar line of reasoning
as in the case with the number of individuals who leave the system, the number of
individuals who recover from this cohort of infecteds is given by

γ(τ)Δ ti(τ, t)Δτ.

The balance equation for the change in the number of infected individuals in this
cohort is given by

i(τ +Δ t, t +Δ t)Δτ − i(τ, t)Δτ =−γ(τ)Δ ti(τ, t)Δτ − μΔ ti(τ, t)Δτ.

Dividing by ΔτΔ t, we obtain

i(τ +Δ t, t +Δ t)− i(τ, t)
Δ t

=−γ(τ)i(τ, t)− μ i(τ, t). (13.1)

We rewrite the left-hand side above as

i(τ +Δ t, t +Δ t)− i(τ, t+Δ t)
Δ t

+
i(τ, t +Δ t)− i(τ, t)

Δ t
=−γ(τ)i(τ, t)− μ i(τ, t).

(13.2)

We take the limit as Δ t → 0. If the partial derivatives of the function i exist and are
continuous, we can rewrite the equation above in the form

iτ (τ, t)+ it(τ, t) =−γ(τ)i(τ, t)− μ i(τ, t). (13.3)

This is a first-order partial differential equation. It is linear. It is defined on the
domain

D = {(τ, t) : τ ≥ 0, t ≥ 0}.
To complete the partial differential equation, we must derive a boundary condition
along the boundary τ = 0 and an initial condition.

To derive the boundary condition, let S(t) be the number of susceptible individ-
uals at time t, R(t) the number of recovered individuals, and N(t) the total popula-
tion size:

N(t) = S(t)+
∫ ∞

0
i(τ, t)dτ +R(t).

The newly infected individuals have time-since-infection equal to zero and their
number is given by i(0, t). To derive the expression for newly infected individu-
als, we let β (τ)N be the infectivity of the infectious individuals, where N is the
total population. The infectivity depends on the time-since-infection τ that has
elapsed for the infecting individual. It is assumed that infectious individuals have
different infectivities at different times-since-infection. This is the case with most
infectious diseases. The probability that an infectious individual with time-since-
infection equal to τ will come in a contact with a susceptible individual, given that
the individual makes a contact, is S

N . Thus, this infectious individual with time-
since-infection equal to τ will transmit the disease to
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β (τ)N
S
N

= β (τ)S

individuals. Since there are i(τ, t)Δτ infectious individuals with time-since-infection
in the interval (τ,τ +Δτ), the total number of infections generated by such infec-
tious individuals will be

β (τ)Si(τ, t)Δτ.

Adding all newly infected individuals generated by all infected individuals in all
time-since-infection classes, we get

i(0, t) = S
∫ ∞

0
β (τ)i(τ, t)dτ.

This incidence is the equivalent of mass action incidence in the ODE case. This
equation gives the boundary condition of the partial differential equation. To derive
the equation that gives the dynamics of the susceptible individuals, we assume that
the recruitment into the population occurs at a constant rate Λ . Thus, the equation
becomes

S′(t) = Λ − S
∫ ∞

0
β (τ)i(τ, t)dτ − μS(t).

Finally, the equation for the recovered individuals has as an inflow the total number
of recovered individuals summed by all age-since-infection classes:

R′(t) =
∫ ∞

0
γ(τ)i(τ, t)dτ − μR(t).

The susceptible, infected, and recovered populations make up the total popula-
tion. The equations for the susceptible, infected, and recovered populations define a
closed system of equations, which we will consider in itself:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′(t) = Λ − S(t)
∫ ∞

0
β (τ)i(τ, t)dτ − μS(t),

iτ(τ, t)+ it(τ, t) =−γ(τ)i(τ, t)− μ i(τ, t),

i(0, t) = S(t)
∫ ∞

0
β (τ)i(τ, t)dτ,

R′(t) =
∫ ∞

0
γ(τ)i(τ, t)dτ − μR(t).

(13.4)

The model is equipped with the following initial conditions:

S(0) = S0,

i(τ,0) = i0(τ),
R(0) = R0, (13.5)
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where S0 and R0 are given numbers, and i0(τ) is a given function that is assumed
integrable. We note that

N0 = S0 +

∫ ∞

0
i0(τ)dτ +R0.
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Fig. 13.2 A typical probability of survival in a class

Model (13.4) together with the initial conditions (13.5) is the time-since-infection
structured Kermack–McKendrick SIR epidemic model.

Remark 13.1. Typically, the infectivity β (τ) is assumed to be a bounded function:

β̄ = sup
τ

β (τ).

A key quantity related to the survival of infectious individuals in a given class is
π(τ), the probability of still being infectious τ time units after becoming infected.
Then, if Î individuals become infected at some moment of time, the number of those
who are still infectious after τ time units is Îπ(τ). Those numbers change in a small
interval of time-since-infection Δτ by those who have stopped being infectious or
those who have left the system:

Îπ(τ +Δτ)− Îπ(τ) =−μ Îπ(τ)Δτ − γ(τ)Îπ(τ)Δτ.

The probability of still being infectious τ time units after becoming infected/infec-
tious, π(τ), satisfies the following differential equation:

π ′(τ) =−μπ(τ)− γ(τ)π(τ),
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whose solution is

π(τ) = e−μτ−∫ τ
0 γ(s)ds.

Different assumptions on γ(τ) correspond to different real-life scenarios. If all
infected individuals are assumed to recover or leave the infectious class by certain
age-since-infection τ̄ , their probability π(τ) of still being infectious, that is, of being
in the class i, τ time units after becoming infected/infectious must tend to zero as
τ → τ̄−. This will occur if the function γ(τ) tends to ∞ as τ → τ̄−. Thus, we may
assume that

γ(τ)→ ∞ as τ → τ̄−; γ(τ) = 0 for τ > τ̄.

A simple example of a possible function γ(τ) that tends to infinity is given by

γ(τ) =
0.2τ̄

(τ̄ − τ)2 .

The corresponding probability of survival in the infectious class when μ = 0 is
given by

π(τ) = e
−

0.2τ
τ̄ − τ

.

This probability of survival is graphed in Fig. 13.2 with τ̄ = 15. The coefficient 0.2
is used to give the typical shape of the graph characterized by slow decrease for
small τ and fast decrease for τ ≈ τ̄ .

13.2.2 Equilibria and Reproduction Number
of the Time-Since-Infection SIR Model

The model (13.4) is a first-order integrodifferential equation model. We would like
to be able to say something about the solutions. Could a reproduction number R0 be
defined such that the disease dies out if R0 < 1 and persists otherwise? First, one has
to show that for each nonnegative and integrable initial condition (13.5), the model
has a unique nonnegative solution. This result is not obvious, but the derivation is
somewhat technical and will not be included. Next, we would like to see that the
solutions are bounded. To see this, we must obtain the differential equation satisfied
by the total population size. Integrating with respect to τ the PDE in system (13.4),
we obtain

i(τ, t)|∞0 + I′ =−
∫ ∞

0
γ(τ)i(τ, t)dτ − μI(t),

where I′ above is the derivative of the total infected population size I with respect
to t. If we assume limτ→∞ i(τ, t) = 0, the above equality leads to

I′(t) = S(t)
∫ ∞

0
β (τ)i(τ, t)dτ −

∫ ∞

0
γ(τ)i(τ, t)dτ − μI(t).
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Adding the equation above to the equations for S′ and R′ from (13.4), we obtain

S′+ I′+R′ = Λ − μ(S+ I+R).

Thus, the total population size satisfies the usual equation, whose solution we know.
In particular, we know that

maxN(t)≤ max

{
N0,

Λ
μ

}
.

Now we consider equilibria of the model. As before, to find the equilibria, we
look for time-independent solutions (S, i(τ)) that satisfy the system (13.4) with the
time derivatives equal to zero. The system for the equilibria takes the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ − S
∫ ∞

0
β (τ)i(τ)dτ − μS = 0,

iτ(τ) =−γ(τ)i(τ)− μ i(τ),

i(0) = S
∫ ∞

0
β (τ)i(τ)dτ,∫ ∞

0
γ(τ)i(τ)dτ − μR = 0.

(13.6)

This system consists of one first-order ODE with initial condition that depends
on the solution, and two algebraic equations. Clearly, E0 = (Λ

μ ,0,0) is one solution
of that system. This solution gives the disease-free equilibrium, where the age-since-
infection distribution of infectious individuals is identically zero. The disease-free
equilibrium always exists. An endemic equilibrium will be given by a nontrivial
solution E ∗ = (S, i(τ),R).

There is a typical approach for solving such systems. We first solve the differen-
tial equation whose solution is

i(τ) = i(0)π(τ). (13.7)

This is not an explicit solution, since i(0) depends on i(τ). The following notation
is useful:

P =

∫ ∞

0
π(θ )dθ .

This notation occurs when we compute the total infectious population:

I = i(0)P.

The usual approach to solving the system (13.6) is to substitute the expression for
i(τ) from (13.7) in the boundary condition and the total population size. We typ-
ically obtain a system for i(0) and S. However, in this case, when we substitute
i(τ) in the boundary condition, we obtain an explicit expression for the susceptible
individuals in the endemic equilibrium:
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S =
1∫ ∞

0
β (τ)π(τ)dτ

. (13.8)

From the third equation in (13.6), we can express R in terms of i(0):

R =
i(0)
μ

∫ ∞

0
γ(τ)π(τ)dτ =

i(0)
μ

Γ . (13.9)

We note that Γ is a given number. To find i(0), we use the first equation in (13.6),
which becomes

Λ − i(0)− μS = 0.

Substituting S, we obtain

i(0) = Λ
(

1− 1
R0

)
, (13.10)

where we have defined the basic reproduction number as

R0 =
Λ
μ

∫ ∞

0
β (τ)π(τ)dτ.

From the above expressions, we see that the endemic equilibrium is unique and
exists if and only if R0 > 1.

Remark 13.2. We notice that integration by parts gives the following identity:
∫ ∞

0
γ(τ)π(τ)dτ + μ

∫ ∞

0
π(τ)dτ = 1,

which makes each term on the left-hand side less than one. The equation above
says that the probability of leaving the infectious class i through leaving the system
(dying), μ

∫ ∞
0 π(τ)dτ , or through recovery,

∫ ∞
0 γ(τ)π(τ)dτ , is equal to 1. Indeed,

all individuals leave the infectious class through one of those two routes.

13.2.3 Local Stability of Equilibria

To investigate the local stability of the equilibria, we need to linearize the system.
For a PDE model, that is done directly following the underlying linearization proce-
dure. In particular, let S(t) = S∗+ x(t), i(τ, t) = i∗(τ)+ y(τ, t) and R(t) = R∗+ z(t),
where x(t), y(τ, t), and z(t) are the perturbations, and (S∗, i∗(τ),R∗) denotes a
generic equilibrium. We substitute the expressions for S, i(τ, t), and R in the sys-
tem (13.4):
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(S∗+ x(t))′ = Λ − (S∗+ x(t))
∫ ∞

0
β (τ)(i∗(τ)+ y(τ , t))dτ−μ(S∗+ x(t)),

(i∗(τ)+ y(τ , t))τ +(i∗(τ)+ y(τ , t))t =−γ(τ)(i∗(τ)+ y(τ , t))−μ(i∗(τ)+ y(τ , t)),

i∗(0)+ y(0, t) = (S∗+ x(t))
∫ ∞

0
β (τ)(i∗(τ)+ y(τ , t))dτ ,

(R∗+ z(t))′ =
∫ ∞

0
γ(τ)(i∗(τ)+ y(τ , t))dτ−μ(R∗+ z(t)).

(13.11)

Multiplying out the expressions, we have
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′(t) = Λ − S∗
∫ ∞

0
β (τ)i∗(τ)dτ − μS∗− x(t)

∫ ∞

0
β (τ)i∗(τ)dτ

−S∗
∫ ∞

0
β (τ)y(τ, t)dτ − x(t)

∫ ∞

0
β (τ)y(τ, t)dτ − μx(t),

i∗τ(τ)+ yτ(τ, t)+ yt(τ, t) =−γ(τ)i∗(τ)− γ(τ)y(τ, t)− μ i∗(τ)− μy(τ, t),

i∗(0)+ y(0, t) = S∗
∫ ∞

0
β (τ)i∗(τ)dτ + x(t)

∫ ∞

0
β (τ)i∗(τ)dτ

+S∗
∫ ∞

0
β (τ)y(τ, t))dτ + x(t)

∫ ∞

0
β (τ)y(τ, t)dτ.

z′(t) =
∫ ∞

0
γ(τ)i∗(τ)dτ +

∫ ∞

0
γ(τ)y(τ, t)dτ − μR∗− μz(t).

(13.12)

This system can be simplified further by the use of two techniques. First,
we use the equations for the equilibria (13.6). This approach simplifies the system
to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′(t) =−x(t)
∫ ∞

0
β (τ)i∗(τ)dτ

−S∗
∫ ∞

0
β (τ)y(τ, t)dτ − x(t)

∫ ∞

0
β (τ)y(τ, t)dτ − μx(t),

yτ(τ, t)+ yt(τ, t) =−γ(τ)y(τ, t)− μy(τ, t),

y(0, t) = x(t)
∫ ∞

0
β (τ)i∗(τ)dτ

+S∗
∫ ∞

0
β (τ)y(τ, t))dτ + x(t)

∫ ∞

0
β (τ)y(τ, t)dτ,

z′(t) =
∫ ∞

0
γ(τ)y(τ, t)dτ − μz(t).

(13.13)

Notice that after this transformation, system (13.13) contains only terms that include
a perturbation. However, system (13.13) is not linear. Terms such as x(t)

∫ ∞
0 β (τ)

y(τ, t)dτ are quadratic in the perturbations. Since we assume that the perturbations
are small, the quadratic terms must be much smaller. Therefore, the second tech-
nique that we use to simplify the system is to neglect the quadratic terms. After
disregarding the quadratic terms, we obtain the following linear system in the per-
turbations:
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x′(t) =−x(t)
∫ ∞

0
β (τ)i∗(τ)dτ − S∗

∫ ∞

0
β (τ)y(τ, t)dτ − μx(t),

yτ(τ, t)+ yt(τ, t) =−γ(τ)y(τ, t)− μy(τ, t),

y(0, t) = x(t)
∫ ∞

0
β (τ)i∗(τ)dτ + S∗

∫ ∞

0
β (τ)y(τ, t))dτ,

z′(t) =
∫ ∞

0
γ(τ)y(τ, t)dτ − μz(t).

(13.14)

System (13.14) is a linear system for x(t), y(τ, t), and z(t). Just like linear systems
of ODEs, the above system also has exponential solutions. Therefore, it is sensible
to look for solutions of the form x(t) = x̄eλ t , y(τ, t) = ȳ(τ)eλ t , z(t) = z̄eλ t , where x̄,
ȳ(τ), z̄, and λ have to be determined in such a way that x̄, ȳ(τ), z̄ are not all zero.
Substituting the constitutive form of the solutions in the system (13.14), we obtain
the following problem for x̄, ȳ(τ), z̄, and λ (the bars have been omitted):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ x =−x
∫ ∞

0
β (τ)i∗(τ)dτ − S∗

∫ ∞

0
β (τ)y(τ)dτ − μx,

yτ(τ)+λ y(τ) =−γ(τ)y(τ)− μy(τ),

y(0) = x
∫ ∞

0
β (τ)i∗(τ)dτ + S∗

∫ ∞

0
β (τ)y(τ)dτ,

λ z =
∫ ∞

0
γ(τ)y(τ)dτ − μz.

(13.15)

Remark 13.3. Solutions of system (13.15) give the eigenvectors and eigenvalues λ
of the differential operator. Eigenvalues are the only points in the spectrum of ope-
rators generated by ODEs. However, operators that originate from PDEs may have
other points in the spectrum besides eigenvalues, which also contribute to the sta-
bility or instability of an equilibrium. It can be shown [112] that for the problems of
type (13.4), knowing the distribution of the eigenvalues is sufficient to determine the
stability of a given equilibrium. In other words, we have the same rules that are used
in ODEs. In particular, if all eigenvalues have negative real parts, the corresponding
equilibrium is locally stable; if there is an eigenvalue with a positive real part, then
the equilibrium is unstable. Because of that, we will concentrate on investigating
eigenvalues.

The next step will be to eliminate x, y(τ), and z so that an equation in λ is obtained.
This process is different for the different equilibria, so we have to consider two
cases. The first case is that of the disease-free equilibrium. Then S∗ = Λ

μ , i∗ = 0, and
R∗ = 0. System (13.15) simplifies to the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ x =−S∗
∫ ∞

0
β (τ)y(τ)dτ − μx,

yτ(τ)+λ y(τ) =−γ(τ)y(τ)− μy(τ),

y(0) = S∗
∫ ∞

0
β (τ)y(τ)dτ,

λ z =
∫ ∞

0
γ(τ)y(τ)dτ − μz.

(13.16)
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It is easy to see that the equation for y(τ) is independent of x and z. Solving the
differential equation, we have

y(τ) = y(0)e−λ τπ(τ).

Substituting this solution in the boundary condition and canceling y(0) (assumed
nonzero), we obtain the following characteristic equation for λ :

S∗
∫ ∞

0
β (τ)e−λ τπ(τ)dτ = 1. (13.17)

The above equation is a transcendental equation, and it may have many solutions.
To show stability of the disease-free equilibrium, we need to show that all solutions
λ of the above equation have negative real parts. If there is a solution λ with positive
real part, then the disease-free equilibrium will be unstable. To investigate this, we
define

G (λ ) = S∗
∫ ∞

0
β (τ)e−λ τ π(τ)dτ.

We first notice that G (0) = R0. Hence, if R0 > 1, and if β (τ) is strictly positive
on a positive interval, then the function G (λ ) as a function of the real variable λ
is a decreasing function. Since G (0) > 1 and limλ→∞ G(λ ) = 0, there exists λ ∗ >
0 such that G (λ ∗) = 1. Consequently, the disease-free equilibrium is unstable. If,
alternatively, R0 < 1, then for all λ = a+ bi with a ≥ 0, we have

|G (λ )| ≤ S∗
∫ ∞

0
β (τ)|e−λ τ |π(τ)dτ = S∗

∫ ∞

0
β (τ)e−aτ π(τ)dτ ≤R0 < 1.

We conclude that those λ whose real part is nonnegative cannot satisfy the equation
G (λ ) = 1. Therefore, the disease-free equilibrium is locally asymptotically stable
in this case. We summarize these results in the following proposition:

Proposition 13.1. If R0 < 1, the disease-free equilibrium is locally stable. If
R0 > 1, then the disease-free equilibrium is unstable.

We see that we obtain similar results as for ODE epidemiological models.
Now we turn to the stability of the endemic equilibrium. We consider system

(13.15), where the equilibrium is the endemic equilibrium. The goal again is to
eliminate x, y(τ), and z, but this time the first and the second equations are coupled.
We can neglect the equation for z, since z does not participate in the first two equa-
tions. Because the differential equation depends on y and λ only, we can solve it and
replace y(τ) by its expression in the boundary condition and in the equation for x.
That will produce a linear system for the numbers y(0) and x (assuming that λ is
given). Namely, solving the differential equation, we get

y(τ) = y(0)e−λ τπ(τ).
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From the first equation and the boundary equation, we obtain the system
⎧⎪⎨
⎪⎩

λ x =−x
∫ ∞

0
β (τ)i∗(τ)dτ − S∗y(0)

∫ ∞

0
β (τ)e−λ τ π(τ)dτ − μx,

y(0) = x
∫ ∞

0
β (τ)i∗(τ)dτ + S∗y(0)

∫ ∞

0
β (τ)e−λ τπ(τ)dτ.

(13.18)

There are many ways to solve this system in order to find a nontrivial solution. One
way is to require that the determinant be zero:

∣∣∣∣∣∣∣
λ + μ +

∫ ∞

0
β (τ)i∗(τ)dτ S∗

∫ ∞

0
β (τ)e−λ τ π(τ)dτ

−
∫ ∞

0
β (τ)i∗(τ)dτ 1− S∗

∫ ∞

0
β (τ)e−λ τπ(τ)dτ

∣∣∣∣∣∣∣
= 0. (13.19)

Adding the second row to the first, we obtain

∣∣∣∣∣
λ + μ 1

−
∫ ∞

0
β (τ)i∗(τ)dτ 1− S∗

∫ ∞

0
β (τ)e−λ τπ(τ)dτ

∣∣∣∣∣= 0. (13.20)

We notice that
∫ ∞

0
β (τ)i∗(τ)dτ is just a positive number. We denote that positive

number by B. Expanding the determinant, we have

(λ + μ)(1− S∗
∫ ∞

0
β (τ)e−λ τ π(τ)dτ)+B = 0.

The general idea is to rewrite this equation so that there are positive terms on both
sides of the equation. In this case, a useful form for the characteristic equation of
the endemic equilibrium is

λ + μ +B
λ + μ

= S∗
∫ ∞

0
β (τ)e−λ τ π(τ)dτ. (13.21)

Now we will show that this equation cannot have solutions λ with positive real part.
Let λ = a+ bi, and assume a ≥ 0. Taking the absolute value of both sides of the
above equality, we have

∣∣∣∣λ + μ +B
λ + μ

∣∣∣∣=
√
(a+ μ +B)2 + b2√
(a+ μ)2 + b2

> 1.

On the other hand, for a ≥ 0 we have

|S∗
∫ ∞

0
β (τ)e−λ τ π(τ)dτ| ≤ S∗

∫ ∞

0
β (τ)|e−λ τ |π(τ)dτ

≤ S∗
∫ ∞

0
β (τ)e−aτ π(τ)dτ

≤ S∗
∫ ∞

0
β (τ)π(τ)dτ = 1. (13.22)
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This means that for λ with nonnegative real part, the left-hand side remains strictly
greater than one, while the right-hand side is strictly less than one. Thus, such λ ’s
cannot satisfy the characteristic equation (13.21). We conclude that the endemic
equilibrium is locally asymptotically stable.

Stability for the endemic equilibrium in age-since-infection structured models is
a rare event. It has been established that infection-age can destabilize the endemic
equilibrium in a simple SI model of HIV [153]. The main differences of the HIV
model from model (13.4) is that there is no recovery and that the incidence must be
a standard incidence, since sexual contacts do not increase linearly with the popula-
tion size.

13.3 Influenza Model Structured with Time-Since-Recovery

Besides the infectious class, other classes could be structured by the duration of
residence in the class or class-age. This is necessary particularly when parameters
describing the class may vary with the time individuals spend in the class.

13.3.1 Equilibria of the Time-Since-Recovery Model

To be more specific, let us consider again influenza. Instead of structuring the infec-
tious class with time-since-infection, it may be more realistic to consider structuring
the recovered class with time-since-recovery. Influenza strains are believed to im-
part permanent immunity to themselves and partial immunity to related influenza
strains. Because the makeup of influenza strains that circulate in the population
continuously changes, a recovered individual has an increasing probability of con-
tracting influenza again. Our goal with this model is to present an example of a
different class structure, as well as the fact that the endemic equilibrium does not
necessarily needs to be locally stable.

To introduce the model, we have classes of susceptible individuals S(t) who have
never had influenza, infected individuals I(t), and recovered individuals whose den-
sity is structured with time-since-recovery, r(τ, t). The model, first introduced in
[154], is given below:

S′(t) = Λ −β SI− μS,

I′(t) = β SI+ I
∫ ∞

0
γ(τ)r(τ, t)dτ − (μ +α)I,

rτ + rt = −γ(τ)Ir(τ, t)− μr(τ, t),
r(0, t) = αI. (13.23)

This model is structured by time-since-recovery. The newly recovered individuals
αI move into the recovery class with age-since-recovery equal to zero, that is, they
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give the boundary condition of the PDE. Recovered individuals can become infected
at a rate γ(τ). Realistically, we may expect that γ(τ) is an increasing function of τ .
The model is augmented with the following initial conditions:

S(0) = S0,

I(0) = I0,

r(τ,0) = φ(τ). (13.24)

We define the probability of survival in the recovered class:

π(τ) = e−I
∫ τ

0 γ(σ)dσ e−μτ .

To determine the equilibria, we set the time derivatives equal to zero. We have to
solve the following system:

Λ −β SI− μS = 0,

β SI+ I
∫ ∞

0
γ(τ)r(τ)dτ − (μ +α)I = 0,

rτ = −γ(τ)Ir(τ)− μr(τ),
r(0) = αI. (13.25)

Solving the differential equation, we obtain an expression for r(τ) in terms of the
number of infected I:

r(τ) = αIπ(τ).

In addition, we express S in terms of I from the first equation:

S =
Λ

β I+ μ
.

Substituting in the second equation, we obtain an equation for I:

βΛ I
β I+ μ

+αI2
∫ ∞

0
γ(τ)π(τ)dτ − (μ +α)I = 0. (13.26)

This equation clearly has the disease-free equilibrium E0 = (Λ
μ ,0,0). To find the

endemic equilibria, we can cancel one I and obtain the following equation for I �= 0:

βΛ
β I+ μ

+αI
∫ ∞

0
γ(τ)π(τ)dτ = (μ +α). (13.27)

We define the basic reproduction number

R0 =
βΛ

μ(α + μ)
. (13.28)
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Proposition 13.2. Assume R0 > 1. Then Eq. (13.27) has at least one positive solu-
tion.

Proof. Integration by parts shows that

I
∫ ∞

0
γ(τ)π(τ)dτ = 1− μ

∫ ∞

0
π(τ)dτ.

Hence,

lim
I→∞

I
∫ ∞

0
γ(τ)π(τ)dτ = 1.

We denote the left-hand side of (13.27) by f (I). We have f (0) = βΛ
μ . Hence, since

R0 > 1, we have f (0) > μ +α . On the other hand, we have limI→∞ f (I) = α <
α + μ . This shows that the equation f (I) = α + μ has at least one solution. �

It is biologically reasonable to assume that the reinfection rate γ(τ) is a bounded
function and that its supremum does not exceed β :

sup
τ

γ(τ)≤ β . (13.29)

Under this condition, Thieme and Yang [154] showed that the endemic equilibrium
E ∗ = (S∗, I∗,r∗(τ)) is unique. This equilibrium cannot be explicitly computed. If
condition (13.29) is not satisfied, then backward bifurcation may occur, and multiple
endemic equilibria are possible (see Problem 13.2).

13.3.2 Stability of Equilibria

In this subsection, we investigate the stability of the equilibria. We will concen-
trate primarily on the unique endemic equilibrium in the case that condition (13.29)
holds. As before, we start from linearizing system (13.23). Let (S∗, I∗,r∗) denote a
generic equilibrium. We set S = S∗+x(t), I = I∗+y(t), and r(τ, t) = r∗(τ)+ z(τ, t).
Substituting in the equations of (13.23), we obtain

(S∗+x)′(t) = Λ −β (S∗+x)(I∗+y)−μ(S∗ +x),

(I∗+y)′(t) = β (S∗+x)(I∗+y)+(I∗+y)
∫ ∞

0
γ(τ)(r∗+ z(τ, t))dτ − (μ +α)(I∗+y),

(r∗+ z)τ + zt = −γ(τ)(I∗+y)(r∗(τ)+ z(τ, t))−μ(r∗+ z(τ, t)),
r∗(0)+ z(0, t) = α(I∗+y). (13.30)

Multiplying out and using the equations for the equilibria (13.25), we obtain the
following system:
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x′(t) = −β S∗y−β I∗x−β xy− μx,

y′(t) = β S∗y+β I∗x+β xy+ I∗
∫ ∞

0
γ(τ)z(τ, t)dτ + y

∫ ∞

0
γ(τ)r∗(τ)dτ

+y
∫ ∞

0
γ(τ)z(τ, t)dτ − (μ +α)y,

zτ + zt = −γ(τ)yr∗(τ)− γ(τ)I∗z(τ, t)− γ(τ)yz(τ, t),−μz(τ, t),
z(0, t) = αy. (13.31)

We also neglect the quadratic terms in the perturbations x, y, and z to obtain the
following linear system in the perturbations:

x′(t) =−β S∗y−β I∗x− μx,

y′(t) = β S∗y+β I∗x+ I∗
∫ ∞

0
γ(τ)z(τ, t)dτ + y

∫ ∞

0
γ(τ)r∗(τ)dτ − (μ +α)y,

zτ + zt =−γ(τ)yr∗(τ)− γ(τ)I∗z(τ, t)− μz(τ, t),
z(0, t) = αy.

(13.32)

This is our linear system for the perturbations. To investigate the local stability of
the equilibria, we have to study the solutions of this system. As before, we ex-
pect that the solutions are exponential. Therefore, we look for solutions of the form
x(t) = x̄eλ t , y(t) = ȳeλ t , z(τ, t) = z̄(τ)eλ t . We obtain the following linear eigenvalue
problem for x̄, ȳ, and z̄(τ), and the eigenvalue λ :

λ x = −β S∗y−β I∗x− μx,

λ y = β S∗y+β I∗x+ I∗
∫ ∞

0
γ(τ)z(τ)dτ + y

∫ ∞

0
γ(τ)r∗(τ)dτ − (μ +α)y,

zτ +λ z = −γ(τ)yr∗(τ)− γ(τ)I∗z(τ)− μz(τ),
z(0) = αy, (13.33)

where in the above, we have dropped the bars. To investigate the stability of the
disease-free equilibrium, we have to write the above system for that equilibrium.
This will simplify that system significantly:

λ x = −β S∗y− μx,

λ y = β S∗y− (μ +α)y,

zτ +λ z = −μz(τ, t),
z(0) = αy. (13.34)

Problem 13.3 asks you to determine the stability of the disease-free equilibrium.
Use the above system to answer Problem 13.3.

Here, we assume that condition (13.29) holds, and we continue with the inves-
tigation of the unique endemic equilibrium. The next step will be to solve system
(13.33) and derive the characteristic equation. A typical way in which this can be
done is to solve an ordinary differential equation and express z in terms of y. Then
from the first equation, we can express x in terms of y. Then we may substitute the
expressions for z and x in the second equation. We will obtain an equation in y only.
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Since we are looking for a nontrivial eigenvector, we assume that y is not zero and
we cancel it. We obtain an equation in λ that constitutes the characteristic equation.

To carry out this plan, we begin by solving the differential equation. The ODE
is a first-order linear ODE with nonzero right-hand side. We move the terms that
depend on z to the left-hand side and the terms that do not depend on z to the right-
hand side. We multiply by the integrating factor e(λ+μ)τ+I

∫ τ
0 γ(σ)dσ . The differential

equation becomes
[
e(λ+μ)τ+I∗

∫ τ
0 γ(σ)dσ z

]′
=−γ(τ)yr∗(τ)e(λ+μ)τ+I∗

∫ τ
0 γ(σ)dσ .

Integrating both sides of this equation from 0 to τ and recalling that z(0) = αy, we
have

z(τ) = αye−(λ+μ)τ−I∗
∫ τ

0 γ(σ)dσ − y
∫ τ

0
γ(s)r∗(s)e−(λ+μ)(τ−s)−I∗

∫ τ
s γ(σ)dσ ds.

This gives an expression for z in terms of y. This equation can be rewritten also in
the form

z(τ) = αye−(λ+μ)τ−I∗
∫ τ

0 γ(σ)dσ − yr∗(τ)
∫ τ

0
γ(s)e−λ (τ−s)ds.

From the first equation in system (13.33), we have

x =− β S∗y
λ +β I∗+ μ

.

From the second equation in system (13.33), after substituting z and x and canceling
y, we obtain the characteristic equation:

(λ + μ +α) = β S∗ − β I∗β S∗

λ +β I∗+ μ
+

∫ ∞

0
γ(τ)r∗(τ)e−λ τ dτ

− I
∫ ∞

0
γ(τ)r∗(τ)

∫ τ

0
γ(s)e−λ (τ−s)dsdτ +

∫ ∞

0
γ(τ)r∗(τ)dτ.

(13.35)

Integrating the double integral by parts, thinking of Iγ(τ)e−I
∫ τ

0 γ(σ)dσ as u′ and the
rest as v, we can obtain the following simplified characteristic equation:

λ + μ +α =
β S(λ + μ)

λ +β I∗+ μ
+

∫ ∞

0
γ(τ)r∗(τ)e−λ τ dτ

+(λ + μ)
∫ ∞

0
r∗(τ)

∫ τ

0
γ(s)e−λ (τ−s)dsdτ. (13.36)

This characteristic equation does not always have only roots with negative real
parts. One can pose additional conditions that would imply stability. However, here
we would like to show that instability and oscillations may occur in this model.
To show this, we need to exhibit a specific example in which Hopf bifurcation can
occur and sustained oscillations are possible. To demonstrate this, we consider the
following special case:
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Assumption: Assume

γ(τ) =
{

0 0 ≤ τ ≤ A,
β τ > A,

(13.37)

where A is an arbitrary constant. This form of γ(τ) suggests that recovered individu-
als are completely protected for a period of time A and then completely susceptible
again. This is a reasonable assumption in influenza modeling. With this γ(τ), the
recovered individuals are given by the following expression:

r∗(τ) =
{

αI∗e−μτ 0 ≤ τ ≤ A,
αI∗e−μτ e−β I∗(τ−A) τ > A.

(13.38)

When the class-age structured function is a step function, the class-age model
becomes equivalent to a delay model. As a result, the characteristic equation (13.36)
can be significantly simplified. We compute the integrals:

∫ ∞

0
γ(τ)r∗(τ)e−λ τ dτ = αβ I∗

∫ ∞

A
e−μτ e−β I∗(τ−A)e−λ τdτ

=
αβ I∗

λ + μ +β I∗
e−(λ+μ)A. (13.39)

Given the value of the integral above with λ = 0, the equation for the equilibria
becomes

β S∗+
αβ I∗

μ +β I∗
e−μA = (μ +α). (13.40)

Recalling that S∗=Λ/(β I∗+μ), we can solve the resulting equation for I∗ to obtain

I∗ =
βΛ − μ(μ +α)

β (μ +α +αe−μA)
. (13.41)

The double integral in (13.36) can also be computed:

∫ ∞

0
r∗(τ)

∫ τ

0
γ(s)e−λ (τ−s)dsdτ =

∫ ∞

A
r∗(τ)

∫ τ

A
γ(s)e−λ (τ−s)dsdτ

= β αI∗
∫ ∞

A
e−μτ e−β I∗(τ−A)

∫ τ

A
e−λ (τ−s)dsdτ

=
αβ I∗eβ I∗A

λ

∫ ∞

A
e−μτe−β I∗τ e−λ τ(eλ τ − eλ A)dτ

=
αβ I∗eβ I∗A

λ

∫ ∞

A
e−μτe−β I∗τ dτ

−αβ I∗eβ I∗A+λ A

λ

∫ ∞

A
e−μτe−β I∗τ e−λ τdτ

=
αβ I∗e−μA

λ (μ +β I∗)
− αβ I∗e−μA

λ (λ + μ +β I∗)

=
αβ I∗e−μA

(μ +β I∗)(λ + μ +β I∗)
.

(13.42)
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Using the equation for the equilibria (13.40), the characteristic equation (13.36) can
be simplified as follows:

λ + μ +α =
β S∗(λ + μ)
λ +β I∗+ μ

+
αβ I∗e−(λ+μ)A

λ +β I∗+ μ
+

αβ I∗(λ + μ)e−μA

(λ +β I∗+ μ)(β I∗+ μ)
. (13.43)

Collecting terms gives us

(λ + μ +α)(λ +β I∗+ μ) = (λ + μ)
[

β S∗+
αβ I∗e−μA

μ +β I∗

]
+αβ I∗e−(λ+μ)A.

(13.44)
Using (13.40) and simplifying, we obtain

(λ + μ +α)(λ +β I∗+ μ)− (λ + μ)(α + μ) = αβ I∗e−(λ+μ)A. (13.45)

Hence, the characteristic equation simplifies to the following transcendental equation:

λ 2 +(β I∗+ μ)λ +β I∗(μ +α) = αβ I∗e−(λ+μ)A. (13.46)

Let λ = ξ + iη . We can use the methodology first introduced in Chap. 4 to find
eigenvalues with positive real part. We separate the real and the imaginary part in
the equation above. We obtain the following system:

{
ξ 2 −η2 +(β I∗+ μ)ξ +β I∗(μ +α) = αβ I∗e−(ξ+μ)A cosηA,
2ξ η +(β I∗+ μ)η =−αβ I∗e−(ξ+μ)A sin ηA.

(13.47)

To find parameters that will give us oscillations, we proceed in the following way.
We notice that the system above is linear in β I∗ and αβ I∗. Hence, we can solve for
these parameters. That cannot be done by hand, but a computer algebra system such
as Mathematica can do it. The expressions we obtain are rather large, and we will
not include them here. We view β I∗ = f (η) and αβ I∗ = g(η). We plot paramet-
rically the points ( f (η),g(η)) in the (β I∗,αβ I∗)-plane. We obtain the left figure
in Fig. 13.3. Before plotting, we fix the other parameters as follows. Since the cur-
rent worldwide lifespan of humans is 70 years, we define μ = 1/(70∗365) days−1.
The worldwide human population is 7 billion. So we compute Λ = 1000/365 births
per day (in units of 105). In this way, at equilibrium, where the population is Λ/μ ,
we would have 70,000 individuals (in units 105), that is, 7 billion individuals. We
will compute the infectious period so that oscillations occur. We take A = 30 days.
That is, prior exposure to influenza protects a person completely for 30 days, after
which one becomes completely susceptible again. That value for A will give too
small a period of oscillations for influenza. If we want a more realistic period, we
need to take A = 365. We fix ξ = 0.01. From the left figure of Fig. 13.3, we see that
for some η’s, the point in the (β I∗,αβ I∗)-plane is in the positive quadrant. Hence,
it gives a viable point. We guess a value of η that gives positive β I∗ = f (η) and
αβ I∗ = g(η). In the simulations, we took η = 0.19. That gives β I∗ = 0.172187
and αβ I∗ = 0.0896313. Dividing the second of these numbers by the first, we get
α = 0.520548, which gives an infectious period of less than two days. We determine
β from the formula for I∗:
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β I∗ =
βΛ − μ(μ +α)

(μ +α −αe−μA)
= f (0.19) = 0.172187.

This gives β = 0.0000482876. To observe the principal eigenvalue, we plot the
equations in system (13.47) as contour plots in the (ξ ,η)-plane. The eigenvalues
of Eq. (13.46) are given from the intersection of the two types of level curves. The
right-hand picture of Figure 13.3 shows that Eq. (13.46) exhibits Hopf bifurcation
and has a principal eigenvalue with positive real part.

To illustrate the oscillations, one needs to simulate the solution of system (13.23).
As an integrodifferential PDE system with nonlocal boundary condition, the system
cannot be automatically solved by a computer algebra system such as Matlab of
Mathematica. A numerical method needs to be built for system (13.23) and coded
in Matlab, Fortran, or C. In the next subsection, we discuss how to discretize the
system.

13.3.3 Numerical Method for the Time-Since-Recovery Model

In this section, we build a numerical method and code model (13.23). The numerical
method is a finite difference method that discretizes both the age and time variables
and computes the solution at a number of points that form a mesh.

As a first step, we need to discretize the domain of the system (13.23). Recall
that the domain is given by

0.0 0.2 0.4 0.6 0.8
bI0.0

0.5

1.0

1.5

abI

−0.10 −0.05 0.00 0.05 0.10
0.0

0.1
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0.3

0.4

0.5

x

h

Principal Eigenvalue

Fig. 13.3 The left figure gives the parametric plot in the (β I∗,αβ I∗)-plane. The right figure shows
the level curves of system (13.47). The level curves of the first equation are given by a continuous
curve, and the level curves of the second equation are given in dashed curves. The eigenvalues are
given by the intersection of continuous and dashed curves. The principal eigenvalue is the one that
is farthest to the right. The figure indicates it with a point. The principal eigenvalue has ξ = 0.01,
as set in the computation (see text)
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D = {(τ, t) : τ ≥ 0, t ≥ 0}.

The domain D is an infinite domain. We cannot compute with infinite domains, so
we have to truncate it in both the age and time directions. We will consider the finite
domain

D̄ = {(τ, t) : 0 ≤ τ ≤ G,0 ≤ t ≤ T}.
What is a sensible way to choose G so that when we truncate the infinite integral
in the boundary condition, we do not make too much of an error? One way is to
choose G large enough that e−μG is almost zero. Since the solutions decay with
e−μτ , computing in τ until this exponent becomes zero, at least in a computational
sense, will guarantee that the error of replacing the infinite integral with a finite one
will not modify the solution too much.

To discretize, we take the points along the age direction equally spaced with a
step Δτ: τk = kΔτ . Since both age and time progress simultaneously, we discretize
the time with same step Δ t = Δτ . The points in the time direction are given by
tn = nΔ t. These points discretize the domain D̄ with a discrete square mesh. We
define the number of steps made in each direction as

K =

[
G
Δ t

]
, N =

[
T
Δ t

]
,

where [·] denotes the integer part of the expression. We may modify G and T a little
so that without loss of generality, we may assume that

G = KΔ t, T = NΔ t.

To discretize the time-since-recovery model (13.23), we assume S(tn) ≈ Sn,
r(τk, tn)≈ rn

k , I(tn)≈ In. We first discretize the equation for the susceptibles, which
is a first-order ODE. We can use a backward difference to replace the time deriva-
tive. Thus, we evaluate the equation at time level tn+1 and apply a backward finite
difference for the time derivative. We obtain

Sn+1 − Sn

Δ t
= Λ −β Sn+1In+1 − μSn+1.

From here, we should be able to compute Sn+1, knowing the values at the nth time
level. However, as the equation stands now, this is not possible, because we do
not know In+1. To simplify the computations, we “linearize” the nonlinear term
and evaluate I at time level n rather than time level n+ 1. This is legitimate in
numerical methods, since In and In+1 are close, and so their values should be close.
The equation above becomes

Sn+1 − Sn

Δ t
= Λ −β Sn+1In − μSn+1.
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Now we can use this equation to compute Sn+1 from values at level n. Since the
equation for I contains both S and r as well as I, we compute that last. Next we
discretize the PDE. We evaluate it at tn+1 and τk. We have

rτ (τk, tn+1)+ rt(τk, tn+1) =−γ(τk)I(tn+1)r(τk, tn+1)− μr(τk, tn+1).

We replace the derivative in τ with a forward difference and the derivative in time
with a backward difference. We obtain the following difference equation:

rn+1
k+1 − rn+1

k

Δ t
+

rn+1
k − rn

k

Δ t
=−γkIn+1rn+1

k − μrn+1
k .

The left-hand side can be simplified by canceling the two rn+1
k terms. The right-

hand side contains rn+1
k , while the left-hand side contains only rn+1

k+1 and rn
k . It makes

sense to replace rn+1
k on the right-hand side with one of the two on the left. The

better choice is to replace them with rn+1
k+1 . This makes the method “implicit,” that

is, the right-hand side depends on the time level that we are computing. We need to
solve the equation for rn+1

k+1 , but that is not difficult, since the equation is linear in r.
As with the S equation, we “linearize” the nonlinear term by computing I at time
level n rather than time level n+ 1. The discretization of the PDE becomes

rn+1
k+1 − rn

k

Δ t
=−γkInrn+1

k+1 − μrn+1
k+1 .

This equation can be solved easily for rn+1
k+1 . It gives a formula for the computation

of the next value of r along the characteristic line:

rn+1
k+1 =

rn
k

1+ γkInΔ t + μΔ t
.

From the boundary condition, we have

rn+1
0 = αIn+1.

Here we do not “linearize” at the previous level. This means that we cannot compute
the boundary condition until we have computed In+1. The reason we do not linearize
here is that the αI in the equation for I will be computed at level n+ 1, so that the
method is implicit, but the two terms have to cancel each other if we are to obtain
the equation for the total population size. We may use the right-endpoint rule to
compute the integral in the equation for I. In this way, we may avoid using the
boundary condition for r in the equation for I. We compute the equation for I at time
level n+1, discretize the derivative with a backward difference, and the integral with
a right-endpoint rule sum:

In+1 − In

Δ t
= β Sn+1In+1 + In+1

K

∑
k=1

γkrn+1
k Δ t − (μ +α)In+1.
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We replace In+1 with In in the terms with S and r so that they agree with the corre-
sponding terms in the equations for S and r. We obtain

In+1 − In

Δ t
= β Sn+1In + In

K

∑
k=1

γkrn+1
k Δ t − (μ +α)In+1.

In this way, we can compute In+1 before we compute the boundary condition for
r. In case we want to use a different rule for the integral, such as the trapezoidal
rule, we have to solve a system of equations to find the solution at time level n+ 1.
With this scheme, the computation is performed time level after time level. To begin
the computation, we initialize all variables with the initial conditions that give the
values at time level zero:

S0 = S0 I0 = I0, r0
k = φk ,k = 0, . . . ,K.

We summarize the numerical method below:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn+1 =
ΛΔ t + Sn

1+β InΔ t + μΔ t
n = 0, . . . ,N − 1,

In+1 =
In +β Δ tSn+1In + InΔ t ∑K

k=1 γkrn+1
k Δ t

1+αΔ t+ μΔ t
n = 0, . . . ,N − 1,

rn+1
k+1 =

rn
k

1+ γkInΔ t + μΔ t
, k = 0, . . . ,K − 1,

n = 0, . . . ,N − 1,
S0 = S0

I0 = I0

r0
k = φk k = 0, . . . ,K.

(13.48)

The numerical method in (13.48) is given by a difference scheme. It can be shown
(but we will not do so here) that the solutions of the difference scheme converge to
the solution of the continuous problem (13.23) with the same speed as CΔ t con-
verges to zero as Δ t converges to zero. Here C is an appropriate constant. In this
case, we say that the method has convergence rate O(Δ t). The method (13.48)
has other important strengths. In particular, its solutions are always nonnegative
for every value of the step Δ t. Finally, it is easy to code and has relatively low
computational complexity (number of operations). An appropriate size of the step
for running this method is Δ t = 0.01. Smaller step sizes are also appropriate, but
one has to keep in mind that as the step size decreases, the time needed to perform
the computation increases. We ran the method with the parameters estimated in the
previous subsections. The number of infected individuals, which exhibits sustained
oscillations, is plotted in Fig. 13.4.

Acknowledgements The author thanks Necibe Tuncer for her help with the Matlab code and
checking.
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Fig. 13.4 Oscillations in the number of infected individuals I(t)

Appendix

In this appendix we include the Matlab code that executes the numerical method in
the section.

1 function [S, I] = sir3(M,N,dt)
2

3

4

5 T = dt*N;
6 G = dt*M;
7

8 Lambda = 1000/365;
9 mu = 1/(70*365);

10 alpha = 0.520548;
11 beta = 0.0000482876;
12

13 S = zeros(N,1);
14 I = zeros(N,1);
15 rold = zeros(N,1);
16 rnew = zeros(N,1);
17

18 S(1) = 7000;
19 I(1) = 30000;
20

21 for i = 1:M
22 rold(i) = 10;
23 end
24

25 t = 0:dt:T;
26 ttau = 0:dt:G;
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27

28 for n = 1:N
29

30 S(n+1) = (Lambda*dt+S(n))/(1+beta*I(n)*dt + mu*dt);
31

32 Int = 0.0;
33

34 for i = 1:M
35

36 tau = i*dt;
37

38 if tau < 30
39

40 q = 0.0;
41

42 elseif tau ≥ 30
43

44 q = 1;
45

46 end
47

48 rnew(i+1) = rold(i)/(1 + q*beta*I(n)*dt + mu*dt);
49

50 Int = Int + q*rnew(i+1)*dt;
51

52 end
53

54 I(n+1) = (I(n) + beta*S(n+1)*I(n)*dt + ...
I(n)*dt*beta*Int)/(1 + (mu + alpha)*dt);

55

56 rnew(1) = alpha*I(n+1);
57

58

59 for i = 1:M
60

61 rold(i) = rnew(i);
62

63 end
64

65 end
66

67 plot(t, I, '-r')
68 xlim([90000,91000])
69

70

71 end
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Problems

13.1. Consider the SIR model with age-of-infection (13.4). Assume that the trans-
mission rate and the recovery rate are given by the following functions:

γ(τ) =
{

0 τ ≤ A
γ τ > A

(13.49)

and β (τ) = β τekτ .

(a) Compute the probability of survival in the infectious class: π(τ)= e−μτe−
∫ τ

0 γ(s)ds.
(b) Compute the reproduction number in terms of k and A.
(c) Compute the endemic equilibrium in terms of k and A.

13.2. Backward Bifurcation in the Time-Since-Recovery Model
Consider Eq. (13.27) with γ(τ) = γ , a constant.

(a) Show that if γ ≤ β and R0 > 1, the equation (13.27) has a unique nonzero
solution. Furthermore, show that if γ ≤ β and R0 < 1, the equation (13.27) has
no solutions.

(b) Show that if γ > β and R0 < 1, the equation (13.27) may have two solutions.
(c) For α = 0.05, μ = 1/(365 ∗ 70), β = 0.021, and γ = 0.025, use a computer

algebra system to draw the backward bifurcation diagram of I∗ with respect
to R0.

13.3. Consider the model with time-since-recovery (13.23). Show that if R0 < 1, the
disease-free equilibrium is locally asymptotically stable. Furthermore, show that if
R0 > 1, the disease-free equilibrium is unstable.

13.4. HIV/AIDS Model
Consider the following model of HIV:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S′(t) = Λ − S(t)
N(t)

∫ ∞

0
β (τ)i(τ, t)dτ − μS(t),

iτ(τ, t)+ it(τ, t) =−γ(τ)i(τ, t)− μ i(τ, t),

i(0, t) =
S(t)
N(t)

∫ ∞

0
β (τ)i(τ, t)dτ,

(13.50)

where S(t) are the susceptible individuals, i(τ, t) is the density of the infected indi-
viduals, N(t) is the total population size. We have to use standard incidence in HIV
models. (Why?)

(a) Compute R0 and the disease-free equilibrium. Show that if R0 < 1, the disease-
free equilibrium is locally stable and that otherwise, it is unstable.

(b) Compute the endemic equilibrium.
(c) Derive the characteristic equation of the endemic equilibrium.
(d) Take β (τ) = τe−cτ . Is the endemic equilibrium stable or unstable in this case?
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13.5. HIV/AIDS Model
Consider the following model of HIV:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S′(t) = Λ − S(t)
N(t)

∫ ∞

0
β (τ)i(τ, t)dτ − μS(t),

iτ(τ, t)+ it(τ, t) =−γ(τ)i(τ, t)− μ i(τ, t),

i(0, t) =
S(t)
N(t)

∫ ∞

0
β (τ)i(τ, t)dτ,

(13.51)

where S(t) are the susceptible individuals, i(τ, t) is the density of the infected indi-
viduals, N(t) is the total population size. Assume

β (τ) = τe−cτ .

(a) Compute R0 and the disease-free equilibrium.
(b) Compute the endemic equilibrium.
(c) Derive the characteristic equation of the endemic equilibrium.
(d) Is the endemic equilibrium stable or can it become unstable in this case?

13.6. HIV/AIDS Model
Consider the following model of HIV:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S′(t) = Λ − S(t)
N(t)

∫ ∞

0
β (τ)i(τ, t)dτ − μS(t),

iτ(τ, t)+ it(τ, t) =−γ(τ)i(τ, t)− μ i(τ, t),

i(0, t) =
S(t)
N(t)

∫ ∞

0
β (τ)i(τ, t)dτ,

(13.52)

where S(t) are the susceptible individuals, i(τ, t) is the density of the infected indi-
viduals, N(t) is the total population size.

(a) Derive a numerical method for model (13.52).
(b) Write a Matlab code to simulate the method. How do you know whether your

code computes correctly? Compare the equilibrium computed by the code with
the one that you computed in Problem 13.5.

13.7. Time-Since-Vaccination Model
Many vaccines wane, and the waning depends on the time elapsed since the individ-
ual was vaccinated. Consider the following model with time-since-vaccination τ:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S′(t) = Λ −β S(t)I(t)− (μ+ψ)S(t)+
∫ ∞

0
ω(τ)v(τ, t)dτ,

I′(t) = β S(t)I(t)− (μ +α)I,
vτ + vt =−ω(τ)v(τ, t)− μv(τ, t),
v(0, t) = αI+ψS,

(13.53)



13.3 Influenza Model Structured with Time-Since-Recovery 359

where v(τ, t) is the density of vaccinated individuals structured by the time-since-
vaccination τ , and ψ is the vaccination rate.

(a) Interpret all terms in the model. What is the assumed efficacy of the vaccine in
this model?

(b) Compute the reproduction number R0(ψ).
(c) Compute the disease-free equilibrium. Show that if R0(ψ)< 1, the disease-free

equilibrium is locally asymptotically stable; otherwise, the disease-free equilib-
rium is unstable.

(d) Compute the endemic equilibrium.

13.8. Time-Since-Vaccination Model
Many vaccines wane, and the waning depends on the time elapsed since the individ-
ual was vaccinated. Consider the following model with time-since-vaccination τ:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S′(t) = Λ −β S(t)I(t)− (μ+ψ)S(t)+
∫ ∞

0
ω(τ)v(τ, t)dτ,

I′(t) = β S(t)I(t)− (μ +α)I,
vτ + vt =−ω(τ)v(τ, t)− μv(τ, t),
v(0, t) = αI+ψS,

(13.54)

where v(τ, t) is the density of vaccinated individuals structured by the time-since-
vaccination τ , and ψ is the vaccination rate.

(a) Write a numerical method for the model above. Show that your numerical
method preserves the positivity of solutions.

(b) Write a Matlab code to simulate the model. How do you know whether your
code computes correctly? Compare the equilibrium computed by the code with
the one that you computed in Problem 13.7.

13.9. Time-Since-Infection Model of Vector-Borne Disease
Consider the following model of a vector-borne disease, structured by time-since-
infection τ: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′v = Λv − Sv

∫ ∞

0
βH(τ)i(τ, t)dτ − μvSv,

I′v = Sv

∫ ∞

0
βH(τ)i(τ, t)dτ − μvIv,

S′H = ΛH −βvSHIv − μHSH ,

iτ + it =−(αH(τ)+ μH)i(τ, t),

i(0, t) = βvSHIv,

R′
H =

∫ ∞

0
αH(τ)i(τ, t)dτ − μHRH ,

(13.55)

where Sv, Iv are the susceptible and infected vectors, SH , i(τ, t), and RH are the
susceptible, infected, and recovered humans.
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(a) Compute the reproduction number R0.
(b) Compute the disease-free equilibrium. Show that if R0 < 1, the disease-free

equilibrium is locally asymptotically stable; otherwise, it is unstable.
(c) Compute the endemic equilibrium.
(d) Derive the characteristic equation of the endemic equilibrium. Can you show

local stability of the endemic equilibrium?



Chapter 14
Immuno-Epidemiological Modeling

14.1 Introduction to Immuno-Epidemiological Modeling

To better understand the spread of infectious diseases in populations, we need to
realize that each infectious person harbors the pathogen, and that pathogen is in dy-
namic interplay with the host immune system. The host’s propensity to transmit the
pathogen or die from it depends on the amount of the pathogen in the system as well
as the intensity of the immune response. The spread of diseases on a population level
depends on these within-host disease characteristics of infectious individuals. Fur-
ther understanding of epidemiological processes relies on our knowledge of within-
host (immunological) processes and the links between the two scales. Just as the
epidemiological processes have been extensively modeled within their own scale,
immunological processes have also been modeled widely. A variety of within-host
dynamical models exists for most human diseases such as HIV, HCV, influenza, and
malaria. The within-host and between-host models are the two basic building blocks
of a new class of models, called immuno-epidemiological models. The new subject
of immuno-epidemiology merges individual and population-oriented approaches to
examine how within-host pathogen dynamics affect the population dynamics of
micro- and macro-parasites to produce the epidemiological patterns of infection ob-
served in the host populations [18]. There are a number of mathematical approaches
to modeling simultaneously the two scales; however, we will concentrate here on
the nested modeling. This modeling approach uses a dynamical within-host model
and embeds it into an age-since-infection structured epidemiological model (see
Fig. 14.1). The two models are linked through the age-since-infection variable of
the epidemiological model, which is the time variable of the immunological model.
Furthermore, the two models are linked through the age-since-infection-dependent
epidemiological parameters, which are taken as functions of the immunologically
dependent variables, such as pathogen load and immune response. In the process of
formulating age-since-infection structured epidemiological models, we argued that
the infection transmission rate should not be constant but that it should depend on

© Springer Science+Business Media New York 2015
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Fig. 14.1 Diagram of nesting within-host and between-host scales

the time-since-infection. The rationale for this is that particularly for HIV, infectiv-
ity is actually dependent on the within-host viral load, and since this viral load is
changing as the infection progresses, so should the transmission rate. In this chap-
ter, we will make this dependence of the transmission rate on the within-host viral
load explicit, connecting the epidemiological transmission rate to the pathogen load.
This new class of models, called nested immuno-epidemiological models, will help
us address a number of questions that we could not address before. For instance,
how do medications, which affect specific immunological parameters, affect the
between-host distribution of disease? These models are also particularly suitable for
addressing questions on the evolution of virulence.

To build the immuno-epidemiological models, we need to be able to build im-
munological models first, so in the next section, we briefly introduce within-host
processes and their dynamical modeling. Several excellent books are devoted en-
tirely to within-host modeling [105, 127, 168].

14.2 Within-Host Modeling

Recall that a pathogen or infectious agent is a microorganism that causes disease
in its host. Pathogens can be of many types. Pathogens include viruses, bacteria,
prions, and fungi. Pathogens use host resources, such as healthy cells, to replicate
and interact with the immune system of the host.



14.2 Within-Host Modeling 363

Fig. 14.2 Interaction of a virus with a target cell. The virus enters the cell and loses its envelope.
The virus’s genetic material interacts with the genetic material of the target cell to reproduce more
copies of genetic material. New viruses are assembled and leave the cell

14.2.1 Modeling Replication of Intracellular Pathogens

Many pathogens are intracellular, which means that they need to enter a cell to repro-
duce. The cells that a pathogen uses to reproduce are a specific type of cells, called
target cells. For instance, in HIV, the pathogen is the human immunodeficiency
virus, and the target cells are the CD4 cells. In human tuberculosis, the pathogen
is the bacterium M. tuberculosis, and the target cells are the macrophages. The tar-
get cells that do not contain a pathogen will be called susceptible cells. The target
cells that contain pathogen are called infected cells. The newly produced pathogen
can exit the host cell either through budding out of the cell membrane or through
destroying the cell, a process called lysis. The pathogen can exist in a free state and
interact with the host immune system (Fig. 14.2).

This process can be modeled with a system similar to the epidemiological mod-
els. If we denote the susceptible target cells by T (t), the infected target cells by I(t),
and the free virus by V (t), then the model becomes

T ′ = r−ρTV − dT,

I′ = ρTV − δ I,

V ′ = pI− cV, (14.1)

where d is the uninfected target cells’ natural death rate, δ is the infected target
cells’ death rate, c is the clearance rate of the virus, p is the virus production rate
of infected cells, ρ is the infection rate of target cells by free virus, and r is the
rate of production of target cells. This model captures well the within-host dynam-
ics of HIV and HCV. Analysis of within-host models can be performed similarly
to epidemiological models. We expect again two types of equilibria: infection-free
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Fig. 14.3 The within-host viral load exhibits an early peak before stabilizing at equilibrium levels.
Parameter values are r = 50,000,000, ρ = 0.000000000015, d = 0.01, δ = 0.5; p and c are given
in the legend. As p increases, the peak occurs sooner and is more pronounced

equilibria and infection equilibria. The infection-free equilibrium is adequate for
diseases in which the virus is eventually cleared from the body, such as influenza.
An infection equilibrium corresponds to chronic diseases, such as HIV and HCV. To
find the equilibria, we set the right-hand side in system (14.1) to zero. Expressing I
in terms of V from the last equation, I = c

pV , and replacing it in the second equation,

we obtain T = δc
ρ p . Then, using the value of T , we obtain V from the first equation:

V =
rp
δc

− d
ρ
.

In analogy with the epidemiological reproduction number, here we can define the
immunological reproduction number:

ℜ0 =
rpρ
δdc

.

The immunological reproduction number gives the number of secondary viral par-
ticles that one viral particle will produce in the entirely susceptible target cell popu-
lation. The solution of the system for the equilibria is then given by

T ∗ =
δc
ρ p

I∗ =
cd
pρ

(ℜ0 − 1), V ∗ =
d
ρ
(ℜ0 − 1). (14.2)

Model (14.1) has been completely analyzed [49]. The analysis shows that if ℜ0 < 1,
the infection-free equilibrium is globally asymptotically stable. If ℜ0 > 1, the
infection-free equilibrium is unstable, and the infection equilibrium is globally
asymptotically stable. The model exhibits the typical peak at early infection that
many pathogens display after becoming adapted to the host and beginning to repli-
cate (see Fig. 14.3).
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14.2.2 Modeling the Interaction of the Pathogen
with the Immune System

The immune system is a biological structure within the host that has evolved to
protect the host from disease. The immune system is very complicated and mounts
a response to a foreign invader that is both general and specific to the invader. When
a pathogen enters a host, it first encounters the innate immune system. The innate
immune system triggers the adaptive immune system, which mounts an antigen-
specific response.

The pathogen or some part of it, called an antigen, is engulfed by APCs antigen
presenting cells and “presented” to the T-helper cells. T-helper cells further acti-
vate the killer T-cells, which are a part of the cellular immune response. The killer
T-cells destroy the cells already infected by the pathogen. B-cells are also activated
further in the immune response. B cells, which are a part of the humoral immune
response, recognize the whole pathogen without presentation. The B cells engulf the
pathogen and decompose it, expressing certain parts of it on its surface. As the B
cells begin to divide, they secrete antibodies that circulate in the blood and mark the
pathogen and the infected target cells for destruction. Schematically, the main play-
ers in the immune response to a pathogen are described in Fig. 14.4. APC, such as
macrophages and dendritic cells, help initiate the adaptive immune response. They
have a dual role. On the one hand, they engulf and then digest cellular parts and
pathogens. On the other, they present the pathogen to the T-helper cells, thus acti-
vating the corresponding T-helper cells.

Fig. 14.4 The activation of the immune system by a pathogen
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Mathematical models of the interplay of pathogens with the immune system vary
from very simple to quite complicated. One of the simplest models was proposed by
Gilchrist and Sasaki [65], which includes only the pathogen P(t) and the immune
cells B(t):

P′ = rP− cBP,

B′ = aBP, (14.3)

where r is the pathogen reproduction rate, c is the pathogen clearance rate by the
B-cells, and a is the stimulation of B-cell production by the pathogen. This model
is very simple, and it can be solved, although an implicit solution is obtained. Prob-
lem 14.1 asks you to do that. The model has a set of equilibria with P∗ = 0 and B∗
arbitrary: E0 = (0,B∗). Over the long term, the pathogen is always cleared, so the
model mimics only acute infection and recovery. This is illustrated in Fig. 14.5. The
outcome of the dynamics is sensitive to the initial conditions.

50 100 150 200 250 300 350
time
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P t

B t

Fig. 14.5 The activation of the immune system by a pathogen given by system 14.3. Parameters
are r = 0.1, c = 0.01, a = 0.0001, P(0) = 10, B(0) = 8

Mohtashemi and Levins [95] considered two other features of the immune sys-
tem: the spontaneous production of specific cells and their decay. In this case, the
model can capture both acute and chronic infection:

P′ = rP− cBP,

B′ = kP− δB+ h, (14.4)

where h is the constant production of specific cells, and δ is their clearance rate.
The production of B cells is assumed proportional to the pathogen with constant
of proportionality k. Model (14.4) has two equilibria: a pathogen-free equilibrium
E0 = (0,h/δ ) and a coexistence equilibrium. The coexistence equilibrium is present
if and only if the immunological reproduction number

ℜ0 =
δ r
hc
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is greater than one: ℜ0 > 1. The coexistence equilibrium is given by E ∗ = (P∗,B∗),
where

P∗ =
h
k
(ℜ0 − 1) B∗ =

r
c
.

It can be shown that the coexistence equilibrium is globally stable. More immuno-
logical models can be found in the problems section.

14.2.3 Combining Intracellular Pathogen Replication
and Immune Response

More complex within-host models combine the intracellular replication of the
pathogen and the immune response. The model is based on model (14.1) but in-
cludes the killer T-cells, which destroy the infected target cells, and antibodies
that help destroy the free pathogen. Both immune responses are stimulated by the
pathogen, so they function in competition. The model below was presented in [168].
We denote again by T the target cells, by I the infected target cells, and by V the
virus. Killer T-cells are denoted by Z, and antibodies are denoted by A:

T ′ = r−ρTV − dT,

I′ = ρTV − δ I−ψIZ,

V ′ = pI − cV − qVA,

Z′ = aIZ − μZ,

A′ = bVA−νA. (14.5)

Infected target cells are killed at a rate ψIZ, and pathogen is destroyed at a rate
qVA. The killer T-cells’ response is stimulated at a rate aIZ, and the antibodies are
stimulated at a rate bVA.

Equilibria of model (14.5) are solutions of the system obtained by setting
the right-hand side of system (14.5) to zero. We have a number of solutions of
this system. First, we have the infection-free, immune-response-free equilibrium
E0 = ( r

d ,0,0,0,0). Infection develops when the immune reproduction number is
greater than one:

ℜ0 =
rpρ
δdc

> 1.

The infection- and immune-response-free equilibrium is given by E1 = (T1, I1,
V1,0,0), where

T1 =
δc
ρ p

I1 =
cd
pρ

(ℜ0 − 1) V1 =
d
ρ
(ℜ0 − 1).

The system has three more solutions: one in which the killer T-cells are present
but the antibody response is not, another in which the antibody response is present
but the killer T-cells are not, and finally a third one, in which both immune responses
are present. To define the killer T-cells’ immune response, we define a killer T-cell’s
invasion number (see Chap. 8)
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ℜ1 =
pρ
cδ

rca
ρ pμ + dca

.

If ℜ1 > 1, the infection, killer T-cell immune response equilibrium is present: E2 =
(T2, I2,V2,Z2,0), where

T2 =
r

ρV2 + d
=

rca
ρ pμ + dca

, I2 =
μ
a

V2 =
pμ
ca

Z2 =
δ
ψ
(ℜ1 − 1).

When the antibody response is present but the killer T-cell response is not, we obtain
another equilibrium. The infection, antibody immune response equilibrium exists if
the antibody invasion number ℜ2 is greater than 1, where

ℜ2 =
pρ
cδ

rb
ρν + bd

.

In this case, we obtain the equilibrium E3 = (T3, I3,V3,0,A3), where

T3 =
r

ρV3 + d
=

rb
ρν + bd

, I3 =
ρν
δb

rb
ρν + bd

, V3 =
ν
b
, A3 =

c
q
(ℜ2−1).

The final equilibrium is an infection, killer T-cells, and antibody response equi-
librium with all components present. This equilibrium exists if the killer T-cells’
invasion number in the presence of antibodies ℜ3 and the antibody invasion num-
ber in the presence of killer T-cells ℜ4 are both greater than one. The two invasion
numbers are defined as follows:

ℜ3 =
ρ
δ

νa
bμ

rb
ρν + bd

, ℜ4 =
p
c

μb
aν

.

We note that ℜ3ℜ4 = ℜ2. The infection, killer T-cells, and antibody response equi-
librium E4 = (T4, I4,V4,Z4,A4) is given by

T4 =
rb

ρν + bd
, I4 =

μ
a
, V4 =

ν
b
,

Z4 =
δ
ψ
(ℜ3 − 1), A4 =

c
q
(ℜ4 − 1).

(14.6)

The complete analysis of model (14.5) is complex. No oscillations have been found
in this model [169].

14.3 Nested Immuno-Epidemiological Models

Each of the models (14.1), (14.3), (14.4), and (14.5) as well as any other immuno-
logical model can be coupled with an appropriate epidemiological model to form a
two-scale immuno-epidemiological model. The model that will be formulated and
used depends on the disease we want to study as well as the question we would
like to address. If we would like to study the impact of medications, we need to
use model (14.1), since most medications impact the production of the virus. If we
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would like to study coevolution, we need to use model (14.3) or model (14.4), since
they involve the two variables that evolve in the parasites and the host: the reproduc-
tion rate of the parasite r and the immune response of the host a. Coupling model
(14.5) with an appropriate epidemiological model may allow us to study both the
impact of drugs on the epidemiology of the disease and the coevolution of parasites
and hosts. In the next subsection, we will compose a model that will allow us to
study the epidemiology of the disease as well as the evolution of the parasite.

14.3.1 Building a Nested Immuno-Epidemiological Model

The first nested immuno-epidemiological model was proposed by Gilchrist and
Sasaki [65]. Their goal was to study the coevolution of pathogens and hosts. The
idea is simple. The infected individuals in the population are structured by time and
time-since-infection i(τ, t), where τ , the time-since-infection, is the independent
variable in the immunological model. We take model (14.1) with τ as independent
variable. Then T (τ), I(τ), V (τ) are functions of τ . We embed (14.1) into an epi-
demiological model, say of HIV. We take a simple SI with time-since-infection:

S′ = Λ − S
N

∫ ∞

0
β (V (τ))i(τ, t)dτ −m0S,

iτ + it = −m(V(τ))i,

i(0, t) =
S
N

∫ ∞

0
β (V (τ))i(τ, t)dτ, (14.7)

where β (τ) is the transmission rate and m(τ) is the death rate; N is the total popu-
lation size, and m0 is the natural death rate:

N = S+
∫ ∞

0
i(τ, t)dτ.

The second step in linking the immunological and epidemiological models is to
link the epidemiological parameters to the immunological variables. The simplest
scenario will be to assume the epidemiological parameters proportional to the viral
load. In particular,

β (V (τ)) = bV(τ) m(V (τ)) = m0 +m1V (τ). (14.8)

The immuno-epidemiological model (14.1)–(14.7) is perhaps one of the simplest
models of this type. It has multiple drawbacks:

1. It assumes that all individuals in the population experience the same within-host
dynamics. This problem can be remedied if multiple groups of infected individ-
uals are included in the population.

2. The immunological model does not experience the growth of the viral load as-
sociated with AIDS. This problem can be remedied if an AIDS compartment is
included in the epidemiological model:
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Fig. 14.6 Data and fit of the function 1/(1+Be−rx ln 10) to the data, where x = logV . Data taken
from [92]

S′ = Λ − S
N

∫ ∞

0
β (V (τ))i(τ, t)dτ −m0S,

iτ + it = −m(V (τ))i− γ(τ)i,

i(0, t) =
S
N

∫ ∞

0
β (V (τ))i(τ, t)dτ,

A′ =
∫ ∞

0
γ(τ)i(τ, t)dτ −νA, (14.9)

where A(t) gives the number of people with AIDS. The dependence of the rate
of transition to AIDS γ(τ) on the immunological parameters is not clear.

3. The dependence of β (τ) and m(τ) on the viral load as specified in Eq. (14.8) can
be criticized:

• The linear dependence of β (τ) is not ideal. In particular, we know that
β (τ) = C(τ)q(τ), where C(τ) is the contact rate and q(τ) is the probability
of transmission. In HIV, the contact rate either remains constant or decreases
with the viral load, as infected individuals become progressively sicker. The
probability of transmission increases with the viral load, but it is bounded by
1. Lange and Ferguson [92] found that the dependence of the risk of infection
on log(V (τ)) is best fitted by an S-shaped function. We used the data in [92]
to fit the function 1/(1+Be−rx ln10) to the data (see Fig. 14.6). The best-fitted
parameters were B = 7952.52 and r = 0.6. Recalling that x = log10 V (τ), we
obtain the following function of the viral load:

q(τ) =
1

1+BV−r(τ)
=

V r(τ)
V r(τ)+B

.
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If the contact rate is assumed constant, the following dependence of β on the
viral load is a reasonable approximation of the above function, although [92]
suggests a different relationship:

β (V (τ)) =
bV(τ)

B+V(τ)
, (14.10)

where b is an appropriate constant.
• The equation given in (14.8) for m(τ) suggests that given that the viral load

is maximal during the acute stage, the maximal death rate is also maximal
during the acute stage, which is not the case in HIV. This problem may be
remedied by the introduction of an AIDS class.

Despite its shortcomings, the immuno-epidemiological model (14.1)–(14.7) is an
adequate tool to study the impact of the within-host dynamics and HIV medications
on the epidemiology of the disease.

14.3.2 Analysis of the Immuno-Epidemiological Model

To connect the immunological model to the epidemiology, we compute key epidemi-
ological quantities such as the reproduction number and the prevalence in terms of
the immunological quantities. To find the equilibria of the epidemiological model,
we consider the system

Λ − S
N

∫ ∞

0
β (V (τ))i(τ)dτ −m0S = 0,

∂ i
∂τ

= −m(V (τ))i,

i(0) =
S
N

∫ ∞

0
β (V (τ))i(τ)dτ. (14.11)

This system has the disease-free equilibrium E0 = ( Λ
m0

,0). To compute the endemic
equilibrium, we define

π(τ) = e−
∫ τ

0 m(V (σ))dσ .

We recall that π(τ) is the probability of survival in the infectious class. We use π(τ)
to solve the differential equation: i(τ) = i(0)π(τ). We replace the solution in the
third equation in (14.11). After canceling i(0), we obtain the following expression
for the fraction of susceptible individuals:

S
N

=
1∫ ∞

0
β (V (τ))π(τ)dτ

.
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The fraction of susceptible individuals is less than one. We need the fraction on the
right to be less than one. This prompts us to define the following expression as the
epidemic basic reproduction number:

R0 =
∫ ∞

0
β (V (τ))π(τ)dτ. (14.12)

We notice that the epidemic reproduction number depends on the immunological
parameters through the viral load V (τ). The epidemic basic reproduction number
R0 also depends on the immune basic reproduction number ℜ0. It is easy to see that
the endemic equilibrium E ∗ = (S∗, i∗(τ)) exists if and only if R0 > 1. To compute
the components of the equilibrium, we first notice that

S∗

N∗ +
∫ ∞

0 i∗(τ)
N∗ = 1.

Furthermore, ∫ ∞
0 i∗(τ)

N∗ =
i∗(0)Π

N∗ = 1− 1
R0

,

where

Π =

∫ ∞

0
π(τ)dτ.

Using the first and the third equations in (14.11), we obtain Λ − i∗(0)−m0S∗ = 0.
Dividing by N∗ and replacing the fractions of S∗/N∗ and i∗(0)/N∗, we obtain the
following equation for N:

Λ
N∗ =

1
Π

(
1− 1

R0

)
+m0

1
R0

.

Solving for N, we have

N∗ =
ΛΠR0

R0 − 1+Πm0
.

The components of the equilibrium are given by

S∗ =
ΛΠ

R0 − 1+Πm0
,

i∗(τ) = i∗(0)π(τ),

i∗(0) =
Λ(R0 − 1)

R0 − 1+Πm0
. (14.13)

Analysis of the stability of equilibria is fairly similar to that in age-since-infection
models. To investigate the stability of the disease-free equilibrium, we linearize the
model around the disease-free equilibrium E0 = (S0,0). If S(t) = S0 + x(t), where
S0 = Λ/m0, i(τ, t) = y(τ, t), and N(t) = S0 + n(t), then we note that
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S
N

=
S0 + x(t)
S0 + n(t)

=
S0 + x(t)

S0(1+ n(t)/S0)
≈ S0 + x(t)

S0

(
1− n(t)

S0

)
≈ 1+

x(t)
S0

− n(t)
S0

.

The linearized system becomes

x′ = −
∫ ∞

0
β (V (τ))y(τ, t)dτ −m0x,

yτ + yt = −m(V (τ)y(τ, t),

y(0, t) =
∫ ∞

0
β (V (τ))y(τ, t)dτ. (14.14)

Since this is a linear model, we look for solutions in exponential form x(t) = xeλ t

and y(τ, t) = y(τ)eλ t . The exponential solutions satisfy the following linear eigen-
value problem:

λ x = −
∫ ∞

0
β (V (τ))y(τ)dτ −m0x,

yτ +λ y = −m(V (τ)y(τ),

y(0) =
∫ ∞

0
β (V (τ))y(τ)dτ. (14.15)

Solving the differential equation, we have

y(τ) = y(0)e−λ τπ(τ).

We replace y(τ) in the initial condition; we cancel y(0), which is assumed to be
nonzero; and we obtain the following characteristic equation:

1 =

∫ ∞

0
β (V (τ))e−λ τ π(τ)dτ. (14.16)

If we denote the right-hand side of this equality by G (λ ) and we assume that the
real part of λ is nonnegative (ℜλ ≥ 0), we see that

|G (λ )| ≤ G (ℜλ )≤ G (0) =R0.

Therefore, if R0 < 1 for ℜλ ≥ 0, then |G (λ )| < 1, so the equality cannot have a
solution of this type. We conclude that all solutions of equality (14.16) have nega-
tive real parts, and the disease-free equilibrium is locally asymptotically stable. If
R0 > 1, then G (0)> 1. For λ real, G (λ ) is a decreasing function approaching zero
as λ → ∞. We conclude that there is a unique positive λ ∗ such that G (λ ∗) = 1. This
implies that the disease-free equilibrium is unstable. So the epidemiological repro-
duction number plays the usual role of a threshold for the stability of the disease-free
equilibrium.
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14.3.3 Dependence of R0 and Prevalence on Immunological
Parameters

The reproduction number and the prevalence
∫ ∞

0 i(τ)dτ depend on the immuno-
logical parameters. Since an explicit solution to model (14.1) cannot be found, this
dependence is implicit. To obtain some intuition about this dependence, we will con-
sider the very special case that the immunological reproduction number is greater
than one, ℜ0 > 1, and the initial conditions of (14.1) are exactly at the infection
equilibrium. Then the solution of model (14.1) is known, and it is given by the in-
fection equilibrium (14.2). In this case, the transmission β (V ∗) and the death rate
m(V ∗) are constant, and an explicit expression can be obtained. With β (V ) given by
(14.10), we have the following epidemiological reproduction number:

R0 =
bV ∗

B+V∗
1

m0 +m1V ∗ , (14.17)

where V ∗ is given in (14.2). The epidemiological reproduction number depends on
the immunological parameters only through the equilibrial viral load V ∗. To get
a general idea of how the reproduction number behaves with respect to the im-
munological parameters, we take the derivative of R0 with respect to an arbitrary
immunological parameter pi:

∂R0

∂ pi
=

∂R0

∂V ∗
∂V ∗

∂ pi
.

Taking the derivative of R0 with respect to V ∗, we have

∂R0

∂V ∗ =
b(Bm0 −m1(V ∗)2)

(B+V ∗)2(m0 +m1V ∗)2 .

The derivative shows that R0 has a unique critical point at

V ∗
crit =

√
Bm0

m1
.

Since ∂V∗
∂ pi

is of definite sign, positive or negative, the sign of the derivative ∂R0
∂ pi

changes only once. The value pcrit
i corresponds to the critical value of V ∗. When

pi < pcrit
i and ∂V∗

∂ pi
> 0, then V ∗ < V ∗

crit and ∂R0
∂ pi

> 0. Similarly, if pi > pcrit
i and

∂V∗
∂ pi

> 0, then V ∗ > V ∗
crit and ∂R0

∂ pi
< 0. The same reasoning implies the same result

when ∂V∗
∂ pi

< 0. This says that R0 has a unique maximum with respect to every im-
munological parameter. We note that this dependence of the epidemiological repro-
duction number on immunological parameters is determined by our choice of β (V ).
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Table 14.1 Table of parameter values

Param. Value Units Param. Value Units

r 6 107 cells/day d 0.01 day−1

ρ 0.00015 1/{virion*day} δ 1 day−1

p 1,000 virions c 23 day−1

b 1.3 day−1 Ba 8,000 virions
m0 1/(365*70) day−1 m1 0.00002 1/{virions*day}
Λ 275 103 people/day

aAs estimated from fitting in Fig. 14.6.

The maximum of the reproduction number is given by

Rmax
0 =

b
√

Bm0
m1

(B+
√

Bm0
m1

)(m0 +m1

√
Bm0
m1

)
.
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Fig. 14.7 This figure gives the dependence of the epidemiological reproduction number on the
within-host parameters. The first row gives dependence with respect to which the immunological
reproduction number is increasing. The second row gives the dependence with respect to which the
immunological reproduction number is decreasing. Other parameters are fixed as in Table 14.1

One nonobvious conclusion of this expression is that the maximum of the repro-
duction number depends only on the epidemiological parameters and not on the
within-host parameters. To plot the dependence of the epidemiological reproduc-
tion number on the immunological parameters, we determine reasonable parameter
values for HIV. These are taken from [110] and are given in Table 14.1.

The dependence of the reproduction number on the immunological parameters is
given graphically in Fig. 14.7. All graphs exhibit approximately the same behavior.
They grow, reach a maximal value, and then decline. Because of this dependence of
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the reproduction number on immunological parameters, it is said that the pathogen
evolves to maximize the epidemiological reproduction number.

The prevalence is given by
∫ ∞

0
i∗(τ)dτ =

Λ(R0 − 1)
bV∗

B+V∗ −m1V ∗ , (14.18)

where R0 is given in (14.17). The prevalence is graphed in Fig. 14.8. The prevalence
is in general a decreasing function with respect to immune parameters for which the
immunological reproduction number is an increasing function and an increasing
function with respect to immune parameters for which the immunological repro-
duction number is decreasing. The prevalence experiences a sudden rise close to
the critical value at which the immunological reproduction number becomes equal
to one. That may be an artifact of the fact that the dependence on the immunolog-
ical parameters is defined only for ℜ0 > 1, so when ℜ0 approaches one from the
right-hand side, the prevalence collapses and becomes negative.

Protease inhibitors are medications used in treatment of HIV. They reduce the
number of infectious virions produced. In other words, they reduce p. As p de-
creases, within-host viral load decreases, but that increases the prevalence in the
population, as Fig. 14.8 suggests. The phenomenon that HIV medications increase
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Fig. 14.8 This figure gives the dependence of the prevalence on the within-host parameters. The
first row gives dependence on parameters with respect to which the immunological reproduction
number is increasing. The second row gives the dependence on parameters with respect to which
the immunological reproduction number is decreasing. Other parameters are fixed as in Table 14.1

population prevalence, as counterintuitive as it may seem, is not without a basis in
reality. Table 6.2 gives the world prevalence of HIV. The numbers clearly show that
prevalence has been increasing ever since HIV became a public health problem.

Similar results about the dependence of R0 and prevalence on the within-host
parameters can be obtained if the full immuno-epidemiological model is used with
τ-dependent viral load. In this case, the dependence of R0 and prevalence on the
within-host parameters cannot be explicitly obtained, but it must be simulated. In ad-
dition, dependence of these key epidemiological quantities on the initial parameters
of the immune model, T (0), V (0), and I(0), can be obtained.
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14.3.4 Sensitivity and Elasticity of R0 and Prevalence
with Respect to Immunological Parameters

Recall that the sensitivity of a quantity Q with respect to a parameter pi is defined as
∂Q/∂ pi. The sensitivity has the drawback that it is not rescaled and does not give
the change of the quantity Q relative to the size of the quantity. To address this issue,
elasticity is defined as

∂Q
∂ pi

pi

Q
.

When Q is a simple function of the parameter pi, computing elasticities is not dif-
ficult. The elasticity of the epidemiological reproduction number R0 given by ex-
pression (14.17) is given by

∂R0

∂ pi

pi

R0
=

b(Bm0 −m1(V ∗)2)

(B+V ∗)2(m0 +m1V ∗)2

∂V ∗

∂ pi

pi

R0
.
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Fig. 14.9 This figure gives the elasticities of R0 (left figure) and the prevalence (right figure) with
respect to the immunological reproduction number ℜ0 in the case that those are given by formulas
(14.17) and (14.18). Parameters are fixed as in Table 14.1

Computing the explicit elasticity of the prevalence is more complicated, but it could
be done in the same way. The elasticities of the epidemiological reproduction num-
ber and the prevalence with respect to the immunological reproduction number are
given in Fig. 14.9. Both R0 and the prevalence are most elastic with respect to the
immunological reproduction number when the immunological reproduction num-
ber ℜ0 is close to the threshold value 1. As ℜ0 becomes larger, the magnitude of
the elasticity declines. The epidemiological reproduction number remains less elas-
tic to ℜ0 than the prevalence. The higher elasticity of R0 and the prevalence when
ℜ0 → 1+ suggests that medications, which work to decrease the within-host rep-
roduction number, also increase the elasticity of the epidemiological reproduction
number and the prevalence. The smaller the value of ℜ0, the greater the effect on
the epidemiological reproduction number and the prevalence.
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Computing the elasticities with respect to the equilibrium of the immune system
is valuable and illuminating, but it is not sufficient for understanding the full dep-
endence on the age-since-infection and the impact of the initial viral load that is
transferred, V (0). So how do we compute the elasticities of R0 and the prevalence
if they are not functions, but functionals, of the immunological parameters? The
main difficulty lies in computing ∂R0/∂ pi, where R0 is given by formula (14.12).
Replacing β (V ) with its value from (14.10), we have the following expression:

R0 =

∫ ∞

0

bV (τ)
B+V(τ)

e−m0τ−m1
∫ τ

0 V (σ)dσ dτ. (14.19)

We will illustrate the computation of ∂R0/∂ p, where p is the immunological pa-
rameter in the equation for V . In the formula for R0, only V (τ) depends on p, so we
differentiate with respect to V and then with respect to p:

∂R0

∂ p
=

∫ ∞

0

bB
(B+V(τ))2

∂V (τ)
∂ p

e−m0τ−m1
∫ τ

0 V (σ)dσ dτ

−m1

∫ ∞

0

bV (τ)
B+V(τ)

∫ τ

0

∂V (σ)

∂ p
dσe−m0τ−m1

∫ τ
0 V (σ)dσ dτ. (14.20)

To compute this derivative of the epidemiological reproduction number, we need
∂V (τ)

∂ p . This last derivative can be obtained by differentiating model (14.1) with re-
spect to p. In this case, we will have the derivatives of T , I, and V with respect to p.
We will use the following notation:

X(τ) =
∂T (τ)

∂ p
, Y (τ) =

∂ I(τ)
∂ p

, Z(τ) =
∂V (τ)

∂ p
. (14.21)

Differentiation (14.1) with respect to p and coupling the original equations with the
equations for X ,Y,Z, we obtain the following system:

T ′ = r−ρTV − dT,

I′ = ρTV − δ I,

V ′ = pI− cV,

X ′ = −ρXV −ρTZ − dX ,

Y ′ = ρXV +ρTZ − δY,

Z′ = I+ pY − cZ, (14.22)

where ′ denotes the derivative with respect to τ . Solving this system will give us
Z(τ), or ∂V (τ)

∂ p , which we may use to compute the elasticity of R0 or the prevalence.
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14.4 A Nested Immuno-Epidemiological Model
with Immune Response

In this section, we consider the role of the immune response in the dependence of
the epidemiological reproduction number on immune parameters, and particularly
on those that are affected by medication. We will consider a simplified version of
model (14.1). In particular, we will assume that the free virus equilibrates much
faster and that dV

dτ ≈ 0, which would imply that the free virus is proportional to the
number of infected cells:

V ≈ p
c

I.

Substituting this approximation of the free virus into the remaining equations, we
may eliminate the free virus compartment. We further modify model (14.1) by inc-
luding the number of killer T cells Z(τ) that attack and destroy the infected target
cells. Since in HIV, the target cells are CD4 cells, which are also helper T cells, the
new killer T-cells depend on the quantity of infected cells I(τ) and helper T-cells
T (τ). The within-host model becomes

T ′ = r−ρTI− dT,

I′ = ρTI− δ I−ψIZ,

Z′ = aTI− μZ, (14.23)

where μ is the natural death rate of the killer T-cells, ψ is the killing rate, and all
other parameters have the same meaning as before. To account for the immune res-
ponse in the epidemiological model, we assume that the onset of immune response
causes adverse effects in the host, which increases the virulence of the disease. We
modify the epidemiological model accordingly:

S′ = Λ − S
N

∫ ∞

0
β (I(τ))i(τ, t)dτ −m0S,

iτ + it = −m(I(τ))i−η(Z(τ))i,

i(0, t) =
S
N

∫ ∞

0
β (I(τ))i(τ, t)dτ, (14.24)

where η(Z(τ)) is the additional host mortality incurred by the onset of the immune
response. The epidemiological parameters are linked to the within-host variables as
before: m(I(τ)) =m0+m1I(τ), β (I(τ)) = bI(τ)/(B+ I(τ)). The new epidemiolog-
ical parameter η is linked as follows:

η(Z(τ)) = m2 max

{
dZ
dτ

,0

}
.

First, we investigate the within-host model. The equilibria of the model satisfy the
system

r−ρTI − dT = 0,

ρTI− δ I−ψIZ = 0,

aT I− μZ = 0. (14.25)



380 14 Immuno-Epidemiological Modeling

The system has an infection-free equilibrium E0 = ( r
d ,0,0). The system also has an

infection equilibrium E ∗ = (T ∗, I∗,Z∗). To find the values, we notice that we can
cancel I in the second equation and use the third equation to eliminate I in the first
equation to obtain the following reduced system:

r− ρμ
a

Z − dT = 0,

ρT − δ −ψZ = 0. (14.26)

Solving this system for T ∗ and Z∗, we obtain

T ∗ =
δρμ +ψar
ρ2μ +ψad

Z∗ =
a(rρ − dδ )
ρ2μ +ψad

. (14.27)

The expression for Z∗ is not always positive. This prompts us to define the immuno-
logical reproduction number as

ℜ0 =
rρ
dδ

.

So Z∗ > 0 if and only if ℜ0 > 1. To obtain I∗, we use the third equation in (14.25)
and replace T ∗ and Z∗. We obtain

I∗ =
μ(rρ − dδ )
δρμ +ψar

.

To see the dependence of Z∗ on the infection rate ρ , we plot Z∗ against ρ for several
values of a in Fig. 14.10. Figure 14.10 shows that for small infection rate ρ , the im-
mune response becomes more and more effective as the infection rate increases, so a
better reproduction of the pathogen stimulates a better immune response. However,
as the infection rate increases past a critical size, the immune response is less and
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Fig. 14.10 Dependence of the equilibrial killer T-cell population on ρ for different values of a.
Parameters as given in Table 14.2
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Table 14.2 Table of parameter values

Param. Value Units Param. Value Units

r 140 105 cells/day d 0.01 day−1

ρ 0.00015 1/(virion*day) δ 1 day−1

a 0.005 1/(cells*day) μ 0.01 day−1

b 1.3 day−1 Ba 8,000 virions
m0 1/(365*70) day−1 m1 0.00002 1/{virions*day}
Λ 275 103 people/day ψ 0.0001 1/(cell*day)
Z0 0.1*10−10 105 cells

a As estimated from fitting in Fig. 14.6.

less effective. This scenario suggests that the immune system may become “exh-
austed” if the pathogen is reproducing too rapidly. To compute the epidemiological
reproduction number and its dependence on the within-host parameters, we further
simplify system (14.23) by assuming that the target cell population has reached an
equilibrium and the only dynamic variable that remains is the immune response.
Hence, dT/dτ ≈ 0 and dI/dτ ≈ 0. These are simplifying assumptions, and the res-
ulting new model does not necessarily have the dynamic properties of the original
one. From the first two equations, we have

r−ρTI − dT = 0,

ρTI− δ I−ψIZ = 0. (14.28)

Using these two equations, we express T and I in terms of Z. From the second
equation, we have

T =
δ +ψZ

ρ
.

From the first equation, we have T I = (r− dT )/ρ . We can obtain T I in terms of Z:

T I =
1
ρ
(r− dT ) =

1
ρ

(
r− d

ρ
(δ +ψZ)

)
=

1
ρ2 (rρ − δd− dψZ).

Replacing this expression in the dynamic equation for Z, we obtain

Z′ =
a

ρ2 (rρ − dδ − dψZ)− μZ =
a

ρ2 (rρ − dδ )− adψ + μρ2

ρ2 Z = ν(Z∗ −Z),

(14.29)

where ν = adψ+μρ2

ρ2 . We will assume that the initial condition Z0 for this equation

satisfies Z0 < Z∗. In this case, Z(τ) < Z∗. The solution to Eq. (14.29) is given by

Z(τ) = Z0e−ντ +Z∗(1− e−ντ).

Hence,

Z(τ)−Z0 = (Z∗ −Z0)(1− e−ντ). (14.30)
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Fig. 14.11 Dependence of the epidemiological reproduction number R0 on ρ and a. Parameters
as given in Table 14.2

We will need this expression in the epidemiological reproduction number. In anal-
ogy with the epidemiological reproduction number (14.19), the present epidemio-
logical reproduction number is given by

R0 =
∫ ∞

0

bI(τ)
B+ I(τ)

e−m0τ e−m1
∫ τ

0 I(σ)dσ e−m2
∫ τ

0 Z′(σ)dσ dτ. (14.31)

To gain insight into the dependence of the epidemiological reproduction number on
the immunological parameters, we consider the approximation I(τ) ≈ I∗ and Z(τ)
as given by (14.30). Integrating the derivative of Z, we have

R0 =

∫ ∞

0

bI∗

B+ I∗
e−m0τ e−m1I∗τ e−m2(Z

∗−Z0)(1−e−ντ )dτ. (14.32)

We go one step further, and we approximate (1 − e−ντ) ≈ ντ . In this case, the
expression under the main integral can be integrated, and we obtain the following
explicit dependence of R0 on the within-host parameters:

R0 ≈ bI∗

B+ I∗
1

m0 +m1I∗+m2(Z∗ −Z0)ν
. (14.33)

The dependence of R0 on both ρ and a is given in Fig. 14.11. The dependence of
R0 on ρ for several values of a is given in Fig. 14.12. It is easy to see that R0 is first
increasing with ρ and then decreasing. As the value of a increases, that is, as the im-
mune response becomes more vigorous, the maximum Rmax

0 becomes smaller and
shifts to the right. This means that the maximum Rmax

0 is achieved for a larger value
of ρ . So the more intensive the immune response, the more vigorously pathogens
have to reproduce to maximize their epidemiological reproduction number. Even
more surprising is the dependence of R0 on the immune response. In principle, one
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Fig. 14.12 Dependence of the epidemiological reproduction number R0 on ρ for several values of
a (left) and dependence of the epidemiological reproduction number R0 on a for several values of
ρ (right). Parameters as given in Table 14.2

expects that R0 is a decreasing function of a; however, in this case, a week immune
response may benefit the pathogen and increase the epidemiological reproduction
number.

Problems

14.1. Acute Infection Immune Model

(a) Find an implicit solution of model (14.3).
(b) Plot the solutions as a function of time with parameters r = 1,c = 0.01,a =

0.001.

14.2. Immune Model with Oscillations
The following simple immune model with specific and aspecific immunity was pro-
posed in [135]:

P′ = rP− cBP
1+ kcP

− mP
1+ kmP

,

B′ =
aPB

1+ kaP
− δB+ h, (14.34)

where m is the level of aspecific immunity, kc and km modulate the functional re-
sponse, ka allows for different rules of immune response. The other parameters are
as in the text.

(a) Compute the equilibria and the immune reproduction number.
(b) Investigate the stability of the pathogen-free equilibrium.
(c) Investigate the stability of the coexistence equilibrium.
(d) Simulate the model and show the sustained oscillations.
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14.3. Immune Model
Consider the following simple immune model with infected cells I and killer T
cells Z:

I′ =
rI

1+ aZ
− μI− cIZ,

Z′ =
bIZ

1+ kI
− δZ, (14.35)

where a and k modulate the functional response, c is the killing of infected cells by
the immune response, b is the stimulation of the immune response by the infected
cells, δ and μ are natural clearance rates.

(a) Compute the equilibria and the conditions for their existence.
(b) Investigate the stability of the pathogen-free equilibrium. Compute the immune

reproduction number.
(c) Investigate the stability of the coexistence equilibrium.

14.4. Immune Model
Consider the following simple immune model with infected cells I and killer T
cells Z:

I′ =
rI

1+ aZ
− μI− cIZ

1+mI
,

Z′ =
bIZ

1+ kI
− δZ, (14.36)

where a, k, and m modulate the functional response, c is the killing of infected cells
by the immune response, b is the stimulation of the immune response by the infected
cells, δ and μ are natural clearance rates.

(a) Compute the equilibria and the conditions for their existence.
(b) Investigate the stability of the pathogen-free equilibrium. Compute the immune

reproduction number.
(c) Investigate the stability of the coexistence equilibrium.

14.5. Pathogen Replication Model
Consider the following simple model that has been proposed to study HCV [48]:

T ′ = s+ r1T

(
1− T + I

Tmax

)
− dT −β TV,

I′ = β TV + r2I

(
1− T + I

Tmax

)
− δ I,

V ′ = pI− cV, (14.37)

where s, r1, and r2 are replication rates, c is the clearing of the virus, p is the virus
production rate, δ is the death rate of infected cells, Tmax is the maximum number
of target cells, and β is the infection rate.

(a) Compute the equilibria and the conditions for their existence.
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(b) Investigate the stability of the pathogen-free equilibrium. Compute the immune
reproduction number.

(c) Show that backward bifurcation occurs in this model. Compute the stabilities of
the infection equilibria.

14.6. Nested Model of Malaria
Consider the following simple model that has been proposed to study within-host
transmission of malaria with antibody response:

R′ = r− dR−ρRP,

I′ = ρRP− δ I,

P′ = pI− cV −ηPA,

A′ = kPA− μA, (14.38)

where R is the number of red blood cells, P is the malaria parasite, I gives the
number of infected red blood cells, and A is the antibody response. This model is
nested into the between-host model of malaria:

S′H(t) = ΛH −β1SH(t)IV (t)−m0SH(t),

∂ iH
∂τ

+
∂ iH
∂ t

= −m(P)iH ,

iH(0, t) = β1SH(t)IV (t),

S′V (t) = ΛV − SV (t)
∫ ∞

0
β (P(τ))iH(τ, t)dτ −mV SV (t),

I′V = Sv(t)
∫ ∞

0
β (P(τ))iH(τ, t)dτ −mV IV (t), (14.39)

where we have assumed that humans are chronically infected and do not recover
(that is, ℜ0 > 1). The parameters are linked as follows: β (P(τ)) = bP/(B+P) and
m(P(τ)) = m0 +m1P.

(a) Compute the equilibria of the within-host model and the conditions for their
existence.

(b) Compute the equilibria of the between-host model and the conditions for their
existence.

(c) Compute the within-host and the between-host reproduction numbers.
(d) How does the epidemiological reproduction number depend on the within-host

parameters?

14.7. Nested Immuno-Eco-Epidemiological Model
Consider a predator–prey model with disease in prey. Assume that we account for
the within-host immunological dynamics of the prey with the following within-host
model:
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V ′ = rV

(
1− V

K

)
−ηVz,

z′ =
ρVz

A+V
− μz, (14.40)

where V is the viral load and z is the immune response; K is the carrying capacity of
the virus, η is the killing rate of the virus by the immune response, ρ is the immune
response rate, μ is the natural death rate of the immune cells. The epidemiological
model is a predator–prey model:

S′(t) = Λ − S(t)
∫ ∞

0
β (V )i(τ, t)dτ − a1S(t)P(t)

1+ cS(t)
−m0S(t),

∂ i
∂τ

+
∂ i
∂ t

= −m(V )i−αP(t)i(τ, t),

i(0, t) = S(t)
∫ ∞

0
β (V )i(τ, t)dτ,

P′ =
a2S(t)P(t)
1+ cS(t)

− dP(t)+ kαP(t)
∫ ∞

0
i(τ, t)dτ. (14.41)

The parameters are linked as follows: β (V (τ)) = bV/(B +V ) and m(V (τ)) =
m0 +m1V .

(a) Compute the equilibria of the within-host model and the conditions for their
existence.

(b) Compute the equilibria of the between-host model and the conditions for their
existence.

(c) Compute the within-host and the between-host reproduction numbers.
(d) How does the epidemiological reproduction number depend on the within-host

parameters?



Chapter 15
Spatial Heterogeneity in Epidemiological Models

15.1 Introduction

Classical epidemic models assume that the entire population lives in one area and is
well mixed. That assumption is not necessarily satisfied. For instance, the popula-
tion may be living on isolated islands or in different countries while traveling from
one location to another. This spatial heterogeneity affects the transmission of the
disease. To understand the precise impact of spatial heterogeneity on the dynamics
of a disease, we have to build models that account for that heterogeneity. Spatially
explicit models are also more effective in evaluating control strategies, particularly
those applied to movement of individuals.

Multiple modeling approaches have been used to account for space and move-
ment of individuals in epidemic models. Space can be incorporated as a variable
in discrete or continuous form. One of the most popular discrete-space modeling
approaches is the metapopulation approach [16, 52, 102]. We will introduce the
metapopulation approach in the next section. Other discrete space modeling ap-
proaches include epidemic spatial networks [20, 21, 43, 123], cellular automata
[101, 147], and lattice epidemic models [137, 141]. Continuous space models in-
clude diffusion epidemic models [34, 82, 156], integrodifferential equation epidemic
models [116, 136] and integrodifference equation epidemic models [8].

In this chapter, we will focus on metapopulation models and diffusion models
as two types of modeling techniques incorporating movement of individuals. Each
of these model types requires a different mathematical tool. Metapopulation models
typically represent a large system of ordinary differential equations. Diffusion epi-
demic models, on the other hand, are small systems of partial differential equations.
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15.2 Metapopulation Modeling of Epidemic Spread

The concept of metapopulation does not originate in epidemiology, but in ecology.
A metapopulation [95] is a group of populations of the same species that leave
in spatially isolated areas but interact on some level. Metapopulations occur when
different populations live in fragmented habitats but are connected through migra-
tion. The isolated areas that are occupied by each population are called patches. In
epidemiology, patches may be cities, countries, islands, or other geographically au-
tonomous regions. A necessary requirement of a metapopulation is that patches be
connected through migration. Migration is defined as physical movement of individ-
uals from one area to another. Movement can be short-term or long-term. In short-
term movement, individuals visit another location for a period of time and return to
the home patch. Even though the movement is short-term, it still allows an infected
individual to transmit the pathogen to a susceptible individual of a different patch,
thus spreading the disease to other locations. Long-term migration arises when in-
dividuals move to another location and settle there. The two types of movement are
modeled differently. Short-term movement has been called Lagrangian movement,
and the corresponding models are called Lagrangian metapopulation models. Long-
term movement has been called Eulerian movement, and the corresponding models
are called Eulerian metapopulation models [44].

Metapopulation epidemic models consist of n patches. The population of each
patch is assumed to be homogeneously mixing. It is divided into the typical epi-
demiological classes of susceptibles, infectives, and other classes. The sizes of each
of these classes are different on different patches. Individuals of some or all of
the classes travel between the patches, which leads to the movement of the disease
(Fig. 15.1).

Fig. 15.1 Schematic representation of a metapopulation epidemic model
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Historically, early metapopulation epidemic models incorporated short-term
movement between the patches. Correspondingly, we begin by describing the Lag-
rangian modeling framework in the next subsection. Later, Eulerian models were
developed, in which the movement is explicit and occurs at certain rates. We will
consider an Eulerian modeling framework in the second subsection of this section.

15.2.1 Lagrangian Movement Epidemic Models

We begin by assuming that the total population occupies n regions or patches.
The population of patch i is denoted by Ni, and the total population size is N =
N1 + · · ·+Nn. The population of the ith region is infected by a pathogen and con-
sists of Si susceptible individuals, Ii infected individuals, and Ri recovered/immune
individuals. We have Ni = Si + Ii +Ri. In terms of movement, we assume that the
members of each region make short visits to at least some of the other regions and
return to their home patch. Furthermore, we shall make the simplifying assump-
tion that all members of each region spend the same amount of time visiting other
regions, but that time depends on the visited region. While commuting to other re-
gions, infected visitors can transmit the disease to susceptibles in the visited region,
while susceptible visitors can acquire the disease from infected members of the vis-
ited region. Long-term migration of the members of this community will not be
incorporated in this model. Furthermore, we assume for simplicity that the popula-
tion size of each region remains constant, that is, births μiNi are balanced by deaths,
where μi is the death rate in region i. With these assumptions, the model takes the
form

S′i = μiNi − Si

n

∑
j=1

βi jI j − μiSi,

I′i = Si

n

∑
j=1

βi jI j − (μi + γi)Ii, i = 1, . . . ,n, (15.1)

where we have omitted the equations for the recovered. Here, γi represents recovery
in the ith patch, and βi j are the transmission rates of infected individuals from patch
j to susceptible individuals in patch i. We note again that since we are assuming
constant population size in each region, the birth rate equals the death rate. In addi-
tion, if we add the equations for Si, Ii, and Ri, we obtain the following differential
equation for the population size of patch i: N′

i = 0.
We obtain the disease-free equilibrium: E0 = (N1,0,N2,0, . . . ,Nn,0). If we imag-

ine that commuting between patches does not occur, that is, if βi j = 0 for i �= j, then
we can define a reproduction number for each patch:

Ri =
βiiNi

μi + γi
.
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If Ri < 1, then the disease will disappear in patch i if it is isolated from the metapop-
ulation. If Ri > 1, then the disease will persist in patch i if it is isolated from the
metapopulation.

Definition 15.1. We call patch i a sink if Ri < 1. We call patch i a source if Ri > 1.

We can apply the next-generation approach to compute the reproduction number
of the system, but that value is implicit and does not give any insights as to when
the disease persists and when it dies out in the metapopulation. Following the next-
generation approach, we have

F =

⎛
⎜⎝

β11N1 β12N1 . . . β1nN1
...

βn1Nn βn2Nn . . . βnnNn

⎞
⎟⎠ , V =

⎛
⎜⎝

(μ1 + γ1) 0 . . . 0
...

0 0 . . . (μn + γn)

⎞
⎟⎠ .

(15.2)

Hence we define the basic reproduction number as R0 = ρ(FV−1), where

FV−1 =

⎛
⎜⎜⎜⎜⎜⎝

β11N1

μ1 + γ1

β12N1

μ2 + γ2
. . .

β1nN1

μn + γn
...

βn1Nn

μ1 + γ1

βn2Nn

μ2 + γ2
. . .

βnnNn

μn + γn

⎞
⎟⎟⎟⎟⎟⎠
. (15.3)

To derive a condition for disease persistence or extinction, we follow [163]. We
order the variables (S1, . . . ,Sn, I1, . . . , In), and we consider the Jacobian of system
(15.1). It takes the form

J =

(
A11 A12

A21 A22

)
. (15.4)

The Jacobian is block-diagonal, since the matrix A21 is the zeroth matrix. Hence, its
eigenvalues are precisely the eigenvalues of A11 and A22. The matrix A11 is equal to
diag(−μ1, . . . ,−μn). The matrix A22 is given by

A22 =

⎛
⎜⎝

β11N1 − (μ1 + γ1) β12N1 . . . β1nN1
...

βn1Nn βn2Nn . . . βnnNn − (μn + γn)

⎞
⎟⎠ . (15.5)

The eigenvalues of A11 are clearly negative. Consequently, the stability of the
disease-free equilibrium depends on the eigenvalues of A22. The matrix −A22 has
nonpositive off-diagonal entries, and thus it possesses the Z-pattern. Then A22 will
have eigenvalues with negative real parts if and only if −A22 is an M-matrix. For
−A22 to be an M-matrix, it is sufficient that a vector v > 0 exist such that −A22v> 0.
Let v = (1,1, . . . ,1)T . Then the condition −A22v > 0 is equivalent to the following
conditions being satisfied:

(μi + γi)−Ni

n

∑
j=1

βi j > 0, i = 1, . . . ,n. (15.6)
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The above condition can also be rewritten in the form

(μi + γi)(1−Ri)> Ni

n

∑
j �=i

βi j, i = 1, . . . ,n. (15.7)

So if (15.7) holds, then the disease will be eliminated. However, (15.7) also implies
that max{R1, . . . ,Rn} < 1, so in this case, all patches must be sinks. However, if
even one patch is a source, that is, if there exists j0 such that R j0 > 1, then condi-
tion (15.7) is violated, and the disease persists in the populations. One nonobvious
conclusion of (15.7) is that the disease may persist even if all patches are sinks, that
is, max{R1, . . . ,Rn}< 1.

15.2.2 Eulerian Movement Epidemic Models

To formulate the Eulerian movement epidemic model, we assume that the popula-
tion lives on n patches. In Eulerian movement, it is assumed that individuals move to
another patch and settle there, becoming a part of the population of the host patch.
Further, we assume that within each patch, the population mixes homogeneously
and the distribution of the disease is described by a classical SIR endemic model.
We denote the migration rates from patch j to patch i by mi j. We assume mii = 0.
Furthermore, the migration rates of susceptible and infective may be different, so
the mS

i j denote the migration rates of susceptibles, and the mI
i j denote the migration

rates of infectives. A more complex model of this form was considered in [17]:

S′i = μiNi −βiSiIi − μiSi −
n

∑
j=1

mS
jiSi +

n

∑
j=1

mS
i jS j,

I′i = βiSiIi − (μi + γi)Ii,−
n

∑
j=1

mI
jiIi +

n

∑
j=1

mI
i jI j, i = 1, . . . ,n. (15.8)

In the above model, we have once again omitted the equation of the recovered. The
total birth/recruitment rate into patch i is μiNi, the mortality rate in patch i is μi,
the transmission rate in patch i is βi, and the recovery rate in patch i is γi. The total
population size is given by N(t) = S1(t)+ I1(t)+ · · ·+ Sn(t)+ In(t), and it satisfies
the differential equation

N′(t) = 0.

Hence, the total population size remains constant.
To find the disease-free equilibrium, let Ii = 0 for i = 1, . . . ,n. The disease-free

equilibrium is given by E0 = (S1, . . . ,Sn,0, . . . ,0). Then the disease-free equilibrium
satisfies the following system of equations:

μiNi − μiSi −
n

∑
j=1

mS
jiSi +

n

∑
j=1

mS
i jS j = 0, i = 1, . . . ,n.
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We rewrite this system in the form

μiSi +
n

∑
j=1

mS
jiSi −

n

∑
j=1

mS
i jS j = μiNi i = 1, . . . ,n.

The matrix of this system is

M =

⎛
⎜⎝

μ1 +∑n
j=1 mS

j1 −mS
12 . . . −mS

1n
...

−mS
n1 −mS

n2 . . . μn +∑n
j=1 mS

jn

⎞
⎟⎠ . (15.9)

The matrix M possesses the Z-pattern. Furthermore, for v = (1, . . . ,1)T , MT v > 0.
Hence, M is an M-matrix. As a result, it has a nonnegative inverse, and therefore the
system has a nonnegative solution. We conclude that there is a unique nonnegative
disease-free equilibrium.

To compute the reproduction number, we use the next-generation approach. The
infective variables are I1, . . . , In. We compute the matrices F and V . The new infec-
tions are given by the incidence terms. Hence F = diag(β1S1, . . . ,βnSn). All remain-
ing terms give V :

V =

⎛
⎜⎝

(μ1 + γ1 +∑n
j=1 mI

j1) −mI
12 . . . −mI

1n
...

−mI
n1 −mI

n2 . . . (μn + γn +∑n
j=1 mI

jn)

⎞
⎟⎠ . (15.10)

The reproduction number is then defined as R0 = ρ(FV−1). It follows from the
results in [159] that if R0 < 1, the disease-free equilibrium is locally asymptotically
stable, and if R0 > 1, then the disease-free is unstable.

We define the reproduction number of each patch as

Ri =
βiSi

μi + γi
. (15.11)

Exercise 15.3 asks you to show that for n = 2, the reproduction number R0 com-
puted by the next-generation approach is bracketed between the two patch repro-
duction numbers.

15.3 Spatial Models with Diffusion

Reaction–diffusion equations are one of the most important tools for modeling
spatial movement. They are continuous in both space and time and represent second-
order partial differential equations. Reaction–diffusion equations offer the best mod-
eling of spatial propagation that occurs as a result of diffusion. They consist of a
diffusion component that is the second-order derivative of the unknown function(s)
and a reaction part that resembles the right-hand side of an ordinary differential
equation model.
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15.3.1 Derivation of Reaction–Diffusion Equations

There are various approaches for the derivation of reaction–diffusion equations. We
will use the approach that captures the movement discretely and then obtains a con-
tinuous equation by passing to the limit. To simplify matters, we will imagine that
the movement occurs in one dimensional direction, or along a line. The description
here follows that in [33]. Denote the probability that an individual is at location x
at time t by p(x, t). We discretize both space and time. Space is discretized with a
step Δx, and time is discretized with a step Δ t. The probability p(x, t +Δ t) that an
individual will be at location x at time t +Δ t is the sum of the probabilities of being
at location x−Δx at time t and moving to the right with probability α or being in
position x+Δx at time t and moving to the left with probability 1−α , that is,

p(x, t +Δ t) = α p(x−Δx, t)+ (1−α)p(x+Δx, t).

Subtracting p(x, t) from both sides and dividing by Δ t, we have

p(x, t +Δ t)− p(x, t)
Δ t

=
1

2Δ t
[p(x−Δx, t)− 2p(x, t)+ p(x+Δx, t)]

+
1/2−α

Δ t
[p(x+Δx, t)− p(x−Δx, t)]. (15.12)

At this point, we have to make an assumption for the correlation between Δ t and
Δx. In particular, we assume that D = (Δx)2/(2Δ t) and v = 2(1/2−α)Δx/Δ t are
constants. Because of these definitions of D and v, they have units distance2/time
and distance/time respectively. The constant D is called the diffusion constant. Then
the above expression becomes

p(x, t +Δ t)− p(x, t)
Δ t

= D

[
p(x−Δx, t)− 2p(x, t)+ p(x+Δx, t)

(Δx)2

]

+v

[
p(x+Δx, t)− p(x−Δx, t)

2Δx

]
. (15.13)

Passing to the limit as Δ t → 0 and Δx → 0, we obtain the following differential
equation:

∂ p
∂ t

= D
∂ 2 p
∂x2 + v

∂ p
∂x

. (15.14)

This is the basic equation for directed diffusion, in which case the probabilities of
moving left or right are not equal. If we assume that the probabilities of moving
left or right are equal, that is, α = 1/2, then v = 0, and we obtain the following
simplified equation:

∂ p
∂ t

= D
∂ 2 p
∂x2 . (15.15)

This is the basic equation that models random diffusion. We will work primarily
with random diffusion models.
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Equation (15.14) models only the diffusion part of a population model. To in-
corporate population growth and disease transmission, we have to have a reaction
part, which comes from a regular ordinary differential equation epidemic model.
For instance, consider an ordinary differential equation SI model

S′ =−β SI
I′ = β SI.

(15.16)

Now we assume that susceptible and infected individuals are spatially distributed,
S(x, t) and I(x, t), where x is a one-dimensional spatial variable. We add diffusion to
this model to obtain the following epidemic reaction–diffusion model:

∂S
∂ t

=−β S(x, t)I(x, t)+D
∂ 2S
∂x2 ,

∂ I
∂ t

= β S(x, t)I(x, t)+D
∂ 2I
∂x2 ,

(15.17)

where β is still a constant independent of space. We denote by N(x, t) the total
population size. Hence, we have N(x, t) = S(x, t)+ I(x, t). The total population size
satisfies an equation of the form (15.15):

Models of the form (15.14) and (15.17) will have a unique solution if two types
of additional conditions are specified for them:

1. Initial conditions. These specify given spatial distributions at time t = 0. These
are similar to the initial conditions specified for ordinary differential equation
models.

2. Boundary conditions. These specify the values of the unknown function(s) at the
boundaries of the spatial region.

Boundary conditions can be of different types and specify different types of prob-
lems when coupled with the same system of differential equations. If the domain is
infinite, say the whole real axis, then typically a condition governing the growth of
the functions at ±∞ are specified. In particular, with problem (15.17) we will have

S(x, t)→ 0, I(x, t)→ 0 as x →±∞.

If the spatial domain is finite, say [0,L], then the following types of boundary
conditions are often used:

• Dirichlet Boundary Conditions. For Dirichlet boundary conditions, the un-
known function(s) are prescribed given known values at the boundary of the
domain. In particular, for model (15.17), we have

S(0, t) = S0(t) S(L, t) = SL(t), I(0, t) = I0(t), I(L, t) = IL(t),

where S0(t),SL(t), I0(t), IL(t) are given known functions. A commonly used set
of Dirichlet boundary conditions prescribes the values at the boundary to be zero:

S(0, t) = 0, S(L, t) = 0, I(0, t) = 0, I(L, t) = 0.
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In this case, the Dirichlet boundary conditions are called homogeneous Dirichlet
boundary conditions. These conditions are often called “absorbing” or “deadly,”
because the boundary “absorbs” all individuals who encounter it.

• Neumann Boundary Conditions. For the Neumann boundary conditions, the
fluxes through the boundary of the unknown function(s) are prescribed given
known values of the fluxes at the boundary of the domain. In particular, for model
(15.17), we have

∂S
∂x

(0, t) = Ŝ0(t),
∂S
∂x

(L, t) = ŜL(t),
∂ I
∂x

(0, t) = Î0(t),
∂ I
∂x

(L, t) = ÎL(t),

where Ŝ0(t), ŜL(t), Î0(t), ÎL(t) are given known functions. Commonly used Neu-
mann boundary conditions are those such that the prescribed flux values at the
boundary are zero:

∂S
∂x

(0, t) = 0,
∂S
∂x

(L, t) = 0,
∂ I
∂x

(0, t) = 0,
∂ I
∂x

(L, t) = 0.

In this case, the Neumann boundary conditions are called homogeneous Neu-
mann boundary conditions. These conditions are often called “no-flux” condi-
tions, because the boundary does not allow individuals to pass through it. These
are the most commonly used in population models.

• Robin Boundary Conditions. For the Robin boundary conditions, a linear com-
bination of the values and the fluxes through the boundary of the unknown func-
tion(s) are prescribed given known values at the boundary of the domain. In par-
ticular, for model (15.17), we have

α1
∂S
∂x

(0, t)+ γ1S(0, t) = Ŝ0(t), α2
∂S
∂x

(L, t)+ γ2S(L,0) = ŜL(t),

α3
∂ I
∂x

(0, t)+ γ3I(0, t) = Î0(t), α4
∂ I
∂x

(L, t)+ γ4I(L, t) = ÎL(t),

(15.18)

where Ŝ0(t), ŜL(t), Î0(t), ÎL(t) are given known functions. Commonly used Neu-
mann boundary conditions are those such that the prescribed flux values at the
boundary are zero:

α1
∂S
∂x

(0, t)+ γ1S(0, t) = 0, α2
∂S
∂x

(L, t)+ γ2S(L,0) = 0,

α3
∂ I
∂x

(0, t)+ γ3I(0, t) = 0, α4
∂ I
∂x

(L, t)+ γ4I(L, t) = 0. (15.19)

In this case, the Robin boundary conditions are called homogeneous Robin
boundary conditions. These conditions are often called “mixed” conditions.

A combination of a differential equation and Dirichlet boundary conditions is called
a Dirichlet problem. Similarly, a combination of a differential equation and Neu-
mann boundary conditions is called a Neumann problem.
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15.3.2 Equilibria and Their Local Stability

Reaction–diffusion equations, just like ordinary differential equations, have time-
independent solutions, called equilibria. Equilibrium solutions may be constant in
space, in which case they are called spatially homogeneous, or they may depend on
the spatial variable explicitly, in which case they are called spatially heterogeneous.

To illustrate this concept, we consider model (15.17) with homogeneous Neu-
mann boundary conditions. The total population size N satisfies the following
problem:

∂N
∂ t

= D
∂ 2N
∂x2 ,

∂N
∂x

(0, t) =
∂N
∂x

(L, t) = 0. (15.20)

If the initial conditions are constant in space, this system clearly has the constant
N as a solution, where the value of N is given by the initial conditions. Expressing
S(x, t) = N − I(x, t) and eliminating S, we may reduce the system (15.17) to the
single differential equation

∂ I
∂ t

= β I(x, t)(N − I(x, t))+D
∂ 2I
∂x2 ,

∂ I
∂x

(0, t) =
∂ I
∂x

(L, t) = 0. (15.21)

Equation (15.21) was first proposed by Fisher [62] to model gene spread in a pop-
ulation and has been widely studied since then. Now this equation is referred to as
the Fisher–Kolmogorov equation.

Equilibrium solutions of model (15.21) satisfy

0 = β I(x)(N − I(x))+D
∂ 2I
∂x2 ,

∂ I
∂x

(0) =
∂ I
∂x

(L) = 0. (15.22)

This system clearly has two spatially homogeneous solutions: I = 0 and I = N. The
system (15.21) does not have spatially heterogeneous solutions. To see this, integrate
the first equation in system (15.22) to obtain

∂ I
∂x

=−β
D

∫ x

0
I(y)(N − I(y))dy.

The first boundary condition is clearly satisfied. However, for nonnegative I, smaller

than N,
∂ I
∂x

is a function that is increasing in absolute value and negative. Thus,

∂ I
∂x

(L)< 0, which contradicts the second boundary condition.
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Local stability of these equilibria is determined by the following theorem:

Theorem 15.1. The equilibrium I = 0 is unstable. The equilibrium I = N is locally
asymptotically stable.

Proof. We begin with the equilibrium I = 0. We linearize around this equilibrium.
In particular, we set I(x, t) = y(x, t). We obtain the following linear equation for the
perturbation:

∂y
∂ t

= β Ny(x, t)+D
∂ 2y
∂x2 ,

∂y
∂x

(0, t) =
∂y
∂x

(L, t) = 0. (15.23)

A traditional approach to solving Eq. (15.23) is to look for solutions in separable
form, that is, we look for a solution of the form

y(x, t) = X(x)T (t),

where X(x) and T (t) are two unknown functions. Since y(x, t) = X(x)T (t) is a solu-
tion, it should satisfy system (15.23). We substitute it into the differential equation
to obtain

X(x)T ′(t) = β NX(x)T (t)+DT (t)X ′′(x),

where the primes denote derivatives with respect to the variable of the function. We
divide both sides by DX(x)T (t), and we move the constant β N to the left-hand side
of the equality:

T ′(t)
DT (t)

− β N
D

=
X ′′(x)
X(x)

.

The function on the left is a function of t, while the function on the right is a function
of x. The only way these two functions may be equal is if they are equal to the same
constant. Hence,

T ′(t)
DT (t)

− β N
D

=
X ′′(x)
X(x)

=−k.

This leads to two separate ordinary differential equations:

T ′(t)+ (kD−β N)T(t) = 0,

X ′′(x)+ kX(x) = 0 with X ′(0) = X ′(L) = 0. (15.24)

The constant k is chosen to be positive. If k = 0, the above equation has an arbitrary
constant as a solution. If k < 0, the second-order ordinary differential equation has
only a trivial solution. The general solution of the second-order equation in (15.24)
when k > 0 is given by

X(x) =C1 cos
√

kx+C2 sin
√

kx,
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where C1 and C2 are to be determined from the boundary conditions. To satisfy the
boundary conditions, we differentiate the expression above:

X ′(x) =−C1

√
k sin

√
kx+C2

√
kcos

√
kx.

Hence,

X ′(0) =C2

√
k = 0.

This implies that C2 = 0. Furthermore,

X ′(L) =−C1

√
k sin

√
kL = 0.

This can be satisfied if sin
√

kL = 0 or if
√

kL = nπ for n = 1,2, . . . . Consequently,
we have a sequence of values

kn =
(nπ)2

L2

and a sequence of functions corresponding to them:

Xn(x) = cos
√

knx.

The functions Xn(x) are called eigenfunctions, and the values kn are called eigen-
values. The solution to the first-order ordinary differential equation in (15.24) is
given by

T (t) = T0e−(kD−β N)t .

We have a sequence of solutions corresponding to the different values of k:

Tn(t) = T0ne−(knD−β N)t .

Hence, one of the solutions is given by

yn(x, t) = Bn cos
√

knxe−(knD−β N)t ,

where we have combined all constants in the constant Bn. Summing over all solu-
tions, we obtain

y(x, t) = B0eβ Nt +
∞

∑
n=1

Bn cos
√

knxe−(knD−β N)t .

It is not hard to see that the first term in the above sum always approaches infinity
as t → ∞. Hence, y(x, t)→ ∞ as t → ∞. Therefore, I = 0 is unstable.

Remark 15.1. The coefficients Bn can be determined from the initial condition. If
y(x,0) = y0(x), then we must have for t = 0,

y0(x) = B0 +
∞

∑
n=1

Bn cos
√

knx.
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Multiplying the above expression by cos
√

kn0x, where n0 is arbitrary fixed integer,
we obtain

y0(x)cos
√

kn0x = B0 cos
√

kn0x+
∞

∑
n=1

Bn cos
√

kn0xcos
√

knx.

Integrating from 0 to L, we have

Bn0 =
2
L

∫ L

0
y0(x)cos

√
kn0xdx.

Next, we consider the case I = N. We linearize around this equilibrium. In par-
ticular, we set I(x, t) = y(x, t)+N. We obtain the following linear equation for the
perturbation:

∂y
∂ t

= −β Ny(x, t)+D
∂ 2y
∂x2 ,

∂y
∂x

(0, t) =
∂y
∂x

(L, t) = 0. (15.25)

Following the same approach as before with β N replaced by −β N, we arrive at
the following solution of the linearized problem (15.25):

y(x, t) = B0e−β Nt +
∞

∑
n=1

Bn cos
√

knxe−(knD+β N)t .

Clearly, we have y(x, t) → 0 as t → ∞. Hence, the equilibrium I = N is locally
asymptotically stable.

Epidemiologically speaking, this model predicts that in the long term, the entire
population will eventually become infected, a result that is not particularly realistic.

15.3.3 Traveling-Wave Solutions

Time-dependent diffusion equations have another important type of special solu-
tion called traveling-wave solutions. These are solutions that propagate without a
change in shape and at a constant speed. Traveling-wave solutions are important in
epidemiology because they model the geographic spread of a diseases in a wavelike
manner. Traveling-wave solutions are typically considered on an infinite domain.

To illustrate the presence of traveling-wave solutions, we consider the model

∂ I
∂ t

= β I(x, t)(N − I(x, t))+D
∂ 2I
∂x2 ,

lim
x→−∞

∂ I
∂x

= lim
x→+∞

∂ I
∂x

= 0. (15.26)
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We note that the boundary conditions are equivalent to assuming that

lim
x→−∞

I(x, t) = A, lim
x→+∞

I(x, t) = B,

where A and B are appropriate constants. We note that solutions of (15.26) are
unique when the system is equipped with initial conditions.

Definition 15.2. A traveling-wave solution is a solution that can be expressed in a
single variable z = x− vt:

I(x, t) = I(x− vt) = I(z).

The constant v is called the wave speed.

The wave speed is undetermined, but we may assume v > 0, that is, that the wave
travels to the right. To obtain the differential equation for the traveling-wave sol-
ution, we substitute I(z) in the differential equation of (15.26). From the partial
differential equation, we will obtain an ordinary differential equation in the function
of a single variable I(z). To express the partial derivatives in the single variable, we
use the chain rule. Thus,

∂ I
∂ t

=
dI
dz

∂ z
∂ t

=−v
dI
dz

,

∂ I
∂x

=
dI
dz

∂ z
∂x

=
dI
dz

.
(15.27)

Hence,

∂ 2I
∂x2 =

d2I
dz2 .

Then, substituting in the partial differential equation, we obtain the following ordi-
nary differential equation in I(z):

D
d2I
dz2 + v

dI
dz

+β I(z)(N − I(z)) = 0,

lim
z→−∞

∂ I
∂ z

= lim
z→+∞

∂ I
∂ z

= 0. (15.28)

The solutions of the traveling-wave equations are typically not unique. Since v is
unknown, one may have different solutions for different values of v as v varies.
Moreover, if I(z) solves (15.28) for some fixed value of v, then for that same value
of v, I(z+c), where c is any constant, also solves (15.28). For both v and c fixed, the
solution of the traveling wave equations are normally unique. Furthermore, the ini-
tial conditions specified with problem (15.26) are not used with the traveling-wave
solutions. The traveling-wave solution is a solution to the full partial differential
equation only if the traveling-wave solution is consistent with the initial condition
specified with (15.26). However, one may often observe that a given initial condition
approaches a traveling-wave solution as t → ∞. This is illustrated in Fig. 15.2.
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Fig. 15.2 Initial condition tends to a traveling-wave solution as t → ∞ for model (15.26). The
initial condition taken is a step function

The equation for the traveling-wave solution is a second-order nonlinear ordinary
differential equation model. To prove the existence of a traveling wave, one rewrites
the second-order equation into a system of first-order ordinary differential equations.
In particular, we set dI

dz = Y (z). Then (15.28) becomes the system

dI
dz

= Y,

dY
dz

= − v
D

Y − β
D

I(z)(N − I(z)). (15.29)

The traveling-wave solution must tend to the stationary points of the system (15.29)
as z → ±∞. This is necessary, since I(z) tends to a constant as z → ±∞. The in-
vestigation of the traveling-wave solution begins by classifying the equilibria of
this planar system. In particular, if the variables are ordered (I,Y ), then the system
above has two equilibria: (N,0) and (0,0). To investigate the type of the equilibria
and their stability, we look at the Jacobian:

J(I,Y ) =

(
0 1

−β
D
(N − I)+

β
D

I − v
D

)
. (15.30)

We compute the Jacobian at the (0,0) equilibrium:

J(0,0) =

(
0 1

−β N
D

− v
D

)
. (15.31)

The trace of this matrix is negative, since v > 0 and D > 0 and the determinant β N
D

is positive. Thus, (0,0) is locally asymptotically stable. To find out what type it is,
we compute the characteristic equation
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Fig. 15.3 Solution of model (15.29) in the case v <
√

β ND. One can see that near (0,0), I(z) can
become negative. Parameters are taken as β = 1, N = 1, v = 0.1, D = 0.01

(−λ )(−λ − v
D
)+

β N
D

= 0.

Thus, the characteristic equation becomes

λ 2 +
v
D

λ +
β N
D

= 0,

and the eigenvalues are given by

λ1,2 =
− v

D
±
√( v

D

)2 − 4
β N
D

2
.

Hence, if
( v

D

)2 − 4
β N
D

> 0, then (0,0) is a stable node. Therefore, the origin is

a stable node if the wave speed satisfies v > 2
√

β ND. If
( v

D

)2 − 4
β N
D

< 0, then

(0,0) is a stable spiral. Therefore, the origin is a stable spiral if the wave speed
satisfies v < 2

√
β ND. In this case, the solution near the equilibrium (0,0) looks as

shown in Fig. 15.3. In this case, clearly I(z) can become negative for some values
of z. That makes the solution biologically unrealistic, since the number of infected
should be nonnegative. Thus, this case does not produce a traveling wave.

Next, we determine the stability and the type of the equilibrium (N,0). Evaluat-
ing the Jacobian yields

J(N,0) =

(
0 1

β N
D

− v
D

)
. (15.32)

In this case, the trace is negative, but the determinant is also negative. Hence (N,0)
is unstable. Since the determinant is negative, the product of the eigenvalues is
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Fig. 15.4 The region R (in red) with the heteroclinic orbit (in blue). Parameter values are β = 1,
D = 0.01, N = 1, ν = 2

√
β DN

negative, so there is one positive and one negative eigenvalue. Hence, (N,0) is a
saddle. To find the eigenvalues, we derive the characteristic equation:

λ 2 +
v
D

λ − β N
D

= 0.

Hence, the eigenvalues are

λ± =
− v

D
±
√( v

D

)2
+ 4

β N
D

2
. (15.33)

To show the existence of a traveling wave in the case v > 2
√

β ND, we have to
find a connection between the equilibria (0,0) and (N,0) in the phase portrait of sys-
tem (15.29). Such a connection is called a heteroclinic orbit. The heteroclinic orbit
will leave the equilibrium (N,0), which is a saddle, along its unstable manifold and
will approach equilibrium (0,0). First, we need to find the gradient of the unstable
manifold at the equilibrium (N,0). For that purpose, we require the eigenvectors of
the Jacobian at (N,0). Assume that the eigenvectors are v± = (1,q±)T , where q±
are to be determined. Thus, we have(

0 1
β N
D

− v
D

)(
1

q±

)
= λ±

(
1

q±

)
. (15.34)

From here, it is easy to see that q± = λ±. Hence the gradient of the unstable
manifold is v+ = (1,λ+)

T , where λ± are given by (15.33). Next, we show that the
unstable manifold leaving (N,0) enters the region (see Fig. 15.4)
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R = {(I,Y )|Y ≤ 0, I ∈ [0,N],Y ≥− ν
D

I}

and can never leave that region. To see this, we consider system (15.29) and rewrite
the system as the equation

dY
dI

=− v
D
− β

D
I(N − I)

Y
. (15.35)

We consider the slope of the solutions of Eq. (15.35) along the boundaries of the
region R. Along the boundary

B1 = {(I,Y )|Y = 0, I ∈ (0,N)},

we have dY
dI = −∞, so the trajectories point vertically into the region R (recall that

the derivative gives tanθ , where θ is the angle of the tangent vector with the positive
x-axis). Next, along the boundary

B2 = {(I,Y )|Y ≤ 0, I = N},

the slope of the trajectories is dY
dI = − v

D < 0. Hence, θ is in the forth quadrant and
points into the region R. Finally, along the boundary

B3 = {(I,Y )|Y ≤ 0, I ∈ (0,N],Y =− ν
D

I},

we show that Y ≥− ν
D I. To see this, notice that

−β
D

I(N − I)
Y

> 0

in R. Hence from (15.35), we have

dY
dI

≥− ν
D
. (15.36)

Integrating this inequality, we have

Y (I)≥− ν
D

I.

If dY
dI is bigger than the right-hand side of the inequality (15.36), it will point

inside the region R. Hence, all solutions that enter region R stay there and approach
the equilibrium (0,0). This is true in particular for the solution that begins along the
unstable manifold of equilibrium (N,0). That solution is plotted in Fig. 15.5. In this
case, we see that I′(z) < 0 but I(z) ∈ [0,N], so this is a heteroclinic connection that
gives a traveling wave.
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Fig. 15.5 Solution of model (15.29) in the case v > 2
√

β ND. One can see that I(z) ∈ [0,N] and
I′(z) < 0. Parameters are taken as β = 1, N = 1, v = 0.25, D = 0.01

Definition 15.3. The minimal speed vmin for which a traveling wave exists is called
the minimal wave speed.

In this case, the minimal wave speed is vmin = 2
√

β ND. The existence of a
traveling-wave solution to the Fisher–Kolmogorov equation was first proved by
Kolmogorov et al. [1].

15.3.4 Turing Instability

Turing instability refers to diffusion-driven destabilization of a spatially homoge-
neous steady state of the a reaction–diffusion system. This phenomenon was first
observed by Alan Turing in 1952 [158]. We will follow Turing’s 1952 paper and
examine analytically the linear stability analysis of the simplest possible reaction–
diffusion system that forms a pattern from a spatially homogeneous state. The anal-
ysis leads to several insights. The first is that at least two interacting classes are
needed for pattern formation to occur, that is, pattern formation occurs in at least a
2×2 system. The second is Turing’s most surprising insight, that diffusion in a 2×2
system can actually have a destabilizing influence. This observation is contrary to
intuition, since diffusion by itself has a stabilizing effect on a system. A third insight
is that pattern formation in a system will not occur unless the diffusion coefficients
of the two classes differ substantially. In other words, Turing instability occurs only
if the diffusion coefficients for the two classes are different.

The following subsection contains the linear stability analysis of a general 2× 2
system. After that, we consider a simple epidemic model and show that diffusion-
driven instability occurs.
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15.3.4.1 Turing’s Instability in a General 2× 2 System

To illustrate the general approach, consider the following system:

ut = Duuxx + f (u,v),

vt = Dvvxx + g(u,v), (15.37)

for x ∈ [0,L] and t ≥ 0. The problem may be posed with constant Dirichlet boundary
conditions:

u(0, t) = u(L, t) = u∗, v(0, t) = v(L, t) = v∗, (15.38)

where u∗ and v∗ are constants satisfying f (u∗,v∗) = 0 and g(u∗,v∗) = 0. The prob-
lem can also be posed with homogeneous Neumann boundary conditions:

ux(0, t) = ux(L, t) = vx(0, t) = vx(L, t) = 0. (15.39)

We will consider the problem with the Neumann boundary condition. We rewrite
model (15.37) in vector form:

ut = Duxx +F(u),

where

u =

(
u
v

)
, F(u) =

(
f (u,v)
g(u,v)

)
, D =

(
Du 0
0 Dv

)
. (15.40)

Let u∗ be the solution of F(u) = 0. Then u∗ is a spatially homogeneous equilibrium
of model (15.37). It is also an equilibrium solution of the ODE model obtained from
(15.37), where D = 0. For Turing instability, we require that u∗ be a locally stable
solution of the ODE model but an unstable solution of the PDE model (15.37). To
find conditions for this situation to occur, we let w = u− u∗. Linearizing system
(15.37), we obtain

wt = Dwxx +F(u∗)+ Jw,

where J is the Jacobian of the system (15.37) evaluated at u∗, given by

J =

(
fu fv

gu gv

)
|u=u∗ .

We recall that F(u∗) = 0, so that the linearized system becomes

wt = Dwxx + Jw. (15.41)

This equation is equipped with Neumann boundary conditions:

wx(0, t) = wx(L, t) = 0.
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System (15.41) is a linear system, and we can search for a solution in the form of a
sum of separable solutions. We consider a general separable solution

w(x, t) = T (t)X(x),

where we assume that T (t) is a scalar function of t. Substituting in system (15.41)
and dividing by T (t), we obtain

T ′(t)
T (t)

X(x) = DX′′(x)+ JX(x). (15.42)

For this equality to hold,
T ′(t)
T (t)

must be a quantity independent of t. Hence it must

be a constant, say λ . So we have that

T (t) = T0eλ t ,

where T0 is an appropriate constant. From (15.42), we have the following eigenvalue
problem:

λ X(x) = DX′′(x)+ JX(x). (15.43)

The key step here is to observe that we can find a nontrivial solution of (15.43) if
we consider only X(x) that satisfy the system

X′′(x)+ k2X(x) = 0,

X′(0) = X′(L) = 0. (15.44)

We investigated this problem before, and we saw that it has solutions in the form of
trigonometric functions. In particular,

k =
nπ
L

Xk(x) = Ak cos(kx).

Therefore, we will obtain a solution in the form of a series of trigonometric func-
tions. This process defines the kn for n = 1,2 . . . . Now we return to problem (15.43),
where we still have to specify the corresponding λ ’s. The λ ’s are a solution to the
following system:

λ X(x) =−Dk2X(x)+ JX(x), (15.45)

which has a nontrivial solution if and only if the determinant is zero. Hence, we
want

|J−Dk2 −λ I|= 0,

where I is the 2× 2 identity matrix. In expanded form this determinant is
∣∣∣∣ fu −Duk2 −λ fv

gu gv −Dvk2 −λ

∣∣∣∣= 0. (15.46)
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This gives the following quadratic equation in λ :

λ 2+[(Du+Dv)k
2−( fu +gv)]λ +[DuDvk4−(Dv fu +Dugv)k

2+( fugv−gu fv)] = 0.

For each kn, n = 1,2 . . . , there are two solutions for λ from the above equation:
λ1n(kn) and λ2n(kn). With Xn(x) solving (15.44), we have the following solution for
each kn:

(T01eλ1n(kn)t +T02eλ2n(kn)t)Xn(x).

Thus the complete solution of problem (15.41) is given by

w(x, t) = ∑
n
(T01eλ1n(kn)t +T02eλ2n(kn)t)Xn(x).

This solution will be stable if ℜλ1n < 0 and ℜλ2n < 0 for every n. On the other hand,
it will be unstable if there exist n and λ1n or λ2n such that the real part is positive.

Recall that for Turing instability to occur, we want the ODE model obtained from
D = 0 to have a locally stable equilibrium. This means that the determinant (15.46)
with Du = Dv = k2 = 0 should have eigenvalues that have negative real parts. That
is the case if the Tr(J)< 0 and Det(J)> 0, that is, if we have

fu + gv < 0,

fugv − fvgu > 0. (15.47)

When the diffusion coefficients are not zero, the conditions for stability of the de-
terminant (15.46) for each kn are

fu + gv −Duk2 −Dvk2 < 0,

( fu −Duk2)(gv −Dvk2)− fvgu > 0. (15.48)

Because of assumptions (15.47), the first inequality above is always satisfied. Thus,
the only way we may destabilize the diffusion equilibrium with the diffusion is if
we find that

( fu −Duk2)(gv −Dvk2)− fvgu < 0.

The left-hand side of that inequality is a quadratic function of k2: H(k2) = Ak4 −
Bk2 +C, where A = DuDv, B = Dv fu +Dugv, and C = fugv − gu fv. We conclude
that instability occurs if the roots of H(k2) = 0 are real, say k2

1 and k2
2, k2 ∈ [k2

1,k
2
2],

and there exists a solution of problem (15.44) for k2 in that range. Thus, Turing
instability occurs if

B > 0, Dv fu +Dugv > 0,

B2 > 4AC, Dv fu +Dugv > 2
√

DuDv( fugv − gu fv). (15.49)

Notice that the first condition cannot hold if Du = Dv. That is why for Turing insta-
bility we always need very distinct diffusion rates. Satisfying the conditions above
is not a trivial matter, and we illustrate this in the example below.
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15.3.4.2 Turing Instability in an SI Epidemic Model

In this subsection, we consider a specific example and show that the conditions for
Turing instability can hold. Consider the following SI model, which comes from
[164]:

∂S
∂ t

= rN

(
1− N

K

)
−β

SI
N

− μS+DS
∂ 2S
∂x2 ,

∂ I
∂ t

= β
SI
N

− (μ + γ)I+DI
∂ 2I
∂x2 ,

(15.50)

where N(x, t) = S(x, t)+ I(x, t). This model is considered for x∈ [0,L] and t ∈ [0,∞).
The model is equipped with Neumann boundary conditions:

Sx(0, t) = Sx(L, t) = Ix(0, t) = Ix(L, t) = 0.

First we look for a spatially homogeneous solution (S∗, I∗), where S∗ and I∗ satisfy
the system

rN

(
1− N

K

)
−β

SI
N

− μS = 0,

β
SI
N

− (μ + γ)I = 0.

(15.51)

We define the reproduction number

R0 =
β

μ + γ
.

The model has the disease-free spatially homogeneous equilibrium E0 =
(K(1− μ

r ),0), but we will be more interested in the endemic equilibrium E ∗ =
(S∗, I∗). To find the values of the endemic equilibrium, we assume R0 > 1. We note
that N∗ = S∗+ I∗. Correspondingly, 1 = s∗+ i∗, where s∗ = S∗/N∗ and i∗ = I∗/N∗.
From the second equation in (15.51), we have s∗ = 1/R0. Hence, i∗ = 1−1/R0. To
find N∗, we add the two equations, and we have

rN∗
(

1− N∗

K

)
= γI∗+ μN∗.

Dividing by N∗, replacing i∗ with its value, and solving for N∗, we obtain

N∗ = K

(
1− 1

Rd

)
,
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where we have defined the following demographic reproduction number:

Rd =
rR0

μR0 + γ(R0 − 1)
.

Finally, we have

S∗ =
1
R0

K

(
1− 1

Rd

)
,

I∗ =
(

1− 1
R0

)
K

(
1− 1

Rd

)
. (15.52)

Proposition 15.1. If R0 > 1 and Rd > 1, then there exists a unique spatially homo-
geneous endemic equilibrium.

To search for Turing instability, we derive the characteristic equation (15.46):
∣∣∣∣ fS −DSk2 −λ fI

gS gI −DIk2 −λ

∣∣∣∣= 0, (15.53)

where

fS =r

(
1− N∗

K

)
− r

K
N∗ −β i∗+β s∗i∗ − μ =−r

(
1− 2

Rd

)
−β

(
1− 1

R0

)2

− μ ,

fI =r

(
1− N∗

K

)
− r

K
N∗ −β s∗+β s∗i∗ =−r

(
1− 2

Rd

)
−β

1

R2
0

,

gS=β i∗ −β s∗i∗ = β
(

1− 1
R0

)2

,

gI = −β s∗i∗ =−β
1
R0

(
1− 1

R0

)
,

(15.54)

where in the last expression, we have taken the value of s∗ into account to simplify.
Denote the matrix whose characteristic equation is given in (15.53) by M . Then

Tr(M ) < 0, since we have assumed that the spatially homogeneous steady state is
locally stable (the spatially homogeneous steady state is the steady state of the ODE
system obtained from assuming DS = DI = 0). On the other hand, Det(M ) might
be positive or negative, depending on the diffusion rates and k2. Define

H(k2) = ( fS −DSk2)(gI −DIk
2)− gS fI .

We plot H(k2) in Fig. 15.6.
Figure 15.6 shows that H(k2) becomes negative for a range of values of k. If we

pick L= π , then we can take k = 1. So Turing instability occurs. To simulate the Tur-
ing instability, we use Mathematica, in which we code equations (15.50). We take
the initial conditions to be a perturbation of the spatially homogeneous equilibrium:
S0(x) = 0.101453+0.001cos(10x), I0(x) = 0.071+0.001cos(10x). We simulate for
a long time, and we look for a spatially heterogeneous solution in time. In Fig. 15.7,
we plot I(x, t), where the solution becomes heterogeneous in space in later times.
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Fig. 15.6 Plot of H(k2) for r = 0.25, γ = 0.05, μ = 0.0001, DS = 0.0001, DI = 10, K = 1,
β = 0.08517. In this case, R0 = 1.7 and Rd = 1.20842. We have H(0) = 0.000151214, which
is positive. Clearly, H(k2) becomes negative for a range of values of k. Thus, Turing instability
occurs
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Fig. 15.7 Plot of I(x, t). Parameters are chosen as r = 0.25, γ = 0.05, μ = 0.0001, DS = 0.0001,
DI = 10, K = 1, β = 0.08517, and L= 40π . In this case, R0 = 1.7 and Rd = 1.20842. The solution
exhibits spatial heterogeneity for T = 20,000. Thus, Turing instability occurs

Problems

15.1. Two-Patch Lagrange Movement Model
Consider model (15.1) with n = 2.

(a) Use the next-generation approach to compute an explicit formula for R0.
(b) Use a computer algebra system to simulate the case in which R1 < 1 and R2 < 1

but R0 > 1 and the disease persists in the metapopulation.
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15.2. Two-Patch Lagrange Movement Model
Consider model (15.1) with n = 2. Show that the model has a unique endemic equi-
librium if R0 > 1.

15.3. Two-Patch Eulerian Movement Model
Consider model (15.8) with n = 2.

(a) Compute the disease-free equilibrium. Use the next-generation approach to
compute an explicit formula for R0.

(b) Compute the elasticities of R0 with respect to the migration rates. How do the
migration rates affect the reproduction number?

(c) The patch reproduction numbers are given in (15.11). Show that min{R1,R2}<
R0 < max{R1,R2}.

Hint: Assume without loss of generality that R1 >R2. Use the next-generation
approach and derive the equation whose principal solution gives R0. Plot this
quadratic polynomial and show that its value at R1 is positive, while at R2, it is
negative. What does that mean?

15.4. Two-Patch Eulerian Movement Model
Consider model (15.8) with n = 2. Show that the model has a unique endemic equi-
librium if R0 > 1.

15.5. SIS Model with Diffusion
Consider the following SIS model with diffusion:

∂S
∂ t

= −β S(x, t)I(x, t)+ γI(x, t)+D
∂ 2S
∂x2 ,

∂ I
∂ t

= β S(x, t)I(x, t)− γI(x, t)+D
∂ 2I
∂x2 , (15.55)

with Neumann boundary conditions

lim
x→−∞

∂S
∂x

= lim
x→∞

∂S
∂x

= lim
x→−∞

∂ I
∂x

= lim
x→∞

∂ I
∂x

= 0.

(a) Argue that the total population size is constant, and eliminate the equation for S.
(b) Show that the diffusion epidemic model that consists of a single equation for I

has a traveling-wave solution.
(c) Simulate a traveling-wave solution for system (15.55).

15.6. SIR Model with Diffusion in Infectives
The following SIR model with diffusion in infectives was proposed in [82] to model
rabies in foxes:

∂S
∂ t

= −β S(x, t)I(x, t),

∂ I
∂ t

= β S(x, t)I(x, t)− γI(x, t)+D
∂ 2I
∂x2 , (15.56)
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where the equation for the recovered has been omitted. Consider model (15.56) with
Neumann boundary conditions

lim
x→−∞

∂S
∂x

= lim
x→∞

∂S
∂x

= 0, lim
x→−∞

∂ I
∂x

= lim
x→∞

∂ I
∂x

= 0.

(a) Look for a traveling-wave solution and reduce the system to two equations of a
single variable z = x− vt:

vS′ = β SI,

DI′′+ vI′+β SI− γI = 0. (15.57)

(b) Express I from the first equation I = vS′
β S and substitute it in the second, to obtain

DI′′+ vI′+ vS′ − γ
vS′

β S
= 0.

Integrate the above equation from z to ∞ and obtain the following planar system
for the traveling-wave solution:

S′ =
β
v

SI,

I′ = − v
D

I− v
D

S+
γv
β D

lnS+
v
D

S∞ − γv
β D

lnS∞, (15.58)

where limz→∞ S = S∞.
(c) Show that if

β S∞

γ
< 1, (15.59)

then system (15.58) has two equilibria. Otherwise, it has one.
(d) Show that if (15.59) holds, then one of the equilibria is a saddle, and the other

one is stable. Argue that there are a homoclinic orbit and a traveling-wave solu-
tion.

(d) Simulate a traveling-wave solution for system (15.56).

15.7. SI Model with Diffusion: Turing Instability
Consider the following model:

St = rS
(
1− S

K

)− β SI
1+αS − μS+DSSxx,

It =
β SI

1+αS − (μ + γ)I+DIIxx,
(15.60)

with Neumann boundary conditions.

(a) Compute the disease-free equilibrium, the spatially homogeneous endemic equi-
librium, and the reproduction number.

(b) Derive conditions for the stability of the endemic equilibrium in the case
DS = DI = 0.
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(c) Show that Turing instability may occur.
(d) Simulate the spatially heterogenous solutions for a given time.

15.8. SI Model with Diffusion: Turing Instability
Consider the following model, in which the transmission rate is assumed not con-
stant but linear in I:

St = Λ −β (1+νI)IS− μS+DSSxx,

It = β (1+νI)IS− (α + μ)I+DIIxx, (15.61)

with Neumann boundary conditions.

(a) Compute the disease-free equilibrium, the spatially homogeneous endemic equi-
libria, and the reproduction number.

(b) Derive conditions for the stability of the endemic equilibrium when R0 > 1 in
the case DS = DI = 0.

(c) Show that Turing instability may occur.
(d) Simulate the spatially heterogenous solutions for given times.



Chapter 16
Discrete Epidemic Models

16.1 Single-Species Discrete Population Models

The continuous population models that we have considered in previous chapters
model population and epidemic processes that occur continuously in time. In partic-
ular, they assume that births and deaths in the population occur continuously. This
assumption is true for the human population, but many insect and plant populations
have discrete, nonoverlapping generations. Such populations reproduce during spe-
cific time intervals of the year. Consequently, population censuses are taken at those
specific times. As a result, modeling such populations and the distribution of dis-
ease in them should happen at discrete times. In this chapter we introduce discrete
single-species population and epidemic models.

16.1.1 Simple Discrete Population Models

We assume that we measure the population at discrete, equally spaced, moments of
time: t0, t1, . . . , tn, . . . , and we find that the population numbers at these moments of
time are Nt , where t takes the values of t0, t1, . . . , tn, . . . . For simplicity, we will set
Ntn = Nn. Thus, the population size is described by a sequence: N1,N2, . . . ,Nn, . . . .
A discrete population model can be written in the following general form:

Nn+1 =F (Nn), (16.1)

where F is a specified function of Nn. That is, if we know the population size at
time tn, the model tells us what the populations size at time tn+1 should be. Such a
model is equipped with a given initial condition: the population size N0 at time t0 is
given. Another way to rewrite Eq. (16.1) is

Nn+1 = Nn f (Nn). (16.2)
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The function f (Nn) is called a fitness function or per capita rate of population
growth or net reproduction rate.

Definition 16.1. Equations of the form (16.1) are called difference equations.

Such difference equations are of first order, because they contain only one time step.
They are also autonomous, because F does not depend explicitly on the time tn. The
simplest discrete population model is derived under the assumption that individuals
die with constant probability d. Furthermore, we assume that b individuals are born
per individual in the population. The model then becomes

Nn+1 = Nn + bNn − dNn,

that is, the number of individuals at the time step tn+1 is the number from the time
step tn plus those who have been born, minus those who have died. Defining R =
1+ b− d, we obtain the following linear discrete equation of population growth:

Nn+1 =RNn. (16.3)

The parameter R is called the net reproduction number. We note that R > 0, since
b and d are probabilities and are less than one. Model (16.3) is a discrete ana-
logue of the Malthusian equation. Equation (16.3) is a special case of Eq. (16.2)
with f (Nn) =R. Model (16.3) can be solved. Given initial population size N0, we
have

N1 =RN0,
N2 =RN1 =R2N0,
...
Nn =RNn−1 =RnN0.

(16.4)

If R > 1, then each individual on average leaves more than one descendant, and the
population grows geometrically. If R < 1, then each individual leaves fewer than
one descendant, and the population declines geometrically. If R = 1, the population
remains constant. These model predictions are valid under the assumption that the
resources are unlimited.

In practice, populations do not experience unlimited growth, so models that pre-
dict asymptotically bounded growth are more realistic. One such model is the dis-
crete analogue of the logistic equation. To derive such an analogue, we approximate
the continuous time derivative with Nn+1 −Nn, assuming that the time step is equal
to one. Thus the discrete logistic equation takes the form

Nn+1 = Nn + rNn

(
1− Nn

K

)
. (16.5)

First we factor Nn and r+1. Furthermore, we make the following changes in depen-
dent variables and parameters:

yn =
r

r+ 1
Nn

K
a = r+ 1.
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We obtain a classical form for the discrete logistic equation:

yn+1 = ayn(1− yn).

This method for producing discrete equations is not foolproof, however. The dis-
crete logistic equation above is not well posed, in the sense that its solutions can
become negative. This is not hard to see. Suppose we start from y0 = 0.5 and a = 6.
Then y1 = 1.5. Consequently, y2 < 0. Thus, the logistic equation is not a very good
discrete population model.

We can derive a discrete version of the simplified logistic model. Suppose the
population increases in each time interval by a constant amount Λ , and that γ ≤ 1 is
the probability for survival of individuals to the next time period. Then the simpli-
fied logistic model takes the form

Nn+1 =Λ + γNn. (16.6)

This model can also be solved explicitly:

N1 = Λ + γN0,
N2 = Λ + γ(Λ + γN0) = γ2N0 +(1+ γ)Λ ,
...
Nn = γnN0 +(1+ γ + · · ·+ γn−1)Λ .

(16.7)

Hence,

Nn =

⎧⎨
⎩

N0 +Λn, γ = 1,

γn
(

N0 − Λ
1− γ

)
+

Λ
1− γ

, γ < 1.
(16.8)

Other discrete population models have been proposed that guarantee that the pop-
ulation remains positive for all times. One such model, proposed by Bill Ricker
[138], is the Ricker model:

Nn+1 = Nner(1− Nn
K ). (16.9)

Another model also widely used is the Beverton–Holt model [23], also called
the Verhulst equation:

Nn+1 =
rNn

A+Nn
. (16.10)

A generalization of the Beverton–Holt model can be made that is known as the
Hassell equation [72]:

Nn+1 =
rNn

(A+Nn)b , (16.11)

where b > 0 is a positive parameter.
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16.1.2 Analysis of Single-Species Discrete Models

Difference equations also have solutions that do not depend on time, called equilib-
ria. Since the solution does not depend on time, all members of the sequence have
the same value, that is, we have

Nn = N∗ for all n ≥ 0.

Consequently, equilibria of the difference equation (16.1) must satisfy N∗ =F (N∗).

Definition 16.2. A value N∗ that satisfies

N∗ =F (N∗)

is called a fixed point of the function F .

Example 16.1. Consider the equilibria of the logistic equation

N∗ = N∗+ rN∗
(

1− N∗

K

)
.

The solutions of this equation are N∗
1 = 0 and N∗

2 = K, that is, the equilibria in the
discrete case are exactly the same as in the continuous case. The equilibrium N∗

1 = 0
is called a trivial equilibrium, while the equilibrium N∗

2 = K is called a nontrivial
equilibrium.

To describe the behavior of the solutions near an equilibrium, we use again a
process called linearization. Let N∗ be the equilibrium, and un the perturbation of
the solution from the equilibrium, that is,

Nn = N∗+ un.

Substituting this equation into Eq. (16.1), we have un+1 + N∗ = F (un + N∗).
Expanding F in a Taylor series and neglecting all terms containing powers of un

greater than one, we obtain

un+1 +N∗ =F (N∗)+F ′(N∗)un.

Recall that since N∗ is an equilibrium, we have N∗ =F (N∗). Hence, we obtain the
following linearized equation:

un+1 =F ′(N∗)un. (16.12)

We note that F ′(N∗) is a fixed number, which may be positive or negative. If we
consider

un+1 = |F ′(N∗)|un, (16.13)
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then Eq. (16.13) is exactly the discrete Malthus equation. Consequently, we have the
following:

1. If |F ′(N∗)|< 1, then un → 0. Hence, Nn−N∗ → 0 and Nn → N∗. This is the case
if N0 is close enough to N∗, that is, this result is local. In this case, we call N∗
locally asymptotically stable.

2. If |F ′(N∗)| > 1, then un → ∞. Hence Nn −N∗ → ∞, and Nn diverges from N∗.
This is the case if N0 is close enough to N∗. In this case, we call N∗ unstable.

We note that if |F ′(N∗)|= 1, we cannot draw conclusions from the local analysis.
We summarize the above discussion in the following theorem:

Theorem 16.1. The equilibrium N∗ of the discrete equation (16.1) is locally asymp-
totically stable if and only if |F ′(N∗)|< 1. The equilibrium N∗ of the discrete equa-
tion (16.1) is unstable if and only if |F ′(N∗)|> 1.

To illustrate the use of the theorem above, we consider the local stability of the
equilibria of the logistic equation.

Example 16.2. In the case of the logistic equation (16.5), the function F is given by

F (N) = N + rN

(
1− N

K

)
.

The derivative is given by

F ′(N) = 1+ r

(
1− N

K

)
− r

K
N.

In the case of the trivial equilibrium N∗ = 0, we have

F ′(0) = 1+ r > 1.

Consequently, the trivial equilibrium is always unstable. Now we consider the non-
trivial equilibrium N∗ = K. We have

F ′(K) = 1− r.

So if |1− r| < 1, or equivalently, if 0 < r < 2, then the nontrivial equilibrium is
locally asymptotically stable.

When r > 2, simulations suggests that the logistic equation can experience very
complex behavior. To investigate this behavior through simulations, we will study
the nondimensionalized version of the logistic equation:

yn+1 = ρyn(1− yn). (16.14)

Recall that ρ = 1+ r, so we can expect complex behavior for ρ > 3. We notice that
the corresponding equilibria of the nondimensional logistic model are y∗ = 0 and
y∗ = 1. The first complexity that appears is a 2-cycle.
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Fig. 16.1 The figure shows time series of the model yn+1 = ρyn(1− yn) for different values of ρ .
The first figure shows a two-cycle with ρ = 3.43. The second figure on the top line shows a 4-cycle
with ρ = 3.47. The left figure on the bottom row shows an 8-cycle with ρ = 3.58. The right figure
on the bottom row shows chaos with ρ = 3.7

Definition 16.3. A 2-cycle of model (16.1) is a system of two solutions y1 and y2

such that

y1 =F (y2),
y2 =F (y1).

(16.15)

In model (16.14), F (y) = ρy(1− y). As ρ increases, the system experiences a pro-
cess, called period-doubling, to a 4-cycle. Similarly, a 4-cycle of model (16.14) is a
system of four solutions y1, y2, y2, y4 such that

y1 =F (y4),
y2 =F (y1),
y3 =F (y2),
y4 =F (y3).

(16.16)

Further period-doubling occurs to an 8-cycle. The period-doubling continues un-
til the system begins to exhibit chaos. We illustrate period-doubling and chaos in
Fig. 16.1.

We need single-species discrete population models to capture the demographic
processes in epidemic models. Many books focus on single-species discrete models
and provide an excellent introduction to these models (for instance, see [27, 90]).
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16.2 Discrete Epidemic Models

Just like single-species population models, discrete epidemic models can also be
obtained from a discretization of the continuous epidemic models. However, this ap-
proach results in models that have issues like those of the discrete logistic equation.
To avoid these problems, a modeling approach specific to discrete models should be
taken. We follow here the approach of Castillo-Chavez and Yakubu [39].

16.2.1 A Discrete SIS Epidemic Model

We begin with a general population model

Nn+1 = f (Nn)+ γNn, (16.17)

where γ < 1 is the probability of survival to the next time period, and f (Nn) is a
recruitment function. We assume that the disease does not affect the population dyn-
amics, that is, we assume that the disease is nonfatal and does not affect the birth
process. We will build an SIS epidemic process on top of the demographic process.
We denote by Sn and In the susceptible and infected individuals at time tn. Individ-
uals survive with probability γ < 1 (die with probability 1− γ) in each generation.
Infected individuals recover with probability 1−σ (do not recover with probability
σ < 1) in each generation. In each generation, susceptible individuals become inf-
ected with probability 1−G (remain susceptible with probability G). The function
G is a function of the prevalence In/Nn, which is weighted with coefficient α . The
model assumes a sequential process: at each generation, γSn susceptibles survive,
and the surviving susceptibles become infected with probability 1−G. Similarly,
γIn infected individuals survive, and the surviving ones recover with probability
(1−σ):

Sn+1 = f (Nn)+ γSnG

(
αIn

Nn

)
+ γ(1−σ)In,

In+1 = γSn

(
1−G

(
αIn

Nn

))
+ γσ In. (16.18)

The function G must satisfy the following conditions:

1. G : [0,∞)→ [0,1].
2. G(0) = 1.
3. G is a monotone decreasing function with G′(x)< 0 and G′′(x)≥ 0.

An example of such a function that we will use is G(x) = e−x. Another example is
G(x) = A/(x+A). Adding the two equations in system (16.18) gives Eq. (16.17).
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16.2.2 Analysis of Multidimensional Discrete Models

In this subsection, we introduce the techniques that help us analyze systems of dis-
crete equations. Suppose that we are given the following system:

xn+1 =F (xn), (16.19)

where x is an M-dimensional vector of variables. As before, an equilibrium of
system (16.19) is the solution of the problem

x∗ =F (x∗).

To find the behavior of the solutions near an equilibrium, we use linearization. We
set xn = un + x∗. We obtain the following linear system:

un+1 = J(x∗)un, (16.20)

where J is the Jacobian of the system, that is,

J(x∗) =

⎛
⎜⎜⎜⎜⎝

∂F1

∂x1
. . .

∂F1

∂xM
...

∂FM

∂x1
. . .

∂FM

∂xM

⎞
⎟⎟⎟⎟⎠ |x=x∗ . (16.21)

Definition 16.4. An equilibrium point x∗ is said to be locally asymptotically stable
if there exists a neighborhood U of x∗ such that for each starting value x0 ∈ U ,
we get

lim
n→∞

xn = x∗. (16.22)

The equilibrium point x∗ is called unstable if x∗ is not (locally asymptotically)
stable.

The limit (16.22) holds if for system (16.20), we have limn→∞ un = 0. The follow-
ing theorem gives the conditions for convergence of solutions of the linear system
(16.20) to zero:

Theorem 16.2. Let J be an M×M matrix with ρ(J)< 1, where

ρ(J) = max{|λ | : λ is an eigenvalue of J}.

Then every solution of (16.20) satisfies

lim
n→∞

un = 0.

If ρ(J)> 1, then there are solutions that go to infinity.
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This implies the following criterion for stability of an equilibrium x∗ of system
(16.19).

Theorem 16.3. Consider the nonlinear autonomous system (16.19). Suppose F :
D → D , where D ⊂ RM and D is an open set. Suppose F is twice continuously
differentiable in some neighborhood of a fixed point x∗ ∈D . Let J(x∗) be the Jaco-
bian matrix of F evaluated at x∗. Then the following hold:

1. x∗ is locally asymptotically stable if all eigenvalues of J(x∗) have magnitude less
than one.

2. x∗ is unstable if at least one eigenvalue of J(x∗) has magnitude greater than one.

The Routh–Hurwitz criterion will not be helpful here in determining which mat-
rices are stable, since Routh–Hurwitz identifies matrices whose eigenvalues lie in
the left half of the complex plane. However, there is an analogous criterion that can
help determine whether the spectral radius of a matrix is smaller than one. This
criterion is called the Jury conditions. Let

p(λ ) = |J−λ I|= aMλ M + · · ·+ a1λ + a0,

where aM = 1. To introduce the Jury conditions, we first have to introduce the Jury
array. The Jury array is composed as follows: First we write out a row of the
coefficients, and then we write out another row with the same coefficients in rev-
erse order. The first two rows of the Jury array are composed of the coefficients of
the polynomial p(λ ) above. Once we have the first two rows of the a coefficients, the
next two rows are of the b coefficients, and so on. We obtain the array of Table 16.1,
where the b coefficients, c coefficients, etc., are composed as follows:

Table 16.1 Jury array

Number Coeff. Coeff. Coeff. Coeff. Coeff.

(1) a0 a1 . . . aM−1 aM

(2) aM aM−1 . . . a1 a0
(3) b0 b1 . . . bM−1
(4) bM−1 bM−2 . . . b0
...

...
...

...

(2M-3) v0 v1 v2

bk =

∣∣∣∣ a0 aM−k

aM ak

∣∣∣∣ ck =

∣∣∣∣ b0 bM−1−k

bM−1 bk

∣∣∣∣ dk =

∣∣∣∣ c0 cM−2−k

cM−2 ck

∣∣∣∣ .
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Jury Conditions
The Jury conditions require all of the following conditions to be met. If
all the conditions are satisfied, then the spectral radius of the matrix is
less than one, and the matrix is stable:

1. p(1)> 0.
2. (−1)M p(−1)> 0.
3. |a0|< aM.
4. Once the Jury array has been composed, the Jury conditions also re-

quire
|b0|> |bM−1|,
|c0|> |cM−2|,
|d0|> |dM−3|.

...

(16.23)

In the case M = 1, the Jury conditions do not apply, but in this case, the eigen-
value is known explicitly, and its magnitude can be compared with one. In the cases
M = 2,3,4, we write the Jury conditions in Table 16.2.

Table 16.2 Jury Conditions

Degree Condition Condition Condition Condition Condition

M = 2 p(1) > 0 p(−1) > 0 |a0|< 1
M = 3 p(1) > 0 p(−1) < 0 |a0|< 1 |a2

0 −1|> |a0a2 −a1|
M = 4 p(1) > 0 p(−1) > 0 |a0|< 1 |a2

0 −1|> |a0a3 −a1| |b2
0 −b2

3|> |b0b2 −b3b1|

16.2.3 Analysis of the SIS Epidemic Model

In this section, we analyze model (16.18) with a specific fertility function. In par-
ticular, we choose the discrete simplified logistic model, where we know that the
population tends to a constant size as n → ∞. We will study the following epidemic
model with a general force of infection G:

Sn+1 = Λ + γSnG

(
αIn

Nn

)
+ γ(1−σ)In,

In+1 = γSn

(
1−G

(
αIn

Nn

))
+ γσ In.

(16.24)
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Fig. 16.2 The figure shows the two functions on the two sides of Eq. (16.27). Here α = 0.9, σ =
0.9, γ = 0.9, and N = 10

The equilibria of the system above satisfy

S = Λ + γSG

(
αI
N

)
+ γ(1−σ)I,

I = γS

(
1−G

(
αI
N

))
+ γσ I.

(16.25)

Adding the equations, we have N = Λ + γN. Hence N = Λ/(1− γ). The system
clearly has the disease-free equilibrium E0 = (N,0). To find the endemic equilibria,
we write S = N − I and substitute in the equation for I:

(1−σγ)I = γ(N − I)

(
1−G

(
αI
N

))
. (16.26)

This is a nonlinear equation for I. It has I = 0 as a solution. We need to find a
condition under which this equation has a nonzero solution. The equation can be
rewritten also as

(1−σγ)
I

N− I
= γ

(
1−G

(
αI
N

))
. (16.27)

The function on the right is increasing and concave down. The function on the
left is increasing and concave up, tending to infinity as I → N. Besides the common
point at zero, these functions have another unique common point if and only if the
slope at zero of the function on the left is smaller than the slope at zero of the
function on the right (see Fig. 16.2), that is, if

(1−σγ)<−αγG′(0).
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This condition gives the reproduction number. We define

R0 =
−αγG′(0)
(1−σγ)

. (16.28)

We note that the reproduction number is positive, since G′(0) < 0. We summarize
these results in the following proposition:

Proposition 16.1. Assume R0 < 1. Then model (16.24) has only the disease-free
equilibrium E0 = (N,0). If R0 > 1, then model (16.24) has the disease-free equilib-
rium and a unique endemic equilibrium E ∗ = (S∗, I∗), where I∗ > 0 is the unique
positive solution of Eq. (16.27) and S∗ = N − I∗.

We use the theoretical results in the previous subsection to establish the local stabil-
ity of equilibria. The following theorem summarizes the results:

Theorem 16.4. The disease-free equilibrium is locally asymptotically stable if
R0 < 1 and unstable if R0 > 1. The endemic equilibrium is locally asymptotically
stable if R0 > 1.

Proof. We begin by computing the generic form of the Jacobian:

J =

⎛
⎜⎜⎝

γG

(
αI
N

)
− γα

SI
N2 G′

(
αI
N

)
γα
[

S
N
− SI

N2

]
G′
(

αI
N

)
+ γ(1−σ )

γ
(

1−G

(
αI
N

))
+ γα

SI
N2 G′

(
αI
N

)
−γα

[
S
N
− SI

N2

]
G′
(

αI
N

)
+ γσ

⎞
⎟⎟⎠ ,

(16.29)

where we recall that N = S+ I. To find the stability of the disease-free equilibrium,
we evaluate the Jacobian at the disease-free equilibrium:

J(E0) =

(
γG(0) γαG′ (0)+ γ(1−σ)

γ (1−G(0)) −γαG′ (0)+ γσ

)
. (16.30)

The characteristic equation now becomes |J(E0)− λ I| = 0. Recall that G(0) = 1,
so the characteristic determinant is upper triangular, and the eigenvalues are λ1 = γ
and λ2 = −γαG′ (0)+ γσ . Both eigenvalues are positive, and λ1 is by assumption
less than one, while λ2 is less than one if and only if R0 < 1.

To determine the stability of the endemic equilibrium, we first observe that from
equality (16.26), we have the following inequality:

(1− γσ)>−γ(1−G(
αI∗

N∗ ))−αγ
S∗

N∗ G′(
αI∗

N∗ ). (16.31)
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This inequality simply says that at the point where the two curves intersect, the slope
of the left one is larger than the slope of the right one. This is easy to see from their
graphs. The characteristic polynomial is given by

|J−λ I|=

∣∣∣∣∣∣∣∣

γG

(
αI
N

)
− γα

SI
N2 G′

(
αI
N

)
−λ γα

[
S
N

− SI
N2

]
G′
(

αI
N

)
+ γ(1−σ)

γ
(

1−G

(
αI
N

))
+ γα

SI

N2 G′
(

αI
N

)
−γα

[
S
N

− SI

N2

]
G′
(

αI
N

)
+ γσ −λ

∣∣∣∣∣∣∣∣
.

(16.32)

We can manipulate the determinant to simplify the characteristic polynomial. In
particular, adding the first line to the second, we have

|J−λ I|=
∣∣∣∣∣∣
γG

(
αI∗

N∗

)
− γα

SI

N2 G′
(

αI∗

N∗

)
−λ γα

[
S∗

N∗ − S∗I∗

N∗2

]
G′
(

αI∗

N∗

)
+ γ(1−σ)

γ −λ γ −λ

∣∣∣∣∣∣= 0.

(16.33)

Factoring out γ −λ , we see that one of the eigenvalues is λ1 = γ . This eigenvalue
is positive and less than one. The second eigenvalue is obtained from the remaining
determinant∣∣∣∣∣∣
γG

(
αI∗

N∗

)
− γα

SI
N2 G′

(
αI∗

N∗

)
−λ γα

[
S∗

N∗ −
S∗I∗

N∗2

]
G′
(

αI∗

N∗

)
+ γ(1−σ)

1 1

∣∣∣∣∣∣= 0.

(16.34)

This gives, after some simplification,

λ2 =−γ
(

1−G

(
αI∗

N∗

))
−αγ

S∗

N∗ G′
(

αI∗

N∗

)
+ γσ .

Inequality (16.31) implies that λ2 < 1. Furthermore, λ2 >−γ
(

1−G
(

αI∗
N∗
))

>−1.

Hence |λ2|< 1, and the endemic equilibrium is locally asymptotically stable. �

In this SIS example, we did not necessarily need the Jury conditions, because the
two-equation model can be reduced to a single equation if we take into account the
fact that the total population size is asymptotically constant.

16.3 Discrete SEIS Model

One can formulate discrete variants of all classical continuous epidemic models.
In this section, we formulate a discrete version of an SEIS model that consists of
three equations: one for the susceptible Sn, one for the exposed En, and one for the
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infectious In individuals. We will use again an asymptotically constant population
size and a general function for the force of infection. The model takes the form

Sn+1 = Λ + γSnG

(
αIn

Nn

)
+ γ(1− δ )In,

En+1 = γSn

(
1−G

(
αIn

Nn

))
+ γσEn,

In+1 = γ(1−σ)En+ γδ In, (16.35)

where γ is the probability of survival to the next time period, 1−σ is the probability
of progression to infectiousness, and 1−δ is the probability of recovery. Again, the
function G must satisfy the following conditions:

1. G : [0,∞)→ [0,1].
2. G(0) = 1.
3. G is a monotone decreasing function with G′(x)< 0 and G′′(x)≥ 0.

Equilibria are solutions of the following system:

S = Λ + γSG

(
αI
N

)
+ γ(1− δ )I,

E = γS

(
1−G

(
αI
N

))
+ γσE,

I = γ(1−σ)E+ γδ I. (16.36)

Adding the three equations, we have N = Λ + γN. This gives the equilibrium total
population size N = Λ/(1− γ). The system has the disease-free equilibrium E0 =
( Λ

1−γ ,0,0). Problem 16.4 asks you to compute the reproduction number, which is
given by the following expression:

R0 =
−αγ2(1−σ)G′(0)
(1−σγ)(1− δγ)

. (16.37)

Problem 16.4 asks you to establish the following proposition:

Proposition 16.2. If R0 < 1, then the disease-free equilibrium is locally asymptoti-
cally stable. If R0 > 1, the disease-free equilibrium is unstable, and there is a unique
endemic equilibrium.

To obtain the equation for the endemic equilibrium, we express E in terms of I from
the last equation in system (16.36): E = QI, where

Q =
1− γδ

γ(1−σ)
.
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We can express S in terms of I: S = N −QI − I. We replace these values in the
second equation to obtain an equation for I:

(1− γσ)QI = γ(N − (Q+ 1)I)

(
1−G

(
αI
N

))
. (16.38)

Every value of I that solves Eq. (16.38) gives an equilibrium E = (S∗,E∗, I∗). As be-
fore, it can be seen that the equation above has a unique nontrivial equilibrium
I∗ > 0. At the unique endemic equilibrium, the slopes of the two curves are related
as follows:

(1− γσ)Q >−γ(Q+ 1)

(
1−G

(
αI∗

N

))
−αγ

S∗

N
G′
(

αI∗

N

)
. (16.39)

Replacing the value of Q and taking a common denominator leads to the inequality

(1− γσ)(1− γδ ) > −γ(1− γδ + γ(1−σ))

(
1−G

(
αI∗

N

))

− αγ2(1−σ)
S∗

N
G′
(

αI∗

N

)
. (16.40)

Now we are ready to establish a partial result on the stability of the endemic equi-
librium:

Proposition 16.3. Assume R0 > 1. If

σ + δ +G

(
αI∗

N

)
− 1 > 0,

then the unique endemic equilibrium E = (S∗,E∗, I∗) is locally asymptotically
stable.

Proof. The Jacobian at the endemic equilibrium is given by

J =

⎛
⎜⎜⎜⎜⎝

γG

(
αI
N

)
−A −A γα

S
N

G′
(

αI
N

)
−A+ γ(1− δ )

γ
(

1−G

(
αI
N

))
+A γσ +A −γα

S
N

G′
(

αI
N

)
+A

0 γ(1−σ) γδ

⎞
⎟⎟⎟⎟⎠ ,

(16.41)

where A = γα SI
N2 G′ (αI

N

)
. We consider the characteristic equation |J − λ I| = 0.

Adding the first and the third rows in the determinant to the second row, we obtain
∣∣∣∣∣∣∣∣
γG

(
αI
N

)
−A−λ −A γα

S
N

G′
(

αI
N

)
−A+ γ(1− δ )

γ −λ γ −λ γ −λ
0 γ(1−σ) γδ −λ

∣∣∣∣∣∣∣∣
= 0. (16.42)



430 16 Discrete Epidemic Models

Factoring out γ−λ , we see that the first eigenvalue is λ1 = γ . This eigenvalue is pos-
itive and less than one. The remaining eigenvalues are solutions of the characteristic
equation
∣∣∣∣∣∣∣∣
γG

(
αI
N

)
−A−λ −A γα

S
N

G′
(

αI
N

)
−A+ γ(1− δ )

1 1 1
0 γ(1−σ) γδ −λ

∣∣∣∣∣∣∣∣
= 0. (16.43)

From here we obtain the quadratic polynomial

p(λ ) = λ 2 − (γδ + γG− γ(1−σ))λ

+ [−γ2(1−σ)G+αγ2(1−σ)
S
N

G′

+ γ2(1−σ)(1− δ )+ γ2δG] = 0, (16.44)

where G and G′ have the usual argument. We can write the polynomial as p(λ ) =
λ 2 + a1λ + a0. Rewriting inequality (16.40) as

αγ2(1−σ)
S∗

N
G′
(

αI∗

N

)
> − γ(1− γδ + γ(1−σ))

(
1−G

(
αI∗

N

))

− (1− γσ)(1− γδ ), (16.45)

we will use it to bound the polynomial from below. Applying this inequality to the
constant term of the polynomial p(λ ), we have

p(λ ) > λ 2 − (γδ + γG− γ(1−σ))λ
+ [−γ2(1−σ − δ )G− γ(1− γδ + γ(1−σ))(1−G)

− (1− γσ)(1− γδ )+ γ2(1−σ)(1− δ )]
= λ 2 − (γδ + γG− γ(1−σ))λ
+ [γ2(1−σ − δ )(1−G)− γ(1− γδ + γ(1−σ))(1−G)

− (1− γσ)(1− γδ )+ γ2σδ ].
(16.46)

On combining the coefficients of the two terms (1−G), the above right-hand side
simplifies to

p(λ )> λ 2 − (γδ + γG− γ(1−σ))λ − γ(1−G)− 1+ γδ + γσ .

We need to check the Jury conditions. Clearly, p(1)> 0. Furthermore, according to
our assumption,

p(−1)> 2γ(δ +σ +G− 1)> 0.
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Finally, we need to show that the constant term of the polynomial p(λ ) satisfies
|a0|< 1. We bound the constant term from above and from below:

a0 >−γ(1−G)− 1+ γδ + γσ = γ(δ +σ +G− 1)− 1>−1.

In addition, if 1− δ −σ > 0, then

a0 < γ2(1− δ )(1−σ)− γ(1− δ −σ)G < 1.

If 1− δ −σ < 0, we have

a0 < γ2(1− δ −σ)(1−G)+ γ2σδ < γ2σδ < 1.

We conclude that |a0|< 1. The Jury conditions now imply that the endemic equilib-
rium is stable. �

In conclusion, discrete models look simpler and perhaps more natural, but their anal-
ysis is far more complicated than the analysis of continuous models. Furthermore,
even very simple single-species discrete models are capable of exhibiting very com-
plex, even chaotic, dynamics.

16.4 Next-Generation Approach for Discrete Models

As the discrete models become more and more realistic, computation of R0 be-
comes harder or impossible to do via the Jacobian approach. In analogy with the
continuous case, a version of the next-generation approach for discrete models was
developed [9].

16.4.1 Basic Theory

To introduce the next-generation approach for discrete models, let x = (x1, . . . ,xm)T

be the vector of dependent variables, and let

xn+1 = F(xn) n = 0,1, . . .

be the dynamical system over discrete time intervals with F : Rm
+ −→ R

m
+ and F ∈

C1(Rm
+). As in the continuous case, we order the variables so that the first k < m,

denoted by y = (y1, . . . ,yk)T , are the infected states such as exposed, infectious,
isolated, and the remaining m−k states z= (zk+1, . . . ,zm)T are the uninfected states,
such as susceptible, recovered, vaccinated. In this case, the system can be written as

(
yn+1

zn+1

)
=

(
F0(xn)
F1(xn)

)
. (16.47)
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We assume that there exists a unique disease-free equilibrium where y = 0, and
therefore the disease-free equilibrium is given by (0,z∗)T . Furthermore, linearizing
the discrete system around the disease-free equilibrium gives

ξn+1 = Jξn,

where ξn is the vector of perturbations, and J is the Jacobian evaluated at the disease-
free equilibrium. The m×m Jacobian has the following form:

J =

(
F +T 0

A C

)
, (16.48)

where k× k submatrices F and T are nonnegative, 0 is the zeroth matrix. Further-
more, we assume that F +T is irreducible. Matrix F is a result of differentiation
and evaluation at the disease-free equilibrium of the new infections, and matrix T
is the result of differentiation and evaluation at the disease-free equilibrium of the
transition states (recovery, death). The submatrix F is known as the fertility matrix,
and T as the transition matrix. We assume that the disease-free equilibrium is loc-
ally asymptotically stable, that is ρ(C)< 1, where ρ(C) is the spectral radius of C.
In addition, we require ρ(T ) < 1. Since J is block-triangular, the stability of the
disease-free equilibrium depends on the eigenvalues of F +T . The next-generation
matrix is

Q = F(I −T)−1,

where I is the k×k identity matrix. The basic reproduction number is defined as the
spectral radius of the matrix Q, that is,

R0 = ρ(F(I −T)−1).

16.4.2 Examples

In this subsection, we introduce several more complex discrete epidemic models
and use the next-generation approach to compute the reproduction number.

16.4.2.1 SEIS Model

As a first example, we illustrate the theory on example (16.35). For this model, the
infected vector is y = (E, I)T , and the uninfected vector is z = (S). Arranging the
system so that the first equations are for the infected variables, we have



16.4 Next-Generation Approach for Discrete Models 433

En+1 = γSn

(
1−G

(
αIn

Nn

))
+ γσEn,

In+1 = γ(1−σ)En + γδ In,

Sn+1 = Λ + γSnG

(
αIn

Nn

)
+ γ(1− δ )In.

(16.49)

The disease-free equilibrium is given by (0,0, Λ
1−γ ). The Jacobian is given by

J =

⎛
⎝ γσ −γαG′(0) 0

γ(1−σ) γδ 0
0 γαG′(0)+ γ(1− δ ) γ

⎞
⎠ . (16.50)

First, C = (γ) and ρ(C) = γ < 1. The Jacobian is block-triangular. The important
step is to identify the matrices F and T . The new infections term is associated with
the function G. Hence the matrix F is given by

F =

(
0 −γαG′(0)
0 0

)
. (16.51)

We notice that the entries in F are nonnegative, since G′(0) < 0. The transition
matrix T is given by

T =

(
γσ 0

γ(1−σ) γδ

)
. (16.52)

Using Mathematica, we can invert I −T to obtain

(I −T )−1 =

⎛
⎜⎝

1
1− γσ

0

γ(1−σ)

(1− γδ )(1− γσ)

1
1− γδ

⎞
⎟⎠ . (16.53)

Hence,

F(I −T)−1 =

⎛
⎝ −γ2αG′(0)(1−σ)

(1− γδ )(1− γσ)

−γαG′(0)
1− γδ

0 0

⎞
⎠ . (16.54)

The spectral radius of the above matrix gives the reproduction number

R0 =
−γ2αG′(0)(1−σ)

(1− γδ )(1− γσ)
.

16.4.2.2 A Two-Patch SIS Model

In this subsection we introduce a two-patch SIS model based on the one-patch SIS
model (16.18). We assume that the movement occurs after the infection and recovery



434 16 Discrete Epidemic Models

process. Individuals move from patch one to patch two with probability d1 and vice
versa with probability d2. We furthermore assume that the probability of survival of
individuals in both patches is the same. This assumption can be easily relaxed.

The SIS model with movement takes the form

S1
n+1 = (1− d1)[Λ1 + γS1

nG1

(
α1I1

n

N1
n

)
+ γ(1−σ1)I

1
n ]

+d2[Λ2 + γS2
nG2

(
α2I2

n

N2
n

)
+ γ(1−σ2)I

2
n ],

I1
n+1 = (1− d1)[γS1

n

(
1−G1

(
α1I1

n

N1
n

))
+ γσ1I1

n ]

+d2[γS2
n

(
1−G2

(
α2I2

n

N2
n

))
+ γσ2I2

n ],

S2
n+1 = +d1[Λ1 + γS1

nG1

(
α1I1

n

N1
n

)
+ γ(1−σ1)I

1
n ]

+(1− d2)[Λ2 + γS2
nG2

(
α2I2

n

N2
n

)
+ γ(1−σ2)I

2
n ],

I2
n+1 = d1[γS1

n

(
1−G1

(
α1I1

n

N1
n

))
+ γσ1I1

n ]

+(1− d2)[γS2
n

(
1−G2

(
α2I2

n

N2
n

))
+ γσ2I2

n ]. (16.55)

We begin by determining the disease-free equilibrium. It is given by E0 =(S1,0,S2,0),
where S1 and S2 are solutions of the following system:

S1 = (1− d1)[Λ1 + γS1]+ d2[Λ2 + γS2],
S2 = d1[Λ1 + γS1]+ (1− d2)[Λ2 + γS2].

(16.56)

First, we see that

N = S1 + S2 =
Λ1 +Λ2

1− γ
.

Solving system (16.56), we obtain

S1 =
(1− (1− d2)γ)[(1− d1)Λ1 + d2Λ2]+ d2γ[d1Λ1 +(1− d2)Λ2]

Δ
,

S2 =
d1γ[(1− d1)Λ1 + d2Λ2]+ (1− (1− d1)γ)[d1Λ1 +(1− d2)Λ2]

Δ
,

(16.57)

where Δ = (1− (1− d1)γ)(1− (1− d2)γ)− d1d2γ2. The matrix C is given by

C =

(
(1− d1)γ d2γ

d1γ (1− d2)γ

)
. (16.58)
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It is not hard to show that ρ(C) = γ < 1. Next, we construct the matrix F +T :

F +T =

(
(1− d1)[−γα1G′

1(0)+ γσ1] d2[−γα2G′
2(0)+ γσ2]

d1[−γα1G′
1(0)+ γσ1] (1− d2)[−γα2G′

2(0)+ γσ2]

)
. (16.59)

The matrix F consists of all terms that involve G′; the matrix T consists of all
remaining terms. Therefore,

F =

(−(1− d1)γα1G′
1(0) −d2γα2G′

2(0)
−d1γα1G′

1(0) −(1− d2)γα2G′
2(0)

)
, (16.60)

and the matrix I−T is given by

I−T =

(
1− (1− d1)γσ1 −d2γσ2

−d1γσ1 1− (1− d2)γσ2

)
. (16.61)

To invert I − T , we compute the determinant Δ = (1 − (1 − d1)γσ1)(1 − (1 −
d2)γσ2)− d1d2γ2σ1σ2. Hence,

(I −T )−1 =
1
Δ

(
1− (1− d2)γσ2 d2γσ2

d1γσ1 1− (1− d1)γσ1

)
. (16.62)

The next-generation matrix takes the form

F(I−T )−1 =
1
Δ

(
A B
C D

)
, (16.63)

where

A =−(1− d1)γα1G′
1(0)[1− (1− d2)γσ2]− d1d2γ2σ1α2G′

2(0),
B =−(1− d1)d2γ2σ2α1G′

1(0)− d2γα2G′
2(0)[1− (1− d1)γσ1],

C =−d1γα1G′
1(0)[1− (1− d2)γσ2]− d1(1− d2)γ2σ1α2G′

2(0),
D =−d1d2γ2σ2α1G′

1(0)− (1− d2)γα2G′
2(0)[1− (1− d1)γσ1].

(16.64)

The reproduction number is given by

R0 = ρ(F(I−T )−1) =
A+D+

√
(A−D)2 + 4BC
2Δ

.

We note that in this example, it would have been impossible to compute R0 with
the Jacobian approach.

16.4.2.3 A Discrete SARS Model

In this section, we consider a discrete SARS model with quarantine and isolation.
Let Sn denote the susceptibles, En the exposed, In the individuals showing symp-
toms, Qn the quarantined, Jn the isolated, and Rn the recovered individuals. In SARS,
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the exposed individuals are infectious with reduced infectivity. The coefficient of re-
duction is q. The model takes the form

Sn+1 = Λ + γα1SnG

(
In + qEn

Nn −Qn − Jn

)
+ γρ(1−α1)Sn + γα4(1−η1)Qn,

En+1 = γα1Sn

(
1−G

(
In + qEn

Nn −Qn − Jn

))
+ γEn(α2σ +(1−α2)ρ),

In+1 = α2γ(1−σ)En + γIn(α3σ +(1−α3)r2),

Qn+1 = γ(1−ρ)((1−α1)Sn +(1−α2)En)+ γQn(α4η1 +(1−α4)η2),

Jn+1 = α3γ(1−σ)In +(1−α4)γ(1−η2)Qn + γr1Jn,

Rn+1 = γ(1− r1)Jn + γ(1−α3)(1− r2)In + γRn, (16.65)

where the parameters are given in Table 16.3.

Table 16.3 Parameter meanings

Parameter Meaning Parameter Meaning

Λ Recruitment γ Probability of survival
q Reduction in infectivity for exposed 1−ρ Probability of quarantine
1−σ Probability of isolation αi Convex combination coefficients
1− r1 Probability of recovery of isolated 1− r2 Probability of recovery of infected
1−η1 Probability of ending quarantine to

susceptible class
1−η2 Probability of ending the

quarantine to isolated class

We apply the next-generation approach to compute the reproduction number. The
disease-free equilibrium is given by E0 = (S∗,0,0,0,0,0), where

S∗ =
Λ

1− γ
.

The vector of infected classes is (E, I,Q,J). Hence, the matrix F +T is given by

F +T =

⎛
⎜⎜⎜⎜⎝

−γα1qG′(0)+α2γσ +(1−α2)γρ −γα1G′(0) 0 0

α2γ(1−σ) γ(α3σ +(1−α3)r2) 0 0

γ(1−ρ)(1−α2) 0 γ(α4η1 +(1−α4)η2) 0

0 α3γ(1−σ) γ(1−α4)(1−η2) γr1

⎞
⎟⎟⎟⎟⎠ .

(16.66)

The matrix F is written as F =( fi j), where f11 =−γqα1G′(0) and f12 =−γα1G′(0),
while the remaining entries are zero. The matrix I −T is given by
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I −T =

⎛
⎜⎜⎜⎜⎝

1−α2γσ − (1−α2)γρ 0 0 0

−α2γ(1−σ) 1− γ(α3σ +(1−α3)r2) 0 0

−γ(1−ρ)(1−α2) 0 1− γ(α4η1 +(1−α4)η2) 0

0 −α3γ(1−σ) −γ(1−α4)(1−η2) 1− γr1

⎞
⎟⎟⎟⎟⎠ .

(16.67)

Because of the structure of F , only the first 2×2 block of (I−T )−1 is important for
the reproduction number. Because of the block-triangular form of I − T , that first
2× 2 block of (I −T )−1 is obtained from inverting the first 2× 2 block of (I −T ).
Thus we have

(I −T)−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1−α2γσ − (1−α2)γρ

0 0 0

α2γ(1−σ)

Δ
1

1− γ(α3σ +(1−α3)r2)
0 0

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎠
, (16.68)

where Δ = (1 − α2γσ − (1 − α2)γρ)(1 − γ(α3σ + (1 − α3)r2)). The matrix
F(I −T )−1 has a very simple form, whose principal eigenvalue is not hard to deter-
mine. Hence, the reproduction number is given by

R0 = ρ(F(I −T )−1) =
−γα1qG′(0)

1−α2γσ − (1−α2)γρ
+

−α1γG′(0)α2γ(1−σ)

Δ
.

The first term of the reproduction number gives the number of secondary infections
produced by an exposed individual; the second term gives the number of secondary
infections produced by an infectious individual.

Problems

16.1. Ricker Model
Consider the Ricker model (16.9).

(a) Find the equilibria of the Ricker model.
(b) Determine the stability of the equilibria of the Ricker model.
(c) Does the Ricker model have 2-cycles?
(d) Does the Ricker model exhibit chaos?

16.2. Beverton–Holt Model
Consider the Beverton-Holt model (16.10).

(a) Find the equilibria of the Beverton–Holt model.
(b) Determine the stability of the equilibria of the Beverton–Holt model.
(c) Does the Beverton–Holt model have 2-cycles?
(d) Does the Beverton–Holt model exhibit chaos?
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16.3. Hassell Model
Consider the Hassell model (16.11).

(a) Find the equilibria of the Hassell model.
(b) Determine the stability of the equilibria of the Hassell model.
(c) Does the Hassell model have 2-cycles?
(d) Does the Hassell model exhibit chaos?

16.4. SEIS Epidemic Model
Consider the discrete SEIS model (16.35).

(a) Derive the reproduction number R0.
(b) Use the Jury conditions to show that if R0 < 1, then the disease-free equilibrium

is locally asymptotically stable. If R0 > 1, then the disease-free equilibrium is
unstable.

(c) Show that if R0 > 1, there is a unique endemic equilibrium.

16.5. SI Epidemic Model
Consider the following SI epidemic model:

Sn+1 = Λ + γSnG

(
αIn

Nn

)
,

In+1 = γSn

(
1−G

(
αIn

Nn

))
+ γσ In,

(16.69)

where G has the same properties as in the text and σ < 1.

(a) Derive the reproduction number R0.
(b) Use the Jury conditions to show that if R0 < 1, then the disease-free equilibrium

is locally asymptotically stable. If R0 > 1, then the disease-free equilibrium is
unstable.

(c) Show that if R0 > 1, there is a unique endemic equilibrium.
(d) Consider the stability of the endemic equilibrium. When is it stable?

16.6. SIRS Epidemic Model
Consider the following SIRS epidemic model:

Sn+1 = Λ + γSnG

(
αIn

Nn

)
+ γ(1− δ )Rn,

In+1 = γSn

(
1−G

(
αIn

Nn

))
+ γσ In,

Rn+1 = γ(1−σ)In+ γδRn, (16.70)
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where G has the same properties as in the text.

(a) Derive the reproduction number R0.
(b) Use the Jury conditions to show that if R0 < 1, then the disease-free equilibrium

is locally asymptotically stable. If R0 > 1, then the disease-free equilibrium is
unstable.

(c) Show that if R0 > 1, then there is a unique endemic equilibrium.
(d) Consider the stability of the endemic equilibrium. When is it stable?

16.7. SIS Epidemic Model with Environmental Transmission
Consider the following SIS epidemic model with environmental transmission:

Sn+1 = Λ + γSne−
αIn
Nn

−β Pn + γ(1−σ)In,

In+1 = γSn

(
1− e−

αIn
Nn

−β Pn
)
+ γσ In,

Pn+1 = ρIn + δPn, (16.71)

where Pn is the amount of the pathogen in the environment.

(a) Derive the reproduction number R0.
(b) Use the Jury conditions to show that if R0 < 1, then the disease-free equilibrium

is locally asymptotically stable. If R0 > 1, then the disease-free equilibrium is
unstable.

(c) Show that if R0 > 1, then there is a unique endemic equilibrium.
(d) Consider the stability of the endemic equilibrium. When is it stable?

16.8. SIRS Epidemic Model with Vaccination
Consider the following SIRS epidemic model:

Sn+1 = Λ +ργSnG

(
αIn

Nn

)
+ γ(1− δ )Rn+(1−ρ)γψSn,

In+1 = ργSn

(
1−G

(
αIn

Nn

))
+ γσ In,

Rn+1 = γ(1−σ)In +(1−ρ)γ(1−ψ)Sn+ γδRn, (16.72)

where G has the same properties as in the text.

(a) Derive the reproduction number R0.
(b) Use the Jury conditions to show that if R0 < 1, then the disease-free equilibrium

is locally asymptotically stable. If R0 > 1, then the disease-free equilibrium is
unstable.

(c) Show that if R0 > 1, there is a unique endemic equilibrium.
(d) Consider the stability of the endemic equilibrium. When is it stable?
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16.9. SIS Epidemic Model with Two Strains
Consider the following SIS epidemic model with two strains:

Sn+1 = Λ + γSne−(α1In+α2Jn) + γ(1−σ1)In + γ(1−σ2)Jn,

In+1 = γ
α1SnIn

α1In +α2Jn

(
1− e−(α1In+α2Jn)

)
+ γσ1In,

Jn+1 = γ
α2SnJn

α1In +α2Jn

(
1− e−(α1In+α2Jn)

)
+ γσ2Jn,

(16.73)

where In denotes infection with strain one, and Jn denotes infection with strain two.

(a) Derive the reproduction numbers of strain one and strain two R1 and R2. Set
R0 = max{R1,R2}.

(b) Use the Jury conditions to show that if R0 < 1, then the disease-free equilibrium
is locally asymptotically stable. If R0 > 1, then the disease-free equilibrium is
unstable.

(c) Show that if R1 > 1, there is a unique endemic equilibrium corresponding to
strain one. Show that if R2 > 1, there is a unique endemic equilibrium corre-
sponding to strain two.

(d) Consider the stability of the endemic equilibrium corresponding to strain one.
When is it stable?

16.10. SIS Epidemic Model with Two Strains and Mutation
Consider the following SIS epidemic model with two strains:

Sn+1 = Λ + γSne−(α1In+α2Jn) +ργ(1−σ1)In + γ(1−σ2)Jn,

In+1 = γ
α1SnIn

α1In +α2Jn

(
1− e−(α1In+α2Jn)

)
+ργσ1In +(1−ρ)μγIn,

Jn+1 = γ
α2SnJn

α1In +α2Jn

(
1− e−(α1In+α2Jn)

)
+ γσ2Jn +(1−ρ)(1− μ)γIn,

(16.74)

where In denotes infection with strain one, and Jn denotes infection with strain two.

(a) Derive the reproduction numbers of strain one and strain two R1 and R2. Set
R0 = max{R1,R2}.

(b) Use the Jury conditions to show that if R0 < 1, then the disease-free equilibrium
is locally asymptotically stable. If R0 > 1, then the disease-free equilibrium is
unstable.

(c) Show that if R1 > 1, there is a unique endemic equilibrium corresponding to
strain one. Show that there is a unique coexistence equilibrium.

(d) Consider the stability of the endemic equilibrium corresponding to strain one.
When is it stable?
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