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Preface

This research monograph is an analytical treatment of a geometric problem that
recently arose in an applied community [6, 7, 10] focused on developing numerical
methods for understanding the pathways of rare transition events in stochastic
dynamical systems with small noise. For years, it had been a reoccurring problem
that the underlying mathematical framework, Wentzell-Freidlin theory [8], is typi-
cally formulated in terms of time-parameterized paths, and that in that formulation
no “maximum likelihood transition path” exists. This was leading to numerical
problems since algorithms had no well-defined object to converge to.

In a collaboration of Eric Vanden-Eijnden (NYU) and myself [9, 10], it was then
found that a geometric reformulation of the theory, i.e., one based on unparameter-
ized rectifiable curves1 � , promised to resolve this issue because the main reason
for this non-existence (the time parameterization) had been eliminated. Indeed, an
algorithm based on this approach, the geometric minimum action method (gMAM),
turned out to converge reliably in our applications.

This in turn seemed to suggest that in this geometric formulation an (unparam-
eterized) maximum likelihood transition curve �? does indeed exist, defined as
the minimizer of a certain non-negative geometric functional S.�/. Motivated by
the prospects of finally having a well-defined object to work with, I then took up
the exciting task of developing criteria for rigorously proving this existence in the
most general framework possible. The results of this effort are the content of this
monograph.

The key problem in dealing with our functionals of interest is a degeneracy2 they
share that allows for curves � with positive Euclidean length but with vanishing

1These are the same curves that the reader will know from the Cauchy integral theorem in
complex analysis, which also treats its curves as geometric objects that are not tied to any specific
parameterization.
2To prevent confusion for those familiar with Wentzell-Freidlin theory, it should be pointed out
that this property is not related to degeneracies in the diffusion matrix of the given SDE. In fact, in
our applications we can only consider non-degenerate diffusions.

vii



viii Preface

action, S.�/ D 0. Many of the techniques and concepts that we develop here in
order to address this difficulty are fundamentally new and have value in their own
right, as they may be of use in other problems related to such actions.

The effort that this investigation required is justified by more than just academic
curiosity: No algorithm for finding a minimizer �? of S can work without the
interaction with a human who tweaks its parameters and who verifies whether its
output looks reasonable. Now if no minimizer exists, then naturally the algorithm
will fail to find one, but without any analytical insight the user may falsely
blame himself/herself instead and keep trying to tweak the algorithm parameters.
Furthermore, any analytically obtained knowledge about properties of �? can be
used either to gain confidence in the numerically obtained curve (by checking
whether it indeed has these properties) or to speed up the algorithm (by restricting
its search for �? to only those curves that fulfill these properties).

In short: Solid analytical knowledge about the existence and properties of �? are
invaluable to the person who uses an algorithm for finding it.

I hope that this monograph will not only impact how people within the large
deviation community view and work with transition curves, but that the generality of
its results will also spark some interest outside of this field and lead to applications
that go beyond my original motivation for this work.

New York, NY, USA Matthias Heymann
June 2015
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Chapter 1
Introduction

Abstract In this chapter we introduce the reader to the problem addressed by this
monograph. First we explain the main question at hand and its motivation in the
context of the Wentzell-Freidlin theory of rare transition paths. We then summarize
the main features of our existence theory, and the various approaches used in the
literature. Finally, we explain the structure of this monograph and introduce some
notation.

1.1 Geometric Action Functionals

A geometric action S is a mapping that assigns to every unparameterized oriented
rectifiable curve � in R

n a number S.�/ 2 Œ0;1/. It is defined via a curve integral

S.�/ WD
Z
�

`.z; dz/ WD
Z 1

0

`.'; ' 0/ d˛; (1.1)

where 'W Œ0; 1� ! R
n is any absolutely continuous parameterization of � , and where

the local action ` 2 C.Rn � R
n; Œ0;1// must have the properties

.i/ 8x; y 2 R
n 8c � 0W `.x; cy/ D c`.x; y/;

.ii/ for every fixed x 2 R
n the function `.x; � / is convex.

While (i) guarantees that the second integral in (1.1) is independent of the choice
of ', (ii) is necessary to ensure that S is lower semi-continuous in a certain sense.
A trivial example is given by `.x; y/ D jyj, in which case S.�/ is just the Euclidean
length of � , or more generally, by `.x; y/ D jyjgx for any Riemannian metric g. In
fact, ` generalizes the well-studied notion of a Finsler metric [2] in that (a) ` only
needs to be continuous (no smoothness required), that (b) we do not require that
`.x; y/ D `.x;�y/, and that (c) `2 need not be strictly convex in y.

Now given two sets A1;A2 � R
n, in this work we develop criteria under which

there exists a minimum action curve �? leading from A1 to A2, i.e., under which

© Springer International Publishing Switzerland 2015
M. Heymann, Minimum Action Curves in Degenerate Finsler Metrics,
Lecture Notes in Mathematics 2134, DOI 10.1007/978-3-319-17753-3_1
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4 1 Introduction

9�? 2 � A2
A1

WD f� j � starts in A1 and ends in A2g such that

S.�?/ D inf
�2� A2

A1

S.�/: (1.2)

We then prove properties of the minimizer �? without finding �? explicitly.
Although our existence results can certainly be applied to the exemplary local

actions given above, the present work was primarily motivated by a recently
emerging problem from large deviation theory that is adding a considerable layer
of difficulty: In contrast to Finsler metrics, in this example `.x; y/ vanishes in some
direction y D b.x/ ¤ 0, which allows for curves � (the flowlines of the vector
field b) with positive Euclidean length but vanishing action S.�/.

1.2 Example: Large Deviation Theory

Consider for some b 2 C1.Rn;Rn/ and some small parameter " > 0 the stochastic
differential equation (SDE)1

dX"t D b.X"t / dt C p
" dWt; X"tD0 D x1; (1.3)

where .Wt/t�0 is an n-dimensional Brownian motion, and where the zero-noise-
limit, i.e., the ODE Px D b.x/, has two stable equilibrium points x1; x2 2 R

n. The
presence of the small noise allows for rare transitions from x1 to x2 that would
be impossible without the noise (green curve in Fig. 1.1), and one is interested in

Fig. 1.1 Rare noise-induced transitions from one meta-stable state to another (green curve) stay
near the minimum action curve �? (red) with high probability

1The reader with no background in probability theory should not feel discouraged here: No
knowledge in that field will be required to understand the results or proofs in this monograph.



1.2 Example: Large Deviation Theory 5

the frequency and the most likely pathway of these transitions. Both questions are
answered within the framework of Wentzell-Freidlin Theory [8] (a subfield of large
deviation theory), the key object being the quasipotential

V.x1; x2/ D inf
T>0

�2 NCx2
x1 .0;T/

ST.�/; (1.4)

where ST.�/ D 1

2

Z T

0

jb.�/� P�j2 dt; (1.5)

and where NCx2
x1
.0;T/ denotes the space of all absolutely continuous functions

�W Œ0;T� ! R
n fulfilling �.0/ D x1 and �.T/ D x2.

The idea behind this formula is that transitions have been shown to more likely
occur in neighborhoods of paths � with small action ST.�/, and thus V.x1; x2/ is a
measure for how likely it is to see any transition within some fixed observation time
(with smaller values of V indicating a higher likelihood). Furthermore, the expected
time until a transition to x2 happens was shown to scale like eV.x1;x2/=" as " & 0 [16].
Observe that ST.�/ cannot be made arbitrarily small, since paths� that leave x1 must
deviate from the flowlines of b (which fulfill P� D b.�/).

An unpleasant feature of this formulation is that the minimization problem (1.4)
does not have a minimizer .T?; �?/, i.e., a function �? 2 NCx2

x1
.0;T?/, defined on

some optimal finite time interval Œ0;T?�, at which the infimum (1.4) is achieved.
The main reason for this is that by [8, Chap. 4, Lemma 3.1] P�? would need to vanish
at x1 and x2, and typically also at some critical point xc along the way (see Sect. 4.4),
so that �? would need infinite time each to leave x1, pass xc and approach x2.
Therefore, in general it is not even possible to define a minimizer �?WR ! R

n on
an infinite time interval, but one would rather have to paste together two solutions
�?1 ; �

?
2 WR ! R

n with

lim
t!�1�?1.t/ D x1; lim

t!1�?1.t/ D lim
t!�1�?2.t/ D xc; and lim

t!1�?2.t/ D x2:

This is a major problem for both analytical and numerical work, and so in [9, 10]
the use of the alternative representation

V.x1; x2/ D inf
�2� x2

x1

S.�/ (1.6)

was suggested, where the geometric action S.�/ is given by

`.x; y/ D jb.x/jjyj � hb.x/; yi; (SDE) (1.7)

which can be seen as a degenerate version of a Randers metric [2, Chap. 11].
A minimizer �? of (1.6), i.e., a maximum likelihood transition curve (the red
curve in Fig. 1.1), seems more feasible to exist in this formulation since the time
parameterization has been eliminated from the problem.



6 1 Introduction

This geometric reformulation of the quasipotential generalizes also to other
types of Markovian time-homogeneous2 stochastic dynamics, such as SDEs with
multiplicative noise or continuous-time Markov jump processes [9, 10, 16], with
modified (in the latter case not Randers-like) local action `. It was shown to
effectively remove the numerical difficulties [9–11, 19], and our goal in this
monograph is now to demonstrate also its analytical advantages when addressing
geometrical3 questions.

1.3 Key Features of the Existence Theory

The goal of this monograph is to develop a comprehensive geometric theory for
proving the existence of minimum action curves, the key features of which are the
following:

(i) The theory can be applied to a large class of geometric actions, including
those encountered in the context of large deviation theory. It also applies
to Riemannian actions (as a trivial example), and in fact to actions that
at different locations in space can have features of one or the other.

(ii) The minimization is carried out over the space of rectifiable curves with
start and end points in some prescribed sets A1 and A2, respectively.

(iii) Curves can be constrained to only traverse points in a prescribed closed
subset QD � R

n.
(iv) Whenever possible, minimizers �? are shown to be rectifiable as well.
(v) The conditions of the key theorems are non-technical and easy to check

based on information that is explicitly available in practice.
(vi) Smoothness requirements on the local action ` and related functions are

kept to a minimum.

In the process, the reader will be provided with the necessary basic definitions
and concepts. The tools that we develop for our purposes have value in their own
right, as they may be of use also in other problems related to geometric actions.

2That is, the definition of the dynamics via its drift and noise covariance matrix in the case of an
SDE, or via its jump rates in the case of a jump process, cannot explicitly depend on time.
3See, however, [10, Sect. 2.4] for how the optimal time parameterization can be recovered from
the minimum action curve �?.
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1.4 Techniques Used in the Literature

Let us take a look at some methods that have been used in the literature to prove the
existence of optimal time-dependent curves, and let us understand why they either
cannot be applied in the given geometric setting at all, or why they would only lead
to partial results. The approaches fall into two categories:

(a) constructive techniques, which are based on the derivation of an ODE that min-
imizing curves need to fulfill, and which effectively transform the minimization
problem into a boundary value problem with start point x1 and end point x2; and

(b) abstract techniques based on the lower semi-continuity of the action functional
of interest.

1.4.1 Constructive Techniques

Two prominent examples of constructive techniques based on an ODE are the
following:

(i) First-Order ODE for Drift Vector Fields with a Gradient-Like Structure. This
technique can only be used for the specific action (1.5), where the drift vector
field b must be of the form b.x/ D �rV.x/Cv?.x/ for some potential function
VW D ! Œ0;1/, D � R

n, and for some vector field v? perpendicular to rV .
Under these assumptions, a simple estimate can show that any solution �.t/
of the ODE P� D rV.�/ C v?.�/ minimizes the action between its start and
end point [8, Chap. 4, Theorem 3.1]. Now assume that the given start point
x1 is the unique minimum of V and the only point at which rV vanishes, and
that V.x2/ � infx2@D V.x/. Then since the solution of the above ODE with
�.t D 0/ D x2 fulfills d

dt V.�.t// D jrV.�.t//j2 > 0 for 8t � 0 and therefore
approaches x1 as t ! �1, one can conclude that �j.�1;0� is a (generalized)
minimizer of (1.4).

(ii) The Euler-Lagrange Equation. If the action ST is not in the specific form (1.5)
then there is no general first-order equivalent to the above ODE. Instead,
one can derive a second-order ODE called the Euler-Lagrange equation for
the extremals � of ST , by setting the variation ıST equal to zero (this is the
equivalent of finding the minimum of a function f .x/ by attempting to solve
f 0.x/ D 0). For fixed T, one is then again left with the boundary problem that
requires �.0/ D x1 and �.T/ D x2.

To obtain a more general theory that is not taylored to any specific action,
one can write this ODE in the form of the 2n-dimensional first-order ODE
system P� D dH

dp .�; p/, Pp D � dH
dx .�; p/, where the function H.x; p/ is the

Hamiltonian associated to the action ST (more precisely, it is the Legendre
transform of its integrand). Necessarily, this reduction to a first-order system
comes along with more relaxed boundary conditions: The solution .�.t/; p.t//
must now lead from a point of the form .x1; p1/ and to one of the form .x2; p2/.
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To minimize also over all T > 0 in (1.4), it turns out that we also need to
ask that H.x1; p1/ D H.x2; p2/ D 0; if x1 and x2 are critical points of the
system (i.e., if dH

dp .x1;2; 0/ D 0) then for a subclass of Hamiltonians (H0 in
Definition 2.12 (iii)) this implies that p1 D p2 D 0.

The main problems with these constructive approaches are the following: First,
the statement about the ODE in the first approach only holds for actions ST

in the given specific form, and its proof cannot be extended to general actions.
Furthermore, if the point x1 is not an attractor of b then the solution � starting at
x2 will in general not lead to x1 as t ! �1, and so the above statement (“if a
solution of the ODE connects x1 and x2 then it is a minimizer”) becomes worthless.
The problem persists if x1 and x2 are replaced by sets A1 and A2, respectively.

The general Hamiltonian ODE still leaves us with the problem of showing
that the derived boundary value problem actually has a solution, and it is unclear
how this problem can be approached in our intended generality. Instead, this
formulation is more useful in situations in which the existence of a minimizer can
be assumed: For example, in [15] minimizers in R

2 were computed numerically
by solving the boundary value problem via the shooting method, and in [4, 5]
the Hamiltonian formulation has turned out to be useful for proving properties of
minimizers, addressing uniqueness questions, and investigating the regularity of the
quasipotential.

The biggest two problems with any ODE-based constructive approach, however,
are the following: First, minimizers �? of (1.2) have numerically been found to
generally have cusps as they pass critical points (even in the basic case where ` is
given by (1.7) with some smooth b, see Fig. 1.1 or [10, Fig. 4.1]). Therefore we
know that there is no ODE that the arclength parameterization of �? could possibly
fulfill throughout the entire curve.

Second, ODE-based approaches (both for geometric and for time-parameterized
curves) would not allow us to constrain our curves to be contained in some given set
QD � R

n (point (1.3) in our wish list in Sect. 1.3), since such constraints can cause
�? to become non-smooth when the curve reaches and then traces the (potentially
also non-smooth) boundary @ QD.

For these reasons, such approaches are not an option for us.

1.4.2 The Lower Semi-Continuity Technique

The idea behind the lower semi-continuity approach is the following: As we know,
any continuous function f W I ! R defined on a compact interval I � R obtains its
infimum on I (i.e., 9x? 2 IW f .x?/ D infx2I f .x/). However, it is not hard to see that
we can in fact allow f to have jumps, as long as the function value at such points is
not larger than any of the two one-sided limits. More generally, we only need to ask
that 8x 2 IW f .x/ � lim infy!x f .y/. Functions with this property are called lower
semi-continuous.

The proof that this property indeed still suffices is analogous to the continuous
case: Take any minimizing sequence .xk/k2N (i.e., limk!1 f .xk/ D infx2I f .x//,
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choose a converging subsequence .xkl/l2N (this is possible since I is compact), and
call its limit x? 2 I. Then

f .x?/ � lim inf
y!x?

f .y/ � lim
l!1 f .xkl/ D inf

x2I
f .x/;

where we first used the lower semi-continuity of f , then the definition of lim inf, and
finally the property of the minimizing sequence. This shows that x? is a minimizer.

Now in our situation, in which the function f .x/ is replaced by the functional
S.�/, why would we not simply define ourselves a topology on the space of curves
under which S is continuous, and then use the standard continuity result? The above
proof shows that there is a fine trade-off to be made: If we choose the topology
too fine (making it too hard for a sequence of curves to converge) then we may
no longer be able to find a converging subsequence of our minimizing sequence
of curves; if we choose the topology too coarse (making it too easy to converge)
then our functional may no longer be continuous. It is for this reason that one
commonly uses this weakened form of continuity—lower semi-continuity—when
it comes to functionals: to ease this trade-off to the point that the existence proof
can be completed.

Using this approach in our geometric context, one quickly arrives at the following
first result (Proposition 3.8): If there exists a minimizing sequence .�k/k2N of (1.2)
whose curves �k are all contained in some compact set K � R

n and have uniformly
bounded curve lengths, then there exists a minimizer �? 2 � A2

A1
. (The conditions on

.�k/k2N guarantee the existence of a converging subsequence, obtained by applying
Arzelà-Ascoli’s theorem.)

In practice, however, this criterion alone is of little use since minimizing
sequences are not at our direct disposal, and so their curve lengths can be hard
to control. What we need is an estimate that bounds the length of a curve � in
terms of its action S.�/: since the curves in any minimizing sequence .�k/k2N
have (converging and therefore) bounded actions, this would imply that the length
condition in the statement above is fulfilled.

Now we see the challenge of our proof: The degeneracy of our local action
`.x; y/ can allow a curve to move in a direction y ( Db.x/ for the SDE geometric
action (1.7)) at no cost, and so there can be arbitrarily long curves with small or zero
action. Furthermore, at some critical points xc (in the SDE case those points with
b.xc/ D 0), `.xc; y/ may even vanish for every direction y, which again allows for
arbitrarily long curves near this point with arbitrarily small action. For this reason,
the desired estimate described above (Lemma 6.13) and our resulting main existence
criteria (Propositions 3.23 and 3.25) will be intimately tied to the flowline diagram
of the drift vector field b, or of a generalized definition thereof for general geometric
actions (Definition 2.7).

In [8, Chap. 4, Lemma 2.2], the existence of a (generalized) time-parameterized
minimizer �?W .�1; 0� ! R

n of (1.4)–(1.5) is shown in the case where x1 is an
attractor of the vector field b and x2 is a point in its basin of attraction (thus avoiding
much of the problems caused by the time parametrization). Its proof suggests one
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way of obtaining such an estimate away from critical points also for our geometric
action S.�/, based on the observation that there are no infinitely long flowlines or
limit cycles in our region of interest. Following that specific route would however
come at the cost that we would lose control over the minimizer’s curve length near
critical points, and so we would not be able to prove that our obtained minimizer �?

stays rectifiable as it passes critical points. Our estimate in Lemma 6.13 instead,
which carefully quantifies some decisive constants involved, does provide us with
the desired extra amount of control near critical points, albeit at the cost of some
extra work in our proofs.

1.5 Properties of Minimum Action Curves

Then turning our attention to the properties of minimizers, we consider a subclass of
geometric actions that still contains the large deviation geometric actions mentioned
above. For our main result, suppose that the drift b has two basins of attraction (see,
e.g., Figs. 1.1, 3.4a,b, or 4.2), and let �? be the minimum action curve leading from
one attractor to the other.

Since for the class of actions in question �? can follow the flowlines of b at no
cost, it is not surprising that the second (“downhill”) part of �? will be a flowline
connecting a saddle point to the second attractor. In particular, the last hitting point
of the separatrix is a point with zero drift (the saddle point). Here we prove also the
non-obvious fact that also the first hitting point must have zero drift. In practice, such
knowledge can be used either to gain confidence in the output of algorithms that
compute �? numerically (such as the geometric minimum action method, gMAM,
see [9, 10]), or to speed up such algorithms by restricting their search to only those
curves with these properties.

Finally, we will demonstrate how the same result (Corollary 4.5) that is used to
prove this property can also be used to prove the non-existence of minimizers in
some situations.

1.6 The Structure of this Monograph

This monograph is split into two main parts and an appendix. In Part I we lay out
all our results on the existence of minimum action curves, we demonstrate with
several examples how to use our criteria in practice, we discuss when minimizers do
not exist, and finally we prove the above-mentioned properties of minimum action
curves. The reader who is only interested in gaining enough working knowledge to
use our existence criteria in practice will find it sufficient to read only this first part.

Part II consists of two chapters: Chap. 6 contains the proofs of our key criteria
(stated in Part I) under which a “local” existence property holds to which our global
existence theorem has been reduced in Part I; the reader who wants to know why
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these criteria work should also read this chapter. Chapter 7 contains the proof of a
very technical lemma that was needed in Chap. 6 in order to deal with curves that
are passing a saddle point; the reader can decide to skip this chapter without losing
much insight.

Appendices A and B contain some of the more technical proofs that we have
omitted in Parts I and II, respectively, in order to not interrupt the flow of the main
arguments. While Appendix A can significantly contribute to the understanding of
Part I, Appendix B is very technical in nature and can be skipped as well.

The suggested reading order is as follows: Part I, Appendix A, Part II,
Appendix B.

1.7 Notation and Assumptions

For a point x 2 R
n and a radius r > 0 we define the open and the closed balls

Br.x/ WD ˚
w 2 R

n
ˇ̌ jw � xj < r

�
and NBr.x/ WD ˚

w 2 R
n
ˇ̌ jw � xj � r

�
:

Similarly, for a set A � R
n and a distance r > 0 we define the open and the closed

neighborhoods Nr.A/ and NNr.A/ as

Nr.A/ WD ˚
w 2 R

n
ˇ̌
dist.w;A/ < r

�
and NNr.A/ WD ˚

w 2 R
n
ˇ̌
dist.w;A/ � r

�
:

Furthermore, we denote by NA, by Ac WD R
n nA, by Aı WD .Ac/c, and by @A WD NAnAı

the closure, the complement, the interior, and the boundary of A in R
n, respectively.

For a point x on a C1-manifold M we denote by TxM the tangent space of M at x.
For a function f and a subset A of its domain we denote by f jA the restriction of

f to A, and we use the notation f 	 c to emphasize that f is constant. Expressions
of the form 1cond denote the indicator function that returns the value 1 whenever the
condition cond is fulfilled and 0 otherwise.

Finally, throughout this monograph we let QD � D � R
n be two fixed connected

sets, where D is open, and where QD is closed in D. An additional technical
assumption on QD will be made at the beginning of Sect. 3.1. D will serve as our state
space,4 i.e., as the set that the curves � live in, and QD will be used for an additional
constraint on the curves � during our minimization, i.e., we will in fact minimize
over � A2

A1
WD f� � QD j � starts in A1 and ends in A2g. (For simplicity we suppress

the dependence of � A2
A1

on QD in our notation.) If no such constraint is desired, just
choose QD WD D; the reader is encouraged to consider this simple unconstrained case
whenever on first reading he may feel overwhelmed by some definition or statement
involving QD.

4Note that we may occasionally reuse the letter n of our state space dimension also for other
purposes, e.g., as an index for sequences such as .�n/n2N.



Chapter 2
Geometric Action Functionals

Abstract In this chapter we begin by teaching the reader all the necessary basics of
rectifiable curves and absolutely continuous functions. We then introduce the class
of geometric action functionals to which our theory can be applied (and in particular
the subclass of Hamiltonian geometric actions), give several examples of geometric
actions, and prove a lower semi-continuity property for them. Finally, we define the
notion of a “drift” of an action, as a generalization of the drift vector field entering
the Wentzell-Freidlin action.

2.1 Curves

Let us begin by reviewing some basic definitions and facts related to curves, and let
us then introduce the various classes of curves that we will use.

2.1.1 Rectifiable Curves and Absolutely Continuous
Functions

An unparameterized oriented curve � is an equivalence class of functions ' 2
C.Œ0;T�;D/, T > 0, that are identical up to continuous non-decreasing changes
of their parameterizations, or more formally, whose Fréchet distance to each
other vanishes. In this monograph we will tacitly assume that all our curves are
unparameterized and oriented.

A curve � is called rectifiable [18, p. 115] if for some (and thus for every)
parameterization ' 2 C.Œ0;T�;D/ of � we have

length.�/ WD length.'/ WD sup
N2N

0Dt0<���<tN DT

NX
iD1

ˇ̌
'.ti/� '.ti�1/

ˇ̌
< 1:

It is easy to see that length.'/ is in fact the same for any parameterization ' of � ,
and that it is finite if and only if all the component functions of ' are of bounded
variation [18, Theorem 3.1]. We will denote the set of rectifiable curves in D by � .

A function 'W Œ0;T� ! D is said to be absolutely continuous [18, p. 127] if
for every " > 0 there exists a ı > 0 such that for any finite collection of disjoint
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intervals Œti�1; ti/ � Œ0;T�, i D 1; : : : ;N, we have

NX
iD1
.ti � ti�1/ < ı )

NX
iD1

ˇ̌
'.ti/� '.ti�1/

ˇ̌
< ":

We will denote the space of absolutely continuous functions with values in D by
NC.0;T/. One can show [18, Proposition 1.12 (ii) and Theorem 3.11] that a function
' is in NC.0;T/ if and only if there exists an L1-function which we denote by ' 0 such
that '.t/ D '.0/C R t

0
' 0.�/ d� for 8t 2 Œ0;T�. In that case, ' is differentiable in the

classical sense at almost every t 2 Œ0;T�, with derivative ' 0.t/.
Clearly, every function ' 2 NC.0;T/ is the parameterization of a rectifiable

curve � since for every partition 0 D t0 < � � � < tN D T we have

NX
iD1

ˇ̌
'.ti/� '.ti�1/

ˇ̌ D
NX

iD1

ˇ̌
ˇ̌ Z ti�1

ti

' 0 dt

ˇ̌
ˇ̌ �

Z T

0

j' 0j dt < 1;

and it is not hard to show [18, Theorem 4.1] that length.�/ D R T
0

j' 0j dt. The
reverse is not true: Not every function ' that parameterizes a rectifiable curve �
is necessarily absolutely continuous (a counterexample can be constructed using the
Cantor function [18, p. 125]). However, we have the following:

Lemma 2.1 (Parameterization by Arclength)

(i) Any curve � 2 � can be parameterized by a unique function '� 2 NC.0; 1/ with
j' 0
� j 	 length.�/ a.e.

(ii) If ' 2 NC.0;T/ is any absolutely continuous parameterization of � then ' D
'� ı ˇ for some absolutely continuous function ˇW Œ0;T� ! Œ0; 1�, and we have
' 0 D .' 0

� ı ˇ/ˇ0 and ˇ0 � 0 a.e. on Œ0; 1�.

Proof (i) This is a trivial modification of [18, p. 136].
(ii) In the proof in [18, p. 136] it is shown that for any parameterization ' 2

C.Œ0;T�;D/ of � the function '� fulfills '.t/ D '�.ˇ.t// for 8t 2 Œ0;T�,
where ˇW Œ0;T� ! Œ0; 1� is defined by ˇ.t/ WD length

�
'jŒ0;t�

�
= length.�/. For

any collection of disjoint intervals Œti�1; ti/ � Œ0;T�, i D 1; : : : ;N, we have

NX
iD1

�
ˇ.ti/ � ˇ.ti�1/

� D 1

length.�/

NX
iD1

length
�
'jŒti�1;ti�

�

D 1

length.�/

NX
iD1

sup
Mi2N

ti�1Dsi
0<���<si

Mi
Dti

MiX
kD1

ˇ̌
'.si

k/ � '.si
k�1/

ˇ̌

D 1

length.�/
sup

M12N

t0Ds10<���<s1M1Dt1

� � � sup
MN 2N

tN�1DsN
0 <���<sN

MN
DtN

NX
iD1

MiX
kD1

ˇ̌
'.si

k/ � '.si
k�1/

ˇ̌
;
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and since for ' 2 NC.0;T/ the last double sum can be made arbitrarily small by
ensuring that

PN
iD1

PMi
kD1.si

k � si
k�1/ D PN

iD1.ti � ti�1/ is sufficiently small,
this shows that ˇ is absolutely continuous. Clearly, ˇ0 � 0 a.e. since ˇ is
non-decreasing, and for 8t 2 Œ0;T� we have

Z t

0

' 0 d� D '.t/ � '.0/ D '�.ˇ.t// � '�.ˇ.0//

D
Z ˇ.t/

ˇ.0/

' 0
� d˛ D

Z t

0

' 0
� .ˇ.�//ˇ

0.�/ d�

(for the last step, see [18, p. 149, Exercise 21]), which implies that
' 0 D .' 0

� ı ˇ/ˇ0 a.e. on Œ0;T�. ut
The following lemma is a result about the uniform convergence of absolutely
continuous functions. We will use the notation ' � G (for a function ' 2 NC.0; 1/
and a set G � R

n) to indicate that '.˛/ 2 G for 8˛ 2 Œ0; 1�. Similarly, for a curve
� 2 � we will write � � G to indicate that '� � G.

Lemma 2.2 (i) If a sequence .'n/n2N � NC.0; 1/ fulfills 'n � K for 8n 2 N and
some compact set K � D, and if

M WD sup
n2N

ess sup
˛2Œ0;1�

j' 0
n.˛/j < 1; (2.1)

then there exists a uniformly converging subsequence.
(ii) If a sequence .'n/n2N � NC.0; 1/ fulfilling the conditions of part (i) converges

uniformly then its limit ' is in NC.0; 1/ and fulfills j' 0j � M a.e.

Proof (i) The sequence .'n/n2N is equicontinuous since by (2.1) we have

j'n.˛1/ � 'n.˛0/j D
ˇ̌
ˇ̌ Z ˛1

˛0

' 0
n d˛

ˇ̌
ˇ̌ �

Z ˛1

˛0

j' 0
nj d˛ � M.˛1 � ˛0/

for ˛0 < ˛1 and 8n 2 N, and so we can apply the Arzelà-Ascoli theorem.
(ii) By the same estimate, for any collection of disjoint intervals Œ˛i�1; ˛i/ � Œ0; 1�,

i D 1; : : : ;N, we have

NX
iD1

ˇ̌
'.˛i/� '.˛i�1/

ˇ̌ D lim
n!1

NX
iD1

ˇ̌
'n.˛i/� 'n.˛i�1/

ˇ̌ � M
NX

iD1
.˛i � ˛i�1/:

This shows that ' is absolutely continuous, and (taking N D 1 and recalling
that ' 0 is the classical derivative a.e.) that j' 0j � M a.e. Since K is compact and
'n � K for 8n 2 N, we have ' � K � D and thus ' 2 NC.0; 1/. ut
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2.1.2 Curves that Pass Points in Infinite Length

Sometimes we will have to work with curves that do not have finite length (i.e.,
that are not rectifiable). We denote by QC.0; 1/ 
 NC.0; 1/ the space of all functions
in C.Œ0; 1�;D/ that are absolutely continuous in neighborhoods of all but at most
finitely many ˛i 2 Œ0; 1�, and we denote by Q� 
 � the set of all curves that can be
parameterized by a function ' 2 QC.0; 1/.

Note that for 8' 2 QC.0; 1/, ' 0 is still defined a.e., but one can see that for
these exceptional values ˛i we have

R
Œ0;1�\Œ˛i�";˛iC"� j' 0j d˛ D 1 for 8" > 0.1 We

therefore say that the curve � 2 Q� given by ' passes the points '.˛i/ in infinite
length.

Of particular use in our work is, for fixed x 2 D, the set Q� .x/ of all curves that are
either of finite length (i.e., rectifiable) or that pass x once in infinite length (note that
� � Q� .x/ � Q� ). More precisely, these are the curves that can be parameterized by
functions in the set QC.x/, which we define to be the set of functions ' 2 C.Œ0; 1�;D/
such that

either ' 2 NC.0; 1/;
or '.1

2
/ D x,

and 'jŒ0;1=2�a� and 'jŒ1=2Ca;1� are absolutely continuous for 8a 2 .0; 1
2
/.

See Sect. 2.1.3 and Fig. 2.1 for an illustration of these classes of curves.
In preparation for Lemma 2.3, which is the equivalent of Lemma 2.2 for

sequences of functions in QC.x/, we introduce the following notation: For a curve
� and a point x we say that � passes x at most once if for any parameterization
' 2 C.Œ0; 1�/ of � we have

�90 � ˛1 < ˛2 � 1W '.˛1/ D '.˛2/ D x
� ) 8˛ 2 Œ˛1; ˛2�W '.˛/ D x:

(2.2)

For a Borel set E � D and a curve � 2 Q� we define

length.� jE/ WD
Z
�

1z2E jdzj D
Z 1

0

j' 0j1'2E d˛ 2 Œ0;1�

for any parameterization ' 2 QC.0; 1/ of � .

Lemma 2.3 Let x 2 D, let the sequence .�n/n2N � Q� .x/ fulfill �n � K for 8n 2 N

and some compact set K � D, suppose that every curve �n passes x at most once,

1The key argument for this can be found at the end of the proof of Proposition 3.25.
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and suppose that there exists a function �W .0;1/ ! Œ0;1/ such that

8n 2 N 8u > 0W length
�
�nj NBu.x/c

� � �.u/: (2.3)

Then there exist parameterizations 'n 2 QC.x/ of the curves �n such that a
subsequence .'nk/k2N converges pointwise on Œ0; 1� and uniformly on the sets
Œ0; 1

2
� a� [ Œ 1

2
C a; 1�, a 2 .0; 1

2
/. The limit ' is in QC.x/, and the corresponding

curve � 2 Q� .x/ fulfills

8u > 0W length
�
� j NBu.x/c

� � �.u/: (2.4)

Proof See Appendix A.1. This proof uses Lemma 2.6 (i). ut
Introducing some final notation, for two sets A1;A2 � QD we write

�
A2

A1
WD ˚

� 2 � ˇ̌ � � QD, � starts in A1 and ends in A2
�
;

NCA2
A1
.0; 1/ WD ˚

' 2 NC.0; 1/ ˇ̌' � QD; '.0/ 2 A1; '.1/ 2 A2
�
;

and for two points x1; x2 2 QD we similarly define � x2
x1 and NCx2

x1 .0; 1/. The sets Q� A2
A1

,
QCA2

A1
.0; 1/, Q� x2

x1 , QCx2
x1 .0; 1/,

Q� x2
x1 .x/ and QCx2

x1 .x/ are defined analogously.

2.1.3 Summary of the Various Classes of Curves

(See Fig. 2.1 for illustrations.) All curves are unparameterized and oriented, and they
may have loops and cusps. The class � contains only curves with finite length, while
curves in Q� 
 � may reach and/or leave finitely many points in infinite length, also
repeatedly. For some fixed x 2 D (marked by the cross), Q� .x/ contains all of � ,
plus all the curves that pass x once in infinite length; they cannot pass any other
point in infinite length, and they cannot pass x twice in infinite length. The sub- and

Fig. 2.1 Illustration of the various classes of curves
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superscripts x1 and x2 or A1 and A2 add constraints to the start and end points of
these functions and curves and in addition require them to take their values in QD.

2.2 Geometric Actions, Drift Vector Fields

In this section we will define the class G of geometric action functionals, and we
will generalize the concept of a “drift vector field” b.x/ from the large deviation
geometric action of the SDE (1.3), given by (1.7), to general geometric actions
S 2 G .

Definition 2.4 We denote by G the set of all functionals SW Q� ! Œ0;1� of the form

S.�/ WD
Z
�

`.z; dz/ WD
Z 1

0

`.'; ' 0/ d˛; (2.5)

where ' 2 QC.0; 1/ is an arbitrary parameterization of � , and where the local action
` 2 C.D � R

n; Œ0;1// has the following properties:

(i) 8x 2 D 8y 2 R
n 8c � 0W `.x; cy/ D c`.x; y/,

(ii) for every fixed x 2 D the function `.x; � / is convex.

For ' 2 QC.0; 1/ we will sometimes use the notation S.'/ WD R 1
0
`.'; ' 0/ d˛, and

for any interval Œ˛1; ˛2� � Œ0; 1� we will denote by S.'jŒ˛1;˛2�/ WD R ˛2
˛1
`.'; ' 0/ d˛

the action of the curve segment parameterized by 'jŒ˛1;˛2�.
As we will see next, (i) is needed to show that (2.5) is independent of the specific
choice of ', while (ii) is essential to show that S is lower semi-continuous in a certain
sense (Lemma 2.6). Observe also that (i) implies that `.x; 0/ D 0 for 8x 2 D.

Lemma 2.5 Functionals S 2 G and their local actions `.x; y/ have the following
properties:

(i) S.�/ is well-defined, i.e., (2.5) is independent of the specific choice of '.
(ii) For 8compact K � D 9c1 D c1.K/ > 0 8x 2 K 8y 2 R

nW `.x; y/ � c1jyj. In
particular, we have for 8� 2 Q� with � � KW S.�/ � c1 length.�/.

Proof (i) Given a curve � 2 � and any parameterization ' 2 NC.0; 1/ of � , we use
the representation ' D '� ı ˇ of Lemma 2.1 (ii) and Definition 2.4 (i) to find
that

Z 1

0

`.'; ' 0/ d˛ D
Z 1

0

`
�
'� ı ˇ; .' 0

� ı ˇ/ˇ0� d˛

D
Z 1

0

`.'� ı ˇ; ' 0
� ı ˇ/ˇ0 d˛

D
Z 1

0

`.'� ; '
0
� / dˇ;
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where the last step follows again from [18, p. 149, Exercise 21]. By the
uniqueness of '� , the right-hand side only depends on � . The proof for general
curves � 2 Q� is based on the same calculation.

(ii) Given any K, set c1 WD 1 C maxx2K;jyjD1 `.x; y/ > 0, use Definition 2.4 (i) to
show that `.x; y/ D jyj`�x; y

jyj
� � c1jyj for 8y ¤ 0, and recall that `.x; 0/ D 0.

In particular, if ' 2 QC.0; 1/ is a parameterization of some � 2 Q� with � � K
then S.�/ D R 1

0
`.'; ' 0/ d˛ � c1

R 1
0

j' 0j d˛ D c1 length.�/. ut

Lemma 2.6 (Lower Semi-Continuity) For 8S 2 G we have the following:

(i) If a sequence .'n/n2N � NC.0; 1/ fulfilling (2.1) has a uniform limit ' 2 NC.0; 1/
then lim infn!1 S.'n/ � S.'/.

(ii) The limit � constructed in Lemma 2.3 fulfills lim infn!1 S.�n/ � S.�/.

Proof See Appendix A.2. ut
Definition 2.7 Let S 2 G . A vector field b 2 C1.D;Rn/ is called a drift of S if for
8 compact K � D 9c2Dc2.K/ > 0 8x 2 K 8y 2 R

nW

`.x; y/ � c2
�jb.x/jjyj � hb.x/; yi�: (2.6)

The right-hand side of (2.6) is a constant multiple of the local large deviation
geometric action (1.7) of the SDE (1.3) with drift b.x/ and homogeneous noise,
and thus we see that for the geometric action associated to (1.3), the vector field
b.x/ in (1.3) is clearly a drift also in this generalized sense (take c2 D 1). The
inequality (2.6), which will only be used to obtain the key estimate Lemma 6.13 (and
a weaker version thereof in the proof of Lemma 4.2), effectively reduces our proofs
for an arbitrary action S 2 G to the case of the specific action given by (1.7), and it
is ultimately the reason why the conditions of our main criteria, Propositions 3.23
and 3.25, solely depend on the drift and not on any other aspect of the action S.

The drift vector field b.x/ in Definition 2.7 is not a uniquely defined object: If b is
a drift of some action S 2 G and if ˇ 2 C1.D; Œ0;1// then ˇb is a drift of S as well
(with modified constants c2), and in particular the vector field b.x/ 	 0 is a drift of
any action S 2 G . Note however that (i) if ˇ.x/ > 0 for 8x 2 D then the vector
fields b and ˇb have the same flowline diagrams, and we will find that our criteria
will not distinguish between these two choices; (ii) if on the other hand ˇ.x/ D 0

and b.x/ ¤ 0 for some x 2 D then the flowline diagrams of b and ˇb are different,
and our criteria may only apply to b but not to ˇb. In general, a good choice for the
drift (i.e., one that lets us get the most out of our criteria) will be one with only as
many roots as necessary.
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Definition 2.8 For a given vector field b 2 C1.D;Rn/ we define the flow  2
C1.D � R;D/ as the unique solution of the ODE

(
@t .x; t/ D b. .x; t// for x 2 D; t 2 R;

 .x; 0/ D x for x 2 D:
(2.7)

By a standard result from the theory of ODEs [1, Sect. 7.3, Corollary 4], our
regularity assumption on b implies that the solution  .x; t/ is well-defined locally
(i.e., for small t), unique, and C1 in .x; t/. However, since b will always play the role
of a drift, we may assume that  .x; t/ is in fact defined globally, i.e., for 8t 2 R:
Indeed, if this is not the case then we can instead consider the modified drift ˇb,
for some function ˇ 2 C1.D; .0;1// that vanishes so fast near the boundary @D
that the associated flow Q only reaches @D in infinite time (i.e., Q .x; t/ is defined
for 8.x; t/ 2 D � R), and the only aspect of the flow that will be relevant to us (the
flowline diagram) remains invariant under this change.

Finally, recall that under this additional assumption we have  . .x; t/; s/ D
 .x; t C s/ and @tr .x; t/ D rb. .x; t// for 8x 2 D and 8t; s 2 R.

We conclude this section by classifying the points in state space according to the
type of difficulty that they will pose for our existence theory.

Definition 2.9 Let S 2 G be given by the local action `.x; y/, and let x 2 D.

(i) x is called a degenerate point of S if 9y 2 R
n n f0gW `.x; y/ D 0.

(ii) x is called a critical point of S if 8y 2 R
nW `.x; y/ D 0.

We denote by DSC WD fx 2 D j 8y 2 R
n nf0gW `.x; y/ > 0g the set of non-degenerate

points of S.

In other words, degenerate points are those at which there is at least one direction
into which one can locally move at no cost, while at critical points one can move
into any direction at no cost. At non-degenerate points of S, every direction comes
at a positive cost. Note that every critical point is degenerate.

Since directions with zero cost make it hard for us to control the length of curves
that pass the point in question, critical points will be the hardest to deal with in our
existence theory, while non-degenerate points will be the easiest.

Example 2.10 (i) For the geometric action S given by (1.7), i.e., by `.x; y/ D
jb.x/jjyj � hb.x/; yi, every point in D is degenerate (i.e., DSC D ¿), and the
critical points are those points x for which b.x/ D 0. Indeed, if x 2 D is such
that b.x/ D 0 then clearly we have `.x; y/ D 0 for 8y 2 R

n, and for all other
points only the direction given by y D b.x/ ¤ 0 fulfills `.x; y/ D 0.

(ii) For the Euclidean length, i.e., the geometric action S given by `.x; y/ D jyj,
there are no degenerate or even critical points, and so we have DSC D D. ut
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2.3 The Subclass of Hamiltonian Geometric Actions

We will now consider a particular way of constructing a geometric action from
a Hamiltonian H.x; �/, which was introduced in [9, 10] in the context of large
deviation theory.2

Lemma 2.11 Let the function H 2 C.D � R
n;R/ fulfill the assumptions

(H1) 8x 2 DW H.x; 0/ � 0,
(H2) the derivatives H� and H�� exist and are continuous in .x; �/,
(H3) 8 compact K � D 9mK > 0 8x 2 K 8�; 	 2 R

nW h	;H�� .x; �/	i � mK j	j2.
Then the function `W D � R

n ! Œ0;1/ defined by

`.x; y/ WD max
˚hy; �i ˇ̌ � 2 R

n; H.x; �/ � 0
�

(2.8a)

D max
˚hy; �i ˇ̌ � 2 R

n; H.x; �/ D 0
�

(2.8b)

has the properties of Definition 2.4, and so it defines a geometric action S 2 G .

Proof The sets Lx WD f� 2 R
n j H.x; �/ � 0g are bounded, in fact uniformly for

all x in any compact set K � D, since for 8x 2 K 8� 2 Lx 9 Q� 2 R
nW

0 � H.x; �/ D H.x; 0/C hH� .x; 0/; �i C 1
2

˝
�;H�� .x; Q�/� ˛

� � max
x2K

jH.x; 0/j � max
x2K

jH� .x; 0/jj� j C 1
2
mK j� j2: (2.9)

This shows that ` is finite-valued, and since 0 2 Lx by (H1) we have
`.x; y/ � hy; 0i D 0 for 8y 2 R

n. The fact that the representations (2.8a) and (2.8b)
are equivalent is obvious for y D 0; for y ¤ 0 observe that for 8� 2 R

n

with H.x; �/ < 0 the boundedness of Lx implies that there 9c > 0 such that
H.x; � C cy/ D 0, and hy; � C cyi � hy; �i. The relation `.x; cy/ D c`.x; y/ for
8c � 0 is clear, and `.x; � / is convex as the supremum of linear functions. The
continuity at any point .x0; y0 D 0/ follows from the estimate `.x; y/ � Mjyj for
8y 2 R

n and all x in some ball NB".x0/ � D, where M WD sup
˚j� j ˇ̌ � 2 Sx2NB".x0/ Lx

�
.

The continuity everywhere else will follow from Lemma 2.14 (i). ut
Definition 2.12 (i) We call a function H fulfilling the properties (H1)–(H3) a

Hamiltonian, and we say that H induces the geometric action S defined in
Lemma 2.11.

(ii) We denote the class of all Hamiltonian geometric actions, i.e., of all actions S
constructed as in Lemma 2.11, by H � G .

2This work also proposed an algorithm, called the geometric minimum action method (gMAM),
for numerically computing minimizing curves of such geometric actions.
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(iii) We denote by H0 � H the class of all geometric actions S 2 H that are
constructed from a Hamiltonian H that fulfills the stronger assumption

(H1’) 8x 2 DW H.x; 0/ D 0.

Note that since ` depends on H only through its 0-level sets, different Hamilto-
nians H can define the same local action ` via (2.8), i.e., they can induce the same
geometric action S 2 H . In particular, for 8ˇ 2 C.D; .0;1// the Hamiltonians
H.x; �/ and ˇ.x/H.x; �/ induce the same action S. The next lemma shows how
Definition 2.9 can be expressed in terms of H, and that Assumption (H1’) does not
depend on the specific choice of H.

Lemma 2.13 Let S 2 H , and let H be a Hamiltonian that induces S.

(i) A point x 2 D is critical if and only if

H� .x; 0/ D 0 and H.x; 0/ D 0; (2.10)

and in that case (2.10) holds in fact for every Hamiltonian that induces S.
(ii) A point x 2 D is degenerate if and only if H.x; 0/ D 0.

(iii) If some H inducing S fulfills (H1’) then all of them do.

Proof See Appendix A.3. For part (ii) see also Fig. 2.2b. ut
In particular, Lemma 2.13 (ii) and (iii) imply that H0 is the class of all Hamiltonian
actions S such that D only consists of degenerate points, i.e., such that DSC D ¿.
Furthermore, we learn that for 8S 2 H we have DSC D fx 2 D j H.x; 0/ < 0g.

To actually compute `.x; y/ from a given Hamiltonian H, and for many proofs,
the following alternative representation of ` is oftentimes useful. It can be derived
by carrying out the constraint maximization in (2.8b) with the method of Lagrange
multipliers.

Lemma 2.14 (i) For every fixed x 2 D and y 2 R
n n f0g the system

H� .x; #/ D 
y; H.x; #/ D 0; 
 � 0 (2.11)

has a unique solution .#.x; y/; 
.x; y//, the functions # W D � .Rn n f0g/ ! R
n

and 
W D � .Rn n f0g/ ! Œ0;1/ are continuous, and the function ` defined
in (2.8a) can be written as

`.x; y/ D
(

hy; #.x; y/i if y ¤ 0;

0 if y D 0:
(2.12)

(ii) If S 2 H is induced by H then a point x 2 D is critical if and only if
9y ¤ 0W 
.x; y/ D 0. In that case, we have in fact 
.x; y/ D 0 for 8y ¤ 0.

Proof See Appendix A.4. ut
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See Fig. 2.2a for a geometric interpretation of (2.8a)–(2.8b) and (2.11)–(2.12):
By Assumption (H3) the function H.x; � / and thus also its 0-sublevel set
f� 2 R

n j H.x; �/ � 0g is strictly convex, and by Assumption (H1) it contains the
origin. The maximizer in (2.8a), � D #.x; y/, is the unique point on its boundary
where the outer normal aligns with y, and the local action `.x; y/ is jyj times the
component of #.x; y/ in the direction y.

The following lemma provides a quick way to obtain a drift for any Hamiltonian
geometric action. The examples at the end of this section will illustrate its use.

Lemma 2.15 If S 2 H is induced by H then b.x/ WD H� .x; 0/ fulfills the estimate
in Definition 2.7, and thus if b is C1 then it is a drift of S. We call a drift obtained in
this way a natural drift of S.

Proof Let b.x/ WD H� .x; 0/, and let K � D be compact. Define a WD supx2K jb.x/j
and c2 WD �

2 C sup
˚jH�� .x; �/j

ˇ̌
x 2 K; j� j � a

���1 2 .0; 1
2
�, and let x 2 K and

y 2 R
n.

If y D 0 then (2.6) is trivial since both sides vanish. Also, if y ¤ 0 and

.x; y/ D 0 then by Lemmas 2.14 (ii) and 2.13 (i) we have b.x/ D 0, so (2.6) is
trivial again. Therefore let us now assume that y ¤ 0 and that 
.x; y/ > 0.

Setting �0 WD c2
� jb.x/j

jyj y � b.x/
�
, a Taylor expansion of H.x; �0/ around � D 0

gives us a � 0 on the straight line between 0 and �0 (thus fulfilling j� 0j � j�0j �
2c2jb.x/j � 2ac2 � a) such that

H.x; �0/ D H.x; 0/C ˝
H� .x; 0/; �0

˛C 1
2

˝
�0;H�� .x; �

0/�0
˛

� 0C ˝
b.x/; �0

˛C 1
2
c�1
2 j�0j2

D ˝
b.x/C 1

2
c�1
2 �0; �0

˛

D ˝
1
2

� jb.x/j
jyj y C b.x/

�
; c2

� jb.x/j
jyj y � b.x/

�˛

D 1
2
c2
�ˇ̌ jb.x/j

jyj y
ˇ̌2 � jb.x/j2� D 0:

Fig. 2.2 (a) Illustration of (2.8a)–(2.8b) and (2.11)–(2.12), for fixed x 2 D and y 2 R
n n f0g,

in the case H.x; 0/ < 0. (b) If H.x; 0/ D 0 and if y aligns with H� .x; 0/ then # D 0 and thus
`.x; y/ D 0



24 2 Geometric Action Functionals

Another Taylor expansion, this time around � D # WD #.x; y/, now gives us a � 00
such that

0 � H.x; �0/

D H.x; #/C ˝
H� .x; #/; �0 � # ˛C 1

2

˝
�0 � #;H�� .x; �

00/.�0 � #/˛
� 0C 
.x; y/hy; �0 � #i C 0;

where we used both equations in (2.11), and Assumption (H3). Since 
.x; y/ > 0,
this implies that

`.x; y/ D h#; yi � h�0; yi D c2
˝ jb.x/j

jyj y � b.x/; y
˛ D c2

�jb.x/jjyj � hb.x/; yi�:
ut

Note that since there is not a unique Hamiltonian associated to S, there is not
a unique natural drift either; in particular, the remark following Definition 2.12
implies that with b also ˇb is a natural drift for 8ˇ 2 C1.D; .0;1//, with the
same flowline diagram. The next remark shows that for actions S 2 H0 in fact every
natural drift has the same flowline diagram.

Remark 2.16 For S 2 H0 we have the following:

(i) All natural drifts b share the same roots since by Lemma 2.13 (i) and (H1’)
we have b.x/ D 0 if and only if x is a critical point. In particular, this means
that natural drifts are optimal in the sense that by (2.6) they only vanish where
necessary.

(ii) At non-critical points x, the direction y WD b.x/
jb.x/j is the same for every natural

drift b, since Lemma 4.3 (i)–(ii) will characterize it as the unique unit vector y
such that `.x; y/ D 0.

Thus, for any fixed S 2 H0 all natural drifts have the same flowline diagram.

In contrast, for actions S 2 H nH0 (i.e., if S has any non-degenerate points) the
natural drift is not always the optimal choice: In Examples 2.20 and 2.21 below the
natural drift will even turn out to be the trivial (and thus useless) drift b 	 0. (See
Example 3.32 in Sect. 3.4.3 for how to find a better one.) Furthermore, Example 3.33
illustrates two cases in which the natural drift is non-trivial but contains a limit cycle,
which would usually prevent us from using it in our existence criteria.

However, since in that example we assume that there is a non-degenerate point
on the limit cycle, the following lemma turns out to resolve the problem in this case:
It says that we are allowed to modify the obtained natural drift in a closed subset of
the region DSC in any way we want.

Lemma 2.17 Suppose that b is a drift of S 2 G , and that Qb 2 C1.D;Rn/ is another
vector field that coincides with b outside of some closed subset of DSC. Then Qb is a
drift of S, too.
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Proof See Appendix A.5. ut
Finally, the next lemma states the key property of Hamiltonian geometric actions

in particular in the context of large deviation theory: It shows how a double
minimization problem such as (1.4)–(1.5) can be reduced to a simple minimization
problem over a Hamiltonian geometric action.

Lemma 2.18 Let H be a Hamiltonian fulfilling (H1)–(H3), and define for 8T > 0

the functional ST W NC.0;T/ ! Œ0;1� as

ST.�/ WD
Z T

0

L.�; P�/ dt; where (2.13)

L.x; y/ WD sup
�2Rn

�hy; �i � H.x; �/
�

for 8x 2 D 8y 2 R
n (2.14)

is the Legendre transform of H.x; � /. Then for 8A1;A2 � D we have

inf
T>0

�2 NCA2
A1
.0;T/

ST.�/ D inf
�2� A2

A1

S.�/; (2.15)

where S 2 H is the geometric action induced by H.

Proof Using the bijection .T; �/ $ .�;T; ˇ/ given in Lemma 2.1 (ii) that assigns
to every � 2 NC.0;T/ its curve � 2 � and its parameterization ˇ 2 NC.Œ0;T�; Œ0; 1�/
via the relation � D '� ı ˇ, we have

inf
T>0

�2 NCA2
A1
.0;T/

ST.�/ D inf
�2� A2

A1

inf
T>0

ˇ2 NC.Œ0;T�;Œ0;1�/
ˇ non-decr., surjective

ST.'� ı ˇ/ D inf
�2� A2

A1

S.�/;

where the functional

S.�/ WD inf
T>0

ˇ2 NC.Œ0;T�;Œ0;1�/
ˇ non-decr., surjective

ST.'� ı ˇ/

was found in [10] to have the integral representation (2.5) with the local action given
by (2.8a)–(2.8b) (or equivalently, by (2.11)–(2.12)).3 ut
We conclude this section with three examples of Hamiltonian geometric actions.

Example 2.19 (Large Deviation Theory, Part I) Stochastic dynamical systems with
a small noise parameter " > 0 often satisfy a large deviation principle whose

3At the beginning of [10], additional smoothness assumptions on H were made, but they do not
enter the proofs of these representations.
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action functional ST is of the form (2.13)–(2.14). Examples include (i) stochastic
differential equations (SDEs) in R

n [8]

dX"t D b.X"t / dt C p
" �.X"t / dWt; X"tD0 D x1; (2.16)

where b.x/ is the drift vector field and �.x/ is the diffusion matrix of the SDE, and
(ii) continuous-time Markov jump processes in R

n [16] with jump vectors "ei 2 R
n,

i D 1; : : : ;N, and corresponding jump rates "�1�i."x/ > 0. Here we assume that b,
A WD ��T and �i are C1 functions, and that for each fixed x 2 D, A.x/ is a positive
definite matrix.

Using the notation hw1;w2iM WD hw1;Mw2i and soon also jwjM WD hw;wi1=2M
for 8w1;w2;w 2 R

n and for any positive definite symmetric matrix M, the
Hamiltonians used in (2.13)–(2.14) to define ST are

H.x; �/ D hb.x/; �i C 1
2
j� j2A.x/; (SDE) (2.17a)

H.x; �/ D
NX

iD1
�i.x/

�
ehei;�i � 1

�
: (Markov jump process) (2.17b)

In the SDE case, the function L.x; y/ defined in (2.14) can easily be found to be

L.x; y/ D 1
2
jb.x/� yj2A�1.x/; (SDE) (2.18)

whereas for Markov jump processes no closed form of L.x; y/ is available.
The central object of large deviation theory for answering various questions about

rare events in the zero-noise-limit " ! 0, such as the transition from one stable
equilibrium point of b to another, is the quasipotential V.x1; x2/. Originally defined
by (1.4) using the action ST given by (2.13)–(2.14), Lemma 2.18 allows us to rewrite
it as

V.x1; x2/ D inf
�2� x2

x1

S.�/; (2.19)

where S 2 H is the Hamiltonian geometric action defined via (2.8a)–(2.8b), or
equivalently, via (2.11)–(2.12). The minimizing curve �? in (2.19) (if it exists) can
be interpreted as the maximum likelihood transition curve.

In the SDE case, (2.11) can in fact be solved explicitly: Its solution is given by

 D jb.x/jA.x/�1=jyjA.x/�1 and # D A.x/�1.
y � b.x//, and so we obtain the local
geometric action

`.x; y/ D jb.x/jA�1.x/jyjA�1.x/ � hb.x/; yiA�1.x/: (SDE) (2.20)

For Markov jump processes no explicit expression for `.x; y/ exists.
Finally, we observe that in the SDE case (2.17a) the expression H� .x; 0/ for the

natural drift given in Lemma 2.15 indeed recovers the given vector field b.x/, while



2.3 The Subclass of Hamiltonian Geometric Actions 27

in the case (2.17b) of a Markov jump process we obtain

b.x/ D
NX

iD1
�i.x/ei ; (Markov jump process)

which is the vector field that defines the zero-noise-limit of Kurtz’s Theorem
(see [12] or [16, Theorem 5.3]). ut

Example 2.20 (Riemannian Metric) Suppose that A 2 C.D;Rn�n/ is a function
whose values are positive definite symmetric matrices A.x/. Then the action S 2 G
given by

`.x; y/ D jyjA.x/ (2.21)

is a Hamiltonian action, S 2 H n H0, with associated Hamiltonian

H.x; �/ D j� j2A.x/�1 � 1: (Riemannian metric)

Indeed, as one can easily check, for this choice of H the Eq. (2.11) are fulfilled by

 D 2=jyjA.x/ and # WD A.x/y=jyjA.x/, and thus the local geometric action defined
by (2.12) yields (2.21).

Note that the natural drift for this Hamiltonian is b.x/ 	 0. As we shall see,
however, this will be made up for by the fact that H.x; 0/ < 0 for 8x 2 D, see
Proposition 3.16 and Example 3.32 in Sect. 3.4.3. ut

Example 2.21 (Quantum Tunneling) The instanton by which quantum tunneling
arises is the minimizer �? of the Agmon distance [17, Eq. (1.4)], i.e., of (2.19),
where S 2 G is given by the local action

`.x; y/ D p
2U.x/jyj: (2.22)

Here, x1 and x2 are the minima of the potential U 2 C.D; Œ0;1//, and it is assumed
that U.x1/ D U.x2/ D 0.

If U did not have any roots then this would be a special case of
Example 2.20, with A.x/ WD 2U.x/I, which leads us to the Hamiltonian
H.x; �/ D j� j2=.2U.x//� 1. According to the remark following (2.11), we could
multiply H by the function U.x/ without changing the associated action, and so we
would find that (2.22) is given by

H.x; �/ D 1
2
j� j2�U.x/: (quantum tunneling)
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We can now check that this choice in fact leads to (2.22) even if U does have roots
(with 
 D p

2U.x/=jyj and # D 
y), and so we have S 2 H n H0. Again, the
natural drift is b.x/ 	 0. ut
Example 2.22 (Large Deviation Theory, Part II) Now consider again the
SDE (2.16), but equipped with the additional feature that the process jumps to
some “dead” state at the rate "�1r.Xt/, for some given bounded absorption rate
function r 2 C.D; Œ0;1//. Then this killed diffusion process is fulfilling a large
deviation principle as well,4 and assuming for simplicity that A.x/ 	 I, the large
deviation action ST is given by

H.x; �/ D hb.x/; �i C 1
2
j� j2 � r.x/; (2.23)

L.x; y/ D 1
2
jb.x/� yj2 C r.x/; (2.24)

thus penalizing curves for spending time in regions where r.x/ > 0. Solving the
system (2.11), we find that 
 D jyj�1pjb.x/j2 C 2r.x/ and # D 
y � b.x/, which
leads us to the corresponding geometric local action

`.x; y/ D jyj
p

jb.x/j2 C 2r.x/� hy; b.x/i: (2.25)

For general A.x/ all scalar products and norms only have to be replaced as in
Example 2.19, which then makes (2.25) a generalization of (2.20). Observe also how
our expression H� .x; 0/ for the natural drift defined in Lemma 2.15 still recovers the
given vector field b.

In summary, adding the continuous and bounded absorption rate "�1r.x/ to the
SDE (2.16) had the effect of subtracting r.x/ from H.x; �/ and adding it to L.x; y/,
which leaves the natural drift unchanged but results in H.x; 0/ D �r.x/ being
negative wherever r.x/ > 0. As a result, by Lemma 2.13 (ii) the set of non-
degenerate points in Definition 2.9 is given by DSC D fr 2 D j r.x/ > 0g.

In fact, the comments in Appendix A.6 show that adding a properly scaled
absorption rate to any other process will have the same effect on its large deviation
action. ut

4Probabilists will find some comments in Appendix A.6.



Chapter 3
Existence of Minimum Action Curves

Abstract In this chapter we begin by stating the problem of the existence of a
minimum action curve, and we prove our main existence theorem, which requires
all relevant points in the state space to “have local minimizers.” We then list three
criteria for proving this property for a given point, each designed to target one out of
three different categories of points; the key ingredient here is our newly introduced
notion of “admissible manifolds.” After illustrating the use of these criteria with a
variety of examples, we conclude with a top-level theorem that can free us from
having to invoke these criteria by hand if the drift of the given action is of a certain
form. The proofs of the main criteria described in Sect. 3.3 will be postponed to
Chap. 6 in Part II.

3.1 A First Existence Result

Definition 3.1 (i) For a given geometric action S 2 G and two sets A1;A2 � QD
we denote by P.A1;A2/ the minimization problem inf

�2� A2
A1

S.�/. For two

points x1; x2 2 QD we write in short P.x1; x2/ WD P.fx1g; fx2g/.
(ii) We say that P.A1;A2/ has a strong (weak) minimizer if

9�? 2 � A2
A1

.�? 2 Q� A2
A1
/W S.�?/ D inf

�2� A2
A1

S.�/:

The curve �? is also called a minimum action curve of P.A1;A2/.
(iii) We say that .�n/n2N � �

A2
A1

is a minimizing sequence of P.A1;A2/ if

lim
n!1 S.�n/ D inf

�2� A2
A1

S.�/:

While our goal is to prove the existence of strong (i.e., rectifiable) minimizers, we
have to accept the fact that they don’t always exist, and our criteria below will give
some insight in when this can happen. Later in Lemma 4.2 we will also see that the
only points near which minimizers may be non-rectifiable are the roots of a drift b.

To illustrate this point, let us now construct an example of a case in which there
exists a weak minimizer, but not a strong one. Observe how in this example rb.0/
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30 3 Existence of Minimum Action Curves

is the zero matrix, which is why our key criterion Proposition 3.25 below will not
be applicable in this case.

Example 3.2 Consider the curve �? given by the parameterization 'W Œ0; 1� ! R
2

defined by '.˛/ WD .1 � ˛/.cos 1
1�˛ ; sin 1

1�˛ / for 8˛ 2 Œ0; 1/ and by '.1/ WD 0. It
fulfills

' 0.˛/ D �
 

cos 1
1�˛

sin 1
1�˛

!
C 1

1 � ˛

 
� sin 1

1�˛
cos 1

1�˛

!

) length.�/ D
Z 1

0

j' 0.˛/j d˛ D
Z 1

0

p
1C .1 � ˛/�2 d˛ D 1;

and so we have �? 2 Q� x2
x1 n � x2

x1 , where x1 WD .cos 1; sin 1/ and x2 WD .0; 0/ denote
the start and the end point of �?, respectively.

Let the potential function VWR2 ! Œ0;1/ be given in polar coordinates by
V.r; �/ WD r5 sin2. 1

2
.r�1 � �// for 8r > 0 and by V.rD0; �/ WD 0, which vanishes

on the infinite continuation of the spiral �? (defined by allowing ˛ 2 .�1; 1� above)
and is positive outside of it. Finally, consider the SDE geometric action S given
by (1.7) with drift b WD �rV 2 C1.R2;R2/, and suppose that we are trying to find
the minimum action curve leading from x1 to x2.

Since V takes its minimal value 0 everywhere on �?, we have bj�? D�rVj�? 	 0

and thus S.�?/ D 0 by (1.7), and so �? is a minimizer.
On the other hand, any curve in � x2

x1 has finite length and therefore needs to leave
the spiral at some point, i.e., it will traverse a point x 2 R

2 with V.x/ > 0. Its initial
segment � from x1 to x must therefore fulfill

S.�/ D
Z
�

�jrV.z/jjdzj C hrV.z/; dzi�

� 2

Z
�

hrV.z/; dzi D 2

Z
�

dV.z/ D 2
�
V.x/ � V.x1/

�
(3.1)

D 2V.x/ > 0 D S.�?/;

and so no curve in � x2
x1

can be a minimizer.
Constructing an example involving only isolated roots of b can be achieved by

adding a radial function to V that vanishes fast enough near the origin. The curve �?

defined above may then no longer be the minimizer, but basic arguments will suffice
to show that any minimizer will be a similar spiral and thus in Q� x2

x1
. ut

Recall that (by our definition at the end of Sect. 2.1.1) the class of curves � A2
A1

only contains curves that are contained in QD, and so P.A1;A2/ is the problem of
finding the best curve leading from A1 to A2 that is contained in QD. To avoid that this
additional constraint negatively affects our construction of minimizers by forcing us
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to move along curves whose lengths we cannot control, we have to require some
regularity of QD.

For the rest of this monograph we will make the following assumption:

Assumption ( QD): The set QD has the following property:

8x 2 QD 8� > 0 9r > 0 8w 2 NBr.x/ \ QD 9� 2 � w
x W length.�/ � �:

Again recall that � w
x only contains curves that do not lead out of QD. In words, this

assumption requires that for any x 2 QD and any arbitrarily small given � > 0, all
points in QD that are sufficiently close to x can be connected to x by a curve � � QD
with length no larger than �.

Remark 3.3 Using a compactness argument, Assumption ( QD) also implies that
any two points in QD can be connected by a rectifiable curve � 2 QD, which by
Lemma 2.5 (ii) (with K WD � ) has finite action. In particular, any (weak or strong)
minimizer must have finite action.

The following example, illustrated by Fig. 3.1a–c, discusses how this assumption
can be violated.

Fig. 3.1 Illustrations of Examples 3.4 and 3.6: (a–c) three cases in R
2 in which Assumption ( QD)

is violated, (d) one case in which by Lemma 3.5 Assumption ( QD) is fulfilled
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Example 3.4 In Fig. 3.1a, if we choose x to be the lower right corner of QD and �
smaller than the length of the (infinitely many) horizontal cuts into the right side
of QD, then any small ball around x will contain a point in QD just above x, which can
only be connected to x by curves that first go left, then all the way down, and then
back to the right along the lower border of QD. But such curves are longer than �, and
so Assumption ( QD) does not hold.

Figure 3.1b shows a set whose boundaries we assume to spiral into a point x in a
similar way as the curve �? constructed in Example 3.2. Since the point x can only
be connected to any other point in QD by infinitely long curves, Assumption ( QD) is
violated in this case as well.

Finally, Fig. 3.1c shows a set QD whose boundaries are zigzag curves that—when
constructed properly—lead to the same problem as in the preceding case of a spiral,
so that Assumption ( QD) is violated again. ut

The next lemma gives some sufficient (but by no means necessary) conditions
that can help to prove Assumption ( QD) for a given set QD of interest.

Lemma 3.5 If QD D D, or if QD D Sm
iD1 QDi for some sets QD1; : : : ; QDm � D that are

closed in D and convex, then the Assumption ( QD) is fulfilled.

Proof Let x 2 QD and � > 0. If QD D D then we can choose r 2 .0; �� so small
that NBr.x/ � QD, and for any w 2 NBr.x/ \ QD D NBr.x/ we can let � be the straight
line from x to w. Then we have � � NBr.x/ � QD and thus � 2 � w

x , and furthermore
length.�/ D jw � xj � r � �.

If QD D Sm
iD1 QDi for some sets QDi that are closed in D and convex, let

I WD fi j x 2 QDig ¤ ¿ and choose r 2 .0; �� so small that NBr.x/ � D n Si…I
QDi.

Then we have NBr.x/ \ QD D Sm
iD1. NBr.x/ \ QDi/ D S

i2I.
NBr.x/ \ QDi/, and so for

8w 2 NBr.x/ \ QD 9i 2 I such that w is in the convex set QDi. Since also x 2 QDi, the
straight connection line � from x to w fulfills � � QDi � QD and thus � 2 � w

x , and
again we have length.�/ D jw � xj � r � �. ut
Example 3.6 The set QD shown in Fig. 3.1d does fulfill Assumption ( QD), since it is
the union of two rectangles, an ellipse, and a triangle, all of which are closed convex
sets. ut

The following lemma explains why in Definition 3.1 we do not distinguish
between minimizing over � A2

A1
and over Q� A2

A1
: Minimizing the action over either of

these two sets leads to the same value.

Lemma 3.7 For any geometric action S 2 G and any two sets A1;A2 � QD we have

inf
�2� A2

A1

S.�/ D inf
�2 Q� A2

A1

S.�/: (3.2)

Proof The inequality “�” is clear since � A2
A1

� Q� A2
A1

. To show also the inequality

“�”, let any Q� 2 Q� A2
A1

and " > 0 by given. We must construct a curve � 2 � A2
A1

with
S.�/ � S. Q�/C ".
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To do so, let 
 > 0 be so small that K WD NN
. Q�/ � D, and let c1 > 0 be
the corresponding constant given by Lemma 2.5 (ii). Suppose there are m points
along Q� that are passed in infinite length. We then define � 2 �

A2
A1

by replacing
the at most 2m infinitely long curve segments preceding and/or following these
m points by rectifiable curves �i � QD with length.�i/ � � WD minf "

2mc1
; 
g, as

given by Assumption ( QD). Since for every i we have �i � NN
. Q�/ and thus S.�i/ �
c1 length.�i/ � "

2m by Lemma 2.5 (ii), we have S.�/ � S. Q�/CP
i S.�i/ � S. Q�/C",

completing the proof. ut
In this chapter we will explore conditions on S that guarantee the existence of a

(weak or strong) minimizer �?. We begin with a first result that was already stated
in the introduction.

Proposition 3.8 Let S 2 G , let the two sets A1;A2 � QD be closed in D, and
suppose that there exists a compact set K � QD such that the minimization problem
P.A1;A2/ has a minimizing sequence .�n/n2N with �n � K for 8n 2 N and
with supn2N length.�n/ < 1. Then P.A1;A2/ has a strong minimizer �? fulfilling
length.�?/ � lim infn!1 length.�n/.

Proof Let M0 WD lim infn!1 length.�n/, and let us pass on to a subsequence, which
we again denote by .�n/n2N, such that limn!1 length.�n/ D M0. For 8n 2 N, let
'n WD '�n be the arclength parameterization of �n given by Lemma 2.1 (i), i.e.,
the one fulfilling j' 0

nj 	 length.�n/ a.e. Our conditions on .�n/n2N now imply that
the sequence .'n/n2N fulfills the conditions of Lemma 2.2 (i), and so there exists a
subsequence .'nk/k2N that converges uniformly to some function '? � K � QD � D
which by Lemma 2.2 (ii) is in NC.0; 1/. Since A1 and A2 are closed in D, we have
'? 2 NCA2

A1
.0; 1/. By Lemma 2.6 (i), the curve �? 2 � A2

A1
parameterized by '? fulfills

S.�?/ D S.'?/ � lim
k!1 S.'nk/ D lim

k!1 S.�nk/ D inf
�2� A2

A1

S.�/;

i.e., �? is a strong minimizer of P.A1;A2/.
Finally, observe that for 8" > 0 9k0 2 NW supk�k0 length.�nk/ � M0 C ", and

applying Lemma 2.2 (ii) to the tail sequence .'nk/k�k0 we find that j'?0j � M0 C "

a.e. and thus length.�?/ � M0 C ". Since " > 0 was arbitrary, this shows that
length.�?/ � M0. ut

In practice, this result by itself is of little use since minimizing sequences are not
at our direct disposal, and so controlling its curve lengths is hard. Instead, in the
following we will build on this result and replace its bounded-length-condition with
criteria that are based on explicitly available properties of S, such as the flowline
diagram of a drift b.
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3.2 Points with Local Minimizers, Existence Theorem

First, we will use a compactness argument to reduce the minimization problem
P.A1;A2/ to the special case P.x1; x2/ where x1 and x2 are close to each other.
The following definition lies at the heart of this entire work, and therefore the
reader is strongly advised not to proceed until this definition is fully understood.
The illustrations in Fig. 3.2 may help.

Definition 3.9 (i) We say that a point x 2 QD has strong local minimizers if
9r; � > 0 9 compact K � QD 8x1; x2 2 NBr.x/ \ QD the minimization problem
P.x1; x2/ has a strong minimizer �? 2 � x2

x1
with �? � K and length.�?/ � �.

(ii) We say that a point x 2 QD has weak local minimizers if there exist a constant
r > 0, a function �W .0;1/ ! Œ0;1/ and a compact set K � QD such that for
8x1; x2 2 NBr.x/\ QD the minimization problem P.x1; x2/ has a weak minimizer
�? 2 Q� x2

x1
.x/ with �? � K and 8u > 0W length

�
�?j NBu.x/c

� � �.u/.

Observe that strong implies weak: Indeed, if x has strong local minimizers then we
can choose the function �.u/ in part (ii) to be the constant � given in part (i), and so
x has weak local minimizers.

It is important to understand that the only aspect of this property that justifies
the use of the word “local” is that x1 and x2 are close to x; the corresponding
minimization problem P.x1; x2/ still considers curves that lead far away from x.
Thus, checking that a given point x has local minimizers generally requires global
knowledge of ` (although an exception is given in Proposition 3.16).

Remark 3.10 (i) The set of points with strong local minimizers is open in QD.
(ii) To prove that a point x 2 QD has strong local minimizers, it suffices to show that

for 8� > 09r > 0 8x1; x2 2 NBr.x/ \ QD the minimization problem P.x1; x2/

Fig. 3.2 Illustration of Definition 3.9 (i). The left graphic illustrates the case QD D D; the right
one shows how for QD ¨ D we only need to consider points x1; x2 2 QD, and that the corresponding
minimizing curve �? is then constrained to lie within QD. In either case, independently of x1 and x2,
�? must lie within some fixed compact set K � QD and satisfy a length condition
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has a minimizer �? 2 � x2
x1

with length.�?/ � �. Indeed, this implies that
�? � NBrC�=2.x/ \ QD DW K � D, and K is compact if r and � are chosen so
small that NBrC�=2.x/ � D.

(iii) For the same reasons, if D D R
n then the requirement �? � K in

Definition 3.9 (i) may be dropped entirely since then K WD NBrC�=2.x/ \ QD
is a compact set with �? � K.

As we will see in Sects. 3.3 and 3.4, showing that a given point has (weak or
strong) local minimizers is rather easy once the flowlines of a good choice for the
drift b of S are understood. In fact, oftentimes one can show that every point x 2 QD
has local minimizers.

The following theorem, in combination with the tools that we will develop in
Sect. 3.3, is our main result. It extends the local property of Definition 3.9 to a global
one by using a compactness argument.

Theorem 3.11 (Existence Theorem)

(i) Let S 2 G , and let K � QD be a compact set consisting only of points that have
weak local minimizers. Let the two sets A1;A2 � QD be closed in D, and let
us assume that the minimization problem P.A1;A2/ has a minimizing sequence
.�n/n2N such that �n � K for 8n 2 N. Then P.A1;A2/ has a weak minimizer.

(ii) If (in addition to the above conditions) all points in K actually have strong (as
opposed to weak) local minimizers then P.A1;A2/ has a strong minimizer.

Proof Postponed to the end of this section. ut
The decisive advantage of Theorem 3.11 over Proposition 3.8 is that the bounded-

length-condition of the minimizing sequence is no longer required, and instead
we have to show that K consists of points with local minimizers. The remaining
condition, �n � K for 8n 2 N, boils down to the following estimate.

Lemma 3.12 Let S 2 G , let K � QD be compact, let A1;A2 � QD, and suppose that
there exists some curve �0 2 � A2

A1
with �0 � K such that

S.�0/ � inf
�2� A2

A1
�ªK

S.�/; (3.3)

i.e., no curve leading from A1 to A2 and leaving K along its way has a smaller
action than �0. Then P.A1;A2/ has a minimizing sequence .�n/n2N with �n � K for
8n 2 N.

Proof Let .�n/n2N be any minimizing sequence. If we replace every curve �n that is
not entirely contained in K by �0 then because of (3.3) we only reduce the action.
Thus we obtain a new minimizing sequence that is now entirely contained in K. ut
Example 3.13 In the case that D D R

n, that A1 is bounded, and that S is the SDE
geometric action given by (1.7) with a drift of the form b D �rV , for some potential
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V 2 C2.Rn;R/ with limx!1 V.x/ D 1, it suffices in Lemma 3.12 to choose K D
NBR.0/ for some sufficiently large R > 0.

To see this, choose the fixed curve �0 2 �
A2

A1
arbitrarily, and let � 2 �

A2
A1

with
� ¨ K. Let � 0 denote the curve segment of � until its first exit of BR.0/, and let x1
and x2 be the start and end points of � 0, respectively. Then using the same trick as
in (3.1) one can show that

S.�/ � S.� 0/ � 2
�
V.x2/ � V.x1/

�
� 2min

˚
V.x/

ˇ̌ jxj D R
�� 2max

˚
V.x/

ˇ̌
x 2 A1

�
;

which can be made larger than S.�0/ by choosing R large enough. ut
Proof (Theorem 3.11) Although the construction for part (i) directly implies the
statement of part (ii), we will show part (ii) separately first (since its proof uses a
much easier argument at its end) and then extend the proof to cover part (i). See
Fig. 3.3 for an illustration of the proof of part (ii).

(ii) Let S 2 G , and let the sets K;A1;A2 � QD have the properties described in
Theorem 3.11, where K only consists of points with strong local minimizers.
For 8x 2 K Definition 3.9 (i) provides us with values rx; �x > 0 and compact
sets Kx � QD such that for 8x1; x2 2 NBrx.x/ \ QD there exists a minimizer
�?x1;x2 2 � x2

x1 of the minimization problem P.x1; x2/ with �?x1;x2 � Kx and
length.�?x1;x2 / � �x. Since fBrx.x/ j x 2 Kg is an open covering of K, there
exists a finite subcovering, i.e., there exist points x1; : : : ; xk 2 K such that
K � Sk

jD1 Brj.x
j/, where rj WD rxj . We define M WD Pk

jD1 �xj .

Now let .�n/n2N � �
A2

A1
be a minimizing sequence with �n � K for 8n 2 N.

For each fixed n 2 N we will now define a modified curve Q�n by cutting �n into
at most k pieces whose start and end points lie within the same ball, and then by
replacing these pieces by the corresponding optimal curves with the same start
and end points.

Fig. 3.3 Illustration of the proof of Theorem 3.11 (ii), with QD D D. Every curve �n of the given
minimizing sequence is cut into at most k pieces whose start and end point is contained in the
same ball NBrj .x

j/. Using Definition 3.9, these pieces are then replaced by new curve segments with
minimal action and controllable length
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To make this description rigorous, let the functions 'n 2 NCA2
A1
.0; 1/ be some

parameterizations of the curves �n, and fix n 2 N. We then define (for some
m � k) the numbers 0 D ˛1 < � � � < ˛m D 1, the distinct indices j1; : : : ; jm 2
f1; : : : ; kg and finally jmC1 D jm by induction, as follows:

• Let ˛1 D 0, and let j1 be such that 'n.0/ 2 Brj1
.xj1 /.

• For i � 1, let ˛iC1 WD sup
˚
˛ 2 Œ0; 1� ˇ̌ 'n.˛/ 2 Brji

.xji/
�
, and let

(
jiC1 be such that 'n.˛iC1/ 2 BrjiC1

.xjiC1 / if ˛iC1 < 1;
jiC1 WD ji; m WD i if ˛iC1 D 1:

In other words, we split the curve �n into m pieces whose endpoints fulfill
'n.˛i/; 'n.˛iC1/ 2 NBrji

.xji/ for 8i D 1; : : : ;m. Since also 'n � K � QD,
by definition of the radii rj the m minimization problems P

�
'n.˛i/; 'n.˛iC1/

�
(i D 1; : : : ;m) have strong minimizers �?n;i � Kxji � QD with length.�?n;i/ � �xji ,
and in particular we have S.�?n;i/ � S.'njŒ˛i ;˛iC1�/. The concatenated curve

Q�n WD �?n;1 C � � � C �?n;m 2 � A2
A1

thus fulfills

S. Q�n/ D
mX

iD1
S.�?n;i/ �

mX
iD1

S
�
'njŒ˛i ;˛iC1�

� D S.'n/ D S.�n/; (3.4)

length. Q�n/ D
mX

iD1
length.�?n;i/ �

mX
iD1

�xji �
kX

jD1
�xj D M: (3.5)

Because of (3.4), the modified sequence . Q�n/n2N is still a minimizing sequence,
and (3.5) tells us that the curves Q�n have uniformly bounded lengths. Further-
more, we have Q�n � Sm

iD1 Kxji � Sk
jD1 Kxj , which is a compact subset of QD.

Therefore we can apply Proposition 3.8 and conclude that P.A1;A2/ has a
minimizer �?, with

length.�?/ � lim inf
n!1 length. Q�n/ � M:

(i) For this part we begin as in the proof of part (ii), by choosing a finite collection
of balls Brj.x

j/ covering K, now given by Definition 3.9 (ii) whenever xj only

has weak local minimizers. Given the minimizing sequence .�n/n2N � �
A2

A1
, we

cut each curve �n into smaller segments as in part (ii). The number of pieces
m and the indices j1; : : : ; jm may depend on n, but since there are only finitely
many combinations, we may pass on to a subsequence (which we again denote
by .�n/n2N), such that m and j1; : : : ; jm are in fact the same for every curve �n.

We then construct a new sequence . Q�n/n2N � Q� A2
A1

with S. Q�n/ � S.�n/

for 8n 2 N as in the proof of part (ii), only that now if xji only has
weak local minimizers then the curve segment �?n;i must be obtained from
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Definition 3.9 (ii), and so we have �?n;i 2 Q� .xji / in this case. We can assume
that each segment �?n;i visits the point xji at most once (otherwise we can cut
out the piece between the first and the last hitting point of xji , which can only
decrease the action of the curve).

If xj1 has strong local minimizers then we can apply Lemma 2.2, just as in
the proof of Proposition 3.8, to show that some subsequence of the arclength
parameterizations .'n;1/n2N � NC.0; 1/ of .�?n;1/n2N converges uniformly to
the parameterization of some �?1;1 2 � . If instead xj1 only has weak local
minimizers then we apply Lemma 2.3 to show that a subsequence of some
parameterizations .'n;1/n2N � QC.xj1 / of .�?n;1/n2N converges pointwise on
Œ0; 1� and uniformly on each set Œ0; 1

2
� a� [ Œ 1

2
C a; 1�, a 2 .0; 1

2
/, to the

parameterization of some �?1;1 2 Q� .xj1 /. In either case, since �?n;1 � QD for
8n 2 N and since QD is closed in D, we have �?1;1 � QD.

We repeat this procedure for xj2 ; : : : ; xjm , each time passing on to a further
subsequence, and in this way obtain curve pieces �?1;1; : : : ; �

?1;m that by

construction connect to a curve �? 2 Q� A2
A1

. Using both parts of Lemma 2.6,
its action fulfills

S.�?/ D
mX

iD1
S.�?1;i/ �

mX
iD1

lim inf
n!1 S.�?n;i/ � lim inf

n!1

mX
iD1

S.�?n;i/

D lim inf
n!1 S. Q�n/ � lim inf

n!1 S.�n/ D inf
�2� A2

A1

S.�/ D inf
�2 Q� A2

A1

S.�/;

where in the last step we used Lemma 3.7. Since �? 2 Q� A2
A1

, equality must hold,
and so �? is a weak minimizer. ut

Remark 3.14 Denoting the minimizer by �?, the proof implies that
in (i), there exists a finite set W � K of points that only have weak but not strong

local minimizers, depending only on K but not on A1 and A2, such that every point
that �? passes in infinite length is in W;

in (ii), we have length.�?/ � M, where M > 0 is a constant only depending on
K but not on A1 and A2.

Remark 3.15 Theorem 3.11 and Lemma 3.12 can easily be generalized to cover
also the minimization over sets of the form

�A1;:::;Ak WD ˚
� � QD ˇ̌ � visits A1; : : : ;Ak in this order

�
or � 0

A1;:::;Ak
WD ˚

� � QD ˇ̌ � visits A1; : : : ;Ak in any order
�

for any given k 2 N and any given sets A1; : : : ;Ak � QD that are closed in D. In
this case, .�n/n2N must be a minimizing sequence of the corresponding associated
minimization problem.
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3.3 Finding Points with Local Minimizers

This leaves us with the question how one can show that a given point x 2 QD has
local minimizers. We have developed three criteria that were respectively designed
to be applied to non-degenerate points (Proposition 3.16), degenerate non-critical
points (Proposition 3.23), and critical points (Proposition 3.25). The proofs of most
statements that are listed in this section will be carried out in Part II.

From now on we will assume that S 2 G and that b is a drift of S in the sense of
Definition 2.7, and we will denote by  .x; t/ the flow of b given in Definition 2.8.

Our first result is the following.

Proposition 3.16 Let x 2 QD be a non-degenerate point of S. Then x has strong local
minimizers.

Proof See Part II, Sect. 6.1. ut
Example 3.17 For the geometric action given by (2.21), i.e., the curve length
with respect to a Riemannian metric, every point in D is non-degenerate by
Lemma 2.13 (ii) since we have H.x; 0/ 	 �1 ¤ 0, and so according to
Proposition 3.16 every point in QD has strong local minimizers.

For the quantum tunneling geometric action given by (2.22) we have H.x; 0/ D
�U.x/, and so similarly Proposition 3.16 tells us that every point x 2 QD with
U.x/ > 0 has strong local minimizers. Addressing also the points x1 and x2, which
fulfill U.x1/ D U.x2/ D 0, will have to wait for Proposition 3.25 later in this section.

Note how in either case we could also have shown the non-degeneracy using its
original definition based on `.x; y/ (Definition 2.9 (i)) . ut

Unfortunately, Proposition 3.16 cannot be applied to actions S 2 H0 (since those
actions do not have any non-degenerate points), and so in particular it cannot be
applied to the large deviation geometric actions for SDEs and for Markov jump
processes, as given in Example 2.19.

To control the potential problems that can arise for these actions, namely that
`.x; y/ D 0 for some y ¤ 0, we now introduce the concept of admissible
manifolds. Loosely speaking, an admissible manifold M is a compact C1-manifold
of codimension 1 with the property that the flowlines of the drift b are never tangent
to M and always cross M in the same direction (“in” or “out”).

Definition 3.18 Given a vector field b 2 C1.D;Rn/, a set M � D is called an
admissible manifold of b if there exists a function fM 2 C.D;R/ such that

(i) M D f �1
M .f0g/,

(ii) M is compact,
(iii) fM is C1 in a neighborhood of M, and
(iv) 8x 2 MW hrfM.x/; b.x/i > 0.

Property (iv) says that the drift vector field b.x/ flows from the set f �1
M

�
.�1; 0/

�
into the set f �1

M

�
.0;1/

�
at every point of their common boundary M D f �1

M .f0g/,
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crossing M at a non-vanishing angle. Note that M is a proper C1-manifold since by
part (iv) we have rfM ¤ 0 on M. Also by part (iv) we have the following:

Remark 3.19 If M is an admissible manifold of b then 8x 2 MW b.x/ ¤ 0.

To get a better idea of how admissible manifolds look in R
2, the reader may

briefly skip ahead and take a look at Figs. 3.4–3.6 on pp. 44–50. There, the black
and the blue lines are the flowlines of the vector field b.x/, and the solid red lines
are admissible manifolds. Dashed red lines are examples of curves that are not
admissible manifolds since they are crossed by the flowlines in either direction (both
“in” and “out”).

The following Lemma gives a nice analytical example of an admissible manifold,
for a generalization of the previously discussed potential drift b D �rV .

Lemma 3.20 Suppose that the drift b can be written in the form b D �rV C v?
for some potential V 2 C2.D;R/ and some vector field v? 2 C1.D;Rn/ such that
hrV; v?i 	 0 on D and that v? D 0 wherever rV D 0.

Then for any c 2 R, if the level set Mc WD V�1.fcg/ is compact and if rV ¤ 0

on Mc, then Mc is an admissible manifold. More generally, even if Mc does not
fulfill these two conditions, any connected component of Mc that fulfills them is an
admissible manifold.

Proof If Mc is compact and if rV ¤ 0 on Mc then one can easily see that all
four properties in Definition 3.18 are fulfilled by the function fMc D �V C c. In
particular, property (iv) holds because for 8x 2 Mc we have hrfMc.x/; b.x/i D
h�rV.x/;�rV.x/C v?.x/i D jrV.x/j2 > 0.

For the second part of the lemma, all we have to do is to modify fMc away from
the given connected component (let us call it M), and remove all the roots of fMc

except for those in M. This is possible only because M divides Rn into an “inside”
and an “outside,” on which we can have the modified function QfMc take values of
opposite signs. The latter is the content of the Jordan-Brouwer Separation Theorem.
In fact, the proof of that theorem given in [13] works by constructing a function that
already has all the properties that we require of QfMc , and so there is nothing left for
us to do. The interested reader will find some more remarks in Appendix A.7. ut

Lemma 3.22 below gives another general example of an admissible manifold, as
found repeatedly in Figs. 3.4–3.6: the surface of a small deformed ball around an
attractor or repellor x of the drift b.

To prepare for this lemma, we introduce two functions fs and fu that are defined
on the basins of attraction/repulsion of x, denoted by Bs and Bu, respectively.1 These
functions measure the “distance” of a point w to the equilibrium point x in terms of
the length of the flowline starting from w until it reaches x as t ! 1 (fs) or as
t ! �1 (fu), respectively.

1The subscript indicates whether x is a stable or an unstable equilibrium point. The slight notational
conflict with balls Br.x/ will not be an issue for us since we will never denote radii by s or u.
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Definition 3.21 Let x 2 D be such that b.x/ D 0 and that all the eigenvalues
of the matrix rb.x/ have negative (positive) real parts, and let Bs (Bu) be the
basin of attraction (repulsion) of x. Then we define the function fsW Bs ! Œ0;1/

.fuW Bu ! Œ0;1/) by

fs.w/ WD
Z 1

0

jb. .w; t//j dt D
Z 1

0

j P .w; t/j dt; w 2 Bs; (3.6a)

fu.w/ WD
Z 0

�1
jb. .w; t//j dt D

Z 0

�1
j P .w; t/j dt; w 2 Bu: (3.6b)

Lemma 3.22 Let x 2 D be such that b.x/ D 0 and that all the eigenvalues of the
matrix rb.x/ have negative (positive) real parts. Then for sufficiently small a > 0

the level set Ma
s WD f �1

s .fag/ (Ma
u WD f �1

u .fag/) is an admissible manifold.

Proof See Part II, Sect. 6.2. ut
The following proposition, which is our second criterion for showing that a given

point x 2 D has local minimizers, is our first result that makes use of the concept
of admissible manifolds. In practice this criterion covers most cases that cannot be
addressed with Proposition 3.16.

Proposition 3.23 Let M be an admissible manifold and x 2  .M;R/ \ QD. Then x
has strong local minimizers.

Proof See Part II, Sect. 6.5. ut
Proposition 3.23 says that every admissible manifold M that we find will give us

a whole region .M;R/\ QD of points with strong local minimizers, where .M;R/
is the union of all the flowlines emanating from M. An immediate consequence is
the following:

Corollary 3.24 Let x 2 QD be such that b.x/ D 0 and that all the eigenvalues of the
matrix rb.x/ have negative (positive) real parts, and denote by Bs (Bu) the basin of
attraction (repulsion) of x. Then every point in .Bs n fxg/\ QD (.Bu n fxg/\ QD) has
strong local minimizers.

Proof This follows from Lemma 3.22 and Proposition 3.23 since for small a > 0we
have .Ma

s ;R/ D Bsnfxg and .Ma
u ;R/ D Bunfxg. (The reader who wants to prove

these intuitive equations rigorously will find the necessary tools in Lemma 6.1.) ut
By Remark 3.19, admissible manifolds cannot contain any points x with

b.x/ D 0, and thus the flowlines emanating from M cannot contain any such points
either. As a consequence, to show that a given point x 2 QD has local minimizers,
Proposition 3.23 can only be useful if b.x/ ¤ 0. For points with b.x/ D 0 (and in
particular for the missing point x in Corollary 3.24) we have the following criterion.
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Proposition 3.25 Let x 2 QD be such that b.x/ D 0, and that all the eigenvalues of
the matrix rb.x/ have nonzero real part. Let us denote by Ms and Mu the global
stable and unstable manifolds of x, respectively, i.e.,

Ms WD ˚
w 2 D

ˇ̌
lim

t!1 .w; t/ D x
�
; (3.7a)

Mu WD ˚
w 2 D

ˇ̌
lim

t!�1 .w; t/ D x
�
: (3.7b)

(i) If x is an attractor or repellor of b then x has weak local minimizers. If in
addition

9"; c3 > 0 8w 2 NB".x/ \ QD 9� 2 � w
x W length.�/ � c3jw � xj; (3.8)

9
; c4; ı > 0 8w 2 NB
.x/ 8y 2 R
n W `.w; y/ � c4jw � xjıjyj;

(3.9)

then x has strong local minimizers.
(ii) If x is a saddle point, and if there exist admissible manifolds M1; : : : ;Mm such

that

.Ms [ Mu/ n fxg �
m[

iD1
 .Mi;R/; (3.10)

then x has weak local minimizers. If in addition the state space is two-
dimensional, i.e., D � R

2, and if (3.8)–(3.9) are fulfilled then x has strong
local minimizers.

Proof See Part II, Sect. 6.6. ut
Before we come to some examples that illustrate the use of this criterion, let us first
take a closer look at its conditions. We begin with the conditions (3.8)–(3.9) that are
necessary to show that the point x in question has in fact strong (as opposed to only
weak) minimizers.

The condition (3.8) on the shape of the set QD near x is a stronger version
of Assumption ( QD): While Assumption ( QD) ensures that the length of connecting
curves � � QD between x and the points w 2 Br.x/ can be made uniformly
small by choosing r > 0 sufficiently small, the condition (3.8) asks that r can
in fact be chosen as a constant multiple of the requested maximum curve length.
Lemma 3.26 (i) will give some useful criteria for checking this condition.

The condition (3.9), which implies that x must be a critical point according to
Definition 2.9 (ii), asks that `.w; y/ is Hölder continuous at w D x, uniformly for all
y with jyj D 1. Using Lemma 3.26 (ii), this condition can easily be checked even
in the case of a Hamiltonian geometric action when no explicit formula for `.x; y/
may be available.
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Lemma 3.26 (i) If x 2 QDı (which is true in particular if QD D D), or if QD DSm
iD1 QDi for some sets QD1; : : : ; QDm � D that are closed in D and convex, then

the condition (3.8) is fulfilled.
(ii) Suppose that S 2 H is induced by a Hamiltonian H such that H. � ; 0/ and

H� . � ; 0/ are locally Hölder continuous at x. Then the condition (3.9) is fulfilled
if and only if x is a critical point.

Proof (i) As in the proof of Lemma 3.5. (ii) See Appendix A.8. ut
Finally, the condition (3.10) says that every point in the stable and unstable manifold
of x (except for x itself) has to lie on a flowline emanating from one of a finite
collection of admissible manifolds, or equivalently, that every flowline in the stable
and the unstable manifold must intersect one of these finitely many admissible
manifolds. See Sect. 3.4 for examples.

We conclude this section by pointing out that it is Proposition 3.25 (ii) that is
responsible for the somewhat excessive length of this monograph (and in particular
for Chap. 7 and most of Appendix B). In particular, a lot of effort went into proving
the existence of strong local minimizers in Proposition 3.25 (ii) at least in the
two-dimensional case, which allows us to conclude that the problem P.A1;A2/ of
minimizing S.�/ over all � 2 � A2

A1
has a solution �? that actually lies in � A2

A1
and not

only in the larger class Q� A2
A1

. For remarks on the possible extension of our results to
higher dimensions, see our conclusions in Chap. 5.

3.4 Examples in R
2

Let us see in some two-dimensional examples, D D R
2, how these criteria are used

in practice. In Figs. 3.4–3.6, the black and the blue lines are the flowlines of b, the
roots of b are denoted by the symbols � (attractor), ˚ (repellor), and s (saddle
point). Basins of attraction are shown in various shades of gray, basins of repulsion
are shaded with gray lines at various angles. The stable and unstable manifolds of
the saddle points are drawn in blue. Finally, a representative selection of admissible
manifolds is drawn as solid red curves. In Fig. 3.6, dashed red curves illustrate why
it is impossible to draw admissible manifolds through certain points.

Throughout the discussion of these examples in the remainder of Sect. 3.4, we
will assume that for every root x of b (i.e., for every attractor, repellor, or saddle
point) all the eigenvalues of the matrix rb.x/ have non-zero real parts. Also, for
simplicity we will discuss the case QD D D, so that the condition (3.8) is trivially
fulfilled by Lemma 3.26 (i). But our arguments will not change if QD ¨ D, except
that then proving that the roots of b have strong (as opposed to only weak) local
minimizers requires checking the additional condition (3.8), for example by using
Lemma 3.26 (i).
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Fig. 3.4 (a–b) Two systems with two attractors, (c) one system with three attractors
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Fig. 3.5 (a–b) Two more systems with three attractors
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3.4.1 Two Basins of Attraction

In our first two examples we consider systems in which the drift vector field b has
two stable equilibrium points whose basins of attraction partition the state space into
two regions.

Example 3.27 Figure 3.4a shows the flowlines of a vector field b with two attractors,
and with one saddle point on the separatrix. The points in the two basins of
attraction (light gray and dark gray) all have local minimizers by Corollary 3.24
and Proposition 3.25 (i). The three red lines are admissible manifolds (the two small
ones can be obtained from Lemma 3.22), and we observe that every flowline on
the stable and the unstable manifold of the saddle point (blue) intersects one of
them. Proposition 3.23 thus implies that every point on these flowlines has local
minimizers, and Proposition 3.25 (ii) implies that the saddle point itself has local
minimizers as well. We conclude that in this system every point in QD has local
minimizers.

In fact, all points (with the possible exception of the roots of b) have strong
local minimizers. To guarantee that the three roots have strong local minimizers as
well, one only needs to check the condition (3.9) at these points. In the case of an
action S 2 H induced by some Hamiltonian H such that H. � ; 0/ and H� . � ; 0/
are locally Hölder continuous, by Lemma 3.26 (ii) this is equivalent to (2.10).
Note that if S 2 H0 and b is a natural drift then (2.10) is fulfilled. These remarks
about the distinction between strong and weak local minimizers also apply to the
Examples 3.28–3.31. ut
Example 3.28 Figure 3.4b shows another system with two attractors, only now
there are two saddle points and one repellor on the separatrix. The two basins of
attraction are again drawn in light gray and dark gray, the basin of repulsion is
shaded in gray diagonal lines. By Corollary 3.24 and Proposition 3.25 (i) every
point in these three regions has local minimizers, which leaves us only with the two
saddle points, and with the outer halves of their respective stable manifolds. Again
we observe that every flowline of the stable and unstable manifolds of the two saddle
points (blue) intersects one of the four admissible manifolds drawn in the figure. As
in the previous example, Proposition 3.23 thus implies that every point on these
flowlines has local minimizers, and Proposition 3.25 (ii) implies that the two saddle
points have local minimizers as well. We conclude that also in this system every
point in QD has local minimizers. ut

3.4.2 Three Basins of Attraction

We now discuss three examples of systems with three attractors. In each case, we
will again find that every point in the state space has local minimizers.
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Example 3.29 Figure 3.4c shows a system with three attractors, with all three basins
of attraction aligned in a row. As usual, Corollary 3.24 and Proposition 3.25 (i)
cover the three basins of attraction, Proposition 3.23 covers the stable manifolds
of the saddle points since they intersect the outer admissible manifold, and
Proposition 3.25 (ii) covers the saddle points themselves since every flowline of
their stable and unstable manifolds intersects an admissible manifold. We conclude
again that every point in QD has local minimizers. ut
Example 3.30 Figure 3.5a shows a system with three attractors that form a triangle
with a repellor at its center. There are a total of three saddle points, one on
each of the three branches of the separatrix. All the points in the three basins of
attraction and in the basin of repulsion have local minimizers by Corollary 3.24 and
Proposition 3.25 (i). Again we are left only with the three saddle points, and with
the outer halves of their stable manifolds. Both can be treated with Propositions 3.23
and 3.25 (ii) as in the previous examples, and we find again that every point in QD
has local minimizers. ut
Example 3.31 Figure 3.5b shows yet another system with three attractors. This
time, one basin of attraction is enclosed by the two others, and we count a
total of two repellors and four saddle points. After applying Corollary 3.24 and
Proposition 3.25 (i) to the three basins of attraction and the two basins of repulsion,
we are only left with the four saddle points, and with the outer halves of the stable
manifolds of the two outer saddle points. We can proceed as before, and apply
Propositions 3.23 and 3.25 (ii) to show that also these remaining points have local
minimizers. ut

3.4.3 An Example with Trivial Natural Drift

Example 3.32 For the geometric action given by (2.21), i.e., the curve length with
respect to a Riemannian metric, and for the quantum tunneling geometric action
given by (2.22), we only found the natural drift b.x/ 	 0, and so we must argue
differently. Example 3.17 showed how one can apply Proposition 3.16 to all points
x 2 QD in the case of the Riemannian metric, and to all points x 2 QD n fx1; x2g
in the case of the quantum tunneling geometric action, to show that these points
have strong local minimizers. To deal also with the points x1 and x2 in the latter
case, let us now assume that the potential U in (2.22) has the property that
9c; " > 08x 2 B".xi/W jU.x/j � cjx � xij2 for i D 1; 2.

Under this assumption, the vector fields bi.x/ WD �i.x/.x � xi/, for some cutoff
functions �i 2 C1.D; Œ0; 1�/ with supp �i � B".xi/ and �i.xi/ D 1, are drift vector
fields of S since

`.x; y/ D
p
2U.x/ jyj � p

2c jx � xijjyj � p
2c jbi.x/jjyj

� p
c=2

�jbi.x/jjyj � hbi.x/; yi�:
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Since for each i D 1; 2 the point xi is a repellor of bi.x/ with rbi.xi/ D I, we can
apply Proposition 3.25 (i) to conclude that x1 and x2 have weak local minimizers. If
in addition U is Hölder continuous at x1 and x2 then the condition (3.9) is fulfilled,
and x1 and x2 have in fact strong local minimizers. (Observe that the alternative
criterion for (3.9) given by Lemma 3.26 (ii) leads to the same condition.) ut

3.4.4 Examples to Which Our Criteria Do Not Apply

We will now present three examples in which for some points the conditions of our
criteria are not fulfilled. As a consequence, unless we can otherwise show that there
exists a minimizing sequence that stays in a compact set K � QD away from these
points, the question of whether a minimizer exists will be left undecided at present:
Without further thought it may still be possible that (i) the points in question in
fact do have local minimizers, and our criteria from the previous section are only
not strong enough to show it, or (ii) the points do not have local minimizers, but
Theorem 3.11 which requires this property for all points in the compact set K � QD
is asking for more than necessary. In both cases a minimizer may still exist.

Fortunately, for the first of the following examples we will discover later in
Chap. 4 that (at least for actions S in the subclass H C

0 � H0 defined at the
beginning of Chap. 4) both Theorem 3.11 and our criteria in fact fail for a reason,
and that the above possibilities (i) and (ii) are not the case: Proposition 4.6 will show
that for these actions the points in question do not have local minimizers and that
a minimizer does not exist. For the second example we will have a partial result of
that kind. These insights are an important contribution to our theory because they
indicate why the conditions of our criteria are necessary, and they suggest that they
are not unnecessarily strong.

The first two of these examples have in common that there is a loop consisting
of one or more flowlines that can be traversed at no cost. Such loops are bound to
lead to problems since they allow for infinitely long curves with zero action, thus
making it hard to control the curve lengths of a minimizing sequence.

3.4.4.1 Limit Cycles

Figure 3.6a shows a system consisting of a limit cycle that encloses the basin of
attraction of a stable equilibrium point. We are interested in a curve of minimal
action that leads from the attractor to the limit cycle, and so the vector field outside
of the limit cycle is irrelevant to us.

All the points in the basin of attraction can again be treated by Corollary 3.24
and Proposition 3.25 (i), but (independently of the drift vector field outside of the
limit cycle) our criteria will fail to show that the points on the limit cycle itself have
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local minimizers: Proposition 3.23 would require us to find an admissible manifold
that crosses the limit cycle, but this is impossible.

Indeed, any closed loop M that may be a candidate for an admissible manifold
crossing the limit cycle (such as the red dashed line in Fig. 3.6a) would have to
intersect the limit cycle at least twice (it is not allowed to be tangent to the limit cycle
by Definition 3.18 (iv)), or put differently, the limit cycle would have to intersect M
at least twice. But this would mean that the flowline on the limit cycle enters the
interior of M at one place and exits it at another (at the two red crosses), which
ultimately contradicts Definition 3.18 (iv). This observation is proven rigorously in
Corollary 6.3 of Part II.

In Sect. 4.3 we will prove that all this happens for a reason: In Proposition 4.6
we will find that for actions S 2 H C

0 , points on limit cycles never have (weak or
strong) local minimizers, and that no minimizer from the attractor (in fact from any
point in the basin of attraction) to the limit cycle exists. Instead, the cheapest way
to approach the limit cycle is to circle around infinitely in the direction of the flow,
see Fig. 3.7a; this however is not a curve in Q� and is thus not considered a valid
minimizer in our present framework.

3.4.4.2 Closed Chains of Flowlines

The next example in Fig. 3.6b is similar in character: Again we have a closed curve
that can be traversed at no cost, only that this time it consists of four flowlines that
lead from saddle point to saddle point, and we are looking for a curve of minimal
action that leads from the attractor to this loop. As before, our criteria fail to show
that any of the points on the loop has local minimizers: Both Proposition 3.23
and 3.25 (ii) would require us to find an admissible manifold crossing the loop,
but for the same reasons as in the previous example this can easily be seen to be
impossible.

This time, however, the issue can at present not be resolved entirely. Corollary 4.5
in Sect. 4.3 will only allow us to conclude for actions S 2 H C

0 that if a minimizer
exists then it will reach the loop at one of the saddle points. Further work would
be necessary to prove that such a solution indeed exists, and to decide if it is
more advantageous to rather approach the loop by circling around infinitely in the
direction of the flow, see Fig. 3.7b.

At least Lemma 4.8 will explain why our criteria are insufficient for showing that
those points on the loop with non-zero drift have local minimizers: The proofs of
these criteria work by proving the stronger requirements of Remark 3.10 (ii), and
for actions S 2 H C

0 those are not fulfilled.
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(a)

(c)

(b)

Fig. 3.6 Three systems to which our criteria cannot be applied: (a) a limit cycle, (b) a closed chain
of flowlines, (c) non-contracting state space

(a) (b)

Fig. 3.7 The (generalized) minimum action curves for two of these cases: (a) a limit cycle, (b) a
closed chain of flowlines
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3.4.4.3 Non-Contracting State Space

The examples of Sects. 3.4.1 and 3.4.2 had in common that the state space was
contracting in the sense that there exists a bounded region which every flowline
eventually leads into as t ! 1. This last example, a constant vector field b.x/ W	
b0 ¤ 0 illustrated in Fig. 3.6c, discusses what can happen if that is not the case.

For reasons similar to the ones in the previous two examples we fail to find even
a single admissible manifold, and so we cannot apply Proposition 3.23. However,
at least in the simple case of the geometric action for an SDE with non-vanishing
constant drift and with additive noise it is not difficult to adjust the technique of this
paper and to show that every point has strong local minimizers: At the beginning
of Sect. 6.4 we will show how in this case one can effectively use the non-compact
admissible manifold M D fb0g?.

It may be possible to extend the results of this paper to cover also cases like this
one in more generality: One could drop the assumption that admissible manifolds
need to be compact and instead list all the entities that need to be bounded on them.
This however is beyond the scope of this monograph.

3.4.5 Modifying the Natural Drift

If a limit cycle of some obtained drift b intersects the set DSC of non-degenerate
points, so that traversing it comes at the cost of a positive action, then it no longer
provides a way to construct arbitrarily long curves with arbitrarily small action,
and so it should no longer pose a problem for our existence theory. The following
example will show how Lemma 2.17, which allows us to modify the drift on a closed
subset of DSC, may be useful in such situations.

Example 3.33 Consider again the case of the killed diffusion process with absorp-
tion rate r.x/ described in Example 2.22, and suppose that the natural drift vector
field b defined in Lemma 2.15 has a flowline diagram as illustrated in Fig. 3.8a, with
a limit cycle that intersects the set DSC D fx 2 D j r.x/ > 0g.

As is, this drift would lead to the problems described in Sect. 3.4.4.1. However,
by smoothly adding a small downwards-directed component to b on a closed subset
of DSC, we can construct a new vector field Qb that according to Lemma 2.17 is still
a drift of our geometric action, and whose flowline diagram shown in Fig. 3.8b no
longer has a limit cycle. We can then proceed as in Sect. 3.4.1 and apply our criteria
to the modified drift Qb to show that every point in D has local minimizers.

As another example, if the natural drift b is as in Fig. 3.9a, i.e., if the drift outside
of the limit cycle flows outwards, then it can be modified as illustrated in Fig. 3.9b,
and again all points in D can be shown to have local minimizers, as in our previous
examples. ut
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Fig. 3.8 An example illustrating the use of Lemma 2.17 to remove a limit cycle that intersects the
set DSC: (a) the natural drift, (b) the adjusted drift with the limit cycle removed

Fig. 3.9 Another example illustrating the use of Lemma 2.17, here with the drift outside of the
limit cycle flowing outwards: (a) the natural drift, (b) the adjusted drift with the limit cycle removed

3.5 A Top-Level Theorem

Throughout Chap. 3 we have followed a bottom-up approach: Proposition 3.8 in
Sect. 3.1, which was proven using a lower semi-continuity argument, required
the existence of a minimizing sequence with uniformly bounded curve lengths.
Theorem 3.11 in Sect. 3.2 then replaced this condition by the requirement that all
relevant points in QD have local minimizers. Finally, this theorem was made useful in
practice with the help of Propositions 3.16, 3.23, and 3.25 in Sect. 3.3, which allow
us to easily check the rather abstract definition of points with local minimizers, by
looking for adequate admissible manifolds. In the various examples in Sect. 3.4 it
was then demonstrated how these criteria can be successfully applied if only the
flowline diagram of a drift b of G is well-understood.
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We will now top off this chain of results by a theorem that—for all drift vector
fields b of a certain form—can replace Propositions 3.16, 3.23, and 3.25. Its proof
works by constructing the admissible manifolds for us and then applying these three
propositions.

Theorem 3.34 Let S 2 G , let b be a drift of S, and suppose that b can be written
in the form b D �rV C v? for some potential V 2 C2.D;R/ and some vector field
v? 2 C1.D;Rn/ such that hrV; v?i 	 0 on D and that v? D 0 wherever rV D 0.
Further assume that for 8x 2 D with b.x/ D 0, all the eigenvalues of rb.x/ have
non-zero real part.

Then for 8v 2 R, each connected component of V�1.fvg/ that is compact
consists only of points that have local minimizers. In particular, if V has compact
level sets then every point in D has local minimizers.

The points x in question have in fact strong (as opposed to only weak) local
minimizers

(i) in the case b.x/ ¤ 0 under no additional conditions, and
(ii) the case b.x/ D 0 if the conditions (3.8)–(3.9) are fulfilled, and for saddle

points x of b if in addition the state space is two-dimensional (i.e., D � R
2).

Proof First note that the assumptions on b and V imply that jbj2 D jrVj2 C jv?j2,
and thus also that 8x 2 DW �b.x/ D 0 , rV.x/ D 0

�
.

Now let v 2 R, let M be a compact connected component of V�1.fvg/, and let
x 2 M. We want to show that x has local minimizers.

To do so, first let " > 0 be so small that NB".M/ � D and that NB".M/ does not
overlap with any other connected component of V�1.fvg/. Since the assumption on
the eigenvalues implies that the roots of b are isolated points, there are only finitely
many of them in the compact set NB".M/, and so we can further decrease " > 0 so
much that the only roots of b (and thus of rV) in NB".M/ are the ones contained
in M. Finally, since v is not in the compact set V.@B".M//, there 9v�; vC 2 R with
v� < v < vC such that

Œv�; vC� \ V.@B".M// D ¿: (3.11)

Case 1: b.x/ ¤ 0, and thus rV.x/ ¤ 0. If in fact rV ¤ 0 on all of M then M is
an admissible manifold by Lemma 3.20, and so we can apply Proposition 3.23
directly to show that x has local minimizers. If however rV.Qx/ D 0 for some
point Qx 2 M nfxg then M is not an admissible manifold, and we will have to work
with a different nearby level set of V , which we will choose as follows.

First, since V.x/ D v 2 .v�; vC/, there 9t0 > 0 so small that V. .x; Œ0; t0�// �
Œv�; vC�, which by (3.11) implies that  .x; Œ0; t0�/ \ @B".M/ D ¿ and in
particular Ox WD  .x; t0/ 2 B".M/. Setting Ov WD V.Ox/ 2 Œv�; vC� and denoting
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by M0 the connected component of V�1.f Ovg/ containing Ox, again by (3.11) M0 is
contained in NB".M/ and therefore compact. Furthermore, since

d
dt V. .x; t// D hrV; bij .x;t/ D hrV;�rV C v?ij .x;t/

D �jrV. .x; t//j2 < 0 (3.12)

for 8t 2 R, we have Ov ¤ v and thus M0 \ M D ¿, and so M0 does not contain
any roots of rV . By Lemma 3.20 we therefore find that M0 is an admissible
manifold, and so since Ox 2 M0, x D  .Ox;�t/ has strong local minimizers by
Proposition 3.23.

Case 2: b.x/ D 0. If x is an attractor or a repellor of b then x has local minimizers
by Proposition 3.25 (i), and so it only remains to consider the case in which
x is a saddle point of b. To define the admissible manifolds necessary for
Proposition 3.25 (ii), consider the two compact sets

M1 WD V�1.fv�g/\ NB".M/ and M2 WD V�1.fvCg/\ NB".M/;

which are disjoint from M and thus (by our choice of ") do not contain any
roots of rV . Since by (3.12) M1 and M2 are actually contained in B".M/,
their connected components are in fact connected components of V�1.fv�g/ and
V�1.fvCg/, respectively, and so by Lemma 3.20 these components are admissible
manifolds. Since compact sets can only have finitely many connected compo-
nents, we conclude that M1 and M2 are the unions of finitely many admissible
manifolds, and so we are allowed to use these sets for the condition (3.10).
To check that (3.10) holds, let now Nx 2 Ms n fxg, i.e., limt!1  .Nx; t/ D x and
Nx ¤ x.
If  .Nx; .�1; 0�/ were contained in the compact set NB".M/ then V would remain
bounded on  .Nx; .�1; 0�/. Equation (3.12) (with x replaced by Nx) would then
imply the existence of the finite limit

v0 WD lim
t!�1 V. .Nx; t// > lim

t!1 V. .Nx; t// D V.x/ D v;

and furthermore that lim inft!�1 jrV. .Nx; t//j D 0, so that there would have
to be a point x0 2 NB".M/ in the limit set of the flowline  .Nx; .�1; 0�/ with
rV.x0/ D 0 and V.x0/ D v0 ¤ v (and thus x0 … M). But this contradicts the fact
that the only roots of rV in NB".M/ are in M.
Therefore, as t ! �1 the flowline containing Nx must exit NB".M/ at some time
t0 < 0, which by (3.12) fulfills V. .Nx; t0// > v, and thus by (3.11)

V. .Nx; t0// > vC > v D V.x/ D lim
t!1 V. .Nx; t//:
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This in turn implies that for some t00 2 .t0;1/ we have V. .Nx; t00// D vC and
by (3.12) in fact V

�
 .Nx; Œt00;1�/

� D Œv; vC�. Since limt!1  .Nx; t/ D x 2 M,
(3.11) now implies that  .Nx; Œt00;1�/ � B".M/, i.e., Ox WD  .Nx; t00/ 2 M2, and
thus Nx D  .x;�t00/ 2  .M2;R/.
Since Nx 2 Ms n fxg was arbitrary, we have proven that Ms n fxg �  .M2;R/,
and analogously one can show that Mu n fxg �  .M1;R/. This concludes the
proof of the condition (3.10), and so x has local minimizers. The additional
conditions in this theorem for roots of b having strong as opposed to only weak
local minimizers are the ones found in Proposition 3.25.

Finally, suppose that V has compact level sets, and let x 2 D. Then for v WD V.x/
the connected component of V�1.fvg/ containing x is compact as well, and by what
was proven above this component consists only of points with local minimizers.
Therefore, x has local minimizers. ut



Chapter 4
Properties of Minimum Action Curves

Abstract In this chapter we study the properties of minimum action curves, often
focusing on a specific subclass of actions. First we show which points minimizing
curves can pass “in infinite length.” Then we find for a certain type of Hamiltonian
actions that the action of the drift vector field’s flowlines vanishes, and that bending
curves into the direction of the drift reduces their action. As a consequence, we
then prove the non-existence of minimizers in some situations, and we show that
minimizers leading from one attractor of the drift to another have to pass a saddle
point on the separatrix between the two basins of attraction.

Let us begin by defining the subclass H C
0 � H0 of geometric actions to which

most results in this chapter apply. Observe that this class includes the large deviation
geometric actions in Example 2.19.

Definition 4.1 We define H C
0 � H0 as the class of all Hamiltonian geometric

actions that are induced by a Hamiltonian H that fulfills the Assumptions (H1’),
(H3), and the following stronger smoothness assumption:

(H2’) The derivatives Hx, H� , Hx� D .H�x/
T , H�� , and Hx�� exist and are

continuous in .x; �/.

Note that for S 2 H C
0 we cannot guarantee that every Hamiltonian that induces S

will fulfill (H2’). Also recall that by Lemma 2.13 (i), for these actions a point x 2 QD
is critical if and only if the natural drift at that point vanishes, i.e., if H� .x; 0/ D 0.

The goal of this chapter is to study some properties of geometric actions and their
minimizers. The following is a summary of our main results.

For general geometric actions S 2 G we will show that

• the only points that a curve � 2 Q� with S.�/ < 1 can pass in infinite length are
those at which every drift of S vanishes.

For actions S 2 H C
0 with a corresponding natural drift b we will prove the

following (for simplicity summarized for the case QD D D):

• If L is a limit cycle of b and if A1 � DnL then the minimization problem P.A1;L/
does not have a solution. We give a quantitative explanation why curves rather
like to approach L by circling around infinitely in the direction of the flow.

© Springer International Publishing Switzerland 2015
M. Heymann, Minimum Action Curves in Degenerate Finsler Metrics,
Lecture Notes in Mathematics 2134, DOI 10.1007/978-3-319-17753-3_4
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• Points on limit cycles of b do not have local minimizers.
• Minimum action curves leading from one attractor of b to another reach and leave

the separatrix between the two basins of attraction at critical points (see Fig. 4.2).

4.1 Points that Are Passed in Infinite Length

To prepare for Corollary 4.5, we need to understand which points can be passed in
infinite length without accumulating infinite action. Here we find that such points
must be roots of any drift b. A refined statement that relates the length of a curve to
its action will be given by Lemma 6.13 in Part II.

Lemma 4.2 Let S 2 G , let � 2 Q� with S.�/ < 1, and let x be a point on � that is
passed in infinite length. Then for every drift b of S we have b.x/ D 0.

Proof Suppose that b0 WD b.x/ ¤ 0. Let " > 0 be so small that NB".x/ � D,

c WD min
w2NB".x/

jb.w/j > 0 and min
w2NB".x/

˝Ob0;bb.w/˛ � 1
2
;

where we use the notation Ov WD v
jvj for 8v 2 R

n n f0g, and let c2 WD c2. NB".x// be
the constant associated to b by Definition 2.7. In order to obtain a contradiction by
showing that S.�/ D 1, it suffices to pass on to a small segment of � around x. We
can therefore consider the case � 2 Q� .x/, and we may assume that � � NB".x/.

Let ' 2 QC.x/ be a parameterization of � , and define for 8a 2 .0; 1
2
/ the sets

Ia WD Œ0; 1
2

� a� [ Œ 1
2

C a; 1� and I�
a WD f˛ 2 Ia j ' 0.˛/ ¤ 0g and the number

La WD R
Ia

j' 0j d˛. Then

Z
I�
a

j' 0jˇ̌bb.'/ � b' 0ˇ̌ d˛ �
Z

I�
a

j' 0j˝Ob0;bb.'/� b' 0˛ d˛ �
Z

Ia

�
1
2
j' 0j � ˝Ob0; ' 0˛� d˛

D 1
2
La � ˝Ob0; �'.12 � a/� '.0/

�C �
'.1/� '.1

2
C a/

�˛
� 1

2
La � 4";

which is positive for sufficiently small a since lima&0 La D length.�/ D 1.
By (2.6) and the Cauchy-Schwarz inequality this implies that

S.�/ �
Z

I�

a

`.'; ' 0/ d˛ � c2

Z
I�

a

�jb.'/jj' 0j � ˝
b.'/; ' 0˛� d˛

D c2
2

Z
I�
a

jb.'/jj' 0jˇ̌bb.'/� b' 0ˇ̌2 d˛ � c2c

2

Z
I�
a

j' 0jˇ̌bb.'/� b' 0ˇ̌2 d˛
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� c2c

2
�
� R

I�

a
j' 0jˇ̌bb.'/ � b' 0ˇ̌ d˛

�2
R

I�
a

j' 0j d˛
� c2c

�
1
2
La � 4"�2
2La

;

and letting a & 0 shows that S.�/ D 1. ut

4.2 The Advantage of Going with the Flow

The next lemma says that the drift b is the only candidate for a direction into which
one can move at no cost, and that for actions S 2 H0 one can indeed follow the
natural drift flowlines at no cost. Note that the latter is obvious for the geometric
action given by (1.7).

Lemma 4.3 (i) Let S 2 G , let b be a drift of S, and let x 2 D and y 2 R
n n f0g. If

`.x; y/ D 0 then either b.x/ D 0 or y D cb.x/ for some c > 0.
(ii) Let S 2 H0, let b be a natural drift, and let x 2 D and y 2 R

n. If b.x/ D 0 or
y D cb.x/ for some c � 0 then `.x; y/ D 0.

(iii) If S 2 H0 and � 2 Q� is a flowline of a natural drift then S.�/ D 0.

Proof (i) If `.x; y/ D 0 then (2.6) implies that either b.x/ D 0 or y D cb.x/ for
some c � 0. Since y ¤ 0, we must have c > 0.

(ii) If 0 D b.x/ D H� .x; 0/ then x is a critical point by Lemma 2.13 (i), so that
`.x; y/ D 0 for 8y 2 R

n. If b.x/ ¤ 0 and y D cb.x/ D cH� .x; 0/ for some
c > 0 then .#; 
/ D .0; 1c / solves (2.11), so that #.x; y/ D 0 and thus `.x; y/ D
h#.x; y/; yi D 0 by (2.12). If c D 0 then y D 0, and so we have `.x; y/ D 0

again.
(iii) Given any parameterization ' 2 QC.0; 1/ of � , we have ' 0 D cb.'/ a.e. on Œ0; 1�

for some function c.˛/ � 0, and so part (ii) implies that `.'; ' 0/ D 0 a.e. on
Œ0; 1�, i.e., S.�/ D 0. ut

For the rest of Chap. 4, let us now assume that S 2 H C
0 . The next lemma

says that if the end of a given curve does not follow the natural drift flowlines
(condition (4.1)), so that its action is positive by Lemma 4.3 (i), then one can reduce
its action by bending it slightly into the direction of the drift, as defined in (4.2) and
illustrated in Fig. 4.1a.

The fact that this works is less obvious than it may seem at first: While the
sheared curve moves into a less costly direction, it may also be longer, and so a
precise calculation is necessary to show that the benefits from the change in direction
outweigh the additional costs from its potential increase in length.

Lemma 4.4 Let S 2 H C
0 , and let b be a natural drift of S obtained from a

Hamiltonian that fulfills the Assumption (H2’). Let � 2 � , let x be its end point,
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Fig. 4.1 (a) Illustration of Lemma 4.4: For S 2 H C

0 , bending a curve slightly into the direction
of the natural drift decreases its action. (b) Illustration of the proof of Corollary 4.5: If the curve
�? D �1 C �2 ended in a point with non-zero drift then it could not be a solution of P.A1;A2/
since �1 C �" C N�" has a smaller action

and let ' 2 NC.0; 1/ be its arclength parameterization. Suppose that b.x/ ¤ 0, and
that

9� > 0 9arbitrarily large ˛ 2 Œ0; 1/W '.˛/ …  �x; .��; 0��: (4.1)

Then for sufficiently large ˛0 2 Œ0; 1/ the family of curves �" 2 � given by

'".˛/ WD
(
'.˛/ if ˛ 2 Œ0; ˛0�;
'.˛/C ".˛ � ˛0/b.'.˛// if ˛ 2 Œ˛0; 1�;

(4.2)

defined for small " � 0, fulfills @"S.�"/j"D0 < 0.

Proof See Appendix A.9. ut

4.3 Some Results on the Non-Existence of Minimizers

Lemma 4.4 has some interesting consequences. The first one is that if A2 � QDı and
if A2 is flow-invariant under the natural drift then any solution of P.A1;A2/must first
reach A2 at a critical point, since otherwise we could use Lemma 4.4 to construct a
curve with a lower action, as illustrated in Fig. 4.1b. In particular, this implies that
if such a set A2 does not contain any critical points then no minimizer can exist.
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Corollary 4.5 Let S 2 H C
0 , let A1 � QD, let A2 � QD n A1 be closed in D, and

suppose that the minimization problem P.A1;A2/ has a weak solution �? 2 Q� A2
A1

.

Denoting by Ox its first hitting point of A2, let us also assume that Ox 2 QDı and that
the flow  of some natural drift b of S fulfills

 
�Ox; .��; �/� � A2 for some � > 0. (4.3)

(In particular, these conditions on Ox are fulfilled if A2 � QDı and if A2 is flow-
invariant under b.) Then Ox is a critical point.

Proof We may assume that Ox is the end point of �? (otherwise we may instead
consider the minimizer obtained by cutting off the segment after Ox). Also, because
of Remark 2.16, (4.3) is in fact fulfilled for the flow of any natural drift of S,
and thus we may assume that b is constructed from a Hamiltonian that fulfills
Assumption (H2’).

Suppose that b.Ox/ ¤ 0. Then since S.�?/ < 1 by Remark 3.3, Lemma 4.2 says
that �? cannot pass Ox in infinite length, and thus we can write �? D �1 C �2, where
�2 is a rectifiable curve ending in Ox such that �2 � QDı and length.�2/ > 0. Now
consider the family of curves �" constructed from � D �2 as in Lemma 4.4. The
condition (4.1) is fulfilled since �2 does not visit  .Ox; .��; 0�/ � A2 prior to Ox, and
so we have @"S.�"/j"D0 < 0, which implies that S.�"/ � S.�2/ � c" for some c > 0
and all sufficiently small " � 0. Now defining x" WD  .Ox; ".1�˛0//, which by (4.3)
is in A2 for " 2 Œ0; �/, we have

x" D  .Ox; 0/C ".1 � ˛0/ P .Ox; 0/C o."/

D Ox C ".1� ˛0/b.Ox/C o."/

D '".1/C o."/;

i.e., the straight line N�" from '".1/ (that is the end point of �") to x" 2 A2 has a length
and thus by Lemma 2.5 (ii) also an action of the order o."/. Finally, for sufficiently
small " > 0 we have �"; N�" � QDı and thus Q�? WD �1C�"C N�" 2 Q� A2

A1
, and the above

estimates show that

S. Q�?/ D S.�1/C S.�"/C S. N�"/ � S.�1/C S.�2/ � c"C o."/

D S.�?/ � c"C o."/ < S.�?/

for small " > 0, contradicting the minimizing property of �?. ut
Applying Corollary 4.5 to two specific examples of flow-invariant sets A2,

namely the limit cycle and the closed chain of flowlines shown in Fig. 3.6a,b, will
now easily lead us to the results that were promised to us in Sect. 3.4.4. We begin
with the case of a limit cycle.
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Proposition 4.6 (Non-Existence of Minimizers) Let S 2 H C
0 , let b be a natural

drift, and let L � QDı be a limit cycle of b, i.e.,

9x 2 L 9T > 0W b.x/ ¤ 0; L D  .x; Œ0;T// and  .x;T/ D x:

(i) If A1 � QD n L and A2 � L then the minimization problem P.A1;A2/ does not
have any solutions.

(ii) Points x 2 L do not have local minimizers.

Proof (i) First suppose that A2 D L. If P.A1;L/ had a solution �? then according
to Corollary 4.5 its first hitting point of L would be a critical point. But there
are no critical points on L, so P.A1;L/ cannot have a solution.

Now let A2 � L, and suppose that P.A1;A2/ had a solution �?. Then we
obtain a contradiction by showing that �? is also a solution of P.A1;L/, which
was just proven not to exist. Indeed, if there were a curve �1 2 Q� L

A1
with S.�1/ <

S.�?/ then the curve �2 2 Q� A2
A1

, constructed by attaching to �1 a piece of L
leading from the end point of �1 to some point on A2 in the direction of the
flow, would by Lemma 4.3 (iii) have the same action, S.�2/ D S.�1/ < S.�?/,
contradicting the minimizing property of �?.

(ii) Suppose that some point x 2 L had weak local minimizers. Then there would
be an r > 0 such that NBr.x/ � QD and that for 8x1; x2 2 NBr.x/ the minimization
problem P.x1; x2/ has a weak solution �?. In particular, we could choose x1 2
NBr.x/ n L and x2 WD x 2 L. But part (i) says that for this choice P.x1; x2/ does
not have a solution. ut

Remark 4.7 The proof of Proposition 4.6 (i) via Lemma 4.4, which argues that
every curve leading to L can be improved by bending its end into the natural drift
direction, indicates why curves like to approach L by circling around infinitely in the
direction of the flow (see Fig. 3.7a). Using the tools of this monograph, one could
now prove the existence of a “minimizing spiral;” this is left as an exercise to the
reader.

Applying Corollary 4.5 to the closed chain of flowlines in Fig. 3.6b as our choice
of A2 gives us two insights: First, if a solution of P.A1;A2/ exists (which at present
we cannot guarantee) then it would have to reach A2 in one of the four critical points.

Second, we find out why our techniques are insufficient to prove that the non-
critical points on the chain of flowlines have local minimizers: The proofs of these
criteria work by actually showing the stronger property in Remark 3.10 (ii), which
in this example does not hold for actions S 2 H C

0 .
Note that this does not imply that the points on the chain of flowlines do not have

local minimizers. This question will remain unanswered at present.

Lemma 4.8 Let S 2 H C
0 , and suppose that the natural drift flowlines are as in

Fig. 3.6b. Let A2 be the set consisting of the four flowlines connecting the critical
points (including their end points), and suppose that A2 � QDı.
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(i) If A1 � QD n A2 then any solution of P.A1;A2/ (if it exists) has to reach A2 at a
critical point.

(ii) The non-critical points in A2 do not fulfill the property in Remark 3.10 (ii).

Proof (i) This is a direct consequence of Corollary 4.5, since A2 is flow-invariant.
(ii) Let b be a natural drift of S, let x 2 A2 with b.x/ ¤ 0, and let � > 0 be so small

that NB�.x/ does not contain any critical point. If the property in Remark 3.10 (ii)
were true then there would be an r 2 .0;

�

2
� such that NBr.x/ � QD and that

for 8x1; x2 2 NBr.x/, P.x1; x2/ has a solution �? with length.�?/ � � and
thus �? � NBrC�=2.x/ � NB�.x/. In particular, we can pick x1 2 NBr.x/ n A2 and
x2 WD x 2 A2. As in the proof of Proposition 4.6 (i) we could then show that the
corresponding solution �? of P.x1; x2/ is also a solution of P.x1;A2/, and by
Corollary 4.5 �? would first hit A2 at a critical point. But this is not possible
since �? � NB�.x/, and since by construction NB�.x/ does not contain any critical
points. ut

4.4 How to Move from One Attractor to Another

Still assuming that S 2 H C
0 and that b is a corresponding natural drift, as another

consequence of Corollary 4.5 we will now learn how minimum action curves cross
the separatrix between two basins of attraction as they move from one attractor of b
to another; see Fig. 4.2 for an illustration.

As long as the set QD is not too restrictive, it seems intuitive that the point at
which the minimum action curve leaves the separatrix and enters the second basin
of attraction should have zero drift, since this allows the curve to follow a flowline
of b all the way to the second attractor at no cost.

Fig. 4.2 Minimum action curves reach and leave the separatrix between two basins of attraction
at critical points. However, the first and last hitting points do not need to coincide, as illustrated in
this example with an additional equilibrium point on the separatrix
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It is however less obvious that also the first hitting point of the separatrix must
have zero drift. Consider for example the geometric action given by (1.7), where
the flowline diagram of b is as in Figs. 1.1 or 4.2, and where jbj is very small along
a channel that leads from the first attractor to a point on the separatrix far away
from any critical point. Curves can then follow that channel at very little cost, and it
seems unclear at first whether it would then indeed be advantageous to go the long
way towards a critical point in order to cross the separatrix. Corollary 4.5 will help
us to show that this is indeed the case.

These two observations are the content of Proposition 4.9. Note that in contrast
to Proposition 3.25, this theorem does not make any assumptions on the eigenvalues
of rb at the attractors or at the saddle point.

We want to point out that besides the actual result itself, one of the main
takeaways here is how easily the statement of Proposition 4.9 can be formulated in
our geometrical framework, whereas merely trying to state this geometrical result
using the time-dependent parameterization is difficult and appears unnatural (recall
our remarks in Sect. 1.2).

Proposition 4.9 Let S 2 H C
0 , let b be a natural drift, let x1; x2 2 D be two distinct

attractors of b, let the open sets B1;B2 � D denote their basins of attraction, let
X WD @B1 \ @B2 \ D denote their separatrix, and assume that X [ B2 � QDı. Let
A1;A2 � QD be such that A1 � B1 and x2 2 A2 � B2.

If the minimization problem P.A1;A2/ has a weak solution �? � B1 [ B2 [ X
then its first and its last hitting point of X are critical points.

Proof Let us denote the first and the last hitting points of X by z1 WD '?.˛1/ and
z2 WD '?.˛2/, where '? 2 QC.0; 1/ is a parameterization of �? 2 Q� A2

A1
and

˛1 WD min
˚
˛ 2 Œ0; 1� ˇ̌'?.˛/ 2 X

� 2 .0; 1/;
˛2 WD max

˚
˛ 2 Œ0; 1� ˇ̌ '?.˛/ 2 X

� 2 .0; 1/:

First hitting point: X is closed in D by definition, we have X � QDı by assumption,
and X D NB1\ NB2\D is flow-invariant since NB1\D and NB2\D are. Therefore, to
conclude that z1 is a critical point, it is by Corollary 4.5 enough to show that the
curve given by '?jŒ0;˛1� is a weak solution of the minimization problem P.A1;X/.
To do so, assume that there were a curve �1 2 Q� X

A1
with S.�1/ < S.'?jŒ0;˛1�/ �

S.�?/. One could then obtain a contradiction by constructing a curve in Q� A2
A1

with an action less than S.�?/, as follows: First follow �1 from A1 to X, then
move from the endpoint of �1 into B2 along a line segment �2 so short that
S.�1/C S.�2/ < S.�?/ (using Assumption ( QD) and Lemma 2.5 (ii)), and finally
follow the drift b into x2 2 A2 at no additional cost (using Lemma 4.3 (iii)).

Last hitting point: First we claim that s WD S.'?jŒ˛2;1�/ D 0. Indeed, if s
were positive then in contradiction to the minimizing property of �? we could
construct a curve in Q� A2

A1
with an action less than S.�?/, as follows: First move

along the curve segment given by '?jŒ0;˛2Cı�, where ı > 0 is chosen so small that
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S.'?jŒ˛2;˛2Cı�/ < s and thus S.'?jŒ0;˛2Cı�/ < S.�?/; since '?.˛2 C ı/ 2 B2 by
definition of ˛2, we can then follow the drift from '?.˛2 C ı/ into x2 2 A2 at no
additional cost.

This shows that s D 0, and we can conclude that `.'?; '?0/ D 0 a.e. on
Œ˛2; 1�. Now if we had b.z2/ ¤ 0 and thus b.'?/ ¤ 0 on some interval Œ˛2; Q̨ �,
Q̨ > ˛2, then Lemma 4.3 (i) would imply that '?0 D cb.'?/ a.e. on Œ˛2; Q̨ � for
some function c.˛/ � 0, i.e., '? follows a flowline of b on this interval. Since
'?. Q̨ / 2 B2 and b.'?/ ¤ 0 on Œ˛2; Q̨ �, we would thus obtain the contradiction
z2 D '?.˛2/ 2 B2 � D n X.

ut



Chapter 5
Conclusions

Abstract In this chapter we look back and summarize our main results, and we
discuss some open problems.

5.1 Recapitulation

We have defined the class G of geometric action functionals on the space � of
rectifiable curves (in fact on a larger space Q� that contains also infinitely long
curves), and we have shown that the Hamiltonian geometric actions that arose in
[9, 10] in the context of large deviation theory belong to G . We have extended
the notion of a drift vector field b from the large deviation geometric action of an
SDE (1.3) to general actions S 2 G , such that any curve with vanishing action must
be a flowline of b.

We have developed conditions under which there exists a curve �? with

S.�?/ D inf
�2� A2

A1

S.�/;

i.e., a solution to the problem of minimizing some given action S 2 G over all curves
� leading from the set A1 to the set A2. The curve �? is called a strong solution if
it has finite length, and it is called a weak solution if it passes certain critical points
in infinite length. Using a compactness argument, we have reduced this existence
problem to a local property (“a point x has local minimizers”), and we have listed
several criteria (whose proofs are the content of Part II) with which one can check
this property for a given point x, provided that the flowline diagram of an underlying
drift is well-understood.

We have then demonstrated in various examples how these criteria are oftentimes
sufficient to show that every point in the state space has local minimizers. We have
also included some examples in which our criteria are insufficient, and we have
obtained some results that explain why; in particular, in one example we have proven
that no minimizer �? exists. Finally, we have proven a top-level theorem stating that
for generalized drifts of the form b D �rV C v? with an appropriate potential V ,
every point in the state space has local minimizers.
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68 5 Conclusions

We have then shown various properties of geometric actions and their minimiz-
ers. Our main result here was that for certain actions, minimum action curves leading
from one attractor of the drift to another reach and leave the separatrix between the
two basins of attraction at a point with zero drift.

5.2 Open Problems

An important open question is whether the criterion for strong local minimizers in
Proposition 3.25 (ii) can be extended to dimensions n � 3. The author believes
that this is indeed the case, but that the proof would require a modification of
our technique: While it would certainly suffice to extend Lemma 6.15 (vi)–(vii)
correspondingly, this appears to be very hard, and Lemma 6.15 (vi) may actually be
false in higher dimensions. One possible alternative approach could be to omit the
line (6.48) in the proof of Proposition 3.25 and instead use a generalized version of
Lemma 6.13 that directly applies to our function F; in this way one would need to
control the gradients rfi only where F D fi.

Another interesting open question is the following: For the drift b in Fig. 3.7a the
tools provided in this monograph make it relatively easy to prove the existence of
a “minimizing spiral” leading from the attractor to the limit cycle. For the drift in
Fig. 3.7b a minimizer will exist, too; however, it is not clear whether this minimizer
will again be a spiral, or a curve � 2 Q� that ends in one of the saddle points
instead. In order to answer this question, one will need to develop new ideas to
decide whether the points on the chain of flowlines have local minimizers.
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Proofs



Chapter 6
Proofs for Sect. 3.3: Finding Points with Local
Minimizers

Abstract This chapter contains the proofs of our three criteria—Propositions 3.16,
3.23, and 3.25—for showing that a given point has local minimizers. In the process
we develop some valuable tools for working with admissible manifolds, and we
prove a powerful inequality that bounds the length of a curve above by its action.

6.1 Proof of Proposition 3.16

The key to the proof of Proposition 3.16 is that the condition 8y 2 R
n n f0gW

`.x; y/ > 0 implies that we can locally estimate jyj � 1
�
`.x; y/ for some � > 0,

which in turn will provide us with a quick way to locally bound the length of
a curve by its action. Since minimizing sequences have bounded actions, their
lengths must therefore be bounded near the given point x as well, and we can apply
Proposition 3.8.

Proof (Proposition 3.16) We will prove the stronger condition of Remark 3.10 (ii).
Let � > 0 be given. Since minjyjD1 `.x; y/ > 0, there exists an " > 0 such that
NB".x/ � D and

� WD min
w2NB".x/jyjD1

`.w; y/ > 0:

Using Definition 2.4 (i), this implies that

8w 2 NB".x/ 8y ¤ 0W `.w; y/ D jyj`�w; y
jyj
� � �jyj; (6.1)

and for y D 0 this relation is trivial. Let c1 D c1. NB".x// > 0 be the constant given by
Lemma 2.5 (ii), let � WD min

˚
";

�"

5c1
;
��

2c1

�
, and finally use Assumption ( QD) to choose

r 2 .0; 1
2
"� so small that for 8w 2 NBr.x/ \ QD 9� 2 � w

x : length.�/ � �.
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72 6 Proofs for Sect. 3.3: Finding Points with Local Minimizers

Now let x1; x2 2 NBr.x/\ QD. For i D 1; 2 let N� i 2 � xi
x with length. N� i/ � � and thus

in particular N� i � NB�.x/ � NB".x/, and let N� WD � N�1 C N�2 2 � x2
x1

. Since N� � NB".x/,
we can use Lemma 2.5 (ii) to find that

inf
�2� x2

x1

S.�/ � S. N�/ � c1 length. N�/ � 2c1�: (6.2)

Next, let .'n/n2N � NCx2
x1 .0; 1/ be a parameterization of a minimizing sequence

.�n/n2N of P.x1; x2/. We claim that

9n0 2 N 8n � n0W �n � NB".x/: (6.3)

Indeed, if this were not the case then we could find a subsequence .'nk/k2N such that
8k 2 N 9˛ 2 Œ0; 1�W j'nk.˛/ � xj D ". Letting

˛k WD min
˚
˛ 2 Œ0; 1� ˇ̌ j'nk.˛/ � xj � "

� 2 .0; 1/

and applying (6.1), we would then have

S.�nk/ �
Z ˛k

0

`.'nk ; '
0
nk
/ d˛

� �

Z ˛k

0

j' 0
nk

j d˛

� �

ˇ̌
ˇ̌ Z ˛k

0

' 0
nk

d˛

ˇ̌
ˇ̌

D �j'nk.˛k/� 'nk.0/j
D �

ˇ̌�
'nk.˛k/� x

�C .x � x1/
ˇ̌

� �
�j'nk.˛k/� xj � jx � x1j

�
� �." � r/ � 1

2
�": (6.4)

Taking the limit k ! 1, using that .�n/n2N is a minimizing sequence of P.x1; x2/,
and finally using (6.2), we would thus find that

1
2
�" � inf

�2� x2
x1

S.�/ � 2c1�;

which contradicts our definition of �. This proves (6.3), which allows us for 8n � n0
to apply (6.1) on the entire curve �n, and so we find that we have

S.�n/ D
Z 1

0

`.'n; '
0
n/ d˛ � �

Z 1

0

j' 0
nj d˛ D � length.�n/ (6.5)
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for 8n � n0, and thus

sup
n�n0

length.�n/ � 1

�
sup
n�n0

S.�n/ < 1:

We can now apply Proposition 3.8 and conclude that the problem P.x1; x2/ has a
strong minimizer �? 2 � x2

x1 fulfilling

length.�?/ � lim inf
n!1 length.�n/ � 1

�
lim inf
n!1 S.�n/ D 1

�
inf

�2� x2
x1

S.�/� 2c1�

�
� �;

where we used (6.5), the minimizing property of .�n/n2N, (6.2), and the definition
of �. ut

6.2 Proof of Lemma 3.22

To prepare for the proof of Lemma 3.22, we first need to collect some properties of
the functions fs and fu of Definition 3.21.

Lemma 6.1 The functions fs and fu of Definition 3.21 are finite-valued and
continuous. Furthermore,

(i) fs 2 C1.Bs n fxg/ and fu 2 C1.Bu n fxg/;
(ii) 8w 2 Bs n fxgW hrfs.w/; b.w/i D � jb.w/j; (6.6a)

8w 2 Bu n fxgW hrfu.w/; b.w/i D jb.w/jI (6.6b)

(iii) 8w 2 BsW fs.w/ � jw � xj; (6.7a)

8w 2 BuW fu.w/ � jw � xjI (6.7b)

(iv) 8compact K � Bs 9c5 � 1 8w 2 KW fs.w/� c5jw � xj; (6.8a)

8compact K � Bu 9c5 � 1 8w 2 KW fu.w/� c5jw � xj: (6.8b)

Proof See Appendix B.1. ut
Proof (Lemma 3.22) Let us assume first that x is an unstable equilibrium point. Let
a > 0 be so small that NB2a.x/ � Bu, abbreviate M WD Ma

u D f �1
u .fag/, and define

fM.w/ WD
(

minf fu.w/ � a; ag if w 2 Bu,

a else.
(6.9)
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Then fM is continuous on D. Indeed, fu is continuous on Bu, and for 8w 2 Bu nB2a.x/
we have fu.w/ � jw � xj � 2a by (6.7b) and thus fM.w/ D a. It now remains to
show the properties (i)–(iv) of Definition 3.18.

(i) fM.w/ D 0 , �
w 2 Bu and fu.w/ D a

� , w 2 f �1
u .fag/ D M.

(ii) M is closed as a level set of the continuous function fM . M is bounded since
M � NBa.x/: Indeed, if w 2 M then jw � xj � fu.w/ D a by (6.7b).

(iii) Let w0 2 M, i.e., fu.w0/ D a. In particular, we must have w0 ¤ x, since
fu.x/ D 0 by definition of fu. Since Bu is open, there exists an " > 0 such that
B".w0/ � Bu n fxg, and thus fu is C1 on B".w0/ by Lemma 6.1 (i). Since fu
is continuous, we can also choose " > 0 so small that 8w 2 B".w0/W fu.w/ 2
. a
2
; 2a/, which in particular implies that fM D fu � a on B".w0/, and thus that

fM is C1 on B".w0/ as well. Since w0 2 M was arbitrary, this shows that there
exists a neighborhood of M on which fM is C1, with rfM D rfu.

(iv) Consequently, we have for 8w 2 M that hrfM.w/; b.w/i D hrfu.w/; b.w/i D
jb.w/j by (6.6b). Since M � Bu n fxg as seen in part (iii), we have for 8w 2 M
that b.w/ ¤ 0 and thus hrfM.w/; b.w/i > 0.

If x is a stable equilibrium point then the proof is carried out analogously, except
that we replace fu by fs and then multiply the definition of fM by �1. In this way,
in the proof of (iii) we will find that rfM D �rfs on M, but since in the proof
of part (iv) we will now have to use (6.6a) instead of (6.6b), we will still find that
hrfM.w/; b.w/i D �hrfs.w/; b.w/i D Cjb.w/j > 0. ut

6.3 Admissible Manifolds

In preparation for the proofs of Propositions 3.23 and 3.25, we will now collect
some properties of admissible manifolds. Before proceeding, the reader is advised
to review Definition 3.18, which we will soon use without further reference. In
particular, given an admissible manifold M, we will often denote by fM an arbitrary
function that fulfills the properties listed in Definition 3.18, and any statement about
an otherwise unspecified function fM is to be understood as valid for all functions
with these properties.

Lemma 6.2 If M is an admissible manifold then

8x 2 M 8t 2 RW sgn
�

fM. .x; t//
� D sgn.t/: (6.10)

In particular, we have  .x; t/ 2 M if and only if t D 0, which shows that admissible
manifolds cannot be crossed by the same flowline more than once.
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Proof Let x 2 M. Clearly, (6.10) holds for t D 0 by Definition 3.18 (i). Suppose
now that there were a t > 0 such that fM. .x; t// � 0. Then

T WD inf
˚
t > 0

ˇ̌
fM. .x; t// � 0

�

would be well-defined, and since

@t fM. .x; t//
ˇ̌
tD0 D ˝rfM. .x; 0//; P .x; 0/˛ D hrfM.x/; b.x/i > 0

by Definition 3.18 (iv), we would have T > 0,

fM. .x; t// > 0 for 8t 2 .0;T/ (6.11)

and w WD  .x;T/ 2 f �1
M .f0g/ D M. Since  .x; t/ D  .w; t � T/, (6.11) can be

rewritten as

fM. .w; t// > 0 for 8t 2 .�T; 0/.

But this would mean that

hrfM.w/; b.w/i D @t fM. .w; t//
ˇ̌
tD0

D lim
t&0

1
t

�
fM. .w; 0//„ ƒ‚ …

DfM.w/D0
� fM. .w;�t//„ ƒ‚ …

>0 for t2.0;T/

� � 0;

which contradicts property (iv) of Definition 3.18. Consequently, we must have
fM. .x; t// > 0 for 8t > 0, and with an analogous argument one can show that
fM. .x; t// < 0 for 8t < 0, concluding the proof of (6.10).

In particular, if a flowline crosses M at some point x then (6.10) implies that for
8t ¤ 0 we have fM. .x; t// ¤ 0 and thus  .x; t/ … M. ut
Corollary 6.3 If x 2 D lies on a limit cycle of b then there is no admissible manifold
M with x 2  .M;R/.
Proof If x 2 D lies on a limit cycle then we have  .x;T/ D x for some T > 0. If
there existed an admissible manifold M, a w 2 M and a t 2 R such that  .w; t/ D x
then we would have .w;T/ D  .x;T�t/ D  .x;�t/ D w 2 M, which contradicts
Lemma 6.2. ut

In particular, this shows that we cannot use Proposition 3.23 to prove that a given
point on a limit cycle has local minimizers. Proposition 4.6 (ii) of Sect. 4.3 explains
why this had to be the case: For actions S 2 H C

0 points on limit cycles do not have
local minimizers.

The next lemma (which is used in the proofs of Corollary 6.6 and Lemma 6.15)
allows us to deform a given admissible manifold and turn it into a new one. With
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a smart choice of the function ˇ.x/ this new manifold can have additional useful
properties.

Definition 6.4 For any ˇ 2 C1.D;R/ we denote by  ˇ 2 C1.D � R;D/ the flow
corresponding to the vector field ˇb.

Lemma 6.5 Let ˇ 2 C1.D;R/. If M is an admissible manifold and T 2 R then also
the set M0 WD  ˇ.M;T/ is an admissible manifold.

Proof We will show that the continuous function fM0.x/ WD fM. ˇ.x;�T//, x 2 D,
has the four properties of Definition 3.18.

(i) fM0.x/ D 0 , fM. ˇ.x;�T// D 0 ,  ˇ.x;�T/ 2 M ,
x 2  ˇ.M;T/ D M0.

(ii) M0 D  ˇ.M;T/ is compact as the continuous image of a compact set.
(iii) Denote by N an open neighborhood of M on which fM is C1. Then fM0 .x/ is

C1 wherever  ˇ.x;�T/ 2 N, i.e., where x 2  ˇ.N;T/ DW N0 
 M0. Since
 ˇ. � ;T/ has a continuous inverse (namely  ˇ. � ;�T/), N0 is an open neigh-
borhood of M0.

(iv) Suppose that there exists an x0 2 M0 such that hrfM0.x0/; b.x0/i � 0, and let
w WD  ˇ.x0;�T/ 2 M. The functions

ft.x/ WD fM. ˇ.x;�t//; t 2 R; x 2 D;

are C1 in .t; x/ wherever  ˇ.x;�t/ 2 N, and thus in particular where x D
 ˇ.w; t/. Therefore the function

g.t/ WD ˝rft. ˇ.w; t//; b. ˇ.w; t//
˛
; t 2 R;

is well-defined and continuous, and since f0 D fM and fT D fM0 , it fulfills

g.0/ D hrfM.w/; b.w/i > 0 and g.T/ D hrfM0.x0/; b.x0/i � 0

(the first estimate is property (iv) of the admissible manifold M). This shows
that 9t0 2 .0;T�W g.t0/ D 0, and abbreviating v WD  ˇ.w; t0/, we find that

0 D ˇ.v/g.t0/ D ˝rft0 .v/; ˇ.v/b.v/
˛ D @� ft0 . ˇ.v; �//

ˇ̌
�D0

D @� fM
�
 ˇ.v; � � t0/

�ˇ̌
�D0 D @� fM. ˇ.w; �//

ˇ̌
�D0

D ˝rfM.w/; ˇ.w/b.w/
˛ D ˇ.w/g.0/

and thus ˇ.w/ D 0. In particular, this implies that

 ˇ.w; t/ D w for 8t 2 R, (6.12)
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which enables us to compute an explicit formula for the function h.t/ WD
r ˇ.w; t/: We have h.0/ D I (since  ˇ.x; 0/ D x for 8x 2 D) and

Ph.t/ D rx P ˇ.x; t/
ˇ̌
xDw D rx

�
.ˇb/. ˇ.x; t//

�ˇ̌
xDw

D �r.ˇb/
��
 ˇ.w; t/„ ƒ‚ …

Dw

�r ˇ.w; t/„ ƒ‚ …
Dh.t/

D �
ˇ.w/„ƒ‚…

D0

rb.w/C b.w/˝ rˇ.w/�h.t/;

and so r ˇ.w; t/ D h.t/ D exp
�
b.w/ ˝ trˇ.w/� for 8t 2 R. Again using

(6.12), we thus obtain the contradiction

g.t0/ D hrft0 .w/; b.w/i
D rfM

�
 ˇ.w;�t0/

�r ˇ.w;�t0/b.w/

D rfM.w/eb.w/˝.�t0/ř .w/b.w/

D hrfM.w/; b.w/ie�t0hř .w/;b.w/i

> 0:

ut
In other words, if one lets the points on M follow the flow ˇb for a fixed amount
of time then one obtains a new admissible manifold. As a direct consequence we
obtain Corollary 6.6, which in turn will reduce the proof of Proposition 3.23 to
points x 2 M only.

Corollary 6.6 If x 2  .M;R/ for some admissible manifold M then there exists
another admissible manifold M0 such that x 2 M0.

Proof Let x D  .w;T/ for some w 2 M and some T 2 R. Then x 2 M0 WD
 .M;T/, and by Lemma 6.5 (applied to ˇ W	 1) M0 is an admissible manifold. ut

The following lemma defines two functions z.x/ and t.x/ on the set  .M;R/
(that is the union of all the flowlines of b emanating from M). These functions
are used extensively throughout the rest of this paper, in particular in the proof
of Lemma 6.15 to define a function ˇ for use in Lemma 6.5, and in the proofs
of Lemmas 6.10 and 6.15 to define certain “flowline-tracing functions” from
admissible manifolds.

Lemma 6.7 Let M be an admissible manifold. Then  .M;R/ is open, and there
exist two functions z 2 C1. .M;R/;M/ and t 2 C1. .M;R/;R/ whose values are
the unique ones fulfilling

8x 2  .M;R/W z.x/ 2 M and  .z.x/; t.x// D x: (6.13)
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Furthermore, we have for 8x 2  .M;R/

rz.x/ b.x/ D 0; (6.14)

hrt.x/; b.x/i D 1; (6.15)

x 2 M , t.x/ D 0 , z.x/ D x: (6.16)

Proof Let us abbreviate A WD  .M;R/. The existence (but not the smoothness) of
two functions z.x/ and t.x/ fulfilling  .z.x/; t.x// D x is clear by our choice of their
domain  .M;R/. To show uniqueness, let x 2 A, z1; z2 2 M and t1; t2 2 R fulfill
 .z1; t1/ D x D  .z2; t2/. Then we have  .z1; t1 � t2/ D z2 2 M, and Lemma 6.2
tells us that t1 � t2 D 0, i.e., t1 D t2. This in turn implies that z2 D  .z1; t1 � t2/ D
 .z1; 0/ D z1.

To see that the functions z and t are C1 on A, let x 2 A. Let " > 0 be so small
that fM is C1 on B".z.x//. Since  .x;�t.x// D z.x/, there exists a neighborhood U
of .x; t.x// such that 8.w; �/ 2 UW  .w;��/ 2 B".z.x//. In particular, the function
F.w; �/ WD fM. .w;��// is C1 on U. Since

F.x; t.x// D fM
�
 .x;�t.x//

� D fM.z.x// D 0

and @�F.x; t.x// D �˝rfM
�
 .x;�t.x//

�
; b
�
 .x;�t.x//

�˛
D �˝rfM.z.x//; b.z.x//

˛ ¤ 0

by Definition 3.18 (i) and (iv), we can apply the Implicit Function Theorem to obtain
a C1-function Qt.w/, defined in a neighborhood V of x, such that for 8w 2 V we have
0 D F.w; Qt.w// D fM

�
 .w;�Qt.w//�, i.e., Qz.w/ WD  .w;�Qt.w// 2 M. By definition

of Qz we have  .Qz.w/; Qt.w// D w for 8w 2 V , which tells us that (i) V � A, proving
that A is open, and (ii) Qt D tjV and Qz D zjV (because of the uniqueness of the
functions z and t). Since Qt and Qz are C1, the latter shows that t and z are C1 on V , and
thus on all of A.

To show (6.14) and (6.15), we evolve both sides of (6.13) by some small time �
and find that  

�
z.x/; t.x/C �

� D  .x; �/, i.e.,

z. .x; �// D z.x/ and t. .x; �// D t.x/C �:

Differentiating with respect to � and setting � D 0, we obtain

0 D rz. .x; 0// P .x; 0/ D rz.x/ b.x/ and

1 D ˝rt. .x; 0//; P .x; 0/˛ D hrt.x/; b.x/i:

It remains to show (6.16). If x 2 M then the equation .x; 0/ D x and the uniqueness
of the representation (6.13) imply that t.x/ D 0. If t.x/ D 0 then by (6.13) we have
x D  .z.x/; 0/ D z.x/. Finally, if z.x/ D x then x 2 M since z takes values in M. ut
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With this new notation we can now rephrase Lemma 6.2 as follows.

Corollary 6.8 Let M be an admissible manifold, and let t.x/ be the corresponding
function given by Lemma 6.7. Then we have

8x 2  .M;R/ 8t 2 RW sgn
�

fM. .x; t//
� D sgn.t.x/C t/; (6.17)

8x 2  .M;R/W sgn. fM.x// D sgn.t.x//: (6.18)

Proof Using (6.13) we can write

sgn
�

fM. .x; t//
� D sgn

�
fM
�
 .z.x/; t.x/ C t/

��
;

and since z.x/ 2 M, we can apply Lemma 6.2 to obtain (6.17). To prove (6.18), set
t D 0. ut

6.4 Flowline-Tracing Functions

The purpose of this section is to find a replacement for the local bound `.x; y/ � �jyj
that was used in (6.4) and (6.5) to bound the length of a curve in terms of its action.
Without the condition of Proposition 3.16, our only lower bound on `.x; y/ is (2.6),
which vanishes if y D cb.x/ for some c � 0. As a result, curves that follow the
flowlines of b could be arbitrarily long and have zero action. We thus need to exclude
the possibility that the curve follows the flowlines of b for arbitrarily long distances,
for example because these flowlines lead far away from the desired endpoint.

To quantify this idea, consider for example the constant vector field b.x/ 	 b0 2
R

n n f0g. In this case, if � � K and if the start and end point of � are confined to a
ball NBr.x/ then we have

S.�/ D
Z 1

0

`.'; ' 0/ d˛ � c2

Z 1

0

�jb0jj' 0j � hb0; '
0i� d˛

D c2
�jb0j length.�/� hb0; '.1/� '.0/i�

) length.�/ D 1
c2jb0j S.�/C ˝ b0jb0j ; '.1/� '.0/

˛ � 1
c2jb0j S.�/C 2r; (6.19)

where c2 D c2.K/, and again we have found a bound for the length of � in terms of
its action.

For non-constant vector fields b however, things are not that easy. We will have
to lay out a non-cartesian coordinate grid that is compatible with this idea, i.e.,
one whose “b-coordinate” increases at unit speed along the flowlines of b. The
manifold consisting of all the points with vanishing b-coordinate can be crossed by
the flowlines of b only in one direction, which leads us to the definition of admissible
manifolds. The notion of such a coordinate grid is made precise by the following
definition.
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Definition 6.9 A function f W D ! R is said to trace the flowlines of the vector field
bW D ! R

n between the values q1 and q2 (for two real numbers q1 < q2) if

(i) f is continuous on D,
(ii) f is continuously differentiable on E WD f �1�.q1; q2/�,

(iii) we have either (iii.1) 8x 2 EW hrf .x/; b.x/i D jb.x/j,
or (iii.2) 8x 2 EW hrf .x/; b.x/i D �jb.x/j:

Property (iii) says that on the region E, f increases or decreases at unit speed in
the direction of the flow b, and thus for x 2 E, f .x/ can be interpreted as the value
of the b-coordinate of x. Note that if a function f traces the flowlines of b between
q1 and q2 and if .Qq1; Qq2/ � .q1; q2/, then f also traces the flowlines of b between Qq1
and Qq2.

The following lemma, which is used in the proof of Proposition 3.23, shows
how to construct a flowline-tracing function from an admissible manifold. A
corresponding statement for Proposition 3.25 is given by Lemma 6.15.

Lemma 6.10 Let M be an admissible manifold. Then there exists an " > 0 and a
function f 2 C.D;R/ such that

(i) f �1.f0g/ D M,
(ii) f traces the flowlines of b between the values �" and ",

(iii) defining E WD f �1�.�"; "/�, the closure NE is a compact subset of D,
(iv) 8 x 2 NEW b.x/ ¤ 0, and
(v) supx2E jrf .x/j < 1.

Proof Abbreviate A WD  .M;R/, let z 2 C1.A;M/ and t 2 C1.A;R/ be the
functions given by Lemma 6.7, and define the function g 2 C1.A;R/ by

g.x/ WD
Z t.x/

0

ˇ̌
b
�
 .z.x/; �/

�ˇ̌
d� for 8x 2 A, (6.20)

i.e., jg.x/j is the length of the flowline segment between x and z.x/. First note that
by Remark 3.19 we have b.z.x// ¤ 0 and thus b

�
 .z.x/; �/

� ¤ 0 for 8� 2 R. This
shows that g is C1 and (using (6.20) and (6.18)) that

sgn.g.x// D sgn.t.x// D sgn. fM.x// for 8x 2 A. (6.21)

Since A is open by Lemma 6.7 and contains the compact set M, there 9" > 0 such
that NN2".M/ � A. Since for 8x 2 G WD g�1�.�2"; 2"/� we have

jx � z.x/j D ˇ̌
 
�
z.x/; t.x/

� �  �z.x/; 0�ˇ̌

D
ˇ̌
ˇ̌ Z t.x/

0

P �z.x/; �� d�

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ Z t.x/

0

b
�
 .z.x/; �/

�
d�

ˇ̌
ˇ̌

�
ˇ̌
ˇ̌ Z t.x/

0

ˇ̌
b
�
 .z.x/; �/

�ˇ̌
d�

ˇ̌
ˇ̌ D jg.x/j < 2";
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we have G � NN2".M/ � A. Finally, we set D� WD f �1
M

�
.�1; 0/

�
and DC WD

f �1
M

�
.0;1/

�
, and we define the function f W D ! R as

f .x/ WD

8̂
<̂
ˆ̂:

g.x/ if x 2 G,

�2" if x 2 D� n G,

2" if x 2 DC n G.

(6.22)

Note that f is well-defined since the three cases are defining f on disjoint sets whose
union is all of D. Indeed, since f �1

M .f0g/ D M � A, (6.21) implies

f �1
M .f0g/ D g�1.f0g/ (6.23)

and thus D n .D� [ DC/ D f �1
M .f0g/ D g�1.f0g/ � G. It remains to show that f has

the desired properties (i)–(v).

(i) Using (6.22)–(6.23) we find that f �1.f0g/ D g�1.f0g/ D f �1
M .f0g/ D M.

(ii) To check that f traces the flowlines of b between the values �" and ", we have
to check the three properties of Definition 6.9:

(ii.1) For any set B � D let us temporarily (i.e., for this part (ii.1) only) use
the notation NB to denote its closure in D. Clearly, f is continuous on each
of the three parts of the domain. To see that f is also continuous on the
boundaries of these regions, we use that G is open, (6.23), (6.21), and
that NG � g�1�Œ�2"; 2"�� (since NG � NN2".M/ � A), to obtain

.D� n G/ \ .DC n G/ D �
D� \ DC

� \ Gc

� f �1
M

�
.�1; 0�

� \ f �1
M

�
Œ0;1/

� \ Gc

D f �1
M .f0g/ \ g�1

�
.�2"; 2"/�c

(6.23)D g�1.f0g/ \ g�1
�
.�2"; 2"/�c D ¿;

.D� n G/ \ NG D D� \ Gc \ NG
� f �1

M

�
.�1; 0�

� \ g�1
�
.�2"; 2"/�c \ g�1

� �Œ�2"; 2"��
D f �1

M

�
.�1; 0�

� \ g�1
�f�2"; 2"g�

(6.21)D g�1.f�2"g/;

and similarly .DC n G/\ NG � g�1.f2"g/.
(ii.2) f is C1 on G since f jG D gjG and g is C1. Since G D g�1�.�2"; 2"/� D

f �1�.�2"; 2"/� 
 E, this shows that f is C1 on E.
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(ii.3) This also shows that for 8x 2 G 
 E we have

rf .x/ D rg.x/

D ˇ̌
b
�
 .z.x/; t.x//

�ˇ̌rt.x/

C
� Z t.x/

0

�bTrb

jbj
	�
 .z.x/; �/

�r �z.x/; �� d�



rz.x/;

so (6.13)–(6.15) imply that hrf .x/; b.x/i D jb.x/j.
(iii) The continuity of f implies that NE � f �1�Œ�"; "�� D g�1�Œ�"; "�� � G �

NN2".M/. Since NN2".M/ is compact, this shows that NE is a compact subset of
G � D.

(iv) This is a consequence of Remark 3.19 since NE � G � A D  .M;R/.
(v) This follows directly from our proofs of parts (ii.2) and (iii) where we showed

that f is C1 on the set G which contains the compact set NE. ut
As we see, we cannot expect to cover all of D with our grid, but only some

set E D f �1..q1; q2//, and so our generalized version of the estimate (6.19), given
in Lemma 6.13, must be restricted to E as well. To do so, we need to introduce
the continuous function hq2

q1 , which is equal to the identity on Œq1; q2� and constant
outside of Œq1; q2�. Two properties are given in Lemma 6.12.

Definition 6.11 For any two real numbers q1 < q2 we define the function
hq2

q1
WR ! Œq1; q2� by

hq2
q1
.a/ WD min

�
max.a; q1/; q2

�
:

Lemma 6.12 For 8a1; a2 2 R we have the estimates

ˇ̌
hq2

q1 .a1/� hq2
q1.a2/

ˇ̌ � q2 � q1; (6.24a)ˇ̌
hq2

q1 .a1/� hq2
q1.a2/

ˇ̌ � ja1 � a2j: (6.24b)

Proof The estimate (6.24a) holds because hq2
q1

maps into Œq1; q2�, (6.24b) just says
that hq2

q1
is Lipschitz continuous with Lipschitz constant 1, which can easily be

checked by splitting R into .�1; q1�, Œq1; q2� and Œq2;1/. ut
Lemma 6.13 Let x1; x2 2 QD, � 2 � x2

x1 , q1 < q2, let f W D ! R be a function that
traces b between the values q1 and q2, let E WD f �1�.q1; q2/�, and assume that NE
is a compact subset of D. Let c2 WD c2. NE/ be the constant given by Definition 2.7,
and assume that c6 WD c6. NE/ WD minx2NE jb.x/j > 0 and c7 WD c7. f ; q1; q2/ WD
supx2E jrf .x/j < 1. Then we have

length
�
� jf �1..q1;q2//

� � 2c27
c2c6

S.�/C 2
ˇ̌
hq2

q1 . f .x1//� hq2
q1. f .x2//

ˇ̌
: (6.25)
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Proof Let us abbreviate L WD length.� jE/ and � WD hq2
q1 . f .x2// � hq2

q1 . f .x1//. If
L � j�j � 0 then

L � 2j�j � 2.L � j�j/ � 0 � 2c27
c2c6

S.�/;

so (6.25) is clear. Therefore let us now assume that L�j�j > 0 and thus in particular
L > 0. Let ' 2 NCx2

x1 .0; 1/ be a parameterization of � , and let

Q WD ˚
˛ 2 Œ0; 1� ˇ̌ '.˛/ 2 E and ' 0.˛/ ¤ 0

�
:

Using (2.6) and the Cauchy-Schwarz inequality, and using the notation Ow WD w
jwj for

8w 2 R
n n f0g, we find that

S.�/ �
Z 1

0

`.'; ' 0/1˛2Q d˛

� c2

Z 1

0

�jb.'/jj' 0j � ˝
b.'/; ' 0˛�1˛2Q d˛

D c2
2

Z 1

0

jb.'/jj' 0jˇ̌bb.'/� b' 0ˇ̌21˛2Q d˛

� c2c6
2

Z 1

0

j' 0jˇ̌bb.'/� b' 0ˇ̌21˛2Q d˛

� c2c6
2

� R 1
0

j' 0jˇ̌bb.'/� b' 0ˇ̌1˛2Q d˛
�2

R 1
0

j' 0j1˛2Q d˛

D c2c6
2L

� Z 1

0

j' 0jˇ̌bb.'/� b' 0ˇ̌1˛2Q d˛
	2
: (6.26)

Now letting � WD C1 or � WD �1 depending on whether the function f fulfills the
property (iii.1) or (iii.2) of Definition 6.9, we have a.e. on Q that

c7j' 0jˇ̌bb.'/� b' 0ˇ̌ � � j' 0j˝rf .'/;bb.'/ � b' 0˛

D j' 0j� ˝rf .'/;bb.'/
˛ � �hrf .'/; ' 0i

D j' 0j � � @˛ f .'/: (6.27)

Since hq2
q1

ı f is Lipschitz continuous (with Lipschitz constant c7), hq2
q1

ı f ı '
is absolutely continuous, and so its classical derivative exists a.e. on Œ0; 1�. We
have @˛hq2

q1
. f .'// D @˛f .'/ wherever f .'/ 2 .q1; q2/, and @˛hq2

q1
. f .'// D 0

wherever f .'/ … .q1; q2/ (except possibly at ˛ D 0; 1) because hq2
q1

does not take
values outside of Œq1; q2�. This shows that @˛hq2

q1
. f .'// D Œ@˛ f .'/�1f .'/2.q1;q2/, and
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so (6.27) implies that

c7

Z 1

0

j' 0jˇ̌bb.'/� b' 0ˇ̌1˛2Q d˛ �
Z 1

0

�
j' 0j � � @˛ f .'/

	
1˛2Q d˛

D L � �
Z 1

0

Œ@˛ f .'/�1f .'/2.q1;q2/ d˛

D L � �
Z 1

0

@˛hq2
q1
. f .'// d˛

D L � ��
� L � j�j: (6.28)

Multiplying (6.26) by c27 and plugging in (6.28), we thus obtain

c27S.�/ � c2c6
2L

.L � j�j/2 D c2c6
2

�
L � 2j�j C j�j2

L

	
� c2c6

�
1
2
L � j�j�;

i.e., L � 2c27
c2c6

S.�/C 2j�j, and (6.25) is proven. ut
Remark 6.14 If K1 � K2, .Qq1; Qq2/ � .q1; q2/, and if f traces the flowlines of b
between q1 and q2, then

c2.K1/ � c2.K2/; c6.K1/ � c6.K2/; c7. f ; Qq1; Qq2/ � c7. f ; q1; q2/:

6.5 Proof of Proposition 3.23

Proof We will again prove the stronger condition of Remark 3.10 (ii). Let x 2
 .M;R/ \ QD and � > 0 be given. By Corollary 6.6 there exists another admissible
manifold M0 such that x 2 M0. For this manifold M0, Lemma 6.10 now provides
us with an " > 0 and a function f W D ! R such that the properties (i)–(v) of
Lemma 6.10 are fulfilled. By decreasing " > 0 if necessary, we may assume that
NB".x/ � D. As in Lemma 6.10 we set E WD f �1�.�"; "/�.

The set f �1�f� "
2
; "
2
g� is compact since it is closed in D and a subset of the

compact set NE � D (see Lemma 6.10 (iii)). Since it is disjoint from the closed
set Ec we thus have

� WD dist
�

f �1�f� "
2
; "
2
g�; Ec

�
> 0:

Lemma 2.5 (ii) and Definition 2.7 provide us with constants c1 WD
c1. NB".x// > 0 and c2 WD c2. NE/ > 0, and Lemma 6.10 (iv) and (v) imply that
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the constants c6 WD c6. NE/ and c7 WD c7. f ;�"; "/ defined in Lemma 6.13 fulfill
c6 > 0 and c7 < 1, so that all the requirements are met to apply Lemma 6.13 to
any interval .q1; q2/ � .�"; "/. Finally, we define

� WD min

�
";

c2c6�

5c1c27
;
�

4

�
c7 C c1c27

c2c6

	�1�
; (6.29)

and we let r 2 .0; �� be so small that NBr.x/ � f �1�.� "
2
; "
2
/
� � E (which is

possible because f .x/ D 0 by Lemma 6.10 (i)), and that for 8w 2 NBr.x/ \ QD
9� 2 � w

x W length.�/ � � (which is possible by Assumption ( QD)).
Now let x1; x2 2 NBr.x/\ QD. For i D 1; 2 let N� i 2 � xi

x with length. N� i/ � � and thus
in particular N� i � NB�.x/ � NB".x/, and let N� WD � N�1 C N�2 2 � x2

x1 . Since N� � NB".x/,
Lemma 2.5 (ii) shows that

inf
�2� x2

x1

S.�/ � S. N�/ � c1 length. N�/ � 2c1�: (6.30)

Next, let .'n/n2N � NCx2
x1
.0; 1/ be some parameterizations of a minimizing sequence

.�n/n2N of P.x1; x2/. We claim that

9n0 2 N 8n � n0 W max
˛2Œ0;1� f .'n.˛// < ": (6.31)

Indeed, if this were not the case then we could extract a subsequence .'nk/n2N such
that max˛2Œ0;1� f .'nk .˛// � " for 8k 2 N. Since x1; x2 2 NBr.x/ � f �1�.� "

2
; "
2
/
�
,

we have f .'nk.0// D f .x1/ < "
2

and f .'nk.1// D f .x2/ < "
2
, and thus for 8k 2 N

there would then be two numbers 0 < L̨k < Ǫk < 1 such that f .'nk . L̨k// D "
2
,

f .'nk. Ǫk// D ", and f .'nk .˛// 2 . "
2
; "/ for 8˛ 2 . L̨k; Ǫk/. Applying Lemma 6.13

with .q1; q2/ D . "
2
; "/, we would then have

2c27
c2c6

S.�nk/ � length
�
�nk jf �1.."=2;"//

� � 2ˇ̌h""=2. f .x1/„ƒ‚…
� "
2

/ � h""=2. f .x2/„ƒ‚…
� "
2

/
ˇ̌

D
Z 1

0

j' 0
nk

j1f .'nk /2."=2;"/ d˛ � 2
ˇ̌
ˇ"
2

� "

2

ˇ̌
ˇ

�
Z Ǫk

L̨k

j' 0
nk

j d˛

�
ˇ̌
ˇ̌ Z Ǫk

L̨k

' 0
nk

d˛

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ 'nk. Ǫk/„ ƒ‚ …
2f �1.f"g/�Ec

� 'nk. L̨k/„ ƒ‚ …
2f �1.f "2 g/

ˇ̌
ˇ̌ � � :

(Note that Lemma 6.13 gives us this estimate for constants c2, c6 and c7 that are
defined using q1 D "

2
and q2 D ", but the above estimate still holds as is, since by
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Remark 6.14 the term 2c27
c2c6

becomes larger by switching to our constants.) Taking
the limit k ! 1 and using (6.30), we thus find that

� � 2c27
c2c6

� 2c1�;

which contradicts (6.29). This proves (6.31), and with analogous arguments one can
show that min˛2Œ0;1� f .'n.˛// > �" for large enough n 2 N.

After passing on to a tailsequence we may thus assume that �n � f �1�.�"; "/�
for 8n 2 N. Using this additional knowledge, we can now apply Lemma 6.13 one
more time (this time with .q1; q2/ D .�"; "/) to obtain

length.�n/ D length
�
�njf �1..�";"//

�

� 2c27
c2c6

S.�n/C 2
ˇ̌
h"�". f .x1// � h"�". f .x2//

ˇ̌

D 2c27
c2c6

S.�n/C 2
ˇ̌
f .x1/� f .x2/

ˇ̌

� 2c27
c2c6

S.�n/C 2jx1 � x2j max
w2NBr.x/

jrf .w/j

� 2c27
c2c6

S.�n/C 4c7r (6.32)

for 8n 2 N, and thus supn2N length.�n/ < 1. We can now apply Proposition 3.8
and then use (6.32), the minimizing property of .�n/n2N, (6.30) and (6.29) to
conclude that the problem P.x1; x2/ has a strong minimizer �? 2 � x2

x1
that fulfills

length.�?/ � lim inf
n!1 length.�n/

� 4c7r C 2c27
c2c6

lim inf
n!1 S.�n/

D 4c7r C 2c27
c2c6

inf
�2� x2

x1

S.�/

� 4c7� C 2c27
c2c6

� 2c1�

D 4�
�

c7 C c1c27
c2c6

	

� �:

ut
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6.6 Proof of Proposition 3.25

If b.x/ D 0 then the strategy in the proof of Proposition 3.23 (laying out a
“b-coordinate grid” around x) breaks down because x cannot lie on an admissible
manifold. Using the following lemma, we can however lay out multiple b-coordinate
grids, each with x on its boundary, that together cover a punctuated neighborhood
of x. We then have to refine our estimates for the curve lengths carefully, by slicing
that neighborhood into appropriate regions and adding up the bounds that we obtain
for each of them. The following lemma provides us with the necessary tools for this
technique.

Lemma 6.15 (a) Let x 2 D, and let the assumptions of Proposition 3.25 (i) or (ii)
for x to have weak local minimizers be fulfilled. Then there exist an " > 0 and
functions f1; : : : ; fm 2 C.D; Œ0;1// such that for 8i D 1; : : : ;m

(i) fi.x/ D 0,
(ii) fi traces the flowlines of b between the values 0 and ",

(iii) defining Ei WD f �1
i

�
.0; "/

�
, the closure NEi is a compact subset of D, and

(iv) 8w 2 NEi n fxgW b.w/ ¤ 0.

Furthermore,

(v) 9c8 > 0 8w 2 NB".x/W maxf f1.w/; : : : ; fm.w/g � c8jw � xj.
(b) In addition, if the assumptions of Proposition 3.25 (i) or (ii) for x to have strong

local minimizers are fulfilled, then

(vi) 8i D 1; : : : ;mW supw2Ei
jrfi.w/j < 1, and

(vii) 9c9 � 1 8w 2 NB".x/W maxf f1.w/; : : : ; fm.w/g � c9jw � xj.
Observe that since this lemma takes a vector field b and provides us with

corresponding functions fi, the properties (3.8)–(3.9) (which do not concern b) are
not needed for its proof (they will only be used in the main part of the proof of
Proposition 3.25). The only additional condition that we will use for proving (vi)–
(vii) is that in the saddle point case we have D � R

2.

Proof Here we will only prove the statement for the case that x is an attractor or
a repellor of b, where—as we will see—only one flowline-tracing function f1 is
enough, i.e., we can take m D 1. The much harder proof for the case of a saddle
point is the content of Chap. 7.

Let us first deal with the case in which x is an attractor of b. Let " > 0 be so small
that NB".x/ � Bs, where Bs is the basin of attraction of x, let fsW Bs ! Œ0;1/ be the
function given by Definition 3.21, and finally define

f1.w/ WD
(

fs.w/ if w 2 f �1
s

�
Œ0; "/

�
,

" else.
(6.33)
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We will now show that f1 has the desired properties (i)–(vii).

(i) f1.x/ D fs.x/ D 0.
(ii) To show that f1 traces the flowlines of b between the values 0 and ", we have

to check the three properties in Definition 6.9.

(ii.1) Clearly, f1 is continuous on D1 WD f �1
s

�
Œ0; "/

�
and on D2 WD D n D1.

D1 is open since it can be written as f �1
s

�
.�1; "/

�
, and thus D2

is closed in D. To show that f1 is continuous on all of D, it thus
suffices to show that for any converging sequence .wn/n2N � D1

with w WD limn!1 wn 2 D2 we have limn!1 f1.wn/ D f1.w/. To do
so, first note that by (6.7a) we have D1 � NB".x/, which implies
that w 2 NB".x/ � Bs and thus limn!1 fs.wn/ D fs.w/. Now since
fs.wn/ 2 Œ0; "/ for 8n 2 N, we have fs.w/ 2 Œ0; "�, and thus w 2 D2

implies fs.w/ D ". We can now conclude that limn!1 f1.wn/ D
limn!1 fs.wn/ D fs.w/ D " D f1.w/.

(ii.2) We have E1 WD f �1
1

�
.0; "/

� D f �1
s

�
.0; "/

�
and thus f1jE1 D fsjE1 . Also,

we have E1 � B".x/ n fxg � Bs n fxg by (6.7a) and since fs.x/ D 0.
Therefore by Lemma 6.1 (i), fs and thus also f1 is C1 on E1.

(ii.3) Since f1 D fs on the open set E1 � Bsnfxg, we have rf1jE1 D rfsjE1 and
thus 8w 2 E1W hrf1.w/; b.w/i D hrfs.w/; b.w/i D �jb.w/j by (6.6a).

(iii) We have NE1 � NB".x/ � Bs � D, and so NE1 is a compact subset of D.
(iv) The relation shown in part (iii) implies NE1 n fxg � Bs n fxg, and since x is the

only point in Bs with zero drift, this shows that 8w 2 NE1 n fxgW b.w/ ¤ 0.
(v) Let w 2 NB".x/. If w 2 f �1

s .Œ0; "// then f1.w/ D fs.w/ � jw � xj by (6.7a).
Otherwise we have f1.w/ D " � jw � xj. Thus we can choose c8 WD 1.

(vi) In the proof of Lemma 6.1 (i), an integrable bound on the integrand of (B.2)
was found that is uniform on a neighborhood of some fixed w 2 Bs n fxg. We
can use even easier arguments to find an integrable bound that is uniform on
some punctuated ball NB�.x/ n fxg (at x the argument breaks down since b

jbj is

undefined). This proves that jrfsj is bounded on NB�.x/ n fxg, and since rfs is
continuous on Bs n fxg, jrfsj is thus bounded also on the set NB".x/ n fxg which
includes E1. Since we saw in (ii.3) that rf1jE1 D rfsjE1 , this shows that jrf1j
is bounded on E1.

(vii) Let c5 > 0 be the constant given by (6.8a) that corresponds to K WD NB".x/.
Then for 8w 2 NB".x/ we have f1.w/ � fs.w/ � c5jw � xj, i.e., we can take
c9 WD c5.

This completes the proof for the case of an attractor. If x is a repellor then we replace
fs by fu everywhere in our proof, and the only difference will be that in part (ii.3) we
have 8w 2 E1W hrf1.w/; b.w/i D Cjb.w/j by (6.6b). ut

We are now ready to prove Proposition 3.25. In the part proving that x has strong
local minimizers we must assume that the reader has read the proof of Lemma 2.3
in Appendix A.1, since we will reuse its terminology without further notice.
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Proof (Proposition 3.25) Preparations. Let x 2 QD, and let the conditions of
Proposition 3.25 (i) or (ii) for x to have weak local minimizers be fulfilled. Let
"; c8 > 0 and the functions f1; : : : ; fmW D ! Œ0;1/ be given as in Lemma 6.15 (a),
let Ei WD f �1

i

�
.0; "/

�
for 8i D 1; : : : ;m, and define F WD maxf f1; : : : ; fmg. By

decreasing " and c8 if necessary, we may assume that NB2".x/ � D and c8 2 .0; 1/.
Since b.x/ D 0 and since our assumptions imply that rb.x/ is an invertible matrix,
b is locally invertible at x and we can further decrease " until

jb.w/j � Ajw � xj for 8w 2 NB".x/ and some A > 0: (6.34)

If the additional conditions for x to have strong local minimizers are fulfilled, then
we will at this point first choose 
; c4; ı > 0 such that (3.9) is fulfilled (where we
may assume that 
 2 .0; 1� and thus also that ı 2 .0; 1�), and then further decrease "
until (3.8) holds for some c3 > 0 (where we may assume that " 2 .0; 
=c3�). Observe
that we will not use these properties (3.8)–(3.9) during the first part of our proof
(where we show that x has weak local minimizers). This ends our definition of ".

In either case, for every i D 1; : : : ;m, the set f �1
i .f c8"

2
g/ is compact since it is

closed in D and a subset of the compact set NEi � D (see Lemma 6.15 (iii)). Since it
is disjoint from the closed set f �1

i

�
.0; c8"/

�c
, we thus have

� WD min
1�i�m

dist
�

f �1
i .f c8"

2
g/; f �1

i

�
.0; c8"/

�c
	
> 0:

Next we let c1 WD c1. NB2".x// > 0 as given by Lemma 2.5 (ii). Also, defining
E WD Sm

iD1 Ei 
 F�1�.0; "/�, the set NE D Sm
iD1 NEi is a compact subset of D by

Lemma 6.15 (iii), and so Definition 2.7 provides us with a constant c2 WD c2. NE/ > 0.
Defining E0

i WD f �1
i

�
. c8"
2
; c8"/

� � Ei for 8i D 1; : : : ;m, the constant c6 WD
min1�i�m c6

�
E0

i

�
defined in Lemma 6.13 fulfills c6 > 0 by Lemma 6.15 (i), (iii)

and (iv), and the constant c7 WD max1�i�m c7
�

fi;
c8"
2
; c8"

�
defined in Lemma 6.13

is finite since rfi is continuous on Ei 
 E0
i by Lemma 6.15 (ii), and since E0

i is
compact by Lemma 6.15 (iii). Finally, we define

� WD min

�
";

c2c6�

5c1c27

�
; (6.35)

and we let r 2 .0; �� be so small that

NBr.x/ � F�1�Œ0; c8"
2
/
�

(6.36)

(this is possible since F � 0, F is continuous, and F.x/ D 0 by Lemma 6.15 (i)),
that

min
w2NB".x/nBr.x/

jb.w/j � min
w2NEnB".x/

jb.w/j (6.37)
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(this is possible since b.x/ D 0, and since NE nB".x/ is a compact set on which b ¤ 0

by Lemma 6.15 (iii)–(iv)), and that for 8w 2 NBr.x/ \ QD9� 2 � w
x : length.�/ � �

(this is possible by Assumption ( QD)).
If the additional conditions for x to have strong local minimizers are fulfilled

then we will in fact show the stronger property in Remark 3.10 (ii), so let � > 0

be given. Under these conditions, Lemma 6.15 (vi) says that the constant Nc7 WD
max1�i�m c7. fi; 0; "/ defined in Lemma 6.13 is finite, and Lemma 6.15 (vii) gives
us a constant c9 > 0. We then decrease r further so that

2arı

1 � 2�ı � �; where a WD 24Cımc1Cı3 c4 Nc27c9
c2c

2Cı
8 A

C 4mc9"
1�ı: (6.38)

Again observe that we will not use the constants Nc7 and c9 and the estimate (6.38)
during the first part of our proof. This ends our definition of r.

Weak local minimizers. Now let x1; x2 2 NBr.x/ \ QD, let .�n/n2N � � x2
x1 be a

minimizing sequence of P.x1; x2/, and let us assume that each curve �n visits the
point x at most once (otherwise we may cut out the piece between the first and the
last hitting point of x, which can only decrease the action of the curve). Denoting
by . Q'n/n2N � NC.0; 1/ their arclength parameterizations given by Lemma 2.1 (i), we
first claim that for sufficiently large n 2 N we have

max
˛2Œ0;1�F. Q'n.˛// < c8": (6.39)

Indeed, if this were not the case then we could extract a subsequence . Q'nk/k2N such
that for some i0 and 8k 2 N we had max˛2Œ0;1� fi0 . Q'nk.˛// � c8". Since by (6.36)
we have fi0 .x1/ � F.x1/ < 1

2
c8" and similarly fi0 .x2/ <

1
2
c8", we could then use

the same arguments as in the proof of Proposition 3.23 (only here with Lemma 6.13
applied to fi0 and .q1; q2/ D . 1

2
c8"; c8"/) and Remark 6.14 to conclude that

� � 2c7
�

fi0 ;
c8"
2
; c8"

�2
c2
�
E0

i0

�
c6
�
E0

i0

� � 2c1� � 2c27
c2c6

� 2c1�;

contradicting (6.35). This proves (6.39) for large enough n 2 N, and so after passing
on to a tailsequence we may assume that (6.39) holds for 8n 2 N.

In particular, this implies that �n � NB".x/ for 8n 2 N. Indeed, otherwise there
would be a point w on �n such that jw � xj D ", and Lemma 6.15 (v) and (6.39)
would then imply that c8" D c8jw�xj � F.w/ < c8". As a result, we are allowed to
apply the estimate in Lemma 6.15 (v) (and later also the one in Lemma 6.15 (vii))
to all points on the curves �n.

We will now use Lemma 2.3 to construct a converging subsequence. In order to
control the lengths of �n away from x, we use (6.39), the definition of F, Lemma 6.13
(whose conditions can be checked as above) and (6.24a) to obtain for 8i D 1; : : : ;m
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and 8u 2 .0; c8"/ constants Ci;u > 0 (independent of x1 and x2) such that

Z
�n

1F.z/>u jdzj D
Z
�n

1F.z/2.u;c8"/ jdzj

�
mX

iD1

Z
�n

1fi.z/2.u;c8"/ jdzj

�
mX

iD1

h
Ci;uS.�n/C 2

ˇ̌
hc8"

u . fi.x1// � hc8"
u . fi.x2//

ˇ̌i

�
� mX

iD1
Ci;u

	
S.�n/C 2m.c8" � u/

�
� mX

iD1
Ci;u

	
sup
j2N

S.�j/C 2mc8" DW �.u/: (6.40)

For u � c8" this estimate holds with �.u/ WD 0 by (6.39). We could now use that
NBu.x/c � F�1�.c8u;1/

�
by Lemma 6.15 (v) to check the condition (2.3), but in

preparation for the second part of this proof we will instead make use of the remark
at the beginning of the proof of Lemma 2.3, which says that the estimate (6.40) is
enough as is, and we will consider the construction and terminology of that proof,
using our function F (instead of the function F.w/ D jw � xj), c WD c8, K WD NB".x/,
and uk WD Qr2�k, where

Qr WD max
w2NBr.x/

F.w/: (6.41)

Thus, by Lemma 2.3 there exist parameterizations 'n 2 QCx2
x1
.x/ of �n such that a

subsequence of .'n/n2N converges to a parameterization '? 2 QCx2
x1
.x/ of a curve

�? 2 Q� x2
x1 .x/. We have �? � NB".x/ D K since �n � NB".x/ for 8n 2 N, and in

particular we can apply the estimate in Lemma 6.15 (v) (and later also the one in
Lemma 6.15 (vii)) to every point on �?. By (A.12), i.e., the generalized version
of (2.4), we therefore have

length
�
�?j NBu.x/c

� D
Z
�?

1jz�xj>u jdzj �
Z
�?

1F.z/>c8u jdzj � �.c8u/ DW Q�.u/

for 8u > 0. Finally, by Lemmas 2.6 (ii) and 3.7 we have

S.�?/ � lim inf
n!1 S.�n/ D inf

�2� x2
x1

S.�/ D inf
�2 Q� x2

x1

S.�/; (6.42)

and since �? 2 Q� x2
x1 , we must have equality, i.e., �? is a weak minimizer of P.x1; x2/.

This concludes the proof that x has weak local minimizers.
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Strong Local Minimizers. Now let the additional conditions of part (i) or (ii) be
fulfilled. To show that x has in fact strong local minimizers, it remains to show that
'? 2 NC.0; 1/ (so that �? 2 � x2

x1 ) and that length.�?/ � �.
To show that '?0 2 L1.0; 1/ and to estimate length.�?/, we now begin by

proving some properties of the function F ı '?. First, note that replacing Q'n by
its reparametrized version 'n in (6.39) and then taking the limit n ! 1 implies that

max
˛2Œ0;1�

F.'?.˛// � c8" < ": (6.43)

Second, taking the limit n ! 1 in (A.9) implies that for 8k 2 N we have

either 8s 2 Œ0; d�
k �W F.'?.s// � uk

or '? is constant on Œ0; d�
k �

(6.44)

(or both), and the same is true with Œ0; d�
k � replaced by ŒdC

k ; 1�. Third, we have

8n 2 N 8k 2 N0W F.'n.
1
2
// � F.'n.d

�
kC1// � F.'n.d

�
k //; (6.45)

8k 2 N0W F.'?. 1
2
// � F.'?.d�

kC1// � F.'?.d�
k //; (6.46)

and the same relations hold with d�
k and d�

kC1 replaced by dC
k and dC

kC1.
Indeed, the left inequality in (6.45) is clear: F.'n.

1
2
// D F

� Q'n.˛n.
1
2
//
� D

F. Q'n.˛
n
min// � F

� Q'n.˛n.d�
kC1//

� D F.'n.d�
kC1//. The second inequality in (6.45)

can be seen as follows: If ˛n.d�
k / D ˛n.d�

kC1/ then we have F.'n.d�
kC1// D

F.'n.d�
k //, so (6.45) holds. Also, if In;kC1 D ¿ then F.'n.d�

kC1// D
F
� Q'n.˛n.d�

kC1//
� D F. Q'n.˛

n
min// � F

� Q'n.˛n.d�
k //
� D F.'n.d�

k //, and (6.45) holds
as well. Otherwise we have ˛n.d�

k / < ˛n.d�
kC1/ D min In;kC1, so that ˛n.d�

k / …
In;kC1 and thus F.'n.d�

k // D F
� Q'n.˛n.d�

k //
�
> ukC1 � F

� Q'n.˛n.d�
kC1//

� D
F.'n.d�

kC1//. This ends the proof of (6.45), and (6.46) now follows by taking the
limit n ! 1. The modified statements with d�

k and d�
kC1 replaced by dC

k and dC
kC1

can be shown analogously.
Next, we will prove a minimizing property of '?, namely that for each pair of

numbers 0 � s1 < s2 <
1
2

or 1
2
< s1 < s2 � 1 we have

S.'?jŒs1;s2�/ D inf
�2� '?.s2/

'?.s1/

S.�/: (6.47)

We will prove this for the case 0 � s1 < s2 < 1
2
, the other case can be

shown analogously. To do so, we denote the left-hand side of (6.47) by S?. If the
statement were wrong then we could find a curve �0 2 � '?.s2/

'?.s1/
whose action fulfills

� WD S? � S.�0/ > 0. By the minimizing property of .�n/n2N and the relation
S? D S.'?jŒs1;s2�/ � lim infn!1 S.'njŒs1;s2�/ (which follows from Lemma 2.6 (i)),
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respectively, we could now choose an n 2 N so large that

S.�n/ < inf
�2� x2

x1

S.�/C 1
4
� and S.'njŒs1;s2�/ � S? � 1

4
�;

and since limn!1 'n.si/ D '?.si/ for i D 1; 2, Assumption ( QD) would allow us to
choose n 2 N so large that there exist curves

N�1 2 � 'n.s1/
'?.s1/

and N�2 2 � 'n.s2/
'?.s2/

with length. N�1;2/ � minf �
4c1
; "g.

Now �? � NB".x/ and length. N�1;2/ � " imply that N�1;2 � NB2".x/, and so by
Lemma 2.5 (ii) we have the estimates S.� N�1/ � c1 length. N�1/ � 1

4
� and similarly

S. N�2/ � 1
4
� . Therefore the curve O� 2 � x2

x1 , constructed by removing from �n the
piece given by 'njŒs1;s2� and replacing it by the curve � N�1 C �0 C N�2, would have the
action

S. O�/ D S.�n/� S.'njŒs1;s2�/C S.� N�1/C S.�0/C S. N�2/
<
�

inf
�2� x2

x1

S.�/C 1
4
�
	

� �
S? � 1

4
�
�C 1

4
� C .S? � �/C 1

4
�

D inf
�2� x2

x1

S.�/;

which is a contradiction, and (6.47) is proven.
We are now ready to show that '?0 2 L1.0; 1/ and to estimate length.�?/.

Fix k 2 N0, and let Ek
i WD f �1

i

�
.ukC2; "/

� � Ei � E for 8i D 1; : : : ;m.
Using (6.43), (6.44), Lemma 6.13 applied to the curve given by '?jQ�

k
2

NC.d�
k ; d

�
kC1/, Remark 6.14, and (6.24b), we find that

Z
Q�

k

j'?0j d˛ D
Z d�

kC1

d�

k

j'?0j1F.'?/2ŒukC1;"/ d˛

�
mX

iD1

Z d�

kC1

d�

k

j'?0j1fi.'?/2.ukC2;"/ d˛ (6.48)

�
mX

iD1

�
2c7. fi; ukC2; "/2

c2.Ek
i /c6.E

k
i /

S
�
'?jQ�

k

�

C 2
ˇ̌
ˇh"ukC2

�
fi.'

?.d�
k //
� � h"ukC2

�
fi.'

?.d�
kC1//

�ˇ̌ˇ



�
mX

iD1

�
2Nc27

c2c6.Ek
i /

S
�
'?jQ�

k

�C 2
ˇ̌
ˇfi�'?.d�

k /
� � fi

�
'?.d�

kC1/
�ˇ̌ˇ


:

(6.49)
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To estimate c6.Ek
i /, first we argue that

Ek
i � Œ NB".x/ \ Ek

i � [ Œ NB".x/c \ Ek
i � � Œ NB".x/\ BukC2=c9 .x/

c� [ ŒB".x/c \ NE�;

where we used that Ek
i � E � NE, and that for 8w 2 NB".x/ \ Ek

i we have jw � xj �
1
c9

F.w/ � 1
c9

fi.w/ > 1
c9

ukC2, i.e., w 2 NB".x/ \ BukC2=c9 .x/
c. Furthermore, by (6.41)

and Lemma 6.15 (v) and (vii) we have c8r � Qr � c9r and thus in particular ukC2

c9
�

Qr
c9

� r. Thus, together with (6.37) and (6.34) we find that

c6.E
k
i / D min

˚jb.w/j I w 2 Ek
i g

� min
˚jb.w/j I w 2 Œ NB".x/\ BukC2=c9 .x/

c� [ ŒB".x/c \ NE��
� min

˚jb.w/j I w 2 Œ NB".x/\ BukC2=c9 .x/
c� [ Œ NB".x/\ Br.x/

c�
�

D min
˚jb.w/j I w 2 NB".x/ \ BukC2=c9 .x/

c
�

� AukC2
c9

D AQr
c9
2�.kC2/ � Ac8r

c9
2�.kC2/: (6.50)

Assume now that for the given k 2 N0 (A.13a) holds (recall that we denote our limit
by '? instead of '). Using (6.50), fi � 0, the definition of F, and (6.46) and (A.13a),
we can then continue the estimate (6.49) and find that

Z
Q�

k

j'?0j d˛ � 2mNc27c92kC2

c2c8Ar
S
�
'?jQ�

k

�C 2

mX
iD1

h
fi
�
'?.d�

k /
�C fi

�
'?.d�

kC1/
�i

� 2kC3mNc27c9
c2c8Ar

S
�
'?jQ�

k

�C 2m
h
F
�
'?.d�

k /
�C F

�
'?.d�

kC1/
�i

� 2kC3mNc27c9
c2c8Ar

S
�
'?jQ�

k

�C 2m � 2uk: (6.51)

By (3.8) there exist curves N�1k 2 � '?.d�

k /
x and N�2k 2 � '?.d�

kC1/

x with

length. N�1k / � c3
ˇ̌
'?.d�

k /� x
ˇ̌ � c3" � 
; (6.52a)

length. N�2k / � c3
ˇ̌
'?.d�

kC1/� x
ˇ̌ � c3" � 
; (6.52b)

and thus in particular N�1;2k � NB
.x/. Let

N�k WD � N�1k C N�2k 2 � '?.d�

kC1
/

'?.d�

k /
;

which fulfills N�k � NB
.x/, and let N'k 2 NC.0; 1/ be a parameterization of N�k with
N'k.

1
2
/ D x. The minimizing property (6.47), (3.9), (6.52a)–(6.52b), Lemma 6.15 (v),
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and again (6.46) and (A.13a) now tell us that

S
�
'?jQ�

k

� � S. N�k/

D
Z 1

0

`. N'k; N' 0
k/ d˛

� c4

Z 1

0

j N'k � xjıj N' 0
kj d˛

� c4 max
˛2Œ0;1�

ˇ̌ N'k.˛/ � x
ˇ̌ı Z 1

0

j N' 0
kj d˛

D c4 max
˛2Œ0;1�

ˇ̌
ˇ̌
Z ˛

1=2

N' 0
k d Q̨

ˇ̌
ˇ̌ı
Z 1

0

j N' 0
kj d˛

� c4

� Z 1

0

j N' 0
kj d˛


1Cı
D c4 length. N�k/

1Cı

D c4
�

length. N�1k /C length. N�2k /
�1Cı

� c4
h
c3
ˇ̌
'?.d�

k / � x
ˇ̌C c3

ˇ̌
'?.d�

kC1/� x
ˇ̌i1Cı

� c4
hc3

c8
F.'?.d�

k //C c3
c8

F.'?.d�
kC1//

i1Cı

� c4
�2c3uk

c8

	1Cı D c4
�2c3r2�k

c8

	1Cı
: (6.53)

Therefore, if (A.13a) holds then by (6.51), (6.53) and (6.38) we have the estimate

Z
Q�

k

j'?0j d˛ � 2kC3mNc27c9
c2c8Ar

� c4
�2c3r2�k

c8

	1Cı C 4mc9r2
�k

�


24Cımc1Cı3 c4 Nc27c9

c2c
2Cı
8 A

C 4mc9"
1�ı
�

rı2�ık D arı2�ık: (6.54)

But if instead (A.13b) holds then '?0 vanishes a.e. on Œd�
k ;

1
2
� 
 Q�

k and thus (6.54)
is trivial. Therefore (6.54) always holds, and analogously the same estimate can be
established for QC

k . We thus obtain

Z 1

0

j'?0j d˛ D
1X

kD0

� Z
Q�

k

j'?0j d˛ C
Z

QC

k

j'?0j d˛
	

� 2arı
1X

kD0
2�ık D 2arı

1 � 2�ı � � (6.55)
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by (6.38), i.e., '?0 2 L1.0; 1/ and length.�?/ � �. To prove the absolute continuity
of '?, it remains to show that

'?.s/ � '?.0/ D
Z s

0

'?
0 d˛ for 8s 2 Œ0; 1�: (6.56)

This is true for 8s 2 Œ0; 1
2
/ since '? is absolutely continuous on each Jk, and for

s D 1
2

by taking the limit s % 1
2

in (6.56) and using dominated convergence.

Analogously, one can show that '?.1/ � '?.s/ D R 1
s '

?0 d˛ for 8s 2 Œ 1
2
; 1�, and

therefore for s 2 . 1
2
; 1� we have

'?.s/� '?.0/ D �
'?.1/� '?. 1

2
/
�C �

'?. 1
2
/� '?.0/

�� �
'?.1/� '?.s/

�

D
Z 1

1=2

'?
0 d˛ C

Z 1=2

0

'?
0 d˛ �

Z 1

s
'?

0 d˛

D
Z s

0

'?
0 d˛

as well. This concludes the proof of the absolute continuity of '?, so that �? 2 � x2
x1 ,

i.e., x has strong local minimizers. This terminates the proof of Proposition 3.25.
ut



Chapter 7
Proof of Lemma 6.15

Abstract This chapter contains the proof of the very technical Lemma 6.15 in
Chap. 6. Some details of this proof will be postponed to Appendix B.

Since the case in which x is an attractor or a repellor of b was already proven in
Sect. 6.6, let us now consider the case in which x is a saddle point of b. We assume
that all the conditions of Proposition 3.25 (ii) for x to have weak minimizers are
fulfilled, i.e., that rb.x/ has only eigenvalues with nonzero real parts, and that there
exist admissible manifolds Mi, i D 1; : : : ;m, such that (3.10) is fulfilled.

Our proof is structured as follows. In Sect. 7.1 we will review some details of the
Stable Manifold Theorem, make several definitions, and choose some constants to
prepare for the estimates to come. In Sect. 7.2 we will use Lemma 6.5 to modify
the given admissible manifolds Mi in such a way that they obtain certain additional
properties. Finally, in Sect. 7.3 we will define the functions fi explicitly and prove
that they have the desired properties.

The proofs of various technical statements in this chapter are deferred to
Appendix B in order to not interrupt the flow of the main arguments, and it is
recommended to skip those proofs on first reading.

7.1 Setting Things Up

By our assumption on rb.x/ we can write

A WD rb.x/ D R



P 0

0 Q

�
R�1 (7.1)

for some matrices R 2 R
n�n, P 2 R

ns�ns and Q 2 R
nu�nu , where ns; nu 2 N fulfill

ns Cnu D n, and where all the eigenvalues of P have negative real parts and all those
of Q have positive real parts.

The key ingredient to our proof will be the Stable Manifold Theorem, a standard
result from the theory of ordinary differential equations, which provides us with Mloc

s

© Springer International Publishing Switzerland 2015
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and Mloc
u , the local stable and unstable manifolds of b at the point x, respectively. Its

core statement is the following:

Theorem 7.1 (Stable Manifold Theorem) Let x 2 D be a saddle point of a C1-
vector field bW D ! R

n such that rb.x/ has the form (7.1). Then there exist ns- and
nu-dimensional C1-manifolds Mloc

s ; Mloc
u � D called the local stable and unstable

manifolds, respectively, that contain x and have the properties

8w 2 Mloc
s W lim

t!1 .w; t/ D x and 8w 2 Mloc
u W lim

t!�1 .w; t/ D x:

Furthermore, there 9a0 > 0 with NBa0 .x/ � D such that

8w 2 NBa0 .x/ n Mloc
s 9t > 0W  .w; t/ … NBa0.x/; (7.2a)

8w 2 NBa0 .x/ n Mloc
u 9t < 0W  .w; t/ … NBa0.x/; (7.2b)

and that the properties (7.3)–(7.12) below hold.
The tangent spaces of Mloc

s and Mloc
u at x are given by

TxMloc
s D span.r1; : : : ; rns/ and TxMloc

u D span.rnsC1; : : : ; rn/;

respectively, where r1; : : : ; rn are the columns of R.

Proof See, e.g., [3, Sect. 13.4] or [14, Sect. 2.7] for the main statement above. The
properties (7.3)–(7.12) can be extracted from the proofs in [3, 14]; the necessary
details are found in Appendix B.2. ut

As we list the additional properties (7.3)–(7.12) of Mloc
s and Mloc

u , which in the
literature are usually not stated explicitly as part of the Stable Manifold Theorem,
note that each of those properties involving a0 remains valid if a0 is decreased, and
note also that the same is true for (7.2a)–(7.2b).

First, Mloc
s and Mloc

u are related to the global stable and unstable manifolds Ms

and Mu defined in (3.7a)–(3.7b) via the equations

Ms D  
�
Mloc

s ; .�1; 0�
�

and Mu D  
�
Mloc

u ; Œ0;1/
�
; (7.3)

so that in particular Mloc
s � Ms and Mloc

u � Mu. Furthermore,

Mloc
s \ NBa0 .x/ and Mloc

u \ NBa0 .x/ are compact, (7.4)

and by choosing Mloc
s and Mloc

u sufficiently small we may assume that

Mloc
s \ Mloc

u D fxg (7.5)
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and that

�0 W D sup
n

hys; yui
ˇ̌
ˇ jysj D jyuj D 1I ys 2 Tws M

loc
s ; yu 2 Twu Mloc

u

for some ws 2 Mloc
s ; wu 2 Mloc

u

o
2 Œ0; 1/: (7.6)

During the proof of the Stable Manifold Theorem we learn how to construct a
function ps 2 C1

� NBa0 .x/;M
loc
s

�
1 that projects NBa0 .x/ along TxMloc

u onto Mloc
s , i.e.,

one has

8v 2 NBa0.x/W ps.v/ � v 2 TxMloc
u ; (7.7)

8v 2 Mloc
s \ NBa0.x/W ps.v/ D v: (7.8)

For 8v 2 NBa0 .x/ and 8t 2 R the function

�vs .t/ WD  .ps.v/; t/ (7.9)

fulfills2

�vs .t/ D x C Ut.v � x/C
Z t

0

Ut��g.�vs .�// d� �
Z 1

t
Vt��g.�vs .�// d�; (7.10)

where we define

Ut WD R



etP 0

0 0

�
R�1; Vt WD R



0 0

0 etQ

�
R�1 8t 2 R; (7.11)

g.w/ WD b.w/� A.w � x/ 8w 2 D: (7.12)

Similarly, there exists a function pu 2 C1
� NBa0 .x/;M

loc
u

�
that projects NBa0 .x/ along

TxMloc
s onto Mloc

u , and the function �vu.t/ WD  .pu.v/; t/ fulfills a relation analogous
to (7.10).

Let us now adjust Definition 3.21 and Lemma 6.1 to the present situation where
x is a saddle point.

Definition 7.2 Let x 2 D be such that b.x/ D 0 and that all the eigenvalues of the
matrix rb.x/ have nonzero real part. Then we define the functions fsW Ms ! Œ0;1/

and fuW Mu ! Œ0;1/ as

1By this we mean that ps is the restriction to NBa0 .x/ of a C1-function that is defined on a larger open
ball.
2See [20, Appendix 4] for a quick derivation of (7.10).
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fs.w/ WD
Z 1

0

jb. .w; t//j dt D
Z 1

0

j P .w; t/j dt; w 2 Ms; (7.13a)

fu.w/ WD
Z 0

�1
jb. .w; t//j dt D

Z 0

�1
j P .w; t/j dt; w 2 Mu: (7.13b)

Lemma 7.3 The functions fs and fu of Definition 7.2 are finite-valued and have the
following properties:

(i) For 8w 2 Ms, the function t 7! fs. .w; t// is non-increasing (decreasing if
w ¤ x) and C1, with @t fs. .w; t// D �jb. .w; t//j;
for 8w 2 Mu, the function t 7! fu. .w; t// is non-decreasing (increasing if
w ¤ x) and C1, with @t fu. .w; t// D Cjb. .w; t//j.

(ii) 8w 2 Ms W fs.w/ � jw � xj; (7.14a)

8w 2 MuW fu.w/ � jw � xj: (7.14b)

Furthermore, after decreasing a0 > 0 sufficiently, we have the following:

(iii) There exist functions Qfs; Qfu 2 C
� NBa0 .x/; Œ0;1/

�
that are C1 on NBa0 .x/ n fxg such

that

8w 2 Mloc
s \ NBa0 .x/W fs.w/D Qfs.w/; (7.15a)

8w 2 Mloc
u \ NBa0.x/W fu.w/D Qfu.w/: (7.15b)

(iv) There 9c10 � 1 such that

8w 2 Mloc
s \ NBa0 .x/W fs.w/� c10jw � xj; (7.16a)

8w 2 Mloc
u \ NBa0 .x/W fu.w/ � c10jw � xj: (7.16b)

Proof See Appendix B.3. ut
Now consider for 8a > 0 the level sets

Ma
s WD f �1

s .fag/ and Ma
u WD f �1

u .fag/;

which by (7.14a)–(7.14b) and because of fs.x/ D fu.x/ D 0 fulfill

8a > 0W Ma
s [ Ma

u � NBa.x/ n fxg: (7.17)

We will now continue to decrease a0 > 0 to make our construction in Sects. 7.2
and 7.3 work. First, we have the following.
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Lemma 7.4 We can decrease a0 > 0 so much that for 8a 2 .0; a0�

Ma
s and f �1

s

�
Œ0; a0�

�
are compact subsets of Mloc

s , (7.18a)

Ma
u and f �1

u

�
Œ0; a0�

�
are compact subsets of Mloc

u , (7.18b)

 .Ma
s ;R/ D Ms n fxg;  .Ma

u ;R/ D Mu n fxg; (7.19)

and that in the two-dimensional case (D � R
2) the sets Ma

s and Ma
u each consist of

exactly two points.

Proof See Appendix B.4. ut
Second, since b.x/ D 0, by Remark 3.19 we have x … Mi for 8i D 1; : : : ;m, i.e.,
fMi.x/ ¤ 0, and so we can make a0 > 0 so small that

8i D 1; : : : ;m 8w 2 NBa0 .x/W fMi.w/ ¤ 0: (7.20)

In fact, using the notation

I WD f1; : : : ;mg;
IC WD ˚

i 2 I
ˇ̌
fMi.x/ > 0

�
;

I� WD ˚
i 2 I

ˇ̌
fMi.x/ < 0

�
;

we have IC [ I� D I, and (7.20) and the continuity of the functions fMi imply

8i 2 IC 8w 2 NBa0 .x/W fMi .w/ > 0; (7.21a)

8i 2 I� 8w 2 NBa0 .x/W fMi .w/ < 0: (7.21b)

Third, since rb.x/ is an invertible matrix, the function b is locally invertible at x by
the Inverse Function Theorem, and its local inverse is C1 as well. Since b.x/ D 0,
we can thus decrease a0 > 0 so much that

9d1; d2 > 0 8w 2 NBa0 .x/W d1jb.w/j � jw � xj � d2jb.w/j: (7.22)

In particular, we have

8w 2 NBa0 .x/ n fxgW b.w/ ¤ 0: (7.23)

Fourth, observe the following refined version of the triangle inequality.
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Lemma 7.5 8� 2 Œ0; 1/ 9d 2 .0; 1/ 8v;w 2 R
nW

hv;wi � � jvjjwj ) jv C wj � max
˚jvj; jwj�C d min

˚jvj; jwj� (7.24)

Proof See Appendix B.5. ut
Let d3 2 .0; 1/ be the constant d given by Lemma 7.5 that corresponds to the value
� D �0 2 Œ0; 1/ defined in (7.6), let d4; ˛ > 0 such that

8t � 0W jUtj � d4e�˛t and 8t � 0W jVtj � d4e˛t; (7.25)

and choose � > 0 so small that

2d4�

˛
� 1

2
;

�
.jAjC�/8d2d4

˛
C2d2



� � 1

4
.1�d3/ and 8d2d4� � 1: (7.26)

Then since the function g defined in (7.12) is C1 and fulfills rg.x/ D 0, we can
further decrease a0 > 0 so much that 8w 2 NBa0 .x/W jrg.w/j � �. As a consequence,
we have

8w1;w2 2 NBa0 .x/W jg.w1/ � g.w2/j � �jw1 � w2j; (7.27)

and (taking w2 D x and using g.x/ D 0) thus in particular

8w 2 NBa0 .x/W jg.w/j � �jw � xj: (7.28)

This completes our definition of a0. Now since x 2 Mloc
s \ Mloc

u , by (7.8) we have
ps.x/ D pu.x/ D x, and so we can choose a1 2 .0; a0� so small that

ps. NBa1 .x// [ pu. NBa1 .x// � NBa0 .x/: (7.29)

Lemma 7.6 We can decrease a1 > 0 so much that 8� > 0 9� > 0W
(i) all the flowlines starting from a point w 2 NB�.x/nMloc

s will leave Ba1 .x/ at some
time T1.w/ > 0 as t ! 1, and we have

 
�
w; Œ0;T1.w/�

� � N�
�
Mloc

u \ NBa1 .x/
� \ NBa1 .x/I (7.30)

(ii) all the flowlines starting from a point w 2 NB�.x/nMloc
u will leave Ba1 .x/ at some

time T2.w/ < 0 as t ! �1, and we have

 
�
w; ŒT2.w/; 0�

� � N�
�
Mloc

s \ NBa1 .x/
� \ NBa1 .x/: (7.31)

Proof See Appendix B.6. The lemma is obtained from the linear case b.w/ D
A.w � x/ by applying the Hartman-Grobman-Theorem [14, p. 119]. ut
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Definition 7.7 For 8i 2 I we denote by zi and ti the functions that Lemma 6.7
associates to the admissible manifolds Mi.

It remains to choose one last sufficiently small constant, Qa > 0. To prepare, the
next lemma groups the points w 2 Ma

s [ Ma
u � .Ms [ Mu/ n fxg � Sm

iD1  .Mi;R/

(here we used the condition (3.10)) according to the index i such that w 2  .Mi;R/,
and it gives us a bound on jti.w/j.
Lemma 7.8 8a 2 .0; a0� 9compact Ka

1 ; : : : ;K
a
m � D 9�a;Ta > 0 such that

[
i2IC

Ka
i D Ma

s and
[
i2I�

Ka
i D Ma

u; (7.32)

8i 2 IW NN�a.K
a
i / �  .Mi; Œ�Ta;Ta�/: (7.33)

In the two-dimensional case we can use the sets

Ka
i D  .Mi;R/\ Ma

s for i 2 IC; (7.34a)

Ka
i D  .Mi;R/\ Ma

u for i 2 I�: (7.34b)

Proof See Appendix B.7. ut
Now let us define the compact set

K WD NBa0 .x/[
m[

iD1
 
�
Mi; Œ�Ta0 ;Ta0 �

�
: (7.35)

By Remark 3.19 no point in Mi and thus also in  .Mi;R/ has zero drift, and
using (7.23) we thus find that the set b�1�

R
n n f0g� [ fxg is open and contains K.

Therefore we can choose Qa > 0 so small that

0 < Qa < a1 � a0; (7.36)

NN2Qa.K/ � b�1�
R

n n f0g�[ fxg � D: (7.37)

Finally, in the two-dimensional case (D � R
2) we decrease Qa > 0 at this point

as described on pp. 128–130 (Steps 2–3 of our proof of Lemma 6.15 (vi)). We
emphasize that our construction on those pages will not make use of anything
we do beyond this point, and that the sole reason for postponing this step is to
not unnecessarily distract the reader now with further details. This completes our
preparation process.
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7.2 Modification of the Admissible Manifolds

We begin the second part of our proof with the definition of the sets OMQa
s and OMQa

u .

Lemma 7.9 There exists a 
0 > 0 such that the compact sets

OMQa
s WD p�1

s .MQa
s /\ NN
0.MQa

s / and OMQa
u WD p�1

u .MQa
u/\ NN
0 .MQa

u/ (7.38)

fulfill

OMQa
s \ Ms D MQa

s and OMQa
u \ Mu D MQa

u : (7.39)

Proof See Appendix B.8. ut
Note that since ps and pu are only defined on NBa0 .x/, we have

OMQa
s � NBa0.x/ and OMQa

u � NBa0 .x/: (7.40)

Our goal in this section is to use Lemma 6.5 to turn the admissible manifolds Mi

into new ones, M0
i , whose union covers OMQa

s \ NN
.MQa
s / and OMQa

u \ NN
.MQa
u/ for some

sufficiently small 
 > 0, see (7.53) and (7.55). The essential ingredients for defining
the functions ˇi needed for Lemma 6.5 are the functions given by the following
lemma. Observe the resemblance with Lemma 6.7.

Lemma 7.10 There exist open sets Ds 
 Ms n fxg and Du 
 Mu n fxg and functions
zs 2 C1

�
Ds; OMQa

s

�
, ts 2 C1.Ds;R/, zu 2 C1

�
Du; OMQa

u

�
and tu 2 C1.Du;R/ such that

8w 2 DsW  
�
zs.w/; ts.w/

� D w; (7.41a)

8w 2 DuW  �zu.w/; tu.w/
� D w; (7.41b)

8w 2 Ds \ OMQa
s W zs.w/ D w; (7.42a)

8w 2 Du \ OMQa
u W zu.w/ D w: (7.42b)

Furthermore, zs and zu are constant on the flowlines of b, i.e., we have

8w 2 Ds 8t 2 RW  .w; t/ 2 Ds ) zs. .w; t// D zs.w/; (7.43a)

8w 2 Du 8t 2 RW  .w; t/ 2 Du ) zu. .w; t// D zu.w/: (7.43b)

Proof See Appendix B.9. The proof resembles the one of Lemma 6.7, with the
additional difficulty that now our target manifolds OMQa

s and OMQa
u are not admissible,

and so a single flowline might intersect them more than once. ut
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Remark 7.11 We may assume that

8i 2 ICW KQa
i D zs.K

a0
i /; (7.44a)

8i 2 I�W KQa
i D zu.K

a0
i /: (7.44b)

Proof See Appendix B.10. ut
The next lemma provides us with sets Gi that we will need momentarily.

Lemma 7.12 For 8i 2 I there exists an open set Gi � D such that

8i 2 I W Gi 
  .KQa
i ; Œ�TQa;TQa�/I (7.45)

8i 2 ICW Gi \ f �1
Mi

�
Œ0;1/

� � NQa.K/; (7.46a)

8i 2 I�W Gi \ f �1
Mi

�
.�1; 0�

� � NQa.K/: (7.46b)

Proof See Appendix B.11. ut
Now let some i 2 I be given. Assuming for the moment that i 2 IC, we have
KQa

i � MQa
s by (7.32) and thus  .KQa

i ; Œ�TQa;TQa�/ �  .MQa
s ;R/ D Ms n fxg � Ds

by (7.19) and the choice of Ds in Lemma 7.10, and combining this with (7.45) we
find that

 .KQa
i ; Œ�TQa;TQa�/ � Ds \ Gi: (7.47)

Since KQa
i � MQa

s � OMQa
s by (7.32) and (7.39), (7.42a) and (7.43a) imply that

8w 2  .KQa
i ; Œ�TQa;TQa�/W zs.w/ 2 KQa

i , and since zs is continuous there is an open
set Wi with

 .KQa
i ; Œ�TQa;TQa�/ � Wi � Ds \ Gi (7.48)

that is so small that

8w 2 WiW zs.w/ 2 N�Qa.K
Qa
i / �  .Mi; Œ�TQa;TQa�/;

where in the last step we used (7.33). In particular,

8w 2 WiW zs.w/ 2  .Mi;R/ and ti.zs.w// 2 Œ�TQa;TQa�: (7.49)

Furthermore, since KQa
i and Œ�TQa;TQa� are compact and Wi is open, because of (7.48)

we can choose a 
 2 .0; 
0� small enough that

 
� NN
.KQa

i /; Œ�TQa;TQa�
� � Wi � Ds \ Gi: (7.50)
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Finally, we let �i 2 C1.D; Œ0; 1�/ be a function with supp.�i/ � Wi such that

8w 2  � NN
.KQa
i /; Œ�TQa;TQa�

�W �i.w/ D 1 (7.51)

and define

ˇi.w/ WD
(
�i.w/ti.zs.w// if w 2 Wi,

0 if w 2 D n Wi;
(7.52)

which is well-defined by (7.49). Then ˇi 2 C1.D;R/, and by Lemma 6.5 the set

M0
i WD  ˇi .Mi; 1/ (7.53)

is an admissible manifold again.
If i 2 I� then an analogous strategy for defining M0

i can be applied (with MQa
s , Ds

and zs replaced by MQa
u , Du and zu, respectively), and the relations (7.47)–(7.53) hold

in their correspondingly modified form. In this way we can define M0
i successively

for 8i 2 I, at each step potentially decreasing the previously obtained 
 (this is
possible since (7.50)–(7.51) remain true if 
 is decreased).

Definition 7.13 For 8i 2 I we denote by z0
i and t0i the functions that Lemma 6.7

associates to the admissible manifolds M0
i .

The new admissible manifolds M0
i have the following properties.

Lemma 7.14 (Properties of M0
i)

(i) 8i 2 I W  .M0
i ;R/ D  .Mi;R/.

(ii) 8i 2 ICW OMQa
s \ NN
.KQa

i / � M0
i ; (7.54a)

8i 2 I�W OMQa
u \ NN
.KQa

i / � M0
i ; (7.54b)

OMQa
s \ NN
.MQa

s / �
[
i2IC

M0
i ;

OMQa
u \ NN
.MQa

u/ �
[
i2I�

M0
i : (7.55)

(iii) 8i 2 I 8w 2 NNQa.M0
i/ n fxgW b.w/ ¤ 0.

(iv) 8i 2 IC 8z 2 M0
i W

Z 1

0

jb. .z; �//j d� � Qa; (7.56a)

8i 2 I� 8z 2 M0
i W

Z 0

�1
jb. .z; �//j d� � Qa: (7.56b)
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(v) For 8 Q
 2 .0; 
�9� > 0 such that

8w 2 NB�.x/ n Mloc
u 9t < 0W  .w; t/ 2 OMQa

s ; (7.57)ˇ̌
ps. .w; t// �  .w; t/ˇ̌ � Q
I (7.58)

8w 2 NB�.x/ n Mloc
s 9t > 0W  .w; t/ 2 OMQa

u; (7.59)ˇ̌
pu. .w; t// �  .w; t/

ˇ̌ � Q
: (7.60)

(vi) There 9" > 0 such that

8w 2 NB".x/ n Mloc
u 9i 2 ICW w 2  .M0

i ; .0;1//; (7.61)

z0
i.w/ 2 OMQa

s ; (7.62)

 
�
w; Œ�t0i.w/; 0�

� � NBa0 .x/I (7.63)

8w 2 NB".x/ n Mloc
s 9 j 2 I�W w 2  .M0

j ; .�1; 0//; (7.64)

z0
j.w/ 2 OMQa

u ; (7.65)

 
�
w; Œ0;�t0j.w/�

� � NBa0 .x/: (7.66)

Proof In part (ii) we will only show (7.54a) and the first relation in (7.55), in parts
(iii)–(iv) we will only treat the case i 2 IC, and in parts (v)–(vi) we will only
show the properties (7.57)–(7.58) and (7.61)–(7.63), respectively. The remaining
properties can then be shown analogously. Throughout the proofs of parts (i)–(iv)
we will repeatedly make use of the following three properties:

First, for any given ˇ 2 C1.D;R/ we have

 ˇ.w; t/ D  .w; sw.t// 8w 2 D 8t 2 R; where (7.67)

sw.t/ WD
Z t

0

ˇ. ˇ.w; �// d�: (7.68)

Indeed, if ˇ.w/ D 0 then  ˇ.w; t/ D w for 8t 2 R, and (7.67)–(7.68) are trivial.
Otherwise we have for 8� 2 sw.R/

d
d�  ˇ

�
w; s�1

w .�/
� D P ˇ

�
w; s�1

w .�/
� � .s�1

w /0.�/

D .ˇb/
�
 ˇ.w; s

�1
w .�//

� � �ˇ� ˇ.w; s�1
w .�//

���1
D b

�
 ˇ.w; s

�1
w .�//

�

and  ˇ
�
w; s�1

w .0/
� D  ˇ.w; 0/ D w, showing that  ˇ

�
w; s�1

w .�/
� D  .w; �/. We

will for 8i 2 I denote by si
w the functions defined in (7.68), with ˇ D ˇi.
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Second, since by (7.52) the functions ˇi vanish outside of Wi, we have

8w 2 Wi 8� 2 RW  ˇi.w; �/ 2 Wi: (7.69)

Since by (7.48) we have Wi � Ds for 8i 2 IC, and since by (7.43a) zs is constant on
the flowlines of b and thus on those of ˇib, this implies that

8i 2 IC 8w 2 Wi 8� 2 RW zs. ˇi .w; �// D zs.w/: (7.70)

Third, let i 2 IC and u 2 Wi � Ds. Since zs takes values in OMQa
s � NBa0.x/ by (7.40),

we have fMi.zs.u//>0 by (7.21a), and by (7.49), (6.18) and (7.52) this implies that

8i 2 IC 8u 2 WiW ti.zs.u// 2 .0;TQa�; (7.71)

8i 2 IC 8u 2 DW ˇ.u/ 2 Œ0;TQa�: (7.72)

Now let us begin with the proofs of the properties (i)–(vi).

(i) Since (7.67) implies  ˇi.w; 1/ 2  .w;R/ for 8w 2 D, we have by (7.53)

 .M0
i ;R/ D  

�
 ˇi.Mi; 1/;R

� �  
�
 .Mi;R/;R

� D  .Mi;R/

for 8i 2 I. The reverse inclusion follows analogously from the equation Mi D
 ˇi .M

0
i ;�1/.

(ii) Let i 2 IC and w 2 OMQa
s \ NN
.KQa

i /. Then for 8t 2 Œ�1; 0� we have
jsi

w.t/j � TQa by (7.68) and (7.72), and thus  ˇi .w; t/ D  .w; si
w.t// 2

 
� NN
.KQa

i /; Œ�TQa;TQa�
� � Wi � Ds by (7.67) and (7.50). By (7.69), (7.51),

(7.52), (7.70) and (7.42a) we therefore have

8t 2 Œ�1; 0�W ˇi. ˇi .w; t// D ti
�
zs. ˇi .w; t//

� D ti.zs.w// D ti.w/;

which implies si
w.�1/ D �ti.w/ by (7.68). We can now conclude that

 ˇi .w;�1/ D  .w; si
w.�1// D  .w;�ti.w// D zi.w/, i.e., w D

 ˇi .zi.w/; 1/ 2  ˇi .Mi; 1/ D M0
i . This shows (7.54a), and taking the union

over all i 2 IC on both sides and using (7.32) implies the first relation in (7.55).
(iii) Let i 2 IC. It is enough to show

M0
i � NQa.K/ (7.73)

since then by (7.37) we can conclude that

NNQa.M0
i/ � NN2Qa.K/ � b�1.Rn n f0g/[ fxg;
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which is (iii). To show (7.73), let w 2 M0
i . By definition of M0

i in (7.53) and
by (7.67) there is a v 2 Mi such that w D  ˇi .v; 1/ D  .v; si

v.1//, which
implies that w 2  .Mi;R/ and ti.w/ D si

v.1/.

Case 1: ˇi.v/ D 0. Then  ˇi .v; t/ D v for 8t 2 R, so w D v 2 Mi � K �
NQa.K/ by (7.35).

Case 2: ˇi.v/ ¤ 0. Then ˇi. ˇi .v; t// ¤ 0 for 8t 2 R, and in particular
ˇi.w/ ¤ 0. Therefore we have w 2 Wi � Gi by (7.52) and (7.48).
Furthermore, we have ti.w/ D si

v.1/ � 0 by (7.68) and (7.72), and thus
fMi.w/ � 0 by (6.18). By (7.46a) we can now conclude that

w 2 Gi \ f �1
Mi

�
Œ0;1/

� � NQa.K/ (7.74)

also in this case, completing the proof of (7.73) and thus of (iii).

(iv) Again let i 2 IC, and suppose that (7.56a) is not true, i.e., that 9z 2 M0
i such

that
Z 1

0

j P .z; �/j d� < Qa: (7.75)

Then for s; t � T > 0 we have

ˇ̌
 .z; t/ �  .z; s/ˇ̌ D

ˇ̌
ˇ̌ Z t

s

P .z; �/ d�

ˇ̌
ˇ̌ �

Z 1

T
j P .z; �/j d� ! 0

as T ! 1, and thus 9Qx 2 NDW limt!1  .z; t/ D Qx. Furthermore, since

Qa >
Z 1

0

j P .z; �/j d� �
ˇ̌
ˇ̌ Z 1

0

P .z; �/ d�

ˇ̌
ˇ̌ D

ˇ̌
ˇ lim

t!1 .z; t/� .z; 0/
ˇ̌
ˇ D jQx � zj

and z 2 M0
i , (7.73) and (7.37) tell us that Qx 2 NQa.M0

i/ � N2Qa.K/ � D. Therefore
the limit

lim
t!1

P .z; t/ D lim
t!1 b. .z; t// D b.Qx/ (7.76)

exists, and since also the limit limt!1  .z; t/ exists, the limit (7.76) must be
zero, i.e., b.Qx/ D 0. Since Qx 2 NQa.M0

i/, part (iii) of this lemma thus says that
Qx D x, i.e., limt!1  .z; t/ D x. In other words, we have z 2 Ms, and our
assumption (7.75) can be rephrased as fs.z/ < Qa.

Now since z 2 M0
i D  ˇi .Mi; 1/, there 9v 2 Mi such that z D  ˇi .v; 1/.

Case 1: ˇi.v/ D 0. Then  ˇi.v; t/ D v for 8t 2 R and thus z D v 2 Mi.
But on the other hand by (7.14a) we have jz � xj � fs.z/ < Qa < a0, which
by (7.20) implies that fMi .z/ ¤ 0, contradicting z 2 Mi.
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Case 2: ˇi.v/ ¤ 0. Then by (7.52) we have v 2 Wi, and (7.69) and (7.71)
imply that ti

�
zs. ˇi .v; �//

�
> 0 for 8� 2 R. Therefore by (7.68), (7.52)

and (7.70) we have

si
v.1/ D

Z 1

0

ˇi. ˇi.v; �// d� �
Z 1

0

ti
�
zs. ˇi .v; �//

�
d� D ti.zs.v//:

Since  .v;�ts.v// D zs.v/ and v 2 Mi implies that ti.zs.v// D �ts.v/, this
means that si

v.1/ � �ts.v/, and so using Lemma 7.3 (i) we find that

Qa > fs.z/ D fs. ˇi.v; 1// D fs
�
 .v; si

v.1//
�

� fs
�
 .v;�ts.v//

� D fs.zs.v//: (7.77)

Finally, since z D  ˇi .v; 1/ D  .v; si
v.1// and z 2 Ms, we have

zs.v/ D  
�
v;�ts.v/

� D  
�
z;�si

v.1/� ts.v/
� 2 Ms;

and since zs.v/ 2 OMQa
s by definition of zs, (7.39) thus implies that zs.v/ 2 MQa

s .
But this means that fs.zs.v// D Qa, contradicting (7.77).

(v) Let Q
 2 .0; 
� be given. Since by (7.8) and (7.4) we have ps.w/� w D 0 on the
compact set Mloc

s \ NBa0 .x/, there is an � > 0 such that

8w 2 NN�
�
Mloc

s \ NBa0 .x/
� \ NBa0 .x/W jps.w/� wj � Q
: (7.78)

Now define the function g.w/ WD fs.ps.w// � 0 for 8w 2 NBa1 .x/, which
is continuous by (7.29) and Lemma 7.3 (iii). The compact set g�1�Œ0; Qa�� \
@Ba1 .x/ is disjoint from the compact set Mloc

s \ NBa0 .x/, since any point w that
is contained in both sets would have to fulfill Qa � g.w/ D fs.ps.w// D fs.w/ �
jw � xj D a1 (where we used (7.8) and (7.14a)), contradicting (7.36). Thus we
can decrease � > 0 so much that

�
g�1�Œ0; Qa�� \ @Ba1 .x/

� \ NN�
�
Mloc

s \ NBa0 .x/
� D ¿: (7.79)

Applying Lemma 7.6 to this choice of �, we obtain a � > 0 such that all the
flowlines starting from some point w 2 NB�.x/ n Mloc

u will leave Ba1 .x/ at some
time T2.w/ < 0 as t ! �1, and (7.31) holds. Since g.x/ D fs.ps.x// D
fs.x/ D 0 by (7.8), we can decrease � > 0 so much that

8w 2 NB�.x/W g.w/ < Qa: (7.80)

Now let w 2 NB�.x/ n Mloc
u . By (7.31) and (7.36) we have  .w;T2.w// 2

NN�
�
Mloc

s \ NBa0 .x/
�
, and thus  .w;T2.w// … g�1�Œ0; Qa�� \ @Ba1 .x/ by (7.79).

Since  .w;T2.w// 2 @Ba1 .x/ by definition of T2.w/, this means that
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 .w;T2.w// … g�1�Œ0; Qa��, i.e., g
�
 .w;T2.w//

�
> Qa. Since g. .w; 0// < Qa

by (7.80), there 9t 2 .T2.w/; 0/ such that Qa D g. .w; t// D fs
�
ps. .w; t//

�
,

i.e.,

ps. .w; t// 2 MQa
s (7.81)

and thus  .w; t/ 2 p�1
s .MQa

s /. Furthermore, by (7.78), (7.31) and (7.36) we
have

ˇ̌
ps. .w; t// �  .w; t/

ˇ̌ � Q
, i.e., (7.58), and thus  .w; t/ 2 NN Q
.MQa
s / �

NN
.MQa
s / � NN
0.MQa

s / by (7.81). Combining the last two statements and
using (7.38), we find that .w; t/ 2 p�1

s .MQa
s /\ NN
0 .MQa

s / D OMQa
s , which is (7.57).

(vi) Continuing the construction of part (v) (e.g., for the choice Q
 WD 
), we have
found that  .w; t/ 2 OMQa

s \ NN
.MQa
s /. Therefore by (7.55) there 9i 2 IC such

that z WD  .w; t/ 2 M0
i and thus w D  .z;�t/ 2  

�
M0

i ; .0;1/
�
, with

z0
i.w/ D z D  .w; t/ 2 OMQa

s and t0i.w/ D �t. Finally, since Œ�t0i.w/; 0� D
Œt; 0� � ŒT2.w/; 0�, (7.31) implies that  

�
w; Œ�t0i.w/; 0�

� � NBa1 .x/ � NBa0 .x/.
This shows that (7.61)–(7.63) hold for " WD �. ut

7.3 Definition of the Functions fi; Proof of their Properties

We are now ready to define the functions fi that we are looking for.

Definition 7.15 We define the functions f1; : : : ; fmW D ! Œ0;1/ as follows: If
i 2 IC then we define

fi.w/ WD

8̂
ˆ̂<
ˆ̂̂:

Qa if fM0

i
.w/ < 0,

max

�
0; Qa �

Z t0i .w/

0

ˇ̌
b
�
 .z0

i.w/; �/
�ˇ̌

d�

�
if w 2  .M0

i ; Œ0;1//,

0 else;
(7.82a)

and if i 2 I� then we define

fi.w/ WD

8̂
ˆ̂<
ˆ̂̂:

Qa if fM0

i
.w/ > 0,

max

�
0; Qa �

Z 0

t0i .w/

ˇ̌
b
�
 .z0

i.w/; �/
�ˇ̌

d�

�
if w 2  .M0

i ; .�1; 0�/,

0 else.
(7.82b)

These functions are well-defined: If w 2  .M0
i ; Œ0;1// then t0i.w/ � 0 and thus

fM0

i
.w/ � 0 by (6.18); and similarly, if w 2  .M0

i ; .�1; 0�/ then fM0

i
.w/ � 0. Note

that the two integrals in (7.82a)–(7.82b) are the lengths of the flowline segments
between w and z0

i.w/.
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Now let " > 0 be the value given to us in Lemma 7.14 (vi), and let us reduce it if
necessary so that " � Qa.

We will now show that the functions fi fulfill the properties (i)–(vii) of
Lemma 6.15. The properties (ii)–(iv) and (vi) will in fact be proven for Qa instead of ",
i.e., we will show stronger statements than required (since Qa � "), and for that
purpose we denote

E0
i WD f �1

i

�
.0; Qa/� for i 2 I.

In parts (i)–(iv) and (vi) we will restrict ourselves to the case i 2 IC (the proofs for
the case i 2 I� can be done analogously).

7.3.1 Proof of Properties (i)–(iv)

(i) Recalling (7.53) and the construction of fM0

i
in the proof of Lemma 6.5, and

using that b.x/ D 0, we find that

8i 2 ICW fM0

i
.x/ D fMi . ˇi.x;�1// D fMi.x/ > 0: (7.83)

Also, since by Remark 3.19 M0
i and thus also  .M0

i ;R/ does not contain any
points with zero drift, we have x …  .M0

i ; Œ0;1//. Therefore fi.x/ is defined
by the third line in (7.82a), and so we have fi.x/ D 0.

(ii) To show that the function fi traces the flowlines of b between the values 0 and Qa,
we have to check the three properties in Definition 6.9.

(ii.1) The definition of fi in (7.82a) divides D into three parts, let us call them
D1;D2 and D3. To show that fi is continuous on D, we will show that fi
is continuous on the closures in D of each of the three parts, i.e., on D

D
1 ,

D
D
2 and D

D
3 .

First consider D1 D f �1
M0

i

�
.�1; 0/

�
. For 8w 2 D

D
1 n D1 � f �1

M0

i

.f0g/ D M0
i we have t0i.w/ D 0 by (6.16), and fi.w/ is defined by the

second line in (7.82a), so

fi.w/ D max

�
0; Qa �

Z 0

0

ˇ̌
b
�
 .z0

i.w/; �/
�ˇ̌

d�

�
D maxf0; Qag D Qa:

This shows that fi is constant and thus continuous on D
D
1 .

Regarding D3, observe that by (6.18) we have  .M0
i ; .�1; 0// �

f �1
Mi

�
.�1; 0/

�
, and so we can write

D3 WD D n �f �1
M0

i

�
.�1; 0/

�[  
�
M0

i ; Œ0;1/
��
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D D n � f �1
M0

i

�
.�1; 0/

�
„ ƒ‚ …

open

[  
�
M0

i ;R
�

„ ƒ‚ …
open by Lemma 6.7

�
:

This shows that D3 is closed in D, i.e., that D
D
3 D D3, and so fi is constant

and thus continuous also on D
D
3 .

It remains to show that fi is continuous on D
D
2 . Suppose that this

were not the case. Then there would be a sequence .wn/n2N � D2 D
 .M0

i ; Œ0;1// that converges to some w 2 D and for which we have

lim sup
n!1

ˇ̌
fi.wn/� fi.w/

ˇ̌
> 0: (7.84)

Since fijD2 is continuous, we must have w … D2. By passing on to a
subsequence, we may assume that z0

i.wn/ converges to some z 2 M0
i

as n ! 1 (since M0
i is compact), and that t0i.wn/ converges to some

t 2 Œ0;1� (since t0i.wn/ � 0 for 8n 2 N).
Now if we had t < 1 then letting n ! 1 in the equation wn D

 
�
z0

i.wn/; t0i.wn/
�

would tell us that w D  .z; t/ 2  .M0
i ; Œ0;1// D D2.

Thus we have t D 1, and with Fatou’s Lemma and (7.56a) we find

lim inf
n!1

Z t0i .wn/

0

ˇ̌
b
�
 .z0

i .wn/; �/
�ˇ̌

d� �
Z

1

0

lim
n!1

1�2Œ0;t0i .wn/�

ˇ̌
b
�
 .z0

i .wn/; �/
�ˇ̌

d�

D
Z

1

0

jb. .z; �//j d� � Qa

) lim
n!1 fi.wn/ D lim

n!1 max

�
0; Qa �

Z t0i .wn/

0

ˇ̌
b
�
 .z0

i.wn/; �/
�ˇ̌

d�

�
D 0:

To find the value of fi.w/, first note that for 8n 2N we have t0i.wn/� 0
and thus fM0

i
.wn/ � 0 by (6.18), and taking the limit n ! 1 shows that

fM0

i
.w/ � 0, i.e., w … D1. Since also w … D2, this shows that fi.w/ is

defined by the third line in (7.82a), so that fi.w/ D 0 D limn!1 fi.wn/,

in contradiction to (7.84). This shows that fi is continuous on D
D
2 , and

thus on all of D.

(ii.2) To show that fi is C1 on E0
i D f �1

i

�
.0; Qa/�, note that E0

i �  .M0
i ; Œ0;1//

by (7.82a), so that

8w 2 E0
i W fi.w/ D Qa �

Z t0i .w/

0

ˇ̌
b
�
 .z0

i.w/; �/
�ˇ̌

d� 2 .0; Qa/ (7.85)
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and thus

rfi.w/ D �ˇ̌b� .z0
i.w/; t

0
i.w//

�ˇ̌rt0i.w/

�
� Z t0i .w/

0



bTrb

jbj
��
 .z0

i.w/; �/
�r .z0

i.w/; �/ d�



rz0

i.w/

D �ˇ̌b.w/ˇ̌rt0i.w/

�
� Z t0i .w/

0



bTrb

jbj
��
 .z0

i.w/; �/
�r .z0

i.w/; �/ d�



rz0

i.w/

(7.86)

for 8w 2 E0
i . The last term is well-defined and continuous in w since

z0
i.w/ 2 M0

i implies that b.z0
i.w// ¤ 0 by Remark 3.19 and thus

b
�
 .z0

i.w/; �/
� ¤ 0 for 8� 2 R.

(ii.3) Now using (7.86), (6.14) and (6.15), we find for 8w 2 E0
i that

hrfi.w/; b.w/i D �jb.w/j hrt0i.w/; b.w/i„ ƒ‚ …
D1

�
� Z t0i .w/

0



bTrb

jbj
��
 .z0

i.w/; �/
�r .z0

i.w/; �/ d�




� rz0
i.w/b.w/„ ƒ‚ …

D0
D �jb.w/j:

Remark: For i 2 I� we would obtain 8w 2 E0
i W hrfi.w/; b.w/i D

Cjb.w/j.
(iii) By (7.85) we have for 8w 2 E0

i

Qa >
Z t0i .w/

0

ˇ̌
b
�
 .z0

i.w/; �/
�ˇ̌

d� D
Z t0i .w/

0

j P .z0
i.w/; �/j d�

�
ˇ̌
ˇ̌ Z t0i .w/

0

P .z0
i.w/; �/ d�

ˇ̌
ˇ̌D ˇ̌

 
�
z0

i.w/; t
0
i.w/

� �  .z0
i.w/; 0/

ˇ̌ D jw � z0
i.w/j

and thus w 2 NQa.M0
i/, so that

E0
i � NQa.M0

i/ � N2Qa.K/ (7.87)

by (7.73). Since K is compact, this shows that NE0
i is compact as well, with

NE0
i � NN2Qa.K/ � D by (7.37).

(iv) By (7.87) we have NE0
i � NNQa.M0

i/ and thus NE0
i n fxg � NNQa.M0

i/ n fxg, and so by
Lemma 7.14 (iii) we have 8w 2 NE0

i n fxgW b.w/ ¤ 0.
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7.3.2 Proof of Property (v)

Now let F WD maxff1; : : : ; fmg. It suffices to show the estimate F.w/ � c8jw � xj
for 8w 2 NB".x/ n .Mloc

s [ Mloc
u / since this set is dense in NB".x/ and since both F and

j � � xj are continuous by part (ii.1).
Let w 2 NB".x/ n .Mloc

s [ Mloc
u / be fixed. Then by Lemma 7.14 (vi) there exist

i 2 IC and j 2 I� such that (7.61)–(7.66) hold. We abbreviate T� WD �t0i.w/ < 0,
TC WD �t0j.w/ > 0, and

�.t/ WD  .w; t/ for 8t 2 R.

Because of (7.61) and (7.64), fi.w/ and fj.w/ are defined by the second lines
in (7.82a) and (7.82b), respectively, and we can begin our estimate as follows:

F.w/ � max
˚
fi.w/; fj.w/

�

� max

�
Qa �

Z t0i .w/

0

ˇ̌
b
�
 .z0

i.w/; t/
�ˇ̌

dt; Qa �
Z 0

t0j .w/

ˇ̌
b
�
 .z0

j.w/; t/
�ˇ̌

dt

�

D max

�
Qa �

Z 0

�t0i .w/

ˇ̌
b
�
 .z0

i.w/; t
0
i.w/C t/

�ˇ̌
dt;

Qa �
Z �t0j .w/

0

ˇ̌
b
�
 .z0

j.w/; t
0
j.w/C t/

�ˇ̌
dt

�

D max

�
Qa �

Z 0

�t0i .w/
jb. .w; t//j dt; Qa �

Z �t0j .w/

0

jb. .w; t//j dt

�

D max

�
Qa �

Z 0

T�

j P .w; t/j dt; Qa �
Z TC

0

j P .w; t/j dt

�

D max

�
Qa �

Z 0

T�

j P�j dt; Qa �
Z TC

0

j P�j dt

�
: (7.88)

We must now show that the last line in (7.88) is bounded below by c8jw � xj for
some constant c8 > 0. The trick will be to write

� � x D .�s � x/C .�u � x/C r (7.89)

for some small remainder r (which vanishes if b is linear), where �s is a flowline
in Ms and �u is a flowline in Mu. The flowlines �s and �u are easier to deal with in
several ways, mostly since we can apply fs and fu to them, respectively.

To define �s and �u, first note that since �.T�/ D  .w;�t0i.w// D z0
i.w/ 2 OMQa

s

by (7.62) and similarly �.TC/ 2 OMQa
u , by (7.38) we have

ws WD ps.�.T�// 2 MQa
s and wu WD pu.�.TC// 2 MQa

u : (7.90)
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We now define the functions �s 2 C1.R;Ms/, �u 2 C1.R;Mu/ and finally r 2
C1.R;Rn/ by

�s.t/ WD  .ws; t � T�/; (7.91a)

�u.t/ WD  .wu; t � TC/ (7.91b)

and r.t/ WD �.t/� �s.t/ � �u.t/C x (7.92)

for 8t 2 R, i.e., (7.89), which fulfill

�s.T�/ D ws and �u.TC/ D wu: (7.93)

Note that for 8� 2 R we have
Z 1

�

j P�s.t/j dt D
Z 1

0

j P�s.t C �/j dt D
Z 1

0

ˇ̌
b
�
 .ws; t C � � T�/

�ˇ̌
dt

D
Z 1

0

ˇ̌
b
�
 .�s.�/; t/

�ˇ̌
dt D fs.�s.�//; (7.94a)

Z �

�1
j P�u.t/j dt D � � � D fu.�u.�//; (7.94b)

and thus by (7.90) and (7.93) in particular

Z 1

T�

j P�s.t/j dt D fs.�s.T�// D Qa and
Z TC

�1
j P�uj dt D fu.�u.TC// D Qa:

(7.95)

Furthermore, by Lemma 7.3 (i)

fs ı �s is C1 and non-increasing, (7.96a)

fu ı �u is C1 and non-decreasing. (7.96b)

Thus, by (7.14a)–(7.14b), (7.95) and (7.96a)–(7.96b) we have

8t � T�W j�s.t/ � xj � fs.�s.t// � fs.�s.T�// D Qa; (7.97)

8t � TCW j�u.t/� xj � fu.�u.t// � fu.�u.TC// D Qa; (7.98)

which together with (7.18a)–(7.18b), (7.63) and (7.66) implies

�s.ŒT�;1// � Mloc
s ; �u..�1;TC�/ � Mloc

u ; (7.99)

�.ŒT�;TC�/ [ �s.ŒT�;1// [ �u..�1;TC�/ � NBa0.x/: (7.100)
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The relation (7.100) will be necessary to justify the use of various estimates that are
only valid on NBa0 .x/.

As another consequence, choosing t D T� in (7.98) and using (7.95) shows that
fu.�u.T�// � Qa D fs.�s.T�//, and similarly we find that fs.�s.TC// � fu.�u.TC//.
Therefore we have fu.�u.T�//� fs.�s.T�// � 0 � fu.�u.TC//� fs.�s.TC//, and thus
there 9Nt 2 ŒT�;TC� such that

fu.�u.Nt// D fs.�s.Nt//: (7.101)

Our next goal is to find small bounds on
R TC

T�

jrj dt and
R TC

T�

jPrj dt. We begin by
recalling Duhamel’s formula, which says that

�.t/ D x C etA.w � x/C
Z t

0

e.t��/Ag.�.�// d�

D x C .Ut C Vt/.w � x/C
Z t

0

.Ut�� C Vt�� /g.�.�// d� 8t 2 R; (7.102)

where the matrix groups .Ut/t2R and .Vt/t2R are the ones defined in (7.11). Since
�.T�/ 2 NBa0 .x/ by (7.100), we can choose v WD �.T�/ in (7.9)–(7.10), and since
by (7.9), (7.90) and (7.91a) we then have �vs .t/ D  .ps.v/; t/ D  

�
ps.�.T�//; t

� D
 .ws; t/ D �s.t C T�/ for 8t 2 R, (7.10) tells us that

�s.t C T�/ D x C Ut.�.T�/� x/C
Z t

0

Ut��g.�s.� C T�// d�

�
Z 1

t
Vt��g.�s.� C T�// d�

for 8t 2 R. We now replace t by t�T�, use (7.102) to obtain an expression for �.T�/,
and use that U�1U�2 D U�1C�2 and U�1V�2 D 0 for 8�1; �2 2 R, to obtain

�s.t/ D x C Ut�T�

�
.UT�

C VT�
/.w � x/C

Z T�

0

.UT��� C VT��� /g.�.�// d�




C
Z t�T�

0

Ut�T���g.�s.� C T�// d� �
Z 1

t�T�

Vt�T���g.�s.� C T�// d�

D x C Ut.w � x/�
Z 0

T�

Ut��g.�.�// d�

C
Z t

T�

Ut��g.�s.�// d� �
Z 1

t
Vt��g.�s.�// d�: (7.103)
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Similarly, one can obtain the formula

�u.t/ D x C Vt.w � x/C
Z TC

0

Vt��g.�.�// d�

�
Z TC

t
Vt��g.�u.�// d� C

Z t

�1
Ut��g.�u.�// d�: (7.104)

Subtracting (7.103) and (7.104) from (7.102), we thus obtain for 8t 2 ŒT�;TC�

r.t/ D �.t/ � �s.t/ � �u.t/C x

D .Ut C Vt/.w � x/C
Z t

0

.Ut�� C Vt�� /g.�.�// d�

� Ut.w � x/C
Z 0

T�

Ut��g.�.�// d� �
Z t

T�

Ut��g.�s.�// d�

C
Z 1

t
Vt��g.�s.�// d�

� Vt.w � x/ �
Z TC

0

Vt��g.�.�// d� C
Z TC

t
Vt��g.�u.�// d�

�
Z t

�1
Ut��g.�u.�// d�

D
Z TC

T�

�
1�<tUt�� � 1��tVt��

��
g.�.�//� g.�s.�// � g.�u.�//

�
d�

�
Z T�

�1
Ut��g.�u.�// d� C

Z 1

TC

Vt��g.�s.�// d�

D
Z 1

�1
�
1�<tUt�� � 1��tVt��

�
�.�/ d�; (7.105)

where for 8� 2 R we define

�.�/ WD 1T����TC

�
g.�.�//� g.�s.�//� g.�u.�//

�
� 1�<T�

g.�u.�//� 1�>TC
g.�s.�//:

Combining (7.105) with (7.25), we obtain the estimate

jr.t/j � d4

Z 1

�1
e�˛jt�� jj�.�/j d� for 8t 2 ŒT�;TC�. (7.106)
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Now let C1 � ŒT�;TC� and C2 WD ŒT�;TC�n C1 be two measurable sets to be chosen
later, and let C�

1 WD C1 [ .�1;T�/ and CC
2 WD C2 [ .TC;1/. Then we have for

8� 2 R

�.�/ D 1�2C1

�
g.�.�//� g.�s.�//

�C 1�2C2

�
g.�.�// � g.�u.�//

�
� 1�2C�

1
g.�u.�// � 1

�2CC

2
g.�s.�//;

and thus by (7.100), (7.27)–(7.28), (7.92) and (7.22)

j�.�/j � 1�2C1�
ˇ̌
�.�/ � �s.�/„ ƒ‚ …
Dr.�/C�u.�/�x

ˇ̌C 1�2C2�
ˇ̌
�.�/ � �u.�/„ ƒ‚ …
Dr.�/C�s.�/�x

ˇ̌

C 1�2C�

1
�j�u.�/� xj C 1

�2CC

2
�j�s.�/ � xj

� 1�2C1�
�jr.�/j C j�u.�/ � xj�C 1�2C2�

�jr.�/j C j�s.�/ � xj�
C 1�2C�

1
�j�u.�/� xj C 1

�2CC

2
�j�s.�/ � xj

� �
�
1�2ŒT�;TC�jr.�/j C 2 � 1�2C�

1
j�u.�/ � xj C 2 � 1

�2CC

2
j�s.�/ � xj

	

� �
�
1�2ŒT�;TC�jr.�/j C 2d21�2C�

1

ˇ̌
b.�u.�//

ˇ̌C 2d21�2CC

2

ˇ̌
b.�s.�//

ˇ̌	
;

D �
�
1�2ŒT�;TC�jr.�/j C 2d21�2C�

1
j P�u.�/j C 2d21�2CC

2
j P�s.�/j

	
: (7.107)

We can now use (7.106), (7.107) and the first estimate in (7.26) to obtain

Z TC

T�

jr.t/j dt � d4

Z TC

T�

dt
Z 1

�1
d� e�˛jt�� jj�.�/j

� d4

Z 1

�1
d� j�.�/j

Z 1

�1
dt e�˛jt�� j

D 2d4
˛

Z 1

�1
j�.�/j d�

� 2d4�

˛

� Z TC

T�

jrj dt C 2d2

Z
C�

1

j P�uj dt C 2d2

Z
CC

2

j P�sj dt




� 1

2

Z TC

T�

jrj dt C 4d2d4�

˛

� Z
C�

1

j P�uj dt C
Z

CC

2

j P�sj dt




)
Z TC

T�

jrj dt � 8d2d4�

˛

� Z
C�

1

j P�uj dt C
Z

CC

2

j P�sj dt



: (7.108)
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To turn this into an estimate for
R TC

T�

jPrj dt, we start from the relation

Pr D P� � P�s � P�u

D b.�/� b.�s/ � b.�u/

D �
A.� � x/C g.�/

�� �
A.�s � x/C g.�s/

� � �
A.�u � x/C g.�u/

�
D A.� � �s � �u C x/C �

g.�/� g.�s/� g.�u/
�

D Ar C�; (7.109)

where the last step is valid only on ŒT�;TC�. Using (7.109), (7.107), (7.108) and the
second estimate in (7.26), we thus obtain

Z TC

T�

jPrj dt � jAj
Z TC

T�

jrj dt C
Z TC

T�

j�j dt

� .jAj C �/

Z TC

T�

jrj dt C 2d2�
Z

C1

j P�uj dt C 2d2�
Z

C2

j P�sj dt

�
h
.jAj C �/

8d2d4
˛

C 2d2
i
�

�Z
C�

1

j P�uj dt C
Z

CC

2

j P�sj dt




� 1
4
.1 � d3/

� Z
C�

1

j P�uj dt C
Z

CC

2

j P�sj dt



: (7.110)

Since by (7.99) we have �s.ŒT�;TC�/ � Mloc
s and �u.ŒT�;TC�/ � Mloc

u and thus also

8t 2 ŒT�;TC�W P�s.t/ 2 T�s.t/M
loc
s and P�u.t/ 2 T�u.t/M

loc
u ;

(7.6) tells us that

8t 2 ŒT�;TC�W
˝ P�s.t/; P�u.t/

˛ � �0j P�s.t/jj P�u.t/j:

Therefore, if we choose

C1 WD ˚
t 2 ŒT�;TC�

ˇ̌ j P�u.t/j � j P�s.t/j
�
; (7.111a)

C2 WD ˚
t 2 ŒT�;TC�

ˇ̌ j P�u.t/j > j P�s.t/j
�
; (7.111b)

then by our choice of d3 using Lemma 7.5 we have on ŒT�;TC� that

j P�s C P�uj � 1t2C1

�j P�sj C d3j P�uj�C 1t2C2

�
d3j P�sj C j P�uj�; (7.112)
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and using (7.112), (7.110), (7.95) and (7.111a)–(7.111b), we obtain the estimate

Z TC

T�

j P�j dt D
Z TC

T�

j P�s C P�u C Prj dt

�
Z TC

T�

j P�s C P�uj dt C 2

Z TC

T�

jPrj dt �
Z TC

T�

jPrj dt

�
Z

C1

.j P�sj C d3j P�uj/ dt C
Z

C2

.d3j P�sj C j P�uj/ dt

C 1
2
.1� d3/

� Z
C�

1

j P�uj dt C
Z

CC

2

j P�sj dt



�
Z TC

T�

jPrj dt

D
Z

C1[CC

2

j P�sj dt C
Z

C�

1 [C2

j P�uj dt

� 1
2
.1C d3/

� Z 1

TC

j P�sj dt C
Z T�

�1
j P�uj dt




� 1
2
.1 � d3/

� Z
C1

j P�uj dt C
Z

C2

j P�sj dt



�
Z TC

T�

jPrj dt

D Qa C Qa � 1
2
.1C d3/

� Z 1

TC

j P�sj dt C
Z T�

�1
j P�uj dt




� 1
2
.1 � d3/

Z TC

T�

min
˚j P�uj; j P�sj

�
dt �

Z TC

T�

jPrj dt: (7.113)

To control the next-to-last integral, note that by (7.96a)–(7.96b) and (7.101) we have

min
˚
fu.�u/; fs.�s/

� D fu.�u/1.�1;Nt � C fs.�s/1.Nt;1/;

and thus using (7.99)–(7.100), (7.22) and Lemma 7.3 (ii) and (iv) we find that

Z TC

T�

min
˚j P�uj; j P�sj

�
dt � 1

d2

Z TC

T�

min
˚j�u � xj; j�s � xj� dt

� 1

d2c10

Z TC

T�

min
˚
fu.�u/; fs.�s/

�
dt

D 1

d2c10

� Z Nt

T�

fu.�u/ dt C
Z TC

Nt
fs.�s/ dt




� 1

d2c10

� Z Nt

T�

j�u � xj dt C
Z TC

Nt
j�s � xj dt




� d1
d2c10

� Z Nt

T�

j P�uj dt C
Z TC

Nt
j P�sj dt



: (7.114)
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We can now reorder the terms in (7.113), use (7.114), define d5 WD min
˚
1
2
.1C d3/;

1
2
.1 � d3/

d1
d2c10

; 1
2

�
> 0, and use (7.94a)–(7.94b) and (7.101) to obtain

2Qa �
Z TC

T�

j P�j dt � 1
2
.1C d3/

� Z T�

�1
j P�uj dt C

Z 1

TC

j P�sj dt




C 1
2
.1 � d3/

Z TC

T�

min
˚j P�uj; j P�sj

�
dt C

Z TC

T�

jPrj dt

� 1
2
.1C d3/

� Z T�

�1
j P�uj dt C

Z 1

TC

j P�sj dt




C 1
2
.1 � d3/

d1
d2c10

� Z Nt

T�

j P�uj dt C
Z TC

Nt
j P�sj dt



C
Z TC

T�

jPrj dt

� d5

� Z Nt

�1
j P�uj dt C

Z 1

Nt
j P�sj dt C 2

Z TC

T�

jPrj dt




D d5

�
fu.�u.Nt//C fs.�s.Nt//C 2

Z TC

T�

jPrj dt




D 2d5

�
fs.�s.Nt//C

Z TC

T�

jPrj dt



: (7.115)

Observe that the left-hand side of (7.115) is the sum of the two expressions in the
last line of (7.88) that we have to estimate. Instead of splitting the integral on the left
of (7.115) into the two integrals in (7.88), however, we will have to take an extra step
first and split it into two equal parts instead. In other words, we define Ot 2 ŒT�;TC�
as the unique value that fulfills

Z Ot

T�

j P�j dt D
Z TC

Ot
j P�j dt (7.116)

and thus in particular

Z Ot

T�

j P�j dt D 1

2

Z TC

T�

j P�j dt D 1

2

� Z TC

Nt
j P�j dt C

Z Nt

T�

j P�j dt



: (7.117)

We must now further estimate the right-hand side of (7.115) by a multiple of
j�.Ot/� xj. We begin by using (7.94a) and (7.95) to find

Z TC

Nt
j P�j dt �

Z Nt

T�

j P�j dt D
Z TC

Nt
j P�s C P�u C Prj dt �

Z Nt

T�

j P�s C P�u C Prj dt
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�
Z TC

Nt
�j P�sj C j P�uj C jPrj� dt �

Z Nt

T�

�j P�sj � j P�uj � jPrj� dt

� 2

Z 1

Nt
j P�sj dt �

Z 1

T�

j P�sj dt C
Z TC

�1
j P�uj dt C

Z TC

T�

jPrj dt

D 2fs.�s.Nt// � Qa C Qa C
Z TC

T�

jPrj dt

D 2fs.�s.Nt//C
Z TC

T�

jPrj dt:

Analogously one can obtain the estimate

Z Nt

T�

j P�j dt �
Z TC

Nt
j P�j dt � 2fu.�u.Nt//C

Z TC

T�

jPrj dt

D 2fs.�s.Nt//C
Z TC

T�

jPrj dt;

where we used (7.101), and putting both together we find that

ˇ̌
ˇ̌ Z TC

Nt
j P�j dt �

Z Nt

T�

j P�j dt

ˇ̌
ˇ̌ � 2fs.�s.Nt//C

Z TC

T�

jPrj dt:

This and (7.117) then lead us to the estimate

j�.Ot/� �.Nt/j D
ˇ̌
ˇ̌ Z Ot

Nt
P� dt

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌ Z Ot

Nt
j P�j dt

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ Z Ot

T�

j P�j dt �
Z Nt

T�

j P�j dt

ˇ̌
ˇ̌

D 1

2

ˇ̌
ˇ̌ Z TC

Nt
j P�j dt �

Z Nt

T�

j P�j dt

ˇ̌
ˇ̌ � fs.�s.Nt//C 1

2

Z TC

T�

jPrj dt;

which in turn allows us to bound j�.Ot/� xj by terms only involving Nt,

j�.Ot/� xj � j�.Nt/ � xj C j�.Ot/ � �.Nt/j

� j�.Nt/ � xj C fs.�s.Nt//C 1

2

Z TC

T�

jPrj dt

D ˇ̌
�s.Nt/C �u.Nt/C r.Nt/� 2x

ˇ̌C fs.�s.Nt//C 1

2

Z TC

T�

jPrj dt

� j�s.Nt/ � xj C j�u.Nt/� xj C jr.Nt/j C fs.�s.Nt//C 1

2

Z TC

T�

jPrj dt
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� fs.�s.Nt//C fu.�u.Nt//C jr.Nt/j C fs.�s.Nt//C 1

2

Z TC

T�

jPrj dt

D 3fs.�s.Nt//C 1

2

Z TC

T�

jPrj dt C jr.Nt/j; (7.118)

where we used (7.14a)–(7.14b) and again (7.101). To estimate jr.Nt/j further, we start
from (7.106) and (7.107), where this time we choose C1 WD ŒT�; Nt� and C2 WD .Nt;TC�,
and then use (7.94a)–(7.94b), the first estimate in (7.26), and again (7.101):

sup
T��t�TC

jr.t/j � sup
T��t�TC

d4

Z 1

�1
e�˛jt�� jj�.�/j d�

� �d4 sup
T��t�TC

� Z TC

T�

e�˛jt�� jjr.�/j d�

C 2d2

Z Nt

�1
e�˛jt�� jj P�u.�/j d� C 2d2

Z 1

Nt
e�˛jt�� jj P�s.�/j d�




� �d4

�
sup

T����TC

jr.�/j �
Z 1

�1
e�˛j� j d� C 2d2

Z Nt

�1
j P�u.�/j d�

C 2d2

Z 1

Nt
j P�s.�/j d�




D �d4

�
2

˛
sup

T��t�TC

jr.t/j C 2d2fu.�u.Nt//C 2d2fs.�s.Nt//



� 1

2
sup

T��t�TC

jr.t/j C 4d2d4� fs.�s.Nt//:

Solving and using also the third estimate in (7.26), we thus find that

sup
T��t�TC

jr.t/j � 8d2d4� fs.�s.Nt// � fs.�s.Nt//;

and so (7.118) can be estimated further by

j�.Ot/ � xj � 3fs.�s.Nt//C 1

2

Z TC

T�

jPrj dt C jr.Nt/j

� 4fs.�s.Nt//C 1

2

Z TC

T�

jPrj dt: (7.119)
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Combining (7.117), (7.115) and (7.119), we obtain

Qa �
Z Ot

T�

j P�j dt D 1

2

�
2Qa �

Z TC

T�

j P�j dt



� d5

�
fs.�s.Nt//C

Z TC

T�

jPrj dt




� d5
4

�
4fs.�s.Nt//C 1

2

Z TC

T�

jPrj dt



� 1

4
d5j�.Ot/� xj; (7.120)

and by (7.116) thus also

Qa �
Z TC

Ot
j P�j dt � 1

4
d5j�.Ot/ � xj: (7.121)

To replace Ot by 0 in (7.120)–(7.121) and finally prove the desired lower bound for
the last line in (7.88), let c8 WD minf 1

4
d5; 1g > 0. If Ot � 0 then (7.120) implies

Qa �
Z 0

T�

j P�j dt D
�

Qa �
Z Ot

T�

j P�j dt



C
Z Ot

0

j P�j dt

� 1
4
d5j�.Ot/� xj C

ˇ̌
ˇ̌ Z Ot

0

P� dt

ˇ̌
ˇ̌

D 1
4
d5j�.Ot/� xj C j�.Ot/� �.0/j

� c8
�j�.Ot/� xj C j�.Ot/� �.0/j�

� c8j�.0/ � xj D c8jw � xj; (7.122)

and similarly, if Ot � 0 then (7.121) implies

Qa �
Z TC

0

j P�j dt � c8jw � xj: (7.123)

In any case, at least one of the estimates (7.122) and (7.123) has to hold, and so we
can conclude that

max

�
Qa �

Z 0

T�

j P�j dt; Qa �
Z TC

0

j P�j dt

�
� c8jw � xj:

With this we can now finally complete the estimate (7.88) and prove that F.w/ �
c8jw � xj for 8w 2 NB".x/ n .Mloc

s [ Mloc
u / and thus for 8w 2 NB".x/, which is what

we had to show.
From now on let us assume that the state space is two-dimensional, i.e., D � R

2.
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7.3.3 Proof of Property (vi)

Again we will assume that i 2 IC. The proof is divided into two parts: First we show
in Step 1 that

NE0
i n fxg �  .M0

i ;R/; (7.124)

so that for any choice of � > 0, NE0
i n B�.x/ is a compact subset of  .M0

i ;R/ by
what we showed in part (iii). Since the expression for rfijE0

i
given in (7.86) extends

to a continuous function on all of  .M0
i ;R/ and is thus bounded on NE0

i n B�.x/, this
implies that rfi is bounded on E0

i n B�.x/. It then remains to show in Steps 2–12 that
for some � > 0 we have

sup
w2E0

i \B�.x/

jrfi.w/j < 1: (7.125)

Step 1: To show (7.124), let w 2 NE0
i n fxg, and let .wn/n2N � E0

i with wn ! w. By
passing on to a subsequence we may assume that 8n 2 NW jwn � xj � 1

2
jw � xj

and that limn!1 z0
i.wn/ D z for some z 2 M0

i (since M0
i is compact). We begin by

showing that there exist ı > 0 and n0 2 N such that

8n � n0W  
�
z0

i.wn/; Œ0; t
0
i.wn/�

� \ Bı.x/ D ¿: (7.126)

To see this, first recall that by (7.56a) there 9t0 > 0 such that

Z t0

0

jb. .z; �//j d� � Qa � 1
5
jw � xj:

Since the expression on the left is a continuous function of z and since b.z/ ¤ 0

by Remark 3.19, there 9� > 0 such that

8z0 2 NB�.z/W b.z0/ ¤ 0 and
Z t0

0

jb. .z0; �//j d� � Qa � 1
4
jw � xj: (7.127)

Since the compact set  
� NB�.z/; Œ0; t0�

�
does not contain any roots of b, it does not

contain x, and thus we can choose a ı 2 �0; 1
4
jw � xj� such that

 
� NB�.z/; Œ0; t0�

� \ Bı.x/ D ¿: (7.128)

Finally, let n0 2 N be so large that

8n � n0W z0
i.wn/ 2 NB�.z/: (7.129)
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Now suppose that (7.126) were wrong, i.e., that for some n � n0 there were a
t00 2 Œ0; t0i.wn/� such that .z0

i.wn/; t00/ 2 Bı.x/. Then by (7.128)–(7.129) it would
have to fulfill t00 > t0, i.e., 0 < t0 < t00 � t0i.w/. Furthermore, we would have

Z t0i .wn/

t00

ˇ̌
b
�
 .z0

i.wn/; �/
�ˇ̌

d� �
ˇ̌
ˇ̌ Z t0i .wn/

t00
b
�
 .z0

i.wn/; �/
�

d�

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌ Z t0i .wn/

t00
P .z0

i.wn/; �/ d�

ˇ̌
ˇ̌

D ˇ̌
 .z0

i.wn/; t
0
i.wn// �  .z0

i.wn/; t
00/
ˇ̌

D ˇ̌
wn �  .z0

i.wn/; t
00/
ˇ̌

� jwn � xj � ˇ̌
 .z0

i.wn/; t
00/ � x

ˇ̌

> 1
2
jw � xj � ı

� 1
4
jw � xj:

Together with (7.85), (7.127) and (7.129) this would then lead to the contradic-
tion

Qa >
Z t0i .wn/

0

ˇ̌
b
�
 .z0

i.wn/; �/
�ˇ̌

d�

�
Z t0

0

ˇ̌
b
�
 .z0

i.wn/; �/
�ˇ̌

d� C
Z t0i .wn/

t00

ˇ̌
b
�
 .z0

i.wn/; �/
�ˇ̌

d�

>
�Qa � 1

4
jw � xj�C 1

4
jw � xj D Qa;

concluding the proof of (7.126).
Now let n � n0 and t 2 .0; t0i.wn/�. The vector v WD  .z0

i.wn/; t/ 2
 .M0

i ; Œ0;1// fulfills z0
i.v/ D z0

i.wn/ and t0i.v/ D t 2 .0; t0i.wn/�, and so by (7.85)
we have

0 <

Z t0i .v/

0

ˇ̌
b
�
 .z0

i.v/; �/
�ˇ̌

d� �
Z t0i .wn/

0

ˇ̌
b
�
 .z0

i.wn/; �/
�ˇ̌

d� < Qa;

i.e., v 2 E0
i . This shows that  

�
z0

i.wn/; .0; t0i.wn/�
� � E0

i , which together with
(7.126) implies that  

�
z0

i.wn/; Œ0; t0i.wn/�
� � NE0

i n Bı.x/. Since

d6 WD min
˚jb.v/j ˇ̌ v 2 NE0

i n Bı.x/
�
> 0

by what we showed in parts (iii) and (iv), by (7.85) we therefore have

Qa >
Z t0i .wn/

0

ˇ̌
b
�
 .z0

i.wn/; �/
�ˇ̌

d� � t0i.wn/ � d6;
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i.e., t0i.wn/ 2 �
0; Qa

d6

�
. We can thus extract a subsequence .wnk /k2N such that

limk!1 t0i.wnk / D t000 for some t000 2 �
0; Qa

d6

�
. Taking the limit k ! 1 in the

relation wnk D  
�
z0

i.wnk /; t
0
i.wnk/

�
now tells us that w D  .z; t000/ 2  .M0

i ;R/,
terminating the proof of (7.124).

Step 2: To prepare for the proof of (7.125), we begin by defining an invertible
affine transformation LWRn ! R

n that shifts x to the origin and then turns space
so that TxMloc

u coincides with the y-axis. To do so, let QR be an orthogonal matrix
such that A D QR��p 0

r q

� QRT for some p; q > 0 and r 2 R, define L by

L.w/ D QRT.w � x/; L�1.v/ WD QRv C x; (7.130)

and define the transformed drift Qb 2 C1.L.D/;Rn/ by

Qb.v/ WD QRTb.L�1.v//:

Since Qb.0/ D QRTb.x/ D 0 and r Qb.0/ D QRTrb.x/ QR D QRTA QR D ��p 0
r q

�
, we can

write Qb.v/ D ��p 0
r q

�
v C Qg.v/ for some C1-function Qg with

Qg.0/ D 0 and r Qg.0/ D 0; (7.131)

and so the flow �.v; t/ WD L
�
 .L�1.v/; t/

�
for 8v 2 L.D/ 8t 2 R, which fulfills

�.L.w/; t/ D L. .w; t// 8w 2 D 8t 2 R; (7.132)

is the solution of the system

P�.v; t/ D QRTb
�
 .L�1.v/; t/

� D QRTb
�
L�1.�.v; t//

� D Qb.�.v; t// (7.133a)

D ��p 0
r q

�
�.v; t/C Qg.�.v; t//; (7.133b)

�.v; 0/ D L
�
 .L�1.v/; 0/

� D v: (7.133c)

Writing this system componentwise with Qg D .g1; g2/, � D �.v; t/ D .�1; �2/

and v D .v1; v2/, we have

P�1 D �p�1 C g1.�1; �2/; (7.134a)

P�2 D r�1 C q�2 C g2.�1; �2/; (7.134b)

�1.v; 0/ D v1; �2.v; 0/ D v2: (7.134c)
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Step 3: Next, we will have to choose some constants. Let

Q� WD jrj
pCq C 1;

d7 WD 2
p .jrj C q Q�/C 2; (7.135)

� WD max
n

pCjrj
q C 1; Q� C 1C .4C d7 C 2 Q�/1C2p=q

o
> Q� C 2; (7.136)

and for some small � > 0 to be chosen momentarily we define the open double
wedge

W�;� WD ˚
.s; y/ 2 R

2
ˇ̌
0 < jsj < �; j y

s j < �� � B�.1C�/.0/:

To choose � , note that since g1 and g2 are C1-functions that by (7.131) fulfill
g1;2.0; 0/ D 0 and

rg1;2.0; 0/ D 0; (7.137)

we have g1;2.s; y/ D o.jsjCjyj/, and since on W�;� we have jsjCjyj < .1C�/jsj,
this implies that

g1;2.s; y/ D o.jsj/ as .s; y/ ! 0 in W�;� . (7.138)

Therefore we can pick � > 0 so small that

ˇ̌
1
ps g1;2.s; y/

ˇ̌ � 1
2

for 8.s; y/ 2 W�;� , (7.139)

and then the function hW W�;� ! R given by

h.s; y/ WD
�

r

p
C qy

ps



�

r
p C qy

ps C 1
ps g2.s; y/

1 � 1
ps g1.s; y/

(7.140)

is well-defined and C1. Furthermore, we have

s@yh.s; y/ D s

"
q

ps
�

q
ps C 1

ps@yg2.s; y/

1 � 1
ps g1.s; y/

�
r
p C qy

ps C 1
ps g2.s; y/�

1 � 1
ps g1.s; y/

�2
ps
@yg1.s; y/

#

D q

p
�

q
p C 1

p@yg2.s; y/

1 � 1
ps g1.s; y/

�
r
p C qy

ps C 1
ps g2.s; y/�

1 � 1
ps g1.s; y/

�2
p
@yg1.s; y/;

and since by (7.137)–(7.138) the last expression converges to 0 as .s; y/ ! 0

in W�;� , we can choose � > 0 so small that

j@yh.s; y/j � q
2p jsj�1 for 8.s; y/ 2 W�;� . (7.141)
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Finally, writing Ms n fxg D  .w0
1;R/ [  .w0

2;R/ for some points w0
1;w

0
2 2 D,

by (7.132) the points L.w0
1/ and L.w0

2/ lie on the global stable manifold of the
saddle point � D 0 of the system (7.133a)–(7.133c). Since by (7.133b) the
local stable manifold of that system at the origin is tangent to the eigenvector
.p C q;�r/ of the matrix

��p 0
r q

�
and is thus contained in W Q�;� near the origin,

there therefore 9T > 0 such that

�
�
L.w0

k/; ŒT;1/
� � W�; Q� for k D 1; 2. (7.142)

Since our construction in Steps 2–3 was solely based on the given vector field b,
we can use it to decrease Qa one final time, as explained at the end of Sect. 7.1,
so that Qa < min

˚
fs. .w0

1;T//; fs. .w0
2;T//

�
. (To prepare also for the case

i 2 I�, we must at this point also further decrease Qa according to an analogous
construction with the stable and unstable direction exchanged.)
Since f �1

s ..0; Qa�/ � Ms nfxg D  .w0
1;R/[ .w0

2;R/ and since by Lemma 7.3 (i)
our choice of Qa implies that for k D 1; 2 and 8t < T we have fs. .w0

k; t// �
fs. .w0

k;T// > Qa, (7.132) and (7.142) then imply that

L
�
f �1
s ..0; Qa�/� � L

�
 .w0

1; ŒT;1// [  .w0
2; ŒT;1//

�
D �

�
L.w0

1/; ŒT;1/
� [ �

�
L.w0

2/; ŒT;1/
�

� W�; Q� : (7.143)

We now denote by w1;w2 2 D the two points given by Lemma 7.4 such that

MQa
s D fw1;w2g; (7.144)

and we denote for k D 1; 2

.Qsk; Qyk/ WD L.wk/ 2 L.MQa
s / D L

�
f �1
s .fQag/� � W

�; Q� : (7.145)

Step 4: For initial values .s0; y0/ 2 W�;� now consider the solution y.s/ WD
y.s0; y0I s/ of the ODE

y0.s/ D rs C qy C g2.s; y/

�ps C g1.s; y/
D �

r
p C qy

ps C 1
ps g2.s; y/

1 � 1
ps g1.s; y/

(7.146a)

D �
�

r

p
C qy

ps



C h.s; y/; (7.146b)

y.s0/ D y0: (7.146c)

The right-hand sides in (7.146a)–(7.146b) are well-defined, equal and C1 on
W�;� by (7.139)–(7.140), and so y.s/ is well-defined until its graph reaches the
boundary of W�;� .



7.3 Definition of the Functions fi; Proof of their Properties 131

The meaning of the system (7.146a)–(7.146c) is the following: Con-
sider a solution �.v; t/ of (7.133a)–(7.133c) starting from some point
v D .s0; y0/ 2 W�;� such that for some Ot > 0 we have

�.v; Œ0; Ot�/ � W�;� : (7.147)

If s0 > 0 then this implies that

8t 2 Œ0; Ot�W �1.v; t/ > 0 and thus P�1.v; t/ < 0 (7.148)

by (7.134a) and (7.139). This shows that

0 < �1.v; Ot/ < �1.v; 0/ D s0; (7.149)

and that on Œ0; Ot� the function �.v; � / takes values on the graph of some function
y.s/ D y.s0; y0I s/, i.e., we have

�2.v; t/ D y.�1.v; t//; (7.150)

P�2.v; t/ D y0.�1.v; t// P�1.v; t/ (7.151)

for 8t 2 Œ0; Ot�. Since P�1.v; t/ ¤ 0 by (7.148), together with (7.134a)–(7.134b)
this shows that

y0.�1/ D P�2
P�1 D r�1 C q�2 C g2.�1; �2/

�p�1 C g1.�1; �2/
D r�1 C qy.�1/C g2.�1; y.�1//

�p�1 C g1.�1; y.�1//
;

i.e., y.s/, s 2 Œ�1.v; Ot/; s0�, is the solution of the ODE (7.146a)–(7.146c), where
the initial condition (7.146c) follows from setting t D 0 in (7.150) and using that
v D .s0; y0/.

If s0 < 0 then all inequalities in (7.148)–(7.149) are reversed, and so (7.150)–
(7.151) hold as well, only that then y.s/ is defined on the interval Œs0; �1.v; Ot/�.

Step 5: Now let us choose a � > 0 for which we will be able to show (7.125).
Denoting

J WD ˚
k 2 f1; 2g ˇ̌wk …  .M0

i ;R/
�
; (7.152)

we have for 8k 2 J that  .wk;R/ \ M0
i D ¿, i.e., 8� 2 RW fM0

i
. .wk; �// ¤ 0.

Thus, if we had fM0

i
. .wk;�1// < 0 then we would have fM0

i
. .wk; �// < 0 for

8� 2 R, and letting � ! 1 and using that wk 2 MQa
s � Ms would imply that

fM0

i
.x/ � 0, contradicting (7.83). This shows that

8k 2 JW fM0

i
. .wk;�1// > 0: (7.153)
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Furthermore, since for 8k 2 f1; 2g we have

Z 1

�1
jb. .wk; �//j d� >

Z 1

0

jb. .wk; �//j d� D fs.wk/ D Qa;

there 9T 0 > 0 so large that

8k 2 f1; 2gW
Z T0

�1
jb. .wk; �//j d� > Qa: (7.154)

Using also the value 
 > 0 constructed in the steps leading to Lemma 7.14,
by (7.153)–(7.154) there thus exists a Q
 > 0 such that

Q
 < min
˚

; 1

3
jw1 � w2j; jQs1j; jQs2j

�
; (7.155)

8k 2 J 8v 2 NB Q
.wk/W fM0

i
. .v;�1// > 0; (7.156)

8k 2 f1; 2g 8v 2 NB Q
.wk/W
Z T0

�1
jb. .v; �//j d� > Qa: (7.157)

Finally, we have x … M0
i by Remark 3.19, and because of (7.157) the sets NB Q
.wk/

and thus  
� NB Q
.wk/; Œ�1;T 0�

�
cannot contain x. Therefore we can choose � 2

.0; a0� so small that (7.57)–(7.58) hold, and that

NBc10�.x/\ M0
i D ¿; (7.158)

B�.x/ \  � NB Q
.wk/; Œ�1;T 0�
� D ¿: (7.159)

Step 6: To show (7.125), let now w 2 E0
i \ B�.x/. We must find a bound on

jrfi.w/j that is independent of our choice of w. We begin by showing that there
exist � > 0 and k 2 f1; 2g such that

B�.w/ � E0
i \ B�.x/; (7.160)

8u 2 B�.w/W vu WD L.z0
i.u// 2 W�;��1; (7.161)

vu D .Qsk; yu/ (7.162)

for some yu 2 R with

jyu � Qykj � Q
: (7.163)

To do so, let � > 0 be so small that (7.160) holds and that

8u 2 B�.w/W jz0
i.u/� z0

i.w/j � Q
; (7.164)
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and let u 2 B�.w/ � E0
i \ B�.x/ � NBa0 .x/. First observe that this implies that

u … Mloc
u . Indeed, otherwise we would by Lemma 7.3 (i), (ii) and (iv) have for

8� � 0

j .u; �/ � xj � fu. .u; �// � fu.u/ � c10ju � xj � c10�

and thus  .u; �/ … M0
i by (7.158). But this would show that u …  .M0

i ; Œ0;1//,
which by (7.82a) contradicts u 2 E0

i D f �1
i

�
.0; Qa/�.

Since u … Mloc
u , by (7.57)–(7.58) there 9t < 0 such that v WD  .u; t/ fulfills

v 2 OMQa
s ; (7.165)

jps.v/ � vj � Q
: (7.166)

In particular, because of (7.165) and (7.38) we have ps.v/ 2 MQa
s , and so

by (7.144) there 9k 2 f1; 2g such that ps.v/ D wk and thus by (7.166)

v 2 NB Q
.wk/: (7.167)

Suppose we had k 2 J. Then by (7.156) we would have

0 < fM0

i
. .v;�1// D fM0

i
. .u; t � 1// D fM0

i

�
 
�
z0

i.u/; t0i.u/C t � 1
��

and thus t0i.u/ C t � 1 > 0 by (6.10). Furthermore, by (7.167) and (7.159) we
would have u …  .v; Œ�1;T 0�/ D  

�
u; Œt �1; t C T 0�

�
and thus 0 … Œt �1; t C T 0�,

and since t � 1 < t < 0, this would show that t C T 0 < 0. To summarize, we
would have

�t0i.u/ < t � 1 < t C T 0 < 0;

and so by (7.85), (7.167) and (7.157) we would arrive at the contradiction

Qa >
Z t0i .u/

0

ˇ̌
b
�
 .z0

i.u/; �/
�ˇ̌

d�

D
Z 0

�t0i .u/

ˇ̌
b
�
 .z0

i.u/; t
0
i.u/C �/

�ˇ̌
d�

D
Z 0

�t0i .u/
jb. .u; �//j d� (7.168)

�
Z tCT0

t�1
jb. .u; �//j d� (7.169)

D
Z T0

�1
jb. .v; �//j d� > Qa: (7.170)
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Therefore we have k … J and thus wk 2  .M0
i ;R/\ MQa

s D  .Mi;R/\ MQa
s D KQa

i
by (7.152), (7.144), Lemma 7.14 (i) and (7.34a). By (7.165), (7.167), (7.155)
and (7.54a) we thus have v 2 OMQa

s \ N Q
.KQa
i / � OMQa

s \ N
.KQa
i / � M0

i , and so the
relation u D  .v;�t/ shows that z0

i.u/ D v. Therefore we have ps.v/ � v D
wk � z0

i.u/, and so (7.166) and (7.7) say that

jwk � z0
i.u/j � Q
; (7.171)

wk � z0
i.u/ 2 TxMloc

u : (7.172)

To see that k is independent of our choice of u 2 B�.w/, we apply the above
arguments to w instead of u and find that for some k0 (7.171)–(7.172) hold with
wk � z0

i.u/ replaced by wk0 � z0
i.w/. Since

jwk � wk0 j � jwk � z0
i.u/j C jz0

i.u/� z0
i.w/j C jz0

i.w/ � wk0 j � 3 Q
 < jw1 � w2j

by (7.171), (7.164) and (7.155), we must have k0 D k.
Now (7.130) and (7.172) imply that for 8u 2 B�.w/ we have

L.z0
i.u//� L.wk/ D QRT.z0

i.u/� wk/ 2 QRTTxMloc
u D T0L.M

loc
u /:

Since L.Mloc
u / is just the local unstable manifold at � D 0 of the transformed

system (7.133a)–(7.133c) and is thus tangent to the y-axis at the origin, this
means that the first components of L.z0

i.u// and L.wk/ D .Qsk; Qyk/ coincide, which
is (7.162). Furthermore, since

jL.z0
i.u//� L.wk/j D j QRT.z0

i.u/� wk/j D jz0
i.u/� wkj � Q


by (7.171), their y-components differ by at most Q
, i.e., (7.163), and together
with (7.145), (7.155) and (7.136) this implies

ˇ̌
yu
Qsk

ˇ̌ � ˇ̌ Qyk
Qsk

ˇ̌C ˇ̌ Q

Qsk

ˇ̌
< Q�C1 < � �1,

which is (7.161).

Step 7: W.l.o.g. let us from now on assume that Qsk > 0. In this step we will show
that then for 8.s0; y0/ 2 W�;� with 0 < s0 < Qsk the function y.s0; y0I s/ is well-
defined (and has its graph in W�;� ) at least for s 2 Œs0; Qsk�, thus allowing us to
define the function

Of .s0; y0/ WD
Z Qsk

s0

p
1C Œ@sy.s0; y0I s/�2 ds; (7.173)

which we may in short write as Of .v/ for v D .s0; y0/ 2 W�;� .
To see this, we will show that as s increases from s0, the graph of y.s/ WD

y.s0; y0I s/ is repelled from the upper and lower boundaries of W�;� and must
thus reach the right boundary of W�;� at s D � > Qsk. Indeed, suppose that at
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some s > 0 the graph of y.s/ has reached a point .s; y/ with y
s � � � 1. Then

by (7.136) we have y
s � � � 1 � pCjrj

q � p�r
q and thus r

p C qy
ps � 1, so that

@s

�
y.s/

s



D 1

s

h
y0 � y

s

i
D 1

s

�
�

r
p C qy

ps C 1
ps g2.s; y/

1 � 1
ps g1.s; y/

� y

s



� 1

s

�� 1�1=2
1C1=2 � 0� < 0

by (7.146a) and (7.139). Similarly, one can show that if y.s/
s � �.� � 1/ then

@s
� y.s/

s

�
> 0.

Furthermore, observe that for any point .s0; y0/ 2 W�;� such that y.s/ WD
y.s0; y0I s/ is defined for all s in some interval Œs1; Qsk� 3 s0, the uniqueness of the
solutions of (7.146a)–(7.146c) implies that y.s/ D y.s1; y.s1/I s/, so that

Z Qsk

s1

p
1C Œy0.s/�2 ds D

Z Qsk

s1

q
1C �

@sy.s1; y.s1/I s/
�2

ds

D Of .s1; y.s1//: (7.174)

Step 8: We will now show that Of is C1 on W�;� , and that for 8.s0; y0/ 2 W�;� we
have the bounds

j@s0
Of .s0; y0/j � 5C 8

p .jrj C q�/; (7.175a)

j@y0
Of .s0; y0/j � 3; (7.175b)

which are the core of this proof.
To do so, first note that since the right-hand side of (7.146b) is C1 on W�;� ,

y.s/ WD y.s0; y0I s/ is C1 with respect to the initial data y0, with

@s
�
@y0y.s/

� D @y0y
0.s/ D �� q

p s�1 C @yh.s; y.s//
�
@y0y.s/

for 8s 2 Œs0; Qsk� by (7.146b), and since @y0y.s0/ D 1 by (7.146c), we find that

@y0y.s/ D exp
� Z s

s0

�� q
p s0�1 C @yh.s0; y.s0//

�
ds0	;

@y0y
0.s/ D �� q

p s�1 C @yh.s; y.s//
�

exp
� Z s

s0

�� q
p s0�1 C @yh.s0; y.s0//

�
ds0	

for 8s 2 Œs0; Qsk�. We can now invoke (7.141) to obtain

j@y0y
0.s/j � 3q

2p
s�1 exp

�
� q

2p

Z s

s0

s0�1 ds0
	

D 3q

2p
s�1
� s0

s

	 q
2p
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)
Z Qsk

s0

j@y0y
0.s/j ds � 3q

2p

Z Qsk

s0

s�1
� s0

s

	 q
2p

ds D 3q

2p

Z Qsk=s0

1

s�.1C q
2p / ds

� 3q

2p

Z 1

1

s�.1C q
2p / ds D 3; (7.176)

which by (7.173) leads us to our first bound

ˇ̌
@y0

Of .s0; y0/
ˇ̌ D

ˇ̌
ˇ̌ Z Qsk

s0

y0.s/p
1C Œy0.s/�2

@y0y
0.s/ ds

ˇ̌
ˇ̌ �

Z Qsk

s0

j@y0y
0.s/j ds � 3;

i.e., (7.175b). For the other bound (7.175a), note that for small � we have

y
�
s0 C�; y.s0; y0I s0 C�/I s

� D y.s0; y0I s/;

and differentiating with respect to s and then computing the�-derivative at�D 0

leads us to

@sy
�
s0 C�; y.s0; y0I s0 C�/I s

� D @sy.s0; y0I s/

) .@s0@sy/.s0; y0I s/C .@y0@sy/.s0; y0I s/ � .@sy/.s0; y0I s0/ D 0

) @s0y
0.s/ D �@y0y

0.s/ � y0.s0/: (7.177)

By (7.146a) and (7.139), jy0.s0/j can be bounded by

sup
s0�s�Qsk

jy0.s/j D sup
.s;y/2W�;�

ˇ̌
ˇ̌
ˇ

r
p C qy

ps C 1
ps g2.s; y/

1 � 1
ps g1.s; y/

ˇ̌
ˇ̌
ˇ

�
jrj
p C q

p� C 1
2

1 � 1
2

D 2
p .jrj C q�/C 1; (7.178)

and so (7.173), (7.177), (7.176) and (7.178) lead to the estimate

ˇ̌
@s0

Of .s0; y0/
ˇ̌ D

ˇ̌
ˇ̌�p1C Œy0.s0/�2 C

Z Qsk

s0

y0.s/p
1C Œy0.s/�2

@s0y
0.s/ ds

ˇ̌
ˇ̌

� 1C jy0.s0/j C
Z Qsk

s0

j@s0y
0.s/j ds

� 1C jy0.s0/j C jy0.s0/j
Z Qsk

s0

j@y0y
0.s/j ds

� 1C 4jy0.s0/j
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� 1C 4
�
2
p .jrj C q�/C 1

�

D 5C 8
p .jrj C q�/:

Step 9: Now let us consider the function

Qy.s/ WD y.Qsk; QykI s/

that passes through the point .Qsk; Qyk/ D L.wk/. Since wk 2 MQa
s D f �1

s .fQag/
by (7.144), Lemma 7.3 (i) implies that  .wk ; Œ0;1// � f �1

s

�
.0; Qa�� and thus

�
�
L.wk/; Œ0;1/

� D L
�
 .wk; Œ0;1//

� � L
�
f �1
s

�
.0; Qa��� � W�; Q�

by (7.132) and (7.143). Since by (7.132) and (7.130) we have

lim
t!1�.L.wk/; t/ D lim

t!1 L. .wk ; t// D L.x/ D 0; (7.179)

by our remarks at the end of Step 4 this shows that Qy.s/ is defined for Qsk � s >
limt!1 �1.L.wk/; t/ D 0, i.e., for 8s 2 .0; Qsk�, with graph in W�; Q� , i.e.,

˚
.s; Qy.s// ˇ̌ s 2 .0; Qsk�

� � W�; Q� : (7.180)

Using that P�.L.wk/; t/ D QRTb. .wk; t// by (7.132) and (7.130), abbreviating
� D �.L.wk/; �/ etc., using (7.151) for Qy.s/, and finally making the substitution
s D �1.L.wk/; �/ and recalling that P�1.L.wk/; � / < 0 by (7.148) and our
assumption Qsk > 0, we thus obtain for 8t > 0

Z t

0

jb. .wk; �//j d� D
Z t

0

j P�.L.wk/; �/j d�

D
Z t

0

q
P�21 C P�22 d�

D
Z t

0

p
1C ŒQy0.�1/�2 j P�1j d�

D
Z �1.L.wk/;0/

�1.L.wk/;t/

p
1C ŒQy0.s/�2 ds: (7.181)

Now using that �.L.wk/; 0/ D L.wk/ D .Qsk; Qyk/ and (7.179), taking the limit
t ! 1 implies

Z Qsk

0

p
1C ŒQy0.s/�2 ds D

Z 1

0

jb. .wk; �//j d� D fs.wk/ D Qa: (7.182)
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Step 10: Next, let u 2 B�.w/ be fixed, and denote

st WD �1.vu; t/ for 8t 2 .0; t0i.u/�; (7.183)

y.s/ WD y.Qsk; yuI s/; (7.184)

i.e., y.s/ is the curve passing through the point .Qsk; yu/ D vu D L.z0
i.u//

(recall (7.161)–(7.162)). We claim for 8t 2 .0; t0i.u/� that

if �.vu; Œ0; t�/ � W�;� then

(
Qa � fi.u/ � Of .st; y.st// for t < t0i.u/;
Qa � fi.u/ D Of .L.u// for t D t0i.u/:

(7.185)

Indeed, if �.vu; Œ0; t�/ � W�;� then (7.85), a calculation analogous to (7.181),
and (7.174) show that

Qa � fi.u/ D
Z t0i .u/

0

ˇ̌
b
�
 .z0

i.u/; �/
�ˇ̌

d�

�
Z t

0

ˇ̌
b
�
 .z0

i.u/; �/
�ˇ̌

d�

D
Z �1.L.z

0

i.u//;0/

�1.L.z0

i.u//;t/

p
1C Œy0.s/�2 ds

D
Z Qsk

st

p
1C Œy0.s/�2 ds (7.186)

D Of .st; y.st//;

where the integration bounds in (7.186) followed from (7.183) and the relation
�.vu; 0/ D vu D .Qsk; yu/. If t D t0i.u/ then we have equality, and thus the second
statement in (7.185) follows if we can show that

�
st0i .u/

; y.st0i .u/
/
� D L.u/.

To do so, note that by (7.183) and (7.150) we have y.st/ D y.�1.vu; t// D
�2.vu; t/ and thus

.st; y.st// D �.vu; t/ for 8t 2 .0; t0i.u/�; (7.187)

and therefore by (7.132) in particular

�
st0i .u/

; y.st0i .u/
/
� D �

�
L.z0

i.u//; t
0
i.u/

� D L
�
 .z0

i.u/; t
0
i.u//

� D L.u/: (7.188)

Step 11: Next we claim that

�
�
vu; Œ0; t

0
i.u/�

� � W�;� : (7.189)
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Suppose that this were false. Since vu 2 W�;��1 by (7.161), the exit time

Ot WD min
˚
t 2 Œ0; t0i.u/�

ˇ̌
�.vu; t/ … W�;��1

�
> 0

would then be well-defined and fulfill

�.vu; Œ0; Ot// � W�;��1;

�.vu; Ot/ … W�;��1:

Since Qsk > 0, we would then have (7.148) at least for t 2 Œ0; Ot/, and since �.vu; Ot/
is not the origin (which would imply that also 0 D vu D L.z0

i.u// and thus
z0

i.u/ D x in contradiction to Remark 3.19), it would have to lie on the top or
bottom border of W�;��1. As a result, we would have

�.vu; Œ0; Ot�/ � W�;� ; (7.190)

and so y.s/ is defined (and has graph in W�;� ) for s 2 Œ�1.vu; Ot/; Qsk� D ŒsOt; Qsk�.
Furthermore, since �.vu; Ot/ D .sOt; y.sOt// by (7.187), we would have jy.sOt/j D
.� � 1/jsOtj and thus

jy.sOt/� Qy.sOt/j � jy.sOt/j � jQy.sOt/j � .� � 1 � Q�/jsOtj (7.191)

by (7.180). Since by (7.163) and (7.155) we also have

jy.Qsk/� Qy.Qsk/j D jyu � Qykj � Q
 < Qsk;

and since � � 1 � Q� � 1 by (7.136), the continuity of the function s 7!
s�1jy.s/� Qy.s/j on ŒsOt; Qsk� would imply that there 9Ns 2 ŒsOt; Qsk� such that

jy.Ns/� Qy.Ns/j D Ns: (7.192)

Now by (7.146b) we have for 8s 2 ŒsOt; Qsk�

@s
�
sq=p.y.s/� Qy.s//�

D q
p sq=p �1.y � Qy/

C sq=p

�

�
�

r

p
C qy

ps



C h.s; y/

�
�



�
�

r

p
C qQy

ps



C h.s; Qy/

�


D sq=p.h.s; y/� h.s; Qy//
D sq=p.y � Qy/ @yh.s; y�/
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for some y�.s/ between y.s/ and Qy.s/, and thus

sq=p.y.s/ � Qy.s// D sq=p
Ot .y.sOt/� Qy.sOt// exp

� Z s

s
Ot

@yh.s0; y�.s0// ds0	:

Since with .s0; y.s0// and .s0; Qy.s0// also .s0; y�.s0// is in W�;� , we can use the
estimate (7.141) to find

sq=pjy.s/� Qy.s/j � sq=p
Ot jy.sOt/� Qy.sOt/j exp

�
q
2p

Z s

s
Ot

s0�1 ds0	

D sq=p
Ot jy.sOt/� Qy.sOt/j

�
s
s
Ot

�q=2p

) sq=2pjy.s/� Qy.s/j � sq=2p
Ot jy.sOt/� Qy.sOt/j

� .� � 1 � Q�/�q=2pjy.sOt/� Qy.sOt/j1Cq=2p

by (7.191). Setting s WD Ns and using (7.192) and (7.136) would now imply

Ns1Cq=2p � .� � 1 � Q�/�q=2pjy.sOt/� Qy.sOt/j1Cq=2p

) jy.sOt/ � Qy.sOt/j � .� � 1 � Q�/ q=2p
1Cq=2p Ns � .4C d7 C 2 Q�/Ns: (7.193)

Since by (7.180), by the equivalent of (7.178) for Qy and Q� instead of y and � , and
by (7.135) we have

1

Ns
Z Ns

0

p
1C ŒQy0.s/�2 ds � 1C sup

0<s�Ns
jQy0.s/j � 1C 2

p .jrj C q Q�/C 1 D d7

and by (7.174) and (7.182) thus

Of .Ns; Qy.Ns// D
Z Qsk

Ns

p
1C ŒQy0.s/�2 ds

D
Z Qsk

0

p
1C ŒQy0.s/�2 ds �

Z Ns

0

p
1C ŒQy0.s/�2 ds

� Qa � d7Ns; (7.194)

we could finally use (7.190) and (7.185), twice (7.174), (7.175b), (7.194), (7.193),
twice (7.180) and (7.192) to obtain the contradiction

Qa > Qa � fi.u/ � Of .sOt; y.sOt//

D
Z Qsk

s
Ot

p
1C Œy0.s/�2 ds
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D
Z Ns

s
Ot

p
1C Œy0.s/�2 ds C

Z Qsk

Ns

p
1C Œy0.s/�2 ds

D
Z Ns

s
Ot

p
1C Œy0.s/�2 ds C Of .Ns; y.Ns//

�
Z Ns

s
Ot

jy0.s/j ds C �Of .Ns; y.Ns// � Of .Ns; Qy.Ns//�C Of .Ns; Qy.Ns//

� jy.Ns/ � y.sOt/j � 3jy.Ns/� Qy.Ns/j C .Qa � d7Ns/
� �jy.sOt/ � Qy.sOt/j � jQy.sOt/� Qy.Ns/j � jQy.Ns/ � y.Ns/j� � 3jy.Ns/ � Qy.Ns/j C Qa � d7Ns
� .4C d7 C 2 Q�/Ns � jQy.sOt/j � jQy.Ns/j � 4jy.Ns/� Qy.Ns/j C Qa � d7Ns
� .4C d7 C 2 Q�/Ns � Q�sOt � Q� Ns � 4Ns C Qa � d7Ns
� Qa;

concluding the proof of (7.189).
Step 12: We can now put everything together: By (7.189) the condition in (7.185)

is fulfilled for t D t0i.u/, and so we have Qa � fi.u/ D Of .L.u//. This relation was
shown for 8u 2 B�.w/, and differentiating it at u D w shows that

jrfi.w/j D jrOf .L.w// QRT j D jrOf .L.w//j:

Since L.w/ D �
�
L.z0

i.w//; t
0
i.w/

� 2 W�;� by (7.188) and (7.189), (7.175a)–
(7.175b) thus give us the upper bound

jrfi.w/j � �
5C 8

p .jrj C q�/
�C 3

which is independent of our choice of w 2 E0
i \ B�.x/. This terminates our proof

of property (vi).

7.3.4 Proof of Property (vii)

Let c9 WD sup
˚jrfi.v/j

ˇ̌
v 2 E0

i; i 2 I
�
, which is finite by what we showed in

part (vi), and which fulfills c9 � 1 by our calculation for part (ii.3) and by part (iv).
Let w 2 NB".x/ and i 2 I; we must show that fi.w/ � c9jw � xj.

If fi.w/ D 0 then the estimate is trivial. Otherwise the function h 2
C.Œ0; 1�; Œ0; Qa�/, defined by h.�/ WD fi.x C �.w � x//, fulfills

h.1/ D fi.w/ > 0 D fi.x/ D h.0/
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by property (i), and thus the values

�1 WD max
˚
� 2 Œ0; 1� j h.�/ D 0

�
;

�2 WD min
˚
� 2 Œ�1; 1�j h.�/ D fi.w/

�

fulfill �1 < �2. For 8� 2 .�1; �2/ we then have

0 D h.�1/ < h.�/ < h.�2/ D fi.w/ � Qa;

i.e., x C �.w � x/ 2 f �1
i

�
.0; Qa/� D E0

i , so h is C1 on .�1; �2/ by what was shown in

part (ii.2). Thus by the mean value theorem 9 O� 2 .�1; �2/ such that

fi.w/ D h.�2/� h.�1/ D h0. O�/.�2 � �1/

� ˇ̌rfi.x C O�.w � x//
ˇ̌jw � xjj�2 � �1j

� c9jw � xj � 1:

ut



Appendix A
Technical Proofs and Remarks for Part I

Abstract This appendix contains some of the more technical proofs that we had
omitted in Part I in order to not interrupt the flow of the main arguments.

A.1 Proof of Lemma 2.3

Proof Let .�n/n2N � Q� .x/ be given with the properties stated, and let s0 WD
lim infn!1 S.�n/. In a first step, let us pass on to a subsequence (which we again
denote by .�n/n2N), such that limn!1 S.�n/ D s0 (we will only need this property
for the proof of Lemma 2.6 (ii)). Let . Q'n/n2N � QC.x/ be a corresponding sequence
of parameterizations.

The strategy of this proof will be as follows: First we will define continuous,
weakly increasing, surjective functions ˛nW Œ0; 1� ! Œ0; 1� that we use to define the
new parameterizations 'n WD Q'n ı ˛n of �n. For some fixed sequence .uk/k2N �
.0;1/ with uk & 0, these parameterizations are constructed in such a way that on
each interval Œ0; d�

k � and ŒdC
k ; 1� (where d�

k and dC
k are defined in (A.2)) the functions

'n either remain constant or stay outside of the ball Buk.x/. The assumption (2.3) will
therefore allow us to control (uniformly in n) the curve lengths on these intervals,
and thus also j' 0

nj. For each k 2 N we can then apply Lemma 2.2 (i) to the sequence
.'nj

Œ0;d�

k �[ŒdC

k ;1�
/n2N and obtain a limiting function ' that is absolutely continuous

on each set Œ0; d�
k � [ ŒdC

k ; 1�, and we can then show that ' 2 QC.x/.
To facilitate the proof of Proposition 3.25 in Sect. 6.6, which will build on the

construction of the present proof, let us rewrite our assumption (2.3) more generally
as

8n 2 N 8u > 0W
Z
�n

1F.z/>u jdzj � �.u/; (A.1)

where F.w/ WD jw�xj for 8w 2 D. We point out that the only properties of F that we
will use are that (i) F is continuous on D, and (ii) 9c > 08w 2 KW F.w/ � cjw � xj.
Step 1 (Definition of ˛n at the points d�

k , dC
k ): First we pick for 8n 2 N a value

˛n
min 2 Œ0; 1� such that F. Q'n.˛

n
min// D min˛2Œ0;1� F. Q'n.˛//. Since Q'n � K for

8n 2 N, we may (by passing on to a subsequence if necessary) assume that
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limn!1 Q'n.˛
n
min/ exists. Next we define for 8k 2 N0

d�
k WD 1

2
� 2�.kC1/; dC

k WD 1
2

C 2�.kC1/; (A.2)

Q�
k WD Œd�

k ; d
�
kC1�; QC

k WD ŒdC
kC1; d

C
k �; (A.3)

Qk̇ WD Q�
k [ QC

k ; Jk WD Sk
iD0 Qi̇ D Œ0; d�

kC1� [ ŒdC
kC1; 1�; (A.4)

we choose a strictly decreasing sequence .uk/k2N0 � .0;1/ such that

u0 � max
n

sup
n2N

F. Q'n.0//; sup
n2N

F. Q'n.1//
o

(A.5)

(this is possible since the right-hand side is bounded by maxw2K F.w/) and that
uk & 0 as k ! 1, and we define for 8n 2 N and 8k 2 N0 the compact set

In;k WD ˚
˛ 2 Œ0; 1� ˇ̌F

� Q'n.˛/
� � uk

�
:

Then we define for 8n 2 N the surjective, weakly increasing function
˛nW Œ0; 1� ! Œ0; 1� as follows: At the points d�

k and dC
k we set

˛n.d
�
k / WD

(
min In;k if In;k ¤ ¿,

˛n
min else;

˛n.d
C
k / WD

(
max In;k if In;k ¤ ¿,

˛n
min else;

(A.6)

for 8k 2 N0, and we set ˛n.
1
2
/ WD ˛n

min.
Step 2 (Properties of ˛n): Before we define ˛n.s/ at the remaining points s 2
Œ0; 1�, observe that ˛n.0/ D 0 and ˛n.1/ D 1, since (A.5) implies that 0; 1 2 In;0.
Also note that every function ˛n as defined so far is non-decreasing since for each
fixed n 2 N the sequence of sets .In;k/k2N0 is decreasing, and since ˛n

min 2 In;k

whenever In;k ¤ ¿ (which implies that ˛n.d�
k / � ˛n

min � ˛n.d
C
k / for 8k 2 N0).

Finally, observe that for 8k 2 N and 8n 2 N we have

either 8˛ 2 Œ0; ˛n.d
�
k /�W F. Q'n.˛// � uk (A.7a)

or ˛n.d
�
k / D 0 (A.7b)

(or both), and the same is true with Œ0; ˛n.d�
k /� replaced by Œ˛n.d

C
k /; 1� in (A.7a),

and with (A.7b) replaced by ˛n.d
C
k / D 1. Indeed, if ˛n.d�

k / > 0 then for
8˛ 2 Œ0; ˛n.d�

k // we have ˛ … In;k, i.e., F. Q'n.˛// > uk, which implies (A.7a).
The modified statement (i.e., (A.7a)–(A.7b) with the two replacements) is shown
analogously.

Step 3 (Full definition of ˛n, setting 'n D Q'n ı ˛n): In either case, the curve seg-
ments given by Q'njŒ0;˛n.d�

k /�
are rectifiable for 8k 2 N: If (A.7a) holds then

this follows from (A.1) with u D uk
2

, and if (A.7b) holds then this segment
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degenerates to a single point. Similarly, the segments given by Q'nj
Œ˛n.d

C

k /;1�
are

rectifiable for 8k 2 N by the corresponding modified versions of (A.7a)–(A.7b).
We can thus define ˛n.s/ at the remaining points s 2 Œ0; 1� by requiring that
the function 'n.s/ WD Q'n.˛n.s//, restricted to the sets Q�

k and QC
k , k 2 N0,

is the arclength parameterization of the curves given by Q'njŒ˛n.d�

k /;˛n.d�

kC1
/� and

Q'nj
Œ˛n.d

C

kC1/;˛n.d
C

k /�
, respectively. In particular, on each set Q�

k and QC
k , 'n is

absolutely continuous and j' 0
nj is constant a.e.

Step 4 (Proof that 'n traverses all of �n): By construction, 'njŒ0; 12 � and 'njŒ 12 ;1� tra-
verse the curves given by Q'njŒ0; Ǫn � and Q'njŒ L̨n ;1�, where Ǫn WD limk!1 ˛n.d�

k / and
L̨n D limk!1 ˛n.d�

k / (these limits exist since .˛n.d�
k //k2N0 and .˛n.d

C
k //k2N0

are monotone bounded sequences). Therefore, to see that 'n is in fact a
parameterization of the entire curve �n, we need to show that Q'n is constant on
Œ Ǫn; L̨n�.
Now if (for fixed n 2 N) there 9k0 2 N0 8k � k0W In;k D ¿ then we have
8k � k0W ˛n.d�

k / D ˛n
min D ˛n.d

C
k / and thus Ǫn D L̨n, and we are done.

Otherwise we have ˛n.d�
k / 2 In;k for 8k 2 N0, and thus F

� Q'n.˛n.d�
k //
� � uk ! 0

as k ! 1. This shows that F. Q'n. Ǫn// D 0 and thus Q'n. Ǫn/ D x, and similarly
one can show that Q'n. L̨n/ D x. Because of our assumption that �n passes the
point x at most once we can now use (2.2) to conclude that Q'n is constant on
Œ Ǫn; L̨n� also in this case. This shows that 'n is a parameterization of �n (and in
particular continuous).

Step 5 (Proof that 'n 2 QC.x/): To see that 'n 2 QC.x/, first note that by construc-
tion 'n is absolutely continuous on Œ0; 1

2
� a� [ Œ 1

2
C a; 1� for 8a 2 .0; 1

2
/. If

'n.
1
2
/ ¤ x then F. Q'n.˛min// D F.'n.

1
2
// > 0, so that for large k 2 N we have

In;k D ¿ and thus ˛n.d�
k / D ˛n.d

C
k / by (A.6); this in turn implies that ˛n and

thus 'n is constant on Œd�
k ; d

C
k �, and thus that 'n 2 NC.0; 1/.

Step 6 (Constructing a converging subsequence of .'n/n2N): Now let us construct
a converging subsequence of .'n/n2N. First observe that our definition
'n D Q'n ı ˛n and the monotonicity of ˛n translate (A.7a)–(A.7b) into the
following: For 8k 2 N and 8n 2 N we have

either 8s 2 Œ0; d�
k �W F.'n.s// � uk (A.8a)

or 'n is constant on Œ0; d�
k � (A.8b)

(or both), and the same is true with Œ0; d�
k � replaced by ŒdC

k ; 1�.
We can now find a subsequence of functions 'n that for k D 1 either all
fulfill (A.8a) or that all fulfill (A.8b); we can then find a further subsubsequence
such that the same is true for k D 2, etc., and by a diagonalization argument we
can pass on to a subsequence, which we again denote by .'n/n2N, such that for
8k 2 N 9nk 2 N such that

either 8n � nk 8s 2 Œ0; d�
k �W F.'n.s// � uk

or 8n � nkW 'n is constant on Œ0; d�
k �

(A.9)
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(or both). Finally, by following the same strategy one more time we may
also assume that the same is true also with Œ0; d�

k � replaced by ŒdC
k ; 1�. This

property (A.9) is not important to us now, but we will need it in the proof of
Proposition 3.25.
Now using that for 8n 2N, j' 0

nj is constant a.e. on the intervals Q�
k and QC

k ,
and using (A.8a) and (A.8b), which say that either j' 0

nj vanishes a.e. on
Œ0; d�

kC1� 
 Q�
k or the indicator function in (A.10) below takes the value 1 on

Œ0; d�
kC1� 
 Q�

k , we find for 8k 2 N0 and almost every s 2 Q�
k that

j' 0
n.s/j D jQ�

k j�1
Z

Q�

k

j' 0
nj d˛ D .2�.kC2//�1

Z
Q�

k

j' 0
nj1F.'n/�ukC1

d˛ (A.10)

� 2kC2
Z 1

0

j' 0
nj1F.'n/>ukC2

d˛ � 2kC2�.ukC2/;

and analogously one can derive this n-independent upper bound also for almost
every s 2 QC

k . This shows that for every fixed k 2 N0 we have

sup
n2N

ess sup
s2Jk

j' 0
n.s/j D sup

0�j�k
sup
n2N

ess sup
s2Q˙

j

j' 0
n.s/j � sup

0�j�k
2jC2�.ujC2/ < 1:

(A.11)

By Lemma 2.2 (i) we can therefore extract a subsequence of .'n/n2N that
converges uniformly on J1, then extract a further subsubsequence converging
uniformly on J2, etc., and using a diagonalization argument we can find a
subsequence which for simplicity we will again denote by .'n/n2N that converges
uniformly on every Jk, and in particular pointwise on

S1
kD0 Jk D Œ0; 1

2
/ [ . 1

2
; 1�.

Since also 'n.
1
2
/ D Q'n

�
˛n

min

�
converges as n ! 1, .'n/n2N converges in fact

pointwise on all of Œ0; 1�. Let us denote the limit by 'W Œ0; 1� ! K.
Step 7 (Proof that the limit ' fulfills (2.4)): By Lemma 2.2 (ii) the function '

is absolutely continuous on each set Jk, which provides us with an almost
everywhere defined function ' 0W Œ0; 1� ! R

n that is integrable on each set Jk.
To see that

Z 1

0

j' 0j1F.'/>u d˛ � �.u/ for 8u > 0, (A.12)

we fix u > 0, and we define for 8v > u and 8q 2 R the continuous function
hv.q/ WD min.max. q�u

v�u ; 0/; 1/ � 1q>u. Applying Lemma 2.6 (i) to the functional
S 2 G given by `.x; y/ WD hv.F.x//jyj, we find that for 8k 2 N we have

Z
Jk

hv.F.'//j' 0j d˛ � lim inf
n!1

Z
Jk

hv.F.'n//j' 0
nj d˛
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� lim inf
n!1

Z 1

0

1F.'n/>uj' 0
nj d˛

D lim inf
n!1

Z
�n

1F.z/>u jdzj � �.u/

by (A.1). Taking the limits k ! 1 and v & u and using monotone convergence
now imply (A.12).

Step 8 (Proof that ' 2 QC.x/): It remains to show that ' 2 QC.x/. To prepare, let us
first show that for 8k 2 N0 we have

either F.'.d�
k // � uk (A.13a)

or ' is constant on Œd�
k ;

1
2
� (A.13b)

(or both), and the same holds with d�
k replaced by dC

k in (A.13a), and with Œd�
k ;

1
2
�

replaced by Œ 1
2
; dC

k � in (A.13b).
Indeed, if for some fixed k 2 N0 we have F.'.d�

k // > uk then for large n 2
N we have F

� Q'n.˛n.d�
k //
� D F.'n.d�

k // > uk, i.e., ˛n.d�
k / … In;k and thus

˛n.d�
k / D ˛n

min D ˛n.
1
2
/ by (A.6). The monotonicity of ˛n then implies for large

n 2 N that ˛n and thus 'n are constant on Œd�
k ;

1
2
�, and taking the limit n ! 1

implies (A.13b). The modified statements can be shown analogously.
Next, let us show that ' is continuous. Since ' is even absolutely continuous
on every set Jk, we only have to show continuity at s D 1

2
, and by symmetry

of our construction we only have to show that '.1
2
�/ D '.1

2
/. Now if

for some k 2 N (A.13b) holds then this is clear, therefore let us assume
that (A.13a) holds for 8k 2 N. Taking the limit k ! 1 in (A.13a) implies
that lim infs%1=2 F.'.s// D 0. Thus, if the limit lims%1=2 F.'.s// would not exist
then there would be a sequence .sm/m2N 2 .0; 1

2
/ with sm % 1

2
such that for some

u > 0 and 8m 2 N we have F.'.sm// � 2u. Now F�1.Œ0; u�/\ K is compact, so
that

dist
�

F�1.Œ0; u�/ \ K; F�1.Œ2u;1//
	
> 0;

and thus the fact that '.s/ moves back and forth between these two sets
infinitely many times as s % 1

2
would imply that

R 1=2
0 j' 0j1u<F.'/<2u d˛ D 1,

contradicting (A.12). This proves that lims%1=2 F.'.s// D 0, and since by
construction F ı ' takes its minimum at s D 1

2
, we have F.'. 1

2
// D 0. Property

(ii) of F now implies that lims%1=2 '.s/ D x D '.1
2
/, concluding the proof of the

continuity of '.
Finally, to show that ' 2 QC.x/, assume that '.1

2
/ ¤ x. Then neither (A.13a)

nor its modified version can hold for 8k 2 N (since taking the limit k ! 1
in (A.13a) would imply that F.'. 1

2
// D 0 and thus '.1

2
/ D x), and so ' must

be constant on some interval Œd�
k1
; dC

k2
�. Since ' is absolutely continuous on every

set Jk, this implies that ' 2 NC.0; 1/, terminating the proof. ut
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A.2 Proof of Lemma 2.6

Proof (i) Step 1: Denoting by M > 0 the bound given in (2.1), let for 8ı > 0

the function `ı W D � NBM.0/ ! Œ0;1/ be defined as

`ı.x; y/ WD sup
.�;a/2�x;ı

�h�; yi C a
�
; where

�x;ı WD
n
.�; a/ 2 R

n � R

ˇ̌
ˇ 8v 2 NBM.0/W h�; vi C a � inf

w2NBı.x/\D
`.w; v/

o
;

for 8x 2 D and 8y 2 NBM.0/. (The function `ı.x; � / is the convex hull of
the function v 7! infw2NBı.x/\D `.w; v/ restricted to v 2 NBM.0/.) We begin by
proving the following properties:

(a) 8ı > 0 8x 2 D 8y 2 NBM.0/W 0 � `ı.x; y/ � infw2NBı.x/\D `.w; y/,
(b) 8ı > 0 8x 2 DW `ı.x; � / is convex,
(c) 8x0 2 D 8y0 2 NBM.0/ 8ı > 0 with NBı.x0/ � DW

lim inf.x;y/!.x0;y0/ `
ı.x; y/ � `ı.x0; y0/,

(d) 8x0 2 D 8y0 2 NBM.0/W lim inf.x;y;ı/!.x0;y0;0C/ `ı.x; y/ � `.x0; y0/.

Proofs:

(a,b) First observe that .�; a/ D .0; 0/ fulfills h�; vi C a D 0 � `.w; v/
for every w and v, and so we have .0; 0/ 2 �x;ı and thus `ı.x; y/ �
h0; yi C 0 D 0. The upper bound in (a) follows right from the
definitions of `ı and�x;ı , by considering v D y. Finally, the functions
`ı.x; � / are convex since they are the suprema of affine functions.

(c) Let x0 2 D, y0 2 NBM.0/, and ı > 0 with NBı.x0/ � D. Given any " > 0,
we must show that for all .x; y/ sufficiently close to .x0; y0/ we have
`ı.x; y/ � `ı.x0; y0/ � ". To do so, let " > 0. Then by definition of `ı

there 9.�; a/ 2 �x0;ı such that

h�; y0i C a � `ı.x0; y0/ � "
3
: (A.14)

Furthermore, if we choose ı0 > 0 so small that NBıCı0.x0/ � D then
the function .x; v/ 7! infw2NBı.x/\D `.w; v/ is uniformly continuous on
NBı0.x0/� NBM.0/, and so in particular there 9ı00 > 0 such that for 8x 2
NBı00.x0/ and 8v 2 NBM.0/ we have

ˇ̌
ˇ̌ inf

w2NBı.x/\D
`.w; v/ � inf

w2NBı.x0/\D
`.w; v/

ˇ̌
ˇ̌ � "

3
:

Since .�; a/ 2 �x0;ı , we therefore have

h�; vi C a � inf
w2NBı.x0/\D

`.w; v/ � inf
w2NBı.x/\D

`.w; v/C "
3
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for all such x and v, and thus 8x 2 NBı00.x0/W .�; a � "
3
/ 2 �x;ı . By

definition of `ı and by (A.14), this finally shows that for 8x 2 NBı00.x0/
and 8y 2 NBM.0/ with jy � y0j � "

3.j� jC1/ we have

`ı.x; y/ � h�; yi C .a � "
3
/ D �h�; y0i C a

�C h�; y � y0i � "
3

� �
`ı.x0; y0/� "

3

� � j� j "
3.j� jC1/ � "

3
� `ı.x0; y0/ � ":

(d) Let x0 2 D and y0 2 NBM.0/. Since by Definition 2.4 (ii) `.x0; � / is
convex, 9� 2 R

n 9a 2 R such that

`.x0; y0/ D h�; y0i C a and 8y 2 R
nW `.x0; y/ � h�; yi C a:

In particular, for 8c � 0 we can apply the latter to y D cy0 and use
Definition 2.4 (i) to find that ch�; y0i C a � `.x0; cy0/ D c`.x0; y0/ D
c.h�; y0iCa/ and thus .1�c/a � 0. Choosing c D 0 and c D 2 shows
that a D 0, and so we have

`.x0; y0/ D h�; y0i and 8y 2 R
nW `.x0; y/ � h�; yi � 0:

(A.15)

Given any " > 0, there thus 9ı000 > 0 such that

8w 2 NBı000.x0/ 8v 2 NBM.0/W `.w; v/ � h�; vi � �": (A.16)

Now let .x; y; ı/2 NBı000=2.x0/� NBM.0/�.0; ı000

2
/. Since for 8w 2 NBı.x/\ D

we have w 2 NBı.x/ � NBı000=2.x/ � NBı000.x0/, (A.16) implies that
.�;�"/ 2 �x;ı , so that by the definition of `ı and by the first statement
of (A.15) we have

`ı.x; y/ � h�; yi � "
D h�; y0i C h�; y � y0i � "

D `.x0; y0/C h�; y � y0i � "
� `.x0; y0/ � j� jjy � y0j � ":

This shows that

lim inf
.x;y;ı/!.x0;y0;0C/

`ı.x; y/ � `.x0; y0/ � ";

and since " > 0 was arbitrary, the proof of property (d) is complete.

Step 2: This second part of the proof is analogous to the proof of [16,
Lemma 5.42]. Let .ım/m2N be a sequence with ım & 0, and with all values
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ım so small that NBım.�/ � D, where � is the curve parameterized by '. For
8m 2 N let Jm WD dM=ıme, and let ˛m

j WD j
Jm

for 8j D 0; : : : ; Jm. Then
by (2.1) we have for 8m; n 2 N, 8j D 0; : : : ; Jm � 1, and 8˛ 2 Œ˛m

j ; ˛
m
jC1�

j'n.˛/ � 'n.˛
m
j /j D

ˇ̌
ˇ
Z ˛

˛m
j

' 0
n. Q̨ / d Q̨

ˇ̌
ˇ � .˛ � ˛m

j /M � M

Jm
� ım;

i.e., 'n.˛/ 2 NBım.'n.˛
m
j //. By applying property (a) above and then Jensen’s

inequality (justified by property (b)) we therefore find that

S.'n/ D
Z 1

0

`
�
'n.˛/; '

0
n.˛/

�
d˛

�
Jm�1X
jD0

Z ˛m
jC1

˛m
j

`ım
�
'n.˛

m
j /; '

0
n.˛/

�
d˛

�
Jm�1X
jD0

1

Jm
`ım



'n.˛

m
j /; Jm

Z ˛m
jC1

˛m
j

' 0
n.˛/ d˛

�

D
Jm�1X
jD0

1

Jm
`ım

�
'n.˛

m
j /; Jm

�
'n.˛

m
jC1/� 'n.˛

m
j /
�	

for 8m; n 2 N, and thus

lim inf
n!1 S.'n/ � lim inf

n!1

Jm�1X
jD0

1

Jm
`ım

�
'n.˛

m
j /; Jm

�
'n.˛

m
jC1/� 'n.˛

m
j /
�	

�
Jm�1X
jD0

lim inf
n!1

1

Jm
`ım

�
'n.˛

m
j /; Jm

�
'n.˛

m
jC1/� 'n.˛

m
j /
�	
:

Using that by Lemma 2.2 (ii) we have j' 0j � M a.e. and thus

ˇ̌
Jm
�
'.˛m

jC1/ � '.˛m
j /
�ˇ̌ D

ˇ̌
ˇJm

Z ˛m
jC1

˛m
j

' 0.˛/ d˛
ˇ̌
ˇ � Jm

ˇ̌
˛m

jC1 � ˛m
j

ˇ̌
M D M;

and using our initial assumption that NBım.�/ � D, we can then use property
(c) to continue our estimate and obtain

lim inf
n!1 S.'n/ �

Jm�1X
jD0

1

Jm
`ım

�
'.˛m

j /; Jm
�
'.˛m

jC1/� '.˛m
j /
�	
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for 8m 2 N. Now defining the piecewise constant functions'm�; 'mCW Œ0; 1/ !
D as 'm�.˛/ WD '.˛m

j / and 'mC.˛/ WD '.˛m
jC1/ for 8˛ 2 Œ˛m

j ; ˛
m
jC1/, this can

be rewritten as

lim inf
n!1 S.'n/ �

Z 1

0

`ım

�
'm�.˛/; Jm

�
'mC.˛/ � 'm�.˛/

�	
d˛

for 8m 2 N. Finally, taking the limit m ! 1 on the right-hand side,
applying Fatou’s Lemma, and then using property (d) together with the limits

lim
m!1'm�.˛/ D '.˛/ for 8˛ 2 Œ0; 1�

and lim
m!1 Jm

�
'mC.˛/ � 'm�.˛/

� D ' 0.˛/ for a.e. ˛ 2 Œ0; 1�,

we find that

lim inf
n!1 S.'n/ � lim inf

m!1

Z 1

0

`ım

�
'm�.˛/; Jm

�
'mC.˛/ � 'm�.˛/

�	
d˛

�
Z 1

0

lim inf
m!1 `ım

�
'm�.˛/; Jm

�
'mC.˛/ � 'm�.˛/

�	
d˛

�
Z 1

0

`
�
'.˛/; ' 0.˛/

�
d˛ D S.'/:

This completes the proof of part (i).
(ii) Since the convergence is uniform on each set Ia WD Œ0; 1

2
� a� [ Œ 1

2
C a; 1�, a 2

.0; 1
2
/, and since (2.1) is fulfilled for the sequences

�
'nk jIa

�
k2N by (A.11), part (i)

allows us to estimate the combined action of the two pieces of the function 'jIa

by

Z
Ia

`.'; ' 0/ d˛ D S.'jIa/ � lim inf
k!1 S.'nk jIa/ � lim inf

k!1 S.�nk/ D lim inf
n!1 S.�n/:

In the last step we used that at the beginning of the proof of Lemma 2.3 we had
made sure that limk!1 S.�nk/ D lim infn!1 S.�n/. Letting a & 0 and using
the monotone convergence theorem now imply that

S.�/ D
Z 1

0

`.'; ' 0/ d˛ � lim inf
n!1 S.�n/:

ut
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A.3 Proof of Lemma 2.13

Proof (i) If (2.10) holds for some H then the function H.x; � /, which is strictly
convex by Assumption (H3), achieves its minimum value 0 at the point � D 0,
implying that f� 2 R

n j H.x; �/ � 0g D f0g and thus `.x; y/ D 0 for 8y 2 R
n.

Conversely, if 8y 2 R
nW `.x; y/ D 0 and H is any Hamiltonian inducing S then

we have 8� ¤ 0W H.x; �/ > 0 (for if there were a � ¤ 0 with H.x; �/ � 0

then we had `.x; y D �/ � h�; �i > 0), and so by Assumption (H1) H.x; � /
achieves its minimum value 0 at the point � D 0, which implies (2.10).

(ii) Let x 2 D. By Assumption (H1) we have H.x; 0/ � 0. If H.x; 0/ < 0 then given
any y ¤ 0 we have H.x; � D "y/ < 0 for some small " > 0, and thus `.x; y/ �
hy; "yi > 0, so x is a non-degenerate point according to Definition 2.9 (i).

Now assume that H.x; 0/D 0. If x is a critical point then we have `.x; y/D 0

even for 8y 2 R
n. Otherwise by part (i) we have y WD H� .x; 0/ ¤ 0, and since

for 8� 2 R
n with H.x; �/ � 0 there 9 Q� 2 R

n such that

0 � H.x; �/ D H.x; 0/C hH� .x; 0/; �i C 1
2

˝
�;H�� .x; Q�/� ˛ � 0C hy; �i C 0

by Assumption (H3), we find that `.x; y/ � 0 and thus `.x; y/ D 0. Since in
either case we found a y 2 R

n n f0g such that `.x; y/ D 0, x is a degenerate
point.

(iii) Now let H1 and H2 be two Hamiltonians that induce S. Then applying part (ii)
twice (and noting that Definition 2.9 (i) is based on the function `.x; y/, which
is the same for both Hamiltonians) tells us that for 8x 2 D we have

H1.x; 0/ D 0 , x is a degenerate point , H2.x; 0/ D 0;

and so H1 fulfills (H1’) if and only if H2 does. ut

A.4 Proof of Lemma 2.14

Proof First let us show the existence of a solution of (2.11). If x is a critical point
then .#; 
/ D .0; 0/ solves (2.11) for 8y 2 R

n by Lemma 2.13 (i) (this also shows
the first direction of part (ii)). If x is not critical then we have H� .x; �/ ¤ 0whenever
H.x; �/ D 0 (for otherwise H.x; � / would take its minimum value 0 at � , and since
the minimizer is unique by Assumption (H3), Assumption (H1) would imply that
� D 0, i.e., x is a critical point by Lemma 2.13 (i)). Thus, for fixed y ¤ 0, any
�? 2 R

n that is a solution of the constraint maximization problem (2.8b) (and thus
also of (2.8a)) must solve r�;�

�hy; �i � �H.x; �/
� D 0 for some � 2 R, i.e.,

y D �H� .x; �
?/ and H.x; �?/ D 0:
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Clearly, � ¤ 0 since y ¤ 0. In fact, � > 0 since otherwise we would have
hH� .x; �?/; yi D jyj2=� < 0 and thus H.x; �? C "y/ < 0 for some " > 0, but then
hy; �? C "yi > hy; �?i would contradict the fact that �? is a maximizer of (2.8a).
Therefore .#; 
/ WD .�?; ��1/ solves (2.11).

Next we will show the uniqueness, and that the representation (2.12), which is
trivial for y D 0, holds also for y ¤ 0. Let x 2 D and y 2 R

n n f0g, and let .#; 
/ be
a solution of (2.11). Since 
 D jH� .x; #/j=jyj, the uniqueness of .#; 
/ will follow
from the uniqueness of # .

If 
 D 0 then (2.11) says that H.x; � / takes its minimum value 0 at # , and thus
again by Assumptions (H1) and (H3) we must have # D 0 (proving uniqueness).
By Lemma 2.13 (i), (2.11) now says that x is a critical point, so (2.12) returns the
correct value `.x; y/ D 0. This also shows the reverse direction of part (ii).

If 
 > 0 then for 8� 2 Lx WD f� 2 R
n j H.x; �/ � 0g there 9 Q� 2 R

n such that
by (2.11) and Assumption (H3) we have

0 � H.x; �/ D H.x; #/C hH� .x; #/; � � #i C 1
2

˝
� � #;H�� .x; Q�/.� � #/˛

� 0C 
hy; � � #i C 1
2
mfxgj� � #j2

) hy; #i � hy; �i C 1
2
mfxg
�1j� � #j2 � hy; �i: (A.17)

Since also # 2 Lx, this implies that `.x; y/ D hy; #i, i.e., (2.12). If .# 0; 
0/ is another
solution of (2.11) then we have hy; #i D `.x; y/ D hy; # 0i, and so setting � WD # 0 in
the left inequality in (A.17) implies that # D # 0.

Finally, to show the continuity, suppose that for some .x; y/ 2 D�.Rn nf0g/ there
exists a sequence .xn; yn/ ! .x; y/ such that .#n; 
n/ WD .#.xn; yn/; 
.xn; yn// stays
bounded away from .#.x; y/; 
.x; y//. Since #n 2 Lxn and the sets Lxn are uniformly
bounded by what was shown at the beginning of the proof of Lemma 2.11, the
sequence .#n/ is bounded. Thus, since 
n D jH� .xn; #n/j=jynj, also the sequence
.
n/ is bounded, and so there is a converging subsequence .#nk ; 
nk/. Now letting
k ! 1 in the system (2.11) for .xnk ; ynk/ and using the uniqueness shown above,
we see that its limit must be .#.x; y/; 
.x; y//, and we obtain a contradiction. ut

A.5 Proof of Lemma 2.17

Proof Let us denote that closed subset by E, and let a compact set K � D be
given. Let c2 WD c2

�
K n E

�
> 0 be the constant provided to us by Definition 2.7

for the drift b and the compact set K n E, define the positive constants m1 WD
minx2K\E; jyjD1 `.x; y/ > 0 and m2 WD 1 C maxx2K\E jQb.x/j, and finally set Qc2 WD
min

˚
c2;

m1
2m2

�
> 0.

Now let 8x 2 K and 8y 2 R
n n f0g. If x 2 E and jyj D 1 then we have

`.x; y/ � m1 � m1
2m2
2jQb.x/j � Qc2

�jQb.x/jjyj � hQb.x/; yi�;
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and for all other y 2 R
n n f0g this inequality then follows from the scaling property

in Definition 2.4 (i). If x 2 K nE then the inequality follows from the definition of c2
and the fact that b.x/ D Qb.x/:

`.x; y/ � c2
�jb.x/jjyj � hb.x/; yi� � Qc2

�jQb.x/jjyj � hQb.x/; yi�:
Therefore the inequality holds for 8x 2 K and 8y 2 R

n n f0g, concluding the proof.
ut

A.6 Large Deviations for Killed Diffusion Processes

This section is meant to address only those readers with background in large
deviation theory. We will show that the killed diffusion process indeed fulfills a large
deviation principle (LDP), with its action functional ST given by (2.13) and (2.24),
in the sense that for 8 2 C.Œ0;T�;D/ and small ı > 0 we have

P
�

the process was not killed and jjX:�  jjŒ0;T� < ı
�

(A.18)

WD E

h
1jjX:� jjŒ0;T�<ı � exp

�
�"�1

Z T

0

r.Xt/ dt
	i

� e�ST . /=";

where E denotes the expectation with respect to the probability measure of the
regular (i.e., non-absorbing) diffusion process, where “�” has the standard meaning
used in large deviation theory, and where it is understood that ST. / D 1 for
 … NC.0;T/. The precise definition of an LDP and of the symbol “�” in this context
can be found in [8, Chap. 3].

Proof Let us denote by RT W C.Œ0;T�;D/ ! Œ0;1/ the functional defined by
RT. / WD R T

0
r. / dt, and by SrD0

T the large deviation action functional of the
regular SDE, i.e., the one given by (2.13) and (2.24) with r 	 0. Then we have
ST D SrD0

T C RT .
According to [8, Chap. 3, §3], an LDP holds with action functional ST iff

properties (0) and (III) in [8, Chap. 3, §3] are fulfilled, where (III) is the Laplace
principle as described below in (A.19),1 and where by the remark preceding [8,
Chap. 3, Thm. 3.2] property (0) is equivalent to asking that ST is lower semi-
continuous and has relatively compact2 level sets f j ST. / � sg, s � 0.

Since the regular diffusion process is known to fulfill an LDP with action
functional SrD0

T , the functional SrD0
T is lower semi-continuous and has relatively

compact level sets (property (0)). As a result, since RT is continuous, ST D SrD0
T CRT

1Note however that the scaling by " in (A.19) is specific to our situation and can be different for
other processes.
2A set is called relatively compact if its closure it compact.
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is lower semi-continuous as well; furthermore, since SrD0
T � ST , the level sets of ST

are subsets of the level sets of SrD0
T , and thus relatively compact themselves.

Finally, by property (III) the Laplace principle holds for SrD0
T , i.e., for every

bounded continuous functional GW C.Œ0;T�;D/ ! R we have

lim
"&0

" lnEe"
�1G.X:/ D max

 

�
G. / � SrD0

T . /
�
; (A.19)

where the maximum is taken over all  2 C.Œ0;T�;D/. Now given any such G, we
can apply this statement to G � RT and obtain

lim
"&0

" lnE
�
e"

�1G.X:/e�"�1RT .X:/
� D max

 

��
G. / � RT. /

� � SrD0
T . /

�

D max
 

�
G. / � �

SrD0
T . /C RT. /

��

D max
 

�
G. / � ST. //: (A.20)

But this is just the property (III) for the killed process, and so the killed process
fulfills an LDP with action functional ST .

As a final remark, note that technically we did not really apply the criteria
in [8, Chap. 3, §3] to a probability measure here, but rather to the measure defined
by �.A/ WD P.the process was not killed and X: 2 A/ for any Borel subset of
C.Œ0;T�;D/, and the total mass m WD Ee�"�1RT .X:/ of � is less than 1 if r 6	 0.
However, we can insert a factor 1

m right before the expectation on the left of (A.20)
without any effect on the limit, and then (A.20) becomes the Laplace principle for
the probability measure 1

m�. According to [8, Chap. 3, §3], 1
m� therefore fulfills an

LDP with action functional ST , and we can then remove the factor 1
m again from all

the exponential limits that large deviation theory provides. ut

A.7 Some Remarks on the Proof of Lemma 3.20

The conditions for M in the opening paragraph of [13] are met with ' WD fMc , with U
chosen as a suitable neighborhood of M that separates M from the other components
of Mc, and with v.x/ WD �rV.x/ for 8x 2 M. Note that the fourth paragraph of [13]
states that ' suffices to be C2.

The function constructed in the main proof of [13] (again denoted by ') then
fulfills M D '�1.f0g/ and is C2 (properties (i) and (iii) of Definition 3.18).
Furthermore, it is shown that r' D cv D �crV on M for some scalar field
c.x/ > 0, which implies that on M we have hr'; bi D h�crV;�rV C v?i D
cjrVj2 > 0 (property (iv) of Definition 3.18).
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We should point out that the for us decisive equation on the last page of [13],
which shows that c.x/ > 0, has a critical typo: It should read c D � � � D f 0.0/ > 0,
not D 0.

A.8 Proof of Lemma 3.26 (ii)

Proof “)”: If (3.9) holds then choosing w D x implies that x is a critical point
according to Definition 2.9 (ii).

“(”: If x is a critical point then it fulfills (2.10), and so by our assumption there
9a; ı; 
 > 0 such that for 8w 2 K WD NB
.x/ � D we have jH.w; 0/j � ajw � xj2ı
and jH� .w; 0/j � ajw � xj2ı . Because of (2.9) the second equation in (2.11)
implies that c WD supw2K; y2Rn j#.w; y/j < 1. Finally, let mK > 0 be the constant
given by Assumption (H3), and let c4 WD .2a.1C c/m�1

K /1=2.
Now let w 2 NB
.x/ and y 2 R

n. If y D 0 then `.x; y/ D 0 and there is nothing to
prove. Otherwise we abbreviate # WD #.w; y/, and a Taylor expansion gives us a
Q� 2 R

n such that

0 D H.w; #/ D H.w; 0/C ˝
H� .w; 0/; #

˛C 1
2

˝
#;H�� .w; Q�/# ˛

� �ajw � xj2ı � ajw � xj2ı j#j C 1
2
mK j#j2

� �a.1C c/jw � xj2ı C 1
2
mK j#j2

) j#j � �
2a.1C c/m�1

K

�1=2 jw � xjı D c4jw � xjı:

The estimate (3.9) thus follows from (2.12). ut

A.9 Proof of Lemma 4.4

Proof For greater transparency, we will first lead the proof for the special case of
the local action (1.7).

SDE case. Let B � D be a closed ball around x that is so small that d1 WD
minw2B jb.w/j > 0, and further define d2 WD maxw2B jb.w/j and d3 WD
maxw2B jrb.w/j. Let Q̨ 2 Œ0; 1/ be so large that 'jŒ Q̨;1� � B, and define for
˛ 2 Œ Q̨ ; 1�

�.˛/ WD ˇ̌b' 0 � bb.'/ˇ̌2 D 2
�
1 � ˝b' 0;bb.'/

˛�
;

where we use the notation Ow D w
jwj for 8w 2 R

n n f0g. Note that �.˛/ is well-
defined a.e. on Œ Q̨ ; 1� because b.'/ ¤ 0 on Œ Q̨ ; 1� (by our choice of B and Q̨ ), and
because j' 0j 	 length.�/ > 0 a.e. on Œ0; 1�.
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First we claim that there are arbitrarily large values ˛0 2 Œ Q̨ ; 1/ such thatR 1
˛0
�.˛/ d˛ > 0. Indeed, if this were not true then there would exist an ˛0 2

Œ Q̨ ; 1/ such that � D 0 and thus b' 0 D bb.'/ a.e. on Œ˛0; 1�. But this would
mean that on Œ˛0; 1�, ' traverses a flowline of b that ends in x, and so we have
'.˛/ 2  .x; .��; 0�/ for 8 sufficiently large ˛ 2 Œ0; 1/, contradicting (4.1).
We pick ˛0 < 1 so large that d2d3 length.�/.1�˛0/ � 1

4
d21 and formally compute

@"S.�"/j"D0 D lim
"!0

1
"

Z 1

0

�
`.'"; '

0
"/ � `.'; ' 0/

�
d˛

D lim
"!0

Z 1

˛0

1
"

�
`.'"; '

0
"/ � `.'; ' 0/

�
d˛

D
Z 1

˛0

@"`.'"; '
0
"/j"D0 d˛: (A.21)

The last step of exchanging limit and integral will be justified rigorously when
we treat the general case. Since

' 0
" D ' 0 C "

�
b.'/C .˛ � ˛0/rb.'/' 0�

a.e. on Œ˛0; 1�, the integrand of (A.21) is

@"`.'"; '
0
"/j"D0 D @"

�jb.'"/j j' 0
"j � hb.'"/; '

0
"i
�ˇ̌
"D0

D j' 0j˝bb.'/;rb.'/.˛ � ˛0/b.'/
˛

C jb.'/j˝b' 0; b.'/C .˛ � ˛0/rb.'/' 0˛
� ˝
' 0;rb.'/.˛ � ˛0/b.'/

˛
� ˝

b.'/; b.'/C .˛ � ˛0/rb.'/' 0˛

D � jb.'/j2�1 � ˝b' 0;bb.'/
˛�

C .˛ � ˛0/jb.'/j j' 0j˝bb.'/� b' 0;rb.'/
�
bb.'/� b' 0�˛

� � 1
2
d21�.˛/C d2d3.1 � ˛0/j' 0jˇ̌bb.'/� b' 0ˇ̌2

D �.˛/
�� 1

2
d21 C d2d3.1� ˛0/ length.�/

�
� � 1

4
d21�.˛/:

Plugging this into (A.21), we obtain

@"S.�"/j"D0 � � 1
4
d21

Z 1

˛0

�.˛/ d˛ < 0:
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General case. We choose B and Q̨ as before, but now we define �.˛/ WD
j#.'; ' 0/j2. Again, there are arbitrarily large ˛0 2 Œ Q̨ ; 1/ with

R 1
˛0
�.˛/ d˛ > 0

since �.˛/ D 0 ) #.'; ' 0/ D 0 ) H� .'; 0/ D 
.'; ' 0/' 0 ) b' 0 D
3H� .'; 0/ D bb.'/ (the second step followed from the definition (2.11) of #.x; y/,
in the third step we used that H� .'; 0/ ¤ 0 by our choice of B and Q̨ ). By implicit
differentiation in (2.11), [10, Appendix E] shows that for 8x 2 D and 8y ¤ 0

we have3

#x.x; y/
Ty D �
�1.x; y/Hx.x; #.x; y// wherever 
.x; y/ ¤ 0,

#y.x; y/
Ty D 0:

From (2.12) we therefore obtain

rx`.x; y/ D #T
x .x; y/y D �
�1.x; y/Hx.x; #.x; y//;

ry`.x; y/ D #T
y .x; y/y C #.x; y/ D #.x; y/

wherever y ¤ 0 and 
.x; y/ ¤ 0, and thus, abbreviating #" D #.'"; '
0
"/ and


" D 
.'"; '
0
"/, we have a.e. on Œ˛0; 1�

@"`.'"; '
0
"/ D �
�1

"

˝
Hx.'"; #"/; @"'"

˛C ˝
#"; @"'

0
"

˛
D �
�1

"

˝
Hx.'"; #"/; .˛ � ˛0/b.'/

˛
C ˝
#"; b.'/C .˛ � ˛0/rb.'/' 0˛: (A.22)

Setting " D 0 and abbreviating # D #.'; ' 0/ and 
 D 
.'; ' 0/, we find

@"`.'"; '
0
"/
ˇ̌
"D0 D ˝

#; b.'/
˛C .˛ � ˛0/

h˝
#;rb.'/' 0˛ � 
�1˝Hx.'; #/; b.'/

˛i
:

(A.23)

To show that the first term is negative, we make a Taylor expansion and find that
for some Q# we have

0 D H.'; #/ D H.'; 0/C ˝
H� .'; 0/; #

˛C 1
2

˝
#;H�� .'; Q#/# ˛

� 0C hb.'/; #i C 1
2
mBj#j2

) h#; b.'/i � � 1
2
mBj#j2; (A.24)

where we used Assumptions (H1’) and (H3). To control the second term
in (A.23), we make two more Taylor expansions and use the equations

3In this calculation we consider the gradients Hx, H� , rx` and ry` as column vectors.
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Hx.x; 0/ D 0 (a consequence of Assumption (H1’)) and (2.11) to show that

Hx.'; #/ D Hx.'; 0/C Hx� .'; 0/# C O.j#j2/ D 0C rb.'/T# C O.j#j2/;
b.'/ D H� .'; 0/ D H� .'; #/C O.j#j/ D 
' 0 C O.j#j/:

Note that to bound the first remainder term we had to require the existence of a
continuous derivative Hx�� , and we also needed a uniform bound on ' (which is
in B) and on # (which then follows from what was shown at the beginning of the
proof of Lemma 2.11). The square bracket term in (A.23) is thus

Œ: : : � D ˝
#;rb.'/' 0˛ � 
�1˝rb.'/T# C O.j#j2/; 
' 0 C O.j#j/˛

D O.j#j2/; (A.25)

where we used that 
�1 is bounded. (The latter follows from Lemma 2.14 (ii)
and the continuity of 
, since ' is in the compact set B which does not
contain any critical points, and since j' 0j 	 length.�/ > 0 a.e.) Now
combining (A.23), (A.24) and (A.25), and choosing ˛0 sufficiently close to 1,
we find that

@"`.'"; '
0
"/
ˇ̌
"D0 � � 1

2
mBj#j2 C .1 � ˛0/Qcj#j2 � �cj#j2 D �c�.˛/

for some constants Qc; c > 0, and thus @"S.�"/j"D0 � �c
R 1
˛0
�.˛/ d˛ < 0.

It remains to justify the exchange of limit and integral in (A.21). Using the mean
value theorem and Lebesgue, this boils down to finding a bound on (A.22) that
is uniform in both " > 0 and ˛ 2 Œ˛0; 1�. But this is a straight forward estimate
since #" and 
�1

" are uniformly bounded in ˛ and " (for reasons similar to the
ones used for # and 
�1 above). ut



Appendix B
Technical Proofs and Remarks for Part II

Abstract This appendix contains some of the more technical proofs that we had
omitted in Part II in order to not interrupt the flow of the main arguments.

B.1 Proof of Lemma 6.1

Proof It is enough to show these properties for fs; the analogous properties for fu
then follow by replacing b by �b. To show that fs is finite-valued, first recall [20,
Theorem 7.1] that

9c; "; ˛ > 0 8v 2 NB".x/ 8t � 0 W j .v; t/ � xj � cjv � xje�˛t � c"; (B.1)

where we will assume that " is so small that NBc".x/ � D. Thus, since for any given
w 2 Bs there exists a T � 0 such that  .w;T/ 2 B".x/, j .w; t/ � xj decays
exponentially as t ! 1, and since 9a > 0 8v 2 NB".x/ W jb.v/j � ajv � xj, also
jb. .w; t//j decays exponentially, proving that the integral in (3.6a) converges. The
continuity of fs will follow from (i) and (iv).

(i) Let w 2 Bs n fxg. Then formally we can differentiate

rfs.w/ D rw

Z 1

0

jb. .w; t//j dt D
Z 1

0

rw jb. .w; t//j dt

D
Z 1

0

b. .w; t//T rb. .w; t//r .w; t/
jb. .w; t//j dt: (B.2)

To make the exchange of integration and differentiation rigorous and to show
that rfs.w/ is continuous, it suffices to show that there exists a function
p 2 L1.Œ0;1/;R/ such that the integrand of (B.2), let us call it q.w; t/, fulfills
jq.v; t/j � p.t/ for 8t � 0 and all v in some ball NB�.w/. To find such a bound
for q, first we use that

ˇ̌
b

jbj
ˇ̌ � 1. Second, if we choose T as before and � > 0

so small that

8v 2 NB�.w/W  .v;T/ 2 B".x/ (B.3)

© Springer International Publishing Switzerland 2015
M. Heymann, Minimum Action Curves in Degenerate Finsler Metrics,
Lecture Notes in Mathematics 2134, DOI 10.1007/978-3-319-17753-3

161



162 B Technical Proofs and Remarks for Part II

then by (B.1) and (B.3) we have

8v 2 NB�.w/ 8t � 0W  .v; t/ 2 K0 WD  
� NB�.w/; Œ0;T�

� [ NBc".x/ � D;

and since K0 is compact, jrb. .v; t//j can be bounded by a constant as well.
Therefore it suffices to show that we can decrease � > 0 so much that

9Qc; Q̨ > 0 8v 2 NB�.w/ 8t � 0W jr .v; t/j � Qce�Q̨t: (B.4)

To do so, first recall that Xv.t/ WD r .v; t/ is the solution of the ODE

@tXv.t/ D rb. .v; t//Xv.t/

D AXv.t/C Cv.t/Xv.t/ 8t � 0;

Xv.0/ D I;

where A WD rb.x/ and Cv.t/ WD rb. .v; t// � A. Since limt!1  .v; t/ D x
uniformly for v 2 NB�.w/ by (B.1) and (B.3), we have limt!1 Cv.t/ D 0

uniformly for v 2 NB�.w/, and so (B.4) is a straight forward generalization
of the proof of [20, Theorem 6.3] (where now one has to keep track of the
uniformity of all estimates in v).

(ii)
˝rfs.w/; b.w/

˛ D @t fs. .w; t//
ˇ̌
tD0 D lim

h!0

1
h

�
fs. .w; h// � fs.w/

�

D lim
h!0

1

h

� Z 1

0

ˇ̌
b
�
 .w; t C h/

�ˇ̌
dt �

Z 1

0

jb. .w; t//j dt




D � lim
h!0

1

h

Z h

0

jb. .w; t//j dt D �jb.w/j (B.5)

(iii) fs.w/ �
ˇ̌
ˇ̌ Z 1

0

P .w; t/ dt

ˇ̌
ˇ̌ D

ˇ̌
ˇ .w; t/ˇ̌1tD0

ˇ̌
ˇ D jx � wj: (B.6)

(iv) We set Qa WD maxv2NBc".x/
jb.v/j
jv�xj and use (B.1) to find that for 8w 2 NB".x/ we

have

fs.w/ � Qa
Z 1

0

j .w; t/ � xj dt � cQajw � xj
Z 1

0

e�˛t dt D cQa
˛

jw � xj:

Since fs.w/
jw�xj is continuous on K n B".x/ by part (i), (6.8a) holds with

c5 WD max

�
cQa
˛
; max

w2KnB".x/

fs.w/

jw � xj
�
:

ut
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B.2 Remarks on the Construction of Mloc
s , Mloc

u , ps and pu

First let us quickly review the proof of the Stable Manifold Theorem found in [3,
Sect. 13.4] and [14, Sect. 2.7]. Both sources begin the construction of Mloc

s by using
the transformation w D xCR Qw, Qb. Qw/ WD R�1b.xCR Qw/ to reduce it to the case where
x D 0 and R D I. Our formulas for general x and R can thus be obtained either by
reversing this transformation, or directly by generalizing the construction in [3, 14].
Their analogues for Mloc

u are then obtained by reversing time and replacing b by �b.
In a first step, the method of successive approximations is used [14, pp. 109–110]

to construct for every v in some ball Bı.x/ � D a function �vs with

lim
t!1�vs .t/ D x (B.7)

that solves (7.10) and thus P�vs D b.�vs /, i.e., �vs .t/ D  .�vs .0/; t/. One then defines
the function ps.v/ WD �vs .0/ for 8v 2 Bı.x/ (implying (7.9)), and finally one
defines the manifold Mloc

s as the image of the function �sW Bns
� .0/ ! D, �s.u/ WD

ps.x C R.u; 0; : : : ; 0/T/, where � WD ı=jRj, and where Bns
� .0/ denotes the ball in R

ns

with radius � and center 0. Analogously one can define the functions �vu , pu, and �u,
and the manifold Mloc

u .
The functions ps and pu are shown to be C1 with derivatives such that

�r�s.0/;r�u.0/
� D R (B.8)

(see [3, last line on p. 331, and Theorem 4.2]), and since �s.0/ D ps.x/ D x and
�u.0/ D pu.x/ D x, this shows that Mloc

s and Mloc
u are proper C1-manifolds with

TxMloc
s D REs and TxMloc

u D REu; (B.9)

where we denote

Es WD ˚
.v1; : : : ; vn/ 2 R

n
ˇ̌
vnsC1 D � � � D vn D 0

�
; (B.10a)

Eu WD ˚
.v1; : : : ; vn/ 2 R

n
ˇ̌
v1 D � � � D vns D 0

�
: (B.10b)

More details on the remaining properties of the functions ps and pu can be found at
the end of this section.

(7.5): Next we claim that we can decrease � > 0 so that (7.5) holds. Indeed, other-
wise we could find sequences .uk

s/k2N � Bns
� .0/ n f0g and .uk

u/k2N � Bnu
� .0/ n f0g

converging to zero such that for 8k 2 N and uk WD .uk
s ;�uk

u/ we have

0 D �s.u
k
s/ � �u.u

k
u/

D �
x C r�s.0/u

k
s

� � �
x C r�u.0/u

k
u

�C o.juk
s j C juk

uj/
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D �r�s.0/;r�u.0/
�
uk C o.jukj/

D Ruk C o.jukj/;

and dividing by jukj and multiplying by R�1 would imply that uk=jukj ! 0.
(7.6): To ensure that also (7.6) is fulfilled, note that the vectors ys and yu in (7.6)

are of the form

ys.cs; us/ WD r�s.us/cs

jr�s.us/csj ; yu.cu; uu/ WD r�u.uu/cu

jr�u.uu/cuj

for some .cs; us/ 2 @Bns
1 .0/ � Bns

� .0/ and .cu; uu/ 2 @Bnu
1 .0/ � Bnu

� .0/. Since
ys.cs; 0/ 2 TxMloc

s and yu.cu; 0/ 2 TxMloc
u and since TxMloc

s \ TxMloc
u D

R.Es \ Eu/ D f0g by (B.9), we have ys.cs; 0/ ¤ yu.cu; 0/ and thus

˝
ys.cs; 0/; yu.cu; 0/

˛
< 1 for 8cs 2 @Bns

1 .0/ and 8cu 2 @Bnu
1 .0/.

Thus the continuity of the function f .cs; us; cu; uu/ WD ˝
ys.cs; us/; yu.cu; uu/

˛
and

the compactness of @Bns
1 .0/ and @Bnu

1 .0/ imply that

sup
˚
f .cs; 0; cu; 0/

ˇ̌
cs 2 @Bns

1 .0/; cu 2 @Bnu
1 .0/

�
< 1;

and so we can decrease � > 0 so much that

�0 D sup
˚
f .cs; us; cu; uu/

ˇ̌
.cs; us/ 2 @Bns

1 .0/ � Bns
� .0/;

.cu; uu/ 2 @Bnu
1 .0/ � Bnu

� .0/
�
< 1;

which is (7.6).
(7.2a)–(7.3): In [3, Chap. 13, Theorem 4.1] it is shown that 9a0 2 �

0;
�

jR�1j
�

such
that the property (7.2a) (and analogously (7.2b)) holds. The relation “�” in (7.3)
is now a direct consequence of (7.2a)–(7.2b), while the relation “
” in (7.3) was
already clear from (B.7) and its counterpart limt!�1 �vu.t/ D x.
To see that ps. NBa0 .x// � Mloc

s (observe that a0 <
�

jR�1j D ı
jRjjR�1j � ı), first note

that the construction of �vs in [14] implies for 8v;w 2 Bı.x/ that

if v � w 2 REu then �vs D �w
s and thus ps.v/ D ps.w/. (B.11)

Therefore, if we denote by Ps the orthogonal projection onto Es and if for
8v 2 NBa0 .x/ we let uv 2 R

ns be the vector such that .uv; 0/ D PsR�1.v � x/
then juvj D j.uv; 0/j � jR�1.v � x/j � jR�1ja0 < �, i.e., uv 2 Bns

� .0/,
and since v � .x C R.uv; 0// D R.I � Ps/R�1.v � x/ 2 REu, (B.11) implies
that ps.v/ D ps.x C R.uv; 0// D �s.uv/ 2 Mloc

s . Similarly, one can show that
pu. NBa0 .x// � Mloc

u .
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(7.7)–(7.8): From (7.10) and (B.9) one can see that for 8v 2 Bı.x/ we have
ps.v/ � v 2 REu D TxMloc

u , i.e., (7.7). Therefore, if v 2 Mloc
s \ Bı.x/ and

thus v D ps.w/ for some w 2 Bı.x/, then v � w D ps.w/ � w 2 REu, and thus
by (B.11) we have ps.v/ D ps.w/ D v, which is (7.8).

(7.4): Note that Mloc
s \ NBa0 .x/ D ps. NBa0 .x// \ NBa0 .x/ (indeed, “
” is clear since

ps maps into Mloc
s , “�” follows from (7.8)). The continuity of ps thus implies

that Mloc
s \ NBa0 .x/ is compact, and an analogous representation shows that also

Mloc
u \ NBa0 .x/ is compact.

B.3 Proof of Lemma 7.3

Proof We will only show these properties for fs. Since Mloc
s is an ns-dimensional C1-

manifold, it can locally be described by a diffeomorphism �sW U ! �s.U/ D B�.0/,
for some neighborhood U � NBa0 .x/ of x and some � > 0, that fulfills �s.x/ D 0 and

Mloc
s \ U D ��1

s .Es/; (B.12a)

i.e., �s.M
loc
s \ U/ D Es \ �s.U/; (B.12b)

where Es is given by (B.10a).
Indeed, in the notation of Appendix B.2, we can define �s via its inverse

��1
s .u1; : : : ; un/ WD �s.u1; : : : ; uns/C R.0; : : : ; 0; unsC1; : : : ; un/

T (B.13)

for 8u 2 B�.0/, which is a diffeomorphism for sufficiently small � 2 .0; �� since
r��1

s .0/ D R by (B.8), and where we also choose � so small that for 8u 2 B�.0/
we have ��1

s .u/; �s.u1; : : : ; uns/ 2 NBa0 .x/. The relation “
” in (B.12a) is clear. To
show the reverse relation “�”, let w 2 Mloc

s \ U, and let u 2 B�.0/ be such that
w D ��1

s .u/. Then w � �s.u1; : : : ; uns/ 2 REu by (B.13), and so (7.8), (B.11) and
again (7.8) imply that

��1
s .u/ D w D ps.w/ D ps.�s.u1; : : : ; uns// D �s.u1; : : : ; uns/:

By (B.13) this shows that u 2 Es, i.e., w 2 ��1
s .Es/, terminating the proof of (B.12a).

Now consider the vector field Qb 2 C1.U;Rn/ defined as

Qb.w/ WD b.w/� 2R
�
0 0
0 Q

�
R�1r�s.x/

�1�s.w/; w 2 U:

In this new vector field, x is an attractor since by (7.1)

r Qb.x/ D rb.x/� 2R
�
0 0
0 Q

�
R�1r�s.x/

�1r�s.x/ D R
�

P 0
0 �Q

�
R�1
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has only eigenvalues with negative real parts. Also, we have Qb.w/ D b.w/ for 8w 2
Mloc

s \ U. Indeed, for 8w 2 Mloc
s \ U we have by (B.12b) and (B.9)

�s.w/ 2 �s.M
loc
s \ U/ � Es D T0.Es \ �s.U// D T0�s.M

loc
s \ U/

D r�s.x/ Tx.M
loc
s \ U/ D r�s.x/REs;

i.e., R�1r�s.x/�1�s.w/ 2 Es, which implies that
�
0 0
0 Q

�
R�1r�s.x/�1�s.w/ D 0.

Since x is an attractor of Qb, there 9� > 0 such that B�.x/ is contained in its basin
of attraction, which in particular implies that B�.x/ � U and that the flow Q .w; t/
corresponding to Qb is defined and in U for 8w 2 B�.x/ and 8t 2 Œ0;1/. Thus we
can define a function QfsW B�.x/ ! Œ0;1/ based on this flow Q as in Definition 3.21,
which has all the properties of Lemma 6.1. In particular, Qfs is continuous on B�.x/
and C1 on B�.x/ n fxg.

Furthermore, by [14, Corollary on p. 115] we can reduce � > 0 so much that
for 8w 2 Mloc

s \ B�.x/ we have  .w; Œ0;1// � U � NBa0 .x/, and thus in fact
 .w; Œ0;1// � Mloc

s \ U because of (7.2a). Therefore, since b D Qb on Mloc
s \ U,

any flowline  .w; Œ0;1// starting from a point w 2 Mloc
s \B�.x/ coincides with the

flowline Q .w; Œ0;1//, which implies that fs.w/ D Qfs.w/ for 8w 2 Mloc
s \ B�.x/.

In particular, fs is finite-valued on Mloc
s \B�.x/, and if we decrease a0 so much that

a0 2 .0; �/ then (iii) and (iv) hold, where for c10 we choose the constant c5 � 1 given
by Lemma 6.1 (iv) corresponding to the function Qfs and the compact set K WD NBa0 .x/.
Furthermore, given any 8w 2 Ms, by (3.7a) and (7.3) there is a T > 0 such that
 .w;T/ 2 Mloc

s \ B�.x/ and thus

fs.w/ D
Z T

0

jb. .w; t//j dt C fs. .w;T// < 1;

so fs is finite-valued on all of Ms. The statements in (i) now follow from

@t fs. .w; t// D lim
h!0

1
h

�
fs. .w; t C h//� fs. .w; t//

�

D lim
h!0

1

h

� Z 1

0

ˇ̌
b
�
 .w; � C t C h/

�ˇ̌
d� �

Z 1

0

ˇ̌
b
�
 .w; � C t/

�ˇ̌
d�




D � lim
h!0

1

h

Z tCh

t
jb. .w; �//j d� D �jb. .w; t//j:

The proof of (ii) is identical to the one of Lemma 6.1 (iii), see (B.6). ut
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B.4 Proof of Lemma 7.4

Proof First we will show that

f �1
s

�
Œ0; a0�

� � Mloc
s \ NBa0 .x/; (B.14)

which in particular says that f �1
s

�
Œ0; a0�

�
is a subset of Mloc

s . By (7.14a) we
have f �1

s

�
Œ0; a0�

� � NBa0 .x/. Thus, if (B.14) were wrong then there would be a
w 2 f �1

s

�
Œ0; a0�

� n Mloc
s � NBa0 .x/ n Mloc

s , and by (7.2a) we could find a t > 0

such that  .w; t/ … NBa0 .x/. But then by (7.14a) and Lemma 7.3 (i) we would
have a0 < j .w; t/ � xj � fs. .w; t// � fs. .w; 0// D fs.w/, contradicting
w 2 f �1

s

�
Œ0; a0�

�
, and (B.14) is proven.

Now let Qfs 2 C. NBa0 .x/; Œ0;1// be the function given by Lemma 7.3 (iii) that
fulfills fs D Qfs on Mloc

s \ NBa0 .x/. Then by (B.14) we have

f �1
s

�
Œ0; a0�

� D f �1
s

�
Œ0; a0�

� \ �
Mloc

s \ NBa0 .x/
�

D Qf �1
s

�
Œ0; a0�

� \ �
Mloc

s \ NBa0 .x/
�
:

Since Qf �1
s

�
Œ0; a0�

�
and by (7.4) also Mloc

s \ NBa0 .x/ are compact, this shows that
f �1
s

�
Œ0; a0�

�
is compact. The statements for f �1

u

�
Œ0; a0�

�
, Ma

s D f �1
s .fag/ and Ma

u D
f �1
u .fag/ follow from similar arguments.

Next let us show the first relation in (7.19). The inclusion “�” is clear since
Ma

s � Ms n fxg. To show the inclusion “
”, let a 2 .0; a0� and w 2 Ms n fxg.
By (3.7a) and (7.3) there 9t � 0 so large that  .w; t/ 2 Mloc

s \ NBa=c10 .x/, which
by (7.16a) implies that

fs. .w; t// � c10jw � xj � a (B.15)

since a
c10

� a � a0. Since by (7.5) we have w0 WD  .w; t/ 2 Mloc
s \ NBa=c10.x/nfxg �

NBa0 .x/nMloc
u , by (7.2b) there 9t0 < 0 such that .w0; t0/ … NBa0 .x/ and by (7.14a) thus

fs. .w; t C t0// D fs. .w0; t
0// � j .w0; t0/� xj > a0 � a: (B.16)

Now by (B.15), (B.16) and the continuity of fs. .w; � // shown in Lemma 7.3 (i),
there 9t00 2 Œt C t0; t� such that fs. .w; t00// D a, i.e., v WD  .w; t00/ 2 Ma

s , which
implies w D  .v;�t00/ 2  .Ma

s ;R/. This proves that Ms n fxg �  .Ma
s ;R/.

Finally, observe that in the two-dimensional case Ms n fxg consists of only two
distinct flowlines, each of which contain by Lemma 7.3 (i) at most and by (7.19)
at least one point in Ma

s . Thus Ms n fxg contains exactly two points in Ma
s , and

since Ma
s � Ms n fxg by (7.19), this shows that Ma

s consists of exactly two points.
Analogous arguments show this statement also for Ma

u . ut
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B.5 Proof of Lemma 7.5

Proof Let d WD �1C p
2C 2� 2 .0; 1/, which fulfills d2 C 2d � .1C 2�/ D 0. Let

v;w 2 R
n fulfill hv;wi � � jvjjwj, and w.l.o.g. let us assume that jwj � jvj. Now if

v D 0 then w D 0, and the estimate is trivial. Otherwise

jwj
jvj � 1 D 2.d � �/

1� d2

) 2� jvj C jwj � 2djvj C d2jwj
) jv C wj2 D jvj2 C 2hv;wi C jwj2 � jvj2 C 2� jvjjwj C jwj2

� jvj2 C 2djvjjwj C d2jwj2 D �jvj C djwj�2:
ut

B.6 Proof of Lemma 7.6

Proof We will only show part (i); part (ii) can be proven analogously. According
to the Hartman-Grobman-Theorem [14, p. 119] there exists an open set U � D
containing x, and a homeomorphism FW U ! F.U/ � R

n such that F.x/ D 0, and
that for 8w 2 U and every interval J � R with 0 2 J and  .w; J/ � U we have
8t 2 JW F. .w; t// D etA0

F.w/, where A0 WD �
P 0
0 Q

�
. In addition, we may assume that

F�1.Eu/ � Mloc
u ; (B.17)

where Eu is given by (B.10b).
Indeed, by picking ı > 0 sufficiently small we can make sure that for

8w 2 Bı.x/ \ F�1.Eu/ and 8t � 0, jetA0

F.w/j � �
sup��0 je�Qj�jF.w/j is so

small that F�1.etA0

F.w// 2 U \ NBa0 .x/ and thus  .w; t/ D F�1.etA0

F.w// 2 NBa0 .x/,
which by (7.2b) implies that w 2 Mloc

u . Therefore we have Bı.x/\ F�1.Eu/ � Mloc
u ,

and so (B.17) holds if we replace F by FjBı.x/\U.
Now let us decrease a1 > 0 so much that NBa1 .x/ � U, let � > 0, and define

K1 WD NBa1 .x/\ Mloc
u and K2 WD NBa1 .x/ n N�.K1/: (B.18)

Since K2 is a compact subset of U, F.K2/ is compact as well, and since by (B.17)
and (B.18) we have

F.K2/ \ Eu D F.K2 \ F�1.Eu//

� F
�
. NBa1 .x/ n K1/\ Mloc

u

�
D F

�
. NBa1 .x/ n Mloc

u /\ Mloc
u

� D ¿;
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there 9� > 0 such that

F.K2/\ NN�.Eu/ D ¿: (B.19)

Finally, let c WD supt�0 jetPj 2 Œ1;1/, and choose � 2 .0; a1/ so small that
8w 2 NB�.x/W jF.w/j < �

c .
Now let w 2 NB�.x/ n Mloc

s . Since � < a1 < a0, by (7.2a) the flowline
starting at w will eventually leave Ba1 .x/ as t ! 1. Denote the exit time by
T1.w/ > 0 and let t 2 Œ0;T1.w/�. Then since  .w; Œ0; t�/ � NBa1 .x/ � U, we
have F. .w; t// D etA0

F.w/ D u.t/ C v.t/, where u.t/ WD �
0 0
0 etQ

�
F.w/ 2 Eu and

v.t/ WD �
etP 0
0 0

�
F.w/. Since jv.t/j � jetPjjF.w/j � c � �

c D �, this representation
shows that F. .w; t// 2 NN�.Eu/ � R

n n F.K2/ by (B.19), and thus  .w; t/ 2
NBa1 .x/ n K2 D NBa1.x/\ N�.K1/ by (B.18). Since t 2 Œ0;T1.w/� was arbitrary, we can
conclude that  

�
w; Œ0;T1.w/�

� � NBa1 .x/\ N�.K1/, which is (7.30). ut

B.7 Proof of Lemma 7.8

Proof Let a 2 .0; a0�. By (7.19) and (3.10) we have Ma
s � Ms n fxg �S

i2I  .Mi;R/, and in fact we have

Ma
s �

[
i2IC

 .Mi;R/: (B.20)

Indeed, if w 2 Ma
s and thus w 2  .Mi;R/ for some i 2 I then by (6.17) we have

fMi. .w; t// > 0 for 8t > �ti.w/, and by (3.7a) and (7.20) taking the limit t ! 1
implies that fMi .x/ > 0, i.e., i 2 IC.

In the two-dimensional case (n D 2) this immediately shows that the sets Ka
i

defined in (7.34a), which by the last statement of Lemma 7.4 contain at most two
points and are thus compact, fulfill the first relation in (7.32). For n � 3we construct
the sets Ka

i for i 2 IC as follows: Since the sets  .Mi;R/ are open by Lemma 6.7,
by (B.20) we have that for 8w 2 Ma

s 9iw 2 IC 9rw > 0W NBrw.w/ �  .Miw ;R/.
Since fBrw.w/ j w 2 Ma

s g is an open covering of the compact set Ma
s , there is a finite

subcovering, i.e., there is a finite set F � Ma
s such that

S
w2F Brw.w/ 
 Ma

s . Now
defining the compact sets Ka

i WD Ma
s \ �S

w2F; iwDi
NBrw.w/

�
for 8i 2 IC, we have

[
i2IC

Ka
i D Ma

s \
[
w2F

NBrw.w/ D Ma
s ; (B.21)

which is the first relation in (7.32). Analogously we can construct the sets Ka
i for

8i 2 I� and show that they fulfill the second relation in (7.32).
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Since

8i 2 IW Ka
i �  .Mi;R/ (B.22)

(for n D 2 this follows from (7.34a), for n � 3 from the definition of the balls
NBrw.w/) and since  .Mi;R/ is open and Ka

i compact, there 9�a > 0 such that
8i 2 IW NN�a.K

a
i / �  .Mi;R/. Since the sets NN�a.K

a
i / are compact, jtij is bounded

on NN�a.K
a
i / for 8i 2 I, say by some Ta > 0, which implies (7.33). ut

B.8 Proof of Lemma 7.9

Proof We will only show how to construct a 
0 > 0 that fulfills the first statement
in (7.39). To begin, observe that MQa

s and  
�
Ma0

s ; Œ�Ta0 ; 0�
�

are compact by (7.18a)
and disjoint: Indeed, every w 2  �Ma0

s ; Œ�Ta0 ; 0�
�

can be written as w D  .v; t/ for
some v 2 Ma0

s and some t 2 Œ�Ta0 ; 0�, and so by Lemma 7.3 (i) and (7.36) we have

fs.w/ D fs. .v; t// � fs. .v; 0// D fs.v/ D a0 > Qa ) w … MQa
s :

Since also MQa
s � NBQa.x/ � Ba0 .x/ by (7.17), we can thus choose 
0 > 0 so small that

NN
0 .MQa
s /\  

�
Ma0

s ; Œ�Ta0 ; 0�
� D ¿; (B.23)

N
0 .M
Qa
s / � NBa0 .x/: (B.24)

Now define OMQa
s by (7.38). This set is compact since both MQa

s (by (7.18a)) and the
domain NBa0 .x/ of the continuous function ps are compact. We must show the first
statement in (7.39).

The relation MQa
s � OMQa

s \ Ms is easy: By (7.18a) and (7.17) we have MQa
s �

Mloc
s \ NBa0 , and thus 8w 2 MQa

s W w D ps.w/ by (7.8). This means that MQa
s � p�1.MQa

s /,
and thus MQa

s � OMQa
s by (7.38). The relation MQa

s � Ms is clear from (7.19).
To show the reverse relation, i.e., OMQa

s \ Ms � MQa
s , let w 2 OMQa

s \ Ms. By (7.38)
we have w 2 p�1

s .MQa
s /, i.e.,

fs.ps.w// D Qa: (B.25)

Suppose we had fs.w/> a0. Since fs. .w; t//D R1
t jb. .w; �//j d� ! 0 as t ! 1,

there would then be a t > 0 such that fs. .w; t// D a0, i.e., v WD  .w; t/ 2 Ma0
s .

Since w 2 NN
0.MQa
s / by (7.38), (B.23) then implies that w …  

�
Ma0

s ; Œ�Ta0 ; 0�
�
, and

so the representation w D  .v;�t/ shows that �t … Œ�Ta0 ; 0� and thus t > Ta0 .
Now since v 2 Ma0

s , by (7.32) and (7.33) there 9i 2 IC such that v 2 Ka0
i �

 .Mi; Œ�Ta0 ;Ta0 �/. Therefore we can write w D  .v;�t/ D  
�
zi.v/; ti.v/ � t

�
,

which implies that ti.w/ D ti.v/� t < Ta0 � Ta0 D 0 and thus fMi.w/ < 0 by (6.18).
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Since w 2 NN
0.MQa
s / � NBa0 .x/ by (7.38) and (B.24), (7.21a) thus implies that i … IC,

a contradiction.
Therefore we must have fs.w/ � a0 and thus w 2 Mloc

s \ NBa0 .x/ by (7.18a)
and (7.14a). We can now use (7.8) to rewrite (B.25) as fs.w/ D Qa, i.e., w 2 MQa

s . ut

B.9 Proof of Lemma 7.10

Proof We will only construct the functions zs and ts and the set Ds; the functions zu

and tu and the set Du are defined analogously. We begin by defining

Qt.w/ WD inf
˚
t 2 R

ˇ̌
 .w; t/ 2 OMQa

s

�
for 8w 2 D; (B.26)

which we interpret as C1 if  .w; t/ … OMQa
s for 8t 2 R. We claim that for 8v 2

Ms n fxg 9ıv > 0 such that

(i) the infimum in (B.26) is achieved for 8w 2 Bıv .v/,
(ii) Qt is C1 on Bıv .v/,

(iii) 8w 2 Bıv .v/\ OMQa
s W Qt.w/ D 0:

Once this is established we can define the C1-functions

ts.w/ WD �Qt.w/;
zs.w/ WD  .w; Qt.w// for 8w 2 Ds WD S

v2Msnfxg Bıv .v/.

This definition then immediately implies (7.41a), and by property (i) we have
zs.w/ 2 OMQa

s for 8w 2 Ds. Property (iii) implies that for 8w 2 Ds \ OMQa
s we have

Qt.w/ D 0 and thus zs.w/ D  .w; 0/ D w, which is (7.42a). Finally, the relation

Qt. .w; �// D Qt.w/ � � for 8� 2 R (B.27)

implies that

zs. .w; �// D  
�
 .w; �/; Qt. .w; �//�

D  
�
 .w; �/; Qt.w/ � �

� D  .w; Qt.w// D zs.w/

wherever both sides are defined, which is (7.43a).
To prove the claims (i)–(iii) stated above, let v 2 Ms n fxg.

Case 1: v 2 MQa
s . Then since MQa

s � NBQa.x/ � Ba1.x/ by (7.17) and (7.36), there
9�; O� > 0 such that

8.w; �/ 2 B�.v/ � .�O� ; O�/W  .w; �/ 2 NN
0 .MQa
s /\ NBa1 .x/ (B.28)
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and thus in particular ps. .w; �// 2 NBa0 .x/ \ Mloc
s by (7.29) and the definition

of ps. Therefore by Lemma 7.3 (iii) the function F.w; �/ WD fs
�
ps. .w; �//

�
is

well-defined and continuous on B�.v/�.�O� ; O�/. Observe that on this set we have

F.w; �/ D Qa ,  .w; �/ 2 p�1
s .MQa

s / ,  .w; �/ 2 OMQa
s ; (B.29)

where the last step follows from (7.38) and (B.28).
Since fs. .v; � // is continuous by Lemma 7.3 (i) and since fs.v/ D Qa, by
decreasing O� > 0 we can also make sure that for 8� 2 .�O�; O�/ we have
 .v; �/ 2 f �1

s

�
Œ0; a0�

� � Mloc
s \ NBa0 .x/ by (7.18a) and (7.14a), and thus

F.v; �/ D fs. .v; �// by (7.8). Therefore by Lemma 7.3 (i) we have

F.v; 0/ D fs.v/ D Qa; (B.30)

@�F.v; 0/ D �jb.v/j < 0: (B.31)

Because of (B.30) we can further decrease � and O� so much that for 8.w; �/ 2
B�.v/ � .�O�; O�/ we have fs

�
ps. .w; �//

� D F.w; �/ 2 .0; a0/ and thus
ps. .w; �// 2 Ba0 .x/ n fxg by (7.14a), so that F is C1 on B�.v/ � .�O�; O�/ by
Lemma 7.3 (iii).
Finally, by (B.31) we can further decrease � and O� so much that for 8.w; �/ 2
B�.v/ � .�O�; O�/ we have @�F.w; �/ < 0, so that

for 8w 2 B�.v/ there is at most one value � 2 .�O�; O�/ (B.32)
such that F.w; �/ D Qa.

We can now invoke the Implicit Function Theorem, and so there exists a ıv 2
.0; �� and a function �v 2 C1

�
Bıv .v/; .�O� ; O�/� such that for 8w 2 Bıv .v/ we

have F.w; �v.w// D Qa, which by (B.32) and (B.29) means that

for 8w 2 Bıv .v/, �v.w/ is the unique value in .�O�; O�/ (B.33)
such that  .w; �v.w// 2 OMQa

s .

Now since v 2 MQa
s � S

i2IC  .Mi;R/ by (B.20), there 9i 2 IC such that v 2
 .Mi;R/, and (6.17) implies that for t0 WD minf�ti.v/� 1;�O�g we have

fMi. .v; t
0// < 0: (B.34)

By Lemma 7.3 (i) we have fs. .v; t// > fs. .v; 0// D fs.v/ D Qa
for 8t 2 Œt0;�O� �, so that  

�
v; Œt0;�O� �� \ MQa

s D ¿, and since also
 
�
v; Œt0;�O��� � Ms, (7.39) thus tells us that

 
�
v; Œt0;�O��� \ OMQa

s D ¿: (B.35)
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Now considering (B.34) and (B.35), and that OMQa
s is compact, we can further

decrease ıv > 0 so much that

8w 2 Bıv .v/W fMi. .w; t
0// < 0; (B.36)

8w 2 Bıv .v/W  
�
w; Œt0;�O� �� \ OMQa

s D ¿: (B.37)

Now let w 2 Bıv .v/. Then since t 7! sgn
�
fMi . .w; t//

�
is non-decreasing

by (6.17), (B.36) implies that fMi. .w; t// < 0 for 8t 2 .�1; t0�. Since by (7.40)
and (7.21a) we have fMi .u/ > 0 for 8u 2 OMQa

s , this means that  .w; t/ … OMQa
s for

8t 2 .�1; t0�, and by (B.37) in fact for 8t 2 .�1;�O��. Thus (B.33) implies
that �v.w/ is the unique value in all of .�1; O�/ fulfilling  .w; �v.w// 2 OMQa

s .
This in turn has three consequences: (i) the infimum in (B.26) is achieved for
8w 2 Bıv .v/, with

Qt.w/ D �v.w/ for 8w 2 Bıv .v/; (B.38)

which in turn implies that (ii) Qt is C1 on Bıv .v/ since �v is; and (iii) since for
8w 2 Bıv .v/ \ OMQa

s we have  .w; 0/ D w 2 OMQa
s , we can conclude that 0 D

�v.w/ D Qt.w/ for those w. These are the three properties that we had to prove.
Case 2: v … MQa

s . Then since v 2 Ms, (7.39) implies that v … OMQa
s . Since OMQa

s is
compact, there thus exists a ıv > 0 such that Bıv .v/ \ OMQa

s D ¿, and claim (iii)
will be trivially true. Furthermore, by (7.19) there exist u 2 MQa

s and � 2 R such
that v D  .u;��/, i.e.,  .v; �/ D u 2 Bıu.u/, where ıu is given by Case 1. Let
us decrease ıv > 0 so much that 8w 2 Bıv .v/W .w; �/ 2 Bıu.u/. Then by (B.27)
and (B.38) (applied to Bıu.u/) we have

Qt.w/ D Qt. .w; �// C � D �u. .w; �//C �

for 8w 2 Bıv .v/, which implies property (ii), and

 .w; Qt.w// D  
�
 .w; �/; Qt.w/ � �� D  

�
 .w; �/; �u. .w; �//

� 2 OMQa
s

by (B.33), which is property (i). ut

B.10 Proof of Remark 7.11

Proof We will only prove (7.44a), i.e., the case i 2 IC. Note that zs.K
a0
i / is well-

defined since for i 2 IC we have Ka0
i � Ma0

s � Ms n fxg � Ds by (7.32), (7.19) and
the definition of Ds.

The proof of Remark 7.11 must be led separately for the dimensions n D 2 and
n � 3: In the case n D 2 we must show that our explicit definition (7.34a) of Ka

i
that we will use later on fulfills (7.44a); in the case n � 3 we only need to show
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that given the sets Ka0
i constructed in Lemma 7.8, the sets QKQa

i WD zs.K
a0
i / are an

alternative choice that fulfill (7.32)–(7.33) for some constants �Qa;TQa > 0. A look at
the last paragraph of the proof of Lemma 7.8 reveals that for the latter it suffices to
show that the sets QKQa

i are compact and fulfill QKQa
i �  .Mi;R/ for 8i 2 IC, and thatS

i2IC
QKQa

i D MQa
s .

Beginning with the case n D 2, first let w 2 Ka0
i D  .Mi;R/ \ Ma0

s . The three
representations zs.w/ D  .w;�ts.w// D  

�
zi.w/; ti.w/ � ts.w/

�
then show that

zs.w/ 2 OMQa
s \ Ms \  .Mi;R/ D MQa

s \  .Mi;R/ D KQa
i by (7.39) and (7.34a),

proving the inclusion zs.K
a0
i / � KQa

i .
For the reverse inclusion KQa

i � zs.K
a0
i / let w 2 KQa

i D  .Mi;R/ \ MQa
s . Then we

have  .w;�ti.w// D zi.w/ 2 Mi � NBa0 .x/
c by (7.20) and thus fs

�
 .w;�ti.w//

� �
j .w;�ti.w//� xj > a0. Since fs. .w; 0// D fs.w/ D Qa < a0, this shows that there
9t 2 R such that fs. .w; t// D a0 and thus v WD  .w; t/ D  

�
zi.w/; ti.w/ C t

� 2
 .Mi;R/ \ Ma0

s D Ka0
i . Since w 2 MQa

s � OMQa
s and w; v 2 Ms n fxg � Ds, (7.42a)

and (7.43a) now show that w D zs.w/ D zs. .v;�t// D zs.v/ 2 zs.K
a0
i /.

Moving on to the case n � 3, first note that the sets QKQa
i are compact as the

continuous images of compact sets. To see that QKQa
i �  .Mi;R/, note that if w 2

QKQa
i D zs.K

a0
i / then there 9v 2 Ka0

i such that

w D zs.v/ D  .v;�ts.v// 2  .Ka0
i ;R/ �  . .Mi;R/;R/ D  .Mi;R/

by (B.22). Finally, to show that
S

i2IC
QKQa

i D MQa
s , observe that since

[
i2IC

QKQa
i D

[
i2IC

zs.K
a0
i / D zs


 [
i2IC

Ka0
i

�
D zs.M

a0
s /

by (7.32), we only need to prove that zs.Ma0
s / D MQa

s .
To do so, first observe that by (7.41a) and (7.19) we have zs.Ma0

s / �
 .Ma0

s ;R/ � Ms, and thus by definition of zs and by (7.39) we have zs.Ma0
s / �

OMQa
s \ Ms D MQa

s . To show the reverse inclusion, let w 2 MQa
s . Then by (7.19) we

have w 2 Ms n fxg D  .Ma0
s ;R/, and so 9v 2 Ma0

s 9t 2 RW w D  .v; t/ and
thus fs. .v; t// D fs.w/ D Qa, i.e.,  .v; t/ 2 MQa

s . Since fs. .v; � // is decreasing
by Lemma 7.3 (i), t is in fact the unique value with this property. Since v 2 Ms,
by (7.39) this means that t is the unique value such that  .v; t/ 2 OMQa

s , which in
the notation of Appendix B.9 implies that Qt.v/ D t and thus zs.v/ D  .v; Qt.v// D
 .v; t/ D w. This shows that w 2 zs.Ma0

s /, completing our proof. ut

B.11 Proof of Lemma 7.12

Proof Again we will only consider the case i 2 IC. First we claim that

 
�
KQa

i ; Œ�TQa;TQa�
� \ f �1

Mi

�
Œ0;1/

� � K: (B.39)



B.11 Proof of Lemma 7.12 175

To see this, let w 2  
�
KQa

i ; Œ�TQa;TQa�
� \ f �1

Mi

�
Œ0;1/

�
. If w 2 NBa0.x/ then by (7.35)

we have w 2 K. Therefore suppose now that w … NBa0 .x/; we must show that w 2 K
also in this case.

Let v 2 KQa
i and t 2 Œ�TQa;TQa� such that w D  .v; t/. Since by Remark 7.11 we

have v 2 KQa
i D zs.K

a0
i /, there 9u 2 Ka0

i W v D zs.u/, and we find that

w D  .v; t/ D  .zs.u/; t/ D  
�
 .u;�ts.u//; t

� D  
�
u; t � ts.u/

�
: (B.40)

Since u 2 Ka0
i � Ma0

s by (7.32), and since w … NBa0 .x/ 
 f �1
s

�
Œ0; a0�

�
by (7.14a), we

thus have

fs. .u; 0// D fs.u/ D a0 < fs.w/ D fs
�
 .u; t � ts.u//

�
;

and so Lemma 7.3 (i) implies that 0 > t � ts.u/. Therefore by (B.40) and (7.33) we
have

w 2  �Ka0
i ; .�1; 0/

� �  
�
 .Mi; Œ�Ta0 ;Ta0 �/; .�1; 0/

� D  
�
Mi; .�1;Ta0 /

�

and thus ti.w/ < Ta0 . Furthermore, since fMi .w/ � 0 by our choice of w, by (6.18)
we have ti.w/ � 0. We can now conclude that ti.w/ 2 Œ0;Ta0 / and thus w 2
 .Mi; Œ0;Ta0 // � K by (7.35), and (B.39) is proven.

Now we abbreviate M�
i WD f �1

Mi

�
.�1; 0/

�
, MC

i WD f �1
Mi

�
Œ0;1/

�
, and F WD

 
�
KQa

i ; Œ�TQa;TQa�
�
, and finally we define the open set Gi WD M�

i [ NQa.F \ MC
i /.

Then the relation (B.39) translates into

F \ MC
i � K; (B.41)

which by (7.37) implies that NQa.F \ MC
i / � NQa.K/ � D and thus Gi � D. Also, we

have

Gi 
 ŒF \ M�
i � [ ŒF \ MC

i � D F \ ŒM�
i [ MC

i � D F \ D D F;

which is (7.45), and again using (B.41) we find that

Gi \ MC
i D �

M�
i [ NQa.F \ MC

i /
� \ MC

i

D �
M�

i \ MC
i

� [ �
NQa.F \ MC

i /\ MC
i

�
� ¿ [ NQa.F \ MC

i / � NQa.K/;

which is (7.46a). ut



Glossary

Absolute continuity A smoothness property for a function f W Œa; b� ! R
n that is

stronger than continuity, but weaker than continuous differentiability. We have

C1 ! Lipschitz cont. ! abs. cont. ! bounded variation ! diff. a.e.

See Sect. 2.1.1 for a precise definition.

Admissible manifold An (n � 1)-dimensional C1-submanifold of our state space
D � R

n that divides D into two parts (“inside” and “outside”), in such a way that all
flowlines of the given ! drift vector field b 2 C1.D;Rn/ under consideration cross
the manifold in the same direction (“inwards” or “outwards”) and at a non-vanishing
angle. See Definition 3.18 for details.

This property was introduced in the context of this work as a tool for checking
that a given point has ! local minimizers, see Propositions 3.23 and 3.25.

Diffusion process A random function XW Œ0;1/ ! R
n, typically denoted as

.Xt/t�0, that solves a stochastic differential equation (SDE)

dXt D b.Xt; t/ dt C �.Xt; t/ dWt; XtD0 D x0; (1)

where bWRn � Œ0;1/ ! R
n is called the drift, � WRn � Œ0;1/ ! R

n�m is called
the noise matrix, and where the process .Wt/t�0 is an m-dimensional Brownian
motion. If � 	 0 then .Xt/t�0 is just the solution of the standard ordinary differential
equation PXt D b.Xt; t/. In this book we only consider the case where b D b.x/ and
� D �.x/, where n D m, and where det.�.x// ¤ 0 for every x.

The SDE (1) can be interpreted as an instruction for numerically simulating the
random process .Xt/t�0 using a generalized Euler method, in which at each time step
dt the process not only moves by a deterministic part b.Xt; t/ dt, but in addition also
by a random step �.Xt; t/ dWt, where dWt is a vector consisting of m independent
samples from a normal distribution with mean 0 and variance dt.
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Drift In its original meaning, the drift is the vector field b in an SDE (1). In
our example from ! Wentzell-Freidlin theory, where we consider b D b.x/
and in the simplest case � 	 p

" I (where I is the identity matrix), the
local ! geometric action is given by `SDE.x; y/ D jb.x/jjyj � hb.x/; yi. This
motivates us to generalize the notion of a drift: Given a geometric action S.�/
with local geometric action `.x; y/, we call a vector field b a drift of S if locally
we have the bound `.x; y/ � c

�jb.x/jjyj � hb.x/; yi� for some c > 0. Since
the ! flowline diagram of such a vector field b encodes all the necessary
information about the key problem in our existence proof, namely about those
curves with potentially vanishing action, the flowline diagram of a drift of S is
the key ingredient in the criteria of our existence theorem. See Definition 2.7
for the exact definition of this generalized notion of a drift, and Definition 3.18,
Propositions 3.23 and 3.25, and Theorem 3.11 for its context in our existence theory.

Flowline diagram The flowline diagram of a vector field b 2 C1.Rn;Rn/ is the
diagram composed of the curves given by the solutions of the ODE

Px.t/ D b.x.t//; x.t D 0/ D x0; t 2 R;

for any starting point x0 2 R
n.

Geometric action A function S that assigns to any unparameterized ! rectifiable
curve � a number S.�/ WD R

�
`.z; dz/ � 0, where the function `.x; y/ is called the

local geometric action. See Definition 2.4 for details. The convexity requirement in
Definition 2.4 (ii) is designed to guarantee that S is ! lower semi-continuous, a
property that our existence theory relies upon.

Geometric minimum action method (gMAM) An algorithm for computing the
! minimum action curve �? of a given ! geometric action S.�/ numerically [9,
10].

Large deviation theory A branch of probability theory that deals with events that
are rare (i.e., unlikely) in a certain limit, or in other words, with large deviations
from typical behavior. Large deviation principles (i.e., the conditions under which
this theory applies) have been proven for a variety of very different probabilistic
settings, and the key takeaway of the theory is for all these cases that if rare events
happen then they do so in a very predictable way.

For example, when flipping a large number N of independent fair coins, one
would expect about N

2
heads (typical behavior), and so an outcome of more than,

say, 70 % heads is an unlikely event. However, when repeating this experiment
(1 experiment D N coin flips) many times, such rare outcomes will eventually occur.
Now if one records only those few experiments with at least 70 % heads, one will
find that most of those experiments will in fact have a head ratio of very close to
70 %, since ratios of 80 % or even 90 % are so much less likely than 70 %. This
predictability becomes more and more pronounced as N gets larger, and in the limit
the proportion of recorded cases with more than .70 C "/% heads goes to zero for
any " > 0.
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A large deviation principle in the context of diffusion processes (i.e., SDEs) is
provided by ! Wentzell-Freidlin theory.

Local minimizers, points with Given a ! geometric action S.�/, a point x 2 D is
said to have local minimizers if for all start and end points x1; x2 in a neighborhood
of x there is a ! minimum action curve leading from x1 to x2 whose length is
controlled uniformly over all x1; x2, and that remains confined to some compact set
independent of x1; x2; see Definition 3.9 for details.

Our main existence theorem, Theorem 3.11, uses a compactness argument to turn
this local existence property into a global one. Criteria for proving that a given point
has this property are provided by Propositions 3.16, 3.23, and 3.25.

Lower semi-continuity A function f WR ! R is called lower semi-continuous
if 8x 2 RW f .x/ � lim infy!x f .y/. This property is weaker than continuity in
that it allows for jumps in the graph of f , as long as the function value at such
a jump location is not larger than the left and the right limit. Such functions are
still guaranteed to obtain their minimum values on every compact interval. When
generalizing this property to real-valued functions on more complicated spaces,
such as to ! geometric actions S.�/, one needs to specify the topology of that
space, i.e., in which sense the limit y ! x is to be understood. See Sect. 1.4.2
for further explanations, and see Lemma 2.6 for the exact way in which geometric
actions are lower semi-continuous.

Minimum action curve A curve �? that for given sets A1;A2 � D and a given
! geometric action S.�/ fulfills S.�?/ D inf� S.�/, where the infimum is taken
over all rectifiable curves � leading from A1 to A2. See Definition 3.1 for details.

Quasipotential The quasipotential is defined as the infimum of the
! Wentzell-Freidlin action functional over all transition times T > 0. It is the
key object of study in Wentzell-Freidlin theory [8], as it encodes information about
how and how frequently rare transition events in diffusion processes occur under an
appropriate limit.

Rectifiable curve Rectifiable curves are those curves that locally have finite length.
See Sect. 2.1.1 for details.

Riemannian metric A Riemannian metric on a set D � R
n is a collection of inner

products fh�; �iz j z 2 Dg. Under this metric, curve lengths are defined as S.�/ WDR
�

jdzjz, i.e., by assigning to each infinitesimal curve segment between two nearby

points z; z C dz 2 D the length jdzjz WD hdz; dzi1=2z .

Stable Manifold Theorem This theorem from the study of ODEs describes, for a
given vector field b 2 C1.Rn;Rn/, the local behavior of the ODE Px.t/ D b.x.t// near
a saddle point x0 2 R

n of b, i.e., near a point with b.x0/ D 0 such that the matrix
rb.x0/ has eigenvalues both with positive and with negative real parts, but none
with vanishing real part. It states that in some neighborhood of x0 the set of points
that converge to x0 under the dynamics of the ODE as t ! 1 (t ! �1), without
leaving that neighborhood, form a C1-manifold, called the local stable (unstable)
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manifold. The dimension of this manifold is given by the number of eigenvalues
of rb.x0/ (including their multiplicities) with negative (positive) real part. See
Theorem 7.1 for details.

Wentzell-Freidlin theory A branch of ! large deviation theory, this is
the theory of rare transition events of stochastic processes, in particular of
! diffusion processes given by an SDE. If the starting point x0 in (1) is an attractor
of b and if the noise � is very small then the probability of the process moving far
away from x0 within some fixed time T > 0 is small. Wentzell-Freidlin theory [8]
establishes a ! large deviation principle for this probabilistic setting under the
zero-noise-limit, which implies that if such a rare transition event occurs, it does so
with overwhelming probability along a specific pathway. The theory specifies this
pathway as the minimizer of the Wentzell-Freidlin action functional, which encodes
the probability of the process following a given pathway (with lower action values
corresponding to higher probabilities).
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