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Preface to the First Edition

The theory of branching processes is an area of mathematics that describes situations
in which an entity exists for a time and then may be replaced by one, two or more
entities of a similar or different type. It is a well developed and active area of research
with theoretical interests and practical applications.

The theory of branching processes has made important contributions to biology
and medicine since Francis Galton considered the extinction of names among the
British peerage in the nineteenth century. More recently, branching processes have
been successfully used to illuminate problems in the areas of molecular biology, cell
biology, developmental biology, immunology, evolution, ecology, medicine, and
others. For the experimentalist and clinician, branching processes have helped to
understand observations that seem counter-intuitive, has helped develop new experi-
ments and clinical protocols, and has provided predictions which have been tested in
real life situations. For the mathematician, the challenge of understanding new bio-
logical and clinical observations has motivated the development of new mathematics
in the field of branching processes.

The authors of this monograph are a mathematician and a cell biologist who
have collaborated on investigations in the field of branching processes for more
than a decade. In this monograph, we have collected examples of applications of
branching processes from our own publications, and from publications of many other
investigators. Each example is discussed in the context of the relevant mathematics.
We have made an effort to collect and review much of the published literature which
has applied branching processes to problems in molecular and cellular biology, as
well as selected examples from the fields of human evolution and medicine.

The intended audiences for this monograph are mathematicians and statisticians
who have had an introduction to stochastic processes but have forgotten much of their
college biology, and biologists who wish to collaborate with mathematicians and
statisticians. Both audiences will find many examples of successful applications of
branching processes to biological and medical problems. As an aid to understand the
specific examples, we have provided two introductory chapters one with background
material in mathematics, and the other with background material in biology, as well
as two glossaries.
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viii Preface to the First Edition

The book is organized as follows: Chapter 1 provides a mathematical background
and motivating examples of branching processes. Chapter 2 provides an introduction
to biological terms and concepts. The subsequent chapters are divided into specific
areas of branching processes. Each of these chapters develops the appropriate math-
ematics and discusses several applications from the published literature. Chapter 3
discusses the Galton-Watson process, the oldest, simplest and best known branch-
ing process. Chapter 4 discusses the age dependent process—Markov case, the time
continuous branching process with exponential life-time distributions. Chapter 5
discusses the Bellman–Harris process, an age-dependent process. Chapter 6 gives a
more systematic treatment of multitype processes, in which progeny may be of many
types. Chapter 7 discusses branching processes with infinitely many types, stressing
interesting properties which are different from the finite multitype situation. Appen-
dices provide information on probability generating functions, construction of the
probability space for the Bellman–Harris process as well as a brief introduction to
the Jagers–Crump–Mode process (the general branching process).

We have made an effort to broadly review the published literature on branching
processes applied to biology. However, we had to select specific examples and we
wish to apologize to our colleagues whose work has not been cited. We welcome
comments from colleagues and students who are interested the field of branching
processes.

A search of any university library or an internet bookstore will reveal a number
of volumes devoted to branching processes. Among the most important, we may cite
the fundamental books by Harris (1963), and by Athreya and Ney (2004). Multi-
type branching processes were first covered in the book by Mode (1971). General
branching processes, in a systematic way, were explored by Jagers (1975). Each of
these classics, particularly Jagers (1975) includes some biological applications. An
important book concerning estimation of branching processes is Guttorp (1991). As-
mussen and Herring (1983) involve a very mathematical approach. In addition, there
exist at least a dozen or two of collections of papers and more specialized volumes.
Recently, Pakes (2000) prepared a report on biological applications of branching
processes, which is wider in scope (it has a lot spatial branching and ecology, for
example), but less detailed, although an area of overlap with our book exists. We
believe that the scope of the present volume is unique in that it illustrates a paradigm,
in which theoretical results are stimulated by biological applications and biological
processes are illuminated by mathematics.

We gratefully acknowledge support from the following sources of support:
National Institutes of Health, National Science Foundation, Keck’s Center for Com-
putational Biology at Rice University, New Jersey Commission on Cancer Research,
Cancer Institute of New Jersey, Peterson Fund, Hyde and Watson Foundation, Glazer
Family Fund, Rice University, Silesian Technical University and Rutgers University.
Marek Kimmel was working on the final draft of this book while on a sabbatical
leave at the Human Genetics Center at the University of Texas in Houston.

We thank Drs. William Sofer and Navin Sinha and several anonymous reviewers
for helpful suggestions on the manuscript. Dr. Adam Bobrowski proofread the book
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for its mathematical correctness. His critical remarks improved it significantly. Re-
maining inaccuracies are our fault. Generations of graduate students at the Statistics
Department at Rice University provided welcome feedback. Professor Jim Thompson
encouraged teaching this material at Rice and Rice and provided much constructive
criticism. Professor Peter Jagers of the Chalmers University in Gotheborg, Sweden,
hosted Marek Kimmel on several occasions and provided much needed feedback.
Our families showed warmth and patience during the gestation of this book.

We dedicate this book to our students, our teachers, and our families.

Department of Statistics Marek Kimmel
Rice University

Department of Genetics David E. Axelrod
Rutgers University



Preface to the Second Edition

The first edition of “Branching Processes in Biology” published in 2002 has been
well received by mathematicians, statisticians, and biologists. Both established in-
vestigators and advanced students have indicated to us that its inclusion of both
theory and applications has been informative.

This second expanded edition adds new material published during the last decade.
In addition to the work that the authors were aware of, an extensive search of the
mathematical literature covered by the MatSciNet database and the biomedical liter-
ature covered by the Medline database was surveyed and relevant publications were
selected. Nearly 200 new references have been added. These have been reviewed
either as subsections within existing chapters, or as a new chapter.

Chapter 2, Biological Background, includes additional material on Cell Growth,
Division and Death, Stem Cells, and Tumor Progression. The subsection on
Textbooks and Monographs in Biology has been updated.

Chapter 3, The Galton-Watson Process, includes a new application section on
Cancer Mutations, and subsections on Modeling Driver and Passenger Mutations,
and a subsection on Distribution of Mutational Events in Various Phases of Tumor
Growth.

Chapter 4, The Age-Dependent Process: The Markov Case. Mostly left un-
changed.

Chapter 5, The Bellman-Harris Process, includes new subsections on Cell
Proliferation, and on Branching Processes and Cancer Therapy.

Chapter 6, Multitype Processes, includes new subsections on Robust Modified
Median Estimator of Mutation Rates, Robust Modified Median Estimator Versus
Data, and Recent Developments in Theory and Application of Fluctuation Analysis.

Chapter 7, Branching Processes with Infinitely Many Types, includes a new sec-
tion on Generalized Linear-Fractional Distributions and Their Applications, with
subsections on Definitions and Basic Properties, and Applications in Branching
Processes. A new section Application of Branching Process with Infinite-Allele
Mutations includes subsections on Proliferation of Alu Repeats, and Modeling
Telomeres.

Chapter 8, Genealogies of Branching Processes and Their Applications, is a new
chapter, with a subsection on Robustness of Mitochondrial Eve Dating.
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Chapter 9, References. Nearly 200 new recent references have been added,
bringing the total to over 460 references.

Chapter D, Glossaries. New entries have been added to define or explain new
terms.

In addition to the revised subject index, a new author index has been added.
New applications have been added in appropriate chapters. They discuss recent

advances in several areas, including cancer mutations, cancer therapy, cell prolifer-
ation, estimation of mutation rates, fluctuation analysis, Alu repeats, and telomeres,
among others.

During the past decade two of our colleagues, who had made major contributions
to this field, have died, Ovide Arino and Andrey Yakovlev. We hope that their work,
and the other work reviewed in this edition, will inspire new investigators to explore
this active field of branching processes in biology.

We thank Tomasz Wojdyla for preparing the manuscript, and Thomas McDonald
and Nicolas Flores for reading and suggesting changes.



Guide to Applications, or How to Read This Book

As mentioned in the Preface to the First Edition, the book is organized by different
classes of branching processes, except for Chap. 1, providing general motivation and
some mathematical background and Chap. 2, providing biological background. Two
glossaries at the end of the book give definitions of basic biological and mathematical
terms commonly used in the book. The inner structure of the book is a network of
interconnected biological applications, which increase in detail when modeled by
progressively more sophisticated branching processes. The list below includes major
application sections, some of them based upon our own work.

• Cancer Chemotherapy
– Analysis of the stathmokinetic experiment, Sect. 5.4
– Stochastic model of cell cycle with chemotherapy, Sect. 6.4

• Cell cycle models
– Simplest version with death and quiescence, Sect. 3.2
– Unequal division and growth regulation, Sect. 7.8.1
– A model of two cell populations, Sect. 6.3
– Structured cell population models, Sect. 7.8

• Evolution theory
– Complexity threshold in early life, Sect. 3.4
– Galton-Watson processes in random environment and macroevolution,

Sect. 3.9
– Age of mitochondrial Eve, Sect. 8.3
– Yule’s evolutionary model, Sect. 7.9

• Gene amplification and loss of telomere sequences
– Galton-Watson branching process model, Sect. 3.7
– A model of unstable gene amplification, Sect. 7.4
– Stable gene amplification, Sect. 7.5
– Quasistationarity in a branching model of division-within-division, Sect. 7.6
– Loss of telomere sequences, Sect. 7.7

• Molecular biology
– Cell surface aggregation phenomena, Sect. 6.5
– Polymerase chain reaction, Sects. 1.2 and 6.8

xiii
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• Mutations
– Cancer mutations, Sect. 3.6
– Iterated Galton-Watson process and expansion of DNA repeats, Sect. 3.8
– Clonal resistance theory, Sect. 4.2
– Mutations and fluctuation analysis, Sect. 6.1
– Deletions in mitochondrial DNA, Sect. 6.7
– Branching process with infinite-allele mutations, Sect. 7.10

In addition, there are shorter application-related sections spread over the book, mostly
containing examples taken from the literature. These include diverse applications of
the Galton–Watson process in Sect. 3.10, examples of branching process models of
cell proliferation and estimation of cell cycle parameters in Sect. 5.5, and infinite-type
branching process models in cell biology, genetics and cancer in Sect. 6.9.
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Chapter 1
Motivating Examples and Other Preliminaries

The branching process is a system of particles (individuals, cells, molecules, etc.)
which live for a random time and, at some point during lifetime or at the moment
of death, produce a random number of progenies. Processes allowing production of
new individuals during a parent individual’s lifetime are called the general or Jagers–
Crump–Mode processes (Fig. 1.1a). They are suitable for description of populations
of higher organisms like vertebrates and plants. Processes that assume production of
progeny at the terminal point of parent entity’s lifetime are called the classical pro-
cesses (Fig. 1.1b). They are usually sufficient for modeling populations of biological
cells, genes, or biomolecules. In some processes, like the time-continuous Markov
process, the distinction is immaterial since one of the progeny of a particle may be
considered an extension of the parent.

One of the important notions in the theory of branching processes is that of the type
space. The type space is the set, which can be unite, denumerable, or a continuum,
of all possible varieties of particles included in the process. Particles of a given type
may produce particles of different types. Restrictions on type transitions, as well as
on the type space, lead to differing properties of resulting processes. The richness of
these classifications is already apparent on the level of denumerable type spaces.

1.1 Some Motivating Examples

One of the oldest branching processes ever considered was the process in which
“particles” were male individuals bearing noble English family names. An ancestor
in such a process initiated a pedigree which might inevitably become extinct if all the
male descendants died without heirs. Is extinction of a noble family name inevitable
in the long run? How many generations will elapse before extinction occurs? These
are typical questions asked about a process in which the number of progeny of an
individual may be equal to zero. Similar questions may be posed in a situation when
a mutant cell initiates a small colony of precursor cancer cells. How likely are these
colonies to die before they become numerous enough to overgrow the surrounding
normal type?

© Springer Science+Business Media, LLC 2015 1
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a b

time time

ancestorancestor

Fig. 1.1 General (panel a) and classical (panel b) branching processes. Black rectangles depict
individuals (objects, particles, etc.), horizontal lines depict lifetimes. Vertical lines are added to
link individuals to their parents. The length of vertical lines is arbitrary

A different type of question may be posed for processes in which the growth is
assured by a sufficiently high proliferation rate. Then, the interesting parameter is the
long-term growth rate and the size and composition of the population at a given time.
This is typical of laboratory populations of biological cells cultured with abundant
nutrients and sufficient space. The same is true of prosperous individuals settling in
a large territory with little obstacles to growth. An interesting example is provided
in the book by Demos (1982), where it is stated that the average number of progeny
surviving to maturity among the British colonists in New England in the seventeenth
century was equal to nine.

The patterns of branching may be quite complicated. An interesting example was
given in the book by Harris (1963). In the course of evolution, new species are created
by successful new varieties of organisms which become reproductively separated
from their ancestral species. This is an ordinary branching process. However, from
time to time an event occurs, which creates a species so novel that it has to be
considered an ancestor of a higher taxonomic unit than a species: A family. Therefore,
branching becomes hierarchical: Small particles (species) proliferate inside of large
particles (families) which proliferate themselves, each started by a founder species.
At both levels, extinction may occur. A similar branching pattern describes AIDS
viruses proliferating in human T-lymphocyte cells. Divided lymphocytes inherit a
portion of viruses present in the parent cell. If the number of viruses in a cell exceed
a threshold, the cell dies. In this example, the two levels of branching compete with
each other. Still another pattern is found in cancer cells, inside which multiple copies
of a gene increase a cell’s resistance to treatment. If there are not enough of these,
the cell becomes sensitive and dies.
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1.2 Application: Polymerase Chain Reaction
and Branching Processes

This section considers an important example of a branching process describing one
of the most important tools of molecular biology, the polymerase chain reaction
(PCR). Following an introduction, we present a mathematical and simulation model
constructed by Weiss and von Haeseler (1997). Material of this section is based
on Weiss and von Haeseler (1997) if not stated otherwise. Finally, we describe an
application of PCR in artificial evolution.

1.2.1 Introduction About the Mechanics of PCR

The following introduction has been adapted from a thesis by Shaw (2000): The PCR
is an experimental system for producing large amounts of genetic material from a
small initial sample. The reaction performs repeated cycles of DNA replication in
a test tube that contains free nucleotides, DNA replication enzymes, and template
DNA molecules. The PCR amplification technique operates by harnessing the natural
replication scheme of DNA molecules and using a naturally derived DNA polymerase
protein. The result of the PCR is a vast amplification of a particular DNA locus from
a small initial number of molecules.

Another feature of the PCR process is the stochasticity of amplification. Ampli-
fication is random because not every existing molecule is successfully replicated
in every reaction cycle. Experimental evidence suggests that even the most highly
efficient reactions operate at an efficiency around 0.8, i.e., each double-stranded
molecule produces an average of 0.8 new molecules in a given reaction cycle. The
randomness in PCR can be attributed to the multiple molecular events which must
occur in order to copy DNA.

The purpose of the PCR process is to produce clones (subpopulation with common
descent) from DNA molecules from the small initial sample. Under ideal condi-
tions, in each clone the molecules are identical, in the sense that the sequence of
nucleotidesA, T , C,and G in each molecule is either identical or complementary
(A, T , C, and G replaced by T , A, G, and C, respectively) to the ancestral molecule
of the clone (molecules in the initial samples may not be identical).

However, random alterations of nucleotides in DNA sequences, known as muta-
tions, also occur during PCR amplification. In many PCR applications, mutations
which occur during the PCR hinder analysis of the initial sample, such as in the
forensic setting. In other settings, however, PCR mutations are desirable, as is the
case in site-directed mutagenesis studies and artificial evolution experiments (Joyce
1992). In both situations, analysis of variants generated during PCR is required.
Interest focuses on the study of genetic diversity in a sample of molecules from the
final stage of a PCR experiment. The molecules sampled are potentially related as
descendants of a common ancestor molecule. The common ancestor of a family of



4 1 Motivating Examples and Other Preliminaries

PCR products is an initial molecule present at the starting stage of the amplification.
The sampled molecules more commonly represent k samples of size 1 from distinct
ancestor particles. This situation arises commonly because PCR is performed from a
very large number of initial molecules, usually more than many thousands. In either
case, the genealogical method may be used to analyze the diversity of a sample taking
into account the replication history and relatedness of the sampled molecules.

In order to assess the genealogy of the molecules in a sample, one must model the
PCR and the structure of DNA replication. As in natural systems, DNA replication in
the PCR is semiconservative, so that only one strand of each double-stranded DNA
molecule is newly manufactured in a single replication event. Replication is semicon-
servative because each new single strand is built from a complementary antiparallel
template strand during replication. Mutations can occur during construction of the
new strand, so that newly fabricated strands may not be fully complementary to their
templates. If a mutation occurs at some intermediate cycle of the PCR, the mutation
will be propagated by the amplification procedure into all descendants of the mutant
molecule. The goal is to study the sequence diversity of DNA molecules resulting
from mutations during amplification.

1.2.2 Mathematical Model

A model of PCR has to include a model of the replication process and the mutation
process. We use the single-stranded model, which is a simplification, because DNA is
double stranded (see a discussion in Shaw 2000). In the following, we frequently use
molecule as a synonym for single-stranded sequence containing the subsequence
of interest. Any other chemical molecules that are, in reality, present in a PCR
tube are not considered. The replication process of PCR is described in terms of
branching processes. The reaction proceeds through discrete cycles involving thermal
and chemical processes. In each cycle, each single-stranded template should produce
a copy. So, ideally, PCR is a binary fission process with discrete time (a special
case of a Galton–Watson process, see Chap. 3). We assume that a PCR starts with
S0 identical copies of single-stranded sequences. Let Si be the number of sequences
present after the ith cycle. In cycle i,each of the Si−1 template molecules is amplified
independently of the others with probability λi . The probability λi can also be viewed
as the proportion of amplified molecules in cycle i, hence, it is called the efficiency in
cycle i. More precisely, the efficiency does not simply depend on the cycle number,
but on the number of amplifications in the previous cycles and on PCR conditions.

If we assume that the random variable Si depends only on λi and Si−1 then
the sequence S0, S1, . . . , Si , . . . forms a nonhomogeneous binary fission. If λi = λ

is independent of the cycle number, then the accumulation of PCR product is a
Galton–Watson branching process.

Because replication in PCR is not error free, we add a mutation process to the
model: We assume that a new mutation occurs at a position that has not mutated in any
other sequence before. Furthermore, we model the process of nucleotide substitution



1.2 Application: Polymerase Chain Reaction and Branching Processes 5

as a Poisson process with parameter μ, where μ is the error rate (mutation rate) of
PCR per target sequence and per replication. This so-called infinitely many sites
model (ISM) does not allow for parallel or back mutations. In the case of PCR, this
assumption seems reasonable because only a small number of mutations are observed
in practice.

1.2.3 Genealogical Approach

Computer simulations of stochastic processes have become a powerful tool to analyze
data in situations where analytical methods are not feasible. In the population genetics
literature, a prominent example is the coalescence process that describes the ancestral
relationship between a sample of individuals in a population as one goes back in
time (Tavaré 1984). Rather than trying to analyze the relations of all individuals
in a population, the coalescence describes the (unknown) genealogy of a sample
in terms of a stochastic process. If one starts with a sample of size n and traces
back the ancestral history of these n lineages, one can compute the probability that
at a time t , two lineages in the genealogy coalesce, i.e., the most recent common
ancestor (MRCA) of the corresponding individuals is found. The probability depends
on the sample size and the population trajectory. After a coalescent event occurs, the
number of lineages is reduced by 1. The coalescent process stops when the MRCA
of the whole sample is found. In the situation of a stationary population of constant
size, simple formulae are available that describe branch lengths in a genealogy of
a sample, total length of a genealogy, etc. If one drops the assumption of constant
size, it is more difficult to find analytical solutions, whereas it is still possible to get
instructive results using simulation techniques.

The following simulation method to analyze PCR data bears similarity with the
coalescent approach (see Sect. 8.1 for a more mathematical treatment of a similar
process): In PCR, the offspring of the initial molecules are related by a randomly
growing tree. Instead of generating this tree independently for each initial template,
we adopt the following approach: For each initial molecule the number of molecules
in the PCR product in each cycle (the size trajectory) is computed (step 1 in the
algorithm). Thereby, we distinguish two types of molecules: those that are immediate
copies from a molecule of a previous cycle (filled circles in Fig. 1.2) and those that
existed in the previous cycle (open circles in Fig. 1.2). From all molecules at the end
of the PCR a random sample of n sequences is drawn. Then, we randomly assign
to each of the sampled sequences one of the initial molecules as ancestor (step 2)
and regard the sets of sampled sequences that are descendents of the same initial
molecule as subsamples. In the next step (step 3), we trace back the genealogies of
all subsamples separately.

Figure 1.2 illustrates this process for one initial molecule (and one subsample).
In this example, we assume that a subsample of 6 sequences was drawn from a total
of 16 sequences. In order to generate the subsample genealogy, the special features
of PCR must be taken into account. A coalescent event, i.e., the merging of two
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cycle:

initial
molecule

0 1 2 3 4 5

+
+
+
+
+
+

Fig. 1.2 Graphical illustration of a subsample genealogy according to the example considered.
Filled circles represent molecules that were newly amplified in a cycle, open circles represent
molecules already present in the previous cycle, + indicates that the molecule is in the sample,
thick lines represent a replication in the genealogy. (Source: Weiss and von Haeseler 1997)

molecules while going from cycle 5 to cycle 4, is only possible if exactly one of the
two molecules is an immediate copy. Among the six sampled sequences, three were
copied during cycle 5. Hence, at the most, three coalescent events are possible, and in
fact one such event occurred. The coalescent process stops when only one molecule
is left. If only one molecule is present and the cycle number is not equal to zero, we
have to determine how many replications took place from the initial molecule to this
molecule.

After all subsample genealogies are generated, they are combined to one single
genealogy (step 4). Finally, we superimpose a mutational process on the genealogy
(step 5), where mutations are only allowed where replications took place in the
genealogy (thick lines in Fig. 1.2). Before we describe the simulation more formally,
we assign a number k, k = 1, . . . , S0 to each of the S0 initial molecules.
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1.2.4 Statistical Estimation of the Mutation Rate

Weiss and von Haeseler (1997) carried out estimation of the mutation rate μ, based
on a published data set. They used a convenient measure of the diversity of the
sample resulting from PCR errors (mutations), defined as the number Mn of variable
positions in a sample of size n, i.e., the number of the entries of the DNA sequence
at which two or more variants are observed in the sample. In genetic literature, Mn

is also known as the number of segregating sites.
Weiss and von Haeseler (1997) used the data of Saiki et al. (1988) who amplified a

239-base-pair region (i.e., a DNA sequence 239 nucleotides long) of genomic DNA.
After C = 30 PCR cycles, M28 = 17 variable positions were observed when they
sequenced n = 28 different clones. Furthermore, the authors measured the extent
of amplification after 20, 25, and 30 cycles. They report an increase of 2.8 × 105,
4.5 × 106, and 8.9 × 106, respectively. This corresponds to an overall efficiency of
0.705 in 30 cycles. They also determined cycle-specific efficiencies from the data
using the following formula:

E(Si)

E(Si−j )
= (1 + λi)

j , i ≥ j.

From the reported increase after 20, 25, and 30 cycles they computed:

λi =

⎧
⎪⎪⎨

⎪⎪⎩

0.872, i = 1, . . . , 20,

0.743, i = 21, . . . , 25,

0.146, i = 26, . . . , 30.

These values for λi were used in the simulations. Since no information about the
number of initial molecules is given, the analysis was carried out for different S0

values (1, 10, 100, 1000). They generated probability distributions Pr (Mn = m|μ)
for 100 equidistant values of μ in the interval [0.019, 0.079]. The scale on the m axis is
limited to 30, since for the range of μ values considered, the likelihood has very small
values for m >30. If one takes the observed number of variable positions in the sample
equal to 17 and cuts along this line through Fig. 1.3, one gets lik(μ|M28 = 17), the
likelihood function of μ given M28 = 17. Figure 1.4 shows the likelihood functions
for S0 = 1, 10, 100, and 1000. For each S0, the position of the maximum of the
likelihood function is the maximum likelihood estimate of μ.

1.2.5 Mutagenic PCR and Artificial Evolution

As mentioned above, mutations in the PCR may be desirable. One such example is
provided by artificial evolution experiments, in which biomolecules, like RNA en-
zymes (ribozymes), are subjected to alternating rounds of amplification and mutation,
and selection. In some classical experiments (Joyce 1992, Beaudry and Joyce 1992),
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Fig. 1.3 Example of simulated probability distributions Pr (Mn = m|μ) for 100 equidistant values
of μ (S0 = 100). (Source: Weiss and von Haeseler 1997)
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Fig. 1.4 Simulated likelihood functions lik(μ|M28 = 17) for a published data set. The numbers in
the graph represent the used S0 values. (Source: Weiss and von Haeseler 1997)
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high functional specificity of the evolved product was achieved. In these experiments,
mutations provide substrate for selection and therefore understanding the mutational
process in these experiments is very important. As of now, this remains an open
problem.

1.3 The Branching Property

The branching property is a basic feature identifying processes studied in this book.
It is responsible for many properties of the branching processes, some of them un-
expected. The basic assumption involved is that each particle in the process behaves
identically as all other particles and independently of all other particles (this latter,
conditionally on its existence). This may appear simple and obvious. However, con-
sequences are far reaching. Let us consider the clone, extending indefinitely into
the future, originating from an ancestral particle. Such a clone is identical to the
entire process we are studying. If we take any particle from this clone, then it gives
rise to its own clone, which is a subprocess of the whole process. However, by the
branching property, this subprocess is identical to the whole process. This realization
provides a way to describe the process mathematically: It can be decomposed into
subprocesses, which are identical (identically distributed, to be rigorous) to each
other and to the entire process. In mathematical terms, branching processes belong
to a class of stochastic objects called “self-recurrent” by Feller (1968, 1971).

Matters become a little more complicated if we allow particles of different types.
The clones created by particles of different types are different, so the bookkeeping
becomes more involved. However, the principle stays the same. The rest of this
section is concerned with mathematical notation and it can be safely skipped at first
reading.

Let us consider a classical branching process in which progeny is born at the
moment of parent’s death. It can be understood as a family {Z(t , ω), t ≥ 0} of
nonnegative integer-valued random variables defined on a common probability space
Ω with elements ω. The branching process is initiated at time t = 0 by the birth of
a single ancestor particle. Suppose that the life length of the ancestor is a random
variable τ (ω) and that the number of its progeny (produced at its death) is equal to
X(ω) (Fig. 1.5). Each of the progeny can be treated as the ancestor of its own process,
which is a component of our branching process. Then, the number of individuals
present in the process at time t is equal to the sum of numbers of the individuals
present in all these subprocesses. This bookkeeping is correct for t ≥ τ (ω), i.e., after
the ancestor has died. Before the ancestor’s death, the number of particles is equal
to 1. Summarizing:

Z(t , ω) =

⎧
⎪⎨

⎪⎩

X(ω)∑

i=1
Z(i)(t , τ (ω), ω), t ≥ τ (ω),

1, t < τ (ω),
(1.1)
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time

0 τ(ω) t

ancestor

Fig. 1.5 Decomposition of the branching process into subprocesses generated by the first-generation
progeny of the ancestor, see Eq. (1.1). In the case depicted, the number of the first-generation progeny
is equal to X (ω) = 5. At time t > τ (ω), the number of particles in the subprocesses generated
by progeny 1, 2, 3, 4, and 5, is equal, respectively, to Z(1)(t , τ (ω), ω) = 0, Z(2)(t , τ (ω), ω) = 1,
Z(3)(t , τ (ω), ω) = 0, Z(4)(t , τ (ω), ω) = 3, and Z(5)(t , τ (ω), ω) = 3. The total number of particles
in the process at time t is equal to 7

where Z(t , τ (ω), ω) denotes the number of individuals time t in the process started
by a single ancestor born at time τ (ω), and the additional superscript (i) denotes the
ith independent identically distributed (iid) copy. Double summation is needed since
ancestor’s progeny generally may be of all possible types. The self-recurrence (or
branching) property is embodied in the statement that the processes initiated by the
progeny of the ancestor are independent and distributed identically as the ancestor,

Z(i)(t , τ (ω), ω)
d= Z(i)(t − τ (ω), ω). (1.2)

Substitution of expression (1.2) into (1.1) leads to a recurrent relation

Z(t , ω) =

⎧
⎪⎨

⎪⎩

X(ω)∑

i=1
Z(i)(t − τ (ω), ω), t ≥ τ (ω),

1, t < τ (ω),

which we will use repeatedly.
In a rigorous way, the construction of a branching process proceeds from spec-

ification of distributions of life lengths and progeny numbers of individuals to the
construction of the probability space � to deriving a specific form of relationships
(1.1) and (1.2) . Based on a classical construction by Harris (1963), the procedure
has been extended to most general processes. In our applications, the existence and
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form of the probability space and self-recurrent relationships of the type (1.1)–(1.2)
will be obvious. Therefore, usually, we will drop from the notation the argument ω,
although implicitly it is always present.

The self-recurrence characterizing the branching process is one of the two con-
ceivable ways the process can be defined. It is based on decomposing the process
into a union of subprocesses initiated by the direct descendents of the ancestor. It
can be called the “backward” approach, in an analogy to the backward Chapman–
Kolmogorov equations of Markov processes. A dual “forward” approach consists
of freezing the process at time t , recording the states of all individuals at that time,
and predicting their future paths (e.g., at t + 1 or at t + δt). The backward–forward
duality will be useful in some of our considerations.

Branching processes have been widely used to describe growth and decay of
biological populations. Their use has always overlapped with that of deterministic
mathematical tools like ordinary and partial differential equations. The doubtless
applicability of branching processes is in studying small populations in which random
fluctuations play a major role. However, some results concerning large populations
are also easier to deduce using branching processes (see, e.g., Arino and Kimmel
1993).

1.4 Probability Generating Functions and Analytical Methods

Consider a branching process composed of particles of one type. The number of
particles at time t is denoted Z(t). An ancestor is born at t = 0 and at random time τ

it gives birth to a random count of progeny. Each of the progeny initiates a subprocess
identical to the whole process. Therefore, conditional on τ ,

Z(t)
d=

X∑

i=1

Z(i)(t − τ ), t ≥ τ , (1.3)

where Z(i)(t) is the number of particles in the ith independent copy of the process.
Therefore, Z(t) can be represented as a sum of a random number of iid random vari-
ables (rv), with nonnegative integer values. A useful tool for handling distributions of
such random sums is the probability generating function (pgf) of a distribution. Meth-
ods employing pgf manipulations instead of directly dealing with random variables
are called analytic.

Pgf are the basic analytic tool employed to deal with nonnegative rv’s and finite
and denumerable sequences (vectors) of such variables. Let us denote Z+ as the set
of nonnegative integers. Let X be a Z+-valued rv, such that P[X = i] = pi . We
write X ∼ {pi}i≥0 and say that {pi} is the distribution of X.

Definition 1.1 (Definition of the pgf). The pgf fX of a Z+-valued rv X is a function
fX(s) =E(sX) = ∑∞

i=0 pis
i , of a symbolic argument s ∈ U ≡ [0, 1]. With some

abuse of notation, we write X ∼ fX(s). The following are the basic properties of the
pgfs.
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The following theorem is a collection of results, which usually are given
separately. All can be found, e.g., in the book by Feller (1968).

Theorem 1.1 Pgf theorem. Suppose X is a Z+-valued rv with pgf fX(s) which
may not be proper. Let us denote (N ) the nontriviality condition p0 + p1 < 1.

1 fX is nonnegative and continuous with all derivatives on [0, 1). Under (N ), fX is
increasing and convex.

2 If X is proper, fX(1) = 1,otherwise fX(1) =P[X < ∞].
3 dkfX(0)/dsk = k!pk .
4 If X is proper, the kth factorial moment of X, μk = E[X(X − 1)(X − 1)· · ·(X −

k + 1)], is finite if and only if f
(k)

X (1−) = lims↑1 f
(k)

X (s) is finite. In such case,
μk = f

(k)
X (1−).

5 If X and Y are two independent Z+-valued rv’s, then fX+Y (s) = fX(s)fY (s).
6 If Y is a Z+-valued rv and {X(i), i ≥ 1} is a sequence of iid Z+-valued rv’s

independent of Y , then V =∑Y
i=1 X(i) has pgf fV (s) = fY [fX(1) (s)].

7 Suppose that {Xi , i ≥ 1} is a sequence of Z+-valued rv’s. limi→∞ fXi
(s) = fX(s)

exists for each s ∈ [0, 1) if and only if the sequence {Xi , i ≥ 1} converges in
distribution to a rv X, i.e., if limits limi→∞P[Xi = k] exist for all k and are equal
to P [Xi = k], respectively. Then fX(s) is the pgf of the limit rv X.

The definition of the pgf can be generalized to the multivariate and denumerable
cases (Appendix).

Returning to the example in the beginning of this section (Eq. 1.3), we notice
that based on the pgf theorem, part 6, it can be now replaced by an equivalent pgf
identity:

ft (s) = f [ft−τ (s)], t ≥ τ ,

conditional on τ (i.e., given the ancestor dies at age τ ), where ft (s) denotes the pgf
of Zt and f (s) the pgf of X. As an example, let us consider the Galton–Watson
process, which will be studied in detail in Chap. 3. In this process, all particles
including the ancestor live for a fixed time equal to 1, so that τ ≡ 1. This means
that ft (s) = f [ft−1(s)] for all t ≥ 1, and so ft (s) = f {f [ · · · ft−n

︸ ︷︷ ︸
n

(s) · · · ]}. If we

limit ourselves to integer t and notice that f0(s) = s, i.e., at t = 0 only the ancestor
is present, then we obtain

ft (s) = f {f [ · · · f
︸ ︷︷ ︸

t

(s) · · · ]}, (1.4)

which is the pgf law of evolution of the Galton–Watson process.
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1.5 Classifications of the Branching Processes

1.5.1 Lifetime

The distribution of particle lifetime τ has much impact on the behavior and analysis
of the process. As shown above, if τ ≡ 1 (the Galton–Watson process, Chap. 3), it
is enough to consider integer times. The pgf of Zt (Zt is an accepted notation for
Z(t) when time is discrete) is simply the t-fold functional iterate of the pgf of the
progeny number, X (Eq. 1.4).

Another important special case is when τ is distributed exponentially. The lack
of memory of the exponential distribution leads to a process with continuous time
which can be considered an interpolation of the Galton–Watson process between
integer time points (Chap. 4).

Finally, if τ is an arbitrary nonnegative random variable, the resulting process is
called “age-dependent” or Bellman–Harris process. It is more complicated to analyze
than any of the two previous processes (Chap. 5).

1.5.2 Type Space

The following is the list of the frequent variants of type space:

S =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

{1}, single type,

{1, . . . k}, multitype,

{1, 2 . . . }, denumerable type,

R+, R, [0, 1], continuous type,

abstract.

The Galton–Watson and Bellman–Harris processes considered above are single
type but have their multitype, denumerable-type and continuous-type counterparts
(Chaps. 6 and 7).Abstract type spaces are used to create “superindividuals” composed
of a number of original individuals and in this way to handle dependence among
particles (Taïb 1997)

1.5.3 Criticality

A very important classification is based on the mean progeny count m = E(X) of
a particle. We introduce it using the example of the Galton–Watson process, but
it is valid for all branching processes. By the pgf theorem, E(X) = f ′(1− ) and
E(Zt ) = f ′

t (1− ). Differentiating the formula ft (s) = f {f [ · · · f
︸ ︷︷ ︸

t

(s) · · · ]} with
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respect to s and substituting s = 1, we obtain using the chain rule of differentiation,

E[Zt ] = f ′
t (1−) = [f ′(1−)]t = mt.

Therefore, in the expected value sense, the process grows geometrically if m > 1,
stays constant if m = 1, and decays geometrically if m < 1. These three cases are
called supercritical, critical, and subcritical, respectively:

⎧
⎪⎪⎨

⎪⎪⎩

m > 1, supercritical ⇒ E[Zt ] ↑ ∞,

m = 1, critical ⇒ E[Zt ] = 1,

m < 1, subcritical ⇒ E[Zt ] ↓ 0.

(1.5)

The above relationships are intuitively expected. However, the corresponding
laws of extinction are less intuitive. Let us consider the probability qt = ft (0) =
P[Zt = 0] that the process is extinct at time t. We have qt+1 ≥ qt , since Zt = 0
implies Zt+1 = 0. Since also 0 ≤ qt ≤ 1, the sequence {qt } tends to a limit q which
is the probability of eventual extinction. Moreover, since ft+1(s) = f [ft (s)] then,
setting s = 0, we obtain qt+1 = f (qt ) and, letting t → ∞, q = f (q). Therefore,
q is the coordinate at which f (s) intersects the diagonal. Let us notice that f (s) is
convex and f (1) = 1. If m = f ′(1−) > 1, then there exists 0 ≤ q < 1 such that
f (q) = q. If m = f ′(1−) ≤ 1, then q has to be equal to 1. Therefore we obtain that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m > 1, supercritical ⇒ q < 1,

m = 1, critical

m < 1, subcritical

⎫
⎬

⎭
⇒ q = 1.

(1.6)

The supercritical and subcritical processes behave as expected from the expression
for the means. The critical process is counterintuitive. Although the mean value stays
constant and equal to 1, the process becomes extinct almost surely (q = 1). This
latter is only possible if the tail of the distribution is heavy enough to counterbalance
the atom at 0. This suggests that a critical process is undergoing large fluctuations
before it becomes extinct [c.f., the discussion following Eq. (3.7)].

Further on, in Chaps. 3–5 we will see that the limit behavior in all three cases
may be characterized in more detail.

Critical processes have been widely considered as models of self-organization.
One example is the paper by Kim et al. (2009). It has been known that many complex
networks in real world are fractals, satisfying the fractal scaling: the number of boxes
(NB) needed to cover an object scales in a power-law manner with respect to the box
size. Examples are the World Wide Web, the protein interaction network of budding
yeast, and the metabolic networks. In contrast, many artificial model networks such
as the Barábasi-Albert (BA) model, are not fractals. Random critical branching trees
(CBTs) are generated by the multiplicative branching process, where the branching
number is determined stochastically, independent of the degree of their ancestor.
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The authors demonstrate analytically that despite this stochastic independence, there
exists the degree–degree correlation (DDC) in the CBT and it is disassortative. More-
over, the skeletons of fractal networks, the maximum spanning trees formed by the
edge betweenness centrality, behave similarly to the CBT in the DDC. This analytic
solution and observation support the argument that the fractal scaling in complex
networks originates from the disassortativity in the DDC, which has been pondered
for a number of years. Further details exceed the scope of the book.

1.6 Modeling with Branching Processes

In this section, we discuss branching processes as a modeling tool, in a general and
philosophical way. Our discussion owes a lot to ideas presented in a review paper by
Jagers (1991). We complement it with our own insights concerning the interactions
between biology and branching processes.

As stated by Jagers (1991), “Mathematical population theory is not the same as
demography: Its object of study is not human populations. Nor is its object actual
biological populations of, say, animals, bacteria or cells, or the physical populations
of splitting particles in a cascade or neutron transport. Rather, its purpose is to study
the common theme of these and many other empirical phenomena, an idealized
pattern of free population growth, of sets changing as their members generate new
set members.”

For a mathematician, “The essence of such a theory is mathematical in the same
sense as geometry, the study of idealized shape. It is relevant for actual populations
in so far as their reproduction is close to the idealized free reproduction and to the
extent that this reproduction property is important for the evolution of the system as
a whole. Thus in vitro cell kinetics is close to the pattern, at least if the population
has enough nutrition and space, whereas the well-regulated growth of a couple of
fetus cells into, say, a hand is dominated by features other than population growth.”

“The population growth pattern is an important one, often playing a great role
in the evolution of phenomena, and it can be discerned in many circumstances,
ranging not only from demography to particle physics but including even data struc-
tures for sorting and searching in computer science or fractal sets arising in various
types of mathematics. Sometimes the conclusions you can draw from the general
mathematical study are even stronger than those obtained through more specialized
models.”

The approach advocated in our book, is to explain biological observations in detail,
the way mathematics is used in theoretical mechanics or relativity, and to generate
predictions accurate enough to be practical. This approach may be considered a
type of engineering. One may argue that, by doing so, the modelers enter the turf
reserved for other professions: biostatistics, demography, computer simulation, and
biotechnology. Still, mathematical principles alone can explain the balance of factors
contributing to the behavior of a population as a whole.

Unfortunately, this is not always appreciated in biology. One of the reasons is that
much of modern biology is molecular biology. This latter, through introduction of
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new techniques for gathering data and probing biological processes at a fundamental
level, continuously provides an unprecedented amount of new information. Much
of this information is connected only at a simplistic level (Maddox 1992). In the
extreme reductionist view everything can be reduced to a molecular switch which
turns on or cuts off expression of a gene. In reality, it is frequently a delicate dynamic
balance that creates a given behavior, and there might be alternative ways of inducing
a biological system to display a seemingly related set of properties. For example, a
complex human genetic disease, like diabetes, can arise through many alternative
molecular pathways. A book by a well-known evolutionist discusses this subject
(Lewontin 2000).

However, there are reasons to think that this situation soon may change. Mathemat-
ical and computational methods are steadily making new contributions to molecular
biology. One example is the progress achieved in analysis of DNA sequences using
Hidden Markov models (Durbin et al. 1998). Beginning with the sequencing of the
human genome (Venter et al. 2001; International Human Genome Sequencing Con-
sortium 2001), a flood of data have been generated concerning DNA sequences and
their expression. This information is having an impact on our understanding of many
areas of biology and medicine, including evolution and human diseases. Resulting
problems will be difficult to resolve without mathematics and/or computing power.

The subject of this book is the use of branching processes to model biologi-
cal phenomena of some complexity, at different, though predominantly cellular or
subcellular, levels. To understand the power and the limitations of this methodol-
ogy, again we follow Jagers (1991). Probabilistic population dynamics arises from
the interplay of the population growth pattern with probability. Thus, the classical
Galton–Watson branching process defines the pattern of population growth using
sums of iid rv; the population evolves from generation to generation by the individu-
als getting iid numbers of children. This mode of proliferation is frequently referred
to as “free growth” or “free reproduction”.

The formalism of the Galton–Watson process provides insight into one of the
fundamental problems of actual populations, the extinction problem and its comple-
ment, the question of size stabilization: If a freely reproducing population does not
die out, can it stabilize, or must it grow beyond bounds? The answer is that there are
no freely reproducing populations with stable sizes (see Sect. 3.3 for mathematical
details). Population size stability, if it exists in the real world, is the result of forces
other than individual reproduction, of the interplay between populations and their
environment. This is true for structures much more general than the Galton–Watson
process. For example, Breiman (1968, p. 98) demonstrates the following is true:
consider a sequence of nonnegative random variables X1, X2, . . . , for which 0 is
absorbing in the sense that Xn = 0 implies Xn+1 = 0. Assume that there is always
a risk of extinction in the following way: For any x, there is a δ > 0 such that

Pr [there exists n such that Xn = 0 | X1, . . . , Xk] ≥ δ,

provided Xk < x. Then, with probability 1, either there is an n such that all Xk = 0
for k ≥ n, or Xk → ∞, as k → ∞. So, the process either becomes extinct or grows
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indefinitely. We will consider more specific forms of this law for the Galton–Watson
process (Theorems 3.2 and 3.3).

The next natural question is, what is the rate of the unlimited growth? It can be an-
swered within the generation counting framework of Galton–Watson type processes
(for biological examples, see Sect. 3.2 and following sections). In a more general
setup, we must know not only how many children parents get but also the ages at
child-bearing (even if they are constant and equal to 1, as in the Galton–Watson
process case). In an even more general framework, the iid random variables describ-
ing reproduction have to be replaced by iid point processes, and the probabilistic
addition of random variable by the superposition of point processes (Sect. C.1). In
all these frameworks, in the supercritical case, when the average number of progeny
of an individual is greater than 1, the growth pattern is asymptotically exponential.
The parameter of this exponential growth is the famous Malthusian parameter. In the
supercritical case, we can not only answer questions about the rate of growth but also
questions about the asymptotic composition of nonextinct populations. What will the
age distribution tend to be? What is the probability of being firstborn? The average
number of second cousins? Or the distribution of the times back to an nth grand-
mother’s birth? Very important for biological applications, many of these questions
do not have natural counterparts in deterministic models of unlimited growth.

Many other composition questions cannot be posed if we assume that all individ-
uals are of one and the same type. Thus, we are naturally brought on to multitype
branching populations: Whenever an individual is born, we know not only its par-
ent’s age but also its own type. This latter might be identified, in the most general
case, with individual’s genotype.

Mathematically, the individual reproduction process then turns into a point pro-
cess on the product space, type × age. And the evolution of the newborn’s life will
no longer be decided in an iid fashion but rather according to a probability kernel,
determined by the type of the newborn. The introduction of various types of indi-
viduals can be viewed as taking the step from independence to the simplest form
of dependence in probability theory, the Markov dependence. One is born of one’s
parent, who decides when one is to come into this world and also passes on a geno-
type. Given these two inherited properties, one leads one’s life independently of all
one’s ancestors. This is the Markov model of population growth, the outcome of
a straightforward combination of a vague population growth pattern with Markov
dependence of random lives and reproduction.

Another general question is what mathematical tools should be used to measure
populations. Usually, we are interested in the number of individuals present at a
given time. However, we might wish to count only individuals above a certain age.
In some applications, we might be interested in the total number of individuals ever
born. All these variants are covered under the general concept of additive measures
of population size, which goes back almost three decades (Jagers 1975). In this ap-
proach, each individual is measured by a random characteristic, a stochastic process,
whose value at time t is determined by the individual’s type, the individual’s age
now at time t , and the individual’s, and possibly all her progenies’ life careers. If
the characteristic is assumed to vanish for negative ages, individuals are not taken
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into account before they are born. The measure of the population at time t is the
sum of all the characteristics evaluated for all the individuals as above. The simplest
characteristic is the one that just records whether an individual is born or not, having
the value of 1 if it is, and 0 if it is not. It counts all individuals born until time t .

As it will be seen in the sequel, multitype branching processes are a tool for very
detailed modeling using the Markov-multitype paradigm. In this setup, the type–
space transitions become as important as branching itself. This is very clearly seen
in processes with denumerable type spaces, for example, the branching random walk
describing gene amplification in Sect. 7.4. The process is a supercritical branching
process, but the growth law is not Malthusian: Exponential growth is modified by a
negative fractional power factor.Another example is the model of telomere shortening
(Sect. 7.7). The transition law is reducible, which produces a variety of unusual
behaviors including polynomial growth.

A relatively new application of branching processes in genetics and evolution is
the characterization of genealogies. In this approach, a sample of individuals from the
process is considered at a given moment t and, conditionally, on this information, the
distributions of past events related to the process are sought. The part of the process,
existing before t , which contributed to the sample (i.e., excluding the individual
whose descendants became extinct before t), is called the reduced process. Examples
can be found in Sect. 8.1. The “backward-look” reduced-process limit laws for the
critical and subcritical cases are quite different from those in the forward approach.

In classical population genetics models, the population size is a deterministic
function of time. The stochastic part of the model is concerned with dependencies
between the genetic makeups of the individuals. However, subpopulations of larger
populations can be approximated by branching processes (Nagylaki 1990). This has
important applications since various rare genotypes, for example, mutant carriers of
a rare genetic disease, belong to this category. One such application is gene mapping
(Kaplan et al.1995), i.e., determining the location of unknown genes based on their
co-inheritance with known (marker) loci.

Branching processes are a conceptually simple tool for modeling diverse aspects
of biological populations, not limited to demography, but reaching into cell and
molecular biology, genetics, and evolution theory. They provide a framework for
detailed considerations, allowing quantitative predictions, beyond metaphorical rep-
resentations. With a future influx of new detailed biological data, their importance
for modeling is likely to increase.



Chapter 2
Biological Background

This chapter is a brief introduction, for mathematicians, to genes, cells, and cancer.
It provides general descriptions of the biological phenomenas that are the subject of
the mathematical applications developed in later chapters. More specific information
relevant to each application is given at the beginning of the section containing the
application. No knowledge of biology or chemistry is assumed beyond that learned
in high school and forgotten due to disuse. Many biological details are omitted for
lucidity. Readers familiar with the biological topics in this introduction may proceed
directly to the later chapters.

2.1 Genomes: Changes in DNA and Chromosomes

2.1.1 Genome

The term “genome” refers to the molecules that function in the storage, expression,
and inheritance of information in biological systems. The genome of humans and
other organisms is dynamic. The number and sequence of its subunits can undergo
rapid changes within a few generations.

2.1.2 DNA and Genes

Deoxyribonucleic acid (DNA) is the chemical that is the primary genetic material
in the genome of all cells. It is responsible for the storage and inheritance of ge-
netic information. DNA is a polymer consisting of two long complementary strands
(Fig. 2.1). Each strand contains a linear sequence of four monomer subunits called
bases. The bases are abbreviated A, T, G, and C. Each A base on one strand pairs with
a T base on the other strand, and each G base pairs with a C base. The total length of
DNA in the genome of each mammalian cell is about 3 × 109 bases. Genes are spe-
cific subsequences of DNA that code for proteins. A given gene is typically 103–104
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Fig. 2.1 DNA structure. Pairs of complementary bases (A and T , G and C) hold together the
double-stranded helix of DNA. The two strands are separated on the right, for replication, described
further in Fig. 2.3. The sequence of bases in DNA is transcribed into a sequence of bases in RNA and
translated into a sequence of bases in protein which functions to determine the observable traits of
the organism. Mutational changes in the sequence of bases in DNA result in changes in observable
traits which are inherited

bases long and occurs one time or only a few times in the genome. The mammalian
genome contains approximately 21,000 different genes that code for proteins. The
expression of the genetic information in DNA is accomplished by transcribing a se-
quence of bases in DNA into a sequence of bases into a related molecule, ribonucleic
acid (RNA). The sequence of bases in RNA is then translated into a sequence of
amino acids, the subunits of proteins. The proteins carry out catalytic and structural
roles which result in the biological properties of cells and organs. So, the flow of
information is usually as follows:

DNA → RNA → protein → phenotype,

in words :

gene → message → catalyst → observable trait.

2.1.3 Mutation

An alteration in the sequence of bases in DNA is referred to as a mutation. The
mutation may be as small as a change in a single base or as large as a rearrangement
of most of the DNA in a chromosome. A mutation in DNA may result in an altered
sequence of amino acids in protein and/or an altered amount of protein. This may
result in a change in the ability of a protein to function properly, resulting in altered
properties of cells and organisms. Many mutations are deleterious, but others may
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be advantageous or neutral. Examples of altered properties of cells containing muta-
tions include misregulation of cell growth and division leading to malignant tumors,
and new capability of mutant cells to grow in the presence of a drug that would
kill normal cells. A multitype process model describing mutations as occurring in
several possible steps, and an improved method of estimating mutation rates from
experimental observations are given in Sect. 6.1.

2.1.4 Noncoding Sequences of DNA

Genes account for a small portion of the genome of mammals. Only about 5–10%
of the DNA codes for proteins, the remainder is referred to as the noncoding portion
of DNA. The function of the noncoding DNA is only partially understood. Some
noncoding regions specify the sequence of bases in RNA that is never translated into
protein. Another small portion consists of special DNA sequences that are required
to maintain the ends of DNA called telomeres. Maintenance and loss of telomere
sequences are discussed as a Bellman–Harris process with denumerable type space in
Sect. 7.7. Yet other noncoding sequences, centromeres, are required for the accurate
segregation of the DNA into progeny cells. Fragments of DNA that do not contain
centromeres distribute into progeny cells in uneven numbers. This is modeled as a
single-type Galton–Watson branching process in Sect. 3.7 and as random walk with
absorbing boundary in Sect. 7.4.

2.1.5 Repeated Sequences of DNA

Much of the noncoding mammalian DNA consists of sequences which are repeated
many times in the genome, most of unknown function. Some repeated sequences
are tandemly distributed, others are dispersed throughout the genome. The length
(number of bases) of a tandemly repeated unit may be as short as one base or longer
than 103 bases. The number of repeated units may be as small as two or larger
than 102. An increase in the number of tandemly repeated units is referred to as
amplification, and decrease as deamplification.

The emergence of periodicities of tandemly repeated sequences in DNA by re-
combination slippage, simulated by a discrete stochastic dynamical system, was
discussed by Baggerly and Kimmel (1995). Repeats may also arise by other
mechanisms as discussed in Sect. 3.8. See also Bat et al. (1997).

For example, Alu elements are DNA sequences of about 300 base pairs. They
do not code for proteins. They appear only in mammals. The number of the Alu-
repeated elements per genome has increased during the evolution of primates.
The human genome contains more than one million Alu repeat elements dispersed
throughout the genome, some with slightly different sequences. Amplification of Alu
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repeat elements is modeled as a discrete-time Griffith and Pakes branching process,
Sect. 7.10.1.

2.1.6 Gene Amplification

Regions of DNA may undergo an increase in number (amplification) or decrease
in number (deamplification). The regions of DNA that undergo amplification and
deamplification may contain genes, or contain no genes. Amplification and deam-
plification of regions of DNA-containing genes can result in increases or decreases
of amounts of proteins necessary for cell functions. Overproduction of rate-limiting
proteins may confer new properties on cells. For example, if the protein is involved
in cell proliferation, the cells with an increased amount of this protein may grow as
malignant tumors. As another example, if the protein is the target of a toxic drug,
then an increased amount of the protein may allow the cells to be resistant and grow
in the presence of the drug. Models for gene amplification resulting in tumor cell
growth and drug resistance are the subjects of Sects. 3.7, 7.4 and 7.5.

Some inherited human syndromes, such as predisposition to some cancers and
neurological diseases, have been related to a rapid change in the numbers of copies
of DNA sequences. An unusual aspect of these is the apparently explosive increase in
numbers of copies of some sequences from one generation to another. This increase
has been modeled as an iterated Galton–Watson process in Sect. 3.8. In contrast
to these cases of concerted increases in gene copy numbers, there are situations in
which the number of amplified genes is unstable and decreases. Unstable decreases
in numbers of amplified genes are modeled as a subcritical Galton–Watson process
in Sect. 3.7, and as a branching random walk with absorbing barrier in Sect. 7.4.

2.1.7 Chromosomes

In human cells, the DNA of the genome in divided into 23 pieces of various lengths,
each containing large numbers of different genes. Each piece of DNA is folded
compactly and associated with proteins and RNA to form a chromosome (Fig. 2.2).
In human cells, there are 23 pairs of chromosomes. Each chromosome contains
one double-stranded piece of DNA from end to end. The ends of chromosomes
are called telomeres. They have special sequences and structures that are neces-
sary for the replication of the end of DNA and the maintenance of chromosomes.
DNA in chromosomes replicates and then the products separate from each other in
a process called mitosis. Special DNA sequences near the center of chromosomes
(centromeres) function to segregate one of each pair of duplicated chromosomes into
each of two progeny cells during cell division. This process assures that each progeny
cell receives one copy of each chromosome and its associated DNA-containing genes.
Fragments of DNA without centromeres may increase in number (replicate) to more
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Fig. 2.2 Chromosome. One double-stranded piece of DNA, represented here by a single horizontal
line, extends from one end of a chromosome to the other. Several classes of repeated sequences of
bases are represented. Telomere (T) repeats at each end of the chromosome function to maintain
chromosome ends. Centromere (C) repeats function to separate chromosomes at mitosis and cell
division. Other repeated (R) sequences of bases are dispersed throughout the chromosome. Some
function to code for proteins (e.g., genes), others are noncoding sequences. Repeated sequences
may exist as extrachromosomal elements, also called double minute (DM) chromosomes because
of their appearance. They may replicate but are not partitioned evenly to progeny cells because they
lack the centromeres of chromosomes. The number of repeated units may be variable

than two copies per cell but without centromeres there is no mechanism to distribute
exactly equal numbers to each progeny cell.

2.1.8 DNA Replication

DNA replication occurs by a so-called semiconservative mechanism. Two comple-
mentary parental strands of DNA separate and each strand forms a template for the
production of a new complementary progeny strand. Usually, replication is initi-
ated by the local separation of two strands, the replication fork, and then proceeds
along the DNA. The result is two double-stranded DNA molecules, each molecule
containing one old strand and one complementary new strand (Fig. 2.3).

Two types of errors in DNA replication have been proposed to result in amplifi-
cation of repeated DNA sequences, replication slippage, and replication reinitiation.
Replication slippage may occur when repeated DNA sequences on one strand fold
back on themselves forming a hairpin-like structure. This may cause slippage of
the replication complex along one strand relative to the other and resulting in stut-
tering and repeated replication of a portion of the DNA sequence. The generation
of unstable numbers of DNA repeats by replication slippage may contribute to the
explosive increase in numbers of repeated sequences in certain cancers and inherited
neurological diseases. A mathematical model describing amplification of repeats by
replication slippage has been developed (Bat et al. 1997) but is not described as
an application here because it is not a branching process. Replication reinitiation
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Fig. 2.3 DNA replication. Double-stranded DNA (left) replicates by a semiconservative mecha-
nism. The parental strands separate (center) and each codes for a new complementary strand. This
results in two progeny double-stranded DNA molecules, each containing one old strand and one new
strand (right top). Two types of errors in DNA replication may result in locally repeated regions
(repeat sequences). These errors include slippage and fold back forming hairpin-like structures
(right center), and replication reinitiation forming branches within branches (right bottom)

is another possible mechanism that may contribute to gene amplification. It is vi-
sualized as the start of a new replication fork before the previous replication fork
has completed moving through the DNA. This leads to the formation of branched
DNA structures. Gene amplification by replication reinitiation has been modeled in
Sect. 3.8.

2.1.9 Recombination

Recombination is an exchange of pieces of DNA (Fig. 2.4). Recombination can result
in new combinations of genes, and an increase or decrease in the numbers of genes.
Recombination occurs during the formation of germ cells for sexual reproduction
(meiosis) and the division of nonsexual somatic body cells (mitosis). If replicated
parts of chromosomes, called chromatids, align properly before recombination, and
exchange occurs, then new combinations of genes may occur and be segregated
into sex cells. Sometimes parts of chromatids misalign before recombination. Such
recombination with misalignment can result in an increase or decrease in the numbers
of genes on chromosomes in either meiosis or mitosis . Recombination misalignment
leading to gene amplification or deamplification is modeled as a Markov chain with
denumerable infinity of states in Axelrod et al. (1994), and simulated as a discrete
stochastic dynamical system in Baggerly and Kimmel (1995). Recombination within
loops of DNA on the same chromosome may yield small fragments containing genes
but not centromeres. When the acentric fragments replicate, amplified numbers of
genes may be produced in tandem arrays. If these pieces of DNA recombine and
reintegrate into a larger chromosomal piece containing a centromere, then the tandem
arrays of amplified genes can become stabilized. This is modeled as a Galton–Watson
process with denumerable type space in Sect. 7.5.
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Fig. 2.4 Recombination. New combinations and numbers of genes may be formed by rearrangement
of pieces of DNA. Three examples are shown. Double-stranded DNA is represented by double lines,
genes are represented by letters, exchange is represented by an X. Left, the DNA molecules exchange
genes, upper case from the mother and lower case from the father, to produce new combinations of
genes which may then be passed on to progeny. Center, the DNA strands slip and misalign before
recombination producing one molecule with an increased number of a gene and another molecule
with a decreased number of the gene. Right, one molecule of DNA undergoes exchange with itself
producing a circular piece of DNA. If this piece replicates and then reintegrates, then the result may
be an increased number of copies of a gene

2.2 Cells: Cell Cycle Kinetics and Cell Division

2.2.1 Cells as the Basic Units of Life

The basic structural unit of biological function and reproduction is the cell. Mam-
malian cells are in the range of 20 × 10−6 m of size although there are many cells
of different functions and different shapes that are smaller or larger. The structure of
the cell is a series of bag-like compartments with specialized functions. The “bags”
are made up of membranes that function as barriers, and for transport of molecules.
The innermost compartment is the nucleus which contains highly compacted DNA
and accessory molecules for expression of genes. Outside of the nucleus is a series
of compartments for the synthesis and degradation of molecules used for catalysis,
structure, and energy generation. The outermost cell membrane, and its accessory
molecules, also function as barriers and for transport, and in addition, for communi-
cation with other cells. Communication between cells can occur via small molecules
that diffuse between cells such as hormones, or via molecules that become fixed to
the surface of other cells, such as antigens which function in the immune system.
A model for multivalent antigen binding as a multitype Galton–Watson process is
given in Sect. 6.5.
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Fig. 2.5 Cell division and partition of contents. During the growth of cells the amount of DNA in the
nucleus (large dark circle) doubles and is partitioned evenly into two daughter cells at cell division.
However, other cell constituents may not exactly double and may not partition evenly, resulting in
cells with different numbers of these constituents. These constituents include extrachromosomal
pieces of DNA, subcellular organelles, and intracellular parasites

2.2.2 Cell Growth, Division, and Death

In a multicellular organisms, adult tissue homeostasis is maintained. The number of
new cells produced by cell division is balanced by the the number of differentiated
cells that die and are removed. For instance, in the colon, some differentiated cells
are constantly being removed and excreted with the feces. Other cells die by a
conservative programed cell death called apoptosis, in which pieces of the cells are
engulfed by specialized neighboring cells. In the adult nervous system, dividing
cells can give rise to several cell types, and a subset of newly born cells are culled,
undergoing cell death via apoptosis. The production of several cell types and the
death of some have been modeled as a multitype branching process in Sect. 6.2.

Cells grow in size and divide into two. The DNA in the nucleus exactly doubles in
amount, is packaged into chromosomes, and is then partitioned evenly between two
progeny cells at cell division. However, other processes are less exact. The size to
which cells grow before they divide is not exactly the same for all cells of a given type,
the lifetimes of cells at division are not exactly the same for all cells, and the non-
DNA materials are not partitioned exactly between the two progeny cells (Figs. 2.5
and 2.6). The distribution of cell sizes and cell lifetimes may be stable over time for
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Fig. 2.6 Cell division and cell size. Cells may grow for different times and obtain different sizes
before they divide. At cell division, cells may divide asymmetrically resulting in progeny sibling
cells of different size

a population of one cell type, but differ for populations of cells of different types.
Apparently, mechanisms exist to maintain these parameters within a population of
cells of one type. Populations of cells with different values of parameters may differ
in important characteristics, such as whether or not they are malignant. A Galton–
Watson model describing the growth and division, and death and quiescence of cells
is given in Sect. 3.2. Another model in the form of a Galton–Watson process with
continuous type space is described in Sect. 7.8.1.

During development of multicellular organisms some cells divide into two cells
which differ in shape and function. This situation is modeled as multitype branching
process in Sects. 6.3 and 7.8.2. If fragments of DNA are not connected to chromo-
somes they may not exactly double in number before each cell division and may not
partition exactly into the two progeny cells. Entities such as subcellular organelles
or intracellular parasites can divide within dividing cells. An appropriate model for
this is a Markov process model of infinitely many types. Such a model exhibits
quasistationarity, as discussed in Sect. 7.6.

2.2.3 Stem Cells

Multicellular organisms are composed of many specialized cells that differ in func-
tion. Totipotent stem cells in the early embryo can yield all of the different specialized
cells in a multicellular organism. Multipotent stem cells found in the adult can yield
only a limited number of different kinds of cells. An example of the latter are the
hematopoietic stem cells found in the bone marrow that yield the many special-
ized cells in the blood. The purpose of the bone marrow transplant procedure is
to replenish active hematopoietic stem cells that are capable of yielding all of the
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different specialized cells in the blood. Stem cells may be quiescent and may not
divide, or if stimulated, may become active and divide. Active stem cells may divide
symmetrically to produce two stem cells, or divide symmetrically to produce two
differentiated cells, or divide asymmetrically to produce one stem cell and one differ-
entiated cell. Stem cell division has been modeled as age-dependent and multitype
branching processes in Sect. 7.8.1.

2.2.4 Cell Cycle Kinetics

The time period between cell birth and cell division is referred to as the cell cycle time.
Several distinct events or phases can be distinguished during each cell’s lifetime. The
first event is the birth of two progeny cells at cell division, also called cytokinesis or
mitosis, abbreviated M. The time gap between the birth of a new cell and the initiation
of DNA synthesis is called gap one, abbreviated G1. The period of DNA synthesis is
abbreviated S. The time gap between S and the next mitosis is abbreviated G2. After
G2, during the next M phase the cell divides to form two new cells. The sequence of
phases M , G1, S, G2, and M repeats in progeny cells of each subsequent generation,
and thus the name cell cycle. For mammalian cells, a typical cell cycle time may
be 12–24 h, or even longer. For a cell cycle time of 24 h, the duration for the cell
cycle phases M , G1, S, and G2 might be 0.5, 8, 12, and 3.5 h. The duration of the
G1 phase is usually the most variable portion of the cell cycle. Cells which have
longer cell cycle times, either because of genetics, environment or developmental
fate, usually have equally extended G1 time periods, although important exceptions
exist. The relative duration of the cell cycle phases in a growing population of cells
can be inferred from the percentage of cells with different amounts of DNA, or from
the rate at which cells accumulate in one phase of the cell cycle when blocked with a
phase-specific drug (stathmokinesis). Cell cycle kinetics are modeled as a Bellman–
Harris process in Sect. 5.4, and as a Markov time-continuous branching process in
Sect. 4.2.

2.3 Cancer

2.3.1 Cancer Cell Populations Are Immortal

Cancer is a problem in persistent cell proliferation. Tumors are populations of cells
that accumulate in abnormal numbers. The increased number of cells is due to an
increased ratio of cell birth rate over cell death rate. Cancer cells do not necessarily
grow faster than normal cells, but they are persistent. They may not stop dividing
under conditions where normal cells would stop, and/or they may not die under
conditions where normal cells would die. Normal cells in an adult seem to be capable
of a finite number of divisions and then the lineage dies out. The process of a cell
lineage losing proliferative potential is referred to as senescence. Some cells in
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a tumor are capable of an indefinite number of divisions so that the lineage can
persist. Populations of cells that divide without limit are referred to as immortal.
The mechanisms controlling senescence and immortality are partially known. For
instance, an inhibitor has been identified in old senescent cells that is not expressed
efficiently in young cells. In addition, there seems to be a difference between many
normal cells, which are capable of senescence, and tumor cells which are immortal,
viz., a difference in the ability to maintain the ends of chromosomes. The ends of
chromosomes contain repeated sequences of DNA called telomeres. Although most
of the length of DNA is duplicated exactly once during each cell cycle, that is not
always true of the repeated DNA sequences in telomeres at the ends of chromosomes.
The telomeric DNA sequences can increase or decrease in length at each round
of DNA replication. Normal cells seem to progressively lose the telomeric repeat
sequences and senesce (age), whereas some tumor cells seem to maintain them
and continue to divide. This has been modeled as a Bellman–Harris process with
denumerable type space in Sect. 7.7.

2.3.2 Tumor Heterogeneity and Instability

Tumors are derived from single cells. This conclusion has resulted from observations
in which all the cells in a tumor share a common change from normal cells. Cells
from different tumors have different changes. The changes observed range in size
from single base mutations in DNA to large chromosome rearrangements. In addi-
tion to the common changes among the cells in a single tumor, many cells may show
additional changes distinct for each cell in a tumor. In other words, tumors are mono-
clonal in origin but heterogeneous. Many tumors are genetically unstable showing an
increased probability of undergoing mutations or gene amplification. A mutant gene
may produce a protein product with an altered function, and a gene with amplified
number of copies may produce an increased amount of a protein. If the protein is
the target of a toxic drug then a tumor cell producing an increased amount of this
protein may become resistant to this drug and escape effective chemotherapy. Gene
amplification leading to drug resistance has been modeled using the Galton–Watson
process in Sect. 3.7, modeled as a Galton–Watson process with denumerable types
in Sect. 7.5, and as a branching random walk with absorbing barrier in Sect. 7.4.

2.3.3 Cell Cycle and Resistance to Chemotherapy

Some forms of cancer chemotherapy attempt to exploit differences between the cell
cycle of normal cells and malignant cells. For instance, a single drug that inhibits
DNA synthesis would be expected to kill more tumor cells than normal cells, if more
tumor cells than normal cells are synthesizing DNA during the period of chemother-
apy. Sometimes, two or more drugs are used which affect different cell cycle phases,
or have different mechanisms of inhibition (combination chemotherapy). The pur-
pose is to overcome possible resistance to a single drug and to increase the probability
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of catching tumor cells in different phases of the cell cycle. Therefore, it is important
to be able to determine the cell cycle phase durations of normal and malignant cells,
the cell cycle phase specificity of drugs, and the changes that occur when cells are
exposed to anticancer drugs. A multitype process is used to model changes in the cell
cycle during chemotherapy in Sect. 6.4. The emergence of cross resistance (each cell
resistant to two drugs) is modeled as a time-continuous branching process in Sect. 4.2.

2.3.4 Mutations in Cancer Cells

Rates of mutations that occur in cancer cells are estimated by a method called the
fluctuation test. The procedure was originally developed for bacteria. In this test,
the following are observed: the number of mutant cells arising in many parallel
cultures, the number of cell divisions in the cultures, and the number of cultures
which contain no mutant cells. The original method of calculating mutation rates from
these observations is based on the assumption that each mutant cell resulted from a
single rare event that is irreversible. This was appropriate for the bacterial mutations
originally observed, but not for many mutations in cancer cells. The mutations may
not be rare, may not be irreversible, and may not be due to a single step. Application
of the fluctuation test to cancer cells required the development of methods that took
into account these possibilities. Multitype branching processes were used to model
two-step mutations and interpret data from the fluctuation test, see Sect. 6.1.

2.3.5 Tumor Progression

Clinically detected tumors are composed of a million or more cells that may be a
colony derived from one cell. Evidence for the monoclonal origin of tumors is based,
in part, on the observations of chromosome aberrations in chronic myeloid leukemia,
and DNA polymorphisms in colon cancer. Each cell in the tumor population has the
same change from normal cells, suggesting that the change occurred in the founding
cell. This founding cell is sometimes referred to as the cancer stem cell. (The term
cancer stem cell has also been used to refer to the cells in a tumor that continue to
divide and expand the tumor.) Although the tumor cell population may be clonal, by
the time the tumor is detected, the population of cells may be heterogeneous. Tumor
heterogeneity refers to the observation that cells within a tumor may differ from
each other for one or more characteristics such as DNA sequences, expression of
subsets of genes, expression of proteins, and resistance to chemotherapeutic drugs.
The evolution of tumor heterogeneity is referred to as tumor progression. It results
from the accumulation of mutations (alterations in the sequence of DNA bases)
and epigenetic changes (modifications to DNA bases and associated proteins) as
progeny of the founding cell divide many times. Mutations to drug resistance have
been modeled as two-type branching process in Sect. 5.5.2.
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2.4 Population Genetics and Evolution

2.4.1 Wright–Fisher Model and Coalescent-Based Models

Two well-known models of population genetics are the Wright–Fisher model and
the coalescent-based model (Barton 2007, Chap. 15). The Wright–Fisher model
for genetic drift assumes that the population size is constant, the generations are
nonoverlapping, there is random mating between individuals with different alleles
neutral to selection, random sampling, and no additional mutant alleles occur as the
population evolves. The Wright–Fisher model views changes among individuals as
a population evolves forward from an initial population. In contrast, the coalescent-
based model views a population backward. A sample of differing individuals in the
final population is analyzed, and this information, assuming no selection, is used to
infer their most recent common ancestor (MRCA) and the time (in generations) to
the MRCA (TMRCA). These models are discussed in Chap. 8.

2.4.2 Human Immunodeficiency Virus

Acquired immune deficiency syndrome (AIDS) emerged in the early 1980s, and has
since been associated with more than 25 million deaths worldwide. The causative
agent of AIDS is the human immunodeficiency virus (HIV). It is an RNA retrovirus
that infects cytotoxic T-cells, an essential component of the immune system. The
virus may multiply in the T-cells and inhibit their function. Or, the virus may produce
a DNA copy that integrates into the DNA of the host T-cell and become latent,
reproducing with the DNA of the host T-cell when the host T-cell divides. The latent
DNA copy of the virus may, at a later time, become active and produce an RNA
copy, which in turn can produce new viruses to infect other cells. The polymerase
enzymes that copy RNA to RNA (RNA-dependent RNA polymerase), or that copy
RNA to DNA (reverse transcriptase) are extremely error prone, in the range of 0.1–0.3
mutations per genome per replication. This high mutation rate and natural selection
have resulted in the well-documented diversity of genome sequences, both within
individuals and between individuals in different geographical locations. Some of
these differences have been described as different subspecies or quasispecies, and
have been partitioned into discrete clades on phylogenetic trees (Holmes 2009). Some
of the mutations (escape mutations) allow virus mutants to resist immunotherapy or to
resist single antiviral drugs. The genealogies of mutants resistant to immunotherapy
or to drugs, and the brief appearance of low levels of viruses in the blood of treated
patients, have been modeled as multitype Galton–Watson processes and are discussed
in Chap. 6.9.5.
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Chapter 3
The Galton–Watson Process

The Galton–Watson (GW) process is the oldest, simplest, and best-known branching
process. It can be described as follows.

A single ancestor particle lives for exactly one unit of time and at the moment of
death produces a random number of progeny according to a prescribed probability
distribution. Each of the first-generation progeny behaves, independently of each
other, as the initial particle did. It lives for a unit of time and produces a random
number of progeny. Each of the second-generation progeny behaves in the identical
way, etc. From the fact that the lifespans of all particles are identical and equal to
1, it follows that the process can be mathematically described using a discrete time
index, identical to the number of successive generation. The particle counts Zn in
the successive generations n = 0, 1, 2, . . . (where generation 0 is composed of the
single initial particle) form a sequence of random variables with many interesting
properties, for example, the Markov property). Properties of the GW process provide
intuitions about more complicated branching.

The simplicity of the GW process makes it an appropriate and frequently employed
tool for introductory study of the processes of proliferation in biology. It is appli-
cable whenever the hypothesis of discrete nonoverlapping generations is justified.
An example of the GW branching process is the process describing the polymerase
chain reaction in Sect. 1.2.

3.1 Construction, Functional Equation,
and Elementary Properties

The material in this section follows the style of Athreya and Ney (2004). Let us
suppose that the number of progeny produced by each particle is a nonnegative
integer random variable with distribution function {pk; k = 0, 1, 2, . . . }.
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Fig. 3.1 The backward equation for the Galton–Watson process

3.1.1 Backward Equation

Any particle existing in the process, except for the ancestor of the process, can
be assigned to a subprocess traceable to a particular first-generation offspring of the
ancestor. In other words, the process can be represented as a union of the subprocesses
initiated by the first-generation offspring of the ancestor particle.

The number Zn+1 of particles in the generation n+1 of the process is equal to the
sum of the particle counts in the generation n of all the Z1 subprocesses initiated by
the first-generation offspring of the ancestor particle. Let Z

(j )
1,n+1 denote the number

of individuals at time n + 1 in the process started by a single ancestor born at time
1. The additional superscript (j ) denotes the j th independent identically distributed
(iid) copy. Mathematically, the random variable Zn+1 is equal to the sum of Z1

random variables Z
(j )
1,n+1, or (see Fig. 3.1):

Zn+1 =
⎧
⎨

⎩

Z
(1)
1,n+1 + · · · + Z

(Z1)
1,n+1, Z1 > 0,

0, Z1 = 0,

or

Zn+1 =
Z1∑

j=1

Z
(j )
1,n+1. (3.1)

Random variables Z
(j )
1,n+1 are (iid copies and their common distribution is identical

to that of Zn. Equation (3.1) can be equivalently written as

Zn+1 =
Z1∑

j=1

Z(j )
n .
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By the pgf Theorem 3.1 (part 6), it yields the following pgf identity:

fn+1(s) = f1[fn(s)] = f [fn(s)]. (3.2)

If we note that Z0 = 1 implies f0(s) = s, this yields the following:

fn(s) = f (n)(s) = f {· · · f [f
︸ ︷︷ ︸

n times

(s)] · · · }, (3.3)

i.e., the pgf of Zn is the nth functional iterate of the progeny pgf f (s).

3.1.2 Forward Equation

An alternative approach is based on the fact that any particle in the (n+1)-st generation
of the process can be traced to its parent in the nth generation of the process. Let
Xin denote the number of progeny of the ith particle existing in generation n. More
generally, let {Xin}i≥1,n≥0 be a doubly infinite array of iid rv such that E(X10) =
m < ∞. Then

Z0 = 1,

Zn+1 =
⎧
⎨

⎩

X1n + · · · + XZn,n, if Zn > 0,

0, if Zn = 0,
n ≥ 1,

(3.4)

or

Zn+1 =
Zn∑

i=1

Xin,

i.e., the number of individuals (particles, cells), in the nth generation of the process
is equal to the number of progeny of all individuals in the generation n − 1. In the
terms of pgf’s we obtain a new recursion:

fn+1(s) = fn[f1(s)] = fn[f (s)]. (3.5)

In the case of the GW process, the above recurrence also leads to Eq. (3.3).
However, for more general processes, the forward construction may not be feasible.
We will return to this matter.

Nontriviality

We exclude situations in which the number of particles is deterministic or when it is
either 0 or 1. Therefore, we assume throughout that p0 + p1 < 1 and that pj 
= 1
for any j .
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3.1.3 Moments

The moments of the process, when they exist, can be expressed in the terms of the
derivatives of f (s) at s = 1. For the mean we have

E(Z1) = f ′(1−) ≡ m,

where m is the mean number of progeny of a particle. From the chain rule

E(Zn) = f ′
n(1−) = f ′

n−1(1−)f ′(1−) = · · · = mn. (3.6)

Similarly, using the chain rule for the second derivative, one concludes that

Var(Zn) =
⎧
⎨

⎩

σ 2mn−1(mn−1)
m−1 , m 
= 1,

nσ 2, m = 1,
(3.7)

where σ 2 = Var(Z1) is the variance of the progeny count. Higher moments are
derived similarly, if it exists. The linear growth of variance in the critical case (m = 1)
is consistent with the “heavy tails” of the distribution of Zn in the critical case,
mentioned in Sect. 1.5.3.

3.1.4 The Linear-Fractional Case

Usually, after several iterations, the functional form of the iterates fn(s) becomes
intractable. The linear-fractional case is the only nontrivial example for which they
have been explicitly computed. Suppose

p0 = 1 − b − p

1 − p
, pk = bpk−1, k = 1, 2, . . . ., p ∈ (0, 1).

Then

f (s) = 1 − b

1 − p
+ bs

1 − ps
, (3.8)

and m = b

(1−p)2 . The equation f (s) = s has roots q and 1. If m > 1, then q < 1, if
m = 1, then q = 1, if m < 1, then q > 1. The following expressions are proved by
induction (for a direct derivation, c.f. Athreya and Ney 2004)

fn(s) = 1 − mn

(
1 − q

mn − q

)

+
mn
(

1−q

mn−q

)2
s

1 −
(

mn−1
mn−q

)
s

, m 
= 1, (3.9)

fn(s) = np − (np + p − 1)s

1 − p + np − nps
, m = 1. (3.10)

The linear functional pgf corresponds to the geometric distribution with a rescaled
term at zero.
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p2 proliferation

p0 death

p0 death

p1 quiescence

p1 quiescence

p2 proliferation

Fig. 3.2 A schematic representation of the cell cycle model. Each of the daughter cells, indepen-
dently, starts growing with probability p2, dies with probability p0, or becomes quiescent with
probability p1. Where p0 + p1 + p2 = 1

3.2 Application: Cell Cycle Model with Death and Quiescence

The material of this section follows Kimmel and Axelrod (1991). The fundamental
step in the proliferation of a population of cells is the division of one cell into two
cells. After completing its life cycle each cell approximately doubles in size and then
divides into two progeny cells of approximately equal sizes. Populations derived
from single cells are referred to as clones or colonies. It has been experimentally
observed that similar cells may not yield colonies with the same number of cells
after the same time. This may be due to various factors like the randomness of cell
death and quiescence.

3.2.1 The Mathematical Model

We consider a process more general than the standard GW process. It is initiated
by a single proliferating cell (Fig. 3.2). This cell divides, and each of its progeny,
independently, may (i) become proliferative with probability (wp) p2, (ii) become
quiescent wp p1, or (iii) die wp p0. Quiescent cells continue to exist without pro-
liferating nor dying. They may return to active growth and proliferation even after
a very long time, or eventually die; in the present model, these possibilities are not
considered. We assume p0 + p1 + p2 = 1.

The equations describing the model will be recurrences for the probability gen-
erating functions (pgfs) of the number of proliferating and quiescent cells present in
the population in successive generation, analogous to the backward Eq. (3.1). Let us
denote by Zn the number of proliferating cells in the nth generation and by Qn the
number of quiescent cells in the nth generation. Also, let Z

(j )
n,k and Q

(j )
n,k denote, re-

spectively, the number of kth generation proliferating and quiescent offspring of the
j th of the Zn proliferating particles of the nth generation. The number of offspring of
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Table 3.1 Derivation of the backward equation for the cell cycle model

(Z1, Q1) Probability (Zn+1, Qn+1) fn+1(s, w)

(0, 0) p2
0 (0, 0) 1

(0, 1) 2p0p1 (0, 1) w

(0, 2) p2
2 (0, 2) w2

(1, 0) 2p2p0 (Z(1)
1,n+1, Q(1)

1,n+1) fn(s, w)

(1, 1) 2p2p1 (Z(1)
1,n+1, Q(1)

1,n+1 + 1) fn(s, w)w

(2, 0) p2
2 (Z(1)

1,n+1 + Z
(2)
1,n+1, Q(1)

1,n+1 + Q
(2)
1,n+1) fn(s, w)2

a quiescent cell is always equal to 1, the same quiescent cell. We write the following
equations:

Zn+1 =
Z1∑

j=1

Z
(j )
1,n+1. (3.11)

Qn+1 =
Z1∑

j=1

Q
(j )
1,n+1 + Q1. (3.12)

Let us denote by fn(s, w), the joint pgf of random variables Zn and Qn (see Defi-
nition A.1 in the Appendix A). Let us note that Z

(j )
1,n+1 and Q

(j )
1,n+1 have distributions

identical to those of Zn and Qn, respectively. To obtain the recurrence for the pgf,
we first condition (Zn+1, Qn+1) on given values of (Z1, Q1). Table 3.1 lists all the
possibilities.

Multiplying the conditional values of fn+1(s, w) by their probabilities and
summing over the rows of Table 3.1, we obtain the pgf recurrence:

fn+1(s, w) = [p2fn(s, w) + p1w + p0]2. (3.13)

Let us note that if we limit ourselves to the proliferating cells, we obtain a GW
process. Indeed, passing to the marginal pgf in Eq. (3.13), by setting w = 1, yields
fn+1(s) = [p2fn(s) + p1 + p0]2, which is a special case of Eq. (3.2) with f (s) =
(p2s + p1 + p0)2.

3.2.2 Modeling Biological Data

In the paper Kimmel and Axelrod (1991), data on the colonies of cells have been
modeled with the aid of Eq. (3.1). The data included empirical distributions of colony
sizes of two varieties of cultured mouse fibroblast (skin tissue) cells. The first variety,
the NIH cells, are relatively “normal” cells. The second variety was created by
transferring the mutated ras oncogene, implicated in some malignant tumors, into
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Table 3.2 Colony size distribution: data and parameter estimates

Cell type NIH NIH (ras)

Data

Duration of the experiment (h) 96 96

Number of colonies 52 45

Colony size (cells/colony)

Minimum 10 8

Maximum 116 214

Median 33 70

Estimated parameters

Number of divisions 8 8

Probability of death (p0) 0.15 0.15

Probability of quiescence (p1) 0.1 0
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Fig. 3.3 Distributions of colony sizes for the NIH cells. Squares represent experimental data and
continuous lines have been generated by the model, as described in the text. The model satisfactorily
reproduces the distributions of the NIH cells colony sizes. (Source: Kimmel and Axelrod 1991)

NIH cells. The purpose of the experiments was to establish the differences in growth
processes between the NIH and NIH (ras) cells.

The distributions of colony sizes, i.e., of the numbers of cells per colony, were ob-
tained for a number of colonies grown for identical time in identical conditions. The
wide variability of colony sizes demonstrates the utility of including a stochastic com-
ponent in modeling. Table 3.2 provides a summary of data. Cumulative frequencies
of colony sizes are depicted in Figs. 3.3 and 3.4

In the experiment, it is impossible to discern proliferative cells from quiescent
cells. Therefore, a version of Eq. (3.13) is used, which gives the distributions of
Zn + Qn. The pgf of this sum is equal to gn(s) = fn(s, s), and therefore Eq. (3.13)
yields

gn+1(s) = [p2gn(s) + p1s + p0]2. (3.14)
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Fig. 3.4 Distributions of colony sizes for the NIH (ras) cells. Squares represent experimental
data and continuous lines have been generated by the model, as described in the text. The model
satisfactorily reproduces the distributions of the NIH (ras) cells colony sizes. (Source: Kimmel and
Axelrod 1991)

This pgf is equal to gn(s) = ∑j πn(j )sj , where πn(j ) =P{Zn + Qn = j}, and
Eq. (3.14) is equivalent to

{πn+1(j )} = {p2πn(j ) + p1δj1 + p0δj0} ∗ {p2πn(j ) + p1δj1 + p0δj0}, (3.15)

where the asterisk denotes the convolution of distributions, i.e., {c(j )} = {a(j )} ∗
{b(j )} denotes c(j ) =∑j

i=0 a(i)b(j − i), for j = 0, 1, . . . . The Kronecker symbol,
δjk , is equal to 1 if j = k, and equal to 0, if j 
= k. Recurrence (3.15), together with
the condition π0(j ) = δj1, j ≥ 0, makes possible to calculate the distributions of
colony sizes.

During the time of the experiment, about n = 8 divisions occurred. Distributions
{π8(j ), j ≥ 0} of colony size can be computed using different values of probabilities
p0 and p1 of cell death and quiescence. The following strategy has been used:

1. Since the NIH(ras) cells have increased content of the mutated ras oncogene
product, they are not likely to be quiescent; therefore, p1 = 0 is assumed and
the probability p0 of cell death is varied to fit the empirical distribution, in the
sense of least sum of squares of deviations of the model from the data. This gives
p0 = 0.15 (Fig. 3.4).

2. For the NIH cells, which are “normal,” the same value (p0 = 0.15) of the proba-
bility of cell death is used, but the probability p1 of quiescence is varied until the
distribution fits the data. This gives p1 = 0.1 (Fig. 3.3).

As evident from Fig. 3.3, the empirical cumulative frequency is initially steep, which
suggests that colonies with less than 10 cells constitute a nonnegligible fraction of
the sample. These colonies were not counted in the experiment, and therefore the
theoretical distribution is calculated conditional on the event that the colony size is
not less than 10.

The modified GW process accurately reproduces variability of the colony size.
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3.3 Extinction and Criticality

In this section, we consider the classification into the subcritical, critical, and su-
percritical processes and the laws of process extinction. This material overlaps with
Sect. 1.5.3, but it seems convenient to reintroduce it here.

The properties of the GW process are equivalent to the properties of the iterates
fn(s) of the progeny pgf f (s). In particular, the asymptotic behavior of {fn(s)}
provides insight into the limit theorems for the {Zn} process.

Let s be a real number. From the definition of f (s) as a power series with
nonnegative coefficients {pk} and with p0 + p1 < 1, we see that

1. f (s) is strictly convex and increasing in [0,1],
2. f (0) = p0; f (1) = 1,
3. if m ≤ 1, then f (s) > s for s ∈ [0,1),
4. if m > 1, then f (s) = s has a unique root in [0, 1).

Let q be the smallest root of f (s) = s for s ∈ [0, 1]. Then the above properties imply
that there is such a root and furthermore:

Lemma 3.1 If m ≤ 1 then q = 1; if m > 1 then q < 1.
The properties stated before and in the Lemma 3.1 are easy to understand if a

graph of the pgf is drawn. Moreover, we can prove that the iterates of f (s) converge
to q.

Lemma 3.2 If s ∈ [0, q) then fn(s) ↑ q as n → ∞. If s ∈ (q, 1) then fn(s) ↓ q as
n → ∞. If s = q or 1 then fn(s) = s for all n.

As a special case of the Lemma 3.2 we note that fn(0) ↑ q. But

lim
n→∞ fn(0) = lim

n
P {Zn = 0} = lim

n
P {Zi = 0, for some1 ≤ i ≤ n}

= P {Zi = 0, for some i ≥ 1} = P { lim
n→∞ Zn = 0},

which is, by definition, the probability that the process ever becomes extinct.
Applying Lemma 3.1, we get the extinction probability theorem.

Theorem 3.1 The extinction probability of the {Zn} process is the smallest nonneg-
ative root q of the equation s = f (s). It is equal to 1 if m ≤ 1, and it is less than 1
if m > 1.

Theorem 3.1 states that the extinction probability depends on the parameter m,
the mean progeny number of a particle.

Definition 3.1 If m is less than 1, equal to 1, or greater than 1, then the process is
called subcritical, critical, and supercritical, respectively.

According to Theorem 3.1, the subcritical and critical processes become even-
tually extinct with probability 1. This is particularly surprising in the case of the
critical process, for which, the expected value of {Zn} stays constant. Therefore,
some branching process models behave differently from their deterministic counter-
parts. Early in the history of the branching processes, it was remarked (Harris 1963),
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and then reiterated (Athreya and Ney 2004) that this instability of the GW process
is contrary to the behavior of biological populations, which tend to reach a state of
balance with their environment. We will see, based on examples taken from cell and
molecular biology, that the phenomena of extinction and instability do not contradict
the rules of biology.

The GW process is a Markov chain, the state of which is equal to the number of
particles present. We may classify its states into transient and recurrent. Recurrent
states are revisited with probability 1. For transient states, this probability is less than
1. Let us examine the probability of not returning to a given state k. Let us denote by
P (k, j ) = P {Zn+1 = j |Zn = i}, the one-step transition probability of the process.
The following is obtained,

P {Zn+i 
= k, for all i ≥ 1|Zn = k} ≥
⎧
⎨

⎩

P (k, 0) = pk
0; p0 > 0

1 − P (k, k) = 1 − pk
1; p0 = 0

⎫
⎬

⎭
> 0.

(3.16)

The above is demonstrated as follows. If p0 > 0, then one of the ways of not
returning to state k is that the process becomes extinct in one step (this occurs with
probability pk

0). If this is impossible, i.e., if p0 = 0, then we notice that one of the
ways of not returning to k is to not return in a single step (if p0 = 0, this occurs with
probability 1 − pk

1). From Eq. (3.16) we deduce the following theorem:

Theorem 3.2 All states except {Zn = 0} are transient, i.e.,

P {Zn+i 
= k, for all i ≥ 1|Zn = k} > 0,

if k 
= 0. In particular, this implies limn→∞P{Zn = k} = 0 and P {limn→∞ Zn =
k} = 0, for k ≥ 1. The above, together with Theorem 3.1, implies that

P { lim
n→∞ Zn = 0} = 1 − P { lim

n→∞ Zn = ∞} = q.

This latter property is known as the instability of the branching process.

3.4 Application: Complexity Threshold in the Evolution
of Early Life

This example is taken from a paper by Demetrius et al. (1985). It concerns the ability
of long biomolecules (polymeric chains) composed of smaller units (nucleotides)
to replicate without error. The same problem can be considered in many different
frameworks.

Let us consider a polymeric chain of ν nucleotides. If we assume that there is a
fixed probability p that a single nucleotide is correctly copied, then the probability
that a copy of the whole chain is correct is pν . Let us suppose that the chain replicates
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in a single time unit. During one-generation step, the molecule either survives (with
probability w) and produces a copy, which is accurate with probability pν , or it is
destroyed with probability 1 − w. A given molecule yields 0, 1, or 2 molecules
of the same type after one unit of time: the probabilities are 1 − w, w(1 − pν),
and wpν , respectively. The population of error-free molecules evolves according to
a GW branching process with pgf f (s) = (1 − w) + w(1 − pν)s + wpνs2. This
biomolecule is indefinitely preserved with a positive probability only if the process
is supercritical, i.e., if m = w(1 + pν) > 1, which yields

pν >
1 − w

w
. (3.17)

The probability of nonextinction is equal to 1 − (1 − w)/(wpν).
Relation (3.17) implies that the error probability 1 −p implies a threshold for the

length ν of the molecule, which does not become extinct with probability 1. If ν is
larger than this threshold, then the molecular species becomes extinct.

3.5 Asymptotic Properties

The limit theorems for the GW process are important for many applications. Also,
they suggest what to expect in more complicated processes. The limit laws are
different in the supercritical, subcritical, and critical cases. In the supercritical case,
the principal result is that the growth is asymptotically exponential, and that with
probability 1 the random variable Zn/mn tends to a limit W . As a consequence,
Zn is approximated by Wmn for large n. This is an extension of the exponential or
Malthusian law of growth in the realm of stochasticity.

However, here the analogy ends. In the subcritical and critical cases, the probabil-
ity of extinction is equal to 1 and the limit of Zn/mn is 0. Therefore, the “Malthusian
law” is no longer a sensible approximation. In the subcritical case, it is replaced by
the limit laws conditional on nonextinction, i.e., for the process {Zn|Zn > 0}. In the
critical case, the limit distribution of {Zn

n
|Zn > 0} is exponential.

3.5.1 Supercritical Process

The main mathematical fact used in this case is that the process {Zn/mn} is a
martingale.

Definition 3.2 A sequence of random variables {Xn, n ≥ 0} is called a martingale
if E(|X0|) < ∞, and

E(Xn+1|Xn, Xn−1, . . . , X1, X0) = Xn.
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Theorem 3.3 If {Xn, n ≥ 0} is a nonnegative martingale, such that E(Xn) < ∞ for
all n, then there exists a proper random variable X with finite expectation such that

(i)

lim
n→∞ Xn = X, wp 1.

(ii) If the martingale is L2 bounded, i.e., if supn E(X2
n) < ∞, then the convergence

occurs also in the L2 sense. Then, Var(X) = limn→∞ Var(Xn).

Theorem 3.3 is a modified form of the theorem in Sect. 1.3 of the book by Neveu
(1975).

If we set

Wn ≡ Zn/mn,

then E(Wn) = 1 and

E(Wn+1|Wn) = m−(n+1)E(Zn+1|Zn) = m−(n+1)mZn = Wn. (3.18)

Since the GW process is a Markov chain, then

E(Zn+1|Zn, Zn−1, . . . , Z1, Z0) = E(Zn+1|Zn).

An analogous property holds for the normalized process {Wn}, i.e.,

E(Wn+1|Wn, Wn−1, . . . , W1, W0) = E(Wn+1|Wn).

Consequently, Eq. (3.18) demonstrates {Wn} is a martingale. Therefore, by part
(i) of Theorem 3.3 we obtain the following:

Theorem 3.4 If 0 < m ≡ f ′(1−) < ∞, then there exists a random variable W

such that

lim
n→∞ Wn = W , wp 1.

In the critical and subcritical case, W ≡ 0 since q = 1. Therefore, W might be
nondegenerate only if m > 1. This is indeed true if an additional condition of finite
variance of the number of progeny is imposed.

Theorem 3.5 If m > 1, σ 2 < ∞, and Z0 ≡ 1, then (i) limn→∞ E(Wn − W )2 = 0;
(ii) E(W ) = 1, Var(W ) = σ 2/(m2 − m); (iii) P{W = 0} = q =P{Zn = 0 for some
n}.

The Laplace transform φ(v) =E(e−vW ) of the distribution of W can be shown to
satisfy a functional equation,

φ(v) = f
[
φ
( v

m

)]
, (3.19)
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the so called Abel’s equation. Indeed, the relationship (3.2) can be rewritten in the
terms of Laplace transforms ϕn(u) = E[ exp (−uZn)] = fn[ exp (−u)], where u ≥ 0
is a symbolic argument,

ϕn+1(u) = f [ϕn(u)]. (3.20)

Since the Laplace transform of the distribution of Wn is equal to

φn(u) = E[ exp ( − uWn)] = E
[
exp
(
− u

mn
Zn

)]
= ϕn(u/mn)

and conversely ϕn(u) = φn(umn), substitution into Eq. (3.20) yields φn+1(umn+1) =
f [φn(umn)]. After change of variables v = umn+1, we obtain

φn+1(v) = f
[
φn

( v

m

)]
.

Since Wn → W in distribution, then φn(v) → φ(v) and the limit (which is the
Laplace transform of the distribution of rv W ) satisfies the Abel’s Eq. (3.19).

Example: In the linear-fractional case of Sect. 3.1.4, the distribution of W can be
directly calculated. Its “density” can be expressed as,

fW (w) = qδ(w) + (1 − q)2e−(1−q)w, w ≥ 0,

i.e., it has an atom at 0 and the remaining part is negative exponential (c.f., Problems
at the end of this chapter).

3.5.2 Subcritical Process

In the subcritical case, the process becomes extinct with probability 1. What can be
said about the asymptotic behavior?

Example: Linear-fractional case. The probability of nonextinction is now equal to

1 − fn(0) = mn

(
1 − q

mn − q

)

,

(c.f., Problems at the end of this chapter) which yields

E(Zn|Zn > 0) = E(Zn)

1 − fn(0)
= mn − q

1 − q
→ q

q − 1
; n → ∞.

This suggests that conditioning on nonextinction is a sufficient device to obtain a
limit law. The proof of the following result can be found in the book of Athreya and
Nei (2004):

Theorem 3.6 Yaglom’s. If m < 1 then P{Zn = j |Zn > 0} converges, as n → ∞,
to a probability function whose generating function B(s) satisfies equation

B[f (s)] = mB(s) + (1 − m). (3.21)
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Also,

1 − fn(0) ∼ mn

B′(1 − )
, n → ∞. (3.22)

The above theorem will be useful in the next application considered in this chap-
ter. Convergence to a limit distribution conditional on nonabsorption is known as
quasistationarity (see Sects. 7.4 and 7.6).

3.5.3 Critical Process

By analogy, to the deterministic case it might appear that in the critical case, in
which Wn = Zn, the sequence Zn might reach a nontrivial limit. However, it is
impossible, since the extinction probability is equal to 1 in this case. To approximate
the asymptotic behavior of the critical GW process, it is necessary to use conditioning
on nonextinction and normalization. Let us start with a basic lemma (Athreya and
Ney 2004).

Lemma 3.3 If m = E(Z1) = 1 and σ 2 = Var(Z1) < ∞, then

lim
n→∞

1

n

[
1

1 − fn(t)
− 1

1 − t

]

= σ 2

2

uniformly for 0 ≤ t < 1.
Linear-fractional case: If m = 1, then Var(Z1) = f ′′(1 − ) = 2 p/(1 − p) < ∞,

based on Eq. (3.10). In this case, the assertion of lemma is obtained by directly
computing the limit (c.f., Problems at the end of this chapter).

Based on the lemma, the rate at which the critical process becomes extinct can
be estimated. The limit behavior of the probability of nonextinction, P{Zn > 0}, is
found by setting t = 0 in the Lemma 3.3

P{Zn > 0} = 1 − fn(0) ∼ 2

nσ 2
; n → ∞.

By the same token, the expectation of the process, given nonextinction, satisfies

E(Zn|Zn > 0) = 1

P{Zn > 0} ∼ nσ 2

2
; n → ∞.

This latter suggests that a limit law could exist for the normalized and conditional
process

{
Zn

n
|Zn > 0

}
. Indeed, we have,

Theorem 3.7 If m = 1 and σ 2 < ∞, then

lim
n→∞ P

{
Zn

n
> z
∣
∣
∣Zn > 0

}

= exp
{

− 2z

σ 2

}
, z ≥ 0.

For the proof, see Athreya and Ney (2004).



3.6 Application: Cancer Mutations 51

3.6 Application: Cancer Mutations

In past several years, a number of interesting models of mutations leading to can-
cer have been published. They all explore models of proliferation, frequently using
branching processes, combining them with models of driver and passenger mutations.
Driver mutations are those that, although they might have arisen spontaneously, pro-
vide selective advantage for the emerging cancer proliferation, particularly against
the background of already existing inherited or acquired mutations. Passenger muta-
tions are generally neutral and their accumulation may provide a molecular “clock”
indicating how long it has been since the cancer cells deviated from normal cells.

3.6.1 Modeling Driver and Passenger Mutations

A mathematical model of the relationship between accumulation of driver and pas-
senger mutation in tumors was published by Nowak’s group (Bozic et al. (2010)).
The model in that paper is based on the GW branching process. The hypotheses are
as follows: At each time step, a cell can either divide or differentiate, senesce, or
die. In the context of tumor expansion, there is no difference between differentia-
tion, death, and senescence, because none of these processes will result in a greater
number of tumor cells than present prior to that time step. It is assumed that driver
mutations reduce the probability that the cell will become “stagnate,” i.e., that it will
differentiate, die, or senesce, although the stagnant cells are not removed from the
tumor. A cell with k driver mutations has a stagnation probability dk = (1 − s)k/2.
The division probability is bk = 1 − dk . The parameter s is the selective advantage
provided by a driver mutation. When a cell divides, one of the daughter cells can re-
ceive an additional driver mutation with probability u. The theory can accommodate
any realistic mutation rate and the major numerical results are only weakly affected
by varying the mutation rate.

We can calculate the average time between the appearance of successful cell
lineages. Not all new mutants are successful, because stochastic fluctuations may
lead to the extinction of a lineage. The lineage of a cell with k driver mutations
survives only with a probability of approximately 1 − dk/bk

∼= 2sk. Assuming that
u � ks � 1, the average time between the first successful cell with k and the first
successful cell with k + 1 driver mutations is given by

τk = T

ks
log

2ks

u
. (3.23)

This result is obtainable from the theory of the GW process (by elementary means)
and the derivation is found in the supplement to Bozic et al. (2012). The cumulative
time to accumulate k mutations grows logarithmically with k. On the other hand, the
average number of passenger mutations, n(t), present in a tumor cell after t days is
proportional to t , that is n(t) = νt/T , where ν is the rate of acquisition of neutral
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mutations. Combining the results for driver and passenger mutations, results in a
formula for the number of passenger mutations that are expected in a tumor that has
accumulated k driver mutations

n = ν

2 s
log

4ks2

u2
log k. (3.24)

Here, n is the number of passengers that were present in the last cell that clonally
expanded. Bozic et al. (2010) demonstrate that this dependence fits empirical data
on several human cancers.

3.6.2 Distribution of Mutational Events in Various Phases
of Tumor Growth

This question has been addressed by Tomasetti et al. (2013). The framework is not
very different from that of Bozic et al. (2010). However, several models are consid-
ered, corresponding to different phases of proliferation in the tissue: precancerous
(split into developmental and tissue renewal subphases) and cancerous phase. In the
developmental phase, a branching process was used. In the tissue renewal phase, a
Moran model was used. In the cancerous phase, a branching process was used again.

Together, the models make the novel prediction, validated by empirical findings,
that the number of somatic mutations in tumors of self-renewing tissues is positively
correlated with the age of the patient at diagnosis. Importantly, the analysis indicates
that half or more of the somatic (new, since birth) mutations in tumors of self-
renewing tissues occur prior to the onset of neoplasia. The model also provides a
novel way to estimate the in vivo tissue-specific somatic mutation rates in normal
tissues directly from the sequencing data of tumors (Fig. 3.5).

Gupta et al. (2011) consider the question of distinct phenotypic states of cells in
tumors that differ in functional attributes. The mechanism by which the proportions
of cells in different states are stabilized, which is not well understood, is studied in
this paper using stochastic transitions occurring according to a Markov model. The
biological example used is human breast cancer cell lines. It is shown experimentally
and verified by a Markov process model that if the subpopulations are mixed in
nonequilibrium proportions, then the mixture will gradually return to equilibrium.
This is interesting although the mathematical model used is very simplistic. One
might hypothesize that in growing cell populations, which can be modeled by a
supercritical multitype branching process, a similar phenomenon takes place, which
is predicted if the transition matrix is irreducible.

Komarova and Cheung (2005) employ a reducible multitype branching process
(called “finite branching process” in the paper) to describe proliferation and matu-
ration of cells in the colon crypt. The idea is to find, theoretically, the number of
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Fig. 3.5 The fish, a schematic representation of the different phases in which somatic mutations
occur in a tissue giving rise to a cancer. Starting from a single precursor cell, a tissue is created via
clonal expansion (head of the fish). The tissue is then subjected to periodic self-renewals (body of
the fish). During development and tissue renewal, passenger mutations occur randomly, undergo
clonal expansions (various brown clones), and either go extinct or expand as successive passenger
mutations accumulate. A driver gene mutation can initiate a tumor cell clone, which then can expand
through subsequent driver mutations, eventually yielding a clinically detectable tumor mass (fish’s
tail, where each clonal expansion driver by a new driver mutation is indicated by a different color).
Passenger mutations occur during this phase as well. (Source: Tomasetti et al. 2013)

maturation stages and other parameters that minimize the probability that malignant
clone will be established in the crypt. The conclusion is that the process in the crypts
has evolved in an optimum manner.

3.7 Application: Gene Amplification

Material of this section is based on the paper by Kimmel and Axelrod (1990). It is an
example of application of theYaglom’s Theorem 3.6 to the analysis of the asymptotic
behavior of a subcritical GW process.
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3.7.1 Gene Amplification and Drug Resistance

Amplification of a gene is an increase of the number of copies of that gene in a cell.
Amplification of genes coding for the enzyme dihydrofolate reductase (DHFR) has
been associated with cellular resistance to the anticancer drug methotrexate (MTX).

A resistant population with an increased number of DHFR gene copies per cell
can be obtained after a sensitive population is grown in increasing concentrations of
the drug. Increased resistance is correlated with increased numbers of gene copies
on small extrachromosomal DNA elements. These elements are visible in the mi-
croscope and resemble pairs of small chromosomes; they are called double minute
chromosomes or double minutes. The number of DHFR genes on double minutes in a
cell may increase or decrease at each cell division. This is because double minutes are
acentric, i.e., they do not have centromeres like real chromosomes. Centromeres are
required for the mitotic apparatus to faithfully segregate chromosomes into progeny
cells.

In populations of cells with the double minutes, both the increased drug resistance
and the increase in number of gene copies are reversible. The classical experiment
confirming this includes transferring the resistant cell population into a drug-free
medium. When these populations are grown in the absence of the drug, they gradually
lose resistance to the drug, by losing extra gene copies.

The population distribution of numbers of copies per cell can be estimated by
the experimental technique called flow cytometry. In the experiments described, two
features of these distributions are notable. First, as expected, the proportion of cells
with amplified genes decreases with time. Second, less obvious, the shape of the
distribution of gene copy number within the subpopulation of cells with amplified
genes appears stable as resistance is being lost. This stable distribution is depicted
in Fig. 3.6 taken from Brown et al. (1981). The distribution of cells with amplified
genes retains its shape, only the area under the distribution gradually decreases while
the peak corresponding to sensitive cells increases.

3.7.2 Galton–Watson Process Model of Gene Amplification
and Deamplification

We consider a cell, one of its progeny (randomly selected), one of the progeny of that
progeny (randomly selected), and so forth. The cell of the nth generation contains
Zn double minutes carrying the DHFR genes. During cell’s life, each double minute
is either replicated with probability a, or not replicated, with probability 1 − a,
independently of the other double minutes. Then, at the time of cell division, the
double minutes are segregated to progeny cells. If the double minute has not been
replicated, then it is assigned to one of the progeny cells with probability 1

2 . If it has
been replicated, then either both copies are assigned to progeny 1 (wp α/2), or to
progeny 2 (wp α/2), or they are divided evenly between both progeny (wp 1−α). Let
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Fig. 3.6 Loss of the amplified copies of the DHFR gene during cell growth in MTX-free media.
The 3T6 cells resistant to the MTX were grown for different times in MTX-free medium. The
fluorescence level is proportional to the number of gene copies per cell. The values in parentheses
are the percentages of cells with gene copy numbers greater than those for sensitive cells. a Dotted
line, 3T6 sensitive cells; solid line, resistant cells. b Cells grown for 17 generations without MTX.
c Cells grown for 34 generations without MTX. d Cells grown for 47 generations without MTX.
(Source: Brown et al. 1981)

us note that the two double minutes segregate independently to progeny cells only
when α = 1/2. Otherwise, they either preferentially go to the same cell (α > 1/2),
or to different cells (α < 1/2). The randomly selected progeny in our line of descent
contains (Fig. 3.7),

• No replicas of the original double minute (wp (1 − a)/2 + aα/2), or
• One replica of the original double minute (wp (1 − a)/2 + a(1 − α)), or
• Both replicas of the original double minute (wp aα/2).
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Fig. 3.7 Schematic representation of the mathematical model of amplification and deamplification
of genes located on double minute chromosomes. The sequence of events is presented for one of
the possibly many double minutes present in the cell. During cell’s life, the double minute is either
replicated, or not replicated. At the time of cell division, the double minute is assigned to one of the
daughter cells (segregation). If it has not been replicated, it is assigned to one of the daughter cells.
If it has been replicated, then either both copies are assigned to daughter 1, or to daughter 2, or they
are divided evenly between both daughters. Probabilities of the events involved are presented in the
graph. (Source: Kimmel and Axelrod 1990)

Therefore, the number of double minutes in the nth generation of the cell lineage is
a GW process with the progeny pgf

f (s) = d + (1 − b − d)s + bs2, (3.25)

where b = aα/2 and d = (1−a)/2+aα/2 are the probabilities of gene amplification
and deamplification, respectively. Since in the absence of selection double minutes
gradually disappear from the cell population, it is assumed that deamplification
(loss of gene copies) exceeds amplification, so that the process is subcritical. In
mathematical terms, b < d and m = f ′(1−) = 1 + b − d < 1.

3.7.3 Mathematical Model of the Loss of Resistance

We will call a cell resistant if it carries at least one double minute chromosome
with the DHFR gene. Otherwise it is called sensitive. In the experiments described
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above, a population of cells resistant to MTX, previously cultured for N generations
in medium containing MTX, consists only of cells with at least one DHFR gene
copy, i.e., ZN > 0. Therefore, the number of gene copies per cell is distributed
as {ZN |ZN > 0}. If N is large then, since the process is subcritical, by the Yaglom
Theorem 3.6, this distribution has pgf B(s) satisfying the functional equation given in
the theorem. Also, based on the estimates of 1−fn(0) provided in the same theorem,
the resistant clone grows, in each generation, by the factor 2m on the average.

After the N initial generations, the resistant clone has been transferred to the
MTX-free medium. The overall number of cells now grows by factor two in each
generation, while the average number of resistant cells continues to grow by the
factor 2m. Let us denote by R(n) and S(n), the number of resistant and sensitive
cells in the population, n generations after transferring the cells to the MTX-free
medium; r(n) = R(n)/[R(n) + S(n)] is the fraction of resistant cells. We obtain,

R(n) = (2m)nR(0), S(n) + R(n) = 2n[S(0) + R(0)],

hence

r(n)/r(0) = mn. (3.26)

This means that the proportion of resistant cells decreases geometrically, while the
distribution of gene copy number among the resistant cells remains close to the limit
distribution of theYaglom theorem. This behavior is consistent with the experimental
data of Fig. 3.6.

3.7.4 Probabilities of Gene Amplification and Deamplification
from MTX Data

Probabilities b and d can be estimated from the loss of resistance experiments sim-
ilarly as in Kimmel and Axelrod (1990), using data on the S-180(R1A) cells in
Kaufman et al. (1981). The resulting estimates are b = 0.47, d = 0.50, yielding
a = 1 − 2(d − b) = 0.94 and α = 2b/a = 1. The interpretation is that while
the frequency of replication of the double minute chromosomes is quite high, both
copies are assigned almost always to the same progeny cell.

In Kimmel and Axelrod (1990), other models of the same process have been
considered. All of them exhibit dynamics similar to that predicted by the Yaglom
theorem.
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3.8 Application: Iterated Galton–Watson Process
and Expansion of DNA Repeats

We consider mathematical properties of a time-discrete stochastic process describing
explosive proliferation of DNA repeats in a class of human genetic diseases. The
process contains copies of the GW process as its building blocks.

3.8.1 Dynamics of DNA Repeats in Human Pedigrees

Recently, several heritable disorders have been associated with dynamic increases
of the number of repeats of DNA triplets in certain regions of human genome. In
two to three subsequent generations, the transitions from normal individuals to non-
affected or mildly affected carriers, and then to full-blown disease, occur. The two
syndromes for which the most comprehensive data exist are (Richards and Sutherland
1994):

• The Fragile X syndrome, caused by a mutation of the FMR-1 gene characterized
by expansion of the (CCG)n repeats (normal 6–60, carrier 60–200, affected >200
repeats).

• Myotonic dystrophy, caused by a mutation of the DM-1 autosomal gene charac-
terized by expansion of the (AGC)n repeats (normal 5–27, affected >50 repeats).

These two inherited human syndromes previously were distinguished by two features
inconsistent with Mendelian inheritance: progressively earlier onset of symptoms in
subsequent generations and higher severity of symptoms in subsequent generations.

These features have recently been correlated with changes in DNA. In each case,
a trinucleotide represented a few times in an unaffected parents is found in multiple
tandem copies in the progeny. The number of tandem copies is dramatically increased
(10–100-fold) in affected individuals. It has been correlated with the time of onset
and the severity of symptoms.

Important questions that have not been fully answered are:

1. What is the mechanism of fluctuation of the number of repeat sequences in normal
people (not in affected families)?

2. What is the mechanism of the modest increase in repeat sequences in unaffected
carriers?

3. What is the mechanism of the rapid expansion of the number of repeat sequences
in affected progeny within one or two generations?

Caskey et al. (1992) formulated a biological hypothesis regarding the origin of high
variation in repeat count:

The instability in the premutation alleles which leads to the extraordinary expansions ob-
served in DM and Fragile X patients results from the presumed difficulty of replicating
long GC-rich sequences. In this scenario, unequal rates of DNA synthesis lead to multiple
incomplete strands of complementary, triplet, reinitiated sequences.
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Fig. 3.8 The nonlinear mechanism of repeat expansion: Illustration of DNA branches that can be
resolved into repeats. Suppose that in generation i there are Xi triplets and suppose that a random
number (usually, 0 or 1) of new branches of DNA emerge on top of a previous one at the endpoint
of each repeat (a single “initiation before termination” on each branch). Assuming that the process
is confined to a region defined by the length of the original Xi repeats, and that all triplets from all
branches are resolved and incorporated into a linear structure of chromosomal DNA, we obtain the
number of repeats Xi+1 in the (i + 1)st generation equals to the number of all triplets encased in
the thin-line rectangle. (Source: Gawel and Kimmel 1996)

3.8.2 Definition of the Process

Gawel and Kimmel (1996) make this hypothesis specific by assuming the following
specific scenario of expansion of repeats:

• In the initial, zeroth, replication round, the number of repeats is n.
• In each new DNA replication round, a random number of new branching events

(i.e., “initiation without termination of replication” events) occur at the endpoint
of each repeat (this random number is characterized by the pgf f (s)) and

• All resulting branches become resolved and reintegrated into the linear DNA
structure, which becomes the template for the succeeding replication round.

Gawel and Kimmel (1996) notice that there exist a precedent for such mechanism
in the replication of the T4 bacteriophage. This virus induces production in the host
cell of branched networks of concatenated DNA, which subsequently is resolved into
unbranched phage genomes (see references in Gawel and Kimmel 1996), Fig. 3.8.

Gawel and Kimmel (1996) developed the so-called iterated simple branching
process {Xi} to provide a mathematical formulation for the expansion process. Here
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Xi is the length of a linear chain of DNA repeats after the ith stage of replication
(i = 0, 1, 2, . . . ) and X0 = n > 1. A chain with Xi = ν repeats replicates as
a branched network, which is assumed to be a GW tree descended from a single
ancestor through ν − 1 generations. Thus, the replicating chain serves as a template
for the height of the daughter tree. This partial tree later resolves into a linear chain.
To compute the length of this chain, let us suppose that

{Zk , k ≥ 0} (3.27)

is the sequence of numbers of individuals in a GW process with progeny pgf f (s).
Suppose further that the sequence

{Yk , k ≥ 0}, (3.28)

where

Y0 = Z0 = 1,

Y1 = Z0 + Z1,

Y2 = Z0 + Z1 + Z2,

. . . . . . . . . . . .

Yk = Z0 + Z1 + · · · + Zk ,

. . . . . . . . . . . .

(3.29)

is the total progeny process, i.e., Yk is the cumulative number of progeny produced
in the generations 0 through k of the GW process (c.f., Problems at the end of this
chapter).

Let further {Z(i)
k , k ≥ 0}, i ≥ 0 be a sequence of iid copies of {Zk} with

{Y (i)
k , k ≥ 0}, i ≥ 0 being the corresponding total progeny processes. These are

the tree structures grown at each (ith) replication round. The generic process {Zk} is
called the underlying GW process.

The process

{Xi , i ≥ 0}, (3.30)

can be now defined in a recursive manner,

X0 = n, (3.31)

Xi+1 = Y
(i)
Xi−1, i ≥ 0. (3.32)

Hence the sequence {Xi} is a Markov process and, since Y
(i)
0 = 1, the state 1 is

absorbing.
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3.8.3 Example

The following version of the process seems to be realistic from the biological view-
point: Suppose that at the end of each repeat a new “initiation before termination”
event occurs with small probability p, so that

f (s) = (1 − p)s + ps2. (3.33)

Then, the number of branches stemming from each ramification point is at least
1 and at most 2, the latter event being less likely. This leads to a “sparse” tree and
implies that for a number of generations the growth of the process will be slow.

Fluctuations of the number of triplets in the unaffected individuals can be ex-
plained by coexistence of processes of triplet increase and triplet loss. Accordingly,
we also assume that the process of resolution and reincorporation of repeats into the
linear chromosomal structure has a limited efficiency u < 1.

This can be mathematically formalized using the idealized binomial thinning,
i.e., assuming that each repeat is resolved and reinserted with probability u. The new
process {X̃i , i ≥ 0}, including the imperfect efficiency is defined as

X̃0 = n, (3.34)

X̃i+1 = B(u, Y (i)
X̃i−1

− 1) + 1, i ≥ 0, (3.35)

where conditional on N , B(u, N ) is a binomial random variable with parameters u
and N .

With an appropriate choice of parameters (see further on), this process produces
runs of fluctuations, followed by an explosive growth.

3.8.4 Properties

For the process without thinning, Pakes (2000) provides the following analysis, which
is simpler than the original arguments in Gawel and Kimmel (1996): We exclude the
trivial case p1 = 1, where Xi = X0. Then P[{Xi → 1} ∪ {Xi → ∞}] = 1. Let
X∞ denote the almost sure limit of Xi and let g(s, ν) denote the pgf of Yν . Then
g(s, 0) = s and g(s, ν + 1) = sf [g(s, ν)] (see problems to the present chapter). It
follows from (3.35) that

E(sXi+1 ) = E[g(s, Xi − 1)],

and hence in all cases

E(sX∞ ) = E[g(s, X∞ − 1)]. (3.36)
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If

0 < p0 < 1, (3.37)

we may choose s ∈ (0, q) and then f (s) > s. This gives g(s, 1) > sf (s) > s and
hence, by induction, that g(s, ν − 1) > sν . Since (3.36) can be written as

s + E(sX∞ , X∞ > 1) = s + E[g(s, X∞ − 1), X∞ > 1],

it is clear that this can hold if and only if P[X∞ > 1] = 0. We conclude that the
process is absorbed at unity when (3.37) holds. Next, if p0 = 0, then Y (i)

ν > ν + 1
and hence (3.32) implies Xi+1 ≥ Xi . So, Xi ↑ ∞ if X0 ≥ 2. The reasoning above
(and some other details) are summarized by the following statement:

Theorem 3.8 Let us consider the Iterated Galton-Watson (IGW) process with no
thinning (i.e., with u = 1). Then

1. m < 1 yields E(Xi) → 1 and Xi
a.s.→ 1.

2. m = 1 yields E(Xi) = E(X0) and Xi
a.s.→ X∞ where X∞ is a finite rv, and X∞ = 1

if p0 < 1.
3. m > 1 yields E(Xi) → ∞ and

a) if p0 > 0, then Xi
a.s.→ 1,

b) if p0 = 0, i.e., f (s) = p1s + p2s
2 + · · · , then Xi

p→ ∞.

The next result concerns the growth of the IGW process with binomial thinning.

Theorem 3.9 Suppose {X̃n} is the IGW process with binomial thinning.

1. Suppose m > 1. For each integer M > 0, there exists an integer N0 > 0 such
that

E(X̃i+1|X̃i = N0) > MN0.

2. Suppose u > 1/2 and p0 = 0. There exist N0 ≥ 0 and α > 1 such that

E(X̃n+1|X̃n ≥ N0) ≥ αE(X̃n − 1|X̃n ≥ N0).

The properties stated in Theorem 3.8 are similar to those of the process, with
the absorbing state being {X = 1} in our case, as opposed to {X = 0} for the
GW process. The most notable difference is that the supercritical GW process never
becomes absorbed with probability 1, while the iterated supercritical process may.

Theorem 3.9 shows that no matter how small the efficiency u in the process with
thinning, the process will increase (in the expected value sense) by an arbitrary factor,
only if it exceeded a certain threshold. To illustrate the properties of the process with
thinning, 20 independent simulations with parameters p = 0.05 and u = 0.8 are
presented in Fig. 3.9. All of them start from n = 20 repeats. Once the fluctuation
exceeds 100–200 repeats, it usually jumps to ≥1000 repeats.
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Fig. 3.9 Twenty simulation runs of the iterated Galton–Watson process with binomial thinning.
Parameters are p = 0.05 and u = 0.8, i.e., a new “initiation before termination” event occurs with
probability 5% and the efficiency of the resolution and reincorporation process is 80%. Each run
starts from exactly 20 repeats and continues to fluctuate within narrow limits for a variable number
of generations. Once the fluctuation exceeds 100 −200 repeats, it usually jumps to ≥ 1000 repeats.
(Source: Gawel and Kimmel 1996)
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3.9 Application: Galton–Watson Processes in Random
Environment and Macroevolution

In evolutionary biology, it is frequently assumed that the environment of a population
is fluctuating randomly (Gillespie 1996). If the dynamics of a population is described
by a branching process, this means that the pgf of the number of progeny per particle
varies randomly from one generation to another.

The following account follows unpublished lecture notes by V. Vatutin (personal
communication): Assume that the reproduction law in a GW process is changing
from generation to generation and, particles of mth generation produce offspring
according to the pgf fm(s). Clearly,

Fn(s) = Fn−1[fn(s)] = f0(f1( · · · (fn(s)) · · · ))

is the pgf specifying the distribution law of Zn. One important case is the randomly
changing environment. Specifically, let us define a collection G = {Ga : a ∈ A}
of pgfs with A being some set. The reproduction law of the particles of the ith
generation is taken from G at random according to some law

fi ∈ G, iid.

Let us note that this setup implies dependent reproduction in successive genera-
tions. The above model is called the GW branching processes in random environment
(GWBPRE). Let

ρ = E[ ln f ′
0(1 − )].

The GWBPRE is said to be subcritical if ρ < 0, critical if ρ = 0, and supercritical
if ρ > 0. For nontriviality, we assume that

Var[ ln f ′
0(1 − )] > 0.

3.9.1 Reduced Trees for Subcritical GWBPRE

The concept of reduced process is important for the reversed-time analysis of branch-
ing processes. It involves the part of the process that contributed to individuals
seen in the present time. Mathematically, we define the reduced process (backward
genealogical tree) as a family

{Zm,n, 0 ≤ m ≤ n}
in which Zm,n is the number of particles at time m ∈ [0, n] with nonempty offspring
at time n.
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Fleischmann and Vatutin (1999) established that for the linear-fractional case
(Sect. 3.1.4) and m > 1, we have

lim
n→∞ P[Zm,n = k | Zn > 0] = qk(m) > 0,

∞∑

k=1

qk(m) = 1,

and for all m∗ > 0 we have

lim
n→∞ P[Zn−m∗,n = k | Zn > 0] = q∗

k (m∗) > 0,
∞∑

k=1

q∗
k (m∗) = 1,

and, finally, if un and vn are such that

lim
n→∞ un = lim

n→∞ vn = ∞, lim
n→∞ (n − un − vn) = ∞,

then

lim
n→∞ P[Zun,n = Zn−vn,n | Zn > 0] = 1. (3.38)

Let us assume that the present time is n, in the units of one generation of particles.
If we observe a nonextinct process population that evolved in the past like a subcritical
GWBPRE, we see that with a high probability, during the long time interval [un, n−
vn], the process did not change state. This means that the divergence happened either
very close to the present moment or very far in the past.

3.9.2 Evolutionary Interpretation

V. Vatutin (personal communication) noticed that (3.38) may enable a re-
interpretation of conclusions based on molecular evidence of genetic divergence
between humans and chimpanzees. One of the more influential recent evolutionary
theories is the theory of punctuated equilibria. The theory, based on some fossil
evidence, states that long periods of evolutionary stasis (invariance of species) are
interspersed with bursts of speciation (appearance of new species). If the evolution-
ary process can be modeled using a subcritical GWBPRE, then the observed periods
of evolutionary stasis preceded and followed by bursts of speciation may not neces-
sarily reflect the unevenness of the evolutionary process itself, but follow from the
properties of the reduced GWBPRE. Gillespie’s (1986) more general observations
concerning the evolution’s “episodic clock” can be similarly reinterpreted. Gillespie
(1986) has investigated the ratio R of the variance to the mean in a set of four nuclear
and five mitochondrial genes in mammals, and found that R ranged from 0.16 to
35.55, which can be interpreted as periods of stasis alternating with periods of rapid
substitution. To fit these data Gillespie (1986) suggested models that incorporate
natural selection in a changing environment. Reduced GWBPRE might provide an
alternative for these models.
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3.10 Other Works and Applications

Much work has been done concerning both various generalizations of the GW process
and diverse properties of the basic process. Further in this book, we will consider
examples of Galton–W processes with diverse type spaces. In this section, we provide
examples of a different kind.

3.10.1 Stochastic Dependence

Stochastic dependence in branching processes can be formulated in various ways.
Examples include, intergeneration dependence and dependence between relatives.
Both are interesting because of their applications in cell proliferation. It is known
that progeny cells emerging from a division of a parent cell have lifelengths and other
parameters which are correlated. A number of researchers attempted to account for
these empirical observations (Axelrod and Kuczek 1989; Brooks et al. 1980; Rigney
1981; Hejblum et al. 1988; Kuczek and Axelrod 1986; Sennerstam and Strömberg
1996; Staudte et al. 1984; Staudte et al. 1997; Webb 1989).

Generation dependence (Fearn 1972) has a different meaning for the GW process
in which the generations are synchronized, and in the time-continuous age-dependent
processes, in which the generations overlap (Chaps. 4 and 5). One way of capturing
dependence between relatives is to consider the individual together with his/her
relatives (siblings, cousins, etc.) as a single superindividual. This can be carried
out using the framework of general processes (Olofsson 1996). In the framework
of estimation, a convenient manner of expressing such “local” dependencies is the
bifurcating autoregression (Sect. 5.5.4).

3.10.2 Process State Dependence

All GW processes, including these for which the progeny distributions depend on the
state of the process, are Markov. However, there is no simple relationship linking the
type of dependence with the properties of the resulting Markov chain. Therefore, the
study of such processes proceeds by way of special cases, deemed important usually
for extramathematical reasons. An early reference is Lipow (1975).

A series of papers by Klebaner consider limit properties of processes with progeny
distributions depending on the process state (i.e., usually the number of particles at
a given time). Klebaner (1996) is a short review of size- and density-dependent pro-
cesses. Klebaner (1988, 1990) and Klebaner and Cohn (1986) consider applications
in demography and genetics. Another interesting paper (Klebaner and Zeitouni 1994)
considers the problem of “cycle slip”, i.e., the conditions that a randomly perturbed
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deterministic system has to satisfy to escape the basin of attraction of the deter-
ministic part. A more recent paper by Klebaner (2010) concerns approximations of
state-dependent branching process.

Another application is presented by Jagers (1995) and Haccou et al. (2005)
who used the coupling method to analyze state-dependent processes describing
proliferation of biological cells.

3.10.3 Bisexual Galton–Watson Process

The bisexual generalization of the GW process is not straightforward to consider,
because it involves a process of pair formation. One way to proceed is to assume that
only females bear progeny, of both genders, and to define a mating function which
provides for each unpaired female the probability of forming a pair and mating with
an available male. These functions may be consistent with monogamy or monoandry
or they may mimic the mating patterns of insects, etc. The mating process destroys
the branching property and the resulting stochastic process is not strictly speaking
a branching process. One of the papers on the limit properties of such processes is
González and Molina (1996). A related paper (González et al. 2010), from the same
group at the University of Extremadura at Badajoz, concerns statistical inference for
Y-linked gene branching models using the expectation-maximization method. An
exhaustive review of older literature is provided in the thesis by Falahati (1999) and
of more recent literature in Molina et al. (2010).

3.10.4 Age of the Process

Estimation of the age of the branching process based on data concerning extant
individuals, their number, types, etc., gained importance because of applications
in genetics and molecular evolution. Evolution of chromosomes containing disease
genes can be represented as a branching process with Poisson distribution of progeny,
if the disease subpopulation is a small subset of a larger population evolving according
to the Fisher–Wright model. A model of this type was considered by Kaplan et al.
(1995) and used to obtain simulation-based likelihood estimates of location and
age of disease genes. A number of refinements of this method can be found in the
unpublished doctoral thesis of Pankratz (1998), where further references also are
provided.

Another type of application is finding the age of the most recent common ances-
tor of a population characterized by its genetic makeup, under the assumption that
its demography followed a branching process. An example related to evolution of
modern humans, using a time-continuous branching process, is described in detail
in Sect. 8.3.
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An early paper concerning estimation of the age of a GW branching process is
Stigler (1970). The author uses the linear-fractional case, in which an estimator can
be explicitly derived, and then generalizes the results to the case of the general GW
process. This paper was followed by a number of other publications, including Tavaré
(1980) and Koteeswaran (1989).

3.10.5 Family Trees and Subtrees

A somewhat related subject is the probability that the family tree of the process
contains an infinite N -nary subtree, i.e., a tree with exactly N progeny of each
individual. Pakes and Dekking (1991) demonstrated that this probability is the largest
root in the interval [0, 1] of the equation

1 − t = GN (1 − t),

where

GN (s) =
N−1∑

j=0

(1 − s)j f (j )(s)/j !,

and f (j )(s) is the offspring distribution of the process. Further results concerning the
maximum height of the N -nary subtree are provided in the same paper.

3.10.6 Model of Next Generation Sequencing

Heinrich et al. (2012) model the DNA next generation sequencing (NGS) procedure
as a branching process and derive a mathematical framework for the expected dis-
tribution of alleles at heterozygous loci before sequencing. This description takes
into account the process of “proliferation” of copies of oligonucleotides. The result-
ing GW branching process has a larger variance than that expected from binomial or
Poisson counting. Theoretical results are confirmed by analyzing technical replicates
of human exome data, computing the variance of allele frequencies at heterozygous
loci. Due to this high variance, mutation callers relying on binomial distributed priors
are less sensitive for heterozygous variants that deviate strongly from the expected
mean frequency. The results also indicate that error rates can be reduced to a greater
degree by technical replicates than by increasing sequencing depth (since technical
replicates are stochastically independent, while the opposite is the case for reads
obtained from NGS).
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3.11 Problems

1. Below are given several examples of pgf of a GW process. For each of them,
find E(Z1) ≡ m and Var(Z1) ≡ σ 2. Assume that the GW process describes a
cell population with discrete generations. Characterize the model described by
each pgf. Example: If f (s) = (ps + q)2 then each of the two daughter cells,
independently, survives with probability p and dies with probability q.
• f (s) = ps2 + qs,
• f (s) = ps2 + q,
• f (s) = ps2 + qs + r .

2. Assume that the pgf of the GW process is the fractional linear function. Using
induction, prove the form of fn(s) in the case m = 1.

3. Assume the fractional linear case. Treating the GW process as a Markov chain,
check that the state {Zn = k} is transient if k 
= 0 and recurrent if k = 0.
Hint: Use the closed form of fn(s) and base the assertion on the condition of
divergence of

∑
n≥0 Pr{Zn = k}.

4. Suppose that a GW process with the pgf f (s) is started not by a single particle,
but by a random number of particles (with pgf g(s)). Find fn(s).

5. Continued. Assume f (s) the linear-fractional function with m < 1 and g(s) =
(q−1)s
q−s

, where q = f (q). Define f̄(n)(s) = fn(s)−fn(0)
1−fn(0) the conditional pgf of Zn

provided Zn > 0. Prove, using induction, that f̄(n)(s) ≡ g(s).
6. Distribution with pgf g(s) having properties as above, is called a quasistation-

ary distribution of the GW process. What makes it different compared to the
stationary distribution of a Markov chain?

7. Galton–Watson process in varying environment. Suppose that the nth generation
of particles has the progeny distribution {p[n]

k , k ≥ 0} with pgf f [n](s). Define
the process in the terms of a Markov chain and derive the forward equation as it
was done for the ordinary process. What is fn(s) now?

8. Integrated GW process. Consider the process {Yn}, where Yn = ∑n
i=0 Zi .

Demonstrate that the pgf of Yn, denoted Fn(s), satisfies

Fn+1(s) = sf [Fn(s)].

9. Continued. Demonstrate that if m < 1, then the limit limn→∞ Fn(s) = F (s)
exists and satisfies the following functional equation:

F (s) = sf [F (s)].

Hint. Show that |Fn+1(s)−Fn(s)| ≤ m|Fn(s)−Fn−1(s)| if s ∈ [0, 1]. F (s) is the
pgf of the total number of particles produced in the process and in the subcritical
case it is a proper random variable, i.e., F (1) = 1.

10. Continued. Assume the linear-fractional case and calculate F (s) by solving
the functional equation above. Does F (s) correspond to any standard discrete
distribution?

11. Quasistationary distribution. Suppose that a subcritical GW process with the
pgf f (s) is started not by a single particle, but by a random number of particles
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having pgf B(s), defined in the Yaglom theorem. Prove that this distribution is
a stationary distribution of the GW process. Hint. Use the functional equation
defining B(s) and the property that B(0) = 0.

12. Assume the linear-fractional case and m > 1. Calculate the Laplace transform
of Wn = Zn

mn and find its limit as n → ∞. What is the distribution of W?
13. Consider the following mechanism of gene amplification:

• Each of the double minute chromosomes present in the newborn daughter
cell survives wp p. If it does survive, then during replication each next copy
of this particular double minute chromosome is produced wp p.

• During segregation each copy is assigned to given daughter cell wp 1
2 .

Consider a random lineage of cells in the population. If in the zeroth generation
there exists only a single cell with a single double minute chromosome, then
{Zn, n ≥ 0} the sequence of number of copies of the double minute in the cell of
nth generation, forms a GW process with the progeny pgf f (s). Find f (s). Hint.
Use the expression for the pgf of the sum of random number of iid rv’s.

14. Continued. Using the properties of the linear-fractional pgf’s, assuming the sub-
critical process, find the pgf B(s) of the limit distribution of the number of double
minute chromosomes per cell in the cells of the resistant clone. Suppose the mean
number of double minute chromosomes per resistant cell is equal to 20 and that
double minutes have been counted in 50 cells. Find the maximum likelihood
estimate of p and an approximate 95% confidence interval for this estimate.

15. Consider a population of particles with lifelengths equal to 1, proliferating
by binary fission, with each of the two progeny surviving independently with
probability p.
a) Find the probability of eventual extinction

q = Pr{# particles = 0 at some time n},
for a population started by a single ancestor particle, as the function of p (i.e.,
q = q(p)), for p ∈ [0, 1].

b) Find the probability that at time n = 3, there will be 4 or less particles in the
process.

c) An ad hoc way to increase the probability of non-extinction of the process
is to start at time 0 from a collection of N ancestor particles, instead of 1.
Find the probability q = q(p, N ) of eventual extinction of such process. For
p = 3/4, what should be N equal to so that 1 − q(p, N ) exceed 0.999?

16. Consider a GW process Zn with progeny pgf h(s), started by a random number
Y of ancestors [where Y ∼ g(s)]. Find
a) E (Zn|Z0 = Y ).
b) Var(Zn|Z0 = Y ).
c) Pr{Zn = 0, some n |Z0 = Y }.



Chapter 4
The Age-Dependent Process: Markov Case

This chapter is devoted to the use of time-continuous branching process with ex-
ponential life-time distributions. This process also has the Markov property and is
closely related to the Galton–Watson process. The exponential distribution to model
lifetimes of particles is not well motivated by any biological assumptions. Indeed,
the exponential distribution admits lifetimes which are arbitrarily close to 0, while
it is known that life cycles of organisms and cells have lower bounds of durations,
which are greater than 0. The advantage of using the exponential distribution is that
it leads, in many cases, to computable expressions. These expressions allow one to
deduce properties which can then be conjectured for more general models.

4.1 Differential Equation for the pgf and its
Elementary Properties

4.1.1 Definition of the Process

The process can be described as follows. A single ancestor particle is born at
t = 0. It lives for time τ , which is exponentially distributed with parameter λ. At
the moment of death, the particle produces a random number of progeny according
to a probability distribution with pgf f (s). Each of the first-generation progeny be-
haves, independently of each other, in the same way as the initial particle. It lives
for an exponentially distributed time and produces a random number of progeny.
Progeny of each of the subsequent generations behave in the same way. If we denote
Z(t) the particle count at time t , then we obtain a stochastic process {Z(t), t ≥ 0}.

The probability-generating function F (s, t) of Z(t) satisfies an ordinary differen-
tial equation which is easiest to derive based on the Markov nature of the process.
Indeed, let us consider the process at a given time t . Any of the particles existing at
this time, whatever its age is, has a remaining lifetime being distributed exponentially
with parameter λ. This follows from the lack of memory of the exponential distribu-
tion. Therefore, each of the particles starts, independently, a subprocess, identically
distributed with the entire process (Fig. 4.1). Consequently, at any time t + �t , the

© Springer Science+Business Media, LLC 2015 71
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time0

ancestor

Δt t+Δt

Z(1)(t)

Z(2)(t)

Z(Z(Δt))(t)

Fig. 4.1 Derivation of the backward equation for the Markov time-continuous branching process

number of particles in the process is equal to the sum of the number of particles in all
independent identically distributed (iid) subprocesses started by particles existing at
time �t . Each of these subprocesses is of age t . In mathematical terms,

Z(t + �t) =
Z(�t)∑

i=1

Z(i)(t), (4.1)

where superscript (i) identifies the i-th iid subprocess. So, according to the pgf
theorem (Theorem 1.1), we have the following pgf identity:

F (s, t + �t) = F [F (s, t), �t]. (4.2)

We subtract F (s, t) from both sides and, remembering that the process is started
by a single particle, i.e., F (s, 0) = s, we can write the result in the following form:

F (s, t + �t) − F (s, t) = F [F (s, t), �t] − F [F (s, t), 0]. (4.3)

If �t is small, then with a probability close to 1, the process consists only either
of the ancestor or of its first-generation progeny. In the terms of the process pgf,

F (s, �t) = se−λ�t + f (s)(1 − e−λ�t ) + o(�t), (4.4)

or

F (s, �t) − F (s, 0) = [−s + f (s)](1 − e−λ�t ) + o(�t). (4.5)
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Substituting (4.5) into (4.3) and dividing by �t we obtain

F (s, t + �t) − F (s, t)

�t
= {−F (s, t) + f [F (s, t)]}(1 − e−λ�t ) + o(�t)

�t
.

By letting �t → 0, this leads to the following differential equation:

dF (s, t)/dt = −λ{F (s, t) − f [F (s, t)]}. (4.6)

Equation (4.6), with the initial condition F (s, 0) = s, has a unique pgf solution
if conditions are satisfied, which guarantee that the process does not explode, i.e.,
at each time t > 0, the number of particles is finite wp 1 or lims↑1 F (s; t) = 1. For
this, it is sufficient that the expected number of progeny per particle m = f ′(1 − ) is
finite (Athreya and Ney 2004).

In particular, expression (4.2) demonstrates that for any time increment �t , we
have

F (s, i�t) = f
(i)
�t (s),

where f
(i)
�t (s) is the ith iterate of F (s, �t). Therefore, {Z(i�t , ω), i = 0, 1, . . . } is

a Galton–Watson process with progeny pgf f�t (s). Of course, f�t (s) has properties
very different from those of f (s). In particular, even if f (s) admits only a finite
number of progeny, f

(i)
�t (s) always has an infinitely long right tail.

4.1.2 Probability of Extinction and Moments

The Markov branching process is called

• Subcritical, if m < 1
• Critical, if m = 1
• Supercritical, if m > 1

Let q be defined as for the Galton–Watson process, i.e., as the smallest root of the
equation f (s) = s, s ∈ [0, 1]. The extinction probability is, again, equal to q.

Theorem 4.1 Suppose m < ∞. If F (s; t) is the pgf solution of Eq. (4.6), then
P (t) ≡ F (0; t) → q as t → ∞.

The extinction probability result is the same as for the Galton–Watson process. The
expressions for the moments are almost as simple as they are for the Galton–Watson
process.

Let us define the k-th factorial moment of Z(t), mk(t) = E{Z(t)[Z(t) −
1] · · · [Z(t) − k + 1]}. The differential equations for the factorial moments of the
process are formally derived by differentiating Eq. (4.6) with respect to s and letting
s ↑ 1. For example, the expected value m1(t) satisfies,

dm1(t)

dt
= λ(m − 1)m1(t), m1(0) = 1.

These equations can be solved explicitly. We obtain the following expressions for
the expectation and variance of Z(t):
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E[Z(t)] = eat , (4.7)

Var[Z(t)] =
⎧
⎨

⎩

f ′′(1−) − f ′(1−) + 1
f ′(1−) − 1 eat (eat − 1), a 
= 0

f ′′(1 − )λt , a = 0,
(4.8)

where a = λ(f ′(1 − ) − 1) is the Malthusian parameter of population growth.

4.2 Application: Clonal Resistance Theory of Cancer Cells

The aim of cancer chemotherapy is to achieve remission, i.e., disappearance of
clinically detectable cancers and then to prevent relapse, i.e., the regrowth of cancer.
In many cases, the failure of chemotherapy is associated with the growth of cells
resistant to further treatment with the same drug. There are two conceivable modes
of drug resistance: Resistant cells might exist in tumors before treatment and might
be selected for during treatment. Alternatively, they might be induced by treatment.

Drug resistance was extensively studied in bacteria (see Sect. 6.1 and also a review
paper by Levy 1998), and the resulting ideas have been applied to understand drug
resistance in cancer cells. One possible hypothesis is that mutations from sensitivity
to resistance are rare, irreversible events, that spontaneously occur in the absence of
the selecting drug. Moreover, mutation in resistance to a drug is a single event, and
it arises independently of resistance to another drug. Although simplistic, this model
is useful in understanding the initiation and growth of drug-resistant cancer cells.
Also, it might help design new protocols of cancer chemotherapy.

We explore the branching process approach to a theory of resistance, which has
become influential in the cancer research community. It was originally developed by
Coldman and Goldie (Goldie and Coldman 1979; Coldman and Goldie 1985). We
will re-derive some of the original results, using Markov time-continuous branching
processes. This approach seems more rigorous.

The assumptions of the theory are as follows (Fig. 4.2):

1. The cancer cell population is initiated by a single cell which is sensitive to the
cytotoxic (chemotherapeutic) agent. The population proliferates without losses.

2. Interdivision time of cells is a random variable with a given distribution.
3. At each division, with given probability, a single progeny cell mutates and

becomes resistant to the cytotoxic agent.
4. Mutations are irreversible.

We wish to compute the probability that when the tumor is discovered, it does not
contain any resistant cells. Only in such a situation, is the use of a cytotoxic agent
effective. If even a small subpopulation of resistant cells exists, the cancer cell
population will eventually reemerge despite the therapy.
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Fig. 4.2 Schematic representation of the branching process of clonal resistance, in the single-
mutation case

4.2.1 Single-Mutation Case

The Branching Process Model

We translate the hypotheses of clonal resistance into the language of branching
processes.

1. In the process, there exist two types of particles, labeled 0 (sensitive) and 1
(resistant).

2. The process is initiated by a single type 0 particle.
3. The life spans of particles are independent random variables, distributed

exponentially with parameter λ.
4. Each particle, at death, divides into exactly two progeny particles:

• 0-particle produces either two 0-particles, wp 1 − α, or one 0− and one
1-particle, wp α.

• 1-particle produces two 1-particles.

Thus, we have a two-type time-continuous Markov branching process.
Let us introduce the following notations, which are required since we consider

two types of particles:

• F0(s0, s1; t) is the joint probability-generating function (see Appendix A) of the
numbers of cells of both types, present at time t , in the process initiated at time
0 by a type 0 cell.

• F1(s1; t) is the pgf of the numbers of cells of type 1, present at time t , in the process
initiated at time 0 by a type 1 cell.

Frequently, we will be writing Fi(s; t) and even Fi(t) or Fi(s) or Fi .
In the general case of the process with k types of particles, we denote fi(s) =

fi(s1, . . . , sk), the joint pgf of the number of progeny of all k types begotten by an
i-type particle. The lifetime of an i-type particle is exponentially distributed with
parameter λi . Denoting by Fi(s; t), the joint pgf of the number of particles of all
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types in a process started by an ancestor of type i, we write the system of ordinary
differential equations

dF (s; t)/dt = −λ · {F (s; t) − f [F (s; t)]}, (4.9)

in which F , f , and λ are vectors and operator “·” is a componentwise product of
two vectors. The initial condition is F (s; 0) = s.

In our application, based on hypothesis 4, f0(s) = (1 −α)s2
0 +αs0s1, f1(s) = s2

1 ,
and λ0 = λ1 = λ. In consequence,

dF0

dt
= −λF0 + λ[(1 − α)F 2

0 + αF0F1], (4.10)

dF1

dt
= −λF1 + λF 2

1 . (4.11)

Solutions

Finding explicit solutions for cell proliferation models of the type (4.10), (4.11), fre-
quently lead to differential equations with right-hand sides quadratic in the unknown
function (so-called Riccatti-type equations). The reason is that in such models the
pgf of the number of progeny is a second-order polynomial, which reflects the binary
fission mode of proliferation of living cells. The following result can be verified by
direct substitution: Uniqueness follow by the usual regularity conditions.

Theorem 4.2 The solution of the differential equation

dF (t)

dt
= f (t)F (t) + hF (t)2, (4.12)

where f ∈ C[0, ∞), with initial condition F (0), is a uniquely defined function
F ∈ C1[0, ∞)

F (t) = F (0)e
∫ t

0 f (u)du

1 − hF (0)
∫ t

0 e
∫ u

0 f (v)dvdu
. (4.13)

We will solve the system (4.10), (4.11). First, separation of variables, or Eq. (4.13)
is applied to Eq. (4.11) and it yields

F1(s; t) = s1

s1 + (1 − s1)eλt
. (4.14)

Substituting (4.14) into Eq. (4.10) and employing Theorem 4.2, we obtain

F0(s; t) = s0e−λt [e−λt s1 + (1 − s1)]−α

1 + s0{[e−λt s1 + (1 − s1)]1−α − 1}s−1
1

. (4.15)
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Differentiating F0(s; t) with respect to s0 and s1, we obtain the expressions for
the expected counts of the sensitive and resistant cells

M0(t) = ∂F (1, 1; t)

∂s0
= eλ(1−α)t , t ≥ 0,

M1(t) = ∂F (1, 1; t)

∂s1
= eλt − eλ(1−α)t , t ≥ 0.

The conclusion is that in absence of intervention, the resistant cells eventually
outgrow the sensitive ones. The probability of no-resistant cells at time t is also easy
to obtain

P (t) = lim
s0↑1

lim
s1↓0

F0(s; t) = 1

(1 − α) + αeλt
= 1

(1 − α) + α[M0(t) + M1(t)]
.

(4.16)

Conclusions

Based on Eq. (4.16), the following observations can be made:

• The probability that there are no resistant cells at time t is inversely related to the
total number of cells.

• For different mutation rates α, if α’s are small, the plots of P (t) are approximately
shifted, with respect to each other, along the t axis.

• The time interval in which the resistant clone is likely to emerge, i.e., in which P (t)
falls from near 1 to near 0, for example, from 0.95 to 0.05, constitutes a relatively
short “window” (Fig. 4.3). Therefore, the therapy should be prompt and radical
to decrease cell number and probability (1 − P (t)) of emerging resistance.

An Alternative Model

An alternative variant of the model presented above assumes that each of the progeny
cells may mutate independently with probability α, as depicted in Fig. 4.4. The
equations of the process assume now the form

dF0

dt
= −λF0 + λ[(1 − α)F0 + αF1]2, (4.17)

dF1

dt
= −λF1 + λF 2

1 . (4.18)

They are of a more general Riccatti form, not admitting a closed-form solution.
However, it is still possible to obtain P (t). Let us note that F1(1, 0; t) ≡ 0, i.e.,
the probability of no-resistant cells in the subprocess initiated by a resistant cell is
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Fig. 4.3 Probability P(t) of no-resistant cells, depending on mutation rate and tumor size N (t) =
exp(λt), in the single-mutation model. (Source: Coldman and Goldie 1985)
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Fig. 4.4 Schematic representation of the alternative branching process of clonal resistance, in the
single-mutation case

equal to 0. Therefore, letting s0 ↑ 1 and s1 ↓ 0 in Eq. (4.17) yields the following
differential equation for P (t):

dP (t)

dt
= −λP (t) + λ(1 − α)2P (t)2; P (0) = 1, (4.19)

the solution of which is

P (t) = 1

[1 − (1 − α)2]eλt + (1 − α)2
; t ≥ 0. (4.20)

If α is small and consequently α2 is a second-order small, then the new P (t) is
approximately equal to that in (4.16), with α replaced by 2α.
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Fig. 4.5 Schematic representation of the branching process of clonal resistance, in the two-
mutations case

4.2.2 Two-Mutations Case

The aim of the two-mutation model is to address the problem of the so-called cross
resistance, i.e., resistance to more than one cancer-cell-killing agent. Cross resistance
is important for cancer chemotherapy, since protocols including more than one agent
are frequently used in therapy.

We will specify the hypotheses of our model (Fig. 4.5).

• The population of cells proliferates by binary fission starting from a single cell.
The lifespans of all the cells are independent, exponentially distributed, random
variables with parameter λ.

• The founder cell of the population is sensitive to chemotherapy.
• A sensitive cell divides into either two sensitive cells or one sensitive cell and the

other cell resistant to drug 1, or it divides into one sensitive cell and the other cell
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resistant to drug 2. These events occur with respective probabilities 1 − α1 − α2,
α1, and α2.

• A cell resistant to drug 1 divides into either two cells resistant to drug 1 or one
cell resistant to drug 1 and the other resistant to drugs 1 and 2. These events occur
with respective probabilities 1 − α12 and α12.

• A cell resistant to drug 2 divides into either two cells resistant to drug 2 or one
cell resistant to drug 2 and the other resistant to drugs 1 and 2. These events occur
with respective probabilities 1 − α21 and α21.

• A cell resistant to drugs 1 and 2 divides into two cells resistant to drugs 1 and 2.

We will name the sensitive cells as type 0, cells resistant to drug 1 as type 1, cells
resistant to drug 2 as type 2, and cells resistant to drugs 1 and 2 as type 12, respectively.

The rules specified above define a 4-type time-continuous Markov branching
process. The mathematical description of this process is based on the observation
that it can be decomposed into unions of subprocesses generated by progeny cells
of different types. There are four types of such subprocesses, generated by cells of
type 0, 1, 2, and 12, respectively. Biologically, they can be identified with clones of
different cells. Let us introduce the following notations:

• F0(s0, s1, s2, s12; t) is the joint pgf of the numbers of cells of all types, present
at time t in the process initiated by a type 0 cell. This particular subprocess is
identical, in distribution, with the entire process.

• F1(s0, s1, s2, s12; t) is the joint pgf of the numbers of cells of all types, present at
time t in the process initiated by a type 1 cell.

• F2(s0, s1, s2, s12; t) is the joint pgf of the numbers of cells of all types, present at
time t in the process initiated by a type 2 cell.

• F12(s0, s1, s2, s12; t) is the joint pgf of the numbers of cells of all types, present at
time t in the process initiated by a type 12 cell.

We obtain the following system of ordinary differential equations for the probability-
generating functions F0, F1, F2, and F12:

dF0

dt
= −λF0 + λ[(1 − α1 − α2)F 2

0 + α1F0F1 + α2F0F2], (4.21)

dF1

dt
= −λF1 + λ[(1 − α12)F 2

1 + α12F1F12], (4.22)

dF2

dt
= −λF2 + λ[(1 − α21)F 2

2 + α21F2F12], (4.23)

dF12

dt
= −λF12 + λF 2

12. (4.24)

The initial conditions are Fi(s; 0) = si , i = 0, 1, 2, 12, where s = (s0, s1, s2, s12).
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It is a little surprising that there exists a semi-explicit solution of this problem.
Equation (4.24) can be solved by separation of variables. It yields:

F12(s; t) = 1

1 − (1 − s−1
12 )eλt

. (4.25)

Substituting expression (4.25) into Eqs. (4.22) and (4.23) and solving the resulting
differential equations by separation of variables or application of Theorem 4.2, yields,
respectively:

F1(s; t) = e−λt [e−λt s12 + (1 − s12)]−α12

s−1
1 + {[e−λt s12 + (1 − s12)]1−α12 − 1}s−1

12

, (4.26)

F2(s; t) = e−λt [e−λt s12 + (1 − s12)]−α21

s−1
1 + {[e−λt s12 + (1 − s12)]1−α21 − 1}s−1

12

. (4.27)

Following the substitution of Eqs. (4.25)–(4.27), Eq. (4.21) assumes the form
which is solvable using Theorem 4.2. Accordingly, we calculate

e
∫ t

0 f (u)du = e−λt {1 + {[e−λt s12 + (1 − s12)]1−α12 − 1}s1s
−1
12 } α1

1−α12

{1 + {[e−λt s12 + (1 − s12)]1−α21 − 1}s2s
−1
12 } α2

1−α21 . (4.28)

Unfortunately,
∫ t

0 e
∫ u

0 f (v)dvdu cannot be obtained in a closed form. However, we
are mainly interested in the probability that no doubly resistant cells emerge before
t in the subprocess initiated by a sensitive cell,

P12(t) = P{N12(t) = 0} = F0(1, 1, 1, 0; t). (4.29)

In this special case, expression (4.28) is reduced to

e
∫ t

0 f (u)du = e−λt [α12 + (1 − α12)e−λt ]
α1

1−α12

[α21 + (1 − α21)e−λt ]
α2

1−α21 . (4.30)

The closed form solution is still not available although numerical quadrature is
straightforward. However, there exists a special case of interest in which the closed
form solution is available.

• Suppose that all the mutation probabilities are equal, i.e., α1 = α2 = α12 =
α21 = α.

In this case,

P12(t) = e−λt [α + (1 − α)e−λt ]−
2α

1−α

1 − 1−2α
1−3α

{1 − [α + (1 − α)e−λt ]
1−3α
1−α }

. (4.31)
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Conclusions

Based on the model, the following observations can be made:

• For different mutation rates α, with α small, the plots of P (t) are merely shifted.
• The time interval in which cross resistance is likely to emerge, i.e., in which P12(t)

falls from near 1 to near 0, for example, from 0.95 to 0.05, constitutes a relatively
short “window,” similar to that in Fig. 4.3.

• It can be proved, similarly as in the one-mutation model, that the average number
of cells resistant to any of the agents separately increases exponentially. Suppose
that we have, at our disposal, agents 1 and 2 and that we can use them according to
any time schedule, provided they are not used simultaneously. Since, in practice,
only periodic chemotherapy protocols are administered, the question is, should
the two drugs be alternated frequently or infrequently? The probability of double
resistance emerging from cells resistant to agent 1 strongly depends on the total
number of these cells. Therefore, while using agent 1, the number of cross resistant
cells should be kept in check. This is more difficult if agent 1 is used for a long
period without a break. The reason is that the cells resistant to agent 1 grow to
large numbers, increasing the probability of cross resistance.

• Summarizing, the two agents should be alternated as frequently as possible. This
is the conclusion of Goldie et al. (1982).

The original analysis of Goldie et al. (1982), replicated in this section, made use of the
simplifying assumption that the two agents were equivalent in their cell-killing effi-
ciency, i.e., α1 = α2 = α12 = α21 = α. Day (1986a) confirmed the results of Goldie
et al. (1982), and extended their analysis by relaxing the symmetry assumption. He
analyzed the relative effect of strategies that use agents with different kill efficien-
cies by using a continuous-time stochastic birth–death multitype branching process
model (Day 1986b) and simulation. The strategies he analyzed included alternating
agents, interweaving but not strictly alternating strategies, and one-agent strategies.
With each strategy a wide range of parameters were considered, including treatment-
scheduling times, cell-doubling times, cell mutation rates, drug kill efficiencies, and
single or cross resistance. The simulation results suggest two surprising conclusions:
(1)When using two drugs it is best to use the least-effective drug first, or for a longer
duration, and (2) for some values of tumor kinetics and drug kill parameters, nonal-
ternating treatment can outperform alternation and combination treatment schedules.
Practical application of these analyses depends upon knowing the appropriate drug
kill parameters for each tumor of each patient, although simulation results provide
guidelines in the absence of knowledge of exact parameter values.
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4.3 Other Works and Applications

4.3.1 Fluctuation Analysis

An important application of a branching process involving mutations, similar to the
model of Coldman and Goldie (Sect. 4.2), is the fluctuation test introduced by Luria
and Delbrück in 1943 (Luria and Delbrück 1943). The model and some refinements
will be considered in detail in Sect. 6.1. Here, we will describe the principle and
provide some bibliography.

The progeny of a cell may exhibit a new trait that differs from their parent, and
may pass on the new trait to their own progeny. Let us suppose that the change is due
to a single irreversible mutation event. The mutation rate is expressed as the average
number of mutations per cell division. Experimentally, a small number of cells are
used to seed a series of independent cultures, cells in each culture are allowed to
grow, and then the total number of cells in each culture is determined and also the
number of mutant cells in each culture is determined. The number of cell divisions
is estimated from the number of cells in each culture at the beginning and the end of
the experiment.

Given parameter values, these models predict the distribution of the number of
nonmutant and mutant cells at time t in a population started at time 0 by a single
nonmutant cell. In particular, the following observable variables are of interest:

• N (t), the expected total number of nonmutant and mutant cells at time t

• r(t), the expected number of mutant cells at time t

• P0(t), the probability of mutant cells being absent from the population at time t

Conversely, given experimental values of N (t), r(t), and P0(t), it is possible to
estimate the parameters of the models, in particular, mutation rates and probabilities.

Models in Sect. 6.1 illustrate how the estimates obtained differ if alternative as-
sumptions are employed in addition to those originally used by Luria and Delbrück
(1943). The literature of the subject includes many more refinements. A review of
probability distributions of the number of mutants under differing assumptions can
be found in Stewart et al. (1990). Ma et al. (1992) expanded these distributions
into series involving discrete convolution powers. Cell death and differential growth
rates were considered in a series of papers by Jones and co-workers (Jones et al.1994;
Jones 1994).

Examples of applications, beyond the original data considered in Luria and Del-
brück (1943), will be provided in Sect. 6.1. They mainly concern mutations to drug
resistance in bacteria and cancer cells. One application in a different context is that
by Hästbacka et al. (1992), who used a branching process of the Luria and Delbrück
type to model the evolution of genetic disease and estimate the location of the disease
gene.

An excellent review of various mathematical properties and approximations for
the Luria and Delbrück distributions arising from the fluctuation analysis is provided
in Angerer (2001).
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4.4 Problems

1. Cells with exponentially distributed lifetimes. Consider the Markov time-
continuous branching process with mean particle lifetime 1/λ. Assume that at
its death, each particle produces two specimens of progeny and that each of them
survives, independently, with probability p. Find h(s) and F (s; t). Consider the
critical case separately.

2. Continued. In the critical case, find the limit distribution of
{

Z(t ;ω)
t

∣
∣Z(t ; ω) > 0

}
,

as t → ∞. Compare the result with the corresponding general result for the
Galton–Watson process. Hint. Consider the Laplace transform

F (e− u
t ; t) − F (0; t)

1 − F (0; t)

and use the results of the preceding problem.
3. Explosions. Consider the following branching process:

• A single particle is born at t = 0. It lives 1 unit of time.
• Each successive generation of particles lives three times shorter than the

preceding one.
• The pgf of progeny number in each generation is f (s) such that f ′(1− ) < ∞.
• Usual independence hypotheses are verified.

Find the pgf F (s, t) of Z(t), the number of particles present in the process at time
t ≥ 0. At what time the process may explode? What is the distribution of Z(t) at that
time? Hint. Consider separately the cases f ′(1 − ) ≤ 1 and f ′(1 − ) > 1.

4. {Xn; n = 1, 2, . . . } is a sequence of iid nonnegative random variables. Using the
weak law of large numbers, demonstrate that

lim
n→∞ P{X1 + X2 + · · · + Xn > t} = 1, for any t > 0.

Hint. Assume first that E (X1) < ∞. If E (X1) = ∞, consider truncated rv’s
Yn = min{a, Xn}, where a is a constant.

5. Clonal resistance revisited. Consider the following version of the clonal resistance
theory:
a) In the process, there exist two types of particles, labeled 0 (sensitive) and 1

(resistant).
b) The process is initiated by a single type 0 particle.
c) The lifespans of particles are exponentially distributed independent random

variables, with parameter λ.
d) Each particle, at death, gives birth to exactly two progeny particles:

– 0-particle produces either two 0-particles, wp 1 − α, or two 1-particles,
wp α.

– 1-particle produces two 1-particles.

Find the equations for the pgf’s F0(s0, s1; t) and F1(s1; t) , see the lecture notes. Find
and solve the equations for the expected counts of sensitive and resistant cells at time
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t in the population started at time 0 by a single sensitive cell. Find and solve the
equation for P (t), the probability of no resistant cells at time t . Does the change in
hypotheses alter the predictions of the theory?

6. Serial mutations. Consider the following branching process:
a) In the process, there exist three types of particles, labeled 0, 1, and 2.
b) The process is initiated by a single type 0 particle.
c) The lifespans of particles are exponentially distributed independent random

variables, with parameter λ.
d) Each particle, at death, gives birth to exactly two progeny particles:

– Each i-particle, i = 0, 1, produces either two i-particles, wp 1 − α, or one
i particle and one i + 1-particle, wp α.

– 2-particle produces two 2-particles.

The equations for the pgf’s F0(s0, s1, s2; t), F1(s1, s2; t), and F2(s2; t) (the joint pgf’s
of the numbers of the 0-, 1-, and 2-particles, in the process initiated by a single 0-,
1-, and 2-particle, respectively; see the lecture notes) have the following form:

Ḟ0 = −λF0 + λ[αF0F1 + (1 − α)F 2
0 ],

Ḟ1 = −λF1 + λ[αF1F2 + (1 − α)F 2
1 ],

Ḟ2 = −λF2 + λF 2
2 ,

with initial conditions F0(s0, s1, s2; 0) = s0, F1(s1, s2; 0) = s1, and F2(s2; 0) = s2.
Find and solve the systems of equations for P1(t) and P2(t), the probabilities of no
1- and 2-cells at time t , respectively, in the process initiated by a single 0-particle.
Draft the plots of P1(t) and P2(t). Conclusions?

7. Consider the time-continuous branching process with particle lifetimes distributed
exponentially with expectation 1/λ; started by a single ancestor. Assume that at
its death, each particle produces two specimens of progeny with probability p

and no progeny with probability 1 − p.
a) Find h(s).
b) In the critical case, find F (s; t) and P (t) = P{Z(t , ω) = 0}.
c) In the critical case, find the limit distribution of

{
Z(t ; ω)

t

∣
∣Z(t ; ω) > 0

}

,

as t → ∞. Compare the result with the corresponding general result for the
Galton–Watson process. Hint. Consider the Laplace transform

F (e− u
t ; t) − F (0; t)

1 − F (0; t)
.



Chapter 5
The Bellman–Harris Process

The Bellman–Harris branching process is more general than the processes considered
in the preceding chapters. Lifetimes of particles are nonnegative random variables
with arbitrary distributions. It is described as follows. A single ancestor particle
is born at t = 0. It lives for time τ which is a random variable with cumulative
distribution function G(τ ). At the moment of death, the particle produces a random
number of progeny according to a probability distribution with pgf f (s). Each of
the first-generation progeny behaves, independently of each other and the ancestor,
as the ancestor particle did, i.e., it lives for a random time distributed according to
G(τ ) and produces a random number of progeny according to f (s). If we denote
Z(t) the particle count at time t ,we obtain a stochastic process {Z(t), t ≥ 0}. This
so-called age-dependent process is generally non-Markov, but two of its special cases
are Markov: the Galton–Watson process and the age-dependent branching process
with exponential lifetimes. The Bellman–Harris process is more difficult to analyze,
but it has many properties similar to these two processes.

Frequently, it is assumed that the distribution of lifetimes does not have an atom at
τ = 0, i.e., that G(0 + ) = 0, which is satisfied, among others, when the distribution
has a density g(τ ). This assumption prevents the process from producing infinitely
many generations of particles in zero time. The assumption is not always required.

5.1 Integral Equations for the pgf and Basic Properties

5.1.1 Heuristic Derivations

We provide a heuristic derivation of the integral equation for the pgf of the number of
particles in the Bellman–Harris process Z(t). Since this is one of the most important
equations in the theory of branching processes and since it has ramifications in some
other branches of applied mathematics (renewal theory, deterministic population
dynamics, and other), we also provide a complete derivation in the Appendix B.2.

Let us assume that the ancestor’s lifetime is equal to τ . Then, for times t < τ ,
the process consists of a single particle, the ancestor. For times t ≥ τ , the number

© Springer Science+Business Media, LLC 2015 87
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of particles in the process is equal to the sum of the numbers of particles in all
subprocesses started by the first-generation progeny of the ancestor, i.e.,

Z(t) =
⎧
⎨

⎩

1, t < τ ,
∑X

i=1 Z(i)(t − τ ), t ≥ τ ,

where X is the number of the first-generation progeny of the ancestor, and Z(i)(t −τ )
are the iid copies of the process, started by these progeny particles at time τ . Denoting
F (t , s) the pgf of Z(t), we obtain in terms of pgf’s, conditional on τ

F (s, t) =
⎧
⎨

⎩

s, t < τ ,

f [F (s, t − τ )], t ≥ τ.
(5.1)

Removing conditioning, i.e., integrating with respect to the distribution G, we
obtain

F (s, t) = s[1 − G(t)] +
∫

[0,t]
f [F (s, t − u)]dG(u). (5.2)

This latter equation is identical to Eq. (B.6) in Appendix B.2.
In general, it is impossible to find explicit solutions of the integral Eq. (5.2).

However, some special cases of interest are described by simpler equations.

Example 1 Galton–Watson process. Suppose that G(t) = χ (t − T ), where χ (t) is
the unit step function at 0, i.e., that lifelengths of all particles are identical and equal
to T . Equation (5.1) (as well as the integral Eq. B.6) assumes now the form

F (s, t) =
⎧
⎨

⎩

s, t ∈ [0, T ),

f [F (s, t − T )], t ∈ [T , ∞).
(5.3)

This implies that F (s, t) = fn(s) if t ∈ [nT , (n + 1)T ) and also that {Z(nT ), n =
0, 1, . . . } is a Galton–Watson process with progeny generating function f (s).

Example 2 Markov age-dependent branching process. If we consider the process
with lifelength distributions G(u) = 1 − exp (− λu), i.e., the Markov age-dependent
process, then the resulting integral equation can be differentiated side-by-side with
respect to t , yielding (after some algebra) the differential Eq. (4.6).

5.2 Renewal Theory and Asymptotics of the Moments

The theory of the renewal equation plays a major role in investigation of the asymp-
totic behavior of the Bellman–Harris process. The reason is that the moments of the
process are solutions of renewal-type linear integral equations. However, the theory
is also important for the nonlinear Eq. (5.2). We will follow Athreya and Ney (2004).
Another source is the book by Feller (1971).
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5.2.1 Basics of the Renewal Theory

Let us define the renewal function

Um(t) =
∞∑

n=0

mnG∗n(t), t ≥ 0, (5.4)

where G is a distribution on [0, ∞), i.e., G(t) is nonnegative, nondecreasing and
G(∞) = 1, and m is a positive constant. G∗n(t) denotes n-fold convolution of
function G(t) by itself i.e., G∗n(t) = G(t) ∗ · · · ∗ G(t)

︸ ︷︷ ︸
nfactors

, where F (t) ∗ G(t) =
∫

[0,t] F (t − τ )dG(τ ) and F (t) and G(t) are bounded nondecreasing functions
on [0, ∞).

Lemma 5.1 Athreya and Ney (2004). If mG(0+) < 1, then Um(t) < ∞ for all
t < ∞, and is bounded on finite t-intervals.

Let us consider the renewal equation

H (t) = ξ (t) + m

∫ t

0
H (t − y)dG(y), t ≥ 0, (5.5)

which also can be written as

H (t) = ξ (t) + m(H ∗ G)(t),

where ξ (t) is a given bounded measurable function on [0, ∞) and H (t) is the unknown
function. Let (ξ ∗Um)(t) ≡ ∫ t

0 ξ (t −y)dUm(y) be the convolution of ξ and Um which
is well defined since Um is nondecreasing and bounded.

Lemma 5.2 H ≡ ξ ∗ Um is the unique solution of Eq. (5.5) which is bounded on
finite intervals.

The following theorem can be found in Feller’s (1971) book: We call a distribution
a lattice, if its points of increase (or atoms of the corresponding probability measure)
occupy isolated points separated by distances being integer multiples of a positive
number a. Let us notice that if a distribution is nonlattice, then G(0+) < 1 is satisfied.
The definition of direct Riemann integrability can be found in Feller (1971).

Theorem 5.1 Assume m = 1 and let γ = ∫∞
0 tdG(t) ≤ ∞.

1. If ξ0 = limt→∞ ξ (t) exists, then the solution of Eq. (5.5) satisfies

lim
t→∞

H (t)

t
= ξ0

γ
. (5.6)

2. If ξ is directly Riemann integrable and G(t) is nonlattice, then

lim
t→∞ H (t) = 1

γ

∫ ∞

0
ξ (y)dy. (5.7)
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Definition 5.1 The Malthusian parameter for m and G is the root,1,0,1unique
provided it exists, of the equation

m

∫ ∞

0
e−αydG(y) = 1. (5.8)

We denote it by α = α(m, G).
Let us note that when m ≥ 1, the Malthusian parameter always exists and is

nonnegative. If m < 1, then α may not exist (if it does, it is negative).
When the Malthusian parameter exists, we can multiply Eq. (5.5) by e−αt , and

letting

Hα(t) = e−αtH (t); dGα(t) = me−αtdG(t); ξα(t) = e−αt ξ (t),

we obtain

Hα(t) = ξα(t) +
∫ t

0
Hα(t − y)dGα(y), t ≥ 0. (5.9)

Based on the above, part 2 of Theorem 5.1 can be used to obtain results of the
following type:

Theorem 5.2 If the Malthusian parameter α(m,G) exists, if e−αt ξ (t) is directly
Riemann integrable, and if G is nonlattice and mG(0 + ) < 1, then the solution H

of Eq. (5.5) satisfies

H (t) ∼ eαt

{∫ ∞

0
e−αyξ (y)dy

}{

m

∫ ∞

0
ye−αydG(y)

}−1

. (5.10)

5.2.2 The Moments

In order to derive an equation for the expected number of particles in the process

E[Z(t)] = μ(t) = ∂F (s, t)

∂s |s=1
,

it is necessary to justify differentiation under the integral in Eq. (5.2). When this is
accomplished, the following result is obtained:

Theorem 5.3 Suppose mG(0 + ) < 1.E[Z(t)] ≡ μ(t) is the unique solution of

μ(t) = [1 − G(t)] + m

∫ t

0
μ(t − y)dG(y), (5.11)

which is bounded on finite t-intervals.
Differentiating the pgf F (s, t) more than once with respect to s, one obtains

equations of similar type for higher moments of Z(t). The equation for [Z(t)] ≡ μ(t)
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is of the renewal type. Theorem 5.2, applied to Eq. (5.11) yields the following
asymptotic result:

Theorem 5.4 Suppose mG(0 + ) < 1.

1. If m = 1, then μ(t) = 1.
2. If m > 1 and G is nonlattice, then

μ(t) ∼ ceαt , t → ∞, (5.12)

where α is the Malthusian parameter for (m, G) and

c =
∫∞

0 e−αy[1 − G(y)]dy

m
∫∞

0 ye−αydG(y)
= m − 1

αm2
∫∞

0 ye−αydG(y)
. (5.13)

3. If m < 1, if the Malthusian parameter α(m, G) exists, and if
∫∞

0 ye−αydG(y) <

∞, then (5.12) and (5.13) hold, with α < 0.

5.3 Asymptotic Properties of the Process
in the Supercritical Case

In the supercritical case, when the Malthusian parameter exists, the asymptotic be-
havior of the Bellman–Harris process is similar to the behavior of its expected value
μ(t) and to the behavior of the Galton–Watson process. We define the random variable
W (t)

W (t) = Z(t)

n1eαt
, n1 = m − 1

αm2
∫∞

0 ue−αudG(u)
, (5.14)

where α is the Malthusian parameter (c.f. Definition 5.1). We see that E[W (t)] −→ 1,
as t → ∞ (c.f. Theorem 5.4).

Theorem 5.5 Athreya and Ney 2004. Suppose thatm > 1,f ′′(1−) < ∞,mG(0+) <

1, and G is not a lattice distribution. Then W (t) converges with probability 1 and in
mean squares to a random variable W , as t → ∞, and

E(W ) = 1, (5.15)

Var(W ) = [m + f ′′(1 − )]
∫∞

0 e−2αudG(u) − 1

1 − m
∫∞

0 e−2αudG(u)
. (5.16)

The variance of W is positive.
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5.4 Application: Analysis of the Stathmokinetic Experiment

5.4.1 Age Distributions

It is frequently necessary to consider the number of particles (objects) not only in the
whole process, Z(t), but also in variously defined subsets of the process. Examples
in the field of cell proliferation can be found in the review by Yanev (2010). The
scope of that paper overlaps with the contents of the present section.

Suppose that for each object in the process, the lifetime τ is the sum of two
independent random variables τ1 and τ2. This implies G = G1 ∗ G2, where Gi is
the distribution function of τi . More specifically, let us assume that the object’s life
is composed of phase 1 followed by phase 2, with respective durations τ1 and τ2.
Suppose that we are interested in the number X(u, t , ω) of objects, at time t , which
are in phase 1 and which have time > u remaining to leave phase 1.

An analog of Eq. (5.2) is satisfied by the the pgf F (s; u, t) = E[sX(u,t)]

F (s; u, t) =
∫ t+

0−
f [F (s; u, t − τ )]dG(τ ) + s[1 − G1(t + u)] + [G1(t + u) − G(t)],

(5.17)

where t , u ≥ 0 and s ∈ [0, 1]. Equation (5.17) is of the same type as Eq. (5.2). For a
derivation, see Kimmel (1985).

5.4.2 The Stathmokinetic Experiment

The stathmokinetic experiment was employed by researchers to estimate parameters
of cell cycle kinetics (see Darzynkiewicz et al. 1986, for a review). Basic notions
concerning the cell cycle and cell cycle kinetics are explained in Sect. 2.2. When cell
division is blocked by an agent that prevents completion of mitosis, the cells gradually
accumulate in mitosis, emptying cells in the postmitotic phase G1 as well as cells in
the S phase (Fig. 5.1). The pattern of accumulation in mitosis (M) depends on the
kinetic parameters of the cell cycle and is used for estimation of these parameters.

The following experimental law is observed in exponentially growing cell pop-
ulations: Suppose that the cell population grows exponentially as eλt . Let us define
the collection function g(t)

g(t) = ln [1 + fM(t)], (5.18)

where fM(t) is the fraction of the cells in mitosis at time t after starting the experiment.
It is frequent that the initial portion of the graph of g(t) is a straight line, the slope of
which is equal to λ (Fig. 5.2). Based on this, the growth-rate parameter λ, inversely
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G S1 G M

Blocked
division

2

Fig. 5.1 Generally accepted subdivision of the cell cycle. After division, the daughter cells enter
phase G1, then traverse the phases S, G2, and M , and then divide. The residence times in all the
phases are treated as random. In the stathmokinetic experiment, the divisions are blocked, so that
all the cells finally accumulate in M . (Source: Kimmel 1985)

g(t)

In(2)

(λ)

In(2a1)

S t

Fig. 5.2 Typical collection function g(t). S is the minimum residence time in phase 1. For times
from the interval [0, S], the collection function is linear with slope λ. (Source: Kimmel 1985)

related to the duration of the cell cycle, can be found in an experiment of relatively
short duration, in which only the fraction of cells in mitosis is followed. In more
sophisticated versions of the stathmokinetic experiment, using the technique called
flow cytometry, it is possible to follow fractions of cells in all cell cycle phases, and
consequently to estimate more parameters of the cell cycle.

We present a model of the cell cycle based on the Bellman–Harris process. Based
on this model, we derive a method of analysis of the stathmokinetic experiment which
is independent of the particular functional form of the cell lifetime distribution. The
approach follows Kimmel and Traganos (1986) and it is based on previous work by,
among others, Jagers and Staudte.
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Fig. 5.3 Cell cycle subdivision into two “phases”. Ti is the random residence time in phase i

(i = 1, 2), pi is its distribution density, fi (t) is the fraction of the initially cycling cells that are
present in phase i at time t after the experiment is started. (Source: Kimmel 1985)

5.4.3 Model

It is assumed that proliferating cells follow the rules of a Bellman–Harris process
with progeny pgf f (s) = s2. The lifetimes of cells are iid rv’s with a generic name T .
T is assumed to be equal to the sum of two independent rv’s T1 and T2, with densities
p1 and p2, respectively (Fig. 5.3). After mitosis, each of the progeny cells enters
phase 1, staying there for the random time T1. Upon leaving phase 1, the cell enters
phase 2 with duration T2. Then the cell divides and both progeny reenter phase 1. It is
assumed that the cells will have been growing for a long time in constant conditions
before the beginning of the experiment (time t = 0), when cell divisions will be
blocked by the application of a chemical agent.

After t0 when the divisions have been blocked, the total number of cells stays
unchanged but the transition from phase 1 to phase 2 continues. Therefore, the
number of cells remaining in phase 1 at time t after t0, is equal to X(t , t0), as defined
in Sect. 5.4.1. The fraction f1(t) defined as

f1(t) = E[X(t , t0)]

E[Z(t0)]
, (5.19)

where Z(t0) is the number of cells present at time t0 (i.e., the number of objects in the
Bellman–Harris process), is called the exit curve from phase 1. The accumulation
curve in phase 2 is simply f2(t) = 1 − f1(t).

Proposition 5.1 The exit curve from phase 1 has the asymptotic form

f1(t) = lim
t0→∞

E[X(t , t0)]

E[Z(t0)]
= 2[1 − P1(t) − α1(t)], (5.20)
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f1 (t)

F0

F1

F2 t

Fig. 5.4 Typical f1(t) exit curve. F0 is the exponential steady state (ESS) cell fraction in phase 1;
F1 is the area under f1(t); F2 is the coordinate of the mass center of the graph. (Source: Kimmel
1985)

where P1(t) is the tail distribution function P [T1 > t] of rv T1 and

α1(t) = eλt

∫ ∞

t

p1(u)e−λudu.

Here, λ is the Malthusian parameter being the unique real root of the equation

2
∫ ∞

0
e−λyd(P1 ∗ P2)(y) = 1.

A detailed proof of Proposition 5.1 can be found in Kimmel (1985). Briefly, to
find asymptotics of f1(t), we have to find the asymptotics of E[X(t , t0)], as t0 → ∞.
This is done by finding the integral equation for E[X(t , t0)], which in turn is done
by employing the pgf Eq. (5.17). Then, application of the renewal Theorem 5.2
yields the required asymptotics. An alternative proof could be carried out by using
an appropriate random characteristic and Eq. (C.2).

The following two corollaries describe properties of the exit and collection func-
tions (Fig. 5.4). Proofs can be found in Kimmel (1985): First corollary shows that
first two moments of the random duration T1 can be found as solutions of equations
involving quantities F0, F1, and F2, which can be computed from the graph of the
exit function f1(t). Also, it shows how to invert the relationship (5.20) in order to
compute the tail distribution of T1, given the exit function. Second corollary demon-
strates that the Malthusian parameter is equal to the slope of the linear portion of the
accumulation curve g(t).
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Corollary 5.1 Suppose the density p1 exists and is bounded and that its two first
moments exist. Then

F0 ≡ f1(0) = 2(1 − q), (5.21)

F1 ≡
∫ ∞

0
f1(u)du = 2

[

E(T1) − 1 − q1

λ

]

, (5.22)

F2 ≡
[∫ ∞

0
uf1(u)du

]/
F1 =

[

E(T 2
1 ) − 2

λ
E(T1) + 2

λ2
(1 − q1)

]/
F1, (5.23)

P1(t) = 1 − f1(t) − d
dt

f1(t)/λ

2
, (5.24)

where q1 = α1(0). The exit curve is assumed in its asymptotic form as in
Proposition 5.1.

Corollary 5.2 g(t) = λt + ln (2q1), t ≤ Tmin, if and only if p1(t) = 0, t ≤ Tmin.

5.4.4 Estimation

Corollary 5.2 provides means of estimation of the Malthusian parameter of population
growth. The parameter, λ, is equal to the slope of the initial straight line interval of
the collection curve g(t).

Knowing λ, and having the exit curve data for phase 1 (i.e., the values
f1(0), f1(t1), . . . , f1(tn), for a sequence of time points 0, t1, . . . , tn), it is possible
to employ Corollary 5.1 to estimate the duration of phase 1. It can be done in two
ways.

1. To calculate from data the “moments” F0, F1, and F2 of the exit curve and solve
the three first equations in Corollary 5.1 for E(T1), E(T 2

1 ), and q1.
2. To use the last equation in Corollary 5.1 to construct a nonparametric estimate

of the cumulative distribution P1(t), based on experimentally recorded values
f1(0), f1(t1), . . . , f1(tn), and approximated values d

dt
f1(0), d

dt
f1(t1), . . . , d

dt
f1(tn).

A further discussion of applicability of these two methods can be found in
Darzynkiewicz et al. (1986) and Kimmel (1985).

The decomposition of the cell cycle into abstract phases 1 and 2 can be carried
out in various ways enabling analysis of stathmokinetic data in various biological
compartments of the cell cycle (Fig. 5.1). Figure 5.5 depicts the estimation of the
first moments of transit times through phases of the cell cycle of the Friend ery-
throleukemia cells (Kimmel 1985). Figure 6.10a (see Chap. 6) depicts the estimation
of the distributions of transit times.
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Fig. 5.5 Analysis of stathmokinetic data for cultured Friend erythroleukemia cells. First panel
depicts the collection curves in phases M and G2 + M . The (identical) slopes of the straight line
portions of these curves provide the estimate of the Malthusian parameter λ = 0.062. Second panel
depicts the nonparametric estimation of the mean duration of G1 and S phase. G1 (closed squares)
and G1 +S (open squares) exit data are depicted in linear scale. The estimate of the mean duration of
G1 is calculated as E(T1) = (AG1 +fG1/λ)/2 = (0.82+0.38/0.062)/2 = 3.5 h, where fG1 = 0.38
is the fraction of G1 cells at the beginning of stathmokinesis, and AG1 = 0.824 is the area under the
G1 exit curve computed from the graph above based on piecewise linear approximation of the data.
The estimate of the mean duration of G1 +S is calculated as E(T1 +TS ) = (AG1+S +fG1+S/λ)/2 =
(3.83 + 0.83/0.062)/2 = 8.6 h, where fG1 = 0.83 is the fraction of G1 + S cells at the beginning
of stathmokinesis, and AG1+S = 3.83 is the area under the G1 + S exit curve. Subtraction E(TS ) =
E(T1 + TS ) − E(T1) = 8.6 − 3.5 = 5.1 h provides the estimate of S transit time. (Source: Kimmel
1985)

5.5 Other Works and Applications

5.5.1 Cell Populations

Cell populations are among natural objects that can be modeled using branching
processes and this explains the great number and variety of publications devoted
to this subject. A uniform presentation is difficult since different authors employed
branching processes at different levels of generality or even branching processes
disguised as deterministic models. The following account is chronological:

One of the earliest papers reviewing stochastic approaches to cell kinetics is
Jagers (1983). Essentially, this is a treatment using general branching processes
counted by random characteristics (Sect. C.1.2). Using this approach it is possible
to provide a condensed mathematical description as well as to use the asymptotics
of the supercritical process to describe the exponential growth of a population. The
review also includes models with periodically varying coefficients and one of the
earliest rigorous treatments of the stathmokinetic experiment (Sect. 5.4).
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Another theoretical approach, quasi-stochastic, i.e., limited to expected-value
processes is the paper by Staudte et al. (1984). It concerns models of regulatory
mechanisms of the cell cycle. As such, it may be considered a precursor of the
approach treated in detail in Sect. 7.8.1. Papers by Cowan (1985) and Cowan and
Morris (1986) belong to the tradition of modeling of the cell cycle using a Bellman–
Harris process (also, see Jagers’ 1975 book; Kimmel 1980a, b, 1983). To be strict,
this should be a multitype process, since cells in different phases of the cell cycle
should be considered separately. However, due to the cyclical nature of the problem,
it is possible to consider the interdivision time as a convolution of the durations of
the successive cell cycle phases. Technically, this is carried out in a way similar to
that described in Sect. 5.4.3.

One of the practical problems for which a mathematical answer is required is how
to relate the doubling time td of an exponentially growing population, i.e., the time
interval needed to increase the mean number of cells by a factor of 2, to the expected
lifelength E(T ) of an individual cell. The exact relationship has the form

td = ln 2

α
,

where α is the Malthusian parameter defined as the positive root of the equation

mf̂ (α) = 1,

and f̂ (α) is the Laplace transform of the density f (t) of the cell lifelength (Cowan
1985). There is no direct functional relationship between td and E(T ). Similarly, there
is no direct functional relationship between fractions of cells residing in distinctive
phases of the cell cycle and the residence times of cells in these phases. The paper by
Cowan (1985) provides approximations of the doubling time and of the proportions
of cells in different phases in the terms of moments of the lifelength of cells and of
the times of residence in cell cycle phases. This leads to a greater insight into the
theory and some simple formulae which account for the variability.

In a subsequent paper, Cowan and Morris (1986) extend the analysis to the case of
cells having different lifelength distributions in subsequent generations and becoming
quiescent with some probability (possibly different in each generation). This allows
modeling of transient effects in differentiating tissues and also of the embryonic
phase of organism’s growth.

The short book by Knolle (1988) presents the basic ideas of cell proliferation
and some mathematical models of population growth. The main application is a cell
cycle model with periodic coefficients used for modeling of cancer chemotherapy.

Axelrod et al.(1993) and Gusev and Axelrod (1995) use simulation of branching
models to quantify the persistence of cell cycle times of ras-oncogene-transformed
and non-transformed cells over many generations. The experimental system includes
primary colonies of cells and secondary colonies grown from cells collected from pri-
mary colonies. Persistence of cell cycle times is determined by heritability of colony
sizes (number of cells per colony). The problem of heritability was subsequently
studied in more mathematically oriented papers, see Sect. 6.9.1.
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Taïb (1995) studied the functional equation of the form y ′(x) = ay(λx) + b(x)
which arises in limiting cases of branching models of cell populations. The solution,
important for applications, also has an intuitive interpretation as the probability
density function of an infinite sum of independent but not identically distributed
random variables.

5.5.2 Cell Proliferation

In this section, several papers will be discussed which are based on branching pro-
cesses and related approaches and which tackle various aspects of cell proliferation.
Nonclassical approaches, including nonstationary behavior or nonstandard models
are stressed, rather than just the most recent papers.

One of the interesting nonstationary phenomena is the growth transient, before the
population starts growing asynchronously and exponentially, referred to as the lag
phase. Olofsson and Ma (2011) developed a branching process model of a bacterial
population with an initial lag phase. Based on the Bellman–Harris process model,
they established approximations in order to facilitate parameter estimation. Validity
of the approximations and estimation procedures were tested using simulated data
and found to be satisfactory.

A more complicated model has been developed by Nordon et al. (2011). This
model is suitable for cells switching type, such as in differentiation of maturing pro-
genitor cells in hemopoiesis. Cell proliferation and differentiation is described by a
multitype branching Bellman–Harris process, a probability model that defines the
inheritance of cell type. Cells first enter the G1 phase and then proceed through the
S, G2, and M phases, and then divide. Cell type is defined by (1) a repression index
related to the time required for S phase entry and (2) phenotype as determined by
cell markers and division history. The inheritance of cell type is expressed as the
expected number and type of progeny cells produced by a mother cell given her type.
Expressions for the expected number and type of cells produced by a multicellular
system are derived from the general model by making the simplifying assumption
that cell generation times are independent. The specific form of the cell cycle model
is the multitype Smith–Martin model (MSM; Smith and Martin 1973). It makes the
assumption that cell generation times are distributed according to a shifted exponen-
tial distribution. The exponential part is the G1 phase and the shift corresponds to the
joint duration of the S, G2, and M phases. Phenotype transitions are assumed to occur
directly before entry into S phase. The authors convert the integral Bellman–Harris
equations into a delay differential equation form, employing the Laplace transform.
This has been accomplished in a more general form by Kimmel (1980a). The model
of Nordon et al. (2011) has been tested using the data on the expansion of the number
of human cord blood cells, positive for the surface protein CD34. The MSM model
was fitted to cell division tracking data to identify cell cycle length, and the rates
of CD34 antigen downregulation cell death (apoptosis). The authors also use the
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inheritance-modified MSM (IMSM) model, which includes the influence of genera-
tion time memory so that mother and daughter generation times are correlated. They
were able to fit the data with the model.

Orlando et al. (2009) applied the previously developed characterizing loss of cell
cycle synchrony (CLOCCS) branching process model of cell population dynamics
to time-series experiments in synchronized budding yeast Saccharomyces cerevisiae
cells. The model accounts for cell cycle duration variability, asymmetric division,
and distributed initial conditions. These features were also present in the previous
model of Alexandersson (2001). A series of related quasi-stochastic models have
been reviewed by Arino and Kimmel (1993). The Orlando et al. model provides a
tool for “in silico synchronization” of the population and can be used to deconvolve
population-level experimental measurements, such as temporal profiles of gene or
protein expression. It also allows the direct comparison of assay measurements made
in multiple experiments. The model can be fitted either to the yeast budding index
or DNA content measurements, or both, and is adaptable to new forms of data.

The same group (Guo et al. 2012) also published an application of the model from
Orlando et al. (2009) in a branching process deconvolution algorithm that provides
a view of dynamic cell cycle processes, free from the convolution effects associated
with imperfect cell synchronization. The method uses wavelet basis regularization,
which increases the dynamic range of fit to data and the temporal resolution of time-
series data. The method was applied to cell cycle time course data of transcription
in the eukaryote S. cerevisiae. The algorithm made possible the identification of 82
genes transcribed almost entirely in the early G1 part of the cell cycle.

It is interesting to note how mathematical descriptions of the same biological phe-
nomenon evolve over time as new observations become available and emphasis shifts
to even more detailed models. An example is provided by two stochastic approaches
to modeling processes of proliferation in crypts of the small intestine and crypts
of the colon. In an older paper, Loeffler and Grossman (1991) modeled intestinal
epithelium with a two-level branching process. This is not unlike the branching-
within-branching model of Kimmel (1997). The intestinal epithelium is one of the
most rapidly regenerating tissues in mammals. Cell production takes place in the
mouse intestinal crypts which contain about 250 cells. Only a minority of 1 out of 60
proliferating cells are able to maintain a crypt over a long period of time. The work is
based on then available data about proliferation and extinction of cells in the crypts,
and of the crypts themselves. The model assumptions are: (1) stem cells undergo a
time-independent supercritical Markov branching process (Galton–Watson process),
(2) a crypt divides if the number of stem cells exceeds a given threshold, and the
stem cells are distributed to both daughter crypts according to binomial statistics,
and (3) the size of the crypt is proportional to the stem cell number. This model
described a new class of processes whose equilibrium and asymptotic behavior are
contemplated. By comparison with crypt data available at the time they concluded
that intestinal stem cells have a probability of over 0.8 of dividing asymmetrically
producing one stem cell and one non-stem cell, and that the threshold number of
stem cells is 8 or larger.
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Tan and Yan (2010) developed a new stochastic and state space model for car-
cinogenesis of human colon cancer. They incorporated the biological mechanisms
of chromosomal instability and microsatellite instability. The stochastic system was
represented by two different pathways, one for each of the biological mechanisms.
The observations, cancer incidence data, were represented by a statistical model. A
generalized Bayesian approach was developed to estimate the parameters through
the posterior modes of the parameters via Gibbs sampling procedures. The model
was shown to fit the surveillance, epidemiology, and end results (SEER) age inci-
dence data of human colon cancers from the National Cancer Institute of the National
Institutes of Health, USA. Conclusions were drawn that could guide colon cancer
prevention and control, and help predict future cancer cases. Comparison of these
two models illustrates the profound change that has occurred in modeling in the past
20 years because of the access to more detailed biological information.

5.5.3 Estimation of Cell Lifetimes

Estimation of cell lifetimes can be carried out employing various consequences of
the asymptotic balanced exponential growth of the supercritical Bellman–Harris
process. The general principle is that the information accumulated in measurable
characteristics of the cell population can be disentangled to extract the moments of
cell lifetimes, probability of cell death, etc. One of the examples is the stathmokinetic
experiment of Sect. 5.4, but other methods also can be used.

Jagers and Norrby (1974) proposed a method which involves sampling random
cells from an exponentially growing population and following them to division or
death. As the sampled cells will usually be of age greater than 0, the mean tc of these
times is less than the expected cell cycle duration Tc. Indeed

Tc = 1 − 2p

2(1 − p)
(tc − Td/ ln 2),

where Td is the doubling time of the population and p is the probability of cell death
at division. Analogous expressions can be derived for variances. The authors provide
statistics to estimate the moments of the cell cycle duration and provide examples of
calculations for virally transformed and nontransformed human fetal cell lines. The
conclusion is that the transformed cells have longer cell cycle times in spite of the
population having a shorter doubling time.

The subject can be treated in more generality. If residence times in different cell
cycle phases are random but not independent, then it is necessary to consider the
following joint probabilities (Macdonald 1978):

ψi(u1, . . . , ui−1, x, y, ui+1, . . . , up) · du1 · · · dui−1 · dx · dy · dui+1 · · · dup (5.25)

that a cell chosen randomly from the population at time t is in phase i, has already
spent times u1, . . . , ui−1 in phases 1, . . . , i − 1, time x in phase i, and is destined to
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spend an additional time y in phase i and times ui+1, . . . , up in phases i + 1, . . . , p.
Although these probabilities are population dependent, the conditional distribution
of y + u2 + · · · + up, given i = 1 and x = 0, is population independent and
is the distribution of the lifelength of a newborn cell. On the contrary, both the
backward lifelength u1 + · · · + ui−1 + x and its forward counterpart y + ui+1 +
· · · + up, as well as their sum, are population dependent. Distributions ψi( · ) can
be computed under variety of assumptions. These include the exponential balanced
growth, corresponding to the asymptotic behavior of a supercritical process, and also
nonstationary cases (varying environment). A review is given by Macdonald (1978).
Relationships of this kind allow construction of correct estimators of quantities more
general than those considered by Jagers and Norrby (1974).

An analysis of estimation of mean cell cycle time, based on sample growth
trajectories can be found in Hoel and Crump (1974).

Expression (5.25), in the balanced exponential growth version, was used by
Cowan and Culpin (1981) to estimate the distribution function of cell residence times
in subphases of the cell cycle. The experimental setup was a combination of in vivo
fraction-labeled mitoses and arrested division (stathmokinesis) techniques. More
specifically, chicken embryo cells were exposed to 5-bromodeoxyuridine (BUdR),
which is incorporated into DNA during the S phase of the cell cycle. The amount of
BUdR present in the cell is related to the number of times the cell underwent DNA
synthesis (i.e., traversed the S phase) during the exposure. Just before the cells were
removed from the embryo for measurement, colcemid or colchicine were injected
to block further divisions. In this way, more cells accumulate in the prophase and
metaphase (subphases of the M phase) in which the chromosomes can be resolved
under the microscope. On the other hand, Macdonald’s expression (5.25) makes it
possible to calculate the expected numbers of cells that went through a given number
of S phases and accumulated in prophase and metaphase. Using this expression, the
model was fitted to observed cell counts, which allowed determining an optimum
set of parameters characterizing the durations of cell cycle phases.

Different types of problems are considered in the papers by Axelrod and his co-
workers. The main theme is estimation of parameters of cell cycle and the modes of
dependence between related individuals, based on careful experiments with cell
colonies, i.e., clonal cell populations. First of this series of papers (Axelrod et
al. 1986) concerns the distributions of cell lifelengths of Friend experimental ery-
throleukemia cells. In addition to estimates of the α- and β-curves (tails of the
distribution of lifelengths and of the distribution of differences between lifelengths
of sib cells, respectively), the paper considers the issue of how dependencies be-
tween related cells are altered when cells are treated by cytotoxic agents (in this
case, the differentiating agent dimethyl sulfoxide, DMSO). In Friend cells, the α-
curves become more elongated (i.e., lifelenghts longer and more dispersed), while
the β-curves are not altered. This is interpreted as consistent with sib–sib lifelengths
correlations being increased in treated cells. In further papers, the main subject is the
heterogeneity between colonies and its influence on estimated parameters such as
correlations between lifetimes of related cells (Kuczek and Axelrod 1986). Kuczek
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and Axelrod (1987) and Axelrod et al. (1997) introduce a divided colony assay to
reduce the influence of heterogeneity on estimations of the influence of cytotoxic
drugs on growth of cell colonies (also, see Axelrod and Kuczek 1989).

5.5.4 Bifurcating Autoregression

A particularly successful method of estimating parameters of cell proliferation is
the bifurcating autoregression developed by Cowan and Staudte (1986). The method
applies to branching populations with correlations between relatives defined in an
autoregressive manner. In a genealogy of cells, if cell death is excluded, progeny of
a cell m with generation time xm can be labeled 2m and 2m + 1 and their generation
times x2m and x2m+1, respectively. The ancestral cell is denoted 1. It is assumed that
x1 ∼ N (μ, σ 2) and that given xm the sib times x2m and x2m+1 satisfy the relationships

x2m − μ = θ (xm − μ) + e2m,

x2m+1 − μ = θ (xm − μ) + e2m+1,

where (e2m, e2m+1) are bivariate normally distributed with common mean zero, com-
mon variance λ2 and correlation coefficient φ. From these assumptions, the moments
of xm can be calculated, including the parent-progeny and sib–sib correlations.
Consequently, a likelihood function of an observed pedigree can be calculated and
numerically maximized to obtain the maximum likelihood estimates of μ, λ2, and
φ. The method was modified to accommodate relaxed assumptions and successfully
employed to diverse data sets (Staudte 1992, Staudte et al. 1997 and references
therein).

5.5.5 Branching Processes and Cancer Therapy

Some models of cancer chemotherapy aim to eradicate cancer stem cells while sav-
ing healthy stem cells. The paper by Sehl et al. (2011) uses an impressive array of
analytical and computational tools to analyze a pair of stochastic processes describ-
ing proliferation and death of healthy stem cells and cancer stem cells exposed to
chemotherapy. The question asked concerns the difference between these two types
of cells in their birth and death rates that is required to eradicate the latter and pre-
serve the former. Mutations, emergence of drug resistance, interactions of cancer and
healthy cells and other complicating factors are disregarded. Because the biological
model is simplified to the extreme, it allows effective mathematical analysis.

The mathematical approach used is quite sophisticated, for example, the distri-
bution of the number of surviving healthy stem cells is considered at the random
stopping time defined by extinction of the cancer stem cells. In addition, nontrivial
applications of extreme value theory allow obtaining asymptotic distributions of the
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times to extinction for cell populations started by multiple ancestors. Conclusions
reached are interesting, even though it seems difficult to relate the simplified model
to a relevant biological situation. It should be noted that if the framework of birth
and death process is replaced by a more general Bellman–Harris branching process,
the authors have to revert to simulations to reach any conclusions.

5.6 Problems

1. Geometric Bellman–Harris process. Suppose that the particle lifetime distribution
is geometric, i.e., Pr{τ = i} = (1−p)pi−1, i ≥ 1 (progeny pgf is a general h(s)).
Prove that {Zi , i = 0, 1, . . . }, where Zi = Z(i), is a Galton–Watson process with
some progeny pgf f (s) (and consequently that {Zi , i = 0, 1, . . . } is Markov). Find
f (s). Hint. Write the equation for pgf of Zi and proceed by induction. Another
proof is possible using the lack of memory of the geometric distribution.

2. The inverse problem. Find the necessary and sufficient condition for a Galton–
Watson process with progeny pgf f (s) to be representable as a geometric
Bellman–Harris process. Hint. Check if h(s) corresponding to a given f (s) is
a pgf.

3. Age distributions. Find the integral equation for the pgf F (s; y, t) of Z(y, t)
(number of particles at time t , with ages ≤ y). Use the property

Z(y, t) =
X∑

k=1

Z(k)(y, t − τ ), if τ ≤ t ,

and reasoning as in the heuristic derivation of Eq. (5.2).
4. Expected age distributions. Prove that if the Malthusian parameter exists, then,

as t → ∞, the normed expected age distribution A(y, t) = E[Z(y,t)]
E[Z(t)] tends to the

limit

A(y) =
∫ y

0 e−αz[1 − G(z)]dz
∫∞

0 e−αz[1 − G(z)]dz
.

Hint. Find the integral equation for μ(y, t) ≡E [Z(y, t)] and use the asymptotics
of Theorem 5.2.

5. The A → B transition model of the cell cycle. Suppose that in a proliferating cell
population, a newborn cell, with probability p, stays dormant until it is prompted
into further growth by a random “hit,” which occurs (independently for each cell)
with probability βτ +o(τ ) in any short time interval of duration τ . After this “hit,”
the cell requires fixed time T to grow and divide. Cells which do not require the
“hit,” start growing at the moment of birth. No cell death occurs. Find the limit
age distribution A(y). If, for a cell population growing long enough, the empirical
age distribution can be found, can it help in establishing the value of p (which is
a biologically important parameter)?
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6. Bellman–Harris process, the lattice case. Consider the age-dependent branching
process {Zn, n = 0, 1, . . . } with progeny pgf h(s) and the lifetime distribution
{gi , i = 1, . . ., k}. Prove that the pgf fn(s) of Zn is equal to f 1

n (s, . . . , s), where
f 1

n (s) is the pgf of the k-type Galton–Watson process Zn (initiated by a single
type 1 particle), with the following progeny pgf’s:

f i(s) = (1 − γi)h(s1) + γisi+1, i = 1, . . . , k − 1,

f k(s) = (1 − γk)h(s1),

where γi = Ḡi+1

Ḡi
. (In other words, the total number of particles of all types in this

k-type Galton–Watson process is equal to the number of particles in the lattice
Bellman–Harris process. What is the interpretation of particle type here?)

7. Perron–Frobenius root. Assume h′(1 −) > 1. Find the determinant equation for
the maximum real eigenvalue ρ of matrix M. Proceed by induction with respect
to k. Check that the process is supercritical (i.e., that ρ > 1). Find the left
eigenvector ν corresponding to ρ.

8. Show that the age distribution of particles in the process Zn (i.e., the vector
(Zn1, . . . , Znk), where Zni is the number of particles with age i at time n), has
pgf f 1

n (s). Based on this and the limit law for the multitype supercritical positive
regular Galton–Watson process 1,0,1, state the limit law for the age distribution
of the lattice Bellman–Harris process.



Chapter 6
Multitype Processes

In the present chapter, we present models involving branching processes with many
types of particles. Multitype models were sporadically employed in previous chap-
ters. Here we offer a systematic treatment of asymptotic properties of the multitype
Galton–Watson process in the supercritical case. However, we start with a motivating
application, involving several multitype approaches to the fluctuation experiment
analysis, which is one of the oldest but still useful tests of mutagenesis. Other
applications follow.

6.1 Application: Mutations and Fluctuation Analysis

The progeny of a cell may exhibit a new trait that differs from their parent, and may
pass on the new trait to their own progeny. Such a change is usually considered
to be due to a single irreversible mutation event. However, a possibility exists that
the observed change may be due to an event that has a finite probability of being
reversible, or may be the result of more than one mutational event.

The rate at which mutations occur in populations of cells has been estimated using
the fluctuation test introduced by Luria and Delbrück in 1943. The mutation rate is
defined as the average number of mutations per cell division. Experimentally, a small
number of cells is used to seed a series of independent cultures, the cells in each
culture are allowed to grow in number, and then the total number of cells in each
culture is determined and the number of mutant cells is determined in each culture.
The number of cell divisions is estimated from the total number of cells in each
culture at the beginning and at the end of the experiment. The mutation rate is then
calculated in one of two ways (viz. from the total number of mutant cells or from the
proportion of cultures with no mutant cells). An alternative method of calculating
mutation rates is to use data observed at two successive generations (Niccum et al.
2012). Zheng (1999, 2005) has reviewed practical issues in estimating mutation rates
resulting from the unique distribution of mutants per culture.

The two methods of calculating the mutation rate in the Luria and Delbrück
fluctuation test do not always agree. This has motivated the investigation of models
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that relax the assumptions of the original Luria and Delbrück fluctuation test—that
changes in inherited traits are due to only one mutation event, and that each mutation
is irreversible. Other possible deviations from the assumptions of the fluctuation test
have been discussed (Foster 2006). One assumption made by Luria and Delbrück
(1943) is that the total number of cells in each culture is the same.A robust estimator of
mutation rates has been developed that takes into account the possibility of unequal
numbers of total cells in different cultures (Wu et al. 2009). This is discussed in
Sects. 6.1.8 and 6.1.9.

We present a series of models of cell growth and mutation. The purpose is to
model the fluctuation experiment as applied to the analysis of data on drug resistance
of cells. The material is based on the paper by Kimmel and Axelrod (1994). The
classical fluctuation analysis is based on a model of cell proliferation and single-
stage irreversible mutation introduced in Luria and Delbrück (1943). We summarize
the hypotheses and predictions of that model and of four other models employing
different hypotheses. These models are modifications of the Luria–Delbrück model,
including random cell interdivision time, cell death, and two-stage mutations with
the first stage being reversible.

Given the parameter values, these models predict the distribution of the number
of nonmutant and mutant cells at time t , in a population started at time 0, by a single
nonmutant cell. In particular, the following observable variables are of interest:

• N (t), the expected total number of nonmutant and mutant cells at time t

• r(t), the expected number of mutant cells at time t

• P0(t), the probability of mutant cells being absent from the population at time t

Conversely, given the experimental values of N (t), r(t), and P0(t), it is possi-
ble to estimate the parameters of the models, in particular, the mutation rates and
probabilities.

6.1.1 Luria–Delbrück Model

The hypotheses are as follows (see Fig. 6.1a and Table 6.1):

1. Two types of cells exist in the population: type 0 nonmutant cells and type 1
mutant cells.

2. The population of cells has interdivision times equal to ln 2.
3. Each cell, at the moment of division, gives birth to two daughter cells. The type

of each of these daughters is the same as that of the mother cell.
4. During its lifetime, independently of any other events, a type 0 cell undergoes an

irreversible transformation into a type 1 cell, with probability a�t + o(�t), in
any brief lifetime interval (t , t + �t). The constant a is called the transition or
mutation rate. This implies that if the time from birth to mutation is denoted by
T , then P[T > t] = max[exp (− at), exp (− a ln 2)], i.e., the mutation may not
occur at all wp exp (− a ln 2) = 2−a .
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Cells: Cells:
Sensitive, type 0
Resistant, type 1

Colonies of Resistant Mutants
a b

Colonies of Resistant Mutants

Selection Selection

Sensitive, type 0
Resistant, type 1
Resistant, type 2

Fig. 6.1 Schematics of transitions admitted in a the one-stage models, and b the two-stage model.
(Source: Kimmel and Axelrod 1994)

Table 6.1 Summary of hypotheses of the models considered

Model Interdivision
time

Probability of cell
death

Number of
stages

Probability of
mutation

Luria–Delbrück ln (2) 0 1 a�t

in (t , t + �t)
(irreversible)

Markov branching 1
(expected)

0 1 a�t

in (t , t + �t)
(irreversible)

Galton–Watson 1 0 1 α

per daughter cell
(irreversible)

Galton–Watson
with cell death

1 δ 1 α

per daughter cell
(irreversible)

Galton–Watson
two-stage

1 0 2 0 → 1 : α01

1 → 0 : α10

(reversible)
1 → 2 : α12

(irreversible)

The analysis of the model, carried out originally in Luria and Delbrück (1943) and
reworked in Lea and Coulson (1949), is based on the assumption that the population as
a whole is large enough to be treated deterministically, while the mutation events are
rare and therefore the mutants have to be counted in a probabilistic manner. Solutions,
which were derived in Lea and Coulson (1949), are listed in the first row of Table 6.2.
We do not provide derivations, but referring the reader to Kimmel andAxelrod (1994).
The original estimate of the mutation rate in Escherichia coli bacterium obtained by
Luria and Delbrück (1943), varied from 0.32 × 10−8 − 2.45 × 10−8 per bacterium
per division. Further discussion of the mutation rates is found in Sect. 6.10.1.
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Table 6.2 Expressions for the expected total count of cells N (t), for the expected count of mutant
cells r(t), and for the probabilities of no mutant cells P0(t), in the models considered

Model N (t) r(t) P0(t)

Luria–Delbrück et atet exp( − aet )

Markov branching process et et (1 − e−at ) a+1
ae(a+1)t +1

Galton–Watson process 2t 2t [1 − (1 − α)t ] (1 − α)2(t+1)−2

Galton–Watson with cell death [2(1 − δ)]t [2(1 − δ)]t [1 − ( 1−α−δ
1−δ

)t ] Eqs. (6.23)–(6.24)

Galton–Watson two-stage 2t 2t − ρt
1

A1
− ρt

2
A2

Eqs. (6.25)–(6.27)

and (6.33)

6.1.2 The Markov Branching Process Model

In this model, the interdivision time is not constant but is random with exponential
distribution. Hypothesis 2 is therefore replaced by the following (c.f. Table 6.1 and
Fig. 6.1a):

2. All cells in the population have exponentially distributed interdivision times with
mean (expected) value equal to 1.

The distributions of the numbers of nonmutant and mutant cells are characterized
by the following pgf’s:

F0(s0, s1; t) = E[Z0(t)s0Z1(t)s1 |Z0(0) = 1, Z1(0) = 0], (6.1)

F1(s0, s1; t) = E[Z0(t)s0Z1(t)s1 |Z0(0) = 0, Z1(0) = 1], (6.2)

where t ≥ 0, s1, s2 ∈ [0, 1]. Z0(t) (respectively, Z1(t)) is the number of nonmutant
(respectively, mutant) cells at time t . Function F0 is the pgf of the population started
by a single nonmutant cell, while function F1 is the pgf of a clone started by a single
mutant cell. We will write Fi(s; t) or Fi(t) instead of Fi(s0, s1; t).

The model is a two-type age-dependent Markov branching process and the
following differential equations are satisfied by the pgf’s F0(t) and F1(t) (c.f.,
Sect. 4.2.1):

d

dt
F0(t) = −(a + 1)F0(t) + (a + 1)

[
1

a + 1
F0(t)2 + a

a + 1
F1(t)

]

, (6.3)

d

dt
F1(t) = −F1(t) + F 2

1 (t), t ≥ 0. (6.4)

The initial conditions are Fi(t) = si , i = 0, 1. The form of Eq. (6.3) and (6.4) can
be understood by comparison with Eq. (4.10) and (4.11). Under the new Hypothesis
2, after a time, which is distributed exponentially with parameter a + 1, either two
type 0 cells are produced [wp. 1/(a + 1)] or a single type 1 cell [wp a/(a + 1)] is
produced. This latter cell is a “type 1 continuation” of the type 0 cell.
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We are interested in evaluating N (t), r(t), and P0(t). They can be expressed as,

N (t) = E[Z0(t) + Z1(t)|Z0(0) = 1, Z1(0) = 0] =
(

∂

∂s0
+ ∂

∂s1

)

F0(s; t)|s0=s1=1,

(6.5)

r(t) = E[Z1(t)|Z0(0) = 1, Z1(0) = 0] = ∂

∂s1
F0(s; t)|s0=s1=1, (6.6)

P0(t) = F0(1, 0; t). (6.7)

Solving resulting equations yield results displayed in Table 6.2.

6.1.3 The Galton–Watson Process Model

In this model, cells mutate immediately following division. Hypotheses 3 and 4 are
therefore replaced by the following (c.f. Table 6.1 and Fig. 6.1a):

3. Each cell, at the moment of division, gives birth to two daughter cells. The type
of each of the daughters may or may not be the same as that of the mother cell.

4. Following division, a type 0 daughter cell undergoes irreversible transformation
into a type 1 cell with probability α. The constant α is now called the transition or
mutation probability.

The distributions of nonmutant and mutant cells can be characterized by the pgf’s
F0(s0, s1; t) and F1(s0, s1; t) as defined in Eqs. (6.1) and (6.2), except that the time
variable t now assumes only nonnegative integer values, equal to the multiples of
the interdivision time.

The pgf’s F0(t) and F1(t) satisfy a system of recurrence equations, stemming
from the following vector generalization of the backward iteration (3.2):

F (s, t) = h[F (s, t − 1)],

where

F = (F0, F1), h = (h0, h1),

h0(s0, s1) = [(1 − α)s0 + αs1]2, h1(s0, s1) = s2
1 .

Substituting h0 and h1 as given above, we obtain

F0(s; t) = [(1 − α)F0(s; t − 1) + αF1(s; t − 1)]2, (6.8)
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F1(s; t) = [F1(s; t − 1)]2, (6.9)

where s = (s0, s1), t = 1, 2, . . . , with initial conditions Fi(s; 0) = si , i = 0, 1.
Recurrences (6.8) and (6.9) cannot be solved explicitly but differentiation side-by-
side of (6.8) and (6.9) with respect to s0 and setting s0 = s1 = 1 yields

E[Z0(t)|Zi(0) = δ0i] =2{(1 − α)E[Z0(t − 1)|Zi(0) = δ0i]

+ αE[Z0(t − 1)|Zi(0) = δ1i]}, (6.10)

E[Z0(t)|Zi(0) = δ1i] = 2E[Z0(t − 1)|Zi(0) = δ1i], t = 1, 2, . . . , (6.11)

with initial conditions E[Z0(0)|Zi(0) = δ0i] = 1, E[Z0(0)|Zi(0) = δ1i] = 0. This
yields E[Z0(t)|Zi(0) = δ1i] = 0, t = 0, 1, 2, . . . and

E[Z0(t)|Zi(0) = δ0i] = [2(1 − α)]t , t = 0, 1, 2, . . . , (6.12)

as expected. Since there is no cell death assumed,

N (t) = E[Z0(t) + Z1(t)|Zi(0) = δ0i] = 2t , t = 0, 1, 2, . . . . (6.13)

Equations (6.12) and (6.13) yield

r(t) = E[Z1(t)|Zi(0) = δ0i] = 2t − [2(1 − α)]t , t = 0, 1, 2, . . . , (6.14)

as displayed in Table 6.2.
To obtain P0(t) we use the definition (6.7) and also denote P1(t) = F1(1, 0; t).

Substitution of s0 = 1, s1 = 0 in (6.8) and (6.9) yields,

P0(t) = [(1 − α)P0(t − 1) + αP1(t − 1)]2, (6.15)

P1(t) = [P1(t − 1)]2, t = 1, 2, . . . , (6.16)

with initial conditions P0(0) = 1 and P1(0) = 0. Therefore,

P0(t) = (1 − α)2t+1−2, t = 0, 1, 2, . . . , (6.17)

as displayed in Table 6.2.

6.1.4 The Galton–Watson Process Model with Cell Death

In this model, each of the daughter cells (mutant or nonmutant) may also die with
some probability. Hypothesis 4 is therefore replaced by the following (c.f. Table 6.1):

4. Following division, a type 0 daughter cell either undergoes irreversible transfor-
mation into a type 1 cell with probability α, or dies with probability δ, or stays type 0
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with probability 1 − α − δ. The type 1 daughter cell may either die with probability
δ or stay alive with probability 1 − δ.

The presence of cell death leads to the following modification of Eqs. (6.8) and
(6.9):

F0(s; t) = [(1 − α − δ)F0(s; t − 1) + αF1(s; t − 1) + δ]2, (6.18)

F1(s; t) = [(1 − δ)F1(s; t − 1) + δ]2, t = 1, 2, . . . , (6.19)

with initial conditions Fi(s; 0) = si , i = 0, 1. We obtain,

E[Z0(t)|Zi(0) = δ0i] = [2(1 − α − δ)]t , t = 0, 1, 2, . . . , (6.20)

and

N (t) = E[Z0(t) + Z1(t)|Zi(0) = δ0i] = [2(1 − δ)]t , t = 0, 1, 2, . . . , (6.21)

which yields

r(t) = E[Z1(t)|Zi(0) = δ0i] = [2(1 − δ)]t
[

1 −
(

1 − α − δ

1 − δ

)t]

, t = 0, 1, 2, . . . ,

(6.22)

as displayed in Table 3.2. Substitution of s0 = 1 and s1 = 0 in (6.18) and (6.19)
yields,

P0(t) = [(1 − α − δ)P0(t − 1) + αP1(t − 1) + δ]2, (6.23)

P1(t) = [(1 − δ)P1(t − 1) + δ]2, t = 1, 2, . . . , (6.24)

with initial conditions P0(0) = 1, P1(0) = 0, where P0(t) is the probability of no
mutant cells at time t in the population derived from a nonmutant cell, while P1(t) is
the extinction probability (by time t) of a clone started by a mutant. This recurrence
has to be solved numerically.

6.1.5 Two-Stage Galton–Watson Process Model

In this model, two stages of mutant cells are present, type 1 and type 2. Mutation
from type 0 to type 1 is reversible, while mutation from type 1 to type 2 is irreversible.
Hypothesis 4 is therefore replaced by the following (c.f. Table 6.1 and Fig. 6.1b):

4. Following division,
- A type 0 daughter cell undergoes transformation into a type 1 cell, with probability
α01.
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- A type 1 daughter cell undergoes a reverse transformation into a type 0 cell, with
probability α10.
- A type 1 daughter cell undergoes irreversible transformation into a type 2 cell, with
probability α12.

The two-stage mutation model is a three-type Galton–Watson process. Its distri-
butions are described by pgf’s Fi(s0, s1, s2; t), i = 0, 1, 2, where F0 is the joint pgf of
the numbers of cells of types 0, 1, and 2 in the population started by a single nonmu-
tant cell, F1 is the joint pgf in the population started by a single stage-1 mutant cell,
and F2 is the pgf of the stage-2 mutant clone started by a single stage-2 irreversible
mutant. The hypotheses of the model lead to the following recurrent equations for
the pgf’s:

F0(s; t) = [(1 − α01)F0(s; t − 1) + α01F1(s; t − 1)]2, (6.25)

F1(s; t) = [α10F0(s; t − 1) + (1 − α10 − α12)F1(s; t − 1) + α12F2(s; t − 1)]2,
(6.26)

F2(s; t) = [F2(s; t − 1)]2, t = 1, 2, . . . , (6.27)

with initial conditions Fi(s; 0) = si , i = 0, 1, 2. Let us denote M(t) =
(Mij (t))i,j=0,1,2, the matrix of expected cell counts

Mij = E[Zj (t)|Zk(0) = δik , k = 0, 1, 2] = ∂Fi(1; t)

∂sj

. (6.28)

Differentiating system (6.25)–(6.27) we obtain

M(t) = μM(t − 1), t = 1, 2, . . . , (6.29)

where μ is the expected progeny matrix,

μ = 2

⎛

⎜
⎜
⎝

1 − α01 α01 0

α10 1 − α10 − α12 α12

0 0 1

⎞

⎟
⎟
⎠ . (6.30)

The initial condition is M(0) = I (the identity matrix). We obtain

M(t) = μt , t = 0, 1, 2, . . . . (6.31)

Involved but standard calculations consisting of finding the eigenvalues and eigen-
vectors of matrix μ lead to the following explicit expression for r(t):

r(t) = M01(t) + M02(t) = 2t − ρt
1

A1
− ρt

2

A2
, t = 0, 1, 2, . . . . (6.32)
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where

ρi = (2 − α01 − α10 − α12) + (− 1)i
√

(α10 + α12 − α01)2 + 4α01α10,

and

Ai = 1 + [2(1 − α01) − ρi]2

4α01α10
, i = 1, 2.

Recurrent equations for

P0(t) = F0(1, 0, 0; t), (6.33)

are obtained from system (6.25)–(6.27) using substitution s0 = 1, s1 = s2 = 0.

6.1.6 The Single-Stage Models Versus Data

The question considered in this section is whether the single-stage models can si-
multaneously reproduce the r and P0 values obtained from experimental data. Each
single-stage model yields, for a given value of mutation rate a or mutation probability
α, and for a given sample size N (t), a uniquely determined pair of values r(t) and
P0(t). We will call the r − P0 plot the set of all such points in the r − P0 plane. The
equation of the r −P0 plot can be found by eliminating a (or α) from the expressions
for r(t) and P0(t) in Table 6.2. For example, the r − P0 plot of the Luria–Delbrück
model has the following equation:

P0 = exp [− r/ln (N )].

By graphing the experimentally obtained estimates of r and P0 together with the
corresponding r−P0 plot for an appropriate N , we can verify whether the model can
fit the data.

The first series of comparisons includes the original data on bacterial resistance to
phage from Luria and Delbrück (1943), almost perfectly matched by the single-stage
models. We present in Fig. 6.2, the r−P0 plot and the data point of experiment 23
of Luria and Delbrück (1943). Notice that the data point interpolates between the
models with constant lifetime and exponentially distributed lifetime, two extreme
alternatives of lifetime distributions. Experiment 22 provides a similar match. For
these classical data, the single-stage models seem perfectly satisfactory.

As a contrast, we analyze the gene amplification data from Tlsty et al. (1989) and
Murnane and Yezzi (1988; details in Kimmel and Axelrod 1994).

Figures 6.3 and 6.4 demonstrate that the r and P0 values obtained in this way are
not matched by the r −P0 plots of the Luria–Delbrück, Galton–Watson, and Markov
branching process models (from left to right). The overall tendency of these three
models is to overestimate either r or P0. Taking into account cell death, makes the
match even worse (Fig. 6.5).
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Fig. 6.2 Bacterial phage resistance data from Experiment 23 of (Luria and Delbrück 1943), and
the r − P0 plots (N = 2.4 × 108) of the Galton–Watson, Luria–Delbrück and Markov branching
process models. (Source: Kimmel and Axelrod 1994)
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Fig. 6.3 The gene amplification data for WB20 and GN5 cells from (Tlsty et al. 1989), and the
r −P0 plots (N = 2×105) of the Galton–Watson, Luria–Delbrück, and Markov branching process
models (from left to right). (Source: Kimmel and Axelrod 1994)
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Fig. 6.4 The gene amplification data for LM205 cells from (Murnane and Yezzi 1988), and the
r−P0 plots (N = 1.1×107) of the Galton–Watson, Luria–Delbrück and Markov branching process
models. The three experimental points were obtained using three different hypothetical values of
plating efficiency. (Source: Kimmel and Axelrod 1994)
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Fig. 6.5 The effect of cell death on the r − P0 plots of the Galton–Watson model with cell death
(N = 2 × 105). Delta is the probability of cell death. (Source: Kimmel and Axelrod 1994)
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Fig. 6.6 The drug resistance data for M − Mc mouse cells from experiment 1 of (Morrow 1970),
and the r − P0 plots (N = 105) of the Galton–Watson, Luria–Delbrück, and Markov branching
process models (from left to right). (Source: Kimmel and Axelrod 1994)

Figures 6.6 and 6.7 show data on drug resistance due to the loss of hypoxanthine-
guanine phosphoribosyltransferase (HGPRT) enzyme activity with the r − P0 plots.
Figure 6.6 includes the data of Morrow (1970) and Fig. 6.7 shows the data of
Varshaver et al. (1983). Figures 6.6 and 6.7 demonstrate that the r and P0 values
obtained in this way, are not matched by the r − P0 plots of the Luria–Delbrück,
Galton–Watson, and Markov branching process models (from left to right).

To visualize the extent of separation of data from the single-stage models, we
carried out confidence interval (CI) analysis of data. The results are depicted in
Figs. 6.3, 6.4, 6.6, and 6.7. The vertical error bars are the exact 0.95 CIs for P0,
based on binomial distribution, and corrected for plating efficiency. It is difficult
to carry out exact analysis for r because its distribution is complicated. Therefore,
we only plotted horizontal bars, the right ends of which correspond to the upper
0.95 quantile of the sample. This analysis shows systematic departures from the
single-stage model.

6.1.7 The Two-Stage Model Versus Data

Kimmel and Axelrod (1994) demonstrated that the two-stage model better ex-
plains the experimental data concerning drug resistance. The typical estimates of
the first-stage forward mutation rate are α01 ≈ 10−6. The corresponding reversal
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Fig. 6.7 The drug resistance data for Chinese hamster 237 − 4 cells from replicate cultures 1, 2,
and 3, HPRT− (Varshaver et al. 1983), and the r − P0 plots (N = 105) of the Galton–Watson,
Luria-Delbrück and Markov branching process models (from left to right). (Source: Kimmel and
Axelrod 1994)

rates are α10 ≈ 0.2 − 0.95. Finally, the second-step forward mutation rates are
α12 ≈ 0.01 − 0.15. Detailed explanations and a discussion can be found in the orig-
inal paper. However, let us note that the use of a two-stage model is justified only
after the possibilities of fitting the data using the simpler single-stage models were
exhausted.

Together, these results suggest that some cases of drug resistance do not result
from a single irreversible mutation, but may result from two mutations, the first of
which is reversible.

6.1.8 Modified Median Estimator of Mutation Rates

The widely used estimators of mutation rates are: the P0 estimator (Luria and
Delbrück 1943), the median estimator (Lea and Coulson 1949), the Lea–Coulson
estimator (1949), and the maximum likelihood estimator (MLE; Jones et al. 1993;
Zheng 2002) as well as Bayesian estimators (Asteris and Sarkar 2002), as reviewed
by Foster (2006). However, most of these estimators, such as P0, mean and median,
do not (and cannot) consider variations in population sizes of the parallel cultures, but
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assume the same population size for each parallel culture. This assumption improves
computational accessibility, but may cause bias in estimation.

A modified median estimator that is robust to unequal population sizes is a gener-
alization of the median estimator of Lea and Coulson (1949). In addition to allowing
unequal population sizes, Nt , of the parallel cultures, it helps to reduce the estimation
variability. Simulation results show a good accuracy and robustness of the modified
median estimator compared with the median estimator and the MLE. Details are
provided in Wu et al. (2009), where its properties are discussed and compared to
two other estimators: the median estimator and the MLE. The P0 estimator is not
discussed due to its known drawbacks (Zheng 2002). Also, the Luria and Delbrück
distribution (LDD) is not discussed since the mean estimator (method of moments)
tends to be biased because of its long-tail property.

It is instructive to compare the median estimator, MLE, and modified median
estimator.

Median Estimator

A general way to find the median estimator is to equate the median of the distribution
to the empirical median number of mutants based on all cultures in the batch,

μ̂ : P (K ≤ k0|Nt , μ̂) = 1

2
, (6.34)

where k0 is median number of mutants based on all cultures of the batch.
Numerical calculation of the median estimator relies on the cumulative dis-

tribution function (cdf) of the LDD, which involves iterative computation of the
probabilities. Therefore, a large value of k0 (usually for k0 > 5000) will lead to
computational problems.

The Lea–Coulson estimator is a good approximation in the case of large k0 (Lea
and Coulson 1949). It satisfies the empirical relation, Eq. (37) of Lea and Coulson
(1949):

k0

m̂
− log (m̂) = 1.24, (6.35)

where m is the expected number of mutations.

Maximum Likelihood Estimator

The first explicit and practical algorithm for computing the MLE of m was published
by Jones et al. (1993). To evaluate the reliability of the MLE, Stewart then provided
a systematic method for constructing CIs (Stewart 1994). Inspired by their work,
Zheng (1992) perfected the MLE derivation and proposed a computationally feasible
method for calculation.
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The MLE of m is given by:

m̂ = arg maxmL(m|k1, . . . , kn, Nt1, . . . , Ntn), (6.36)

where L(m|k1, . . . , kn, Nt1, . . . , Ntn) =∑n
i=1 log P (ki |m, φ).

From the asymptotic distribution of MLE, Zheng further developed a Wald-type
100(1 − α)% interval estimation of mutation rate as

m̂

Nt

± zα/2

Nt

√
nI (m̂)

, (6.37)

where I (m) is the Fisher information defined by:

I (m) = EK

[
∂ log P (K|m, φ)

∂m

]2

. (6.38)

Similar to the median estimator, the MLE also has computational problems when
k0 is large.

Modified Median Estimator

In general, the previously discussed MLE is elegant and easy to compute, but its
CI depends on the asymptotic distribution, which is usually not realizable under
experimental conditions. Therefore, it has a disadvantage when the sample size
(number of parallel cultures) is not large enough. Furthermore, the MLE uses all the
information in the data to find the mode of the likelihood function, and it may not be
robust with respect to outliers.

In contrast to the MLE, the median estimator is robust by its nature. However, it
only uses partial information carried by the data, i.e., the number of mutants in the
median culture of the batch, and discards the information contained in other cultures.
Moreover, under experimental conditions, there often exists a serious spread of Nt

in the batch of parallel cultures. The number of mutants in the median culture does
not necessarily result in median estimate of mutation rate in such circumstances.
Wu et al. (2009) developed a generalized version of the median estimator, called the
modified median estimator. It is defined in two steps: first, for every culture, calculate
the median estimator μ̂i , and second, calculate the median of these estimators in all
cultures,

μ̂ = median(μ̂i), (6.39)

where μ̂i : P (Ki ≤ ki |Nti , μ̂i) = 1
2 . Detailed derivations of the modified median

estimator are given in Appendix to Wu et al. (2009). The estimator was extensively
tested by simulation.
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Fig. 6.8 a Box plot of mutation rate estimates in 15 replicate experiments in 2 days, ordered by the
point estimates. Within each box, the middle line represents the modified median estimator and the
asterisk represents the median estimator. b Box plot of mutation rate estimates in simulated data,
ordered by the point estimates. Each box represents summary statistics of mutation rate estimates
in the 15 parallel cultures of each strain. The box has lines at the lower quartile, median, and upper
quartile of the data. The whiskers are lines extending from each end of the box to show the extent of
the rest of the data. The whiskers indicate the minimum and maximum data values, unless outliers
(marked using +) are present, in which case, the whiskers extend to a maximum of 1.5 times the
interquartile range. (Source: Wu et al. 2009)
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6.1.9 Modified Median Estimator Versus Data

The modified median estimator was chosen to analyze experimental data because of
its robustness and computational accessibility (compared to the maximum likelihood
method) and favorable coverage and accuracy (compared to the method of median).

Variability of Estimates of Mutation Rates in Yeast

Mutation events in the yeast Saccharomyces cerevisiae have been reported as con-
version from growth inhibition in the presence of the drug canavanine to growth
resistance. Figure 6.8a shows the distribution of mutation estimates (using the method
of median for each k, Nt of a culture) coming from 15 parallel cultures assayed in
one experiment (Wu et al. 2009). The middle line in the box indicates the mutation
rate derived by the modified median estimator, whereas the asterisk indicates the
mutation rate derived using the standard median estimator.

Mutation rates estimated from independent replicas of the same experiments
would be expected to show limited variability. However, Wu et al. (2008) reported
that mutation rates showed variability from experiment to experiment that exceeded
expectations. This can be seen by comparison of the experimentally observed data in
Fig. 6.8a with the simulated data in Fig. 6.8b, which use the same population sizes
and a common mutation rate (combined over all of the independent experiments).

CIs are also helpful in judging the variability of the estimates. CIs of different
experiments that do not overlap indicate large variability and poor reproducibil-
ity of mutation rate estimates. Comparison of experimental data of Wu et al. 2009,
Fig. 6.9a, and simulated data, Fig. 6.9b, indicates that the mutation rates between dif-
ferent independent cultures based on the Luria and Delbrück analysis of experimental
data have larger variability than those based on the simulated data. This suggests that
the experimental conditions deviate from the Luria and Delbrück assumptions.

Dependence of Estimation of Mutation Rates on Yeast Population Size

One of the assumptions of the Luria and Delbrück model is that mutation rate es-
timates do not depend on final population size, as shown in the simulated data of
Fig. 6.10b. However, Wu et al. (2009) reported that mutation rates estimated from
the Luria and Delbrück model were clearly dependent on the final population size,
Fig. 6.10a. Under the experimental conditions of these experiments the estimates
of mutation rates by the Luria and Delbrück model were inversely dependent on
population size ranging from 106 to 2 × 107 cells per culture.
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Fig. 6.9 a Confidence intervals (CI) of mutation rate estimation in 15 replicate experiments in 2
days, ordered by the point estimates. b CIs of mutation rate estimates in simulated data, ordered by
the point estimates. (Source: Wu et al. 2009)

The differences in the mutation rates estimated by the modified and standard
median estimators reflect differences of the final population sizes of the parallel
cultures. The modified median estimator reduces the component of variability of
estimates introduced by unequal final population sizes. In addition, as demonstrated
on simulated data (see Wu et al. 2009 for details), the modified median estimator is
robust with respect to outliers in the data and departures from the Luria and Delbrück
distribution.
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Fig. 6.10 Scatter plot of mutation rate estimates versus population sizes. a yeast data, b simulated
data using constant mutation rate assumption. (Source: Wu et al. 2009)

Independence of Estimated Mutation Rate on Bacterial Population Size

The Luria and Delbrück model was originally used to estimate mutation rates in
bacterial cultures. Since the Luria and Delbrück method of analysis of yeast cultures
resulted in estimates of mutation rate that depended on population size (see above),
the possible effect of population size on the estimation of mutation rates of bacterial
cultures needs to be reconsidered. Figure 6.11a shows the estimated mutation rate
using the modified median estimator, as a function of bacterial population size (Hast-
ings et al. 2000). There is no dependence on population size. Figure 6.11b shows
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Fig. 6.11 Scatter plot of mutation rate estimates versus population sizes. a bacterial data,
b simulated data using constant mutation rate assumption. (Source: Wu et al. 2009)

the simulated data assuming independence of estimated mutation rate on population
size. The similarity indicates that the Luria and Delbrück model describes well the
mutations in the bacterial data.

Estimates of mutation rates in yeast cultures show a dependence on final pop-
ulation size, but estimations of mutation rates in bacterial cultures do not show a
dependence on final population size. This difference may be due to the 103-fold dif-
ference in the range of final population sizes in the two cultures. Or, it may be due to
the difference mechanism of mutation to drug resistance in the two cultures, single
base change in bacteria, and chromosome loss or mitotic recombination in yeast.

6.1.10 Recent Developments in Theory and Application
of Fluctuation Analysis

We will focus discussion on recent works, which attempt to explore applicability of
fluctuation analysis (FA) under modified mathematical assumptions, suitable for new
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experimental approaches. Somewhat idiosyncratically, we will discuss mathematical
models by Angerer (2001), estimation approaches by Zheng (1999, 2002, 2005) and
applications to genomic mutation rates in bacteria by Foster (2006).

Angerer (2001) developed a theory of FA which relaxed some of the Luria–
Delbrück hypotheses regarding proliferation and mutation models. To estimate the
mutation rate, one requires a mathematical model of the Luria–Delbrück distribu-
tion (LLD) of the number of mutants that a culture contains just before a sample is
removed to determine the number of mutant cells and the total number of cells in the
culture. Angerer presents such a model assuming a Bellman–Harris process of cell
proliferation, and shows that under natural assumptions concerning the lifetime dis-
tributions and the offspring distributions of mutant and nonmutant cells, the suitably
normed and centered number of mutants contained in a large culture of proliferating
cells converges to a stable random variable with index 1. This result is obtained under
the assumption that the mutation under consideration is neutral in the sense that on
average and in the long run, mutant cells and nonmutant cells produce offspring at the
same rate. This work addresses one aspect of the FA, which has been causing unease
among biologists: the reliance on assumptions of either exponentially distributed or
constant lifetimes of cells. In the Bellman–Harris branching process, these distribu-
tions can be essentially arbitrary, but explicit solutions are not expected. Therefore,
Angerer develops asymptotic approximations.

Another essential problem has been tackled by Zheng (2005). When inferring the
mutation rate from an experiment, it is frequently assumed that the number of mutants
in each test tube follows a common distribution. This assumption conceptually re-
stricts the scope and applicability of fluctuation assay. This assumption is relaxed by
Zheng by proposing a Bayesian two-level model, under which an experiment-wide
average mutation rate can be defined. The new model suggests a gamma mixture of
the Luria–Delbrück distributions. The mixture model also offers a practical Markov
chain Monte Carlo method for estimating mutation rates. The work has been mo-
tivated by a concern of mutation researchers about assumptions underpinning the
fluctuation assay. The problem can be explained using the example of a simplified
bacterial fluctuation experiment. Suppose there are n test tubes that contain a liquid
culture, with n usually ranging from 10 to 100. Each tube is seeded with a small num-
ber (denoted N0) of wild-type cells sensitive to the selective agent. At the end of the
incubation period, the total number of sensitive wild-type cells per tube is estimated
by diluting the culture and determining the number of single-cell-derived colonies
that form on solid medium without the selective agent. The number of selective-
agent-resistant mutant cells is estimated by diluting the culture and determining the
number of single-cell-derived colonies that form on solid medium with the selective
agent. In the classical model (Lea and Coulson 1949), growth of nonmutant cells is
assumed to be deterministic and identical in all tubes. However, in the laboratory the
final number of cells NT (i) can vary considerably across tubes in the same experi-
ment, which violates a basic assumption underlying the current statistical procedure
for estimating mutation rates from fluctuation assay data. To address this problem,
Wu et al. (2009), discussed in Sect. 6.1.8, offered a robust estimator based on the
median number of mutants of the n cultures. Their method requires the measurement
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of individual NT (i) for all cultures. This requirement may present a problem because
in practice biologists often sample only a small number (e.g., three) of cultures to
obtain an average of NT .

To offer a practical alternative, Zheng (2005) assumes that tubes in an experiment
inherently have slightly different values of cell growth rate m, which is reflected by a
large variation in NT . As one cannot accurately estimate the actual m for each, Zheng
proposes averaging the values of m via a two-level Bayesian model. Specifically, he
assumes that the ith tube in the experiment has mi as its value of the parameter m.
These mi are considered as drawn from a common parental distribution.

Foster’s group (Lee et al. 2012) addressed the rate and molecular spectrum of
spontaneous mutations in the bacterium E. coli as determined by whole-genome
sequencing. They analyzed spontaneous mutations accumulated for more than thou-
sands of generations by wild-type E. coli and a derivative defective in mismatch repair
(MMR) of DNA, the primary pathway for correcting replication errors. Among their
conclusions are (i) the mutation rate of a wild-type E. coli strain is ∼ 1 × 10−3

per genome per generation; (ii) mutations in the wild-type strain have the expected
mutational bias for G : C > A : T mutations, but the bias changes to A : T > G : C

mutations in the absence of MMR; and (iii) although the rate of small (≤4 nucleotides)
insertions and deletions is high at repeat sequences, these events occur at only one
tenth the genomic rate of base-pair substitutions. Bacteria isolated from nature often
lack MMR capacity, suggesting that modulation of MMR can be adaptive, this latter
being an important finding.

The Foster group has been pioneering techniques related to fluctuation analysis
in order to better understand the contribution of mutation to evolution. They have
developed methods to improve the accuracy of determining mutation rates and to
characterize the molecular spectrum of mutations. In addition, their focus has in-
cluded the question as to whether, and how, intrinsic and extrinsic factors influence
mutational processes. Their present approach involves the mutation-accumulation
(MA) strategy designed to allow mutations to occur in a neutral manner, devoid of
selective pressure. The general strategy is to establish a number of clonal populations
from a founder individual and then to take each population through repeated single-
individual bottlenecks for thousands of generations. Because it can be assumed that
the approximate effective population is one, genetic drift prevents selection from
eliminating all but the most deleterious mutations, which typically are less than 1 %
of mutations. The experiments in Lee et al. (2012) were designed to yield a highly
accurate estimate of the spontaneous mutation rate of E. coli. The remarkably low
rates at which mutations occur are interpreted as resulting from both the high intrinsic
accuracy of DNA replication and various enzymatic activities that survey and repair
DNA. In addition, for comparison they provide ( Table 2 in Lee et al. 2012) mutation
rates for the wild-type strain estimated using classical fluctuation tests, which are
6–9 six to nine times lower than those resulting from MA. The explanation provided
involves phenotypic delay following mutation events in FA. However, a mathemati-
cal theory of MA strategy has not been developed, so the biases of that method are
not known.
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Niccum et al. (2012) present a method of estimation of mutation rates in grow-
ing cell colonies which is not fluctuation analytic in the strict sense of the term.
However, it is based on a branching process model. The authors present a rigorous
mathematical solution to the mutation rate problem using an unbiased and consistent
estimator. Using this estimator they demonstrated, based on the properties of the
Galton–Watson process, that mutation rates can be calculated by determining mu-
tant accumulation, that is, from the number of mutants measured in two successive
generations. Consistency of the estimator is verified by simulations. These show a
rapid convergence to the targeted mutation rate which is reached between the 25th
and 30th generations.

6.2 The Positive Regular Case of the Multitype
Galton–Watson Process

We study in this section the variant of the multitype Galton–Watson process, the
behavior of which is a direct extension of the single-type case. We proceed as in
Chap. 2 of Harris (1963). In the previous section, we used some of these results
based on intuitive generalizations. An authoritative and advanced source on multitype
classical processes is provided in the book by Mode (1971), which can be used as a
reference for most of this chapter.

We follow evolution of a population composed of particles of k types. An ancestral
particle of type i lives for a unit time interval and in the moment of death produces
a random number of progeny particles of generally all k types. The numbers of its
progeny of all types constitute a random vector with nonnegative integer entries,
characterized by pgf f i(s1, . . . , sk). A progeny of type j starts, independently of all
other progeny, a subprocess with itself as the ancestor, by producing at the moment of
death, a random vector of progeny of all types, characterized by pgf f j (s1, . . . , sk).
The distribution of this subprocess depends only on the type of the ancestral particle.

The counts of particles of all types existing at time n in the process started by an
ancestor of a fixed type constitute a random vector denoted Zn = (Z1

n, . . . , Zk
n). The

distribution of this vector depends on the type of the ancestral particle of the process.
Below, we provide a definition and a theorem stating that in the multitype process,
the pgf’s of Zn are functional iterates of the progeny pgf’s, as it was the case for the
single-type Galton–Watson process.

6.2.1 Basics

The following definition uses a forward approach to the process by relating the
numbers of particles in generation n + 1 to those in the preceding generation n.
In this way, it underscores the Markov character of the multitype Galton–Watson
process.
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Definition 6.1 Let T denote the set of all k-dimensional vectors whose components
are nonnegative integers. Let ei , 1 ≤ i ≤ k, denote the vector whose ith component
is 1 and whose other components are 0.

The multitype (or vector) Galton–Watson process is a temporally homogeneous
vector-valued Markov process Z0, Z1, Z2, . . . , whose states are vectors in T . We
shall always assume that Z0 is nonrandom. We interpret Zi

n the ith component of Zn,
as the number of objects of type i in the nth generation.

The transition law for the process is as follows. If Z0 = ei , then Z1 will have the
generating function

f i(s1, . . . , sk) =
∞∑

r1,... ,rk

pi(r1, . . . , rk)sr1
1 , . . . , srk

k , |s1|, . . . , |sk| ≤ 1, (6.40)

where pi(r1, . . . , rk) is the probability that an object of type i has r1 children of type
1, . . . , rk of type k. In general, if Zn = (r1, . . . , rk) ∈ T , then Zn+1 is the sum of
r1 + · · · + rk independent random vectors, r1 having the generating function f 1,
r2 having the generating function f 2, . . . , rk having the generating function f k . If
Zn = 0, then Zn+1 = 0.

The generating function of Zn, when Z0 = ei , will be denoted by f i
n(s1, . . . , sk) =

f i
n(s) i = 1, . . . , k n = 0, 1, . . . . Then f i

1 is the function f i of Eq. (6.40). The vector
(f 1

n (s), . . . , f k
n (s)) will be frequently denoted fn(s).

Directly from this definition, we can deduce the following theorem: We omit the
details as they are an extension of those in Sect. 3.1.2. They can be obtained by a
direct application of Theorem A.1, part 6.

Theorem 6.1 The generating functions f i
n are functional iterates, defined by the

relations

f i
n+1(s) = f i[f 1

n (s), . . . , f k
n (s)], n = 0, 1, . . . ;

f 0
n (s) = si , i = 1, 2, . . . , k. (6.41)

More generally, we have, in vector form

fn+N (s) = fn[fN (s)], n, N = 0, 1, 2, . . . . (6.42)

We define M = (mij ) to be the matrix of expected numbers of progeny of all

types of parent particles of all types. Specifically, mij = E(Zj

1 |Z0 = ei) = ∂f i (1,... ,1)
∂sj

,
i, j = 1, . . . , k is the expected number of progeny of type j of a particle of type i.
It is assumed that all the first moments mij are finite and not all equal to 0. By using
chain rule in (6.41), we obtain E(Zn+1|Zn) = ZnM. More generally,

E(Zn+N |ZN ) = ZNMn. (6.43)

Analogous expressions for variances are more complicated (see Harris 1963;
Mode 1971).
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6.2.2 Positivity Properties

The following are the essentials of the Perron–Frobenius theory of positive matrices:
This theory demonstrates that iterates of positively regular nonnegative matrices can
be approximated using the powers of the dominating eigenvalue of the matrix, which
is shown to be positive. As a consequence, the asymptotic properties of the multitype
Galton–Watson process in the positive regular case can be expressed using powers
of this eigenvelue.

We shall call a vector or a matrix positive, nonnegative, or 0 if all its components
have the following properties. If u and v are vectors or matrices, then u > v (u ≥ v)
means that u−v is positive (nonnegative). Absolute value signs enclosing a vector or
a matrix denote the sum of the absolute values of the elements, e.g., |Zn| =∑i |Zi

n|.
Theorem 6.2 Let M be a nonnegative matrix of order k, which is irreducible,
i.e., such that MN is positive for some positive integer N . Then M has a positive
eigenvalue ρ that is simple and greater in absolute value than any other eigenvalue;
ρ corresponds to positive right and left eigenvectors μ = (μi) and ν = (νi), which
are the only nonnegative eigenvectors. Moreover, we have

Mn = ρnM1 + Mn
2, n = 1, 2, . . . , (6.44)

where M1 = (μiνj ), with the normalization
∑

i μ
iνi = 1. Hence M1M1 = M1.

Furthermore,

1. M1M2 = M2M1 = 0.
2. |Mn

2 | = O(αn) for some α ∈ (0, ρ).
3. If j is a positive integer then ρj corresponds to Mj in the same manner as ρ

corresponds to M.

A multitype Galton–Watson process is called positively regular or irreducible if Mn

is positive for some positive integer N .

6.2.3 Asymptotic Behavior in the Supercritical Case

The following result is a direct extension of the analogous result for the single-type
process (Theorems 3.4 and 3.5):

Theorem 6.3 Suppose the process is positively regular with ρ > 1, and all the
second moments of progeny distributions are finite. Then the random vectors Zn/ρ

n

converge with probability 1 to a random vector W. Vector W is nonzero except for
trivial cases of all variances Vi being zero or Z0 = 0. If W is nonzero, then with
probability 1 its direction coincides with that of ν, the left eigenvector of M.

One of the consequences of the theorem is that the limit law in the positively
regular case is strictly one-dimensional. While the total number of particles is subject
to wide dispersion, their proportions become constant with probability 1.
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6.2.4 Probability of Extinction

It is understandable that the probability of extinction of a multitype process depends
on the type of its ancestral particle. Otherwise, the rule is analogous as in the single-
type case (Sect. 3.3). Let qi be the extinction probability, if initially there is one
object of type i = 1, 2, . . . , k. That is qi =P{Zn = 0 for some n|Z0 = ei). The
vector (q1, . . . , qk) is denoted by q.

Theorem 6.4 Suppose the process is positively regular and not singular (which
would mean that each object has exactly one progeny). If ρ ≤ 1, then q = 1. If
ρ > 1, then 0 ≤ q < 1 and q satisfies the equation

q = f(q). (6.45)

6.3 Application: A Model of Two-Cell Populations

The example we present is a simplified version of the model considered in Kimmel
and Arino (1991). It is motivated by an experiment described in Sennerstam and
Strömberg (1984).

Let us consider two cell populations evolving according to the following rules:

1. Both populations have fixed interdivision times equal to 1.
2. In both populations the divisions are entirely effective, i.e., each parent cell

produces exactly two progeny initially of the same type.
3. After division, each type 1 progeny (independent of the other) switches to type 2

with probability p12, and remains type 1 with probability p11 = 1 − p12.
4. Analogously, each type 2 progeny (independent of the other) switches to type 1

with probability p21, and remains type 2 with probability p22 = 1 − p21.

The known biological example is the population of cultured transformed embry-
onic cells maintained by Sennerstam. The “normal” embryonic cell has a program
to switch irreversibly from one developmental stage to the next. The transformed
cells are maintained indefinitely since they switch back and forth between two
stages, named by us 1 and 2. Under the simplified assumptions specified above,
their proliferation is described by a 2-type Galton–Watson process.

The progeny pgf’s of the process are

f 1(s1, s2) = (p11s1 + p12s2)2, (6.46)

f 2(s1, s2) = (p21s1 + p22s2)2. (6.47)

The expected progeny matrix of the process is equal to

M =
⎛

⎝
2p11 2p12

2p21 2p22

⎞

⎠ . (6.48)



6.4 Application: Stochastic Model of the Cell Cycle with Chemotherapy 133

The eigen values of matrix M are found from the equation

ρ2 − ρ(2p11 + 2p22) + 4(p11p22 − p12p21) = 0.

The greater of the two real roots of this equation (the Perron–Frobenius root or
eigenvalue) is equal to ρ = 2. The left eigenvector ν corresponding to the Perron–
Frobenius root is the row vector satisfying the matrix equation ν(M − 2Id) = 0,
or

2(ν1, ν2)

⎛

⎝
−p12 p12

p21 −p21

⎞

⎠ = 0. (6.49)

We obtain

ν1

ν2
= p21

p12
.

The process is positively regular. Theorem 6.3 yields that with probability 1

(Z1
n, Z2

n) ∼ 2n(ν1, ν2)W , n → ∞,

where W is a scalar random variable.
The meaning of this result is that the proportion of the type 1 and type 2 cells

is asymptotically determined by the ratio ν1
ν2

= p21
p12

. The interesting feature is that
both p21 and p12 can be very small, i.e., that the switching between both types is
not frequent, and still the proportion is maintained. For the experimental data, it was
estimated that p12 and p21 are of the order of 0.1 (Arino and Kimmel 1991).

6.4 Application: Stochastic Model of the Cell Cycle
with Chemotherapy

The current application does not draw on the theory in the previous section. Instead,
it is an example of a model using a multitype Bellman–Harris process.

The goal of cancer chemotherapy is to stop tumor cells from dividing and to
kill them while sparing normal cells. Some chemotherapy protocols depend on the
differential effect of drugs on cells in different compartments of the cell cycle. For
instance, combination drug chemotherapy may utilize two drugs which affect cells
in different compartments of the cell cycle with different efficiencies. Such combi-
nation chemotherapy is expected to be more effective in tumor cell populations than
in normal cell populations. The rationale is that tumor cell populations have a larger
fraction of cells progressing through the cell cycle than normal cells. This approach
requires knowledge of the “drug action curve,” the percentage of cells affected de-
pending on their position in the cell cycle. In Sect. 5.4, we developed a method of
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estimating the duration of cell cycle compartments, based on stathmokinetic exper-
iments. This method is now extended to determine the relative effects of a drug on
cells in different compartments of the cell cycle.

Modern technology allows determining the amount of DNA per cell by measuring
the fluorescence of stained DNA excited by a laser in a flow cytometer. This has lead
to an improved stathmokinetic method that utilizes the amount of DNA per cell,
rather than the number of cells in mitosis, as a function of time for which the cells
are exposed to the stathmokinetic agent. The means and variances of durations of
each of the cell cycle compartments can then be estimated using the mathematical
methods described in Sect. 5.4.

Additional mathematical methods are required to obtain the estimates of the cell
cycle specific effects of anticancer drugs. We develop a model, which describes the
flow of cells through successive compartments of the cell cycle. The model allows
estimation of the fraction of cells blocked in each cell cycle compartment by an
anticancer agent.

This application is mainly based on the paper by Kimmel and Traganos (1986).
It is the continuation of the stathmokinetic analysis example of Sect. 5.4. The
mathematical tool we use is the multitype Bellman–Harris process. We do not de-
velop a rigorous theory, but employ intuition and analogies with the Galton–Watson
branching process.

We want to model the long-term in vitro effects of an anticancer drug, acting with
a different strength on cells in different phases of the cell cycle, based on the short-
term observations collected using the stathmokinetic experiment. For this purpose,
we decompose the cell cycle into a sequence of compartments differing with respect
to sensitivity to the drug. These compartments may be different from individual cell
cycle phases. Specifically, in the current model, the S phase is subdivided into a
number of smaller compartments, to account for different sensitivities of cells in
different stages of DNA synthesis.

6.4.1 Model of Drug-Perturbed Stathmokinesis

The following model is employed to analyze the drug action (Fig. 6.12): The cell cycle
is divided into M disjoint compartments. Cell residence time in the mth compartment
is an independent random variable with distribution density pm( · ). The conditions of
the stathmokinetic experiment are satisfied, by assuming that there is no cell inflow
into the first compartment nor cell outflow from the last (Mth) compartment. In each
compartment, exposure to a given concentration of the drug causes a permanent
block for a fraction 1 − um of cells, which would otherwise leave this compartment.
By choosing a sufficiently dense subdivision of the cell cycle into compartments,
it is possible to construct a curve of drug action, the coordinates of which are the
quantities 1 − um.
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Fig. 6.12 a The model of blocking drug action. The cell cycle is divided into M compartments.
There is no cell flow into the first compartment, nor cell outflow from the last compartment. Notation:
pm(t), distribution density of the residence time; xm(t), outflow rate; Nm(t), cell count: um, cell
fraction in the mth compartment not blocked by the drug. b Correspondence between compartment
number and cell cycle phase. (Source: Kimmel and Traganos 1986)

Let us denote by Nm(t) the expected cell count in the mth compartment and by
xm(t) the expected cell outflow rate from the mth compartment, at time t . We have

N1(t) = N1(0) − ∫ t

0 x1(s)ds.

Nm(t) = Nm(0) + ∫ t

0 [xm−1(s) − xm(s)]ds, m = 2, . . ., M − 1.

NM (t) = NM (0) + ∫ t

0 xM−1(s)ds.

(6.50)

It is assumed now that before the beginning of stathmokinesis, i.e., for t < 0, the
cell population was in the exponential steady state (ESS), i.e., expected cell counts
in all the cell cycle compartments were proportional to ebt . The constant b is the
Malthusian parameter of exponential growth.

Balancing of expected ESS cell flows from one cell cycle compartment to another,
as described in more detail in Kimmel (1980a, b), we obtain

N1(0) =2(1 − p̂1),

Nm(0) =2p̂1 · · · p̂m−1(1 − p̂m) (6.51)

where p̂m is the Laplace transform of the distribution pm( · ), evaluated at b:

p̂m =
∫ ∞

0
pm(t)e−btdt. (6.52)

Computation of the outflows xm( · ) perturbed by the drug is more complicated.
Except for x1( · ), the cell outflow is the sum of a component from the outflow of
the preceding compartment and another component from the initial distribution (at
t = 0) of cells in this compartment:

xm(t) = um

[
xm−1(t) ∗ pm(t) + x0

m(t)
]

, m = 2, . . ., M − 1, (6.53)
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where the asterisk denotes the convolution of functions (f ∗ g)(t) = ∫ t

0 f (t −
τ )g(τ )dτ . The flow x0

m(t) can be calculated in the following way: let us denote
by p1 m(t) the distribution of the sum of residence times in compartments 1 through
m, and by P1 m(t) the corresponding cumulative distribution. Also, let us denote

a1 m(t) = ebt

∫ ∞

t

p1 m(s)e−bsds = ebt p̂1 m − ebt ∗ p1 m(t), (6.54)

am(t) = ebt

∫ ∞

t

pm(s)e−bsds = ebt p̂m − ebt ∗ pm(t). (6.55)

We have p̂1 m = a1 m(0) and p̂m = am(0). In Proposition 5.1, we found the
asymptotics of the number of cells in phase 1 of the cell cycle, when the cell cycle is
subdivided into two phases, under normal conditions in a stathmokinetic experiment
not perturbed by any other agent. We can consider our compartments 1 through m

as a phase 1, and by doing so, we obtain by Proposition 5.1

N̄1 m(t) = 2 [1 − P1 m(t) − a1 m(t)] . (6.56)

Let us note that, by Eq. (6.54), we have d[a1 m(t)]/dt = ba1 m(t)−p1 m(t), which
implies

d[N̄1 m(t)]

dt
= −2ba1 m(t). (6.57)

The outflow x0
m(t) from the initial distribution of cells in compartment m is the

same whether or not a perturbing agent (other than the stathmokinetic agent) is
applied. It is equal to the total outflow from compartments 1 through m, minus a
component due to the outflow from compartments 1 through m − 1:

x0
m(t) = d[−N̄1 m(t)]

dt
− d[−N̄1,m−1(t)]

dt
∗ pm(t)

= 2b[a1 m(t) − a1,m−1(t) ∗ pm(t)]

= 2b{ebt p̂1,m − ebt ∗ p1 m(t)]

−[ebt p̂1,m−1 − ebt ∗ p1,m−1(t)] ∗ pm(t)}
= 2b{ebt p̂1,m−1p̂m − ebt ∗ p1 m(t)]

−[ebt ∗ pm(t)p̂1,m−1 − ebt ∗ p1,m−1(t) ∗ pm(t)]}
= 2bp̂1,m−1am(t).

(6.58)

Combining (6.53) and (6.58), we write down the following recurrence:

x1(t) = 2ba1(t),

xm(t) = um[xm−1(t) ∗ pm(t) + 2bp̂1,m−1am(t)], m = 2, . . ., M − 1.
(6.59)
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Fig. 6.13 Stathmokinetic data (low drug concentration) fitted by the model curves: (a) S (circles),
and G1 (squares) phase, (b) early (channels 27–30, squares), mid (channels 32–35, circles), and
late (channels 37–40, triangles) S phase “windows.” (Source: Kimmel and Traganos 1986)

Based on (6.59) an explicit expression is derived:

xm(t) = 2b

⎧
⎨

⎩

m∑

i=1

⎛

⎝
i−1∏

j=1

p̂j

⎞

⎠

⎛

⎝
m∏

j=i

uj

⎞

⎠ ai (t) ∗ [pi+1(t) ∗ pi+2(t) ∗ · · · ∗ pm(t)]

⎫
⎬

⎭
, m = 1, . . ., M − 1.

(6.60)
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Fig. 6.14 Example of nonparametric estimation of distribution P1(t) based on exit curve f1(t).(a)
Friend erytholeukemia cells: circles, G1 A; triangles, G1; squares, G1 +S. (b) L -cells: circles, G1;
triangles, G1 + S. (Source: Kimmel and Traganos 1986)

6.4.2 Model Parameters

It is generally true that the structure of a model depends on the precision of the mea-
surements. In the present case, we divide the cell cycle into smallest compartments in
which it is possible to follow the cell count. A fine subdivision is possible in S phase:
We can consider the cells ascending from lower to higher DNA content. Therefore,
the model has structure as depicted in Fig. 6.12b: compartment 1 is the G1 phase,
compartments 2–16 cover the S phase, compartment 17 is G2, and compartment 18
is M .

The main source of variability in the cells’ generation time is its transit through
the G1 phase. In practice, the durations of all the other cell cycles phases can be
considered nonrandom. The distribution of cell residence time in G1 was estimated
(Fig. 6.14) with the aid of a nonparametric procedure presented in Sect. 5.4.
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Fig. 6.15 Modelling continuous exposure to the drug. Numbering of the basic model compartments
is the same as in Fig. 6.9. It is assumed that cells blocked in given phase do not progress further.
Instead, they are trapped in the additional “primed” compartments [G′

1, S ′, and (G2 + M)′]. Com-
partment (G2 + M)′ includes some of the blocked G2 cells that had progressed to M before they
underwent ineffective division which increased their ploidy. (Source: Kimmel and Traganos 1986)

The deterministic residence times in the remaining cell cycle compartments were
assessed based on the ESS cell counts in these compartments. Their estimation as
well as estimation of the coefficients um characterizing drug action is described in
Kimmel and Traganos (1986).

6.4.3 Prediction of the Effects of Continuous
Exposure to the Drug

Figure 6.15 presents the model used to predict effects of continuous exposure to the
drug. It is assumed that once a cell is blocked it does not progress further through
the cell cycle. In the model, the blocked cells pass to the “primed” compartments:
G′

1, S ′, or (G2 + M)′. The (G2 + M)′ compartment also contains those G2 cells
which progressed to M but did not divide; instead, they increased their ploidy by,
for example, defective cytokinesis.

Simulation of the effects of continuous exposure to the drug based on this model
was carried out analogously to similar simulations in Kimmel and Traganos (1985)
or in Darzynkiewicz et al. (1984); for a more theoretical treatment, see Kimmel
(1980c).

6.4.4 Results

The estimates of the basic parameters of the cell cycle of exponentially growing
Friend erythroleukemia cells are as follows: the average residence time in G1,
E(TG1 ) = 3.43 h; the residence times in S, TS = 5.08 h; in G2, TG2 = 2.21 h;
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Fig. 6.16 Drug action curves for the low (10 nM, squares) and high (50 nM, circles) drug con-
centration. Fractions of cells blocked by the drug in given cell cycle compartments are plotted
against corresponding numbers of the flow cytometer channels. The G2 fractions (channel ≥ 42)
are depicted on a different scale. (Source: Kimmel and Traganos1986)

in M , TM = 0.60 h; and the growth rate (Malthusian parameter), b = 0.062 h−1,
corresponding to the doubling time of 11.22 h.

The fractions of cells blocked by the drug in the cell cycle compartments defined
in the previous section were computed from the drug-perturbed stathmokinetic data.
They are presented in Fig. 6.16, for low (10 nM) and high (50 nM) concentration
of the drug. As evident from this graph, the blocking action of the drug is higher
for cells more advanced in their progression through S. The durations (Tj ) of the 15
successive subcompartments of the S phase are not very different from each other
(mean duration:0.34 h; coefficient of variation: 0.13)
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Fig. 6.17 Observed versus measured cell count fractions in different phases of the cell cycle, under
continuous exposure to the drug: (a) low concentration (10 nM), (b) high concentration (50 nM).
Measurements: circles, G1; squares, S; triangles, G2 + M . (Source: Kimmel and Traganos 1986)
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Fits to the stathmokinetic data obtained using the low concentration drug action
curve of Fig. 6.16 are presented in Fig. 6.13. For the high drug concentration, the
quality of the fit is similar.

Modeling of cell kinetics under continuous exposure to the drug, employing the
drug action curves estimated from the stathmokinetic experiment (Fig. 6.16), is
depicted in Fig. 6.17. For the low drug concentration the model of Fig. 6.15 provides
an excellent prediction of the observed G1 cell count fraction, Fig. 6.17a. The S and
G2 + M cell count fractions are not so well modeled, though the general trend is
reproduced. Modeling of the high drug concentration effects is not as successful,
Fig. 6.17b.

6.4.5 Discussion

In theory, it should be possible to improve chemotherapeutic treatment of cancer by
appropriately scheduling the administration of cytotoxic agents. An optimum sched-
ule could, for example, take advantage of differences in cell cycle length of tumor
and “critical” (sensitive) normal tissues, to affect the malignant cells concentrated in
a different part of the cell cycle. However, interest in such proposals has diminished.
As early as two decades back, Tannock (1978) has commented that: “Enthusiasm for
this approach has varied from euphoria to despair.”

It appears however that the problem might be reconsidered. Theoretical calcula-
tions (Dibrov et al. 1983, 1985, and references therein) indicate that the potential
for improvement in treatment outcome due to chemotherapy scheduling may be con-
siderable. One of the difficulties is in obtaining estimates of numerical parameters
characterizing cell kinetics under the action of cytotoxic agents. It seems probable
that abandoning the efforts to find the optimum scheduling of chemotherapy was
caused largely by the inability to find good estimates of the parameters mentioned
above.

The failure to predict effects of the long-term (continuous) exposure to the drug
at the higher concentration (see Fig. 6.16b) is probably related to considerable cell
damage at this concentration. This damage is not apparent in the course of the
stathmokinetic experiment (in fact the drug action curves for the two drug concen-
trations differ only slightly), but it probably manifests itself during subsequent cell
divisions.

6.5 Application: Cell Surface Aggregation Phenomena

This model is taken from the book by Macken and Perelson (1985). Molecules on
the cell surface (receptors) are activated by contact with molecules located in the
extracellular medium (ligands). The activated receptors initiate signalling pathways
within cells resulting in cell proliferation and cell differentiation. The strength of the
signals depends on the specificity of the interaction between a ligand and its receptor,
and the number of activated receptors per cell.
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Fig. 6.18 A typical family tree representing the aggregation of f -valent particles. Here f = 3.
Notice particles in generation n = 0 can have at most f offspring, whereas in all later generations
a particle can have at most f − 1 offspring. (Source: Macken and Perelson 1988)

Examples of ligands are hormones such as insulin and growth factors, and antigens
such as proteins on the surface of bacteria and viruses. Some receptors and some
ligands are multivalent, e.g., the receptor molecules can react with more than one
ligand at a time and the ligands can react with more than one receptor at a time.
Multivalency may result in clusters of ligand–receptor complexes. It is of interest to
determine the size distribution of the aggregates, and the probability that they will
continue to increase in size or stop increasing in size.

6.5.1 Relationship Between the Galton–Watson Process
and the Aggregation Process

Let us suppose for the beginning that we are given a collection of m-valent particles
of single type (an m-valent particle is one that can bind m other particles). We restrict
our attention to the aggregates of these particles that contain no loops and hence have
the topological form of a tree. We equate the probability of k particles being bound
to a given particle, with pk , the probability of this particle having k offspring. The
particle valency in the aggregation process is accounted for in the Galton–Watson
process by imposing a restriction on the maximum possible number of offspring
contributed by a single parent to the next generation. Thus, a parent in generation 0
can have at most m offspring, whereas a parent in later generations can have at most
m − 1 offspring, because one particle site is used to attach the particle to its own
parent (Fig. 6.18).

To summarize, the analogy between Galton–Watson process and aggregation pro-
cesses is that an n-mer is represented by a rooted tree containing n nodes, with the
degree of the root being at most m and the degree of all other nodes being at most
m − 1.

The purpose of the mathematical representation is to find the distribution of the
sizes of aggregates. The total size Y of the aggregate is equal to the summary number
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of objects produced in all generations of the Galton–Watson process:

Y =
∞∑

n=0

Zn. (6.61)

We are interested in the distribution of random variable Y including cases when
Y is infinite. This last possibility corresponds to the so called gelation in which the
aggregation process escapes control and utilizes all the particles suspended in the
medium. Let us note that Y can be finite only if the process {Zn, n = 1, 2, . . . } dies
out with probability one, that is, in the subcritical and critical case. In the supercritical
process, there exists the nonzero probability 1 − q that the number of generations is
infinite. This latter is the probability of gelation.

6.5.2 Progeny Distributions

We have to specify pk , the probability that k sites of a randomly chosen m-valent par-
ticle are bound. Let p be the probability that a randomly chosen site is bound. Then,
because sites act independently, pk is given by the binomial formula. Consequently,
the progeny pgf in the zeroth generation is

f0(s) = (ps + 1 − p)m,

while in the succeeding generations, it is

f (s) = (ps + 1 − p)m−1.

6.5.3 Antigen Size Distribution on a Cell Surface

We consider a model for multivalent antigens binding to and cross-linking bivalent
cell surface receptors, following Macken and Perelson (1985). The model describes
production of antibody by antigen-stimulated B lymphocytes.

Antigen particles (Fig. 6.19), present in the solution surrounding a population of
cells, can bind at any of ma = 3 (out of 6 existing) binding sites to one free site
of a cell surface receptor. Receptors are bivalent, they have two binding sites, i.e.,
mr −1 = 1. The antigen, once bound to a receptor, may bind another single receptor
site at any out of remaining ma − 1 = 2 sites or it may bind two free sites of two
receptors. In the model, it is not allowed for the two antigen sites to bind to two sites of
a single receptor, since this would violate the tree structure. Repeated binding creates
patches of antigen particles cross-linking receptors on the cell surface. Gelation is
equivalent to the formation of “infinite-size” (very large) antibody–receptor clusters
on cell surface.
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cell surface

Fig. 6.19 A model for multivalent antigens binding to and cross-linking bivalent cell surface recep-
tors. The antigen present in the solution surrounding a population of cells, can bind at any of f = 3
(out of 6 existing) binding sites to one site of a free cell surface receptor. Receptors are bivalent,
i.e., have two binding sites. The antigen, once bound to a receptor, may bind another receptor at
any out of remaining f − 1 = 2 sites, etc. (Source: Macken and Perelson 1988)

The special type of aggregate described above is distinguished by the fact that
antigens and antibodies alternate along any path through the aggregate. Consequently,
the model is described by a two-type Galton–Watson process Zn = (Z1

n, Z2
n), n =

1, 2, . . . , in which the offspring of the type 1 object (receptor particle) is of type 2
only and the offspring of the type 2 object (antigen particle) is of type 1 only, i.e.,

f 1(s) = f 1(s2) = (p1s2 + 1 − p1), (6.62)

f 2(s) = f 2(s1) = (p2s1 + 1 − p2)2. (6.63)

We suppose that the process (aggregate) is started by a single receptor particle
and therefore, for the zeroth generation,

f 1
0 (s2) = (p1s2 + 1 − p1)2. (6.64)

Calculations based on (6.62)–(6.64) show that the pgf Fn(s) of the vector (Y 1
n , Y 2

n )
of the counts of all particles of both types, up to generation n,

(Y 1
n , Y 2

n ) =
n∑

i=0

(Z1
i , Z2

i ),

is equal to

Fn(s) = s1f
1
0 {s2f

2[s1f
1(s2 · · · )]}. (6.65)
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The consequence of Eq. (6.65) is that the pgf F (s) of the vector (Y 1, Y 2) =
limn→∞ (Y 1

n , Y 2
n ) of the aggregate totals of particles of both types, is equal to

F (s) = s1f
1
0 [Φ(s)],

where Φ(s) is the solution of the equation

Φ(s) = s2f
2{s1f

1[Φ(s)]}. (6.66)

The pgf solution of Eq. (6.66) always exists because of the monotone convergence.
It may correspond to infinite particle count, i.e., gelation, if Φ(1, 1) < 1.

Obtaining an explicit expression for Φ(s) is possible. It is left as an exercise. We
will derive the condition of supercriticality, and the probability of gelation for the

supercritical process. The expected progeny matrix

(

0 p1
2p2 0

)

is not positively

regular (it has period 2) but it has a dominating root ρ = (2p1p2)(1/2). Thus, the
criticality parameter is proportional to the geometric mean of the reactivities p1

and p2. The probability of gelation is equal to 1 − (1 − p1)2q2, where q2 = (1 −
p1p2)2/(p1p2)2 is obtained by solving equation (q1, q2) = [f 1(q1, q2), f 2(q1, q2)].

The above expressions are valid in the supercritical case.

6.6 Sampling Formulae for Multitype Galton–Watson Process

The literature on multitype branching processes is mostly focused on the asymptotic
theory. In comparison, relatively little has been done to address problems of sampling
in finite time from a branching process. This is a problem which is relevant in many
biological applications. In the polymerase chain reaction (PCR), genetic material is
amplified and sampled after a fixed number of cycles. In cell cultures, cells are grown
and harvested after a fixed number of population doublings. Also, many branching
processes arising in these applications are intrinsically reducible in the sense that
some types can only have certain other types in their ancestries. In such processes,
limiting distributions on the type space are typically degenerate and of no practical
use.

In this section, we will present results by Olofsson and Shaw (2002) concerning
sampling distributions in the multitype Galton–Watson process. These results allow
us to find the expectation and variance of the frequency of particles of a given type
in generation n of the multitype Galton–Watson process. These are given in terms of
the probability generating function of the offspring distribution. Furthermore, given
a particle of some type is sampled in generation n, the sequence of types of its parent
particles in generations n − 1, n − 2, . . . , 2, 1, 0, is a discrete inhomogeneous
Markov chain with different transition probabilities at each step. These results sim-
plify simulations of genealogies and accumulated mutations in at least two interesting
biological models (Sects. 6.7 and 6.8).
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The approach taken in Olofsson and Shaw (2002) is similar to that used in a
sequence of papers by Waugh (1981) and Joffe and Waugh (1982, 1986a, b), who
address the so-called kin number problem in Galton–Watson populations. They es-
tablish exact formulas for the probability distributions of family trees of a randomly
sampled individual in a fixed generation. The most extensive treatment is of the
single-type case, Joffe and Waugh (1982), the multitype case is addressed in Joffe
and Waugh (1986a, b).

We will use the notation ψn for the probability generating function of (Z0
n, . . . , Zr

n)
when there is an arbitrary number of ancestors (Z0

0 , . . . , Zr
0), reserving the notation

f i
n for the case of one single ancestor of type i.

6.6.1 Formulae for Mean and Variance

The following result gives the mean and variance of the proportion of type i indi-
viduals in the nth generation, conditioned on this generation being nonempty: We
use the notation |Zn| for the total number of individuals in the nth generation, i.e.,
|Zn| =∑r

k=0 Zk
n.

Theorem 6.5 Let u be a vector with all u entries except for a v in the ith position:
u = (u, . . . v, . . . , u), 0 = (0, 0, . . . , 0) and denote by ψn the joint probability
generating function of (Z1

n, . . . , Zr
n). Then

E

[
Zi

n

|Zn|
∣
∣
∣
∣ |Zn| > 0

]

= 1

1 − ψn(0)

∫ 1

0

∂

∂v
ψn(u)

∣
∣
∣
∣
u=v=s

ds

and

Var

[
Zi

n

|Zn|
∣
∣
∣
∣ |Z
]

= 1

1 − ψn(0)

∫ 1

0
− log s

(

s
∂2

∂v2
ψn(u)

∣
∣
∣
∣
u=v=s

+ ∂

∂v
ψn(u)

∣
∣
∣
∣
u=v=s

)

ds

−
(

1

1 − ψn(0)

∫ 1

0

∂

∂v
ψn(u)

∣
∣
∣
∣
u=v=s

ds

)2

.

The methods of proof are inspired by those of Joffe and Waugh (1986) and Waugh
(1981). Details of the proof are described in Olofsson and Shaw (2002).

6.6.2 The Markov Property

Next, we investigate the dependence structure in the sequence of types in the lineage
of a particle in the nth generation. We may think of this particle as sampled at random
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and denote its type by Tn. Since

P(Tn = i) = E

[
Zi

n

|Zn|
∣
∣
∣
∣ |Zn| > 0

]

the probability P(Tn = i) can be obtained from Theorem 6.5. Denote the type of
this particle’s parent by Tn−1, its grandparent’s type by Tn−2 and so on; we thus
obtain a sequence of types Tn, Tn−1, . . . , T0, the type of the ancestor. It turns out that,
conditional on nonextinction, this sequence is a nonhomogeneous Markov chain
with transition probabilities given by a formulas invoking the probability generating
function of the offspring distribution. This can be utilized for simulations to assess
the type variation in lineages of sampled particles. Let ϕij denote the probability
generating function of the number of j -type offspring of an i-type parent, i.e.,

ϕij (s) = Ei[s
X(j )

] = f i(1, . . . , s, . . .
︸ ︷︷ ︸
j th argument

, 1)

and let ψk be as in Theorem 6.5.

Theorem 6.6 The sequence of types Tn, . . . , T0 in the genealogy of an individ-
ual randomly sampled from generation n is a nonhomogeneous Markov chain with
transition probabilities

P(Tk = i|Tk+1 = j ) =
1

1 − P
(
Z

(j )
k+1 = 0

)

∫ 1

0

∂

∂v
ψk

(
ϕ0j (u), . . . , ϕij (v), . . . , ϕrj (u)

)
∣
∣
∣
∣

u=v=s

ds

where

P
(
Z

(j )
k+1 = 0

)
= ψk

(
ϕ0j

(0), ϕ1j
(0), . . . , ϕ

rj
(0)
)
.

Note that there is a v in the ith position and u in the other positions in the argument
of ψk .

Details of the proofs of both theorems are described in Olofsson and Shaw (2002).
If the branching process is irreducible, then the backwards Markov chain becomes
asymptotically homogeneous in the sense that as n → ∞, the transition probabili-
ties converge to limiting distributions. This follows from the convergence theorem
of Jagers (1992) where convergence towards the so-called stable population is inves-
tigated. In the PCR application in Sect. 6.8, this can be observed empirically already
for low values of n.

6.7 Application: Deletions in Mitochondrial DNA

Mitochondria are organelles in cells carrying their own DNA. Just like nuclear DNA,
mitochondrial DNA (mtDNA for short) is subject to mutations which may take the
form of base substitutions, duplications, or deletions. This application focuses on
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one particular mutation, the mtDNA4977 deletion. This is a mutation which causes
a deletion of about one third of the mitochondrial genome, thus causing a DNA
molecule which is significantly smaller than normal. It has been observed that high
levels of deletions are associated with certain degenerative diseases, for example
Kearns–Sayre syndrome (Chinnery and Turnbull 1999). These levels may be as high
as 40–50 %. Low levels (0.5–12 %) have been observed in different regions of the
brain of healthy humans. There is a wide variety of issues involved such as different
levels in different types of tissue but we will not attempt to address any of these.
Instead, we focus on how the process of replication of mDNA can be described as
a multitype Galton–Watson process and how the sampling formulas of the previous
sections can be applied to explore how deletions accumulate over time. The idea to
use branching processes in this application was first described in the unpublished
manuscript of Navidi et al. (2003).

The population of mDNA is modeled as a two-type process where the types are
0 (normal) and 1 (mutant). A normal can give birth to either two normals or, if there
is a mutation, one normal and one mutant. The latter happens with probability λ

and we refer to λ as the mutation rate. Mutants can only give birth to mutants. A
DNA molecule also may die without reproducing (so-called mitochondrial turnover,
see Arking 1998) and we let the survival probabilities be p and q for normals and
mutants, respectively. This gives the following offspring distributions:

p0(0, 0) = 1 − p, p0(2, 0) = p(1 − λ), p0(1, 1) = pλ

for normals and

p1(0, 0) = 1 − q, p1(0, 2) = q

for mutants. This gives the joint probability generating functions

ϕ0(u, v) = 1 − p + pλuv + p(1 − λ)u2 (6.67)

and

ϕ1(u, v) = 1 − q + qv2. (6.68)

The proportion of mutants in the nth generation is

Z(0)
n

Z
(0)
n + Z

(1)
n

and we can use Theorem 6.5 to compute its expectation and variance. Further details
are described in Olofsson and Shaw (2002).
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6.8 Application: Polymerase Chain Reaction

This application can be understood as a sequel to Sect. 1.2. As described in that
section, a DNA molecule in any given cycle of PCR either existed before that cycle
or is newly created (this is the essence of the semiconservative replication). The
process is modeled as a two-type process where the type space is {0, 1}, “0” for “old”
and “1” for “new”. The distinction is crucial to mutation studies since new mutations
only arise on newly created particles. The offspring distribution is

p0(1, 0) = 1 − p, p0(1, 1) = p,

p1(1, 0) = 1 − p, p1(1, 1) = p,

where p is the cycle efficiency, i.e., the probability that a given molecule replicates
successfully in a given PCR cycle. This leads to joint probability generating functions

ϕ0(u, v) = ϕ1(u, v) = (1 − p)u + puv.

For the simulations, Theorem 6.5 was used to compute the distribution of a ran-
domly sampled particle in generation n, and Theorem 6.6 to compute the transition
probabilities. Simulations were then performed in which a particle was sampled at
random from generation n and the sequence of types in its lineage back to the ancestor
was generated. Each time a particle of type 1 appeared, it was independently assigned
a new mutation with probability λ. The values n = 30, p = 0.7, and λ = 0.05 were
used (see Sect. 1.2, where however a slightly different notation, consistent with the
Weiss and von Haeseler (1997) paper, was used).

Olofsson and Shaw (2002) show a histogram of the number of mutations in the
lineage of a randomly sampled particle in generation 30, based on 100,000 simulation
runs of the Markov chain. The transition probabilities P (Tk = i|Tk+1 = j ) converge
to a limiting distribution as n → ∞ and in this particular application, the convergence
is rapid. The limiting transition probabilities can be computed as

P (Tk = i|Tk+1 = j ) = ν(i)M(i, j )

ρν(j )

where M(i, j ) = Ei[X(j )], the (i, j )th entry in the mean reproduction matrix

M =
⎛

⎝
M(0, 0) M(0, 1)

M(1, 0) M(1, 1)

⎞

⎠ =
⎛

⎝
1 p

1 p

⎞

⎠ ,

ρ is the largest eigenvalue of M and ν is the left eigenvector of M corresponding to
ρ. In this case,

ρ = 1 + p, ν(0) = p

1 + p
, ν(1) = 1

1 + p
,
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which gives, in the limit

P (Tk = 1|Tk+1 = j ) = p

1 + p
≈ 0.41,

for both j = 0 and 1. The computations reveal that this limit is reached after less than
ten generations. Still further details may be found in the unpublished dissertation by
Shaw (2000).

6.9 Other Works and Applications

6.9.1 Hemopoiesis and Clonal Cell Populations

Multitype branching processes are the natural tool to model proliferation of cells un-
dergoing differentiation, i.e., changing gene expression, morphology, and biological
function. Usually, as it is the case in the hemopoietic (blood production) system,
populations of differentiating cells are organized in nets. The cells at the top of the
net are stem cells. They can produce progeny of their own type or of an other type.
Each next population is committed to differentiation in some direction, i.e., it can
produce progeny of its own type or of a limited subset of types, usually just one
type of more mature cells. The bottom population(s) are not capable of proliferation.
This type of multitype branching process is called reducible. Early papers employing
branching-type models are Till et al. (1964) and Vogel et al. (1969). A simulation
model was developed by Rittgen (1983).

The stochastic model of mast cell proliferation developed by Pharr et al. (1985)
assumed a two-type Galton–Watson process including proliferative and nonprolif-
erative cells. Each proliferative cell gives rise to either two proliferative progeny, or
two nonproliferative progeny, or it may die. Each nonproliferative cell may either
survive (i.e., continue to exist as 1 cell) or die. In principle, this model is identical
to that of Sect. 3.2. Predictions of the model by Pharr et al. (1985) were fitted to
colony size data, with a good agreement. In a further paper (Nedelman et al. 1987),
the model was extended to a Bellman–Harris process and maximum likelihood was
used to estimate parameters.

A more general model including a chain of maturing cell populations, of the
type described above, was designed by Ciampi et al. (1986) to model proliferation of
human ovarian carcinoma cells. Modeling, using a multitype Galton–Watson process
involved calculating the asymptotic distributions of colony sizes and data-based
estimation of the self-renewal probability of stem cells. This latter is the conditional
probability of a stem cell producing two stem cells (as opposed to producing two
differentiated cells) given it does not die or rest. The self-renewal probability is a
parameter of potential diagnostic value. Another related reference is the book by
Macken and Perelson (1988), which considers multitype Galton–Watson models
of the hemopoietic (blood production) system although without much reference to
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data. Therneau et al. (1989) model early stages of development of cell colonies using
symbolic calculations to iterate the probability generating functions of the process.

Papers by Stivers and Kimmel (1996a, b) and by Stivers et al. (1996) concerned
the observed inheritance of sizes of primary and secondary colonies in experiments
by Axelrod et al. (1993) and Gusev and Axelrod (1995), discussed in Sect. 5.5.1.
The main question is to determine what modes of inheritance of cell lifetimes are
consistent with the observed correlations of the sizes of primary and secondary
colonies, which are positive, equal to approximately 0.6 and, at the same time,
consistent with the observed variances in colony sizes. Various modes are considered,
including “clonal,” in which the lifelength distribution of the secondary colony is
affected by the lifetime of its founder drawn at random from a primary colony (Stivers
and Kimmel 1996a, b). Another variant is generational inheritance in a model where
two types of cells, with differing proliferative potential, can differentiate into each
other (Stivers et al. 1996). This latter model provides a fit to the observations.

Abkowitz et al. (1996) use experimental data and branching process simulations
to demonstrate that hemopoiesis, the process of blood cell production, has a random
nature. They use results of irradiation experiments carried out on Safari cats, a race
being a cross between domestic cats and wild Geoffroy cats. These two species of
cats have evolved independently and have electrophoretically distinct phenotypes of
the X-chromosome-linked enzyme glucose-6-phosphate dehydrogenase (G6PDH).
Female Safari cats are generally balanced heterozygotes with, on average, equal
numbers of progenitor and differentiated blood cells of each parental phenotype.
However, females deprived of their bone marrow by irradiation and then given au-
tologous transplants of 30 quiescent hematopoietic cells, end up, after a period of
fluctuations, with variable proportions of progenitors of each parental phenotype. The
pattern of variability is consistent with simulations based on a multitype branching
process model. This paper, although it contains no mathematics, provides important
arguments concerning applicability of branching processes.

6.9.2 Gene Amplification

The biological introduction to gene amplification can be found in Sect. 2.1.6. Mathe-
matical models are described in Sects. 3.7, 6.1, 5.4, and 7.4. Other authors, considered
diverse aspects of gene amplification. Harnevo and Agur (1991) constructed a com-
prehensive model of gene amplification in the form of a multitype branching process,
in the context of resistance of cancer cells to cytotoxic drugs. The number of types is
finite, as these authors assume limits to the number of copies of the amplified gene.
Theoretical considerations are followed by a modeling study in which the dynamics
of growth of cells with amplified phenotype (drug resistant) is followed. A similar
mathematical model was employed by Harnevo and Agur (1992) to explore various
strategies of cancer chemotherapy, assuming that the main mechanism of drug re-
sistance was gene amplification. The paper by Harnevo and Agur (1993) contains
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a critical discussion of approaches to modeling of the gene amplification process,
including the model of Kimmel et al. (1992), described in Sect. 7.5.

Finally, we should mention the paper by Peterson (1984). This is a paper in
which evidence is collected suggesting that expression of many proteins in cells
occurs at levels which form an arithmetic or geometric progression. Peterson (1984)
postulates that this may be due to variable number of copies of respective genes,
present in a given cell (quantitative shift model). Although this paper does not contain
mathematics, a multitype branching process is implicitly involved.

6.9.3 Modeling in Varying Environments

Modeling of multitype branching processes in varying environments is important
when we consider populations of biological cells subject to external controls. The
usual backward (retrospective) technique of decomposition into subprocesses gen-
erated by first-generation progeny leads to pgf and moment equations which tie
together processes started at different times and therefore different, so that self-
recurrence cannot be used. This is inconvenient if the solution is to be extended
step-by-step, for example by numerical procedures, as it is the case in modeling of
cancer chemotherapy. For this reason, it is desirable to develop a forward (prospec-
tive) technique, which would provide a recurrence or equation allowing to continue
in time the pgf or moment characterization of the process. In Kimmel (1982), it is
demonstrated that an equivalent (dual) set of integral equations exists, which allows
prospective continuation of the expectations of the process. In Kimmel (1983), it is
shown that a prospective equation of a kind can be written not for the probability
generating functions but for the probability generating functional which describe the
multivariate point process of births and deaths in the branching process.

6.9.4 Model of Ovarian Cancer Progression and Metastasis

Danesh et al. (2012) have devised a branching process model of growth and progres-
sion of ovarian cancer, which is one of the major killers among hormone-dependent
cancers. The reason it is so deadly is that it is detected relatively late; only 32% de-
tected cases are metastasis-free at diagnosis. The model is developed in the terms of a
nonstandard multitype branching process, which describes progression of the tumors
over different primary and metastatic stages. The paper contributes to public-health
literature in that it allows computing rigorously the “window of opportunity” for
screening, during which the cancer is detectable but still early enough to be treated
for cure. The width of this window is about 2.9 years, so patients should be screened
at about 2-year intervals for early detection to be accomplished.
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6.9.5 HIV Modeling

Conway and Coombs (2011) use a Markov age-dependent branching process with
three types of particles, to model probability distributions of the number of virus
particles in HIV infection treated using antiretroviral compounds. The motivation of
the study is viral persistence in HIV+ patients on long-term antiretroviral treatment
(ART). The stochastic model of HIV viral dynamics in the blood stream is based
on the hypothesis that the residual viremia in patients on ART can be explained by
the activation of cells latently infected by HIV before the initiation of ART and that
viral blips (clinically observed short periods of detectable viral load) represent large
deviations from the mean. Modeling such deviations requires a stochastic approach.
Blip amplitudes and frequencies are calculated by computing complete viral load
probability distributions, and the duration of viral blips is studied via direct numerical
simulation. The model qualitatively reproduces short small-amplitude blips detected
in clinical studies of treated HIV infection.

In an unrelated study, Shiri and Welte (2011) use a branching process model
in a deterministically varying environment to explore how dynamics of early HIV
infection impact on accumulation of mutations driving the long-term evolution of
drug resistance and immune system evasion. The branching process theory offers
the ability to compute important indicators of viral diversity, in a framework with
a limited number of simplifying assumptions, without the need to simulate the full
range of individual level scenarios. These models may be useful to illustrate the
impact of vaccines and treatments on viral evolution. They also suggest that new
measures of viral diversity which correlate to prognosis should be sought in therapy
and vaccination trials.



Chapter 7
Branching Processes with Infinitely Many Types

In this chapter, we consider a number of examples of branching processes with
infinite type spaces. No systematic theory can be presented. However, in Sect. 7.1
we review various approaches generalizing the denumerable case. Also, general
processes (Sect. C.1) include the denumerable type space as a special case. We will
base considerations on an analogy with the finite mutitype case whenever possible.
However, the stress is on interesting and diverse properties, which are different from
the finite multitype setup and on biologically motivated examples.

We will begin by presenting an example of a stable process, using another variant
of the gene amplification model (Sect. 7.5). The subsequent example is the reducible
process of loss of telomere sequences at the end of chromosomes, which displays a
polynomial dynamics (Sect. 7.7). Sections 7.4–7.6 deal with the problem of quasista-
tionarity in the context of branching random walks and branching-within-branching.
These examples can be understood as generalizations of theYaglom Theorem 3.6, in
this book. Finally, in Sect. 7.8, we develop a series of structured population models,
which can be classified as branching processes with continuous type spaces.

7.1 Galton–Watson and Bellman–Harris Processes with
Denumerably Many Types and Branching Random Walks

One of the questions arising when a multitype process is generalized to denumerable
infinity of types is, which of the simple properties of the finite case remain valid.
The answer is of importance for the applications, since it helps to decide what new
properties are expected from a model, if the constraint on the number of types is
released. Applications in several sections in the present chapter demonstrate that in
general a variety of asymptotic behaviors can be expected.

One of the papers devoted to this issue is Spătaru (1989). This paper considers the
extension of the multitype Galton–Watson (GW) process to countably many types
indexed by N. Let Zn = (Znα) be the vector of generation sizes; Znα is the number of
α-types in generation n (α ∈ N). Let M = [Mαβ], where Mαβ =E(Z1β |Z0β = δαβ ,
β ∈ N), be the mean matrix, and let f (s) = (fα(s)), where, for s ∈ C = [0, 1]N,
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fα(s) =E(sZn|Z0β = δαβ , β ∈ N). The author shows that the nonzero states are
transient if M is irreducible and f (s) 
= Ms for some s ∈ C. It is asserted that
transience does not imply the property P(Zn → 0 or |Zn| → ∞) = 1, valid when
the number of types is finite.

Let q denote the vector of extinction probabilities. If fn(s) denotes the vector-
valued n-fold functional iterate of f (s) (i.e., fαn(s) = fα(fn−1(s))), then q =
limn→∞ fn(0). For which s, is it true that fn(s) → q? He shows it is true if
s ≤ q (coordinatewise), but not true for all s ∈ C\{1}, where 1 = (1, 1, · · · ), if
S = {s ∈ C : s = f (s)} has number of elements exceeding 2. If M is irreducible
and f is not affine, then the number of elements of S is equal to 2 and q = 1 or
q < 1

Another paper on a related subject is Moy (1967). A denumerable-type GW
process is considered, with mean progeny matrix M = (mij ), where mij =
E[Zn+1(j )|Zn = ei]. The principal role is played by the Perron–Frobenius root r of
M , in this case, the radius of convergence of the power series

∑
i M

isi . The Perron–
Frobenius root plays the role of the reciprocal of the Malthusian parameter. Two
cases are possible: (I)

∑
i M

iri finite, and (II)
∑

i M
iri infinite. In case I, there exist

two strictly positive infinite sequences v and u, unique up to multiplicative constants,
satisfying rvM = v and rMu = u, i.e., left and right eigenvectors corresponding to
eigenvalue r−1. In case II, under an additional condition

∑
i u(i)v(i) < ∞, and if

the process is supercritical, i.e., if r−1 > 1, Znr
n converges in mean square to vY ,

where Y is a scalar random variable. In the remaining cases, Znr
n converges to 0.

It seems that the conditions for asymptotic behavior of the supercritical process
can be obtained as conclusions from the conditions for the general branching pro-
cess of Sect. C.1. In the case of branching process with denumerable type space,
these conditions seem to be a nontrivial extension of the positive regularity condi-
tions sufficient in the finite multitype case (see Theorem 6.2). Indeed, the branching
random walk of Sect. 7.4, conditional on nonentering the 0-state, is a supercritical
branching process. Its expected progeny matrix is irreducible in the sense of two
arbitrary states communicating in a finite number of steps. However, as seen from
Theorem 7.2, the asymptotics conditional on nonentering the 0-state is exponential
modified by a negative power multiplier, and not a pure exponential. This means
that the reproductive kernel of this process cannot be conservative, in the sense of
condition (C.4), although a direct proof seems nontrivial.

Kesten (1989) proves a limit theorem for the rate of growth of a supercritical mul-
titype branching process with countably many types. He proves, under appropriate
conditions, that both the growth rate and the direction of growth in type space are es-
sentially deterministic. The principal motivation for this work is to extend branching
process theory to a problem arising in the study of random fractals, i.e., the properties
of the projections of random Cantor sets in d dimensions onto subspaces of small
dimensions.

A large number of papers were written on the subject of branching random walks,
i.e., denumerable-type branching processes with type-space transitions having the
form of random walk. The typical problems considered include the rate of spread
and growth of the branching random walk (Biggins 1995, Biggins et al. 1997) and



7.2 Generalized Linear-Fractional Distributions and Their Applications 157

the Seneta–Heyde norming (Biggins and Kyprianou 1996). A surprisingly small
number of papers are devoted to branching random walks with restrictions, of the
type considered in Sect. 7.4, and other sections. One example is Biggins et al. 1991,
considering a supercritical branching random walk on the real line commencing with
a single ancestor at the origin. All individuals reproduce according to the same law
with mean family size b > 1. Each progeny is given an independent identically
distributed (iid) displacement from its parent with distribution F having negative
mean and an exponentially decaying right tail, i.e.,

∫∞
−∞ estdF (t) < ∞ for some

s. The process is then attenuated by deleting all individuals below (−x) and their
descendants. Each remaining line of descent is just a random walk, starting at 0, with
a barrier at (−x), where x > 0. Results concerning the extinction probability and the
expected population size depend on the parameter h = supθ (− log

∫∞
−∞ eθtdF (t)).

Specifically, if b < eh, the probability that the process becomes extinct is 1 and, if
b > eh, the probability of nonextinction is strictly positive. In the case b < eh and
F nonlattice, the expected size of the total population, denoted by f (x), satisfies
limx→∞ e−αxf (x) = C, where α is the smallest positive solution of the equation
b
∫∞
−∞ eαtdF (t) = 1 and C is a positive constant which can be estimated.

7.2 Generalized Linear-Fractional Distributions
and Their Applications

7.2.1 Introduction

The current account of the generalized linear-fractional (LF) distributions is based on
the papers by Sagitov (2011, 2013). The author studies multitype Bienaymé–Galton–
Watson (BGW) processes with LF reproduction laws using various analytical tools
such as contour process, spinal representation, and Perron–Frobenius theorem for
countable matrices and renewal theory. For this special class of branching processes
with countably many types he presents a transparent criterion for R-positive re-
currence with respect to the type space. This criterion appeals to the Malthusian
parameter and the mean age at childbearing of the associated LF Crump–Mode–
Jagers process. Here, we will only summarize essentials that make the approach
interesting.

A LF BGW process with countably many types is fully specified by a triplet of pa-
rameters (H, g, m), where H = (hij )∞i,j=1 is a substochastic matrix, g = (g1, g2, . . . )
is a proper probability distribution, and m is a positive constant. For a given triplet
(H, g, m), the particles in the LF BGW process have the following reproduction law:
A particle of type i has no offspring with probability hi0 = 1 −∑j≥1 hij . Given
that this particle has at least one offspring, the type of its first daughter is j , with
probability hij /(1 − hi0), and the number of subsequent daughters has a geometric
distribution with mean m. With the exception of the first daughter the types of all
other offspring particles follow the same distribution g independently of each other
and independently of mother’s type.
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The countable matrix of the mean offspring numbers

M = (mij )∞i,j=1, mij = E(Z(1)
j |Z(0) = ei),

where ei = (1{i=1}, 1{i=2}, . . . ), in the LF case is found as

M = H + mH1tg, (7.1)

where 1t is the transpose of the row vector 1t = (1, 1, . . . ).
Assume that the type of the initial particle has distribution g. Then the total

population sizes Z(n) = Z(n)1t for the LF BGW process form a single-type discrete-
time Crump–Mode–Jagers (CMJ) process (Jagers and Sagitov 2008), which is called
a LF CMJ process. This CMJ model is not restrictive about the life length distribution,
however, the point process of birth events must follow a very specific pattern: At
each age a living individual produces independent and identically distributed (iid)
geometric numbers of daughters. Making birth events in the LF CMJ process very rare
(by choosing the row sums of H to be close to zero) and rescaling time accordingly
we arrive at a continuous time CMJ process studied in Lambert (2010). In Lambert
(2010), special attention is paid to the properties of the so-called contour processes
of the corresponding planar genealogical trees.

7.2.2 Definitions and Basic Properties

The following vector notation is used: x = (x1, x2, . . . ), sx = s
x1
1 s

x2
2 . . . , 0 =

(0, 0, . . . ). Let xt stand for the transpose of the vector x, and I denote the identity
matrix (1{i=j})i≥1,j≥1. We denote by Z

∞+ , the set of vectors k with nonnegative
integer-valued components and finite k = k1t .

Definition 7.1 Let (h0, h1, h2, . . . ) be a probability distribution on {0, 1, 2, . . . },
(g1, g2, . . . ) be a probability distribution on {1, 2, . . . }, and m be a positive constant.
Put h = (h1, h2, . . . ), g = (g1, g2, . . . ). We say that a random vector Z has a LF
distribution LF(h, g, m) if

P(Z = 0) = h0, P(Z = k + ei) = him
k

(1 + m)k+1

(
k

k1, k2, . . .

)

gk

for all k ∈ Z
∞+ , where k = k1t .

The name of the distribution is explained by the LF form of its multivariate
generating function

E(sZ) = h0 +
∑∞

i=1 hisi

1 + m − m
∑∞

i=1 gisi

which is an extension of its one-dimensional version.
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Definition 7.2 Let H = (hij )∞i,j=1 be a substochastic matrix with rows hi =
(hi1, hi2, . . . ) having nonnegative elements such that hi0 := 1 − hi1 − hi2 − . . .

take values in [0, 1]. Let g = (g1, g2, . . . ) be a probability distribution on {1, 2, . . . },
and m be a positive constant. A multitype BGW process will be called LF with pa-
rameters (H, g, m), if for all i = 1, 2, . . . particles of type i reproduce according to
the LF(hi , g, m) distribution.

Simulation of Z using two dice with countably many sides each:

1. The r−die gives the type of the first particle, if any
2. The t−die generates the Geom (t0) number of the remaining particles as well as

their types

gives a representation in a slightly different form

E(sZ) = r0 + t0
∑∞

i=1 risi

1 −∑∞
i=1 tisi

.

With this formula for a LF pgf as a starting point, a naive attempt to introduce a
branching process with countably many types would define the reproduction law of
type i particles by pgfs

E(sZ(1) |Z(0) = ei) = ri0 + ti0
∑∞

j=1 rij sj

1 −∑∞
j=1 tij sj

allowing for most general dependence on the mother’s type. However, as it was
shown in the finite-dimensional case (Pollak 1974) and (Joffe and Letac 2006) for
the convolutions of the LF functions to be again LF, it is necessary that the parameters
tj = tij are independent of the mother type i.

Theorem 7.1 Consider a LF BGW process with parameters (H, g, m) starting
from a type i particle. Its nth generation size vector Z(n) has a LF distribution
LF(h(n)

i , g(n), m(n)) whose parameters satisfy

m(n) = m

n−1∑

k=0

gMk1t , (7.2)

m(n)g(n) = mg(I + M + · · · + Mn−1), (7.3)

H(n) = Mn − m(n)

1 + m(n)
Mn1tg(n), (7.4)

where H(n) is the matrix with the rows (h(n)
i )∞i=1.
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7.2.3 Applications in Branching Processes

Multitype BGW processes are classified according to the asymptotic properties of
the mean matrices M(n) = (m(n)

ij )∞i,j=1 with elements

m
(n)
ij = E(Z(n)

j |Z(0) = ei)

as n → ∞. The assumed independence of particles implies a recursion M(n) =
MM(n−1), where M = M(1). It follows that M(n) = Mn. Given that all powers Mn

are element-wise finite (which is always true in the LF case) the asymptotic behavior
of these powers is described by the Perron–Frobenius theory for countable matrices
(see Chap. 6 in Seneta 2006).

Recall that a nonnegative matrix M is called irreducible, if for any pair of indices
(i, j ) there is a natural number n such that m

(n)
ij > 0. The period of an index i in an

irreducible matrix M is defined as the greatest common divisor of all natural numbers
n such that m

(n)
ii > 0. In the irreducible case, all such indices have the same period

which is called the period of M. When this period equals one, the matrix M is called
aperiodic.

Due to Theorem 6.1 from Seneta (2006), all elements of the matrix power series
M(s) = ∑n≥0 snMn have a common convergence radius 0 ≤ R < ∞, called the
convergence parameter of the matrix M. Furthermore, one of the two alternatives
holds:

• R-transient case:
∑∞

n=0 m
(n)
ii Rn < ∞, i ≥ 1

• R-recurrent case:
∑∞

n=0 m
(n)
ii Rn = ∞, i ≥ 1

According to Seneta (2006; Theorem 6.2 and a remark afterwards), in the R-recurrent
case, there exist unique up to constant multipliers positive vectors u and v such that

RMut = ut , RvM = v.

Using Rvjmji/vi , one can transform the matrix M into a stochastic matrix. The
R-recurrent case is further divided into two subcases: R-null, when vut = ∞, and
R-positive, when vut < ∞.

Definition 7.3 A BGW process with countably many types will be called subcritical
(critical, supercritical) and transient {recurrent, null-recurrent, positively recurrent}
in the type space, if its matrix of the mean offspring numbers M has a convergence
radius R > 1 (R = 1, R < 1) and is R-transient {R-recurrent, R-null recurrent,
R-positively recurrent}

Proposition 7.1 In the supercritical positively recurrent case when the Perron–
Frobenius eigenvalue of M, ρ > 1,

P(Z(n) 
= 0) → (ρ − 1)(1 + m)−1βut.

Furthermore, for any w with bounded components and vwt > 0,

P(Z(n)wt > ρnx|Z(n) 
= 0, Z(0) = ei ) → e−x(ρ−1)/cw , x > 0. (7.5)
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This result concludes our elementary review of Sagitov’s theory. The paper by
Sagitov (2013) contains a number of interesting results and proofs, some of them
carried out using the methodology of branching process trees and contour processes.
He also extends the results to the Crump–Mode–Jagers process. BGW processes with
countable type space provide a natural mathematical tool for analysis of dynamics
of proliferating particles within cells, such as viral genomes, amplified gene copies,
and other. The process considered by Sagitov (2013) has not yet been applied to
any biological model. However, despite the restrictive requirement of all progeny
distributions being independent of parent type, the LF process is of interest for
biological applications.

7.3 Biological Models with Denumerable Infinity of Types

An example of such an application is the paper by Taïb (1993), where a branching
model is proposed for the behavior of populations of the budding yeast Saccha-
romyces cerevisiae. Using the idea of branching processes counted by random
characteristics (Sect. C.1.2), explicit expressions are obtained describing different as-
pects of the asymptotic composition of such populations. Using the author’s words,
“The main purpose of this note is to show that the branching process approach
is an alternative to deterministic population models based on differential equation
methods.”

A complementary reading to the material of Sect. 7.7 is a paper by Kowald (1997),
which concerns the possible mechanisms for the regulation of telomere length. As
mentioned in Sect. 7.7, since DNA polymerases can only synthesize a new DNA
strand in the 5′–3′ direction and needs a primer that provides a free 3′ end, the cel-
lular replication machinery is unable to duplicate the 3′ ends of linear chromosomes
unless special mechanisms are operative. While the telomeres seem to shorten contin-
uously in human somatic cells because of the “end replication” problem, it appears
that telomere length is maintained in cancer cells, the germ line, and unicellular
organisms like yeast and Tetrahymena by a mechanism involving the enzyme telom-
erase, which elongates the 3′ ends of telomeres. However, telomerase must be part
of a more complicated mechanism to ensure that there is no net gain or loss of telom-
eric ends. Kowald (1997) describes a simple theoretical model, being in essence, a
denumerable-type branching process that can explain several experimental findings.
The simulations show that (i) the proposed mechanism is able to maintain telomeres
at a constant length, (ii) this length constancy is independent of the initial telomere
length, (iii) mutations of the telomeric sequence lead to an elongation of telomeres,
(iv) inhibition of telomerase causes telomeric shortening, and (v) it reproduces and
explains the experimental result that the addition of oligonucleotides to the culture
medium leads to an increase of telomere length. Although no formal mathemat-
ical analysis is carried out by Kowald (1997), the model may lead to interesting
applications.
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7.4 Application: A Model of Unstable Gene Amplification

In this section, we consider a different branching random walk model, leading to
different dynamics (see remarks at the end of this section). We consider a population
of abstract particles categorized into a denumerable quantity of types, denoted by
j = 0, 1, 2, . . . and evolving according to the following rules:

1. The lifespans of all particles are iid exponential random variables with mean 1/λ.
2. At the moment of death, a particle of type j ≥ 1 produces two progeny particles

each belonging to type j + 1 with probability b, to type j − 1 with probability
d, and to type j with probability 1 − b − d . However, a particle of type j = 0
produces two progeny of type 0.

3. The process is initiated at time t = 0 by a single particle of given type i > 0.

We consider the infinite vector Z(t) = (Z0(t), Z1(t), . . . ), where Zj (t) is the number
of particles of type j at time t .

The main results obtained are:

• Exact expressions for the expectations of the process, in the terms of modified
Bessel functions

• Asymptotic expressions for the expectations, exponential modified by negative
power terms

The distribution of Z(t) is determined by the probability generating functions (pgf’s).

Denote Fi(s, t), the pgf of the infinite vector
(
Z

(i)
0 (t), Z(i)

1 (t), . . .
)

of particle counts

at time t , given that at time t = 0, there was exactly one particle of type i. As
detailed in Kimmel and Stivers (1994), the pgf’s satisfy the following infinite system
of ordinary differential equations:

∂F0(s, t)

∂t
= λ[F 2

0 (s, t) − F0(s, t)],

∂Fi(s, t)

∂t
= λ[f (Fi−1(s, t), Fi(s, t), Fi+1(s, t)) − Fi(s, t)]i ≥ 1, (7.6)

where f (si−1, si , si+1) = ds2
i−1 + (1 − b − d)s2

i + bs2
i+1. The initial condition is

Fi(s, 0) = si .
Denote Mij (t), the mean number of particles of type j at time t , generated by a

process starting with a single particle of type i at t = 0. Differentiating Eq. (7.6)
with respect to sj , we obtain

d

dt
Mij (t) = λ

[
2dMi−1,j (t) + [1 − 2(b + d)]Mij (t) + 2bMi+1,j (t)

]
, i ≥ 1 (7.7)

and M0j = eλt δ0j . Equation (7.7) is a system of linear differential equations.
One way to solve Eq. (7.7) is to construct a generating function of the Mij ’s,

Mj (u, t) =
∑

i≥0

uiMij (t), j ≥ 0.
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Proceeding from the definition of Mj , we obtain from Eq. (7.7)

d

dt
Mj (u, t) =

[

2(b + d) − 2b

u

]

λeλt δ0j

+ λ

[

2du + [1 − 2(b + d)] + 2b

u

]

Mj (u, t) − 2λbM1j (t).

If j 
= 0, then δ0j (t) = 0, so

d

dt
Mj (u, t) = A(u)Mj (u, t) − 2bλM1j (t), j ≥ 1 (7.8)

where

A(u) = λ

[

2du + 1 − 2(b + d) + 2b

u

]

.

Denoting the Laplace transform of M by M̂, we transform Eq. (7.8) with respect
to t (Doetsch 1974):

pM̂j (u, p) − Mj (u, 0) = A(u)M̂j (u, p) − 2bλM̂1j (p).

Clearly, Mij (0) = δij , so Mj (u, 0) = uj . Therefore, we obtain

M̂j (u, p) = −u(uj − 2bλM̂1j (p))

2dλu2 + ([1 − 2(b + d)]λ − p)u + 2bλ
. (7.9)

M̂j (u, p) is analytic in p for any u ∈ [0, 1). Therefore, if û 
= 0 solves u[A(u) −
p] = 0, then û must also be a root of uj − 2bλM̂1j (p), which implies that M̂1j (p) =
ûj /(2bλ). The roots of the denominator are:

ûi = p − λ[1 − 2(b + d)] + (−1)i
√

(λ[1 − 2(b + d)] − p)2 − 16bdλ2

4dλ
, i = 1, 2.

(7.10)

Substituting û = û1 into M̂1j (p) = ûj /(2bλ), we obtain limp→∞ M̂1j (p) = 0 (p
real). The other root yields limp→∞ M̂1j (p) = ∞, inconsistent with the properties
of the Laplace transform. Using M̂1j (p) = ûj

1/(2bλ), we obtain

M̂1j (p) = 1

2λb
ĝ

(
p

4λd
− λ[1 − 2(b + d)]

4λd

)

, (7.11)

where

ĝ(x) =
{

x −
√

x2 − b

d

}j

.
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The counter image of M̂1j (p) is

M1j (t) = jeλ[1−2(b+d)]t

2bλt

(√
b

d

)j

Ij (4
√

bdλt), (7.12)

where Ij (z) is the modified Bessel function of order j (Abramowitz and Stegun
1958).

The following theorem describing the asymptotic behavior of M1j (t) was proved
in Kimmel and Stivers (1994):

Theorem 7.2 Suppose that b < d . Then,

M1j (t) ∼ Kj

eλ[1−2(
√

b−√
d)2]t

t3/2
, as t → ∞,

where

Kj = j
(√

b/d
)j

4λ3/2
√

2πb(bd)1/4
, j ≥ 1,

and

∑

j≥1

M1j (t) ∼ KS

eλ[1−2(
√

b−√
d)2]t

t3/2
, as t → ∞,

where

KS = d
√

π

4λ3/2
√

2π (bd)1/4(
√

b − √
d)2

.

Moreover,

∑

j≥1

Kj

KS

= 1.

The consequence of Theorem 7.2 is that this branching random walk exhibits
a property known as quasistationarity (mentioned in the context of Yaglom Theo-
rem 3.6). We see that the entire population

∑
j≥0 M1j (t) grows as exp (λt). Since

∑
j≥1 M1j (t) grows only as t−3/2eλ[1−2(

√
b−√

d)2]t , this means that M10(t) grows as
exp (λt), i.e., that type 0 is absorbing in the sense that M10(t)/

∑
j≥0 M1j (t) → 1, as

t → ∞ . However, M1i(t)/
∑

j≥1 M1j (t) → Ki/KS , i.e., the distribution of types
conditional on nonabsorption tends to a limit (i.e., it reaches the quasistationary distri-
bution). This quasistationary behavior of the random walk with an absorbing barrier
is similar to that exhibited by the process of division-within-division (Sect. 7.6). In the
next section, Theorem 7.2 will be applied to a model of unstable gene amplification,
which may be considered an extension of the model of Sect. 3.7.
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This model is a time-continuous generalization of the random walk model from
Kimmel and Axelrod (1990). No particular mechanism of gene amplification is
assumed. It is only postulated that from one generation to another the number of
gene copies on extrachromosomal elements may double or half. This model is based
on the so-called quantitative shift model described by Peterson (1984).

Hypotheses:

1. The lifespans of cells are independent random variables distributed exponentially
with mean 1/λ.

2. (a) Progeny of a cell having at least two gene copies may have twice as many
gene copies per cell, the same number of gene copies per cell, or half as many
gene copies per cell, with respective probabilities b, 1 − b − d, and d.

(b) Progeny of a cell having a single copy of the gene may have two gene copies
per cell, one gene copy per cell, or no gene copies per cell, with respective
probabilities b, 1 − b − d , and d .

(c) Progeny of a cell having no gene copies will also have no gene copies.

Constants b and d are the probabilities of gene amplification and deamplification.
The asymptotic results of Theorem 7.2 apply directly if the following definition is
used: A cell belongs to type j ≥ 1 if it contains 2j−1 gene copies. A cell belongs to
type j = 0 if it contains no gene copies.

Kimmel and Stivers (1994) employed this model to estimate probabilities of gene
amplification and deamplification in cultured cells. Further analysis can be found,
among others, in Bobrowski and Kimmel (1999).

7.5 Application: Stable Gene Amplification

This is a model for a variant of the process of gene amplification different from the one
considered in the chapter on the GW process. The previous model accounted for the
instability of some amplified genes by their loss from cells during cell division. The
loss of these extrachromosomal elements was associated with the lack of centromeres
which are found on chromosomes and are required for faithful segregation at cell
division.

The model developed here accounts for situations in which gene amplification can
be either stable or unstable. It is based on different experimental observations and
a more extensive biological model (Windle et al. 1991). It describes the initiation
of amplification as the breakage of a piece of a chromosome releasing a fragment
containing a gene or genes but not a centromere. Genes on these acentric extra-
chromosomal fragments may replicate and recombine forming increased numbers
of tandemly repeated genes. As in the previous model, the extrachromosomal ele-
ments may segregate, although their segregation is not faithful because they do not
have the required centromeres.

A new aspect of the model is that it also includes the possibility of stabilization of
the number of amplified genes following their reintegration into chromosomes. This
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is because reintegration links the amplified genes to the centromeres on chromosomes
allowing them to be faithfully segregated at cell division.

From the mathematical viewpoint, this model is an example of a decomposable
process. Decomposable processes include a subclass of transient types which are
irreversibly lost from the process. Processes limited to the remaining types may
behave variously. In this particular application, as we will see, it will reach a limit
distribution. A decomposable process cannot be positive regular, as a whole, although
the persistent subprocess may be.

7.5.1 Assumptions

The following is the list of model hypotheses (Fig. 7.1):

1. All acentric (extrachromosomal) elements evolve independently of each other.
2. Types:

(a) Acentric elements containing i = 1, 2, . . . gene copies
(b) Chromosomes with one or more sites containing reintegrated elements, each

containing i = 1, 2, . . . gene copies.
3. In each cell generation, three types of events can occur for each acentric

extrachromosomal element:
(a) Element replicates and breaks at a random site, and the pieces segregate.
(b) Element replicates and does not break.
(c) Element reintegrates into a chromosome.

4. With probability a, the element with i gene copies replicates and yields a single
element with 2i gene copies, and then breaks at a random site producing two
pieces with lengths j and 2i − j , where j = 1, . . . , 2i − 1. The probability of
breakage at each site is the same, and equal to 1/(2i − 1). The pieces segregate
so that they both pass to the same progeny cell with probability α, and pass to
different progeny cells with probability 1 − α.

5. With probability b, the element with i gene copies replicates to yield a single
element with 2i gene copies, but it does not break. It then passes with probability
1/2 to one of the two progeny.

6. With probability c, the element containing i copies of the gene is integrated into
a chromosome with a centromere and then replicates and segregates with the
chromosome. This results in progeny cells with equal number of gene copies.
No further breakage, nor increase or decrease in gene copy number occurs at
this site at subsequent cell divisions. The probability of reintegration is equal to
c = 1 − (a + b).

Initial conditions. At the beginning of the process, a single cell contains a single
extrachromosomal element with one gene copy, i = 1. It is understood that this
element was formed in the past by deletion of one copy of a chromosomal gene in a
founder cell.
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Fig. 7.1 Schematic representation of the events in the gene amplification model. (Source: Kimmel
et al. 1992)

Remark

1. Breakage can be understood as imperfect resolution of replicated DNA.
2. If breakage occurs, a randomly chosen progeny cell will contain both pieces with

probability α/2, no piece with probability α/2, a single piece of size j with
probability (1−α)/2, and a single piece of size 2i −j with probability (1−α)/2.

Consequences

1. In successive cell generations cells with no gene copies are produced. These are
killed by a selective agent.

2. Among cells with at least one gene copy, there will be an initial increase in
number of extrachromosomal elements per cell, and number of gene copies per
extrachromosomal element. Subsequently, as the acentric elements become rein-
tegrated, their number per cell will decrease and the proportion of cells with stably
integrated copies will increase (as observed).

3. Eventual consequence will be a population of cells containing only one or more
integrated elements with a distribution of gene copy numbers. It is possible to
compute this distribution.
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7.5.2 Pgf’s and Expectations

The process includes an infinite spectrum of chromosomal and extrachromosomal
elements with 1, 2, . . . , copies of the gene. We consider a randomly selected line of
descent of cells. We define the following random variables:

• Xi
n, the number of extrachromosomal elements with i copies of the gene, in the

nth cell generation.
• Y i

n, the number of elements reintegrated into chromosomes, with i copies of the
gene, in the nth cell generation.

The sequence {{(X1
n, Y 1

n ), (X2
n, Y 2

n ), . . . }, n = 0, 1, 2, . . . }, is a multitype GW process
with a denumerable infinite number of particle types.

Let us consider the aggregated process {(Xn, Yn), n = 0, 1, 2, . . . }, where

Xn =
∞∑

i=1

Xi
n, Yn =

∞∑

i=1

Y i
n,

are the total number of the extrachromosomal elements and elements reintegrated
into chromosomes, in generation n. Following the rules of the process (see Fig. 7.1),
the pgf of the number of progeny of an extrachromosomal element is equal to

f 1(s1, s2) = aα

2
s2

1 +
[

a(1 − α) + b

2

]

s1 + aα + b

2
+ cs2. (7.13)

The coefficient of the quadratic term reflects the fact that two extrachromosomal
elements are produced from a single one only if breakage occurs (wp a), both ele-
ments segregate into one progeny (wp α), and this progeny belongs to the lineage
followed (wp 1

2 ). The remaining coefficients are derived analogously.
The pgf of the number of progeny of a reintegrated element is simply f 2(s2) =

s2, since such element is stable. Let us denote by f 1
n (s1, s2) the joint pgf of

{(Xn, Yn)|(X0, Y0) = (1, 0)}. The following relationship can be derived using the
backward approach as in Sect. 3.2:

f 1
n+1(s1, s2) = aα

2
[f 1

n (s1, s2)]2 +
[

a(1 − α) + b

2

]

f 1
n (s1, s2) + aα + b

2
+ cs2.

(7.14)

This equation provides a recursive procedure for finding distributions of the
process.

The process tends to a nontrivial limit with probability 1,

(Xn, Yn) −→ (0, Y∞), wp 1, as n → ∞. (7.15)

To demonstrate it, let us first note that Yn+1(ω) ≥ Yn(ω) which yields the almost
sure convergence of Yn, with the limit being possibly an improper random variable.
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However, passing to infinity with n in Eq. (7.14) yields the following quadratic
equation for the pgf of Y∞:

aα

2
[f 1

∞(1, s2)]2 +
[

a(1 − α) + b

2
− 1

]

f 1
∞(1, s2) + aα + b

2
+ cs2 = 0. (7.16)

The pgf solution of (7.16) verifies f 1∞(1, s2)|s2=1 = 1, which means that Y∞ is a
proper random variable. On the other hand, if we set s2 = 1 in Eq. (7.13), we see
that {Xn} is a subcritical GW process, which yields P{limn→∞ Xn = 0} = 1. This
completes the proof of (7.15).

Let us note that in an experimental setting, only cells with nonzero number of
elements (extrachromosomal or reintegrated) are observed, since only these cells sur-
vive under drug selection pressure. Therefore, all distributions should be conditional
on nonextinction of the process, i.e., on the event {(Xn, Yn) 
= (0, 0)}. In particular,
the conditional probability that in generation n, extrachromosomal elements are still
present in the lineage, is

rn = P{Xn > 0|(Xn, Yn) 
= (0, 0)} = 1 − f 1
n (0, 1)

1 − f 1
n (0, 0)

. (7.17)

Let us consider the expectations of the complete process {{(X1
n, Y 1

n ), (X2
n, Y 2

n ), . . . },
n = 0, 1, 2, . . . },

μi
n = E(Xi

n), νi
n = E(Y i

n), i ≥ 1, n ≥ 0. (7.18)

It is not difficult to verify that the infinite vector μn = {μ1
n, μ2

n, . . . } satisfies the
recurrence

μn+1 = μnM, n ≥ 0; μi
0 = δ1i , (7.19)

where M is an infinite matrix of the form

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a b/2 0 0

a/3 a/3 a/3 b/2 0

a/5 a/5 a/5 a/5 a/5 b/2 0

a/7 a/7 a/7 a/7 a/7 a/7 a/7 b/2 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (7.20)

The expectations of Y i
n satisfy

νi
n+1 = νi

n + cμi
n, n ≥ 0, νi

0 = 0. (7.21)

Let us note that νi
n+1 ≥ νi

n. Using this and an analysis involving (7.16), we obtain
that limn→∞

∑∞
i=1 νi

n = limn→∞ E(Yn) < ∞. Therefore, limn→∞ νi
n exist and are

finite (i ≥ 1).
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The expectations μi
n = E(Xi

n) and νi
n = E(Y i

n), properly normed, can be under-
stood as distributions of the sizes of extrachromosomal and reintegrated elements
in the lineage. To calculate these expectations, it is convenient to introduce the
generating functions

Mn(z) =
∞∑

i=1

μi
nzi , Nn(z) =

∞∑

i=1

νi
nzi , z ∈ [0, 1].

Equations (7.19) and (7.21) yield the following relationships for the generating
function:

Mn+1(z) = b

2
Mn(z2) + az

1 − z

∫ 1

z

Mn(u2)

u2
du, n ≥ 0,

where M0(z) = z, and

Nn(z) = c

n−1∑

k=0

Mk(z).

After carrying out differentiations with respect to z in the first of the relationships
above, we obtain that the mean size of the extrachromosomal elements in generation
n is equal to

M ′
n(1 − )

Mn(1)
=
(

b + a
b
2 + a

)n

,

which tends to ∞, as n → ∞. The expected size of reintegrated elements has a finite
limit

N ′∞(1 − )

N∞(1)
= 1 − a − b

2

1 − a − b
.

7.5.3 Model Versus Data

Parameters of the model for a single experimental system can be deduced based on
experiments by Geoffrey Wahl and colleagues of the Salk Institute (Windle et al.
1991). From his results, it is possible to estimate the following quantities:

1. The fraction of nonextinct cells still containing extrachromosomal elements after
9 generations (r9 ∼ 0.39).

2. The fraction of nonextinct cells still containing extrachromosomal elements after
35 generations (r35 ∼ 0.02, highly inaccurate).

3. The fraction of nonextinct cells with 1–2 elements extrachromosomal and/or
reintegrated (as opposed to cells containing ≥ 3 elements), after 9 generations
(p12 ∼ 0.54).
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The theoretical relationships (7.17) and (7.14), with parameter values

α = 1, a = 0.92, b = 0.035,

yield

r9 = 0.39, r35 = 0.05, p12 = 0.63,

in approximate agreement with the experiment.
The expected size of reintegrated elements predicted by the model is rather

low, equal to 4/3. However, this is based on the assumption that the initial
extrachromosomal element in generation 0 is of a unit size.

7.6 Application: Quasistationarity in a Branching Model
of Division-Within-Division

Branching-within-branching occurs in various settings in cell and molecular biol-
ogy. Examples include tightly regulated phenomena like replication of chromosomal
DNA, and also processes in which the number of objects produced in each biologi-
cal cell is a random variable. These are gene amplification in cancer cells, plasmid
dynamics in bacteria, and proliferation of viral particles in host cells.

The general motivating idea is stability arising from selection superimposed on a
random mechanism. We consider a set of large particles (biological cells), following
a binary fission process. Each of the large particles is born containing a number of
small particles (genes, viruses, organelles), which multiply or decay during the large
particle’s lifetime. The arising population of small particles is then split between the
two progeny of the large particle and the process continues in each of them.

Let us suppose that the presence of at least one small particle is necessary to
ensure the viability of the large particle. This can be due to a selection factor existing
in the environment. One example of such selection factor is a cytotoxic drug, which
eliminates cells (large particles) devoid of resistance genes (small particles), as in
the gene amplification model of Sect. 7.4. We are interested in the behavior of the
population of large particles surviving selection, i.e., large particles having at least
one small particle inside.

We show that if the smaller particles follow a subcritical process, the number
of smaller particles contained in a nonextinct large particles tends to a limit distri-
bution. The result, in its present form (Kimmel 1997), depends on several detailed
hypotheses, but these can be relaxed.

A similar idea has been explored in the paper by Bühler (1992), where a population
(whose individuals are called cells) develops according to a GW branching process.
The cells are living in separate groups called subunits. Whenever a subunit becomes
“too big,” it splits into two or more new subunits. The number and the sizes of the
new subunits are determined independently from the behavior of all the cells in the
other subunits and of the prehistory of the process, the only restriction being the
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Fig. 7.2 Large particle containing X small particles lives for a random time τ exponentially dis-
tributed with parameter λ and then splits into two progeny. During its lifetime each of the X small
particles proliferate producing correspondingly Y (1), Y (2), . . . , Y (X), small particles. Each of these
Y (k)’s is split independently among the two progeny of the large particle, so that large progeny 1
and 2 receive

∑X
k=1 Y

(k)
1 and

∑X
k=1 Y

(k)
2 small particles, respectively. The joint distributions of the

pairs (Y (k)
1 , Y (k)

2 ) are identical and symmetric. (Source: Arino et al. 1995)

obvious one that the total number of cells in “daughter” subunits be the number of
daughter cells from the cells of the “mother” subunit and that no empty subunits
be formed. The work was stimulated by the model of growth of intestinal crypts by
Loeffler and Grosmann (1991).

7.6.1 Definition of the Process

Rules (schematically depicted in Fig. 7.2):

1. The population of large particles evolves according to a binary-fission time-
continuous Markov branching process (Yule process), i.e., each particle lives
for a random time τ , exponential with parameter λ, and then splits into two
progeny, each of which independently follows the same scenario.

2. Each large particle contains X small particles at its birth. Each of these proliferates
producing

Y (1), Y (2), . . . , Y (X), (7.22)

small particle progeny at the end of the large particle’s lifetime.
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3. Each of the Y (k) progeny of the initial kth small particle is independently split
between the progeny of the large particle, so that large progeny 1 and 2 receive
correspondingly Y

(k)
1 and Y

(k)
2 small progeny. The joint distributions of the pairs

(Y (k)
1 , Y (k)

2 ) are identical, independent for all (k), and symmetric in Y
(k)
1 and Y

(k)
2 .

They are described by the joint pgf

f12(s1, s2) = E[s
Y

(1)
1

1 s
Y

(1)
2

2 ]. (7.23)

4. As a result, each of the large progeny receives the total of

X1 =
X∑

k=1

Y
(k)
1 and X2 =

X∑

k=1

Y
(k)
2 (7.24)

small progeny particles.

The resulting branching process can be described as a Markov time-continuous pro-
cess with denumerable infinity of types of large particles. The large particle is of type
i if it contains i copies of small particles at its birth. Let us denote the vector of counts
of large particles of all types at time t , by Z(t) = [Z0(t), Z1(t), Z2(t), . . .], and the
infinite matrix of expected values M(t) = [Mij (t)] by Mij (t) = E[Zj (t)|Zi(0) =
1, Zk(0) = 0, k 
= i].

Let us define coefficients anm(i) using the expansion of the pgf of the sums in
Eq. (7.24) given X = i,

[f12(s1, s2)]i =
∑

n,m≥0

anm(i)sn
1 sm

2 , (7.25)

anm(i) is equal to the probability that among the progeny of the i small particles
present at birth of the large particle, n will end in large progeny 1, and m will end in
large progeny 2.

The expected value equations are obtained in the way analogous as in Sect. 4.2.1
(Kimmel 1997):

d

dt
M(t) = λ(2A − I )M(t), M(0) = I , (7.26)

where A = [Aij ] = [aj (i)] is the matrix of coefficients of the marginal pgf of X1

given X = i

[f (s1)]i = [f12(s1, 1)]i =
∑

j ,l≥0

ajl(i)s
j

1 =
∑

j≥0

aj (i)sj

1 , (7.27)

and I is the infinite identity matrix. aj (i) is equal to the probability that of the i small
particles present in the large particle at its birth, j will end in large progeny 1 (or in
large progeny 2).
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Equation (7.26) can be explicitly solved using the Laplace transform techniques.
The solution can be expressed in the form of generating function

Mk(u, t) =
∑

l≥0

Mkl(t)u
l , u ∈ [0, 1]. (7.28)

We obtain

Mk(u, t) =
∑

j≥0

(2λt)j

j ! [fj (u)]ke−λt , k ≥ 0. (7.29)

where fj (u) is the j th iterate of the marginal pgf of Y
(1)
1 .

7.6.2 Quasistationarity

We begin with stating several facts concerning the GW process with progeny pgf
f (u) (see Sect. 3.5.2).

If f ′(1 − ) < 1 (the subcritical case) then as j → ∞,

fj (u) − fj (0)

1 − fj (0)
→ B(u), (7.30)

i.e., conditionally on nonextinction, the process tends to a limit distribution, with
pgf B(u) such that B(0) = 0, B(1) = 1 (c.f. Athreya and Ney 2004, Corollary I.8.1).
This behavior is known as quasistationarity. Moreover, as j → ∞

fj (u) − 1 ∼ ρjQ(u), (7.31)

where ρ = f ′(1 − ) and the function Q(u) satisfies

Q(0) − Q(u)

Q(0)
= B(u), (7.32)

with Q(1) = 0, Q′(1 − ) = 1, Q(u) ≤ 0, and Q(u) increasing for u ∈ [0, 1].
Functions B(u) and Q(u) are unique solutions of certain functional equations

(Sect. 3.5.2) . The following results are proved in Kimmel (1997):

Theorem 7.3 Let us consider the process defined in Sect. 7.6.1 started by a large
ancestor of type k and let ρ = f ′(1 − ) < 1. Then, as t → ∞,

eλt − Mk(u, t) ∼ −kQ(u)e(2ρ−1)λt , (7.33)

for all k ≥ 1.

Corollary 7.1 The expected frequencies {μkl(t), l ≥ 1} of large particles of type
l among the particles of nonzero type tend, as t → ∞, to a limit distribution
independent of k, characterized by the pgf B(u).
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7.6.3 Gene Amplification

The process considered here serves as another model of gene amplification. It is
a direct generalization of GW process models of Sect. 3.7.2. Let us assume that
large particles are cells and the small ones are copies of the gene conferring drug
resistance located on extrachromosomal elements. Cells without any copies of the
gene are eliminated by the drug (the selective agent). We accept the following specific
hypotheses, similar to those in Kimmel and Axelrod (1990) and Kimmel and Stivers
(1994):

• During cell’s lifetime each extrachromosomal copy of the gene is successfully
replicated with probability β, less than 1.

• The resulting two copies are segregated to the same progeny cell with probability
α and to two different progeny cells with probability 1 − α. α may be called the
probability of cosegregation and has been shown to be ≈ 0.9 in one cell system.

The above hypotheses yield

f12(s1, s2) = β
[
(1 − α)s1s2 + α

2

(
s2

1 + s2
2

)]+ (1 − β), (7.34)

and

f (u) = βα

2
u2 + β(1 − α)u +

(
βα

2
+ 1 − β

)

, (7.35)

with ρ = f ′(1 − ) = β < 1. Therefore our theorem and its corollary apply.
Qualitatively, all the experimental observations above are explained by our re-

sults: The stable quasistationary distribution of gene copy count is predicted by
Corollary 7.1.

If the type 0 cells are not removed by the drug, then the theorem proves they
dominate the population. Indeed by the theorem the resistant cells grow as

∑

l≥1

Mkl(t) = Mk(1, t) − Mk(0, t) ∼ −kQ(0)e(2ρ−1)λt , ρ < 1, (7.36)

while the entire population grows as eλt .
If ρ > 1/2, then in the presence of the drug, resistant cells grow as e(2ρ−1)λt , i.e.,

exponentially but slower than in the nonselective conditions.

7.7 Application: Mathematical Modeling of the Loss
of Telomere Sequences

7.7.1 Stochastic Model

Telomeres are structures at the ends of chromosomes. They consist of repeated DNA
sequences which play a role in replication of the ends of DNA, and in preventing
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the ends of chromosomes from sticking together. The number of repeat sequences of
the telomeres is variable, and on the average, declines with the increasing number of
divisions of normal cells in culture, and of somatic cells in organisms. Reviews on
the biology of telomeres include Blackburn (1991), Greider and Blackburn (1996),
Greider (1996), Zakian (1995, 1996).

Cellular senescence, the loss of capacity to proliferate, seems to be associated
with the inability to maintain a minimum number of telomere sequences. In con-
trast, immortalized cells such as cancer cells, seem to be able to maintain a low
but effective number of telomere sequences. The first researcher who noticed the
relationship between telomere endings and cell senescence was Olovnikov (1973).
He correctly attributed this loss to the end-replication problem, which arises because
of the inability of the DNA polymerase to replicate the downstream end of the DNA
molecule. The effect is that each successive DNA replication results in a copy, which
is shorter at one end.

Our model (Arino et al. 1995) describes shortening of telomeres by incomplete
replication. The two uses of the model are predictions of (1) the expected telomere
length and (2) of the fraction of viable cells in aging cell populations. For these
purposes, it is first necessary to describe the dynamics of telomere loss from a single
chromosome. For simplicity, we proceed as if the process of telomere loss ended
when all the telomere deletion units, each containing possibly more than a single
DNA repeat, are lost. The same mathematics applies to telomere loss until a particular
checkpoint is encountered.

A chromosome is an entity with a centromere, while a chromatid is a double
helix composed of two single strands of DNA. In G1 phase of the cell cycle, before
DNA replication, a chromosome is composed of one chromatid, while in G2 and
M phases, after DNA replication, a chromosome is composed of two chromatids.
Levy et al. (1992) described telomere loss in terms of what happens to single DNA
strands in G1. We follow that description. Figure 7.3 depicts the scheme of deletion
and segregation of telomere sequences on chromosome ends. It can be summarized
mathematically as follows:

• Each chromatid is composed of two strands named upper or 5′ → 3′, and lower
or 3′ → 5′, each of which has two ends named left and right. The numbers of
telomeric deletion units on both ends of both strands are symbolically represented
by quadruples of the form (a, b; c, d), where a and c correspond to the left and
right ends of the upper strand, while b and d correspond to the left and right ends
of the lower strand. The only important combinations of a, b, c, and d are of the
form (n − 1, n; m, m) or (n, n; m, m − 1), since they always arise after a single
replication round (details not shown).

• Cells containing chromatids described by the quadruple (n − 1, n; m, m) give
birth to two progeny containing chromatids of the types (n − 1, n; m, m) and
(n − 1, n − 1; m, m − 1), respectively. This transition rule as well as the dual rule
for the other admissible type are depicted symbolically below. Let us note that one
progeny is always of the same type as the parent cell, while the other is missing
two sequences, each on a different end of a different strand:
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Fig. 7.3 Transition rules for deletion and segregation of telomere ends on a chromosome in G1.
DNA strands 1 and 2 replicate and segregate into different daughter cells A and B, resulting in
chromatids (1A, 2A) and (1B, 2B), respectively. Due to the end-replication problem, one DNA
strand on each of the newly created chromatids contains additional deletion at its right or left end,
depending on its orientation and presence of the deletion on the corresponding strand of the mother
chromatid. For additional explanations see Levy et al. (1992). (Source: Kimmel and Axelrod 1991)

(n − 1, n; m, m)

⎧
⎨

⎩

→ (n − 1, n; m, m)

→ (n − 1, n − 1; m, m − 1)

(n, n; m, m − 1)

⎧
⎨

⎩

→ (n, n; m, m − 1)

→ (n − 1, n; m − 1, m − 1).

• Proliferation ends when the telomere ends become short enough. Without a loss
of generality, we assume that cells of the types (n−1, n; 0, 0) and (0, 0; m, m−1)
have a single progeny of the type identical to that of the parent cell, i.e.:

(n − 1, n; 0, 0) → (n − 1, n; 0, 0)

(0, 0; m, m − 1) → (0, 0; m, m − 1).
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If we renumber states in such way that index k = 0, 1, . . . , is equal to the sum
of numbers of deletion units on the left ends of the upper and lower strand, and
index l = 0, 1, . . . , is equal to the sum of numbers of deletion units on the right
ends of the upper and lower strand:

k =

⎧
⎪⎪⎨

⎪⎪⎩

2n, if (n, n; m, m − 1) occurs,

or

2n − 1, if (n − 1, n; m, m) occurs,

(7.37)

l =

⎧
⎪⎪⎨

⎪⎪⎩

2m, if (n − 1, n; m, m) occurs,

or

2m − 1, if (n, n; m, m − 1) occurs,

(7.38)

then the admissible transitions become:

(k, l)

⎧
⎨

⎩

→ (k, l)

→ (k − 1, l − 1)
(7.39)

(k, 0) → (k, 0) (7.40)

(0, l) → (0, l). (7.41)

In the array (k, l), where k and l are nonnegative integers, the admissible transitions
belong to disjoint paths which can be numbered by k − l (path number assuming
values from −∞ through ∞). Each of these paths can be treated separately. The state
number within each path can be taken as i = min(k, l). Biologically, it is the number
of deletion units on the shorter, and therefore limiting, end. Now the transitions have
the form

i

⎧
⎨

⎩

→ i

→ i − 1
(7.42)

0 → 0. (7.43)

7.7.2 Branching Process

Let us assume that lifelengths of cells are independent identically distributed random
variables with distribution with density g(t) and cumulative distribution G(t). Let
us denote

Xij (t), t ∈ [0, ∞), i, j = 0, 1, . . . ,
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the family of random variables equal to the number of cells in state j at time t , in
the process started at time 0 by a single cell in state i.

Our process can be described as a branching random walk. In our case this means
that the type of the progeny object (chromosome) is either identical with the parental
type or it is shortened by a single unit. We have,

Xij (t) =
⎧
⎨

⎩

Xij (t − τ ) + Xi−1,j (t − τ ); τ ≤ t ,

δij ; τ > t ,
(7.44)

for all j = 0, 1, . . . , i = 1, 2, . . . and t ∈ [0, ∞). The above equation expresses the
fact that the number of cells in state j at time t , in a process started at time 0 by
a single cell in state i, is either equal to δij , if the ancestor cell is still alive, or it
is equal to the sum of the numbers of cells in state j at time t in two subprocesses
started at time τ (i.e., at the moment of the ancestor’s death) by the two progeny of
the ancestor, one of which is in state i and the other in state i − 1. Another equation,

X0j (t) =
⎧
⎨

⎩

X0j (t − τ ), τ ≤ t ,

δ0j , τ > t ,
(7.45)

for all j = 0, 1, . . . and t ∈ [0, ∞) expresses the fact that cells in state 0 do not
proliferate.

Let

Mij (t) = E[Xij (t)] (7.46)

denote the expected count of cells in state j at time t in a process started by an
ancestor of type i. We obtain the following equation for the matrix M(t) = [Mij (t)]:

M(t) = Ag(t) ∗ M(t) + Ḡ(t)I , (7.47)

where Ḡ(t) = 1 − G(t) and symbol “∗” denotes convolution of matrix functions on
[0, ∞), g(t) ∗ M(t) = ∫ t

0 g(t − τ )M(τ )dτ , I is the infinite identity matrix and the
infinite matrix A has the form,

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 · · ·
1 1 0 0 · · ·
0 1 1 0 · · ·
0 0 1 1 · · ·
...

...
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The solution of this backward equation can be represented as an infinite series

M =
[
∑

k≥0

(Ag)∗k

]

∗ ḠI = ḠI ∗
[
∑

k≥0

(Ag)∗k

]

.
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The second series is the solution of a dual forward equation

M(t) = M(t) ∗ Ag(t) + Ḡ(t)I , (7.48)

which is equivalent to the system

Mij (t) = g(t) ∗ [Mij (t) + Mi,j+1(t)] + δij Ḡ(t), j = 0, 1, . . . , t ≥ 0, (7.49)

which can be examined separately for each ancestor’s state i. This would not be
possible with the backward system.

7.7.3 Analysis in the Markov Case

If the cell lifelength distributions are exponential, i.e., the density has the form
g(t) = α exp ( − αt), the system of convolution Eqs. (7.49) is equivalent to the
following infinite system of differential equations:

Ṁij (t) = αMi,j+1(t), Mij (0) = δij , j = 0, 1, . . . , t ≥ 0. (7.50)

This system has an explicit solution,

Mij (t) =
⎧
⎨

⎩

αi−j t i−j

(i−j )! , 0 ≤ j ≤ i,

0, j > i.
(7.51)

Let Mj (t) denote the expected number of cells in state j at time t , if the initial
expected counts of cells in states 0, 1, . . . were M0(0), M1(0), . . . . Expressions for
Mj (t) are obtained by combining solutions of Eq. (7.50).

If the initial cells belong to finitely many different states, so that,

Mj (0) = 0, j > N , (7.52)

then

Mj (t) =
N∑

k=j

Mk(0)
αk−j tk−j

(k − j )! . (7.53)

We may notice that the polynomial dynamics of the expected values is a conse-
quence of the one-way means of communication between types in the process. This
is known as reducibility of the process. Biologically, it is a consequence of the fact
that loss of telomere repeats is irreversible.
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7.7.4 Model Versus Data

The Markov branching process model was employed to reproduce experimental data
on telomere loss. Let us suppose that the number of telomeric repeats in a given
chromosome at the time the clonal population growth is initiated (t = 0) exceeded
the critical (checkpoint) length by d deletion units i.e.,

Mj (0) = δjdN0. (7.54)

As Levy and coworkers (1992) point out, it is likely that telomeres on different
chromosomes differ in their initial number of TTAGGG repeats. Since only the
chromosomes with the shortest telomeres are relevant to replicative senescence,
only the deletions on the shorter of these chromosomes’ two telomeres need to be
considered. Suppose there are k such chromosomes with the same critical d, and
they segregate independently and that only one critically short telomere is sufficient
to signal the cell cycle exit.

We identified two sources of data useful for modeling. One is the paper by Harley
and Goldstein (1980) in which fractions F (d , t) of proliferating cells were measured
at different times after a clonal culture had been established. These data have been
used for modeling by Levy and coworkers (1982; see their Fig. 6).

Another source is the paper by Counter and coworkers (1992) which includes
experimental data on the expected telomere lengths (mean number of excess deletion
units) n(t).

Our expressions for the expected frequencies of telomere repeat counts on a single
chromosome can be combined to yield expressions for F (d, t) and n(t) (details in
Arino et al. 1996).

Figure 7.4 depicts the results of modeling of the fraction of viable cells as a
function of the number of cell doublings of a clonal culture. Experimental data for
two independent cultures of a human fibroblast strain (Harley and Goldstein 1980;
after Levy et al. 1992, Fig. 6, modified) are compared to predictions using the Markov
branching process model.

The fit has been obtained with parameters d = 65 and k = 40. Note that the
number of chromosomes has to be set equal to k = 40 to achieve an acceptable
fit, otherwise the decrease in F (d , t) is not sharp enough. This number is not very
different from the number of human chromosomes (equal to 2 × 23 = 46), which
may be taken to mean that all chromosomes have the same critical d-value.

Figure 7.5 depicts the results of modeling the mean length of terminal restriction
fragments (TRFs) in function of the number of cell doublings. Experimental data
for a number of cultures of normal and transfected cells, up to the crisis time (from
Counter et al. 1992) are compared to predictions using the Markov branching process
model. The fit has been obtained using parameters d = 65 and k = 40.
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Fig. 7.4 Fraction of viable cells versus the number of cell doublings. Experimental data for two
independent cultures of a human fibroblast strain represented by triangles and squares, are compared
to predictions using the Markov branching process model (continuous lines), with parameters
d = 65 and k = 40) and with a correction for growth fraction of 0.95. (Source: Arino et al. 1985)
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Fig. 7.5 Mean length of terminal restriction fragments (TRF’s) versus the number of cell dou-
blings. Experimental data for a number of cultures of normal and transfected cells, up to the crisis
time. Different symbols for different experiments, are compared to predictions using the Markov
branching process model (continuous line) with parameters d = 65 and k = 40. (Source: Arino et
al. 1985)
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7.7.5 Further Work on Telomere Modeling

Subsequently, Olofsson and Kimmel (1999) and Olofsson (2000) considered models
of telomere shortening involving the possibility of cell death, with the probability of
the latter depending on cell type. These models exhibit a variety of limit behaviors,
being the consequence of reducibility. The basic tools are the Tauberian theorems
for pgf’s.

An interesting addition to the literature on stochastic models of telomere dynamics
is the paper by Olofsson and Bertuch (2010), which proposes a mechanism for
telomere shortening followed by escape into growth (survivorship). They use a model
in the form of a general (Jagers) branching process and relate it to data on a population
of cells of the yeast S. cerevisiae following loss of telomerase. Experimental data
indicate that a population of telomerase-deficient cells regains exponential growth
after a period of slowing due to critical telomere shortening. The explanation for
this phenomenon is that some cells engage telomerase-independent pathways to
maintain telomeres that allow them to become “survivors.” The model takes into
account random variation in individual cell cycle times and other factors and leads
to estimation of parameters such as the probability of an individual cell becoming a
survivor.

The model uses the paradigm of the general branching process (Haccou et al. 2005)
and assumes that individuals reproduce by budding. The times between consecutive
budding events (i.e., the cell cycle times) are assumed to be independent random
variables with the same distribution. A parent cell produces progeny cells at different
times during its life which is relevant to budding yeast and different from the usual
binary fission models. An individual yeast cell contains 16 chromosomes, so it has 32
telomeres. In cells that express telomerase, the number of telomeric repeats present
varies to a certain extent from end to end resulting in a distribution of telomere
lengths around a strain-specific point (Shampay and Blackburn 1988). In the absence
of telomerase, the rate of loss of telomeric DNA follows a probability distribution
over a range from three to five base pairs per end per cell division (Lundblad and
Szostak 1989; Singer and Gottschling 1994). The “telomere unit” is defined to be
four base pairs and it is assumed that one telomere unit is lost per division. The type
of a cell is the number of remaining telomere units.

A population starts from a single telomerase-deficient cell of type n. The cell
produces one progeny cell upon completion of its cell cycle. All telomeres have
shortened by one unit in the preceding round of DNA replication and are randomly
allocated to the parent cell and to the progeny cell. It is reasonable to assume that
both parent and progeny, after division, have type n − 1. When a cell reaches type
0 (the critical telomere length), it stops dividing and becomes senescent, unless
an alternative mechanism of telomere maintenance is established. Senescent cells
remain in the population but do not further reproduce. It is assumed that cell cycle
times are independent random variables with a common cumulative distribution
function (cdf) F . The main quantity of interest is the number of cells in the population
at time t , which we denote by Zt . The population starts from a single cell of type n
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at time t = 0. In this basic model, the expected value of Zt is

E [Zt ] = 1 − F (t) +
n−1∑

k=1

2k
(
F ∗k(t) − F ∗(k+1)(t)

)+ 2nF ∗n(t), (7.55)

where F ∗k denotes k-fold convolution of F , that is, the cdf of the sum of k cell cycle
times. The factor 2k is the expected number of cells in the kth generation. Each cell in
the kth generation is present in the population if the sum of k cell cycle times is less
than t but the sum of k +1 cell cycle times is greater than t . As the probability of this
event is F ∗k(t) − F ∗(k+1)(t), the expected number of cells from the kth generation
that are present at t equals

2k
(
F ∗k(t) − F ∗(k+1)(t)

)
(7.56)

and, noting that cells of type 0 do not further reproduce, summing over k gives the
expression for E[Zt ]. E[Zt ] → 2n as t → ∞ so 2n is the final number of cells.

To account for the restored exponential growth, it is assumed that cells that have
reached type 0 have the possibility to turn into “survivors” or become senescent.
The expression for m(k), the expected number of cells in the kth generation, remains
the same for k ≤ n, but for k > n it changes since cells of type 0 may now escape
senescence and keep reproducing. Cell of type 0 becomes a survivor with probability
p and the survivor status is inherited by all of its progeny. Thus, each survivor starts
a population of survivors where telomere length is generally maintained and we
assume the only limiting factor is the “absolute” (not related to telomere length)
replicative lifespan n0. The nonsurvivors turn senescent.

The final expression is provided in Olofsson and Bertuch (2010) Proposition 2.2,
which can be restated as follows:

Proposition Let M(k) denote the expected number of cells in generation k in a
branching process where cell cycle times are independent with cdf F , the initial
telomere length is n, the replicative lifespan is n0, the probability of becoming a
survivor is p. Then

M(k) =

⎧
⎪⎪⎨

⎪⎪⎩

2k , for k ≤ n0

m(k), for n0 < k ≤ n

d(n) + (1 − p)s(n) + p
∑n0

i=1 mi,k−n, for k > n

(7.57)

and the expected number of cells in the population at time t is

E[Zt ] = 1 − F (t) +
∞∑

k=1

M(k)(F ∗k(t) − F ∗(k+1)(t)). (7.58)

For brevity, we omit the definitions of functions m(k), s(n), and mij which are
related to the expected number of progeny of cells of various type and refer the reader
to the original paper.
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Fig. 7.6 Cell counts (logarithmic scale) of seven yeast cultures for the first eight days, fitted by
model curve. (Source: Olofsson and Bertuch 2009)

We reproduce Fig. 7.6 from Olofsson and Bertuch (2010), which shows the sig-
moidal shape characteristic of the population growth becoming first arrested and then
restored. The fit has been achieved assuming p = 0.001.

7.8 Application: Structured Cell Population Models

Structured population models describe proliferation of populations taking into ac-
count distributions of variables characterizing individuals. In the context of cell
populations, examples of structural variables are cell mass, levels of biochemical
constituents such as RNA or proteins, degree of cell maturation or differentiation,
etc. A frequently used way of modeling structured cell populations is by means of
partial differential equations (PDE) of transport type. One of the most general models
of this type was analyzed by Webb (1987). Another comprehensive reference is the
book by Diekmann and Metz (1987). An alternative approach employs branching
processes and more general stochastic processes (Arino and Kimmel 1993). Type
space should be rich enough to accommodate a structure variable x, varying in a con-
tinuum, e.g., in an interval or another subset of the real line. This can be accomplished
using general branching processes.

Another class of models describes the expected values of stochastic (branching)
processes of cell proliferation. These models employ integral equations of renewal
type, including type-transition laws in the kernel functions under the integral sign.
Examples of such models are those by Tyson and Hannsgen (1984), Kimmel et al.
(1984), Arino and Kimmel (1987), and by others.
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Fig. 7.7 A schematic representation of the cell cycle model. A cell of size X̃ at its birth grows
during a single generation to size Y = φ(X̃) + V , where φ is an increasing function and V is a
nonnegative random variable with cumulative distribution G. In mitosis, the cell divides into two
daughters of unequal sizes X and Y − X according to the rule X = UY , where U is a random
variable on [0, 1] (independent of V ) with a symmetric distribution H . Each of the daughter cells,
independently, starts growing with probability p2, dies with probability p0, or becomes quiescent
with probability p1 (p0 + p1 + p2 = 1). (Source: Kimmel and Axelrod 1991)

7.8.1 A Model of Unequal Division and Growth Regulation
in Cell Colonies

The model introduced by Kimmel and Axelrod (1991) unifies features of a time
discrete GW branching process and those of a deterministic model of cell cycle
regulation introduced by Kimmel et al. (1984). It is a generalization of the example
in Sect. 3.2. A schematic representation is depicted in Fig. 7.7.

Cell Growth. A cell of size (mass, volume) X0 at its birth grows during a single
generation to size Y = φ(X0) + V , where V is a nonnegative random variable with
given cumulative distribution G. Function φ represents the size regulation mecha-
nism; it is assumed nondecreasing which means that progeny cells larger at birth
are also larger at division. However, specific assumptions on φ ensure that any de-
viation from the average size, if present at the birth of the cell, decreases during
cell growth. For mathematical simplicity, it is assumed that proliferating cells have
identical lifetimes and that the lifetimes of the quiescent cells are infinite.

Unequal Division. In mitosis the parent cell of size Y divides into two progeny of
unequal sizes X and Y − X. It is assumed that the size of one of the progeny cells is
equal to X = UY , where U is a random variable with values in [0, 1], independent
of Y and V , with a symmetric distribution H . Formally,

P{U ≤ u} = H (u) = 1 − H (1 − u), H (0) = 0, H (1) = 1.

The size of the other progeny is (1 − U )Y .



7.8 Application: Structured Cell Population Models 187

Proliferation. Each of the progeny cells chooses its own pathway, independent of its
parent’s size, of its own size and of the pathway chosen by the other progeny, based
on a purely random rule. With probability p2, the cell starts growing and initiates
a pedigree, with probability p0 it dies, or with probability p1 it becomes quiescent,
i.e., continues to exist without either growing or dying.

Independence. Due to the assumed independence of cell death and quiescence from
growth regulation and unequal division, one prediction of the present model is that
the distribution of number of cells per colony does not depend on the birth size of
initial cell. In particular this implies independence between number of cells within a
colony and birth sizes of cells within the colony, at any time after the initiation. This
is consistent with experimental observations (see Fig. 7.8 and Kimmel and Axelrod
1991).

Let us note that because of independence between cell proliferation, quiescence
and death on one hand, and cell growth and unequal division on the other, the total
count of proliferating and quiescent cells obey the laws of the GW process in the
example in Sect. 3.2. Therefore, we focus here on the size structure of the process.

Let

Mi(x, x0) = E[Ni(x, x0)]

Ri(x, x0) = E[Qi(x, x0)]

denote the expected numbers of proliferating and quiescent cells with birth-sizes not
exceeding x, in the ith generation of the process started by a single cell with birth-size
x0. These counting functions describe the cell size structure of the population.

Theorem 7.4 Under suitable hypotheses (Kimmel andAxelrod 1991), the following
recurrences are satisfied:

Mi+1(x, x0) = 2p2

∫ ∞

0

∫ ∞

x

H (
x

y
)dyMi[φ

−1(y − v), x0]dG(v),

M0(x, x0) = 1(x − x0). (7.59)

and

Ri(x, x0) = p1

p2

i∑

j=1

Mj (x, x0),

R0(x, x0) = 0. (7.60)

Dynamics of Cell Size Distributions The experimental data available for comparison
with the model are the empirical distributions of cell size (understood as volume) in
the same experimental system as presented in the chapter concerning the GW process.
Figure 7.9 depicts the cumulative distribution of sizes of the measured NIH progeny
cells. The corresponding distribution of the NIH(ras) cells is indistinguishable.
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Fig. 7.8 Size at division of cells in colonies with different number of cells. Colonies were grown
for 4 days from single cells. Then, for each colony, cells were counted and the sizes of pairs of cells
after division were determined. Up to three pairs of dividing cells per colony were recorded. The
sum of the volumes of daughter cells is given as the volume of the mother cell. No dependence of
cell size at division on colony size is apparent. (Source: Kimmel and Axelrod 1991)

The question to answer by mathematical modeling is the following: Using the
empirical distribution H of inequality of cell division and a mathematical form of
the growth function φ, is it possible to reproduce the observed size distribution at
the end of the experiment?

Figure 7.9 depicts the evolution of distributions of cell size modeled using
Eqs. (7.59) and (7.60). To obtain cumulative distributions, the counting functions
have been normed. If it is assumed that the size of the founder cell of the colony was
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Fig. 7.9 Distributions of cell sizes for NIH cells. Cell sizes were microscopically determined
immediately after division. Symbols represent the observed cumulative frequency of the daughter
cell sizes. Continuous lines are expected size distributions generated by the model, after one and
eight generations, starting with a single founder cell of size 1 unit. The modeled distribution of
cell sizes after eight generations closely resembles the empirically observed distribution. (Source:
Kimmel and Axelrod 1991)

x0 = 1, the modeled colony size distribution at generation eight (end of experiment)
is close both to the limit distribution and to the empirical distribution. If the founder
cell size is assumed very small or very large, the convergence to the limit distribu-
tion is still satisfactory within ten generations (not shown). The fit provided by the
model is satisfactory for cell size distributions as well as colony size distributions
(Sect. 3.2).
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7.8.2 Cell Cycle Model with Cell-Size Control, Unequal Division
of Cells, and Two Cell Types

Among many laboratory and mathematical models of structured cell populations, the
system introduced by Sennerstam (1988) stands out because it encompasses almost
all features encountered in such systems. Also, it gave rise to a series of studies
ranging from laboratory investigation, through theorizing and computer modeling,
to mathematically advanced models in the form of renewal equations and general
branching processes.

Similarly as for the model in the preceding section, Sennerstam’s (1988) studies
were motivated by the observation made in the 1960s that the partition of mass
to daughter cells at mitosis is asymmetric. Furthermore, it was suggested that such
unequal distribution of metabolic constituents at mitosis contributes to the dispersion
of cell generation times and cell masses in a population. Various theories were put
forward concerning the mechanisms of regulation of generation time and cell growth
rate, given cell’s birthmass and other factors (among them Darzynkiewicz et al. 1979,
1982; Cooper 1984; Kimmel et al. 1984).

In Sennerstam (1988), cultured PCC3 embryonal carcinoma (EC) cells were stud-
ied in order to evaluate their protein content. There exists a considerable intraclonal
intermitotic time heterogeneity found in undifferentiated PCC3 EC cells. It was con-
cluded that the postmitotic difference in mass (protein) between sister cell pairs has
an influence upon variation in cell-cycle time duration when comparing sister cell
pairs. This offered an explanation for the randomly distributed difference repeatedly
found between sister cell generation times. In spite of this, there was no correlation
seen between the mass difference found between sister cell pairs postmitotically and
the mass of the mother cell.

In a subsequent paper, Sennerstam and Stromberg (1988) reported the discovery of
an intraclonal bimodal-like cell cycle time variation within the multipotent EC PCC3
N/1 line. The variability was found to be localized in the G1 period. Furthermore,
an inverse relation between cell mass and cell generation time was found in the
cell system analyzed. It was suggested that the bimodal intraclonal time variability
previously reported was attributable to an intraclonal shift between two types of
cell-growth-rate cycles.

To explain the findings, Sennerstam and Stromberg (1995, 1996) used the so-
called continuum model (Cooper 1984). The model is based on the idea that DNA
replication and cell growth are two loosely coupled subcycles. After division (gener-
ally asymmetric), a cell proceeds through the G1 phase until it reaches a checkpoint
characterized by a threshold mass. At this moment, the DNA synthesis is triggered
and the time to division and further mass increase (or a growth rate) are determined.
The growth continues after division at the same rate, etc. In this way, the division
cycle (from one cell division to another) is only partly coupled with the growth
cycle, since adjustments to the growth rate are made only at the G1/S boundary
checkpoints. Thresholds and rates have stochastic components and consequently the
mass-at-division regulation is not perfect.
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Sennerstam’s measurements described above were used by Kimmel and Arino
(1991) to build a mathematical model, equivalent to expected-values equations for
a branching process. An extremely simplified version was already mentioned in
Sect. 6.3. The model takes into account cell size regulation (cells grow between divi-
sions, at certain mass they decide to divide), unequal division (some cell constituents
do not split equally between progeny cells), and differentiation (cells switch off/on
some of their genes to specialize in a required direction).

The following detailed observations were listed in Sennerstam (1988) describing
growth characteristics of immortalized embryonic cells:

• Using mitotic detachment technique, it was established that the coefficient of
variation of the mass of progeny cells exceeded the coefficient of variation of
parent cells by about 4 %, i.e.,

cvprogeny mass/cvparent mass
∼= 1.04.

• Using time-lapse measurements, the distributions of the generation times of re-
lated cells were determined. The indexation of generation (interdivision) times and
other variables describing cell pedigrees is explained by the following diagram:

↗ 0000

000 ↘ 0001

↗
00 ↗ 0010

↗ ↘ 001 ↘ 0011

0

↘ ↗ 010 ↗ 0100

01 ↘ 0101

↘
011 ↗ 0110

↘ 0111

– α-curve = fT0 (τ ), the distribution of cell lifelengths, was found to be bimodal.
– β1-curve = f|T00−T01|(τ ), the distribution of differences of sib cells lifelengths,

was found to be unimodal.
– β2-curve = f|T000−T011|(τ ), the distribution of differences of the first cousin

cells lifelengths, was found to be bimodal.
– β3-curve = f|T0000−T0111|(τ ), the distribution of differences of the second cousin

cells lifelengths, was found to be unimodal.
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• Furthermore, correlation coefficients between generation times of related cells
were estimated:
– Parent–progeny, ρT0,T00 = 0.77
– Sib–sib, ρT00,T01 = 0.95
– Cousin–cousin, ρT000,T011 = 0.41

Kimmel and Arino (1991) proposed the following model, also based on Cooper’s
(1984) continuum hypothesis, to explain the observations:

There exist two types of cells:
type 1 , smaller and faster cycling,
type 2 , larger and slower cycling.

• Growth of cell mass between divisions proceeds at a constant rate r . Specifically,
– Cell of type i and initial mass y, grows in the G1 phase to a random threshold

size

wi ∼ hi( · ), w1
(d)
< w2,

where the stochastic inequality between w1and w2 is equivalent to the same
relation between their tail distributions, i.e., P[w1 > x] <P[w2 > x].

– Then it continues through phases S + G2 + M for a constant time τ , i.e., the
total duration of the cell cycle is equal to

T = wi − y

r
+ τ ,

– And grows to the predivision mass x

x = wi + rτ.

• Switching between types: At the checkpoint on the G1/S boundary, it is decided
if the type of progeny (both) is the same as the parent, or not

Pr [i → j ] = pij .

This is the “supramitotic regulation,” i.e., decisions are made at a checkpoint
inside the division cycle.

• Unequal division: Parental cell of mass x0 divides into progeny of masses y00

and y01. Asymmetry of division can be represented by multiplication of x0 by a
random variable u0, with distribution with support in [0, 1], as represented in the
diagram below,

The model stated above explains the observations of Sennerstam (1988). Let us
assume that the cell population is in the state of asynchronous exponential growth,
i.e.,

⎛

⎝
N1(t)

N2(t)

⎞

⎠ = C

⎛

⎝
p̃1

p̃2

⎞

⎠ exp (λt),
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↗ j|· · ·
00

y00 = u0x0

i|j
0

↘ j|· · ·
01

y01 = (1 − u0)x0

,

u0 = f0(u)↪ f0 (u) = f0(1 − u).

where Ni(t) is the number of cells of type i at time t . To address the bimodality of
the α-curves, let us suppose that a cell of type i is the progeny of a cell of type j .
This occurs with probability

p̃jpji .

Then

T0|i ∼ τ + wi − yj

r
= τ + wi − (wj + rτ )u

r
.

This latter, under equal division, u = 1/2, reduces to

τ

2
+ wi − wj

2
.

Now, let us assume that the distribution of u is tightly concentrated around 1/2.
If in addition, p̃1

∼= p̃2
∼= 1/2, and p12 and p21 are small, then the two dominating

modes of the distribution of random variable T0 are approximately located at

τ

2
+ wi

2
, i = 1, 2.

Unimodality of distributions of differences of lifelengths of sib cells (the β1-
curves) follows since

T00 − T01 =
[

τ + w00 + (w0 + rτ )u0

r

]

−
[

τ + w01 + (w0 + rτ )(1 − u0)

r

]

,

which, under u = 1/2, is equal to

w00 − w01

r
,

so that |T00 − T01| has the only mode at zero.
Bimodality of first cousin lifelength difference distributions (the β2-curves)

follows since

T000 − T010 = 1

r
[(w000 − w010) − rτ (u00 − u01) − (w00u00 − w01u01)] .

Again, under u = 1/2, this is equal to

1

r

⎡

⎢
⎣(w000 − w010)
︸ ︷︷ ︸

wi−wj

−1

2
(w00 − w01)
︸ ︷︷ ︸
same distribution

⎤

⎥
⎦ ,
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so |T000 − T010| has one mode at 0 and another (smaller) at |w1 − w2|.
In addition to the above, Kimmel andArino (1991) carried out computations of the

correlations of related cells, under assumption p11 = p22, with all other parameters
fitted to data. The conclusions are as follows:

• Parent–progeny correlation is negative if p11 small (frequent switching of type),
positive if p11 large.

• Sib–sib correlation is more or less stable (same w).
• Cousin–cousin correlation large if p11 large (type rarely changed) and if p11 small

(type likely to be the same each second generation).

An important theoretical problem concerns the dynamics of cell proliferation in this
case: How to reconcile the division cycle with the growth cycle and with unequal
division and the random decisions to switch cell type (these latter assumed to be
taken at the G1/S checkpoint)? It seems convenient to introduce four types of cells,
indexed by pairs (i, j )i,j=1,2

i j = type i that decided on progeny type j.

Transitions reduced to “decision taken at birth” are depicted in the following
diagram:

p11
�

1 1 p12−→ 1 2

↑
p12

↗ p22

p11 ↙
p21

↓

2 1 ←−
p21

2 2

�

p22

Using these transitions allows writing straightforward balance equations for
expected densities of flow rates between types. Suppose

nij (t , y)dtdy

is the expected flow of (i, j ) progeny of size in (y, y +dy) into growth phase, in time
interval (t , t + dt), then

n(t , y) = 2r

∫

f (x, y)H (x − rτ )
∫

n[t − (τ + σ ), x − r(τ + σ )]dσdx
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where

n(t , y) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

n11(t , y)

n12(t , y)

n21(t , y)

n22(t , y)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

H (w) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

p11h1(w) 0 p11h2(w) 0

p12h1(w) 0 p12h2(w) 0

0 p21h1(w) 0 p21h2(w)

0 p22h1(w) 0 p22h2(w)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

As demonstrated in Kimmel and Arino (1991), this evolution equation generates a
semigroup of operators on X = L1(E), the space of functions integrable on E, i.e.,
such that n(t) = ∫

y∈E
n(t , y)dy < ∞, where the set E of admissible sizes of progeny

is defined by specific assumptions on distributions h1(w) and h2(w),

G(t) : X � n0 −→ nt .

The main mathematical problem is to show that asynchronous exponential growth
exists. It is sufficient to show that spectrum of G(t) has a dominating eigenvalue
exp (λt) and that the corresponding generalized eigenspace is one-dimensional. This
is true since G(t) is eventually compact. Projection of solution nt on the generalized
eigenspace dominates all other solutions and yields

n(t) ∼ exp (λt)

and

N (t) ∼ exp (λt)

as desired.
Alexandersson (1999) proposed a largely equivalent description in the form of a

general branching process (Sect. C.1). The process has type space

{11, 12, 21, 22} × {R+}
with reproduction measure determined by the transition rules above. Finding Malthu-
sian parameter for the process is equivalent to solving the characteristic equation for
the dominant eigenvalue in the model by Kimmel and Arino (1991). Then the prob-
lem is to demonstrate conservativeness of the reproduction measure. This is in some
sense equivalent to proving results concerning the eigenspace corresponding to the
dominant eigenvalue of the semigroup G(t).
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Alexandersson (1999) considers various versions of the regulation mechanism of
the cell growth, some of them involving variable growth rates. Those who venture
to read both Kimmel and Arino (1991) and Alexandersson (1999), will see that the
general branching process methodology makes the modeling process conceptually
more straightforward.

Another example of cell cycle analysis is the paper by Guo et al. (2013), who
employ a branching-process-based algorithm to deconvolve transcription data in syn-
chronized cell experiments in yeast. Cells released from a synchrony block proceed
through the cell cycle and then divide, potentially multiple times, loosing synchrony
in the process. The authors introduce a two-type Bellman–Harris process, in which
the types are (i) mothers and (ii) daughters. This distinction is due to the fact that
the G1 phase of the daughters is structured differently from that of the mothers. By
fitting the model on the transcription data in different cell cycle phase, it is possible
effective deconvolve transcription from cell cycle duration differences, and obtain
more accurate estimates of the timing of transcription events.

7.9 Application: Yule’s Evolutionary Process

We paraphraseYule’s branching process model of evolution, as cited in Harris (1963).
The model concerns the evolution of two basic taxonomic units, species and genera,
within a single family. The following assumptions define the model:

1. Two types of objects are considered.
(a) Species: This is the smallest taxonomic unit. Different species are repro-

ducively separated, i.e., if individuals belonging to different species are
crossed they do not produce fertile progeny.

(b) Genus: Species are grouped in genera. The biological distance separating
different genera is larger than that separating different species.

2. Within a single genus, the collection of species evolves as an age-dependent
branching process with exponential lifetime distributions with parameter λ and
the pgf of the number of progeny equal to h(s) = s2 (i.e., each speciation event
produces exactly two new species).

3. The collection of genera evolves as an age-dependent branching process with
exponential lifetime distributions with parameter γ. However, at each ramification
a new genus evolves which has exactly one species and the old genus continues
unchanged. This asymmetry is caused by the fact that a new genus arises from a
major evolutionary rearrangement within a single species of the old genus.

The object defined is a sort of a “branching process within a branching process”
(Fig. 7.10)

Let N (t) denote the number of genera existing at time t , and Mi(t) the number of
species existing at t in the ith genus. Then, the process can be defined as the vector

Z(t) = {M1(t), M2(t), . . . , MN (t)(t)}, t ≥ 0.
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time

Fig. 7.10 Two sample paths of the Yule’s process, low and high value of the γ

λ
ratio, respectively.

Branching of species is represented by continuous lines. Boundaries of genera are represented by
dotted line “tubes,” and branching of genera by arrows. (Source: Kimmel and Mathaes 2010b)

Finding a comprehensive description for Z(t) is quite complicated, since it is an
age-dependent branching process with infinitely many particle types. However, we
are interested in answering a very particular question regarding the process: What
is the rate of evolution of new genera compared to evolution of new species, as
measured by the ratio of γ to λ?

Let us notice (see Fig. 7.10) that high γ

λ
ratio yields a relatively high frequency of

monotypes, i.e., genera with one species. Therefore, by examining the population-
based proportion of monotypes at given time t , it seems possible to estimate the γ

λ

ratio. This gives a chance to infer about the dynamics of the evolutionary process
without actually observing it. It is particularly important in view of patchiness and
discontinuity of paleontological evidence.

We develop a model with only two classes of genera, class 1 genera containing
monotypes and class 2 genera with more than one species. The number, at time t , of
genera of class i is denoted by Zi(t), t = 1, 2. The joint pgf of the pair (Z1(t), Z2(t))
in the process started by a single class i genus is denoted by Fi(s1, s2; t). We show
the process is a two-type Markov age-dependent process.

The lifetime distribution of a class 2 genus is G2(τ ) = 1 − e−γ τ . The joint pgf of
the class 1 and 2 progeny of such genus is h2(s1, s2) = s1s2.

A class 1 (monotype) genus transforms into a class 2 genus after a time τ ′
distributed exponentially with parameter λ, because of a speciation event; inde-
pendently, it splits into two genera after a time τ ′′ distributed exponentially with
parameter γ . The minimum of these two times is τ distributed exponentially with
parameter λ + γ . If τ ′ < τ ′′, which happens with probability λ

λ+γ
, then the

“progeny” pgf is s2. Otherwise, it is s2
1 . Eventually, G1(τ ) = 1 − e−(λ+γ )τ and

h1(s1, s2) = λ
λ+γ

s2 + γ

λ+γ
s2

1 . For a two-type age-dependent branching process, the
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pgf equations are a straightforward generalization of Eq. 4.6:

∂Fi(s; t)

∂t
= λi{hi[F1(s, t), F2(s, t)] − Fi(s, t)}; t ≥ 0, Fi(s; 0) = si ; i = 1, 2.

(7.61)

This yields, in our case,

∂F1

∂t
= γF 2

1 + λF2 − (λ + γ )F1, (7.62)

∂F2

∂t
= γF1F2 − γF2. (7.63)

Using methods similar as in the application to clonal resistance theory and in
particular a variant of Theorem 4.2, an explicit solution of the above system is
obtained:

F2 = s2(λ + γ )e−γ t

[λ(1 − s2) + γ (1 − s1)] + s2(λ + γ )e−γ t + (s1 − s2)γ e−(γ+λ)t
,

F1 = (1 + s1 − s2

s2
e−λt )F2.

Suppose the process (i.e., given family of genera) was started at time 0 by a monotypic
genus. Then the expected numbers of monotypic and polytypic genera at time t are
given by

M11(t) = ∂F1(s; t)

∂s1 |s=(1,1)
= γ

λ + γ
eγ t + λ

λ + γ
e−λt , (7.64)

M12(t) = ∂F1(s; t)

∂s2 |s=(1,1)
= λ

λ + γ
(eγ t − e−λt ). (7.65)

Eventually, the expected proportion of monotypic genera in the family which is
old enough, is equal to

p = lim
t→∞

M11(t)

M11(t) + M12(t)
= γ

λ + γ
. (7.66)

In the book of Harris (1963), an example is quoted of a family of beetles with
627 genera comprising 9997 species, p = 34.29% of the genera being monotypes.
From this, it can be estimated that λ/γ = 1.9.

7.10 Application: Branching Process with Infinite-Allele
Mutations

7.10.1 Proliferation of Alu Repeats

About 11 % of the human genome consists of more than one million repeated se-
quences of about 300 base pairs, called Alu elements. Alu’s are retrotransposons;
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they can produce inexact mutant copies with different base sequences at different
locations. Each Alu element with a different sequence can be considered a differ-
ent allele. Comparison of the base sequences of many Alu elements suggests that
there are different families of similar sequence each derived from a different parental
sequence. The observation that progeny sequences within some families are more
similar to each other than the progeny sequences within other families suggests that
some families are younger than others and that the number of families in the human
genome is still growing.

Discrete Branching Process of Griffiths and Pakes
with Infinite Allele Mutations

The proliferation and mutation of Alu sequences can be described mathematically as
a branching process. The growing number of Alu families in the human genome can
be accounted for by a supercritical branching process. The large number of different
progeny sequences (alleles) within each family can be accounted for by a discrete-
time branching process with an infinite number of alleles. Griffiths and Pakes (1988)
modified the standard BGW branching process to allow infinitely many different
alleles, and derived a limit result for the expected proportion of each allele within a
family.

In the application discussed here, the different alleles are identified by different
base sequences, with differences that may be as small as a single base. From time
t = 0, the clone of progeny sequences evolves in time according to a single-type
branching process. With probability μ per time step, a sequence mutates and initiates
a clone of a new, previously nonexistent, sequence which in turn evolves according
to the same rules. As a result, a set of clones of different alleles emerges, spawning
further clones, some of which may die out. We are interested in deriving, using
Griffiths–Pakes (1988) theory, the expected frequencies j of each class of alleles
that exist in k copies. The model prediction can be compared to observed data.

The number of individuals at t = 0 is defined as Z0 = i. Let Gn be the collection
of individuals in generation n and let Zn denote their number. Each generation size
depends on the previous generation size through the branching property

Zn+1 =
Zn∑

j=1

ζj ,n, (7.67)

where ζj ,n are iid integer-valued random variables, which represent the number of
offspring born to the j th member of Gn. The distribution of ζj ,n is characterized by
its pgf

f (s) =
∞∑

k=0

pks
k , (7.68)

where pk = P [ζj ,n = k], and it is assumed that p0 + p1 < 1, i.e., the branching
process is nontrivial. We have m = f ′(1).
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Fig. 7.11 Contour plot illustrating the influence of parameters b and p on �1, based on Griffiths–
Pakes process with LF distribution. Red: large �1; blue: small �1. Range of �1-values, from 0 to 1.
(Source: Kimmel and Mathaes 2010b)

If an individual produces j offspring then the number of progeny having the
parental allele is distributed binomially with parameters j and 1−μ, hence its pgf is
equal to (μ+ (1 −μ)s)j . This implies that any new allele is followed by a branching
process of its like-type descendants with offspring pgf H (s) = f (μ+(1−μ)s). This
process is supercritical if its expected progeny count M = m(1 − μ) is greater than

1. Within this framework let us define the symbol q
(r)
1j = (j !)−1dj H (r)(s)

dsj |s=0, where
H (r)(s) is the rth iterate of pgf H (s), to be equal to the probability that there are j

individuals at time r in a nonmutant clone started at time 0 by a single individual.
Let us denote �j the long-term expected proportion of alleles with frequency j ≥ 1,
which is the formula that we will use to compute the theoretical distribution of Alu
allele classes for given offspring pgfs. Asymptotically, these proportions assume the
form based on Griffiths and Pakes (1988), with a detailed derivation in Kimmel and
Mathaes (2010a):

Ij = μ
∑∞

r=0 m−rq
(r)
1j

μ
∑∞

n=0 m−n

(
1 − q

(n)
10

) . (7.69)
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Fig. 7.12 AluYa1 data-based class frequencies against the theoretical {�k} in log scale. Fitted by
Griffiths–Pakes process with LF distribution, with b = 0.016, p = 0.983. (Source: Kimmel and
Mathaes 2010b)

Linear-Fractional Offspring Distribution

The process of creation of new Alu repeats by retrotransposition can be naturally
described by the age-dependent Markov branching process {Zt } (i.e., process with
exponentially distributed individuals’ lifelengths) with binary fission, which leads to
a quadratic pgf of progeny number per individual. The rationale is that any existing
Alu (“individual”) from an active family produces two progeny (i.e., itself and a
replica) at a random time moment, where “random” means that the intervals between
successive fission events are independent, identically distributed random variables.
Moreover, the copy may fail to reinsert into the genome. Therefore, the form of the
progeny count pgf will be αs2 + (1 − α)s, where α is the probability of successful
reinsertion. If such a process is sampled at constant time intervals, the resulting
discrete-time process {ZkΔt} is a GW branching process with LF pgf (Kimmel and
Axelrod 2001, expression (4.14), also c.f. Arthreya and Ney 2004). A unique property
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Fig. 7.13 AluYa5 data-based class frequencies against the theoretical {�k} in log scale. Fitted by
Griffiths–Pakes process with LF distribution, with b = 0.0139, p = 0.861. (Source: Kimmel and
Mathaes 2010b)

of the LF case of the GW process, excluding the trivial case f (s) = ps + q, is that
the iterations of the pgf can be computed explicitly and also are of LF form. Let us
start with the offspring pgf in the LF case:

f (s) = 1 − b

1 − p
+ bs

1 − ps
. (7.70)

The probability distribution corresponding to this generating function is:

p0 = 1 −∑∞
i=1 pi = 1−b−p

1−p

pk = bpk−1 k = 1, 2, . . .
(7.71)

The parameters b and p are subject to certain restrictions,

b, p > 0,

b + p ≤ 1.
(7.72)
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Fig. 7.14 AluYa8 data-based class frequencies against the theoretical {�k} in log scale. Fitted by
Griffiths–Pakes process with LF distribution, with b = 0.143, p = 0.856. (Source: Kimmel and
Mathaes 2010b)

To ensure that this process is supercritical, i.e., m > 1, additional constraints on
b and p are needed. The mean of f (s) is

m = (df/ds)|s↑1 = b

(1 − p)2
, (7.73)

so supercriticality yields an additional restriction on parameters b and p, b > (1−p)2,
or equivalently

p > 1 − √
b. (7.74)

To be more precise, we should satisfy condition m(1 − μ) > 1, but with μ very
close to 0, the distinction is not important. As demonstrated in Kimmel and Mathaes
(2010a), for the LF case we obtain the following computable expression:

�j =
∑∞

r=0 (1 − s0) (mr−1)j−1

(mr−s0)j+1
∑∞

r=0
1

mr−s0

. (7.75)

The infinite sums in the numerator and denominator are numerically computed.
A program was written in R-language to compute the �j . Since Alu sequence data
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Fig. 7.15 AluYc1 data-based class frequencies against the theoretical {�k} in log scale. Fitted by
Griffiths–Pakes process with LF distribution, with b = 0.035, p = 0.985. (Source: Kimmel and
Mathaes 2010b)

in Table 1 of Kimmel and Mathaes (2010b) suggest a high value for �1, we verify
that the theoretical �1 attains such values for any choices of parameters b, p, and μ.
For fixed μ = 10−6, we established a grid of b and p from 0 to 1 in steps of 0.01.
Figure 7.11 shows that �1 can assume any value between 0 and 1, and that high
values of �1 occur for a combination of low values of b and high values of p.

Comparison of Predictions to Observed Data

Kimmel and Mathaes (2010b) tested the theoretical distribution, based on the branch-
ing processes model, with the observed data of Alu sequences reported in the
University of Southern California Human Genome database. For each of four dif-
ferent large (more than 1000 sequences) Alu subfamilies a consensus sequence was
determined. The counts of Alu sequences belonging to a given subfamily that had
n identical copies in the sample (n = 1, 2, 3, . . . , 7) have been determined. These
seven classes represent 99 % of the observed data. The observed distribution was
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compared with the simulated distribution, using the χ2 statistic. For simulations,
the maximum liklihood method was used to estimate parameters b and p for each
subfamily. The mutation rate was set to μ = 10−6, although the sensitivity to this
parameter value was slight, with a range of 10−5–10−9 per generation. Figures 7.12,
7.13, 7.14, and 7.15 depict the maximum-likelihood fits of the simulation data to the
observed data for four Alu subfamilies. For each of the four subfamilies, the fit was
good for classes 1 and 3, 4, 5, 6, and 7. But for each of the four subfamilies the fit
for class 2 was poor. This difference in fit between simulations and observed data for
class 2 is notable. It may be due to the method used to align sequences and recognize
sequences in subfamilies, or to an unrecognized interesting biological process that
has not been taken into account.



Chapter 8
Genealogies of Branching Processes
and Their Applications

8.1 Genealogies of Branching Processes

One of the important questions in population dynamics and particularly in population
genetics is how to gain information about a population’s past, given its present
status. Sources, historical in nature such as written records, archeological such as
cemeteries, paleontological such as fossils, or even biological such as ancient DNA,
are often of assistance. However, in many cases, all that is available is a sample
from a contemporary population, with information about its demography or genetic
makeup. Sometimes, a mathematical model of population growth may be assumed
or statistically inferred from paleoecology or by other means. Human populations
are of major interest, as are populations of endangered species. Other categories of
biological genealogies are gaining prominence. Among them are genealogies of cells
in cancerous tumors.

Two important approaches to population dynamics and genetics, which may be
used for genealogical inference, are the Wright–Fisher model and the branching pro-
cess model. Differences between these two will be described in the section concerning
mitochondrial Eve (mtEve; Sect. 8.3). In this section, we will idiosyncratically review
several approaches to modeling and inference based on branching process trees, as the
Wright–Fisher model is covered exhaustively in the literature concerning coalescence
(Wakeley 2009).

A comprehensive paper by Lambert (2008) provides an introduction to classical
stochastic models of genealogies in discrete time, thus distinguishing models where
the population size is fixed (models of Cannings, Wright–Fisher, and Moran) from
the models where the population size fluctuates randomly (processes of Galton–
Watson (GW) and birth–death processes). Continuous-time versions follow. One of
the types of tools used in the theory are the jumping chronological contour pro-
cesses (JCCP), which intuitively speaking is counting branch lengths corresponding
to an exploration of the chronological tree (time pointing up in the Fig. 8.1a), then
tracing back to the birth of a progeny branch (diagonally down), and so forth. Prob-
abilistic properties of trees are equivalent to those of the contour processes, which
frequently are random-walk-type processes, approximated by Brownian motions or
state-continuous branching processes, given suitable scaling.

© Springer Science+Business Media, LLC 2015 207
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a

b 

Fig. 8.1 A chronological tree a and the associated jumping chronological contour process (JCCP),
with jumps in full line b. Please note that in part a vertical axes represents time. In part b, horizontal
axes is a composite index of time and branching pattern, whereas the peaks of the graph correspond
to times at death of the individual. (Modified after Lambert 2008)

Scaling limits of these models can be seen as genealogies of continuous popula-
tions. The continuous analogue of models with a fixed size is the stochastic flow on
bridges of Bertoin and Le Gall (Le Gall 1999). The continuous analogue of branch-
ing models is the continuous-state branching process. Both processes have diffusion
versions called, respectively, the Fisher–Wright diffusion and the Feller diffusion.
Connections between the two kinds of models are also studied, and special attention
is given to extinction/fixation (probability, expected time, conditioning). This is only
a partial list of fundamental topics covered in Lambert (2008).

Another paper is Lambert and Popovic (2013), which defines a doubly infinite,
monotone labeling of the GW genealogies. The genealogy of the current generation
backwards in time is uniquely determined by the coalescent point process (Ai , i ≥ 1),
where Ai is the coalescence time between individuals i and i + 1. There is a Markov
process of point measures (Bi , i ≥ 1) tracking ancestral relationships, such that Ai

is also the first point mass of Bi . Following the analysis of the coalescent process,
the paper is concerned with two applications in the discrete case. It is shown that
the Ai’s are iid when the offspring distribution is linear fractional. Another appli-
cation concerns the law of Yaglom’s quasi-stationary population size for subcritical
Bienayme–Galton–Watson processes (BGW) processes.
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An interesting review of mathematical properties of coalescence in branching
trees can be found in a series of papers by Athreya and co-workers (Athreya 2012a,
b). Another paper by one of the classics of the tree literature by David Aldous and
co-workers, is Aldous et al. (2011), which concerns statistical questions related to
diverse models of the “Tree of Life.”

8.2 “Near-Critical” Processes

One of the interesting issues concerning a branching process is that of its genealogy.
In broad terms, given a sample of individuals alive at given time t , we trace their past
epochs of branching, i.e., the nearest common ancestors of the sample. This exercise
is nontrivial since the sample we deal with consists of individuals with positively
biased lifelengths. This latter effect is due to length-biased sampling analogous to that
known from renewal processes. Our treatment is based on the paper by O’Connell
(1995; also, see O’Connell 1993). It concerns the processes close to the critical
process, in which the random effects are most pronounced. The theoretical results
developed here are illustrated in Sect. 8.3 by an application concerning estimation
of the age of the common female ancestor of modern humans.

We consider a family of time-continuous Markov branching processes (age-
dependent processes with exponential lifetimes) parametrized by t ≥ 0. Let
Zt (u) be such a process with mean lifetime 1 and offspring distribution ξt with
Eξt = 1 + α/t + o(1/t) and Var(ξt ) = σ 2 + o(1/t) < ∞, where α ∈ R\{0}. We
assume α 
= 0 for notational convenience only; the corresponding results for the
critical case can be extrapolated by letting α → 0. For this reason, we refer to it
as the near-critical case. We will consider the genealogy of this process for fixed α

and large t . A general reference on near-critical branching processes is the book of
Jagers (1975), pp. 63–70, 199–206. We denote by Px =Px

t the law of the process Zt

started at x, suppressing the subscript for notational convenience, and write Ex for
the corresponding expectations. Set ft (s) =E1sZt (1). It is important to note (see, for
example, Harris 1963) that the embedded (discrete-time) process {Zt (n), n ∈ Z+} is
a GW process with offspring mean 1 + α/t + o(1/t), variance σ 2 + o(1/t), and pgf
ft (s). For r > 0, set px,r ,t =Px[Zt (rt) > 0]. We will assume throughout this section
that (Z2

t (1)|Zt (0) = 1) is uniformly integrable in t.

The first result describes the rate at which px,r ,t → 0 when t → ∞, and an
exponential limit law for near-critical Markov branching processes.

Theorem 8.1

1 As t → ∞, px,r ,t ∼ arx/t , where

ar = 2α

σ 2
(1 − e−αr )−1.
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2 If Zt (0)/t ⇒ 0 as t → ∞, then for λ > 0, x ∈ Z+\{0},

Ex[ exp{−λZt (rt)/t}|Zt (rt) > 0] → br

br + λ
, t → ∞,

i.e.,

P[Zt (rt)/t} > z|Zt (rt) > 0] → exp (−brz), t → ∞,

where br = e−αrar . The limit law is exponential with parameter br .

The proof of the theorem is based on a direct diffusion approximation of the
branching process.

The next result concerns the process reduced to individuals having living de-
scendants. For each t and 0 ≤ u < t , define the reduced process Nt (u) to be
the number of individuals in the process Zt , alive at time u and having descen-
dants alive at time t . Note that for each t , Nt is a time-inhomogeneous Markov
branching process. In the statement of the theorem, DZ+ [0, 1) denotes the space of
càdlàg (continuous from the right, bounded from the left) paths in Z+, parametrized
to be defined on the unit interval; the weak convergence in this case requires
only convergence of finite-dimensional distributions. The linear pure birth process
with jump rate b(t) is a time-continuous Markov chain {N (t), t ≥ 0}, in which
P[N (t + �t) = N (t) + 1] = b(t)N (t) + o(�t), where o(�t)/�t → 0, when
�t → 0.

Theorem 8.2 As t → ∞, the sequence of processes {Nt (rt), 0 ≤ r < 1} converges
in distribution in DZ+ [0, 1) to a linear pure birth process {N (r), 0 ≤ r < 1} with
jump rate b(α, r)N (r) at time r , where

b(α, r) = α(1 − e−α)−1(1 − r)−1,

provided Nt (0) ⇒ N (0). In particular, as t → ∞,

Px[Nt (rt) = k | Nt (0) = 1] → qr (1 − qr )k−1,

where qr = [exp (−r) − exp (−α)]/[1 − exp (−α)].
The result which is of most interest describes the degree of relationship of two

randomly chosen individuals at time t. Let Dt denote the latest time, counting from
the beginning of the process, at which the common ancestor of the two individuals
exists. The following theorem provides the asymptotic distribution of this time:

Theorem 8.3 For 0 ≤ r < 1, x ∈ Z+\{0},

lim
t→∞ P[Dt > rt | Nt (0) = x] = 2qx

r

(x − 1)! {(x − 1)!(qr − 1)−x − F (x − 1, 1 − qr )}
(8.1)

where F : Z+ × (0, 1) → R is defined by

F (n, y) = ∂n

∂yn

{
log (1 − y)

y2

}

.
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Proof The original proof in O’Connell (1995) is a modification of the corresponding
result in Durrett (1978) for the critical case. The current proof is a slight mod-
ification of O’Connell (1995), which rectifies some inaccuracies in the original
version of Expression (8.1). Let Pt ,u,k denote the probability that two individuals
chosen randomly at time t have the same ancestor at time u, given Nt (u) = k. Let
X1(u, t), . . . , Xk(u, t) be independent and identically distributed random variables
with the same distribution as (Zt (u)|Zt (u) > 0). If we let

Sk(u, t) = X1(u, t) + · · · + Xk(u, t),

then
Pt ,u,k = kE{[X1(u, t)/Sk(u, t)]2}.

By Theorem 8.1, part 2, for each i and 0 ≤ r < 1, Xi(rt , t) converges in
distribution, as t → ∞, to an exponentially distributed random variable with mean
b−1

r , which we denote by Xi(r). So by bounded convergence we have

Pt ,rt ,k → kE{[X1(r)/Sk(r)]2},
as t → ∞, where

Sk(r) = X1(r) + · · · + Xk(r).

Random variable X1(r)/Sk(r) can be represented as Z = X/(X + Y ), where
X ∼ exp (ψ) and Y ∼gamma(ψ , k − 1), and X and Y are independent. Independent
of constant ψ , this ratio has distribution with density fZ(z) = (k − 1)(1 − z)k−2,
z ∈ [0, 1], and consequently, E(Z)2 = 2/[k(k + 1)]. This yields

E[kX1(r)/Sk(r)]2 = 2k

k + 1
.

Combining this with Theorem 8.2 we have as t → ∞,

P[Dt > rt | Nt (0) = x] =
∞∑

k=1

Pt ,rt ,kP[Nt (rt) > k | Nt (0) = x]

→
∞∑

k=1

2

k + 1
P[N (r) > k | N (0) = x]

→
∞∑

k=1

2

k + 1

(
k − 1

x − 1

)

qx
r (1 − qr )k−x ,

However, by the definition of F (y, n), we have

F (y, n) = ∂n

∂yn

[
ln (1 − y)

y2

]

= −
∑

k≥1

∂n

∂yn

(
yk−2

k

)

= (−1)n+1n!
yn+1

−
∑

k≥2

(k − 2)!
(k − 2 − n)!(k + 1)

yk−2−n,
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and consequently,

F (1 − qr , x − 1) = (x − 1)!(qr − 1)−x −
∑

k≥1

(k − 1)!
(k − x)!(k + 1)

(1 − qr )k−x ,

and the result follows.

Remarks

1. The limiting process in Theorem 8.2 can be represented as a deterministic
time change of a (time-homogeneous) Yule process (in this case, a Markov
age-dependent branching process, with progeny number equal to two and life-
length being a random variable distributed exponentially with parameter λ).
If {Y (t), t ≥ 0} is a Yule process with branching rate 1, then the process
{Y [ ln ((1 − e−α)(e−rα − e−α))], 0 ≤ r < 1} has the same law as N .

2. It is instructive to derive explicit expressions for O‘Connell’s (1995) limit
distributions Φx(r) = limt→∞P[Dt/t > r | Nt (0) = x]. We obtain

Φ1(r) = 2qr

(1 − qr )2
(qr − 1 − ln qr ),

Φ2(r) = 2qr

(1 − qr )3
(1 − q2

r − 2qr ln qr ),

where r ∈ [0, 1]. Let us note that Φ1(1) = Φ2(1) = 0, but Φ2(0) = 2/3 while
Φ1(0) = 1. The reason is that in case of the process started by x = 2 ancestors,
there is a probability equal to 1/3 that two randomly selected descendants are
traced to different ancestors.

3. Similar and related results for general branching processes can be found in Sagitov
(1989), Taïb (1987), and Zubkov (1975), for branching diffusion processes in
Durrett (1978) and Sawyer (1976), and for superprocesses in Dawson and Perkins
(1991) and Etheridge (1992). For an excellent review of the vast literature on
genealogical processes in population genetics models, see Tavaré (1984).

8.3 Application: Estimation of the Age of the Mitochondrial Eve

8.3.1 Population Genetic Model

One of the applications of O’Connell’s (1995) results is the estimation of the age
of the process, which is not observable, based on statistics describing the ages of
most recent common ancestors (MRCA) of the pairs of extant (contemporary) in-
dividuals sampled from the process. The time from MRCA of two individuals can
be measured using divergence (mismatch) between DNA sequences ascertained in
these individuals. O’Connell (1995) presents such an analysis leading to an estimate
of the time when the female ancestor of modern humans ( mtEve) lived. We provide
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an account of his methodology. The estimates obtained differ from those obtained
using more accepted methods like the coalescence theory (Griffiths and Tavaré 1999).
However, the originality of O’Connell’s (1995) approach is sufficient to justify this
presentation.

Wilson and Cann (1992) and Vigilant et al. (1989, 1991) were the first to hypothe-
size that a female ancestor of modern humans probably lived inAfrica about 200, 000
years ago. Hasegawa and Horai (1990) estimate the age to be equal to 280, 000 years.
Stoneking et al. (1992) published an estimate of 135, 000 years. For other more recent
examples of estimation of past demographic trends, see e.g., Harpending et al.(1998)
and Kimmel et al. (1998).

The data used by O’Connell (1995) is a collection of aligned nucleotide sequences,
each approximately 600 base pairs (sites) in length, sampled from the hypervariable
segment in the control region of the human mitochondrial genome, of 189 individuals
from around the world. There are four nucleotides: adenine, thymine, guanine, and
cytosine. A typical sequence might be coded as follows:

TTCTTTCCATGGGGAAGCAGA · · · CCTAACCAGA.

It is accepted that mitochondrial sequences are maternally inherited and that mito-
chondrial DNA (mtDNA) mutations are neutral, or very rare, from the standpoint of
natural selection. In other words, the specific makeup of mtDNA does not influence
individual’s reproductive fitness.

The following model of mutation is known as the infinite sites model (ISM). A
substitution occurs if one of the nucleotides in the sequence is replaced by another,
and the new sequence is inherited. According to the molecular clock hypothesis sub-
stitutions occur randomly along lineages at a constant rate, and rates along different
lineages are the same. The genetic distance, or divergence, between two such se-
quences is defined to be the proportion of sites at which the sequences differ. Among
humans this is typically less than 5 % in the control region of mtDNA. Vigilant et
al. (1989) found the average divergence between the humans in their sample, and a
sample chimpanzee, to be about 15 %. The divergence rate is very small, so over the
time period we are considering here (the post-Eve period), we can assume that each
substitution produces a new type, that is, reverse substitutions do not occur. Thus, if
the MRCA of two individuals died u million years ago, the number of differences be-
tween their mtDNA types will be a random variable with distribution approximated
by the Poisson distribution with mean 2uμ, where μ is the substitution rate (in units
of number of substitutions per million years).

Now suppose two individuals are sampled randomly from the current population,
and δ denotes the rate of divergence (in units of percentage divergence per million
years). Note that if l denotes the sequence length, then δ = 2μ/l. If we have a
model for the genealogical structure of the population, then the expected amount of
divergence between the mtDNA sequences of the two individuals will be equal to
the expected time back to the common ancestor of the two individuals (under our
model, in units of millions of years), multiplied by the divergence rate, δ.

Assume that the female population size follows a Markov branching process ZT

with mean number of offspring 1 + α/T , where T = Ta/λ; Ta is the time to the
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MRCA (TMRCA), λ is the mean effective lifetime (or generation time) and α ∈ R is
the growth parameter.

To obtain an indication of how fast the population might have been growing, sup-
pose the estimate of 200,000 years were correct. Then a straightforward moment
calculation based on this model with offspring variance σ 2 = 2, mean (effective)
lifetime 25 years, and current (effective) female population size 1 billion, yields
the rough estimate α̂ = 13.7 (c.f. Eq. 8.2 below). The estimate α̂ is quite insen-
sitive to apparently large adjustments in these values, and remains in the “slightly
supercritical” framework for quite a wide range.

We will slightly depart from the original method of estimation in O’Connell
(1995). We will use the process with the single ancestor, Eve, i.e., with x = 1,
while O’Connell (1995) used processes generated by the (almost surely) two direct
descendants of Eve (x = 2). The results are almost identical and our method seems
simpler. If we start time at the birth of Eve, then NT (0) = 1.Then ZT (T ) is the current
(effective) female population size. Using the approximation results in Theorems 8.1–
8.3, we can simultaneously estimate α and T , based on the observations ZT (T ) and
the average pairwise divergence in a random sample of n contemporary individuals
d̄n. We will assume for the moment that the divergence rate δ is known. Denote by
λ the mean effective lifetime of an individual. By Theorem 8.1, part 2,

E[ZT (T ) | NT (0) = 1] � Tα/λ

br

= σ 2Ta

2λα
(eα − 1) . (8.2)

We also have, by Theorem 8.3,

E[d̄n | NT (0) = 1] � δλE[T − DT | NT (0) = 1]

= δTa

{
1 − ∫ 1

0 P[DT > rT | NT (0) = 1]dr
}

� δTaγ1(α),

(8.3)

where

γ1(α) = 1 −
∫ 1

0
Φ1(r)dr = 1 − 2

∫ 1

0

qr

(1 − qr )2
(qr − 1 − ln qr )dr. (8.4)

One can simplify (8.4) to get

γ1(α) = 1 − 2α−1
∫ 1

0

v

(1 − v)2(v + κ)
(v − 1 − ln v)dv, (8.5)

where

κ = e−α

1 − e−α
. (8.6)

Note that γ1(α) is positive and increase in α, and γ1(α) ↑ 1 as α → ∞. For the
simplest moment-based estimates, assuming that δ, σ 2, and λ are known, just set
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Table 8.1 Estimates of the parameters of O’Connell (1995) model

λZT (T )/σ 2 δ α̂ T̂a/103

12.5 × 109 1.8 12.062 1741

2.7 12.508 1156

4 12.939 777

5 × 109 1.8 11.047 1761

2.7 11.497 1168

4 11.932 785

30 × 109 1.8 13.023 1726

2.7 13.465 1147

4 13.893 772

ZT (T ) = σ 2T̂a

λα̂
(eα̂ − 1), (8.7)

T̂a = d̄n

δγ1(α̂)
, (8.8)

and solve for (α̂, T̂a). Although σ 2 is unknown, when α is sufficiently large, the actual
value (within reason) will not affect the estimates considerably. (This is due to the
dominating exponential term in Eq. 8.7.) The same is true for λ.

Remarks concerning performance of the estimators can be found in O’Connell
(1995).

8.3.2 Numerical Estimates

Of the 189 individuals considered by Vigilant et al. (1989), O’Connell (1995) picked
a subsample of 19, without being deliberately biased in any way. The sample consists
of six Asians, one native Australian, one Papua New Guinean, six Europeans and
five Africans. A histogram of the 171 pairwise differences in this sample is shown
in Fig. 4 of O’Connell (1995). The average divergence was found to be 2.8 %.

In June 1992, according to the Population Reference Bureau estimates, the human
population size was approximately 5.412 billion. This gives about 1 billion as a rough
estimate for the 1992 effective female population size, assuming that about half the
population is female, and that the current female population represents approximately
2.7 generations. The estimates are quite insensitive to variations in this figure.

Note that the estimates α̂ and T̂a are functions of λZT (T )/σ 2 and δ; these are
shown in Table 8.1, for various different values of λZT (T )/σ 2 and δ.

These estimates differ only slightly from the original O‘Connell’s (1995) numbers.
If ZT (T ) = 1 billion, σ 2 = 2 and λ = 25, then λZT (T )/σ 2 = 12.5 billion. Although
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these choices seem somewhat arbitrary, we can see from the Table 8.1 that any kind
of realistic deviations from these values will have little or no effect on the estimates.
The most important parameter is δ, the rate of divergence.

To derive the estimates for the growth rate, α̂, and the age of Eve, T̂a, we simply
calculated the expected current population size and the expected average pairwise
divergence in a sample of contemporary individuals, and assumed the other parame-
ters were known. We are therefore not fully utilizing the information contained in the
sample. It might be helpful to know more about the joint distribution of the pairwise
divergences (dij ), or the joint distribution of the respective frequencies of distinct
types, in a finite sample. The latter would be analogous to Ewens’ sampling formula
for the infinite alleles Wright–Fisher model for neutral evolution (Nagylaki 1990),
which is not applicable to the Eve problem because it is based on the assumption
that the population size is constant over time.

8.3.3 Robustness of Mitochondrial Eve

The model originally proposed by O’Connell (1993, 1995) has limit results based
on the assumption that the population is growing as a slightly supercritical GW
branching process. It is interesting to compare the results of that branching process
model with results of two other well-known models of population genetics, the
Wright–Fisher model and the coalescence-based model (Barton 2007, Chap. 15).

The Wright–Fisher model for genetic drift assumes that:

• The population size is constant.
• The generations are nonoverlapping.
• There is random mating between individuals with different alleles.
• Alleles are neutral to selection.
• There is random sampling.
• No additional mutant alleles occur as the population evolves.

The Wright–Fisher model views changes among individuals as a population evolves
forward from an initial population.

In contrast, the coalescent-based model views a population backward. A sample
of differing individuals in the final population is analyzed, and this information,
assuming no selection, is used to infer their MRCA and the time (in generations) to
the MRCA (TMRCA).

These models can be applied to the problem of human population trajectory using
mtDNA sequence data. These data include the hypervariable region of a Neanderthal
mitochondrial genome (Krings et al. 1999), the complete mitochondrial genome of
one Neanderthal (Green et al. 2008), the complete mitochondrial genome of five
Neanderthals (Briggs et al. 2009), and a sample of 663 mitochondrial sequences of
modern humans (Krings et al. 1999). These data provide an opportunity to study
the sensitivity of genetic variation indices to departures from the assumptions made
in different models. In particular, it is interesting how these departures influence
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the distributions of the time to coalescence. The expected values for the TMRCA, and
other parameters, can be computed for each of the three models: the Wright–Fisher
model, the coalescent-based model, and the O’Connell model. Results are compared
to full genealogies generated by computer simulations that are based upon a slightly
supercritical GW branching process (Cyran and Kimmel 2010).

The Wright–Fisher model has been applied to the smallest sample exhibiting
effects of the genetic drift, i.e., the sample composed of two DNA sequences. The
model assumes a population of haploid individuals, say mtDNA sequences, which at
time t = 0 has the size Nt . Since multinomial sampling is assumed, two individuals at
generation t+1 are descendants of the single member of generation t with probability
pt = 1/Nt . Consequently, with probability qt = 1 − pt they are descendants of
two different members. This is reflected in the following distribution of the time to
coalescence, T2c, of two randomly drawn chromosomes (Bobrowski and Kimmel
2004):

P (T2c = t) =
T −1∏

k=T −t

qk −
T −1∏

k=T −t−1

qk = pT −t−1

T −1∏

k=T −t

qk , (8.9)

where T denotes the number of generations we consider, and for mathematical con-
sistency, we let q−1 = 0 and p−1 = 1. The average pairwise mutation difference
within a sample, after scaling by the mutation rate μ, corresponds to the expectation
of the coalescence distribution (Bobrowski and Kimmel 2004), and moreover, the
discrete nature of generations makes it easy to simulate the demography. Therefore,
using Monte Carlo techniques, it is possible to estimate the unconditional coales-
cence distribution by averaging the conditional one, using a series of Nt realizations
required to compute parameters in Eq. (8.9).

For the coalescent model, it is assumed that population size Nτ is variable in time
and continuous time τ is measured backwards. Suppose also that λ(τ ) = N0/Nτ

and that τ2c is the time to coalescence of a pair of chromosomes observed over N0

generations. Then, the tail of the distribution of τ2c is given by

P (τ2c > τ ) = exp

[

−
∫ τ

0
λ(u)du

]

, (8.10)

which is the continuous analog of Eq. (8.9). To ensure existence of a unique common
ancestor, λ(t) must satisfy

∫ ∞

0
λ(u)du = ∞. (8.11)

For the stochastic Nt , and therefore λ(τ ), the right side of the Eq. (8.10) should
be averaged over the process realizations.

It is worth noticing that the continuous coalescence model correctly approximates
the discrete coalescent model as long as 1 − 1/Nτ ≈ exp( − 1/Nτ ), which certainly
is not true in the early phase of the branching process, when Nt is not large and
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undergoes stochastic fluctuations. This fact is reflected in the differences between
experimental distributions of the time to coalescence in the coalescent model and the
O’Connell branching process model.

The O’Connell model assumes a slightly supercritical time-homogenous branch-
ing process with expected number of offspring E(ζ0) = 1 + α/T + o(1/T ) and
variance Var(ζ0) = σ 2 + o(1/T ). For this model, the asymptotic of the probability
P x(Zt > 0), where P x denotes probabilities for the process started by x individuals,
satisfies the O’Connell (1995) formula

P x(Zt > 0) ∼ 2αx

σ 2
[
1 − exp (−α t

T
)
] , T → ∞. (8.12)

From this it follows (Cyran and Kimmel 2004) that

E(ZT |ZT > 0, Z0 = x) ∼ σ 2 T

2α

[
exp (α) − 1

]
, T → ∞, (8.13)

where the symbol ∼ denotes asymptotic equivalence. The time interval [0, T ] of
variable t is expressed as a unit interval [0,1] of variable r = t/T . Then based on
Theorems 8.2 and 8.3 for times T long enough, the following equation describes the
tail of the distribution of DT , the time of death of the last common ancestor of two
individuals living at T , given that the population history is started from x individuals
having descendents at T :

lim
T →∞ P

(
DT

T
> r|K0 = x

)

= 2qx
r

(x − 1)!
[
(qr − 1)−x(x − 1)! − F (x − 1, 1 − qr )

]
,

(8.14)

where

qr = e−rα − e−α

1 − e−α
(8.15)

and F : Z+ × (0, 1) → R is defined as

F (n, y) = ∂n

∂yn

[
ln (1 − y)

y2

]

. (8.16)

The O’Connell original distribution is continuous, but to compare it to the discrete
empirical distributions the discretized version is specified by the tail of the original
distribution computed at points r corresponding to integer values of t = rT . For the
sake of terminological simplicity, this discrete distribution is still referred to as the
O’Connell distribution.

In the O’Connell model,

E

(
T2c

T
|K0 = 1

)

= 1

T
E [(T − DT )|K0 = 1] , (8.17)
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and

T̂MRCA(y) = E

(
TMRCA

T
|K0 = 1

)

× davg

δ
(

1 − 2
∫ 1

0
q̂r

(1−q̂r )2 (q̂r − 1 − ln q̂r )dr
) ,

(8.18)

where

q̂r = e−rα̂ − e−α̂

1 − e−α̂
, (8.19)

and TMRCA(y) = λTMRCA is the TMRCA expressed in years.
Moreover, the expectation of the ratio TMRCA/T in Eq. (8.18) can be obtained

from simulations with recorded full genealogies (Cyran and Kimmel 2010). There-
fore, to calculate the estimated MRCA time T̂MRCA from genetic variation data, α̂

is needed. However, from simulation results concordant with limiting properties of
the O’Connell model E(TMRCA/T |K0 = 1). Therefore, TMRCA(y) and α can be si-
multaneously estimated. From Eq. (8.13), if ZT is substituted as an estimate of its
expected value, it follows that

ZT = E

(
T

TMRCA
|K0 = 1

)
σ 2T̂MRCA(y)

2λα̂

[
exp (α̂) − 1

]
(8.20)

and estimates of TMRCA(y) and α are solutions of the system of Eqs. (8.18) and (8.20)
for given effective population size of females ZT , and genetic data davg and δ, where
davg is the average pairwise mutation difference among sequences in the sample and
δ = μ/λ is the divergence rate, with μ being the mutation rate and λ being the mean
effective lifetime of an individual.

The expected values of TMRCA(y) of modern humans calculated for the three mod-
els are the following: Wright–Fisher 168–189,000, coalescent 165–187,000, and
O’Connell limit 176,000 years. See Cyran and Kimmel (2010) for details.

These results indicate that the estimates of the time to coalescence in Wright–
Fisher and the coalescent models with random population size are quite robust to
the model assumptions. They deviate by less than 8 % from the O’Connell model
predictions, and the asymptotic O’Connell prediction differs from the actual value
computed in the full genealogy model by only 1.6 % (Cyran and Kimmel 2010).



Appendix A
Multivariate Probability Generating Functions

In this section, we will collect some results, which are referred to throughout the book.
Suppose X = (X1, . . ., Xn) ∼ {

pi1i2...in

}

i1,i2,..,in≥0 is a finite vector of non-negative
random variables, or a Zn+-valued rv.

Definition A.1 Definition of the multivariate pgf. The pgf fX of a Zn+-valued rv X

is function

fX (s) = E
(
s
X1
1 s

X2
2 . . . sXn

n

)
=

∑

i1,i2,..,in≥0

pi1i2... in s
i1
1 s

i2
2 . . . sin

n (A.1)

well defined if s = (s1, s2, . . ., sn) ∈ Un ≡ [0, 1]n.

Theorem A.1 Multivariate pgf Theorem. Suppose X is a Zn+ -valued rv with pgf fX.
Let us denote (Ni) the nontriviality condition for the i-th coordinate of X, P[Xi ≤
1] < 1.

1. fX is nonnegative and continuous with all derivatives. Under (Ni), it is increasing
and convex as a function of si .

2. The marginal laws for subsets of Xi’s can be obtained by setting respective argu-
ments of the pgf equal to 1, e.g., fX(s)|sj =1, j 
=i = fXi

(si), etc.; fX(e) = 1, where
e = (1, . . ., 1).

3. ∂k1+...+knfX(0)/∂s
k1
1 . . .∂skn

n = k1!. . .kn! pk1...kn
.

4. The (k1, . . ., kn)-th mixed factorial moment of X, μk1,...,kn
=E

[
n∏

i=1

ki−1∏

j=0
(Xi − j )

]

,

is finite if and only if ∂k1+...+knfX (e−) /∂s
k1
1 . . .∂skn

n = lim
s↑e

∂k1+...+knfX (s) /

∂s
k1
1 . . .∂skn

n is finite. In such case μk1,...,kn
= ∂k1+...+knfX (e−) /∂s

k1
1 . . .∂skn

n .
5. If X and Y are two independent Zn+-valued rv’s, then fX+Y (s) = fX(s) fY (s).
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6. If Y is a Zn+-valued rv and
{
X

(i)
j ; i ≥ 1

}
, j = 1, . . ., n are sequences of Zm+-

valued rv’s, then V =
n∑

j=1

Yj∑

ij =1
X

(ij )
j is a Zm+-valued rv with pgf fV (s) =

fY

[
f

X
(1)
1

(s) , . . ., f
X

(1)
n

(s)
]
, s ∈ Um.

7. Suppose {Xi ; i ≥ 1} is a sequence of Zn+-valued rv’s. The limit lim
i→∞ fXi

(s) =
fX (s) exists for each s ∈ Un if and only if the sequence {Xi ; i ≥ 1} con-
verges in distribution, i.e., when limi→∞P[Xi,1 = k1, . . . , Xi,n = kn] =P[X1 =
k1, . . . , Xn = kn]. Then fX(s) is the pgf of the limit rv X.

A further generalization to the denumerable infinite case is possible. Suppose X =
(X1, . . ., Xn, . . .) ∼

{{
pi1i2...in

}

i1,i2,..,in≥0

}

n≥1
is an infinite vector of non-negative

random variables, with the σ -algebra generated by the finite-dimensional truncations
of the sequence. Also, we may consider X a Z∞+ -valued rv.

Definition A.2 Denumerable pgf definition. The pgf fX of a Z∞+ -valued rv X is a
function

fX (s) = E
(
s
X1
1 s

X2
2 . . .sXn

n . . .
)

=
∑

i1,i2,..,in≥0

pi1i2...in s
i1
1 s

i2
2 . . .sin

n (A.2)

defined for

s ∈
⋃

n≥1

Un ≡
⋃

n≥1

{(s1, s2, . . ., sn, 1, 1, . . .) : s1, s2, . . ., sn ∈ [0, 1]} , (A.3)

i.e., for arguments s ∈ [0, 1]∞ with only finite number of coordinates not equal to 1.
Properties 1 through 5 stated in the multivariate pgf Theorem carry over to the

finite-dimensional restrictions of the denumerable pgf. Important difference is that
Property 6 does not necessarily hold for infinite n, since the resulting sum may be
improper (if it is proper, then Property 6 holds). Also the convergence Property 7
requires an additional continuity requirement:

Denumerable pgf Convergence Suppose {Xi , i ≥ 1} is a sequence of Z∞+ -valued
rv’s. A necessary and sufficient condition for convergence in distribution of this
sequence to a Z∞+ -valued rv X is that limi→∞ fXi

(s) = fX(s) exists for each s ∈⋃
n≥1 Un, and that fX is pointwise continuous for all sequences {s(i), i ≥ 1} with

s(i) ∈ Un. Then fX(s) is the pgf of the limit rv X.



Appendix B
Probability Distributions for the
Bellman–Harris Process

B.1 Construction

We start with a rigorous construction of the probability space of the process, following
Chap. 6 of Harris (1963). The elements of the probability space are family histories
of the particles.

B.1.1 The Families

Let I be the collection of elements ι, where ι is either 0 or a finite sequence
of positive integers i1, i2, . . . , ik . The collection I is denumerably infinite. The
elements ι are enumerated in a sequence ι1, ι2, . . . , starting for example with
0, 1, 2, 11, 3, 21, 12, 111, . . . . The ancestor or founder is denoted by < 0 >, while
< i1, i2, . . . , ik > denotes the ik-th child of the ik−1 -th child of . . . , of the i2-th child
of the i1-th child of the ancestor.

The family history ω is the sequence ω = (l, ν; l1, ν1; l2, ν2; l11, ν11; . . . ) where lι
is a nonnegative real and represents the length of life of ι, while νι is a nonnegative
integer and represents the number of children of ι. The collection of all family
histories is denoted by �. Family history is a redundant description of the particles
pedigree in the sense that it enumerates even “nonexistent” children; for example if
νij = 5 (the j -th child of the i-th child of the ancestor has five children), then none
of the pairs lijk , νijk for k > 5 corresponds to any members of the pedigree.

For each ω ∈ �, we define a sequence I0(ω), I1(ω), . . . , where Ik is a collection
of objects < ι > called the k-th generation. The 0-th generation I0(ω) is the ancestor
< 0 >, and I1(ω) is the set of all objects < i > with 1 ≤ i ≤ ν(ω). The succeeding
generations are defined inductively: Ik(ω) is the set of all objects < i1i2 . . . ik > such
that < i1i2 . . . ik−1 > belongs to Ik−1(ω) and ik ≤ νi1i2...ik−1 (ω). The set of objects⋃∞

k=0 Ik(ω) is called the family I (ω). In view of remarks in the preceding paragraph,
more than one family history ω may, in general, correspond to the same family I (ω).
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B.1.2 The Number of Objects at Given Time

If the object < ι >=< i1 . . . ik > belongs to the family I (ω), it is born at the time
t ′ = l + li1 + . . . + li1i2...ik−1 and dies at the time t ′′ = t ′ + li1i2...ik if t ∈ [t ′, t ′′), then
the age of the object at t is t − t ′. Thus, if at time t we count the objects that are alive
and have ages ≤ y, then < ι > is counted if and only if the following conditions
hold (with obvious modifications if ι = 0):

i1 ≤ ν, i2 ≤ νi1 , . . . , ik ≤ νi1i2...ik−1 ,

t − y ≤ l + li1 + . . . + li1i2...ik−1 ≤ t ,

l + li1 + . . . + li1i2...ik−1 + li1i2...ik > t.

⎫
⎪⎪⎬

⎪⎪⎭

(B.1)

The first line in (B.1) means that < ι > belongs to the k-th generation; the second
line says that < ι > was born between t − y and t ; the third line says that < ι > dies
after time t .

For each object ι let us define Zι(y, t , ω) to be 1 if (B.1) holds and to be 0 otherwise.
Define

Z(y, t , ω) =
∑

ι∈I
Zι(y, t , ω)

and

Z(t , ω) = Z(∞, t , ω) =
∑

ι∈I
Zι(∞, t , ω).

Thus Zι(y, t , ω) is 1 if < ι > is alive and of age ≤ y at t and 0 otherwise; Z(y, t , ω)
is the total number of objects of age ≤ y at t ; and Z(t , ω) is the total number of objects
at t . The possibility Z(y, t , ω) = ∞ for some values of y, t , ω is admitted.

Let us note that if Z(t0, ω0) = 0 for some t0, ω0, then Z(t , ω0) = 0 for all t > t0.

B.1.3 Probability Measure

Definition B.1 The probability measure P is built on the space � of family histories
ω in the following way:

1. The random variables lι are iid with distribution

P{lι ≤ t} = G(t),

where G is a right-continuous probability distribution function for which
G(0 +) = 0.
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2. The νι’s are independent of each other and of the l’s, and id with the pgf

f (s) =
∞∑

r=0

prs
r =

∞∑

r=0

P{νι = r}sr ,

with the trivial cases excluded and m ≡ f ′(1 − ) < ∞.

We denote the k-th convolution of G with itself by G∗k (G∗1 = G). Thus

G∗k(t) =
∫ t+

0−
G∗(k−1)(t − y)dyG(y).

Since ω corresponds to a denumerable family of independent real-valued random
variables, the basic theorem of Kolmogorov insures that the above assumptions
determine uniquely a countably additive probability measure P on the σ -algebra
generated by the cylinder sets in �. From the definition of Z(t , ω), it is seen that
Z is measurable in (t , ω), where the measurable (t , ω) sets are those generated by
rectangles A×B, A being a Borel t-set and B a measurable set in �. This conclusion
is equivalent to a statement that the family of rv’s {Z(t , ω), t ≥ 0} is a stochastic
process.

B.1.4 The Embedded Galton–Watson Process
and Extinction Probability

Let ζk = ζk(ω) be the number of objects in the k-th generation Ik , k = 0, 1, . . . .
It can be verified that the sequence of random variables {ζk , k = 0, 1, . . . } is a
Galton–Watson branching process with generating function f (s) (usually called the
embedded Galton–Watson process). The essence of the proof is to verify the property

E(sζk+1 |ζ1, ζ2, . . . , ζk) = [f (s)]ζk (B.2)

which characterizes the Galton–Watson process. Equation (B.2) is a version of the
forward pgf Eq. (3.5), conditional on ζk .

The embedded Galton–Watson process is helpful in proving that the probability of
extinction for the Bellman–Harris process is subject to the same rules which govern
the Markov versions. Let us note for example that if the embedded process becomes
extinct for some ω, then the time-continuous process does too, since there is only
a finite number of nonvoid generations Ik(ω) which may last for only a finite time.
Thus limk→∞ ζk(ω) = 0 implies limt→∞ Z(t , ω) = 0. The opposite is, in general,
not true. An example can be a situation when all the objects in the k-th generation
have lifelengths ≤ 2−k and consequently Z(t) = 0, t > 2. The following result
demonstrates that such occurrences have probability 0.

Theorem B.1 Let A be the event {ζn > 0, for each n} and let B be the event
{Z(t) > 0, for each t ≥ 0}. If P{A} > 0, then P{B|A} = 1.
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Corollary B.1 The probability of extinction, i.e., of the event B̄ ≡ {Z(t) = 0, for
all sufficiently large t}, is equal to the probability of the event Ā, i.e., to the smallest
nonnegative root q of the equation s = f (s).

B.2 Integral Equation

B.2.1 Decomposition into Subfamilies

If the initial object dies at or before time t , then the objects present at t are its children
or their descendants. For a family history ω = (l, ν; l1, ν1; l2, ν2; l11, ν11; . . . ) and
each i = 1, 2, . . . , let us define ωi = (li , νi ; li1, νi1; li2, νi2; li11, νi11; . . . ) . The ωi

may be interpreted as the family history of < i > and its descendants, although if
ν < i then this family is not actually realized.

For the family history ωi , let us define the random variables Zι(y, t , ωi),
Z(y, t , ωi), and Z(t , ωi) in the way analogous to that in which, for ω, the rv’s
Zι(y, t , ω), Z(y, t , ω), and Z(t , ω), were previously defined. Suppose that l(ω) ∈
[0, t] and ν(ω) > 0. It can be formally shown using the definitions above that

Z(t , ω) =
ν∑

i=1

Z(t − l, ωi). (B.3)

In view of the fact that

I (ω) = < 0 > ∪
ν(ω)⋃

i=1

I (ωi),

the proof of (B.3) is reduced to careful “bookkeeping” of the indicator functions
Zι(y, t − l, ωi) and Ziι(y, t , ω).

B.2.2 Generating Functions

Let

F (s, t) =
∞∑

r=0

P{Z(t) = r}sr . (B.4)

Since the case Z(t) = ∞ has not yet been eliminated, it can be F (1, t) < 1.
However, also in this case, the basic properties of the pgf’s are verified. Let us note
the alternative expression

F (s, t) = E[sZ(t)] ≡
∫

�

sZ(t ,ω)dP(ω), (B.5)
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where 00 = 1 and s∞ = 0, even if s = 1.

Theorem B.2 The generating function F satisfies the integral equation

F (s, t) = s[1 − G(t)] +
∫ t+

0−
f [F (s, t − u)]dG(u), (B.6)

where t ≥ 0 and s ∈ [0, 1].

Proof Based on (B.5), let us write

F (s, t) =
∫

�

sZ(t ,ω)dP (ω) =
∫

{l>t}
sZdP +

∞∑

k=0

∫

{l≤t ,ν=k}
sZdP. (B.7)

Since Z(t , ω) = 1 if l > t , we have
∫

{l>t} sZdP = s Pr{l > t} = s[1 − G(t)].
Let us consider � as a product space �′×�1×�2×. . . of points (l, ν; ω1, ω2, . . . ).

Let P ′ be the probability measure on the pair (l, ν) and let Pi be the probability
measure on �i . Now, it is possible to use (B.3). If l is fixed, then Z(t − l, ωi) is a
function on �i , and hence if k is any positive integer we have
∫

{l≤t ,ν=k}
sZdP =

∫

{l≤t ,ν=k}
dP ′(l, ν)

∫

�1

sZ(t−l,ω1)dP1 . . .

∫

�k

sZ(t−l,ωk )dPk.

Now each of the integrals
∫

�i
sZ(t−l,ωi )dPi is equal to F (s, t − l), since the prob-

ability measure dPi(ωi) is exactly the same as dP (ω). Hence the last equation is
equal to pk

∫ t+
0− [F (s, t − u)]kdG(u). The same can be seen directly true if k = 0.

Substitution into the right hand side of (B.7) yields the desired result.

B.2.3 Uniqueness of F (s, t) and Finiteness of Z(t)

Theorem B.2 states that the pgf of Z(t) satisfies Eq. (B.6), but it does not state that
this solution is unique, nor that lims↑1 F (s, t) = 1 i.e., that Z(t) < ∞. We will
outline here the arguments proving both these properties.

Regarding uniqueness, let us assume that there exists another pgf solution F̃ (s, t)
of Eqn. (B.6). Then

|F (s, t) − F̃ (s, t)| ≤
∫ t

0
|F (s, t − y) − F̃ (s, t − y)|dG(y). (B.8)

We see that since both F and F̃ are pgf’s, |F (s, t)− F̃ (s, t)| ≤ 1. Substituting into
the right hand side of (B.8) we obtain |F −F̃ | ≤ G(t). Substituting this and repeating
the estimate, we obtain that |F − F̃ | ≤ G∗i(t) for any i. But limi→∞ G∗i(t) = 0 for
any t (see Lemma 5.1), which yields |F − F̃ | = 0.

Finiteness of Z(t , ω) may be obtained by estimating another random variable
Z̄(t , ω) equal to the total number of objects in family I (ω) that are born up to and
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including time t (i.e., the counting function of births). Of course, Z(t , ω) ≤ Z̄(t , ω).
We will consider the expected value of Z̄. If it is finite, then Z̄ is finite and so is Z

(and consequently, F (1−, t) = 1.
For the argument, let us consider an object < ι > 
=< 0 >, where ι = i1i2 . . . ik .

Let uι be a random variable that is 1 if < ι > is in the family I (ω) i.e., if it is ever born,
and 0 otherwise, and let vι be a random variable that is 1 if l + li1 + . . .+ li1i2...ik−1 ≤ t

and 0 otherwise. Then < ι > is born at or before t if and only if uιvι = 1, and

Z̄(t) = 1 +
∞∑

k=1

∞∑

i1i2...ik=1

ui1i2...ik vi1i2...ik .

Expected value E(vι) is equal to G∗k(t). The rv uι is the indicator function of the
event that object < ι > is ever born and therefore its expectation is equal to the
probability of this event, i.e., to

E(uι) = P{ν ≥ i1, νi1 ≥ i2, . . . , νi1...ik−1 ≥ ik}
= P{ν ≥ i1}P{νi1 ≥ i2} . . . P{νi1...ik−1 ≥ ik}.

The uι’s and vι’s are independent, so that

E[Z̄(t)] = 1 +
∞∑

k=1

G∗k(t)
∑

i1

P{ν ≥ i1}
∑

i2

P{νi1 ≥ i2} . . .
∑

ik

P{νi1...ik−1 ≥ ik}

= 1 +
∞∑

k=1

G∗k(t)[f ′(1 − )]k.

Lemma 5.1 states that this sum is < ∞ for all t and so E[Z̄(t)] < ∞.



Appendix C
General Processes

C.1 Introduction to the Jagers-Crump-Mode Process

This section is a useful reference but it can be omitted at first reading. Its aim is to
introduce the reader in an informal way to the basics of the general branching pro-
cesses. In most part, the book is concerned with less general processes and therefore
the subject can be postponed to a later reading. However, there are issues that are best
expressed when phrased in terms of general processes. An example is an application
of a general process to cell populations in Sect. C.2.

C.1.1 Definition of the General Branching Process

A basic source concerning general branching processes is the book by Jagers (1975).
Our account is also based on Taïb (1992).

Individuals

We consider development in time of a population started by a single individual. The
individuals can be considered elements of the set

I =
∞⋃

n=0

Nn,

called the Ulam–Harris space, where N = {1, 2, . . . } and N0 = {0}. Individual 0 is
the ancestor of the population. Each element of Nn is of the form x = (x1, . . . , xn).
The meaning of this notation is that the individual belongs to the n-th generation and
is the xn-th progeny of the xn−1-st progeny, . . . , of the x1-th progeny of the ancestor.
This description is redundant, as not all these individuals will come to existence in a
given realization of the process. Each of the individuals evolves in a space �, which

© Springer Science+Business Media, LLC 2015 229
M. Kimmel, D. E. Axelrod, Branching Processes in Biology,
Interdisciplinary Applied Mathematics 19, DOI 10.1007/978-1-4939-1559-0



230 Appendix C General Processes

is large enough to allow for all possible life-spans and progeny-bearing processes of
this individual. An element ω ∈ �, is this individual’s life. The probability measure
on a σ -algebra F of � is called Q.

Lives

For each individual τ (ω, k), k = 1, 2, . . . denote successive ages at childbearing. In
particular, τ (ω, k) is the age at which the individual has its k-th progeny. These ages
are organized as epochs of a point process, a random collection of time moments or
equivalently a random collection of nonnegative-integer valued measures, denoted
ξ . Mathematically,

ξ (ω, [0, t]) = ξ (t) = #{k : τ (ω, k) ≤ t},
is the counting function of births, i.e., the number of progeny begotten before or
at the age of t . In addition, λ, the duration of life ω of an individual, is a random
variable λ : � → R+.

The time evolution of the individuals is governed by the connections between
their times of births. Let σx denote the moment of birth of individual x (σ0 = 0, for
the ancestor). Then, if we denote by xk the individual being the k-th progeny of x,
we set

σxk = σx + τx(k).

In this latter expression, the argument ω is dropped, as it will be frequently done.

Construction of the Process

If the space � is a Polish space (i.e., it is metric, complete and separable), then the
σ -algebra F can be selected as the class of Borel sets of �. The triplet (�, F , Q) is
the probability space of a single individual. If we assume that the lives of individuals
are independent, then the space of the process can be constructed as a product space
of the form (�I , F I , QI ), where I is the collection of all individuals. From now on,
we will write P instead of QI and ω instead of {ωx , x ∈ I }.

The model presented can be specialized to include the classical branching pro-
cesses, by assuming that all τ (ω, k), k = 1, 2, . . . are concentrated at λ(ω), i.e., all
progeny are born at the same time. Then, if λ(ω) = 1, we obtain the Galton-Watson
process. If λ(ω) is a nonnegative rv, we obtain the Bellman-Harris process, etc.

C.1.2 Random Characteristics and Basic Decomposition

The method of random characteristics makes it possible to account for individuals
existing in the process, individuals being born during a given time interval, individ-
uals with ages from a given interval, individuals with a given number of progeny,
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etc. The random characteristic is a random function χx(a) defined on an individual’s
life. It defines the contribution, of a desired type, of individual x, from its birth until
it reaches age a. The summary contribution of all individuals at a given time t , is
equal to

Z
χ
t =

∑

x∈I

χx(t − σx).

Z
χ
t is called the process counted by random characteristic χx(a). For example, if

χx(a) =
⎧
⎨

⎩

1, if a ≥ 0,

0, otherwise,

then Z
χ
t counts all individuals born until time t . If

χx(a) =
⎧
⎨

⎩

1, if a ∈ [0, λx),

0, otherwise,
(C.1)

then Z
χ
t counts all individuals alive at time t . If

χx(a) =
⎧
⎨

⎩

1, if a ∈ [0, λx) ∩ [τx(k), ∞),

0, otherwise,

then Z
χ
t counts all individuals alive at time t , with at least k progeny born before t .

For the process counted by random characteristics, it possible to write a backward
decomposition, analogous to (1.1)

Z
χ
t = χ0(t) +

X∑

i=1

(i)

Z
χ

t−τ0(i),

where X is the number of progeny effectively begotten by the ancestor and superscript
(i) denotes the i-th iid copy of the process.

C.1.3 Expectations, Malthusian Parameter
and Exponential Growth

Reproductive measure is the expectation of the point process of progeny births

μ(A) = E[ξ (ω, A)].

It is characterized by the reproductive counting function μ(a) = μ([0, a]). The ex-
pectation of the process, mt = E(Zχ

t ) counted by characteristic χ (a) with expectation
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g(a) = E[χ (a)] can be represented by the expression

mt =
∞∑

n=0

∫ t

0
g(t − u)dμ∗n(u) =

∫ t

0
g(t − u)dν(u),

where ν(u) =∑∞
n=0 μ∗n(u).Then-th convolution power of the reproductive measure,

μ∗n, counts the expected number of progeny born to the n-the generation individuals
in the process. Then, each of μ∗n has to be convolved with the expectation of the
random characteristic, to account for proper bookkeeping, and the result summed
over all generations of the process. Under mild conditions (e.g., no concentration of
births at age 0 and expected total progeny of an individual finite), this sum is finite.
Expectation mt satisfies a renewal-type integral equation

mt =
∫ t

0
mt−udμ(u) + g(t). (C.2)

A major role in the theory is played by the Malthusian parameter, which determines
(if it exists) the asymptotic rate of growth of mt . The Malthusian parameter is the
real solution of the equation

μ̂(α) ≡
∫ ∞

0
e−αudμ(u) = 1.

This solution, if it exists, is unique. In what follows, we will limit ourselves to the
supercritical case that is when μ([0, ∞)) > 1 [see the classification (1.5)]. In this case
the Malthusian parameter exists and is positive. The renewal theorem demonstrates,
in the same way as it was explained in Sect. 5.2 for the Bellman–Harris process, that
mt behaves asymptotically like eαt ,

e−αtmt −→
∫∞

0 g(u)e−αudu
∫ ∞

0
ue−αudμ(u)

︸ ︷︷ ︸
β

≡ c(χ ), as t → ∞. (C.3)

If we assume that all progeny are born at the same time τ in the life of the
individual, so that μ(u) = mG(u), where m is the mean count of progeny and G( · )
is the cumulative distribution of τ , and that this is exactly the moment of individual’s
death, i.e., that λ = τ , we obtain the Bellman–Harris process of Chap. 5. If we wish
to account for individuals alive at time t , then we use the random characteristics
of the form χx(a) = 1, if a ∈ [0, τ ), and χx(a) = 0, otherwise, as in Eqn. (C.1).
This means that g(u) = 1 − G(u). Substituting into (C.3), we obtain the expression
derived for the Bellman–Harris process (5.13)

Without getting into more detail, we state that in the supercritical case, the entire
process counted by a random characteristic behaves very much the same way as its
expectation. Indeed, there exists a random variable W , with E(W ) = 1, such that

Z
χ
t e−αt −→ c(χ )W ,

as t → ∞, with probability 1.
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C.1.4 Abstract Type Spaces and Composition of the Process

Let us suppose that each newborn individual is endowed, at birth, with a type selected
from a measurable space (�, G), where G is a σ -algebra of subsets of �. In other
words, there exist measurable mappings ρ(j ) : � → �, which determine the types
of newborn individuals. The point process ξ , which describes reproduction, is now
defined by

ξ (A × B) = #{i ∈ N ; ρ(i) ∈ A, τ (i) ∈ B}.
Intuitively, ξ (A × B) is the number of progeny of an individual, born in time set

B, with types in set A. The population of individuals can be defined on (� × �I ),
where � describes the type of the ancestor. The theorem of Ionesco-Tulcea enables
to construct a unique probability measure Pγ on (� × �I , G × AI ) for the process
with a type γ ancestor. Similarly as before, a major role is played by the reproduction
kernel μ(γ , A × B) = Eγ [ξ (A × B)]. For each real λ, we define

μλ(γ , dγ ′ × du) = e−λuμ(γ , dγ ′ × du)

and

μ̂λ(γ , dγ ′) =
∫ ∞

0
μλ(γ , dγ ′ × du).

The Malthusian parameter α is selected so that the kernel μ̂α(γ , dγ ′) has a Perron-
Frobenius eigenvalue equal to 1 (assuming this latter exists). The Perron-Frobenius
eigenvalue is the real eigenvalue strictly dominating absolute values of all remaining
eigenvalues. If we set να(γ , dγ ′ ×du) =∑n≥0 μn

α(γ , dγ ′ ×du), where μn
α(γ , dγ ′ ×

du) is the n-fold convolution of measure μα(γ , dγ ′ × du) with respect to elements
dγ ′ × du, we can write

Eγ [e−αtZ
χ
t ] =

∫

�×R+
Eγ [e−α(t−u)χ (t − u)]να(γ , dγ ′ × du).

So, we see that Eγ [Zχ
t ] is of the form R ∗ g(γ , t), where R = να and

g(γ , t) = Eγ [e−αtχ (t)].

Asymptotic behavior of the expectation of the process and of the process itself
in the supercritical case (α > 0) depends on the conservativeness of the kernel
μ̂α(γ , dγ ′). For countably generated G the kernel is conservative if its potential
ν̂α(γ , dγ ′) =∑n≥0 μ̂n

α(γ , dγ ′) has the property that there exists a σ -finite measure
m on (�, G) such that

m(A) > 0 �⇒ ν̂α(γ , A) = ∞ (C.4)

for all γ ∈ �. This property is a generalization of positive regularity of matrices.



234 Appendix C General Processes

If the kernel μ̂α is conservative, there exists an eigenfunction h, satisfying

h(γ ) = ∫
R+
∫

�
e−αuh(γ ′)μ(γ , dγ ′ × du)

= ∫
�

h(γ ′)μα(γ , dγ ′).
(C.5)

So, e−αu h(γ ′)
h(γ ) μ(γ , dγ ′ × du) has total mass on � × R+ equal to 1 and it is a prob-

ability measure. h(γ ) is the reproductive value of individuals of type γ . It indicates
the relative long-term contribution of individuals of this type to the population.

If the kernel μ̂α is conservative, there also exists a probability measure π , which
satisfies

π (dγ ′) =
∫

�

μ̂α(γ , dγ ′)π (dγ ). (C.6)

This equation can also be written in the following manner:

h(γ ′)π (dγ ′) =
∫

�

h(γ ′)
h(γ )

μ̂α(γ , dγ ′)h(γ )π (dγ )

if inf h(γ ) > 0. We can then normalize the equation so that we obtain∫

�
h(γ )π (dγ ) = 1. Measure π defined above can be interpreted as a stable dis-

tribution of the types of the newborns. Consequently, an individual drawn at random
from a very old population is of a random type decided by π , independently of the
initial conditions.

Another interesting expression:

β =
∫

�

∫

�

∫

R+
te−αth(γ ′)μ(γ , dγ ′ × dt)π (dγ )

can be considered the expected age at reproduction.
Similarly as in the single-type case, in the supercritical case (α > 0) a generaliza-

tion of the key renewal theorem makes it possible to calculate the limit of E[e−αtZ
χ
t ].

We will denote Eπ (X) = ∫
�

E[X]π (dγ ), the expectation in the process with the type
of ancestor being randomly drawn according to measure π . Then we have

E[e−αtZ
χ
t ] −→ E[χ̂ (α)]

αβ
h(γ ),

as t → ∞, for all γ except sets of π -measure 0. The process behaves in the
supercritical case very much like its expectation.

The multitype formulation provides a great generality and was used in applica-
tions, particularly concerning evolution theory (Taïb, 1992).
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C.2 Application: Alexandersson’s Cell Population Model Using
a General Branching Process

An elegant example of modeling using general processes and counting characteristics
(Sect. C.1) is a part of Alexandersson’s (1999) thesis. This application demonstrates
how a branching process approach complements existing deterministic approaches,
while the construction of the process is very straightforward.

C.2.1 The Model

Let us consider a cell population, where each cell inherits a type at birth, grows
during a stochastic time span, and when its cell cycle is completed it divides into
two not necessarily equal daughter cells. The type of the individual is the birth size
of the cell expressed as mass, volume, DNA-content etc. Since cells have only two
progeny, the Ulam-Harris space of all possible cells reduces to

I =
∞⋃

n=0

{1, 2}n,

where {1, 2}0 = {0}.
The type space is an interval S = (0, M] of the real line, where M < ∞ is the

largest possible birth size of a cell, and S is the Borel-σ -algebra on S. A cell with
birth size r ∈S chooses a life ω from (�, A) using P(r , ·), the life law of cells of type
r .

We construct the population space (S × �I , S × AI) as in Sect. C.1. Under the
assumption that the daughter processes of different cells are conditionally indepen-
dent, there exists a unique probability measure Pr on the entire population process,
where r ∈ S is the type of the ancestor.

The size of a cell with initial size r increases with time according to a deterministic
growth function g. We let m(r , t) denote the size of an r -type cell at age t . The
functions m and g are related by the initial value problem

dm

dt
= g(m), m(r , 0) = r.

The cell grows and, after division, the daughter cells do not necessarily have the
same size (type) at birth. Note that we do not allow cell death in this model, so our
branching population is supercritical. Let λ denote the age of the cell at division (the
cell cycle time) and let the distribution of λ be defined by its hazard rate function
b(s), s ∈ (0, 2M], i.e., P[λ > s] = exp [ − ∫ s

0 b(u)du]
A cell of type r divides into fractions δ and 1 − δ, where δ is a random variable

on (0, 1) with density function fδ(m, p), p1 ≤ p ≤ p2, where p1 = 1 − p2 ∈ (0, 1)
depends on m = m(r , λ), the cell size at division. We will assume that fδ is unimodal
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and that δ is symmetrically distributed around 1/2, i.e., for all r ∈ S, fδ(m, p) =
fδ(m, 1 − p), and Er [δ] = 1/2.

Let T (x) = ∫ x

0
1

g(y)dy, x ∈S. To see how to interpret this function, consider

T (x) − T (r) =
∫ x

r

1

g(y)
dy. (C.7)

Making a change of variable y = m(r , t) yields dy = dm(r , t) = g(m(r , t))dt

and (C.7) becomes
∫ u

0

g(m(r , t))

g(m(r , t))
dt =

∫ u

0
dt = u,

where u is the time it takes for a cell to grow from size r to size x. Consequently,
T (x)−T (r) is precisely this time. Since T (m(r , t))−T (r) = t , m(r , t) = T −1(T (r)+
t). Further let C(x) = ∫ x

0
b(y)
g(y)dy and Q(x) = b(x)/[xg(x)], and assume that each

cell has to divide before it reaches size 2M , i.e., b is such that for ε > 0

2M∫

0

b(y)

g(y)
dy = ∞ and

2M−ε∫

0

b(y)

g(y)
dy < ∞.

The reproduction kernel μ(r , ds × dt), which is the expected number of children
with birth sizes in ds to a cell of type r with age in dt , takes the form

μ(r , ds × dt) = Er [ξ (ds × dt)]

= Er [1(λ ∈ dt)(1(δm(r , λ) ∈ ds) + 1((1 − δ)m(r , λ) ∈ ds))]

= 2
∫ ∞

0
1(u ∈ dt)

∫ 1

0
1(pm(r , u) ∈ ds)fδ(m(r , u), p)dp

b(m(r , u))e− ∫ u
0 b(m(r ,v))dvdu,

where the factor 2 comes from the fact that δ and (1 − δ) are identically distributed.
The inner integral is zero everywhere except when p = s/m(r , u) and dp =

ds/m(r , u) so we have

μ(r , ds × dt) = 2
∫ ∞

0
1(u ∈ dt)fδ(m(r , u), s/m(r , u))

b(m(r , u))

m(r , u)
(C.8)

e− ∫ u
0 b(m(r ,v))dvdu ds.

Making a change of variable in the same manner as above, with x = m(r , u), we
get that du = dx

g(x) and the kernel becomes

μ(r , ds × dt) = 2

2M∫

r

1(T (x) − T (r) ∈ dt)fδ(x, s/x)Q(x)e−(C(x)−C(r))dxds.
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C.2.2 Existence of the Stable Birth Size Distribution

If the Malthusian parameter α exists such that μ̂α is conservative, then the Perron–
Frobenius Theorem gives the existence of a function h (see (C.5)) and a measure π

(see (C.6)). By requiring strong or positive α-recurrence (Jagers and Nerman 1996)
and inf h > 0 we can norm to

∫

S

h(s)π (ds) = 1,
∫

S

π (ds) = 1.

The measure π is then called the stable birth type distribution. Hence we want
to prove the existence of the Malthusian parameter, i.e., prove the existence of a
number α > 0 such that the Perron-root ρ(μ̂α) = 1, where

μ̂α(r , A) =
∫

R+
e−αtμ(r , A × dt)

and also that μ̂ is conservative.

Theorem C.1 Under the assumptions stated in Sect. C.2.1 on the reproduction
kernel μ, the Malthusian parameter α exists and the kernel μ̂α is conservative.

C.2.3 Asymptotics of the Cell Model

We discuss the asymptotics of our cell model. When looking at a population one can
either consider all cells alive at the moment, or all cells born into the population up
till now. Even if it seems more natural to look at all cells alive, it is mathematically
more convenient to consider all born. In this chapter we will concentrate on all born
cells, but we will also show that all the results presented can easily be obtained for
all cells alive as well. When calculating the asymptotics of our model, we construct
random characteristics used to count the population with respect to some property.
An alternative way, described in (Jagers and Nerman 1996), is to sample an individual
at random in an already stabilized population, and consider the population with time
centered around this individual. The individual sampled at random is called ego.

The α-curve is the graph of the function α(a) describing the proportion of cells
still undivided at age a. An alternative interpretation is that α(a) is the probability
that the age at division of a cell sampled at random, ego, is larger than a. In order
to find an expression for α(a) we define a random characteristic χ (c.f. Chap. C.1)
such that zχ

t counts the number of cells born up to time t with respect to χ . Then, if
yt denotes the number of all cells born up to time t , we can use the result that under
suitable conditions

zχ
t

yt

→ Eπ [χ̂ (α)] as t → ∞

in probability (on the set of non-extinction), where Eπ [X] = ∫
S
Es[X]π (ds), χ̂ (α) =∫

R+ αe−αtχ (t)dt and π is the stable birth type distribution.
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The random characteristic that gives score one for each cell x born up to time t

and with life length λx longer than a can be written as

χx(t) = 1R+ (t − τx)1(λx > a)

where τx is the birth time for cell x. Making a change of variable u = t − τx gives

χ (u) = 1R+ (u)1(λ > a).

This yields

α(a) = Eπ [χ̂ (α)] =
∫

S

Er [χ̂ (α)]π (dr)

=
∫

S

Er [
∫

R+
αe−αuχ (u)du]π (dr)

=
∫

S

∫

R+
αe−αudu Er [1(λ > a)]π (dr)

=
∫

S

Pr (λ > a)π (dr)

=
∫

S

e− ∫ a
0 b(m(r ,v))dvπ (ds).

The β-curves are used to describe the proportions of sister cells, cousin cells etc.,
with life lengths that differ by more than a time units. The β1-curve describes this
proportion for sister cells, β2 for cousin cells and so on. Alexandersson’s (1999) the-
sis includes further asymptotic results for the β-curves and numerical computations
for the model we outlined. Furthermore, it also deals with a much more compli-
cated example of cell proliferation, which we consider, using different methods, in
Sect. 7.8.2.



Glossary

Biological Glossary for Mathematicians

Cross-references to other glossary terms are italicized.

Acquired immune deficiency syndrome (AIDS) A disease associated with the
Human ImmunodeficiencyVirus. It is characterized by the viral inactivation of some
of the host’s cytotoxic T cells, one of the important components of the immune
system. This results in a decrease in ability of the host to immunologically respond
to foreign entities such as viruses, bacteria, fungi, and cancer cells.

AIDS See Acquired Immune Deficiency
Alu elements A kind of repeat DNA sequence of about 300 base pairs dispersed

in many locations throughout the human genome. Alu elements do not code for
proteins.

Amino acids The twenty different basic units of proteins.
Amplification (Gene Amplification) The increase in the number of copies of a

gene. May result from errors in DNA replication or recombination.
Antibody A protein produced by the immune system in response to a foreign

molecule (antigen) that interacts specifically with the foreign molecule.
Antigen A molecule that induces an antibody.
Apoptosis A kind of programmed cell death in which the cell contents are conser-

vatively degraded. The DNA is cut into discrete large pieces, and the cytoplasm
contents are redistributed into several smaller membrane bound packages. These
may be engulfed by other cells, the molecules processed, and reused.

Bacteria Cells of a lower form of life without a nuclear membrane.
Base pair Usually used as a unit of length of a DNA strand, spanning one pair of

complementary nucleotides.
Cancer A population of cells that continue to divide and survive under conditions in

which normal cells would stop dividing or die. The cancer cell population usually
is thought to be initiated from a single cell (clonal origin). As the progeny of the
single cell multiply they accumulate mutations and acquire new characteristics
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(tumor progression). They may invade adjacent tissues, and travel to distant sites
to form secondary tumors (metastases).

Cancer stem cell A stem cell within a tumor that has the ability to divide and produce
more cells and the ability to divide and produce differentiated cells. The hierarchal
model of cancer stem cells describes only a subset of cells within the tumor as
having a high probability of acting as stem cells. In contrast the stochastic model
of cancer stem cells describes all cells in the tumor as having an equal probability
of acting as stem cells. A different use of the same term, cancer stem cell, refers
to the cell that initiates a colony of cancer cells that is the tumor.

Cell The basic unit of life. Cells of higher forms of life have an outer membrane
surrounding the cytoplasm and the nucleus. In the cytoplasm there are proteins
(enzymes) that carry out biochemical functions, machinery (ribosomes) for making
proteins, and compartments (organelles) such as mitochondria. Higher forms of
life, such as mammalian cells, which have a membrane surrounding their nucleus,
are referred to as eukaryotes. Lower forms of life, such as bacteria, which do not
have a membrane surrounding their nucleus, are referred to as prokaryotes.

Cell cycle The stages of cell growth and division. Includes the following stages
(phases): division of one cell to produce two cells (cytokinesis), a gap of time (G1

phase) between cytokinesis and the initiation of DNA synthesis (S phase), a gap of
time (G2 phase) between the end of DNA synthesis and the formation of visible
chromosomes, and mitosis (M phase). In mitosis the duplicated chromosomes
(chromatids) containing replicated DNA are partitioned to new cells at cell division.
The time between one cell division and another is referred to as the cell lifetime.

Centromere A part of the chromosome required for proper movement of the daugh-
ter chromosomes (chromatids) to daughter cells. A piece of DNA that is not part
of a chromosome and does not contain a centromere DNA sequence is referred
to as an acentric extrachromosomal element or double minute chromosome. Such
acentric extrachromosomal elements do not segregate properly into daughter cells.

Chemotherapy The treatment of cancer cells with chemicals that kill them. In
combination drug therapy two or more chemicals with different modes of action
are used to increase the efficiency of killing cancer cells.

Chromosome The linear structure containing DNA and protein that is visible un-
der a microscope at mitosis. Chromosomes contain DNA sequences (genes) that
code for proteins, and DNA sequences that do not code for proteins. Among the
non-coding DNA sequences there are centromeres necessary for the separation of
daughter chromosomes (chromatids) during mitosis, and telomeres which function
to maintain the integrity of the ends of chromosomes.

Chronic myeloid leukemia (CML) A kind of leukemia that is the result of a
chromosome defect in a bone marrow stem cell, resulting in a colony of abnormal
cells in the blood. After several years in the chronic phase most patients undergo a
sudden change, blast crisis, to an acute phase in which myeloid and/or lymphoid
cells are overproduced.

Colony A population of cells that are the progeny of a single cell.
DNA Deoxyribonuleic acid. The genetic material. A long double helix with a struc-

ture similar to a twisted ladder. The backbones of the ladder are strands composed
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of alternating sugar (deoxyribose) and phosphate groups. The rungs of the ladder
are pairs of nucleotide subunits. The nucleotide subunits are abbreviated A, T, G,
C. A is paired with T, and G is paired with C. The genetic information in DNA
is stored in the sequence of nucleotides. The information is transcribed into com-
plementary copies of a sequence of nucleotides in messenger RNA and is then
translated into a sequence of amino acids in protein. During DNA replication the
two strands of a double helix separate and each acts as a template to synthesize a
new complementary strand. Each of the two double helices (one new strand and
one old strand) is contained in each one of a pair of sister chromatids (the daughters
of chromosomes). The sister chromatids segregate into daughter cells at mitosis.

Drug resistance The continued survival of cells in the presence of chemicals (drugs)
intended to kill them. Resistance to two or more drugs is referred to as double
resistance or cross resistance.

Eve The hypothetical common human female ancestor of all extant humans.
Suggested by some common genetic features of individuals in current human
populations.

Flow cytometry A method for the analysis of the distribution of the amount of a
molecule (such as DNA or protein) in a population of cells. Cells are stained and
pumped through a thin tube between a light source and a detector. Measurements
of the amount of DNA per cell are used to indicate the number of cells in each
phase of the cell cycle. Measurements of the amount of a specific protein per cell
are used to indicate overproduction of the protein as a result of, for instance, gene
amplification.

Fluctuation analysis Also, Luria and Delbrück fluctuation analysis. A method to
determine mutation rates of bacteria or mammalian cells. Parallel cultures of cells
are grown for a number of generations, and then the number of mutants in each
culture, the average number of mutants per culture, and the number of cultures
containing no mutants are determined. This information can be used to calculate
the mutation rate, i.e. the number of new mutations per cell per generation. In
contrast to mutation rate, the mutation frequency is the number of mutant cells in
a culture at one time.

Gene A sequence of bases in DNA that codes for a protein and influences the
inherited characteristics of a cell or organism.

Genome All of the sequence of bases of DNA or RNA of a cell, or of a virus. The
information in the genome functions in inheritance and to determine the character-
istics of the organisms. Some DNA sequences may code for proteins that influence
the inherited characteristics of a cell, or of a virus. Other DNA sequences may
have a regulatory or structural function. The genome of cells is DNA, the genome
of some viruses is DNA, and the genome of other viruses is RNA.

Heterogeneity (Tumor heterogeneity) Populations of cancer cells that contain
subpopulations with different characteristics, such as relative resistance to drugs.

HIV See Human immunodeficiency virus
Human Immunodeficiency Virus (HIV) The RNA containing retrovirus that is

the cause of Acquired immune deficiency (AIDS) disease.
Leukemia A kind of cancer of the blood forming cells.
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Mitosis The stage of the cell cycle of somatic (body) cells in which replicated
chromosomes (chromatids) are separated into daughter cells. The result of mitosis
is two daughter cells that have identical sets of genes. Daughter cells may be
slightly different in size as a result of asymmetric division of the cytoplasm at cell
division.

Meiosis The formation of gametes (sex cells) by two successive cell divisions and
only one round of DNA synthesis. This results in the segregation of non-identical
forms of genes (alleles) into different gametes. The gametes are haploid, containing
half as much DNA as diploid body cells.

Mitochondria Organelles in the cytoplasm of cells of higher organisms needed for
generating energy. Mitochondria contain DNA. They are inherited only from the
mother, hence the term maternal inheritance.

Molecular clock hypothesis The assumption that mutations in a gene occur
randomly and at an approximately equal rate over long time intervals during
evolution.

Mutant An organism or cell that has a different inherited characteristic than the
remainder of the cells in a population. Usually the result of a change in DNA
sequence.

Mutation A change in DNA sequence. Usually detected by a sudden and inher-
ited change in an observed characteristic (phenotype) of a cell or of an organism.
However, a mutation may be detected directly by determining a change in the
DNA sequence, even though there is no visible characteristic change in the cell
or organism. The progeny of the mutant may revert to the previous phenotype, in
which case the new mutation is referred to as a reverse mutation or back mutation.
A phenotype resulting from a series of two mutations is referred to as a two stage
mutation. The rate of mutation may be determined by fluctuation analysis.

Nucleus The part of a cell containing DNA. The part of the cell outside of the
nucleus is referred to as the cytoplasm.

Oncogene A gene (DNA sequence) associated with cancer. An oncogene can be
detected and mapped by its pattern of inheritance in cancer prone families. A piece
of DNA containing an oncogene can be detected by the ability of the DNA to
induce cancer-like changes when transferred into cells growing in culture.

Organelle A part of a cell which carries out a specialized function. An example
is a mitochondrion (plural: mitochondria). A mitochondrion is a DNA containing,
membrane enclosed, structure located in the cytoplasm. It functions to produce
high energy molecules for cell metabolism. During cell division, mitochondria
may, or may not, be distributed to daughter cells in equal numbers.

PCR See Polymerase chain reaction.
Phenotype The visible characteristics of a cell or organism. As opposed to

genotype, the genetic information of a cell.
Plasmid In bacteria, a circular piece of DNA that is separate from the major

(chromosomal) piece of DNA. Plasmids replicate and segregate at cell division
independently of the chromosomal DNA. Each bacterial cell may contain multiple
numbers of plasmids which may be randomly distributed at cell division.
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Polymerase chain reaction An experimental procedure for obtaining a large
number of copies of a piece of DNA. The procedure employs short pieces of
DNA complementary to the ends of the desired sequence, and the enzyme DNA
polymerase to exponentially increase the number of copies of the desired DNA
sequence.

Population biology The study of groups of people in time and space. Variables
may include genes, proteins, physical characteristics, ethnicity, etc.

Protein A polymer molecule consisting of monomer subunits of amino acids. The
linear sequence of amino acids in a protein is determined by the corresponding
sequence of nucleotides in DNA (gene). Some proteins (enzymes) function to
encourage chemical reactions, while other proteins have a structural function.

Quiescence A phase when cells are pausing rather than actively progressing through
the cell cycle. Most cells of higher organisms are quiescent rather than actively
dividing. They pause before the initiation of DNA synthesis.

Recombination The formation of new combinations of genes by the exchange of
genetic information between chromosomes.

Repeat DNA Sequences of DNA nucleotides that are tandemly iterated. In some
diseases the number of repeats may vary between individuals, and the number may
change from parents to progeny.

Replication The duplication of DNA. Two strands of DNA separate, like a zipper,
at a moving replication fork. Each strand acts as a template to code for a comple-
mentary sequence of nucleotides in a new strand. The result is two new pieces of
DNA, each double stranded, and each piece containing one new strand and one old
strand. This is referred to as semiconservative replication. Errors may occur during
DNA replication, slippage at the replication fork or redundant replication forks,
resulting in sequences that are added or deleted (amplification or deamplification).

Retrovirus See Virus
RNA Ribonucleic acid A molecule similar to DNA, but with a different sugar

(ribose rather than deoxyribose), one different nucleotide (U rather than T), and
mostly single stranded (rather than double stranded). There are several kinds of
RNA. One of these, messenger RNA (mRNA), is transcribed as a complementary
copy of the sequence of nucleotides in DNA and functions to determine the se-
quence of amino acids in protein. RNA can also function as the genome of some
viruses, called retroviruses.

Segregation The separation of different forms of genes (alleles) into sex cells
(gametes) by the separation of chromatids (daughter chromosomes) at the second
cell division of meiosis. Also, the separation of chromatids to daughter cells during
mitosis.

Senescence The inability of some normal cell populations to continue to divide
indefinitely when grown in culture. Some cancer cell populations can continue to
divide indefinitely in culture and are therefore referred to as immortal. Senescence
has been related to the continued activity of molecules that control cell cycle
progression, and to the maintenance of the length of telomeres at the ends of
chromosomes.
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Stem cell A cell that can divide and produce two more stem cells, or divide and
produce a stem cell and a differentiated cell, or divide and produce two differen-
tiated cells. An embryonic stem may yield, after many cell divisions, all of the
different specialized cells in the body. Such a stem cell is referred to as totipotent.
In contrast, an adult stem cell, for instance, the hematopoietic stem cell in the bone
marrow, may give rise to a multiple cell types in the blood. Such a stem cell with
more restricted potential is referred to as a pluripotent or multipotent stem cell.

Synthetic biology The construction of organisms with new combinations of ge-
netic regulatory elements. By analogy, these combinations of genetic regulatory
elements are sometimes referred to as genetic circuits or genetic networks. Ge-
netic circuits have been constructed that behave as switches, oscillators, timers,
counters, clocks, logic processors, or sensors.

Systems biology The generation of data from complex, multiscale and dynamic
genetic, biochemical, or metabolic pathways and networks of molecules using
methods of experimental molecular biology, and the analysis of such data by
techniques of mathematics, statistics, and computer science.

Telomeres The ends of chromosomes. The DNA at the ends of chromosomes con-
tains repeated sequences (terminal restriction fragments, TRF) that are necessary
for replicating DNA at the ends of chromosomes, and for maintaining the structural
integrity of chromosomes.

Tissue architecture A spatially organized group of several types of differentiated
cells. The different cell types may be organized into layers such as in the skin, or
organized into structures such as branches of the lung, or organized into capped
tubes such as the crypts of the colon.

Tumor See Cancer.
Tumor progression Also referred to as tumor evolution. A series of changes from

normal cells to progeny cells that have a higher probability of dividing (hyperplasia)
to cells that have an abnormal appearance (dysplastic) to cells that move out of
their usual tissue location into adjacent tissue (invasive). A growth of cells that is
not invasive is referred to as a benign neoplasm, whereas a growth of cells that is
invasive is referred to as a malignant neoplasm. The term “cancer” usually refers
to malignant neoplasm. Cells that form a tumor at a location distant from their
original site are referred to as a metastatic tumor.

Virus An intracellular parasite of cells. There are viruses of bacteria and of higher
cells, including mammalian cells. They replicate within cells and can be transferred
between cells. The extracellular forms contain genetic material (DNA or RNA),
proteins, and some contain membranes. Within cells, the viral genetic material
may subvert the machinery of the host cells and alter the host cell’s properties.
Some RNA viruses, called retroviruses, can produce a DNA copy. The DNA copy
can integrate into the host cell DNA and replicate along with the DNA of the host
cell once per cell cycle. The integrated DNA copy of the virus may also produce
RNA copies that get incorporated into new virus particles, which in turn can infect
new cells.
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Mathematical Glossary for Biologists

Cross-references to other glossary terms are italicized

Abel’s equation One of the classical functional equations of the Calculus. For a
supercritical branching process, the characteristic function of the limit random
variable W equal to the standardized particle count satisfies Abel’s Eq. (3.19).

Age-dependent branching process A branching process in which the lifetimes of
particles are nonnegative random variables. In the special case when the lifetimes
are exponentially distributed, the number of particles existing in the process, as a
function of time, is a time-continuous Markov chain.

Asymptotic behavior Behavior of a time-dependent process (or a biological or
physical phenomenon) after a sufficiently long time.

Backward approach Decomposition of the branching process into subprocesses
started by direct progeny of the ancestor. By the branching property (a form of
self-recurrence) these latter are distributed identically as the whole process. This
decomposition provides means to derive recurrent relationships or equations for
the distributions of the process.

Bellman–Harris branching process A branching process in which the lifetimes
of particles are nonnegative random variables (age-dependent process) and the
progeny is born exactly at the moment of the death of the parent.

Bienaymé–Galton–Watson branching process See Galton–Watson branching
process.

Branching diffusion process A branching process, with a continuum type space,
in which the type of the particle is defined as its position in a subset of real numbers
(or points in higher-dimensional space) and the transitions in the type space are
translations by a real-valued random variable (or a vector), with special rules on
the boundary. The type may be understood as a spatial coordinate of the particle.

Branching process A random collection of individuals (particles, objects, cells),
proliferating according to rules involving various degrees of randomness of the
lifelength and the number of progeny of an individual. The unifying principle
is the so-called branching property, which states that the lifelenght and type of
progeny of a newborn particle, conditional on the current state of the process, are
independent of any characteristics of other particles present at this time or in the
future. The branching property is a form of self-recurrence.

Branching random walk A branching process, with a denumerable type space,
in which the type of the particle is defined as its position in the set of integers (or
nonnegative integers) and the transitions in the type space are translations by an
integer random variable, with special rules on the boundary. An example is the
process of gene amplification in proliferating cells. In this process the type of cell
is the number of copies of a gene present in the cell’s DNA. Progeny cells may
gain or lose copies of this gene, inherited from the parent cell. So, if the number
of gene copies in the parent is equal to i, then in the progeny it may be equal to
i − 1, i or i + 1.
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Càdlàg path Function of time continuous from the right and bounded from the left
of each point (French: continue à droite, limitée à gauche).

Chapman-Kolmogorov equation Fundamental relationship governing the time
evolution of Markov chains. It is represented in various forms, e.g. P (s + t) =
P (s)P (t) or Pij (s + t) = ∑

k Pik(s)Pkj (t), where P (s) = (Pij (s)) is the matrix
(finite or infinite) of transition probabilities between states, Pij (s) =P[Xt+s =
j |Xt = i]. Intuitively, to calculate the probability of the chain moving from i to j

in time t + s, it is necessary to add the probabilities of moving from i to k in time
t , and from k to j in time s, over all states k.

Criticality Branching process is critical if the expected (mean) count of progeny
of a particle is equal to 1. It is supercritical, if the mean count of progeny of
a particle is greater than 1 and subcritical if it is less than 1. This classification
leads to profound differences in asymptotic properties of the process. In particular,
critical processes behave in a counterintuitive way since they become extinct with
probability 1, while the expected number of particles stays constant.

Denumerable A set is called denumerable (or countable) if it is infinite but its
elements can be indexed by nonnegative integers. Other categories of infinite sets
include continuum, i.e., a set the elements of which can be indexed by real numbers
from an interval. Set of all rational numbers (ratios of integers) is countable, set of
all infinite sequences of zeros and ones is a continuum (since such sequences are
just binary expansions of real numbers from the [0, 1] interval).

Exponential steady state For idealized populations growing without spatial or
nutritional constraints, the condition in which the number of individuals increases
or decreases exponentially, while the proportions of individuals in distinct age
classes and any other identifiable categories remain constant. Usually attained
asymptotically.

Extinction The event of all particles (individuals) of the branching process dying
out.

Forward approach An approach dual to the backward approach, easiest to explain
for the Galton–Watson branching process. Particles existing in generation t of the
process are traced to their parents in generation t−1. Therefore, if the number Zt−1

of particles in generation t −1 is known, the number Zt of particles in generation t

is equal to the sum Zt = X1 +X2 +. . .+XZt−1 , where Xk is the number of progeny
of the k-th out of Zt−1 particles of generation t − 1. This leads to a recurrence for
the pgf’s of the particle counts.

Galton–Watson branching process Arguably, the simplest branching process. It
evolves in discrete time measured by nonnegative integers. At time 0, an ancestor
individual (particle, cell, object) is born. At time 1, the ancestor dies, producing a
random number of progeny. Each of these becomes an ancestor of an independent
subprocess, distributed identically as the whole process. This definition implies
that the numbers of progeny produced by each particle ever existing in the process
are independent identically distributed random variables and that all particles live
for one time unit. Discrete time moments coincide with generations of particles.
The number of particles existing in the Galton–Watson branching process, as a
function of time, constitutes a time-discrete Markov chain.
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Gelation In a model of aggregation of chemical molecules, the idealized process of
infinite aggregation, resulting in disappearance of finite aggregates of molecules.
In Macken and Perelson’s branching model of aggregation, gelation is represented
by escape of the branching process to infinity (possible only in the supercritical
case).

Genealogies Branching (tree-like) graphs, usually random with respect to struc-
ture and branch lengths, representing ancestry of a sample of individuals from a
branching process or, more generally, from an abstract or real-life population of
molecules, genes, cells or other objects. The process of reducing the number of
distinct ancestors of the sample, followed in the reverse time, is called coalescence.

Genetic distance Distance between biological organisms, computed based on ge-
netic characteristics. An example is the distance between relevant subsequences
of DNA of the two individuals, computed as the number of nucleotides different
in these two individuals (number of mismatches). For example, if in individual 1
the DNA sequence is ATGGACGA while in individual 2 it is ATcGgCGt, then the
genetic distance is equal to 3.

iid Independent, identically distributed (random variables). The most frequently
encountered assumption concerning a family of random variables. Makes proofs
of theorems easier, when it can be assumed. In statistics, the so-called random
samples are assumed to be iid.

Instability of branching processes The fact that, as time tends to infinity, the
branching process either becomes extinct or infinitely large. Instability is due to
the independence assumptions inherent in the definition of a branching process
(i.e., that the number of progeny and lifelength of a newborn particle, conditional
on the current state of the process are independent of any characteristics of other
particles present at this time or in the future).

Jagers–Crump–Mode process The general branching process. The difference
with respect to the classical branching processes, such as the Galton–Watson
branching process or the Bellman–Harris branching process is that in the gen-
eral process, the progeny may be produced before the death of the individual. The
ages at which the individual begets progeny are random. Also, the type space may
be of a very general form. The theory developed for general processes, allows
finding distributions of the process counted by random characteristics, i.e. of the
weighted counts of events associated with a desired subclass of individuals (e.g.
the number of first-born progeny of all individuals born after January 1, 1980, etc.).

Kolmogorov theorem In the theory of stochastic processes, a fundamental result
ensuring the existence of the stochastic process, given that for all finite collections
of times, there exist joint distributions of random variables being the values of
the process at these times. These finite-dimensional distributions have to satisfy
consistency conditions.

Linear-fractional case An important case of the Galton–Watson branching pro-
cess, in which the number of progeny of an individual is a random variable
with modified geometric distribution, i.e., P[X = 0] = 1 − bp/(1 − p) and
P[X = k] = bpk , for k = 1, 2, . . . . The name is derived from the fact that the pgf of
such random variable is a ratio of two linear functions. In the linear-fractional case,



248 Glossary

the number of particles existing at any time has a modified geometric distribution,
with parameters, which can be explicitly computed.

Malthusian parameter For a branching process, a parameter α such that the
number Z(t) of particles present in the process, normalized by dividing it by
exp (αt), converges to a limit random variable, as time tends to infinity. The
Malthusian parameter always exists for the supercritical processes, and is positive
in this case.

Markov branching process A type of time-continuous branching process. At time
0, an ancestor individual (particle, cell, object) is born. The ancestor lives for time
τ , which is an exponentially distributed random variable, and then the ancestor
dies, producing a random number of progeny. Each of these becomes an ancestor
of an independent subprocess, distributed identically as the whole process. The
number of particles existing in the Markov branching process, as a function of
time, is a time-discrete Markov chain (hence the name). Interestingly, if the Markov
branching process is observed at times equal to multiples of a constant interval �t ,
the numbers of particles at these observation times are distributed identically as in
a Galton–Watson branching process.

Markov process A stochastic process with a limited memory (the Markov prop-
erty). Intuitively, given the state of the process at time t , the future of the process
depends only on this state and not on its states at times before t (time can be discrete
or continuous). Mathematically,

P[Xt+s ∈ A|Xu = xu, 0 ≤ s ≤ t] = P[Xt+s ∈ A|Xt = xt ],

where A is a subset of the state space of the process (space of values assumed by
the process). The probability P (s; x → A) =P[Xt+s ∈ A|Xt = x] is the transition
probability from state x to set of states A, in time s. If the states of the process
form a finite or denumerable set, then the process is called a Markov chain. In this
case, it is possible to define a matrix (finite or infinite) of transition probabilities
between states P (s) = (Pij (s)), where Pij (s) =P[Xt+s = j |Xt = i]. For discrete
time, P (s) = P (1)s , where P (1) is the single-step transition probability matrix.
For continuous time (under some additional assumptions if the number of states is
infinite), P (s) = exp (Qs), where Q is called the transition intensity matrix.

Martingale In the discrete time case, a stochastic process, having the property that
its expected value at time t + 1, conditional on its values at all times before t + 1,
is equal to the process value at time t . Mathematically, E(Xt+1|X1, X2, . . . , Xt ) =
Xt . Martingales, under some additional conditions, converge to limits (which are
random variables). For this reason, proving that a process is a martingale allows
an insight into its asymptotic behavior. Continuous-time martingales behave in a
similar way, but are technically more involved.

Maximum likelihood Statistical methodology of estimating parameters of models,
based on observations. It consists of expressing the probability of observations
as a function of parameters. This function is known as the likelihood function,
L(θ ) = fX(x; θ ), where fX( · ) is the density of the distribution of random variable
X, x is the vector of observations of random variable (known), and θ is the vector
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of parameters of the distribution (unknown). The values of parameters, which
maximize L(θ ) are called the maximum likelihood estimates of the parameters
and are denoted θ̂ .

Moments Expected values of powers of a random variable X. Absolute moments
of order k (or k-th absolute moments), are defined as E(Xk), central moments as
E{[X−E(X)]k}, and factorial moments as E[X(X − 1)(X − 2) · · · (X − k)]. First
absolute moment, E(X), represents the central tendency of the random variable,
second central moment, Var(X) = E{[X−E(X)]2}, represents the dispersion of the
random variable around the expected value.

Multitype Galton–Watson process (positive regular) Generalization of the usual
(single-type) Galton-Watson branching process. It evolves in discrete time mea-
sured by nonnegative integers. Each individual belongs to one of a finite number
of types. At time 0, an ancestor individual (particle, cell, object), of some type, is
born. Processes started by individuals of different types are generally different. At
time 1, the ancestor dies, producing a random number of progeny of various types.
The distribution of progeny counts depends on the type of parent. Each of the first-
generation progeny becomes an ancestor of an independent subprocess, distributed
identically as the whole process (modulo ancestor’s type). In the multitype pro-
cess, asymptotic behavior depends on the matrix of expected progeny count. Rows
of this matrix correspond to the parents types, and columns to the progeny types.
The largest positive eigenvalue of this matrix (the Perron–Frobenius eigenvalue),
is the Malthusian parameter of the process, provided the process is supercritical
(the Perron–Frobenius eigenvalue larger than 1) and positive regular. This latter
means that parent of any given type will have among its (not necessarily direct)
descendents individuals of all possible types, with nonzero probability.

Parsimony method in phylogenetics A method of inferring the phylogenetic tree.
In this method, taxonomic units are represented by their DNA sequences (most
commonly, from the mitochondrial genome). The method looks for the tree that
requires the minimum number of changes between the extant and inferred ancestral
sequences. The outcome may be equivocal, and also, since the number of possible
tree structures is extremely large, the optimal tree is frequently not found.

Perron–Frobenius theory Collection of results concerning eigenvalues and eigen-
vectors of positive (or nonnegative) matrices and operators. Important assumptions
include irreducibility (positive regularity), i.e., a strict positivity of iterates of the
matrix or operator. A generic result states the existence of a strictly positive simple
eigenvalue dominating all other eigenvalues and of a corresponding strictly positive
eigenvector. The importance of these results is that they lead to characterizations of
the asymptotic behavior of iterates of positive matrices or operators, in the terms of
dominant eigenvalues and eigenvectors. Mathematically, m0M

i ∼ λiν, as i → ∞,
where Mi is the i-th iterate of the positive matrix M , m0 is the initial vector of
states, λ is the dominant positive eigenvalue and ν is the corresponding eignvector.
Results of this type are important in mathematical population dynamics, including
the theory of branching processes.

pgf Probability generating function.
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Phylogenetic tree The set of ancestry relationships between extant (contemporary)
taxonomic or demographic units (species, populations, haplotypes and other), usu-
ally in the form of a binary tree graph (at most three branches out of each node).
The nodes of the phylogenetic tree represent extant and ancestral units, while
the branches represent the intervals of evolutionary time separating them. De-
pending on the method of reconstruction, the graph may be rooted, i.e. having a
uniquely defined common ancestor (and consequently, the direction of time spec-
ified in all branches), or unrooted (it is then sometimes called a network). The
most commonly used methods of reconstruction are parsimony, distance matrix
and maximum likelihood.

Poisson process One of the most important stochastic processes. Random collec-
tion of time points (epochs) having the properties of complete randomness (the
counts of events in any two disjoint time intervals are independent), and station-
arity (the probability of an event occurring in a short time interval (t , t + dt) is
equal to λdt + o(dt), where o(dt) is small with respect to dt , i.e., o(dt)/dt → 0
as dt → 0). The constant λ is called the intensity of the process. The number N

of epochs of the Poisson process in an interval of length t has Poisson distribution
with parameter λt (i.e., P[N = n] = exp ( − λt)(λt)n/n!, for n = 0, 1, 2, . . . ), and
the time intervals T between any two epochs have exponential distribution with
parameter λ (i.e., the density of distribution of T is equal to fT (t) = λ exp ( − λt),
for t ≥ 0).

Population genetic models Models of inheritance, mutation and selection of ge-
netic material in populations of individuals. Classically, these models assume a
constant number of individuals related to each other through common ancestry
(Fisher-Wright model). Although very different from the branching processes,
some of these models can be approximated by branching processes, e.g. when
an expanding subpopulation of mutants arises within the large population. Such
situation arises when some of genetic diseases are studied.

Positivity In general, the property of being positive. A matrix is positive if all
elements of the matrix are positive; it is positive regular, if all elements are non-
negative and some power of the matrix is positive. If the matrix is a transition
probability matrix of a Markov process, positive regularity means that there exist
paths between all pairs of states of the process. Similarly, if the matrix is the mean
progeny matrix of a multitype branching process, than positive regularity means
that any particle has, among its descendants, particles of all types.

Probability generating function (pgf) Function fX(s) of a symbolic argument s,
which is an equivalent of the distribution of a nonnegative-integer valued random
variable X. If numbers p0, p1, p2, . . . constitute the distribution of random vari-
able X, i.e., P[X = k] = pk , then the pgf of random variable X is defined as
fX(s) = E(sX) =∑∞

i=0 pis
i , for s ∈ [0, 1]. Use of the pgf simplifies mathematical

derivations involving nonnegative-integer random variables.
Quasistationarity State ia of a Markov chain X(t) is called absorbing, if the pro-

cess cannot exit ia , once ia has been visited, i.e., P[X(t + s) 
= ia|X(t) = ia] = 0.
Under certain additional conditions, the probability of eventual absorption in state
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ia is equal to 1, i.e., P[ limt→∞ X(t) = ia] = 1. Then the only stationary distribu-
tion of is the one that assigns probability 1 to state ia . Since such distribution is not
informative, it is usual to consider a distribution, which is stationary conditional on
non-absorption. Such distribution, if it exists, is called the quasistationary distri-
bution. Mathematically, π̃ = (π̃0, π̃1, π̃2, . . . ) is the quasistationary distribution, if
P[X(t + s) = j |X(t + s) 
= ia] = π̃j (all j ) provided P[X(t) = j |X(t) 
= ia] = π̃j

(all j ). An example of a quasistationary distribution is the limit distribution of the
subcritical branching process conditional on non-extinction.

Random variable (rv) Intuitively, a numerical result of observation, which dis-
plays random variation. Mathematically, a random variable X(ω) is a function
mapping the elements ω of a probability space � (space of outcomes of a random
experiment) into the set of real numbers. For technical reasons, this function has
to be measurable, i.e., the counter image of an interval through X has to be a
measurable set of elements of �.

Random walk A time-discrete Markov chain X(t), such that X(t + 1) = X(t) +
U (t), where the integer random variables U (t) are independent and identically
distributed.

Recurrent state See transient state.
Renewal theory A branch of probability concerned with renewal processes. The

renewal process is a collection of random time points (called renewals) such that
the intervals between these points are independent, identically distributed random
variables. A special case in which the intervals between renewals are exponentially
distributed is the Poisson process.

rv Random variable
Self-recurrence Consider a random (stochastic) process X(t), evolving from an

initial value X(0) = x0 on time interval [0, ∞). Suppose that at some time t0,
the process is stopped and then restarted. Then, suppose that given the value
X(t0) = x0, the continuation process on the interval [t0, ∞), which is a subprocess
of the original process, is identical (it has the same distributions) as the original
process shifted by t0. A process with such property is called self-recurrent. Self-
recurrence may be considered a rephrasing of a causality principle. It leads to
recurrent relationships for a wide class of processes, including Markov processes,
renewal processes and branching processes.

Stathmokinesis An experimental technique in which cell divisions are blocked,
ideally without damage to cells. Cells traversing successive phases of their lives
are accumulating in the pre-division state (mitosis). Time pattern of accumulation
depends on the demography of the cell population and kinetic parameters of the
cell cycle. Therefore, it is possible to estimate some of these parameters based on
observed accumulation patterns.

Stationarity Markov chain X(t) is said to be stationary, if its distribution over the
state space is invariant in time (this distribution is called the stationary distribution).
Mathematically, π = (π0, π1, π2, . . . ) is the stationary distribution, if P[X(t+s) =
j ] = πj (all j ) provided P[X(t) = j ] = πj (all j ).

Stochastic process Intuitively, a function of time with a random component. Math-
ematically, a family of random variables parameterized by time. It has to satisfy
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so-called measurability conditions, which prevent certain mathematical problems
from occurring.

Transient state States of a Markov chain can be classified into transient and re-
current. For a recurrent state the probability of eventually returning to this state
is equal to 1, while for a transient state there is a nonzero probability of never
returning.

Type space A collection of possible particle types existing in a branching process.
If there is more than one but finitely many types, the process is called multitype. If
the type space is denumerable or continuous, the behavior of the branching process
can differ considerably from the multitype case. An example is a branching random
walk, in which the asymptotic behavior can be, for example, exponential multiplied
by fractional power function, which does not occur in the finite case.

wp With probability (common abbreviation)
Yaglom’s theorem Result stating that for subcritical branching processes, there

exists a quasistationary distribution, conditional on non-extinction.
Yule process Markov age-dependent branching process in which a particle can have

at most two progeny (the binary fission process). An important class of processes,
since the pgf of the distribution of particle count can be explicitly found. Also, the
Yule process frequently serves as a model for populations of proliferating cells,
although by its definition it is limited to exponentially distributed cell lifetimes.
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