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Preface to the English Edition

This is a revised and augmented English edition of my book “Dimension topolog-
ique et systèmes dynamiques” which was published in 2005 by the Société
Mathématique de France. As explained in the preface to the French edition, the goal
of the book is to provide a self-contained introduction to mean topological dimen-
sion, an invariant of dynamical systems introduced in 1999 by Misha Gromov, and
explain how this invariant was successfully used by Elon Lindenstrauss and
Benjamin Weiss to answer a long-standing open question about embeddings of
minimal dynamical systems into shifts. A large number of revisions and additions
have been made to the original text. Chapter 5 contains an entirely new section
devoted to the Sorgenfrey line. Two chapters have also been added: Chap. 9 on
amenable groups and Chap. 10 on mean topological dimension for continuous
actions of countable amenable groups. These new chapters contain material that has
never before appeared in textbook form. The chapter on amenable groups is based on
Følner’s characterization of amenability and may be read independently from the
rest of the book. There are a total of 160 exercises. The hardest ones are accompanied
with hints. Although the contents of this book lead directly to several active areas of
current research in mathematics and mathematical physics, the prerequisites needed
for reading it remain modest, essentially some familiarities with undergraduate
point-set topology and, in order to access the final two chapters, some acquaintance
with basic notions in group theory.

There are many people I would like to thank for their assistance during the
preparation of this book: Insa Badji, Nathalie Coornaert and Lindzy Tossé for
helping me in drawing the figures; Fabrice Krieger and Tullio Ceccherini-Silberstein
for proofreading the manuscript and offering invaluable suggestions; Dr. Jeorg Sixt,
Catherine Waite, and the editorial staff at Springer-Verlag for their competence and
guidance during the publication process. Finally, I want to thank my wife Martine
for her patience and understanding while this book was being written.

Strasbourg Michel Coornaert
October 2014
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Preface to the French Edition

This book grew out from a DEA course I gave at the University of Strasbourg in
Spring 2002. The first part of the book presents some fundamental results from
dimension theory. The second part is devoted to topological mean dimension and its
applications to embeddings problems for dynamical systems.

Dimension theory is the branch of general topology that studies the notion of
dimension for topological spaces. It has its root at the origins of geometry and the
difficulties encountered by mathematicians when trying to give rigorous definitions
of the concepts of curves and surfaces. The theory flourished at the end of the
nineteenth century and at the beginning of the twentieth century. Its developments
had a deep impact on many other branches of mathematics such as algebraic
topology, dynamical systems, and probability theory. Actually, several
non-equivalent definitions of dimension for topological spaces may be found in the
literature. The most commonly used are the small inductive dimension ind, the large
inductive dimension Ind, and the covering dimension dim. Small inductive
dimension was introduced by P. Urysohn in 1922 and independently by K. Menger
in 1923. Large inductive dimension and covering dimension were introduced by
E. Čech in 1931. These three dimensions coincide for separable metrizable spaces.

Mean topological dimension is a conjugacy invariant of topological dynamical
systems which was recently introduced by Gromov [44]. This invariant enables one
to distinguish systems with infinite topological entropy. It was used by
Lindenstrauss and Weiss [74] to answer a long-standing open question about the
existence of embeddings of minimal dynamical systems into shifts.

Chapter 1 begins with the definition of the covering dimension of a topological
space and the proof of its main properties. We establish in particular the countable
union theorem in normal spaces and the monotonicity theorem in metric spaces.

The second chapter is devoted to 0-dimensional topological spaces. Examples of
such spaces are given and we investigate the relationship between the class of
0-dimensional spaces and other classes of highly disconnected topological spaces.

The notion of a polyhedron is introduced in Chap. 3. A polyhedron is a topo-
logical space that can be triangulated, i.e., is homeomorphic to the geometric
realization of some finite simplicial complex. We prove Lebesgue’s lemma on open
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covers of Euclidean cubes. It is used to show that the covering dimension of a
polyhedron is equal to the combinatorial dimension of any of its triangulations. We
also deduce from Lebesgue’s lemma that the covering dimension of Rn is equal to n
as expected.

In Chap. 4, we prove Aleksandrov theorem about topological dimension of
compact metrizable spaces and ε-injective maps. We then establish the
Menger-Nöbeling embedding theorem that states that any n-dimensional compact
metrizable space can be embedded in R

2nþ1.
Chapter 5 is devoted to the study of counterexamples which played an important

role in the history of dimension theory: Erdös and Bing spaces, Knaster-Kuratowski
fan, Tychonoff plank. These counterexamples enlighten the validity domains of
some of the theorems established in the previous chapters.

In Chap. 6, the mean topological dimension mdimðX; TÞ of a discrete dynamical
system ðX; TÞ, where X is a normal space and T : X ! X a continuous map, is
defined and its first properties are established. When X is a compact metric space,
an equivalent definition of mdimðX; TÞ involving the metric is given.

In Chap. 7, we consider the dynamical system ðKZ; σÞ, where KZ is the space of
bi-infinite sequences of points in a topological space K and σ is the shift map
ðxiÞ 7! ðxiþ1Þ. We show that mdimðKZ; σÞ� dimðKÞ for any compact metrizable
space K and that equality holds when K is a polyhedron. By considering appro-
priate subshifts, we show that mean topological dimension can take any value in
½0;1�.

Chapter 8 discusses embeddings problems of dynamical systems into shifts. We
prove the theorem of Jaworski that asserts that any dynamical system ðX; TÞ, where
T is a homeomorphism without periodic points of a finite-dimensional compact
metrizable space X, can be embedded into the shift ðRZ; σÞ. Finally, we describe the
Lindenstrauss-Weiss counterexamples which show that Jaworski’s theorem
becomes false if the hypothesis on the finiteness of the topological dimension is
removed.

There are historical notes and a list of exercises at the end of each chapter. All
along the text, I tried to give detailed proofs in order to make them accessible to
students who attended a basic course on general topology. The terminology used is
that of Bourbaki with the exception that compact (resp. locally compact,
resp. normal, resp. scattered) spaces are not required to be Hausdorff.

I thank all the students who attended my course and especially Fabrice Krieger
for numerous suggestions. I am also very grateful to Nathalie Coornaert, Lida
Leyva, and Stéphane Laurent who helped me in the preparation of the manuscript
and the realization of the figures.
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Topological Dimension



Chapter 1
Topological Dimension

In this chapter, we introduce the topological dimension dim(X), also called the
covering dimension, of a topological space X . The definition of dim(X) involves the
combinatorics of the finite open covers of X . We establish some basic properties of
the topological dimension and give first examples of topological spaces for which
it can be explicitly computed. We introduce the class of normal spaces and prove
the countable union theorem for closed subsets of normal spaces (Theorem 1.7.1).
We also show the monotonicity of topological dimension for subsets of metrizable
spaces (Theorem 1.8.3).

1.1 Definition of Topological Dimension

We denote byN the set of non-negative integers and byR the set of real numbers. We
use the symbol ∞ with the usual conventions ∞ + ∞ = ∞, ∞ + a = a + ∞ = ∞
and a < ∞ for all a ∈ R. When E is a set, #E denotes the cardinality of E if E is
finite or the symbol ∞ otherwise.

Let X be a set. Let α = (Ai )i∈I be a family of subsets of X indexed by a set I .
For each x ∈ X , let

ordx (α) := −1 + #{i ∈ I | x ∈ Ai }.

We say that the quantity ordx (α) ∈ {−1} ∪ N ∪ {∞} is the order of α at the point x .
We define the (global) order ord(α) ∈ {−1} ∪ N ∪ {∞} of the family α by

ord(α) := sup
x∈X

ordx (α).

(If X is the empty set ∅, we adopt the convention ord(α) = −1.)
In other words, ord(α) is the greatest integer n (or ∞ if such an integer does not

exist) such that we can find n + 1 distinct elements i0, i1, . . . , in ∈ I satisfying

© Springer International Publishing Switzerland 2015
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4 1 Topological Dimension

Ai0 ∩ Ai1 ∩ · · · ∩ Ain �= ∅.

We say that α is a cover of X (or that α covers X ) if we have

X =
⋃

i∈I

Ai .

Note that α is a cover of X if and only if one has ordx (α) ≥ 0 for all x ∈ X .
We say that α is a partition of X if α is a cover of X and Ai ∩ A j = ∅ for all

distinct i, j ∈ I . Note that the family α is a partition of X if and only if one has
ordx (α) = 0 for all x ∈ X .

Let α = (Ai )i∈I and β = (B j ) j∈J be two covers of a set X . We say that the cover
β is finer than the cover α, and we write β � α, if for every j ∈ J there exists i ∈ I
such that B j ⊂ Ai .

If α, β and γ are covers of a set X such that γ � β and β � α, then we clearly
have γ � α (transitivity of �).

Remark 1.1.1 Let α = (Ai )i∈I and β = (Bi )i∈I be covers of a set X such that
Bi ⊂ Ai for all i ∈ I . Then β is finer than α. Moreover, for each x ∈ X , we have

{i ∈ I | x ∈ Bi } ⊂ {i ∈ I | x ∈ Ai }

and hence ordx (β) ≤ ordx (α). Consequently, we have ord(β) ≤ ord(α).

We say that a coverα = (Ai )i∈I of a topological space X is an open cover (resp. a
closed cover) of X if Ai is open (resp. closed) in X for all i ∈ I .

Definition 1.1.2 Let X be a topological space. Let α = (Ui )i∈I be a finite open
cover of X . We define the quantity D(α) by

D(α) := min
β

ord(β),

where β runs over all finite open covers of X that are finer than α.

Remark 1.1.3
(1) As α � α, we have D(α) ≤ ord(α) ≤ −1 + #I .
(2) We have D(α) ∈ {−1} ∪ N.
(3) We have D(α) ≤ n if and only if there exists a finite open cover β � α such

that ord(β) ≤ n.

Proposition 1.1.4 Let X be a topological space. Let α and α′ be finite open covers
of X such that α � α′. Then one has D(α) ≥ D(α′).

Proof If β is a finite open cover of X such that β � α, then we have β � α′ by
transitivity of �. Consequently, we have D(α) ≥ D(α′). �

We shall use the following auxiliary result.
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Lemma 1.1.5 Let X be a topological space. Let α = (Ui )i∈I be a cover of X and
let β = (Vj ) j∈J be an open cover of X such that β � α. Then there exists an open
cover γ = (Wi )i∈I of X such that ordx (γ) ≤ ordx (β) for all x ∈ X and Wi ⊂ Ui

for all i ∈ I .

Proof As β is finer than α, there exists a map ϕ : J → I such that Vj ⊂ Uϕ( j) for
all j ∈ J . Consider the family γ = (Wi )i∈I defined by

Wi :=
⋃

j∈ϕ−1(i)

Vj .

Each Wi is open in X since it is a union of open subsets of X . On the other hand,
we have Wi ⊂ Ui as Vj ⊂ Ui for all j ∈ ϕ−1(i). As β = (Vj ) j∈J covers X and
Vj ⊂ Wϕ( j) for all j ∈ J , we deduce that γ is a cover of X . Finally, consider a point
x ∈ X . We have x ∈ Wi if and only if there exists j ∈ ϕ−1(i) such that x ∈ Vj . It
follows that ϕ induces a surjection from { j ∈ J | x ∈ Vj } onto {i ∈ I | x ∈ Wi }.
This implies ordx (γ) ≤ ordx (β). �
Proposition 1.1.6 Let X be a topological space and let α = (Ui )i∈I be a finite open
cover of X. Then one has

D(α) = min
β

ord(β),

where β runs over all open covers (finite or not) of X that are finer than α.

Proof It suffices to show that every open cover of X that is finer than α has order at
least D(α). Let β be an open cover of X such that β � α. By Lemma 1.1.5, there
exists an open cover γ = (Wi )i∈I such that ord(γ) ≤ ord(β) and Wi ⊂ Ui for all
i ∈ I . As γ is a finite open cover of X that is finer than α, we have D(α) ≤ ord(γ)

and hence D(α) ≤ ord(β). �
Proposition 1.1.7 Let X be a topological space and let α = (Ui )i∈I be a finite open
cover of X. Then one has

D(α) = min
β

ord(β),

where β runs over all finite open covers of X that are of the form β = (Vi )i∈I with
Vi ⊂ Ui for all i ∈ I .

Proof This is again an immediate consequence of Lemma 1.1.5. Indeed, this lemma
implies that, for every finite open cover γ of X that is finer than α, there exists an
open cover β = (Vi )i∈I such that ord(β) ≤ ord(γ) and Vi ⊂ Ui for all i ∈ I . �
Definition 1.1.8 Let X be a topological space. The topological dimension dim(X) ∈
{−1} ∪ N ∪ {∞} of X is the quantity defined by

dim(X) := sup
α

D(α),

where α runs over all finite open covers of X .
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The topological dimension dim(X) is also called the Čech-Lebesgue covering
dimension, or simply the Lebesgue dimension, of X .

It is clear from its definition that topological dimension is a topological invariant,
that is, one has dim(X) = dim(Y )whenever X and Y are homeomorphic topological
spaces.

Example 1.1.9 One has dim(X) = −1 if and only if X = ∅.

Example 1.1.10 Let X be a non-empty set equipped with its discrete topology, i.e.,
with the topology for which all subsets of X are open. Let α be a finite open cover
of X . Then the family β = ({x})x∈X is an open partition of X . As β � α, it follows
from Proposition 1.1.6 that D(α) = 0. Consequently, we have dim(X) = 0.

Example 1.1.11 Let n ∈ N and let X be a finite set of cardinality n + 2. Fix an
arbitrary element x0 ∈ X and equip X with the topology for which the open subsets
are ∅ and all the subsets of X containing x0. Then

α := ({x0, x})x∈X\{x0}

is a finite open cover of X . Observe that any open cover of X that is finer than α
must contain {x0, x} for each x ∈ X\{x0}. It follows that D(α) = ord(α) = n. As
α is finer than any open cover of X , we conclude that dim(X) = D(α) = n.

Example 1.1.12 Let X be an infinite set. Let us equip X with its cofinite topology,
i.e., the topology for which the open sets are the empty set and all the subsetsU ⊂ X
with X\U finite. The space X is not Hausdorff since the intersection of two non-
empty open subsets of X is never empty. Note that X is compact. Indeed, if γ is an
open cover of X , a finite subcover of γ may be obtained by choosing a non-empty
open subset U of γ and then, for each x ∈ X\U , an open subset of γ containing x .

Let us show that dim(X) = ∞. Let n ∈ N and let F be a subset of X with
cardinality n + 1. Consider the finite open cover α = (Ux )x∈F , where

Ux := (X\F) ∪ {x} = X\(F\{x})

for all x ∈ F . Suppose that β = (Vj ) j∈J is a finite open cover of X that is finer
than α. Then any element of β contains at most one point belonging to F . There-
fore, we can find n + 1 distinct elements j0, j1, . . . , jn ∈ J such that the open sets
Vj0 , Vj1 , . . . , Vjn are all non-empty. As a finite intersection of non-empty open sub-
sets of X is never empty, we deduce that ord(β) ≥ n. Therefore, we have D(α) ≥ n.
This implies dim(X) ≥ n for all n ∈ N, so that dim(X) = ∞.

Proposition 1.1.13 Let X be a topological space. Let n ∈ N. Then the following
conditions are equivalent:

(a) dim(X) ≤ n;
(b) for every finite open cover α of X, there exists a finite open cover β � α such

that ord(β) ≤ n;
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(c) for every finite open cover α of X, there exists an open cover β � α such that
ord(β) ≤ n;

(d) for every finite open cover α = (Ui )i∈I of X, there exists an open cover β =
(Vi )i∈I of X such that ord(β) ≤ n and Vi ⊂ Ui for all i ∈ I .

Proof This immediately follows from Definitions 1.1.2, 1.1.8, Propositions 1.1.6,
and 1.1.7. �

1.2 Topological Dimension of Closed Subsets

If Y is a subset of a topological space, then Y is itself a topological space for the
induced topology, i.e., the topology on Y for which the open sets are all the sets
of the form U = V ∩ Y , where V is an open subset of X . It is natural to try to
investigate the relations between the topological dimension of a topological space
and the topological dimensionof its subsets. For closed subsets,wehave the following
general result.

Proposition 1.2.1 Let X be a topological space and let F ⊂ X be a closed subset.
Then one has dim(F) ≤ dim(X).

Proof Let α = (Ui )i∈I be a finite open cover of F . By definition of the induced
topology, we can find, for each i ∈ I , an open subset Vi of X such that Ui = Vi ∩ F .
Then the family β := (Vi )i∈I ∪ {X\F} is a finite open cover of X . Therefore, there
exists a finite open cover γ = (W j ) j∈J of X with γ � β and ord(γ) ≤ dim(X).
Clearly γ′ := (W j ∩ F) j∈J is a finite open cover of F that is finer than α. Moreover,
we have ordx (γ

′) = ordx (γ) for all x ∈ F and hence ord(γ′) ≤ ord(γ) ≤ dim(X).
It follows that D(α) ≤ dim(X). Consequently, we have dim(F) = supα D(α) ≤
dim(X). �

WhenY is a subset of a topological space X , it may happen that dim(Y ) > dim(X)

(“non-monotonicity” of the topological dimension). To provide such an example, it
suffices to start from a topological space Y with positive topological dimension and
then embed it in a zero-dimensional space X by using the following construction.

Example 1.2.2 Let Y be a topological space and let X := Y ∪{x0} be the set obtained
from Y by adjoining an element x0 /∈ Y . Equip X with the topology for which the
open subsets are X and all the subsets � ⊂ Y that are open with respect to the initial
topology on Y . Observe that the topology induced by X on Y is its initial topology.
On the other hand, the open cover of X that is reduced to X is finer than any open
cover of X since X is the only open subset of X that contains x0. It follows that
dim(X) = 0.

Remark 1.2.3 Observe that the space X in the previous example is never Hausdorff
for Y �= ∅. In Sect. 5.4, we will give an example of a compact Hausdorff space X
with dim(X) = 0 containing a subset Y ⊂ X with dim(Y ) > 0. However, we will

http://dx.doi.org/10.1007/978-3-319-19794-4_5
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see at the end of this chapter that every subset Y of a metrizable space X satisfies
dim(Y ) ≤ dim(X) (Theorem 1.8.3).

Lemma 1.2.4 Let X be a topological space and F a closed subset of X. Let α =
(Ui )i∈I be a finite open cover of X. Then there exists an open cover β = (Vi )i∈I of
X such that Vi ⊂ Ui for all i ∈ I and ordx (β) ≤ dim(F) for all x ∈ F.

Proof The family γ := (F ∩ Ui )i∈I is a finite open cover of F . Therefore, we have
D(γ) ≤ dim(F). By Proposition 1.1.7, we can find an open cover δ = (Wi )i∈I of F
such that Wi ⊂ F ∩ Ui for all i ∈ I and ord(δ) = D(γ) ≤ dim(F). The sets Wi are
open subsets of F . Thus, for each i ∈ I , there exists an open subset �i of X such
that Wi = F ∩ �i . Consider now the family β = (Vi )i∈I consisting of the subsets
of X defined by

Vi := (
�i ∪ (X\F)

) ∩ Ui

for all i ∈ I . Clearly β is an open cover of X satisfying Vi ⊂ Ui for all i ∈ I .
Moreover, we have F ∩ Vi = F ∩ �i = Wi for all i ∈ I . It follows that, for all
x ∈ F ,

ordx (β) = ordx (δ) ≤ ord(δ) ≤ dim(F).

This shows that the cover β has the required properties. �

Proposition 1.2.5 Let X be a topological space. Let F and G be closed subsets of
X such that X = F ∪ G. Then one has

dim(X) = max(dim(F), dim(G)).

Proof We have dim(X) ≥ dim(F) and dim(X) ≥ dim(G) by Proposition 1.2.1.
Thus, it suffices to prove that dim(X) ≤ max(dim(F), dim(G)). Let α = (Ui )i∈I

be a finite open cover of X . By virtue of Lemma 1.2.4, there exists an open cover
β = (Vi )i∈I of X such that Vi ⊂ Ui for all i ∈ I and ordx (β) ≤ dim(F) for all
x ∈ F . By applying again Lemma 1.2.4, we can find an open cover γ = (Wi )i∈I of
X such that Wi ⊂ Vi for all i ∈ I and

ordx (γ) ≤ dim(G) for all x ∈ G. (1.2.1)

As Wi ⊂ Vi for all i ∈ I , we have ordx (γ) ≤ ordx (β) for all x ∈ X . We deduce that

ordx (γ) ≤ ordx (β) ≤ dim(F) for all x ∈ F. (1.2.2)

As X = F ∪ G, inequalities (1.2.1) and (1.2.2) imply that ord(γ) ≤ max(dim(F),

dim(G)). Now observe that the cover γ is finer than α since Wi ⊂ Vi ⊂ Ui for all
i ∈ I . It follows that

D(α) ≤ max(dim(F), dim(G)).

Consequently, we have dim(X) = supα D(α) ≤ max(dim(F), dim(G)). �
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By an immediate induction on the integer n, we get the following result.

Corollary 1.2.6 Let X be a topological space and let

F1, . . . , Fn (n ≥ 1)

be closed subsets of X such that

X =
⋃

1≤k≤n

Fk .

Then one has

dim(X) = max
1≤k≤n

dim(Fk). �

1.3 Topological Dimension of Connected Spaces

Recall that a topological space X is said to be connected if the only subsets of X that
are both open and closed are ∅ and X .

Definition 1.3.1 One says that a topological space X is accessible if every subset
of X that is reduced to a single point is closed in X .

Accessible spaces are also called T1-spaces. A topological space X is accessible if
and only if, given any pair of distinct points x and y in X , there exists a neighborhood
of x that does not contains y. Every Hausdorff space is clearly accessible. The
converse implication is false as shown by the following example.

Example 1.3.2 Take again an infinite set X equipped with its cofinite topology as in
Example 1.1.12. The closed subsets of X are X and all its finite subsets. Therefore
X is accessible. However, as we have already observed in Example 1.1.12, X is not
Hausdorff since any two non-empty open subsets of X always meet. Note that X is
connected and compact.

Proposition 1.3.3 Let X be a connected accessible topological space containing
more than one point. Then one has dim(X) ≥ 1.

Proof Let x and y be two distinct points in X . As X is accessible, the subsets X\{x}
and X\{y} are open in X . Consider the open cover α = {

X\{x}, X\{y}}. The
connectedness of X implies that every open partition of X is trivial. It follows that
D(α) ≥ 1. Since dim(X) ≥ D(α), we conclude that dim(X) ≥ 1. �

Proposition 1.3.3 becomes false if we remove the accessibility hypothesis. Indeed,
consider a set X , containing at least two distinct points, equipped with its trivial
topology, i.e., the topology for which the only open subsets are ∅ and X . Then X is
connected. However, we have dim(X) = 0 since the trivial open cover{X}, which
has order 0, is finer than any finite open cover of X .
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1.4 Topological Dimension of Compact Metric Spaces

Let (X, d) be a metric space. For x ∈ X and r > 0, we denote by B(x, r) the open
ball of radius r centered at x . The diameter diam(Y ) of a subset Y ⊂ X is

diam(Y ) := sup
y1,y2∈Y

d(y1, y2) ∈ [0,∞].

We define the mesh of a cover α = (Ai )i∈I of X by

mesh(α) := sup
i∈I

diam(Ai ) ∈ [0,∞].

Remark 1.4.1 If α and β are covers of a metric space such that β � α, then one has
mesh(β) ≤ mesh(α).

Proposition 1.4.2 Let α = (Ui )i∈I be an open cover of a compact metric space X.
Then there exists a real number λ > 0 satisfying the following property: for every
subset Y ⊂ X such that diam(Y ) ≤ λ, there exists i ∈ I such that Y ⊂ Ui .

Proof Let us choose, for each x ∈ X , an index i(x) ∈ I such that x ∈ Ui(x). As
Ui(x) is an open subset, there exists a real number rx > 0 such that the open ball
B(x, 2rx ) is entirely contained in Ui(x). The open balls B(x, rx ), x ∈ X , cover X .
By compactness of X , there exists a finite subset A ⊂ X such that the balls B(x, rx ),
x ∈ A, cover X . Let us set λ := minx∈A rx . We have λ > 0. Suppose that Y ⊂ X
satisfies diam(Y ) ≤ λ and choose an arbitrary point y ∈ Y . Then we can find a point
a ∈ A such that d(a, y) < ra . By applying the triangle inequality, we get

Y ⊂ B(a, ra + λ) ⊂ B(a, 2ra) ⊂ Ui(a).

Consequently, λ has the required property. �

A real number λ > 0 satisfying the condition of Proposition 1.4.2 is called a
Lebesgue number of the open cover α.

Corollary 1.4.3 Let α be an open cover of a compact metric space X. Then there
exists a real number λ > 0 such that every cover β of X with mesh(β) ≤ λ satisfies
β � α.

Proof We can take as λ any Lebesgue number of α. �

Proposition 1.4.4 Let X be a compact metric space and let n ∈ N. Then the follow-
ing conditions are equivalent:

(a) dim(X) ≤ n;
(b) for every ε > 0, there exists a finite open cover α of X such that mesh(α) ≤ ε

and ord(α) ≤ n;
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Fig. 1.1 The open cover α3 = {[x0, x2), (x1, x3), (x2, x4), (x3, x5), (x4, x6]}

(c) there exists a sequence (αk)k∈N of finite open covers of X such that limk→∞
mesh(αk) = 0 and ord(αk) ≤ n for all k ∈ N.

Proof Conditions (b) and (c) are clearly equivalent.
Let ε > 0. As X is compact, there exists a finite cover α of X consisting of open

balls of radius ε/2. If dim(X) ≤ n, we can find a finite open cover β � α with
ord(β) ≤ n. We then have mesh(β) ≤ mesh(α) ≤ ε. This shows that (a) implies (b).

Conversely, suppose (b). Let α be a finite open cover of X . Let λ > 0 be a
Lebesgue number of α. Since condition (b) is satisfied, there exists a finite open
cover β of X such that mesh(β) ≤ λ and ord(β) ≤ n. This implies β � α and hence
D(α) ≤ n. We deduce that dim(X) ≤ n. This shows that (b) implies (a). �

Let us use the above results to determine the topological dimension of the unit
segment [0, 1] ⊂ R. Note that any segment of R, and, more generally, any segment
of a Hausdorff topological vector space, is homeomorphic to [0, 1] and hence has
the same dimension.

Proposition 1.4.5 The unit segment [0, 1] ⊂ R has topological dimension dim
([0, 1]) = 1.

Proof As [0, 1] is connected, we have dim([0, 1]) ≥ 1 by Proposition 1.3.3.
Let k ≥ 2 be an integer. Consider the points xi ∈ [0, 1] defined by

xi = i

2k
for all i ∈ {0, 1, . . . , 2k}.

Let αk be the finite open cover of [0, 1] consisting of the intervals [x0, x2),
(x2k−2, x2k] and all the intervals of the form (xi , xi+2) for i ∈ {1, . . . , 2k −
3} (see Fig. 1.1 for k = 3). We have that ord(αk) = 1. On the other hand,
mesh(αk) = 1/k tends to 0 as k goes to infinity. This implies dim([0, 1]) ≤ 1
by Proposition 1.4.4. �

1.5 Normal Spaces

In this section, we introduce the important class of normal topological spaces. We
shall see in particular that all metrizable spaces and all compact Hausdorff spaces
are normal.
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Fig. 1.2 Separation of closed subsets in a normal space

Definition 1.5.1 One says that a topological space X is normal if, given any pair of
disjoint closed subsets A and B of X , there exist disjoint open subsets U and V of
X such that A ⊂ U and B ⊂ V (Fig. 1.2).

Note that every accessible normal space is Hausdorff. Normal Hausdorff spaces
are also called T4-spaces.

Proposition 1.5.2 Let X be a topological space. Then the following conditions are
equivalent:

(a) X is normal;
(b) for every closed subset A ⊂ X and every open subset U ⊂ X such that A ⊂ U,

there exists an open subset V ⊂ X such that A ⊂ V ⊂ V ⊂ U (here V denotes
the closure of V in X).

Proof Let us first show that (a) implies (b). Let X be a normal space. Let A be a
closed subset and U an open subset with A ⊂ U . Then the set B = X\U is closed
in X and does not meet A. Therefore we can find disjoint subsets V and W of X
such that A ⊂ V and B ⊂ W . The set V is contained in the closed subset X\W . It
follows that V ⊂ X\W ⊂ U . This shows that X satisfies (b).

Conversely, suppose that X satisfies (b). Let A and B be disjoint closed subsets
of X . Then the open subset U := X\B satisfies A ⊂ U . By (b), there exists an open
subset V ⊂ X such that A ⊂ V ⊂ V ⊂ U . Observe now that the open subsets
V and X\V are disjoint and contain A and B respectively. This shows that X is
normal. �

Proposition 1.5.3 Every metrizable space is normal.

Proof Let (X, d) be a metric space.
Let Y be a non-empty subset of X . The distance of a point x ∈ X to Y is

dist(x, Y ) := inf
y∈Y

d(x, y).

It follows from the triangle inequality that the map x 
→ dist(x, Y ) is 1-Lipschitz
and hence continuous on X . Moreover, one has dist(x, Y ) = 0 if and only if x ∈ Y .
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Suppose now that A and B are disjoint non-empty closed subsets of X . The map
f : X → R defined by

f (x) := dist(x, A) − dist(x, B)

is continuous. The open subsetsU := {x ∈ X | f (x) < 0} andV := {x ∈ X | f (x) >

0} are disjoint and contain A and B respectively. Consequently, the space X is
normal. �

Proposition 1.5.4 Every compact Hausdorff space is normal.

Proof Let A and B be disjoint closed subsets of a compact Hausdorff space X . We
want to show that there exist disjoint open subsets U and V of X such that A ⊂ U
and B ⊂ V .

Consider first the case where B is reduced to a single point y. As X is Hausdorff,
we can find, for each x ∈ A, disjoint open subsets Ux and Vx such that x ∈ Ux and
y ∈ Vx . By compactness of A, there exists a finite sequence x1, . . . , xn of points in
A such that A ⊂ Ux1 ∪ · · · ∪ Uxn . Then the open subsets U := Ux1 ∪ · · · ∪ Uxn and
V := Vx1 ∩ · · · ∩ Vxn have the required properties.

Let us now treat the general case. By the first part of the proof, we can find, for
each y ∈ B, disjoint open subsets Uy and Vy such that A ⊂ Uy and {y} ⊂ Vy .
By compactness of B, there exists a finite sequence y1, . . . , yn of points in B such
that B ⊂ Vy1 ∪ · · · ∪ Vyn . Then the open subsets U := Uy1 ∩ · · · ∩ Uyn and
V := Vy1 ∪ · · · ∪ Vyn have the required properties. �

Remark 1.5.5 There exist compact accessible spaces that are not normal. Indeed,
consider an infinite set X equipped with its cofinite topology. Then X is compact and
accessible but not Hausdorff (cf. Example 1.3.2). Therefore, X is not normal since
every normal accessible space is Hausdorff.

Let us note that a subspace of a normal spacemay fail to be normal. In Sect. 5.4, we
shall give an example of a compact Hausdorff (and hence normal) space containing
an open subset that is not normal. However, we have the following result.

Proposition 1.5.6 Every closed subset of a normal space is normal.

Proof Let X be a normal space and F ⊂ X a closed subset. Let A and B be disjoint
closed subsets of F . As F is closed in X , the sets A and B are closed in X . Since
X is normal, we can find disjoint open subsets U and V of X such that A ⊂ U and
B ⊂ V . Then the sets U ∩ F and V ∩ F are disjoint, open in F , and contain A and
B respectively. Consequently, the space F is normal. �

Remark 1.5.7 In Sect. 5.5, we shall give an example of a normal Hausdorff space X
such that X × X is not normal. Thus, the Cartesian product of two normal spaces is
not necessarily normal.

http://dx.doi.org/10.1007/978-3-319-19794-4_5
http://dx.doi.org/10.1007/978-3-319-19794-4_5
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1.6 Topological Dimension of Normal Spaces

Two families of sets (Ei )i∈I and (Fi )i∈I , with common indexed set I , are called
combinatorially equivalent if one has

⋂

i∈J

Ei �= ∅ ⇐⇒
⋂

i∈J

Fi �= ∅,

for every subset J ⊂ I .

Remark 1.6.1 If α = (Ei )i∈I and β = (Fi )i∈I are combinatorially equivalent fami-
lies of sets and γ = (Gi )i∈I is a family of sets such that Ei ⊂ Gi ⊂ Fi for all i ∈ I ,
then γ is combinatorially equivalent to α and β.

Remark 1.6.2 If α = (Ai )i∈I and β = (Bi )i∈I are families of subsets of a set X that
are combinatorially equivalent, then one has ord(α) = ord(β).

Proposition 1.6.3 Let X be a normal space. Let (Fi )i∈I be a finite family of closed
subsets of X and (Ui )i∈I a family of open subsets of X such that Fi ⊂ Ui for all
i ∈ I . Then there exists a family (Vi )i∈I of open subsets of X satisfying the following
conditions:

(i) one has Fi ⊂ Vi ⊂ Vi ⊂ Ui for all i ∈ I ;
(ii) the families(Fi )i∈I , (Vi )i∈I and (Vi )i∈I are combinatorially equivalent.

Proof We can assume I = {1, . . . , n}. Let us set

α = (F1, . . . , Fn).

Let us show the existence, for every k ∈ {0, 1, . . . , n}, of a family

α(k) = (A(k)
1 , . . . , A(k)

n )

of subsets of X with the following properties:

(C1) for every i ≤ k the set A(k)
i is open in X and one has

Fi ⊂ A(k)
i ⊂ A(k)

i ⊂ Ui .

(C2) for every i ≥ k + 1, one has A(k)
i = Fi .

(C3) the families of sets α and α(k), where

α(k) := (A(k)
1 , . . . , A(k)

n ),

are combinatorially equivalent.
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Then the family α(n) will have the required properties, i.e., it will suffice to take
Vi := A(n)

i for all i ∈ {1, . . . , n}.
We prove the existence of α(k) by induction on k. For k = 0, we take α(0) := α,

that is, A(0)
i := Fi for all i ∈ {1, . . . , n}. Then α(0) trivially satisfies (C1), (C2) and

(C3). Suppose now that the family α(k−1) has already been constructed for some
k ≤ n. We then define the family α(k) in the following way. For each i ∈ {1, . . . , n}
such that i �= k, we take

A(k)
i := A(k−1)

i .

It remains only to define A(k)
k . Let us denote by E the set consisting of all subsets

J ⊂ {1, . . . , n}\{k} such that

Fk ∩
(

⋂

i∈J

A(k−1)
i

)
= ∅.

The set

� =
⋃

J∈E

(
⋂

i∈J

A(k−1)
i

)

is closed in X since it is a finite union of closed subsets. We have Fk ⊂ X\� by
definition of J . As X is normal, it follows from Proposition 1.5.2 that we can find
an open subset W ⊂ X such that

Fk ⊂ W ⊂ W ⊂ (X\�) ∩ Uk .

Let us take A(k)
k := W . Then the family

α(k) := (A(k)
1 , . . . , A(k)

n )

clearly satisfies conditions (C1) and (C2). Let us show that the families α(k−1)

and α(k) are combinatorially equivalent. As A(k−1)
i = A(k)

i for all i �= k and

A(k−1)
k = Fk ⊂ A(k)

k by construction, it suffices to verify that, for every subset
J ⊂ {1, . . . , n}\{k} such that

A(k−1)
k ∩

(
⋂

i∈J

A(k−1)
i

)
= ∅,

one has

A(k)
k ∩

(
⋂

i∈J

A(k)
i

)
= ∅.
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Since A(k−1)
k = Fk and A(k−1)

i = A(k)
i for all i �= k, we have to check that

A(k)
k ∩

(
⋂

i∈J

A(k−1)
i

)
= ∅

for all J ∈ E . But this immediately follows from the fact that A(k)
k = W ⊂ X\�.

We deduce that the families α(k−1) and α(k) are combinatorially equivalent. Conse-
quently, the family α(k) also satisfies (C3). �
Corollary 1.6.4 Let X be a normal space and let (Ui )i∈I be a finite open cover of
X. Then there exists an open cover (Vi )i∈I of X such that Vi ⊂ Ui for all i ∈ I .

Proof The subsets Fi = X\Ui are closed in X and satisfy
⋂

i∈I Fi = ∅. By Propo-
sition 1.6.3, there exist open subsets Wi ⊂ X , i ∈ I , such that Fi ⊂ Wi and⋂

i∈I Wi = ∅. The subsets Vi = X\Wi are open in X and cover X . On the other
hand, we have Vi ⊂ X\Wi . As X\Wi is closed in X , it follows that

Vi ⊂ X\Wi ⊂ X\Fi = Ui .

Therefore, the subsets Vi have the required properties. �
Proposition 1.6.5 Let X be a normal space and let α be a finite open cover of X.
Then one has

D(α) = min
γ

ord(γ),

where γ runs over all finite closed covers of X that are finer than α.

Proof Suppose that α = (Ui )i∈I .
Let γ = (Fj ) j∈J be a finite closed cover of X that is finer than α. This means

that there exists a map ϕ : J → I such that Fj ⊂ Uϕ( j) for all j ∈ J . By Proposi-
tion 1.6.3, there exists a family β = (Vj ) j∈J of open subsets of X that is combina-
torially equivalent to γ and satisfies

Fj ⊂ Vj ⊂ Uϕ( j) (1.6.1)

for all j ∈ J . From (1.6.1), we deduce that β is a finite open cover of X that is finer
thanα. This implies D(α) ≤ ord(β) bydefinition of D(α). As ord(γ) = ord(β) since
the covers γ and β are combinatorially equivalent, this shows that D(α) ≤ ord(γ).

Conversely, suppose now that β = (Vj ) j∈J is a finite open cover of X that is finer
than α and satisfies D(α) = ord(β). By Corollary 1.6.4, there exists a closed cover
γ = (Fj ) j∈J of X such that Fj ⊂ Vj for all j ∈ J . Such a cover γ if finer than β
and hence finer than α. Moreover, it satisfies ordx (γ) ≤ ordx (β) for all x ∈ X . It
follows that ord(γ) ≤ ord(β) = D(α). �
Corollary 1.6.6 Let X be a normal space and let n ∈ N. Then the following condi-
tions are equivalent:
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(a) dim(X) ≤ n;
(b) for every finite open cover α of X, there exists a finite closed cover β � α such

that ord(β) ≤ n.

Proof This is an immediate consequence of Proposition 1.6.5 since, by definition,

dim(X) = sup
α

D(α),

where α runs over all finite open covers of X . �
Corollary 1.6.7 Let X be a compact metric space and let n ∈ N. Then the following
conditions are equivalent:

(a) dim(X) ≤ n;
(b) for every ε > 0, there exists a finite closed cover α of X such that mesh(α) ≤ ε

and ord(α) ≤ n;
(c) there exists a sequence (αk)k∈N of finite closed covers of X such that limk→∞

mesh(αk) = 0 and ord(αk) ≤ n for all k ∈ N.

Proof Conditions (b) and (c) are clearly equivalent.
Let ε > 0. If dim(X) ≤ n, it follows from Proposition 1.4.4 that there exists

a finite open cover β of X with ord(β) ≤ n and mesh(β) ≤ ε. We then have
D(β) ≤ ord(β) ≤ n. Since X is normal, we deduce from Proposition 1.6.5 that
there exists a closed cover α of X such that α � β and ord(α) ≤ n. This shows that
(a) implies (b).

Conversely, suppose (b). Let α be a finite open cover of X . Let λ > 0 be a
Lebesgue number of α. Since condition (b) is satisfied, there exists a finite closed
cover β of X such that mesh(β) ≤ λ and ord(β) ≤ n. This implies β � α and
hence D(α) ≤ n by Proposition 1.6.5. Consequently, we have that dim(X) ≤ n.
This shows that (b) implies (a). �

1.7 The Countable Union Theorem

The following result is a generalization of Corollary 1.2.6.

Theorem 1.7.1 Let X be a normal space and let (Fk)k∈N be a sequence of closed
subsets of X such that X = ⋃

k∈N Fk. Then one has

dim(X) = sup
k∈N

dim(Fk). (1.7.1)

Proof We have dim(X) ≥ dim(Fk) for all k ∈ N by Proposition 1.2.1. Therefore, it
suffices to prove that

dim(X) ≤ sup
k∈N

dim(Fk). (1.7.2)
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Consider, for each k ∈ N, the closed subset Ak ⊂ X defined by

Ak :=
⋃

0≤s≤k

Fs .

We have that
dim(Ak) = max

0≤s≤k
dim(Fs), (1.7.3)

for all k ∈ N, by Corollary 1.2.6.
Suppose now that α = (Ui )i∈I is a finite open cover of X . Let us inductively

construct a sequence β(k) = (V (k)
i )i∈I , k ∈ N, of open covers of X satisfying the

following conditions:

(C1) V (0)
i = Ui for all i ∈ I ,

(C2) V (k)
i ⊂ V (k−1)

i for all i ∈ I and k ≥ 1,
(C3) ordx (β

(k)) ≤ dim(Ak) for all x ∈ Ak and k ≥ 1.

We first take β(0) = α so that (C1) is satisfied. Suppose now that the covers
β(0),β(1), . . . ,β(k−1) have already been constructed for some integer k ≥ 1. As X
is a normal space, we can apply Corollary 1.6.4 to the cover β(k−1) = (V (k−1)

i )i∈I .

We deduce that there exists an open cover (Wi )i∈I of X such that Wi ⊂ V (k−1)
i for

all i ∈ I . By Lemma 1.2.4, there exists an open cover β(k) = (V (k)
i )i∈I such that

V (k)
i ⊂ Wi for all i ∈ I and ordx (β

(k)) ≤ dim(Ak) for all x ∈ Ak . We then have

V (k)
i ⊂ Wi ⊂ V (k−1)

i

for all i ∈ I . We deduce that the cover β(k) satisfies (C2) and (C3).
Consider now the family γ = (Li )i∈I of closed subsets of X defined by

Li :=
⋂

k∈N
V (k)

i

for all i ∈ I .
Let x be a point in X . As I is a finite set, there exists an index i0 ∈ I such that

x ∈ V (k)
i0

for infinitely many k ∈ N. By using (C2), we deduce that x ∈ Li0 . This

shows that γ covers X . On the other hand, Condition (C2) implies that Li ⊂ V (k)
i

for all i ∈ I and k ≥ 0. Therefore, we have ordx (γ) ≤ ordx (β
(k)) for all k ≥ 0. As

the sets Fk cover X , there exists an integer k0 = k0(x) ≥ 1 such that x ∈ Ak0 . By
Condition (C3), this implies

ordx (γ) ≤ ordx (β
(k0)) ≤ dim(Ak0).
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By using (1.7.3), we deduce that

ord(γ) ≤ sup
k∈N

dim(Ak) = sup
k∈N

dim(Fk).

As Li ⊂ V (0)
i = Ui for all i ∈ I , the finite closed cover γ is finer thanα. By applying

Proposition 1.6.5, we obtain

D(α) ≤ ord(γ) ≤ sup
k∈N

dim(Fk).

Since dim(X) = supα D(α), this gives us (1.7.2). �
Corollary 1.7.2 Every countable normal Hausdorff space X �= ∅ has topological
dimension dim(X) = 0.

Proof Let X = {x0, x1, x2, . . . } be a non-empty countable normal Hausdorff space.
We have X = ⋃

k∈N Fk , where Fk = {xk} for all k ∈ N. It follows that dim(X) = 0
since each Fk is closed in X with topological dimension dim(Fk) = 0. �

As every metrizable space is normal by Proposition 1.5.3, we get the following
result.

Corollary 1.7.3 Every countable metrizable space X �= ∅ has topological dimen-
sion dim(X) = 0. �
Example 1.7.4 For every integer n ≥ 0, the space of rationals n-tuples Q

n ⊂ R
n is

metrizable and countable. Consequently, we have dim(Qn) = 0.

As every compact Hausdorff space is normal by Proposition 1.5.4, we also obtain
the following.

Corollary 1.7.5 Every countable compact Hausdorff space X �= ∅ has topological
dimension dim(X) = 0. �
Remark 1.7.6 There exist countable compact accessible spaces with non-zero topo-
logical dimension. Indeed, if X is an infinite countable set equipped with its cofinite
topology, then X is compact and accessible but dim(X) = ∞ (see Examples 1.1.12
and 1.3.2). This also shows that Theorem 1.7.1 becomes false if we remove the
normality hypothesis. An example of an infinite countable Hausdorff space with
non-zero topological dimension will be given in Sect. 5.3.

Corollary 1.7.7 The real line R has topological dimension dim(R) = 1.

Proof It suffices to observe that

R =
∞⋃

k=1

Fk,

where Fk = [−k, k], since dim(Fk) = 1 for all k ≥ 1 by Proposition 1.4.5. �

http://dx.doi.org/10.1007/978-3-319-19794-4_5


20 1 Topological Dimension

Remark 1.7.8 More generally, we shall prove in Corollary 3.5.7 that dim(Rn) = n
for every integer n ≥ 0.

1.8 Topological Dimension of Subsets of Metrizable Spaces

In this section, we use the countable union theorem of the previous section
(Theorem 1.7.1) to show that every subset Y of a metrizable space X satisfies
dim(Y ) ≤ dim(X).

Lemma 1.8.1 Let X be a topological space. Suppose that every open subset � ⊂ X
satisfies dim(�) ≤ dim(X). Then every subset Y ⊂ X satisfies dim(Y ) ≤ dim(X).

Proof Let Y ⊂ X . Let α = (Ui )i∈I be a finite open cover of Y . Then, for each i ∈ I ,
we can find an open subset Vi of X such that Ui = Y ∩ Vi . Consider the open subset
� of X defined by � := ⋃

i∈I Vi . As β := (Vi )i∈I is a finite open cover of �, there
exists a finite open cover γ = (W j ) j∈J of � such that γ � β and ord(γ) ≤ dim(�).
This implies ord(γ) ≤ dim(X) since dim(�) ≤ dim(X) by our hypothesis. Then the
family δ := (Y ∩ W j ) j∈J is a finite open cover of Y that is finer than α and satisfies

ord(δ) ≤ ord(γ) ≤ dim(X).

We deduce that D(α) ≤ dim(X). Consequently, we have dim(Y ) = sup D(α) ≤
dim(X). �

Let X be a topological space.A subset A ⊂ X is called an Fσ-set (resp. aGδ-set) if
A is the union of some countable family of closed subsets of X (resp. the intersection
of some countable family of open subsets of X ). Note that a subset A ⊂ X is an
Fσ-set if and only if its complement X\A is a Gδ-set.

Lemma 1.8.2 Every open subset of a metrizable space is an Fσ-set.

Proof Let � be an open subset of a metric space X . We may assume � �= X .
Consider the continuous map f : X → R defined by f (x) := dist(x, X\�). As
X\� is closed in X , we have that f (x) = 0 if and only if x ∈ X\�. It follows that
� = ⋃

k∈N Fk , where

Fk := f −1([ 1

k + 1
,∞)) = {x ∈ X | dist(x, X\�) ≥ 1

k + 1
}.

As Fk is closed in X for all k ∈ N by continuity of f , this shows that � is an
Fσ-set. �

Theorem 1.8.3 Let X be a metrizable space and Y ⊂ X. Then one has dim(Y ) ≤
dim(X).

http://dx.doi.org/10.1007/978-3-319-19794-4_3
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Proof By Lemma 1.8.1, it suffices to prove that dim(�) ≤ dim(X) for every open
subset � of X . So let � be an open subset of X . By Lemma 1.8.2, we can find a
sequence (Fk)k∈N of closed subsets of X such that � = ⋃

k∈N Fk . The sets Fk are
closed in �. On the other hand, the space � is normal since every subspace of a
metrizable space is metrizable and hence normal. By applying Theorem 1.7.1, we
obtain

dim(�) = sup
k∈N

dim(Fk).

As dim(Fk) ≤ dim(X) for all k ∈ N by Proposition 1.2.1, we conclude that
dim(�) ≤ dim(X). �
Remark 1.8.4 It may happen that dim(Y ) > dim(X) when Y is a subset of a normal
Hausdorff space X . Indeed, in Sect. 5.4, we will give an example of a compact
Hausdorff (and hence normal) space X with dim(X) = 0 containing an open subset
of positive dimension.

Notes

Covering dimension is one among many other invariants that were introduced by
mathematicians all along the twentieth century in order to give a precise definition for
the intuitive notion of dimension in the category of topological spaces. The branch
of general topology that studies these invariants is known as “dimension theory”.
This is also the title of the most famous monograph devoted to the subject, namely
the book by Hurewicz and Wallman [50], which was first published in 1941. There
are several other excellent books entirely devoted to dimension theory, e.g., [9, 33,
79, 80, 86]. The reader interested in the history of the developments of dimension
theory is referred to [7, 8, 33, 56, 57, 92].

The covering dimension dim(X) was introduced by Čech [111]. Its definition
was directly inspired by a topological characterization of the dimension of the n-
cube [0, 1]n formulated by Lebesgue [66, 67] (see Lemma 3.5.2).

The idea of using induction for defining the dimension of a topological space was
popularized by Poincaré (see for example [89, p. 73]). This approach led in particular
to the definition of the small inductive dimension ind(X) and of the large inductive
dimension Ind(X). The small inductive dimension ind(X) ∈ {−1} ∪ N ∪ {∞} of
a topological space X , also called the Menger-Urysohn dimension, is inductively
defined by the following conditions: (1) ind(X) = −1 if and only if X = ∅, (2)
ind(X) ≤ n if and only if X admits a base of open subsets B such that ind(U\U ) ≤
n − 1 for all U ∈ B. The large inductive dimension Ind(X) ∈ {−1} ∪ N ∪ {∞},
also called the Brouwer-Čech dimension, is defined by: (1) Ind(X) = −1 if and
only if X = ∅, (2) Ind(X) ≤ n if and only if, for every pair of disjoint closed
subsets F and G of X , there exist disjoint open subsets U and V of X such that
F ⊂ U , G ⊂ V and Ind(X\(U ∪ V )) ≤ n − 1. An easy induction shows that
every accessible space X satisfies ind(X) ≤ Ind(X). Urysohn’s theorem asserts

http://dx.doi.org/10.1007/978-3-319-19794-4_5
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that dim(X) = ind(X) = Ind(X) for every separable metrizable space X (see for
example [50]). Katětov [54, 55] and independently Morita [78] proved that one has
ind(X) ≤ dim(X) = Ind(X) for every metrizable space X . The question whether
every metrizable space X satisfies dim(X) = ind(X) remained open for a long
time (cf. [7, p. 3]). Finally, it was answered in the negative in [96, 98] by Roy who
provided an example of a metrizable space X with ind(X) = 0 and dim(X) = 1. It
was shown by Pasynkov [84] that the equalities dim(X) = ind(X) = Ind(X) remain
true when X is the underlying space of a locally compact Hausdorff topological
group. A theorem of Alexandroff [6] asserts that every compact Hausdorff space X
satisfies dim(X) ≤ ind(X) ≤ Ind(X). Filippov [36] gave an example of a compact
Hausdorff space X with dim(X) = ind(X) = 2 and Ind(X) = 3. When X is a
normal space, one always has dim(X) ≤ Ind(X) (see for example [33, 79, 86]) but
the inequality may be strict. In [79, p. 114], Nagami gives an example of a normal
Hausdorff space X such that ind(X) = 0, dim(X) = 1, and Ind(X) = 2.

The notion of a normal space goes back to the work of Vietoris [112] (see [94,
p. 1233]) and Tietze [105]. However, the main results about general properties of
normal spaces are due to Urysohn [109].

Theorems 1.7.1 and 1.8.3 were obtained by Čech [111].
In [110], Čech introduced the following definition. A topological space X is called

perfectly normal if X is normal and every open subset of X is an Fσ-set. For example,
every metrizable space is perfectly normal by Proposition 1.5.3 and Lemma 1.8.2.
It turns out that every perfectly normal space X is completely normal, that is, every
subset Y ⊂ X is normal (see [18 exerc. 7, 9 and 11 p. IX. 102–103], [64, 111]). Thus,
the proof of Theorem1.8.3 can be extended to perfectly normal spaces. Consequently,
every subset Y of a perfectly normal space X satisfies dim(Y ) ≤ dim(X) [111, par.
28]. Alexandroff (see [8, p. 28]) conjectured that dim(Y ) ≤ dim(X)whenever Y is a
normal subspace of a normal space X . This conjecture was disproved byDowker [30]
who gave an example of a normal Hausdorff space X with dim(X) = 0 containing
a normal open subset Y such that dim(Y ) = 1.

The idea of finding a homological interpretation of the dimension of a topological
space was developed in the work of Alexandroff [4, 5] in the late 1920s. It subse-
quently led to the investigation of various notions of homological and cohomological
dimension (see the books [9, 50, 79, Appendix by Kodama] and the survey papers
[31, 32, 65]). Given a topological space X and an abelian group G, the cohomologi-
cal dimension cdimG(X) is defined as being the smallest integer n ≥ −1 such that
Ȟn+1(X, A; G) = 0 for all closed subsets A ⊂ X , or ∞ if there is no such integers.
Here Ȟ∗ denotes relative Čech cohomology. It was shown by Alexandroff that every
compact metrizable space X with dim(X) < ∞ satisfies dim(X) = cdimZ(X). In
the first International Topological Conference held in Moscow in September 1935,
Alexandroff asked if this equality remains true in the case when dim(X) = ∞. This
question was answered in the negative in the late 1980s by Dranishnikov [31] who
proved, by usingmethods fromK-theory, the existence of a compactmetrizable space
X with topological dimension dim(X) = ∞ and integral cohomological dimension
cdimZ(X) = 3.
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Exercises

1.1 Show that every finite topological space X satisfies dim(X) < ∞.
1.2 Show that the topological space X described in Example 1.1.11 is connected

but not accessible.
1.3 Let X be an infinite set and x0 ∈ X . The set X is equipped with the topology

for which the open subsets are ∅ and all the subsets of X containing x0. Show
that dim(X) = ∞.

1.4 Let X be the topological space whose underlying set is R and whose open
subsets are ∅, R, and all the intervals of the form (a,+∞), where a ∈ R.
Show that X is connected and that dim(X) = 0.

1.5 Let X be a non-empty set and π a partition of X . The set X is equipped with
the topology for which the open subsets are ∅ and all the subsets of X that can
be written as a union of elements of π. Show that dim(X) = 0.

1.6 Show that every finite accessible topological space is discrete.
1.7 Let X and Y be topological spaces with Y accessible and non-empty. Show

that dim(X × Y ) ≥ dim(X).
1.8 Let α = {U, V } be the open cover of R defined by

U :=
⋃

n∈Z
(n, n + 1) and V :=

⋃

n∈Z
(n − 1

|n| + 1
, n + 1

|n| + 1
).

Show that α admits no Lebesgue numbers, i.e., for every λ > 0, there exists a
subset Y ⊂ R such that diam(Y ) ≤ λ that is contained in no element of α.

1.9 Let S1 := {(x, y) ∈ R
2 | x2 + y2 = 1} denote the unit circle in R

2. Show that
dim(S1) = 1.

1.10 Construct, for every ε > 0, an open cover α of R
2 with order ord(α) = 2

and Euclidean mesh mesh(α) ≤ ε. Deduce that every compact subset X ⊂ R
2

satisfies dim(X) ≤ 2.
1.11 Deduce from the previous exercise and the countable union theorem (Theo-

rem 1.7.1) that dim(R2) ≤ 2. More generally, show that dim(Rn) ≤ n for
every n ∈ N. (The fact that dim(Rn) = n will be proved in Corollary 3.5.7
below).

1.12 Deduce from the previous exercise that one has dim(Y ) ≤ n for every subset
Y ⊂ R

n .
1.13 Show that the topological space X of Example 1.1.11 is normal if and only if

n = 0.
1.14 Let X be a normal Hausdorff space. Show that any two distinct points of X

admit disjoint closed neighborhoods.
1.15 Let T denote the set consisting of all subsets of R of the form U\C , where U

is an open subset of R for the usual topology and C ⊂ U is a countable subset.

http://dx.doi.org/10.1007/978-3-319-19794-4_3
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(a) Show that T is the set of open sets of a topology on R. Let X denote the
topological space whose underlying set is R and whose set of open subsets
is T .

(b) Show that any two distinct points of X admit disjoint closed neighborhoods.
(c) Show that X is not normal. Hint: consider the sets A := {0} and B :=

{1/n | n ≥ 1}.
1.16 Let X ⊂ R. Show that the following conditions are equivalent: (1) dim(X) = 1,

(2) X contains a subset homeomorphic to the unit segment [0, 1], (3) the interior
of X in R is not empty.

1.17 Let Y := [0, 1] denote the unit segment in R and let X := Y ∪ {x0} be the set
obtained from Y by adjoining an element x0 /∈ Y . Equip X with the topology
for which the open subsets are X and all the subsets � ⊂ Y such that � is an
open subset for the usual topology on Y .

(a) Show that X is not accessible.
(b) Show that X is compact and connected.
(c) Show that every subspace of X is normal.
(d) Show that dim(X) = 0 but dim(Y ) = 1.

1.18 Let X be a compact metric space. Let (αk)k∈N be a sequence of finite
open covers of X such that limk→∞ mesh(αk) = 0. Show that dim(X) =
limk→∞ D(αk).

1.19 Let T be a triangle in the Euclidean plane (i.e., the convex hull of three non-
collinear points in R

2). The middle-triangle of T is the interior in R
2 of the

g2

f3
f2

d2

Fig. 1.3 Construction of a Sierpinski triangle
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triangle whose vertices are the midpoints of the sides of T . We inductively
construct a decreasing sequence (Kn)n∈N of subsets of R

2 in the following
way. We start by setting K0 := T . Then we define K1 as being the set obtained
from K0 = T by removing its middle-triangle. Thus, K1 is the union of three
triangles that are the images of T by the homotheties of ratio 1/2 centered at
each of the vertices of T . More generally, assuming that Kn has already been
constructed and is the union of 3n triangles that are all pairwise disjoint except
at some of their vertices, we define Kn+1 as being the set obtained from Kn by
removing all the middle-triangles of these 3n triangles. The Sierpinski triangle
associated with T is the set S := ⋂

n∈N Kn (see Fig. 1.3).

(a) Show that the homeomorphism type of S does not depend on the initial
choice of T .

(b) Show that S is a connected compact subset of R
2.

(c) Show that dim(S) = 1.Hint: observe that the constructionyields a sequence
(βn)n∈N of finite closed covers of S with ord(βn) = 1 and Euclidean mesh

mesh(βn) = diam(T )

2n

and then apply Corollary 1.6.7 to get dim(S) ≤ 1.



Chapter 2
Zero-Dimensional Spaces

This chapter is devoted to 0-dimensional topological spaces. It follows from the defi-
nition of topological dimension given in Chap.1 that a zero-dimensional topological
space admits arbitrarily fine open partitions. As every element of an open partition
is a clopen subset, i.e., a subset that is both closed and open, this suggests that any
zero-dimensional space must contain many clopen subsets and hence be very dis-
connected since the abundance of clopen subsets reflects the discontinuous nature
of a topological space. We shall study the relationship between the class of zero-
dimensional topological spaces and other classes of highly-disconnected topological
spaces such as the class of scattered spaces, the class of totally disconnected spaces,
and the class of totally separated spaces.

2.1 The Cantor Set

In this section, we first describe the construction of the Cantor set, which is a funda-
mental example of a compact metrizable space with zero topological dimension.

Let a and b be real numbers such that a < b. The open interval

(
a + b − a

3
, b − b − a

3

)
=

(
2a + b

3
,

a + 2b

3

)

is called the middle third of the segment [a, b]. We denote by T ([a, b]) the set
obtained by deleting from the segment [a, b] its middle third. Thus, we have

T ([a, b]) :=
[

a, a + b − a

3

]
∪

[
b − b − a

3
, b

]
=

[
a,

2a + b

3

]
∪

[
a + 2b

3
, b

]
.
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More generally, for every subset A ⊂ R which is the union of a finite family
([ai , bi ])1≤i≤k of pairwise disjoint segments, we set

T (A) :=
k⋃

i=1

T ([ai , bi ]).

Let us inductively define a decreasing sequence (Kn)n∈N of closed subsets of [0, 1]
by setting

K0 := [0, 1],
Kn+1 := T (Kn) for all n ∈ N.

We therefore have

K1 =
[
0,

1

3

]
∪

[
2

3
, 1

]
,

K2 =
[
0,

1

9

]
∪

[
2

9
,
1

3

]
∪

[
2

3
,
7

9

]
∪

[
8

9
, 1

]
,

K3 =
[
0,

1

27

]
∪

[
2

27
,
1

9

]
∪

[
2

9
,
7

27

]
∪

[
8

27
,
1

3

]

∪
[
2

3
,
19

27

]
∪

[
20

27
,
7

9

]
∪

[
8

9
,
25

27

]
∪

[
26

27
, 1

]
, etc.

Observe that the set Kn is the union of 2n pairwise disjoint segments of length 1/3n .
These segments are the connected components of Kn (see Fig. 2.1).

The set
K :=

⋂

n∈N
Kn

is called the Cantor ternary set or simply the Cantor set. A topological space that is
homeomorphic to the Cantor ternary set K is called a Cantor space.

Proposition 2.1.1 The Cantor set K is a compact subset of R with empty interior.

Proof As the sets Kn are closed in [0, 1], the Cantor set is closed in [0, 1] and hence
compact.

Fig. 2.1 Construction of the Cantor set



2.1 The Cantor Set 29

Let I be an interval of R such that I ⊂ K . The fact that I is connected implies
that, for each n ∈ N, the set I is contained in one of the 2n connected compo-
nents of Kn . We deduce that the length of I is smaller than or equal to 1/3n for all
n ∈ N. As 1/3n tends to 0 as n goes to infinity, it follows that I has zero length,
i.e., is either empty or reduced to a single point. This shows that K has empty
interior. �

Proposition 2.1.2 The Cantor set K has topological dimension dim(K ) = 0.

Proof The set Kn is the disjoint union of 2n segments �n(i), 1 ≤ i ≤ 2n , which are
clopen in Kn . Let us set Un(i) := K ∩ �n(i). The family αn := (

Un(i)
)
1≤i≤2n is a

finite open partition of K . Therefore, we have ord(αn) = 0. As mesh(αn) = 1/3n

tends to 0 as n goes to infinity, we deduce that dim(K ) = 0 by applying Proposition
1.4.4 (observe that the set K is not empty since we clearly have 0 ∈ K ). �

Recall that every real number x ∈ [0, 1] admits a ternary expansion, that is, a
sequence (uk)k∈N ∈ {0, 1, 2}N such that

x =
∞∑

k=0

uk

3k+1 .

We will also write this equality under the form

x = 0, u0u1u2 · · · uk · · ·.

When x is not a triadic rational number of the form n/3m with n and m integers
satisfying 1 ≤ n ≤ 3m −1, such an expansion is unique. In the case when x = n/3m

with n and m integers such that 1 ≤ n ≤ 3m − 1, the number x admits two ternary
expansions: a first one, called the proper ternary expansion of x , whose terms are
eventually equal to 0 and another one, called the unproper ternary expansion of x ,
whose terms are eventually equal to 2. For example, we have

1

4
= 0, 02020202 . . .

and
7

9
= 0, 210000 . . . = 0, 202222 . . ..

The set Kn consists of all numbers x ∈ [0, 1] that admit a ternary expansion
(uk)k∈N such that uk ∈ {0, 2} for all k ≤ n − 1. We deduce that the Cantor set K
is the set consisting of the numbers x ∈ [0, 1] that admit a ternary expansion whose
terms all belong to the set {0, 2}. Thus, the ternary expansions given above show that
both 1/4 and 7/9 belong to K .

http://dx.doi.org/10.1007/978-3-319-19794-4_1
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Proposition 2.1.3 The map ϕ : {0, 1}N → K defined by

ϕ(u) :=
∞∑

k=0

2uk

3k+1

for all u = (uk) ∈ {0, 1}N is a homeomorphism from the product space {0, 1}N onto
the Cantor set K .

Proof The fact that the map ϕ is well defined and bijective follows from the previous
observations. Let us fix a sequence u ∈ {0, 1}N. For each integer n ≥ 0, the set
Vn(u) ⊂ {0, 1}N consisting of all sequences v such that vk = uk for all k ≤ n is an
open neighborhood of u. For all v ∈ Vn(u), we have that

|ϕ(u) − ϕ(v)| ≤
∞∑

k=n+1

2

3k+1 = 1

3n+1 .

Since 1/3n+1 tends to 0 as n goes to infinity, we deduce that ϕ is continuous. The
space {0, 1}N is compact as it is a product of compact spaces. Consequently, ϕ is a
homeomorphism. �

Corollary 2.1.4 The Cantor set is uncountable. �

Let X be a topological space. A point x ∈ X is called isolated if the singleton
set {x} is open in X . A topological space is called perfect if it contains no isolated
points.

Corollary 2.1.5 The Cantor set is perfect.

Proof Let u ∈ {0, 1}N. Consider the open subsets

Vn(u) := {v ∈ {0, 1}N | vk = uk for all k ≤ n} ⊂ {0, 1}N.

Bydefinition of the product topology, every neighborhood of u in {0, 1}N contains the
sets Vn(u) for n large enough. As the set Vn(u) is infinite for every n, we deduce that
u is not isolated. This shows that the space {0, 1}N is perfect. As K is homeomorphic
to {0, 1}N, it is also perfect. �

2.2 Scattered Spaces

In this section, we introduce the class of scattered spaces.We prove that an accessible
topological space X is scattered if and only if there exists a set E such that X is
homeomorphic to a subspace of the product space {0, 1}E .
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Let X be a topological space. A base of the topological space X is a set B of open
subsets of X such that every open subset of X can be written as a union of elements
of B.

A set N of neighborhoods of a point x ∈ X is called a neighborhood base of x if,
for every neighborhood V of x , there exists N ∈ N such that N ⊂ V . Observe that
a set B of open subsets of X is a base of X if and only if, for every x ∈ X , the set

Bx := {B ∈ B | x ∈ B}

is a neighborhood base of the point x .
If B is a base of a topological space X , then B satisfies the following two condi-

tions:

(B1) the elements of B cover X ;
(B2) if B1, B2 ∈ B and x ∈ B1 ∩ B2, then there exists B3 ∈ B such that x ∈ B3 ⊂

B1 ∩ B2.

Conversely, if X is a set and B is a set of subsets of X satisfying conditions (B1) and
(B2) above, then there exists a unique topology on X admitting B as a base.

Example 2.2.1 Let X be a metric space. Then the set consisting of all open balls
B(x, 1/n), where x ∈ X and n ≥ 1 is an integer, is a base of X .

Recall that a subset of a topological space X is said to be clopen if it is both open
and closed in X . Note that the clopen subsets of a topological space are precisely the
subsets with empty boundary.

Definition 2.2.2 We say that a topological space X is scattered if it admits a base
consisting of clopen subsets of X .

A topological space X is scattered if and only if every point of X admits a neigh-
borhood base consisting of clopen subsets.

Example 2.2.3 Every set endowed with the discrete topology is scattered.

Remark 2.2.4 A connected space X is scattered if and only if the topology on X is
the trivial one.

Note that a scattered space may fail to be accessible. For example, every set X
equipped with the trivial topology is scattered. However, such a space X is not
accessible as soon as X contains more than one point.

Proposition 2.2.5 Every scattered accessible space is Hausdorff.

Proof Let X be a scattered accessible space. Let x and y be distinct points in X .
Since X is accessible, the set X\{y} is an open neighborhood of x . As X is scattered,
there exists a clopen neighborhood V of x that is contained in X\{y}. The sets V
and X\V are disjoint open subsets of X containing x and y respectively. This shows
that X is Hausdorff. �
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Proposition 2.2.6 Every subspace of a scattered space is itself scattered.

Proof Let X be a scattered space and Y ⊂ X . IfB is a base of X consisting of clopen
subsets, then the sets Y ∩ B, where B ∈ B, are clopen in Y and form a base of Y .
Consequently, Y is scattered. �

Proposition 2.2.7 Every product of scattered spaces is itself scattered.

Proof Let (Xi )i∈I be a family of scattered spaces and consider their direct product
X := ∏

i∈I Xi . Let Bi be a base of Xi consisting of clopen subsets. We can assume
Xi ∈ Bi . Then the set

∏
i∈I Ui , where Ui ∈ Bi for all i ∈ I and Ui = Xi for all

but finitely many i ∈ I , are clopen in X and form a base for the product topology.
Therefore X is scattered. �

Every open ball of the Euclidean space R
n is connected. Consequently, every

scattered subset of R
n (n ≥ 1) has empty interior. For the subsets of R, the converse

is also true:

Proposition 2.2.8 Let X be a subset of the real line R. Then X is scattered if and
only if it has empty interior.

Proof We already observed that the condition is necessary. Let us show that it is also
sufficient. Suppose that X has empty interior. Let x ∈ X and ε > 0. As X has empty
interior, we can find real numbers a and b not in X such that x − ε < a < x < b <

x + ε. Then the set V := (a, b) ∩ X = [a, b] ∩ X is a clopen neighborhood of x in
X satisfying V ⊂ (x − ε, x + ε). This shows that X is scattered. �

By applying the preceding proposition, we see that the set of rational numbers Q,
the set of irrational numbers R\Q, and the Cantor set K are all scattered.

Proposition 2.2.9 Let X be an accessible space. Then the following conditions are
equivalent:

(a) the space X is scattered;
(b) there exists a set E such that X is homeomorphic to a subset of the product space

{0, 1}E .

Proof Given a set E , the space {0, 1}E is a product of discrete spaces and hence
scattered by Proposition 2.2.7. As every subset of a scattered space is itself scattered
by Proposition 2.2.6, this shows that (b) implies (a).

Conversely, suppose that X is a scattered space. Let E be a base of X consisting of
clopen subsets. Consider the map ϕ : X → {0, 1}E defined by ϕ(x) = (χB(x))B∈E ,
where χB : X → {0, 1} is the characteristic map of B. As B is clopen in X , the
map χB is continuous for each B ∈ E . It follows that ϕ is continuous. On the other
hand, if x and y are distinct points in X , then X\{x} is an open neighborhood of y
since X is accessible. Therefore, there exists a neighborhood B0 ∈ E of y such that
B0 ⊂ X\{x}. This implies χB0(x) 
= χB0(y) and hence ϕ(x) 
= ϕ(y). We deduce
thatϕ is injective.We have thatϕ(B) = ϕ(X)∩π−1

B (1), whereπB : {0, 1}E → {0, 1}
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is the projection map onto the B-factor of {0, 1}E . This shows that ϕ(B) is open in
ϕ(X) for all B ∈ E . As E is a base of X , we deduce that the image by ϕ of every
open subset of X is open in ϕ(X). Consequently, ϕ induces a homeomorphism from
X onto ϕ(X). Therefore, the space X satisfies (b). �

2.3 Scatteredness of Zero-Dimensional Spaces

In this section, we give a characterization of 0-dimensional topological spaces. This
characterization shows that every 0-dimensional accessible space is scattered.

Theorem 2.3.1 Let X be a non-empty topological space. Then the following condi-
tions are equivalent:

(a) dim(X) = 0;
(b) for every pair of disjoint closed subsets A and B of X, there exist disjoint open

subsets U and V of X such that X = U ∪ V , A ⊂ U and B ⊂ V ;
(c) for every closed subset A of X and every open subset U of X such that A ⊂ U,

there exists a clopen subset V of X such that A ⊂ V ⊂ U.

Proof Suppose first that dim(X) = 0. Let A and B be disjoint closed subsets of X .
Consider the open cover α = {X\A, X\B}. As dim(X) = 0, there exists a finite
open partition β of X such that β � α. Note that no element of β can meet both A
and B. Denote byU the union of all the elements of β that meet A and let V := X\U .
The sets U and V form an open partition of X . Moreover, we have that A ⊂ U and
B ⊂ V . This shows that (a) implies (b).

Let us show now that (b) implies (c). Suppose that X satisfies (b). Let A be a
closed subset of X and U an open subset of X such that A ⊂ U . Then B := X\U is
a closed subset that does not meet A. By (b), it follows that there exists a partition
of X into two open subsets V and W such that A ⊂ V and B ⊂ W . Then the set V
is a clopen subset of X and we have A ⊂ V ⊂ U . This shows that X satisfies (c).

Finally, let us prove that (c) implies (a). Suppose that X satisfies (c). Let α =
(Ui )i∈I be a finite open cover of X . As X satisfies (c), it follows from Proposition
1.5.2 that X is normal. By applying Corollary 1.6.4, we deduce that there exists a
closed cover (Fi )i∈I of X such that Fi ⊂ Ui for all i ∈ I . Since X satisfies (c), we
can find, for each i ∈ I , a clopen subset Vi of X such that Fi ⊂ Vi ⊂ Ui .Without loss
of generality, we may assume that I = {1, . . . , n}. Consider the family β = (Wi )i∈I

of subsets of X defined by W1 := V1 and

Wi := Vi\(V1 ∪ · · · ∪ Vi−1)

for all i ∈ {2, . . . , n}. Clearly β := (Wi )i∈I is an open partition of X . Moreover, we
have that β � α since Wi ⊂ Vi ⊂ Ui for all i ∈ I . This shows that dim(X) = 0. �

Corollary 2.3.2 Every topological space X satisfying dim(X) = 0 is normal.

http://dx.doi.org/10.1007/978-3-319-19794-4_1
http://dx.doi.org/10.1007/978-3-319-19794-4_1
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Proof A topological space X such that dim(X) = 0 satisfies condition (b) in the
preceding theorem and is therefore normal. �

Corollary 2.3.3 Every accessible topological space X satisfying dim(X) = 0 is
scattered.

Proof Let X be an accessible space such that dim(X) = 0. Let V be a neighborhood
of a point x ∈ X . The singleton {x} is closed in X since X is accessible. As dim(X) =
0, the space X satisfies condition (c) of the preceding theorem. Therefore, there exists
a clopen subset U of X such that x ∈ U ⊂ V . Consequently, every point of X
admits a neighborhood base consisting of clopen subsets of X . This shows that X is
scattered. �

Corollary 2.3.4 If X is an accessible topological space such that dim(X) = 0, then
X is Hausdorff.

Proof Every scattered accessible space is Hausdorff by Proposition 2.2.5. �

Remark 2.3.5 Corollary 2.3.4 can also be deduced from Corollary 2.3.2 since, as
already observed in Sect. 1.5, every normal accessible space is clearly Hausdorff.

In Sect. 5.4, we shall give an example of a locally compact Hausdorff space that
is scattered but not normal. Such a space has positive topological dimension by
Corollary 2.3.2.

2.4 Lindelöf Spaces

In this section, we introduce the class of Lindelöf spaces and we prove that every
non-empty scattered Lindelöf space X has topological dimension dim(X) = 0.

Definition 2.4.1 A topological space X is called a Lindelöf space if every open
cover of X admits a countable subcover.

Example 2.4.2 Every countable topological space is Lindelöf. Indeed, suppose that
X is a countable topological space. Let α = (Ui )i∈I be an open cover of X . Choose,
for each x ∈ X , an index i(x) ∈ I such that x ∈ Ui(x). Let J := {i(x) | x ∈ X}.
Then β := (Ui )i∈J is a countable subcover of α.

Example 2.4.3 Every compact space is Lindelöf. Indeed, by definition, a topological
space X is compact if and only if every open cover of X admits a finite subcover.

Example 2.4.4 Every topological space that is a union of a countable family of
subsets that are Lindelöf (for the induced topology) is Lindelöf. In particular, every
σ -compact space is Lindelöf (recall that a topological space is called σ -compact if
it is the union of a countable family of compact subsets). Thus, the Euclidean space
R

n is Lindelöf for any integer n ≥ 1 since it is σ -compact.

http://dx.doi.org/10.1007/978-3-319-19794-4_1
http://dx.doi.org/10.1007/978-3-319-19794-4_5
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Example 2.4.5 If an uncountable set X is endowed with its discrete topology, then X
is not Lindelöf. Indeed, the open coverα := ({x})x∈X admits no countable subcovers.
Note that X ismetrizable (ametric inducing the topologyon X is givenbyd(x, y) = 0
if x = y and d(x, y) = 1 otherwise) and locally compact.

A subset of a Lindelöf space is not necessarily Lindelöf (see the example in
Sect. 5.4). However, we have the following result.

Proposition 2.4.6 Every closed subset of a Lindelöf space is itself Lindelöf.

Proof Let X be a Lindelöf space and F a closed subset of X . Let α = (Ui )i∈I be
an open cover of F . Then we can find, for each i ∈ I , an open subset Vi of X such
that Ui = Vi ∩ F . As the family (Vi )i∈I ∪ {X\F} is an open cover of X and X is
Lindelöf, there exists a countable subset J ⊂ I such that the family (Vj ) j∈J ∪{X\F}
covers X . Then the family (U j ) j∈J is a countable subcover of α. This shows that F
is Lindelöf. �

Remark 2.4.7 The product of two Lindelöf spaces may fail to be Lindelöf (see
Sect. 5.5).

Definition 2.4.8 A topological space is said to be second-countable if it admits a
countable base.

For example, the Euclidean space R
n is second-countable since the open balls

B(x, 1/m), where x ∈ Q
n and m ≥ 1 is an integer, form a countable base of R

n .
A topological space X is called first-countable if every point of X admits a count-

able neighborhood base. Clearly every second-countable topological space is also
first-countable. On the other hand, a first-countable space is not necessarily second-
countable. For example, an uncountable set equipped with its discrete topology is
first-countable but not second-countable.

Proposition 2.4.9 Every subset of a second-countable topological space is itself
second-countable.

Proof If X is a topological space admitting a countable base B and Y ⊂ X , then the
set consisting of all the subsets of the form Y ∩ B, where B runs over B, is clearly a
countable base for Y . �

Proposition 2.4.10 Every countable product of second-countable spaces is itself
second-countable.

Proof Let (Xi )i∈I be a countable family of second-countable spaces and consider
their direct product X := ∏

i∈I Xi . Let Bi be a countable base of Xi . We can assume
Xi ∈ Bi . Then the sets

∏
i∈I Ui , where Ui ∈ Bi for all i ∈ I and Ui = Xi for all but

finitely many i ∈ I , form a countable base for the product topology. Therefore X is
second-countable. �

Proposition 2.4.11 (Lindelöf) Every second-countable topological space is Lin-
delöf.

http://dx.doi.org/10.1007/978-3-319-19794-4_5
http://dx.doi.org/10.1007/978-3-319-19794-4_5
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Proof Let X be a topological space admitting a countable base B. Let α = (Ui )i∈I

be an open cover of X . Denote by B′ the set consisting of all B ∈ B such that
there exists i ∈ I satisfying B ⊂ Ui . Define a map ϕ : B′ → I by choosing,
for each B ∈ B′, an index ϕ(B) ∈ I such that B ⊂ Uϕ(B). Then the image set
J = ϕ(B′) ⊂ I is countable. Let x ∈ X . As α covers X , we can find an index
i(x) ∈ I such that x ∈ Ui(x). Since B is a base of X , there exists an open subset
B(x) ∈ B such that x ∈ B(x) ⊂ Ui(x). We have that B(x) ∈ B′, by definition of B′,
and x ∈ B(x) ⊂ Uϕ(B(x)). It follows that (Ui )i∈J is a countable cover of X . This
shows that X is Lindelöf. �

Definition 2.4.12 A topological space is said to be separable if it admits a countable
dense subset.

Proposition 2.4.13 Every second-countable topological space is separable.

Proof Let X be a topological space andB a base of X . Let us choose, for each B ∈ B
with B 
= ∅, a point xB ∈ B and denote by Y the set consisting of all such points
xB . Since B is a base for X , every non-empty open subset of X contains a point of
Y . Consequently, Y is dense in X . If B is countable, then Y is also countable and
hence X is separable. �

From Propositions 2.4.9, 2.4.11 and 2.4.13, we immediately deduce the following
result.

Corollary 2.4.14 Every subset of a second-countable space is separable and Lin-
delöf. In particular, every subset of the Euclidean space R

n is separable and Lindelöf.
�

The following example shows that a separable compact Hausdorff space may fail
to be first-countable.

Example 2.4.15 Let X denote the set consisting of all maps from R into the unit
segment [0, 1]. We equip X with the topology of pointwise convergence. Thus, the
space X may be identified with the product space [0, 1]R and is a compact Hausdorff
space by Tychonoff’s theorem. Let f ∈ X . By definition of the topology of pointwise
convergence, for every ε > 0 and every finite subset A ⊂ R, the set

V ( f, ε, A) := {g ∈ X | | f (x) − g(x)| < ε for all x ∈ A}

is an open neighborhood of f . Moreover, the sets V ( f, ε, A), where ε > 0 and
A ⊂ R is a finite subset, form a neighborhood base of f . Let D denote the subset
of X consisting of all finite linear combinations with rational coefficients of char-
acteristic maps of segments of R with rational endpoints. Clearly D is dense in X .
As D is countable, this shows that X is separable. However, X is not first-countable.
Otherwise, every f ∈ X would admit a countable neighborhood base Wn , n ∈ N.
Then, for every n ∈ N, there would exist εn > 0 and a finite subset An ⊂ R such
that V ( f, εn, An) ⊂ Wn . The set E := ⋃

n∈N An would be countable and hence we
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would have R\E 
= ∅. Taking a point x0 ∈ R\E , any map g : R → [0, 1] such that
g(x0) 
= f (x0) and g(x) = f (x) for all x ∈ E would satisfy g ∈ Wn for all n ∈ N.
As X is Hausdorff, this would imply g = f , which contradicts g(x0) 
= f (x0).
Consequently, X is not first-countable and hence not second-countable either.

Remark 2.4.16 The topological space in the preceding example is not metrizable.
Indeed, every metrizable space is first-countable since, in a metric space X , every
point x ∈ X admits a countable neighborhood base, e.g., the one formed by the open
balls B(x, 1/n), n ≥ 1.

Remark 2.4.17 The space X in Example 2.4.15 is Lindelöf since it is compact. In
Sect. 5.5, we will describe a first-countable separable Lindelöf Hausdorff space S
which is not second-countable (see Proposition 5.5.1 and Corollary 5.5.7).

For metrizable spaces, we have the following equivalent conditions.

Proposition 2.4.18 Let X be a metrizable space. Then the following conditions are
equivalent:

(a) X is second-countable;
(b) X is Lindelöf;
(c) X is separable;
(d) X is homeomorphic to a subset of the Hilbert cube [0, 1]N.

Proof The fact that (a) implies (b) follows from Proposition 2.4.11.
Let us fix a metric d on X compatible with its topology.
Suppose (b). Given an integer n ≥ 1, consider the cover of X formed by the open

balls B(x, 1/n), x ∈ X . As X is Lindelöf, there exists a countable subset Yn ⊂ X
such that the balls B(y, 1/n), y ∈ Yn , cover X . The set Y := ⋃

n≥1 Yn is countable
and dense in X . Consequently, X is separable. This shows that (b) implies (c).

The unit segment [0, 1] ⊂ R is second-countable. Thus, condition (d) implies
(a) since any countable product of second-countable topological spaces is second-
countable by Proposition 2.4.10 and any subset of a second-countable space is
second-countable by Proposition 2.4.9.

To complete the proof, it suffices to show that (c) implies (d). Suppose (c). Let
A = {an | n ∈ N} be a countable dense subset of X . After possibly replacing d(x, y)

by the metric min(d(x, y), 1), which is also compatible with the topology on X , we
can assume that diam(X) ≤ 1. Consider the map F : X → [0, 1]N defined by

F(x) = (d(x, an))n∈N .

The map F is continuous since all maps x 
→ d(x, an) are continuous. As every
point of X is the limit of some sequence of points in A, it follows that F is injective
(uniqueness of the limit in Hausdorff spaces). Let now x0 ∈ X and ε > 0. As A is
dense in X , there exists an integer n0 ≥ 0 such that d(x0, an0) < ε/2. Then the subset
U ⊂ [0, 1]N consisting of all sequences (un)n∈N ∈ [0, 1]N such that un0 < ε/2 is

http://dx.doi.org/10.1007/978-3-319-19794-4_5
http://dx.doi.org/10.1007/978-3-319-19794-4_5
http://dx.doi.org/10.1007/978-3-319-19794-4_5
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an open neighborhood of F(x0). If x ∈ X is such that F(x) ∈ U , then x satisfies
d(x, an0) < ε/2 and hence

d(x, x0) ≤ d(x, an0) + d(x0, an0) < ε,

by applying the triangle inequality. Consequently, we have that

F−1(U ) ⊂ B(x0, ε).

We deduce that F induces a homeomorphism from X onto F(X). This shows that
X satisfies (d). �

As every compact space is Lindelöf, we immediately get the following:

Corollary 2.4.19 Every compact metrizable space is second-countable and hence
separable.

It follows from Corollary 2.3.3 that every accessible topological space X with
dim(X) = 0 is scattered. The following theorem states that the converse holds in
the class of Lindelöf spaces. This is very useful for showing that certain spaces are
zero-dimensional.

Theorem 2.4.20 Let X be a non-empty scattered Lindelöf space. Then one has
dim(X) = 0.

Proof As X is scattered, it admits a base B consisting of clopen subsets. Consider
a finite open cover α = (Ui )i∈I of X . For every x ∈ X , we can find an index
i(x) ∈ I such that x ∈ Ui(x). As B is a base of X , there exists B(x) ∈ B such that
x ∈ B(x) ⊂ Ui(x). The subsets B(x), x ∈ X , form an open cover of X . Since X is
Lindelöf, this open cover admits a countable subcover. Therefore there exists a cover
β = (Bn)n∈N of X such that β � α and Bn ∈ B for all n.

Consider the sequence γ = (Cn)n∈N of subsets of X defined by C0 := B0 and

Cn := Bn\ (B0 ∪ B1 ∪ · · · ∪ Bn−1) ,

for every integer n ≥ 1. As the subsets Bn are clopen and cover X , it is clear that
γ is an open partition of X . On the other hand, we have that γ � β � α. By
applying Proposition 1.1.6, we deduce that D(α) = 0. Thus, we have dim(X) =
supα D(α) = 0. �
Remark 2.4.21 As mentioned earlier, we shall give in Sect. 5.4 an example of a
scattered locally compact Hausdorff space with positive topological dimension.

By Corollary 2.3.3, every accessible space X with dim(X) = 0 is scattered.
Combining this result with the previous theorem, we get the following.

Corollary 2.4.22 Let X be an accessible Lindelöf space (e.g., a separable metrizable
space or a compact Hausdorff space) with X 
= ∅. Then the following conditions
are equivalent:

http://dx.doi.org/10.1007/978-3-319-19794-4_1
http://dx.doi.org/10.1007/978-3-319-19794-4_5
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(a) dim(X) = 0;
(b) X is scattered. �
Example 2.4.23 We deduce from Corollary 2.4.22 and Proposition 2.2.8 that a non-
empty subset X ⊂ R satisfies dim(X) = 0 if and only if X has empty interior
in R. This shows in particular that the set R\Q of irrational numbers satisfies
dim(R\Q)=0.

As an immediate consequence ofCorollary 2.4.22,we obtain the following results.

Corollary 2.4.24 Let (Xi )i∈I be a family of compact Hausdorff spaces with
dim(Xi ) = 0 for all i ∈ I . Then the product space X := ∏

i∈I Xi satisfies
dim(X) = 0.

Proof By Proposition 2.2.7, the space X is scattered since it is a product of scattered
spaces. On the other hand, X is a product of compact Hausdorff spaces and hence
also compact and Hausdorff. �
Corollary 2.4.25 Let (Xi )i∈I be a family of non-empty finite discrete spaces. Then
the product space X := ∏

i∈I Xi satisfies dim(X) = 0.

Proof This immediately follows from Corollary 2.4.24 since each Xi is a compact
Hausdorff space with dim(Xi ) = 0. �
By taking Xi = {0, 1} for all i ∈ I in Corollary 2.4.25, we get the following.

Corollary 2.4.26 One has dim({0, 1}E ) = 0 for any set E. �
Example 2.4.27 We have dim({0, 1}N) = 0. As {0, 1}N is homeomorphic to the
Cantor set K by Proposition 2.1.3, we recover the fact that dim(K ) = 0 (cf. Propo-
sition 2.1.2).

Corollary 2.4.28 Let (Xi )i∈I be a countable family of separable metrizable spaces
such that dim(Xi ) = 0 for all i ∈ I . Then the product space X := ∏

i∈I Xi satisfies
dim(X) = 0.

Proof By Proposition 2.2.7, the space X is scattered since it is a product of scattered
spaces. On the other hand, X is a product of countably many separable metrizable
spaces and hence also separable and metrizable. �

The following example shows that the product of two zero-dimensional topolog-
ical spaces may fail to be zero-dimensional.

Example 2.4.29 Let X = {x0, x1} be a set with cardinality 2. Equip X with the
topology for which the open sets are ∅, {x0} and X . We have that dim(X) = 0 since
the open cover of X reduced to X is finer than any open cover of X . In fact, X is the
space described in Example 1.1.11 for n = 0. Consider now the set X × X equipped
with the product topology. The open subsets of X × X are ∅ and all the subsets of
X × X that contain (x0, x0). Thus, we have that dim(X × X) = 2 by applying the
result in Example 1.1.11 for n = 2.

Remark 2.4.30 The topological space X in the previous example is not Hausdorff,
not even accessible since {x0} is not closed in X . In Sect. 5.5, we shall give an example
of a normal Hausdorff space X such that dim(X) = 0 and dim(X × X) 
= 0.

http://dx.doi.org/10.1007/978-3-319-19794-4_1
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2.5 Totally Disconnected Spaces

Let X be a topological space. Recall that the connected component of a point x ∈ X is
the union of all the connected subsets of X containing x . The connected components
of the points of X form a partition of X . Moreover, every connected component is
connected and closed in X .

Definition 2.5.1 We say that a topological space X is totally disconnected if the
connected component of every point x ∈ X is the singleton set reduced to the point
x .

In other words, a topological space X is totally disconnected if and only if the
only non-empty connected subsets of X are the subsets that are reduced to a single
point.

Example 2.5.2 Every discrete space is totally disconnected.

Example 2.5.3 The only connected subsets of R are the intervals. It follows that a
subset X ⊂ R is totally disconnected if and only if X has empty interior.

Proposition 2.5.4 Every subset of a totally disconnected space is itself totally dis-
connected.

Proof This immediately follows from the observation that if Y is a subset of a
topological space X and y ∈ Y then the connected component of y in Y is contained
in the connected component of y in X . �

Proposition 2.5.5 Every product of totally disconnected spaces is itself totally dis-
connected.

Proof Let (Xi )i∈I be a family of totally disconnected spaces and consider their
direct product X := ∏

i∈I Xi . Let C be a non-empty connected subset of X . As the
continuous image of a connected space is itself connected, the projection ofC on each
Xi is connected and hence reduced to a single point since Xi is totally disconnected.
This implies that C itself is reduced to a single point. �

Proposition 2.5.6 Every totally disconnected space is accessible.

Proof In a topological space, every connected component is closed. Consequently,
if the topological space X is totally disconnected then {x} is closed in X for all
x ∈ X . �

The following example shows that a totally disconnected space may fail to be
Hausdorff.

Example 2.5.7 Let X be an infinite set. Let us fix two distinct points a, b ∈ X and
let Y := X\{a, b}. Let T denote the set consisting of all U ⊂ X satisfying one of
the following two conditions:
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(1) U ⊂ Y ;
(2) U = U1 ∪ U2, where U1 is a non-empty subset of {a, b} and U2 ⊂ Y is such

that Y\U2 is a finite set.

It is straightforward to verify that T is the set of open sets for a topology on X . Let
us equip X with this topology. Suppose that A ⊂ X has more than one point. If we
can find a point y0 ∈ A ∩Y , then the singleton set {y0} is clopen in A. Otherwise, we
have that A = {a, b} and then {a} is clopen in A. It follows that A is not connected.
Thus, the space X is totally disconnected. However, X is not Hausdorff since every
open neighborhood of a meets every open neighborhood of b.

2.6 Totally Separated Spaces

In this section, we introduce the class of totally separated spaces.We prove that every
totally separated space is totally disconnected and that every scattered accessible
space is totally separated.

Let X be a topological space. The quasi-component of a point x ∈ X is the
intersection of all clopen neighborhoods of x . Note that the quasi-component of
every point x ∈ X is a closed subset of X containing x .

Definition 2.6.1 We say that a topological space X is totally separated if the quasi-
component of every point x ∈ X is the singleton set reduced to the point x .

Remark 2.6.2 A topological space X is totally separated if and only if it satisfies
the following condition: for every pair of distinct points x and y in X , there exists a
partition of X into two open subsets U and V such that x ∈ U and y ∈ V .

Proposition 2.6.3 Every totally separated space is Hausdorff.

Proof This immediately follows from the preceding remark. �

Proposition 2.6.4 Let X be a topological space and x a point in X. Then the con-
nected component of x is contained in the quasi-component of x.

Proof Denote by Cx the connected component of x and by Qx its quasi-component.
Consider a clopen neighborhood V of x in X . Then Cx ∩ V is a clopen subset of
Cx that is not empty since it contains x . By connectedness of Cx , we deduce that
Cx ∩ V = Cx , that is, Cx ⊂ V . It follows that Cx ⊂ Qx . �

Corollary 2.6.5 Every totally separated space is totally disconnected. �

A totally disconnected space is not necessarily totally separated. Indeed, we have
described in Example 2.5.7 a totally disconnected space that is not Hausdorff. Such
a space is not totally separated since, by Proposition 2.6.3, every totally separated
space is Hausdorff. In Sect. 5.2, we shall give an example of a totally disconnected
separable metrizable space that is not totally separated.

http://dx.doi.org/10.1007/978-3-319-19794-4_5
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Proposition 2.6.6 Every scattered accessible space is totally separated and hence
totally disconnected.

Proof Let X be a scattered accessible space. Let B be a base of X consisting of
clopen subsets of X . Consider a point x in X . As B is a base of X , the set Bx consist-
ing of all elements of B containing x is a neighborhood base of x . The intersection
of all the neighborhoods of x is reduced to the point x since X is accessible. This
implies that the intersection of the elements ofBx is also reduced to x . Consequently,
the quasi-component of x is the singleton set {x}. This shows that X is totally
separated. �

The accessibility hypothesis in Proposition 2.6.6 cannot be removed. Indeed, a
set having more than one point equipped with its trivial topology is scattered but not
totally separated (not even totally disconnected).

Let us note also that the converse of Proposition 2.6.6 is false. Indeed, wewill give
in Sect. 5.1 an example of a separable metrizable space that is totally separated but
not scattered. However, as we shall see, the converse of Proposition 2.6.6 becomes
true if we restrict ourselves to locally compact Hausdorff spaces. Let us first establish
the following result.

Lemma 2.6.7 Let X be a compact Hausdorff space. Let x be a point in X. Then the
connected component of x coincides with its quasi-component.

Proof Denote by Cx the connected component of x and by Qx its quasi-component.
We have that Cx ⊂ Qx by Proposition 2.6.4. Thus, it suffices to prove that Qx is
connected. Let A and B be disjoint closed subsets of Qx such that A ∪ B = Qx . We
can assume that x ∈ A. As Qx is closed in X , the sets A and B are closed in X . On
the other hand, since X is a compact Hausdorff space, it is normal by Proposition
1.5.4. Consequently, there exist disjoint open subsets V and W of X such that A ⊂ V
and B ⊂ W . Denote by E the set consisting of all clopen neighborhoods of x in X .
We have that ⋂

U∈E
U = Qx ⊂ V ∪ W.

Therefore, the open subsets X\U , U ∈ E , cover X\(V ∪ W ). As X\(V ∪ W ) is
compact, there exists a finite sequence U1, . . . , Un of elements of E such that

X\(V ∪ W ) ⊂ (X\U1) ∪ · · · ∪ (X\Un).

By setting � := U1 ∩ · · · ∩ Un , this amounts to saying that � ⊂ V ∪ W . As V and
W are disjoint, we deduce that � ∩ V = �\W . Consequently, the set � ∩ V is a
clopen neighborhood of x in X . It follows that Qx ⊂ �∩ V . Therefore we have that
Qx = A. This shows that Qx is connected. �

http://dx.doi.org/10.1007/978-3-319-19794-4_5
http://dx.doi.org/10.1007/978-3-319-19794-4_1
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Proposition 2.6.8 Let X be a locally compact Hausdorff space. Then the following
conditions are equivalent:

(a) X is scattered;
(b) X is totally separated;
(c) X is totally disconnected.

Proof The fact that (a) implies (b) follows from Proposition 2.6.6. On the other hand,
Corollary 2.6.5 shows that (b) implies (c).

Suppose that X is totally disconnected. Let x be a point in X and let V be a
neighborhood of x . As X is locally compact, there exists a compact neighborhood
W of x such that W ⊂ V . Denote by U the interior of W in X and by E the set
consisting of all clopen neighborhoods of x in W . As W is totally disconnected by
Proposition 2.5.4, it follows from Lemma 2.6.7 that {x} = ⋂

F∈E F . This implies
that the family

α := {U } ∪ {W\F | F ∈ E}

is an open cover of W . Since W is compact, α admits a finite subcover. This means
that there exists a finite sequence F1, . . . , Fn ∈ E such that the set A := F1∩· · ·∩ Fn

satisfies A ⊂ U . Each Fi , 1 ≤ i ≤ n, is closed in W and hence in X since W is
closed in X . On the other hand, A is open in U and hence open in X . It follows that
A is clopen in X . As x ∈ A ⊂ V , we deduce that the neighborhoods of x that are
clopen in X form a neighborhood base of x . This shows that X is scattered. Thus,
(c) implies (a). �

2.7 Zero-Dimensional Compact Hausdorff Spaces

By combining results obtained in the previous sections, we get the following char-
acterizations of zero-dimensional compact Hausdorff spaces.

Theorem 2.7.1 Let X be a non-empty topological space. Then the following condi-
tions are equivalent:

(a) X is a compact Hausdorff space with dim(X) = 0;
(b) X is a scattered compact Hausdorff space;
(c) X is a totally separated compact Hausdorff space;
(d) X is a totally disconnected compact Hausdorff space;
(e) there exists a set E such that X is homeomorphic to a closed subset of the product

space {0, 1}E .

Proof Conditions (a) and (b) are equivalent by virtue of Corollary 2.4.22. On the
other hand, conditions (b), (c) and (d) are equivalent by Proposition 2.6.8. Finally,
the equivalence of (b) and (e) is an immediate consequence of Proposition 2.2.9 since
the product space {0, 1}E is a compact Hausdorff space for any set E by Tychonoff’s
theorem. �
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2.8 Zero-Dimensional Separable Metrizable Spaces

Wealso get the following characterizations of zero-dimensional separablemetrizable
spaces.

Theorem 2.8.1 Let X be a non-empty topological space. Then the following condi-
tions are equivalent:

(a) X is a separable metrizable space with dim(X) = 0;
(b) X is a scattered separable metrizable space;
(c) X is a separable metrizable space that admits a countable base consisting of

clopen subsets;
(d) X is homeomorphic to a subset of {0, 1}N;
(e) X is homeomorphic to a subset of the Cantor set.

Proof Conditions (a) and (b) are equivalent by Corollary 2.4.22.
Suppose that X is a scattered separable metric space. Let B be a base of X

consisting of clopen subsets. As X is separable, we can find a countable dense subset
Y ⊂ X . Let us choose, for each y ∈ Y and each integer n ≥ 1, a neighborhood
By,n ∈ B of y contained in the open ball of radius 1/n centered at y. Then the
subsets By,n form a countable base of X . This shows that (b) implies (c).

Let us now show that (c) implies (d) (cf. the proof of Proposition 2.2.9). Suppose
that X is a separablemetric space and that (Bn)n∈N is a base of X consisting of clopen
subsets. Let χn : X → {0, 1} denote the characteristic map of Bn . Consider the map
ϕ : X → {0, 1}N defined by ϕ(x) = (χn(x))n∈N for all x ∈ X . As Bn is clopen, the
map χn is continuous for every n ∈ N. This implies that ϕ is continuous. As X is
Hausdorff, the injectivity of ϕ follows from the fact that the subsets Bn , n ∈ N, form
a base of X . We have that ϕ(Bn) = ϕ(X) ∩ π−1

n (1), where πn : {0, 1}N → {0, 1} is
the projection onto the n-factor of {0, 1}N. This shows that ϕ(Bn) is open in ϕ(X).
As the subsets Bn form a base of X , we deduce that the image by ϕ of any open
subset of X is open in ϕ(X). Consequently, ϕ induces a homeomorphism from X
onto ϕ(X). This shows that X satisfies (d).

To complete the proof, it suffices to observe that (d) implies (b) by
Proposition 2.2.9 and that (d) and (e) are equivalent since the space {0, 1}N is home-
omorphic to the Cantor set by Proposition 2.1.3. �

Remark 2.8.2 As already mentioned above, we will give in Sect. 5.1 an example of a
separable metrizable space that is totally separated (and hence totally disconnected)
but not scattered.

2.9 Zero-Dimensional Compact Metrizable Spaces

Every compact metrizable space is both Hausdorff and separable. By combining
Theorems 2.7.1 and 2.8.1, we obtain the following statement (Table2.1).

http://dx.doi.org/10.1007/978-3-319-19794-4_5
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Table 2.1 Summary Table (X non-empty)

SETON

dim(X) = 0 ⇒ scattered ⇒ totally sepa-
rated

⇒ totally dis-
connected

Hausdorff spaces

dim(X) = 0 ⇔ scattered ⇒ totally sepa-
rated

⇒ totally dis-
connected

separable metrizable spaces

dim(X) = 0 ⇒ scattered ⇔ totally sepa-
rated

⇔ totally dis-
connected

locally compact Hausdorff spaces

dim(X) = 0 ⇔ scattered ⇔ totally sepa-
rated

⇔ totally dis-
connected

compact Hausdorff spaces

Theorem 2.9.1 Let X be a non-empty topological space. Then the following condi-
tions are equivalent:

(a) X is a compact metrizable space with dim(X) = 0;
(b) X is a scattered compact metrizable space;
(c) X is a totally separated compact metrizable space;
(d) X is a totally disconnected compact metrizable space;
(e) X is a compact metrizable space that admits a countable base consisting of

clopen subsets;
(f) X is homeomorphic to a closed subset of {0, 1}N;
(g) X is homeomorphic to a closed subset of the Cantor set. �

Notes

The terminology used in this chapter follows that of Bourbaki [18]. However, the
terms “scattered”, “totally disconnected”, and “totally separated” have sometimes
different meanings in the literature. For example, spaces that are called “scattered”
in the present book are called “zero-dimensional” in [102], while a “scattered” space
in [102] is a topological space in which every non-empty subset admits an isolated
point.
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The Cantor ternary set was described by Cantor in [21, note 11 p. 46]. It can be
shown that every totally disconnected compact metrizable space that is perfect is
homeomorphic to the Cantor set (see for example [48, Corollary 2–98]).

A non-empty topological space X is scattered if and only if ind(X) = 0 (see the
Notes on Chap.1, p.19, for the definition of the small inductive dimension ind(X)).
The question of the existence of scatteredmetrizable spaces with positive topological
dimension remained open for many years (cf. [18, note 1 p. IX.119]). An affirmative
answer to this question was finally given by Roy [96, 98] who constructed a scattered
metrizable space X with dim(X) = 1.

The notion of a totally disconnected space and that of a totally separated space
were respectively introduced by Hausdorff [47] and by Sierpinski [99]. In [99],
Sierpinski described a totally disconnected subset of R

2 that is not totally separated
and a totally separated subset of R

2 with positive topological dimension.

Exercises

2.1 Does the real number 1/π belong to the Cantor set?
2.2 Show that the Cantor set has Lebesgue measure 0.
2.3 Show that every countable product of Cantor spaces is a Cantor space.
2.4 Let H denote the Hilbert space of square-summable real sequences (un)n≥1.

Show that the subset X ⊂ H consisting of all sequences (un)n≥1 such that
|un| ≤ 1/n for all n ≥ 1 is homeomorphic to the Hilbert cube [0, 1]N.

2.5 Let G be a group. Let B denote the set of all left cosets of subgroups of finite
index of G, i.e., the subsets of the form gH , where g ∈ G and H ⊂ G is a
subgroup with [G : H ] < ∞.

(a) Show that there is a unique topology on G admitting B as a base. This
topology is called the profinite topology on G.

(b) Show that the profinite topology on G is scattered.
(c) Show that the profinite topology on G is discrete if and only if G is finite.
(d) Show that the profinite topology on the additive groupQ of rational numbers

is the trivial topology.
(e) Show that the profinite topology on G is Hausdorff if and only if G is

residually finite. (Recall that the group G is called residually finite if the
intersection of all its subgroups of finite index is reduced to the identity
element.)

2.6 (Furstenberg’s topological proof of the infinitude of primes [38]). Let Z denote
the group of integers equipped with its profinite topology (see Exercise 2.5).

(a) Show that nZ is a closed subset of Z for every n ∈ Z.
(b) Show that every non-empty open subset of Z is infinite.

http://dx.doi.org/10.1007/978-3-319-19794-4_1
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(c) Let P := {2, 3, 5, 7, 11, . . . } denote the set of prime numbers. Use the
results obtained in (a) and (b) to recover Euclid’s theorem thatP is infinite.
Hint: observe that

⋃
p∈P pZ = Z\{−1, 1} is not closed in Z.

2.7 Let f : X → Y be a continuous map from a Lindelöf space X into a topological
space Y . Show that f (X) is a Lindelöf space.

2.8 Show that every locally compact Lindelöf space is σ -compact.
2.9 Let X be an uncountable set equipped with its cofinite topology. Show that X

is not first-countable.
2.10 Show that every open subset of a separable space is separable.
2.11 Show that every subspace of a separable metrizable space is separable.
2.12 Show that the set consisting of all isolated points of a separable space is count-

able.
2.13 Show that every countable product of separable spaces is separable.
2.14 Let (X, d) be a separable metric space. Consider the Banach space �∞(R)

consisting of all bounded sequences of real numbers u = (un)n∈N with the
supremum norm ‖u‖ = supn∈N |un|. Fix a point x0 ∈ X and a sequence
(an)n∈N of points of X such that the set {an | n ∈ N} is dense in X . Show that
the sequence (d(x, an) − d(x0, an))n∈N is in �∞(R) for every x ∈ X and that
the map ϕ : X → �∞(R) defined by ϕ(x) = (d(x, an) − d(x0, an))n∈N is an
isometric embedding.

2.15 Show that the Banach space �∞(R) is not separable.
2.16 Show that every second-countable scattered accessible space is homeomorphic

to a subset of the Cantor set.
2.17 A metric space (X, d) is called an ultrametric space if one has

d(x, y) ≤ max(d(x, z), d(y, z))

for all x, y, z ∈ X . Let (X, d) be a non-empty ultrametric space.

(a) Let A be a closed subset of X and ρ > 0. Show that the set consisting of
all x ∈ X such that dist(x, A) = ρ is a clopen subset of X .

(b) Let A and B be disjoint closed subsets of X . Show that the set consisting
of all x ∈ X such that dist(x, A) ≤ dist(x, B) is a clopen subset of X .

(c) Show that dim(X) = 0.
(d) Show that the metric completion (X ′, d ′) of (X, d) is also an ultrametric

space.

2.18 Let p be a prime integer. Every non-zero rational number q ∈ Q\{0} can be

written in the form q = pn a

b
, where n ∈ Z and a, b ∈ Z\pZ are integers

not divisible by p. The integer vp(q) := n ∈ Z is well defined and called the
p-valuation of q. Define the map d : Q × Q → R by

d(x, y) :=
{

p−vp(x−y) if x 
= y

0 if x = y
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for all x, y ∈ Q.

(a) Show that (Q, d) is an ultrametric space.
(b) Show that the metric completionQp of (Q, d) satisfies dim(Qp) = 0. (The

set Qp is the set of p-adic numbers.)

2.19 Show that every totally disconnected topological space that is locally connected
is discrete. (Recall that a topological space X is called locally connected if every
point x ∈ X admits a neighborhood base consisting of connected subsets.)

2.20 Let X be a non-empty subset of R. Show that one has dim(X) = 0 if and only
if X is totally disconnected.

2.21 Let X be the topological space described in Example 2.5.7.

(a) Show that X is compact.
(b) Show that X is not normal.
(c) Show that dim(X) = 1.

2.22 A topological space X is called extremally disconnected if the closure of any
open subset of X is open in X .

(a) Show that if a set X is equipped with its trivial (resp. discrete) topology
then X is extremally disconnected.

(b) Show that every extremally disconnected Hausdorff space is totally sepa-
rated.

(c) Show that every extremally disconnected metrizable space is discrete.



Chapter 3
Topological Dimension of Polyhedra

In this chapter, we introduce the notion of a simplicial complex of R
n and that of a

polyhedron. A simplicial complex is a finite assembly of simplices and a polyhedron
is a topological space that is homeomorphic to some simplicial complex. The main
results of this chapter is that the unit cube in R

n has topological dimension n for any
integern ≥ 0 (Theorem3.5.4). This is used to shows that the topological dimension of
the support of a simplicial complex is equal to its combinatorial dimension (Corollary
3.5.5). We also deduce that the topological dimension of the Euclidean space R

n is
n (Corollary 3.5.7).

3.1 Simplices of R
n

Let us start by briefly reviewing some elementary facts about affine subspaces of R
n .

This material is standard and proofs are omitted.
Let n ≥ 0 be an integer. A subset A ⊂ R

n is called an affine subspace of R
n if

either A = ∅ or there exist a linear subspace V ⊂ R
n and a point p ∈ R

n such that

A = p + V := {p + v | v ∈ V }.

In this case, we have that V = {b − a | a, b ∈ A}. It follows in particular that
the linear subspace V ⊂ R

n depends only on A. One says that V is the direction
of the affine subspace A. The dimension dimR(V ) of V as a vector space over R is
called the affine dimension of A and is denoted dimaff(A). By convention, the affine
dimension of the empty set ∅ is dimaff(∅) = −1. An affine hyperplane of R

n is an
affine subspace of affine dimension n − 1.

The affine subspace of R
n generated by k + 1 points p0, p1, . . . , pk ∈ R

n is the
smallest affine subspace A ⊂ R

n such that pi ∈ A for all 0 ≤ i ≤ k. One has

© Springer International Publishing Switzerland 2015
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A = {
k∑

i=0

λi pi | λi ∈ R (0 ≤ i ≤ k) and
k∑

i=0

λi = 1}.

The points p0, p1, . . . , pk ∈ R
n are said to be affinely independent if the affine

subspace of R
n they generate has affine dimension k. This amounts to saying that

the k vectors p1 − p0, . . . , pk − p0 are linearly independent in R
n .

Let p0, p1, . . . , pk be affinely independent points inR
n . Consider the convex hull

� := [p0, p1, . . . , pk] ⊂ R
n

of the set {p0, p1, . . . , pk}. We have that

� = [p0, p1, . . . , pk] = {
k∑

i=0

λi pi | λi ≥ 0 (0 ≤ i ≤ k) and
k∑

i=0

λi = 1}.

The extremal points of � are the points p0, p1, . . . , pk (recall that a point x of a
convex subset K ⊂ R

n is called extremal if the set K\{x} is convex). One says that�
is the simplex whose vertex set is {p0, p1, . . . , pk}. Observe that � is compact since
it is a closed and bounded subset of R

n . The integer k (i.e., the number of vertices of
� minus 1) is called the combinatorial dimension of the simplex � and is denoted
dimcomb(�). Note that dimcomb(�) = dima f f (A), where A is the affine subspace of
R

n generated by the points p0, p1, . . . , pk . When � is a simplex with combinatorial
dimension k, one also says that � is a k-simplex. Thus, a 0-simplex is a subset of R

n

reduced to a single point, a 1-simplex is a line segment joining two distinct points
of R

n , a 2-simplex is a triangle, a 3-simplex is a tetrahedron, etc. (see Fig. 3.1). The
empty set is a simplex whose vertex set is empty and whose combinatorial dimension
is −1.

Suppose that p0, p1, . . . , pk are affinely independent points inR
n and let�denote

the simplexwhosevertex set is {p0, p1, . . . , pk}. Consider a subset I ⊂ {0, 1, . . . , k}.
Then the points pi , where i ∈ I , are affinely independent. They are the vertices of
a simplex �′ ⊂ � whose combinatorial dimension is dimcomb(�

′) = −1 + #I .
One says that the simplex �′ is a face of �. The number of faces of � is equal
to the number of subsets of {0, 1, . . . , k}, i.e., 2k+1. Two particular faces of � are
the empty set ∅ and the simplex � itself. They are obtained by taking I = ∅ and
I = {0, 1, . . . , k} respectively. A face �′ of � is called proper if ∅ �= �′ �= �.

k = 0 k = 1 k = 2 k = 3

Fig. 3.1 Some k-simplices
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The set
◦
� ⊂ � defined by

◦
� := {

k∑

i=0

λi pi | λi > 0 (0 ≤ i ≤ k) and
k∑

i=0

λi = 1}

is called the open simplex with vertices p0, p1, . . . , pk . Observe that
◦
� is the interior

of � in the affine subspace A of R
n generated by the vertices of �. In particular,

◦
�

is open in A. Note also that �\ ◦
� is the union of the proper faces of �. We have that

◦
� �= � for k ≥ 1. For k = 0, we have that

◦
� = � = {p0}.

3.2 Simplicial Complexes of R
n

Definition 3.2.1 A simplicial complex of R
n is a finite set C of simplices of R

n

satisfying the following conditions:

SC1 if � ∈ C , then every face of � belongs to C ;
SC2 if �1 ∈ C and �2 ∈ C , then �1 ∩ �2 is a face of both �1 and �2 (Fig. 3.2).

Let C be a simplicial complex of R
n . A point p ∈ R

n is a vertex of C if there
exists a simplex � ∈ C such that p is one of the vertices of �. As C contains only
finitely many simplices, the set of vertices of C is finite. It follows from conditions
(SC1) and (SC2) of Definition 3.2.1 that if p is a vertex of C and � is a simplex of
C such that p ∈ �, then p is a vertex of �.

The combinatorial dimension dimcomb(C) of the simplicial complex C is the
maximal combinatorial dimension of the simplices of C . Note that we always have
dimcomb(C) ≤ n.

The set |C | ⊂ R
n defined by

|C | :=
⋃

�∈C

�

is called the support of the simplicial complex C .

Fig. 3.2 A simplicial complex of R2
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Definition 3.2.2 Atopological space X is called apolyhedron if there exist an integer
n ≥ 0 and a simplicial complex C of R

n such that X is homeomorphic to the support
|C | of C .

Note that every polyhedron is compact and metrizable.

Proposition 3.2.3 Let C be a simplicial complex of R
n. Then the open simplices

◦
�,

where � ∈ C, form a partition of the support |C | of C.

Proof Let x ∈ |C |. Choose a simplex �0 ∈ C containing x . Let k := dimcomb(�0)

and suppose that p0, p1, . . . , pk are the vertices of �0. As x ∈ �0, there exist real
numbers λi ≥ 0, 0 ≤ i ≤ k, such that

x =
k∑

i=0

λi pi and
k∑

i=0

λi = 1.

Denote by I the set consisting of all i ∈ {0, 1, . . . , k} such that λi > 0. The simplex
� whose vertices are the points pi , with i ∈ I , belongs to C by (SC1) since it is a
face of �0. On the other hand, we have that

x =
∑

i∈I

λi pi and
∑

i∈I

λi = 1.

As λi > 0 for all i ∈ I , we deduce that x ∈ ◦
�.

Suppose now that there is another simplex�′ ∈ C such that x ∈
◦

�′. By (SC2), the
set�∩�′ is a face of both� and�′. The simplex�∩�′ meets

◦
� since x ∈ �∩�′.

As any proper face of� is contained in�\ ◦
�, we deduce that�∩�′ = �. Similarly,

we get � ∩ �′ = �′. It follows that � = �′. �

Remark 3.2.4 Note that if C is a simplicial complex of R
n and � is a simplex

belonging to C , then the open simplex
◦
� is not necessarily open in |C |.

3.3 Open Stars

In this section, given a simplicial complex C of R
n and a vertex p of C , we define

the open star of C at p. We prove (see Proposition 3.3.2) that the open stars of C
form a finite open cover of the support |C | of C and that the order of this cover is
equal to the combinatorial dimension of C .

Consider a simplicial complex C of R
n . Let p be one of the vertices of C . Denote

by FC (p) the union of all the simplices of C that do not contain p. As every simplex
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is compact and C contains only finitely many simplices, the set FC (p) is compact
and hence closed in |C |. It follows that the set

StC (p) := |C |\FC (p)

is an open neighborhood of p in |C |. We call StC (p) the open star of the simplicial
complex C at the vertex p.

Proposition 3.3.1 One has

StC (p) =
⋃

p∈�∈C

◦
�. (3.3.1)

Proof Denote by E the right-hand side of (3.3.1).
Let x ∈ StC (p). By Proposition 3.2.3, there exists a simplex � ∈ C such that

x ∈ ◦
�. As x /∈ FC (p), we have that p ∈ � and hence x ∈ E . This shows that

StC (p) ⊂ E .
Conversely, suppose now that x ∈ E . This means that there exists � ∈ C such

that x ∈ ◦
� and p ∈ �. Consider a simplex �1 ∈ C such that x ∈ �1. Then there is

a face �2 of �1 such that x ∈ ◦
�2. By applying Proposition 3.2.3, we get �2 = �.

This implies p ∈ �2 and hence p ∈ �1. We conclude that x /∈ FC (p). This shows
that E ⊂ StC (p). �

Proposition 3.3.2 Let C be a simplicial complex of R
n. Let V denote the set of

vertices of C. Then the family α := (StC (p))p∈V is a finite open cover of the support
|C | of C. Moreover, the order of α is equal to the combinatorial dimension of the
simplicial complex C.

Proof The set V is finite since C contains only finitely many simplices. On the other
hand, we have seen above that StC (p) is open in |C | for all p ∈ V . Therefore α is a
finite family of open subsets of |C |.

Let x be a point in |C |. By Proposition 3.2.3, there is a simplex � ∈ C such that

x ∈ ◦
�. Let p be one of the vertices of �. It follows from Proposition 3.3.1 that

x ∈ StC (p). Consequently, α covers |C |.
Let k := ord(α). Then there exist distinct vertices p0, p1, . . . , pk of C such that

k⋂

i=0

StC (pi ) �= ∅.

Let x ∈ ⋂k
i=0 StC (pi ) and choose a simplex� ∈ C such that x ∈ �. As x ∈ StC (pi ),

we have that pi ∈ � for all i = 0, 1, . . . , k. Consequently, the points p0, p1, . . . , pk

are vertices of �. This shows that ord(α) = k ≤ dimcomb(C).
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Consider now a non-empty simplex� ∈ C . Let p0, p1, . . . , pk denote the vertices

of �. As
⋂k

i=0 StC (pi ) ⊃ ◦
� �= ∅, we have that ord(α) ≥ k. It follows that

ord(α) ≥ dimcomb(C). �

3.4 Barycentric Subdivisions

Let � ⊂ R
n be a non-empty k-simplex whose vertices are p0, p1, . . . , pk . The

barycenter of the simplex � is the point γ ∈ ◦
� defined by

γ := 1

k + 1
(p0 + p1 + · · · + pk).

Given two simplices � and �′ of R
n , we write � < �′ if � is a proper face of

�′. Note that the relation < is transitive.
A chain of simplices of R

n is a (possibly empty) finite sequence

π = (�0,�1, . . . , �r )

of non-empty simplices of R
n such that

�0 < �1 < · · · < �r .

The integer r ∈ {−1, 0, . . . , n} is called the length of the chain π.
Let π = (�0,�1, . . . ,�r ) be a chain of simplices of R

n . Denote by γi the
barycenter of the simplex�i (0 ≤ i ≤ r ). Clearly the points γ0, γ1, . . . , γr−1 belong
to the simplex �r−1 and γr is not contained in the affine subspace of R

n generated
by �r−1. By induction on r , we deduce that the points γ0, γ1, . . . , γr are affinely
independent in R

n . Consequently, these points are the vertices of an r -simplex

�(π) = [γ0, γ1, . . . , γr ] ⊂ R
n .

The simplex �(π) is called the simplex associated with the chain π. We have that
�(π) ⊂ �r since all the simplices of �(π) are contained in �r .

Let C be a simplicial complex of R
n . We say that a chain π = (�0,�1, . . . ,�r )

of simplices of R
n is a C-chain if �i ∈ C for all i ∈ {0, 1, . . . , r}. We denote by

�(C) the set consisting of all C-chains.

Lemma 3.4.1 Let C be a simplicial complex of R
n. Then the open simplices

◦
�(π),

π ∈ �(C), form a partition of the support |C | of C.
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Proof Every chain

π = (�0,�1, . . . ,�r ) ∈ �(C)

satisfies �(π) ⊂ |C | since �(π) ⊂ �r .
Let x ∈ |C |. By Proposition 3.2.3, there exists a unique simplex � ∈ C such that

x ∈ ◦
�. Let S denote the set of vertices of �. There is a unique family of positive

real numbers (λp)p∈S such that

x =
∑

p∈S

λp p and
∑

p∈S

λp = 1. (3.4.1)

Let us write

{λp | p ∈ S} = {α0,α1, . . . ,αr }

with α0 > α1 > · · · > αr . For each i ∈ {0, 1, . . . , r}, denote by Ti the set consisting
of all vertices p ∈ S such that λp = αi . The sets T0, T1, . . . , Tr are all non-empty
and form a partition of S. By rearranging the terms of the right-hand side of (3.4.1),
we get

x =
r∑

i=0

αi

⎛

⎝
∑

p∈Ti

p

⎞

⎠ . (3.4.2)

Let us set, for each i ∈ {0, 1, . . . , r},

Si := T0 ∪ T1 ∪ · · · ∪ Ti

and denote by �i the simplex whose vertex set is Si . We clearly have

�0 < �1 < · · · < �r = �.

It follows that π := (�0,�1, . . . , �r ) is a C-chain. After summing up by parts,
equality (3.4.2) gives us

x =
r−1∑

i=0

(αi − αi+1)

⎛

⎝
∑

p∈Si

p

⎞

⎠ + αr

∑

p∈Sr

p.

Denoting by γi the barycenter of �i (0 ≤ i ≤ r ), we obtain

x =
r∑

i=0

μiγi ,
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where μi := (αi − αi+1)#Si for 0 ≤ i ≤ r − 1 and μr := αr#Sr . It is easy to verify

that μi > 0 for all i and
∑r

i=1 μi = 1. Therefore we have that x ∈ ◦
�(π).

Suppose now that there exists another C-chain

π′ = (�′
0,�

′
1, . . . ,�

′
r ′)

such that x ∈
◦

�(π′). Then, denoting by γ′
i the barycenter of �′

i , there exist real
numbers μ′

i > 0 (0 ≤ i ≤ r ′) such that

x =
r ′∑

i=0

μ′
iγ

′
i and

r ′∑

i=0

μ′
i = 1.

Let S′
i denote the set of vertices of �′

i (0 ≤ i ≤ r ′). Let us set T ′
0 := S′

0 and
T ′

i := S′
i\S′

i−1 for all i ∈ {1, . . . , r ′}. We have that

x =
r ′∑

i=0

α′
i

⎛

⎝
∑

p∈T ′
i

p

⎞

⎠ ,

where

α′
i := μ′

i

#S′
i

+ μ′
i+1

#S′
i+1

+ · · · + μ′
r ′

#S′
r ′

(0 ≤ i ≤ r ′).

The sets T ′
0, T ′

1, . . . , T ′
k are non-empty and form a partition of S′

r ′ . On the other hand,
we have that

α′
0 > α′

1 > · · · > α′
r ′ > 0 and

r ′∑

i=0

α′
i#T ′

i =
r ′∑

i=0

μ′
i = 1.

By using Proposition 3.2.3, we deduce that r = r ′ and Ti = T ′
i for all i ∈

{0, 1, . . . , r}. It follows that Si = S′
i for all i ∈ {0, 1, . . . , r}. This shows that

π = π′. �

Proposition 3.4.2 Let C be a simplicial complex of R
n. Then the set

C ′ := {�(π) | π ∈ �(C)} (3.4.3)

is a simplicial complex of R
n. Moreover, the simplicial complexes C and C ′ have the

same combinatorial dimension and the same support.
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Proof Let π = (�0,�1, . . . , �r ) be a C-chain. Denote by γi the barycenter of �i

(0 ≤ i ≤ r ). Let �̃ be a face of �(π). Denote by s the combinatorial dimension
of �̃ and suppose that γi0 , γi1 , . . . , γis are the vertices of �̃, where 0 ≤ i0 < i1 <

· · · < is ≤ r . Clearly π̃ := (�i0 ,�i1 , . . . ,�is ) is a C-chain and we have that
�̃ = �(̃π) ∈ C ′. This shows that C ′ satisfies condition (SC1) of Definition 3.2.1.

Let us show now that C ′ satisfies condition (SC2). Let π = (�0,�1, . . . ,�r )

and π′ = (�′
0,�

′
1, . . . ,�

′
r ′) be two C-chains. The simplices appearing in both π

and π′ form a C-chain π′′ = (�′′
0,�

′′
1, . . . ,�

′′
r ′′). We claim that

�(π) ∩ �(π′) = �(π′′). (3.4.4)

The inclusion �(π′′) ⊂ �(π) ∩ �(π′) is obvious since the simplex �(π′′) is a face
of both �(π) and �(π′). Let x ∈ �(π) ∩ �(π′). As x ∈ �(π), we can extract a

chain π̃ of π such that x ∈ ◦
�(̃π). Similarly, we can extract a chain π̃′ of π′ such

that x ∈
◦

�(̃π′). Lemma 3.4.1 implies that π̃ = π̃′. It follows that the chain π̃ can
be extracted from the chain π′′ and hence that x ∈ �(π′′). This completes the proof
of (3.4.4). This shows that C ′ satisfies (SC2).

The inclusion |C ′| ⊂ |C | is straightforward. The inclusion |C | ⊂ |C ′| follows
from Lemma 3.4.1. It follows that |C | = |C ′|.

Let m := dimcomb(C) and m′ := dimcomb(C ′). If π = (�0,�1, . . . ,�r ) is a
C-chain, then the length r ofπ is clearly less than or equal to the combinatorial dimen-
sion of �r . It follows that m′ ≤ m. Let � be a m-simplex in C . If p0, p1, . . . , pm

are the vertices of �, then

([p0], [p0, p1], . . . , [p0, p1, . . . , pm])

is a C-chain with length m. It follows that m ≤ m′. This shows that the simplicial
complexes C and C ′ have the same combinatorial dimension. �

The simplicial complex C ′ is called the barycentric subdivision of C .
Suppose now that R

n is equipped with a metric d.
If C is a simplicial complex of R

n , we define the mesh by

mesh(C) := max
�∈C

diam(�).

Proposition 3.4.3 Let V denote the vertex set of C and α := (StC (p))p∈V the finite
open cover of |C | consisting of the open stars of C. Then one has

mesh(α) ≤ 2mesh(C).

Proof Let p ∈ V . Suppose that x and y are two points in StC (p). Then there exist
simplices�1 and�2 inC admitting p as a vertex and containing x and y respectively.
By applying the triangle inequality, we obtain
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d(x, y) ≤ d(x, p) + d(p, y) ≤ diam(�1) + diam(�2) ≤ 2mesh(C).

This implies diam(StC (p)) ≤ 2mesh(C) for all p ∈ V . It follows that mesh(α) ≤
2mesh(C). �

We assume from now on that d is the metric associated with a norm ‖ · ‖ on R
n ,

that is, d(x, y) = ‖x − y‖ for all x, y ∈ R
n .

Lemma 3.4.4 Let � ⊂ R
n be a k-simplex whose vertices are the points p0, p1, . . . ,

pk. Then one has
diam(�) = max

i, j
‖pi − p j‖. (3.4.5)

Proof Let δ denote the right-hand side of (3.4.5). We have that δ ≤ diam(�) since
pi , p j ∈ � for all i, j .

Consider the closed d-ball Bi of radius δ centered at pi . Thenwe have that p j ∈ Bi

for all j . As Bi is convex, it follows that � ⊂ Bi . We deduce that if x ∈ � then
d(x, pi ) ≤ δ for all i . Consequently, the simplex � is contained in the closed d-
ball of radius δ centered at x . It follows that d(x, y) ≤ δ for all x, y ∈ �, that is,
diam(�) ≤ δ. �

Proposition 3.4.5 Let C be a simplicial complex of R
n with dimcomb(C) = m. Let

C ′ be the barycentric subdivision of C. Then one has

mesh(C ′) ≤ m

m + 1
mesh(C).

Proof Let �′ be a simplex in C ′. Consider two distinct vertices u and v of
�′. After possibly exchanging u and v, we can find two simplices �1 < �2
of C whose barycenters are u and v respectively. Let r := dimcomb(�1) and
s := dimcomb(�2). Let p0, p1, . . . , ps be the vertices of �2 numbered in such
a way that �1 = [p0, p1, . . . , pr ]. Let w denote the barycenter of the simplex
[pr+1, . . . , ps]. Then, we have

v = 1

s + 1
(p0 + p1 + · · · + ps)

= 1

s + 1
((r + 1)u + (s − r)w),

which gives us

u − v = s − r

s + 1
(u − w).

We deduce that

‖u − v‖ = s − r

s + 1
‖u − w‖.
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As the points u and w belong to �2, this equality implies

‖u − v‖ ≤ s − r

s + 1
diam(�2).

Since diam(�2) ≤ mesh(C) and

s − r

s + 1
≤ s

s + 1
≤ m

m + 1
,

it follows that

‖u − v‖ ≤ m

m + 1
mesh(C).

By applying Lemma 3.4.4, we obtain

diam(�′) ≤ m

m + 1
mesh(C).

This shows that

mesh(C ′) ≤ m

m + 1
mesh(C). �

Let C be a simplicial complex of R
n . One defines by induction the N -th barycen-

tric subdivision C (N ) of C by setting C (0) = C and C (i+1) = (C (i))′ for any integer
i ≥ 0.

Proposition 3.4.6 Let C be a simplicial complex of R
n. Then one has

lim
N→∞mesh(C (N )) = 0.

Proof The simplicial complexes C (N ), N ≥ 0, have the same combinatorial dimen-
sion by Proposition 3.4.2. Therefore, by applying Proposition 3.4.5, we get

mesh(C (N )) ≤
(

m

m + 1

)N

mesh(C),

where m is the combinatorial dimension of C . Consequently, the mesh of C (N )

converges to 0 as Ngoes to infinity. �

Proposition 3.4.7 Let C be a simplicial complex of R
n. Then one has dim(|C |) ≤

dimcomb(C).

Proof Denote by V (N ) the vertex set of the N -th barycentric subdivision C (N ) of
C . By Proposition 3.3.2, the family αN := (StC(N ) (p))p∈V (N ) is a finite open cover
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of |C (N )| = |C | whose order is m := dimcomb(C). On the other hand, we have
that mesh(αN ) ≤ 2mesh(C (N )) by Proposition 3.4.3. By using Proposition 3.4.6,
we deduce that limN→∞ mesh(αN ) = 0. This implies dim(|C |) ≤ m by Proposi-
tion 1.4.4. �

Corollary 3.4.8 Every polyhedron P satisfies dim(P) < ∞. �

3.5 The Lebesgue Lemma and its Applications

Let n be a non-negative integer.

Lemma 3.5.1 Every finite union of affine hyperplanes of R
n has empty interior

in R
n.

Proof This is an immediate consequence of the Baire theorem since every affine
hyperplane of R

n has empty interior. �

Consider the unit cube [0, 1]n ⊂ R
n . For each k ∈ {1, . . . , n}, the kth lower face

Fk(0) and the kth upper face Fk(1) of [0, 1]n are defined by

Fk(0) := {(x1, . . . , xn) ∈ [0, 1]n | xk = 0}, (3.5.1)

Fk(1) := {(x1, . . . , xn) ∈ [0, 1]n | xk = 1} (3.5.2)

respectively. One says that the faces Fk(0) and Fk(1) are opposite faces of the cube
[0, 1]n .

Lemma 3.5.2 (Lebesgue’s lemma) Let α be a finite open cover of the unit cube
[0, 1]n. Suppose that there is no element of α meeting two opposite faces of [0, 1]n.
Then one has D(α) ≥ n.

Proof We have to show that every finite open cover of [0, 1]n that is finer than α
has order at least n. Suppose for contradiction that β = (Ui )i∈I is a finite open
cover of [0, 1]n finer than α such that ord(β) ≤ n − 1. For each i ∈ I , let p(i) =
(pk(i))1≤k≤n ∈ {0, 1}n be the vertex of the cube [0, 1]n defined by

pk(i) :=
{
1 ifUi meets the face Fk(0),

0 otherwise.
(3.5.3)

Let ( fi )i∈I be a family of continuous maps fi : [0, 1]n → [0, 1] satisfying the
following conditions:

http://dx.doi.org/10.1007/978-3-319-19794-4_1
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(C1)
∑

i∈I fi (x) = 1 for all x ∈ [0, 1]n ,
(C2) fi (x) = 0 if x /∈ Ui

(cf. Sect. 4.2). To get such a family, we can for example choose a metric on [0, 1]n

that is compatible with the topology and take

fi (x) := gi (x)∑
j∈I g j (x)

,

where gi (x) = dist(x, [0, 1]n\Ui ).
Consider now the map ϕ : [0, 1]n → [0, 1]n defined by

ϕ(x) :=
∑

i∈I

fi (x)p(i).

The point ϕ(x) belongs to the simplex whose vertex set is {p(i) | x ∈ Ui }. As
ord(β) ≤ n − 1 by our hypothesis, it follows that the image set of ϕ is contained
in a finite union of simplices, each of combinatorial dimension at most n − 1. By
applying Lemma 3.5.1, we deduce that the image set of ϕ has empty interior in R

n .
In particular, we can find a point ω in the interior of the cube [0, 1]n that does not
belong to the image of ϕ.

On the other hand, the fact that β is finer thanα implies that no element of β meets
two opposite faces of [0, 1]n . Now observe that it follows from Formula (3.5.3) that
if the open set Ui meets a face of [0, 1]n , then the vertex p(i) belongs to the opposite
face. Therefore, the image under ϕ of a arbitrary face of [0, 1]n is always contained
in the opposite face.

Consider now the radial projection π : [0, 1]n\{ω} → [0, 1]n that sends each
point x ∈ [0, 1]n\{ω} to the intersection point of the half-line starting from ω and
passing through x with the boundary ∂[0, 1]n = [0, 1]n\(0, 1)n of the cube [0, 1]n

(see Fig. 3.3). Then the composite map ψ := π ◦ ϕ : [0, 1]n → [0, 1]n is continuous
since π and ϕ are continuous. The points belonging to the interior of [0, 1]n are
sent by ψ in the boundary of [0, 1]n . On the other hand, as ψ and ϕ coincide on the
boundary of [0, 1]n , the image under ψ of each face of [0, 1]n is contained in the
opposite face. It follows that there is no point of [0, 1]n that is fixed by ψ. This gives
a contradiction since, by the Brouwer fixed point theorem, every continuous map
from [0, 1]n into itself has at least one fixed point. �

ω

x

(x)

Fig. 3.3 The radial projection π

http://dx.doi.org/10.1007/978-3-319-19794-4_4
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Let 1 ≤ p ≤ ∞. Recall that the p-norm ‖ · ‖p on R
n is defined by

‖x‖p =
(

n∑

k=1

|xk |p

)1/p

if 1 ≤ p < ∞, and

‖x‖∞ = max
1≤k≤n

|xk |.

Corollary 3.5.3 Denote by dp the metric on [0, 1]n associated with the norm ‖ · ‖p

(1 ≤ p ≤ ∞). Let α be a finite open cover of [0, 1]n. Suppose that the mesh of α,
with respect to the metric dp, is less than 1. Then one has D(α) ≥ n.

Proof No element of the cover α meets two opposite faces of [0, 1]n since the dp-
distance between two opposite faces is 1. �

Theorem 3.5.4 One has dim([0, 1]n) = n for all n ∈ N.

Proof Let� ⊂ R
n be an n-simplex. We have that dim(�) ≤ n by Proposition 3.4.7.

As [0, 1]n is homeomorphic to �, we deduce that dim([0, 1]n) ≤ n.
Consider now a finite open cover α of [0, 1]n such that no element of α meets

two opposite faces of [0, 1]n . We can take for example the cover α consisting of
the 2n open subsets of the form U1 × · · · × Un , where Uk = [0, 1) or Uk = (0, 1]
for all k = 1, . . . , n. Then α satisfies D(α) ≥ n by Lemma 3.5.2. This shows that
dim([0, 1]n) ≥ n. �

Corollary 3.5.5 Let C be a simplicial complex of R
n. Then one has

dim(|C |) = dimcomb(C).

Proof The inequality dim(|C |) ≤ dimcomb(C) follows from Proposition 3.4.7. Let
m := dimcomb(C) and let� ∈ C be anm-simplex.As� is homeomorphic to the cube
[0, 1]m , we have that dim(�) = m by Theorem 3.5.4. This implies dim(|C |) ≥ m
by Proposition 1.2.1. �

Remark 3.5.6 We can also obtain Corollary 3.5.5 by applying Corollary 1.2.6 which
gives

dim(|C |) = max
�∈C

dim(�) = m,

since every k-simplex � satisfies dim(�) = k by Theorem 3.5.4.

Corollary 3.5.7 One has dim(Rn) = n for all n ∈ N.

http://dx.doi.org/10.1007/978-3-319-19794-4_1
http://dx.doi.org/10.1007/978-3-319-19794-4_1
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Proof We have that

R
n =

∞⋃

k=1

Fk,

where Fk := [−k, k]n . As dim(Fk) = dim([0, 1]n) = n, we deduce that dim(Rn) =
n by applying Theorem 1.7.1. �

Corollary 3.5.8 If A is an affine subspace of R
n (n ∈ N) then one has dim(A) =

dima f f (A).

Proof This is an immediate consequence of Corollary 3.5.7. Indeed, if A is an
affine subspace of R

n then A is clearly homeomorphic to R
m , where m :=

dima f f (A). �

Corollary 3.5.9 The Hilbert cube [0, 1]N satisfies dim([0, 1]N) = ∞.

Proof The space [0, 1]n can be embedded as a closed subset of [0, 1]N so that

n = dim([0, 1]n) ≤ dim([0, 1]N)

for every n ∈ N by Proposition 1.2.1. �

Corollary 3.5.10 Let P and Q be two polyhedra that are not both empty. Then one
has

dim(P × Q) = dim(P) + dim(Q).

Proof As P is a polyhedron, we can find an integer p ≥ 0 and a simplicial complex
C ofR

p such that P is homeomorphic to |C |. Similarly, we can find an integer q ≥ 0
and a simplicial complex C ′ of R

q such that Q is homeomorphic to |C ′|. Then we
have

|C | =
⋃

�∈C

� and |C ′| =
⋃

�′∈C ′
�′.

Consequently, the product space P × Q is homeomorphic to

|C | × |C ′| =
⋃

�∈C,�′∈C ′
� × �′ ⊂ R

p × R
q = R

p+q .

Let � ∈ C be a k-simplex and �′ ∈ C ′ a k′-simplex (k, k′ ∈ N). Then � × �′ is
homeomorphic to [0, 1]k × [0, 1]k′ = [0, 1]k+k′

. It follows that dim(� × �′) =
k + k′ by Theorem 3.5.4. On the other hand, � × �′ is compact and hence
closed in |C | × |C ′|. By applying Corollary 1.2.6, we obtain dim(|C | × |C ′|) =
m +m′, where m (resp. m′) is the combinatorial dimension of C (resp. C ′). By using

http://dx.doi.org/10.1007/978-3-319-19794-4_1
http://dx.doi.org/10.1007/978-3-319-19794-4_1
http://dx.doi.org/10.1007/978-3-319-19794-4_1
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Corollary 3.5.5, we finally get dim(|C | × |C ′|) = dim(|C |) + dim(|C ′|). Thus, we
have that dim(P × Q) = dim(P) + dim(Q). �

The above proof obviously extends to a finite product of polyhedra. Thus, we have
also the following:

Corollary 3.5.11 Let P1, P2, . . . , Pn be a finite sequence of non-empty polyhedra.
Then one has

dim(P1 × P2 × · · · × Pn) = dim(P1) + dim(P2) + · · · + dim(Pn). �

3.6 Abstract Simplicial Complexes

Definition 3.6.1 An abstract simplicial complex is a pair � = (V, �) consisting of
a finite set V and of a set� whose elements are subsets of V satisfying the following
condition:

(ASC) if σ ∈ � and σ′ ⊂ σ, then one has σ′ ∈ �.

Let � = (V, �) be an abstract simplicial complex. The elements of V are called
the vertices of � and the elements of � are called the simplices of �. The combina-
torial dimension dimcomb(σ) ∈ {−1} ∪ N of a simplex σ ∈ � is defined by

dimcomb(σ) := −1 + #σ.

The combinatorial dimension dimcomb(�) ∈ {−1} ∪ N of � is defined by

dimcomb(�) := max
σ∈�

dimcomb(σ).

Example 3.6.2 Take V := {1, 2, 3, 4} and

� := {∅, {1}, {2}, {3}, {4}, {1, 2}, {2, 3}, {1, 3}, {2, 4}, {1, 2, 3}}.

One immediately checks that (ASC) is satisfied. Therefore� := (V, �) is an abstract
simplicial complex. It has combinatorial dimension dimcomb(�) = 2.

Example 3.6.3 Let C be a simplicial complex of R
n . Let V be the set of vertices of

C and let� be the set consisting of all σ ⊂ V such that there exists a simplex� ∈ C
whose set of vertices is σ. Condition (SC1) in Definition 3.2.1 implies that � :=
(V, �) satisfies (ASC). One says that� is the abstract simplicial complex associated
with C . Note that the combinatorial dimension of � is equal to the combinatorial
dimension ofC and hence, by Corollary 3.5.5, to the topological dimension dim(|C |)
of its support |C | ⊂ R

n .
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Two abstract simplicial complexes � = (V, �) and �′ = (V ′, �′) are called
isomorphic if there exists a bijective map f : V → V ′ such that

σ ∈ � ⇐⇒ f (σ) ∈ �′

for all σ ⊂ V .
Let � = (V, �) be an abstract simplicial complex. Let (ev)v∈V be the canonical

basis of R
V (we may identify R

V with R
n , for n = #V ). For each σ ∈ �, denote by

�σ the simplex in R
V whose vertex set is {ev | v ∈ σ}. Clearly, we have that

�σ ∩ �σ′ = �σ∩σ′

for all σ,σ′ ∈ �. It follows that

C := {�σ | σ ∈ �}

is a simplicial complex of R
V . One says that C is the geometric realization of the

abstract simplicial complex�. Note that the combinatorial dimension of� is equal to
the combinatorial dimension of C . Observe also that the abstract simplicial complex
associated with C is the abstract simplicial complex �0 = (V0, �), where V0 ⊂ V
is the set of active vertices of �, that is, the set of v ∈ V such that {v} ∈ �.

Notes

The Lebesgue lemma (cf. Lemma 3.5.2) about the finite open covers of the n-cube
was stated by Lebesgue in [66]. It was used by Lebesgue in order to show that [0, 1]n

and [0, 1]m are not homeomorphic for n �= m. The proof of Lebesgue’s lemma given
in [66] contains an error as was pointed out by Brouwer in [19]. A corrected proof
appeared in [67].

Let Dn (resp.Sn−1) denote the closed unit ball (resp. the unit sphere) in the Euclid-
ean space R

n . The Brouwer fixed point theorem, which says that every continuous
map f : Dn → Dn admits at least one fixed point, may be proved by using tools
from algebraic topology (see for example [101]) in the following way.

Suppose for contradiction that there exists a continuous map f : Dn → Dn

without fixed points (n ≥ 2). Consider the map g : Dn → Sn−1 that sends every
point x ∈ Dn to the intersection point of the half-line starting from f (x) and passing
through x with the boundary sphere S

n−1 (see Fig. 3.4). Clearly g is continuous. On
the other hand, the map g fixes every point belonging to S

n−1, that is, it satisfies

g ◦ h = i, (3.6.1)

where h is the inclusion map S
n−1 → Dn and i is the identity map on S

n−1. On
the level of n − 1-dimensional real homology, the maps g, h and i induce linear
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f(x)
x

g(x)

Fig. 3.4 The map g : Dn → Sn−1

maps g∗ : Hn−1(Dn) → Hn−1(S
n−1), h∗ : Hn−1(S

n−1) → Hn−1(S
n−1) and i∗ =

Id : Hn−1(S
n−1) → Hn−1(S

n−1), where Id is the identity map on Hn−1(S
n−1). Now

it follows from (3.6.1) that

g∗ ◦ h∗ = I∗ = Id,

which is impossible since Hn−1(Dn) = 0 while Hn−1(S
n−1) ∼= R �= 0. Actually,

there are many other proofs of the Brouwer fixed point theorem (see [116] and the
references therein). The one presented by Milnor in [76] is elementary an especially
clever.

Exercises

3.1 Show that, up to homeomorphism, there are only countably many polyhedra.
3.2 Let X be a non-empty topological space. Show that X is a polyhedron with

dim(X) = 0 if and only if X is finite and discrete.
3.3 Show that a polyhedron has only finitely many connected components.
3.4 A topological space X is called path-connected if, given any two points x, y ∈

X , there exists a continuous map γ : [0, 1] → X such that γ(0) = x and
γ(1) = y. Show that every connected polyhedron is path-connected.

3.5 Show that neither the Cantor set nor the Hilbert cube are polyhedra.
3.6 Find a proof of Lemma 3.5.1 that does not require Baire’s theorem. Hint:

proceed by contradiction and use induction on the dimension n (consider a
suitable translate of one of the hyperplanes for going from n to n − 1).

3.7 (Lebesgue’s lemma for closed coverings). Let α be a finite closed cover of
[0, 1]n such that no element of α meets two opposite faces of [0, 1]n . Show
that one has ord(α) ≥ n. Hint: use Proposition 1.6.3 and Lemma 3.5.2.

3.8 Show that the unit sphere S
n−1 ⊂ R

n , defined by

S
n−1 := {(x1, . . . , xn) ∈ R

n |
n∑

k=1

x2k = 1},

satisfies dim(Sn−1) = n − 1.

http://dx.doi.org/10.1007/978-3-319-19794-4_1
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3.9 Let X be a polyhedron and n a non-negative integer. Show that one has
dim(X) ≥ n if and only if X contains a subset homeomorphic to [0, 1]n .

3.10 Let� = (V, �) and�′ = (V ′, �′) be two abstract simplicial complexes. Equip
each of the sets V and V ′ with some total ordering. Let W := V × V ′ denote
the Cartesian product of the sets V and V ′. Consider the set � consisting of all
subsets λ ⊂ W satisfying the following condition: there exist an integer n ≥ 0,
vertices v0, v1, . . . , vn ∈ V and v′

0, v
′
1, . . . , v

′
n ∈ V ′ such that v0 ≤ v1 ≤ · · · ≤

vn , v′
0 ≤ v′

1 ≤ · · · ≤ v′
n , {v0, v1, . . . , vn} ∈ �, {v′

0, v
′
1, . . . , v

′
n} ∈ �′, and

λ = {(v0, v′
0), (v1, v

′
1), . . . , (vn, v′

n)}.

(a) Show that � := (W,�) is an abstract simplicial complex.
(b) Let P (resp. P ′, resp. Q) denote the support of the geometric realization

of � (resp. �′, resp. �). Show that Q is homeomorphic to the topological
product P × P ′.

3.11 Let X and Y be polyhedra. Show that the product space X ×Y is a polyhedron.
Hint: use Exercise 3.10.



Chapter 4
Dimension and Maps

In this chapter,we establishUrysohn’s lemma (Lemma4.1.2) and theTietze extension
theorem (Theorem 4.1.4) for normal spaces. We introduce the notion of ε-injective
map and prove the theorem of Alexandroff saying that a compact metric space X
satisfies dim(X) ≤ n if and only if for every ε > 0, there exists a polyhedron P
such that dim(P) ≤ n and an ε-injective continuous map from X into P (Theo-
rem 4.5.4). We deduce that dim(X ×Y ) ≤ dim(X)+dim(Y ) whenever X and Y are
compact metrizable spaces that are not both empty (Corollary 4.5.6). We also prove
the Nöbeling-Pontryagin embedding theorem (Corollary 4.7.6) asserting that every
compact metrizable space with topological dimension n embeds in R

2n+1.

4.1 The Tietze Extension Theorem

Lemma 4.1.1 Let X be a topological space. Let A and B be disjoint closed subsets
of X. Suppose that there exists a dense subset E of the unit segment [0, 1] and a
family (�(t))t∈E of open subsets of X satisfying

A ⊂ �(t) ⊂ �(t) ⊂ �(t ′) ⊂ X\B (4.1.1)

for all t, t ′ ∈ E such that t < t ′. Then there exists a continuous map f : X → [0, 1]
such that f (a) = 0 for all a ∈ A and f (b) = 1 for all b ∈ B.

Proof For each x ∈ X , let E(x) denote the set consisting of all t ∈ E such that
x ∈ �(t). Consider the map f : X → [0, 1] defined by

f (x) :=
{
inf E(x) if E(x) �= ∅,

1 if E(x) = ∅.

We deduce from (4.1.1) that f (x) = 0 for all x ∈ A and f (x) = 1 for all x ∈ B.

© Springer International Publishing Switzerland 2015
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70 4 Dimension and Maps

Let us fix now x0 ∈ X and ε > 0. If t1 ∈ E satisfies f (x0) < t1 < f (x0) + ε,
then �(t1) is an open neighborhood of x0, and we have that f (x) < f (x0) + ε for
all x ∈ �(t1). On the other hand, if t2 ∈ E satisfies f (x0) − ε < t2 < f (x0), then
X\�(t2) is an open neighborhood of x0, and we have that f (x0) − ε < f (x) for all
x ∈ X\�(t2). We conclude that f is continuous at x0. �

Lemma 4.1.2 (Urysohn lemma) Let X be a normal space. Let A and B be disjoint
closed subsets of X. Then there exists a continuous map f : X → [0, 1] such that
f (a) = 0 for all a ∈ A and f (b) = 1 for all b ∈ B.

Proof Let

E :=
{

k

2n
| n ∈ N, k ∈ {0, 1, . . . , 2n}

}

denote the set consisting of all dyadic rationals in [0, 1]. We construct a family
(�(t))t∈E of open subsets of X satisfying the conditions of Lemma 4.1.1 in the
following way. We first take �(1) := X\B. As X is normal, it follows from Propo-
sition 1.5.2 that we can find an open subset �(0) ⊂ X such that

A ⊂ �(0) ⊂ �(0) ⊂ �(1).

Suppose now that we have already constructed, for some integer n ≥ 0 and all

k ∈ {0, 1, . . . , 2n}, open subsets �

(
k

2n

)
⊂ X such that

�

(
k

2n

)
⊂ �

(
k + 1

2n

)

for all k ∈ {0, 1, . . . , 2n − 1}. By applying again Proposition 1.5.2, we can find, for
every k ∈ {0, 1, . . . , 2n − 1}, an open subset �

(
2k + 1

2n+1

)
⊂ X such that

�

(
k

2n

)
⊂ �

(
2k + 1

2n+1

)
⊂ �

(
2k + 1

2n+1

)
⊂ �

(
k + 1

2n

)
.

By induction on n, we construct in this way a family (�(t))t∈E of open subsets of
X with the required properties. As the set E of dyadic rationals is dense in [0, 1], it
follows from Lemma 4.1.1 that there exists a continuous map f : X → [0, 1] such
that f (a) = 0 for all a ∈ A and f (b) = 1 for all b ∈ B. �

Lemma 4.1.3 Let X be a normal space and let Y be a closed subset of X. Let
f : Y → R be a continuous map. Suppose that there is a constant C ≥ 0 such that
| f (y)| ≤ C for all y ∈ Y . Then there exists a continuous map g : X → R such that
|g(x)| ≤ C/3 for all x ∈ X and | f (y) − g(y)| ≤ 2C/3 for all y ∈ Y .

http://dx.doi.org/10.1007/978-3-319-19794-4_1
http://dx.doi.org/10.1007/978-3-319-19794-4_1


4.1 The Tietze Extension Theorem 71

Proof Consider the sets

A := {y ∈ Y | f (y) ≤ −C/3} and B := {y ∈ Y | f (y) ≥ C/3}

Clearly A and B are disjoint closed subsets of X . Therefore, it follows from
Lemma 4.1.2 that there exists a continuous map h : X → [0, 1] such that h(a) = 0
for all a ∈ A and h(b) = 1 for all b ∈ B. Then the map g : X → R defined by
g(x) := C(2h(x) − 1)/3 for all x ∈ X is also continuous. Moreover, it satisfies
|g(x)| ≤ C/3 for all x ∈ X since 0 ≤ h(x) ≤ 1. To complete the proof, it remains
only to show that

| f (y) − g(y)| ≤ 2C/3 (4.1.2)

for all y ∈ Y . Suppose first that y ∈ A. Then we have that −C ≤ f (y) ≤ −C/3 and
g(y) = −C/3 so that (4.1.2) is satisfied. Similarly, for y ∈ B, we have that C/3 ≤
f (y) ≤ C and g(y) = C/3 so that (4.1.2) also holds. Finally, if y ∈ Y\(A ∪ B),
then | f (y)| < C/3 and |g(y)| ≤ C/3 so that (4.1.2) remains true by the triangle
inequality. �

Let X and Z be sets and let Y ⊂ X . Let f : Y → Z be a map. One says that a
map F : X → Z extends f , or that F is an extension of f , if one has F(y) = f (y)

for all y ∈ Y .

Theorem 4.1.4 (Tietze extension theorem) Let X be a normal space and let Y be
a closed subset of X. Let I ⊂ R be any interval and suppose that f : Y → I is a
continuous map. Then there exists a continuous map F : X → I extending f .

Proof We may assume that I contains more than one point since otherwise the
statement is trivial.

We shall distinguish three cases depending on the homeomorphism type of the
interval I .

Suppose first that I is a segment, i.e., I = [α,β] with α < β. As all segments in
R are homeomorphic, we can assume, without loss of generality, that I = [−C, C]
for some C > 0. By Lemma 4.1.3, we can find a continuous map g0 : X → R such
that |g0(x)| ≤ C/3 for all x ∈ X and | f (y) − g0(y)| ≤ 2C/3 for all y ∈ Y .

By applying again Lemma 4.1.3, with f replaced by f − g0|Y and C replaced by
2C/3, we can find a continuous map g1 : X → R such that |g1(x)| ≤ 2C/9 for all
x ∈ X and | f (y) − g0(y) − g1(y)| ≤ 4C/9 for all y ∈ Y .

Continuing in this way, we obtain by induction a sequence of continuous maps
gn : X → R satisfying, for every n ∈ N, the following conditions:

(C1) |gn(x)| ≤ 2nC/3n+1 for all x ∈ X ;
(C2) | f (y) − g0(y) − g1(y) − · · · − gn(y)| ≤ 2n+1C/3n+1 for all y ∈ Y .

As
∑∞

n=0 2
nC/3n+1 = C < ∞, we deduce from (C1) that the series

∑in f t y
n=0 gn(x) is

normally convergent and hence uniformly convergent on X . Moreover, we have that
| ∑∞

n=0 gn(x)| ≤ C for all x ∈ X . On the other hand, since 2n+1C/3n+1 tends to 0 as
n goes to infinity, it follows from (C2) that the continuous map F : X → [−C, C],
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defined by F(x) := ∑∞
n=0 gn(x) for all x ∈ X , satisfies F(y) = f (y) for all y ∈ Y .

Thus F has the required properties.
Suppose now that I is an half-open interval. We can assume I = [0, 1). By

the first part of the proof, there exists a continuous map G : X → [0, 1] such that
G(y) = f (y) for all y ∈ Y . Consider the subset A ⊂ X defined by A := G−1(1).
As A and Y are disjoint closed subsets of X , it follows from Lemma 4.1.2 that
there exists a continuous map ϕ : X → [0, 1] such that ϕ(a) = 0 for all a ∈ A and
ϕ(y) = 1 for all y ∈ Y . Then themap F : X → [0, 1) defined by F(x) := ϕ(x)G(x)

is continuous and extends f .
Finally, suppose that I is an open interval (e.g., I = R). In that case, we can

assume I = (0, 1). By the second part of the proof, there exists a continuous map
H : X → (0, 1] such that h(y) = f (y) for all y ∈ Y . We then use the same
kind of argument, namely we apply Lemma 4.1.2 again to get a continuous map
ψ : X → [0, 1] such that ψ(a) = 0 for all a ∈ A := H−1(1) and ψ(y) = y for all
y ∈ Y . Then the map F : X → (0, 1), defined by F(x) := ψ(x)H(x) for all x ∈ X ,
has the required properties. �

Let X be a compact space and let C(X) denote the vector space consisting of all
continuous maps f : X → R. Recall that C(X) is a Banach space for the sup-norm,
i.e., the norm ‖ · ‖X∞ defined by

‖ f ‖X∞ := sup
x∈X

| f (x)|.

Corollary 4.1.5 Let X be a compact Hausdorff space and let Y be a closed subset
of X. Suppose that f : Y → R is a continuous map. Then there exists a continuous
map F : X → R extending f such that ‖F‖X∞ = ‖ f ‖Y∞.

Proof As every compact Hausdorff space is normal by Proposition 1.5.4, this imme-
diately follows from Theorem 4.1.4 by taking I = [−‖ f ‖Y∞, ‖ f ‖Y∞]. �

4.2 Partitions of Unity

Let X be a topological space. The support of a map f : X → R is the closure of
the set of points in X where f does not vanish, i.e., the closed subset supp( f ) ⊂ X
defined by

supp( f ) := {x ∈ X | f (x) �= 0}.

Note that the set X\ supp( f ) is the largest open subset of X on which the map f is
identically zero.

Let α = (Ui )i∈I be a finite open cover of X . One says that a family ( fi )i∈I of
continuous maps fi : X → [0, 1] is a partition of unity subordinate to α if it satisfies
the following conditions:

(Pu-1)
∑

i∈I fi (x) = 1 for all x ∈ X ;
(Pu-2) supp( fi ) ⊂ Ui for all i ∈ I .

http://dx.doi.org/10.1007/978-3-319-19794-4_1
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Proposition 4.2.1 Let X be a normal space and let α = (Ui )i∈I be a finite open
cover of X. Then there exists a partition of unity subordinate to α.

Proof By Corollary 1.6.4, there exists an open cover (Vi )i∈I of X such that Vi ⊂ Ui

for all i ∈ I . By applying again Corollary 1.6.4, we can find an open cover (Wi )i∈I

of X satisfying Wi ⊂ Vi for all i ∈ I . Now, by Lemma 4.1.2, there exists, for each
i ∈ I , a continuous map gi : X → [0, 1] that takes the value 1 at every point of Wi

and the value 0 at every point of X\Vi . The support of gi is contained in Vi and hence
in Ui . On the other hand, we have that

∑

i∈I

gi (x) > 0

for every x ∈ X since the sets Wi , i ∈ I , cover X . It follows that the family ( fi )i∈I ,
where fi : X → [0, 1] is defined by

fi (x) := gi (x)∑
j∈I g j (x)

for all x ∈ X , is a partition of unity subordinate to α. �

4.3 Nerve of a Cover

Let α = (Ui )i∈I be a finite family of subsets of a set X . The nerve of α is the abstract
simplicial complex N whose set of vertices is I and whose simplices are the subsets
J ⊂ I such that ⋂

i∈J

Ui �= ∅.

It is obvious that N satisfies condition (ASC) of Definition 3.6.1. Observe that the
simplicial dimension of the nerve N is equal to the order of α.

Suppose now thatα is a finite open cover of a topological space X and that ( fi )i∈I

is a partition of unity subordinate to α. Let C denote the simplicial complex of R
I

that is the geometric realization of the nerve N of α. Consider, for each x ∈ X , the
point f (x) ∈ R

I defined by

f (x) :=
∑

i∈I

fi (x)ei ,

where (ei )i∈I is the canonical basis of R
I . Denote by I (x) the set consisting of all

i ∈ I such that x ∈ Ui . As x ∈ ⋂
i∈I (x) Ui , the subset I (x) ⊂ I is a simplex of N .

We have that
f (x) =

∑

i∈I (x)

fi (x)ei and
∑

i∈I (x)

fi (x) = 1.

http://dx.doi.org/10.1007/978-3-319-19794-4_1
http://dx.doi.org/10.1007/978-3-319-19794-4_1
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This shows that f (x) belongs to the simplex �I (x) ∈ C . It follows that f (x) ∈ |C |
for all x ∈ X . One says that the continuous map f : X → |C | is the map associated
with the finite open cover α and the partition of unity ( fi )i∈I .

We shall use the following observation in the next section.

Proposition 4.3.1 With the above notation, for every vertex p = ei of C, one has

f −1(StC (p)
) ⊂ Ui .

(Recall that StC (p) denote the open star of C at p as defined in Sect.3.3.)

Proof Let x ∈ X\Ui . The point f (x) belongs to the simplex of C whose vertices
are the points e j such that x ∈ U j . As the point p = ei is not one of the vertices of
this simplex, we have that f (x) ∈ |C |\StC (p). This shows that the inverse image
of StC (p) by f is contained in Ui . �

4.4 α-Compatible Maps

Let f : X → Y be a map from a set X into a set Y . The inverse image of a family
β = (Bi )i∈I of subsets of Y is the family f −1(β) of subsets of X defined by

f −1(β) := ( f −1(Bi ))i∈I .

Proposition 4.4.1 Let f : X → Y be a map from a set X to a set Y . Let β = (Bi )i∈I

be a family of subsets of Y . Then one has

(i) ordx ( f −1(β)) = ord f (x)(β) for every x ∈ X;
(ii) ord( f −1(β)) ≤ ord(β);

(iii) ord( f −1(β)) = ord(β) if f is surjective;
(iv) f −1(β) is a cover of X if β is a cover of Y .

Proof By definition, we have that x ∈ f −1(Bi ) if and only if f (x) ∈ Bi . It follows
that

ordx ( f −1(β)) = −1 + #{i ∈ I | x ∈ f −1(Bi )} = −1 + #{i ∈ I | f (x) ∈ Bi } = ord f (x)(β).

This shows (i). Properties (ii), (iii), and (iv) are immediate consequences of (i). �

Suppose now that X and Y are topological spaces and that f : X → Y is a
continuous map. If β is an open cover (resp. a closed cover) of Y , then f −1(β) is an
open cover (resp. a closed cover) of X .

Proposition 4.4.2 Let X and Y be topological spaces and let f : X → Y be a
continuous map. Let β be a finite open cover of Y . Then one has D( f −1(β)) ≤ D(β).

http://dx.doi.org/10.1007/978-3-319-19794-4_3
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Proof Let γ be a finite open cover ofY such that γ � β and ord(γ) = D(β). Then
we have that f −1(γ) � f −1(β) and hence D( f −1(β)) ≤ ord( f −1(γ)). As

ord( f −1(γ)) ≤ ord(γ)

by Proposition 4.4.1(ii), we deduce that D( f −1(β)) ≤ ord(γ) = D(β). �

Definition 4.4.3 Let X and Y be topological spaces. Let α be a finite open cover of
X . A continuous map f : X → Y is said to be α-compatible if there exists a finite
open cover β of Y such that f −1(β) � α.

Proposition 4.4.4 Let α = (Ui )i∈I be a finite open cover of a topological space X.
Let C denote the geometric realization of the nerve of α. Suppose that ( fi )i∈I is a
partition of unity subordinate to α. Then the map f : X → |C | associated with the
cover α and the partition of unity ( fi )i∈I is α-compatible.

Proof Let V denote the set of vertices of C . Then β := (StC (v))v∈V is a finite open
cover of |C | by Proposition 3.3.2. As f −1(β) � α by Proposition 4.3.1, it follows
that f is α-compatible. �

Proposition 4.4.5 Let X be a topological space and α a finite open cover of X.
Suppose that there exist a topological space Y and an α-compatible continuous map
f : X → Y . Then one has D(α) ≤ dim(Y ).

Proof As f is α-compatible, there exists a finite open cover β of Y such that
f −1(β) � α. We have that D(α) ≤ D( f −1(β)) by Proposition 1.1.4. Since
D( f −1(β)) ≤ D(β) by Proposition 4.4.2, we deduce that D(α) ≤ D(β)

≤ dim(Y ). �

Proposition 4.4.6 Let X be a normal space. Let α be a finite open cover of X. Then
there exists a polyhedron P with topological dimension dim(P) = D(α) and an
α-compatible continuous map f : X → P.

Proof Let β be a finite open cover of X such that β � α and ord(β) = D(α). Let
C denote the geometric realization of the nerve N of β. Consider the polyhedron
P := |C |. By Proposition 4.2.1, we can find a partition of unity ( fi )i∈I subordinate
to β. Let f : X → P denote the map associated with the cover β and the partition
of unity ( fi )i∈I . By Corollary 3.5.5, the topological dimension dim(P) of P is
equal to the simplicial dimension of N and hence to the order of β. Consequently,
we have that dim(P) = ord(β) = D(α). On the other hand, the map f is β-
compatible by Proposition 4.4.4. As the coverβ is finer thanα, it follows that f is also
α-compatible. �

Theorem 4.4.7 Let X be a normal space. Let n ∈ N. Then the following conditions
are equivalent:

(a) dim(X) ≤ n;

http://dx.doi.org/10.1007/978-3-319-19794-4_3
http://dx.doi.org/10.1007/978-3-319-19794-4_1
http://dx.doi.org/10.1007/978-3-319-19794-4_3
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(b) for every finite open cover α of X, there exist a polyhedron P such that dim(P) ≤
n and an α-compatible continuous map f : X → P;

(c) for every finite open cover α of X, there exist a topological space Y such that
dim(Y ) ≤ n and an α-compatible continuous map f : X → Y .

Proof The fact that (a) implies (b) immediately follows from Proposition 4.4.6
since every finite open cover α of X satisfies D(α) ≤ dim(X). Condition (b) triv-
ially implies (c). Finally, Proposition 4.4.5 shows us that (a) is a consequence of
(c) since, by definition, dim(X) = sup D(α), where α runs over all finite open
covers of X . �

4.5 ε-Injective Maps

Let (X, d) be ametric space andY a set.Given a real number ε > 0, amap f : X → Y
is called ε-injective if it satisfies

f (x1) = f (x2) ⇒ dX (x1, x2) < ε

for all x1, x2 ∈ X .

Remark 4.5.1 The map f is injective if and only if it is ε-injective for every ε > 0.

Remark 4.5.2 If diam( f −1(y)) < ε for all y ∈ Y , then the map f is ε-injective.
Observe that the converse is also true if we assume that X is compact and that Y is
equipped with a Hausdorff topology such that f is continuous.

Lemma 4.5.3 Let X be a compact space and Y a Hausdorff space. Let α = (Ui )i∈I

be an open cover of X. Let f : X → Y be a continuous map satisfying the following
condition: for every y ∈ Y , there exists i ∈ I such that f −1(y) ⊂ Ui (in other
words, the closed cover γ of X defined by γ = ( f −1(y))y∈Y is finer than α). Then
there exists an open cover β = (Vi )i∈I of Y such that f −1(Vi ) ⊂ Ui for all i ∈ I .

Proof Consider, for each i ∈ I , the subset Vi ⊂ Y defined by

Vi := {y ∈ Y | f −1(y) ⊂ Ui }.

Then we clearly have that f −1(Vi ) ⊂ Ui . On the other hand, it follows from our
hypothesis on f that the sets Vi cover Y . Finally, observe that Vi = Y\Fi , where
Fi = f (X\Ui ). As X\Ui is compact and f is continuous, the set Fi is compact.
Since Y is Hausdorff, it follows that Fi is a closed subset of Y . Thus Vi is open
in Y for every i ∈ I . This shows that the family β := (Vi )i∈I has the required
properties. �

The following theorem gives a characterization of the topological dimension of a
compact metric space in terms of ε-injective maps.
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Theorem 4.5.4 Let X be a compact metric space. Let n ∈ N. Then the following
conditions are equivalent:

(a) dim(X) ≤ n;
(b) for every ε > 0, there exists a polyhedron P with dim(P) ≤ n and an ε-injective

continuous map f : X → P;
(c) for every ε > 0, there exists a compact metrizable space Y with dim(Y ) ≤ n

and an ε-injective continuous map f : X → Y ;
(d) for every ε > 0, there exists a Hausdorff space Y with dim(Y ) ≤ n and an

ε-injective continuous map f : X → Y .

Proof Suppose that dim(X) ≤ n. Let ε > 0. Consider the cover of X formed by its
open balls of radius ε/2. By compactness of X , this cover admits a finite subcover
α. By Theorem 4.4.7, we can find a polyhedron P with dim(P) ≤ n and an α-
compatible continuous map f : X → P . Then f is ε-injective. This shows that (a)
implies (b).

Condition (b) clearly implies (c) since any polyhedron is compact and metrizable.
Also (c) implies (d) since any metrizable space is Hausdorff.

Finally, let us show that (d) implies (a). Suppose (d). Consider a finite open cover
α = (Ui )i∈I of X . Let λ > 0 be a Lebesgue number for α. By (d), we can find a
Hausdorff space Y with dim(Y ) ≤ n and a λ-injective continuous map f : X → Y .
For every y ∈ Y , we have that diam( f −1(y)) ≤ λ. Therefore, there exists i ∈ I such
that f −1(y) ⊂ Ui . Thus, it follows from Lemma 4.5.3 that f is α-compatible.
We then deduce that D(α) ≤ n by applying Proposition 4.4.5. Consequently,
X satisfies (a). �

Remark 4.5.5 We cannot remove the hypothesis saying that Y is Hausdorff in con-
dition (d) of Theorem 4.5.4. Indeed, for every topological space X , there exists a
topological space Y with dim(Y ) = 0 and an injective continuous map f : X → Y
(we can take for example as Y the set underlying X equippedwith the trivial topology
and as f the identity map).

Corollary 4.5.6 Let X and Y be compact metrizable spaces that are not both empty.
Then one has

dim(X × Y ) ≤ dim(X) + dim(Y ). (4.5.1)

Proof We may assume 0 ≤ dim(X) < ∞ and 0 ≤ dim(Y ) < ∞. Let dX and dY

be metrics on X and Y respectively that are compatible with the topologies. Let us
equip X × Y with the metric defined by

d((x, y), (x ′, y′)) := max(dX (x, x ′), dY (y, y′))

for all (x, y), (x ′, y′) ∈ X ×Y . The metric d is compatible with the product topology
on X ×Y . Let ε > 0. By Theorem 4.5.4, we can find a polyhedron P with dim(P) ≤
dim(X) and an ε-injective continuousmap f : X → P . Similarly, we can find a poly-
hedron Q with dim(Q) ≤ dim(Y ) and an ε-injective continuous map g : Y → Q.
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Then the product map F : X × Y → P × Q, defined by F(x, y) := ( f (x), g(y))

for all (x, y) ∈ X × Y , is clearly ε-injective. As P and Q are polyhedra, we
have that dim(P × Q) = dim(P) + dim(Q) by Corollary 3.5.10. We deduce that
dim(P × Q) ≤ dim(X) + dim(Y ). As P × Q is Hausdorff, it follows from Theo-
rem 4.5.4 that dim(X × Y ) ≤ dim(X) + dim(Y ). �

Observe that Corollary 4.5.6 implies in particular that if X and Y are compact
metrizable spaces with dim(X) = dim(Y ) = 0 then one has dim(X × Y ) = 0. This
last result remains true if X and Y are only assumed to be compact and Hausdorff
by Corollary 2.4.24. However, it becomes false for general topological spaces X and
Y . Indeed, in Example 2.4.29, we described a non-accessible topological space X
satisfying dim(X) = 0 and dim(X × X) = 2. In Sect. 5.5, we shall give an example
of a normal Hausdorff space X such that dim(X) = 0 and dim(X × X) ≥ 1.

4.6 Definition of dimε(X, d)

Let (X, d) be a metric space. Given a real number ε > 0, we define the quantity
dimε(X, d) by

dimε(X, d) := inf
K

dim(K ),

where K runs over all compact metrizable spaces for which there exists an ε-injective
continuous map f : X → K .

Example 4.6.1 If d is the usual metric on the unit segment [0, 1], then we clearly
have

dimε([0, 1], d) =
{
1 if 0 < ε ≤ 1,

0 if ε > 1.

Proposition 4.6.2 Let (X, d) be a compact metric space. Then the following hold:

(a) dimε(X, d) ≤ dim(X) for all ε > 0;
(b) dimε(X, d) < ∞ for all ε > 0;
(c) the map ε �→ dimε(X, d) is non-increasing on (0,∞);
(d) limε→0 dimε(X, d) = dim(X);
(e) if dim(X) < ∞, then there exists ε0 > 0 such that dimε(X, d) = dim(X) for

all 0 < ε < ε0.

Proof Assertion (a) follows from the fact that the identity map IdX : X → X is
injective and hence ε-injective for every ε > 0.

Let ε > 0. Since X is compact, we can find a finite open coverα of X consisting of
open balls of radius smaller than ε/2.Consider a partition of unity ( fi )i∈I subordinate
to α. Let C denote the geometric realization of the nerve of α and f : X → |C | the
map associated with α and the partition of unity ( fi )i∈I . As the map f is ε-injective
and continuous, it follows that dimε(X, d) ≤ dim(|C |) < ∞. This shows (b).

http://dx.doi.org/10.1007/978-3-319-19794-4_3
http://dx.doi.org/10.1007/978-3-319-19794-4_2
http://dx.doi.org/10.1007/978-3-319-19794-4_2
http://dx.doi.org/10.1007/978-3-319-19794-4_5
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If K is a compactmetrizable space and f : X → K is ε-injective, then f is also ε′-
injective for every ε′ ≥ ε. Consequently, themap ε �→ dimε(X, d) is non-increasing.
This shows (c).

Let n be an integer such that n < dim(X). By Theorem 4.5.4, there exists
ε0 > 0 such that dimε0(X, d) > n. Then for every 0 < ε < ε0, we have that
n < dimε(X, d) ≤ dim(X). This shows (d).

Assertion (e) immediately follows from (c) and (d) since dimε(X, d) is an integer
for every ε > 0. �

The following results will be used in Sect. 7.1.

Proposition 4.6.3 Let (X, dX ) and (Y, dY ) be compact metric spaces. Suppose that
there exists a continuous map ϕ : X → Y such that

dX (x1, x2) ≤ dY (ϕ(x1),ϕ(x2))

for all x1, x2 ∈ X. Then one has

dimε(X, dX ) ≤ dimε(Y, dY )

for all ε > 0.

Proof It suffices to observe that if f : Y → K is ε-injective, then f ◦ ϕ : X → K is
ε-injective. �

Corollary 4.6.4 Let d and d ′ be metrics on a set X that define the same topology
on X and such that d(x, y) ≤ d ′(x, y) for all x, y ∈ X. Then one has

dimε(X, d) ≤ dimε(X, d ′)

for all ε > 0.

Proof It suffices to take as ϕ the identity map on X . �

Proposition 4.6.5 Let n ∈ N and p ∈ [1,∞]. Let d be the metric on [0, 1]n ⊂ R
n

induced by the norm ‖ · ‖p. Then one has

dimε([0, 1]n, d) = n

for all 0 < ε ≤ 1.

Proof We have that

dimε([0, 1]n, d) ≤ dim([0, 1]n) = n

for all ε > 0 by Proposition 4.6.2(a) and Theorem 3.5.4.

http://dx.doi.org/10.1007/978-3-319-19794-4_7
http://dx.doi.org/10.1007/978-3-319-19794-4_3
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Suppose now that 0 < ε ≤ 1. Let K be a compact metrizable space and
f : [0, 1]n → K a continuous map that is ε-injective with respect to the metric
d. Consider the cover α of [0, 1]n whose elements are the 2n open subsets of the
form U1 × · · · × Un , where Uk = [0, 1) or Uk = (0, 1] for all k ∈ {1, . . . , n}.
Let y ∈ K . As ε ≤ 1, the ε-injectivity of f implies that f −1(y) cannot meet two
opposite faces of the cube [0, 1]n . Consequently, the cover ( f −1(y))y∈K is finer than
α. By applying Lemma 4.5.3, we deduce that the map f is α-compatible. Therefore
we have that D(α) ≤ dim(K ) by Proposition 4.4.5. As D(α) ≥ n by Lemma 3.5.2,
we deduce that dim(K ) ≥ n. This shows that dimε([0, 1]n, d) ≥ n. �

4.7 Euclidean Embeddings of Finite-Dimensional Spaces

Let m, r ∈ N. One says that a finite sequence of points p0, p1, . . . , pr ∈ R
m is in

general position if every subsequence of cardinality≤ m +1 is affinely independent,
i.e., for every sequence of integers 0 ≤ i0 < i1 < · · · < ik ≤ r , with k ≤ m, the
points pi0 , pi1 , . . . , pik are affinely independent.

Remark 4.7.1 If r ≤ m, the sequence p0, p1, . . . , pr is in general position if and
only if it is affinely independent. If m ≤ r , the sequence p0, p1, . . . , pr is in general
position if and only if every subsequence of cardinalitym +1 is affinely independent.

Let d be a metric on R
m compatible with the topology.

Lemma 4.7.2 Let m, r ∈ N. Let p0, p1, . . . , pr ∈ R
m. Then, for every ε > 0,

there exists a sequence of points q0, q1, . . . , qr ∈ R
m in general position such

that d(pi , qi ) < ε for all i ∈ {0, 1, . . . , r}. In other words, the set of (r + 1)-
tuples (q0, q1, . . . , qr ) ∈ (Rm)r+1 in general position is dense in the product space
(Rm)r+1.

Proof Weproceed by induction on r . Suppose that there exist points q0, q1, . . . , qr−1
in general position in R

m such that d(pi , qi ) ≤ ε for all 0 ≤ i ≤ r − 1. Let E
denote the union of all the affine subspaces of R

m that can be generated by at most
m points in the set {q0, q1, . . . , qr−1}. The set E is contained in a finite union of
affine hyperplanes of R

m and therefore E has empty interior in R
m by Lemma 3.5.1.

Consequently, we can find a point qr ∈ R
m\E such that d(pr , qr ) ≤ ε. Then the

points q0, q1, . . . , qr are in general position. �
Let X be a compact Hausdorff space and Y a metric space. Let C(X, Y ) denote

the space consisting of all continuous maps f : X → Y . We equip C(X, Y ) with the
metric d∞ defined by

d∞( f, g) := sup
x∈X

dY ( f (x), g(x)).

The topology on C(X, Y ) associated with the metric d∞ is the topology of uniform
convergence.

http://dx.doi.org/10.1007/978-3-319-19794-4_3
http://dx.doi.org/10.1007/978-3-319-19794-4_3
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If X is a compact metric space, Y a metric space, and ε a positive real number,
we denote by Cε(X, Y ) the subset of C(X, Y ) consisting of all continuous maps
f : X → Y that are ε-injective.

Lemma 4.7.3 Let X be a compact metric space, Y a metric space, and ε > 0. Then
the set Cε(X, Y ) is open in C(X, Y ).

Proof Let f ∈ Cε(X, Y ). The set

K := {(x1, x2) ∈ X × X | dX (x1, x2) ≥ ε}

is closed in X × X and hence compact. As f is ε-injective, we have that
dY ( f (x1), f (x2)) > 0 for all (x1, x2) ∈ K . Thus, there is a real number δ > 0
such that dY ( f (x1), f (x2)) ≥ δ for all (x1, x2) ∈ K . Consider a continuous map
g : X → Y such that d∞( f, g) ≤ δ/4. By applying the triangle inequality, we get,
for all (x1, x2) ∈ K ,

dY (g(x1), g(x2)) ≥ dY ( f (x1), f (x2)) − dY ( f (x1), g(x1)) − dY ( f (x2), g(x2))

≥ δ − δ/4 − δ/4 = δ/2 > 0.

It follows that g is ε-injective. This shows that Cε(X, Y ) is open in C(X, Y ). �

Lemma 4.7.4 Let m, n ∈ N such that m ≥ 2n +1. Let X be a compact metric space
such that dim(X) ≤ n and let ε > 0. Then the set Cε(X, R

m) is dense in C(X, R
m).

Proof Let f : X → R
m be a continuous map and δ > 0. Let us show that there

exists an ε-injective continuous map g : X → R
m such that d∞( f, g) ≤ δ. As X

is compact, the map f is uniformly continuous. Thus, there exists η > 0 such that
d( f (x), f (y)) ≤ δ/2 if x, y ∈ X satisfy dX (x, y) ≤ η. Since X is compact and
dim(X) ≤ n, it follows fromProposition 1.4.4 thatwe canfind afinite open coverα =
{U0, U1, . . . , Ur } of X such that ord(α) ≤ n and mesh(α) < min(ε, η). Choose, for
each i ∈ {0, 1, . . . , r}, a point ai ∈ Ui and let pi := f (ai ). By virtue of Lemma4.7.2,
we can find points q0, q1, . . . , qr ∈ R

m satisfying the following conditions

(C1) the points q0, q1, . . . , qr ∈ R
m are in general position,

(C2) d(pi , qi ) ≤ δ
2 for all 0 ≤ i ≤ r .

Let (λi )0≤i≤r be a partition of unity subordinate to the cover α. Let us show that the
continuous map g : X → R

m that is defined by

g(x) :=
r∑

i=0

λi (x)qi

has the required properties.

http://dx.doi.org/10.1007/978-3-319-19794-4_1
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Suppose that x and y are points in X such that g(x) = g(y). Denote by s the order
at x of α and let us write

{i ∈ {0, 1, . . . , r} | x ∈ Ui } = {i0, i1, . . . , is}.

Similarly, denote by s′ the order at y of α and let us write

{ j ∈ {0, 1, . . . , r} | y ∈ U j } = { j0, j1, . . . , js′ }.

As s ≤ n ≤ m, Condition (C1) implies that the points qi0 , qi1 , . . . , qis generate
an affine subspace A ⊂ R

m of dimension s. Similarly, the points q j0 , q j1 , . . . , q js′
generate an affine subspace A′ ⊂ R

m of dimension s′. Now observe that A and A′
both contain the point g(x) = g(y). As a consequence the s + s′ + 2 points

qi0 , qi1 , . . . , qis , q j0 , q j1 , . . . , q js′

generate an affine subspace of R
m of dimension at most s + s′. Since s + s′ + 2 ≤

2n + 2 ≤ m + 1, Condition (C1) implies that there exist integers k and k′ with
0 ≤ k ≤ s and 0 ≤ k′ ≤ s′ such that qik = q jk′ . Therefore, there exists an open subset
Ui in the cover α such that x and y both belong to Ui . As diam(Ui ) ≤ mesh(α) < ε,
it follows that d(x, y) < ε. Consequently, the map g is ε-injective.

It remains to show that d∞( f, g) ≤ δ. Let x be an arbitrary point in X . If
x ∈ Ui , then we have that dX (x, ai ) ≤ diam(Ui ) ≤ η and hence d( f (x), pi ) =
d( f (x), f (ai )) ≤ δ/2. This implies

d( f (x),

r∑

i=0

λi (x)pi ) ≤
r∑

i=0

λi (x)d( f (x), pi )

≤
r∑

i=0

λi (x)
δ

2

= δ

2
.

By the triangle inequality, this gives us

d( f (x), g(x)) ≤ δ

2
+ d

(
r∑

i=0

λi (x)pi , g(x)

)

= δ

2
+ d

(
r∑

i=0

λi (x)pi ,

r∑

i=0

λi (x)qi

)

≤ δ

2
+

r∑

i=0

λi (x)d(pi , qi )
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≤ δ

2
+

r∑

i=0

λi (x)
δ

2
(by Condition (C2))

= δ

2
+ δ

2
= δ.

We deduce that d∞( f, g) ≤ δ. This shows that Cε(X, R
m) is dense in

C(X, R
m). �

Theorem 4.7.5 Let m and n be non-negative integers such that m ≥ 2n+1. Suppose
that X is a compact metrizable space such that dim(X) ≤ n. Then the set consisting
of all continuous maps f : X → R

m that induce a homeomorphism from X onto
f (X) is a Gδ dense subset of C(X, R

m).

Proof Choose a metric on the space X that is compatible with its topology. Denote
by � the subset of C(X, R

m) consisting of all continuous maps f : X → R
m that

induce a homeomorphism from X onto f (X). Then we clearly have

� =
∞⋂

k=1

C 1
k
(X, R

m).

As Cε(X, R
m) is a dense open subset of C(X, R

m) for every ε > 0 by Lemmas 4.7.3
and 4.7.4, we deduce that � is a Gδ dense subset of C(X, R

m) by applying Baire’s
theorem (the metric space C(X, R

m) is complete since R
m is complete). �

One says that a topological space X embeds in a topological space Y if there
exists a subset of Y that is homeomorphic to X . This amounts to saying that there
exists a continuous map f : X → Y that induces a homeomorphism from X onto
f (X). Such a map f is called a topological embedding of X in Y . As an immediate
consequence of Theorem 4.7.5, we obtain the following result.

Corollary 4.7.6 (The Menger-Nöbeling embedding theorem) Every compact
metrizable space X satisfying dim(X) = n embeds in R

2n+1. �

Notes

The Tietze extension theorem (cf. Theorem 4.1.4), also called the Tietze-Urysohn
extension theorem, was first proved for metric spaces by Tietze [104] and then gen-
eralized to normal spaces by Urysohn [109].

The notion of a nerve was introduced by Alexandroff in [3]. Theorem 4.4.7 as
well as Theorem 4.5.4 are also contained in that paper of Alexandroff.

A variant of dimε(X, d) introduced by Gromov [44, Sect. I.1] is Widimε(X, d)

which is defined, for any compact metric space (X, d) and ε > 0, as being the
smallest integer n such that there exists an ε-injective continuous map f : X → P
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from X into some n-dimensional polyhedron P (cf. Exercise 4.11). Motivated by a
question raised byGromov [44, p. 334], Gournay [40] and Tsukamoto [107] obtained
interesting estimates forWidimε(X, d)when X is the �p-ball inR

n and d is themetric
induced by the �q -norm.

Let X and Y be topological spaces that are not both empty. For X and Y compact
and metrizable, it may happen that the inequality dim(X × Y ) ≤ dim(X) + dim(Y )

in Corollary 4.5.6 is strict. Indeed, in 1930, Pontryagin [91] (see also his survey paper
[92, Sect. 11]) gave examples of compact metrizable spaces X and Y with dim(X) =
dim(Y ) = 2 but dim(X × Y ) = 3. Actually, the dimension of the product of two
compact metrizable spaces can deviate arbitrarily from the sum of the dimension.
More precisely, it was proved in the 1980s by Dranishnikov (see the survey paper
[31]) that, given any positive integers n, m, k withmax(n, m)+1 ≤ k ≤ n+m, there
exist compact metrizable spaces X and Y satisfying dim(X) = n, dim(Y ) = m, and
dim(X ×Y ) = k. Recall that we always have dim(X ×Y ) = dim(X)+dim(Y ) if X
and Y are polyhedra by Corollary 3.5.10. The inequality dim(X × Y ) ≤ dim(X) +
dim(Y ) remains valid when X and Y are both compact Hausdorff or both metrizable
(see [77], [33, Th.3.4.9]). In [77], Morita proved the inequality dim(X × Y ) ≤
dim(X)+dim(Y ) in the casewhen X andY are paracompactHausdorff spaceswithY
locally compact (see [79, p. 153]). Recall that everymetrizable space is paracompact.
By a result of Hurewicz [49], one has dim(X × Y ) = dim(X) + dim(Y ) whenever
X is a non-empty compact metrizable space and Y a separable metrizable space
with dim(Y ) = 1. In this last result, the compactness hypothesis on X cannot be
removed. Indeed, Erdös [34] gave an example of a separable metrizable space X
such that dim(X × X) = dim(X) = 1 (see Sect. 5.1). On the other hand, Wage
[114] described a separable metrizable space X and a paracompact Hausdorff space
Y such that dim(X ×Y ) = 1 > dim(X)+dim(Y ) = 0. The result of Corollary 4.7.6
(Menger-Nöbeling theorem) is optimal in the sense that for every integer n ≥ 0 there
exists a compact metrizable space X with dim(X) = n that cannot be embedded in
R
2n . One can take as X the n-skeleton, i.e., the union of the n-dimensional faces, of

a (2n + 2)-simplex (see [33, p. 101]). The idea of using Baire’s theorem in order to
prove the Menger-Nöbeling embedding theorem is due to Hurewicz.

Exercises

4.1 Let X be a metric space. Let A and B be disjoint closed subsets of X . Show
that the map f : X → [0, 1] defined by

f (x) := dist(x, A)

dist(x, A) + dist(x, B)

is continuous and satisfies A = f −1(0) and B = f −1(1).

http://dx.doi.org/10.1007/978-3-319-19794-4_3
http://dx.doi.org/10.1007/978-3-319-19794-4_5
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4.2 Show that in the statement of Lemma 4.1.2 one cannot replace the condition
A ⊂ f −1(0) by the condition A = f −1(0). Hint: consider for example the
product space X = [0, 1]R with A = {a} and B = {b}, where a and b are
distinct points in X .

4.3 Let X be a topological space. Suppose that for every finite open cover α of X ,
there exists a partition of unity subordinate to α. Show that X is normal.

4.4 Let α = (Ui )i∈I be a finite open cover of a topological space X . Let C denote
the geometric realization of the nerve ofα. Suppose that ( fi )i∈I and (gi )i∈I are
partitions of unity subordinate toα. Let t ∈ [0, 1]. Show that ((1−t) fi +tgi )i∈I

is a partition of unity subordinate to α. Deduce that the maps f : X → |C | and
g : X → |C | associated with ( fi )i∈I and (gi )i∈I respectively are homotopic,
i.e., there exists a continuous map H : X × [0, 1] → |C | such that H(x, 0) =
f (x) and H(x, 1) = g(x) for all x ∈ X .

4.5 Let X and Y be compact metrizable spaces. Show that if dim(Y ) = 0, then
one has dim(X × Y ) = dim(X).

4.6 Let X be a non-empty compact metric space. Show that one has dimε(X) = 0
for every ε > diam(X).

4.7 Let (X, dX ) and (Y, dY ) be metric spaces. The set X × Y is equipped with the
metric d defined by

d((x1, y1), (x2, y2)) := max(dX (x1, x2), dY (y1, y2))

for all (x1, y1), (x2, y2) ∈ X × Y . Show that one has

dimε(X × Y, d) ≤ dimε(X, dX ) + dimε(Y, dY )

for every ε > 0.
4.8 Let d1 and d2 be two metrics on a set X . Consider the metric d on X defined

by d := max(d1, d2). Show that one has

dimε(X, d) ≤ dimε(X, d1) + dimε(X, d2)

for every ε > 0.
4.9 Let d denote the Euclidean metric on [0, 1]2. Compute dimε([0, 1]2, d) for

every ε > 0.
4.10 Let n ∈ N and p ∈ [1,∞]. Denote by d the metric associated with the p-norm

‖ · ‖p on R
n . Show that one has

dimε(R
n, d) = n

for every ε > 0.
4.11 Let (X, d) be a compact metric space and let ε > 0.
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(a) Show that there exist a polyhedron P and an ε-injective continuous map
f : X → P .

(b) LetWidimε(X, d) denote the smallest integer n such that there exist a poly-
hedron P with dim(P) = n and an ε-injective continuousmap f : X → P .
Show that one has dimε(X, d) ≤ Widimε(X, d) ≤ 2 dimε(X, d) + 1.

(c) Determine dimε(X, d) and Widimε(X, d) for every ε > 0 when X is the
Cantor ternary set and d is the usual metric on X ⊂ R.



Chapter 5
Some Classical Counterexamples

The topological spaces presented in this chapter are spaces with amazing properties.
Their analysis reveals the validity limits of certain statements in dimension theory
and they may be used as counterexamples to various plausible-sounding conjectures.
Despite their pathological nature, each of them has its strange intrinsic beauty.

In Sect. 5.1 and Sect. 5.2, we construct totally disconnected separable metrizable
spaces with positive topological dimension. The space described in Sect. 5.1 is a
separable metrizable space that is totally separated but not scattered while the space
of Sect. 5.2 is a separable metrizable space that is totally disconnected but not totally
separated. Moreover, the space of Sect. 5.1 is a subset of Hilbert space and the space
of Sect. 5.2 is obtained by removing a single point from a connected subset of the
Euclidean plane. In Sect. 5.3, we construct a countable Hausdorff space with positive
topological dimension. The space described in Sect. 5.4 is a zero-dimensional com-
pact Hausdorff space containing an open subset with positive topological dimension.
In the last section,we give an example of a topological spacewith positive topological
dimension that is the product of two zero-dimensional normal Hausdorff spaces.

None of the results of the present chapter will be used in the sequel.

5.1 The Erdös Space

In this section, we describe an example of a separable metrizable space that is totally
separated but not scattered. Note that such a space is necessarily totally disconnected
with positive topological dimension by Corollaries 2.6.5 and 2.3.3.

Let H denote the vector space overR consisting of all real sequences h = (hn)n≥1
that are square-summable, i.e., such that

∞∑

n=1

h2
n < ∞.
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The vector space H is a Hilbert space for the scalar product 〈·, ·〉 defined by

〈h, k〉 =
∞∑

n=1

hnkn

for all h = (hn), k = (kn) ∈ H . We denote by d the associated metric on H . It is
given by d(h, k) = ‖h − k‖, where

‖h‖ = √〈h, h〉

is the norm on H associated with the scalar product.
Let X denote the subset of H consisting of all sequences x = (xn) ∈ H such that

xn ∈ Q for all n. The space X is called the Erdös space.

Proposition 5.1.1 The Erdös space X is separable, metrizable, and totally sepa-
rated.

Proof Of course, X is metrizable since its topology is defined by the metric induced
by d on X .

The subset Y ⊂ X formed by sequences (xn) for which xn = 0 for all but finitely
many n is countable and dense in X (it is even dense in H ). Therefore, X is separable.

Suppose that a = (an) and b = (bn) are distinct points in X . Then there exists
an integer n0 such that an0 	= bn0 . As Q is totally separated, we can find a partition
of Q into two disjoint open subsets U and V such that an0 ∈ U and bn0 ∈ V (we
can take for example U := (ξ, η) ∩ Q and V := Q\U , where ξ and η are irrational
numbers such that ξ < an0 < η and bn0 /∈ (ξ, η)). Let π : X → Q denote the map
defined by π(x) = xn0 for all x = (xn) ∈ X . Observe that π is 1-Lipschitz and hence
continuous. Then the open subsets π−1(U ) and π−1(V ) form a partition of X and
contain respectively a and b. Consequently, the space X is totally separated. �

Before proving that X is not scattered, let us first establish some auxiliary results.
We start with the following elementary observation.

Lemma 5.1.2 Let A and B be non-empty disjoint subsets of Q such that Q = A∪ B.
Then, for every ε > 0, there exists a ∈ A and b ∈ B such that |a − b| ≤ ε.

Proof Let us inductively construct a sequence (an)n∈N of points of A and a sequence
(bn)n∈N of points of B in the following way.We first choose arbitrarily points a0 ∈ A
and b0 ∈ B. Suppose now that an ∈ A and bn ∈ B have already been defined for
some n ≥ 0. Let cn := (an + bn)/2 ∈ Q denote the middle of the segment [an, bn].
If cn ∈ A, we take an+1 = cn and bn+1 = bn . Otherwise, we have that cn ∈ B and
we take an+1 = an and bn+1 = cn . It then follows that |an − bn| = |a0 − b0|/2n for
all n. Consequently, given ε > 0, we have |an − bn| ≤ ε for n large enough. �
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Proposition 5.1.3 The only bounded clopen subset of Xis the empty set.

Proof Let � be a non-empty bounded open subset of X . Let us show that � is not
closed in X . Choose a sequence

ω = (ω1,ω2, . . .) ∈ �.

Let us construct a sequence of rational numbers r1, r2, . . . satisfying, for every integer
j ≥ 1, the following conditions:

(C1) the sequence u( j), defined by

u( j) := (r1, r2, . . . , r j ,ω j+1,ω j+2, . . .),

belongs to �;
(C2) one has

dist(u( j), X\�) ≤ 1

j
.

We proceed by induction. Suppose that for some integer i ≥ 0 the rational numbers

r1, r2, . . . , ri ∈ Q

satisfying (C1) and (C2), for all j ≤ i , have already been constructed. Consider the
map

σ : Q → X

defined by
σ(t) = (r1, r2, . . . , ri , t,ωi+2,ωi+3, . . .).

Note that σ is an isometric embedding of Q into X , that is, d(σ(t),σ(t ′)) = |t − t ′|
for all t, t ′ ∈ Q. We have that σ(ωi+1) = u(i) ∈ � since (C1) is satisfied for
j = i . On the other hand, the fact that � is bounded implies that σ(t) /∈ � for |t |
large enough. By applying Lemma 5.1.2 with A = σ−1(�) and B = σ−1(X\�),
we deduce that we can find a, b ∈ Q such that σ(a) ∈ �, σ(b) ∈ X\� and
d(σ(a),σ(b)) = |a − b| ≤ 1/(i + 1). Consequently, we can take ri+1 = a. This
completes our induction.

Consider now the sequence r = (rn)n≥1. We have that r ∈ X . Indeed, since � is
bounded, there exists a constant M ≥ 0 such that ‖u( j)‖ ≤ M for all j ≥ 1. This
implies

r21 + r22 + · · · + r2j ≤ M2

for all j ≥ 1, so that we get, by letting j tend to infinity,

∞∑

n=1

r2n ≤ M2 < ∞.
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On the other hand, we have that

d(r, u( j)) =
√√√√

∞∑

n= j+1

(rn − ωn)2.

As r − ω ∈ X , the series
∑

(rn − ωn)2 converges. It follows that

d(r, u( j)) → 0 as j → ∞,

which shows that r belongs to the closure of � in X . Now, by using (C2), we obtain
dist(r, X\�) = lim j→∞ d(u( j), X\�) = 0. As X\� is closed in X by hypothesis,
we deduce that r /∈ �. This shows that � is not closed in X . �

Corollary 5.1.4 The Erdös space X is not scattered.

Proof Let x ∈ X and r > 0. It follows from Proposition 5.1.3 that the open ball
B(x, r) ⊂ X contains no clopen neighborhood of x in X . This shows that X is not
scattered. �

5.2 The Knaster-Kuratowski Fan

In this section, we give an example of a separable metrizable space X that is totally
disconnected but not totally separated. Such a space X is not scattered and has
positive topological dimension by Proposition 2.6.6 and Corollary 2.3.3. The space
X is obtained by removing a point from the Knaster-Kuratowski fan, which is a
connected subset of R

2. The construction goes as follows.
Consider the Cantor ternary set K ⊂ [0, 1] (see Sect. 2.1). For each c ∈ K , we

denote by Lc the line segment in the Euclidean plane R
2 whose endpoints are (c, 0)

and y0 := (1/2, 1/2). We denote by E the subset of K consisting of all the endpoints
of the open intervals that are removed from the unit segment [0, 1] in the construction
of the Cantor set. In other words, E is the set of all the ternary rational numbers that
are in K\{0, 1}:

E =
{
1

3
,
2

3
,
1

9
,
2

9
,
7

9
,
8

9
,
1

27
,
2

27
,
7

27
,
8

27
,
19

27
,
20

27
,
25

27
,
26

27
, . . .

}
.

Let F := K\E denote the complement of E in K . For each c ∈ E (resp. c ∈ F), we
denote by Yc the set consisting of all points in the line segment Lc whose ordinate is
rational (resp. irrational). The set

Y :=
⋃

c∈K

Yc ⊂ R
2

http://dx.doi.org/10.1007/978-3-319-19794-4_2
http://dx.doi.org/10.1007/978-3-319-19794-4_2
http://dx.doi.org/10.1007/978-3-319-19794-4_2
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Fig. 5.1 The
Knaster-Kuratowski fan

is called theKnaster-Kuratowski fan (see Fig. 5.1). Observe that y0 ∈ Y since y0 ∈ Yc

for all c ∈ E . The set
X := Y\{y0}

is called the punctured Knaster-Kuratowski fan.

Proposition 5.2.1 The punctured Knaster-Kuratowski fan X is a totally discon-
nected separable metrizable space.

Proof The space X is separable and metrizable since it is a subset of R
2.

Let A be a non-empty connected subset of X . Consider the map π : X → K
sending each point x ∈ X to the unique c ∈ K such that x ∈ Lc. Observe that π is
continuous. As K is totally disconnected, we deduce that π(A) is reduced to a single
point c0 ∈ K .We then have A ⊂ Yc0 . As Yc0 is totally disconnected, we conclude that
A is also reduced to a single point. This shows that X is totally disconnected. �

Proposition 5.2.2 The Knaster-Kuratowski fan Y is connected.

Proof Let U and V be disjoint open subsets of Y such that U ∪ V = Y and y0 ∈ U .
To prove that Y is connected, it suffices to show that U = Y . As the sets U and V
are closed in Y , there exists closed subsets A and B of R

2 such that U = Y ∩ A and
V = Y ∩ B. For each ρ ∈ Q, let us denote by Hρ the horizontal line of R

2 consisting
of all points whose ordinate is ρ. Let Fρ denote the set consisting of all c ∈ K such
that the line segment Lc meets Hρ ∩ A ∩ B. Clearly Fρ is closed in K for every
ρ ∈ Q. On the other hand, we have that Fρ ⊂ F for every ρ ∈ Q since A ∩ B does
not meet Y . The set F has empty interior in K since E is dense in K . As E and Q

are countable, it follows that the set M ⊂ K , defined by

M := E ∪
⎛

⎝
⋃

ρ∈Q
Fρ

⎞

⎠ ,

is a countable union of closed subsets of K that have empty interior in K . By applying
Baire’s theorem, we deduce that the set

K\M = F \
⎛

⎝
⋃

ρ∈Q
Fρ

⎞

⎠

is dense in K .
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Suppose now that c0 ∈ F is such that Yc0 meets B. Denote by t0 the least upper
bound of the set consisting of all t ∈ [0, 1/2] such that the point of Lc0 with ordinate
t belongs to B. Observe that the point in Lc0 with ordinate t0 is in A ∩ B. As A ∩ B
does not meet Y , it follows that t0 ∈ Q and hence c0 ∈ Ft0 ⊂ M . We deduce that
Yc ⊂ A for all c ∈ K\M . As K\M is dense in K , we finally get Y ⊂ A and hence
Y = U . This shows that Y is connected. �

Proposition 5.2.3 The punctured Knaster-Kuratowski fan X is not totally separated.

Proof Let c ∈ K . Let x0 and x1 be points in Lc ∩ X with ordinate respectively t0 and
t1, where t0 < t1. Let us show that x1 belongs to the quasi-component of x0 in X .
Suppose that it does not. Then it exists a clopen subset U of X such that x0 ∈ U and
x1 ∈ X\U . As X\U is open in X , we can find a small Euclidean open disc D ⊂ R

2

centered at x1 that does not meet U .
Leta andb be elements inR\K such thata < c < b.Denote by� the openEuclid-

ean triangle in R
2 whose vertices are the points (a, 0), (b, 0) and y0 = (1/2, 1/2).

Take a and b sufficiently close to c so that �\D has two connected components in
R
2, one, denoted byC−, contained in the open half-plane H− consisting of the points

in R
2 with ordinate < t1, and the other, denoted by C+, contained in the open half-

plane H+ consisting of the points ofR
2 with ordinate> t1 (see Fig. 5.2). Then the set

E := U ∩ C− is clopen in the fan Y . Indeed, we have that E = U ∩ � ∩ H−, which
shows that E is open in Y (remark that U is open in X and hence open in Y since X
is open in Y ). On the other hand, we also have E = U ∩�∩ H−, where H− denotes
the closure of H− inR

2. AsU and�∩ X are closed in X , we deduce that E is closed
in X . It follows that E is also closed in Y since we can find a small open Euclidean
ball centered at y0 that does not meet E . As Y is connected by Proposition 5.2.2 and
E 	= ∅ since x0 ∈ E , we deduce that E = Y . This gives a contradiction because

Fig. 5.2 Proof of Proposition
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x1 /∈ E . Consequently, the quasi-component of x0 in X contains x1 and hence X is
not totally separated. �

5.3 The Bing Space

In this section, we provide an example of a countably-infinite connected Hausdorff
space. Such a space has necessarily positive covering dimension by Proposition 1.3.3.

Let X denote the closed upper half-plane in Q
2, i.e., the set consisting of all pairs

(x, y) ∈ Q
2 such that y ≥ 0. Let us fix some irrational real number θ > 0. We define

a topology on X in the following way.
For each (x, y) ∈ X , define the numbers p−(x, y) and p+(x, y) by

p−(x, y) := x − y

θ
and p+(x, y) := x + y

θ
.

Thus, the point (p−(x, y), 0) (resp. (p+(x, y), 0)) is the intersection point of the
line with slope θ (resp. −θ) passing through the point (x, y) with the horizontal axis
R × {0} ⊂ R

2 (see Fig. 5.3). Note that, in the case when θ = √
3, the points (x, y),

(p−(x, y), 0), and (p+(x, y), 0) are the vertices of a Euclidean equilateral triangle.
Given a real number ε > 0, we denote by Vε(x, y) the set consisting of the

point (x, y) and all the points (z, 0) ∈ X satisfying |z − p−(x, y)| < ε or |z −
p+(x, y)| < ε.

Thus, we have

Vε(x, y) := {(x, y)} ∪ Iε(x, y) ∪ Jε(x, y),

where Iε(x, y) (resp. Jε(x, y)) denotes the set of rational points on the horizon-
tal axis that belong to the open interval of length 2ε centered at (p−(x, y), 0)
(resp. (p+(x, y), 0)) (see Fig. 5.3).

Fig. 5.3 Construction of the Bing space

http://dx.doi.org/10.1007/978-3-319-19794-4_1
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Let T denote the set consisting of all the subsets � ⊂ X satisfying the following
condition: for every (x, y) ∈ �, there exists a rational number ε > 0 such that
Vε(x, y) ⊂ �. One easily checks that T satisfies: (1) ∅, X ∈ T , (2) T is closed
under finite intersections, (3) T is closed under arbitrary unions. In other words, T
is the set of open sets for a topology on X . We equip the set X with this topology.
The topological space X is called the Bing space.

Proposition 5.3.1 The Bing space X is a countably-infinite second-countable Haus-
dorff space.

Proof The set X is countably-infinite because the set Q is.
The sets Vε(x, y), where (x, y) ∈ X and ε > 0 is rational, clearly form a countable

base for the topology on X . Therefore X is second-countable.
Let (x, y) and (x ′, y′) be distinct points in X . Suppose first that neither (x, y)

nor (x ′, y′) is on the horizontal axis. Then, as θ is irrational, the points p−(x, y),
p−(x ′, y′), p+(x, y) and p+(x ′, y′) are all distinct. In the case when one of the
points (x, y) and (x ′, y′), say (x, y), is on the horizontal axis and the other is not,
then we have that p−(x ′, y′) 	= p−(x, y) = p+(x, y) 	= p+(x ′, y′). Finally if both
(x, y) and (x ′, y′) are on the horizontal axis, we have that p−(x, y) = p+(x, y) 	=
p−(x ′, y′) = p+(x ′, y′). In all cases, we see that the neighborhoods Vε(x, y) and
Vε(x ′, y′) do not meet for ε small enough. This shows that X is Hausdorff. �

Lemma 5.3.2 Let (x, y) and (x ′, y′) be two points in X. Then one has

Vε(x, y) ∩ Vε′(x ′, y′) 	= ∅

for all ε > 0 and ε′ > 0.

Proof A point (u, v) ∈ X belongs to the closure of Vε(x, y) if and only if

|p−(u, v) − p−(x, y)| ≤ ε or |p−(u, v) − p+(x, y)| ≤ ε or

|p+(u, v) − p−(x, y)| ≤ ε or |p+(u, v) − p+(x, y)| ≤ ε.

We deduce that, for ε small enough, Vε(x, y) is the union of four “strips”, two with
slope θ and two with slope −θ. From this description, it is clear that Vε(x, y) always
meetsVε′(x ′, y′).Alternatively, assuming for instance p−(x, y) ≤ p−(x ′, y′), a point
(u, v) ∈ Vε(x, y) ∩ Vε′(x ′, y′) may be explicitly obtained by solving the system

{
u − v

θ = a

u + v
θ = b

with u, v ∈ Q and a, b ∈ R such that a ≤ b, |a − p−(x, y)| ≤ ε and |b − p+(x ′, y′)|
≤ ε′. �

Lemma 5.3.3 Let U and U ′ be non-empty open subsets of X. Then one has U ∩ U ′
	= ∅.



5.3 The Bing Space 95

Proof Let (x, y) ∈ U and (x ′, y′) ∈ U ′. As U and U ′ are open subsets, there exist
ε > 0 and ε′ > 0 such that Vε(x, y) ⊂ U and Vε′(x ′, y′) ⊂ U ′. We have that
Vε(x, y) ∩ Vε′(x ′, y′) ⊂ U ∩ U ′. Since Vε(x, y) ∩ Vε′(x ′, y′) 	= ∅ by Lemma 5.3.2,
we deduce that U ∩ U ′ 	= ∅. �

Proposition 5.3.4 The Bing space X is connected.

Proof If U is a clopen subset of X then U ′ := X\U is also clopen so that U ∩ U ′ =
U ∩ U ′ = ∅. This implies U = ∅ or U ′ = ∅ by Lemma 5.3.3. Therefore X is
connected. �

Corollary 5.3.5 The Bing space X has topological dimension dim(X) ≥ 1.

Proof By Proposition 1.3.3, every connected accessible space X having more than
one point satisfies dim(X) ≥ 1. �

Corollary 5.3.6 The Bing space X is not normal and hence not metrizable.

Proof By Corollary 1.7.2, every non-empty countable normal space N satisfies
dim(N ) = 0. �

5.4 The Tychonoff Plank

In this section, we give an example of a scattered locally compact Hausdorff space
with positive covering dimension.

Let X be a set endowed with a total ordering denoted by ≤. The open intervals
in X , that is, X itself and all the intervals of the form (←, x) := {z ∈ X | z < x},
(x,→) := {z ∈ X | x < z}, and (x, y) := {z ∈ X | x < z < y}, where x and y
run over X , constitute a base for a topology on X . This topology is called the order
topology associated with the ordering ≤.

Proposition 5.4.1 Let X be a totally ordered set endowed with the associated order
topology. Then X is Hausdorff.

Proof Let x and y be distinct points in X . Let us show that there exist an open
neighborhood U of x and an open neighborhood V of y such that U ∩ V = ∅. We
can assume x < y. If the interval (x, y) is empty, we can take U := (←, y) and
V := (x,→). Otherwise, there exists z ∈ X such that x < z < y. We can then take
U := (←, z) and V := (z,→). This shows that X is Hausdorff. �

Let A be a subset of a totally ordered set X . Recall that one says that an element
x ∈ X is a lower bound (resp. an upper bound) for A if we have that x ≤ a
(resp. a ≤ x) for all a ∈ A. One says that x is a greatest lower bound (resp. a least
upper bound) for A if x is a lower bound (resp. an upper bound) for A and m ≤ x
(resp. x ≤ m) for every lower bound (resp. every upper bound) m for A. Note that if
A admits a greatest lower bound (resp. a least upper bound) then it is unique.

http://dx.doi.org/10.1007/978-3-319-19794-4_1
http://dx.doi.org/10.1007/978-3-319-19794-4_1
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Proposition 5.4.2 Let X be a totally ordered set endowed with the associated order
topology. Then X is compact if and only if every non-empty subset of X admits both
a greatest lower bound and a least upper bound.

Proof Let us first show that this condition is necessary. Suppose that X is compact
and let A be a non-empty subset of X . Then the set A admits a greatest lower bound
since otherwise the intervals (a,→) and (←, m), where a runs over A and m runs
over all lower bounds of A, would form an open cover of X admitting no finite
subcover. A similar argument shows that A admits a least upper bound.

Conversely, suppose that X 	= ∅ and that every non-empty subset of X admits
a greatest lower bound and a least upper bound. This implies in particular that X
admits a minimal element m0 and a maximal element M0. Let α be an open cover
of X . Consider the subset A of X consisting of all x ∈ X such that the half-open
interval [m0, x) can be covered by a finite number of elements of α. Observe that A
is not empty since m0 ∈ A. Let M denote the least upper bound of A. As α covers X ,
we can find an open set U in the family α such that M ∈ U . We claim that M = M0.
Indeed, otherwise, there would exist elements y, z ∈ X such that y < M < z and
(y, z) ⊂ U . This would imply z ∈ A and would contradict the fact that M is an upper
bound for A. This proves that M = M0. It follows that α admits a finite subcover.
Therefore, the space X is compact. �

A well-ordered set is a set X equipped with an ordering relation such that every
non-empty subset of X has a minimal element. The ordering relation of a well-
ordered set X is a total ordering since the set {x, y} has a minimal element for all
x, y ∈ X .

Corollary 5.4.3 Let X be a non-empty well-ordered set endowed with the associated
order topology. Then the space X is compact if and only if X has a maximal element.

Proof This is a necessary condition. Indeed, if X is compact, it follows from
Proposition 5.4.2 that X has a least upper bound. This least upper bound is the
maximal element of X .

Let us show now that this condition is also sufficient. Suppose that X admits a
maximal element M0. Let A be a non-empty subset of X . As X is well-ordered, A
has a minimal element and hence a greatest lower bound. On the other hand, since
X is well-ordered, the set E consisting of all upper bounds of A, which is not empty
as M0 ∈ E , has a minimal element. Therefore, the set A admits a least upper bound.
We deduce that X is compact by applying Proposition 5.4.2. �

Let us recall without proofs some basic facts about ordinal numbers (see for
example [58] for more details).

Two well-ordered sets E and F are called isomorphic if there exists an order-
preserving bijective map from E onto F . An ordinal is an isomorphism class of
well-ordered sets. If E is a well-ordered set that represents an ordinal ξ, one also
says that ξ is the order type of E .

There is no set containing all ordinals (this would lead to a contradiction in set
theory). One speaks instead of the collection of all ordinals. Let ξ and η be ordinals,
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represented by well-ordered sets E and F respectively. We write ξ ≤ η if E is
isomorphic to a subset of F . It can be shown that the relation ≤ is a well-ordering
on the collection of all ordinals.

For each n ∈ N, we denote by n the ordinal represented by the well-ordered set
{1, . . . , n}.

Let ξ be an ordinal. The interval [0, ξ), which consists of all ordinals α < ξ, is a
well-ordered set whose order type is ξ. The minimal element of the interval (ξ,→)

is the order type of the well-ordered set [0, ξ]. This ordinal is denoted by ξ + 1 and
is called the successor of ξ. Observe that, for every ordinal α < ξ, we have

(α, ξ] = (α, ξ + 1) = [α + 1, ξ]. (5.4.1)

Proposition 5.4.4 Let ξ be an ordinal. Then the set X := [0, ξ], equipped with its
order topology, is a scattered compact Hausdorff space.

Proof The space X is Hausdorff by Proposition 5.4.1. The compactness of X follows
from Corollary 5.4.3. To prove that X is scattered, it suffices to verify that every
point η ∈ X admits a neighborhood base consisting of clopen subsets of X . We can
assume 0 < η ≤ ξ since 0 is isolated in X . Then the intervals of the form (α, η],
where α < η, form a neighborhood base of η. These intervals are clopen in X by
(5.4.1). Consequently, the space X is scattered. �

An ordinal ξ is said to be infinite (resp. countable) if the well-ordered sets that
represent ξ are infinite (resp. countable). Note that there exist uncountable ordinals
since every set can be well-ordered.We denote by ω the smallest infinite ordinal (i.e.,
the countable ordinal that is the order type of N) and we denote by � the smallest
uncountable ordinal. Let us equip the sets [0,ω] and [0,�]with their order topology.
The product space P := [0,�] × [0,ω] is called the Tychonoff plank (Fig. 5.4).

Proposition 5.4.5 The Tychonoff plank P is a scattered compact Hausdorff space.

Proof The spaces [0,�] and [0,ω] are scattered compact Hausdorff spaces by
Proposition 5.4.4 and anyproduct ofHausdorff (resp. compact, resp. scattered) spaces
is Hausdorff (resp. compact, resp. scattered). �

Corollary 5.4.6 The Tychonoff plank P has topological dimension dim(P) = 0.

Proof The space P is compact and hence Lindelöf. On the other hand, by Theorem
2.4.20, every non-empty scattered Lindelöf space L satisfies dim(L) = 0. �

Fig. 5.4 The Tychonoff plank

http://dx.doi.org/10.1007/978-3-319-19794-4_2
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The space X := P\{(�,ω)
}
obtained from the Tychonoff plank by removing its

right upper point, is called the punctured Tychonoff plank.

Proposition 5.4.7 The punctured Tychonoff plank X is a scattered locally compact
Hausdorff space.

Proof The space P is a scattered compact Hausdorff space by Proposition 5.4.5.
On the other hand, every subspace of a Hausdorff (resp. scattered) space is itself
Hausdorff (resp. scattered) and every open subspace of a compact Hausdorff space
is locally compact. �

Proposition 5.4.8 The punctured Tychonoff plank X is not normal.

Proof Let A := {�} × [0,ω) and B := [0,�) × {ω}. Thus, A is the subset of
X consisting of all points whose first coordinate is � while B is the subset of X
consisting of all points whose second coordinate is ω. The sets A and B are closed
subsets of X since

A = X ∩ ({�} × [0,ω]) and B = X ∩ ([0,�] × {ω}).

Observe that
A = {(�, n) | n ∈ N}.

Let U be an open subset of X containing A. As U is a neighborhood of every point
in A, there exists, for each n ∈ N, an ordinal ξn < � such that (ξn,�] × {n} ⊂ U .
Denote by η the least upper bound of the set consisting of all such ξn . We have that

[0, η) =
⋃

n∈N
[0, ξn).

As the ordinals ξn are countable, we deduce that η is itself countable. It follows that
η < �. As (η,�] × [0,ω) ⊂ U , we conclude that every neighborhood of the point
(η + 1,ω) ∈ B meets U . Consequently, every open subset of X containing B meets
U . As the sets A and B are disjoint closed subsets of X , this shows that the space X
is not normal. �

Note however that P is normal since it is compact and Hausdorff (Proposition
1.5.4). This shows that a subspace of a normal space may fail to be normal.

Corollary 5.4.9 The punctured Tychonoff plank X has topological dimension
dim(X) ≥ 1.

Proof Every topological spacewhose covering dimension is 0 is normal byCorollary
2.3.2. �

Remark 5.4.10 Recall that theTychonoff plank P has covering dimensiondim(P) =
0 by Corollary 5.4.6. Thus, Corollary 5.4.9 shows that a subspace of a topological
space with covering dimension 0 may have positive covering dimension.

http://dx.doi.org/10.1007/978-3-319-19794-4_1
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Remark 5.4.11 The space P is a Lindelöf space since it is compact. However, X
is not a Lindelöf space since every non-empty scattered Lindelöf space L satisfies
dim(L) = 0 by Theorem 2.4.20. This shows that a subspace of a Lindelöf space is
not necessarily Lindelöf.

Corollary 5.4.12 The Tychonoff plank P and the punctured Tychonoff plank X are
not metrizable.

Proof The punctured Tychonoff plank is not metrizable since every metrizable space
is normal by Proposition 1.5.3. As every subspace of ametrizable space ismetrizable,
the Tychonoff plank is not metrizable either. �

5.5 The Sorgenfrey Plane

This section is devoted to the Sorgenfrey plane, a topological space that may be
used to show that the product of two normal (resp. Lindelöf, resp. zero-dimensional)
spaces may fail to be normal (resp. Lindelöf, resp. zero-dimensional). We start by
introducing the Sorgenfrey line.

Consider the set B consisting of all half-open intervals of R that are of the form
[a, b), where a and b run over R. It is clear that B covers R and that B1 ∩ B2 ∈ B
for all B1, B2 ∈ B. Thus, there is a unique topology on R admitting B as a base. The
Sorgenfrey line is the topological space S with underlying set R that admits B as a
base. A subset � ⊂ S is open if and only if it satisfies the following condition: for
every x ∈ �, there exists ε > 0 such that [x, x + ε) ⊂ �. It follows in particular
that the topology on S is finer than the usual topology on R. In fact, it is strictly finer
since for example the half-open intervals [a, b), where a < b, are open in S while
they are not open for the usual topology on R. Note that [a, b) is also closed in S
since S\[a, b) = (−∞, a) ∪ [b,∞) is clearly open in S.

Proposition 5.5.1 The Sorgenfrey line S is a scattered Lindelöf first-countable sep-
arable Hausdorff space.

Proof The topological space S is scattered since the half-open intervals [a, b) are
clopen in S and form a base of the topology.

The topology on S is Hausdorff since it is finer than the usual topology on R.
For every x ∈ S, the intervals [x, q), where q ∈ Q and x < q, form a countable

neighborhood base of x . Therefore S is first-countable.
The set Q is dense in S since every interval [a, b), where a < b, contains rational

numbers. Therefore S is separable.
It remains only to show that S is Lindelöf. Suppose that α = (Ui )i∈I is an open

cover of S. Consider the subset X ⊂ S consisting of all points x ∈ S satisfying the
following condition: there exist two real numbers ax < bx and an element i(x) ∈ I
such that x ∈ (ax , bx ) ⊂ Ui(x). Observe now that the family (X ∩ (ax , bx ))x∈X is an
open cover of X with respect to the usual topology. As X ⊂ Rwith its usual topology

http://dx.doi.org/10.1007/978-3-319-19794-4_2
http://dx.doi.org/10.1007/978-3-319-19794-4_1
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is Lindelöf by Corollary 2.4.14, it follows that there exists a countable subset C ⊂ X
such that the subfamily (X ∩ (ax , bx ))x∈C covers X . This implies X ⊂ ⋃

j∈J U j ,
where J := {i(x) | x ∈ C} is countable.

On the other hand, we claim that Y := S\X is countable. Indeed, the fact that α
is an open cover of S implies that, for every y ∈ Y , there exist real numbers ay < by

and an element i(y) ∈ I such that y ∈ [ay, by) ⊂ Ui(y). Then we can find a rational
number ρ(y) ∈ [ay, by). If y1, y2 ∈ Y satisfy y1 < y2, then ρ(y1) 	= ρ(y2) since
otherwise we would get y2 ∈ X . Therefore the map ρ : Y → Q is injective. We
deduce that Y is countable. Therefore, we can find a countable subset K ⊂ I such
that Y ⊂ ⋃

k∈K Uk .
We conclude that (Ui )i∈J∪K is a countable cover of X . This shows that X is

Lindelöf. �

Corollary 5.5.2 The Sorgenfrey line S has topological dimension dim(S) = 0.

Proof ByTheorem 2.4.20, every non-empty scattered Lindelöf space X has covering
dimension dim(X) = 0. �

Corollary 5.5.3 The Sorgenfrey line S is normal.

Proof By Corollary 2.3.2, every topological space X satisfying dim(X) = 0 is
normal. �

The Sorgenfrey plane is the space S × S, i.e., the product of the Sorgenfrey line
with itself.

Proposition 5.5.4 The Sorgenfrey plane S × S is a scattered first-countable sepa-
rable Hausdorff space.

Proof This immediately follows fromProposition 5.5.1 since the product of two scat-
tered (resp. first-countable, resp. separable, resp. Hausdorff) spaces is itself scattered
(resp. first-countable, resp. separable, resp. Hausdorff). �

The following observation will be useful.

Lemma 5.5.5 The second diagonal � := {(x,−x) | x ∈ S} is discrete and closed
in the Sorgenfrey plane S × S.

Proof For every p = (x, y) ∈ S × S and ε > 0, the set C(p, ε) := [x, x + ε) ×
[y, y +ε) is open in S × S. If p lies outside of � and ε is small enough, then C(p, ε)
does not meet�. Consequently,� is closed in S× S. On the other hand,� is discrete
in S × S since � ∩ C(p, ε) = {p} for all p ∈ � and ε > 0. �

Proposition 5.5.6 The Sorgenfrey plane S × S is not Lindelöf.

Proof The second diagonal � := {(x,−x) | x ∈ S} is a closed discrete subset of
S × S by Lemma 5.5.5. As every discrete Lindelöf space is countable (see Example
2.4.5), we deduce that � is not Lindelöf. It follows that S × S is not Lindelöf since
every closed subset of a Lindelöf space is itself Lindelöf by Proposition 2.4.6. �

http://dx.doi.org/10.1007/978-3-319-19794-4_2
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Corollary 5.5.7 The Sorgenfrey line S and the Sorgenfrey plane S × S are not
second-countable.

Proof The Sorgenfrey plane S × S is not second-countable since every second-
countable space is Lindelöf by Proposition 2.4.11. As the product of two second-
countable spaces is also second-countable by Proposition 2.4.10, this implies that
the Sorgenfrey line S is not second-countable either. �

Corollary 5.5.8 The Sorgenfrey line S and the Sorgenfrey plane S × S are not
metrizable.

Proof The Sorgenfrey plane S×S is not metrizable since every separable metrizable
space is Lindelöf by Proposition 2.4.18. As the product of two metrizable spaces is
also metrizable, this implies that the Sorgenfrey line S is not metrizable either. �

Proposition 5.5.9 The Sorgenfrey plane S × S is not normal.

Proof First observe that, since S × S is separable by Proposition 5.5.4, the set F
consisting of all continuous maps f : S × S → R has cardinality bounded above
by the cardinality c of the continuum, i.e., card(F) ≤ card(R) = c. On the other
hand, since� is discrete, the characteristic map χA : � → R is continuous for every
subset A ⊂ �. If S × S were normal, it would be possible to extend every χA to a
continuousmap f A : S×S → R by applying the Tietze extension theorem (Theorem
4.1.4). This would imply that the cardinality of F is at least that of the power set of
�, i.e., card(F) ≥ 2c. We would then get a contradiction since, by Cantor’s theorem,
we have that 2ξ > ξ for every cardinal ξ. Consequently, the Sorgenfrey plane is not
normal. �

Remark 5.5.10 The Sorgenfrey plane is separable but its second diagonal� ⊂ S×S
is not since it is discrete and uncountable. This shows that a subspace of a separable
space may fail to be separable even if it is closed. Note however that every open
subspaceof a separable space is clearly separable and that it follows fromPropositions
2.4.9 and 2.4.18 that every subspace of a separable metrizable space is separable.

Corollary 5.5.11 The Sorgenfrey plane S × S has topological dimension dim(S ×
S) ≥ 1.

Proof Every topological space X satisfying dim(X) = 0 is normal by Corollary
2.3.2. �

Notes

The counterexamples gathered in this chapter played an important role in the history
of dimension theory (see [33, 50, 93]). They are named after the mathematicians
who discovered them.
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The space X of Sect. 5.1 was introduced by Erdös in [34]. It has topological
dimension dim(X) = ind(X) = Ind(X) = 1 (see [34]) and Roberts [95] proved
that it can be embedded in the Euclidean plane R

2. Note that X is a subgroup of the
additive group H and hence inherits a structure of a topological group. This gives
an interesting example of a totally disconnected abelian group. It turns out that X is
isomorphic, as a topological group, to certain homeomorphism groups of manifolds
(see [29] and the references therein).

The Knaster-Kuratowski fan was described in [60] (see [102, Example 129
p. 145] and [33, p. 29]). It is also sometimes called the Cantor teepee. The point
y0 is a dispersion point of the Knaster-Kuratowski fan Y (a point p in a connected
space C is called a dispersion point if the space C\{p} is totally disconnected).
Propositions 5.2.3, 2.6.6, and Corollary 2.3.3 imply that the punctured Knaster-
Kuratowski fan X = Y\{y0} satisfies dim(X) ≥ 1. As X ⊂ Y ⊂ R

2, we deduce that
1 ≤ dim(X) ≤ dim(Y ) ≤ 2 by applying Theorem 1.8.3 and Corollary 3.5.7. Actu-
ally, it can be shown that dim(X) = dim(Y ) = 1 by using the fact that every subset
ofR

n whose topological dimension is n has non-empty interior (see for example [50,
Th. IV.3 p. 44]).

The counterexample of Sect. 5.3 was described by Bing in a one-page paper [14,
Example 1] (see [102, p. 93] and [17, I p. 108 exerc. 21 and I p. 115 exerc. 1]). The
Bing space has covering dimension ∞ and small inductive dimension 1 (cf. [14]).
The first examples of countably infinite connected Hausdorff spaces were given
by Urysohn in his posthumous article [109]. Subsequently, many other interesting
examples of such spaces were discovered (see the paper by Miller [75] and the
references therein). A topological space X is called a Urysohn space if any two
distinct points of X admit disjoint closed neighborhoods. Of course, every Urysohn
space is Hausdorff. It immediately follows from Lemma 5.3.3 that the Bing space is
not a Urysohn space. An example of a countably-infinite connected Urysohn space
admitting a dispersion point was constructed by Roy in [97].

The Tychonoff plank was introduced in [108]. The smallest uncountable ordinal
is sometimes denoted ω1 instead of �. It can be shown that the punctured Tychonoff
plank X has covering dimension dim(X) = 1.

The Sorgenfrey topology was used by Sorgenfrey in [100] to show that a product
of paracompact spaces is not necessarily paracompact, thus settling in the negative a
question previously raised by Dieudonné [28]. According to Cameron [20], it seems
that the copaternity of the Sorgenndroff and Urysohn [10] for priority reasons.

Exercises

5.1 Let X denote the Erdös space (cf. Sect. 5.1).

(a) Show that X and Q
N are isomorphic as vector spaces over Q and hence as

additive groups.
(b) Describe an injective continuous map f : X → Q

N.

http://dx.doi.org/10.1007/978-3-319-19794-4_2
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http://dx.doi.org/10.1007/978-3-319-19794-4_1
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(c) Show that the space Q
N is scattered.

(d) Show that there is no subspace of Q
N that is homeomorphic to X .

5.2 Show that dim(QN) = 0.
5.3 Show that the Erdös space X described in Sect. 5.1 cannot be embedded into

R.
5.4 Show that the space Q

N can be embedded into the Cantor set (and hence into
R).

5.5 Let X denote the Erdös space (cf. Sect. 5.1). Show that X × X is homeomorphic
to X .

5.6 In this exercise, we use the notation of Sect. 5.2. Let x be a point in X and let
c ∈ K such that x ∈ Yc. Show that the quasi-component of x in X is Yc\{y0}.

5.7 Show that the Bing space X described in Sect. 5.3 is not regular. (Recall that
a topological space X is called regular if for every closed subset A of X and
every point x ∈ X\A, there exist disjoint open subsets U and V of X such that
A ⊂ U and x ∈ V .)

5.8 Let X be the Bing space described in Sect. 5.3. Consider the subsets Y and Z
of X defined by Y := Q × {0} ∼= Q and

Z := X\Y = {(x, y) ∈ X | y > 0}.

(a) Show that the topology induced by X on Z is the discrete one.
(b) Show that the topology induced by X on Y is the usual topology on Q.
(c) Show that Y is an open dense subset of X .
(d) Give a direct proof of the fact that X is not compact by showing that the

cover of X consisting of Y and all the subsets of the form Y ∪ {z}, where
z ∈ Z , is an open cover admitting no finite subcover.

5.9 Let X denote the Bing space described in Sect. 5.3. Show that X admits a base
consisting of open subsets whose topological boundary is clopen.

5.10 Show that a countable connected Hausdorff space having more than one point
cannot be compact.

5.11 Show that a countable accessible topological space having more than one point
cannot be path-connected. Hint: use Baire’s theorem to prove that the unit
segment [0, 1] cannot be expressed as the union of a countably-infinite family
of pairwise disjoint non-empty closed subsets.

5.12 Let X be a countable connected space. Show that every continuous map
f : X → R is constant.

5.13 (The relatively prime topology on the positive integers [39], [102, Example 60
p. 82]). LetZ+ := {1, 2, . . .} denote the set of positive integers. Given coprime
integers x, r ∈ Z+, define the subset Vr (x) ⊂ Z+ by

Vr (x) := {x + rn | n ∈ Z} ∩ Z+.
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(a) Show that there is a unique topology on Z+ admitting as a base the set
consisting of all Vr (x), where x, r ∈ Z+ are coprime. In the sequel, the
set Z+ is equipped with this topology.

(b) Show that the space Z+ is Hausdorff.
(c) Show that if x, r ∈ Z+ are coprime, then every y ∈ Z+ that is a multiple

of r belongs to the closure of Vr (x).
(d) Deduce from (c) that if U and U ′ are non-empty open subsets of Z+ then

one has U ∩ U ′ 	= ∅.
(e) Show that the space Z+ is connected.

5.14 The set [0,�), which consists of all the ordinals that are smaller than the first
uncountable ordinal �, is equipped with its order topology.

(a) Show that [0,�) is a locally compact first-countable Hausdorff space.
(b) Show that [0,�) is not Lindelöf.
(c) Show that [0,�) is not second-countable.
(d) Show that [0,�) is sequentially-compact but not compact. (Recall that a

topological space X is called sequentially-compact if every sequence of
points of X admits a convergent subsequence.)

(e) Show that [0,�) is not metrizable.
(f) Recover from (e) the fact that neither the punctured Tychonoff plank P

nor the Tychonoff plank X is metrizable (cf. Corollary 5.4.12).

5.15 Let � denote the first uncountable ordinal. Let [0,�] be the set consisting of
all ordinals ξ ≤ �, equipped with its order topology.

(a) Show that [0,�] is not first-countable.
(b) Deduce from (a) that neither the Tychonoff plank P nor the Tychonoff

plank X is first-countable.

5.16 Show that the punctured Tychonoff plank X is not σ-compact.
5.17 Show that neither the Tychonoff plank P nor the punctured Tychonoff plank

X are separable.
5.18 Show that every non-empty subspace X of the Sorgenfrey line S has topological

dimension dim(X) = 0.
5.19 Show that every subspace of the Sorgenfrey line S is normal.
5.20 Let A and B be the subsets of the Sorgenfrey plane S × S defined by

A := {(x,−x) ∈ S × S | x ∈ Q} and B := {(x,−x) ∈ S × S | x /∈ Q}.

Give a direct proof that S × S is not normal (cf. Proposition 5.5.9) by showing
that there do not exist disjoint open subsets U and V of S × S with A ⊂ U and
B ⊂ V .
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Chapter 6
Mean Topological Dimension
for Continuous Maps

In this chapter, the term “dynamical system” refers to a pair (X, T ), where X is a
topological space and T a continuous map from X into itself. The topological space
X is called the phase space of the dynamical system and it will be implicitly assumed
to be non-empty. The self-mapping T describes the way the points are moved in the
phase space when times goes from t to t + 1. At time t = n, the change in the phase
space from t = 0 is described by the iterate T n = T ◦ T ◦ · · · ◦ T (n times). In
Sect. 6.3, we define the mean topological dimension, denoted by mdim(X, T ), of a
dynamical system (X, T ), where X is a normal space and T : X → X a continuous
map. This definition is an asymptotic version of the definition of covering dimension
for topological spaces that is presented in Sect. 1.1. Mean topological dimension
is an invariant of topological conjugacy taking its values in [0,∞]. We have that
mdim(X, T ) = 0 whenever X has finite topological dimension (Proposition 6.4.4).
Examples of dynamical systems with positive mean topological dimension will be
given in the next chapter. When X is a compact metric space, we give in Sect. 6.5 an
equivalent definition of mdim(X, T ) that involves the metric.

6.1 Joins

Let α = (Ai )i∈I and β = (B j ) j∈J be two families of subsets of a set X . The join of
α and β is the family α ∨ β of subsets of X defined by

α ∨ β := (Ai ∩ B j )(i, j)∈I×J .

Proposition 6.1.1 Let f : X → Y be a map from a set X into a set Y . Let α and β
be two families of subsets of Y . Then one has

f −1(α ∨ β) = f −1(α) ∨ f −1(β).

© Springer International Publishing Switzerland 2015
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Proof Suppose that α = (Ai )i∈I and β = (B j ) j∈J . Then we have

f −1(α ∨ β) = ( f −1(Ai ∩ B j ))(i, j)∈I×J

= ( f −1(Ai ) ∩ f −1(B j ))(i, j)∈I×J

= f −1(α) ∨ f −1(β). �

Remark 6.1.2 If α and β are covers of X , then α ∨ β is also a cover of X and one
has α ∨ β � α and α ∨ β � β. Moreover, if γ is a cover of X such that γ � α and
γ � β, then one has γ � α ∨ β.

Remark 6.1.3 If α and β are open (resp. closed) covers of a topological space X ,
then α ∨ β is an open (resp. closed) cover of X .

Lemma 6.1.4 Let X, Y and Z be topological spaces. Let α and β be finite open
covers of X. Suppose that f : X → Y is an α-compatible continuous map and that
g : X → Z is a β-compatible continuous map. Then the continuous map F : X →
Y × Z, defined by F(x) := ( f (x), g(x)) for all x ∈ X, is (α ∨ β)-compatible.

Proof Let γ = (Vi )i∈I be a finite open cover of Y such that f −1(γ) � α and
let δ = (W j ) j∈J be a finite open cover of Z such that g−1(δ) � β. Then η :=
(Vi × W j )(i, j)∈I×J is a finite open cover of Y × Z satisfying F−1(η) � α ∨ β. This
shows that F is (α ∨ β)-compatible. �
Proposition 6.1.5 Let X be a normal space. Let α and β be finite open covers of X.
Then one has

D(α ∨ β) ≤ D(α) + D(β).

Proof By Proposition 4.4.6, we can find a polyhedron P such that dim(P) = D(α)
and an α-compatible continuous map f : X → P . Similarly, we can find a polyhe-
dron Q such that dim(Q) = D(β) and a β-compatible continuous map g : X → Q.
Then the continuous map F : X → P × Q, defined by F(x) := ( f (x), g(x)) for
all x ∈ X , is (α ∨ β)-compatible by Lemma 6.1.4. We deduce that D(α ∨ β) ≤
dim(P × Q) by using Proposition 4.4.5. As dim(P × Q) = dim(P) + dim(Q) by
Corollary 3.5.10, we finally get

D(α ∨ β) ≤ dim(P)+ dim(Q) = D(α)+ D(β). �

The following example shows that Proposition 6.1.5 becomes false if we drop the
normality hypothesis on X .

Example 6.1.6 Let X = {x0, a, b, c, d} be a set of cardinality 5. Equip X with the
topology for which the open sets are the empty set and all the subsets of X containing
x0. Note that dim(X) = 3 (see Example 1.1.11). Consider the open cover α of X
that consists of the sets {x0, a, b} and {x0, c, d} and the open cover β that consists
of the sets {x0, a, c} and {x0, b, d}. Then we clearly have D(α) = D(β) = 1.
However, the cover α ∨ β consists of the sets {x0, a}, {x0, b}, {x0, c}, and {x0, d} so
that D(α ∨ β) = 3 and hence D(α ∨ β) > D(α) + D(β).
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6.2 Subadditive Sequences

A sequence (un)n≥1 of real numbers is said to be subadditive if it satisfies

un+m ≤ un + um

for all n,m ≥ 1.

Example 6.2.1 The sequences (n)n≥1, (
√

n)n≥1, (1+ (−1)n)n≥1, and (−n2)n≥1 are
all subadditive.

Example 6.2.2 Let a, b, c be non-negative real numbers. If the sequences (un)n≥1
and (vn)n≥1 are subadditive, then the sequence (a + bun + cvn)n≥1 is subadditive.

Proposition 6.2.3 (Fekete’s lemma) Let (un)n≥1 be a subadditive sequence of real
numbers such that un ≥ 0 for all n ≥ 1. Then the sequence (vn)n≥1 defined by

vn := un

n
is convergent. Moreover, one has

lim
n→∞ vn = inf

n≥1
vn . (6.2.1)

Proof Let n and k be integers such that n > k ≥ 1. Then there are unique integers
q ≥ 1 and r ∈ {1, . . . , k} such that n = qk + r . The subadditivity of the sequence
(un) gives us

vn = uqk+r

n
≤ quk + ur

n
≤ quk

qk
+ ur

n
= vk + ur

n
,

which implies

vn ≤ vk + max(u1, . . . , uk)

n
.

By letting n tend to infinity, we deduce that

lim sup
n→∞

vn ≤ vk

for all k ≥ 1. Consequently, we have that

lim sup
n→∞

vn ≤ λ := inf
n≥1

vn . (6.2.2)

As
λ ≤ lim inf

n→∞ vn ≤ lim sup
n→∞

vn,

it follows from inequality (6.2.2) that
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lim sup
n→∞

vn = lim inf
n→∞ vn = λ.

This shows that the sequence (vn) converges to λ. �

Example 6.2.4 Let X be a non-empty compact metrizable space. Then Xn is also
compact and metrizable for any n ≥ 1. As Xn embeds as a closed subset of Xn+1 =
Xn × X for any n, the sequence (dim(Xn))n≥1 is non-decreasing. Moreover, if
dim(X) < ∞, it follows from Corollary 4.5.6 that (dim(Xn))n≥1 is a subadditive
sequence of non-negative integers. The limit

stabdim(X) := lim
n→∞

dim(Xn)

n

is called the stable topological dimension of X . In the case where X is a com-
pact metrizable space with dim(X) = ∞, we put stabdim(X) = ∞. We have that

stabdim(X) = infn≥1
dim(Xn)

n
by (6.2.1). In particular, we always have

stabdim(X) ≤ dim(X). (6.2.3)

Note that this inequality is in fact an equality when X is a polyhedron by
Corollary 3.5.11.

Remark 6.2.5 If (un) is a subadditive sequence of real numbers of arbitrary sign, it

may happen that the sequence (
un

n
) is divergent. For example, the sequence un =

−n2 is subadditive but one has limn→∞
un

n
= −∞.

6.3 Definition of Mean Topological Dimension

Let X be a topological space and T : X → X a continuous map.
Denote by IdX the identitymap on X . The iterates of T are themaps T n : X → X ,

n ∈ N, inductively defined by T 0 := IdX and T n+1 := T ◦ T n for all n ∈ N. Thus,
we have

T n = T ◦ T ◦ · · · ◦ T︸ ︷︷ ︸
n times

for all n ∈ N.
Let α be a finite open cover of X . For each integer n ≥ 1, define the finite open

cover ω(α, T, n) of X by

ω(α, T, n) := α ∨ T −1(α) ∨ T −2(α) ∨ · · · ∨ T −n+1(α) =
n−1∨

k=0

T −k(α),

http://dx.doi.org/10.1007/978-3-319-19794-4_4
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and let
D(α, T, n) := D

(
ω(α, T, n)

)
.

Proposition 6.3.1 Let X be a normal space, T : X → X a continuous map, and α
a finite open cover of X. Then the sequence (D(α, T, n))n≥1 is subadditive.

Proof Let n and m be positive integers. Then, by Proposition 6.1.1, we have that

ω(α, T, n + m) =
n+m−1∨

k=0

T −k(α)

=
(

n−1∨

k=0

T −k(α)

)
∨

(
n+m−1∨

k=n

T −k(α)

)

=
(

n−1∨

k=0

T −k(α)

)
∨ T −n

(
m−1∨

k=0

T −k(α)

)

= ω(α, T, n) ∨ T −n(ω(α, T,m)).

As X is normal, we can apply Proposition 6.1.5. We deduce that

D(α, T, n + m) = D
(
ω(α, T, n + m)

)

= D
(
ω(α, T, n) ∨ T −n(ω(α, T,m))

)

≤ D
(
ω(α, T, n)

) + D
(
T −n(ω(α, T,m))

)
,

which implies, by using Proposition 4.4.2,

D(α, T, n + m) ≤ D
(
ω(α, T, n)

) + D
(
ω(α, T,m)

)

= D(α, T, n) + D(α, T,m).

Consequently, the sequence (D(α, T, n))n≥1 is subadditive. �

Let X be a normal space and T : X → X a continuous map. Let α be a finite open
cover of X . By Propositions 6.3.1 and 6.2.3, the limit

D(α, T ) := lim
n→∞

D(α, T, n)

n
(6.3.1)

exists and is finite.

Definition 6.3.2 Let X be a normal space and T : X → X a continuous map.
The mean topological dimension of the dynamical system (X, T ) is the quantity
mdim(X, T ) defined by

http://dx.doi.org/10.1007/978-3-319-19794-4_4
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mdim(X, T ) := sup
α

D(α, T ) ∈ [0,∞],

where α runs over all finite open covers of X and D(α, T ) is the non-negative real
number defined by formula (6.3.1).

Example 6.3.3 Take as T : X → X the identity map. Let α be a finite open cover
of X . Then ω(α, T, n) = α ∨ · · · ∨ α for every n. As ω(α, T, n) � α and α �
ω(α, T, n), we deduce from Proposition 1.1.14 that D(α, T, n) = D(α). It follows
that D(α, T ) = 0. Thus we have that mdim(X, T ) = 0.

Remark 6.3.4 Examples of dynamical systems with positive mean topological
dimension will be given in Sect. 7.2.

6.4 General Properties of Mean Topological dimension

Let X and X ′ be topological spaces. Let T : X → X and T ′ : X ′ → X ′ be continuous
maps. The dynamical systems (X, T ) and (X ′, T ′) are called topologically conjugate
if there exists a homeomorphism h : X → X ′ such that T ′ = h ◦ T ◦ h−1. One
then says that the homeomorphism h conjugates T and T ′. Note that the equality
T ′ = h ◦ T ◦ h−1 is equivalent to h ◦ T = T ′ ◦ h, i.e., to the commutativity of the
following diagram:

X
T−−−−→ X

h

⏐⏐�
⏐⏐�h

X ′ −−−−→
T ′ X ′

Mean topological dimension is an invariant of topological conjugacy. More pre-
cisely, we have the following statement:

Proposition 6.4.1 Let X and X ′ be normal spaces. Let T : X → X and T ′ : X ′ →
X ′ be continuous maps. Suppose that the dynamical systems (X, T ) and (X ′, T ′) are
topologically conjugate. Then one has mdim(X, T ) = mdim(X ′, T ′).

Proof Let h : X → X ′ be a homeomorphism that conjugates T and T ′. Let α′ be a
finite open cover of X ′ and α := h−1(α′). As h ◦ T = T ′ ◦ h, the homeomorphism
h sends ω(α, T, n) to ω(α′, T ′, n) for every n ≥ 1. It follows that D(α, T, n) =
D(α′, T ′, n) for all n and hence D(α, T ) = D(α′, T ′). Since α′ 
→ α provides a
bijective correspondence between the finite open covers of X ′ and those of X , we
deduce that mdim(X, T ) = mdim(X ′, T ′). �

Proposition 6.4.2 Let X be a normal space and T : X → X a continuous map.
Then one has

http://dx.doi.org/10.1007/978-3-319-19794-4_1
http://dx.doi.org/10.1007/978-3-319-19794-4_7
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mdim(X, T n) = n mdim(X, T )

for every integer n ≥ 0.

Proof Let α be a finite open cover of X . For every integer k ≥ 1, the cover

ω(α, T, kn) = α ∨ T −1(α) ∨ T −2(α) ∨ · · · ∨ T −kn+1(α)

is finer than the cover

ω(α, T n, k) = α ∨ T −n(α) ∨ T −2n(α) ∨ · · · ∨ T −kn+n(α).

Thus, it follows from Proposition 1.1.4 that

D(α, T, kn) ≥ D(α, T n, k),

which implies

nD(α, T ) = lim
k→∞

D(α, T, kn)

k
≥ lim

k→∞
D(α, T n, k)

k
= D(α, T n).

We deduce that
n mdim(X, T ) ≥ mdim(X, T n). (6.4.1)

On the other hand, by Proposition 6.1.1, we have that

ω(α, T, kn) = ω(α, T, n) ∨ T −n(ω(α, T, n)) ∨ · · · ∨ T −(k−1)n(ω(α, T, n)),

that is, by setting β := ω(α, T, n),

ω(α, T, kn) = ω(β, T n, k).

We then get
nD(α, T ) = D(β, T n) ≤ mdim(X, T n),

and hence
n mdim(X, T ) ≤ mdim(X, T n). (6.4.2)

Inequalities (6.4.1) and (6.4.2) imply that

mdim(X, T n) = n mdim(X, T ). �

Corollary 6.4.3 Let X be a normal space and let T : X → X be a homeomorphism.
Then one has

mdim(X, T n) = |n|mdim(X, T ) (6.4.3)

http://dx.doi.org/10.1007/978-3-319-19794-4_1
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for all n ∈ Z.

Proof This follows directly from Proposition 6.4.2 if n ≥ 0. Therefore, it suffices
to verify Formula (6.4.3) for n = −1. For every finite open cover α of X and every
integer k ≥ 1, we have that

ω(α, T −1, k) = T k−1(ω(α, T, k)).

As T k−1 is a homeomorphism, we deduce that D(α, T −1, k) = D(α, T, k) for
all k ≥ 1. This implies D(α, T −1) = D(α, T ). It follows that mdim(X, T −1) =
mdim(X, T ). �

Proposition 6.4.4 Let X be a normal space with dim(X) < ∞. Let T : X → X be
a continuous map. Then one has

mdim(X, T ) = 0.

Proof For every finite open cover α of X , we have that D(α, T, n) ≤ dim(X) by
definition of dim(X). As dim(X) < ∞, we deduce that

D(α, T ) = lim
n→∞

D(α, T, n)

n
= 0.

Thus, we have that

mdim(X, T ) = sup
α

D(α, T ) = 0. �

Let X be a topological space and T : X → X a continuous map. A subset Y ⊂ X
is called T -invariant if it satisfies T (Y ) ⊂ Y . If Y ⊂ X is T -invariant, then T
induces by restriction a continuous map T |Y : Y → Y given by T |Y (y) = T (y) for
all y ∈ Y .

Recall from Proposition 1.5.6 that every closed subset of a normal space is itself
normal.

Proposition 6.4.5 Let X be a normal space and let T : X → X be a continuous
map. Let Y ⊂ X be a closed (and hence normal) T -invariant subset of X. Then one
has

mdim(Y, T |Y ) ≤ mdim(X, T ).

Proof Let α = (Ui )i∈I be a finite open cover of Y . For each i ∈ I , we can find
an open subset Vi of X such that Ui = Vi ∩ Y . Consider the finite open cover
β of X defined by β := (Vi )i∈I ∪ (X \ Y ). Let γ = (W j ) j∈J be a finite open
cover of X that is finer than ω(β, T, n). Then γ′ := (W j ∩ Y ) j∈J is clearly a finite
open cover of Y that is finer than ω(α, T |Y , n) and we have ord(γ′) ≤ ord(γ)
(cf. the proof of Proposition 1.2.1). It follows that D(α, T |Y , n) ≤ D(β, T, n) for

http://dx.doi.org/10.1007/978-3-319-19794-4_1
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all n ≥ 1. This implies D(α, T |Y ) ≤ D(β, T ) ≤ mdim(X, T ). We deduce that
mdim(Y, T |Y ) = supα D(α, T |Y ) ≤ mdim(X, T ). �

Remark 6.4.6 In the sequel, when Y is a T -invariant subset, wewill sometimes write
by abuse T instead of T |Y if there is no risk of confusion.

Corollary 6.4.7 Let X be a compact space and Y a normal Hausdorff space. Let
T : X → X and S : Y → Y be continuous maps. Suppose that there exists an
injective continuous map f : X → Y such that f ◦ T = S ◦ f . Then one has
mdim(X, T ) ≤ mdim(Y, S).

Proof It follows from our hypotheses that Z := f (X) is a closed S-invariant subset
of Y ant that f induces a topological conjugacy between (X, T ) and (Z , S|Z ). Thus,
we have that

mdim(X, T ) = mdim(Z , S|Z ) ≤ mdim(Y, S)

by virtue of Propositions 6.4.1 and 6.4.5. �

6.5 Metric Approach to Mean Topological Dimension

In this section, (X, d) is a compact metric space and T : X → X a continuous map.
Let n ≥ 1 be an integer. For all x, y ∈ X , define dn(x, y) by

dn(x, y) = dT
n (x, y) := max

0≤k≤n−1
d(T k(x), T k(y)).

Clearly dn is a metric on X .

Proposition 6.5.1 The metric dn defines the same topology as d on X.

Proof We have that d(x, y) ≤ dn(x, y) for all x, y ∈ X . Therefore, the identity map
(X, dn) → (X, d) is continuous. On the other hand, the continuity of T : (X, d) →
(X, d) implies that, if (yi ) is a sequence of points of X such that the sequence d(x, yi )

converges to 0, then the sequence dn(x, yi ) converges also to 0. Consequently, the
identity map (X, d) → (X, dn) is continuous. �

By Proposition 4.6.2, we have that dimε(X, dn) < ∞ for all ε > 0 and n ≥ 1.

Remark 6.5.2 As dn ≤ dn+1 for all n ≥ 1, we deduce from Corollary 4.6.4 that, if
we fix ε > 0, then the sequence (dimε(X, dn))n≥1 is non-decreasing.

Proposition 6.5.3 Let ε > 0. Then the sequence (un)n≥1 defined by

un := dimε(X, dn)

is subadditive.

http://dx.doi.org/10.1007/978-3-319-19794-4_4
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Proof Let n and m be positive integers. Let K be a compact metrizable space such
that there exists a continuous map f : X → K that is ε-injective for the metric
dn . Let L be a compact metrizable space such that there exists a continuous map
g : X → L that is ε-injective for the metric dm . Then the map F : X → K × L
defined by F(x) = (

f (x), g(T n(x))
)
is clearly continuous and ε-injective for the

metric dn+m . We deduce that dimε(X, dn+m) ≤ dim(K × L) since K × L , being the
product of two compact and metrizable spaces, is itself compact and metrizable. As
dim(K ×L) ≤ dim(K ) + dim(L) by Corollary 4.5.6, this implies dimε(X, dn+m) ≤
dim(K ) + dim(L) and hence

dimε(X, dn+m) ≤ dimε(X, dn) + dimε(X, dm).

Consequently, the sequence (un) is subadditive. �

For every ε > 0, we define the real number mdimε(X, d, T ) ≥ 0 by

mdimε(X, d, T ) := lim
n→∞

dimε(X, dn)

n
∈ [0,∞[.

The above limit exists and is finite by Propositions 6.2.3 and 6.5.3. For a fixed
n, the map ε 
→ dimε(X, dn) is non-increasing. It follows that the map ε 
→
mdimε(X, d, T ) is also non-increasing. We deduce that mdimε(X, d, T ) has a (pos-
sibly infinite) limit as ε tends to 0.

Theorem 6.5.4 Let (X, d) be a compact metric space and let T : X → X be a
continuous map. Then one has

mdim(X, T ) = lim
ε→0

mdimε(X, d, T ).

Proof Consider a finite open cover α of X . Let λ > 0 be a Lebesgue number of α
relative to the metric d. We claim that

D(α, T, n) ≤ dimλ(X, dn) (6.5.1)

for every n ≥ 1.
Indeed, consider a compact metrizable space K such that there exists a continuous

map f : X → K that is λ-injective relatively to the metric dn . Let y ∈ K . As f is
λ-injective relatively to dn , the d-diameter of T k( f −1(y)) is less than or equal to λ
for every integer k such that 0 ≤ k ≤ n − 1. As λ is a Lebesgue number of the cover
α, it follows that f −1(y) is entirely contained in one of the elements of the cover

ω(α, T, n) = α ∨ T −1(α) ∨ · · · ∨ T −n+1(α).

By applying Lemma 4.5.3, we deduce that f is ω(α, T, n)-compatible. Therefore,
by using Proposition 4.4.5, we obtain

http://dx.doi.org/10.1007/978-3-319-19794-4_4
http://dx.doi.org/10.1007/978-3-319-19794-4_4
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D(α, T, n) = D(ω(α, T, n)) ≤ dim(K ),

which yields (6.5.1).
Inequality (6.5.1) implies

D(α, T ) = lim
n→∞

D(α, T, n)

n
≤ lim

n→∞
dimλ(X, dn)

n
= mdimλ(X, d, T ).

As the map ε 
→ mdimε(X, d, T ) is non-increasing, we deduce that

D(α, T ) ≤ lim
ε→0

mdimε(X, d, T ),

and hence, by taking the upper bound over α,

mdim(X, T ) ≤ lim
ε→0

mdimε(X, d, T ).

To complete the proof, it suffices to establish that

lim
ε→0

mdimε(X, d, T ) ≤ mdim(X, T ). (6.5.2)

Let ε > 0. Consider the open cover of X by its open d-balls of radius ε/2. By
compactness of X , it admits a finite subcover α. Let n be a positive integer. Consider
the finite open cover ω(α, T, n). By Proposition 4.4.6, we can find a polyhedron
P such that dim(P) = D(α, T, n) and a continuous ω(α, T, n)-compatible map
f : X → P . Let y ∈ P . As f is ω(α, T, n)-compatible, the set f −1(y) is contained
in one of the open sets of the cover ω(α, T, n). Consequently, for each integer k such
that 0 ≤ k ≤ n − 1, the set T k( f −1(y)) is contained in one of the open balls of
radius ε/2. Thus, the map f is ε-injective for the metric dn . As P is compact and
metrizable, we deduce that

dimε(X, dn) ≤ dim(P) = D(α, T, n).

We then get

mdimε(X, d, T ) = lim
n→∞

dimε(X, dn)

n
≤ lim

n→∞
D(α, T, n)

n
= D(α, T ).

Since D(α, T ) ≤ mdim(X, T ), we obtain

mdimε(X, d, T ) ≤ mdim(X, T ),

which yields (6.5.2) after letting ε tend to 0. �

http://dx.doi.org/10.1007/978-3-319-19794-4_4


118 6 Mean Topological Dimension for Continuous Maps

Notes

Subadditivity plays an important role in many branches of pure and applied math-
ematics. Fekete’s lemma (Proposition 6.2.3), which is named after Fekete (cf. [35,
Satz 2] and also [90, p. 198]) has been generalized in various directions. For ex-
ample, it is known [63, Theorem 16.2.9] that if f is a measurable subadditive real-
valued map on R

n then, for every x ∈ R
n , the function g(t) := f (t x)/t admits

inf t>0 g(t) ∈ R ∪ {−∞} as a limit as t tends to infinity.
There exist compact metrizable spaces X for which Inequality (6.2.3) is strict. Ac-

tually, Boltyanskiı̌ [15, 16] gave examples of compact metrizable spaces X satisfying
dim(X) = 2 and dim(X × X) = 3. For such a space X , we have that stabdim(X) ≤
3/2 < dim(X). Since the inequality dim(X × Y ) ≤ dim(X) + dim(Y ) remains
valid whenever X and Y are compact Hausdorff or metrizable (see the Notes on

Chap.4), the limit limn→∞
dim(Xn)

n
exists and thus the definition of stabdim(X)

may be extended to the case when X is compact Hausdorff or metrizable.
Mean topological dimension was introduced by Gromov [44] for studying dy-

namical properties of certain spaces of holomorphic maps and complex varieties.
It was used by Lindenstrauss and Weiss [74] to answer in the negative a question
that had been raised by Auslander (see Chap.8). The paper by Lindenstrauss and
Weiss contains many other important results about mean topological dimension. It
is shown in particular in [74] that if T is a homeomorphism of a compact metrizable
space X such that (X, T ) is uniquely ergodic or has finite topological entropy, then
mdim(X, T ) = 0 (cf. Exercise 6.11 for the definition of topological entropy).

Exercises

6.1 Let a be a real number such that 0 ≤ a ≤ 1. Show that the sequence (na)n≥1
is subadditive.

6.2 Let C be a positive real number. Show that the sequence (log(C + n))n≥1 is
subadditive.

6.3 Let T : X → X be a map from a set X into itself and let F be a finite subset of
X . For each integer n ≥ 1, let un denote the cardinality of the set

F ∪ T (F) ∪ T 2(F) ∪ · · · ∪ T n−1(F) =
n−1⋃

k=0

T k(F).

(a) Show that the sequence (un)n≥1 is subadditive.
(b) Show that the sequence (vn)n≥1, defined by vn := un+1−un for all n ≥ 1,

is non-increasing.

http://dx.doi.org/10.1007/978-3-319-19794-4_4
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(c) Show that there exist integers α ≥ 0 and n0 ≥ 1 such that vn = α for all
n ≥ n0.

(d) Show that limn→∞
un

n
= α.

6.4 Let S be a semigroup, i.e., a set equipped with an associative binary operation.
Let A be a non-empty subset of S. For n ≥ 1, denote by γn the number of
elements s ∈ S that can be written in the form s = a1a2 . . . ak with k ≤ n
and ai ∈ A for all 1 ≤ i ≤ k. Show that the sequence (un)n≥1 defined by
un := log γn is subadditive.

6.5 Let (un)n≥1 be a subadditive sequence of real numbers. Show that if the se-

quence (
un

n
) is not convergent then one has limn→∞

un

n
= −∞.

6.6 Let (un)n≥1 be a sequence of real numbers. Suppose that there exists a real
number C such that

un+m ≤ un + um + C

for all n,m ≥ 1. Show that the sequence (un + C) is subadditive. Deduce that

the sequence (
un

n
) either is convergent or has −∞ as a limit.

6.7 (Translation number). Let f : R → R be a homeomorphism such that f (x +
k) = f (x) + k for all x ∈ R and k ∈ Z. Let x ∈ R. Show that the limit

τ ( f ) := lim
n→∞

f n(x)

n

exists and is finite and that this limit does not depend on the choice of the point
x ∈ R. Hint: first observe that f is increasing and then prove that the sequence
( f n(0) + 1)n≥1 is subadditive.

6.8 Let G be a group. A map q : G → R is called a quasi-homomorphism if
the map (g1, g2) 
→ q(g1g2) − q(g1) − q(g2) is bounded on G × G. Let
q : G → R be a quasi-homomorphism.

(a) Let g ∈ G. Show that the sequence (
q(gn)

n
) is convergent.

(b) Consider the map q∞ : G → R defined by

q∞(g) := lim
n→∞

q(gn)

n
.

Show that q∞ is a quasi-homomorphism.
(c) Show that q∞(gn) = nq∞(g) and q∞(h−1gh) = q∞(g) for all n ∈ Z and

g, h ∈ G.

6.9 A map f : [0,∞) → R is called subadditive if it satisfies f (x + y) ≤ f (x)+
f (y) for all x, y ∈ [0,∞).

(a) Let f : [0,∞) → R be a continuous subadditive map. By adapting the
proof of Proposition 6.2.3, show that the map g : (0,∞) → R defined by
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g(x) := f (x)

x
has a limit λ ∈ R ∪ {−∞} as x → ∞ and that one has

λ = inf x>0 g(x).
(b) Recall that a map f : [0,∞) → R is called concave if it satisfies f ((1 −

t)x + t y) ≥ (1 − t) f (x) + t f (y) for all x, y ∈ [0,∞) and t ∈ [0, 1].
Show that a concave map f : [0,∞) → R is subadditive if and only if
f (0) ≥ 0.

(c) Show that there exists a non-linear map f : R → R such that f (x + y) =
f (x)+ f (y) for all x, y ∈ R. Hint: use the fact that R, viewed as a vector
space over the field Q, admits a base.

(d) Show that if f is as in the previous question then
f (x)

x
has no limit as

x → ∞. (This shows that the hypothesis that f is continuous cannot be
removed in the first question.)

6.10 Let X be a normal space and T : X → X a continuous map. Let α and β be
finite open covers of X . Show that one has D(α∨β, T ) ≤ D(α, T )+ D(β, T ).

6.11 Let X be a non-empty topological space and T : X → X a continuous map.
Given a finite open cover α = (Ui )i∈I of X , denote by N (α) the smallest
integer k ≥ 1 such that there exists a subset I0 ⊂ I with cardinality k satisfying⋃

i∈I0 Ui = X .

(a) Letα and β be finite open covers of X . Show that N (α∨β) ≤ N (α)N (β).
(b) Let α be a finite open cover of X and f : X → X a continuous map. Show

that N ( f −1(α)) ≤ N (α).
(c) Let α be a finite open cover of X . Given an integer n ≥ 1, let

ω(α, T, n) :=
n−1∨

k=0

T −k(α).

Show that the limit

Htop(X, T,α) := lim
n→∞

log N (ω(α, T, n))

n

exists and is finite. Hint: observe that the sequence (log N (ω(α, T, n)))n≥1
is subadditive.
The quantity

htop(X, T ) := sup
α

Htop(X, T,α),

where α runs over all finite open covers of X , is called the topological
entropy of the dynamical system (X, T ).

(d) Let Y be a topological space and S : Y → Y a continuous map. Suppose
that there exists a surjective continuous map f : Y → X such that f ◦ S =
T ◦ f . Show that one has htop(X, T ) ≤ htop(Y, S).
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6.12 Let X be a normal space and T : X → X a constant map. Show that
mdim(X, T ) = 0.

6.13 Let (X, d) be a compact metric space and T : X → X a map satisfying
d(T (x), T (y)) ≤ d(x, y) for all x, y ∈ X . Show that mdim(X, T ) = 0.

6.14 Let X1 and X2 be compactmetrizable spaces. Let T1 : X1 → X1 and T2 : X2 →
X2 be continuous maps. Consider the product map

T1 × T2 : X1 × X2 → X1 × X2

defined by T1 × T2(x1, x2) := (T1(x1), T2(x2)). Show that

mdim(X1 × X2, T1 × T2) ≤ mdim(X1, T1) + mdim(X2, T2).

Hint: use Theorem 6.5.4 and the result of Exercise 4.7.
6.15 Let X and Y be compact metrizable spaces. Let T : X → X be a continuous

map. Show that

mdim(X × Y, T × IdY ) = mdim(X, T ).

6.16 Let (X, d) be a compact metric space and let T : X → X be a continu-
ous map. For n ≥ 1, let dn be the metric on X defined by dn(x, y) :=
max0≤k≤n−1 d(T k(x), T k(y)).

(a) (cf. Exercises 4.11 and 3.11). Let ε > 0. Show that the sequence

(Widimε(X, dn))n≥1

is subadditive.
(b) Show that the limit

mWidimε(X, d, T ) := lim
n→∞

Widimε(X, dn)

n

exists and is finite.
(c) Show that

mdim(X, T ) = lim
ε→0

mWidimε(X, d, T ).



Chapter 7
Shifts and Subshifts over Z

In this chapter, we introduce the shift map σ : KZ → KZ on the space of bi-infinite
sequences of points in a topological space K .Weprove thatmdim(KZ,σ) ≤ dim(K )

whenever K is compact and metrizable (Theorem 7.1.3) and that equality holds if K
is a polyhedron (Corollary 7.2.3). In the last section, we prove the existence, for any
real number 0 ≤ λ ≤ 1, of a closed shift-invariant subset X ⊂ [0, 1]Z with mean
topological dimension mdim(X,σ) = λ (Theorem 7.6.2). As an application, we
show thatmean topological dimension can take any value in [0,∞] (Corollary 7.6.5).

7.1 Shifts

Let K be a topological space. Consider the set KZ formed by all bi-infinite sequences
(xi )i∈Z of points of K . We equip KZ = ∏

i∈Z K with its product topology (i.e., the
coarsest topology for which the projection map KZ → K given by x �→ xi is
continuous for every i ∈ Z). The map σ = σK : KZ → KZ that sends the sequence
x = (xi ) ∈ KZ to the sequence σ(x) := (yi ), where yi = xi+1 for all i ∈ Z

is called the shift map on KZ. Clearly σ is a homeomorphism of KZ with inverse
σ−1 : KZ → KZ given by σ−1(x) = (zi ), where zi = xi−1 for all i ∈ Z. The
dynamical system (KZ,σ) is called the full shift, or simply the shift, over Z with
symbol space K .

Our goal is to evaluate the mean topological dimension mdim(KZ,σ) of this
dynamical system. Recall that mdim(X, T ) has been only defined in the case when
the ambient space X is normal. The following example shows that it may happen
that K is normal and KZ is not.

Example 7.1.1 The Sorgenfrey line S is normal by Corollary 5.5.3 but its square
S × S is not by Proposition 5.5.9. As S × S clearly embeds as a closed subset of SZ,
it then follows from Proposition 1.5.6 that SZ is not normal.

Note however that if K is metrizable then KZ is also metrizable and hence normal
by Proposition 1.5.3. Indeed, the product of a countable family of metrizable spaces
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is metrizable. To see this in our particular setting, suppose that K is a metrizable
space and let d be a metric on K that is compatible with the topology. As the metric
min(1, dK ) is also compatible with the topology, wemay assume that dK is bounded.
Then one easily verifies that the metric d on KZ, given by

d(x, y) =
∞∑

i=−∞

dK (xi , yi )

2|i | , (7.1.1)

for all x = (xi ), y = (yi ) ∈ KZ, is compatible with the topology on KZ. Another
class of topological spaces for which KZ is normal whenever K is in the class is that
formed by compact Hausdorff spaces. Indeed, any product of compact Hausdorff
spaces is itself a compact Hausdorff space and hence normal by Proposition 1.5.4.
Thus, the mean topological dimension mdim(KZ,σ) is well defined if K is a metriz-
able space or a compact Hausdorff space.

Example 7.1.2 Let K be a compact Hausdorff space or a separable metrizable space
such that dim(K ) = 0 (e.g., a non-emptyfinite setwith its discrete topologyor a space
homeomorphic to the Cantor ternary set). As dim(KZ) = 0 by Corollaries 2.4.24
and 2.4.28, we deduce from Proposition 6.4.4 that mdim(KZ,σ) = 0.

Recall that the stable topological dimension of a non-empty compact metrizable
space K is the quantity

stabdim(K ) = lim
n→∞

dim(K n)

n
= inf

n≥1

dim(K n)

n
∈ [0,∞].

(see Example 6.2.4).

Theorem 7.1.3 Let K be a non-empty compact metrizable space. Then one has

mdim(KZ,σ) ≤ stabdim(K ) ≤ dim(K ). (7.1.2)

Proof Let dK be a metric on K compatible with the topology and consider the metric
d on KZ defined by Formula (7.1.1) (observe that d is bounded by compactness of
K ). Fix some ε > 0. Let δ := diam(K ) and choose an integer r ≥ 0 such that

δ

2r−1 < ε.

Let n ≥ 1 be an integer and dn the metric on KZ defined by

dn(x, y) := max
0≤k≤n−1

d(σk(x),σk(y)).

http://dx.doi.org/10.1007/978-3-319-19794-4_1
http://dx.doi.org/10.1007/978-3-319-19794-4_2
http://dx.doi.org/10.1007/978-3-319-19794-4_2
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Consider the continuous map f : KZ → K 2r+n given by

f (x) := (x−r , x−r+1, . . . , xr+n−1)

for all x = (xi ) ∈ KZ.
Let x = (xi ) and y = (yi ) be two sequences in KZ such that f (x) = f (y). This

means that xi+k = yi+k for all i ∈ {−r, . . . , r} and k ∈ {0, . . . , n − 1}. In other
words, for any k ∈ {0, . . . , n −1}, the terms with index i of the sequences σk(x) and
σk(y) coincide if i ∈ {−r, . . . , r}. We deduce that

d(σk(x),σk(y)) ≤ 2
∞∑

i=r+1

δ

2i
= δ

2r−1 < ε,

for every k ∈ {0, . . . , n − 1}. This implies dn(x, y) < ε. Consequently, f is ε-
injective with respect to the metric dn . As K 2r+n is a compact metrizable space, we
deduce that

dimε(KZ, dn) ≤ dim(K 2r+n). (7.1.3)

This yields

mdimε(KZ, d,σ) = lim
n→∞

dimε(KZ, dn)

n

≤ lim
n→∞

dim(K 2r+n)

n

= lim
n→∞

dim(K 2r+n)

2r + n
= stabdim(K ),

and hence, by using Theorem 6.5.4,

mdim(KZ,σ) = lim
ε→0

mdimε(KZ, d,σ) ≤ stabdim(K ) ≤ dim(K ). �

7.2 Shifts on Polyhedra

The following result provides examples of dynamical systems with finite positive
mean topological dimension.

Theorem 7.2.1 Let N ∈ N and let K := [0, 1]N be the N-dimensional cube. Then
one has

mdim(KZ,σ) = N .

http://dx.doi.org/10.1007/978-3-319-19794-4_6
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Proof We have that mdim(KZ,σ) ≤ dim(K ) by Theorem 7.1.3. As dim(K ) = N
by Theorem 3.5.4, it only remains to establish the inequality

mdim(KZ,σ) ≥ N .

Let dK be the metric on K associated with the sup-norm ‖ · ‖∞ on R
N and d the

metric on KZ defined by Formula (7.1.1).
Observe that

dK (x0, y0) ≤ d(x, y) (7.2.1)

for all x = (xi ), y = (yi ) ∈ KZ.
Let n ≥ 1 be an integer. Consider the metric dn on KZ defined by

dn(x, y) := max
0≤k≤n−1

d
(
σk(x),σk(y)

)
.

Inequality (7.2.1) yields

max
0≤k≤n−1

dK (xk, yk) ≤ dn(x, y) (7.2.2)

for all x, y ∈ KZ.
Consider now the topological embedding ϕ : K n ↪−→ KZ that sends each u =

(u1, . . . , un) ∈ K n to the sequence (xi ) ∈ KZ defined by

xi =
{

ui+1 if 0 ≤ i ≤ n − 1,

0 otherwise.

Denoting by ρ the metric induced by the sup-norm ‖ · ‖∞ on K n = [0, 1]nN ⊂ R
nN ,

Inequality (7.2.2) implies

ρ(u, v) ≤ dn
(
ϕ(u),ϕ(v)

)

for all u, v ∈ K n . By applying Proposition 4.6.3, we deduce that

dimε(K n, ρ) ≤ dimε(KZ, dn)

for all ε > 0. As dimε(K n, ρ) = nN for all ε ≤ 1 by Proposition 4.6.5, we obtain

nN ≤ dimε(KZ, dn)

for all ε ≤ 1. Consequently, we get

mdimε(KZ, d,σ) = lim
n→∞

dimε(KZ, dn)

n
≥ N

http://dx.doi.org/10.1007/978-3-319-19794-4_3
http://dx.doi.org/10.1007/978-3-319-19794-4_4
http://dx.doi.org/10.1007/978-3-319-19794-4_4
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for all ε ≤ 1. By applying Theorem 6.5.4, we deduce that

mdim(KZ,σ) = lim
ε→0

mdimε(KZ, d,σ) ≥ N .

This shows (7.2). �

Corollary 7.2.2 Let N ∈ N and let K be a metrizable or compact Hausdorff space
such that there exists a subset A ⊂ K that is homeomorphic to the N-cube [0, 1]N .
Then one has mdim(KZ,σ) ≥ N.

Proof The subset AZ ⊂ KZ is closed andσ-invariant. It follows thatmdim(KZ,σ) ≥
mdim(AZ,σ) = N by Proposition 6.4.5. �

Corollary 7.2.3 Let P be a polyhedron. Then one has

mdim(PZ,σ) = dim(P).

Proof Let N := dim(P). Since every polyhedron is compact andmetrizable,wehave
that mdim(PZ,σ) ≤ N by Theorem 7.1.3. As P is a polyhedron, we can find n ∈ N

and a simplicial complex C of R
n such that P is homeomorphic to |C |. We know

that the combinatorial dimension of C is equal to N by Corollary 3.5.5. Therefore,
the complex C contains an N -simplex. This shows that we can find a subset A ⊂ P
that is homeomorphic to [0, 1]N . Thus, mdim(PZ,σ) ≥ N by Corollary 7.2.2. �

Corollary 7.2.4 Let K = [0, 1]N be the Hilbert cube. Then one has

mdim(KZ,σ) = ∞.

Proof The subset A ⊂ K consisting of all (un)n∈N ∈ K such that un = 0 for all
n ≥ N is homeomorphic to [0, 1]N . Thus, we deduce from Corollary 7.2.2 that
mdim(KZ,σ) ≥ N for all N ∈ N. �

7.3 Mean Projective Dimension of Subshifts

Let K be a topological space. Consider the shift map σ : KZ → KZ. A subset
X ⊂ KZ is called a subshift if X is a closed subset of KZ and σ(X) = X .

Example 7.3.1 Let A := {σn(x) | n ∈ Z} denote the σ-orbit of a point x ∈ KZ.
Then its closure X = A is a subshift of KZ. This subshift is called the orbit closure
of x .

Example 7.3.2 The intersection of any family of subshifts of KZ is itself a subshift
of KZ.

Example 7.3.3 Any finite union of subshifts of KZ is itself a subshift of KZ.

http://dx.doi.org/10.1007/978-3-319-19794-4_6
http://dx.doi.org/10.1007/978-3-319-19794-4_6
http://dx.doi.org/10.1007/978-3-319-19794-4_3
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For each integer n ≥ 1, we denote by wn the projection map from KZ on K n

defined by
wn(x) := (x0, x1, . . . , xn−1) (7.3.1)

for all x = (xi ) ∈ KZ.

Proposition 7.3.4 Let K be a compact metrizable space with topological dimension
dim(K ) < ∞. Let X ⊂ KZ be a non-empty subshift. Then the sequence (un)n≥1
defined by un := dim(wn(X)) is subadditive.

Proof Let n and m be positive integers. As X is σ-invariant, we have that

wn+m(X) ⊂ wn(X) × wm(X) ⊂ K n × K m = K n+m .

By applying Proposition 1.2.1 and Corollary 4.5.6, we deduce that

dim(wn+m(X)) ≤ dim(wn(X)) + dim(wm(X)),

which shows that the sequence (un) is subadditive. �

Suppose that K is a compact metrizable space with topological dimension
dim(K ) < ∞ and that X ⊂ KZ is a non-empty subshift. As wn(X) ⊂ K n , we
have that dim(wn(X)) ≤ n dim(K ) < ∞ for all n ≥ 1. Thus, it follows from
Propositions 7.3.4 and 6.2.3 that the limit

prodim(X) := lim
n→∞

dim(wn(X))

n
(7.3.2)

exists and is finite. One says that prodim(X) is the mean projective dimension of the
subshift X . Note that

prodim(X) ≤ prodim(KZ) = lim
n→∞

dim(K n)

n
= stabdim(K ) ≤ dim(K ),

since wn(X) ⊂ K n for all n.
It turns out that the mean projective dimension of a subshift X ⊂ KZ yields an

upper bound for the mean topological dimension of the dynamical system (X,σ).
More precisely, we have the following result, which extends Theorem 7.1.3.

Theorem 7.3.5 Let K be a compact metrizable space with dim(K ) < ∞ and X ⊂
KZ a non-empty subshift. Then one has

mdim(X,σ) ≤ prodim(X).

Proof Using the notation introduced in the proof of Theorem 7.1.3, the map
f : KZ → K 2r+n induces by restriction a continuous map g : X → w2r+n(X).

http://dx.doi.org/10.1007/978-3-319-19794-4_1
http://dx.doi.org/10.1007/978-3-319-19794-4_4
http://dx.doi.org/10.1007/978-3-319-19794-4_6
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As f is ε-injective with respect to the metric dn , the same is true for g. Therefore we
have that

dimε(X, dn) ≤ dim(w2r+n(X)).

By using the result of Proposition 7.3.4, we deduce that

dimε(X, dn) ≤ dim(w2r (X)) + dim(wn(X)),

and hence

mdimε(X, d,σ) = lim
n→∞

dimε(X, dn)

n

≤ lim
n→∞

dim(wn(X))

n
= prodim(X).

Finally, we get

mdim(X,σ) = lim
ε→0

mdimε(X, d,σ) ≤ prodim(X). �

7.4 Subshifts of Finite Type

Let K be a topological space. Let q ≥ 0 be an integer and L a closed subset of K q .
Consider the subset X ⊂ KZ consisting of all sequences (xi ) ∈ KZ such that

(xk, xk+1, . . . , xk+q−1) ∈ L

for all k ∈ Z. Note that

X = {x ∈ KZ | wq(σk(x)) ∈ L for all k ∈ Z}
=

⋂

k∈Z
σ−kw−1

q (L),

where wq : KZ → K q is the projection map defined by (7.3.1).
Clearly X is a subshift of KZ. One says that X is the subshift of finite type

associated with the pair (q, L). One also says that (q, L) is a defining law for X .

Proposition 7.4.1 Let K be a compact metrizable space with dim(K ) < ∞. Let
q ≥ 0 be an integer and L a non-empty closed subset of K q . Let X ⊂ KZ denote
the subshift of finite type with defining law (q, L). Then one has

prodim(X) ≤ stabdim(L)

q
≤ dim(L)

q
. (7.4.1)
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Proof As wqn(X) ⊂ Ln for every n ≥ 1, we have that

prodim(X) = lim
n→∞

dim(wqn(X))

qn
≤ 1

q
lim

n→∞
dim(Ln)

n
= stabdim(L)

q
.

This yields (7.4.1) since stabdim(Y ) ≤ dim(Y ) for any compact metrizable
space Y . �

Example 7.4.2 Let K be a non-empty polyhedron and q ≥ 1 an integer. Take L =
K q . The subshift of finite type X ⊂ KZ with defining law (q, L) it the full shift
KZ. By applying Corollaries 7.2.3 and 3.5.10, we see that we have the equalities

mdim(X,σ) = prodim(X) = dim(L)

q
= dim(K ).

Example 7.4.3 Take K = [0, 1], q = 2 and L = [0, 1] × {0} ⊂ [0, 1]2 = K q .
The subshift of finite type X ⊂ KZ with defining law (q, L) is reduced to the
identically-zero sequence. In this case, we have that

mdim(X,σ) = prodim(X) = 0 <
stabdim(L)

q
= dim(L)

q
= 1

2
.

7.5 Subshifts of Block-Type

Let K be a topological space. Let q ≥ 1 be an integer and B a closed subset of K q .
Define the subset X0 ⊂ KZ by

X0 := {x = (xi )i∈Z ∈ KZ | (xkq , xkq+1, . . . , xkq+q−1) ∈ B for all k ∈ Z}.
(7.5.1)

Clearly X0 is σq -invariant. Observe that

X0 = {x ∈ KZ | wq(σkq(x)) ∈ B for all k ∈ Z}
=

⋂

k∈Z
σ−kqw−1

q (B).

This shows that X0 is the intersection of closed subsets of KZ and hence closed in
KZ.

Proposition 7.5.1 The dynamical system (X0,σ
q) is topologically conjugate to the

shift on BZ.

Proof Consider the map ϕ : X0 → BZ that sends each x = (xi )i∈Z ∈ X0 to the
sequence y = (yk)k∈Z ∈ BZ defined by

yk := (xkq , xkq+1, . . . , xkq+q−1)

http://dx.doi.org/10.1007/978-3-319-19794-4_3
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for all k ∈ Z. Clearlyϕ is a homeomorphism from X0 onto BZ and satisfiesϕ◦σq =
σB ◦ ϕ. Thus, ϕ conjugates the dynamical systems (X0,σ

q) and (BZ,σB). �
Consider now the subset X ⊂ KZ defined by

X := {x ∈ KZ | there exists k ∈ Z such that σk(x) ∈ X0}.

In other words, the set X consists of all sequences x ∈ KZ that can be obtained by
concatenating elements of B. It is clear from this characterization of the elements of
X that X is σ-invariant. On the other hand, since

X =
⋃

0≤m≤q−1

σ−m(X0),

the set X is a finite union of closed subsets of KZ and hence closed in KZ. Conse-
quently, X is a subshift of KZ. One says that X is the subshift of block-type of KZ

associated with the pair (q, B).

Proposition 7.5.2 Let K be a compact metrizable space with dim(K ) < ∞, q ≥ 1
an integer, and B a non-empty closed subset of K q . Let X ⊂ KZ denote the subshift
of block-type associated with (q, B). Then one has

mdim(X,σ) ≤ prodim(X) = stabdim(B)

q
≤ dim(B)

q
. (7.5.2)

Proof For every n ≥ 1, we have that

Bn ⊂ wqn(X) ⊂
⋃

0≤m≤q−1

K m × Bn−1 × K q−m .

By applying Corollaries 1.2.6 and 4.5.6, we deduce that

dim(Bn) ≤ dim(wqn(X)) ≤ dim(Bn−1) + q dim(K ).

After dividing by qn and letting n tend to infinity, we conclude that

prodim(X) = stabdim(B)

q
.

This gives us (7.5.2) since mdim(X,σ) ≤ prodim(X) by Theorem 7.3.5. �
Theorem 7.5.3 Let K be a compact metrizable space with dim(K ) < ∞, q ≥ 1 an
integer, and B ⊂ K q a polyhedron. Let X ⊂ KZ denote the subshift of block-type
associated with (q, B). Then one has

mdim(X,σ) = dim(B)

q
. (7.5.3)

http://dx.doi.org/10.1007/978-3-319-19794-4_1
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Proof The inequality

mdim(X,σ) ≤ dim(B)

q
.

follows from Proposition 7.5.2.
On the other hand, consider the closed σq -invariant subset X0 ⊂ X defined by

(7.5.1). As the dynamical system (X0,σ
q) is topologically conjugate to the shift on

BZ by Proposition 7.5.1, we have that

mdim(X,σ) = mdim(X,σq)

q
(by Proposition 6.4.2)

≥ mdim(X0,σ
q)

q
(by Proposition 6.4.5)

= mdim(BZ,σB)

q
(by Proposition 6.4.1)

= dim(B)

q
(by Corollary 7.2.3).

This shows (7.5.3). �

7.6 Construction of Subshifts with Prescribed Mean
Dimension

In this section, we shall prove in particular that the mean topological dimension of a
dynamical system can take any value in [0,∞] (see Corollary 7.6.5).

Lemma 7.6.1 Let K := [0, 1] and m ≥ 1 an integer. Let I ⊂ {1, . . . , m} a subset
with cardinality r . Let B be the subset of K m defined by

B := {(u1, . . . , um) ∈ K m | ui = 0 for all i /∈ I }.

Let X ⊂ KZ denote the subshift of block-type associated with (m, B). Then one has

mdim(X,σ) = r

m
.

Proof Since the space B is homeomorphic to [0, 1]r , we deduce from Theorem 7.5.3
that

mdim(X,σ) = dim([0, 1]r )
m

= r

m
. �

It follows from Theorem 7.2.1 and Proposition 6.4.5 that every subshift X ⊂
[0, 1]Z satisfies 0 ≤ mdim(X,σ) ≤ 1. Conversely, we have the following result.

http://dx.doi.org/10.1007/978-3-319-19794-4_6
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Theorem 7.6.2 Let λ be a real number such that 0 ≤ λ ≤ 1. Then there exists a
subshift X ⊂ [0, 1]Z such that mdim(X,σ) = λ.

Proof Let us choose some integer q ≥ 2 that will serve as a numeration base (for
example q = 10 if you are used to count on your fingers). For each integer n ≥ 0,
let

En := {0, 1, . . . , qn − 1}

denote the set consisting of all non-negative integers that are less than qn . Let an ∈ N

denote the integral part of qnλ and let bn := an + 1. Then the sequences (un) and
(vn) defined by

un := an

qn
and vn := bn

qn

satisfy

un ≤ λ < vn and vn − un <
1

qn
.

It follows that
lim

n→∞ un = lim
n→∞ vn = λ.

Moreover, the sequence (un) (resp. (vn)) is non-decreasing (resp. non-increasing).
Let πn : En+1 → En denote the map that sends each k ∈ En+1 to the remainder

of the Euclidean division of k by qn . As qan ≤ an+1 ≤ bn+1 ≤ qbn for all n, we
can construct by induction on n two sequences (In)n∈N and (Jn)n∈N of subsets of N

satisfying the following conditions:

(C1) In ⊂ Jn ⊂ En ,
(C2) #In = an and #Jn = bn ,
(C3) π−1

n (In) ⊂ In+1 and Jn+1 ⊂ π−1
n (Jn)

for all n ≥ 0. Indeed, we can start by taking I0 = ∅ and J0 = {0}. Then, assuming
that the subsets In and Jn have already been constructed and that they satisfy (C1)
and (C2), we remark that

π−1
n (In) ⊂ π−1

n (Jn),

by (C1). On the other hand, we have that #π−1
n (In) = qan and #π−1

n (Jn) = qbn .
Thus, we can find sets In+1 and Jn+1 satisfying

π−1
n (In) ⊂ In+1 ⊂ Jn+1 ⊂ π−1

n (Jn),

#In+1 = an+1 and #Jn+1 = bn+1.
Let K := [0, 1]. Consider the subsets An and Bn of K qn

defined by

An := {(u0, . . . , uqn−1) ∈ K qn | ui = 0 if i /∈ In}, and

Bn := {(u0, . . . , uqn−1) ∈ K qn | ui = 0 if i /∈ Jn}.
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Let Yn ⊂ KZ and Zn ⊂ KZ denote the subshifts of block-type associated with
(qn, An) and (qn, Bn) respectively. Conditions (C1) and (C3) imply that

Yn ⊂ Yn+1 ⊂ Zn+1 ⊂ Zn

for all n ≥ 0.
Consider now the subshift X ⊂ KZ defined by

X :=
⋂

n≥0

Zn .

It follows from Lemma 7.6.1 and Condition (C2) that

mdim(Yn,σ) = an

qn
= un, and

mdim(Zn,σ) = bn

qn
= vn .

As X ⊂ Zn , Proposition 6.4.5 gives us

mdim(X,σ) ≤ mdim(Zn,σ) = vn

for all n ≥ 0. By letting n tend to infinity, we obtain

mdim(X,σ) ≤ λ. (7.6.1)

On the other hand, for every N ≥ n, we have that Yn ⊂ YN ⊂ Z N . We deduce that

Yn ⊂
⋂

N≥n

Z N = X.

By applying again Proposition 6.4.5, this gives us

un = mdim(Yn,σ) ≤ mdim(X,σ)

for all n ≥ 0. By letting n tend to infinity, we finally get

λ ≤ mdim(X,σ). (7.6.2)

Inequalities (7.6.1) and (7.6.2) imply that mdim(X,σ) = λ. �

Corollary 7.6.3 Let n be a positive integer and let K := [0, 1]n be the n-dimensional
cube. Letρbe a real number such that0 ≤ ρ ≤ n. Then there exists a subshift Y ⊂ KZ

such that mdim(Y,σK ) = ρ.

http://dx.doi.org/10.1007/978-3-319-19794-4_6
http://dx.doi.org/10.1007/978-3-319-19794-4_6
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Proof ByTheorem7.6.2,we canfind a subshift X ⊂ [0, 1]Z such thatmdim(X,σ) =
ρ/n. Now consider the map h : [0, 1]Z → KZ that sends each x = (xi )i∈Z ∈ [0, 1]Z
to the sequence y = (yi )i∈Z ∈ KZ defined by

yi := (xni , xni+1, . . . , xni+n−1)

for all i ∈ Z. Clearly h is a homeomorphism conjugating σn and σK . It follows that
Y := h(X) is a subshift of KZ and that the dynamical systems (X,σn) and (Y,σK )

are topologically conjugate. As

mdim(Y,σK ) = mdim(X,σn) (by Proposition 6.4.1)

= n mdim(X,σ) (by Proposition 6.4.2)

= ρ,

the subshift Y ⊂ KZ has the required properties. �

Corollary 7.6.4 Let P be a polyhedron and ρ a real number such that 0 ≤ ρ ≤
dim(P). Then there exists a subshift Z ⊂ PZ such that mdim(Z ,σ) = ρ.

Proof If n := dim(P), then P contains a subset A homeomorphic to [0, 1]n .
By Corollary 7.6.3, we can find a subshift Z ⊂ AZ ⊂ PZ such that mdim
(Z ,σ) = ρ. �

Corollary 7.6.5 For every δ ∈ [0,∞], there exists a dynamical system (X, T ),
where X is a compact metrizable space and T : X → X is a homeomorphism, such
that mdim(X, T ) = δ.

Proof This immediately follows from Corollaries 7.6.3 and 7.2.4. �

Notes

The branch of the theory of dynamical systems devoted to the investigation of the
dynamical properties of shift maps σ : KZ → KZ is known as symbolic dynamics.
The most studied case is when the symbol space K is a finite or countably infinite
discrete space (see for example [59, 70]).

Theorem 7.2.1 is in [44, 74]. Theorem 7.3.5 is a particular case of Proposition 1.9.
A in [44].

As mentioned in the Notes on Chap.6, Boltyanskiı̌ [15, 16] gave examples of
compact metrizable spaces K satisfying stabdim(K ) < dim(K ). For such spaces
K , we have that mdim(KZ,σ) < dim(K ) by Theorem 7.1.3. It would be interesting
to find an example of a compact metrizable space K for which mdim(KZ,σ) <

stabdim(K ).

http://dx.doi.org/10.1007/978-3-319-19794-4_6
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Exercises

7.1 Let K be a metrizable space and let dK be a bounded metric on K that is
compatible with its topology. Show that if the set KZ is equipped with the
metric d defined by Formula (7.1.1), then the shift map σ : KZ → KZ is
2-Lipschitz, i.e., it satisfies d(σ(x),σ(y)) ≤ 2d(x, y) for all x, y ∈ KZ.

7.2 Let X be a topological space and T : X → X a continuousmap. The dynamical
system (X, T ) is called topologically mixing if, given any two non-empty
open subsets U and V of X , there are only finitely many n ∈ Z such that
T n(U ) ∩ V = ∅. Let K be a topological space and let σ : KZ → KZ denote
the shift map on KZ. Show that the dynamical system (KZ,σ) is topologically
mixing.

7.3 Let K and L be topological spaces. Show that the dynamical systems ((K ×
L)Z,σK×L) and (KZ × LZ,σK × σL) are topologically conjugate.

7.4 Let K := {0, 1} and σ : KZ → KZ the shift map. Let X denote the subset of
KZ consisting of all x = (xi )i∈Z ∈ KZ such that there is at most one integer
i ∈ Z with xi = 1.

(a) Show that X is a subshift of KZ.
(b) Show that the subshift X is not of finite type.
(c) Show that the dynamical system (X,σ) is not topologically mixing.

7.5 Let K := {0, 1} and σ : KZ → KZ the shift map. Let X denote the subset
of KZ consisting of all sequences with no consecutive 1s. Let Y denote the
subset of KZ consisting of all sequences such that between any two 1s there
are always an even number of 0s.

(a) Show that X and Y are subshifts of KZ. The subshifts X is called the
golden mean subshift and the subshift Y is called the even subshift.

(b) Show that the dynamical systems (X,σ) and (Y,σ) are not topologically
conjugate. Hint: count fixed points.

(c) Show that the subshift X is of finite type but Y is not.
(d) Show that the dynamical systems (X,σ) and (Y,σ) are both topologically

mixing.
(e) Show that the map f : X → Y that sends each x = (xi )i∈Z ∈ X to the

sequence y = (yi )i∈Z given by

yi =
{
1 if xi = xi+1 = 0

0 otherwise,

is well defined, continuous and surjective, ant that it commutes with the
shift.

7.6 Let K be a finite discrete topological space with cardinality k. Given an integer
n ≥ 1, let πn : KZ → K n be the map defined by
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πn(x) := (x0, x1, . . . , xn−1)

for all x = (xi )i∈Z ∈ KZ. Let X ⊂ KZ be a non-empty subshift. For n ≥ 1,
let γn(X) denote the cardinality of the set πn(X).

(a) Show that the sequence (log γn(X))n≥1 is subadditive.
(b) Show that the limit

h(X) := lim
n→∞

log γn(X)

n

exists and satisfies 0 ≤ h(X) ≤ log k. This limit is called the entropy of
the subshift X .

(c) Show that h(X) = htop(X,σ), where htop(X,σ) is the topological entropy
of the dynamical system (X,σ) (cf. Exercise 6.11).

(d) Take K = {0, 1} and suppose that X ⊂ KZ is the subshift considered in
Exercise 7.4. Show that h(X) = 0.

(e) Take again K = {0, 1}. Show that the goldenmean subshift X and the even
subshift Y (cf. Exercise 7.5) have the same entropy h(X) = h(Y ) = logφ,
where φ := (1 + √

5)/2 is the golden mean. Hint: check that γn+2(X) =
γn+1(X) + γn(X) and γn(Y ) = γn+1(X) − 1 for all n ≥ 1.

(f) Show that if Y ⊂ KZ is a subshift such that X ⊂ Y , then h(X) ≤ h(Y ).
(g) Show that if X is the subshift of block type associated with a pair (q, B),

where q ≥ 1 is an integer and B ⊂ K q has cardinality b, then

h(X) = log b

q log k
.

(h) Show that if ρ is a real number such that 0 ≤ ρ ≤ log k, then there exists
a subshift X ⊂ KZ such that h(X) = ρ. Hint: adapt the ideas used in the
proof of Theorem 7.6.2.

7.7 Let X be a compact metrizable space and T : X → X a homeomorphism. Let
d be a metric on X defining the topology. One says that the homeomorphism
T is expansive if there exists a real number δ > 0 satisfying the following
condition: if two points x, y ∈ X are such that d(T n(x), T n(y)) ≤ δ for all
n ∈ Z then x = y.

(a) Show that the above definition does not depend on the choice of d.
(b) Show that the following conditions are equivalent: (1) the homeomorphism

T is expansive and dim(X) = 0; (2) there exist a finite discrete topological
space K and a subshift Y ⊂ KZ such that the dynamical systems (X, T )

and (Y,σ) are topologically conjugate.

7.8 Let K be a finite discrete topological space and let σ : KZ → KZ denote the
shift map. One says that a map f : KZ → KZ is a cellular automaton if f is
continuous and satisfies f ◦ σ = σ ◦ f .

http://dx.doi.org/10.1007/978-3-319-19794-4_6
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(a) Let f : KZ → KZ be a map. Show that f is a cellular automaton if and
only if it satisfies the following condition: there exist an integer n ≥ 0
and a map μ : K 2n+1 → K such that, for all x = (xi )i∈Z ∈ KZ, one has
f (x) = (yi )i∈Z, where

yi = μ(xi−n, xi−n+1, . . . , xi+n)

for all i ∈ Z.
(b) Show that if f : KZ → KZ and g : KZ → KZ are cellular automata, then

their composite map f ◦ g : KZ → KZ is also a cellular automaton.
(c) Show that if f : KZ → KZ is a bijective cellular automaton, then its

inverse map f −1 : KZ → KZ is also a cellular automaton.

7.9 Let K := [0, 1] denote the unit segment and σ : KZ → KZ the shift map.
Let X denote the subset of KZ consisting of all x = (xi )i∈Z ∈ KZ such that
xi + xi+1 = 1 for all i ∈ Z.

(a) Show that X is a subshift of finite type of KZ.
(b) Show that (X,σ) is topologically conjugate to the dynamical system

(K , f ), where f : K → K is the map defined by f (t) = 1 − t for
all t ∈ K .

(c) Show that mdim(X,σ) = 0.

7.10 Let K ⊂ C denote the unit circle K := S
1 = {z ∈ C : |z| = 1} and let

σ : KZ → KZ be the shift map. Consider the subset X ⊂ KZ defined by

X := {(zn)n∈Z ∈ KZ : z2n = z3n+1 for all n ∈ Z}.

(a) Show that X is a subshift of finite type.
(b) Show that mdim(X,σ) = 0. Hint: observe thatwn(X), wherewn : KZ →

K n is defined by (7.3.1), is homeomorphic to S
1 for all n ≥ 1 and then

apply Theorem 7.3.5.

7.11 Let K be a compact Hausdorff space and let σ : KZ → KZ denote the shift
map. Show that a closed subset X ⊂ KZ is a subshift of finite type if and only
if it satisfies the following condition: there exists a finite subset � ⊂ Z such
that

X = {x ∈ KZ | π�(σn(x)) ∈ π�(X) for all n ∈ Z}

(here π� : KZ → K � denotes the canonical projection map).



Chapter 8
Applications of Mean Dimension
to Embedding Problems

In this chapter, we prove the embedding theorem of Jaworski (Theorem 8.3.1) which
asserts that every dynamical system (X, T ), where T is a homeomorphism without
periodic points of a compact metrizable space X such that dim(X) < ∞, embeds in
the shift (RZ,σ). We also describe a family of counterexamples due to Lindenstrauss
andWeiss showing that one cannot remove the hypothesis that X hasfinite topological
dimension in the statement of Jaworski’s theorem, even if the dynamical system
(X, T ) is assumed to be minimal.

8.1 Generalities

Let X be a topological space and T : X → X a homeomorphism. The orbit of a
point x ∈ X is the set

OT (x) := {T n(x) | n ∈ Z}.

The orbits of the points of X form a partition of X .
One says that a point x ∈ X is a fixed point of T if T (x) = x . This amounts to

saying that the orbit of x is reduced to the point x itself. The set

Fix(T ) := {x ∈ X | T (x) = x}

is a T -invariant subset of X . Note that Fix(T ) is closed in X if X is Hausdorff.
One says that x ∈ X is a periodic point of T if the orbit of x is finite. The set

Per(T ) consisting of all periodic points of T is a T -invariant subset of X and one has

Per(T ) =
⋃

n≥1

Pern(T ),

where Pern(T ) := Fix(T n) is the set consisting of all fixed points of T n . Observe
that the set Pern(T ) is also T -invariant for each n.

© Springer International Publishing Switzerland 2015
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Example 8.1.1 Let K be a topological space and σ : KZ → KZ the shift map. Then
the set Pern(σ) consists of all sequences (xi ) ∈ KZ such that xi+n = xi for all i ∈ Z.
The map h : Pern(σ) → K n defined by

h(x) := (x0, x1, . . . , xn−1)

is a homeomorphism. Moreover, if τn denotes the cyclic permutation of coordi-
nates on K n , i.e., the map (x0, x1, . . . , xn−1) �→ (x1, x2, . . . , x0), then h conjugates
the dynamical systems (Pern(σ),σ) and (K n, τn). In particular, Per1(σ) = Fix(σ),
which consists of all constant sequences in KZ, is homeomorphic to K .

One says that the dynamical system (X, T ) is topologically transitive if there
exists a point in X whose orbit is dense in X .

One says that the dynamical system (X, T ) isminimal, or that the homeomorphism
T is minimal, if the orbit of every point of X is dense in X . This amounts to saying
that the only closed T -invariant subsets of X are X and the empty set.

Remark 8.1.2 Let X be an accessible topological space and T : X → X a homeo-
morphism admitting a periodic point x . Then the dynamical system (X, T ) isminimal
if and only if X is reduced to the orbit of x .

Let X and Y be topological spaces. Let T : X → X and S : Y → Y be homeomor-
phisms. One says that the dynamical system (X, T ) embeds in the dynamical system
(Y, S) if there exists a topological embedding f : X ↪−→ Y such that f ◦ T = S ◦ f .
One then says that f is an embedding of the dynamical system (X, T ) in the dynam-
ical system (Y, S). Note that the system (X, T ) embeds in (Y, S) if and only if there
exists a S-invariant subset Z ⊂ Y such that (X, T ) is topologically conjugate to
(Z , S).

Clearly every embedding of (X, T ) in (Y, S) induces an embedding of (Pern(T ),

T ) in (Pern(S), S) for every integer n ≥ 1. In particular, a necessary condition
for the existence of an embedding of (X, T ) in (Y, S) is that the space Pern(T ) is
embeddable in Pern(S) for every n ≥ 1.

Example 8.1.3 Let S
2 = {(x1, x2, x3) ∈ R

3 | x21 + x22 + x23 = 1} be the unit sphere
in R

3. Consider the equatorial symmetry τ : S
2 → S

2, i.e., the homeomorphism
of S

2 defined by τ (x1, x2, x3) = (x1, x2,−x3). Then the dynamical system (S2, τ )

cannot be embedded into the shift (RZ,σ) because the set of fixed points of τ ,
which is a circle, cannot be embedded into the set of fixed points of σ, which is
homeomorphic to R. Note that the dynamical system (S2, τ ) embeds into the shift
((R2)Z,σ). Indeed, one easily verifies that the map f : S

2 → (R2)Z that sends each
point x = (x1, x2, x3) ∈ S

2 to the sequence u = (ui ) ∈ (R2)Z defined by

ui =
{

(x1 + x3, x2) if i is even,

(x1 − x3, x2) if i is odd

yields an embedding of (S2, τ ) into ((R2)Z,σ).
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8.2 Embeddings in Shifts

Proposition 8.2.1 Let K and L be topological spaces. Then the shift (LZ,σL)

embeds in the shift (KZ,σK ) if and only if the space L embeds in K .

Proof If the shift (LZ,σL) embeds in the shift (KZ,σK ), then Fix(σL) embeds in
Fix(σK ). As Fix(σL) (resp. Fix(σK )) is homeomorphic to L (resp. K ), this implies
that L is embeddable in K .

Conversely, suppose thatϕ : L ↪−→ K is an embedding. Then the map f : LZ →
KZ, defined by f (x) = (ϕ(xi ))i∈Z for every x = (xi )i∈Z ∈ LZ is clearly an
embedding of (LZ,σL) in (KZ,σK ). �

Example 8.2.2 Let X and Y be finite sets equipped with their discrete topology.
Then X embeds in Y if and only if #(X) ≤ #(Y ). Consequently, the shift (XZ,σX )

embeds in the shift (YZ,σY ) if and only if #(X) ≤ #(Y ).

Proposition 8.2.3 Let X be a topological space and T : X → X a homeomorphism.
Suppose that K is a topological space such that X embeds in K . Then the dynamical
system (X, T ) embeds in the shift (KZ,σ).

Proof Letϕ : X ↪−→ K be a topological embedding.Consider themap f : X → KZ

that sends each point x ∈ X to the sequence (ui ) ∈ KZ defined by ui = ϕ(T i (x))

for all i ∈ Z. Clearly f satisfies f ◦ T = σ ◦ f . On the other hand, f induces a
bijective map from X onto f (X) whose inverse is the map π : f (X) → X given by
(ui ) �→ ϕ−1(u0). As the maps f and π are obviously continuous, we deduce that f
is an embedding of (X, T ) in (KZ,σ). �

Corollary 8.2.4 Let X be a compact metrizable space and T : X → X a homeo-
morphism. Let K := [0, 1]N denote the Hilbert cube. Then the dynamical system
(X, T ) embeds in the shift (KZ,σ).

Proof By Proposition 2.4.18, every compact metrizable space embeds in the Hilbert
cube. �

Corollary 8.2.5 Let X be a compact metrizable space such that dim(X) < ∞ and
T : X → X a homeomorphism. Then the dynamical system (X, T ) embeds in the
shift ((Rn)Z,σ) for n = 2 dim(X) + 1.

Proof The space X embeds in K := R
n by Corollary 4.7.6. �

Remark 8.2.6 Let K be a compact metrizable space with dim(K ) = ∞ (e.g., the
Hilbert cube [0, 1]N). Let T denote the shift map on the compact metrizable space
X := KZ. Then there is no integer n such that the dynamical system (X, T ) embeds
in the shift ((Rn)Z,σ). Indeed, the set of fixed points of the shift σ on (Rn)Z is
homeomorphic to R

n while the set of fixed points of T , which is homeomorphic to
K , cannot be embedded in R

n .

http://dx.doi.org/10.1007/978-3-319-19794-4_2
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Proposition 8.2.7 Let X be a compact space and K a Hausdorff space. Let T : X →
X be a homeomorphism. Then the following conditions are equivalent:

(a) the dynamical system (X, T ) embeds in the shift (KZ,σ);
(b) there exists a continuous map f : X → K satisfying the following condition:

given any two distinct points x and y in X, there is an integer i ∈ Z such that
f (T i (x)) 
= f (T i (y)).

Proof Suppose (a). Then there exists an embedding ϕ : X → KZ such that ϕ ◦ T =
σ ◦ ϕ. Let x and y be distinct points of X . The injectivity of ϕ implies the existence
of an integer i ∈ Z such that the terms of rank i of the sequences ϕ(x) and ϕ(y) are
distinct. Therefore, we have that

π ◦ σi ◦ ϕ(x) 
= π ◦ σi ◦ ϕ(y),

where π : KZ → K denotes the projection on the 0-factor. As σi ◦ ϕ = ϕ ◦ T i ,

it follows that the map f = π ◦ ϕ : X → K satisfies f (T i (x)) 
= f (T i (y)). This
shows that (a) implies (b).

Conversely, suppose that f : X → K is a map as in (b). Consider the map
ϕ : X → KZ that sends each point x ∈ X to the sequence (ui ) ∈ KZ defined
by ui = f (T i (x)) for all i ∈ Z. Clearly ϕ is continuous and satisfies σ ◦ ϕ = ϕ ◦ T .
Our hypothesis on f implies thatϕ is injective. As X is compact and KZ is Hausdorff,
we deduce that ϕ induces a homeomorphism from X onto ϕ(X). This shows that (b)
implies (a). �

Example 8.2.8 Take as X the unit circle

S
1 = {(x1, x2) ∈ R

2 | x21 + x22 = 1}.

Let α be a real number that is not an integer multiple of π and let T : X → X denote
the rotation of angle α, i.e., the map given by

T (x) = (x1 cosα − x2 sinα, x1 sinα + x2 cosα)

for all x = (x1, x2) ∈ X . Let σ denote the shift map on R
Z. Consider the vertical

projection f : X → R, i.e., themap defined by f (x1, x2) = x1. If x and y are distinct
points in X that lie on the same vertical, then the angle between the horizontal and
the line passing through the points T (x) and T (y) is π/2 + α, so that f (T (x)) 
=
f (T (y)). Thus, every pair of distinct points x, y ∈ X satisfy f (x) 
= f (y) or
f (T (x)) 
= f (T (y)). By applying Proposition 8.2.7, we deduce that the dynamical
system (X, T ) embeds in the shift (RZ,σ).
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8.3 Jaworski’s Embedding Theorem

Let X be a compact metrizable space with dim(X) < ∞ and T : X → X a homeo-
morphism. By Corollary 8.2.5, there exists an integer n ≥ 1 such that the dynamical
system (X, T ) embeds in the shift ((Rn)Z,σ). A natural question that immediately
arises is to determine the smallest integer n such that (X, T ) can be embedded in
the shift ((Rn)Z,σ). Let us denote this integer n0(X, T ). For example, if τ is the
equatorial symmetry on the sphere S

2 then n0(S
2, τ ) = 2 (see Example 8.1.3). The

following theorem shows that one always has n0(X, T ) = 1 if T has no periodic
points.

Theorem 8.3.1 (Jaworski’s embedding theorem) Let X be a compact metrizable
space with dim(X) < ∞ and let T : X → X be a homeomorphism without periodic
points. Then the dynamical system (X, T ) embeds in the shift (RZ,σ).

Let (X, T ) be a dynamical system satisfying the hypotheses of Theorem 8.3.1.
We shall use the following notation. The vector space consisting of all continuous
maps f : X → R is denoted by C(X). We equip C(X) with the sup-norm ‖ · ‖∞
given by ‖ f ‖∞ = supx∈X | f (x)|.

Let � denote the complement of the diagonal in X × X , that is, the open subset
of X × X defined by

� := {(x, y) ∈ X × X | x 
= y}.

For each subset K ⊂ �, we denote by D(K ) the set consisting of all maps f ∈ C(X)

satisfying the following property: for every (x, y) ∈ K , there exists i ∈ Z such that
f (T i (x)) 
= f (T i (y)).
Let us start by establishing some auxiliary results.

Lemma 8.3.2 Let K be a compact subset of �. Then D(K ) is an open subset of
C(X).

Proof Let f ∈ D(K ). Then the map H : X × X → R defined by

H(x, y) := sup
i∈Z

| f (T i (x)) − f (T i (y))|

satisfies H(x, y) > 0 for all (x, y) ∈ K . The map H is lower semi-continuous since
it is the supremum of a family of continuous maps. As K is compact, the restriction
of H to K attains its infimum. It follows that there exists a real number δ > 0 such
that H(x, y) ≥ δ for all (x, y) ∈ K .

Consider now a map g ∈ C(X) such that ‖ f − g‖∞ ≤ δ/4. Let (x, y) ∈ K .
Using the triangle inequality, we obtain, for every i ∈ Z,

|g(T i (x)) − g(T i (y))| ≥ | f (T i (x)) − f (T i (y))| − | f (T i (x)) − g(T i (x))|
− | f (T i (y)) − g(T i (y))|

≥ | f (T i (x)) − f (T i (y))| − δ

2
.
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We deduce that

sup
i∈Z

|g(T i (x)) − g(T i (y))| ≥ H(x, y) − δ

2
≥ δ

2
> 0.

It follows that g ∈ D(K ). Consequently, the set D(K ) is open in C(X). �

Lemma 8.3.3 Let (x, y) ∈ � and let m be a positive integer. Then there exist integers
i1, . . . , im ∈ Z such that the points

T i1(x), . . . , T im (x), T i1(y), . . . , T im (y)

are pairwise distinct.

Proof By our hypotheses, the homeomorphism T has no periodic points. This means
that, for every z ∈ X , the map i �→ T i (z) yields a bijection from Z onto the orbit of
z. If x and y are not in the same orbit, we can take as i1, . . . , im arbitrary pairwise
distinct integers. Otherwise, we have that y = T n(x) for some integer n 
= 0. Then
we can construct a sequence i1, . . . , im by induction on m in the following way.
For m = 1, we can take any i1 ∈ Z. Suppose that i1, . . . , im have already been
constructed. Then we can take as im+1 any integer that does not belong to the set
{i1, . . . , im} ∪ {i1 + n, . . . , im + n} ∪ {i1 − n, . . . , im − n}. �

Lemma 8.3.4 Let (x0, y0) ∈ �. Then there exists a compact neighborhood K of
(x0, y0) in � such that D(K ) is dense in C(X).

Proof Let m be an integer such that m ≥ 2 dim(X) + 1. By applying Lemma 8.3.3,
we can find integers i1, . . . , im ∈ Z such that the points T i1(x0), . . . , T im (x0),
T i1(y0), . . . , T im (y0) are pairwise distinct. As X is compact and Hausdorff, there
exist a compact neighborhood V of x0 in X and a compact neighborhood W of y0
in X such that the sets

T i1(V ), . . . , T im (V ), T i1(W ), . . . , T im (W )

are pairwise disjoint. Observe that V ∩ W = ∅ and that the set K := V × W is a
compact neighborhood of (x0, y0) in �. Let us show that D(K ) is dense in C(X).
Suppose that f ∈ C(X) and let ε > 0. Consider themapϕ : V ∪W → R

m defined by

ϕ(x) := ( f (T i1(x)), . . . , f (T im (x)))

for all x ∈ V ∪ W . As m ≥ 2 dim(X)+1 ≥ 2 dim(V ∪ W )+1 by Proposition 1.2.1,
we deduce from Theorem 4.7.5 that there exists an embedding ψ : V ∪ W ↪−→ R

m

such that
‖ϕ(x) − ψ(x)‖ ≤ ε for all x ∈ V ∪ W, (8.3.1)

http://dx.doi.org/10.1007/978-3-319-19794-4_1
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where ‖ · ‖ denotes the Euclidean norm on R
m . Write ψ = (ψ1, . . . ,ψm) and

Z := T i1(V ) ∪ · · · ∪ T im (V ) ∪ T i1(W ) ∪ · · · ∪ T im (W ).

Consider now the map h : Z → R defined by h(z) := ψk(T −ik (z)) for all z ∈
T ik (V )∪ T ik (W ) (1 ≤ k ≤ m). Clearly h is well defined and continuous. Moreover,
for every z ∈ T ik (V ) ∪ T ik (W ), we have, by setting x := T −ik (z) and using (8.3.1),

|h(z) − f (z)| = |ψk(x) − f (T ik (x))| ≤ ‖ψ(x) − ϕ(x)‖ ≤ ε.

It follows that |h(z) − f (z)| ≤ ε for all z ∈ Z . By Corollary 4.1.5, we can extend
h to a continuous map g : X → R such that ‖g − f ‖∞ ≤ ε. Let us show that
g ∈ D(K ). Let (x, y) ∈ K = V × W . As ψ is injective, there exists k ∈ {1, . . . , m}
such that ψk(x) 
= ψk(y). Since g(T ik (x)) = h(T ik (x)) = ψk(x) and g(T ik (y)) =
h(T ik (y)) = ψk(y), we deduce that g(T ik (x)) 
= g(T ik (y)). Thus, we have that
g ∈ D(K ). This shows that D(K ) is dense in C(X). �

Proof of Theorem 8.3.1 By virtue of Proposition 8.2.7, it is enough to prove that
D(�) is not empty. It follows from Lemma 8.3.2 and Lemma 8.3.4 that, for every
(x, y) ∈ �, we can find a compact neighborhood K of (x, y) in � such that D(K )

is a dense open subset of C(X). The space � ⊂ X × X is a Lindelöf space since
every subset of a compact metrizable space is Lindelöf by Corollary 2.4.14 and
Proposition 2.4.18. Therefore we can cover � by a sequence (Kn)n∈N of compact
subsets such that D(Kn) is a dense open subset of C(X) for every n. As C(X) is
complete, we can apply Baire’s theorem and conclude that D(�) = ⋂

n∈N D(Kn)

is dense in C(X) and hence non-empty. �

Corollary 8.3.5 Let X be a compact metrizable space with dim(X) < ∞ and let
T : X → X be a minimal homeomorphism. Then the dynamical system (X, T )

embeds in the shift (RZ,σ).

Proof If T has no periodic points, this follows from Theorem 8.3.1. On the other
hand, if x ∈ X is a periodic point of T , then the minimality of T implies that
X is reduced to the orbit of x (see Remark 8.1.2). Consequently, the set X is
finite. As every finite discrete space can be topologically embedded in the real
line, we conclude that the dynamical system (X, T ) embeds in (RZ,σ) by applying
Proposition 8.2.3. �

8.4 The Lindenstrauss-Weiss Counterexamples

The goal of this section is to establish the following result which shows that the
finiteness hypothesis on the topological dimension of X cannot be removed from the
statement of Corollary 8.3.5.

http://dx.doi.org/10.1007/978-3-319-19794-4_4
http://dx.doi.org/10.1007/978-3-319-19794-4_2
http://dx.doi.org/10.1007/978-3-319-19794-4_2
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Theorem 8.4.1 There exists a minimal dynamical system (X, T ), where X is a com-
pact metrizable space and T : X → X a homeomorphism, that cannot be embedded
in the shift (RZ,σ).

Remark 8.4.2 A dynamical system (X, T ) that satisfies the conditions of
Theorem 8.4.1 has no periodic points (see the proof of Corollary 8.3.5). Conse-
quently, Theorem 8.4.1 also shows that the finiteness hypothesis on the topological
dimension of X cannot be removed from the statement of Theorem 8.3.1.

Theorem 8.4.1 is an immediate consequence of the following result.

Theorem 8.4.3 Let N ≥ 2 be an integer and let K := [0, 1]N denote the
n-dimensional cube. Then there exists a subshift X ⊂ KZ such that the dynami-
cal system (X,σ) is minimal and satisfies mdim(X,σ) > 1.

Indeed, if X is a compact metrizable space and T : X → X a homeomor-
phism such that the dynamical system (X, T ) embeds in (RZ,σ), then (X, T )

embeds in ([0, 1]Z,σ) (since R embeds in [0, 1]), and hence mdim(X, T ) ≤
mdim([0, 1]Z,σ) = 1 by Corollary 6.4.7 and Theorem 7.2.1.

The remainder of this section is devoted to the proof of Theorem 8.4.3. Let us
first establish some auxiliary results.

Lemma 8.4.4 Let K be a topological space, q ∈ N, and B a separable closed subset
of K q . Let X ⊂ KZ denote the subshift of block-type associated with (q, B). Then
the dynamical system (X,σ) is topologically transitive.

Proof Let A be a countable dense subset of B. As the disjoint union
∐

k≥1 Ak is
countable, there exists a sequence (un)n∈Z of elements of A satisfying the following
property: for every integer k ≥ 1 and every (a1, . . . , ak) ∈ Ak , there exists n0 ∈
Z such that (un0 , . . . , un0+k−1) = (a1, . . . , ak). Consider now the sequence x =
(xi )i∈Z ∈ X defined by (xqn, . . . , xqn+q−1) = un for all n ∈ Z. Then, it follows
from our construction that, given any non-empty open subset U of X , there exists
m ∈ Z such that σm(x) ∈ U . Consequently, the orbit of x is dense in X . This shows
that the dynamical system (X, T ) is topologically transitive. �

Let (X, d) be a metric space. Given a real number ε > 0, one says that a subset
Y ⊂ X is ε-dense in X if, for every x ∈ X , there exists y ∈ Y such that d(x, y) ≤ ε.

Lemma 8.4.5 Let (E, d) be a metric space and T : E → E a homeomorphism.
Let (Xn)n∈N be a sequence of subsets of E such that T (Xn) = Xn for all n ∈ N.
Let X := ⋂

n∈N Xn. Suppose that there exists a sequence (εn)n∈N of positive real
numbers converging to 0 such that, for all n ∈ N and x ∈ Xn, the T -orbit of x is
εn-dense in Xn. Then the dynamical system (X, T ) is minimal.

Proof Let x and y be points in X . Then, for every n ∈ N, we have that x, y ∈ Xn .
Therefore, we can find an integer kn ∈ Z such that d(T kn (x), y) ≤ εn . As the
sequence (εn) converges to 0, this implies that the orbit of x is dense in X . �

http://dx.doi.org/10.1007/978-3-319-19794-4_6
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Lemma 8.4.6 Let (X, d) be a compact metric space and T : X → X a homeomor-
phism. Suppose that y is a point of X with dense T -orbit and let ε > 0. Then there is
an integer m ≥ 0 such that, for every x ∈ X, there exists an integer k ∈ {−m, . . . , m}
such that d(x, T k(y)) < ε.

Proof As the orbit of y is dense, we can find for every x ∈ X , n(x) ∈ Z such that
d(x, T n(x)(y)) < ε. By continuity of the metric, there exists a neighborhood Vx of x
such that d(z,σn(x)(y)) < ε for all z ∈ Vx . The compactness of X implies that there
exists a finite subset A ⊂ X such that the sets Vx , where x ∈ A, cover X . Then the
integer m := maxx∈A |n(x)| has the required property. �

The upper-density δ(J ) ∈ [0, 1] of a subset J ⊂ N is defined by

δ(J ) := lim sup
n→∞

#(J ∩ {0, 1, . . . , n − 1})
n

.

Example 8.4.7 If J is a finite subset of N, then δ(J ) = 0.

Example 8.4.8 If J := {1, 3, 5, . . . } is the subset of N consisting of all positive odd

numbers, then δ(J ) = 1

2
.

In what follows, we fix some integer N ≥ 0 and K := [0, 1]N denotes the N -
dimensional cube. For A ⊂ Z, we denote by πA : KZ → K A the projection map,
i.e., the map given by πA(x) := (xi )i∈A ∈ K A for all x = (xi )i∈Z ∈ KZ. We denote
by dK the metric induced on K ⊂ R

N by the norm ‖ · ‖∞ and we equip KZ with the
metric d defined by Formula (7.1.1).

Lemma 8.4.9 Let X ⊂ KZ be a subshift. Suppose that there exist an element x =
(xi )i∈Z ∈ X and a subset J ⊂ N satisfying the following condition: if x = (xi )i∈Z ∈
KZ is such that πZ\J (x) = πZ\J (x), then one has x ∈ X. Then X satisfies

mdim(X,σ) ≥ Nδ(J ).

Proof (cf. the proof of Theorem 7.2.1 and that of Lemma 7.6.1) Recall that

dK (x0, y0) ≤ d(x, y) (8.4.1)

for all x = (xi ), y = (yi ) ∈ KZ.
Consider, for every n ≥ 1, the metric dn on X defined by

dn(x, y) := max
0≤k≤n−1

d(σk(x),σk(y)).

Define the subset Jn ⊂ N by

Jn := J ∩ {0, 1, . . . , n − 1},

http://dx.doi.org/10.1007/978-3-319-19794-4_7
http://dx.doi.org/10.1007/978-3-319-19794-4_7
http://dx.doi.org/10.1007/978-3-319-19794-4_7
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and denote by ρn the metric induced on K Jn = [0, 1]N#(Jn) ⊂ R
N#(Jn) by the norm

‖ · ‖∞.
Consider the topological embedding ϕn : K Jn ↪−→ KZ that sends each u =

(u j ) j∈Jn ∈ K Jn to the sequence x = (xi )i∈Z given by

xi :=
{

ui if i ∈ Jn,

xi if i ∈ Z\Jn .

By our hypothesis on x , we have that ϕn(u) ∈ X for all u ∈ K Jn . On the other hand,
Inequality (8.4.1) implies that

ρn(u, v) ≤ dn(ϕn(u),ϕn(v))

for all u, v ∈ K Jn . By applying Proposition 4.6.3, we deduce that

dimε(X, dn) ≥ dimε(K Jn , ρn),

for every ε > 0. As dimε(K Jn , ρn) = N#(Jn) for all ε ≤ 1 by Proposition 4.6.5, it
follows that

dimε(X, dn) ≥ N#(Jn),

for all ε ≤ 1. Since, by definition,

mdimε(X, d,σ) = lim
n→∞

dimε(X, dn)

n
,

we deduce that
mdimε(X, d,σ) ≥ Nδ(J )

for all ε ≤ 1. By letting ε tend to 0, we finally get

mdim(X,σ) = lim
ε→0

mdimε(X, d,σ) ≥ Nδ(J ). �

Lemma 8.4.10 Let (εn)n∈N be a sequence of positive real numbers converging to
0. Let X (n) ⊂ KZ, n ∈ N, be a sequence of subshifts such that there exists, for each
n ∈ N, an element x (n) ∈ X (n) and a subset I (n) ⊂ Z satisfying, for all n ∈ N, the
following properties:

(P1) the orbit of every point of X (n) is εn-dense in X (n),
(P2) X (n+1) ⊂ X (n),
(P3) I (n+1) ⊂ I (n),
(P4) πZ\I (n) (x (n+1)) = πZ\I (n) (x (n)),

(P5) if x ∈ KZ satisfies πZ\I (n) (x) = πZ\I (n) (x (n)), then one has x ∈ X (n).

http://dx.doi.org/10.1007/978-3-319-19794-4_4
http://dx.doi.org/10.1007/978-3-319-19794-4_4
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Let X ⊂ KZ be the subshift defined by

X :=
⋂

n∈N
X (n).

Then the dynamical system (X,σ) is minimal and one has

mdim(X,σ) ≥ Nδ(J ),

where δ(J ) denotes the upper density of the subset J ⊂ N defined by

J := N ∩
(

⋂

n∈N
I (n)

)
.

Proof Since the sequence (εn)n∈N converges to 0, Property (P1) implies that the
dynamical system (X,σ) is minimal by Lemma 8.4.5. By compactness of KZ, we
can extract from the sequence (x (n)) a subsequence that converges to some element
x ∈ KZ. Since each X (n) is closed in KZ, we deduce from (P2) that x ∈ X .Moreover,
Properties (P3) and (P4) imply thatπZ\I (n) (x) = πZ\I (n) (x (n)) for all n ∈ N. By using

(P5), we deduce that every element x ∈ KZ such that πZ\J (x) = πZ\J (x) belongs
to X . It follows that mdim(X,σ) ≥ Nδ(J ) by Lemma 8.4.9. �

Proof of Theorem 8.4.3 Let us first choose a sequence of positive real numbers
(εn)n∈N converging to 0 such that ε0 = diam(KZ) = 3. We also fix a sequence
(an)n∈N of positive integers (a condition on the sequence (an)n∈N will be added at
the end of the proof).

Let us construct, by induction on n ∈ N, a sequence of pairs (qn, Bn), where qn

is a positive integer and Bn is a closed subset of K qn , and a sequence of subsets
I (n) ⊂ Z such that the subsets X (n)

0 ⊂ X (n) ⊂ KZ defined by

X (n)
0 := {x = (xi )i∈Z ∈ KZ | (xi , . . . , xi+qn−1) ∈ Bn for all i ∈ qnZ},

and
X (n) :=

⋃

k∈Z
σk(X (n)

0 )

satisfy the following properties:

(Q1) the orbit of every point of X (n) is εn-dense in X (n),
(Q2) πZ\I (n) (x) = πZ\I (n) (x ′) for all x, x ′ ∈ X (n)

0 ,

(Q3) X (n+1)
0 ⊂ X (n)

0 (and hence X (n+1) ⊂ X (n)),
(Q4) I (n+1) ⊂ I (n)

for all n ∈ N.
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We start by taking q0 := 1, B0 := K , and I (0) := Z. This gives us X (0)
0 = X (0) =

KZ so that Properties (Q1) and (Q2) are trivially satisfied for n = 0.
Suppose now that qn , Bn , and I (n) have already been constructed for some n ≥ 0.

Then we construct qn+1, Bn+1, and I (n+1) in the following way. Since the space Bn

is a subspace of R
Nqn , it is separable by Corollary 2.4.14. As X (n) is the subshift of

block-type associated with the pair (qn, Bn), we deduce from Lemma 8.4.4 that the
dynamical system (X (n),σ) is topologically transitive. This means that we can find
an element y ∈ X (n) whose orbit is dense in X (n). After possibly replacing y by a
point in its orbit, we can assume that y ∈ X (n)

0 . Choose an integer rn+1 ≥ 1 large
enough so that, for all x, x ′ ∈ KZ,

π{−rn+1,...,rn+1}(x) = π{−rn+1,...,rn+1}(x ′) ⇒ d(x, x ′) ≤ εn+1

2
.

By Lemma 8.4.6, we can find an integer Ln+1 ≥ rn+1 such that, for every x ∈ X (n),
there exists k ∈ {−Ln+1 + rn+1, . . . , Ln+1 − rn+1} satisfying

d(x,σk(y)) ≤ εn+1

2
.

We can assume in addition that the integer Ln+1 is a multiple of qn . Put qn+1 :=
(an+1 + 1)2Ln+1. Let Bn+1 denote the closed subset of K qn+1 consisting of all

b = (b1, . . . , bqn+1) ∈ Bn × · · · × Bn︸ ︷︷ ︸
qn+1

qn
times

⊂ K qn+1 ,

ending by the finite sequence (y−Ln+1 , . . . , yLn+1−1), that is, such that

(bqn+1−2Ln+1+1, . . . , bqn+1) = (y−Ln+1 , . . . , yLn+1−1).

Consider now the subsets X (n+1)
0 ⊂ X (n+1) defined by (qn+1, Bn+1). Then, we have

that X (n+1)
0 ⊂ X (n)

0 (and hence X (n+1) ⊂ X (n)) since

Bn+1 ⊂ Bn × · · · × Bn .

As the sequence (y−Ln+1 , . . . , yLn+1−1) appear in every element of X (n+1), it
follows from our choices of rn+1 and Ln+1 that the orbit of every point of X (n+1)

is εn+1-dense in X (n) and hence in X (n+1). Consequently, Property (Q1) is satis-
fied at rank n + 1.

Denote by Rn+1 the set consisting of all integers i ∈ Z such that there exists

k ∈ {0, . . . , qn+1 − 2Ln+1 − 1}

http://dx.doi.org/10.1007/978-3-319-19794-4_2
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with i ≡ k mod qn+1. Let I (n+1) ⊂ I (n) be the subset defined by

I (n+1) := I (n) ∩ Rn+1.

Suppose that x, x ′ ∈ X (n+1)
0 . Then we have that πZ\Rn+1(x) = πZ\Rn+1(x ′) by

definition of Bn+1. Moreover, we have that πZ\I (n) (x) = πZ\I (n) (x ′) since X (n+1)
0 ⊂

X (n)
0 and Property (Q2) is satisfied at rank n by our induction hypothesis. As

Z\I (n+1) = (Z\I (n)) ∪ (Z\Rn+1),

we deduce that πZ\I (n+1) (x) = πZ\I (n+1) (x ′). This shows that (Q2) is satisfied at rank
n + 1. This completes the construction by induction.

Let us choose an arbitrary element x (n) ∈ X (n)
0 for each n ∈ N. Then we have that

(Q5) πZ\I (n) (x (n+1)) = πZ\I (n) (x (n)),

by (Q2) and (Q3).
Let us show by induction on n the following property:

(Q6) if x ∈ KZ satisfies πZ\I (n) (x) = πZ\I (n) (x (n)) then x ∈ X (n)
0 .

For n = 0, there is nothing to prove. Suppose now that the statement is true at rank
n and let x ∈ KZ such that

πZ\I (n+1) (x) = πZ\I (n+1) (x (n+1)).

By using (Q4) and (Q5), we obtain

πZ\I (n) (x) = πZ\I (n) (x (n)).

This implies x ∈ X (n)
0 by our induction hypothesis. On the other hand, as Z\Rn+1 ⊂

Z\I (n+1), we also have that

πZ\Rn+1(x) = πZ\Rn+1(x (n+1)).

Thus, we finally get x ∈ X (n+1)
0 , which completes the proof by induction of (Q6).

Consider now the subshift
X :=

⋂

n∈N
X (n).

It follows from Properties (Q1), (Q3), (Q4), (Q5), and (Q6) that X (n), x (n), and I (n)

satisfy the hypotheses of Lemma 8.4.10. Consequently, the dynamical system (X,σ)

is minimal and
mdim(X,σ) ≥ Nδ(J ), (8.4.2)
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where δ(J ) ∈ [0, 1] is the upper-density of the subset J ⊂ N defined by

J := N ∩
(

⋂

n∈N
I (n)

)
= N ∩

( ∞⋂

n=1

Rn

)
.

Recall that, by definition,

δ(J ) = lim sup
n→∞

#(Jn)

n
,

where Jn := J ∩ {0, . . . , n − 1}.
For every m ≥ n + 1, we have that qn ≤ qm − 2Lm and hence {0, . . . , qn − 1} ⊂

Rm . It follows that

Jqn =
n⋂

k=1

Rk .

We deduce that

#(Jqn )

qn
=

n∏

k=1

2ak Lk

2ak Lk + 2Lk
=

n∏

k=1

ak

ak + 1
= 1

∏n
k=1(1 + a−1

k )

for all n ≥ 1. This implies

δ(J ) ≥ 1
∏∞

n=1(1 + a−1
n )

. (8.4.3)

Let us choose now the sequence (an) so that

∞∏

n=1

(1 + a−1
n ) < 2. (8.4.4)

We can take for example an = 2n+1 since the inequality log(1 + x) ≤ x (x ≥ 0)
implies that

∞∏

n=1

(1 + 2−n−1) ≤ exp

( ∞∑

n=1

2−n−1

)
= √

e < 2.

Finally, Inequalities (8.4.2)–(8.4.4) give us mdim(X,σ) > N/2. This implies
mdim(X,σ) > 1 since N ≥ 2. �
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Notes

Theorem 8.3.1 was obtained by Jaworski in his Ph.D. thesis [51, Th. IV.1] (see [11, p.
194]). A homeomorphism T of a topological space X generates a continuous action
of the additive group Z on X , given by the map Z × X → X that sends each pair
(n, x) ∈ Z × X to the point T n(x). A continuous action of the additive group R is
called a flow.More precisely, a flowon a topological space X consists of a familyϕ =
(ϕt )t∈R of homeomorphisms of X such that the map (t, x) �→ ϕt (x) is continuous
and ϕt ◦ϕs = ϕt+s for all t, s ∈ R. A point x ∈ X is a fixed point of the flow (X,ϕ)

if ϕt (x) = x for all t ∈ R. One says that the flow (X,ϕ) embeds in the flow (Y,ψ)

if there exists a topological embedding h : X ↪−→ Y such that h ◦ ϕt = ψt ◦ h for
all t ∈ R. Denote by C(R) the set consisting of all continuous maps f : R → R

and equip C(R) with the topology of uniform convergence on compact subsets of
R. Consider the flow λ = (λt )t∈R on C(R) defined by λt ( f )(u) := f (u + t) for
all f ∈ C(R) and t, u ∈ R. The flow (C(R),λ) is a continuous version of the shift
(RZ,σ). Theorem 8.3.1 is analogous to a theorem of Bebutoff [13] (see also [53,
55], [11, p. 184]) which asserts that every flow without fixed points (X,ϕ), where X
is a compact metrizable space, embeds in the flow (C(R),λ). Note however that, in
contrast with Theorem 8.3.1, there is no hypothesis about the topological dimension
of X in the statement of Bebutoff’s theorem. The set of fixed points of the flow
(C(R),λ) is the set of constant functions and is therefore homeomorphic to the real
lineR. It follows that a necessary condition for a flow (X,ϕ) to be embeddable in the
flow (C(R),λ) is that the set of fixed points of (X,ϕ) is homeomorphic to a subset
of R. By a result of Kakutani [53], which extends Bebutoff’s theorem, it turns out
that this condition is also sufficient for flows on compact metrizable spaces.

The construction of the counterexamples described in Sect. 8.4 is due to Linden-
strauss and Weiss (see [74, Proposition 3.5]).

Let T be a homeomorphism of a compact metrizable space X . In [72, Th. 5.1],
Lindenstrauss proved that if (X, T ) is minimal and mdim(X, T ) < d/36 for some
integer d ≥ 1, then the dynamical system (X, T ) can be embedded in the shift
((Rd)Z,σ). On the other hand, Lindenstrauss and Tsukamoto [73] constructed, for
any integer d ≥ 1, a compact metrizable space X admitting a homeomorphism T
such that the dynamical system (X, T ) is minimal and satisfies mdim(X, T ) = d/2
but cannot be embedded in the shift ((Rd)Z,σ). For additional results related to
Jaworski’s theorem and the question of the embeddability of dynamical systems in
the shift on (Rd)Z, see also [45, 46].

Exercises

8.1 Let K be a topological space and let σ denote the shift map on KZ. Show that
the set of periodic points of σ is dense in KZ.

8.2 Let K be an accessible separable space with more than one point. Show that
the shift (KZ,σ) is topologically transitive but not minimal.
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8.3 Let K be a topological space and let σ : KZ → KZ denote the shift map on
KZ. Let q be a positive integer and B a closed subset of K q . Let X ⊂ KZ

denote the subshift of block-type associated with (q, B). Show that the set of
periodic points of the dynamical system (X,σ) is dense in X .

8.4 (Adding machines). Let (an)n∈N be a sequence of positive integers. Consider
the product space

X :=
∏

n∈N
{0, 1, . . . , an − 1}

and the map T : X → X defined in the following way. If x = (xn)n∈N ∈ X
with xn = an − 1 for all n ∈ N then we take T (x) := (yn)n∈N, where yn = 0
for all n ∈ N. Otherwise, there is a largest integer n0 ∈ N such that xn = an −1
for all n ≤ n0, and we take T (x) := (yn)n∈N, where yn = 0 for all n ≤ n0,
yn0+1 = xn0+1 + 1, and yn = xn for all n ≥ n0 + 2.

(a) Show that T is a homeomorphism.
(b) Show that the dynamical system (X, T ) is minimal.

8.5 Let X be a topological space and T : X → X a homeomorphism. Show that
the dynamical system (X, T ) is minimal if and only if every non-empty open
subset U ⊂ X satisfies

⋃
n∈Z T n(U ) = X .

8.6 Let X be a compact space and T : X → X a homeomorphism. Show that the
dynamical system (X, T ) is minimal if and only if, for every non-empty open
subset U ⊂ X , there exists n ∈ N such that

⋃n
k=−n T k(U ) = X .

8.7 Let X be a non-empty compact Hausdorff space and T : X → X a home-
omorphism. Show that there exists a non-empty closed subset Y ⊂ X with
T (Y ) = Y such that the dynamical system (Y, T ) is minimal. Hint: use Zorn’s
lemma.

8.8 Show that every closed subgroup G of R such that {0} 
= G 
= R is infinite
cyclic. Deduce that if T : S

1 → S
1 is a rotation of angle θ with θ/π irrational,

then the dynamical system (S1, T ) is minimal.
8.9 Let S be a subset of Z. One says that S is syndetic if there exists a finite subset

F ⊂ Z such that S+F = Z. Show that the following conditions are equivalent:
(1) S is syndetic; (2) there exists an integer N ≥ 1 such that S is N -dense in
Z; (3) there exists an integer k ≥ 1 such that one has {i, i + 1, . . . , i + k −
1} ∩ S 
= ∅ for all i ∈ Z; (4) S has bounded gaps, i.e., there exists an integer
L ≥ 1 such that every subset of Z\S consisting of consecutive integers has
cardinality at most L .

8.10 Let X be a topological space equipped with a homeomorphism T : X → X . A
point x ∈ X is called almost-periodic if, for every neighborhood U of x , the
set consisting of all n ∈ Z such that T n(x) ∈ U is a syndetic subset of Z (see
Exercise 8.9).

(a) Show that every periodic point of T is almost-periodic.
(b) Show that if X is compact and (X, T ) is minimal then every point x ∈ X

is almost-periodic.
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(c) Suppose that X is a compactHausdorff space and x ∈ X is almost-periodic.
Let Y denote the closure in X of the orbit of x . Show that the dynamical
system (Y, T ) is minimal.

8.11 Let n, m ∈ Z. Show that the shift ((Rn)Z,σ) embeds in the shift ((Rm)Z,σ)

if and only if n ≤ m.
8.12 Let X be a compact metrizable space and T : X → X a homeomorphism.

Let d be a metric on X compatible with the topology. The dynamical system
(X, T ) is called distal if the following condition is satisfied: given any pair
of distinct points x and y in X , there exists a real number ε > 0 such that
d(T n(x), T n(y)) ≥ ε for all n ∈ Z.

(a) Show that this definition does not depend on the choice of the metric d.
(b) Show that if the dynamical system (X, T ) is both distal and minimal, then

it embeds in the shift (RZ,σ).

8.13 Let S
1 := {(x1, x2) ∈ R

2 | x21 + x22 = 1} denote the unit circle in R
2. Let

T : S
1 → S

1 be the half-turn given by T (x1, x2) = −(x1, x2). Show that the
dynamical system (S1, T ) does not embed in the shift (RZ,σ). Hint: observe
that the dynamical system (Per2(T ), T ) does not embed in the dynamical sys-
tem (Per2(σ),σ).

8.14 (cf. [51, Example 4.1]). Let Y be a compact metrizable space and n ≥ 2
an integer. Consider the product space X := Y × {0, 1, . . . , n − 1} and the
homeomorphism T : X → X defined, for all x = (y, k) ∈ X , by

T (x) :=
{

(y, k + 1) if k ≤ n − 2

(y, 0) if k = n − 1.

Show that the dynamical system (X, T ) embeds in the shift (RZ,σ) if and only
if Y is topologically embeddable in R

n .
8.15 Let X be a compact metrizable space with dim(X) = n < ∞ and T : X → X a

homeomorphism. Suppose that every orbit of T contains at least 6n+1 distinct
points. Show that the dynamical system (X, T ) embeds in the shift (RZ,σ).
Hint: observe that Lemma 8.3.3 remains valid for m = 2n + 1.



Chapter 9
Amenable Groups

This chapter is devoted to the class of amenable groups, a class of groups which
contains all finite groups and all abelian groups and which is closed under several
group operations, in particular taking subgroups, taking extensions, and taking direct
limits. Countable amenable groups can be characterized by the existence of Følner
sequences, i.e., sequences of non-empty finite subsets of the group that are asymp-
totically invariant under translations. Using such Følner sequences, it is possible
to define the average value of an invariant subadditive function on the set of finite
subsets of the groups (see Theorem 9.4.1). This will be used in the next chapter
for extending the definition of mean topological dimension to continuous actions of
countable amenable groups.

9.1 Følner Sequences

From now on, we prefer to use the notation |A| instead of #A to denote the cardinality
of a finite set A.

Let G be a group. We assume that the group operation on G is denoted multi-
plicatively (additive notation will be used in some examples, e.g., for G = Z

d ). The
identity element of G is denoted 1G .

We recall that the subgroup generated by a subset A ⊂ G is the smallest subgroup
〈A〉 ⊂ G containing A. It consists of all elements g ∈ G that can be written in the
form

g = aε1
1 · · · aεn

n

where n ≥ 0, ai ∈ A and εi ∈ {−1, 1} for all 1 ≤ i ≤ n. One says that the group G
is finitely generated if there exists a finite subset A ⊂ G such that 〈A〉 = G. Note
that every finitely generated group is countable.

If A is a subset of G and g ∈ G, the left-translate of A by g is the set gA := {ga |
a ∈ A} ⊂ G. Similarly, the right-translate of A by g is the set Ag := {ag | a ∈
A} ⊂ G.

Observe that A\gA consists of all elements of A that are moved out of A under
left-translation by g−1. When A is finite, the sets A and gA have the same cardinality
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so that
|A\gA| = |gA\A| = |A| − |A ∩ gA|.

If A is a non-empty finite subset of G, the ratio

|A\gA|
|A| = |gA\A|

|A| = 1 − |A ∩ gA|
|A|

is the proportion of elements in A that are moved out of A by left-translation by
g−1. So, heuristically, this proportion measures the lack of invariance of A when it
is left-translated by g−1.

A Følner sequence for a group G is a sequence of non-empty finite subsets of G
that are “asymptotically left-invariant”. The precise definition goes as follows.

Definition 9.1.1 Let G be a group. One says that a sequence (Fn)n≥1 of non-empty
finite subsets of G is a Følner sequence for G if one has

lim
n→∞

|Fn\gFn|
|Fn| = 0

for all g ∈ G.

Proposition 9.1.2 If a group G admits a Følner sequence, then G is countable.

Proof Suppose that (Fn)n≥1 is a Følner sequence for the group G. Consider the finite
subsets An of G defined by

An := {xy−1 : x, y ∈ Fn}.

Given g ∈ G, we have |Fn\gFn| ≤ |Fn|/2 for n large enough. This implies that
gFn meets Fn and hence that g ∈ An . It follows that G = ⋃

n≥1 An . Therefore G is
countable. �

Definition 9.1.3 One says that a countable group is amenable if it admits a Følner
sequence.

Proposition 9.1.4 Every finite group is amenable.

Proof If G is a finite group, then the constant sequence Fn = G is a Følner sequence
for G since Fn\gFn = G\G = ∅ for all g ∈ G. �

An example of an infinite amenable group is provided by the additive group Z of
integers.

Proposition 9.1.5 The group Z is amenable.
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Proof Consider the sequence (Fn)n≥1 defined by

Fn := {0, 1, . . . , n − 1} ⊂ Z.

Let us fix g ∈ Z. Then, for all n ≥ |g|, we have

Fn\(g + Fn) =

⎧
⎪⎨

⎪⎩

{0, 1, . . . , g − 1} if g ≥ 1,

∅ if g = 0,

{g + n, g + n + 1, . . . , n − 1} if g ≤ −1.

and hence |Fn\(g + Fn)|
|Fn| = |g|

n
,

which converges to 0 as n goes to infinity. We deduce that the sequence (Fn)n≥1 is
a Følner sequence for Z and hence that Z is amenable. �

Proposition 9.1.6 Suppose that G1 and G2 are countable amenable groups. Then
the group G = G1 × G2 is also amenable.

Proof Let (An)n≥1 be a Følner sequence for G1 and let (Bn)n≥1 be a Følner sequence
for G2. Consider the non-empty subsets Fn ⊂ G defined by Fn := An × Bn . For
every g = (g1, g2) ∈ G, we have

Fn\gFn = ((An\g1An) × Bn) ∪ (An × (Bn\g2Bn))

and hence

|Fn\gFn| = | ((An\g1An) × Bn) ∪ (An × (Bn\g2Bn)) |
≤ |(An\g1An) × Bn| + |An × (Bn\g2Bn)|
= |An\g1An||Bn| + |An||Bn\g2Bn|.

Dividing by |Fn| = |An||Bn|, we obtain
|Fn\gFn|

|Fn| ≤ |An\g1An|
|An| + |Bn\g2Bn|

|Bn| .

The right-hand side of the preceding inequality tends to 0 as n goes to infinity since
(An) and (Bn) are Følner sequences for G1 and G2 respectively. It follows that

lim
n→∞

|Fn\gFn|
|Fn| = 0.

This shows that the sequence (Fn)n≥1 is a Følner sequence for G and hence that G
is amenable. �
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Remark 9.1.7 Note that the preceding proof gives us an explicit way for constructing
a Følner sequence for G1 × G2 if we are given Følner sequences for G1 and G2.

Corollary 9.1.8 The group Z
d is amenable for every integer d ≥ 0.

Proof This immediately follows from Propositions 9.1.5 and 9.1.6 by induction
on d. �
Corollary 9.1.9 Every finitely generated abelian group is amenable.

Proof This follows from Proposition 9.1.6, Corollary 9.1.8, and Proposition 9.1.4
since it is known that if G is a finitely generated abelian group then there exist an
integer d ≥ 0 and a finite group T such that G is isomorphic to Z

d × T . �
Remark 9.1.10 If d ≥ 1 and T is a finite group, an explicit Følner sequence for
Z

d × T is provided by the sequence (Fn)n≥1, where

Fn := {0, 1, . . . , n − 1}d × T .

9.2 Amenable Groups

In the previous section, the notion of amenability has been only defined for countable
groups via Følner sequences. Although we are here mainly interested in countable
groups, it is very convenient to consider the class of all amenable groups, countable
or not. In order to extend the definition of amenability to uncountable groups, we
shall use the following characterization of countable amenable groups.

Lemma 9.2.1 Let G be a countable group. Then the following conditions are equiv-
alent:

(a) G admits a Følner sequence;
(b) for every finite subset S ⊂ G and every ε > 0, there exists a non-empty finite

subset F ⊂ G such that |F\s F | ≤ ε|F | for all s ∈ S.

Proof Suppose that (Fn)n≥1 is a Følner sequence for G. Let S be a finite subset of G
and ε > 0. For each s ∈ S, we can find an integer n(s) such that |Fn\s Fn| ≤ ε|Fn|
for all n ≥ n(s). Then F := Fm , where m := maxs∈S n(s), satisfies |F\s F | ≤ ε|F |
for all s ∈ S. This shows that (a) implies (b).

Conversely, suppose that (b) is satisfied. As G is countable, we can write

G = {g1, g2, g3, . . . }.

Choose some sequence of positive real numbers (εn)n≥1 that converges to 0. By
applying (b) with S = {g1, g2, . . . , gn} and ε = εn , we deduce that there exists
a finite non-empty subset Fn ⊂ G such that |Fn\gk Fn|/|Fn| ≤ εn for all 1 ≤
k ≤ n. Fixing k, it follows that |Fn\gk Fn|/|Fn| tends to 0 as n goes to infinity.
Therefore the sequence (Fn)n≥1 is a Følner sequence for G. This shows that (b)
implies (a). �
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Definition 9.2.2 One says that a (possibly uncountable) group G is amenable if it
satisfies the following condition: for every finite subset S ⊂ G and every ε > 0,
there exists a non-empty finite subset F ⊂ G such that |F\s F | ≤ ε|F | for all s ∈ S.

In the case when G is countable, it follows from Lemma 9.2.1 that the preced-
ing definition is equivalent to the one given in Sect. 9.1, namely the existence of a
Følner sequence for G. Recall however that uncountable groups do not admit Følner
sequence by Proposition 9.1.2. The condition in Definition 9.2.2 that characterizes
amenable groups is known as the Følner condition.

Proposition 9.2.3 Let G be a group. Suppose that there exists a family (Hi )i∈I of
amenable subgroups of G satisfying the following conditions:

(C1) G = ⋃
i∈I Hi ;

(C2) for all i1, i2 ∈ I , there exists j ∈ I such that Hi1 ∪ Hi2 ⊂ Hj .

Then G is amenable.

Proof Let S be a finite subset of G and ε > 0. By (C1), we can find, for each s ∈ S,
an index i(s) ∈ I such that s ∈ Hi(s). Now we deduce from (C2) that there exists
j ∈ I such that

⋃
s∈S Hi(s) ⊂ Hj . As Hj is amenable and S ⊂ Hj , there exists a

non-empty finite subset F ⊂ Hj ⊂ G such that |F\gF | ≤ ε|F | for all g ∈ S. This
shows that G is amenable. �

Corollary 9.2.4 Let G be a group. Suppose that there exists a non-decreasing se-
quence

H0 ⊂ H1 ⊂ H2 ⊂ . . .

of amenable subgroups of G such that G = ⋃
n≥0 Hn. Then G is amenable. �

Definition 9.2.5 Let P be a property of groups. A group G is said to be locally P
if every finitely generated subgroup of G has property P .

Corollary 9.2.6 Let G be a group. Suppose that every finitely generated subgroup
of G is amenable. Then G is amenable. In other words, every locally amenable group
is amenable.

Proof Denote by S the set consisting of all finitely generated subgroups of G. Then
the family (H)H∈S clearly satisfies the conditions of Proposition 9.2.3. �

Corollary 9.2.7 Every abelian group is amenable.

Proof This is an immediate consequence of Corollary 9.2.6 since we already know
that every finitely generated abelian group is amenable by Corollary 9.1.9. �

Example 9.2.8 The additive group R of real numbers is amenable since it is abelian.
This provides an example of an uncountable amenable group.
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A group G is called a torsion group if every element of G has finite order. Every
locally finite group is a torsion group. Indeed, if a group G is locally finite then the
group generated by any element x ∈ G must be finite. Conversely, every abelian
torsion group is locally finite. This follows from the above mentioned result about
the classification of finitely generated abelian groups, namely that every finitely
generated abelian group is isomorphic to Z

d × T for some integer d ≥ 0 and some
finite group T , since it immediately implies that every finitely generated abelian
torsion group is finite.

Example 9.2.9 The group Q/Z (which is isomorphic to the multiplicative group
formed by all the roots of unity in C) is locally finite. Note that Q/Z is countably
infinite. Another example of a countably infinite, locally finite, abelian group is
provided by the additive group K [x] of polynomials over a finite field K .

Example 9.2.10 Let X be a set. Consider the symmetric group of X , that is, the
group Sym(X) consisting of all permutations σ : X → X with the composition of
maps as the group operation. The support of an element σ ∈ Sym(X) is the subset
supp(σ) ⊂ X consisting of all x ∈ X such that σ(x) �= x . Observe that supp(σ−1) =
supp(σ) and that supp(σ1σ2) ⊂ supp(σ1) ∪ supp(σ2) for all σ,σ1,σ2 ∈ Sym(X).
Let Sym0(X) ⊂ Sym(x) denote the set of permutations of X whose support is finite.
Then Sym0(X) is a locally finite subgroup of Sym(X). It is non-abelian as soon as
X contains more than two elements. Observe that Sym0(X) is countably infinite and
isomorphic to Sym(N) whenever X is countably infinite.

Proposition 9.2.11 Every locally finite group is amenable.

Proof This immediately follows from Proposition 9.1.4 and Corollary 9.2.6. �

Given two subsets A and B of a group G, the subset AB ⊂ G is defined by

AB := {ab | a ∈ A, b ∈ B} =
⋃

a∈A

aB =
⋃

b∈B

Ab.

The following characterization of amenability is sometimes easier to handle than the
original Følner condition.

Lemma 9.2.12 Let G be a group. Then the following conditions are equivalent:

(a) G is amenable;
(b) for every finite subset S ⊂ G and every ε > 0, there exists a non-empty finite

subset F ⊂ G such that |SF\F | ≤ ε|F |.
Proof Suppose first that G is amenable. Let S be a finite subset of G and ε > 0.
Since G is amenable, there exists a non-empty finite subset F ⊂ G such that

|F\s F | ≤ ε

|S| |F | for all s ∈ S.
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It follows that

|SF\F | =
∣∣∣∣∣
⋃

s∈S

(s F\F)

∣∣∣∣∣

≤
∑

s∈S

|s F\F |

=
∑

s∈S

|F\s F |

≤
∑

s∈S

ε

|S|
= ε.

This shows that (a) implies (b).
Conversely, suppose (b). Let S be a finite subset of G and ε > 0. Condition (b)

implies the existence of a non-empty finite subset F ⊂ G such that |SF\F | ≤ ε|F |.
Since, for every s ∈ S, we have that s F\F ⊂ SF\F , it follows that

|F\s F | = |s F\F | ≤ |SF\F | ≤ ε|F |.

This shows that G is amenable. �
We shall use the preceding lemma for proving that the class of amenable groups

is closed under taking subgroups.

Proposition 9.2.13 Every subgroup of an amenable group is amenable.

Proof Let H be a subgroup of an amenable group G. Let S be a finite subset of
H and ε > 0. As G is amenable, it follows from Lemma 9.2.12 that there exists a
non-empty finite subset E ⊂ G such that

|SE\E | ≤ ε|E |. (9.2.1)

Let T ⊂ G be a complete set of representatives of the right cosets of H in G. This
means that every g ∈ G can be uniquely written in the form g = ht with h ∈ H and
t ∈ T . For each t ∈ T , denote by Et the subset of H consisting of all h ∈ H such
that ht ∈ E . Consider also the subset T ′ ⊂ T defined by T ′ := {t ∈ T | Et �= ∅}.
We then have E = ∐

t∈T ′ Et t and hence

|E | =
∑

t∈T ′
|Et t | =

∑

t∈T ′
|Et |. (9.2.2)

Since S ⊂ H , we have that SE = ∐
t∈T ′ SEt t and hence

SE\E =
∐

t∈T ′
(SEt\Et )t.
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This gives us
|SE\E | =

∑

t∈T ′
|(SEt\Et )t | =

∑

t∈T ′
|SEt\Et |.

Using (9.2.1) and (9.2.2), we then get

∑

t∈T ′
|SEt\Et | ≤ ε

∑

t∈T ′
|Et |.

This last inequality implies that there exists t0 ∈ T ′ such that

|SEt0\Et0 | ≤ ε|Et0 |.

As Et0 is a non-empty finite subset of H , we deduce from Lemma 9.2.12 that H is
amenable. �

One says that a group G is an extension of a group A by a group B if there exists
a normal subgroup H of G such that H is isomorphic to A and G/H is isomorphic
to B. Our next result is that the class of amenable groups is closed under extensions.

Proposition 9.2.14 Let G be a group. Suppose that there exists a normal subgroup
H of G such that the group H and the quotient group K = G/H are both amenable.
Then G is amenable.

Proof Let S be a finite subset of G and ε > 0. We want to show that there exists a
non-empty finite subset F ⊂ G such that |F\s F | ≤ ε|F | for all s ∈ S.

Denote by q : G → K the quotient homomorphism, i.e., the map defined by
q(g) = gH = Hg for all g ∈ G. Let T = q(S). As K is amenable, there exists a
non-empty finite subset C ⊂ K such that

|C\tC | ≤ ε

2
|C | for all t ∈ T . (9.2.3)

Let us choose a set of representatives for the cosets of H that are in C , i.e., a set
A ⊂ G such that q induces a bijection from A onto C .

Now let R denote the set consisting of all h ∈ H for which there exist elements
a, a′ ∈ A and s ∈ S such that h = a−1sa′, that is, R := A−1S A ∩ H . Observe that
R is a finite subset of H (of cardinality bounded above by |A|2|S|).

As H is amenable, there exists a non-empty finite subset B ⊂ H such that

|B\h B| ≤ ε

2|R| |B| for all h ∈ R. (9.2.4)

Consider now the subset F ⊂ G defined by F := AB. Note that q(F) = C . Observe
also that each element g ∈ F can be uniquely written in the form x = ab with a ∈ A
and b ∈ B. Consequently, we have that



9.2 Amenable Groups 165

|F | = |A||B|. (9.2.5)

Let us fix some element s ∈ S and let t := q(s) ∈ T . In order to bound from
above the cardinality of F\s F , we observe that F\s F is the disjoint union of the
sets E1 and E2 defined by

E1 := {g ∈ F\s F | q(g) /∈ tC}

and
E2 := {g ∈ F\s F | q(g) ∈ tC}.

If g ∈ E1 and we write g = ab, with a ∈ A and b ∈ B, then q(a) = q(g) ∈ C\tC .
Since q is injective on A, we deduce that

|E1| ≤ |C\tC ||B|
≤ ε

2
|C ||B| (by (9.2.3))

= ε

2
|A||B|

= ε

2
|F | (by (9.2.5)).

Suppose now that g ∈ E2 andwrite again g = abwitha ∈ A andb ∈ B.We thenhave
q(a) = q(g) ∈ tC = q(s A). It follows that we can find h ∈ H and a′ ∈ A such that
ah = sa′. Observe that h ∈ R by definition of R. We then get g = ab = sa′h−1b.
This last equality implies b /∈ h B since g /∈ s F . Thus b ∈ ⋃

h∈R(B\h B). This
gives us

|E2| ≤ |A|
∣∣∣∣∣
⋃

h∈R

(B\h B)

∣∣∣∣∣

≤ |A|
(

∑

h∈R

|B\h B|
)

≤ |A||R| ε

2|R| |B| (by (9.2.4))

= ε

2
|A||B|

= ε

2
|F | (by (9.2.5)).

Combining the above results, we finally get

|F\s F | = |E1| + |E2| ≤ ε

2
|F | + ε

2
|F | = ε|F |.
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This shows that F has the required properties. Thus G is amenable. �

One says that a group G is a semidirect product of a group G1 with a group G2
if G contains a normal subgroup H isomorphic to G1 and a subgroup K isomorphic
to G2 such that G = K H and K ∩ H = {1G}. As the quotient group G/H is then
isomorphic to K and hence to G2, an immediate consequence of Proposition 9.2.14
is the following:

Corollary 9.2.15 If a group G is a semidirect product of two amenable groups then
G is amenable. �

A group G is called metabelian if it is an extension of an abelian group by an
abelian group, i.e., G contains a normal subgroup H such that both H and G/H are
abelian. From Corollary 9.2.7 and Proposition 9.2.14, we get:

Corollary 9.2.16 Every metabelian group is amenable. �

Example 9.2.17 Let K be a field. Consider the group G consisting of all affine trans-
formations of K , i.e., all transformations of the form x �→ ax + b (x ∈ K ), where
a ∈ K � = K\{0} and b ∈ K , with the composition of maps as the group operation.
The translations x �→ x + b, b ∈ K , form an abelian normal subgroup T of G
isomorphic to the additive group K and the quotient group G/T is isomorphic to
the multiplicative group K � = K\{0} (the map that sends the affine transformation
x �→ ax +b to a is a surjective group homomorphism from G onto the multiplicative
group K � with kernel T ). Therefore G is metabelian. Note that G is also the semi-
direct product of its normal subgroup T with the subgroup of homotheties x �→ ax
(a ∈ K �).

Example 9.2.18 Let G denote the group of affine transformations of the real line R

and let T denote the normal subgroup of G consisting of all translations x �→ x + b
(see Example 9.2.17). Fix an integer n ≥ 2 and consider the subgroup Gn of G
generated by the translation t : x �→ x + 1 and the homothety h : x �→ nx . The
group Gn consists of all affine transformations of the form x �→ ax + b, where
a = nk , k ∈ Z, is an integral power of n and b ∈ Z[1/n] is an n-adic rational (i.e., a
rational of the form mnk , where m, k ∈ Z). The translation subgroup Tn = Gn ∩ T
is isomorphic to the additive group Z[1/n]. It is normal in Gn with quotient group
Gn/Tn infinite cyclic. Therefore Gn is a countably infinite metabelian group. Note
thatGn is not abelian sinceht �= th. ThegroupGn belongs to the family ofBaumslag-
Solitar groups and is denoted BS(1, n).

Example 9.2.19 Let R be a commutative ring. TheHeisenberg group is the subgroup
HR of GL3(R) consisting of all matrices of the form M(a, b, c), where

M(a, b, c) :=
⎛

⎝
1 a c
0 1 b
0 0 1

⎞

⎠ (a, b, c ∈ R).
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The map defined by M(a, b, c) �→ (a, b) is a surjective group homomorphism from
HR onto the additive group R2 whose kernel is isomorphic to the additive group
R. Thus HR is a metabelian group. When R �= {0}, it is not abelian since the
matrices M(1, 0, 0) and M(0, 1, 0) do not commute. The integral Heisenberg group
HZ provides another example of a countably infinite non-abelian metabelian group.

Let G be a group. The commutator of two elements g and h of G is the element
[g, h] ∈ G defined by

[g, h] := ghg−1h−1.

The subgroup of G generated by all commutators [g, h], with g, h ∈ G, is called
the derived subgroup of G and is denoted D(G). If α is a group automorphism of
G, then one clearly has α([g, h]) = [α(g),α(h)] for all g, h ∈ G. This implies
α(D(G)) = D(G), that is, D(G) is invariant by α. In particular D(G) is invariant
by every inner automorphism of G, i.e., D(G) is normal in G. Note that the quotient
group G/D(G) is abelian since gh = [g, h]hg for all g, h ∈ G. Moreover, if H is a
normal subgroup of G such that G/H is abelian then D(G) ⊂ H .

Thederived series ofG is the sequence (Dn(G))n≥0 of subgroups ofG inductively
defined by D0(G) := G and Dn+1(G) := D(Dn(G)) for all n ≥ 0. One has

G = D0(G) ⊃ D(G) = D1(G) ⊃ D2(G) ⊃ . . .

with Dn+1(G) normal in Dn(G) and Dn(G)/Dn+1(G) abelian for all n ≥ 0.
The group G is said to be solvable if there is an integer n ≥ 0 such that

Dn(G) = {1G}. The smallest integer n ≥ 0 such that Dn(G) = {1G} is then
called the solvability degree of G. Note that the solvable groups of solvability de-
gree 0 (resp. 1, resp. 2) are the trivial groups (resp. the non-trivial abelian groups,
resp. the non-abelian metabelian groups). Note also that if a group G is solvable of
solvability degree n then any subgroup of G and any quotient group of G is solvable
with solvability degree ≤ n.

Example 9.2.20 Let K be afield and letG denote the subgroupofGLn(K ) consisting
of all upper triangular matrices, i.e., all matrices of the form M = (mi j )1≤i, j≤n with
mi j ∈ K for all 1 ≤ i, j ≤ n, mi j = 0 for i > j , and mii �= 0 for 1 ≤ i ≤ n.
Then G is a solvable group. To see this, consider, for each integer k ≥ 0, the subset
Ek ⊂ GLn(K ) consisting of all matrices M = (mi j ) such that mi j = δi j for all
i > j −k, where δi j is the Kronecker symbol defined by δi j = 1 if i = j and δi j = 0
if i �= j . In other words, Ek consists of all matrices in GLn(K )whose entries located
below the diagonal line i = j − k coincide with the corresponding entries of the
identity matrix In . Note that E0 = G. An easy computation shows that if M, N ∈ Ek

then [M, N ] ∈ Ek+1. By induction on k, this implies Dk(G) ⊂ Ek for all k ≥ 0. In
particular, we have Dn(G) ⊂ En . As En = {In}, we deduce that G is solvable.

Theorem 9.2.21 Every solvable group is amenable.
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Proof If G is solvable of solvability degree 0 then G is trivial and hence amenable.
Suppose now that G is solvable of solvability degree n ≥ 1. Observe that D(G) � G.
From the definition of the derived series, we see that D(G) is solvable of solvability
degree ≤ n − 1. As G/D(G) is abelian and hence amenable by Corollary 9.2.7,
we conclude that G is amenable by applying Proposition 9.2.14 and induction
on n. �

If P is a property of groups, one says that a group G is virtually P if G contains
a subgroup of finite index that satisfies P . For example, a virtually abelian group is
a group that contains an abelian subgroup of finite index.

Corollary 9.2.22 Every virtually amenable group is amenable.

For the proof, we need the following classical result from group theory.

Lemma 9.2.23 Let G be a group. Suppose that H is a subgroup of finite index of
G. Then there exists a normal subgroup of finite index K of G such that K ⊂ H.

Proof The group G acts by left translation on the set G/H of left cosets of H (the
left translate by g ∈ G of the coset x H , x ∈ G, is the coset gx H ). This action is
described by a homomorphism ρ : G → Sym(G/H), where Sym(G/H) is the group
of permutations of G/H . The kernel K of ρ is of finite index in G since G/H is finite
(the index of K in G divides |Sym(G/H)| = n!, where n = [G : H ] = |G/H |).
We have K ⊂ H since if g ∈ K then g fixes each coset and in particular H . �

Proof of Corollary 9.2.22 Let G be a virtually amenable group. This means that G
contains an amenable subgroup H of finite index. By Lemma 9.2.23, there exists a
normal subgroup of finite index K of G such that K ⊂ H . The group K is amenable
since every subgroup of an amenable group is itself amenable by Proposition 9.2.13.
As G/K is finite and hence amenable by Proposition 9.1.4, we conclude that G is
amenable by applying Proposition 9.2.14. �

Corollary 9.2.24 Every locally virtually amenable group is amenable.

Proof This follows from Corollaries 9.2.6 and 9.2.22. �

Corollary 9.2.25 Every locally virtually solvable group is amenable.

Proof This immediately follows from Theorem 9.2.21 and Corollary 9.2.24. �

9.3 Examples of Non-amenable Groups

The goal of this section is to provide examples of groups that are not amenable. The
reader is assumed to have some familiarity with free groups. Let us start by recalling
some basic facts about them.
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One says that a group G is free if there exists a subset X ⊂ G such that the
pair (G, X) satisfies the following universal property: given any group H and any
map f : X → H , there exists a unique group homomorphism ϕ : G → H such that
ϕ(x) = f (x) for all x ∈ X . One then says that X is a base of the free group G. It
can be shown that if G is a group and X ⊂ G, then G is free with base X if and only
if every g ∈ G can be uniquely written in the form

g = a1a2 . . . an, (9.3.1)

where n ≥ 0, ai ∈ X ∪ X−1 for all 1 ≤ i ≤ n, and ai+1 �= a−1
i for all 1 ≤ i ≤ n −1.

This is known as the normal form of the element g.
Given a set X , there always exists a group with base X and such a group is unique

up to a unique isomorphismfixing X pointwise. This is the reasonwhy it is a common
abuse to speak of the free group with base X to designate any of the free groups with
base X .

Proposition 9.3.1 If X is a set with more than one element, then the free group with
base X is non-amenable.

Proof Let X be a set with more than one element and let G denote the free group
with base X . Let x and y be two distinct elements in X . Consider the set S ⊂ G
defined by

S := {x, y, x−1, y−1}.

If G were amenable, then for every ε > 0 we could find a non-empty finite subset
F ⊂ G satisfying

|F\s F | ≤ ε|F | for all s ∈ S. (9.3.2)

For each s ∈ S, let Gs denote the subset of G consisting of all elements g �= 1G

whose normal form (9.3.1) starts with a1 = s−1. The sets Gs , s ∈ S, are pairwise
disjoint. This implies in particular that

∑

s∈S

|F ∩ Gs | ≤ |F |. (9.3.3)

On the other hand, for each s ∈ S, we have that

|F | = |F\Gs | + |F ∩ Gs | = |s(F\Gs)| + |F ∩ Gs |. (9.3.4)

Now observe that
s(G\Gs) ⊂ Gs−1

so that
s(F\Gs) ⊂ (s F\F) ∪ (F ∩ Gs−1)
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and hence

|s(F\Gs)| ≤ |s F\F | + |F ∩ Gs−1 |
= |F\s F | + |F ∩ Gs−1 |
≤ ε|F | + |F ∩ Gs−1 | (by (9.3.2)).

By using (9.3.4), we deduce that

|F | ≤ ε|F | + |F ∩ Gs−1 | + |F ∩ Gs |

for all s ∈ S. After summing up over all s ∈ S, this gives us

4|F | ≤ 4ε|F | +
∑

s∈S

(|F ∩ Gs−1 | + |F ∩ Gs |
)

= 4ε|F | + 2
∑

s∈S

|F ∩ Gs |.

Combining with (9.3.3), we finally get

4|F | ≤ 4ε|F | + 2|F |

and hence |F | ≤ 2ε|F |, which yields a contradiction for ε < 1/2. This shows that
G is not amenable. �

Remark 9.3.2 Suppose that G is a free group with base X . As every abelian group is
amenable by Corollary 9.2.7, we deduce from Proposition 9.3.1 that G is non-abelian
if X has more than one element. In fact, this can be shown directly by observing that
if X contains two distinct elements x and y then xy �= yx by uniqueness of normal
forms in G. Note that if X is empty (resp. reduced to one single element) then G is
trivial (resp. infinite cyclic). Thus, the following conditions are all equivalent: (1) G
is non-amenable; (2) G is non-abelian; (3) X contains more than one element.

Combining Propositions 9.2.13, 9.3.1, and the above remark we get the following
result.

Corollary 9.3.3 If a group G contains a non-abelian free subgroup then G is non-
amenable. �

Corollary 9.3.3 may be used for showing that certain matrix groups are not
amenable. Here is an example. Recall that the group SLd(Z) is the multiplicative
group of d × d matrices with entries in Z and determinant 1.

Corollary 9.3.4 The group SLd(Z) is non-amenable for d ≥ 2.

Proof As the group SL2(Z) embeds into SLd(Z) for any d ≥ 2, it suffices to show
that SL2(Z) is non-amenable.
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Consider the matrices P, Q ∈ SL2(Z) defined by

P :=
(
1 3
0 1

)
and Q :=

(
1 0
3 1

)
.

Let G be the free group based on a set X = {x, y}, with x �= y. By the universal
property of free groups, there is a unique group homomorphism ϕ : G → SL2(Z)

satisfying ϕ(x) = P and ϕ(y) = Q.
Let us show that ϕ is injective. Suppose not. Then there exists an element g �= 1G

in G such that ϕ(g) = I , where I ∈ SL2(Z) denotes the identity matrix. Let us write
g in normal form:

g = a1a2 . . . an

where n ≥ 1, ai ∈ {x, y, x−1, y−1} for all 1 ≤ i ≤ n, and ai+1 �= a−1
i for all

1 ≤ i ≤ n − 1. After grouping equal consecutive factors, this can be written as

g = un1
1 un2

2 · · · unk
k

where k ≥ 1, ui ∈ {x, y} and ni ∈ Z\{0} for all 1 ≤ i ≤ k, and ui �= ui+1 for all
1 ≤ i ≤ k − 1. Setting Ui = ϕ(ui ) for 1 ≤ i ≤ k, we obtain

I = U n1
1 U n2

2 · · · U nk
k , (9.3.5)

where k ≥ 1, Ui ∈ {P, Q} and ni ∈ Z\{0} for all 1 ≤ i ≤ k, and Ui �= Ui+1 for all
1 ≤ i ≤ k − 1.

To prove that this is impossible, we use the natural action of SL2(Z) on Z
2, that

is, the action given by gv = (av1 + bv2, cv1 + dv2) for all g =
(

a b
c d

)
∈ SL2(Z)

and v = (v1, v2) ∈ Z
2. Indeed, consider the subsets T1, T2 ⊂ Z

2 defined by

T1 := {(v1, v2) ∈ Z
2 | |v1| > |v2|} and T2 := {(v1, v2) ∈ Z

2 | |v2| > |v1|}

and the point b := (1, 1) ∈ Z
2 (see Fig. 9.1). We claim that, for all n ∈ Z\{0}, the

following hold:

(P1) Pnb ∈ T1;
(P2) Qnb ∈ T2;
(P3) Pnv ∈ T1 for all v ∈ T2;
(P4) Qnv ∈ T2 for all v ∈ T1.

Indeed, let n ∈ Z\{0}. Property (P1) is satisfied since Pnb = (1 + 3n, 1) and
|1 + 3n| ≥ 2. On the other hand, if v = (v1, v2) ∈ T2, then we have Pnv =
(v1 + 3nv2, v2) and, by the triangle inequality,

|v1 + 3nv2| ≥ 3|n||v2| − |v1| ≥ 3|v2| − |v1| > 2|v2|,
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Fig. 9.1 The ping-pong table

so that Pnv ∈ T1. This shows (P3). Properties (P2) and (P4) are obtained similarly
by exchanging coordinates. This establishes our claim.

Now, we distinguish two cases. Suppose first that Uk = P . Then, by using (P1),
(P3), and (P4), we successively get

U nk
k b ∈ T1, U nk−1

k−1 U nk
k b ∈ T2, U nk−2

k−2 U nk−1
k−1 U nk

k b ∈ T1, U nk−3
k−3 U nk−2

k−2 U nk−1
k−1 U nk

k b ∈ T2, . . . .

On the other hand, if Uk = Q, then we deduce from (P2), (P3), and (P4) that

U nk
k b ∈ T2, U nk−1

k−1 U nk
k b ∈ T1, U nk−2

k−2 U nk−1
k−1 U nk

k b ∈ T2, U nk−3
k−3 U nk−2

k−2 U nk−1
k−1 U nk

k b ∈ T1, . . . .

Thus, in both cases, we have that

U n1
1 U n2

2 . . . U nk
k b ∈ T1 ∪ T2.

As b /∈ T1 ∪ T2, this gives us

U n1
1 U n2

2 . . . U nk
k b �= b,

which contradicts (9.3.5). Consequently, the group homomorphismϕ : G → SL2(Z)

is injective. This implies that ϕ(G) is a non-abelian free subgroup of SL2(Z). By
applying Corollary 9.3.3, we deduce that SL2(Z) is non-amenable. �

Remark 9.3.5 The key step in the above proof is an example of application of the
ping-pong principle. It may be visualized by thinking of T1 and T2 as the two halves
of a tennis table and observing that in the sequence

U nk
k b, U nk−1

k−1 U nk
k b, U nk−2

k−2 U nk−1
k−1 U nk

k b, U nk−3
k−3 U nk−2

k−2 U nk−1
k−1 U nk

k b, . . . ,

the points lie alternatively in each of these halves so that they cannot return to the
initial position b because b is outside of the table.
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9.4 The Subadditive Convergence Theorem for Amenable
Groups

The goal of this section is to establish the following result, which is an analogue of
Proposition 6.2.3 for countable amenable groups.

Theorem 9.4.1 (Ornstein-Weiss lemma) Let G be a countable amenable group and
let F = (Fn)n≥1 be a Følner sequence for G. Let P f in(G) denote the set of all finite
subsets of G. Suppose that h : P f in(G) → R is a real-valued map satisfying the
following conditions:

(H1) h is subadditive, i.e., one has

h(A ∪ B) ≤ h(A) + h(B) for all A, B ∈ P f in(G);

(H2) h is right-invariant, i.e., one has

h(Ag) = h(A) for all g ∈ G and A ∈ P f in(G).

Then the limit

λ = lim
n→∞

h(Fn)

|Fn|
exists and one has 0 ≤ λ < ∞. Moreover, the limit λ does not depend on the choice
of the Følner sequence F for G.

The proof of Theorem 9.4.1 is rather long and technical. It is based on several
auxiliary results.

Lemma 9.4.2 Let A and B be finite subsets of a group G. Then one has

∑

g∈G

|Ag ∩ B| = |A||B|. (9.4.1)

Proof For E ⊂ G, denote by χE : G → R the characteristic map of E , i.e., the map
defined by χE (g) = 1 if g ∈ E and χE (g) = 0 otherwise. Then we have

∑

g∈G

|Ag ∩ B| =
∑

g∈G

⎛

⎝
∑

g′∈G

χAg∩B(g′)

⎞

⎠

=
∑

g∈G

⎛

⎝
∑

g′∈G

χAg(g
′)χB(g′)

⎞

⎠

=
∑

g′∈G

⎛

⎝
∑

g∈G

χAg(g
′)

⎞

⎠χB(g′)

http://dx.doi.org/10.1007/978-3-319-19794-4_6


174 9 Amenable Groups

=
∑

g′∈G

⎛

⎝
∑

g∈G

χA(g′g−1)

⎞

⎠ χB(g′)

=
∑

g′∈G

|A|χB(g′)

= |A|
∑

g′∈G

χB(g′)

= |A||B|.

This shows (9.4.1). �

Definition 9.4.3 Let X be a set and ε > 0. A family (Ai )i∈I of finite subsets of X
is called ε-disjoint if there exists a family (Bi )i∈I of pairwise disjoint subsets of X
such that

Bi ⊂ Ai and |Ai\Bi | ≤ ε|Ai |

for all i ∈ I .

Lemma 9.4.4 Let X be a set and ε > 0. Suppose that (Ai )i∈I is an ε-disjoint finite
family of finite subsets of X. Then one has

(1 − ε)
∑

i∈I

|Ai | ≤
∣∣∣∣∣
⋃

i∈I

Ai

∣∣∣∣∣ . (9.4.2)

Proof Let (Bi )i∈I be a family of subset of X as in Definition 9.4.3. We then have

(1 − ε)
∑

i∈I

|Ai | ≤
∑

i∈I

|Bi | =
∣∣∣∣∣
⋃

i∈I

Bi

∣∣∣∣∣ ≤
∣∣∣∣∣
⋃

i∈I

Ai

∣∣∣∣∣ .

This shows (9.4.2). �

Definition 9.4.5 Let � and K be subsets of a group G. The K -interior of � is the
subset IntK (�) ⊂ G defined by

IntK (�) := {g ∈ G | Kg ⊂ �}.

The K -closure of � is the subset ClK (�) ⊂ G defined by

ClK (�) := {g ∈ G | Kg ∩ � �= ∅}.

The K -boundary of � is the subset ∂K (�) ⊂ G defined by

∂K (�) := ClK (�)\ IntK (�).
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In other words, IntK (�) (resp. ClK (�), resp. ∂K (�)) is the set consisting of all
g ∈ G such that the right-translate of K by g is contained in � (resp. meets �,
resp. meets both � and G\�).

Lemma 9.4.6 Let G be a group. Then one has

(i) ∂K (G\�) = ∂K (�) for all K ,� ⊂ G;
(ii) ∂K (�g) = (∂K (�))g for all K ,� ⊂ G and g ∈ G;

(iii) ∂K (�1 ∪ �2) ⊂ ∂K (�1) ∪ ∂K (�2) for all K ,�1,�2 ⊂ G;
(iv) ∂K (�\A) ⊂ ∂K (�) ∪ ∂K (A) for all K , A,� ⊂ G such that A ⊂ �.

Proof Let K ,�,�1,�2, A ⊂ G with A ⊂ � and let g ∈ G. Property (i) immedi-
ately follows from the observation above that ∂K (�) consists of all h ∈ G such that
K h meets both � and G\� since G\(G\�) = �.

Property (ii) follows from the fact that, given an element h ∈ G, the set K h meets
both � and G\� if and only if the set K hg meets both �g and (G\�)g = G\�g.

Every element in ∂K (�1 ∪ �2) is in ∂K (�1) or in ∂K (�2) since

G\(�1 ∪ �2) = (G\�1) ∩ (G\�2).

This shows (iii).
Property (iv) immediately follows from (i) and (iii) above since �\A = G\((G\

�) ∪ A). �

Observe that IntK (�) ⊂ ClK (�) whenever K �= ∅. Note also that one always
has ClK (�) = K −1�. This shows in particular that if the sets K and � are finite
then ClK (�) and ∂K (�) are also finite (of cardinality bounded above by |K ||�|).
Definition 9.4.7 Let� and K befinite subsets of a groupG with� �= ∅. The relative
amenability constant of � with respect to K is the rational number α(�, K ) ≥ 0
defined by

α(�, K ) := |∂K (�)|
|�| .

Lemma 9.4.8 Let G be a countable amenable group. Let (Fn)n≥1 be a Følner
sequence for G and K ⊂ G a finite subset. Then one has

lim
n→∞ α(Fn, K ) = 0.

Proof First observe that

∂K (Fn) = K −1Fn\ IntK (Fn)

=
⋃

k∈K

(K −1Fn\k−1Fn)

=
⋃

h,k∈K

(h−1Fn\k−1Fn).



176 9 Amenable Groups

This implies

|∂K (Fn)| =
∣∣∣∣∣∣

⋃

h,k∈K

(h−1Fn\k−1Fn)

∣∣∣∣∣∣

≤
∑

h,k∈K

|h−1Fn\k−1Fn|

=
∑

h,k∈K

|Fn\hk−1Fn|,

and hence

α(Fn, K ) = |∂K (Fn)|
|Fn| ≤

∑

h,k∈K

|Fn\hk−1Fn|
|Fn| ,

which shows that α(Fn, K ) tends to 0 as n goes to infinity since

lim
n→∞

|Fn\gFn|
|Fn| = 0

for all g ∈ G, by definition of a Følner sequence. �

Lemma 9.4.9 Let � and K be finite subsets of a group G with � �= ∅. Then one
has

α(�g, K ) = α(�, K ) (9.4.3)

for all g ∈ G.

Proof By using Lemma 9.4.6(ii), we get

|∂K (�g)| = |(∂K (�))g| = |∂K (�)|,

which yields (9.4.3) after dividing by |�|. �

Lemma 9.4.10 Let G be a group. Let K be a finite subset of G and 0 < ε < 1.
Suppose that (A j ) j∈J is an ε-disjoint finite family of non-empty finite subsets of G.
Then one has

α

⎛

⎝
⋃

j∈J

A j , K

⎞

⎠ ≤ 1

1 − ε
max
j∈J

α(A j , K ).

Proof Let us set
M := max

j∈J
α(A j , K ).
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It follows from Lemma 9.4.6(iii) that

∂K

⎛

⎝
⋃

j∈J

A j

⎞

⎠ ⊂
⋃

j∈J

∂K (A j ).

Thus, we have that

∣∣∣∣∣∣
∂K

⎛

⎝
⋃

j∈J

A j

⎞

⎠

∣∣∣∣∣∣
≤

∣∣∣∣∣∣

⋃

j∈J

∂K (A j )

∣∣∣∣∣∣

≤
∑

j∈J

|∂K (A j )|

=
∑

j∈J

α(A j , K )|A j |

≤ M
∑

j∈J

|A j |.

As the family (A j ) j∈J is ε-disjoint, it then follows from Lemma 9.4.4 that

α

⎛

⎝
⋃

j∈J

A j , K

⎞

⎠ =
∣∣∣∂K

(⋃
j∈J A j

)∣∣∣
∣∣∣
⋃

j∈J A j

∣∣∣
≤ M

1 − ε
.

�

Lemma 9.4.11 Let G be a group. Let K , A and � be finite subsets of G such that
∅ �= A ⊂ �. Suppose that ε > 0 is a real number such that |�\A| ≥ ε|�|. Then
one has

α(�\A, K ) ≤ α(�, K ) + α(A, K )

ε
. (9.4.4)

Proof By Lemma 9.4.6(iv), we have the inclusion

∂K (�\A) ⊂ ∂K (�) ∪ ∂K (A). (9.4.5)

It follows that

α(�\A, K ) = |∂K (�\A)|
|�\A|

≤ |∂K (�\A)|
ε|�| (since |�\A| ≥ ε|�| by hypothesis)

≤ |∂K (�) ∪ ∂K (A)|
ε|�| (by (9.4.5))
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≤ |∂K (�)| + |∂K (A)|
ε|�|

= |�|α(�, K ) + |A|α(A, K )

ε|�|
≤ α(�, K ) + α(A, K )

ε
(since |A| ≤ |�|).

This shows (9.4.4). �
Definition 9.4.12 Let G be a group and ε > 0. Let K and � be non-empty finite
subsets of G. A finite subset P ⊂ G is called an (ε, K )-filling pattern for � if the
following conditions are satisfied:

(FP1) K P ⊂ �;
(FP2) the family (Kg)g∈P is ε-disjoint.

Lemma 9.4.13 Let G be a group and 0 < ε ≤ 1. Let � and K be non-empty finite
subsets of G. Then there exists an (ε, K )-filling pattern P for � such that

|K P| ≥ ε(1 − α(�, K ))|�|. (9.4.6)

Proof Let P denote the set consisting of all (ε, K )-filling patterns for �. Observe
thatP is not empty since∅ ∈ P . Note also that every element P ∈ P has cardinality
bounded above by |�||K | since P ⊂ K −1� by (FP1). Choose a pattern P ∈ P with
maximal cardinality. Let us show that (9.4.6) is satisfied. By applying Lemma 9.4.2
with A := K and B := K P , we get

∑

g∈G

|Kg ∩ K P| = |K ||K P|. (9.4.7)

We claim that
ε|K | ≤ |Kg ∩ K P| for all g ∈ IntK (�). (9.4.8)

Indeed, suppose first that g ∈ P . Then we have Kg∩ K P = Kg and hence (9.4.8) is
satisfied since |Kg| = |K | and ε ≤ 1. Suppose now that g ∈ IntK (�)\P . If (9.4.8)
were not satisfied, then we would have |Kg ∩ K P| < ε|K | = ε|Kg| and hence
P ∪{g} would be an (ε, K )-filling pattern for �, contradicting the maximality of the
cardinality of P . This completes the proof of (9.4.8).

Finally, we obtain

ε|K || IntK (�)| =
∑

g∈IntK (�)

ε|K |

≤
∑

g∈IntK (�)

|Kg ∩ K P| (by (9.4.8))

≤
∑

g∈G

|Kg ∩ K P|
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= |K ||K P| (by (9.4.7)).

After dividing by |K |, we get

ε| IntK (�)| ≤ |K P|.
This gives us (9.4.6) since

(1−α(�, K ))|�| = |�|−|∂K (�)| ≤ |K −1�|−|∂K (�)| = |ClK (�)|−|∂K (�)| = | IntK (�)|.

�

Lemma 9.4.14 (Filling lemma) Let G be a group and 0 < ε ≤ 1

2
. Then there exists

an integer s0 = s0(ε) ≥ 1 such that for each integer s ≥ s0 the following holds.
If K1, K2, . . . , Ks are non-empty finite subsets of G such that

α(Kk, K j ) ≤ ε2s for all 1 ≤ j < k ≤ s, (9.4.9)

and D is a non-empty finite subset of G such that

α(D, K j ) ≤ ε2s for all 1 ≤ j ≤ s, (9.4.10)

then there exists a sequence P1, P2, . . . , Ps of finite subsets of G satisfying the
following conditions:

(T1) for every 1 ≤ j ≤ s, the set Pj is an (ε, K j )-filling pattern for D;
(T2) the subsets K j Pj ⊂ D, 1 ≤ j ≤ s, are pairwise disjoint;
(T3) the subset D′ ⊂ D defined by

D′ := D\
⋃

1≤ j≤s

K j Pj

has cardinality |D′| ≤ ε|D|.
Proof Fix an integer s ≥ 1. Let K j , 1 ≤ j ≤ s, and D be non-empty finite subsets
of G satisfying conditions (9.4.9) and (9.4.10).

Let us first describe, by decreasing induction on j , a finite process with at most s
steps for constructing finite subsets Pj ⊂ G for 1 ≤ j ≤ s. We will see that these
subsets have the required properties when s is large enough, namely for s ≥ s0 with
s0 = s0(ε) that will be made precise at the end of the proof.

Step 1. We put D0 := D. By (9.4.10), we have α(D0, K j ) ≤ ε2s for all 1 ≤ j ≤ s.
By applying Lemma 9.4.13 with � := D0 = D and K = Ks , we can find a finite

subset Ps ⊂ G such that Ps is an (ε, Ks)-filling pattern for D0 and

|Ks Ps | ≥ ε(1 − α(D, Ks))|D|. (9.4.11)
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We deduce from (9.4.11) and (9.4.10) that

|Ks Ps | ≥ ε(1 − ε2s)|D|. (9.4.12)

Setting D1 := D0\Ks Ps , we deduce from (9.4.12) that

|D1| ≤ (
1 − ε(1 − ε2s)

)|D|.

Step k. We continue this process by induction in the following way. Suppose that
the process has been applied k times, with 1 ≤ k ≤ s − 1. It is assumed that the
induction hypotheses at step k are the following:

(H(k;a)) Dk−1 is a subset of D satisfying

α(Dk−1, K j ) ≤ (2k − 1)ε2s−k+1 for all 1 ≤ j ≤ s − k + 1;

(H(k;b)) Ps−k+1 ⊂ G is an (ε, Ks−k+1)-filling pattern for Dk−1;
(H(k;c)) setting Dk := Dk−1\Ks−k+1Ps−k+1, we have that

|Dk | ≤
∏

0≤i≤k−1

(
1 − ε

(
1 − (2i + 1)ε2s−i )) |D|.

Note that these induction hypotheses are satisfied for k = 1 by Step 1.
Let us pass from Step k to Step k + 1.

Step k + 1. We distinguish two cases.

Case 1. Suppose that |Dk | ≤ ε|Dk−1| and hence |Dk | ≤ ε|D|. Then we take Pj = ∅

for all 1 ≤ j ≤ s − k and stop the process.

Case 2. Suppose on the contrary that |Dk | > ε|Dk−1|.
Let us first estimate from above, for all 1 ≤ j ≤ s − k, the relative amenability

constants α(Dk, K j ).
Let 1 ≤ j ≤ s − k.
If Ps−k+1 = ∅, then Dk = Dk−1 and therefore

α(Dk, K j ) = α(Dk−1, K j )

≤ (2k − 1)ε2s−k+1 (by our induction hypothesis (H(k;a)))

≤ (2k + 1)ε2s−k (since 0 < ε < 1).

Suppose now that Ps−k+1 �= ∅. Then we can apply Lemma 9.4.11 with � := Dk−1
and A := Ks−k+1Ps−k+1. This gives us

α(Dk , K j ) = α(Dk−1\Ks−k+1Ps−k+1, K j ) ≤ α(Dk−1, K j ) + α(Ks−k+1Ps−k+1, K j )

ε
.

(9.4.13)
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On the other hand, Lemma 9.4.9 and condition (9.4.9) imply that, for all g ∈ G,

α(Ks−k+1g, K j ) = α(Ks−k+1, K j ) ≤ ε2s .

As the family (Ks−k+1g)g∈Ps−k+1 is ε-disjoint, this last inequality together with
Lemma 9.4.10 give us

α(Ks−k+1Ps−k+1, K j ) = α

⎛

⎝
⋃

g∈Ps−k+1

Ks−k+1g, K j

⎞

⎠ ≤ ε2s

1 − ε
.

From (9.4.13) and the induction hypothesis (H(k;a)), we deduce that

α(Dk, K j ) ≤ (2k − 1)ε2s−k+1

ε
+ ε2s

(1 − ε) ε
≤ (2k + 1)ε2s−k

(for the second inequality, observe that 1/(1 − ε) ≤ 2 since 0 < ε ≤ 1/2 ).
This shows (H(k+1;a)).
Using Lemma 9.4.13 with � := Dk and K := Ks−k , we can find a finite sub-

set Ps−k ⊂ G such that Ps−k is an (ε, Ks−k)-filling pattern for Dk , thus yielding
(H(k+1;b)), and satisfying

|Ks−k Ps−k | ≥ ε
(
1 − α(Dk, Ks−k)

)|Dk | ≥ ε
(
1 − (2k + 1)ε2s−k)|Dk |. (9.4.14)

Setting
Dk+1 := Dk\Ks−k Ps−k,

we deduce from (9.4.14) that

|Dk+1| ≤ |Dk |
(
1 − ε

(
1 − (2k + 1)ε2s−k)).

Together with the inequality of the induction hypothesis (H(k;c)), this yields

|Dk+1| ≤ |D|
∏

0≤i≤k

(
1 − ε

(
1 − (2i + 1)ε2s−i )) .

Thus condition (H(k+1;c)) is also satisfied. This finishes the construction of Step
k + 1 and proves the induction step.

Now, suppose that this process continues until Step s. Using (H(k;c)) for k = s,
we obtain

|Ds | ≤ |D|
∏

0≤i≤s−1

(
1 − ε

(
1 − (2i + 1)ε2s−i )) . (9.4.15)

To conclude, let us show that for s ≥ s0, with s0 = s0(ε) depending only on ε, we
have |Ds | ≤ ε|D|.
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As (2i + 1)ε2s−i ≤ (2s + 1)εs+1 for all 0 ≤ i ≤ s − 1, we deduce from (9.4.15)
that

|Ds | ≤ |D|(1 − ε(1 − (2s + 1)εs+1)
)s

. (9.4.16)

Since limr→+∞(2r + 1)εr+1 = 0 and limr→+∞(1 − ε
2 )

r = 0, both monotonically
for large r , we can find an integer s0 = s0(ε) ≥ 1 such that for all r ≥ s0, we have
both (2r + 1)εr+1 ≤ 1

2 and (1 − ε
2 )

r ≤ ε. Now, if s ≥ s0, using inequality (9.4.16)
we deduce that

|Ds | ≤ |D|
(
1 − ε

2

)s ≤ ε|D|.

This completes the proof of the lemma. �
Proof of Theorem 9.4.1 Let A ∈ P f in(G). By taking A = B in (H1), we get
h(A) ≤ 2h(A) and hence

0 ≤ h(A). (9.4.17)

On the other hand, we have that

h(A) = h

⎛

⎝
⋃

g∈A

{g}
⎞

⎠

≤
∑

g∈A

h({g}) (by (H1))

= h({1G})|A| (by (H2)),

so that, setting M := h({1G}),
h(A) ≤ M |A|. (9.4.18)

Let (Fn)n≥1 be a Følner sequence for G. By Lemma 9.4.8, we know that

lim
n→∞ α(Fn, K ) = 0 for every finite subset K ⊂ G. (9.4.19)

Consider the infimum limit

λ := lim inf
n→∞

h(Fn)

|Fn| . (9.4.20)

Note that 0 ≤ λ ≤ M by (9.4.17) and (9.4.18).

Let 0 < ε ≤ 1

2
and choose an integer s ≥ s0, where s0 = s0(ε) is as in

Lemma 9.4.14.
Recall that one says that a finite sequence (K j )1≤ j≤s is extracted from the se-

quence (Fn)n≥1 if there are positive integers n1 < n2 < · · · < ns such that K j = Fn j

for all 1 ≤ j ≤ s.
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It clearly follows from (9.4.19) and (9.4.20) that we can find, by induction on j ,
a finite sequence (K j )1≤ j≤s extracted from the sequence (Fn)n≥1 such that

α(Kk, K j ) ≤ ε2s for all 1 ≤ j < k ≤ s

and
h(K j )

|K j | ≤ λ + ε for all 1 ≤ j ≤ s. (9.4.21)

Let D ⊂ G be a non-empty finite subset satisfying α(D, K j ) ≤ ε2s for all
1 ≤ j ≤ s.

By Lemma 9.4.14, we can find a sequence (Pj )1≤ j≤s of finite subsets of G
satisfying the following conditions:

(T1) the set Pj is an (ε, K j )-filling pattern for D for every 1 ≤ j ≤ s;
(T2) the subsets K j Pj ⊂ D, 1 ≤ j ≤ s, are pairwise disjoint;
(T3) the subset D′ ⊂ D defined by

D′ := D\
⋃

1≤ j≤s

K j Pj

is such that |D′| ≤ ε|D|.
As

D = D′ ∪
⎛

⎝
⋃

1≤ j≤s

K j Pj

⎞

⎠ ,

it follows from the subadditivity property (H1) that

h(D) ≤ h(D′) +
∑

1≤ j≤s

h(K j Pj ). (9.4.22)

Now, since |D′| ≤ ε|D| by (T3), we deduce from (9.4.18) that

h(D′) ≤ Mε|D|. (9.4.23)

On the other hand, for all 1 ≤ j ≤ s, we have that

h(K j Pj ) = h

⎛

⎝
⋃

g∈Pj

K jg

⎞

⎠

≤
∑

g∈Pj

h(K jg) (by the subadditivity property (H1))
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=
∑

g∈Pj

h(K j ) (by the right-invariance property (H2))

=
∑

g∈Pj

h(K j )

|K j | |K jg| (since |K j | = |K jg|)

≤ (λ + ε)
∑

g∈Pj

|K jg| (by (9.4.21)).

As the family (K jg)g∈Pj is ε-disjoint by (T1),we then deduce fromLemma9.4.4 that

h(K j Pj ) ≤ λ + ε

1 − ε

∣∣∣∣∣∣

⋃

g∈Pj

K jg

∣∣∣∣∣∣
= λ + ε

1 − ε
|K j Pj |.

This gives us
∑

1≤ j≤s

h(K j Pj ) ≤ λ + ε

1 − ε

∑

1≤ j≤s

|K j Pj |

and hence ∑

1≤ j≤s

h(K j Pj ) ≤ λ + ε

1 − ε
|D|, (9.4.24)

since the sets K j Pj , 1 ≤ j ≤ s, are pairwise disjoint subsets of D by (T2).
Combining (9.4.22)–(9.4.24), we get

h(D)

|D| ≤ Mε + λ + ε

1 − ε
. (9.4.25)

By (9.4.19), we can find an integer n0 ≥ 1 such that, for all n ≥ n0,

α(Fn, K j ) ≤ ε2s for all 1 ≤ j ≤ s.

By replacing D by Fn in (9.4.25), we obtain

h(Fn)

|Fn| ≤ Mε + λ + ε

1 − ε

for all n ≥ n0. By letting n tend to infinity, this gives us

lim sup
n→∞

h(Fn)

|Fn| ≤ λ + ε

1 − ε
+ Mε.
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Letting now ε tend to 0, we get

lim sup
n→∞

h(Fn)

|Fn| ≤ λ.

Consequently, we have that

λ = lim inf
n→∞

h(Fn)

|Fn| = lim sup
n→∞

h(Fn)

|Fn| .

This proves that the sequence

(
h(Fn)

|Fn|
)

n≥1
converges to λ.

It only remains to show that λ = limn→∞
h(Fn)

|Fn| does not depend on the choice

of the Følner sequence (Fn)n≥1. To see this, suppose that (F ′
n)n≥1 is another Følner

sequence for G and let λ′ := limn→∞
h(F ′

n)

|F ′
n|

.

Consider the sequence (En)n≥1 defined by

En :=
{

Fn if n is odd

F ′
n if n is even.

Clearly (En)n≥1 is also a Følner sequence. Therefore, the sequence

(
h(En)

|En|
)

n≥1
has a limit μ. We get μ = λ = λ′ by uniqueness of the limit. �

Notes

A detailed exposition of the theory of amenable groups may be found for example
in [41, 85, 88], and [22, Chap.4]. The notes by Tao [103] provide an especially nice
introduction to amenability via Følner sequences.

Amenability theory has its roots in the difficulties raised at the beginning of the
20th century by both the definition of the Lebesgue integral and the Banach-Tarski
paradox (see [27] for a historical survey). Amenable groups were introduced by von
Neumann [113] in 1929. The original definition of von Neumann requires that the
group admits an invariant finitely-additive probability measure defined on the set
of all of its subsets. A fundamental observation of M. Day is that von Neumann’s
definition is equivalent to the existence of an invariant mean on the space of bounded
functions on the group. The introduction of means has the advantage of allowing the
use of the powerful tools of functional analysis. Let G be a group. For g ∈ G, we
denote by Lg and Rg the left and right multiplication by g, that is, themaps Lg : G →
G and Rg : G → G defined by Lg(h) = gh and Rg(h) = hg for all h ∈ G. Consider
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the vector space �∞(G) consisting of all bounded real-valued maps f : G → R.
A mean on G is a linear map m : �∞(G) → R such that infg∈G f (g) ≤ m( f ) ≤
supg∈G f (g) for all f ∈ �∞(G). One says that a mean m on G is left-invariant
(resp. right-invariant) if it satisfies m( f ◦ Lg) = m( f ) (resp. m( f ◦ Rg) = m( f ))
for all f ∈ �∞(G) and g ∈ G. Ameanm onG is said to be bi-invariant if it is both left
and right-invariant. The following conditions are all equivalent: (1) G is amenable;
(2) G admits a left-invariant mean; (3) G admits a right-invariant mean; (4) G admits
a bi-invariant mean. There is a natural one-to-one correspondence between means
on a group G and finitely-additive probability measures on subsets of G which is
given by m �→ μm , where μm(A) is the value taken by m at the characteristic map
χA of A ⊂ G. This correspondence between means and finitely-additive probability
measures preserves left and right-invariance and explains the equivalence between
von Neumann’s and Day’s definitions. In fact, many other equivalent definitions
of amenability for groups may be found in the literature and a complete list, if it
exists, would be certainly far too long to be given here. The interest of choosing
one of these definitions rather than another depends on the context. It seems that the
term “amenable” was used for the first time by M. Day in 1949. The German word
originally used by von Neumann in 1929 was “messbar”. Note that “amenable”
is an anagram of “meanable” and that the French word that is currently used for
“amenable” is “moyennable”.

The Tits alternative [106] asserts that every finitely generated linear group either
contains a non-abelian free subgroup or is virtually solvable (a group G is called
linear if there exist a field K and an integer n ≥ 1 such that G is isomorphic to
a subgroup of GLn(K )). One deduces from the Tits alternative that if G is a linear
group then the following conditions are equivalent: (1)G is amenable; (2)G is locally
virtually solvable; (3)G contains no non-abelian free subgroups. The groupGL2(K ),
where K is the algebraic closure of a finite field, provides an example of a linear
group that is locally virtually solvable (it is even locally finite, see Exercise 9.10) but
not virtually solvable. However, in characteristic 0, every linear group that is locally
virtually solvable is virtually solvable. There exist finitely generated amenable groups
that are not virtually solvable. The groups of intermediate growth, e.g., Grigorchuk
groups [42], are examples of such groups. The infinite finitely generated amenable
simple groups exhibited by Juschenko and Monod in [52] provide further examples
of finitely generated amenable groups that are not virtually solvable, since it is clear
that an infinite simple group cannot be virtually solvable. On the other hand, there
exist non-amenable groups that contain no non-abelian free subgroups among Tarski
monsters [82] and free Burnside groups [2]. These examples illustrate the fact that
both the class of amenable groups and the class of non-amenable groups are very
hard to apprehend from an algebraic viewpoint.

A net in a set X is a family (xi )i∈I of elements of X indexed by a directed set
I (recall that a directed set is a partially ordered set (I,≤) satisfying the following
condition: for all i1, i2 ∈ I , there exists j ∈ I such that i1 ≤ j and i2 ≤ j). In a
topological space, the notion of a limit can be extended to nets of points. For example,
one says that a net (xi )i∈I of real numbers converges to 0, and one writes limi xi = 0,
if, for every ε > 0, there exists i0 ∈ I such that |xi | ≤ ε for all i0 ≤ i . If G is a
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group, a Følner net for G is a net (Fi )i∈I of non-empty finite subsets of G such
that limi |Fi\gFi | = 0 for all g ∈ G. By adapting the proof of Lemma 9.2.1, one
easily shows that a (possibly uncountable) group is amenable if and only if it admits
a Følner net. On the other hand, given a Følner net (Fi )i∈I , there is an associated
net of means (mi )i∈I , where mi ( f ) is the average of f ∈ �∞(G) on Fi . Then, by
the compactness of the closed unit ball of the dual space of �∞(G) for the weak-�
topology (which follows from the Banach-Alaoglu theorem), there exists a subnet
of (mi )i∈I that converges to a mean m. From the fact that (Fi )i∈I is a Følner net,
one easily deduces that the limit mean m is left-invariant. The converse implication,
namely that the existence of a left-invariant mean implies the existence of a Følner
net, is more delicate. The proof given by Følner [37] for this converse implication
was subsequently simplified by Namioka [81].

The definition of amenability via the existence of invariantmeansmay be extended
to semigroups, i.e., sets equipped with a binary operation that is only assumed to
be associative, but theoretical complications appear in this more general setting (see
[25, 26, 81, 85]). For instance, when considering semigroups, one must distinguish
between left-amenability and right-amenability. Also, no equivalent definition of
amenability based on Følner-type conditions is available in this setting. However,
for semigroups, there is a Følner-type condition that is implied by amenability and a
stronger Følner-type condition that implies amenability.

The notion of amenability has been generalized in several other directions (group
actions, groupoids, associative algebras, orbit equivalences, etc.) and plays now an
important role inmany branches ofmathematics such as combinatorial and geometric
group theory, ergodic theory, dynamical systems, geometry of manifolds, and oper-
ator algebras. This is due to the fact that amenable objects are easier to manipulate
because they are close to finite and commutative ones.

The Baumslag-Solitar groups BS(m, n) were introduced in [12]. Given non-zero
integers m, n, the Baumslag-Solitar group BS(m, n) is the group given by the pre-
sentation 〈a, b : bamb−1 = an〉. This means that BS(m, n) is the quotient of the free
group F on two generators a and b by the smallest normal subgroup N of F such
that bamb−1a−n ∈ N . Baumslag-Solitar groups are often used as counterexamples
in combinatorial and geometric group theory. For instance, the Baumslag-Solitar
group BS(2, 3) is non-Hopfian (a group G is called Hopfian if every surjective en-
domorphism of G is injective). In contrast, it follows from results due to Malcev
that every finitely generated linear group is residually finite and that every finitely
generated residually finite group is Hopfian (cf. Exercise 10.8 for the definition of
residual finiteness). For a nice survey on Baumslag-Solitar groups, see [1].

A proof of Theorem 9.4.1, under the additional hypothesis that h is non-
decreasing, was given by Lindenstrauss andWeiss in [74, Theorem 6.1]. Their proof
is based on the theory of quasi-tiles in amenable groups that was developed by Orn-
stein and Weiss in [83]. An alternative proof of Theorem 9.4.1 was sketched by
Gromov [44] (see [61] for a detailed exposition of Gromov’s argument). A version
of Theorem 9.4.1 for cancellative one-sided amenable semigroups was given in [23].
The proof of Theorem 9.4.1 presented in the present chapter relies on Gromov’s
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ideas and closely follows the exposition that may be found in [23]. The extension to
uncountable amenable groups, for which Følner sequences are replaced by Følner
nets, is straightforward (cf. [23]).

Exercises

9.1 Show that the additive groupQ of rational numbers is countable but not finitely
generated.

9.2 Show that the sequence (Fn)n≥1, where

Fn :=
{

k

n! | k ∈ N and k ≤ (n + 1)!
}

for all n ≥ 1, is a Følner sequence for Q.
9.3 The symmetric difference of two sets A and B is the set A � B consisting

of all elements that are either in A or in B but not in both. Thus one has
A � B = A ∪ B\A ∩ B.

(a) Show that one has A � B = (A\B) ∪ (B\A).
(b) Show that one has A � B = ∅ if and only if A = B.
(c) Show that if A and B are finite sets with the same cardinality then one has

|A � B| = 2|A\B| = 2|B\A|.
(d) Let G be a group and let (Fn)n≥1 be a sequence of non-empty finite subsets

of G. Show that (Fn)n≥1 is a Følner sequence for G if and only if one has

limn→∞
|Fn � gFn|

|Fn| = 0 for all g ∈ G.

9.4 Let G be a countable amenable group. Let (Fn)n≥1 be a Følner sequence for
G and let (gn)n≥1 be a sequence of elements of G. Show that (Fngn)n≥1 is a
Følner sequence for G.

9.5 Let G be a group and let A be a finite subset of G. Show that if (Fn)n≥1 is a
Følner sequence for G then (Fn ∪ A)n≥1 is also a Følner sequence for G.

9.6 One says that a Følner sequence (Fn)n≥1 for a group G is a Følner exhaustion
if it satisfies Fn ⊂ Fn+1 for all n ≥ 1 and G = ⋃

n≥1 Fn . Show that every
countable amenable group G admits a Følner exhaustion.

9.7 Show that any group G satisfies the following condition: for every s ∈ G
and every ε > 0, there exists a non-empty finite subset F ⊂ G such that
|F\s F | ≤ ε|F |.

9.8 Deduce fromLemma 9.2.12 that a group G is amenable if and only if it satisfies
the following condition: for every finite subset S of G and every ε > 0, there
exists a non-empty finite subset F ⊂ G such that |SF | ≤ (1 + ε)|F |. Hint:
observe that SF ⊂ F ∪ SF and SF\F = (S ∪ {1G})F\F for all F, S ⊂ G.

9.9 Let G be a group.
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(a) Show that the following conditions are equivalent: (1) G is countable and
locally finite; (2) there exists a non-decreasing sequence (Hn)n≥1 of finite
subgroups of G such that G = ⋃

n≥1 Hn .
(b) Suppose that G is countable and locally finite. Let (Hn)n≥1 be a non-

decreasing sequence of finite subgroups of G such that G = ⋃
n≥1 Hn .

Show that the sequence (Hn)n≥1 is a Følner exhaustion of G (cf. Exer-
cise 9.6).

9.10 Let K be the algebraic closure of a finite field and let n be a positive integer.
Show that the group GLn(K ) is locally finite. Hint: Observe that K is the union
of an increasing sequence of finite subfields.

9.11 Let G be a group. Suppose that G contains a normal subgroup H such that H
is solvable of solvability degree m and G/H is solvable of solvability degree
n. Show that G is solvable of solvability degree at most m + n.

9.12 Let G be a group and let (Dn(G))n≥0 denote its derived series. Show that
Dn(G) is normal in G for every n ≥ 0.

9.13 Show that every virtually solvable group that is a torsion group is locally finite.
Hint: reduce to the case of a solvable group and then use induction on the
solvability degree.

9.14 Let G be a finitely generated group. Suppose that A ⊂ G is a finite generating
subset of G. Show that the following conditions are all equivalent: (1) G is
amenable; (2) for every ε > 0, there exists a non-empty finite subset F ⊂ G
such that |F\aF | ≤ ε|F | for all a ∈ A; (3) for every ε > 0, there exists a
non-empty finite subset F ⊂ G such that |AF\F | ≤ ε|F |; (4) for every ε > 0,
there exists a non-empty finite subset F ⊂ G such that |AF | ≤ (1 + ε)|F |.

9.15 Show that a group G is amenable if and only if it satisfies the following condi-
tion: for every finite subset K ⊂ G and every real number ε > 0, there exists
a non-empty finite subset F ⊂ G such that α(F, K ) ≤ ε.

9.16 (Groups with subexponential growth). Let G be a finitely generated group.
Let A ⊂ G be a finite subset which generates G as a semigroup (i.e., every
element of G can be written as a finite product of elements of A). For n ≥ 1,
let Bn = Bn(G, A) denote the set consisting of all g ∈ G that can be written
in the form g = a1a2 . . . ak with 0 ≤ k ≤ n and ai ∈ A for all 1 ≤ i ≤ k.

(a) Show that the limit

λ = λ(G, A) := lim
n→∞

log |Bn|
n

exists and that 0 ≤ λ < ∞. Hint: see Exercise 6.4.
(b) One says that G has subexponential growth if λ = 0 and that G has

exponential growth otherwise. Show that this definition does not depend
on the choice of the finite subset A ⊂ G which generates G as a semigroup.
Hint: Observe that if A′ is another finite subset of G which generates G
as a semigroup and B ′

n := Bn(G, A′), then there exists a positive integer
C = C(G, A, A′) such that Bn ⊂ B ′

Cn for all n ≥ 1.
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(c) Show that if G has subexponential growth then

lim inf
n→∞

|Bn+1|
|Bn| = 1.

(d) Show that if G has subexponential growth then G is amenable. Hint: Con-
sider a finite subset S ⊂ G and ε > 0. Choose a finite subset A ⊂ G
that generates G as a semigroup with S ⊂ A. Observe that the subsets
Bn := Bn(G, A) satisfy SBn ⊂ Bn+1 for all n ≥ 1 and deduce from the
result of the previous question that if G has subexponential growth then
there exists n ≥ 1 such that |Bn+1\Bn| ≤ ε|Bn|. Conclude by using the
characterization of amenability in Lemma 9.2.12.

9.17 Let G be a finitely generated group and H a subgroup of G.

(a) Show that if H is finitely generated and G has subexponential growth, then
H has subexponential growth.

(b) Suppose that H is of finite index in G. Show that H is finitely generated
and that G has subexponential growth if and only if H has subexponential
growth.

9.18 Show that every finitely generated abelian group has subexponential growth.
9.19 Show that the integral Heisenberg group HZ described in Example 9.2.19

is finitely generated and has subexponential growth. Hint: Observe that the
matrices X := M(1, 0, 0), Y := M(0, 1, 0), and Z := M(0, 0, 1) generate the
group HZ and that they satisfy [X, Y ] = Z and [X, Z ] = [Y, Z ] = 1.

9.20 (An example of a finitely generated amenable group with exponential growth).
Consider the Baumslag-Solitar group G := BS(1, 2), i.e., the group of affine
transformations of the real line generated by the translation t : x �→ x + 1
and the homothety h : x �→ 2x (cf. Example 9.2.18). We have seen in Exam-
ple 9.2.18 that G is metabelian. Therefore G is amenable by Corollary 9.2.16.
The goal of this exercise is to show that G has exponential growth. Let a and
b be the elements of G respectively defined by a := h−1 and b := at .

(a) Show that if u1, . . . , un and v1, . . . , vm are twofinite sequences of elements
of {a, b} such that u1 . . . un = v1 . . . vm then n = m and ui = vi for all
1 ≤ i ≤ n. Hint: use a ping-pong-type argument after observing that a
sends the open interval (0, 1) in (0, 1/2) and that b sends (0, 1) in (1/2, 1).

(b) Deduce from the result of the previous question that G has exponential
growth.

(c) Find a similar argument to prove that BS(1, n) has exponential growth for
every n ≥ 2.



Chapter 10
Mean Topological Dimension for Actions
of Amenable Groups

In this chapter, by a “dynamical system”, we mean a triple (X, G, T ), where X is a
topological space, G a group, and T : G × X → X a continuous action of G on X
(see Sect. 10.1). The mean topological dimension of a dynamical system (X, G, T ),
where X is a normal space and G is a countable amenable group, is defined in
Sect. 10.2. In the case G = Z, it coincides with the mean topological dimension
of the time 1 homeomorphism associated with the action. We extend most of the
results of Chaps. 6 and 7. We prove in particular that if G is a countably-infinite
amenable group and P is a polyhedron, then the mean topological dimension of the
G-shift on PG is equal to dim(P) (Corollary 10.6.3). We also show that if G is a
countable amenable group admitting subgroups of arbitrarily large finite index and P
is a polyhedron, then the mean topological dimension of closed invariant subspaces
of K G take all real values in the interval [0, dim(P)] (Theorem 10.8.1).

10.1 Continuous Actions

Let G be a group. For our exposition, we shall use a multiplicative notation for the
binary operation on G. An action of the group G on a set X is a map T : G × X → X
satisfying T (g, T (h, x)) = T (gh, x) and T (1G , x) = x for all g, h ∈ G and x ∈ X
(here 1G is the identity element of G). Denoting by Tg : X → X the map defined by
Tg(x) = T (g, x) for all x ∈ X , this amounts to saying that one has

(Act-1) Tg ◦ Th = Tgh for all g, h ∈ G, and
(Act-2) T1G = IdX ,

where IdX is the identity map on X . It follows from (Act-1) and (Act-2) that Tg is
bijective for all g ∈ G with inverse map T −1

g := (Tg)−1 = Tg−1 .
Let X be a set equipped with an action T : G × X → X of a group G. One says

that a subset Y ⊂ X is T -invariant if Y is Tg-invariant, i.e., Tg(Y ) ⊂ Y , for all
g ∈ G. Note that if Y ⊂ X is T -invariant then one actually has Tg(Y ) = Y for all
g ∈ G. Indeed, we then have on one hand Tg(Y ) ⊂ Y (since Y is Tg-invariant) and
on the other one Y = Tg(Tg−1(Y )) ⊂ Tg(Y ) (since Y is Tg−1 -invariant).
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If Y ⊂ X is T -invariant, then T induces by restriction an action T |Y : G ×Y → Y
given by T |Y (g, y) = T (g, y) for all g ∈ G and y ∈ Y . It is a common abuse to
write T instead of T |Y if there is no risk of confusion.

When X is a topological space, one says that an action T of G on X is continuous
if the maps Tg are continuous on X for all g ∈ G. This implies that, for every g ∈ G,
the map Tg is a homeomorphism of X with inverse homeomorphism T −1

g = Tg−1 .
In this chapter, by a dynamical system, we shall mean a triple (X, G, T ), where

X is a topological space, which is called the phase space of the dynamical system,
G is a group, and T : G × X → X is a continuous action of G on X . All dynamical
systems will be implicitly assumed to have non-empty phase spaces.

Example 10.1.1 Suppose that f : X → X is a homeomorphism of a topological
space X . Then the map T : Z × X → X , defined by T (n, x) = f n(x) for all n ∈ Z

and x ∈ X , is a continuous action of the additive group Z of integers on X . One says
that (X, Z, T ) is the dynamical system generated by f .

Conversely, if T : Z × X → X is a continuous action of Z on the topological
space X , then (X, Z, T ) is generated by the homeomorphism T1 : X → X . Thus,
there is a canonical bijection between the set of homeomorphisms of X and the set
of continuous actions of Z on X .

If T and S are continuous actions of the same groupG on two topological spaces X
and Y , one says that the dynamical systems (X, G, T ) and (Y, G, S) are topologically
conjugate if there exists a homeomorphism ϕ : X → Y such that ϕ ◦ Tg = Sg ◦ ϕ

for all g ∈ G. One then says that the homeomorphism ϕ conjugates the dynamical
systems (X, G, T ) and (Y, G, S). One says that the dynamical system (X, G, T )

embeds in the dynamical system (Y, G, S) if there exists a topological embedding
f : X ↪→ Y such that f ◦ Tg = Sg ◦ f for all g ∈ G. One then says that f is an
embedding of the dynamical system (X, G, T ) in the dynamical system (Y, G, S).
Note that the system (X, G, T ) embeds in (Y, G, S) if and only if there exists an S-
invariant subset Z ⊂ Y such that (X, G, T ) is topologically conjugate to (Z , G, S).

Example 10.1.2 Let X and Y be topological spaces. Suppose that f is a homeomor-
phism of X and g is a homeomorphism of Y . Let (X, Z, T ) and (Y, Z, S) denote the
dynamical systems generated by f and g respectively. Then (X, Z, T ) and (Y, Z, S)

are topologically conjugate if and only if the homeomorphisms f and g are topo-
logically conjugate. Moreover, a homeomorphism ϕ : X → Y conjugates (X, Z, T )

and (Y, Z, S) if and only if it conjugates f and g. Similarly, (X, Z, T ) embeds in
(Y, Z, S) if and only if (X, f ) embeds in (Y, g).

10.2 Definition of Mean Topological Dimension

Let (X, G, T ) be a dynamical system, i.e., a topological space X equipped with
a continuous action T : G × X → X of a group G. Let P f in(G) denote the set
consisting of all finite subsets of G.
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Given a finite open cover α = (Ui )i∈I of X and an element A ∈ P f in(G), we
define the finite open cover αA = αA(X, G, T ) by

αA :=
∨

g∈A

T −1
g (α). (10.2.1)

Formally, αA is the family indexed by I A (the set consisting of all maps from A to I )
formed by all the open subsets

⋂

g∈A

T −1
g (Uι(g)) ⊂ X,

where ι : A → I runs over I A.

Proposition 10.2.1 Let X be a topological space equipped with a continuous action
T : G × X → X of a group G. Let α be a finite open cover of X. Then the following
hold:

(i) D(αAg) = D(αA) for all g ∈ G and A ∈ P f in(G);
(ii) D(αA) ≤ D(αB) for all A, B ∈ P f in(G) such that A ⊂ B;

(iii) if X is normal then one has

D(αA∪B) ≤ D(αA) + D(αB)

for all A, B ∈ P f in(G).

Proof If A ∈ P f in(G) and g ∈ G, then

αAg =
∨

h∈A

T −1
hg (α)

=
∨

h∈A

(Th ◦ Tg)
−1(α)

=
∨

h∈A

T −1
g ◦ T −1

h (α)

=
∨

h∈A

T −1
g (T −1

h (α))

= T −1
g

(
∨

h∈A

T −1
h (α)

)
(by Proposition 6.1.1)

= T −1
g (αA).

This shows that the homeomorphism T −1
g sends αAg to αA and hence that D(αAg) =

D(αA).
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If A, B ∈ P f in(G) and A ⊂ B, then αB is finer than αA. It follows that D(αA) ≤
D(αB) by Proposition 1.1.4.

It remains only to establish (iii). So let us assume that X is normal and let A, B ∈
P f in(G). In the particular case when A and B are disjoint, we have that αA∪B =
αA ∨ αB and hence

D(αA∪B) = D(αA ∨ αB) ≤ D(αA) + D(αB)

by Proposition 6.1.5.
For the general case, it suffices to observe that

D(αA∪B) = D(α(A\B)∪B)

≤ D(αA\B) + D(αB) (since A\B and B are disjoint)

≤ D(αA) + D(αB),

where the last inequality follows from the fact that A\B ⊂ A so that D(αA\B) ≤
D(αA) by (ii). �

Suppose that X is a normal space equipped with a continuous action T : G× X →
X of a countable amenable group G. Let α be a finite open cover of X . It follows from
assertions (i) and (iii) in Proposition 10.2.1 that the map h : P f in(G) → N defined
by h(A) = D(αA) is right-invariant (i.e., h(Ag) = h(A) for all A ∈ P f in(G) and
g ∈ G) and subadditive (i.e., h(A ∪ B) ≤ h(A) + h(B) for all A, B ∈ P f in(G)).
Thus, we deduce from Theorem 9.4.1 that if (Fn)n≥1 is a Følner sequence for G,
then the limit

D(α, X, G, T ) := lim
n→∞

D(αFn )

|Fn| , (10.2.2)

exists, is finite, and does not depend on the choice of the Følner sequence (Fn).

Definition 10.2.2 Let X be a normal space equipped with a continuous action
T : G × X → X of a countable amenable group G. The mean topological dimen-
sion of the dynamical system (X, G, T ) is the quantity 0 ≤ mdim(X, G, T ) ≤ ∞
defined by

mdim(X, G, T ) := sup
α

D(α, X, G, T ),

where α runs over all finite open covers of X and D(α, X, G, T ) is the non-negative
real number defined by (10.2.2).

Example 10.2.3 Let f be a homeomorphism of a normal space X and consider the
dynamical system (X, Z, T ) generated by f . Let us choose the Følner sequence

http://dx.doi.org/10.1007/978-3-319-19794-4_1
http://dx.doi.org/10.1007/978-3-319-19794-4_6
http://dx.doi.org/10.1007/978-3-319-19794-4_9
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(Fn)n≥1 for Z given by Fn := {0, 1, . . . , n − 1}. Then, for every finite open cover α

of X , we have that

αFn =
n−1∨

k=0

T −1
k (α) =

n−1∨

k=0

f −k(α)

and hence, using the notation introduced in Sect. 6.3,

αFn = ω(α, f, n).

It follows that

D(α, X, Z, T ) = lim
n→∞

D(αFn )

|Fn| = lim
n→∞

D(α, f, n)

n
= D(α, f ).

Since, by definition,

mdim(X, Z, T ) = sup
α

D(α, X, Z, T ) and mdim(X, f ) = sup
α

D(α, f ),

where α runs over all finite open covers of X , we conclude that mdim(X, Z, T ) =
mdim(X, f ).

10.3 General Properties of Mean Topological Dimension

Mean topological dimension is an invariant of topological conjugacy.More precisely,
we have the following statement:

Proposition 10.3.1 Let X and Y be normal spaces equipped with continuous actions
T : G × X → X and S : G ×Y → Y of a countable amenable group G. Suppose that
the dynamical systems (X, G, T ) and (Y, G, S) are topologically conjugate. Then
one has mdim(X, G, T ) = mdim(Y, G, S).

Proof Let ϕ : X → Y be a homeomorphism that conjugates the systems (X, G, T )

and (Y, G, S). Let β be a finite open cover of Y and α := ϕ−1(β). As ϕ ◦ Tg =
Sg ◦ ϕ for all g ∈ G, the homeomorphism ϕ sends αA(X, G, T ) to βA(Y, G, S) for
every A ∈ P f in(G). It follows that D(αA(X, G, T )) = D(βA(Y, G, S)) for every
A ∈ P f in(G). Replacing A by Fn , where (Fn)n≥1 is a Følner sequence for G, we
deduce from (10.2.2) that D(α, X, G, T ) = D(β, Y, G, S). Since β �→ α provides
a bijective correspondence between the finite open covers of Y and those of X , we
deduce that

mdim(X, G, T ) = sup
α

D(α, X, G, T ) = sup
β

D(β, Y, G, S) = mdim(Y, G, S). �

http://dx.doi.org/10.1007/978-3-319-19794-4_6
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When the phase space of a dynamical system is finite-dimensional, its mean
topological dimension is zero. More precisely, we have the following result.

Proposition 10.3.2 Let X be a normal space equipped with a continuous action
T : G × X → X of a countably-infinite amenable group G. Suppose that dim(X) <

∞. Then one has

mdim(X, G, T ) = 0.

Let us start by establishing a general property of Følner sequences in infinite
groups.

Lemma 10.3.3 Let G be a countably-infinite amenable group and let (Fn)n≥1 be a
Følner sequence for G. Then one has

lim
n→∞ |Fn| = ∞. (10.3.1)

Proof Let M be a positive integer. As G is infinite, we can find a finite subset S ⊂ G
with |S| ≥ M2. Since (Fn)n≥1 is a Følner sequence, there is an integer n0 ≥ 1 such
that |Fn\gFn| ≤ |Fn|/2 for all g ∈ S and n ≥ n0. As Fn �= ∅, this implies that the
set Fn meets gFn and hence that S is contained in the set

An := {xy−1 : x, y ∈ Fn}.

It follows that |S| ≤ |Fn|2 and hence that |Fn| ≥ M for all n ≥ n0. This
shows 10.6. �

Proof of Proposition 10.3.2 Choose a Følner sequence (Fn)n≥1 for G. For each
finite open cover α of X and all A ∈ P f in(G), we have that D(αA) ≤ dim(X) by
definition of dim(X). As dim(X) < ∞ and limn→∞ |Fn| = ∞ by Lemma 10.3.3,
we deduce that

D(α, X, G, T ) = lim
n→∞

D(αFn )

|Fn| = 0.

Thus, we have that

mdim(X, G, T ) = sup
α

D(α, X, G, T ) = 0. �

Proposition 10.3.4 Let X be a normal space equipped with a continuous action
T : G × X → X of a countable amenable group G. Let Y ⊂ X be a closed (and
hence normal) T -invariant subset of X. Then one has

mdim(Y, G, T |Y ) ≤ mdim(X, G, T ).

Proof Letα = (Ui )i∈I be afinite open cover ofY . For each i ∈ I , we canfind anopen
subset Vi of X such that Ui = Vi ∩ Y . Consider the finite open cover β of X defined



10.3 General Properties of Mean Topological Dimension 197

by β := (Vi )i∈I ∪ (X\Y ). Now let A ∈ P f in(G). Let γ = (W j ) j∈J be a finite open
cover of X that is finer than βA(X, G, T ). Then γ ′ := (W j ∩Y ) j∈J is clearly a finite
open cover of Y that is finer than αA(Y, G, T |Y ) and we have ord(γ ′) ≤ ord(γ ) (cf.
the proof of Proposition 1.2.1). It follows that D(αA(Y, G, T |Y )) ≤ D(βA(X, G, T ))

for all A ∈ P f in(G). Replacing A by Fn , where (Fn)n≥1 is a Følner sequence for
G, and passing to the limit, we deduce that D(α, Y, G, T |Y ) ≤ D(β, X, G, T ) ≤
mdim(X, G, T ). This implies that mdim(Y, G, T |Y ) = supα D(α, Y, G, T |Y ) ≤
mdim(X, G, T ). �

Corollary 10.3.5 Let X be a compact space and Y a normal Hausdorff space
equipped with continuous actions T : G × X → X and S : G × Y → Y of a
countable amenable group G. Suppose that the dynamical system (X, G, T ) embeds
in the dynamical system (Y, G, S). Then one has mdim(X, G, T ) ≤ mdim(Y, G, S).

Proof Let f : X → Y be a topological embedding of (X, G, T ) in (Y, G, S). It
follows from our hypotheses that Z := f (X) is a closed S-invariant subset of Y and
that f induces a topological conjugacy between (X, G, T ) and (Z , G, S|Z ). Thus,
we get

mdim(X, G, T ) = mdim(Z , G, S|Z ) ≤ mdim(Y, G, S)

by applying Propositions 10.3.1 and 10.3.4. �

Let H be a subgroup of a group G. Recall that a subset C ⊂ G is called a left-
coset of H if C = gH for some g ∈ G. The left-cosets of H form a partition of G.
We denote by G/H the set consisting of all left-cosets of H . Left-multiplication by
elements of G induces an action of G on G/H . This action is defined by the map
from G × G/H to G/H given by (g, C) �→ gC for g ∈ G and C ∈ G/H . A subset
R ⊂ G is called a complete set of representatives of the left-cosets of H if each
left-coset of H contains a unique element belonging to R. Thus, if R is a complete
set of representatives of the left-cosets of H , then the cardinality of R is equal to
that of G/H , i.e., to the index [G : H ] of H in G. Recall from Proposition 9.2.13
and Corollary 9.2.22 that if H is of finite index in G, then the group G is amenable
if and only if H is amenable.

If T : G × X → X is a continuous action of a group G on a topological space X
and H is a subgroup of G, then T induces by restriction a continuous action T (H)

of H on X defined by
T (H)(h, x) := T (h, x)

for all h ∈ H and x ∈ X .
When a countable amenable group acts on a normal space, the mean topological

dimension of the restriction of the action to a subgroup of finite index is proportional
to the index of the subgroup. More precisely, we have the following result.

Proposition 10.3.6 Let X be a normal space equipped with a continuous action
T : G × X → X of a countable amenable group G. Let H be a subgroup of finite

http://dx.doi.org/10.1007/978-3-319-19794-4_1
http://dx.doi.org/10.1007/978-3-319-19794-4_9
http://dx.doi.org/10.1007/978-3-319-19794-4_9
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index of G and let T (H) denote the continuous action of H on X induced by T . Then
one has

mdim(X, H, T (H)) = [G : H ]mdim(X, G, T ), (10.3.2)

where [G : H ] denotes the index of H in G.

Let us first establish an auxiliary result.

Lemma 10.3.7 Let G be a countable amenable group and let H be a subgroup of
finite index of G. Suppose that (Ln)n≥1 is a Følner sequence for H and let R ⊂ G be
a complete set of representatives of the left-cosets of H. Then the sequence (Fn)n≥1,
where Fn := RLn for all n ≥ 1, is a Følner sequence for G.

Proof Let k := [G : H ] denote the index of H in G and fix some element g ∈ G.
Since G acts on G/H by left-multiplication, there is a permutation σ : R → R and
a map ρ : R → H such that gr = σ(r)ρ(r) for all r ∈ R. Thus, we have that

Fn\gFn =
(

∐

r∈R

r Ln

)
\g

(
∐

r∈R

r Ln

)

=
(

∐

r∈R

r Ln

)
\
(

∐

r∈R

gr Ln

)

=
(

∐

r∈R

r Ln

)
\
(

∐

r∈R

σ(r)ρ(r)Ln

)

=
(

∐

r∈R

r Ln

)
\
(

∐

r∈R

rρ(σ−1(r))Ln

)

=
∐

r∈R

(
r Ln\rρ(σ−1(r))Ln

)
,

where
∐

denotes disjoint union. Setting hr := ρ(σ−1(r)) to simplify notation, we
deduce that

|Fn\gFn| =
∣∣∣∣∣
∐

r∈R

(r Ln\rhr Ln)

∣∣∣∣∣

=
∑

r∈R

|r Ln\rhr Ln|

=
∑

r∈R

|Ln\hr Ln|.
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As |Fn| = k|Ln| and (Ln)n≥1 is a Følner sequence for H , we conclude that

|Fn\gFn|
|Fn| = 1

k

∑

r∈R

|Ln\hr Ln|
|Ln|

tends to 0 as n goes to infinity. This shows that (Fn)n≥1 is a Følner sequence
for G. �

Proof of Proposition 10.3.6 Let (Ln)n≥1 be a Følner sequence for H and let R ⊂ G
be a complete set of representatives of the left cosets of H . We can assume 1G ∈ R.
By virtue of Lemma 10.3.7, the sequence (Fn)n≥1, where Fn := RLn for all n ≥ 1,
is a Følner sequence for G.

Let α be a finite open cover of X . Let n ≥ 1. As 1G ∈ R, we have that Ln ⊂ Fn .
By applying Proposition 10.2.1(ii), we deduce that

D(αLn ) ≤ D(αFn ). (10.3.3)

This gives us

D(α, X, H, T (H)) = lim
n→∞

D(αLn )

|Ln|
= k lim

n→∞
D(αLn )

|Fn| (since |Fn| = k|Ln|)

≤ k lim
n→∞

D(αFn )

|Fn| (by (10.3.3))

= k D(α, X, G, T )

≤ k mdim(X, G, T )

and hence

mdim(X, H, T (H)) = sup
α

D(α, X, H, T (H)) ≤ k mdim(X, G, T ). (10.3.4)

On the other hand, observe that

αFn =
∨

g∈Fn

T −1
g (α)

=
∨

g∈RLn

T −1
g (α)

=
∨

h∈Ln ,r∈R

T −1
rh (α)

=
∨

h∈Ln ,r∈R

T −1
h (T −1

r (α))
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=
∨

h∈Ln

T −1
h

(
∨

r∈R

T −1
r (α)

)
(by Proposition 6.1.1)

=
(

∨

r∈R

T −1
r (α)

)

Ln

so that

D(α, X, G, T ) = lim
n→∞

D(αFn )

|Fn|

= lim
n→∞

D
((∨

r∈R T −1
r (α)

)
Ln

)

|Fn|

= 1

k
lim

n→∞
D

((∨
r∈R T −1

r (α)
)

Ln

)

|Ln|

= 1

k
D

(
∨

r∈R

T −1
r (α), H, T (H)

)

≤ 1

k
mdim(X, H, T (H)).

This implies that

mdim(X, G, T ) = sup
α

D(α, X, G, T ) ≤ 1

k
mdim(X, H, T (H)). (10.3.5)

Inequalities (10.3.4) and (10.3.5) give us (10.3.2). �

Remark 10.3.8 Let f be a homeomorphism of a normal space X and let n be a pos-
itive integer. It follows from Proposition 6.4.2 that mdim(X, f n) = n mdim(X, f ).
This equality may also be obtained by applying Proposition 10.3.6 by taking G := Z

and H := nZ. Indeed, nZ is a subgroup of Z with index n. On the other hand, if
(X, Z, T ) is the dynamical systemgenerated by f , then (X, nZ, T |nZ) is (canonically
topologically conjugate to) the dynamical system generated by f n and we know (cf.
Example 10.2.3) that mdim(X, Z, T ) = mdim(X, f ) and mdim(X, nZ, T |nZ) =
mdim(X, f n).

Remark 10.3.9 Although actions of finite groups are uninteresting from a dynamical
viewpoint, we can apply Proposition 10.3.6 with G finite and H := {1G}. This shows
that if X is a normal space equipped with a continuous action T : G × X → X of a
finite group G, then

mdim(X, G, T ) = dim(X)

|G| .

http://dx.doi.org/10.1007/978-3-319-19794-4_6
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10.4 Metric Approach to Mean Topological Dimension

Let X be a compactmetrizable space equippedwith a continuous action T : G×X →
X of a group G.

Let us fix some metric d on X that is compatible with the topology. For each
g ∈ G, the map Tg : X → X is a homeomorphism of X . Consequently, the map
(x, y) �→ d(Tg(x), Tg(y)) is a metric on X that is also compatible with the topology.
More generally, given a non-empty finite subset A ∈ P f in(G) of G, the map dA on
X × X defined by

dA(x, y) := max
g∈A

d(Tg(x), Tg(y)) for all x, y ∈ X

is a metric on X compatible with the topology. Recall from Sect. 4.6 (see in particular
Proposition 4.6.2) that dimε(X, dA) is the smallest integer n ≥ 0 such that there exists
a compact metrizable space K with dim(K ) = n and a continuous map f : X → K
that is ε-injective with respect to the metric dA. If A is the empty set, we will take
by convention dimε(X, dA) := 0.

Proposition 10.4.1 Let X be a compact metrizable space equipped with a contin-
uous action T : G × X → X of a group G and let d be a metric on X compatible
with the topology. Let ε > 0. Then the following hold:

(i) dimε(X, dAg) = dimε(X, dA) for all g ∈ G and A ∈ P f in(G);
(ii) dimε(X, dA) ≤ dimε(X, dB) for all A, B ∈ P f in(G) such that A ⊂ B;

(iii) dimε(X, dA∪B) ≤ dimε(X, dA) + dimε(X, dB) for all A, B ∈ P f in(G).

Proof Let g ∈ G and A, B ∈ P f in(G).
Assertion (i) immediately follows from the fact that the metric spaces (X, dAg)

and (X, dA) are isometric. To see this, observe that the homeomorphism Tg is an
isometry from (X, dAg) onto (X, dA) since

dA(Tg(x), Tg(y)) = max
h∈A

d(Th(Tg(x)), Th(Tg(y)))

= max
h∈A

d(Thg(x), Thg(y))

= max
h∈Ag

d(Th(x), Th(y))

= dAg(x, y)

for all x, y ∈ X .
If A ⊂ B, then we have that dA(x, y) ≤ dB(x, y) for all x, y ∈ X and hence

dimε(X, dA) ≤ dimε(X, dB) by Corollary 4.6.4. This shows (ii).
To establish (iii), first observe that dA∪B = max(dA, dB). Now, let K be a compact

metrizable space with dim(K ) = dimε(X, dA) such that there exists a continuous
map f : X → K that is ε-injective for the metric dA. Similarly, let L be a compact
metrizable space with dim(L) = dimε(X, dB) such that there exists a continuous

http://dx.doi.org/10.1007/978-3-319-19794-4_4
http://dx.doi.org/10.1007/978-3-319-19794-4_4
http://dx.doi.org/10.1007/978-3-319-19794-4_4
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map g : X → L that is ε-injective for the metric dB . Then the map F : X → K × L
defined by F(x) = (

f (x), g(x)
)
is clearly continuous and ε-injective for the metric

max(dA, dB). Since K × L , being the product of two compact metrizable spaces, is
itself compact and metrizable, we deduce that

dimε(X, dA∪B) = dimε(X,max(dA, dB)) ≤ dim(K × L).

As dim(K × L) ≤ dim(K ) + dim(L) by Corollary 4.5.6, we conclude that

dimε(X, dA∪B) ≤ dim(K ) + dim(L) = dimε(X, dA) + dimε(X, dB).

This shows (iii). �

Suppose that (X, d) is a compact metric space equipped with a continuous action
T : G × X → X of a countable amenable group G. For each ε > 0, we define the
real number mdimε(X, d, G, T ) ≥ 0 by

mdimε(X, d, G, T ) := lim
n→∞

dimε(X, dFn )

|Fn| ,

where (Fn)n≥1 is a Følner sequence for G. Since the map A �→ dimε(X, dA) is
right-invariant and subadditive on P f in(G) by assertions (i) and (iii) in Proposi-
tion 10.4.1, it follows from Theorem 9.4.1 that the above limit exists, is finite,
and does not depend on the choice of the Følner sequence (Fn). For a fixed
n ≥ 1, the map ε �→ dimε(X, dFn ) is non-increasing. This implies that the map
ε �→ mdimε(X, d, G, T ) is also non-increasing.We deduce that mdimε(X, d, G, T )

admits a (possibly infinite) limit as ε tends to 0. It turns out that this limit is precisely
the mean topological dimension of the dynamical system (X, G, T ). More precisely,
we have the following result.

Theorem 10.4.2 Let X be a compact metrizable space equipped with a continuous
action T : G × X → X of a countable amenable group G. Let d be a metric on X
that is compatible with the topology. Then one has

mdim(X, G, T ) = lim
ε→0

mdimε(X, d, G, T ). (10.4.1)

Proof Consider a finite open cover α of X . Let λ > 0 be a Lebesgue number of α

relative to the metric d. We claim that

D(αA) ≤ dimλ(X, dA) (10.4.2)

for all A ∈ P f in(G). Indeed, suppose that K is a compact metrizable space such
that there exists a continuous map f : X → K that is λ-injective with respect to
the metric dA. Then, for every y ∈ K and for all g ∈ A, the set Tg( f −1(y)) has
d-diameter at most λ. As λ is a Lebesgue number for α, this implies that f −1(y) is

http://dx.doi.org/10.1007/978-3-319-19794-4_4
http://dx.doi.org/10.1007/978-3-319-19794-4_9
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contained in some open set belonging to the cover αA. Hence f is αA-compatible
by Lemma 4.5.3. We deduce that D(αA) ≤ dim(K ) by applying Proposition 4.4.5.
This gives us (10.4.2).

Consider now a Følner sequence (Fn)n≥1 for G. Using (10.4.2), we get

D(αFn )

|Fn| ≤ dimλ(X, dFn )

|Fn|
for all n ≥ 1. Letting n tend to infinity, we obtain

D(α, X, G, T ) ≤ mdimλ(X, d, G, T ).

Since, as mentioned above, the map ε �→ mdimε(X, d, G, T ) is non-increasing, this
implies

D(α, X, G, T ) ≤ lim
ε→0

mdimε(X, d, G, T ).

Therefore this yields

mdim(X, G, T ) = sup
α

D(α, X, G, T ) ≤ lim
ε→0

mdimε(X, d, G, T ).

To complete the proof, it suffices to prove that, conversely,

lim
ε→0

mdimε(X, d, G, T ) ≤ mdim(X, G, T ). (10.4.3)

Let ε > 0. Consider the open cover of X by its open d-balls of radius ε/2. By com-
pactness of X , it admits a finite subcover α. Let A ∈ P f in(G). By Proposition 4.4.6,
we can find a polyhedron P such that dim(P) = D(αA) and a continuous αA-
compatible map f : X → P . Let y ∈ P . As f is αA-compatible, the set f −1(y) is
contained in one of the open sets of the cover αA. Consequently, for each element
g ∈ A, the set Tg( f −1(y)) is contained in one of the open balls of radius ε/2. Thus,
the map f is ε-injective for the metric dA. As P is compact and metrizable, this
implies

dimε(X, dA) ≤ dim(P) = D(αA).

If (Fn)n≥1 is a Følner sequence for G, we deduce that

mdimε(X, d, G, T ) = lim
n→∞

dimε(X, dFn )

|Fn| ≤ lim
n→∞

D(αFn )

|Fn| = D(α, X, G, T ).

Since D(α, X, G, T ) ≤ mdim(X, G, T ), we finally get

mdimε(X, d, G, T ) ≤ mdim(X, G, T ),

which yields (10.4.3), by letting ε tend to 0. �

http://dx.doi.org/10.1007/978-3-319-19794-4_4
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10.5 Shifts and Subshifts

Let G be a group. Given g ∈ G, we denote by Rg the right-multiplication by g on
G, i.e., the map Rg : G → G defined by Rg(h) := hg for all h ∈ G. Observe that

R1G = IdG and Rg1g2 = Rg2 ◦ Rg1

for all g1, g2 ∈ G.
Let now K be a topological space. The set K G consists of all maps x : G → K . It

may be identified with the product of a family of copies of K indexed by G. We equip
K G = ∏

g∈G K with the product topology. Consider the map 
 : G × K G → K G

defined by

(g, x) := x ◦ Rg (10.5.1)

for all g ∈ G and x ∈ K G .

Proposition 10.5.1 Let G be a group and K a topological space. Then the map

 : G × K G → K G, defined by (10.5.1), is a continuous action of G on K G.

Proof For all x ∈ K G and g1, g2 ∈ G, we have that


(1G , x) = x ◦ R1G = x ◦ IdG = x

and


(g1, 
(g2, x)) = 
(g1, x ◦ Rg2) = x ◦ Rg2 ◦ Rg1 = x ◦ Rg1g2 = 
(g1g2, x).

This shows that 
 is an action of G on K G . To see that this action is continuous,
it suffices to observe that if we fix g ∈ G, the element 
(g, x) is obtained from
x ∈ K G by a permutation of its coordinates that is entirely determined by g. Indeed,
this shows that 
g is continuous by definition of the product topology. �

If G is a group and K a topological space, the continuous action 
 : G × K G →
K G of G on K G defined by (10.5.1) is called the G-shift on K G and the dynamical
system (K G, G, 
) is called the full shift, or simply the shift, with symbol space
K over the group G. Note that K G is compact if K is compact (by the Tychonoff
product theorem) and that K G is metrizable if K is metrizable and G is countable
(since the product of a countable family of metrizable spaces is itself metrizable).

Example 10.5.2 If we take G = Z, then (K G, G, 
) is the dynamical system gen-
erated by the shift map σ : KZ → KZ introduced in Sect. 7.1.

A closed G-invariant subset X ⊂ K G is called a subshift of K G .
For E ⊂ G, let πE : K G → K E denote the canonical projection map, that is, the

map defined by πE (x) := x |E for all x ∈ K G , where x |E denote the restriction of
x : G → K to E ⊂ G.

http://dx.doi.org/10.1007/978-3-319-19794-4_7


10.5 Shifts and Subshifts 205

The following result provides an upper bound for the mean topological dimension
of a subshift.

Theorem 10.5.3 Let K be a compact metrizable space of finite topological dimen-
sion dim(K ) < ∞. Let G be a countable amenable group and let (Fn)n≥1 be a
Følner sequence for G. Suppose that X ⊂ K G is a subshift. Then one has

mdim(X, G, 
) ≤ lim inf
n→∞

dim(πFn (X))

|Fn| . (10.5.2)

For the proof, we shall use the following general properties of Følner sequences.

Lemma 10.5.4 Let G be a countable amenable group and let (Fn)n≥1 be a Følner
sequence for G. Let S be a finite subset of G. Then one has

lim
n→∞

|SFn\Fn|
|Fn| = 0. (10.5.3)

Proof We have that

|SFn\Fn| =
∣∣∣∣∣∣

⋃

g∈S

(gFn\Fn)

∣∣∣∣∣∣

≤
∑

g∈S

|gFn\Fn|

=
∑

g∈S

|Fn\gFn| (since |gFn| = |Fn| for all g ∈ S).

After dividing by |Fn| and letting n tend to infinity, this gives us (10.5.3) since
(Fn)n≥1 is a Følner sequence for G. �

Proof Let us choose a metric d on K G which is compatible with the topology. Let
ε > 0. By compactness of K G , we can find a finite subset S ⊂ G such that, for all
x, y ∈ K G ,

πS(x) = πS(y) ⇒ d(x, y) < ε. (10.5.4)

By replacing S by S ∪ {1G}, we can assume 1G ∈ S.
Let A be a non-empty finite subset of G. Let f : X → K S A denote the restriction

of πS A to X . If x, y ∈ X satisfy f (x) = f (y), then we have that πS(gx) = πS(gy)

for all g ∈ A. This implies dA(x, y) < ε by (10.5.4). Consequently, the map f is
ε-injective with respect to the metric dA. As f (X) ⊂ K S A is a compact metrizable
space, we deduce that

dimε(X, dA) ≤ dim( f (X)). (10.5.5)
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Observe now that A ⊂ S A since 1G ∈ S. Thus, we have the inclusion

f (X) ⊂ πA(X) × K S A\A.

It follows that

dim( f (X)) ≤ dim(πA(X) × K S A\A) (by Proposition 1.2.1)

≤ dim(πA(X)) + dim(K S A\A) (by Corollary 4.5.6)

≤ dim(πA(X)) + |S A\A| dim(K ) (again by Corollary 4.5.6).

After dividing by |A|, replacing A by Fn , and using (10.5.5), we deduce that

dimε(X, dFn )

|Fn| ≤ dim(πFn (X))

|Fn| + |SFn\Fn|
|Fn| dim(K )

for all n ≥ 1. By letting n tend to infinity and using the result of Lemma 10.5.4, we
obtain

mdimε(X, d, G, 
) ≤ lim inf
n→∞

dim(πFn (X))

|Fn| .

Finally, by letting ε tend to 0 and using the result of Theorem 10.4.2, this gives us
(10.5.2). �

As a consequence of Theorem 10.5.3, we get the following extension of
Theorem 7.1.3.

Corollary 10.5.5 Let K be a compact metrizable space and let G be a countably-
infinite amenable group. Then one has

mdim(K G, G, 
) ≤ stabdim(K ) ≤ dim(K ). (10.5.6)

Proof If we take X = K G , then πFn (X) is homeomorphic to K |Fn |. As limn→∞
|Fn| = ∞ by Lemma 10.3.3, Inequality (10.5.6) immediately follows from (10.5.2)
and the definition of stabdim(X) given in Sect. 6.2. �

10.6 Mean Topological Dimension of Shifts over Polyhedra

The following result is an extension of Theorem 7.2.1.

Theorem 10.6.1 Let N ∈ N and let K := [0, 1]N be the N-dimensional cube. Let
G be a countably-infinite amenable group. Then one has

mdim(K G, G, 
) = N .

http://dx.doi.org/10.1007/978-3-319-19794-4_7
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Proof We immediately get

mdim(K G, G, 
) ≤ dim(K ) = N

by applying Corollary 10.5.5 and Theorem 3.5.4. Thus, it only remains to prove that

mdim(K G, G, 
) ≥ N .

Let dK be the metric on K associated with the sup-norm ‖ · ‖∞ on R
N . Since G is

countably-infinite, we can find a family of positive real numbers (αg)g∈G such that

α1G = 1 and
∑

g∈G

αg < ∞

and consider the metric d on K G defined by

d(x, y) :=
∑

g∈G

αgdK (x(g), y(g))

for all x, y ∈ K G . Clearly d is compatible with the topology of K G . Moreover, we
have that

dK (x(1G), y(1G)) = α1G dK (x(1G), y(1G)) ≤
∑

g∈G

αgdK (x(g), y(g)) = d(x, y)

(10.6.1)
for all x, y ∈ K G .

Let A be a non-empty finite subset of G. Consider themetric dA on K G defined by

dA(x, y) := max
g∈A

d
(

g(x),
g(y)

)
.

Inequality (10.6.1) gives us

max
g∈A

dK (x(g), y(g)) = max
g∈A

dK (
g(x)(1G),
g(y)(1G)) ≤ max
g∈A

d
(

g(x),
g(y)

)

= dA(x, y) (10.6.2)

for all x, y ∈ K G .
Consider now the topological embedding ϕ : K A ↪→ K G that sends each u ∈ K A

to the element x = ϕ(u) ∈ K G defined by

x(g) :=
{

u(g) if g ∈ A,

0 otherwise,

http://dx.doi.org/10.1007/978-3-319-19794-4_3
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and the metric ρ on K A defined by

ρ(u, v) = max
g∈A

dK (u(g), v(g))

for all u, v ∈ K A. Inequality (10.6.2) implies that

ρ(u, v) ≤ dA
(
ϕ(u), ϕ(v)

)
,

for all u, v ∈ K A. By applying Proposition 4.6.3, we deduce that

dimε(K A, ρ) ≤ dimε(K G, dA) (10.6.3)

for all ε > 0. Observe now that the metric space (K A, ρ) is isometric to ([0, 1]N |A|,
ρ′), where ρ′ is the metric associated with the sup-norm on R

N |A|. Therefore, it
follows from Proposition 4.6.5 that dimε(K A, ρ) = N |A| for all 0 < ε ≤ 1. Thus,
Inequality (10.6.3) gives us

N |A| ≤ dimε(K G, dA)

for all 0 < ε ≤ 1. After replacing A by Fn , where (Fn)n≥1 is a Følner sequence for
G, we deduce that

mdimε(K G, d, G, 
) = lim
n→∞

dimε(K G, dFn )

|Fn| ≥ N

for all 0 < ε ≤ 1. By applying Theorem 10.4.2, we conclude that

mdim(K G, G, 
) = lim
ε→0

mdimε(K G, d, G, 
) ≥ N .

This shows (10.6). �
Corollary 10.6.2 Let N ∈ N and let K be a metrizable or compact Hausdorff space
such that there exists a subset A ⊂ K that is homeomorphic to the N-cube [0, 1]N .
Let G be a countably-infinite amenable group. Then one hasmdim(K G, G, 
) ≥ N.

Proof The subset AG ⊂ K G is closed and 
-invariant. We deduce that mdim(K G,

G, 
) ≥ mdim(AG , G, 
) = N by applying Proposition 10.3.4. �
Corollary 10.6.3 Let K be a polyhedron. Let G be a countably-infinite amenable
group. Then one has

mdim(K G, G, 
) = dim(K ).

Proof Let N := dim(K ). Since every polyhedron is compact and metrizable, we
have that mdim(K G, G, 
) ≤ N by Corollary 10.5.5. On the other hand, we know
that K contains a subset A homeomorphic to an N -simplex and hence to [0, 1]N . We
deduce that mdim(K G, G, 
) ≥ N = dim(K ) by applying Corollary 10.6.2. �

http://dx.doi.org/10.1007/978-3-319-19794-4_4
http://dx.doi.org/10.1007/978-3-319-19794-4_4
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Corollary 10.6.4 Let K = [0, 1]N be the Hilbert cube. Let G be a countably-infinite
amenable group. Then one has

mdim(K G, G, 
) = ∞.

Proof Let N be a positive integer. The subset A ⊂ K consisting of all (un)n∈N ∈ K
such that un = 0 for all n ≥ N is homeomorphic to [0, 1]N . Thus, we deduce from
Corollary 10.6.2 that mdim(K G, G, 
) ≥ N . �

10.7 Subshifts of Block-Type

In this section, we assume that K is a compact metrizable space.
Let G be a group. Suppose that H is a subgroup of finite index of G and let R ⊂ G

be a complete set of representatives of the left-cosets of H . Thus, R is a finite set
with |R| = [G : H ] and every element g ∈ G can be uniquely written in the form
g = rh with r ∈ R and h ∈ H . Let B be a closed subset of K R .

We define the subset X0 = X0(K , G, H, R, B) ⊂ K G by

X0 := {x ∈ K G | πR(
h(x)) ∈ B for all h ∈ H} (10.7.1)

and the subset X = X (K , G, H, R, B) ⊂ K G by

X :=
⋃

g∈G


g(X0). (10.7.2)

Proposition 10.7.1 The subsets X0, X ⊂ K G defined above satisfy the following
properties:

(i) X0 ⊂ X;
(ii) X0 is a closed 
(H)-invariant subset of K G;

(iii) the dynamical system (X0, H, 
(H)) is topologically conjugate to the H-shift
on B H ;

(iv) X = ⋃
r∈R 
r (X0);

(v) the subset X ⊂ K G is a subshift (i.e., a closed 
-invariant subset of K G).

Proof Property (i) follows from the fact that

X0 = 
1G (X0) ⊂ X.

The definition of X0 may be written in the form

X0 =
⋂

h∈H

(πR ◦ 
h)−1(B).
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As πR ◦ 
h is continuous for all h ∈ H and B is closed in K R , this shows that
X0 is the intersection of a family of closed subsets of K G and hence closed in K G .
Moreover, we clearly have 
k(x) ∈ X0 for all x ∈ X0 and k ∈ H , so that X0 is

(H)-invariant. Consequently, X0 satisfies (ii).

Consider the map ϕ : X0 → B H defined by

ϕ(x)(h) := πR(
h(x))

for all x ∈ X0 and h ∈ H . Note that ϕ is well defined by (10.7.1) and that ϕ is
bijective since the family of cosets (Rh)h∈H is a partition of G. As X0 is compact
and ϕ is clearly continuous, we deduce that ϕ is a homeomorphism from X0 onto
B H . On the other hand, denoting by 
′ the H -shift on B H , we have, for all x ∈ X0
and h, k ∈ H ,

(ϕ ◦ 
h)(x)(k) = ϕ(
h(x))(k)

= πR(
k(
h(x)))

= πR(
kh(x))

= ϕ(x)(kh)

= 
′
h(ϕ(x))(k)

= (
′
h ◦ ϕ)(x)(k).

It follows that (ϕ ◦
h)(x) = (
′
h ◦ϕ)(x) for all x ∈ X0. This implies that ϕ ◦
h =


′
h ◦ ϕ for all h ∈ H . Thus, ϕ is a topological conjugacy between the dynamical

systems (X0, H, 
(H)) and (B H , H, 
′). This shows (iii).
Property (iv) follows from the fact that

X =
⋃

g∈G


g(X0)

=
⋃

r∈R,h∈H


rh(X0)

=
⋃

r∈R,h∈H


r ◦ 
h(X0)

=
⋃

r∈R,h∈H


r (
h(X0))

=
⋃

r∈R


r (X0) (since X0 is
(H)-invariant by (ii)).

Since X0 is closed in K G , we deduce from (iv) that X is a finite union of closed
subsets of K G and hence closed in K G . As X ⊂ K G is clearly 
-invariant by
(10.7.2), we conclude that X ⊂ K G is a subshift. �
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One says that the subshift X ⊂ K G defined by (10.7.2) is the subshift of block-type
associated with the quintuple (K , G, H, R, B).

10.8 Construction of Subshifts with Prescribed Mean
Dimension

It follows from Corollary 10.6.3 and Proposition 10.3.4 that if G is a countable
amenable group and P is a polyhedron, then every subshift X ⊂ PG satisfies
mdim(X, G, 
) ≤ dim(P). Conversely, it is natural to ask whether every real num-
ber in the interval [0, dim(P)] appears as the mean topological dimension of some
subshift X ⊂ PG . The following result gives a partial answer to this question.

Theorem 10.8.1 Let G be a countable amenable group and let P be a polyhedron.
Suppose that G contains subgroups of arbitrarily large finite index (i.e., for any
integer N ≥ 1, there exists a subgroup H of G such that N ≤ [G : H ] < ∞). Then,
for every real number ρ satisfying 0 ≤ ρ ≤ dim(P), there exists a subshift X ⊂ PG

such that mdim(X, G, 
) = ρ.

For the proof, we shall use several lemmas.

Lemma 10.8.2 Let K be a compact metrizable space with dim(K ) < ∞. Let G be
a countably-infinite amenable group. Suppose that H is a subgroup of finite index of
G. Let R ⊂ G be a complete set of representatives of the left-cosets of H in G and
let B ⊂ K R be a polyhedron. Let X ⊂ K G be the subshift of block type associated
with the quintuple (K , G, H, R, B). Then one has

mdim(X, G, 
) ≥ dim(B)

[G : H ] . (10.8.1)

Proof Let X0 ⊂ K G as in (10.7.1). It follows from Proposition 10.3.6 that

mdim(X, G, 
) = mdim(X, H, 
(H))

[G : H ] .

On the other hand, as X0 is a 
(H)-invariant subspace of X and (X0, H, 
(H)) is
topologically conjugate to (B H , H, 
′), where 
′ denotes the H -shift on B H , by
Proposition 10.7.1, we have that

mdim(X, H, 
(H)) ≥ mdim(X0, H, 
(H)) (by Proposition 10.3.1)

= mdim(B H , H, 
′) (by Proposition 10.3.1)

= dim(B) (by Corollary 10.6.3).
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Thus, we get

mdim(X, G, 
) ≥ dim(B)

[G : H ] . �

Lemma 10.8.3 Let K be a compact metrizable space with dim(K ) < ∞. Let G be
a countably-infinite amenable group. Suppose that H is a normal subgroup of finite
index of G. Let R ⊂ G be a complete set of representatives of the cosets of H in G
and let (Br )r∈R be a family of closed subsets of K . Let B denote the closed subset
of K R defined by B := ∏

r∈R Br and let X ⊂ K G be the subshift of block type
associated with the quintuple (K , G, H, R, B). Then one has

mdim(X, G, 
) ≤ dim(B)

[G : H ] . (10.8.2)

Proof Let h ∈ H and g ∈ G. We claim that

dim(πRh(
g(X0))) ≤ dim(B). (10.8.3)

Indeed, first observe that

πRh(
g(X0)) ⊂
∏

r∈R

π{rh}(
g(X0)).

Now, using the canonical identification of K {rh} with K , we have that

π{rh}(
g(X0)) = {
g(x)(rh) | x ∈ X0}
= {x(rhg) | x ∈ X0}

for all r ∈ R. Since H is assumed to be normal in G, there is a bijective map σ : R →
R and a map ρ : R × H → H (both depending on g) such that rhg = σ(r)ρ(r, h).
This gives us

π{rh}(
g(X0)) = {x(σ (r)ρ(r, h)) | x ∈ X0}
= {
ρ(r,h)(x)(σ (r)) | x ∈ X0}
= {x(σ (r)) | x ∈ 
ρ(r,h)(X0)}
= {x(σ (r)) | x ∈ X0}

(since X0 is
(H)-invariant by Proposition 10.7.1)

= Bσ(r).

We deduce that πRh(
g(X0)) is a closed subset of
∏

r∈R Bσ(r). As
∏

r∈R Bσ(r) is
homeomorphic to

∏
r∈R Br = B, this shows (10.8.3).
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Now, let L be a non-empty finite subset of H . By Proposition 10.7.1, we have that

X =
⋃

g∈R


g(X0).

This implies that

πRL(X) = πRL(
⋃

g∈R


g(X0)) =
⋃

g∈R

πRL(
g(X0)),

and hence, by using Corollary 1.2.6,

dim(πRL(X)) = max
g∈R

dim(πRL(
g(X0))).

As

πRL(
g(X0)) ⊂
∏

h∈L

πRh(
g(X0)),

this gives us

dim(πRL(X)) ≤
∑

h∈L

dim(πRh(
g(X0))).

Applying Inequality (10.8.3), we finally get

dim(πRL(X)) ≤ |L| dim(B). (10.8.4)

Suppose now that (Ln)n≥1 is a Følner sequence for H . Then the sequence (Fn)n≥1,
where Fn := RLn for all n ≥ 1, is a Følner sequence for G by Lemma 10.3.7. After
replacing L by Ln in (10.8.4), we get

dim(πFn (X)) = dim(πRLn (X)) ≤ |Ln| dim(B) = |Fn|
[G : H ] dim(B)

for all n ≥ 1. As

mdim(X, G, 
) ≤ lim inf
n→∞

dim(πFn (X))

|Fn|
by Theorem 10.5.3, this yields (10.8.2). �

Lemma 10.8.4 Let G be a countably-infinite amenable group. Suppose that H is a
normal subgroup of finite index of G and let R ⊂ G be a complete set of represen-
tatives of the cosets of H in G. Let P be a non-empty polyhedron and let p0 ∈ P.
Let S ⊂ R and consider the closed subset B ⊂ P R defined by

http://dx.doi.org/10.1007/978-3-319-19794-4_1
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B := P S × {p0}R\S ⊂ P S × P R\S = P R .

Then the subshift of block type X ⊂ BG associated with the quintuple (P, G, H,

R, B) satisfies

mdim(X, G, 
) = |S|
[G : H ] dim(P).

Proof This immediately follows from Lemmas 10.8.2 and 10.8.3 since dim(B) =
|S| dim(P) by Corollary 3.5.11. �

Lemma 10.8.5 Let G be a group containing subgroups of arbitrarily large finite
index. Then there exists a strictly decreasing sequence (Hn)n∈N of normal subgroups
of finite index of G.

Proof We use induction. We start by taking H0 = G. Suppose that H0, H1, . . . , Hn

are normal subgroups of finite index of G such that

H0 � H1� · · · � Hn .

Since G contains subgroups of arbitrarily large finite index, we can find a subgroup
of finite index K ⊂ G such that [G : K ] > [G : Hn]. Then K ∩ Hn is a subgroup
of finite index of G which is strictly contained in Hn . Moreover, it follows from
Lemma 9.2.23 that we can find a normal subgroup of finite index L of G such that
L ⊂ K ∩ Hn . As

Hn � K ∩ Hn ⊃ L ,

we can take Hn+1 = L . �

Proof of Theorem 10.8.1Let λ := ρ/ dim(P). If ρ = dim(P), we can take X = PG

by Corollary 10.6.3. Thus, we can assume 0 ≤ λ < 1.
By applying Lemma 10.8.5, we can find a strictly decreasing sequence (Hn)n∈N

of normal subgroups of finite index of G with H0 = G. Let νn := [G : Hn] denote
the index of Hn . Observe that ν0 = 1 and that

νn+1

νn
= [Hn : Hn+1] ≥ 2

for all n ∈ N. Let an denote the integral part of νnλ and bn := an + 1. We then have
a0 = 0, b0 = 1, and

an ≤ νnλ < bn (10.8.5)

for all n ∈ N. It follows that the sequences (un) and (vn) defined by

un := an

νn
and vn := bn

νn

http://dx.doi.org/10.1007/978-3-319-19794-4_3
http://dx.doi.org/10.1007/978-3-319-19794-4_9
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satisfy

un ≤ λ < vn (10.8.6)

and

vn − un = bn − an

νn
= 1

νn
(10.8.7)

for all n ∈ N. As νn → ∞ as n goes to infinity, we deduce from (10.8.6) and (10.8.7)
that the sequences (un) and (vn) both converge to λ.

Observe also that (10.8.5) implies that

νn+1

νn
an ≤ νn+1λ <

νn+1

νn
bn

so that

νn+1

νn
an ≤ an+1 < bn+1 ≤ νn+1

νn
bn (10.8.8)

for all n ∈ N.
Let us choose, for each n ∈ N, a complete set Rn ⊂ G of representatives for the

cosets of Hn in G. Let μn : Rn+1 → Rn denote the map which associates to each
element r ∈ Rn+1 the representative of the coset r Hn . Note that μn is surjective and
that every element of Rn is the image by μn of exactly νn+1

νn
elements of Rn+1.

Let us show that we can find two sequences of sets (In)n∈N and (Jn)n∈N with the
following properties:

(P1) In ⊂ Jn ⊂ Rn ,
(P2) |In| = an ,
(P3) |Jn| = bn ,
(P4) μ−1

n (In) ⊂ In+1,
(P5) Jn+1 ⊂ μ−1

n (Jn),

for all n ∈ N.
We proceed by induction on n. We start by taking I0 = ∅ and J0 = R0. Now,

suppose that Ik and Jk have already been constructed for k ≤ n with the required
properties. As In ⊂ Jn by (P1), we have that

μ−1
n (In) ⊂ μ−1

n (Jn).

On the other hand, since |In| = an and |Jn| = bn by (P2) and (P3), the fact that μn

is νn+1
νn

-to-one implies that

|μ−1
n (In)| = νn+1

νn
an and |μ−1

n (Jn)| = νn+1

νn
bn .
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Thus, we deduce from (10.8.8) that we can find subsets In+1 and Jn+1 of Rn+1 such
that

μ−1
n (In) ⊂ In+1 ⊂ Jn+1 ⊂ μ−1

n (Jn)

with |In+1| = an+1 and |Jn+1| = bn+1. This completes our induction.
Now, let us fix some point p0 ∈ P and consider the subsets An ⊂ Bn ⊂ P Rn

defined by

An := P In × {p0}Rn\In and Bn := P Jn × {p0}Rn\Jn .

Let Y (n) ⊂ PG and Z (n) ⊂ PG denote the subshifts of block-type respectively
associated with (P, G, Hn, Rn, An) and (P, G, Hn, Rn, Bn). This means that

Y (n) =
⋃

g∈G


g(Y
(n)
0 ) and Z (n) =

⋃

g∈G


g(Z (n)
0 ),

where

Y (n)
0 := {x ∈ PG | πRn (
h(x)) ∈ An for all h ∈ Hn}

= {x ∈ PG | x(g) = p0 if g /∈ In Hn},

and

Z (n)
0 := {x ∈ PG | πRn (
h(x)) ∈ Bn for all h ∈ Hn}

= {x ∈ PG | x(g) = p0 if g /∈ Jn Hn},

(we recall that πRn : PG → P Rn denotes the canonical projection map).
Let us show that

(Q1) Y (n) ⊂ Z (n),
(Q2) Y (n) ⊂ Y (n+1),
(Q3) Z (n+1) ⊂ Z (n)

for all n ∈ N.
Property (Q1) follows from the inclusion In ⊂ Jn since it clearly implies Y (n)

0 ⊂
Z (n)
0 .
Consider an element g ∈ In Hn . Then g = rh, where r ∈ In and h ∈ Hn .

Write g = r ′h′, where r ′ ∈ Rn+1 and h′ ∈ Hn+1. Observe that μn(r ′) = r since
h′−1h ∈ Hn . This implies r ′ ∈ In+1 by (P4). Thus In Hn ⊂ In+1Hn+1. This clearly
implies Y (n)

0 ⊂ Y (n+1)
0 and hence (Q2). Similarly, we deduce Jn+1Hn+1 ⊂ Jn Hn

from (P5). This implies Z (n+1)
0 ⊂ Z (n)

0 , which gives (Q3).
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Consider now the subshift X ⊂ PG defined by

X :=
⋂

n∈N
Z (n).

By using Lemma 10.8.4, we deduce from (P2) and (P3) that

mdim(Y (n), G, 
) = |In|
νn

dim(P) = an

νn
dim(P) = un dim(P)

and

mdim(Z (n), G, 
) = |Jn|
νn

dim(P) = bn

νn
dim(P) = vn dim(P).

Since X ⊂ Z (n), we get

mdim(X, G, 
) ≤ mdim(Z (n), G, 
) = vn dim(P)

for all n ∈ N by applying Proposition 10.3.4. Letting n tend to infinity, this gives us

mdim(X, G, 
) ≤ λ dim(P) = ρ. (10.8.9)

On the other hand, since Y (n) ⊂ Y (N ) ⊂ Z (N ) for all N ≥ n by (Q1) and (Q2),
we get

Y (n) ⊂
⋂

N≥n

Z (N ) = X.

Applying again Proposition 10.3.4, we obtain

un dim(P) = mdim(Y (n), G, 
) ≤ mdim(X, G, 
)

for all n ∈ N. Letting n tend to infinity, this yields

ρ = λ dim(P) ≤ mdim(X, G, 
). (10.8.10)

Inequalities (10.8.9) and (10.8.10) imply that mdim(X, G, 
) = ρ. �

Remark 10.8.6 The group Z clearly satisfies the hypotheses of Theorem 10.8.1,
so that Theorem 10.8.1 is an extension of Corollary 7.6.4. More generally, every
countable amenable group G admitting a surjective homomorphism f : G → Z

satisfies the hypotheses of Theorem 10.8.1 since f −1(nZ) is then a subgroup of index
n of G for every n ≥ 1. This shows in particular that any infinite finitely generated
abelian group (e.g., G = Z

d for d ≥ 1) satisfies the hypotheses of Theorem 10.8.1.

http://dx.doi.org/10.1007/978-3-319-19794-4_7
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Notes

Mean topological dimension for actions of amenable groups was introduced by Gro-
mov in [44]. Its properties were investigated in depth for Z-actions by Lindenstrauss
and Weiss in [74]. The exposition in the present chapter closely follows that in [24].
One can define mean topological dimension for actions of uncountable amenable
groups by replacing Følner sequences by Følner nets (see the Notes on Chap. 9).

The notion of mean topological dimension has been extended to continuous
actions of countable sofic groups by Li [68]. Sofic groups were introduced by Gro-
mov [43] andWeiss [115]. The class of sofic groups is a very vast one. It is known to
include in particular all residually finite groups and all amenable groups. Actually,
the question of the existence of a non-sofic group is still open. For an introduction to
the theory of sofic groups, the reader is referred to the survey paper [87] and to [22,
Chap.7].

Theorem 10.8.1 was obtained by Krieger and the author in [24]. Every residually
finite countably-infinite amenable group, and hence every infinite finitely generated
linear group (see the Notes on Chap.9), satisfies the hypotheses of Theorem 10.8.1
(see Exercise 10.8). However, there exist countably-infinite amenable groups, such
as the infinite finitely generated amenable simple groups exhibited in [52], that do not
satisfy the hypotheses of Theorem 10.8.1. It might be interesting to know whether
the conclusion of this theorem remains valid for such groups.

There is an impressive literature dealingwith shifts and subshifts overG = Z
d (see

for example the survey papers [69, 71] as well as the references therein). For d ≥ 2,
the study of subshifts of finite type over Z

d has connections with undecidability
questions for tilings of Euclidean spaces.

In his Ph.D. thesis [51, Corollary 4.2.1], Jaworski proved that if G is an abelian
group and X is a compact metrizable space with dim(X) < ∞, then every minimal
dynamical system (X, G, T ) can be embedded in the G-shift on R

G (see Exer-
cise 10.8). On the other hand, Krieger [62] has shown that if P is a polyhedron and
G is a countably-infinite amenable group, then there existminimal subshifts X ⊂ PG

whose mean topological dimension is arbitrarily close to dim(P). It follows in par-
ticular from Krieger’s result that there exist minimal dynamical systems (X, G, T ),
where X is compact and metrizable, that do not embed in the G-shift on R

G .

Exercises

10.1 Let G be a group and K a topological space. The set K G = ∏
g∈G K is

equipped with the product topology. For g ∈ G, denote by Lg the left-
multiplication by g, i.e., the map Lg : G → G defined by Lg(h) = gh for all
h ∈ G. Consider the map 
̃ : G × K G → K G defined by


̃(x) = x ◦ Lg−1

http://dx.doi.org/10.1007/978-3-319-19794-4_9
http://dx.doi.org/10.1007/978-3-319-19794-4_9
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for all g ∈ G and x ∈ K G . Show that 
̃ is a continuous action of G on K G

and that the dynamical systems (K G , G, 
) and (K G , G, 
̃) are topologically
conjugate. Hint: use the map f : K G → K G defined by f (x)(g) := x(g−1)

for all x ∈ K G and g ∈ G.
10.2 Let X be a compact metrizable space equipped with a continuous action

T : G × X → X of a group G. Let S(X) denote the set consisting of
all continuous maps f : X → X . We equip S(X) with the topology of
uniform convergence (i.e., the topology associated with the metric ρ given
by ρ( f1, f2) := supx∈X d( f1(x), f2(x)) for all f1, f2 ∈ S(X), where d
is a metric on X that is compatible with the topology). Consider the map
U : G × S(X) → S(X) given by U (g, f ) := T (g, f (x)) for all g ∈ G,
f ∈ S(x), and x ∈ X .

(a) Show that U is a continuous action of G on S(X).
(b) Show that the system (X, G, T ) embeds in the system (S(X), G, U ). Hint:

consider the map ι : X → S(x) that sends each a ∈ X to the constant map
ι(a) ∈ S(X) defined by ι(a)(x) := a for all x ∈ X .

10.3 (cf. Exercise 4.11). Let (X, d) be a compact metric space equipped with a
continuous action T : G × X → X of a countable amenable group G. We
associate to each non-empty finite subset A ⊂ G the metric dA on X defined
by dA(x, y) := maxg∈A d(Tg(x), Tg(y)).

(a) Let ε > 0 and let (Fn)n≥1 be a Følner sequence for G. Show that the limit

mWidimε(X, d, G, T ) := lim
n→∞

Widimε(X, dFn )

|Fn|
exists, is finite, and does not depend on the choice of the Følner sequence
(Fn)n≥1.

(b) Show that

mdim(X, G, T ) = lim
ε→0

mWidimε(X, d, G, T ).

10.4 (cf. Exercise 7.2). Let G be a group and let X be a topological space. One
says that a continuous action T of G on X is topologically mixing if, given
any pair U, V ⊂ X of non-empty open subsets of X , the set of g ∈ G such
that Tg(U ) ∩ V = ∅ is finite. Let K be a topological space. Show that the
G-shift on K G is topologically mixing.

10.5 Let G be a group. Let K and L be topological spaces. Show that the G-shift
on LG embeds in the G-shift on K G if and only if the space L embeds in K .

10.6 Let X be a non-empty topological space equipped with a continuous action
T : G × X → X of a countable amenable group G.
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(a) Let α be a finite open cover of X . Show that the map h : P f in(G) → R

defined by h(A) = log N (αA) (where αA is defined by (10.2.1) and N (·)
is defined in Exercise 6.11) is right-invariant and subadditive.

(b) Let (Fn)n≥1 be a Følner sequence for G. Show that the limit

htop(α, X, G, T ) := lim
n→∞

log N (αFn )

|Fn| ,

exists, is finite, and does not depend on the choice of the Følner sequence
(Fn).
The quantity 0 ≤ htop(X, G, T ) ≤ ∞ defined by

htop(X, G, T ) := sup
α

htop(α, X, G, T ),

where α runs over all finite open covers of X , is called the topological
entropy of the dynamical system (X, G, T ).

(c) Let Y be a topological space equipped with a continuous action S : G ×
Y → Y of G. Suppose that there exists a surjective continuous map
f : Y → X such that f ◦ Sg = Tg ◦ f for all g ∈ G. Show that one has
htop(X, G, T ) ≤ htop(Y, G, S).

(d) Let ϕ : X → X be a homeomorphism of X . Show that the dynamical
system (X, Z, T ) generated by ϕ satisfies htop(X, Z, T ) = htop(X, ϕ),
where htop(X, ϕ) is the topological entropy of (X, ϕ) (cf. Exercise 6.11).

10.7 Let K be a finite discrete topological space with cardinality k and let G be a
countable amenable group. Given A ∈ P f in(G), let πA : K G → K A denote
the restriction map. Let X ⊂ K G be a non-empty subshift.

(a) Let (Fn)n≥1 be a Følner sequence for G. Show that the limit

h(X) := lim
n→∞

log |πFn (X)|
|Fn|

exists, is finite, does not depend on the choice of the Følner sequence
(Fn), and satisfies 0 ≤ h(X) ≤ log k. This limit is called the entropy of
the subshift X .

(b) Show that h(X) = htop(X, G, 
), where 
 denotes the G-shift on X
and htop(X, G, 
) is the topological entropy of the dynamical system
(X, G, 
) (cf. Exercise 10.8).

(c) Show that if Y ⊂ K G is a subshift such that X ⊂ Y , then h(X) ≤ h(Y ).

10.8 One says that a group G is residually finite if the intersection of all the finite
index subgroups of G is reduced to the identity element (cf. Exercise 2.5).

(a) Let G be a group. Show that the following conditions are equivalent:
(1) G is residually finite; (2) the intersection of all the finite index normal
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subgroups of G is reduced to the identity element; (3) for every element
g �= 1G inG, there exist a finite group F and a homomorphismφ : G → F
such that φ(g) �= 1F ; (4) for any two distinct elements g1, g2 ∈ G,
there exist a finite group F and a homomorphism φ : G → F such that
φ(g1) �= φ(g2); (5) for every finite subset� ⊂ G, there exist a finite group
F and a homomorphism φ : G → F whose restriction to � is injective.

(b) Show that every finite group is residually finite.
(c) Show that every finitely generated abelian group is residually finite.
(d) Show that the additive groupQ of rational numbers is not residually finite.
(e) Prove that if G is an infinite residually finite group, then G contains sub-

groups of arbitrarily large finite index. (This shows in particular that every
countably-infinite residually finite amenable group satisfies the hypothe-
ses of Theorem 10.8.1.)

(f) Show that if G is a residually finite group and K is a topological space,
then the periodic points in K G (i.e., the points whose orbit under the
G-shift is finite) are dense in K G .

(g) Let G be a group. Show that if there exists a Hausdorff topological space
K with more than one point such that the periodic points are dense in K G ,
then G is residually finite.

10.9 Show that every infinite, finitely generated, virtually solvable group satisfies
the hypotheses of Theorem 10.8.1. Hint: prove that every infinite, finitely
generated, solvable group G has subgroups of arbitrarily large finite index by
induction on the solvability degree of G.

10.10 Let X be a topological space equipped with a continuous action T : G × X →
X of a group G. Suppose that K is a topological space such that X embeds in
K . Show that the dynamical system (X, G, T ) embeds in the G-shift on K G .

10.11 Let X be a compact metrizable space equipped with a continuous action
T : G × X → X of a group G. Suppose that dim(X) < ∞. Show that there
exists an integer n ≥ 1 such that the dynamical system (X, G, T ) embeds in
the shift ((Rn)G, G, 
).

10.12 Let X be a compact space equipped with a continuous action T : G × X → X
of a group G. Let K be a Hausdorff space. Show that the following condi-
tions are equivalent: (1) the dynamical system (X, G, T ) embeds in the shift
(K G, G, 
); (2) there exists a continuous map f : X → K such that, given
any two distinct points x and y in X , there is an element g ∈ G satisfying
f (Tg(x)) �= f (Tg(y)).

10.13 Let G be a group. One says that an action T : G × X → X of G on a set
X is free if Tg(x) �= x for all g ∈ G\{1G} and x ∈ X . Show that if K is a
topological space having more than one point, then the G-shift on K G is a
free action.

10.14 (An embedding theorem for free actions [51, Theorem 4.2]). Let G be an infi-
nite group and let X be a compactmetrizable space equippedwith a continuous
action T : G × X → X of G. We suppose that the action of G on X is free (cf.
Exercise 10.13) and that X has finite topological dimension dim(X) < ∞.
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(a) Let x and y be distinct points in X . Show that for every integer m ≥ 1,
there exist elements g1, . . . , gm ∈ G such that the points

Tg1(x), . . . , Tgm (x), Tg1(y), . . . , Tgm (y)

are pairwise distinct.
(b) Show that (X, G, T ) embeds in the G-shift on R

G by using the result of
Exercise 10.12 and following the lines of the proof of Theorem 8.3.1.

10.15 (An embedding theorem for minimal actions of abelian groups [51, Corol-
lary 4.2.1]). Let G be an abelian group and let X be a compact metrizable
space equipped with a continuous action T : G × X → X of G. We suppose
that the action of G on X is minimal (i.e., every orbit is dense in X ) and that
X has finite topological dimension dim(X) < ∞.

(a) Let x ∈ X . Show that H := {g ∈ G| Tg(x) = x} is a subgroup of G and
that H does not depend on the choice of the point x ∈ X .

(b) Suppose that the groupG/H is finite. Show that X is finite and then deduce
from the result of Exercise 10.10 that the dynamical system (X, G, T )

embeds in the G-shift on R
G .

(c) Suppose now that the quotient group Q := G/H is infinite.Observe that T
induces a continuous free action of Q on X . Then conclude that (X, G, T )

embeds in the G-shift on R
G by using the result of Exercise 10.14 and

the canonical embedding R
Q ↪→ R

G .

http://dx.doi.org/10.1007/978-3-319-19794-4_8
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— teepee, 102
— ternary set, 28

Cellular automaton, 137
Chain of simplices, 54

length of a —, 54
Clopen subset, 31
Closed cover, 4
Cofinite topology, 6
Combinatorially equivalent families of sets,

14
Commutator, 167
Completely normal space, 22
Component

connected —, 40
Concave map, 120
Connected

— component, 40
— space, 9

Coset
left- —, 197

Cover, 4
closed —, 4
open —, 4

D
Defining law, 129
Derived

— series, 167
— subgroup, 167

Diameter, 10
Dimension

— mean topological, 194
— of a topological space, 5
affine —, 49
Brouwer-Čech —, 21
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Čech-Lebesgue covering —, 6
combinatorial —, 50, 51
covering —, 5
large inductive —, 21
Lebesgue —, 6
mean projective —, 128
mean topological —, 111
Menger-Urysohn —, 21
small inductive —, 21
stable topological —, 110
topological —, 5

dimε(X, d), 78
Directed set, 186
Direction of an affine subspace, 49
Discrete topology, 6
Dispersion point, 102
Distal dynamical system, 155
Dynamical system, 192

distal —, 155
minimal —, 140
topologically mixing —, 136
topologically transitive —, 140

Dynamical systems
topologically conjugate —, 112

E
Embedding

— of dynamical systems, 140, 192
topological —, 83

Entropy
— of a dynamical system, 120, 220
— of a subshift, 137, 220

ε-dense subset, 146
ε-injective map, 76
Erdös space, 88
Even subshift, 136
Expansive homeomorphism, 137
Exponential growth

group of —, 189
Extension

— of a map, 71
— of groups, 164

Extremal point, 50
Extremally disconnected space, 48

F
Face of a simplex, 50
Fan

Knaster-Kuratowski —, 91
punctured Knaster-Kuratowski —, 91

Finer cover, 4

Finite type
subshift of —, 129

Finitely generated group, 157
First-countable space, 35
Fixed point, 139
Flow, 153
Følner

— condition, 161
— exhaustion, 188
— net, 187
— sequence, 158

Free
— action, 221

Free group, 169
base of a —, 169

G
General position, 80
Geometric realization of a simplicial com-

plex, 65
Golden mean subshift, 136
Greatest lower bound, 95
Group

— of exponential growth, 189
— of subexponential growth, 189
amenable —, 158, 161
Baumslag-Solitar —, 166
finitely generated —, 157
free —, 169
Heisenberg —, 166
Hopfian —, 187
linear —, 186
locally P —, 161
residually finite —, 46, 220
solvable —, 167
symmetric —, 162

H
Heisenberg group, 166
Homeomorphism

expaansive —, 137
Hopfian group, 187
Hyperplane

affine —, 49

I
Induced topology, 7
Invariant subset, 114, 191
Isolated point, 30
Iterates of a map, 110
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J
Join, 107

K
Knaster-Kuratowski

— fan, 91
— punctured fan, 91

k-simplex, 50

L
Large inductive dimension, 21
Least upper bound, 95
Lebesgue

— dimension, 6
— number, 10

Left
— -coset, 197
— -translate, 157

Length of a chain of simplices, 54
Lindelöf space, 34
Linear group, 186
Locally connected space, 48
Lower bound, 95

M
Map

α-compatible —, 75
ε-injective —, 76

Mean, 186
— topological dimension, 111, 194
bi-invariant —, 186
left-invariant —, 186
right-invariant —, 186

Mesh, 10
— of a simplicial complex, 57

Middle third, 27
Minimal dynamical system, 140

N
Neighborhood base, 31
Nerve, 73
Net, 186

Følner —, 187
Normal

— form, 169
— space, 12

O
Open

— cover, 4
— star, 53

Orbit, 139
Order

— at a point of a family of subsets, 3
— of a family of subsets, 3
— topology, 95
— type, 96

Ordinal, 96
countable —, 97
infinite —, 97

P
Partition, 4

— of unity, 72
Path-connected space, 66
Perfect space, 30
Perfectly normal space, 22
Periodic point, 139
Phase space, 192
Ping-pong principle, 172
Plank

Tychonoff —, 97
Point

almost-periodic —, 154
dispersion —, 102
extremal —, 50
fixed —, 139
isolated —, 30
periodic —, 139

Polyhedron, 52
Punctured Tychonoff plank, 98

Q
Quasi-component, 41

R
Regular space, 103
Relative amenability constant, 175
Relatively prime topology, 103
Residually finite group, 46, 220
Right-translate, 157

S
Scattered space, 31
Second-countable space, 35
Semigroup, 119
Separable space, 36
Sequence

subadditive —, 109
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Sequentially-compact space, 104
Series

derived —, 167
Set

Fσ - —, 20
Gδ- —, 20
well-ordered —, 96

Shift, 123, 204
— map, 123

Sierpinski triangle, 25
Simplex

— in R
n , 50

— of an abstract simplicial complex, 64
barycenter of a —, 54
combinatorial dimension of a —, 50
face of a —, 50
open —, 51

Simplicial complex
abstract —, 64
barycentric subdivision of a —, 57
geometric realization of a —, 65
mesh of a —, 57

Simplicial complex of Rn , 51
combinatorial dimension of a —, 51
support of a —, 51
vertex of a —, 51

Small inductive dimension, 21
Solvable group, 167
Sorgenfrey

— line, 99
— plane, 100

Space
— path-connected, 66
accessible —, 9
Bing —, 94
Cantor —, 28
completely normal —, 22
connected —, 9
Erdös —, 88
extremally disconnected —, 48
first-countable —, 35
Lindelöf —, 34
locally connected —, 48
normal —, 12
perfect —, 30
perfectly normal —, 22
phase —, 192
regular —, 103
scattered —, 31
second-countable —, 35
separable —, 36
sequentially-compact space, 104
σ -compact —, 34

T1- —, 9
T4- —, 12
totally disconnected —, 40
totally separated —, 41
ultrametric —, 47
Urysohn —, 102

Stable topological dimension, 110
Star

open —, 53
Subadditive

— map, 119
— sequence, 109

Subgroup
derived —, 167

Subshift, 127, 204
— of block-type, 131, 211
— of finite type, 129
even —, 136
golden mean —, 136

Subspace
affine —, 49

Successor, 97
Support

— of a map, 72
— of a simplicial complex of Rn , 51

Symmetric
— difference, 188
— group, 162

Syndetic, 154

T
Ternary expansion, 29
Tits alternative, 186
Topological embedding, 83
Topological entropy, 120, 220
Topologically conjugate dynamical systems,

112, 192
Topologically mixing, 136

— action, 219
Topologically transitive dynamical system,

140
Topology

— discrete, 6
cofinite —, 6
induced —, 7
order —, 95
relatively prime —, 103
trivial —, 9

Totally disconnected space, 40
Totally separated space, 41
Translation number, 119
Trivial topology, 9
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Tychonoff plank, 97
punctured —, 98

U
Ultrametric space, 47
Upper bound, 95
Upper-density, 147
Urysohn space, 102

V
Vertex

— of a simplicial complex of Rn , 51
— of an abstract simplicial complex, 64

Virtually P , 168

W
Well-ordered set, 96
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