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Preface

The basic idea of Interval Mathematics is that ordinary set-theoretical intervals I.R/

provide a consistent support for numerical computing. The set-theoretical form of
Interval Analysis has produced a large amount of work since its initiation in the late
1950s, [1, 60, 61]. There are some later papers devoted to the structural analysis of
the method or its completion [13,14,49,66,72,87,96,97], but with no fundamental
departure from its initial set-theoretical foundations.

This book presents a new interval theory, the Modal Interval Analysis (MIA), as
a structural, algebraic, and logical completion of the classical intervals. The starting
point of MIA is quite simple: to define a modal interval attaching a quantifier to a
classical interval, and to introduce the basic relation of inclusion between modal
intervals by means of the inclusion between the sets of predicates they accept.
So a modal interval consists in a classical interval, which defines its domain, and
a quantifier, which defines its modality. This modal approach introduces interval
extensions of the real continuous functions, gives equivalences between logical
formulas and interval inclusions, and provides the semantic theorems that justify
these equivalences and guidelines to get these inclusions.

The significant change of perspective in the treatment of information, coming
from this new approach, makes Modal Interval Analysis more a new tool for
the general practice of Numerical Applied Mathematics than a contribution to
the previous Interval Theory. It supposes a complete philosophy of numerical
information which is, or can be, its best virtue and produces at each stage of its
development not only one body of solutions, but also questions leading to the
construction of the next stage of the theory. Modal intervals system is not a breaking-
off with the classic intervals, but a algebraic, structural, and logic completion of
them that opens a way to new forms of numerical information treatment.

This book summarizes the most relevant results and features of MIA and also
provides several application examples that illustrate the use of them in different
problems and domains. The book contains the detailed development of the theory,
the main concepts and results, together with several examples to clarify their
meaning and to balance the mathematical items and proofs. Definitions contain the
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vi Preface

concepts, theorems provide the main results, and corollaries and lemmas embrace
detailed logical developments.

Implementation of arithmetics, computation rules, and some algorithms is in
the software MISO developed by the research group MiceLab of the University of
Girona (Spain) and available at http://www.cs.utep.edu/interval-comp/intsoft.html

After the introductory Chap. 1, about real, digital numbers and intervals, and
limitations of classical interval theory, Chap. 2 gives an account of the fundamental
definitions and structures which support the semantically oriented system of modal
intervals I �.R/. Basic concepts such as predicates, canonical coordinates, modal
inclusion, and equality, duality, interval predicates and co-predicates, rounding, and
lattice operators are presented in detail. The set I �.R/ of modal intervals turns out
to be a completion of I.R/, in a similar way to that in which the complex numbers
are a completion of the real numbers. So, a subset of I �.R/, the “proper” modal
interval (Œa; b� with a � b) is identifiable with a classical interval Œa; b� and all the
results of Classical Interval Analysis are also results of Modal Interval Analysis.

In accordance with the sense of the term analysis in Mathematics, as a discipline
in which the objects of study are, first and foremost, functions, Modal Interval theory
can be considered, indeed, as an analysis because it studies a numerical field, the
modal intervals, and the functions defined on it. So, Chap. 3 deals with the interval
extension of the real continuous functions. The historic reason for the theory of these
extensions of continuous real functions is to overcome the limited character of the
classical set-theoretical approach. The geometrical semantics of .nC1/-dimensional
real space, RnC1, is basically defined by the continuous functions f from R

n to R.
The semantic interval functions f � and f �� from I �.Rn/ to I �.R/, consistently
referring to the continuous functions f from R

n to R, are obtained by translating
to modal terms the set-theoretical definition of a simple interval extension of a real
continuous function. When the continuous real function is considered as a syntactic
tree, it can also be extended to a rational interval function fR fromR

n to R, by using
the computing program implicitly defined by the syntax of the expression defining
the function. The idea of interpretability is given as a definite formulation via the
cornerstones which are the Semantic Theorems.

Chapter 4 is devoted to characterizing the existence of optimal computations
for a semantic function. Both modal extensions f � and f �� are semantically
interpretable, but not computable in general. When f � and f �� are computed
through the modal rational extension fR, a null, partial, or complete loss of
information is generated. The point is to find functions for which the program fR

is optimal, that is, for which fR.X/ equals f �.X/ and f ��.X/.
Modal interval arithmetic operators and metric functions are considered in

Chap. 5. The modal arithmetic coincides, certainly, with the arithmetic of the
Kaucher’s Extended Interval Space IR [49] with an important difference: in I �.R/

interval results provided by the arithmetic have a logical meaning related to the
points of the operand intervals domains, thanks to the semantic and interpretability
theorems. Thus, unlike Extended Interval Space, which is a formal and algebraic
completion of the Classic Intervals Space I.R/, Gardenyes’ Modal Intervals are
also a semantic completion of I.R/.

http://www.cs.utep.edu/interval-comp/intsoft.html


Preface vii

Chapter 6 contains procedures for solving interval linear equations and systems.
The Jacobi method is adapted to interval systems together with convergence and
non-convergence conditions. An important point is to provide a logical meaning to
the solution using the semantic theorems.

The definition of the semantic extension of a real continuous function does not
provide any indication about how to compute it. Some conditions under which
f � can be computed through the syntactic extension are given in Chap. 3, but
in the most general case it is obtained by means of an algorithm developed in
Chap. 7, referred as f �-algorithm. First, some considerations about twins (intervals
of intervals) are given to provide a background for this f �-algorithm.

The matter of the necessary rounding is introduced in Chap. 1 and dealt with
in the following chapters. Nevertheless, a shortcoming of the modal theory is
managing the rounding of an interval when it appears both as it is and dualized in
the same computation, for example in the solution of a linear system. To overcome
this difficulty, in Chap. 8 a new object based on modal intervals is introduced:
marks. Definitions, relations, the extension of a continuous function to a function
of marks, operators of marks, and the corresponding semantic results are given
in detail together with examples, not only to illustrate the different concepts and
results, but also to show that marks can be used in a very practical way to aware
about ill computations which can appear in the use of algorithms with real numbers.

Chapter 9 closes the loop opened in Chap. 2 dealing with intervals and modal
intervals of marks, following a parallel development to the one started in Chap. 2
for modal intervals of real numbers I �.R/. Predicates, relations, lattice operators,
semantic and syntactic functional extensions to intervals of marks, and the semantic
theorem, together with the arithmetic operators, are outlined throughout the chapter.

Finally, Chap. 10 is devoted to showing some applications of modal intervals.
Specifically, they are used to deal with three problems: minimax, characterization
of solution sets of quantified constraint satisfaction problems, and statement of
problems in control engineering or process control from a semantic point of view.
Algorithms and procedures about these topics are presented, together with examples
to illustrate the procedures.

The beginnings of MIA can be situated in the SIGLA project, developed at the
University of Barcelona in the late 1970s. In the 1980s and 1990s it was further
continued by the SIGLA/X group (University of Barcelona and Polytechnical
University of Catalonia in Spain), some of whose results can be found in [20–
27, 86, 90]. The kernel of its main applications has been developed inside the
MiceLab of the University of Girona (Spain) from the 1990s to the present.

We, the authors, are indebted to many people who have played significant roles in
the development of Modal Interval Theory. First of all, to Dr. E. Gardenyes, founder
of the Modal Interval Analysis since his first works in the 1980s until early 2000s
together with a set of coworkers, Dr. H. Mielgo, Dr. A. Trepat, Dr. J.M. Janer,
Dra. R. Estela, and some of us. With this book we want to render him tribute.
Along the hardcore of the theory, we have wanted to preserve, in some way, his
conceptualist style and notation, except for some adaptations to the standards. Also,
we wish to thank several colleagues for their valuable comments and criticisms,
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Dr. V. Kreinovich, Dr. A. Neumaier, Dr. L. Jaulin, Dr. A. Goldsztein, Dr. S. Ratschan
and, in a very special way, we thank Dr. S.P. Shary and Dr. E. Walter, for the
patient reading of the manuscript. Nevertheless, any error, omission, or obscurity
are entirely our responsibility.

Girona, Spain Miguel A. Sainz
Girona, Spain Joaquim Armengol
Girona, Spain Remei Calm
London, UK Pau Herrero
Barcelona, Spain Lambert Jorba
Girona, Spain Josep Vehi



Notations

In order to make clear enough the main mathematical subjects put to work along the
text, we have used the following typefaces and notations:

• Lowercase and italic x for a real number.
• Lowercase and italic f for a real function of one variable.
• Lowercase, bold and italic x for a vector with real components

x D .x1; x2; : : : ; xm/:

• Lowercase, bold and italic f for a vectorial function with functional components

f D .f1; f2; : : : ; fm/:

• Uppercase, italic A and apostrophe for a classical interval with real bounds

A0 D Œa1; a2�0 or A0 D Œa; a�0:

• Uppercase and italic A for a modal interval with real bounds

A D Œa1; a2� or A D Œa; a�:

• Uppercase, bold and italic for an modal interval vector with modal interval
components

A D .A1; A2; : : : ; Am/:

• Uppercase and bold for a real matrix with real elements

A D .aij/:

ix



x Notations

• Also uppercase, bold and italic for an interval matrix with interval elements

A D .Aij/:

The context prevents any lack of distinction between interval vector and interval
matrix, which is often irrelevant because a vector in a finite-dimension vectorial
space can be identified with a row or column matrix.

• wid.X/ for the width, mid.X/ for the midpoint, mig.X/ for the mignitude and
abs.X/ for the absolute value of an interval X

• jX j for the interval absolute value function.
• dist.X; Y / for the Hausdorff distance between two intervals X and Y .
• Q.x; X/ for the modal quantifier.
• Lowercase mathfrak m for a mark with real attributes

m D hc; t; g; n; bi:

• Uppercase mathfrak and apostrophe A0 for a set-theoretical interval of marks
with marks bounds

A0 D Œa; a�0:

• Uppercase mathfrak A for a modal interval of marks with marks bounds

A D Œa; a�:

• A for a twin with interval bounds

A D jŒA; A�j:

• R for the set of real numbers.
• I.R/ for the set of classical intervals, as subsets of R.
• I �.R/ for the set of modal intervals.
• M.t; n; b/ for the set of marks with tolerance t , number of digits n and scale basis

b.
• I.M.t; n// for the set of proper intervals of marks, abridged to I.M/ when the

type of the marks is arranged in advance.
• I �.M.t; n// for the set of modal intervals of marks, abridged to I �.M/ when the

type of the marks is arranged in advance.
• I.I �.R// for the set of proper twins.
• I �.I �.R// for the set of twins.
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Chapter 1
Intervals

1.1 Introduction: The Classical Interval System

Classical, or set-theoretical intervals [1,60–62] are a conceptual tool of computation
with a sufficiently mature theoretical background to make the development of its
techniques of application a major center of interest [33, 44].

Interval mathematics identifies a classical interval Œa; b� with the set of numerical
values x that lie between a and b, and operates with intervals instead of numbers.

Œa; b� D fx 2 R j a � x � bg:
In the system of intervals

I.R/ D fŒa; b� j a; b 2 R; a � bg
the real arithmetic operators are introduced: if ! is an arithmetical operation for real
numbers, ! 2 fC; �; �; =g, the corresponding operation for intervals, denoted by

Œa; b�!Œc; d �;

is defined by

Œa; b�!Œc; d � D fx!y j x 2 Œa; b�; y 2 Œc; d �g;

that is, the set of values of all possible !-operations between a first operand x of
Œa; b� and a second operand y of Œc; d � (it can be observed that interval division
is not defined when c � 0 � d ) [1, 8, 61]. This definition leads to the following
operation rules

Œa; b� C Œc; d � D Œa C b; c C d�

Œa; b� � Œc; d � D Œa � d; b � c�

Œa; b� � Œc; d � D Œmin.ac; ad; bc; bd/; max.ac; ad; bc; bd�

M.A. Sainz et al., Modal Interval Analysis, Lecture Notes in Mathematics 2091,
DOI 10.1007/978-3-319-01721-1__1,
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2 1 Intervals

and

1=Œc; d � D Œ1=d; 1=c�

Œa; b�=Œc; d � D Œa; b� � .1=Œc; d �/:

when 0 … Œc; d �.
In the system of intervals with digital bounds

I.D/ D fŒa; b� j a; b 2 D; a � bg;

if A; B 2 I.D/, any general interval operation A !B must be defined by an outer
rounding of the set of values fx!y j x 2 A; y 2 Bg in order to guarantee the impli-
cation

.x 2 A; y 2 B/ ) x!y 2 A !B:

Example 1.1.1 Let us consider a physical system consisting of a tank of volume v l ,
with one input and one output, which contains saline solution. Designating by x.t/g

and y.t/g=l the mass and concentration of salt in the tank, a constant flow of q l=s

of saline solution, with an amount of u.t/g=s of salt, is entering into the tank, and
the same outflow q l=s of saline solution with a concentration of y.t/g=l is leaving
the tank. If the initial mass of salt in the tank is x.0/g, the problem is to know the
evolution of the concentration of salt in the outflow, along the time of simulation.

Taking into account the mass balance of salt, the discrete mathematical model
after Euler discretization for this physical system is

x.t C �t/ D .1 � �t q=v/x.t/ C �t u.t/

y.t C �t/ D x.t C �t/=v; (1.1)

where �t is the discretization time-step, which provides the variation of the output
concentration of salt along the time. Thus, for

v D 11 l

q D 0:7 l=s

u.t/ D
�

0:7 g=s for t < 20

0:0 g=s for t � 20

x.0/ D 7 g

�t D 1 s;

the obtained results of the simulation are summarized in Table 1.1, which shows
the evolution of the mass and concentration of salt in the tank. Obviously the same
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Table 1.1 Simulations t x.t/ y.t/

1 7:5091 0:6826

2 7:9534 0:7230

: : : : : : : : :

20 10:7372 0:9761

21 10:7706 0:9791

: : : : : : : : :

70 0:0136 0:0012

71 0:0119 0:0011

: : : : : : : : :

results can be obtained when any equivalent formulation (i.e. syntactic tree) for the
output function

y.t C �t / D x.t C �t /=v;

y.t C �t / D ..1 � �tq=v/x.t/ C �tu.t//=v; (1.2)

y.t C �t / D ..1=v � �t q=v2/x.t/ C �t u.t/=v

is used.
Introducing interval uncertainties in the physical system, let X.t/ and Y.t/ be

intervals of variation for the mass and concentration of salt, and X.0/ be for the
initial state. Substituting the real variables of the model equations (1.1) in their
corresponding variation intervals, the model becomes the interval model

X.t C �t/ D .1 � �t Q=V / � X.t/ C �tU.t/=V

Y.t C �t / D .X.t C �t/=V:

Let us consider the interval formulation of the different syntactic trees (1.2) for the
output function y.t/

Y1.t C �t / D .X.t C �t /=V

Y 2.t C �t / D ..1 � �tQ=V / � X.t/ C �t U.t//=V

Y 3.t C �t / D ..1=V � �t Q=V 2/ � X.t/ C �tU.t/=V;

together with a fourth different formulation

Y 4.t C �t / D ..1=V � �tQ=.Dual.V /2/ � X.t/ C �tU.t/=V

where the second occurrence of v, has been replaced by the dual interval of V (dual
of an interval Œa; b� will be defined as the “interval” Œb; a�). It is expected that these
equations will give intervals of variation of the concentration along the time. Thus,
running a simulation for
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Table 1.2 Interval simulations

t X.t/ Y 1.t/ Y 2.t/ Y 3.t/ Y 4.t/

1 Œ6:9638; 8:0488� Œ0:6055; 0:7666� Œ0:6055; 0:7666� Œ0:5969; 0:7728� Œ0:6133; 0:7598�

V D Œ10:5; 11:5� l

Q D Œ0:6; 0:8� l=s

U.t/ D
�

Œ0:6; 0:8� g=s for t < 20

Œ0:0; 0:0� g=s for t � 20

X.0/ D Œ6:8; 7:2� g

Y.0/ D Œ3:5; 4:5� g

�t D 1 s;

the results, just for the first iteration, are in Table 1.2, with different intervals in
line with the different syntactic trees of the output function, contrary to it could
be expected. Why? The equality between Y1 and Y 2 indicates that the interval
computations can be associative. The different result for Y 3 could indicate the
non-distributivity of the quotient of intervals. The result for Y 4 is also different
and, curiously, it is the true interval of variation for the output (its bounds can be
separately computed as a problem of maxima an minima with the bounds of the
intervals for X.0/, Q and V ).

This example illustrates in some way the behavior of intervals, different from
the real numbers, and the mistake of making a hasty and naive substitution of real
numbers by their intervals of variation.

An interval extension of a continuous function from R
k to R, z D f .x1; : : : ; xk/,

is the united extension Rf of f , defined as the range of the f -values on X and an
important objective of classic interval computations is to estimate this range. Since
this range can be hard to compute, an interval syntactic extension fR is defined by
replacing the real operands and operators of the real function by the homonymous
operands and operators defined on the system .I.R/; I.D//. The crucial relation
between both extensions is

Rf .X1; : : : ; Xk/ � fR.X1; : : : ; Xk/;

This inclusion can represent an important loss of information, but there exist
different methods, such as centered forms and Taylor series [1,61,71], that allow to
obtain tighter inclusions of fR.

A critical basic fact is that the interval syntactic extension fR satisfies only one
kind of interval predicate compatible with the outer rounding

.8x1 2 X1/ � � � .8xk 2 Xk/ .9z 2 Out. fR.X1; : : : ; Xk/// z D f .x1; : : : ; xk/:
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It would be very interesting to get interval syntactic extensions satisfying more
general predicates, with existential and universal quantifiers combined following
some kind of rules.

Example 1.1.2 Consider an electrical circuit with a voltage source e of 11 V and a
rheostat which provides a resistance r of 10 �. In accordance with the Ohm’s law,
the current i is

i D e

r
D 11

10
D 1:1 A:

Let us consider variations of these quantities: the voltage source e is between 10

and 12 V and the resistance r can take any value between 7 and 40 �. Representing
these variations in an interval way, e 2 E D Œ10; 12� and r 2 R D Œ7; 40� and
converting this quotient in its interval counterpart, the current i will be inside the
interval

I D E

R
D Œ10; 12�

Œ7; 40�
� Œ0:25; 1:72�: (1.3)

Would it be possible to know the value of r 2 Œ7; 40� that provides a current of e.g.
1:7 A when e is 10 V? The answer is that this value does not exist, because

r D 10

1:7
D 5:88:: … Œ7; 40�:

In fact, the interval result in Equation (1.3) has a unique and precise meaning
(i. e., a semantics) that is: for any value of e between 10 and 12 V and any value
of r between 7 and 40 �, the current will take a value between 0:25 and 1:72 A. In a
formal way using a formula of the first order logic,

.8e 2 Œ10; 12�/ .8r 2 Œ7; 40�/ .9i 2 Œ0:25; 1:72�/ i D e

r
:

Nevertheless, there exists a value of r 2 Œ7; 40� providing a current i D 1 A when
e D 10 V, because

r D 10

1
D 10 2 Œ7; 40�:

So, a new problem can be stated: to find an interval R such that for every r 2 R,
there exist values of i 2 Œ0:25; 1:72� and e 2 Œ10; 12� such that i D e

r
, i.e.

.8r 2 R/ .9i 2 Œ0:25; 1:72�/.9e 2 Œ10; 12�/ i D e

r
:

The semantic of classic intervals does not allow to find a direct solution inside I.R/,
but the modal interval computation
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R D Œ12; 10�

Œ1:72; 0:25�
� Œ48; 5:82�

solves this problem, using again dual intervals. The semantical rigidity of I.R/ will
be broken with modal intervals to obtain other different semantics, depending on
the kind of the involved intervals.

This example indicates that it can exist a strong relationship between the results
of an interval computation and some type of logical formulas, relating intervals with
the values they contain.

A series of works appeared at the beginning of interval analysis, showing various
attempts to overcome the limitations which, significantly, move this system away
from the structural and operative regularity of the classical numerical system R and
which always present implicit and effective barriers to its application [27, 49]. In
this book, intervals, considered in their specialized function of elementary parts
of computation, are framed inside Modal Interval Analysis (MIA) by formally
subordinating them to some semantic functions. The model framework of the modal
intervals has sufficient conceptual richness to pose and gradually solve central
questions about the processing of numerical data which remain out of reach of the
traditional model of intervals.

Probably the innovation which best characterizes the system of modal intervals
is the identification of an interval with a record of values either autonomous or
regulating. However, even though the modal theory reveals significant conceptual
and computational resources hidden under the apparent simplicity of the classical
intervals, this theory confirms also the logical solidity of a part of the limitations
involved in the traditional system, showing that they come from the internal logic of
the information provided by numerical measurements. The example

Œ1; 3� � .Œ1; 1� C Œ�1; �1�/ D Œ0; 0� � Œ1; 3� � Œ1; 1� C Œ1; 3� � Œ�1; �1� D Œ�2; 2�

illustrates one of these limitations which must be accepted: the weakening of the
ordinary distributive law to a sub-distributive law for the product of intervals,
whether classical or modal.

Apart from the conceptual and operational suitability of the modal theory for
facing problems which require a treatment by intervals, there are specific difficulties
due to moving away from the traditional model of classical intervals to the model of
modal intervals. In synthesis, these difficulties are:

– The set-theoretical intervals, in spite of their conceptual and operational limita-
tions, cohere extremely well with ordinary numerical intuition.

– To make use of modal intervals, it is necessary to add a good number of basic
concepts to the ordinary baggage of numerical mathematics.

The analysis by modal intervals introduces new conceptual and operational
possibilities, but reveals also significant limitations regarding the possibilities of
numerical data processing, if one wants to push the intervals up to the level of an
analysis which is logically coherent with the numerical models.
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1.1.1 Real Numbers and Numerical Computation

The system R of the numbers, known as the real numbers, became, after its theoreti-
cal consolidation at the end of the nineteenth century, the abstract and computational
horizon of the mathematics applied to the experimental systems ruled by measure-
ments. One can identify this system either with the Euclidean real line provided
with a system of coordinates, the point of view of synthetic geometry, or the set
of Cauchy series of encased intervals with widths decreasing towards zero, if one
chooses the constructive perspective of mathematical analysis.

In a more pragmatic approach, R can almost be identified with the system of the
numerical values obtained with all the precision that is relevant for each application.
The fact that numerical values are exact only to a limited extent, that is, that they
bear a certain amount of numerical error, is very well known by everyone dealing
with numerical information. No matter its origin and application, numerical results
other that those carried by small integer numbers, are, inescapably, only estimated
or approximated results of some measurement or computation. This fact leads to
an obvious conclusion: single numbers are unable to usefully represent numerical
information.

However, although a more or less abstract use of the system R was established,
giving its familiar sense to the practice of numerical mathematics, this pragmatic
use provides reliable reasons because it is based in the consistent theoretical
construction of the system R of the numbers called “real”. But one cannot forget
that this construction of R is always an essentially infinite construction: the
exact effective computation of a particular value of a real value would inevitably
presuppose, except for trivial cases, a process of successive approximations with an
infinite number of iterations. For this reason the real values, in general, only allow
of being indicated either by a theoretical definition or by some approximate value
obtained by a finite process.

This is the motive for the need of analytically coherent but computationally
finite tools of the numerical calculus supported by the two basic concepts of exact
value and sufficient approximation. It is the mathematical development of these
two notions on the double system .R;D/ of the real numbers R and the digital
numbersD, which makes possible a mutually significant reference between effective
computations and mathematical models.

1.1.2 Essential Reason for Computation with Intervals

Numerical applied mathematics is grounded on the use of the numerical values
d 2D actually obtainable from some digital process which can be related, after some
measuring/computing technical protocol, to the real line’s numerical values x 2 R

which are fitted to some geometrical model on the real line R. In addition to some
criterion of proximity to the exact value x, d will satisfy one of the two relations of
side delimitation d � x or d � x. The relation of equality d D x will be always
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deprived of sense in the analytic/computational context of the system .R;D/, with
the values d and x pertaining to completely different sources of experiment.

This is the framing of the fundamental problem, faced by any numerical
computation, of keeping a single digital value for each ideal value aimed at in R. The
basic idea of any interval computation is to keep, for each level of the computing
process and both its data and the final result, a pair of possible approximations
.d1; d2/ satisfying the conditions d1 � x � d2. The pair .d1; d2/ replaces the singular
approximate value d which would keep a classical numerical computation.

For those parts of the numerical information are able to be treated systematically,
it will be necessary to identify the pairs .d1; d2/ with some mathematical object
endowing them with a precise analytical significance and providing the possibility
of their playing the role of elementary objects for each level of computation. This
identification will turn out to be the base for the different versions of interval
analysis.

This computational context is fully recognized and put to work by the approach
of classical interval analysis to numerical mathematics, when it decides to keep
systematically the two nearest procedurally discernible digital bounds, a lower
bound d1 2 D and an upper bound d2 2 D, to represent any real value x 2 R,
conceptually compatible with a definite measurement or actual computation and
consistent with the geometrical model guiding the interpretation of the referenced
measurement or computational operation.

Example 1.1.3 It is hardly acceptable to guess from the number 15 which of 15 ˙
0:1 D Œ14:9; 15:1� or 15˙5 D Œ10; 20� is meant. Neither the indication of the step in
the scale of measurement or numeration is enough, because of the widening effect
that comes out from theoretical operations themselves. The only way to indicate
the spread of a numerical result is by pointing to a lower and an upper limit of
its possible values, maybe through a direct interval notation such as Œ14:9; 15:1� or
Œ10; 20� or maybe through a more indirect one such as 15 ˙ 0:1 or 15 ˙ 5.

To operate or to perform some mathematics with numerical information is the
departing point of interval mathematics from the usual way of handling numeric
information through numbers. The main decision in the analysis by classical set-
theoretical intervals consists in identifying the pairs .d1; d2/ 2 D

2 with the real line
subsets R

Œd1; d2� D fx 2 R j d1 � x � d2g
and intervals become the actual elementary items of numerical information.

1.1.3 Why Intervals?

The system R only provides logical support for models about real processes dealing
with measures, supposedly objective, of quantities, supposedly continuous. The
practical process of computation/measurement is only able to define an interval
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which provides the optimal operational identification with the computed/measured
value. It has been proved [54] that, in a similar way to the central limit theorem used
in statistics, for any error which is a sum of a large number of independent small
components, the set of its values is close (in the Hausdorff distance sense) to an
interval. Moreover, computational feasible problems involving a family of intervals,
describing the uncertainty of the inputs, become intractable by increasing the family
with any non-interval set [68].

Intervals make possible:

1. bounding truncation errors, for example � D 3:14159 : : : 2 Œ3:14; 3:15�,
2. the automatic control of operational and rounding errors in a digital computation,
3. representing errors in physical quantities coming from experimental mea-

surements, for example the acceleration due to gravitational g D 9:807 ˙
0:027 m=s2 2 Œ9:780; 9:834�, and

4. introducing variables representing uncertainty or variation, for example the
temperature of a room varying between 18 and 25 ıC within 24 h can be
represented by the interval T D Œ18; 25�.

In many cases, the probability distribution of the measurement uncertainty is
known, but there are some other situations when only the lower and upper bounds
of such uncertainty are known, and this is when intervals are useful. The use of
the set of intervals I.R/ will allow handling the physical systems as numerical
models which take into account the unavoidable uncertainty associated with any
computation/measurement process and holds a computational representation for
uncertainties and errors.

In the construction of I.R/ some essential properties of the real numbers are
lost, for example distributivity, or gained, for example the inclusion relation. So the
numerical structure I.R/ is not only a simple completion of R [89].

From the identification of the pair of digital numbers .d1; d2/ with a set-
theoretical interval Œd1; d2�, the set I.D/ of intervals with bounds in D becomes
the operative background for computations which take into account the automatic
control of the uncertainties inherent to the computed/measured numerical values.

The set I.R/ does not allow an algorithmic use, but it provides an analytical
formal model for interval relations and operations. The set I.D/ does not assure
exact relations or computations, but allows approximating I.R/ and controlling the
round-off errors and truncations of the algorithms defined in I.R/ but performed
in I.D/.

1.1.4 Specificity of the System of Intervals

The system I.R/, with its equality and inclusion relations and its algebraic operators
[1,8,61], has a structure much more complex than R and, thereafter, both the models
and the algorithms defined on R will be too poor, systematically, to determine
a corresponding model or algorithm on I.R/. That is shown by the following
structural peculiarities of I.R/:
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1. The difference, even with arithmetic ideally exact on R, between the set of values
of a continuous real function

ff .x1; : : : ; xn/ j x1 2 X1; : : : ; xn 2 Xng
and the value of its interval syntactic computation fR.X1; : : : ; Xn/ is often too
big, far from that which one could expect for a reasonable approximation, when
some of the parameters .x1; : : : ; xn/ appear in a multiple way in the expression
of the function f , i.e., when some components of the argument x D .x1; : : : ; xn/

are multi-incident on the computation program formalized by the syntactic tree
of the function f . To see this, it is enough to compare, for x 2 X D Œ1; 2�, the
set of values of the continuous real function f .x/ D x �x, which is fx �x j x 2
Œ1; 2�g D Œ0; 0�, with the result of the syntactic operation on I.R/, fR.X/ D
Œ1; 2� � Œ1; 2� D Œ�1; 1�. This phenomenon is called the “amplification of
dependence”.

2. The distributivity of multiplication over a sum becomes regionalized, or reduced
to a sub-distributive law:

A � .B C C / � .A � B/ C .A � C /:

3. The breaking points of the algorithms, where the alternative

.a � x jj a � x/

on R is binary, become breaking points with four branches on I.R/, according to
the alternative

.A � X jj A � X jj A � X jj A � X/;

where the system of relations .I.R/; �; �/ is the partial order complementary to
the partial order .I.R/; �; �/ defined by inclusion in the system of subsets real
line I.R/.

These three features of the structure I.R/ have as a consequence that neither I.R/

nor any space admitting a subsystem isomorphic with I.R/, i.e., the space obtained
from I.R/ preserving the ability to state and solve the problems that I.R/ makes it
possible to state and solve correctly, will be able to fill the frame of implementation
for the algorithms designed on I.R/.

1.2 Limitations of System I.R/

Interval mathematics uses, through the entire process of a computation, all the range
of possible values that correspond to every item of numerical information, and
there are a lot of successful interval computing methods, but there exists some very
important difficulties in the interval approach.
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1.2.1 Equations A C X D Œ0; 0� and A � X D Œ1; 1�

Maybe the most fundamental difficulty comes from the fact that interval subtraction
is not the inverse operation of interval addition, as the following example shows:

Œ1; 2� � Œ1; 2� D Œ�1; 1�:

Even more: if Œa; b� is an interval with a ¤ b, there exists no interval Œx; y� such
that

Œa; b� C Œx; y� D Œ0; 0�;

because the addition rule would imply

Œa; b� C Œx; y� D Œa C x; b C y� D Œ0; 0�

and then

Œx; y� D Œ�a; �b�;

with a < b implying �a > �b, this is to say Œ�a; �b� would be no interval at all.
A quite analogous reasoning leads to the non-existence of any interval Œx; y� such

that Œa; b� � Œx; y� D Œ1; 1� if a ¤ b.
So, the basic equation A C X D Œ0; 0� have no solution in I.R/ because sub-

traction is not the opposite operation to the addition in I.R/. The same for the
equation A � X D Œ1; 1�, because division is not the opposite to multiplication.
These anomalies can be solved by adding certain elements to the system I.R/,
the dual intervals (for example the new element Œ2; 1� D Dual.Œ1; 2�//, which
extend to the new system the preliminary structure .I.R/; C; �; �; =/ by means of
compatibility criteria. The completed structure, named .IR; C; �; �; =/, is a group
for the operation of addition, as well as for the multiplication of intervals not
containing zero [48, 49].

1.2.2 Solution of the Equation A C X D B

The solution X D Œx1; x2� of the equation A C X D B satisfies a1 C x1 D b1

and a2 C x2 D b2. This solution exists on I.R/ only under the condition wid.A/ �
wid.B/, where wid is the width of the interval A D Œa1; a2�, defined by

wid.A/ D a2 � a1



12 1 Intervals

But even when the equation A C X D B has a solution because the condition
wid.A/ � wid.B/ holds, this solution cannot be obtained by any interval syntactic
computation X D fR.A; B/ on I.R/. This comes from the fact that if there were
such a computation, for A � A1, A ¤ A1, the solution of the equation A1 CX D B

would also be obtained from this same syntactic computation X1 D fR.A1; B/.
But, since fR is inclusive, X1 satisfies the relations X1 � X , wid.X1/ � wid.X/,
incompatible with wid.X/ D wid.B/�wid.A/, wid.X1/ D wid.B/�wid.A1/ and
wid.A1/ > wid.A/.

Example 1.2.1 The equation Œ2; 5� C Œx1; x2� D Œ3; 7� has the solution Œx1; x2� D
Œ1; 2�, which can not be obtained by any operation within the system of classical
set-theoretical intervals, because Œx1; x2� D Œ3; 7� � Œ2; 5� D Œ�2; 5�.

In short, the existence of a solution for the equation A C X D B on I.R/ does
not imply that this solution has a syntactic computation in I.R/.

1.2.3 Interpretation of the Relations on Intervals

Let us suppose that it is necessary to extend a line at a known distance between 100
and 120 m, and that one initially has a reel of cable measuring between 60 and 70 m
length. The solution X D Œ40; 50� of the equation Œ60; 70� C X D Œ100; 120� would
provide limits acceptable for the necessary additional length if one can accept any
overall length ranging between 100 and 120 m (for example if one needs to link two
rims of a deep canyon).

By changing the scene one supposes that the goal is now to cover a distance
between 100 and 120 m, the precise value being unknown when the problem
has been just posed (the real distance inside the interval Œ100; 120� could not be
accessible to measurement because of a wood or fog preventing one from seeing
the point where the other extreme of the cable should be connected). For this new
situation one should thus get an additional reel of cable allowing the unfolding
of a certain length in the interval Œ30; 60�, different from the preceding solution
X D Œ40; 50�.

If one revises the statement of these two situations, on each one of them, the
intervals Œ100; 120� and X are associated to different processes, due to the selection
from the operational values which they delimit.

This example illustrates the problems related to the fact that the relations on
intervals are computationally interpreted. To specify the logical mode of this
interpretation, and doing it in a way that will be accessible to the analysis,
one introduces an essential tool for the analysis by modal intervals: quantifiers:
universal, 8, and existential, 9. The formula .8x 2 X/ P.x/ means “for any value x

pertaining to the set-interval X for which the property P.x/ is true”, and the formula
.9x 2 X/ P.x/ means “there exists at least a value x pertaining to the set-interval
X for which the property P.x/ is true”.
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With this formal tool, the validity of the solutions in the two suggested addition
scenarios is expressed by the propositions

.8a 2 Œ60; 70�/ .8x 2 Œ40; 50�/ .9t 2 Œ100; 120�/ a C x D t

and

.8a 2 Œ60; 70�/ .8t 2 Œ100; 120�/ .9x 2 Œ30; 60�/ a C x D t

One thus realizes that for problems arising in terms of I.R/ one cannot translate,
without more examination, intuitive addition problems into addition equations.

1.2.4 Standards, Specifications and Quantifiers

We must associate to the intervals the universal and the existential quantifiers to
formalize the expression of compatibility between the standard imposed on one of
its measurable characteristics of an unspecified product and the specification which
a process of production can guarantee.

For concreteness, let us suppose that the standard for a batch of bars of
length l is defined by the expression .8l 2 Œ99:6; 100:4�/Acceptable.l/, meaning
that the lengths in this interval will not cause trouble in their use. Thus the
bars produced by a factory will be accepted if it can guarantee a specification,
ensuring for the length of each unit the validity, e.g., of the expression .9l 2
Œ99:8; 100:2�/EffectiveLength.l/. Under these circumstances, one can show the
validity of the statement

.9l 2 Œ99:8; 100:2�/ .EffectiveLength.l/; Acceptable.l//;

translating the compatibility of the standard for the product with the quality of the
effective manufacture process aiming to satisfy it.

1.2.5 Semantic Vacuity of the Solution of A C X D B

We will now propose an addition problem which, in spite of the lack of a solution
for the corresponding interval equation in the interesting cases, will be significant
and will have, in the case supposed, a good practical solution.

Let us imagine that A, B and X are intervals. A contains the spontaneous
monetary offer of a country, B the tolerable monetary offer for this country, and
X the monetary intervention of its government. If one reflects this situation by
the countable equation A C X D B , this problem will have a solution in system
I.R/ only under the condition wid.A/ � wid.B/ which would make it possible
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for the government to spend money freely, within the limits imposed by the
interval X . The interpretation of the equation A C X D B would be formalized in
these circumstances by the proposition

.8a 2 A/ .8x 2 X/ .9b 2 B/ a C x D b:

But we can suppose that a certain government might face less flexible circumstances
resulting from the condition wid.A/ > wid.B/. One can prove that such a
government, with this simple economy, could arithmetically solve this particular
problem with the solution X of the equation X D B�A in I.R/. But, is it acceptable
that it is necessary to change the form of the equations to address the variability of
the conditions? The combinatorial explosion threatened by such a process is not
acceptable. However the interpretation of the solution to this formulation of the
problem would be formalized by the expression

.8a 2 A/ .9b 2 B/ .9x 2 X/ a C x D b;

or

.8a 2 A/ .8b 2 B/ .9x 2 X/ a C x D b;

if the government were obliged to ensure one of the values limited by B , unknown
ante facto.

1.2.6 Logical Insufficiency of the Digital Outer Rounding

The only digital rounding allowed in the context (I.R/, I.D/) is the outer rounding,
OutŒa; b� D ŒLeft.a/; Right.b/�, because it guarantees the implication x 2 Œa; b� )
x 2 ŒLeft.a/; Right.b/�. This theoretical decision leads nevertheless to another
dead-end of the interval analysis on (I.R/, I.D/).

As the computational interpretation of the intervals formally results in the use of
two quantifiers .8x 2 Œa; b�/ and .9x 2 Œa; b�/, if the interval value Œa; b� is relevant
because it validates, for example the statement

.9x 2 Œa; b�/ x D .a C b/=2;

this property will preserve its validity in the statement

.9x 2 ŒLeft.a/; Right.b/�/ x D .a C b/=2;

obtained from the former one by outer-rounding the interval.
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One must however pose another question: what does occur if the pertinent prop-
erty for the interval Œa; b� were correctly proposed by the statement .8x 2 Œa; b�/

x � a? Then the validity of this statement wouldn’t absolutely guarantee the
validity of

.8x 2 ŒLeft.a/; Right.b/�/ x � a

obtained by outer-rounding of Œa; b�. But it is obvious that the statement

.8x 2 ŒRight.a/; Left.b/�/ x � a;

obtained from an inner rounding InnŒa; b� WD ŒRight.a/; Left.b/�, would preserve
the validity of the original statement on Œa; b�, if the condition Right.a/ � Left.b/

guarantees the existence of the inner rounding of Œa; b�.
The problem for Inn comes from the fact that this operation does not exist

unconditionally on I.D/, as the case InnŒx; x� shows when x 2 D.

1.2.7 Arithmetical Limitation of Digital Outer Rounding

The intervals of I.R/ rounded outside are not always enough to compute other
results rounded outside. For example an outer rounded solution of the equation
ACX D B could be obtained from the transformed equation Inn.A/CY D Out.B/,
but not from Out.A/ C Z D Out.B/.

This is clear, because from to the relations a1 C x1 D b1; a2 C x2 D b2, one
obtains y1 D Left.b1/ � Right.a1/ and y2 D Right.b2/ � Left.a2/, which makes
Œy1; y2� an outer rounding of Œx1; x2�, i.e., Œy1; y2� � Œx1; x2�, because the subtraction
increases with the first operand and decreases with the second. A completely parallel
reasoning shows that one could not affirm the same thing for Œz1; z2�, with z1 D
Left.b1/ � Left.a1/ and z2 D Right.b2/ � Right.a2/.

1.2.8 Semantic Drawbacks

The fact of not having the additional information provided by the association of
quantifiers to interval bounds, can be better illustrated by the following example of
four interval statements referring to the relation a C x D b on the real line and
keeping the requirements a 2 Œ1; 2�, b 2 Œ3; 7�:

.8a 2 Œ1; 2�/ .8x 2 Œ2; 5�/ .9b 2 Œ3; 7�/ a C x D b (1.4)

.8a 2 Œ1; 2�/ .8b 2 Œ3; 7�/ .9x 2 Œ1; 6�/ a C x D b (1.5)

.8x 2 Œ1; 6�/ .9a 2 Œ1; 2�/ .9b 2 Œ3; 7�/ a C x D b (1.6)

.8b 2 Œ3; 7�/ .9a 2 Œ1; 2�/ .9x 2 Œ2; 5�/ a C x D b: (1.7)
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Statements (1.4) and (1.7) hold for the well known solution X D Œ2; 5� of the
classical set-theoretical interval equation Œ1; 2� C X D Œ3; 7�. Statements (1.5) and
(1.6), in spite of making complete sense, are out of reach of this classical interval
equation of the same form as the “real” one a C x D b. If the addition was a
digital operation, the practical interval equation could be Œ1; 2� C X � Œ2:9; 7:1�

with the only possible rounding for set-theoretical digital intervals: the classical
“outer rounding”. In this case the statement (1.4) would become

.8a 2 Œ1; 2�/ .8x 2 Œ2; 5�/ .9b 2 Œ2:9; 7:1�/ a C x D b; (1.8)

but statement (1.7) would cease to be valid, since the outer rounding of Œ3; 7� would
be incompatible with the 8-quantifier. Moreover, we should not forget that, even
in the very simple case of the statement (1.4), the solution X of the corresponding
interval equation Œ1; 2� C X � Œ3; 7� could not be obtained by any operation within
the system of classical set-theoretical intervals.



Chapter 2
Modal Intervals

2.1 Introduction

The semantical lack of the classical system of intervals cannot be resolved by
remaining bound to the idea that identifies each interval Œa; b� with the set of
numerical values x for which the condition a � x � b holds. The way out must be
found, therefore, through a restatement of the problem.

The first hint of a solution comes from the pragmatics of the standard interval
mathematics itself: an interval Œa; b� is most frequently looked upon as the
representative of some unknown value (or va1ues) x that satisfies the condition
x 2 Œa; b�, rather than being looked on as representing all of these values. This
perspective is specially obvious in processes of successive approximations, when
the approximated numerical value belongs to every interval of the approximating
succession.

So, if for example we consider the interval Œ1; 2� as representing an “unknown”
value x 2 Œ1; 2�, is there anything against denoting Œ2; 1� the “interval” representing
a “selectable” value y 2 Œ1; 2�? It is obvious that if the addition rule for standard
intervals is kept

Œ1; 2� C Œ2; 1� D Œ3; 3�

moreover for every x 2 Œ1; 2� (for example x D 1:8) a y 2 Œ1; 2� (in this example
y D 1:2) can be selected such that x C y D 3.

Let us introduce some terminology:

“Proper interval” means any “interval” Œa; b� satisfying the condition a � b.
In this case it is equivalent to assert that x is representable by Œa; b�, to say that
x belongs to the set fx j a � x � bg. A proper interval is interpreted as a
“tolerance interval”.
An “improper interval” is any “interval” Œa; b� satisfying the condition a � b;
for the moment let us simply take it as a control able to provide any numerical

M.A. Sainz et al., Modal Interval Analysis, Lecture Notes in Mathematics 2091,
DOI 10.1007/978-3-319-01721-1__2,
© Springer International Publishing Switzerland 2014

17



18 2 Modal Intervals

B (improper)

A (proper) C (point-wise)
Fig. 2.1 Modal intervals

value (control value) x between b and a. An improper interval is interpreted as a
“control interval”.
“Point-wise interval” or “degenerate interval” is any “interval” Œa; b� satisfying
the condition a D b, just representing the single numerical value x D a D b.

Now, to visualize these different intervals, it is useful to represent them in a
system of coordinates, as depicted in Fig. 2.1.

This allows of understanding geometrically the completed intervals, with the half
plane of proper or tolerance intervals (the standard intervals), with the half plane
of the improper or control intervals, and with their common border of point-wise
intervals.

2.2 Construction of the Modal Intervals

To obtain the system of objects able to provide a coherent use of the intervals, with
a philosophy of application to the double system of real and digital numbers .R;D/,
we underline a fundamental fact: a datum in the form of an interval X is interesting
owing to it indicates, by limiting it, an ideal value x validating a property P.x/,
which must be relevant for the reasons which will have guided to obtain the interval
X delimiting an environment of x.

But if x cannot have a digital designation because, contrary to X , it is not
the result of a measurement and/or a computation, the only ways to formalize the
reference of the interval X to a value x 2 R and to the property P , will be one of the
two expressions .9x 2 X/ P.x/ and .8x 2 X/ P.x/, where the variable x plays
only the role of an abstract index. Then the classical intervals X become ambiguous,
since they do not contain any attribute to determine univocally which one of the two
possible quantified expressions must be selected as a consistent reference to x and
the property P .

2.2.1 Concepts, Definitions and Notations

So far and from now on R, I.R/ and I �.R/ represent the set of the real numbers, the
set of classical intervals, and the set of modal intervals together with the following
notations:
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• Œa; b�0 D fx 2 R j a � x � bg is a classical or set-theoretical interval; the
notation Œa; b�0 will be used to distinguish Œa; b�0 2 I.R/ from a modal interval
Œa; b� 2 I �.R/.

• Pred.R/ D fP j P W R ! f0; 1gg is the set of classical predicates, with values 0
or 1, on R;

• Set.P / D fx 2 R j P.x/ D 1g is the domain or characteristic set of the
predicate P ;

• Pred.x/ WD fP 2 Pred.R/ j P.x/ D 1g is the set of the real predicates defined
on the set R, which are validated for the point x 2 R.

To relate intervals with the sets Pred.x/ corresponding to their points, we define:

Definition 2.2.1 (Modal interval) A modal interval A is an element of the
Cartesian product .I.R/; f8; 9g/

A D .A0; QA/;

where QA is one of the classical quantifiers 8 or 9.

Definition 2.2.2 (Modal coordinates of a modal interval) For A D .A0; QA/ 2
I �.R/:

Domain W Set.A0; QA/ D A0

Modality W Mod.A0; QA/ D QA:

Definition 2.2.3 (Set of modal intervals) The set of modal intervals is denoted by
I �.R/ and defined as

I �.R/ D f.A0; QA/ j A0 2 I.R/; QA 2 f9; 8gg: (2.1)

This fundamental definition leads naturally to outline the following subsets:

Definition 2.2.4 (Sets of existential, universal and point-wise intervals)

Ie.R/ D f.A0; 9/ j A0 2 I.R/gI
Iu.R/ D f.A0; 8/ j A0 2 I.R/gI
Ip.R/ D f.Œa; a�0; 9/ j a 2 Rg or Ip.R/ D f.Œa; a�0; 8/ j a 2 Rg:

Obviously, Ip.R/ � Ie.R/, Ip.R/ � Iu.R/ and I �.R/ D Ie.R/ [ Iu.R/.
The main instrument of Modal Interval Analysis is the modal quantifier Q

delimited by modal intervals, associating to every real predicate a unique hereditary
interval predicate on the modal intervals I �.R/ by means of the following rule
defining the modal quantifier Q in function of the classical ones 9 and 8.
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Definition 2.2.5 (Modal quantifier Q) For a variable x on R and A 2 I �.R/,

Q.x; A/P.x/ D .QAx 2 A0/P.x/:

For instance,

Q.x; .Œ�3; 1�0; 9// x � 0 D .9x 2 Œ�3; 1�0/ x � 0

and

Q.x; .Œ1; 2�0; 8// x � 0 D .8x 2 Œ1; 2�0/ x � 0:

Remark 2.2.1 If A D Œa; a� is a point-wise interval,

Q.x; A/P.x/ D .8x 2 A0/P.x/ D .9x 2 A0/P.x/ D P.a/:

and, consequently, both definitions of A decide the acceptance or rejection of the
predicate P by the value of P.a/.

2.2.2 Set of Predicates Accepted by A 2 I�.R/

The main idea underlying the definition of the expression Q.x; A/P.x/ is to play
the role of a formalized test. Their results 1 or 0, depending on the domain and the
modality of A, identify a modal interval A as an acceptor of predicates making true
or false the real predicate P.x/.

Definition 2.2.6 (Set of real predicates validated—or accepted—by a modal
interval) Given a modal interval A D .A0; QA/,

Pred.A/ D fP 2 Pred.R/ j Q.x; A/P.x/g:

is the set of predicates accepted by A.

This definition allows identifying each modal interval A with the set Pred.A/ of the
real predicates P which are true according to its attributes Set.A/ and Mod.A/.

The two following lemmas show the close geometrical and logical relation
between a modal interval and the real predicates which it accepts.

Lemma 2.2.1 (Predicate of modal intervals) If [
x2A0

is the “union operator” of a

family of sets of index x ranging on the interval A0, and \
x2A0

is the corresponding

“intersection operator”,
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Pred.A0; 9/ D fP 2 Pred.R/ j .9x 2 A0/P.x/g D[
x2A0

Pred.x/

Pred.A0; 8/ D fP 2 Pred.R/ j .8x 2 A0/P.x/g D\
x2A0

Pred.x/

Proof

P 2 Pred.A0; 9/ , .9x 2 A0/P.x/

, .9x 2 A0/.P 2 fP 2 Pred.R/ j P.x/ D 1g/
, P 2[

x2A0

Pred.x/

and

P 2 Pred.A0; 8/ , .8x 2 A0/P.x/

, .8x 2 A0/.P 2 fP 2 Pred.R/ j P.x/ D 1g/
, P 2\

x2A0

Pred.x/: �

Lemma 2.2.2 (Set-theoretical meaning of the acceptance of predicates)

If .Mod.A/ D 9 then P 2 Pred.A// , Set.A/ \ Set.P / ¤ ;
If .Mod.A/ D 8 then P 2 Pred.A// , Set.A/ � Set.P /

Proof If Mod.A/ D 9,

P 2 Pred.A/ , .9x 2 A0/P.x/ , Set.A/ \ Set.P / ¤ ;

If Mod.A/ D 8,

P 2 Pred.A/ , .8x 2 A0/P.x/ , Set.A/ � Set.P /: �

In other words, the modal intervals of form .A0; 9/ will verify only the predicates
which are validated by unspecified points of the set A0. On the other hand, an interval
.A0; 8/ will verify only the predicates P.x/ which are validated by all the points of
the set A0.

2.2.3 Canonical Coordinates of the Modal Intervals

Let us define the following canonical notation for the modal intervals:
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aa

b

b

[a , b] 

[a , a] 

[a , b] 

a

a

Fig. 2.2 (Inf, Sup)-diagram

Definition 2.2.7 (Canonical coordinates)

Œa; b� D
8<
:

.Œa; b�0; 9/ if a � b

.Œb; a�0; 8/ if a � b

Moreover, let us make the following definitions:

Definition 2.2.8 (Infimum and supremum)

Inf.Œa; b�/ D a

Sup.Œa; b�/ D b:

They are the infimum and the supremum of an interval of I �.R/, i.e., its first and
second coordinates .

Definition 2.2.9 (Minimum and maximum)

min.Œa; b�/ D min.a; b/

max.Œa; b�/ D max.a; b/:

With these notations one can indicate the previous sets of modal intervals as

I �.R/ D fŒa; b� j a; b 2 RgI
Ie.R/ D fŒa; b� 2 I �.R/ j a � bgI
Iu.R/ D fŒa; b� 2 I �.R/ j a � bgI
Ip.R/ D fŒa; b� 2 I �.R/ j a D bg:

Remembering that Œa; b� 2 Ie.R/ is called a “proper interval”, an interval
Œa; b� 2 Iu.R/ is called an “improper interval”, and an interval Œa; b� 2 Ip.R/ is
called a “point-wise interval” or “degenerated interval”, graphical representations
in a (Inf,Sup)-diagram are in Fig. 2.2, where the diagonal contains the point-wise
intervals, proper intervals are represented by points in the left half-plane, and
improper intervals are in the right half-plane.
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2.2.4 Modal Inclusion and Equality

The identification of a modal interval with the set of its accepted predicates,
A $ Pred.A/, allows the definition of modal inclusion and modal equality in
terms of the inclusion and equality of the sets of predicates.

Definition 2.2.10 (Modal inclusion and modal equality) If A; B 2 I �.R/,

A � B W Pred.A/ � Pred.B/

A D B W .A � B; A � B/ , Pred.A/ D Pred.B/

The set-theoretical projection of modal inclusion is next established:

Lemma 2.2.3 (Modal components analysis of modal inclusion) For A; B 2
I �.R/,

A � B ,

8̂
<̂
ˆ̂:

1/ A0 � B 0 if Mod.A/ D Mod.B/ D 9
2/ A0 � B 0 if Mod.A/ D Mod.B/ D 8
3/ A0 \ B 0 6D ; if .Mod.A/ D 8; Mod.B/ D 9/

4/ A0 D B 0 D Œa; a�0 if .Mod.A/ D 9; Mod.B/ D 8/:

Proof By Definition 2.2.10, A � B , Pred.A/ � Pred.B/. So

1) ): .A � BI A; B 2 Ie.R//

, .8P 2 Pred.A// ..9x 2 A0/ P.x/ ) .9x 2 B 0/ P.x//

// Particularizing P.x/ W x D a for every a 2 A0:
) .8a 2 A0/ ..9x 2 A0/ x D a ) .9x 2 B 0/ x D a/ , A0 � B 0

1) (: A0 � B 0 ) .8P 2 Pred.A// ..9x 2 A0/ P.x/ ) .9x 2 B 0/ P.x//

, .A0; 9/ � .B 0; 9/:

2) ): .A � BI A; B 2 Iu.R//

, .8P 2 Pred.A// ..8x 2 A0/ P.x/ ) .8x 2 B 0/ P.x//

// Particularizing P.x/ W x 2 A0:
) ..8x 2 A0/ x 2 A0 ) 8.x 2 B 0/ x 2 A0/ , A0 � B 0:

2) (: A0 � B 0 ) .8P 2 Pred.A// ..8x 2 A0/ P.x/ ) .8x 2 B 0/ P.x//

, .A0; 8/ � .B 0; 8/:

3) ): .A � BI A 2 Iu.R/; B 2 Ie.R//

, .8P 2 Pred.A// ..8x 2 A0/ P.x/ ) .9x 2 B 0/ P.x//

// Particularizing P.x/ W x 2 A0.
) ..8x 2 A0/ x 2 A0 ) 9.x 2 B 0/ x 2 A0/ , A0 \ B 0 6D ;:

3) (: A0 � B 0 ) .8P 2 Pred.A// ..8x 2 A0/ P.x/ ) .9x 2 B 0/ P.x//

, .A0; 8/ � .B 0; 9/:

4) ): .A � BI A 2 Ie.R/; B 2 Iu.R//

, .8P 2 Pred.A// ..9x 2 A0/ P.x/ ) .8x 2 B 0/ P.x//

// P.x/ W x D a for every a 2 A0:
) .8a 2 A0/ ..9x 2 A0/ x D a ) .8x 2 B 0/ x D a/
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// .8a 2 A0/ .9x 2 A0/ x D a is true.
, .8a 2 A0/ .8x 2 B 0/ x D a

, .8a 2 A0/ B 0 D Œa; a�0
, A0 D B 0 D Œa; a�0:

4) (: A0 D B 0 D Œa; a�0 ) .A0; 9/ � .B 0; 8/: �

Inclusion and equality can be reduced to relations between the infimum and
supremum of the involved intervals.

Lemma 2.2.4 (Programming of inclusion and equality)

Œa1; a2� � Œb1; b2� , .a1 � b1; a2 � b2/I
Œa1; a2� D Œb1; b2� , .a1 D b1; a2 D b2/:

Proof The possible cases of inclusion are classified after the modalities of the
intervals A D Œa1; a2� and B D Œb1; b2�:

1. .Mod.A/ D Mod.B/ D 9/ , .a1 � a2; b1 � b2/:
Since A � B , Œa1; a2�0 � Œb1; b2�

0:
2. .Mod.A/ D Mod.B/ D 8/ , .a1 � a2; b1 � b2/:

Since A � B , Œa2; a1�0 � Œb2; b1�
0 , b2 � a1; b1 � a2

, b2 � a1 � a2; b2 � b1 � a2:

3. .Mod.A/ D 8; Mod.B/ D 9/ , .a1 � a2; b1 � b2/:
A � B , Œa2; a1�0 \ Œb1; b2�

0 6D ;
, :.a2 > b2 or a1 < b1/ , .a2 � b2; a1 � b1/:

4. .Mod.A/ D 9; Mod.B/ D 8/ , .a1 � a2; b1 � b2/:
A � B , A0 D B 0 D Œa; a�0 , .a1 D a2 D b1 D b2 D a2 D b2 D a/

, .a1 � a2; b1 � b2; a2 � b2; a1 � b1/: �

Figure 2.3 illustrates this result

Example 2.2.1 Since Œ7; 0� � Œ�3; 1� because .7 � �3; 0 � 1/, it follows that

.x � 0/ 2 Pred.Œ7; 0�/ , Q.x; Œ7; 0�/ x � 0 , .8x 2 Œ0; 7�0/ x � 0

and

.x � 0/ 2 Pred.Œ�3; 1�/ , Q.x; Œ�3; 1�/ x � 0 , .9x 2 Œ�3; 1�0/ x � 0:

Remark 2.2.2 These programming results for the relations “D” and “�” on I �.R/

their formal identity to the corresponding ones in I.R/.

Specifically, the formal identity which this lemma shows for the existential or
proper intervals Œa; b�, where a � b, and for the classical intervals Œa; b�0, which
meet also the condition a � b, establishes a formal correspondence between the
systems I.R/ and Ie.R/ that one must take care not to see as an identity, since the
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1

2

3

Fig. 2.3 Inclusion diagram

1

2

3

Fig. 2.4 Less than or equal
to relations

elements of Ie.R/ have a domain on R but also a modality, the existential one, unlike
the elements of I.R/ whose definition only considers the domain.

The relation of inequality is formally generated by the closed complement of
modal inclusion.

Definition 2.2.11 (Less than or equal to for modal intervals) For A D Œa1; a2�

and B D Œb1; b2�,

A � B W .a1 � b1; a2 � b2/:

In the .Inf; Sup/-diagram, a representation for the “less than or equal to” relation
is in Fig. 2.4.

Lemma 2.2.5 (Order structure of the system (I �.R//; �; �/) Both � and � are
partial order relations on I �.R/ and between two intervals A and B there always
exists at least one of the following situations

A � B or A � B or A � B or A � B:
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1 2

34

5

Fig. 2.5 Inclusion and less
than or equal to relations

Proof Obviously they are the only possible situations of any interval in relation with
interval A in Fig. 2.5. �

2.2.5 Duality and Co-predicates on I�.R/

Modal intervals may also be associated with the sets of real predicates they reject,
establishing a dual semantics for I �.R/:

Definition 2.2.12 (Set of real “co-predicates” rejected by a modal interval)
Given a modal interval A by its modal coordinates .A0; QA/,

Copred.A/ D fP 2 Pred.R/ j :Q.x; A/P.x/g:

When P 2 Copred.A/, P is rejected by A, i.e., P doesn’t belong to the set of
predicates accepted by A. Obviously

Copred.A/ D Pred.R/ � Pred.A/;

Example 2.2.2 .x � 0/ 2 Copred.Œ7; 1�/ is equivalent to

:..x � 0/ 2 Pred.Œ7; 1�// , :Q.x; Œ7; 1�/ x � 0

, :.8x 2 Œ1; 7�0/ x � 0

, .9x 2 Œ1; 7�0/ x < 0;

a final proposition whose logical value is, like the initial ones, utterly false.

This complementary semantics is related to the symmetry of I �.R/ established
by the “duality” operator:

Definition 2.2.13 (�-Duality on I �.R/).

Dual.Œa; b�/ D Œb; a�:



2.2 Construction of the Modal Intervals 27

Lemma 2.2.6 (�-monotonicity of the Dual and Copred operators) For A; B 2
I �.R/,

A � B , Dual.A/ � Dual.B/ , Copred.A/ � Copred.B/:

Proof The first equivalence for A � B arises from the definitions of the Dual opera-
tor and of the programming theorem for the modal inclusion. The second one results
from the definition of modal inclusion and from the Pred.R/-complementarity of
Pred.A/ and Copred.A/. �

Lemma 2.2.7 (:-commutation with the modal quantifier) For A 2 I �.R/,

:Q.x; A/ P.x/ , Q.x; Dual.A// :P.x/I
P 2 Copred.A/ , .:P / 2 Pred.Dual.A//:

Proof. From the commutation rule of the “not”-operator with the classical
quantifiers. �

2.2.6 Rounding on (I�.R/; I�.D/)

For any interval Œa; b� 2 I �.R/ an inner and outer rounding on a digital line I �.D/

must be an interval of I �.D/ contained and containing, respectively, Œa; b�.

Definition 2.2.14 (Modal rounding)

Inn.Œa; b�/ D ŒRight.a/; Left.b/� 2 fŒx; y� j x; y 2 D; Œx; y� � Œa; b�g;
Out.Œa; b�/ D ŒLeft.a/; Right.b/� 2 fŒx; y� j x; y 2 D; Œx; y� � Œa; b�g;

where Left.a/ is the greatest element of D less than or equal to a, and Right.a/ is
the least element of D greater than or equal to a.

Theorem 2.2.1 (Transmission of the information associated with modal
truncations)

Pred.Inn.A// � Pred.A/ � Pred.Out.A//

Copred.Inn.A// � Copred.A/ � Copred.Out.A//:

Proof By the previous definition,

Inn.Œa; b�/ � Œa; b� � Out.Œa; b�/;

which is equivalent to the corresponding relations of inclusion among predicates
and co-predicates. �
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After the identification of the modal intervals with the sets of real predicates
they validate, this theorem states that if Inn.A/ and Out.A/ are the rounded
results supplied by some computing algorithm and/or some observation about a
modal interval theoretical exact A, these relations mean that only the predicates of
Pred.Inn.A// and the co-predicates of Copred.Out.A// are a posteriori decidable for
the interval A. That is, the predicates which are true for Inn.A/ are also true for A,
and the predicates which are false for Out.A/ are also false for A. Similarly only
the predicates of Pred.Out.A// and the co-predicates of Copred.Inn.A// are a priori
decidable for the interval A. That is, the predicates which are true for A are also true
for Out.A/, and the predicates which are false for A are also false for Inn.A/.

In short, the assertive information is transmitted by the first chain of inclusions
equivalent to the implications

Q.x; Inn.A//P.x/ ) Q.x; A/P.x/ ) Q.x; Out.A//P.x/

and the negative information is transmitted by the second chain equivalent to the
system of implications

:Q.x; Out.A//P.x/ ) :Q.x; A/P.x/ ) :Q.x; Inn.A//P.x/

Having a dual operator avoids a double implementation for rounding, since inner
rounding can be reduced to outer rounding.

Theorem 2.2.2 (Unnecessary implementation of the inner rounding)

Inn.A/ D Dual.Out.Dual.A///:

Proof If A D Œa; b�,

Inn.A/ D ŒRight.a/; Left.b/� D DualŒLeft.b/; Right.a/�

D Dual.OutŒb; a�/ D Dual.Out.Dual.A///: �

2.2.7 Operations in the Lattice .I�.R/; �; �/

We will introduce the infimum and supremum operations for the lattices defined by
the partial order relations � and � on I �.R/.

Lemma 2.2.8 (The lattice .I �.R/; �/) The structure .I �.R/; �/ is a lattice,
isomorphic to ..R;R/; .�; �//.

Proof From Lemma 2.2.4 there exist a supremum and infimum

Inf.Œa1; a2�; Œb1; b2�/ D Œmax.a1; b1/; min.a2; b2/�

Sup.Œa1; a2�; Œb1; b2�/ D Œmin.a1; b1/; max.a2; b2/�: �
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The lattice operations “Meet” and “Join” on I �.R/, i.e., the Inf./ and Sup./ of the
modal inclusion order on I �.R/, are defined on bounded families of modal intervals
as follows.

Definition 2.2.15 (“Meet” and “Join” operators on .I �.R/; �/) For a bounded
family A.I / D fA.i/ 2 I �.R/ j i 2 I g of modal intervals (I is the index’s
domain),

î2I
A.i/ D A 2 I �.R/ is such that .8i 2 I / X � A.i/ , X � A;

_
i2I

A.i/ D B 2 I �.R/ is such that .8i 2 I / X � A.i/ , X � B;

annotated .A ^ B/ and .A _ B/ for the corresponding two-operand case.

The structure .I �.R/; �/ is a lattice with the lattice operations “Min” and “Max”
defined by

Definition 2.2.16 (“Min” and “Max” operators on .I �.R/; �/) For a bounded
family A.I / D fA.i/ 2 I �.R/ j i 2 I g,

Min
i2I

A.i/ D A 2 I �.R/ is such that .8i 2 I / X � A.i/ , X � AI

Max
i2I

A.i/ D B 2 I �.R/ is such that .8i 2 I / X � A.i/ , X � B:

These operators can be easily obtained by means of operations on the bounds of
the intervals.

Lemma 2.2.9 (Lattice operator programming) For a bounded family of A.I / 2
I �.R/, if A.i/ D Œa1.i/; a2.i/�:

î2I
A.i/ D Œmax

i2I
a1.i/; min

i2I
a2.i/�

_
i2I

A.i/ D Œmin
i2I

a1.i/; max
i2I

a2.i/�

Min
i2I

A.i/ D Œmin
i2I

a1.i/; min
i2I

a2.i/�

Max
i2I

A.i/ D Œmax
i2I

a1.i/; max
i2I

a2.i/�:

Proof From Definitions 2.2.15, 2.2.11, and 2.2.16, and from Lemma 2.2.4. �

In the (Inf; Sup/-diagram, a representation for Meet, Join, Min and Max is in
Fig. 2.6.
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A(1)

A(3)

A(2)

A(i)A = ∧

B = A(i)∨

A(5)

A(4)

A(6)

D = Max A(i)

C = Min A(i)

Fig. 2.6 Meet, Join, Min and
Max

Lemma 2.2.10 (Duality of lattice operators) For a bounded family of A.I / 2
I �.R/, if A.i/ D Œa1.i/; a2.i/�:

Dual._
i2I

A.i// D
î2I

Dual.A.i//

Dual.
î2I

A.i// D _
i2I

Dual.A.i//

Proof From Definition 2.2.13 and Lemma 2.2.4. �

Definition 2.2.17 (“Meet–join” operator on I �.R/) For A 2 I �.R/

.̋a;A/
D

8̂
<̂
ˆ̂:

â2A0

if A is improper

_
a2A0

if A is proper

Lemma 2.2.11 (Modal intervals as meet–join)

For A 2 Iu.R/ is A D
â2A0

Œa; a�:

For A 2 Ie.R/ is A D_
a2A0

Œa; a�:

For A 2 I �.R/ is A D
.̋a;A/

Œa; a�:

Proof From Lemma 2.2.9. �

Figure 2.7 illustrates this result.
It would be lovely if Pred.A _ B/ were equal to Pred.A/ [ Pred.B/ and

Pred.A^ B) equal to Pred.A/\Pred.B/. This is far from the truth, as the following
example shows.

Example 2.2.3 Considering, for example these relations among the predicate sets
Pred.Œ1; 2�/, Pred.Œ3; 4�/ and Pred.Œ1; 2� ^ Œ3; 4�/ D Pred.Œ3; 2�/, the predicate
x 2 f1:5; 3:5g belongs to Pred.Œ1; 2�/ and to Pred.Œ3; 4�/ and therefore to the
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A (proper) 

A (improper) 

Fig. 2.7 Modal intervals as
meet–join

intersection of these two sets of predicates Pred.Œ1; 2�/\Pred.Œ3; 4�/, but not to their
meet Pred.Œ3; 2�/. Similarly, the predicate x D 2:5 belongs to Pred.Œ1; 4�/ which is
equal to Pred.Œ1; 2�_ Œ3; 4�/, but it belongs neither to Pred.Œ1; 2�/ nor to Pred.Œ3; 4�/,
and consequently does not belong to Pred.Œ1; 2�/ [ Pred.Œ3; 4�/.

In view of this example, about the definition of modal interval inclusion and the
related lattice operations meet and join, the following result holds:

Lemma 2.2.12 (Non triviality of the sublattice .Pred.X/; �/)

1. Pred.A ^ B/ � Pred.A/ \ Pred.B/;
2. Pred.A _ B/ � Pred.A/ [ Pred.B/;
3. Copred.A ^ B/ � Copred.A/ [ Copred.B/;
4. Copred.A _ B/ � Copred.A/ \ Copred.B/.

Proof

1. and 2. Because A ^ B � A, A ^ B � B , A _ B � A and A _ B � B . The
equalities are not true as the previous example shows.

3. Pred.R/-complementary of 1.
4. Pred.R/-complementary of 2.

2.2.8 Interval Predicates and Co-predicates

We define, in what follows, a few particular classes of sets of predicates which bear
a stronger structural relationship with modal intervals.

Definition 2.2.18 (Set of interval predicates)

Pred�.R/ D fx 2 X 0 j X 2 I �.R/g:

Definition 2.2.19 (Set of interval co-predicates)

Copred�.R/ D fx … X 0 j X 2 I �.R/g:
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Definition 2.2.20 (Set of interval predicates validated—or accepted—by A)

Pred�.A/ D f.x 2 X 0/ 2 Pred�.R/ j Q.x; A/ x 2 X 0g:

Definition 2.2.21 (Set of interval co-predicates rejected by A)

Copred�.A/ D f.x … X 0/ 2 Copred�.R/ j :Q.x; A/ x … X 0g:

Definition 2.2.22 (“Proper” and “improper” operators)

Prop.X/ D Prop.X 0/ D .X 0; 9/I
Impr.X/ D Impr.X 0/ D .X 0; 8/:

The operators meet and join bring about the equivalences contained in the
following lemma.

Lemma 2.2.13 (Predicates and modality) For A 2 I �.R/:

1. .x 2 X 0/ 2 Pred�.A/ , Impr.X 0/ � A;
2. .x … X 0/ 2 Copred�.A/ , Prop.X 0/ � A.

Proof

1. A proper: .9x 2 A0/ x 2 X 0 , A0 \ X 0 ¤ ; , .A0; E/ � .X 0; 8/.
A improper: .8x 2 A0/ x 2 X 0 , A0 � X 0 , .A0; 8/ � .X 0; 8/:

2. .x … X 0/ 2 Copred�.A/ , .x 2 X 0/ 2 Pred�.Dual.A//

, Impr.X 0/ � Dual.A/ , Prop.X 0/ � A:

Remark 2.2.3 This latter result allows embedding the set Pred�.R/ onto Iu.R/ by
means of the correspondence .x 2 X 0/ $ Impr.X 0/ and Copred�.R/ onto Ie.R/

by means of .:.x 2 X 0// $ Prop.X 0/, i.e., it is possible to identify the canonical
predicates and co-predicates .x 2 X 0/ and .x 62 X 0/ with the elements Impr.X/ of
Iu.R/ and Prop.X 0/ of Ie.R/, and to identify also the set-theoretical expressions on
the left of these equivalences by the analytical and programmable relations on the
right.

The results of Lemma 2.2.12, because of their failure to provide the expected
equalities, obstructs any straight path from the predicate-theoretical semantics of
modal intervals to the semantics of their inclusion-lattice. Its ultimate meaning is
the fact, common to all non-cheating real-life information processing, that interval
processing of digital numerical information necessarily implies a certain degree of
information loss.

For a better understanding of this particularity, we shall consider the case for the
more restricted sets Pred�.X/. In this case, the equalities missing in Lemma 2.2.12
for A ^ B and A _ B , are shown to hold in some cases for interval predicates and
co-predicates.
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Lemma 2.2.14 (Relations in the sublattice .fPred�.X/ j X 2 I �.R/g; �/)

1. Pred�.A ^ B/ D Pred�.A/ \ Pred�.B/;
2. Pred�.A _ B/ � Pred�.A/ [ Pred�.B/;
3. Copred�.A ^ B/ � Copred�.A/ [ Copred�.B/;
4. Copred�.A _ B/ D Copred�.A/ \ Copred�.B/.

Proof

1. .x 2 X 0/ 2 Pred�.A ^ B/ , Impr.X 0/ � .A ^ B/

, .Impr.X 0/ � A; Impr.X 0/ � B/

, .x 2 X 0/ 2 .Pred�.A/ \ Pred�.B//:

2. From Lemma 2.2.12

.x 2 X 0/ 2 .Pred.A/ [ Pred.B// ) .x 2 X 0/ 2 Pred.A _ B/;

and asterisks can be added to Pred.A/, Pred.B/ and Pred.A _ B/, after the form
of .x 2 X 0/. Moreover Pred�.A _ B/ can be larger than Pred�.A/ [ Pred�.B/,
as Example 2.2.3 about .x 2 Œ2:5; 2:5�/ 2 Pred�.Œ1; 2� _ Œ3; 4�/ D Pred�.Œ1; 4�/

shows.
3. It is the dual of 2. (see Lemma 2.2.12). Also, Copred�.A ^ B/ can be larger than

Copred�.A/[Copred�.B/, as comes out from Example 2.2.3 about .x … 2:5/ 2
Copred�.Œ2; 1� ^ Œ4; 3�/ D Copred�.Œ4; 1�/.

4. It is the dual statement of 1:

.x … X 0/ 2 Copred�.A _ B/

, .x 2 X 0/ 2 Pred�.Dual.A _ B//

, .x 2 X 0/ 2 Pred�.Dual.A/ ^ Dual.B//

, .x 2 X 0/ 2 .Pred�.Dual.A// \ Pred�.Dual.B///

, .x … X 0/ 2 .Copred�.A/ \ Copred�.B//: �

2.2.9 The k-Dimensional Case

To obtain the theoretical instruments which allow a logical formulation of the
interval extension of a function f W R

k ! R, it is necessary to give some
preliminary definitions which will make it possible to avoid the use of the set-
theoretical extension.

We will use the symbol I �.Rk/ for the set of k-dimensional modal intervals.
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Definition 2.2.23 (Set of k-dimensional modal intervals)

I �.Rk/ D f.Œa1; b1�; : : : ; Œak; bk�/ j Œa1; b1� 2 I �.R/; : : : ; Œak; bk� 2 I �.R/g:

Previous definitions and relationships in I �.R/ are generalized in a natural way.

Definition 2.2.24 (k-dimensional inclusion and equality) For A D .A1; : : : ; Ak/

2 I �.Rk/, B D .B1; : : : ; Bk/ 2 I �.Rk/,

A � B , .A1 � B1; : : : ; Ak � Bk/

A D B , .A1 D B1; : : : ; Ak D Bk/:

Definition 2.2.25 (Proper and Improper operators) For X D .X1; : : : ; Xk/ 2
I �.Rk/, X 0 D .X 0

1; : : : ; X 0
k/ 2 I.Rk/:

Prop.X/ D Prop.X 0/ D ..X 0
1; 9/; : : : ; .X 0

k; 9//

Impr.X/ D Impr.X 0/ D ..X 0
1; 8/; : : : ; .X 0

k; 8//:

Definition 2.2.26 (Proper and improper sub-vectors of a modal interval vector)
To single out the sub-vectors of proper and improper components of a modal
vector A 2 I �.Rk/, we will use the notational convention A D .Ap; Ai / 2
.Ie.R

kp /; Iu.Rki //, where kp C ki D k, and the original indices are supposed
maintained.

Remark 2.2.4 The definition of the vectors Ap and Ai would actually imply
the rigorous definition of vectors with void components with their corresponding
operations. It should be noted that this notation does not imply any permutation
of the components of A, the vector A is not modified and, consequently, each
component preserves its original index on A.

Definition 2.2.27 (Join and meet for families of indexed intervals) If X 0 D
.X 0

1; : : : ; X 0
k/ 2 I.Rk/, x D .x1; : : : ; xk/ 2 R

k and F.x/ D ŒF1.x/; F2.x/�

2 I �.R/,

x̂2X 0

F.x/ D ^
x12X 0

1

: : : ^
xk2X 0

k

F .x/ D Œmax
x2X 0

F1.x/; min
x2X 0

F2.x/�

_
x2X 0

F.x/ D _
x12X 0

1

: : : _
xk2X 0

k

F .x/ D Œmin
x2X 0

F1.x/; max
x2X 0

F2.x/�

(the order of the component operators is irrelevant in both cases).

Definition 2.2.28 (Sets of k-dimensional interval predicates) For the vectors
A D .A1; : : : ; Ak/ 2 I �.Rk/, X 0 D .X 0

1; : : : ; X 0
k/ 2 I.Rk/ and x D

.x1; : : : ; xk/ 2 R
k

.x 2 X 0/ D .x1 2 X 0
1; : : : ; xk 2 X 0

k/I
Pred�.A/ D f.x 2 X 0/ j .x1 2 X 0

1/ 2 Pred�.A1/; : : : ; .xk 2 X 0
k/ 2 Pred�.Ak/g:
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Remark 2.2.5 The condition defining the set Pred�.A/ is equivalent to

Q.x1; A1/ : : : Q.xk; Ak/ .x1 2 X 0
1; : : : ; xk 2 X 0

k/;

where the order of the modal quantifiers does not matter, because of the
xi -arguments’ independence among the predicates xi 2 X 0

i .

Definition 2.2.29 (Sets of k-dimensional interval co-predicates) For A D
.A1; : : : ; Ak/ 2 I �.Rk/, X 0 D .X 0

1; : : : ; X 0
k/ 2 I.Rk/ and x D .x1; : : : ; xk/ 2 R

k

.x … X 0/ D :.x 2 X 0/ D .x1 … X 0
1 or : : : or xk … X 0

k/I
Copred�.A/ D f.x … X 0/ j .x1 … X 0

1/ 2 Copred�.A1/; : : : ; .xk … X 0
k/ 2 Copred�.Ak/g:

Lemma 2.2.15 (Interval representation of Pred�.A/ and Copred�.A/) With the
hypotheses of the previous definitions,

.x 2 X 0/ 2 Pred�.A/ , Impr.X 0/ � A

.x … X 0 2 Copred�.A/ , Prop.X 0/ � A:

Proof See Lemma 2.2.13 and the previous definitions. �

2.3 Concluding Remarks

Modal Interval Analysis takes as its grounding principle that a real value in an
applied context is actually not only worthy, but determined, by the set of properties,
of predicates, which it validates. Therefore, Modal Interval Analysis extends the real
numbers to intervals starting from the identification of real numbers with the set of
predicates they validate.

The defining relation for modal intervals is

X D .X 0; QX / $ Pred.X/;

where Pred.X/ D fP j Q.x; X/P.x/g, X 0 2 I.R/, QX 2 f9; 8g and Q is the newly
introduced logical constant, the modal quantifier. The canonical notation, directly
related to the inclusion completion of the set-theoretical intervals, is

Œa1; a2� D if a1 � a2 then .Œa1; a2�
0; 9/

if a1 � a2 then .Œa2; a1�
0; 8/:

Less formally, if modal intervals are canonically denoted like Œ1; 2� or Œ2; 1�, when
the lower limit is written to the left, as in Œ1; 2�, this means that the interval is just
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an “existential interval” that we can also write as .Œ1; 2�0; 9/ to make explicit the
“set component” Œ1; 2�0 of the interval Œ1; 2� and its “selection modality” 9. When
the upper limit is written to the left, as in Œ2; 1�, this indicates that the interval is a
“universal interval”, which we can denote by .Œ1; 2�0; 8/ to make explicit its set and
modality components.

Analogously to the role of classical intervals in quantifying existential and
universal prefixes .9x 2 X 0/ and .8x 2 X 0/, modal intervals bound the
“modal quantifier” Q to give bounded quantifying prefixes such as Q.x; Œ1; 2�/ or
Q.x; Œ2; 1�/. The ground definition of these modal quantifying prefixes depends on
the modality of the bounding interval: so,

Q.x; Œ1; 2�/ P.x/ D .9x 2 Œ1; 2�0/ P.x/;

and

Q.x; Œ2; 1�/ P.x/ D .8x 2 Œ1; 2�0/ P.x/:

Now, after having developed the basic tools, the parallel relation to the inclusion
of set-theoretical intervals can be introduced into the system of modal intervals.
The inclusion relation of classical intervals, A0 � B 0, is equivalent to the validity
of the implication .x 2 A0 ) x 2 B 0/ for any real number x, and is determined by
the computable relation .a1 � b1; a2 � b2/ among their coordinates. The inclusion
of modal intervals, A � B , is defined by the validity of the implication

Q.x; A/P.x/ ) Q.x; B/P.x/ .or :Q.x; B/P.x/ ) :Q.x; A/P.x//

for any property P.x/ on the real numbers, and happens to be determined also by the
same relation .a1 � b1; a2 � b2/ among their canonical coordinates which marks
the parent set-theoretical inclusion of set-intervals. Let’s insist: if, for A; B 2 I �.R/,

A � B , Pred.A/ � Pred.B/;

the result A � B , .a1 � b1; a2 � b2/, makes of the set of modal intervals with its
inclusion relation .I �.R/; �/ the structural completion of set-theoretical intervals
.I.R/; �/ guided by the semi-lattice structure of the set of classical intervals.

Outer and inner interval rounding are defined by

Inn.Œx1; x2�/ D ŒRight.x1/; Left.x2/�I
Out.Œx1; x2�/ D ŒLeft.x1/; Right.x2/�:

These two interval rounding are universally possible within the limits of a given
digital scale, and satisfy the property Inn.X/ � X � Out.X/. Given the logical
meaning of modal inclusion, in case X is the exact—not rounded—value of an
interval defined by some analytical procedure, this relationship allows applying to
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the computed values Out.X/ and Inn.X/ the analytical properties of the possibly
unknown value X , and also of applying to X the experimental properties of the
computed results Inn.X/ and Out.X/, since Inn.X/ � X � Out.X/ is equivalent to

Pred.Inn.X// � Pred.X/ � Pred.Out.X//

and

Copred.Inn.X// � Copred.X/ � Copred.Out.X//:

Finally, the double—analytical and logical—face of the modal inclusion selects
both the inner and outer truncation as the normative modes of digital computation.
On this basis, the semantics of interval values do not come from some external
consideration about any particular interval relation, but they are given with and
by the data of each problem or are obtained by mechanical computations and
measurements.



Chapter 3
Modal Interval Extensions

3.1 Introduction

The problem discussed in this chapter is that of obtaining a class of interval func-
tions F W I �.Rk/ ! I �.R/, consistently referring to the continuous functions f

from R
k to R.

In classical interval analysis, an interval extension of a Rk to R continuous func-
tion z D f .x1; : : : ; xk/ is the interval united extension Rf of f . Given an interval
argument X D .X1; : : : ; Xk/ 2 I.Rk/, it is defined as the range of f -values on X

Rf .X1; : : : ; Xk/ D ff .x1; : : : ; xk/ j x1 2 X1; : : : ; xk 2 Xkg
D Œminff .x1; : : : ; xk/ j x1 2 X1; : : : ; xk 2 Xkg;

maxff .x1; : : : ; xk/ j x1 2 X1; : : : ; xk 2 Xkg�;

which can be considered as a “semantic extension” of f , since it admits the logical
interpretations

.8x1 2 X1/ � � � .8xk 2 Xk/ .9z 2 Rf .X1; : : : ; Xk// z D f .x1; : : : ; xk/

and

.8z 2 Rf .X1; : : : ; Xk// .9x1 2 X1/ � � � .9xk 2 Xk/ z D f .x1; : : : ; xk/:

Since the domain of values of a continuous function is generally not easily
computable, an interval syntactic extension fR.X1; : : : ; Xk/ is defined by replacing
the real operators of the real functions f .x1; : : : ; xk/ on R by the homonymous
operators defined on the system .I.R/; I.D//, that is, replacing

M.A. Sainz et al., Modal Interval Analysis, Lecture Notes in Mathematics 2091,
DOI 10.1007/978-3-319-01721-1__3,
© Springer International Publishing Switzerland 2014
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1. their numerical arguments x1; : : : ; xk by the interval arguments X1; : : : ; Xk, and
2. their real arithmetic operators ! by the corresponding interval operations

! which, in the common case of the truncated computations of any actual
arithmetic, must be the outwards directed !R because of the inclusion

X!Y � X!RY D Out.X!Y /:

The crucial relation between both extensions is

Rf .X1; : : : ; Xk/ � fR.X1; : : : ; Xk/;

under the condition that the function fR.X1; : : : ; Xk/ is well defined, i.e., that it does
not imply division by an unspecified interval containing the value zero. Therefore a
syntactic extension fR.X1; : : : ; Xk/ is computable from the bounds of the intervals
X1; : : : ; Xk, and usually represents an overestimation of Rf .X1; : : : ; Xk/.

Example 3.1.1 The united extension of the continuous real function

f .x/ D x

1 C x

to the interval Œ2; 4� is Rf .Œ2; 4�/ D Œ2=3; 4=5�, the range of f in this interval. The
syntactic extension for the same interval is

fR.Œ2; 4�/ D Œ2; 4�

1 C Œ2; 4�
D Œ2=5; 4=3�;

and, in fact, Rf .Œ2; 4�/ D Œ2=3; 4=5� � Œ2=5; 4=3� D fR.Œ2; 4�/.

Syntactic interval functions have the property, fundamental to the whole field of
Interval Analysis, of being “inclusive”, that is, for A1 � B1; : : : ; Ak � Bk , the
relation

fR.A1; : : : ; Ak/ � fR.B1; : : : ; Bk/

holds.
A basic critical fact is that the interval syntactic extension fR of f satisfies only

one kind of interval predicate compatible with outer rounding:

.8x1 2 X1/ � � � .8xk 2 Xk/ .9z 2 Out.fR.X1; : : : ; Xk/// z D f .x1; : : : ; xk/:

In the context of modal intervals, it may be expected, as a starting point, that as
soon as the R-predicate P.x/ results in the modal interval predicate Q.x; X/P.x/,
the relation z D f .x1; : : : ; xk/ must become some kind of interval relation Z D
F.X1; : : : ; Xk/ guaranteeing some sort of .k C 1/-dimensional interval predicate of
the form
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Q1.x1; X1/ : : : Qk.xk; Xk/ Qz.z; Z/ z D f .x1; : : : ; xk/;

where an ordering problem obviously arises since the quantifying prefixes are not
generally commutable.

3.1.1 Poor Computational Extension

To find a more general approach, we scale down the problem of digital compu-
tation to its bare essentials and start by considering the most elementary sort of
computational functions able to get actual information about the ideal connections
established by the continuous real functions f W Rk ! R. To prevent the restrictions
of any extension by set of values due to the limited character of system .I.R/; C; �/,
illustrated in Chap. 1, we will first introduce the definition of a “poor” computational
extension of a continuous real function.

Definition 3.1.1 (Poor computational extension) The function F W Rk ! I.R/

is a poor computational extension of a continuous real function f W Rk ! R if the
existence of F.a/0 implies that f .a/ 2 F.a/0.

These simplest partial computational functions are defined on a subset of R

and have, wherever defined, the two values Sup.F.a/0/ and Inf.F.a/0/, upper and
lower bounds of the analytically defined value f .a/, the value of which the exact
determination is, as a general matter of fact, out of reach for digital processing.

The usefulness of this definition is to induce a more general one for extensions
of the kind F W I �.Rk/ ! I �.R/, as it results from the lemma that follows.

Lemma 3.1.1 (Semantic formulation of a poor computational extension) Let
F W Rk ! I.R/ be a poor computational extension of f , and let f W Rk ! R be
a continuous function. Supposing that F.a/0 2 I.R/ exists, the condition f .a/ 2
F.a/0 is equivalent to

.8X 0 2 I.Rk// ..x 2 X 0/ 2 Pred�.Œa; a�/ ) .z 2 f .X 0// 2 Pred�.Prop.F.a////;

where f .X 0/ is the united extension or domain of values of f on X 0.

Proof This logical formula is equivalent to

.8X 0 2 I.Rk// .a 2 X 0 ) F.a/0 \ f .X 0/ ¤ ;/;

which is equivalent to f .a/ 2 F.a/0 because:

(1) particularizing X 0 to Œa; a�0, becomes

.a 2 Œa; a�0 ) F.a/0 \ f .Œa; a�0/ ¤ ;/ ) f .a/ 2 F.a/0I
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a
f (X ′)

F (a)

F

f

X ′

Fig. 3.1 Poor extension
diagram

(2) for the reverse implication, if f .a/ 2 F.a/0,

.8X 0 2 I.Rk// .a 2 X 0 ) f .a/ 2 f .X 0/ ) F.a/0 \ f .X 0/ ¤ ;/:

�
Figure 3.1 illustrates this proof.

Example 3.1.2 For the function f W R ! R given by f .x/ D x=3, a poor compu-
tational extension can be F W f1g ! I.R/ given by F.1/0 D Œ0:33; 0:34�0. In this
case, a D 1 and f .1/ D 1=3 satisfy f .1/ 2 F.1/0. This relation is equivalent to

.8X 0 2 I.R//.1 2 X 0 ) Œ0:33; 0:34�0 \ f .X 0/ ¤ ;/;

which can be written in the form

.8X 0 2 I.R//.1 2 X 0 ) .9z 2 Œ0:33; 0:34�0/ z 2 f .X 0//

or

.8X 0 2 I.R//..x 2 X 0/ 2 Pred�.Œ1; 1�/ ) .z 2 f .X 0// 2 Pred�.Œ0:33; 0:34�0//:

Now, the equivalent definition for poor computational extensions, made available
by this lemma, can be extended to define logically the “modal interval extensions”
of continuous functions by formally substituting the element Œa; a� by a general
modal interval A 2 I �.Rk/, overcoming the rigidities of the theory of functions of
the ordinary interval analysis which are induced by the set-theoretical domain-of-
values approach.

3.1.2 Modal Interval Extension

In the logical formulation of the poor computational extension of a continuous
function, let us replace the argument Œa; a� and its modal image Prop.F.a/0/ by
the more general argument and image, A and F.A/.
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Definition 3.1.2 (Modal interval extension) If f W Rk ! R is a real continuous
function, then F W I �.Rk/ ! I �.R/ is its modal interval extension, if, wherever
F.A/ exists,

.8X 0 2 I.Rk// ..x 2 X 0/ 2 Pred�.A/ ) .z 2 f .X 0// 2 Pred�.F.A///:

The logical form of the condition is acceptable. It is thus necessary only to
emphasize the properties that make these functions interesting for a computation
by intervals. The first indication of the nature of this definition is that it does not
give a univocal value for each F.A/ which exists, but it gives only a lower limit for
the modal inclusion. Indeed, by Lemma 2.2.13, the condition that F.A/ is a modal
extension of f can be written in the following equivalent form:

.8X 0 2 I.Rk// .Impr.X 0/ � A ) Impr.f .X 0// � F.A//:

There remains the task of uncovering the properties which characterize analyti-
cally and semantically these formally constructed “modal interval extensions”.

3.2 Semantic Functions

We will define the two “semantic” interval functions which play a grounding role in
the theory because they are in close relation with the modal interval extensions of
continuous functions.

Definition 3.2.1 (*-semantic extension) If f is an R
k to R continuous function

and if x D .xp; xi / is the component-splitting corresponding to X D .Xp; X i / 2
I �.Rk/,

f �.X/ D _
xp2X 0

p

^
xi 2X 0

i

Œf .xp; xi /; f .xp; xi /�

D Œ min
xp2X 0

p

max
xi 2X 0

i

f .xp; xi /; max
xp2X 0

p

min
xi 2X 0

i

f .xp; xi /�:

and is called the *-semantic extension of f .

Definition 3.2.2 (**-semantic extension) With the same hypotheses as the previ-
ous definition,

f ��.X/ D ^
xi 2X 0

i

_
xp2X 0

p

Œf .xp; xi /; f .xp; xi /� D

D Œ max
xi 2X 0

i

min
xp2X 0

p

f .xp; xi /; min
xi 2X 0

i

max
xp2X 0

p

f .xp; xi /�:

and is called the **-semantic extension of f .
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Remark 3.2.1 If all the X -components are proper intervals, i.e., X i D ; allowing
for the abuse of language, then

f �.X/ D f ��.X/ D Œminff .x1; : : : ; xk/ j x1 2 X 0
1; : : : ; xk 2 X 0

kg;
maxff .x1; : : : ; xk/ j x1 2 X 0

1; : : : ; xk 2 X 0
kg�;

which corresponds to the interval united extension Rf of the classical interval
analysis, and Mod.f �.X// D 9.

If all the X -components are improper intervals, i.e., Xp D ; allowing for the
abuse of language, then, one has instead

f �.X/ D f ��.X/ D Œmaxff .x1; : : : ; xk/ j x1 2 X 0
1; : : : ; xk 2 X 0

kg;
minff .x1; : : : ; xk/ j x1 2 X 0

1; : : : ; xk 2 X 0
kg�;

with Set.f �.X// D Rf and Mod.f �.X// D 8.

Example 3.2.1 For the continuous real continuous f .x1; x2/ D x2
1 C x2

2 , the com-
putation of the *-semantic and the **-semantic functions for X D .Œ�1; 1�; Œ1; �1�/

yields the following results:

f �.Œ�1; 1�; Œ1; �1�/ D _
x12Œ�1;1�0

^
x22Œ�1;1�0

Œx2
1 C x2

2 ; x2
1 C x2

2 �

D _
x12Œ�1;1�0

Œx2
1 C 1; x2

1� D Œ1; 1�I

f ��.Œ�1; 1�; Œ1; �1�/ D ^
x22Œ�1;1�0

_
x12Œ�1;1�0

Œx2
1 C x2

2 ; x2
1 C x2

2 �

D ^
x22Œ�1;1�0

Œx2
2 ; 1 C x2

2� D Œ1; 1�:

For the continuous real continuous function g.x1; x2/ D .x1 C x2/
2, the corre-

sponding *-semantic and **-semantic functions for X D .Œ�1; 1�; Œ1; �1�/ don’t
have coincident values:

g�.Œ�1; 1�; Œ1; �1�/ D _
x12Œ�1;1�0

^
x22Œ�1;1�0

Œ.x1 C x2/2; .x1 C x2/2�

D _
x12Œ�1;1�0

Œif x1 < 0 then .x1 � 1/2 else .x1 C 1/2; 0�

D Œ1; 0�I
g��.Œ�1; 1�; Œ1; �1�/ D ^

x22Œ�1;1�0
_

x12Œ�1;1�0
Œ.x1 C x2/2; .x1 C x2/2�

D ^
x22Œ�1;1�0

Œ0; if x2 < 0 then .x2 � 1/2 else .x2 C 1/2�

D Œ0; 1�:
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In general, both semantic extensions are out of reach of any direct computation
except for some very simple continuous real functions, as the previous example
may suggest, as unary operator .exp; ln; : : :/ and the arithmetic operators of which
semantic computations, properties and implementation are in Chap. 5.

The case of equality between both extensions characterizes the following
important concept.

Definition 3.2.3 (JM-commutativity) A continuous real function f W Rk ! R is
JM-commutable for A 2 I �.Rk/ if f �.A/ D f ��.A/.

3.2.1 Properties of the Semantic Extensions

The semantic extensions are not independent: there exists a relation of duality.

Theorem 3.2.1 (Duality of the semantic functions) If f is an R
k to R continuous

function and X 2 I �.Rk/,

Dual.f �.X// D f ��.Dual.X//:

Proof From the definitions of f � and f �� and Lemma 2.2.10

Dual.f �.X// D Dual. _
xp2X 0

p

^
xi 2X 0

i

Œf .x/; f .x/�/

D ^
xp2X 0

p

_
xi 2X 0

i

Œf .x/; f .x/� D f ��.Dual.X//:

�

The following result yields the basic relation of inclusion between the semantic
extensions.

Theorem 3.2.2 (Min–max) If f is an R
k to R continuous function, and .X 0

1; X 0
2/

is any component splitting of X 0 2 I.Rk/, then

.8.x1; x2/ 2 .X 0
1; X 0

2// max
x12X 0

1

min
x22X 0

2

f .x1; x2/ � min
x22X 0

2

max
x12X 0

1

f .x1; x2/

and

max
x12X 0

1

min
x22X 0

2

f .x1; x2/ � f .x1m; x2M / � min
x22X 0

2

max
x12X 0

1

f .x1; x2/;

where x1m is a point on which the function minx22X 0

2
f .x1; x2/ reaches its

maximum and x2M is a point on which the function maxx12X 0

1
f .x1; x2/ reaches

its minimum.
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Proof The first inequality is true since

.8x1 2 X 0
1/ min

x22X 0

2

f .x1; x2/ � f .x1; x2/

.8x2 2 X 0
2/ max

x12X 0

1

f .x1; x2/ � f .x1; x2/

For the second inequality, defining

fm.x0
1/ D min

x22X 0

2

f .x0
1; x2/;

fM .x0
2/ D max

x12X 0

1

f .x1; x0
2/

it follows that

.8x0
1 2 X 0

1/ .8x0
2 2 X 0

2/ .fm.x0
1/ � f .x0

1; x0
2/ � fM .x0

2//:

�

Remark 3.2.2 Since all the values fm.x0
1/ are less than or equal to all the values of

fM .x0
2/, and the functions fm and fM are continuous, the sets F 0

m D ffm.x0
1/ j x0

1 2
X 0

1g and F 0
M D ffM .x0

2/ j x0
2 2 X 0

2g are intervals such that Sup.F 0
m/ � Inf.F 0

M /,
as is partially stated by this theorem.

Next, firstly, the inclusion relation between f �.X/ and f ��.X/ will be shown:

Theorem 3.2.3 (Inclusion of f � in f ��) If f is an R
k to R continuous real

function and X 2 I �.Rk/, then

f �.X/ � f ��.X/:

Proof

f �.X/ D _
xp2X 0

p

^
xi 2X 0

i

Œf .xp; xi /; f .xp; xi /�

D Œ min
xp2X 0

p

max
xi 2X 0

i

f .xp; xi /; max
xp2X 0

p

min
xi 2X 0

i

f .xp; xi /�

� Œ max
xi 2X 0

i

min
xp2X 0

p

f .xp; xi /; min
xi 2X 0

i

max
xp2X 0

p

f .xp; xi /�

D ^
xi 2X 0

i

_
xp2X 0

p

Œf .xp; xi /; f .xp; xi /�

D f ��.X/:

�

Secondly, there follows the �-monotonicity of f � and f ��.
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Lemma 3.2.1 For X 2 I �.R/ and any R to R continuous functions F1; F2

F1.x/ � F2.x/ )
.̋x;X/

F1.x/ �
.̋x;X/

F2.x/:

Proof In agreement with the Definition 2.2.17 of the meet–join operator,

a) If X is a proper interval,

.̋x;X/
F1.x/ D _

x2X 0

F1.x/

D Œmin
x2X 0

Inf.F1.x//; max
x2X 0

Sup.F1.x//�

� Œmin
x2X 0

Inf.F2.x//; max
x2X 0

Sup.F2.x//�

D _
x2X 0

F2.x/

D
.̋x;X/

F2.x/:

b) A dual proof is valid if X is an improper interval.

Lemma 3.2.2 For X1; X2 2 I �.R/ and F W R ! I �.R/,

X1 � X2 )
.̋x;X1/

F .x/ �
.̋x;X2/

F .x/:

Proof

a) If X1 is a proper interval,

.̋x;X1/
F .x/ D _

x2X 0

1

F .x/ D Œmin
x2X 0

1

Inf.F.x//; max
x2X 0

1

Sup.F.x//�;

a1) if X2 is a proper interval, then X 0
1 � X 0

2 and therefore

Œmin
x2X 0

1

Inf.F.x//; max
x2X 0

1

Sup.F.x//�

� Œmin
x2X 0

2

Inf.F.x//; max
x2X 0

2

Sup.F.x//�

D _
x2X 0

2

F .x/

D
.̋x;X2/

F .x/;
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a2) if X2 is an improper interval, then X 0
1 D X 0

2 D fag and ˝
.x;Œa;a�/

reduces to the

identity operator.

b) The proof is completed by a similar reasoning if X1 is an improper interval, and
by a two step process through a point x0 2 X 0

1 \ X 0
2 for the case of X1 improper

and X2 proper. �

Lemma 3.2.3 For X1; X2 2 I �.R/ and F1; F2 W R ! I �.R/,

.X1 � X2; F1.x/ � F2.x// )
.̋x;X1/

F1.x/ �
.̋x;X2/

F2.x/:

Proof From Lemmata 3.2.1 and 3.2.2,

.̋x;X1/
F1.x/ �

.̋x;X2/
F1.x/ �

.̋x;X2/
F2.x/:

�

Theorem 3.2.4 (Inclusivity of the semantic extensions) If X ; Y 2 I �.Rk/ and
f from R

k to R is continuous,

X � Y ) .f �.X / � f �.Y /; f ��.X/ � f ��.Y //:

Proof From the previous lemma,

f �.X/

f ��.X/

�
D ˝

.x1;X1/
� � � ˝

.xk;Xk/
Œf .x1; � � � ; xk/; f .x1; � � � ; xk/�

� ˝
.x1;Y1/

� � � ˝
.xk;Yk /

Œf .x1; � � � ; xk/; f .x1; � � � ; xk/� D
�

f �.Y /

f ��.Y /

�

3.2.2 Characterization of JM -Commutativity

Next the case f �.X/ D f ��.X/ will be characterized, when X is not uni-modal.
The main role in this characterization is played by the saddle-points of the function
f .

Definition 3.2.4 (Saddle-points set) Let .X 0
1; X 0

2/ D X 0 be a component splitting
of X 0 2 I.Rk/, and f be a continuous function from R

k to R. The set of saddle
points of f in X 0 is

SDP.f; X 0
1; X 0

2/ D f.x1m; x2M / j .8x1 2 X 0
1/.8x2 2 X 0

2/ .f .x1m; x2/

� f .x1m; x2M / � f .x1; x2M //g:
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0
y x

X2́

X1́

Fig. 3.2 Saddle-point

Figure 3.2 illustrates this definition.

Definition 3.2.5 (Saddle value). Let .X 0
1; X 0

2/ D X 0 be a component splitting of
X 0 2 I.Rk/, and f be a continuous function from R

k to R. The set of saddle values
of f in X 0 is

SDV.f; X 0
1; X 0

2/ D .x1m; x2M /

if .SDP.f; X 0
1; X 0

2/ 6D ; and .x1m; x2M / 2 SDP.f; X 0
1; X 0

2//. Otherwise, it is unde-
fined.

A well known property of saddle points is in the next lemma.

Lemma 3.2.4 If .x1m; x2M / and .x0
1m; x0

2M / are two saddle points of f in
.X 0

1; X 0
2/, then .x1m; x0

2M / and .x0
1m; x2M / are also saddle points. Moreover,

f .x1m; x2M / D f .x1m; x0
2M / D f .x0

1m; x2M / D f .x0
1m; x0

2M /

Proof For any x1 2 X 0
1 and x2 2 X 0

2 the inequalities

f .x1m; x2/ � f .x1m; x2M / � f .x1; x2M /

f .x0
1m; x2/ � f .x0

1m; x0
2M / � f .x1; x0

2M /

are true. So, particularizing the first one to x0
1m and x0

2M and the second one to x1m

and x2M ,

f .x0
1m; x2M / � f .x0

1m; x0
2M / � f .x1m; x0

2M / � f .x1m; x2M / � f .x0
1m; x2M /
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which implies the result. Moreover

f .x0
1m; x2M / D f .x1m; x2M / � f .x1; x2M /

and

f .x0
1m; x2/ � f .x0

1m; x0
2M / D f .x0

1m; x2M /

imply

f .x0
1m; x2/ � f .x0

1m; x2M / � f .x1; x2M /:

Therefore .x0
1m; x2M / is a saddle point. Similarly for .x1m; x0

2M /. �

In accordance with this result, the set of saddle values of f in .X 0
1; X 0

2/ is either
empty or contains a unique point.

Lemma 3.2.5 In the context of the previous definition, if there exists a saddle point
.x1m; x2M / of f in X 0,

SDV.f; X 0
1; X 0

2/ D f .x1m; x2M /

D min
x12X 0

1

max
x22X 0

2

f .x1; x2/ D max
x22X 0

2

min
x12X 0

1

f .x1; x2/:

Proof From

min
x12X 0

1

max
x22X 0

2

f .x1; x2/ � max
x22X 0

2

f .x1m; x2/ � f .x1m; x2M /

� min
x12X 0

1

f .x1; x2M / � max
x22X 0

2

min
x12X 0

1

f .x1; x2/

and Theorem 3.2.2 which closes the �-chain. �
Theorem 3.2.5 (JM-commutativity) For a given X 2 I �.Rk/, the joint validity of
SDP.f; X 0

p; X 0
i / ¤ ;, SDP.f; X 0

i ; X 0
p/ ¤ ; is equivalent to f �.X/ D f ��.X/;

in this case,

f �.X / D f ��.X/ D ŒSDV.f; X 0
p; X 0

i /; SDV.f; X 0
i ; X 0

p/�:

Proof As

SDV.f; X 0
p; X 0

i / D min
xp2X 0

p

max
xi 2X 0

i

f .xp; xi / D max
xi 2X 0

i

min
xp2X 0

p

f .xp; xi /;

SDV.f; X 0
i ; X 0

p/ D min
xi 2X 0

i

max
xp2X 0

p

f .xp; xi / D max
xp2X 0

p

min
xi 2X 0

i

f .xp; xi /;
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Fig. 3.3 Function
f .x1; x2/ D x2

1 C x2
2 in

X 0 D .Œ�1; 1�0; Œ0; 2�0/

then

f �.X/ D _
xp2X 0

p

^
xi 2X 0

i

Œf .xp; xi /; f .xp; xi /�

D Œ min
xp2X 0

p

max
xi 2X 0

i

f .xp; xi /; max
xp2X 0

p

min
xi 2X 0

i

f .xp; xi /�

D Œ max
xi 2X 0

i

min
xp2X 0

p

f .xp; xi /; min
xi ;X

0

i

max
xp2X 0

p

f .xp; xi /�

D ^
xi 2X 0

i

_
xp2X 0

p

Œf .xp; xi /; f .xp; xi /� D f ��.X/:

�

Remark 3.2.3 The JM-commutativity of a function f implies the applicability of
one of the two semantic theorems, the direct or its dual. Which one will depend only
on the truncation’s sense, outer or inner, of the computation of f �.

Example 3.2.2 For the continuous real function f .x1; x2/ D x2
1 Cx2

2 the *-semantic
and **-semantic extensions for X D .Œ�1; 1�; Œ2; 0�/ (see Fig. 3.3) are
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f .x1; x2/ D x2

1 C x2
2 in

X 0 D .Œ�1; 1�0; Œ�1; 1�0/

f �.Œ�1; 1�; Œ2; 0�/ D _
x12Œ�1;1�0

^
x22Œ0;2�0

Œx2
1 C x2

2 ; x2
1 C x2

2 �

D _
x12Œ�1;1�0

Œx2
1 C 4; x2

1� D Œ4; 1�;

f ��.Œ�1; 1�; Œ2; 0�/ D ^
x22Œ0;2�0

_
x12Œ�1;1�0

Œx2
1 C x2

2 ; x2
1 C x2

2 �

D ^
x22Œ0;2�0

Œx2
2 ; x2

2 C 1� D Œ4; 1�

and

SDP.f; X 0
p; X 0

i / D SDP.f; Œ�1; 1�0; Œ0; 2�0/ D f.0; 2/g
SDV.f; X 0

p; X 0
i / D SDV.f; Œ�1; 1�0; Œ0; 2�0/ D 4

SDP.f; X 0
i ; X 0

p/ D SDP.f; Œ0; 2�0; Œ�1; 1�0/ D f.1; 0/; .�1; 0/g
SDV.f; X 0

i ; X 0
p/ D SDV.f; Œ0; 2�0; Œ�1; 1�0/ D 1:

For the same function f .x1; x2/ D x2
1 C x2

2 , the *-semantic and **-semantic
extensions for X D .Œ�1; 1�; Œ1; �1�/ (see Fig. 3.4) are
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f �.Œ�1; 1�; Œ1; �1�/ D _
x12Œ�1;1�0

^
x22Œ�1;1�0

Œx2
1 C x2

2; x2
1 C x2

2�

D _
x12Œ�1;1�0

Œx2
1 C 1; x2

1 � D Œ1; 1�;

f ��.Œ�1; 1�; Œ1; �1�/ D ^
x22Œ�1;1�0

_
x12Œ�1;1�0

Œx2
1 C x2

2; x2
1 C x2

2�

D ^
x22Œ�1;1�0

Œx2
2 ; x2

2 C 1� D Œ1; 1�

and

SDP.f; X 0
p; X 0

i / D SDP.f; Œ�1; 1�0; Œ�1; 1�0/ D f.0; 1/; .0; �1/g
SDV.f; X 0

p; X 0
i / D SDV.f; Œ�1; 1�0; Œ�1; 1�0/ D 1

SDP.f; X 0
i ; X 0

p/ D SDP.f; Œ�1; 1�0; Œ�1; 1�0/ D f.�1; 0/; .1; 0/g
SDV.f; X 0

i ; X 0
p/ D SDV.f; Œ�1; 1�0; Œ�1; 1�0/ D 1:

3.3 Semantic Theorems

The values of the extensions f � or f �� may not yield, without further thought,
much clear meaning about the values of the real f on its domain. Two key theorems
reverse this misimpression, uncovering completely the meaning of the interval
results f � and f �� and characterizing them as the key referents for the semantic
interval extensions previously defined in logical terms.

Theorem 3.3.1 (*-semantic theorem) Given a continuous real function f W Rk

! R and a modal vector A 2 I �.Rk/, whenever F.A/ 2 I �.R/ exists, we have
that the following are equivalent propositions:

a) f �.A/ � F.A/,
b) .8X 0 2 I.Rk// ..x 2 X 0/ 2 Pred�.A/ ) .z 2 f .X 0// 2 Pred�.F.A///,
c) .8ap 2 A0

p/ Q.z; F .A// .9ai 2 A0
i / z D f .ap; ai /

Proof If A1; : : : ; Ap are the proper components of A and ApC1; : : : ; Ak the
improper ones, then

Impr.f .ap; A0
i // D Dual.f �.ap; A0

i //

D Dual. _
apC12A0

pC1

: : : _
ak2A0

k

Œf .a1; : : : ; ap; apC1; : : : ; ak/;

f .a1; : : : ; ap; apC1; : : : ; ak/�/
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D ^
apC12A0

pC1

: : : ^
ak2A0

k

Œf .a1; : : : ; ap; apC1; : : : ; ak/;

f .a1; : : : ; ap; apC1; : : : ; ak/�

D f �.ap; Ai /:

Therefore, (a) implies (b):

.8X 0 2 I.Rk/ .x 2 X 0/ 2 Pred�.A/

, Impr.X 0/ � A

, .9ap 2 A0
p/ .ap 2 X 0

1; X 0
2 � A0

i /

==..X1; X 2/ is the components’ splitting corresponding to .Ap; Ai /:

) .9ap 2 A0
p/ f .X 0

1; X 0
2/ � f .ap; A0

i /

==f .X 0
1; X 0

2/ orf .X 0/ designates the united extension of f on X 0:

, .9ap 2 A0
p/ Impr.f .X 0// � f �.ap; Ai /

) Impr.f .X 0// � f �.Ap; Ai /

) Impr.f .X 0// � F.A/

==see the hypothesis a):

, .z 2 f .X 0// 2 Pred�.F.A///:

(b) implies (a): Let ap be any point of A0
p and X 0 the interval .ap; A0

i /,

.8ap 2 A0
p/ .x 2 .ap; A0

i / 2 Pred�.A//

) .8ap 2 A0
p/ .z 2 f .ap; A0

i // 2 Pred�.F.A//

==Particularization of the hypothesis b):

, .8ap 2 A0
p/ Impr.f .ap; A0

i // � F.A/

, .8ap 2 A0
p/ f �.ap; Ai / � F.A/

, f �.Ap; Ai / � F.A/:

(a) is equivalent to (c):

f �.A/ � F.A/

, .8ap 2 A0
p/ f �.ap; Ai / � F.A/

, .8ap 2 A0
p/ .z 2 f .ap; A0

i // 2 Pred�.F.A//
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, .8ap 2 A0
p/ Q.z; F .A// z 2 f .ap; A0

i /

, .8ap 2 A0
p/ Q.z; F .A// .9ai 2 A0

i / z D f .ap; ai /:

�
Remark 3.3.1 The *-semantic theorem allows interpreting universal intervals
as “regulating or feedback ranges”, and existential intervals as “fluctuation or
autonomous ranges” for the system consisting of the interval data and result
.Ap; Ai ; F .A//, and the analytical connection z D f .ap; ai /.

Example 3.3.1 For the continuous real function f .x; y/ D x C y, from the defini-
tion of f �,

f �.Œx1; x2�; Œy1; y2�/ D ˝
.x;Œx1;x2�/

˝
.y;Œy1;y2�/

Œx C y; x C y� D Œx1 C y1; x2 C y2�:

as will be proved in Sect. 5.3.1. For X D Œ1; 2� and Y D Œ2; 3� and since the result
is Z D Œ3; 5�, we may write Œ1; 2� C Œ2; 3� D Œ3; 5�, with the meaning

.8x 2 Œ1; 2�0/ .8y 2 Œ2; 3�0/ .9z 2 Œ3; 5�0/ x C y D z:

Similarly, for X D Œ1; 2� and Y D Œ4; 1� the result is Z D Œ1; 2� C Œ4; 1� D Œ5; 3�

which means, in this case,

.8x 2 Œ1; 2�0/ .8z 2 Œ3; 5�0/ .9y 2 Œ1; 4�0/ x C y D z:

And so on, for X D Œ2; 1� and Y D Œ1; 4� the result is Z D Œ2; 1� C Œ1; 4� D Œ3; 5�,
which means

.8y 2 Œ1; 4�0/ .9x 2 Œ1; 2�0/ .9z 2 Œ3; 5�0/ x C y D zI

for X D Œ2; 1� and Y D Œ3; 2� the result is Z D Œ2; 1� C Œ3; 2� D Œ5; 3� with the
interpretation

.8z 2 Œ3; 5�0/ .9x 2 Œ1; 2�0/ .9y 2 Œ2; 3�0/ x C y D z:

Moreover, these interval statements (or interpretations of the modal functional
relation f �.X; Y / D Z) are robust to “modal outer rounding” of the result, as
is shown for example in the replacement of the Z-value Œ3; 5� by Œ2:9; 5:1� � Œ3; 5�,
or of Œ5; 3� by Œ4:9; 3:1� � Œ5; 3�, the latter being equivalent to a set-theoretical inner
rounding of Œ3; 5�0.

Example 3.3.2 Let us apply the result about the function f .x; y/ D x C y to a
naturalistic context. Suppose we have two cable reels of lengths a D 10 and b D
20 units. When connected, they can cover an overall length c D 30. This most
elementary situation can be expressed for all that computationally matters by the
algebraic expression a C b D c.



56 3 Modal Interval Extensions

Consider the parallel but more realistic interval-situation where the first reel of
cable has a length a known only to lie in a range bounded by the interval A0 D
Œ10; 20�0, i.e., a 2 Œ10; 20�0; about the second reel we know that b 2 B 0 D Œ10; 25�0.
Let us consider the connection between both reels and let us apply the *-Semantic
Theorem 3.3.1 for f � restricted to the function of addition f .a; b/ D a C b.

Case 1: Œ10; 20� C Œ25; 10� D Œ35; 30� means

.8a 2 Œ10; 20�0/ .8c 2 Œ30; 35�0/ .9b 2 Œ10; 25�0/ c D a C b

that is, a determined length of a wider regulating interval Œ25; 10� can be selected
to get some, in principle, unknown but determinable length c lying within the
improper interval C D Œ35; 30�, in spite of the value a belonging to the proper
operand A D Œ10; 20� being understood as coming out of some general random
selection process.
Case 2: Œ10; 20� C Œ10; 10� D Œ20; 30�,

Œ10; 20� C Œ17; 17� D Œ27; 37�,
Œ10; 20� C Œ25; 25� D Œ35; 45�,

the variable b taking fixed values 10, 17 or 25 in the interval-set B 0 D Œ10; 25�0,
the indeterminacy of A D Œ10; 20� is carried to the interval C by the relation
c D a C b so that the value of c will range randomly and in parallel with a

on one of the intervals Œ20; 30�, Œ27; 37� or Œ35; 45�. The quantified statement (for
example for the first equality) is, if b is bounded to the only value of the point
interval Œ10; 10�,

.8a 2 Œ10; 20�0/ .9c 2 Œ20; 30�0/ c D a C 10:

Case 3: Œ10; 20� C Œ10; 25� D Œ20; 45� means

.8a 2 Œ10; 20�0/ .8b 2 Œ10; 25�0/ .9c 2 Œ20; 45�0/ c D a C b;

so that c will show the joint full indeterminacy coming from a and b.
Case 4: Œ20; 10� C Œ25; 10� D Œ45; 20� will be interpreted by

.8c 2 Œ20; 45�0/ .9a 2 Œ10; 20�0/ .9b 2 Œ10; 25�0/ c D a C b:

Case 5: Œ10; 20� C Œ20; 15� D Œ30; 35� means

.8a 2 Œ10; 20�0/ .9c 2 Œ30; 35�0/ .9b 2 Œ15; 20�0/ c D a C b

that is, with the same autonomous interval A D Œ10; 20� and a narrower
regulating interval B D Œ20; 15�, a determined length of b 2 B 0 D Œ15; 20�0
should be selected (a regulation operation) just to get some length c lying within
the domain of the proper interval C D Œ30; 35�0.
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A dual feedback semantics for proper and improper modal intervals is established
by the following Dual Semantic theorem.

Theorem 3.3.2 (**-semantic theorem) Given a continuous real functions f W Rk

! R and a modal vector A 2 I �.Rk/, whenever F.A/ 2 I �.R/ exists, we have
that the following are equivalent propositions:

a) f ��.A/ � F.A/,
b) .8X 0 2 I.Rk// ..x … X 0/ 2 Copred�.A/ ) .z … f .X 0// 2 Copred�.F.A///,
c) .8ai 2 A0

i / Q.z; Dual.F.A/// .9ap 2 A0
p/ z D f .ap; ai /.

Proof From the definitions of f �.X/ and f ��.X/ we obtain

Dual.f �.X// D f ��.Dual.X//:

Applying Theorem 3.3.1 to f �.Dual.A// � Dual.F.A//, Theorem 3.3.2 follows.
�

Example 3.3.3 For the function f .x; y/ D xy and X D Œ�1; 2�, Y D Œ5; 3� the
values of f � and f �� are f �.Œ�1; 2�; Œ5; 3�/ D f ��.Œ�1; 2�; Œ5; 3�/ D Œ�3; 6� (see
Chap. 5). Then, in accordance with both semantic theorems,

.8x 2 Œ�1; 2�0/ .9z 2 Œ�3; 6�0/ .9y 2 Œ3; 5�0/ z D xy;

.8y 2 Œ3; 5�0/ .8z 2 Œ�3; 6�0/ .9x 2 Œ�1; 2�0/ z D xy:

Remark 3.3.2 The Semantic Theorems show that:

• The semantic decision to apply the *-semantic theorem or the **-semantic
theorem is made when one of the modal roundings, outer or inner, is selected.

• The functions f �.X/ and f ��.X/ are semantically optimal for each semantic
theorem.

• The effective computation of a modal extension F.A/ is not indicated by these
two theorems which give only modal bounds, f �.X/ or f ��.X/ according to
the chosen rounding, to any modal extension F.A/.

Example 3.3.4 The solution of the equation Œ3; 7� � X D Œ4; 6� is (see Chap. 5)

X D Œ4; 6�=DualŒ3; 7� D Œ4; 6�=Œ7; 3� D Œ4=3; 6=7�:

As an inner rounding of X is Œ1:334; 0:857�, then

Œ3; 7� � Œ1:334; 0:857� � Œ4; 6�

and the *-semantic theorem gives a meaning to this result

.8a 2 Œ3; 7�0/.9b 2 Œ4; 6�0/.9x 2 Œ1:334; 0:857�0/ ax D b:
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Fig. 3.5 Gas containers

The interpretation of the proper and improper intervals provided by the Semantic
Theorems opens a wide field of technical applications for the theory of modal
intervals, as the following suggestive example illustrates.

Example 3.3.5 Let us consider the volume v of a gas container, of which the
temperature t takes values inside certain intervals. Assuming the validity of the
equation

v D kt=p;

where k is the ideal gas constant, let us suppose the following intervals of variation

k 2 K 0 D Œ0:00366; 0:00367�0 ; t 2 T 0 D Œ263; 283�0 ; p 2 P 0 D Œ0:99; 1:01�0:

The problem is to determine the volume, keeping the pressure p within certain pre-
established bounds, that is

.8k 2 Œ0:00366; 0:00367�0/ .8t 2 Œ263; 283�0/ Q.v; V / .9p 2 Œ0:99; 1:01�0/ v D kt=p:

This semantic is equivalent to the interval inclusion

v�.K; T; P / � V

with K and T proper intervals and P an improper one. Computing v�, the result is

v�.Œ0:00366; 0:00367�; Œ263; 283�; Œ1:01; 0:99�/ D Œ0:97 : : : ; 1:02 : : :� � Œ0:97; 1:03�

which means that for every value of k and t there exists a volume v between 0.97 and
1.03, depending on k and t , which makes the pressure within the desired limits. The
container is to be built with a feedback valve to allow its volume to be regulated
within the computed bounds, to keep the stated conditions, as the left graph of
Fig. 3.5 illustrates.
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Allowing the pressure to vary within the domain P 0 D Œ0:9; 1:1�0, the resulting
interval for the volume is

v�.Œ0:00366; 0:00367�; Œ263; 283�; Œ1:1; 0:9�/ D Œ1:06 : : : ; 0:94 : : :� � Œ1:06; 0:95�:

In accordance with the *-semantic theorem, this result means that for every k and t

and every volume v between 0.95 and 1.06, the pressure falls within the limits. The
container can be built without any feedback valve because, for any volume between
the bounds, the pressure is inside the stated conditions, as the right graph of Fig. 3.5
illustrates.

3.4 Syntactic Functions

The two applications of the meet–join operators to a continuous function f from
R

k to R, define the two semantic extensions f � and f ��. From now on only real
continuous functions with syntactic tree will be considered, so the existence of a
syntactic tree for any function f is assumed and not explicitly repeated.

Looking at a syntactic tree of the continuous real function f , where the nodes
are the operators, the leaves are the variables, and the branches define the domain
of each operator, f can also be operationally extended to a syntactical function fR
from I �.Rk/ to I �.R/, by using the computational program implicitly defined by
the syntactic tree of the expression defining the function.

3.4.1 Syntactic Extensions

Definition 3.4.1 (Modal syntactic *-extension) The function fR� from I �.Rk/ to
I �.R/, called the Modal syntactic *-extension of f , is defined by the computational
program indicated by a syntactic tree of the real function f from R

k to R, when the
real operators are transformed into their *-semantic extensions.

Definition 3.4.2 (Modal syntactic **-extension) The function fR��, called the
Modal syntactic **-extension of f , is defined similarly to fR�, but with the operators
transformed into their **-semantic extensions.

Example 3.4.1 For the continuous real function f .x1; x2/ D x1x2 Cg.x1; x2/, with
the operator g.x1; x2/ D .x1 C x2/2, syntactic trees of f , fR� and fR�� are

x1 x2 x1 x2 X1 X2 X1 X2 X1 X2 X1 X2

n = n = n = n = n = n =

. g .:/� g� .:/�� g��
n = n = n =

C .C/� .C/��
j j j

f fR� fR��
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If X1 D Œ�1; 1�, X2 D Œ1; �1�, fR� and fR�� are computed as follows. For the
x1x2 operator:

�-extension W _
x12Œ�1;1�0

^
x22Œ�1;1�0

Œx1x2; x1x2� D Œ0; 0�;

� � -extension W ^
x22Œ�1;1�0

_
x12Œ�1;1�0

Œx1x2; x1x2� D Œ0; 0�:

For the g.x1; x2/ operator:

�-extension W _
x12Œ�1;1�0

^
x22Œ�1;1�0

Œ.x1 C x2/2; .x1 C x2/
2� D Œ1; 0�;

� � -extension W ^
x22Œ�1;1�0

_
x12Œ�1;1�0

Œ.x1 C x2/2; .x1 C x2/
2� D Œ0; 1�:

Therefore,

fR�.Œ�1; 1�; Œ1; �1�/ D _
y12Œ0;0�0

^
y22Œ0;1�0

Œy1 C y2; y1 C y2� D Œ1; 0�;

fR��.Œ�1; 1�; Œ1; �1�/ D _
y12Œ0;0�0

_
y22Œ0;1�0

Œy1 C y2; y1 C y2� D Œ0; 1�:

Lemma 3.4.1 (Duality relation)

Dual.fR�.X// D fR��.Dual.X//:

Proof If � is the computational program indicated by a syntactic tree of f and wi

are the operators, then

Dual.fR�.X// D Dual.�.w�
i ; X// D �.w��

i ; Dual.X// D fR��.Dual.X//:

�

Definition 3.4.3 (Modal syntactic operator) A modal syntactic operator is any
continuous function f from R

k to R that is JM-commutable.

Definition 3.4.4 (Modal syntactic function) A modal syntactic function fR is a
function defined similarly to fR� or fR��, but with all of its operators being JM-
commutable, that is, modal syntactic operators.

This definition will extend considerably the framework of the four rational
operators of real analysis fC; �; �; =g, since the constructive aspect which supports
the four rational operators loses its interest within the numerical context where,
obviously, all the operators are calculated with controlled deviations up to a certain
degree.

A modal syntactic function will be, consequently, any function with the form of
a continuous real function in which all its operators are modal syntactic operators,
and where the functional correspondence Arguments ! Values is obtained by the
computational program indicated by the syntactic tree of the function.
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Later results will indicate the considerable repertoire of modal syntactic func-
tions: Abs.x/, power.x; n/, loga.x/, root.x; n/ are modal syntactic operators,
continuous and unary, and consequently possible nodes of the syntactic tree of a
modal syntactic function.

At this stage, it is necessary to fix some notations to make easier the discussion
of the problems presented by modal syntactic functions:

1. For a function f the symbols f � and f �� indicate the semantic functions f � W
I �.Rk/ ! I �.R/ and f �� W I �.Rk/ ! I �.R/ defined by the correspondences
X ! f �.X/ and X ! f ��.X/, which do not depend on any syntactic tree
of f .

2. fR.x/ and fR.X/ indicate the functions fR W Rk ! R and fR W I �.Rk/ ! I �.R/

established by the computational program indicated by the syntactic tree with
which these functions are indicated, where fR.X/ exists when the operators of
the syntactic tree of f are modal syntactic and the computation of fR.Prop.X//

does not include any division by intervals containing zero.
3. Contrary to the equality f .x/ D fR.x/ on R, not only do the equalities between

f �.X/, f ��.X/ and fR.X/ not hold in general, but the forms of functions
which are equivalent on R, say f1 and f2, in the sense f1R.x/ D f2R.x/, do
not necessarily maintain this same equality on I �.R/.

Example 3.4.2 The expressions

f1.x/ D 1

1 � x
C 1

1 C x

f2.x/ D 2

1 � x2

define the same continuous real function, for x > 1. Nevertheless, their syntactic
extensions to the interval X D Œ2; 3� are

f1R.Œ2; 3�/ D 1

1 � Œ2; 3�
C 1

1 C Œ2; 3�
D Œ�3=4; �1=6�

f2R.Œ2; 3�/ D 2

1 � Œ2; 3�2
D Œ�2=3; �1=4�;

which are different.

Theorem 3.4.1 (Inclusivity of the modal syntactic functions) The modal syntac-
tic extensions fR� and fR�� (fR if it is the case) of a continuous real function f from
R

k to R, are inclusion-isotonic.

Proof If X � Y , � is a syntactic tree of f and wi are its operators, for any wi the
implication X � Y ) wi .X/ � wi .Y / holds, and therefore

fR�.X/ D �.w�
i ; X/ � �.w�

i ; Y / D fR�.Y /:

The same reasoning holds for fR��. �
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3.4.2 Modal Syntactic Operators

The definition of modal syntactic operator extends the list of the real operators. Now,
let us identify the most important classes of modal syntactic operators which will be
the best interval operators for the syntactic tree of a modal syntactic extension.

Theorem 3.4.2 (One-variable operators) Every one-variable continuous function
is JM-commutable, and therefore a modal syntactic operator.

Proof There is no commutation problem between the meet and join operations. �

Remark 3.4.1 The interesting operators are the monotonic operators or other easily
programable ones like abs.x/, power.x; n/, log.x/ or root.x; n/ described in
Chap. 5.

For the JM-commutativity of operators with two or more variables, the following
definitions play an important role.

Definition 3.4.5 (Uniform monotonicity) A k-variable continuous function
f .x; y/ is x-uniformly monotonic on a domain .X 0; Y 0/ � .R;Rk�1/, if it is
monotonic for x on X 0, and it is unary or keeps the same sense of monotonicity for
all the values y on Y 0.

Definition 3.4.6 (Partial monotonicity) A k-variable continuous function f .x; y/

is x-partially monotonic on .X 0; Y 0/ � .R;Rk�1/ if it may increase with x for some
y-values, and may decrease with x for the rest of the y-values on the domain Y 0.

Example 3.4.3 The functions xy and x=y are partially monotonic. Uniformly
monotonic functions, which are monotonic increasing or monotonic decreasing for
each component, include, for example x C y, x � y, min.x; y/ max.x; y/.

Theorem 3.4.3 (Two-variable operators) Every two-variable continuous func-
tion f .x; y/ which is .x; y/-partially monotonic on a domain .X 0; Y 0/, is JM-
commutable for the corresponding interval arguments .X; Y /.

Proof If X and Y share the same modality, f .x; y/ is bounded by its values in the
vertex of the domain .X 0; Y 0/. Otherwise, the possible cases, depending on the sign
of the X; Y -bounds, are characterized by the behaviour of f .x; y/ on the borders of
the two-dimensional interval domain, where the existence of two saddle-points is,
case-by-case, easily assured by means of the continuity of f . These points are in
the set of vertices of .X 0; Y 0/, or in some point of this domain. �

Figure 3.6 illustrates a case of this reasoning, showing an interval domain,
arrows indicating the sense of monotonicity of some two-variables operator, and
the corresponding saddle point, which coincide with the origin for these senses of
monotonicity.

Remark 3.4.2 This is the case of the operators x Cy, x �y, x �y or x=y, described
in detail in Chap. 5, and the interesting operators max.x; y/ or min.x; y/.
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X´

Y´

Saddle-points

Fig. 3.6 Saddle point for a
two-variables operator

3

1

1

–1

2

SDV(+,[1,2]',[–1,2]')

SDV(+,[–1,2]',[1,2]')

Fig. 3.7 Saddle points for
addition

Example 3.4.4 For the addition of a proper interval and an improper one,

Œ1; 2� C Œ2; �1� D ŒSDV.C; Œ1; 2�0; Œ�1; 2; �0/; SDV.C; Œ�1; 2�0; Œ1; 2�0/�

D Œ min
x2Œ1;2�0

max
y2Œ�1;2�0

.x C y/; min
y2Œ�1;2�0

max
x2Œ1;2�0

.x C y/� D Œ3; 1�

In Fig. 3.7 the sense of monotonicity of the sum in this interval and the saddle
points are represented, where the arrows indicate the sense of monotonicity in the
rectangular domain.

If both intervals are proper,

Œ1; 2� C Œ�1; 3� D ŒSDV.C; .Œ1; 2�0; Œ�1; 3; �0/; ;/; SDV.C; ;; .Œ�1; 3�0; Œ1; 2�0//�

D Œ min
x2Œ1;2�0

min
y2Œ�1;3�0

x C y; max
y2Œ1;2�0

max
x2Œ�1;3�0

x C y�

D Œ0; 5�

If both intervals are improper,

Œ1;�1� C Œ1;�2� D ŒSDV.C;;; .Œ�1;1�0; Œ�2;1�0//;SDV.C; .Œ�1;1�0; Œ�2;1�0/;;/�

D Œ max
x2Œ�1;1�0

max
y2Œ�2;1�0

x C y; min
y2Œ�1;1�0

min
x2Œ�2;1�0

x C y�

D Œ2;�3�
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1

1

–1

2

2
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b

Fig. 3.8 Saddle points for
the product function

For the product, the main problem appears when the domain intersects the axis. For
Œ1; 2� � Œ3; �1�,

Œ1; 2� � Œ3; �1� D ŒSDV.�; Œ1; 2�; Œ3; �1�/; SDV.�; Œ3; �1�; Œ1; 2�/�

D Œ min
x2Œ1;2�0

max
y2Œ�1;3�0

xy; min
y2Œ�1;3�0

max
x2Œ1;2�0

xy�

D Œ3; �1�

Figure 3.8 depicts the sense of monotonicity of the product in this interval and the
saddle points are represented.

Remark 3.4.3 Partial monotonicity does not guarantee the JM-commutativity for
more than two variables, as is seen in the case of the function f .x; y; z/ D x.y Cz/.

Theorem 3.4.4 (Uniform monotonicity) Every uniformly monotonic continuous
function f .x; y/, with .x; y/ 2 R

k , x-monotonic increasing and y-monotonic
decreasing on .X 0; Y 0/, is JM-commutable for .X ; Y / and

fR.X ; Y / D f �.X ; Y / D f ��.X ; Y /

D Œf .Inf.X/; Sup.Y //; f .Sup.X/; Inf.Y //�;

where

Inf.X/ D .Inf.X1/; : : : ; Inf.Xm//

Sup.X/ D .Sup.X1/; : : : ; Sup.Xm//;

and so on for Y .

Proof As f is uniformly monotonic,

X � increasing :

�
Xj proper ) the minimum of f is in Inf.Xj /

Xj improper ) the maximum of f is in Inf.Xj /
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Y � decreasing :

�
Yj proper ) the minimum of f is in Sup.Yj /

Yj improper ) the maximum of f is in Sup.Yj /:

Therefore

min
.xp;yp/2.Xp;Y p/0

max
.xi ;y i /2.X i ;Y i /0

f .xp; xi ; yp; y i / D f .Inf.X/; Sup.Y //

D max
.xi ;y i /2.X i ;Y i /0

min
.xp;yp/2.Xp;Y p/0

f .xp; xi ; yp; y i /

and, analogously,

min
.xi ;y i /2.X i ;Y i /0

max
.xp;yp/2.Xp;Y p/0

f .xp; xi ; yp; y i / D f .Sup.X/; Inf.Y //

D max
.xp;yp/2.Xp;Y p/0

min
.xi ;y i /2.X i ;Y i /0

f .xp; xi ; yp; y i /:

So, f �.X ; Y / D f ��.X ; Y / and

f �.X ; Y / D Œf .Inf.X/; Sup.Y //; f .Sup.X/; Inf.Y //�:

�
Example 3.4.5 The function f .x; y; z/ D .x�y/=.zCy/ in the domain X D Œ0; 2�,
Y D Œ4; 3�, Z D Œ2; 1� is x-monotonic increasing , y-monotonic decreasing, and
z-monotonic increasing, as can be shown from the constancy of the signs of .x � y/

and of .z C y/ on the particular interval domain involved in this example. Then

fR.X; Y; Z/ D f ��.X; Y; Z/ D f �.X; Y; Z/

D Œf .Inf.X/; Sup.Y /; Inf.Z//; f .Sup.X/; Inf.Y /; Sup.Z//�

D Œ.0 � 3/=.2 C 3/; .2 � 4/=.1 C 4/�

D Œ�3=5; �2=5�;

Example 3.4.6 A specially interesting example of continuous uniformly monotonic
increasing operator is the function “limited identity”, that is,

LID W R
3 �! R

.t; x; y/ �! LID.t; x; y/ D
8<
:

min.x; y/ if t � min.x; y/

t if min.x; y/ � t � max.x; y/

max.x; y/ if max.x; y/ � t
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This operator is JM-commutable on its domain because it is a uniformly monotonic
continuous function. Therefore

LID��.T; X; Y / D LID�.T; X; Y /

D ŒLID.Inf.T /; Inf.X/; Inf.Y //; LID.Sup.T /; Sup.X/; Sup.Y //�

If T is the interval Œ�1; C1�, then

LID��.Œ�1; C1�; X; Y / D LID�.Œ�1; C1�; X; Y /

D Œmin.Inf.X/; Inf.Y //; max.Sup.X/; Sup.Y //�

D X _ Y

If T is the interval ŒC1; �1�, then

LID��.ŒC1; �1�; X; Y / D LID�.ŒC1; �1�; X; Y /

D Œmax.Inf.X/; Inf.Y //; min.Sup.X/; Sup.Y //�

D X ^ Y

After admitting these T -arguments we see that LID incorporates, among the modal
syntactic operators, the �-lattice operators “meet” and “join”.

Actually, the enlargement of the set of modal syntactic operators from the classic
one .C; �; �; =/, is quite important for applications, for example for control and
approximation problems, mainly given the limitations imposed by the easy loss of
information originating in multi-incidence and not-optimal syntactic trees of real
expressions. In the computational context of I �.R/, the classical rational operators
.C; �; �; =/ have obviously no particular privilege over other programmable ones
and holding the essential properties of continuity and JM-commutativity, since all
of them are to be computed through the use of a suitably approximated arithmetic.
Coming back to the “meet” and “join” operators, their use will only require
an additional remark: the application of the semantic theorems will demand the
consideration of the implicit t-variables they introduce.

Example 3.4.7 The operator

CLIP.t; x; y/ D t � LID.t; x; y/

is uniformly t-monotonic increasing and .x; y/-monotonic decreasing and its
program is

CLIP.t; x; y/ D
8<
:

t � min.x; y/ if t � min.x; y/

0 if min.x; y/ � t � max.x; y/

t � max.x; y/ if max.x; y/ � t

following a similar reasoning.
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Theorem 3.4.5 (Partial uniform monotonicity) If f .x; y/ is a x-uniform mono-
tonic continuous function in the domain .X 0; Y 0/ and X D .U ; V /, Y D .Y p; Y i /

is the component-splitting of X and Y into their proper and improper components,
then

f �.X ; Y / D .f �.Inf.U /; Inf.V /; Y / _ f �.Sup.U /; Inf.V /; Y //

^
.f �.Inf.U /; Sup.V /; Y / _ f �.Sup.U /; Sup.V /; Y //: (3.1)

Proof Taking into account Definition 3.2.1 of *-semantic function, the associativity
of the meet and join operators, and the x-monotonicity of f :

1) If V D ;, X D U is uni-modal proper and

f �.X ; Y / D _
u2U 0 .̋y ;Y /

f .u; y/ D _
u2U 0

f �.u; Y /

D f �.Inf.U /; Y / _ f �.Sup.U /; Y /:

2) If U D ;, X D V is uni-modal improper, as

f �.X ; Y / D Œ min
yp2Y 0

p

max
yi 2Y 0

i

max
v2V 0

f .v; yp; y i /; max
yp2Y 0

p

min
yi 2Y 0

i

min
v2V 0

f .v; yp; y i /�;

if f is v-monotonic increasing

f �.X ; Y / D Œ min
yp2Y 0

p

max
y i 2Y 0

i

f .Inf.V /; yp; y i /; max
yp2Y 0

p

min
yi 2Y 0

i

f .Sup.V /; yp; y i /�;

and if f is v-monotonic decreasing

f �.X ; Y / D Œ min
yp2Y 0

p

max
yi 2Y 0

i

f .Sup.V /; yp; y i /; max
yp2Y 0

p

min
y i 2Y 0

i

f .Inf.V /; yp; y i /�:

On the other hand, as

f �.Inf.V /; Y / ^ f �.Sup.V /; Y /

D Œ min
yp2Y 0

p

max
yi 2Y 0

i

f .Inf.V /; yp; y i /; max
yp2Y 0

p

min
yi 2Y 0

i

f .Inf.V /; yp; y i /�

^
Œ min
yp2Y 0

p

max
yi 2Y 0

i

f .Sup.V /; yp; y i /; max
yp2Y 0

p

min
y i 2Y 0

i

f .Sup.V /; yp; y i /�;
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if f is v-monotonic increasing

f �.Inf.V /; Y / ^ f �.Sup.V /; Y /

D Œ min
yp2Y 0

p

max
yi 2Y 0

i

f .Inf.V /; yp; y i /; max
yp2Y 0

p

min
y i 2Y 0

i

f .Sup.V /; yp; y i /�

D f �.X ; Y /;

and if f is v-monotonic decreasing

f �.Inf.V /; Y / ^ f �.Sup.V /; Y /

D Œ min
yp2Y 0

p

max
yi 2Y 0

i

f .Sup.V /; yp; y i /; max
yp2Y 0

p

min
y i 2Y 0

i

f .Inf.V /; yp; y i /�

D f �.X ; Y /:

3) If X D .U ; V / is multi-modal, applying successively (2) and (1), we obtain
(3.1). �

Example 3.4.8 The function f .x; y; z/ D xy C 1=.x C y/ C z � z2 in the domain
X D Œ0; 1�, Y D Œ2; 1�, Z D Œ4; 2� is x-monotonic increasing and z-monotonic
decreasing. Its *-semantic extension

f �.X; Y; Z/ D _
x2Œ0;1�0

^
y2Œ1;2�0

^
z2Œ2;4�0

ŒxyC1=.x Cy/C z� z2; xyC1=.x Cy/C z� z2�

is not easily computable. But following Theorem 3.4.5, as

f �.Inf.X/; Y; Inf.Z// D f �.Œ0; 0�; Œ2; 1�; Œ4; 4�/

D ^
y2Œ1;2�0

Œ1=y � 12; 1=y � 12� D Œ�11; �11:5�

f �.Sup.X/; Y; Inf.Z// D f �.Œ1; 1�; Œ2; 1�; Œ4; 4�/

D ^
y2Œ1;2�0

Œy C 1=.1 C y/ � 12; y C 1=.1 C y/ � 12�

D Œ�9:66 : : : ; �10:5�

f �.Inf.X/; Y; Sup.Z// D f �.Œ0; 0�; Œ2; 1�; Œ2; 2�/

D ^
y2Œ1;2�0

Œ1=y � 2; 1=y � 2� D Œ�1; �1:5�

f �.Sup.X/; Y; Sup.Z// D f �.Œ1; 1�; Œ2; 1�; Œ2; 2�/

D ^
y2Œ1;2�0

Œy C 1=.1 C y/ � 2; y C 1=.1 C y/ � 2�

D Œ0:33 : : : ; �0:5�:
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then

f �.X; Y; Z/ D
8<
:

.Œ�11; �11:5� _ Œ�9:66 : : : ; �10:5�/

^
.Œ�1; �1:5� _ Œ0:33 : : : ; �0:5�/

9=
; D Œ�1; �10:5�:

Theorem 3.4.6 (k-Uniform monotonicity) Every continuous function f .x; y/,
with x 2 R and y D .u; v/ 2 R

k�1, which is uniformly monotonic for the
y-arguments on a domain .X 0; Y 0/, u-monotonic increasing and v-monotonic
decreasing, is JM-commutable for the corresponding interval arguments .X; Y /.

Proof The continuity of f .x; y0/ on X 0, for any y0 2 Rk�1, implies the existence
on X 0 of the x-minimum and x-maximum of f .x; y0/. This allows showing the
existence of the saddle-points, which means its JM-commutativity.

Let us denote by .x; u; v/ the split of .x; y/, and by .x; um; vM / the coordinates
where f .x; u; v/ reaches a u-minimum and a v-maximum irrespective of the value
for x. If

f .xm; um; vM / D min
x2X 0

f .x; um; vM /;

then .xm; um; vM / 2 SDP.f; .X 0; U 0/; V 0/ because

.8x 2 X 0/.8u 2 U 0/.8v 2 V 0/

.f .xm; um; v/ � f .xm; um; vM / � f .x; um; vM / � f .x; u; vM //

Let .x; uM ; vm/ be the coordinates where f .x; u; v/ reaches a u-maximum and a
v-minimum irrespective of the value for x. If

f .xM ; uM ; vm/ D max
x2X 0

f .x; uM ; vm/;

then .xM ; uM ; vm/ 2 SDP.f; V 0; .X 0; U 0// because

.8x 2 X 0/.8u 2 U 0/.8v 2 V 0/

.f .x; u; vm/ � f .x; uM ; vm/ � f .xM ; uM ; vm/ � f .xM ; uM ; v//:

Therefore, following the proof of the previous theorem,

f ��.X; Y / D f �.X; Y /

D if X proper then

Œmin
x2X 0

f .x; Inf.U /; Sup.V //; max
x2X 0

f .x; Sup.U /; Inf.V //�

if X improper then

Œmax
x2X 0

f .x; Inf.U /; Sup.V //; min
x2X 0

f .x; Sup.U /; Inf.V //�:

�
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Example 3.4.9 The function f .x; y; z/ D .x � y/=.z C y/ in the domains of X D
Œ0; 3�, Y D Œ2; 4�, Z D Œ3; 1� is x-monotonic increasing , y-monotonic decreasing
and it is not monotonic in z. Then

f �.X; Y; Z/ D f ��.X; Y; Z/ D fR.X; Y; Z/

D Œ max
z2Œ1;3�0

f .Inf.X/; Sup.Y /; z/; min
z2Œ1;3�0

f .Sup.X/; Inf.Y /; z/�

D Œ max
z2Œ1;3�0

..0 � 4/=.z C 4//; min
z2Œ1;3�0

..3 � 2/=.z C 2//�

D Œ�4=7; 1=5�:

Remark 3.4.4 The theorem is not essentially modified when x has more than one
component if the condition of uni-modality is imposed on X .

Remark 3.4.5 Actually, those functions of the type f .x; y/, which are uniformly
monotonic for y 2 R

k and JM-commutable for x 2 R
m on any vertex of the

y-prism defined by the y-interval-arguments, can be admitted to the repertoire of
modal syntactic operators. In fact,

f .xm; yM ; um; vM / D min
x2X 0

max
y2Y 0

f .x; y ; um; vM /

is a saddle-value of the .x; y/-function f .x; y ; um; vM / because for every x 2 X 0,
y 2 Y 0, u 2 U 0 and v 2 V 0

f .xm; y; um; v/ � f .xm; yM ; um; vM / � f .x; yM ; um; vM / � f .x; yM ; u; vM /:

Remark 3.4.6 Anyway, the operators of the syntactic trees should be as simple as
possible for actual practice, in spite of constituting a larger family than the classical
ones for real functions.

3.4.3 Modal Syntactic Computations with Rounding

A modal syntactic computation with outer or inner rounding is defined by the syntax
of fR.X/ where the interval value of every component and the exact value of every
operator are replaced by their modal inner or outer rounding.

Definition 3.4.7 (Outer-rounding computation of fR�.X/) The outer-rounding
computation Out.fR�.X// is the function defined by the computational program
of fR�.X/, in which the value of every X -component is replaced by its modal outer
rounding Out.Xi / � Xi , and also the exact value of every operator !�.Xi ; : : :/ is
replaced by its computed actual outer-rounding Out.!�.Xi ; : : :// � !�.Xi ; : : :/.

Definition 3.4.8 (Inner-rounding computation of fR��.X/) The inner-rounding
computation Inn.fR��.X// is the function defined by the program of fR��.X/, in



3.5 Concluding Remarks 71

which every X -component Xi is replaced by Inn.Xi/ � Xi , and every exact value
!��.Xi ; : : :/ by Inn.!��.Xi ; : : :// � !��.Xi ; : : :/.

Remark 3.4.7 In a hypothetically ideal “real” arithmetic, the Out and Inn operators
would reduce to the identity operator. If the real-arithmetics’ rounding supporting
Out and Inn is supposed to be �-monotonic increasing and the elements of the
corresponding digital scale are applied to themselves, it is usual to speak of an
optimal rounding.

Lemma 3.4.2 (Duality relation)

Dual.Out.fR�.X/// D Inn.fR��.Dual.X///:

Proof

Dual.Out.fR�.X /// D Inn.Dual.fR�.X/// D Inn.fR��.Dual.X///:

�

Theorem 3.4.7 (Inclusivity of the modal syntactic extensions) The rounded
modal syntactic extensions Out.fR�.X// and Inn.fR��.X// (or, Out.fR.X// and
Inn.fR.X//, if such be the case) of a continuous real function f from R

k to
R, are inclusion-monotonic increasing, if the supporting interval rounding of the
arguments and of the operators are also inclusion-monotonic increasing.

Proof This property holds for the modal syntactic extensions fR�.X/ and fR��.X/

(or fR.X/ if such be the case). For computations with rounding the result may be
obtained by considering the different roundings as ordinary inclusion-monotonic
increasing operators interposed into the syntactic tree of fR. �

Theorem 3.4.8 (Dual computing process) If fR.X/ is a modal syntactic function,
then

Inn.fR.X// D Dual.Out.fR.Dual.X///:

Proof From Lemma 3.4.1. �
Remark 3.4.8 Computations with modal intervals do not need a double arithmetic,
with inner and outer rounding. This theorem allows the implementation of only
the outer rounding interval arithmetic. Note the application of the Out operator
to Dual.X/ in the second term: Dual is not a modal syntactic operator and the
information about X implied by this expression will be Inn.X/.

3.5 Concluding Remarks

From the operational point of view, the most outstanding characteristic of the system
of modal intervals I �.R/ is the following: in a similar way that real numbers are
associated in pairs having the same absolute value but opposite signs, the modal
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intervals are associated in pairs too, each member corresponding to the same closed
interval of the real line but having each one of the opposite selection modalities,
existential or universal.

From the regularity point of view, I �.R/ is a decisive improvement over I.R/

since I �.R/ is not only the structural completion of I.R/, but also solves the
referential character of interval computations to the isomorphic ones on the real
line.

The system I �.R/ provides a lot of properties immediately and consistently
related with an informational approach to numeric data, as they arise from the pro-
cedures of measurement and digital computing. These properties are not obtained by
using an additional over-imposed model, as in the models supported by probability,
but are built on the inherent logic of the practical possibilities of the use of numbers.
In fact, I �.R/ is not a “model” for the numeric information, but the indispensable
logical and operational frame for any geometrical model using numeric information.
From the viewpoint of the technical constitution of the system I �.R/, the main
points are the following:

1. Association of each interval A 2 I �.R/ to the set Pred.A/ of the predicates P

on the real line that A accepts, that is, those by which the modally-quantified
statement Q.x; A/P.x/ is made true. This step brings out the particular set-
theoretical character of the inclusion of modal intervals, and supplies the
important theorem about the mutual transfers of information between the “exact”
result of a naturally analytical relation and the outer and inner-rounding of its
interval computation.

2. The logical re-formulation of the “poor interval extensions” of continuous
real functions, allowing of defining the “modal interval extensions” of these
functions, with their all-important * and **-semantic theorems, supports the
application to modal intervals of the appealing intuition tied to the notions of
“regulating” and “autonomous” ranges, and indicates the dependence between
semantics and interval rounding. Starting from “poor interval extensions” selects
also as meaningful only two of the different interval extensions of continuous
functions that could be built if only the lattice completion of I.R/ was consid-
ered, a decision which would lead to an, in principle, different extension for each
ordering of the meet and join operators.

3. The theory of interval modal syntactic functions clarifies the somewhat com-
plicated relationship between the syntactic structure of the functions and their
semantics, defined by their corresponding *- and **-semantic extensions. This is
the key which solves the critical question of the dependence between computa-
tional process and the meaning of the computed results.



Chapter 4
Interpretability and Optimality

4.1 Introduction

The Semantic Theorems show that f �.X/ and f ��.X/ are optimal from a semantic
point of view, and clarify which �-sense of rounding is the right one when *-
semantic or **-semantic are to be applied. They provide, therefore, a general norm
that computational functions F from I �.Rk/ to I �.R/ must satisfy to conform to
the f � or the f ��-semantic, but this is still not a general procedure by which these
functions may be effectively computed. These procedures will be provided by the
modal syntactic extension of continuous real functions, as far as they satisfy certain
suitability conditions.

4.2 Interpretability and Optimality

The problem with the semantic extensions f � and f �� is that they are not generally
computable. A modal syntactic extension fR is computable from a syntactic tree of
f but the result is hardly interpretable in reference to the original continuous real
function. In order to remedy this lack of computability for f � and f �� and the
lack of meaning for the modal syntactic extensions fR, this chapter provides some
relations between them, under some conditions.

The interpretation problem for the modal syntactic functions fR, which are
the core of numerical computing, consists in relating them to the corresponding
semantic functions by means of inclusion relations which are interpretable in
accordance with the Semantic Theorems 3.3.1 and 3.3.2. In this case, if for X 2
I �.Rk/ one of the relations

f �.X/ � fR.X/ or f ��.X/ � fR.X/

is true, then the computation fR.X/ is called interpretable.

M.A. Sainz et al., Modal Interval Analysis, Lecture Notes in Mathematics 2091,
DOI 10.1007/978-3-319-01721-1__4,
© Springer International Publishing Switzerland 2014
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On the other hand, the lack of computability of f � and f �� can be remedied by
means of modal syntactic computations which are inner or outer approximations,
although in many cases this will involve a loss of information. To avoid that, it will
be necessary to find criteria such that, in an ideal arithmetic without rounding,

f �.X/ D fR.X/ D f ��.X/:

In this case fR.X/ is called optimal, i.e., fR is an optimal computation on X .

Definition 4.2.1 (Optimality) A modal syntactic function fR is said to be optimal
if for every X 2 I �.Rk/ for which fR.P rop.X// is defined, we have f �.X/ D
fR.X/ D f ��.X/.

Similarly we can speak of optimality on a given interval-domain: If this property
holds particularly for an A 2 I �.Rk/, we will say that fR is optimal in the
domain A0.

Remark 4.2.1 A single operator (function) whose argument-places are allowed to
be occupied by distinct variables, or by the same variable, can define a syntactic
function (the most elementary one); this justifies writing gR.X/ instead of g�.X/

for any JM-commutable function g used as an operator.

In case of only the equality fR.X/ D f �.X/ being meant, without any
previous supposition about the equality of f �.X/ and f ��.X/, we will speak of
*-optimality; and similarly we will speak of **-optimality for the case of fR.X/ D
f ��.X/.

4.2.1 Uni-incidence and Multi-incidence

An important role in obtaining these relations of inclusion and equality is played by
the incidence of the involved variables.

Definition 4.2.2 (Uni-incidence and multi-incidence) A component xi of x is
uni-incident in a continuous real function f if it occupies only one leaf of the
syntactic tree of f . Otherwise xi is multi-incident in f .x/. A vector x is uni-
incident in f .x/ if each of its components has this property.

Example 4.2.1 In the function f W R2 ! R defined by

f .x1; x2/ D x2 C x2
1

x2

the variable x1 is uni-incident and x2 multi-incident.

Remark 4.2.2 Beware of the fact that the concepts of uni-incidence and multi-
incidence only have meaning when the discourse is about the definition of a modal
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syntactic function, which points to a definite computing program. Multi-incidence is
not multi-incidence of values, but variables, and always deals with the repetition of
the same variable in different leaves of the syntactic tree of a function. A continuous
real function can, anyway, be considered as a pure function, defined by the classic
correspondence between its arguments’ values and the function’s value, as well
as a computing program. Correspondingly, naming *-variables the variables of
any real function when considered as a pure function, and R-variables when their
different places in the syntactic tree of the computing program, we may say that,
for any continuous real function, *-variables are always uni-incident, and that each
R-variable has an order of incidence equal to the number of leaves it occupies in the
syntactic tree of the function.

4.2.2 Interpretability in the Uni-incidence Case

A first result will relate the modal semantic extension f � with the modal semantic
extensions of their operators. For that, and considering a function as a composition
of their operators, it is possible to consider successive applications of the semantic
theorems as the following lemmas suggest.

Lemma 4.2.1 (*-interpretability of one-step links) If f , gi , and hj are
continuous real functions in a suitably large domain, Gi ; X ; Y are existential
interval vectors, Hj , U ; V are universal interval vectors, F 2 I �.R/ satisfies
f �.Gi ; Hj / � F , g�

i .X ; U / � Gi , h�
j .Y ; V / � Hj , and the components of u and

v, corresponding to the universal vectors U and V do not have common components
in the set of the gi and hj lists, then

.f ı .gi ; hj //�.X ; Y ; U ; V / � F;

where f ı .gi ; hj /.x; y; u; v/ D f .gi .x; u/; hj .y; v//.

Proof This result is to be obtained by resolution with the prenex forms of the
conjunctions of the corresponding logical formulas provided by the application of
the semantic theorem to the analytical relations f �.Gi ; Hj / � F , g�

i .X ; U / � Gi

and h�
j .Y ; V / � Hj . From the *-Semantic Theorem 3.3.1:

a) h�
j .Y ; V / � Hj , .8y 2 Y 0/ .8hj 2 H 0

j / .9v 2 V 0/ hj D hj .y; v/;
b) g�

i .X ; U / � Gi , .8x 2 X 0/ .9gi 2 G0
i / .9u 2 U 0/ gi D gi .x; u/;

c) f �.Gi ; Hj / � F , .8gi 2 G0
i / Q.f 2 F / .9hj 2 H 0

j / f D f .gi ; hj /.

From the conjunction of (b) and (c) we obtain

.8x 2 X 0/ Q.f; F / .9hj 2 H 0
j / .9u 2 U 0/ f D f .gi .x; u/; hj /
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and with (a)

.8y 2 Y 0/ .8x 2 X 0/ Q.f; F / .9u 2 U 0/ .9v 2 V 0/ f D f .gi .x; u/; hj .y; v//;

And from the *-semantic theorem we have .f ı .gi ; hj //�.X ; Y ; U ; V / � F . �

Remark 4.2.3 In this proof, if Mod.F / D 8, the prefix Q.f; F / can be commuted
with .8gi 2 G0

i / and extracted from the parenthesis before any other quantifier
prefix and, after extracting the rest, it can be placed in the center of the list of
quantifiers; if Mod.F / D 9, it can be commuted with .9hj 2 H 0

j / and extracted
from the parenthesis after any other quantifier prefix; after extracting the rest it
can also be placed in the center of the list of quantifiers. The prefixes of the lists
.8x 2 X 0/ and .8y 2 Y 0/ can be extracted first, irrespective of whether x or y are
repeated or not in the lists of variables of g and h.

Lemma 4.2.2 (**-interpretability of one-step links) If f , gi , hj are continuous
real functions in a suitably large domain, Gi ; X ; Y are universal interval vectors,
Hj ; U ; V are existential interval vectors, F 2 I �.R/ satisfies f ��.Gi ; Hj / �
F , g��

i .X ; U / � Gi , h��
j .Y ; V / � Hj , and the components of u and v which

correspond to the existential vectors U and V do not have common components in
the set of the gi and hj lists, then

.f ı .g; h//��.X ; Y ; U ; V / � F;

where f ı .g; h/.x; y; u; v/ D f .gi .x; u/; hj .y; v//.

Proof The proof is the dual to the one of the previous Lemma 4.2.1. �

Both lemmas introduce the basic results for obtaining the conditions of interpre-
tation for the rounded modal syntactic computations Out.fR.X// and Inn.fR.X//.

Theorem 4.2.1 (*-interpretability of modal syntactic functions) If the improper
components of X are uni-incident in fR�.X/ and Out.fR�.Prop.X// exists, then

f �.X/ � Out.fR�.X//:

Proof Since f is the composition of its operators, we can use Lemma 4.2.1,
which is insensitive to the multi-incidence of the proper components of X . The
computational aspect is supported by the inclusion-isotony of the operators and of
the outer-rounding. �

Remark 4.2.4 The existence of Out.fR�.Prop.X/// guarantees the existence of the
operands and of the operators implied by Out.fR�.X//.

This theorem states that if the continuity of the functions on the implied
domains by Out.fR.Prop.X/// is assured, and if the outer rounding is used for the
digitalization of the data of X and all the elementary operations defining fR, then
the result fR.X/ is interpretable in terms of the *-semantic theorem.
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Theorem 4.2.2 (**-interpretability of modal syntactic functions) If the proper
components of X are uni-incident in f ��R.X/ and Out.fR�.Prop.X/// exists, then

Inn.fR��.X// � f ��.X/:

Proof Through a dual demonstrative march of the one of Theorem 4.2.1, by means
of Lemma 4.2.2.

According to this theorem, if the domains implied in the definition of f ��.X/

and the definition and computation of fR.Prop.X// are well defined, because they
do not comprise any divide by 0, then the result of the computation Inn.fR.X// is
acceptable from the point of view of the **-semantic theorem and can be interpreted
according to this same theorem.

Theorem 4.2.3 (Interpretability of modal syntactic functions) If all the
variables are uni-incident in fR, then with an ideal arithmetic

f �.X/ � fR.X/ � f ��.X/

or else

f �.X/ � Out.fR.X// and Inn.fR.X// � f ��.X/:

Proof From the previous lemmas. �

Example 4.2.2 To illustrate the necessity of the condition of uni-incidence for the
improper components of X in fR.X/, let’s examine the case of the function f .x/ D
x � x for the interval-value X D Œ1; 2�:

f �.X/ D Œ0; 0� � fR.X/ D Œ1; 2� � Œ1; 2� D Œ�1; 1�

But in the case of the value X D Œ2; 1�, we would obtain

f �.X/ D Œ0; 0� 6� fR.X/ D Œ2; 1� � Œ2; 1� D Œ1; �1�:

Example 4.2.3 It should be stressed that there are real functions f with all
fR-variables uni-incident, but which are not globally JM-commutable: this is the
case with

f .a; b; c; d / D .a C b/.c C d/;

which satisfies f �.X/ � fR.X/ � f ��.X/. For the intervals A D Œ�2; 2�,
B D Œ1; �1�, C D Œ�1; 1� and D D Œ2; �2�

fR.A; B; C; D/ D .Œ�2; 2� C Œ1; �1�/ � .Œ�1; 1� C Œ2; �2�/ D Œ�1; 1� � Œ1; �1�

D Œ0; 0�
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f �.A; B; C; D/ D Œmin
a2A0

min
c2C 0

max
b2B0

max
d2D0

..a C b/.c C d//;

max
a2A0

max
c2C 0

min
b2B0

min
d2D0

..a C b/.c C d//�

D Œ3=2; �3=2�

f ��.A; B; C; D/ D Œmax
b2B0

max
d2D0

min
a2A0

min
c2C 0

..a C b/.c C d//;

min
b2B0

min
d2D0

max
a2A0

max
c2C 0

..a C b/.c C d//�

D Œ�3=2; 3=2�

So Œ3=2; �3=2� � Œ0; 0� � Œ�3=2; 3=2� and it is not JM-globally commutable.

4.2.3 Optimality in the Uni-incidence Case

In this section we will find criteria which characterize, assuming that all the
fR-variables are uni-incident and ideal computations (without rounding), when the
program fR is such that

f �.X/ D fR.X/ D f ��.X/:

Theorem 4.2.4 (Optimality and uni-incidence) If in fR.X/ all arguments are uni-
incident and f is globally JM-commutable, then

f �.X/ D fR.X/ D f ��.X/:

Proof This follows from Theorem 4.2.3, taking into account that the
JM-commutability means f �.X/ D f ��.X/. �

Remark 4.2.5 In particular, if all of the X -components are uni-incident and have
the same modality, f �.X/ D fR.X/ D f ��.X/.

Now we will construct the fundamental class of uni-incident optimal modal
syntactic functions. The uni-incidence hypothesis is assumed but usually not
explicitly repeated.

Lemma 4.2.3 (Left monotonic associativity) If g is a monotonic operator of one
variable and fR.X/ is optimal, then gR.fR.X// is also optimal.

Proof If g is for instance monotonic increasing, then

.g ı f /�.X / D _
xp2X 0

p

^
xi 2X 0

i

Œg.f .xp; xi //; g.f .xp; xi //�

D Œ min
xp2X 0

p

max
xi 2X 0

i

g.f .xp; xi //; max
xp2X 0

p

min
xi 2X 0

i

g.f .xp; xi //�
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D Œg. min
xp2X 0

p

max
xi 2X 0

i

f .xp; xi //; g. max
xp2X 0

p

min
xi 2X 0

i

f .xp; xi //�

D Œg.Inf.f �.X///; g.Sup.f �.X///�

// in the case of g monotonic decreasing, the bounds of this interval

// would be obtained in the reverse order.

D gR.f �.X//

Similarly .g ı f /��.X/ D g��.f ��.X//. Hence, as g is an one-variable operator
and f is optimal,

.g ı f /�.X/ D gR.f �.X// D gR.f ��.X// D .g ı f /��.X/

and

.g ı f /R.X/ D gR.fR.X// D gR.f �.X// D .g ı f /�.X/: �

Remark 4.2.6 A more precise and only a little more verbose statement of
Lemma 4.2.3 would be: if g is a one variable monotonic operator and if fR.X/

does exist,

.g ı f /�.X/ D g�.f �.X//

and in case fR.X/ is optimal

.g ı f /�.X/ D .g ı f /R.X/ D gR.fR.X//:

Example 4.2.4 Let us consider the function h.x; y/ D exCy composed of the
operators f .x; y/ D x C y and g.z/ D ez. As fR is optimal and g is one-variable
and monotonic, then h�.X; Y / D hR.X; Y / D eXCY . For h.x; y/ D .x C y/2,
composed of f .x; y/ D x Cy and g.z/ D z2 and fR is optimal but g is one-variable
and not monotonic. So the result is not applicable.

Lemma 4.2.4 (Right unary associativity) If g1.x1/; : : : ; gk.xk/ are continuous
operators of one variable and fR.X/ is optimal, then fR.g1R.X1/; : : :, gkR.Xk// is
also optimal.

Proof Let Xp and X i be the proper and improper components, respectively, of
X D .X1; : : : ; Xk/

.f ı .g1; : : : ; gk//�.Xp; X i / D _
xp2X 0

p

^
xi 2X 0

i

Œf .g1.x1/; : : : ; gk.xk//; f .g1.x1/; : : : ; gk.xk//�:
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Let be y1 D g1.x1/; : : : ; yk D gk.xk/ and Y1 D g1R.X1/; : : : ; Yk D gkR.Xk/.
Then

f �.Y p; Y i / D _
yp2Y 0

p

^
yi 2Y 0

i

Œf .yp; y i /; f .yp; y i /�:

Since Xj and Yj , for j D 1; : : : ; k, have the same modality and the corresponding
meet and join operators originate the bounds of the interval function, obtained step-
by-step from .f ı.g1; : : : ; gk//.x/ and f .y1; : : : ; yk/, to range over equal domains,
therefore

.f ı .g1; : : : ; gk//�.Xp; X i / D f �.gpR.Xp/; gi R.X i //:

Similarly we would obtain .f ı .g1; : : : ; gk//��.Xp; X i / D f ��.gpR.Xp/;

gi R.X i //. From the optimality of f we obtain the intended result. �

Example 4.2.5 For right associativity, the right one-variable operators do not need
monotonicity; but the left one-variable operators do. Thus,

a) f .x; y/ D x2 C y2 is optimal because it is composed of g1R.x/ D x2,
g2R.y/ D y2, which are not monotonic, and

fR.X; Y / D X C Y is optimal

g1R is optimal (one-variable and continuous)

g2R is optimal (one-variable and continuous):

Therefore, by Theorem 4.2.4

fR.g1R.x/; g2R.y// D g1R.x/ C g2R.y/ D X2 C Y 2

is optimal. If X D Œ4; 3� and Y D Œ�1; 5�, then

f �.Œ4; 3�; Œ�1; 5�/ D fR.Œ4; 3�; Œ�1; 5�/ D Œ4; 3�2 C Œ�1; 5�2 D Œ16; 34�

b) f .x; y; z; t/ D .x C y/=.jzj C jt j/ is also optimal because it is composed of
g1R.x/ D x; g2R.y/ D y; g3R.z/ D jzj; g4R.t/ D jt j which are continuous
and fR.X; Y; Z; T / D .X C Y /=.Z C T / optimal.

Lemma 4.2.5 (Uniformly monotonic left-associativity)

a) If g.x1; : : : ; xk/ is a uniformly monotonic operator, and f1R.Y 1/; : : : ; fkR.Y k/

are optimal, then gR.f1R.Y 1/; : : : ; fkR.Y k// is also optimal.
b) If g has the form g.z; x1; : : : ; xk/, it is uniformly monotonic for x1; : : : ; xk ,

and f1R.Y 1/; : : : ; fkR.Y k/ are optimal, then gR.Z; f1R.Y 1/; : : : ; fkR.Y k//

is optimal too.



4.2 Interpretability and Optimality 81

Proof Under the hypotheses, the manifold of saddle-points of f1.y1/; : : : ; fk.yk/

provides a saddle-point of g.f1.y1/; : : : ; fk.yk//.

a) Let .x1; x2/ D .x1; : : : ; xk/ be such that g.x1; x2/ is x1-monotonic increasing
and x2-monotonic decreasing. From Theorem 3.4.4

g�.X 1; X 2/ D Œg.Inf.X 1/; Sup.X 2//; g.Sup.X 1/; Inf.X 2//�:

Suppose X 1 D f �
1 .Y 1p; Y 1i / and X 2 D f �

2 .Y 2p; Y 2i /; if

Inf.X 1/ D min
y1p2Y 0

1p

max
y1i 2Y 0

1i

f 1.y1p; y1i / D SDV.f 1; Y 0
1p; Y 0

1i / D f 1.y1pm; y1iM/

and

Sup.X 2/ D max
y2p2Y 0

2p

min
y2i 2Y 0

2i

f 2.y2p; y2i / D SDV.f 2; Y 0

2i ; Y 0

2p/ D f 2.y2pM; y2im/;

then

.8y1p 2 Y 0
1p/ .8y1i 2 Y 0

1i / .f 1.y1pm; y1i / � f 1.y1pm; y1iM/ � f 1.y1p; y1iM//

and

.8y2p 2 Y 0
2p/ .8y2i 2 Y 0

2i / .f 2.y2p; y2im/ � f 2.y2pM; y2im/ � f 2.y2pM; y2i //:

Therefore, since g.x1; x2/ is uniformly x1-monotonic increasing and
x2-monotonic decreasing,

.8y1p 2 Y 0
1p/ 8.y1i 2 Y 0

1i / .8y2p 2 Y 0
2p/ .8y2i 2 Y 0

2i /

g.f 1.y1pm; y1i /; f 2.y2pM; y2i // � g.f 1.y1pm; y1iM/; f 2.y2pM; y2im//

� g.f 1.y1p; y1iM/; f 2.y2p; y2im//:

Since g.Inf.X 1/; Sup.X 2// D SDV.g ı .f 1; f 2/; .Y 0
1p; Y 0

2p/; .Y 0
1i ; Y 0

2i //, we
have

Inf.g�.X 1; X 2// D Inf.g ı .f 1; f 2/�.Y 1p; Y 2p; Y 1i ; Y 2i //

and similarly

Sup.g�.X 1; X 2// D Sup.g ı .f 1; f 2/
�.Y 1p; Y 2p; Y 1i ; Y 2i //:
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In consequence

g�.f �
1 .Y 1/; f �

2 .Y 2// D .g ı .f 1; f 2//
�.Y 1; Y 2/

and similarly for g�� and g ı .f 1; f 2/
��.

b) See Theorem 3.4.6 and Lemma 4.2.4. �

Remark 4.2.7 If f0R.Y0/ is any continuous one-variable operator, then gR.f0R.Y0/,
f1R.Y1/; : : : ; fkR.Yk// is also optimal.

Example 4.2.6 For the function h.x1; x2; x3; x4/ D x1x2 C x3x4 composed by the
operator g.z1; z2/ D z1 C z2, which is uniformly monotonic, and f1.x1; x2/ D x1x2

y f2.x3; x4/ D x3x4, then as f1R y f2R are optimal, hR is optimal too.
For the function h.x1; x2; x3; x4/ D z.x1x2 C x3x4/ composed by the operator

g.z; f1; f2/ D z.f1 C f2/, which is uniformly monotonic with respect to f1 and f2,
but not with respect to z, and f1.x1; x2/ D x1x2 y f2.x3; x4/ D x3x4, then as f1R y
f2R are optimal, hR is optimal too.

4.2.4 Tree-Optimality

The following concept leads to important results about optimality.

Definition 4.2.3 (Tree-optimal modal syntactic functions) The modal syntactic
function fR.X/ is tree-optimal if, given any one of its non-uniformly mono-
tonic elementary branches, the fR-tree is followed upwards only by one-variable
operators.

Remark 4.2.8 In this definition the idea of a branch develops from the elementary
formal connections between any operator and each one of its ordered immediate
operands, and of these operands (or the final or root result) with the immediately
following operator.

Theorem 4.2.5 (Optimality of tree-optimal modal syntactic functions) If fR.X/

is tree-optimal and X is uni-incident in fR, then fR.X/ is optimal (that is, f �.X/ D
fR.X/ D f ��.X/ whenever X is uni-incident in fR).

Proof By Lemmas 4.2.3–4.2.5. �

Remark 4.2.9 In the case where X1; : : : ; Xk are uni-incident and uni-modal, the
optimality in the sense of f �.X/ D fR.X/ D f ��.X/ holds independently of
the syntactic structure of the fR tree (be aware of the need to deal with the fR-tree
without any operator built upon the duality transformation). In as much as this
condition means a restriction upon the modalities of the arguments X1; : : : ; Xk, this
case does in fact correspond to the notion of conditioned optimality to be introduced
later on.
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Remark 4.2.10 Checking the tree-optimality of fR.X/ can be restricted to the
sub-tree defined by its non-uniformly monotonic variables.

Example 4.2.7 The R
4 to R continuous function defined by f .x; y; z; u/ D xy C

zu is tree-optimal and therefore an optimal modal syntactic function for every
.X; Y; Z; U / 2 I �.R4/:

X Y Z U

Ÿ � Ÿ �
� � non-uniformly monotonic operator

Ÿ �
C uniformly monotonic operator

The R
4 to R continuous function defined by g.x; y; z; u/ D .x C y/.z C u/ is

neither tree-optimal nor optimal for some .X; Y; Z; U /

X Y Z U

Ÿ � Ÿ �
C C non-unary operator

Ÿ �
� non-uniformly monotonic operator

and, for example:

g�.Œ�2; 2�; Œ1; �1�; Œ�1; 1�; Œ2; �2�/ D Œ1:5; �1:5�;

g��.Œ�2; 2�; Œ1; �1�; Œ�1; 1�; Œ2; �2�/ D Œ�1:5; 1:5�;

gR.Œ�2; 2�; Œ1; �1�; Œ�1; 1�; Œ2; �2�/ D Œ0; 0�:

But it is optimal in other domains, for example

g�.Œ1; 3�; Œ0; 3�; Œ4; 2�; Œ3; 1�/ D Œ7; 18�;

g��.Œ1; 3�; Œ0; 3�; Œ4; 2�; Œ3; 1�/ D Œ7; 18�;

gR.Œ1; 3�; Œ0; 3�; Œ4; 2�; Œ3; 1�/ D Œ7; 18�:

Actually, it cannot be confusing to speak of tree-optimality on a determinate
interval-domain of Rk

4.2.5 Interpretability in the Multi-incidence Case

Until this point we have been dealing with uni-incident variables and when the
syntactic extensions are interpretable or optimal. Now we are going to provide
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theorems to handle the case of modal syntactic functions with multi-incident
variables and how to transform the different interval incidences in order to obtain
interpretable or optimal computations.

The following theorems provide two important results in case there are multi-
incident components.

Theorem 4.2.6 (Coercion to *-interpretability) If fR.X/ has multi-incident
improper components, and if X t� is obtained from X by substituting all the
incidences of each multi-incident improper component into a point-wise interval
defined for any point of its domain, then f �.X/ � fR.X t�/ (the existence
requirements being presupposed).

Proof For X D .Xp; X i /, let X i1 be the improper components which were uni-
incident in fR.X/, and denote the multi-incident improper components by X i2. Let
xi2 be any point of X 0

i2 and X t� D .Xp; X i1; Œxi2; xi2�/ which does not have
multi-incident improper components. Then from Theorem 4.2.3,

f �.Xp; X i / � f �.X t�/ � fR.X t�/: �

Example 4.2.8 The *-semantic extension of the continuous function f .x; y/ D
y � xy to the intervals X1 D Œ2; 3�, X2 D Œ4; 3� is

f �.Œ2; 3�; Œ4; 3�/ D _
x2Œ2;3�0

^
y2Œ3;4�0

Œy � xy; y � xy� D Œ�6; �4�:

For the modal syntactic extensions fR.X t�/ we have

fR1.Œ2; 3�; Œ4; 4�/ D Œ4; 4� � Œ2; 3� � Œ4; 4� D Œ�8; �4�

fR2.Œ2; 3�; Œ3; 3�/ D Œ3; 3� � Œ2; 3� � Œ3; 3� D Œ�6; �3�

and f �.X/ � fR1.X t�/, f �.X/ � fR2.X t�/.

Theorem 4.2.7 (Coercion to **-interpretability) If fR.X/ has multi-incident
proper components, and if X t�� is obtained from X by substituting all the
incidences of each multi-incident proper component into a point-wise interval
defined for any point of its domain, then fR.X t��/ � f ��.X/ (the existence
requirements being presupposed).

Proof The proof is the dual of the previous one. �

Theorem 4.2.8 (Interval coercion to *-interpretability) If fR.X/ has multi-
incident improper components, and if XT � is obtained from X by transforming, for
every multi-incident improper component, all incidences but one into their duals,
then

f �.X/ � fR.XT �/

(the existence requirements being presupposed).
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Proof Let us suppose that X D .Xp; X i / has only one j -incident improper Xm.
Let us define XT � D .Xp; Xm1; Dual.Xm2/; : : : ; Dual.Xmj/; X iu/, where

• Xp are the proper components,
• X iu are the uni-incident improper components,
• Xm1 are the improper incidences of Xm which maintain its original improper

modality.
• Xm2; : : : ; Xmj are the other incidences of Xm, which have been dualized, and

xm2; : : : ; xmj their corresponding variables.

Since in XT � there are no multi-incident improper components, in accordance with
Theorem 4.2.3 we have

f �.XT �/ � fR.XT �/ D Œa; b�

m
.8xp 2 X 0

p/ .8xm2 2 X 0

m/ � � � .8xmj 2 X 0

m/ Q.z; Œa; b�/ .9xm1 2 X 0

m/ .9xiu 2 X 0

iu/

f .xp; xm1; xm2; : : : ; xmj; xiu/ D z:

Since f is continuous on all its domain Prop.X/, given x going over the domain
X 0

m and choosing xm2 D : : : D xmj D x, for any xp and for any (or some) z, the
logical formula

.8xp 2 X 0
p/ .8x 2 X 0/ Q.z; Œa; b�/ .9xm1 2 X 0

m/ .9xiu 2 X 0
iu/

f .xp; xm1; x; : : : ; x; xiu/ D z:

proves that there exists a continuous function (because of the continuity of f )

' W X 0
m ! X 0

m

x ! xm1 D '.x/

Applying the Fixed Point Theorem to ', there exists a point xm 2 X 0
m such that

xm1 D xm and the logical formula implies that

.8xp 2 X 0
p/ Q.z; Œa; b�/ .9xm 2 X 0

m/ .9xiu 2 X 0
iu/ f .xp; xm; xiu/ D z

which is equivalent to

f �.Xp; X i / � Œa; b� D fR.XT �/:

The more general case, with more than one multi-incident components in X , is not
essentially different. �
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Theorem 4.2.9 (Interval coercion to **-interpretability) If fR.X/ has
multi-incident proper components, and if XT �� is obtained from X by
transforming, for every multi-incident proper component, all incidences but one
into its dual, then

fR.XT ��/ � f ��.X/

(the existence requirements being presupposed).

Proof The proof is parallel to that of the previous theorem. �

Example 4.2.9 For f .x1; x2/ D x2 � x1x2, and X D .Œ2; 3�; Œ4; 3�/,

f �.X/ D _
x12Œ2;3�0

^
x22Œ3;4�0

Œx2 � x1x2; x2 � x1x2�

D _
x12Œ2;3�0

Œ3 � 3x1; 4 � 4x1� D Œ�6; �4�;

fR.XT �/ D Œ4; 3� � Œ2; 3� � Œ3; 4� D Œ�8; �3�;

or

fR.XT �/ D Œ3; 4� � Œ2; 3� � Œ4; 3� D Œ�6; �4�;

where, for both computations, the relation f �.X/ � fR.XT �/ holds. For the same
function and X D .Œ1; 3�; Œ3; 4�/

f ��.X/ D f �.X/ D _
x22Œ3;4�0

_
x12Œ1;3�0

Œx2 � x1x2; x2 � x1x2�

D _
x22Œ3;4�0

Œx2 � 3x2; x2 � x2� D Œ�8; 0�

fR.XT ��/ D Œ3; 4� � Œ1; 3� � Œ4; 3� D Œ�6; 0�;

or

fR.XT ��/ D Œ4; 3� � Œ1; 3� � Œ3; 4� D Œ�8; 0�

and fR.XT ��/ � f ��.X/. (The reason for the coincidence, when such is the case,
will be found later on).

The computation of an interpretable syntactic interval program fR, tree-optimal
or not, may result in a loss of information, even when all its arguments are uni-
incident. This is a heavy drawback for every computation meant to serve an actual
use, since its loss of information will be usually far more important than the one
produced by the common numerical rounding. This loss can be cancelled or reduced
in some cases: for example if there exist multi-incident improper components



4.2 Interpretability and Optimality 87

and fR.X t�
1 /; : : : ; fR.X t�

n / are n results obtained transforming each one of these
multi-incidences in point-wise intervals, in several different ways, then

f �.X/ � fR.X t�
1 /; : : : ; f �.X/ � fR.X t�

n / ) f �.X/

� fR.X t�
1 / ^ : : : ^ fR.X t�

n / D B

and B will possibly be a better result than every fR.X t�
i /. Similarly, for the case of

multi-incident proper components,

fR.X t��
1 / _ : : : _ fR.X t��

n / � f ��.X/:

One has the same results when using the XT � or XT �� transformations.

Example 4.2.10 For the function f from R
2 to R given by

f .x1; x2/ D x1 C x2 � x1x2;

and the interval X D .Œ1; 3�; Œ5; 2�/,

f �.X/ D _
x12Œ1;3�0

^
x22Œ2;5�0

Œx1 C x2 � x1x2; x1 C x2 � x1x2�

D _
x12Œ1;3�0

Œ�x1 C 2; �4x1 C 5� D Œ�1; 1�

f ��.X/ D ^
x22Œ2;5�0

_
x12Œ1;3�0

Œx1 C x2 � x1x2; x1 C x2 � x1x2�

D ^
x22Œ2;5�0

Œ�2x2 C 3; 1� D Œ�1; 1�:

As

fR.XT �
1 / D fR.Œ1; 3�; Œ2; 5�; Œ5; 2�/ D Œ1; 3� C Œ2; 5� � Œ1; 3� � Œ5; 2�

D Œ3; 8� � Œ5; 6� D Œ�3; 3�

fR.XT �
2 / D fR.Œ1; 3�; Œ5; 2�; Œ2; 5�/ D Œ1; 3� C Œ5; 2� � Œ1; 3� � Œ2; 5�

D Œ6; 5� � Œ2; 15� D Œ�9; 3�

fR.XT ��
1 / D fR.Œ1; 3�; Œ3; 1�; Œ5; 2�/ D Œ1; 3� C Œ5; 2� � Œ3; 1� � Œ5; 2�

D Œ6; 5� � Œ15; 2� D Œ4; �10�

fR.XT ��
2 / D fR.Œ3; 1�; Œ1; 3�; Œ5; 2�/ D Œ3; 1� C Œ5; 2� � Œ1; 3� � Œ5; 2�

D Œ8; 3� � Œ5; 6� D Œ2; �2�;
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we have

f �.X/ D Œ�1; 1� �
(

fR.XT �
1 / D Œ�3; 3�

fR.XT �
2 / D Œ�9; 3�

)
� Œ�3; 3� ^ Œ�9; 3� D Œ�3; 3�

f ��.X / D Œ�1; 1� �
(

fR.XT ��
1 / D Œ4; �10�

fR.XT ��
2 / D Œ2; �2�

)
� Œ4; �10� _ Œ2; �2� D Œ2; �2�:

Similarly,

fR.X t�
1 / D fR.Œ1; 3�; Œ2; 2�/ D Œ1; 3� C Œ2; 2� � Œ1; 3� � Œ2; 2�

D Œ3; 5� � Œ2; 6� D Œ�3; 3�

fR.X t�
2 / D fR.Œ1; 3�; Œ5; 5�/ D Œ1; 3� C Œ5; 5� � Œ1; 3� � Œ5; 5�

D Œ6; 8� � Œ5; 15� D Œ�9; 3�

fR.X t��
1 / D fR.Œ1; 1�; Œ5; 2�/ D Œ1; 1� C Œ5; 2� � Œ1; 1� � Œ5; 2�

D Œ6; 3� � Œ5; 2� D Œ4; �2�

fR.X t��
2 / D fR.Œ3; 3�; Œ5; 2�/ D Œ3; 3� C Œ5; 2� � Œ3; 3� � Œ5; 2�

D Œ8; 5� � Œ15; 6� D Œ2; �10�;

so

f �.X/ D Œ�1; 1� �
(

fR.X t�
1 / D Œ�3; 3�

fR.X t�
2 / D Œ�9; 3�

)
� Œ�3; 3� ^ Œ�9; 3� D Œ�3; 3�

f ��.X/ D Œ�1; 1� �
(

fR.X t��
1 / D Œ4; �2�

fR.X t��
2 / D Œ2; �10�

)
� Œ4; �2� _ Œ2; �10� D Œ2; �2�:

The fact that there can be a semantic loss of information by the computation of
the program of an modal syntactic function, for which only the relations f �.X/ �
fR.X/ � f ��.X/ can be assured, leads to the immediate problem of obtaining
criteria ensuring the relation of optimality f �.X/ D fR.X/ D f ��.X/.

Definition 4.2.4 (Total monotonicity) A continuous real function f is x-totally
monotonic for a multi-incident variable x 2 R if it is uniformly monotonic for this
variable and for each one of its incidences (considering each leaf of the syntactic
tree as an independent variable). Any uni-incident uniformly monotonic variable is
totally monotonic too.

Remark 4.2.11 A modal syntactic function fR will be described as totally mono-
tonic for a multi-incident component X if
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1) f is uniformly monotonic for the variable x (this sense of monotonicity of f for
x is called global on the tree fR) and

2) f is uniformly monotonic for each incidence xj of x, considered as independent
(this sense of monotonicity for this incidence of xj in x is called local on the
tree fR).

Example 4.2.11 The function

f .x; y/ D x

x C y

in the domain .X; Y / D .Œ1; 3�0; Œ2; 4�0/ is uniformly monotonic for the variable x,

@f

@x
D y

.x C y/2
� 0

and for each one of its incidences,

@f

@x1

D 1

x C y
� 0

@f

@x2

D �x

.x C y/2
� 0:

So f is x-totally monotonic and fR is X -totally monotonic.

The following two lemmas do not provide any computational procedure, but they
will support the proofs of some subsequent propositions.

Lemma 4.2.6 Let X D .Y ; Z / be an interval vector and fR, defined in the domain
P rop.X/, be totally monotonic for the subset Z of their multi-incident components.
Let .Y ; ZD/ be the enlarged vector of X such that each incidence of every multi-
incident component of Z is included as an independent component, but transformed
into its dual if fR has a local monotonicity sense contrary to the global one of the
corresponding Z -component. Then

f �.Y ; Z / D f �.Y ; ZD/:

Proof Let us suppose that Z consists only of one multi-incident proper component
and f , for example is z-monotonic increasing. Let ZD D .ZDC; ZD�/ split into
ZDC, the incidences for which f is monotonic in the same sense as that of Z, and
ZD�, the incidences for which f is monotonic in the opposite sense. Then

f �.Y ; Z/

D _
yp2Y 0

p

_
z2Z0

^
y i 2Y 0

i

Œf .yp; y i ; z/; f .yp; y i ; z/�

== from Theorem 3.4.6

D _
yp2Y 0

p

^
yi 2Y 0

i

_
z2Z0

Œf .yp; y i ; z/; f .yp; y i ; z/�
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== from the z-total monotonicity

D _
yp2Y 0

p

^
yi 2Y 0

i

_
zdC2ZD0

C

^
zd�2ZD0

�

Œf .yp; y i ; zdC; zd�/; f .yp; y i ; zdC; zd�/�

== with a demonstration fully parallel to that of Theorem 3.4.6:

D _
yp2Y 0

p

_
zdC2ZD0

C

^
yi 2Y 0

i

^
zd�2ZD0

�

Œf .yp; y i ; zdC; zd�/; f .yp; y i ; zdC; zd�/�

D f �.Y ; ZD/:

The general case of possessing more multi-components proper for Z is not
essentially different. �

Lemma 4.2.7 Let X D .Y ; Z / be an interval vector and fR, defined in the domain
P rop.X/, be totally monotonic for the subset Z of their multi-incident components.
Let .Y ; ZD/ be the enlarged vector of X such that each incidence of every multi-
incident component of Z is included as an independent component, but transformed
into its dual if fR has a local monotonicity sense contrary to the global one of the
corresponding Z -component. Then

f ��.Y ; Z / D f ��.Y ; ZD/:

Proof The proof is parallel to that of the previous lemma. �

Theorem 4.2.10 (*-partially optimal coercion) Let X be an interval vector, and
suppose fR is defined in the domain P rop.X/ and is totally monotonic for a subset
Z of multi-incident components. Let XDt� be the enlarged vector of X , such
that:

1) each incidence of every multi-incident component of Z is included in XDt� as
an independent component, but transformed into its dual if f has a local mono-
tonicity sense contrary to the global one of the corresponding Z -component;

2) for the rest, every multi-incident improper component is transformed into a
point-wise interval defined by any point of its domain in every of its incidences.

Then

f �.X/ � fR.XDt�/:

Proof Let X D .Y ; Z / be a splitting of X in such a way that f is totally
monotonic for the components of Z and XDt� D .Y t�; ZD/. From Lemma 4.2.6
and Theorem 4.2.6 of coercion to interpretability,

f �.X/ D f �.Y ; Z / D f �.Y ; ZD/ � fR.Y t�; ZD/ D fR.XDt�/: �
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Theorem 4.2.11 (**-partially optimal coercion) Let X be an interval vector, and
let fR be defined on the domain P rop.X/ and totally monotonic for a subset Z of
its multi-incident components. Let XDt�� be the enlarged vector of X satisfying:

1) each incidence of every multi-incident component of Z is included in XDt�� as
an independent component, but transformed into its dual if f has a local mono-
tonicity sense contrary to the global one of the corresponding Z -component;

2) for the rest, every multi-incident proper component is transformed into a point-
wise interval defined by any point of its domain in every of its incidences.

Then

fR.XDt��/ � f ��.X/:

Proof The proof is the dual of that of Theorem 4.2.10. �

Theorem 4.2.12 (Interval *-partially optimal coercion) Let X be an interval
vector, and suppose fR is defined in the domain P rop.X/ and is totally monotonic
for a subset Z of multi-incident components. Let XDT� be the enlarged vector of
X satisfying:

1) each incidence of every multi-incident component of Z is included in XDT� as
an independent component, but transformed into its dual if f has a local mono-
tonicity sense contrary to the global one of the corresponding Z -component;

2) for the rest, every multi-incident improper component is transformed into its dual
in all but one of its incidences.

Then

f �.X/ � fR.XDT�/:

Moreover if fR.X/ is tree-optimal,

fR.XDT�/ � fR.XT �/

provided that the multi-incident components not belonging to Z undergo in XT �
the same transformation as in XDT�

Proof Let X D .Y ; Z / be a splitting of X such that f is totally monotonic for the
components of Z , and XDT� D .Y T �; ZD/. From Lemma 4.2.6 and the theorem
of interval coercion to *-interpretability (Theorem 4.2.8),

f �.X/ D f �.Y ; Z / D f �.Y ; ZD/ � fR.Y T �; ZD/ D fR.XDT�/:

Given the independence of the components of fR.Y T �; ZD/,

fR.XDT�/ D fR.Y T �; ZD/ D f �.Y T �; ZD/

D f �.Y T �; Z / � fR.Y T �; ZT �/ D fR.XT �/: �
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Remark 4.2.12 It is interesting to note that in the resulting transformation of ZD

into ZT �, all the components proper in Z either keep their proper modality or they
come from improper to proper through the local component change. The improper
components in Z go to proper modality in ZT � for each incidence of Z except
one. If this latter has the same monotonicity sense as the global one, it keeps its
modality in the ZD to ZT � transformation; if the contrary case happens, the
total monotonicity prevents this “contracting effect” from prevailing in the final
�-relation.

Example 4.2.12 Let us consider the continuous function f from R
2 to R defined

by f .x; y/ D xy C 1

x C y
with X D Œ10; 5� and Y D Œ2; �1�. Its *-semantic

extension is

f �.Œ10; 5�; Œ2; �1�/ D Œ20:083; �9:8�

Due to the theorem of coercion to *-interpretability,

fR.XT �
1 / D Dual.X/ � Dual.Y / C 1

X C Y
� Œ�9:75; 20:0834�

fR.XT �
2 / D X � Dual.Y / C 1

Dual.X/ C Y
� Œ�4:8889; 10:1429�

which includes into f �.X/. The derivatives prove that f is y-totally monotonic
because f is y-uniformly monotonic, monotonic increasing for the first incidence
and monotonic decreasing for the second one. As X is improper, there exist two
possibilities for the computation of fR.XDT�/:

fR.XDT�
1 / D X � Y C 1

Dual.X/ C Dual.Y /
� Œ20:0833; �9:75�

fR.XDT�
2 / D Dual.X/ � Y C 1

X C Dual.Y /
� Œ10:1428; �4:888�

which includes to f �.X/. Moreover, as fR is tree-optimal, fR.XDT�
1 / and

fR.XDT�
2 / are contained in fR.XT �

2 / and fR.XT �
1 /

Theorem 4.2.13 (Interval **-partially optimal coercion) Let X be an interval
vector, and suppose fR is defined in the domain P rop.X/ and totally monotonic for
a subset Z of multi-incident components. Let XDT�� be the enlarged vector of X

satisfying

1) each incidence of every multi-incident component of Z is included in XDT�� as
an independent component, but transformed into its dual if f has a local mono-
tonicity sense contrary to the global one of the corresponding Z -component;

2) for the rest, every multi-incident proper component is transformed into its dual
in all but one of its incidences.
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Then

fR.XDT��/ � f ��.X/:

Moreover if fR.X/ is tree-optimal,

fR.XT ��/ � fR.XDT��/;

provided that the multi-incident components not belonging to Z suffer in XT �� the
same transformation as in XDT��.

Proof The proof is the dual to that of Theorem 4.2.12. �

Theorem 4.2.14 (Partially optimal coercion) Let X be an interval vector, and
suppose fR is defined on the domain P rop.X/ and is totally monotonic for all its
multi-incident components. Let XD be the enlarged vector of X such that each
incidence of every multi-incident component is included in XD as an independent
component, but transformed into its dual if the corresponding incidence-point has a
monotonicity-sense contrary to the global one of the corresponding X -component.
Then

f �.X/ � fR.XD/ � f ��.X/:

Proof In this case, all the multi-incident components are totally monotonic, there-
fore XDT� D XD and we come to this result using Theorem 4.2.12 about
*-partially optimal coercion. �

4.2.6 Optimality in the Multi-incidence Case

This section gives criteria to characterize the optimality of the program fR, assuming
only ideal computations (without rounding), in the general case of multi-incident
variables.

Theorem 4.2.15 (Coercion to optimality) Let X , fR and XD be defined under
the hypotheses of Theorem 4.2.14, and let fR be tree-optimal on the domain
P rop.X/. In this case,

f �.X/ D fR.XD/ D f ��.X/:

Proof From Lemmas 4.2.6 and 4.2.7 and Theorem 4.2.14,

f �.XD/ D f �.X/ � fR.XD/ � f ��.X/ D f ��.XD/;
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due to the tree-optimality of fR.XD/ and the uni-incidence of the XD components,
f �.XD/ D f ��.XD/. Therefore f �.X/ D fR.XD/ D f ��.X/. �

Example 4.2.13 1. for f .x/ D x � x, one has fR.XD/ D X � Dual.X/ or
fR.XD/ D Dual.X/ � X;

2. for f .x/ D x=x, and fR.XD/ D X=Dual.X/ or fR.XD/ D Dual.X/=X ,
whenever 0 … X 0,

3. for f .x/ D 1=.1 C x/ C 1=.1 � x/ and X D Œ1=4; 1=2�, and also

fR.XD/ D 1

1 C Dual.X/
C 1

1 � X
D 1

1 C Œ1=2; 1=4�
C 1

1 � Œ1=4; 1=2�
;

because the f -tree is optimal in this case for X 0 � Œ0; 1/0:

Example 4.2.14 The function

f .x; y/ D xy C 1

x C y

for .X; Y / D .Œ5; 10�; Œ2; 1�/ is x-monotonic increasing and y-monotonic
increasing. Therefore

XD D .X; Y; Dual.X/; Dual.Y // ) fR.XD/ D X � Y C 1

Dual.X/ C Dual.Y /

So

fR.XD/ D Œ5; 10� � Œ2; 1� C 1

Œ10; 5� C Œ1; 2�
D Œ10; 10� C 1

Œ11; 7�
D Œ71=7; 111=11�

and

f �.X; Y / D Œ min
x2Œ5;10�0

max
y2Œ1;2�0

.xy C 1

x C y
/; max

x2Œ5;10�0
min

y2Œ1;2�0
.xy C 1

x C y
/�

D Œ min
x2Œ5;10�0

.2x C 1

x C 2
/; max

x2Œ5;10�0
.x C 1

x C 1
/�

D Œ71=7; 111=11�

f ��.X; Y / D Œ max
y2Œ1;2�0

min
x2Œ5;10�0

.xy C 1

x C y
/; min

y2Œ1;2�0
max

x2Œ5;10�0
.xy C 1

x C y
/�

D Œ max
y2Œ1;2�0

.5y C 1

5 C y
/; min

y2Œ1;2�0
.10y C 1

10 C y
/�

D Œ71=7; 111=11�

We remark that the syntactic tree of f is optimal for x; y 2 I �.Œ1; C1//.
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Optimality means JM-commutativity and equality between the semantical and
the syntactical interval extensions, i.e., with an ideal arithmetic without rounding,

f �.X/ D fR.X/ D f ��.X/:

But in the case of rounding computations only Out.fR.X// or Inn.fR.X// are
reachable and the optimality relations become

Out.fR.X// � f �.X/ D fR.X/ D f ��.X/ � Inn.fR.X//:

Example 4.2.15 Let us consider the electrical circuit where the voltage v across the

resistor r is v D er

� C r C s
The derivative of v with respect to the multi-incident

variable r is

dv

dr
D e.� C s/

.� C r C s/2
;

which is positive for any positive domain of the variables. The derivative with
respect to the first incidence of r is positive and the derivative with respect to the
second incidence of r is negative. The theorem of coercion to optimality proves that
for any positive intervals E , R, R0, and S , the modal syntactic extension

V D E � R

R0 C Dual.R/ C S
(4.1)

is optimal, i.e., v�.E; R; R0; S/ D V .
Let us suppose that the applied voltage source e, the internal resistance of the

generator �, and the resistance r are inside the intervals E 0 D Œ9; 11�0, R0
0 D

Œ1:5; 2:5�0 and R0 D Œ1; 3�0 respectively. The regulation problem is to find an interval
S such that if the resistance s takes values in the interval S 0, the voltage v takes
values of the given interval V 0.

If the voltage v is inside the domain V 0 D Œ2; 4�0, isolating S from the circuit
equation (4.1), following the rules of interval arithmetic in I �.R/, the result is

S D Dual.E � R/

V
� Dual.R0/ � R D

�
33

4
� 4:5;

9

2
� 3:5

�
� Œ3:8; 1�

(considering the inner rounding to a decimal digit). Applying the *-semantic
theorem to the inclusion

v�.Œ9; 11�; Œ1; 3�; Œ1:5; 2:5�; Œ3:8; 1�/ D Œ9; 11� � Œ1; 3�=.Œ1:5; 2:5� C Œ3; 1� C Œ3:8; 1�/

� Œ2; 4�
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ρ
e

rs v

ρ
e

rs v

Fig. 4.1 Electrical circuits

with S an improper interval, i.e., a regulating interval, the equivalent logical
formula is

.8e 2 Œ9; 11�0/ .8r 2 Œ1; 3�0/ .8� 2 Œ1:5; 2:5�0/ .9s 2 Œ1; 3:8�0/ .9v 2 Œ2; 4�0/

v D er=.� C r C s/

which means that a rheostat of resistance varying between 1 and 3.8 is necessary
to force the output voltage to be inside the given interval Œ2; 4�0 (left part of the
Fig. 4.1).

Suppose now that the voltage v can vary inside a wider interval, for example
V 0 D Œ2; 7�0. Analogous computations then yield S � Œ0:22; 1�. Applying the *-
semantic theorem to the inclusion

v�.Œ9; 11�; Œ1; 3�; Œ1:5; 2:5�; Œ0:22; 1�/ D Œ9; 11� � Œ1; 3�=.Œ1:5; 2:5� C Œ3; 1� C Œ0:22; 1�/

� Œ2; 7�

with S a proper interval, i.e., a fluctuation interval, the semantic result is

.8e 2 Œ9; 11�0/ .8r 2 Œ1; 3�0/ .8� 2 Œ1:5; 2:5�0/ .8s 2 Œ0:22; 1�0/ .9v 2 Œ2; 7�0/

v D er=.� C r C s/

which means that for any resistance between 0.22 and 1, the output voltage is inside
the given domain Œ2; 7�0 and no control is necessary in this case (right part of the
Fig. 4.1).

Definition 4.2.5 (Equivalent modal syntactic functions) Two modal syntactic
functions fR and gR are equivalent when f and g coincide as continuous real
functions, independently of the form of their syntactic trees.

Theorem 4.2.16 (Equivalent optimality) Let fR.X/ be any uni-incident modal
syntactic function with an equivalent modal syntactic function gR which has an
optimal computation for X . Then fR.X/ is optimal for X .
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Proof From the hypothesis

f �.X/ � fR.X/ � f ��.X/ ; f �.X/ D g�.X/ ; f ��.X/ D g��.X/:

As gR.X/ is optimal,

g�.X/ D gR.X/ D g��.X/ ) f �.X/ D fR.X/ D f ��.X/: �

Example 4.2.16 The R
3 to R continuous real functions f .a; b; c/ D a.b C c/

and g.a; b; c/ D ab C ac are equivalent and fR is a uni-incident modal syntactic
function.

1. For A D Œ�1; 1�, B D Œ1; 2� and C D Œ3; 1�, g is uniformly monotonic
for the variable a and monotonic increasing for the two incidences of a. The
computation gR.A; B; C / D A�B CA�C D Œ�1; 1�� Œ1; 2�C Œ�1; 1�� Œ3; 1� D
Œ�3; 3� is optimal. Theorem 4.2.16 implies the optimality of the computation

fR.A; B; C / D A�.BCC / D Œ�1; 1��.Œ1; 2�CŒ3; 1�/ D Œ�1; 1��Œ4; 3� D Œ�3; 3�:

2. For A D Œ�1; 1�, B D Œ3; 4� and C D Œ�1; �3�, g is uniformly monotonic for
the variable a and for the two incidences of a. The computation

gR.A; B; C / D A � B C A � C D Œ�1; 1� � Œ3; 4� C Œ�1; 1� � Œ�1; �3� D Œ�5; 5�

is neither optimal nor interpretable, but

gR.A; B; C / D A � B C Dual.A/ � C

D Œ�1; 1� � Œ3; 4� C Dual.Œ�1; 1�/ � Œ�1; �3� D Œ�1; 1�

is coerced to optimal. Theorem 4.2.16 implies the optimality of the computation

fR.A; B; C / D A � .B C C /

D Œ�1; 1� � .Œ3; 4� C Œ�1; �3�/ D Œ�1; 1� � Œ2; 1� D Œ�1; 1�:

3. For A D Œ�1; 1�, B D Œ1; 2� and C D Œ0; �4�, g is only partially monotonic for
the variable a. Then there is no criterion for an acceptable coercion on gR and

fR.A; B; C / D A � .B C C /

D Œ�1; 1� � .Œ1; 2� C Œ0; �4�/ D Œ�1; 1� � Œ1; �2� D Œ0; 0�:

can be different from f �, from f ��, or from both.
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4.3 Conditional Optimality

We will now introduce new conditions to assess the syntactic optimality of modal
syntactic functions, which depend on the modalities of their arguments. The
simplest examples are provided by the case of uni-modal syntactic functions whose
modal syntactic computation is optimal, as far as its arguments are uni-incident.

Theorem 4.3.1 (Coercion to optimality for uni-modal arguments) Let X , fR
and XD satisfy the conditions of Theorem 4.2.14, and let X be a uni-modal interval
vector. Then

f �.X/ D fR.XD/ D f ��.X/:

Proof From Theorem 4.2.14 and the equality f �.X/ D f ��.X/ due to the
uni-modality. �

Example 4.3.1 The R2 to R continuous function defined by

f .x1; x2/ D x1.x2 C x1/

for X1 D Œ�2; �1�, X2 D Œ4; 8� is uni-modal; f is x1-totally monotonic increasing
since the partial derivative with respect to x1 is positive, the partial derivative respect
to the first incidence of x1 is positive, and the partial derivative with respect to the
second incidence of x1 is negative. In accordance with Theorem 4.3.1

f �.X/ D f ��.X/ D X1 � .X2 C Dual.X1// D Œ�2; �1� � .Œ4; 8� C Œ�1; �2�/

D Œ�12; �3�:

Definition 4.3.1 (Uni-incident list of vectors) .x1; : : : ; xk/ is a uni-incident list of
vectors when every xi has only uni-incident variable components and the different
xi share no common component.

Remark 4.3.1 f �.g1.X 1/; : : : ; gk.Xk// will designate f �.X 1; : : : ; X k/, where f

is the function f0 ı .g1; : : : ; gk/, and f0 the main operator of the f -syntactic tree
which, in what follows, always is supposed a two-variable partially monotonic
function (exceptions to this general case will be indicated whenever the need arises).

Lemma 4.3.1 (Conditional *-optimality of two-variables partially monotonic
operators) If X is a proper vector and f .g.x/; h.y ; v// is a uni-incident,
continuous, and h-partially monotonic function, then

f �.g.X /; h.Y ; V // D f �
0 .g�.X/; h�.Y ; V //;

where Y and V are the proper and improper arguments of h.
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Proof Let us define

G0 D fg.x/ j x 2 X 0g;
G0C D fg 2 G0 j f .g; h/ is h-monotonic increasing g;
G0� D fg 2 G0 j f .g; h/ is h-monotonic decreasingg:

We have

f �.g.X /; h.Y ; V // D _
x2X 0

_
y2Y 0 v̂2V 0

Œf0.g.x/; h.y ; v//; f0.g.x/; h.y; v//�

D _
g2G0

_
y2Y 0 v̂2V 0

Œf0.g; h.y ; v//; f0.g; h.y ; v//�

D . _
g2G0

C

_
y2Y 0 v̂2V 0

Œf0.g; h.y ; v//; f0.g; h.y ; v//�/

_ . _
g2G0

�

_
y2Y 0 v̂2V 0

Œf0.g; h.y ; v//; f0.g; h.y ; v//�/

// from the associativity of the lattice operators.

D . _
g2G0

C

Œf0.g; min
y2Y 0

max
v2V 0

h.y ; v//; f0.g; max
y2Y 0

min
v2V 0

h.y ; v//�/

_ . _
g2G0

�

Œf0.g; max
y2Y 0

min
v2V 0

h.y; v//; f0.g; min
y2Y 0

max
v2V 0

h.y ; v//�/

// f0.g; :/ is uniformly monotonic for g 2 G0C and g 2 G0�

D _
g2G0

f �
0 .g; h�.Y ; V // D f �

0 .g�.X/; h�.Y ; V //: �

Remark 4.3.2 The only conditions on g.x/ and h.y ; v/ are continuity and uni-
incidence (which supposes only the independence between the components of x

and .y ; v/).

Remark 4.3.3 If g�.X/ and h�.Y ; V / have *-optimal computations, denoted by
gR�.X/ and hR�.Y ; V /, then

f �
0 .g.X/; h.Y ; V // D f �

0 .gR�.X/; hR�.Y ; V //;

denoted by fR�.X ; Y ; V / or fR�.g.X/; h.Y ; V //. In this case, fR� is *-optimal too.

Some examples can show the relevance of the hypotheses of this Lemma.

Example 4.3.2 The R
3 to R continuous function f .x; y; v/ D x.y C v/ can be

expressed as f0.g; h/ D gh with g.x/ D x and h.y; v/ D y C v. For X D Œ�1; 1�,
Y D Œ1; 2�, V D Œ0; �4� f0 is h-partially monotonic. Then, it is true that

f �.g.X/; h.Y; V // D f �
0 .gR�.X/; hR�.Y; V // D f �

0 .Œ�1; 1�; Œ1; �2�/ D Œ0; 0�:
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Example 4.3.3 The condition that X have proper uni-modality is necessary: with
the same functional structure of the latter example, for X D Œ1; �1�, Y D Œ0; 4�,
V D Œ�2; �3�, we will obtain

f �.g.X/; h.Y; V // D Œ0:5; �0:5�

different from

f �
0 .gR�.X/; hR�.Y; V // D f �

0 .Œ1; �1�; Œ�2; 1�/ D Œ0; 0�:

Example 4.3.4 The modality of h�.Y ; V / has no influence on the hypothetical *-
optimality of fR�: for the same system of functions of the Example 4.3.2 and for
X D Œ�3; 1�, Y D Œ�1; 2�, V D Œ1; �1�, it results that

h�.Y; V / D h�.Œ�1; 2�; Œ1; �1�/ D Œ0; 1�

which is a proper interval, but f is not JM-commutative since f �.g.X/; h.Y; V // D
Œ�3; 1� is different from

f ��.g.X/; h.Y; V // D Œ�3; 2:25�:

Anyway, as f0 is h-partially monotonic and X is proper, as is guaranteed by
Lemma 4.3.1,

f �.g.X/; h.Y; V // D f �
0 .gR�.X/; hR�.Y; V // D f �

0 .Œ�3; 1�; Œ0; 1�/ D Œ�3; 1�:

Example 4.3.5 The g-monotonicity of f0 is not necessary for *-optimality; for the
R

3 to R continuous function f .x; y; v/ D x2.y C v/, for X D Œ�3; 1�, Y D Œ�1; 2�,
V D Œ1; �1� we obtain

f �.X; Y; V / D f �.Œ�3; 1�; Œ�1; 2�; Œ1; �1�/ D Œ0; 9�:

Expressed in the form f0.g; h/ D g2h with g.x/ D x and h.y; v/ D y C v (f is
not g-partially monotonic) is

f �
0 .gR�.X/; hR�.Y; V // D f �

0 .Œ�3; 1�; Œ0; 1�/ D Œ0; 9�:

Expressed in the form f0.g; h/ D gh with g.x/ D x2 and h.y; v/ D y C v (f is
g-partially monotonic) is

f �
0 .gR�.X/; hR�.Y; V // D f �

0 .Œ0; 9�; Œ0; 1�/ D Œ0; 9�:
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Example 4.3.6 Nevertheless, the h-monotonicity of f0 is necessary for *-optimality;
for the R

3 to R continuous function f .x; y; v/ D x.y C v/2, for X D Œ1; 2�,
Y D Œ�4; 1�, V D Œ2; 0� we obtain

f �.X; Y; V / D f �.Œ1; 2�; Œ�4; 1�; Œ2; 0�/ D Œ1; 8�:

Expressed in the form f0.g; h/ D gh2 with g.x/ D x and h.y; v/ D y C v (f is not
h-partially monotonic) is

f �
0 .gR�.X/; hR�.Y; V // D f �

0 .Œ1; 2�; Œ�2; 1�/ D Œ0; 8�

different from f �.X; Y; V /.

Lemma 4.3.2 (Conditional **-optimality of two-variables partially monotonic
operators) If U is an improper vector and f .g.u/; h.y; v// is a uni-incident,
continuous and h-partially monotonic function, then

f ��.g.U /; h.Y ; V // D f ��
0 .g��.U /; h��.Y ; V //;

where Y and V are the proper and improper arguments of h.

Proof The proof is the dual of that of Lemma 4.3.1 �

Remark 4.3.4 If g��.U / and h��.Y ; V / do have **-optimal computations, denoted
by gR��.U / and hR��.Y ; V /, then

f ��
0 .g.U /; h.Y ; V // D f ��

0 .gR��.U /; hR��.Y ; V //

denoted by fR��.U ; Y ; V / or fR��.g.U /; h.Y ; V //. In this case, f is **-optimal
too.

Example 4.3.7 As we see in Example 4.3.3, for the R
3 to R continuous function

f .x; y; v/ D x.y C v/, expressed as f0.g; h/ D gh with g.x/ D x and h.y; v/ D
y C v for X D Œ1; �1�, Y D Œ0; 4�, V D Œ�2; �3�, fR is not *-optimal; however it is
**-optimal, since

f ��.g.X/; h.Y; V // D Œ0; 0�

and

f ��
0 .gR��.X/; hR��.Y; V // D f ��

0 .Œ1; �1�; Œ�2; 1�/ D Œ0; 0�:

Definition 4.3.2 (Split modality) The function f .g1.x1/; : : : ; gk.xk// satisfies
the condition of split modality when f is JM-commutable and X 1; : : : ; Xk are uni-
modal vectors.
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Particularly the structure f .g.x/; h.v// satisfies the condition of split modality
when f0 is .g; h/-partially monotonic, X is a proper uni-modal vector, and V an
improper uni-modal vector.

Theorem 4.3.2 (Split optimality) If f .g1.x1/; : : : ; gk.xk// is a continuous func-
tion satisfying the split modality condition, then

f �.g1.X 1/; : : : ; gk.Xk// D f �
0 .g�

1 .X 1/; : : : ; g�
k .Xk//

D f ��
0 .g��

1 .X 1/; : : : ; g��
k .Xk//

D f ��.g1.X 1/; : : : ; gk.Xk//:

Proof The proof is essentially similar to that of Lemma 4.2.4 (right unary
associativity). When k D 2, X1 is a uni-modal proper vector, and X2 is a uni-modal
improper vector, the theorem is a direct consequence of Lemmas 4.3.1 and 4.3.2
(the lemmas of conditional *-optimality and **-optimality). �

Example 4.3.8 If A1; : : : ; Ak 2 I �.R/, then the k-dimensional product A1 � : : : �
Ak is optimal. Effectively, let us suppose A D .A1; : : : ; Ap; ApC1; : : : ; Ak/ with
A1; : : : ; Ap proper and ApC1; : : : ; Ak improper. Then

f �.A/ D f �
0 .g�.A1; : : : ; Ap/; h�.ApC1; : : : ; Ak//

D .A1 � : : : � Ap/ � .ApC1 � : : : � Ak/;

since the condition of split modality is verified and g and h are JM-commutable
(they are uni-modal).

Lemma 4.3.3 (First lemma of lateral optimality) Let f .g.u/; h.y; v// be a
continuous function, h-uniformly monotonic in .Y ; V /. If U is an improper vector, if
Y and V are, respectively, the proper and improper components of the h arguments,
and if U and V have no common components, then f is *-optimal, i.e.,

f �.g.U /; h.Y ; V // D f �
0 .g�.U /; h�.Y ; V //:

Proof Developing the right-hand side

f �
0 .g�.U /; h�.Y ; V // D f ��

0 .g�.U /; h�.Y ; V // D
ĝ2G0

f �.g; h�.Y ; V //;

since f is h-uniformly monotonic function and consequently JM-commutable (see
Theorem 3.4.4). Developing the left-hand side

f �.g.U /; h.Y ; V // D _
y2Y 0û2U 0 v̂2V 0

Œf .g.u/; h.y; v//; f .g.u/; h.y ; v//�:
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Since f .g; h/ is h-uniformly monotonic, for example h-uniformly monotonic
increasing, then

_
y2Y 0 ĝ2G0

Œf .g; max
v2V 0

h.y; v//; f .g; min
v2V 0

h.y; v//�:

As f .g.u/; h1.y// and f .g.u/; h2.y//, with

h1.y/ D max
v2V 0

h.y; v/;

h2.y/ D min
v2V 0

h.y; v/;

are split modality functions in .G; Y /, they are JM-commutable. Consequently

f �.g.U /; h.Y ; V // D
ĝ2G0

_
y2Y 0

Œf .g; max
v2V 0

h.y ; v//; f .g; min
v2V 0

h.y ; v//

D
ĝ2G0

Œf .g; min
y2Y 0

max
v2V 0

h.y ; v//; f .g; max
y2Y 0

min
v2V 0

h.y ; v//�

D
ĝ2G0

f �.g; h�.Y ; V //:

Analogous reasoning takes care of the case when f .g; h/ is h-uniformly monotonic
decreasing. �

Lemma 4.3.4 (Second lemma of lateral optimality) Let f .g.x/; h.y; v// be a
function continuous and h-uniformly monotonic in .Y ; V /. If X is a proper vector, if
Y and V are, respectively, the proper and improper components of the h arguments,
and if X and Y have no common components, then f is **-optimal, i.e.,

f ��.g.X/; h.Y ; V // D f ��
0 .g��.X/; h��.Y ; V //:

Proof The proof is the dual of that of Lemma 4.3.3. �

Theorem 4.3.3 (Lateral optimality) Suppose f .g.x/; h.y; v// is a continuous
function, h-uniformly monotonic in .Y ; V /. Then if X is a uni-modal vector, if Y

and V are, respectively, the proper and the improper components of the h-argument,
and if X , Y and V have no common component, then

f �.g.X/; h.Y ; V // D f �
0 .g�.X/; h�.Y ; V //

D f ��
0 .g��.X/; h��.Y ; V // D f ��.g.X /; h.Y ; V //:

Proof The first and third equalities come from Lemmas 4.3.1 and 4.3.2
(conditioned *-optimality and **-optimality) and from Lemmas 4.3.3 and 4.3.4
(lateral optimality). The second equality comes from the fact that when X is
uni-modal, g�.X/ D g��.X/ is h JM-commutable because it is h-uniformly
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nonotonous, therefore h�.Y ; V / D h��.Y ; V /, and from Theorem 3.4.4 applied to
f0, f �

0 D f ��
0 . �

Example 4.3.9 Consider the continuous real function f .x; y; v/ D x.y C v/,
expressed by f0.g; h/ D gh with g.x/ D x and h.y; v/ D y C v for X D Œ1; 0�,
Y D Œ�4; 0�, V D Œ2; 1�, this function satisfies the lateral optimality condition since
it is h-uniformly monotonic and X is uni-modal. Then

f �.gŒ1; 0�; h.Œ�4; 0�; Œ2; 1�// D f ��.gŒ1; 0�; h.Œ�4; 0�; Œ2; 1�// D Œ0; 0�:

Remark 4.3.5 Whenever h�.Y ; V / had an optimal modal syntactic computation
hR.Y ; V /, we could write fR.g.X/; h.Y ; V // D f �

0 .gR.X/; hR.Y ; V //.

Remark 4.3.6 The functions g and h can be vectors, as long as all the arguments of
every gi .Xi/ have the same modality, f is uniformly monotonic for each hi , and
overall uni-incidence holds.

4.3.1 Conditional Tree-Optimality

Definition 4.3.3 (Modally conditioned optimal modal syntactic operators) A
modal syntactic function fR.X/ is called a c-optimal modal syntactic operator when
f satisfies one of the following conditions

1. f is of split modality,
2. f is laterally optimal.

Definition 4.3.4 (Conditionally tree-optimal modal syntactic functions) A
modal syntactic function fR.X/ is c-tree optimal if any of its non-uniformly
monotonic sub-trees is optimal or c-optimal.

Remark 4.3.7 The restrictions required by c-optimality propagate up the syntactic
tree.

The c-tree-optimal condition extends the set of tree-optimal syntactic extensions
to which theorems similar to Theorems 4.2.5 and 4.2.15 can be applied, as the
following results show.

Theorem 4.3.4 (Conditional optimality) If fR.X/ is uni-incident and c-tree-
optimal, then fR.X/ is optimal, i.e.,

f �.X/ D fR.X/ D f ��.X/:

Proof This follows from the previous lemmas and theorems. �
Example 4.3.10 Consider the continuous real function f .x; y; v/ D x.y Cv/ given
by f0.g; h/ D gh with g.x/ D x and h.y; v/ D y C v for X D Œ1; 0�, Y D Œ�4; 0�,
V D Œ2; 1�. This function is not tree-optimal. Nevertheless it is c-optimal, because it
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satisfies the condition of lateral optimality, see Example 4.3.9, and the conditioned
optimal coercion theorem gives

f �.X; Y; V / D f ��.X; Y; V / D fR.X; Y; V / D fR.Œ1; 0�; Œ�4; 0�; Œ2; 1�/ D Œ0; 0�:

The syntactic tree of fR is

Y Z

Ÿ �
X C non-unary operator
Ÿ �

� non-uniformly monotonic operator

Theorem 4.3.5 (Coercion to conditional optimality) Let X be an interval vector;
let fR.XD/ be defined and c-tree-optimal on the domain P rop.X/ and totally
monotonic for all its multi-incident components. Let XD be defined as the
enlarged vector of X such that each incidence of every multi-incident component
is included in XD as an independent component, but transformed into its dual if
the corresponding incidence point has a monotonicity sense contrary to the global
one of the corresponding X -component. Then

f �.X/ D fR.XD/ D f ��.X/:

Proof The proof is a re-statement of that of Theorem 4.2.15, adjusted for the case
of c-optimality. Note the role of fR.XD/ in the demonstration of this theorem. �
Example 4.3.11 The function f .x; y; z/ D x.y C z/ � y for X D Œ1; 0�, Y D Œ2; 3�

and Z D Œ�3; �1� is not tree-optimal; therefore, it is not possible to apply the
optimal-coercion theorem. However, the modal syntactic function associated to f

is c-tree-optimal (the product satisfies the conditions of Theorem 4.3.3) and hence
it is possible to apply the conditioned optimal coercion Theorem 4.3.5. Then

f �.X/ D fR.XD/ D X � .Dual.Y / C Z/ � Y

D Œ1; 0� � .Œ3; 2� C Œ�3; �1�/ � Œ2; 3� D Œ�3; �2�:

The syntactic tree of fR is

Dual.Y / Z

Ÿ �
X C
Ÿ �

� Y

Ÿ �
�
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The equivalent function g.x; y; z/ D xy C xz � y does not have an optimal
computation since it is not globally uniformly monotonic for the multi-incident
variable x. The relevant difference from f is that x is not multi-incident in f , but
it is multi-incident in g.

We may observe that the c-optimality cannot, in this example, be broken by
the transformation from X to XD, since the branch conditioned to uni-modality
contains the only variable X .

Remark 4.3.8 In accordance with the corresponding definitions of optimality
and tree-optimality conditions, both imply c-conditional optimality. Therefore
Theorems 4.3.5 and 4.3.4 provide a more extensive class of optimal modal syntactic
functions.

Definition 4.3.5 (Interval property) We call an interval property any property
which, in case it holds on an interval-domain .X 0

1; : : : ; X 0
k/, it then also holds on

any interval sub-domain .Y 0
1 ; : : : ; Y 0

k/ � .X 0
1; : : : ; X 0

k/.

Theorem 4.3.6 The classes of tree-optimal and c-tree-optimal modal syntactic
functions do not exhaust all the cases of modal syntactic optimality.

Proof Since tree-optimality and c-tree-optimality are interval properties; however
JM-commutability and modal syntactic optimality are not, as the following example
shows. �
Example 4.3.12 Consider the continuous function f .x; y/ D jx C yj. For the
intervals .X; Y / D .Œ1; �1�; Œ0; 2�/, the modal syntactic function fR.x; y/ is optimal,
since

f �.X; Y / D f ��.X; Y / D fR.X; Y / D Œ1; 1�I
however, after reducing the interval domain .Œ�1; 1�0; Œ0; 2�0/ to a sub-domain
.Œ�1; 1�0, Œ0; 1�0/, for .X; Y / D .Œ1; �1�; Œ0; 1�/,

f �.X; Y / D Œ1; 0� and f ��.X; Y / D Œ1; 0:5�

and fR.X; Y / is not optimal. If the reference domain is enlarged to .Œ�1; 1�0;
Œ�1; 2�0/, the JM-commutability is lost, since for .Œ1; �1�; Œ�1; 2�/

f �.X; Y / D Œ1; 1:5� and f ��.X; Y / D Œ0; 1:5�:

Remark 4.3.9 The relation f �.X/ � fR.X/ � f ��.X/ for uni-incident modal
syntactic functions, makes optimality a subsidiary property of JM-commutability.

4.4 m-Dimensional Computations

The previous results about interpretability can be extended to systems of functions
under certain hypotheses.
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If X 2 I �.Rm/ and f W R
k ! R

m defined by f .x/ D .f1.x/; : : : ; fm.x//

continuous in X 0 is such that the functions f1; : : : ; fm do not share any
improper variable, the *-semantic theorems can be applied separately to
.f �

1 .X/; : : : ; f �
m .X// so that the conjunction of the logical formulas obtained

provide the semantics for f �.X/ D .f �
1 .X/; : : : ; f �

m .X//. Analogously for the
semantic interpretation of f ��.X/.

Example 4.4.1 For f W R3 ! R
2 defined by

f .x1; x2; x3/ D .x1 C x2 C x3; x1x2 � x1/

with X D .Œ1; 6�; Œ2; 6�; Œ9; �3�/, there are no common variables corresponding to
improper intervals. As

f �
1 .X/ D fR.X1; X2; X3/ D Œ1; 6� C Œ2; 6� C Œ9; �3� D Œ12; 9�;

which is equivalent to

.8x1 2 Œ1; 6�0/.8x2 2 Œ2; 6�0/ .8z1 2 Œ9; 12�0/ .9x3 2 Œ�3; 9�0/ z1 D x1 C x2 C x3

and f2 satisfies the conditions of Theorem 4.2.15,

f �
2 .X/ D fR.XD/ D Œ1; 6� � Œ2; 6� � Dual.Œ1; 6�/ D Œ1; 30�;

which is equivalent to

.8x1 2 Œ1; 6�0/ .8x2 2 Œ2; 6�0/ .9z2 2 Œ1; 30�0/ z2 D x1x2 � x1;

then

f �.Œ1; 6�; Œ2; 6�; Œ9; �3�/ D .f �
1 .Œ1; 6�; Œ2; 6�; Œ9; �3�/; f �

2 .Œ1; 6�; Œ2; 6�//

D .Œ12; 9�; Œ1; 30�/

is equivalent to

.8x1 2 Œ1; 6�0/.8x2 2 Œ2; 6�0/ .8z1 2 Œ9; 12�0/ .9z2 2 Œ1; 30�0/ .9x3 2 Œ�3; 9�0/

.z1 D x1 C x2 C x3; z2 D x1x2 � x1/:

Example 4.4.2 Consider a physical system consisting of two connected tanks which
contain saline solution. Tank 1 holds v1 l and tank 2 holds v2 l . Denoting by x.t/g

and y.t/g the mass of salt in tanks 1 and 2, respectively, every second u.t/g of salt
is introduced into the tanks at a rate of k into tank 1 and .1 � k/ into the tank 2.
Every second c1 l of solution flow into tank 1 from tank 2 and c2 l flow from tank
1 into tank 2. The mass of salt in each one of the two tanks at the initial instant are
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u

x y
k2

k1

k 1-k

Fig. 4.2 Two tanks system

x.0/g and y.0/g. The problem is to know the evolution of the mass of salt in each
tank during the time of the simulation (see Fig. 4.2).

Taking into account the balance of masses of salt in both tanks, the discrete
mathematical model in differences for this physical system is

x.t C �t / D .1 � �tk1/x.t/ C �tk2y.t/ C �tku.t/

y.t C �t / D .1 � �tk2/y.t/ C �tk1x.t/ C �t.1 � k/u.t/;

where k1 D c1=v1, k2 D c2=v2 and �t < min.1=k1; 1=k2/, which provides the
variation of the mass of salt in both tanks along the time. Thus, for

v1 D 11 l

v2 D 21 l

c1 D 0:7 l=s

c2 D 0:7 l=s

k D 0:2

u.t/ D
�

0:7 g=s for t < 20

0:0 g=s for t � 20

x.0/ D 7 g

y.0/ D 4 g

�t D 1 s;

the obtained results of the simulation are summarized in Table 4.1 which shows the
evolution of the mass of salt in each tank.

Introducing interval uncertainties in the physical system, let K , K1 and K2 be
intervals of variation for the parameters of the system, X.t/ and Y.t/ be intervals of
variation for the state variables, and X.0/ and Y.0/ be intervals of variation for the
initial states. Now the logical statement of the problem is to find intervals X.t/ and
Y.t/, for t D 0; �t ; 2�t ; : : : ; n�t , such that

.8k1 2 K1/ .8k2 2 K2/ .8k 2 K/ .8u.t/ 2 U.t//

.8x.t/ 2 X.t// .9.y.t/ 2 Y.t// .9x.t C �t / 2 X.t C �t //

x.t C �t/ D .1 � �t k1/x.t/ C �t k2y.t/ C �t ku.t/
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Table 4.1 Simulations
t x.t/ y.t/

1 6:82788 4:87212

2 6:69578 5:70422

: : : : : : : : :

20 8:10952 16:8905

21 8:29648 17:4035

: : : : : : : : :

70 8:83074 16:8693

71 8:8311 16:8689

: : : : : : : : :

and

.8k1 2 K1/ .8k2 2 K2/ .8k 2 K/ .8u.t/ 2 U.t//

.8y.t/ 2 Y.t// .9.x.t/ 2 X.t// .9y.t C �t / 2 Y.t C �t//

y.t C �t/ D .1 � �t k2/y.t/ C �t k1x.t/ C �t .1 � k/u.t/

which, by the *-Semantic Theorem 3.3.1, are equivalent to the following interval
computations

X.t C �t / D .1 � �t K1/ � X.t/ C �t K2 � Impr.Y.t// C �t K � U.t/

Y.t C �t / D .1 � �tK2/ � Y.t/ C �t K1 � Impr.X.t// C �t.1 � K/ � U.t/;

for t D 0; �t ; 2�t ; : : : ; n�t . Thus, for

V1 D Œ10; 12� l

V2 D Œ20; 22� l

C1 D Œ0:68; 0:72� l=s

C2 D Œ0:68; 0:72� l=s

K D Œ0:18; 0:22�

U.t/ D
�

[0.65,0.75] g=s for t < 20

[0.0,0.0] g=s for t � 20

X.0/ D Œ6:5; 7:5� g

Y.0/ D Œ3:5; 4:5� g

�t D 1 s;

the results of the interval simulation are summarized in Table 4.2 which shows
the uncertainty intervals of the mass of salt in each tank for several steps of the
simulation.
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Table 4.2 Interval
simulations

t X.t/ Y.t/

1 Œ6:28809; 7:366� Œ4:306; 5:44391�

2 Œ6:12061; 7:26861� Œ5:07539; 6:34339�

: : : : : : : : :

20 Œ7:17966; 9:06766� Œ15:3723; 18:4603�

21 Œ7:35031; 9:27223� Œ15:8398; 19:0217�

: : : : : : : : :

70 Œ7:91813; 9:75162� Œ15:3604; 18:4539�

71 Œ7:91842; 9:752� Œ15:36; 18:4536�

: : : : : : : : :

When there exist shared improper variables, the conjunction of the logical
formulas resulting from the application of the Semantic Theorems to the different
component functions is not possible due to the existential quantifiers affecting the
same variable in different functions. In this case the following theorems are valid.

Theorem 4.4.1 (Interpretability of m-dimensional computations) Let X 2
I �.Rm/ and f W Rk ! R

m defined by f .x/ D .f1.x/; : : : ; fm.x// continuous in
X 0. Let .Z1; : : : ; Zm/ be a system of interpretable outer-rounded computations of

.f �
1 .A1/; : : : ; f �

m .Am//;

where .A1; : : : ; Am/ are derived from X so as to have the same proper components
as X , but with each multi-incident improper component of X transformed into a
point-wise interval defined for any point of its domain. In this case,

.8xp 2 X 0
p/ Q�.z; Z / .9xi 2 X 0

i / z D f .xp; xi /;

with X D .Xp; X i / and Q�.z; Z / being the sequence of the prefixes

Q.z1; Z1/; : : : ; Q.zm; Zm/;

with the ones corresponding to the universal quantifiers heading the sequence.

Proof Under these hypotheses, no improper component of X is repeated in more
than one f �

i .X/, because for every multi-incident universal variable, all its inci-
dences have been transformed into a point-wise interval defined for any of the points
of their domains (if this were not the case, multiple existential quantifiers over the
same variable cannot be extracted to obtain the prenex form of the semantic theorem
for the overall m-dimensional system). The result is obtained by the logical product
of the separate semantics of each of the computations fR1.A1/; : : : ; fRm.Am/. �

Theorem 4.4.2 (Dual interpretability of m-dimensional computations) Let X 2
I �.Rk/ and f W Rk ! R

m be defined by f .x/ D .f1.x/; : : : ; fm.x// continuous on
X 0. Let .Z1; : : : ; Zm/ be a system of interpretable inner-rounded computations of

.f ��
1 .A1/; : : : ; f ��

m .Am//;
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where .A1; : : : ; Am/ are derived from X so as to have the same improper
components of X , but with each multi-incident proper component of X transformed
into a point-wise interval defined for any point of its domain. In this case

.8xi 2 X 0
i / Q�.z; Dual.Z // .9xp 2 X 0

p/ z D f .xp; xi /;

with X D .Xp; X i / and Q�.z; Dual.Z // being the sequence of the prefixes

Q.z1; Dual.Z1//; : : : Q.zm; Dual.Zm//;

with the ones corresponding to the universal quantifiers heading the sequence.

Proof Similar to the previous one. �

Example 4.4.3 For f W R3 ! R
2 defined by

f .x1; x2; x3/ D .x1 C x2 C x3; x1x2 � x1/

with X D .Œ6; 1�; Œ6; 2�; Œ�3; 2�/, we may proceed as follows:

f1.x1; x2; x3/ D x1 C x2 C x3

f2.x1; x2/ D x1x2 � x1;

A1 D .Œ1; 1�; Œ2; 2�; Œ�3; 2�/

A2 D .Œ1; 1�; Œ2; 2�/

Z1 D Œ1; 1� C Œ2; 2� C Œ�3; 2� D Œ0; 5�

Z2 D Œ1; 1� � Œ2; 2� � Œ1; 1� D Œ1; 1�

where Z1 is an interpretable modal syntactic computation of f �
1 .A1/ and Z2 of

f �
2 .A2/ after the substitution of the multi-incident interval Œ6; 1� by Œ1; 1� and Œ6; 2�

by Œ2; 2�. Therefore, the interpretation of these results is

.8x3 2 Œ�3; 2�0/ .8z2 2 Œ1; 1�0/ .9z1 2 Œ0; 5�0/ .9x1 2 Œ1; 6�0/ .9x2 2 Œ2; 6�0/

.z1 D x1 C x2 C x3; z2 D x1x2 � x1/:

Similarly

A1 D .Œ6; 6�; Œ3; 3�; Œ�3; 2�/

A2 D .Œ6; 6�; Œ3; 3�/

Z1 D Œ6; 6� C Œ3; 3� C Œ�3; 2� D Œ6; 11�

Z2 D Œ6; 6� � Œ3; 3� � Œ6; 6� D Œ12; 12�
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after the substitution of the multi-incident interval Œ6; 1� by Œ6; 6� and Œ6; 2� by Œ3; 3�.
Therefore, the interpretation of these results is

.8x3 2 Œ�3; 2�0/ .8z2 2 Œ12; 12�0/ .9z1 2 Œ6; 11�0/ .9x1 2 Œ1; 6�0/ .9x2 2 Œ2; 6�0/

.z1 D x1 C x2 C x3; z2 D x1x2 � x1/:

Theorem 4.4.3 (Interval interpretability of m-dimensional computations) Let
X 2 I �.Rk/ and suppose f W R

k ! R
m defined by f .x/ D .f1.x/; : : : ; fm.x//

is continuous in X 0. Let A1; : : : ; Am be the vectors containing the arguments of
f1; : : : ; fm, derived from X so as to have the same proper components as X , but
with all except one multi-incident improper component of X transformed into its
dual in each Xj . Let .Z1; : : : ; Zm/ be a system of interpretable outer-rounded
computations of

.f �
1 .A1/; : : : ; f �

m .Am//;

i.e., fj R.Aj / � Zj for j D 1; : : : ; m. In this case

.8xp 2 X 0
p/ Q�.z; Z / .9xi 2 X 0

i / z D f .xp; xi /;

with X D .Xp; X i / and Q�.z; Z / being the sequence of the prefixes

Q.z1; Z1/; : : : ; Q.zm; Zm/;

with the ones corresponding to the universal quantifiers heading the sequence.

Proof Let us define the distance function

d.x; z/ D .f1.x/ � z1/2 C : : : C .fm.x/ � zm/2: (4.2)

By definition, A1; : : : ; Am are a T -transformation of X , so in accordance with
Theorem 4.2.8,

d �.X ; Dual.Z1/; : : : ; Dual.Zm/ � dR.A1; : : : ; Am; Dual.Z1/; : : : ; Dual.Zm//:

The definition of Zj is equivalent to

fj R.Aj / � Dual.Zj / � Œ0; 0�;

for j D 1; : : : ; m, therefore from (4.2) and the inclusion-isotony of the operators

dR.A1; : : : ; Am; Dual.Z1/; : : : ; Dual.Zm// � Œ0; 0�

Consequently

d �.X ; Dual.Z1/; : : : ; Dual.Zm/ � Œ0; 0�:
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From the *-semantic theorem, applied to this inclusion,

.8xp 2 X 0

p/ Q�.z; Z 0/ .9xi 2 X 0

i / .f1.xp; xi / � z1/2 C : : : C .fm.xp; xi / � zm/2 D 0

equivalent to

.8xp 2 X 0
p/ Q�.z; Z 0/ .9xi 2 X 0

i / .z1 D f1.xp; xi /; : : : ; zm D fm.xp; xi // D 0;

which is the conclusion of the theorem. �

Theorem 4.4.4 (Dual interval interpretability of m-dimensional computations)
Let X 2 I �.Rk/ and suppose f W Rk ! R

m defined by f .x/ D .f1.x/; : : : ; fm.x//

is continuous on X 0. Let A1; : : : ; Am be the vectors containing the arguments of
f1; : : : ; fm, derived from X so as to have the same proper components as X ,
but with all except one multi-incident proper component of X transformed into
its dual in each Xj . Let .Z1; : : : ; Zm/ be a system of interpretable inner-rounded
computations of

.f ��
1 .A1/; : : : ; f ��

m .Am//;

i.e., Zj D fj R.Aj / for j D 1; : : : ; m. In this case

.8xi 2 X 0
i / Q�.z; Dual.Z // .9xp 2 X 0

p/ z D f .xp; xi /;

with X D .Xp; X i / and Q�.z; Dual.Z // being the sequence of the prefixes

Q.z1; Dual.Z1//; : : : Q.zm; Dual.Zm//;

with the ones corresponding to the universal quantifiers heading the sequence.

Example 4.4.4 For f W R3 ! R
2 defined by

f .x1; x2; x3/ D .x1 C x2 C x3; x1x2 � x1/

with X D .Œ6; 1�; Œ6; 2�; Œ�3; 2�/, we may proceed as follows:

f1.x1; x2; x3/ D x1 C x2 C x3

f2.x1; x2; x3/ D x1x2 � x1;

A1 D .Œ1; 6�; Œ6; 2�; Œ�3; 2�/

A2 D .Œ6; 1�; Œ2; 6�/

Z1 D Œ1; 6� C Œ6; 2� C Œ�3; 2� D Œ4; 10�

Z2 D Œ6; 1� � Œ2; 6� � Œ1; 6� D Œ6; 5�
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where Z1 is an interpretable modal syntactic computation of f �
1 .A1/ and Z2 of

f �
2 .A2/. Therefore, the semantics of these results is

.8x3 2 Œ�3; 2�0/ .8z2 2 Œ5; 6�0/ .9z1 2 Œ4; 10�0/ .9x1 2 Œ1; 6�0/ .9x2 2 Œ2; 6�0/

.z1 D x1 C x2 C x3; z2 D x1x2 � x1/:

The arguments .A1; : : : ; Am/ can be possibly modified by coercion to inter-
pretability of the corresponding ones of X (Theorems 4.2.8 and 4.2.9). So, in a
computational program of the form

f �
1 .X/ � Z1; : : : ; f �

m .X/ � Zm;

assuming the *-semantics, no improper component of X can be repeated, keeping
its own modality in more than one f �

i .X/, since multiple existential quantifiers
over the same variable cannot be extracted to obtain the prenex form of the semantic
theorem for the overall m-dimensional system. If this is not the case, for every multi-
incident improper variable, all its incidences but one must be changed into its dual.

After imposing the previous condition, the functions f �
i .X/ should be individu-

ally coerced to optimality to obtain component-wise optimality

Example 4.4.5 Consider f the continuous function from R
2 to R

2 defined by the
formula f .x1; x2/ D .x1Cx2; x1x2�x2/. For X D .X1; X2/ D .Œ1; 3�; Œ2; �1�/ there
exist multi-incident improper components. To get an interpretable computation,
according to the n-dimensional semantic theorem, we must transform some
improper incidences into their dual. For example for

.X1 C X2; X1 � Dual.X2/ � Dual.X2// D .Œ3; 2�; Œ�5; 7�/

the logical product of the semantic theorems for each component gives the overall
semantics

.8x1 2 Œ1; 3�0/.8z1 2 Œ3; 2�0/.9z2 2 Œ�5; 7�0/.9x2 2 Œ2; �1�0/

.z1 D x1 C x2; z2 D x1x2 � x2/:

To make an effective component-wise optimal computation, the system .fRi .X//

would become

.X1 C X2; X1 � Dual.X2/ � X2/ D .Œ3; 2�; Œ�2; 4�/;

since the second incidence of X2 in the second equation of the system is of
a monotonicity sense contrary to the one of the overall variable in this second
component.
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4.5 Additional Examples

The semantic theorems prove the equivalence between some modal interval
inclusions concerning to *-semantic extensions, and some first order logical
formulas, where the domains are intervals, the universal quantifiers precede the
existential ones and there is a unique predicate involving a continuous real function.

Practical problems involving uncertainties can be stated by means of these types
of formulas. In fact, the logical statement is the core of almost all technical problems
dealing with uncertainties, hardly stated without their implicit or explicit logical
formulation. When the uncertainty sets are intervals, MIA techniques are very
suitable for solving them, following three steps:

• State the problem as a formula of first order logic.
• If this formula accomplishes the previous requirements, use the *-semantic the-

orem to reduce it to modal interval inclusions affecting to *-semantic extensions
of the functions involved.

• Verify the inclusions computing the corresponding *-semantic extensions.

So, the problem is reduced to computing a *-semantic extension f �.X/ of
a continuous function f to a modal interval vector X. The difficulty of this
computation depends on the function f . Under some monotonicity conditions,
several results of MIA reduce the computation of f � to simple modal interval
arithmetic operations. When the function involved does not satisfy these conditions,
some results can be partially applied to obtain better approximations by splitting the
variable space by means of a branch-and-bound algorithm (see Chap. 7).

Several technical examples of application are developed in this section to
illustrate this process. They contain simple functions and try to be a bridge between
modal interval analysis and the world of an engineer. Their source is the technical
report [88].

The first example shows the semantical ability of the modal intervals to give
results which are logically sure when uncertainties are present, unlike other classical
procedures such as classical error analysis.

Example 4.5.1 For an ideal lens, the distance g between an object and the lens, the
focal length f , and the distance b between the lens and the image of the object, are
related by

g D 1
1
f

� 1
b

:

Let us suppose that the focal length is f D 20 ˙ 1 and the distance between the
image and the lens is b D 25˙1 (in centimeters). The problem is to find the distance
between the object and the lens together with its uncertainty due to the uncertainties
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g b
f

Fig. 4.3 Lens

in the measurements (see Fig. 4.3). This question can be handled by means of an
error estimation method: as f0 D 20 and b0 D 25, then

g0 D 1
1
20

� 1
25

D 100I

as the absolute errors are �f D 1 and �b D 1, then the error estimate for g is

�g D .1 � f0

b0

/�2�f C .
b0

f0

� 1/�2�b D .1 � 20

25
/�2 C .

25

20
� 1/�2 D 41:

The answer would be g D 100 ˙ 41. This variation is the interval G0 D Œ59; 141�0,
but this result is wrong, as the interval solution of the problem will show.

As f 2 Œ19; 21�0 and b 2 Œ24; 26�0, the logical statement of this problem is to
find an interval G such that

.8f 2 Œ19; 21�0/ .8b 2 Œ24; 26�0/ .9g 2 G0/ g D 1
1
f

� 1
b

:

which is equivalent to the modal inclusion

g�.Œ19; 21�; Œ24; 26�/ � G:

This function g is tree-optimal and uni-incident, and so

g�.Œ19; 21�; Œ24; 26�/ D 1
1

Œ19;21�
� 1

Œ24;26�

� Œ70:57; 168:01�:

Hence g 2 Œ70:57; 168:01�0 and the solution is the interval G0 D Œ70:57; 168:01�0.

The following example illustrates the use of the Theorem of Coercion to compute
the *-semantic extension for some types of functions.

Example 4.5.2 A procedure to determine the density of a fluid is to measure the
weight of a body having volume v in the fluid, and to weigh it also in other fluids
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with known densities. A body submerged in a liquid of density � meets a lifting
force equal to

��vg

where g is the gravitational acceleration. Let us suppose that the body is a cube of
edge length equal to 1 cm. Taking into account the uncertainties of the measurement
processes, let us suppose that the cube’s weights in grams are: in the air, m1 2
Œ9; 10�0, submerged in water, m2 2 Œ0; 0:1�0, and submerged in the fluid of unknown
density, m3 2 Œ2:7; 3�0. From

m1g � �H2Ovg D m2g

m1g � �vg D m3g

the unknown density is

� D �H2O

m1 � m3

m1 � m2

:

Supposing �H2O 2 Œ0:99; 1:01�0, the logical statement of this problem is to find an
interval R such that

.8m1 2 Œ9; 10�0/ .8m2 2 Œ0; 0:1�0/ .8m3 2 Œ2:7; 3�0/ .8�H2O 2 Œ0:99; 1:01�0/.9� 2 R0/

� D �H2O
m1 � m3

m1 � m2
:

This logical formula is equivalent to the modal inclusion

��.Œ0:99; 1:01�; Œ9; 10�; Œ0; 0:1�; Œ2:7; 3�/ � R

As the function � is tree-optimal in the explicit domains, it has a multi-incident
variable m1 with respect to which it is totally monotonic (with a positive partial
derivative with respect to m1, a positive partial derivative with respect to the
first incidence of m1, and a negative partial derivative with respect to the second
incidence of m1), Theorem 4.2.15 ensures that

��.Œ0:99; 1:01�; Œ9; 10�; Œ0; 0:1�; Œ2:7; 3�/ D Œ0:99; 1:01� � Œ9; 10� � Œ2:7; 3�

Œ10; 9� � Œ0; 0:1�
� Œ0:66; 0:75�

and the solution is R0 D Œ0:66; 0:75�0, which is the uncertainty interval for the
density � due to the uncertainties in the measurements.

The third example concerns semantic interpretation when a vectorial function is
involved.
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Fig. 4.4 Circuit

Example 4.5.3 To find the capacity of an unknown capacitor c1 and the resistance of
an unknown resistor r1, let us balance the variable capacity of a capacitor c2 and the
variable resistance of a resistor r2 until the tone of an earphone k, supposed with a
negligible resistance, is minimal or vanishes, where r3 and r4 are two resistors with
known resistances (see Fig. 4.4). At this moment, the equations for this physical
system are

c1 D r4c2

r3

r1 D r3r2

r4

Supposing that r3 2 Œ9:9; 10:1�0, r4 2 Œ6:8; 6:9�0, according to the manufacturing
specifications and, due to measurement uncertainties, c2 2 Œ40:2; 41:5�0, r2 D
Œ18:3; 19:8�0, the logical statement of the problem is

.8r2 2 Œ18:3; 19:8�0/ .8r3 2 Œ9:9; 10:1�0/ .8r4 2 Œ6:8; 6:9�0/ .8c2 2 Œ40:2; 41:5�0/

.9c1 2 C 0
1/ .9r1 2 R0

1/ .c1 D r4c2

r3

; r1 D r3r2

r4

/:

As the functions c1 and r1 do not share any existentially quantified variables, this
formula is equivalent to the conjunction of

.8r3 2 Œ9:9; 10:1�0/ .8r4 2 Œ6:8; 6:9�0/ .8c2 2 Œ40:2; 41:5�0/ .9c1 2 C 0
1/ c1 D r4c2

r3

and

.8r2 2 Œ18:3; 19:8�0/ .8r3 2 Œ9:9; 10:1�0/ .8r4 2 Œ6:8; 6:9�0/ .9r1 2 R0
1/ r1 D r3r2

r4

:

Applying the *-Semantic Theorem, the first formula is equivalent to the inclusion

c�
1 .Œ9:9; 10:1�; Œ6:8; 6:9�; Œ40:2; 41:5�/ � C1;
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with C1 a proper interval. As the function c1 is tree-optimal and all their variables
are uni-incident, it is optimal and consequently

c�
1 D Œ6:8; 6:9� � Œ40:2; 41:5�

Œ9:9; 10:1�
� Œ27:06; 28:93�:

The second formula is equivalent to the inclusion

r�
1 .Œ18:3; 19:8�; Œ9:9; 10:1�; Œ6:8; 6:9�/ � R1;

with R1 a proper interval, which is optimal too. Therefore

r�
1 D Œ9:9; 10:1� � Œ18:3; 19:8�

Œ6:8; 6:9�
� Œ26:25; 29:41�:

The solution to the problem is c1 2 C1 D Œ27:06; 28:93�0 and r1 2 R1 D
Œ26:25; 29:41�0.

Let us change the physical system, now supposing that r3 represents a poten-
tiometer of variable resistance in the interval Œ9:0; 11:0�. Now the logical statement
of the problem becomes

.8r2 2 Œ18:3; 19:8�0/ .8r4 2 Œ6:8; 6:9�0/ .8c2 2 Œ40:2; 41:5�0/

.9r3 2 Œ9:0; 11:0�0/ .9c1 2 C 0
1/ .9r1 2 R0

1/ .c1 D r4c2

r3

; r1 D r3r2

r4

/:

Both functions c1 and r1 share the existentially quantified variable r3 and the logical
formula can not be split in two. Following Theorem 4.4.1, now

f .r2; r3; r4; c2/ D .
r4c2

r3

;
r3r2

r4

/

with X D .Œ18:3; 19:8�; Œ11:0; 9:0�; Œ6:8; 6:9�; Œ40:2; 41:5�/ and we may proceed as
follows:

c1.r2; r3; r4; c2/ D r4c2

r3

r1.r2; r3; r4; c2/ D r3r2

r4

;

A1 D .Œ10:0; 10:0�; Œ6:8; 6:9�; Œ40:2; 41:5�/

A2 D .Œ18:3; 19:8�; Œ10:0; 10:0�; Œ6:8; 6:9�/
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c1R.A1/ D Œ6:8; 6:9� � Œ40:2; 41:5�

Œ10:0; 10:0�
� Œ27:33; 28:64�

r1R.A2/ D Œ10:0; 10:0� � Œ18:3; 19:8�

Œ6:8; 6:9�
� Œ26:52; 29:12�

B D .Œ27:33; 28:64�; Œ26:52; 29:12�/:

So, c1 2 C 0
1 D Œ27:33; 28:64�0, and r1 2 R0

1 D Œ26:52; 29:12�0 is the solution to the
problem.



Chapter 5
Interval Arithmetic

5.1 Introduction

In this chapter the semantic interval extensions of the simplest elementary functions:
the arithmetic operators (addition, multiplication, division), logarithm, exponential
functions (including the hyperbolic functions), power function, and the trigonomet-
ric functions and their inverses, are considered, together with their most important
properties and their arithmetic implementations.

The results for the arithmetic operations will match with the definitions that
Kaucher stated for the arithmetic operations in his extended interval space. This
can induce to consider the Modal Interval Analysis as a particular extension
of the Kaucher theory. Nevertheless, there are important differences between
them. Kaucher started from a formal extension of classical intervals including
intervals with arbitrary bounds, i.e., starting from R

2, and searching “. . . to write
formulas, theorems and proofs in a closed form. . . ” and “. . . to shorten theorems and
proofs. . . ” [49] he defines an algebraic structure with arithmetic operators, which
coincide with the previous results in an unavoidable way, if the Kaucher extension
makes sense. Gardenyes started from classical intervals by adding a quantifier to
an interval. By defining relations, equality, inclusion, etc, and lattice operators, he
made it possible to consider functions over interval domains and, as a particular
case, arithmetic operators which, owing to the main idea of associating a quantifier
with an interval, have a semantic sense and meaning. Kaucher extended interval
space and Gardenyes modal intervals coincide only in the implementation of the
arithmetic operators and not in the logical properties, non-existent in the Kaucher
theory. Thus, Modal Interval Analysis, is not only an algebraic completion of the
classical intervals, but it provides an essential logical and operational framework
for problems where computations semantically interpretable are involved.

M.A. Sainz et al., Modal Interval Analysis, Lecture Notes in Mathematics 2091,
DOI 10.1007/978-3-319-01721-1__5,
© Springer International Publishing Switzerland 2014
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5.2 One-Variable Function

Every one-variable continuous function is JM-commutable, that is both semantic
extensions f � and f �� are equal, because there is no commutation problem
between the meet and join operations. The interesting operators are the monotonic
operators or other easily programmable operators.

Remark 5.2.1 Following Remark 4.2.1, we define in this case fR.X/ D f �.X/

and, therefore, one-variable functions become optimal syntactic functions.

If X D Œx1; x2�, for the logarithmic and exponential functions

ln X D Œln x1; ln x2� whenever X 0 > 0I
exp.X/ D Œexp.x1/; exp.x2/�:

For the absolute value function:

jX j D if x1 � 0; x2 � 0 then Œx1; x2�;

if x1 < 0; x2 < 0 then Œjx2j; jx1j�;
if x1 < 0; x2 � 0 then Œ0; max.jx1j; jx2j/�;
if x1 � 0; x2 < 0 then Œmax.jx1j; jx2j/; 0�:

For the operator power.x; n/:

Xn D if n is odd then Œxn
1 ; xn

2 �;

if n is even then

if .x1 � 0; x2 � 0/ then Œxn
1 ; xn

2 �;

if .x1 < 0; x2 < 0/ then Œxn
2 ; xn

1 �;

if .x1 < 0; x2 � 0/ then Œ0; max.jx1jn; jx2jn/�;

if .x1 � 0; x2 < 0/ then Œmax.jx1jn; jx2jn/; 0�:

For the operator root.x; n/:

n
p

X D Œ n
p

x1;
n
p

x2� if x1 � 0; x2 � 0:

5.3 Arithmetic Operators

Interval arithmetic is obtained from the semantic extension of the arithmetic
operators, which overcomes the most problematic difficulties of the domain of
values approach.
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Let ! 2 fC; �; �; =g be an arithmetical operation on R. Using the fact that the
arithmetic operators are consistently programmable, the extension of the arithmetic
operators ! to I �.R/ is suitably defined by a semantic extension of the real
continuous function f .x; y/ D x!y , i.e.,

A!B D f �.A; B/ D f ��.A; B/ D
.̋x;A/.̋y;B/

Œx!y; x!y�:

since they are JM-commutable two-variables operators.
In what follows we include their explicit computation programs and some of their

most basic properties. The results are the same as those for the arithmetic operators
in Kaucher’s [48, 49] extended interval space and detailed proofs can be found in
[11, 89].

Lemma 5.3.1 For A D Œa1; a2�, B D Œb1; b2�,

A C B D Œa1 C b1; a2 C b2�:

Proof For every x 2 A0,

.̋y;B/
Œx C y; x C y�

D if B proper then _
y2B0

Œx C y; x C y� else
ŷ2B0

Œx C y; x C y�

D if B proper then Œmin
y2B0

.x C y/; max
y2B0

.x C y/�

else Œmax
y2B0

.x C y/; min
y2B0

.x C y/�

D if B proper then Œx C min
y2B0

.y/; x C max
y2B0

.y/�

else Œx C max
y2B0

.y/; x C min
y2B0

.y/�

D Œx C b1; x C b2�:

Therefore

A C B D
.̋x;A/.̋y;B/

Œx C y; x C y� D
.̋x;A/

Œx C b1; x C b2� D Œa1 C b1; a2 C b2�: �

Lemma 5.3.2 For A D Œa1; a2�, B D Œb1; b2�,

A � B D Œa1 � b2; a2 � b1�:

Proof The proof is similar to the case of addition. �
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Lemma 5.3.3 For A D Œa1; a2�, r 2 R,

rA D
.̋x;A/

Œrx; rx� D if r � 0 then Œra1; ra2�

if r < 0 then Œra2; ra1�:

Proof The proof is similar to the case of addition. �

The multiplication rule is a bit trickier, one must use Ratschek’s function 	.A/,
see [72, 73], defined for intervals A ¤ Œ0; 0�, defined by assigning the value which
is equal to the bound of A of lesser absolute value divided by the one with greater
absolute value. Now, here is the mu1tip1ication rule:

(a) If A � Œ0; 0� or B � Œ0; 0�, or viceversa, then A � B D Œ0; 0�.
(b) If A D Œa1; a2� and B D Œb1; b2� are of the same modality, then A � B is the

interval of the same modality of A or B having as bounds the extreme left and
right va1ues of a1b1, a1b2, a2b1, a2b2.

(c) If A D Œa1; a2� and B D Œb1; b2� are of opposite modalities, then, first reorder A

and B such that 	.A/ � 	.B/ and second A � B is the interval of the same
modality of A built with the numerical va1ues a1b1, a1b2, a2b1, a2b2 after
removing the most extreme ones to the right and to the left.

These rules lead to the computation program for the product stated in the following
lemma.

Lemma 5.3.4 For A D Œa1; a2�, B D Œb1; b2�,

A � B D if a1 � 0; a2 � 0; b1 � 0; b2 � 0 then Œa1b1; a2b2�;

if a1 � 0; a2 � 0; b1 � 0; b2 < 0 then Œa1b1; a1b2�;

if a1 � 0; a2 � 0; b1 < 0; b2 � 0 then Œa2b1; a2b2�;

if a1 � 0; a2 � 0; b1 < 0; b2 < 0 then Œa2b1; a1b2�;

if a1 � 0; a2 < 0; b1 � 0; b2 � 0 then Œa1b1; a2b1�;

if a1 � 0; a2 < 0; b1 � 0; b2 < 0 then Œmax.a2b2; a1b1/; min.a2b1; a1b2/�;

if a1 � 0; a2 < 0; b1 < 0; b2 � 0 then Œ0; 0�;

if a1 � 0; a2 < 0; b1 < 0; b2 < 0 then Œa2b2; a1b2�;

if a1 < 0; a2 � 0; b1 � 0; b2 � 0 then Œa1b2; a2b2�;

if a1 < 0; a2 � 0; b1 � 0; b2 < 0 then Œ0; 0�;

if a1 < 0; a2 � 0; b1 < 0; b2 � 0 then Œmin.a1b2; a2b1/; max.a1b1; a2b2/�;

if a1 < 0; a2 � 0; b1 < 0; b2 < 0 then Œa2b1; a1b1�;

if a1 < 0; a2 < 0; b1 � 0; b2 � 0 then Œa1b2; a2b1�;
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if a1 < 0; a2 < 0; b1 � 0; b2 < 0 then Œa2b2; a2b1�;

if a1 < 0; a2 < 0; b1 < 0; b2 � 0 then Œa1b2; a1b1�;

if a1 < 0; a2 < 0; b1 < 0; b2 < 0 then Œa2b2; a1b1�:

For the operation of division, if 0 … Œb1; b2�,

1=Œb1; b2� D Œ1=b2; 1=b1�

and

Œa1; a2�=Œb1; b2� D Œa1; a2� � .1=Œb1; b2�/;

taking into account that 	.1=Œb1; b2�/ D 	.Œb1; b2�/. So, the computation program
for division is stated in the following lemma.

Lemma 5.3.5 For A D Œa1; a2�, B D Œb1; b2�, 0 … B 0,

A=B D if a1 � 0; a2 � 0; b1 > 0; b2 > 0 then Œa1=b2; a2=b1�;

if a1 � 0; a2 � 0; b1 < 0; b2 < 0 then Œa2=b2; a1=b1�;

if a1 � 0; a2 < 0; b1 > 0; b2 > 0 then Œa1=b2; a2=b2�;

if a1 � 0; a2 < 0; b1 < 0; b2 < 0 then Œa2=b1; a1=b1�;

if a1 < 0; a2 � 0; b1 > 0; b2 > 0 then Œa1=b1; a2=b1�;

if a1 < 0; a2 � 0; b1 < 0; b2 < 0 then Œa2=b2; a1=b2�;

if a1 < 0; a2 < 0; b1 > 0; b2 > 0 then Œa1=b1; a2=b2�;

if a1 < 0; a2 < 0; b1 < 0; b2 < 0 then Œa2=b1; a1=b2�:

Remark 5.3.1 It is easy to observe that these operation rules coincide with the ones
for the standard set-intervals when the operands are proper. Therefore, the algebra
obtained for the completed intervals is an extension of the standard algebra for
classical intervals.

5.3.1 Properties of the Arithmetic Operations

Their main properties are now summarized.

Properties of addition:

1. A+B = B+A
2. (A+B)+C = A+(B+C)
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3. AC _
i2I

B.i/ D_
i2I

.A C B.i// = AC
î2I

B.i/ D
î2I

.A C B.i//

4. A � B; C � D ) A C C � B C D

5. A � B; C � D ) A C C � B C D

6. Dual.A C B/ D Dual.A/ C Dual.B/

7. A C Œ0; 0� D A

8. The opposite of any interval A D Œa1; a2� exists and it is

Opp.A/ D Œ�a1; �a2�

with Opp.A/ D �Dual.A/.

In I.R/ the only natural symmetry is

A D Œa1; a2� $ �A D Œ�a2; �a1�

but in I �.R/ the following ones stand out:

A D Œa1; a2� $ Id.A/ D Œa1; a2�

$ �A D Œ�a2; �a1�

$ Dual.A/ D Œa2; a1�

$ Opp.A/ D Œ�a1; �a2�:

Properties of the difference:

1. A � B; C � D ) A � C � B � D

2. A � Dual.B/ D A C Opp.B/

3. The equation A C X D B has the unique solution

X D B � Dual.A/ D B C Opp.A/

Properties of multiplication by a real number:

1. If 
 2 fDual; �; Opp; Propg, then 
.rA/ D r
.A/

2. r _
i2I

A.i/ D_
i2I

rA.i/ and r
î2I

A.i/ D
î2I

rA.i/

3. A � B ) rA � rB

4. A � B )
ˇ̌̌
ˇ̌ rA � rB si r � 0

rA � rB si r < 0

5. r Min
i2I

A.i/ D
ˇ̌
ˇ̌
ˇ̌
Min
i2I

rA.i/ si r � 0

Max
i2I

rA.i/ si r < 0
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r Max
i2I

A.i/ D
ˇ̌
ˇ̌̌
ˇ
Max
i2I

rA.i/ si r � 0

Min
i2I

rA.i/ si r < 0

6. r(A+B) = rA+rB
7. r.sA/ D .rs/A

8. If rs � 0, then .r C s/A D rA C sA

Properties of the product:

1. A � B D B � A

2. A � .B � C / D .A � B/ � C

3. r.A � B/ D .rA/ � B D A � .rB/

4. .�A/ � .�B/ D A � B

5. Opp(A)�Opp(B) = Dual(A � B)
6. Dual(A)�Dual(B) = Dual(A � B)
7. rA D Œr; r� � A

8. rs � 0 )
ˇ̌
ˇ̌̌ rA _ sA D Œminfr; sg; maxfr; sg� � A

rA ^ sA D Œmaxfr; sg; minfr; sg� � A

9. Œ1; 1� � A D A

10. (A � B , C � D) ) A � C � B � D

11. ([0,0] � A � B , [0,0] � C � D) ) A � C � B � D

12. A proper implies A � .B C C / � A � B C A � C

A improper implies A � .B C C / � A � B C A � C

13. If 1
A

and 1
B

exist, then

A � B ) 1

A
� 1

B

A � B ) 1

A
� 1

B

Dual

�
1

A

�
D 1

Dual.A/

Properties of the quotient:

1.
A

B
D A � 1

B
2. (A � B , C � D) ) A=C � B=D

3. Dual

�
A

B

�
D Dual.A/

Dual.B/
4. The equation A � X D B (provided that 0…Prop(A)) has the unique solution

XD B

Dual.A/
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5.3.2 Inner-Rounding and Computations

For any arithmetic operator ! , since Dual.A!B/ D Dual.A/!Dual.B/, then

Inn.fR.A1; : : : ; B1; : : :// D Dual.Out.fR.Dual.A1/; : : : ; Dual.B1/; : : :///:

This property allows obtaining the canonical inner and outer rounding of syntac-
tic computations by only implementing the, for instance, outer-rounded arithmetic..

5.3.3 Sub-distributivity of the Operations � and C

Regional distributivity completes also on I �.R/ its original structure on I.R/.
We have seen in Property 12 of the product that

A proper ) A � .B C C / � A � B C A � C

A improper ) A � .B C C / � A � B C A � C:

A more general result is the following Sub-Distributive Law.

Lemma 5.3.6 For A; B; C 2 I �.R/,

Impr.A/ � B C A � C � A � .B C C / � Prop.A/ � B C A � C:

Proof The function f1 W R
3 ! R defined by f1.a; b; c/ D a.b C c/ is a modal

syntactic function, uni-incident with JM-commutable operators, and so

f �
1 .A; B; C / � f1R.A; B; C / � f ��

1 .A; B; C /:

Let f2 W R4 ! R be the function defined by f2.a1; a2; b; c/ D a1b C a2c (of which
the modal syntactic extension f2R is tree-optimal). Two cases can be distinguished,
depending on the modality of A.

First, if A is an improper interval, then

A � .B C C / D f1R.A; B; C / � f ��
1 .A; B; C /

D
â2A0

f ��
1 .a; B; C / D

â2A0

f ��
2 .a; a; B; C /

� ^
a12A0

_
a22A0

f ��
2 .a1; a2; B; C /

D f ��
2 .A; Prop.A/; B; C / D f2R.A; Prop.A/; B; C /

D A � B C Prop.A/ � C:
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Second, if A is a proper interval, then

A � .B C C / D f1R.A; B; C / � f ��
1 .A; B; C /

D
.̋b;B/.̋c;C /

f ��
1 .A; b; c/ �

.̋b;B/.̋c;C /
f ��

2 .A; A; b; c/

D f ��
2 .A; A; B; C / D f2R.A; A; B; C / D A � B C A � C:

Hence, for every A; B; C 2 I �.R/, we have

A � .B C C / � f ��
1 .A; B; C / � A � B C Prop.A/ � C

(the roles of B and C are, obviously, interchangeable).
By duality,

Impr.A/ � B C A � C � f ��
1 .A; B; C / � A � .B C C /: �

Example 5.3.1 For A D Œ1; �1�, B D Œ3; 1� and C D Œ�3; �1�

A � .B C C / D Œ1; �1� � .Œ3; 1� C Œ�3; �1�/ D Œ1; �1� � Œ0; 0� D Œ0; 0�

Impr.A/ � B C A � C D Œ1; �1� � Œ3; 1� C Œ1; �1� � Œ�3; �1� D Œ4; �4�

Prop.A/ � B C A � C D Œ�1; 1� � Œ3; 1� C Œ1; �1� � Œ�3; �1� D Œ0; 0�

and Œ4; �4� � Œ0; 0� � Œ0; 0�.

5.3.4 Metric Functions

Together with the basic relations and operations, there exist functions which provide
I �.R/ with a metric structure, thus making sense of concepts such as limit and
convergence [89].

Definition 5.3.1 (Absolute value, mignitude, midpoint and width) If X D
Œx1; x2� is a modal interval, the absolute value of X is

abs.X/ D max.jx1j; jx2j/ D abs.Dual.X//;

the mignitude of X is

mig.X/ D min.jx1j; jx2j/ D mig.Dual.X//;
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the midpoint of X is

mid.X/ D x1 C x2

2
D mid.Dual.X//;

and the width (or span) of X is

wid.X/ D jx1 � x2j D wid.Dual.X//

Properties of abs, mig, mid, and wid:

1. A � B ) abs.A/ � abs.B/ and mig.A/ � mig.B/

2. A � B ) mig.A/ � mig.B/

3. if 0 … A0, then abs

�
1

A

�
D 1

mig.A/
and mig

�
1

A

�
D 1

abs.A/

The absolute value is a norm in .I �.R/; C; �/ because

1. abs.A/ � 0 and abs.A/ D 0 , A D 0

2. abs.A C B/ � abs.A/ C abs.B/.
3. abs.�A/ D j�jabs.A/

The mignitude is a quasi-norm in .I �.R/; C; �/ because

1. migA � 0 and mig.A/ D 0 , 0 … A0
2. mig.A C B/ � mig.A/ C mig.B/

3. mig.�A/ D j�jmig.A/

Moreover,

1. mig.A/ � abs.A/

2. mig.A � B/ D mig.A/mig.B/

3. abs.A � B/ D abs.A/abs.B/

4. A � B ) wid.A/ � wid.B/

5. wid.A/ D abs.A � A/

6. wid.�A/ D j�jwid.A/

7. wid.A/ D abs.A/.1 � 	.A//

8. 0 2 A ) abs.A/ � wid.A/ � 2 � abs.A/

9. Any improper interval can be split into the addition of a proper interval with a
symmetric improper one: if X D Œx1; x2� is an improper interval, then

X D Œx1; x2� D Œx2; x1� C jx1 � x2j � Œ1; �1� D Prop.X/ C Œwid.X/; �wid.X/�

Let � be the Hausdorff distance between two compact sets A and B ,

�.A; B/ D max

�
max
x2A0

min
y2B0

�.x; y/ ; max
y2B0

min
x2A0

�.x; y/

�
:
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Particularizing this definition to intervals,

Definition 5.3.2 (Hausdorff distance) When A and B are modal intervals

dist.A; B/ D max
n
ja � bj ; ja � bj

o

Properties of the distance:

1. dist.A C C; B C C / D dist.A; B/

2. dist.A C C; B C D/ � dist.A; B/ C dist.C; D/

3. dist.A; 0/ D abs.A/

4. dist.A; B/ D abs.B � A/ if wid.A/ � wid.B/ else dist.A; B/ D abs.A � B/

5. dist.aB; aC / D jaj � dist.B; C /

6. dist.A � B; A � C / � abs.A/ � dist.B; C /

7. dist.A � B; A � C / � mig.A/ � dist.B; C /

8. dist.A; B/ � d , .8x 2 A/ .9y 2 B/ dist.x; y/ � d and
.8y 2 B/ .9x 2 A/ dist.x; y/ � d

Definition 5.3.3 (Convergence)

lim
k!1 Ak D A D lim

k!1 dist.Ak; A/ D 0

Properties of convergence

1. lim
k!1 Ak D A , . lim

k!1 ak D a y lim
k!1 ak D a/

2. .I.R/; dist/ is a complete metric space.
3. The arithmetic operations C; �; �; = and the functions inf, sup, mag, mig, wid,

and mid are continuous in .I �.R/; dist/.

5.4 Interval Arithmetic for the C++ Environment

The implementation of modal interval arithmetic is built by means of a library where
the objects are intervals and the arithmetic operations with intervals must contain
the exact results, therefore, it is necessary to control the truncation of the interval
operations.

Moreover, the arithmetic must allow of controlling the floating-point exceptions
such as division by zero, infinity, underflow, . . . , to obtain an accurate and controlled
result for any operation whose variables are those exceptional values.

The interval library ivalDb provides an easy way to make programs using Modal
Intervals including the following features:

1. Basic operators (addition, difference, product, quotient, pow, etc.)
2. Trigonometric functions (sin, cos, tan, inverse functions)
3. Boolean operations
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4. Proper and Improper Interval operations
5. Exception handling

5.4.1 About the Library

5.4.1.1 Object-Oriented

ivalDb is made in Borland C++, to exploit the potency of object oriented program-
ming, handling every interval as an object fitted with many properties and functions.

This operating environment allows the following options:

1. To control the truncation of floating point operations without making calls to
functions that act on the coprocessor computer, avoiding codifying the truncation
by independent subroutines. This simplifies the task of creating the support
library.

2. To define the intervals as objects, using the capability of C++ to define types and
operator overloading.

5.4.1.2 Numeric Guarantee

ivalDb has a numeric guarantee thanks to the use of c	FDLIBM (Freely Dis-
tributable LIBM), a C-library developed by Sun Microsystems, Inc., for machines
that support IEEE 754 floating-point arithmetic which assures, in the worst case, a
ULP (Units-Bits of the Last Place) of error for all the given functions. Moreover, it
assures multi-platform compatibility (PC, SUN. . . ). FDLIBM provides a function
which allows rounding a floating point number to C1 or to �1. Then, knowing
that the maximal error that can be committed by the FDLIBM computations is one
ULP, it is easy to implement a guaranteed interval function by adding a ULP to the
upper bound of the solution interval and by subtracting a ULP to the lower bound
of the solution interval, in order to get the outer rounding. Inner rounding is not
implemented because it can be obtained by means of the process of dual computing,
as in Theorem 2.2.2.

This method may be numerically conservative compared to other techniques used
by other libraries to assure a numerical guarantee, but it is also more efficient in
terms of time because it does not change the rounding mode of the computer.

5.4.1.3 Use in Different Environments

The library was adapted to allow programmers to use it on Linux and Windows. For
Linux, programmers can use g++ to compile programs, but in Windows there are
two choices, Borland C++ and Visual C++.
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5.4.2 Available Functions and Operators

5.4.2.1 Creation of New Intervals

1. Completely defined bound interval. In this case the user must specify both lower
and upper bounds to create the new interval.

Input: Double,Double
Output: ivalDb
Syntax: ivalDb A=ivalDb(a,b);

2. Point-wise interval. The user must specify only one value, then it will be assigned
to lower and upper bounds.

Input: Double
Output: ivalDb
Syntax: ivalDb A=ivalDb(a);

3. Using a previously defined interval. The user creates the new interval using as
parameter another interval. The new interval is exactly equal to the interval used
to create it.

Input: ivalDb
Output: ivalDb
Syntax: ivalDb B=ivalDb(A);

4. Without parameters. If no input parameter is specified, the new interval will be
defined as .�1; C1/.

Input: None
Output: ivalDb
Syntax: ivalDb A;

5.4.2.2 Access to Interval Bounds

1. The functions GetInf, GetSup, GetMid return the lower bound value, the upper
bound value, and the mid value of an interval, respectively.

Input: None
Output: Double
Syntax: ivalDb A=(a,b);

Double lb, ub, m;
lb=A.GetInf();
ub=A.GetSup();
m=A.GetMid();
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2. The functions SetInf and SetSup establish the lower bound value and the upper
bound value of an interval, respectively.

Input: Double
Output: None
Syntax: ivalDb A;

A.SetInf(a);
A.SetSup(b);

3. SetBounds establishes both lower and upper bounds of an interval.

Input: Double, Double
Output: None
Syntax: ivalDb A;

A.SetBounds(a,b);

5.4.2.3 Monary Operators

1. Assignation operator. Assigns one interval to another.

Input: ivalDb
Output: ivalDb
Syntax: ivalDb A,B=ivalDb(a,b);

A=B;

2. Negation operator. Returns the opposite of an interval. The lower bound becomes
the upper bound with opposite sign and the upper bound becomes the lower
bound with opposite sign.

Input: ivalDb
Output: ivalDb
Syntax: ivalDb A,B=ivalDb(a,b);

A=-B;

3. Power operator. Returns the result of raising to a power (with exponent an
integer).

Input: ivalDb, integer
Output: ivalDb
Syntax: ivalDb A,B=ivalDb(a,b);

A=B^n;

4. The Prop, Impr and Du are modal operators. If the interval is improper, the
operator Prop converts it to a proper interval. If the interval is proper, the operator
Impr converts it to an improper one. The operator Du returns the dual of the
interval.
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Input: ivalDb
Output: ivalDb
Syntax: ivalDb A, B=(a,b);

A=Prop(B);
A=Impr(B);
A=Du(B);

5.4.2.4 Binary Operators

1. The arithmetic operators Addition, Difference, Product and Division return the
result of the sum, difference, product, and quotient, respectively, of two intervals.
The rule used is described by Lemmas 5.3.1–5.3.5.

Input: ivalDb, ivalDb
Output: ivalDb
Syntax: ivalDb C, A=ivalDb(a1,a2),B=ivalDb(b1,b2);

C=A+B;
C=A-B;
C=A*B;
C=A/B;

2. Meet and Join operators. The meet of two intervals is the interval defined by the
maximum value of the lower bounds and the minimum value of upper bounds,
as lower and upper bounds, respectively. The join of two intervals is the interval
defined by the minimum value of the lower bounds and the maximum value of
upper bounds, as lower and upper bounds, respectively.

Input: ivalDb, ivalDb
Output: ivalDb
Syntax: ivalDb C, A=ivalDb(a1,a2),B=ivalDb(b1,b2);

C=A&&B;
C=A||B;

3. Relational operators. These operators allow of making a comparison between
two intervals. The relations are greater than (>), greater than or equal to (�), less
than (<), less than or equal to (�), and equality (DD).

Input: ivalDb, ivalDb
Output: unsigned long
Syntax: ivalDb A=ivalDb(a1,a2),B=ivalDb(b1,b2);

if (A>>B) cout<<"A is greater than B"<<endl;

if (A>=B) cout<<"A is greater or equal than B"<<endl;

if (A<<B) cout<<"A is least than B"<<endl;

if (A<=B) cout<<"A is least or equal than B"<<endl;

if (A==B) cout<<"A is equal than B"<<endl;
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5.4.2.5 Interval Functions

1. The abs function returns the absolute value of an interval.

Input: ivalDb
Output: ivalDb
Syntax: ivalDb A, B=ivalDb(a,b);

A=abs(B);

2. The sqr function returns the square of an interval.

Input: ivalDb
Output: ivalDb
Syntax: ivalDb A, B=ivalDb(a,b);

A=sqr(B);

3. The pow function is the version of the power operator for a real exponent.

Input: ivalDb, double
Output: ivalDb
Syntax: ivalDb A, B=ivalDb(a,b);

A=pow(B,x);

4. The sqrt and cbrt functions return an interval that contain the square root and the
cube root, respectively.

Input: ivalDb
Output: ivalDb
Syntax: ivalDb A, B=ivalDb(a,b);

A=sqrt(B);
A=cbrt(B);

5. The root function returns the generic root from an interval.

Input: ivalDb, int
Output: ivalDb
Syntax: ivalDb A, B=ivalDb(a,b);

A=root(B,n);

6. The exp function calculates the exponential of an interval.

Input: ivalDb
Output: ivalDb
Syntax: ivalDb A, B=ivalDb(a,b);

A=exp(B);

7. The log function calculates the logarithm of an interval and log10 calculates its
base 10 logarithm.
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Input: ivalDb
Output: ivalDb
Syntax: ivalDb A, B=ivalDb(a,b);

A=log10(B);
A=log(B);

8. trigonometric and hyperbolic functions. The inputs for trigonometric functions
are in radians.

• sin: Calculates the sine of an interval.
• cos: Calculates the cosine of an interval.
• tan: Calculates the tangent of an interval.
• asin: Calculates the arcsin of an interval.
• acos: Calculates the arccos of an interval.
• atan: Calculates the arctan of an interval.
• sinh: Calculates the hyperbolic sine of an interval.
• cosh: Calculates the hyperbolic cosine of an interval.
• tanh: Calculates the hyperbolic tangent of an interval.
• asinh: Calculates the inverse hyperbolic sine of an interval.
• acosh: Calculates the inverse hyperbolic cosine of an interval.
• atanh: Calculates the inverse hyperbolic tangent of an interval.

Input: ivalDb
Output: ivalDb
Syntax: ivalDb A, B=ivalDb(a,b);

A=sin(B);
� � � � � �
A=atanh(B);

5.4.2.6 Metric Interval Functions

1. The Width function returns the absolute value of the difference between the upper
and lower bounds.

Input: ivalDb
Output: double
Syntax: ivalDb A=ivalDb(a,b);

double w;
w=Width(A);

2. The Centre function returns the half of the sum of the upper and lower bounds.

Input: ivalDb
Output: double
Syntax: ivalDb A=ivalDb(a,b);

double c;
c=Centre(A);
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5.4.2.7 Boolean Interval Functions

1. The IsProp function returns true if the interval is proper, and otherwise returns
false.

Input: ivalDb
Output: bool
Syntax: ivalDb A=ivalDb(a,b);

if (A.IsProp()) cout<<"Is proper"<<endl;
else cout<<"Is improper"<<endl;

2. The IsImpr function returns true if the interval is improper, and otherwise returns
false.

Input: ivalDb
Output: bool
Syntax: ivalDb A=ivalDb(a,b);

if (A.IsImpr()) cout<<"Is improper"<<endl;
else cout<<"Is proper"<<endl;

3. The IsInterval function returns true if the lower bound is different than the upper
bound.

Input: ivalDb
Output: bool
Syntax: ivalDb A=ivalDb(a,b);

if (A.IsInterval()) cout<<"Is an interval"<<endl;

else cout<<"Is only a point"<<endl;

4. The IsEmpty function returns true if either the lower or upper bounds is NaN.

Input: ivalDb
Output: bool
Syntax: ivalDb A=(NaN(),1.3);

if (A.IsEmpty()) cout<<"Is an empty interval"<<endl;

5. The IsIn function returns true if the first interval is contained in the second
interval.

Input: ivalDb, ivalDb
Output: bool
Syntax: ivalDb A=ivalDb(a1,a2), B=ivalDb(b1,b2);

if (IsIn(A,B)) cout<<"A is contained in B"<<endl;

6. The IsOut function returns true if the first interval is not contained in the second
interval.

Input: ivalDb, ivalDb
Output: bool
Syntax: ivalDb A=ivalDb(a1,a2), B=ivalDb(b1,b2);

if (IsOut(A,B)) cout<<"A is not contained in B"<<endl;
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7. The IsIntersect function returns true if the two intervals intersect.

Input: ivalDb, ivalDb
Output: bool
Syntax: ivalDb A=ivalDb(a1,a2), B=ivalDb(b1,b2);

if (IsIntersect(A,B)) cout<<"A is intersecting B"<<endl;

8. The IsBig function returns true if one interval is completely bigger than the other.

Input: ivalDb, ivalDb
Output: bool
Syntax: ivalDb A=ivalDb(a1,a2), B=ivalDb(b1,b2);

if (A.IsBig(B)) cout<<"A is bigger than B"<<endl;

9. The IsSmall function returns true if one interval is completely smaller than the
other.

Input: ivalDb, ivalDb
Output: bool
Syntax: ivalDb A=ivalDb(a1,a2), B=ivalDb(b1,b2);

if (A.IsSmall(B)) cout<<"A is smaller than B"<<endl;

5.4.2.8 Auxiliary Interval Constants

These functions return useful intervals for use in some calculation.

• PI: Returns the interval version of � .
• LN2: Returns interval version of ln.2/.
• Zero: Returns [0,0].
• Infinity: Returns .�1; C1/.

5.4.2.9 Not Member Functions

There are some functions that are defined outside ivalDb objects. They work only
with double values.

• IsNaN: Returns true if the double value is NaN.
• NaN: Returns IEEE754 NaN value.
• PInfinity: Returns IEEE754 +infinity value.
• MInfinity: Returns IEEE754 �infinity value.
• IsPInfinity: Returns true if the double value is +infinity.
• IsMInfinity: Returns true if the double value is �infinity.
• IsInfinity: Returns true if the double value is either +infinity or �infinity.
• AddULP: Returns the next representable double-precision floating-point value

following the double value entered in the direction of +1.
• RestULP: Returns the next representable double-precision floating-point value

following the double value entered in the direction of �1.
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Table 5.1 Exceptions for the addition

x C y NaN NOERROR 0 PInfinity MInfinity

NaN NaN NaN NaN NaN NaN
NOERROR NaN NOERROR NOERROR PInfinity MInfinity

PInfinity
MInfinity

0 NaN NOERROR 0 PInfinity MInfinity
PInfinity NaN PInfinity PInfinity PInfinity NaN
MInfinity NaN MInfinity MInfinity NaN MInfinity

Table 5.2 Exceptions for the difference

x � y NaN NOERROR 0 PInfinity MInfinity

NaN NaN NaN NaN NaN NaN
NOERROR NaN NOERROR NOERROR MInfinity PInfinity

PInfinity
MInfinity

0 NaN NOERROR 0 MInfinity PInfinity
PInfinity NaN PInfinity PInfinity NaN PInfinity
MInfinity NaN MInfinity MInfinity MInfinity NaN

Input: double
Output: bool
Syntax: double A=NaN();

if (IsNaN(A)) cout<<"A is NaN"<<endl;

double B=PInfinity();

if (IsInfinity(B)) cout<<"B is infinity"<<endl;

double C=RestULP(B);

if (!IsInfinity(C)) cout<<"is not infinity"<<endl;

5.4.2.10 Operations with the Exceptional Values

Tables 5.1–5.4 contain the results for the C; �; �; = operators considering different
values for the variables. The NOERROR value means any numerical value.

For the product of two numeric values NOERROR, we consider the maximum
and the minimum values that are possible for double precision binary floating point
numbers. These values are in the float.h library:

DBL_MIN = 2.22507e-308
DBL_MAX = 1.79769e+308

For example the result of the product 4:0e C 300 � 3:0e C 50 is PInfinity
because the truncation for the DBL_MAX is PInfinity and DBL_MIN is 0.

For example
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Table 5.3 Exceptions for the product

x � y NaN NOERROR 0 PInfinity MInfinity

NaN NaN NaN NaN NaN NaN
NOERROR NaN NOERROR 0 PInfinity PInfinity

PInfinity MInfinity MInfinity
MInfinity

0 NaN 0 0 NaN NaN
PInfinity NaN PInfinity/MInfinity NaN PInfinity MInfinity
MInfinity NaN MInfinity/PInfinity NaN MInfinity PInfinity

Table 5.4 Exceptions for division

x=y NaN NOERROR 0 PInfinity MInfinity

NaN NaN NaN NaN NaN NaN
NOERROR NaN NOERROR PInfinity 0 0

PInfinity MInfinity
MInfinity
0

0 NaN 0 NaN 0 0
PInfinity NaN PInfinity/MInfinity PInfinity NaN NaN
MInfinity NaN PInfinity/MInfinity MInfinity NaN NaN

• ivalDb(PInfinity(),2.)+ivalDb(3.,MInfinity()); returns the
interval [+inf,-inf].

• ivalDb(1.,PInfinity())+ivalDb(3.,MInfinity()); returns
[0,-NaN].

• ivalDb(0.,1.)*ivalDb(PInfinity,3.); returns [-NaN,-NaN].
• ivalDb(1.,-1.)*ivalDb(-3.,MInfinity()); returns [-NaN,
-NaN].

• ivalDb(2.,1.)/ivalDb(4.,3.); returns the interval [0.6666666,
0.25].

• ivalDb(1.,2.)/ivalDb(PInfinity(),2.); returns the interval
[0.5,0].

• ivalDb(1.,2.)/ivalDb(3.,-4.); returns [-NaN,-NaN].



Chapter 6
Equations and Systems

6.1 Introduction

Similarly to the case of one interval equation A � X D B , it is possible to treat
the general problem of finding solutions for a system of linear interval equations
A � X D B and to obtain a semantics for them, compatible with the necessary
rounding.

Several authors have studied the solutions of linear interval systems such as
A � X D B, where A D .Aij/ is an interval .n; n/-matrix, X D .Xj / and B D .Bi /

are interval .n; 1/-matrices, distinguishing between a formal solution, i.e. intervals
X which substituted in the system satisfy the equalities, and interval enclosures
of sets of solutions for the different real-valued systems whose coefficients and
right-hand sides are real numbers belonging to sets associated with the intervals
Aij and Bi . The main contributions to the problem of obtaining a formal solution
can be found in [56, 57, 59, 81–83]. In this chapter, an approach to finding a formal
solution (called for short simply a solution) of an interval linear system, when the
coefficients and right-hand sides are modal intervals, will be treated, taking into
account the double aspect: finding a solution and giving a logical meaning to this
solution. An algorithm to obtain these solutions, as long as the algorithm converges,
will be presented and sufficient conditions for convergence and non-convergence
will be proved using the interval metric functions defined in Chap. 5.

6.2 Linear Equation

From the algebraic standpoint, in the system of modal intervals I �.R/ the equation
A C X D B has a unique solution

X D B � Dual.A/ D B C Opp.A/

M.A. Sainz et al., Modal Interval Analysis, Lecture Notes in Mathematics 2091,
DOI 10.1007/978-3-319-01721-1__6,
© Springer International Publishing Switzerland 2014
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and the equation A � X D B , with 0 … A0, has a unique solution

X D B=Dual.A/:

Considering an arithmetic with rounding, the solutions are

X D Inn.B � Dual.A//

and

X D Inn.B=Dual.A//;

satisfying A C X � B and A � X � B .
The semantic theorems provide a logical meaning to the solutions of both

equations, whatever the modalities of A, B and X are, and compatible with
rounding. If X is an inner-rounded solution with, for instance, A an improper
interval, B a proper interval, and X a proper interval, then A � X � B is equivalent
to

.8x 2 X 0/ .9a 2 A0/ .9b 2 B 0/ ax D b:

Example 6.2.1 The solution of

Œ�3; �7� � X D Œ2; 6�

is

X D Œ2; 6�=Dual.Œ�3; �7�/ D Œ2; 6�=Œ�7; �3� D Œ�2; �2=7�

and the inner rounding Œ�2; �0:286� of X satisfies

Œ�3; �7� � Œ�2; �0:286� � Œ2; 6�;

which is equivalent to

.8x 2 Œ�2; �0:286�0/ .9a 2 Œ�7; �3�0/ .9b 2 Œ2; 6�0/ ax D b:

6.3 Formal Solutions to a Linear System

Based on the well known Gauss algorithm to solve linear systems in R, an interval
algorithm to obtain solutions for an interval linear system, when the algorithm
converges, is presented together with sufficient conditions of convergence and
non-convergence. Let us consider an interval system of linear equations
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8<
:

A11 � X1 C : : : C A1n � Xn D B1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
An1 � X1 C : : : C Ann � Xn D Bn

concisely represented by

A � X D B

together with the closely associated ones A � X � B and A � X � B, with the
interval coefficients matrix A D .Aij/i;j D1;:::;n, the interval right-hand matrix B
D .Bi /iD1;:::;n, and the interval unknowns matrix X D .Xj /j D1;:::;n. Isolating any
interval unknown Xi in the i th equation of the system of linear equations, the result
is

Xi D Bi �P
j 6Di Dual.Aij/ � Dual.Xj /

Dual.Aii/
;

supposing that 0 62 Aii. This suggests the following definition.

Definition 6.3.1 (Jacobi interval operator) The Jacobi interval operator asso-
ciated to the interval system S W A � X D B, of n linear equations with n

unknowns is the function from I �.Rn/ to I �.Rn/ such that the image of an interval
Y D .Y1; : : : ; Yn/ is the interval JS.Y / D .JS.Y1/; : : : ; JS .Yn// defined by

JS.Yi / D Bi �P
j 6Di Dual.Aij/ � Dual.Yj /

Dual.Aii/
; (6.1)

for i D 1; : : : ; n.

The Jacobi interval operator satisfies the following properties: Let S W A�X D B
be a linear system,

1) Y is a solution of A � X D B is equivalent to JS.Y / D Y .

Proof If Y solution of A � X D B, then for every i D 1; : : : ; n

JS .Yi / D Bi �P
j 6Di Dual.Aij/ � Dual.Yj /

Dual.Aii/
D Aij � Yi

Dual.Aii/
D Yi :

Conversely if JS .Y / D Y , then for each i -component

Bi �P
j 6Di Dual.Aij/ � Dual.Yj /

Dual.Aii/
D Yi

) Ai1 � Y1

C : : : C Aii � Yi C : : : C A1n � Xn D Bi :
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So

A�Y D B: �

2) If Y is a solution of A � X � B, then JS.Y / is a solution of A � X � B.

Proof For i D 1; : : : ; n, the i th equation yields

Ai1 � JS.Y1/ C : : : C Aii � JS.Yi / C : : : C Ain � JS .Yn/

D Ai1 � B1 �P
j 6D1 Dual.A1j / � Dual.Yj /

Dual.A11/
C : : :

CAii � Bi �P
j 6Di Dual.Aij/ � Dual.Yj /

Dual.Aii/
C : : :

CAin � Bn �P
j 6Dn Dual.Anj / � Dual.Yj /

Dual.Ann/

� Ai1 � A11 � Y1

Dual.A11/
C : : :

CBi � Dual.Ai1/ � Dual.Y1/ � : : : � Dual.Ain/ � Dual.Yn/ C : : :

CAin � Ann � Yn

Dual.Ann/

D Bi : �

3) If Y is a solution of A � X � B, then Y � JS .Y /.

Proof Deducing Yi from the i th equality of A � Y � B, i D 1; : : : ; n

Yi � Bi �P
j 6Di Dual.Aij/ � Dual.Yj /

Dual.Aii/
D JS.Yi /: �

Conversely and with similar proofs, we get the following properties
2’) If Y is a solution of A � X � B, then JS.Y / is a solution of A � X � B.
3’) If Y is a solution of A � X � B, then Y � JS .Y /.

Moreover,
4) JS is �-antitonic, i.e., if Y � Z , then JS.Y / � JS.Z /.

Proof From .Dual.Y1/; : : : ; Dual.Yn// � .Dual.Z1/; : : : ; Dual.Zn// and the iso-
tonicity of the arithmetic operations. �

6.3.1 Solving a Linear System

Let .x1; : : : ; xn/ be a real solution of the real-valued system Ax=b, where A=.aij/

and b=.bi / are real matrices (respectively, .n 
 n/ and .n 
 1/) with aij any real
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numbers belonging to the intervals A0
ij and bi any real numbers belonging to the

intervals B 0
i . Let X 0 be the interval vector .Œx1; x1�; : : : ; Œxn; xn�/. If Impr.A/ is the

interval matrix formed by Impr.Aij/ and analogously for Prop.B/, then X 0 is a
solution of the system

S1 W Impr.A/ � X � Prop.B/ (6.2)

since

Impr.A/ � X.0/ � A � .Œx1; x1� : : : Œxn; xn�/> D b � Prop.B/;

after the identifications aij $ Œaij; aij� and bi $ Œbi ; bi �.
Using the Jacobi interval operator associated to this system (6.2) we can define

Y 0
i D JS1.X

0
i / D Prop.Bi / �P

j 6Di Dual.Impr.Aij// � Dual.X0
j /

Dual.Impr.Aii//

for i D 1; : : : ; n. The interval vector Y 0 D .Y 0
1 ; : : : ; Y 0

n / is proper and, by the
properties of the Jacobi interval operator, it is a solution of Impr.A/ � X � Prop.B/.
Also Y 0 is an initial solution for the system S W A � X � B, since

A � Y.0/ � Impr.A/ � Y.0/ � Prop.B/ � B:

By means of the Jacobi interval operator associated to the system S W A � X � B,

JS .Yi / D Bi �P
j 6Di Dual.Aij/ � Dual.Yj /

Dual.Aii/

it is possible to get a sequence of vector intervals, Y .0/, Y .1/ D JS.Y .0//, Y .2/ D
JS.Y .1//,. . . , which, by the properties of the Jacobi interval operator, satisfies

Y .0/ � Y .1/ � Y .2/ � Y .3/ � Y .4/ � Y .5/ � : : : (6.3)

and such that Y .t/ is a solution of A�X � B if t is even and a solution of A�X � B
if t is odd.

6.3.2 Algorithm with Rounding

The computational scheme of the interval vectors sequence of solutions for the
associated systems A � X � B and A � X � B in an arithmetic with rounding
will be the following:

1. To arrange equations and unknowns to achieve that 0 62 A0
ii, for every i D

1; : : : ; n.
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2. To obtain the real solution .x1; : : : ; xn/ for, e.g., the real-valued system
mid.A/x D mid.B/ consisting of the middle points of the intervals A0

ij and

B 0
i and to build the interval vector X.0/ D .Œx1; x1�; : : : ; Œxn; xn�/.

3. To compute for i D 1; : : : ; n

X
.1/
i D JS.X

.0/
i / D Out

 
Prop.Bi / �P

j 6Di Dual.Impr.Aij// � Dual.X.0/
j /

Dual.Impr.Aii//

!

and to build the interval vector Y .0/ D .X
.1/
1 ; : : : ; X

.1/
n /, which is the initial

solution of A � X � B.
4. To compute for t D 1; 2; : : :

JS .Y
.t/
i / D Out

 
Bi �P

j 6Di Dual.Aij/ � Dual.Y .t�1/
j /

Dual.Aii/

!
.i D 1; : : : ; n/;

if t is even, or

JS .Y
.t/
i / D Inn

 
Bi �P

j 6Di Dual.Aij/ � Dual.Y .t�1/
j /

Dual.Aii/

!
.i D 1; : : : ; n/;

if t is odd, and to build the sequence

Y .0/ � Y .1/ � Y .2/ � Y .3/ � Y .4/ � Y .5/ � : : : :

Example 6.3.1 For the system

8<
:

Œ5; 2� � X1 C Œ�1; �2� � X2 C Œ2; 1� � X3 D Œ3; 2�

Œ1; 0� � X1 C Œ4; 3� � X2 C Œ1; 2� � X3 D Œ1; 3�

Œ1; 0� � X1 C Œ2; 3� � X2 C Œ5; 3� � X3 D Œ4; 3�

starting from the solution

.x1; x2; x3/ D .0:510135; 0:206081; 0:682432/;

of the real system formed by the mid-points

8<
:

3:5 x1 � 1:5 x1 C 1:5 x1 D 2:5

0:5 x1 C 3:5 x1 C 1:5 x1 D 2:0

0:5 x1 C 2:5 x1 C 4:0 x1 D 3:5

and using the Jacobi interval operator, the sequence of solutions is
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X .0/ D .Œ0:510135; 0:510135�; Œ0:206081; 0:206081�; Œ0:682432; 0:682432�/;

Y .0/ D X .1/ D .Œ0:168243; 1:36486�; Œ�0:291667; 0:772523�; Œ0:374324; 1:19595�;

Y .1/ D .Œ0:604775; 0:256194�; Œ0:114358; 0:202703�; Œ0:941351; 0:227477�/;

Y .2/ D .Œ0:264; 1:00062�; Œ�0:182042; 0:848348�; Œ0:633302; 0:797297�/;

Y .3/ D .Œ0:516349; 0:51033�; Œ0:0256745; 0:468468�; Œ0:856425; 0:151652�/;

Y .4/ D .Œ0:351124; 0:949849�; Œ�0:124258; 0:898899�; Œ0:68646; 0:531532�/;

Y .1/ D .Œ0:604775; 0:256194�; Œ0:114358; 0:202703�; Œ0:941351; 0:227477�/;

Y .2/ D .Œ0:264; 1:00062�; Œ�0:182042; 0:848348�; Œ0:633302; 0:797297�/;

Y .3/ D .Œ0:516349; 0:51033�; Œ0:0256745; 0:468468�; Œ0:856425; 0:151652�/;

Y .4/ D .Œ0:351124; 0:949849�; Œ�0:124258; 0:898899�; Œ0:68646; 0:531532�/;

Y .5/ D .Œ0:505196; 0:672105�; Œ�0:012528; 0:645646�; Œ0:80433; 0:101101�/;

Y .10/ D .Œ0:461; 0:950438�; Œ�0:090324; 0:970044�; Œ0:732071; 0:157491�/;

Y .20/ D .Œ0:494958; 0:957191�; Œ�0:0841278; 0:996055�; Œ0:747791; 0:0207396�/;

Y .30/ D .Œ0:499337; 0:958182�; Œ�0:0834366; 0:99948�; Œ0:749711; 0:00273116�/;

Y .40/ D .Œ0:499913; 0:958313�; Œ�0:0833469; 0:999932�; Œ0:749962; 0:000359694�/;

Y .49/ D .Œ0:5; 0:958296�; Œ�0:0833251; 0:999953�; Œ0:750005; 1:35104e � 05�/;

Y .50/ D .Œ0:49998; 0:958331�; Œ�0:0833351; 0:999991�; Œ0:749995; 4:73658e � 05�/:

The distances between consecutive terms are

dist.Y .1/; Y .0// D .1:10867; 0:56982; 0:968468/;

dist.Y .2/; Y .1// D .0:744426; 0:645646; 0:56982/;

dist.Y .3/; Y .2// D .0:490289; 0:37988; 0:645646/;

dist.Y .4/; Y .3// D .0:439518; 0:43043; 0:37988/;

dist.Y .5/; Y .4// D .0:277744; 0:253253; 0:43043/;

dist.Y .10/; Y .9// D .0:115948; 0:127535; 0:112557/;

dist.Y .20/; Y .19// D .0:0150141; 0:0167947; 0:0148224/;

dist.Y .30/; Y .29// D .0:0019744; 0:00221163; 0:00195193/;
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dist.Y .40/; Y .39// D .0:000259995; 0:000291288; 0:000257095/;

dist.Y .50/; Y .49// D .3:42131e � 05; 3:83854e � 05; 3:38554e � 05/;

dist.Y .60/; Y .59// D .4:58956e � 06; 5:06639e � 06; 4:52995e � 06/:

Indeed

Y .0/ � Y .1/ � Y .2/ � Y .3/ � Y .4/ � Y .5/ � : : :

and Y .t/ is a solution of A � X � B if t is even and a solution of A � X � B if t is
odd.

6.3.3 Sufficient Conditions for Convergence

Starting from any interval vector Y .0/ D .Y
.0/
1 ; : : : ; Y

.0/
n / let us build the sequence

.Y .0/; Y .1/; : : : ; Y .t/; : : :/ with Y .t/ D JS .Y .t�1//. For the distance q between two
consecutive terms of the sequence we can obtain, for every i D 1; : : : ; n

dist.Y .2tC1/
i ; Y

.2t/
i /

D dist.JS.Y
.2t/
i /; JS .Y

.2t�1/
i //

D dist

 
Bi �P

j 6Di Dual.Aij/ � Dual.Y .2t/
j /

Dual.Aii/
;

Bi �P
j 6Di Dual.Aij/ � Dual.Y .2t�1/

j /

Dual.Aii/

!

� abs

�
1

Dual.Aii/

�
dist

0
@Bi �

X
j 6Di

Dual.Aij � Y
.2t/

j /;

Bi �
X
j 6Di

Dual.Aij � Y
.2t�1/
j /

1
A

D 1

mig.Aii/
wid

0
@X

j 6Di

Dual.Aij � Y
.2t/
j /;

X
j 6Di

Dual.Aij � Y
.2t�1/

j /

1
A

� 1

mig.Aii/

X
j 6Di

wid
�
Aij � Y

.2t/
j ; Aij � Y

.2t�1/
j
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D 1

mig.Aii/

X
j 6Di

abs.Aij/dist.Y .2t/
j ; Y

.2t�1/
j /

�
P

j 6Di abs.Prop.Aij//

mig.Prop.Aii//
max

j 2f1;:::;ng
dist.Y .2t/

j ; Y
.2t�1/
j /:

Therefore, if Prop(A) is a strictly diagonally dominant interval matrix, then for
every i D 1; : : : ; n

P
j 6Di abs.Prop.Aij//

mig.Prop.Aii//
< ˛ < 1; (6.4)

and, for every i ,

dist.Y .2tC1/
i ; Y

.2t/
i / � ˛t max

j 2f1;:::;ng
dist.Y .1/

j ; Y
.0/
j /:

So, .Y .0/; Y .1/; : : : ; Y .t/ : : :/ is a Cauchy sequence and it has a limit Y satisfying
Y D JS .Y / and, due to property (1) of the Jacobi operator, this limit is a
solution of the system A � X D B. This solution is unique because if we started
from any other interval vector Z .0/ D .Z

.0/
1 ; : : : ; Z

.0/
n /, and built the sequence

.Z .0/; Z .1/; : : : ; Z .t/; : : :/, with Z .t/ D JS .Z .t�1//, repeating the previous reason-
ing twice, we would obtain:

1. .Z .0/; Z .1/; : : : ; Z .t/; : : :/ is convergent and
2. it is true that

dist.Y .t/
i ; Z

.t/
i / � ˛t max

j 2f1;:::;ng
dist.Y .0/

j ; Z
.0/
j /:

So both sequences have the same limit. Therefore if the condition (6.4) is true for
every i D 1; : : : ; n, then there exists a unique solution.

Moreover, if Y .0/ is any initial solution of A � X � B, then by means of the
Jacobi interval operator associated with the system it is possible to get a sequence
of vector intervals, Y .0/, Y .1/ D JS.Y .0//, Y .2/ D JS.Y .1//,. . . , satisfying

Y .0/ � Y .1/ � Y .2/ � Y .3/ � Y .4/ � Y .5/ � : : :

and such that Y .t/ is a solution of A�X � B if t is even and a solution of A�X � B if
t is odd. This sequence converges to a limit Y , the same one for any initial solution,
which is the unique solution of A � X D B.

Thus for the system of Example 6.3.1, for which the condition (6.4) is true, the
limit of .Y .0/; Y .1/; Y .2/; : : :/ exists and it is

Y D .Œ0:5; 0:9853�; Œ�0:083; 1�; Œ0:75; 0�/;

which is the unique solution of the system A � X D B.
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6.3.4 Sufficient Condition for Non-convergence

By the properties of the width d of an interval, for every i D 1; : : : ; n

wid.JS.Y
.t/
i // D wid.Prop.JS.Y

.t/
i ///

D wid

 
Prop.Bi / �P

j 6Di Prop.Aij/ � Prop.Y
.t/
j /

Prop.Aii/

!

� wid

 
Prop.Bi / �P

j 6Di Œaij; aij� � Prop.Y
.t/
j /

Œaii; aii�

!

D wid

 
Prop.Bi /

aii

!
C d

 P
j 6Di aij � Prop.Y

.t/
j /

aii

!

D wid.Prop.Bi //

jaiij C
P

j 6Di jaijj � wid.Prop.Y
.t/
j //

jaiij :

for Prop.Aij/ D Œaij; aij�. So,

wid.JS .Y
.t/
i // �

P
j 6Di abs.Prop.Aij//

mig.Prop.Aii//
min

j 2f1;:::;ng
wid.Y

.t/
j /:

Therefore, if for every i D 1; : : : ; n

P
j 6Di abs.Prop.Aij//

mig.Prop.Aii//
> ˛ > 1;

then for any i ,

wid.Y
.t/

i / � ˛t min
j 2f1;:::;ng

wid.Y
.0/

j /:

and the width of the successive intervals of the sequence Y .0/, Y .1/ D JS .Y .0//,
Y .2/ D JS .Y .1//,. . . , will increase without bound. So, the Jacobi operator will not
provide a solution for systems of type A � X D B.

6.3.5 Solution in the Case of Non-convergence

Let us consider a linear system A � X D B in the case of non-convergence of the
Jacobi algorithm, i.e., where
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8<
:

A11 � X1 C : : : C A1n � Xn D B1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
An1 � X1 C : : : C Ann � Xn D Bn

To get a solution, the problem can be put in the form of solving an optimization
problem in two different ways, using linear or non-linear techniques.

By means of a linear optimization scheme the problem becomes

min
X

iD1;:::;n

.Inf.Ai1 � X1 C : : : C Ain � Xn/ � Inf.Bi /

CSup.Ai1 � X1 C : : : C Ain � Xn/ � Sup.Bi //

subject to the restrictions:

Inf.A11 � X1 C : : : C A1n � Xn/ � Inf.B1/

Sup.A11 � X1 C : : : C A1n � Xn/ � Sup.B1/

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Inf.An1 � X1 C : : : C Ann � Xn/ � Inf.Bn/

Sup.An1 � X1 C : : : C Ann � Xn/ � Sup.Bn/:

Due to the definition of the interval product of modal intervals, the products
involved in these expressions are not linear, but only piece-wise linear. Therefore,
it is necessary to introduce 0–1 variables to convert the problem to a mixed integer
one, solvable by standard techniques. The number of these 0–1 variables is four for
each unknown, to take into account the different signs of the interval bounds, plus
two for each coefficient of the system with bounds of different sign, to take into
account that, in some cases, the bounds of the interval product are the minimum or
maximum of the product of the bounds.

Example 6.3.2 For the system

8̂̂
<
ˆ̂:

Œ5; 7� � X1 C Œ3:01; �3� � X2 C Œ3:01; �3� � X3 C Œ3:01; �3� � X4 D Œ26; �43:11�

Œ3:01; �3� � X1 C Œ5; 7� � X2 C Œ2:99; �3� � X3 C Œ2:99; �3� � X4 D Œ�5; �44:94�

Œ2:99; �3� � X1 C Œ2:99; �3� � X2 C Œ5; 7� � X3 C Œ3:01; �3� � X4 D Œ�18; �48:98�

Œ3:01; �3� � X1 C Œ3:01; �3� � X2 C Œ2:99; �3� � X3 C Œ5; 7� � X4 D Œ23; �45�

the Jacobi algorithm does not converge. To find the solution by means of a mixed
integer programming procedure it is necessary to introduce forty 0–1 variables and
the execution time is high for such a small system. But, with the a priori knowledge
that the unknowns are negative, the number of 0–1 variables is zero and the solution
(using the LINDO c	 linear and integer programming software, www.lindo.com),

www.lindo.com
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X1 D Œ�0:999998; �2:999997�;

X2 D Œ�4:999997; �3:000001�;

X3 D Œ�2:000006; �5:000002�;

X4 D Œ�6:000002; �1:000000�;

is available after negligible execution time.

The number of 0–1 variables can be large even for small systems, dramatically
increasing the execution time. This last disadvantage does not necessarily compel us
to discard this approach, since in many problems the physical context determines the
sign of the unknowns, so the number of 0–1 variables can be small even for a non-
small system and this procedure can then be very useful. Obviously, the physical
context implies something logically interpretable and the solution of a linear system
has a logical meaning, as will be shown in Sect. 6.4.

The second approach is to use any standard procedure of non-linear optimization
applied to the objective function

fobj D min
X

iD1;:::;n

..Inf.Ai1 � X1 C : : : C Ain � Xn/ � Inf.Bi //
2

C.Sup.Ai1 � X1 C : : : C Ain � Xn/ � Sup.Bi //
2/

with no restrictions.

Example 6.3.3 For the system A � X D B with

A D

0
BBBBBBBBB@

Œ4; 6� Œ�9; 0� Œ0; 12� Œ2; 3� Œ5; 9� Œ�23; �9� Œ15; 23�

Œ0; 1� Œ6; 10� Œ�1; 1� Œ�1; 3� Œ�5; 1� Œ1; 15� Œ�3; �1�

Œ0; 3� Œ�20; �9� Œ12; 77� Œ�6; 30� Œ0; 3� Œ�18; 1� Œ0; 1�

Œ�4; 1� Œ�1; 1� Œ�3; 1� Œ3; 5� Œ5; 9� Œ1; 2� Œ1; 4�

Œ0; 3� Œ0; 6� Œ0; 20� Œ�1; 5� Œ8; 14� Œ�6; 1� Œ10; 17�

Œ�7; �2� Œ1; 2� Œ7; 14� Œ�3; 1� Œ0; 2� Œ3; 5� Œ�2; 1�

Œ�1; 5� Œ�3; 2� Œ0; 8� Œ1; 11� Œ�5; 10� Œ2; 7� Œ6; 82�

1
CCCCCCCCCA

X D

0
BBBBBBBBB@

X1

X2

X3

X4

X5

X6

X7

1
CCCCCCCCCA

and B D

0
BBBBBBBBB@

Œ�10; 95�

Œ35; 14�

Œ�6; 2�

Œ30; 7�

Œ4; 95�

Œ�6; 46�

Œ�2; 65�

1
CCCCCCCCCA

;

the solution (using, for example the GRG2 c	non-linear optimization software,
www.optimalmethods.com) is

www.optimalmethods.com
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X1 D Œ�1:22474317578; :50542987670�;

X2 D Œ18:26444337097; �9:51750410301�;

X3 D Œ�:02818650587; 1:16075521933�;

X4 D Œ16:40769576636; �14:45553419850�;

X5 D Œ�1:34356527337; 3:98821848038�;

X6 D Œ�3:52893852104; 4:54345836822�;

X7 D Œ5:43086236811; �:67400838684�;

after an execution time of less than 1 s. But if the right-hand side B7 is replaced
by the interval Œ65; �2�, the final value of fobj is greater than 0 and the minimum
obtained is not a solution of the system.

Example 6.3.4 For n
n systems with coefficients defined by the matrix (from [32])

0
BBBBBBBB@

1 2 3 � � � n � 1 n

2 2 3 � � � n � 1 n

3 3 3 � � � n � 1 n
:::

:::
:::

: : :
:::

:::

n � 1 n � 1 n � 1 � � � n � 1 n

n n n � � � n n

1
CCCCCCCCA

intervalized by Œaij � 0:1; aij C 0:1� if i ¤ j , Œaij C 0:1; aij � 0:1� if i D j and
right-hand sides Bi D Œi C 10; i � 10�, the final value fobj D 0 is obtained in 8 s
when n D 30 and 48 s when n D 50.

6.4 Logical Meaning of the Solution

All the previous results can be obtained within the frame of classical intervals
completed with Kaucher’s generalized arithmetic, but with no interpretation of the
systems of equations and their solutions in terms of the real-valued system of which
the coefficients, right-hand sides, and solutions belong to the sets of real numbers
associated with the intervals involved in the interval system. As modal interval
analysis provides a logical basis for the classical intervals, it is possible to interpret
the system and its solution when they verify certain conditions, established precisely
by the semantic theorems.

Let us suppose that every component of the solution .X1; : : : ; Xn/ is a
proper interval. In this case, by Theorem 4.4.3 (*-interpretability for multi-
dimensional computations), if Ai1j1 ; : : : ; Aipjp , BkqC1

; : : : ; Bkn are proper intervals,
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AipC1jpC1
; : : : ; Ainjn , Bk1 ; : : : ; Bkq are independent improper, then

8<
:

A11 � X1 C : : : C A1n � Xn � B1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
An1 � X1 C : : : C Ann � Xn � Bn

means

.8x1 2 X 0
1/ : : : .8xn 2 X 0

n/

.8ai1j1 2 A0
i1j1

/ : : : .8aipjp 2 A0
ipjp

/.8bk1 2 B 0
k1

/ : : : .8bkq 2 B 0
kq

/

.9aipC1jpC1
2 A0

ipC1jpC1
/ : : : .9ainjn 2 A0

injn
/.9bkqC1

2 B 0
kqC1

/ : : : .9bkn 2 B 0
kn

/

0
@a11 � x1 C : : : C a1n � xn D b1

. . . . . . . . . . . . . . . . . . . . . . . . . . .
an1 � x1 C : : : C ann � xn D bn

1
A :

In a similar way, Theorem 4.4.4 (**-interpretability for multi-dimensional compu-
tations) provides a semantics for the solutions of the system A � X � B.

6.4.1 Semantics in the General Case

Let us suppose that some components of the solution of A � X � B are improper,
for example Xi ; substituting

Xi D Prop.Xi/ C Œwid.Xi /; �wid.Xi/�

in all the equations, the system will become

8̂
<̂
ˆ̂:

A11 � X1 C : : : C A1i � .Prop.Xi / C Œwid.Xi /; �wid.Xi /�/ C : : : C A1n � Xn � B1

A21 � X1 C : : : C A2i � .Prop.Xi / C Œwid.Xi /; �wid.Xi /�/ C : : : C A2n � Xn � B2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
An1 � X1 C : : : C Ani � .Prop.Xi / C Œwid.Xi /; �wid.Xi /�/ C : : : C Ann � Xn � Bn:

By Theorem 4.4.3, if Ai1j1 ,. . . , Aipjp , BkqC1
,. . . ,Bkn are proper intervals and

AipC1jpC1
, . . . ,Ainjn , Bk1 ,. . . , Bkq are improper, then

.8x1 2 X 0
1/ : : : .8xi 2 X 0

i / : : : .8xn 2 X 0
n/

.8ai1j1 2 A0
i1j1

/ : : : .8aipjp 2 A0
ipjp

/.8bk1 2 B 0
k1

/ : : : .8bkq 2 B 0
kq

/

.9yi1 2 Œwid.Xi /; �wid.Xi/�
0/ : : : .9yin 2 Œwid.Xi/; �wid.Xi/�

0/

.9aipC1jpC1
2 A0

ipC1jpC1
/ : : : .9ainjn 2 A0

injn
/.9bkqC1

2 B 0
kqC1

/ : : : .9bkn 2 B 0
kn

/



6.5 System Solution Sets 157

0
BB@

a11 � x1 C : : : C a1i � .xi C yi1/ C : : : C a1n � xn D b1

a21 � x1 C : : : C a2i � .xi C yi2/ C : : : C a2n � an D b2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
an1 � x1 C : : : C ani � .xi C yin/ C : : : C ann � xn D bn

1
CCA :

Remark 6.4.1 The variables yi1; yi2; : : : ; yin act as control variables for each value
of xi within the interval X 0

i .

Example 6.4.1 Following a previous example, the interval vector

X D .Œ0:5; 0:958296�; Œ�0:0833251; 0:999953�; Œ0:750005; 1:35104e � 05�/

is a solution for the system

8<
:

Œ5; 2� � X1 C Œ�1; �2� � X2 C Œ2; 1� � X3 � Œ3; 2�

Œ1; 0� � X1 C Œ4; 3� � X2 C Œ1; 2� � X3 � Œ1; 3�

Œ1; 0� � X1 C Œ2; 3� � X2 C Œ5; 3� � X3 � Œ4; 3�:

Since the first component Œ0:5; 0:958296� and the second one Œ�0:0833251;

0:999953� are proper intervals but the third one Œ0:750005; 1:35104e � 05� is
improper, the semantic is

.8x1 2 Œ0:5; 0:958296�0/.8x2 2 Œ�0:0833251; 0:999953�0/

.8x3 2 Œ1:35104e � 05; 0:750005�0/.8a23 2 Œ1; 2�0/

.8a32 2 Œ2; 3�0/.8b1 2 Œ2; 3�0/.8b3 2 Œ3; 4�0/

.9y31 2 Œ�0:75; 0:75�0/.9y32 2 Œ�0:75; 0:75�0/.9y33 2 Œ�0:75; 0:75�0/

.9a11 2 Œ2; 5�0/.9a12 2 Œ�2; �1�0/.9a13 2 Œ1; 2�0/

.9a21 2 Œ0; 1�0/.9a22 2 Œ�3; 4�0/.9a31 2 Œ0; 1�0/.9a33 2 Œ3; 5�0/.9b2 2 Œ1; 3�0/0
@a11 � x1 C a12 � x2 C a13 � .x3 C y31/ D b1

a21 � x1 C a22 � x2 C a23 � .x3 C y32/ D b2

a31 � x1 C a32 � x2 C a33 � .x3 C y33/ D b3

1
A :

Using an analogous process, the semantics for the solutions of A � X � B can be
obtained using the dual Theorem 4.4.4 (of **-interpretability).

6.5 System Solution Sets

The two-step procedure for obtaining a formal solution to a linear system and
then the semantic meaning of the solution, can not be the most suitable way to
handle systems which appear in applications, especially when the solution involves
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intervals of different modalities which means different quantifiers affecting to the
unknowns or coefficients.

If Ax D b is a real-valued system of linear equations, considering intervals
A0

ij of variation for the coefficients and intervals B 0
i of variation for the right-hand

sides, a solution set can be defined: the set of solutions for the system with logical
specifications for the selection of the coefficients

�˛ˇ D fx 2 R
n j .8ai1j1 2 A0

i1j1
/ : : : .8aipjp 2 A0

ipjp
/.8bk1 2 B 0

k1
/ : : : .8bkq ; B 0

kq
/

.9aipC1jpC1
2 A0

ipC1jpC1
/ : : : .9ainjn 2 A0

injn
/

.9bkqC1
2 B 0

kqC1
/ : : : .9bkn 2 B 0

kn
/ Ax D bg:

For example the so-called tolerable solution set

�tol D fx 2 R
n j .8a11 2 A0

11/ : : : .8ann 2 A0

nn/ .9b1 2 B0

1/ : : : .9bn 2 B0

n/ Ax D bg
and the united solution set

�uni D fx 2 R
n j .9a11 2 A0

11/ : : : .9ann 2 A0

nn/ .9b1 2 B0

1/ : : : .9bn 2 B0

n/ Ax D bg:

The characterization of these solution sets can be obtained by means of interval
enclosures, i.e., inner and outer or other interval estimates. These subjects will be
treated in Chap. 10.



Chapter 7
Twins and f � Algorithm

7.1 Introduction

This chapter deals with the construction of an algorithm to obtain inner and outer
approximations of the f � extension of a continuous function f, in the case of non-
monotony of f in the studied domain. One convenient approach, but not the only one,
is to simultaneously work with both inner and outer approximations. This kind of
interval representation, referred to as twins, have already been studied in the field of
classical intervals [55,64]. First of all, twins with modal intervals will be presented.

Summarizing some results seen in Chap. 2, in the construction of the classical
and modal intervals, from a lattice viewpoint and disregarding their logic-semantic
features, starting from the order structure .R; �/, a classical interval of real bounds
a; a 2 R was defined by

A0 D Œa; a� D fx 2 R j a � x � ag
with the condition a � a. In the set of the classical intervals

I.R/ D fŒa; a� j a � ag
two relations were defined: if A D Œa; a�; B D Œb; b� 2 I.R/

A0 � B 0 , .a � b ; a � b/

A0 � B 0 , .a � b ; a � b/:

Both are order relations. .I.R/; �/ is a lattice with the infimum and supremum,
called respectively minimum and maximum, given by

Min .A0; B 0/ D Inf�.A0; B 0/ D Œmin.a; b/; min.a; b/�

Max .A0; B 0/ D Sup�.A0; B 0/ D Œmax.a; b/; max.a; b/�;

M.A. Sainz et al., Modal Interval Analysis, Lecture Notes in Mathematics 2091,
DOI 10.1007/978-3-319-01721-1__7,
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and .I.R/; �/ is also a lattice with the infimum and supremum, called respectively
meet and join, given by

A0 ^ B 0 D Inf�.A0; B 0/ D Œmax.a; b/; min.a; b/�

A0 _ B 0 D Sup�.A0; B 0/ D Œmin.a; b/; max.a; b/�:

The operation Inf�.A0; B 0/, i.e. A0 ^ B 0, is not defined in I.R/ when

max.a; b/ > min.a; b/;

because the result is not a classical interval. In order to close this operation it was
necessary to extend the classical intervals to the modal intervals, by defining the set

I �.R/ D fŒa; a� j a; a 2 Rg

with the operations Inf�, Sup�, Inf� and Sup� defined in the same formal way as
in I.R/. From the natural inclusion I.R/ � I �.R/ the classical intervals of I.R/

were called proper intervals and the intervals of I �.R/ � I.R/ improper intervals.
In fact, to start from the order structure (R; �/ is irrelevant because this

construction can be done starting from any structure .M; 4/, where 4 is a partial
order relation on a set M. The results are .I �.M /; �/ and .I �.M; �/ which are
lattices of the same kind as .M; 4/.

7.2 Twins

Now the interval structures .I �.R/; �/ and .I �.R/; �/ will be used as starting
points to construct new interval elements, twins.

7.2.1 Twins Associated to the Relations � and �

Starting from the structure .I �.R/; �/, a �-proper twin of bounds A; A 2 I �.R/,
with the condition A � A, is the set of modal intervals

A� D jŒA; A�j� D fX 2 I �.R/ j A � X � Ag:

Figure 7.1 illustrates this concept.
In the set of �-proper twins

I.I �.R//� D fjŒA; A�j� j A � Ag



7.2 Twins 161

a1

a3

a2Fig. 7.1 �-proper twin

two relations are defined: if A� D jŒA; A�j�;B� D jŒB; B�j� 2 I.I �.R//

A� � B� , .A � B ; A � B/

A� � B� , .A � B ; A � B/:

The infimum and supremum for these �-proper twins exist and they are given by

Inf�.A�;B�/ D jŒInf�.A; B/; Inf�.A; B/�j D jŒMin .A; B/; Min .A; B/�j

Sup�.A�;B�/ D jŒSup�.A; B/; Sup�.A; B/�j D jŒMax .A; B/; Max .A; B/�j;

and

Inf�.A�;B�/ D jŒSup�.A; B/; Inf�.A; B/�j D jŒMax .A; B/; Min .A; B/�j

Sup�.A�;B�/ D jŒInf�.A; B/; Sup�.A; B/�j D jŒMin .A; B/; Max .A; B/�j;

in accordance with the notations introduced in Definition (2.2.16).
The main properties of these twin relations are stated in the following lemma.

Lemma 7.2.1 (Properties of � and � in I.I �.R//�)

(1) Both � and � are partial order relations in I.I �.R//�.
(2) Inf�.A�;B�/ 2 I.I �.R//�.
(3) Sup�.A�;B�/ 2 I.I �.R//�.
(4) Sup�.A�;B�/ 2 I.I �.R//�.
(5) The structure .I.I �.R//�; �/ is a lattice.

Proof

(1) Reflexivity, antisymmetry, and transitivity are obvious.
(2) If A� D jŒA; A�j�;B� D jŒB; B�j� and A D Œa1; a2�, A D Œa3; a4�, B D

Œb1; b2�, B D Œb3; b4�, then

a1 � a3 ; a2 � a4 ; b1 � b3 ; b2 � b4;



162 7 Twins and f � Algorithm

1-1

-1

2-2

-2

3-3

-3

4

1

2

3

4

-4

-4

a1
b1

b2

a2

a3

b3

Fig. 7.2 �-proper twins

therefore

Inf�.A; B/ D Œinf.a1; b1/; inf.a2; b2/� � Œinf.a3; b3/; inf.a4; b4/� D Inf�.A; B/:

So Inf�.A�;B�/ 2 I.I �.R//�.
(3), (4) Similar reasoning as (2).
(5) By the previous properties and the definitions of infimum and supremum. �

Remark 7.2.1 It is not always true that Inf�.A�;B�/ 2 I.I �.R//� for every
A�;B�.

Example 7.2.1 The twins A� D jŒŒ1; �2�; Œ3; 4��j and B� D jŒŒ�3; �1�; Œ2; 2��j
belong to I.I �.R//� because

A D Œ1; �2� � Œ3; 4� D A;

B D Œ�3; �1� � Œ2; 2� D B:

They are represented in Fig. 7.2
It is true that A� — B� and A� ª B�. Infimum and supremum are

Inf�.A�;B�/ D jŒŒ�3; �2�; Œ�1; 1��j
Sup�.A�;B�/ D jŒŒ1; �1�; Œ3; 4��j
Inf�.A�;B�/ D jŒŒ1; �1�; Œ�1; 1��j

Sup�.A�;B�/ D jŒŒ�3; �2�; Œ3; 4��j;

represented in Fig. 7.3. Remark that Inf�.A�;B�/ … I.I �.R//�.
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Fig. 7.3 �-infimum and supremum, �-infimum and supremum
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Fig. 7.4 �-proper twin

Analogously, starting from the structure .I �.R/; �/, a �-proper twin of bounds
A; A 2 I �.R/, with the condition A � A, can be also given by

A� D jŒA; A�j� D fX 2 I �.R/ j A � X � Ag:

Figure 7.4 illustrates this definition.
In this set of �-proper twins

I.I �.R//� D fjŒA; A�j� j A � Ag

two relations are defined: if A� D jŒA; A�j�;B� D jŒB; B�j� 2 I.I �.R//

A� � B� , .A � B ; A � B/

A� � B� , .A � B ; A � B/:

The infimum and supremum for these �-proper twins exist and they are given by

Inf�.A�;B�/ D jŒInf�.A; B/; Inf�.A; B/�j D jŒA ^ B; A ^ B�j
Sup�.A�;B�/ D jŒSup�.A; B/; Sup�.A; B/�j D jŒA _ B; A _ B/j;
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and

Inf�.A�;B�/ D jŒSup�.A; B/; Inf�.A; B/�j D jŒA _ B; A ^ B�j
Sup�.A�;B�/ D jŒInf�.A; B/; Sup�.A; B/�j D jŒA ^ B; A _ B�j;

in accordance with the notations introduced in Definition 2.2.15.
The main properties of these twin relations are stated in the following lemma.

Lemma 7.2.2 (Properties of � and � in I.I �.R//�)

(1) Both � and � are partial order relations in I.I �.R//�.
(2) Inf�.A�;B�/ 2 I.I �.R//�.
(3) Sup�.A�;B�/ 2 I.I �.R//�.
(4) Sup�.A�;B�/ 2 I.I �.R//�.
(5) The structure .I.I �.R//�; �/ is a lattice.

Proof

(1) Reflexivity, antisymmetry, and transitivity are obvious.
(2) If A� D jŒA; A�j�;B� D jŒB; B�j� and A D Œa1; a2�, A D Œa3; a4�, B D

Œb1; b2�, B D Œb3; b4�, then

a1 � a3 ; a2 � a4 ; b1 � b3 ; b2 � b4;

therefore

Inf�.A; B/ D Œsup.a1; b1/; inf.a2; b2/� � Œsup.a3; b3/; inf.a4; b4/� D Inf�.A; B/:

So Inf�.A�;B�/ 2 I.I �.R//�.
(3), (4) Similar reasoning as (2).
(5) By the previous properties and the definitions of infimum and supremum. �

Remark 7.2.2 It is not always true that Inf�.A�;B�/ 2 I.I �.R//� for every
A�;B�.

Example 7.2.2 The twins A� D jŒŒ3; �2�; Œ�1; 4��j and B� D jŒŒ1; �3�; Œ�3; �1��j
belong to I.I �.R//� because

A D Œ3; �2� � Œ�1; 4� D A;

B D Œ1; �3� � Œ�3; �1� D B:

They are represented in Fig. 7.5
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It is true that A� — B� and A� ª B�. Infimum and supremum are

Inf�.A�;B�/ D jŒŒ3; �3�; Œ�1; �1��j
Sup�.A�;B�/ D jŒŒ1; �2�; Œ�3; 4��j
Inf�.A�;B�/ D jŒŒ1; �2�; Œ�1; �1��j

Sup�.A�;B�/ D jŒŒ3; �3�; Œ�1; 4��j;

represented in Fig. 7.6. Now Inf�.A�;B�/ 2 I.I �.R//�.
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a1

a5

a3

a4a2Fig. 7.7 Proper twin

7.2.2 Proper Twins

Any twin of I.I �.R/� belongs to I.I �.R//� because

A� D jŒA; A�j� D fX 2 I �.R/ j A � X � Ag
D fX 2 I �.R/ j A ^ A � X � A _ Ag 2 I.I �.R//�

and any twin of I.I �.R/� belongs to I.I �.R//� because

A� D jŒA; A�j� D fX 2 I �.R/ j A � X � Ag
D fX 2 I �.R/ j Min .A; A/ � X �Max .A; A/g 2 I.I �.R//�:

So, any proper twin can be represented by a �-twin (or a �-twin), see Fig. 7.7.
Therefore, both sets of �-proper and �-proper twins are equal

I.I �.R/� D I.I �.R//�;

and both .I.I �.R//�; �/ and .I.I �.R//�; �/ can be represented by the unique set
I.I �.R// of the proper twins.

Definition 7.2.1 (Proper twin) If A; A 2 I �.R/ such that A � A, the proper twin
of bounds A and A is the set of modal intervals

A D jŒA; A�j D jŒA; A�j� D fX 2 I �.R/ j A � X � AgI

if A � A, the proper twin of bounds A and A is the set of modal intervals

A D jŒA; A�j D jŒA; A�j� D fX 2 I �.R/ j A � X � Ag:

In the set of proper twins I.I �.R// two order relations � and � are defined as
follows.
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Fig. 7.8 �-twin, �-twin and v-twin relations between proper twin

Definition 7.2.2 (Less or equal twin relation) If A D jŒA; A�j;B D jŒB; B�j 2
I.I �.R//,

A � B , .A � B ; A � B/:

Definition 7.2.3 (Inclusion twin relation) If A D jŒA; A�j;B D jŒB; B�j 2
I.I �.R//,

A � B , .A � B ; A � B/:

A third relation, denoted by v, can be defined when both twins are considered just
as set of modal intervals and it is set-inclusion.

Definition 7.2.4 (Set-theoretical inclusion twin relation) If A D jŒA; A�j;B D
jŒB; B�j 2 I.I �.R//,

A v B , .A � B ; A � B/:

Figure 7.8 shows geometrical representations to illustrate these relations.
The infimum and supremum for these relations between proper twins exist and

they are defined as follows.

Definition 7.2.5 (Infimum and supremum) If A;B 2 I.I �.R//, then

Inf�.A;B/ D jŒInf�.A; B/; Inf�.A; B/�j D jŒMin .A; B/; Min .A; B/�j;

Sup�.A;B/ D jŒSup�.A; B/; Sup�.A; B/�j D jŒMax .A; B/; Max .A; B/�j;

Inf�.A;B/ D jŒInf�.A; B/; Inf�.A; B/�j D jŒA ^ B; A ^ B�j;
Sup�.A;B/ D jŒSup�.A; B/; Sup�.A; B/�j D jŒA _ B; A _ B�j;
Infv.A;B/ D jŒSup�.A; B/; Inf�.A; B/�j D jŒA _ B; A ^ B�j;

Supv.A;B/ D jŒInf�.A; B/; Sup�.A; B/�j D jŒA ^ B; A _ B�j:
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Fig. 7.9 Meet and join with
proper twins

The main properties of these twin relations �, � and v are stated in the following
lemma.

Lemma 7.2.3 (Properties of �, � and v in I.I �.R//)

(1) �, � and v are partial order relations in I.I �.R//.
(2) Inf�.A;B/ 2 I.I �.R//.
(3) Sup�.A;B/ 2 I.I �.R//.
(4) Sup�.A;B/ 2 I.I �.R//.
(5) Supv.A;B/ 2 I.I �.R//.
(6) The structure .I.I �.R//; �/ is a lattice.

Proof Properties of � and � are the Lemmas 7.2.1 and 7.2.2. Properties of v are
analogous.

Remark 7.2.3 It is not always true that Inf�.A;B/ 2 I.I �.R// and Infv.A;B/ 2
I.I �.R// for every A;B.

Similarly to the interval case, Inf�.A;B/ and Sup�.A;B/ are called meet and
join, respectively, and denoted by A ^ B and A _ B. Figure 7.9 gives geometrical
representations to illustrate these operations.

The infimum and supremum can be extended to a family of twins and they are
defined as follows.

Definition 7.2.6 (Infimum and supremum) For a bounded family of proper twins
A.I / D fA.i/ D ŒA.i/; A.i/� 2 I.I �.R// j i 2 I g (I is the index’s domain),

Inf�.A.i// D jŒInf�.A.i//; Inf�.A.i//�j D jŒMin .A.i//; Min .A.i//�j;

Sup�.A.i// D jŒSup�.A.i//; Sup�.A.i//�j D jŒMax .A.i//; Max .A.i//�j;

Inf�.A.i// D jŒInf�.A.i//; Inf�.A.i//�j D jŒ
î2I

A.i/;
î2I

A.i/�j;

Sup�.A.i// D jŒSup�.A.i//; Sup�.A.i//�j D jŒ_
i2I

A.i/;_
i2I

A.i/�j;
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Infv.A.i// D jŒSup�.A.i//; Inf�.A.i//�j D jŒ_
i2I

A.i/;
î2I

A.i/�j;

Supv.A.i// D jŒInf�.A.i//; Sup�.A.i//�j D jŒ
î2I

A.i/;_
i2I

A.i/�j:

The twins, Inf�.A.i// and Sup�.A.i// are called the meet and join and denoted by

î2I
A.i/ D Inf�.A.i// D jŒInf�.A.i//; Inf�.A.i//�j D jŒ

î2I
A.i/;

î2I
A.i/�j

_
i2I

A.i/ D Sup�.A.i// D jŒSup�.A.i//; Sup�.A.i//�j D jŒ_
i2I

A.i/;_
i2I

A.i/�j;

respectively.

7.2.3 The Set of Twins

In order to close the operations Inf�.A;B/ and Infv.A;B/ the set of proper twins

I.I �.R// D fjŒA; A�j� j A � Ag D fjŒA; A�j� j A � Ag;

can be extended to the set of twins

I �.I �.R// D fjŒA; A�j j A; A 2 I �.R/g

and the structure .I.I �.R//; �; �; v/ to the structure .I �.I �.R//; �; �; v/ with
the same formal Definitions 7.2.1–7.2.6 for A � B, A � B, A v B, infimum and
supremum. Now it is true that the structures .I �.I �.R//; �/, .I �.I �.R//; �/ and
.I �.I �.R//; v/ are three lattices.

By analogy with the set of modal intervals I �.R/, several kinds of twins can be
distinguished. If A D jŒA; A�j,
– A is proper when A � A or A � A.
– A is proper-transposed when A � A or A � A.
– A is punctual when A D A.
– A is crossed when it is neither proper nor proper-transposed.
– A is twin-interval when it is proper or proper-transposed.
– A is improper when it is proper-transposed or crossed.

A proper twin A D jŒA; A�j 2 I.I �.R// can be identified with the set

A D fX 2 I �.R/ j A � X � Ag:
Any twin A D jŒA; A�j 2 I �.I �.R// can be associated to a proper twin defined by

Twpr.A/ D jŒA ^ A; A _ A�j:
Obviously, if A is a proper twin, Twpr.A/ D A.
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7.3 Symmetries

Following a similar development to the one of the modal intervals, lattice operators
will lead to defining the main twin symmetries.

Definition 7.3.1 (Twin symmetries) If A D jŒA; A�j D jŒA; A�j 2 I �.I �.R//,

– �A D jŒ�A; �A�j:
– Dual.A/ D jŒDual.A/; Dual.A/�j:
– Transp.A/ D jŒA; A�j:
– Twal.A/ D jŒDual.A/; Dual.A/�j:
– Opp.A/ D jŒ�Dual.A/; �Dual.A/�j:
– Twopp.A/ D jŒ�Dual.A/; �Dual.A/�j:

This basic symmetries change and transform the order relations and lattice
operators as the following lemmas state.

Lemma 7.3.1 (Elementary symmetries) If A D jŒA; A�j and B D jŒB; B�j,
(1) A � B , �A � �B.
(2) A � B , Dual.A/ � Dual.B/.
(3) A v B , Transp.A/ w Transp.B/.

Proof

(1) If A D jŒA; A�j� and B D jŒB; B�j�,

A � B , A � B ; A � B , �B � �A ; �B � �A , �B � �A:

The same reasoning if A D jŒA; A�j� and B D jŒB; B�j�.
(2) If, for example A D jŒA; A�j� and B D jŒB; B�j�,

A � B , A � B ; A � B

, Dual.B/ � Dual.A/ ; Dual.B/ � Dual.A/

, Dual.B/ � Dual.A/:

(3) If, for example A D jŒA; A�j� and B D jŒB; B�j�,

A v B , .A � B ; A � B/ , Transp.B/ v Transp.A/: �

Lemma 7.3.2 (Composed symmetries) If A D jŒA; A�j,
(1) Twal.A/ D Transp.Dual.A//.
(2) Opp.A/ D �Dual.A/.
(3) Twopp.A/ D �Twal.A/.
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Proof

(1) If, for example A D jŒA; A�j�,

Transp.Dual.A// D Transp.jŒDual.A/; Dual.A/�j�/

D jŒDual.A/; Dual.A/�j�
D Twal.A/:

Similar reasonings for (2) and (3). �

Summarizing some of the previous concepts, from the lattice of modal intervals
.I �.R/; �/, a new lattice .I �.I �.R//; �/ can be built following the standard
process. One element A 2 I �.I �.R/, named a twin, is defined by

A D jŒA; A�j

where A 2 I �.R/ is the lower bound and A 2 I �.R/ is the upper bound of A, and

I �.I �.R/ D fA D jŒA; A�j j A; A 2 I �.R/g

is the set of twins over I �.R/. If A � A or A � A the twin is called a proper twin,
which can be identified with the set

A D fX 2 I �.R/ j A � X � Ag or A D fX 2 I �.R/ j A � X � Ag

with elements that are the modal intervals between both bounds A and A.
The set-theoretical inclusion between twins A D jŒA; A�j and B D jŒB; B�j is

defined by means of the interval inclusion between their bounds

A v B , .A � B ; A � B/

The lattice operations meet and join on I �.I �.R// for a bounded family of twins
A.I / D fA.i/ D ŒA.i/; A.i/� 2 I �.I �.R// j i 2 I g (I is the index’s domain) are
defined by

î2I
A.i/ D Œ

î2I
A.i/;

î2I
A.i/�

_
i2I

A.i/ D Œ_
i2I

A.i/;_
i2I

A.i/�;

using A^B and A_B for the corresponding case of two operands. These operators
do not have the same set-theoretical meaning as in I �.R/.
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7.4 Semantic Extension of a Function to I�.I�.R//

The *-semantic and **-semantic extensions of a continuous function f from R
k to

R to a twin X D .X1; : : :Xk/ D .jŒX1; X1�j; : : : ; jŒXk; Xk�j/ 2 I �.I �.Rk// are
defined by

f �.X1; : : :Xk/ D jŒf �.X1; : : : ; Xk/; f �.X1; : : : ; Xk/�j
f ��.X1; : : :Xk/ D jŒf ��.X1; : : : ; Xk/; f ��.X1; : : : ; Xk/�j:

In particular, if f is an arithmetic operator,

A C B D jŒA C B; A C B�j
A � B D jŒA � B; A � B�j
A � B D jŒA � B; A � B�j
A=B D jŒA=B; A=B�j:

An important property is the iso-monotonicity with respect the v inclusion-twin.

Theorem 7.4.1 If f is a continuous function f from R
k to R and X; Y 2 I �.I �.Rk//,

then

X v Y ) .f �.X/ v f �.X/ ; f ��.X/ v f ��.X//:

Proof As X v Y , .Y � X ; X � Y/, then

f �.X/ D jŒf �.X/; f �.X/�j v jŒf �.Y/; f �.Y/�j D f �.Y/;

f ��.X/ D jŒf ��.X/; f ��.X/�j v jŒf ��.Y/; f ��.Y/�j D f ��.Y/;

by the iso-monotonicity of the semantic extensions with respect to the modal
inclusion. �

7.5 The f � Algorithm

In Chap. 3 was shown two important *-Semantic Theorems 3.3.1 and 3.3.2, which
state an equivalence between a first order predicate logical formula, involving
equalities relating to a continuous real function, and a modal interval inclusion. This
equivalence makes the computation of f � a useful tool for solving many problems
where these types of logical formulas are involved.

The difficulty of computing f � for a modal interval X depends on the function f.
Under some monotonicity conditions, when f is monotonic with respect to all its
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variables and their incidences and it has a tree-optimal syntactic extension fR, then
it is possible to compute f �.X/ using interval arithmetic. By the Theorem of
Coercion 4.2.15,

f �.X/ D fR.XD/ D f ��.X/;

and the computation of f � is reduced to simple modal interval arithmetic
operations. When the function involved does not satisfy these conditions, those
theorems can be partially applied in order to reduce the complexity of the problem:
when f � and f �� are different or when f is not monotonic with respect to all
its variables and their incidences, it is not possible to approximate f �.X/ using
simple arithmetic computations, and only interpretability theorems can be applied.
For example by Theorem 4.2.10,

f �.X/ � fR.XDt�/;

or by Theorem 4.2.12,

f �.X/ � fR.XDT�/;

and fR will provide only an approximation to f �. But using any interpretable
rational extension causes an overestimation of the interval evaluation, due to
possible multiple occurrences of the variables.

On the other hand, any algorithm for approximating f � must provide inner and
outer estimates in order to guarantee a specific degree of approximation. Therefore,
the set of twins is the convenient background to handle both approximations
simultaneously. An algorithm based on branch-and-bound techniques, which allows
obtaining a twin defined by inner and an outer approximations of f �, is described
in this section.

7.5.1 Approximate *-Semantic Extension

Let X D .U ; V / be a modal interval vector split into its proper (U ) and improper
(V ) components. Let fU 1; : : : ; U rg be a partition of U and, for every j D 1; : : : ; r ,
let fV 1j ; : : : ; V sj g be partitions of V for every j. Each interval U j 
 V kj is
called a Cell, each V �j -partition is called a Strip, and the U -partition is called the
Strips0 List.

Figure 7.10 shows a geometrical representation of an example of these partitions,
when X has only one proper component and one improper component.

The algorithm we present is based on the following theorem.
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strip 2
cell U4  ×  V54

U

V

Fig. 7.10 Partition, Strips
and Cells

Theorem 7.5.1 (Twin inclusion for f �) Given an R
k to R real continuous

function f, then

f �.X/ 2 _
j 2f1;:::;rg

^
kj 2f1j ;:::;sj g

jŒInn.fR. Luj ; V kj //; Out.fR.U j ; Lvkj //�j

where Luj is any fixed point of U 0
j (j D 1; : : : ; r) and Lvkj is any fixed point of V 0

kj

(kj D 1j ; : : : ; sj ) (for example the midpoints of the intervals, or their bounds).

Proof Starting from the definition of the interval *-semantic extension of f to X ,

f �.X/ D _
u2U 0 v̂2V 0

Œf .u; v/; f .u; v/� (7.1)

D _
j 2f1;:::;rg

_
uj 2U 0

j v̂2V 0

Œf .uj ; v/; f .uj ; v/� (7.2)

D _
j 2f1;:::;rg

_
uj 2U 0

j

^
kj 2f1j ;:::;sj g

^
vkj 2V 0

kj

Œf .uj ; vkj /; f .uj ; vkj /� (7.3)

D _
j 2f1;:::;rg

_
uj 2U 0

j

^
kj 2f1j ;:::;sj g

^
vkj 2V 0

kj

f �.uj ; vkj / (7.4)

2 _
j 2f1;:::;rg

^
kj 2f1j ;:::;sj g

jŒf �. Luj ; V kj /; f �.U j ; Lvkj /�j (7.5)

v _
j 2f1;:::;rg

^
kj 2f1j ;:::;sj g

jŒInn.fR. Luj ; V kj //; Out.fR.U j ; Lvkj //�j (7.6)

(7.1) is the definition of f �.
(7.2) is true by the associativity of the join operator.
(7.3) is true by the associativity of the meet operator.
(7.4) is true because the point-wise interval Œf .uj ; vkj /; f .uj ; vkj /� is obviously
equal to f �.uj ; vkj /.
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(7.5) is true because of the inclusion f �.uj ; vkj / � f �.uj ; V kj / implies

_
j 2f1;:::;rg

_
uj 2U 0

j

^
kj 2f1j ;:::;sj g

^
vkj 2V 0

kj

f �.uj ; vkj /

� _
j 2f1;:::;rg

_
uj 2U 0

j

^
kj 2f1j ;:::;sj g

f �.uj ; V kj /

� _
j 2f1;:::;rg

^
kj 2f1j ;:::;sj g

f �. Luj ; V kj /

and, similarly, the inclusion f �.uj ; vkj / � f �.U j ; vkj / implies

_
j 2f1;:::;rg

_
uj 2U 0

j

^
kj 2f1j ;:::;sj g

^
vkj 2V 0

kj

f �.uj ; vkj /

� _
j 2f1;:::;rg

^
kj 2f1j ;:::;sj g

^
vkj 2V 0

kj

f �.U j ; vkj /

� _
j 2f1;:::;rg

^
kj 2f1j ;:::;sj g

f �.U j ; Lvkj /:

(7.6) is true because

f �. Luj ; V kj / D f ��. Luj ; V kj / � Inn.fR. Luj ; V kj //

and

f �.U j ; Lvkj / � Out.fR.U j ; Lvkj //;

(by Theorems 4.2.1 and 4.2.2).

Obviously, when the width of the concerned intervals tends to zero, the proper
twin of (7.6) tends to the proper twin formed by the inner and outer rounding of f �
over X . �

The final inclusion stated by this theorem can be written as

Inner approximation: _
j 2f1;:::;rg

^
kj 2f1j ;:::;sj g

Inn.fR. Luj ; V kj // � f �.X/ (7.7)

Outer approximation: _
j 2f1;:::;rg

^
kj 2f1j ;:::;sj g

Out.fR.U j ; Lvkj // � f �.X/ (7.8)

for any partition of X .
In the case when all the components of X are proper intervals, the inner and outer

estimates are

Inner approximation: _
i2f1;:::;rg

Inn.fR.Lxi // � f �.X/ (7.9)

Outer approximation: _
i2f1;:::;rg

Out.fR.X i // � f �.X/ (7.10)
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where fX 1; : : : ; X rg is any partition of X and Lxi is any fixed point of X i

(i D 1; : : : ; r).

Example 7.5.1 Let us consider the problem of verifying the logical statement

8.u 2 Œ0; 6�0/9.v 2 Œ2; 8�0/9.z 2 Œ�4; 9�0/f .u; v; z/ D 0 (7.11)

where f(u,v,z) is the continuous function

f .u; v; z/ D u2 C v2 C uv � 20u � 20v C 100 � 10 sin z:

By the *-Semantic Theorem 3.3.1, this is equivalent to the interval inclusion

f �.Œ0; 6�; Œ8; 2�; Œ9; �4�/ � Œ0; 0� (7.12)

for which the inclusion of any outer approximation of f �.Œ0; 6�; Œ8; 2�; Œ9; �4�/

in Œ0; 0� is sufficient. As f is not totally monotonic for any of its variables, this
approximation can be obtained using Theorem 4.2.10

f �.U; V; Z/ � fR.U; V t�; Z/

D Œ0; 6�2 C Œ5; 5�2 C Œ0; 6� � Œ5; 5�

�20 � Œ0; 6� � 20 � Œ5; 5� C 100 � 10 � sin.Œ9; �4�/

D Œ�85; 81�:

or by applying Theorem 4.2.8,

f �.U; V; Z/ � fR.U; V T �; Z/

D Œ0; 6�2 C Œ8; 2�2 C Œ0; 6� � Œ2; 8� � 20 � Œ0; 6�

�20 � Œ2; 8� C 100 � 10 � sin.Œ9; �4�/

D Œ�106; 138�:

Notice that the results obtained are surely very over-estimated approximations of
f � and they do not satisfy (7.12). In order to get a better approximation to f �, the
f � algorithm will be applied step-by-step.

Table 7.1 represents a possible bisection configuration over the variables’ space
where the columns represent the fU1; U2; U3g partition of U D Œ0; 6�, the rows
are the corresponding fV1j ; V2; V3j g partition of V D Œ8; 2� for every Uj , and
the interval Z has not been divided. Each cell contains the corresponding approx-
imations. The last row contains the approximations which result from applying
the meet operator over the cells of each columns and finally, the bottom-left
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Table 7.1 Illustrative example of Theorem 7.5.1

.u; v/ u D Œ0; 2� u D Œ2; 4� u D Œ4; 6�

v D Œ8; 6� Out D Œ�21; 17� Out D Œ�43; 3� Out D Œ�57; �3�

Inn D Œ43; �47� Inn D Œ27; �67� Inn D Œ19; �79�

v D Œ6; 4� Out D Œ�5; 29� Out D Œ�31; 11� Out D Œ�49; 1�

Inn D Œ17; 51� Inn D Œ�11; 27� Inn D Œ�31; 11�

v D Œ4; 2� Out D Œ19; 49� Out D Œ�11; 27� Out D Œ�33; 13�

Inn D Œ�9; 33� Inn D Œ�33; 13� Inn D Œ�49; 1�

Œ�33; 17� Out D Œ19; 17� Out D Œ�11; 3� Out D Œ�33; �3�

Œ19; �47� Inn D Œ43; �47� Inn D Œ27; �67� Inn D Œ19; �79�

cell contains the approximations resulting from applying the join operator to the
obtained approximations for each column. So approximations to f �, by (7.7)
and (7.8), are

Inn D Œ19; �47� � f �.Œ0; 6�; Œ8; 2�; Œ9; �4�/ � Out D Œ�33; 17�

and the resulting outer approximation is better than the ones obtained previously
Œ�85; 81�. However, it is still not good enough to decide for the truth value of the
corresponding logical formula and further bisections are required.

7.5.2 Basic Algorithm

In accordance with (7.7) and (7.8), the necessary steps for the implementation of an
algorithm which computes an inner and an outer approximation of f � is shown in
Algorithm 1. In order to simplify the algorithm presentation, the following notation
and concepts are introduced.

• Inn.Cell/: inner approximation of a Cell.
• Out.Cell/: outer approximation of a Cell.
• Inn.Strip/: inner approximation of a Strip.
• Out.Strip/: outer approximation of a Strip.
• wid.U /: Function returning the width of the widest component of a U partition.
• Tolerance.Inn; Out/: Function returning the distance between the inner and the

outer approximation

Tolerance.Inn; Out/ D max.jInf.Out/ � Inf.Inn/j; jSup.Out/ � Sup.Inn/j/;

where Inf and Sup are the left and right bounds of the corresponding
approximations.

• Enqueue: The result of adding an element to a list.
• Dequeue: The result of extracting an element from a list.
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Algorithm 1 f � algorithm
Require: Continuous function f .u; v/ with its associated vectors of proper and improper intervals

.U ; V ). Desired tolerance ' for the output .
Ensure: Inn and Out approximations of f �.U ; V /.
1: Create a Cell D .U ; V / and compute its inner and outer approximations. Create a Strip

containing Cell. Compute the Strip approximations and insert Strip into the StripSet. Compute
Inn and Out approximations.

2: while Tolerance.Inn; Out/ > ' do
3: Select the first Strip from the StripSet and the first Cell from the Strip.
4: if wid.V / > wid.U / from Cell then
5: Bisect V by the widest component, dequeue Cell, compute the approximations of the

resulting cells and enqueue them to the Strip. Compute inner and outer approximations
of Strip.

6: else
7: Bisect U by the widest component and create two new strips, dequeue Strip. Compute

the cells’ approximations of the resulting strips and the approximations of the strips. Add
the resulting strips to the StripSet.

8: end if
9: Compute global inner and outer approximations.

10: end while
11: return Inn and Out.

• Compute inner and outer approximation of Cell, that is

Inn.Cell/ D Inn.fR. Lu; V //;

Out.Cell/ D Out.fR.U ; Lv//:

• Compute inner and outer approximations of Strip, that is

Inn.Strip/ D ^
fCell in Stripg

Inn.Cell/;

Out.Strip/ D ^
fCell in Stripg

Out.Cell/:

• Compute global inner and outer approximations, that is

Inn D _
fStrip in StripSetg

Inn.Strip/;

Out D _
fStrip in StripSetg

Out.Strip/:

7.5.2.1 Bounding Criteria

As with any branch-and-bound algorithm, bounding criterions are desired in order
to avoid a combinatorial blow-up. The following non-bisection criteria can be used
to avoid useless bisections:
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Table 7.2 Basic algorithm
results

Inn Œ98; �67�

Out Œ�12; 18�

Tolerance.Inn; Out/ 110

Number of bisections ' 2; 000; 000

• a Cell is not bisected when Inn.Cell/ � Out.Strip/, because no division of any
improper component V will improve the approximation.

Similarly,

• a Strip is not bisected when Out.Strip/ � Inn, because no division through any
proper component U will improve the approximation. Moreover, this Strip can
be eliminated from the StripSet.

7.5.2.2 Stopping Criteria

Apart from the tolerance criterion, the algorithm stops when the width of all cell
dimensions is smaller than a fixed precision (wid.X/ � �). Moreover, when a cell
dimension reaches �, this dimension is no longer bisected.

When the f � algorithm is used for proving first-order logic formulas, an extra
stopping criteria can be applied, which stops the algorithm when the corresponding
logical formula is satisfied or not. Notice that it is not necessary to achieve
the specified Tolerance.Inn; Out/ to prove the satisfaction of a logical formula.
Therefore, the two following conditions can be introduced inside the while loop,

• if Out � Œ0; 0� then break,
• else if Inn ª Œ0; 0� then break.

Example 7.5.2 Following the Example 7.5.1, by using the proposed basic algorithm
and after 600 s on a Pentium IV M, the following approximation of f � is in
Table 7.2.

Despite the high computation time, the stopping criteria have not been fulfilled
and it has not been possible to prove the satisfaction of the logical formula expressed
by (7.11). It seems obvious that the proposed algorithm is far from being useful.
The next section introduces a set of improvements which can drastically reduce the
computational effort.

7.5.3 Improvements

In order to make the f � algorithm suitable for practical application, a set of
strategies have been introduced. Basically, these strategies try to reduce as much
as possible the number of bisections and to obtain better local approximations of
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Table 7.3 Selection strategy
improvement

Inn Œ41:848; �9:4659�

Out Œ0:2163; �5:0535�

Tolerance.Inn; Out/ 4:4124

Number of bisections 2; 109

the resulting partitions. Some of these improvements are simple algorithmic tricks
and others are based on results of MIA.

Example 7.5.1 will continue being used to quantify the improvements caused by
the different proposed strategies with respect to the basic algorithm. The comparison
criteria can be the computation time and the required number of bisections.

7.5.3.1 Selection Strategy

Instead of using a FIFO strategy (First In, First Out) for selecting a Strip and a
Cell from its respective containers, a more efficient strategy is proposed. It consists
of selecting the Strip and the Cell with the biggest Tolerance.Inn; Out/, and which
approximations match at least one of its bounds with one of the bounds of the global
approximation (Inn or Out). Using this selection strategy, a faster and more uniform
convergence to the f � value is achieved.

Example 7.5.3 Using the new selection strategy, the following result for Exam-
ple 7.5.1, shown in Table 7.3, has been obtained in 4 s.

It can be observed that the reduction of computation time is drastic. Moreover,
it has been proven that the logical formula stated in (7.11) is satisfied because
Out � Œ0; 0� is true.

7.5.3.2 Monotonicity Study

A set of additional criteria, based on the study of the monotonicity of the objective
function f has been derived. By computing the partial derivatives of the function
with regard to each variable and each of their incidences, it is possible to determined
if f is monotonic with respect each variable and their incidences in order to improve
the inner and outer approximations to f �.

Theorem 7.5.2 (Monotonic twin inclusion for f �) If the Rk to R real continuous
function f is monotonic with respect some variables, then f �.X/ belongs to the
proper twin

_
j 2f1;:::;rg

^
kj 2f1j ;:::;sj g

jŒInn.fR. Luj D; V kj D/; Out.fR.U j D; V kj Dt�//�j;

where the D and t�-transformations are applied to the indicated intervals and Luj D

means that every U j -component is reduced to a point Luj of its domain, except for
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the intervals corresponding to variables for which f is totally monotonic, which
undergo the D-transformation.

Proof For the right interval bound, taking into account that

f �.X/ D f �.U ; V / D _
j 2f1;:::;rg

_
uj 2U 0

j v̂2V 0

f �.uj ; v/

D _
j 2f1;:::;rg

_
uj 2U 0

j

f �.uj ; V / D _
j 2f1;:::;rg

f �.U j ; V /; (7.13)

if fV 1j ; : : : ; V sj g is a partition of V corresponding to the jth strip,

f �.U j ; V / �

8̂̂
<̂
ˆ̂̂:

f �.U j ; V 1j /

: : : : : : : : : : : :

f �.U j ; V sj /

9>>>=
>>>;

) f �.U j ; V / � ^
kj 2f1j ;:::;sj g

f �.U j ; V kj /:

So, from Theorem 4.2.10

f �.X/ � _
j 2f1;:::;rg

^
kj 2f1j ;:::;sj g

fR.U j D; V kj Dt�/: (7.14)

For the left interval bound, let U j D .Y j ; Z j / be totally monotonic for a subset
Z j of their components, uni- or multi-incident, and Lyj any point of Y j . Taking into
account (7.13),

f �.X/ D f �.U ; V / D _
j 2f1;:::;rg

f �.Y j ; Z j ; V /

� _
j 2f1;:::;rg

f �. Lyj ; Z j ; V /

D _
j 2f1;:::;rg

f ��. Lyj ; Z j ; V /

== from Theorem 3.4.6 and Remark 3.4.4

D _
j 2f1;:::;rg

^
kj 2f1j ;:::;sj g

^
vkj 2V 0

kj

_
zj 2Z 0

j

f . Lyj ; zj ; vkj /

D _
j 2f1;:::;rg

^
kj 2f1j ;:::;sj g

f ��. Lyj ; Z j ; V kj /

� _
j 2f1;:::;rg

^
kj 2f1j ;:::;sj g

fR. Lyj ; Z j D; V kj D/

==from Theorem 4.2.13
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This chain of equalities and inclusions can be summarized as

f �.X/ � _
j 2f1;:::;rg

^
kj 2f1j ;:::;sj g

fR. Luj D; V kj D/; (7.15)

where Luj D means that every U j -component must be reduced to a point of
its domain, except for the intervals corresponding to variables, uni-incident
or multi-incident, for which f is totally monotonic, which undergo the
D-transformation. �

So, from this Theorem, inner and outer approximation (7.13) of Cell, when there
exist some monotonicities, can be written

Inn.Cell/ D Inn.fR. LuD; V D// (7.16)

and

Out.Cell/ D Out.fR.U D; V Dt�//: (7.17)

In this situation, it is possible to apply the following non-division criteria for a
Cell or a Strip:

• If the function is totally monotonic with regard to an improper component of a
Cell, then do not bisect the Cell through this improper component.

• If the function is totally monotonic with regard to a proper component along the
Strip, then do not bisect the Strip through this proper component.

7.5.3.3 Optimality Study

If f is optimal in some strip it is possible to take advantage of this in order to
accelerate the convergence. Let us suppose that in a strip j the function f is optimal,
for which it is sufficient to be tree-optimal and uni-incident (see Theorem 4.2.5),
tree-optimal and totally monotonic with respect all multi-incident variables (see
Theorem 4.2.15), or uni-modal and totally monotonic with respect all multi-incident
variables (see Theorem 4.3.1). From (7.13),

f �.X/ D _
j 2f1;:::;rg

f �.U j ; V /;

taking into account the result of Theorem 4.2.15,

f �.X/ D _
j 2f1;:::;rg

fR.U j D; V D/:

So, inner and outer approximations to f �.X/, in the strip where f is optimal, are

Inn.Strip/ D Inn.fR.U D; V D// (7.18)
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Table 7.4 Tree-optimality
study improvement

Inn Œ43:062; �6:0�

Out Œ16:250; �6:0�

Tolerance.Inn; Out/ 27

Number of bisections 7

and

Out.Strip/ D Out.fR.U D; V D//: (7.19)

Moreover, it is possible to apply the following non-division criterion:

• If the function is optimal in a Strip, then do not bisect the Strip.

Example 7.5.4 Considering the previous criteria based on the monotonicity and
optimality study of the function, in 0:2 s the results of Table 7.4 were obtained.

As the studied rational function is tree-optimal in all its domain, the uni-incident
improper interval variable Z is not bisected anymore. Therefore, the bisection is
carried out over two variables .u; v/ instead of over three, which significantly
reduces the computational effort.

The last approximations to f � were good enough to prove (7.11), but not to know
its interval value. Using the algorithm, while eliminating the extra stopping criteria
specific for validating logical formulas, the result is

Œ19:00009; �6:000000� � f �.Œ0; 6�; Œ8; 2�; Œ9 � 4�/ � Œ18:99982; �6:000000�

with a computation time of 2.7 s.

7.5.4 Termination, Soundness and Completeness

Concerning the algorithm termination, for a given fixed precision � representing
the maximal bisected width dimension, the f � algorithm finishes in less than N
iterations, where N D Qn

iD1
wid.X i /

�
and n is the number of variables. For a finite

precision (e.g. 16 bits), the algorithm necessarily finishes because it can not produce
more that N k

0 , where N0 is the total number of representable floating point number
by the machine. For example for 16 bit precision, N0 D 216.

The f � algorithm can be considered sound because it provides an inner approx-
imation of the *-semantic extension, i.e., all the points of the inner approximations
belongs to the solution.

The f � algorithm is complete because it also provides an outer approximation of
the *-semantic extension, which guarantees that all the solution points are included
in the provided approximation.



Chapter 8
Marks

8.1 Introduction

Working on any digital scale, either a computation scale or a reading/writing
measurement scale, digital values must be considered as intrinsically inexact. For
example, consider an electrical circuit where a voltage measured with a voltmeter
is 11:3 V and a resistance of 50 � is measured with an ohmmeter. These values are
obviously associated to their measurement devices, which have their corresponding
errors. A priori, one can think that these measurements and errors could be
represented by intervals, but these values need to be represented in a digital scale and
they could be considered valid or not in accordance to a certain tolerance. Therefore,
in this case, intervals are not enough to handle this difficult problem.

For each reading and for each computation, the obtained values have to be
associated to an area in which the real numbers are indiscernible and so any one of
them could be considered as a representative of the measurement or the computation
result. This chapter presents an approach to work around the inaccuracy associated
to any measurement or computation process with physical quantities by means of a
new interval tool: marks, which define intervals in which it is not possible to make
any distinction between its elements, i.e., indiscernibility intervals.

Marks are designed to warn about bad computations caused by problems
such as aggregation in rounding, faulty conversions between integers and real
numbers, errors in the finite element analysis, some of which have provoked human
casualties or billions of dollars in losses [18, 28, 40]. Also marks can overcome
some deficiencies existing in the rounded solutions of systems in I �.R/ when the
unknowns appear dualized in some occurrences.

Equality and inequality relations will be defined on these marks, as well as the
extensions of the operators on R to the corresponding operators with marks, with
emphasis on the arithmetic operators, and the extension of any continuous function
to the corresponding function with marks. Special attention will be paid to the
logical meaning of the result of any mark operator or function.

M.A. Sainz et al., Modal Interval Analysis, Lecture Notes in Mathematics 2091,
DOI 10.1007/978-3-319-01721-1__8,
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8.2 Marks

Any numerical system is the idealization of a computing system associated to the
concepts of quantity and order. The natural number system forms the most elemen-
tary numerical system holding both concepts, integer numbers are an idealization of
the sum and difference, the rational numbers system is an extension of the integers
by means of the generalization of the quotient, real numbers come from the concept
of convergence for sequences of rational numbers to exact values even when they
can not be a rational number. The real numbers system R is the idealization of
geometrical measurements accessible or not with the set of rational numbers.

These consecutive levels are not independent but the result of a construction,
where the basic operations preserve their formal properties. Generally speaking the
construction of a new system is motivated by shortcomings of the previous system,
which could be stated in terms of the same system yet with no solution within it,
which compels the creation of a wider system which includes the old one.

8.2.1 Real Line, Digital Line and Interval Analysis

In spite of the flexibility of real numbers R for dealing with geometrical models,
their use possesses shortcomings since they form a continuous system, which can
not be overcome inside the very system itself. One of them is digital encoding.
Any digital encoding system is finite and its elements represent real numbers but,
conceptually, it can not be identified with a subset of real numbers because in any
effective computation most of the truncations to a finite number of digits involve
the loss of the original value and different ways for equivalent computations yield
different results.

In classical error analysis, a real value is represented by a unique digital value and
the usual analytical techniques provide an order of magnitude for the gap between
both values, the ideal real value, defined by the geometry of the problem, and the
effective value obtained by means of an algorithm or measurement. This digital
representation is, in principle, a more or less deterministic selection between the
digital left-rounded or right-rounded value of the real value defined by the ideal
computation or measurement.

Interval analysis arises, see Chap. 1, from the convenience of preserving all the
information inherent in a computation or measurement, keeping both approxima-
tions for the ideal value: the left-bound and the right-bound. This feature leads to a
step-by-step control of the numerical error.

The modal interval approximation to these problems leads to an autonomous
theoretical system which allows, in a systematic way, the semantic link between the
digital items and their analytical referents on the real line.



8.2 Marks 187

Refrigerator

x a

Fig. 8.1 Physical system

8.2.2 From the Set-Theoretical Interval System to Modal
Intervals

The immediately higher level above the real system R is occupied by the classical
or set-theoretical interval system I.R/. In I.R/, each real number is represented
by the interval defined by their digital left-bound and right-bound approximations.
To handle both bounds is compulsory because with only one-sided bounds it is not
possible to obtain a bound for the result.

I.R/ looks like the correct extension of R because it contains the point intervals,
which is a system isomorphic to R, but the classical intervals system contain some
limitations which were commented on in Chap. 1. Some of them can be easily
overcome, for example the non-existence of an opposite element in the addition, but
others are essential, for example the non-distributivity of the product with regard to
addition, or semantic ambiguity, making I.R/ clearly limited.

The system of modal intervals I �.R/ is a latticed and semantic completion of
I.R/ of which structural and semantic limitations are drastically reduced.

8.2.3 Deficiencies in the System I�.R/

The previous comment emphasized the necessity of extending a numerical system
when the problems which can be stated within it do not have an answer within the
system, such as the problem of truncations in the solution of some equations, or
systems of equations: it is not possible to solve this problem within I �.R/ because
the effective modality of a modal interval, defined by its associated quantifier, can
not be the same as its real modality. So the outer truncation rule can not be a
universal rule in interval computations with linear operations.

Example 8.2.1 Let us consider the physical system of a transformer with a
refrigerator. Let x be the input power, a be the output power, y be the power
consumption of the refrigerator, b be the heat balance in the system, 
 be the
fraction of input power converted in heat by the transformer, and � be the fraction
of refrigerator power transformed into heat.
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Part of x is converted into heat .
x/. The rest .1 � 
/x of this power is
transformed in electric energy .a C y/. Part of this electric power is consumed by
the refrigerator y which has some losses so it also produces heat �y. Therefore the
refrigerator takes a heat equal to .1 � �/y and brings it outside of the system. Then
the mathematical model is

�
.1 � 
/x � y D a


x � .1 � 2�/y D b;

where the first equation corresponds to the electric balance, and the second is the
thermal balance equation. The problem is to design the refrigerator, i.e., to calculate
intervals X and Y for given A and B in such a way that

8.a 2 A0/ 8.y 2 Y 0/ 9.x 2 X 0/ a D .1 � 
/x � y

for the electrical balance and

8.x 2 X 0/ 9.b 2 B 0/ 9.y 2 Y 0/ b D 
x � .1 � 2�/y

for the thermal balance. By the *-semantic theorem, it is equivalent to solve the
following interval linear system

�
.1 � 
/ � X � Dual.Y / � A


 � Dual.X/ � .1 � 2�/ � Y � B
(8.1)

with A, X and Y improper intervals and B proper. For 
 D 1=9, � D 1=9, A D
Œ16; 8� W and B D Œ 1

5
; 2

5
� W let us consider the system

(
8
9
Œx; x� � Œy; y� D Œ16; 8�

1
9
Œx; x� � 7

9
Œy; y� D Œ 1

5
; 2

5
�

which can be split into two real systems

(
8
9
x � y D 16

1
9
x � 7

9
y D 2

5

and

�
8
9
x � y D 8

1
9
x � 7

9
y D 1

5

The solutions are

x D 4878

235
y D 576

235
x D 2439

235
y D 288

235
;
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therefore, with an exact arithmetic, the solution of the interval system is

X D Œ
4878

235
;

2439

235
� D Œ20:7574 : : : ; 10:3787 : : :�

Y D Œ
576

235
;

288

235
� D Œ2:451 : : : ; 1:225 : : :�

which is the optimal solution of the interval system (8.1) since

�
8
9
X � Dual.Y / D Œ16; 8�

1
9
Dual.X/ � 7

9
Y D Œ 1

5
; 2

5
�:

But taking into account truncations, the result could be

QX D Out.X/ D Œ20:75; 10:38� � X ; QY D Out.Y / D Œ2:45; 1:23� � Y;

using outer rounding, but

�
8
9

QX � Dual. QY / D Œ15:994; 7:996� ª Œ16; 8�
1
9
Dual. QX/ � 7

9
QY D Œ0:196; 0:4� ª Œ 1

5
; 2

5
�

and the equations did not verify the required semantics. The same with inner
rounding for X and Y or even merged rounding. So, a problem theoretically solvable
has no computational solution.

This problem has a particular feature which transcends its linear context: in
an interval linear system, an interval can appear with different modalities in
different equations and the rules for truncation are inconsistent with the effective
computations.

A new system, built to solve this kind of truncation problems, and called intervals
of marks, will be developed in two chapters. This chapter contains the general theory
of marks, as items which represent numerical readings or computations, and Chap. 9
will contain the system of intervals of marks.

8.2.4 The System of Marks

Two goals can be reached with the system of marks. A mark has to represent,
in a consistent way, the punctual information provided by a digital scale and
the system of marks will have to have an inner structure reflecting the losses of
information inherent to any computational scale, without paying attention to the
effective truncations which must be performed along the computations.

With regard to the first goal, we will provide an entity for marks which will deal
with any elementary numerical information, deciding whether the quality of the
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information in a computation process make it admissible. Marks will guarantee the
correctness of a computation, avoiding situations such as, for example the result of
the computation of [75]

f .x; y/ D 333:75y6 C x2.11x2y2 � y6 � 121y4 � 2/ C 5:5y8 C x

2y

for x D 77617 and y D 33096, with an extended precision of 34 digital digit
arithmetic, which is the wrong value: f D 1:172603940053 : : : when the correct
value is f D �0:827396059946 : : :.

The second goal comes from the truncation problem in systems of equations,
previously commented on. This aim compels defining intervals of marks as modal
intervals with mark bounds, their relations, and their operations.

To achieve both goals, it will be necessary to build the marks as atomic items of
information on a digital scale. The indiscernibility of any process of measurement
or computation will be translated to an identification of the mark with an improper
interval, but its nature is not an interval but a “spot” on the real line. Parameters
such as the “relative technical tolerance” or “relative technical granularity” will be
defined to represent the indetermination which the “spot” carries.

An interval defines a margin of indetermination such that the values which
it contains are different and distinguishable whereas a mark has a margin of
indetermination, as well, but there does not exist the possibility of distinguishing
between the values which it contains. The reference to a real number contained in a
mark will always be as a “reading of the mark”, and different readings can never be
comparable.

Relations of equality and inequality between marks together with operators for
marks will be introduced, with a detailed study of the arithmetic operators and the
rational functions of marks.

The set of marks will be defined together with relations inherited from the set
of real numbers, since a mark essentially is a numerical reading, and relations of
equalities and inequalities will be legitimate.

Computations performed using marks will reflect the gradual loss of information
due to numerical errors and truncations and they will compel taking decisions either
on the acceptance of the results or about the convenience of using more precision to
get the required validity. So the concept of an operator for marks will be introduced,
with a detailed study of the arithmetic operators. Next, functions for marks will be
built from the operators from which they are built up, together with the semantic
interpretations for the results.

8.3 Marks and Associated Intervals

The values of any working digital scale will always be expressed in floating point
notation. Dn will denote the set of the digital numbers with n C 1 digits in the
mantissa, of the form a D a0:a1 � � � an 
bm, where b is the basis of the scale (usually
b D 2 or b D 10) and n the number of fractional digits. Always a0 ¤ 0 if a ¤ 0.
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The maximum relative separation between two points of the scale Dn, different
from the exceptional values, is b�n, called the digital granularity.

If x is a real number expressed in floating point notation and di.x/ its represen-
tation on a digital scale Dn, we always require di.x/ 2 x � Œ1 � b�n

2
; 1 C b�n

2
�.

This imposition is compatible with the rounding arithmetic, in which also holds
x 2 di.x/ � Œ1 � b�n

2
; 1 C b�n

2
�.

8.3.1 Mark on a Digital Scale

To speak about a value on a digital scale of any measurement device is, in fact, to
make reference to a group of real numbers which have this value as visible referent
in the scale. This group of real numbers is an interval which can be represented by
means of its center, i.e., the value read off the digital scale and its granularity, i.e.,
the amplitude, considered in relative terms.

Since all the points of this interval have the same center of reference, it makes
no sense to consider them individually, because they are indiscernible from the
scale viewpoint. For this reason, these intervals will be considered as indiscernibility
intervals and called marks.

Although the center is precisely determined from its reading on the scale, a
tolerance must be fixed by the observer so that it guarantees the indiscernibility
of the points belonging to the mark. In the process of setting a tolerance, several
factors can intervene, from the accuracy of measurement devices, up to voluntarily
imposed factors, in order to make indiscernible values inside a certain amplitude.
The comparison between the tolerance and the granularity will provide validity to
the mark.

There exist two other constituent elements of the mark: the number of digits used
to represent a reading in the scale, which is equal to the precision of the device, and
the basis of the numerical system in which the readings are displayed.

The bounds of the marks will not be, in general, elements of the digital scale,
which discourages the traditional interval treatment, based on the bound elements
infimum and supremum, since it would force possible corrections (truncations
or rounding) on some of the interval’s bounds with a loss of information and,
consequently, the read value on the digital scale can be lost as reference.

Definition 8.3.1 (Mark) A mark on a digital scale Dn is an object denoted by
hc; t; g; n; bi where c is the center of the mark, t is the tolerance, g is the
granularity, n and b are, respectively, the number of digits and the basis of the
digital scale.

Center, tolerance, granularity, and scale are the attributes of the mark. The center is
a number c 2 DIn representing the approximate value, when the mark represents
a real constant, or the reading in a display, when the quantity comes from a
measurement device.
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The tolerance is a digital number t 2�0; 1Œ which expresses the relative maximum
separation among the points of the mark which the observer will consider as
indiscernible from the center. The tolerance has to indicate the relative width of
the intervals of indiscernibility which can be taken, depending on the phenomenon
under study or the accuracy that might be required of the results.

The granularity is a digital number g 2 Œ0; 1Œ which reflects the inaccuracy of
the measure. It is equal to b�n, the digital granularity, when the mark represents to
a real constant, or more generally, coincides with the relative error associated to the
reading, when the quantity comes from a measurement device. It is reasonable to
identify initially the granularity with the relative error of the reading, but one is also
able to include other aspects related to the phenomenon under study, for instance,
instabilities.

Granularity and tolerance must satisfy the minimum condition of significance:

b�n � g < t < 1: (8.2)

This condition prevents accepting, for example measures of millimeters with a ruler
graduated in centimeters. Generally speaking, the tolerance must be greater than
the sum of all the inaccuracy factors: the greater the inaccuracies, the greater the
tolerance must be.

The set of marks with tolerance t , number of digits n and scale basis b, will be
denoted by

M.t; n; b/ D fm D hc; t; g; n; bi j c 2 DIn; t 2�0; 1Œ; b�n � g < tg:

The numbers t , n and b are the type of the mark. For a given type, the mark is
defined by center and granularity; in this case the mark will be denoted by hc; gi.

To specify the value of b will be often irrelevant. In this case the set of marks
will be denoted by M.t; n/, neglecting b.

Example 8.3.1 The representation of the reading in a voltmeter of 12.23 V with
a relative error of 1 % as a mark in a decimal scale DI5, imposing a tolerance of
0:05, is

h1:22300e1; 5:00000e � 2; 1:00000e � 2; 5; 10i;

or simply

h1:223e1; 5:0e � 2; 1:0e � 2; 5; 10i

since 1:223e1; 5:0e � 2; 1:0e � 2 2 DI5. The representation of the number � as a
mark of that scale DI5, supposing the same tolerance, is

h3:14159e0; 5:0e � 2; 1:0e � 5; 5; 10i:
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8.3.2 Imprecision and Validity of a Mark

The minimum condition of significance b�n � g < t < 1, necessary to any mark
m D hc; t; g; n; bi, leads to the definition of the following parameters:

• The imprecision index is the value g

t
. It satisfies g

t
< 1, since otherwise the

minimum condition of significance is not satisfied.
• The validity index is the complement to 1 of the imprecision index, that is to say,

1 � g

t
. The more accurate the mark, the smaller the g

t
.

The minimum condition of significance b�n � g < t < 1 can be generalized in
the form b�n � g < ˛t < 1 , where ˛ 2�0; 1� is a parameter. When g < ˛t , the
granularity g will be called compatible with ˛t .

8.3.3 Associated Intervals to a Mark

Let m D hc; gi 2 M.t; n/ be a mark, then the

• Associated interval to m, I v.m/ D c � Œ1 C t; 1 � t �.
• Indiscernibility margin of m, Ind.m/ D c � Œ1 � t; 1 C t �.
• External shadow of m, Exsh.m/ D c � Œ1 C t; 1 � t � � Œ1 � g; 1 C g�.
• Internal shadow of m, Insh.m/ D c � Œ1 C t; 1 � t � � Œ1 C g; 1 � g�.

All these modal intervals can be positive or negative, but 0 never belongs to the
interval domains.

The points of Ind.m/ are called readings of m. Sometimes it can be necessary to
consider the indiscernibility margin of a mark when the granularity g is compatible
with ˛t . In this case Ind˛.m/ D c � Œ1 � ˛t; 1 C ˛t�.

The condition g < t guarantees that the interval Exsh.m/ is improper. Obviously,
Insh.m/ is always improper.

The associated mark to the external shadow of m D hc; t; g; n; bi is defined by

ExshM.m/ D hc; t � g.1 C t/; b�n; n; bi 2 M.t � g.1 C t/; n; b/:

The validity condition for this mark ExshM.m/ is

b�n < t � g.1 C t/

and its compatibility with ˛t is

b�n < ˛.t � g.1 C t//:
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This inequality forces

g <
t � b�n

˛

1 C t
; (8.3)

which must prevail over g < t . The value

Qt D t � g.1 C t/

is called the effective tolerance of the mark m D hc; t; g; n; bi.

Example 8.3.2 The mark m D h3:2e0; 1:0e � 2; 1:0e � 3; 6; 10i has imprecision
index g

t
D 0:001=0:01 D 0:1 < 1, which means that the mark is valid and

its validity index is 1 � g

t
D 1 � 0:1 D 0:9. The minimum condition of

significance is 10�6 < 0:001 < 0:01 < 1 which is true, and the generalized
minimum condition of significance for the parameter ˛ D 0:8 takes the form
10�6 < 0:001 < 0:8 � 0:01 < 1, which is also true. So the granularity g D 0:001

is compatible with ˛t D 0:008 and the effective tolerance is Qt D t � g.1 C t/ D
0:00899. Their associated intervals are

Iv.m/ D c � Œ1 C t; 1 � t � D Œ3:232; 3:168�;

Ind.m/ D c � Œ1 � t; 1 C t � D Œ3:168; 3:232�;

Exsh.m/ D c � Œ1 C t; 1 � t � � Œ1 � g; 1 C g� D Œ3:228768; 3:171168�;

Insh.m/ D c � Œ1 C t; 1 � t � � Œ1 C g; 1 � g� D Œ3:235232; 3:164832�:

The mark associated to the external shadow of m is

ExshM.m/ D h3:2e0; 8:99e � 3; 1:0e � 5; 6; 10i

and its validity condition is

10�6 < 0:00899

and for ˛ D 0:9

10�6 < 0:9 � 0:00899

which forces

g D 0:001 <
t � b�n

˛

1 C t
D 0:01 � 10�6=0:9

1 C 0:01
D 0:0098899 : : :

which is true.
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8.4 Relations in the Set of the Marks

A mark is associated to a digital center and an indiscernibility radius. These two
constituents will determine the equality and inequality relations. The relations
among marks are going to be a structural copy of the relations among real
numbers. As there does not exist any inclusion relationship between real numbers,
consequently there will not exist any inclusion relationship between marks.

Two marks will be comparable, when they have the same tolerance and, to
avoid basis transformation operations, they also have the same basis. It will not
be necessary that the marks to be compared are of the same type, since the number
of digits doesn’t raise difficulties for those comparisons.

8.4.1 Equality Relations

Given two marks m1 D hc1; g1i and m2 D hc2; g2i,

• m1 is materially equal to m2,

m1 D m2 , c1 D c2:

• m1 is weakly equal to m2 with respect to the parameter ˛ 2�0; 1�,

m1 �˛ m2 , .c2 2 Ind˛.m1/ or c1 2 Ind˛.m2//

provided both granularities g1 and g2 are compatible with ˛t .

The main properties of the weak equality relation are

1. If m1 and m2 are comparable, ˛; ˇ 2�0; 1�, ˛ � ˇ and g1 and g2 compatible with
˛t , then

m1 �˛ m2 ) m1 �ˇ m2:

2. If m1;m2 and m3 are comparable, ˛ 2�0; 1� and g1, g2, g3 compatible with ˛t ,
then

.m1 �˛ m2 ; m2 D m3/ ) m1 �˛ m3:

3. If m1;m2 and m3 are comparable, ˛; ˇ 2�0; 1�, ˛ C ˇ < 1 and g1, g2 and g3

compatible with ˛t or with ˇt , respectively, then

.m1 �˛ m2 ; m2 �ˇ m3/ ) m1 �˛Cˇ m3:

This property is called the .˛ C ˇ/-transitivity of the weak equality.
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8.4.2 Inequality Relations

Given two comparable marks m1 D hc1; g1i and m2 D hc2; g2i,

• m1 is materially less than or equal to m2,

m1 � m2 , c1 � c2:

• m1 is weakly less than or equal to m2 with respect to the parameter ˛ 2�0; 1�,

m1 �˛ m2 , .m1 � m2 or m1 �˛ m2/

if the granularities g1 and g2 are compatible with ˛t .
• m1 is materially greater than or equal to m2,

m1 � m2 , m2 � m1:

• m1 is weakly greater than or equal to m2 with respect to the parameter ˛ 2�0; 1�,

m1 
˛ m2 , m2 �˛ m1

The main properties of these inequality relations are:

1. m1 � m2 , I v.m1/ � I v.m2/.
2. If m1;m2 and m3 are comparable, ˛ 2�0; 1� and g1; g2 and g3 are compatible with

˛t , then

.m1 �˛ m2;m2 � m3/ ) m1 �˛ m3:

3. If the comparable marks m1 and m2 are materially unequal, they will be weakly
equal with respect to any parameter ˛ 2�0; 1� if g1; g2 < ˛t , i.e.,

m1 � m2 ) .maxfg1; g2g < ˛t ) m1 �˛ m2/:

4. Given two comparable marksm1 andm2 if ˛ 2�0; 1� and g1 and g2 are compatible
with ˛t , then

.m1 �˛ m2 ; m2 �˛ m1/ ) m1 �˛ m2:

This property is called the anti-symmetry of the weak inequality.
5. Given three comparable marks m1;m2 and m3, if ˛; ˇ 2�0; 1�, ˛ C ˇ < 1 and

g1; g2 and g3 are compatible with ˛t or with ˇt , respectively, then

.m1 �˛ m2 ; m2 �ˇ m3/ ) m1 �˛Cˇ m3:

This property is called the .˛ C ˇ/-transitivity of weak inequality.
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8.4.3 Strict Inequality Relations

Given two comparable marks m1 D hc1; g1i and m2 D hc2; g2i,

• m1 is materially less than m2,

m1 < m2 , I v.m1/ < I v.m2/:

• m1 is weakly less than m2 with respect to a parameter ˛ 2�0; 1�

m1 �˛ m2 , .:.m1 �˛ m2/ ; c1 < c2/

if the granularities g1 and g2 are compatible with ˛t .

Let m1 and m2 be comparable marks, if ˛ 2�0; 1� is such that g1 and g2 are
compatible with ˛t , then

m1 �˛ m2 , .m1 �˛ m2 or m1 �˛ m2/:

Example 8.4.1 For the marks m D h3:2e0; 1:0e � 2; 1:0e � 3; 5; 10i, n D
h2:9e0; 1:0e � 2; 1:0e � 3; 5; 10i and p D h3:18e0; 1:0e � 2; 1:0e � 3; 5; 10i and a
parameter ˛ D 1, the indiscernibility margins are

Ind˛.m/ D Œ3:168; 3:232�;

Ind˛.n/ D Œ2:871; 2:929�;

Ind˛.p/ D Œ3:1482; 3:2118�;

therefore the followings relations are true:

m is weakly equal to p, m �˛ p.
m is materially greater than or equal to n, m � n.
m is weakly greater than or equal to n, m 
˛ n.
m is weakly greater than n, m �˛ n.

8.5 Mark Operators

Before defining any operation between marks and taking into account that the initial
marks can come from direct or indirect readings in some scale, it is necessary
to represent them in the computational scale in order to get suitable computation
items. Therefore a read value m1 D hc1; t1; g1; n1; bi 2 M.t1; n1/ represented in a
computation scale Dn becomes the mark

m D hc; t; g; n; bi;
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where c is the representation of the read value c1 in Dn (c D di.c1/), t is the
lower truncation of t1 in Dn (t D# t1) and g is the nearest value of g1 in Dn

(g ' g1; g < t ).
The loss of information, intrinsic to any computation process, must be reflected

in the granularity, not in the tolerance, and always, in order to maintain the
homogeneity of the system, the result of any computation will have the same
tolerance as the data. The granularity will embody any indetermination and, so,
it will increase in each computation step. Nevertheless it will not have a main role
but is an indicator of a loss of validity in the computation process, when increasing
g leads to invalidating a result for which the imprecision index is greater than or
equal to 1.

Any mark comes from a previous computation with marks or from a
measurement. In this case, to represent this mark in the computation scale, it is
necessary to increase its granularity in b�n, if the computation scale is Dn. From
now on, this previous step is obviated and marks will be considered marks of the
digital scale of the computation.

Operations between marks will be defined for marks of the same type and the
result is also of the same type as the data. In this way, the tolerance will be constant
along any computation, but the granularity will increase, reflecting the step-by-step
loss of information, which constitutes the deviation of the computed value from the
exact value. Along the computational process the granularity will go on increasing,
following some propagation approach, that will be set by the phenomenon being
modelled. The computation of the granularity will be necessary to check the
validity of the resulting mark and the imprecision index in the resulting mark
will depend on the approach used to propagate the granularity. The phenomenon
under examination will determine this approach, with the only demand being that
the resulting granularity must never be smaller than the granularities of the data.
Accepting this norm, different approaches will be considered.

8.5.1 Mark Operators over I�.R/

Let f W R2 ! R be a continuous function and m1 D hc1; g1i 2 M.t; n/, m2 D
hc2; g2i 2 M.t; n/. A mark operator over I �.R/ associated to f is any function

fMI W M.t; n/ 
 M.t; n/ ! I �.R/

such that

fMI.m1;m2/ D f .x1; x2/ � Œ1 C t; 1 � t �;

where .x1; x2/ 2 Ind.m1/ 
 Ind.m2/.
The most important mark operators over I �.R/ are:
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• fMI.m1;m2/ is admissible for .x1; x2/ 2 Ind.m1/ 
 Ind.m2/ if

f �.Iv.m1/; Iv.m2// � f .x1; x2/ � Œ1 C t; 1 � t �:

• fMI.m1;m2/ is centered when

f �.Iv.m1/; Iv.m2// � f .c1; c2/ � Œ1 C t; 1 � t �;

where c1 and c2 are the respective centers of the marks m1 and m2 and f � the modal
*-semantic extension of f .

Remark 8.5.1 If fMI.m1;m2/ is centered, then it is admissible for .c1; c2/.

Example 8.5.1 The mark operator associated to the real continuous function f W
R

2C ! R defined by f .x; y/ D .x C y/2 is a centered operator because

f �.Iv.m1/; Iv.m2// D .Œc1.1 C t/; c1.1 � t/� C Œc2.1 C t/; c2.1 � t/�/2

D Œ.c1 C c2/2.1 C t/2; .c1 C c2/
2.1 � t/2�

� Œ.c1 C c2/2.1 C t/; .c1 C c2/
2.1 � t/�

D f .c1; c2/ � Œ1 C t; 1 � t �;

where the first equality comes from the optimality of the syntactic extension of f

in the domain R
2C. But the mark operator associated to the real continuous function

f W R2C ! R defined by f .x; y/ D p
x C y is not a centered operator because

f �.Iv.m1/; Iv.m2// D
p

.Œc1.1 C t/; c1.1 � t/� C Œc2.1 C t/; c2.1 � t/�/

D Œ
p

c1 C c2

p
1 C t ;

p
c1 C c2

p
1 � t �

6� Œ
p

c1 C c2.1 C t/;
p

c1 C c2.1 � t/�

D f .c1; c2/ � Œ1 C t; 1 � t �;

where the first equality is also due to the optimality of the syntactic extension of f

in the domain R
2C.

Operators which satisfy these inclusions allow of defining the mark operators of
which the result is a mark of the same type as the arguments.

8.5.2 Mark Operators over M.t; n/

Definition 8.5.1 (Mark operator) Let f W R2 ! R be a continuous function such
that fMI.m1;m2/ is centered. A mark operator over M.t; n/ associated to f is a
function
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fM.t;n/ W M.t; n/ 
 M.t; n/ �! M.t; n/

defined by

fM.t;n/.m1;m2/ D hdi.f .c1; c2//; gzi 2 M.t; n/

where

1. di.f .c1; c2// is the digital computation of the function f at .c1; c2/ on the scale
Dn, supposing a minimum relative displacement of di.f .c1; c2// with respect to
the exact value f .c1; c2/, i.e., less than or equal to b�n

2
.

2. gz is the granularity of the result, which it will be necessary to determine
specifically for each operator. It is gz D �1;2, if di.f .c1; c2// D f .c1; c2/, or
gz D �1;2 C b�n, if the relative displacement of the computation di.f .c1; c2//

with respect to the exact value f .c1; c2/ is less than or equal to the digital
granularity b�n. The term �1;2 is the main term of the granularity which will
depend on the interval operator associated to the function f , and one always has
�1;2 � maxfg1; g2g, i.e., �1;2 must be greater than or equal to the granularity of
the data.

Remark 8.5.2 The expression gz D �1;2 C b�n, is based on the equality

1 C gz D .1 C �1;2/ � .1 C b�n

2
/ � 1 C �1;2 C b�n:

This equality allows of taking b�n as the secondary term of the granularity coming
from the digital shift of the computation.

Granularity is essentially a fuzzy component and it can be defined in different
ways, always with the condition that �1;2 � maxfg1; g2g. Different approaches will
reflect different aims of the computation:

1. The minimal or semantic approach, where the evolution of the granularity
corresponds to the maximum projection of the granularities of the data: �1;2 is
the smallest number satisfying

f .c1; c2/ � Œ1 C �1;2; 1 � �1;2� � f �.c1 � Œ1 C g1; 1 � g1�; c2/

and

f .c1; c2/ � Œ1 C �1;2; 1 � �1;2� � f �.c1; c2 � Œ1 C g2; 1 � g2�/:

Thus, the resulting granularity gives the biggest projection in the result of the
granularity of each datum separately. This approach reflects situations of the
“chain” type, when the lack of precision of the process comes from the biggest
lack of precision of the data.
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2. The maximal or metric approach, where the evolution of the granularity reflects
the computation of errors: �1;2 is the smallest number satisfying

f .c1; c2/ � Œ1 C �1;2; 1 � �1;2� � f �.c1 � Œ1 C g1; 1 � g1�; c2 � Œ1 C g2; 1 � g2�/:

The maximal approach is an interval treatment of error propagation. In this
approach, the granularity is a relative error and its propagation follows the rules
of the propagation of errors. This approach is used when the objective is to secure
that the relative error is smaller than a given tolerance.

3. Other approaches can also be considered, for example a statistical approach,
considering the granularities as statistically distributed somehow.

Remark 8.5.3 The equality fMI.m1;m2/ D Iv.fM.t;1/.m1;m2// is, obviously, true.

Remark 8.5.4 In the definition of mark operator on M.t; n/ the condition that
fMI.m1;m2/ is centered is sufficient for the admissibility of the mark operator.

The following study of the main mark operators will be based on the minimal
approach, but it can be adapted to the other approaches with only a few obvious
variations.

8.6 Max and Min Operators

Before dealing with the arithmetic operators, let us begin with the election operators,
which do not provoke any digital shift for the centers of the marks.

8.6.1 Maximum

Suppose m1 D hc1; g1i;m2 D hc2; g2i 2 M.t; n/.

Definition 8.6.1 (Maximum) The mark operator over I �.R/ associated to the
maximum is

max.m1;m2/ D max.c1; c2/ � Œ1 C t; 1 � t � 2 I �.R/

Lemma 8.6.1 Putting Z D max.c1; c2/ � Œ1 C t; 1 � t � 2 I �.R/, then

Max .Iv.m1/; Iv.m2// D Z;

that is to say, the maximum is a MI-centered operator.
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Proof

1. If m1 � 0 and m2 � 0, then

Max .Iv.m1/; Iv.m2//

D Œmax.c1.1 C t/; c2.1 C t//; max.c1.1 � t/; c2.1 � t//� D Z

2. If m1 � 0 and m2 � 0, then

Max .Iv.m1/; Iv.m2//

D Œmax.c1.1 � t/; c2.1 � t//; max.c1.1 C t/; c2.1 C t//� D Z

3. If m1 � 0 and m2 � 0, then

Max .Iv.m1/; Iv.m2//

D Œmax.c1.1 C t/; c2.1 � t//; max.c1.1 � t/; c2.1 C t//� D Z

because c1 � c2 and Z D Œc1.1 C t/; c1.1 � t/�. �
Lemma 8.6.2 The main term of the granularity of the maximum in the minimal
approach, i.e.,

max.c1; c2/ � Œ1 C �1;2; 1 � �1;2� �Max .c1 � Œ1 C g1; 1 � g1�; c2/

and

max.c1; c2/ � Œ1 C �1;2; 1 � �1;2� �Max .c1; c2 � Œ1 C g2; 1 � g2�/:

is �1;2 D max.g1; g2/.

Proof Let us suppose, for example max.c1; c2/ D c1.

1. If c1 � 0 and c2 � 0, then

max.c1; c2/ � Œ1 C �1;2; 1 � �1;2� D Œc1.1 C �1;2/; c1.1 � �1;2/�

Max .c1 � Œ1 C g1; 1 � g1�/; c2/ D Œc1.1 C g1/; max.c1.1 � g1/; c2/�

Max .c1; .c2 � Œ1 C g2; 1 � g2�/ D Œmax.c1; c2.1 C g2//; c1�:

As �1;2 � max.g1; g2/, then

c1.1 C �1;2/ � c1.1 C g1/

c1.1 � �1;2/ � max.c1.1 � g1/; c2/
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c1.1 C �1;2/ � max.c1; c2.1 C g2//

c1.1 C �1;2/ � c1;

therefore �1;2 D max.g1; g2/.
2. If c1 � 0 and c2 < 0, the result is obvious. �
3. If c1 < 0 and c2 � 0 or c2 < 0, a similar line of reasoning yields the same

conclusion. �

Theorem 8.6.1 (Computation algorithm for maximum operator) The maximum
over M.t; n/ of two marks m1 D hc1; g1i;m2 D hc2; g2i 2 M.t; n/ is

max.m1;m2/ D hcz; t; gz; n; bi; (8.4)

where

• the center is the maximum of the centers: cz D max.c1; c2/,
• the tolerance t , the basis b and the number of digits n are the same as for the

data,
• the granularity is gz D max.g1; g2/

Proof From the previous two propositions. �

8.6.2 Minimum

The same reasoning, with the obvious adaptations, leads to the following results.
Let m1 D hc1; g1i;m2 D hc2; g2i 2 M.t; n/.

Definition 8.6.2 (Minimum) The mark operator over I �.R/ associated to the
minimum is

min.m1;m2/ D min.c1c2/ � Œ1 C t; 1 � t �

Lemma 8.6.3 Putting Z D min.c1c2/ � Œ1 C t; 1 � t � 2 I �.R/, then

Min .Iv.m1/; Iv.m2// D Z;

that is to say, the minimum is a MI-centered operator.

Theorem 8.6.2 (Computation algorithm for minimum operator) The minimum
over M.t; n/ of two marks m1 D hc1; g1i;m2 D hc2; g2i 2 M.t; n/ is

min.m1;m2/ D hcz; t; gz; n; bi; (8.5)
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where

• the center is the minimum of the centers: cz D min.c1; c2/,
• the tolerance t , the basis b and the number of digits n are the same as those of

the data,
• the granularity is gz D max.g1; g2/.

8.7 Arithmetic Operators

The real arithmetic operators, product, quotient, sum, and subtraction, will be
extended to mark centered operators, i.e., for all them the inclusion

f �.Iv.m1/; Iv.m2// � f .c1; c2/ � Œ1 C t; 1 � t �

is fulfilled. The main term of the granularity will be determined according to the
chosen approach, the minimal one. In the following arguments, the optimality of
the arithmetic operators in every domain will be taken into account, so their *-
extensions are equal to their syntactic extensions.

8.7.1 Product Operator

Suppose m1 D hc1; g1i;m2 D hc2; g2i 2 M.t; n/.

Definition 8.7.1 (Product of marks) The mark operator over I �.R/ associated to
the product is

m1 � m2 D .c1c2/ � Œ1 C t; 1 � t �:

Lemma 8.7.1 Putting Z D .c1c2/ � Œ1 C t; 1 � t � 2 I �.R/, then

Iv.m1/ � Iv.m2/ � Z;

that is to say, multiplication is a MI-centered operator.

Proof The inclusion

Iv.m1/ � Iv.m2/ D .c1 � Œ1 C t; 1 � t �/ � .c2 � Œ1 C t; 1 � t �/

D .c1c2/ � Œ1 C t; 1 � t � � Œ1 C t; 1 � t �

� .c1c2/ � Œ1 C t; 1 � t � � Œ1; 1�:

implies that

Iv.m1/ � Iv.m2/ � .c1c2/ � Œ1 C t; 1 � t �: �
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Lemma 8.7.2 The main term of the granularity of multiplication in the minimal
approach

.c1c2/ � Œ1 C �1;2; 1 � �1;2� � .c1 � Œ1 C g1; 1 � g1�/ � c2

and

.c1c2/ � Œ1 C �1;2; 1 � �1;2� � c1 � .c2 � Œ1 C g2; 1 � g2�/

is �1;2 D max.g1; g2/.

Proof From the commutativity of the interval product,

.c1 � Œ1 C g1; 1 � g1�/ � c2 D .c1c2/ � Œ1 C g1; 1 � g1�

and

c1 � .c2 � Œ1 C g2; 1 � g2�/ D .c1c2/ � Œ1 C g2; 1 � g2�:

Therefore

Œ1 C �1;2; 1 � �1;2� � Œ1 C g1; 1 � g1�

Œ1 C �1;2; 1 � �1;2� � Œ1 C g2; 1 � g2�

�
) �1;2 D maxfg1; g2g: �

Theorem 8.7.1 (Computation algorithm for product operator) The product
over M.t; n/ of two marks m1 D hc1; g1i;m2 D hc2; g2i 2 M.t; n/ is

m1 � m2 D hcz; t; gz; n; bi; (8.6)

where

• the center is the digital product of the centers: cz D di.c1c2/,
• the tolerance t , the basis b and the number of digits n are the same as for the

data,
• the granularity is gz D max.g1; g2/ C b�n

Proof From the previous two propositions. �

8.7.2 Quotient Operator

Suppose m1 D hc1; g1i;m2 D hc2; g2i 2 M.t; n/ with c2 ¤ 0.

Definition 8.7.2 (Quotient of marks) The mark operator over I �.R/ associated to
the quotient is

m1=m2 D c1

c2

� Œ1 C t; 1 � t �:
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Lemma 8.7.3 Putting Z D c1

c2

� Œ1 C t; 1 � t � 2 I �.R/, then

Iv.m1/

Iv.m2/
� Z;

that is to say, division is a MI-centered operator.

Proof From the definition of indiscernibility margin, 0 … Ind.m2/. Therefore,

for .c1 � 0; c2 > 0/ or .c1 < 0; c2 < 0/

Iv.m1/

Iv.m2/
D
�

c1

c2

1 C t

1 � t
;

c1

c2

1 � t

1 C t

�
�
�

c1

c2

.1 C t/;
c1

c2

.1 � t/

�
D Z

for .c1 � 0; c2 < 0/ or .c1 < 0; c2 > 0/

Iv.m1/

Iv.m2/
D
�

c1

c2

1 � t

1 C t
;

c1

c2

1 C t

1 � t

�
�
�

c1

c2

.1 � t/;
c1

c2

.1 C t/

�
D Z: �

Lemma 8.7.4 The main term of the granularity of the quotient in the minimal
approach

c1

c2

� Œ1 C �1;2; 1 � �1;2� � c1 � Œ1 C g1; 1 � g1�

c2

and

c1

c2

� Œ1 C �1;2; 1 � �1;2� � c1

c2 � Œ1 C g2; 1 � g2�

is �1;2 D maxfg1;
g2

1�g2
g.

Proof From the first inclusion,

c1

c2

� Œ1 C �1;2; 1 � �1;2� � c1 � Œ1 C g1; 1 � g1�

c2

) �1;2 � g1:

The second inclusion is equivalent to

c1

c2

� Œ1 C �1;2; 1 � �1;2� � c1

c2

�
�

1

1 � g2

;
1

1 C g2

�
;

and therefore

1 C �1;2 � 1

1 � g2

and 1 � �1;2 � 1

1 C g2
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or, equivalently, �1;2 � g2

1�g2
. So

�1;2 D maxfg1;
g2

1 � g2

g: �

Theorem 8.7.2 (Computation algorithm for the quotient operator) The
quotient over M.t; n/ of two marks m1 D hc1; g1i;m2 D hc2; g2i 2 M.t; n/,
with c2 ¤ 0, is

m1

m2

D hcz; t; gz; n; bi; (8.7)

where

• the center is the digital quotient of the centers: cz D di. c1

c2
/,

• the tolerance t , the basis b and the number of digits n are the same as for the
data,

• the granularity is gz D maxfg1;
g2

1�g2
g C b�n.

Proof Obvious from the previous two propositions. �

8.7.3 Sum of Operands Having the Same Sign

Suppose m1 D hc1; g1i;m2 D hc2; g2i 2 M.t; n/ with sgn.c1/ D sgn.c2/.

Definition 8.7.3 (Sum of marks having the same sign) The mark operator over
I �.R/ associated to a sum of marks having the same sign is

m1 C m2 D .c1 C c2/ � Œ1 C t; 1 � t �:

Lemma 8.7.5 Defining Z D .c1 C c2/ � Œ1 C t; 1 � t � 2 I �.R/, then

Iv.m1/ C Iv.m2/ � Z

that is to say, the sum is a MI-centered operator.

Proof The possible cases are:

1. c1 � 0 and c2 � 0

Iv.m1/ C Iv.m2/ D Œc1.1 C t/; c1.1 � t/� C Œc2.1 C t/; c2.1 � t/�

D Œ.c1 C c2/.1 C t/; .c1 C c2/.1 � t/� D Z:

2. c1 < 0 and c2 < 0

Iv.m1/ C Iv.m2/ D Œc1.1 � t/; c1.1 C t/� C Œc2.1 � t/; c2.1 C t/�

D Œ.c1 C c2/.1 � t/; .c1 C c2/.1 C t/� D Z: �
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Lemma 8.7.6 The main term of the granularity of the sum in the minimal approach

.c1 C c2/ � Œ1 C �1;2; 1 � �1;2� � .c1 � Œ1 C g1; 1 � g1�/ C Œc2; c2�

and

.c1 C c2/ � Œ1 C �1;2; 1 � �1;2� � Œc1; c1� C .c2 � Œ1 C g2; 1 � g2�/

is �1;2 D max.g1; g2/.

Proof As

c1 � Œ1 C g1; 1 � g1� C Œc2; c2� D Œc1 C c2; c1 C c2� C Œ1 C c1g1; 1 � c1g1�

D .c1 C c2/ � Œ1 C c1

c1Cc2
g1; 1 � c1

c1Cc2
g1�:

Œc1; c1� C c2 � Œ1 C g2; 1 � g2� D Œc1 C c2; c1 C c2� C Œ1 C c2g2; 1 � c2g2�

D .c1 C c2/ � Œ1 C c2

c1Cc2
g2; 1 � c2

c1Cc2
g2�:

It is necessary that �12 � c1

c1Cc2
g1 and �12 � c2

c1Cc2
g2. But c1 and c2 have

the same sign, then c1

c1Cc2
g1 � g1 and c2

c1Cc2
g2 � g2. So it is enough to take

�12 D maxfg1; g2g. �

Notice that in this proof, the distributive property of the interval product with
respect to the sum has been used, keeping in mind that Œc1; c1� and Œc2; c2� are point-
wise intervals.

Theorem 8.7.3 (Computation algorithm for the sum operator) The sum over
M.t; n/ of two marks m1 D hc1; g1i;m2 D hc2; g2i 2 M.t; n/ with sgn.c1/ D
sgn.c2/ is

m1 C m2 D hcz; t; gz; n; bi (8.8)

where

• the center is the digital sum of the centers: cz D di.c1 C c2/,
• the tolerance t , the basis b and the number of digits n are the same as for the

data,
• the granularity is gz D max.g1; g2/ C b�n.

Proof Obvious from the previous propositions. �

8.7.4 Sum with Operators of Different Signs (Subtraction)

Let m1 D hc1; g1i;m2 D hc2; g2i 2 M.t; n/ with sgn.c1/ ¤ sgn.c2/ and
j c1 j¤ j c2 j.
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Definition 8.7.4 (Sum of marks of different signs) The mark operator over I �.R/

associated to the sum of different signs is

m1 C m2 D .c1 C c2/ � Œ1 C t; 1 � t �:

Lemma 8.7.7 Putting Z D .c1 C c2/ � Œ1 C t; 1 � t � 2 I �.R/, then

Iv.m1/ C Iv.m2/ � Z;

that is to say, the sum is a MI-centered operator.

Proof Without any loss of generality, we may suppose c1 > 0 and c2 < 0. So

Iv.m1/ C Iv.m2/ D Œc1.1 C t/ C c2.1 � t/; c1.1 � t/ C c2.1 C t/�:

and the different possible cases are jc1j > jc2j and jc1j < jc2j:
1. If jc1j > jc2j, then

Z D .c1 C c2/ � Œ1 C t; 1 � t � D Œ.c1 C c2/.1 C t/; .c1 C c2/.1 � t/�:

For the required inclusion it is necessary that

c1.1 C t/ C c2.1 � t/ � .c1 C c2/.1 C t/

and

c1.1 � t/ C c2.1 C t/ � .c1 C c2/.1 � t/;

i.e.,

�c2t � c2t and c2t � �c2t

which holds because c2 < 0.
2. If jc1j < jc2j, then

Z D .c1 C c2/ � Œ1 C t; 1 � t � D Œ.c1 C c2/.1 � t/; .c1 C c2/.1 C t/�:

For the required inclusion it is necessary that

c1.1 C t/ C c2.1 � t/ � .c1 C c2/.1 � t/

and

c1.1 � t/ C c2.1 C t/ � .c1 C c2/.1 C t/;



210 8 Marks

i.e.,

c1t � �c1t and � c1t � c1t

which holds because c1 > 0. �

Lemma 8.7.8 The main term of the granularity of the sum in the minimal approach

.c1 C c2/ � Œ1 C �1;2; 1 � �1;2� � .c1 � Œ1 C g1; 1 � g1�/ C Œc2; c2�

and

.c1 C c2/ � Œ1 C �1;2; 1 � �1;2� � Œc1; c1� C .c2 � Œ1 C g2; 1 � g2�/

is �1;2 D maxf
ˇ̌̌

jc1j
jc1j�jc2j

ˇ̌̌
g1;

ˇ̌̌
jc2j

jc1j�jc2 j
ˇ̌̌
g2; g1; g2g

Proof There are two possible cases,

1) c1 > 0 and c2 < 0

c1 � Œ1 C g1; 1 � g1� C Œc2; c2� D Œc1.1 C g1/ C c2; c1.1 � g1/ C c2�

D Œ.c1 C c2/
�
1 C c1

c1Cc2
g1

	
;

.c1 C c2/
�
1 � c1

c1Cc2
g1

	
�

D .c1 C c2/ � Œ1 C
ˇ̌
ˇ jc1j

jc1j�jc2 j
ˇ̌
ˇ g1; 1

�
ˇ̌
ˇ jc1j

jc1j�jc2j
ˇ̌
ˇ g1�

Œc1; c1� C c2 � Œ1 C g2; 1 � g2� D Œc1 C c2.1 � g2/; c1 C c2.1 C g2/�

D Œ.c1 C c2/
�
1 � c2

c1Cc2
g2

	
;

.c1 C c2/
�
1 C c2

c1Cc2
g2

	
�

D .c1 C c2/ � Œ1 C
ˇ̌
ˇ jc2j

jc1j�jc2 j
ˇ̌
ˇ g2; 1

�
ˇ̌̌

jc2j
jc1j�jc2j

ˇ̌̌
g2�

and by these inequalities,

�1;2 �
ˇ̌
ˇ̌ jc1j
jc1j � jc2j

ˇ̌
ˇ̌ g1 and �1;2 �

ˇ̌
ˇ̌ jc2j
jc1j � jc2j

ˇ̌
ˇ̌ g2:

2) c1 < 0 and c2 > 0 is analogous to (1).

From both results,

�1;2 D maxf
ˇ̌
ˇ̌ jc1j
jc1j � jc2j

ˇ̌
ˇ̌ g1;

ˇ̌
ˇ̌ jc2j
jc1j � jc2j

ˇ̌
ˇ̌g2; g1; g2g: �
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Theorem 8.7.4 (Computation algorithm for the sum operator) The sum over
M.t; n/ of two marks m1 D hc1; g1i;m2 D hc2; g2i 2 M.t; n/ with sgn.c1/ ¤
sgn.c2/ and j c1 j¤j c2 j is

m1 C m2 D hcz; t; gz; n; bi; (8.9)

where

• the center is the digital sum of the centers: cz D di.c1 C c2/,
• the tolerance t , the basis b and the number of digits n are the same as for the

data,
• the granularity is

gz D max

�
g1; g2;

ˇ̌
ˇ̌ jc1j
jc1j � jc2j

ˇ̌
ˇ̌ g1;

ˇ̌
ˇ̌ jc2j
jc1j � jc2j

ˇ̌
ˇ̌g2

�
C b�n:

Proof Obvious from the previous propositions. �

Remark 8.7.1 If jc1j D jc2j, the sum of the marks of opposite sign is not defined.
Anyway, there exists the possibility of declaring, by fiat, that

m C .�m/ D h0; gi 2 M.t; n/ (8.10)

but this is just a definition and not a computation.

It is important to realize that computations with marks do not provide the true
final values, but marks only warn about the quality of results, whether or not they
are reliable. This fact is illustrated in the following example.

Example 8.7.1 For m D h3:2e0; 1:0e � 2; 1:0e � 3; 4; 10i and n D h2:9e0; 1:0e �
2; 1:0e � 3; 4; 10i, marks on DI4,

m C n D h6:1000e0; 1:0e � 2; 1:1e � 3; 4; 10i
m � n D h9:2800e0; 1:0e � 2; 1:1e � 3; 4; 10i
m=n D h1:1035e0; 1:0e � 2; 1:101e � 3; 4; 10i

but

m � n D h0:3000e0; 1:0e � 2; 1:0766e � 2; 4; 10i

which is an invalid mark since g

t
D 1:0766 > 1. Nevertheless with a tolerance

t D 0:05 this mark is valid.
Using a scale DI5 with five decimal digits, i.e., for m D h3:2e0; 1:0e � 2; 1:0e �

3; 5; 10i and n D h2:9e0; 1:0e � 2; 1:0e � 3; 5; 10i the results are
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m C n D h6:10000e0; 1:0e � 2; 1:01e � 3; 5; 10i
m � n D h9:28000e0; 1:0e � 2; 1:01e � 3; 5; 10i
m=n D h1:10345e0; 1:0e � 2; 1:011e � 3; 5; 10i

but

m � n D h0:30000e0; 1:0e � 2; 1:06767e � 2; 5; 10i

which will be a valid or invalid mark depending on the tolerance.

Computing with marks warns and prevents against any undesired subtractive
cancellation, as the following examples show.

Example 8.7.2 Coming back to the problem, commented on in Sect. 8.2.4, about
the computation of

f .x; y/ D 333:75y6 C x2.11x2y2 � y6 � 121y4 � 2/ C 5:5y8 C x

2y
:

In the scale DI15, the computation of the extension of f to the marks

x D h77617:0; 0:01; 10�15; 15; 10i and y D h33096:0; 0:01; 10�15; 15; 10i

yields a mark with center equal to 1:1726039400531e0 and a huge granularity,
greater than 1, and thus greater than the tolerance t D 0:01, or any other, i.e., this is
an invalid mark.

Example 8.7.3 Let us consider the evaluation of the function f .x/ D .1�cos x/=x2

for x D 1:2e � 05 rounded to 10 significant digits [39]. As

cos x D 0:9999999999 and 1 � cos x D 0:0000000001;

the result is

.1 � cos x/=x2 D 0:6944::;

which is wrong since 0 � f .x/ � 0:5 for all x ¤ 0. The cause is the subtraction
1 � cos x which is exact but has only one significant digit and it is the same size as
the error in the computation of cos x. The computation with marks yields, as a result
for the difference, 1 � cos x, a mark with a big granularity, greater than 1, thus it is
greater than any valid tolerance and, consequently, an invalid mark.

The next examples illustrate the importance of granularity and the tolerance,
depending on the problem. In technical cases the granularity can be defined as
the relative error of the corresponding measures. In other cases, the data are
not measurements but real values of a coordinate axis and the granularity could
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be defined as the error in the digital scale. But this can not be made into a
fixed rule, and granularity can be strongly conditioned by the problem under
consideration.

Example 8.7.4 Coming back to Example 4.5.1 of Chap. 4, for an ideal lens with
the distance g between an object and the lens, a focal length of f , and distance b

between the lens and the image of the object, all of which are related by

g D 1
1
f

� 1
b

;

suppose now f is a mark with center 20 and granularity 0.05, equal to the relative
error, and b is a mark with center 25 and granularity 1=25 D 0:04. For the distance
between the object and the lens the result is the mark

g D< 1:000000e C 02; 3:571429e � 01 >

which, by (8.3), is a valid mark for a tolerance of t D 0:6, but not for a tolerance of
t D 0:3.

Example 8.7.5 Given the function [47]

Œ.y; z/ D 108 � .815 � 1500=z/=y

and initial values x0 D 4, x1 D 4:25, let xnC1 D Œ.xn; xn�1/ be for n D 1; 2; 3; : : :.
The sequence xn converges to the limit L (L D 5) which can be approximated by
computing xn until xN �1 differs negligibly from xN ; then this xN approximates L.
So, the task is to compute xN for some moderately big integer N , say N D 80.
It seems that all floating-point hardware, all Randomized Arithmetic, and most
implementations of Significance Arithmetic, give L D 100. With a FORTRAN
program carrying 64 bits and a MATLAB program carrying 53 bits on an Intel 302
(i386/387 IBM PC clone).

n True xn FORTRAN xn MATLAB xn

� � � � � � � � � � � �
12 4.9956558915066 4.9956595420973 4.9674550955522
� � � � � � � � � � � �
74 4.9999999999999 100 100
75 4.9999999999999 100 100
� � � � � � � � � � � �

So, different calculations produce the same wrong result x80 � 100. Solving the
problem with marks instead of real numbers, this result is labelled as possible false.
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Considering the initial marks

x0 D< 4:0; 1:0e � 15 > x1 D< 4:25; 1:0e � 15 >

with tolerance 0:01, number of digits n D 15, and basis b D 10 of the digital scale,
the results are

n xn

0 < 4:0; 1:0e � 15 >

1 < 4:25; 1:0e � 15 >

2 < 4:470588e C 00; 4:762632e � 13 >

3 < 4:644737e C 00; 1:062112e � 11 >

4 < 4:770538e C 00; 2:298526e � 10 >

5 < 4:855701e C 00; 4:882527e � 09 >

6 < 4:910847e C 00; 1:024947e � 07 >

7 < 4:945537e C 00; 2:135771e � 06 >

8 < 4:966962e C 00; 4:430382e � 05 >

9 < 4:980042e C 00; 9:165344e � 04 >

10 < 4:987909e C 00; 1:894596e � 02 >

11 < 4:991363e C 00; 3:985458e � 01 > invalid mark
12 < 4:967455e C 00; 1:374410e C 01 > invalid mark
� � � � � �

For n D 11, the mark is invalid because its granularity is greater than the tolerance.
Taking a greater tolerance, t D 0:5, this mark would become a valid mark. The result
corresponding to step n D 12 is again an invalid mark because its granularity is, not
only greater than the tolerance, but it is greater than 1 and no tolerance could make
this mark valid. Due to the recursive nature of the computation, all marks from x11

represent possibly wrong results. For example the center of the mark computed for
n D 13 is 4:429690 and the center of the mark computed for n D 14 is �7:817237.

Example 8.7.6 The graph of the function [47]

Spike.x/ D 1 C x2 C log.j1 C 3.1 � x/j/=80:

presents a “spike” at x D 4=3, i.e., Spike.4=3/ D �1. Drawing this function
taking a set of x-values, for example xn D 1=2 C n=669, for n D 1; 2; 3; : : : ; 1003,
the result is a continuous and smooth curve in the interval Œ1=2 C 1=669; 3=2�, in
which the spike is not detected despite the fact that 4=3 2 Œ1=2 C 1=669; 3=2�.
Computations with marks can solve this problem. Considering these x-values as the
centers of the marks, with tolerance 1:0e � 2, number of digits n D 15, and basis
b D 10 of the digital scale, and different values for the granularity, the results for
the x-values near 4/3 are in the following tables.



8.7 Arithmetic Operators 215

For a granularity of 1:0e�3, the union of all the set-intervals defined by the mark
centers and granularity, that is,

[
.n;f1;2;:::;1003g/

.xn � Œ1 � g; 1 C g�/;

contains the represented segment of the real line and the mark < 1:332586e C
00; 1:0e � 3 >, considered as a “brush-stroke” of x-values, contains the spike-point
x D 4=3. The results are:

Granularity = 1:0e � 3

x Spike.x/

� � � � � �
< 1:314649e C 00; 1:0e � 3 > < 2:692283e C 00; 7:036000e � 02 >

< 1:316143e C 00; 1:0e � 3 > < 2:695173e C 00; 7:656522e � 02 >

< 1:317638e C 00; 1:0e � 3 > < 2:697973e C 00; 8:395238e � 02 >

< 1:319133e C 00; 1:0e � 3 > < 2:700663e C 00; 9:289474e � 02 > invalid mark
< 1:320628e C 00; 1:0e � 3 > < 2:703219e C 00; 1:039412e � 01 > invalid mark
� � � � � �
< 1:332586e C 00; 1:0e � 3 > < 2:699531e C 00; 1:783000e C 00 > invalid mark
< 1:334081e C 00; 1:0e � 3 > < 2:703517e C 00; 1:785000e C 00 > invalid mark
� � � � � �
< 1:346039e C 00; 1:0e � 3 > < 2:770982e C 00; 1:059412e � 01 > invalid mark
< 1:347534e C 00; 1:0e � 3 > < 2:776398e C 00; 9:489474e � 02 > invalid mark
< 1:349028e C 00; 1:0e � 3 > < 2:781680e C 00; 8:595238e � 02 >

< 1:350523e C 00; 1:0e � 3 > < 2:786853e C 00; 7:856522e � 02 >

< 1:352018e C 00; 1:0e � 3 > < 2:791934e C 00; 7:236000e � 02 >

< 1:353513e C 00; 1:0e � 3 > < 2:796941e C 00; 6:707407e � 02 >

� � � � � �

There exists a group of invalid marks, between < 1:319133e C 00; 1:0e � 3 >

and < 1:347534e C 00; 1:0e � 3 > of which the granularities are greater than the
chosen tolerance. This fact indicates that the results of the evaluation of Spike.x/

are possibly wrong.
Note as well that by taking a greater tolerance, some of these marks would

become valid. But the tolerance can not be greater than 1, therefore, there does not
exist any tolerance which validates the mark < 2:699531e C 00; 1:783000e C 00 >

because its granularity is greater than 1.
For a granularity of 1:0e � 4 the union of all the marks does not cover the real

line and the mark < 1:332586e C 00; 1:0e � 4 > does not contain the spike-point
x D 4=3. The results are:
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Granularity = 1:0e � 4

x Spike.x/

� � � � � �
< 1:326607e C 00; 1:0e � 4 > < 2:711097e C 00; 1:972222e � 02 >

< 1:328102e C 00; 1:0e � 4 > < 2:711924e C 00; 2:538571e � 02 >

< 1:329596e C 00; 1:0e � 4 > < 2:711691e C 00; 3:558000e � 02 >

< 1:331091e C 00; 1:0e � 4 > < 2:709282e C 00; 5:936667e � 02 >

< 1:332586e C 00; 1:0e � 4 > < 2:699531e C 00; 1:783000e � 01 > invalid mark
< 1:334081e C 00; 1:0e � 4 > < 2:703517e C 00; 1:785000e � 01 > invalid mark
< 1:335575e C 00; 1:0e � 4 > < 2:721241e C 00; 5:956667e � 02 >

< 1:337070e C 00; 1:0e � 4 > < 2:731621e C 00; 3:578000e � 02 >

< 1:338565e C 00; 1:0e � 4 > < 2:739826e C 00; 2:558571e � 02 >

< 1:340060e C 00; 1:0e � 4 > < 2:746972e C 00; 1:992222e � 02 >

� � � � � �

Although the spike-point is not inside any mark, the group of invalid marks,
indicating that the results for Spike.x/ are possibly wrong, has been reduced to two
marks < 1:332586e C 00; 1:0e � 4 > and < 1:334081e C 00; 1:0e � 3 >. For
any greater tolerance, for example t D 0:2, both marks would become valid and the
spike would have been hidden.

For a granularity of 1:0e � 5, the results are:

Granularity = 1:0e � 5

x Spike.x/

� � � � � �
< 1:326607e C 00; 1:0e � 5 > < 2:711097e C 00; 1:972222e � 03 >

< 1:328102e C 00; 1:0e � 5 > < 2:711924e C 00; 2:538571e � 03 >

< 1:329596e C 00; 1:0e � 5 > < 2:711691e C 00; 3:558000e � 03 >

< 1:331091e C 00; 1:0e � 5 > < 2:709282e C 00; 5:936667e � 03 >

< 1:332586e C 00; 1:0e � 5 > < 2:699531e C 00; 1:783000e � 02 >

< 1:334081e C 00; 1:0e � 5 > < 2:703517e C 00; 1:785000e � 02 >

< 1:335575e C 00; 1:0e � 5 > < 2:721241e C 00; 5:956667e � 03 >

< 1:337070e C 00; 1:0e � 5 > < 2:731621e C 00; 3:578000e � 03 >

< 1:338565e C 00; 1:0e � 5 > < 2:739826e C 00; 2:558571e � 03 >

� � � � � �

Now the group of invalid marks indicating wrong results for Spike.x/ does not
exist and the spike has been hidden. This is the same problem which existed for
computations with the real numbers: the spike-point x D 4=3 has not been taken
into account.

The next examples illustrate the importance of the digital scale for the validity of
the results.
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Example 8.7.7 Given the following systems of equations

�
0:003x1 C 59:14x2 D 59:17

5:291x1 � 6:13x2 D 46:78

let us study its solution from the standpoint of marks, using the pivot method. Let
us suppose that the coefficients and the right hand sides are marks of a digital scale
DI3 with a granularity g D 1:0e � 3, and let us also consider a tolerance t D 0:01.
The system would be expressed in terms of marks as

� h3:000e � 3; 1e � 3ix1 C h5:914e C 1; 1e � 3ix2 D h5:917e C 1; 1e � 3i
h5:291; 1e � 3ix1 C h�6:130e0; 1e � 3ix2 D h4:678e C 1; 1e � 3i:

Solution 1 Using a scale DI3 with three decimal digits and taking a bad pivot, e.g.,

p D h5:291e0; 1e � 3i
h3:000e � 3; 1e � 3i D h1:764e3; 2:e � 3i;

the second equation becomes

.h�6:130e0; 1:e � 3i C h�5:914e C 1; 1:e � 3i � p/x2

D h4:678e C 1; 1:e � 3i C h�5:917e C 1; 1:e � 3i � p

then

x2 D h1:001; 5:e � 3i

and

x1 D h5:917e C 1; 1:e � 3i C h�5:914e C 1; 1:e � 3i � x2

h3:000e � 3; 1:e � 3i
D h1:000e C 1; 1:184e1i:

In this case the granularity of the mark x1 is bigger than 1, therefore this mark is not
valid no matter what the tolerance is.

Solution 2 Using a scale DI6 with six decimal digits, with the same bad pivot.

p D h5:291000e0; 1:e � 3i
h3:000000e � 3; 1:e � 3i D h1:763667e C 3; 1:002001e � 3i;

the second equation becomes

.h�6:130000e0; 1:e � 3i C h�5:914000e C 1; 1:e � 3i � p/x2

D h4:678000e C 1; 1:e � 3i C h�5:917000e C 1; 1:e � 3i � p
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The solution in this case is

x2 D h1:000000e0; 1:04 : : : e � 3i

and

x1 D h5:917000e C 1; 1:e � 3i C h�5:914000e C 1; 1:e � 3i � x2

h3:000000e � 3; 1:e � 3i
D h1:00000e C 1; 2:06 : : : e0i:

Again the mark x1 is not valid, since the granularity is bigger than 1. Paradoxically,
as the “exact” resolution of the initial real system is x1 D 10 and x2 D 1, apparently
a “good” solution is being rejected , i.e., a computation with marks can apparently
provokes sometimes a “false alarm” about the correctness of a result. This is not
true and the computation with marks warns about what is happening. On the one
hand, solving the real system in an exact way, is made under the hypothesis that the
coefficients have more than three significant digits, i.e., they have as many digits as
the computer provides. This is equivalent to taking the granularity of the data to be
much less than 10�3, which is wrong because the data has only three digits, and to
suppose that the digits to the right of the third digit are zeros is as arbitrary as to
suppose that they are any other numbers.

Solution 3 Using a scale DI3 with three decimal digits, with the good pivot

p D h3:000e � 3; 1:e � 3i
h5:291e0; 1:e � 3i D h5:670e � 4; 2:e � 3i:

the first equation becomes

.h�5:914e C 1; 1:e � 3i C h6:130e0=; 1:e � 3i � p/x2

D h�5:917e C 1; 1:e � 3i C h�4:678e C 1; 1:e � 3i � p

then

x2 D h1:001e0; 5:e � 3i

and starting from the second equation

h5:291e0; 1:e � 3ix1 D h6:130e0; 1:e � 3i � h1:001e0; 5:e � 3i C h4:678e C 1; 1:e � 3i

x1 D h5:292e C 1; 7:e � 3i
h5:291e0; 1:e � 3i D h1:000e C 1; 8:e � 3i:

Marks x1 and x2 are valid under the minimal approach since g < t . One could think
that these valid results reinforce the reasoning that, in solution 2, good solutions
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have been rejected. It is necessary to insist on the falsity of this reasoning. The pivot
for this third process does guarantee the validity. The pivot chosen in the process 2
does not.

With similar proofs, the main term of the granularity when the maximal or
maximum granularity approaches are used can be obtain. The following table
summarizes the resulting formulas.

Operator Minimal Maximal

Product gM
1;2 g1 C g2 C g1g2

Quotient maxfg1;
g2

1 � g2

g g1 C g2

1 � g2

Sum gM
1;2 max

�
gM

1;2;

ˇ̌̌
ˇc1g1 C c2g2

c1 C c2

ˇ̌̌
ˇ
�

Substraction max

�
gM

1;2;

ˇ̌
ˇ̌ jc1jg1

jc1j � jc2j
ˇ̌
ˇ̌ ;
ˇ̌
ˇ̌ jc2jg2

jc1j � jc2j
ˇ̌
ˇ̌� max

�
gM

1;2;

ˇ̌
ˇ̌ jc1jg1 C jc2jg2

jc1j � jc2j
ˇ̌
ˇ̌�

The granularities obtained with the maximal approach are bigger than the granular-
ities obtained with the minimal approach, i.e., the maximal approach describes as
invalid some marks which, with other approaches, could be valid marks. This is not
inconsistent, but simply means that it is necessary to know the reason for choosing
one or another approach.

8.8 Semantic Interpretations

In this section an important feature is presented: the logical meaning of the result
of any mark arithmetic operator related with the indistinguishable points of the
operands. A previous basic property is the following theorem.

Theorem 8.8.1 If fM.t;n/ is a mark operator and z D fM.t;n/.x1; x2/, then

f �.Iv.x1/; Iv.x2// � Exsh.z/:

Proof As f �.Iv.x1/; Iv.x2// � f .c1; c2/ � Œ1 C t; 1 � t � and

f .c1; c2/ 2 di.f .c1; c2// �
�
1 � b�n

2
; 1 C b�n

2

�
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the inclusion

f .c1; c2/ � Œ1 C t; 1 � t � � di.f .c1; c2// � Œ1 C t; 1 � t � �
�
1 � b�n

2
; 1 C b�n

2

�
:

is true. Moreover and because gz � b�n

2
, then

Œ1 � b�n

2
; 1 C b�n

2
� � Œ1 � gz; 1 C gz�

therefore

f .c1; c2/ � Œ1 C t; 1 � t � � di.f .c1; c2// � Œ1 C t; 1 � t � � Œ1 � gz; 1 C gz�

and the inclusion f �.Iv.x1/; Iv.x2// � Exsh.z/ is true. �

Corollary 8.8.1 (Interval-semantics of the mark operators) Under the hypothe-
ses of the previous theorem, Theorem 8.8.1, we have

8.z; Exsh0.z// 9.x1; Iv0.x1// 9.x2; Iv0.x2// z D f .x1; x2/:

Proof Apply the interval *-semantic theorem to the previous inclusion, taking into
account the improper modality of the intervals Iv.x1/, Iv.x2/ and Exsh.z/. �

Theorem 8.8.2 (Mark-semantics of the mark operators) If fM.t;n/ is a mark
operator on M.t; n/, and z D fM.t;n/.x1; x2/, then

8.z; Exsh0.z// z 2 .f .c1; c2/ � Œ1 � t; 1 C t �/0:

Proof From the inclusion

Œf .c1; c2/; f .c1; c2/� � di.f .c1; c2// �
�
1 � b�n

2
; 1 C b�n

2

�
;

multiplying both members by Œ1 C t; 1 � t �, the inclusivity of the product leads to

f .c1; c2/ � Œ1 C t; 1 � t � � di.f .c1; c2// � Œ1 C t; 1 � t � � Œ1 � b�n

2
; 1 C b�n

2
�

� di.f .c1; c2// � Œ1 C t; 1 � t � � Œ1 � gz; 1 � gz�

D Exsh.z/:

As the modality of the involved intervals is improper,

Exsh.z/0 � .f .c1; c2/ � Œ1 C t; 1 � t �/0:

This means the logical formula is true. �
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Example 8.8.1 For x D h3:2e0; 5:0e � 2; 1:0e � 3; 4; 10i and y D h2:9e0; 5:0e �
2; 1:0e � 3; 4; 10i, marks on DI4,

z D x � y D h0:3000e0; 5:0e � 2; 1:0667e � 2; 4; 10i

which is a valid mark. As

Exsh0.z/ D Prop.0:3000 � Œ1 C 0:05; 1 � 0:05� � Œ1 � 0:010667; 1 C 0:010667�/

D Prop.Œ0:3116; 0:2880�/

D Œ0:2880; 0:3116�0

and

f .c1; c2/ � Œ1 � t; 1 C t � D 0:3000 � Œ1 � 0:05; 1 C 0:05�/ D Œ0:2850; 0:3150�;

it is true that

8.z; Œ0:2880; 0:3116�0/ z 2 Œ0:2850; 0:3150�0:

Remark 8.8.1 The minimum condition of significance b�n � g < t < 1, which
decides the validity of the mark, makes Exsh.z/ an improper interval. If the mark is
not valid, Exsh.z/ is a proper interval and the semantic is

9.z; Exsh0.z// 9.x1; Iv0.x1// 9.x2; Iv0.x2// z D f .x1; x2/

and no particular point of Exsh.z/0 can be considered as a “good” result of the
computation.

8.9 Functions of Marks

Definition 8.9.1 (Function of marks) Let f W R
k ! R be a real continuous

function such that the operators of its syntactic tree admit associated mark operators
(see Definition 8.5.1), and x1; : : : ; xk 2 M.t; n/. The function of marks associated
to a real continuous function f with arguments x1; : : : ; xk will be represented by
fM.t;n/.x1; : : : ; xk/ and is a function fM.t;n/ W M.t; n/k ! M.t; n/ such that

1. each variable xi of f is replaced by the corresponding mark xi , considering as
independent every incidence of xi ,

2. each operator of the syntactic tree of f is replaced by the corresponding mark
operator over M.t; n/.



222 8 Marks

Important functions of marks are power series, which allows of defining the
extension to marks of the main one-variable operators such as log, exp, pow, sin,
cos, tan, arcsin, arccos, arctan, etc.

Lemma 8.9.1 Let x D hc; t; g; n; bi 2 M.t; n/ be a mark and let

Qx D hc; t � g.1 C t/; b�n; n; bi 2 M.t � g.1 C t/; n/

be the associated mark to the external shadow of x. The inclusion

Exsh.x/ � Iv.Qx/
is true and, if y is a mark with center c and tolerance � such that � > Qt , then

Exsh.x/ 6� Iv.y/:

Proof By definition,

Exsh.x/ D c � Œ1 C t � g � gt; 1 � t C g � gt�

Iv.Qx/ D c � Œ1 C t � g.1 C t/; 1 � t C g.1 C t/�

D c � Œ1 C t � g � gt; 1 � t C g C gt�

and since

1 C t � g � gt � 1 C t � g � gt

1 � t C g � gt � 1 � t C g C gt

then Exsh.x/ � Iv.Qx/. On the other hand, if y D hc; �; g0; n0; b0i is a mark satisfying
� > Qt , then

Exsh.x/ D c � Œ1 C t � g � gt; 1 � t C g � gt�

D c � Œ1 C Qt ; 1 � t C g � gt�

6� c � Œ1 C �; 1 � ��: �

The next theorem provides a semantic interpretation to the result of a function
of marks. It is interesting to emphasize that the semantics of the mark operators,
see Theorem 8.8.2 and Corollary 8.8.1, can not be applied recursively, since the
universal quantifier of these semantics corresponds to the external shadow of the
result, which is not a mark. So it is not possible to continue with the semantics
starting from this external shadow, but with the mark associated to this external
shadow. For that reason, the following semantic theorem, in the particular case when
the syntax tree of the function f has a unique operator, does not provide the same
semantic obtained for a mark operator.
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Theorem 8.9.1 (Semantic for a function of marks) Let us consider the function
of marks fM.t;n/ W M.t; n/k �! M.t; n/. If z D fM.t;n/.x1; : : : ; xk/ and Qz is the
associated mark to the shadow of z, supposing that all the involved marks are valid,
then

.8z 2 Iv0.Qz// .9x1 2 Iv0.x1// : : : .9xk 2 Iv0.xk// z D f .x1; : : : ; xk/:

Proof Only the proof for one step of the syntactic tree of f will be developed,
since the general proof is a simple induction process based on this step. If z D
fM.t;n/.x1; x2/ and Qx1; Qx2; Qz are the associated marks to the shadows of x1; x2 and z,
then denoting .t �max.g1; g2/.1C t// by Qt , and considering the following inclusion

f .c1; c2/ � Œ1 C Qt ; 1 � Qt � � di.f .c1; c2// � Œ1 C Qt ; 1 � Qt � � Œ1 � b�n

2
; 1 C b�n

2
/

D di.f .c1; c2// � Œ.1 C Qt/.1 � b�n

2
/; .1 � Qt /.1 C b�n

2
/�;

since gz � maxfg1; g2g C b�n, then

.1 C Qt /.1 � b�n

2
/ � 1 C t � gz.1 C t/

and

.1 � Qt/.1 C b�n

2
/ � 1 � t C gz.1 C t/

and therefore

f .c1; c2/ � Œ1 C Qt ; 1 � Qt � � Iv.Qz/:

Thus

f �.Iv. Qx1/; Iv. Qx2/ � f �.c1 � Œ1 C Qt ; 1 � Qt �; c2 � Œ1 C Qt ; 1 � Qt �/
� f .c1; c2/ � Œ1 C Qt ; 1 � Qt �
� Iv.Qz/:

Since Iv.Qx1/
0 � Iv.x1/

0 and Iv.Qx2/
0 � Iv.x2/

0, an induction process provides the
desired semantic. �

Remark 8.9.1 For the mark Qz D hcz; Qt ; b�n; n; bi, where Qt D t � g.1 C t/ is the
effective tolerance, the condition of significance b�n < Qt , which decides the validity
of the mark Qz, makes Iv.Qz/ an improper interval because Iv.Qz/ D cz � Œ1 C t � g.1 C
t/; 1 � t C g.1 C t/� improper is equivalent to

1 C t � g.1 C t/ > 1 � t C g.1 C t/ , g <
t

1 C t
:
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If the mark is not valid, Iv.Qz/ is a proper interval and the semantics is

.9z 2 Iv0.Qz// .9x1 2 Iv0.x1// : : : .9xk 2 Iv0.xk// z D f .x1; : : : ; xk/:

and no particular point of Iv.Qz/0 can be consider as a “good” result of the
computation.

Example 8.9.1 The mark extension of the continuous function

f .x; y/ D x C y

x � y

to the marks

x D h3:2e0; 1:0e � 2; 1:0e � 3; 5; 10i

and

y D h3:9e0; 1:0e � 2; 1:0e � 3; 5; 10i;

using a scale DI5 with five decimal digits, is

z D h�1:01429e C 1; 1:0e � 2; 5:60466e � 3; 5; 10i

which is a valid mark because its granularity is less than its effective tolerance. As

Iv.x/ D Œ3:232; 3:168�

Iv.y/ D Œ3:939; 3:861�

Iv.ExshM.z// D Œ�10:0988; �10:1869�;

the semantics of this result is

.8z 2 Œ�10:1869; �10:0988�0/ .9x 2 Œ3:168; 3:232�0/ .9y 2 Œ3:861; 3:939�0/

z D x C y

x � y

and, therefore, every point of the interval Œ�10:1869; �10:0988�0 is a valid result.
The mark extension of the same function to the marks

x D h3:2e0; 1:0e � 2; 1:0e � 3; 5; 10i

and

y D h3:5e0; 1:0e � 2; 1:0e � 3; 5; 10i;
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using a scale DI5 with five decimal digits, is

z D h�2:23333e C 1; 1:0e � 2; 1:18064e � 2; 5; 10i

which is an invalid mark because its granularity is greater than its effective tolerance.
The consequence of this fact is that

Iv.x/ D Œ3:232; 3:168�

Iv.y// D Œ3:535; 3:465�

Iv.ExshM.z// D Œ�22:2904; �22:3763�

and, due to the proper modality of the interval Iv.ExshM.z//, the semantics of this
result is

.9z 2 Œ�22:2904; �22:3763�0/ .9x 2 Œ3:168; 3:232�0/ .9y 2 Œ3:465; 3:535�0/

z D x C y

x � y

and not every value of Œ�22:2904; �22:3763�0 is valid, but only some unknown
value, i.e., it is not possible to know the result of the computation.

It is important to observe that the semantic interpretation is valid whatever
the used approach to compute the granularity, although the interval to which this
semantic interpretation is applied is modified.

Lemma 8.9.2 Under the maximal approach of the computation of the granularity,
given f W Rk ! R a real continuous centered function, for the marks x1; : : : ; xk 2
M.t; n/, if hcz; gzi D fM.t;n/.x1; : : : ; xk/, and gz is compatible with ˛t , we have that

hcz; gzi �˛ fM.t;1/.x1; : : : ; xk/:

Proof Let us consider the function f that has as syntactic tree

x1 x2 x3 x4

Ÿ � Ÿ �
y1 y2

Ÿ �
z

since in a general case we will proceed by induction. If
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x1 D hc1; g1i
x2 D hc2; g2i

�
) y1 D f1M.t;n/.x1; x2/ D hdif 1.c1; c2/; gy1i

x3 D hc3; g3i
x4 D hc4; g4i

�
) y2 D f2M.t;n/.x3; x4/ D hdif 2.c3; c4/; gy2i

z D hcz; gzi ) z D fM.t;n/.y1; y2/ D hdif .dif 1.c1; c2/; dif 2.c3; c4//; gzi;

then

dif .dif 1.c1; c2/; dif 2.c3; c4//

� f .dif 1.c1; c2/; dif 2.c3; c4// � Impr.1 ˙ b�n

2
/

� fR.f1.c1; c2/ � Impr.1 ˙ b�n

2
/; f2.c3; c4/ � Impr.1 ˙ b�n

2
// � Impr.1 ˙ b�n

2
/

� fR.f1.c1; c2/ � Impr.1 ˙ gy1/; f2.c3; c4/ � Impr.1 ˙ gy2// � Impr.1 ˙ b�n

2
/

and, from the maximal approach in the computation of the granularity,

fR.f1.c1; c2/ � Impr.1 ˙ gy1/; f2.c3; c4/ � Impr.1 ˙ gy2//

� f .f1.c1; c2/; f2.c3; c4// � Impr.1 ˙ �y1;y2/: (8.11)

Applying this last inclusion (8.11) to the previous result, one has

dif .dif 1.c1; c2/; dif 2.c3; c4//

� f .f1.c1; c2/; f2.c3; c4// � Impr.1 ˙ �y1;y2/ � Impr.1 ˙ b�n

2
/

� f .f1.c1; c2/; f2.c3; c4// � Impr.1 ˙ gz/;

and therefore, since ˛t > gz,

dif .dif 1.c1; c2/; dif 2.c3; c4// 2 f .f1.c1; c2/; f2.c3; c4//�Prop.1˙˛t/: �

Remark 8.9.2 The result of this theorem can be expressed as

9.y; Ind˛.fM.t;1/.x1; : : : ; xk/// cz D y:
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8.10 Remarks About Granularity

Among the elements that constitute a mark, granularity deserves a separate comment
and especially its evolution through a computation.

Initially a mark comes from a reading made in a measuring device and its
granularity is the numeric value that reflects the inaccuracy of the measurement.
So it is natural to identify the granularity with the relative error of the reading,
based fundamentally on the error of the measuring device but being able to include
relative aspects of the same phenomenon.

A second step is the computation process with marks. The resulting granularity
determines the validity of the resulting mark, and the quotient between the granular-
ity and the tolerance measures the imprecision of the mark. During the computation
process, the granularity will increase in a fashion depending on the approach
with which the granularity is computed. In this computation, the phenomenon
being studied will dictate the approach to calculating the granularity, with the only
imposition that the resulting granularity will never be smaller than any granularity
of the data. Accepting this norm, different approaches for the calculation of the
granularity can be defined, for example:

• Minimal approach: The resulting granularity reflects the biggest projection of
the granularity of each data in the result. This approach reflects situations of
the “chain” type in that the imprecision of the process comes from the biggest
imprecisions of the data. A situation of this type appears when, for example the
resistance of a beam structure is modelled, since the final resistance will become
determined by the incidence of the beam less resistant in the structure or, for
example the study of string resistances, since the resistance of one rope is the
smallest resistance of each one of its points, etc.

• Maximal approach: This is based on a interval treatment of the error propagation.
The granularity is a relative error and it follows the rules of error propagation
(however, from a interval point of view). This approach will be used when it is
important that the granularity of the result takes into account all the granularities
of the data and their propagation.

• Maximum granularity approach: The resultant granularity is the maximum of the
granularities of the data. This approach is applicable when the marks are simple
objects of a calculation scale.

• Statistical approach: This consists in considering the granularities as statistical
distribution functions. The operations on marks would give a granularity obtained
from operating on those distribution functions.

The system of marks has its own entity to reflect the evolution of the compu-
tations starting from readings of numeric scales. In fact, any computation yields a
center and a granularity. Computations performed using marks reflect the gradual
loss of information due to numerical errors and truncations and they give warnings
relevant to taking decisions either on the acceptance of the results or about the utility
of searching for more precision to attain the required validity.
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A third step is the semantic interpretation of the result of any mark arith-
metic operator related with the indistinguishable points of the operands. For any
continuous centered function, the corresponding associated function of marks has
been defined by substitution of each variable by the corresponding mark and each
operator of the syntactic tree of f by the corresponding mark operator. Results about
the semantic of a centered function complete the general development of the theory
of marks. The semantic interpretation is valid whichever approach to compute the
granularity is used, although the interval that this semantic interpretation is applied
to may be modified. It is interesting to note that the interpretation is not referred to a
centered interval with relative width similar to the value of the granularity. Moreover
it is possible to make different studies of possible semantics that can be obtained by
applying different approaches to computing the propagation of the granularity.

The theory of mark also opens a door to extend the traditional interval treatment
considering marks as bounds of intervals, a fact which will allow ignoring the
process of controlling the unavoidable truncations.



Chapter 9
Intervals of Marks

9.1 Introduction

Intervals, whether classical or modal, pretend to represent numerical information in
a coherent way and, for that, one of the main problems is rounding. Indeed, using a
digital scale with a finite number of digits, computations will have to be rounded in a
convenient way. Working with non-interval numeric values, the best rounding is that
which guarantees that the obtained value is “the closest” to the theoretical solution.
Working with modal intervals the rule of rounding cannot be the same. Traditionally,
the rounding process has been always a nuisance inherent in interval computation,
but necessary to keep the semantic interpretations that these computations provide.
Until now, in a modal interval computation, the best rounding rule has been the
outer one, that is to say, if Y 2 I �.R/ represents the exact solution, and Z 2 I �.R/

the computed solution, it is necessary that Y � Z, which is compatible with the
semantics of the extension f �.

Although the apparent correct rounding is this outer one, there are problems in
which outer rounding is not the appropriate solution. For example problems where
one interval variable appears with two modalities: proper and improper. In this case
no rounding, whether outer or inner, can solve this problem, as Example 8.2.1
proves. Obviously, in classical interval analysis these problems do not appear
because the interval variables can not act from two different modal points of view.

In this chapter a system of intervals with mark bounds, closely related to the
modal intervals, will be built to allow computations with a finite system of digits
without any truncation. These intervals will be called intervals of marks, and in
their construction marks, as indiscernibility intervals around a point, will be used.
The main concepts and construction will be parallel to the construction of the modal
intervals.

M.A. Sainz et al., Modal Interval Analysis, Lecture Notes in Mathematics 2091,
DOI 10.1007/978-3-319-01721-1__9,
© Springer International Publishing Switzerland 2014
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9.2 Intervals of Marks

Similarly to the construction of modal intervals, where the logical context is formed
by the set of real numbers R, the set of set-theoretical intervals I.R/ and the set of
predicates on the real line P W R ! f0; 1g, the logical basis for the construction
of intervals of marks will be the set of marks, the set of set-theoretical intervals of
marks, and the set of predicates on the set of marks.

Many concepts, properties, and proofs in the construction of intervals of marks
will be the same, mutatis mutandis, as those for the modal intervals. So, in the
following development such proofs will not be given in detail and will be replaced
by a reference to the corresponding property of modal intervals.

Definition 9.2.1 (Set-theoretical intervals of marks) Let a D ha; gi and a D
ha; gi be two comparable marks of M.t; n; b/ with the same granularity. A set-
theoretical interval of marks, with bounds a; a 2 M.t; n; b/ is

A0 D Œa; a�0 D ˚
a 2 M.t; 1; b/ j a D ha; g0i; a 2 R; g0 2�0; 1� ; a � a � a



:

As to specify the value of b is often irrelevant, the set of marks will continue
being denoted by M.t; n/, omitting the value of b.

The set of proper intervals of marks will be denoted by I.M.t; n//, abridged to
I.M/ when the type of the marks is arranged in advance.

In the same way as Pred.R/ denotes the set of the predicates over the real
numbers,

Pred.R/ D fP j P W R ! f0; 1gg ;

Pred.M/ will denotes the set of predicates over the set of marks of the same type
M.t; n/.

Definition 9.2.2 (Mark predicates)

Pred.M/ D fP j P W M.t; n/ ! f0; 1gg :

A mark a 2 M.t; n/ can be identified with the set of predicates that it satisfies,
that is to say,

a $ fP 2 Pred.M/ j P.a/ D 1g :

Since these systems of predicates are defined over a given type of marks, the
structure Pred.M/ is isomorphic to the structure of Pred.R/. For this reason the
predicates defined over a set of marks of the same type can be simply considered as
functions of the centers of the marks.
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A classical interval X 0 2 I.R/ can be identified with the set of the properties that
its points satisfy, in any of the forms

X 0 $ [
x2X 0

fP 2 Pred.R/ j P.x/ D 1g

or

X 0 $ \
x2X 0

fP 2 Pred.R/ j P.x/ D 1g :

In parallel with these results, a proper interval of marks A0 2 I.M/ can also be iden-
tified with the set of predicates that its marks satisfy, according to one of the
constructions

A0 $ [
a2A0

fP 2 Pred.M/ j P.a/ D 1g

or

A0 $ \
a2A0

fP 2 Pred.M/ j P.a/ D 1g :

To relate intervals of marks with the sets Pred.a) corresponding to their marks,
we define a modal interval of marks.

Definition 9.2.3 (Modal interval of marks) A modal interval of marks of the type
M.t; n/ is a couple formed by a proper interval of marks A0, called the domain of
the modal interval Set.A/ D A0, together with a quantifier QA, called the modality
Mod.A/ D QA,

A D .A0; QA/;

where A0 2 I.M/; QA 2 f9; 8g.

The set of modal intervals of marks of the type M.t; n/ is denoted by
I �.M.t; n//, abridged to I �.M/ when the type of the marks is arranged in advance.

This fundamental definition leads naturally to considering the following subsets:

Definition 9.2.4 (Subsets of intervals of marks)

Ie.M/ D f.A0; 9/ j A0 2 I.M/g; set of proper intervals of marks

Iu.M/ D f.A0; 8/ j A0 2 I.M/g; set of improper intervals of marks

Ip.M/ D fŒA;A� j A 2 M.t; n/g; set of degenerate intervals of marks:

An important concept in the study of modal intervals was the modal quantifier Q
which associated to every real predicate P 2 Pred.R/ a unique hereditary interval
predicate P �.X/ 2 Pred.I �.R// over I �.R/. Similarly
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Definition 9.2.5 (Modal quantifier) For a modal interval of marksAD .A0; QA/ 2
I �.M/, the modal quantifier associates to each predicate P 2 Pred.M/ a unique
predicate over I �.M/ through the construction

Q.a;A/P.a/ ,
�

.9a 2 A0/ P.a/ if mod.A/ D 9

.8a 2 A0/ P.a/ if mod.A/ D 8:

For instance,

Q.hx; gi; .Œh�3; 0:001i; h1; 0:001i�0; 9// hx; gi � 0

means

.9hx; gi 2 Œh�3; 0:001i; h1; 0:001i�0/ hx; gi � 0

and

Q.hx; gi; .Œh1; 0:001i; h2; 0:001i�0; 8// hx; gi � 0

means

.8hx; gi 2 Œh1; 0:001i; h2; 0:001i�0/ hx; gi � 0:

Definition 9.2.6 (Set of predicates validated by a modal interval of marks) For
an interval of marks A the set of predicates accepted by A is

Pred.A/ D fP 2 Pred.M/ j Q.a;A/P.a/g :

Lemma 9.2.1 (Predicate of modal intervals of marks) If [
a2A0

is the “union

operator” of a family of set of marks indexed by a ranging over A0, and \
a2A0

is

the corresponding “intersection operator”, then

Pred.A0; 9/ D fP 2 Pred.M/ j .9a 2 A0/P.a/g D [
a2A0

Pred.a/

Pred.A0; 8/ D fP 2 Pred.M/ j .8a 2 A0/P.a/g D \
a2A0

Pred.a/

Proof See Lemma 2.2.1. �

Definition 9.2.7 (Set of co-predicates rejected by a modal interval of marks)
The set of co-predicates is the set of all the predicates P 2 Pred.M/ rejected by A,

Copred.A/ D fP 2 Pred.M/ j :Q.a;A/ P.a/g :
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To represent an interval of marks it is very convenient to use its canonical
notation, defined by its bounds. If a D ha; gi and a D ha; gi are the bounds of the
interval of marks A D Œa; a�, then

A D Œa; a� D Œha; gi; ha; gi� D
�

.Œa; a�0; 9/ if a � a

.Œa; a�0; 8/ if a � a:

The treatment of the duality of modal intervals of marks is a translation of the
treatment of the duality of the real modal intervals.

Definition 9.2.8 (Dual operator) For A D .A0; QA/ 2 I �.M/, the dual operator
over A, denoted by Dual.A/ is defined as

Dual.A/ D .A0; Dual.QA//;

where

Dual.QA/ D
� 8 if QA D 9

9 if QA D 8:

In terms of the canonical notation

A D Œa ; a� , Dual.A/ D Œa ; a�:

Definition 9.2.9 (Interval projection) The interval projection, PR.A/, of the
interval of marks A D Œha; gi; ha; gi� is the interval Œa; a� 2 I �.R/,i.e.,

PR.Œha; gi; ha; gi�/ D Œa; a�:

Sometimes it will be necessary to make an immersion of a modal interval Œa; a� 2
I �.R/ inside a mark scale, for a given granularity g, distinguishing between

• Immersion of the interval Œa; a� into the mark scale M.t; 1/ is the interval of
marks Œha; gi; ha; gi� of the type M.t; 1/.

• Digital immersion of the interval Œa; a� into the mark scale M.t; n/ is the interval
of marks

ŒhDIn.a/; g C b�ni; hDIn.a/; g C b�ni�;

where b�n is the maximum relative separation between two points of the scale.

As the digital immersion involves an increase in the granularity, it only makes sense
if hDIn.a/; g C b�ni and hDIn.a/; g C b�ni are valid marks.
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9.3 Relations in the Set of Intervals of Marks

Any relation between intervals of marks must be considered under two different
points of view, material or weak, defined only between comparable intervals of
marks, that is, when their bounds are marks with the same tolerance and expressed
in the same basis.

9.3.1 Material Relations

Formally any material relation between intervals of marks is defined in a similar
way to the parallel modal interval relation.

Definition 9.3.1 (Material inclusion and material equality) If A and B are
comparable intervals of marks, A is materially included in B, when

A � B W .Pred.A/ � Pred.B/:

and A is materially equal to B, when

A D B W .A � B;A � B/ , Pred.A/ D Pred.B/:

The relation of material inclusion between intervals of marks is, obviously, an
order relation, and material equality is an equivalence relation.

Material inclusion of modal intervals of marks can be related with the inclusions
of their corresponding ranges.

Theorem 9.3.1 If A D .A0; QA/ and B D .B0; QB/ then

A � B ,

8̂
<̂
ˆ̂:

A0 � B0 if QA D QB D 9
A0 � B0 if QA D QB D 8
A0 \ B0 ¤ ; if QA D 8; QB D 9
A0 D B0 D Œa; a� if QA D 9; QB D 8:

Proof See Lemma 2.2.3. �

From these equivalences, material equality and inclusion between intervals
of marks can be related with equalities and inclusions between their respective
bounds. So

Œa; a� � Œb; b� , .a � b ; a � b/;

Œa; a� D Œb; b� , .a D b ; a D b/:
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Also, in a parallel way to modal intervals with real bounds, the material
inequalities between two comparable intervals of marks are defined:

Definition 9.3.2 (Material inequality) If A D Œa; a�,B D Œb; b� are two compara-
ble intervals of marks, A is materially less than or equal to B, denoted by A � B,
when

A � B , .a � b ; a � b/:

and A is materially greater than or equal to B when

A � B , B � A:

From the properties of these relations between marks, the parallel relations
between intervals of marks are reflexive, antisymmetric and transitive.

9.3.2 Weak Relations

Suppose ˛ 2 Œ0; 1� and A and B are comparable mark intervals with granularities
compatible with ˛t .

Definition 9.3.3 (Weak equality) If A and B are comparable intervals of marks,
A is weakly equal to B when

A �˛ B , .a �˛ b ; a �˛ b/:

Definition 9.3.4 (Weak inclusion) If A and B are comparable intervals of marks,
A is weakly included in B when

A �˛ B , .a 
˛ b ; a �˛ b/:

For ˛; ˇ 2 Œ0; 1� with ˛ C ˇ � 1, if A,B and C are intervals of marks with
granularities compatible with ˛t; ˇt and .˛ C ˇ/t , the following properties hold

• A �˛ A ; A �˛ A.
• A �˛ B , B �˛ A ; .A �˛ B;B �˛ A/ , A �˛ B.
• .A �˛ B;B �ˇ C/ ) A �˛Cˇ C ; .A �˛ B;B �ˇ C/ ) A �˛Cˇ C.

Definition 9.3.5 (Weak inequality) If A andB are comparable intervals of marks,
A is weakly less than or equal to B when

A �˛ B , .a �˛ b ; a �˛ b/:
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and A is weakly greater than or equal to B when

A 
˛ B , B �˛ A

From the properties of these relations between marks, these parallel relations
between intervals of marks are reflexive, antisymmetric, and .˛ C ˇ/-transitive.

Lemma 9.3.1 If A;B;C 2 I �.M/ are comparable intervals of marks with granu-
larities ga; gb and gc compatible with ˛t , then

1. .A � B ) A �˛ B/; .A D B ) A �˛ B/.
2. .A � B; B �˛ C ) A �˛ C/; .A � B; B �˛ C ) A �˛ C/.

Proof From the properties of the weak relationship between marks. �

Lemma 9.3.2 Let A0 and B0 be proper intervals of marks. If they are comparable
and with granularities compatible with ˛t , then

A0 �˛ B0 , .8a 2 A0/ .9b 2 B0/ a �˛ b:

Proof For A0 D Œha; gai; ha; gai� and B0 D Œhb; gbi; hb; gbi�,
(: From the hypothesis, if a 2 A0, then .9b1 2 B0/ a �˛ b1. By definition of an

interval of marks, b � b1 � b. Using the properties of the weak relationships
between marks

a �˛ b1 � b ) a 
˛ b:

Repeating this process for a 2 A0 the analogous result a �˛ b is obtained.
): Let a D ha; gai; a D ha; gai; b D hb; gbi; b D hb; gbi. If a 2 A0, then

a D ha; Qgi with a � a � a. As A0 �˛ B0 is supposed true, the following
situations can occur:

1. .a > b/ and .a < b/. In this case, as b � a � a � a � b, then a 2 Œb; b�0
and defining b D ha; gi, it is true that b 2 B0 and b �˛ a:

2. .a > b/ and .a 2 Indhb; gb; ˛t; n; bi or b 2 Indha; ga; ˛t; n; bi/. Let us
suppose a � b (otherwise it would be the previous situation),

• a 2 Œa; b�0 implies b � a � a � a � b and the same reasoning as for case
(1) leads to the conclusion.

• a 2 Œb; a�0. This situation allows taking b D hb; gi and, in this case,

(i) if a 2 Indhb; gb; ˛t; n; bi,

b � a � a � max
n
b.1 C ˛t/; b.1 � ˛t/

o
;

therefore a 2 Indhb; gb; ˛t; n; bi and b �˛ a.
(ii) if b 2 Indha; ga; ˛t; n; bi,

min fa.1 � ˛t/; a.1 C ˛t/g � b � a;
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since b � a � a, then

a.1 � ˛t/ � a.1 � ˛t/; a.1 C ˛t/ � a.1 C ˛t/

and

min fa.1 � ˛t/; a.1 C ˛t/g � min fa.1 � ˛t/; a.1 C ˛t/g ;

therefore

min fa.1 � ˛t/; a.1 C ˛t/g � b � a;

which implies b 2 Ind˛.a/ and consequently b �˛ a.

3. .a 2 Indhb; gb; ˛t; n; bi or b 2 Indha; ga; ˛t; n; bi/ and .a < b/. Analogous
to 2.

4. .a 2 Indhb; gb; ˛t; n; bi or b 2 Indha; ga; ˛t; n; bi/ and
.a 2 Indhb; gb; ˛t; n; bi or b 2 Indha; ga; ˛t; n; bi/:
Combine the possibilities examined in 2 and in 3. �

Lemma 9.3.3 Suppose that A;B;C 2 I �.M/ are comparable intervals of marks
with granularities compatible with ˛t . Then

1. If A and B are proper,

A �˛ B , .8a 2 A0/ .9b 2 B0/ a �˛ b:

2. If A and B are improper,

A �˛ B , .8b 2 B0/ .9a 2 A0/ b �˛ a:

3. If A is improper and B is proper,

A �˛ B , .9a 2 A0/ .9b 2 B0/ a �˛ b:

4. If A is proper and B is improper,

A �˛ B , .8a 2 A0/ .8b 2 B0/ a �˛ b:

Proof For A D Œa; a� and B D Œb; b�:

1. If A and B are proper, Lemma 9.3.2 leads to the result.
2. If A and B are improper and A �˛ B, then A0 D Œa; a� and B0 D Œb; b�; b 
˛ a

and b �˛ a. It only remains to apply Lemma 9.3.2 to the inclusion B0 �˛ A0.
3. If A is improper and B proper, then on splitting the equivalence into two

implications, we reason as follows.
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): Let a; a; b; b be the centers of the marks a; a; b; b, respectively. The
inequalities a 
˛ b and a �˛ b allow distinguishing between the following
cases:

• a � b and a � b . In this case Œa; a� � Œb; b� and therefore

.9a 2 Œa; a�0/.9b 2 Œb; b�0/ a D b

and the marks ha; gi y hb; gi accomplish the wanted weak equality.
• a � b and a �˛ b. Defining a D a and b D b, then a �˛ b:

• The two remaining cases are similar to the previous one.

(: Let a 2 A0 and b 2 B0 be marks such that a �˛ b. As a � a � a and
b � b � b;

b � b �˛ a � a ) b �˛ a

a � a �˛ b � b ) a �˛ b:

4. If A is proper and B is improper then:

): Let be a 2 A0 and b 2 B0. Then

a � a � a �˛ b � b ) a �˛ b

b � b � b �˛ a � a ) b �˛ a;

and therefore a �˛ b.
(: For a 2 A0 and b 2 B0,

b � b �˛ a � a ) b �˛ a

a � a �˛ b � b ) a �˛ b:

Lemma 9.3.4 Suppose A;B;C are comparable intervals of marks with granulari-
ties compatible with ˛t . Then:

1. A � B ) .8˛; �0; 1�/ A �˛ B:

2. A �˛ B; B � C ) A �˛ C:

Proof From the properties of the weak inequalities between marks. �

9.3.3 Interval Lattices

The lattice operations “meet” and “join” on I �.M/ are defined for bounded families
of modal intervals as the infimum and supremum of the modal inclusion order
relation on I �.M/.
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Definition 9.3.6 (“Meet” and “join” on .I �.M/; �/) For a indexed family
A.I / D fA.i/ 2 I �.M/ j i 2 I g (I is the domain of the index):

î2I
A.i/ D A 2 I �.M/ is such that .8i 2 I / .X � A.i/ , X � A/;

_
i2I

A.i/ D B 2 I �.M/ is such that .8i 2 I / .X � A.i/ , X � B/;

writing .A ^ B/ and .A _ B/ for the corresponding case of two operands.

The lattice operations “min” and “max” on I �.M/ are defined on bounded
families of modal intervals as the infimum and supremum of the modal inequality
order relation on I �.M/.

Definition 9.3.7 (“Min” and “max” on .I �.M/; �/) For a bounded family
A.I / D fA.i/ 2 I �.M/ j i 2 I g:

Min
i2I

A.i/ D A 2 I �.M/ is such that .8i 2 I / .X � A.i/ , X � A/;

Max
i2I

A.i/ D B 2 I �.M/ is such that .8i 2 I / .X � A.i/ , X � B/:

In terms of the bounds, for a indexed family of A.I / � I �.M/, if A.i/ D
Œa.i/; a.i/�:

(1)
î2I

A.i/ D Œmax
i2I

a.i/; min
i2I

a.i/�

(2) _
i2I

A.i/ D Œmin
i2I

a.i/; max
i2I

a.i/�

(3) Min
i2I

A.i/ D Œmin
i2I

a.i/; min
i2I

a.i/�

(4) Max
i2I

A.i/ D Œmax
i2I

a.i/; max
i2I

a.i/�:

The set of comparable intervals of marks is a �-reticle and a �-reticle, in a similar
way to I �.R/.

Definition 9.3.8 (Meet–join operator on .I �.M/; �/) For an interval of marks
A 2 I �.M/

.̋a;A/
D

â2A0

if A is improper

.̋a;A/
D _

a2A0

if A is proper:

Lemma 9.3.5 For any interval of marks A 2 I �.M/,

A D
.̋a;A/

Œa; a�:
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Proof

1) If A is improper, then
â2A0

Œa; a� D Œmax
a2A0

a; min
a2A0

a�:

2) If A is proper, then _
a2A0

Œa; a� D Œmin
a2A0

a; max
a2A0

a�:

�
Lemma 9.3.6 If A;B 2 I �.M/, then

1. Pred.A ^ B/ � Pred.A/ \ Pred.B/.
2. Pred.A _ B/ � Pred.A/ [ Pred.B/.
3. Copred.A ^ B/ � Copred.A/ [ Copred.B/.
4. Copred.A _ B/ � Copred.A/ \ Copred.B/.

Proof See Lemma 2.2.12. �

These relations are not equalities because the meet of two intervals of marks is
not identifiable with the intersection of sets of predicates and the join can not be
identified with the union.

9.3.4 Interval Predicates and Co-predicates

Definition 9.3.9 (Set of interval predicates)

Pred�.M/ D ˚
x 2 X0 j X 2 I �.M/



:

Definition 9.3.10 (Set of interval co-predicates)

Copred�.M/ D ˚
x … X0 j X 2 I �.M/



:

Definition 9.3.11 (Set of accepted interval predicates) For a interval of marks A
the set of predicates accepted by A is

Pred�.A/ D ˚
.x 2 X0/ 2 Pred�.M/ j Q.x;A/ x 2 X0
 :

Definition 9.3.12 (Set of rejected interval co-predicates) For a interval of marks
A the set of co-predicates rejected by A is

Copred�.A/ D ˚
.x … X0/ 2 Copred�.M/ j :Q.x;A/ x … X0
 :

Definition 9.3.13 (Proper and improper operators) ForA D .A0; QA/ 2 I �.M/,
the proper operator over A, denoted by Prop.A/, is defined as

Prop.A/ D Prop.A0/ D .A0; 9/
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and the improper operator, denoted by Impr.X/ as

Impr.A/ D Impr.A/ D .A0; 8/:

The operators meet and join produce the equivalences contained in the following
lemma.

Lemma 9.3.7 If A;X 2 I �.M/, then

1. .x 2 X0/ 2 Pred�.A/ , Impr.X/ � A.
2. .:.x 2 X0// 2 Copred�.A/ , Prop.X/ � A.

Proof See Lemma 2.2.13. �

Lemma 9.3.8 If A;B 2 I �.M/, then

1. Pred�.A ^ B/ D Pred�.A/ \ Pred�.B/.
2. Pred�.A _ B/ � Pred�.A/ [ Pred�.B/.
3. Copred�.A ^ B/ � Copred�.A/ [ Copred�.B/.
4. Copred�.A _ B/ D Copred�.A/ \ Copred�.B/.

Proof See Lemma 2.2.14. �

9.3.5 k-Dimensional Intervals of Marks

The system of intervals of marks can be extended in a natural way to k-dimensional
intervals of marks.

The symbol I �.M.t; n/k/ will indicate the set of k-dimensional modal intervals
of marks, where .t; n/ is the type of the involved marks, sometimes abridged to
I �.Mk/ when the type of the marks is set in advance or is implicit.

Definition 9.3.14 (Set of k-dimensional modal intervals of marks)

I �.Mk/ D f.Œa1; b1�; : : : ; Œak; bk�/ j .8i 2 I / Œai ; bi � 2 I �.M.t; n//g:

Definitions and relationships in I �.M/ are easily generalized to I �.Mk/.

Definition 9.3.15 (k-dimensional inclusion and equality) For A D .A1; : : : ;Ak/

2 I �.Mk/, B D .B1; : : : ;Bk/ 2 I �.Mk/,

A � B W .A1 � B1; : : : ;Ak � Bk/

A D B W .A1 D B1; : : : ;Ak D Bk/:

Definition 9.3.16 (Proper and Improper operators) For X 2 I �.Mk/, X0 2
I.Mk/,

Prop.X/ D Prop.X0/ D ..X0
1; 9/; : : : ; .X0

k; 9//I
Impr.X/ D Impr.X0/ D ..X0

1; 8/; : : : ; .X0
k; 8//:
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Definition 9.3.17 (Join and meet of interval-indexed families) If X0 2 I.Mk/,
x 2 M

k and F.x/ D ŒF1.x/;F2.x/� 2 I �.M/,

x̂2X0

F.x/ D ^
x12X0

1

: : : ^
xk2X0

k

F.x1; : : : ; xv/ D Œmax
.x;X0/

F1.x/; min
x2X0

F2.x/�

_
x2X0

F.x/ D _
x12X0

1

: : : _
xk2X0

k

F.x1; : : : ; xv/ D Œmin
x2X0

F1.x/; max
x2X0

F2.x/�

(the order of the component operators is irrelevant in both cases).

Definition 9.3.18 (Sets of k-dimensional interval predicates) For A 2 I �.Mk/,
X0 2 I.Mk/ and x 2 M

k

.x 2 X0/ D .x1 2 X0
1; : : : ; xk 2 X0

k/I
Pred�.A/ D f.x 2 X0/ j .x1 2 X0

1/ 2 Pred�.A1/; : : : ; .xk 2 X0
k/ 2 Pred�.Ak/g/:

Remark 9.3.1 The condition defining the set Pred�.A/ is equivalent to

Q.x1;A1/ : : : Q.xk;Ak/ .x1 2 X0
1; : : : ; xk 2 X0

k/;

where the order of the modal quantifiers does not matter, because of the indepen-
dence of the arguments of the xi among the predicates xi 2 X0

i .

Definition 9.3.19 (Sets of k-dimensional interval co-predicates) For A 2
I �.Mk/, X0 2 I.Mk/, and x 2 M

k

.x … X0/ D :.x 2 X0/ D .x1 … X0
1 or : : : or xk … X0

k/

Copred�.A/ D f.x … X0/ j .x1 … X0
1/ 2 Copred�.A1/; : : : ; .xk … X0

k/

2 Copred�.Ak/g:

Lemma 9.3.9 (Interval representation of Pred�.A/ and Copred�.A/) Under the
hypotheses of the previous definitions:

.x 2 X0/ 2 Pred�.A/ , Impr.X0/ � AI

.x … X0/ 2 Copred�.A/ , Prop.X0/ � A:

Proof See Lemma 2.2.13. �

9.4 Interval Extensions of Functions of Marks

Recalling the concepts covered in Chap. 3, in the classical set-theoretical interval
analysis, one extension of a R

k to R continuous function z D f .x1; : : : ; xk/ is the
united extension Rf or range of f . For the interval argument X 0 D .X 0

1; : : : ; X 0
k/ 2

I.Rk/ it is defined as the range of f -values on X 0
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Rf .X 0
1; : : : ; X 0

k/ D ff .x1; : : : ; xk/ j x1 2 X 0
1; : : : ; xk 2 X 0

kg
D Œminff .x1; : : : ; xk/ j x1 2 X 0

1; : : : ; xk 2 X 0
kg;

maxff .x1; : : : ; xk/ j x1 2 X 0
1; : : : ; xk 2 X 0

kg�
which can be considered as a semantic extension of f , since it admits the logical
interpretations

.8x1 2 X 0
1/ � � � .8xk 2 X 0

k/ .9z 2 Rf .X 0
1; : : : ; X 0

k// z D f .x1; : : : ; xk/

and

.8z 2 Rf .X 0
1; : : : ; X 0

k// .9x1 2 X 0
1/ � � � .9xk 2 X 0

k/ z D f .x1; : : : ; xk/:

In the context of set-theoretical intervals of marks the, corresponding concept is
given in the next definition.

Definition 9.4.1 (United extension of a function of marks) The united extension
or range of values of a function of marks fM.t;n/ W M.t; n/k ! M.t; n/ associated
to the continuous function f W R

k ! R, for the interval argument X0 D
.X0

1; : : : ;X0
k/ 2 I.M.t; n/k/ is the function

RfM.t;n/
W I.M.t; n/k/ ! I.M.t; 1//

defined by

RfM.t;n/
.X0

1; : : : ;X0
k/ D hRf .PR.X0

1; : : : ;X0
k//; gf .X0

1; : : : ;X0
k/i;

where

1) PR.X0
1; : : : ;X0

k// is the real projection of .X0
1; : : : ;X0

k/,
2) Rf .PR.X0

1; : : : ;X0
k// is the united extension of the function f over the classical

interval PR.X0
1; : : : ;X0

k/, and
3) gf .X0

1; : : : ;X0
k/ is the greatest of the granularities obtained if the computations

with the bounds of RfM.X0
1; : : : ;X0

k/ are made with the corresponding marks in
a theoretical form, i.e., with n D 1.

Remark 9.4.1 The united extension is just analytic and not computed. For this
reason its granularity has to be the greatest granularity of the mark bounds.

The united extension verifies the logical statements

.8x1 2 X0
1/ � � � .8xk 2 X0

k/ .9z 2 RfM.X0
1; : : : ;X0

k// z D fM.t;1/.x1; : : : ; xk/:

and

.8z 2 RfM.X0
1; : : : ;X0

k// .9x1 2 X0
1/ � � � .9xk 2 X0

k/ z D fM.t;1/.x1; : : : ; xk/;

so it can be considered as a semantic extension of the function of marks fM.t;1/.



244 9 Intervals of Marks

9.4.1 Semantic Functions

In the context of modal intervals of marks, it may be expected, as a starting point,
that the relation z D fM.t;1/.x1; : : : ; xk/ must become some kind of interval relation
Z D F.f /.X1; : : : ;Xk/ guaranteeing some sort of .n C 1/-dimensional interval
predicate of the form

Q.x1;X1/ � � � Q.xk;Xk/ Q.z;Z/ z D fM.t;1/.x1; : : : ; xk/;

where an ordering problem obviously arises since the quantifying prefixes are not
generally commutable.

Definition 9.4.2 (Poor computational extension) The function

FM.t;1/ W M.t; 1/k ! I.M.t; 1//

is a “poor computational extension” of the function of marks fM.t;1/ associated to
a continuous real function f W Rk ! R, when for a given ha; gi 2 M.t; 1/k such
that fM.t;1/.ha; gi/ is valid, the existence of FM.t;1/.ha; gi/0 implies that

fM.t;1/.ha; gi/ 2 FM.t;1/.ha; gi/0:

Lemma 9.4.1 (Semantic formulation of a poor computational extension) Sup-
pose FM.t;1/ W M.t; 1/k ! I.M.t; 1// is a poor computational extension of the
function of marks fM.t;1/ associated to a continuous real function f W Rk ! R.
Then if a 2 M.t; 1/k , fM.t;1/.a/ is a valid mark and FM.t;1/.a/0 exists, then
fM.t;1/.a/ 2 FM.t;1/.a/0 is equivalent to

.8X0 2 I.M.t; 1/k//

..x 2 X0/ 2 Pred�.Œa;a�/ ) .z 2 Rf .X0// 2 Pred�.Prop.FM.t;1/.a////

where Rf .X0/ is the united extension of f over the classical interval PR.X0/.

Proof See Lemma 3.1.1. �

The optimal modal interval extensions of a function f are the semantic �- and
��-extensions, denoted by f �

M.t;1/ and f ��
M.t;1/ and defined as follows.

Definition 9.4.3 (*-semantic extension) The *-semantic extension of a function
of marks fM.t;n/ W M.t; n/k ! M.t; n/, associated to the continuous function f W
R

k ! R, for the interval of marks argument X 2 I �.M.t; n/k/ is a function

f �
M.t;1/ W I �.M.t; n/k/ � I �.M.t; 1/k/ �! I �.M.t; 1//

defined by

f �
M.t;1/.X/ D hf �.PR.X//; t; gf .X/; 1; bi;
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where PR.X/ is the interval projection of X, f � is the *-semantic extension of f

to the interval PR.X/, and gf .X/ is the maximum of the granularities which would
be obtained in the computation of the bounds of f �.PR.X// in a theoretical way,
i.e., with n D 1.

In a dual way,

Definition 9.4.4 (**-semantic extension) The **-semantic extension of a function
of marks fM.t;n/ W M.t; n/k ! M.t; n/, associated to the continuous function f W
R

k ! R, for the interval of marks argument X 2 I �.M.t; n/k/, is a function

f ��
M.t;1/ W I �.M.t; n/k/ � I �.M.t; 1/k/ �! I �.M.t; 1//

defined by

f ��
M.t;1/.X/ D hf ��.PR.X//; t; gf .X/; 1; bi:

where PR.X/ is the interval projection of X, f �� is the **-semantic extension of f

to the interval PR.X/, and gf .X/ is the maximum of the granularities which would
be obtained in the computation of the bounds of f ��.PR.X// in a theoretical way,
i.e., with n D 1.

If X is unimodal proper, then

f �
M.t;1/.X/ D f ��

M.t;1/.X/ D .RfM.t;n/
.X0/; 9/;

while if X is unimodal improper, then

f �
M.t;1/.X/ D f ��

M.t;1/.X/ D .RfM.t;n/
.PR.X0//; 8/:

Example 9.4.1 For the real continuous f .x1; x2/ D x2
1 C x2

2 the computation of
the *-semantic and the **-semantic functions for X D .Œ�1; 1�; Œ1; �1�/ yields the
following results:

f �.Œ�1; 1�; Œ1; �1�/ D _
x12Œ�1;1�0

^
x22Œ�1;1�0

Œx2
1 C x2

2 ; x2
1 C x2

2 �

D _
x12Œ�1;1�0

Œx2
1 C 1; x2

1 � D Œ1; 1�

f ��.Œ�1; 1�; Œ1; �1�/ D ^
x22Œ�1;1�0

_
x12Œ�1;1�0

Œx2
1 C x2

2 ; x2
1 C x2

2 �

D ^
x22Œ�1;1�0

Œx2
2 ; 1 C x2

2 � D Œ1; 1�:

Therefore the *- and **-semantic extensions for the corresponding mark function
are
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f �
M.t;1/.Œh�1; 0:001i; h1; 0:001i�; Œh1; 0:001i; h�1; 0:001i�/
D f ��

M.t;1/.Œh�1; 0:001i; h1; 0:001i�; Œh1; 0:001i; h�1; 0:001i�/
D hŒ1; 1�; t; 0:001; 1; bi;

because gf .X/ D 0:001, by the computation of the granularities of the product and
sum under the minimalist criterion. Both semantic extensions give the same result.

For the real continuous function g.x1; x2/ D .x1 C x2/
2 and the interval X D

.Œ�1; 1�; Œ1; �1�/

g�.Œ�1; 1�; Œ1; �1�/ D _
x12Œ�1;1�0

^
x22Œ�1;1�0

Œ.x1 C x2/2; .x1 C x2/
2�

D _
x12Œ�1;1�0

Œif x1 < 0 then .x1 � 1/2 else .x1 C 1/2; 0�

D Œ1; 0�

g��.Œ�1; 1�; Œ1; �1�/ D ^
x22Œ�1;1�0

_
x12Œ�1;1�0

Œ.x1 C x2/2; .x1 C x2/2�

D ^
x22Œ�1;1�0

Œ0; if x2 < 0 then .x2 � 1/2 else .x2 C 1/2�

D Œ0; 1�:

Therefore the *- and **-semantic extensions for the corresponding mark function
are

g�

M.t;1/.Œh�1; 0:001i; h1; 0:001i�; Œh1; 0:001i; h�1; 0:001i�/ D hŒ1; 0�; t; 0:001; 1; bi;
g��

M.t;1/.Œh�1; 0:001i; h1; 0:001i�; Œh1; 0:001i; h�1; 0:001i�/ D hŒ0; 1�; t; 0:001; 1; bi:

because gg.X/ D 0:001. For this function their semantic extensions give different
results.

The equality between both extensions characterizes the following important
concept.

Definition 9.4.5 (JM-commutativity) A function of marks associated to the con-
tinuous function f W Rk ! R, is JM-commutable in X 2 I �.Mk/ when

f �
M.t;1/.X/ D f ��

M.t;1/.X/:

9.4.2 Properties of the �- and ��-Semantics Functions

Interesting properties of the modal interval semantic extensions for a real continuous
function are isotonicity

X � Y ) f �.X/ � f �.Y/ and f ��.X/ � f ��.Y/
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and the inclusion

f �.X/ � f ��.X/

Since the functions f �
M.t;1/ and f ��

M.t;1/ are theoretical, that is to say, they are
calculated in an exact way, the properties that they verify will coincide, roughly
speaking, with the properties of the functions f � and f ��. We will give as evident
those properties that refer to this aspect.

Theorem 9.4.1 If fM.t;1/ W M.t; 1/k ! M.t; 1/ is a function of marks,
associated to the continuous function f W Rk ! R, and .X0

1;X
0
2/ is any component

splitting of X0 2 I.Mk/, then

.8.x1; x2/ 2 .X0
1;X

0
2// max

x12X0

1

min
x22X0

2

fM.t;1/.x1; x2/ � min
x22X0

2

max
x12X0

1

fM.t;1/.x1; x2/:

Proof See the proof of Theorem 3.2.2. �
Lemma 9.4.2 Let F1M.t;n/; F2M.t;n/ W M.t; n/ ! I �.M.t; n//. Given ˛ 2�0; 1� and
X 2 I �.M.t; n//, for every x 2 X0

F1M.t;n/.x/ �˛ F2M.t;n/.x/ )
.̋x;X/

F1M.t;n/.x/ �˛
.̋x;X/

F2M.t;n/.x/:

Proof See Lemma 3.2.1. �

Lemma 9.4.3 Let FM.t;n/ W M.t; n/ ! I �.M.t; n//. Given X1;X2 2 I �.M.t; n//,
then

X1 � X2 )
.̋x;X1/

FM.t;n/.x/ �
.̋x;X2/

FM.t;n/.x/:

Proof 1. If X1 is proper, X2 is proper, and X0
1 � X0

2, then

.̋x;X1/
FM.t;n/.x/ D _

x2X0

1

FM.t;n/.x/

D Œmin
x2X0

1

inf.FM.t;n/.x//; max
x2X0

1

sup.FM.t;n/.x//�

� Œmin
x2X0

2

inf.FM.t;n/.x//; max
x2X0

2

sup.FM.t;n/.x//�

D _
x2X0

2

FM.t;n/.x/ D
.̋x;X2/

FM.t;n/.x/:
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2. If X1 is proper, X2 is improper, and X0
1 � X0

2, then X1 D X2 D Œa; a� and ˝
.x;Œa;a�/

is the identity operator.
3. If X1 is improper,

.̋x;X1/
FM.t;n/.x/ D

x̂2X0

1

FM.t;n/.x/

D Œmax
x2X0

1

inf.FM.t;n/.x//; min
x2X0

1

sup.FM.t;n/.x//�:

F If X2 is proper, the inclusion X1 � X2 is equivalent to X0
1 \ X0

2 ¤ ;. Let
OX 2 X0

1 \ X0
2

max
x2X0

1

inf.FM.t;n/.x// � inf.FM.t;n/.Ox// � min
x2X0

2

inf.FM.t;n/.x//;

min
x2X0

1

sup.FM.t;n/.x// � sup.FM.t;n/. OX// � max
x2X0

2

sup.FM.t;n/.x//:

F If X2 is improper, the inclusion X1 � X2 is equivalent to X0
2 � X0

1, and
therefore

max
x2X0

1

inf.FM.t;n/.x// � inf.FM.t;n/. OX// � min
x2X0

2

inf.FM.t;n/.x//;

min
x2X0

1

sup.FM.t;n/.x// � sup.FM.t;n/. OX// � max
x2X0

2

sup.FM.t;n/.x//: �

Theorem 9.4.2 Let F1M.t;n/; F2M.t;n/ W M.t; n/ ! I �.M.t; n//. Given X1;X2 2
I �.M.t; n// and ˛ 2�0; 1�, then

.X1 � X2; F1M.t;n/.x/ �˛ F2M.t;n/.x// )
.̋x;X1/

F1M.t;n/.x/ �˛
.̋x;X2/

F2M.t;n/.x/;

whenever there exists compatibility of
.̋x;X1/

F1M.t;n/.x/ and
.̋x;X2/

F2M.t;n/.x/ with

˛t .

Proof Applying Lemma 9.4.3

X1 � X2 )
.̋x;X1/

F1M.t;n/.x/ �
.̋x;X2/

F1M.t;n/.x/

and using now Lemma 9.4.2

.8x 2 X0
2/ F1M.t;n/.x/ �˛ F2M.t;n/.x/ )

.̋x;X2/
F1M.t;n/.x/ �˛

.̋x;X2/
F2M.t;n/.x/;

then

.̋x;X1/
F1M.t;n/.x/ �

.̋x;X2/
F1M.t;n/.x/ �˛

.̋x;X2/
F2M.t;n/.x/:
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By transitivity

.̋x;X1/
F1M.t;n/.x/ �˛

.̋x;X2/
F2M.t;n/.x/: �

Definition 9.4.6 (Saddle points and saddle value) Let .X0
1;X

0
2/ D X0 be

a component splitting of I.M.t; n/k/. The saddle point set in .X0
1;X

0
2/ of the

functions of marks associated to f W Rk ! R, denoted by SDP.fM.t;n/;X
0
1;X

0
2/, is

defined by means of the set of saddle points of the function f in PR.X0
1;X

0
2/

SDP.fM.t;n/;X
0
1;X

0
2/ D f.xm

1 ; xM
2 / D f.hxm

1 ; g1i; hxM
2 ; g2i/ 2 .X0

1;X
0
2/ j

.xm
1 ; xM

2 / 2 SDP.f; PR.X0
1;X

0
2//g

and the saddle value SDV.fM.t;n/;X
0
1;X0

2/ is

SDV.fM.t;n/;X
0
1;X

0
2/ D

8<
:

fM.t;n/.x
m
1 ; xM

2 / if .xm
1 ; xM

2 / 2 SDP.fM.t;n/;X
0
1;X

0
2/

not defined if SDP.fM;X0
1;X

0
2/ D ;:

Starting from the properties of the saddle values of the function f , it is possible
to show that if .xm

1 ; xM
2 / is a saddle point of the functions fM associated to f in

.X0
1;X0

2/, then

min
x12X0

1

max
x22X0

2

fM.t;1/.x1; x2/ D fM.t;1/.x
m
1 ; xM

2 / D max
x22X0

2

min
x12X0

1

fM.t;1/.x1; x2/:

From the properties of the function of marks, and computing the granularity under
a maximalist approach, and whenever the granularities are compatible with ˛t , then

SDV.fM.t;n/;X
0
1;X

0
2/ �˛ fM.t;1/.x

m
1 ; xM

2 /:

The next concepts and results can be proved using the parallelism between
f �
M.t;1/ and f ��

M.t;1/ and the functions f � and f ��:

Theorem 9.4.3 (JM-commutativity) If fM W M.t; n/k ! M.t; n/ is a function
of marks associated to the continuous function f W R

k ! R, for a given X D
.Xp;Xi / 2 I �.Mk/ split in its proper and improper components, then

SDP.fM.t;n/;X
0
p;X0

i / ¤ ;

SDP.fM.t;n/;X
0
i ;X

0
p/ ¤ ;

9>=
>; , f �

M.t;1/.X/ D f ��
M.t;1/.X/:

Theorem 9.4.4 (Commutativity condition) fM is JM-commutable over X 2
I �.Mk/ iff
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f �
M.t;1/.X/ D f ��

M.t;1/.X/ D hŒSDV.fM.t;1/;X
0
p;X0

i /; SDV.fM.t;1/;X
0
i ;X

0
p/�; gf i:

Example 9.4.2 For the real continuous f .x1; x2/ D x2
1 C x2

2 ,

f �.Œ�1; 1�; Œ2; 0�/ D _
x12Œ�1;1�0

^
x22Œ0;2�0

Œx2
1 C x2

2 ; x2
1 C x2

2 �

D _
x12Œ�1;1�0

Œx2
1 C 4; x2

1 � D Œ4; 1�;

f ��.Œ�1; 1�; Œ2; 0�/ D ^
x22Œ0;2�0

_
x12Œ�1;1�0

Œx2
1 C x2

2 ; x2
1 C x2

2 �

D ^
x22Œ0;2�0

Œx2
2 ; x2

2 C 1� D Œ4; 1�;

and

SDP.f; Œ�1; 1�0; Œ0; 2�0/ D f.0; 2/g ; SDV.f; Œ�1; 1�0; Œ0; 2�0/ D 4;

SDP.f; Œ0; 2�0; Œ�1; 1�0/ D f.1; 0/; .�1; 0/g ; SDV.f; Œ0; 2�0; Œ�1; 1�0/ D 1:

The *-semantic and **-semantic extensions to the interval of marks

X D .Œh�1; 0:001i; h1; 0:001i�; Œh2; 0:001i; h0; 0:001i�/

are

f �.Œh�1; 0:001i; h1; 0:001i�; Œh2; 0:001i; h0; 0:001i�/
D f ��.Œh�1; 0:001i; h1; 0:001i�; Œh2; 0:001i; h0; 0:001i�/
D Œh4; 0:001i; h1; 0:001i�:

Therefore,

SDP.f; Œh�1; 0:001i; h1; 0:001i�0; Œh0; 0:001i; h2; 0:001i�0/
D f.h0; 0:001i; h2; 0:001i/g;

SDV.f; Œh�1; 0:001i; h1; 0:001i�0; Œh0; 0:001i; h2; 0:001i�0/
D h4; 0:001i;

SDP.f; Œh0; 0:001i; h2; 0:001i�0; Œh�1; 0:001i; h1; 0:001i�0/
D f.h1; 0:001i; h0; 0:001i/; .h�1; 0:001i; h0; 0:001i/g;

SDV.f; Œh0; 0:001i; h2; 0:001i�0; Œh�1; 0:001i; h1; 0:001i�0/
D h1; 0:001i:
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Similarly, for .X1; X2/ D .Œ�1; 1�; Œ1; �1�/, f1 D x1x2, f2 D Abs.x1x2/ and f3 D
x2

1 C x2
2 their corresponding mark extensions are also JM-commutable, but not for

f4 D Abs.x1 C x2/ and f5 D .x1 C x2/2.

Some important examples of JM-commutable functions are the one-variable
continuous functions and those two-variable continuous function f .x; y/ which are
partially monotonic in a domain .X0;Y0/, such as the arithmetic operators x C y,
x � y, x � y, x=y and others such as xy , max.x; y/ and min.x; y/, whose modal
semantic extensions can be computed by means of arithmetic operations with the
interval mark bounds.

9.4.3 Semantic Theorems

Theorem 9.4.5 (Semantic theorem for f �
M.t;1/) Let A 2 I �.M.t; n/k/, f �

M.t;1/

be the *-semantic function associated to fM.t;n/ W M.t; n/k ! M.t; n/ and
Z 2 I �.M.t; 1//. If all involved marks are valid, the following statements are
equivalent:

1. f �
M.t;1/.A/ � Z:

2. .8X0 2 I.M.t; n/k//

..x 2 X0/ 2 Pred�.A/ ) .z 2 RfM.t;n/
.X0// 2 Pred�.Z//:

3. .8ap 2 A0
p/ Q.z;Z0/ .9ai 2 A0

i / z D fM.t;1/.ap;ai /:

Proof See Theorem 3.3.1. �

Corollary 9.4.1 (Semantic theorem over I �.M.t; n//) Let A 2 I �.M.t; n/k/,
f �
M.t;1/ be the �-semantic function associated to fM.t;n/ W M.t; n/k ! M.t; n/ and

Z 2 I �.M.t; n//. For certain value �.˛/ 2 Œ0; 1�, under a maximalist approach of
the calculus of the granularity and whenever there is compatibility with �.˛/t when
it is necessary, it is true that

f �
M.t;1/.A/ �˛ Z ) .8ap 2 A0

p/ Q.z;Z/ .9ai 2 A0
i / z ��.˛/ fM.t;n/.ap;ai /:

Proof From Theorem 9.4.5 applied to the inclusion f �
M.t;1/.A/ � f �

M.t;1/.A/,

.8ap 2 A0
p/ Q.y; f �

M.t;1/.A// .9ai 2 A0
i / y D fM.t;1/.ap;ai /:

Then

fM.t;1/.ap;ai / �ˇ1 fM.t;1/.DIn.ap;ai // �ˇ2 fM.t;n/.DIn.ap;ai //;

and therefore

fM.t;1/.ap;ai / �ˇ1Cˇ2 fM.t;n/.DIn.ap;ai //;

supposing the marks are valid with respect to ˇ1t and to ˇ2t , respectively.
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From hypothesis, f �
M.t;1/.A/ �˛ Z and splitting the cases by the different

possible modalities of f �
M.t;1/.A/ and Z:

1. When f �
M.t;1/.A/ and Z are proper,

f �
M.t;1/.A/ �˛ Z , .f �

M.t;1/.A//0 �˛ Z0:

In this case, and whenever the marks are compatible with ˛t , it is true that

.8y 2 .f �
M.t;1/.A//0/ .9z 2 Z0/ y �˛ z;

Combining this weak equality with

.8ap 2 A0
p/ .9y 2 f �

M.t;1/.A// .9ai 2 A0
i /

y D fM.t;1/.ap;ai / �ˇ1Cˇ2 fM.t;n/.DIn.ap;ai //;

then

.8ap 2 A0
p/ .9y 2 f �

M.t;1/.A// .9z 2 Z0/ .9ai 2 A0
i /

z �˛ y D fM.t;1/.ap;ai / �ˇ1Cˇ2 fM.t;n/.DIn.ap;ai //:

Applying the .˛ C ˇ/-transitivity of the weak equality between marks,

.8ap 2 A0
p/ .9z 2 Z0/ .9ai 2 A0

i / z �˛Cˇ1Cˇ2 fM.t;n/.DIn.ap;ai //:

2. When f �
M.t;1/.A/ and Z are improper,

f �
M.t;1/.A/ �˛ Z , Z0 �˛ .f �

M.t;1/.A//0:

In this case, and whenever the marks are compatible with ˛t , it is true that

.8z 2 Z0/ .9y 2 .f �
M.t;1/.A//0/ y �˛ z:

Combining this weak equality with

.8ap 2 A0
p/ .8y 2 f �

M.t;1/.A// .9ai 2 A0
i /

y D fM.t;1/.ap;ai / �ˇ1Cˇ2 fM.t;n/.DIn.ap;ai //;

then

.8z 2 Z0/ .9y 2 .f �
M.t;1/.A//0/ .8ap 2 A0

p/ .8y 2 f �
M.t;1/.A// .9ai 2 A0

i /

z �˛ y D fM.t;1/.ap;ai / �ˇ1Cˇ2 fM.t;n/.DIn.ap;ai //;

Applying the .˛ C ˇ/-transitivity of the weak equality between marks,
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.8ap 2 A0
p/ .8z 2 Z0/ .9ai 2 A0

i / z �˛Cˇ1Cˇ2 fM.t;n/.DIn.ap;ai //:

3. f �
M.t;1/.A/ improper and Z proper,

f �
M.t;1/.A/ �˛ Z , .9y 2 .f �

M.t;1/.A//0/ .9z 2 Z0/ y �˛ z:

As

.8ap 2 A0
p/ .8y 2 f �

M.t;1/.A// .9ai 2 A0
i /

y D fM.t;1/.ap;ai / �ˇ1Cˇ2 fM.t;n/.DIn.ap;ai //;

then

.8ap 2 A0
p/ .8y 2 f �

M.t;1/.A/0/ .9ai 2 A0
i / .9y 2 .f �

M.t;1/.A//0/ .9z 2 Z0/
z �˛ y D fM.t;1/.ap;ai / �ˇ1Cˇ2 fM.t;n/.DIn.ap;ai //;

and therefore,

.8ap 2 A0
p/ 9.z 2 Z0/ .9ai 2 A0

i / z �˛Cˇ1Cˇ2 fM.t;n/.DIn.ap;ai //:

4. When f �
M.t;1/.A/ is proper and Z improper,

f �
M.t;1/.A/ �˛ Z , .8y 2 .f �

M.t;1/.A//0/ .8z 2 Z0/ z �˛ y:

Combining it with

.8ap 2 A0
p/ .9y 2 .f �

M.t;1/.A//0/ .9ai 2 A0
i /

y D fM.t;1/.ap;ai / �ˇ1Cˇ2 fM.t;n/.DIn.ap;ai //;

then

.8ap 2 A0
p/ .9y 2 .f �

M.t;1/.A//0/ .9ai 2 A0
i / .8y 2 .f �

M.t;1/.A//0/ .8z 2 Z0/
z �˛ y D fM.t;1/.ap;ai / �ˇ1Cˇ2 fM.t;n/.DIn.ap;ai //

and therefore,

.8ap 2 A0
p/ .8z 2 Z0/ .9ai 2 A0

i / z �˛Cˇ1Cˇ2 fM.t;n/.DIn.ap;ai //: �

For the ��-semantic function, dual theorems are valid.

Theorem 9.4.6 (Semantic theorem for f ��
M.t;1/

) Let f �
M.t;1/ be the *-semantic

function associated to fM.t;n/ W M.t; n/k ! M.t; n/ and Z 2 I �.M.t; 1//. If
all involved marks are valid, the following statements are equivalent:

1. f ��
M.t;1/.A/ � FM.t;1/.A/:
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2. .8X0 2 I.M.t; n/k//

..x … X0/ 2 Copred�.A/ ) .z … RfM.t;n/
.X0// 2 Copred�.Z//:

3. .8ai 2 A0
i / Q.z;Z/ .9ap 2 A0

p/ z D fM.t;1/.ap;ai /:

Corollary 9.4.2 (Semantic theorem over I �.M.t; n//) Let f �
M.t;1/ be the �-

semantic function associated to fM.t;n/ W M.t; n/k ! M.t; n/ and Z 2 I �.M.t; n//.
For some value �.˛/ 2 Œ0; 1�, under a maximalist approach of the calculus of the
granularity and whenever there are compatibility with �.˛/t when it is necessary, it
is true that

f ��
M.t;1/.A/ �˛ Z ) .8ai 2 A0

i / Q.z;Z/ .9ap 2 A0
p/ z ��.˛/ fM.t;n/.ap;ai /:

Proof Dual of 9.4.1. �

Example 9.4.3 For the real continuous function g.x1; x2/ D .x1 C x2/2 and its
interval of marks extensions to the interval

X D .Œh�1; 0:001i; h1; 0:001i�; Œh1; 0:001i; h�1; 0:001i�/;

as

g�

M.t;1/.Œh�1; 0:001i; h1; 0:001i�; Œh1; 0:001i; h�1; 0:001i�/ D Œh1; 0:001i; h0; 0:001i�
g��

M.t;1/.Œh�1; 0:001i; h1; 0:001i�; Œh1; 0:001i; h�1; 0:001i�/ D Œh0; 0:001i; h1; 0:001i�;

the *-semantic theorem states that

.8x1 2 Œh�1; 0:001i; h1; 0:001i�0/ .8z 2 Œh0; 0:001i; h1; 0:001i�0/
.9x2 2 Œh�1; 0:001i; h1; 0:001i�0/ z D .x1 C x2/

2

the **-semantic theorem states that

.8x2 2 Œh�1; 0:001i; h1; 0:001i�0/ .8z 2 Œh0; 0:001i; h1; 0:001i�0/
.9x1 2 Œh�1; 0:001i; h1; 0:001i�0/ z D .x1 C x2/

2

9.5 Syntactic Extensions

In classical set-theoretical interval analysis, since the domain of values of a general
continuous function is generally not computable, set-theoretical interval syntactic
extensions fR.X 0

1; : : : ; X 0
k/ are defined like their corresponding real functions

f .x1; : : : ; xk/ replacing real operands and operators by their corresponding interval
operands and operators. The relation between both extensions is



9.5 Syntactic Extensions 255

Rf .X 0
1; : : : ; X 0

k/ � fR.X 0
1; : : : ; X 0

k/;

where fR.X 0
1; : : : ; X 0

k/, computable from the bounds of the intervals, usually
represents an overestimation of Rf .X 0

1; : : : ; X 0
k/. Syntactic interval functions have

the property of being “inclusive”,

fR.A0
1; : : : ; A0

k/ � fR.B 0
1; : : : ; B 0

k/:

This classical interval syntactic extension of f satisfies only one kind of interval
predicate compatible with the outer rounding of f .X 0/: if Z0 D fR.X 0

1; : : : ; X 0
k/,

the only valid semantic statement will be

.8x1 2 X 0
1/ � � � .8xk 2 X 0

k/ .9z 2 Out.fR.X 0
1; : : : ; X 0

k/// z D f .x1; : : : ; xk/:

In modal interval analysis, when the continuous function f has a syntactic tree,
there exist modal syntactic extensions which are obtained by using the computing
program defined by the expression of the function: if f is a rational function
from R

k to R, its rational extension to the modal intervals X1; : : : ; Xk , denoted
by fR.X1; : : : ; Xk/, is the function fR from I �.Rk/ to I �.R/ defined by the
computational program indicated by the syntax of f when the real operators,
supposed JM-commutable functions, are transformed into their semantic extensions.

Moreover, modal interval analysis is a semantic system formed by three levels:
the theoretic real level, the interval level, and the level of intervals with digital
bounds. Similarly, three levels are involved in the intervals of marks theory: the
theoretic level, the interval level, and the level of intervals with mark bounds. So,
together with the united interval extension of a continuous function, it is necessary
to define set-theoretical interval extensions to allow the specification of effective
computations through their interval of marks operators.

The corresponding concepts for intervals of marks are described in the following
definitions.

Definition 9.5.1 (Set-theoretical operator for intervals of marks) The function
of marks ˝M.t;n/ W M.t; n/2 ! M.t; n/ associated to the continuous real operator
w W R2 ! R, for the interval arguments X0;Y0 2 I.M.t; n//, is defined by

˝M.t;n/.X
0;Y0/ D Œhz; gzi; hz; gzi�;

where

1) hz; gzi and hz; gzi are obtained from !.PR.X0/; PR.Y0//, the interval extension
of w, by substitution of each bound with the marks bounds and the operator with
the corresponding mark operators,

2) the granularity gz is the maximum of gz and gz.
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Example 9.5.1 For X0 D Œhx; gxi; hx; gxi� and Y0 D Œhy; gyi; hy; gyi�,
1) X0 C Y0 D Œhx; gxi C hy; gyi; hx; gxi C hy; gyi� D Œhx C y; gzi; hx C y; gzi�:
2) X0 � Y0 D Œhx; gxi � hy; gyi; hx; gxi � hy; gyi� D Œhx � y; gzi; hx � y; gzi�:
3) X0 � Y0 D : : : D Œhmin.xy; xy; xy; xy/; gzi; max.xy; xy; xy; xy/; gzi�:
4) If 0 … PR.Y/, then

X0=Y0D : : : DŒhmin.x=y; x=y; x=y; x=y/; gzi; max.x=y; x=y; x=y; x=y/; gzi�:

5) min.X0;Y0/ D : : : D Œhmin.x; y/�; gzi; hmin.x; y/; gzi�:
6) max.X0;Y0/ D : : : D Œhmax.x; y/�; gzi; hmax.x; y/; gzi�:
The granularity gz is the maximum of the granularities obtained in the computation
of the mark bounds for the resulting intervals.

Definition 9.5.2 (Set-theoretical extension for intervals of marks) If fM.t;n/ W
M.t; n/k ! M.t; n/ is the function of marks associated to the continuous
function f W R

k ! R, of which operators in its syntactic tree belong to
fC; �; �; =; min; maxg, the set-theoretical syntactic extension of fM.t;n/ is a function
fM.t;n/R W M.t; n/k ! M.t; n/ obtained from the syntactic tree of f by substitution
of

1) the operands by their corresponding intervals of marks,
2) the operators by the corresponding set-theoretical operators for intervals of

marks,

and every incidence of the multi-incident variables is considered as independent
variable.

This set-theoretical extension is inclusive.

Lemma 9.5.1 For every X0;Y0 2 I.M.t; n/k/ if the greater granularity obtained,
with the maximal approach, in the computations of fM.t;n/R.X0/ and fM.t;n/R.Y0/,
g is compatible with ˛t , then

X0 � Y0 ) fM.t;n/R.X0/ �2˛ fM.t;n/R.Y0/:

Proof From the inclusivity of the interval operators and the properties of the
inclusion of intervals of marks,

fM.t;n/R.X0/ �˛ fM.t;1/R.X0/ � fM.t;1/R.Y0/ �˛ fM.t;n/R.Y0/: �

The relation between the united and the set-theoretical extension is given by the
following result.

Lemma 9.5.2 If RfM.t;n/
and fM.t;n/R are the united and the interval extensions

of fM.t;n/, respectively, over the interval of marks X0 2 I.M.t; n/k/ and gz is the
granularity associated to fM.t;n/R.X0/, computed with the maximal approach, then
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.8˛ 2�gz=t; 1�/ RfM.t;n/
.X0/ �˛ fM.t;n/R.X0/:

Proof As PR.fM.t;1/R.X0// D fR.PR.X0//, one has

RfM.t;n/
.X0/ � fM.t;1/R.X0/ �˛ fM.t;n/R.X0/: �

Theorem 9.5.1 (Semantic for fR
M.t;n/R) If fM.t;n/R is the rational set extension

of the function fM.t;n/ and Œz; z� D fM.t;n/R.X0/; then

.8z 2 I v0.Qz// .8z 2 I v0.Qz// .9x 2 I v0.X// .9x 2 I v0.X// Œz; z� D fR.Œx; x�/:

Proof If Œz; z� D fM.t;n/R.X0/, then

z D f1M.t;n/.X; X/

z D f2M.t;n/.X; X/:

Using the semantics of the functions of marks

.8z 2 I v0.Qz// .9x1 2 I v0.X; X// z D f1.x1/

.8z 2 I v0.Qz// .9x2 2 I v0.X; X// z D f2.x2/

where f1 and f2 are the functions that provide the infimum and supremum of fR.
Taking x D x1 and x D x2 the proposition is proved. �

The generalization of these concepts for modal interval of marks is very similar
to the generalization in the case of modal intervals which was treated in Chap. 3.
It would be superfluous to insist on many details. The main features of this
generalization are contained in the following results.

Definition 9.5.3 (Modal syntactic operator) A modal syntactic operator over
X 2 I �.Mk/ is a function fM W Mk ! M JM-commutable over X.

For a modal syntactic operator, and under a maximalist approach for assignation of
granularities,

f �
M

.X/ D f ��
M

.X/ �˛ hŒSDV.fM.t;n/;X
0
p;X0

i /; SDV.fM.t;n/;X
0
i ;X

0
p/�; gf i

whenever the marks are compatible with ˛t .

Definition 9.5.4 (Computed operator) If fM W M
k ! M is a modal syntactic

operator over mark intervals, the computed operator of fM in M.t; n/ over X 2
I �.M.t; n//, denoted by FM.t;n/.X/, is defined by

FM.t;n/.X/ D hŒSDV.fM.t;n/;X
0
p;X0

i /; SDV.fM.t;n/;X
0
i ;X

0
p/�; gf i:
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Definition 9.5.5 (Modal syntactic extension) When all the operators of the syntax
tree of fM are modal syntactic, the function, which results from the replacement of
each operator by its �-semantic extension is called the modal syntactic function of
fM and denoted by fR

M.t;1/.

Definition 9.5.6 (Computed modal syntactic extension) When all the operators
of the syntax tree of fM are modal syntactic, the function which results from the
replacement of each operator by its computed operator is called the modal syntactic
function of fM and denoted by FRM.t;n/.

Theorem 9.5.2 (Relation between the modal syntactic extensions) If fM W
M

k ! M is a function of marks associated to the continuous function f W Rk ! R

and there exists the modal syntactic function fR
M.t;1/ and the computed modal

syntactic function FRM.t;n/ over the mark interval X 2 I �.M.t; n//, whenever the
resulting granularity of the calculus FRM.t;n/.X/ are compatible with ˛t , and have
been calculated under a maximalist approach, one has

fR
M.t;1/.X/ �˛ FRM.t;n/.X/:

Proof All the computed operators of the syntax tree fulfill this relationship and the
increase in the granularity at each step implies that we can apply induction to this
process. �
Theorem 9.5.3 (Semantics for a computed modal syntactic functions) Let
FRM.t;n/ W I �.M.t; n/k/ ! I �.M.t; n// be the computed modal syntactic function
and let fR W I �.Rk/ ! I �.R/ be the modal syntactic function, both associated
to f W R

k ! R. If X1 D Œx
1
; x1�; : : : ;Xk D Œx

k
; xk� 2 I �.M.t; n//, and

Œz; z� D FRM.t;n/.X1; : : : ;Xk/, then

.8z 2 I v0.Qz// .8z 2 I v0.Qz//

.9x1 2 I v0.x
1
// .9x1 2 I v0.x1// � � � .9xk 2 I v0.x

k
// .9xk 2 I v0.xk//

Œz; z� D fR.Œx1; x1�; : : : ; Œxk; xk�/:

Proof Start from the semantics of the functions of marks and take into account that
the functions and bounds involved in FM.t;n/R and fR are the same. �

Remark 9.5.1 In the construction of modal intervals and their modal syntactic
extensions, when it comes to interpretability and optimality, the main problem
was the multi-incidence of the variables in the syntactic tree. In modal syntactic
extensions to intervals of marks, multi-incidences are not a problem because they
only affect the computation of fR.
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9.5.1 Arithmetic Operations for Intervals of Marks

As the construction of the intervals of marks extensions for a real continuous
function has been made in a parallel way to the interval extension developed in MIA,
the extension of the arithmetic operators (sum, difference, product and quotient) to
mark intervals is analogous to the extension to modal intervals with similar proofs.
In this section the computational results will be shown.

Let us suppose given two intervals of marks X D Œx; x� 2 I �.M/ and Y D
Œy; y� 2 I �.M/, where

x D hx; gxi 2 M.t; n/ x D hx; gxi 2 M.t; n/

and

y D hy; gyi 2 M.t; n/ y D hy; gyi 2 M.t; n/:

Sum of intervals of marks. The sum of X and Y is denoted by XCY and it turns
out to be

X C Y D Œhx; gxi C hy; gyi; hx; gxi C hy; gyi�

with perhaps the necessary coercion of one of the bounds to the greater of the
granularities.

Difference of intervals of marks. The difference of X and Y is denoted by X�Y
and it turns out to be

X � Y D Œhx; gxi C h�y; gyi; hx; gxi C h�y; gyi�

with perhaps the necessary coercion of one of the bounds to the greater of the
granularities.

Product of a mark and an interval of marks. The product of X with a mark
r D hr; gri 2 M.t; n/ is denoted by r � X and turns out to be

r � X D
�
Œhr; gr i � hx; gxi; hr; gri � hx; gxi� if hr; gri � h0; b�ni
Œhr; gr i � hx; gxi; hr; gri � hx; gxi� if hr; gri � h0; b�ni

Product of intervals of marks. The product of X and Y is denoted by X � Y and
turns out to be
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X � Y D if x � 0; x � 0; y � 0; y � 0; then Œx � y; x � y�

if x � 0; x � 0; y � 0; y < 0; then Œx � y; x � y�

if x � 0; x � 0; y < 0; y � 0; then Œx � y; x � y�

if x � 0; x � 0; y < 0; y < 0; then Œx � y; x � y�

if x � 0; x < 0; y � 0; y � 0; then Œx � y; x � y�

if x � 0; x < 0; y � 0; y < 0; then Œmax.x � y; x � y/; min.x � y; x � y/�

if x � 0; x < 0; y < 0; y � 0; then Œh0; gM
x;yi; h0; gM

x;yi�
if x � 0; x < 0; y < 0; y < 0; then Œx � y; x � y�

if x < 0; x � 0; y � 0; y � 0; then Œx � y; x � y�

if x < 0; x � 0; y � 0; y < 0; then Œh0; gM
x;yi; h0; gM

x;yi�
if x < 0; x � 0; y < 0; y � 0; then Œmin.x � y; x � y/; max.x � y; x � y/�

if x < 0; x � 0; y < 0; y < 0; then Œx � y; x � y�

if x < 0; x < 0; y � 0; y � 0; then Œx � y; x � y�

if x < 0; x < 0; y � 0; y < 0; then Œx � y; x � y�

if x < 0; x < 0; y < 0; y � 0; then Œx � y; x � y�

if x < 0; x < 0; y < 0; y < 0; then Œx � y; x � y�

Quotient of intervals of marks. The quotient of X and Y is denoted by X=Y and
it turns out to be

X=Y D if x � 0; x � 0; y > 0; y > 0; then Œx=y; x=y�

if x � 0; x � 0; y > 0; y > 0; then Œx=y; x=y�

if x � 0; x � 0; y < 0; y < 0; then Œx=y; x=y�

if x � 0; x < 0; y > 0; y > 0; then Œx=y; x=y�

if x � 0; x < 0; y < 0; y < 0; then Œx=y; x=y�

if x < 0; x � 0; y > 0; y > 0; then Œx=y; x=y�

if x < 0; x � 0; y < 0; y < 0; then Œx=y; x=y�

if x < 0; x < 0; y > 0; y > 0; then Œx=y; x=y�

if x < 0; x < 0; y < 0; y < 0; then Œx=y; x=y�

supposing 0 … Y0.
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Example 9.5.2 For the function f .x1; x2; x3; x4/ D .x1 C x2/.x3 C x4/ its interval
of marks syntactic extension in a scale DI4 to the intervals

X1 D Œh�2; 0:001i; h2; 0:001i�
X2 D Œh1; 0:003i; h�1; 0:003i�
X3 D Œh�3; 0:009i; h3; 0:009i�
X4 D Œh2; 0:007i; h�2; 0:007i�

is

FRM;4 D .X1 C X2/ � .X3 C X4/

D .Œh�2; 0:001i; h2; 0:001i� C Œh1; 0:003i; h�1; 0:003i�/
�.Œh�3; 0:009i; h3; 0:009i� C Œh2; 0:007i; h�2; 0:007i�/

D Œh�1; 0:003i; h1; 0:003i� � .Œh�1; 0:027i; h1; 0:027i�
D Œmin.h�1; 0:003i � h1; 0:027i; h1; 0:003i � h�1; 0:027i/;

max.h�1; 0:003i � h�1; 0:027i; h1; 0:003i � h1; 0:027i/�
D Œh�1; 0:027i; h1; 0:027i�

For a tolerance t D 0:05, the associated intervals to the mark bounds of these
intervals of marks are

I v.X1/ D Œ�1:9; �2:1� I v.X1/ D Œ2:1; 1:9�

I v.X2/ D Œ1:05; 0:95� I v.X2/ D Œ�0:95; �1:05�

I v.X3/ D Œ�2:85; �3:15� I v.X3/ D Œ3:15; 2:85�

I v.X4/ D Œ2:1; 1:9� I v.X4/ D Œ�1:9; �2:1�

I v. QZ/ D Œ�0:95; �1:05� I v. QZ/ D Œ1:05; 0:95�:

Therefore, from Theorem 9.5.1, the logical formula

.8z 2 Œ�1:05; �0:95�0/ .8z 2 Œ0:95; 1:05�0/

.9x1 2 Œ�2:1; �1:9�0/ .9x1 2 Œ1:9; 2:1�0/

.9x2 2 Œ0:95; 1:05�0/ .9x2 2 Œ�1:05; �0:95�0/

.9x3 2 Œ�3:15; �2:85�0/ .9x3 2 Œ2:85; 3:15�0/

.9x4 2 Œ1:9; 2:1�0/ .9x4 2 Œ�2:1; �1:9�0/

Œz; z� D .Œx1; x1� C Œx2; x2�/ � .Œx3; x3� C Œx4; x4�/

is valid.
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Refrigerator

x a

Fig. 9.1 Physical system

Example 9.5.3 Coming back to Example 8.2.1 of Chap. 8 (see Fig. 9.1), let us
consider the physical system [46] of a transformer with a refrigerator. Let x be the
input power, a be the output power, y be the power consumption of the refrigerator,
b be the heat balance in the system, 
 be the fraction of input power converted
in heat by the transformer, and � be the fraction of refrigerator power transformed
into heat.

The mathematical model is

�
.1 � 
/x � y D a


x � .1 � 2�/y D b;

where the first equation expresses the electric balance, and the second is the thermal
balance equation. The problem is to design the refrigerator, i.e., to calculate intervals
of marks X and Y for given A and B in such a way that

.8a 2 A0/ .8y 2 Y0/ .9x 2 X0/ a D .1 � 
/x � y

for the electrical balance and

.8x 2 X0/ .9b 2 B0/ .9y 2 Y0/ b D 
x � .1 � 2�/y

for the thermal balance. In accordance with the *-semantic theorem, it is necessary
to solve the following interval linear system of marks

�
.1 � 
/ � X � Dual.Y/ �˛ A


 � Dual.X/ � .1 � 2�/ � Y �˛ B
(9.1)

with A, X and Y improper intervals and B a proper interval. Let us consider a
system of marks of a digital scale DI3 and a tolerance t D 0:05. For the values

 D h1:111e � 1; 0:01i, � D h1:111e � 1; 0:01i, A D Œh16; 0:005i; h8; 0:005i� W

and b D Œh0:2; 0:005i; h0:4; 0:005i� W let us consider the system
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8̂
ˆ̂<
ˆ̂̂:

h8:889e � 1; 0:01i � Œx; x� � Œy; y� �˛

Œh1:600e C 1; 0:005i; h8:000e0; 0:005i�
h1:111e � 1; 0:01i � Œx; x� � h7:778e � 1; 0:01i � Œy; y� �˛

Œh2:000e � 1; 0:005i; h4:000e � 1; 0:005i�

which can be split into two systems of marks

(
h8:889e � 1; 0:01i � x � y �˛ h1:600e C 1; 0:005i

h1:111e � 1; 0:01i � x � h7:778e � 1; 0:01i � y �˛ h4:000e � 1; 0:005i

and

� h8:889e � 1; 0:01i � x � y �˛ h8:000e C 1; 0:005i
h1:111e � 1; 0:01i � x � h7:778e � 1; 0:01i � y �˛ h2:000e � 1; 0:005i

Their solutions are

x D h2:076e C 1; 0:0123i y D h2:451e0; 0:0926i

and

x D h1:038e C 1; 0:0122i y D h1:226e0; 0:0952i;

therefore, the solution of the interval of marks system is

X D Œh2:076e C 1; 0:0123i; h1:038e C 1; 0:0122i� W

and

Y D Œh2:451e0; 0:0926i; h1:226e0; 0:0952i� W

which is the optimal solution of the interval system (1). In accordance with the *-
semantic theorem, this solution means

.8a 2 Œh8:000e � 1; 0:005i; h1:600e C 1; 0:005i�0/

.8y 2 Œh1:226e0; 0:0952i; h2:451e0; 0:0926i�0/

.9x 2 Œh1:038e C 1; 0:0122i; h2:076e C 1; 0:0123i�0/ a D .1 � 
/x � y
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for the electrical balance and

.8x 2 Œh1:038e C 1; 0:0122i; h2:076e C 1; 0:0123i�0/

.9b 2 Œh2:000e � 1; 0:005i; h4:000e � 1; 0:005i�0/

.9y 2 Œh1:226e0; 0:0952i; h2:451e0; 0:0926i�0/ b D 
a � .1 � 2
/b

for the thermal balance. So, a problem theoretically solvable without computational
solution in the context of real intervals, has a solution in the context of intervals of
marks.



Chapter 10
Some Related Problems

10.1 Introduction

This chapter presents some applications of modal intervals to practical problems in
different fields.

First, the minimax problem, tackled from the definitions of the modal *- and **-
semantic extensions of a continuous function. Many real life problems of practical
importance can be modelled as continuous minimax optimization problems. Well
known applications to engineering, finance, optics and other fields demonstrate the
importance of having reliable methods to solve continuous minimax problems and
some algorithms have been developed for the continuous case [2, 15–17, 53, 70].
Classic examples of this are the Chebyshev approximation problem, finding optimal
strategies in Game Theory, minimizing the effect of tolerances in engineering
design, and the satisfaction problem for first-order logic formulas, [71,98]. Applica-
tions to optics [17], control [41,44], finance [76] and industrial engineering [92] are
also well known. As an example, the Chebyshev approximation will be introduced
in order to illustrate how it can be cast as a minimax optimization problem. The
objective in the Chebyshev approximation problem is to approximate, as closely
as possible, an given function f using operations that can be performed on the
computer or calculator, typically with an accuracy close to that of the underlying
computer’s floating point arithmetic. In its classic form, this is accomplished by
using a polynomial P of high degree, and/or narrowing the domain over which the
polynomial has to approximate the function. Once the domain and degree of the
polynomial are chosen, the polynomial itself is chosen in such a way as to minimize
the maximum value of jP.x/�f .x/j, where P.x/ is the approximating polynomial
and f .x/ is the actual function. In a more general form, given a continuous function
f from Y � R

m to R and a set of approximating continuous functions px from R
m

to R parameterized by x 2 R
k belonging to a function space Pk , the Chebyshev

approximation is to find px solving the minimax problem

M.A. Sainz et al., Modal Interval Analysis, Lecture Notes in Mathematics 2091,
DOI 10.1007/978-3-319-01721-1__10,
© Springer International Publishing Switzerland 2014
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min
x

max
y2Y

jpx.y/ � f .y/j:

While global optimization has received much attention from the interval community
[5,6,34,67] and interval methods are now known to be a very powerful approach to
this problem, only a few studies have addressed minimax problems over continuous
domains with interval techniques [41, 44, 98].

The second question is the characterization of solution sets of equations and
systems when the unknowns and coefficients are within some given intervals and
to tackle a set-theoretical problem: to find outer or inner interval estimates for the
solutions of a real linear system Ax D b when the coefficients are known to be
within certain intervals aij 2 A0

ij and similarly for the right-hand sides: bi 2 B 0
i . This

problem appears in several areas of the design of control in physical systems and it
has been treated in the context of classical intervals [56, 57, 59, 79–84]. If Ax D b

is a real-valued system of linear equations, considering intervals A0
ij of variation

for the coefficients and intervals B 0
i of variation for the right-hand sides, a kind of

solution set appears: the so called AE-solution sets [80], i.e., the set of solutions for
the system with logical specifications for the selection of the coefficients

�˛ˇ D fx 2 R
n j .8ai1j1 2 A0

i1j1
/ : : : .8aipjp 2 A0

ipjp
/.8bk1 2 B 0

k1
/ : : : .8bkq ; B 0

kq
/

.9aipC1jpC1
2 A0

ipC1jpC1
/ : : : .9ainjn 2 A0

injn
/

.9bkqC1
2 B 0

kqC1
/ : : : .9bkn 2 B 0

kn
/ Ax D bg:

This �˛ˇ-solution set is a particular case of sets such as the AE-solution sets

� D fx 2 R
n j .8v 2 V 0/.9w 2 W 0/ f .v; w; x/ D 0g; (10.1)

where f is a vectorial continuous function, whose characteristics are studied in
detail together with specialization to the linear case of AE-solution sets. Such
a characterization can be obtained in different ways: pavings, set of intervals
contained and covering � , inner interval estimates, any interval X such that X �
� , outer interval estimates, any interval X such that X � � , or other estimates
such as weak inner estimates or the hull.

The third part is an introduction to control problems from a semantic point of
view and modal intervals as a tool to treat them. Feedback is a necessary technique
to deal with uncertainty in the control of systems. A usual way to represent the
behaviour of a dynamic system is by means of a discrete-time transfer functions
such as

G.z�1/ D B.z�1/

A.z�1/
D

Pm
iD1 bi z�i

1 �Pn
j D1 aj z�j

: (10.2)
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For instance, a first-order system can be represented by

G.z�1/ D B.z�1/

A.z�1/
D b1z�1

1 � a1z�1
(10.3)

which is equivalent to the difference equation

y..n C 1/�t/ D a1y.n�t/ C b1u.n�t/; (10.4)

in which u.n�t/ and y.n�t/ are, respectively, the input and the output of the system
at time n�t ; �t is the sampling time; and n is an integer indicating the step in
the simulation process. With a more comfortable notation, the starting difference
equation for one simulation step can be written

y.k C 1/ D ay.k/ C bu.k/; (10.5)

where k C i D .n C i/ �t .
The main goal of control is to keep the output of the system at a desired value

(the setpoint) at any step

y.k/ D ysp.k/: (10.6)

This problem is usually approached by a mathematical function or an algorithm,
the controller, which uses the measurement of the system’s output to compute
the necessary control variable (feedback). In the case of a first-order system, this
computation can be performed easily using the system’s model:

u.k/ D ysp.k C 1/ � ay.k/

b
: (10.7)

For instance, if a D 0:3, b D 0:5, ysp.k C 1/ D 7, and y.k/ D 2, the necessary
control variable is u.k/ D 12:8.

In the absence of uncertainty, the use of formulas or tables for open-loop control
would be enough. However, there is always uncertainty: in the model of the system,
in the measurements, in the actuators, in the perturbations, etc. An additional way
to deal with uncertainty is taking it into account in the whole control procedure
by means of intervals: the uncertainty in the parameters of the model can be
represented by means of interval parameters, the uncertainty in the measurements
can be represented by interval measurements, etc. An interval is a set of real numbers
with different meanings: in some cases it means that one or several, but unknown,
values belonging to the interval have a property and in other cases it means that
all the values have the property. By combining these meanings, different control
problems can be stated as logical problems.
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10.2 Minimax

A new approach, based on modal interval analysis, to deal with continuous minimax
problems over the reals is presented in this section. Continuous minimax, and global
optimization as a particular case, is reduced to the computation of some semantic
extensions. Modal intervals allow of computing these extensions efficiently and
obtaining guaranteed results. In some simple cases, the results are obtained by
means of simple interval arithmetic computations. Nevertheless, in many cases, a
branch-and-bound algorithm will be required and several examples will illustrate its
behaviour. This algorithm can be applied, with minor and obvious changes, when
the variables take values belonging to discrete sets instead of intervals.

This new approach to the solution of minimax problems can be seen as a
collateral result of the implementation of the f � algorithm presented in Chap. 7.
Two versions of an algorithm for solving continuous minimax optimization are
presented: one devoted to solving unconstrained minimax optimization, and another
to solve constrained minimax optimization.

The continuous minimax problem [15, 98] is defined as follows. If f is a R
k

to R continuous function z D f .x1; : : : ; xk/ defined on an k-dimensional interval
domain X 0 D U 0 
 V 0,

• the unconstrained minimax problem is to find a minmax point

x�
minimax D .u�; v�/ 2 U 0 
 V 0

such that

f .x�
minimax/ D min

u2U 0

max
v2V 0

f .u; v/;

together with the minimax value f .x�
minimax/.

• The constrained minimax problem is to find x�
minimax and f .x�

minimax/ such that

f .x�
minimax/ D min

u2U 0

max
v2V 0

f .u; v/;

subject to some constraints

gr.u; v/ � 0 .r D 1; : : : ; m/;

where the gr are continuous functions defined on X 0.

Remark 10.2.1 Constraints of the type xi Q k will be considered to have been
previously removed by modifying the initial interval domain X0.

Example 10.2.1 For the minimax optimization

min
u2Œ�1;1�0

max
v2Œ�1;1�0

.v � 1/2 C u2;
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subject to the constraint u2 C v2 � 1 � 0, defining

h.u/ D max
v2Œ�1;1�0

.v � 1/2 C u2;

the problem is to find

min
u2Œ�1;1�0

h.u/:

Isolating v from the constraint

v D �
p

1 � u2;

then

h.u/ D .�
p

1 � u2 � 1/2 C u2

and

min
u2Œ�1;1�0

.�
p

1 � u2 � 1/2 C u2:

Thus, we have u� D 1 or u� D �1, which yields

v� D �
p

1 � u2 D 0

and consequently

f .u�; v�/ D .�1/2 C 12 D 2:

Obviously, not all minimax optimization problems can be analytically solved as
easily as this one.

10.2.1 Solution of Unconstrained Problems

The solution to an unconstrained minimax problem for a continuous function f

using modal intervals is closely related to the semantic extension f �. Specifically,
in accordance with Definition 3.2.1, the minimax value of f in X 0 is the infimum
of the interval f �.U ; V /,

min
u2U 0

max
v2V 0

f .u; v/ D Inf.f �.U ; V //

with U a proper interval and V an improper one.
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Nevertheless, the computation of f �.U ; V / depends on the monotonicity prop-
erties of f in .U 0; V 0/. Two cases must therefore be considered.

Case 1: f is optimal in X . When f is monotonic with respect to all its variables
and their incidences and it has an optimal rational extension fR, then it is possible
to compute f �.U ; V / using interval arithmetic. By the Coercion to Optimality
Theorem 4.2.15

f �.U ; V / D fR.U D; V D/ D f ��.U ; V /;

and so the minimax problem has been reduced to computing fR.U D; V D/.
Moreover, the minimax points can be obtained by applying the following rule,

u�
i D

�
Inf.U 0

i / if @f =@ui � 0;

Sup.U 0
i / if @f =@ui � 0;

(10.8)

and

v�
i D

�
Sup.V 0

i / if @f =@vi � 0;

Inf.V 0
i / if @f =@vi � 0;

(10.9)

where i is the variable subindex inside its corresponding vector u or v.

Example 10.2.2 Given the minimax problem

min
u2U 0

max
v2V 0

f .u; v/;

where f is the continuous function

f .u; v/ D u2 C v2 C 2uv � 20u � 20v C 100

and U 0 D Œ0; 2�0, V 0 D Œ2; 8�0. This function can be written as

f .u; v/ D u2
1 C v2

1 C 2u2v2 � 20u3 � 20v3 C 100;

where the subindices represent the different incidences of each variable. First of
all, the monotonicity for each variable and for each of its incidences, considered as
different variables, has to be computed by means of the computation of the ranges
of the partial derivatives with respect to each variable and its incidences.

@f .u; v/=@u D 2u C 2v � 20 2 2 � Œ0; 2� C 2 � Œ2; 8� � 20

D Œ�16; 0� � 0;

@f .u; v/=@u1 D 2u 2 2 � Œ0; 2� D Œ0; 4� � 0;

@f .u; v/=@u2 D 2v 2 2 � Œ2; 8� D Œ4; 16� � 0;
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@f .u; v/=@u3 D �20 � 0;

@f .u; v/=@v D 2v C 2u � 20 2 2 � Œ2; 8� C 2 � Œ0; 2� � 20

D Œ�16; 0� � 0;

@f .u; v/=@v1 D 2v 2 Œ4; 16� � 0;

@f .u; v/=@v2 D 2u 2 Œ0; 4� � 0;

@f .u; v/=@v3 D �20 � 0:

As f is totally monotonic with respect to the multi-incident variables .u; v/, by
Theorem 4.2.15, we have

fR.UD; VD/ D Dual.U1/
2 C Dual.V1/

2

C2 � Dual.U2/ � Dual.V2/ � 20 � U3 � 20 � V3 C 100

D Œ2; 0�2 C Œ2; 8�2 C 2 � Œ2; 0� � Œ2; 8� � 20 � Œ0; 2� � 20 � Œ8; 2� C 100

D Œ36; 4�;

which is an optimal computation for f �.U ; V /. Therefore,

f .u�; v�/ D min
u2Œ0;2�0

max
v2Œ2;8�0

f .u; v/ D Inf.f �.U ; V // D 36:

As the function is totally monotonic with respect to all its variables, the minimax
value is achieved at certain bounds of the respective intervals. Taking into account
the signs of the derivatives, the minimax point is .u�; v�/ D .2; 2/.

Case 2: f is not optimal in X . This case occurs when f � and f �� are different
or when f is not monotonic with respect to all its variables and their incidences.
Hence, it is not possible to compute f �.X/ using simple arithmetic computations,
and only interpretability theorems can be applied. By Theorem 4.2.10,

f �.U ; V / � fR.U D; V Dt�/

or, using Theorem 4.2.12,

f �.U ; V / � fR.U D; V DT�/:

In any case, fR will provide only an approximation to f �. Therefore, only a lower
bound for the minimax value can be obtained.

Example 10.2.3 Let consider the previous Example 10.2.2 but changing the interval
U to Œ0; 6�. In this case, none of the variables are monotonic and Theorem 4.2.15
can not be applied. Using Theorem 4.2.10,
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fR.UD; VDt�/ D U 2
1 C Œmid.V /�2 C 2 � U2 � Œmid.V /�

�20 � U3 � 20 � Œmid.V /� C 100

D Œ0; 6�2 C Œ5; 5�2 C 2 � Œ0; 6� � Œ5; 5� �20 � Œ0; 6� �20 � Œ5; 5� C 100

D Œ�95; 121�;

where Œmid.V /� is the point-wise interval corresponding to the midpoint of .V /.
Therefore,

f .u�; v�/ D min
u2Œ0;6�0

max
v2Œ2;8�0

f .u; v/ � Inf.f �.U ; V // D �95:

Or applying Theorem 4.2.12,

fR.UD; VDT�/ D U 2
1 C Dual.V1/

2 C 2 � U2 � Dual.V2/ � 20 � U3 � 20 � V3 C 100

D Œ0; 6�2 C Œ2; 8�2 C 2 � Œ0; 6� � Œ2; 8�

�20 � Œ0; 6� � 20 � Œ8; 2� C 100

D Œ�56; 136�:

Therefore,

f .u�; v�/ D min
u2Œ0;6�0

max
v2Œ2;8�0

f .u; v/ � Inf.f �.U ; V // D �56:

The results obtained are approximations to the minimax value, which actually is
f .u�; v�/ D 9:

Summarizing, the computation of the minimax value of a continuous function
can be done through the computation of its f � extension. However, a good
approximation to the minimax value can only be achieved under certain conditions
of monotonicity. When these monotonicity conditions are not satisfied, to reduce the
overestimation effect, a branch-and-bound algorithm is presented below.

10.2.2 Minimax Algorithm

Computing the minimax value of a continuous function f can be seen as computing
(or approximating) its f � extension. This section describes a particularization
of the f � algorithm presented in Chap. 7 which allows of approximating the
minimax value of a continuous function f . Moreover, a minimax optimization
problem normally requires the minimax point, therefore the proposed algorithm
also returns a list of boxes (interval vectors) which are candidates for containing
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the minimax point(s). First the unconstrained version of the minimax algorithm is
presented, and then the constrained version is explained.

Let X D .U ; V / be a modal interval vector split into proper U and improper V

components. Let fU 1; : : : ; U rg be a partition of U and, for every j D 1; : : : ; r , let
fV 1j ; : : : ; V sj g be a partition of V . Each interval U j 
 V kj is called a Cell, each
V �j -partition is called a Strip, and the U -partition is called the Strips’ List. The
presented algorithm is based on the following theorem.

Theorem 10.2.1 Given f , a real continuous function from R
k to R, then

min
u2U 0

max
v2V 0

f .u; v/

belongs to the interval

ŒInf. _
j 2f1;:::;rg

^
kj 2f1j ;:::;sj g

Out.fR.U j ; Lvkj ///;

Inf. _
j 2f1;:::;rg

^
kj 2f1j ;:::;sj g

Inn.fR. Luj ; V kj ///�;

where Luj is any point of U 0
j (j D 1; : : : ; r) and Lvkj is any point of V 0

kj
(kj D

1j ; : : : ; sj ) (for example the midpoints of the intervals or their bounds).

Proof Directly from Theorem 7.5.1. �

Remark 10.2.2 Taking advantage of the possible monotonicities of f , in accor-
dance with Theorem 7.5.2 (see also (7.16) and (7.17)), inner and outer approxi-
mation for each cell can be

Inn.Cell/ D Inn.fR. LuD; V D// (10.10)

and

Out.Cell/ D Out.fR.U D; V Dt�//: (10.11)

The unconstrained version of the minimax algorithm is similar to the f �
algorithm presented in Chap. 7. However, as only the minimax bound of the f �
computation is required, some slight modifications are introduced to focus on the
computation of this bound. These modifications consist of the following criteria.

10.2.2.1 Stopping Criteria

The stopping condition is replaced by

While fMinimax.Inn; Out/ < 'g;
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where ' is the desired precision for the output and Minimax is the function
defined by

Minimax.Inn; Out/ D jInf.Out/ � Inf.Inn/j:

Remark 10.2.3 The stopping condition concerning the satisfaction of the logical
formula is nonsensical in the minimax algorithm.

10.2.2.2 Bounding Criteria

The bounding criteria is replaced by

• a Cell is not bisected Inf.Inn.Cell// � Inf.Out.Strip//, because no division of
any improper component V will improve the minimax approximation.

Similarly,

• a Strip is not bisected when Inf.Out.Strip// � Inf.Inn/, because no division
through any proper component U will improve the minimax approximation.
Moreover, this Strip can be eliminated from the StripSet.

10.2.2.3 Selection Strategy

The selection strategy is modified and consists of selecting the Strip and the Cell
with the biggest Minimax.Inn.:/; Out.://, and whose left bound approximations
Inf.Inn.:// and Inf.Out.:/// match at least one of these bounds with one of the left
bounds of the global approximation Inf.Inn/ or Inf.Out/.

10.2.2.4 Return Value

Instead of returning the inner and outer approximations of f �, the minimax
optimization algorithm returns Minimax.Inn; Out/.

10.2.2.5 Minimax Point Selection

As mentioned before, a minimax optimization problem normally requires the
minimax point.

Algorithm 2 takes the StripSet resulting from applying the minimax algorithm
and returns a list of boxes which are candidates for containing the minimax point(s).

The result of the algorithm implementation is to have inner and outer estimates of
the minimax, together with a cell or a list of cells which are candidates for enclosing
the minimax points, with a maximum width smaller than �, and the union of these
boxes for each point.
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Algorithm 2 SelectMinimaxBoxes
Require: Minimax approximation (Minimax.Inn; Out/) and StripSet.
Ensure: List of candidate boxes to contain the minimax point (MinimaxList).
1: for Cell in Strip in StripSet do
2: Compute Cell approximations

Inn.Cell/ D Inn.Inn.fR.LuD; V D///;

Out.Cell/ D Out.fR.U D; V Dt�//:

3: if Minimax.Cell/ > Minimax.Inn; Out/ then
4: Eliminate Cell.
5: else
6: Enqueue Cell to MinimaxList.
7: end if
8: end for9: return MinimaxList.

Example 10.2.4 Following the previous examples, for the same continuous function

f .u; v/ D u2 C v2 C 2uv � 20u � 20v C 100

and the intervals U 0 D Œ0; 6�0; V 0 D Œ2; 8�0, this problem can be solved analytically
and the result is a minimax value of 9 and two minimax points (5,2) and (5,8).
Using the algorithm with an � D 10�4 and a tolerance of 10�2, the following result
is obtained in 0.5 s on a Pentium IVM 1.5 GHz,

min
u2Œ0;6�0

max
v2Œ2;8�0

f .u; v/ 2 Œ8:999999; 9:000001�0

x�
minimax 2 f.Œ4:999999; 5:000001�0; Œ1:999999; 2:000001�0/;

.Œ4:999999; 5:000001�0; Œ7:999999; 8:000001�0/g:

Example 10.2.5 Given the minimax optimization problem [15]

min
z2Œ��;��0

max
y2Œ��;��0

f .y; z/;

where

f .y; z/ D .cos y C ˙m
kD1 cos..k C 1/y C zk//2;

for m D 1, ' D 10�3 and � D 10�3, the following result is obtained in 0.6 s.

• Minimax W Œ3:098176; 3:100176�0.
• MinimaxList W f.Œ�1:573066; �1:471875�0; Œ0:785000; 0:490625�0/,

.Œ�1:573066; �1:471875�0; Œ2:551250; 2:355000�0/,

.Œ1:471875; 1:573066�0; Œ�0:490625; �0:785000�0/,

.Œ1:471875; 1:573066�0; Œ�2:355000; �2:551250�0/g.
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Example 10.2.6 Given the minimax optimization problem [33]

min
x12Œ�1;2�0

max
.x2;x3/2.Œ�1;1�0 ;Œ�1;1�0/

f .x1; x2; x3/;

where

f .x1; x2; x3/ D
10X

kD1

.e�0:1kx1 � e�0:1kx2 � .e�0:1k � e�k/x3/2;

for ' D 10�3, � D 10�3 and a computation time of 0.5 s, the following result is
obtained.

• Minimax W Œ13:79551; 13:80204�0.
• MinimaxList W f([1.859375,2]’,[0.999999,1.]’[-0.375000,-0.335937]’),

.Œ�0:343750; �0:343017�0; Œ0:999999; 1:0�0; Œ�1:0; �0:999999�0/g.

10.2.3 Solution of Constrained Problems

The problem of finding the minimax value when there exist general constraints
defined by inequalities in the form

gr .x; y/ � 0 .r D 1; : : : ; m/

cannot be solved with procedures based on simple interval computations because,
even if all the functions involved were optimal, the feasible region need not an
interval.

An approximate solution can be obtained by adapting the unconstrained minimax
algorithm to the feasible region. Each cell of the partition must be situated with
regard to the feasible region defined by the constraints: if the cell is out, it must be
eliminated; if the cell is in, it must be considered as a member of the partition; while
in other cases it must be kept for subsequent divisions.

Specifically, let ˙ be the feasible region and let .U 0
j ; V 0

kj
/ be a sub-box of the

initial interval domain X 0 D .U 0; V 0/. The following propositions must be tested

8.x 2 U 0
j / 8.y 2 V 0

k/ gr .x; y/ � 0 .r D 1; : : : ; m/

by means of the following modal interval inclusions:

grR.U j ; V k/ � .�1; 0� .r D 1; : : : ; m/;

with U j and V k proper intervals, because the rational extension grR.U j ; V k/ is an
outer approximation to the range gr.U

0
j ; V 0

k/.
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(2)

(1)

(3)

Σ

V´

U´

Fig. 10.1 Feasibility region
and partitions

If all of the m inclusions are true, the cell .U j ; V k/ is inside the feasible region
and it is included in a partition named ˘ .1/. If any of the inclusions

grR.U j ; V k/ � �0; 1/ .r D 1; : : : ; m/

are true, the cell is outside of the feasible region, it is included in a partition named
˘ .2/, and it must be eliminated. Otherwise, the cell intersects the feasible region and
it is included in a partition named ˘ .3/ and it must be kept for subsequent divisions.
Figure 10.1 illustrates a feasible region in two dimensions.

For any partition ˘ .l/ (with l D 1; 3), let r.l/ be the number of strips and let s
.l/
j

be the number of cells of the strip j . By Theorem 10.2.1,

min
u2U 0

max
v2V 0

f .u; v/ � Inf. _
j 2f1.1/;:::;r.1/g

^
kj 2f1

.1/C.3/
j ;:::;s

.1/C.3/
j g

Inn.fR. Luj ; Vkj ///

and

min
u2U 0

max
v2V 0

f .u; v/ � Inf.. _
j 2f1.1/;:::;r.1/g

^
kj 2f1

.1//
j ;:::;s

.1/
j g

Out.fR.U j ; Lvkj /// _ E/;

where

E D _
j 2f1.3/;:::;r.3/g�f1.1/;:::;r.1/g

_
kj 2f1

.3/
j ;:::;s

.3/
j g

Out.fR.U j ; Dual.V kj ///:

is a necessary allowance when the cell is in ˘ .3/ intersecting, but not contained in,
the feasible region.

By the previous reasoning, and taking advantage of the possible monotonicities
of f (see Remark 10.2.2), the necessary additional (or substitutive) steps for solving
the constrained version of the minimax optimization problem, in comparison to the
unconstrained version, are summarized in the following steps.
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• For each Cell, ascertain if .Cell 2 ˘ .1//, .Cell 2 ˘ .2// or .Cell 2 ˘ .3//.
• Compute inner and outer approximations of the resulting Cell partitions, as

follows:
If Cell 2 ˘ .1/, then

Inn.Cell/ D Inn.fR. LuD; V D//;

Out.Cell/ D Out.fR.U D; V Dt�//:

If Cell 2 ˘ .3/, then

Inn.Cell/ D Inn.fR. LuD; V D//;

Out.Cell/ D Out.fR.U D; V Dt�// _ Out.fR.U D; Dual.V /D//:

It is important to note that to compute the inner approximation Inn.fR. LuD; V D//,
the D-transformation over a variable of a U partition (Strip) requires the variable
to be totally monotonic along the U partition.

• Compute inner and outer approximations of Strip, that is,

Inn.Strip/ D ^
fCell.1;3/ in Stripg

Inn.Cell.1;3//;

Out.Strip/ D ^
fCell.1/ in St ripg

Out.Cell.1//;

where Cell.1;3/ is a Cell belonging to either of the partitions ˘ .1/ or ˘ .3/.
• Compute global inner and outer approximations, that is

Inn D _
fStrip.1/ in StripSetg

Inn.Strip.1//;

Out D _
fStrip.1;3/ in StripSetg

Out.Strip.1;3//;

where Strip.1/ is a Strip containing at leat one Cell.1/, and Strip.3/ is a Strip not
containing any Cell.1/ and containing at leat one Cell.3/.

• Concerning the bisection strategy, do not bisect a Cell or a Strip partition only if
the objective function is totally monotonic with respect to its components .u; v/

and it is consistent with respect to the involved constraints.

Example 10.2.7 Given the constrained minimax optimization problem

min
x12Œ0;6�0

max
x22Œ2;8�0

x2
1 C x2

2 C 2x1x2 � 20x1 � 20x2 C 100;

subject to the constraints

g1.x1; x2/ D .x1 � 5/2 C .y � 3/2 � 4 � 0;

g2.x1; x2/ D .x1 � 5/2 C .y � 3/2 � 16 � 0:
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For ' D 10�5 and � D 10�5, the following result is obtained in 0.7 s.

• Minimax W Œ1:102542; 1:102572�0.
• MinimaxList W f.Œ4:142899; 4:142944�0; Œ4:807053; 4:807030�0/,

.Œ4:142899; 4:143036�0; Œ6:907135; 6:907089�0/,

.Œ4:142944; 4:143036�0; Œ6:907043; 6:907043�0/g.

Example 10.2.8 Given the constrained continuous minimax optimization problem
inspired from [15]

min
x2Œ�3:14;3:14�0

max
y2Œ�3:14;3:14�0

.cos.y/ C cos.2y C x//2;

subject to the constraints

g1.x; y/ D y � x.x C 6:28/ � 0;

g2.x; y/ D y � x.x � 6:28/ � 0:

For � D 10�6 and ' D 10�6, the following result is obtained in 0.8 s.

• Minimax W Œ8:586377e � 03; 8:586695e � 03�0.
• MinimaxList W f.Œ�0:437082; �0:437081�0I Œ�2:553834I �2:553831�0/,

.Œ�0:4370827; �0:4370812�0I Œ�3:140000; �2:747500�0/g.

Remark 10.2.4 This algorithm is applicable, with minor and obvious changes, when
the variables take values belonging to discrete sets instead of continuous intervals.

10.3 Solution Sets

The second question is the characterization of the solution sets of systems when
the unknowns and coefficients belong to certain given domains, with given logical
specifications.

Usually quantifiers arise in situations of uncertainty and if the uncertainties can
be represented by means of intervals, the domains are intervals. An interval contains
a set of real numbers with different meanings: in some cases it means that one or
several, but unknown, values belonging to the interval have a property and in other
cases it means that all the values have the property. By combining these meanings,
many problems can be stated as logical problems. Universal quantification must be
used when some parameters are unknown and the predicates have to hold for every
possible parameter value, and existential quantification when some parameters can
be chosen. So in this case some inputs are uncontrolled disturbances, hence to be
universally quantified, but some take values inside prescribed intervals, hence to be
existentially quantified. The selection of the coefficients leads to a logical definition
such as (10.1), where the universal quantifiers precede the existential ones and the
domains are intervals on the real line.
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In control systems or in decision making situations described by antagonistic
games, uncertain controls or perturbations are often represented by parameters
which conflict among themselves because the represented actions can be mutually
compensating. For example considering the input–output relationship in a system
under interval uncertainty in the form

f .a; x/ D b;

where f is a function whose components are expressions in the variables a and x
related by elementary operators, a problem of control can be [85]: for what system
states x, for any perturbations given for the values of the variables akC1; : : : ; ar

inside some intervals A0
kC1; : : : ; A0

r and for any given outputs b1; : : : ; bl inside some
intervals B 0

1; : : : ; B 0
l , the corresponding controls akC1; : : : ; ar inside the intervals

AkC1; : : : ; Ar make that the system output is inside certain intervals B 0
lC1; : : : ; B 0

s .
When all the inputs and outputs are determined the solution of the problem is
equivalent to find the following AE-solution set

� D fx 2 R
n j8.a1 2 A0

1/ : : : 8.ak 2 A0
k/ 8.b1 2 B 0

1/ : : : 8.bl 2 B 0
l /

9.akC1 2 A0
kC1/ : : : 9.ar 2 A0

r / 9.blC1 2 B 0
lC1/ : : : 9.bs 2 B 0

s/

f .a; x/ D bg

An AE-solution set can be consider as a particular case of a more general
˙-solution set obtained combining the quantifiers 8 and 9 in any order,

˙ D fx 2 R
n j Q.a; A/ Q.b; B/ f .a; x/ D bg;

where Q2 f8; 9g. This kind of general ˙-solution sets arise, for example in multi-
step decision-making processes under interval uncertainties and they are very related
to problems of minimax in operations research where models of decision may be
reduced to problems of finding values of, for example [12]

min
x2X 0

max
y2Y 0

min
z2Z0

f .x; y; z/:

(additional examples about problems where of ˙ and AE-solution sets appear can
be found in [85]).

Let us consider the problem of characterizing a set of solutions of a AE-solution
set in the form:

� D fx 2 B 0 j .8u 2 U 0/.9v 2 V 0/ f .x; u; v/ D 0g; (10.12)

where f is a real or a vectorial continuous function from R
k to R

m and B 0, U 0, V 0
interval vectors of suitable dimensions.
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10.3.1 Pavings

The first characterization of the solution set is by means of pavings, i.e., intervals
contained and covering � . This characterization leads to solution sets when the
constraints depend on some parameters about which only their belonging to certain
intervals is known. A branch and bound algorithm over Rn will divide it in boxes
which can be classified in three classes:

(a) Boxes contained in � . They are the pavings of � .
(b) Boxes contained in the complementary � . These are boxes to be discarded.
(c) Boxes non-decidable, in other case. These boxes will be subject to subsequent

divisions.

As the semantic theorems to apply for prove the involved inclusions are different
for real or vectorial functions, it is necessary to split the problem for both kind of
functions.

10.3.1.1 f Is a Real Function

In a first step, let us consider that f is a real continuous function f . The algorithm
is based on Modal Interval Analysis and branch-and-bound techniques, and referred
as Quantified Set Inversion (QSI) algorithm [37], because it is inspired by the well-
known Set Inversion Via Interval Analysis (SIVIA) algorithm [42, 43].

The QSI algorithm is designed to characterize a AE-solution set

� D fx 2 B 0 j .8u 2 U 0/.9v 2 V 0/ f .x; u; v/ D 0g; (10.13)

and it is based on a branch-and-bound process over the free-variables vector x of
the logical formula which define (10.13), together with two bounding rules used to
determine if a resulting box X 0 from the bisection procedure over B 0 is included in
the solution set, X 0 � � (InsideQSI rule), or if X 0 does not intersect with the
solution set, X 0 \ � D ; (OutsideQSI rule).

The first bounding rule is

InsideQSI W X 0 � � , .8x 2 X 0/.8u 2 U 0/ .9v 2 V 0/ f .x; u; v/ D 0:

Notice that the first-order logic formula contained in this InsideQSI rule can be
reduced to a modal interval inclusion by means of the *-Semantic Theorem:

Out.f �.X ; U ; V // � Œ0; 0� ) f �.X ; U ; V / � Œ0; 0�

, .8x 2 X 0/.8u 2 U 0/.9v 2 V 0/ f .x; u; v/ D 0

, X 0 � �; (10.14)
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Algorithm 3 QSI algorithm
Require: �.
Ensure: �Inn and �Out of the solution set.
1: List=fX 0g; �Inn D f;g; 4� D f;g;
2: while List not empty do
3: Dequeue X 0 from List ;
4: if InsideQSI is true for X 0 then
5: Enqueue X 0 to �Inn;
6: else if OutsideQSI is true for X 0 then
7: Do nothing;
8: else if d.X 0/ < � then
9: Enqueue X 0 to 4� ;

10: else
11: Bisect X 0 and enqueue the resulting boxes to List ;
12: end if
13: end while
14: Enqueue �Inn and 4� to �Out;

with X ; U proper intervals, V improper intervals and Out.f �.X ; U ; V // an outer
approximation of the *-semantic extension of f .

The second bounding rule is

OutsideQSI W X 0 \ � D ; , .8x 2 X 0/:..8u 2 U 0/.9v 2 V 0/ f .x; u; v/ D 0//

, .8x 2 X 0/.9u 2 U 0/.8v 2 V 0/ f .x; u; v/ ¤ 0/:

Again, the first-order logic formula of the OutsideQSI rule can be reduced to a modal
interval inclusion:

Inn.f �.X ; U ; V // ª Œ0; 0� ) f �.X ; U ; V / ª Œ0; 0�

, :..8u 2 U 0/.9v 2 V 0/.9x 2 X 0/ f .x; u; v/ D 0/

, .9u 2 U 0/.8v 2 V 0/.8x 2 X 0/ f .x; u; v/ ¤ 0

) .8x 2 X 0/.9u 2 U 0/.8v 2 V 0/ f .x; u; v/ ¤ 0

, X 0 \ � D ;; (10.15)

with U being proper intervals, X ; V improper ones, and Inn.f �.X ; U ; V // an inner
approximation of the *-semantic extension of f .

Finally, if any of the bounding rules is fulfilled, the box X 0 is considered as
undefined and is bisected.

Algorithm 3 shows the QSI algorithm in pseudo-code form:
where

• List : List of boxes;
• �Inn: List of boxes such that �Inn � � ;
• �Out: List of boxes such that � � �Out;
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• Enqueue: The result of adding a box to a list;
• Dequeue: The result of extracting a box from a list;
• d.X 0/: Function returning the widest relative width of X 0 with respect to the

original box;
• �: A real value representing the desired precision.

Example 10.3.1 As an example of applying the quantified set inversion algorithm
to a real physical system, let us consider the problem of the determination of the
mean stream velocity of the waters of a reach of a river [77]. Let us assume that the
velocity depends only on the river flow and the bed slope, modelled by means of the
following time-invariant black-box model.

vm D a1f C a2sf;

where f .m3=s/ is the river flow rate, s .m=m/ is the bed slope (both are the model
inputs), vm .m=s/ is the average velocity (it is the model output), and a1 and a2 are
the model parameters (positive quantities without any physical interpretation). The
term in sf represents the synergy acting as an increase of velocity when flow and
slope increase.

The problem is to find values for a1 and a2 which are consistent with the
experimental uncertain values obtained by means of experimental measurements of
the mean velocity in different points under different flow conditions, and represented
by the intervals of Table 10.1. Figure 10.2 shows the experimental data, where the
rectangles represent the intervals of uncertainty associated to the couple of data
(flow, velocity).

The solution set of parameters is

� D f.a1; a2/ 2 R
2 j .9si 2 Si

exp/ .9f i 2 F i
exp/ .9vi

m 2 V i
exp/ vi

m D a1f
i C a2sif i g;

for all i D 1; : : : ; 27, which ensures that each one of the 27 outputs experimental
intervals intersects the set of possible trajectories defined by any .a1; a2/ 2 �3 and
some input f i 2 F i

exp, si 2 Si
exp.

After applying the QSI algorithm, the resulting solution set � is shown in
Fig. 10.3.

In the case of the � or � relations, the *-semantic theorem states the equivalences

f �.X ; U ; V / � .�1; 0� , .8x 2 X 0/.8u 2 U 0/.9v 2 V 0/f .u; v/ � 0

and

f �.X ; U ; V / � Œ0; C1/ , .8x 2 X 0/.8u 2 U 0/.9v 2 V 0/f .u; v/ � 0:

Therefore for the solution set

� D fx 2 B0 j .8u 2 U 0/.9v 2 V 0/ f .x; u; v/ � 0g; (10.16)
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Table 10.1 Experimental
intervals of slopes, flow rates
and mean velocities

Si
exp F i

exp V i
exp

Œ0:003449; 0:003451� Œ2:80; 3:20� Œ0:133; 0:158�

Œ0:003449; 0:003451� Œ8:60; 9:80� Œ0:319; 0:373�

Œ0:003449; 0:003451� Œ10:00; 11:30� Œ0:385; 0:452�

Œ0:003449; 0:003451� Œ8:10; 9:20� Œ0:312; 0:366�

Œ0:003449; 0:003451� Œ7:30; 8:30� Œ0:292; 0:344�

Œ0:003449; 0:003451� Œ10:20; 11:60� Œ0:377; 0:444�

Œ0:002699; 0:002701� Œ12:30; 13:90� Œ0:534; 0:632�

Œ0:002699; 0:002701� Œ9:70; 11:00� Œ0:373; 0:440�

Œ0:002699; 0:002701� Œ20:10; 22:70� Œ0:744; 0:873�

Œ0:002699; 0:002701� Œ5:70; 6:50� Œ0:271; 0:325�

Œ0:002699; 0:002701� Œ5:10; 5:80� Œ0:242; 0:290�

Œ0:001689; 0:001691� Œ7:80; 8:80� Œ0:300; 0:353�

Œ0:001689; 0:001691� Œ15:00; 17:00� Œ0:576; 0:681�

Œ0:001689; 0:001691� Œ8:70; 9:90� Œ0:347; 0:413�

Œ0:005289; 0:005291� Œ13:20; 15:00� Œ0:507; 0:600�

Œ0:005289; 0:005291� Œ16:60; 18:80� Œ0:638; 0:753�

Œ0:005289; 0:005291� Œ17:30; 19:60� Œ0:692; 0:817�

Œ0:005289; 0:005291� Œ10:30; 11:70� Œ0:412; 0:488�

Œ0:005289; 0:005291� Œ6:70; 7:60� Œ0:291; 0:345�

Œ0:005289; 0:005291� Œ8:10; 9:20� Œ0:337; 0:400�

Œ0:005289; 0:005291� Œ18:30; 20:70� Œ0:703; 0:828�

Œ0:005289; 0:005291� Œ15:60; 17:70� Œ0:600; 0:708�

Œ0:005289; 0:005291� Œ6:30; 7:20� Œ0:252; 0:300�

Œ0:005289; 0:005291� Œ8:60; 9:70� Œ0:344; 0:405�

Œ0:005289; 0:005291� Œ6:60; 7:50� Œ0:275; 0:326�

Œ0:006779; 0:006781� Œ28:60; 32:30� Œ1:191; 1:404�

Œ0:006779; 0:006781� Œ27:50; 31:10� Œ1:146; 1:352�
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A2

A1

HmHl Hh

Vl

Vm

Vh
Fig. 10.3 � paving

rules (10.14) and (10.15) become

Out.f �.X ; U ; V // � Œ0; C1/ ) X 0 � �

Inn.f �.X ; U ; V // ª Œ0; C1/ ) X 0 \ � D ;:

Analogously, for the solution set

� D fx 2 B0 j .8u 2 U 0/.9v 2 V 0/ f .x; u; v/ � 0g; (10.17)

rules (10.14) and (10.15) become

Out.f �.X ; U ; V // � .�1; 0� ) X 0 � �

Inn.f �.X ; U ; V // ª .�1; 0� ) X 0 \ � D ;:

Remark 10.3.1 Nevertheless, inequality predicates could also be expressed as
equality predicates by introducing variables, for example

f .u; v/ � 0 , f .u; v/ � a D 0;

where a 2 .�1; 0� is a slack variable.

Example 10.3.2 For the solution set

� D f.x1; x2/ 2 .Œ�10; 10�0; Œ�10; 10�0/ j
.8u 2 Œ�1; 1�0/.9v 2 Œ�2; 2�0/ x1u � x2v2 sin x1 � 0g;
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Fig. 10.4 Graphical output for Example 10.3.2

Figure 10.4 shows a graphical result of the QSI algorithm for an � D 0:05 in 40 s
on a Pentium IV M 1.5 GHz, where red boxes are included in the solution set, blue
boxes are outside of the solution set, and green boxes are undefined.

Remark 10.3.2 The complexity of the algorithm is exponential because of its
branch-and-bound nature. It guarantees termination for non ill-posed problems and
a finite precision. It is sound because it provides a continuous guaranteed inner
approximation to the solution set and it is complete because provides an outer
approximation of the solution set.

10.3.1.2 f Is a Vectorial Function

Suppose that, in the Definition (10.12) of the solution set, f is a vectorial continuous
function f D .f1; : : : ; fm/, i.e., the AE-solution set is

� D fx 2 B 0 j .8u 2 U 0/.9v 2 V 0/f .x; u; v/ D 0g; (10.18)

with f a function from R
k to R

m. The QSI algorithm can be applied only when the
components functions f1; : : : ; fm do not share any existentially quantified variable
v-component. If they do not, the QSI algorithm must be run m times independently
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Fig. 10.5 Graphical output for Example 10.3.3

for each of the f -components and the AE-solution set is the intersection of all the
obtained partial solution sets. If there exist shared existentially quantified variables,
QSI can not be directly applied, except in some special cases.

Example 10.3.3 For the solution set

� D f.x1; x2/ 2 .Œ�10; 10�0; Œ�10; 10�0/ j
.9v 2 Œ�0:5; 0:5�0/.�x1 C x2v C x2

1 � 0 ^ �x2 C .1 C x2
1/v C v3 � 0/g;

the QSI algorithm, in its original form, can not be applied due to the presence of
a shared existentially quantified variable v but it can be replaced by the equivalent
solution set

� D f.x1; x2/ 2 .Œ�10; 10�0; Œ�10; 10�0/ j
.9v 2 Œ�0:5; 0:5�0/ min.�x1 C x2v C x2

1 ; �x2 C .1 C x2
1/v C v3/ � 0g:

Figure 10.5 shows a graphical representation of the solution provided by the QSI
algorithm for an � D 0:05 in 49 s on a Pentium IV M 1.5 GHz.

In the general case, here are two results to decide whether an interval is or not a
paving for a AE-solution set.
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Theorem 10.3.1 Let U 0 and V 0 be interval vectors and f be a continuous function
from R

k 
 U 0 
 V 0 in R
m, such that f D .f1; : : : ; fm/. Let us consider the AE-

solution set

� D fx 2 R
k j .8u 2 U 0/.9v 2 V 0/ f .x; u; v/ D 0g:

If X D .X1; : : : ; Xk/ is a proper interval vector such that

fR.X ; U ; V T �/ � .Œ0; 0�; : : : ; Œ0; 0�/; (10.19)

where

1) U are proper intervals and V improper ones,
2) V T � is obtained from V by transforming all of its incidences (in all the

equations) but one into their duals,

then X 0 � � .

Proof If X is a proper formal solution of the interval system (10.19), then by
Theorem 4.4.3 (the *-interpretability of m-dimensional computations) applied to
the system of inclusions

8̂̂
<
ˆ̂:

f1R.X1; : : : ; Xk; U ; V T �/ � Œ0; 0�

f2R.X1; : : : ; Xk; U ; V T �/ � Œ0; 0�

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
fmR.X1; : : : ; Xk; U ; V T �/ � Œ0; 0�:

As fi R.X1; : : : ; Xk; U ; V T �/ (i D 1; : : : ; m) are, respectively, interpretable
computations of f �

i .X1; : : : ; Xk; U ; V /, the formula

.8x1 2 X 0
1/ : : : .8xk 2 X 0

k/.8u 2 U 0/.9v 2 V 0/ f .x1; : : : ; xk; v; w/ D 0;

is valid. So, every .x1; : : : ; xk/ 2 � and X 0 � � . �

Corollary 10.3.1 Let U 0 and V 0 be interval vectors and f be a continuous function
from R

k 
 U 0 
 V 0 in R
m such that f D .f1; : : : ; fm/. Let us consider the AE-

solution set

� D fx 2 R
k j .8u 2 U 0/.9v 2 V 0/ f .x; u; v/ D 0g:

If x D .x1; : : : ; xk/ is a point such that

fR.x; U ; V T �/ � .Œ0; 0�; : : : ; Œ0; 0�/; (10.20)

where

1) U are proper intervals and V improper ones,
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2) V T � is obtained from V by transforming all of its incidences (in all the
equations) but one into their duals,

then x 2 � .

Proof This is the previous theorem for the particular case of X D Œx; x�. �

Remark 10.3.3 This corollary provides the condition for a point to belong to a
solution set and, therefore, can be used to characterize the AE-solution set by means
of points.

Theorem 10.3.2 Let U 0 and V 0 be interval vectors and f be a continuous function
from R

k 
 U 0 
 V 0 in R
m such that f D .f1; : : : ; fm/. Let us consider the AE-

solution set

� D fx 2 R
k j .8u 2 U 0/.9v 2 V 0/ f .x; u; v/ D 0g:

If for some i

Inn.f �
i .X ; U ; V // ª Œ0; 0�; (10.21)

with U proper intervals and X ; V improper ones, then X 0 \ � D ;.

Proof For such i , the *-semantic theorem implies

Inn.f �
i .X ; U ; V // ª Œ0; 0� ) f �

i .X ; U ; V / ª Œ0; 0�

, :..8u 2 U 0/.9v 2 V 0/.9x 2 X 0/ fi .x; u; v/ D 0/

, .9u 2 U 0/.8v 2 V 0/.8x 2 X 0/ fi .x; u; v/ ¤ 0

) .8x 2 X 0/ :..8u 2 U 0/ .9v 2 V 0/ fi .x; u; v/ D 0/

) X 0 \ � D ;: �

So the QSI algorithm can be adapted to the vectorial case by means of the branch-
and-bound process and applying the rules of selection and rejection. The first rule is

Inside QSI W X 0 � � (

8̂
<̂
ˆ̂:

f1R.X1; : : : ; Xk; U ; V T �/ � Œ0; 0�

f2R.X1; : : : ; Xk; U ; V T �/ � Œ0; 0�

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
fmR.X1; : : : ; Xk; U ; V T �/ � Œ0; 0�;

The second bounding rule is

OutsideQSI W X 0 \ � D ; ( Inn.f �
i .X ; U ; V // ª Œ0; 0� for some i D 1; : : : ; m

Finally, if any of the bounding rules is fulfilled, the box X 0 is considered as
undefined and it is bisected.
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10.3.2 Interval Estimations

The characterization of a � solution set by means of pavings, that is, intervals
contained in � , is not the only possible one, and perhaps it is not always the most
convenient. When the result of the parameter estimation is used to simulate with an
interval model, the parameters must be intervals and, therefore, it can be more useful
to find an interval inner estimate, that is, an interval of parameters contained in � ,
or an interval outer estimate, an interval containing � , depending on the solution
requirements.

An inner interval estimate of � is any interval X 0 such that X 0 � � . An outer
interval estimate of � is any interval X 0 such that X 0 � � . The hull is the �-
minimum interval which contains � and a weak inner interval estimate is any
interval containing solutions and contained in the hull.

Obviously, a characterization by pavings also provides inner and outer interval
estimates of the set � . Any box of the paving is an inner interval estimate, and by
operating with these pavings, different inner estimates can be obtained.

Nevertheless, different interval inner estimates can be also considered and
sometimes it is necessary to find an interval inner estimate fulfilling some criteria,
such as maximum volume, maximum diagonal, or others.

Consider the particular case when m D n and the equations fi .x; u; v/ D 0 are
the linear equations ai1x1 C ai2x2 C : : : C ainxn D bi , and consider any set of n

proper intervals Y1; Y2; : : : ; Yn satisfying the inclusions

8̂̂
<
ˆ̂:

A11 � Y1 C A12 � Y2 C : : : C A1n � Yn � B1

A21 � Y1 C A22 � Y2 C : : : C A2n � Yn � B2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
An1 � Y1 C An2 � Y2 C : : : C Ann � Yn � Bn;

where Ai1j1 ; : : : ; Aipjp ; BkqC1
; : : : ; Bkn are proper intervals and AipC1jpC1

; : : : ;

Ainjn , Bk1; : : : ; Bkq are uni-incident improper. Then the n-dimensional interval
.Y 0

1 ; Y 0
2 : : : ; Y 0

n/ satisfies .Y 0
1 ; Y 0

2 : : : ; Y 0
n/ � � and turns out to be an interval inner

estimate of the solution set � . Therefore, starting from an initial solution Y .0/ of the
system A�X � B, the Jacobi algorithm yields, provided it converges, a sequence of
interval vectors Y .0/ � Y .1/ D J.Y .0// � Y .2/ D J.Y .1// � : : : which, in line with
the properties of the Jacobi interval operator, arranges that Y .t/ is a formal solution
of A � X � B if t is even, and a formal solution of A � X � B if t is odd. So the
interval vectors of the sequence .Y .1/; Y .3/; Y .5/; : : :/, and every other one obtained
starting from a different initial solution, are pavings if they are proper intervals.

Example 10.3.4 Let us suppose given a system of two linear equations and two
unknowns

�
a11x1 C a12x2 D b1

a21x1 C a22x2 D b2:
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The set-intervals of variation of each variable are A0
11 D Œ2; 4�0, A0

12 D Œ1; 2�0,
A0

21 D Œ�1; 2�0, A0
22 D Œ2; 4�0, B 0

1 D Œ0; 2�0 and B 0
2 D Œ2; 3�0. The problem is to find

an inner and an outer estimate for the AE-solution set, for example

� D fx 2 R
2 j .8a12 2 Œ1; 2�0/.8b2 2 Œ2; 3�0/.9a11 2 Œ2; 4�0/.9a21 2 Œ�1; 2�0/

.9a22 2 Œ2; 4�0/.9b1 2 Œ0; 2�0/ .a11x1 C a12x2 D b1; a21x1 C a22x2 D b2/g:

An inner estimate can be obtained by finding the proper interval formal solutions,
if they exist, of the linear system

�
Œ4; 2� � X1 C Œ1; 2� � X2 � Œ0; 2�

Œ2; �1� � X1 C Œ4; 2� � X2 � Œ3; 2�:

The Jacobi algorithm applied to the system

�
Œ4; 2� � X1 C Œ1; 2� � X2 D Œ0; 2�

Œ2; �1� � X1 C Œ4; 2� � X2 D Œ3; 2�

yields the sequence

X .0/ D .Œ�0:0909091; �0:0909091�; Œ0:848485; 0:848485�/;

Y .0/ D X.1/ D .Œ�0:848485; 0:575758�; Œ0:477273; 1:59091�/;

Y .1/ D .Œ�0:238636; �0:295455�; Œ0:75; 1�/;

Y .2/ D .Œ�0:375; 0�; Œ0:676136; 1:29545�/;

Y .3/ D .Œ�0:338068; �0:147727�; Œ0:75; 1�/;

Y .4/ D .Œ�0:375; 0�; Œ0:713068; 1:14773�/;

Y .5/ D .Œ�0:356534; �0:0738636�; Œ0:75; 1�/;

Y .11/ D .Œ�0:372692; �0:0092233�; Œ0:75; 1�/;

Y .21/ D .Œ�0:374928; �0:000289�; Œ0:75; 1�/;

Y .31/ D .Œ�0:374998; �9:0003e � 6�; Œ0:75; 1�/;

Y .47/ D .Œ�0:375; 0�; Œ0:75; 1�/;

which provides the inner estimate .Œ�0:375; 0�0; Œ0:75; 1�0/ � �˛ˇ . All Y i for i an
odd integer greater than 1 are also inner estimates and the limit of the sequence
.Y .1/; Y .3/; Y .5/; : : :/ is a �-maximal inner estimate.

When the Jacobi algorithm does not converge to a proper solution, the mixed
integer or non-linear optimization techniques described in Chap. 6 can be used
and non-linear optimization will be necessary when f is not a linear function.
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Modal Interval Analysis allows of transforming the logical problem into an alge-
braic one in a very direct way. The transformed algebraic problem is set-theoretical
and it can be solved with interval techniques and/or linear programming techniques,
if the functions are linear, or with optimization tools. The restrictions are inequalities
obtained from the interval inclusions of each equation, which are the algebraic
translation provided by the modal interval analysis of the semantic statement of
the problem.

For example let us consider the parameter identification problem defined by the
solution set

� D fp j .8i 2 f1; : : : ; ng/ .9ui 2 Ui
exp/ .9yi 2 Y i

exp/ yi D f .p; ui /g:

An interval inner estimate of � is an interval P such that the logical formulas

.8p 2 P/ .9ui 2 Ui
exp/ .9yi 2 Y i

exp/ yi D f .p; ui /; for all i D 1; : : : ; n

are true, which is equivalent to the following n modal interval inclusions

f �.P; Ui
exp/ � Y i

exp i D 1; : : : ; n

with P and Y i
exp proper intervals and Ui

exp improper ones.
To find an inner interval estimate of � of maximum volume, it is necessary to

solve a non-linear optimization problem. If P D .P1; : : : ; Pk/ with Pj D Œp
j
; pj �,

the problem is:
maximize:

Qk
j D1.pj � p

j
/

subject to

1. The value p 2 P must have physical sense.
2. The intervals Pj must be proper intervals.
3. f �.P; Ui

exp/ � Y i
exp for all i D 1; : : : ; n, with P and Y i

exp proper intervals and

Ui
exp improper ones.

As the function to be maximized is a real function, any optimization procedure
of numerical real analysis can be used to solve the problem.

Example 10.3.5 Coming back to the previous Example 10.3.1 for the mean velocity
in the reach of the river Ter, where the model is

vm D a1f C a2sf

and the same semantic statement for the parameter identification. The problem is to
obtain an interval A D .A1; A2/ with maximum volume, which, when presented as
a non-linear optimization problem, is:

maximize: .a1 � a1/ � .a2 � a2/
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Fig. 10.6 Simulation with
the obtained parameters

subject to

1. A1 � Œ0; 0�, A2 � Œ0; 0�.
2. A1 and A2 must be proper intervals.
3. f �.A1; A2; Si

exp; F i
exp/ � V i

exp for i D 1; : : : ; 27, with A1; A2; V i
exp proper

intervals and Si
exp; F i

exp improper ones.

Using the optimization library GRG2 c	[58] the result is the interval A D
.A1; A2/, where

A1 D Œ0:041724; 0:042548� A2 D Œ0; 0:238903�:

With this interval for the parameters, the results of a simulation with the set of data
of Table 10.1 compared with the experimental intervals for the velocity are shown
in Fig. 10.6.

The semantics associated to this interval of parameters A is

.8.a1; a2/ 2 A/ .9si 2 Si
exp/ .9f i 2 F i

exp/ .9vi
m 2 V i

exp/ vi
m D a1f i C a2si f i ;

for all i D 1; : : : ; 27.

The join of all the non-decidable intervals, and any other interval containing this
join, is an interval outer estimate. This join is a good approximation (up to the fixed
precision for the QSI algorithm in the paving process) to the hull of the solution set.
Obviously the exact hull is not attainable due to the unavoidable rounding, but with
optimization techniques it is possible to approximate the hull with an error less than
the accuracy of the algorithm used.

Optimization techniques can be used to get weak inner estimates. By Corol-
lary 10.3.1, a point belongs to � if
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x 2 � (

8̂
<̂
ˆ̂:

f1R.x1; : : : ; xk; U ; V T �/ � Œ0; 0�

f2R.x1; : : : ; xk; U ; V T �/ � Œ0; 0�

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
fmR.x1; : : : ; xk; U ; V T �/ � Œ0; 0�;

So, finding a weak inner estimate of � can be put in the form of solving the 2k

mathematical programming problems:

min x1 ; max x1 ; min x2 ; max x2 ; : : : ; min xk ; max xk

subjecting all of them to the same restrictions:

Inf.f1R.x1; : : : ; xi ; : : : ; xk; U ; V T �// � 0;

Sup.f1R.x1; : : : ; xi ; : : : ; xk; U ; V T �// � 0;

Inf.f2R.x1; : : : ; xi ; : : : ; xk; U ; V T �// � 0;

Sup.f2R.x1; : : : ; xi ; : : : ; xk; U ; V T �// � 0;

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Inf.fmR.x1; : : : ; xi ; : : : ; xk; U ; V T �// � 0;

Sup.fmR.x1; : : : ; xi ; : : : ; xk; U ; V T �// � 0:

The solution of these 2k problems will provide a weak inner estimate of � . If for
all the syntax trees of f1; : : : ; fm the variables v are uni-incident, all the rational
computations f1R; : : : ; fmR are optimal, and the corresponding optimization algo-
rithm gives global optima for all of them, the transformation from V to V T � is not
necessary and the solutions define the hull of � (up to roundings).

In the particular case when m D n and the equations fi .x; u; v/ D 0 are the
linear equations ai1x1 C ai2x2 C : : : C ainxn D bi , it would be necessary to solve
the 2n corresponding programming problems:

min x1 ; max x1 ; min x2 ; max x2 ; : : : ; min xk ; max xk

subjecting all of them to the same restrictions:

Inf.A11x1 C A12x2 C : : : C A1i xi C : : : C A1nxn/ � Inf.B1/;

Sup.A11x1 C A12x2 C : : : C A1i xi C : : : C A1nxn/ � Sup.B1/;

Inf.A21x1 C A22x2 C : : : C A2i xi C : : : C A2nxn/ � Inf.B2/;

Sup.A21x1 C A22x2 C : : : C A2i xi C : : : C A2nxn/ � Sup.B2/;

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Inf.An1x1 C An2x2 C : : : C Anixi C : : : C Annxn/ � Inf.Bn/;

Sup.An1x1 C An2x2 C : : : C Ani xk C : : : C Annxn/ � Sup.Bn/:
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Due to the definition of multiplication of a real number by an interval, none of these
problems is a linear programming problem since the restrictions are not totally linear
functions but piece-wise linear functions. So it will be necessary either to solve
them as non-linear problems, following the previous approach, or to introduce 0–1
variables, one for each real variable xi .i D 1; : : : ; n/, to convert them to mixed
integer problems. In this case, as all the coefficients and right-hand sides are uni-
incident and all the rational computations are optimal, the solution of all these 2n

problems will provide the hull of � .
In the particular case when m D n and the equations fi .x; u; v/ D 0 are the

linear equations ai1x1 C ai2x2 C : : : C ainxn D bi , it would be necessary to solve
the 2n corresponding programming problems:

min x1 ; max x1 ; min x2 ; max x2 ; : : : ; min xk ; max xk

subjecting all of them to the same restrictions:

Inf.A11x1 C A12x2 C : : : C A1i xi C : : : C A1nxn/ � Inf.B1/;

Sup.A11x1 C A12x2 C : : : C A1i xi C : : : C A1nxn/ � Sup.B1/;

Inf.A21x1 C A22x2 C : : : C A2i xi C : : : C A2nxn/ � Inf.B2/;

Sup.A21x1 C A22x2 C : : : C A2i xi C : : : C A2nxn/ � Sup.B2/;

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Inf.An1x1 C An2x2 C : : : C Anixi C : : : C Annxn/ � Inf.Bn/;

Sup.An1x1 C An2x2 C : : : C Ani xk C : : : C Annxn/ � Sup.Bn/:

Due to the definition of multiplication of a real number by an interval, none of these
problems is a linear programming problem since the restrictions are not totally linear
functions but piece-wise linear functions. So it will be necessary either to solve
them as non-linear problems, following the previous approach, or to introduce 0–1
variables, one for each real variable xi .i D 1; : : : ; n/, to convert them to mixed
integer problems. In this case, as all the coefficients and right-hand sides are uni-
incident and all the rational computations are optimal, the solution of all these 2n

problems will provide the hull of � .

Example 10.3.6 Let us consider a linear n 
 n system with coefficients defined by
the intervalized matrix

A D

0
BBBBBBBB@

1 2 3 � � � n � 1 n

2 2 3 � � � n � 1 n

3 3 3 � � � n � 1 n
:::

:::
:::

: : :
:::

:::

n � 1 n � 1 n � 1 � � � n � 1 n

n n n � � � n n

1
CCCCCCCCA
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uniformly widened by ˙0:00001 and all the n right-hand sides are intervals bounded
by 0:999 and 1:001. Let us consider, for example the united solution set

�uni WD fx 2 R
n j .9a11 2 A0

11/ : : : .9ann 2 A0

nn/ .9b1 2 B0

1/ : : : .9bn 2 B0

n/ Ax D bg

A weak inner estimate can be obtained from the interval system in which the
coefficients are improper intervals Œaij C 0:00001; aij � 0:00001� and the right-hand
sides are equal to the proper interval Œ0:999,1:001�. By considering it as a non-linear
programming problem, in the case of n D 10 the solution is (using the GRG2 c	
optimization software, www.optimalmethods.com),

X D .Œ�:0020027157; :0020023119�; Œ�:0040052708; :0040047840�;

Œ�:0040054313; :0040049443�; Œ�:0040052709; :0040049443�;

Œ�:0040054312; :0040049443�; Œ�:0040052804; :0040049443�;

Œ�:0040054309; :0040046444�; Œ�:0040052779; :0040046266�;

Œ�:0040054281; :0040043241�; Œ:0980975654; :1019020469�/;

with a CPU time of 2 s in a workstation HP 9000 with a processor PA-RISC 50 MHz.
The solution as mixed integer programming problems (using the LINDO c	 linear
and integer programming software, www.lindo.com) is

X D .Œ�:002001204; :002001645�; Œ�:004003203; :004003042�;

Œ�:004003363; :004003042�; Œ�:004003290; :004003042�;

Œ�:004003363; :004003042�; Œ�:004003290; :004003042�;

Œ�:004003363; :004003042�; Œ�:004003108; :004003024�;

Œ�:004002894; :004002687�; Œ:09809904; :1019010�/;

with a CPU time of 135 s in an Intel Celeron 500 MHz, which is the hull (up to
rounding) of the solution set � . In the case of n D 30, the CPU times are 37 s and
close to 60 
 220 s, respectively. In the case of n D 50, the CPU times are 310 s and
close to 100 
 1;200 s, respectively.

Now let us consider, for example the tolerable solution set

�tol D fx 2 R
n j .8a11 2 A0

11/ : : : .8ann 2 A0

nn/ .9b1 2 B 0

1/ : : : .9bn 2 B 0

n/ Ax D bg

A weak inner estimate can be obtained from the interval system in which the
coefficients are proper intervals Œaij � 0:00001; aij C 0:00001� and the right-hand
sides are equal to the proper interval Œ0:999,1:001�. By considering it as a non-linear
programming problem (using the GRG2 c	 optimization software), in the case of
n D 10 the solution is

www.optimalmethods.com
www.lindo.com
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X D .Œ�:0019980803; :0019980822�; Œ�:0039960054; :0039960422�;

Œ�:0039958000; :0039959707�; Œ�:0039959964; :0039960273�;

Œ�:0039958683; :0039959563�; Œ�:0039960071; :0039959236�;

Œ�:0039960325; :0039959914�; Œ�:0039960230; :0039960112�;

Œ�:0039959931; :0039961398�; Œ:0981017657; :1018981786�/;

with a CPU time of 2 s in a workstation HP 9000 with a processor PA-RISC
100 MHz. The solution as mixed integer programming problems (using the LINDO
c	 linear and integer programming software) is

X D .Œ�:001999001; :001998999�; Œ�:003997842; :003997838�;

Œ�:003997842; :003997838�; Œ�:003997842; :003997838�;

Œ�:003997842; :003997838�; Œ�:003997842; :003997838�;

Œ�:003997846; :003997842�; Œ�:003997853; :003997849�;

Œ�:003997933; :003998005�; Œ:09810092; :1018991�/;

with a CPU time of 150 s in a Intel Celeron 500 MHz, which is the hull (up to
rounding) of the solution set � . In the case of n D 30, the CPU times are 65 s and
close to 60 
 450 s, respectively. In the case of n D 50, the CPU times are 360 s and
close to 100 
 780 s, respectively.

Example 10.3.7 (From [65]) Let us consider, for example the solution set

� D fx 2 R
n j Q.aij; Aij/.9bi 2 B 0

i / Ax D bg:

with B 0
i D Œ�1; 1�0, A0

ij D Œ0; 2�0 if i ¤ j , A0
ij D Œt; t �0 if i D j (i; j D 1; : : : ; n), Q

is an existential quantifier when i D j or i D j � 1 or i D j C 1 and a universal
quantifier in other case and each universal quantifier precedes to all the existential
quantifiers.

A weak inner estimate of � can be obtained from the interval system A*X=B
with

A D

0
BBBBBBB@

Œt; t � Œ2; 0� Œ0; 2� : : : Œ0; 2� Œ0; 2�

Œ2; 0� Œt; t � Œ2; 0� : : : Œ0; 2� Œ0; 2�

Œ0; 2� Œ2; 0� Œt; t � : : : Œ0; 2� Œ0; 2�

: : : : : : : : : : : : : : : : : :

Œ0; 2� Œ0; 2� Œ0; 2� : : : Œt; t � Œ2; 0�

Œ0; 2� Œ0; 2� Œ0; 2� : : : Œ2; 0� Œt; t �

1
CCCCCCCA

and B D

0
BBBBBBB@

Œ�1; 1�

Œ�1; 1�

Œ�1; 1�

: : :

Œ�1; 1�

Œ�1; 1�

1
CCCCCCCA

:

By considering it as a non-linear programming problem, in the case of n D 10 and
t D 12 the solution is (using the GRG2 c	 optimization software),
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X D .Œ�:0493460794; :0508658012�; Œ�:0616031482; :0590925454�;

Œ�:0762287990; :0705556843�; Œ�:0563179030; :0544155900�;

Œ�:0563179030; :0544155900�; Œ�:0563179030; :0544155900�;

Œ�:0563179030; :0544155900�; Œ�:0611468829; :0705556843�;

Œ�:0647274327; :0592073076�; Œ�:0493460794; :0457792387�/;

with a CPU time of 5 s in a workstation HP 9000 with a processor PA-RISC 50 MHz.
The solution as mixed integer programming problems (using the LINDO c	 linear
and integer programming software) is

X D .Œ�:1; :1�; Œ�:1125; :1125�;

Œ�:1125; :1125�; Œ�:1125; :1125�;

Œ�:1125; :1125�; Œ�:1125; :1125�;

Œ�:1125; :1125�; Œ�:1125; :1125�;

Œ�:1125; :1125�; Œ�:1; :1�/;

with a CPU time of 160 s in a Intel Celeron 500 MHz, which is the hull (up to
rounding) of the solution set � .

10.4 A Semantic View of Control

Control problems, together with an extensive class of technical problems involving
uncertainties, can be formalized by means of the predicate logic and, therefore, they
are suitable for being solved by modal interval techniques, thanks to the semantic
extensions f � and f �� and their corresponding semantic theorems. Both semantic
theorems state an equivalence between a logical formula involving intervals and
functional predicates (where we assume the universal quantifiers precede the
existential ones) with an interval inclusion. The solution to these inclusions can be
obtained, in some easy cases, by means of interval arithmetic computations, but
in other more general cases the f �-algorithm will be needed. Often the logical
definition of the problem is stated as the characterization of a solution set which
can be made by means of the QSI algorithm, based on the f �-algorithm as well.

Models usually are inaccurate, i.e., they are approximate representations of the
systems. This is a consequence of the modelling procedure which, usually, involves
hypotheses, assumptions, simplifications, linearizations, etc. A modern view of
control sees feedback as a tool for uncertainty management [63]. A complementary
way to manage uncertainty is including it in the models by making them accurate
but imprecise. This is what interval models do.

For instance, a model such as the one of Eqs. (10.5),
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y.k C 1/ D ay.k/ C bu.k/

with k C i D .n C i/ �t , if, for example a 2 A D Œ0:2; 0:4�0 and b 2 B D
Œ0:4; 0:6�0, it becomes an interval model. It can be seen as a set of models. It is
obvious that the necessary control variable for different systems belonging to the
set of systems represented by the interval model is different. Therefore, a single
value of the control variable can not control all the systems, but the set of necessary
control variables is bounded and it can be represented by an interval. The semantics
at the core of the problem of searching an interval for the control variable U.k/ is

.8a 2 Œ0:2; 0:4�0/.8b 2 Œ0:4; 0:6�0/.9u.k/ 2 U.k/0/

ysp.k C 1/ D ay.k/ C bu.k/: (10.22)

If ysp.k C 1/ D 7 and y.k/ D 2, and whichever are the values of a and b (in
their respective given intervals), the solution for the interval U.k/0 such that the
necessary, but perhaps unknown, control variable is in U.k/0 is the range of the real
function

u.k/ D ysp.k C 1/ � ay.k/

b
: (10.23)

which is easily obtainable by the interval computation

U.k/0 D 7 � 2 Œ0:2; 0:4�0

Œ0:4; 0:6�0
D 7 � Œ0:4; 0:8�0

Œ0:4; 0:6�0
D Œ6:2; 6:6�0

Œ0:4; 0:6�0
D Œ10:33; 16:5�0

(10.24)

made with outer rounding to satisfy the logical condition (10.22). So, as was seen
in the Introduction, for a D 0:3 and b D 0:5, it is u.k/ D 12:8 2 Œ10:33; 16:5�0.

Different quantified logical formulas can be used to express different control
problems in a formal way. For instance, it can be interesting to know the set of
necessary control variables U.k/ for achieving all the setpoints ysp.kC1/ belonging
to an interval, such as Œ6; 8�0,

.8a 2 Œ0:2; 0:4�0/ .8b 2 Œ0:4; 0:6�0/ .8ysp.k C 1/ 2 Œ6; 8�0/ .9u.k/ 2 U.k/0/

ysp.k C 1/ D a1y.k/ C b1u.k/: (10.25)

The solution of this problem is the range of the real function defined in (10.23), also
easily obtainable by the interval computation

U.k/0 D Œ6; 8�0 � 2 Œ0:2; 0:4�0

Œ0:4; 0:6�0
D Œ6; 8�0 � Œ0:4; 0:8�0

Œ0:4; 0:6�0
D Œ5:2; 7:6�0

Œ0:4; 0:6�0
� Œ8:66; 19�0
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computed with outer rounding. Notice that this result obviously includes the one
of (10.24), as now the setpoint is a set and it is desired to have the possibility of
achieving all its values.

But it can be also interesting to know the set of values for the necessary
control variable U.k/ to achieve only some setpoint ysp.k C 1/ belonging to the
interval Œ6; 8�0

.8a 2 Œ0:2; 0:4�0/ .8b 2 Œ0:4; 0:6�0/ Q.u.k/; U.k// .9ysp.k C 1/ 2 Œ6; 8�0/

ysp.k C 1/ D a1y.k/ C b1u.k/: (10.26)

The solution of this problem is out of reach of classical interval arithmetic. Modal
Interval Analysis provides logical tools to solve this kind of problems. According
to the *-semantic theorem, this logical condition is equivalent to finding an outer
estimate of the u�-extension of the function (10.23) to the intervals A D Œ0:2; 0:4�,
B D Œ0:4; 0:6� and Ysp.k C 1/ D Œ8; 6�. As its rational extension uR.A; B; Ysp.k C
1// is optimal in the domains involved, the solution is

U.k/ D Œ8; 6� � 2 Œ0:2; 0:4�

Œ0:4; 0:6�
D Œ8; 6� � Œ0:4; 0:8�

Œ0:4; 0:6�
D Œ7:2; 5:6�

Œ0:4; 0:6�
� Œ12; 14�;

(10.27)

which is included in the result of (10.24). This is obvious because now the setpoint
constraint has been relaxed. The semantics (10.26) becomes

.8a 2 Œ0:2; 0:4�0/ .8b 2 Œ0:4; 0:6�0/ .9ysp.k C 1/ 2 Œ6; 8�0/ .9u.k/ 2 Œ12; 14�0/

ysp.k C 1/ D a1y.k/ C b1u.k/: (10.28)

An interesting result is obtained if the setpoint is even more relaxed, for instance
if the setpoint is any value in Œ5; 8�0:

U.k/ D Œ8; 5� � 2 Œ0:2; 0:4�

Œ0:4; 0:6�
D Œ8; 5� � Œ0:4; 0:8�

Œ0:4; 0:6�
D Œ7:2; 4:6�

Œ0:4; 0:6�
� Œ12; 11:5�

(10.29)

The modality of the result has changed so the semantics have changed and 10.26
becomes

.8a 2 Œ0:2; 0:4�0/ .8b 2 Œ0:4; 0:6�0/ .8u.k/ 2 Œ11:5; 12�0/ .9ysp.k C 1/ 2 Œ6; 8�0/

ysp.k C 1/ D a1y.k/ C b1u.k/

which means that any value of the control variable in Œ11:5; 12�0 produces the desired
results. This is an important difference with regard to the previous examples in
which the necessary control variable was unknown but bounded.
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10.4.1 Measurements and Uncertainty

A new step is to allow the true value of the output of the system at time k,
i.e., y.k/, to be not accurately known. This is due to the uncertainty associated
with the measuring procedure, which usually involves noise, analog to digital
conversion errors, etc. The proposed approach is to consider the uncertainty in the
measurements converting the real-valued measurements into interval measurements.
Therefore, if the inaccuracy of the measurements can be bounded by the interval
P 0 D Œp; p�0, the measurement ym.k/ is converted into the interval measurement

Ym.k/0 D ym.k/ C P 0 (10.30)

For instance, assume as in the previous example the true value of y.k/ is 2, but
the measured value is ym.k/ D 2:03 and the inaccuracy of the measurement can be
bounded by P D Œ�0:1; 0:1�0. Then the interval measurement is

Ym.k/0 D ym.k/ C P 0 D 2:03 C Œ�0:1; 0:1�0 D Œ1:93; 2:13�0 (10.31)

which, obviously, includes the true value of the output.
The control variables of the previous cases must be computed taking into account

this inaccuracy. For instance,

.8a 2 Œ0:2; 0:4�0/ .8b 2 Œ0:4; 0:6�0/ .8y.k/ 2 Œ1:93; 2:13�0/ Q.u.k/; U.k//

.9ysp.k C 1/ 2 Œ5; 8�0/ ysp.k C 1/ D a y.k/ C b u.k/: (10.32)

This logical proposition is equivalent to finding an outer estimate of the
u�-extension of the function (10.23) to the intervals A D Œ0:2; 0:4�, B D
Œ0:4; 0:6�, Ysp.k C 1/ D Œ8; 6� and Ym.k/ D Œ1:93; 2:13�. As its rational extension
uR.A; B; Ysp.k C 1/; Ym.k// is optimal in the domains involved, the solution is

U.k/ D Œ8; 5� � Œ0:2; 0:4� � Œ1:93; 2:13�

Œ0:4; 0:6�
D Œ7:148; 4:614�

Œ0:4; 0:6�
� Œ11:91; 11:54�;

computed with outer rounding, with the semantics meaning

.8a 2 Œ0:2; 0:4�0/ .8b 2 Œ0:4; 0:6�0/.8y.k/ 2 Œ1:93; 2:13�0/.8u.k/ 2 Œ11:54; 11:91�0/

.9ysp.k C 1/ 2 Œ5; 8�0/ ysp.k C 1/ D a y.k/ C b u.k/:

Comparing this result with the one obtained in (10.29), it can be observed that
the inaccuracy of the measurements obviously gives a narrower U.k/ when it is a
universal interval. If U.k/ were an existential interval, this inaccuracy would make
it wider.
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10.4.2 An Application to Temperature Control

The presented control method is applied now to the control of the temperature of a
house with central heating/cooling. This method allows, in addition, designing the
actuator, i.e., to determine the necessary power.

Building the model, the main component of the system is the house. Assuming
to begin with that the temperature in the house is greater than the temperature
outside the house, there is an energy (heat) flow from inside to outside. The heat
is transmitted by conduction, convection and radiation. Assuming that all forms of
heat transmission are considered in the thermal resistance of the house, the heat
losses are:

pio D tin � tout

rth
; (10.33)

where

• pio is power: the amount of heat transmitted from inside to outside per time unit.
• tin is the inside temperature.
• tout is the outside temperature.
• rth is the thermal resistance of the house: windows, doors, walls, roof, etc.

Central heating tries to compensate for these power losses and to maintain the
inside temperature at the desired value (setpoint). This temperature varies depending
on the difference between the heat power produced by the central heating and the
lost power:

dtin

dt
D ph=c � pioP

i mici

; (10.34)

where

• mi is the mass of each element which is inside the house: air, furniture, etc.
• ci is its specific heat.
• ph=c is the power of the heating/cooling system.

The discrete model that allows computing the necessary heating power is

ph=c.k/ D tin.k/ � tout.k/

rth
C .tin.k C 1/ � tin.k//

P
i mici

�t
: (10.35)

Let us suppose that rth and
P

i mici are uncertain parameters taking values within
some given intervals Rth and MC and that tin.k/ and tout.k/ are measured variables
with values inside certain intervals Tin.k/ and Tout.k/.

Let us consider the problem of finding an interval of control Ph=c.k/ able to
give enough power to reach, in one step, from any temperature tin.k/ inside an
interval Tin.k/ to any temperature tin.k C 1/ inside an interval Tin.k C 1/, when
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the outside temperature is any value of the interval Tout.k/ and the values of the
model parameters are in their respective intervals Rth and MC. Semantically stated,
this problem is

.8rth 2 R0
th/ .8m 2 MC 0/ .8tin.k/ 2 Tin.k/0/ .8tout.k/ 2 Tout.k/0/

.8tin.k C 1/ 2 Tin.k C 1/0/ .9ph=c.k/ 2 Ph=c.k/0/

ph=c.k/ D tin.k/ � tout.k/

rth
C .tin.k C 1/ � tin.k//

P
i mici

�t
; (10.36)

which is similar to problem (10.25). The solution Ph=c.k/0 is the range of the
function (10.35) but, in this case, this range is not reachable by means of simple
interval arithmetic computations due to the multi-incidences of some of the variables
in (10.35). Nevertheless in the context of classical intervals, there exist branch-and-
bound algorithms to compute the range of the function with a given accuracy.

But it is also interesting to know the set of values for the necessary control
variable ph=c.k/ to achieve any of the acceptable temperatures in an set Tout.k/0.
Semantically stated this problem is

.8rth 2 R0
th/ .8m 2 MC0/ .8tin.k/ 2 Tin.k/0/ .8tout.k/ 2 Tout.k/0/

Q.ph=c.k/; Ph=c.k// .9tin.k C 1/ 2 Tin.k C 1/0/

ph=c.k/ D tin.k/ � tout.k/

rth
C .tin.k C 1/ � tin.k//

P
i mici

�t
; (10.37)

where Q is a universal or existential quantifier, depending on the modality of the
computed interval control Ph=c.k/. This problem is similar to problem (10.26),
which was out of the reach of classic intervals and its solution is an outer estimate of
the p�

h=c extension of the function (10.35) to the proper intervals Rth, MC, Tout.k/,
Tin.k/ and the improper interval Tin.k C 1/. As its rational extension

ph=cR.Rth; MC; Tout.k/; Tin.k/; Tin.k C 1//

is not, in general, optimal in the domains involved due to the multi-incidences of
some variables in (10.35), the solution could not be obtained by means of simple
modal interval arithmetic, but it was necessary to use the f �-algorithm to compute
the involved interval extensions.

For example let us consider typical values for the parameters of the model:

• rth 2 Rth D Œ0:001; 0:01� K
W

,
•
P

i mici 2 MC D Œ5 � 106; 6 � 106� J
K

,
• �t D 120s,

Let us also suppose that the outside temperature is Tout.k/ D Œ4; 5�, the rooms’s
initial temperature is Tin.k/ D Œ18; 18:1� and the rooms’s desired final temperature
is Tin.k C 1/ D Œ18:2; 18:7�. The solution to the one-step first problem (10.36), i.e.,
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the *-extension of the function (10.35), turns out to be

ph=c.k/ D Œ5;476:67; 49;000� W

This result means

.8rth 2 Œ0:001; 0:01�0/ .8
X

i

mi ci 2 Œ5 � 106; 6 � 106�0/ .8tin.k/ 2 Œ18; 18:1�0/

.8tout.k/ 2 Œ4; 5�0/ .8tin.k C 1/ 2 Œ18:2; 18:7�0/ .9ph=c.k/ 2 Œ5;476:67; 49;000�0/

ph=c.k/ D tin.k/ � tout.k/

rth
C .tin.k C 1/ � tin.k//

P
i mi ci

�t
;

i.e., a power between 5,476.67 and 49,000 W is necessary to reach a determined
room temperature in 120 s. The precise value depends on the desired temperature
and on the precise values of the uncertain parameters. This result can be used either
to choose a value for the control action, that is, the heating power, or to design
the actuator, that is, the heater. If the available power is already fixed, this result
can be used to assess its usefulness. In this case, if the available power is less than
5,476.67 W, none of the temperatures between 18:2 C 273:15 and 18:7 C 273:15 K
can be reached, at least in 120 s. If the available power is between 5,476.67 and
49,000 W, some temperatures can be reached, depending on the true values of the
uncertain parameters. Finally, if the available power is greater than 49 kW, any of
these temperatures can be reached, so the heater is useful even in the worst case.

The solution to the second problem (10.37), i.e., the *-extension of the function
(10.35) to the same proper intervals Rth, MC, �t, Tin.k/, Tout.k/ and the improper
interval Tin.k C 1/ D Œ18:3; 18:2�, turns out to be

ph=c.k/ D Œ9;643:33; 24;000� W

This means that

.8rth 2 Œ0:001; 0:01�0/ .8m 2 Œ5 � 106; 6 � 106�0/ .8tin.k/ 2 Œ18; 18:1�0/

.8tout.k/ 2 Œ4; 5�0/ .9ph=c.k/ 2 Œ9;643:33; 24;000�0/ .9tin.k C 1/ 2 Œ18:2; 18:3�0/

ph=c.k/ D tin.k/ � tout.k/

rth
C .tin.k C 1/ � tin.k//

P
i mi ci

�t
;

i.e., an unknown power between 9,643.33 and 24,000 W will bring the room’s
temperature to an unknown value between 18:2 C 273:15 and 18.7+273.15K in
120 s, whatever are the true values of the uncertain parameters in this period of
time. This result is obviously included in the previous one, as now any of the final
temperatures belonging to the interval is accepted. This is the computation that must
be performed when any temperature considered as comfortable is acceptable.
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The solution to the second problem (10.37), i.e., the *-extension of the function
(10.35) to the same proper intervals Rth, MC, �t, Tin.k/, Tout.k/ and the improper
interval Tin.k C 1/ D Œ18:7; 18:2�, turns out to be

ph=c.k/ D Œ26;310; 24;000� W:

This means that

.8rth 2 Œ0:001; 0:01�0/ .8m 2 Œ5 � 106; 6 � 106�0/ .8tin.k/ 2 Œ18; 18:1�0/

.8tout.k/ 2 Œ4; 5�0/ .8ph=c.k/ 2 Œ26;310; 24;000�0/ .9tin.k C 1/ 2 Œ18:2; 18:7�0/

ph=c.k/ D tin.k/ � tout.k/

rth
C .tin.k C 1/ � tin.k//

P
i mici

�t
;

i.e., any power between 24,000 and 26,310 W will bring the room’s temperature
to an unknown value between 18:2C273:15 and 18:7C273:15K in 120 s, whatever
are the true values of the uncertain parameters in this period of time. This result
is very interesting because there is a guarantee on the final temperature and this
guarantee is maintained whatever are the true values of the uncertain parameters
and the heating power that is being applied.

This methodology is easily extended to a multi-step case by repeating the same
computations for the successive steps.

Remark 10.4.1 The obtained results are useful in several ways. One of them is the
control of an uncertain system. The control action is not precisely determined but
it is bounded, so it is known if the set-point is reachable or not with the available
actuator. Another way is the design of the actuator. In any case these tools help the
engineers to assess the possibilities of already designed controlled systems or to
design new ones.

10.5 Concluding Remarks

The applications presented in this chapter can be seen as simple examples meant
to explain the applicability of modal intervals in different fields and cannot be
considered as real-world problems, which are out of the essentially theoretical
scope of this monograph. Real-world problems are usually difficult to introduce
and they deserve a detailed study in a book focused on the application of models
intervals. Applications in control [69, 91], fault detection [3, 4, 78], fuzzy design
[9], fault diagnosis [78], mechanical engineering [45, 50–52, 93–95], biomedicine
[10,19,38,74], computer graphics [35,36], constraint programming [31], fuzzy logic
[7], etc are examples of different fields where modal intervals have been successfully
used. Finally, modal intervals have also aroused interest in the theoretical domain
and have been recently revisited and reformulated [29, 30].
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