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INTRODUCTION

The essential purpose of this volume is to present the principles
of the Augmented Lagrangian Method, together with numerous applica-
tions of this method to the numerical solution of boundary-value
problems for partial differential equations or inequalities arising
in Mathematical Physics, in the Mechanics of Continuous Media and in
the Engineering Scilences.

Simultaneous developments in computers and in Numerical Analysis -
in particular the Finite Element Method - have gradually led research
workers, engineers, etc... to use mathematical models of greater
and greater complexity for the representation of the phenomena which
arise in their respective disciplines. Certain calculations which
hitherto had been considered impracticable have become routine
matters, and it has become possible to abandon certain simplifying
assumptions - in particular, linearity - and thereby gain a more
realistic simulation of the phenomena considered.

This development has led, for Numerical Analysts in particular,
to a search for efficient methods for solving the "large systems”
which arise from the discretisation of nonlinear boundary-value
problems, variatitonal inequalities, optimal control problems, etc...

Many of these problems can be expressed in the form of a search
for a minimum of a functional - or, at any rate can be easily red-
uced to this. It is therefore tempting to apply to the solution of
these problems methods taken from Mathematical Programming (i.e.
the field of Optimisation Algorithms).

It should be remarked that, whilst accepting that the existing

techniques of Mathematical Programming provide a safe and reliable



vi INTRODUCTION

starting point, their application to the solution of problems in-
volving partial differential equations or inequalities requires
certain precautions to be taken; there are in reality few methods
capable of efficiently minimising functionals which depend on
several thousand variables, over sets defined by similar numbers of
linear or nonlinear constraints. As one might expect, it is nec-—
essary to adapt the general methods and take account of the part-
icular structure of the problems to be solved. This is what we
shall be attempting to do in this book, by showing how a small number
of very simple ideas can be applied to the solution of problems
which a priori appear completely different.

The approach which we shall be following may at first seem sur-
prising; in fact, we shall very often be modifying the original
problem by introducing supplementary constraints and variables,
which at first sight, may appear to have the effect of increasing
its complexity. However, this complication will then be seen to
be largely compensated by the structural simplification which
it introduces.

The basic principles which will serve to guide us throughout this
work will be the following:

(i) There are at the present time efficient methods available
for solving linear systems, even of very large order;
this is particularly true for systems in which the matrix
is symmetric and positive definite.

(ii) The average cost of the above solutions increases only
marginally if we solve, using a direct method, linear
systems relating to a common matrix, internally within
an iterative process.

(iii) Nonlinmear problems which depend on a small number of
variables (say, << 10 to be more specific) are easy to
solve (or at any rate much easier to solve than those
which depend on a large number of variables).

Methods for solving large nonlinear systems are universally based
(see ORTEGA-RHEINBOLDT [1l]) on a linearisation embedded within an
iterative process. The updating of the linearised problem and its
solution generally constitute the most expensive phase of the over-
all solution process. In this perspective, a solution method which
uses the same matrixz all the time may be extremely attractive.

The methods which we propose utilise a decomposition-coordination
principle (in the sense of BENSOUSSAN-LIONS-TEMAM (11]) which means
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that the nonlinearity is treated at a local level, and in which the
coordination is effected through the simultaneous use of Lagrange
multipliers and a penalisation method; in this we follow a method-
ology first introduced around 1970 by HESTENES [1] and POWELL [11].
This principle of localisation of the nonlinearities is in fact one
of the governing principles of this volume. Additionally, the
methods of decomposition which will be found in this book are well
suited to Parallel Computation, which certainly appears to be one
of the directions of the future in Numerical Analysis, having regard
to the architectures now being adopted for large modern scientific
computers. We therefore have reason to hope that the methods de-
veloped in this book will find wide application in future years.

We now come on to the contents of this volume:

Chapter I introduces the Augmented Lagrangian method in the clas-
sical context of Quadratic Programming with linear constraints in
finite dimensions. We here study in detail some standard algor-
ithms - and others which are rather less so - and give a number of
results, some of them new, relating to their convergence.

In Chapter II we apply the results of the previous chapter to the
solution of the Stokes and Navier-Stokes equations for incompressible
viscous flutds. Certain of the results of Chapter I are verified
experimentally on the basis of numerical tests.

In Chapter III we introduce, within a rather general Hilbertian
framework, the principle of decomposition-coordination on which the
rest of the book will be based. Here we study in particular the
convergence, under quite general assumptions, of the two basic al-
gorithms, ALGl and ALG2, to which the remainder of the book is
primarily devoted. This.chapter is illustrated by numerous
examples taken from Mechanics and from Physics.

In Chapter IV we apply the results of the preceding chapter to the

solution of mildly nonlinear problems of the form
Au + ¢(u) = £,

where A 1is a linear elliptic operator of order two and ¢ 1is a
numerical function. We also consider in this context the use of
hybrid finite elements.

In Chapter V, we apply the results of Chapter III to the solution
of second-order nonlinear partial differential equations and in-
equalities, in which the nonlinearity relates to the gradient of the

solution. The methods which are described here apply in particular
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to the solution of boundary-value problems for partial differential

equations such as

=Ve(V(x,Vu)Vu) = £,

It will be established that such problems can be solved with
remarkable efficiency.

In Chapters VI and VII we consider applications of the methods
of Chapter III to the solution of, respectively, problems in
Elasto-Plasticity and in the steady and time-dependent flow of
visco~plastic flutds of Bingham type in two-dimensional cavities.
The problem considered in Chapter VI is formulated initially as an
elliptic variational inequality relating to the Linear Elasticity
operator, while that considered in Chapter VII is reformulated in
terms of a vartational inequality of order 4, which may be elliptic
or parabolic depending on the circumstances, via the introduction
of a stream function.

Whilst the problems dealt with in Chapters III to VII all fall
within the scope of Convex Analysis and Monotone Operators, those
considered in Chapter VIII quite definitely depart from this frame-
work; these are nonlinear problems arising from Finite Nonlinear
Elasticity, and reduce to the minimisation of functionals (which
may be convex) over non~convex sets. Nonetheless, the de-
composition-coordination principles of Chapter III still lead to
extremely powerful algorithms for solving these problems, even
though strictly speaking we are no longer within the range of
application of these methods.

In Chapters II to VIII results of numerical experiments are given
which enable the efficiency of the proposed methods of solution to
be assessed.

Chapter IX, which concludes this volume, is much more abstract
in nature; it takes up, in a general setting, certain of the ideas
originally considered in Chapters III and IV and shows, in partic-
ular, the links which exist between the algorithms ALGl and ALG2 of
Chapter III and certain classical aglternating direction methods.

It also provides a theoretical framework which is well suited to the
study of the convergence of a number of algorithms based on the use
of Lagrange multipliers.

Augmented Lagrangian methods have been the subject of numerous
publications, and it is very difficult to select from these a
bibliography which is anything like complete. We have therefore

indicated in this bock only references with which we are personally
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familiar and which have a direct relevance to the gquestions
addressed herein; we thus advise the reader interested in obtaining
further information to refer to the bibliographies of these volumes,

together with the following journals:

Journal of Optimization Theory and Applications,
Mathematical Programming,

Sitam Journal of Control and Optimization.

We would like to thank Messrs Begis, Bourgat, Chan, Gabay,

Le Tallec, Marrocco, Mercier and Thomasset who participated in the
preparation of this book. We would also like to acknowledge our
particular indebtedness to Mrs. Frangoise Weber of INRIA who
painstakingly typed the entire French original of this work (the
typed equations of which have been retained in the present English
language edition), to the Translators, Messrs B. Hunt and
D. Spicer, and their wives who helped produce this work for
"Trans-Inter-Scientia", and to the North-Holland Publishing Company
for agreeing to publish this translation in the series

Studies in Mathematics and <ts Applications.

The first editor (M. Fortin) wishes to thank CRSNG (Canada) and
the Ministry of Education of Quebec for the financial aid which
they have given to this work, and, since a large part of the work
was drafted during a period spent by the second editor
(R. Glowinski) at the Mathematical Research Center (M.R.C.) of the
University of Wisconsin at Madison (financed under contract
DAA 629-80-C-0041), we would like to thank Professor John Nohel,
the director of the M.R.C., for the facilities which were made
available for carrying out the final drafting of the work.

Last but not least, our thanks go to the Management of INRIA for
allowing various people at that institution to participate in the
preparation of this book; in particular, it was at INRIA that the
majority of the numerical experiments presented herein were carried

out.

Madison, U.S.A. Michel Fortin,
19th August 1981 Roland Glowinski.
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CHAPTER I

AUGMENTED LAGRANGIAN METHODS IN QUADRATIC PROGRAMMING

M. Fortin, R. Glowinskt

1. PRINCIPLES OF THE METHOD

In this chapter and with a view to simplifying the presentation,
we shall limit ourselves to a particularly simple finite-dimensional

problem:

Let A be a symmetric, positive definite N x N matrix and suppose
that b eZRN; with A and b we associate the quadratic
functional J:ZRN + IR defined by

(1.1) J(v) = % (Av,v) = (b,v),

where in (1.1), (.,.) denotes the canonical Euclidian inner product
in IRN. Let B be a linear mapping from IRN into ZRM, this thus
being identifiable with an M x N matrix. We consider the
minimisation problem

(.2) J(u) < J(v) Yv ¢ Ker B = {veRN, Bv=0},

u € Ker B.

It is a classical result that (1.2) admits a unique solution.

Following a well known technigue, we introduce a Lagrange
multiplier p eZRM which transforms (1.2) into an unconstrained

problem!, namely

! We also use (.,.) for the inner product in :RM, there being no

danger of ambiguity.
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(1.3) Min_ {J(v) + (p,Bv)}.
wiN

The Lagrange multiplier p appears as an extra unknown which may,
for example, be obtained through the solution of a saddle-point

problem. More precisely, we define ¢ :RNXRM—>R by

(1.4) 2(v,q) = J(v) + (q,Bv)
and we recall that {u,p} will be a saddle-point of £ on = XIRM,
if

(1.5 2(0,9) € £u,p) <L,p)  WeR', qeK",
and also that (1.5) implies

(1.6) Min Max #£(v,q) = Max Min #£(v,q) = £(u,p).

veRN qeRM qeRM ve]RN

It can be shown that £ admits at least one saddle-point {u,p} on

RN X EM, where u is the solution of (1.2) and is common to all the

saddle-points of # on IRN « ®’. A necessary and sufficient
condition of uniqueness for {u,pl, in fact for p, is that B be

surjective, i.e. Rank B = M.

The following (classical) result is essential to the subsequent

discussion:

THEOREM 1.1: The solution u of (1.2) is characterised by the
extstence of p eZRM such that

Au + Btp = b,
Bu = 0.

(1.7)

The relations (1.7) also characterise all the saddle-points of &£

on Ey XIRM.
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Following HESTENES [1], and POWELL [1l] we introduce the
augmented Lagrangian «#£, defined, for r > O, by

(1.8) £ .v,q) = J(v) + (q,Bv) +§ |13,V|2 =2 (v,q) + Tfmv;z,

. P M
denotes the canonical Euclidian norm on TR,

where, in (1.8), [.
It can easily be proved that any saddle-point of <, is a saddle-
point of £ and vice-versa (this is due to the fact that r|BV[2

vanishes when the constraint Bv = O is satisfied).

Remark 1.1: It should be noted that for g = O we have

(1.9 =£r(v,o) = J(v) + §-|BV|2,

this being the classical penalised functional relative to the

constraint Bv = 0.

The advantage of the augmented Lagrangian is that, because of the
presence of the term (q,Bv), the exact solution of problem (1.2)
can be determined without making r tend to infinity, unlike
ordinary penalisation methods where this has the effect of causing
a deterioration in the conditiZoning of the systems to be solved.
Furthermore the addition of the gquadratic term ngv|2 to the
Lagrangian # will improve the convergence properties of the

duality algorithms described later.

)
Remark 1.2: The case where B 1is injective is of no interest
since in this case u = O is the unique solution of (1.2). In the
following text we shall thus assume Ker B # {0}. -

2. A FIRST ALGORITHM FOR SADDLE-POINT CALCULATION

2.1 Description of the algorithm

It follows from Section 1 that there is equivalence between solv-

ing (1.2) and finding a saddle-point of &£, on ZRN XIRM ; from
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ARROW-HURWICZ-UZAWA [1], GLOWINSKI-LIONS-TREMOLIERES? [1, Chapter II,
Section 4], etc, such a saddle-point can be calculated using the
following algorithm, the variants of which we shall denote in the

following text under the general name of Uzawa's algorithm:

(2.1) poeFM, specified arbitrarily;

with pn known, calculate W then pn+l by

2, @M <2 _(v,p) Wwer',

(2.2)

n+l n n
. = >0. | |
(2.3) P p *top Bu,p>0

We note that (2.2) is equivalent to

(2.4) (A + rB*B)u" + B5™ = b.

2.2 Convergence results

Regarding the convergence of the algorithm, we now prove the

following:

THEOREM 2.1: For 0<a <p, <2T and for all po ¢ R the

sequence u” defined by (2.1) - (2.3) converges to the solution u
of (1.2).
Proof: This follows G.L.T. [1l, Chapter 2, Section 43°. Suppose

{u,p} 1is a saddle-point of £, . From Theorem 1.1, this saddle-

point is characterised by

(2.5) (A + rB'B)u + B% = b

>

(2.6) Bu=0@p=p+pn3u,\7n.

2 hereinafter abbreviated to G.L.T. (see also Appendix 2 of G.L.T.

{2] (English translation of G.L.T. [11)).

3 See also G.L.T. [2].
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We introduce u" = u® -u, pn = pn - p. Then by subtracting (2.5)
from (2.4) and (2.6) from (2.3) we obtain

(2.7) (A+rB'B) T+ 8" =0
(2.8) Y- o, T

We deduce from (2.8) that

2

-n+l 2 -n,2 -n -n
B2 =150+ 20, P, B+ o

|

’

and hence that

2.9) 15°1% - 1372 = 2o GGRLEE - o2 B
It follows from (2.7) that
O ] e I L
and hence by substitution in (2.9) we have
(2.10) |5n|2 _I;n+1|2 _ an(Aﬁn,ﬁn) + pn(zr_pn) |Ban|2.
If we then take
(2.11) O<aogpn52r
the sequence |pn| is decreasing. Being bounded below by O, it
is convergent and hence |§n[2 - §n+l|2 + O ; (2.10) then implies
(2.12) lim (ag",0™ =0,

N4

and since A is positive definite it follows from (2.12) that

@’ - O, and also since ﬁn = u? - u, we have lim un = u. ]
n>+eo
Remark 2.1: It follows from (2.10) that we actually have con-
vergence of (2.1) - (2.3) under the following condition, which is

less restrictive than (2.11):

(2.13) 0<ch5 P,

1
< 2(r + —=)
1 B2
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where 82 is defined by

2
2 Bv
(2.14) B” = Max KD

v#0

which implies that 8% is the largest eigenvalue of A 'B%B . =

With a view to studying the behaviour of the sequence pn it is

worth noting that

(2.15) (Im B)* = Ker B,
hence
M t
(2.16) R = Im B & Ker B .
We thus have, for qunﬁ , the unique decomposition
t
(2.17) 9=4q; *+9,, 9¢ Im B , q, ¢ Ker B .

Denoting by Pl (resp. P2) the projector of IRM onto Im B

(resp. Ker Bt), we thus have

P e L&Y vi- 1,2,
(2.18)
P.(q) = q YR, Vi=1,2.

If, additionally, p is a Lagrange multiplier for (1.2), (1.4),
then we can deduce from Theorem 1.1 that the same is also true of
p+qg, Vq eKer Bt . It follows from this that there exists a
unique Pelm B, such that the Lagrange multipliers of (1.2), (1.4)

are all of the form
(2.19) p = p+q , q ¢ Ker Bt.

The vector p thus appears as the Lagrange multiplier of (1.2), (1.4)

with minimal norm in IRM.

From Theorem 2.1 and the above properties of the Lagrange multi-

pliers we shall now deduce:
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PA

THEOREM 2.2: If N satisfies (2.13) then the sequence pn
defined by algorithm (2.1) - (2.3) converges to D + pg where
pg = Pz(po) 18 the component of po in Ker Bt. In particular if
po = 0 then 1lim ph=p.

n+ce

Proof: The relation (2.3) immediately implies

(2.20) P, ™) = 2 (6™ = 2, (p°) Va.
2 2 2

Under the condition (2.13), we have lim ﬁn = 0. It then follows

from (2.7) that nohe

(2.21) lim 8% P = 0.
n-+co

Since the quantity [th| defines a norm on ImB, (2.21) implies by
projection onto ImB that

lim P](pn) =%

n-r+o
hence, with (2.20), 1lim p" =5 + Pz(po). .
n>r+eo
2.3 Interpretation of algorithm (2.1) - (2.3). Rate of conver-
gence if p, = p, and choice of r.

Algorithm (2.1)-(2.3) is in fact a gradient type algorithm applied

*
to the minimisation of the dual functional Jr : IRM -+ IR defined by
JP (@) = - M (v,) = +8a7 8%, q) ~(BAT'b,q) + 1 a”'b,b)
T VE;N £V 2 b +4 r 204 2 r
(2.22)
where A=A+ BtB.

More precisely, by eliminating un, algorithm (2.1)-(2.3) can be

re-expressed as
(2.23) f% RM, specified arbitrarily;

n+l n -1_tn -1
(2.24) P =7 %‘BAr Bp BAr b).

Remark 2.2: The advantage of formulation (2.1)-(2.3) compared
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with (2.23), (2.24) is that we do not have to construct A;l

explicitly; in certain applications in partial differential
equations this would in practice be unrealizable since A;l will be
a full matrix of very large order. The formulation (2.23), (2.24)
will on the other hand be very useful as a theoretical basis for
studying the influence of r and I on the convergence of

(2.1)-(2.3). ]

In similar fashion, by eliminating pn, (2.1)-(2.3) can be re-~

expressed as

(2.25) = Al (0-3%%)
(2.26) Y L
nr
and Remark 2.2 holds equally for the algorithm (2.25), (2.26). [ ]

To study the influence of r and o OD the convergence of
(2.1)-(2.3), we observe that if p" = pn - (P + Pz(po)) then from
(2.20), (2.24) we have

PP eImB  Vn20

(2.27)

-n+l _ =-n _ -l t-n
P =p OnBAr Bp.

From the second relation in (2.27) we deduce that

(2.28) PULE LA R L pnA'IBtBA;‘BtE“.
We have
(2.29) AT = (14 ra7 Bty A7!

r

which together with (2.28) implies

(2.30) AT = AT - o a7t ¢ a7 B ) T AT BN

We put yn = A-lBtﬁn ; given the limear relations existing between

yn and ﬁn, ﬁn the convergence of yn towards zero tells us

that {a", ﬁn} converges towards {0,0}. We deduce from (2.30) that
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) n

(2.31) LS pnA_lBtB(I + A" BT .

We shall express (2.31) in a basis of eigenvectors of A—lBtB, but
before doing so we shall first indicate, without proof, several prop-

erties of the eigenvectors and eigenvalues of A_lBtB:

PROPOSITION 2.1: The eigenvalues of A_lBtB are 2 O and the

etgenvectors corresponding to two distinet eigenvalues are

A-orthogonal, Z.e. Zf

A-IBt B v, = AW,

A8t B o= w

with Ai # Aj then

PROPOSITION 2.2: If O +is an eigenvalue of A_lBtB then the

corresponding eigen—-subspace 7s Ker B and Im A_lBt is the

subspace of IRN which 7s A-orthogonal to Ker B. Im A_lBt 78
thus spanned by the eilgenvectors of A_lBtB assoectated with the

eigenvalues which are distinet from O. a

We have, of course, dim Im A_lBt = Rank Bt = Rank B. In the

following text we shall denote by Nl the rank of B and by

Am, AM’ respectively, the smallest non-zero eigenvalue and the
largest eigenvalue of A_lBtB. Suppose B = {wi}Tll is a basis

of Im A_lBt, with w, the eigenvector of a2 1% associated with

the eigenvalue A;. If y ¢ Im a"'8% we thus have
Nl

y=iz=] y; W » Y;€R Vi.

We then deduce from y"eIm A 'B*Vn»0 , and from (2.31)

that

p_ A, 1+ (x-p.) A,
yr.Hl A §° = o on 1 y‘; Vn >0,
1 I+rh, 1 I+r )y

(2.32)
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In the remainder of Section 2.3 we shall assume that Py =P Vo,
postponing until Section 3 the study of algorithms of the type
(2.1)-(2.3) with variable step size I We thus have

n+l L+ @-0) Xi n
(2.33) y. = ¥;-
1 1 +7 Xi

We shall first examine a number of possible choices for p, with r
given, as this will allow us to draw a number of conclusions con-

cerning the choice of r.
(i) The case r = 0.

We here have

(2.34) yot

n s
;= O -y Vn20, Vi=t,...N

>
From an inspection of the (classically familiar) Figure 2.1

f1-pA]

Figure 2.1

the optimal choice for p can be seen to be

(2.35) p = H
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(2.36)

< iy lyrlll Vi=1,...1\11 , VYn>0;

we deduce from this that the convergence rate R of the method

satisfies, for op = popt’

>\m
-

(2.37) R < M .
< X
1 + b
M

Remark 2.3: If r = 0, algorithm (2.1)-(2.3) reduces to Uzawa's

algorithm applied to the Lagrangian #£ defined by (l1.4), namely

(2.38) poeRM, specified arbitrarily;
(2.39) a” + 8" p™ = b
(2.40) Moty p_ Bu".

The result (2.37) is a standard one in the study of the convergence
of fixed step gradient methods (see for example, CEA [1],
MARCHOUK-KUZNETSOV [1] and the bibliography of these volumes).

(ii) The case p = 2r.
In this case we deduce from (2.33) that

1 - r>\i
(2.41) y, = —y. Vi=i,...N
1 + rki

1’ Vn>0.

As indicated by Figure 2.2, the optimal choice for r is

1

(2.42) r, =
pt 5
%1XM
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\l—r)\l

Figure 2.2

and for r = ropt’ p = 2ropt’ we have
’ A

1 - B

(2.43) Iy‘?”‘ < ——————)‘M— 1yn| Yi=1,...N, , ¥n2>0
1 \/_)\- 1 1
m

1+ E

We thereby deduce that for this choice of r and ¢ the con-

vergence rate R of the method satisfies

(2.44) R <

We deduce from (2.37), (2.44) (and from the behaviour of the func-

tion £ »%) that algorithm (2.1)=(2.3) with
1 2
r = ———— P = ——
——
/ /
V Am XM \Y >\m >‘M

(2.38)-(2.40) with o =p =
n

is iteratively faster than algorithm

2 , Wwhich we recall corresponds tc
Ant
i 2
algorithm (2.1)-(2.3) with r = 0 and p,= P = Am+XM . s
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(iii) The case p = r.

This choice is the standard one;

(2.33) that
yn+1 _ )| yn
* 1 + 1 AL 1
1
and hence that
n+l ! |n|
(2.45) |y < v,
. 1 +1 A l
i1

We deduce from (2.45) that the convergence rate R

(2.46) R < ]

1 +r A
m

On inspection of (2.46) it appears

(2.1)-(2.3) becomes faster, iteratively, as the value of r
1

If,
that algorithm
note that if

in particular, r <«

(2.1)-(2.3) will in

then R <« %.

larger.

r= 5

m
Remark 2.4: Although relation
is advantageous to work with Py =
must realise that all other things
(2.2), the solution of

n . .
u in l.e.

(2.47)

is more costly
the larger the value of r.
ing discussion, the matrix Ar

more ill-conditioned the larger r

Using, once again, a basis of eigenvectors of A

shown that the condition number of

-1t

restricted to ImA B (i.e.

tends to 1 when r » + =,

A FIRST ALGORITHM

to the subspace A-orthogonal to

13

in this case we can deduce from

Vi=1,...N Vn>0.

1’

satisfies

that for pp =P = r algorithm
gets

b , it follows from (2.46)
ggneral be iteratively slow. We

(2.46)
p =r
being equal the determination of

appears to indicate that it

as large as possible, one

the linear system

(A + r B'B)u" = b - B p°,

(in computation time and/or in memory requirements)
In fact,
=A +r BtB becomes progressively

as we shall see in the follow-

becomes.

1 it can be

-lBtB)—l

Ker B)

BtB,
; -1_t
the matrix A "B B{(I + rA

This property clearly corresponds to the

fact that the theoretical convergence of algorithm (2.1)-(2.3) is

faster the larger the value of r,

in the case where op = r.
a



14 AUGMENTED LAGRANGIAN METHODS (CHAP. 1)

(iv) Optimal choice of p with given r.

From inspection of Figure 2.3, it follows from (2.33)

Il#(r-p))‘l
T+rh

Figure 2.3

that the optimal value of p is the solution of the linear equation

1+ (x=p) A . 1+ (x=p) Ay
1 +r Am 1 + ¢ xM
hence
2
1+ (A +A) +1 A A 2+ (A + )
(2.48) Popt = 2 m M LI m M
(Am + AM) + 2r Am XM 2r km XM+(km+AM)
We deduce from (2.48) that for p = popt we have
A
| ———
A
(2.49) [Eadl g — S—" . T RSS20
1 A 1 1
1+ "o+ 21X
= ®
M

and hence for the convergence rate R, we have
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I
A

(2.50) R < - M

m

1+ 7;»+ 2rxm

1
We note that popt > r and that for the same value of r algorithm
(2.1)-(2.3) is iteratively faster with p given by (2.48) than with
p = r; of course, (2.48) involves Am and AM, quantities which in
general are not known a priori. Remark 2.4 is again valid for this

choice of p, with (2.46) replaced by (2.50)

Condition number of AL choice of r.

We now go to finish off Remark 2.4, but first it is appropriate

to define some notation. We shall denote by |v| the standard

Euclidian norm on IRN and for a linear operator L defined on Eﬁ

we shall denote by [|L}} the norm associated with |.| , namely

ILl] = su J{i}t=sup Lo
veRN-{O} v veS

where

S = {v]ve'RN, lv| = 1}.

For the condition number of Ar when r > + =, we then have the

following:
PROPOSITION 2.3: The condition number JUAr) of Ar satisfies
[k
(2.51) JQ(AI) ~ r when  Tr+o
o
where
- inf (Av,v)
ve Ker B-{0} vl 2
Proof: We have

_ -1
K = lall I

It can easily be shown that
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L cllall <= HBli2 + [all .

1, =

(2.52) 8% +

We have moreover

ll = Min (Ar v, v) = Min [(Av,v) +r |Bv|2] H
la"ll ves ves

there then exists u. e S such that

(2.53) S (Aur, ur) + r[Burlz.

-1
a2
We now study the behaviour of the family (ur)r when r > + o,
We have

(2.54) (Au_, u) + rlBurlz < (Av,v) , Vv eKer Bns, Vr
which implies
(2.55) (au_u) + ¢ [Bu_|? < Jlall. Ve

Since the sequence u, is bounded, we can extract from it a sub-

*
sequence, also denoted by ., converging to an element u of H@y

We then deduce from (2.55) that

(2.56) [Ba*]% = 1lim [Bu_|? = 1lim U%U= 0,

400 Y+co
hence it follows that

(2.57) u* ¢ Ker B n S.

*
In view of (2.57) we can take v = u in (2.54). We then deduce
that

2
(Aur’ur) < (Aur,ur) + T [Bur( < (Au*, u*) Vr

and hence that

lim r|Bu |2 =0,
>+ r

which together with (2.53) implies

(2.58) lin  —— = (au*, u¥).
ST
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It therefore follows from the above that

(Au*, u*) < (Av,v) VveKer BnS,

u*ec Ker BnS

thus
- 1
(2.59) tin A = —— =1
oo (au*,u® O
which with (2.52) implies (2.51). .

We have thus proved that the condition number of Ar is,
asymptotically, proportional to r, which thus has the effect as r
increases, of making it more difficult, (other things being equal),
to solve the system

(2.60) A o =1 - B" PP,
r

If we solve (2.60) by an <terative method, the convergence, being
linked to the condition number, will become slower as the value of
r 1increases, and this may lead to a large number of iterations to
solve (2.60) to an appropriate accuracy even if, in the obvious
manner, we initialise the calculation of u"  with un-l.
Furthermore, if we solve (2.60) by a direct method, the sensitivity
to rounding-error accumulation will be greater when r 1is large.
In a large number of problems, therefore, a "good strategy" would

seem to be the following:
* Work in "double precision’

* With the parameter r having a fixed value, as large as
possible (!), carry out once and for all the Cholesky factorisation

of the matrix Ar, which we recall is symmetric and positive

definite.

* = =
Take Pn P r. e
Remark 2.5: In the case where an iterative method is used to

solve (2.60) we can, in the early stages of algorithm (2.1)-(2.3),
make do with a low accuracy in the determination of u". This
effect can be obtained, for example, by choosing to use a fixed

(and "small") number of iterations (in the solution of (2.60))}.
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We shall return to this subject in Section 4, in connection with the

method of Arrow-Hurwicsz. .

Remark 2.6: With regard to the solution of (2.60) by an

iterative method, it may be advantageous to use a parameter r

which varies with n, giving in fact a sequence (rn)n. Certain
authors recommend the use of a sequence (rn)n such that

r >0

02

r >r Vnz 0,

n+l n

lim 1 _ = +=

400 n
The optimal choice for (rn)n seems to be an open question. The

use of such a method combined with a direct solution of (2.60) is of

little interest, since the factorisation of Ar would need to be

n
carried out every time that L X this being costly in
general. [ ]

3. VARIABLE STEP-~LENGTH ALGORITHMS. CONJUGATE GRADIENT METHOD.

3.1 General notes

We have shown in Section 2.3 that algorithm (2.1)-(2.3) can be
interpreted as a gradient algorithm applied to the minimisation of
the dual functional J* defined by (2.22). With this interpret-
ation in mind it is natural to seek to apply, to the minimisation
of J* on IRM, the standard iterative methods for minimisation of
quadratic functionals (see for example, CEA [1l], the review article
of MARCHOUK-KUZNETSOV [1] and the corresponding bibliography for a
thorough study of these methods). In order to clarify the

presentation we shall now give some review material on these methods.

Suppose then that ¢ is an M X M symmetric, positive definite
matrix and suppose R e]RM; we associate with @ and B the

functional 3 defined by

(3.1) 9@ =3 (g9,a) - (8,) .

The minimisation problem



(SEC. 3) VARIABLE STEP-LENGTH ALGORITHMS 19

(9(p) < 2(a) VqeR",
(3.2)

pe]RM,

admits a unique solution which is also a solution of the linear

system

(3.3) dp= 8.

To solve (3.2), (3.3) we now consider descent methods of the general

type:

p eR, specified arbitrarily;
(3.4)

n+] n

P =P - pn W,n

The descent direction W will in general be deduced from the
direction of the gradient of J at the point pn. For a given
descent direction, we shall choose °n in such a way as to opt-
imise a criterion related to the problem. In practice, we shall

confine ourselves to the following methods:

@® STEEPEST DESCENT METHOD: The descent is made in the direction

opposite to the gradient, hence

(3.5) wvo=g, = grad ;(pn) = gp" - B.

The choice of °n is made by minimising, with respect to p, the

function
(3.6) P gG" -0,
We have
n n 2 p2
(3.7 g2 -eeg) =gk) ~ple |”+ 5 (qe.8) ,

°n is thus given by
g
T
(3.8) p_ =
n o (dg .8)
@ MINIMUM RESIDUAL METHOD: The descent is still carried out in
the gradient direction, hence w_ = g,i we choose p, SO as to

n
minimise, with respect to p, the residual |@(p™-pg™-8! .
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Expanding, we have
N n_ a2 _ _ 2 _ 2 _ 2 2,
(3.9 | (™08 )-B1" = lg_~0@s,|” = le |” - 20078 .8) + o7l 22 |

the optimal ¢ is therefore given by:

(g, ,8,)
(3.10) o = ——
lag_|
® CONJUGATE GRADIENT METHOD: The conjugate gradient method is

especially attractive for solving gquadratic problems because
theoretically (i.e. ignoring rounding errors) it converges in a
finite number of iterations (< M) and because moreover in the
general case it leads to quadratic convergence" . It would be

too lengthy and inappropriate to study here the convergence of this
method; we instead refer the reader to E. POLAK [1], J. DANIEL {11,
CEA [1]1, MARCHOUK-KUZNETSOV [1], CONCUS-GOLUB [1] etc..., for a
detailed analysis of this algorithm.

The algorithm proceeds as follows:

1) We carry out a first steepest descent step by taking Wy = g

with o~ given by (3.8).

2) In the subsequent stages we construct descent directions Wo
which are &-conjugates, i.e. (@ Wi wj) =0 Vi,j, i#j. More

precisely, assuming that we know the descent direction wn_l and
that we are able to calculate pn in terms of pn-l, we seek

W in the form

such that

(3.11) (W74 v wn-l) = 0.

We hereby deduce that >‘n must take the value

(ae_, vw__,)
(3.12) A == n’ ol

(dwn-] ’wn—l)

* For M "large" quadratic convergence becomes a greater attrac—

tion than convergence in a finite number of iterations.
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We can further prove the orthogonality relations

(@ug, w) =0 if it
(3.13) (8> 8;) = © if ik,
(gi’ WJ) =0 Zf i>»3.

By virtue of these relations, (3.12) can be reduced by elementary
manipulations to

2
g
(3.14) 1
"o, 12
n-1
3) An and thus W being known, we carry out an optimal descent

in the direction W i.e. we choose °n to minimise the function

s

P> glp-pw ).
By a calculation analogous to that carried out in @O we obtain
2 2

g e |

(3.15) p_ = l o (= L ). [ ]
(gn,dwn) (dgn!gn)

*
3.2 Application to the minimisation of Jr.

We shall see here how the methods described in Section 3.1 can be

*
applied to the minimisation of Jr' We recall that we have
* _ 1 -1_t _ -1 1.,
(3.16) J_ (@) =5 (BA 'B'q,q) - (BA_'b,q) + (A 'Db,b).

The constant term (A;lb,b) obviously plays no part in the mini-

misation. We thus have, with the notation of Section 3.1
(3.17) g = BA;IBt,
(3.18) B = Ba_'b.

The matrix @ given by (3.17) is only positive semi-definite, but
it can easily be shown that this does not affect the algorithms con-
sidered in Section 3.1, which always converge in the quotient

space mn/Ker Bt. We can prove as in Theorem 2.2 that the component

of pn in Ker Bt is in fact constant, and therefore equal to that
o
of p.
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Under these conditions the three algorithms considered in

Section 3.1 become as follows:
®  Steepest descent algorithm:

We have woos g, = p -8 ; thus

-l_tn -1 -1, tn
= - = _b .
3.9 w,o = BA B'p -BA_ b = BA (B p, -b)

It follows from (2.4) that we have

(3.20) au®=b - B T,
hence

et
(3.21) =" Bu".

The optimal value of p is then, from (3.8),
n

n 2
(3.22) 0 =___I_E___]___

n n -1t
(Bu ,BAr B gn)

The calculation of °n thus necessitates the solution, with respect

to Z.. of the linear system
(3.23) Az = Btgr1 = - B%BJ” ,
hence 0.2

o =-tBul”

n n )

(Bu ,an)
. . + . .
In addition, with pn+l known, we note that un 1 satisfies
n+! t n+l _ _pt o _ t, no_ n

(3.24) Aru =b-Bp =b-Bp P B Bu Aru +onArzn ,
hence

n+1l n
(3.25) u su otz

It follows from the above formulae that at each <teration we have to
solve only a single linear system, with matrix Ar' We can, then,

re-express algorithm (2.1)-(2.3) in the following equivalent form:

(3.26) p° arbitrarily specified in ng, and 0=A_](b—Btpo);
r

. . +1 n+
with pn, o known, determine Z.0 P pn , u 1 by
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(3.27) z = - A 'B%Bu",
n T
n2
(3.28) o =—J2L|— ,
(Bu ,an)
(3.29) N o Bu",
n+1 n
(3.30) R R O

@  Minimum-residual algorithm.

We have shown in Section 3.1 that, in the case of the minimum

residual algorithm, P is given by

(dg »g)

P
n

lae, |?

hence the following variant of algorithm (3.26)-(3,30):

(3.31) pO € ]RM arbitrarily specified, and u® = A;l(b—Btpo),
then with pn, u? known, determine z_, B pn+l, un+1 by
n n
-l _t, n
(3.32) z =~ h_ BBu
(Bun,Bz“)
(3.33) P =" T3
|Bz_]
n
(3.34) p™ ! = Pt o BT,
(3.35) un+’ = o+ oz .

® Cconjugate-gradient algorithm.

From Section 3.1, at each iteration a descent direction w_,

conjugate to w has to be calculated; thus

n-1’'

n

(3.36) ¥n T By * kn Ya-1 T 7 Bu + xn Yn-1°

the value of An being given by

2 ny2
N R T

|2 |Bun-1|2

(3.37)
|gn-]
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The descent direction wn being known, we then need toc calculate

2 2
g le_|
(3.38) on=—J-lL<=——i—);
(g, dw) (dg >8)

to do this we introduce, as in the two preceding algorithms, z,
such that

(3.39) z = A

and we again have

n 2
(3.40) o o 1Bu|T

(Bun,an)

In summary, the conjugate-gradient algorithm can thus be written:

(3.41) po spectfied arbitrarily in ZRM;

(3.42) u = A;](b—Btpo);

at iteration n calculate the descent direction W by

(3.43) w, =g, = -8u® < f n=0,
(3.44) wo=-Bu" + A w o if n>l,
2
Bu |° .
(3.45) Xn lBun_llz i1fnxl,
then
-1_t
(3.46) z = AL Bw ,
n)2
(3.47) o;-—-‘%’—l— .
(Bu ,an)
n+l n
(3.48) p =p Dn Yo
n+tl _ n »
(3.49) u =u *op oz
Remark 3.1: In the three algorithms described above, we have to

solve at each iteration only a single linear system, with matrix Ar'
Compared with algorithm (2.1)-(2.3) used with a fixed p, these
algorithms require the additional presence in memory of zn, a

vector which is of the same order as un, having N components. In
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the case of the conjugate-gradient algorithm, we also need to retain
W1 in memory. This increased memory requirement will be just-
ified if the automatic determination of the step length o leads

to a very clear improvement in the speed of convergence compared

with algorithm (2.1)-(2.3) used with bp= P = r; this, however,
does not always appear to be the case. [
Remark 3.2: In the case of the problem

x * M
J.(p) < I (q) VqeR,

(3.50)
peRM

the conjugate-gradient algorithm, i.e. (3.41)-(3.49), converges
theoretically in Nl (= rank B) iterations at most. Given that
rounding errors are present, this result no longer holds in
practice. Furthermore, bearing in mind the large size of problems
arising from the discretisation of partial differential equations,
it is desirable that, with an adequate termination test, convergence
should be obtained in a number of iterations considerably less

than Nl' This property will depend essentially on the condition
number of BA;lBt restricted to Im B, this quantity being hence-

forth denoted by KABA;Hf)ImB . It can be shown that

R B 4 _
(3.51) lim J\,(BAr B )ImB =1.
T+00
We note that

(3.52) BA;lBt - B(1+ra”'B%B)Aa 8t

and that the matrix corresponding to the case r = 0 1is BA-lBt.

It follows from these properties that the replacement of the Lag-
rangian £ defined by (1.4) by the augmented Lagrangian &£,
defined by (1.8), may be considered as a method of preconditioning,
in a sense close to that of AXELSSON (1], the preconditioning matrix
being (I+rA—lBtB); this remark is true not only for the conjugate-
gradient algorithm but also for all the other algorithms studied in
the preceding sections. In particular, in view of this pre-
conditioning, it would seem that it should not be necessary to carry
out a reinitialisation (of the type W, = gn) in the conjugate-
gradient algorithm, in order to counteract the accumulation of

rounding errors. ™
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4. ON CERTAIN VARIANTS OF THE METHODS OF SECTION 2: INTRODUCTION
OF A RELAXATION PARAMETER; METHOD OF ARROW-HURWICZ.

4.1 Synopsis

We shall show in Section 4.2 that we can improve the speed of
convergence of algorithm (2.1)-(2.3) by utilising a relazxation

parameter w; this leads us to the algorithm

(4.1) u® siRN, pO e ’Y arbitrarily specified;
L
with u°, pn known, calculate un+2, then un+l and pn+l by
1
£rﬁﬂ+{p% sirW,JB VveR",
(4.2)
un+%€]RN
b
2
(4.3) ur1+l ="+ u)(un+z-un),
(4.4) Pnﬂ = pn + DBunH H
(4.2) is equivalent to
1
(4.5) (a+rB B)u™ 2B " = b.
For w = 1, we once again have (with a slightly different notation)

algorithm (2.1)-(2.3) with p_ = p, vn®.

In the sections following Section 4 we shall be studying algorithms
of the type

(4.6) uoeRN,poeRM arbitrarily spectified;
n+l_n -1 t n ._tn

(4.7) u =u —wn Sr (A+rB B)u +Bp -b} ,

(4.8) P! =p“+pnsu“+‘ ,

where, in (4.7), the auxiliary operator Sr is symmetric and
positive definite. We observe that (4.6)-(4.8) is an algorithm of
the Arrow-Hurwicz type (see ARROW-HURWICZ-UZAWA (11, G.L.T. [1,

® We can also consider parameters Wy and on which vary

with n.
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Chapter 2], EKELAND-TEMAM [1], etc...). It should also be noted
that (4.1)-(4.4) is a particular case of (4.6)-(4.8) obtained by
taking Sr = A+rBtB (= Ar) and constant values for wy and °n

4.2 Study of algorithm (4.1)-(4.4)

For given r, we now study the convergence of algorithm

(4.1)-(4.4) and in particular the optimal choice of the parameters

w and p. Proceeding as in Section 2.3, we put
TR I L S A
e "= B - (3+p, (%)), yP=aTBR
We then have
(4.10) (A+rBtB)Gn+%+Bt5n =0,
.11 P P,
(6.12) PP o R
By elimination of e and G"+% we deduce from (4.9)-(4.12)
(4.13) v a0 A7 B B (14ra T BEB) T Mu-2) D)y (1-w)y™ =0,

By means of (4.13) we have reduced the study of the convergence of
algorithm (4.1)-(4.4) to the study of the convergence of a doubly
recurrent Sequence. In fact, taking into account the relations
(4.9)-(4.12), the convergence of yn to zero implies that of

(T, pn} to {0, 0} (see Sections 2.2, 2.3).

Proceeding as in Section 2.3, we now express (4.13) on a basts
of ImA 'BY formed from the eigenvectors of a"lets assoctated
with the strictly positive eigenvalues; thus, with the notation

of Section 2.3, we have

pA 1

L MY+ (=W vy =0

y?+l-2(l- % (1+
l 1+r)\i

(4.14)

A necessary and sufficient condition of convergence for (4.1)-(4.4)
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V{uo,po}e'RNXRM will thus be that the roots of the character-
i8tic equation
pA

(4.15) 22201 & (1 T ))E+1w=0
1

assoctated with (4.14) be of modulus strictly less than 1,

Vi=1,... N1 . The convergence rate R will satisfy
+ -
(4.16) R< Max Max (|&.],|E.0),
. 1 1
11N

where E;, g; are the roots of (4.15), namely

pA. DA,
.
S AU \E'% R LR o
4.17 1 i
- £'=1—9(1+M_i_J1-“’(1+_Mi 2
i 2 1+r)\i) a-3 “”i)) tw-l

We are now going to study, with given p and with r still fiwxed,

the behaviour of IEII and |£;| as a function of w.

The behaviour of these two roots is particularly straightforward
in the case where they are imaginary (conjugates); in fact we then

have
+ -
(4.18) lesl = leggl = Vi~

We shall have this situation if, in (4.17), the guantity under the

square-root sign is negative, which is the case if

N ]+(r—p))\i 2
(4.19) w <w.(p)=1-—— .
1 1+ (x+p) A,

*
For w > wi(p), both roots are real and we deduce from {(4.17) that

the graphs of EI and 5; are arcs of hyperbolas, respectively
asymptotie in the (&, w) plane to the straight lines whose

equations are

£ = 1 4 g=-[1+ oA 2 - 1
P, an T9TX; w PX;
T+ 1+ T+r ).
1

14T A,
i
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We have shown in Figures 4.1 and 4.2 the behaviour of max(\EI\,lEII)

as a function of w, when, respectively,

1
P>+ (the scalar Wi

1
oA,
2(1———1 )
1+(p+r))\i

It can easily be shown that )E;] > 1 if

1+ rh.
1

wrfax (p) = 2

(4.20) _—_1t
T+ (r+ %)xi

p < x4+ 7% and

1
in Figure 4.1 has the value

w > w?ax (p) where

It can then be shown (see also the above figures) that, for given

*
p and Ki, the convergence rate is optimal if w = w1 and that it

is then equal to

. - 1+(r=-p)A.
(4.21) 6% = Vimw (o) =|———2
: b 1+ (r+p)X

*
If we plot, as a function of p, the convergence rates Gi
corresponding to the different eigenvalues Ai' we obtain, from

(4.21), the graphs in Figure 4.3.
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It then follows that for a given r, the convergence rate will be

. . * * . . . _
optimal if eM(p>-emm) ; this will be the case if p = popt where

)
(4.22) Pope = ‘} SRS A i) :

Substituting this optimal value of p into (4.19), with Ai = AM

(or Ai = Am), we obtain for w the optimal value
2
2
1+ (r~p )
(4.23) w =1 -<*°Pt)LM —1-
opt

b+ (r+popt))"M

which gives us the optimal convergence rate

(4.24) Bopt =
1
Remark 4.1: For p = popt and w = wopt’ the asymptotic rate
of convergence is better than the optimal convergence rate of alg-

orithm (2.1)-(2.3), which corresponds to the case « = 1. In

the rates are respectively, (writing

particular, for r = 0,
Ve z
1 and in the case w = mopt'

- L =
o = >\m/)\M), T 1M the case w =
1 +4/a
[
Remark 4.2: For given p, the best choice of w, denoted by

*
w (p), is given, if op < popt’ by
2

1+ (xr=p)A
(4.25) w (p) = w;(p) =1- (———-—————JE> s
1o+ (r+p)xm

giving the convergence rate
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L+ (r-p)A
(4.26) 8" (p) = 67 (p) = -—-———m‘ ,
1+ (r+p)Am
and for p = Popt” by
2
1+ (x-p)
(4.27) W) =wylp) = 1 - (————X’i :
L+ (rvp)
giving the convergence rate
1+ (xr-p)
(4,28) 8 (p) = e;(p) =| —————i .
b+ (-p)ay

In all cases, the maximal value of o {i.e. the value above which

the algorithm diverges) is given by

1+ rA
(4.29) M) = o) =2 —— K
]+(r+7)XM

; * Max
Figure 4.4 shows the graphs of o (p) and of w (p).

opt

.

Figure 4.4

1)
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We note that if op > 2(r +-L0 we have wMax(p)< 1. This

corresponds to the fact that for” w = 1 the maximal value of o

is precisely 2 (f'*j?ﬁ (see Section 2.2). Further,if 3r <L -

4
we have p > M 2(r + —1-). AM )‘M

opt XM )M
This will be the case, in particular, for r = 0, when 3 > 4.
This point clearly illustrates the fact that the introduction of
the parameter « guarantees the convergence of (4.1)-(4.4) for
values of p dJreater than the bounds determined in Section 2. In
fact, we can obtain convergence of (4.1)-(4.4) for any positive

value of p, as long as we take w sufficiently small. -

Remark 4.3: Algorithm (4.1)-(4.4) can be written in the form
(4.30) e S LR
(4.31) p™ ! o ™ 4 B™ 2 (1w) Bu®) -
n+%

Observing that, with the notation of Section 3, -Bu is in fact

*
the gradient 9, of J at pn, we deduce from (4.31) that:

(4.32) ™= 0t - ou(e - %”—)—(pn-pn—]))
since Bu" = %(pn_pn—l).

Writing § = pw and A = (gzg’, we then obtain
(4.33) p™ =Pt E(gnﬂ(pn»-pn_l)).

We thus obtain, for parameters suitably chosen and depending on n,
the conjugate-gradient method of Section 3. We could also use in

this algorithm variable parameters corresponding to a semi-

iterative Chebychev method. [
Remark 4.4: It is possible to once more re-write (4.31), in the
form
n+!l n-1 W n, n-l
(4.34) P = pTT - (2-w) (G g e e ),
Writing o= (2-») and o= 7{)_% , we obtain
-1 . -1
(4.35) R e R

Algorithm (4.1)-(4.4) is thus equivalent to the two-step Richardson
*
algorithm applied to the minimisation of the dual functional J .
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It can be shown that, subject to making the appropriate changes of
notation, the optimal parameters given in (4.22)-(4.23) correspond
exactly to the standard optimal parameters in Richardson's method
(see GOLUB [11]). [ ]

4.3 Study of algorithm (4.6)-(4.8)

4.3.1 General notes

In this section we shall finish off Remark 2.5, since in fact
algorithm (4.6)-(4.8) corresponds to the variant of algorithm
(2.1)-(2.3) obtained when, in the calculation of un+l, we use only
a single iteration of a gradient-type algorithm (with the
auxiliary operator Sr), starting from . We recall also (see
Section 4.2) that (4.1)-(4.4) is a particular case of (4.6)-(4.8)
corresponding to Sr = Ar. In the case where Sr = I, we get back
to the standard method, called the Arrow-Hurwicz method, introduced
in ARROW-HURWICZ-UZAWA [1]. In the case where wn/pn = B, Vnm,
we recall that this method consists of searching for the saddle-
points of the Lagrangian L. via the approximate integration of the

differential system

q oL,
s, du,p -
r ot B ) =0,

(4.36)

dp _ 9Ly
Friaiares (u,p).

In the case where we discretise using an Euler type scheme, we

obtain a scheme which is slightly different from (4.6)-(4.8),

name ly

-1
(4.37) AR w S <(A+rBtB)un+Btpn—b) ,
(4.38) PP o Pt s p Bu".

The scheme (4.6)~(4.8). can thus be considered as a "semi-implicit"
variant of the Euler scheme (4.37), (4.38).

4.3.2 Reduction of (4.6)-(4.8) to the discrete form of a second-

order differential system
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We shall assume for simplicity that @y T W@, P, =P, Vn. We
then deduce from (4.7), by subtraction,

un+]_2un+un—1 + ws;] (Ar(un—un—])+Bt(pn—pn_1)> =0 ,

then from (4.8)

n_n-]
PP = pBu"
hence
(4.39) un+1_2un+un-] + w5;] Ar(un—un—1)+pms;IBtBun - 0.
Again writing g =u" - u and noting that Bu = 0, we deduce from
(4.39) that
(4.,40) gt wS;IAr(Gn-Gn—])+pws;lBtBﬁn - 0.

We observe that (4.39) is a discretised form, with At =1 and

using an explicit scheme, of the second-order differential system

2

(4.41) S8 usT'a v ous BB = 0
r r dt r

dt
We note the presence of the damping term ws;lAr g% and furthermore
that, other things being equal, the natural freguencies of the
undamped system grow with pw. Looking at (4.40) and (4.41), we
may expect that the behaviour of gt = " - u, as a function of n,

will depend in complicated fashion on the parameters o and op.

We recall that even in the case of the scalar equation
. . 2
X +2kx +0x=0 ,

the behaviour of the solution, as t - + «, brings in the notion of
eritical damping. A priori, when S;lAr and S;lBtB do not
commute the study of the behaviour of " as a function of n, by
spectral methods, (see Section 4.2) would seem impracticable for the
moment; therefore in the following section, we shall use energy

methods to study the convergence to zero of .

4.3.3 Convergence of algorithm (4.6)-(4.8).

We shall now seek conditions on p and w« which assure the

convergence of (4.6)-(4.8); we first define some notation.
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With the standard Euclidian inner product still written as (.,.),

we associate with the symmetric positive-definite operator Sr

the norm

(4.42) o2 = (s v,
r

We likewise write

(4.43) ||v||§ = (v,

We then have, by the equivalence of the norms on IRN, the existence

of a constant oL such that
2 2
(4.45) oty o tvlg -
r

The operator B being continuous, we have furthermore (with

lal? = (q,a)

2 2
(4.45) Iev] “ = B |Vl
and

2 2
(4.46) | Bv}” < yrlvls .

r
. -n —n . .

We next define 1 and P as in (4.9) and we establish that
ﬁn, ﬁn satisfy the equations
(4.47) @5 v ¢Sy +wGRBY) = 0 VveR',
(4.48) Gt - o™ ) =0 VqeR?.

_n
In the following text, we shall for simplicity denote u by un

and §n by pn.

We then set v = u" in (4.47) and we multiply by 2p; we obtain

n+l 2

n 2 n+l
(4.49) plu IS - plu lS —plu -
r r

n, 2
|

ulg * Zow 1712+ 2006, a™ = 0
T

Furthermore, from (4.48), we have

- 2 -1,2
200", Bu™ = 2%, 0"p" ") =w] p™ Pl p™

-1)2
] pp™ |

and by substituting in (4.49) we thereby deduce
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n+l . 2 2 -1,2 -1,2
plu IS -plu® IS + 200 ||u® || +wlp”| -mlpn 1+ w|pn_pn |© =
(4.50)
- D)un+1_un,2
S -
r
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We now have to obtain an appropriate upper bound for the right-hand

side; from (4.47) we have

(4.51) pla™ a2 = - ow(a ™0™ ™) - pu(p, B! - B

r

then, by a variant of the Cauchy-Schwarz inequality and from (4.44),

we have

n+l

1_n2
(4.52) |pw(a u”,u S

-un)l < pelu’ -u g * ———0. ”u H Ye > 0.
r

We further deduce from (4.48) that

n+1_Bun) _ n n _n_n-l

- pw(p",Bu ~w(p o —p o+ wpp et ) =

(4.53)

412
-2 e +

- 1 1,2
'2|Pn|2 ‘pn 1|2) + %_(lpn+ n_ n |

"2+ ]p"- ) .

Substituting (4.52), (4.53) into (4.51) we obtain

S~ r

plun+1_un|2 < pwzar o 2 w ( n+]|2
r 4e(l-e) 2(1-g)

21" 24" ) +

(4.54)

W q n+l nl

n_ n 1,2
-p |
2(1-¢)

+ |p - ), YO<e<1,

Next, replacing the right-hand side of (4.50) by the upper bound
obtained in (4.54) and noting from (4.48) that

‘pn+tvn|2= p[Bunlz, we obtain, after re-grouping various terms
pwa
-112
pla™ 2 =plu™|2 + 20w ——) P12 swlp™| 2wl
r r 4e(1-€)
(4.55) - 1 2 112
T R 1S T S o B ¢ P R P B B
2(1-€) 2(1~€)
2

- ER !Bunl2 < 0.

(1-¢)
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Utilising (4.45) we then have

pwzu 8, mspz
~plu” |2 +(2pur —— - T )2«
r T

4e(l-¢) (1-e)

n+l 2
plu ls

n—1|2 + W (lpn+1|2 _ 2\pn‘2+lpn-1|2) _
2(1-¢)

.56) { +wlp®|®-wlp

& Ipnﬂ_pan+ W

2(1-¢) 2(1-g)

The coefficient of Hunni will be positive if for some ¢,

which remains to be determined, we have

waoL,
(4.57) —TI s o8 £ <2
4e (=€) 1-g

To define this condition precisely, we now try to find, for given

p, the value of ¢ in 10,1l giving the best bound for w (i.e.

the largest possible). An elementary calculation shows us that
the optimal choice for ¢ is,

]
*

(4.58) e* = s
2+pB,

which together with (4.57) implies
(4.59) W <

or further

2
(4.60) W< e =y (P .
o ax
ar(1+ 2 Br)

If condition (4.59) is satisfied, we have

2
pw o, Srwe p
(4.61) C= 2pw ~ = " >0
4e” (1= ) iI-£

Summing the inequalities (4.56) for n = 1,...,N, we obtain

1)
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- N - - -
N2 N+12 N 2
olu™ 2+ o T 2 wwle™ | Pe —2— ([ -1
r n=1 2(1-

)y -
S £)

N N 12 2 1,2 2
o62) (= =2 PN N2 < ol |2 vl p®l B —— (! %1201 -
2(1-€) r 2(1-¢

]p]-polz < Const.

2(1-€)
The left-hand side contains the term

R+1,2 | N+1 N2
9 (A

(4.63) )
2(1=-€)
for which we shall now obtain a lower bound. To do this we write
N+1;2 | B+l N2 N2 N+1 N N, 2 N N+l N
(4.66)  fp f5=lp mp [T == R T2 P ) = - p|f#2(p +0Bu Lp ),
hence
B+1y2 , N+1 N2 N2 F+1 N o1y N2 2 f+1,2
7 [5=p T=p 17 = Ip 1% 20(Bu™ ,p) 2 (1= @ [p | 7= o78[BuT |
(4.65)

vé e 10,10,

We then substitute this lower bound into (4.62), regrouping the terms

in |pN]2 and utilising (4.46), i.e. pZGIBuN+]|2 < pZSYrIuN+1|§
We then have, with § stiil to be chosen, v

pwdY = N -
we8) o0 - —5 [ Zec T WP)24 wa - —1 515 %< const.

2(1-€) r n=1 28 (1-€)

_ . N2
If we then suppose € = ¢ , the coefficient of |p | must be
positive, which implies
2+pB
(4.67) §2 —— - —F |
2(1-¢ ) 2+2p6r

On the other hand, in order for the coefficient of ]uN+”2 to rem-

ain positive, we must have
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2(1-e%) 2(1+pR ) a_(1+pB)
(4.68) w < = r -t — W, ().
péy py_(2+pB) 208y,

r

Consequently, if we can choose § so that

a_(1+p8 )
(4.69) r T o5
Zder

then condition (4.68) will in fact be a consequence of (4.60). We
therefore have to seek ¢ satisfying simultaneocusly (4.67) and
(4.69), i.e.

2+pB a_(1+pB_)
(4.70) I <§<-t r
2+2pBr 2pY

T
We thus need to show that the interval defined by (4.70) is not
empty, i.e. that

2 2
4.71) Apyr +2p BrYr < Zur(1+pBr) ,

or, regrouping the terms, that

2
(4.72) Br(Yr-arBr)p +2(Yr-ar8r)p -o < 0.
It can easily be seen that (4.72) will be satisfied for any p if
we have
(4.73) Yy < albB
Before confirming this point, we shall conclude the proof of conver-
gence; we have seen in fact, assuming (4.73) is true for the moment,
that subject to obeying the condition (4.60) we can choose § so as

to have in the left-hand side of (4.66) only positive terms. It

then follows in particular that we have
N ny2 =
(4.74) ¢ Yifu Hr < constant, for any N,
n=]

which implies the convergence of the series with general term
”unui and therefore that
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(4.75) Lim [[u")|% = o.
N>

Likewise, it follows from (4.66) that |pN|2 is bounded; we can thus

extract from pn a convergent sub-sequence. We shall in fact
prove, as in Section 2, that pn converges to zero (recall that un

and pn actually denote " and En here) . [}

It now remains for us to prove the inequality (4.73). To do
r’ Br and Yoo It
can easily be shown that these are respectively the largest eigen-

values of S;lAr, A;lBtB and S;lBtB. The inequality (4.73) can

this we must first determine the constants o

thus be written, if p(M) denotes the spectral radius of the

matrix M, as

-1t -1 -1t
(4.76) D(Sr B'B) < p(Sr Ar)p(Ar B°B)-

This inequality is only one particular case of the following general

result:

LEMMA 4.1: If A and B are two symmetric matrices and C 1is
a symmetric positive-definite matrix, we have

(4.77) P(AB) < p(aC)P(C'B).

Proof: We in fact have p(aB) = p(c'/%anc™!/?

radius being invariant under a change of basis; furthermore

) , the spectral

D(C]/zABC-l/z) < ]|c”2ABC']/2|]s Hc]/zAc”ZH ||c']/23c'”2||-

= 0c'?ac'?) « a0y -

Similarly HC-I/ZBC_I/ZH = p(C—IB) ; hence the result. -

L
But C*AC? is symmetric and we have HC]/ZACI/ZH

Remark 4.5: In the case (which was studied in Section 4.2) where
Sr = Ar, the condition (4.59) clearly covers the condition (4.29);
thus it is probable that the best possible result has been obtained.

[ ]

Remark 4.6: It should be noted that (4.61) allows p to be
taken as large as desired, as long as we take o sufficiently
small. This result may seem paradoxical because the algorithm may
be considered as a version of Uzawa's algorithm with an <ncomplete
solution. But, in the complete-solution case we have seen in

Section 2 that p must be taken sufficiently small. .
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Remark 4.7: It is clear that the speed of the convergence will
depend essentially on the choice of the auxiliary operator Sr
The simplest choices are of course Sr =1 and Sr = Ar. We can

also show that in the case where the system Arun = —Btpn+b is

solved by a method of symmetric successive overrelaxation (SSCR),
performing one double pass (forward and back) is egquivalent to
(4.6) for an operator Sr which can be constructed explicitly and
which is clearly symmetric positive-definite. For more details
O. AXELSSON [{1] can be consulted. ]

Remark 4.8: The choice of the optimal parameters for the
algorithm (4.6)-(4.8) is, to the best of our knowledge, an open
problem (except in the case Sr = Ar, see Section 4.2). We refer
the reader to Chapter II in which we shall give some information
(of experimental origin) on this subject, in connection with the

numerical solution of the Stokes and the Navier-Stokes equations.
n

5. MISCELLANEQUS REMARKS AND DISCUSSION

Remark 5.1: All the discussion in Sections 1,2,3 and 4 is

still valid if we consider, instead of problem (1.2), the problem

(5.1) J(u) £ J(V) Yvek,

uek
with

(5.2) K= {v eRN, Bv = c} , ce ImB.

It is actually sufficient to replace

(a+rB*B)u" = b-B%pR,
(5.3) +

P =" + o Bu",
by

(a+rB"Byu™ = b-BYperate,
(5.4) % o

22
P =p" 4 Dn(Bun-C)-
.
Remark 5.2: Suppose Ace g(RnJJB is positive definite, not

necessarily symmetric, and suppose that K is defined by (5.2). It
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can be shown that the variational problem®

(5.5) (Au,v-u) 2 (b,v-u) YveKk,

uek

admits one and only one solution characterised by the existence of
P EIRM such that

Au+Btp=b,
(5.6)

Bu = c.

In view of (5.6), we can apply to the solution of (5.5) the alg-

orithm
e} M . .
(5.7) P ¢ R chosen arbitrarily;
with pn known, caleulate u", then pn+l, by
(5.8) (A+rBtB)un = b—Btpn + rBtc,
n+l n n
(5.9 P =p * pBu-c), p 20-

By proceeding as for Theorem 2.1, it can easily be shown that alg-
orithm (5.7)-(5.9) converges, whatever the value of po, subject to

the condition that

(5.10) 0<a <o <o <2+ /8%y,

where 82 is defined by

2
(5.11) 32 = Max lEzi——

v#0 (on,V)’

and where in (5.11), AU is the symmetric component of A, i.e:

AO=-%(A+At). By contrast, a "finely detailed" study .of conver-
gence rates seems much more difficult, since the spectral methods
of Section 2.2 cannot then be used. Likewise, the extension to
problem (5.5) of the variable step-length and conjugate-gradient
methods of Section 3 may pose difficulties; this applies part-
icularly to the conjugate-gradient method.

The proof of the convergence of algorithm (4.6)-(4.8), based on
energy equalities and inequalities, extends without too many extra

difficulties to the case where in (4.7) A 1is positive-definite,

¢ This is an elementary case of a variational inequality (see for

example G.L.T. [1], [2]).
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non-symmetric.

In Chapter II we shall utilise, for the solution of the Navier-
Stokes equations, algorithms of the type (5.7)-(5.9) and
(4.6)-(4.8) with A non-symmetric. [ ]

Remark 5.3: In certain problems it may be advantageous, as
suggested by FLETCHER [1], to use instead of the penalisation term
r|Bv|2 a term of the form (RBv,Bv) where the matrix R 1is
symmetric, positive-definite, and "appropriately chosen". It is
clearly apparent that the introduction of R, however, will
complicate the study of convergence and of the choice of optimal

parameters for the algorithms of Sections 2,3, and 4. | |

Remark 5.4: The augmented Lagrangian methods introduced by
HESTENES [1] and POWELL [1] have given rise to a large number of
works, which it would be quite impossible to record individually.
We thus refer the reader to the titles given below and to the

corresponding bibliographies.

We find in ROCKAFELLAR [11, [2], [3]1, a study of augmented
Lagrangian methods, applied to the minimisation of convex and
non-convex functionals, with convex inequality constraints (possibly
nonlinear) . This study introduces the augmented Lagrangian method

within the framework of the theory of duality in convex analysis.

We find also in BERTSEKAS [1], [2] a study of the convergence of
algorithms closely related to those considered in Section 2, but
within a rather more general framework. In KORT-BERTSEKAS [1]
there are also to be found other penalisation procedures applied to
the construction of augmented Lagrangians of a type different from
those considered in this volume. Finally, the reader who desires
a general view of solution methods for constrained optimisation
problems, including augmented Lagrangian methods, can
profitably refer to GILL and MURRAY [1]. -

Remark 5.5: In FORTIN [1],[2], G.L.T. [1], [2] and in Chapter
II of the present volume there can be found studies and applications
of algorithms of the Uzawa and Arrow-Hurwicz types, to the solution
of problems which are much more complex than those considered in

this chapter. [ ]
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Remark 5.6: We shall round off Remark 5.1 by considering the
case where in (5.2) we no longer have <c ¢ ImB. We therefore

have K = ¢ in this case, and problem (5.1) becomes ill-posed

since it has no solution. Consider, however, the algorithm
(5.12) po e:mM chosen arbitrarily;

then for n 2z 0, with pn known, define W and pn+l by
(5.13) (A+rB'B)u” = b+rBtc - BY" ,

(5.14) an = pn + pn(Bun-c).

We can show that under the condition

(5.15) 0<onospnsoc1 <2r,
we have
(5.16) lim u® = u¥,

n—POO

*
where u is the solution of the problem,
uF ek* = {v|v eRN, Bt(Bv-c) = 0}
(5.17)
J(u*) < J(v) V’VEK*,

where we once again have J(v) = % (Av,v)-(b,v).

*
We know that K (# @) 1s the set of the solutions of the

normal equation

(5.18) BBz = Bfc.

*
We can likewise show that the convergence of W' to u is linear

(i.e. at least as rapid as that of a geometric sequence with ratio

less than 1 ). As regards the sequence {p"} it follows

n2 0’
from (5.14), and from the fact that ¢ ¢ ImB, that this diverges
like an arithmetic progression. This divergence is "much less

rapid" than the convergence of un, which means that in practice

there will be no risk of "overflow".

The convergence result stated above holds only for 1 strictly
positive; the use of a strictly augmented Lagrangian is therefore

necessary. This also shows the robustness of the methods described
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in this chapter, in the presence particularly of rounding errors.
In actual fact the condition ¢ ¢ ImB can no longer be satisfied
exactly because of these errors; nonetheless the above convergence
results show that the augmented Lagrangian method remains usable
and provides the best possible result (in the least squares

sense) in this "noisy" environment.



CHAPTER I1

APPLICATION TO THE STOKES AND NAVIER-STOKES EQUATIONS

M. Fortin, F. Thomasset

1. INTRODUCTION
1.1 Motivation

The objectives of this chapter are twofold. First, we shall
show that the qugmented LagrangiZan method can be applied directly to
the solution of certain problems in Hydrodynamics. Secondly, we
shall illustrate by numerical examples the results of Chapter I,
comparing the properties of the different algorithms on specific
examples. In particular we shall see, through concrete cases, the
importance of the choice of the parameters; on this topic we shall
give experimental results for an Arrow-Hurwicz type algorithm
(see Chapter I, Section 4.3). These experimental results will be
given in the case of the linearised Stokes equations; these equations
can be written as the optimality conditions of a quadratic program-

ming problem in the sense of Chapter I.

We shall then show that the algorithms used can be extended to the
case of the steady-state nonlinear Navier-Stokes equations.
Finally we shall indicate briefly how similar technigques can be

applied in the time-dependent case.

1.2 Statement of the problem

We consider an open domain § in IRZ or in ZRB, bounded, with
regular boundary [ (for example, Lipschitz continuous). The
coordinates in ZRN (N =2 or 3) will be denoted by x = {xl, x2}
or X = {xl, x2, x3}. We seek to determine in § the character-

istics of the flow of an <ncompressible viscous fluid.

Thus let

47
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a.1n u(x,t) = {u](x,t),uz(x,t),u3(x,t)}

denote the velocity of the flow and let p be the hydrostatic

pressure.

We shall now try to calculate solutions of the Navier-Stokes

equations which in standard nondimensional form are written:

du . 2
(1.2) e o@Dy £ in 8 (a=Y9,
(1.3) Veu = 0 in  Q,
(1.4) ulp =0,
(1.5) u(x,0) = u_(x) in Q

We consider here the (not very realistic, physically, but simpler
to handle) case where the boundary conditions are of homogeneous

Dirichlet type, and where the fluid is driven by a distributed

external force £ = {fPfZ’fB} . The transition to more real-

istic cases poses no problem with regard to the numerical treatment.

In the greater part of this chapter we shall concern ourselves with

the steady~state case (%%==Q) and we shall not therefore have

to specify an initial condition of the type (1.5).
The Reynolds number Re, the reciprocal of which appears in (1.2)

in front of the viscosity term Ay, plays, as we know,

role in determining the behaviour of the solutions.

in general, in the form

a critical

It is written,

(1.6) Re = —

where V 1is a reference velocity, d is a reference length and v

is the kinematic viscosity. The constants V and d are chosen

in such a way that, for example, the diameter of Q

mum velocity of the flow are of order unity.

and the maxi-

Let us say immedi-
ately that the methods which will be presented here are valid for

flows with small or intermediate values of Re, and that the calcu-
lation of solutions with large Reynolds numbers presents consider-
able difficulties which it would take too long to describe here

(see, for example, FORTIN [2], FORTIN~THOMASSET [1] for further
details).

In order to convey quite clearly the approach which will allow us
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to utilise here the results of Chapter I, we shall first consider
in detail the case of the steady-state linearised Stokes equations

which we write as follows:

(1.7) —uA3+~Vp=£ in  Q,
(1.8) Veou=0 Zn 9,
(1.9) ‘3|r= 0,

which can be deduced from (1.2)-(1.4) by neglecting the nonlinear

terms u-Wu and by taking =0. This approximation will be

H-gh?

valid if Re is very small, i.e., from (1.6), for a flow with low

velocity, or for a very viscous fluid.

1.3 Stokes problem and quadratic programming

We shall now show that equations(1.7)-(1.9) are the optimality
conditions of a quadratic programming problem, similar to those
studied in Chapter I. The essential point will be to consider the
zero-divergence condition (1.8) as a limear constraint on the
solution u, the pressure then appearing as a Lagrange multiplier.
The problems which we consider will be formulated in Hilbert spaces,

of infinite dimension, which we first define.

Suppose then that LZ(Q) is the space of square-summable func-

tions on {, equipped with the usual norm and inner product, i.e.

(1.10) Ivlo =(J [v|2dx)1/2 , (u,v) = Jnuv dx.
Q

We define, in standard fashion,

(1.1 B @ = lvert@ , &

c12(Q), i=1,...,5} ,
1

this Sobolev space being equipped with the norm,

N 2

) 1/2

(1.12) vl =clvls + I |%.|o) :
1

i=}

It can be shown (see, for example, LIONS-MAGENES [1]) that the trace
at the boundary, v]r, of a function v from Hl(Q) has a meaning

and we put
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(1.13) B @ = {v|ver' @ , v|, = 0} .

The space Hé(Q) will be equipped with the norm (which is

semi-norm on Hl(n))

N 2 172
Gaw s IRl
1= 1

The norms (1.12) and (1.14) are equivalent on Hé(Q), this

being a direct consequence of Poincare's inequality,

(1.15) vicc@ [, i=1,...,x,
1

for functions v which are zero at the boundary of Q,

open subset of :mN.

Suppose then that

(.16 V= {ylye @@, gy =0in Q).
For v ={v1,“.vN}€V, we write
N
2 2
aanlelly = F vl
i=1

a

(CHAP. 2)

only a

result

bounded

We now consider the functional, defined for fsa?<nﬁ“ and gs(HéGD)N

by
(1.18) I =% aww - J foy dx=% a(v,vy=(£,v)
v v,V Y v,vi=(f,v
where we have
N Bui avi
a1 ey = ) Jm ™, o
i,j=1 7Q°7; ]

Having defined the quadratic functional J(yv), we can seek a solution

of the problem
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J(u) £J(v) VveV,
(1.20)

EEV.

The existence of a uniqgue solution is an immediate consequence of

the Lax-Milgram theorem (see, for example, EKELAND-TEMAM [11],
LIONS [11). Problem (1.20) clearly consists of minimising a quad-
ratic functional under a linear constraint (ueV, i.e. Veu=0) ;
it is therefore natural to seek to impose this constraigtwby means
of a Lagrange multiplier, thereby transforming (1.20) into a saddle-
point problem. We thus define, for gs(H;GD)N and qeLZGD,

the Lagrangian
.20 2v,9) = IW-(g,V'Y) = 5 a@,v-(£,)-(q,7"v),

and we seek a pair {u,p} defining a saddle-point of £ on
(HLGD)NXLZGD, i.e. a solution of the problem

L(u,9) € 2(w,p) < L(v,p) Vye @ @Y, Ve’ @,
(1.22)
we @ @V, qel’@.

The existence of a saddle-point, (actually of the pressure p),
is a more subtle problem here than in the finite-dimensional case of
Chapter I. In the case of the Stokes equations, the result is in
fact a standard one (see TEMAM [1], EKELAND-TEMAM [1]) and it can
be deduced directly from the Hahn-Banach theorem, subject to cert-
ain regularity conditions on the boundary of & (see FORTIN [3],
TARTAR [11]).

We now give an interpretation of problem (1.22) in order to
verify that the pair {u, pl}, actually is a solution of problem
(1.7), (1.8). The optimality conditions for (1.22) are

respectively

N
(1.23)  ualuw-.7w = (£,v) vye @@
and

(1.26) (9w =0 Veell@.
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N
Condition (1.23) is true in particular for v =¢c(#(@) * and

we thus have, <n the distributional sense,
(1.25) - UAB + Vp = £ in  f.
Condition (1.24) is clearly equivalent to (1.8).

In view of the results of Chapter I, we are thus led, for the
solution of (1.22), to use in place of (1.21) the augmented
Lagrangian

H r 2
(1.26) 2,(v,q) = 7 a(v,V)=(£,v)-(g,9*¥) + 35 [V-v]]
For this problem in infinite dimensions, we could consider directly
algorithms similar to those of Chapter I. In particular, Uzawa's
algorithm converges in this case under the same conditions as in

Chapter I, Section 2.

It need hardly be said that, in practice, we first of all have
to try to find a discretised version of (1.26); this takes us to a
finite-dimensional problem which then falls exactly within the

framework of Chapter I.

Remark 1l.1l: The fact that we can prove the convergence of the
algorithm in infinite dimensions allows us to anticipate that the
convergence rate will to a certain extent be independent of the
discretisation employed. In particular, the fact of refining the
mesh in a finite-element (or finite difference) approximation of
the problem should not in itself bring about a drastic diminution
of the speed of convergence of the algorithm. A study of the
choice of the optimal parameters has been carried out (in the case
of r = 0) for the infinite-dimensional problem, by CROUZEIX [1].

2. DISCRETISATION OF THE STOKES PROBLEM

The use of the methods of Chapter I, for the solution of in-
compressible viscous fluid flow problems, falls naturally within the
framework of finite-element methods where the incompressibility
constraint is treated by penalisation. These methods have

recently enjoyed considerable popularity and the corresponding

2

B ={¢|¢ecwﬁﬂ, ¢ has compact support in 1}
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theoretical developments have enabled certain of these whose
operation is reliable and efficient to be picked out. It is diffi-
cult, within the inevitably restricted scope of this volume, to
quote even a small part of the works devoted to penalisation
methods, applied to the numerical treatment of the Navier-Stokes
equations; we shall therefore make do with referring to

BERCOVIER [1], ODEN [1], TAYLOR-ZIENKIEWICZ (1], MALKUS-HUGHES [1],

and to the bibliographies in these works.

In order to highlight clearly the usefulness of the augmented
Lagrangian method within the field of penalisation methods, it is
worth recalling here several results. This leads us firstly to
introduce a velocity-pressure mixed variational formulation dis-
cretising (1.23), (1.24), then to introduce a supplementary penal-
isation term (see GIRAULT-RAVIART [1] for various mixed formulations

of the Stokes and Navier-Stokes problems).

Suppose, then, that t% is a triangulation o§ @ ; we assoc-
iate with ¥ an approximation W of (H () generated by
conforming or nonconforming finite elements (for simplicity we
limit ourselves to the case N = 2); likewise, Qh will be an
approximation of LZ(Q). It is not necessary to impose matching
conditions for the elements of Qh. In the case of ngnconforming

u.

elements ge have in general, if w = hﬂh’uZh}ewh’ 5;%3 ¢ LZ(Q)
u,

(in fact Bxlh is a measure); we cannot therefore utilise directly

the bilinear form a(.,.) defined in (1.19), so we "approximate"

a(.,.) by a (.,.) defined by

2

2.1 g ly,v) =

J du, ov
i,j=1 ke® K

ih ih
ox, B dx  Vup,vp €W, s

we of course have
ap (upovp) = aly,vy) Vu,v eWn @' @),

We next define on W a linear operator div of discrete

h
divergence, wWith values in Qh, by

h’
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leh yhe Qh vahe Wh
(2.2)

(divhyh,qh) = Vev 9 dx the Qh A

A
KECL K
in the following discussion we shall use the notation
divp vy = VY-
We then put

(2.3) Vp = (e Wl Ty = 03,

and we approximate the Stokes problem (1.7)-(1.9) by the problem

Find eV, such that
(2.4) “n¢h

u ah(gh,gh) = (f,yy) VeV

problem (2.4) is equivalent to the minimisation problem

Find eV such that
(2.5) “h¢h

Tp (o) S () ¥y €y
where

- -
I ) = 3 ah(gh,yh) (£,9)-

Introducing the multiplier Py € Qh to impose the approximate

condition of zero divergence, namely yh.yh =0 , we get down

to the discrete mixed problem
Find {%Vph}ewhth such that

(2.6) U ah(gh,yh) - (ph,Yh°yh) = (fowy) ¥y e LA

2.7) Yoy = 0,

which is clearly a discrete analogue of (1.23), (1.24). This

problem is equivalent to finding a saddle-point of the Lagrangian

= U -~ oy, Y-
(2.8) 2 (veqy) = 5 e (vHv) ~ (qaY v =€,y s

and of course of the augmented Lagrangian

-y - . Iy ey |?-
(2.9 2 (8 = 5 3oy -GV v ¢ 5 17w 10 - ().
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Putting g, = 0, we obtain the penalisation problem

Minimise on Wh the functional
(2.10)

- r . 2 _
CORS ENCHSRS S N SRR

We observe that the penalty term contains the discrete diver-
gence Yh.yh and not the exact divergence Y'Yh' The reason
for this is simple: when r 1is Ilarge, the solution of (2.10)
approaches that of the mixed problem (2.6), (2.7) and —r(&fgh)
converges to p,i we can therefore only obtain a correct solution
of the penalised problem if the mixed problem is well posed. It
is well known that the approximations Wy and Qh cannot be chosen
independently; in order to obtain a convergent approximation, the
Babuska-Brezzi condition must be satisfied (see BREZZI [1],

BABUSKA [1], FORTIN [4], GIRAULT-RAVIART [1]) which is here written:

Cap> YY)

(2.11) 2k [[qyll

P 2
ghswh—{g} th”l L /R

where the constant k 1is independent of h.

We shall not dwell here on the meaning of this condition, but
solely on its consequences. One of these is that in general we
cannot define Qh by %,= y%whh even for conforming elements. It
therefore follows that, except in special cases for which we refer
to e.g. MERCIER [1] and GIRAULT-RAVIART [1], we cannot in the dis-
cretised problem make the divergence vanish completely, hence the
impossibility of penalising with |y'yh|§ H this fact rapidly
became apparent to users of penalisation methods, and one solution

which has been adopted has been to evaluate ]V-vh|§ = JIV-vhlz dx
M gy

by an inexact quadrature formula. This method of procedure has
become known under the name of reduced integration; but it must be
underlined (see HUGHES-MALKUS [1])that this procedure implicitly

defines an operator div. and a space Qh for which fQ ph%zdx

h
is in fact evaluated exactly, meqheqh, by the quadrature formula
used. In summary, the penalisation is indissociable from a mixed

(velocity-pressure) method, and must be considered as a solution
technique for this latter method, and not as an approximation

technique in itself. In this sense the use of augmented Lagrangian
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methods is qguite natural and the techniques of Chapter I provide
some advance on the more usual methods, since several iterations
actually enable the error due to the penalisation to be eliminated.
We do not therefore have to choose values of r as large as in a
pure penalisation method. This possibility allows an improvement
in the conditioning of the problems in Y,
useful if one is unable to use double precision, or if the problem

and this is particularly

in u, is to be solved by an iterative method.

Regarding the numerical experiments which we are about to dis-
cuss, let it be said immediately that our objective here is to
check the efficiency of the algorithms of Chapter I, rather than to
obtain precise solutions to a specific hydrodynamic problem. We
are therefore satisfied with quite a coarse approximation in
which, nonetheless, all the difficulties inherent in the problem

in guestion are still present.

We therefore use a (nonconforming) approximation of Hé(ﬂ), de-
fined on a triangulation of the open domain . This discrete
space Wh is made up of functions whose restriction to each tri-
angle is a polynomial of degree 1, and which are continuous at the
midpoints of the sides of the triangles. This is therefore a
space of nonconforming finite elements in the usual sense (see
CIARLET [1], CROUZEIX-RAVIART [1], STRANG-FIX [1]). We thus de-
fine

(2.12) V= {yy ={v vy v W , Vev, = 0

The discrete operator Vh represents discrete differentiation in
the sense of nonconforming elements, i.e. restricted to the in-

terior of each triangle.

In this case the discrete divergence is constant over

n¥h
each triangle and the zero-divergence condition is thus expressed
by a linear constraint associated with each of the triangles.
This being so it is natural to choose for the space Qh of the
discrete pressures, the space of functions which are constant on

each triangle of e; .

It is shown in CROUZEIX-RAVIART [1], that a pair {gh,ph},
this being a saddle-point of the ih’ defined in (2.8), is an
approximation to order h (h being the longest side belonging to
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the triangles in the triangulation) of the solution {u,p} of the
Stokes problem. Recall that p and p, are defined to within

an additive constant.

Reference may be made to THOMASSET [1] for a complete discussion

of the implementation of this approximation.

We have considered in our experiments a model problem, namely
the (two-dimensional) flow between two non-concentric cylinders,
the inner cylinder being fixed and the outer cylinder rotating with
a uniform angular velocity w. In detail, we have taken for Q

the region of IRZ whose boundaries are

Cl: circle of radius 5 and centre (0,0),
(2.13)

C cirele of radius 2 and centre (1,0).

3¢
The discretisation employed used 126 triangles, the number of in~
terior midpoints being 172. For each midpoint we have to deter-
mine the components u and u2 of the flow velocity, and for

1
each triangle the value of the pressure.

Our discrete problem is therefore a quadratic programming prob-
lem with 344 variables, related by 126 linear constraints (of
which 125 are linearly independent). Looking back at the not-
ation of Chapter I, the matrices A, B and Bt correspond (save
possibly for a sign) respectively to the Laplacian, to the diver-

gence and to the discrete gradient.

To illustrate the concepts, we have displayed on Figure 2.1 the
domain and the triangulation used, and on Figure 2.2 the stream-

lines of the solution u, obtained.

3. ALGORITHMS AND DISCUSSION OF RESULTS

3.1 Explicit formulation of the algorithms

We shall now, for the case of the Stokes problem, give an ex-
plicit description of the algorithms of Chapter I; we will then
be in a position, by inspecting the numerical results obtained, to
compare their efficiency and their ease of implementation. We

have of course used in our experiments the augmented Lagrangian
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-k - - . Iy ey |2
B0 2 (v,ay) = 5 e (v v )=y (e, Yy + 5 [Tl

The simplest algorithm for the solution of our problem is

Uzawa's algorithm of Chapter I, Section 2, which we write here as:

(3.2)

with p; known, calculate a solution uﬁ of

pg specified arbitrarily;

n n n =
Woay (v )~ (£,9 3= (o Yy ey e (U ey Y v ) = 00 Wy e W,

(3.3)

n

By € Wy
then p2+l by

ntl _ 0 _ ..n
(3.4) P, =Py TPV tyy

We have also used the variable steplength methods of Chapter I,
Section 3 and the conjugate-gradient method. We shall now briefly
review the operation of these algorithms by going through them in
the particular case of the Lagrangian (3.1). We present within a
single algorithm the variable-step gradient methods and the
conjugate-gradient method which differ only through the choice of

the descent direction. Thus suppose we have

(3.5) pﬁ specified arbitrarily;

and ug 18 satisfying

uah(9§,yh)+r(yh-gﬁ,yh-yh)—(pg,yh-yh)—(g,yh) =0 Wy W,
(3.6)

Bﬁswh.
On Zteration n, calculate the descent direction by

n
(3.1 vy = Gew

in the methods of steepest descent and of minimum residual.

In the conjugate-gradient method, we proceed as follows:

[}
<1

(3.8)  w =YVew if 00,

(3.9 ¥n Yh.-‘llﬁ * Aa¥n- if nzl,
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|7, eu?|?
(3.10) A o= ;L.E&LE_ .
n lv .n-wz
h"%h [¢)

Knowing now the direction W solve in Wh the problem

n n =
G Wy (2w ATz Uy v )= GT vy = 0 ¥y e B

Next calculate

2
AR
~h ~h'0
(3.12) p_ = - ___JljiL___
n @, ou 9 o20)
Sh'Mhth Zh
ntl _ n _
(3.13) Py =Py T eV

(3.14) gﬁ” =u rezp -

In the minimum restdual method, replace (3.12) by

n n
3.12') p =_M
: n 7, « 2 2

~h ~h'o

We may recollect that the purpose of introducing the intermediate

vector zﬁ is so that only a single linear system needs to be

N n+l

no

This method of procedure slightly increases the memory requirements,

solved at each iteration for the calculation of gg,pn,p

but this increase would only become a limiting factor for very

large systems and hardly ever poses a problem with modern computers.

Finally we have considered the algorithms of Chapter I, Section 4.
In a general way these can be written, in the case of the Stokes

problem, in the form

<srh(g§+‘—g§>,yh)+mn{uah<g§,gh)+r(yh-gﬁ,yh-yh>-(pn,yh-gh> -
(3.15)

-yt =0 Wy e, ulew
n+l n
G.16)  pp = ey T ATy
The auxiliary operator S must be positive definite. We have of

rh
course considered the canonical choice (Sr = Ar) of Chapter I,

Section 4.2, in which case (3.15) can be written in the form
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n+1/2 Lotl/2 o L g _
uay (o .yh)+r(Yh uw V) (ph,Yh ) £,9) =0 ¥y eW ,
3.17)
e Wy s
n+tl _ n n+l/2_n
(3.18) Shoo TSty YY)
which is very similar to (3.3). The use of this algorithm thus

requires the soclution of a linear system at each iteration.

We have, however, also used another choice of S in which this

'
matrix is not given explicitly. The idea consistghof solving

(3.3) by a symmetric successive overrelaxation method (SSOR),
carrying out, at each iteration of the Uzawa algorithm, only one
double pass (forward and back) in the overrelaxation method. It
can easily be shown that this procedure is equivalent to (3.15)

for an auxiliary operator Srh which can be constructed explicitly
if necessary (see AXELSSON [1]1, [21]). Any other iterative method
could similarly be used for the solution of (3.3) and an expression
of the form (3.15) could be obtained (implicitly) by taking just a
single iteration at each stage of the Uzawa method. The auxiliary
operator thus introduced is not in general symmetric; this is the
case, in particular, for the usual overrelaxation method (SOR).

It would be possible to envisage a complete family of intermediate
algorithms by carrying out at each step a fixed number of iterations
for the solution of (3.3). However, as we shall see from the
experimental results, the optimal number of iterations seems to be
one (or at any rate small). Another procedure might be to solve
(3.3) with an accuracy which is low in the initial steps and

which becomes higher and higher as we approach the solution. Supp-
lementary details and proofs of convergence for such techniques can
be found in BERTSEKAS [2] and KORT-BERTSEKAS [1]. We have ret-
ained the limitation on the number of iterations because of its
simplicity of implementation and frem the fact that it leads to

algorithms of the Arrow-Hurwicz type studied in Chapter I, Section
4.3.

3.2 Results and Discussion

3.2.1 Fixed-step UZAWA Algorithms

The implementation of this type of algorithm is very simple, and
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the essential difficulty as regards algorithm (3.2)-(3.4) is to
determine the optimal parameter. To illustrate the importance of
this choice, Figure 3.1 shows, as a function of p, the accuracy
obtained in respect of the constraint yh'gh =0, after n
iterations. We actually show the logarithm (to base 10) of the
maximum, over the triangles, of the absolute value of the discrete
divergence (which is here constant over each triangle). The

value of r wused here is equal to 6, though similar curves would
be obtained for any other value of r. As we might expect from
the results of Chapter I, a very "sharp" optimal value is obtained.
The a priori determination of this optimal value requires know-
ledge of the smallest and largest eigenvalues of A;lBtB. It
would be possible to determine these values by the power method.

We have actually estimated these values by carrying out, with

r = 0, one pass of the algorithm for a small value of o (hence
smaller than the optimal p), then for a value very close to the
limit value. Then knowing the relation linking AM and Am to
the convergence rate and having been able to obtain an estimate of
the latter, we can thus calculate the desired eigenvalues. In our

case these values are

(3.19) Ay =2, A = .07425
m

The value AM = 2 coincides with a theoretical bound, which can be
obtained through an energy inequality (!thmlg < ZHVth)

in the discrete spaces used.

We have thus been able to confirm experimentally the agreement
between the observed optimal p values and the theoretical values
given by formula (2.48) of Chapter I. Figure 3.2 presents the
results of this comparison; this shows a perfect agreement between
the predicted value and the experiment. In practice it is often
possible, as is the case here, to obtain an a priori estimate
for the largest eigenvalue. In contrast the determination of Am
is costly and, in fact, if one employs a technique analogous to
that which we have used, requires the solution of the Stokes pro-
blem. This calculation only becomes profitable if calculations
with the same discretisation (and therefore with the same matrices)

have to be carried out many times. An approximate rule might be:

For r large take o slightly larger than r.



66 STOKES & NAVIER-STOKES EQUATIONS (CHAP. 2)

We note that from (3.19), the condition number of the dual problem
is here of the order of 27. We thus have here a relatively well
conditioned problem. We have seen furthermore, in Chapter I, that
the conditioning improves as r 1increases, an improvement which
ought normally to show itself through an acceleration of the conver-
gence of the algorithm. In Table 3.1 we show the number of iter-
ations of algorithm (3.2)~(3.4) which were necessary (with the
optimal p) to obtain IYh'EEISIO—S on every triangle. This
positively establishes that the situation improves rapidly as «r

increases.

r 1 2 3 5 10 30
n | 42 28 22 19 10 6
Table 3.1

Consequently, if (3.3) is solved by a direct method, AL being for
example factorised once and for all, it seems clear that the optimal
strategy consists of taking r as large as possible, as long as we
maintain good accuracy in the factorisation. For a problem of the
size of our model problem, values of r of the order of lO4 still
appear quite reasonable if the calculations are performed in double
precision. The number of iterations is then of the order of 2 orx
3, depending on the accuracy desired. For further examples,
reference may be made to the article by SEGAL [1]. For larger
problems, in particular in three dimensions, it is probable that for

large r the ill-conditioning of Ar would be a greater constraint.

3.2.2 Effect of the incomplete solution of (3.3)

We have specifically considered the case where problem (3.3) is
solved by an Zterative method, in this case in the shape of an
overrelaxation method. Since it seems pointless, a priori, to
carry out the solution fully and completely in the initial stages,
it is natural to limit the number of overrelaxation iterations to a
value which may be quite small. In our model problem, the deter-
mination of EE in the initial steps required approximately 50

iterations. Figure 3.3 shows the number of iterations of
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(3.2)-(3.4) which were required to obtain |yh-5§[s10_7 on every
triangle, as a function of the number m of overrelaxation
iterations allowed for the solution of (3.3). It shows that for
m > 10 the method undergoes practically no further change, the
poor solution of (3.3) in the initial steps having very little
effect on the overall process. For m < 10, however, the

convergence of the algorithm is considerably retarded.

Figure 3.4 shows the variation of the (experimental) optimal
value of p as a function of m. This demonstrates that p ought
to diminish if m is small (in our case if m < 1l0). On the other
hand, we obtain a very different picture if we try to visualize the
effect of m on the total number of iterations necessary for
convergence. To illustrate this fact, Figure 3.5 shows as a
function of m the cumulative number of overrelaxation iterations
necessary to achieve convergence, this number being to a first
approximation proportional to the computation time. This figure
shows that this cumulative number decreases almost linearly with m.
In the case where (3.3) is solved by an iterative method, it thus
seems that a good strategy is to carry out only one or two passes at
each stage. This observation may be important in the cases where
the sub-problems are no longer quadratic. The problems of the
choice of r and of p are in this case open questions and may be
compared with the problem of the choice of parameters in the
Arrow-Hurwicz algorithm. In particular, there certainly exists an
optimal value for r, because for r large the condition number of
Ar increases prohibitively, causing a deterioration in the conver-

gence of the internal iterative method.

3.2.3 Vartable steplength and conjugate-gradient methods

These methods have proved to be extremely efficient for our model
problem; this is particularly true of the conjugate-gradient method,
the implementation of which is no more difficult than that of the
methods of steepest descent or of minimum residual. The principal
advantage of this type of technique lies of course in its ability
to be used as a "black box" with no need for user-intervention for
the choice of parameters, and without this choice being linked to the

solution of a spectral problem.
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To illustrate the ideas and to make clearer the comparison bet-
ween the various methods, we present in Figure 3.6 the decrease of
the maximum value of |Yh'5§| over the triangles as a function of
the number of iterations. Since the scale is logarithmic, the

slope corresponds to the convergence rate of a first-order method.

As might be expected, the conjugate-gradient method, which is of
second order, appears as the most efficient technique. It requires,
however, the exact solution of problem (3.11), and this makes it
particularly attractive in cases where the solution is accomplished

by a direct method.

As regards the other algorithms, the convergence of the variable-
steplength gradient methods is better than that of the method with
p fixed, for the optimal choice of the parameter. This is ex-
plained by the fact that in our tests the I values settle down to
a limit cycle between two parameters situated either side of the
optimal op. In the limit we thus have a cyclic variation of P
a strategy which has already been suggested in CROUZEIX (1], the
cycle being determined automatically by the algorithm. As might
have been anticipated, the steepest descent method is superior to
the minimum residual method, the latter being more sensitive to the

condition number.

3.2.4 Algorithm with relaxation parameter

Figure 3.6 shows also the convergence of the algorithm (3.15)-
(3.18), which was deduced from Uzawa's algorithm through the intro-
duction of a relaxation parameter. The optimal parameters have
been estimated using formulas (4.22), (4.23)of Chapter‘I. This
figure shows that the introduction of the parameter « accelerates
the convergence appreciably, and this is for a dual problem which is
quite well conditioned. The acceleration effect should be felt
still more when the conditioning is worse. In our model problem,
this method is comparable to the variable-steplength gradient
algorithms. We have already noted in Chapter I that in the case of
variable parameters, this method encompasses the conjugate-gradient
method. Consequently, since the determination of the optimal
parameters requires the solution of a spectral problem, this

algorithm offers little attraction in the case of our model problem.
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Its attraction would be more obvious in the case of the nonlinear

Navier-Stokes equations.

3.2.5 Algorithms of Arrow-Hurwicsz type

As we have already mentioned in Section 3.1, if we carry out the
solution of (3.3) by a symmetric overrelaxation (SSOR) method, we
are actually using an algorithm of the type (3.15)-(3.16). This
algorithm has the advantage, compared with the preceding ones, of not
requiring the solution of a linear system at each iteration, the
calculation being entirely explicit, and consequently rapid. The
essential problem here of course is to determine the optimal para-
meters w* and p*, which minimise the number of iterations requi-
red to reach a specified level of accuracy. Since we are not in a
position to give a theoretical analysis of this question, we instead
present here some experimental results, which, we hope, will allow
the reader to obtain an intuitive view of the behaviour of the algo-

rithm.

First we recall the results of Chapter I, Section 4.3, where we
pointed out the analogy between this algorithm and a wave equation
with damping present. In this analogy w has the appearance of
a damping coefficient and pw of the square of a propagation speed.
Intuitively we can therefore expect, for a specified value of p, an
under-damping phenomenon for the small values of w, and an over-
damping beyond some critical value which will be a function
(presently unknown) of the eigenvalues of the various operators

which occur in the algorithm.

Such a phenomenon can in fact be verified; for r = 0 the

critical value appears to be w = 1. This threshold seems to in-
crease for larger values of r. For r = 6, for example, a tran-
sitory phase of under-damping was observed for « = 1l.1.

Unfortunately it is not possible to estimate the optimal value of
w by making use of the critical damping value. In actual fact
this value may well be different for each of the "components" of

the solution.
The main experimental findings are as follows:

- The optimal speed of convergence is almost the same for r = 0 and

r = 1 and subsequently diminishes rapidly as r 1increases because
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of the ill-conditioning of Ar'

- For a given value of w, the optimal value of p obeys (to a

first approximation) the law

Popt = 2r+l.

This estimate slightly underestimates the experimental value, but
the speed of convergence is not very sensitive to such an

underestimate .

- The choice of « 1is more difficult. It is necessary to "under-
relax" for r large. To indicate the trends, Table 3.2

summarises a few experimental values.

r 0 1 2 6

o 1.03 3.3 5.4 13.6

opt

w 1.06 1.2 1.1 El

opt

n 94 94 120 200
Table 3.2

In summary, the benefit of the augmented Lagrangian is by no
means apparent for such an algorithm: the optimal value of r is,
if not precisely 0, at least in the neighbourhood of 0. By
contrast, the computational effort is competitive with the preceding
methods in which every iteration requires the solution of a linear
system. The problem of the optimal choice of the parameters, or of
an automatic choice similar to that made in the method of steepest
descent, merits further study in spite of the difficulty of the
question.

3.2.6 Conclusions

The methods based on the use of the augmented Lagrangian are
apparently very efficient for solving quadratic problems with linear
constraints, and it is clear that this efficiency carries across to
a more general setting. Of all the algorithms tested, the most
attractive are those in which the parameters are chosen auto-

matically; this applies particularly for the conjugate-gradient
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algorithm in association with a direct method for the solution of

the linear sub-problems.

The methods of Arrow-Hurwicz type deserve a more thorough study
as regards the choice of parameters. They could prove to be excel-
lent for cases in which the sub-problems are nonlinear. We thus
have here an open problem, difficult most certainly, but of great

practical interest.

Regarding, more especially, the Stokes problem, the results ob-
tained show that the augmented Lagrangian approach allows us to
reduce the problem to solving several problems of linear-elasticity
type (3 or 4 for r sufficiently large), which can themselves be
solved using a factorisation carried out once and for all. We
believe that this method of procedure may prove to be less costly
than currently-used methods which consist of directly solving by
factorisation the global linear system in {u,p}. In this case
the systems being dealt with are actually la;ger in size, as well as
being singular, and their bandwidth is considerably larger. We can
therefore expect that for large problems the augmented Lagrangian
method will be faster and less sensitive to rounding errors. In
conclusion, we remark that the method has also been used for
problems which are analogous to the Stokes problem but which arise
from the field of soil mechanics, by M. SOULIE [1].

4. NAVIER-STOKES EQUATIONS, STEADY-STATE NONLINEAR CASE

4.1 Statement of the problem

We now consider the case of the nonlinear Navier-Stokes
equations; these describe numerous problems of great practical im-
portance. Just as in the preceding sections, we consider for simp-
licity the case of a flow with homogeneous boundary conditions in a
domain § of :mz (or of 2R3), bounded and with regular boundary.
With the notation used earlier for the velocity vector, the pressure

and the external forces, the problem to be solved is now

4.1) - VAu+(ueV)u+ Vp = £ in 2,

(4.2) Yeu =0 in

(4.3) u|P =0.
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These eguations are nonlinear and their solution does not correspond
to searching for the minimum of a functional. We can however write
them in the form of a variational equation in the following manner.

Again putting, as in Section 2,

3ui Bvi
(Z*-A) a(u,v) = Z.'[T;gx—dx,
AR % R Ve
and
v,
(4.5) bu,v,w) = } J uy gzl»w.dx ,
~~~i,ida i

it can be shown (see LIONS [2], TEMAM [1]) that problem (4.1)-(4.3)
is equivalent to seeking u e V (see (1.16) for the definition of V)

satisfying
(4.6) va(u,v) + blu,u,v) = (£,¥) VYyeV.

Eguation (4.6) is deduced from (4.1) by multiplying by a function
with zero divergence and then integrating by parts. The pressure

term vanishes because we have
{ Upey dx = - j p Vev dx = 0
Q Q

if v has zero divergence and is zero at the boundary.

Conversely, if u 1is a solution of (4.6) it can be shown that there

exists p ¢ LZ(Q) such that we have

4.7 va(u,v) + b(e,u,y) - (p,7ew) = (£,v)  Vve E (@)

Thus taking ve (ﬁ(QDN, we again obtain (4.1) in the distribu-
tional sense.
Note that (4.7) and

(4.8) (@.9°0) = 0 vqell(@

are the analogue of the optimality conditions for the Lagrangian
(1.21) in the Stokes problem. We can therefore consider (4.7),
(4.8) as a "variational Lagrange problem" and we say that a pair
{g,p} satisfying these conditions constitutes an equilibrium point
for this problem. We shall now attempt to extend to this new type

of case the algorithms used in the preceding sections for the
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solution of the Stokes problem.

The underlying idea is closely related to the techniques used in
the proofs of existence of a solution, which are based on the search

for a fixed point for the mapping T from V into V defined by
¥YveV , us=T(v) s a solution in V of
(4.9) { - -

va(,w) + bly,u,w) = (£,w) VyeV,

or alternatively

(4.10) - VAE "'(X'Y)E +Yp =f in Q

(4.11) Veu = 0 in

(4.12) E]r = 0.

Problem (4.9) is a linear, nonsymmetric variational problem. We

denote by A(v) the linear operator from V into V' (V': dual of
V) defined by

(4.13) <A(v)u,w> = va(u,w) + b(v,g,y) Vv e v,

where <.,.> denotes the bilinear form of the duality between V'
and V. It can easily be shown (see LIONS [2]) that the trilinear
form b 1is anti-symmetric for the last two variables if ueV,i.e.
if u has zero divergence and is zero at the boundary. Thus if
VeV, we have b(Y,E,g) = 0. Then, putting wo=u in (4.13),

we thus have

4.14) @z ).

The operator A(v) is therefore V-e¢lliptic (see LIONS [2]1) and the

Lax-Milgram Theorem allows us to infer the existence of a unique

sclution of problem (4.9). This result implies that the operator T
is well defined. We further deduce from (4.9) the a priori upper
bound
£l g
v
sy ety = T < .

The operator T thus maps a closed ball (hence a weakly compact

set) of V into itself.

Using the compactness of the injection of Hé(Q) into L4(Q), it
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can be proved that the operator T is continuous for the weak
topology of V 3. Schauder's Fized-Point Theorem can thus be
applied. Furthermore it is clear that any fixed point of T 1is a

solution of the Navier-Stokes equations.

Uniqueness can be proved for v "large" or f "small" (see
LIONS [21]). Knowing that the existence of a solution can be ded-
uced from a fixed-point theorem, it is natural to try to solve the
problem by trying to find this fixed point numerically, by means of

an iterative method.

4.2 Basic Algorithm

In the light of what has gone before, we thus consider the following

algorithm:

(4.16) u® spectfied arbitrarily;

then for n 2 0, with u? known, calculate un+%, pn+l satisfying
(4.17) - \)Aun+1/2+(un-v)un+1/2 + Vpn+l =f in Q

was v oo in Q,

was W -g,

and then un+l by

(4.20) W™= w24 eyt

Actually, the case w = 1 defines un+l by

G2y 0™ e .

The general case can thus be written

w.22) W™ = w T ¢ (o

The choice of w # 1 is clearly designed to accelerate the conver-
gence, if possible. It is shown in CROUZEIX [1] that this alg-
orithm converges whenever the solution is unique. In cases of
non-uniqueness we may hope to converge to the stable solution

« " le]
nearest to u’,

® hence compact
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From the Lax-mMilgram Theorem and (4.14), the sol-

exists whatever the values of v

w©  is

Remark 4.1:
ation u™% of (4.17)-(4.19)
and Enj By contrast, the convergence is only assured if
sufficiently near to a solution u that the spectral radiusN
is the Frechet derivative of T at u )

o(T'(u)), (where T'(u) u
The investigation of these "stable"

is strictly less than 1.
solutions is a difficult problem which again is largely left open.

In practice, the user must be satisfied with proving convergence
| ]

experimentally.

The implementation of algorithm (4.16)-(4.20) reg-

(4.17)-(4.19) to be solved. This problem is in
the operator

Femark 4.2:

uires problem
every respect analogous to the Stokes problem,
n (—vA+un'Y) being linear and V-elliptic (see (4.14))

A(u’) =
though nonsynmetric. We have already mentioned in Chapter I,

that the convergence of the UZAWA algorithm can in this

Section 5,
Section 2.1.

case be proved by the energy methods of Chapter I,
In order to state this algorithm in explicit fashion we put®

(4.23) Ar(un) = - VA + ulrv - rv{(

).

<

The algorithm is then written

(4.24) pn+l’O specified arbitrarily;
n+l,s

then for s 2 0 , with p

+% . X
known, compute WIS satisfyin
14 ying

n+l/2,s

a_(sMu R T
(4.25)
n+1/2,s _
u lp =0
and
(4.26) pn+1,s+1 _ pn+1,s _ Dy.l~ln+l/2,s

It can be shown that the condition for convergence is in this case®

“ V(Vev) = grad (div v).
® For certain approximations this condition would become

0<p<2&+§L
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(4.27) 0<p<2(r+V)

We thus see that the advantage of the penalty term will become

greater as Vv gets smaller. We shall return to this remark in
Section 5. .

Remark 4.3: It can immediately be deduced from (4.17)-(4.19)
that pn+l is a solution of a nonsymmetric "dual problem” which
does not in general correspond to the minimisation of a functional

and which can be written
(4.28) Ve wHBM) - Ve @ho,
an expression which is clearly analogous to that obtained for the

Stokes problem. Likewise we see from (4.25), (4.26) that

+ .
pn 1,5+l can be written

(4.29) Pt L pmrhs L prme T T ) ] D)
The convergence of the algorithm depends on the spectrum of the
operator (from L2(Q) > LZ(Q))
-1
(4.30) g+ q+ gye(a_ WMy,

We refer the reader to CROUZEIX [1] for a study of this spectrum
which is necessarily somewhat complex. Even in the finite-

dimensional case, a spectral analysis of the convergence is

scarcely possible in view of the non-symmetry of the operator. ™
Remark 4.4: It is again possible to apply here certain of the
variable-step methods of Chapter I, Section 3. As a result of the

non-symmetry of the problem, the method of steepest descent loses its
meaning and this leads us to favour using the method of minimum
residuals, i.e. to determine py SO as to minimise [Yo3n+“5+]|§
this procedure remaining perfectly justifiable here. Following

the notation already introduced and following also Section 3 of

’

this chapter, the algorithm can be written
+ A . ,

(4.31) p° 1.0 speeified arbitrarily;

caleulate the solution Pn+%,o of

(4.32) Ar(fn)9n+l/2,o . vpn+1,o - £,

On iteration s, define the descent direction- W, by
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(4.33) v, = gegtt1/ 28,

Then solve the problem

(4.34) Az + W =0

s ’

and calculate I by

v un+l/2,s Vep )
(4.35) P == ~ = 2~ S R
9z |
Zgly
L
then 13n+2,s+l and pn+1,s+1 by
ntl,s+1 _ n+l,s
(4.36) P =p -P_w_,
s 5
4.37) En+1/2,s+l _ yn+l/2,s . ps z, -

The advantage of such an algorithm is of course that the choice of
the parameter p, always a rather difficult matter, is carried out

in an automatic manner. L]

Remark 4.5: In the light of the numerical results of Section 3,
it would seem effective to employ here a conjugate-gradient method,
even though at first sight this may appear difficult in view of the
non-symmetry of the problem. Following PAIGE [1] and GOLUB [1]
it is, however, possible to construct algorithms of conjugate-
gradient type for a non-symmetric problem, by using a least-squares
formulation. The algorithms thus constructed require at each
iteration the solution of two linear systems (instead of only one
in the symmetric case of the Stokes problem). The complexity of
the calculation is therefore doubled. An investigation of the
application to (4.17)-(4.19) of PAIGE's algorithm, or of a variant
better adapted to the particular case we are presently considering,
thus appears to be a direction of research which ought to be ex-

plored. As a particular reference, we may cite WIDLUND .1]. n

Algorithm (4.16)-(4.20), combined with (4.31)-(4.37), thus
appears as a method which is simple and completely automatic for
calculations involving the Navier~Stokes equations. Unfortunately,
convergence is not assured and the choice of the parameter w 1is an
open problem. The use of the "augmented" operator Ar(En) in

place of A(u") is aimed at accelerating the convergence of
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(4.31)-(4.37) at high Reynolds numbers, i.e. when v is small.
Nevertheless the global convergence of (4.16)-(4.20) is unchanged
by this procedure and is certainly slower for v small. One
possible strategy is clearly to calculate a sequence of solutions
at increasing Reynolds numbers, each time initialising (4.16)-
(4.20) with the last solution obtained. In practice, this app-
roach does appear to give good results in the majority of
problems. To conclude this section, and before we enter upon the
study of variants of the above algorithm, we should point out that
certain authors, (OLSON (1], ROACHE [1]) suggest the use of the
Newton-Raphson method, for solving the nonlinear Navier-Stokes

problem. This algorithm is written
(4.38) Bo spectfied arbitrarily, y'yo =0:
then for n > 0, put

(4.39) Tt a”

n .
where du,pn are solutions of

(4.40) - vasu+(u V) sut+(sut V) U 4+ vp™ = £ 4+ vau"- (WP )W,
(4.41) v-6u” =0,
(4.42) 53“1F =0.

Problem (4.40)-(4.42) is very similar to (4.17)-(4.19) and we can
adapt to this case the algorithm of Remark 4.4. It is natural to
expect that Newton's method, if used, will converge more rapidly
than the fixed-point algorithm. However, the operator appearing
in (4.40) is not a priori V-elliptic and there is nothing to allow
us to assert the existence of a solution 69“. The use of
Newton's method thus appears more questionable than that of
(4.16)-(4.20) and in certain cases we may expect to encounter

numerical difficulties in the solution of (4.40)-(4.42). n

Remark 4.6: The basic algorithm described in the preceding
section requires the solution of a nonsymmetric linear system
in which the matrix varies from one iteration to another. This
latter consideration makes the use of such an algorithm relatively
expensive; it therefore seems attractive to look for a method in
which the linear part will have a fixed matrix and will thus be

solvable in an efficient manner. The methods described in the
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preceding sections allow us to obtain, very efficiently, solutions
of Stokes problems and more generally of problems of the type

given below (with o =z 0)

(4.43) ou - vAu + Vp = £ <n Q ,
(4.44) Veu = 0 2n @,
(4.45) Elr =03

it is therefore natural to look for iterative methods which exploit
these possibilities to the maximum. Algorithms of this kind are
described in GLOWINSKI-MANTEL-PERIAUX [1] and GLOWINSKI [2, Chapter
71; in the above references the solution of the Navier-Stokes pro-
blem is reduced to that of a sequence of problems of the type
(4.43)-(4.45) (therefore soluble by the methods of the preceding
sections) and of problems of nonlinear Dirichlet type which are
solved by least-squares preconditioned conjugate-gradient methods.
In particular it should be mentioned that the alternating direction
methods allow the decoupling, in a simple and efficient manner, of
the numerical difficulties associated with the incompressibility,
and those associated with the nonlinearity; we direct the reader to

the two references given above for further details concerning these

methods.
5. VARIANTS AND APPROXIMATIONS OF THE BASIC ALGORITHM OF
SECTION 4

The algorithm proposed in Section 4.2 requires, within any one
overall fixed-point iteration, the soclution of nonsymmetric linear
sub~problems by methods analogous to those used in the case of the
Stokes problem. A natural idea at this point would be to carry
out initially only an incomplete solution of the sub-problems; we
have already seen in Section 3 that this method of procedure may in
certain cases be advantageous and may accelerate the overall process.
To implement this incomplete solution we can proceed in two ways,
either by employing a termination test which becomes progressively
more stringent as the algorithm proceeds, or by fixing an upper

bound to the number of internal iterations.

We shall be adopting this latter method here, and we shall be

discussing, within a context where we restrict ourselves to a
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single iteration, algorithms which may be viewed as nonlinear
variants of the algorithm of Chapter I. We shall content ourselves
with the simplest cases, which will nonetheless illustrate the

fundamental approach.

5.1 Variants of UZAWA type

In accordance with the general principle stated above, we here
consider algorithm (4.16)-(4.20) in which at each step we carry out
only a single iteration of (4.24)-(4.26) for the solution of
(4.17)-(4.19). In this case the various stages can be condensed

into a simplified algorithm, as follows:

(5.1) w®  and po chosen arbitrarily;

. n ~ n . n+%
with u and p known, caleulate a solution 1 of
(5.2) Ar(un)un+l/2+Vpn -f,

(5.3) Sn-%-]/zlr - 9’
. L
then knowing un+2, calculate un+l and pn+l by
(5.4) un+] =W un'H/2 + (]—m)gn ,
(5.5) pn+] - pn _ pn V'un+1

This algorithm can immediately be seen as the adaptation to our
nonlinear problem of the algorithm of Chapter I, Section 4, in
which we had introduced a relaxation parameter into the Uzawa
algorithm. Note here, however, that even for w = 1 an initial
value Bo of the velocity has to be specified; this corresponds
to the fact that this algorithm is an approximation of the fixed-

point algorithm of Section 4.2.

The choice of P, can be made using the method of minimum
residuals described in Remark 4.4. One could also consider using
a carefully-chosen fixed value of o. We should emphasise that

the choice of parameters here is a very tricky open problem.

Remark 5.1: The existence of a solution of problem (5.2) is
assured if the operator Ar(un) is V-elliptic (see (4.14)). We
have already shown that such will be the case if " has zero

divergence. This result arises from the fact that the trilinear
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form b(u,v,w) defined in (4.5) is anti-symmetric with respect to
i

v and w £ Veu = 0. Unfortunately this condition is not satis-

fied by u”. To circumvent this difficulty, we can use (see
TEMAM [1]) the anti-symmetrised form
N

(5.6) g(u,v,w) = b(u,v,w) + % Z [ (Veu) v.w, dx.
g 02 g~~~ ~isd

i=]
We observe that we clearly have in this case

(5.7) b(e,v,v) = 0 Ve, vy e (B @)Y

Furthermore the supplementary term does not perturb the equations

because it vanishes in the limit when Ye¢ = 0 . The existence of
b ~
un+2 will therefore be assured if we replace Ar(un) by Ar(gn) where
58 AWy Ve by 8

We shall not attempt here to prove the convergence of these
algorithms. The available proofs (see for example CROUZEIX [1])are
modelled on the proof of the linear case and all culminate in
imposing upon the viscosity parameter a condition (v "sufficiently
large") which would appear, in the light of the experimental results,
to be much too restrictive and which for all practical purposes
limits us to cases where the linear Stokes approximation itself
would be adequate. We thus have here an unresolved technical diff-
iculty, associated with our inability to obtain an appropriate
upper bound for the nonlinear term. This problem can also be re-
lated to that of the non-uniqueness of the solutions. However,

from TEMAM [1] we can obtain a result concerning weak convergence

M
in the mean, i.e. L z ot converges weakly to a solution when

M
M > + o, Thus, lackigg]a proof, we shall have to make do with a
heuristic discussion. We first advocate the principle that any
convergence can only come about from a dissipative term, this
principle being justifiable both from the mathematical point of
view and from the physical point of view. In the case r = 0, the
only dissipative term in algorithm (5.1)-(5.5) is the term - vAun+1/2
which corresponds in (4.1) to the term - vAu . The nonlineag‘term
itself is conservative and would be totally Encapable of producing

any convergence whatsoever towards a steady state.

Now, in the physical applications of most interest the viscosity
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parameter is very small, which means that the dissipation contained
in our algorithm is very weak. For v small (or for a large
Reynolds number, in the terminology of fluid mechanics) we may
therefore expect the convergence to be slow. We thus see the
advantage of the penalty term of Hestenes, which for r # 0 intro-
duces a supplementary dissipation into the algorithm. This supp-
lementary dissipation, which does not change the solution, forces
the convergence of the pressure term and adds to the natural dissi-
pation which, however, is alone in being able to ensure the
convergence of Bn' The advantage of the method of Hestenes,
which we propose here, ought therefore to become much more apparent
for small values of the viscosity. It must however be noted that
in this case other problems arise, such as the appearance of
boundary layers and possibly turbulence; such problems require an
appropriate treatment, chiefly with regard to the discretisation,
and we shall not enter upon a discussion of such topics here.

The numerical solution of the Navier-Stokes equations at large
Reynolds numbers is in our opinion still an unresolved problem,

and the methods which we describe here cover only one aspect of the

gquestion.

5.2 Variants of ARROW-HURWICZ type

We have seen in Chapter I that the analogue (in the linear case)

of algorithm (5.1)-(5.5) forms part of a family of algorithms of

the ARROW-HURWICZ type, with auxiliary operator. As we have
already mentioned in Section 3 of the present chapter, these
methods can in practice be implemented as a version of (5.1)-(5.5)
in which the solution of (5.2) is carried out incompletely. The

advantage, in certain cases, is that the calculations can be

carried out in a fully explicit manner. The most general form is
written

(5.9 5, 0™ - wia_ @M + B - ) = o,

(5.10) pn+1 _ pn-DY'5n+].

We observe that in the case of Sr = Ar(un) and w = 1, the alg-
orithm reduces to (5.1)-(5.5) with « = 1. The simplest case is
of course Sr = I, which gives a fully explicit algorithm. The

use of relaxation methods in the solution of (5.2) leads to
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nonsymmetric auxiliary operators, given the particular form of

A (u™).
r ~

The convergence of this type of algorithm is evidently even
more difficult to establish than that of the preceding case, and
it would be out of the question to attempt to study it here. In-
tuitively, the behaviour at low Reynolds numbers ought to be simi-

lar to that of the corresponding algorithm in the linear case.

An algorithm of this type has been used (in the case where
Sr = I, r = 0) in FORTIN-PEYRET-TEMAM [1], up to Reynolds numbers
of the order of 103. The speed of convergence diminishes con-
siderably as v decreases, and the choice of the parameters becomes

critical.

5.3 Numerical results

The tests carried out are fragmentary but nonetheless enable
some insight to be gained into the effect of the penalty term on
the convergence of the algorithm. The numerical results we have

available are mainly for algorithm (5.1)-(5.5).

The first experimental finding is that the study carried out in
the linear case still remains valid gualitatively. The optimal
value of w 1is less than 1, i.e. it is preferable to "under-relax”.
The problem taken was analogous to the one introduced for the
numerical experiments in the linear case, and the values of v
tested were 1 and 1/10. The optimal value of « was, for these

two values of v, around 0.7, and that of p was around 1.5 for

r = 0, and around 7 for r = 5. The speed of convergence diminished
with v but much less for r = 5 than for r = 0. The value of »p
seems to be more or less independent of wv. By contrast, the sol-

ution of (5.2) is clearly more difficult for v small.

In the case of algorithm (5.9)-(5.10), the results we have
available are very incomplete. The speed of convergence dimini-
shes with v but it seems here to be a real advantage to take
r >0 for v small, contrary to what happened in the linear case.
The reason is undoubtedly that the dissipation is increased, at

least in a sub-space of the space of "admissible" solutions.
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6. NAVIER-STOKES EQUATIONS. TIME-~DEPENDENT CASE.

This section does not pretend to be exhaustive. The aim is
simply to show that the techniques developed in the steady-state
case remain usable in the time-dependent case, and to illustrate
this assertion through a simple example. The methods proposed can
easily be adapted to more complex situations and to more elaborate

schemes .

6.1 Statement of the problem

We consider here the nonlinear Navier-Stokes equations in the

time-dependent case. We thus seek a solution u(x,t) of
du
(6.1 3t 7 Vet (wDu U= f,
(6.2) Veu = 0,
(6.3) u(x,0) = uo(x) given,
(6.4) 5|r = 0.

We consider a discretisation with respect to time by a very

simple scheme of <mplicit type (k = At):

G
(6.5) = - ™ s @™ e ™ =
with £ = £(x,@+D0),
(6.6) v-d™! =0,
6.7 w’ =g,
(6.8) PR

In practice we shall obviously be attempting to solve a discretised
form of this problem. We could, for example, use the finite-

element method described in Section 2 of this chapter.

The important point to consider is that, gn being known, the
solution of (6.5)-(6.8) is a problem of the same type as those
described in Section 5; the operators involved are merely modified
slightly. More specifically, we have to solve a problem of the
type
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(6.9) u - kvAu + k(ueV)u + kVp = F,
(6.10) Veu = 0 in 9,
(6.11) 9}1. =0.
Remark 6.1: Instead of (6.5) we could consider a semi-implicit

scheme, replacing (6.5) by

(6.12) g_kl_— N R A
Remark 6.2: (6.5)-(6.8) can be written in variational form .

With the notation of Section 4, we obtain

un+1_un n+l n+l n+l +1

Egp=» v *valy Ly + by Ly L) = "y VYyev,
(6.13)

~n+l v,
(6.14) goeV given.

By virtue of the anti-symmetry of the form b(u,v,w), it can easily

be shown that such implicit schemes are unconditionally stable. [

Remark 6.3: The existence and uniqueness of un+l in the semi-

implieit scheme defined by (6.12) pose no problems. In fact,
+ . . . .

" L is the solution of a linear problem relating to the operator
I+k0ﬂ%+yn-Y) which is V-elliptic. [ ]

By using, as in Section 4, a fixed-point theorem, the existence
of a solution u of problem (6.9)-(6.11) can be demonstrated with-
out difficulty. We shall now show that if we consider an approx-
imation of (6.9)-(6.11) in a space of finite dimensions (for
example by means of finite elements as in Section 2), we have

uniqueness of the solution for k sufficiently small.

As in Section 4, we denote by and [[+fl, the respective

1o
norms of (LZ(Q))N and V. We shall in fact be working within

a space th V, where in the majority of cases the parameter h
represents the size of the mesh used for the approximation. There

then exists a mesh-dependent constant S(h) such that

(6.15) lFell, syl , vyev,.
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We can now prove the following:

LEMMA 6.1: In finite dimenstions, and for the spatial dimension
N = 2, the solution of the problem (6.9)-(6.11) <is untque 1f k

is sufficiently small.

Proof: Suppose Yy and u, are two solutions of the problem.

In variational form we can thus write
(6.16) (u;,v) + kva(u;,v) +kb(u ,u,,v) = (£,¥) VYyeV,

(6.17) (uy,v) + kva(u,,v) + kb(uy,u,,v) = (£,v) yveV;

subtracting (6.17) from (6.16) and putting v = u.-u we obtain,

bol RN
after various manipulations on the nonlinear terms and taking ad-

vantage of the anti-symmetry of b (see Section 4)
2 2
(6.18) luy=uy lgevlu -uy Iy + Kby -uy,u,.0,7wy) = 0.
Utilising the inequality of Cagliardo (see LIONS [2]), we can, in

two dimensions, obtain the following upper bound for the nonlinear

term:

A

(6.189) \b(Bl_BZ’EZ’El—EZ) ‘ C]EI_EZ‘OHEzHIHB]-QzH]’

hence, by (6.15),

A

lo
Substituting this upper bound into (6.18), we obtain

2
6.2 Gmkes® ull Dy, [+ kv llyy =g, lI] < o

We shall therefore have u, = u, if we can choose k such that we
have

(6.22) (-kesn) Jlu, |l = 0.

Still using (6.15), we can transform (6.22) into

(6.23) kes?(m) fu,| <1

~ o
But setting v = u, in (6.17), it can easily be seen that |u,|g
is bounded above by a constant depending only on f£. It is thus

possible to verify (6.23), and hence the result. .
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6.2 Solution algorithms

We have already noted the analogy between problem (6.9)-(6.11)
and the cases discussed in Sections 4 and 5 of this chapter. We
can therefore use, for its solution, algorithms closely related to
those described for the steady-state Navier-Stokes equations. To
illustrate the ideas, we shall discuss here an algorithm of the

UZAWA type.

UZAWA algorithm, semi-implicit case

Suppose we have u e V given. We wish to solve
(6.24) u - kvAu + k(u-P)u + kVp = F ,
(6.25) Veu =0,
(6.26) g]r = 0.
Remark 6.4: 1In practice, u=u", F=u'+kf.e
In order to solve (6.9)-(6.11), we can therefore use the following
algorithm:
(6.27) po specified arbitrarily;
with ps known, calculate the solution u® of

u® = o’ - kr¥(Ueu®) + k(@ D® + kyp® = F,
(6.28) ~ v ~ ~

wlp=0,
then ps+l by
(6.29) pSt - pS o o T-u’.
We note that problem (6.28) is linear (nonsymmetric). The conver-

gence of this algorithm is a direct consequence of the results of

Chapter I. In particular, we have for Py the condition

(6.30) 0<ps <2(r+v).

It is also possible, as in Section 4, to utilise the method of mini-

mum residuals for the determination of pge

Remark 6.5: The use of such an iterative method in a time-

dependent scheme would clearly be prohibitive if the convergence at
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each time-step were not extremely rapid. In actual fact the situ-
ation here is much more favourable than in the steady-state case.

In practice

- the initialisation can be effected using pn which will in
n+1

general be close to p .
- the problem is well conditioned for k sufficiently small and

r sufficiently large.

In practice, we may expect to carry out only a very small number of

iterations at each time step (2 or 3). s

We are now going to consider the fully implicit case and show
that the UZAWA algorithm is still applicable.

UZAWA algorithm in the implicit scheme case.

We have already shown in Section 6.1 that the implicit scheme
(6.5)-(6.8) is well posed for k sufficiently small. We- shall now
see that, under the same conditions, we can calculate un+l by a

nonlinear UZAWA algorithm. Since the calculation of un+l is

equivalent to the solution of (6.9)-(6.11), we shall consider the
solution of this latter problem. We shall utilise here the anti-
symmetrised form of the nonlinear term introduced earlier in Section

5.1. The algorithm considered is then written:

(6.31) Bo, pl chosen arbitrarily;

with us_1 and ps known, calculate the solution u of

) u® - kvmu® - krv(veu®) + k(us_l'V)uS + X (V‘us_l) u® o+ kp® = F,
(6.32) : & AT UL ot N w2
W o= 9 on T,
then ps+l by
(6.33) p*"! = p% - p(7eu®).

In variational form, we can write (6.32) as follows:

w®, ) + kva(gs,g) + kr(Y-gs,Y'g) + kl;(gs_l,gs,g) -
(6.34) {

- k5T = (1w wve @@, ofe @@t
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Remark 6.5: In the context of the implicit scheme (6.5)-(6.8),
a natural choice would be to take u° = En’ p]= pn.l

Remark 6.6: Problem (6.32) is linear (us—l being known) and
non-symmetric. Use of the anti-symmetrised form b allows us to

state the existence of a unique solution us, the operator being

(Hi(ﬂ))N - elliptic. .

In the following discussion, we consider algorithm (6.31)-(6.33)
in finite dimensions, 1.e. for the solution of a discretised
version of (6.5)~(6.8). We have already proved a uniqueness result
for this case in Lemma 6.1. We shall now prove the following

result:

PROPOSITION 6.1: In finite dimensions, and for the spatial
dimension N = 2, the sequence gs converges for Kk suffictently
small, to the solution u of problem (6.9)-(6.11). The sequence
pS is bounded and for any cluster point p* of this sequence the

pair { u,p*} satisfies (6.9)-(6.11).

Proof: We write (6.9) in variational form. Putting
% = u®-u and ps = ps—p, we obtain by subtracting (6.9) from (6.32)
(6.35) 1% 20 (18] ke 920 | 2o @, 89 P51 = 0.
Taking the inner product of (6.33) with ps+l and using (6.10) we
obtain
] |=s+1;2 1;=8;2 1;=5+] =-5,2 -5 =g+l
(6.36) 7 | l5- EW lo* P P lo *+ p(¥Yeu”,p~ ) = 0.

We can write the last term of (6.36) in the form

s+l -s

(6.37) o@-u®,5% ) = 0(9:3%,5%) + p(@-2% 3% EY).

Furthermore, by the Cauchy-Schwarz inequality we have

§ =s+l_-s

(6.38) lo@-a®,p*"'-5% ] < £ 15°7'5°|2

2 =52
o * 2 P Iy.gslo'

We multiply (6.35) by p and (6.36) by k. Taking the sum and
using (6.37) and (6.38), we see that
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015812+ ok [|8%]]2 + ok(r- 2 |v-3%12 + pkpES7! 0,05 +
~ 5 ~ M 2¢" '~ ~ 'p ~ ~r s

(6.39)

-s+] =52
- |

-s+1|2 _ % I'Slz + E(]-E) Ip 0=0:

+ X
7 1P o 2

As in Lemma 6.1, we obtain an upper bound for the nonlinear term by

using Cagliardo's inequality
1 1 1

)]
~ mae - —c— 7 ——— a - ? - 5
(6.40) |okb @0, 5% < okela® 21T 2 il 012 (st
By the equivalence of norms (6.15) and the Cauchy-Schwarz inequality,
we obtain
pkes (n) [|ull,
2

-s-1

(6.41) kb (3571 ,0,55) | (2812418570,

A

Substituting into (6.39) we obtain

—=S

kCS 2
- B lullp13%12 - o

kCS(h =-s—1,2
KOSM w1357

-5 2
2 o [[3°)13

p(l
(6.42)
\—s+1_55l2 < 0.

0. 10 =512 _ k =s+1;2 Kk |=s,2
+ pk(r- 53)|Y'ES‘O + 7 : lo -3 1p° o

K
3 o 77 U9

We will be able to apply the argument of Theorem 2.1 of Chapter I if

we have

(6.43) 1 - XSEy s K@ gy

l.e.

(6.44) Eg—(h—)ugnls 1

Thus we again have the uniqueness condition of Lemma 6.1. The

statement of the proposition can be deduced from (6.42) by the

usual procedures. ™

The principles behind this proof could in fact be extended to
problems of the same type associated with other implicit schemes
which are more accurate than (6.5)-(6.8). This algorithm is

very similar to those of Section 5.1 and it is of course possible to
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introduce into it variants such as the use of a relaxation parameter.
The fact that we have been able to prove convergence here is clearly

linked with the existence of a uniqueness result. -

7. GENERAL DISCUSSION ON CHAPTER II

The results obtained for the solution of the Stokes problem show
that the use of an augmented Lagrangian can be an efficient method of
approach for this problem. Its attraction ought to become even more
pronounced in three-dimensional problems where the size of the matrices
involved makes the use of direct methods difficult. The extension to
the nonlinear case is often found to be efficient. The analogy
between the ARROW-HURWICZ type algorithm of Section 5.2 and the method
of CHORIN [1] should be mentioned. A similar approach has been used
in FORTIN~PEYRET-TEMAM [1] and in BEGIS [1], this latter work relating

to the calculation of non-Newtonian fluids.

In the nonlinear case, the benefit of the penalty term lies in the
fact that it improves the dissipation of the system without perturbing
the solution. We shall see in the following chapters that it can
sometimes actually bring about the convergence of algorithms which

would otherwise be ill-posed.
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CHAPTER ITII

ON DECOMPOSITION-COORDINATION METHODS
USING AN AUGMENTED LAGRANGIAN

M. Fortim, R. Glowingkt

1. INTRODUCTION

1.1 Motivation. Examples.

A large number of problems in Mechanics, in Physics, in Econo-
mics, etc... (see Chapter IV, V, VI, VII, VIII) can be stated in the

form

(1.0 (P) Min {F(Bv) + G(v)} ,
veV

where

* V, H are normed vector spaces (real for simplicity) of

finite or infinite dimension,
* Be £ (V,H),

* F, G are functionals which are convex, proper, and lower

semi-continuous (l.s.c.) on, respectively, H and V.

The formulation (1l.1) is gquite general, since as will be seen in
the Chapters which follow (see also ROCKAFELLER [4], EKELAND-TEMAM
[1]1), such a formulation encompasses the minimisation of functionals
which are possibly nondifferentiable over convex sets, the nondif-
ferentiability or the constraint relating to v and/or Bv. We

illustrate this by two examples:
Example 1% Flow of a Bingham fluid in a cylindrical duct.

Let Q be a bounded open domain in ZRZ with regular boundary T

(2 is the cross section of the duct). We define V, H by

(.2 V=,

97
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(1.3) B = @i@)2.

Let v and g be two positive constants (refer to Chapter V, Sect-

ion 5 for the physical meaning of v and g and of the example

considered) . Now suppose we have the problem
. v 2
(1.4) Min [ 3 J |V |“dx + g J |vv]dx - J fvdx] ,
vev Q Q Q

where, in (1.4), £ «¢ Lz(ﬂ) (actually f = constant in the applic-
ations considered) .

Problem (1.4) is obviously a particular form of problem (P) ob-
tained by putting

(1.5) B=V
and by defining F, G by

(1.6) F(q)

3 talPex e | lalax
Q Q
- J fvdx.

Q

In (1.6) we have put |q| = V q?+q§.

An alternative choice for F, G 1is given by

.7 G(v)

[}

(1.8) F(q) gj lqlax ,
9

%vj ]Vv]zdx - j fvdx .
Q Q

1.9) G(v)

The above functions F, G are conveXx, and continuous, and F 1is

nondifferentiable on H because of the presence of the term Jnlqldx.

The choices (1.6), (1.7) or (1.8), (1.9) will lead to slightly
different algorithms for the solution of (1.4), by the methods des-
cribed in Section 3. Incidentally this possibility of choice in
the decomposition allows us to predict a certain degree of versati-
lity in the use of the methods studied in this chapter.
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Example 2: Elastoplastic torsion of a cylindrical bar.

Let § Dbe a bounded open domain in ]R% with regular boundary T
(2 is the cross section of the bar). We define VvV, H by (1.2),

(1.3) and we consider the problem

(1.10) Min [ J Iw)2ax - vadx i,
veR Q Q

where f ¢ Lz(Q) (f = constant in the fluid mechanics applications

considered), and
(1.11) K={VIVEH(1)(Q), %] <t a.e.}
We refer to Chapter V, Section 5, for the physical meaning of

(1.10), (1.11). Problem (1.10) is also a particular form of prob-
lem (P) obtained by putting

(1.12) B=V,
with F, G defined by

(1.13) F(q) %J lq)%ax + Tx(a)
Q

(1.14) G(v)

- J fvdx.
Q

In (1.13), Iﬁ denotes the indicator function of the convex set

(1.15) K = {qlqen, |ql =1 a.e.} .

We thus have, by definition of the indicator function,

I=(q) = 0 if q &,
(1.16) K . -
) Iﬁ(q)=+°°7«fq¢1<-

Since the convex set K is nonempty (O € R) and closed in H, Iﬁ is
convex, proper, and lL.s.c. on H; it thus follows that F satisfies
the same properties. Furthermore G 1is clearly convex and contin-
uous on V.

An alternative choice for F, G 1is given by

(1.17) F = Ii
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(1.18) G(v) = %J |vv)%ax - J fudx.
2 a

The various remarks made in relation to Example 1 apply equally to

Example 2. [

1.2 Principle of the method

The essential idea in the whole of the following discussion is

based on the fact that there is trivially an equivalence between (P)

and

(1.19) (D Min {F(q)+G(w)} ,
{v,ql eW

with

(1.20) W= {{v,q} € VxH, Bv-g = 0} .

We have thus introduced a supplementary variable g , linked to v
through the linear equality relation Bv = q . To handle this
constraint we shall, as in Chapter I, utilise a Lagrange multiplier

and reduce the problem (II) (thus also (P)) to a saddle-point problem.

In the following discussion we shall assume that the spaces V

and H are Hilbertlspaces; H is identified with its dual and we

denote by (.,.) the inner product in H, and by |.| the associated
norm (in certain cases the results will apply to the case where H
is a reflexive Banach space.) We then define, for v ¢ V, g ¢ H,

u € H the Lagrangian

(1.21) £v,q,u) = F(q) + G(v) + (u,Bv=q) ,
and then for r 2 0, the augmented Lagrangian
(1.22) £ (v,q,1) = £(v,q,1) +§ IBV-QIZ-

In Section 2 we shall study the problem of the existence of saddle
-points for «£ and ér and the relations between the saddle-points
of £ and those of =£r . L]

The approach followed up to now may seem somewhat contrived and
complicated, since we have introduced a supplementary variable g
and a supplementary constraint Bv - g = 0. By doing this we have
in actual fact simplified the nonlinear structure of problem (P) by
decoupling F and B . To illustrate this fact we shall apply the

! There will thus be no difficulties in finite dimensions.
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above principle to the two examples of Section 1.1; we remark that
the numerical utilisation of this type of method seems to have been
first introduced by GLOWINSKI-MARROCCO [1] for the numerical solution
of the particular problem (1 < p < ®)

-V (VPP = £ in @,

(1.23)
UII‘=0

to which we shall return in Chapter V.

Application to Example 1 of Section 1.1 (Flow of a Bingham fluid):

With the functionals F and G defined by (1.6),(1.7), the

Lagrangian is written

(1.24) 2(v,q,u) = % J ]q[zdx + g J |qldx - J fvdx + J ue (Vv—q)dx,
Q Q Q 9]
so that the augmented Lagrangian is
(1.25) £_(v,q,0) = £L(v,q,u) + E-J ]Vv-q]zdx.
r 2 Q

We note immediately that £ is lZnear with respect to v and
hence that £r is quadratic (with positive-definite quadratic part).
This implies that , with u and g fixed, we can minimise ir with
respect to v on V, whereas this operation is impossible with £
(this drawback disappears if F and G are defined by (1.8),(1.9)).
It follows from this that certain algorithms (see Section 3) will be
applicable to the calculation of the saddle-points of {r but not
for those of £ . We shall now give the optimality conditions char-
acterising any saddle-point {u,p,*} of Z_ on HlﬂD {(LZGD)ZX(LZGD)?

We obtain the system of equations and (variational) inequalities

(1.26) r [ VueVvdx - rJ prVvdx + J AeVvdx - J fvdx = 0, Vv eH (@),
0 Q

Q Q

(v+r) J pr(q-p)dx + gJ |q|dx - gJ |plax - J (A+rVu)+ (g-p)dx 2 0,
(1.27) £ Q Q Q

vae @@,
(1.28) Vu-p = 0.

Note that problem (1.26) is, with p and A fixed, a problem
which is linear with respect to u, and of a completely standard

type. The variational inequality (1.27) expresses the fact that,
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for specified u and A, p gives the minimum of £(u,q,A\) . We have
here a minimisation problem relating to a nondifferentiable func-
tional for which the optimality condition is expressed by an in-
equality (see G.L.T. [1], [2] and LIONS [11]). Problem (1.27) offers
a considerable advantage over the initial problem (1.4). In fact

we can reduce it to a family of point problems of the type

g eR?

(1.29) 2
infl 2 1612 4 ge] - @0,
£

and (.,.) denote the norm and the inner product on R2

where |.

and where we have put, at the point x ¢ @,

(1.30) d(x) = A(x) + ryu(x).

Denoting the solution of (1.29) by £&(x) , we then have

E(x) = 0 2f g2 [d)] ,

(1.31)

E(x) G%? (d(x) -~ g T%%E%T ) If g < |dx)] .

It can easily be verified that p defined by p(x) = Z(x) is a
solution of (1.27).

The attraction of the decomposition carried out is thus that it
transforms the "global" nondifferentiable problem (l1.4) into a family
of local problems, coordinated via the Lagrange multiplier A. This
transformation of course only becomes helpful if we can solve the

system (1.26)-(1.28) by an appropriate algorithm.

Application to Example 2 of Section 1.1 (Elastoplastic torsion):

With the functiocnals F and G now defined by (1.13),(1.14), the

Lagrangian is written:
(1.32)  Z(v,qu) = %J la)%ax + 13(0) - J fvdx + J pe (W-q)dx ,
Q Q Q

and as in (1.25), we have the augmented Lagrangian

2
(1.33) Z_(v,q,w) = £(v,q,W) + % [9v=q|“.

The remarks made in the previous example are wholly applicable again
here. Any saddle-point {u,p,A} of &£ ; Oon H;(Q)X(Lzan)zx(Lzan)z
is characterised by a system analogous to (1.26)-(1.28), only the
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inequality (1.27) being altered into

(1+1) f pe (q-p)dx - J (A+rVu)+ (q-p)dx =0 V qe K,
(1.34) R Q
pekK.

We can recognise in (1.34) the characterisation of the projection of
A+rVu > 2 2

e °on K into (L7(R))" , i.e.
_ AtrVu | _ A+rVu
(1.35) P =P (5 ) = Sup (1+r, | A+TVul)

This projection into (LZ(Q))2 can thus be carried out point by

point. As in the preceding example, the decomposition has allowed
a problem which included a constraint which was difficult to manip-

ulate, to be reduced to a family of local problems, coordinated via

a Lagrange multiplier. =
2. INVESTIGATION OF PROBLEM (P) AND OF THE SADDLE-POINTS OF
Z AND 2 .

This section is devoted to review material of a theoretical
nature; thus the reader who is primarily interested in the algor-
ithmic aspects of this volume can at a first reading go forward to

Section 3 of this chapter.

2.1 Existence and uniqueness properties for problem (P).

From standard results of Convex Analysis in infinite dimensions
(see for example LIONS [1], EKELAND-TEMAM [1]) the problem (P) will

admit a solution if the functional J(v) = F(Bv) + G(v) satisfies

(2.]) lim J(V) = 4o when ”v”v + too,

a sufficient condition for uniqueness being the strict convexity

of J. We assume of course that J Z +~ .
Remark 2.1: In the following discussion we shall denote by
I‘ or . the norm on V, the norm on H being everywhere

v

denoted by

Remark 2.2: Suppose that we have
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lim F(q) > +e
(2.2) ,
if lal » 4.

If the operator B is injective with Im B closed in H, then |Bv|
defines on V a norm equivalent to |lv]l such that we have
lim F(Bv) ~ +o

(2.3)
of fvlf > 4o .

2.2 Properties of the saddle-points of £ and of ir

The use of the algorithms of Sections 3 and 4 is essentially just-

ified by the following:

THEOREM 2.1: Suppose {u,p,A} s a saddle-point of £ on
V x H x H; then {u,p,A} <s a saddle-point of £.,¥r>0, and vice
versa. Furthermore u 18 a solution of (P), and we have p = Bu.
Proof: Let {u,p,A} be a saddle-point of £ on V x H x H.

We thus have
(2.4) 2(u,p,1) < Lu,p,N) s L(v,q,A), yi{v,qleVxH, vueH.
From the first inequality in (2.4) we deduce
(4,Bu-p) < (A,Bu-p) VueH,
hence
(2.5) Bu = p.
From the second inequality in (2.4) we then deduce

F(Bu) + G(u) =£(u,p,r) sF(q) + G(v) + (A,Bv-q) ,

v {v,q} e VxH,

hence a fortiori

F(Bu) + G(u) £ F(Bv) + G(v) VYveV,
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which proves that u is a solution of (P).

In view of (2.5) we immediately have
2(u,p, 1) = £ _(u,p,1) =£L(u,p,}) = £ _(u,p,N) s£(v,q,0) £ £ (v,q,}),
¥{v,q} ¢ VxH , YueH.
Suppose, conversely, that {u,p,A} 1is a saddle-point of £ ; hence
(2.6) £ (u,p,1) £ (u,p,d) <L _(v,q,}) v{v,q} e VxH, Vi e H.

Proceeding as above, we deduce from the first inequality in (2.6)
that p = Bu.

Furthermore we have

(2.7 £ (u,p,2) < £ _(v,q,)) v {v,q} e VxH.

Taking into account the convexity of £I~ with respect to {v,ql, the

pair {u,p} is, for given A, characterized by

{ G(v) - G(u) + (A,B(v—u))+ r(Bu—p,B(v-u)) 20 yveV,

F(q) - F(p) - (A,g-p) + r(p-Bu,q-p) 20 VvgqeH,

thus, since p = Bu, we further have

(2.8) G(v)-G(u) + (A,B{v-u)) 20 V¥veV,

z.9 F(q)-F(p) - (A,q-p) 20 VgeH.

The relations (2.8), (2.9) are equivalent to

£(u,p,A) s £(v,q,)) ¥i{v,q}eVxH,

ueV, peH.

Furthermore

Z(u,p,W) < £ (u,p,A)

follows trivially from Bu = p.

Theorem 2.1 is therefore completely proved. -

Remark 2.3: In infinite dimensions, the question of the possible
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existence of a saddle-point, i.e. of a Lagrange multiplier X, 1is
problematical and is always dependent on the possibility of using in
some form or other the Hahn-Banach Theorem. Sufficient conditions

to assure the existence of the multiplier would be

(2.10) (P) admits a solution,
(2.11) 3uoev where TFoB+G 18 finite,
(2.12) F  is continuous with respect to Buo.

A proof of this result can be found in EKELAND-TEMAM [1] and an anal-
ogous result appears in GABAY-MERCIER [1]. In practice condition
(2.12) is the most difficult to satisfy.

In finite dimensions the existence of a saddle-point is assured
since we minimise under a l<near equality constraint; in this case

it is sufficient that problem (P) admit a solution.

In problems which are discretised from a problem in infinite
dimensions we could thus have u,

whereas the multiplier kh does not converge in H.

which approaches u as h > O

2.3 Relations with perturbation theory in Convex Analysis

The approach followed in Section 1.2 consisted of “dualising" the
original problem (P) by a procedure which at first sight may seem
somewhat contrived. We now show that this approach is no more than
a different way of expressing the duality in the sense of Fenchel-
Rockafellar.

Consider, then, problem (P), namely:

(2.13) inf {F(Bv)+G(v)} .
vev

In conveX analysis (see ROCKAFELLAR [4], EKELAND-TEMAM [1]) the stan-
dard procedure for associating a Lagrangian with (P) is to consider

a perturbed functional on V x H, defined by
(2.14) b(v,z) = F(Bv-z)+G(v).

The Lagrangian associated with (2.14) is then defined classically by

(2.15) L(v,u) = inf {(z,1) + ¢(v,z)}= inf {(z,W) + F(Bv-z)} + G(v).
z 2
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Suppose g = Bv-z; we can then write (2.15) in the form
(2.16) L(v,W) = igf {(Bv-q,m) + F(q)} + G(V).

If L(.,.) admits a saddle-point {u,A} on V x H, then u 1is a sol-
ution of (P) and we have

(2.17) inf sup L(v,H) = sup inf L(v,n).
veV peH UeH veV

We then describe as the dual problem of (P) the maximisation problem
on H designated ( P") and defined by

(2.18) sup {inf L(v,u)} .
u v

If we express L(.,.) explicitly we can write

(2.19) sup inf inf {F(q) + G(v) + (4,Bv=q)} = sup inf £ (v,q,u).
oV oq v {v,q}

The approach followed in Section 1.2 thus consisted of utilising the

Lagrangian L(.,.) 1in an equivalent but "more explicit" form.

This remark applies equally well to the augmented Lagrangian. In
fact the standard definition (ROCKAFELLAR [1], FORTIN [1]) is obt-

ained by considering

(2.20) ¢, (v,2) = ¢(v,2) +% |z|2,

(2.21) Lr(v,u) = inf {(z,u) + ¢r(v,z)} .
z
By the same argument as above we can derive the Lagrangian ir of

Section 1.2.

In FORTIN [1], Lr(v,u) is calculated by elimination of g in
(2.21). For the solution of certain problems which are nonlinear
with respect to v, this leads to algorithms very similar to those
studied in Sections 3 and 4. The search for a saddle-point of
Lr(v,u) using an algorithm of the UZAWA type (see Chapter I) requires
at each stage the solution of a problem which is nonlinear with res-
pect to Vv (see FORTIN [1] where the case of Example 1 of Section 1.1
is dealt with). The algorithms described in the remainder of this
chapter can be considered as methods of solution by decomposition

of this nonlinear problem (see Remark 3.1 below). -
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Remark 2.4: Suppose r 2z 0; by proceeding as in Theorem 2.1, it
can easily be shown that if {u,\} is a saddle-point of L. on
V x H then {u,Bu,X} is a saddle-point of £, on V xH=xH, and

vice versa. ]

Remark 2.5: An important property concerning the use of the aug-
mented Lagrangian is that, for any r » O, the Lagrangians Lr and
£r together with the associated dual problems are always different-
Zable with respect to u, which is not the case in general for r = O.
It is in fact proved in FORTIN [1] that for r > O the dual problem
is a regularisation by an inf~convolution of the dual problem for
r = O. This property is especially useful for the construction of

algorithms using the gradient of the functional of the dual problem.
=

3. DESCRIPTION OF THE ALGORITHMS

In this section we shall describe two iterative methods of solut-
ion of (P) which are in fact methods for calculating the saddle-
points of ir, this approach being Jjustified by Theorem 2.1.

3.1 First algorithm (ALGl)

In view of Theorem 2.1 it is natural, for calculating the saddle-
points of ir on V x H x H, to utilise the algorithm of the Uzawa
type given below (see Chapter I, Section 2.1):

3.1 A° ¢ H specified arbitrarily;
n+l

with A% known, determine {u™,p"}, them A by
2, Whp" A" < 2 (v,q, A" viv,q) e vxH,

(3.2)
{un,pn} € VxH,

n+l

(3.3) AT < )\n+pn(Bun—pn) .

In the following text algorithm (3.1)-(3.3) will often be referred to
as ALGI. The convergence of ALGl will be studied in Section 4. It
follows from (3.2) that the pair {un,pn} is characterized by the
coupled system
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n

% G(W~G ™M+, Bv-u™))+r (Bu"-p", B(v-u™) 20 Vv eV,
(3.4)
u €V,

F(Q)-F(M-(",q-pM)+r(p"-Bu",q-p™) 20 VqeH,
(3.5)
p € H.

Remark 3.1: The above algorithm can also be written as a saddle-~
point calculation algorithm for Lr (see (2.15)). In fact we have
seen in Section 2.3 that we actually have
(3.6) L (v,u) = inf =£r(v,q,u).

9
We thereby deduce that if {un,pn} is a solution of (3.2) we also
have
LA sL (v, 0N vvev,

(3.7)
u €V,

It is shown in FORTIN [1] that problem (3.7) is in general nonlinear
with respect to v and that its direet solution is difficult.
Through the introduction of g, then of £1:, this problem (3.7) has
been decomposed into the system which is the equivalent of the two
inequalities (3.4), (3.5). Expressing the problem in the form of a
system will lead to efficient procedures for solving (3.7) (and
(3.2)). »

Remark 3.2: The reader may verify that algorithm ALGl can be

interpreted as a subgradient algorithm for the dual functional

b (W) = inf  {£_(v,q,w)} .
fv,qlevxy T

It can actually be shown that, whatever the values of A,u,e¢ H, we

have

h (1) shr(k)+(Bu>\-p>\,u->‘),

where {uk,px} is the solution of the problem
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=£r(u)\,p>\7)\) Sir(quyk) V{V,q}EVXH,

hx,pﬁ € VxH,

Additionally, we have noted in Remark 2.5 that, for r > O, hr(k) is
always differentiable. Thus in this case we in fact have a standard

gradient algorithm when r is strictly positive. -

3.2 Second algorithm (ALG2)

In the implementation of ALGl the essential difficulty is clearly
the solution at each Zteration of the system (3.4), (3.5). A nat-
ural solution procedure consists of using the block relazation method

given below (where n s fixed):
(3.8) p =p
then for k z 1

6w -G™ )+ (A%, B =™ ) )4 (Bu™ K p K Bv—u™*)) 20 vvew,

(3.9)

un’k eV,

F(@)-F (™ -0, q-p™ ) +r (o™ -Bu™ ¥, qp™ 5 2 0vq e H,
(3.10)

pn’k € H.

The algorithm (3.8)-(3.10) is convergent under quite general assump-
tions on F and G (see for example, CEA-GLOWINSKI [11]). Taking
into account the results of Chapters I and II concerning zncomplete
minimisation in the UZAWA algorithm (see Chapter I, Section 2.3,
Remark 2.5 and Chapter II, Sections 3.2 and 5.2) we obtain natural
variants of ALGl by restricting ourselves when solving (3.4), (3.5)
by (3.8)-(3.10) to a fZwxed number of block relaxation passes. In

the limiting case of a single pass we obtain the algorithm

3.1 (p°, A1} ¢ H x H arbitrarily specified;

- . . +
with {pn %An} known, determine successively un, pn, A" 1 by

G(v)-G(un)-ﬁ'()\n,B(v-‘un))+r(Bum—'pn—1 ,B(v-un)) 20 YveV,

u €V,

(3.12)
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(3.13) F(@)-F (- q-pM+r (p"-Bu",q-p) 20 VqeH,
n

p ¢H,
(3.14) PPN o (Bu"-p™).

In the following text algorithm (3.11)-(3.14) will often be referred
to as ALG2. The convergence of ALG2 will be studied in Section 5.

Remark 3.3: The algorithm ALG2 seems to have been first intro-
duced by GLOWINSKI-MARROCCO [1] in connection with the numerical
solution of problem (1.23). The convergence of ALG2 for bp =90 =T
was demonstrated in MERCIER [2] in relation to the nonlinear elasti-
¢ity problem of Chapter VI, and then extended by GABAY-MERCIER [1]
to the case where 0<pn=;)<2r , under quite general assumptions on

F (G being linear).

3.3 Application to the examples of Section 1

In order to clarify the concepts introduced in Sections 3.1 and
3.2, we shall now set out ALGl and ALG2 explicitly for the two model

problems of Section 1.1.

Case of Example 1 of Section 1.1 (Flow of a Bingham fluid)

With the Lagrangian {r defined by (1.24), (1.25), and taking in-
to account (1.26)-(1.31) and (3.4), (3.5), ALGL takes the following

form:
(3.15) 2° arbitrarily chosen in (LZ(Q))Z;
then, An being known, determine {un,pn} by solving the coupled
system
- A e Ve p™veAT = £ oon Q,
(3.16)
n
u ‘r =0,
pr(x) =0 if gz N (0],
(3.17) n n
o) = A (x&:rVu (x) (- — g - ) otherwise,
t 1AR G +rVu™ (0 |
and An+l by



112 DECOMPOSITION-COORDINATION (CHAP. 3)

(3.18) At

= 2"+ p_ (u"-p™.

Remark 3.4: In practice (3.15)-(3.18) will be applied to an
approximation (by finite differences or finite elements) of the pro-
blem (1.4). Looking at (3.16), (3.17), it appears that the imple-
mentation of the block relaxation method (3.8)-(3.10) will present
no practical difficulties provided that an efficient program is

available for solving the Dirichlet problem for -A. "

To pass from ALGl to ALG2 it suffices to replace (3.15) by
(3.19) (0%, 25)  arbitrarily chosen in (LZ(@)? x @) ?;
and (3.16) by

- o™y P vt = £ oon q,

(3.20)
n
lr =0

with this algorithm the determination of un, pn is sequential.

Case of Example 2 of Section 1.1 (Elastoplastic torsion)

With the Lagrangian #£_  defined by (1.32), (1.33) and taking

account of (1.34), (1L.35) and of (3.4), (3.5), ALGl takes the follow-
ing form:

(3.21) A° arbitrarily chosen in (LZ(Q))Z;

then, A" being known, determine {un'pn} by

- chu™ervep™-ver" = £ on @,

(3.22)
Wl =0,
(3.23) pn _ APervu”
sup(]+r,]kn+rVun[)
(3.24) AT = Ao (va"p™

This algorithm is very closely related to (3.15)-(3.18) and Remark
3.4 is equally valid for (3.21)-(3.24).
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To pass from ALGl to ALG2, it suffices to replace (3.21), (3.22)
by (3.19), (3.20).

Remark 3.5: All other things being equal, the "cost" of an
iteration is higher for ALGl than for ALG2, and in a large number of
problems it is preferable to use this latter algorithm. Nonethe-
less we should point out that in certain very stiff problems, for
example (l1.4) with g "large" or alternatively (1.23) with p
"close" to 1 or "large", ALGl is faster than ALG2 both in the number
of iterations and in the computation time. All these points will

be illustrated through various examples in the following chapters.
u

4. CONVERGENCE OF ALGlL

In section 4.1, we shall study the convergence of ALGl when V
and H are Hilbert spaces of arbitrary dimension; then in Section 4.2
we shall examine the extent to which the assumptions of Section 4.1

can be weakened when V and H are of finite dimension.

4.1 General case

To study the convergence of ALGl, we shall be making several sup-

plementary assumptions. We shall first assume that we have
4.1 B +<s injective and ImB <s closed in H.

In addition, we shall make the following assumption on F concerning

growth at infinity

(4.2) lin 2O . 4.,
la]~+e |q

Taking into account the properties of G, (4.1) and (4.2) imply that
(P) admits a unique solution u’l In the following text we shall
write p = Bu.

We next assume that F = FO + Fl’ where F is convex, proper and

1
l.s.c. on H, and where FO is convex, differentiable on H, and

2 provided we assume that Dom(FoB) nDom(G) # @ (we recall that if

j:X » R then Dom(j) = {xeX, j(x)eR} ).
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uniformly convex over the bounded subsets of H in the following

sense:z

For any M > 0, there exists a continuous function
6M: (0,2M]1 » IR, strictly increasing, with GM(O) = Q, such that
for all p,qeH, lp[SM, lq[sM, we have:

(4.3) (F(@)-F(p),q-p) = 6 ([a-p[)s

where, in (4.3), Fé denotes the gradient of F-

THEOREM 4.1: Suppose that £, admits a saddle-point {u,p,\}
on V x H x H. Under the above assumptions on B, F and G, and
if C satisfies

(4.4) 0 < o < ol < o < 2r ,

we have for ALGl the following convergence results:

(4.5) L strongly in V,

(4.6) pn + p strongly in H,

(6.7 WL S 0 strongly in H,
(4.8) A" {5 bounded in H.

*
Furthermore i1f X 15 a (weak) cluster poitnt of A in H,

*
{u,p, 2} <s a saddle-point of £, (v,q,u) on V x H x H.

Proof: In the following text we shall write
" =y ,
(4.9) Pt =pp,
S

- - _n
We thus have to show that u- =~ O,pn + 0, and that A remains boun-

ded; {u,p, 2} being a saddle-point of £r' we have
(4.10) G(v)=G(u)+(A,B(v-u))+r (Bu-p,B(v-u))20,¥YveV,

(&1 (FL(P),q=P)+F | (Q)=F, (p)=(A,q-p)+ (p-Bu,q=p) 2 0, ¥ q < H,
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(4.12) A =X+ (Bu-p), Vn .

Furthermore (3.2)-(3.5) imply

(4.13) S(W)=C M+ (A", Bv—u™) ) +r (Bu™-p",B(v—u™) 20 , VveV,
(4.14) (Fc')(pn) ,q-pn)+F] (9)-F, (M-, -pM)+r (p"-Bulg-p™) 20 ,VqeH,
(4.15) AR A+p_(Bu"-p").

We thus set v = u" in (4.10), g = pn in (4.11), then v =u in

(4.13) and g = p in (4.14), so that, by addition, we have
(4.16) £|Ba™ | %-r (37, Ba) + (3%, B0 <0,

(4.17) <Fc',(p“>-Fc',(p>,p“-p)+r]5“|2-r(5“,35“)—<in,5“) <0 .

Summing (4.16) and (4.17) and regrouping the terms, we obtain
4.18) (Rl ML (p),p -p)+r 857 P+ (A, BT <0

Also, subtracting (4.12) from (4.15) and taking the scalar sgquare in
H, we obtain

(4.19) ]Xn|2—|in+l|2 - ZDD(BGH‘EH,XU)'DiIBan‘snl2
It then follows from (4.18) and (4.19) that

n 2 o+l 2 n n -n_-n,2
(4.20) IS5 220 (B -F! () ,p -p)+p (2r-p ) [Bu-pn |7

In view of the assumption (4.4) on R thus have

(4.21) lim ]Bun-pn| =0 ( since Bu=p),
n—-+o©

(4.22) lim (F'(p™~F'(p),p =p) = O,
artw O [

and we have An bounded in H.

We now show that pn is bounded in H; in fact, since the funct-
ional F is proper, there exists D ¢ H, such that -« <F(p)<+ex.

Then putting gq = $ in (3.5), we obtain
.23 FE-QNH+r "B E) 2 FH-(,pM+r ("B, ™).

Since A" is bounded in H and knowing that pn - Bu" tends to

zero, we thereby deduce that there exist positive constants BO,Bl,
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independent of n, such that
(a.24) B 2F(p™-B,Ip"|

Taking into account assumption (4.2), it follows from (4.24) that

pn is bounded, i.e. that there exists M > O, such that
(4.25) [p"] <M, Va.

Furthermore, for M sufficiently large, we also have

(4.26) ip| <M.

It then follows from (4.25), (4.26) and from the uniform convexity

of FO over the bounded subsets of H, that we have
v O, ot n_ n_

(.27 (FLGMF!(p),p p) = y(fp -p]) Vn.

We thus have

(4.28) lin &, (Jo"-p]) = 0.
nr+o®

It then follows from the properties of 6M that

(4.29) lim |p™-p| = 0,
n>+oo

and from (4.21) that

(4.30) lim Bu” = p (=Bu), strongly in H.
n>+ o,
Since the operator B is injective with ImB closed in H, this im-

plies (see Remark 2.2) that

(4.31) lim u" = u , strongly in V.

n=++o
The properties of the sequence An, given in the statement of the
Theorem, are then immediate consequences of the convergence proper-

ties of u" and of pn and are obtained by passing to the limit in

(3.3)-(3.5). ]
Remark 4.1: We have proved the convergence of the algorithm by
1
making use of the assumption of coercivity (4.3) on Fo(.). It is

easy to show that an analogous result is obtained by assuming that

G(+) is differentiable, its derivative satisfying a condition



(SEC. 4) CONVERGENCE OF ALGl 117

similar to (4.3). In fact the convergence proof simplifies and it
is no longer necessary to assume B to be injective. We shall

encounter in Chapter IV a case where this variant will be useful.

4.2 The finite-dimensional case

If v and H are of finite dimension,convergence of ALGl can be

obtained under weaker assumptions than those given in Section 4.1.

Firstly, for {]: to admit a saddle-point 7t will be sufficient
for (P) to admit a solution (see Remark 2.3). Furthermore, Im B
is still closed. As regards F, it follows from CEA-GLOWINSKI
[1, Section 2.2] that the uniform convexity property of Fo given

in Section 4.1 is satisfied if
(4.32) Fo is strictly convex and of class Cl.

In fact if Fo satisfies (4.32) and Zf we assume that (P) admits a
solution we can dispense with assumption (4.2). This follows from
the fact that the strict convexity of F, implies the strict

L}
monotonicity’ of F_, and from the following:

LEMMA 4.1: Suppose H s of finite dimension; let A: H~+ H
be a continuous and strictly monotone operator, p an element of H

and (pn)n a sequence of elements of H such that

(4.33) lim (A(pM-A(p), p"-p) = 0.

n—++o

We then have

(4.34) lim p" = p.
n++©
Proof: Suppose that (4.34) is not true; in this case there

exists & > O and a sub-sequence extracted from (pn)n, (pm)m say,

such that

(4.35) |p™p| 26 vao .

Let S(p;%) be the sphere with centre p and radius %. We def-

ine 2™ ¢ S(p; 3) by

! We recall that A: H + H is said to be strictly monotone if
(A(q)-a(p), q-p) >0 Vp,qeH, p # q.
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m—

(4.36) 2" = p o+ %._Eﬁfll_
o lp"-pl o
z thus belongs to the "open interval" 1Ip,p [ of the space H
(see Figure 4.1).

We shall denote by t™  the quantity

*

8
—= , i we thus have
2|p"-p|

m
P

m
Z
5
Figure 4.1
(4.37) 2" = p+ t™p"p),

and, from {(4.35),

1

(4.38) 0<t™ < 5 -

Since the operator A 1is strictly monotone we have

(4.39) (AG™=A),p™-p) > (Alp+t(p -p))-A(p),p"=p) >0 VYt e10,1[ ,

hence in particular (we set t = t™  in (4.39))

(4.40) AG™-Ap) ,p"p) > (A(z™)-(A(p) ,p"-p) > 0.

In view of (4.37), (4.38) it follows from (4.40) that

AEM=-4) ,p"p) > AED-Ap),2™p) 22(a(M-4() ,2"p) >
(4.41) t

> (A(2™-A(p), 2%-p) > 0.

Since the sphere S(p; g) is compaet we can extract from (zm) a

m
sub-sequence, itself also denoted by (zm)m, such that
(4.42) lim 2" =2, 2 €S(p; g)

m~>+ ™

Since the operator A is continuous we deduce from (4.33), (4.41),
(4.42) that

(4.43) (A(z)-A(p),z-p) = O.
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The operator A Dbeing strictly monotone, (4.33) implies that z = p,
which is absurd since |p-z| = %>0. We cannot therefore have (4.35);

n
hence p converges to p. .

In view of these various remarks, one can easily prove the foll-

owing variant of Theorem 4.1:

THEOREM 4.2: Suppose that V and H are of finite dimension
and that (P) admits a solution u. We make the following assump-

tions on B, G, F

- B s injective,
- G 7is convex, proper and l.s.c. on V,
- We have F = F o+ Fy with F, convez, proper and l.s.c.
on H, and FO strictly convex and of class Cl on H.
The solution of (P) <s then unique, and under the condition

< < < <
o} ao pn al 2r

we have for ALGl the following convergence results
lim u" = u,
n-=>+o©
lim pn = Bu,
n->+x

A" is bounded in H.

n

Moreover, Zf i 1s a cluster point of A <n H, then {u,Bu,)} s
a saddle-point of ir on V x H x H.
Remark 4.2: We shall meet in Chapter V, in connection with the

mintimum surfaces problem, a situation in which the assumption (4.2)
on F 1is not satisfied, either for the continuous problem or for
the approximate problem, and in which the convergence of ALGl will

follow (for the approximate problem) from Theorem 4.2. .

4.3 On the choice of r and of {pn}n.

In the general case the determination of the optimal parameters
is a complicated matter, as a consequence of the nonlinearity of

problem (3.4), (3.5); furthermore, the convergence properties of the
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sequences {un}n and {pn}n, {An}n may be different, as we shall

see below.

We consider the case where
‘2

)

.46)  F@) =1 la

(4.45) G(v) = -((f,m),

the operator B still satisfying (4.1).
The problem (P) 1is then equivalent to

(4.46) B%Bu = £,

and £, admits as a saddle-point {u,Bu,Bu}; we thus have

A = p = Bu. It is apparent that the use of ALGl is of no practical
interest for solving (4.46) since, at each iteration, it will be
necessary to solve linear problems relating to BtB. Nonetheless,

this trivial case offers a certain theoretical interest for the

study of the convergence of the algorithm. The latter is written,
(limiting ourselves to the case where Py = 0) .

(4.47) 2° arbitrarily specified in H;

then, AP being known, calculate 11n,pn,>\n+l by

(4.48) BEAD + rBt(Bun—pn) = f,

(4.49) p” = 2"+ reu™-p™h,

(4.50) AL =™ 4 Bup") .

Again using the notation a® = un—u, En—p, o= An-A, we have
(4.51) B B (B5"5™) = 0 wnz2o0,

(4.52) Pt o= XerButp®) ¥nz0,

(4.53) ™ X (B3R-p™) yn 2 0.

Multiplying (4.52) by Bt, we deduce from (4.51) that
(4.54) 35 = 0 vnzo0.
We then deduce from (4.51) and from (4.54) that

(4.55) B*A™ = —rB'Bi® yanzo.
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t

Multiplying (4.53) by B~ and taking account of (4.54) and (4.55),

we obtain

(4.56) stea™! = &2 8" = (-5 B%Ba" vnzO.

We thereby deduce that if r = p, we have"

4.57) un=u,Vn2] H

n . X ,
we thus have convergence of u in two iterations, whatever the

value of A% ¢ H. For p # r the rate of convergence of the
Sequence " depends on the ratio %. ]

We now consider the convergence of the sequence A, In view
of (4.55) we have Ba" = -+ B®'B) BT,

or alternatively

(4.58) Bt = - Lpi”
where P = (BtB)-lBt is the projection operator from H onto ImB.

By substituting (4.58) into (4.53), and by using (4.52), we obtain

T - Py 3l - Lypin
(4.59) A = (1 ]ﬂ_) X +p(I+r r)P)\ ,¥nz0.

By projection of (4.59) onto ImB, then onto the orthogonal subspace

Ker Bt we thus deduce

(4.60) P = - BEXY, ynzo,

(4.61) @03 = - 2 a-mi® ynzo.

In the case where  p = r we thus have convergence of PA" in two
iterations. The projection of A"-)1 onto Ker Bt "decreases" by
the factor (1- TE;), i.e. in the case where p = r, a factor of
I%;. If we choose AO in ImB we thus have, for o = r, converg-
ence of A% in two iterations. 1f 2° is chosen arbitrarily in

" to » = Bu will be faster the larger the

H the convergence of A
value of r, when p = r. As regards the sequence pn it follows
from the preceding relations that

-n 1 n-!
P =T (1-P)X H

“ We recall that B <njective with ImB closed in H implies that

BtB is an <Zsomorphism of V onto V.
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the sequence prl thus behaves like the sequence (I—P)Xn. -

The preceding analysis indicates that in certain cases we may
expect a faster convergence for un than for An or pn. Such
a phenomenon has in fact been established experimentally (see
GABAY-MERCIER [1]) in the case of the elastoplastic torsion problem
(see Section 1.1, Example 2). It also appears, in the light of
numerous numerical experiments, that the choice of o = p =X

n
is "quasi-optimal".

It is also easy to show that the convergence of ALGl will be
faster the larger the value of r. From a practical point of
view, however, the situation is rather more complex: in fact, the
conditioning of the system (3.4), (3.5) gets worse as r increases,
so that the speed of convergence of the relaxation algorithm (3.8)-
(3.10) decreases. Moreover the choice of the termination test for
the internal iterations (3.8)-(3.10) and the effect of rounding
errors also play a part. Experimentally the combined effect of
these factors - namely, with an increase of r an acceleration of
ALGl but a slowing down of the internal relaxation algorithm - leads
in many cases to an algorithm whose overall speed of convergence
(in terms of computation time) depends relatively little on the
choice of r; this fact will be illustrated by the various examples

considered in the following chapters.

5. CONVERGENCE OF ALG2

In this section we shall show that under quite general assumpt-
ions on F and G we have convergence of ALG2 under the condition

1+V5.

0<pn = p<(——§—0 r ; we do not know whether this result is optimal,
since in certain particular cases (G linear, for example) the upper
bound of the interval of convergence can be replaced by 2r . In
fact this question becomes somewhat academic in character (in our

opinion) since in the various applications of ALG2 which have been

undertaken the optimal choice for p seems to be p =1r .

5.1 General case

We are now going to consider the convergence of ALG2 under the

same assumptions as those used in Section 4.1 for ALGL.
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We have

THEOREM 5.1: We assume that ir admits a saddle-point {u,p,A}
on V x H x H. Under the assumptions on B, F, G used in Section
4.1, and if on satisfies

.1 0<p_=p < (“2‘@) r,

we have for ALG2 the following convergence results

(5.2) u® s u strongly in V,

(5.3) pn + p strongly in H,

(5.4) AT Lo strongly in H,
(5.5) A% 45 bounded in H.

L
Moreover 1f A is a (weak) cluster point of A% in H, {u,p,2} s
a saddle-point of £, on V x H x H.
Proof: We again write o" = uP-u, P = pTop, AT = A= X ; {u,p,r}
being a saddle-point of =£r on V x H x H, we have

(5.6) G(v)~G(u)+(A,B{v-u))+r (Bu~-p,B(v-u)) 20,¥YveV,
(5.7) (1~“('3(p>,q-p)+1“](q)-Fl (p)-(A,q-p)+r(p-Bu,q-p) 20, Yq e H,
(5.8) A = A+p(Bu-p), ¥ n.

In addition, (3.12)-(3.14) imply

(5.9) G(v)-G W™+ ", B(v=u®))+r (Bu"=p" !, B(v-u™)) 20, Vv eV,

(5.10) (FL (™ ,q-p™)+F | (@)-F (p™) = (A", q-p)+x (p"-Bu",q=p") 20, Vq ¢
(5.11) AT o M (BuB-p™y.

We set v = un in (5.6), gq = pn in (5.7), then v = u in (5.9)

and g = p in (5.10); hence by addition
(5.12) r]8a® ) 2-r 7, Ba™)+ (AR, Ba™) <0,
(5.13) (Fc')(pn)—Fc',(p) ,p"-p)+r |3 2 3P, Ba™ - (37, 5™ 50.

Adding (5.12), (5.13) and regrouping the terms, we obtain

(5.14) (F! (p™=F} (p),p"=p)+r|Bu" 5" | 2 (30, B PN 4 (3757, BEY) <0,
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Also, subtracting (5.8) from (5.11) and taking the scalar square in

H, we obtain

(5.15) [RP2- 3% 2 2 2 2p(Ba-pR, XY -0 | Ba"-p7 2.

It then follows from (5.14), (5.15) that

(5.16) |xP2- 30 2 s 2p(F;(pn)-Fé(p),pn-p)+D (2r-0) |Ba"p"|%+20r (3757, B2

We now try to modify the final term on the right-hand side of
(5.16) .

Starting from
BaM = (BGn—BEn_l Y+ (Bl_.ln_ 1 _En—l )+5n—1

we thence deduce

-n -n_-n- - -n-1 -n -n- -n-1 -n-1 =n_-n-! -n~1 -n_-n~-1
(5.17) (Bun’pn_pn 1) _ (Bun-Bun l’pn_pn 1)+(Bun l_pn ’pn_pn y+(p 7P 3.

From (5.17) and from

—n-1 =n -n-1, _ 1 ,i-n2 (-n- -n_-n-
RS- S b R s L e
7

we deduce that

QDr(BGn,Bn-Sn—l) - 2pr(gan_sgn-l,5n_5n—l) N

(5.18)
-n-1_=n-1 =n_-n= - —n-12_|-n_-n-142

DTG T P i e i e S O

Considering (5.10) on iteration n - 1 instead of n, we have
N | n-1 n-1 n-! n-1 n-1 n-1 n-1
(5.19)  (F (p" ),q=p I+F (@)-F,(p )-(A" ",q-p  )+r(p  -Bu ,q-p ) 20.
Taking q = pn_l in (5.10) and q = pn in (5.19) we obtain by
addition
- _1 - -—Ty— - —y— - - _] -

F! (pH-F (" D S o e e

(5.20)

- rea™ma™ ! 5 <o,

L]
It follows from the monotonicity of FO, and from (5.20), that

(5.21) rlsn_gn—]lZ_(Xn_Xn—]’En_sn—l)_r(BGn_BGn—l’Bn_;n-l) <o.
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We have (from (3.14))

(5.22) PU LS ke

It then follows from (5.21) and (5.22) that

=-1_-n-1 =n_-n-! -n_,-n-1 —n_5n~l) <0,

npt I]Z'D(Ban -p~ ;P -p )-r(Bu -Bu ,p

rip -

i.e.

1 =n_

(5.23) r(Bl_ln—Bl-ln— >P )>r|p pn ]‘2 -n-1_-n-1 =n -n—])'

-P(Bu -p° ,p -P

It then follows from (5.18), (5.23) that

ZDI(BGH,En—p ) >Dr(lpn]2 —n—]|2)+pr[p ~n-] |2 +

(5.24)

-n~1 -n-1 -n -n-1
+ 2p(r-p) (Bu" ~p" ],pn'Pn ).

Finally, combining (5.16), (5.24), we obtain

—n+1

R 2eor 577 1= Poor 5715 = 20 M F) () 5 00+

(5.25)

1 -n-]_=n-1 -n_-n-1
+p(2r-p) | a7 2epr | 5257 | 2420 (x-p) (835" P

Then using the Cauchy-Schwarz inequality it follows from (5.25) that
vo>0 we have

n+1

R 2or 571 2- (1™ 2or 371 2 20 (71 6™ -F () B+

(5.26)

-n-1_-n-1,2

- -1,2
2™ 20l r-p| & 83757 Baa 5™ )

+p(2r-p) | Ba"-p"| Z+pr | p7-

If p =r it is clear that by utilising the same method as in the
proof of Theorem 4.1 we have (5.2)-(5.5).
If 0<p<r, taking o =1 and observing that |r-p|= r-p, and

taking into account (5.26), we have
_2 -y -_ry-] =71 - - - -
(IAnI +pr|pn 1|2+p(r-p)|Bun ]_pn 1Iz)-(|kn+l|2+pr|pn|2+p(r-p)|Bun-pn|2)Z

n_; n 1,2
<

2 20(F) ¢" )-F (P, p ) +pr|Bu"-p | +0 |P

which implies, as in Theorem 4.1, (5.2)-(5.5). If o > r we have
[r - p] = p - r; it then follows from (5.26) that the convergence
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results (5.2)=~(5.5) will apply if we have o < py+ Where
_ 1
py(2t-py) = = oy (py-1),

(5.27)
Pyr = GQM(DM—Y)-

By elimination of « we deduce from (5.27) that

2 2
pM - rpM -r =0
i.e. (since oy 7 0)
_1+VE
Py 2

Taking into account the convergence results (5.2)-(5.5), the

weak cluster point property of {An}n in the statement of the
Theorem can easily be deduced, by proceeding to the limit in (3.12)-
(3.14). .

5.2 Finite-dimensional case

Using a variant of the proof of Theorem 5.1, together with Lemma

4.1, we can easily prove the following:

THEOREM 5.2: Suppose that the assumptions on V, H, F, B, G

are those in the statement of Theorem 4.2. Then 1f
145
Q< = < ———
0T Ty

the conclustions in the statement of Theorem 4.2 are still valid.

5.3 Discussion. Choice of o and of r.

We begin with some remarks:

Remark 5.1: If G is Ilinear it has been proved by GABAY-MERCIER

[1] that ALG2 converges if

0<pn= p < 2r.

The proof of this result is rather technical and does not seem to be

extendable to the more general cases considered in this book. -
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Remark 5.2: In the case where G 1is linear we note that the
stage (3.12) of ALG2 is a linear problem relative to the symmetric
operator BtB. Consequently, in finite dimensions (and assuming
B injective) it will be convenient to factorise once and for all

(for example by Cholesky's method) the matrix BtB which in this case

is symmetric and positive definite. L]
Remark 5.3: Here again, as we have mentioned in Remark 5.1 for
]
ALGl, we can replace the coercivity assumptions on FO(.) by an
'
assumption on G (.). =

On the choice of p and r.

We saw in Section 4.3 that if F(q) = ;-Iql2 and if G is linear,
then the sequence {un}n relating to ALGl converges in two iter-
ations at the most if we use Pp =P = r. In the case of ALG2,
with the same assumptions on F and G, we alsoc have convergence of

{un}n in two iterations at the most if o p =r =1 (for any

n =
choice of {po,Al}). This fact would appear to indicate a rather

greater degree of robustness for ALGI.

In general, for given r, experience indicates that the best
choice is p = r. The choice of r 1is more problematical and
in this respect ALG2 is more sensitive than ALGl. Also, for very
"stiff" problems ALGl would appear to be more robust than ALG2; by
this we mean that the choice of r is less critical and that the
computation time with ALGl may be much shorter for a given problem

than with ALG2.

6. APPLICATION TO SOME NONLINEAR PROBLEMS

6.1 Introduction

The purpose of this section is to show via several examples that
the methods developed previously are applicable to a variety of
different types of problem. In certain cases, we shall re-encounter
classical methods for which the algorithms ALGl and ALG2 will provide
solution procedures which are often simpler than the usual techni-
ques. In other cases we shall obtain deccmposition procedures
which appear to be new and which may possess certain advantages from

the algorithmic point of view. Generally, it will be established
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that the decomposition methods of this chapter can extend to a very
diverse range of applications, and that they constitute a flexible
means of approach to optimisation problems, in a manner which is

sometimes rather non-standard.

6.2. Case of the examples of Section 1.1 (Flow of a Bingham

fluid and elastoplastic torsion)

The application of algorithms ALGl and ALG2 to these problems has
already been described in Section 3.3 and we shall not go over this
ground again. We shall content ourselves here with a few remarks.

As regards the convergence of the algorithms, we recall that we have
v 2
(6.1) Fq) = ﬂ la]“ax + ¢ J la]ax
Q Q

in the case of a Bingham fluid, and

(6.2) F(q) = %J lq|? ax + I:(0)
Q

in the case of elastoplastic torsion. In both cases, we can write®

FOQD = % J|q|2dx, this functional being differentiable and strictly
Q

convex. It can be shown without difficulty that all the assump-

tions of Theorem 4.1 and 5.1 are satisfied.

As regards the choice of p and of xr, we note that these pro-
blems are very closely related to the case dealt with in Section 4.3.

Experimentally, (GABAY-MERCIER [11]), it has been established that for
n

ALG2 the convergence of u" is faster than that of pn or A for
p=xr =1, It would certainly appear that the choice of r = 1 is
optimal in this case®. We shall return to the above topic in more

detail in Chapter V.

6.3 A nonlinear Dirichlet problem

This description follows the approach of GLOWINSKI-MARROCCO [11];
the problem described will be considered in detail in Chapter V.

For 1 <s <+ =, and with  a bounded open subset of iRN, we

This assumes v = 1 in (6.1).
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consider
(6.3) WOt = vl el®®, Wweat ", vl = 0} .
We wish to solve in & the following nonlinear Dirichlet problem

- W %y = £ n g,

(6.4)
u[r=0
-1,8' 1,1
where few (D (;+§‘ = 1).
It can be shown by standard techniques, (see LIONS [21), that (6.4)
possesses a unique solution which is also a solution of the minimi-

sation problem

(6.5) Min [ % J|Vv]sdx - <,y .
l,s
vew0 ()
We note that Wi’S(Q) ig not a Hilbert space®. We cannot therefore,

in the infinite-dimensional case, apply the convergence theorems of
ALGl and ALG2. One way of surmounting this difficulty is to con-
sider a discretised problem. We shall then be in a space of finite
dimension and it will be possible, the conditions of application
being satisfied, to utilise ALGl and ALG2 for the solution of the
approximate problems. To avoid introducing new notation which will
needlessly encumber the discussion, we shall be satisfied with a

formal argument relating to the continuous problem.

Thus suppose

veult@, = at@f, w = af @),

B =Y.

We then put
1

F() = F_(q) = ;j la] ax,
(6.6) Q

G(v) = - <f,v> ,
hence
¢ Except if s = 2.
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6.7) F'(q) = qlq]% .

First we note that we clearly have

(6.8) lim -Frﬁl -+ @,

laf, >+ s

where q is the norm of g in (LS(Q))N, i.e.
s
s

(6.9 lq] =(J lq|%ax) /5.
Q

Moreover, for any p,qg ¢ H (see for example GLOWINSKI-MARROCCO [1],
CIARLET [1]), we have

(6.10) (F'(@=F'(p),a-p) = alg-p|?  if s22,
2
alg-ply
(6.11) (F'(Q)-F'(p),q=p) 2 ————— ¢ if 1<s =2,
(plgtlaly
In addition we can show that
(6.12) IFr@-r' @], s 8el +lal )% lamel, 5 s22,
and
(6.13) IF'(q)—F'(p))|S'Sﬁlq-pl:_l if 1sss2.

The constants a and B are independent of p and of g and are

strictly positive.

For the solution of (6.4) or (6.5) we shall use the augmented

Lagrangian:

(6.14) £ _(v,q,u) = '—J lq|%ax - <£,v> + -‘—J |Tv-q | Zax + J pe (Vv-q)dx.
r s Q 2 Q Q

The algorithm ALGl can then be written:

1
(6.15) AOE(LS GD)N, arbitrarily chosen;
n

for n =z O, A being known, calculate the solution un, p of

-riu® = f+V'An—rV'pn in §

(6.16)
n
Ir' =0,
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(6.17) |p™ 572 Perp™ = rvumar®,
then
(6.18) A A+p_(Tu"-p™.

The system (6.16), (6.17) can be solved by the relaxation method
(3.8)-(3.10). We note that, by means of an appropriate discreti-
sation, the nonlinear problem (6.17) decomposes into a family of
two-dimensional problems which are easy to solve. To obtain ALG2,

we replace (6.15) by
(6.19) {po,X]}e}iXH‘ arbitrarily chosen;

and (6.16) by

-1

- rhe” = f+V'An—rV-pn in ,

(6.20)
"l

u =0.

T
The properties (6.8) and (6.10)-(6.13) allow, in finite dimensions,
the Theorems 4.1 and 5.1 to be applied and the convergence of the
above algorithms to be thereby deduced. Numerical experiments show
that the direct solution of (6.4) for s in the neighbourhood of 1
or s large (e.g. s < 1.5 or s > 5) by standard iterative methods
(conjugate gradient, Newton-Raphson , nonlinear overrelaxation,
etc...) is very difficult. To our knowledge, the only really eff-
icient methods in this case are ALGl and ALG2. For more details

see Chapter V.

6.4 Application to the solution of mildly nonlinear systems and

relationship with alternating direction methods

The algorithms ALGl and ALG2 can also be used ({(assuming the in-
troduction of an appropriate augmented Lagrangian) for the solution

of mildly nonlinear problems of the type

(6.21) Au+@(u) = f,

where, limiting ourselves to finite dimensions and writing

v = {vl,...vN}:
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- A ils an N x N symmetric positive definite matrix,

-9 :]RbJ - Ey is a nonlinear mapping of diagonal type, i.e.

(Cp(v))i = @i(vi) , i=1,...N,

with Qi : IR -~ IR, continuous and increasing {(we can always assume
that ¢, (0) = 0),

- f eimN.
The discretisation by finite differences or finite elements of
certain mildly nonlinear elliptic or parabolic problems leads to
problems of the type (6.21) (some examples will be given in
Chapter IV).

Remark 6.1: The algorithms which we shall be describing for
solution of (6.21) extend to the case where A 1is non-symmetric,

and positive definite. "
We define Y i =1,..... N,

t
b, (6) = J ¢, (mart .
[o]

Since the function Qi is continuous and increasing it follows that
¢i is Cl and convex. Since the operator A is symmetric it
follows that solving (6.21) is equivalent to solving the minimis-

ation problem

Ju) £J(v) yveR',
(6.22)

ueRN,

with, in (6.22)

N
1
(6.23) J(v) = 7 (Av,v) + .Z ¢i(vi)—(f,v)
i=]
where (.,.) denotes the canonical Euclidian inner product on Eﬁ
and || denotes the associated norm.

The above properties of A and ?; imply that (6.21), (6.22)
admits a unique solution.
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Remark 6.2: If A 1is non-symmetric and positive definite, it

can easily be shown that (6.21) still admits a unique solution. ]

The problem (6.22) is a particular problem (P) in which, with the

notation of Section 1.1, we can take

(6.24) V=H=R, B=1,
N
(6.25) 6(v) = ] ¢, (v)-(£,v),
i=1
(6.26) F(g) = F _(q) = % (89,9) = Fl(q) = Aq.

By virtue of this decomposition we can solve (6.21), (6.22) by ALGl

and ALGZ2 (note that in the present case G is nonlinear).

Remark 6.3: Instead of defining G and F by (6.25), (6.26),

we could use

G(v)

1]
fhaz

¢; (v,

i=]

F@) = 5 (Aq,0) = (£,0). ®

We naturally associate with (6.24)-(6.26) the augmented Lagrangian

N
1 2
(6.27) £ _(v,q,1) = 7 (Ag,q) + iZﬁ’i‘Vi)"f’“) + 5 lv=all "+ (u,v-a).

Since the constraint v - g = O is linear, ix: admits a saddle-—
point on ZRN X Ey XZEN. This saddle-point is in fact unique and

equal to {u,u,Au}.

Solution of (6.21), (6.22) by ALGl;

It follows from (3.4), (3.5), (6.27) that the application of ALGl
to the solution of (6.21), (6.22) leads to the following algorithm

(6.28) A% R,

then for n =z O,

(6.29) ru™+p®) = f+rp At
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(6.30) (r1+a8)p® = ru™aA",

(6.31) A2 A @™

The nonlinear system (6.29), (6.30) can be solved by the block rel-
axation method of Section 3.2 and we note that, pn and AT being
known, the calculation of un in (6.29) reduces to the solution of
N nonlinear equations, each in a single variable, which are indep-

endent of each other and of the form

(6.32) e+ (E) = b , i=1,...N.

The parameter r being > O and Py being c® and increasing,
equation (6.32) admits a unique solution which can be calculated by
various methods (see HOUSEHOLDER [1], BRENT [11).

Similarly if u" anda A" are known in (6.30), we obtain pn by
solving a linear system with matrix rI+A. Assuming r indepen-
dent of n, it is thus convenient to factorise rI+A once and for
all (by a Gauss or Cholesky method) .

Solution of (6.21), (6.22) by ALG2:

It suffices to replace (6.28) by

(6.33) (411 RV xRV,
and (6.29) by
(6.34) run+@(un) = f+rpn-]—kn.

It then follows from Theorem 5.2 that we have convergence of (6.33),
(6.34), (6.30), (6.31) if 0<p_=p <IN5

2
Remark 6.4: Suppose that pp=P=r in ALG2: we then have
run+¢(un) = f+rpn—]-kn,
(6.35) rpn+Apn = run+kn,
AP M W™

It then follows from (6.35) that

(6.36) AL

We then deduce from (6.35), (6.36) that

(6.37) ru+ ™) +ap™ = farp®!
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(6.38) epPeap™+o(u®) = f+rp™ .
Consequently therefore, if Py =P = r, ALG2 reduces (putting
-1
u" = pn ‘)  to an alternating direction method applied to the sol-

ution of (6.21) (we shall return to the above topic in Chapters IV
and IX).

Remark 6.5: We shall see in Chapter IV that ALGl combined with
the block relaxation method of Section 3.2 is more robust and more
efficient than ALG2 if ¢ 1is of "low" differentiability; this will
be the case if for example we use a finite-element or finite-
difference approximation of the non-linear elliptic problem
-Au+u[u|s-2 =f in Q,

(6.39)
“lr"'oa

with 1 < s < 2. Chapter IV will give a number of results of num-—

erical experiments relating to problems of the type (6.39). .

7. APPLICATIONS TO NONLINEAR PROGRAMMING PROBLEMS

In this section we shall be presenting two families of applic-
ations of the methods of this chapter to nonlinear programming.
The first, described in Section 7.1, is linked to the augmented
Lagrangian methods introduced by ROCKAFELLAR [1] for the case of
inequality constraints. This involves a natural extension of the
method of Hestenes and Powell studied in Chapter I. In this res-
pect, algorithm ALG2 can be considered as a new technique for ob-
taining the required saddle-point. We shall then present in Sect-
ion 7.2 another approach which, in somewhat more tangible fashion,
is based on a decomposition principle which results in a decoupling
of the constraints. Finally, in Section 7.3 we shall describe an
application of the methods of this chapter to the solution of the
so—called Weber problem, in connection with which some numerical

results will be presented.

7.1 An augmented Lagrangian in the case of inequality

constraints

We consider here in Ey a classical nonlinear programming problem

subject to inequality constraints:
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Inf F(v) , vsRN,
(7.1)
gi(v) <0, i=1,...,M.

We shall assume that the M functions g; are convex and we write

G :RN->RM,
(7.2)
(G(V))i = gi(v) , i=1,...,M.

The problem (7.1) can clearly be written in the form:

Inf F(v) wunder the constraints
(7.3 {v,q}
M
}i=1

a0, 6(v) = q¢ (withqs<0 & q <0 ¥i=1,...M 2f q = {q ),

i
which leads to the augmented Lagrangian

7.4) £, (v,q,0) = Fw+E |6w-al 260

M

1/2

where lq} =C ] q?) /.
i=]

The minimisation with respect to g can be carried out directly
(see Section 2.3); in fact, for fixed v and u, it can easily be
shown that for g < O the minimum is attained at g = p, where,
for i =1,...,M, we have

|t . M
(7.5) P; = P\Tre;(v)) = min{0, -+ gi(v)} .

Substituting (7.5) into (7.4), we obtain with the notation of Sect-
ion 2.3
2
H,
2 i
+e, |- 51,

M H.
(7.6) L (v,u) = F(v) + Z { E—Imax(O,—l
r i 2 r

which corresponds directly with the form given by ROCKAFELLAR [1].
A UZAWA-type algorithm for Lr(v,u) requires the minimisation with
respect to v, with u fixed, of Lr(v,u). This requires the sol-

ution of a highly nonlinear problem.

We now consider algorithm ALG2 for £r(v,q,u). If we assume
that F and G are differentiable, for given Al and po, we

can determine u” then pn by



(SEC. 7) NONLINEAR PROGRAMMING PROBLEMS 137

(7.7 F' @™+ (™) re ™ -rp™ 1 +A"] = 0,
and

n
(7.8 p‘i‘ = min {O,gi(un)+ ATl Y, i=1,...M,
Finally, we can calculate An+l by

Xn+1

(7.9) = AMpe™-p™.

In the case of affine constraints, Theorem 5.1 assures the conver-
gence of this algorithm under gquite general conditions on F. We
have not tried to extend this proof to the general case. Similarly
the use of ALGl and of the relaxation method (3.8)-(3.10) can be
considered as being equivalent (apart from the solution method) to
the application of a UZAWA-type algorithm to Lr(v,u). Viewed in
this way, the use of ALG2 is a variant in which the minimisation of

Lr(v,u) with respect to v 1is carried out in an incomplete manner.

7.2 Minimisation of a functional over an intersection of convex

sets

7.2.1 Statement of the problem

Let V Dbe a real Hilbert space. We consider on V a funct-
ional F, which is convex, proper and l.s.c. We wish to minimise F

over the (non-empty) closed convex set K, where we have

M
(7.10) K=[]«x
i=1
where for i =1,...,M, each of the Ki is itself convex and
closed.
Remark 7.1: This situation obviously encompasses the classical

case of Section 7.1. It suffices to put K, ={v|gi(v)50}.
We shall present here another procedure for associating an augmented

Lagrangian with this problem. s

Remark 7.2: An important particular case is that where F 1is

quadratic, 1i.e.
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i )
(7.11) F(v) = E—a(v,v)— <f’V>V‘XV =5 AV, VPiig T <f’V>V'XV .
In (7.11), a(.,.) is bilinear, continuous, symmetric and V-elliptic
(i.e. a(v,v) ZaHvﬂé YveV, a>0) and the operator Ae 2 (V,V') is de-
fined by a(u,v) = <Au,v> vyu,veV.

The problem to be solved can then be written in the form of a

variational inequality:
a{u,v-u) z <f,v-u> ,yvek,

(7.12)
ue K.
a(u,v) is not

This formulation can be extended to the case where
In the latter case (7.12) is no longer equivalent to a
[ ]

symmetric.
minimisation problem.
We shall now introduce for the solution of this problem a de-

composition principle whose aim is to obtain a family of optimis-

ation problems, coordinated via a Lagrange multiplier.

We thus put
M .
(7.13) W={{v,q}EVXV,v—qi=0, vis=t,..., M},
and

x = {{v,qlew , qieKi,Vi=l,...,M}

(7.14)
It is clear that the original problem is equivalent to

(7.15) inf £ (q) ,
[a]
{v,q}ex
where we have written,
. M
(7.16) £ =5 I Fla.
1=]
Suppose IK is the indicator function of the convex set Ki' We
i
write
M
(7.17) £1(@ = 1 I (ap).
i=] 1

It is then natural to consider the augmented Lagrangian
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1(ui,v-qi)v

[N
I~

M
T8 g = f @ @ gy T Ivg ey

We thus look for a saddle-point of £r on V x VM X VM. The ex-
istence of such a saddle-point poses no problem in the finite dim-

ensional case.

Remark 7.3: The formulation (7.18) will be simpler to work with

if V 1is identified with its dual. This poses no problem in
finite dimensions. It will suffice to equip R  with the
Euclidian metric. If another metric is used, we shall indicate at

that time the modifications which need to be made to the algorithms.

7.2.2. Solution of the problem by ALGl and ALG2

In accordance with the general results, algorithm ALGl is here

written as follows:

(7.19) A° e VM specified arbitrarily;

for n = O, and with AR known, calculate the solution {un,pn}

of the system

1 ¥ 1 i n
I S o PR
i=] i=1
LN n

F(q;)-F(p; )+r(p 29;P; ) 2 (ru+r,q,7p;)y Va; €Ky,
(7.21)

p. € K. , i=1, »M,
then AMTL by

n+l n n _n -
(7.22) Ai = Ai + pn(u —pi), i=l,...,M.

We note that (7.21) is a system of variational inequalities, each
of these inequalities involving only a single constraint p? € Ki.
In many cases each of the problems decoupled in this way will be
easier to solve than the original problem. For example if we use
an algorithm based upon a projection onto K, it is in general much
easier to project onto each of the Ki independently than onto
their intersection. The same remark also applies for algorithms
requiring the construction of an admissible solution. Also, such

a process is well adapted to parallel computation, the possibility
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of which can be anticipated on future computers. We can clearly

pass from algorithm ALGl to ALG2 by replacing (7.19) and (7.20) by:

(7.23) {po,kh eVMﬂﬁi chosen arbitrarily;
and
n 1 i n—1i 1 b n
(7.24) u =ﬁ.§ P} —m'z A
i=] i=1

The calculation of u" and pn has become sequential and no lon-
ger simultaneous, but the M components of pn can be calculated
independently of one another, and in particular can be calculated
in parallel.

By way of an example, we consider ALG2 in the particular case
where F is of the form (7.11). In order to fully describe the
algorithm we introduce the operator S of isomorphism between
V and V'. (We have S =1I if V 1is identified with its dual).
We clearly have

(7.25) (u,v)V = <Su’V>V'XV .

Using this notation, the algorithm ALG2 can be written:

(7.26) {po,kl}sVMXVM chosen arbitrarily;
n lM n-} 1 ¥ n
(7.27) u=-ﬁ£pi -min R

1 i=1

n n n n 1, n n 1.
- - > —p> o+ < N gL -p>
a(p;,q;7p)+T(p;59;7p )y = <E,q;-p > + <S(ru+r;),q;-p;
(7.28)
va, €K, pti‘eKi , i=l,...,M,

n+l _ ,n n_n s
(7.29) )\i = )\i + On(u pi) s, 1=1,...M.

Such an algorithm can also be applied in the case where the bi-
linear form af(u,v) is V-elliptic, and non-symmetric. If, in the

symmetric case, we equip V with the norm HvH2 = a(v,v) = <Av,v> ,
(7.28) becomes

n. n
(1+1) <Ap{,q -p}> 2 <f,q.-p;> + <A(ru™u)), q;-p;>
(7.30)

n .
tieKi , pieKi , 1=1,...,M.
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Remark 7.4: The algorithm ALG2 has been deduced from ALGl via
a solution method based on a block relaxation. The reader can
easily deduce an algorithm in which problems of the type (7.21) or

(7.28) are solved sequentially and no longer in parallel fashion. =

Finally, we note that the augmented Lagrangian which we have used
is only one possible example. We could for example in (7.13) have

defined alternatively

(7.31) W= {{v,q}eVXVM A TR P PR i=1,...,M}

which would of course have led to quite different algorithms.

Remark 7.5: The methods described in the present section 7.2
can be viewed as fractional-step methods with multiplier, which
in a certain sense generalise the methods described in BENSOUSSAN-
LIONS-TEMAM [1,Chapter 2 1, and which,amongst other things, allow

us to avoid the use of the divergent series utilised in the above

reference. ]

7.3. Application to the solution of the Weber problem

7.3.1. Statement of the problem

Certain authors (see COOPER-KATZ [1], for example) use the des-
ignation Weber problem for the following nondz fferentiable minimi-

sation problem:

(7.32) Min J(y),
yeRo 7
where
M
(7.33) Iy = iz’ o lly=%; 1

with, in (7.33),
. N .
(7.34) cxi>0 ¥i=1,...M ; X, eR ¥i=l,...M,

N

2,1/2
) PR

N
and with |[-]| defined by |lyll= (] 7] (ify = {y5)
? 54 b4

Problem (7.32) admits at least one solution.
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7.3.2. Introduction of an augmented Lagrangtan for the solution
of problem (7.32)

Problem (7.32) is clearly eqguivalent to the problem

M
(7.35) Min { ] “i“‘ii“}’
{393}5W i=1

where

M

(7.36) W= {{g,y eRUR g = {00},

N .
g;€R ¥, g, = !-3(1'.} .

It follows from (7.35), (7.36), and from the preceding sections, that

an augmented Lagrangian naturally associated with problem (7.32) is
given by:

=

M M
»4sH) = iz=1 o, Hsi“ + % Il (g-gi)-gillz" izl(gi,(g-gci)-gi),

i_

(7.37) .{r(g

where (.,.) denotes, in (7.37), the ordinary Euclidian inner product
on RNV (i.e. that associated with ) and qu = {ui}?_lk RNM).

Max OLi
Remark 7.6: In the case where

> i -
Mh1ai 1, it would be app

ropriate to use, instead of (7.37), the augmented Lagrangian defined

by

M M M
2
@38 £ Gogw) = Loogligglle 3 T oo llapgill™ 1 os s rxpgp. o

7.3.3. Application of ALG2 to the solution of (7.32)

The application of ALG2 to the solution of (7.32), via the deter-
nination of the saddle-points, in ZRN XIRNM XIRNM of

’

the augmented
Lagrangian (7.37), leads to the following algorithm:

(7.39) {gle}eRNXBFM, specified arbitrarily;

then, for n 2 1, assuming {xnﬂ,kn} known, determine successively
] b o
pn,xn and 5n by

-1 .
(7.40) 3111 = y:(§n -—’-‘i) + .)31:, i=1,...M,
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n “32” et n . n
-t e
(7.41) rllagll
p? = 0 otherwise ; i=1,...M,
n 1 S n 1 n
(7.42) =g o) mm LA
1=1 1=]
n+l _ 4n n__ _n
(7.43) A=A relxoxpp).®

It should be noted that we are not satisfying here the conditions of
application of Theorems 5.1 and 5.2 of Section 5.4. In fact, hav-

ing regard to the choilce made for £r (see (7.37)), we have
M
F@ = ) o llgll
i=]
and G = O0; F is therefore nondifferentiable and not strictly convex.

7.3.4. Numerical applications.

We shall now apply algorithm (7.39)-(7.43) to the solution of a
particular Weber problem; the problem in gquestion (considered in
COOPER-KATZ, loc. cit.) is defined in R’ by the o, and x,
(i =1,...10) in Table 7.1l:

i Q. X,
i

[

{89,731}
{36,89}
{39,9}

{14,5}

{46,12}
{55,1}

{53,64}
{32,57}
{68,42}
{63,92}

- N W 0w

v N O WO W

QO W O N e WN

Table 7.1

We have used algorithm (7.39)-(7.43) with
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(7.44) =02 =0,

(7.45) p=r,

and the termination test

o)
(7.46) R = — < 10
=
(where “2’”1 = ly1|+|y2| if y= {yl,yz}) . In Table 7.2 we have

indicated, for several values of r, the number of iterations nec-
essary for convergence (under the conditions (7.44)-(7.46)) and the

corresponding calculated solutions.

r number of iterations calculated soln.
0.1 41 {51.670,62.159}
1 168 {51.669,62.159}
5 710 {51.666,62.154}
Table 7.2
It will be noted that x° = {0,0} is "rather" far away from the
calculated solutions. The results obtained by means of (7.39)-

(7.43) coincide, to very high accuracy, with those obtained in
COOPER-KATZ, loc. cit., by a steepest descent method; in actual fact
the convergence of algorithm (7.39)-(7.43) is very fast (for r = 0.1)
since (see Table 7.3), as early as the fifth iteration, we already
have a very good approximate solution to the Weber problem con-

sidered.

If instead of initialising algorithm (7.39)-(7.43) by (7.44) we

use Al = 0 and (as in COOPER-KATZ, loc. cit.)
10
7 a.x
o i=1 %
X =5 ( i.e. the barycentre of the x;),

N~
Q
P

He
—

we have convergence, for r = 0.1, in 25 iterations (instead of 41).
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n Rn §n

0 {0,0}

5 | 0.950<107> (51.773,62.166}
10 | o.17x1073 {51.699,62.098}
15 | o.e82x107> {51.687,62.144}
20 | 0.185x107% (51.679,62.154}
25 0.957%10™° {51.674,62.156}
30 | o.512x107° {51.672,62.158}
35 | 0.234x107° {51.671,62.159}
40 | o.109x107° {51.670,62.159)
41 | 0.944x1070 {51.670,62.159}

Table 7.3 (r = 0.1)

8. GENERAL DISCUSSION ON CHAPTER III

As we have mentioned several times in the preceding text, the
methods of this chapter can be extended to variational-inequality
problems which are not equivalent to optimisation problems. They
can also be used, as in BEGIS [2], for the solution of nonlinear
problems of order 4, corresponding to a problem involving the flow
of a Bingham fluid which is more general than the case of Example 1

of Section 1l.1. We shall return to the above topic in Chapter VII.

The decomposition-coordination method which we have presented can
be related to the methods described in BENSOUSSAN-LIONS-TEMAM [1].
Historically speaking, it would appear that the use of an augmented
Lagrangian for solving nonlinear variational problems’ via ALGl and
ALG2 is due to GLOWINSKI-MARROCCO [11, (21, [3]. The first proof of
convergence of ALG2 (in the case where G 1is linear) is due to
GABAY-MERCIER [11].

It should also be pointed out that, depending on the type of pro-
blem considered, natural variations of the algorithms described may

lead to more rapid convergence.

To conclude this chapter, it should be mentioned that by making
use of the results of OPIAL [1], we in fact obtain in Theorems 4.1
and 5.1 (respectively 4.2 and 5.2) the convergence of the whole
seguence (™ to A*, such that {u,p,A*} is a saddle-point of

7 Of boundary value type.
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Z (and of ir) on V x H x H. We refer to G.L.T. [2, Appendix 2]

for a proof of this result in a more general context.



CHAPTER IV

NUMERICAL SOLUTION OF MILDLY NONLINEAR PROBLEMS
BY AUGMENTED LAGRANGIAN METHODS

M. Fortin, R. Glowinski, T.F. Chan

1. INTRODUCTION

This chapter partly carries on the work of CHAN-GLOWINSKI [11, [2]
and extends the algorithmic part of it, in particular the part deal-
ing with approximation by finite element methods and with the use of
quadrature formulas. We shall also see how, by a judicious choice
of the functional spaces and of the decomposition, we can obtain
hybrid finite element methods and solve the corresponding approxi-

mate problems by augmented Lagrangian methods.

We shall present some numerical results illustrating the potent-
ialities of the methods described below and we shall show the close
links which exist between these algorithms and the alternating

direction methods of Peaceman-Rachford and Douglas-Rachford.

In the remainder of this chapter we shall thus be considering the
numerical solution of mildly nonlinear problems of the following type,

on a domain § of R with boundary 9 =T

Au + ¢(u) = f Iin Q,
u=0on T,

where, in (1.1), we have:

(i) A is a second-order elliptic operator, possibly
non-symmetric,

(ii) ¢ is an increasing mapping (in the wide sense)
continucus from IR into IR,

(iii) £ 1is a function defined over Q.

As we shall see later, the results obtained can be extended to

147
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*
multivalued equations ) of the type

(1.2) fe Au + 3j(u),

1
where 3j(u) denotes the sub-differential with respect to u of a

convex functional J(.),.

We shall first briefly review the results of CHAN-GLOWINSKI [11,[2]
concerning the existence and the uniqueness of a solution of prob-
lem (1.1), then we shall next describe a procedure for approximating
this problem by a finite element method. Finally we shall show how
- using the methods of Chapter III - we can decompose problem (1.1)
through the use of a suitable augmented Lagrangian so as to obtain

the classical alternating direction methods.

2. A CLASS OF MILDLY NONLINEAR ELLIPTIC PROBLEMS

2.1. Formulation of the problem

We consider a bounded domain §{ in IRN, with sufficiently reg-

ular boundary T (say, Lipschitz continuous in the sense of
NECAS [1]), also (see Chapters II and III for the notation)

, 1

(i) v = HO(Q),

(ii) a continuous linear form L : V>R, i.e. L(v) =<f,v ,
where feV' = H-IGD and where <s,*> 1g the bilinear

form of the duality between V' and V,
(iii) a: V x V +1R, a continuous bilinear form, which is

V-elliptic (i.e. J a>0 such that
2 2 2
2.1 a(v,v)-oalvl1 WweV,

where we write

(*) TITranslator'’s Note: The term "multivalued equation" is used to
denote an equation associated with a multivalued operator; such an
equation is sometimes known under the French name nmultivoque

equation.

See, for example, ROCKAFELLAR [4], EKELAND-TEMAM [1] for the def-
inition of subdifferentials.
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(2.2) vl = (J l9v] 2 ax)'/?
2

2
the usual norm on Hé(Q)).

We do not assume a priori that af(.,.) 1is symmetric.

(iv) a continuous function ¢ : IR -+~ IR, increasing in the
wide sense and satisfying ¢ (0) = 0; we put

t

(2.3) (t) = J ¢(1) dt,
0
J s(v)dx if o(v) eL' (@),

(2.4) iwm = {8
+o  otherwise

the function ¢ 1is then convecx, Cl and non-negative with ¢(0) = O;

it can be shown that j(.) is convex, proper and l.s.c. on Ll(Q)
(thus a fortiori on V = Hé(Q)).

Remark 2.1: The continuity of ¢ (.) 1is essential for obtaining
certain of the results of CHAN-GLOWINSKI [1], [2]; formally, at
least, it is in no way necessary for the implementation of the alg-

orithms which we describe in the remainder of this chapter. P

Consider then the nonlinear variational equality problem

Find ueV, such that ¢(U)EL1(Q)nV' and
(2.5)

a(u,v) + <¢p(u),v> = <f,v> WveV ;

we associate with (2.5) the variational inequality problem

ueV,
(2.6)

a(u,v-u) + j(v) - j(u) 2<f,v=u> WveV.

Under the above assumptions on £, a(+,*), ¢(), it can be shown that
problems (2.5) and (2.6) are equivalent and admit a unique solution;

nonetheless problem (2.6) remains meaningful (see LIONS [1],

2 At least, when & is bounded.
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G.L.T. [11, [2]) even when Jj(.) <s not differentiable; this is for
example the case with

2.7) j(v) = J Jv]dx .
Q

The inequality (2.6) corresponds, in general, to a multivalued eg-
uation of the type (1.2). In the case where the bilinear form
a(.,.) is symmetric, problem (2.6) is equivalent to the following

problem in the Calculus of Variations:

Find weV such that

(2.8)1
J(u) sJ(v) WweV,
with
(2.8), IW) = g ae,w) + i) - <E,v>

under the preceding assumptions on £, a(+,*), ¢(+), the minimisation
problem (2.8) possesses a unique solution; this comes from the fact
that, Jj(.) being convex, proper and l.s.c. on V, we can apply to
the problems (2.6) and (2.8) a number of general results concerning
variational inequalities and the minimisation of convex functions;
these results are established in e.g. LIONS-STAMPACCHIA [1],

LIONS 1], GLOWINSKI [1]1, [2], EKELAND-TEMAM [1]. It is shown

in CHAN-GLOWINSKI [1] and GLOWINSKI [1] that the sufficient conditions
of application are fulfilled; it is further shown that ¢(u)eLl(Q)n A
and that there is equivalence between (2.5), (2.6) (and (2.8) if
af{.,.) 1is symmetric). We shall not dwell any further on these
theoretical questions concerning problem (l1.1) and its several
variational formulations; in the following sections we shall discuss
the approximation of problem (1l.1), and its Zterative solution via

decomposition methods of the same type as those in Chapter III.

2.2. Approximation of problem (2.5), (2.6) by finite element
methods

In the following we consider a case where problem (2.5), or one
of its equivalent formulations (2.6) or (2.8), is approximated by a
method of conforming finite elements of the most frequently used
type. The terminology and the notation used in relation to the

method of finite elements are the same as in Chapter II; thus let
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EL be a triangulation of the two-dimensional domain § which

for simplicity we shall assume to be polygonal. We then consider a
space of conforming finite elements of degree k (2 1), namely

0,=
(2.9 Wy = loglv, e @, v |ge B (K) ¥Ke®, v, | =0},

where, in (2.9), Pk(K) denotes the space of polynomials of degree

< k on the element K. Next we consider the approximate problem

Find u € wkh such that
(2.10)

3oy, vy o) * () =3 (o) 2 <€, vymup> - Wy e Wy 3
we have here used the formulation (2.6), but we could equally well
have used the equivalent formulation (2.5) and (2.8). In general
it is not possible to use (2.10) from a practical point of view; in
reality it is not possible to obtain an exact analytical evaluation
of the integrals defining j(vh), and in order to obtain a numerically

tractable problem it is necessary to use numerical integration

formulas in order to approximate j(vh). We thus consider in the

element K of the triangulation €, , s numerical integration points

iR i=1,...s, each being assigned a weight Wy such that we have
s

(2.11) JK £(x)ds = Area (K) i£1 Wy £Cxg).

We then put

S
(2.12) Jptvy) = KE% Area (K) izl wy (v (x,0)),
h

and we consider the approximate problem

Find w e th such that
(2.13)

a(uh,vh-uh)+jh(Vh)-jh(uh)2<f,vh-uh> Vvhe th.

It is clear that the accuracy of our approximation will be influ-
enced by the accuracy of the numerical integration formula, the
choice of which will be guided by the properties of the function ¢ .

For reasons which will become apparent in the following section it
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will be especially desirable to use quadrature formulas which are
capable of integrating exactly the inner product LZ(Q) in th,

hence

s
J u vy dx = Z Area (K) .z wiuh(xiK)vh(xiK)
(2.14) Q Keeh i=t

Vuh,vhe th.

This requirement is not mandatory however; in particular it is not
satisfied in CHAN-GLOWINSKI [1] and GLOWINSKI [1]. However, it
will be essential that the set of points Xk should be Pk—uni—
solvent on K, that is to say (see CIARLET [1l]) that knowing the
s values of a polynomial of degree < k, at the quadrature points,

determines this polyncmial uniquely.

Ezample 2.1: In CHAN-GLOWINSKI [1], GLOWINSKI [1, Chapter 4] an
approximation of the problem by conforming finite elements of degree
one on triangles is used; the integration points are the vertices
of the triangles, assigned weights 1/3, and they correspond to the
degrees of freedom of the approximation. This guadrature formula
is of order one and does not satisfy condition (2.14); nonetheless

it does lead to convergent approximations.

Example 2.2: We consider, still, an approximation by finite
elements of degree one and we use as integration points the mid-
points of the sides of the triangles, these being assigned weights
1/3. This quadrature formula is exzact for polynomials of degree
two and satisfies condition (2.14). It will be noted that the
numerical integration points correspond to the degrees of freedom
of an approximation by nonconforming finite elements of degree one
(in fact that utilised in Chapter II for the solution of the Stokes

and Navier-Stokes problems).

Example 2.3: We consider an approximation by finite elements of
degree two. It is known (see for example LYNESS-JESPERSEN [1])
that it is possible to construct a quadrature formula on a triangle,
which is exact for polynomials of degree 4, and which uses six in-
tegration points. We can moreover use these six points to define

uniquely a polynomial of degree two.
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Examples 2.2 and 2.3 show that condition (2.14) can be satisfied
by the ¢riangular finite elements most usually employed. The case
of quadrilateral elements is even simpler because the corresponding
quadrature formulas (deduced from the Gaussian formulas) are well
known and easily obtained, at least on the reference rectangle.

It is shown in CHAN-GLOWINSKI [1], GLOWINSKI [1, Chapter 47 that the
approximation obtained by using the functional jh(vh) defined by
the quadrature formula in Example 2.1 leads to an approximate solu-
tion which converges, as h - 0, to the exact solution (i.e. that

of problem (2.5), (2.6)). The proof generalises without diffi-
culty and it is even possible to obtain estimates of the approxi-
mation error (these bring in the nonlinearity of the problem). We
shall not dwell any further on these points because our objective

in the present work is rather to describe iterative methods of sol-

ution.

3. AUGMENTED LAGRANGIAN AND DECOMPOSITION OF THE PROBLEM
(2.5), (2.6)

We shall assume in this section, although this is not in fact

essential, that the bilinear form af(.,.) 1is symmetric.

3.1 Construction of the augmented Lagrangian. (I) Continuous

case.

In accordance with the general principles introduced in Chap-
ter III, we shall first try to decompose problem (2.5), (2.6) by
introducing a supplementary artificial variable. The coordination
is then achieved by means of a Lagrange multiplier and a penali-
sation term. As we shall see at a later stage the choice of the
decomposition is not unique, and the one which we shall consider in
this section is the one which to us appears to be the simplest of

the various possible choices.
Referring back to the notation of Chapter III, we put
1 2
3.1) v = HO(Q), H=L"(Q)

and we take as the operator B the canonical injection of V

into H; we then define G(.) and F(.) by
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(3.2) G(v) = 7 a(v,v) - <f,v>
and

3.3) F(q) = j(@),
respectively.

We then consider the augmented Lagrangian £r : VXHXH-+R, de-
fined by

2
(3.4) £ (V1) = 5 aw, (@) - <E,v> + (yv-a) + 5 vl

(where

and  (*,*) = (*,*) ).
2@ L2(@)

It is clear that if {u,p,A} 1is a saddle-point on V x H x H of
the augmented Lagrangian ir' we then have u = p, where u 1is the
solution of problem (2.5), (2.6), (2.8); we have obtained (3.4) by
introducing the artificial variable q and by imposing the con-
straint v - g =0 in LZ(Q). Proving the existence of a
Lagrange multiplier A poses no difficulties in this particular

case.

3.2 Construction of the augmented Lagrangian. (II) The

discrete case

To approximate the augmented Lagrangian (3.4) via a finite ele-
ment method, it is necessary to define an approximation of LZ(Q)
in order to approximate the functions g and p appearing in (3.4);
moreover we need to keep in mind that our objective is to obtain
algorithms in which the treatment of the nonlinear part is purely
local.

In regard to the approximation of LZ(Q) a natural choice is to
consider

(3.5) Up = Lyl Oy e B® ¥R G},

that is, to use the same finite elements as in the construction of
th, but suppressing the matching conditions at the interfaces of

these elements. We then approximate the functional j(.) using

(2.12) and we consider for vy e th, qp € Qkh’ Uy € Qkh
augmented Lagrangian defined by

the discrete
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_1 . _ _ r.o_ 2
(3.6) £ o (Vpodpoiy) = 7 20w v +i(g) = <f,vp> + Qv =g )+ Fvp-a | .

3, ()
h
(via 2.12)) satisfies the condition (2.14), i.e. allows the inner

Now consider the case where the quadrature formula defining

product in L2(Q) of two functions from Qkh to be calculated ex-

actly; in this case we then have
1 s
Lo Ve = 7 alvpsvd+ip(qy) - <f,v> +

S
3.7 o I a0 T g 0Gay O () O, () g () +
€ i=1

2
+ 7 v 0-a, (011

If condition (2.14) is not satisfied, the Lagrangians defined by

(3.6) and (3.7) are distinct. However if v, = qh, whenever these

h
two functions coincide at the quadrature points, it is permissible
to use (3.7) for the numerical solution of the approximate problem
(2.13); this is the case in particular for the quadrature formula

in Example 2.1.

Before describing the algorithms which will enable the saddle-
points of the augmented Lagrangian (3.7) to be calculated, we will
first introduce a certain amount of notation; it will also be use-
ful to identify the optimality conditions of this saddle-point
problem.

The space defined by (2.9) is a standard space for approx-

W
kh
imation of Hé(n) by the method of finite elements; we shall assume

that functions from th are characterised by Nh

degrees of freedom; for example in the case of conforming finite

scalars, the

elements of degree one (resp. two) we shall use the values

taken at the vertices (resp. at the vertices and the midpoints of
the sides) of the triangles in the triangulation t; (not situated
on TI) to completely define a function from Wlh (resp. W2h).

As regards Q the natural choice of degrees of freedom will be to

kh'
consider the values taken by the functions from Qkh at the quad-
rature points; we denote by Ph the total number of quadrature

points (not situated on T). In order not to over-complicate the

notation unnecessarily, we shall henceforth write N =N P =P

h’ hf
. s . N P P
in addition we shall denote by v,g,u the vectors in R, R , R ,

whose components correspond to the degrees of freedom associated with
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respectively, We then consider the linear

V€ ens %0 € YU Pn € Yne
operator S from HQJ into Ig) defined by

(3.8) ~Slr = {vh(xiK)} for l<icgs, KEt'.h’ xiKg‘F R

i.e. we associate with v the values taken by the function Vhewkh

at the quadrature points not located on T.

We also define the Iinear operator M from E? into iRP, ass-—

ociated with the approximate inner product on LZ(Q), by

S
(3.9 Mp,)gp = ] Area(®) ] wipy (xpp)ay (x50
o qux i=1

where, in (3.9),

M = mb,

) = qh(xiK) =0 if x., ¢ I'; we have

Pp (X5 iK

If condition (2.14) is satisfied we have
(3.10) Mp, D gp = Jgphqh dx  ¥pp,qp € Q-

Finally we denote by A the linear operator from :mN into Bﬁ

defined by

3.11) (Au,v) N= a(uh,vh) Vu.h,vhe th.
TR

With regard to the nonlinearity, we denote by ¢(gq) (resp. ¢ (q)) the
vector obtained by applying ¢ (resp. $) to each of the components
of g.

Taking account of the above notation, the augmented Lagrangian
(3.7) can be written in the form
1
Lo =7 Gr,y) = (Ey) y ¢ Mo@),1) 5+
(3.12) K R R
+ (Mu,Sv-q) , + % (M(Sv-q),Sv-q)
""“"'""RP 2 N L 2 M'"'I{P

where 1 = {1,...1} (e R ).

The optimality conditions of our problem can then be written

(3.13), Au-F + sMA + rs™MSu - rsTMp = O,
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(3.13)2 o(p) - A —rSu+rp =0,

(3.l3)3 Su = P

In cases where ¢ is not differentiable, (3.13)2 would have to

be replaced by the variational inequality

P P
PeR ,and ¥qeR we have
(3.14)

r(M(p=Su),q-p) p ~ (M,q-p) + (MB(g),1) - (M(p),1) >0 ;
S AN A 3R sak g ~ Bl

in practice this inequality has to be solved pointwise at each of
the guadrature points, which in general creates no difficulties

(A and u being known).

We are now in a position to describe the algorithms for solving
the approximate problem (2.13) (of the same type as those consid-
ered in Chapter III) associated with the augmented Lagrangian (3.12).

4. ALGORITHMS FOR SOLUTION OF THE APPROXIMATE PROBLEM (2.13).
DISCUSSION

Bearing in mind the equivalence between the approximate problem
(2.13) and the system (3.13), we shall be applying, for the solution
of the latter, the algorithms of Chapter III. In the following
discussion u, p. } again denote the vectors in EN,IRP, EP assoc-—
iated, respectively, with Uy Py Ah' Thus, having regard to
(3.12), (3.13), we have the following algorithms:

ALGl:

(4.1) XOER?, chosen arbitrarily;
- . . 1

then for a=0, Xngﬂ? being known, determine a®, pn and A™ by
S ¢ (p™-A"~rsu"+rp” = 0,

(4.2)
{Aun + rstMsu® + stMA? - rshypl = F,

(4.3) AT = A w g (su® - p").

Remark 4.1: In the case described in CHAN-GLOWINSKI |11, [2], we

have S = St =

R

::E. s
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Remark 4.2: It should be noted that by multiplying the first
relation in (4.2) by StM, then by adding the result obtained to the

second relation in (4.2), we obtain

(6.4) a” + sTMe ™ = F.

The iterative relaxation method described in Chapter III is applic-

able for the solution of system (4.2); hence for n 2 O we have:

Given the vector A", choose u e arbitrarily, {(for example
n,o _ n-1 - " n,k .
u =u ), then for k 2 O, u being known, solve
successively

(4.5) ¢(pn,k+l) _ >\1'1 - rSun’k . rpn,k+] -0,

(4.6) a4 petusu™ R o st Rt 4 stOR = FL

The results of CEA-GLOWINSKI [1], GLOWINSKI {2, Chapter 51 apply
to (4.5), (4.6) and, using the assumptions already made, we can
prove the convergence of (4.5), (4.6), to {un,pn}. In the imple-

mentation of (4.5), (4.6) two strategies can be used:

(1) Continue to iterate until the difference between two success-
ive iterates is smaller than some threshold ¢, chosen in
advance, before proceeding to update A" via (4.3); this
corresponds exactly to ALGl in so far ;s e is sufficiently

small for system (4.2) to be solved to high accuracy.

(2) Limit the number of relaxation iterations (4.5), (4.6) to a
"small" number kmax’ then update AP via (4.3); the limiting

case kmax = 1 obviously gives the algorithm ALG2 described
below .

ALG2:

&.7) uo,kl chosen arbitrarily;

for n =z 1, un_l and A" being known, determine successively

n n Ton+l -
P, u and A by
(4.8) rp” + ¢(p™) = rsu” Tt + 27,
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(4.10) AT AR o (sut-p™.

This latter algorithm is worthy of further attention because it con-
tains as particular cases a number of the classical alternating
direction methods. In fact combining (4.9) and (4.10) we obtain

the relation

(4.11) sH = F - a4 o ) sH(se™-p™).

The relation (4.11l) enables us to eliminate An from (4.8) and
n

(4.9); first we consider the case p = p = r; we then obtain
(4.12) r(shp® - stMsu® !y + au®! 4 stMg™) = F,
(4.13) r(stsu® - s'Msa® !y + stMe(p™) + au® = F.

CHAN-GLOWINSKI [1], [2] (where the guadrature formula of Example 2.1
is used) we obtain from (4.12), (4.13) an alternating direction
method of the Douglas-Rachford type (see DOUGLAS-RACHFORD [1]).

-%
Suppose we put p° = u" %; if § = M = I as is the case in

In the general case (pn # r) (4.12) would be replaced by

(4.14) r(sp® - s9™ ) + A+ s 4N = F,

where we have put

an=1 n-1 (r-pn)

(4.15) P = Su + pn—l.

Py ~

In practice it is easier to work with (4.7)-(4.10) than (4.12},(4.13).
It is also interesting to observe that we can derive‘an alternating
direction method of the Peaceman-Rachford type (see PEACEMAN-
RACHFORD [1]1) through a variant of ALG2; indeed, consider the

algorithm

ALG3:

(4.16) . 90, él chosen arbitrarily;

for n = 1, gn_l and A% being known, determine successively
. Z

pn, Xn+1, un, An+l by

n-} + An’

(4.17) rp” + 6™ = rSu
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(4.18) a2 e Q(Su““—p“),

(419 (aersMeL” = xswp” - 5T ™2 g,
(4.20) A 2P 2 (sump® .

n (by (4.18)) following the
(4.20)) following the solution

and the un

We thus carry out a first update of A

(by
for un; it will also be noted that in ALG3 the pn

solution for pn, then a second
play roles which are symmetric, which is not the case in ALG2.

From the point of view of the search for a saddle-point and in rel-
ation to ALGl, than ALG2,
fact for "stiff" problems ALG3 is usually less robust than ALG2.
If we deduce from (4.17)-(4.20)

this algorithm is "less implicit" and in

o =r

kn+]/2 = ¢(pn) and

We then obtain

(4.21) r(sMpP-sTMsu® ) + au™”

'+ swe

(]
]

(4.22) r(s"Msu® - s'Mp™) + sMp(P™) + Au" = F ;

- ,
putting pn =" ‘, we indeed obtain the method of alternating dir-

ections of Peaceman-Rachford.

It is interesting to note that we
alternating direction methods within

the several possible variants of the

With regard to the convergence of

have been able to locate some
a more general framework, namely

algorithm ALGl.

the algorithms, the results of

Chapter III can be applied without difficulty. We have in fact

to distinguish two cases, depending on whether or not the quad-
2
Lo

the results of Chap-

rature formula used integrates exactly the inner product on
Qn- If it does,
(Theorem 4.1 and Remark 4.1)
Otherwise they apply to the system in finite dimensions;

restricted to the space
ter III are applicable in their ent-
irety.
however the equivalence of the norms plays no overriding role in the
proof of convergence and we can expect an overall rate of conver-

gence which is almost independent of the discretisation.
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5. NUMERICAL EXPERIMENTS

5.1 Formulation of a model problem. General notes.

In order to illustrate the results of the preceding sections, we
shall now summarise the numerical experiments of CHAN-GLOWINSKI [1]
relating to the convergence of the algorithms ALGl and ALG2 applied
to the solution of a particular problem (1.1).

We have therefore considered the model problem

(~Au + $Cu) = £ 4n Q= J0,10xJ0,I1[,
(5.1)

u=0 on I,

the function ¢(.) being defined, for & > O, by
2 2~
(5.2 6(e) = sga(e) |t} = e)e]*

We have shown in Figure 5.1 the form of the function ¢ for three
values of %. In the majority of our tests we took & = 0.1, which
leads to a problem which is guite difficult numerically; we in fact
have ¢'(0) = +» , so that we can expect some difficulties in the
regions where u(xl,xz) = 0. We took (for x = {xl,xz})

u(x) = sin Zﬂx] sin 2ﬂx2,
(5.3)

f= 8F2u + ]ulz_lu,

¢ (1) [

Figure 5.1
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and we attempted to solve a discretised version of problem
(5.1), (5.2).

Application of the algorithms described in Section 4 leads to

having to solve one-dimensional problems of the form
(5.4) rg +¢E) = b,

where b 1is given. Note that the singularity of ¢' at O ob-
liges us to take certain precautions during the numerical solution

of (5.4), even for such an elementary problem.

We shall first make a number of general comments on the behaviour
of the various algorithms tested; then we shall go into rather more
detail on certain points which seem to us to possess some importance

in relation to the algorithms.

5.2 Comments on the implementation and the convergence of
ALGl and ALG2

As we have seen in Section 4, algorithm ALG2 is a special case of
ALGl in which the number of internal iterations has been limited to
one. In practice a greater degree of generality would be offered
by incorporating ALGl in a program allowing the number of internal
iterations to be limited by a termination test based either on the
decrease of some residual, or on a maximum number of internal it-
erations. As regards the variant ALG3, this would involve only

a minor modification.

Concerning the speed of convergence, the main difficulties en-
countered related to those regions where the function ¢' is sing-
ular, that is, where u(x) = O0; it is in fact observed that the
asymptotic rate of convergence of ALG2 is very slow at these points,
and this fact is clearly illustrated in Figure 5.2 which corres-
ponds to a numerical test in which we have initialised ALG2 first
with =0, A} =0, and then u® =10 (= {10,...101), A’ = 0. 1
the first case the solution has ;lrea&y been attained at the sing-
ular points because it can easily be seen that the algorithm will
leave the values unchanged at these points; in the second case the
solution has to reach the value zero at the above points.

Figure 5.2 shows that for Eo = O we have a very fast linear conv-

) ) o ,
ergence; in the second case (i.e. u = 10) we have a sublinear
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convergence. A close examination of the results reveals that the
slowness of the convergence is localised at the points where

u(x) = O, the other values having already been obtained to a reason-
able accuracy. It is therefore clear that the choice of good in-
itial values can lead to a very significant improvement; however it
is still very important to make the algorithm more robust because

in practice it is unlikely that it will be possible to find initial
values which will enable the difficulty associated with the sing-

ular points of ¢' to be circumvented.

1 2 3 4 5 6 7 8 9 iter.
i L P N B 4 L A L L
Ll L ] L ] L] L ) L L J L § L
107t L
1072 +
0.3%107  after 50
— iterations

Figure 5.2

Convergence of ALG2

2 )
(the vertical axis represents the L™ error in Bn)
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In practice two remedies are possible:
Increase r during the course of the calculation ; this nec-
essitates the refactorisation of the matrix Ar = A + rStMS,

which may be expensive.

Carry out further iterations within the internal relaxation
(4.5), (4.6);

or less complete internal solution.

loop this in fact means using ALGl with a more

1 2 3 4 5 6 7 8 9 10 il 12
$ + ] 1 t 1 1 ] t t t t
iter.
+
- \
+
+\
o =
- 4\\\\:K\\\\ u = {p , ALG2
\\X
4&_\_9\\\\ " T——X- X
. ® %,
- \X
o u® = 10
u =0 % § =102
ALG1
ALG2 NG
- @‘
(3“—C>——%D<::f)_ ®
%

u? = 10 »
e =107
ALG1

Figure 5.3



(SEC. 5) NUMERICAL EXPERIMENTS 165

Figure 5.3 illustrates the results obtained by using the second
strategy; in the corresponding numerical tests we stopped the inter-

nal iterations (4.5), (4.6) when the difference between two succ-

essive iterates was smaller in norm than «¢. Figure 5.3 shows the
convergence results obtained with € = 10-2 and 10_4 ;3 the horiz-

ontal axis shows the total number of internal iterations of
(4.5), (4.6) needed to attain the accuracy shown on the vertical
axis (this being the L2 norm of the error corresponding to un).

The circled points indicate that there has been an update of An,

via (4.3), at that iteration. By way of comparison we have r;plot—
ted on this figure the results for ALG2 already presented in Fig-
ure 5.2. For ¢ = 10_2, algorithm ALGl degenerates rapidly into
ALG2, since for no of the order of ten to forty or so we have
convergence of (4.5), (4.6) in a single iteratiorn as soon as

n = no; it can be seen that convergence is attained rapidly at

points for which uh(x) # 0.

For ¢ = 10_4 a larger number of internal iterations (4.5), (4.6)
was carried out before updating bn via (4.3); the mean rate of -
convergence is, however, greatly improved in comparison to € =10 7,
and is in fact close to that observed for ALG2 with u, = 0; thus
we have in large part eliminated the effect of the initial cond-

itions.

Remark 5.1: In view of the above numerical tests the algorithm
ALGl is apparently more robust than ALG2 which is in fact equivalent
to an alternating direction method. We can therefore consider
ALGl, obtained by introducing an augmented Lagrangian, as a method
which enables the robustness and the speed of convergence of these

alternating direction methods to be increased.

5.3 Discussion on the choice of the parameters r and op.

We shall conclude Section 5 by discussing the choice of para-

meters r and op. As far as p 1is concerned we have systemati-
cally used p = r all the time; this value is always a very good
one even if it is not absolutely optimal. The numerical tests

showed that in the case of ALG2 a value of p rather larger than r
(p = 1.1 r) accelerated the convergence very slightly; in the abs-

ence of a precise method for determining the optimal value of »p,
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however, we recommend the choice p = r. With regard to the choice
of r, Figure 5.4 indicates the number of iterations needed for con-
vergence of ALGl for different values of r. An optimum was rec-
orded near r = 5, but this optimum is not clearly defined and the
choice of r 1is not critical within a rather wide interval; this is
due to an effect of partial cancellation between two phenomena with
opposite actions. What happens is that increasing r increases
the speed of convergence of 5“ in ALGl, but decreases that of the
internal iterations (4.5), (4.6); the combined effect is highly
complex but the result is an algorithm which is not very sensitive

to the choice of r.

it.

Figure 5.4

Effect of the choice of r on the convergence of ALGl

The reader can refer to CHAN-GLOWINSKI [1] for further details
relating to the convergence of ALGl and ALG2 applied to the sol-
ution of problem (5.1), (5.2), together with a number of comparisons

with other iterative methods.

6. SOME REMARKS ON HYBRID METHODS

In this section we consider a variant of the preceding methods
which may be useful for certain problems and which is linked with
the hybrid-primal finite element methods (iybrides primaux in the
original French terminology of THOMAS [11]). The starting point will
once again be the methodology of Chapter III, the generality of

which will again be further illustrated here.

In hAybrid finite element methods it is standard practice to de-

couple a boundary-value problem into a family of local problems
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defined over each element of the triangulation. The recoupling

of these local problems is generally carried out by means of a
Lagrange multiplier associated with the matching constraint at the
interface of the elements. In the light of what we have presented
earlier, the advantage of such a method is apparent in the case of
nonlinear problems; in fact the solution at the element level in-
volves a problem having a small number of variables, which is much
easier than dealing with a global nonlinear problem. However two
obstacles arise, in regard to the algorithms, for the efficient

exploitation of hybrid methods:

(1) The local problems are often ill posed and cannot be solved

independently of one another.

(ii) Coordination algorithms based on the convergence of the
multipliers are slow, and their efficiency deteriorates

rapidly as the number of elements increases.

We shall now show that the use of a suitably defined augmented
Lagrangian enables the above difficulties to be overcome, and

allows efficient algorithms to be constructed.

We shall thus consider a model problem of the form (2.5), namely:

Find uel%(Q) such that ¢(u)eL1(Q)nH-IGD, satisfying
(6.1)

a(u,v) + <¢p(u),v> = <f,v> W¥ve HL(Q).

When af(.,.) 1is symmetric, (6.1) is equivalent to the minimisation
1 ) . )
on HO(Q) of the functional defined by (2.8)2, i.e.

{6.2) J{v) = E-a(v,v) + j(v) = <f,v> .

Thus, let €, be a triangulation of ( ; the principle of hybrid

h
methods consists of defining the problem on a larger space, consid-

ering membership of Hé(ﬂ) as a constraint. To do this we put
(6.3) 1= [1 8w,
KEC%

this space being equipped with the product topology, i.e. that

associated with the inner product

(6.4) (pra)y = < Zch JK (pq#Vp-Vq)dx.
€
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Suppose that £ e LZ(Q); the functional (6.2) then extends naturally
onto H, and V = Hé(ﬂ) is a closed subspace of H (we retain the
notation a{(.,.) and J{(.)) . The standard approach would con-
sist of introducing a Lagrange multiplier on the interfaces of the
triangulation Eh in order to enforce matching. This approach,
however, does not lend itself well to the use of an augmented
Lagrangian because the natural penalisation term utilises the norm
on H%(BK), the manipulation of which is somewhat awkward. It is
in fact necessary to use a lift onto the element to obtain a cal-
culable expression, and this is what we shall do indirectly in the

work which follows.

We shall utilise the methodology of Chapter III with G = O.

Thus for veV, qeH, ypeiH, we define the augmented Lagrangian

1 . r 2
(6.5) £ (v,q,0) = 3 alq, Q)+ (@£, )+ @, v-a)y + 7 [v-aly -
Remark 6.1: For r = O, the Lagrangian (6.5) is the standard

Lagrangian of hybrid methods with a multiplier on the interfaces of
the triangulation. Consider, in fact, a particular finite ele-

ment K and g ¢ H_%(BK); we can solve

-Au+u =0 Zn K,
(6.6)

%%~= g on oK.

Suppose that g takes on a single value along each of the inter-
faces (apart from a sign change to take account of the orientation

of the normal); it can easily be seen that (u,v)H = 0 and that

the term (u,q)H reduces to boundary terms of the form J gq dy.m
3K

It is of interest to state the optimality conditions of the problem:
in variational form, this amounts to finding {u,p,\}eVxHxH such
that

(6.7) a(p,q) + ($(p)»a) - (£,q) - (h,qQ)y + r(p-u,q)y = 0 ¥qeH,
(6.8) rup, g+ Lv)y =0 WweV (= H:)(Q)),

(6.9) (u—p,u)H =0 ¥ ueH.
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For given A and u, the problems (6.7) are decoupled and are
solved element by element; the recoupling is achieved via the

multiplier and via the linear problem (6.8) which is of the form

-Au + u = F(p,A) in Q

(6.10)
UIT = 0,

where F(g,)) denotes a right-hand side depending on p and on A.
It is very simple to adapt algorithms ALGl and ALG2 to this case;
note that the updating of A" is carried out using

n+l .n n_n
(6.11) A7 Wy = e (wi-p,u)y ¥UEH.

Taking into account (6.4) and putting Ay = -Au + u, we then have

FOLL VL o A™p™ in X,

(6.12) ol
Attt af 3 n_n
on ) * Pa on (u™-p),
K g K
where n denotes the outward normal to K. The Neumann prob-

K
lems (6.12) are in fact local and are solved element by element.

Remark 6.2: In contrast to the preceding sections, the de-
coupling method no longer necessitates splitting the operator into
a linear part and a nonlinear part; it is therefore very general
and can be extended to cases more complex than those considered
above. The solution of the nonlinear problem (6.7) may then be-
come more complicated, and the advantage of the hybrid finite ele-
ment methods then accrues essentially from the fact tpat the non-

linear problems contain only a small number of variables.

Remark 6.3: The formulation presented above encompasses the
usual hybrid methods. In regard to the discretisation of the
problem by finite elements, however, it is more general in that it
allows the use of conforming finite elements for the approximation
of u. In fact the awkward problem of the discretisation of the

multiplier on the interfaces is no longer present. L]

On the question of the convergence of algorithms of the type
ALGl, ALG2 applied to the solution of (6.1), via the augmented
Lagrangian (6.5), the results of Chapter III are applicable in
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their entirety. It should also be noted that the recoupling thr-
ough the linear problem (6.10), which is global on {, enables us
to anticipate convergence properties more or less independent of

the number of elements used.

7. GENERAL DISCUSSION ON CHAPTER IV

The algorithms developed in this chapter enable us to solve
efficiently a large number of nonlinear problems. In bringing
the nonlinearity down to a local level we simplify the problem
considerably, and the recoupling through the solution of linear
systems, with matrices which are fixed during the iterative
process, is a considerable advantage. Finally, these methods are
well adapted to Parallel Computation and should prove particularly

efficient for future generations of computers.

The fact that we have been able to obtain as particular cases a
number of alternating direction methods, which have proved their
efficiency elsewhere, is thus a reliable guide for implementation.
In Chapter IX we shall give more information concerning alternating
direction methods and the links which exist between these methods
and the augmented Lagrangian methods (see also LIONS-MERCIER [11}.



CHAPTER V¥

APPLICATION TO THE SOLUTION OF STRONGLY NONLINEAR
SECOND-ORDER BOUNDARY-VALUE PROBLEMS

M. Fortin, R.Glowinski, A. Marrocco

1. INTRODUCTION

The aim of this chapter is to give a relatively detailed account
of a number of applications of Augmented-Lagrangian methods to the
solution of nonlinear second-order boundary-value problems, in which
the nonlinearity relates to the gradient of the unknown function.
The general setting is the same as that in Chapter III, and we shall
show how the various problems we describe can be fitted into this
framework. We shall also discuss the approximation of these problems
by means of finite-element methods and the consequences with regard to
the iterative solution algorithms. The results of various numerical
tests will serve to illustrate the behaviour of the algorithms used,

and will demonstrate their efficiency.

We shall show, in a relatively general context, that the framework
presented permits easy implementation of the so-called 'interior pen-—

alty' finite-element methods.'!

2. GENERAL FRAMEWORK OF THE PROBLEMS IN CHAPTER V

This second section aims to provide a common general framework for
the examples which follow; the reader should therefore not be sur-
prised at the formal character of this framework, which is justified
by our desire to unify a number of extremely diverse problems. We
ought also to point out that in this chapter we shall be giving much
more attention to the algorithmic aspects than to the precise mathem-
atical formulation or to the convergence of the solutions of the app-

roximate problems.

! in the sense of DOUGLAS-DUPONT {11, WHEELER (11, ...

171
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In this chapter, we shall thus be considering the problem of the
minimisation, in appropriate functional spaces, of functionals J of

the form

(2.1) J) = F(Vv) + G(v).

In (2.1), v denotes a function defined on a domain @ in IRN, and
Vv denotes its gradient. The term F(Vv) will be written more

specifically in the form?
(2.2) F(Vv) = J o(x,|Vv|)dx.
Q

In many cases the function ¢ will not depend explicitly on x ,

and in general it will be convez with respect to |Vv]. The solutio
of such a problem clearly lends itself very well to the introduction
of an augmented Lagrangian of the same type as those considered in
Chapter III. Thus, using the notation of Chapter III, the following

form suggests itself:

2
(2.3) £ _(v,q,1) = Jgux,lql)dx + 6w + (W,Wv-a)y *+ 5 |Wvaly -

In our examples, we shall have H = (LZ(Q))N for the continuous
problem, with a discrete version of this space for the approximate
problems. It should be pointed out immediately that in some cases
it will be possible to give a rigorous definition of ir‘ only in the
case of the approximate problems; in particular, this will be the
case for problem (3.2) of Section 3, if 1<s<2,and for the minimal

surfaces problem of Section 6.3.

In the numerical tests which will be presented, the discretisation
will be performed by means of conforming finite elements of degree
one , on triangles. The discretisation of the variable g which
represents the gradient will thus be particularly simple since in
this case the components of g will be constant over each element.
Just as in Chapter 1V, the discussion can be generalised to more
complicated cases: guadratic finite elements and piecewise-linear
gradients; with these, it will once again be necessary to make jud-
icious use of numerical integration techniques, as we did in Chapter
Iv. Our approach will be centred, primarily, on the use of
algorithms ALGl and ALG2 of Chapter III, and the results of the num-

erical tests will serve to illustrate their convergence properties.
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3. A CLASS OF NONLINEAR DIRICHLET PROBLEMS

3.1 Formulation of the problems. Augmented Lagrangians

3.1.1 The continuous case

In this section we shall be considering the monotone nonlinear

operator A, defined (with 1< s <+w) by

G.1) Av = =¥+ (7|52 Wy

This operator appears in certain mathematical models describing the
mechanical deformation of ice (see for example PELISSIER [1l] and the
associated bibliography). The solution, in a domain & with boun-

dary T , of the nonlinear Dirichlet problem
Au=f in Q,

(3.2)

u=0 on T,

considered earlier in Chapter III, Section 6.3, can be reduced to the

solution of the following problem in the Calculus of Variations

Find ueV

(3.3),
J(u) S I(v) Wvev,

where

(3.3), v - wl’s(ﬂ),

3.3,  IW =1 Jnlvvﬁ ax - Jgfv dx ;

1l,s

the space wO () (described earlier in Chapter III, Section 6.3)

is, for 1<s< +», a reflexive Banach space when it is equipped with

the norm?®

(3.4) lv|_ = (J |9v|® axy'/s.
s
Q
We therefore have here, using the notation of (2.2), ¢(x,2z) =%—zs.
3 . is a norm on Wé'S(Q) if @ is bounded in at least one

direction in 1R
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3.1.2 The approximate problems

Except for s =2, the space V is not a Hilbert space and we can
not therefore apply the results of Chapter III directly to problem
(3.2),(3.3); fortunately, however, this can be done for the approx-
imations of this problem.

Suppose we have a triangulation" ‘fh of § ; we consider on 1?h
an approximation of V using conforming finite elements of degree

one or two. More precisely, for k=1 or 2, we define
= o =
(3.5) Viw = Wl e 0@, vlper 0 e, vlp =03,

where Pk(K) is the space of polynomials of degree <k on K.

Likewise, we define
(3.6) L = {aglay = L)t 5 agpig € B (0 ¥i=1,2, WReGh

clearly, we have

3.7 Vo, e L Vv eV

Kh h€ 'kh'
The discretised version of (3.2), (3.3) thus consists of minimising

J(*) over th , leading to the augmented Lagrangian®

21 s r 2
ir(vh’qh’uh) =3 J ]th dx - J fvp dx + > J |Vvh-qh| dx
3.8) & Q 0

* JQ Hpt (P mqp) dx

defined on th XLkh ><Lkh .

For k =1 the calculation of zﬂr does not present any problems
since 9y is constant over each triangle of %, _ . If k=2, we
shall use a quadrature formula to evaluate fnfths dx ; as in
Chapter IV, we shall thus consider, in the element K, & numerical

integration points Xy i=1, ... ,%2 , each being assigned a weight

KI
This assumes @ c1R2 and bounded; however, the following discuss-

ion may readily be extended to the case @ cnfq, N 2 3. We shall
also assume that { is polygonal.

S | -

2
a-q' = '21 q;9) 1if a = {q.9,}, 9" = {a},a}}
1=
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Wy such that we have

%
(3.9) JK £(x) dx = Area (K) | W, £(x)

i=1

For k =2, the most appropriate choice would be to take the points Xix
as the midpoints of the sides of the triangle K (so that % =3), each
being assigned a weight 1/3 (so that Wy =1/3 wvi=1,2,3); this
quadrature formula is in fact exact for polynomials of degree 2, and
this allows us to calculate the terms % [QIVVh-qh|2 dx and
Quh-(Vvh--qh) dx exactly. Furthermore, again if k =2, knowing the
value of a piecewise-~linear function at the midpoints of the sides of
a triangle fixes this function uniquely; it then follows that the
values of 91y and 9on at the midpoints of the sides of 73h can
be used as degrees of freedom relative to 9 (it would be equally
straightforward, if we so desired, to enforce matching of certain
components of =N at the midpoints of the sides}. Proceeding as in

Chapter IV, Section 3, this leads to the discrete augmented Lagrangian

3
]
2 (paagsy) = ] Area(® 1w [E Iqh("ix)ls *
Ke® i=l

(3.10) h

2
RAMS TN C o) uh(xil()-<Vvh(xiK)-qh(xiK>'f (xiK)vh(xiK):l .

This Lagrangian is defined on th XLkh xLkh and it coincides with
4r(vh,qh,uh) if k=1 (to within the term fQ fvh dx ). We have
assumed for simplicity that fQ fvh dx has been approximated in
(3.10) by the same guadrature formula as used for the other terms;

however, this is not necessary.

In order to gain a better understanding of the algorithms which
follow, it is important to consider the numerical solution of the
variational problem equivalent to the minimisation with respect to

of ’('r and i'rh' with v, and u fized. In the case of {,r

9h h

defined by (3.8) we obtain

Py €lyps
(3.11)
]S-Z

o (iph P, * TR)vq, dx = JQ(erh+uh)‘qh dx ¥q e L.

For k=1 the components of p, are constant over each triangle.
For k=2 we would use numerical integration via the Lagrangian &;h;

in this case we have to determine the values of Py at the guadrature
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points. In both cases, we find that we have to solve, triangle-by-
triangle or point-by-point, the nonlinear system
Sv.
s=2 _ h
IPol " Pip * PR 7T 7= "M
th
Pop ¥ TPon T T By, * Hop

(3.12)
8=~2
Ip,|

Once |ph| is known, Pip and Py, can immediately be deduced from
(3.12); now (3.12) implies
15

(3.13) o) %7+ elpyl = Ie¥v |,

or, defining g(+) by gl(q) =qs_l + rq,
(3.14) g(@) = [tWv a5

gsince the function ¢ is a homeomorphism of fm+ onto IR+ , (3.14)
admits a unique solution which can be calculated by standard methods
for nonlinear equations in one variable, although certain precautions
have to be taken for extreme values of s (i.e. s <close to 1, or

s large)

3.2 The basic algorithm and its convergence properties

The basic algorithm for implementation of the augmented Lagrangian
£rh is once again algorithm ALGl of Chapter III. The following is
a brief summary of the principles of this algorithm.

ALGORITHM ALGI1 (General form)

o , , ,
(3.15) Ah chosen arbitrarily in Lkh
then for n 20, AE being known, calculate ug, pﬁ and A§+l by

n 1w
{“h"’h} € Vin ™ Ly

(3.16)
n n 4N 1.
2o (o Ppoty) Sy (et ¥ vpagt eV, XL,
and
n+l n n_n,,
3.17) )\h = )\h + O(Vu_h—ph),

test for convergence and return to (3.16) Zf necessary. []
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In practice, it is necessary to have a method for solving problem
(3.16); this leads us to a more 'operational' version of algorithm
(3.15) - (3.17) :

ALGORITHM ALG1 (Practical form)

(1) Choose

- an accuracy tolerance g,

- a maximum number of inner iterations K ax
- the values by which the outer iterations are initialised :

o -1
(3.18) Ahe Lkh s Py € Lkh'
(ii) For n =20 and with Ag and pg_l known, put z° = pﬁ_l; then
for m=20 and with zMm known, solve
VmE th,
(3.19)
v m‘ = m_ n,,
rjn v Vvh dx Jgfvh dx + JQ(rz lh) Vvh dx Wvp eV,

(note that the solution v of (3.19) minimises vy, 7 irh(vh’zm'kg)
over th).

Next, knowing the solution v of (3.19), solve

zm-ﬂ ¢ Lkh9

(3.20)
m+l ) s=2 m+} m+] - m L,

JQ (25574 + 12 )rq dx = JQ(er “Ap)tqy dx ¥q e Ly

(actually, the 'point' version of these equations; zm+l thus calcul-
s m n
ated minimises q, £fh(v ,qh,Ah) over Lkh)'
m+1 m . . 2

If =z -z is less than ¢ (in the L norm, for example),
or if m+1l =kmax , put

n m n m+1
(3.21) wEv, P =2 H

otherwise set m=m+1 and return to (3.19}).

(iii) With ug and pE known, calculate (triangle-by-triangle if

k=1, or at the quadrature points i1f k =2)

An+1

(3.22) h

n n 1.
= )\h + p(Vuh—ph).
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If Vuﬁ-—pg 18 sufficiently small, terminate ALGl; otherwise set
n=n+1 and return to (ii). [

The determination of {ug,pﬁ} is thus carried out by a relaxation

method; 1if we take kmax':l’ we obtain algorithm ALG2 of Chapter III.

Remark 3.1l: For reasons which will be given in Remark 3.2, it is
recommended that a termination test be used which relates to 2"
rather than to vm ; as is pointed out in MARROCCO [1l], a termination
test on v" can lead to premature termination ('sticking' or pseudo-

convergence) of the iterative process. [ ]

In order to gain a better understanding of the behaviour of ALGI1,
it is instructive to study this algorithm when p=r and s=2; for
this value of s the problem to be solved is linear. The interesting
fact is that in this case we obtain convergence in two iterations at
most; this was demonstrated earlier in Chapter III, Section 4.3, but
we shall nonetheless prove it again for the particular case in question
here (the proof which follows is valid for ALGl; a similar one can be
given for ALG2 if p=r=1, and this value r=1 will also be encoun-

tered once more when we examine the experimental convergence results).

Just as in Chapter III, it is sufficient to consider the case £f=0

(so that wu, =0); additionally, we write

h

(3.23) Q= Laplay ey, ap = Vv, vy e Vg (= W),

and we denote by P

the operator of projection from Lkh onto Q for
2
().

Q
the norm L

It then follows from (3.19), (3.21) that
n _ n_gn
(3.24) PQXh = r(PQph Vuh),
and then from (3.20) that
n n o n n
(3.25) Pp * (e, V) = AL

By projection of (3.22) onto Q and its orthogonal space, and taking
account of the fact that p=r, we obtain

n+l _ n _ n_gn
(3.26)1 PQAh = PQAh r(PQph Vuh) ,

(3.26), (I—PQ)X§+1 = (I-PQ)xg - r(I-pQ)pE.
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We deduce from (3.24) and (3.26)l that

(3.27) PQX:H =0 ¥n:0,

so that from (3.24) we have

(3.28) PQp; - Vu{: =0 %nxl.

By projection of (3.25) onto Q , we then obtain

PQXE = PQp: =0 ¥nxl.

We thus have Vu§==0 for n=1, so that uE==O. On the other hand,

we have
xn+l 1

- = n
= (T PQ)Ah. [ ]

(3.29) (I-PQ) b Tr

There is thus decoupling between the convergence of {uﬁ}n>o and that

of {Aﬁ}n>0 if s=2. For s=#2 , a variant of the above proof

would show that PQAE always converges in a single iteration, but
since it is then no longer possible to decompose (3.20) onto Q and

its orthogonal in L , we no longer have convergence of uﬁ in a

kh
finite number of iterations. We can nonetheless expect very different

n n n n
rates of convergence for PQXh ’ PQph and (I -PQ))\h , (I PQ)ph .

Remark 3.2: In view of these quite different convergence proper-

i n n
ties of the sequences {uh}nzo nso * {Ah}nzo ’

ary to use a termination test somewhat more sophisticated than one

and {pg} it is necess-

which relates solely to the sequence {uﬁ}n>o ; it is for this reason
that in the case of ALGl discussed earlier, we suggested terminating

the outer iterations when Vug —pg became sufficiently small in norm.

Remark 3.3: Another case, the practical importance of which will
become apparent in Section 4, is the one in which the problem to be
solved is linear but with a variable coefficient, i.e. of the form

(with a(x) za>0 a.e.)

(3.30) Inf {IEJ a(x) |vv|? dx - J fv dx} .
VEHL(Q) Q Q

We shall assume a(x) to be such that the minimisation problem (3.30)
admits a unique solution. If for the solution of this problem we

consider the augmented Lagrangian

(3.31) 2, (v,q,1) = %Jﬂa(x)lqlzdx-J fv dx+J ue (Vv=q) dx+ %J |vv-q| 2ax,
Q Q Q
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then algorithm ALGl no longer converges in two iterations; however,
this property is recovered if instead of (3.31) we use the augmented

Lagrangian

(3.32) 2 (v,q,H) = I—J a(x)|q|2dx—J fv dx+J a(x)U° (Vv-q)dx+ EJ a(x)|Vv-q|2dx.
r 2lq Q Q Ug

It is reasonable to suppose that this property can be used to improve
the convergence of ALGl in the nonlinear case. In fact, let us
assume that we know an estimate n(x) of ]ph]s_z ;  we could then

consider an augmented Lagrangian of the form

-1 Six - . -
£r(vﬁqﬁuh)— 5 JQ|qh‘ dx JQthdx + JQn(x)uh (Vvh qh)dx
(3.33)
2
+ %-jgn(x) ]Vvh-th dx.

The ideal procedure would undoubtedly be to update n(x) at each
iteration of ALGl, using pE , thereby obtaining a segquence {”n}nzo
(we could even consider an update during the inner iterations (3.19),
(3.20)); however, this update modifies, at each iteration, the matrix
of the linear problem corresponding to (3.19); this problem would be

of the form

Pind v-eV suahthat?vhe we have

kh Ykn

(3.34)
rJ . ()0 Ty, dx = Jgfvhdx + Jgn“(x) (x2"-A) T, dx.

It is appropriate to assess whether the acceleration of convergence
thereby obtained justifies the cost of the new Cholesky factorisation
if (3.34) is solved by a direct method; it is clear that the use of
an effective iterative method (preconditioned conjugate gradient,
multigrid method, etc.) for solving the linear problem (3.34) would

be an attractive alternative to a direct method which requires at each
iteration a refactorisation of the matrix associated with the linear
problem (3.34).

Note the obvious links which exist between this method using

{nn}n>0 , and a Newton method.

We shall encounter an application of this present remark later on

in Section 4 of this chapter. ]
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Remark 3.4: It follows from Remark 3.3 that, all other things
being equal, the optimal choice of the parameter r (in ALG2 in part-
icular) will vary, in order of magnitude, as Iphls_2 ; we can in
fact interpret (3.33) as defining an augmented Lagrangian with a

vartable penalisation parameter equal to % n(x) , the optimal value

of which would be (asymptotically in n at least) equal to %\phls—z
if p,, were known. Similarly, it may be conjectured that in the
case of the standard penalty term (i.e. % 0 ]Vvh-qh|2 dx )} the optimal

parameter r will vary from one problem to another as |ph|s—2 .

3.3 Numerical experiments

In this section we shall be discussing some of the many numerical
results obtained by GLOWINSKI-MARROCCO [1],[4] and MARROCCO [1],
giving particular emphasis to certain points which we consider to be
especially important. In the numerical experiments which we shall
describe, the domain § will be a disc¢ and the right-hand side £
of (3.2) will be a positive constant denoted by C ; under these
assumptions, the exact solution of (3.2) is known, and in the case

of a disc of radius R centred on the origin, this solution is given

by
(3.35) ux) = 2 @ ® =257,

where |x| = (xf + x; )!5 if x={x;,x,}. We have taken R=0.5 and
C=0.1 in the numerical tests which will be described. The disc
has been triangulated by means of a triangulation ‘fh containing 256
triangles, the finite elements used being Co—conforming and of degree
one; the components of Vvh and of qh are therefore constant over

each triangle.

In order to evaluate the performance of ALGl, we have to remember

that it is not sufficient merely to evaluate the number of updates of
n
*h
quickly {(in terms of the number of outer iterations) as r becomes

via (3.17); the sequence {Aﬁ}n>0 will in fact converge more

larger; however, the increase in r slows down the convergence of
the relaxation method used to solve system (3.16); there is therefore
a balance to be struck between two opposing effects, and this implies
the existence of an optimal value of r . Furthermore, in order to
have a proper evaluation of the results, it is important to consider

the total computational effort required for the solution of the
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approximate problem; we shall therefore compare the cumulative
numbers of relaxation iterations (3.19), (3.20) required for the con-
vergence of the algorithm to within a given level of precision. In
the case of ALG2 this number coincides with the number of updates of

AE . Figures 3.1, 3.2 and 3.3 illustrate the behaviour of ALGl for

three values of s, namely s=1.1, 3 and 10. Figures 3.4, 3.5 and

3.6 illustrate the corresponding results for ALG2 (used in exactly

the same way as ALGl with p=r ).

In Figures 3.1 to 3.3 (i.e. relating to ALGl) two curves appear;
the curve labelled Cl shows the cumulative number of relaxation iter-
ations as a function of r ; curve C2 indicates the number of updates
of Aﬂ , this number tending towards unity as r increases. In Fig-
ures 3.4 to 3.6, curves Cl and 02 coincide. For the three values of
s considered, the optimal r 1is to all intents and purposes the same
for ALGl and ALG2. Furthermore, even for s=1.1, algorithm ALG2
appears to be more efficient than ALGl; for this family of problems,
therefore, it does not appear worthwhile to solve system (3.16) by the
relaxation method (3.19), (3.20) to very high accuracy before updating
AE ; the same also applies for values of s only slightly greater
than unity. This observation concerning the superiority of ALG2 over
ALGCl seems to contradict what was established in Chapter IV; however,
this can be explained by the fact that the termination test used in

MARROCCO [1], from which we have taken our results, relates to the

difference between uﬁ+l and uﬁ ; now it would once again appear
that there exists a certain decoupling between the convergence of

n n n , . )
{uh}nzo and that of {ph}nzo or {Ah}nzo , this decoupling becoming

complete for s=2 as we saw in Section 3.2. This decoupling prop-

erty was not present in Chapter IV where, in fact, u

n
h and p, are

equal in the limit as n-> +o .

Another observation which at first sight is somewhat baffling con-
cerns the high sensitivity of the optimal value of r to the problem
being considered. The optimal value of r depends on s and also on
the right-hand side f of equation (3.2).

Let us first consider the case in which s is fixed, and in which
f =const. =C ; we recall the empirical formula of GLOWINSKI-MARROCCO
[4] for the optimal value of r: if r, (resp. rl) is the optimal

value of r for f==CO {resp. f=:Cl), then we have {approximately)



(SEC. 3) NONLINEAR DIRICHLET PROBLEMS 183
( 300 ITERATIONS -ALG1. 150 ITERATIONS -ALGZ.
] : —
3 g, 3
200.] 100
100 ] s ]
] S E
] ~2 ]
o T T Illllll T H [AIIIII T T T TTTTT 0 T T lIII”] T llllllll T T T 10rrr
16" 10" 10* 10} 10* 10" 10* 10
PARAMETERS [ PARAMETERS E
Su1.1 Cmul s=tal Caul
Figure 3.1 Figure 3.4
LABORIA- A.MARROCCD LABORIA- A.MARROCCO
150 ITERATIONS -ALG1le 150 ITERATIONS -ALB2s
100 3 100 ]
] E
s Cl %
E \.\ CZ ]
[ - o 3
T T lllllll T T A]Illll T T T TT1Il B T T lllllll T T IIIIIII T TTTTrI
10° 10" 10° 10* 10 10 107 10°
PARAMETERS [P PARAMETERS 73
S=3 Cal Swd Crma1
Figure 3.2 Figure 3.5
LABORIA- AJMARROCLD LABORIA- A»MARFOCTD
450 _|__ITERATIONS —ALGT, ] 150 ITERATIONS -ALGZ,
E \ \_/ ]
100 \ ¢ 100
E \ ]
50 ] \ % 3
] N\ ]
o 3 T T LB R T T T 7T 0 LR R RREN] rrTeTT
107 a0 107 o 10™ 10°* 107 101
PARAMETERS m PARAMETERS e
§=10  Ceul §a10  Ceol
Figure 3.3 Figure 3.6
LABORIA- A«RARAOCTD LABORIA- A.RARRGCCD




184 STRONGLY NONLINEAR B.V.P.'s (CHAP. 5)

|

(3.36) r—° =

This formula is to be viewed alongside Remark 3.4, where it was conj-
ectured that the optimal r should be proportional to |ph|s-2 ;  now
it follows from (3.35) that when we pass from f==CO to f==Cl, |p!

(= |Vu|) is .multiplied precisely by the factor (Cl/CO)S_2 ;  this is

consistent with (3.36) and confirms the conjecture of Remark 3.4.

The effect of a variation of s is more complicated to investigate
since we are then no longer dealing with a simple factor of proport-
ionality; 1in the particular case of the test problem considered,
which is in fact one-dimensional (being axisymmetric), it is nonethe-
less easy to verify that if $=V{i, where @ is the solution of the

1/(s-1)

problem for s=2, then we have |vu| =|p]| where u is the

solution corresponding to an arbitrary value of s in the range

1<s 2 +«’£ ;now, for s=2 E |e| is proportional to [ %1 5-2
(= (x) +x, Y? ) and |vu|®° will thus be proportional to 1%|5°T ,
so that we have

o, 15722 Ly ir s =11,

x|
(3.37) lp, |72 = 1|2 25 o=3,
- 8/9 .

o, 1572 = [l /9 ;¢ sel0.
Now an optimal r value 3Xloll is found for s=1.1; 2><lO_l for s=3;
and O.9><lO_2 for s=10; these numbers correspond exactly to the
values predicted by (3.37). It can therefore be seen that once again

the use of an augmented Lagrangian of the type (3.33), where n(x) is
an estimate of [ph]s—2 , could very probably stabilise the choice of r.

We shall encounter another application of this principle in Section 6.3,

Finally, we must point out that the results of GLOWINSKI-~MARROCCO
[{11,04] show the importance of working in double precision (on IBM
computers at least), in particular for extreme values of s (i.e. s
close to 1 and >>2). In similar vein, comparisons between ALGl,
ALG2 and other methods of solving problem (3.2) (in particular, non-
linear overrelaxation methods) may be found in GLOWINSKI-MARROCCO [4];
it would appear that the algorithms described above are the most eff-

icient for solving (3.2), particularly for s close to 1 or >>2,
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3.4 Continuity constraints on the gradient; Interior
penalty methods

We consider (for simplicity) the case of a linear problem (s =2)

of the type (3.2), solved by finite-element methods of degree at

least two. In a standard approximation, the normal component of the
gradient of the approximate solution is not continuous across inter-
element boundaries. Now, for certain applications, it may be desir-
able (and useful) to enforce this continuity. One possible approach
for achieving this consists of considering this continuity condition
as a supplementary constraint which can be treated either by means of
a Lagrange multiplier or by means of a penalty term; this latter app-
roach is known by the name of the '<interior penalty method', the pen-
alisation being applied to any jump in the normal derivative occurring

at the element interfaces, in the interior of the domain.

The framework which we have just described does in fact adapt quite
readily to such methods: it is sufficient to impose matching condi-
tions on the functions from Lkh and to use a variant of the augmented

Lagrangian defined earlier.

A particularly favourable case is that in which, if k=2, we
enforce matching of the components of the gradient at the midpoints
of the element sides (L2h then comprises nonconforming elements of
degree one}); we will thus be substituting the constraint Vvh-qh==0
for the constraint of matching the normal derivatives. Since the
midpoints of the sides coincide with the quadrature points which int-
egrate polynomials of degree two exactly, the basis of L2h formed by
associating an interpolation function with each node is orthogonal.
It therefore follows that the calculation of pﬁ remains a point calc-
ulation despite the inter-element matching conditions. However,
despite the linearity of the problem, we no longer have convergence
of {ug}nzo
constraint imposed in Loy invalidates the proof of Section 3.2.

in a finite number of iterations; in fact, the matching

Nonetheless, since the calculation of pg via the analogue of (3.20)
is linear (since s=2) and local, we can determine pg as a function
of ug and Aﬁ and insert the results obtained into the analogue of
(3.19), and thereby eliminate the inner relaxation iterations at the
cost of having to assemble a matrix which is only slightly more comp-
licated than that in the original scheme. Then we need only choose
r as large as possible, i.e. at the limit of the machine precision,

in order to obtain a correct solution of the linear problem obtained
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by elimination of Py, -

Remark 3.5: The convergence, as h—+ 0, of such approximations
with constraints on the normal derivative is often quite difficult to
prove (but see DOUGLAS-DUPONT [1], WHEELER [1] and the corresponding
bibliography, as well as FORTIN-SOULIE [1] in which a nonconforming

element of degree two is considered, for which convergence can be

proved) .
4. A MAGNETO-STATIC PROBLEM
4.1 Formulation of the problem

In this section we shall be discussing some of the results obtained
by GLOWINSKI-MARROCCO [5] and MARROCCO [1] in connection with the cal-
culation of the magnetic state of rotating machines (motors, altern-
ators, ... ) or static machines (transformers). Here, we are conc-
erned with problems in which even the linearised case has a highly
variable coefficient, and in which it will be necessary to use an aug-

mented Lagrangian of the kind introduced in Remark 3.3 of Section 3.2.

With ? = Lé—, ii—, Ji—}, the Maxwell equations of magnetostatics
ERY 9x 9x
. 1 2 3
are written:
> > -
(4.1) VXH =]
>
(4.2) B = UH,
> >
(46.3) VeB =0 ;
in (4.1) - (4.3), i is the magnetic field vector, 3 is the current

density vector, B the magnetic induction vector and u the magnetic
permeability of the medium. In view of (4.3) there exists a vector
potential K such that §==§ XK ; the above equations therefore lead
to the equation

(4.4) Vx (Wxay =3,

with v = 1/u. We have VEV VO where v, is the relative magn-
etic reluctivity and where Vs is the magnetic reluctivity in vacuo;
we have vo==107/4ﬂ (M.K.S.A.}. In the following, we shall be rest-

ricting our attention to two-dimensional cases for which
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(4.5) % =1{0,0,8) , § ={0,0,3},
: _ . 9 3 3
so that (4.4) reduces (with V ={x—, —, =—1}) to:
X X 9x
1 2 3
(4.6) =Ve (WAa) = j.
The coefficient v appearing in (4.6) depends on the material; in

copper and in air we have v =V, g in ferro-magnetic media we shall
assume - neglecting hysteresis effects - that v is an increasing

. . . 2> s . .
function (in the wide sense) of |B| ; it is actually more convenient

to consider v to be an increasing function of |§|2 and this is what

we shall do in the following discussion. In the two-dimensional case
we have
4.7 8] = [VxE| = |va]

and we can then rewrite (4.6) in the more explicit form
(4.8) Ve (v(x, |TA]2)VA) = j.
Finally, denoting by y(x,0) the function which satisfies
oY
4.9 35 (%0 = V(x,0) , ¥(x,0) = 0,

we see that (4.6) is the Euler equation, in an appropriate functional
space V, of a problem in the Calculus of Variations, namely the min-

imisation of the energy functional & defined by

(4.10) F(v) = '7 Igw(x,lvvlz)dx - Jnjv dx,

where  is usually the median cross-section of the rotating machine.

The problem

AeV,
(4.11)
FA) s F(v) WveV

is clearly of the form considered in Section 2. The choice of V
depends on the boundary conditions; in the following we shall assume
that V=:Hé(ﬂ), which corresponds to boundary conditions of homogen-
eous Dirichlet type. On the basis of laboratory measurements we have

taken for v, in the ferromagnetic parts, a function of the form
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o
(4.12) v(g,a2,C,T;0) = € + (C-€) = s
g +T
the parameters ¢,0,C,T being positive with C>¢e€. The function

thus obtained® is monotone; Figure 4.1 represents the results of
this smoothing for V. For reluctivities of the type (4.12), the

problem possesses a unique solution if V:=Hé(Q).

o RELATIVE v

104

Figure 4.1 1

107
STATOR  RESULT OF SMOOTHING ]

ALPHA 0.5L4192E01 ]
[ 0.1757TEQO E
T 0.87589E0k

EPS 0.51636E~-03

“rerrrer T T T T T T T T

0. 2.00 4.00 6.00 8.00 10.00
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4.2 Formulation using an augmented Lagrangian

Even if we neglect the nonlinearity, which would be permissible
for low currents, problem (4.8) has variable coefficients since the
reluctivity is not the same in air as in iron. To reduce the problem
to the form of the general case, referring back to what was said in
Remark 3.3 of Section 3.2, we would use in the general case the

augmented Lagrangian’ defined as follows

¢ Using a least squares smoothing technique.

7 The u in (4.13) has nothing to do with the magnetic permeability,

a quantity which will not appear again explicitly hereinafter.
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ir(v,q,u) = %—J w(x,]qlz)dx - J jv dx +
(4.13) & &

EJ T](x)!Vv—ql2 dx + J n{x)ue (Vv~q)dx.

2 g Q

The optimal choice for n is the unknown function v ; in practice,

one attempts to obtain a suitable estimate for this function.

To solve (4.11) we shall again use algorithms ALGl and ALG2 which
we shall not describe explicitly here; for information on these alg-
orithms we refer the reader to the preceding sections and chapters,
and to GLOWINSKI-MARROCCO [5] and MARROCCO [1]. In the case of a
linear problem, we shall have convergence of ALGl (resp. ALG2) in at

most two iterations (for {uﬁ}n>0) if n=v and if p=r (resp. p=r=1).

The execution of ALGl and ALG2 involves the simultaneous solution
for ALGl, and the sequential solution for ALG2, of the equations

(omitting the iteration superscripts):

rj N(x)VA*Vv dx = J jv dx + J n(x) (rp-A)*Vv dx ¥veV,
(4.14) & & &
Aev,

which is Z<near, and

J (V(x,|P|2)p+rnp)°q dx = J N(rVA+A)+q dx ¥qe (LZ(Q))Z,
(4.15) & &
pe wi@n?,

which is nonlinear, but which can be solved locally. In fact, to
solve (4.15) we proceed as in Section 3 by introducing z = !p|, which

takes us from solving (4.15) to solving

(4.16) O (x,z9+m )z = n(x)| VA% .

We put g(x;z) = (V(x,zz)ﬂ'n(x))z ; the dependence on x means that we
have several types of equations depending on whether the point x
lies in air, copper or iron. In air and copper we have V=V and

(4.16) gives =z explicitly; in iron g(x;*) is a strictly



190 STRONGLY NONLINEAR B.V.P.'s (CHAP. 5)

increasing function possessing a point of inflection which depends
neither on r nor on n . If we take care with the initialisation,
we can use Newton's method for solving (4.16). For the discrete
problems, the solution takes place at the quadrature points for
finite elements of order =22, and triangle-by-triangle for elements
of order 1. Most of the comments made in Section 3 remain valid

for the present problem.

4.3 Numerical experiments

The results presented here concern a four-pole alternator; the
corresponding domain  1is therefore a disc and the triangulation
%h used (actually a quarter of it) is shown in Figure 4.2; this
triangulation fh contains 812 triangles and 384 interior vertices.
The finite elements used are Co—conforming of order 1. Figure 4.3
shows the contours (which are actually the lines of magnetic induction)

for the solution corresponding to a current of 5 A/mm2

Figure 4.2 Figure 4.3

Triangulation used. Lines of magnetic induction.
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On this figure the rotor, the stator and the air~gap of the alternator
can clearly be seen. The choice of the function n(x) requires an
initial estimate for v; for the results presented here we have used
two methods, the second of which is actually a more sophisticated

version of the first:

Method 1: We know the minimal values €g and €r of v in the stator
and the rotor, respectively. For k > 0O, chosen arbitrarily, we put
My =vo in the air and the copper
4.17) n =ke in the rotor
nk =k ES in the stator.

Method 2: Having defined Ny by (4.17) we solve the following linear

problem (actually its discrete version)

AksV,

(4.18)
n, VA Vv dx = J jv dx ¥veV,
JnkAk )

We then put

n=v in the air
(4.19)
n = vdVAklz) in the rotor or the stator.

We could consider using a systematic procedure for updating n(x)
(after a specified number of iterations of ALGl or ALG2, for example).
The major drawback of such an update lies in the fact that the bi-
linear form in problem (4.14) would be modified very frequently so
that for the approximate problem a new matrix would have to be
factorised if the discrete analogue of (4.14) is solved by a direct
method.

In practice, a reliable method (actually a 'continuation'-type
method) consists of progressively increasing the current density J
(which increases the nonlinearity of the problem) and using the

results of the preceding calculation for the estimaticn of v. The
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results of MARROCCO [11, which will be briefly repeated here, were all

obtained using algorithm ALG2. We list below what we consider to be

the most important features of these results.

For a low value of the current (j = 0.5 A/mmz) the problem is
practically linear and v, both in the rotor and in the stator, stays
close to the minimal values €g and £g respectively. For p=r=1 we
obtain the approximate solution with excellent precision in two itera-
tions for n(x) chosen in accordance with (4.17) with k = 1. For
k > 1, still with j = 0.5 A/mmz, the value of n is over-estimated,
and this slows down the convergence; hence for k = 10 approximately

25 iterations of ALG2 are required for convergence.

For a larger value of j (j =2 A/mmz), the importance of the non-
linearity increases and it is still the estimation of n(x) which has
the predominant effect on the rate of convergence. Suppose that
j =2 A/mm2 and consider an estimate of n obtained by using (4.17);
by making k vary from 1 to 2C, we observe that the optimal value of
r decreases from 10 to 1 and that the corresponding number of itera-
tions decreases from 90 to 50. Figure 4.4 represents a typical
result obtained with k = 20 and j = 2 A/mmz.

e et ]
150 1TERATIONS ALGZ21
100
50 g
o 3
T T 'llllll T lllll]ll T T 1T T171711
10 10° 10 10°
PARAMETERS B ]
J=2 K= 20
LABORIA- A2TIARROCCO

Figure 4.4
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Method 2 (i.e. (4.18), (4.19)) is very efficient if we start with

the estimate obtained by using (4.17) with k = 1. We see the optimal
value of r go to 1 and the number of iterations decrease to about
25. For larger values of k the use of (4.18), (4.19) does not
improve, and in fact actually decreases, the rate of convergence.

For j = 2 A/mmz, which gives a small nonlinearity, taking k = 1
amounts to estimating n(x) by solving the linear probklem, and this is

a natural choice to make.

In contrast, for j = 7.5 A/mmz, which in this example corresponds
to the normal régime, the effect of the nonlinearities is larger. If
we choose n(x) by method (4.17) we obtain very comparable results for
k varying from 10 to 50: approximately 50 iterations to obtain the
solution, with an optimal value of r going from 10 to 1. In the
case of method (4.18), (4.19) we obtain a significant improvement for
k = 10, which reduces the number of iterations to about 25. For

higher values, method (4.18), (4.19) can become disastrous.

We can deduce from all this that the use of the augmented Lagrangian
method will be effective if we succeed in obtaining a good initial
estimate of n(x), which allows us to work (in ALG2) with r = 1. The
most rational choice would be to make the fullest possible use of the
information provided by earlier calculations: for example, continu-

ously increasing the current enables the nonlinear effects to be

introduced gradually. It should be noted, however, that the algorithm
itself is very robust; a poor choice of n(x) or of r slows down,
but does not prevent, convergence. This algorithm can therefore be

used with every confidence, and its performance can be improved by

experiment.

5. CALCULATION OF SUBSONIC AND TRANSONIC POTENTIAL FLOWS OF
COMPRESSIBLE IDEAL FLUIDS

In this section we attempt to present a succinct examination of
the possibilities offered by augmented Lagrangian methods for the
numerical simulation of subsonie and transonic flows of compressible
ideal fluids; in the transonic case the problem considered is
difficult and has given rise to numerous publications; for further
details on the numerical solution of such problems by finite element
methods, we refer to BRISTEAU-GLOWINSKI-PERIAUX-PERRIER-PIRONNEAU-
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POIRIER [1],[2], GLOWINSKI [2, Chapter 7], AMARA-JOLY-THOMAS [1],

and to their associated bibliographies.

5.1 Formulation of the problem

In this section we consider the numerical simulation of the
potential (and therefore irrotational) flow of a compressible ideal
fluid. Within the limited scope of this section it would be out of
the question to attempt to give a detailed description of the physical
assumptions underlying the model described below, and we advise the
reader who is not familiar with such problems to consult one of the
treatises on Fluid Mechanics, such as LANDAU-LIFCHITZ [1].

Let ¢ denote the veloeity potential, with u = V¢ the velocity
field; with p denoting the density of the fluid, the mass conserva-

tion equation is then written

(5.1) Vepu = VepVd = 0.

By introducing certain assumptions relating to the equation of state
of the fluid, we deduce from the conservation of momentum equation
that

1
2._
. - o - Y2t Lu[ YT
(5.2) p=rp(w =p (- 33 ) )
%

where, in (5.2):

(i) BN is the density of the fluid at rest

(ii) Y 1is the ratio of specific heats; vy = 1.4 in the case of
air
(iii) C, 1s the eritical speed of sound.

In the case of air we thus have

2.2.5
ul 9

(5.3) o =p (1K Gfle?sD s

in a suitably chosen system of units we have Po = 1l and k = %.
Combining (5.1), (5.2) and (5.3) we obtain a nonlinear problem which
is formally very similar to the magnetostatic problem studied above

in Section 4. It is therefore quite natural to follow the same line

of approach as in Section 4 in order to attempt to obtain a numerical
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solution of the flow problems in question here.

We therefore define ¢ by

ay 5/2 ]

o = P 1k 5, OS“E ,
(5.4)

Y(0) = 0.

The function E"’W(EZ) is increasing, convex on [0,1] and concave on

[1,1/k] . The functional &F defined by
(5.5) 3w =g fﬂw(lvwz)dx -1,

where { 1is the flow domain and L(+) is a linear form which takes
into account certain of the boundary conditions, is non-convex over
its domain of definition; equation (5.1) in conjunction with an
adequate set of boundary conditions characterises the stationary
points of & , which in the present case are not necessarily minimum
points. In the case where the stationary point ¢ satisfies

[v¢| <1, which corresponds to a subsonic flow, we are in the conver
'part' of the functional and ¢ is the unique subsonic solution (poss-
ibly to within an additive constant). If there exists a region in
which |V¢|> 1, then we have a genuine transonic flow and in order to
ensure uniqueness it is necessary to impose a supplementary condition;
this condition is provided by the Second Law of Thermodynamics, and

may be formulated as follows:

(5.6) The entropy tis non-decreasing along a streamline
orientated in the divection of the flow.

In the case of the present problem of potential flows, the entropy
condition (5.6) can be formulated as an inequality constraint on the
possible discontinuities in V¢, as follows. Suppose that § is a
surface (or line) of discontinuity of the flow velocity ({(i.e. a shock);

we denote by u_ the velocity immediately upstream of the shock, and

by u, the velocity immediately downstream; we then have
5.7 Ineu_| 2 |neu |, that <s |- (99)_|2 |ne (W), ],
where n is the normal to S. The condition (5.7) eliminates

expansion shocks (across which there would be a sudden drop in press-

ure and decrease in entropy); it thus admits only compression shocks.
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It should be noted that the condition (5.7) depends on the solution
itself (through the medium of S and n) and that the problem thus
posed falls into the context of quasi-variational inequalities. The
description of an Znterior penalty method for the numerical treatment
of (5.7) and its application to the calculation of transonic flows
may be found in BRISTEAU-GLOWINSKI-PERIAUX-PERRIER-PIRONNEAU-POIRIER
[2], GLOWINSKI [2, Chapter 7], and GLOWINSKI-LIONS-TREMOLIERES [2,
Appendix 4] .

5.2 Formulation via an augmented Lagrangian. Solution
algorithms

Since the functional ¥ (see (5.5)) is not convex, the problem
under consideration does not (except in the purely subsonic case)
fall within the general framework of Chapter III; nonetheless, we
can - formally at least ~ still introduce an augmented Lagrangian
and consider seeking its stationary points, possibly taking account
of condition (5.7) (by means of an interior penalty method, for

example) . We therefore introduce the augmented Lagrangian

=5r(v,q,u) = %‘J ¢(!q‘2)dx - L{v) + %‘j ﬂ(x)le—q‘z dx
(5.8) 2 Q
+ J nxyues (Vv-q) dx,
Q

where, in (5.8), the linear form L(-)depends on the boundary condi-
tions of the problem. Just as in the magnetostatic problems in
Section 4, we have introduced a renormalisation function n, the
optimal value of which is p(V$) where ¢ is the required solution;
the precise value of this factor, however, is not so critical in the
present problem, since within the range of validity of the transonic
model (which we may here take to be |V¢| < 1.5, say) the density
finally varies only slightly (in the sense that it remains of the
order of po). In order to find the stationary points of £i we
shall use algorithms ALGl and ALG2; it will therefore be necessary

n

to solve, at each iteration of ALGl, a system in {™,p"1, A" being

known, namely

J NOV™Vy dx = f n(x) (p% £ A™)eTv dx + L L(v) wvev,
Q Q ¥ 4
(5.9)

$"ev,
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J’ Lo(lp"|%)p™rnpleq dx = J n(xv ™) eq ax
(5.10) f &
¥qe¢H, pn € H,

where V 1is a subspace of Hl(Q), which takes into account the
boundary conditions, and where H = (LZ(Q))N (N=1,2,3 in applications).
If we solve the gystem (5.9), (5.10) by relaxation, then (5.10) will

involve solving an equation in one variable of the type (ifn=1)
2
(5.11) (p(z")+r)z = b,
We put gr(z) = (p(22)+r)z. Figure 5.1 shows 9, for various values of

r; for r small there will be two solutions to the equation

9,(z) = Const.

5,00 £1Q)
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W 3
W00
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[N A o .
[N 0.48 0.88 14 1.8 2445
L o0 E
L O P
t .00
LABONIA- A RAMRCCTD
Figure 5.1

If in addition to A" we suppose that ¢n is known in (5.10), then for
r sufficiently large, (5.10) admits a unique solution pn; in con-

trast, the system (5.9), (5.10) with a given An does not in general
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have a unique solution.

In the case of subsonic flows, for which we remain within the

domain of convexity of the functional & in (5.5), we can use ALGl

and ALG2 without taking any particular precautions; some numerical
tests for @ < IR2 are given in MARROCCO [1], using ALG2 with the
Lagrangian ir from (5.8}, in which nZ1 has been taken; the spaces

V and H in (5.9), (5.10) are approximated using Co—conforming finite
elements of order 1 (i.e. piecewise affine) over a triangulation ﬂ:h
of Q. In the case of the nozzle shown in Figure 5.2 we have con-

vergence of ALG2, for subsonic flows, in at most 20 iterations. The

optimal value of r 1is close to 1.

In the case of genuine transonic flows, the solution calculated

by the above algorithms can depend on r and may contain expansion

shocks (i.e. non-physical shocks); it is therefore necessary to
incorporate into the mathematical model the condition (5.7). There
are several possible ways of doing this; however, we think it use-

ful to point out one in particular, which results directly from the
decomposition associated with the relation Vv-g = O. We have al-
ready mentioned in Section 3.4 that it is possible to impose continu-
ity constraints on the gradient of the solution; now, the conditions
(5.7), which are of inequality type, are very similar to the con-
straints on V¢ considered in Section 3.4. A natural approach would
therefore be to approximate ¢ (and the corresponding test functions
v ) by piecewise functions of degree k 2 2, and p = V¢ by piecewise
functions of degree k-1 ; if k = 2, we can impose condition (5.7),
that is |p_-n| 2Ip+-n|, at the midpoints of the element sides. It
remains to investigate solution algorithms which are suitable for

such a treatment of condition (5.7).

NUMBER OF NODES 300
NUMBER OF ELEMENTS 490

(The figure depicts a half nozzle)

Figure 5.2
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6. FURTHER APPLICATIONS

In this section we consider three examples of applications which
come within the framework of Section 2 of this chapter; two of these
examples have already been touched upon in Chapter TIII. Since the
numerical treatment of these problems is very similar to that of the
problems in the preceding sections and since the numerical results
obtained only serve to confirm those obtained earlier, it will suffice
to give only a relatively brief outline of them; nonetheless, we
shall attempt to shed some light on the particular qualities of the
problems considered, and their impact on the numerical treatment.
Sections 6.1 and 6.2 will thus discuss, respectively, the flow of a
Bingham fluid in a cylindrical duct and the elastoplastic torsion of

a eylindrical bar. Section 6.3 will treat a minimal surface problem.

6.1 Flow of a viscoplastic Bingham fluid in a cylindrical duct

6.1.1 Formulation of the problem

We consider the flow of a viscoplastic material of Bingham type
in a cylindrical duct with cross-section Q. This problem involves a
plasticity threshold g; if the mechanical stresses remain below
this threshold value, the material stays rigid, whereas beyond the
threshold it behaves like an incompressible fluid with viscosity v.
The flow in the duct is induced by a linear pressure drop f which,

in practice, is constant over the cross-sections of the duct.

Let u ¢ Hé(Q) denote the required velocity; we obtain this by

minimising in Hé(Q) the functional
v 2
(6.1) J (v) = E—J |Vv|“ax + g J |vv| ax - J fv dx
g Q Q Q

with v > 0, g > 0, £ ¢ 12().

We note that if v = O we again have the problem of Section 3 with
s = 1, the term Q|Vv|dx being non—differentiablei It is essential
to assume v > 0 if we are seeking a solution in HO(Q) for the above
problem; this problem in the Calculus of Variations admits a
unique solution, characterised by the variational inequality

8
We have assumed f eLZ(Q) in order to slightly widen the generality.
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\JJ VueV(v-u)dx + gJ |vv|dx - gJ |Vu|dx2J f(v-u)dx W¥ve 1! ),
(6.2) Q Q o Q ©

1
ue HO(Q)

a detailed numerical analysis of which may be found in GLOWINSKI-
LIONS-TREMOLIERES [1], [2] and GLOWINSKI [11, [2].

6.1.2 Solution by augmented Lagrangian methods

An augmented Lagrangian associated naturally with the flow problem
defined in Section 6.1.1 is i& : Hé(Q) x (LZ(Q))2 x (Lz(Q))Z + R
given by

£ (v,q,1) =%J la]? ax + gJ lq| ax - J £v dx
(6.3) f Q fQ

+ %-J IVv-qudx + J s (Vv-q)dx.
Q Q

The corresponding algorithms ALGl and ALG2 have already been described
in Chapter III, Section 3.3; however it will be worth making the
effort to write out the system corresponding to the minimisation of
ir with respect to q and v , with p fized. The optimality condi-
tion with respect to v, at the point {u,p,A} leads to

rJ VusVv dx = J fv dx + J (rp-A)*Vv dx ¥ve H](Q),
(6.4) ; ) Q Q °

i
‘ue HO(Q).

It is important to note that problem (6.4) is in fact independent of
r, in the sense that, after division by r , the bilinear form in
(6.4) is {v,w} - g Vv+Vw dx, i.e. that associated with the homo-
geneous Dirichlet problem for the operator -A. Further, minimising
over (Lz(Q))2 the functional q -+ {r(u,q,l) reduces to the minimisation
over (L2(Q))2 of the functional

6.5) 5 [ (g2 ax s gf lafex | meneq e,
Q Q Q

and this reduces to solving a.e. in =x e and with £ describing :mz,

for the functional

(6.6) U el + glEl - (Vu@Ae)E.
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In the discrete case the solution is performed triangle by triangle,
or at the quadrature points used for evaluating fﬂ fVVldx or
Q lq] dx. Putting d(x) = rVu{(x) + X(x), the solution ¥ of the

above minimisation problem is given by

€

S 0<fg2ldl,
(6.7) 2
E=l (g-g 4 ;
T Var (d~g id|) if 8<[d|-
The decomposition associated with the constraint g - Vv = 0 and with
the augmented Lagrangian (6.3) has thus allowed us to eliminate any
difficulty associated with the nondifferentiable term

ia |vv| dx.

Remark 6.1: If we refer back to Remark 3.3 of Section 3, it
would be advisable, in order to improve the convergence of ALGl and
ALG2, to use a penalty term of the form % Q n(x)IVv—qI2 dx, where,
formally, n represents an estimate of v + T%I|' This expression is
not applicable here, since it becomes infintite; nonetheless this
leads us to think that the penalty term should be very large in the
rigid zones, i.e. those in which Vu = O. Since the rigid zones
increase with g, we should expect to se§ the optimal value of «r

(in ALG2 particularly)} increase with g .

Remark 6.2: In the zones where g 2 |d|, which after convergence
correspond to the rigid zones of the problem, we have, from (6.7),
lp| = o. Inserting this result into (6.4) it can readily be seen

that in these regions we are in fact solving

(6.8) -fu = ‘? (472 3

taking r to be large in these regions in fact amounts to forcing

~Au to have the value zero.

6.1.3 Numerical results

The numerical results of MARROCCO [1], which we shall discuss

All this assumes that we are using p = ¥ in ALGl, ALG2.
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very briefly in this section, were obtained in a very simple case for
which the exact solution is known; with the domain @ as the disc of
radius 1 centred at the origin, the solution of problem (6.2) is given,
for £ = C (> 0), by

- . C
u:07,f'g>gc=-2—

(6.9) u(x) = (l:%Zi)(% (+|x|)-2g) <f R' < |x| <1,
1-R', C .
u(x) = (——) (7 (+R')-2g) 7f 0<|x| <r',
where, in (6.9), R' = %? (if g < gc) and |x| = xi + xg if x= {XlIXZL

An approximation by Co—conforming finite elements of order 1 was

used, the corresponding triangulation T% comprising 256 triangles.

The calculations were performed for g = 2,5,8, the rigid zone then

being the circle of radius R' = 0.2, 0.5, 0.8, respectively.

If we consider ALG2 (with p = r), the optimal value of r 1is 5 x lO_2

(resp. 1.0, 7.0) for g = 2 (resp. 5, 8), the corresponding numbers of
iterations being respectively 10, 25, 50 for a termination test which

relates solely to the convergence of the sequence {ug}n>o.

In all the cases considered, ALGl (with p = r) performs less effect-
ively than ALG2, and this is true even for problems in which the non-
linearity is very large, i.e. g is large ( g = 8 for example). The
calculations confirm that, for ALGl, the convergence of the relaxation
iterations is slow in the rigid zones. Decoupling between the con-

is also evident;

20
n

vergence of {uﬁ}n>0 and that of {pg}n>o and {Aﬁ}n
the value of ug depends only on the components of pg and Ah in the

0

1
%‘Ket,'h, v.= 0 on anh} ,

space VV,, where V, = {vhlvheco(ﬁg),v h

nix €
and it would certainly appear that these components converge rapidly

and do not require an accurate solution for {ug,pﬁ} to be obtained at

each iteration of ALGl.

A powerful algorithm (in terms of the number of iterations) would un-
doubtedly be ALG2 with r made to increase during the course of the

calculation so as to accelerate convergence in the rigid zones.

=

h (X = interior of X).

10 /’4‘\
1S
Keti
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Remark 6.3: In Chapter VII of this book we describe the applica-
tion of the augmented Lagrangian methods of Chapter III to the solut-
ion of problems involving the flow of Bingham fluids which are much
more complicated than those considered in this section; in fact, by
switching tolghe stream function, we obtain varZational inequalities
of order 4 , whereas problem (6.2) is a variational inequality of

order 2.

6.2 Elastoplastic torsion of a cylindrical bar

6.2.1 Formulation of the problem

The physical motivation of the problem is as follows:

We consider a cylindrical bar of infinite length and with cross
section ©, made of an isotropic elastic/perfectly-plastic material,
the threshold of plasticity (i.e. the yield stress) being given by
the von Mises criterion. Starting from an unstressed initial state,
an increasing torsional couple is applied to the bar, the torsion
being characterised by the angle of twist per unit length, denoted by

C in the following notes.

We can then reduce this problem (see GERMAIN [1] for a detailed
analysis) to seeking a function u , the so-called stress potential
(defined to within an additive constant). For slightly greater
generality we shall assume that Q is f%-connected (if £ =0, 2 1is

simply connected); Figqure 6.1 illustrates a situation in which

L = 3. We denote by Q* the domain obtained by the union of @ and
the Wy i=1,...%. We next define
~ 2 ,%. .2 .
(6.10) K =1lalqe @@ N7, |al <) ace., q=0 on w,, i=1,...%},
then
1,0* =
(6.11) K={v|veHo(9),VveK} .

and finally the functional J : Hé(Q*) +~ R by

(6.12) ) =% JQ*IVV|2 dx - CJQ* v dx.

11
i.e. relative to an elliptic operator of order 4.
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The stress potential u , mentioned above, is then the solution
of the following problem in the Calculus of Variations (in some

appropriate system of units):

u€ K,

(6.13)

J(u) £ J(v) Wvek,

this itself being equivalent to the variational inequality problem

ue K,
(6.14) %

JQ* VueV(v-u) dx2 CJ 5 (v-u)dx Wve K.
Q

The essential difficulty with (6.13), (6.14) stems from the constraint
of belonging to K.

6.2.2 Solution of (6.13), (6.14) by augmented Lagrangian methods

We introduce the augmented Lagrangian

£ uLen) x w2@))? x @?@*)? » R defined by
£, (v,q,1) =‘7J olal %ax - CJ .V dx +-§—J L7v-a|? ax
(6.15) & & &

+ J *U’(Vv-q) dx.
Q

We shall determine u by seeking the saddle points of {r on
Hé(ﬂ*) x K x (LZ(Q*))Z; for this, we employ algorithms ALGl or ALG2
of Chapter III whose implementation for the solution of the elasto-
plastic torsion problem (in the case where { is simply connected) was

described in Chapter III, Section 3.3.
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We suppress the iteration indices; the implementation of ALGL and

ALG2 requires the solution (simultaneous or sequential, depending on
the case in question) of the following equations and inequalities,
with X fixed :

rJ . Vur¥v dx = cJ , v dx + J L(EpA) Ty dx Ve H (@),
(6.16) g & @ {2

|
uEHO(Q Y,

(1+r)J . P(a-p) dx > J L(£Vutd)* (g-p)dx  ¥q €K,
6.17) & &

‘pek,

Equation (6.17) is solved pointwise in explicit fashion since

p=0 in Wy i=1,...%,

(6.18)

- A4rVu in R,

sup(1+r,|k+rVul)
so that our decomposition method has eliminated the difficulties

directly related to the von Mises criterion |Vu| = 1.

In practice, (6.18) is solved at a certain number of points depend-
ing on the discretisation used. For finite-element approximations
in which the functions u and v in (6.13), (6.14) are approximated
by piecewise-linear functions, (6.18) is solved triangle-by-triangle
to obtain the two constant components of p . In the general case
the points are chosen to correspond with a quadrature formula which
is exact for integrating terms of the form IQ* prq dx . This
corresponds to introducing an approximate convex set K, whose
support function (see EKELAND-TEMAM [1] for this concept) approximates
the support function of K , i.e. fQ lg] dx (in the case without any

holes) by the use of the chosen gquadrature method.

Remark 6.4: It is not possible to apply Remark 3.3 of Section 3
to this example; it is, however, easy to see that in the plastic
zones (where |p| = |Vvu] = 1), taking r to be large will, in view
of (6.16), force =-Vu + V.p to vanish. We can therefore expect an

optimal value of r which will increase with C , since increasing

the twist angle causes an enlargement of the plastic zones.
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6.2.3 Numerical results

The numerical results obtained by MARROCCO [11 (with p= r) con-
firm the results of Section 6.1.3 relating to the flow of a Bingham
fluid in a cylindrical duct. Algorithm ALG2 in fact performs
better than ALGl and once again the regions of { where the convergence
is slowest are those in which the nonlinear effects manifest them-
selves, that is, in the case of the torsion problem, the regions
where |Vu| = 1. The numerical tests were performed with
2 = 10,1 x10,1[ and C = 10 and these show that the convergence
rate - measured by the number of iterations - is more or less independ-
ent of the discretisation; this is shown by Figure 6.2 {in relation
to ALG2) in which the curves 1,2,3 correspond respectively to a
triangulation ‘th with 128, 512 and 2048 triangles. These curves
indicate the number of iterations required for convergence, as a

function of «r

One of the consequences of the extremely weak dependence of ALGl
and ALG2 on the choice of h is that it is possible to determine the
optimal r on a coarse mesh, and then to use the optimal r thus

obtained for calculations on a much finer mesh.
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Remark 6.5: Chapter VI describes the application of ALGl and ALG2
to the numerical solution of an elastoplasticity problem which is much
more complicated than that discussed in the present section; nonethe-
less, the basic principles of solution using an augmented Lagrangian
remain the same, and are once again based on the general concepts dev-

eloped in Chapter III.

6.3 Application to the solution of the minimal surfaces problem

6.3.1 Pormulation of the problem

In this we will be considering the application of the general
methods of Chapter III to the solution of a problem which once again
falls - formally, at least - within the general framework defined in
Section 2 of the present chapter; this is a particularly simple (as
far as its formulation is concerned) minimal surfaces problem. We
thus consider the contour C in iR3 , defined using a domain  of 'R2

(with boundary T ), by
(6.19) C = {{X,g(X)}eR3, xel, g(x) eR} ,

and the functional
(6.20) J(v) = J \h+|vv\2 dx.
Q

The minimal surfaces problem is then defined by

uev

(" e
(6.21) 8

J(u) £J(v) VveVg
where
(6.22) Vo= vew @, vl = g},

4 r

We are here dealing with a nontrivial problem since - among other

difficulties - the space Wl’l(Q) is not reflexive; we have to con-

sider (see EKELAND-TEMAM [1]) generalised solutions, and the condition
u|F =g cannot be satisfied in the usual sense, even for very regular
boundaries I' and functions g. The treatment which follows is
therefore formal, and is totally justified only for discretised prob-
lems (which then fall within the context of Theorems 4.2 and 5.2 of

Chapter III, Sections 4 and 5, respectively).



208 STRONGLY NONLINEAR B.V.P.'s (CHAP., 5)

6.3.2 Solution of problem (6.21) by augmented Lagrangtlan
algorithms

We introduce the augmented Lagrangian

(6.23) £ (v,q,u) = J V1+]q|2 dx + %—J |Vv—q|2 dx + J ue (Vv—q)dx.
Q Q Q

To determine u we shall thus seek (formally in infinite dimensions)
the saddle points of £r on (Vg n Hl(Q)) X (LZ(Q))2 X (LZ(Q))2 by
algorithms of the type ALGl, ALG2. We shall therefore be led to
solve, at each iteration, simultaneously for ALGl and sequentially
for ALG2, the following nonlinear system (we omit the iteration

indices), with XA fixed :

rJ TusVv dx = J (rp-A)*Vv dx Wve HL(Q),
(6.24) & ?

1
eV _nH (),
uevy (€9}

(6.25) J (J—Lr + rp)eq dx = [ (tVuth)+q dx ¥qe LE@?, pe @’
Q 1+lp l Q

The nonlinear equation can be solved point by point; putting
z =|p|, we first have to solve the following nonlinear equation in

one variable :

(6.26) (e + 1)z = |2Vutr|,
\h+zz
for which Newton's method may be applied without difficulty. Depend-

ing on the type of approximation used, we solve (6.26) either element-
by-element, or at quadrature points, as for the nonlinear problems

described in the preceding sections of the present chapter.

Remark 6.6: On the basis of Remark 3.3 of Section 3, we should
in this case use a penalty term of the form n(x)!Vv-—q|2 dx , with
n(x) an estimate of (1 +|Vu|2)_% ; this term gs small when |Vu| is
large. We must therefore expect that the optimal value of r for
ALG2 (with p=1r), and in the case of the Lagrangian (6.23), will be
less than unity.

6.3.3 Numerical results

The results of MARROCCO [1], which we summarise briefly here, rel-

ate to the case where Q is the circular corona defined by :
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(6.27) Q= {x|x = {x],xz} ERZ, 1< Vx:‘)'+x§ < &4}

the boundary conditions are g{x) =0 on the circle of radius 4 and

g(x) = B (=const.) on the circle of radius 1. Since the solution
i

is axisymmetric it is easily calculated, and with |x|:=(xl2+x22)2

it is given by

(6.28) u{x) = A(Arg ch lfl - Arg ch %—),

the constant A having to be determined from the value of B (knowing
that u(x) =B if |x| =1). This classical solution exists only for

B 1less than a critical value BC= 2.07 . If B?>Bc, then the solu-
tion 'breaks down' in the sense that the condition u=B can no longer
be satisfied on the circle of radius 1. Numerically, if we discret-
ise by means of Co—conforming finite elements, this shows itself (see
Figure 6.3 where cross-sections of an approximate solution are shown)
as a very large gradient near the boundary where the aforementioned
'breakdown' phenomenon occurs. In view of Remark 6.6 we should exp-
ect, in the case of ALG2 {(with p=1r), to see the optimal value of r
decrease as B increases; this is confirmed by the numerical tests,
since for B=1 (resp. 2.07, 4) the optimal value of r is close to

1 (resp. 0.2, 0.1); the corresponding numbers of iterations are

20, 30 and 50, respectively. We thus see that Remark 3.3 of Section
3 has enabled this phenomenon to be predicted even though it runs
counter to the numerical experiments of the earlier sections of the
present chapter where, other things being equal, the optimal value

of r increased when the nonlinear effects became more significant.

As far as ALGl is concerned, it turns out once again to be more

expensive than ALG2.

Remark 6.7: JOURON [1] gives a detailed account of the approxim-
ation of the minimal-surfaces problem by means of methods using con-
forming finite elements of order 1, and of their iterative solution
by nonlinear overrelaxation methods (see also JOHNSON-THOMEE [1] and
CIARLET [1, Chapter 5] for finite-element approximations of the min-

imal-surfaces problem).
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7. DISCUSSION ON CHAPTER V

In this chapter we have applied the methods of Chapter III to the
solution of problems with various physical origins. We have thereby
been able to demonstrate the fact that the decomposition of a non-
linear problem through the introduction of an augmented Lagrangian
is a robust method, readily adaptable to numerous situations ( we
shall be seeing further examples of this in Chapters VI, VII & VIII).
This robustness and this generality enable the augmented-Lagrangian
methods to be used for the efficient solution of numerous types of

problems.

Two phenomena worthy of our attention have become apparent: the

first of these concerns the partial decoupling between the convergence

of the sequence {un}n>o approximating the unknown function u, and
that of the sequence {pn}n>o approximating Vu; this decoupling
is total in the linear case if we put p=r. This is one aspect of

algorithms ALGl and ALG2 which would merit a more detailed investig-

ation : it is this decoupling which partially explains the superior-
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ity, for this type of problem at least, of ALG2 over ALGl; this is
true even for problems in which the nonlinearity is very strong. We
had in fact observed the opposite situation in Chapter IV; the diff-
erence obviously relates to the fact that the image under V of the
space V in which u is sought is a strict, closed subspace of
(LZ(Q))N and we can have very rapid convergence of the component of
pn which belongs to this space and yet slow convergence of the sequ-

ence {p"} It would be interesting to analyse this phenomenon

n=0 *
in more detail, with a view to developing algorithms which exploit

this feature as far as possible.

The second phenomenon is related to the rble which could be played
by a penalty term, with variable coefficients, of the form
a n(x)[VV-—q!2 dx , for accelerating convergence. A considerable
advantage would lie in the fact that for ALG2, with p=1r and n suit-
ably chosen, the optimal r would be close to 1. In reality, the
choice of n requires an a priori knowledge of the solution. Thus,
as one possibility, we can consider algorithms which involve updating
n(x) during the course of the calculation; if the linear systems are
solved by direct methods, however, such an update would require the
factorisation of a new matrix, which is a relatively expensive oper-
ation. This drawback would disappear if powerful Zterative methods
could be used to solve these linear systems; amongst the methods
which can be considered, we may list preconditioned conjugate—-gradient
methods, multigrid methods, etc. Secondly, there exist situations
for which a family of similar problems has to be solved, differing
only through the values of a few parameters. In such cases, it would
be possible to use a function n derived from a mean solution, or to
employ a strategy of gradually increasing the parameters, with an up-
date of n when the solution has changed sufficiently. We have also
been able to use the existence of an optimal coefficient n having a
certain form - related to the behaviour of Vu - to predict, at least
qualitatively, the corresponding behaviour of the optimal parameter r

with the coefficient n taken equal to 1.

Finally, we should point out that for the problems treated in the
present chapter, the choice of ié makes it possible to make r vary
without having to refactorise the matrix of the linear system which
occurs during the calculation; in certain cases it would certainly
be helpful if we could make r vary in an effective manner, though

the precise means of doing this remains to be determined.
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The magnetostatic problems investigated in Section 4 are of great
industrial importance (transformers, rotating machines, electromagnets
in particle accelerators, read/write heads for disks and magnetic
tapes, etc.); since the formulation used in Section 4 is by no means
the only one possible, we consider it necessary, in view of the impor-
tance of the subject, to indicate a few other formulations and to make
a number of observations on the associated augmented-Lagrangian

algorithms.

Following, for example, MUNRO [1] we can, in magnetostatics, def-

ine the functions UC and U by, respectively,

-

-> H > > ->
U (B = L B(h) *dh,
(7.1) 0

(Uc : complementary magnetic energy per unit volume),

>

> JB > > -
U(B) = |, H(b)*db,
(7.2) 0

(U : stored magnetic energy per unit volume)

Suppose that § =3 in (4.1); then there exists ¢ such that
- >
(7.3) H=Ve,
i.e. ﬁ derives from a scalar potential; it is convenient in this

case to use Uc’ which gives the energy functional
(7.4) & =J U dx.
Q c

If ; ¢6 , then ﬁ no longer derives from a scalar potential, but
VeB=0 implies the existence of a vector potential X such that
VxaA=B ; it is then more convenient to use A (this is what was
done in Section 4 in the case where A= {0,0,A}), the energy funct-

ional to be used being defined by

(7.5) 3, = J U dx - J 1.8 ax.
Q Q

The augmented Lagrangians associated with the above two situations

are defined as follows:

(i) When §=i5 and when the scalar potential ¢ is used, we
obviously put f =$¢ and we penalise and dualise this linear const-

raint so as to obtain the augmented Lagrangian ii, defined by
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(7.6) 289,87 = J U (H)ax + EJ n(x) |Vo-H| 2 dx + J n(x e (Vo-H) dx.
r Q¢ 2 Q Q

In implementing the above algorithms ALGl, ALG2 we obtain the foll-

owing equations (the iteration indices have been omitted) :

$ev,

7.7
(rj N V-Vv dx = J N @R Py dx woev
Q Q

. 1 . .
(V is a subspace of H(f) which takes into account the boundary con-
ditions, and Vo is the associated test-function space, corresponding

to homogeneous boundary conditions),

J (B +rnfl) g dx = J n(rVe+N) +a dx ¥qe Li@n’,
Q Q
(7.8)

fe @l

At the numerical integration points or triangle-by-triangle, depending
on the approximation used, (7.8) leads to the following vector equa-
tion (in Eg or :m3 depending on the dimension N of the problem)
ﬁeRN,
7.9
> > > >
B(H) + mH = C,

>
where C is a known vector. In the case where the material is iso-
tropic, we can reduce the solution of (7.9) to that of a nonlinear

equation in R, giving |ﬁ| (like (4.16) in Section 4).

(ii) When gr O and when the vector potential A is used, we

penalise and dualise E::§><K; this gives the augmented Lagrangian

£¥(K,§,ﬁ) = J’ u(B)dx + -Z-J ne) | x 3-8 2 ax
(7.10) & &
+ J n(x)ﬁ- (ﬁxx—_ﬁ)dx - J E'K dx.
Q Q
which includes the augmented Lagrangian defined by (4.13) in Section
4.2 as a particular case. The equations corresponding to (7.7),(7.8)

are then, respectively,
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>
eV

>+

>

(7.11)

+
]
14

rJ (¥ x A) « (V) dx = J 7 dx + J NEB-3) - (¥ x ¥) dx V';;e\—;o,
Q Q

Be @y,
(7.12)

J (H(B)+rnB) +q dx = J N x 340y -3 dax vge wiant.
0 Q

As before, (7.12) is solved triangle-by-triangle or at the numerical
integration points, depending on the approximation chosen, by solving

the following in H@q:

(7.13)

The solution of (7.11), on the other hand, can pose a number of
difficulties and it is convenient to distinguish the cases N = 2 and
N = 3; if A = {0,0,A} this leads to a problem in 312 and, as we

saw in Section 4, the relation

(7.14) (VxR)+ (Vx7) = VAYv (if v = {0,0,v})

reduces the solution of (7.11) to that of a linear elliptic problem
of second order and of standard type. For N = 3 , problem (7.11)
is in general ill-posed since the semi-norm
T,
€@
is not a norm on (Hl(Q)/]R)3 ; this is due to the fact that
Vx G40) = V=3 wo ,

which means that the vector potential is in general defined only to
within a gradient (see DURAND [1]). It then follows that the
functional & given by (7.4) is not coercive in (Hl(Q)/HQ)3. It
is shown in MARROCCO [2] that a functional space adapted to 3-dimens-
ional magnetostatic problems is the following:

3 > >

(7.15) we={3ve @@, ¥x3 =0 on 30,
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and that it is sufficient to add to the function 3v a term of the
type % IQ u(x)|V-X|2dx (with a(x) = oy > 0) in order to make it
coercive on W . The functional EV thus corrected admits a
unigque minimum on W, the corresponding vector potential K satisfying
the Maxwell equations of magnetostatics, as well as the condition

VR = 0. If we add the above term to the Lagrangian ‘ﬁz defined by
(7.10), we obtain in place of (7.11)

AeW,
(7.16) rJ NV xA) e (TxPdx + J a0 Fdx =
Q Q
f T3 ax + [ NBT) - @ xTydx Wew ;
0 Q

it is reasonable to take o = rn, in which case, for certain geometries
(if @ is a parallelepiped, for example), (7.16) can be decomposed into
three problems of Dirichlet type (one for each component of K);

equation (7.12) remains unchanged.

The addition of the term % Llalg-x|2 dx to ¥ and i; may be con-
sidered as a penalisation of the condition %-K = 0; it is therefore
natural to think of associating a Lagrange multiplier with this con-
straint; this leads to the augmented Lagrangian IZ defined (if

a = rn) by

-

.17 2 &30 =LEDN + %J n|V-X|? ax + f nq V-4 ax.
Q Q

All the above reminds us of the Stokes problem in Chapter II, the

function nq playing the r8le of a pressure. In the implementation

of algorithms ALGl, ALG2 in relation to the Lagrangian (7.17), equation

(7.12) remains unchanged; as regards the equation in K, this becomes
RewW,

(7.18) rJQ n@xky. T=x3) ax + rJQ n@-k) (V-vydx =

J -_}"; dx + J n(r_ﬁ—_):)-&xz)dx - J nqv-_\; ax V-\;e W.
Q Q Q

From the point of view of approximation by finite elements, the afore-
mentioned analogy with the Stokes problem suggests using, amongst

others, nonconforming finite elements Py of the type used earlier in
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Chapter II for approximating Stokes and Navier-Stokes problems (in

3 dimensions, ﬂfh will be a family of tetrakedra and the associated
degrees of freedom will be the values taken at the centres of the
faces of these tetrahedra by the approximations Xh' $h of A and 3).
(See MARROCCO [2] for more details on these nonconforming approxima-

tions and on the corresponding numerical experiments}).

We shall conclude this chapter with a few bibliographic comments.

We have already pointed out that the nonlinear operator

v+ —V°(|Vv]S-2Vv)

of Section 3, has appeared in mathematical models in glaciology and we
refer the reader to PELISSIER [1] and the associated bibliography;

the numerical augmented-Lagrangian treatment was introduced by
GLOWINSKI-MARROCCO [1] and developed in MARROCCO [1]. For the magneto-
static problem of Section 4, the reader may refer to GLOWINSKI-
MARROCCO [51]. The potential-flow problems of Section 5 are classical,
and the reader interested in the fluid-mechanical aspects of these
problems may refer to LANDAU-LIFCHITZ [1]. The viscoplasticity and
elastoplasticity problems of Section 6 are treated, in particular, in
DUVAUT-LIONS [1], and the numerical treatment of the corresponding
variational inequalities is described in detail in GLOWINSKI-LIONS-
TREMOLIERES [1],[2] and GLOWINSKI {1],[2]; the case of the torsion

of a cylindrical bar with multi-connected cross-section is treated

in GLOWINSKI-LANCHON [11]. In connection with minimal-surface pro-
blems we have already cited EKELAND-TEMAM [1] in which the concept of
a generalised solution is discussed; once again, this is a classical

problem which has given rise to numerous works.



CHAPTER VI

APPLICATION OF ALGORITHM ALG2 TO A
TWO-DIMENSIONAL ELASTOPLASTICITY PROBLEM

B, Mercier

INTRODUCTION

We shall now consider a new example arising from the Mechanics of
Continuous Media. In comparison to the preceding examples, in
particular Examples 1 and 2 of Chapter III, the situation will be
somewhat different: in fact the functional F will be noncoercive
(but differentiable) ; as G 1is linear, the problem (P) will be
'noncoercive’ and we will not be able to prove the existence of a
solution in infinite dimensions. In contrast, the dual of (P),
which involves F*, the conjugate of F , is well posed as F* is
coercive in the example which we are considering, and this also
implies the differentiability of F. Furthermore, as we saw in
Chapter V in connection with other problems, in order to improve the
rate of convergence of algorithm ALG2, there is an advantage to be
gained in this example by choosing a penalty term in the augmented
Lagrangian £r which is not equal to the square of the natural

norm on H , but which is associated with another quadratic form.

1. THE CONTINUOUS PROBLEM

We consider a continuous elastoplastic medium held fixed on one
part of its boundary. We seek the stress field o and the dis-
placement field u which are set up in the continuous medium when

it is subjected to external forces (the above situation is illustra-

ted in Figure 1.1).

217
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rigid
part

Figure 1.1 - The continuous medium before and after application of the
external loads

Let @ < JRd (d = 2 or 3 in applications) be the open bounded domain
with sufficiently regular boundary, representing the continuous med-

ium; we seek the stress field o in the space

2 ..
H={rT1-= (Tij), i e L), Ty = Ty 1<i,j<d}

We denote by TO the part of the boundary where the continuous medium
is fized and by

V={ve (H](ﬂ))c1 ,v=0 on I"o}

the space of admissible displacements.

The operator B : V - H is defined as follows:

1 Bvi ij
(Bv)ij =7(§';+_3—x—.-) , 15i,j<d 3

j

-

Bv represents the linearised strain tensor. From Korn's inequality,

which is proved in DUVAUT-LIONS [1], B is of closed tmage.

2
We introduce a symmetric automorphism A of ]Rd satisfying
a2
( {(A¢)-r = ¢+ (AT)  ,¥¢,TeR"
1.1) 2
nl? zalt? v rer®

and +* denote the norm and the Euclidian inner

where o > O ;

product on IRd. This automorphism takes into account the elasticity

coefficients, so that the energy of the continuous medium is written
1
> J (Ag).o dx .
Q

We denote by G(v) the function equal and cpposite to the work
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done by the external forces in a displacement v ¢ V of the contin-
uous medium (G ¢ V', dual of V), and we define

E={teH ,JT'BV dx + G(v) =0 ,VveV} ,
Q

which is termed the set of statically-admissible stress fields.

d2

Finally, we denote by C < IR the (closed) plasticity convex set

and by
(1.2) K={TeH, 1T(x)eC a.e. xefl}

the set of plastically admissible stress fields. Hencky's law then
states that the stress field o is the solution of the optimisation
problem

(1.3) Min %J (AT)*T dx .
Q

TeKnE

If the condition K n E # O 1is satisfied, that is, if we are
'below' the limit load, this problem admits a unique solution, from
(1.1). (Note that K and E are closed). Since the set E
depends linearly on G, if the origin belongs to the interior of
C (0e IntC), which we shall assume to be the case here, and if the
external forces (and hence G) are sufficiently small, then the

condition K n E # O will be realised.

2. THE PROBLEM (P)

As we have stated above, we shall equip H , not with its natural
inner product, but with an inner product related to the energy,
namely:

(p,q) = JQ(A']p%q dx

and we denote by ||+]|| the associated norm. With this notaticn, the
energy to be minimised in (1.3) is written as %|MT||2 and the set E

as:

E={teH, (A1,Bv) + G(v) = 0 ,¥YveV}l,

so that
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Sup {-G(v) - (A1,Bv)} =
veV

{o if T€E ,

+0 otherwise,

and problem (1.3) is equivalent to

Min Sup {%HAT”Z - (AT,Bv) - G(v)}
TeK veV

Its dual (obtained by permutation of the minimum and the supremum) is

written, after a change of sign, as

(2.1) Inf {F(Bv) + G(v)}
veV
with
1 2
(2.2) FO) = sup {0 - llall®}
qeK
[o]
and
2.3) R = {qeH, Alqexs.

This dual is clearly a problem of the form investigated in Chapter III;
the function F is the conjugate of the functional %]hﬂ]2+ IK (a),
and consequently it is d<fferentiable, but noncoercive in genergl.
Problem (2.1) therefore does not always admit a solution in infinite
dimensions, even if K n E 1s nonempty (see the counter—example in
MERCIER [3]).

3. APPROXIMATION BY FINITE ELEMENTS

In practice, we are obliged to reduce the problem to finite
dimensions in order to solve (1.3) (or (2.1)). To this end we intro-
duce a family of triangulations Pﬁh}h, indexed by a parameter .
h > 0; with h given, ﬁfh is a set of triangles covering @ )y
satisfying the following properties: let T, T'e‘ﬁh be two distinct

triangles of 15h ; then we have

1 7o simplify the description we assume that  1is a polygon in IR%
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TnT'=¢ , or
TnT' =1 one complete common edge
TnT' = 1 one common vertex.

In short, the situation shown in Figure 3.1 is forbidden.

Figure 3.1 : Forbidden situation

The parameter h denotes, for example, the diameter of the largest
triangle in ?fh . We then denote by Vh c V the space of finite
elements constituted by ptiecewise affine and continuous displacement
fields over each triangle of th. We denote by Hy < H the subspace
of H, composed of piecewise-constant tensors over each triangle of
Lpr SO that the operator B maps Vi into a part of Hy We
then put

E, o= {t e By, (ATp,Bu) + 6(vp) =0 ,¥v eV},
and to approximate (1.3) we choose the finite-dimensional problem

. 1 2
(3.1) Min & ||A1h]|

TheKnEh

which admits a unique solution o
when h + O (see MERCIER [31).

ho- It can be shown that Op > O

The definition of the dual of (3.1) again depends on considering

(on KxV) the Lagrangian

(3.2) 2 Iat)? - B - e

where the dual variable u (uh in finite dimensions) is in this case
the Lagrange multiplier of the stress 1 ¢ E (1 € Ep in finite dimens-
ions). As the interior of the convex set K 1is empty in H , it
is not possible to deduce the existence of u from this remark. On
the other hand, K n Hh
showing the existence of 0, from ROCKAFELLAR [4, Section 28], as

has a nonempty interior in Hh , thus
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long as Eh n (int K) is nonempty (which is a stronger condition than

that K n E be nonempty but which is true if the external forces are

h
sufficiently small). Incidentally, uy also satisfies
(3.3) Inf {F(Bv,) + G(vp)!

vhevh

which is the dual of (3.1) and which itself is evidently a problem of
the type investigated in Chapter III (note that (3.3) is clearly a
discretised form of (2.1), but the convergence of u, to u, even if

u exists, is improbable).

4. APPLICATION OF ALGORITHM ALG2

The augmented Lagrangian introduced in Chapter III is of the form:
£ (v,q,1) = F(g) + G(v) + (U,Bv-q) + %||BV-QH2
We note that in the present case G is linear.

LEMMA 4.1: Let 1iu,p,A} be a saddle point of £_ ; then u <is

a solution of (2.1), p = Bu and furthermore
(4.1) A= Ao »
where o is a solution of the Znitial problem (1l.1).

Proof. The first part follows directly from Theorem 2.1 of
Chapter III. From Section 2.3 of Chapter III, it also follows that
{u,A} 1is a saddle point of the Lagrangian (see (2.16), Chapter III)

_ 1 2
Liv,w) = 5 el e - B - 6w
[
which again gives the Lagrangian (3.2) after the simple change of

variable u = At. ]

Obviously, the existence of such a saddle point, like that of wu,
is doubtful in the infinite-dimensional case; however, in practice,

the problem will be solved in finite dimensions.

In view of the linearity of G, algorithm ALG2 may be written:
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{p°,2°%) e BxBandp>0 are given;

{(p" A"V e BXH being given by recurrence, calculate

(4.2), the solution u™ of (B, Bv)+(Bv,ArpM)+ G(v) = 0 VYveV,
4.2), the solution ™7 of F ™ Herp™! =A% 4 rm™!
(4.2), A C0P L ottt

The calculation of pn+1 in stage (4.2)2 of algorithm (4.2) can be

written out explicitly. In fact, in view of the definition of F ,
we have

(4.3) F'(q = T4

where LI H ~ Ko is the projection onto KO. From the definitions

(2.3) and (1.2) of Ko and of K , To is local, and the nonlinear
equation (4.2)2 can therefore be solved almost everywhere. It de-
composes triangle by triangle for the approximate problem, since we

have taken the precaution of choosing a space of piecewise-constant

functions for H - We can even solve (4.2)2explicitly with (4.3).

LEMMA 4.2 Let o° =T%;(Xn+r&fﬁl) ; then we have

1 1 n
p" = 2" - m 6T

n . \ . n+l

Proof. We show that ¢ is a convex combination of p and
ﬂopn+l. Consequently we have ﬂo¢n = ﬁopn+l, which then gives the
result. L]

Stage (4.2)2 of algorithm (4.2) is linear since G is linear. 1In
finite dimensions, this consists of solving a linear system with
matrix BtSB , where the matrix S is symmetric and positive-

definite relative to the inner product (¢,*).

Synopsis: We shall now prove the convergence of algorithm (4.2)
in the case where p =1r . Here we are in a situation which is the
reverse of that in Chapter III: the problem (P) is noncoercive
and, in contrast, its dual ((1.3) in this case) is coercive. In

Chapter III, it was (P) which was coercive and its dual (in Examples
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1 and 2 of Section 1.1 at least) which was not. Consequently, we
proved that {un,pn} + {u,p! and could prove only a weak convergence
property for At Here, in contrast, we shall show that AT >
and that we have only a weak convergence property for {un,pn}. We
have a somewhat analogous situation for the approximation, since

Oy > 0 (isomorphic to A) and since we cannot prove anything with

regard to LI

5. CONVERGENCE OF ALGORITHM ALG2

THEOREM 5.1 If there exists a saddle point {u,p,A} of the

Lagrangian i& y then algorithm (4.2) converges for p = r in the
following sense : {un,pn} remains bounded and A" = A when
n > + «,

Proof. By subtracting (4.2), from (4.2), we obtain (sinae
y 3 2

n+l n+l

A =F'(p" )

so that A® and pn are linked by a simple relation. Furthermore,

since {u,p,A} 1is a saddle point of £r ; we have

(5.1, r(Bu,Bv) + (Bv,A-rp)+G(v) = 0 ,
(5.1), F'(p)+rp = A+rBu ,
(5.1)4 p~Bu = 0 .

Similarly we have X = F'(p) 1in (5.1)2 in view of (5.1)3. Putting

sno= Ao, pn=p" - and u® = u” - u, we obtain
P P

(5.2) Xn+] + rEn+] =34 r BG“*I.

By subtracting (5.1)1 from (4.2)l we also obtain

(5.3) BBy = - (Bv,P-rph),

i.e. by introducing the operator P : H » ImB, which projects ontc

the image of B:

(5.4) 3a™) = - PP
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therefore (5.2) becomes

+1 - —
i ]+rpn+l = (I—P)kn+r P En

and squaring (since P and I-P are 2 orthogonal projectors)
- - - - - 2 -
P C S I it (R Vo R B
-n+l =sn+l

which proves, since by the monotonicity of F', (p ;A ) = 0, that
n

A7 and pn remain bounded, and therefore u? also remains bounded in
view of (5.4).
Furthermore (5n+l' Xn+l) + 0 when n » + «, which can be written,
since F'(qg) = T in the form
n+l n+l

(mp  -Tp,p PO

Now
n+l 2 n+i_ 2 n+] n+l _

PN L A N S I T O
in view of the properties of projection onto a convex set; we have
thus proved the convergence of A" to A when n + + o, .

6. NUMERICAL APPLICATION

6.1 Description of the mechanical problem

We have considered the problem of the bending of an encastred beam

of length £ and of thickness 2a, subjected to a shear force Fo

(see Figure 6.1).

>
[N

+
)

f o
4
ALTILTEELETLERTRLLRIRKRLRRRNNNY

Figure 6.1 - Encastred beam subject to a shear force Fo'
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We assume that the width of the beam (in the direction Ox ortho-

3
gonal to the plane of the figure) is sufficiently large and we will
then be justified in studying the plane-strain problem instead of

the three-dimensional problem, by assuming that the displacement

field depends only on X and X, and satisfies u; = O. The
strain tensor € = Bu can then be written:
€1 &2 O
€ E21 Ea2
0 0 0

We shall see that the same does not apply for the stress tensor.
Assuming the medium to be isotropic, we have

A-le = A tr(e) & + 2ue
where tr(e) denotes the trace of the tensor e, A and U are
the Lamé constants, and § is the Kronecker tensor. We have
adopted the von Mises plasticity criterion, and the plasticity

convex set is therefore written
c={rer’: |t°] <z v2)

. . . R . D
where 7 1is a coefficient characteristic of the material, T is

the deviator of the tensor 1 (TD =T - % tr(t)$§), and . is the
Euclidian norm of H@ . An explicit calculation shows that
F(e) = j V(e (x))dx
Q
where
Dy2 ., Dy _kV2
ule”}® ifle] < T
Ye) = Kotr(e) +
k V2 deDl - Ezgz) otherwise.
As may be expected, F is differentiable: we have
F'(e) = Y'(e(x)) , a.e. xe , where
Y'(e) = K0 tr(e)$ + min(2u, T gi )eD ,
e
where K = A + 2u
o} 3¢
Since in the equilibrium state we have o = ¢'(e(u)}, we see that in
general O34 # 0. The problem is nonetheless two-dimensional, and

the third component of the displacement is zero.
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6.2 Choice of constants

We have chosen u = Légé , A= Oi§3 (in Imperial units which

we shall not define here), a =2 and 2 20. The triangulations

2

chosen were uniform, with mesh intervals and %E (see Figure 6,2).
We have chosen m, = 10 and m, = 6 for an in%tial meSh (this gives

dim Vh = 140) and m, = 14 and m, = 8 for a second mesh (dim Vh = 252},

1
With these data the matrix BtSB of the linear system to be solved
in the elastic case (¢ = + «) is badly conditioned and it is necessary

to perform the calculations in double precision.

\

m
1

Figure 6.2 - First triangulation used (ml = 10, m, = 6).

The majority of iterative methods are inefficient for solving this
linear system, with the exception of the conjugate-gradient method
and its variants. Even so, this latter method only still converges
in a number of iterations close to the number of variables, and this
means that it is not competitive with direct methods. It is quite
possible that this conclusion would need to be reconsidered if a
suitable change of the inner product were made, since this may have

a preconditioning effect.

For the elastoplastic case, we have chosen k = u/?}IO_3 and have
compared algorithm ALG2 with two other standard algorithms.

6.3 Gradient method

We put ¢(v) = F(Bv) + G(v); solving (Ph) is equivalent to mini-
mising ¢ which is differentiable over Vh; using ¢ and denoting
by <.,.> the inner product chosen on Vh’ we have

(6.1) <p'(v),w> = J Y' (Bv) *Bw dx + G(w) ,szVh .
Q

The gradient method (for minimising ¢ on Vh) is then written
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uothandp>O are given;

unth being given by recurrence, calculate

un+l - W® - o ¢,(un).

If we choose as inner product < , > the natural inner product
on H@q where N is the dimension of Vi the calculation of the gradient
¢' from formula (6.1) is immediate. However, as already pointed
out, even in the quadratic case this procedure does not produce good
results because of the ill conditioning of the matrix BtSB. It is
also possible to choose any other inner product on Vh’ but then we
would have to solve, at each iteration, a linear system with matrix
R, where R is the matrix obtained from the chosen inner product < ,>.
We say that the matrix R acts as an auxiliary operator (or as a pre-
conditioning operator). We have tested the following inner product

<u,v> = J (ABu)Bv dx ,
Q

and the matrix R obtained is then the stiffness matrix of the elastic
problem, which would appear a natural choice for solving the elasto-

plastic problem.

6.4 Conjugate-gradient method

To minimise ¢ on Vh’ we can also use the conjugate-—-gradient
method:

(o] o .
u th s, W= ¢'(ﬂ9 are given; by recurrence,

knowing unandwn(evh), calculate

+1 e e
u =" - Py wn, where pn minimises g (p)= ¢(un—pwn) s
n+l n+l
T = ¢'"(u ),
<r T -r_ >
+ ’>“n+
wn+1 =" by A , Wwhere A_ = n+l’ n*l =
n n n .
<r ,r >

Let us say straight away that the results obtained with this method

were less than excellent. We shall now describe the way in which the
method was applied. In practice it is adequate to use an approxima-
tion of Phr and this is what was done. It is possible to determine

a value, possibly non-unique, of the second derivative of ¢, since



(SEC. 6) NUMERICAL APPLICATION 229

¢ is differentiable almost everywhere. For p, Wwe have chosen

the first iterate of Newton's method:

o = - 8;(0)

o g" (o)
which actually gives the exact solution in the elastic case. This
choice is quite adequate; a more accurate calculation of Pn would
be more expensive to compute and would not bring about any significant
improvement in the convergence. We reinitialise w" = r" every 2N
or 3N iterations; once again no significant improvement would be

evident if a reinitialisation were performed each time the inner
product

<wn+1,un+]—un>
becomes positive or smaller than a sufficiently-small positive con-
stant, The problem is fundamentally ill-conditioned: in the
(elastic) linear case we can successfully construct N conjugate
directions and solve the problem; however, we are unable to do

this in the (elastoplastic) nonlinear case.

In the light of recent results (see AXELSSON [1], CONCUS-GOLUB-
O'LEARY [11]) it would appear that the idea of changing the inner
product <,,.> on Vh could in this case lead to a significant
improvement. This is the basic idea behind so-called preconditioning
methods. Two options appear available: either to take as the matrix
R (arising from the inner product <,>) that of the elastic problem,
or to use an incomplete Cholesky decomposition of this matrix
following an idea due to MEIJERINK-VAN DER VORST [1l], which would
significantly reduce the cost of each iteration. The use of some
preconditioning is in our opinion essential if the performance of
the conjugate-gradient method is to be improved. It should be noted
that the use of an auxiliary operator in the gradient method, just as
in the penalisation-duality methods studied in the present book, has

an analogous effect which amounts to changing the metric of the space.

6.5 Choice of the parameters for algorithm ALG2

We have chosen for the termination test for algorithm ALG2:
L S PR T
Te t}
When the force F_ is sufficiently small, the problem is purely elastic

o
and the choice r =1 is optimal, In the elastoplastic domain, the
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choice r < 1 accelerates the convergence: a good choice would
seem to be r = % or r = %. In fact, in this case, from the very

first iteration we arrive at a solution two or three times larger than

that of the elastic problem, and which is approximately of the order

of magnitude of the elastoplastic solution. However, the choice
of r is not crucial. The following tables summarise the results
obtained:

F0 U n, t1 an | t2
0.2 0.10!1 133 (elastic)
0.4 0.203 245 - - -
0.5 0.270 411 - - -
0.55 0.322 547 42 35 3
0.6 0.404 574 - - -
Table 6.1 - Results for m, =6, m, = 10 (140 vartzables)
U : vertical displacement observed at xl=£, X,=~a,
ny : number of iterations of the conjugate-gradient
method
n, : number of iterations of ALG2

tirty, : respective machine times (in seconds on
IBM 370/168).

Conjugate ALG2 Gradient (with aux-
gradient iliary operator)

Fo U n] tl r n, t2 n3 t3

0.2 0.116 181 30 1 1 - i -

0.4 0.236 377 58 - - - - -

0.5 0.346 645 80 0.5 | 51 6 82 10

0.55 { 0.460 800 107 0.5 | 57 7 - -

0.6 0.680 1200 150 0.4 | 79 9 215 24

0.65 | 1.00 - - 0.331 88 | 10 250 28

Table 6.2 - FResults for 8, m, = 14 (252 variables) (compared with

Table 6.1 we have added t%e valued of r wused <n ALG2 and n, (the
number of iterations) and t, (machine time relative to the gradient
method with auxiliary opera%or)).
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number of
80 1 iterations
60
40
20 |
0.5 1. 1.5 2. r

Figure 6.3 - Variation of the number of iterations of ALG2 as a
function of r (case m =m, = 3).

7. DISCUSSION

For the problem considered here, algorithm ALG2 is two to three

times faster than the gradient method with auxiliary operator and ten
to twenty times faster than the conjugate-gradient method without pre-
conditioning. The good performance of both of the first two methods
may be attributed to the fact that, even though we had a linear system
with matrix BtSB to solve at each iteration, since this matrix was
fixed and of banded structure, it was factorised once and for all (by
Cholesky's method) at the start of the algorithm into a product LLt,
L being lower triangular and of banded structure. At each iteration
we therefore have to solve only two linear systems with matrix L, and
this is extremely rapid. As regards stage (4.2)2 of algorithm (4.2),
this can also be performed very rapidly since it decomposes triangle

by triangle.

It is now appropriate to explain the importance of the choice of
the inner product adopted in Section 2. In fact, in the augmented
Lagrangian £Y the penalty term is the square of the norm on H.

At any rate, it was under such an assumption that the proofs in
Chapter IIT were performed. However, if we take for H the 'natural'

inner product on H:
(p,0) = J peq dx
Q

then the performance of algorithm ALG2 deteriorates significantly.
In this case the matrix BtSB will not, in fact, be the matrix of
the underlying elastic problem, but that of an elastic problem with

different coefficients, which does not bear such a close relation to
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the (nonlinear) problem being treated. The same applies also for

the gradient algorithm with auxiliary operator.

We cannot over-emphasise for such problems the importance of the
ITHR2T ProARE 2T Thh THATE Th WINTH WE AT WOTRITY = Uit 4%, Yo St
vocabulary of the gradient method, of choosing a good auxiliary
operator or, in the vocabulary of the conjugate-~gradient method, of
choosing a good 'preconditioning'. This concept is also important
for the penalisation-duality algorithms: the choice of the penalty
term is at our disposal and it is necessary to take the one closest
to the nonlinear problem being considered, as has already been pointed
out in Chapter V.



CHAPTER VII
APPLICATION TO THE NUMERICAL SOLUTION OF THE

TWO-DIMENSIONAL FLOW OF INCOMPRESSIBLE VISCOPLASTIC FLUIDS

D. Begis, R. Glowinski

1. GENERAL NOTES. SYNOPSIS

The present chapter is based largely on BEGIS [2] and GLOWINSKI-
LIONS~-TREMOLIERES [2 , Appendix 61. It extends Section 6.1 of
Chapter V relating to the flow of a Bingham fluid in a cylindrical
duct. Here we shall be considering the much more complicated pro-
blem of the unsteady flow of a fluid of the above type in a bounded
two-dimensional cavity. We shall see that the introduction of a
stream function enables the problem considered to be reduced to a
parabolic variational inequality of order 4 with respect to the space
variables. We shall then examine the approximation of the above
problem by methods using mized finite elements (for the spatial
approximation) and finite differences (for the approximation in time).
We shall then show that these approximate problems can be solved by
the augmented Lagrangian methods of Chapter III, the algorithms
thereby obtained generalising those of Chapter V, Section 6.1, rela-
ting to the flow of a Bingham fluid in a cylindrical duct, Finally,
we shall present some numerical results obtained by the above methods,

and this will demonstrate some of the properties of Bingham fluids.

2. FORMULATION OF BINGHAM FLOWS USING THE VELOCITY AND THE PRESSURE

Let O be a bounded domain in IR2 with regular boundary T. With

v = {vl,vz} denoting an ®? ~valued function, we put
L
(2.5 Dy =7 Gt )
J 1
1 2 2
(2.2) DI RPN CODR
1,j=1

233
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2

(2.3) ay,@) =2 ] D (0D, (ndx,

i,j=1
(2.4) i@ = | @ e,

v = P

(2.5) v, = {yly enl @ xBL@), v = 0,

2 2 - =
(2.6) H= {vly eL°(Q) xL°(@), Vv = 0, ven = 0 onT}.

1
Y2y, witn )

If, furthermore, z « Hl/z(r) x H
(2.7) J z*n dI' = 0,
r

we associate with z the (nonempty) affine space

(2.8) v, = {ylven' @ xu'(@, vy = 0, v = 2 on T}

In the following discussion, we shall neglect the effects of

inertia (associated with the trilinear form (+,+,*) of Chapter IT,

Section 4.1, relation (4.5)); this leads us (see DUVAUT-LIONS [1,

Chapter VI]) to model the unsteady flow in § of a Bingham fluid

satisfying u =2z on T, by
Find ue LZ(O,T;VZ) aL7(0,T:H), u'e LZ(O,T;V(')) such that
(u'(e),v-u(t)) + va(u(t),v-u(t)) + gj(v)-gi(u) 2 (£(r),v-u(t))
(2.9)
Vgevz,a.e.in t,

2
u(0) = u € H, fe L (O,T;Vé).

We recall that in (2.9)

v is the viscosity of the fluid,
g is the threshold of plasticity (yield stress)

f is a density of external forces.

DUVAUT-LIONS [1, Chapter 6] proves (for z = Q) the existence and

1
n : unit normal vector on I', pointing outwards from Q.

7)
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uniqueness of a solution of problem (2.9); the case 2z # Q, with 2z

satisfying (2.7), may be treated analogously.
Remark 2.1: We have assumed in the above that z (= Q]P) is indepe-

ndent of t; there are no further difficulties in treating this case

numerically by the methods to be discussed subseguently.

3. FORMULATION OF BINGHAM FLOWS USING A STREAM FUNCTION

In this section we shall adopt the following two simplifying

assumptions:
(i) Q is simply connected
(ii) z = u|r =0;

nonetheless Remark 2.1 still holds for situations in which (i) and/or
(ii) are not satisfied. If we confine our attention to two-dimensional
flows, we can eliminate the condition ¥Y+y = O in a natural manner

by introducing a stream function defined (to within an additive

constant} by
(3.1 9 T a0 Y2 T T A
The condition u =0 on I implies
(3.2) Y = Const. on T,
(3.3) gi-= 0 on T .
n
We shall take ¢ = 0 on T, which fixes the constant mentioned above.

Let y ¢ Vo ; we associate with v the function ¢ ¢ Hi(Q) defined

B

uniquely by

_ 9 __ 9%
(3.4) v, = sz » Vy = Y
1
L
(3.5) ¢ = Fre 0 on T.

We recall that
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(3.6) @ = 8loc i’ @, ¢ = 2.0 on 1l

In view of (3.1), (3.4) we can reduce (2.9) to the following para-

bolic variational inequality (of order 4 with respect to the space

variables) :
Find weLz(o,T;Hi(m)an(o,T;Hl(sz)) such that
—J YA (£))dx + Va(Lt),o-Y(t)) + gi(d) - gj(w(t))
(3.7) 2
~ (2) 2 .
2 (£(t),9-P(t)) ¥ e HO(Q),a.e. in t,
V) =y, B @),
where
509,50, f [( o )2 4, )
a . = 2
1272 Q Bxlax2 Bxlaxz
32 224, 232 32¢
(3.8) + ¢ 2‘ - —h¢ 22 - 22)] ix ,
sz Bxl sz Bx1
¥ 0,0, cH@),
~ 2 2 2 1/2
i - [ e E3-28 " w
(3.9 & 172 %) 3x)

¥ e ui(sz).

Remark 3.1: In fact we have
- 2
(3.10) a(¢1,¢2) = JQA¢]A¢2 dx V¢1,¢2€ HO(Q) .

In the following we shall be using (3.8) and (3.10) simultaneously.

sz of

2
. ~ 1
If, in (2.9), (f,v) = Jgfv dx then f = 5;:—- 3;; .
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4, APPROXIMATION OF THE STEADY-STATE PROBLEM

4.1 Synopsis. Formulation of the steady-state problem

Before approximating (3.7) - by means of a mixed finite-element
method - we shall first study the approximation of the corresponding
steady-state problem, i.e. the following elliptic variational in-

equality of order 4: (%)

Find VeH-() such that
4. 1) e )
va(,$-Y)+gi($)-gi () 2 (£,9-¥) ¥ ¢¢ HO(Q),
where a(+,*) and j(+) are defined by (3.8), (3.9); we note that

(4.1) is equivalent to the minimisation problem

Find weui(n) such that
(4.2)
IW) SIG) ¥ HAR)

where, in (4.2}, we have

(4.3) J@) =3 a(,0) + gi®) ~ (£,6).

We shall assume in the following that f ¢ H—l(Q); in fact there
would be no difficulty in treating the case in which

(£,9) =J £ 00 dx %eHi(ﬂ) s feL2@).
Q

Since the bilinear form a(-,*) is Hi(Q)—eZZiptic (i.e. coercive),
and the functional j(*) is convexr and continuous on Hg(ﬂ), with
¢ » (£,¢)1linear and continuous, then it is a classical result (see,

for example, LIONS [1]) that (4.1), (4.2) admits a unique solution.

4.2 Approximation of (4.1), (4.2) by a mixed finite-element
method

We shall approximate (4.1), (4.2) here by a mixed finite-element
method suggested by MIYOSHI [117. The objective is to reduce the
approximation to that of a problem in which we only have to perform
the discretisation of Hl(Q) and LZ(Q) instead of discretising HZ(Q)

3
~

We shall henceforth omit the symbol .
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which is a much more complicated task. To do this, we first
introduce a weakened variational formulation of our problem, The
new variational problem thus obtained possesses a unique solution
which coincides with that of (4.1), (4.2) under fairly unrestrictive
conditions. For a general presentation of this approach, the reader
may refer to GIRAULT-RAVIART [11].

Thus, suppose ¢ ¢ Hg(ﬂ) and put for 1 < i,j < 2,
2
- _.97%¢ 2
(4.4) zij = Zji = Esx—jila ).
We then have, for all v ¢ Hl(Q),
1 3¢ v 3¢ dv _
(4.5) L} zij v dx + 5 JQ(KI 'g;J + TXJ r}(i)dx = 0.

. 1 _ .
Conversely if ¢ ¢ H_ (R) and z = {zij}lsi,jsz satisfy (4.5) then

b € Hg(Q) and z and ¢ are related by (4.4). Thus writing

| 1¢,2) = %J (211"222)2dx * BT\)J [(2212)2"(222’211)2] dx
(4.6) & &

+ gj(z) - (£,9),

where we have a,B ¢ 10,1[ with o + 8 = 1, then

(4.7) i(2) = JQ[ (2z12)2+(222—z”)2]1/2 dx

and putting

(4.8) W= {{q,2}er! @), z¢ at@n®, sadz satisfy (4.5}

this leads us to replace problem (4.1), (4.2) by the following problem:

Find {V,s} e W such that
(4.9)
JW,s) s J(b,z) ¥ {¢,z}eW.

This problem, which is equivalent to the initial problem, offers a
considerable advantage as far as the discretisation is concerned,
since it requires only the approximation of the spaces Hl(ﬂ) and
LZ(Q). The discrete variables are then related by a weak form of
(4.4).,
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We shall assume in the following that & 1is a convex polygon in
:mz; let {th}h be a standard family of triangulations of Q . We
then put

= 0 &
v, = {vheC ©, Vh|k© P VKe?,'h} s
1
Vo = tyyeVy, vy =0 on Th= v, nH (),
(4.10) A
W, = {{¢h,zh}|¢he Voh’ z, € (Vh) s

— =—)dx = 0 Wv eV, , I<i,j<2} .

Q 9%. OX. 9x, OX. h® 'h’
i 73 3 i

ZIQ zijhvhdx+
It may be noted that the approximations of Hl(Q) and L2(Q) are per-
formed here using the same space of finite elements, This procedure
is well adapted to the present situation, but it is not the only
means possible. Finally the approximate problem will obviously be:

Find {whﬁh}ewh, such that
(4.11)
LI s) €300y 52,) ¥ 1,2 T W .

To conclude, we note that the fact that we are using
2
Zj5 < gg—gg as an auxiliary variable means that the process is
i™7
particularly well adapted to the treatment of the nondifferentiable
term appearing in the functional to be minimised; it is for this

reason also that the above mixed method has been chosen.

4.3 Solvability of problem (4.11)

The following theorem is proved in GLOWINSKI-LIONS-TREMOLIERES [2,
Appendix 6, Section 4.4.3]:

THEOREM 4.1: The approximate problem (4.,11) admits one and only

one solution.

The solution of (4.11) by algorithms of the ALGl or ALG2 type will

form the subject of Section 6 later in the present chapter.

4.4 Convergence of the approximate solutions

We shall restrict our attention to the cases k = 1, 2 (see Remark
4.1 below for k =z 3); concerning the convergence of the approximate

solutions when h + O, we have:
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THEOREM 4,2: Suppose that whenm h » O the angles of Th remain
bounded below, uniformly in h, by 90 > 0; suppose also that the

condition

Max h(K)
Ket%
(4.12) n e ST vt‘,’h,r independent of h,
Keﬂi
(where h(K) = length of the longest side of K) is satisfied. We
then have
(4.13) Lin {¥,s,.) = (h,s) strongly in B (@ x ’@)°,

0

where {wh,sh} is the solution of the approximate problem (4.11), ¥

18 that of the continuous problem (4.1%, (4.2) and where
. _ QY
Nei,jep WOt 845 = LEN T

s = {Sij
We refer the reader to GLOWINSKI-LIONS-TREMOLIERES [2, Appendix 6,
Section 4.4.4]1 for the proof of Theorem 4.2.

Remark 4.1: We have assumed above that k = 1, 2; in fact,
similar convergence results could be obtained for approximations
based on finite elements of order k = 3, but given the limited reg-
ularity of the solutions (¢ ¢ H4(Q) X Hi(Q) in general) the use of

elements of such a high order is not justified.

4.5 Approximation using numerical integration

From a practical point of view it is necessary to use a numerical
integration procedure in order to approximate the functional J(-+,*)
in (4.9), (4.11); we shall restrict our attention to the case
k = 1. Let I,
approximate on %N the inner product induced by LZ(Q), i.e.
{Ah,uh} -+ fQ Aphy, dx, by

denote the set of the vertices of ‘fh; we

1
(4.14) Opobdy =5 L
PEZh

m(R)Ay (B (B)

where, in (4.14), m(P) is the sum of the areas of the triangles which
have P as a common vertex. In view of (4.14) we shall in fact use
in (4.11) the functional Jh(-,-) defined (if k = 1) by



(SEC. 5) APPROXIMATION OF EVOLUTION PROBLEMS 241

v
Tz = 5 (2 p* 2002 102200 n

v
(4.15) B Uz, 00022 50y * e o maon )
g 2 _ ]/2
'3, gz m(P) [(22) (B)° + (25, W)=z, (BT = (£,,00),
h
where fh is an approximation of f. Similarly, instead of using
Wy defined by (4.8), we shall, if k =1, use W, defined by

3
Wh = {{¢h,2h} €V0hx <Vh) » Z(Zijh’uh)h

(4.16) j 8¢ 3uh 8¢ 3Uh

(3x ij * Z)x 3x 1<i,j=<2}.

Ydx Vuh € Vh

Using the relations (4.16) it is easy to express leh(P)’ ¥P ¢ Iy
explicitly as a function of the values taken by wh on Zh; in
fact the matrix associated with the discrete inner product (',-)h in
Vi is diagonal. In the numerical solution, it is therefore possible
to eliminate the variable z; we refer the reader to BEGIS [2] f~-

further details.

5. APPROXIMATION OF THE EVOLUTION PROBLEM (3.7)

5.1 Semi-discretisation with respect to time

Let k = At (> 0) denote one step in the time discretisation; we
then approximate (3.7) by the following Implicit scheme (where
wn = Y (nk) and where the =~ have been omitted):

for wn known, determine wn+1 by solving

e
Q

c 2@ - g @™ 2 E(rK) 09"

n+l
n+]
)

w Y o™ ax + va™! e~
(5.1)

w2 @, v ¢ B2@), n=0,1,.00 5 00 = 9(0) =

The use of the above semi-discrete scheme has thus enabled us to
reduce the solution of the evolution problem (3.7) to that of a

sequence of elliptic variational inequalities, equivalent to the
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following sequence of minimisation problems (with n > 0):

Find wn+1€H§GD such that

(5.2)

T < @) v e ®
where

e - Z‘—k[ 17017 ax + 3 a(6,9) + g3 (®)
(5.3) o

~(E(@D0,0) - ¢ J V6 dx.
Q

The discretisation of (5.2}, (5.3) by the mixed finite-element method

of Section 4 is treated in Section 5.2 below.

5.2 Complete discretisation of (3.7)

The notation is the same as that in Section 4.2; we approximate
wo = ¢o by wg € VOh and the semi-discrete scheme (5.1) by the follow-
ing:

With the function wg € V,y known, obtain {wg+l,s§+l} by solving,

for n = 0,1,..., the minimisation problem
Find n+l  n+l
2 {¢h »Sy }ewh such that
(5.4)

J (‘PHH,SEH)SJ ©, ,z

khYh nPpozy) Hopaz tew

where (j(+) still defined by (4.7)):

JE;IWh’Zh) = zl-k JQthbhlz dx + 9Lzl)’ IQ(Znh*len)z dx
(5.5) + %‘i th(z.zmh)2 + (zZZh-z”h)zj dx + gi(z,)

- (E(DI,0) -+ [vag-wh dx.

It can easily be shown that problem (5.4), (5.5) admits a unique
solution; furthermore, the comments in Section 4.5 concerning the
use of numerical integration are still valid for problem (5.4), (5.5).
With regard to the convergence, as h, k > 0, of the above approximate
solutions to the solution of problem (3.7), we refer the reader to
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GLOWINSKI-LIONS~TREMOLIERES [2].

6. SOLUTION OF (4.1) (5.2) BY AUGMENTED-LAGRANGIAN METHODS

6.1 Synopsis

In this section we shall show that it is possible to solve the
steady state problem (4.1), or the sequence of problems (5.2) (ob-
tained by the semi-discretisation in time of problem (3.9)), by
means of augmented Lagrangian methods which fall within the general
framework defined in Chapter III. We shall confine our attention
to the case which is continuous with respect to the space variables,
but the generalisation to problems which are approximate in space
and time does not present any particular difficulty (apart from the
fact that the formalism which has to be constructed is extremely

cumbersome) .

6.2 The model problem. Introduction of an augmented Lagrangian

Problems (4.1) and (5.2) lead us to consider the minimisation pro-
blem
Find VeHA(Q) such that
(6.1)
IW) SI(8) ¥ HAD,

with
HOER nglz ax + 3 fﬂlz\‘bl2 ax
(6.2)
2 2 2 1/2
3% 2. 3% 3%.2
+ g J [(2 )<+ (L - =571 dx - (f,9)
Q 8x]8x2 axg Bxf

and y > 0 (y = 0 for the steady-state problem, y = 1/k if (6.1)
arises from problem (5.2)). The principal difficulty in the solution
of (6.1), (6.2) arises from the nondifferentiable functional
2
3% .2
‘“J [(Z"ax—sx—> *Ca D
Q 1772 |
To get round this difficulty (as well as to simplify the discretisat-

ion of the problem) we shall adopt the framework of Section (4.2) and

consider a mixed variational formulation of problem (6.1), (6.2).
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With j(+) still defined by (4.7) we again put

_ 1 2 4 o[ (39 B, 3
w={{¢,z2} EHO(Q) x (L)), ZJQ z; v dx J ax BXJ ij axi)dx

Yo eH (D), 1 1,j <2}
and

2 f
RICE —-I |vo|Pax + 7¥'JQ(211+222) dx %?’JQ [(2212)2+(222'Z11)2]dX

+ gj(z) - (£,9),
so that it is clear that (6.1), (6.2) can be written
Find {¥,s}eWw such that

(6.3)
J(Y,s) €I(9,2) ¥ {¢,z}eW.

In order to adapt the general method of Chapter III to this case,

it is natural to introduce here a supplementary variable

q = {qi}i_l € (LZ(Q))2 related to z by the linear equations
q = 2212

(6.4)
42 = Z07%py

It is this constraint (6.4) that we shall be treating by penalisa-
tion and duality, via the introduction of an augmented Lagrangian.

S0 as to allow the notation of Chapter III to be used here, we put:
V=W
B = f@)?

(6.5) Be £ (V,H) defined by B{(I),z} = {22]2,z
F(q) = gjla),

G($,z) = %‘JQ|V¢‘2dX+ %; Jﬂ(z]] 9) Zax+ §-.Jr(2212)2+(222—z]l)zjdx—(f,¢).

2277119

We then define for r > 0, {¢,2} ¢ V, g ¢ H, u ¢ H the augmented
Lagrangian {&: V xHXH-> IR by

ir({¢,z},q,u) = G(¢,z) + F(q) + J (2z),-9)p, dx
(6.6) f

- - r 12 r
* JQ<222 211 79p¥pdx *+ 5 JQlZZIZ 9] ax s E‘JQIZZ 179, e,

The solution of problem (6.1), (6.2) then reduces to seeking a
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saddle point of i% on VxHXH, We could also have considered in
the above the decomposition associated with

F@ =8 Jal? exe ] lal e,
9] 9]

2
6(9,2) = ¥ JQ|\7¢| dx + 9‘%[ (z,,*2,,) "dx.
Q

In the following sections we shall have to solve problems correspond-
ing to the minimisation of ir on V, z and 1 being fixed. This
minimisation leads to solving a linear mizxed problem in ¢,z. The
remarks made earlier relating to the discretisation and the use of
numerical integration still apply, and we can consider the solution

of such a problem as being standard.

6.3 Application of ALGl to seeking a saddle point of d&

In view of Section 6.2, it is natural to solve problem (6.1), (6.2)

by using algorithm ALGl of Chapter III; we then obtain the following:

(6.7) e = wl@)? given,
then, for n =z O, A" e H being known, determine {wn,sn} e V and
pn «c U then Xn+l by

{wn,sn} ev, pn €H,
(6.8)

2, (W°,s",p%0™ < £ (16,2},0,0™) ¥ {9,2} €V, ¥q eH
(6.9) AR O o B{y®, P -pD).

In view of the convergence results established in Chapter III,

Section 4, we have:

THEOREM 6,1: Suppose that ir admits a saddle point {{y,s},p,7}
on V XH xH; then 1f

(6.10) 0<p<2r,

we have for all 2% e H

(6.11) lim (V7,s"} = {¥,s)} strongly in HL(Q)X(LZ(Q))A,
nro
. n , 2 2
(6.12) lim p = p strongly in (L°(Q)°,

ne
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(6.13) lim 2™ = A¥  weakly in  @2@)?,

b eluatd
where M* s such that {{y,s}, p,A*} is a saddle point of {r on
V X H x H. | |

It is clear that, once again, the essential difficulty with this
approach lies in the fact that system (6.8) has to be solved at each
iteration; in view of the structure of {r, this problem can be
solved by a block over-relaxation method like that described in
Chapter III, Section 3.2. As far as the choice of p is concerned,
numerical experiments indicate once again that the optimal value lies

close to p =r.

6.4 On variants of algorithm (6.6) - (6.8)

The first of these variants is algorithm ALG2 which has already
been studied in some detail in Chapter III and used extensively in
Chapters IV, V and VI. In the case under consideration here, we

obtain the following:

(6.14) {\\U—l,s-l}év, 2°eH are given,

then, for n 2 O, {wn_l, sn_l} e V, A" ¢ H being known, we determine

p" {v™, s} and ARt successively by
p" e H,
(6.15)
=£r<{w“" L™ 1P < ir({w“" 8" 11,40 ¥qeH,
W, " ev,
(6.16)
2 (7" AT s £ ({0,2),0" 0 ¥o,2bev,
(6.17) AR o (Bl s

It follows from Chapter III that the convergence results of
Theorem 6.1 still hold if instead of (6.10) we have

(6.18) 0<p<-1—+2§r
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We shall see that the solution of (6.15) and (6.16) does not pose
any difficulties; problem (6.16) is in fact a problem of lZnear bi-

harmonic type written in mixed formulation, as follows:

Find {Y",s") eW such that
YJQ Tyteve dx + avfﬂ (s71+s§2)(z11+222)dx
(6.19) + (Bu+r) JQF(25?2)(2212)+(s;2—sT1)(222-21l)]dx = (£,0)
* JQ(A?‘rpT)(zzlz) * JQ(Ag'rpg)(zzz'z11)dx

¥ {¢,z} ew.

This problem admits one and only one solution. As regards (6.15),
it can easily be shown that this prcblem admits a unique solution

given explicitly by

(6.20) " = % (lxnl_g)+ 3%} ’
X7

where XU = {X?, Xg} is defined by

(6.21) X% e 22

-22) x2 =20 + (s =sT7h,

and where |X| = Xi " X%-

Once again the optimal choice for p appears to lie close to
p = r; the optimal choice of r is a much more complicated problem
since this optimal value appears to depend on v and g; nonethe-
less, the comments made in Remark 6.1 in Chapter V, Section 6.1.2,
again hold for the present problem.

To conclude this section on variants of ALGl, we should mention
the following variant due to GABAY [1], which we have already met in
Chapter IV. We shall return in Chapter IX to the properties of this
algorithm which we shall refer to as ALG3:

>\n+l/2

With (6.14), (6.15) as before, determine by

(6.23) R G L WEL
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then {97,s%) ¢ Vv by

(6.24) 2 (R, A s 2 (6,23, 0 D) ¥ (9,20 e
ard finally antL by
(6.25) R e T T i = S T

It may be noted that in the above algorithm the variables {¢,z}
and g play a symmetric role; this was not the case in ALG2, where
the order chosen is governed by considerations of ellipticity, for

the details of which we refer the reader to Chapter III.

Section 7 below gives the results of a number of numerical experi-
ments in which the above algorithms (actually, finite-dimensional
variants of these) have been applied to the solution of problems (3.7)
and (4.1).

7. NUMERICAL EXPERIMENTS

In this section we shall describe some of the numerical results ob-
tained by BEGIS [2] using the methods of approximation by finite
elements, and of iterative solution by augmented Lagrangian, of the

preceding sections.

7.1 Formulation of the test problem

Let © = ]0,1[x]0,1[ ; we consider a family of Bingham flows for

which (using the notation of Section 2) we have

(7.1 V=1,

7.2) £=0,
ulp = b = (b, ,bwithb, =0 on T,
(7.3) b](O,xz) = bl(l,x2) =0 ¥xye Jo,1l,

b‘(xl,l) =0 ¥x, € 10,1[ , bl(xl,O) =1 ¥xe Jo,iL.

We are thus dealing with problems which can be classed as flow in a
cavity with a sliding wall; we note that IF ben dI' = 0, but that
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p ¢ 82 x HY/2(T) (we have b ¢ BS(I) x BS(I) for all s < 7).

7.2 Numerical results

Details of the practical implementation of the methods of approxima-
tion and iterative solution described in the previous sections may be
found in BEGIS [2].

Steady-State Cases: For various values of g, we have shown in

Figures 7.1 to 7.5 the rigid regions (shown hatched) and the visco-

plastic regions (in white), as well as the streamlines (these are the
equipotentials of ¢ ); we observe that the zones of rigidity incr-
ease with g (the asymmetries which can be seen are due to the asym-

metries of the triangulation employed).

Unsteady Cases: For various values of g, we have considered the
case in which the material filling the cavity £ 1is initially at rest
(so u(x,0) =0 ¥ xeQ &S Y(x,0) = 0 ¥xe), and is then set in motion by
the sliding (defined by (7.3)) of the lower wall of Q. When the
steady state has been attained (to within a certain precision), the
motion of the lower wall is arrested, with the aim of observing the

return to the initial state u = O (i.e. ¥y = 0) in Q.

For various values of g (including g = 0) we have shown in

Figure 7.6 the behaviour of
2
t »J [p(x,e) |7 ax 3
Q

it may be noted that for g > O the rigid state 7s attained in a
finite time which grows progressively smaller as g becomes larger;
this accords with physical intuition and can be justified theoretic-

ally.

Methods for the numerical simulation of the two-dimensional flow
of Bingham fluids may be found in FORTIN [2], BEGIS [1], these being
based on different principles (including the direct use of the
velocity~-pressure formulation of Section 2); numerous numerical
results are also given in these references, which are in agreement
with those presented here (see also Chapter VI of GLOWINSKI-LIONS-
TREMOLIERES (1], [21).
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BINGHAM FLUID
PARAMETERS:
Threshold of plasticity 0.5
Viscosity 1.0
External force: fl(xl'x2’t) =0.0, £,¢(
BOUNDARY CONDITIONS:

Normal component of velocity 0.0
Tangential component of velocity 0.0
INITIAL CONDITION: -0
Initial velocity 0.0

STEADY STATE

o TR

(CHAP. 7)

at = o1 ;x2=1
at x. =

Max. value of stream function 0.928E-1
Value of stream function on line 1 0.510E-3
Difference between successive lines 0.100E-1

|HH| Rigid zones
LABORIA

Figure 7.1 (g = 0.5)

D.BEGIS
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BINGHAM FLUID
PARAMETERS:

Threshold of plasticity
Viscosity
External force: fl(xl’x2’t) =0.0,

BOUNDARY CONDITIONS:

Normal component of velocity
Tangential component of velocity

INITIAL CONDITION:

Initial velocity

STEADY STATE

e

G

:

|

—OO

Max. value of stream function 0.864E-1
Value of stream function on line 1 0.510E-3
Difference between successive lines 0.100E-1

il Rigid zones

LABORIA

Figure 7.2 (g = 1)

251

D.BEGIS
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AM
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h h 1d of plasticity 2.5
VVVVVVVV Yy 1.0
nal fo fl(xl, 2,t) fz(xl’XZ
C NS
mal mponent of velocity 0.0
gential mponent of locity 0.0 at}i=
1 atXé=O
INITIAL CONDITION:
llllll 1 velocity
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el

“ “11.|||||n i
MMM“ ‘,

HN‘

Max. value of stream function 0.737E-1
alue of stream function on ne 0.
Difference between successive lines 0.100E-1

H”H Rigid zones

Figure 7.3 (g = 2.5)
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BINGHAM FLUID

PARAMETERS:

Threshold of plasticity 10.0

Viscosity 1.0

External force: fl(xl’XZ’t) =0.0, f2(xl,x2,t) =0.0
BOUNDARY CONDITIONS:

Normal component of velocity 0.0

Tangential component of velocity 0.0 atx==O,l;Xé=l

1
1.0 at x2—O

INITIAL CONDITION:

Initial velocity 0.0

STEADY STATE

e

W

—
Max. value of stream function 0.500E-1
Value of stream function on line 1 0.500E-3

Difference between successive lines 0. 1l00E-1

|HH| Rigid zones
LABORIA D.BEGIS

Figure 7.5 (g = 10)
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CHAPTER VIII

APPLICATION TO THE SOLUTION OF FINITE
NONLINEAR ELASTICITY PROBLEMS

J.F. Bourgat, R. Glowinski, P. Le Tallec

1. GENERAL NOTES. SYNOPSIS

The aim of this chapter is to show that the general principles of
decomposition—-coordination studied in Chapter III have a range of
application considerably wider than that considered in Chapter III,
which arose from Convex Analysis and Monotone Operators; in fact,
we shall show in this chapter that these principles and the associated
algorithms will lead to the development of iterative methods, still
related to ALGl, ALG2 (and possibly ALG3), which are extremely
efficient for solving non-convew vartational problems arising from
Nonlinear Elastieity, in which the displacements and/or the strains
are large relative to the more usual context of Linear Elasticity,
where they are assumed to be 'very small’; this fintte character of
the displacements and/or the strains justifies the title of the pres-
ent chapter which must necessarily be considered as merely an intro-
duction to a vast and difficult subject which is as yet still relati-

vely undeveloped in terms of numerical methodology.

The principles and methods mentioned above will be applied to the
solution of two types of problem arising from Finite Nonlinear Elast-

teity; namely:
(i) In Section 3, the large-displacement calculation of equilibrium
configurations for a class of inextensible and flexible pipelines.

(ii) In Section 4, the mechanical behaviour of imcompresstble, elastic

materials of Mooney-Rivlin type.

The results of numerical experiments will be presented and discussed

for both the above cases.

Although the methods used have their formal origin in Chapter III,

257
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it seems desirable to repeat (without proof) the essential points
relating to the principles and methods of Chapter III, so as to
improve the readability of the present chapter; we do this in

Section 2, below.

To conclude this introduction we would like to point out the fol-
lowing selection of works in which various aspects of the above non-

linear elasticity problems are developed:

BOURGAT-DUMAY-GLOWINSKI [1], GLOWINSKI-LE TALLEC [1]1, [2], LE TALLEC
(1], {21, CLOWINSKI-LE TALLEC-RUAS [11, RUAS [1] and especially
BOURGAT-GLOWINSKI-LE TALLEC [1] on which the contents of this chapter

are heavily based.

2. DECOMPOSITION OF VARIATIONAL PROBLEMS. ASSOCIATED ALGORITHMS.

In this section we shall briefly summarise the various considerat-
ions which were developed in detail in Chapter III; this will allow
the reader who is more particularly interested in the applications
treated in this section to tackle it directly without first having to

read Chapter III (which can therefore be postponed to a second reading).

2.1 A family of variational problems

In the following we shall restrict our attention to real Hilbert
spaces; we thus let V and H be two such spaces, equipped with the

norms and inner products

» (,*) and s (*57),

respectively. Let B ¢ & (V,H) and let F and G be two convex,
proper, lower semi-continuous functionals from H and V into
IR u {+»}, respectively; we assume that

2.1) dom (G) ndom (FoB) ¢ @,

where

dom (G) = {v|veV, == < G(v) <+=]},

with a similar definition for dom (FoB). We associate with v, H,

B, F, G, above, the minimisation problem:
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Find ueV such that
®
J(u) J(v) W¥veV,

where J : V » R is defined by

(2.2) J(v) = F(Bv) + G(v).

The functional J(+) and problem (P) have a very special structure;
thus it is natural to think in terms of using methods which take

advantage of this structure.

Remark 2.1: The majority of the considerations which follow can

be applied to variational problems of the form
(2.3) £eB'A (By) + Ay(w),

where £ ¢ V' (the dual space of V) and where Al (resp. A2) are mono-
tone operators (possibly multivalued) from H into H' (the dual of H)
(resp. from V into V'); the operator A = B'OAlOB T A2 from V into
V' is not in general the gradient (or subgradient ( ))of a functional

J (B' denotes the transpose of the operator B).

For numerical results relating to these generalisations we refer
the reader to LIONS-MERCIER [1], GABAY [1] (see also Chapter IX of
the present book and GLOWINSKI-LIONS-TREMOLIERES [2, Appendix 21).

If we assume that in addition to (2.l1) we also have
(2.4) lim  J(v) = +
[Fol]+ 4=

then (P) admits a solution which is unique if J is strictly convex.

Remark 2.2: The applications to Nonlinear Elasticity in Sections

3 and 4 actually relate to non—convex minimisation problems.

2.2 A decomposition principle

We shall now briefly summarise the developments of Chapter III;

!  See EKELAND-TEMAM [1] for this concept.
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we thus define W ¢ V x H by

(2.5) W= 1{{v,q} € VxH, Bv-q = 0}

Problem (P) is equivalent to

Find {u,pleW such that

(™
J(u,p) £ j(v,q) ¥ {v,qlew
with
(2.6) jvsq) = F(Q)+G(V).
Remark 2.3: The new problem (m) clearly resembles mixed formula-

tiong, to the extent that the relation Bv - g = O suggests the intro-

duction of a Lagrange multiplier.

Remark 2.4: Problems (P) and (m) are equivalent, but by conside-
ring (7m) we have in some ways simplified the nonlinear structure of

(P) though at the cost of a new variable g and of the relation

(2.7) Bv-q = 0

in fact, since relation (2.7) is linear, some very efficient tech-

niques exist for treating it; we shall treat it in the following

work by making simultaneous use of penalisation and Lagrange multi-
plier methods, through the medium of a suitably-chosen augmented

Lagrangian.

2.3 An augmented Lagrangian associated with (m)

Let r > O; we define ir: VxHxH>TR by
2
(2.8) 2, (v,q,0) = F(Q+6(W)+ 7 |Bv=q|* + (1,Bv-0).

It is shown in Chapter III, Section 2.2, that if {u,p,A} is a saddle
point of ir on VX HXH (i.e.

{u,p,A} e VxHXH and
(2.9)
-CT(U,P,U) < ir(uypy)\) Sir(v,q,u) ¥ {VJQ)U} € VxHxH),
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then {u,p} is a solution of (m), i.e. u is a solution of (P)
(with p = Bu).

2.4 A first algorithm for solving (P)

To solve (P) and (m) we shall determine the saddle points of {%
by a duality algorithm of the type considered in GLOWINSKI-LIONS-
TREMOLIERES [1, Chapter 2],[2, Chapter 2 and Appendix 2]. Such an
algorithm applied to the solution of (2.9) is algorithm ALGl, intro-
duced in Chapter III, Section 3.1; that is:

(2.10) A° eH, given
then for n=0, AT being known, determine un,pn,kn+l by
Find {u",p"} eVXH such that
(2.11)
ir(un’pns 'ﬂ) < ir(v’qaxn) ¥ {V’q} eV xH,
(2.12) A 2P s Bu™-pP).
As regards the convergence of (2.10) - (2.12), it is shown in

Chapter III, Section 4, that under very reasonable assumptions on F,
B, G and if

(2.13) 0<p<2r

we have, when n » + o:

(2.14) W u strongly in V
(2.15) pn +>p=Bu strongly in H
(2.16) A" > A weakly in H

where u is the solution of (P), and where X is such that {u,p,A}

is a saddle point of ‘r on V X H x H.

Remark 2.5: The only nontrivial stage in the above algorithm is
the solution of problem (2.11); in fact to solve (2.11), taking

into consideration its very special structure, it is very convenient
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to use block-relaxation algorithms such as those considered in CEA-

GLOWINSKI [1], CEA [1], [2], GLOWINSKI [2, Chapter 5] and which are

also used in Chapter III, Section 3.2. If we use these relaxation
methods, and if in the calculation of {un,pn} we perform only a
single relaxation iteration, starting from {un_l,pn_l}, we then

obtain the algorithm described below in Section 2.5.

2.5 A second algorithm for solving (P)

In this case we are in fact dealing with algorithm ALG2 of Chapter

IIT, Section 3.2, namely:

(2.17) u given in V, A° given in H,

n-1 n

then for n = O, u , A" known, determine mu ,Xn+l successively by
P

2 VM 2 @' q,0") vaen,

b
(2.18)

p" €8,

:Cr(un,pn,)\n) Sn’.’r(v,pn,kn) VeV,
(2.19)

wPev.
(2.20) AR o).

Remark 2.6: Different variants of (2.17) - (2.20) are possible;

we can for example
(i) interchange the roles of g and v (see also Remark 2.7),
(ii) update A" between stages (2.18), (2.19); by doing this we

then obtain the following variant (due to GABAY [1]), of (2.17) -
(2.20), and to which we shall return in more detail in Chapter IX:

(2.21) u—lgiven in Vv, A° given in H,

then for n = O, un~l and A" given, calculate p

+ +1
n'xn 1/2’unlxn by
_1 -
2 "R (@ ,g,0" ¥qeH,
(2.22)
pneﬂ,
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(2.23) A2 _0m  oma™ pRy,
(2.26) 2 @t A < g @ et T wey,
uneV,
(2.25) 30t _ ln+l/2 . Q(Bun_pn) ;
g and v play a much more symmetric role in (2.21) - (2.25) than in
(2.17) - (2.20). 1]
Remark 2.7: If algorithm (2.17) - (2.20) is used, it is recom-

mended that in the second stage the problem solved should be the one
which has the better ellipticity properties (see Chapter III for the
motivation for such a choice); if algorithm (2.21) - (2.25) is being
used, this is not important since g and v then play a symmetric

role. ]

As regards the convergence of (2.17) - (2.20), it is proved in

Chapter III, Section 5, that under very reasonable assumptions on F,

B, G we again have the convergence properties (2.14) - (2.16) if
(2.26) o<p<112‘/—3r.

2.6 Remarks on the choice of p and r.

For given 1r, the optimal choice for p is very close to p = r,

in the light of the large number of numerical experiments performed

with the algorithms in Sections 2.4 and 2.5. The choice of r is
a much trickier problem; theoretically, the convergence gets pro-
gressively faster as r increases; in practice, for large values

of r the system (2.11) is ill-conditioned, and to solve it accurately
becomes a costly operation, whilst, for very large values of r,

the rounding errors generated can be disastrous. It can thus be

seen that when r increases, two phenomena with contradictory

effects arise; the combined effect of these two phenomena on (2.10)-
(2.12) produces an algorithm which is not very sensitive to the

choice of r and which is very robust. If we use algorithms (2.17)-
(2.20) and (2.21) - (2.35), with p = r, the optimal choice of r is

in general a very difficult problem to analyse.
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2.7 Relations with alternating-direction methods. Further
discussion.

2.7.1 Relations between algorithms (2.17) - (2.20), (2.21) -
(2.25) and certain alternating-direction methods.

We shall assume for simplicity that Vv = H and B = I; we shall
also assume that F and G admit as differentials (or subdifferen-
tials) Al and Ay respectively; Ay and A, are necessarily monotone

operators (possibly multivalued). Problem (P) is then equivalent to

(2.27) 0 = A](u)+A2(u)
(where = must be replaced by ¢ if A and/or A, are multivalued).

Suppose that p=r; we then obtain by elimination of AR in (2.17)-
(2.20) :

(2.28) o given;

then for n 2 O,

(2.29) A 6™ = r™ oA, (T,
(2.30) rua, @ = r™ea M.

+1/2 +1
n+l/2 _ pn

Putting u , we finally obtain

(2.31) ru“+1/2+A1(u“*‘/2) = ru-a, (™),

+

(2.32) ra™ s, ™) - run-A)(un+1/2).

In (2.31), (2.32) we can recognise an alternating-direction method
of Douglas-Rachford type (see DOUGLAS-RACHFORD [1]).

Similarly by elimination of A" and An+l/2 in (2.21) - (2.25) we
y by

obtain, (still assuming p = 1)

(2.33) run+1/2+A](un+l/2) = run—Az(un),

(2.34) ru“+1+A2(un+1) - run+1/2_A1(un+l/2)
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which is in fact an alternating-direction method of Peaceman-Rachford
type (see PEACEMAN-RACHFORD [1]).

An investigation of the convergence of the above alternating-
direction methods when A, and A, are monotone operators from H into
H, possibly multivalued, and not necessarily the gradients of convex
functionals, may be found in LIONS-MERCIER [1], GABAY [1l] (see also
Chapter IX).

2.7.2 Interpretation of algorithms (2.17) - (2.20) and (2.21) -
(2.25) 7n _terms of the numerical integration of evolution

equations

It follows from Section 2.7.1 that if p =r, V= H and B = I, then
(2.17) - (2.20) and (2.21) - (2.25) can be considered as Zmplicit
schemes, using the decomposition A = A, + A, for the numerical inte-

gration with respect to time of the Cauchy problem

g%-+ AW =0,
(2.35)

u(0) = u

In view of this interpretation, r appears as the inverse of a time
step At, with At = + (resp. At = 2) for algorithm (2.17) - (2.20)
(resp. (2.21) - (2.25)). As is shown in BOURGAT-DUMAY-GLOWINSKI (11,
this interpretation of the above algorithms, related to the numerical
integration with respect to t of the evolution problem (2.35), can
be very useful for giving a qualitative understanding of the behaviour
of these algorithms; for example, it is clear that the above algor-
ithms will become progressively more reliable as r increases (i.e.

as At Dbecomes smaller).
The numerical integration of (2.35) using alternating-direction
methods is studied in LIONS-MERCIER [1] under relatively general

assumptions on A, and A,.

2.7.3 Further discussion

The solution of problems such as (P) by decomposition-coordination
methods using augmented Lagrangians seems to*be due (in the context
of boundary-value problems at least) to GLOWINSKI-MARROCCO [1]-[3]

(see also POLYAK [1] for applications in Nonlinear Programming). For
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further details and various applications we refer the reader to the
other chapters of the present book and to LIONS-MERCIER [17 ,

GABAY [1], GLOWINSKI [11, [2] , GABAY-MERCIER [1], BOURGAT-DUMAY-
GLOWINSKI [1]1, GLOWINSKI-MARROCCO [41], [5], MARROCCO [1l], MERCIER [1],
CHAN-GLOWINSKI [1] and BEGIS [2]

As far as we are aware, the aforementioned relationships between
the algorithms of Section 2.5 and alternating-direction methods were
observed for the first time by CHAN-GLOWINSKI [1], f{2]. We conclude
this section by pointing out that the majority of the ideas considered
are developed further in Chapters III and IX.

3. APPLICATIONS IN FINITE NONLINEAR ELASTICITY. (I) LARGE-DISPLACE-
MENT CALCULATION OF THE EQUILIBRIUM POSITIONS OF INEXTENSIBLE,
FLEXIBLE PIPELINES

This section is based on the article by BOURGAT-DUMAY-GLOWINSKI [1].

3.1 Formulation of the problem

3.1.1 General discussion

Flexible pipelines play an important role in the exploitation of
off-shore o0il fields ; the engineers concerned are interested in the
static and dynamic behaviour of these pipelines, in the effects of
currents and tidal swells, in the problems of contact at the sea-
bed and with other obstacles (for example the pipeline itself), etc..
Figure 3.1 below illustrates this type of situation and shows some of

the notation which will be used in the following discussion.

surface of the seg

current
—

M{x(s),y(e)}

pipeline
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We have:

A, B : the ends of the pipeline

s H the curvilinear coordinate; s(A) =0, s(B) =L (L:
length of the pipeline)

M(s) H generic point of the pipeline, with coordinates x(s),

y(s).

In this chapter we shall confine our attention to the static dis-
placements of pipelines and we shall neglect the effect of water
currents; for calculations involving currents, and for dynamic
behaviour we refer to BOURGAT-DUMAY-GLOWINSKI [11].

3.1.2 Simplifying assumptions

We shall assume for simplicity (but also because this still allows
a number of interesting preliminary results to be obtained regarding

the behaviour of these pipelines), that

- torsional effects are neglected,

- the pipeline is inextensible,

- the diameter of the pipeline <8 small relative to its length L,
- we confine ourselves to two-dimensional displacements,

- the pipeline is flexible and, consequently, can support large
displacements whilst still obeying a linear constitutive Llaw
between the stresses and the strains.

3.1.3 Modelling of static problems

The mathematical formulation of the inextensibility condition is

given by

(3.1 x%+y'2 =1 on L0,L]
2 2

(where x°' =% , ¥ =-§§ , X" =g—% » ¥ =d—% , etc...).
ds ds

Considering the pipeline as a beam, and also assuming that the only
external forces are those due to gravity, it is reasonable to assume
that the displacement fields corresponding to stable eguilibrium pos-
itions are solutions of the following local minimisation problem:

L L
(3.2) Loc min {ETIJ’ (x"2+y"2)ds + pgj y ds} ,
{x,v}ed 0 0

where in (3.2):
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(i) EI (> O) is the flexural rigidity of the pipeline.
(ii) g is the acceleration due to gravity.

(iii) p is the linear density (i.e. mass per unit length) of the pipe-
line (if the pipeline is immersed in water, in order to take
account of buoyancy effects we take

P = P 0P,

where and o respectively are the <ntrinsic linear density and

P
o
the cross-sectional area of the pipeline, and where Py is the

volumetric density of the water). [ ]

Finally, the local minima which we are seeking are to be found in

the nonconvex set 4 defined by

8 = {ix,y}|x,yec'lo,L] ,x",y"eLz(O,L),
(3.3)

2+y =1 on [0,L], together with appropriate boundary conditions}.

Remark 3.1: ©Problem (3.2) can clearly be seen to be a non-convex,
non-quadratic, nonlinear programming problem, which is thus inherently
difficult.

Remark 3.2: By using the numerical methods which will be
described below, we shall easily be able to treat cases for which EI
and/or p are functions of s, and in which external forces and en-
ergy terms, more complicated than those in (3.2), are present in the

functional to be minimised.

3.2 Results on the existence of solutions for the static problem

The mathematical study of problems such as (3.2) goes back at least
as far as Euler (the problem of the "elastica", or elastic rod).

Suppose that the boundary conditions are given by

x(0)

x5 (0) =y,
(3.4)

x(L)

xgs ¥(L) = yg

with xA,yA,xB,yB given, or by

x(0) = xA’ y(0) yA’ x'(0) = aD’ y'(0) = BO’

(3.5)
x(L) = xg, y(L) = yg, x"(L) =07, ¥y'(L) = B,
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where, in (3.5), Xpr Ypr Xge Yps O Bo' op, BL are given with

ai + Si =1, ai + Bi = 1; the following theorem is then proved by

compactness arguments in BOURGAT-DUMAY-GLOWINSKI [1].

THEOREM 3.1: Suppose that ,ZB] < L and that the boundary
conditions (3.4) or (3.5) are satisfied; then problem (3.2) admits

at least one solution.

For a detailed mathematical investigation of problems of the above
type (in particular for non-uniqueness properties) we refer to
ANTMAN [1] and ANTMAN~ROSENFELD [1].

3.3 Numerical solution of the static problem. (I) General
Notes —_—

The numerical solution of problems similar to (3.2) has been
considered by several authors; amongst these we should mention
HIBBIT-BECKER-TAYLOR [1] and MAIER-ANDREUZZI-GIANESSI-JURINA-TADDEI [1].

Problem (3.2) is in fact nontrivial from the numerical point of
view; it can be dealt with by introducing a Lagrangian associated
with the functional

L L
E
(3.6) 360y = B[ aetayhyas « g v as
0

and with the (nonlinear) inextensibility condition (3.1l), as follows:
L

(3.7) 2 Gey) = 36 + 3 [ ety e e,
0

Let A be a Lagrange multiplier associated with a local minimum
{x,y} ¢ 8 ; it then follows from the fact that £ is stationary
that {x,y,\} must satisfy

AN -
d x d dx.
EI;—A‘E;()\E)—O OHJO,L[,
(3.8) 8
+ boundary conditions,
&y a dy
&L -2 08 - - g on lo,iU,
ds ds ds
3.9

+ boundary conditions,
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(3.10) x'“+y'" =1 on ]JO,LL.

It follows from (3.8) - (3.10) that X can be viewed as a generalised
etgenvalue to which there corresponds the generalised eigenfunction

{x,v}.

Since the essential difficulty in problem (3.2) lies in the inextensi-
bility constraint (3.1), it seems natural to overcome it by using the
transformation x' = cos ¢ , y' = sin ¢, where ¢ 1is in fact the
angle between Ox and the directed tangent to the pipeline at

M = {x,y}, and where d¢/ds is the curvature at M. This transforma-
tion, which is used in a number of similar problems as well as in
problem (3.2) by M.0. Bristeau and the second author, leads to
problems involving second-order differential equations (whereas the
original problem is of fourth order) but in which the nonlinear
structure is more complicated since it involves transcendental
functions such as t »~ sin t and t » cos t, the repetitive evaluation
of which can be costly; furthermore the boundary conditions, of the
type (3.4) (3.5), are expressed in terms of nonlinear integral rela-
tions on ¢ (see BOURGAT-DUMAY-GLOWINSKI [1, Section 30).

A further argument for working directly with x, y instead of ¢,
is that this constitutes a starting point for the solution of much
more complicated problems in Finite Nonlinear Elasticity, concerning
incompressible materials, for which the geometric domain considered
is two- or three-dimensional (a specific example of such a situation

will be met in Section 4).

3.4 Numerical solution of the static problem. (II) Approxima-
tion

3.4.1. Approximation of the space H2(O,L) and the functional J

Since & is a subset of H2(O,L) X H2(O,L)) an important step
towards the numerical solution of (3.2) will be to define a suitable
approximation of H2(O,L); to do this we introduce {si}z ~g Ssuch

that S € [o,L] vi, S, = 0, s. =L and s.,< s, ¥i=0,..., N - 1.

5 N i i+l
We then approximate H” (O,L) by

1
(3.11) v, = {vhec Lo,L), v, 1]€ Py, ¥i=0,...,N-1},

l[Si’Si+
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where, in general, Pk is the space of polynomials in a single variable

of degree < k; we have Vh c HZ(O,L) and dim Vh = 2(N + 1). We take
h = max (si +1 " 54 ). If Vp € Vh it is convenient to define it by
using
N vy N
O e T

In view of these degrees of freedom it is obvious that Vi corresponds

to an approximation by finite elements of Hermite type (see Figure 3.2).

{
|
|
i
|
1
|
!
*

e m e o

« * x —
0 $;-1 Si+1/2  Si41 L s
Figure 3.2

Since Vi % Vh < HZ(O,L) x H2(O,L), the functional J introduced

in (3.6) is defined on Vh X Vh; furthermore since Xy » yh, € Vh

implies that (x"2 + y"2)| ¢ P,, the two integrals appearing
h h ' 'sy8y,q] 2

in J can be calculated exactly by using Simpson's rule on each sub-

interval [si,si+lj, i=0,1,..., N- 1. By restriction of J to

Vp XV, we obtain a functional which depends on 4(N + 1) variables.

3.4.2 Approximation of &

As we are using an approximation of Hermite cubic type, there is
no difficulty in approximating boundary conditions such as (3.4) or
(3.5). As regards the inextensibility condition (3.1), the obvious

choice is to use

(3.12) xﬂz(si)+yﬁ2(si) =1 ¥i=0,1,...,N.

. , N , N . )
Since {Xh(si)}i==0 , {yh(si)}i:O constitute precisely a subset of

the degrees of freedom used for defining Xy and Yo the practical
implementation of (3.12) does not present any difficulty. However,

we have observed that for 'stiff' problems (i.e. with strong
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variations in the curvature) relatively inaccurate results may be
obtained by using (3.12), unless the discretisation is refined in
those regions where the curvature varies strongly. Such a procedure
can increase N considerably, and therefore, as far as accuracy is

concerned, we have found it more convenient to approximate (3.1) by

2 2 .
xﬂ (si)+y£ (si) =] ¥i=0,1,...N,
(3.13)
'z(s )+ '2(s ) =1 ¥i=0,l1 N-1
*n YSie1727 T Y0 VBiag2 plarees BT
1 .
where Si+l/2 =5 (si + Si+1) (see Figure 3.2).

The numerical results presented in Section 3 were in fact obtained by
using (3.13) to approximate (3.1). Using (3.12) (resp. (3.13)) to
approximate (3.1) introduces around N (resp. 2N) quadratic equality
constraints (the exact number depends on the boundary conditions).

In the following, the approximation of & , obtained by approximating
(3.1) by (3.12) or (3.13), will be denoted by 6h; it is clear that
&h is a closed subset of Vi X V-

3.4.3 Approximation of problem (3.2)

In the light of Sections 3.4.1 and 3.4.2, we approximate (3.2) by

(3.14) Loc min J(x ,¥,),
(qovytedy
where
L L
(3.15) J(xh’yh) = EZ—IJ (x_;2+yi;2)ds + 0g JO Yh ds.
0

In relation to the existence of solutions for the discrete problem
(3.14), the following variant of Theorem 3.1 is proved in BOURGAT-
DUMAY-GLOWINSKI [1, Section 5.3]:

THEOREM 3.2: Suppose that 6h is nonempty (for this it is
sufficient that [Aﬁ[ < L ©f the boundary conditions are given by (3.4)
or (3.5)); problem (3.14) then admits at least one solution.
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3.4.4 Convergence of the approximate golutions

We shall now introduce the notion of an Zsolated solution for the

local minimisation problem (3.2):

DEFINITION 3.1: Let {X,y} be a solution of (3.2); we say that
{x,y} is an isolated solution of (3.2) if there exists a neighbourhood
n of 1x,y} such that

(3.16) JE,Y) <3,y ¥ {x,ylenng, {x,y} 4 {x5}.»

The convergence results of the following theorem are proved in BOURGAT-
DUMAY-GLOWINSKI [1l, Section 5.4]:

THEOREM 3. 3: Suppose that the boundary conditions appearing in
the definition of & are given by (3.4) or (3.5); suppose also that
&, ‘s defined via (3.12). We then have: if {x,y} is an isolated
solution of (3.2), then for h sufficiently small the approximate
problem (3.14) admits a solution {;h,§h} in the neighbourhood of

{x,v} ; we also have
(3.17) ;ig {;h’§h} = {x,y} strongly in HZ(OJQ XHZ(O,L).

Similarly we may prove:

THEOREM 3.4: Suppose that & and Gh are as in the statement of
Theorem 3.3. Then 1f ({§h,§h})h is a family of global minima for J

on & we have (at least for a subsequence)

hl
Lim {%,5,} = (X ,5 ) strongly in 52 (0,L) x B2 (0,L),
h+0

where {x,y} realises the global minimum of J on §.

Remark 3.3: Here, we have not considered the convergence of the
approximate solutions when 611 is defined via (3.13); in such a
case we are dealing with a much more difficult problem. Neither have
we considered the behaviour of the approximate solutions in the neigh-
bourhood of turning points or genuine bifurcation points; in this
direction we mention the works of F. KIKUCHI [1], YAMAGUTI~FUJII [11,
KESAVAN [1], BREZZI~RAPPAZ-RAVIART {11~ [3].
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3.5 Numerical solution of the static problem. (II1) Iterative
methods of solution

In this section we follow BOURGAT-DUMAY-GLOWINSKI [1l, Section 61.

3.5.1 General notes and synopstis

Although it is clear that the considerations discussed below should
strictly have been developed for the approximate problems, we have
nonetheless chosen to use the continuous problem since both these
types of problem have the same nonlinear structure; furthermore,
the formalism of the continuous problem is simpler. The nonlinear
equality constraints (3.1) (or their finite-dimensional variants
(3.12), (3.13)) constitute the major difficulty to be surmounted in
the numerical solution of the local minimisation problem (3.2), when
working directly with the displacements x, y. Schematically, for
solving (3.2) and its finite-dimensional variants, two families of

methods are available:

(i) Methods using multipliers and penalisation

As was seen in Section 3.3, we can associate a Lagrange multiplier
function A with the equality constraint (3.1); in doing this one
has to solve, with respect to {X,y,A}, the nonlinear differential
system (3.8) - (3.10) (actually its finite-dimensional variants);
in practice, the discrete variants of (3.8) - (3.10) can be solved
by the variable metric methods developed by POWELL [2] which generalise
the widely known method of Davidon-Fletcher-Powell (see also MATTHIES-
STRANG [1] for some similar methods directed at the solution of pro-
blems in Nonlinear Mechanics). We have the impression that the
methods mentioned above are trickier to implement than the methods
described below in Section 3.5.2, and also that they have much
greater computer memory requirements when large-scale preoblems are
being treated.

It is natural to associate with the Lagrangian £ defined by

(3.7) the augmented Lagrangian £r defined (with r > O) by

r L 2 2 2
(3.18) £ .(x,7,u) = £L(x,y,u) + ;J (x""+y'"-1)" ds.
0

If we replace £ by X;, the conditions for Ké to be stationary
lead to the following variant of (3.8) - (3.10):
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e x® -L 008 - L (@B &y =0 on o,
(3.19)

+ boundary conditions

=4 ¥ =,2.= y

EI y( ) - %;-(A %%) -r %g—(x' +y'2—]) %%-) = - pg on 10,1,
(3.20)

+ boundary conditions
(3.21) 72431221 = 0 on lo,1L,
which is clearly equivalent to system (3.8) - (3.10).

It is clear that the above approach, using an augmented Lagrangian,

further complicates a problem which is already complicated enough in

its own right since (3.19) - (3.21) is even 'more nonlinear' than
(3.8) - (3.10); furthermore, (3.19) - (3.21) are 'more coupled'
than (3.8) - (3.10). If we take X =0 in (3.19), (3.20), and if

we do not consider (3.21), we obtain the necessary conditions of opti-
mality for a problem deduced from (3.2) by penalisation of the

condition x'2 + y'2 -1 =o0. | ]

(ii) Methods using direct minimisation on manifolds

2

12 +y'"=-1=0,

Instead of 'relaxing' the constraint (3.1), i.e. x
by Lagrange multipliers and/or penalisation, we can attempt to mini-
mise J directly on the manifold defined by (3.1), as is done in
GABAY [1] and LICHNEWSKY [1] (by the optimal descent or the conjugate
gradient method). However, although these methods are extremely
elegant in their underlying principles and are very efficient for
certain problems in that they perform the minimisation on the geodesics
of the manifold, they are in practice somewhat difficult to implement
if the number of constraints is very large; this is certainly the

case for the discrete variants of (3.2) described in Section 3.4. =

The methods which we shall describe in Section 3.5.2 differ quite
considerably from the two types of method mentioned above; nonetheless
they do have a certain number of characteristics in common with them,

in the sense that:
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(1) They are also based on the use of an augmented Lagrangian; 1in
the present case, however, the constraints to be treated by
Lagrange multipliers and penalisation are l<near, and this

constitutes a substantial simplification.

(2) We retain the notion of direct minimisation on a manifold which
(in a certain sense) is associated with the inextensibility

condition (3.1).

3.5.2 Solution of problem (3.2) by an augmented Lagrangian
method

In spite of the fact that problem (3.2) is non-convex, to solve it
we shall apply the methodology developed in Chapter IIT and summarised
in Section 2 of the present chapter. In the present context, problem
(P) is problem (3.2), that is

L L
(P) Loc min,{%}-J (x"2+y"2)ds + pg J y ds} ,
{x,y}e 8 0 0

with & defined by (3.3). We then have the following very obvious

proposition
Proposition 3.1: The problem (P) is equivalent to the problem
L L
(m Loc min { %} J (x"2+y"2)ds + g I y ds}
{x,y,p,q} €8 0 0
with
(3.22) g= {{X’Y!p:q}E Zx (Lz(orL))zr x'=p, y'=q, P2+q2 = 1})

where 2 is the subspace of HZ(O,L) X H2(O,L) defined by the boundary
conditions speeified for {x,y} in the definition of &.

The next step is to 'relax' the functional relation between {x,y}
and {p,q} by introducing (with r > 0) the following augmented Lagrang-
Zan:

L

(x"2+y"2)ds + pg J y ds
0

L L L ) L )
* J A(x'-p)ds + J u(y'-q)ds +§J |x'-p|” ds + %J ly'-q|“ds.
0 0 0 0

L
£r(x:YyP,q’)‘,U) = %j

(3.23) 0
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By analogy with the convex situation described in Chapter III and

(local) saddle point for £r on Z X S X (L2(O,L))2, where

(3.24) s = {{p,a} e @20,107%, p%¢® = 1 aie} 5

it can then be proved that {xX,y} ¢ & , that x'=p', y' =g, and that

X,ﬁ are Lagrange multipliers for the equality constraints x' - p = 0O,

y'-g = O.

In view of these properties, it is thus natural to extend to the
Lagrangian Zr defined by (3.23) the iterative methods of Chapter
III, the description of which is repeated in Sections 2.4 and 2.5;
the corresponding algorithms are described in Sections 3.5.3 and

3.5.4 below.

3.5.3 A first iterative method using £}

This is in fact algorithm ALGl of Chapter III, Section 3.1, and
of Section 2.4 of the present chapter. Using the notation of Section

3.5.2 above, this algorithm is written:
(3.25) Xo,uo are given;

then for n 2 0O, assuming that A oand pn are known, calculate

n n _n n ,n+l n+l
X,Y,PIQJ\ r H by

pind {x",y"%,p".q"tezxS such that ¥ {x,y,p,qleZxs

(3.26)
xﬂr(xn,yn,pn.qnﬁn.un) Sir(x,y.p,q,%n,un) (locally, at least),
n
AT SR 4 B - Y,
(3.27)

n
n+l ~.d
u ph - dM.

The non-trivial part of algorithm (3.25) - (3.27) is obviously the
solving of problem (3.26); we can again proceed by block relaxation
(see Section 2.4, Remark 2.5) by minimising alternately with respect
to {x,y} and {p,q}; if we confine this to a single inner iteration

we obtain - with a suitable initialisation - the variant of algorithm
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(3.25) - (3.27) described in Section 3.5.4 below.

3.5.4 A second iterative method using Zé

In this case the algorithm we use is ALG2 of Chapter III, Section
3.2, and of Section 2.5 of the present chapter; that is:

11
(3.28) A sy ,xo,yo given;

n-1 n-1 n
r

y , A%,
by

then for n 2 1, assuming that x are known, calcul-

ate {pn,qn}, {Xn,yn} and {An+l, un+l}

rind {p",q%} ¢S such that ¥ {q,p}eS

(3.29)
-1 _n-1 -1 _n-1 .

ir(xn ’yn 9Pn7qn,)\nnun) < £r(xn ,}’n ’P,q”\n,un):

Find {x°,y"}eZ such that ¥ {x,y}eZ,
(3.30)

FRCSS AN SR URTOEFMCEN S LV URTL N

n

ntl _.n  ~dx _ n

WM e B - Y,
(3.31)

n
n+l -~ d n
W B - 9.

=
L}

Remark 3.4: A variant of algorithm (3.29) ~ (3.31) is given in
BOURGAT-DUMAY-GLOWINSKI [1l, Section 6.2.1] in which use is made of a

relaxation parameter in the calculation of {x",y"}. n

Remark 3.5: We could also use, instead of (3.28) - (3.31), the
variant deduced from algorithm (2.21) - (2.25) in Section 2.5, Remark
2.6. [

From the practical point of view it is essential to have equiv-
alent, more explicit, formulations for (3.29) and (3.30). 1In this dire-
ction, it may be noted that (3.30) is in fact equivalent to the
following fourth-order boundary-value system:

4.n 2.n

d x d™x d n__ n
EI i 2=E()\-rp)on]0,L[,

ds ds

(3.32)

+ boundary conditions,
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4 n 2 n
EI dy . r iy _ 4 (un-rqn)— pg on J0o,LL ,
ds& dSZ ds

(3.33)
+ boundary conditions.

If the boundary conditions are given by (3.4) or (3.5), we can then
solve (3.32) and (3.33) independently of each other, and furthermore
their discretised versions are linear systems with the same matrizx;
this matrix is sparse, symmetric, positive definite and independent
of n Zf r is fized; in this case we can perform a Cholesky
factorisation once and for all, and at each iteration of (3.28) -
(3.31) we shall have to solve only 4 sparse, triangular, well-posed

systems to determine {xn,yn}.

We shall now study the solution of (3.29); to obtain {pn,qn} it
is necessary to solve, a.e. on [0O,L] the two-dimensional minimisation
problem

. r 2 2 n dxn-]
Min {5 07+ () - (s)+r (s))p(s)
{p(s),q(s)}
(3.34)
n ay™! . 2 2 2
- (W (s)+r E%——— (s))q(s)} , with {p(s),qis) e RS, p“(s)+q (s)=t.
, 2 2 B
However, since p“(s) + g“(s) =1, (3.34) reduces to
Max  {X"(s)p(s)+Y(s)q(s)} ,
(3.35) {p(s),q(s)}

with (p(s),q(s)} €R%, p2(s)+q2(s) = 1,

where, in (3.35), we have put

Xn(s) _ An( )+ dxn-]

= s)+r oo (s),
n n d n-l
Ti(s) = W(s) + ¥ T (s).

1f {(x"(s), Y"(s)} #{0,0}, we have

p%(s) = x7(s) ,
VIt ()| 2| 1o | 2
(3.36) s) 2
n
qn(s) - Y (s)

\Jixn(s)]2+lYn(s)|2
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Remark 3.6: We have just shown that (3.30) is a well-posed
problem if the boundary conditions are given by (3.4) or (3.5).
Problem (3.29) is also well posed if {X"(s),Y'(s)} # {0,0}; if
sy = Yn(s) = 0, the entire circle p2 + q2 =1 is a solution. 1In
actual fact, in all the numerical experiments which we have performed,
we have noted that this problematical situation never arose if r

was sufficitently large; it is possible to account for such behaviour.

Remark 3.7: In accordance with Remark 2.7 of Section 2.5, we
solve the problem in {x,y} at the second step of algorithm (3.28) -
(3.31), as this problem is associated with a strongly elliptic opera-
tor (in contrast to the problem in {p,g} which is associated with a

non-monotone, multivalued operator).

3.6 Numerical experiments

In this section we shall describe and discuss the numerical results
obtained in solving a number of test problems; we refer to BOURGAT-
DUMAY-GLOWINSKI [1] for further numerical tests, and in particular for
the numerical solution of problems in which there are water currents
acting on the pipeline, and of dynamic problems (oscillations, for

example) concerning this pipeline.

3.6.1 Description of the test problem

Mechanical parameters:

EI = 7000 Nm2, p = 7.67 Kg/m, L = 32.6 m.

Boundary conditions:

x(0) = y(0), x'(0) =1, y'(0) =0,
x(L) =1,2,3,4,5,6,7,8; y(L) =0, x*(L) =1, y'(L) = O.

3.6.2 Further information concerning the numerical solution

For approximating (3.2) we used a unZform discretisation of [0O,L]
with h = L/50 and the approximation described in Section 3.4. The
approximate problems were solved by a discretised variant of algorithm
(3.28) - (3.31) with p = r = 50 000. For the termination test we

took a discretised version of
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L n-1 n-1 n -1 -1
J”"n'x F+lym=y™ T [+ x P 4 ]y Py T Y ds
(3.37) ° <107,

L
[l e o1y ™y as
[e]

3.6.3 Presentation of the numerical results

(i) We show in Figure 3.3, for x(L) = 2,3,4,5,6 the numerical results

which were obtained as follows:

We first calculated the solution corresponding to x(L) = 6 by initiali-

sing in (3.28) with

A= =0,
(3.38)
x°(s) = 3(1-cos 'rr%), yo(s) = =3 sinﬂ% ,
which corresponds to a semicircle with diameter AB; as the length
of this semicircle is 3w = 9.424 ..., we can see that the initial
Aﬂ T T T T T T T T T
s } .
—(bn - 7
8o } 4
_/125 I~ 1
_’160 1 1 1 1 i 1 L 1 Il
-8, —4a 0 4o 8 120

Figure 3.3 (x(L) = 2,3,4,5,6)
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solution lies a long way from the solution required; convergence
was reached in 166 iterations of algorithm (3.28) - (3.31). For
x(L) = 5,4,3,2 (this was the order we actually followed) we used a
kind of <Zncremental method, the initialisation of (3.28) - (3.31)
being performed by using the results obtained for the previous value
of x(L).

For reasons of clarity the solutions corresponding to x(L) = 6,4,2,

respectively, are pictured individually in Figures 3.4, 3.5 and 3.6.

+ 1 0. p
o ~ e
/
_ Vo I
| |
-8 4 -8 |
~-12 4 -12. F i
—16. . . . . . A R _16. . . e . . . .
-8. -4, 0. 4. 8. 12. -8. -4, 0. 4, 8. 12.
Figure 3.4: (x(L)=6) Figure 3.5: (x(L)=4)
4 —— ~ r v T
0. E
_a b i
_8'- <4
-12. g
_16. . , . . X . . .
-8 -4 0 4. 8 12

Figure 3.6: (x(L)=2)
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Table 3.1 shows the number of iterations required for convergence,

using the termination test (3.37):

Number of

x(L) iterations

166
105
105
107
105

NW ey

Table 3.1

The above five calculations were performed in a single computer run,

and required three minutes on a CII/IRIS 80 computer.

(ii) Figure 3.7 shows the numerical results obtained as follows for
x(L) = 1,2,3,4,5,6,7,8 : each calculation has been performed by
initialising algorithm (3.28) -~ (3.31) with - ul =0 and {xo,yo}

corresponding to the lower semicircle with diameter AB; we are thus

4 v T T T T T 4 T v T T T T —

| o |

ot y ol 1

. | . ﬁ

A | . .

L 4 L ]

-12. 4 -12. 4
—m.-A—J . — . . . L = d -16 . . . : . : e

-8, -4, 0. 4. 8. 12. -8 —4. 0. 4. 8. 12

Figure 3.7: (x(L)=1,2,3,4,5,6,7,8) Figure 3.8: (x(L)=4,5)
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starting from a point far away from the required solution and we are

not employing an incremental strategy. We observe in Figure 3.7 two
types of form for the solutions calculated (this corresponds to
distinct branches of solutions); it can also be seen that if x(L) is

sufficiently small then the solutions in Figure 3.7 differ from those
obtained in (i) using an incremental method. Since the critical
value of x(L) for the above phenomenon seems to lie between 4 and 5,

we have singled out the solutions for x(L) = 4 and 5 separately in
Figure 3.8.
Table 3.2 below indicates the number of iterations required for con-

vergence:

x(L) Number of
iterations

220
220
220
220
133
166
170
187

X~ o N -

Table 3.2

The above eight calculations correspond to an overall execution time

of 7 minutes on a CII/IRIS 80 computer.

3.6.4 Further discussion

Table 3.3 shows the values taken by the functional J (defined
in (3.6)) for the solutions of (3.2) described in Section 3.6.3 above.

x(L) 8 7 6 5 4 3 2 1

Incremental
strategy ~8561 | -8142 ] -7688 | -7199| -6674 | -6112 § =5510 | ~4868

(case (1))

narincrementall
strategy
(case (ii))

-8561 | -8142 | -7688} -7199 | -9434 | -9702 | -9932 | 10124

Table 3.3
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Table 3.3 demonstrates the following (hardly surprising) fact: by
using an incremental strategy we have been able to follow one branch
of solutions, despite the fact that more stable solutions exist for

the same values of x(L).

4. APPLICATIONS IN FINITE NONLINEAR ELASTICITY. (IT) TWO-DIMEN-
SIONAL CALCULATIONS INVOLVING LARGE DISPLACEMENTS AND LARGE
STRAINS FOR INCOMPRESSIBLE MATERIALS OF MOONEY-RIVLIN TYPE

4.1 Synopsis

The aim of this section is to assess the possibilities offered by
the methods of Chapter III and of Section 2 of the present chapter,
for the numerical solution of nonlinear problems arising in the field
of multidimensional Finite Nonlinear Elasticity. In this section we
shall be concentrating on a relatively 'simple' static problem,
namely the mechanical behaviour of a two-dimensional body made from
an incompressible material of Mooney-Rivlin type. The major diffi-
culty in this problem is the incompressibility condition and we shall
see how the decomposition-coordination methods of Chapter III, and of
Section 2 of the present chapter, provide a simple and elegant means
of overcoming this difficulty. The method described has in fact also
been used successfully for the solution of the static equilibrium
problem for three-dimensional bodies; problems of this kind are much
more difficult, and for their numerical treatment by the methods of
this book we refer the reader to GLOWINSKI-LE TALLEC [1], [2] and
LE TALLEC [1], [2].

4.2 Formulation of the problem

4.2.1 Notation. Mechanical assumptions

A fundamental problem in Nonlinear Elasticity is the calculation of
the deformations and displacements of a solid body consisting of a
homogeneous, isotropic, hyperelastic and Zncompressible material, sub-
jected to volume forces pof (po is the density in the reference
configuration) and to surface forces S.. In a Lagrangian formula-
tion, the energy functional corresponding to a displacement field V

is given by
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§O'Y dr,

4.1 m(v) = J o (O(v)=-fev)dx - J
~ Qo ~' K~ )

30

where, in (4.1), Q is a domain in IRN corresponding to the refe-
rence configuration; 30 (=BQl u BQZ) is the boundary of Q, the body
being fZixed on BQl; we have denoted by o(v) the Internal elastic

energy function (per unit mass). For a Mooney-Rivlin material we
have

4.2) o(v) = E(1;-2) <f N=2,

(4.3) a(v) = El(II-3)+E2(12—3) 7f N=3,

. . .th . t
where, in (4.2), (4.3), Ii is the i invariant of the tensor FF -,
with
(4.4) F = I+W,

and Ey, E2 are positive coefficients which depend on the material. The
displacement v must also satisfy the <Zncompressibility condition,

which is expressed by

(4.5) det E(Y) =1 a.e. on Q.
Remark 4.1: We have assumed in (4.1) that SO is independent of
vi this corresponds to a classical simplifying assumption known as

the dead load assumption; this assumption facilitates the presenta-
tion of the problem without changing its fundamental nature, inasmuch
as the essential difficulty lies in the incompressibility condition
(4.5). We refer to GLOWINSKI-LE TALLEC [1] and LE TALLEC [1], [2]
for the generalisation of the algorithms in Section 4.3 to the case
where the dead load assumption is no longer satisfied; a number of
numerical tests showing the efficiency of these generalised algorithms

may also be found in the above references.

4.2.2 Mathematical formulations

In this section we shall describe various formulations for the
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elastostatic problem; demonstrating their equivalence in the general
case is still an open mathematical problem (we refer to LE TALLEC [1],
(2], as well as to LE TALLEC-ODEN [l1] for a discussion on these
questions regarding equivalent formulations; see also the discussion
in Section 4.2.2.1).

4.2.2.1 Formulation by minimisation of the energy functional

It is reasonable to assume that the displacements u corresponding

to the stable equilibrium states satisfy the following condition:

(4.6) u locally minimises on K the functional v (v,

where, for an incompressible Mooney-Rivlin material, we have

K={ve (Hl(n»N, v =10 on 39, det F(v) =1
4.7)

ae., ¥ e at@¥,

and v o> m(v) defined by (4.1), (4.2), (4.3). The existence of sol-
utions for (4.6), (4.7) is proved in BALL [1].

4.2.2.2 Formulation by equilibrium equations

The equilibrium positions (stable or unstable) correspond to the

solutions of the system of nonlinear partial differential equations

uekK,
(4.8)
(DT (u),v) + J plu,v] dx = 0 ¥veX,
M o~ M

where Dm 1is the differential of 7w (on Hl(Q))N) and where

(4.9) lu,vl = 33. - (det E(E))vi,j s
1,]
(4.10) x={ve@ @, v=0 on 20}

(in (4.9) we have used the classical notation of Mechanics with regard
to summation and differentiation). The above function p is clearly

a Lagrange multiplier associated with the incompressibility condition
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(4.5) and is seen to be a pressure.
4.2.2.3 Formulation by augmented Lagrangian

We proceed as in Sections 2 and 3 (and as in Chapter III) by
'relaxing' the linear relation (4.4) simultaneously by a Lagrandge
multiplier and penalisation, giving the augmented Lagrangian (with

r > 0):

(4.11) £ _(v,G,1) = m(v) + £||vv+1—G||2- J ue (Vo+I-G) dx.
r'~"x"x ~ 2~~zzL2 YRR

This leads to the following formulation of the elastostatic problem

. N s
rind {u,F,A}ew = xx¥x L2@) XN, the stationary point
(4.12) T
on W of the augmented Lagrangian £,

where, in (4.12),

¥ = {eloe 2@, 67l e )™

, det G =1 a.e.} .

4.2.2.4 On some relations between formulations (4.6), (4.8) and
(4.12)

The following results are proved in LE TALLEC [171, [21:

(i) There is equivalence between (4.8) and (4.12),
(ii) Any "regular" solution of (4.6) is a solution of (4.8) and
(4.12).
(iii) If the functional w1 is convex (which is the case for a

Mooney-Rivlin material if N = 2) then any solution

{u,F,A} of (4.12) is such that u (locally) minimises

v+ &£ (v,E,}) on X ; likewise for r sufficiently large,
any solution of (4.12) is such that E minimises

G »—%r(g,g,é) (locally on Y).

Remark 4.2: If {u,F,2} is a solution of (4.12) the condition
~ » X

BE £r(g,£,l) = 0 implies that
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5 3
(4.13) ", e
J l,J

(0,0 = Ay5) = poEy -

In view of (4.13), X can be seen to be the part of the first Piola-
Kirchhoff tensor cor;esponding to the <necompressibility. It should
also be noted that any algorithm solving (4.12) yields the stress
field directly.

4.3 Solution of problem (4.12)

4.3.1 A firet algorithm for solving (4.12)

Once again, we use algorithm ALGl of Chapter III, Section 3.1, and
of Section 2.4 of the present chapter; in the notation of Section

4.2 we obtain the following:

(b.18) A given in wWE@)V,

then for n = O, e being known, determine gn,fn and 5n+l by

2 LA s 0,60 Vv exxy,
(4.15) o N

(", exxy ,
(416) A" =" - e @etIED, 0.

Femark 4.3 Problem (4.15) is equivalent to the nonlinear system
(4.17) 2 (4", F",2

(4.18) avir(gn,gn,zn)-g =0 W¥veX, ucX,

which, when solved by block relaxation, leads to the algorithm

described in Section 4.3.2 below.

4.3.2 A second algorithm for solving (4.12)

This time, we employ algorithm ALG2 of Chapter III, Section 3.2,
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and of Section 2.5 of the present chapter, namely:

(4.19) o given in X, 2° given in @@V,

then for n > O, un_l and AP being known, determine Fn, W and
n+l - ® ¥ -

A by

(4.20) 2 W"LE M < 2 (7,60 ¥ ey, FMey,

(4.21) 3,2, WLE A ey = 0 WveX, u"ex,

(4.22) AR - oY) |, .

Problem (4.21), which is equivalent to

Find " eX such that

(4.23) .

2, @EN AT < 2 (1,FN0h Wex,
is in fact an unconstratned minimisation problem, the solution of
which presents little difficulty, especially if r 1is sufficiently
large; 1if N = 2, the functional in (4.23) is quadratie, and solving
(4.21), (4.23) reduces to solving a linear problem relative to an
operator with partial derivatives of second order (similar to the
Linear Elasticity operator) which is independent of n, and whose
finite-dimensional variants are linear systems associated with
symmetric, positive-definite matrices which are independent of n

(we then use a pre-factorisation of these matrices).

Problem (4.20) is not so straightforward (in appearance at least);
if N = 2, (4.20) reduces (omitting the index n) to:

. 2 4 =
Find ge (L@ such that l“”l“22 F12F21 =1 qg.e.

and which minimises the functional

(4.24) 2
S -+ fg [rGij-Z(r(ui’j+6ij)—kij)Gij] dx
2 4
over the set of the Se(L ()) such that Gnczzﬁﬂzcﬂ=1 a. e.
! The 6.. 1in (4.24) is the Kronecker delta.

1]
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In so far as there are no derivatives of G and F in (4.24), we can

solve this latter problem point by point; it is thus necessary to

4

solve an infinity (in theory at least) of problems in IR of the

type:

R 4 _ .
Find {Fij}eR such that F11F22 FIZFZI =1 and which
e , 2
(4.25) minimises the functional Gij > rGij ZaijGij
4
over {{G;.JeR", 61 6yp=G G,y = 1]

The above constraint is diagonalised with the aid of the new
variables

o
[

= P E VT, by = (FyF ) VT,
(4.26)

b, = (F]2+F2])//7 > b, = (FIZ—FZI)//E.

Using b = {bi}i=l defined by (4.26), problem (4.25) reduces to

Find beR4 such that e.b? =2,¢e, =¢, =1,
~ i1 1 4

(4.27) €, =g, = -1 and which minimises c rc? - 2z.c,
2 3 e 1 171

over {cle = {c.}é_ , e.cl =2},
~'~ i7i=l 171

The solutions of (4.27) are given by

4 .
(4.28) {bi)eR . hi = zi/(r+€ip), ¥i=],2,3,4,

where the scalar p (the Lagrange multiplier associated with

s.b.z = 2) satisfies
i7i

(4.29) 22422y (e4p)? = 24(agsad) [ (ep)

Suppose that zi + zi # 0; it then can easily be shown that (4.29)

admits just one solution in J-r,+r[; furthermore, using the Implicit
Funetion Theorem (see LE TALLEC [1], [2] GLOWINSKI-LE TALLEC [11 for
further details) it can be shown that this solution of (4.29) belonging
to 1-r,+r[ is precisely that associated, via (4.28), with the global
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minimum of the functional c > rci-—Zzici on eici = 2 and also that
there are in fact no other local or global minima. Solving (4.29)
on J-r,+r[ is a trivial problem; we then deduce b from p, by
using (4.28), and E from 9 by using (4.26). The multiplier p
is interpreted mechanically as a pressure; in fact, it is shown in
LE TALLEC [11, [2], GLOWINSKI-LE TALLEC [1] that this multiplier p
is equal to the pressure p which appears in (4.8) (which therefore

justifies our use of identical notation).

Remark 4.3: In the numerical tests we have performed, not once
did we encounter the case zi + zi = 0; in fact we conjecture that

for r sufficiently large this situation cannot arise, if N = 2, for
problem (4.12). Furthermore, this condition of "r sufficiently
large" is fundamental, as is shown in LE TALLEC [1], [2] and GLOWINSKI-
LE TALLEC [1] (these references even go so far as to give a lower
bound for 1r, this bound being related to certain norms of the press-

ure p).

4.4 Numerical tests

Suppose that N = 2; we reduce problem (4.6) {(as well as problems
(4.8), (4.12)) to a finite-dimensional problem by using a finite-ele-
ment approximation. We have used rectangular finite elements
K ¢ Qh' where Qh is a quadrangulation of Q. We then approximate
the displacement v by Y € Co(ﬁ) X Co(ﬁ), such that

(4.30) vh[KteXQl VK eQ,
where
(4.31) Q = {alalx,xp) = aggra;gx *ag xy4a; %, )

the incompressibility condition (4.5) is imposed at the centre of
each elementary rectangle K ¢ Qh (which is equivalent to imposing it

as an average over each rectangle).

The convergence of the approximate solutions when h - O is a very
difficult question; this topic is tackled in LE TALLEC [1], [2].

In the numerical tests which follow, § is a (two-dimensional)
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bar containing a crack; this crack is assumed not to propagate any
further. Figure 4.1 shows the right-hand portion of the bar, the
crack and the gquadrangulation Qh (actually the right-hand half of
Qh). We suppose that in (4.1), (4.2) we have Py = 1, El =1,

8Q2 = 3R and that §o corresponds to horizontal forces applied to

the ends of the bar and tending to elongate it, the density of these
forces being 2 (in modulus). The bar thus stretches under the action
of these forces, and Figure 4.2 shows the equilibrium position obtained;
this was calculated by means of the discretised variant of algorithm

(4.14) - (4.16), initialised with the configuration of Figure 4.1.

Using p = r = 10, convergence of (4.14) - (4.16) was attained in
20 iterations, corresponding to a computation time of 5 seconds on a

CDC 6400. It is interesting to observe the behaviour of the crack.

Figure 4.1

Figure 4.2

A number of numerical tests relating to other two-dimensional
problems and to certain axisymmetric and three-dimensional problems
may be found in LE TALLEC [1], [2], GLOWINSKI-LE TALLEC [11,[2].

5. SOME REMARKS ON THE APPLICATION OF THE ALGORITHMS OF SECTION 2
TO THE SOLUTION OF EIGENVALUE AND EIGENVECTOR PROBLEMS

The problems in Finite Nonlinear Elasticity considered in Sections

3 and 4 of this chapter are somewhat reminiscent of eigenvalue and
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eigenvector problems: they in fact involve the minimisation of
functionals (sometimes quadratic) over sets defined by nonlinear
equality constraints. It is therefore natural to consider using

the algorithms of Chapter III and of Section 2 of the present

chapter for solving certain eigenvalue/eigenvector problems. In

the following, we shall confine our attention to the determination of
the smallest eigenvalue of a symmetric positive-definite matrixz (and
of an associated eigenvector); it is in fact possible to generalise
the discussion below to the solution of certain nonlinear eigenvalue

problems.

Let A be an N x N symmetric positive-definite matrix; let

Arn (>0) be Zts smallest eigenvalue and let X (# 0) be an associated

eigenvector. We thus have
(5.1) Ax = AX o,

and it is a classical result that X0 is a (non-unique) solution of

the minimisation problem

J(x ) < J(y) ¥yes,

(5.2)
¥peS
N N
1/2

where (with |lyll= (} vD 2 ey . {y, i, and (s = ] xy, if x,y KD

i=] - - i=1]

N

(5.3) s = {ylyexr, liyll = 1}
and

1
(5.4) I =35 4y,y .
It is also known classically that if we associate with (5.2) - (5.4),

the Lagrangian L :RNXR-+R defined by

(5.5) Lgw = 3@ - 5 llyl®-n,

then Arn is the Lagrange multiplier associated with the minimisation

problem (5.2) and with the Lagrangian (5.5).
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In order to apply the decomposition-coordination methods of
Chapter III and of Section 2 of the present chapter, we first note
that problem (5.2) is equivalent to

(5.6) min {3 (ay,p)
{z,g}ew T
where
(5.7) W= {{Z'S}€ RNXRN, y¢4 =0, qe s}.

We then associate with the linear constraint y-gq = O, the augmented

Lagrangian £ IR?’N + IR defined, with r > 0, by
r

(5.8) 2_(7, 3.1 = 5 (ay,y) + Sy

1%+ ay-a)-

In order to solve (5.6) (and therefore (5.1), (5.2)) we are

therefore led to determine (local) saddle points of £r on

(Ey X §) x H@J; the application of algorithm ALGl of Section 2.4

(and of Chapter III, Section 3.1) leads to the algorithm
(5.9) 5°€RN, given,

then, for n 2 O, Al being known, determine {xn,pn} n+l, by

then A

“ {gn,gn} eRN xS,

(5.10)

aﬂr(i(n,gn,én) s-ﬂr(g,g,z\n) ¥ {y,q} eRVxs
and
(5.11) }n+] ="+ p(x"-p™), 0>0. ®

Once again, we can solve (5.10) by a block-relaxation method and,
as before, by restricting this to a single inner relaxation iteration,
we deduce from (5.9) - (5.11) the following variant (of type ALG2
(cf. Section 2.5 and Chapter III, Section 3.2)k:

(5.12) 3—1 and 50 given,
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then, for n > O, §n—l and }n being known, determine p", x° and

n+l

A successtvely by
(2GRN s ("7 g,0™  wges,

(5.13)

phes,

2 ("% 0N w2 (3,074 vy <R,
(5.14)

xneRF,
(5.15) AR 4 o(Pp™), 050, u

It is clear that the minimisation problem (5.14) is equivalent to

the solution of the linear system

(5.16) (rI+p)x" = rp AT,

Since the matrix rI + A is symmetric and positive-definite, we can
perform once and for all a Cholesky factorisation of this matrix;
hence we solve, at each iteration, two linear systems of triangular

matrices.

The solution of problem (5.13) does not present any further dif-
ficulties; in fact, taking account of the condition g ¢ S, problem

(5.13) is equivalent to

(5.17) Max (S,5n+r§n-l),
ges

so that
N AR 4 rxn-l

(5.18) p == — .
T e

Taking account of (5.16), (5.18), we can write algorithm (5.12) -

(5.15) in the following, more practical, form:

(5.19) gﬂ and 50 given,
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n-1

then, for n = O, X and A" being known

AR 4 rxn-l
(5.20) p“ e =
R
(5.21) (rI+A)x" = rp™AT
(5.22) 5n+1 - 5n . Q(i{n_gn)’ 0>0.m
Similarly, by updating 5n in (5.19) - (5.22) between the stages

(5.20) and (5.21), we obtain the following algorithm (of type ALG3)

in which y and g play symmetric roles:

(5.23) x 1 and A° given,
then, for n = O, §n-1 and A" being known,
AR, rxn—l
(5.24) P >
T e
(5.25) 2‘n+l/2 - Z\n . p(gn-l_gn)’
(5.26) (f3+§)§n - tEn B Z\n+1/2’
(5.27) %u+1 - xn+1/2 . D(fn'En)- .

The convergence of the above algorithms remains to be proved;

nonetheless, if we suppose that

. . n
X, = lim ¥x" = 1lim P,
~ 1—.-»-0-0::'v nr+ o
then we have
Ay = Xy

We note (and it is sufficient to set ¢ = r to show this) that algo-
rithms (5.19) - (5.22) and (5.23) - (5.27) are variants of the power
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method, which is a standard method for the calculation of the eigen-
values and eigenvectors of matrices (see WILKINSON [1], WILKINSON-
REINSCH [1], STEWART [1], PARLETT [1]). Numerical tests carried out
by M.0. Bristeau at INRIA, have demonstrated the good convergence
properties of the above algorithms as long as r s taken sufficiently

large (if we put p = r, which once again seems to be the best choice).

We leave it as an exercise for the reader to derive variants of
the above algorithms which enable the other eigenvalues and eigen-

vectors of A to be calculated.



CHAPTER IX

APPLICATIONS OF THE METHOD OF MULTIPLIERS
TO VARIATIONAL INEQUALITIES

D. Gabay

1. INTRODUCTION

This chapter extends and complements some of the remarks made in
the previous chapters, in particular in Chapter IIT. We generalise
the augmented Lagrangian method to the case of variational inequal-
ities and we give to it the more appropriate name of the method of
multipliers since these problems do not generally involve a Lagrangian.
We shall also demonstrate the equivalence between algorithm ALGl and
a method of solution well-known in Nonlinear Analysis, namely the
proximal-point algorithm. Finally, we reconsider in detail the
ideas introduced earlier, in Chapter IV, on the subject of alternating
direction methods, and we describe the relationship between these
methods and ALG2 and ALG3 (see also Chapter VIII, Section 2). To
facilitate a proper presentation of the problems, we first recall a

number of definitions and results.

1.1 Monotone operators

Let X be a real Hilbert space equipped with the inner product

(*,*). We designate as a monotone operator a multi-valued mapping
T: X - 2X such that we have
(1.0 (z'-z,x'-—x)XZO ¥x,x"eX, ¥ze T(x), ¥2' e T(x'").

We say that T is a maximal monotone operator if, in addition, the

graph

(1.2) graph(T) = {{x,z} e XxX|zeT(x)}

is not strictly included within the graph of any other monotone

299
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operator on X. These operators occur in Convex Analysis and in the

study of certain partial differential equations (see, for example,
BREZIS [11). In fact a very important special case arises from the
field of Convex Analysis. Let ¢ : X » ]-», +o] be a function

which is proper, convex and lower semi-continuous on X and consider

its subgradient 3¢, defined at x € X by

(1.3) 3(x) = {z eX[(z,y 1)y <¢(y)~¢(x) ¥y X} .

The operator x » 3¢(x) is maximal monotone, and if x ¢ X is a solution

of the multivalued equation (*)
(1.4) 0 e 3p(x)
then we also have

(1.5) ¢(x) <¢(y) ¥yeX.

The multivalued equation (1.4) is thus equivalent to the optimisation
problem (1.5), (or convex programming problem), which is implicitly a
constrained problem since the set of points where ¢(y) = +» is

obviously excluded from the set of admissible solutions.

However, it 1s not always possible (in particular in examples
arising from the theory of partial differential equations) to
associate an optimisation problem with a multivalued equation: we
then consider directly a formulation using a variational inequality.
Given a nonempty, closed, convex subset K of X and a maximal mono-
tone operator A on X, not necessarily defined by a subgradient, we
seek x ¢ K, satisfying the following variational inequality (see
LIONS-STAMPACCHIA [11):

(1.6) There exists ze A(x) such that (z,y—x)xzo ¥y ¢ K.

Let us now consider the multivalued equation

1.7 OeT(x).

(*)

Translator's note: Sometimes known under the name multivoque
equation.
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Any solution of the inequality (1.6) also satisfies (1.7) with T
defined by

AG)N (x) if xeK,

(1.8) T(x) =
% otherwise,

where NK(X) denotes the cone normal to K at x(l); ROCKAFELLAR [6]
has shown that T is maximal monotone. We note that if A is
a maximal monotone single-valued operator and if K is a closed
convex cone in X with vertex O, then the variational inequality

(1.6) is equivalent to the complementarity problem:

Find xeK such that
(1.9)
-A(x) e K%and (A(x),x)y = 0,
o (%)
where K denotes the polar cone of K.

The multivalued equation (1.7) thus unifies variational problems
of the type (1.5), variational inequalities of the type (1.6) and
complementarity problems of the type (1.9). We can therefore trans-
pose algorithms designed for solving problems of one type to the

solution of problems of the other two types.

1.2 The method of multipliers

The development of Operational Research during the last twenty
years has promoted an increased emphasis on the investigation of
optimisation problems; more advanced numerical methods and experiments
therefore exist in the field of convex programming than in the fields
of variational inequalities and complementarity problems. The uni-
fying framework presented above would thus indicate one possible
methodology for reducing the gap between these domains: namely,
given a known algorithm for the convex programming problem (1.5),
find the corresponding general algorithm for solving the multivalued
equation (1.7) and deduce from it the corresponding algorithm for

the variational inequality (1.6), which can be specialised to the

M N (x) = {zl(Z,y-x)XSO ¥y eK }

*)
KO = {z|(z,y)X$0, ¥y e K}
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complementarity problem (1.9). This approach has been followed
implicitly by GLOWINSKI-LIONS-TREMOLIERES [1] , [2] for defining
relaxation algorithms, gradient algorithms (with auxiliary operator),
conjugate-gradient algorithms, duality methods and penalisation

methods, for the solution of variational inequalities.

The method of multipliers has for a number of years generated a
considerable amount of interest for the solution of constrained optimi-
sation problems, both for its simplicity of implementation and for the
advantages it offers over penalisation methods (see BERTSEKAS [11]).
Proposed initially by HESTENES [1l] and POWELL [1]1 for minimisation
problems with equality constraints, it can be interpreted as a
gradient method for solving a dual problem associated with an augmented
Lagrangian, this being obtained by adding to the ordinary Lagrangian
a penalisation term depending on a parameter r > O (which need not
tend to infinity); hence the alternative name: penalisation-duality
method. ROCKAFELLAR [1], [7] defined the method for convex program-—
ming problems and demonstrated its global and linear (superlinear if

r » + ®) convergence.

In this chapter, we propose to extend the method of multipliers
to variational inequalities and then to propose approximations of
this method which will enable a decomposition of the calculations to
be effected. This work may be recognised as a generalisation of
Chapter IIT and of GABAY-MERCIER [1], in which this objective was
achieved for particular inequalities corresponding to convexr varia-

tional problems of the form

(1.10) inf {F(Bv)+G(v)},
VeV

where F and G are functions with values in ]-«,+~], and which are
convex, proper, lower semi-continuous and defined respectively on the
real Hilbert spaces H and V, equipped with the inner products
(',')H and (-,-)V ; 1t can be shown (see Chapter III, GABAY-MERCIER
[1], FORTIN [1]) that we can associate with (1.10) the regularised

dual problem (or augmented dual problem) :

(1.11) sup ¥_(1),
U

where, for r > O, the concave functional wr : H~+> [-»,+o[ is defined by
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(1.12) U, = inf {G(v)+inf [F(@)+(,Bv-)+ X|Bv=q| 213
veV qeH

The functional wr is always differentiable for r > O. We can
solve problem (1.10) and its dual (1.11) by seeking on V XHXH a
saddle point of the augmented Lagrangian defined (as in Chapter III)
by

(1.13) £,(v,0,1) = F@+6(v)+(,Bv-a); + & [Bu=q|2 .

It is possible to obtain ir directly from the variational pro-
blem (1.10) by introducing the variable g and the artificial con-
straint Bv-g = O, this constraint then being penalised and dualised
along the lines of the original procedure of HESTENES [1]. For see-
king saddle points of ir’ we have made extensive use in this book of
Uzawa's algorithm applied to d&, (ALGl) , and a particular variant of
this, (ALG2). In order to clarify the rest of the description, we
give below a brief restatement of algorithm ALGl, the properties of
which were studied in Chapter III.

ALGl: A° being chosen arbitrarily, we seek forn =0, 1, ..., with
AR known, solutions u e v, pn e H, of

(1.14) =£r(u“,p“,A“) < £r(v,q,A“) VeV, Vge H,
then we calculate An+l by
(1.15) AR R (Bup™) . W

We then consider the augmented dual functional wr defined by

(1.16) Vo = inf € (v,q,1).
{v,qlevxn
We have, from (1.14), wr(kn) = Zr(un,pn,kn); furthermore, it can

be shown (see ROCKAFELLAR [2], FORTIN [11) that we have

(.17) -y ) = inf {3 -] ? om0}
VeH
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where wo is in fact the functional defining the dual of problem
(1.10) in the sense of Fenchel (see ROCKAFELLAR [5], EKELAND-TEMAM [11);
that is

(1.18) ) = F e’ (-3,
where F* and G* denote the conjugate functions of F and G(a),
defined on H and V respectively, and where BY is the operator
from H into V defined by
y

(1.19) (Bv,q)H = (V’th)V ¥veV, ¥qeH ( )-

In the terminology of MOREAU [1]1, relation (1.17) states that
Ty is the proxzimal point mapping* relative to —rwo. We deduce from
this (see ROCKAFELLAR [2] that the method of multipliers (algorithm
ALGl with p = r) generates the same sequence of iterates {An}nzo as
the proximal point algorithm for solving the multivalued egquation
(1.7) with T = —Bwo. This algorithm was introduced by MARTINET [1],
[2] and generalised by ROCKAFELLAR [8] for an arbitrary maximal mono-

; n .
tone operator T on H; it constructs a sequence A ¢ H in accord-

ance with the recurrence relation

An+1

(1.21) =J;(x“) n=0,1,...,

where J; = (I+rT)—l is a contracting single-valued operator called
the resolvent of T (see BREZIS [1]). This observation will guide our
approach to generalising the method of multipliers to variational in-

equalities.

After first recalling, in Section 2 below, the convergence prope-
rties of the proximal-point algorithm, we then define in Section 3 a
variational inequality which generalises the variational problem
(1.10) and which includes the inequality (1.6) as a particular case,
and we associate with this a dual variational ineguality. In Section
4 we apply the proximal-point algorithm to the representation of the
(B)By definition F (W) = Sup {(u,q)H—F(q)}, G*(G) = Sup {(O,V)V—G(v)}.

qeH veV
(u)Sie Section 3 for the relation between B® and the usual adjoint B’
of B.

* Translator's note: application de proximité in the original French.
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dual variational inequality, in multivalued ("multivoque’) form, and
this defines a method of multipliers for the solution of variational
inequalities by penalisation-duality, generalising algorithm ALGl.
Observing that the multivalued operator associated with the dual
inequality has the form of the sum of two maximal-monotone operators,
we investigate in Section 5 some approximations of the proximal-point
algorithm which take advantage of this structure. In particular, we
apply two algorithms recently proposed by P.L. LIONS-MERCIER [1] which
generalise the alternating-direction methods to the solution of the
multivalued équation (1.7) and we thereby obtain two variants of the
method of multipliers for the solution of wvariational inequalities;
these variants provide a decomposition scheme coordinated via the
multipliers (see BENSOUSSAN-LIONS-TEMAM [1]). One of these variants
generalises to variational inequalities the algorithm ALG2 from
Chapter III and from GABAY-MERCIER [1], which can therefore be inter-
preted as an alternating-direction method as was noted in CHAN-
GLOWINSKI [1]1, for a particular class of problems, and as was pointed
out in Chapters IV and VIII. The other variant comprises algorithm
ALG3 mentioned in Chapter VIII. In Section 6 we study another
approximation of the proximal-point algorithm which employs a split-
ting of the operator T. We then recover the point projection gra-
dient method for convex programming (GOLDSTEIN [11), and its generali-
sation to the variational inequality (1.6); applied to the dual
inequality of (1.6) this may be interpreted as a method of multi-
pliers with projection.

2. THE PROXIMAL-POINT ALGORITHM

Let X Dbe a real Hilbert space equipped with the inner product

and let T be a maximal-

(-,-)X and the corresponding norm X 7

monotone operator on X. We wish to solve the multivalued equation

Find xe€X such that
(2.1)
0e T(x).

For all x € X and all r > O there exists (see MINTY (11} a
unique y € X such that

(2.2) x € (I+rT) (y).
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The operator J; = (I+rT)_l is thus single-valued and defined on the
whole of X; we call this the resolvent of T. This is a contrac-

tion from X into X, i.e.

|J;(x')—J;(x )]XS | x'-x IX ¥x,x' € X,

We shall show that J; is moreover a firm contraction.

PROPOSITION 2.1: For all r > O the resolvent J; of the maxzimal

monotone operator T is a firm contraction, Z.e. it satisfies

(2.3) |J;(x')—J;(x )\is (J;(x')-J;(x),x'—x)X ¥x,x' € X.
Proof: We put y = J;(x), y' = J;(x'). From (2.2) we have
X = y+rz where ze T(y),
x' = y'+rz' where z'eT(y").

We can thus write

2
ly'=ylg = 0'=y,x"-0)y - r(s'-y,2"-2)y

In

(7'-y,x'=x)y

in view of the maximal monotonicity of T; hence the result.

Remark 2.1: If T = 3¢, the subgradient of a convex, proper,

lower semi-continuous function ¢ : X > ]-«,+x], then
r . 1 2 }
(2.4) JT(x) = Arg min { 7Iy—xlx + o(y) )
y

in the terminology of MOREAU [1] J; is the prozimal point mapping
relative to the functional «r¢. n

We note that O ¢ T(x) is equivalent to J;(x) = X. The solution

of the multi-valued equation (2.1) thus reduces to seeking the fixed

points of the contraction mapping J;.

DEFINITION 2.2: (see ROCKAFELLAR [81]): Given a nondecreasing
sequence {rn} of positive numbers and an arbitrary point x° e X,
the prozimal-point algorithm generates a sequence {x"} of points of

X aeccording to the recurrence relation
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r
(2.5) = 5 P, 0s0,1,.

The proximal-point algorithm can be interpreted as

Remark 2.2:
an implicit discretisation scheme for the multivalued evolution equa-

tion
(2.6) 0e v () with x(0) = x°,
the parameters r, Trepresenting the time steps for the discretisation
n+l_ n
Ce = o T(xn+1). ]
T
{x™)

n
The following convergence result states that the sequence

converges to a solution of the steady-state equation O ¢ T(x).

THEOREM 2.1: Suppose that there exists at least one solution to
equation (2.1). The proximal-point algorithm generates a sequence
(=™} which converges weakly to such that O € T(x) and

n+l —xn]X > O.

X e X

Ix

Using relation (2.3) which expresses the fact that J n

Proof:
n

is a firm contraction, we obtain for all

n+l 2 n+] n
b'q —X|X < (x -X,X —X )X

1

- -l gy

+1 2 2
=37 3 ‘Xlx + |Xn‘x|x

(}x

0 to an arbitrary integer N,

By adding these inequalities from n

we arrive at
[ g < [l

Il e~

[ o] 2 .
u=0
ntl n| converges to O and that the sequence

-x |y

which shows that |x

{x™} is bounded.

By hypothesis, the set of the fixed points of J; is nonempty
; Optal's Lemma,

(since there exists at least one solution of (2.1))
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see OPIAL [1], thus enables the weak convergence of the sequence
{x™} to be established (see also MARTINET (1], [2] and ROCKAFELLAR
[11).

Remark 2.3: We can define the proximal point algorithm with
relazation by the recurrence

(2.7) = (w0 I, 6e0,1,. .

Theorem 2.1 remains valid for any relaxation parameter O < w < 2.
It can in fact be shown that if J is a firm contraction, then
J = (l-w)I+wJ is also a firm contraction for O < w < 1 from which

w n+l

we deduce that |x - xn|X + O and the weak convergence. For

1l < w < 2 we can establish the inequality
2 2
(2.8) |3, (") =3, () |3 = (270) (I (") =3 (3), %" =) g+ (w-1) lx'—x|X ¥x,x' €X,

n+1 nl

which allows us to prove that |x - X again converges to O. [ ]

X

If T <8 coercive (with modulus o > 0), i.e. if

(2.9) (z'-z,x'—x)XEZalx'—xli ¥x,x' € X, ¥z ¢ T(x), ¥z'e T(x"),

then it can easily be shown that
(2.10) |5n(x") - 3P0 |y < (var )7) |x'-x|,  ¥x,x' € B
: T T X" n X ? ’
r

T
unique solution satisfying O ¢ T(x).

which implies that J " has a unique fixed point x which is the

THEOREM 2.2: If T +is coercive, the proximal-point algorithm
(2.3) generates a sequence (X"} which converges strongly and
linearly to the unique solution x of the multivalued equatzon (2.1).

If r, >+, the convergence 1s superlinear.

Proof: The inequality (2.10) can be written, with x' = =" and

with x a solution of (2.1), as

Ixn+1_

(2.11) x|y s Geor )7 [x™x]y, 0e0,1,...
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which implies the strong convergence and which gives an estimate of
the rate of convergence. If r, >t e, the convergence is super-

linear since

Remark 2.4: The introduction of the relaxation mentioned in
Remark 2.3 enables the convergence of the proximal-point algorithm to
be accelerated if the parameter w in the recurrence (2.7) is suit-
ably chosen (assuming for simplicity that r is fixed). Suppose
that T 1s coercive (condition (2.9)) and also that it is uniformly

Lipschitz~-continuous, i.e. (T then being single-valued)

(2.12) |T(x')-T(x)|XSM|x'—x|X ¥x,x' ¢ X,
with, naturally, M =z o. We now introduce the notation
xn+l/2 = Jan; by definition, we have = xn+l/2+rzn+l/2, where
zn+l/2 = T(xn+l/2), and from (2.10) we have

lxn+l/2_x|X 5(1+ar)—1|xn—x|x.
We can write (2.7) in the form

N B (l-m)xnﬂuxn+]/2 - xn+1/2+r(l_w)zn+1/2

and we obtain (for w > 1) the estimate

,xn+]-x]§ S[H(m-])zrzM2 - Zdr(w‘l)]’Xn+1/2‘X|;-
The coefficient on the right is a minimum for w* = l+oc/rM2 (w* < 2

for r sufficiently large); it then follows that

1/

I =x]

2
o 2 -1 |.n
(2.13) xs(]-M—z) (1+or) [x-x]x.

This estimate is not very sharp but, compared with (2.11), it demon-
strates the acceleration of the rate of convergence produced by over-

relaxation. ]

Before concluding this section we should mention a relation which

exists between the resolvents of the operator T and its inverse

T_l which will be used later on in this Chapter (see Section 5).
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PROPOSITION 2.2: Given r > 0, we put € = 1/r; we then have the

relation

£
(2.14) J,;x = r(I-3-1) (ex) ¥xeX.
Proof: We put y = J;x ; by definition we have x = y+rz with
z ¢ T(y), from which we deduce that y ¢ T-l(s(x—y)). We therefore
obtain

exe (I+eT 1) (e(xy)),

which then gives (2.14).

3. VARIATIONAL INEQUALITIES IN DUALITY

In the following, V and H denote real Hilbert spaces equipped

respectively with the inner products (+,*) and (+,*) v' and H'

H;

denote the corresponding dual spaces. We denote by <<, and

Zvtxy

<o 0> the bilinear forms of duality between V' and V and

H' xH
between H' and H, and by Av and AH the isomorphisms of V

onto V' and of H onto H' defined respectively by

</\Vu,v>v,xv = (u,V)V Vu,veV with Avuev',
hgpr @iy = P2y ¥p,q€H with ApeR'

In many cases it it possible to identify H with its dual and we
then have AH = I.
Let A : V » 2V be a (multivalued) maximal monotone operator on

V, with domain

3.1 dom(A) = {veV]|A(v) # @} .

Let B : V + H be a continuous linear operator from V into H, let
B' be its adjoint (B' ¢ £(H',V')) defined by

<B'q',v>v. x v = <q', Bv>H,><H ¥v ¢ V, ¥q' ¢ H' and let

F : H~+ ]-»,+o] be a lower semi-continuous, proper, convex function

with effective domain
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(3.2) dom(F) = {q|qeH, F(q) <+*},

the interior of which we shall assume to be nonempty. We also
assume that the following qualZfication condtrtion is satisfied: there
exists v, € int (dom(A)) such that BV, € dom (F) .

We consider a variational inequality in the following general

form:

Find vweV such that
3.3)
dwe A(uw) such that (w,v—u)V + F(Bv)~-F(Bu) 20 W%veV.

We recall that if A = 3G, 3G being the subgradient of a function
G : V » J-x,+o] which is convex, proper and lower semi-continuous,
then the inequality (3.3) is equivalent to the convex variational
problem (1.10), i.e.

Inf {F(Bv)+G(V)},

veV
introduced by ROCKAFELLAR [5] to generalise Fenchel's duality theory
{this problem includes in particular the ordinary convex programming
problems (1.5)). The variational inequality (1.6) also constitutes
a particular case of (3.3) with VvV = H, with B the identity mapping
and with F = IK’

with nonempty interior defined by

the indicator function of the closed convex set K

0 ifvek,

(3.4) IK(V) =
+0 otherwise.

Transposing the analysis of MOSCO [1] into this formalism, we assoc-

iate with (3.3) the dual variational inequality:

Find AeH such that
(3.5)
IpeAg()  such that  (pu=h)F GDF ()20 WieH ;

in (3.5) F* : H + ]-o,4x] denotes the convex function conjugate to
F (see ROCKAFELLAR [4] EKELAND-TEMAM [1]) defined on H by
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3.6) F'(w = Sup {1, @) 5 F(@)
qeH

and Ag : H » 21 is the multivalued operator such that

3.7) AL = {acH| 3veV such that q = -Bv, -BuecAM},

where Bt denotes the operator from H into V defined by
_loB'nA
\% H*

The title of 'dual inequality' is justified by the following
result:

THEOREM 3.1: A vector u eV s a solution of the variational
inequality (3.3) <f and only if there exists a solution X of the
inequality (3.5) such that —BtA € A(u). Furthermore, u and X
are respectively solutions of (3.3) and (3.3) <f and only <if
—Btk ¢ A(u) and -Bu « AE(A) and we have the identity

(3.8) F(Bu)+F () = (Bu,Vye

Proof: First, we note that the inequality (3.3) can be written

dwe A(u) such that -we 3(FeB)(u).

Since the domain of F has a nonempty interior, there exists a point
of H where F 1is finite and continuous; we therefore have (see

EKELAND-TEMAM [1] Chapter 1, Proposition 5.7)
3(FoB) (u) = B OF(Bu)

since we have chosen to define the subgradient 3dF as a multivalued
operator from H into subsets of H (whereas the subdifferential
of F 1is an operator from H into subsets of H'). The subgradient
dF* of the conjugate function F* defined in (3.6) is in fact identi-
cal to the inverse, in the sense of multivalued operators, of BJF
(see EKELAND-TEMAM [1]); it follows from this that y e 3F(q) is
equivalent to q e 3F*(u). The inequality (3.3) is therefore equiva-
lent to

dweA(u), IAed such that -BYA = w with Bue BF*()\) H

from the definition (3.7) of AE, we have -Bu ¢ AE(X) and A 1is such
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that
t *
Ipeag(l) , pedF (M),
which is an equivalent formulation of the inequality (3.5). The
identity (3.8) follows immediately from the property Bu e 3F*(A). ]

If A = 3G, the dual operator Ag = B°8G_1°(—Bt) is in fact the
subgradient of the function G*o (-B~) (since the qualification condi-
tion is satisfied) and the dual variational inequality (3.5) is equi-

valent to the variational problem

(3.9) inf {658 W)+F ()7,
ueH

the dual problem, in the sense of Fenchel, of the variational problem
(3.4).

4. THE METHOD OF MULTIPLIERS FOR VARIATIONAL INEQUALITIES

The variational inequality

Find uweV such that
4.1)
Jwe A(u), (w,v-u)V+F(Bv)—F(Bu)20 ¥veV

is equivalent to the multivalued equation

Find u eV such that
(4.2)
0e T(u),

where since dom(F) has nonempty interior, the operator T : Vv -+ 2
is defined by

(4.3) T = a+BS% 3FeB |

By hypothesis, A is maximal monotone. The same applies for
Bt°8F°B; in fact, for all v ¢ V, v' ¢ V and all u ¢ 3F(Bv) and
u' € 3F(Bv') we have (Btu-Btu',v—v')V = (u—u',Bv—Bv')H >0

since F 1is convex and proper; the maximal monotonicity then
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follows from the lower semi-continuity of F. The qualification
condition and the property int(dom(F)) = int (dom(dF)) guarantee that
T, the sum of two maximal monotone operators, is itself maximal mono-
tone (see BREZIS [1], Corollary 2.7).

Similarly, the dual variational inequality;

Find X ¢l such that
(4.4)
P A (D), (B0 F (W)-F ()2 0 Wi eH

is equivalent to

(4.5) 0eU()

where the operator U : H ~ 2H is defined by the sum

(4.6) U = A;+3F*.

The subgradient 3F* = (BF)_l is maximal monotone. Furthermore,
t

|
B(u ) we have

for p and u' ¢ H and for all q « AE(U) and g' € A

(Q”Q',U‘U')H = (V—v',w—w')v,

with w = —Btu e A(v), w'=-Btu' e A(v'), so that

(q=q",1-U")y2 0,

which proves the monotonicity of at In order to prove the maximal

B*
g we adopt a supplementary assumption; we shall

assume henceforth either that

monotonicity of A

4.7) A 7s coercive (in the sense of (2.9)),
or that
(4.8) B*B is an isomorphism of V.

PROPOSITION 4.1: Suppose that one of the assumptions (4.7) or
(4.8) Zis satisfied. Then the operator Ag defined by (3.7) <ts

maximal monotone.
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Proof: We shall now show that for all r > O the multivalued
equation
(4.9) ye (I+rA§) )
admits for all y ¢ H a unique sclution u. The vector u ¢ H, if it

exists, satisfies, by definition of AE,

y = u-rBv,

with v such that -Bt U e A(Vv); v is thus a solution of the multi-

valued equation
t t
(4.10) -B"y € (A+rB"B) (v)

which, for all y ¢ H, admits a unique solution if (4.7) or (4.8) is
satisfied. We then deduce the unique solution of (4.9) to be

(4.11) U= y+rB(A+rBtB)-l(—Bty),

and we also deduce the maximal monotonicity of AE (see BREZIS [1],

Proposition 2.2). ]

Suppose that the variational inequality (4.1) admits a solution
u ¢ int(dom(Ad)); Theorem 3.1 indicates that the dual inequality
(4.4) possesses a solution A and X ¢ int[dom(Ag)] n dom(3F*) ;
hence the maximal monotonicity of U (see BREZIS [1]). We can there-
fore solve the "dual" multivalued equation (4.5) by using the proximal-
point algorithm for U; given a nondecreasing sequence {rn} of
positive numbers and an initial approximation 2% e H, we generate

the sequence {A"} via the recurrence

T
(4.12) e I PON , ae0,1, ..

By definition of the resolvent J;n = (I+rnU)-l, we have

(4.13) PGl A“+rn(Bu“”-pn”)

with un+1’ pn+l such that

t

(4.14) - ¢ Aqu™!

),
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n+l n+l
€

(4.15) A sEG™

inserting (4.13) into (4.14) and (4.15), we characterise un+l, pn+l

as a solution of

n+l n+l

(4.16) 0ca@™y+r B Bu 50 r g™,

4.17) Oe 3F(pn+])+rnpn+l—kn-rnBun+l.

We can therefore describe the algorithm in the following form,
which generalises to the variational inequality (4.1) Uzawa's
algorithm ALGLl for the augmented Lagrangian (1.13) associated with
the variational problem (1.10).

Multiplier methods for variational ineqgualities (ALGl):

Given a nondecreasing sequence {rn} of positive numbers, and an
. . . . . Q n .
initial approxzimation X~ e H, we deduce a sequence (X} via the

following recurrence:

n+1l n+l}

(1)  Given A", find {(u" ,p V x H satisfying

‘3wn+l€A(uWH) such that

(4.18)
n+] +1 +1
(w ,v)V+(>\n-rnpn +rnBun ,BV)H =0 ¥veV,
n+l n +1 rn +1 +1,2
F(p )=0%p Dy + 5 [ "
(4.19)

r
S F@-0N 0y + 3 (8™ |2 wqen

(ii) Update the multipliers:

n+l n+l

(4.20) A =)\n+rn(Bun+]-p ). m

At each iteration we therefore have to solve a variational egquation
in v coupled with a minimisation problem in q. The convergence

of the method follows from the convergence of the proximal-point

algorithm for the maximal monotone operator U.
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THEOREM 4.1: Suppose that the variational itnequality (4.1) admits
at least one solution Vv e int(dom(A)) and that one of the assumptions
(4.7), (4.8) <s satisfied. Then the method of multipliers ALGLl <s
well defined and generates a sequence (A" converging weakly to A,

a solution of the dual variational inequality (4.4). If, in
addition, A_l is coercive with modulus y , which implies that A
Zs Lipschitz—continuous with constant Y_l, then the sequence (A"}

converges strongly to X, the unique solution of (4.4) and
n+l _ =lyyn_
(4.21) I = Gy ) Iy

If r, o>t e, then the convergence of the sequence (A"} 4s superlinear.

Proof: The first part of the theorem is a corollary of Theorem
2.1, whilst the estimate of the rate of convergence follows from

Theorem 2.2.

Remark 4.1: We can also apply the proximal-point algorithm with
relaxation, {(2.7), to the dual multivalued equation (4.5); we obtain
a method of multipliers, in which the updating formula (4.20) is
changed into

n+!

AT < AP (™™,

(4.22)

Remark 2.3 allows us to conclude that the method converges for all P
o = Wr,, with O < w < 2; we have thus generalised the convergence
result of Chapter III. The analysis of Remark 2.4 indicates that the
rate of convergence of the method of multipliers can be accelerated

by suitably choosing in (4.22); assuming r fixed, an approxi-

Pn
mation of the optimal parameter is given by p* = w*r = r-k%z > r;
this result should be compared with the analysis carried out in

Chapter I in the simpler context of gquadratic functionals.

Remark 4.2: For the solution of (4.18), (4.19), we can obviously
use the usual successive relaxation method; by performing only a
single inner iteration, we obtain algorithm ALG2, to which we shall

return in Section 5 below.

Remark 4.3: We can also attempt to apply the proximal-point

algorithm relative to the maximal monotone operator T defined by
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(4.3), to solve the multivalued equation (4.2), equivalent to the
inequality (4.1). Thus, given a nondecreasing sequence {rn} of
positive numbers and an initial approximation u°, we define a sequence
{"} in V by the following recurrence:

Given u" find un+l satisfying the variational inequality

3 eaw™y, PP earad™)  sueh that
(4.23)

n+], =1, n+l
u

+
(w +rn ( -u™) ,v—un l)v+(pn+1 ,Bv—Bum'1 )H 20 ¥veV.

Problem (4.23) 1is difficult to solve since it involves A, B and F all
at the same time. The introduction of the duality and the method of

multipliers enables us to get round this difficulty very effectively.

5. DECOMPOSITION BY MULTIPLIERS: (I) ALTERNATING-DIRECTION METHODS

The variational inequalities (4.1) and (4.4) are equivalent to

the multivalued equations (4.2) and (4.5), which are of the form:

Find xeX such that
(5.1)
OeT(x),

where T is a maximal monotone operator such that
(5.2) T = R+S,
where R and S denote maximal monotone operators on X.

The proximal-point algorithm requires the calculation of J% which

may be much more complicated than that of JE and J Recently, P.L.

r
-
LIONS and B. MERCIER [1] have proposed two algorithms which generalise
alternating-direction methods to the multivalued equation form (5.1)
when T is given by (5.2), and which involve only the resolvents of R
and S. In particular, they analyse an algorithm of the DOUGLAS-
RACHFORD type [11]:

(5.3) 1 = LI ¢ (13D, 0=0,1,... ,
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and an algorithm of the PEACEMAN-RACHFORD type [1]:

(5.4) e = @D IE-DER , 0e0,1,... ;

knowing an approximation x° of a solution x of (5.1), these

algorithms must be initialised at t® such that

o _ .,r, o

(5.5) X = Js(t ),

that is

(5.6) t% = x° + rsc, s%¢ S(xo).

We can apply these algorithms to the multivalued equation (4.5)
equivalent to the dual variational inequality (4.4); this corres-
ponds to a decomposition of type (5.2) with

(5.7) R=A !

, 8 =03F" = (3F)”
on the Hilbert space H. We thus obtain two variants of the method of
multipliers {ALGl) in which the problems in v and q are now de-

coupled.

5.1 The Douglas—-Rachford variant of the method of multipliers:
algorithm ALG2

Given an approximation A° of the solution of the dual inequality
(4.4) we define t® such that A° = Jg(to), that s

(5.8) t% = 2%+ p
with pO € BF*(AO), and hence such that
(5.9) 2% e 3P (p%).

In general we put

(5.10) AT = J;(:“) ;

by definition of the resolvent Jé, there exists pn € BF*(An) such
that
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(5.11) AT = " - et
and
(5.12) At e aF(p™.
Using the formula (4.11) which characterises JE = (I+rA§)_l when

one of the assumptions (4.7), (4.8) is satisfied, the recurrence
(5.3) defines

(5.13) L A
with
(5.14) o (arrBtR) T (eBSpR-BBDY

Inserting relation (5.11), for the index n+l, into (5.13) we obtain

the recurrence formula for the sequence {A"}:

n+l n

(5.15) A =

+ r(Bun+1—pn+l

),

which is in fact identical to the formula (4.20) for updating the

multipliers, when the parameter r is fixed. We note that by
+

recurrence pn L € 8F*(An+l) and therefore satisfies

(5.16) A+ ™! e ar ™ty ¢

this being a multivalued equation which has the unigue solution

n+l

(5.17) o™ = (aFerT) T (ORerp™!

)

We can thus use (5.14), (5.15), (5.17) to describe algorithm (5.3)

in a form similar to the method of multipliers, as below.

The D.R. variant of the method of multipliers (ALG2):

Given r > 0, and initial approximations 2° e H, po e H such
that A° ¢ 3F(p°), define the sequences (", 1p"), {2} by the

recurrence
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(i) AR and pn being known, seek ittt e V satisfying the
variational inequality
(5.18) 3wn+]e A(un+1) such that (wn+],v)v+ ()xn—rpn-*rBunH,Bv)H =0 WweV

(i1) u" 1 being known, seek a solution pn+l of the minimisation
problem:

+1 +12 r n+! 2
(5.19) Fp™ -0 0™ BB ™ s R (- @t FIB™ aly vaew;

(iii) update the multipliers by

1 n+5

(5.20) AT LR ™ ™y

In this form, the method can be seen to be a variant of algorithm
ALGl of Section 4 in which the problem (4.18), (4.19) is solved in
approximate fashion by performing only a single relaxation step.

This generalises algorithm ALG2 of Chapter III to the case of
variational inequalities. Problem (5.18) is especially simple

when A is an affine single-valued operator since, following an
appropriate discretisation, it reduces to the solution of a linear
system with a matrix which 1s constant during the course of the ite-
rations. Problem (5.19) consists of the minimisation of a strongly
convex function which is Zndependent of B; we can therefore solve
this easily using an iterative method, even if B is ill-conditioned;
we have achieved a decoupling of the difficulties relating to F and to
B. Finally, we note that if F has a separable structure, i.e. if
H can be written as the cartesian product of m spaces

Hi’ i=1,....mand if F is defined as the sum

m
(5.21) F= ) F

of functions Fi : Hi + J=w,+o] which are lower semi-continuous,
proper and convex, then problem (5.19) decomposes into m <Independent

problems on each of the H, of the form:

+1 . +1 2
(5.22) py"! = Arg min {F,(q)-00,a) + 5 1B - a1y 1
qieHi 1 1
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where the subscript i denotes the component pertaining to Hi'

THEOGREM 5.1: Suppose that the variational inequality {4.1)
admits at least one solution u e int(dom(A)) and that one of the
assumptions (4.7) - (4.8) is satisfied. Then algorithm ALG2 <s well
defined and constructs a sequence (" = An+rpn} whieh converges
weakly to t such that X = Jg(t) satisfies the dual variational
inequality (4.4). The sequence (A"} is bounded and IAn+1—An|H + 0.

Proof: The theorem follows from Theorem 3.1 and from an analysis
of the convergence of algorithm (5.3) (see LIONS-MERCIER [1], Section

1.3, Proposition 2). []

We can conclude that the sequence (™ converges weakly to A
if JE or Jg is a compact mapping. Finally, we give an estimate of
the rate of convergence in the special case where (BF)—l is both
Lipschitz-continuous (with constant y) and coercive (with modulus

o < v), i.e. if for all g,q' ¢ H and for all A e 3F(g), A' € 3F(q'):
(5.23) ]q'-qh1$Y|X'-XIH,

(5.24) ()\'—)\,q'-q)HZOL|)\'->\|§.

THEOREM 5.2: Suppose that the assumptions of Theorem 5.1 are
satisfied and furthermore that (SF)_l is Lipschitz—continuous (with
constant vy) and coercive (with modulus o < y). Then the sequence
(A"} defined by algorithm ALG2 converges strongly to A\, a solution
of the dual variational inequality (4.4), and

n+l 2ra_ . 1/2
(5.25) Al g s - == A

(1+yr)

In particular, there exists an optimal parameter x* for which we

get the estimate

n+l o,1/2),n
(5.26) A=y = (- L |32y
Proof: See LIONS-MERCIER [1], Section 1.3, Proposition 4.

Remark 5.1: Using the relationship established in Proposition 2.2
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between the resolvents of 3F* and its inverse 3F, we can re-express

the recurrence (5.3) defining algorithm ALG2 in the form

(5.27) o g (1235 ) (ef®)) + eiS_(ee™

t dF oF

A

B
where c=1/r. Using the equation (4.11) defining th , it can be
shown that et” also satisfies the recurrence AB

n+l _ e € _ n _+€ n

(5.28) et = JA((ZJBF L) (et ))+(1 JBF)(et ),

where 32 is the contraction defined on H (when (4.7) or (4.8) is

satisfied) by

(5.29) 35 - Bo(BEBrea) e BY.

The formulation (5.28) is interesting for two reasons: it expresses
algorithm ALG2 in the terms of the primal variational inequality (4.1),

and it introduces naturally the new operator 3; .

In the special case where V = H and B = I, relation (5.28) is in fact
identical to the Douglas-Rachford algorithm (5.3) for solving the

multivalued equation

(5.30) Oe Au + 9F(u),

associated with the primal variational inequality; it thus generates
the same iterates as when it is applied to the dual variational in-

equality.

5.2 The Peaceman—-Rachford variant of the method of multipliers:
algorithm ALG3

We use the same initialisation (5.8), (5.9) as before, and we

again put
(5.31) = Aerp® with A = 30(e)
we have

(5.32) (ng-I) (™ = A%-rp”.



324 METHOD OF MULTIPLIERS & V.I.'s (CHAP. 9)

It is now convenient to introduce

(5.33) A2 I OPerp™) = AP-rpPerBu™t!,

where un+l is again defined by (5.14). The recurrence (5.4) is
written

(5.34) = O™+ D) g™ = AP Zerpa™

giving the formula

(5.35) PRI An+1/2+r(Bun+l_pn+l)’
R n+1l \
with p now defined by
(5.36) o™ = (aFerny T O™ ZipBa™ty .

We can therefore describe algorithm (5.4) by using (5.14), (5.33),
(5.35), (5.36), as below.

The P.R. variant of the method of multipliers (ALG3):

Given ¥ > O, and initial approximations A° ¢ H and pO € H
sueh that A° ¢ BF(pOL define the sequences {u"},{p"},(A\"} via the

recurrence:

(1) Given Xn,pn, find un+l e V satisfying the variational
equation

3wn+leA(un+1) such that
(5.37)

(wn'”,v)v+()\n-rpn+rBun+l,Bv)H =0 WweV;

(ii) Update the multipliers:

A“+‘/2 -

(5.38) APar (8™ ™)

(1ii) Find pn+l ¢ H satisfying the minimisation problem
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n+l n+l1/2 _n+l

r n+l  n+l 2
F(p -0 P Dyt lBut T
(5.39)
1/2
< P@-0"" 2,0, + I )2 vqen ;

{iv) Update the multipliers

n+l _ yn+l/2 +l-p“+1).

(5.40) A + r(Bu” n

The Peaceman-Rachford variant (P.R.) differs from the Douglas-
Rachford variant (D.R.) only through the addition of the intermediate
update of the multipliers (5.38); it thus offers the same set of
advantages. The Peaceman-Rachford variant is, however, less 'robust',
in that it converges under more restrictive assumptions than the
Douglas-Rachford variant; nonetheless, as we shall see, if it does

converge, then its rate of convergence is faster.

THEOREM 5. 3: Suppose that the assumptions of Theorem (5.1) are
satisfied. Then the algorithm ALG3 <s well defined and the sequences
{Bun},{pn},{kn} and {tP = An+rpn} are bounded in H; there exists
an extracted subsequence of (£} which converges weakly to t e H

such that i = JI(

s t) satisfies the dual variational inequality (4.4).

Proof: The first part of the theorem follows from LIONS-MERCIER
[1], Section 1.2, Proposition 1. We next note that, since JE and
3t
(ZJE—I) are themselves contractions, as is their product. Since the
set of fixed points of (2J§-I)(2J§—I) is nonempty (since by hypothesis
there exists at least one solution of the equation O € R(p)+S(p)),

we can extract from {t"} a subsequence which converges weakly to one

are firm contractions (in the sense of (2.3)), then (2J§-I) and

of these fixed points t. ]

We shall now give an estimate for the rate of convergence, under

the same assumptions as for algorithm ALG2.

THEOREM 5.4: Suppose that the assumptions of Theorem-5.2 are
satisfied. Then the sequence (A"} defined by algorithm ALG3 con-
verges strongly to A, a solution of the dual inequality (4.4), and we

have
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(5.41) DI s - =28 51250
B aen? "

In particular, theve exists an optimal parameter r* for which we

have the estimate

n+l_

1/2
(5.42) g 0= O 2l

Proof: As condition (5.23) states that (E)F‘)_l is Lipschitz-

continuous, this implies that

(5.43) Jef=t] g < AP=aly + rlp"op| < QO4ye) ATy

Since the mapping (ZJE—I) is a contraction, we have

n+1_tl

|t g l@igDe" - 2IE-Dely,

so that
(5.44) [ e 2 <408 (e™ =250 |2 - 4@TE™) =35, ™) o+ [ePt] 2
w49 sy s s(E)st "ty H

Using once again the argument in the proof of Proposition 2.1, and
using condition (5.24), it can be shown that

(5.45) |J§(t“>-J§(t)|f{s (T (eM-35(0) ,t"-e) = ralk“-klﬁ ;

H

inserting (5.45) into (5.44) and using (5.43), the estimate (5.41)
4dra )1/2

(1+yr)2
, i.e. the same value as for ALG2, and is thus equal to

a
;) 1/2

can be established. The constant (l- is minimal for

r* =

(1 -

il

Comparison of (5.26) and (5.42) would appear to indicate that
ALG3 is faster than ALG2. Naturally, these estimates are not

precise enocugh to allow us to reach such a conclusion definitively.

6. DECOMPOSITION BY MULTIPLIERS: (I1) PROJECTION METHODS

Once again, we consider the multivalued equation

9)
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Find x€X such that
(6.1)
0eT(x),

where T 1is defined as the sum of two maximal monotone operators:

(6.2) T = R+S.
We now assume that R is single-valued and Lipschitz-continuous with
constant M, and we consider for r > O the algorithm

(6.3) &= J;(I—rR) ™ , n=0,1,...

Remark 6.1: Algorithm (6.3) can be interpreted as a discretisa-

tion scheme for the multivalued evolution equation

(6.4) 0eLE 4 RG + 5,
which is explicit relative to R and implicit relative to §S; if

r denotes the time step, then (6.3) defines the solution of the
discretised equation

n+]
X

n
(6.5) 0e X2 4 R(x™) + sy,

THEOREM 6.1: If R <Zs Lipschita—continuous (with gonstant M)
and coercive (with modulus o), then the sequence x™ generated by

(6.3) converges strongly to x € H, satisfying (6.1) for all

2 1

O<r<2aM°. If R 78 coercive (with modulus M—l), then the

sequence (=™} converges weakly to x for all O < r < 2/M.

Proof: If R 1is Lipschitz-continuous and coercive, then (I-rR)

is a strict contraction for all O < r < 20tM_2 and we deduce the first
r

S is also a contraction.

part of the theorem by noting that J

Let us now assume that R_l is coercive (with modulus M_l), i.e.

(6.6) RGxDRE), x'=x)y 2K !R(x'}—R(x)l}z( ¥, x' €X.
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Then

| (1-rR) (x") - (I—rR)(x)I)Z{S \x'—x|)2( + (Mrz—Zr)(R(x')—R(x),x'-x)X
(6.7)
= (224) ((I=1R) (x") =(I-1R) (x), x' =)+ (r=1) |x'=x]2.

For 1/M < r < 2/M, (6.7) implies, since Jg is a firm contraction,
that |xn+l-xn|X + 0 and we then deduce, from Opial's lemma, the weak

convergence of {x"} to a solution x of (6.1).

For O < r < %, the monotonicity of R leads to the upper bound

2
(6.8) [(I-rR) (x") = (I-rR) (%) |3 < ((T-rR) (x")=(I-TR) (1), x"~X)y,
and (I-rR) is a firm contraction; we therefore conclude that
|xn+l—xn|X + O and that we have weak convergence of {x"} (see also

MERCIER [11). ]

We illustrate this algorithm by applying it first to the varZa-
tional inequality (1.5) in the particular case where A is a
single-valued operator from V into V, which is monotone and semi-

continuous (and therefore maximal monotone) :

Find ueK such that
(6.9)
(A(u),v-u)V 20 ¥vekK ;

the variational inequality (6.9) is equivalent to equation (6.1) with

(6.10) R=A and S =31

LEMMA 6.1: The resolvent Jg of S = BIK, the subgradient of

the indicator function I of a convex set K which I8 a nonempty

K
closed subset of V, is independent of r > O and equal to the

operator of projection onto K, i.e.
(6.11) 35 = (mrar) =P
. s— r K K-

Proof: From Remark 2.1, we have
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. 1 2
J;(w) Arg min {E-]v-wlv + rIK(v)}
veV

Arg min %—]v—w|§ = PK(W)' [ ]
v e K

Algorithm (6.3) thus leads to the recurrence

(6.12) W Pra™)  n=0,1,... 5

when A is the gradient V¢ of a convex and continuously differen-
tiable functional ¢ : V » IR, we recognise in (6.12) the gradient
projection method of GOLDSTEIN [1], the convergence properties of

which are obtained as a corollary of Theorem 6.1.

Let us now consider the dual variational inequality of (6.9):

Find XeV such that
(6.13)
a7 OOy * o0 () 20 BueV

this is the particular case of (3.5) in which B is the identity

K’ the conjugate functional of IK, is the

of the convex set K. The inequality (6.13)

mapping of Vv, andso
support function )
is equivalent to a multivalued equation on V of the form (6.1),

(6.2) with, in this case,

(6.14) R=-A'o(-T), S = doy -

We suppose that A is coercive (with modulus «) which implies that
A_l is single-valued and Lipschitz-continuous (with constant 1/a).
It can be shown, as in Lemma 6.1, that the resolvent Jg of aoK is

independent of r:
(6.15) J% = (T+r0,) " = I-P, ;
. s K K}

algorithm (6.3) then leads to the recurrence

n+]

(6.16) Ao (x—éK)<x“+rA"(-x“)>,

%)
Oy = Sup (W,V)y
vekK
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which can be expressed in a form similar to that of the method of

multipliers.

Method of multipliers with projection (algorithm ALG4):

Given r > O and an initial approximation A% ¢ v, de'fine
W™, A" via the recurrence:

. . , + , , .o .
(i) Given An, find T l, satisfying the variational equation

(6.17) AE™hHat v, =0 wev

(ii) Update the multipliers:

n+ 1

(6.18) = @) O™ L a

Theorem 6.1 gives the conditions for convergence of the method.

COROLLARY 6.1: Suppose that the variational inequality (6.9)
admits at least one solution and that the operator A <is coercive
(with modulus a). Then algorithm ALG4 <s well defined and generates
a sequence (A"} which converges weakly to X e€ V, a solution of the

dual vartational inequality (6.13), for all O < r < 2a.

Remark 6.2: If the convergence of {A"} is strong (for example
if VvV 1is of finite dimension), it can be shown that the sequence

(™ converges linearly and that there exists an optimal step r*.

Remark 6.3: Algorithm (6.17), (6.18) effects a decomposition
of the variational inequality (6.9) wherein the problem relating to
A and that relating to the constraint v ¢ K become decoupled due to

the introduction of the multipliers AT,

7. GENERAL DISCUSSION

This chapter, which is of a distinctly more abstract character
than the preceding chapters, has primarily been aimed at demonstrating
the links which exist between the augmented-Lagrangian method and

some of the well-known methods of non-linear analysis. These
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connections may serve to suggest some new approaches for the study of
algorithms and for the optimisation of the parameters which control
convergence. In particular, we believe that the techniques developed
in this chapter should allow an investigation of the convergence of
variants of algorithm ALGl in which a relaxation parameter is
introduced to accelerate the convergence of the inner iterations.
This procedure for accelerating convergence has actually been used in
Chapter I in the simpler context of quadratic functionals and linear

constraints.
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