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Preface

Functional differential equations and inclusions occur in a variety of areas of
biological, physical, and engineering applications, and such equations have received
much attention in recent years. This book is devoted to the existence of local and
global mild solutions for some classes of functional differential evolution equations
and inclusions, and other densely and non-densely defined functional differential
equations and inclusions in separable Banach spaces or in Fréchet spaces. Some of
these equations and inclusions present delay which may be finite, infinite, or state-
dependent. Other equations are subject to impulses effect. The tools used include
classical fixed point theorems and the measure of non-compactness (MNC). Each
chapter concludes with a section devoted to notes and bibliographical remarks. All
the presented abstract results are illustrated by examples.

The content of the book is new and complements the existing literature devoted
to functional differential equations and inclusions. It is useful for researchers and
graduate students for research, seminars, and advanced graduate courses, in pure
and applied mathematics, engineering, biology, and all other applied sciences.

We are grateful to our colleagues and friends N. Abada, E. Alaidarous, S. Baghli,
A. Baliki, M. Belmekki, K. Ezzinbi, H. Hammouche, J. Henderson, 1. Medjedj,
J.J. Nieto, and M. Ziane for their collaboration in research related to the problems
considered in this book. Last but not least, we are grateful to Elizabeth Loew and
Dahlia Fisch for their support and to Jeffin Thomas Varghese for his help during the
production of the book.

Sidi Bel Abbes, Algeria Mouffak Benchohra
Saida, Algeria Said Abbas

vii






Introduction

Nonlinear evolution equations, i.e., partial differential equations with time ¢ as
one of the independent variables, arise not only from many fields of mathematics,
but also from other branches of science such as physics, mechanics, and material
science. For example, Navier—Stokes and Euler equations from fluid mechanics,
nonlinear reaction-diffusion equations from heat transfers and biological sciences,
nonlinear Klein—Gordon equations and nonlinear Schrédinger equations from quan-
tum mechanics, and Cahn—Hilliard equations from material science, to name just
a few, are special examples of nonlinear evolution equations. See the books
[174, 176-178].

Functional differential equations and inclusions arise in a variety of areas of
biological, physical, and engineering applications, and such equations have received
much attention in recent years. A good guide to the literature for functional
differential equations is the books by Hale [131], Hale and Verduyn Lunel [133],
Kolmanovskii and Myshkis [148], and the references therein. During the last
decades, existence and uniqueness of mild, strong, classical, almost periodic,
almost automorphic solutions of semi-linear functional differential equations and
inclusions has been studied extensively by many authors using the semigroup
theory, fixed point argument, degree theory, and measures of non-compactness.
We mention, for instance, the books by Ahmed [16], Diagana [103], Engel and
Nagel [106], Kamenskii et al. [144], Pazy [168], Wu [184], Zheng [187], and the
references therein. In recent years, there has been a significant development in
evolution equations and inclusions; see the monograph of Perestyuk et al. [169],
the papers of Baliki and Benchohra [33, 37], Benchohra and Medjed;j [55, 56],
Benchohra et al. [82], and the references therein.

Neutral functional differential equations arise in many areas of applied mathe-
matics and such equations have received much attention in recent years. A good
guide to the literature for neutral functional differential equations is the books by
Hale [131], Hale and Verduyn Lunel [133], Kolmanovskii and Myshkis [148], and
the references therein. Hernandez in [137] proved the existence of mild, strong, and
periodic solutions for neutral equations. Fu in [117, 118] studies the controllability
on a bounded interval of a class of neutral functional differential equations. Fu and
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X Introduction

Ezzinbi [119] considered the existence of mild and classical solutions for a class
of neutral partial functional differential equations with nonlocal conditions. Various
classes of partial functional and neutral functional differential equations with infinite
delay are studied by Adimy et al. [10-12], Belmekki et al. [52], and Ezzinbi [108].
Henriquez [136] and Hernandez [137, 138] studied the existence and regularity of
solutions to functional and neutral functional differential equations with unbounded
delay. Balachandran and Dauer have considered various classes of first and second
order semi-linear ordinary, functional and neutral functional differential equations
on Banach spaces in [43]. By means of fixed point arguments, Benchohra et al.
have studied various classes of functional differential equations and inclusions and
proposed some controllability results in [28, 33, 33, 37, 58, 72, 73, 75, 76, 80]. See
also the works by Gatsori [120], Li et al. [155], Li and Xue [156], and Li and
Yong [157].

Impulsive differential equations and inclusions appear frequently in applications
such as physics, aeronautic, economics, engineering, and population dynamics; see
the monographs of Bainov and Simeonov [39, 40], Benchohra et al. [81], Erbe
and Krawcewicz [107], Graef et al. [127], Samoilenko and Perestyuk [172], and
Perestyuk et al. [169], and the paper of Coldbeter et al. [95] where numerous
properties of their solutions are studied. In this way, they make changes of states
at certain moments of time between intervals of continuous evolution such changes
can be reasonably well approximated as being instantaneous changes of this state
which we will represent by impulses and then these processes are modeled by
impulsive differential equations and for this reason the study of this type of
equations has received great attention in the last years. There has been a significant
development in impulsive theory especially in the area of impulsive differential
equations with fixed moments. See, for instance, the monographs by Benchohra
et al. [81], Lakshmikantham et al. [150], and Samoilenko and Perestyuk [172].
There exists an extensive literature devoted to the case where the impulses are
absent (i.e., I = 0,k = 1,...,m), see, for instance, the monograph by Liang
and Xiao [158] and the paper by Schumacher [158]. We mention here also the use
of impulsive differential equations in the study of oscillation and non-oscillation of
impulsive dynamic equations, see, for instance, the papers of Graef et al. [124, 125],
oscillation of dynamic equations with delay was considered in [13, 14]. During the
last 10 years impulsive ordinary differential inclusions and functional differential
equations and inclusions have attracted the attention of many mathematicians and
are intensively studied. At present the foundations of the general theory and such
kind of problems are already laid and many of them are investigated in detail in
[58, 59, 63,79, 81, 107] and the references therein.

It is well known that the issue of controllability plays an important role
in control theory and engineering because they have close connections to pole
assignment, structural decomposition, quadratic optimal control, observer design,
etc. In recent years, the problem of controllability for various kinds of differential
and impulsive differential systems has been extensively studied by many authors
[71, 155-157, 186] using different approaches. Several authors have extended
the controllability concept to infinite dimensional systems in Banach space with
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unbounded operators, see the monographs [85, 98, 157, 186] and the references
therein. Sufficient conditions for controllability are established by Lasiecka and
Triggiani [153]. Fuin [117, 118] studied the controllability on a bounded interval of
a class of neutral functional differential equations. Fu and Ezzinbi [119] considered
the existence of mild and classical solutions for a class of neutral partial functional
differential equations with nonlocal conditions. Adimy et al. [10-12] studied some
classes of partial functional and neutral functional differential equations with infinite
delay. When the delay is infinite, the notion of the phase space 3 plays an important
role in the study of both qualitative and quantitative theory. A usual choice is a semi-
normed space satisfying suitable axioms, which was introduced by Hale and Kato in
[132], see also Corduneanu and Lakshmikantham [97] and Kappel and Schappacher
[145].

The literature related to ordinary and partial functional differential equations with
delay is very extensive. On the other hand, functional differential equations with
state-dependent delay appear frequently in applications as model of equations, and
for this reason the study of this type of equations has received great attention in the
last year, see, for instance [31, 183] and the references therein. The literature related
to partial functional differential equations with state-dependent delay is limited; see
[139, 171].

Several authors have considered extensively the problem

X (1) = ADx(t) + f(t.x,)

when A(f) = A. Existence of mild solutions is developed by Heikkila and Laksh-
mikantham [134], Kamenski et al. [144], and the pioneer Hino and Murakami paper
[141] for some semi-linear functional differential equations with finite delay. By
means of fixed point arguments, Benchohra and his collaborators have studied many
classes of first and second order functional differential inclusions on a bounded
interval with local and nonlocal conditions in [59, 60, 62, 64, 65, 77, 78, 121].
Extension to the semi-infinite interval is given by Benchohra and Ntouyas in
[58, 61]. When A depends on time, Arara et al. [26, 28] considered a control
multi-valued problem on a bounded interval. Uniqueness results of mild solutions
for some classes of partial functional and neutral functional differential evolution
equations on the semi-infinite interval J = R for a finite delay with local and
nonlocal conditions were given in [33, 37]. When the delay is infinite, existence and
uniqueness results for evolution problems are proposed in [33], and controllability
result of mild solutions for the evolution equations are given in [15, 36]. The case
when A is non-densely defined and generates an integrated semigroup was done
by Benchohra et al. [80]. Some global existence results for impulsive differential
equations and inclusions were obtained by Guo [129], Graef and Ouahab [126], and
the references therein.

Partial functional evolution equations and inclusions with infinite and state-
dependent delay, controllability on finite interval are our concerns. Our approach
is based upon the fixed point theory for multi-valued condensing maps under
assumptions expressed in terms of the MNC [144].
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In the last three decades, the theory of Cy-semigroup has been developed
extensively, and the achieved results have found many applications in the theory
of partial differential equations, for instance see [106, 122, 168] and the papers of
Arara et al. [26, 27] and Benchohra et al. [74]. Recently, increasing interest has been
observed in applications to impulsive differential equations and inclusions, see Liu
[69, 159]. The case where the generator of the semigroup is non-densely defined,
the existence of integral solutions on compact intervals for differential equations
and inclusions were studied by Adimy et al. [8—10], Arendt [29, 30], Ezzinbi and
Liu [109, 110], and Henderson and Ouahab [135]. The model with multi-valued
jump sizes arises in a control problem where we want to control the jump sizes in
order to achieve given objectives. There are very few results for impulsive evolution
inclusions with multi-valued jump operator, see [161]. We present the existence of
solutions for both densely or non-densely defined impulsive functional differential
inclusions.

The multi-valued jumps (i.e., the difference operator Ax| =, € Li(x(ry))) is a
natural model of an impulsive system where the jump sizes are not deterministic as
in [17-19, 161] but rather they are uncertain. However given the state x and time
t;, the set of possible jump sizes at this state is determined by the set Z;(x). The
set-valued maps Z; may be given by the sub-differential of a lower semi-continuous
convex functional ¢;. In this case, the system is governed by evolution inequations
at the points of time #;,. Another situation that may give rise to such a dynamic model
originates from the parametric uncertainty such as Z;(x) = {l;(t,x); t € I}, where
{I;} is a suitable family of functions I/ x E — E. To our knowledge, there are very
few results for impulsive evolution inclusions with multi-valued jump operators;
see [5, 19, 36]. The results of this book extend and complement those obtained in
the absence of the impulse functions /i, and for those with single-valued impulse
functions /.

This book is arranged and organized as follows:

In Chap. 1, we introduce notations, definitions, and some preliminary notions. In
Sect. 1.1, we give some notations from the theory of Banach spaces. Section 1.2 is
concerned to recall some basic definitions and some properties in Fréchet spaces. In
Sect. 1.3, we recall some basic definitions and give some examples of Phase spaces.
Section 1.4 contains some properties of set-valued maps. In Sect. 1.5, we give some
preliminaries about evolution systems. Some definitions and properties of the theory
of semigroups are presented in Sect. 1.6. In Sect. 1.6.3, we give some properties
of the extrapolation method. The last section (Sect. 1.7) contains some fixed point
theorems.

In Chap.2, we study some first order classes of partial functional, neutral
functional, integro-differential, and neutral integro-differential evolution equations
with finite delay on the positive real line. Section 2.2 deals with the existence
and uniqueness of mild solutions for some classes of partial evolution equations
with local and nonlocal conditions. We give some results based on the fixed point
theorem of Frigon in Fréchet spaces. An example will be presented at the last
illustrating the abstract theory. In Sect. 2.3, we study some neutral differential
evolution equations in Fréchet spaces. In Sect. 2.4, we give existence results for other



Introduction xiii

classes of partial functional integro-differential evolution equations. Section 2.5
deals with uniqueness results of neutral functional integro-differential evolution
equations.

In Chap.3, we provide sufficient conditions for the existence of the unique
mild solution on the positive half-line R for some classes of first order partial
functional and neutral functional differential evolution equations with infinite
delay. In Sect. 3.2, we study the existence and uniqueness of mild solutions for
partial functional evolution equations in Fréchet spaces. Section 3.3 deals with the
controllability of mild solutions on finite interval for partial evolution equations.
In Sect. 3.4, we study the controllability of mild solutions on semi-infinite interval
for partial evolution equations. Section 3.5 deals with the existence of the unique
mild solution of neutral functional evolution equations. In Sect. 3.6, we study the
controllability of mild solutions on finite interval for neutral evolution equations.
Section 3.7 deals with the controllability of mild solutions on semi-infinite interval
for neutral evolution equations.

In Chap. 4, we shall be concerned by perturbed partial functional and neutral
functional evolution equations with finite and infinite delay on the semi-infinite
interval R . Our main tool is the nonlinear alternative proved by Avramescu (1.30)
for the sum of contractions and completely continuous maps in Fréchet spaces
[32], combined with semigroup theory. In Sect. 4.2, we study the existence of
mild solutions for perturbed partial functional evolution equations with finite delay.
Section 4.3 deals with perturbed neutral functional evolution equations with finite
delay. In Sect. 4.4, we study the existence of mild solutions for perturbed partial
evolution equations with infinite delay.

In Chap. 5, we provide sufficient conditions for the existence of mild solutions
on the semi-infinite interval Ry for some classes of first order partial functional
and neutral functional differential evolution inclusions with finite delay. In Sect. 5.2,
we study the existence of mild solutions for a class of functional partial evolution
equations. Section 5.3 deals with neutral partial evolution equations.

In Chap. 6, we study the existence of mild solutions on the semi-infinite interval
R for some classes of first order partial functional and neutral functional differen-
tial evolution inclusions with infinite delay. In Sect. 6.2, we study functional partial
evolution equations. Section 6.3 deals with neutral partial evolution equations.

In Chap. 7, we are concerned by the existence of mild and extremal solutions of
some first order classes of impulsive semi-linear functional differential inclusions
with local and nonlocal conditions when the delay is finite in separable Banach
spaces. Using a recent theorem due to Dhage combined with the semigroup theory,
the existence of the mild and extremal mild solution are assured. The nonlocal case
is studied too. In Sect. 7.2, we study the existence of mild solutions with local
conditions. Section 7.3 deals with the existence of mild solutions with nonlocal
conditions. In Sect. 7.4, we give an application to the control theory.

In Chap. 8, we shall establish sufficient conditions for the existence of integral
solutions and extremal integral solutions for some non-densely defined impulsive
semi-linear functional differential inclusions in separable Banach spaces with local
and nonlocal conditions. In Sect. 8.2, we give some results for integral solutions
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of non-densely defined functional differential inclusions with local conditions.
Section 8.3 deals with extremal integral solutions with local conditions, and Sect. 8.4
deals with extremal integral solutions with nonlocal conditions. In Sect. 8.5, we give
an application to the control theory.

In Chap.9, we study the existence of mild solutions impulsive semi-linear
functional differential equations. In Sect. 9.2, we study some existence results for
semi-linear differential evolution equations with impulses and delay. Section 9.3 is
devoted to some classes of impulsive semi-linear functional differential equations
with non-densely defined operators. In Sect. 9.4, we study impulsive semi-linear
neutral functional differential equations with infinite delay. Section 9.5 deals
with integral solutions of non-densely defined impulsive semi-linear functional
differential equations with state-dependent delay.

In Chap. 10, we shall establish sufficient conditions for the existence of mild,
extremal mild, integral, and extremal integral solutions for some impulsive semi-
linear neutral functional differential inclusions in separable Banach spaces. In
Sect. 10.2, we study some densely defined impulsive functional differential inclu-
sions. Section 10.3 deals with the existence of mild solutions for non-densely
defined impulsive neutral functional differential inclusions. In Sect. 10.4, we study
the controllability of impulsive semi-linear differential inclusions in Fréchet spaces.

In Chap. 11, we study functional differential inclusions with multi-valued jumps.
In Sect. 11.2, we study some existence of integral solutions for semi-linear func-
tional differential inclusions with state-dependent delay and multi-valued jump.
Section 11.3 deals with impulsive evolution inclusions with infinite delay and
multi-valued jumps. Section 11.4 deals with impulsive semi-linear differential
evolution inclusions with non-convex right-hand side. In Sect. /1.5, we study
some impulsive evolution inclusions with state-dependent delay and multi-valued
jumps. Section 11.6 deals with the controllability of impulsive differential evolution
inclusions with infinite delay.

In Chap. 12, we study functional differential equations and inclusions with delay.
In Sect. 12.2, we prove some global existence for functional differential equations
with state-dependent delay. Section 12.3 deals with global existence results for
neutral functional differential equations with state-dependent delay. In Sect. 12.4,
we give some global existence results for functional differential inclusions with
delay. Section 12.4.1 deals with global existence results for functional differential
inclusions with state-dependent delay.

In Chap. 13, we shall establish sufficient conditions for global existence results of
second order functional differential equations with delay. In Sect. 13.2, we give some
global existence results of second order functional differential equations with delay.

Keywords and Phrases: Evolution differential equations and inclusions, integro-
differential equations, densely and non-densely defined differential equations,
convex and non-convex valued multi-valued, mild solution, weak solution, initial
value problem, nonlocal conditions, contraction, existence, uniqueness, measure of
noncompactness, Banach space, Fréchet space, phase space, impulses, time delay,
state-dependent delay, fixed point.
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Chapter 1
Preliminary Background

In this chapter, we introduce notations, definitions, and preliminary facts which are
used throughout this book.

1.1 Notations and Definitions

Let Ry = [0, 400) be the positive real line, H = [—r, 0] be an interval with r > 0,
and (E, | - |) be a real Banach space.

By C(H, E) we denote the Banach space of continuous functions from H into E,
with the norm

[yl = sup [y(®)].
te€H

Let B(E) be the space of all bounded linear operators from E into E, with the norm

INllsE = Is\up IN(Y)I.
vl=1

A measurable function y : Ry — FE is Bochner integrable if and only if |y
is Lebesgue integrable. For properties of the Bochner integral, see for instance,
Yosida [185].

© Springer International Publishing Switzerland 2015 1
M. Benchohra, S. Abbas, Advanced Functional Evolution Equations

and Inclusions, Developments in Mathematics 39,

DOI 10.1007/978-3-319-17768-7_1



2 1 Preliminary Background

As usual, by L'(Ry, E) we denote the Banach space of measurable functions
y : Ry — E which are Bochner integrable normed by

—+o00
vl = f Iy (0)]dt.
0
Let L}

oc R4, E) be the space of measurable functions which are locally Bochner
integrable.

For any continuous function y defined on [—r, 400) and any ¢t € R, we denote
by y, the element of C(H, E) defined by

v(0) =y(t+0) forfeH.

Here y,(-) represents the history of the state from time ¢ — r up to the present time ¢.

Definition 1.1. A function f : Ry x E — E is said to be an L'-Carathéodory
function if it satisfy:

(i) for each r € R the function f(¢,.) : E — E is continuous;
(ii) for each y € E the function f(.,y) : Ry — E is measurable;
(iii) for every positive integer k there exists i, € L' (R, R, ) such that

If(¢,y)| < m(r) forall |y| <k andalmosteachte R,.

1.2 Some Properties in Fréchet Spaces

Let X be a Fréchet space with a family of semi-norms {|| - ||, },en. Let Y C X, we
say that F is bounded if for every n € N, there exists M,, > 0 such that

Iyl <M, forallye?Y.

To X we associate a sequence of Banach spaces {(X", || - ||.)} as follows: For every
n € N, we consider the equivalence relation ~, defined by: x ~, y if and only if
lx —y|l» = 0 forallx,y € X. We denote X" = (X|~,, | - ||») the quotient space, the
completion of X" with respect to || - ||,. To every Y C X, we associate a sequence
{Y"} of subsets Y" C X" as follows: For every x € X, we denote [x],, the equivalence
class of x of subset X" and we define Y" = {[x], : x € Y}. We denote Y", int,(Y")
and 9, Y", respectively, the closure, the interior, and the boundary of ¥” with respect
to || - || in X”. We assume that the family of semi-norms {|| - ||} verifies:

Ixllh < lxll2 < |lxll3 < ... foreveryx e X.
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Definition 1.2 ([116]). A function f : X — X is said to be a contraction if for each
n € N there exists k,, € [0, 1) such that:

IfF () —fO)ln < kn lIx =yl forallx,y € X.

1.3 Phase Spaces

In this section, we will define the phase space B axiomatically, using ideas and
notations developed by Hale and Kato [132] and follow the terminology used
in [142], (see also Kapper and Schappacher [145] and Schumacher [173]). More
precisely, (B, | - ||z) will denote the vector space of functions defined from (—oo, 0]
into E endowed with a semi norm denoted ||.|| 3 and satisfying the following axioms:

(A;)) Ify:(—o0,b) — E,b > 0,is continuous on [0, b] and y, € B, then for every
t € [0, b) the following conditions hold:

@) y € B;
(ii) There exists a positive constant H such that |y(7)| < H||v||5;
(iii) There exist two functions K(-), M(:) : Ry — R independent of y(¢) with
K continuous and M locally bounded such that:

Iy:lls = K@) sup{ [y(s)| : 0 < s <t} + M (D) ||yol| 5.
Denote
K, = sup{K(¢) : t € [0,b]} and M}, = sup{M(r) : t € [0, b]}.
(Az)  For the function y(.) in (A;), y; is a B-valued continuous function on [0, b].

(A3) The space B is complete.

Remark 1.3. 1. (ii) is equivalent to |¢(0)| < H||¢| 5 for every ¢ € B.
2. Since || - || is a seminorm, two elements ¢, ¥ € B can verify ||[¢ — |z = 0
without necessarily ¢ () = ¥ (8) forall 6 < 0.
3. From the equivalence of (ii), we can see that for all ¢, € B such that
l¢ — ¥ ||z = 0: This implies necessarily that ¢ (0) = v (0).

For any continuous function y and any ¢t > 0, we denote by y, the element of B
defined by

v(0) =y +0) for 6 € (—o00,0].

We assume that the histories y; belong to some abstract phase space B.
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Consider the following space
Biw={y:R—>E:ylr, €C(Ry.E), y€B},

where y|g ) is the restriction of y to [0, 4+-00).
Hereafter are some examples of phase spaces. For other details we refer, for
instance, to the book by Hino et al. [142].

Example 1.4. The spaces BC, BUC, C*°, and CO. Let:

BC  the space of bounded continuous functions defined from (—o0, 0] to E;
BUC the space of bounded uniformly continuous functions defined from
(—o00,0] to E;

Cc*® = {d) € BC: elim ¢ (0) exists in E} ;
——00

¢ = {gb € BC: , lim ¢(0) = O} , endowed with the uniform norm
——00

¢l = sup{|¢(6)]: & < 0.

We have that the spaces BUC, C*°, and C° satisfy conditions (A;)—(A3). BC
satisfies (A,), (A3) but (A;) is not satisfied.

Example 1.5. The spaces C,, UCy, Cg°°, and Cg. Let g be a positive continuous
function on (—o0, 0]. We define:

ﬁ((g)) is bounded on (—oo, O]} ;

C, = %q& € C((—00,0],E) :

0
b = ¢ €Co: lim w = 0; , endowed with the uniform norm
¢ f——oc0 g(6)
¢ (0)]
loll =sup [0 6 <of
8(9)
We consider the following condition on the function g.
t+6
(g1) Foralla >0, sup sup{g( + 6) T—o00 < < —t} < 00.
0<i<a 8(9)

Then we have that the spaces C, and Cg satisfy conditions (A3). They satisfy
conditions (A;) and (A;) if g; holds.

Example 1.6. The space C,. For any real constant y, we define the functional space
C, by

Cy =19 €C((—00,01.B) : lim _ "’ $(0) exist in E
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endowed with the following norm

gl = supte’®|(0)] : 6 <0}

Then in the space C, the axioms (A1)—(A3) are satisfied.

1.4 Set-Valued Maps

Let (X, d) be a metric space. We use the following notations:
PuX) ={Y € P(X) : Y closed}, Pp(X) ={Y € P(X): Y bounded},
Pey(X) ={Y € P(X) : Y convex}, Py, (X)={Y € P(X):Y compact}.

Consider H; : P(X) x P(X) — R4 U {00}, given by
Hy(A, B) = max | sup d(a, B), sup d(A,b) ; ,
acA beB

where d(A, b) = in£ d(a,b),d(a,B) = gnlfg d(a, b). Then (Pp(X), Hy) is a metric
ae €
space and (P (X), Hy) is a generalized (complete) metric space (see [147]).

Lemma 1.7. If A and B are compact, then there exists either an a € A with
d(a,B) = Hy(A,B) orab € Bwithd(A,b) = H;(A, B)

Definition 1.8. A multi-valued map G : Ry — P.(X) is said to be measurable if
for each x € E, the function Y : R; — X defined by
Y() = d(x,G()) = inf{|x —z| : z € G(r)}

is measurable where d is the metric induced by the normed Banach space X.

Definition 1.9. A function F : R4 xX —> P(X) is said to be an L} _-Carathéodory
multi-valued map if it satisfies:

(i) x — F(t,y) is continuous for almost all r € R;
(ii) ¢+ F(t,y) is measurable for each y € X
(iii) for every positive constant k there exists h; € LllOC (R4, Ry ) such that

|F(t, y)|| < hi(r) forall ||y||p < k and for almost all € R..
Let (X, || - ||) be a Banach space. A multi-valued map G : X — P(X) has convex

(closed) values if G(x) is convex (closed) for all x € X. We say that G is bounded
on bounded sets if G(B) is bounded in X for each bounded set B of X, i.e.,
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sup {sup{[ly[| : y € G(x)}} < o0.

XEB

Finally, we say that G has a fixed point if there exists x € X such that x € G(x).
For each y € C(Ry,E) let the set Sp, known as the set of selectors from F
defined by

Spy ={v € L'R4+,E) : v(t) € F(t,y(1)), a.e.t € Ry}.

For more details on multi-valued maps we refer to the books of Deimling
[101], Djebali et al. [104], Gérniewicz [123], Hu and Papageorgiou [143], and
Tolstonogov [181].

Definition 1.10. A multi-valued map F : X — P(X) is called an admissible
contraction with constant {k,},en if for each n € N there exists k, € [0,1)
such that

i) Hy(F(x),F(y)) <k, ||x—y|.forallx,y e X.
ii) for every x € X and every € € (0, 00)", there exists y € F(x) such that

lx=yln < llx=F@)|, + €, foreveryn € N

Lemma 1.11 ([154]). Let X be a Banach space. Let F : [a,b] x X —> P, (X)
be an L'-Carathéodory multi-valued map with Sry # O and let I be a linear
continuous mapping from L' ([a, b], X) into C([a, b], X), then the operator

I'oSp:C([a,b],X) — Pep.o(C([a, b], X)),
y > (I" o Sp)(y) := I'(Sk,)

is a closed graph operator in C([a, b], X) x C([a, b], X).

Proposition 1.12 ([167]). Let the space E be separable and the multi-function @ :
[0, b] — P(E) be integrable bounded and y(®(t)) < q(t) for a.at € [0, b] where
q(.) € L' ([0, b], RT). Then

X (/0Z @(s)ds) < /OT q(s)ds, forall T €0,b].

In particular, if the multi-function @ : [0, b] — P.(E) is measurable and integrable
bounded, then the function x(®(.)) is integrable and

X (/OT <1§(s)ds) < /Ot x(@(s))ds, forallt € |0,D].
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1.5 Evolution System

In what follows, for the family {A(r), ¢t > 0} of closed densely defined linear
unbounded operators on the Banach space E we assume that it satisfies the following
assumptions (see [16], p. 158).

(P1) The domain D(A(?)) is independent of ¢ and is dense in E.
(P2) Fort > 0, the resolvent R(A,A(r)) = (Al — A(¢))™! exists for all A with
ReA < 0, and there is a constant M independent of A and ¢ such that

|R(t, A(t))|| < M(1 + |A])~", for Red < 0.
(P3) There exist constants L > 0 and 0 < o < 1 such that
[(A(r) —A0)A™ (v)| < L|t—1|%, fort,0,7 € J.
Lemma 1.13 ([16], p. 159). Under assumptions (P1)—(P3), the Cauchy problem

Y (@) =A@y =0, 1€ J, y(0) = yo,
has a unique evolution system U(t,s), (t,s) € A :={(t,s) e I xJ:0<s <1<
400} satisfying the following properties:

1. U(t,t) = I where I is the identity operator in E,

2. U(t,s) U(s,7) = U(t, 1) for0 <7 <5 <t < 400,

3. U(t,s) € B(E) the space of bounded linear operators on E, where for every
(t,s) € A and for each y € E, the mapping (t,s) — U(t, s) y is continuous.

More details on evolution systems and their properties can be found in the books
of Ahmed [16], Engel and Nagel [106], and Pazy [168].

1.6 Semigroups

1.6.1 Cy-Semigroups

Let E be a Banach space and B(E) be the Banach space of linear bounded operators
onkE.

Definition 1.14. A semigroup of class (C°) is a one parameter family {T'(r) | t >
0} C B(E) satisfying the conditions:

@ 1T(0) =1,
@) T(OT(s) =T(t+ s),fort,s >0,
(iii) the map t — T(7)(x) is strongly continuous, for each x € E, i.e;

lim7T(t)x = x, Vx € E.
t—0
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A semigroup of bounded linear operators 7'(¢), is uniformly continuous if
lim ||T(¢t) — | = 0.
t—0

Here I denotes the identity operator in E.
We note that if a semigroup 7'(¢) is class (Cy), then satisfies the growth condition
IT(®)|| &) < MeP", for 0 <t < oo with some constants M > 0 and B.

If, in particular M = 1 and 8 = 0,i.¢; |T(¢) || < 1. for¢ > 0, then the semigroup
T(¢) is called a contraction semigroup (Cy).

Definition 1.15. Let 7'(f) be a semigroup of class (Cy) defined on E. The infinites-
imal generator A of T'(¢) is the linear operator defined by

T(h)x —
AG) = lim TUX X oy e D),
h—>0 h

_ : T
where D(A) = {x € E'| lim;—,o —~— exists in E}.
Let us recall the following property:

Proposition 1.16. The infinitesimal generator A is a closed, linear, and densely
defined operator in E. If x € D(A), then T(t)(x) is a C'-map and

d

410 =AT1OE) =THAX) on[0.00).
Theorem 1.17 (Hille and Yosida [168]). Ler A be a densely defined linear oper-
ator with domain and range in a Banach space E. Then A is the infinitesimal
generator of uniquely determined semigroup T(t) of class (Cy) satisfying

|T(®)||pE) < Me®', >0,
where M > 0 and w € R if and only if (A —A)~! € B(E) and
A =A)T"| <M/(A—w)", n=1,2,..., forall A € R.
For more details on strongly continuous operators, we refer the reader to the

books of Ahmed [16], Goldstein [122], Fattorini [111], Pazy [168], and the papers
of Travis and Webb [179, 180].
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1.6.2 Integrated Semigroups

Definition 1.18 ([29]). Let E be a Banach space. An integrated semigroup is a
family of bounded linear operators (S(f)),>0 on E with the following properties:

(i) S(0) =0;
(i) ¢ — S(z) is strongly continuous;

(iii) S(s)S(r) = / (S(t 4+ r) — S(r))dr, forallt,s > 0.

0
Definition 1.19 ([146]). An operator A is called a generator of an integrated
semigroup if there exists @ € R such that (w,00) C p(A) (p(A), is the resolvent

set of A) and there exists a strongly continuous exponentially bounded family
(8(#)):>0 of bounded operators such that S(0) = 0 and R(X,A) := (Al —A)™! =

oo
A / e~ MS(f)dt exists for all A with A > w.
0

Proposition 1.20 ([29]). Let A be the generator of an integrated semigroup
(8(t))i>0- Then for all x € E and t > 0,

/t S(s)xds € D(A) and S(t)x =A /t S(s)xds + tx.
0 0

Definition 1.21 ([146]).
(i) An integrated semigroup (S(7)).>o is called locally Lipschitz continuous if, for
all T > 0 there exists a constant L such that
|S(r) —S(s)| < L|t—s|, t,s €0, 1]
(ii) An integrated semigroup (S(7)),>o is called nondegenerate if S(¢)x = 0, for all
t > 0 implies that x = 0.
Definition 1.22. We say that the linear operator A satisfies the Hille—Yosida
condition if there exists M > 0 and w € R such that (w, 00) C p(A) and

sup{(A —0)"'|AM—A)™"|:neN, A >w} <M.

Theorem 1.23 ([146]). The following assertions are equivalent:

(i) A is the generator of a nondegenerate, locally Lipschitz continuous integrated
semigroup;
(ii) A satisfies the Hille—Yosida condition.

If A is the generator of an integrated semigroup (S(#))>o Which is locally
Lipschitz, then from [29], S(-)x is continuously differentiable if and only if x € D(A)
and (8'(7)) >0 is a Cy semigroup on D(A).
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1.6.3 Extrapolated Semigroups

Let A be the part of A in Xy = D(A) which is defined by
D(Ap) = {x € D(A) : Ax € D(A)}, and Agx = Ax, forx € D(Ap).

Lemma 1.24 ([106]). A, generates a strongly continuous semigroup (To(t))i>0 on
Xo and |To(1)| < Noe®', for t > 0. Moreover p(A) C p(Ag) and R(A,Ay) = R
(A,A)/ Xy, for A € p(A).

For a fixed Ay € p(A), we introduce on X, a new norm defined by
xlli = [R(A0, Ao)x| forx € D(Ao).

The completion X; of (Xo, ||-||1) is called the extrapolation space of X associated
with A. Note that || - ||; and the norm on X, given by |R(A, Ag)x|, for A € p(A), are
extensions 7(¢) to the Banach space X;, and (7(#));>0 is a strongly continuous
semigroup on X;. (T (?))s>o is called the extrapolated semigroup of (To(t))s>0, and
we denote its generator by (A;, D(A1)).

Lemma 1.25 ([130]). The following properties hold:

(D) 1TO e = To(®)]Lexo)-

(ii) D(A1) = Xo.

(iii) Ay : Xo — X is the unique continuous extension of Ao : D(A¢) C (Xo, |.]) =
Xo, |I.11), and (A — A))™" is an isometry from (Xo, |.]) into (Xo, ||.|l1)-

(iv) IfA € p(Ay), then (A —A)) is invertible and (A —A,)™" € B(X,). In particular
= p(A1) Cll’ldR(/\,A])/Xo = R()L,Ao)

(v) The space Xo = D(A) is dense in (X, | - ||1). Hence the extrapolation space
X is also the completion of (X, ||.||1) and X — X.

(vi) The operator Ay is an extension of A. In particular if A € p(A), then
R(A,A))/X = R(A,A) and (A — A)X = D(A).

Abstract extrapolated spaces have been introduced by Da Prato and
Grisvard [99] and Engel and Nagel [106] and used for various purposes
[23-25, 160, 163, 164].

1.7 Some Fixed Point Theorems

First we will introduce the following compactness criteria in the space of continuous
and bounded functions defined on the positive half line.
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Lemma 1.26 (Corduneanu [96]). Let D C BC([0, +00), E). Then D is relatively
compact if the following conditions hold:

(a) D is bounded in BC.

(b) The function belonging to D is almost equi-continuous on [0, +00), i.e., equi-
continuous on every compact of [0, +00).

(c) The set D(t) := {y(t) : y € D} is relatively compact on every compact of
[0, +00).

(d) The function from D is equiconvergent, that is, given € > 0, responds T(€) > 0
such that |u(t) — t—1>i—Ii-noo u(t)| < e, foranyt > T(¢) and u € D.

Lemma 1.27 (Nonlinear Alternative [105]). Let X be a Banach space with C C X
closed and convex. Assume U is a relatively open subset of C with 0 € U and
G : U — Cis a compact map. Then either,

(i) G has a fixed point in U; or
(ii) there is a point u € 0U and A € (0, 1) with u = AG(u).

The multi-valued version of Nonlinear Alternative

Lemma 1.28 ([105]). Let X be a Banach space with C C X a convex. Assume U
is a relatively open subset of C with 0 € U and G : X — Py (X) be an upper
semi-continuous and compact map. Then either,

(a) there is a pointu € U and A € (0,1) with u € AG(u), or
(b) G has a fixed point in U.

Theorem 1.29 (Nonlinear Alternative of Frigon and Granas [116]). Let X be a
Fréchet space and Y C X a closed subset in'Y and let N : Y — X be a contraction
such that N(Y) is bounded.

Then one of the following statements holds:

(81) N has a unique fixed point;
(S2) There exists A € [0,1), n € Nand x € 0,Y" such that |x — A N (x)||, = 0.

The following nonlinear alternative is given by Avramescu in Fréchet spaces
which is an extension of the same version given by Burton [87] and Burton and
Kirk [88] in Banach spaces.

Theorem 1.30 (Nonlinear Alternative of Avramescu [32]). Let X be a Fréchet
space and let A, B : X — X be two operators satisfying:

(1) A is a compact operator,
(2) B is a contraction.

Then either one of the following statements holds:

(S1) The operator A + B has a fixed point;
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(82) The set
X
{x €X,x = M(x) + AB (X>}

is unbounded for A € (0,1).

Theorem 1.31 (Nonlinear Alternative of Frigon [114, 115]). Let X be a Fréchet
space and U an open neighborhood of the origin in X and let N : U — P(X) be an
admissible multi-valued contraction. Assume that N is bounded.

Then one of the following statements holds:

(S1) N has a fixed point;
(82) There exists A € [0, 1) and x € AU such that x € A N(x).

The following fixed point theorem is due to Burton and Kirk.

Theorem 1.32 ([88]). Let X be a Banach space, and A, B two operators satisfy-
ing:

(i) A is a contraction, and
(ii) B is completely.

Then either

(a) the operator equation y = A(y) + B(y) has a solution, or
(b) the sete = {u € X : AA(3) + AB(w)} is unbounded for A € (0, 1).

We need the following definitions in the sequel.

Definition 1.33. A nonempty closed subset C of a Banach space X is said to be a
cone if

i C+CcCc,
(ii) AC C Cfor A > 0, and,
(iii) —C N C = {0}.

A cone C is called normal if the norm || - || is semi-monotone on C, i.e., there
exists a constant N > 0 such that ||x|| < N||y||, whenever x < y. We equip the space
X = C(J, E) with the order relation < induced by a regular cone C in E, that is for
all y,y € X :y < yifand only if y(t) — y(t) € C, Vt € J. In what follows will
assume that the cone C is normal. Cones and their properties are detailed in [134].
Let a,b € X be such that a < b. Then, by an order interval [a, b] we mean a set of
points in X given by

[a,b] = {x e X | a <x<b}.
Definition 1.34. Let X be an ordered Banach space. A mapping 7 : X — X is

called isotone increasing if 7'(x) < T(y) for any x,y € X with x < y. Similarly, T is
called isotone decreasing if 7'(x) > T(y) whenever x < y.
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Definition 1.35. We say that x € X is the least fixed point of G in X if x = Gx and
x < y whenever y € X and y = Gy. The greatest fixed point of G in X is defined
similarly by reversing the inequality. If both least and greatest fixed point of G in X
exist, we call them extremal fixed point of G in X.

The following fixed point theorem is due to Heikkila and Lakshmikantham.

Theorem 1.36. Let [a, b] be an order interval in an order Banach space X and let
0 : [a,b] — |a, b] be a nondecreasing mapping. If each sequence (Qx,) C Q([a, b])
converges, whenever (x,,) is a monotone sequence in [a, b], then the sequence of
Q-iteration of a converges to the least fixed point xx of Q and the sequence of Q-
iteration of a converges to the greatest fixed point x. of Q. Moreover

X« = min{y € [a, b],y > Qy} and x* = max{y € [a, b],y > Qy}.

As a consequence, Dhage and Henderson have proved the following fixed point
theorem, which will be used to prove the existence of extremal solutions.

Theorem 1.37 ([102]). Let [a, b] be an order interval in a Banach space X and let
B1,B; : [a,b] — X be two functions satisfying:

(a) By is a contraction,
(b) By is completely continuous,
(¢) By and B, are strictly monotone increasing, and
(d) Bi(x) + By(x) € [a,b], VY x € [a,b].
Further if the cone C in X is normal, then the equation x = By(x) 4+ B, (x) has a

least fixed point x« and a greatest fixed point x* € [a, b]. Moreover x,, = lim x,
n—>o0

and x* = lim y,, where {x,} and {y,} are the sequences in [a, b] defined by
n—o0

X1 = Bi(x,) + B2(x,), X0 = a and y,+1 = Bi(y,) + B2(yu), yo = b.

Given a space X and metrics dy, o € A, denote P(X) = {Y C X : Y # 0},
PaX) = {Y € P(X) : Y closed}, Pp(X) = {Y € P(X) : Y bounded}. We
denote by Dy, @ € /\, the Hausdorff pseudo-metric induced by d,; that is, for
V., W e PX),

Du(V, W) = inf{s >0:VxeV, VyeW, 3ieV, y e W such that

do(x,3) < &, do(%, y) < g},

with inf @ = oo. In the particular case where X is a complete locally convex space,
we say that a subset V C X is bounded if D, ({0}, V) < oo forevery & € \ .

Definition 1.38. A multi-valued map F : X — P(E) is called an admissible
contraction with constant {ky}sep if for each a € /\ there exists k, € (0,1)
such that
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i) Dy(F(x), F(y)) < kody(x,y) forall x,y € X.
i) for every x € X and every ¢ € (0, 00)/\, there exists y € F(x) such that

dy(x,y) < dy(x,F(x)) + &4 for everya € /\

Lemma 1.39 (Nonlinear Alternative, [113]). Let E be a Fréchet space and U an
open neighborhood of the origin in E, and let N : U — P(E) be an admissible
multi-valued contraction. Assume that N is bounded. Then one of the following
statements holds:

(CI) N has at least one fixed point;
(C2) there exists A € [0, 1) and x € dU such that x € AN(x).

Lemma 1.40 ([144]). If U is a closed convex subset of a Banach space E and
R : U — Py i(E) is a closed B-condensing multi-function, where B is a nonsingular
MNC defined on the subsets of U. Then R has a fixed point.

The next results are concerned with the structure of solution sets for
B-condensing u.s.c. multi-valued maps.

Lemma 1.41 ([144]). Let W be a closed subset of a Banach space E and R : W —
Pevi(E) be a closed multi-function which is B-condensing on every bounded subset
of W, where B is a monotone MNC. If the fixed points set FixR is bounded, then it
is compact.

The following theorem is due to Monch.

Theorem 1.42 ([162]). Let E be a Banach space, U an open subset of E and 0 € U.
Suppose that N : U — E is a continuous map which satisfies Monch’s condition
(i.e., if D € U is countable and D C co({0} U N(D)), then D is compact) and
assume that

x# AN(x), forxe dUand A € (0,1)

holds. Then Nhas a fixed point in U.

Lemma 1.43 ([144, Theorem 2]). The generalized Cauchy operator G satisfies the
properties

(Gl) there exists £ > 0 such that

1Gf (1) — G| = Z/O IF(s) — g(s)l|ds, for everyf,g € L'(J,E), t € J.

(G2)  for any compact K C E and any sequence (f,),>1 C L'(J, E) such that for
alln > 1, f,(t) € K, a. e. t € J, the weak convergence f, — fy in L'(J, E) implies
the convergence Gf,, — Gfy in C(J, E).
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Lemma 1.44 ([144]). Let S : L'(J,E) — C(J,E) be an operator satisfying
condition (G2) and the following Lipschitz condition (weaker than (G1)).

(GI’)
ISf — Sellcu.ey < CIf — gllery .-

Then for every semi-compact set {ﬁ,};};"f C L'(J,E) the set {Sﬁ,};;"f is relatively
compact in C(J, E). Moreover, if (f,),>1 converges weakly to fy in L!(J, E) then

Sy — Sfoin C(J, E).
Lemma 1.45 ([144]). Let S : L'(J,E) — C(J,E) be an operator satisfying
conditions (G1), (G2) and let the set {f,,}°2 | be integrable bounded with the property

x{fu®) : n = 1Y) < n(@), for ace. t € J, where n(.) € L'(J,RY) and y is the
Hausdorff MNC. Then

x({SH@) :n>1}) <2¢ [ln(s)ds, forallteJ,
0

where ¢ > 0 is the constant in condition (G1).
Let us recall the following result that will be used in the sequel.

Lemma 1.46 ([86]). Let E be a separable metric space and let G : E — P
(L' ([0, D], E)) be a multi-valued operator which is lower semi-continuous and has
nonempty closed and decomposable values. Then G has a continuous selection, i.e.,
there exists a continuous function f : E — L'([0, b], E) such that f(y) € G(y) for
everyy € E.



Chapter 2
Partial Functional Evolution Equations
with Finite Delay

2.1 Introduction

In this chapter, we study some first order classes of partial functional, neutral
functional, integro-differential, and neutral integro-differential evolution equations
on a positive line R with local and nonlocal conditions when the historical interval
H is bounded, i.e., when the delay is finite. In the literature devoted to equations with
finite delay, the phase space is much of time the space of all continuous functions
on H for r > 0, endowed with the uniform norm topology. Using a recent nonlinear
alternative of Leray—Schauder type for contractions in Fréchet spaces due to Frigon
and Granas combined with the semigroup theory, the existence and uniqueness of
the mild solution will be obtained. The method we are going to use is to reduce the
existence of the unique mild solution to the search for the existence of the unique
fixed point of an appropriate contraction operator in a Fréchet space.

The nonlocal Cauchy problem has been studied first by Byszewski in 1991 [90]
(see also [89, 91, 92]). Then, Balachandran and his collaborators have considered
various classes of nonlinear integro-differential systems [44].

2.2 Partial Functional Evolution Equations

2.2.1 Introduction

In this section, we consider partial functional evolution equations with local and
nonlocal conditions where the existence of the unique mild solution is assured.
Firstly, in Sect. 2.2.2 we consider the following partial functional evolution system
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18 2 Partial Functional Evolution Equations with Finite Delay

Y (@) = A@)y@®) +f(t,y;)., ae teJ=Ry 2.1
y(0) =¢(), teH, (2.2)

where r > 0,f : J xC(H,E) — E and ¢ € C(H,E) are given functions and
{A(?)}:>0 is a family of linear closed (not necessarily bounded) operators from E into
E that generate an evolution system of bounded linear operators {U(?, 5) }(:.s)esxs for
0<s<t< +oofromE into E.

Later, we consider the functional evolution problem with a nonlocal condition of
the form

Y@ =A@y +f(t,y), ae teJ=Ry (2.3)

y(@0) + h(y) = ¢(1), teH, (2.4)

where A(+), f and ¢ are as in evolution problem (2.1)-(2.2) and i, : C(H,E) — E is
a given function.

Using the fixed point argument, Frigon applied its own alternative to some

differential and integral equations in [113]. In the literature devoted to equations

with A(-) = A on a bounded interval, we can found the recent works by Benchohra

and Ntouyas for semi-linear equations and inclusions [58, 59, 65], controllability
results are established by Benchohra et al. in [26, 75, 76] and Li et al. in [156].

2.2.2 Main Result

Let us introduce the definition of the mild solution of the partial functional evolution
system (2.1)—(2.2).

Definition 2.1. We say that the continuous function y(-) : [-r, +00) — E is a mild
solution of (2.1)—(2.2) if y(tf) = ¢(¢) for all + € H and y satisfies the following
integral equation

y(t) = U(¢,0) ¢(0) + /: U(t,s) f(s,ys) ds, foreacht e [0, +00).

We will need the following hypotheses which are assumed hereafter:

(2.1.1) There exists a constant M > 1 such that
1U(. 9)llsE <M

forevery (t,5) € A :={(t,s) e I xJ:0 <5 <t < 400};
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(2.1.2) There exist a continuous nondecreasing function ¥ : Ry — (0, +00) and
p €Ll ([0, +00),R.) such that

loc

If (2. w)] < p(®) Y (flul)).

fora.e.r € [0, +00) and eachu € C(H, E);
(2.1.3) Forall R > 0, there exists Iz € L} ([—r, +00), R, ) such that

loc

[F(r,u) = f(t,v)] < [r(D) [lu—v]
for all u, v € C(H, E) with ||u|| <R and |v| <R.
For every n € N, we define in C([—r, +00), E) the semi-norms by:

[Vl := sup { e 2O [y(0)| : 1 € [0,n] }

t
where L} (1) = / 1,(s) ds, 1,(t) = M 1,(¢) and I, is the function from (2.1.3).

0
Then C([—r,+00),E) is a Fréchet space with the family of semi-norms
{Il - 2 }nen- In what follows we will choose 7 > 1.

Theorem 2.2 ([33]). Suppose that hypotheses (2.1.1)—(2.1.3) are satisfied and
moreover for n > 0

+o0 ds - n
/;l o) >M /(; p(s) ds, (2.5)

where ¢ = M ll@ll. Then the problem (2.1)—(2.2) has a unique mild solution.

Proof. Transform the problem (2.1)—(2.2) into a fixed point problem. Consider the
operator N : C([—r, +00), E) — C([—r, +00), E) defined by:

@(1), ift e H;

N)(0) = t
U@®N®+fU@9ﬂmww,iﬁeRw
0

Clearly, the fixed points of the operator N; are mild solutions of the problem
2.1)-(2.2).

Let y be a possible solution of the problem (2.1)—(2.2). Givenn € N and t < n,
then from (2.1.1) and (2.1.2) we have:

b@NSHWﬂNM®N+AHU@®h@UBme
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< gl + 7 /O () ¥y Ids.

We consider the function p defined by
p() :==sup{ [y(s)| : 0<s<t}, 0=<t<+oo.

Let * € [—r, 1] be such that (1) = |y(t*)|. If * € [0, n], by the previous inequality
we get

u(t) < M ol + 1 fo p() Y (u(s)) ds. 1 € [0.n]

If * € H, then u(¢) = ||¢|| and the previous inequality holds.
Let us take the right-hand side of the above inequality as v (7). Then we have

u() <wv() forallr € [0,n].
From the definition of v, we get
¢ :=v(0) =M|g|| and V') =M p(r) ¥ (u(r) ae. tel0.n].
Using the nondecreasing character of i, we have
V(1) < M p(t) ¥ (v(1)) ae.t € [0,n].

This implies that for each ¢ € [0, n] and using (2.5) we get

v(t) ds R t
<M / p(s) ds
cl W(S) 0

51\71/’117(8) ds

0

</+oc ds
o Y@

Thus there exists a constant A, such that v(f) < A, ¢t € [0,n] and hence u(¢) <
A,, t € [0,n]. Since for every t € [0,n], ||y < u(f), we have

[¥lln < max{|lgl|, An} := Ay
Set

Y={yel(-r,+00),E) :sup{|y(®)] :0<t<n}<A,+1 forallne N}
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Clearly, Y is a closed subset of C([—r, +00), E).

We shall show that Ny : Y — C([—r, +00), E) is a contraction operator. Indeed,
consider y,y € C([—r, +00), E), thus using (2, 1, 1) and (2.1.3) for each ¢ € [0, n]
and n € N we get

(V) (1) — (N3] < /0 VUG 56 (5. 5) —£(5.5,)] ds
< /0 B 1) lys — 3, ds
< /0 Cla(s) € HO ] [T Oy, 5, ds

L P L (s) !
[ ds ”y _y”n
0 T

- ~
—e" O |y =5,
T

IA

IA

Therefore,

- 1 -
[(N1y) = Nyl = - Iy =¥l

So, for T > 1, the operator N is a contraction for all n € N. From the choice of Y
there is no y € dY" such that y = A N;(y) for some A € (0, 1). Then the statement
(82) in Theorem 1.29 does not hold. A consequence of the nonlinear alternative of
Frigon and Granas that (S1) holds, we deduce that the operator N; has a unique
fixed point y* which is the unique mild solution of the problem (2.1)—(2.2). O

2.2.3 An Example

As an application of Theorem 2.2, we consider the following partial functional
differential equation

0z 9%z
—(t,x) = a(t,x)—(t,x) + O(t,z(t — r,x)) te€]0,+00), x€]0,n]
ot 0x2

2(t,0) =z(t,m) =0 t € [0, +00)

z(t,x) = @(t,x) te H, x € [0, ],
(2.6)
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where r > 0, a(t,x) : [0, 00) x [0, 7] — R is a continuous function and is uniformly
Holder continuous in #z, Q : [0,400) X R — Rand @ : H x [0,7] — R are
continuous functions.

Consider E = L*([0, ], R) and define A(¢) by A(t)w = a(t, x)w” with domain

D(A) = {w € E : w,w' are absolutely continuous, w” € E, w(0) = w(xr) = 0}.

Then A(r) generates an evolution system U(z, s) satisfying assumption (2.1.1) (see
[112, 149])).
For x € [0, ], we set

y()(x) = z(t,x) teRy,
fy)x) =0zt —r.x) t€Ry

and
p(x) = d(t,x) —r<t=<0.

Thus, under the above definitions of f, ¢ and A(:), the system (2.6) can
be represented by the abstract partial functional evolution problem (2.1)—(2.2).
Furthermore, more appropriate conditions on Q ensure the existence of unique mild
solution for (2.6) by Theorems 2.2 and 1.29.

2.2.4 Nonlocal Case

In this section, we extend the above results about the existence and uniqueness
of mild solution to the partial functional evolution equations with nonlocal condi-
tions (2.3)—(2.4). The nonlocal condition can be applied in physics with better effect
than the classical initial condition y(0) = y,. For example, /,(y) may be given by

p

hO) = cyti+1. teH

i=1

where ¢;, i = 1,...,p are given constants and 0 < #; < --- <1, < 4o00.
At time t = 0, we have

p
ho(y) = Z ci y(ti).
i=1

Nonlocal conditions were initiated by Byszewski [90] to which we refer for
motivation and other references.
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Before giving the main result, we give first the definition of mild solution of the
nonlocal partial functional evolution problem (2.3)—(2.4).

Definition 2.3. A function y € C([—r, +00),E) is said to be a mild solution
of (2.3)-(2.4) if y(r) = ¢(t) — h(y) for all t € H and y satisfies the following
integral equation

y(t) = U(2,0) [¢0) — ho(y)] + /Ot U(t,s) f(s,ys) ds, foreacht € [0, +00).

We will need the following hypotheses on #,(+) in the proof of the main result of
this section.

(2.3.1) For all n > 0, there exists a constant ¢,, > 0 such that
e (u) — h(v)| < 0y [Ju— v

forallt € H,u,v € C([—r,00), E) with |u|| <nand ||v| <n;
(2.3.2) there exists o > 0 such that

|h;(u)| < o foreachu € C(H,E), andt € J.

Theorem 2.4 ([33]). Assume that the hypotheses (2.1.1)—-(2.1.3), (2.3.1), and
(2.3.2) hold and moreover for n > 0

+o0 ds R n
/Cz W>M/0 p(s) ds, 2.7)

where ¢, = 1\//\1(||(p|| + o). Then the nonlocal evolution problem (2.3)—(2.4) has a
unique mild solution.

Proof. Transform the problem (2.3)—(2.4) into a fixed point problem. Consider the
operator N; : C([—r, +00), E) — C([—r, +00), E) defined by:

() — h(y), ifte H;

Ny (1) = ,
U(1.0) [p(0) — ho(3)] + /0 UG.5) f(s.y,) ds.  ift€ Ry,

Clearly, the fixed points of the operator N, are mild solutions of the problem (2.3)—
2.4).

Then, by parallel steps of Theorem 2.2’s proof, we can easily show that the
operator N, is a contraction which have a unique fixed point by statement (S1) in
Theorem 1.29. The details are left to the reader. O
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2.3 Neutral Functional Evolution Equations

2.3.1 Introduction

In this section, we investigate neutral functional evolution equations with local and
nonlocal conditions. First, we study in Sect.2.3.2 the following neutral functional
evolution equations

d
E[Y(f) —g(t,y)] = A()y(t) + f(t.y); ae.r € Ry, (2.8)
y(1) = (1); t € H, (2.9)

where r > 0; f,g : I xC(H,E) — E and ¢ € C(H,E) are given functions and
{A(#)}i>0 is a family of linear closed (not necessarily bounded) operators from E
into E that generate an evolution system of operators {U(t, )} sesxs for 0 < s <
t < +o0.

An extension of these existence results will be given in Sect.2.3.4 for the
following neutral functional evolution equation with nonlocal conditions

d
d—t[v(t) —g(t,y)] =A@y@) +f(t.y,), ae.teJ =Ry (2.10)
y(@) + h(y) = ¢(t), t € H, 2.11)

where A(:), f, g, and ¢ are as in problem (2.8)—(2.9) and k, : C([—r, 00), E) — E is
a given function.

Neutral equations have received much attention in recent years: existence and
uniqueness of mild, strong, and classical solutions for semi-linear functional
differential equations and inclusions has been studied extensively by many authors.
Hernandez in [138] proved the existence of mild, strong, and periodic solutions for
neutral equations. Fu in [117] studied the controllability on a bounded interval of a
class of neutral functional differential equations. Fu and Ezzinbi [119] considered
the existence of mild and classical solutions for a class of neutral partial functional
differential equations with nonlocal conditions.

Here we are interesting to give existence and uniqueness of the mild solution
for the neutral functional evolution equations (2.8)—(2.9) and the corresponding
nonlocal problem (2.10)—(2.11).

2.3.2 Main Result

We give first the definition of the mild solution of (2.8)—(2.9).
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Definition 2.5. We say that the continuous function y(-) : [-7, +00) — E is a mild
solution of (2.8)—(2.9) if y(r) = ¢(t) for all t € H and y satisfies the following
integral equation

ﬂ0=U@®w®%w®wH+ﬂmw+ALW@Awg@mﬁk

t
—{—/ U(t,s) f(s,y,) ds, foreach ¢t € [0, +00).
0

We will need to introduce the following assumptions:

(G1)  There exists a constant M, > 0 such that:

A~ (1)|| <M, forallz> 0.
1
(G2) There exists a constant 0 < L < —-, such that:
0

|A(t) g(t,9)| <L (|l¢|]l + 1) forallt > 0and ¢ € C(H, E).

(G3) There exists a constant Ly > 0 such that:

[A(s) g(s.9) —AB) 865, @)| = L (Is = 5| + llo — 9l

foralls, s> 0and ¢,p € C(H,E).

For every n € N, we define in C([—r, +00), E) the semi-norms by:

[Vl := sup { ™™ 2O [y(0)| : 1 € [0,n] }

t

where L' (1) = / 1,(s) ds, 1,(1) = M [ Ls 4+ 1,(¢)] and I, is the function from

0
(2.1.3).
Then C([—r, +00), E) is a Fréchet space with the family of semi-norms {|| -

— 1
ln}nen. Let us fix © > 0 and assume |:M0 L. + —] < 1.
T

Theorem 2.6 ([37]). Suppose that hypotheses (2.1.1)—(2.1.3) and the assumptions
(G1)—(G3) are satisfied. If

+o0 d M n
/ S / max(L, p(s))ds, for eachn > 0 (2.12)
an STYE)  1=MoL Jo ’ ’ -
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with

_ M1+ MoL)|lg|l + MoL(M + 1) + MLn
1 —MyL '

C3n

Then the problem (2.8)—(2.9) has a unique mild solution.

Proof. Transform the problem (2.8)—(2.9) into a fixed point problem. Consider the
operator N3 : C([—r, +00), E) — C([—r, +00), E) defined by:

(1), ifre H

(N3y) (1) = § U(2.0) [¢(0) — (0. 9)] + g(t.3:
~|—/ uU(t, s)A(s)g(s,ys)ds—l—/ U(t, s)f(s,ys)ds, ift € Ry,
0 0
Clearly, the fixed points of the operator N3 are mild solutions of the problem
(2.8)—(2.9).
We are going to use Theorem 1.29 in the following way. (i) Define a set
Y such that (2.8)—(2.9) does’nt have any solution out of Y. (ii) Show that (S2) of
Theorem 1.29 doesn’t hold under the above choice of Y, hence (S1) takes place.
Let y be such that y = AN;(y) for A € [0, 1]. Given n € N and ¢ < n, then from
(2.1.1), (2.1.2), (G1) and (G2) we have
ly()] = [U(z.0)] |p(0) — g(0, @) | + [8(z. y)|
t t
+ [ 10691146 g6l ds + [ 1069 G530 ds
< M llg|l +M A7 )] |A(0) 5(0. 9)| + A7 D 1AG) g(z. )|
t t
+M /0 |A(s) g(s.ys)| ds + M /0 p(s) v (llysl) ds
< M |l + M Mo L(l¢ll + 1) + Mo L(ly.|l + 1)
t t
AL [yl + 0 s+ 5 [ 96wl

We consider the function u defined by
w(@ :=sup{|y(s)] : 0<s<r}, 0<t<+o0.

Let t* € [—r, ] be such that u(¢) = [y(¢*)|. If * € [0, n], by the previous inequality
we get for ¢ € [0, n]

() < M |lgll +M Mo L(|@|l + 1) + Mo L(11(r) + 1)

+M /0 L(u@s)+1)ds+ M /0 p(s) v (pu(s)) ds.
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So
(1= MoL) u(t) < M ||l + M Mo L llg| +M Mo L+ My L
+MLn —i—M/(;tL;L(s)ds +M ](;tp(s) Y ((s)) ds.
Set
- M1 + MoL)||¢|| +MoL(M + 1) +MLn’
1 — ML
then

o . _
W) < ——— [M(l + MoL)||g|| + MoL(M + 1) +MLn]
1 — MoL

M

e~ [ [0 Lu(s)ds + /0 p(S)W(M(S))dS}

M t t
=c3,n+m[ /0 Lu(s)ds + fo p(sww(s))ds].

If * € H, then u(¢) = ||| and the previous inequality holds.
Let us take the right-hand side of the above inequality as v(¢). Then we have

u() < wv(t) forall s € [0,n].

From the definition of v, we get

v(0) =c3, and V()= T gL PO +p@OY ()] ae. t€[0,n].
— My

Using the nondecreasing character of ¥, we have for a.e. t € [0, n]

~

V(1) < %{Lv@ + POV @),

This implies that for each ¢ € [0, n] and using (2.12) we get

@) ds
/z SHYE 1o MOL/ max (L, p(s))ds

1 oL / max (L, p(s))ds

+o00 ds
= [ S+YG)
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Thus, there exists a constant A, such that v(r) < A,, ¢t € [0,n] and hence
u(@) < A,, t € [0,n]. Since for every ¢t € [0,n], |ly]l < wu(z), we have |y, <
max{[|lp[l, A,} := A,. Set

Y={yel(-r,+0),E) : ||yll» < A, + 1 for each n € N}.
Clearly, Y is an open subset_of C([-r, +0),E).

We shall show that N3 : Y — C([—r, +00), E) is a contraction operator. Indeed,
consider y,y € C([—r, +00), E), thus using (2.1.1), (2.1.3), (G1) and (G3) for each
t € [0,n] and n € N we get

|(N3y) (1) — (N3p)(D)] < |82, 1) — 8(2. 5]

4 / U )] 1AG) (8(s.35) — g(5.7,))] ds
0

4 [0 UG (5. 35) — f(s.5,)] ds
< 1A O JAG) (2. v) — A (2.5,

t
4 [ B AGs) g(s.35) — A(s) g(s.5,)] ds
0
t —~
4 [ B (s, 35) — f(s.5,)] ds
0
— t o~
<o L [y — 3] + / B Ly [y, — 3, ds
0
t —~
+ / L 1,(5) lys — 3, ds
0
— t o~ o~
< WLl =5+ [ (AL +FL6)] b= d
0
< [Mo L e O] [ 50y~ 5,1]

t
+ [ [y e 0] [0 =51
0

t
— * e
< [Mo Lo e 5] ||y—y||n+/ [
0

T LF(s)

’
] ds ”y_y”n-
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Then
) () = V@] = [Mo Lo e 5O ly =5, + = e 5Oy =5,
A7 1 T LX(1) =
=< MOL*+; ey =yl
Therefore,

N> ) = Ns @)l < [Mo L.+ ﬂ 1y = Sl

— 1
So, for |:M0 L, + —:| < 1, the operator N3 is a contraction for all n € N. From
T

the choice of Y there is no y € dY” such that y = A N;(y) for some A € (0, 1).
Then the statement (S2) in Theorem 1.29 does’nt hold. Thus statement (S1) holds,
and hence the operator N3 has a unique fixed point y* in Y, which is the unique mild
solution of the neutral functional evolution problem (2.8)—(2.9). O

2.3.3 An Example

As an application of our results we consider the following model

8% |:Z(t, X) —2/; /On b(s —t,u,x) z(s, u) du dsj|

= a(t,x)g(t, x) 4+ O(t, z(t — r, x), %(r— r,x)), t € [0,400), x € [0, 7]

72(t,0) = z(t,m) = 0, t € [0, +00)

2(t,x) = D(t,x), teH, xel0,7]
(2.13)

where r > 0; a(t, x) is a continuous function and is uniformly Holder continuous in
t,0:]0,4+00) x RxR — Rand @ : H x [0, r] — R are continuous functions.
Let

y(t)(x) = z(t,x), t € [0,00), x € [0, ],
0(0)(x) = &(0,x), 6 € H, x € [0, 7],

gt y)(x) = /_l /On b(s — t,u,x)z(s, u)duds, x € [0, 7]
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and
[, y)(x) = 0(t,z(0, x), %(Q,x)), 0 eH, xe|0,n].

Consider E = L*([0, 7], R) and define A(¢) by A(f)w = a(t, x)w" with domain
D(A) = {w € E : w,w are absolutely continuous, w” € E, w(0) = w(w) = 0}.

Then A(f) generates an evolution system U(t, s) satisfying assumptions (2.1.1) and
(G1) (see [112, 149]).

Here we consider that ¢ : H — E such that ¢ is Lebesgue measurable and
h(s)|@(s)|? is Lebesgue integrable on H where i : H — R is a positive integrable
function. The norm is defined here by:

1

0 2
||<p||=|q>(0)|+(/ h($)|<p($)|2ds) .

-r

The function b is measurable on [0, oo) x [0, ] x [0, 7],

b(s,u,0) = b(s,u,7) =0, (s,u) € [0,00) x [0, 7],

/n /t /7‘[ bZ(s,u’x)dd e <
—_——dasaudx (o.@]
o J—rJo h(s)

and sup N (f) < oo, where

t€[0,00)
b t T o1 82 2
N@) = /0 /—r/o ) (a(s,x)@b(s,u,x)) dsdudx.

Thus, under the above definitions of f, g, and A(-), the system (2.13) can
be represented by the abstract neutral functional evolution problem (2.8)—(2.9).
Furthermore, more appropriate conditions on Q ensure the existence of at least one
mild solution for (2.13) by Theorems 2.6 and 1.29.

2.3.4 Nonlocal Case

In this section we give existence and uniqueness results for the neutral functional
evolution equation with nonlocal conditions (2.10)—(2.11). Nonlocal conditions
were initiated by Byszewski [89]. Before giving the main result, we give first the
definition of the mild solution.
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Definition 2.7. A function y € C([—r, 4+00),E) is said to be a mild solution
of (2.10)—(2.11) if y(r) = ¢(t) — h(y) for all t € H and y satisfies the following
integral equation

Y0 =U0) [9(0) — ho(y) — g(0. ¢)] +8(ty)+
+/ U(t,s) A(s) g(s,ys) ds + / U(t,s) f(s,ys) ds, for teR,.
0 0

We take here the same assumptions in Sect. 2.2.4 for the function 7,(-).

Theorem 2.8 ([37]). Assume that the hypotheses (2.1.1)—(2.1.3), (G1)—(G3), (D1),
and (D2) hold. If

too (s M "
/ > — / max(L, p(s))ds, for eachn > 0 (2.14)
can STV 1-=MoLJo

with

M[(1+MoL) |l + 0] +MoL(M + 1) + MLn_
1 —M,L '

Can =

Then the nonlocal neutral functional evolution problem (2.10)—(2.11) has a unique
mild solution.

Proof. Consider the operator Ny : C([—r, +00), E) — C([—r, +00), E) defined by:

() — h(y), ift € H;

(Nay) (1) = { U, 9) [9(0) — ho(y) — g(0, 9)] + 8(t,yr)
+/ U(t, 5)A(s)g(s, ys)ds + / U(t,)f(s,y5) ds, ifteRy.
0 0

Clearly, the fixed points of the operator N4 are mild solutions of the problem
(2.10)—(2.11).

Then, by parallel steps of the Theorem 2.6’s proof, we can prove that the operator
Ny is a contraction which have a fixed point by statement (S1) in Theorem 1.29. The
details are left to the reader. O
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2.4 Partial Functional Integro-Differential Evolution
Equations

2.4.1 Introduction

In this section, we are interested by partial functional integro-differential evolution
equations with local and nonlocal conditions. First, we look for the class of partial
functional integro-differential evolution equations of the form

V(1) = A(@D)y(r) + /OIIC(I, $)f(s,ys)ds, ae. tedJ =Ry (2.15)
() = o), teH, (2.16)

where £ : J xJ - E,f : JxC(H,E) — E and ¢ € C(H,E) are given functions
and {A(?)},>o is a family of linear closed (not necessarily bounded) operators from
E into E that generate an evolution system of operators {U(t, 5)}(sesxs for 0 < s <
t < +400.

Also, an extension of these existence results is given for the following partial
functional integro-differential evolution problem with nonlocal conditions

Y (1) =A@)y@) + /IIC(t, $)f(s,ys) ds, ae. teJ=Ry (2.17)
0
() + h(y) = @(t), teH, (2.18)

where A(-), f, IC, and ¢ are as in evolution problem (2.15)—(2.16) and 4, : C(H,E) —
E is a given function.

The problem of proving the existence of mild solutions for integro-differential
equations and inclusions in abstract spaces has been studied by several authors;
see Balachandran and Anandhi [41, 42], Balachandran and Leelamani [45] and
Benchohra et al. [72, 77], Benchohra and Ntouyas [60, 61, 66], Ntouyas [165].

Here we are interested to study the existence and uniqueness of the mild
solution for the partial functional integro-differential evolution equations (2.15)—
(2.16) and the corresponding nonlocal problem (2.17)—(2.18). The motivation of
these problems is to look for the integro-differential equations considered in [33].

2.4.2 Main Result

Before stating and proving the main result, we give first the definition of
mild solution of the partial functional integro-differential evolution problem
(2.15)—(2.16).
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Definition 2.9. We say that the function y(-) : [-r, +00) — E is a mild solution
of (2.15)—(2.16) if y(f) = ¢(¢) for all + € H and y satisfies the following integral
equation

y() = U(t,0) ¢(0) + /Ot U(t,s) /OS K(s,7) f(r,y.)dr ds, foreachre R,.

We will need to add the following assumption:

(2.9.1) Foreacht € J, K(t,s) is measurable on [0, 7] and
K(t) = esssup{|K(t,5)];0 <s <t}

is bounded on [0, n]; let S, := sup K(z).

1€[0.1]

For every n € N, we define in C([—r, +00), E) the semi-norms by:
Iylln = sup { e " |y(0)| : 1 € [0,n] }

t
where L) (1) = / 1,(s) ds, 1,(t)y = M n S, 1,(¢) and I, is the function from (2.1.3).

0
Then C([—r, +00), E) is a Fréchet space with the family of semi-norms {|| -
|l.:}nen- In what follows we will choose © > 1.

Theorem 2.10. Suppose that hypotheses (2.1.1)~(2.1.3) are satisfied and the
assumption (2.9.1) holds. If

+o00 d . n
/ SIS MnsS, / p(s)ds,  foreachn >0 (2.19)
cs W(S) 0

with cs = M ll@|l. Then the problem (2.15)—(2.16) has a unique mild solution.
Proof. Transform the problem (2.15)—(2.16) into a fixed point problem. Consider
the operator N5 : C([—r, +00), E) — C([—r, +00), E) defined by:

p(1), ift € H;

(Nsy) (@) = ' s
U(t,0) ¢(0) + / U(s, s)/ K(s,7) f(r,y.)dr ds, ifteR;.
0 0

Clearly, the fixed points of the operator N5 are mild solutions of the problem
(2.15)—(2.16).
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Let y be a possible solution of the problem (2.15)—(2.16). Givenn € Nand ¢t < n,
then from (2.1.1), (2.1.2) and (2.9.1) we have:

O] < UG 0)] 19(0)] + [0 VUG5

/S’C(S, 7) f(z,y,) dt| ds
0

< W (O] + 7 /0 /0 (s o) (2. o) d ds

)

=

loll + 3 /0 /0 K. D) o) w(ly. ) dr ds

t
< W gl + ¥ ns, fo p() ¥ (lyall) ds.

We consider the function u defined by
() :==sup{ [y(s)| : 0<s<t}, 0=<t<+oo.

Let r* € [—r, 1] be such that u(r) = |y(t*)]. If * € [0, n], by the previous inequality
we get

() < 3 gl + M n S, /0 p(s) Y (uls)) ds. 1€ [0.n]

If * € H, then uu(¢) = ||¢|| and the previous inequality holds.
Let us take the right-hand side of the above inequality as v(¢). Then we have

w(t) < v(r) forallr € [0,n].
From the definition of v, we get
cs:=v(0) =M|¢| and V() =MnS,p) ¥(u() ae. te]0,n).
Using the nondecreasing character of {, we have
V(1) <Mn S, p(t) ¥ (v(r) ae.te[0,n].

This implies that for each ¢ € [0, n] and using (2.19) we get

v(t) ds R t
<MnS, / p(s) ds
c5 I)[/(S) 0

<MnS, / p(s) ds
0
<

[756
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Thus, there exists a constant A, such that v(r) < A,, ¢t € [0,n] and hence

u(t) < Ay, t € [0,n]. Since for every t € [0,n], [ly/]l < u(z), we have [y|, <
max{||¢|l, An} := A,. Set

Y={yeCl(-r,+0),E):sup{|y(¥)| :0<t<n}<A,+1 forallne N}

Clearly, Y is a closed subset of C([—r, +00), E).

We shall show that N5 : ¥ — C([—r, +00), E) is a contraction operator. Indeed,
consider y,y € C([—r, +00), E), thus using (2.1.1), (2.1.3), and (2.9.1) for each
t € [0,n] and n € N we get

HNﬂNﬂ—U%@UN=‘AlKhﬂ[;K@J)Uﬁdﬂ-f&i&]wnh
f[jnwmwm@)AﬂmwrnV@yo—fuiawhds
sﬁﬁifmmmvmm—ﬂwmwm
SZ:Mn&h@Wm—%MB
s/ﬂM@amﬂkﬂﬁwm—xmw

0

3 WP LY (s) !
| ds Iy =3,
0 T

- ~
—e" O Yy =5,
T

IA

A

Therefore,

IN50) = Nl = = =Tl

So, for T > 1, the operator N5 is a contraction for all n € N. From the choice of
Y there isno y € dY" such that y = A N5(y) for some A € (0, 1). Then the statement
(82) in Theorem 1.29 does not hold. A consequence of the nonlinear alternative
of Frigon and Granas [116] that (S1) holds, we deduce that the operator N5 has a
unique fixed point y* in ¥, which is the unique mild solution of the problem (2.15)—
(2.16). |
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2.4.3 An Example

As an application of our results we consider the following partial functional integro-
differential equation

dz(t,x) 8%z(t, x)
o at.)—53
+/ alt,s)0(s,z(s — r,x))ds, t > 0,x € [0, ]
- (2.20)
72(t,0) = z(t,7) = 0 >0
72(t,x) = D(t,x) teH, xe|0,7x]

where a(t, x) is a continuous function and is uniformly Hoélder continuous in ¢, « :
[0, +00) X [0,4+00) —> R, Q : [0,400) x R - Rand @ : H x [0,7] — R are
continuous functions.

Consider E = L*([0, ], R) and define A(¢) by A(t)w = a(t, x)w” with domain

D(A) = {w € E : w, W are absolutely continuous, w” € E, w(0) = w(x) =0}

Then A(r) generates an evolution system U(z, s) satisfying assumption (2.1.1) (see
[112, 149])).
For x € [0, ], we have

y()(x) = z(t,x) teRy,
K(t,s) =a(t,s) tseR4,
ft,y)(x) = 0(t,z(t —r,x)) teRy

and
px) =d(t,x) —r<t=<0.

Thus, under the above definitions of f, IC, and A(-), the system (2.20) can
be represented by the abstract partial functional integro-differential evolution
problem (2.15)—(2.16). Furthermore, more appropriate conditions on Q ensure the
existence of unique mild solution for (2.20) by Theorems 2.10 and 1.29.
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2.4.4 Nonlocal Case

In this section, we extend the above results of existence and uniqueness of
mild solution to the partial functional integro-differential evolution equations with
nonlocal conditions (2.17)—(2.18). Nonlocal conditions were initiated by Byszewski
[89]. First, we define the mild solution.

Definition 2.11. A function y € C([—r, 4+00),E) is said to be a mild solution
of (2.17)—(2.18) if y(t) = ¢(t) — h(y) for all t € H and y satisfies the following
integral equation

y(t) = U(t,0) [¢(0) — ho(y)] +/0 u(, S)A K(s,t) f(r,y.)dr ds, forteR;.

Under the same assumptions in Sect.2.2.4 for the function 4,(-), we establish
that:

Theorem 2.12. Assume that the hypotheses (2.1.1)-(2.1.3), (2.9.1), (D1), and (D2)
hold and moreover

+o0 ds N n
/ >MnS, / p(s)ds,  foreachn >0 (2.21)
c6 W(S) 0

where cg = M (l¢ll + o). Then the nonlocal integro-differential evolution prob-
lem (2.17)—(2.18) has a unique mild solution.

Proof. Transform the problem (2.17)—(2.18) into a fixed point problem. Consider
the operator Ng : C([—r, +0), E) — C([—r, +00), E) defined by:

@) — h(y). if € H,

(Ney) (1) = | U(2.0) [¢(0) = ho()]
+/ u(, s)/ K(s, 1) f(t,y.)dtds, ift>0.
0 0

Clearly, the fixed points of the operator Ng are mild solutions of the problem
(2.17)—(2.18).

Then, by parallel steps of the Theorem 2.10’s proof, we can easily show that the
operator N is a contraction which have a unique fixed point by statement (S1) in
Theorem 1.29. The details are left to the reader. O
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2.5 Neutral Functional Integro-Differential Evolution
Equations

2.5.1 Introduction

In this section, we investigate neutral functional integro-differential evolution
equations with local and nonlocal conditions where the existence of the unique mild
solution is assured. Firstly, we study in Sect.2.5.2 the neutral functional integro-
differential evolution equations of the form

%I’y(t) —g(t,y)] = A1) + /0 K(t.s) f(s.ys) ds, ae.t €J =Ry (2.22)
y(1) = ¢(t), t € H, (2.23)

where L : JxJ —E, f,g:JxC(H,E) — E and ¢ € C(H, E) are given functions
and {A(?)},>0 is a family of linear closed (not necessarily bounded) operators from
E into E that generate an evolution system of operators {U(t, 5)}.5)e/xJ-

An extension of these existence results, we consider the following neutral
functional evolution equation with nonlocal conditions

%[v(t) —g(t,y)] = A@®)y(®) + /0 K(t,5) f(s,y) ds, ae. t € J =Ry (2.24)
y(0) + h(y) = ¢t), t € H, (2.25)

where A(:), IC, f, g, and ¢ are as in problem (2.22)—(2.23) and &, : C([—r, o0),E) —
E is a given function.

The problem of proving the existence of mild solutions for integro-differential
equations and inclusions in abstract spaces has been studied by several authors; see
Balachandran and Anandhi [41, 42], Balachandran and Leelamani [45], Benchohra
etal. [72,77], Benchohra and Ntouyas [60, 61, 66], Ntouyas [165]. We are motivated
by the mixed problems in [42, 64, 66].

Here we are interested to study of the existence and uniqueness of the mild
solution for the neutral functional integro-differential evolution equations (2.22)—
(2.23) and the corresponding nonlocal problem (2.24)—(2.25). These results are an
extension of [37] for the neutral case.

2.5.2 Main Result

We give first the definition of the mild solution of the neutral functional integro-
differential evolution problem (2.22)—(2.23).
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Definition 2.13. We say that the continuous function y(-) : [-r, +00) — E is
a mild solution of (2.22)—(2.23) if y(t) = ¢(¢) for all t € H and y satisfies the
following integral equation

y®=U@®w©—ﬂQM+ﬂww+AU@ﬂﬂﬂﬂwaw

t s
+/ u(, s)[ K(s,7) f(r,y;)dr ds foreachre R,.
0 0
For every n € N, we define in C([—r, +00), E) the semi-norms by:
Iyl = sup { e O |y(r)] : £ € [0,7] }

t
where L* (1) = / 1,(s) ds, 1,(t) = M (L + nS,1,(t)) and I, is the function from
0
(2.1.3).
Then C([—r,+00),E) is a Fréchet space with the family of semi-norms

— 1
{Il - lln}nen- Let us fix T > 0 and assume |:M0 L. + —i| < 1.
T

Theorem 2.14. Suppose that hypotheses (2.1.1)—(2.1.3), (2.9.1), and (G1)-(G3)
are satisfied. If

+o0 ds M n
/ > — / max (L, nS,p(s))ds, foreach n>0 (2.26)
cn SHWY() 1-MoL Jo

with

_ Mlgll(1 + MoL) + MoL(M + 1) + MLn_
1 —M,L ’

C7,n

Then the neutral functional integro-differential evolution problem (2.22)—(2.23) has
a unique mild solution.

Proof. Transform the problem (2.22)—(2.23) into a fixed point problem. Consider
the operator N; : C([—r, +00), E) — C([—r, +0), E) defined by:

(1), iftre H

(N7y) (1) = { U(2,0) [p(0) — g(0,¢)] + g(t,y) + /0 U(t, s)A(s)g(s, ys)ds

t N
+/ u(t, s)/ K(s,t) f(z,y:) dt ds, ifr € Ry.
0 0

Clearly, the fixed points of the operator N; are mild solutions of the problem
(2.22)—(2.23).
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Let y be a possible solution of the problem (2.22)—(2.23). Givenn € Nand ¢t < n,
then from (2.1.1), (2.9.1), (G1), and (G2), we have

y@] = [U@0)] 9(0) — g(0.9)| + gty +/0 1U @ ) |la) |A(s) g(s. ys)| ds

t
+ / WU 50
0

[SK(S, 7) f(t,y,) dt ds
0

< B ¢l + 3 |4 O] |A0) g0.9) | + |47 O 1AD) gt
+MAnMﬂm%mw+MA[HmmmvwwNMﬁ
<M o] +M Mo L (gl +1)+MoL(|y)] +1)
+MLANMH4nb+MA[ﬂnunmuwm%mww
<Ml +MyL)+MyL(M+1)+MLn

t t
+MoL||yr||—lrML/0 lysll ds + M n S, /OP(S)W(IIySII)dS-

We consider the function p defined by
p() :==sup{ [y(s)| : 0<s<t}, 0=<r1<+oo.

Let t* € [—r, f] be such that u(¢) = [y(¢*)|. If * € [0, n], by the previous inequality
we get for ¢ € [0, n]

11(5) < M| (1 + MoL) + MoL(M + 1) + MLn
+MoLu(t) + ML/ w(s)ds + MnSn/ p()w((s))ds.
0 0
Then
(1 = MoL)pu(t) < M||g||(1 + MoL) + MoL(M + 1) + MLn
L [ u(ods + 81, [ plo)wu(o)as.
0 0

Then

1 ~ _— r— ~ ~
() < ———[Mllgll(1 + MoL) + ML (M + 1) + MLn]

1—MyL
ML ! MnSn !
— s)ds + — / K s))ds
I_MLAMU el OLIIE)
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M ! '
=Cint m [/0 Lu(s)ds + /(; nSnP(SW(M(S))dS} :

If * € H, then u(f) = ||¢|| and the previous inequality holds.
Let us take the right-hand side of the above inequality as v(¢). Then we have
u(t) < wv(t) forall ¢ € [0,n]. From the definition of v, we get

~

c:=v(0)=c7, and V()= 7

7 [Lu() + nSpp() Y (u(1))]  ae.t € [0,n].

Using the nondecreasing character of ¥, we have for a.e. t € [0, n]

A

V(1) < [Lv(t) + nS,p(OY (v(1)].

This implies that for each ¢ € [0, n] and using (2.26) we get

v(1) ds
/ / max (L, nS,p(s))ds
e, ST 1/f(S) 1 —MoL

1 "L / max(L, nS,p(s))ds

too s
< / b
e STV
Thus, there exists a constant A, such that v(f) < A,, t € [0,n] and hence
u() < A,, t € [0,n]. Since for every t € [0,n], ||y:]| < u(r), we have ||y|, <
max{||¢||, An} := A,. Set
Y={yel(-r,+),E) : ||yl < A+ 1 foralln € N}.
Clearly, Y is a closed subset_of C([-r,+0),E).
We shall show that N7 : Y — C([—r, +00), E) is a contraction operator. Indeed,

consider y,y € C([—r, +00), E), thus using (2.1.1), (2.1.3), (2.9.1), (G1) and
(G3) foreach t € [0,n] and n € N, we get

(V) (1) — (N O] < lee,yn) —g(6.5,)]
4 /0 10 9) 13 JAG) g5, 35) — g(s.5.)ds
. ‘ /0 Uit.s) /0 K, Dl (ty0) — F(5.5,)|drds

< AT OINADgE y) — A@)g(@. 5,
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t

iy /0 1A(5)g(s. y5) — A()g(s.3,)ds

t K
+ /0 105 /0 K. DI (2. y0) — (2.3, ldrds
o~ t/\

< MoLally -, + /0 FL.Ily, — 3, ]ds

t/\

+ / FnSu1,()ys — 3,]ds
0

t
< FaLully =50 + [ [FLa -+ 50,106y =1
0
< MoLe™ O ™H Oy, — 5,

t
+ / 1) OOy, — 5 11ds
0

TL¥ (s)

I
— X _ e _
< MoLye™ ")Ily—y||n+/ [ } dsl|ly — ylla
0

j— * _ 1 * _
< MoLye™ Olly — 3|, + ;e’L" Oy =l
_ 17 . ~
< 3oL + ;} FHEOy 3],
Therefore,

N2 ) = N @)l < [Mo L.+ ﬂ 1y = 3l

— 1
So, for | My L« + — | < 1, the operator N7 is a contraction for all n € N. From
T

the choice of Y there is no y € dY” such that y = A N;(y) for some A € (0, 1).
Then the statement (S2) in Theorem 1.29 does not hold. A consequence of the
nonlinear alternative of Frigon and Granas [116] that (S1) holds, we deduce that
the operator N; has a unique fixed point y* in Y, which is the unique mild solution
of the problem (2.22)—(2.23). O

2.5.3 An Example

As an application of our results we consider the following neutral functional integro-
differential evolution equation
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led [a(t.x) = [*, i bls — tu.x) 2(s.u) duds] = a(t,.x) 25 (1,x)
+ foloz(t, 5)0 (s, (s —r,x), g—fc(s — r,x)) ds, t>0,x€l0,r]

2(t,0) = z(t,m) = 0, >0

Z(tvx):¢(t»x)v IEH,XG[O,H]

(2.27)

where a(t, x) is a continuous function and is uniformly Holder continuous in ¢, & :
[0, +00) X [0, +00) > R, Q:[0,+00) x RxR — Rand @ : Hx [0,7] — R are
continuous functions.

Consider E = L*([0, ], R) and define A(f) by A(t)w = a(t, x)w” with domain
D(A) = {w € E : w, w' are absolutely continuous, w” € E, w(0) = w(r) =0}
Then A() generates an evolution system U(t, s) satisfying assumptions (2.1.1) and

(G1) (see [112, 149]).
For x € [0, ], we have

yO(x) =z(t,x) 1€Ry,
K(t,s) =a(t,s) t,seR4,
f.y)(x) = 0@t z(t—r.x)) 1€Ry,

gt y)(x) = /t /ﬂ b(s — t,u,x)z(s, u)duds, x € [0, 7]
—rJ0
and
o(t)(x) = d(t,x) te€H.

Here we consider that ¢ : H — E is Lebesgue measurable and & ||¢||? is
Lebesgue integrable on H where h : H — R is a positive integrable function. The
norm is defined here by:

1

0 2
||<p||=||q>(0)||+(/ h(s) ||¢||2ds) .

-r

(i) The function b is measurable and

b t T b2(s7 u,x)
——=dsdudx < 0.
/0 /_/o h(s)
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ob 2
(ii) The function (a—(s,u,x)) and (ﬁ(s,u,x)) are measurable, b(s,u,0) =
X X

b(s,u, t)) = 0and sup N(f) < oo, where
t€[0,b]

T t T 1 82 2
N(@) =/0 /_r/O o) (a(s,x)@b(s,u,x)) dsdudx.

Thus, under the above definitions of f, g, K, and A(:), the system (2.27)
can be represented by the abstract neutral functional integro-differential evolution
problem (2.22)—(2.23). Furthermore, more appropriate conditions on Q ensure the
existence of a least one mild solution for (2.27) by Theorems (2.14) and (1.29).

2.5.4 Nonlocal Case

An extension of these results is given here for the neutral functional integro-
differential evolution equation with nonlocal conditions (2.24)—(2.25). Nonlocal
conditions were initiated by Byszewski [89]. Before giving the main result, we give
first the definition of the mild solution.

Definition 2.15. A function y € C([—r, 4+00),E) is said to be a mild solution
of (2.24)—(2.25) if y(1) = ¢(t) — h(y) for all t € H and y satisfies the following
integral equation

y(1) = U(t,0) [p(0) — ho(y) — g(0. )] + g(t. y:) +/0 Ul(t,s) A(s) g(s.ys) ds
+ /t Ut s) /5 K(s,t)f(r,y;)dt ds, foreachte R;.
0 0

Under the same assumptions in Sect. 2.2.4 for the function #,(-), we establish that

Theorem 2.16. Assume that the hypotheses (2.1.1)—(2.1.3), (2.9.1), (G1)—(G3),
(D1), and (D2) hold. If

+o00 ds M n
> —— max (L, nS,p(s)) ds,  foreachn >0 (2.28)
C8.n W(S) 1 - M()L 0

with

_ M[llll(1 + MoL) + o] + MoL(M + 1) + MLn
s 1 — ML '

Then the nonlocal neutral functional integro-differential evolution problem
(2.24)—(2.25) has a unique mild solution.
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Proof. Transform the problem (2.24)—(2.25) into a fixed point problem. Consider
the operator Ng : C([—r, +00), E) — C([—r, +00), E) defined by:
o) — h(y), t if t € H;
Bt = | U0 600~ = 0] + | v 46 5655

—i—/ Ul(t,s) / K(s, ) f(z,y,) dt ds, for each t > 0.
0 0

Clearly, the fixed points of the operator Ng are mild solutions of the problem
(2.24)-(2.25).

Then, by parallel steps of the Theorem 2.14’s proof, we can prove that the
operator Ng is a contraction which have a fixed point by statement (S1) in
Theorem 1.29. The details are left to the reader. a

2.6 Notes and Remarks

The results of Chap.2 are taken from Baghli and Benchohra [33, 33, 37]. Other
results may be found in [41, 42, 44].



Chapter 3
Partial Functional Evolution Equations
with Infinite Delay

3.1 Introduction

In this chapter, we provide sufficient conditions for the existence of the unique mild
solution on the positive half-line R4 for some classes of first order partial functional
and neutral functional differential evolution equations with infinite delay.

3.2 Partial Functional Evolution Equations

3.2.1 Introduction

In this section, we consider the following partial functional evolution equations with
infinite delay

Y@ =A@y +f(t,y,), ae. teJ=Ry 3.1
yo = ¢ € B, (3.2)

where f : J x B — E and ¢ € B are given functions and {A(f) }o</<+oo 1S a family
of linear closed (not necessarily bounded) operators from E into E that generate an
evolution system of operators {U(t, 5)}.5)esxs for 0 < s < t < +o0. Here y;(-)
represents the history of the state from time ¢ — r up to the present time ¢ defined by
y(0) = y(t 4+ 0) for 8 € (—o0, 0]. We assume that the histories y; belongs to some
abstract phase space B.

© Springer International Publishing Switzerland 2015 47
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Here we are interested to give existence and uniqueness results of the mild solu-
tion for the partial functional evolution equations (3.1)—(3.2) by using Theorem 1.29
due to Frigon and Granas [116].

3.2.2 Existence and Uniqueness of Mild Solution

Before stating and proving the main result, we give first the definition of mild
solution of the partial functional evolution problem (3.1)-(3.2).

Definition 3.1. We say that the continuous function y(-) : R — E is a mild solution
of (3.1)—(3.2) if y(t) = ¢ (¢) for all t € (—o0, 0] and y satisfies the following integral
equation

y(t) = U(t,0) ¢(0) + /Ot U(t,s) f(s,ys) ds, foreach re Ry.

We will need to introduce the following hypotheses which are assumed here-
after:

(3.1.1) There exists a constant M > 1 such that:
U ) |BE) < M for every (t,5) € A.

(3.1.2) There exist a function p € L}UC(J ,R4+) and a continuous nondecreasing

function ¥ : Ry — (0, 00) such that :
If (¢, u)| < p(¢) ¥ (||u||g) for a.e. t € J and each u € B.

(3.1.3) Forall R > 0, there exists Iz € L! (R, R, ) such that:

loc

If (t.u) = f (. 0)| < Ik (D) llu—vl|
for all u,v € B with |lul|z < Rand [v]z < R.
Consider the following space
Biow ={y:R—E:ylon € C(0,T].E), yo € B},

where y|jo.7] is the restriction of y to any real compact interval [0, T].
For every n € N, we define in B4 the semi-norms by:

[Vl := sup { e 2O |y(0)] : ¢ € [0,n]}

t
where L* (1) = / 1,(s) ds , 1,(t) = K,MI,(r) and [, is the function from (3.1.3).

0
Then B o is a Fréchet space with the family of semi-norms | - ||,en. In what
follows let us fix T > 1.
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Theorem 3.2 ([33]). Suppose that hypotheses (3.1.1)~(3.1.3) are satisfied and
moreover

n

+o00 ds R
/ —— > KM [ p(s)ds, foreachn >0 (3.3)
Con 1//(.8‘) 0

with co, = (Kn]\?IH + M)\ @l Then the problem (3.1)—(3.2) has a unique mild
solution.

Proof. Consider the operator Ng : B4+, — B4 defined by:

o), ift <0;

(N‘))’)(t)= t
U(1.0) (0) + / Ut.s) f(s.yy) ds.  if 1 0,
0

Clearly, fixed points of the operator Ng are mild solutions of the problem (3.1)—(3.2).
For ¢ € B, we will define the function x(.) : R — E by

¢ (1), if ¢t € (—o00,0];
x(t) =
Ut,0)p0), ifrel.

Then xy = ¢. For each function z € C(J, E), set
y(t) = z(f) + x(t).
It is obvious that y satisfies Definition 3.1 if and only if z satisfies zp = 0 and
t
Z(t) = / U(t,s) f(s,zs +x,) ds, fortel.
0
Let
Bioo ={z € Bjoo:20 =0}.

Define the operator F : B% ., — B% _ by:

FO®) = /0 UG8 fs 2+ x) s, forte .

Obviously the operator Ny has a fixed point is equivalent to F has one, so it turns to
prove that F has a fixed point.
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Let z € B‘:Loo be a possible fixed point of the operator F. By the hypotheses
(3.1.1) and (3.1.2), we have for each ¢ € [0, ]

12(0)] < / 10 9) s (5. 20 + )] ds

<1 /0 () ¥ (20 + %ll5) ds.

Assumption (A;) gives

lzs + x:lls < llzslls + lxls
< K©)[2()] + M($)lz0ll5 + K(5)x(5)] + M) |0l 5
< Kilz9)] + K[ U(5.0) 5 [$(0)] + M, 61| 5
< Ki2(9)] + KM (0)] + M, |5
< Kilz(9)| + K.MH| |5 + M $ll5
< Klz(s)| + (K, MH + M) 5.

Seta, :=cy, = (KHMH + M,)||¢ |5, then we have
llzs + xsll5 < Kalz(s)| + o (3.4)

Using the nondecreasing character of vy, we get
A t
20| < W /0 P(s) ¥ (Kale(s)] + ) ds.
Then
. t
K20+ 0y = K [ pOW (K, 6)] + s + o,
0

Consider the function u defined by
w@ =sup{ Kylz(s)| + o, : 0<s<t}, 0<t<+o0.

Let t* € [0, 7] be such that u(¢) = K,|z(t*)| + «,. By the previous inequality, we
have

u(t) < K.M /Olp(s) Y (u(s)) ds + con, for te]0,n].
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Let us take the right-hand side of the above inequality as v (7). Then, we have
u() <wv(t) forallz € [0,n].
From the definition of v, we have
v(0) = co,, and V() = K,Mp(t) ¥(u(r)) ae. t€[0,n].
Using the nondecreasing character of v, we get
V(1) < KM p(t) ¥ (v(1)) ae.t € [0,n].

This implies that for each ¢ € [0, n] and using the condition (3.3), we get

v(1) ds N t
— < KM / p(s) ds
¥ (s) 0

Con

§Kn1\71/ p(s) ds
0

/+oo ds
< .
con V()

Thus, for every t € [0, n], there exists a constant A, such that v(f) < A, and
hence u(t) < A,. Since ||z||, < n(f), we have ||z||, < A,. Set

Zz{zeBgLoo ssup{|z(r)] : 0<t<mn}<A,+1 forall ne N}

Clearly, Z is a closed subset of Bﬂ)roo.
We shall show that F : Z — B(j_oo is a contraction operator. Indeed, consider
7,7 € B%__, thus using (3.1.1) and (3.1.3) for each 7 € [0,n] and n € N

+o0°
(F)() — (F) ()] = ‘ /0 Ut.5) (5.2 + 1) — (5.5 + )] ds
< /0 VUG 5l 1525 + %) — f(5. % + x0)| ds

t
f f Mln(S) ||Zs+xs_zs_-x3”3 dS
0

t
< / M 1,(5) |lzs — Zs|| B ds.
0
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Using (A}), we obtain
4 —~
|(F2) (1) — (F2) ()] =< / M 1Ly(s) (K(s) |z(s) —2(s)| + M(s) llzo — ZollB) ds
0
4 —~
< [ K16 ) - 20l as
0

*

= [ | [1(s) e 5O ] [e™™ B [2(5) — 2(s)]] ds
0

A P LE(s) !
/ ds 1z,
0 T

1
— e 10 |z =7,
T

IA

IA

Therefore,
_ 1 _
1F(2) = F@)|. = - lz =zl

So, for > 1, the operator F is a contraction for all » € N. From the choice of
Z there is no z € 9Z" such that z = A F(z) for some A € (0, 1). Then the statement
(82) in Theorem 1.29 does not hold. A consequence of the nonlinear alternative of
Frigon and Granas that (S1) holds, we deduce that the operator F has a unique fixed
point z*. Then y*(¢) = z*(t) + x(¢), t € R is a fixed point of the operator Ny, which
is the unique mild solution of the problem (3.1)—(3.2). O

3.2.3 An Example

Consider the following partial functional differential equation

2
%(I,x) = a(z, x)%(t,x) + 0t ,z(t—r,x)) t >0, x € [0, 7]
ot ox2

Z(t, 0) = Z(t, 71') =0 t>0 3.5)

72(t,x) = D(t,x) t<0,xe€l0,n],

where a(t,x) is a continuous function and is uniformly Holder continuous in ¢,
Q:Ry xR —>Rand @ : B x [0, 7] — R are continuous functions.
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Let

y(®)(x) = z(t,x), t € [0,00), x € [0, 7],
Pp(0)(x) = @(0,x), 6 <0, x€[0,n]

and

ft.9)(x) = Q(1,¢(0.x)), 6 <0, x € [0, 7].
Consider E = L*([0, ], R) and define A(f) by A(t)w = a(t, x)w” with domain
D(A) = {w € E : w, w are absolutely continuous, w” € E, w(0) = w(xr) =0 }.

Then A(f) generates an evolution system U(t, s) satisfying assumption (3.1.1) (see
[112, 149)).

Thus, under the above definitions of f and A(:), the system (3.5) can be
represented by the abstract evolution problem (3.1)—(3.2). Furthermore, more
appropriate conditions on Q ensure the existence of the unique mild solution of (3.5)
by Theorems 3.2 and 1.29.

3.3 Controllability on Finite Interval for Partial
Evolution Equations

3.3.1 Introduction

In this section, we give sufficient conditions to ensure the controllability of mild
solutions on a bounded interval J; := [0, 7] for T > 0 for the partial functional
evolution equations with infinite delay of the form

Y () = A@)y(t) + Cu(t) + f(t,y;), ae. teJr (3.6)
Yo =¢ € B, 3.7

where f : JxB — E and ¢ € B are given functions, the control function u(.) is given
in L2([0, T], E), the Banach space of admissible control functions with E be a real
separable Banach space with the norm |-|, C is a bounded linear operator from E into
E, and {A(?)}o</<r is a family of linear closed (not necessarily bounded) operators
from E into E that generate an evolution system of operators {U(t, 5)}.s)esxs for
0<s<t<T.
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3.3.2 Controllability of Mild Solutions

Before stating and proving the main result, we give first the definition of mild
solution of problem (3.6)—(3.7) and the definition of controllability of the mild
solution.

Definition 3.3. We say that the continuous function y(-) : R — E is a mild solution
of (3.6)—(3.7) if y(t) = ¢(¢) for all t € (—o0, 0] and y satisfies the following integral
equation

y() = U(t,0)¢(0) + Lt U(t, s)Cu(s)ds + Lt U(t,5)f (s, ys)ds, foreachrt e [0,T].

Definition 3.4. The problem (3.6)—(3.7) is said to be controllable on the interval
[0, T] if for every initial function ¢ € B and y € E there exists a control u €
L?([0, T], E) such that the mild solution y(-) of (3.6)—(3.7) satisfies y(T) = 3.

We will need to introduce the following hypotheses which are assumed
hereafter:

(3.4.1) U(t,s) is compact for t —s > 0 and there exists a constant M > 1 such that:
U ) pE < M for every0 <s<t<T.

(3.4.2) There exists a function p € L'(J7,R;) and a continuous nondecreasing
function ¥ : R4 — (0, oo) such that:

lf(t, w)| < p(t) Y (|lu||g) for a.e. t € Jr and each u € 5.

(3.4.3) The linear operator W : L*([0, T], E) — C([0, T, E) is defined by
T
Wu = / U(T, s)Cu(s)ds,
0

has a bounded inverse operator W™! which takes values in L*([0,T),E)/
ker W and there exists positive constants M and M; such that:

ICll <M and |W7'| <M.

Remark 3.5. For the construction of W see the book of Carmichael and Quinn [93].

Consider the following space
By ={y: (=00, T| = E:y|; € CU.E). yo € B},

where y|; is the restriction of y to J.
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Theorem 3.6. Suppose that hypotheses (3.4.1)—(3.4.3) are satisfied and moreover
there exists a constant My > 0 such that

M,
ctor + KM (MBBLT + 1) (M2 ]

> 1, (3.8)

with
cror = ci0(¢,y,T) = I:KTMH (MMMIT + 1) +MT] P15 + KTMMM1T|)~’| .

Then the problem (3.6)—(3.7) is controllable on (—oo, T].

Proof. Transform the problem (3.6)—(3.7) into a fixed point problem. Consider the
operator Nyo : By — Br defined by:

(1), ift € (—o0,0];
(Niy) () = 1 U.0) $(0) + /0 U(t.5) C uy(s) ds
+ /t U(t,5) f(s,ys) ds, if r € [0, 7).
0

Clearly, fixed points of the operator Njp are mild solutions of the problem
(3.6)—(3.7).
Using assumption (3.4.3), for arbitrary function y(-), we define the control

T
uy (1) = W [y _U(1.0) $(0) — /O UT.5) Fls.3,) ds] .
Noting that, we have
T
1,0 < W [m U0l O)] + /0 VU e V(r,ymdr}
5 . . T
< i, [m - BiH| g5 + B /0 lf(f,yf)ldr}

T
< i [m + FH| g5 + B /0 (@) ¥ (ly. 1) dr].

For ¢ € B, we will define the function x(.) : R — E by

¢ (1), if ¢t € (—o00,0];
x(t) =
U@t,0)¢0), if telr.
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Then xy = ¢. For each function z € By, set y(r) = z(f) 4+ x(¢). It is obvious that y
satisfies Definition 3.3 if and only if z satisfies zp = 0 and

t t
() = / U(t,s) Cu,(s)ds + / U(t,s) f(s,zg + x) ds, forteJr.
0 0

Let BY = {z € Br : o = 0} . For any z € B) we have
lzllz = sup{ [z()] : 1 €[0,T]} + llz0lls = sup{ [2(1)] : £ € [0, 7] 5.

Thus (BY., || - ||7) is a Banach space.
Define the operator F : BY. — BY by:

(F2)(t) = /: U(t,s) Cu,(s)ds + /Ot U(t,s) f(s,zg + x5)ds, forteJr.

Obviously the operator Ny has a fixed point is equivalent to F has one, so it turns
to prove that F' has a fixed point. The proof will be given in several steps.
Let us first show that the operator F is continuous and compact.

Step 1:  F is continuous. Let (z,), be a sequence in BY. such that z, — z in BY.
Then, we get

|(Fza) (1) — (F2) ()] < /0 U@ ) ) ICN us, () — u(s)| ds
[ 10C ey 1620450 —F 0.2+ )] ds
0
' T
< A//\IM/ 1\7111\’/\1/ If (z, z0e + x0) —f (T, 20 + x;)| dt ds

0 0

+M/ V(Sv Zns +xs) —f(S, Zs + xs)| ds
0

T
< BRI T / 5,200 + x5) — £(5. 25+ x)] ds
0
T

M | (520 + X5) — (5,25 + )| ds
0

<M (A7IA7IA711T n 1) G zn +x) —fCrz+ x|

Since f is continuous, we obtain by the Lebesgue dominated convergence
theorem

IF(z)() — F(2)(1)] = 0 as n — +oo.

Thus F is continuous.
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Step 2:  F maps bounded sets of BY. into bounded sets. For any d > 0, there exists
a positive constant £ such that for each z € B; = {z € B} : ||z||z < d} we have
|F(z)|l7 < £.Letz € By, for each € [0, T], we have

|(F) (@) = /0 1U(. 9)|ls) ICIl u=(5)] der[O 1T )|y If (s, 25 + x0)[ ds

1 t
< M/ |uz(s)|ds+M/ 1F (s, 25+ x,)| ds
0 0
< MM/ i, [m + MH| ¢ +M/ p@ ¥ (llze + x:8) dr} ds
0 0

t
—}—M/ If (s, zs + x5)| ds
0

B T
< MR T | 5] + MH|p]15 + 3 /0 p(s)w(||zx+xs||s)ds}
'
iy fo p() ¥ (2 + x,l1s) ds
< MBI T [ [5] + MH |6 |5 |

+M (MMMIT + 1) [OTp(s) Y (|lzs + x,)|18) ds.
By (3.4) on Jr, we get for each z € By
Iz + x5ll3 < Krd + o7 := . 3.9)
Then, using the nondecreasing character of iy, we get for each ¢ € [0, T
(P < MMSLT |51 + MHI |5 | + M (MABLT + 1) $6p) Iplls = ¢

Thus there exists a positive number £ such that ||[F(z)||7 < £. Hence F(B,;) C By.

Step 3:  F maps bounded sets into equi-continuous sets of BY. We consider B, as
in Step 2 and we show that F(B,) is equi-continuous. Let 71, 7, € Jr with 7, > 17
and z € B;. Then

((F2) (r2) — (Fo) ()] < /0 UG 5) = Ut 9)llae 1€l (o) ds
+ /O U ) = UG, 9)llae (5.2 + )] ds
+ / U2 9) s €] luz(s)] ds

(%)
+ / VU2 )laie) (5.2 + )] ds.

13
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In the property of u,, we use (3.9) and the nondecreasing character of ¥ to get
O] < Bty (5] + BHI Sl + M 9 Ep) Il | = o.
Then

1(F2) (1) — (F)(@)] < [Cllae @ /0 U2 ) = UGt 9) e ds
Y6 fo U s) = UG 9)lae) pls) ds

(%3
HCllae @ / 102 9) ey ds

7

9 6r) [ U )l ps) ds.

Noting that |(Fz)(t2) — (Fz)(t1)| tends to zero as 7, — 1y — 0 independently of
z € By. The right-hand side of the above inequality tends to zero as 7, — 7; — O.
Since U(t, s) is a strongly continuous operator and the compactness of U(t, s) for
t > s implies the continuity in the uniform operator topology (see [16, 168]). As a
consequence of Steps 1 to 3 together with the Arzeld—Ascoli theorem it suffices to
show that the operator F maps B, into a precompact set in E.

Let ¢t € Jr be fixed and let € be a real number satisfying 0 < € < ¢. For z € By
we define

(Fe2)(1) = U(t, 1 —¢€) /O - U(t — e, s) Cu.(s) ds

+U(t,t—€) /t_e U(t—e,s) f(s,zs + x5) ds.
0

Since U(z,s) is a compact operator, the set Z.(t) = {F.(z)(t) : z € By} is
precompact in E for every e sufficiently small, 0 < € < z. Moreover using the
definition of w, we have

t
(F)(0) — (Fe2)(0)] < [ WU ) €] u(s)] ds
1—e
t
+ / VUG 5o (5.2 + )] ds
1—e
t
< [Claw @ [ VUG ) ds
1—e€

+0Gr) [ 1063w pls) ds.
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Therefore there are precompact sets arbitrary close to the set {F(z)(¢) : z € By}.
Hence the set {F(z)(¢) : z € By} is precompact in E. So we deduce from Steps 1, 2,
and 3 that F' is a compact operator.

Step 4:  For applying Theorem 1.27, we must check (S2): i.e., it remains to show
that the set

E={zeB}: z=L1F(z) forsome0 <A <1}

is bounded.

Letz € £, for each r € [0, T| we have
t t
120)] < / VUG 9l 1C] 1(s)] ds + / VUG 1.2 + )] ds
0 0
. t 5 N N T
< fit / iy [|y|+MH||¢||B+M f p(0) V(20 + x:ll5) dr} ds
0 0
. t
iy [0 p() ¥ (7 + 3, ]15) ds
L . . T
< BT [m - H| |5 + / p(5) (2 + 3, ]15) ds]
0

iy /0 () ¥ (I + xlls) ds.

Using the inequality (3.4) over Jr and the nondecreasing character of v, we get
. N T
|2()] = MMM, T [I&I + MH| ¢l + M/ p(s) ¥ (Kr|z(s)[ + ar) dS]
0

iy /0 p(8) ¥ (Krl2(5)] + ar) ds.

Then
Krlz(0)| + ar < ar + KeMMM, T

T
[IS’I +MH||¢||BM/O p(s) ¥ (Krlz(s)| + ar) dS}

Kol / p(s) ¥ (Kr|z(5)] + arp) ds.
0
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Setcior := ar + KTMMMlT |:|51| + ]/V\IH”(]')”B], thus

T
KT|Z(t)| +ar < cior + MzKTMMlT [ p(S) w(KTIZ(S)| + OlT) ds
0

KB / () ¥ Krle(s)| + ar) ds.
0

We consider the function p defined by
w@) :=sup{ Krl|z(s)| +ar : 0<s<t}, 0<t<T.

Let t* € [0, 1] be such that u(¢t) = Kr|z(t*)| + ar. If t* € [0, T], by the previous
inequality, we have for t € [0, T

T t
() < cior + MPKrMM\T /0 p(s) Y (u(s)) ds + KM /0 p(s) ¥ (u(s)) ds.

Then, we have

o e T
() < evor -+ Kol (RLELIT + 1) /0 p(s) Y (u(s)) d.

Consequently,

[ -
ctor + Kbl (MBENT + 1) () Ipll

Then by (3.8), there exists a constant M, such that ||z||7 # M. Set
Z={ze€B) : |zlr < Mu+1}.

Clearly, Z is a closed subset of B‘%. From the choice of Z there is no z € dZ such
that z = A F(z) for some A € (0, 1). Then the statement (S2) in Theorem 1.27
does not hold. As a consequence of the nonlinear alternative of Leray—Schauder
type [128], we deduce that (S1) holds: i.e., the operator F has a fixed point z*. Then
y*(t) = 2*(t) + x(1), t € (—o0, T] is a fixed point of the operator N1g, which is a
mild solution of the problem (3.6)—(3.7). Thus the evolution system (3.6)—(3.7) is
controllable on (—oo, T. O
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3.3.3 An Example

As an application of Theorem 3.6, we present the following control problem

0 9
39 =356 + dEuw)
+/O PO)r(t,v(t+6,£)d0 t<[0,T] §&<]0,n]
> (3.10)
v(t,0) = v(t,mr) =0 te€[0,T]
v(0,8) = vo(6,8) —00<0<0,Eel0,n],

where a(t, £) is a continuous function and is uniformly Holder continuous in ¢ ; P :
(—00,0] > R;7r:[0,T] xR —->R; vy : (—00,0] x [0,7] > Randd: [0,7] > E
are continuous functions. u(-) : [0, T] — E is a given control.

Consider E = L*([0, 7], R) and define A(¢) by A()w = a(t, £)w” with domain

D(A) = {w € E : w, w are absolutely continuous, w” € E, w(0) = w(z) =0}
Then A(f) generates an evolution system U(t, s) satisfying assumption (3.5.1) (see
[112, 149]).

For the phase space B, we choose the well-known space BUC(R™, E): the space
of uniformly bounded continuous functions endowed with the following norm

el = sup|p(®)| for ¢ € B.
0<0

If we put for ¢ € BUC(R™,E) and § € [0, 7]
y@)(§) =v(.§). 1 €[0.7]. § €[0, 7],
$(0)(E) = vo(6.§), —00 <0 <0, & €0, 7],

and
0
f(t. o)) = [ PO)r(t, 9(0)(§))dl, —00 <0 <0, £ €[0, 7]

—00

Finally let C € B(R, E) be defined as

Cu(r)(€) = d(E)u(r), 1€ [0,T), & €[0, 7], ue R, d(&) € E.
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Then, problem (3.10) takes the abstract evolution form (3.6)—(3.7). In order to
show the controllability of mild solutions of system (3.10), we suppose the following
assumptions:

— There exists a continuous function p € L'(J;,R™) and a nondecreasing
continuous function ¥ : [0, 00) — [0, 00) such that

|r(t,u)| < p(O)¥(|ul), fort € Jr, and u € R.

— P s integrable on (—o0, 0].

By the dominated convergence theorem, one can show that f is a continuous
function mapping B into E. In fact, we have for ¢ € B and § € [0, ]

0
If (2. 9) ()] S[_ PP ¥ ([(9(0))(E)])dO.

Since the function v is nondecreasing, it follows that
0
Feo)l <p) [ 1POIdBV (). fory < B,
—00

Proposition 3.7. Under the above assumptions, if we assume that condition (3.8)
in Theorem 3.6 is true, ¢ € B, then the problem (3.10) is controllable on (—oo, T).

3.4 Controllability on Semi-infinite Interval for Partial
Evolution Equations

3.4.1 Introduction

We obtain in this section the controllability of mild solutions on the semi-infinite
interval J = R for the partial functional evolution equations with infinite delay of
the form

Y (@) =A@y + Cu(t) + f(t,y), ae. te€J =Ry (3.11)
Yo = ¢ € (—00,0], (3.12)

where f : J x B — E and ¢ € B are given functions, the control function u(.) is
given in L?([0, 00), E), the Banach space of admissible control function with E is
a real separable Banach space with the norm | - | for some n > 0, C is a bounded
linear operator from E into E, and {A(f)}o</<+oo is a family of linear closed (not
necessarily bounded) operators from E into E that generate an evolution system of
operators {U(t, 5)}(t5esxs for 0 < s <t < 4o00.
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3.4.2 Controllability of Mild Solutions

In this section, we give controllability result for the system (3.11)—(3.12). Before
this, we introduce the the following type of solutions for the problem (3.11)—(3.12).

Definition 3.8. We say that the continuous function y(-) : R — E is a mild solution
of (3.11)-(3.12) if y(#) = ¢(¢) for all € (—o0,0] and y satisfies the following
integral equation

y(t) = U(t,0)¢(0) + Lt U(t, s)Cu(s)ds + /Ot U(t, s)f(s,ys)ds, foreachre Ry

Definition 3.9. The evolution problem (3.11)—(3.12) is said to be controllable if for
every initial function ¢ € B and § € E, there is some control u € L?([0, n], E) such
that the mild solution y(-) of (3.11)—(3.12) satisfies the terminal condition y(n) = y.

We will consider the hypotheses (3.1.1)—(3.1.3) and we will need to introduce
the following one which is assumed hereafter:

(3.9.1) For each n € N, the linear operator W : L*([0, n], E) — E is defined by
Wu = / U(n, s)Cu(s)ds,
0

has a bounded inverse operator W~ 1~Which takes values in L*([0,n],E)/ ker W
and there exists positive constants M and M, such that:

ICll <M and |W7'| <M.

Remark 3.10. For the construction of W see [93].

Consider the following space
Biso=1{y:R— E:y|on € C(0.TL.E), yo € B},

where y|[o,7] is the restriction of y to any real compact interval [0, T].
For every n € N, we define in B4 o the semi-norms by

[yl := sup { &7 2O [y(0)| : 1 € [0,n] }

t

where L} (1) = / L(s)ds, L,(t) = KnM 1,(¢) and [, is the function from (3.1.3).

0
Then B,  is a Fréchet space with the family of semi-norms {|| - ||,},x- In What
follows letus fix 7 > 1.
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Theorem 3.11. Suppose that hypotheses (3.1.1)—(3.1.3), (3.9.1) are satisfied and
moreover there exists a constant M* > 0
M*

== 3.13)
Citn + KnM(MMMln + 1) W(M*) ”p”L1

with
Clin = Cll@v‘bv”) = I:KnMH (ﬂMMln + ]> +Mn:| ||¢||B + KnﬂMMlnlj” .

Then the evolution problem (3.11)—(3.12) is controllable on R.

Proof. Consider the operator Ny : B4oo — B4oo defined by:
o), ift<0;
(Nuy) (1) = U(t,0) ¢(0) + /Ot U(t,s) Cuy(s) ds
+ /Ot U(t,s) f(s,ys) ds, ift > 0.
Using assumption (3.9.1), for arbitrary function y(-), we define the control
) =W (5= 00,0 40— [ 009 7630 5] .

Noting that, we have
hﬂManﬂkuwvmmmmwwn+Lnuwwh@wnmwﬂ
sM{m+mew+Mvaﬁwﬂ

sM{m+mew+Mmew%wwm]

We shall show that using this control the operator N;; has a fixed point y(:). Then
y(-) is a mild solution of the evolution system (3.11)—(3.12).
For ¢ € B, we will define the function x(.) : R — E by

é(1), if +<0;
x(t) =
U, 0)¢0), ifr>0.
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Then xy = ¢. For each function z € B4, set y() = z(¢t) + x(¢). Then z satisfies
Zo = 0 and

t t
2(t) = / U(t,s) C uyy,(s) ds + / U(t,s)f(s,zs + x,) ds, fort>0.
0 0

Let BY, . = {z € B4oo : 20 = 0} . Define the operators F, G : BS, ., — B, . by:

F(2)(r) = /t U(t,s) Cu,4,(s)ds, fort>D0.
0
and
600 = [ Ve szt x) b Torrzo
0

Obviously the operator Ny; has a fixed point is equivalent to F + G has one, so it
turns to prove that F' 4 G has a fixed point. The proof will be given in several steps.
We can show as in Sect. 3.3.2 that the operator F is continuous and compact.

We can prove also that the operator G is a contraction as in the proof of
Theorem 2.2).

For applying Theorem 1.30, it remains to show that (S2) doesn’t hold: i.e., we
will prove that the following set is bounded

S:{zeB(_Loo: zz)kF(z)—i—)tG(%) forsome0<k<l}.

Letz € &, for each r € [0, n], we have

t
lz(@)] < A /0 1T )@ ICIl |uzti(s)] ds

+A /0 U9 s V(S%H) ds.

Then

1 o~ t~ . A A n
1201 < 818t [ |51+ Bl + 7 [ p0) ¥l + 1) e | as

B) ds

fAMM{M+mew+M/p®WWa+Mw$}
0

B) ds

+M /Ofp(s) ) (Hi—s + X

st [ (|2 +x
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AN~ o~ —~ —~ ~ o~ n
< Rttty 51+ gl | + Bt [ p(6) vl + 5l ds
0

B) ds.

Using the inequality (3.4) and the nondecreasing character of ¥, we get

s [ (|54

1 o~ o~ . ~ o~ o~ n
J1eO| = St 1 + SHI$ls] + S0 [ ) WKL) + )
0

P K,
+M / p(s) ¥ (le(s)l + oc,,) ds.
0
Then, we get

K S
O] + o = ey + KM [ 5]+ MH 5]

K M /0 p(8) Y (Kol2(5)] + o) ds

~ [ K,
+K,M /0 p(s) v (le(s)l + an) ds.

Setciyy 1= oy + K,MMM;n [|§1| + I\/ZH||¢||B]. By the nondecreasing character of
Y and for A < 1, we obtain

K, ~y " K,
S0+ o = e+ Kttt [ ) v (0] + )
0

~ ! K,
c& 1 [ oy (Feol+a) @
0
We consider the function u defined by

Kil
u(t) := sup { 7|z(s)|+oen : 05551‘}, 0<t<n.

K, .
Let r* € [0, ] be such that u(r) = T'ZO*N + a,. If t* € [0, n], by the previous

inequality, we have for 7 € [0, n]

1(t) < 11 + KM R /0 p(s) Y (u(s)) ds + Kol /0 p(s) ¥ (1(s)) ds.
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Then, we have
1(t) < civn + KM WRF A + 1) / p(s) Y (u(s)) ds.
0

Consequently,

Izl -
cuvn+ KM MMM+ 1) () TPl

Then by the condition (3.13), there exists a constant M* such that u(r) < M*.
Since ||z||, < (), we have ||z||, < M*. This shows that the set £ is bounded, i.e.,
the statement (S2) in Theorem 1.30 does not hold. Then the nonlinear alternative of
Avramescu [32] implies that (S1) holds, i.e., the operator F 4+ G has a fixed-point
Z*. Then y*(t) = z*(¢t) + x(¢), t € R is a fixed point of the operator Ny;, which is a
mild solution of the problem (3.11)—(3.12). Thus the evolution system (3.11)—(3.12)
is controllable. O

3.4.3 An Example

As an application of Theorem 3.11, we present the following control problem

d 92
a—l;(t, §) =a(t, §)a—;(h §) +d(©)u(1)
+/0 PO)r(t,v(t+0,§))do t>0 & €[0,n]
o (3.14)
v(t,0) = v(t,r) =0 t>0
v(0,8) = vo(0,§) —00<6<0,£€0,n],

where a(t, §) is a continuous function and is uniformly Holder continuous in ¢ ;
P:(—00,0l > R;r: Ry xR —>R;vp: (—00,0]x[0,7] > Randd : [0, 7] > E
are continuous functions. u(-) : R4+ — E is a given control.

Consider E = L*([0, 7], R) and define A(¢) by A()w = a(t, £)w” with domain

D(A) = {w € E : w, w are absolutely continuous, w” € E, w(0) = w(z) =0}

Then A(f) generates an evolution system U(t,s) satisfying assumption (3.1.1)
(see [112, 149]).
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For the phase space B, we choose the well-known space BUC(R™, E): the space
of uniformly bounded continuous functions endowed with the following norm

el = sup|p(®)| for ¢ € B.
0<0

If we put for ¢ € BUC(R™,E) and £ € [0, ]
y@) () =v(t.§). 1= 0, § €[0, 7],
P(0)(§) = vo(6,§), —00 <0 <0, § €[0,7],

and

0

J.e)E) = / P(0)r(t,¢(0)(§))db. —oo < 6 <0, § €0, 7].

Finally let C € B(R, E) be defined as
Cu(®)(§) =dE)u@), t>=0, §€[0,7], ueR, d§) €E.
Then, problem (3.14) takes the abstract evolution form (3.11)—(3.12). Further-

more, more appropriate conditions on P and r ensure the controllability of mild
solutions on (—o0, +00) of the system (3.14) by Theorems 3.11 and 1.30.

3.5 Neutral Functional Evolution Equations

3.5.1 Introduction

In this section, we investigate the following neutral functional differential evolution
equation with infinite delay

d
E[y(t) —gt,y)] =A@)y@) +f(t,y,), ae. teJ =Ry (3.15)
Yo=¢ € B, (3.16)

where A(:), f, and ¢ are as in problem (3.1)-(3.2) and g : J/ x B — E is a given
function.
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3.5.2 Existence and Uniqueness of Mild Solution

We give first the definition of the mild solution of our neutral functional evolution
problem (3.15)—(3.16) before stating our main result and proving it.

Definition 3.12. We say that the continuous function y(-) : R — E is a mild
solution of (3.15)—(3.16) if y(t) = ¢(¢) for all t € (—o0,0] and y satisfies the
following integral equation

ym=0mmw@—maw+mmw+AUmmmmmmm

t
+ / U(t,s)f(s,y5) ds, foreacht e R;.
0

We will need to introduce the following assumptions which are assumed
hereafter:

(G1)  There exists a constant M, > 0 such that:

1A~ ()|l sy < Mo forallteJ.

1
(G2) There exists a constant 0 < L < — such that:
M OKn

|A(t) g(t, )| <L (||¢llg + 1) forallr € Jand ¢ € B.

(G3) There exists a constant L, > 0 such that:

A(s) g(s,8) — AG) &G, )| < Lu (Is =5 + |6 — ¢lls)
forall 5,5 € J and ¢, ¢ € B.
Consider the following space

Bioo ={y:R—>E:y|on € C(0.T].E), yo € B},

where y|[o,7] is the restriction of y to any real compact interval [0, T].
For every n € N, we define in B4 the semi-norms by:

V]l := sup { e 2O |y(r)] 11 € [0,n] }

t
where L (1) = / 1,(s) ds, 1,(t) = K,M[Ls + 1,(t)] and 1, is the function from
0

(3.1.3).
Then B4 is a Fréchet space with the family of semi-norms || - ||,en. Let us fix

_ 1
T > 0 and assume that |:M0L*Kn + —] < 1.
T



70 3 Partial Functional Evolution Equations with Infinite Delay

Theorem 3.13. Suppose that hypotheses (3.1.1)—(3.1.3) and assumptions
(G1)—(G3) are satisfied and moreover

+o00 d KnM n
/ > / max (L, p(s))ds, foreach n> 0 (3.17)
C12.n 0

> —
s+Y(s) 1 —MyLK,
with
MoLK,M ~ M,oLK,
ClZ,n = —_— + (KnMH +Mn) 1 + ———— ||¢||B
1 — MyLK, 1 — M,LK,

K

1 —MyLK,

then the problem (3.15)—(3.16) has a unique mild solution.
Proof. Let the operator Ni; : B4oo — By be defined by:

(1), ift<o0;
(Ni2y) (1) = q U(, 9) [#(0) — g(0, )] + g(t,y§)

+/ U(t, s)A(s)g(s, ys)ds + [ U(t, 9)f (s, y5)ds, if t > 0.
0 0

Then, fixed points of the operator Nj, are mild solutions of the problem (3.15)—
(3.16).
For ¢ € B, we will define the function x(.) : R — E by

o (1), if ¢t € (—o00,0];
x(t) =
U@t,0)¢0), if tel.

Then xo = ¢. For each function z € By, set y(r) = z(¢) + x(¢). It is obvious that
y satisfies Definition 3.12 if and only if z satisfies zo = 0 and for ¢ € J, we get

2(t) = gtz + x) — U(2,0)g(0. 9)

t t
+/ U(t, $)A(s)g(s, z; + x5)ds + [ U(t, s)f (s, zs + x;)ds.
0 0
Let B, = {z € B4oo : 20 = 0} . Define the operator F : B ., — B by:

(F2)(1) = g(t, & +x,) — U(,0)g(0, ¢) t
+ / Ult, s)A(s)g(s, 25 + x5)ds + / U(t, s)f (s, z5 + x)ds.
0 0
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Obviously the operator Ny, has a fixed point is equivalent to F has one, so it turns
to prove that F has a fixed point.

Letz € B(jroo be a possible F fixed point of the operator . Then, using (3.1.1),
(3.1.2), (G1) and (G2), we have for each ¢ € [0, n]

lz(O] < [g(t, 2z +x)| + [U(,0)8(0, ¢)| + Ift U(t, )A(5)g(s, zs + x;)ds|
t 0
—i—I/0 U(t, s)f (s, zg + x,)ds]|
< A7 Ollsw 1AWDg(t 2 + x)|l + 1UE. 0)llsx A~ (0) | 1A(0) g(0, @)l
+[mmmmwmmmuﬁwmm+AWWmmmwma+mm
< MoL(|lz: + xll5 + 1) + MMoL(|$ 15 + 1)
+A71/OtL(||zs + ]l + Dds + M/()Ip(s)lﬁ(ﬂzs +x,]l)ds
< MoL|z + x5 + MoL(M + 1) + MLn + MM,L|$| 5
1 [ Ll llds + 51 [ p6) I+ wleds.

Using the inequality (3.4) and the nondecreasing character of ¥, we get
60 < MoL(K,|2(0)| + ) + MoL(¥ + 1) + MLn + MLl
+Mﬂ“mmm+%w+ﬁﬁkwwmmm+%m
< MyLK,|z(t)| + ML, + MA_/IOL”‘P”B + MOL(M +) + §iln
+A7I/OtL(K,1|z(s)| + a,)ds +M/0.[p(s)w([(nlz(s)| + ay)ds.
Then
(1 = MoLK,)|2(t)| < MoLev, + MMoL| |5 + MoL(M + 1) + MLn

iy ummm+%m+ﬁfp®wmmm+%m.
0 0
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K,
Setch.n = an+— [MOL (an + M”¢”B) + MOL(M + 1) + MLI’I] Thus

1 — MyLK,
KM !

K, |z(t +an§c,n+T/Lans + a,)ds
20| et e [ L] )
KM !
+— )Y (K, |z(s)| + o)ds.
T, POV )] + e

We consider the function p defined by
w@ :=sup{ Kplz(s)| + o, : 0<s<t}, 0<t<+o0.

Let t* € [0, 7] be such that u(r) = K,|z(t*)| + «,. By the previous inequality, we
have

u(r)scnﬁ%[ /0 Lu(s)ds + /0 p(s)ww(s))ds,} for 1€ [0.].

Let us take the right-hand side of the above inequality as v(¢). Then, we have
w(®) <v(r) forallr e [0,n].
From the definition of v, we have v(0) = ¢, and

V() = % Li() + pOY ()] ace. 1 € [0.n],

Using the nondecreasing character of vy, we get

v (f) < I—KW [Lv(f) + p(O¥ (v(?))] ae. t€[0,n].

This implies that for each ¢ € [0, n] and using the condition (3.17), we get

v gy
/ < / max(L, p(s))ds
clon SFY(E) 71— MOLK

< m/ max (L, p(s))ds

</+oo ds
con STUE)
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Thus, for every ¢ € [0, n], there exists a constant A, such that v(¢r) < A, and
hence u(t) < A,. Since ||z||, < u(z), we have ||z||,, < A,. Set

Z={zeB% : supllz(t)] 0<t<n}<A,+1 forall neN}.

Clearly, Z is a closed subset of B(-)er
Now, we shall show that ' : Z — Bg_ o 18 @ contraction operator. Indeed, consider
7,7 € Z, thus for each 7 € [0,n] and n € N and using (3.1.1), (3.1.3), G1 and (G3),

we get
IF(2)(1) = FR @) < |g(t, 2 + x1) — (1, % + x|

+ /0 10 9l A [0, 25 + x5) — 805,75 + x)]lds

+ /0 105l (5. 20 + ) — F(5.7 + x)|ds
< 1A Ollae AWM 2+ x) — ADg(E.7 + )]

t
+/ 1U, )|l pe)|A(s)g(s, zs + x5) — A(s)g(s. Zy + x;)|ds
0
t
+ [ VUG )l (5. 2+ 35) — £ (5.7 + x0)|ds
0
— t —~
< MoLalz— 2 s + [ FL. |1z, — %, sds
0

t
+ f F,() |2 — 2| sds.
0

Using (A;), we obtain
IF@)@) = FR®)| < MoLa(K() [2(0) = Z0)| + M(1) 20 — % 1)
+ L. + LUK 6) —26)] + M) 20— Zo)ds
=MoLk, )= 201 + [ KL+ 1,00 126) —20)lds
< L., 1) ~701 + [ 1601209~ 26l
< [MoLky e 50 [ 5O [2(0) = 200)]]

+ /0 [ e 50| [e7 5O Jzts) =201 | ds



74 3 Partial Functional Evolution Equations with Infinite Delay

_ N ([
< MoLK, & 5O 3], + / | ds e~z
0

_ . L
MoLuKy e 70 [l =2y + — €7 50 2 2],

IA

_ 1 .
< | MyL.K, + ;} e O Yz =7,
Therefore,

— 1
IFG) = F @l = [MoLky + 1 | =l

— 1
So, for |:M0L*Kn + —] < 1, the operator F is a contraction for all n € N.
T

From the choice of Z there is no z € dZ" such that z = A F(z) for some A € (0, 1).
Then the statement (S2) in Theorem 1.29 does not hold. We deduce that the operator
F has a unique fixed point z*. Then y*(r) = z*(¢) + x(¢), t € R is a fixed point of the
operator Ni,, which is the unique mild solution of the problem (3.15)—(3.16). O

3.5.3 An Example

As an application we consider the following neutral functional evolution equation

8% |:Z(t,x) - /_too /0” b(s —t,u,x) z(s, u) du dsi|
2

= a(t,x)a—i(t,x) + O(t, z(t — r, x), %(I —rx),t>0,x€[0,n]
ox 0x (3.18)

2(t,0) = z(1. ) =0, t>0

2(t,x) = @(t,x), t<0,xe[0,r]
where r > 0, a(t, x) is a continuous function and is uniformly Holder continuous in
L O: Ry xRxR—Rand @ : B x [0, 7] — R are continuous functions.
Let
() (x) = z(t,x), t € [0,00), x € [0, 7],

P(0)(x) = @(0.x). 0 <0, x€[0,7],

8t d)(x) = [ /0 b(s — t,u, X)$ (s, u)duds, x € [0, ]
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and

0
FE$)® =0 (r,as(e,x), a—‘f(e,x)), 6<0, xe 0.7,

Consider E = L?[0, 7] and define A(t) by A(f)w = a(t, x)w” with domain
D(A) = {w € E / w, w are absolutely continuous, w” € E, w(0) = w(w) =0 }.

Then A(f) generates an evolution system U(z, s) satisfying assumptions (3.1.1)
and (G1) (see [112, 149]).

Here we consider that ¢ : (—00,0] — E such that ¢ is Lebesgue measurable
and h(s)|@(s)|? is Lebesgue integrable on H where h : (—o0,0] — R is a positive
integrable function. The norm is defined here by:

1

0 2
loll = O] + ( / hs) |o(s) ds) |

The function b is measurable on R4 x [0, 7] x [0, 7],

b(s,u,0) = b(s,u,w) =0, (s,u) € Ry x [0, ],

T t T bZ(S, u, x)
——dsdudx < 00,

and sup N (¢) < oo, where

t€R+
T pt T 92 2
N (1) =/0 /_OO/O o) (a(s,x)@b(s,u,x)) dsdudx.

Thus, under the above definitions of f, g, and A(-), the system (3.18) can be
represented by the abstract neutral functional evolution problem (3.15)—(3.16).
Furthermore, more appropriate conditions on Q ensure the existence of the unique
mild solution of (3.18) by Theorem 3.13 and 1.29.

3.6 Controllability on Finite Interval for Neutral
Evolution Equations

3.6.1 Introduction

In this section, we give sufficient conditions ensuring the controllability of mild
solutions on a bounded interval Jr := [0, T] for T > 0 for the neutral functional
differential evolution equation with infinite delay of the form
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S0 8. 30] = AOYO + Cul)) + {0y, ae. 1€ =[0.T]  G19)
Yo=¢ €B, (3.20)

where A(-), f, u, C, and ¢ are as in problem (3.6)-(3.7)and g : Jr x B — Eisa
given function.

3.6.2 Controllability of Mild Solutions

Before stating and proving the controllability result, we give first the definition of
mild solution of our evolution problem (3.19)—(3.20).

Definition 3.14. We say that the continuous function y(:) : (—oo0,7] — E is a
mild solution of (3.19)—(3.20) if y(r) = ¢(¢) for all t € (—o0, 0] and y satisfies the
following integral equation

y(0) = U(t,0)[¢(0) — g(0. ¢)] + g(t.y:) +/0 U(t, 5)A(s)g(s. ys)ds
+ /l U(t, s)Cu(s)ds + /t U(t,s)f(s,ys) ds, foreacht e [0,T].
0 0

Definition 3.15. The neutral functional evolution problem (3.19)—(3.20) is said to
be controllable on the interval [0, T] if for every initial function ¢ € Bandy € E
there exists a control u € L*([0, T, E) such that the mild solution y(-) of (3.19)-
(3.20) satisfies y(T) = y.

We consider the hypotheses (3.4.1)—(3.4.3) and we will need to introduce the
following assumptions which are assumed hereafter:

(cﬁ) There exists a constant M > 0 such that:

AT O |lpE) < My forall ¢ € Jr.

—_ 1
(G2) There exists a constant 0 < L < — such that:
MoKy

|A@) gt @) <L (||¢llz+ 1) forallz € Jrand ¢ € B.
(Cfﬁ) There exists a constant L, > 0 such that:

A1) 8(s,9) — A1) 865, )| < L (Is = 5] + | — ¢ll5)

forall0 <t,5,5<Tand¢,¢ € B.
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(621) The function g is completely continuous and for any bounded set Q C Br
the set {t — g(t,x;) : x € Q} is equi-continuous in C([0, T, E).

Consider the following space
Br ={y:(-00,T] > E:yl; € CU.E). y € B},

where y|; is the restriction of y to J.

Theorem 3.16. Suppose that hypotheses (3.4.1)~(3.4.3) and assumptions (Zﬁ )-
(G4) are satisfied and moreover there exists a constant My > 0 with

M,
FAIT 1 1 - b (32D
c + KM ——7F—F— My + Yy (M
13.7 T | MoLK, M + ¥ (M)] (IS

where ¢ (t) = max(L, p(t)) and

Kr(MMM,T + 1)

c =c 3, T) = —
13,7 13(¢. 3. T) | VolKy

[A_/IOL(M + 1)+ A?LT]

KM — I
T R (MOL(MMMIT 1) + MM\ T(MH + MOLMT))
| — MoLK;

+(KyMH +Myp) | 1+ MoLKy 1Al
! ’ 1 — MoLK; o

1 + MyLK:
T +_0 T

+Ky MMM,
1 — MyLKy

||

then the neutral functional evolution problem (3.19)—(3.20) is controllable on
(_007 T]

Proof. Consider the operator Ny3 : By — By defined by:

¢(1). if # € (—00,0];

U(2.0) [¢(0) — (0. ¢)] + g(z.y)

Nis(0)(@) = '
13 (@) +f0 U(t, 5)A(s)g(s, ys)ds

t t
+[ U(t, s)Cuy(s)ds +/ U(t, s)f (s, yy)ds, ift € Jr.
0 0
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Using assumption (3.4.3), for arbitrary function y(-), we define the control
uy(t) = W' [y — U(T, 0) ($(0) — g(0,¢)) — g(T, yr)

T
- / U(T. $)A()g(s. y)ds — /
0 0

T

uer.orts.50ds | 0,
Noting that
(O] < WL I51+ UG 0) s (16(0)] + A1 (0)11A(0)g(0, ¢)])

T
AT DMy + /0 1T, D) 5o |A g (r. v dT

T
+ [, r>||B(E)1f(r,yT>|dr]
0
< iy | 1 + MH| g5 + MMoL(I$ll5 + 1) + Mol (lyrlls + 1)
N T (T
+M1ML/ (ly<lls + 1dz +M1M/ If (z,y:)|dz.
0 0
From (3.4.2), we get

luy ()] = W1, [ 151+ M (H + Mol |9l + MoL(H + 1) + MILT |
T T
B FoLlyr s + B, HL / vells d + 1,71 [ F(z.y0)] de
0 0
< M, [|y| + M(H + MoL)|p|l5 + MoL(M + 1) + MLT]

T T
B MoLlyr s + F,HL / ve lsdr + B,5 / p@ ¥ (ly: ).
0 0

It shall be shown that using this control the operator N;3 has a fixed point y(-). Then
y(+) is a mild solution of the neutral functional evolution system (3.19)—(3.20).
For ¢ € B, we will define the function x(.) : R — E by

¢ (1), if t € (—o0,0];
x(t) =
U@t,0)¢(0), if telr.

Then xy = ¢. For each function z € By, set y(r) = z(f) + x(¢). It is obvious that y
satisfies Definition 3.15 if and only if z satisfies zo = 0 and for t € J7, we get

2(t) = g(t.z +x) — U(1,0)¢(0. ¢) + /Ot U(t, 5)A(s5)g(s. 25 + x,)ds

+ /Ot U(t, s)Cu.(s)ds + /Ot U(t, $)f (s, zs + xy)ds.
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Define the operator F : B). — BY. by:
t
FRO = glt.5+3) ~ U6.0) 50.9) + [ U6.5) AW gls:2+ 1) ds

0

t t
+ / U(t,s) Cu,(s) ds + / U(t,s) f(s,zs + x;) ds.

0 0

Obviously the operator N3 has a fixed point is equivalent to F has one, so it turns
to prove that F has a fixed point. The proof will be given in several steps.

We can show that the operator F is continuous and compact. For applying
Theorem 1.27, we must check (S2): i.e., it remains to show that the set

E={ze€B}: z=L1F(z) forsome0 <1 <1}

is bounded. . .
Letz € £. By (3.4.1)-(3.4.3), (G1) and (G2), we have for each 7 € [0, T

20| < AT O] HADg(E 2 + x)| + U1, 0)[l3e) 1471 (0)] [A(0)g(0, ¢)

t t
4 / 10 9) 5w |AG)g (5. 20 + )] ds + / VUG 9 €] 1(s)] ds
0 0
t
4 / VU 9) 5o /(5. 20 + )] ds
0
o o - t
< MoL (I + x5 + 1) + ML (161l + 1) + ML / (2o + x5 + 1) ds
0
A~ o~ t ~ —~ — — o~ o~
+MM M1|:|)~7| +M(H+M0L)||¢||B +M0L(M+ 1)+MLT
0
. - T N T
4 Mollllzr + xrls + L / e + x.|lsde + 3 [ POV (2 + xan)dr] ds
0 0

t
4 [ 96) 2+ ) ds
0
< [A_/IOL(M )+ MLT] (MMM, T + 1) + MMM, T 5|
+M [A_/IOL(MMMIT + 1) + MMM, TH] lblls + MMM, MoLT||zr + x7|5

t T
MLz + xlls + ML / s + x5 ds + M2RIRLLT / I, + x5 ds
0 0

T t
AL T [0 PV (2 +xls) ds + 3 /0 PV (2 + x 1) ds.
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Noting that we have ||zr + x7||g < Kr |y| + M7|¢| 5 and using (3.4) and by the
nondecreasing character of 1, we obtain

12()| < [MOL(M T+ MLT] (MMM, T + 1) + MMM, T (1 + MoLK7) |5
W [MoL(VUMFT + 1) + MAT (WH + oLz ) | [
+MoL (Kr|z(1)| + ar)

t T
—|—ML/ (Krlz(s)| + ar) ds+M2MM1LT/ (K7|z(8)| + ar) ds
0 0
P T
AP T / PV (Krlz(s)] + or) ds
0

t
41 [ D6 (Krlz)] + ar) ds.
0
Then
(1 = MoLK7) |2(1)| < [MOL(M + 1)+ MLT] (MMIMT + 1)
+MMM\T (1 + MoLK7) 3| + MoLay
M [A_/IOL(MMMIT 1)
+ MM T (MH + MOLMT)] olls
R t
AL [ (Krlz(9)] + ar) d
0
. T
+M*MM,LT / (Kr|z(s)| + ar) ds
0

T
IR T / PV (Krl(s)] + ar) ds
0

i f P6)W (Krla)| + ) ds.
0

Set

Kr

ci3ri= Qr + ————
BT T 2 M, LK,

x { [MOL(M F )+ MLT] (MMM,T + 1) + MMM, T (1 + MoLK7) |5

+ MoLay + M [A_/IOL(MMMlT + 1) + MM, T (MH + MOLMT)] e ll5 }
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thus

KM

Krlz()| + ar < cizp + ————
T| ()l T 13,7 1—M0LKT

' o T
X |:L[ (K7|z(s)| + ar) ds + MMMlLT/ (Kr|z(s)| + ar) ds
0 0

T t
+A7IA711\711T/0 P&V (Krlz(s)] + ar) dS+/0 p()Y (Krlz(s)| + ar) dS]

We consider the function u defined by
u(t) :==sup { Krl|z(s)| +ar : 0<s=<r}, 0=<r=<T.

Let r* € [0, #] be such that u(r) = Kr|z(t*)| + ar. If t* € [0, T], by the previous
inequality, we have

T

KrM ' L
’ [L / w(s) ds + MMM, LT / u(s) ds
0 0

t EC ) +_—
wu() 13.7 |~ MoLKy

L T t
T [ 6w un s+ [ pow ) ds] .
0 0
Then, we have

MMM, T + 1 r r
n() <cizr+ KTMﬁ [L/O wu(s) ds + /(; PV (u(s)) ds:| .

Set ¢(¢) := max(L, p(t)) for t € [0, T]

MMM T + 1 /T
) <c + KM ——— K s) + s))] ds.
w(t) <cizr T |~ MoLKr Jo C(s) [u(s) + ¥ (u(s))]
Consequently,
e -
~MMM, T + 1
cisr + KrM ————— [llzllr + ¥ (lzlo)] 1§l

1 — MoLKy
Then by (3.21), there exists a constant M, such that ||z||7 # M. Set

Z={zeBy : |zdlr = Mc+1}.
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Clearly, Z is a closed subset of B‘}. From the choice of Z there is no z € dZ such
that z = A F(z) for some A € (0, 1). Then the statement (S2) in Theorem 1.27
does not hold. As a consequence of the nonlinear alternative of Leray—Schauder
type [128], we deduce that (S1) holds: i.e., the operator F has a fixed point z*. Then
y*(t) = () + x(r), t € (—o0,T] is a fixed point of the operator N3, which is a
mild solution of the problem (3.19)—(3.20). Thus the evolution system (3.19)—(3.20)
is controllable on (—oo, T]. O

3.6.3 An Example

As an application of Theorem 3.16, we present the following control problem

3 0
& [v(t, &) — /_Oo T(O)w(t,v(t+ 0, S))d0:|
32
= a(t, s>a—§'§<r, £) + d(E)u(o)
—|—/0 PO)r(t,v(t+ 6,£))do te[0,T] &€]0,m]
v(,0) = v, ) =0 t€[0,T]
v(0,8) = vo(6,§) —c0<0<0,£el0,n],

(3.22)

where a(t, £) is a continuous function and is uniformly Hoélder continuous in ¢ ;

T,P: (—00,0] > R;w,r:[0,T] xR — R; vy : (—00,0] x [0,7] - R and

d : [0, 7] — E are continuous functions. u(:) : [0, T] — E is a given control.
Consider E = L*([0, r], R) and define A(f) by A(t)w = a(t, £)w” with domain

D(A) = {w € E : w, w are absolutely continuous, w” € E, w(0) = w(x) =0}
Then A(#) generates an evolution system U(#, s) satisfying assumptions (3.6.1)
and (G1) (see [112, 149]).

For the phase space B, we choose the well-known space BUC(R™, E): the space
of uniformly bounded continuous functions endowed with the following norm

lell = suple(@)] for ¢ < B.
=<0
If we put for ¢ € BUC(R™,E) and £ € [0, ]

y0(§) = v(t.§). 1€[0.7]. § €[0. 7],
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P(0)(§) = vo(6,§), —00 <0 <0, § €[0,7],

0

o1, 9)(E) = / TOW(t. 9(8)(E)dh. —0 < 6 <0, £ € [0, 7],

and
0
[t o)) = / P(O)r(t, p(0)(§))d0, —o0 <0 <0, § €[0, 7]

—00

Finally let C € B(R, E) be defined as
Cu(t)(§) = dE)u(r), t€[0,T), £ €[0,x], ue R, d(&) € E.

Then, problem (3.22) takes the abstract neutral functional evolution form (3.19)—
(3.20). In order to show the controllability of mild solutions of system (3.22), we
suppose the following assumptions:

— w is Lipschitz with respect to its second argument. Let lip(w) denotes the
Lipschitz constant of w.

— There exist a function p € L' (J7, R") and a nondecreasing continuous function
¥ 1 [0, 00) — [0, 0o) such that

|r(t,u)| < p()¥(|u]), fort € Jr, and u € R.

— T and P are integrable on (—oo, 0].

By the dominated convergence theorem, one can show that f is a continuous
function from B to E. Moreover the mapping g is Lipschitz continuous in its second
argument, in fact, we have

0
lg(t. 1) — gt p2)| = MoL*lip(W)/ IT(6)d0 |1 — 2|, for g1, ¢, € B.
—0o0

On the other hand, we have for ¢ € B and § € [0, ]

0

If (2. 9) ()] E[ PP ¥ ([(9(0))(E)])dO.

Since the function v is nondecreasing, it follows that

0
£t 0)] < p(0) / IP(9)] 6y (g]). for g < B.

Proposition 3.17. Under the above assumptions, if we assume that condition (3.21)
in Theorem 3.16 is true, ¢ € B, then the problem (3.22) is controllable on (—oo, T].
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3.7 Controllability on Semi-infinite Interval for Neutral
Evolution Equations

3.7.1 Introduction

We investigate in this section the controllability of mild solutions on the semi-
infinite interval / = Ry for the following neutral functional evolution equations
with infinite delay

%U(t) —g(t,y)] = A@)y(t) + Cu(r) + f(1.y,), ae. re€J=Ry (3.23)
Yo =¢ € (—00,0], (3.24)

where A(-), f, u, C, and ¢ are as in problem (3.11)—(3.12) (Sect. 3.4)and g : /IxB —
E is a given function.

Here we are interested to give an application of (3.15) in [33] to control
theory on the semi-infinite interval / = R, for the partial functional evolution
equations (3.23)—(3.24) by Theorem 1.30 due to Avramescu in [32] for sum of
compact and contraction operators in Fréchet spaces, combined with the semigroup
theory [16, 168].

3.7.2  Controllability of Mild Solutions

Before stating and proving the controllability result, we give first the definition of
mild solution of the evolution problem (3.23)—(3.24).

Definition 3.18. We say that the function y(-) : R — E is a mild solution of (3.23)-
(3.24) if y(t) = ¢(¢) for all + € (—o0,0] and y satisfies the following integral
equation

¥(0) = U 0)[$(0) — 5(0.8)] + (t.y) + /0 U1, )A()g(s. y,)ds
+ /t U(t, s)Cu(s)ds + /[ U(t,5)f(s,ys) ds, foreachte R;.
0 0

Definition 3.19. The neutral functional evolution problem (3.23)—(3.24) is said to
be controllable if for every initial function ¢ € 13 and y € E, there is some control
u € L*([0, n], E) such that the mild solution y(-) of (3.23)—(3.24) satisfies y(n) = 3.

We consider the hypotheses (3.3.1)—(3.1.3) given in Sect. 3.2.2 and the assump-
tion (3.9.1) of Sect. 3.4.2 and we will need to introduce the following one which is
assumed hereafter:
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(G4) The function g is completely continuous and for any bounded set Q € By
the set {t — g(t,x;) : x € Q} is equi-continuous in C(Ry, E).

Consider the following space
Bioo ={y:R— E:ylon € C(0.7T].E). yo € B},

where y|jo,7] is the restriction of y to any real compact interval [0, T7.
For every n € N, we define in B the semi-norms by:

[Vl := sup { e 2O y(1)| : 1 € [0,n] }

t

where L* (1) = / 1.(s) ds, 1,(f) = K.M[Lx + 1,(¢)], and I, is the function from
0

(3.1.3).
Then B4 is a Fréchet space with the family of semi-norms || - ||,en. Let us fix

— 1
T > 0 and assume that |:M0L*K,1 + —] < 1.
T

Theorem 3.20. Suppose that hypotheses (3.1.1)—(3.1.3), (3.9.1) and the assump-
tions (G1)—(G3) are satisfied and moreover there exists a constant M* > 0 with

M*
AMMMN’Z +1
Clan + KM ———-

' 1 — MyLK,

> 1, (3.25)
[M* + ¥ (M|

with {(t) = max(L, p(¢)) and

K,(MMMn + 1)

Clan = Cra(D,y,n) = —
140 = C14(P,y,n) | MLK,

[MOL(M )+ MLn]

KM = -
T (MOL(MMMln 1) + MM n(MH + MOLM,,)>
| — MyLK,

+ (K,MH + M,) | 1+ MoLK, 1Al
" " 1 — MoLK, B

1 + MoLK, .

—i—K]l/ZMMn —
n 1 l—MOLKn |y|

Then the neutral functional evolution problem (3.23)—(3.24) is controllable on R.
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Proof. Consider the operator N4 : B4oo — B4oo defined by:
¢ (1), ifr <0;

U(2.0) [¢(0) — (0. 9)] + g(t.y)

N — t
(N14y) (1) +/ Ul(t, s)A(s)g(s, ys)ds
0

+ /t U(t, s)Cuy(s)ds + /t U(t, s)f (s, yy)ds, if t > 0.
0 0

Using assumption (3.9.1), for arbitrary function y(-), we define the control
uy(t) = W [? —U(n,0) (¢(0) —8(0,¢)) — g(n, yn) —/0 U(n, )A(s)g(s, ys)ds

_ / U, s)f(s,yads} .

0

Noting that
@] = 1W [ 1+ 10 0 sy (19O)] + 14~ 14000, 6)])
HAT IR0+ [ 106l Ayl
+ [ 106 ool ol
< ity [ 51 + MH| gl + MML($ls + 1) + MoL(lylls + 1]

+M1ML/ (”yr”B + l)dT +M1M/ V(‘L’,yl—)|d‘(
0 0

Applying (3.1.2), we get

1 = 81, [ 51+ 3 (1 + Bl |65+ FoL 1 + 1)+ L]
0 0
<M [I&I + M (H + MoL) |$l5 + MoL(M + 1) + MLn]

A oLyl + B0 AL / Ivellsde + i1 / PV (ly:lls)d-.
0 0
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Using this control the operator N4 has a fixed point y(-). Then y(:) is a mild
solution of the neutral functional evolution system (3.23)—(3.24).
For ¢ € B, we will define the function x(.) : R — E by
o), if 1=<0;
x(1) =
U, 0)¢0), if r>0.

Then xy = ¢. For each function z € B4, set y(¢) = z(t) + x(¢). It is obvious that y
satisfies Definition 3.19 if and only if z satisfies zo = 0 and for # > 0, we get

z2(t) = g(t,ze +x,) — U(,0) g(0,¢) + /t U(t,s) A(s) g(s, zs + x5)ds
0
+ /Ot U(t,s) C u,4,(s) ds + /(;t U(t,s) f(s,zs + xg) ds.

Let Bg_oo = {z € B4 : 20 = 0} . Define the operators F, G : Bg_oo — BO+Oo by:

F(z)(1) = g(t.z: + x) — U(2.0) g(0. ¢) + /Ot U(z,5) As) g(s, 25 + x,) ds

t
+/ U(t,s) C u,q,(s) ds.
0
and

G = /0 UGt 5) (5.2 + x) ds.

Obviously the operator N4 has a fixed point is equivalent to the operator sum
F + G has one, so it turns to prove that F' 4+ G has a fixed point. The proof will be
given in several steps.

We can show as in above sections that the operator F is continuous and compact
and we have shown in Sect. 3.4.2 (Step 4) that the operator G is a contraction.

For applying Avramescu nonlinear alternative, we must check (S2) in
Theorem 1.30: i.e., it remains to show that the following set

5={zeB9roo: z=/\F(z)+AG(§) forsome0<k<1}

is bounded.
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Let z € £. Then, by (3.1.1)—(3.1.3), (3.9.1), (G1), and (G2), we have for each
t € [0, n]

2] < A {nA—l(r)n A2+ x)| + U0 lae 1A~ )] A©)5(0. )]
4 f 10 9) 5o |AG)g(s. 20 + x)] ds
0

t
+ / VUG5 s 1€l i) ds}

+A [Ot U, 9|l V(S % +x‘v)

<2 {Mounz, xlls 4+ 1) + MHOL (915 + 1)

ds

t

+ML/ (lzs + xslls + 1) ds
0
o~ o~ t ~ ~ — — —~ o~

+MM | M, [ 9] +M (H + MoL) ||$ll3 + MoL(M + 1) + MLn

0
WLl + %5 + ML / 2o + x. |sd

0
4 [ ¥l +xr||5)dr} ds
0

B) ds} .

+1\//\1/0Ip(s) v (”% + xg

Then

lz()| < A { [MOL(A? + 1)+ MLn] (MMMyn + 1) + MMM;n 3|
+ 81 [MoL(WF8n + 1) + MR8, nH | 5
+ MMM, MoLn||z, + x,||5 + MoL||z: + x| 5 + ML
t n
x / I, + x|l ds + BRI, Ln / s + x| ds
0 0

+ Wi /0 () Yz + xl15) ds

+1\7I/0tp(s) Ip( B) ds} )

Z—S+x
A s
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Noting that we have ||z, + x,|l5 < K, [J| + M,||¢|I5 and using the inequality (3.4),
then by the nondecreasing character of ¥, we obtain

l2(5)] < A {[MOL(A? T+ A?Ln] (Mitin + 1) + Mititn (1 + K,MoL) [5]
o+ [MoL (W15, + 1) + Wbt (W + FoLM,) | Il
+MOL (Kn |Z(t)| + O[n)

L [ [ (Ko|2(5)| + o) ds + DRI, / Koz + ) ds]
0 0

451 Ftititen [ 00 leto] + s+ [ Py (25 )|
< MoLK,|z(#)| + AMoLa,
+1 {[MOL(A? +1)+ A?Ln] (MMM + 1) + Mitin (1 + K MoL) [5]
M [MOL(A?MMM + 1) + Mityn (A?H + MOLM,,)] Iblls

+ML [ / (K |2(s)| + @) ds + MM#n / (Ko lz(s)| + o) ds]
0 0

+M [A?m?[ln /0 ' PV (Kylz(s)| + o) ds + /0 p(s)y (@ + a,,) ds]} )

Then,
t —
Ol (1 —MLK,)
A
< MoLa, + [MOL(M +1)+ MLn] (MMMyn + 1) + MMM n (1 + K,MoL) [3|
M [MOL(MMﬂln 1) + Mitin (A?H n MOLMn)] e lls

+ ML [ f t (K|2(s)| + o) ds + MMM n / ' (Kulz(s)| + o) ds]
0 0

+M [MMMIn/:p(s)w (Knlz(s)| + o) ds + /(; ()Y (%|Z(S)| + an) dsi| )

Set

+ [A_/IOL(A? +1) + A71Ln] (MMMyn + 1) + MMM n (1 + K,MoL) [3|

+M [A_/IOL(MMMln + 1) + MM;n <A7IH + MOLMn)] ||¢||zs} :



90 3 Partial Functional Evolution Equations with Infinite Delay

Thus
Ky|z(1)] K,
+ an S C14J‘L + - =
A 1 — MyLK,

x {m [ / t (Kul2(s)| + ) ds + MMM;n / ' (Kalz(s)| + o) ds}
0 0

~[~ n K, |z(s
w81 | ititn [ po o+ ands+ [ pow (P50 Yol
0
By the nondecreasing character of ¥, we get for A < 1

K,|z(t K,M
2()] by < cp + M
A 1 — MyLK,

! K, lz(s)] o~ " (K,
X {L[/o (T —I—ozn) ds—i—MMMln/(; (T|z(s)| +an) dsi|
+ |:A7]l~41\~/[1n/ p(s)¥ (K,1|z(s)| a,,) ds +/ Py (Kn|z(s)| +Oty,) dsi” .

We consider the function p defined by

K,
w(t) := sup % le(s)l—kot,, : Ofsft}, 0<t<+oo.

K, .
Let t* < [0, 1] be such that p(f) = T|Z(t*)| + . If t* € [0, n], by the previous

inequality, we have for ¢ € [0, n]

KM t P n
H<c .n+i— L/ sds—l—MMMn/ sds]
w(t) 14, l—MOLKn{ [OM() 1 A u(s)

+ [MMMm / PV (u(s))ds + / p(s)ww(s»ds]} .
0 0
Then, we have

~ MMM;n + 1 " "
w(t) < cin+ KHM% [L/O u(s)ds + A p(s)l//(p,(s))ds:| .

Set ¢(¢) := max(L, p(¢)) for t € [0, n], then

(0 = era+ KA [P0 1000 + v o) s
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Consequently,

[ 2
AMMMN’L +1 N
ciag + KM ————— |||z, + Z||n
14, oK, [zl + ¥ Izl

<1

Then by the condition (3.25), there exists a constant M™ such that pu(r) < M*.
Since ||z||, < u(t), we have ||z||, < M*. This shows that the set £ is bounded, i.e.,
the statement (S2) in Theorem 1.30 does not hold. Then the nonlinear alternative of
Avramescu [32] implies that (S1) holds: i.e., the operator F + G has a fixed-point
Z*. Then y*(t) = 7*(t) + x(¢), t € R is a fixed point of the operator N4, which is a
mild solution of the problem (3.23)—(3.24). Thus the evolution system (3.23)—(3.24)
is controllable on R. O

3.7.3 An Example

To illustrate the previous results, we consider the following model

a 0
& |:v(t, £) — [m TO)w(t, v(t + 9,5))d9:|
82
= . s>a—$’;(u £) + d(E)u(t)
0
+/ PO)r(t,v(r+0,§))do t>0 £>0 (3.26)
v(t,0) = v(t,+o0) =0 t>0
v(0.8) = vo(6.8) 0<0.&>0.

where a(t, §) is a continuous function and is uniformly Holder continuous in ¢ ;

T,P: (—00,0] > R;w,r: Rt xR = R;v : (—00,0] x Ry — R and

d : [0, r] — E are continuous functions. u(-) : R4 — E is a given control.
Consider E = L*>(R4, R) and define A(t) by A(t)w = a(t, §)w” with domain

D(A) = {w € E : w, w are absolutely continuous, w” € E, w(0) = w(+o0) =0}
Then A(f) generates an evolution system U(z, s) satisfying assumptions (3.1.1) and
(G1) (see [112, 149)).

For the phase space B, we choose the well-known space BUC(R™, E): the space
of uniformly bounded continuous functions endowed with the following norm

ol = sup|p(®)| for ¢ € B.
0<0
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If we put for ¢ € BUC(R™,E)and £ > 0
y(0)(E) = v(t,§),1=0, § >0,
P(0)(§) = vo(6.8). 6 <0, § =0,

0

8(t.9)(€) = / T(O)w(. ¢(0)(5))db, 6 <0, § =0,

—00
and

0

J(.9)(§) =/ P(0)r(1,9(0)(§))db, 0 <0, § = 0.

Finally let C € L(R, E) be defined as
Cu(t)(E) =dE)u(), t>0,£>0,ueR, df) €eE.
Then, problem (3.26) takes the abstract neutral functional evolution form
(3.23)—(3.24). Furthermore, more appropriate conditions on 7, w, P, and r ensure

the controllability of mild solutions on (—oo, 400) of the system (3.26) by
Theorems 3.20 and 1.30.

3.8 Notes and Remarks

The results of Chap. 3 are taken from [15, 36]. Other results may be found in
[108, 141, 145].



Chapter 4
Perturbed Partial Functional Evolution
Equations

4.1 Introduction

Perturbed partial functional and neutral functional evolution equations with finite
and infinite delay are studied in this chapter on the semi-infinite interval R .

4.2 Perturbed Partial Functional Evolution Equations
with Finite Delay

4.2.1 Introduction

In this section, we give the existence of mild solutions for the following perturbed
partial functional evolution equations with finite delay

Y () = A@y(t) +f(t,y) + h(t.y), ae. teJ =R, (4.1)
y(O) =¢(), teH, 4.2)

where r > 0, f,h : J xC(H,E) — E and ¢ € C(H,E) are given functions
and {A(f)},>o is a family of linear closed (not necessarily bounded) operators from
E into E that generate an evolution system of operators {U(Z, 5)}(5)ejxs for 0 < s <
t < +o0.

Here we are interested to give the existence of mild solutions for the partial
functional perturbed evolution equations (4.1)—(4.2). This result is an extension of
the problem (2.1) in [33] when the delay is finite.
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4.2.2 Existence of Mild Solutions

Before stating and proving the main result, we give first the definition of mild
solution of our perturbed evolution problem (4.1)—(4.2).

Definition 4.1. We say that the continuous function y(-) : R — E is a mild solution
of (4.1)-(4.2) if y(r) = ¢(¢) for all t € H and y satisfies the following integral
equation

y(t) = U(t,0) ¢(0) + /Ot U(t,s) [f(s,ys) + h(s,y5)] ds, foreacht e R;.

We introduce the following hypotheses which are assumed hereafter:

(4.1.1) U(t,s) is compact for t — s > 0 and there exists a constant M > 1 such that:
Uz, $)||lE) < M for every (t,5) € A.

(4.1.2) There exists a function p € LIIOC(J, R4) and a continuous nondecreasing

function ¥ : R4 — (0, oo) such that:

If (¢, u)| < p(¢) ¥(||u|) fora.e.t € J and each u € C(H, E).
(4.1.3) There exists a function € L' (J,R,) where |91 < 1%/[ such that:
|a(t, u) — h(t,v)| < n(@)|ju — v| fora.e.t € Jand all u,v € C(H, E).
For every n € N, we define in C([—r, +00), E) the semi-norms by:
Iyl := sup { & O |y(@)] s 1 € [0.n] }

where L* (1) = / ti,, (s) ds, 1,(f) = Mn(s).

0
Then C([—r, +00), E) is a Fréchet space with the family of semi-norms {|| -
|l }nen. In what follows we will choose 7 > 1.

Theorem 4.2. Suppose that hypotheses (4.1.1)—(4.1.3) are satisfied and moreover

+o00 n
/615.” s _|_d1;(s) = M/o max(p(s), n(s)) ds, foreachn >0 (4.3)

with
QM=MW+M/M@WW
0

then the problem (4.1)—(4.2) has a mild solution.
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Proof. Transform the problem (4.1)—(4.2) into a fixed point problem. Consider the
operator N5 : C([—r, +00), E) — C([—r, +00), E) defined by:

@(1), ifte H;

Nis)(@) = ] U(2.0) 9(0) + /0 Ut 5) f(s. ) ds

t
+/ U(t, s) h(s,y,) ds, ift > 0.
0

Clearly, the fixed points of the operator N5 are mild solutions of the problem
(4.1)-(4.2).
Define the operators F, G : C([—r, +00), E) — C([—r, +00), E) by

@(0), ifr <0;

(Fy)(t) = t
U(1.0) 9(0) + / Ut,s) f(s.y) ds.  if 1> 0.
0

and

(Gy)(1) = /O UCt.s) h(s. ) ds.

Obviously the operator N5 has a fixed point is equivalent to F + G has one, so it
turns to prove that F' 4 G has a fixed point. The proof will be given in several steps.
Let us first show that the operator F is continuous and compact.

Step 1:  F is continuous. Let (y)x be a sequence in C([—r, +00), E) such that
Y« = yin C([—r, +00), E). Then

FO() - FO)()] < / VUG 506 (5. y0.) —F(5.y0)] ds

t
< M/ If (s, yx,) — f(s,¥5)| ds — 0 as k - +o0.
0

Step 2:  F maps bounded sets of C([—r, +00), E) into bounded sets. It is enough
to show that for any d > 0, there exists a positive constant £ such that for each
yeB;={yeC([-r,+00),E) : |ylloo < d} we have F(y) € B;. Lety € B;. By
(4.1.1), (4.1.2) and the nondecreasing character of v, we have for each r € J
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IFOO] = U@ 9) s |¢O)] +/0 1UG. )| s f (s, y5)| ds

SMW+MAP®WMW¢
smMHMww/pmm
0

Then we have [|[F(y)|loo < M|l@|| + M ¥ (d) ||p|l, := €. Hence F(B,) C By.

Step 3: F maps bounded sets into equi-continuous sets of C([—r, +00), E).
We consider B, as in Step 2 and we show that F(By) is equi-continuous. Let
71,7, € J with i, > 77 and y € By. Then, by (4.1.1), (4.1.2) and the
nondecreasing character of ¥, we get

IFO)(72) = FO)(m)] = [U(72,0) = U(z1,0)] |¢(0)]

+ ' A [U(ta,s) — U(zy, 5)] f(s,y5) ds
0

+ /TZ U(tz,8) |f(s,ys)| ds

71

< U(z2.0) = U(r1. O) gy Nl

+AIW@@—UMMM®AQWMM%

)
+/|Wm@h@M®Whmﬁ
7]
< U(x2,0) = U(t1, 0) || sy Nl

awwyLWMWQ—Wﬁmm@m@w
+M ¥ (d) / 2 p(s) ds.

The right-hand of the above inequality tends to zero as 7, — 7y — 0, since U(t, s)
is a strongly continuous operator and the compactness of U(t, s) for r > s implies
the continuity in the uniform operator topology (see [20, 168]). As a consequence
of Steps 1-3 together with the Arzeld—Ascoli theorem it suffices to show that the
operator F maps B, into a precompact set in E.
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Let r € J be fixed and let € be a real number satisfying 0 < € < t. For y € B; we
define

F.)(0) = U(1.0) 9(0) + /O Us) fs.yy) ds
=U(,0) p(0) + U(t,t —€) /t_6 U(t—e,s) f(s,ys)ds.
0

Since U(t,s) is a compact operator, the set Z.(r) = {F.(y)(r) : y € By} is
precompact in E for every €, 0 < € < t. Moreover by the nondecreasing character
of ¥, we get

FONO = F0O1 = [ 1UC Il .30l

) /_ p(s)ds.

Therefore the set Z(t) = {F(y)(t) : y € By} is totally bounded. Hence the set
{F(y)(t) : y € By} is relatively compact E. So we deduce from Steps 1, 2, and 3 that
F is a compact operator.

Step 4:  We can show that the operator G is a contraction for all n € N as in the
proof of Theorem 2.2).

Step 5:  For applying Theorem 1.30, we must check (S2): i.e., it remains to show
that the set

&= {y € C([-r,+00),E) :y=AF(y) + AG (%) for some 0 < A < 1}

is bounded.

Lety € £. By (4.1.1)—(4.1.3), we have for each 7 € [0, n]
t
(] < A U.0)p(0) + A [0 VU )56 [ 5. y0)\ds
t y
+A/ U, ) s ‘h (S, f) — h(s,0) + h(s,O)‘ ds
0
1
<2 { ol +/\M/0 p() v (s ) ds

t t
+Mf n(s) H%Hds+1f/l/ |h(s,0)|ds%.
0 0
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The nondecreasing character of i gives with the fact that 0 < A < 1

t N N
WL < sl + 1 [ s, 0las
0

-H\A/I/Oln(s) H%Hds-}-l\;lfotp(s)w

(17D

Set 15, = M||g|| + M/ |h(s, 0)|ds. Thus
0

Iy( )| _

s

< cusa+ 1 [ ) |2 as it [poru (

Consider the function u defined by

ly(s)]
A

-

:Ofsft}, 0<t<+oo.

Let * € [0, 1] be such that u(r) =

inequality, we have

[y(t*)]
T

p(1) = cisn +M/()t n(s)p(s)ds + M/OZP(S)w(M(S))ds, for 7€ [0,n].
Let us take the right-hand side of the above inequality as v(f). Then, we have
u() <wv(t) forallr € [0,n].
From the definition of v, we have

v(0) =ci5, and V() = Myp()(r) + Mp(0)y (1) ae. t € [0,n).

Using the nondecreasing character of v, we get

V(1) < Mp(H)y (v(2)) + My(t)v(f) ae.t € [0,n).

This implies that for each ¢ € [0, n] and using (4.3), we get

v(t) ds
/Cm m _M/ max(p(s), n(s))ds

SM/ max(p(s), n(s))ds
0

/+oo ds
cisn STY()

A
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Thus, for every ¢ € [0, n], there exists a constant A, such that v(¢r) < A, and
hence u(t) < A,. Since ||y|l, < u(t), we have ||y|l, < A,. This shows that the set
£ is bounded. Then statement (S2) in Theorem 1.30 does not hold. The nonlinear
alternative of Avramescu implies that (S1) holds, we deduce that the operator F + G
has a fixed point y* the fixed point of the operator N5, which is a mild solution of

the problem (4.1)-(4.2). O

4.2.3 An Example

As an application of Theorem 4.2, we present the following partial functional
differential equation

0z 9%z
t(t, x) = af(t, x)@(t, X)

At
+0(t,z(t — r,x)) + P(t,z(t — r,x)) t € [0, +00),x € [0, 7]
2(2,0) = z(t, ) =0 t €0, +00)
z(t,x) = &(1,x) teH,xel0 ],

(4.4)

where a(t, x) : [0, 00) x [0, 7] — R is a continuous function and is uniformly Holder
continuous inz, Q, P : [0, +00) Xx R — Rand @ : H x [0, ] — R are continuous
functions.

Consider E = L*([0, ], R) and define A(¢) by A()w = a(t, x)w" with domain

D(A) = {w € E : w, W are absolutely continuous, w” € E, w(0) = w(x) = 0}

Then A(f) generates an evolution system U(t, s) satisfying assumption (4.1.1) (see
[112, 149]).
For x € [0, ], we set

yO)(x) = z(t,x), teRy,
ft,y)x) = 0(t,z(t — r,x)), teR4
h(t,y;)(x) = P(t,z(t — r,x)), teR4

and

e (x) = d(t,x), —r=<t=<0.
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Thus, under the above definitions of f, h, ¢, and A(-), the system (4.4) can
be represented by the abstract evolution problem (4.1)—(4.2). Furthermore, more
appropriate conditions on Q and P ensure the existence of mild solutions for (4.4)
by Theorems 4.2 and 1.30.

4.3 Perturbed Neutral Functional Evolution Equations
with Finite Delay

4.3.1 Introduction

In this section, we consider the following perturbed neutral functional evolution
equations with finite delay

d
d—t[y(t) —g(t,y)] =A@y +f(t,y) + h(t,y,), ae. teJ=Ry (45)
() = o), teH, (4.6)

where r > 0, A(-), f, h, and ¢ are as in problem (4.1)~(4.2)and g : J xC(H,E) — E
is a given function.

Here we are interested to give the existence of mild solutions for the perturbed
neutral functional evolution equations (4.5)—(4.6). This result is an extension of the
problem (4.1) for the neutral case.

4.3.2 Existence of Mild Solutions

In this section, we give an existence result for the perturbed neutral functional
evolution problem (4.5)—(4.6). Firstly we define the mild solution.

Definition 4.3. We say that the continuous function y(-) : R — E'is a mild solution
of (4.5)-(4.6) if y(r) = ¢(¢) for all + € H and y satisfies the following integral
equation

y(0) = U(t.0)[¢(0) — g(0.¢)] + g(2.y,) + /; U(1, 5)A(s)g(s. ys)ds

t
+ / U(t, 9)[f(s,vs) + h(s,y,)] ds, foreacht e R,.
0
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We consider the hypotheses (4.1.1)—(4.1.3) and in what follows we will need the
following additional assumptions:

(G1)  There exists a constant M, > 0 such that:

A7 ()|l ey < Mo forallteJ.

1
(G2) There exists a constant 0 < L < T such that:
0
|A(2) g(t.¢)| <L (l¢]| + 1) forallt € Jand ¢ € H.

(G3) There exists a constant Ly > 0 such that:

|A(s) 8(s. ) —A(B) 8G.9)| = La (Is =5 + llo — @l

forall s,5 € Jand ¢, ¢ € H.

For every n € N, we define in C([—r, +00), E) the semi-norms by:

[Vl := sup { & 2O [y(0)| : 1 € [0,] }

t

where L' (1) = / Lu(s) ds, 1,(t) = K,M[Lsx + n(1)].
0
Then C([—r, +00),E) is a Fréchet space with the family of semi-norms {|| -
— 1
l:}nen- Let us fix T > 0 and assume that [MOL*K,, + —i| < 1.
T

Theorem 4.4. Suppose that hypotheses (4.1.1)~(4.1.3) and the assumptions (G1)—
(G3) are satisfied and moreover

pr— max y ” N ,p S S, or eac n 4.;
Cl6.n 7 ( ) IIOL 0

with
1 . n n o~ " t
1—-M,L 0

Then the problem (4.5)—(4.6) has a mild solution.

Proof. Transform the problem (4.5)—(4.6) into a fixed point problem. Consider the
operator Nig : C([—r, +00), E) — C([—r, +00), E) defined by:
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(p(t)? if t < 07

u(, 9) [¢(0) — g(0, )] + g(#,y:)
NMie) () = +/ U(t, s)A(s)g(s, ys)ds
0

+ /t U(t,s)[f(s,ys) + h(s,ys)]ds, ift>0.
0

Clearly, the fixed points of the operator Nj¢ are mild solutions of the problem
(4.5)—(4.6).
Define the operators F, G : C([—r, +00),E) — C([—r, +00), E) by

@(1), ift<o0;

F(y)(1) = t
U(t,0) ¢(0) + /0 U(t,s) f(s,ys) ds, ift>0.

and

GO)(D) = g(t.y) — U(t.0)g(0. p) + fo U, 5)A(5)g(s. y,)ds

+ /t U(t, s) h(s, ys) ds.

0

Obviously the operator Nj¢ has a fixed point is equivalent to F + G has one, so it
turns to prove that F' 4 G has a fixed point. The proof will be given in several steps.
We can show that the operator F is continuous and compact. We can prove also
that the operator G is a contraction for all n € N as in the proof of Theorem 2.6.
For applying Theorem 1.30, we must check (S2): i.e., it remains to show that
the set

&= {yGC([—r,+oo),E) 1y = AF(y) +AG(%) for some 0 < A < 1}

is bounded.
Let y € £. Then, we have

bl <2 [ U a5 0] ds
A { \g (t, %)\ + U 0) | 3s) |50, 9)]
+ [ 10l (463 (5. 2)] as

s [ 1 [ (5. ) - 5.0+ hs.0) ]
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By the hypotheses (4.1.1)—(4.1.3), (G1), and (G2) we obtain

M < M/Otf(s,ys) ds + ||A71(5)“ ’A(t)g (t’ %)

A
~|—]\A/I/OZ ’A(s)g(s,%)‘ ds+1\A/I/OZ

t
+M/ |h(s, 0)| ds
0

+ MIIA™" () [1A()2(0. ¢)|

h (s, yx) — (s, 0)‘ ds

sMA}@wmm¢+MMQ%

t
+ML/(
0

sMAp@wmmw+M¢

+ 1) + MMoL(o] + 1)

Vs

> +1) ds+zf4f0tn(s) H%H ds+1\A/I/0,|h(s,0)|ds

Ve

+ MoL(M + 1) + MLn + MM,L| ¢

+M/0t|h(s,0)|ds+M/0tL‘ ds+M/0tn(s)H§Hds.

Vs
A

The nondecreasing character of i gives with the fact that 0 < A < 1

Ol _

—— =MoL

A
ot
-I-M/L’
0

Consider the function u defined by

t
Y\ 4+ MoL(t + 1) + B1Ln + MIMoLljg)| +M/ (s, 0)| ds
0

) ds.

Ys
A

ds-l—AA/I/Otn(s)) dS-l—]\Al/Otp(S)l/f (’

Vs
A

Ys
A

[y(s)]
A

/,L(I)stup{ :Ofsft}, 0<t<+o0.

l,*
Let * € [0, £] be such that u(r) = |y()L ) , by the previous inequality, we have

t
(1 = MoL) ju(t) < MoL(M + 1) + MLn + MM,L||¢| +M/ |h(s,0)| ds
0
n t n t
+M/ Lu(s) ds+M/ n(s)p(s) ds
0 0

+Mﬁpmww®nm
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1 . n n o~ N t

Set cign = T [MOL(M + 1) + MLn + MMoL||g| + M/ |h(s, 0)] dsi| .
— My 0

Thus, for each ¢ € [0, n] we get

M t t t
p0 = cvont 5 | [uerast [ st [ o6 on as).
1 —MoL LJo 0 0
Let us take the right-hand side of the above inequality as v(¢). Thus, we have
w() <v(r) forallz e [0,n].

From the definition of v, we have

A

v(0) = cign and V(1) = ML —— [Lp(®) + @O () + pO Y (1(0)]

a.e.t € [0,n].

Using the nondecreasing character of i, we get

V() < % [Lv(?) + n(®)v () + p(O)¥(v(t))] ae.t € [0,n].

This implies that for each ¢ € [0, n] and using the condition (4.7), we get

v s,
/cm_n s+ Y (s) = 1—M0 / max(L, n(s), p(s))ds

< i [ w0

- /+<x> ds
Cl16,n s + W(s) '

Thus, for every ¢t € [0, n], there exists a constant A, such that v(r) < A, and
hence pu(f) < A,. Since ||y|l, < wu(¢), we have ||y||, < A,. This shows that
the set £ is bounded. Then the statement (S2) in Theorem 1.30 does not hold.
A consequence of the nonlinear alternative of Avramescu that (S1) holds, we deduce
that the operator F'+ G has a fixed point y*. Then y*(¢) = y*(¢) +x(¢), ¢t € [—r, +00)
is a fixed point of the operator Ny, which is the mild solution of the problem
(4.5)—(4.6). |



4.3 Perturbed Neutral Functional Evolution Equations with Finite Delay 105
4.3.3 An Example

Consider the following model

d rorw 92z

— | z(t,x) — / / b(s —t,u,x) z(s,u) duds| = a(t,x) —(t,x)

ot —rJo 0x2

d
+0 |\t z(t—r,x), —Z(t —7r,X)
0x

9
4P (r, Wt =10, a—Z(t— r,x)) . 1€[0,+00),x € [0, 7]
X

72(t,0) = z(t, ) = 0, t € [0, +00)

Z(t’x):(p(tv-x)s IGH,XE[O,T[]
(4.8)

where r > 0; a(t, x) is a continuous function and is uniformly Holder continuous in
t,Q,P:[0,4+00) x RxR — Rand @ : H x [0, 7] — R are continuous functions.
Let

y(0)(x) = z(1,x), 1 € [0,00), x € [0, 7],

,Vr = b(s—t,u, , u)duds, 0, ],
g, y)(x) /_r/O (s — t,u, x)z(s, u)duds, x € [0, 7]
70,3069 = 0 (126, 550.9)). 6 € H x € 0.7, 12 0.
h(t,y)(x) =P (t,z(@,x), %(Q,x)), feH xel0,n],t>0

and
p(0)(x) = ®(0,x), 0 € H, x€[0,n].
Consider E = L([0, 7], R) and define A(f) by A(1)w = a(t, x)w” with domain
D(A) = {w € E : w,w are absolutely continuous, w” € E, w(0) = w(xr) =0 }.

Then A(f) generates an evolution system U(z, s) satisfying assumptions (4.1.1) and
(G1) (see [112, 149]).

Here we assume that ¢ : H — E is Lebesgue measurable and A(s)|@(s)|? is
Lebesgue integrable on H where 7 : H — R is a positive integrable function.
The norm is defined here by:

1

0 2
||<p||=|<1>(0)|+(/ h(s)|¢(s)|2ds) .

-r
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The function b is measurable on [0, o0) x [0, ] X [0, 7],

b(s,u,0) = b(s,u,m) =0, (s,u) € [0,00) x [0, 7],

b4 t w32
/ / / Mdsdudx < 00
0o J—rJo h(s)

and sup MN(f) < oo, where

t€[0,00)
/4 t T 82 2
N(@) = /0 ,/—r/o % (a(s,x)@b(s,u,x)) dsdudx.

Thus, under the above definitions of f, g, &, ¢, and A(-), the system (4.8) can
be represented by the abstract evolution problem (4.5)—(4.6). Furthermore, more
appropriate conditions on Q and P ensure the existence of mild solutions for (4.8)
by Theorems 4.4 and 1.30.

4.4 Perturbed Partial Functional Evolution Equations
with Infinite Delay

4.4.1 Introduction

The existence of mild solutions is studied here for the following perturbed partial
functional evolution equations with infinite delay

Y(6) =AWy +f(t.y) +h(t.y). ae te) (4.9)
yo = ¢ € B, (4.10)
where f,h : JxB — E and ¢ € B are given functions and {A(7) }o</<+co 1 @ family

of linear closed (not necessarily bounded) operators from E into E that generate an
evolution system of operators {U(, 5)}.5esxs for 0 <s <t < 4o0.

4.4.2 Existence of Mild Solutions

Before stating and proving the main result, we give first the definition of mild
solution of our perturbed evolution problem (4.9)—(4.10).
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Definition 4.5. We say that the continuous function y(-) : R — E is a mild solution
of (4.9)—(4.10) if y(r) = ¢(¢) for all t € (—o0,0] and y satisfies the following
integral equation

y(t) = U(t,0) ¢(0) + /Ot U(t,s) [f(s,ys) + h(s,ys)] ds, foreachte Ry.

We introduce the following hypotheses which are assumed hereafter:

(4.1.1) U(t,s) is compact for t — s > 0 and there exists a constant M > 1 such that:
U2, 5)||lsy <M forevery (1,5) € A.

(4.1.2) There exists a function p € LlloC (J,R4) and a continuous nondecreasing
function ¥ : Ry — (0, 0o) and such that:

If (¢, w)| < p(@) ¥(||u||p) fora.e.t € J and each u € B.
1
(4.1.3) There exists a function € L'(J,R,) where |91 < I\T/I such that:

|h(t,u) — h(t,v)| < n(@)|lu—v|pforae.t € Jandall u,v € B.
Consider the following space
Bioo ={y:R— E:ylon € C(0.7T].E). yo € B},

where y|jo.7] is the restriction of y to any real compact interval [0, T7.
For every n € N, we define in B the semi-norms by:

[Vl := sup { e 2D |y(r)| : 1 € [0,n] }

t

Mmqwthmmmﬂwzmﬂw)

0
Then B is a Fréchet space with the family of semi-norms || - ||,en. In what
follows let us fix T > 1.

Theorem 4.6. Suppose that hypotheses (4.1.1)—(4.1.3) are satisfied and moreover

+o0o n
/Cw S +d;(s) > KnAA/I/(; max(p(s), n(s)) ds, foreachn > 0 (4.11)

with
crm = (KuVIH + M)l + Kbt [ Ih(s. 0)]ds.
0

then the problem (4.9)—(4.10) has a mild solution.
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Proof. Consider the operator Ni7 : B4oo — B4oo defined by:

(), ift <0;

N )@ = ] U.0) $(0) + / UCt.s) f(s.ys) ds

0
t
+f U(t,s) h(s,yy) ds, ift > 0.
0

Clearly, the fixed points of the operator N7 are mild solutions of the problem (4.9)—
(4.10).
For ¢ € BB, we will define the function x(.) : R — E by

¢ (1), if ¢t € (—o0,0];

x(t) =
U@, 0)¢0), if tel.

Then xy = ¢. For each function z € B4, set y(¢) = z(¢) + x(¢). It is obvious that y
satisfies Definition 4.5 if and only if z satisfies zp = 0 and

t

t
72(t) = / U(t,s) f(s,zs + x5) ds + / U(t,s) h(s,zg + x5) ds, fortel.
0 0

Let B(_)HX) = {2z € B4oo : 20 = 0} . Define the operators F, G : B(_)H>o — B(_)Hx) by

F@)@) = [t U(t,s) f(s,zg +x5)ds, forteld
0
and
G = /t U(t,s) h(s,z; + x;) ds, fort e J.
0

Obviously the operator N7 has a fixed point is equivalent to F + G has one, so it
turns to prove that F' 4+ G has a fixed point. The proof will be given in several steps.

We can show that the operator F is continuous and compact. We can prove also
that the operator G is a contraction for all n € N as in the proof of Theorem 3.2).

For applying Theorem 1.30, we must check (S2): i.e., it remains to show that
the set

&= {zeB‘ioo:zz)LF(z)—i—)tG(%) for some 0 < A < 1}

is bounded.
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Letz € £. By (4.1.1)—(4.1.3), we have for each ¢ € [0, n]
t
k()] < A / VU, sy 5. 20 + x,)lds
0
t .
0 [ 10y |1 (5.5 ) = 6.0 + 65,00 s
0

< M/O POV (2 + x]1s) ds

t t
+A M/ n(s) H% + X, ds—i—x\]f/l/ |h(s, 0)|ds.
0 B 0

Using the inequality (3.4) and the nondecreasing character of yr,we get
1 n t
RO =8 [ pOUE L]+ ads
0

—H\A/I/Ot n(s) (%Iz(s)l + ozn) ds + AA/I/OI |h(s, 0)|ds.

The nondecreasing character of i gives with the fact that 0 < A < 1
K, ~ [ ~ ! Ky
S0+ oy = o Kbt [ 600 + Kot [ poyw ()4 ) as
0 0

.t K,
—I—K,,M/ n(s) (7|z(s)| + a,,) ds.
0
“ t
Set c17, := K,,Mf |A(s, 0)|ds + «,, thus
0

K, [ K,
B0 o) + s < e+ Kilt /0 PV (7|z(s>| + an) ds

Yy ! Kn
—i—K,,M/ n(s) (le(s)l + an) ds.
0
We consider the function u defined by

K,
u(t) == sup % le(s)l-i-ot,z : Ofsft}, 0<t<+o0.
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K
Let * € [0, ] be such that u(t) = T"|z(t*)| + a,, by the previous inequality, we

have

W(t) < crnn + Kbl f PV ((s))ds + Kol [ 1(s)u(s)ds. for 1€ [0.n]
0 0

Let us take the right-hand side of the above inequality as v (7). Then, we have
w(t) <wv(t) foralls € [0,n].
From the definition of v, we have
v(0) =ci7, and V(1) = K,Mp() ¥ (1(0) + K,Mn(Dp() ae. t€[0,n].
Using the nondecreasing character of ¥, we get
V' (1) < K.Mp() Y (v(2)) + K.My()v(n) ace. t € [0,n].

This implies that for each ¢ € [0, n] and using (4.11), we get

v(t) .
/CIM S‘f‘d% = KnM/; max(p(s). n(s))ds

< K,M /0 max(p(s), n(s))ds

+o0 ds
< —_—.
/cm s+ V()

Thus, for every t € [0, n], there exists a constant A, such that v(r) < A, and
hence 1(f) < A,. Since ||z|l, < u(t), we have ||z|l, < A,. This shows that the set
£ is bounded. Then statement (S2) in Theorem 1.30 does not hold. The nonlinear
alternative of Avramescu implies that (S1) holds, we deduce that the operator F + G
has a fixed point z*. Then y* () = z*(¢) + x(?), t € R is a fixed point of the operator

N17, which is the mild solution of the problem (4.9)—(4.10). O
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4.4.3 An Example

Consider the following model

9%v

v
5 (- = a5 d
—i—/ PO)r(t,v(t+ 6,£))do
~6°
+ 00)s(t,v(t+0,£))dd teRy, §£€]0,n]
v(t,0) = v(t,m) =0 re Ry
v(0,8) = vo(0,§) —00< 0 <0,£€]0,n],

4.12)

where a(t, £) is a continuous function and is uniformly Hélder continuous in #; P, Q :
(—00,0] > R; r,5 : (—00,0] x R — R and vy : (—00,0] x [0,7] — R are
continuous functions.

Consider E = L*([0, ], R) and define A(f) by A(t)w = a(t, £)w” with domain
D(A) = {w € E : w, w are absolutely continuous, w” € E, w(0) = w(x) =0}
Then A(f) generates an evolution system U(t, s) satisfying assumption (4.1.1) (see
[112, 149)).

For the phase space B, we choose the well-known space BUC(R™, E): the space
of uniformly bounded continuous functions endowed with the following norm

el = sup|p(®)| for ¢ € B.
0<0

If we put for ¢ € BUC(R™,E) and £ € [0, 7]

yO(E) =v(.§), te Ry, § €0, 7],
P(0)(§) = v0(0.8), —o0 <8 <0, § €0, 7],
0
f.9)é) = /_ P(O)r(t,¢(0)(§))df, —oo <6 <0, § €0, 7]

and

0
h(t.¢)(€) = [ Q(0)s(1, 9(0)(§))d0, —o0 < <0, § € [0, 7].
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Then, the problem (4.12) takes the abstract partial perturbed evolution
form (4.9)—(4.10). In order to show the existence of mild solutions of
problem (4.12), we suppose the following assumptions:

— The function s is Lipschitz continuous with respect to its second argument. Let
lip(s) denote the Lipschitz constant of s.

— There exist p € L'(J,RT) and a nondecreasing continuous function
[0, 00) — [0, 0c0) such that

[r(t, w)| < p(H)¥(|u]), for € J, and u € R.

— P and Q are integrable on (—o0, 0].

By the dominated convergence theorem, one can show that f is a continuous
function from B to E. Moreover the mapping / is Lipschitz continuous in its second
argument, in fact, we have

0
|h(t, 1) — h(t, ¢2)| < lip(s)/ |0(0)|d6 |1 — ¢s|, for @1, ¢, € B.

On the other hand, we have for ¢ € B and § € [0, 7]

0

If . 9)(©) S/ lP(PO)] ¥ (1(9(8))(5)])db.

Since the function ¥ is nondecreasing, it follows that

0
f (2. 9)] Sp(t)/_ [P(0)|doy (l¢]), forg € B.

Proposition 4.7. Under the above assumptions, if we assume that condition (4.11)
in Theorem 4.6 is true, ¢ € B, then the problem (4.12) has a mild solution which is
defined in (—oo, +00).

4.5 Notes and Remarks

The results of Chap.4 are taken from Adimy et al. [12], Baghli et al. [34], and
Balachandran and Anandhi [42]. Other results may be found in [8, 9, 50, 158].



Chapter 5
Partial Functional Evolution Inclusions
with Finite Delay

5.1 Introduction

In this chapter, we provide sufficient conditions for the existence of mild solutions
on the semi-infinite interval / = R for some classes of first order partial functional
and neutral functional differential evolution inclusions with finite delay by using the
recent nonlinear alternative of Frigon [114, 115] for contractive multi-valued maps
in Fréchet spaces [116], combined with the semigroup theory [16, 20, 168].

5.2 Partial Functional Evolution Inclusions

5.2.1 Introduction

We establish here the existence of mild solutions for the partial functional evolution
inclusion of the form

Y (t) € A()y(t) + F(t,y;), ae. teJ=Ry 5.1
() = o), teH, (5.2)

where F : J x C(H,E) — P(E) is a multi-valued map with nonempty compact
values, P(E) is the family of all subsets of E, ¢ € C(H,E) is a given function,
and {A(?)}o</<+oo 18 a family of linear closed (not necessarily bounded) operators
from E into E that generate an evolution system of operators {U(t, 5)},s)esxs for
0<s<t<+o0.

This result is an extension of the problem (2.1) in [33] for multi-valued case.
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5.2.2 Existence of Mild Solutions

Let us introduce the definition of the mild solution of our partial functional evolution
inclusion system (5.1)—(5.2) before stating and proving our main result.

Definition 5.1. We say that the continuous function y(-) : [-r, +00) — E is a mild
solution of the evolution system (5.1)—(5.2) if y(#) = ¢(¢) for all t € H and the
restriction of y(-) to the interval J is continuous and there exists () € L'(J, E):
f(t) € F(t,y,) a.e. in J such that y satisfies the following integral equation:

(@) = U(t,0) ¢(0) + /;)t U(t,s) f(s)ds, foreachre Ry.

We will introduce the following hypotheses which are assumed afterwards

(5.1.1) There exists a constant M > 1 such that:
NU(t, $)||lE) < M for every (t,5) € A.

(5.1.2) The multi-function F : J x C(H,E) —> P(E) is L. -Carathéodory with

loc
compact and convex values for each u € C(H, E) and there exist a function

p € L\ .(J,Ry) and a continuous nondecreasing function ¢ : J — (0, c0)

and such that:
|F(t, u)||lpeE) < p(t) ¥(||lul|) for a.e. t € J and each u € C(H, E).
(5.1.3) For all R > 0, there exists [ € Llloc (J,R4) such that:
Hy(F(t,u) — F(t,v)) < (1) [lu—vl|
for each t € J and for all u,v € C(H, E) with ||u|| < R and ||v]| < R and
d(0,F(t,0)) <Ig(r) ae. tel.
For every n € N, we define in C([—r, +00), E) the family of semi-norms by

[Vl := sup { &= 2O [y(0)| : 1 € [0,n] }

t

where L} (1) = / 1,(s) ds, 1,(t) = M I,(¢) and I, is the function from (5.1.3). Then

0
C([—r, +00), E) is a Fréchet space with the family of semi-norms || - ||;en. In what
follows we will choose © > 1.
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Theorem 5.2. Suppose that hypotheses (4.1.1)—(4.1.3) are satisfied and moreover

/m ds >M/n (s)ds, foreachn >0 (5.3)
_— s, foreachn .
c19 ’W(S) 0 P

with c19 = M l@l|l. Then the evolution inclusion problem (5.1)—(5.2) has a mild
solution.

Proof. Transform the problem (5.1)—(5.2) into a fixed point problem. Consider the
multi-valued operator Nyg : C([—r, +00), E) — P(C([—r, +00), E)) defined by:

(1), ift € H,

Nis() = yh € C([=r. +00). E) : h(1) = | U(2.0) ¢(0)
+/ U(t,s) f(s)ds, ift > 0.
0

where f € Sp, = {v € L'(J,E) : v(t) € F(t,y,) forae.t € J}. Clearly, the fixed
points of the operator N9 are mild solutions of the problem (5.1)—(5.2). We remark
also that, for each y € C([—r, +00), E), the set Sg, is nonempty since, by (5.1.2),
F has a measurable selection (see [94], Theorem II1.6).

Let y be a possible fixed point of the operator Nj9. Given n € N and ¢ < n, then y
should be solution of the inclusion y € A Ny9(y) for some A € (0, 1) and there exists
f €Sk, & f(t) € F(t,y,) such that, for each t € Ry, we have

1U.0)las) [0(0)] + /0 10915 (S| ds

@l =<

<M gl + /0 p() ¥ (lysll) ds.

Consider the function p defined by
w@ :=sup{lly(s)] : 0<s<t}, 0<t<+o0.

Lett* € [—r, 1] be such that u(z) = |y(t*)|. If t* € [0, n], by the previous inequality,
we have

() < 3 ol + 5 /0 p() Y (u(s)) ds. for 1€ [0.n].

If * € H, then 1 (r) = ||¢|| and the previous inequality holds.
Let us take the right-hand side of the above inequality as v(¢). Then, we have

u() <wv(t) forallr € [0,n].
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From the definition of v, we have
ci9:=v(0) =M [lg|| and /(1) = Mp(1) Y (1) ae. 1 €[0.n).
Using the nondecreasing character of yr, we get
V(1) < M p@t) ¥ (v()) ae.t € [0,n].

This implies that for each ¢ € [0, n] and using the condition (5.3), we get

v(t) ds R /r )
<M | p(s)ds
19 1//(*9) 0

<M / p(s) ds
0

+o0 ds
< / &
c19 I//(S)
Thus, for every ¢t € [0, n], there exists a constant A, such that v(f) < A, and
hence w(r) < A,. Since ||y/|| < w(t), we have ||y||, < max{||¢|; A,} := A,. Set

U={yeC(-r,+),E): sup{|[y@®)] : 0<t<n}< A,+1 forall n e N}

Clearly, U is an open subset of C([—r, +00), E).

We shall show that Njg : U — P(C([—r,+00),E)) is a contraction and
an admissible operator. First, we prove that Nj¢ is a contraction; Let y,y €
C([-r,+00),E) and h € N9(y). Then there exists f(t) € F(t,y,) such that for
each t € [0, n]

h(t) = U(t,0) ¢(0) + /01 Ul(t,s) f(s) ds.
From (5.1.3) it follows that
Hq(F(2.31). F(2.5)) < I (@) [y = ¥l
Hence, there is p € F(t,,) such that
(&) = pl = L@ lly: =¥, 7 €0.n].
Consider Uy : [0, n] — P(E), given by

Us = {p € E-If(1) = pl = L(®) [y = Vill}-
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Since the multi-valued operator V() = Ux(7) N F(z,y,) is measurable (in [94],
see Proposition II1.4), there exists a function f(#), which is a measurable selection
for V. So, f(t) € F(t,y,) and we obtain for each ¢ € [0, n]

f (1) = f(O)] < L@ [y =¥,
Let us define, for each ¢ € [0, n]
h(t) = U(1,0) ¢(0) + /t U(t, s) f(s)ds.
0

Then we can show as in previous sections that we have

_ 1 B
”h_h”n = _”y_y”n'
T

By an analogous relation, obtained by interchanging the roles of y and y, it follows
that

1
Hy(N19(¥), N19(¥)) < ;IIy = Va-

So, for T > 1, Nyg is a contraction for all n € N.
It remains to show that Ny is an admissible operator. Let y € C([—r, +00), E).
Consider N9 : C([—r,n]. E) — P(C([=r,n], E), given by

@(1), ifr € H;
Nio(y) = {h € C([—r, +0), E) : h(t) = U(t,0) ¢(0)

+ /t U(t,s) f(s)ds, iftel0,n],
0

where f € Sp = {v € L'([0,n],E) : v(f) € F(t.y,) fora.e.t € [0,n]}.

From (5.1.1) to (5.1.3) and since F is a multi-valued map with compact values,
we can prove that for every y € C([—r, n], E), Ni9(y) € Pe,(C([—r, 1], E)) and there
exists yx € C([—r,n], E) such that y, € Nio(y). Let h € C([—r,n],E),y € U and
€ > 0. Assume that y, € Nyg(y), then we have

I5() = yx (D) < [5(5) = h@)|| + Ily«(2) = B
< e O 5 — Nig@) |l + lly« (1) — h(D)]].

Since & is arbitrary, we may assume that & € B(yx,€) = {h € C([-r,n],E) :
Ilh — y«||l» < €}. Therefore,

5 = yslla < Iy = Nio®)ln + €.
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If y is not in Njo(y), then ||y« — N19(¥)|| # 0. Since No(y) is compact, there
exists x € Nyg(¥) such that ||y« — Nig(¥)|| = ||y« — x||. Then we have

I35(0) =x@ < [I¥(1) = (O] + [lx(@) = RO
< e Oy = Nig@ |l + llx(t) = h(0)].

Thus,

1y = xlln < Iy = Nio®)l» + €.

So, Njg is an admissible operator contraction. From the choice of I/ there is no
y € 0U such that y = A Nig(y) for some A € (0, 1). Then the statement (S2) in
Theorem 1.31 does not hold. A consequence of the nonlinear alternative of Frigon
that (S1) holds, we deduce that the operator Nyg has a fixed point y* which is a mild
solution of the evolution inclusion problem (5.1)—(5.2). O

5.2.3 An Example

Consider the following model

v 0%v
5 5 € a(é, £) 8_52(t’ £)
+/ PO)R(t,v(t+ 6,£))d0 & €0, 7]
- (5.4)
v(t,0) = v(t,mr) =0 te Ry
v(6,8) = vo(6,8) —-r<6<0,£&e€l0,n],

where r > 0, a(t, £) is a continuous function and is uniformly Holder continuous in
t;P:H— Rand v, : Hx [0, r] — R are continuous functions and R : R4 x R —
P(R) is a multi-valued map with compact convex values.

Consider E = L?([0, 7], R) and define A(f) by A(f)w = a(t, £)w"” with domain

D(A) = {w € E : w, w are absolutely continuous, w” € E, w(0) = w(rr) =0}
Then A(r) generates an evolution system U(t, s) satisfying assumption (4.1.1), see

[112, 149].
For & € [0, 7], we have

yO)(§) = v(,§), t € Ry,

@(0)() = v0(0.8), —r <0 <0,
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and
0
Fn© = [ PORG1G)E)0. —r <6 <o

—-r

Then, the problem (5.4) takes the abstract partial functional evolution inclusion
form (5.1)—(5.2). In order to show the existence of mild solutions of problem (5.4),
we assume the following assumptions:

— There exist p € L'(J,RT) and a nondecreasing continuous function v : Ry —
(0, +00) such that

IRz, )| = p()¥(n]), for € J, and n € R.

— Pisintegrable on H.

By the dominated convergence theorem, one can show that f € S, is a continuous
function from C([—r, +o0), E) to E. On the other hand, we have for n € R and
§€[0,7]

0
[Fem@l = | IpOP@OY(0E)E)DD.

Since the function v is nondecreasing, it follows that

0
1F @D pE =p@ | 1P@O1dOY (1), forn €R.

Proposition 5.3. Under the above assumptions, if we assume that condition (5.3)
in Theorem 5.2 is true, then the problem (5.4) has a mild solution which is defined
in [—r, +00).

5.3 Neutral Functional Evolution Inclusions

5.3.1 Introduction

We investigate in this section the neutral functional evolution inclusion of the form
d
SO — 8@y €AWy(@) + F(t.y). ae t€J =Ry (5.5)

() = o), teH, (5.6)
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where F' : J x C(H,E) — P(E) is a multi-valued map with nonempty compact
values, P(E) is the family of all subsets of E, g : J xC(H,E) — Eand ¢ € C(H,E)
is a given function. This result is an extension of the problem (5.1) for the neutral
case and also the multi-valued generalization of the neutral problem (2.8) in [37].

5.3.2 Existence of Mild Solutions

Definition 5.4. We say that the function y(-) : [-r, +00) — E is a mild solution of
the neutral functional evolution system (5.5)—(5.6) if y(r) = ¢(¢) for all r € H and
the restriction of y(-) to the interval J is continuous and there exists f(-) € L'(J, E):
f(t) € F(t,y,) a.e. in J such that y satisfies the following integral equation

y(0) = U(.0)[(0) — g(0.9)] + g(z.y1) + /0 U(1, 5)A(s)g(s, ys)ds

t
+ / U(t,s)f(s)ds, foreachte Ry.
0

We consider the hypotheses (5.1.1)—(5.1.3) and we will need the following
assumptions:

(G1)  There exists a constant M, > 0 such that:

A~ () ||pe) < Mo forallteJ.

1
(G2) There exists a constant 0 < L < A such that:
0

|A(r) g(t. @) <L (l¢|]| + 1) forallt € Jand ¢ € C(H,E).
(G3) There exists a constant Ly > 0 such that:
|A(s) g(s. ) —A(5) 8G. @) = L« (Is =5 + llo — 9l

forall s,5 € Jand ¢, ¢ € C(H,E).

For every n € N, let us take here I,(f) = M[Ls + 1,(r)] for the family of
seminorm {|| - ||, }ren defined in Sect. 5.3. In what follows we fix T > 0 such that

— 1
|:MOL* + —:| < 1.
T



5.3 Neutral Functional Evolution Inclusions 121

Theorem 5.5. Suppose that hypotheses (5.1.1)—(5.1.3) and the assumptions (G1)—
(G3) are satisfied and moreover

+o0 ds M n
[ > — / max (L, p(s))ds, foreach n >0 (5.7)
C20.n § + W(S) 1 - MOL 0
with

A M(1 + MoL)|¢|| + MoL(M + 1) + MLn
0 1 — ML

then the neutral functional evolution problem (5.5)—(5.6) has a mild solution.

Proof. Transform the neutral functional evolution problem (5.5)—(5.6) into a fixed
point problem. Consider the multi-valued operator Nyy : C([—r, +0),E) —

P(C([—r, +0), E)) defined by:

@), ifr<o0;

U(z,0) [¢(0) — g0, 0)] + g(t, y1)
Noo(y) = 3 h € C([=r, +00),E) : h(f) = N /f UGt SAG)g(s. yo)ds
0

+ /I U(t, s)f (s)ds, ift >0,
0

where f € Sp, = {v € L'(J,E) : v(t) € F(t,y,) fora.e.t € J}.

Clearly, the fixed points of the operator N,y are mild solutions of the prob-
lem (5.5)—(5.6). We remark also that, for each y € C([—r, +00), E), the set Sg, is
nonempty since, by (5.1.2), F has a measurable selection (see [94], Theorem II1.6).

Let y be a possible fixed point of the operator Ny. Givenn € N and t < n, then y
should be solution of the inclusion y € A Nyy(y) for some A € (0, 1) and there exists
f €Sry & f(t) € F(t,y,) such that, for each r € Ry, we have

O] = 1UE0)l5@ @) + U 0)llse 1A~ (0)111A(0) g(0. ¢l

+HIAT O llse 14D @y +/0 U 5) |8 [A(s)8 (s s) | ds

+/nvmmmmwmw
0

t
= Mllg|l +MMoL(Jlell + 1) + MoL(|ly[| + 1) +M/0 L(llysll + Dds

+MApmwmst
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< M1 + MoL)||g|| + MoL(M + 1) + MLn

t t
WLy + 3 /0 Llylds + i /0 PV (s l)ds.

We consider the function u defined by
w(@ :=sup{|y(s)] : 0<s<r}, 0<t<+o0.

Let t* € [—r, ] be such that u(¢) = [y(¢*)|. If t* € [0, n], by the previous inequality
we have for ¢ € [0, n]

w(@) < M1 + MyL)||¢|| + MoL(M + 1) + MLn

+MoL(t) +1\’/\1/0 Liu(s)ds +1\7I/0 p)Y(u(s))ds.

Then
(1 — MoL)u(t) < M(1 + MoL)||¢|| + MoL(M + 1) + MLn
t t
+M/ Lu(s)ds + M/ p()Y((s))ds.
0 0
Set ¢y, := , thus

1 — ML

B(t) < crom+ 1_]‘4—A_4()L /O [Lx(s) + ()Y (1(s)] ds.

If * € H, then u(f) = ||¢|| and the previous inequality holds.
Let us take the right-hand side of the above inequality as v(¢). Then we have

w(t) <v(r) forallr e [0,n].

From the definition of v, we have

v(0) = 20,0 and V' (1) = T 0L [Lu() +p@Oy ()] ae. t€][0,n].
0

Using the nondecreasing character of v, we get

A

V(1) < [Lv(t) +p@)y(v(t))] ae. te]0,n].
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This implies that for each ¢ € [0, n] and using the condition (5.7), we get

/v(l) ds / ( ( ))
< max L 148 ds
€20,n S w (S ) 1 1M 0

| /\

13,1 / max (L, p(s))ds

/+w ds
< —_—.
c20.n N + ‘ﬂ (S)

Thus, for every ¢t € [0, n], there exists a constant A, such that v(f) < A, and
hence w(t) < A,. Since ||y;|| < u(t), we have

I¥lln < max {[l@]l. An} := Ap.
We can show that Ny is an admissible operator and we shall prove now that
Ny : U — P(C([—r, +00), E)) is a contraction.

Lety,y € C([—r, +00), E) and h € Ny(y). Then there exists f(¢) € F(t,y,) such
that for each ¢ € [0, n]

h(1) = U(.0)[p(0) — g(0. ¢)] + g(z. 1) +/0 U(z. 5)A(s)8(s. ys)ds

+ /Ot U(t, s)f (s)ds.

From (5.1.3) it follows that

Hy(F(t,y1), F(£.5)) < ba(@) [y = ¥l
Hence, there is p € F(t,,) such that

If@ = pl = L@ lly =¥l ¢ €[0.n].

Consider Uy : [0, n] — P(E), given by

={pcE:[f()—pl =L@ Iy =yl
Since the multi-valued operator V(1) = U (1) N F(#,Y,) is measurable (in [94], see
Proposition II1.4), there exists a function f(¢), which is a measurable selection for V.

So, f(t) € F(t,9,), and we obtain for each ¢ € [0, 1]

If(t) —F ()| < L(2) |ly: — 3,
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Let us define, for each ¢ € [0, n]
(1) = U(t,0)[¢(0) — g(0, )] + ¢(1,5,) +/0 U(t, 5)A(5)g(s. y,)ds

t
+/ U(t, 5)f (s)ds.
0
Then we can show as in previous sections that we have for each ¢t € [0, n] and
neN
_ _ 1 B
=l < Mol + — | Iy =3l

By an analogous relation, obtained by interchanging the roles of y and Yy, it
follows that

HiNo0) N ) < [ + < |1y =51

— 1
So, for | MyL« + — | < 1, the operator N, is a contraction for all n € N and an
T

admissible operator. From the choice of U/ there is no y € dif such that y = A Ny (y)
for some A € (0, 1). Then the statement (S2) in Theorem 1.31 does not hold. By
the nonlinear alternative due to Frigon we get that (S1) holds, we deduce that the
operator Ny has a fixed point y* which is a mild solution of the neutral functional
evolution inclusion problem (5.5)—(5.6). O

5.3.3 An Example

Consider the following model

9 0
% |:v(t, £) —/_r TO)u(t,v(t + 9,&))d9]
9%v
€ a(t,§) a_gz(t’ £)
+/0 PO)R(t,v(t+ 0,£))do teRy, £€]0,7n]
v(,0) = v(t,m) =0 te Ry
v(0,§) = vo(0,§) —-r<6<0,£el0,n],

(5.8)
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where r > 0, a(¢, §) is a continuous function and is uniformly Holder continuous in

t;, T,P:H—>R;u:HXxR—Randvg: Hx [0, 7] — R are continuous functions

and R : R4 x R — P(R) is a multi-valued map with compact convex values.
Consider E = L*([0, 7], R) and define A(¢) by A()w = a(t, £)w” with domain

D(A) = {w € E : w, w are absolutely continuous, w” € E, w(0) = w(r) =0}

Then A(f) generates an evolution system U(z, s) satisfying assumptions (5.1.1) and
(G1), see [112, 149].
For £ € [0, 7], we have

y@)(§) = v(.§). t € Ry,
@(0)() = v0(0.§), —r <0 <0,

0

gt n)(€) = / T(0)u(r,n(0)())db, —r <6 <0,

and
0
Flt.m)(€) = / POR( 1(0)(€))db, —r < 6 < 0.

—-r

Then, the problem (5.8) takes the abstract neutral functional evolution inclusion
form (5.5)—(5.6). In order to show the existence of mild solutions of problem (5.8),
we suppose the following assumptions:

— wuis Lipschitz with respect to its second argument. Let lip(u) denotes the Lipschitz
constant of u.

— There exist p € L'(J,RT) and a nondecreasing continuous function v : Ry —
(0, +00) such that

IR(t, | = p()¥(n]), for € J, and 7 € R.

— T, P are integrable on H.

By the dominated convergence theorem, one can show that f € S, is a continuous
function from C(H, E) to E. Moreover the mapping g is Lipschitz continuous in its
second argument, in fact, we have

0
lg(z,m) — g(t, m2)| < MoLulip(u) | [T(0)|d0 [m —nal, form,n, € R.

On the other hand, we have for n € R and & € [0, 7]

0
[FEm@l = [ IpOP@O)]Y(0E)E)DD.



126 5 Partial Functional Evolution Inclusions with Finite Delay

Since the function ¥ is nondecreasing, it follows that
0

1F@mlpe =p@ [ 1PO)]dO ).

Proposition 5.6. Under the above assumptions, if we assume that condition (5.7)
in Theorem 5.5 is true, then the problem (5.8) has a mild solution which is defined
in [—r, +00).

5.4 Notes and Remarks

The results of Chap.5 are taken from Arara et al. [27, 28]. Other results may be
found in [1, 3, 51, 53, 74, 75].



Chapter 6
Partial Functional Evolution Inclusions
with Infinite Delay

6.1 Introduction

We are interested in this chapter by the study of the existence of mild solutions of
two classes of partial functional and neutral functional evolution inclusions with
infinite delay on the semi-infinite interval R .

It is known that in the modeling of the evolution of some physical, biological,
and economic systems using functional and partial functional differential equations,
the response of the systems depends not only on the current state of the system but
also on the past history of the system. We assume that the histories y, belongs to
some abstract phase space B.

Sufficient conditions are provided to get existence results of mild solutions of the
partial functional and neutral functional differential evolution problems by applying
the recent nonlinear alternative of Frigon [114, 115] for contractive multi-valued
maps in Fréchet spaces [116], combined with the semigroup theory [16, 20, 168].

6.2 Partial Functional Evolution Inclusions

6.2.1 Introduction

In this chapter, we consider the partial functional evolution inclusions with infinite
delay of the form

y () € A()y(t) + F(t,y;), ae. teJ=Ry 6.1)
yo=¢ €B, (6.2)
© Springer International Publishing Switzerland 2015 127
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where F : J x B — P(F) is a multi-valued map with nonempty compact values,
‘P(E) is the family of all subsets of E, ¢ € B are given functions, and {A(?) }o<t<+oo
is a family of linear closed (not necessarily bounded) operators from E into E that
generate an evolution system of operators {U(t, 5)}.s)ejxs for 0 < s <t < 4-00.

6.2.2 Existence of Mild Solutions

Definition 6.1. We say that the function y(-) : R — FE is a mild solution of the
evolution system (6.1)—(6.2) if y(t) = ¢(¢) for all t € (—o0, 0] and the restriction
of y(-) to the interval J is continuous and there exists f(-) € L'(J, E): f(¢) € F(t,v;)
a.e. in J such that y satisfies the following integral equation:

y(t) = U(t,0) ¢(0) + /Ot U(t,s) f(s)ds, foreachte Ry.

We will need to introduce the following hypotheses which are assumed here-
after:

(6.1.1) There exists a constant M > 1 such that:
U ) |pE) < M for every (t,5) € A.

(6.1.2) The multi-function F : J x B —> P(E) is L}, -Carathéodory with compact

and convex values for each u € B and there exist a function p € Ll (J,Ry)

and a continuous nondecreasing function ¥ : J/ — (0, co) and such that:
|F(t w)||lpE < p@) ¥(||lullp) fora.e. t € Jand each u € B.
(6.1.3) For all R > 0, there exists [z € L\ .(J, Ry) such that:
Hy(F(t,u) — F(t,v)) < Ig(?) [lu—v] 5
for each ¢t € J and for all u, v € B with |lu|]|z < R and ||v||g < R and
d(0,F(1,0)) < Ig(r) ae.tel.
Consider the following space

Biso ={y:R—>E:yljogn € C(0.T].E), yo € B}.

where y|jo.7] is the restriction of y to any real compact interval [0, T].
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For every n € N, we define in B4« the family of semi-norms by:
Iyl == sup { e =@ |y(@0)] 1 1 € [0,n] }

t
where L} (1) = / 1,(s) ds, 1,(t) = K,Ml,(r) and 1, is the function from (6.1.3).

0
Then B is a Fréchet space with the family of semi-norms |- || ,en. In what follows
we will choose 7 > 1.

Theorem 6.2. Suppose that hypotheses (6.1.1)—(6.1.3) are satisfied and moreover

+o00
/sz Wd( ) > K, M/ p(s)ds, foreachn >0 (6.3)

with ca1, = (K,MH + M,)||¢5. Then evolution problem (6.1)~(6.2) has a mild
solution.

Proof. Consider the multi-valued operator Ny; : Byoo —> P(B+oo) defined by:

(), ift <0;

Noy(y) = $h € Byoo : h(2) = t
U(t,0) ¢(0) —I—/ U(t,s) f(s) ds, ift > 0.
0

where f € Sp, = {v € L'(J,E) : v(t) € F(t,y,) fora.e.t € J}.

Clearly, the fixed points of the operator N,; are mild solutions of the prob-
lem (6.1)—(6.2). We remark also that, for each y € B, the set S¢, is nonempty
since, by (6.1.2), F has a measurable selection (see [94], Theorem IIL.6).

For ¢ € B, we will define the function x(.) : R — E by

¢ (1), if ¢t € (—o0,0];
x(t) =
Ut,0)p(0), ifrel.

Then xy = ¢. For each function z € B4, set y(¢) = z(t) + x(¢). It is obvious that y
satisfies Definition 6.1 if and only if z satisfies zo = 0 and

(1) = /OI U(t,s) f(s)ds, fortel.

where f(t) € F(t,z, + x;) a.e. t € J.
Let

Biooz{z63+oo:zg=0}.
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Define in B

+ oo the multi-valued operator J : BO+ o = 79(B9r oo) DY:

F(z) = heBS’roo:h(t)zft U(t,s) f(s)ds, teld;,
0

where f € Sp. = {v € L'(J,E) : v(t) € F(t,z; + x;) forae.t € J}.

Obviously the operator inclusion N; has a fixed point is equivalent to the
operator inclusion JF has one, so it turns to prove that 7 has a fixed point.

Letz € Bi o De a possible fixed point of the operator F. Given n € N, then z
should be solution of the inclusion z € A F(z) for some A € (0, 1) and there exists
f €Sk, < f(t) € F(t,z + x;) such that, for each ¢ € [0, n], we have

IdﬂhEA VU9 s [FS)] ds
Sﬁ/ﬁ®¢mﬁmhﬁh
0

Set co1, = (K,,AA/IH + M,)||¢llz = o, then using the inequality (3.4) and the
nondecreasing character of ¥, we get

t
{01 =H [ p0) ¥ K J0)] + ) d.
0
Then
N t
K20+ 0y = Kol [ pOW(E[206)] + a)ds + cav
0
We consider the function u defined by

u(t) :=sup { Kylz(s)| +, : 0<s=<t}, 0=<t<+o0.

Let t* € [0, 7] be such that u(r) = K,|z(t*)| + «,. By the previous inequality, we
have

t
u() < KnM/ p(s) v (u(s)) ds + ca1,, for te[0,n].
0
Let us take the right-hand side of the above inequality as v(¢). Then, we have
u(t) <wv(t) forallz € [0,n].
From the definition of v, we have

v(0) = ¢, and V' (r) = K,Mp(t) ¥ (u(r)) ae. t € [0,n).
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Using the nondecreasing character of vy, we get
v'(1) < KuM p() Y (0(1)) ae.1 € [0.n].

This implies that for each ¢ € [0, n] and using the condition (6.3), we get

v(1) d N t
< KM f p(s) ds
2 W(S) 0

< KM / p(s) ds
0
+o0 ds
< .
/cm ¥ (s)

Thus, for every ¢t € [0, n], there exists a constant A, such that v(f) < A, and
hence w(r) < A,. Since ||z]|, < w(t), we have ||z]|, < A,. Set

L{:{zeB(_)Foo: sup{ |z()] : 0<t<n} < A,+1 forall neN}.
Clearly, U is an open subset of BY, .
We shall show that F : U — P(B(J’roo) is a contraction and an admissible
operator.

First, we prove that F is a contraction; Let z,7 € B(jroo and h € F(z). Then there
exists f(t) € F(t, z; + x;) such that for each ¢ € [0, n]

h(t) = /Ot U(t,s) f(s) ds.
From (5.1.3) it follows that
Hy(F(t, 2 + %), F(t, % + X)) < L0 ||z — %l 5.
Hence, there is p € F(t,7; + x;) such that
If(@®) = pl < 1@ ||z =zl t €[0.n].
Consider Uy : [0, n] — P(E), given by

Us ={p € E-If(1) = pl = L(®) llz — Zlls3-
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Since the multi-valued operator V(t) = U (1) NF (7, Z;+x,) is measurable (in [94],
see Proposition II1.4), there exists a function f(#), which is a measurable selection
for V. So, f(t) € F(t,7, + x,) and using (A;), we obtain for each ¢ € [0, n]

F(0) = fO1 = L) lz = Zlls
=< (1) [K() [2(t) =2(0)| + M(?) [|l20 — Zol 8]
< In(1) Ky [2(1) —2(0)]

Let us define, for each ¢ € [0, n]
—_— 4 —_—
h(t) = [ U(t,s) f(s) ds.
0
Then we can show as in previous sections that we have
_ 1 ~
Ih—=hll, < =llz—2]n
T

By an analogous relation, obtained by interchanging the roles of z and Z, it
follows that

HiFQ. F@) < —le 5

So, for T > 1, F is a contraction for all n € N.
It remains to show that F is an admissible operator. Let z € B(jroo. Set, for every
n € N, the space

B) :={y: (—oo,n] = E : y|p. € C([0.n].E), yo € B},

and let us consider the multi-valued operator F : B — P(BY) defined by:

f(z)Z{hEBg:h(t):/t U(t,s) f(s)ds, te[0,n];.
0

where f € S . = {v € L'([0,n],E) : v(t) € F(t,y,) for a.e.r € [0,n]}.

From (6.1.1) to (6.1.3) and since F is a multi-valued map with compact values,
we can prove that for every z € BY, F(z) € P,(B’) and there exists z, € BY such
that z« € F(z«). Leth € B%, ¥ € U and € > 0. Assume that z, € F(Z), then we
have

(1) — 22 ()| < [2(t) — h(D)| + |2« (1) — h(2)|
< e WOz = F@lln + llzs — Al
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Since A is arbitrary, we may suppose that i € B(z«,€) = {h € BY : ||h — z«||» < €}.
Therefore,

Iz = z«lln = 12— F @ + €.

If z is not in F(Z), then ||z« — F(Z)|| # 0. Since F(Z) is compact, there exists
x € F(z) such that ||z« — F(2)|| = ||z« — x||. Then we have

2() — 24 (1) < |2() — h(2)| + |x(1) — h(D)]
<" L0z = F@)ly + [x(0) — k().

Thus,

I1Z—xlln < 12— F@)lln + €.

So, F is an admissible operator contraction. From the choice of U there is no z € dUf
such that 7 = A F(z) for some A € (0, 1). Then the statement (S2) in Theorem 1.31
does not hold. A consequence of the nonlinear alternative due to Frigon we get
that (S1) holds, we deduce that the operator F has a fixed point z*. Then y*(f) =
7*(t) + x(¢), t € R is a fixed point of the operator N;, which is a mild solution of
the evolution inclusion problem (6.1)—(6.2). O

6.2.3 An Example

Consider the following model

i

0 %

+/ P(O)R(t,v(t+ 0,8))d0 & € [0, ]
o0

0
S8 € alt.§) S5 (1.8)

(6.4)
v(,0) = v(t,w) =0 te Ry

v(0,8) = v(0,§) —00 <0 <0,£€]|0,n],

where a(t, §) is a continuous function and is uniformly Hoélder continuous in #; P :
(—00,0] — R and vy : (—00,0] x [0,7] — R are continuous functions and R :
R4+ x R — P(R) is a multi-valued map with compact convex values.

Consider E = L*([0, 7], R) and define A(¢) by A()w = a(t, £)w” with domain

D(A) = {w € E : w, w are absolutely continuous, w” € E, w(0) = w(z) =0}
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Then A(f) generates an evolution system U(t, s) satisfying assumption (6.1.1) (see
[112, 149]).

For the phase space B, we choose the well-known space BUC(R™, E): the space
of uniformly bounded continuous functions endowed with the following norm

el = sup|p(®)| for ¢ € B.
0<0

If we put for ¢ € BUC(R™,E) and £ € [0, ]

yO(E) =v(.§), reRy, §€[0,7],
P(0)(§) = vo(6,§), —00 <0 <0, § €0, 7],

and

’ P(O)R(t, p(0)(§))dO, —oc0 < 8 <0, & € [0, n].

Fo© = [

Then, the problem (6.4) takes the abstract partial functional evolution inclusion
form (6.1)—(6.2). In order to show the existence of mild solutions of problem (6.4),
we suppose the following assumptions:

— There exist p € L'(J,R™) and a nondecreasing continuous function v : Ry —
(0, +00) such that
|R(t,u)| < p(H)¥(|u]), for € J, andu € R.

— P is integrable on (—o0, 0].

By the dominated convergence theorem, one can show that f € Sp, is a
continuous function from B to (E). On the other hand, we have for ¢ € B and
§ €0, 7]

0

F(t 9)(©)] < / POPO)] ¥ ([(0(6))(E))db.

Since the function v is nondecreasing, it follows that

0
VE .0l pigy < p(0) /_ IP(9)] d6¥ (g]). forg € B.

Proposition 6.3. Under the above assumptions, if we assume that condition (6.3)
in Theorem 6.2 is true, ¢ € B, then the problem (6.4) has a mild solution which is
defined in (—oo, +00).
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6.3 Neutral Functional Evolution Inclusions

6.3.1 Introduction

A generalization of existence result of mild solutions to the neutral case is developed
in Sect.6.3 where we look for the neutral functional evolution inclusions with
infinite delay of the form

d

Yo =¢ € B, (6.6)

where F : J x B — P(E) is a multi-valued map with nonempty compact values,
g:JxB — E and ¢ € B are given functions.

6.3.2 Existence of Mild Solutions

Definition 6.4. We say that the function y(-) : R — FE is a mild solution of the
neutral functional evolution system (6.5)—(6.6) if y(t) = ¢ (¢) forall z € (—oo, 0] and
the restriction of y(-) to the interval J is continuous and there exists f(-) € L!'(J, E):
f(t) € F(t,y,) a.e. in J such that y satisfies the following integral equation

¥(0) = U 0)[$(0) — 5(0.$)] + g(t. ) + /0 U, )A(5)g(s. y,)ds
+ / U(t,s)f(s)ds, foreachte Ry.
0

We consider the hypotheses (6.1.1)—(6.1.3) and in what follows we will need the
following additional assumptions:

(G1) There exists a constant M, > 0 such that:

A7 @) |y < Mo foralltel.

1
(G2) There exists aconstant 0 < L < — such that:
0Ap

|A(t) g(t,9)| < L (||¢llz + 1) forallz € J and ¢ € B.
(G3) There exists a constant L, > 0 such that:
[A(s) 8(s,¢) — AG) G, P)| < Lu (Is =5 + [l — bl15)

forall s,5 € J and ¢, ¢ € B.
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Consider the following space
Bioo ={y:R—E:ylon € C(0.T].E). yo € B}.

where y|[o.7] is the restriction of y to any real compact interval [0, T].
For every n € N, let us take here [,(1) = KM [Ls + L,(2)] for the family
of seminorm {| - [l,}sen. In what follows we fix ¢t > 0 and assume that

— 1
|:MOL*Kn + —i| < 1.
T

Theorem 6.5. Suppose that hypotheses (6.1.1)—(6.1.3) and the assumptions (G1)—
(G3) are satisfied and moreover

/+°° ds K,M
C

> — max (L, p(s))ds, or each n > 0. 6.7
22 S+W(S) I_MOLKn/O ( P( )) f (6.7)

with

MoLK,M ~ MoLK,
C22’n = —_— + (KnMH +Mn) 1 + ——— ||¢||B
1 — MyLK, 1 — MyLK,

K [— -~ _
I R— [MOL(M )+ MLn] :
| — MyLK,

then the neutral functional evolution problem (6.5)—(6.6) has a mild solution.

Proof. Consider the multi-valued operator Ny, : B4oo — P(B+oo) defined by
¢ (1), ifr <0;

u(t, 9) [#(0) — g(0,®)] + g(t,y:)
+/ U(t, 5)A(s)g(s, ys)ds
0

+ /l U(t, s)f (s)ds, ifr >0,
0

Nn(y) = {h € Byoo t h(1) =

where f € Sp, = {v € L'(J,E) : v(1) € F(t,y,) fora.e.t € J}.

Clearly, the fixed points of the operator N,, are mild solutions of the prob-
lem (6.5)—(6.6). We remark also that, for each y € B, the set Sg, is nonempty
since, by (6.1.2), F has a measurable selection (see [94], Theorem IIL.6).

For ¢ € BB, we will define the function x(.) : R — E by

o (1), if t € (—o00,0];
x(t) =
Ut,0)p(0), iftrel.
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Then xy = ¢. For each function z € B4, set y(¢) = z(¢) + x(¢). It is obvious that y
satisfies Definition 6.4 if and only if z satisfies zp = 0 and

20) = gtz + x) — U(1.0)g(0.¢) + /0 U1, 5)A(s)g 5. 20 + x)ds

+ /0 U(t, s)f (s)ds.

where f(t) € F(t,z, + x;) a.e. t € J.
Let

Bimz{z€B+oo:zO=O}.

Define in B’

% o> the multi-valued operator F : BY, |, — P (B ) by:

Fo) = {h € BY (1) = gt + %) — U(1.0)g(0. )
+ /l U(t, 5)A(s)g(s, zs + x5)ds + /t Ut,s)f(s)ds, teld
0 0

where f € Sp, = {v € L'(J,E) : v(t) € F(t,z; + x;) fora.e.t € J}.

Obviously the operator inclusion N, has a fixed point is equivalent to the
operator inclusion F has one, so it turns to prove that F has a fixed point.

Letz € B‘J’roo be a possible fixed point of the operator F. Given n € N, then z
should be solution of the inclusion z € A F(z) for some A € (0, 1) and there exists
f €Sp, < f(t) € F(t,z: + x;) such that, for each ¢ € [0, n], we have

2] < 1A~ Ol lADR(E 2 + )| + 1T 0) 5 IA~ ) A0 £(0, )]
+ /0 UG i IAG)gs. 25+ x) s + /0 U5 e s
< MoL(|lz: + xl|5 + 1) + MMoL(||¢|5 + 1)
—Hl?I/OrL(llzs +xlls + 1ds + M/()tp(s)w(||zs + x|l g)ds
< MoL||z + x| g + MoL(M + 1) + MLn + MM,L|¢| 5

t t
i1 / Llzs + x,|lsds + 3 / PV (2 + x,l15)ds.
0 0
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Using the inequality (3.4) and the nondecreasing character of ¥/, we obtain
20| < MoL(Kq|2(0)| + o) + MoL(M + 1) + MLn + MMoL|| ¢ |
+M /O tL(KnIz(s)I +a,)ds + M /0 t PV (Kulz(s)] + )ds

< MoLK,|2(1)| + MoL(M + 1) + MLn + MoLa, + MMoL| ¢||5

t t
iy [ / LK, |2(5)] + n)dls + / POV (Knl2(s)] + an)ds} .
0 0
Then
(1 — MoLK,)|z(1)| < (M + 1)MoL + MLn + MoLa, + MM,L||¢]|5

+M [ / ! L(Ky|z(s)| + atn)ds + /’p(s)w(Kn|z(s)| + an)ds} ,
0 0

Set

n

Con =0, + ——
2 1 — M,LK,

(31 + V¥l + MLn + FoLe, + FFLI )15

Thus

Kn|Z(t)| + o, <

K,M

t
_ L(K,|z(s)| + «,)ds
I_MOLKH[/O (Ko l2(5)] + o)

+ / P (Ko l2(5)] + an)ds} .
0

We consider the function u defined by
w@ :=sup{ Kylz(s)| + o, : 0<s<t}, 0<t<+o0.

Let r* € [0, 1] be such that u(f) = K,|z(*)| + «,. By the previous inequality, we
have

M(f)5022,n+%[ /0 Lu(s)ds + [0 p(s)wws))ds} for 1€ [0.].

Let us take the right-hand side of the above inequality as v (7). Then, we have

w(t) <wv(t) forallz € [0,n].
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From the definition of v, we have v(0) = ¢y, and
KM
V' (t) = ———— [Lu(?) + p(t 1)) ae. t€0,n].
(0 MoK, [Li(r) + pO Y (n(0)] [0.7]

Using the nondecreasing character of v, we get

~

V() < % [Lv(f) + p(O)Y (v(©)] ae. t€[0,n].

This implies that for each ¢ € [0, n] and using the condition (6.7), we get

v gy
max(L, p(s))ds
/;22.” s+ 1//(S) 1 —MOLKn [ (L.p(s))

< m/ max(L p(S))dS

/+oo ds
< _—.
en, SHY(s)

Thus, for every ¢ € [0, ], there exists a constant A, such that v(f) < A, and
hence u(f) < A,. Since ||z||, < w(r), we have ||z, < A,.

We can show that F is an admissible operator and we shall prove now that F:
U— P(B0+OO) is a contraction.

Letz,z € Bg_ oo and i € F(z). Then there exists f(¢) € F(t,z; + x;) such that for
each r € [0, n], we have

h(t) = g(t,z: +x) — U(£,0)g(0, ¢) + /Ol U(t, 5)A(s)g(s, zg + x;)ds

+ fot U(t, 5)f (s)ds.
From (5.1.3) it follows that
Hy(F(t, 2 + x), F(t,Z + %)) < L,(0) [lz = Zl-
Hence, there is p € F(t,7; + x;) such that
IF@ —pl < (@) lz —Zls 1 €[0.n].
Consider Uy : [0, n] — P(E), given by

U ={p e E:[f() — p| < L.(0) |z —Zll5}-
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Since the multi-valued operator V(t) = U (1) NF (7, Z;+x,) is measurable (in [94],
see Proposition II1.4), there exists a function f(#), which is a measurable selection
for V. So, f(t) € F(t,7, + x,) and using (A;), we obtain for each ¢ € [0, n]

() —f®] < L) |z —Zlls
< L(@) [K(@) [2(t) = 2()] + M(2) [lz0 — Zoll 5]
< (@) Ky [2(0) = 2(9)].

Let us define, for each ¢ € [0, n]
_ 1
h(t) = g(t.2 + x;) — U(1,0)8(0, ¢) + / U(t, 5)A(s5)g(s. Zs + x;)ds
0

+/0 U(t, s)f (s)ds.

Then we can show as in previous sections that we have for each ¢t € [0, n] and
neN

_ — 1
”h _h”n = |:M0L*Kn + ;:| ”Z_Z”w

By an analogous relation, obtained by interchanging the roles of z and z, it
follows that

Hi(F(). F(@) < [MOL*Kn + ﬂ 2zl

_ 1
So, for | MyL+K,, + —] < 1, the operator F is a contraction for all n € N and an
T

admissible operator. From the choice of U there is no z € ol such that z = A F(z)
for some A € (0, 1). Then the statement (S2) in Theorem 1.31 does not hold. By
the nonlinear alternative due to Frigon we get that (S1) holds, we deduce that the
operator F has a fixed point z*. Then y*(r) = z*(¢) + x(¢), t € R is a fixed point
of the operator Ny, which is a mild solution of the neutral functional evolution
inclusion problem (6.5)—(6.6). O
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6.3.3 An Example

Consider the following model

0
% |:v(t, £) — /;oo T(O)u(t,v(t + 9,&‘))(19]
9%v
€ aly, E) 8_2.2(1" g)
0
+/ PO)R(t,v(t+ 0,&))do teRy, £€][0,n]
v(,0) = v(t,m) =0 te Ry
v(0,8) = vy(0,§) —00< 0 <0,£&€][0,n],

(6.8)

where a(t, £) is a continuous function and is uniformly Hélder continuous in¢; T, P :
(—00,0] > R; u: (—00,0] xR — R and vy : (—o0, 0] x [0, 7] — R are continuous
functions and R : Ry x R — P(R) is a multi-valued map with compact convex
values.

Consider E = L*([0, r], R) and define A(f) by A(t)w = a(t, £)w” with domain

D(A) = {w € E : w, w are absolutely continuous, w” € E, w(0) = w(r) =0}

Then A(¢) generates an evolution system U(t, s) satisfying assumptions (4.1.1) and
(G1), see [112, 149].

For the phase space B, we choose the well-known space BUC(R™, E): the space
of uniformly bounded continuous functions endowed with the following norm

ol = sup|p(®)| for ¢ € B.
0<0

If we put for ¢ € BUC(R™,E) and £ € [0, 7]

yO(E) = v(2.§), te Ry, § €0, 7],

P(0)(€) = v0(0.8), —o0 <6 <0, § €0, 7],
0

8(t.9)(€) = / T(0)u(t, 9(0)(§))dd, —oo <0 <0, § € [0, 7],

—00
and
0

Flt.9)(€) = / POIR(. (8)(E))dh. —00 <6 <0, £ € [0, 7].

—00
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Then, the problem (6.8) takes the abstract neutral functional evolution inclusion
form (6.5)—(6.6). In order to show the existence of mild solutions of problem (6.8),
we suppose the following assumptions:

— wis Lipschitz with respect to its second argument. Let /ip(«) denotes the Lipschitz
constant of u.

— There exist p € L'(J,RT) and a nondecreasing continuous function ¥ : Ry —
(0, +00) such that

|R(t,x)| < p(®)¥(|x]), for € J, andx € R.

— T, P are integrable on (—o0, 0].

By the dominated convergence theorem, one can show that f € Sp, is a
continuous function from B to (E). Moreover the mapping g is Lipschitz continuous
in its second argument, in fact, we have

0
lg(t, o1) —g(t.2)| < MoL*liP(u)f [T(60)|dO [o1 — @a| , for o1, 0, € B.
—00

On the other hand, we have for ¢ € B and § € [0, 7]

0

IF(t.¢)(§) S/ lp()PO)] ¥ (1(9(8))(5))db.

Since the function v is nondecreasing, it follows that

0
1E @) p &) Ep(t)/_ |P(O)[dOV (@), fore € B.

Proposition 6.6. Under the above assumptions, if we assume that condition (6.7)
in Theorem 6.5 is true, ¢ € B, then the problem (6.8) has a mild solution which is
defined in (—oo, +00).

6.4 Notes and Remarks

The results of Chap. 6 are taken from [11, 12, 35, 45]. Other results may be found
in [10, 11, 54, 142, 145, 182].



Chapter 7
Densely Defined Functional Differential
Inclusions with Finite Delay

7.1 Introduction

In this chapter, we are concerned by the existence of mild and extremal solutions of
some first order classes of impulsive semi-linear functional differential inclusions
with local and nonlocal conditions when the delay is finite in a separable Banach
space (E, | - |)-

In the literature devoted to equations with finite delay, the phase space is much
of time the space of all continuous functions on H, endowed with the uniform norm
topology. We mention, for instance, the books of Ahmed [16], Engel and Nagel
[106], Kamenskii et al. [144], Pazy [168], and Wu [184].

7.2 Existence of Mild Solutions with Local Conditions

7.2.1 Introduction

In this section, we consider the following class of semi-linear impulsive differential
inclusions:

Y () —Ay(t) € F(t,y;), t€J:=1[0,b],t # 1, (7.1
Ay|i=y € L)), k=1,....m (7.2)
y() =¢(), t€H, (7.3)

where F : J x D — 2F is a closed, bounded, and convex valued multi-valued map,
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D={y:H— E,¥ continuous everywhere except for a finite number of points
at whichy(s™) and ¥ (sT) existand ¥ (s7) = ¥(s)}, ¢ € D,A : D(A) C
E — E is the infinitesimal generator of a strongly continuous semigroup 7'(f), t >
0, E a real separable Banach space endowed with the norm |.|, 0 =) <f; <--- <
tn <ty = b, I € C(E,E), (k =1,2,.. .,m).

7.2.2 Main Result

We assume that F is compact and convex valued multi-valued map. In order to define
the mild solution to the problem (7.1)—(7.3), we shall consider the following space

PC={y:[O,b]—>E: Ve € ClUElk=0,....m such that

YY) exist with y(t) = (7). k = 1,....m,
which is a Banach space with the norm

[¥lpc := max{||ylloo : & =0, ..., m},

where y; is the restriction of y to Jy = [t, ti+1], k =0, ..., m.
Set

={y:[-r,b)>E:yeDNPC}.

Definition 7.1. A function y € £2 is said to be a mild solution of system (7.1)—
(7.3) if y(r) = ¢(¢) for all t € H, the restriction of y(-) to the interval [0, b] is
continuous and there exists v(-) € L' (Ji, E), Zj € L(y(t;)) such that v(7) € F(t,y,)
a.e t € [0, b], and such that y satisfies the integral equation,

y(t) = T(6)¢(0) + /OtT(t—s)v(s)ds + Z T(t—t) Ly, teJ.

O<y <t

We will need the following hypotheses which are assumed hereafter

(7.1.1) A : D(A) C E — E is the infinitesimal generator of a strongly continuous
semigroup {T'(¢)}, ¢t € J which is compact for r > 0 in the Banach space E,
and there exists a constant M > 1, such that Let | T(?)|ge) < M; t>0

(7.1.2) There exist constants ¢, > 0,k = 1, ..., m such that

H (Iy(y) — I(x)) < ckly — x| foreach x,y € E.

(7.1.3) Fis L'-Carathéodory with compact convex values.
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(7.1.4) There exist a function k € L'(J,R;) and a continuous nondecreasing
function ¢ : [0, 00) — (0, 00) such that

|F(t,x)|| < k(@) (||x||p) fora.e.t e Jandeachx e D,

with

*° ds
—>C 1, 7.4
[ i > Gl (7.4

where

m

M{gllo + > 11:0)]]

k=1

Co = i (7.5)
1-— Z Ck
k=1
M
Cil=—>—. (7.6)
1-— ch
k=1

Theorem 7.2. Assume that (7.1.1)—(7.1.4) hold. If
M Z c < 1 (7.7)
k=1

then the IVP (7.1)—(7.3) has at least one mild solution on [—r, b].
Proof. Transform the problem (7.1)—(7.3) into a fixed point problem. Consider the
multi-valued operator: N : £2 — §2 defined by

(1), ifreH,

t

Ny) ={heQ:h@)={TOO) + /0 T(t — s)v(s)ds

+ Y T(— )Tk v € Spy. T € () iftel.

O<t <t

It is clear that the fixed points of N are mild solutions of the IVP (7.1)—(7.3).
Consider these multi-valued operators:

AB:2 — 2
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defined by
0, ift € H;
Ay):={he2: h(t) = Y T— )T T € L)) iftel,
O<n<t
and
o), ift e H;

By):=he2: h(t)=1TH)e(0
—i—/ T(t—s)v(s)ds,v € Sp, ifrel.
0

The problem of finding mild solutions of (7.1)—(7.3) is then reduced to finding mild
solutions of the operator inclusion y € A(y) + B(y). The proof will be given in
several steps.

Step 1: A s a contraction. Let y;, y, € £2, then from (7.1.2) we have

Hy(A(). AG2) = Ha | Y T — )L (). Y Tt — L))

O<t <t o< <t

k=m

<MY albn() ()

k=0

k=m

<MY allyr —y2lle
k=0

From (7.7) it follows that A is a contraction.
Step 2: B has compact, convex values, and is completely continuous.

Claim 1: B has compact values.
The operator 5 is equivalent to the composition £ o Sg of two operators on
L'(J,E), where £ : L'(J, E) — £2 is the continuous operator defined by

Lw(1)) = T1)¢p(0) + /0 t T(t — s)v(s)ds

Then, it suffices to show that £ o Sg has compact values on £2.

Let y € £2 arbitrary, v, a sequence in Sr,, then by definition of S, v,(¥)
belongs to F(t,y,),a.e.t € J. Since F(t,y,) is compact, we may pass to a
subsequence.

suppose that v, — v in L!(J, E), where v(t) € F(t,y,),a.e.t € J.
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From the continuity of L, it follows that Lv, (f) — Lv() point wise on J and
n— oo.

In order to show that the convergence is uniform, we first show that {Lv,} is
an equi-continuous sequence.

Let 71, 7, € J, then we have:

|L(va(m1)) = La(r2)| = [T(11)¢(0) — T(12)¢(0) +/O | T(t1 — s)va(s)ds

- /sz T (2 — 5)va(s)ds|
< (1)) = T(22))$0)]
+ /TI {(T(Tl —5)—=T(ro— S))||v,,(s)|ds
0

+ / 172 = 9)llun(s)lds.

As 71 — 12, the right-hand side of the above inequality tends to zero. Since
T(t) is a strongly continuous operator and the compactness of 7'(¢); t > 0,
implies the continuity in uniform topology. Hence {Lv,} is equi-continuous,
and an application of Arzéla—Ascoli theorem implies that there exists a
subsequence which is uniformly convergent. Then we have Lv,, — Lv €
(L o SF)(y) as j — o0, and so (L o Sg)(y) is compact . Therefore B has
compact values.

Claim 2:  B(y) is convex for each y € 2. Let hy, h, € B(y), then there exists
v, V2 € Sk, such that, for each r € J we have

¢(), ifreH,
hi(t) = t
T(t)¢>(0)—|—/ T(t— s)is)ds  iftedi=1.2.
0

Let 0 < § < 1. Then, for each ¢ € J, we have

é(1), t€H,
(6h1 + (1 =8)h2) (@) = | T(1)¢(0)

+ Jo Tt = 9)[8vi(s) + (1 = 8)va(s)lds 1€,
Since F(z, y;) has convex values, one has

Shy + (1 — §)hy € B(y).
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Claim 3: 5 maps bounded sets into bounded sets in 2 Let B = {y €
2 |lylloc < ¢g},g € RT a bounded set in £2. For each h € B(y), for some
y € B, there exists v € Sk, such that

h(t) = T(H)p(0) + /t T(t — s)v(s)ds.
0
Thus

o) = w0+ [ 0,50
= M|p0)] + MllggllL1.
this implies that:
[hlloo < M@ (0)] + M| pgllL1-

Hence B(B) is bounded.

Claim 4: B maps bounded sets into equi-continuous sets. Let B is a bounded
set as in Claim 3 and i € B(y) for some y € B. Then, there exists v € S
such that

t
W) = T($(0) + / T sy(s)ds. 1eJ
0
Let ty, 15 € J\{t1, fa, .. .tw}, T1 < Tp. Thus if € > 0, we have

Ih(r2) — h(e)| < |[T() — T(0)]p(O)
+Al|wm—o—Tm—nmumm

+/ﬂnnn—n—Tm—nmwmw

+/me—omwmm
< |[T(52) - T} (0)

+/rﬁwm—n—nn—w%mw
0

+[lnnn—n—rurww%@m

1€

5]
+M / @y(s)ds.
13l
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As 11 — 1, and € becomes sufficiently small, the right-hand side of the above
inequality tends to zero, since T'(¢) is a strongly continuous operator and the
compactness of T(f) for t > 0 implies the continuity in the uniform operator
topology.

This proves the equi-continuity for the case where r # ;,i = 1,....m + 1. It
remains to examine the equi-continuity at t = ¢;.

First we prove the equi-continuity at # = #;, we have for some y € B, there
exists v € S, such that

h(t) = T(1)¢(0) + /OIT(t— syv(s)ds, teJ

Fix §; > O such that {#;,k # i} N [t;, — 61, t; + 8] = 0. For 0 < p < 6, we
have

It — p) — h(t)] < [T — p) — T@IPO)]
ti—p
+A ITG — p—5) — TGt — )] Jo(s)lds

ti
+ / Mo, (s)ds
ti—p

Which tends to zero as p — 0.
Define

ho(t) = h(1). te€[0.1]
and
h(), if 1 € (4, ti41]
N, if r=t.

Next, we prove equi-continuity at ¢ = ti+ . Fix 8, > 0 such that {f,
k 75 itn [Z‘i — 6y, 1; + 82] = (. Then

Mm=T@M®+/Wm-nwmm
0
For 0 < p < §,, we have

|h(t; + p) — h(t)| < |[T(t: + p) — T(1:)]¢(0)]

+/me+p—@—rm—QMMMﬁ
0

ti+p
+ My, (s)ds.

ti
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The right-hand side tends to zero as p — 0.

The equi-continuity for the cases 71 < 1, < 0 and 1; < 0 < 7, follows from
the uniform continuity of ¢ on the interval H As a consequence of Claims 1-3
together with Arzela—Ascoli theorem it suffices to show that B maps B into a
precompact set in E.

Let 0 < ¢* < b be fixed and let € be a real number satisfying 0 < € < ¢*. For
y € B, we define

t*—e
he(t*) = T(t)¢(0) + T(e)/ T — s —€)v(s)ds,
0
where v € Sg,. Since T(¢*) is a compact operator, the set

HE(*) = {he(1") = he € BO)}

is precompact in E for every €, 0 < ¢ < t*. Moreover, for every h € B(y) we
have

h(t*) = h ()| = | /0 T(t* — s)v(s)ds — T(€) /0 T — s — €)v(s)ds|

= | T(t* — s)v(s)ds|

<M @q(s)ds.

r*—e

Therefore, there are precompact sets arbitrarily close to the set H(t*) =
{h(*) : h € B(y)}. Hence the set H(t*) = {h(¢*) : h € B(B)} is precompact
in E. Hence the operator B is completely continuous.

Claim 5: B has closed graph. Let y, — y«, h, € B(y,), and h,, — h,. We shall
show that . € B(y«). h, € B(y,) means that there exists v, € Sr,, such that

h.(t) = T(t)p(0) + /Ot T(t—s)v,(s)ds, teJ.

We must prove that there exists vy € Sr,, such that

hy(t) = T(t)p(0) + /Ot T(t — s)v«(s)ds.

Consider the linear and continuous operator K : L' (J, E) — D defined by

(Kv)(r) = /0 tT(t— $)v(s)ds.
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‘We have

|(ha (=T (0)$(0)) — (h« (1) = T()p(0)| = |hn(t) — b ()]

= ”hn_h*”oo—)O, as n = oQ.

From Lemma 1.11 it follows that /C o S is a closed graph operator and from
the definition of C one has

hn([) - T([)¢(0) eEo SF’)’n'

Asy, — y« and h, — hy, there is a v« € Sp,, such that

t
hy(t) = T(1)9p(0) = f T(t — s)v«(s)ds.
0
Hence the multi-valued operator B is upper semi-continuous.
Step 3: A priori bounds on solutions. Now, it remains to show that the set
E={eR yerdy+ABy, 0<A <1}

is unbounded.
Let y € £ be any element. Then there exist v € Sg, and Z; € I (y(f;)) such that

y(t) = AT(1)¢(0) + A /0 lT(t—s)v(s)ds +A Y Tt - 1)L

O<ty <t

Then for each t € J

(o) < MIp(O)| +M/O [v(s)lds + M 3 1T
k=0

< M|gllo + M /0 PV (lysds + MY 1T

k=0
k=m

< Mlgllp + M /0 POV (lysds + M ey @) +M 3 11:(0)]
k=0 k=0

< Mlgllo+ M [ 6w (lyilids + 4 3 1(0)
k=0

m

+M Y ely().

k=0
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Set

C = M[ligllo + Y_ mlL(0)]].

k=0

Then, we have:

YOI < C+ M aly()] +M/0 p) ¥ (llysl)ds.

k=0
Consider the function u(f) defined by
p(t) =supfly(s)|: —r=s=t}, 0<t=<b

Then, we have, for all 7 € J,||y,|| < u(?).

7 Densely Defined Functional Differential Inclusions with Finite Delay

(7.8)

Let r* € J such that u(7) = |y(¢*)|, then by the previous inequality we have, for

tel,
u(r) < C+MZCk|M(f)| +M/ P& Y (lps)ds.
k=0 0
Thus

(1 - MZ Ck) pu(t) < C+ M/O p(s)Y (u(s))ds.

k=0

It follows that

w0 = o+ €1 [ p6w s
Then, we have
u(@) <v() forall teJ,
v(0) = Cy.
Differentiating both sides of the above equality, we obtain

V(1) = Cip(MY (n(0). ae. tel,

and using the nondecreasing character of the function ¥, we obtain

V(1) < CipOY (v(D), ae. tel,

(7.9)

(7.10)

(7.11)
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that is

Jg%)mew,a&tei (7.12)

Integrating both sides of the previous inequality from O to r we get

t U/(S)
0o Y((s))

By a change of variables we get

/“(’) du il ©  du
<Cilpllp = .
vy V) =) v

t
ds < Cl/ p(s)ds.
0

Hence there exists a constant K such that
p() <v() <K,
for all r € J. Now from the definition of y it follows that

I¥lle = sup [y(@)] = n®) <K

t€[—r,b]

for all y € &. This shows that the set £ is bounded. As a consequence of
Theorem 1.32, we deduce that .4 + B has a fixed point y on [—r, b] which is
a mild solution of our problem. O

7.2.3 Existence of Extremal Mild Solutions

In this subsection we prove the existence of maximal and minimal mild solutions
of problem (7.1)—(7.3) under suitable monotonicity conditions on the multi-valued
functions involved in it. Our proof is based upon the Theorem 1.37 due to Dhage.

Let us introduce the concept of lower and upper mild solutions for prob-
lem (7.1)—(7.3).

Definition 7.3. We say that a continuous function v : [—r, b] — E is a lower mild
solution of problem (7.1)—(7.3) if there exist functions v € L!(J, E) such that v(¢) €
F(t,y;),a.e.onJ, y(t) = ¢(t),t € H, and

(1) < T(H)¢(0) +/0 T(t—s)v(s)ds + Z T(t—t)((t,)), tel, t#

O<ty <t

and v(t,j') —v(ty, <I(v(t)), t =tk =1,...m. Similarly an upper mild solution
w of (7.1)—(7.3) is defined by reversing the order.
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Definition 7.4. A solution xj; of IVP (7.1)—(7.3) is said to be maximal if for any
other solution x of IVP (7.1)—(7.3) on J, we have that x(¢) < xy,(¢) for each ¢t € J.

Similarly a minimal solution of IVP (7.1)—(7.3) is defined by reversing the order
of the inequalities.

We consider the following assumptions in the sequel.

(7.4.1) The multi-valued function F(z,y) and is strictly monotone increasing in y
for almost each ¢ € J.

(7.4.2) The IVP (7.1)—(7.3) has a lower mild solution v and an upper mild solution
wwithv < w.

(7.4.3) T(¢) is preserving the order, that is 7(f)v > 0 whenever v > 0.

(7.4.4) The multi-valued functions I,k = 1,...m are continuous and non-
decreasing.

Theorem 7.5. Assume that assumptions (7.1.11)—(7.1.4) and (7.4.1)—(7.4.4) hold.
Then IVP (7.1)—(7.3) has minimal and maximal solutions on [—r, b].

Proof. Tt can be shown as in the proof of Theorem 7.2 that A is completely
continuous and B is a contraction on [v, w]. We shall show that .4 and B are isotone
increasing on [v, w]. Let y,y € [v, w] be such thaty <73, y # y. Then by (7.4.4), we
have for eacht € J

A@p) = the 2 :h(t) = Z T(t — 1)Lk, i € I (y(5))}

O<n <t

<plheQ:h(t)= Y T(t—t)L.Ti € L(3())}

O<tr<t
= A@).

Similarly, by (7.4.1), (7.4.3)
B(y) = {he2:h@) =T00) + / tT(t—s)v(s)ds, v € Spy}
0

<p {h e R :h(t)=THP(O) + / ’ T(t—s)v(s)ds. v € Spy}
0
= B@).

Therefore A and B are isotone increasing on [v, w]. Finally, let x € [v, w] be any
element. By (7.4.2), (7.4.3) we deduce that

v < A@) + B(v) < A(x) + Bx) < A(w) + B(w) < w,
which shows that A(x) + B(x) € [v,w] for all x € [v,w]. Thus, A and B satisfy

all conditions of Theorem 7.5, hence IVP (7.1)—(7.3) has maximal and minimal
solutions on J. O
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7.3 Existence of Mild Solutions with Nonlocal Conditions

In this section we consider the following class of semi-linear Impulsive differential
inclusions:

y () —Ay(t) € F(t,y;), t€J :=[0,b],t # t (7.13)
Ayl € L)), k=1,....m (7.14)
YO +h () =¢@), te[-r0], (7.15)

where A F and I; are as in the previous section, and &, : C(H,E) — E is a
given function. The nonlocal Cauchy Problem was introduced by Byszewski in [89],
and the importance of nonlocal conditions in different fields has been discussed in
[89, 90].

7.3.1 Main Result

Let us start by the definition of the mild solution of the problem (7.13)—(7.15)

Definition 7.6. A function y € £2 is said to be a mild solution of problem (7.13)—
(7.15) if y(t) = ¢(t) — h; (y), t € [—r,0], and the restriction of y(-) to the interval
[0, b] is continuous and there exist v(-) € L'(Jy, E) and Z; € I(y(t;)) such that
v(t) € F(t,y,) a.et € [0, b], and y satisfies the integral equation,

Y(0) = T@) ($(0) —ho 0)) + [y T —s)v(s)ds + Y T(t— 1)L

O<y <t

Let us introduce the following assumptions.

(7.6.1) The function % is continuous with respect to #, and there exists a constant
o > 0 such that

||hl‘(u)|| E o, ue C(H’ E)
and for each k > 0 the set
{$(0) —ho(y), y € C(H,E), Iyl <k}

is precompact in E.

Theorem 7.7. Assume that hypotheses (7.1.1)—(7.1.4) and (7.6.1) hold. Then the
IVP (7.13)—(7.15) has at least one mild solution on [—r, b].
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Proof. Consider the two multi-valued operators A;B;: 2 — P(£2)

o) — h(y), ifr e H;

() ($(0) = ho(y)

B = 2 =
l(y) f [S f(t) +/ T(t_ S)U(S)dS7 LS SF,y
0

iftel,

0, ift € H,;
Ai():=13feR: f()= 3 T - T T € L)), ifred,

O<ty <t

Then the problem of finding the solution of problem (8.8)—(8.11) is reduced to
finding the solution of the operator inclusion y € A;(y) + Bi(y). By parallel steps
of Theorem 7.2 we can show that the operators .A; and ; satisfy all conditions of
Theorem 1.32. O

7.4 Application to the Control Theory

This section is devoted to an application of the argument used in previous sections to
the controllability of a semi-linear functional differential inclusions. More precisely
we will consider the following IVP:

Y (t) —Ay(t) € F(t,y,)) + Bu(?), t€J:=[0,b],t # 1 (7.16)
Ay|i=y € L(Y(#)), k=1,....m (7.17)
y(©) =¢@), t€H, (7.18)

where A and F are as in the previous section, the control function u(-) is given in
L?(J, U), a Banach space of admissible control functions, with U as a Banach space.
Finally B is a bounded linear operator from U to E. In the case of single-valued
functions I, the problem (7.16-7.18) has been recently studied in the monographs
by Ahmed [16], and Benchohra et al. [81], and in the papers [18, 19].

7.4.1 Main Result

Before stating and proving our result we give the meaning of mild solution of our
problem (7.16)—(7.18).
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Definition 7.8. A function y € £2 is said to be a mild solution of system (7.16)—
(7.18) if y(t) = ¢(¢) for all t € H, the restriction of y(:) to the interval [0, b] is
continuous and there exists v(-) € L'(Jy, E) and Z; € L(y(#;)), such that v(r) €
F(t,y,) a.e [0, b], and such that y satisfies the integral equation,

t

y(t) = T(@)¢(0) + /t T(t—s)v(s)ds + / T(t — s)Buy(s)ds
0 0
—+ Z T(l‘— lk)Ik, teld.

O<ny <t

Theorem 7.9. Assume that hypotheses (7.1.1)—(7.1.3) hold. Moreover we suppose
that:

(Cl) the linear operator W : L*(J, U) — E, defined by
b
Wu = / T(b — s)Bu(s)ds,
0

has a bounded inverse operator W__l which takes values in L*(J, U)\KerW, and
there exist positive constants M, M, such that |B|| < M and |W™!|| < M.

(C2) F has closed, bounded and convex values, and there exists a function | €
L'(J,Ry) such that

Hd(F(t,y),F(t,x)) <I®)|ly—x|p, foraeteld,x,yeD

(C3) There exist a function k € L'(J,Ry) and a continuous nondecreasing
function v : [0, 00) — (0, 00) such that

|F@x)|lp < k@)Y (||x|lp) fora.e t €Jandeachx € D,

with
o0
d.
/ ~ P (7.19)
c s+ V()
where
C*
Cg = m ’
11— Z Ck
k=0
with

C* = M|\ ¢llp + MMM 1b[|y:| + M| ¢llp]

+[MPMM b+ M] > [1(0)].

O<tr<s
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If
m m
MMM b€ + MMM e+ MY cp <1,
k=0 k=0

then the IVP (7.16)—(7.18) is controllable on [—r, b].
Proof. Using hypothesis (C1) for each arbitrary function y(-) define the control

b
w0 =W 5 =T - [ 76— 9uwds= 3 11T | 0,

O<ty<t

where v € Sp, and Z; € I;(y(t;)). We shall show that the operator N : £2 — P(§2)
defined by

(1), ift € H,

Tt (0) + /Ot T(t — s)v(s)ds

Ny) = fel:f= t
+ /0 T(t — 5)(Buy)(s)ds

+ Y Tt— I Ty € h(Y(E)).v € Spy  ifted

O<t<t

has a fixed point. This fixed point is then the mild solution of the IVP (7.16)—(7.18).
Consider the multi-valued operators:

A, B: 2 — P(£2)
defined by

0, ift € H;

A= rea: fo= fo T(¢ — 5)(Buy) (s)ds
+ Z T(l‘ — l‘k)Ik,Ik € Ik(_Y(tk_)) ifteld,

O<ty<t

and

o), ift € H;

B(y) :=f€2:f() =1 T(1)¢(0) + /,T(t—s)v(s)ds,v € Sr,
0

ifreld.
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It is clear that

N=A+B.
Similarly, as in Theorem 7.2, we can prove that 4 is a contraction operator, and B is
a completely continuous operator with compact convex values. Now, we prove that
the set:

E={eR yelAdy+ABy, 0 <A <1}

is unbounded.
Let y € & be any element. Then there exist v € Sr,, and Z; € I (y(f;)) such that

y(t) = AT(H)¢(0) + A /t T(t—s)v(s)ds + A /t T(t — 5)Buy(s)ds
0 0
+A Z T(t — ty)Zy.

O<ty <t
This implies by (C1)—(C3) that

ly®| = M|¢llp + M/O k(s)¥ (lysl)ds + MMM, b |yi| + M| lp]

t t
MR [ K6y lDds + PR [ 5 (T
0 0

O<ty<m
k=
+M Y Tl
k=0
Thus
t
()] < €+ MMM, [ 3 ly()lds (7.20)
0 O<tr<s
k=m t
MY ()] + [MPHM b + M] [0 k)Y Iy lds.
k=0

Consider the function p(f) defined by

w@) =sup{ly(s)|: —r<s=<t}, 0<r<b



160 7 Densely Defined Functional Differential Inclusions with Finite Delay

Then, we have, for all r € J,||y|| < u(r). Let * € J such that u(f) = |y(*)|, then
by (7.20) we have, for ¢ € J,

wu(t) < C* + M*MM, /l Z cij(s)ds (7.21)
0 O<tr<s
k=m o t
+M Z ceu(t) + [MPMM b + M| / ()Y (u(s))ds.
k=0 0

From (7.21) we obtain

(1=MY cu(r) < C* +M2W1/ > cup(s)ds (7.22)
k=0 0

O<t<s
t
+[M*MM b + M] [ p()V (11(s))ds.
0
Let
Cc* M*MM, M>MM b+ M

_ *
- m 1
l—Mch
k=0

Cy Cfl=——, C=—— (123
It follows from (7.22) and (7.23) that

’

I—Mick I—Mick
k=0 k=0

t
kO =G et [ Y antds
0

O<tr<s

+cr /0 P (1u(s)ds
<C+ /0 B [1(5) + p(s)¥ (u(s))]ds,

where

M(s) = max(C} Z ck, C3k(s))(s)

O<t<s

Let

00 = G5+ [ FO 6+ ¥ (o). .24)
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Then, we have u(f) < v(r) for all + € J Differentiating both sides of (7.24), we

obtain
V(1) = MO[® + Y (@), ae. 1]
and
v(0) =
Using the nondecreasing character of the function ¥, we obtain
V(1) < M@)[v(t) + ¥ (v(©)], ae. tel,

that is

V')
v(@) +y@@)

Integrating from O to ¢ both sides of (7.25) we get

t ,(S)
Av@+wwo) ./M®“

By a change of variables we get

/v(t) du .
——— < [[M|p <0
vy U+ Y(u) k

From (7.19) there exists a constant K such that

M(t) a.e. tel.

u(@) <v() <K forall rel.

Now from the definition of u it follows that

ylle = sup [y(®)] <= p) <K forall ye€.

t€[—r,b)

(7.25)

This shows that the set £ is bounded. As a consequence of Theorem 1.32 A + B has

a fixed point which is a mild solution of problem (7.16)—(7.18).

Thus, the problem (7.16)—(7.18) is controllable on the interval [—r, b].

ad
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7.4.2 Example

As an application of our results we consider the following impulsive partial
functional differential equation of the form

0 9?
—z(t,x) = —z(t,
5, i) = o52(t.x)

+0(t,z(t — r,x) + Bu(t), x € [0, ], t € [0, D]\{t1, 12, ..., tm}-

(7.26)

2th,x) — 2(t;, x) € bz, x)[B(0, 1), x € [0, 7], k=1,...,m (7.27)
2(t,0) = z(t, m) = 0, t € J := [0, ] (7.28)

72(t,x) = ¢(t,x), t € H, x € [0, 7], (7.29)

where by > 0, k = 1,....,m, $ € D = {¢ : Hx[0,n] — _IRI/_/ is continuous
everywhere except for a countable number of points at which ¥ (s™), Y (sT) exist
with y(s7) = Y(8)}, 0 =ty <t < th < +++ < ty < tyy1 = b, 2(t]) =

lim  z(tx + h,x),z(;)) = lim  z(t% + h,x), where 0 : J x R — P(R),
(hx)—(0F x) (hx)—>(07 x)

is a multi-valued map with compact values. Here B(0, 1) denotes the closure of the
unit ball. Let

y() =z(t,); 1€,
I : R — PR such that
L&) = bilz(t;, )|BO, 1), k=1,....m
and
F(t,y)(x) = Q(t,z(t — r, %)), t € [0,b], x € [0, 7].

Take E = L?[0, 7r], and define the linear operator A : D(A) C E — E by Aw = w/
with domain

D(A) = {w € E,w,ware absolutely continuous, w" € E,w(0) = w(m) = 0}.

Then

o
Aw = an(w, W)Wy, w € D(A)

n=1
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2
T
is the orthogonal set eigenvectors in A. It is well known (see [168]) that A is the
infinitesimal generator of an analytic semigroup 7(¢), ¢ € (0, b] in E given by

where (.,.) is the inner product in L?[0, 7] and w,(s) = sinns. n = 1,2:

(o]

T(Hw = Zexp(—nzt)(w, Wy)Wy, W€ E.

n=1

Since the analytic semigroup 7(f), ¢t € (0, b] is compact, there exists a constant
M > 1 such that

1T s < M.

Assume that B : U — Y, U C [0, 0o) is a bounded linear operator and the operator
W defined by

b
Wu = / T(b — s)Bu(s)ds
0

has a bounded invertible operator W~! which takes values in L%([0, b], U)\kerW.
Also assume that there exists an integrable function o : [0, 5] — R™ such that

101, w(t —1)| < a()$2(Iw])

where £2 : [0, 00) — (0, 00) is continuous and nondecreasing with

/°° ds =
IS+ R2(s)

Assume that there exists [ € L! ([0, b], R™) such that
Hy(O(t,w(t —r,x)), 0(t,w(t — r,x))) < 7|w —w|; t €]0,b], w,w_nR
We can show that problem (7.16)—(7.18) is an abstract formulation of prob-

lem (7.26)—(7.29). Since all the conditions of Theorem 7.7 are satisfied, the
problem (7.26)—(7.27) has a solution z on [—r, b] x [0, ].

7.5 Notes and Remarks

The results of Chap. 7 are taken from Abada et al. [4, 6]. Other results may be found
in [53, 54].



Chapter 8
Non-densely Defined Functional Differential
Inclusions with Finite Delay

8.1 Introduction

In this chapter, we shall establish sufficient conditions for the existence of integral
solutions and extremal integral solutions for some non-densely defined impulsive
semi-linear functional differential inclusions in separable Banach spaces with local
and nonlocal conditions. We shall rely on a fixed point theorem for the sum of
completely continuous and contraction operators. The question of controllability of
these inclusions with both multi-valued and single valued jump and the topological
structure of the solutions set are considered too.

8.2 Integral Solutions of Non-densely Defined Functional
Differential Inclusions with Local Conditions

We will consider the following first order impulsive semi-linear differential inclu-
sions of the form:

y() —Ay(t) € F(t,y;), ae.t€eJ=[0,b], t#t, k=1,....m (8.1)
AY|=y € L(t ), k=1,...,m (8.2)
y(t) = d)(t)v re [—V, 0] ’ (83)

where F : J x D — P(E), D, I, : E — P(E) are as in the previous chapter and
A : D(A) C E — Eis anon-densely defined closed linear operator on E.
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In order to define a integral solution of problems (8.1)—(8.3) and (8.14)—(8.16),
we shall consider the space

PC = {y :[0,6] = D(A) : yi € C(Uw, DAA)),k=0,....m such that

y(tk_),y(t,j) exist with y(t) = y(;). k=1,... m}
which is a Banach space with the norm

I¥llpc = max{{|yilleo. k = 1....,m}

where yy is the restriction of y to Jy = [tx, tx+1], k= 0,...,m.
Set

2 ={y:[-r,b] > D) :ye DNPC}.
Then 2 is a Banach space with norm

I¥le = max(liyllo. [Iyllec)-

8.2.1 Main Results

We assume that the multi-valued F' has compact and convex values. Let us first
define the concept of integral solution of (8.1)—(8.2).

Definition 8.1. We say that y : [—r,b] — E is an integral solution of (8.1)-
(8.3)if

(i) ye £2.
(ii) / y(s)ds € D(A) for t € J,
0

(iii) y(t) = ¢(¢) for all t € H there exist v € L'(J, E) and Z; € I, (y(tk_)) such that
v(t) € F(t,y,;) a.et € J and

d t
(@) = S 1)¢(0) + Z/ S(t—s)v(s, )ds + Z St—t)Iy t€J. (84)
tJo O<t <t
We notice also that if y satisfies (8.4), then

y(t) = S' ()¢ (0) + AILHC}O/O S'(t — s)Bv(s)ds + Z St—t)I, tel.

o<t <t
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In what follows we will assume (without lost of generality) that w > 0. Let us
introduce the following hypotheses:

(8.1.1) A satisfies Hille—Yosida condition;
(8.1.2) There exist constants ¢y > 0, k = 1,...,m such that for each y, x € D(A)

Hy(Ie(y). 1(x)) =< cily — x|

(8.1.3) The multi-valued map F is L'-Carathéodory, with compact convex values.

(8.1.4) The operator §'(¢) is compact in D(A) wherever ¢ > 0;

(8.1.5) There exist a function p € L!(J,R;) and a continuous nondecreasing
function v : [0, 00) — (0, 00) such that

IFEtx) | < pOY¥(xllp), ae teld, foral xeD

and
b ©  du
C / e “'p(Hdt < / —_ (8.5)
0 Co W(u)
where
Mewb
C, = — , (8.6)
1— Me‘”b Z eiwtkck
k=1
C
Co = _ : 8.7)
1 — Me®? Z e ey
k=1
and
C = Me” <||¢|| +Y e |Ik(0)|) : (8.8)
k=1
Theorem 8.2. Assume that (8.1.1)~(8.1.5) hold and ¢ (0) € D(A). If
m
Me™» e ey < 1, (8.9)
k=1

then the problem (8.1)—(8.3) has at least one integral solution on [—r, b] .
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Proof. Consider the multi-valued operator N : £2 — P(S2) defined by
¢ (1), ifteH,

S/(f)¢(([))
NQy) =3he:h(i)= +%fo S(t — s)v(s)ds

+ Z S/(l—tk)zk, Iy € Ik(y([k_)); vV E SF.,V ifreld.

O<tr <t

Obviously the fixed points of the operator N are integral solutions of the IVP
(8.1)—(8.3). Consider the multi-valued operators A, B : 2 — P(£2) defined by

0. ift € H;
A@y):=he 2: h() = Z S/(l— W, i € L)), ifr e,

O<ty <t
and

¢(t)’ ifte H;

By):=dhe2: hit) = .
S'(0)¢(0) + / S(t—s)yv(s)ds, veSp, iftel.
0

It is clear that

N=A+B
The problem of finding integral solutions of (8.1)—(8.3) is reduced to finding integral
solutions of the operator inclusion y € A(y)+5(y). We shall show that the operators

A and B satisfy all conditions of the Theorem 1.32. The proof will be given in
several steps.

Step 1: A is a contraction. Let y;, y, € §2, then by (8.1.2) we have

Hy(AOn). A(v2)) = Hy Z S'(t = 1)L h (1)), Z S'(t — ) (2 (1)

o< <t O<ri<t
m
< Me™! Z e ey () — ya(ty)|
k=1

m
< Me” Y e erllyr — 2l
k=1

Hence by (8.9), A is a contraction.
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Step 2: 5 has compact, convex values, and it is completely continuous. This will be
given in several claims.

Claim 1: B has compact values. The operator 3 is equivalent to the composition
LoSg of two operators on L' (J, E), where £ : L' (J, E) — £2 is the continuous
operator defined by

L(t)) = S'(H)p(0) + % /0 tS(t — s)v(s)ds, t € J.

Then, it suffices to show that £ o Sr has compact values on £2.

Let y € §2 arbitrary, v, a sequence in S, thatis v,(f) € F(t,y,), a.e. t € J.
Since F(t,y,) is compact, we may pass to a subsequence if necessary to get
that v, — v weakly in L} (J, E) and v(¢) € F(t,y,), a.e. t € J. An application
of Mazur’s Lemma implies that v, converges strongly to v in L!(J, E). From
the continuity of L, it follows that Lv,,(f) — Lv() pointwise on J as n — oo.
In order to show that the convergence is uniform, we first show that {Lv,} is
an equi-continuous sequence. Let 7y, 7, € J, then we have:

|L(va(m1)) = Lwa(w2))| = [S'(11)¢(0) — §'(22)¢(0)

d (¢
+E/0 S(t1 — s)v,(s)ds

d 7
% | S(rz—s)v,,(s)ds‘

= [(8'(m1) = S'(z2))$(0)|

+| lim /Tl [S/(‘L'l —5)=8(ra — S)]van(5)|ds|

A—00 0

©
lim S'(t2 — $)Byva(s)|ds)|.

_i/\—wo 7

As 11 — 12, the right-hand side of the above inequality tends to zero. Since
S'(r) is a strongly continuous operator and the compactness of S'(¢), r > 0,
implies the continuity in uniform topology (see [16], Lemma 3.4.1, p. 104,
[168]). Hence {Lv,} is equi-continuous, and an application of Arzeld—
Ascoli theorem implies that there exists a subsequence which is uniformly
convergent. Then we have Lv,, — Lv € (L o Sp)(y) as j + o0, and so
(LoSF)(y) is compact. Therefore B is a compact valued multi-valued operator
on 2.

Claim 2: B(y) is convex for each y € £2.
Let hy,hy € B(y), then there exist v;, v, € Sp, such that, for each t € J
we have
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P (1), ifreH,
h,’(l‘) = t
S ()¢ (0) + %fo St —s)vi(s)ds, ifted, i=1,2.

Let 0 < § < 1. Then, for each ¢t € J, we have
¢ (), ifreH,
(S +(1=8)hy)(t) = S'(t)¢(9)

+%/(; St —s)[6vi(s) + (1 = 8)va(s)lds  ift e J.

Since F(t,y,) has convex values, one has
Shy + (1 = 8)hy € B(y).

Claim 3: B maps bounded sets into bounded sets in £2
Let B, = {y € 2;|ylle < g}, ¢ > 0 be a bounded set in §2. For each
h € B(y), there exists v € Sg, such that

d t
h(t) = S'(H)¢(0) + E/ S(t — s)v(s)ds.
0
Then for eacht € J
t
O] = MepO)] + M [ &g, (5)ds
0
b
< Me®”|¢(0)] + Me®™” / e~ @, (s)ds,
0
this further implies that
b
lhlloe < M BO)]+ M [ e, 01ds.
0
Then, for all h € B(y) C B(B,) = Uyqu B(y). Hence B(B,) is bounded.
Claim 4: B maps bounded sets into equi-continuous sets.

Let B, be, as above, a bounded set and / € B(y) for some y € B,. Then, there
exists v € Sr, such that

h(t) = S'(H)¢(0) + All)n(r)lo /OIS’(t —$)Byv(s)ds, telJ.
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Letty, 0 € J\{t1, 2, .. ., t}, T1 < T2. Thus if € > 0, we have

|h(z2) — h(z1)| < [[S'(r2) — S'(1)]¢(0)]

+ IS'(t2 — 5) — S’ (71 — s)Byv(s)ds

lim
A—>00 0
12

+ | lim [S'(r2 —5) = §'(11 — 5)|Brv(s)ds

A—00 71—

1]

+ | lim S' (1) — $)Byv(s)ds

A—=o0 [y

As 11 — 1, and € becomes sufficiently small, the right-hand side of the above
inequality tends to zero, since S'(¢) is a strongly continuous operator and the
compactness of §'(¢) for ¢ > 0 implies the continuity in the uniform operator
topology (see [168]).

This proves the equi-continuity for the case where t # t;,i = 1,...,m+ 1.
It remains to examine the equi-continuity at r+ = ¢;. First we prove the equi-
continuity at t = ¢, we have for some y € B,, there exists v € Sg, such
that

h(t) = S'(H)¢(0) + Ali>nolo /OIS’(t —$)Byv(s)ds, telJ.

Fix 6; > 0 such that {tk,k ;é l} N [l‘i — 61,8 + 81] =@.Let0 < p < 1.
First we prove equi-continuity at = ¢, . Fix §; > 0 such that {# : k # i} N
[t; — 81,8 + 81] = @.For 0 < p < §; we have

|h(t; — p) — h(t)| < | (S'(t: — p) — S'(1:)) $(0)]

ti—p

+ lim | (S'(ti — p—5) = S'(t; — 5)) Bpv(s)|ds

)L—)OO 0
ti
+Mey (q) f e p(s) ds:
ti—p

which tends to zero as p — 0. Define
ho(t) = h(r), 1€ [0,1]
and

h(®), ift € (4, tit1]

iljl‘ =
@ h(th), ift = 1,.
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Next we prove equi-continuity at t = tl.+ . Fix §; > O such that {# : k # i} N
[t; — 62,8 + 85] = @. For 0 < p < §, we have

|h(t; + p) — h(t)| < | (S'(t; + p) — §'(1;)) $(0)|

+ lim | (S'(ti + p—s) — S'(t; — 5)) Byv(s)|ds
A—>00 Jo

ti+p

LMY (g) / e p(s) ds.

The right-hand side tends to zero as p — 0. The equi-continuity for the cases
71 < p <0and 71 < 0 < 1, follows from the uniform continuity of ¢ on
the interval [—r, 0]. As consequence of Claims 3 and 4 together with Arzeld—
Ascoli theorem it suffices to show that B maps B, into a precompact set in E.

Let 0 < * < b be fixed and let € be a real number satisfying 0 < € < ¢*.
For y € B, we define

he(*) = S'(H¢(0) + §'(e) lim /O a S'(t — s — €)Bv(s)ds.

where v € Sr,. Since

1—e
lim / S'(t—s—e€)Byv(s)ds
0

A—00

1—€
<M [ s
0
and S'(r) is a compact operator for ¢ > 0, the set

HE(*) = {he(1") = he € BO)}

is precompact in E for every €, 0 < € < t*. Moreover, for every h € B(y) we
have

*

|A(t*) = he ()] < M (g) e~ ’p(s)ds.

*—e
Therefore, there are precompact sets arbitrarily close to the set H¢(t*) =
{h(r*) : h e B(y)}. Hence the set H(t*) = {h(t*) : h € B(B,)}
is precompact in E. Hence the operator B : 2 — P(£2) is completely
continuous.

Claim 5: B has closed graph. Let {y,} be a sequence such that y, — yx in

2, h, € B(y,), and h,, — h,. We shall show that i, € B(y«). h, € B(y,)
means that there exists v, € Sr,, such that

ha(f) = S' (1) (0) + Ali)ngo /:S’(t —8)Byv,(s)ds, telJ.
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‘We must prove that there exists v« € Sr, such that

he () = S’ (1) (0) + A11)11;0 /OIS/(t — $)Byv«(s)ds, teJ.

Consider the linear and continuous operator X : L'(J,E) — C(J,E)
defined by

t
(Kv)(r) = lim / S'(t— s)Bv(s)ds, telJ.
A—00 0
Then we have

(7 (1) — S" ()9 (0)) — (s (1) = S' (P (0))] = [ (1) — hs (1)]

< |1y — hxlloo = 0, as n i oc.

From Lemma 1.11 it follows that IC o S is a closed graph operator and from
the definition of K one has

hn(t) - S/(l‘)d)(()) elo SF~yn'

Asy, — y« and h, — hy, there is a v« € Sp,, such that

t
he () — S’ ()¢ (0) = lim / S'(t — $)Byv«(s)ds, t€J.
A—>00 0
Hence the multi-valued operator B is upper semi-continuous.
Step 3: A priori bounds. Now it remains to show that the set
E={eRl:yeaA@ly) +aB forsome 0 <« < 1}

is bounded. Let y € &, then there exist v € Sg, and Z; € I(y(f;)) such that
t
(1) = aS' (H)¢(0) + « llim / S'(t — s)Byv(s)ds + o Z S (t—t)I
—oeJo O<ny <t

for some 0 < « < 1. Thus, by (8.1.2), (8.1.5) for each ¢ € J, we have

()] < Me”|$(0)] + Me”" /0 e p() ¥ (s [)ds

m

+Me®" Z e Ty
k=1
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t
< Me” ||| + M /0 e p()¥ (lys )ds

m n
M Y ey + M Y e el 10)]
=1 k=1

t
< C ot Me™ /0 ()Y ([l ds

m
+Me™ Y " e ey|y (5|
k=1

Now we consider the function u defined by
() =sup{ly(s)|: —r=s=t}, 0<r=<b.
Then ||ys|| < w(¢) for all ¢ € J and there is a point t* € [—r, f] such that u(f) =

ly(t*)|. If t* € [0, b], by the previous inequality we have for r € [0, b] (note
<1

() = €+ M [ s + e 5 e
k=1
Then
(1 — Mt ie_w”‘ck) u(t) < C + Me®® /Ote_‘”sp(s)lﬂ(u(s))ds.
k=1
Thus by (8.6) and (8.7) we have

w(t) < Co+ €y /0 ()Y (1 (5))ds. (8.10)

Let us take the right-hand side of (8.10) as v(¢). Then we have
() <v() forall teJ,
with
v(0) = Co,
and

V() = Cre ' p()y(u()), ae. teJ.
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Using the increasing character of iy we get
V() < Cre ' p(H)y (v(t), ae. tEJ.
Integrating from O to t we get

")
0o Y(v(s))

By a change of variable we get

v(t) du t
—wt d
/v@) w(u)sclfoe p(s))ds

b
< C1/ e “'p(s))ds.
0

t
ds < C1/ e “'p(s))ds.
0

Hence by (8.5) there exist a constant N such that
wn() <v(@) <N forall rel.
Now from the definition of p it follows that
I¥lle < max(llgllp.N), forall y€&.

This shows that the set £ is bounded. As a consequence of Theorem 1.32 we
deduce that .A + B3 has a fixed point y defined on the interval [—r, b] which is the
integral solution of problem (8.1)—(8.3). O

We now present another existence result for the problem (8.1)—(8.3) where a
Lipschitz condition on the multi-valued F with respect to its second variable is
assumed instead of a Wintner growth condition used in Theorem 8.2.

Theorem 8.3. Assume that (8.1.1)~(8.1.4), ®(0) € D(A) hold and the condition
(8.3.1) There exists a function | € L'(J, R ) such that:
Hy(F(t,u),F(t,u)) < l(®)||lu—u|p a.e t €J, and for all u,u € D,
and

Hy(0,F(t,0)) <I(t) forae. t €J,

b
where / e l(s)ds < o0,
0

m b
Me*” <||¢|| + Y e e I (0)] + [ e_‘”l(s)ds)
— 0
G = = ~ 8.11)
1= My~ e,
k=1
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and

. Mewb
cr= . 8.12)

m
1 — Me®b E e ke
k=1

If
Me™ e e < 1, (8.13)
k=1

then the problem (8.1)—(8.3) has at least one integral solution on [—r, b] .

Proof. Let A and B the operators defined in Theorem 8.2. It can be shown, as in the
proof of Theorem 8.2 that B is completely continuous and upper semi-continuous
and A is a contraction. Now we prove that

E={eR:yeaAly) +aB(y), forsome 0 <o < 1}

is bounded.
Lety € £, then there exist v € Sp, and Z; € I;(y(#;)) such that for each t € J

y(t) = aS' ()¢ (0) + a% ftS(t —s)v(s)ds + a Z S (t—t) I,

0 O<t <t

for some 0 < @ < 1. Thus, by (8.1.2), (8.3.1), for each r € J, we have

t m
(O] < Me”'|$(0)] + Me”" / e |u(s)lds + Me”' Y " e~ | T
0 k=1

t
< Me”|p(0)] + Me™ [ U(s) s s
0

m

t
+Me”! / e~ I(s)ds + Me*" Z e “erly(r)|
0 k=1

+Me” Y " ey | 1(0)]
k=1

< Me” <||¢|| L R CT D S AT |)
0

k=1

t m
+Me®” / e 1(s) | ys||ds + Me®? Z e ey (17) -
0 k=1
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Now we consider the function u defined by
w0 =sup{ly(s)|: —r=s=t}, 0<t=<b.

Then ||ys|| < u(z) for all ¢ € J and there is a point t* € [—r,¢] such that u(¢) =
ly(t*)]. If £* € [0, b], by the previous inequality we have for ¢ € [0, b] (note t* < 1)

(1) = Me”” (||¢|| + [ i+ Y e rali ©) |)
0 k=1

m

t
+Me®? / e I(s)p(s)ds + Me®? Z e ke u(t).
0 k=1

Then
t
u@sq+d/fwmmm.
0

By Gronwall inequality ([131]) we get for each t € J

t
wu(t) < Cyexp (CT/ e_“’sl(s)ds) .
0

Hence

b
[lloo < Coexp (CT/ e_ml(s)ds) = M*.
0
Thus

Iylle = max([l¢]lp. M¥).

This shows that the set £ is bounded. As a consequence of Theorem 1.32 we deduce

that A 4 B has a fixed point which is a integral solution of problem (8.1)—(8.3).
The following result concerns the compactness property of the solutions set of

problem (8.1)—(8.3). O

Theorem 8.4. Under assumptions (8.1.1)—(8.1.4), and
(8.4.1) There exists p € C(J, Ry) such that

|F(t,u)|| < p(t) foreacht € J, and each u € D.

the solution set of (8.1)—(8.3) in not empty and compact in §2.
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Proof. Let
S ={ye 2 :y issolution of (8.1)—(8.3)}.

From Theorem 8.2, S # @. Now, we prove that S is compact. Let (y,),en € S, then
there exist v, € Sr, and I € I;(y,(#;)) such that

d t
5 =S O30 + 5 [ St=om i+ 3 5 -0

O<p <t
From (8.1.2), (8.4.1), we can prove that there exists an M; > 0 such that
IVulloo < My, foreveryn > 1.

As in Claim 4 in Theorem 8.2, we can easily show using (7.1.2), (8.4.1) that the
set {y, : n > 1} is equi-continuous in §2, hence by Arzeli—Ascoli Theorem we can
conclude that, there exists a subsequence (denoted again by {y,}) of {y,} such that y,
converges to y in £2. We shall show that there exist v(.) € F(.,y.) and Z; € L(y(t;))
such that

y(t) = S’ ()¢ (0) + %/tS(t—s)v(s)ds + Z S (t — 1) I.

0 O<tr<t

Since F(t,.) is upper semi-continuous, then for every & > 0, there exists ny(¢) > 0
such that for every n > ny, we have

vn(?) € F(t,yn,) C F(t,y)) +¢B(0,1), ae.t € J.

Since F(., .) has compact values, there exists subsequence v, (.) such that
Up, () > v(.)asm — oo

and
v(t) € F(t,y,), ae.t € J.

It is clear that
|, ()| < p(t), ae. tel.

By Lebesgue’s dominated convergence theorem, we conclude that v € L'(J,E)
which implies that v € Sr,. Also, since I; has closed graph we get 7, € L (y(;)).
Thus

¥(1) = S' () (0) + % fo St—s@ds+ Y 8 (t—1) T

o<t <t

Then S € P, (£2). O
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8.3 Extremal Integral Solutions with Local Conditions

In this section we shall prove the existence of maximal and minimal integral
solutions of problem (8.1)—(8.3) under suitable monotonicity conditions on the
functions involved in it. Let us give the definition of the extremal integral solutions
of the problem (8.1)—(8.3)

Definition 8.5. We say that a continuous function u : [—r,b] — E is a lower
integral solution of problem (8.1)—(8.3) if there exist v € L!(J,E) and Z; €
Ii(u(t;)) such that v(r) € F(t,u,) a.e.onJ, y(t) = ¢(¢), t € H, and

u(t) < S'(H)¢(0) + d%/tS(t—s)v(s)ds+ Z St—t)Iy, teld, t#1

0 o< <t

and u(t,j) —u(ty) <1y, k = 1,...,m. Similarly an upper integral solution w of
problem (8.1)—(8.3) is defined by reversing the order.

Definition 8.6. A solution x;; of problem (8.1)—(8.3) is said to be maximal if for
any other solution x of problem (8.1)—(8.3) on J, we have that x(¢) < x(¢) for each
t € J. Similarly a minimal solution of problem (8.1)—(8.3) is defined by reversing
the order of the inequalities.

Definition 8.7. A multi-valued function F(t, x) is called strictly monotone increas-
ing in x almost everywhere for ¢t € J, if F(t,x) < F(t,y) a.e.t € Jforallx, y € D
with x < y. Similarly F(t,x) is called strictly monotone decreasing in x almost
everywhere for ¢ € J, if F(¢t,x) > F(t,y) a.e.t € J forall x, y € D with x < y.

Let us the following assumptions.

(8.7.1) The multi-valued function F(z,y) is strictly monotone increasing in y for
almost each 7 € J.

(8.7.2) S'(¢) is preserving the order, that is §’(f)v > 0 whenever v > 0.

(8.7.3) The multi-valued functions Iy, k = 1, ..., m are strictly monotone increas-
ing.

(8.7.4) The problem (8.1)—(8.3) has a lower integral solution v and an upper integral
solution w with v < w.

Theorem 8.8. Assume that assumptions (8.1.1)—(8.1.4) and (8.7.1)—(8.7.4) hold.
Then problem (8.1)—(8.3) has a minimal and a maximal integral solutions on [—r, b].

Proof. It can be shown, as in the proof of Theorem 8.3, that B is completely
continuous and upper semi-continuous and A is a contraction on [v, w]. We shall
show that A and B are isotone increasing on [v,w]. Let y,y € [v,w] be such that
y <3,y #y. Then by (8.7.2), (8.7.3), we have for each t € J
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Ap) = Jhe@:h@) = ) S~ T € hOG)).

O<t<t

<{heQ:hp= Z S'(t — )Tk, Tr € L(3(t7)),

O<tn <t
= A@).

Similarly, by (8.7.1) and (8.7.2) and
B@y): = {h eR: h(t)=51e¢((0) + %[ S(t—s)v(s)ds, v e Sp,y}
0

< {h eR: h(t)=50e¢(0) + %IOZS(t—s)v(s)ds, v e Spt;}
= B(y).

Therefore A and B are isotone increasing on [v, w]. Finally, let x € [v, w] be any
element. By (8.7.4) we deduce that

v < A(v) + B(v) < A(x) + B(x) < A(w) + B(w) < w,
which shows that A(x) + B(x) € [v,w] for all x € [v,w]. Thus, A and B satisfy

all conditions of Theorem 1.32, hence problem (8.1)—(8.3) has a maximal and a
minimal integral solutions on [—r, b]. This completes the proof. O

8.4 Integral Solutions with Nonlocal Conditions

In this section we prove existence results for problem of the form
Y() —Ay(t) € F(t,y;), aeteJ=[0,b],t#t. k=1,....m (8.14)
Ay =y, € L(Y(1)), k=1,...,m (8.15)
y@O) +h @) =¢@), tel[-r0], (8.16)

where h, : £2 — D(A) is a given function, A, F, and I; are as above.
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8.4.1 Main Result

Definition 8.9. A function y € £2 is said to be an integral solution of prob-
lem (8.14)—(8.16) if y(t) = ¢(1) —h, (y) , t € [, 0], and there exist v(.) € L' (J, E)
and Z; € Ii(y(#;)) such that v(¢) € F(t,y;) a.e. t € J, and y satisfies the integral
equation,

70 = SO @O0 ~h) + 5 [ Se=n©ds+ Y S-n.

o<t <t

Theorem 8.10. Assume that hypotheses (8.1.1)—(8.1.4) hold and moreover

(Al) The function h is continuous with respect to t, and there exists a constant
a > 0 such that

| (w)| <o, ue 2
and for each k > 0 the set
{$0) —ho(y), y € 2, |ylle =k}
is precompact in E,
(A2) There exist a function p € L'(J,Ry) and a continuous nondecreasing

Sfunction ¥ : [0, 00) — (0, 00) such that

IFE )| < p@®v(xlp), ae. teld, forall xe D

with
[e%e) du 5 b
> C; / e “p(s)ds, (8.17)
/;0 W (M) 0
where
Me**[||pllp + o + Ze_‘”’kallk(O)I]
Co = = : (8.18)
1 — Me®wb Z e ey
k=1
and
» Mewb
C, = . (8.19)

m
1 — Me®b E e ey
k=1
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Moreover, we suppose that
m
Me®? Z e ey < 1. (8.20)
k=1

Then the problem (8.14)—(8.16) has at least one integral solution on [—r, b].
Proof. Consider the multi-valued operators A, B; : 2 — P(£2):
¢ (1) — hi(y), ift € H;

By :=fe@: fit)=1450@0)—h()
+dit/0 S(t—s)v(s)ds, v € Sk, ift e,

and

0, ifr e H;

Ay = fe: f(= 3 S - 10T T € LOG)) ifrel.

O<n <t

Then the problem of finding the solution of problem (8.14)—(8.16) is reduced
to finding the solution of the operator inclusion y € A;(y) + Bi(y). As in the
previous section, it can be shown that the operators .4, and B, satisfy all conditions
of Theorem 1.32. O

8.5 Application to the Control Theory

In this section we treat the controllability of impulsive functional differential
inclusions using the argument of the previous sections. More precisely we will
consider the following problem:

Y(t)—Ay(t) € F(t,y;) +Bu(t), ae.t€J=[0,b], t#t,, k=1,....m (8.21)
Ayli=y, € L((1)), k=1,....m (8.22)

() = ¢, t€[-r0], (8.23)

where A, F, and I; are as above, the control function u (-) is given in L*’(J,U) a

Banach space of admissible control functions with U as a Banach. Finally B is a
bounded linear operator from U to D(A).
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Definition 8.11. A function y € 2 is said to be an integral solution of prob-
lem (8.21)—(8.23) if y(t) = ¢(¢), t € [—r,0], and there exist v(.) € L'(J,E) and
I € I(y(r;)) such that v(r) € F(t,y;) a.e. t € J, and y satisfies the impulsive
integral equation,

y(t) = S' ()¢ (0) + %[;S(r— s)v(s)ds

d t
+E /0 S(t — s)Bu(s)ds + Z S'(t—t)Iy.

O<n <t

Definition 8.12. The system (8.21)—(8.23) is said to be controllable on the interval
[—r, D] if for every initial function ¢ € D and every y; € D(A), there exists a control
u € L*(J,U), such that the integral solution y(f) of system (8.21)—(8.23) satisfies

y(b) = yi.

8.5.1 Main Result

Let us the following assumptions

(B1) The linear operator W : L? (J, U) — D(A), defined by

d b
Wu = —/ S(b — s)Bu(s)ds,
dt Jo

has a bounded inverse operator W~! which takes values in L*(J, U)\KerW, and
there exist positive constants M, M, such that |B|| < M and |W™'| < M.

(B2) F has compact and convex values, and there exists a function / € L' (J,R,)
such that

Hy(F(t,x),F(t,y)) <Il(t)||lx—y|p fora.e.tr € J, andforall x,y € D,
with
H;(0,F(t,0)) <I(t), ae. t €J.

(B3) There exist a function p € L'(J,Ry) and a continuous nondecreasing
function ¥ : [0, 00) — (0, 00) such that

|F@x) | <p@®¥(lxlp), ae teld, foral xeD

b
with / e p(s)ds < oo,
0

/OOL—OO (8.24)
cr s+Y(s) '

0
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where

C*
Cl = , (8.25)

m
1 — Me®?b E e ke
=1

C* = Me®®(1 + MMM, e“’b)||¢ || p + Me“> MM b|y, |

+(Me”" + MMM e**"b) Y " e~ ci[1(0)).
k=1

Theorem 8.13. Assume that hypotheses (8.1.1)—(8.1.4) hold. Moreover we suppose
that

b m
M2V b f O I(s)ds + Me® (1 + Me M) Y e e, < 1. (8.26)
0 k=1
Then the problem (8.21)—(8.23) is controllable on [—r, b].

Remark 8.14. The construction of operator W~! and its properties are discussed in
[170].

Proof. Using hypothesis (B1) for an arbitrary function y (.) we define the control

b
uy(t) = w! [yl — S (b)¢(0) — lim / S'(b — 5)B)v(s)ds
A—00 0

- Sb- mzk} (0).

k=1

where v € Sp, and Z; € I(y(#;)). Consider the multi-valued operators defined
from §2 to P(£2) by:

0, ifte H,

d t
Ap)=1fe2: f0 =1z ), S(t — 5)(Buy)(s)ds
+ Z S'(t — 1)Ly, ifteJ,

O<ty<t
and
#(1). ift e H;

By):=1f€2:f@) = '
S'(1)¢(0) + dit/() S(t—s)v(s)ds ifreJ.
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As in Theorem 8.2, we can prove that the operators .4 is a contraction operator,
and B is completely continuous and upper semi-continuous with compact convex
values.

Now, we prove that the set

E={ el yeady+aBy, 0<a <1}

is bounded.
Let y € £. be any element, then there exists v € Sr, and such that

d t
y(t) = aS' (H)$(0) + ad_t /0 St — s)v(s)ds

d t
+ad_t /0 S(t — 5)Buy(s)ds + « Z S'(t — t)Iy.

o< <t

This implies by (B1)—(B3) that, for each ¢ € J, we have

@] = Me“’b[(l + MMM, be””) |9l

+MM bly,| + (Me®® + M*>MM,be®") Z e—wfkck|1k(0)|]
k=1

t
+[Me” +M2MM1bez‘”b][0 e~ p() ¥ (llyslDds

t
+M>MM b f e Y e ay(i)lds
0

O<tx<s

+Me®? Z e erly(t)].
k=1
Consider the function p defined by
() =sup{ly(s)| : —r=s=<t}, 0<t1=<b.

Then |lys]| < w(z) for all t+ € J and there is a point * € [—r, 1] such that
w(t) = |y(*)|. If t* € [0, b], by the previous inequality we have for ¢ € [0, b] (note
"=

t
RO = €+ [Me” + MR [ pls)y (uls))ds
0
+Me™” Y " e e pu(r)
k=1

t
—|—M2MM1bez‘“b/ e Z e % cpu(s)ds.
0

O<tr<s
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Then

m t
|:1 — Mt Ze_"”"ck:| u) < C* + MZMMlbeh’b/ e Z e i (s)ds
0

k=1 O<ty<s

t
+ [Me‘”b + MZMMlbez“’b] / e~ p(s)¥ (u(s))ds.
0
Thus we have

t
u@) < C5+ CT/ e Z e " cru(s)ds
0

O<fr<s

4t [Cepouenas

<Cr /0 FE)(s) + ¥ (u(s)))ds.

where
M(s) = max(Cfe™ Z e ke, Cye " p(s)).
O<t<s
Set
00 = G+ [ FO) + )]s (8.27)

Then we have
w() <wv(t) forall teJ.
Differentiating the both sides of (8.27) we get
V(1) = MO®O + Y (@), ae. 1€,
and
v(0) = Cj.

Using the nondecreasing character of 1 we obtain
V'(0) < MOP@) + Y 0)], ae 1€,

that is

v (¢) N
o Ty =M
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Integrating from O to ¢ both sides of this inequality, we get

! RO
/0 v+ v ™ f M(s)ds.

By a change of variables we get

/ Yy
- < L < 00.
vy U+ Y(u)

Consequently, by (8.24), there exists a constant d such that u(¢) < v(f) <d, teJ
and hence from the definition of u it follows that

I¥lle <= max([|¢llp, d).

This shows that the set £ is bounded. As a consequence of Theorem 1.32 we deduce
that A + B3 has a fixed point which is a integral solution of problem (8.21)—(8.23).
Thus the system (8.21)—(8.23) is controllable on [—r, D]. O

8.5.2 An Example

As an application of our results we consider the following impulsive partial
functional differential equation of the form

B 2
z(t x) € z(t x)

+ [01(t,z(t — r,x)), Qa2(t, 2(t — 1, x))], x € [0, 7], t € [0, D]\{t1,t2, ..., 1w}

(8.28)

26h,x) — 27, x) € bz, x)[B(0, 1), x € [0, 7], k=1,...,m (8.29)
21,0) = z(t, 1) =0, t € J := [0, D] (8.30)

z2(t,x) = ¢(t,x), t € H, x € [0, ], (8.31)

where by > 0, k=1,....m, ¢ € D = {y : Hx [0, 7] —>_IR;1/_/ is continuous
everywhere except for a countable number of points at which ¥ (s™), W(s+) exist
with y(s7) = Y9} 0 =1y <t < < -+ <ty < typ1 = b, 2(f) =

lim  z(t + h,x), 2(t;) = lim  z(tx + h,x), where Q1, O, : J X R —
(h)—>(0F %) (hx)=(07 %)

R, are given functions, and B(0, 1) the closed unit ball. We assume that for each
t€J, Qi(t,-) is lower semi-continuous (i.e, the set {y € R : Q;(t,y) > u} is open
for each u € R), and assume that for each ¢t € J, Q(t,-) is upper semi-continuous
(i.e., the set {y € R : Q»(t,y) < u} is open for each u € R).
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Let
y()(x) = z(t,x), t € J, x € [0, 7],
L)) =bz(t . x), xe[0,n], k=1,....m
F(t,¢)(x) = [Q1(t, ¢(0,x)), 0a(1,$(0,x))], 0 € H, x € [0, 7],
and

d(0)(x) = ¢(0,x), 0 € H, x €0, n].

It is clear that F' is compact and convex valued, and it is upper semi-continuous
(see [101]). Assume that there are p € C(J,R%) and ¥ : [0,00) — (0,00)
continuous and nondecreasing such that

max(|Qi (¢, y)]. Q2. ) = p@OY(|y]). r€J, and y € R,

/ * ds n
= 400
1 Y(s)
Consider E = C([0, r]), the Banach space of continuous function on [0, 7] with

values in R. Define the linear operator A on E by

82
= W

and

Az

on

2
D) = {2 € C0. 7)) - 20) = 2(r) = 0. 5z & C(l0. 7D},

Now, we have
D(A) = Go([0, 7]) = {v € C([0, 7]) : v(0) = v(7r) = 0} # C([0, 7]).
It is well known from [100] that A is sectorial, (0, +00) € p(A) and for A > 0

1
[R(A,A)||pE) < T

It follows that A generates an integrated semigroup (S(7)),>o and that ||S'(¢) || s <

e M for t € J for some constant n > ,9 and A satisfied the Hille-Yosida condition.
Assume that there exist functions /;, &, € L'(J, R*) such that

101t w) — Q1 (&, W) <L (Nlw =W, t€J, w.WeR,
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and

102(t,w) — Qa(t.W)| < L(1)|w—7], t €J, w.iw € R.
We can show that problem (8.21)—(8.23) is an abstract formulation of prob-

lem (8.28)—(8.31). Since all the conditions of Theorem 8.2 are satisfied, the
problem (8.28)—(8.31) has a solution z on [—r, b] x [0, ].

8.6 Notes and Remarks

The results of Chap. 8 are taken from Abada et al. [2, 4]. Other results may be found
in [51, 54, 74, 109, 110].



Chapter 9
Impulsive Semi-linear Functional
Differential Equations

9.1 Introduction

In this chapter, we shall prove the existence of mild solutions of first order impulsive
functional equations in a separable Banach space. Our approach will be based for
the existence of mild solutions, on a fixed point theorem of Burton and Kirk [88] for
the sum of a contraction map and a completely continuous map.

9.2 Semi-linear Differential Evolution Equations
with Impulses and Delay

9.2.1 Introduction

In this section, we shall establish sufficient conditions for the existence of mild and
extremal mild solutions of first order impulsive functional equations in a separable
Banach space (E. |.|) of the form:

V() —Ay(t) = f(t,y), ae.t€J=[0,b], t# . k=1,....m 9.1
Ay=, = L(5)), k=1,....m 9.2)

() = ¢, t €[-r0], 9.3)

where f : J x D — E is a given function, D = {y : [-r,0] — E, ¥ is continuous

everywhere except for a finite number of points s at which ¥ (s7) , ¥ (s+) exist and
Y(ET) =Yoo eD 0<r<oo 0=t <t <-+ <ty <lyy =Db,
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Iy € C(EJE), k = 1,2,...,m, A : D(A) C E — E is the infinitesimal
generator of a Cy-semigroup 7'(¢), t > 0, and E a real separable Banach space
with norm |.| . In the case where the impulses are absent (i.e., [ = 0,k = 1,...,m)
and F is a single or multi-valued map and A is a densely defined linear operator
generating a Cy-semigroup of bounded linear operators the problem (9.1)—(9.3) has
been investigated on compact intervals in, for instance, the monographs by Ahmed
[16], Hu and Papageorgiou [143], Kamenskii et al. [144], and Wu [184], and the
papers of Benchohra and Ntouyas [58, 60, 63].

Next, we study the impulsive functional differential equations with nonlocal
initial conditions of the form

V(@) —Ay(t) = f(t,y;), ae.teJ=1[0,b],t#t.k=1,....m (9.4)
Ayli=y = L), k=1,....m 9.5)
YO +h(y) =¢(1), te[-r0], 9.6)

where h, : PC([—r, D], E) — E is a given function. The nonlocal condition can be
applied in physics with better effect than the classical initial condition y (0) = yy.
For example, 4, (y) may be given by

p
hl (y) = Zciy(ti + t)’ te [_r’ 0]

i=1

where ¢;,i = 1,...,p, are given constants and 0 < #; <--- <1, < b.

9.2.2 Existence of Mild Solutions

Definition 9.1. A function y € PC ([—r,b],E) is said to be a mild solution of
problem (11.15)—(11.17) if y(¢) = ¢ (¢), t € [-r, 0], and y is a solution of impulsive
integral equation

¥0) = T($(0) + /0 T(— ) (tyds + 3 T(— ), 1€l
O<ny <t

Let us introduce the following hypotheses:

9.1.1) A : D(A) C E — E is the infinitesimal generator of a Cy-semigroup
{T(t)}, t € J which is compact for + > 0 in the Banach space E. Let
M = sup{|IT(D)llpe) = 1 €T}
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m

(9.1.2) There exist constants dy > 0, k = 1,...,m with Mde < 1 such that
k=1
foreach y,x € E

[k (y) — Le(x)| < di |y — x|
(9.1.3) The function f : J x D — E is Carathéodory;
(9.1.4) There exist a function p € L!'(J,R;) and a continuous nondecreasing
function ¢ : [0, 0c0) — (0, 0o) such that

IF &, x)| < p@®O¥(xllp), a.e. telJ, forall xeD,

with

/w iyl
- p 1,
b, V(s

where

M([lpll + Y 10)])
D, = =l pi=—M
0 — k] 1

S
k=1

Theorem 9.2. Assume that (9.1.1)—(9.1.4) hold. Then the problem (9.1)—(9.3) has
at least one mild solution on [—r, b].

m

1—=MY dy
k

=1

Proof. Consider the two operators:

A,B: PC([-r,b],E) — PC([-r,b] ,E).

defined by
0. ift e H;
A) (@) = SN Tk (). ifred.
0<n<t
and
o(0), ift € H;
B) (1) :=

T(t)p(0) + /Ot T(t—s)f (s,ys)ds, ifrel.



194 9 Impulsive Semi-linear Functional Differential Equations

Then, the problem of finding the solution of problem (9.1)—(9.3) is reduced to
finding the solution of the operator equation A (y) (t) +B (y) (t) = y(¢) ,t € [-r, D].
We shall show that the operators .4 and B satisfy all the conditions of Theorem 1.32
For better readability, we break the proof into a sequence of steps.

Step 1: B is continuous.

Let {y,} be a sequence such that y, — y in PC([—r, b], E). Then fort € J

1B (1) = By)(@)| = ’/0 T(t = $)[f(s.yn,) —f(s.y5)]ds

b
<M / (52 ) —f(s.v5)] ds.
0

Since f(s,-) is continuous for a.e. s € J, we have by the Lebesgue dominated
convergence theorem

By, (@) — B)(@)| — 0asn — oo.
Thus B is continuous.
Step 2: B maps bounded sets into bounded sets in PC([—r, b], E).

It is enough to show that for any g > 0 there exists a positive constant / such that
foreachy € B, = {y € PC([—r,b].E) : |ly|| < g} we have ||B(y)|| < I. So choose
y € By, then we have for each t € J,

IBOY(®)| = 'T(t)¢(0) +f0 T(t = 5)f (5. ys)ds

b
< MIp©O)] + My (g) / p(s) ds.

Then we have
1B < Mligll + My ()llpllp =L

Step 3: B maps bounded sets into equi-continuous sets of PC([—r, b], E).

We consider B, as in step 2 and let 71,72 € J\{t1,...,tn}, T1 < 7p. Thus if
€ >0and e < 11 < 1 we have

IBO) (1) — BO) )| < [T(22)6(0) — T(2)$ 0)]
i /0 T = ) = T(r1 — ) lap(s)ds

@ [ IT@ =9 = T =) lep()ds

(@ / 1702 = )3y p(s)ds.
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As 11 — 1, and € become sufficiently small, the right-hand side of the above
inequality tends to zero, since T(¢) is a strongly continuous operator and the
compactness of 7(¢t) for t+ > 0 implies the continuity in the uniform operator
topology [16]. This proves the equi-continuity for the case where r # 1,k =
1,2,...,m+ 1. It remains to examine the equi-continuity at = ;.

First we prove equi-continuity at t = ;. Fix §; > 0 such that {f; : k # i} N
[t; — 81,1, + 8] = 0. For 0 < h < §; we have

BOY & — ) — BOY©)| < | (T — h) — T(6)) $(0)
ti—h
+ f (TG — h— 5) = T(t — 5)) £ (5.0 lds
0

ti
+v@m [ peas
ti—h
which tends to zero as & — 0. Define

Bo()(1) = B)(0). t € [0.11],
and

3 B)(@), ift € (&, tiy1]
Bi 1) = .
0) @ { By (), ift=t.
Next we prove equi-continuity at ¢ = ti+ . Fix 8, > 0 such that {f : k # i} N
[t; — 82,1 + 82] = 0. For 0 < h < §, we have

BO) @+ 1) — BO)Ya)] < | (TG + by — T(1)) $(0)
4 /0 T+ h—5) = TG — 5)) fs.y0)lds

ti+h

M / p(s)ds.

The right-hand side tends to zero as & — 0. The equi-continuity for the cases
71 < 17p <0and r; <0 < 1, follows from the uniform continuity of ¢ on the
interval H.

As a consequence of Steps 1-3 together with Arzeld—Ascoli theorem, it suffices
to show that 3 maps B into a precompact set in E.

Let 0 < t < b be fixed and let € be a real number satisfying 0 < ¢ < t. For
y € B, we define

B() (1) = T(0)¢(0) + T(e) /0 . T(t—s—€)f (s, y5)ds.
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Since T'(¢) is a compact operator, the set

Ye() = {B()(®) : y € By}

is precompact in E for every €, 0 < € < t. Moreover, for every y € B, we have
t
B0~ B0O| = 4@ [ IT¢=9llaop)ds
1—e€

v [ o

Therefore, there are precompact sets arbitrarily close to the set Y () = {B.(y)(¢) :
y € B,}. Hence the set Y(r) = {B(y)(¢) : y € B,} is precompact in E. Hence the
operator B : PC ([-r,b],E) — PC ([-r, ], E) is completely continuous.

Step 4: A is a contraction
Letx,y € PC([—r,b],E). Then fort € J

JAM @) =A@ @] = | Y T 1) (k (v (1)) — L (x (5)))

<M Y| (%)) = I (x ()]
5Midk|y(rk>—x(rk>|
< Mzm:dk ly — x|

k=1
Then

IAG) = AW <MY di |y —x],

k=1

m
which is a contraction, since M ) di < 1.
k=1

Step 5: A priori bounds. Now it remains to show that the set

&= {y € PC([-r,b,E) : y = AB(y) + LA (%) for some 0 < A < 1}

is bounded. Let y € £, theny = AB(y) + A A (%) for some 0 < A < 1. Thus, for
eacht e J,
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t

(i) = AT(D)$(0) + A / T(=9f(s.3)ds +2 Y. Tt =1k (3 (7))

0 O<n <t

This implies by (9.1.2) and (9.1.4) that, for each ¢ € J, we have

O] < AMIBO)] + AM / P(sYY (s s + AMki] e (3 ()|
J -
< AM| ¢l + AM/p(s)t//(llysll)ds
+AMZ ‘Ik( (i ) —Ik(O)‘ + AMZ I (0)]
<M (||¢|| + ka; |Ik(0)|) + AMjp(S)W(llysH)dS
= 0
+AMkX;‘dk ‘% ()|

<M <||¢|| +y |1k<0)|) +M { / PV lyslhds + > de |y ‘”7)'} .
k=1 k=1

0

Now we consider the function p defined by
p(@) =sup{ly(s)|: —r=s=t}, 0=<t=<b.

Then ||ys|| < w(¢) for all ¢ € J and there is a point t* € [—r, #] such that u(f) =
ly(t*)]. If £* € [0, b], by the previous inequality we have for ¢ € [0, b] (note t* < 1)

() <M <||¢|| +3 |1k(0)|) +M [ POV (L())ds + M Y depa (1),
k=1 0 k=1

Then

(1 - Mzdk) w() <M (||¢|| +3 |1k<0>|) +M / ()Y (u(s)ds.
k=1 k=1 0

Thus we have
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J(t) < Do + D / PV (11(5))ds.
0

Let us take the right-hand side of the above inequality as v(¢). Then we have

u(t) <wv(r) forall teJ,
v(0) = Dy,

and

V(1) = Dip()Y (u(1), a.e. tel.

Using the nondecreasing character of { we get

V(1) < Dip(HY (v(r)), ae. te.

That is

v' (1)
T00) <Dip(t), ae. tel.

Integrating from O to t we get

Lov(s) - t
/0 W(v(s))ds < D /(; p(s)ds.

By a change of variable we get

vy b * du
ds = 1 .
/U(O) = sDI/O p(s)ds = Dillpll </D0 o

Hence there exists a constant N such that

(@) <v() <N forall rel.
Now from the definition of p it follows that

[yl = sup [y(H)] <u(b) <N, forall yef.

t€[—r,b]

This shows that the set £ is bounded. As a consequence of Theorem 1.32 we deduce
that A + B has a fixed point which is a mild solution of problem (11.15)—(11.17).
O
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9.2.3 Existence of Extremal Mild Solutions

In this section we shall prove the existence of maximal and minimal solutions
of problem (9.1)—(9.3) under suitable monotonicity conditions on the functions
involved in it.

We need the following definitions in the sequel.

Definition 9.3. We say that a function v € PC([—r, b], E) is a lower mild solution
of problem (9.1)—(9.3) if v(t) = ¢(¢), t € H, and

v(t) < T()¢(0) +/0 T(t—s)f (s,v5)ds + Z T(t—t)(v(ty)), tel, t # i

O<y <t

and v(t,jr) —v(ty) < L(v(t)), t = t, k = 1,...,m. Similarly an upper mild
solution w of problem (9.1)—(9.3) is defined by reversing the order.

Definition 9.4. A solution x;; of problem (9.1)—(9.3) is said to be maximal if for
any other solution x of problem (9.1)—(9.3) on J, we have that x(¢) < x,(¢) for each
tel.

Similarly a minimal solution of problem (9.1)—(9.3) is defined by reversing the
order of the inequalities.

Definition 9.5. A function f(z, x) is called strictly monotone increasing in x almost
everywhere for t € J, if (t,x) < f(t,y) a.e. t € J for all x,y € D with x < y.
Similarly f(z, x) is called strictly monotone decreasing in x almost everywhere for
te J,iff(t,x) > f(t,y)ae.t € Jforall x,y € D with x < y.

We consider the following assumptions in the sequel.

(9.10.1) The function f(t,y) is strictly monotone increasing in y for almost each

tel.
(9.10.2) T(¢) is preserving the order, that is 7(f)v > 0 whenever v > 0.
(9.10.3) The function I}, k = 1, ..., m are continuous and nondecreasing.

(9.10.4) The problem (9.1)—(9.3) has a lower mild solution v and an upper mild
solution w with v < w.

Theorem 9.6. Assume that assumptions (9.1.1)—(9.1.4) and (9.10.1)—(9.10.4) hold.
Then problem (9.1)—(9.3) has minimal and maximal solutions on [—r, b].

Proof. It can be shown, as in the proof of Theorem 9.2, that B is completely
continuous and A is a contraction on [v, w]. We shall show that .4 and B are isotone
increasing on [v, w]. Let y,y € [a, b] be such that y <y, y # y. Then by (9.10.1),
(9.10.2), we have foreach t € J

Bw®=T@M®+AT0ﬂV@mﬁ

§T®M®+LTWﬂV@wﬁ
— BO) ().
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and by (9.10.3), we have for each r € J

AW ()= > T@—1) L (y(5))

O<y <t

< > T-1L((%))

O<n<t
=A@ @).

Therefore A and B are isotone increasing on [v, w]. Finally, let x € [v, w] be any
element. By (9.10.4) we deduce that

v < A(v) + B(v) < A(x) + B(x) < A(w) + B(w) < w,

which shows that A(x) + B(x) € [v,w] for all x € [v, w]. Thus, A and B satisty all
conditions of Theorem 1.32, hence problem (9.1)—(9.3) has maximal and minimal
solutions on [—r, b]. O

9.2.4 Impulsive Differential Equations with Nonlocal
Conditions

In this section we shall prove the existence results for problem (9.4)—(9.6). Nonlocal
conditions were initiated by Byszewski [89] when he proved the existence and
uniqueness of mild and classical solutions of nonlocal Cauchy problems.

Definition 9.7. A function y € PC ([—r,b],E) is said to be a mild solution of
problem (9.4)—(9.6) if y(t) = ¢(t) — h, (y), t € [-r, 0], and

y(t) = T(@) (¢(0) — ho () +/0 T(t—s)f (s.y5) ds
+ > T—t)L(y(5)). tel.

O<ny <t

Theorem 9.8. Assume that hypotheses (9.1.1)—(9.1.3) hold and moreover

(Al) The function h is continuous with respect to t, and there exists a constant o« > 0
such that

|h(w)| <a, uePC(—r,b]E)
and for each k > 0 the set

{#(0) —ho(y). y € PC([—r. bl E). ||yll =k}

is precompact in E
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(A2) There exists a function p € L'(J,Ry) and a continuous nondecreasing
Sfunction ¥ : [0, 00) — (0, 00) such that

Fie, )| <p@Ov(xlp), ae. teld, forall xeD

with

/w bl
1Pl s
By U (5) L

and

Mlglp+a + 3 11O)])
k=1
Do =

S
k=1

Then the problem 9.4)—(9.6) has at least one mild solution on [—r, b].

Proof. Consider the two operators: B, : PC([-r,b],E) — PC([-r,b],E)
defined by

b(1) = h(y), ift e H;
Bi(y)(@) = T ($(0) — ho()) + /Ot T(t—s)f (s,y,)ds, iftel,
and
0. ift € H;
A = 3 T -whG().  ifred.
O<tr<t

Then the problem of finding the solution of problem (9.4)—(9.6) is reduced to finding
the solution of the operator equation A; (y) (1) +B, (y) (1) = y(t),t € [-r,b]. As
in Sect.9.3, we can show that the operators A; and B; satisfy all conditions of
Theorem 1.32. O

9.2.5 An Example

As an application of our results we consider the following impulsive partial
functional differential equation of the form
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0 02
a—tz(t,x) = @z(t,x) 9.7
+0(t, z(t — r,x)), x € [0, 7], t € [0,b]\{t1, 12, ..., L}-
2t x) — 2t ,x) = bz(t %), x € [0, 7], k=1,...,m (9.8)
72(¢,0) = z(t,7) =0, t € [0, b] 9.9)
72(t,x) = ¢(t,x), t € H, x € [0, 7], (9.10)

where by > 0, k =1,...,m, ¢ € D = {y : Hx [0,7] — R;y is continuous
everywhere except for a countable number of points at which ¥ (s7), ¥ (st) exist
with Y(s7) = ¥(s)}, 0 =ty < t; < tr <+ < by < tyy1 = b, 2(t]) =

lim  z(tx + h,x),z(f;) = lm z(tr+h,x)and Q : [0,0] x R - Risa
(hx)—>(0TF %) (h)—=>(07 %)
given function.

Let

¥ (x) = z(t,x), t€J, x € [0, 7],
L) (x) = bez(t ,x), x € [0,n], k=1,....m
F(t.9)(x) = Q(t.¢(0.x). 6 € H, x € [0, 7],
P(0)(x) = ¢(0,x), 0 € H, x € [0, 7].
Take E = L?[0, ] and define A : D(A) C E — E by Aw = w” with domain

D(A) = {w € E,w,w are absolutely continuous, w” € E,w(0) = w(r) = 0}.
Then

o
Aw = an(w, W)Wy, w € D(A)

n=1

where ( , ) is the inner product in L?* and wy(s) = \/gsin ns, n = 1,2,...1s
the orthogonal set of eigenvectors in A. It is well known (see [168]) that A is the
infinitesimal generator of an analytic semigroup 7(¢), ¢ € [0, b] in E and is given by

oo

T(tw = Zexp(—n2t)(w, wW)W,, w € E.

n=1

Since the analytic semigroup 7'(¢) is compact, there exists a constant M > 1 such
that

1T pE <M.

Also assume that there exists an integrable function o : [0, 5] — R™ such that

Q2. w(t — r.x))| < o(nS2(|wl)
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where 2 : [0, 00) — (0, 00) is continuous and nondecreasing with

[°° ds N
—— = +4o0.
s+ 82(s)
Assume that there exists a function I € L' ([0, b], R*) such that
0@, w) = 01, W)| < I(D)|w — W], 1 € [0,b], w,Ww € R.

We can show that problem (11.15)—(11.17) is an abstract formulation of problem
(9.7)—(9.10). Since all the conditions of Theorem 9.2 are satisfied, the problem
(9.7)—(9.10) has a solution z on [—r, b] x [0, 7].

9.3 Impulsive Semi-linear Functional Differential
Equations with Non-densely Defined Operators

9.3.1 Introduction

In this section, we shall be concerned with the existence of integral solutions
and extremal integral solutions defined on a compact real interval for first order
impulsive semi-linear functional equations in a separable Banach space. We will
consider the following first order impulsive semi-linear differential equations of the
form:

Y () —Ay(@t) =f(t,y1), ae.t €J =[0,b], t #t, k=1,...,m (9.11)
A=y = L), k=1,....,m 9.12)
y() = ¢, te[-r0], (9.13)

where f : J x D — E is a given function, D = {{ : [-r,0] — E, ¥ is continuous
everywhere except for a finite number of points s at which ¢ (s7) , ¥ (s+) exist and
‘W(Si) = W(s)},flb € D’ (O<F<OO),O =1 <1l < <ty <lIpy1 = b,
I, :E—-E(k=1,2,...,m),A: D(A) C E — E is a non-densely defined closed
linear operator on E, and E a real separable Banach space with norm |.|.

We shall prove the existence of extremal integral solutions of the problem
(11.15)—(11.17), and our approach here is based on the concept of upper and
lower solutions combined with a fixed point theorem on ordered Banach spaces
established recently by Dhage [102]. Next, we study the impulsive functional
differential equations with nonlocal initial conditions of the form

Y (1) —Ay(t) = f(t,y;), aeteJ=[0,b],t#t, k=1,....m (9.14)
Aylmy = LOGE)). k=1,....m (9.15)
y(t) + ht (y) = ¢(t)’ re [_r’ 0] s (916)
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where i, : PC([—r,b], D(A)) — D(A) is a given function. The nonlocal condition
can be applied in physics with better effect than the classical initial condition y (0) =
vo. For example, 4, (y) may be given by

P
h () =Y eyt +1). te[-r0] (9.17)

i=1

where ¢;,i = 1,...,p, are given constants and 0 <t < --- <1, <p.

9.3.2 Examples of Operators with Non-dense Domain

In this section we shall present examples of linear operators with non-dense domain
satisfying the Hille—Yosida estimate. More details can be found in the paper by
Da Prato and Sinestrari [100].

Example 9.9. Let E = C([0, 1], R) and the operator A : D(A) — E defined by
Ay = y/, where

D(A) = {y € C'((0, 1), R) : (0) = 0}.
Then
D(A) = {y € C((0.1).R) : y(0) = 0} # E.
Example 9.10. Let E = C([0,1],R) and the operator A : D(A) — E defined by
Ay =y, where
D(A) = {y € C*((0,1),R) : (0) = (1) = 0}.
Then
D(A) = {y € C((0,1),R) : y(0) = y(1) = 0} # E.

Example 9.11. Let us set for some a € (0, 1)

E=Cj(0,1,R) ={y:[0,1]] > R:y(0) =0and sup —|y(t) — )l < oo}

0<i<s<1 [t—s|¥
and the operator A : D(A) — E defined by Ay = —y', where
D(A) = {y € C'*¥((0,1), R) : (0) = y'(0) = 0}.

Then

D(A) = h(0,1),R) = {y: [0.1] > R lim  sup b® =yl =0} #E.

—00<f—s|<s L —5[*
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Here
C([0,1],R) = {y : [0,1] = R : y € C%([0, 1], R)}.
The elements of 4%((0,1), R) are called little Holder functions and it can be

proved that the closure of C'((0, 1), R) in C%((0, 1), R) is A%((0, 1), R) (see [175],
Theorem 5.3).

Example 9.12. Let £2 C R" be a bounded open set with regular boundary I" and
define £ = C(£2,R) and the operator A : D(A) — E defined by Ay = Ay, where

DA) ={yeC(&R,R):y=00onT"; Ay e C(2,R)}.
Here A is the Laplacian in the sense of distributions on £2. In this case we have

DA)={yeC(R,R):y=0onT}+#E.

9.3.3 Existence of Integral Solutions

Definition 9.13. We say that y : [—r,T] — E is an integral solution of (9.11)-
(9.13) if

(i) y() = $(0) + A [O Y(s)ds + /0 feods+ S L (). re.

O<ty<t

(ii) / y(s)ds € D(A) fort € J, and y(t) = ¢(t), t € H.
0

From the definition it follows that y(f) € D(A), for each t > 0, in particular
¢(0) € D(A). Moreover, y satisfies the following variation of constants formula:

d t
() =SOp0) + / St —s)f(s.y)ds + Y S (t—t) I (y (7)) =0

0 O<tn<t

(9.18)
We notice also that if y satisfies (9.18), then

t

y(t) = S (H)¢(0) + Alirn S'(t — 5)Bf (s, ys)ds

+ > S - (y(5)). t=0.

o<t <t

Let us introduce the following hypotheses:

(9.17.1) A satisfies Hille—Yosida condition;
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(9.17.2) There exist constantsd; > 0, k = 1,...,m suchthat foreach y, x € D(A)

[ () — I ()| < di |y — x|

(9.17.3) The function f : J x D — E is Carathéodory;

(9.17.4) The operator S'(¢) is compact in D(A) wherever ¢ > 0;

(9.17.5) There exist a function p € L'(J,Ry) and a continuous nondecreasing
function ¢ : [0, 00) — (0, 00) such that

f @, x) <p®v(xllp), ae. ted, forall xeD

b
With/ e p(s)ds < o0,
0

e’} du b
— > / e “p(s)ds. 9.19)
co W(u) 0
where
M (||¢|| -3 <o>|)
o= - : (9.20)
1 — Me®? Z dy
k=1
and
Me®?
= 9.21)
1 — Mew? di
k=1
Theorem 9.14. Assume that (9.17.1)~(9.17.5) hold. If
Me®™” de <1, 9.22)
k=1

then the problem (9.11)—(9.13) has at least one integral solution on [—r, b].

Proof. Consider the two operators:
AB:PC ([—r, b] ,D(A)) - PC ([—r, b] ,D(A))
defined by

0, ifr e H;

A) (@) = oS-k (7). ifred

O<t <t
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and
(), ifre H;

B) (1) := 1 8'0¢(0)

d
+—/ S(t—s)f(s,y5)ds, iftel.
dt Jo

The problem of finding the solution of problem (9.11)—(9.13) is reduced to finding
the solution of the operator equation A (y) (1) +B (y) (r) = y(¢),t € [—r,b]. We
shall show that the operators A and B satisfy all the conditions of Theorem 1.32.
For better readability, we break the proof into a sequence of steps.

Step 1: 5 is continuous. Let {y,} be a sequence such that y, — y in
PC([—r, b], D(A)). Then for w > 0 (if < 0 one has e’ < 1)

1BW@) ~BOO| = ‘% | ste= 9300 = s, 00as

b
< Me®t /O e f (s, yn,) — f(5.¥5)| ds.

Since f(s, ) is continuous for a.e. s € J, we have by the Lebesgue dominated
convergence theorem

|B(yn) (1) = By) (@) — 0asn — oo.

Thus B is continuous.

Step 2: B maps bounded sets into bounded sets in PC([—r, b], D(A)). It is enough
to show that for any ¢ > 0 there exists a positive constant / such that for each
y € B, = {y € PC([-r,b],D(A)) : ||yl < g} we have |B(y)|| < I. So choose
y € B, then we have foreach t € J

d t
IBO)(®)] = |S'(09(0) + E/o S(t — 5)f (s. ys)ds

b
< Me™|$(0)] + Me”Y () /0 ¢ p(s) ds.

Then we have
b
BO)0)] < Me™ 9] + Me” ) (q) /0 e p(s)ds = 1.

Step 3: B maps bounded sets into equi-continuous sets of PC([—r, b], D(A)).
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We consider B, as in Step 2 and let 71,75 € J\{t1,....tm}, 11 < 2. Thus if
€ > 0and e < 11 < 1, we have

1B()(r2) = BO) ()| < [S'(22)9(0) = §'(11)¢ (0)]

+ | lim [S'(r2 — 5) = §'(z1 — 9)|Baf (5. y5)ds

A—00 0

T

+ | lim l [ (12 — 5) — 8" (r1 — 8)1Baf (5. ys) ds

A—>00 T1—e¢

rz
+ lim/ S'(ty — $)Baf (s, y,) ds
A—00 7

As 11 — 1, and € become sufficiently small, the right-hand side of the above
inequality tends to zero, since S’(¢) is a strongly continuous operator and the com-
pactness of §’(¢) for r > 0 implies the continuity in the uniform operator topology.
This proves the equi-continuity for the case where ¢ # t;,k = 1,2,...,m+ 1. It
remains to examine the equi-continuity at ¢ = ¢;.

First we prove equi-continuity at t = ;. Fix §; > 0 such that

e k£ N[t; =61, + 6] = 0.
For 0 < h < §; we have
|B)(1; — h) — BO) (@) < | (S'(t; —h) — S'(1:)) ¢(0)]

ti—h
+ lim (S (i — h— 5)=S' (6 — )) Baf (s, y5) | ds

A—00 0

ti
M) [ e ps)ds
l,‘*h
which tends to zero as & — 0. Define

Bo(y) (1) = BO)(@), t € [0,11]

and

By) (1), ift e (t,tit1]

Bi(y)(1) = { By)@h, ift=rm.

Next we prove equi-continuity at ¢ = ti+ . Fix 8, > 0 such that {f : k # i} N
[t; — 82, t; + 82] = 0. For 0 < h < 8, we have

1B (1 + h) — BO)t)| < | (8"t + h) — S'(1:)) $(0)]

+ lim | (S + h—s) = S'(t; — ) Baf (s, y5)lds

A—00 0
ti+h

MMW@/ ¢~ p(s) ds.
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The right-hand side tends to zero as & — 0. The equi-continuity for the cases
71 < 1p <0and 1ty <0 < 1, follows from the uniform continuity of ¢ on the
interval [—r, 0]. As a consequence of steps 1-3 together with Arzeld—Ascoli theorem
it suffices to show that B maps B, into a precompact set in E.

Let 0 < t < b be fixed and let € be a real number satisfying 0 < ¢ < t. For
y € B, we define

B.0)(0) = S 0p(0) +5/(6) lim /0 S — 5 — OBf (5. y,)ds.
Note

{ lim /‘1_6 S'(t—s—e)Byf(s,yy)ds .y € Bq}
0

A—00

18 a bounded set since

lim /Of—€ S'(t — s — €)Bf (s, ys) ds| < Me®*v(q) /(‘)t_€ e “p(s)ds.

A—00

Since S'(r) is a compact operator, the set
Ye(t) = {B(y)(1) : y € By}
is precompact in E for every €, 0 < € < t. Moreover, for every y € B, we have
1—e€
IBO)(@®) — B0)(0)] < My (q) / e’ p(s)ds.
t

Therefore, there are precompact sets arbitrarily close to the set Y () = {B(y)(¢) :
y € B,}. Hence the set Y(r) = {B(y)(¢) : y € B,} is precompact in E. Hence the

operator B : PC ([—r, D] ,D(A)) — PC ([—r, b] ,D(A)) is completely continuous.
Step 4: A is a contraction. Let x,y € PC([—r, b], D(A)). Then for t € J

A @) =A@ @] = | Y S =) (L (v (%)) — L (x (%))

O<ty <t

< Me®t Z e (v (5) = e (x ()]

O<t <t

< M dly (1) — ()

k=1

m
< Me*” de lly —xI-
k=1
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Then

IAG) — AW < M > " di[ly — x|,

k=1
which is a contraction from (9.22).

Step 5: A priori bounds. Now it remains to show that the set
&= {y € PC([-r,b],D(A)) : y = AB() + LA (%) for some 0 < A < l}
is bounded.

Lety € £ Theny = AB(y) + AA (%) for some 0 < A < 1. Thus, for each
tel,

y(t) = AS' (1) (0) +A% / St —)f(s.y)ds+ 2 Y 81— 1) (% (r;)).

0 o< <t

This implies by (9.17.2), (9.17.5) that, for each 7 € J, we have

t

ly(@®)] = AMe”'|$(0)| + AMe"" / e~ p() (llyslDds
0

e )

1

< AMe ||| + AMe™" / e p(s)¥ (s )ds

0

FAMe®! Z ‘Ik( (i )) —I (0)(

m

+AM Y " |1 (0)]
k=1

< AMe*" (||¢|| + Y 1k (0>|)

k=1
t

M / e p(s)¥ (s )ds

0

AMe™ Y dy |3 (1)
k=1
t m
<ce e me | [ pw s + Y d v (i) |
k=1

0
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where
c=M (||¢|| + Y Ik (0)|) : (9.23)
k=1
Now we consider the function u defined by
p(t) = sup{ly(s)| : —r<s=<t}, 0=<r=b.

Then ||ys|| < p(z) for all ¢ € J and there is a point t* € [—r,¢] such that u(¢) =
ly(*)]. If t* € [0, b], by the previous inequality and (9.23) we have for ¢ € [0, b]
(note t* < 1).

t

B0 = 00 e [ D6y (uls)ds + Me™ Y diga().
o =1

Then
(1 — Me®t de) () < ce®® + Me®” / e p(s)¥(u(s))ds.
k=1 5

Thus from (9.20) and (9.21) we have

W) < o+ 1 / (s (1(s))ds. 9.24)
0

Let us take the right-hand side of (9.24) as v(¢). Then we have
u() <v(t) forall telJ,
v(0) = co,
and
V() = cre " p(O)¥ (u(t), ae. tel.
Using the nondecreasing character of ¥ we get
V() < cre ' p(H)y(v(b), ae. teJ.
That is
v'(1) -
<c1e p(t), ae. telJ.
¥ (v(0)

Integrating from O to t we get

t v'(s) - tfws s
/Ow(v(s))ds_q/(;e p (s)ds.
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By a change of variable and (9.19) we get

f”(’) du b ©) © du
< c1/ e “p(s)ds < .
) V() 0 o Y

Hence there exists a constant N such that
n(@) <v() <N forall teJ.
Now from the definition of y it follows that

Iyl = sup [y(®)| < max([|¢[|.N) forall y e &.

t€[—r.b)

This shows that the set £ is bounded. As a consequence of Theorem 1.32 we deduce
that A 4 B has a fixed point which is a integral solution of problem (9.11)—(9.13).

O
Now we give a result where f Lipschitz with respect to y.
Theorem 9.15. Assume that (9.17.1)—(9.17.4) hold and the condition
(9.19.1) There exists a function I € L'(J, R.) such that:
ft,x) —f@,y)| <Il@®)|lx—y|p ae t €J, and forall x,y € D,
b
with [ e l(s)ds < oo,
0
m b
we (lpl+ £ 110+ [ e onas)
= =l 0 (9.25)
1-— Me“’b Z dk
k=1
and
M. wb
= (9.26)
1 — Mew? Z di
k=1
If

m
Me®? de <1,
k=1

then the problem (9.11)—(9.13) has at least one integral solution on [—r, b].
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Proof. Let A and B the operator defined in Theorem 9.14. It can be shown that B is
completely continuous and A is a contraction. Now we prove that

&= {y € PC([—r,b],D@A)) : y = AB(y) + LA (%) for some 0 < A < 1}

is bounded. y
Lety € £&. Theny = AB(y) + A A (X) for some 0 < A < 1. Thus, for each

tel,

t

d
¥(0) = A5 09 (0) + A~ / S(t—)f(s.y)ds+ 2 Y 81— 1)k (% (z,;)).

0 O<tr<t

This implies by (9.17.2) and (9.19.1) that, for each ¢ € J, we have

1

(O] < AMe™|$(0)] + AMe” [ (s, 35) — £ (5. 0)|ds
0

! m
+AMe”" [ e~ |f(s,0)|ds + AMe® Z ’Ik (% (t,?))‘
0 k=1
t t
< AMe“||gp]|| + AMe™” / e~ I(s)||ys||ds + )LMe‘”’/e_"’S[f(s,Oﬂds
0 0

+AME Y ‘Ik ()XL (r,;)) A (0)) + M Y |1 0)]
k=1 k=1
< e 181+ [ > 176.0lds + 3110
0 k=1

m
+Me®! / e~ I(s)||lys||ds + Me®’ Z dy (tk_) .

0 k=1

Now we consider the function u defined by

w(t) =sup{ly(s)|: —r<s<t}, 0<t<bh.
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Then |lys|| < w(¢) for all 7 € J and there is a point t* € [—r, ] such that u(f) =
ly(£*)]. If £* € [0, b], by the previous inequality we have for 7 € [0, b] (note t* < 1)

t

p@ = me | gl + [ . 0lds + 3 11.0)|
0 k=1

1

+Me”! / O US)u(s)ds + Me®' Y digu().
J k=1

Then

(1 - M de) po = me | gl + [ 176, 0las

k=1 0

+ )11 (0) |)
k=1

+Me®? / e l(s)u(s)ds.
0

Thus by (9.25) and (9.26) we have

1

u(t) <cj +cf / e~ I(s)u(s)ds.
0

By Gronwall inequality [131] we get for each t € J
t
u(t) < cyexp (cT / e‘“”l(s)ds) .
0
Thus
b
[yl < cgexp (cf f e_“”l(s)ds) = M*.
0

This shows that the set £ is bounded. As a consequence of Theorem 1.32 we deduce
that A 4 B has a fixed point which is a integral solution of problem (9.11)—(9.13).
O
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9.3.4 Existence of Extremal Integral Solutions

In this section we shall prove the existence of maximal and minimal integral
solutions of problem (9.11)—(9.13) under suitable monotonicity conditions on the
functions involved in it. We need the following definitions in the sequel.

Definition 9.16. We say that a continuous function v : [—r,b] — E is a lower
integral solution of problem (9.11)—(9.13) if v(¢t) = ¢(¢), t € H, and

v(t) < S'(H)e(0) +A/0t v(s)ds + Otf(s, v,)ds

+ Z St—t)h(v(t)). t€d, t# 1

O<n <t

and v(t,j) —v(fy) < I(v(t)), t = &, k = 1,...,m. Similarly an upper integral
solution w of problem (11.15)—(11.17) is defined by reversing the order.

Definition 9.17. A solution xj, of problem (9.11)—(9.13) is said to be maximal if
for any other solution x of problem (9.11)—(9.13) on J, we have that x(¢) < xp(?)
foreacht € J.

Similarly a minimal solution of problem (9.11)—(9.13) is defined by reversing the
order of the inequalities.

Definition 9.18. A function f(z, x) is called strictly monotone increasing in x almost
everywhere for r € J, if f(¢,x) < f(t,y) ae.t € Jforallx, y € D with x < y.
Similarly f(z, x) is called strictly monotone decreasing in x almost everywhere for
te J,iff(t,x) > f(t,y) a.e.t € Jforall x, y € D withx < y.

We consider the following assumptions in the sequel.

(9.22.1) The function f(t,y) is strictly monotone increasing in y for almost each

tel.
(9.22.2) §'() is preserving the order, that is S’(f)v > 0 whenever v > 0.
(9.22.3) The functions I, k = 1, ..., m are continuous and nondecreasing.

(9.22.4) The problem (11.15)—(11.17) has a lower integral solution v and an upper
integral solution w with v < w.

Theorem 9.19. Assume that assumptions (9.17.1)—(9.17.5) and (9.12.1)—(9.12.4)
hold. Then problem (9.11)—(9.13) has a minimal and a maximal integral solutions
on [—r,b].

Proof. It can be shown, as in the proof of Theorem 9.14, that B is completely
continuous and A4 is a contraction on [v, w]. We shall show that A and B are isotone
increasing on [v, w]. Let y,y € [a, b] be such that y <y, y # . Then by (9.22.1),
(9.22.2), we have foreach r € J
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d t
B@y) (1) = §'()¢(0) + = /0 S(t = 5)f (s, ys) ds

d t
< SOp0) + 5 /0 St = 9)f (5.3,) ds
—BO ().

and by (9.22.3), we have foreach r € J

AP ()= > S =)L (y(5))

O<ty <t

= > Sa-wkFK)

O<ty <t

=AG) @).

Therefore A and B are isotone increasing on [v, w]. Finally, let x € [v, w] be any
element. By (9.22.4) we deduce that

v = A() + B(v) = AW) + B(x) = A(w) + B(w) = w,

which shows that A(x) + B(x) € [v,w] for all x € [v, w]. Thus, problem (9.11)-
(9.13) has a maximal and a minimal integral solutions on [—r, b]. O

9.3.5 Impulsive Differential Equations
with Nonlocal Conditions

In this section we shall prove existence results for problem (9.14)—(9.16).

Definition 9.20. A functiony € PC ([—r, b], D(A)) is said to be a integral solution
of problem (9.14)-(9.16) if y(t) = ¢(t) — h, (y), t € H, and

Y1) = S0 $(0) — hy () + /0 T(i - $)f (5.y,) ds
+ > T@—1)L(y(5)). teld

O<t <t

Theorem 9.21. Assume that hypotheses (9.17.1)—(9.17.4) and the following
hypotheses hold:

(Al) The function h is continuous with respect to t, and there exists a constant & > 0
such that
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Ihw)| <@, uePC([-r,b],D(A))
and for each k > 0 the set
{#(0) = ho(y). y € PC([=r.b]. D(A)). [y <k}
is precompact in E
(A2) There exist a function p € L'(J,R.) and a continuous nondecreasing function

¥ 1[0, 00) — (0, 00) such that

f @@, x)| <p®Ov(xllp), ae. ted, forall xeD

with

e’} du b

—_— > 51/ e “p(s)ds,
Co 1// (I/t) 0

where

Me“*[|$llp + o + Y _ 1(0)]]

Co = mk=1 ,
1 — Me®b Z dy
k=1

and

Mewh

1— Mewb Z dk
k=1

€1

Moreover, we suppose that
m
Me‘”b Z dk <1,
k=1

then the problem (9.14)—(9.16) has at least one integral solution on [—r, b].

Proof. Consider the two operators: B : PC <[—r, b] ,D(A)) — PC ([—r, b] ,D(A))

P (1) — hi(y), ift € H;

Bi)(1) = Lo
y@@@—mm+aﬁw—wumw ifrey,
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0, ift € H;

Z S/([ — tk)Ik(y(tk_)), ifrel.

O<ty <t

A1) =

Then the problem of finding the solution of problem (9.14)—(9.16) is reduced to
finding the solution of the operator equation A, (y) (1) +B, (y) (f) = y (), t €
[—r,b]. As in Sect.9.3, we can show that the operators A; and B; satisfy all
conditions of Theorem 1.32. O

9.3.6 Applications to Control Theory

This section is devoted to an application of the argument used in the previous
sections to the controllability of impulsive functional differential equations. More
precisely we will consider the following problem:

Y () —Ay(t) = f(t.y;) +Bu(t), ae.t€J =[0,b], t#tr, k=1,....m (9.27)
AY|i=y = L), k=1,....m (9.28)

y(@) = ¢(), t € [-r.0], (9.29)

where A, f, and I are as in Sect. 9.3, the control function u () is given in L? (J, U)

a Banach space of admissible control functions with U as a Banach. Finally B is a
bounded linear operator from U to D(A).

Definition 9.22. A functiony € PC ([—r, b], D(A)) is said to be a integral solution

of problem (9.27)—(9.29) if y(r) = ¢ (¢), t € [—r, 0], and y is a solution of impulsive
integral equation

d (! d !
¥ = S O9©O) + 5, /O S (5.3 ds + 5 fo S(t — $)Bu (s) ds

+ > St (y(5)). teld.

O<n<t

Definition 9.23. The system (9.27)—(9.29) is said to be controllable on the interval
[—r, b] if for every initial function ¢ € D and every y; € D(A), there exists a control
u € L?(J,U), such that the mild solution y () of system (9.27)—(9.29) satisfies

y(b) =y1.

Our main result in this section is the following.
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Theorem 9.24. Assume that hypotheses (9.17.1)—(9.17.4) hold. Moreover we sup-
pose that

(B1) The linear operator W : L (J, U) — D(A) defined by
b
Wu = /T(b—s)Bu(s)ds,
0

has a bounded inverse operator W~ which takes values in L?> (J, U) \KerW,
and there exist positive constants M, M, such that |B| < M and
|w=] =M.

(B2) There exists a function | € L'(J,Ry) such that

lf(t,x) —f (@, )| <I@®)||x—yl|p forae t €J, andforallx,y € D,

with

b m
M*“P MM b / e I(s)ds + Me”" (1 + Me""MMb) > " dy < 1
0 k=0

(B3) There exist a functionp € L'(J, R ) and a continuous nondecreasing function
¥ 1[0, 00) — (0, 00) such that

IFe, )| <p@®Ov(xlp), ae. teld, forall xeD

b
with/ e~ p(s)ds < o0,
0

[ = > Vil 930)
3
where
o5 = e (9.31)
1 — Me®?(1 + MMM, be®?) k; dy
¢y = M(1 + MMM ¢”’b)||¢||
+MMM;b|y;| + M(1 + MMM e“?b) Zm: lL(0)],  (9.32)

k=1
m (s) = max{w, c4p(s)}, (9.33)
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and
M + M2MM,e®"b
€4 = + i . (9.34)

1 — Me®(1 + MMM, be®?) > dy
k=1

Then the problem (9.27)—(9.29) is controllable on [—r, b].

Remark 9.25. The construction of operator W™ and its properties are discussed
in [93].

Proof. Using hypothesis (B1) for an arbitrary function y (.) we define the control

b
ny (1) = W' [yl =S Ba O lim [ SG=9Bf6.3ds
=Y Se-wk((K)) |-
O<t <t
Consider the two operators:

A,B:PC ([—r, b] ,TA)) — PC <[—r, b] ,TA))

defined by
0, ift e H;
_ d (!
A@) (1) := = S(t — s)Bu(s)ds
0
+ Y S - k(y(5)). ifreld
O0<tr<t
and
o), if € H;

By) (1) := S’(t)qb((g
+dit/0 S(t—9) (s,ys)ds, iftel.

We can prove that A is a contraction operator and B is completely continuous. Now,
we prove that

£ = {y € PC([-r,b].D(A)) : y = AB(y) + LA (%) for some 0 < A < 1}

is bounded.
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Lety € £ Theny = AB(y) + A A (%) for some 0 < A < 1. Thus, for each
tel,

t

Y0 = A5 (09(0) + 15 / S(t — )/ (5. y,)ds
0

t

d
+/\d—t / S(t — s)Buy (s) ds
0

+A Z S (t— 1) I (% (tk_)) )

0<ti<s

This implies by (B1)—(B3) that, for each ¢ € J, we have

t

()] < AMe|$(0)] + AMe”" / () ¥ (s
0

1

+AMe”! / e~ |Buy (s)| ds + AMe”' 2’": ‘Ik (% (tk_))‘

0 k=0

< AMe®" [(1 + MMM be”)||¢|| + MM, bly|]

M / O p()¥ (lys )ds
0

t

+AM2M1Mbe"”6‘”b/e_‘"sP(S)l/f(llysII)dS
0

MMM Mbe" e Y |1 (5)
k=1

+AM ) (Ik (% (tk‘))’
k=1
< AMe®”'[(1 + MMM, be”?)||¢ ||

+MM;bly:| + Me”' (1 + MMM;be®”) " 1,(0)]]
k=1
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M [ O p(s)¥ (sl ds
0

t

M T b [ O p()¥ (s ds
0

+AMe” (1 + MMMbe) " |y(50))-
k=1

Set

o = M(1 + MMM,e“’b)||¢p || + MMM b|y,|

+M(1 + MMM;e”"b) " 1,(0)].
k=1

Consider the function p defined by
p(t) = sup{ly(s)| : —r=s=<it, 0<r=<b.

Then ||ys|| < u(z) for all ¢ € J and there is a point t* € [—r,¢] such that u() =
ly(#*)]. If t* € [0, b], by the previous inequality we have for z € [0, b] (note t* < 1)

t

Wt) < ae® + Me / ()Y (u(s))ds
0

t
+M*e“ MM, be®” / e “p(s)y(u(s))ds
0

+AMe” (1 + MMMybe®) Y " diju (o).
k=1

Then

[1 = Me*" (1 + MMMybe®) Y " diju(t) < ae®’
k=1

+ M (1 + MMM be™) / ()Y (1 (s))ds.
0



9.3 Impulsive Semi-linear Functional Differential Equations. .. 223

Thus by (9.31), (9.32), (9.34) we have

t

f“m05q+m/}®wwcmm 935)

0

Let us take the right-hand side of (9.35) as v(¢). Then we have
w(t) < e“v(r) forall teJ,

v(0) = c3,

and
V(1) = cap(O)Y (()), a.e. tel.
Using the nondecreasing character of { we get
V() < cap(OY (e®v(2)), ae. teJ.

Then by (9.33) for a.e. r € J we have

€v(1)) = we” v(t) + V' ()’
we”v(t) + cap(t)e” (e v (1))
() [e” v (1) + ¥ (e v (D).

IA

IA

Thus (9.30) gives

/-e””v(t) du /b [ele) du
———— < | m(s)ds = ||m|p </ _
woy  u+ v T Jo S S

Consequently, by (B3), there exists a constant d such that e“’v(r) < d, t € J
and hence |y|| < d. This shows that the set £ is bounded. As a consequence of
Theorem 9.14 we deduce that .A + 13 has a fixed point which is a integral solution of
problem (9.27)—(9.29). Thus the system (9.27)—(9.29) is controllable on [—r,b]. O

9.3.7 An Example

As an application of our results we consider the following impulsive partial
functional differential equation of the form
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d 02
a—tz(t, X) = @z(t, X)

+0(t, z2(t — r,x))+Bu(t), x € [0, 7], t € [0, b]\{t1, t2, . . ., t}. (9.36)

26h,x) — 20, x) = bzt %), x€[0,n), k=1,....m (9.37)
2(1,0) = z(t,m) = 0, 1 € [0, ] (9.38)
z2(t,x) = ¢(t,x), t € H, x € [0, ], (9.39)

where by > 0, k=1,...,m, ¢ € D ={y¥ : Hx[0,7r] - R; is continuous
everywhere except for a countable number of points at which ¥ (s7), ¥ (s*) exist
with (s7) = ¥(s)}, 0 = tg <t < th < -+ < by < tyy1 = b, 2(t}) =

lim  z(ty + h,x),z(ty) = lim  z{tr+h,x)and Q: [0,b] x R — R, is a
(hx)—>(071 x) (hx)—> (07 x)
given function.

Let

y(@®)(x) = z(t,x), t € [0,b], x € [0, 7],
L)) =biz(t,x), xe[0,x], k=1,....m
F(t,¢)(x) = O(t,¢(0,x)), 6 € H, x € [0, 7],

and

o) (x) =¢(0,x), 6 € H, x € [0, 7]

Consider E = C(£2), the Banach space of continuous function on §2 with values in
R. Define the linear operator A on E by

2 2

_ 0 .
Az=—z in DA)={z€C(2):z=00n 052, —z € C($2}
0x2 ax2

Now, we have
D(A) = Co(2) = {v e C(£2) : v =0 on IN} # C(2).

It is well known from [100] that A is sectorial, (0, +00) € p(A) and for A > 0

1
IR(A, A)l|pE) = T
It follows that A generates an integrated semigroup (S(7)),>o and that ||S'(¢) || pe) <
e " for t > 0 for some constant ;& > 0 and A satisfied the Hille-Yosida condition.
Assume that the operator B : U — Y, U C [0, 00), is a bounded linear operator
and the operator
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b
Wu = / T(b — s)Bu(s)ds
0

has a bounded inverse operator W~! which takes values in L([0, b], U)\kerW. Also
assume that there exists an integrable function o : [0, 5] — R™ such that

Q1. w(t —r.x))| = o (1)$2(Iw])

where £2 : [0, 00) — (0, 00) is continuous and nondecreasing with

/°° ds n
— = +o0.
1 s+ 82(s)
Assume that there exists a function 7 € L' ([0, b], RT) such that
|O(t, w(t — r,x)) — Q(t, w(t — r,x))| < 7(t)|w —w|, t €[0,b], w,w € R.

We can show that problem (8.21)—(8.23) is an abstract formulation of problem
(9.36)—(9.39). Since all the conditions of Theorem 9.24 are satisfied, the problem
(9.36)—(9.39) has a solution z on [—r, b] x [0, 7].

9.4 Impulsive Semi-linear Neutral Functional Differential
Equations with Infinite Delay

9.4.1 Introduction

In this section we shall be concerned with the existence of mild solutions as well as
integral solutions defined on a compact real interval for first order impulsive semi-
linear functional equations in a separable Banach space. More precisely we consider
the initial value problem

d
O =8yl = Ap(@) — (2. y)] (9.40)

+f(t,y;), ae.teJ=[0,b], t#t, k=1,....m

A=y = LO()), k=1,....m (9.41)
y(1) = ¢(1), te (—00,0], (9.42)

where f, g : JxD — Eisa given function, D = {{ : [—o0, 0] — E, v is continuous
everywhere except for a finite number of points s at which ¥ (s7) , ¥ (s+) exist and
YE) =y} o eD (0<r<o0),0=1 <t <+ <ty <tlyy] =b,
I, € C(E,E) (k=1,2,...,m), A is a closed linear operator on E, and E a real
separable Banach space with norm |.|.
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9.4.2 Existence of Mild Solutions

This section is devoted to the case when the operator A generates a (Cy)-semigroup.
Before starting and proving our main result, we will give the definition of the mild
solution.

Definition 9.26. We say that a function y : (—oo,b] — E is a mild solution of
problem (9.40)—(9.42) if yy = ¢ and the restriction of y(-) to the interval [0, b] is
continuous; and

t

¥(0) = g(t.y) + TO[$(0) — (0. )] + / T(t — 5)f (5. yo)ds
+ Z T(t— 1)l (y (7)) — Z T(t—t)Ag(tk, yy), t€J.

O<n <t O<n <t

(9.43)

Let us introduce the following hypotheses:

(9.30.1) A is the infinitesimal generator of a (Cp)—semigroup {7'(¢)};e;, Which is
compact for ¢ > 0 in the Banach space E. Let M = sup{||T(?)||p&) : t € J}.
(9.30.2) There exist constants o1, s > 0 and /, > 0 such that:

() |gt,u) —g(t,u)| < Lllu—1ul|p, te€J, andu,u € D, and
(i) |g(t,uw)| < oq|ullp + a2, t € J, forae.t € J, and eachu € D.

(9.30.3) f:J x D — E is Carathéodory function;
(9.30.4) There exist constants dy > 0, k = 1,...,m such that for each y,x € E

[ () — I ()| < di |y — x|

(9.30.5) There exists a function p € L'(J,R;) and a continuous nondecreasing
function ¥ : [0, 00) — [0, 0o0) such that

f@t,w| <p@®O¥(lullp), ae. teld, forall ueD.

with
® ds
— > G lplly
/cf (s) ~ 2
where
C MK
Ch=Kog + (MK, + Mgl €5 == (9.44)

with

m
C=1-uK,—MY_ d—2Mmi;K,,
k=1
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and

C = a1 (MK, + My) |§]| + (1 + My + MY di |4
k=1

+M Y |1 (0)] + 2Mml (MK, + My) ¢ ]| + M Y " | Ag(ti. 0))|
k=1 k=1

Theorem 9.27. Assume that (9.30.1)—(9.30.5) hold. Suppose that

m

Ky max (I, 1) + M Z dy + 2mMILK), < 1 (9.45)
k=1

Then the problem (9.40)—(9.42) has at least one mild solution.
Proof. Consider the operator N : D, — D), defined by:

$(0). ¢ € (—00.0),
T(H)[$(0) — g(0.$)] + g(t. )

DO = 4 (17— f soy)ds + 3 T — 10l (v (7))
—}:TU—wAﬂ%mTMt rel.

O<n <t

For ¢ € D, we define the function:

. o(0): 1 € (—00,0],
o) =
T(0)¢0): 1€/,

Then ¢ € Dy. Set
y(1) = x(t) + $ ().
It is clear to see that y satisfies (9.43) if and only if x satisfies xo = 0, and
x(1) = g(t,x% + ¢) — T(1)g(0, )
+ /0 t T(t—9)f(s. %+ ¢)ds + Y T(t— )l (x () + ¢ (7))

O<p <t

= Y T(t— 1) Agte. xy + ). tEJ.

O<tr<t
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Let

DgI{XEDbleZOED}.

For any x € DY, we have

Ixlls = [lxoll> 4 sup {x(s)| : 0 < s < b} = sup{|x(s)| : 0 < s < bj}.

Thus (DY, || - ||5) is a Banach space. Define the two operators A, B : DY — DY by:

B(x)(f) = / tT(t—s)f(s,xx + py)ds, t€J
0
and

A0 = g(t.x + ¢) —T0g(0.¢) + Y T(t— 1)k (x () + ¢ (1))

O<n <t

= Y T(t— 1) Agt. Xy + ). €.

O<t<t

Obviously the operator N has a fixed point is equivalent to .4 4+ 5 has one, so it
turns to prove that A + I3 has a fixed point.We shall show that the operators .A and
B satisfy all the conditions of Theorem 1.32. The proof will be given in several
steps.

Step 1: 3 is continuous. Let {x,} be a sequence such that x, — x in D). Then
t
1B(xn) (1) = B(x)(0)| = ‘/0 T(t = 9)[f (s, xn, + @) —f (s, x5 + @5)]ds

b
= MA If(s’xns + &Y) _f(S,)CS + (iv)| ds.

Since f(s, ) is continuous for a.e. s € J, we have by the Lebesgue dominated
convergence theorem

|B(x,)(t) — B(x)(t)| — 0 as n — oc.

Thus B is continuous.

Step 2: B maps bounded sets into bounded sets in Dg. It is enough to show that
for any g > 0 there exists a positive constant / such that for each x € B, = {x €
DY : |lx|| < ¢} we have || B (x)|| <L Letx € B, then
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b + @sllo < lxsllo + lidsllo
< Kvg + KyM|9p(0)| + My || ¢]l

Then we have foreacht € J
BEO)| = | / T(t = $)f(5,x, + §o)ds|
0
<M /O PV (s + 6 )ds
<M fo PV (qe)ds

t
= My(a) [ poyas
0
Taking the supremum over ¢ we obtain

I1B)ls = My (g:)Ipllzr := 1.

Step 3: B maps bounded sets into equi-continuous sets inD).

We consider B, as in step 2 and let 7,70 € J\{t1,... .1y}, T1 < 7.Thus if
€ > 0and € < 71 < 17, we have We consider B, as in step 2 and let 7,7, €
IN{t1,....tw}, 71 <1.Thusife > 0and € < 11 < 7, we have

1B (1) — BE)(0)] < ¥(gs) /0 T — ) — T(t — 9)lsep(s)ds
F@) [ 1T =9 = T =9 lawp()ds

(g / 1752 — ) s p(s)ds.

As 11 — 1, and € become sufficiently small, the right-hand side of the above
inequality tends to zero, since 7'(¢) is a strongly continuous operator and the com-
pactness of 7T'(¢) for t > 0 implies the continuity in the uniform operator topology.
This proves the equi-continuity for the case where ¢t # 1,k = 1,2,...,m+ 1. It
remains to examine the equi-continuity at t = ¢;.

First we prove equi-continuity at t = ;. Fix §; > 0 such that {f : k # i} N
[t; — 81,1 + 81] = 0. For 0 < h < §; we have
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ti—h .
1B()(1; — h) — B(x)(1)| < /O | (T(ti —=h—s5) = T(ti = ) f(s. % + bs)|ds

ti
+¥(g)M ] p(s)ds;
ti—h
which tends to zero as & — 0. Define
By(x)(1) = Bx)(0). t € [0,11]

and

B(x)(1), ift € (t;,tit1]

B®® = { B (). ift =1

Next we prove equi-continuity at # = ;. Fix §, > 0 such that {#; : k # i} N
[l‘,‘ — 6.t + 52] =@.For0 < h < §, we have

\B)(t; + h) — B()(#;)] < /0 T+ h =) — T — ) f(s.x + G)lds

ti+h
o (gM f p(s)ds.

The right-hand side tends to zero as 7 — 0. The equi-continuity for the cases
71 < 1p <0and tr; < 0 < 1, follows from the uniform continuity of ¢ on the
interval [—r, 0].

As a consequence of steps 1-3 together with Arzeld—Ascoli theorem it suffices
to show that B maps B into a precompact set in E.

Let 0 < t < b be fixed and let € be a real number satisfying 0 < ¢ < t. For
y € B, we define

1—€
B (x)(t) = T(e€) / T(t—s—e)f(s,xs + ¢y)ds.
0
Since T'(¢) is a compact operator, the set
X (1) = {Bc)(r) : x € By}
is precompact in E for every €, 0 < € < t. Moreover, for every y € B, we have

B0® - B < (@) [ 1769 lep)ds

< Y (gM /_ p(s)ds.
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Therefore, there are precompact sets arbitrarily close to the set X () = {B¢(x)(¢) :
x € B,}. Hence the set X(1) = {B(x)(¢) : x € B,} is precompact in E. Hence the
operator B is completely continuous.

Step 4: A is a contraction

Letx;,x, € DY. Then fort € J

LA (1) = AG) ()] < 180t 31, + $1) — 8t 01 + 1)

+M Z [T (x1 (57)) = I (x2 (7)) |

O<t <t

+M Y | At xiy, + By) — At xa, + b))

O<t <t

< Lellx1e — x| +M2dk |x1 (tk_) —* (tk_)|
k=1

m
+2Mlg Z |X1Zk — )Cz;kl
k=1

= (Mzdk + LKy, + 2ligKb) llx1 —x2f .
=1

Then

IAGD) = Al < (M Y di + LKy + 2mMIgKy) |x1 —x2]]
k=1

which is a contraction, since

m m

Kyl + Mde + 2mMI,K), < K, max (I, 1) + Mde + 2mMIK), < 1.
k=1 k=1

Step 5: A priori bounds.

Now it remains to show that the set £ is bounded.

Letx € £, thenx = AB(x)+AA <X) for some 0 < A < 1. Thus, foreachr € J,

1

50 = & [ T =505+ §ods = AT)g(0.6) + Agte. 5 + )
0

A Y T—1) (% () + ¢3(tk))

o< <t

—A Z T(t—1t) Ag(lk,% + ¢r).

O<n <t
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This implies by (9.30.2) and (9.30.4) that, for each t € J, we have

x(0)] < AM / POV (I + Bl
0
g 5 + @l + A Y| (5 () + 8|
k=1

“ X, ~ X, ~
HAM Y 1 Ag(t, S5+ Gl + AMg (e 5 + Bl + AMIg(0, )]
k=1

t
X -
<M [ D6y Kol + MKy + M) glds + han |5+ 61+ A
0

M Y 11 (565 + B ) = k(O] + M Y [1(0)]
k=1

k=1

+2)LMZlg|% + @il + AM S [ Ag(tr, 0)] + AMaty
k=1 k=1

<M / ()Y (Kolx(s)| + (MK, + My) | p)ds
0

+2an (K, )% + 00K, + M) 9]
Ay + AM Y " dy ( ’%ﬂ‘ + ||¢||) +AM Y |1(0)]
k=1 k=1
x(1)

A

+2AM Xm: I, (K,,

k=1

+ (MK, +Mb)||¢||)

m

+AM Y | Ag(ti. 0)] + AMass
k=1

<M f PV (Kplx(s)] + (MK + M) | $]))ds
0

+ay (Kp [x(0)] + (MK, + M) |9 )
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toy + MY dix()] + MY dillpl + MY [1(0)] + Me
k=1 k=1 k=1

+2Mml Ky |x(6)] + 2Mmly(MK), + Mp)|p]| + M Y " | Ag(ti. 0)].
k=1

Then

(1 —o K, =M di— 2Mmngb) lx(1)]

k=1
<M / P (Kol(s)| + (MK, + My) | pl)ds
0

+ay (MK, + My) @] + (1 + M),

+M Y dillpll + MY |1(0)]
k=1 k=1

m

+2Mml, (MK, + M) [p]| + M D |Ag(t. 0)].
k=1

Thus

1

Kolx()] + MKy + My) 9] = CF + C3 / P (K lx(5)]
0
(MK, + M) |])ds

We consider the function u defined by
p(1) = sup{Kp|x(s)| + (MK, + Mp)|¢]| : 0 <s =1}, 0<1=<b.

Let t* € [0, 7] be such that u(t) = Kp|x(*)| + (MK, + M,)||¢||, by the previous
inequality we have for 7 € [0, b]

t

kO = €7+ G [ 6w s (9.46)
0

Let us take the right-hand side of (9.46) as v(¢). Then we have

v(0) = C¥, w(t) <v(r) forall teJ,
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and

V(1) = Cp) Y (u(r), ae. te.

Using the nondecreasing character of ¥ we get

V() < p()Y(v(D), ae. teJ.

Thus

v s b © ds
ds = 1 .
[CT 5 5/0 P =l < |5

Consequently, by assumption (9.30.5), there exists a constant N such that
v(f) <N, t € J and hence there exists a constant A such that ||z|, < A. This
shows that the set £ is bounded. As a consequence of Theorem 1.32, we deduce
that F 4+ G has a fixed point z*. Then z*(f) = x*(t) + ¢(1), t € (—o0,b] is a
fixed point of the operator N, which gives rise to a mild solution of the problem
(9.40)-(9.42). |

9.4.3 Existence of Integral Solutions

In the previous section we considered the same problem, when the operator
was non-densely defined. However, as indicated in [100], we sometimes need to

deal with non-densely defined operators. For example, when we look at a one-
2

dimensional heat equation with Dirichlet conditions on [0, 1] and consider A = —
X

in C([0, 1], R) in order to measure the solutions in the sup-norm, then the domain,

D(A) = {¢ € C*([0, 1], R) : ¢(0) = ¢(1) = 0},

is not dense in C([0, 1], R) with the sup-norm. Before starting and proving this one,
we give the definition of its integral solution.
Definition 9.28. We say that y : (—o0,b] — E is an integral solution of (9.40)-
(9.42) if
t
(1) / [y(s) — g(s,y5)]ds € D(A) fort € J,
0

(i) y(r) = ¢(1), t € (—00,0]. , ,
(i) y(r) = ¢(0) — g(0,¢) + g(t.y) + A /0 [y(s) — g(s.y,)]ds + /0 f(s.y5)ds +
Y RGE) = Y Agliyn), rel.

O<y <t O<t <t
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From the definition it follows that y(f) — g(t,y,) € D(A),VY t > 0, in particular
¢(0) — g(0,¢) € D(A). Moreover, y satisfies the following variation of constants
formula:

d t
Y0) = 8(6.3) + SOGO) ~g0.9) + & /O St — 5)f (s, y,)ds
+ ) S U= wkG(E) = Y St —1)Agt.y,), 120

O<n <t O<n <t

(9.47)

Let By = AR(A,A) := A(Al — A)~!. Then [146] for all x € D(A),Byx — x as
A — oo. Also from the Hille-Yosida condition (with n = 1) it easy to see that
lim |Bjx| < M|x|, since

A—00

Bal = A1 =A)7'| = 5

Thus Alim |By| < M. Also if y is given by (9.47), then
—00

¥(0) = 8(t.y) + S O(H(O) ~ g(0.9)) + lim /0 S'(t = $)Baf (s, y)ds
+ Y S = whGE) = Y St — 1At y,), tel.

O<t <t O<ty <t

(9.48)

The key tool in our approach is the following form of the fixed point theorem of
Dhage [102].

Let Dy, the set of all functions that belong in D;, and have values in D(A). Let us
introduce the following hypotheses:

(C1) A satisfies Hille—Yosida condition;

(C2) The operator S'(¢) is compact in D(A) whenever ¢ > 0;

(C3) There exists a function p € L'(J,Ry) and a continuous nondecreasing
function ¥ : [0, o0) — [0, 00) such that

If (e, w)| < p@OY¥(||ul|p), forae.te€J, and eachu € D.

with

[e%s) d b
/C* _W (uu) > C;/O e “'p(t)dt

where

. Mewab
- C

C
Cr = Kbg + (MK, + Mp)l|¢]l,  Cx (9.49)
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with
m m
C=1-uK,— M"Y e "d —2Me” I,K, Y e (9.50)
k=1 k=1
and

C1 = a1(MKy, + My)||$]| + 2 + Me™” Y~ e dy || |
k=1

m
+Me®? Z e "L (0)| + Me®’ay
k=1
m m

+2Me L (MK + My) Y ™" [l] + Me” Y ™| Ag(tr. 0)].
k=1 k=1

Theorem 9.29. Assume that (9.30.2)—(9.30.4) and (C1)—(C3) hold. If
Ky max (g, o1) + Me™ Y " e dy + 2MIKpe™ "™ < 1, 9.51)
k=1 k=1

then the problem (9.40)—(9.42) has at least one integral solution on (—oo, b].

Proof. Transform the problem (9.40)—(9.42) into a fixed point problem. Consider
the operator N : D,, — Dy, defined by:

(1), t € (—00,0],
S'(1)[#(0) — (0, 9)] + g(t, y:)

WO [sa—srons+ ¥ se-wh ()
0 O<p <t
— > S = 1) At yy), rel.
O<ty<t

For ¢ € D, we define the function:

s ¢(1), t € (—00,0],
@) =
S'()p(0),r e J,

Then ¢ € Dy, Set

y(0) = x(1) + ().
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It is clear that x satisfies x, = 0 and
x(t) = g(t.x + ¢) — S'(1)g(0. )

d (' ~ , _ -
ta ) St —$)f(s.x + dds + Y St — 1)l (x (1) + ¢ (i)

O<n <t

— > St =t Aglte xy + y). tEJ.

o<ty <t
Let D) = {x € D;, : xo = 0}.Forany x € D)_we have
[xlls = llxollp + sup {lz(s)] : 0 <5 < b} = sup{|x(s)| : 0 <5 < b}.

Thus (D}, . || - [l) is a Banach space.
Define the two operators A, B : D) — Dj_by:

Bx)(1) = dit / S(t — $)f (s, x5 + Pps)ds, t€J
0
and

A@)@) = g(t.x + ¢) — S (1g(0.¢) + > St — 1)l (x (1) + ¢ ()

O<n <t

— > St — 1) Aglte.xy + ). tEJ.

o<t <t

Obviously the operator N has a fixed point is equivalent to .A + B has one, so it turns
to prove that A + 5 has a fixed point. We shall show that the operators A and 53
satisfy all the conditions of Theorem 1.32. The proof will be given in several steps.

Step 1: B is continuous.

Let {x,} be a sequence such that x, — x in Dg*. Then
d [’ ~ ~
|B(xn) (1) — Bx) ()| = ‘d—t /0 S(t = 9 (s, xn, + Ps) = f(5.%5 + ¢)lds

b
< Mewb/ e lf(s’xnx + q;s) —f(s,xs + 435)} ds.
0

Since f(s,-) is continuous for a.e. s € J, we have by the Lebesgue dominated
convergence theorem

|B(x,) (1) — B(x)(t)] = 0asn — oo.

Thus B is continuous.
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Step 2: B maps bounded sets into bounded sets in Dg*.

It is enough to show that for any g > 0 there exists a positive constant / such that
foreachx e B, = {y € DO* . |lx|l < ¢} wehave ||B(x)|| <L Letx € B, then

b + @slls < lxllo + sl
< Kvg + KpM|p(0)| + Mpl9 |
= q*_

Then we have foreach ¢ € J
d ! -
B@O1= 15 [ s=s70x+ s
h ~
< Me® /0 e p(s) (I + Bl))ds

b
< Me‘“bl,//(q,k)/0 e p(s)ds .= L.

Step 3: B maps bounded sets into equi-continuous sets in Dg*.

We consider B, as in step 2 and let 7;, 75 € J\{t;,...,t,}, ©1 < ©.Thus if
€ > 0and € < 1y < 1, we have We consider B, as in step 2 and let 71,72 €
IN{t1,...,tu}, 11 < 15. Thusife > 0and € < 71 < 17, we have

IBx)(z2) = B()(m1)] =

lim /f1—€ [S'(rs — 5) — S (21 — 8)|Bif (5. X5 + ¢s)ds
A—>00 0

71 B
+ | lim / [S' (12 — 5) — S’ (r1 — 8)Byf (5, x5 + ) ds
A—=00 Ji ¢
() 5
+ | lim / S'(ty — 5)Baf (s, x5 + ) ds
A—>00 Jo

< (g /0 IS (2= ) — St — ) lap()ds
@) [ 150 =9~ 5@ - aep()ds
19 (ge) / 1S’ (2 — ) lap()ds.

As 11 — 1, and € become sufficiently small, the right-hand side of the above
inequality tends to zero, since S'(¢) is a strongly continuous operator and the
compactness of §'(¢) for ¢ > 0 implies the continuity in the uniform operator
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topology. This proves the equi-continuity for the case where t # 1,k =
1,2,...,m+ 1. It remains to examine the equi-continuity at t = #;.

First we prove equi-continuity at t = ;. Fix §; > 0 such that {#; : k # i} N
[t; — 81,1 + 81] = 0. For 0 < h < §; we have

ti—h -
|B(x)(t; — h) — B(x)(t;)] < Alln;o/() | (S/(ti —h—25)=S(t; — s)) Byf (s, xs+y)|ds

ti
MY (gx) / e peds
ti—

which tends to zero as 4 — 0. Define
Bo@) (1) = B)(1). t € [0.1]
and

Bx) (1), ift € (t;, ti+1]

B®® = { B, ifr=1.

Next we prove equi-continuity at t = ti+ . Fix 6, > 0 such that {f : k # i} N
[t; — 82,1, + 8] = 0. For 0 < h < §, we have

1B)(t; + h)—Bx) (1) < Jim / i I (S'(t; + 1 — 5)=S'(ti—5)) BAf (s, X, + &) ||ds
—00 Jo

ti+h
LMY (g) f ¢ p(s)ds.
ti

The right-hand side tends to zero as 7 — 0. The equi-continuity for the cases
71 < 1p < 0and 17 < 0 < 1, follows from the uniform continuity of ¢ on
the interval [—r,0]. As a consequence of steps 1-3 together with Arzeld—Ascoli
theorem it suffices to show that 3 maps B into a precompact set in E.

Let 0 < t < b be fixed and let € be a real number satisfying 0 < ¢ < t. For
y € B, we define

B0 = '@ fim [ S s OB flo.x + s

Since §'(¢) is a compact operator, the set

Xe(t) ={Bc(0)(1) : x € By}
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is precompact in E for every €, 0 < € < t. Moreover, for every y € B, we have

B)(1) = Be(x)(1)] < Me“"(qs) /_ e ’p(s)ds.

Therefore, there are precompact sets arbitrarily close to the set X, (1) = {B¢(x)(¢) :
x € B,}. Hence the set X(1) = {B(x)(¢) : x € B,} is precompact in E. Hence the
operator B is completely continuous.

Step 4: A is a contraction. Let x{, x, € Dg*. Then fort € J

JAGD () = A) (D] < 180t x1: + ¢0) — gt 301 + 61|

Me® Z L (x (5) = Ik (2 ()]

O<t<t

Me®” Y~ e " Aglte, x14 + i)

o<t <t

—Ag(ty, X2q + ‘Z’tk) |

m
< Lol — xall + MY " e %dy |x () = x2 (87) |
k=1

m
wb —wt
+2Me*" 1, E e |x1y, — x|
k=1

< (Me™ Y " e " (dy + 21,Ky) + LK) lx1 — xall s -
k=1

Then

A1) — AG)|l < (Mzdk + LK), + 2ligKb) 1 — 22l

k=1

which is a contraction, since

Kyl + Mde + 2mMI,K;, < Ky max (I, o) + Mde + 2mMIK, < 1.
k=1 k=1

Step 5: A priori bounds.

Now it remains to show that the set
&= {xeDg 1x = AB(x) —i—/X.A(%) for some 0 < A < 1}

is bounded.
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Letx € £, thenx = AB(x) + 1A (%) forsome 0 < A < 1. Thus, foreach ¢ € J,

x() = A / T(1 = 5)f (5. + ¢s)ds — AT(1)g(0, ¢) + Ag(, )% + )
0

1Y =1 (3 (1) + )

o< <t
Xt ~
—A D Tle—1) Aglt 55 + §y)-
O<n <t

This implies by (9.30.2) and (9.30.4) that, for each t € J, we have
t
0] = 20 [ po)w (. + s
0

g, )% + ¢l + )LMZm: ‘Ik (% () + &(r;))‘
=1

- X, ~ X, ~
FAM Y | Ag( S+ i)l + AMg(t, S5 + dy)| + AMIZ(0, ¢)|
k=1

<M [ D61y Kb+ MK, + M) gl)ds
0
Xy ~
+10l1||x + ¢l + Aoy
M Y I5 () + BE0)) = 1(O)] +2M Y 110)
k=1 k=1

m XZk 5 m
+2AM l|— + + AM Ag(t, 0)| + AMa
; g| 1 ¢[k| ;| 8t )| 2

<M / PV (Kolx(s)] + (MK + M) [ $]))ds
0

x(1)

+Aa (Kb T‘ + (MK, + Mb)||¢||)

+AO¢2+AMde ( )%t)

k=1

+ ||¢||) M Y 1)

k=1
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"0+ i+ w11

+2AM Z I, (K,,
k=1

+AM ) | Ag(te. 0)| + AMa
k=1

<M [ PV (K x(5)| + MKy + My) | pl])ds
0

+a (Kp [x()] + (MK, + M) ¢])

tor + MY dilx()] + MY dillgl + MY |1 (0)] + May
k=1 k=1 k=1

+2Mml Ky |x(1)| + 2Mml (MK, + My)|[p]| + M D | Ag(t.. 0)]
k=1

(1 —o K, — MY di— szng,,) |x(1)]
k=1
<u / PV (K lx()] + (MK, + My) | $]))ds
0
o (MK, + My) 9] + (1 + M)a

+M > " dillpl + M |1(0)]
k=1 k=1

+2Mmly (MK, + Mg) ¢ + MY _ |Ag(t. 0)].
k=1

Thus by (9.49) we have

Kplx(1)] + (MK, + M) [1¢] < CF

t

+C3 [ POV (Kolx(s)| + MKy + My) | $]))ds
0

We consider the function p defined by

w(t) = sup{Kp|x(s)| + MK, + Mp)||p|| : 0 <s<t}, 0<r<bh.
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Let r* € [0, ] be such that u(r) = K,|x(t*)| + (MK, + My)|¢], by the previous
inequality we have for 7 € [0, b]

R = €T+ €3 [ P (uods 9.52)
0

Let us take the right-hand side as v(¢). Then we have
v(0) = CY, w() <v(r) forall reJ,
and
V(1) = CGp() Y (u(r), ae. teJ.
Using the nondecreasing character of ¢ we get
V(1) S pOY (), ae te],

Thus

v s b © ds
ds = 1 .
/CT - 5/0 P = ks < |5

Consequently, by assumption (9.30.5), there exists a constant N such that v(f) <
N, t € J and hence there exists a constant A such that ||z]|, < A. This shows that
the set £ is bounded. As a consequence of Theorem 1.32, we deduce that F' + G has
a fixed point z*. Then z*(f) = x*(t) + ¢(¢), t € (—o0,b] is a fixed point of the
operator N, which gives rise to a mild solution of the problem (9.40)—(9.42). O

9.4.4 An Example

In this section we apply some of the results established in this section. We begin by
mentioning an example of phase space.

The Phase Space

Let i(.) : (—oo,—r] — R be a positive Lebesgue integrable function and D :=
PC.xL?*(h,E),r > 0, be the space formed of all classes of functions ¢ : (—oo, 0] —
E such that ¢|g € PC(H,E), ¢(.) is Lebesgue-measurable on (—oo, —r] and h|p|P
is Lebesgue integrable on (—oo, —r]. The semi-norm in ||.||p is defined by
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-r

1/p
lollo = sup o ©)] + ( [ hw)nw(e)npde) ©.53)

Assume that h(.) satisfies conditions (g-6) and (g-7) in the terminology of [142].

Proceeding as in the proof of ([142], Theorem 1.3.8) it follows that D is a phase

space which verifies the axioms (A1)-(A2) and (A3). Moreover, when r = 0 this

space coincides with C® x L?(h, E) and the parameters H = 1; M(t) = y(—t)'/? and
1/2

K@) =1+ ( e h(g)dg) for 7 > 0 (see [142]). Let E = L2([0, ]) and let A be

the operator given by Af = f” with domain

D(A) := {f € L*([0,]) : " € L*([0, 7]).f(0) = f(7r) = 0} (9.54)

It is well known that A is the infinitesimal generator of a Cy-semigroup on E, which

will be denoted by (7'(¢)),>0. Moreover, A has discrete spectrum, the eigenvalues are

—n?,n € IN, with corresponding normalized eigenvectors z,(£) := (%)1/ Zsin(n§)

and the following properties hold:

(a) {z,:n € N} is an orthonormal basis of E.

(b) Forf € E,T(0)f = Y22, ¢ !(f,2,) and Af = Y22, —n?(f, 2,)z, when
f € DA).

A First Order Neutral Equation

We study the first order neutral differential equation with unbounded delay

d t T
z [u(a £ + /_ ) /O bt — 5.7, E)u(s, n)dndS]

2

0 4 T
= 8_512 |:M(t, £+ /_OO/O b(t—s,n, &)u(s, n)dnds]

+ /l F(t,t —s,& u(s,n))ds, te]0,a],&€]0,rn] (9.55)

—00

u(®,0) =u(t,7) =0, te]0,a, (9.56)
u(t,§) =¢(r.§), 1<0,0<§¢=<m, (9.57)
Au(t)(€) = [T ait; — S)u(s, §)ds. (9.58)

where ¢ € Co x L*(h,E),0 <t; <--- <t, < aand
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(a) The function b(s, 1, §), ab(s "5) are measurable, b(s, 1, 7) = b(s,n,0) = 0 and

1/2

(/ / [ i 8b(;s7 S))d”d“’g) jz(”} -

(9.59)

= max

(b) The function F : R* —-— R is continuous and there are continuous functions
v:R?*— Rand u : R> — R such that

|F(t,5,6,%)| < v(t, 5, &) + p(t.s)x], (t,5.£x) € R?; (9.60)

(c) The functions a; € C([0,00),R) and d; := (f_ooo %ds)l/2 < oo forall
i=1,....m

Assuming that conditions (a) — —(c) are verified, our problem can be modeled as

the abstract impulsive problem (9.40)—(9.42) by defining

g6, ¥)(®) = [ Jy bls, 0, E)Y (s, v)dvds, 9.61)

FEU)E) = [0 F(t,5,6, (s, £)ds, (9.62)

L)) == [0 ar(s)V (s, §)ds. 9.63)

Moreover, f(t,.),Ir,i = 1,...,m, are bounded linear operators, and ||g(, ¥)|| <

oy + ay ||y || 5, where

o0 = (/ / / mw(sns)ﬁdndsds)l/z, o =0,

Hence, the problem has a mild solution in (—oo, b].

9.5 Non-densely Defined Impulsive Semi-linear Functional
Differential Equations with State-Dependent Delay

9.5.1 Introduction

In this section, we shall be concerned with existence of integral solutions defined
on a compact real interval for first order impulsive semi-linear functional equations
with state-dependent delay in a separable Banach space of the form:
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V() = Ay(0) + £(t,Yp(y), t€1=1[0,b], (9.64)
y#) =¢ te(—00,0], (9.65)
A y(t) = L(yy). k=12,....m, (9.66)

where f : J x D — E is a given function, D = {y : (—o0,0] — E, ' is continuous
everywhere except for a finite number of points s at which ¥ (s7) , ¥ (s+) exist and
YET) =y} o eD (0<r<o0),0=1 <t <+ <ty <tlyy] =b,
I, :D—>E(k=12,....,m),p:IxD — (—00,b],A: DA) C E — Eis
a non-densely defined closed linear operator on E, and E a real separable Banach
space with norm |.|.

9.5.2 Existence of Integral Solutions

Definition 9.30. We say that y : (—oo, T] — E is an integral solution of (9.64)—
(9.606) if

@) 50 =40 +4 [ 505+ [ fGywds+ 3 10w, red,

o< <t

(ii) /Oty(s)ds € D(A) fort € J, and y(t) = ¢ (1), t € (—o0,0].

From the definition it follows that y(f) € D(A), for each ¢t > 0, in particular
¢(0) € D(A). Moreover, y satisfies the following variation of constants formula:

d t
Y0 = S0 + 5 [ S Gords + 30 S =11 120
0 O<n <t

(9.67)
We notice also that if y satisfies (9.67), then

(1) = S' ()¢ (0) + Alim / S'(t — $)BAf (5, Yp(s,ys))ds
—>00 0

+ > S (=t (y). t=0.

O<t<t

Our main result in this section is based upon the fixed point theorem due to Burton
and Kirk [88]. We always assume that p : I x D — (—o0,b] is continuous.
Additionally, we introduce the following hypotheses:

(Hep) The function t — ¢; is continuous from R(p™) = {p(s,¢) : (s,9) €
J x D, p(s,¢) < 0} into D and there exists a continuous and bounded
function L? : R(p~) — (0, 00) such that ||¢|lp < L?(¢)||¢]|p for every
teR(p).
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(9.34.1) A satisfies Hille—Yosida condition;
(9.34.2) There exist constants dy > 0, k = 1,...,m such that foreach y, x € D

I ) — I (0) || < dilly —xllp

(9.34.3) The function f : J x D — E is Carathéodory;

(9.34.4) The operator S'(¢) is compact in D(A) wherever ¢ > 0;

(9.34.5) There exist a function p € L'(J,R;) and a continuous nondecreasing
function ¢ : [0, 00) — (0, 00) such that

If @ x)| < p@®v(lxllp), ae. ted, forall xeD

b
with/ e~ “’p(s)ds < oo,
0

o] du b
> czf e “p(s)ds. (9.68)
cl W(M) 0
where
ce®? K, 4
c1 = i+ (M + L + MK,) ], (9.69)
1 — Me®bK, Z dy
k=1
and
¢ =Y [IO)| +di (My + L + MK,) | $]p] .- (9.70)
k=1
MKbewb
c = 9.71)

—.
1 — Me“PK,, > dy
k=1

The next result is a consequence of the phase space axioms.

Lemma 9.31 ([139], Lemma 2.1). Ify : (—oo,b] — E is a function such that
yo = ¢ and y|; € PC(J : D(A)), then

lyslp = (Mo + L) $llp + Ko sup{lly(@)[|: 6 € [0, max{0,s}]}, s € R(p)UJ,

where LY = sup,cp - L? (1), My = sup,c; M(t) and K, = sup,c; K(t).
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Theorem 9.32. Assume that (Hp) and (9.34.1)—(9.34.5) hold. If
Me“PK,, Z dp < 1, 9.72)
k=1
then the problem (9.64)—(9.66) has at least one integral solution on (—oo, b].

Proof. Consider the operator N : PC ((—oo,b],D(A)) — PC ((—oo,b],D(A))
defined by:

¢(I)’ re (—O0,0],

d t
Ny)(@) = S (1)$(0) + d_t/O St —9)f (S’yP(ws)) ds
+ ) S = 1)k, tel.

O<t <t

Let ¢(.) : (—o0, b] — E be the function defined by

5 P (1), 1 € (—00,0],
P(1) =
S'()¢p(0), reJ.

Then ¢ = ¢. For each x € B, with x(0) = 0, we denote by ¥ the function defined by
0, 1€ (—00,0],
x(t) =
x(1),teld,

We can decompose it as y(1) = ¢(r) + x(), 0 < < b, which implies y, = x, + ¢,
for every 0 < ¢t < b and the function x(.) satisfies

d [’ -
x(l) = d_t /(; S(t - S)f (S’xp(ixx"‘(l;x) + ¢p(s.x5+(ﬁy)) dS

+ Z S'(t— )l (v + ) te.

O<n <t

Let
BEZ{XEBbZ XOZOED}.
For any x € B) we have

Ixlls = llxoll> + sup{|x(s)[ : 0 < s < b} = sup{|x(s)[ : 0 < 5 < b}.
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Thus (B}, ||-|1») is a Banach space. We define the two operators A, B : B) — Bj by:

d [ i
B = /0 S(t — s)f (s, Xpontin F B, +¢1)) ds, teJ
and

AR@® = Y S =1l (v +¢y). €.

O<n <t

Obviously the operator N has a fixed point is equivalent to .4 4+ 5 has one, so it
turns to prove that A + I3 has a fixed point. We shall show that the operators .A and
B satisfies all the conditions of Theorem 1.32. For better readability, we break the
proof into a sequence of steps.

Step 1: B is continuous.

Let {x,} be a sequence such that x, — x in B). Then for @ > 0 (if @ < 0 one has
e? < 1).

At first, we study the convergence of the sequences (XZ(s, xg,)ne]N, seJ. IfseJ
is such that p(s, x;) > O for every n > N. In the case, for n > N we see that

X550y = Xpsao lD = 16550y = X0t |2+ [1¥0(s0) = Xotsx) 1D

< Kb”xn _x”D + ”xp(s,x;’) _xp(x.xs)”D~

Which prove that xg(mn‘) — Xp(s,x,) i D as n — oo for every s € J such that
p(s,x;) > 0. Similarly, ifo(s,x;) < 0 and n € IN is such that p(s,x}) < O for

every n > N, we get

”xZ(s,xg) — X [ = [ Bpsat) = Bo(so [0 =0

Which also shows that x’;(&x{.)

p(s,x;) < 0. Combining the previous arguments, we can prove that x; P
for every s € J such that p(s, x;) = 0. Finalely, A

— Xp(s,x,) I D as n — oo for every s € J such that

1B () = B ()] = ‘d% /0 Sa=9[F (g0 * P i)
—f (s,xp(s,xng) + ggp(s,xﬁ‘(l;x))il ds‘

t
wb —ws n 5 g
< Me¢ /0 4 Lf(s’xp(s,x.’;+4~>s) + ¢p(s,x§’+¢x)>

ds

—f (S’xp(s,xy+q;;) + ¢p(s,x5+4;s))
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t
wb —ws n 5 ~
= Me /(; ¢ V(s’xp(s.x’?-i-qzx) + ¢p(5’)‘?+¢f))

—f (S, X p(sxti+y) + ¢p(s,x§’+<1;s)) ‘ ds
t
b —o: b
+Me /0 A CENRIEIE M

_f (S7 xP(S,Xy“F‘IEA) + ¢p(S,XA +$A)) ‘ ds

We infer that f(s,x’;(m,?)) — f(8,Xp(sx,)) as n — oo, for every s € J. Now,
a standard application of the Lebesgue dominated convergence theorem proves
that

1B(x,) (@) — Bx)(®) |l = 0as n — oo.

Thus B is continuous.
Step 2: B maps bounded sets into bounded sets in ).

It is enough to show that for any g > 0 there exists a positive constant / such that
foreach x € B, = {x € B} : ||x|l» < g} we have |B(y)||, < L So choose x € B,
then

Then we have foreacht € J

d (' ~
BOO1= |5 805 (530150 + o) 8

b
< Meo® /O POV (I + B0 -

Then we have
h o
1B@ O » < Me™(gx) /0 O p(s)ds 1= 1.

Step 3: B maps bounded sets into equi-continuous sets of B,?.

We consider B, as in Step 2 and let 71,7, € J\{f,...,tn}, 71 < ©.Thus if
€ >0and e < 11 < 1, we have

IB(x)(12) — Bx)(t1)]

T —€ ~
lim / [S (12 —5) — S (1 — 8)|Byf (s’xp(s.x.ﬁd?;) + ¢p(5~xs+$x)) ds
0

A—00

<
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7 -

+ Alglc}o /ﬂ_E [S'(z2 — 5) — S’ (11 — 8)]|Byf (s,xp(s,xﬁ(l;x) + ¢p(s,xx+q;y)> ds
123 B

+ All)n(;lo /Tl S/(tz o S)B/\f‘ (s7xp(5,xx+‘];x) + ¢P(S,Xx+(];x)) ds

< ¥(ge) / 18— 5) — (11 — )Ip(s)ds
0
@) [ 18@=9 =S @ = s
—i—Me‘”blﬂ(q*)/r2 e “p(s)ds.

As 11 — 1, and € become sufficiently small, the right-hand side of the above
inequality tends to zero, since S'(¢) is a strongly continuous operator and the com-
pactness of §’(¢) for r > 0 implies the continuity in the uniform operator topology.
This proves the equi-continuity for the case where ¢t # 1,k = 1,2,...,m + 1.
It remains to examine the equi-continuity at ¢t = ¢;.

First we prove equi-continuity at f = ;. Fix §; > 0 such that

{tr k#iyN[t;— 81,1 + 6] = 0.
For 0 < h < §; we have

|B(x)(t: — h) — B(x)(t)]
ti—h
< lim I (S'(ti —h—s)—S'(ti —s))

A—00 0
BA‘f (s7xp(5-xx+q;x) + ¢P(S-Xx+<1§x)> ||dS
ti
M) [ i) ds
ti—h
which tends to zero as 4 — 0. Define

By(x)(t) = B)(0). t € [0,1]
and

B(x)(1), ift € (t;,tit1]

Bi(x)(r) = B (5., ifr=1,.
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Next we prove equi-continuity at ¢ = #. Fix §, > 0 such that {f : k # i} N
[t; — 82,1 + 82] = 0. For 0 < h < 8, we have

|B(x)(t; + h) — B(x)(#)]

< lim I (S'(ti + h—s)— S (t; — 5))

A—00 0

Byf (S, Xosat+d) T ¢P(‘Y~xs+‘7~53)) s
ti+h

+Me“"y (qx) / e *°p(s) ds;
I

The right-hand side tends to zero as & — 0. The equi-continuity for the cases
71 < 1p <0and 1ty <0 < 1, follows from the uniform continuity of ¢ on the
interval [—r, 0]. As a consequence of steps 1-3 together with Arzeld—Ascoli theorem
it suffices to show that B maps B, into a precompact setin E. Let 0 < ¢ < b be fixed
and let € be a real number satisfying 0 < € < t. For x € B, we define

1—e

Note

1—e
{ lim [ S'(t—s— B (8. X o5 v+ T Posnitd)) S 1Y € Bq}
0

A—o00

is a bounded set since

1—e€
i / S'(t =5 = OB (5. %p(s 44 T Pptsn+i) 45
0

A—00

< Me™ (q) /0 T sy

Since S’(r) is a compact operator, the set
Xe(1) = {Bc(x)(1) : x € By}

is precompact in E for every €, 0 < € < t. Moreover, for every y € B, we have

B)(1) = Be(x)(1)] < Me”" ¥ (qx) / (s,
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Therefore, there are precompact sets arbitrarily close to the set X () = {B¢(x)(¢) :
x € B,}. Hence the set X(r) = {B(x)(¢) : x € B,} is precompact in E. Hence the
operator BB : B) — BY is completely continuous.

Step 4: A is a contraction

Let x1,x; € Bg. Then fort € J

LA — A (O] = | Y 8 (= 1) (G, + G3) — L + )

O<n <t

< Me” > () — Il

o<t <t

m
< Me” " dillx) — x2|p
k=1

m

< Me”’be de ||X1 —X2||D .
k=1

Then
A — ACo) [l < MeKy Y di |l — x5 »
k=1

which is a contraction from (9.72).
Step 5: A priori bounds.

Now it remains to show that the set
&= {xeB]?:x:AB(x)—k)tA(%) for some 0 < A < 1}

is bounded. X
Letx € £ Thenx = AB(x) + A A <)_L) for some 0 < A < 1. Thus, for each

tel,
t
d .
x(6) = Ao [ S0 =S (X544 T Potsn )4
0

A Y S -k (% + ¢~>,k> .

O<t <t
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This implies by (9.34.2), (9.34.5) that, for each 7 € J, we have

t

(@) < AMe” / POV (X1, T Ppisrrd 10)ds
0

+AMe”! Xm: )Ik (% + (lstk)
k=1
t

< AMe” / ()Y (Kolx(s)] + My + L + MKy pllp) ds
0

+AMe”! i )Ik (% - &k) —Ik(O)‘
k=1

m

+AMe”" Y " |1(0)]
k=1

< AMe”" f PV (Kyx()] + My + L + MK) ¢ 1) ds
0

+AMe” Y |1 (0)] + AMe”" Y " dy (Kb|x(s)| + (M + L? + MK,)||¢]p)
k=1 k=1

1

< ce® + Me™! /e_“”p(s)l/f (Kb|x(s)| + M, +L? + MK;,)||¢||D) ds
0

+K} Z dy |x(f)|j| ,

k=1
where
c=M (Z [17c(0)] + di(M), + L? + MKb)||¢||D]) . (9.73)
k=1

Therefore,

(1 — Me”’K, de> O] < ce” 4 Me [ O p(o)p (Kol
0

k=1

+(M, + L? + MKy)||9 | p) ds.
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Thus from (9.69) and (9.71) we have
t

My + L + MK [llp + Kplx(5)] < 1 + ¢ / O p(s)Y (K x(0)
0

+(M, + L + MKy)||¢|p) ds.

We consider the function p defined by
11(1) = sup{Kp|x(s)| + (Mp + L? + MK,) |¢llp : 0 <s <1}, 0<1<b.

t* € [0, 1] be such that ju(f) = K |x(t*)| + (M, + L? + MK})| ¢ | p. by the previous
inequality we have for 7 € [0, b]

t

W) < e+ f p(s) Y ((s))ds. 9.74)

0

Let us take the right-hand side of (9.74) as v(¢). Then we have

w() <v() forall reJ,
v(0) = ci,
and
V() = cre” ' p(O)Y (u(?), ae. tel.
Using the nondecreasing character of { we get
V() < e p()Y (v(b), ae. teJ.

That is
wlz;(g)) <cep(t), ae tel.

Integrating from O to t we get

t vl(s) - t s
/0 7000) ds < 62/0 e p(s)ds.

By a change of variable and (9.68) we get

/v(t) du b () (o] du
< czf e p(s)ds < .
vy ¥ (u) 0 a Y@
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Hence there exists a constant N such that
u(@) <v(@) <N forall rel.
Now from the definition of p it follows that
lxlly < N* forall x € £.

This shows that the set £ is bounded. As a consequence of Theorem 1.32 we deduce
that A 4 B has a fixed point which is a integral solution of problem (9.64)—(9.66).
O

Phase Spaces

Let g : (—00,0] — [1, 00) be a continuous, nondecreasing function with g(0) = 1,
which satisfies the conditions (g-1), (g-2) of [142]. This means that the function

g(t+0)
G@t)= sup =———=
—co<t<—t &(0)
is locally bounded for # > 0 and that , lim g(8) = cc.
——00

We said that ¢ : [—o00,0] — E is normalized piecewise continuous, if ¢ is left
continuous and the restriction of ¢ to any interval H is piecewise continuous.

Next we modify slightly the definition of the spaces Cg, Cg of [142]. We denote
by PC,(E) the space formed by the normalized piecewise continuous functions ¢

such that f is bounded on (—o0, 0] and by ch the subspace of PC,(E) formed by
8
the functions ¢ such that

im @ e 0
f——00 g(@) '
It is easy to see that D = PC,(E) and D = ch (E) endowed with the norm

o (0)]
fe(—o000] &(0)

I¢lp =

are phase spaces. Moreover, in these cases K(s) = 1 for s > 0.

Let]l < p < 00, 0 <r < o0, and g(-) is a Borel nonnegative measurable
function on (—o0, r) which satisfies the conditions (g-5)—(g-6) in the terminology
of [142]. This means that g(-) is locally integrable on (—oco, —r) and there exists
a nonnegative and locally bounded function G on (—o0, 0] such that g(§ + 6) <
G(£)g(0) forall § < 0and 0 € (—oo, —r)\Ng, where Ny C (—oo, —r) is a set with
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Lebesgue measure 0. Let D := PC, x LF(g,E), r > 0, p > 1, be the space formed
of all classes of functions ¢ : (—o00,0] — E such that ¢|y € PC(H,E), ¢(-) is
Lebesgue measurable on (—oo, —r] and g|¢|” is Lebesgue integrable on (—oo, —r].
The seminorm in | - ||p is defined by

-r

l¢llp := sup [lp(O)] + (/ g(9)ll¢(9)||”d9)p -
6eH

—0o0

Proceeding as in the proof of ([142], Theorem 1.3.8), it follows that D is a phase
space which satisfies Axioms (A) and (B). Moreover, for » = 0 and p = 2 this space
coincides (see [142]) with Cy x L2(g, E), H = 1, M(f) = G(—t)? and

0 3
K@t =1+ (/ g(s)ds) , fort > 0.

A First Order Partial Functional Differential Equations

To apply our abstract results, we consider the partial functional differential equations
with state dependent delay of the form

0 0
5, V(08 = —5ov(t.§) + m@a(t — o (v(t.0)).)). § € [0.7]. 1 €[0.5],

d
¢ (9.75)
v(t,0) = v(t,7) = 0, £ € [0, ], (9.76)
v(0,§) = v9(0,§), £ €[0, 7], 0 € (—00,0], (9.77)
Av(i)(E) = /_ it — s)u(s. E)ds 0.78)

where vg : (—00, 0] X [0, ] — IR is an appropriate function, y; € C[0, 00), R), 0 <
t <ty <---<t, <b. The functionsm:[0,b)] > R,a: RxJ - R,0 : R - R*
are continuous and we assume the existence of positive constants by, b, such that
|b(t)| < by|t| + by for every ¢ € R.

Let A be the operator defined on E = C([0, 7], R) by

D(A) = {g € C'([0,7].R) : g(0) = 0}; Ag = ¢
Then

D(A) = Co([0, 7], R) = {g € C([0, 7], R) : g(0) = O}.
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It is well known from [100] that A is sectorial, (0, +00) C p(A) and for A > 0

1
[R(A,A)||pE) < T

It follows that A generates an integrated semigroup (S(7)),>0 and that ||S"(¢) || s <

e " for t > 0 for some constant ;& > 0 and A satisfied the Hille—Yosida condition.
Set y > 0. For the phase space, we choose D to be defined by

D=C, ={p € C(~00,0],E) : Jim ¢"?$(0) exists in E}

with norm

gl, = sup e”1p(O)]. ¢ € Cy.

9€(—00,0]
By making the following change of variables
y®O () =v(t.§), 1= 0, § € (0, 7],
P(0)(§) = vo(8.8). 6 <0, § €[0.1],
F(t,¢)(§) = m()b(¢(0.8)). § € [0.7]. ¢ € C,
p(t,¢) =t —0(g(0,0))
L) = [2o vi(s)u(s, §)ds,

the problem (9.75)—(9.78) takes the abstract form (9.64)—(9.66). Moreover, a simple
estimate shows that

@ o)l < m@[bill@llp + baw'/?] for all (1,¢) € IxD

with

/oo ds _/Oo ds — oo
v i bis+ b2 .

and

1/2

dy = (/_(;o (yl;(ei))zds) < 00
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Theorem 9.33. Let ¢ € D be such that H, is valid and t — ¢; is continuous on
R(p™), then there exists a integral solution of (9.75)—(9.78) whenever

0 1/2 m
(1+(/ e"fds) )de< 1.
— k=1

9.6 Notes and Remarks

The results of Chap. 9 are taken from Abada et al. [1, 3, 4]. Other results may be
found in [124, 151, 152, 159].



Chapter 10
Impulsive Functional Differential Inclusions
with Unbounded Delay

10.1 Introduction

In this chapter, we shall establish sufficient conditions for the existence of mild,
extremal mild, integral, and extremal integral solutions for some impulsive semi-
linear neutral functional differential inclusions in separable Banach spaces. We shall
rely on a fixed point theorem for the sum of completely continuous and contraction
operators.

10.2 Densely Defined Impulsive Functional
Differential Inclusions

10.2.1 Introduction

We shall be concerned with existence of mild solutions, integral, and extremal inte-
gral solutions defined on a compact real interval for first order impulsive semi-linear
neutral functional inclusions in a separable Banach space. We will consider the
following first order impulsive semi-linear neutral functional differential inclusions
of the form:

d
D0 —8t.y)] —AD@) —g(t.y)] € F(r.y).

aetel=[0b,t#4 k=1,....m (10.1)
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Ay =y, € L(1 ), k=1,...,m (10.2)

y(1) = ¢@), 1€ (-00,0]. (10.3)

where F : J x D — 2E is a closed, bounded, and convex valued multi-valued map,
g :J x D — E is a given function, ¢ € D where D is the phase space that will be
specified later [, € C(E.E),(k=1,2,...,m), A : D(A) C E — E is a densely
defined closed linear operator on E, and E a real separable Banach space with norm
|.|. Consider the space

PC = {y: (00,6 > E. y(). ¥(). exist with y(1) = y(5;),

¥(1) = $(0.1 20, yi € CUL E).

where yy is the restriction of y to Jy = (t, ti+1], Kk = 0,...,m. Let || - ||pc be the
norm in PC defined by

[yllpc = suptly(s)| : 0 < s < b}, y € PC.

We will assume that D satisfies the following axioms:

(A) Ify : (—o0,b] — E,b > 0and y(r7), y(t"), exist with y(tr) = y(t;y), k =
I,...,mand yo € D, then for every 7 in [0,b)\{z1,...,t,} the following
conditions hold:

(i) y,isin D; and y, is continuous on [0, b]\{z1, ..., t,}
(i) [[yillp = K(2) sup{|y(s)[ : 0 < s < £} + M(9)]|yollp,
(i) [y@)| < Hllyllp

where H > 0 is a constant, K : [0,00) — [0,00) is continuous,
M : [0, 00) — [0, o0) is locally bounded and H, K, M are independent of y(-).
(A-1) For the function y(-) in (A), y, is a D-valued continuous function on

[0, D)\{t1, ..., tm}-
(A-2) The space D is complete.

Set
D, ={y: (—o0,b] > E|y € PC N D},
and let || - ||, be the seminorm in Dj, defined by
I¥lls == llyollp + sup{|y(1)[ : 0 < 's < b}, y € Dy.
Denote

K, =sup{K(t): te€J} and M, = sup{M(t) : t € J}.
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10.2.2 Mild Solutions

In order to define the mild solutions of the problem (10.1)—(10.3) we assume that F
is compact and convex valued multi-valued map.
Now, we can define a meaning of the mild solution of problem (10.1)—(10.3).

Definition 10.1. A function y € D, is said to be a mild solution of system (10.1)—
(10.3) if y(r) = ¢(¢) for all € (—o0,0], the restriction of y(-) to the interval
[0, b] is continuous, and there exist v(-) € L'(Jy, E) and Z; € I (y(f;)), such that
v(t) € F(t,y,) a.et € [0, b], and y satisfies the integral equation,

y(1) =T(1) (¢(0) — g(0,¢(0))) + g(t,y) + /0 T(r—s)v(s)ds
—+ Z T(t—tk)Ik, teld.

O<ny <t

We introduce the following hypotheses:

(10.1.1) A : D(A) C E — E is the infinitesimal generator of a strongly continuous
semigroup {7T'(¢)}, ¢ € J which is compact for r > 0 in the Banach space E,
and there exist constant M, such that:

1T pE <M; tel
(10.1.2) There exist constants ¢, > 0,k = 1, ..., m such that
Hy(I:(y), It (x))| < ckly —x| foreach x,y € E.
(10.1.3) Fis L'-Carathéodory with compact convex values.
(10.1.4) There exist a function p € L'(J,R4) and a continuous nondecreasing
function ¥ : [0, 00) — (0, 00) such that

|F( x)|| = sup{|v|/v € F(t,x)} < p(®)¥ (|lx|lp) fora.e.t € Jandeachx € D,

with

/Oo el
R,
c V() HPIL

where

Co = |:M0€1 +MZZC1<] l¢llp

k=0
m

+M Y |1(0)] + ea(1 + M)
k=0
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C
Cl = m 0
1-— MZCk — KbOél
k=0
(MK, + Mp)M Y ¢,
k=0
+ m Ollelp
(1 _Mzck — Kyay)
k=0
M
C, =

m
1 —MZCk —KbO[l
k=0

(10.1.5) The function g(t, .) is continuous on J and there exists a constant [, > 0
such that

lg(t,u) — g(t,v)| < l;llu—v|| foreach u,veD.
(10.1.6) There exist constants «; and o, such that
lg(t.w) < aillullp + oz foreach (t,u) €[0,b] x D.

m

Theorem 10.2. Assume that (10.1.1)-(10.1.6) hold. If 1, + Mch < 1, and
1

o K, + Z cx < 1, then the IVP (10.1)—(10.3) has at least one mild solution on

1
(—o0, b].

Proof. Consider the multi-valued operator:
N : D — P(D) defined by

(), if t<0,

NoY = {he D = | TO GO = £0.600) + gte3) + [ T6=su0)as

+ Y T — )Tk v € Sry. Tk € L)) if 1€,

O<n <t

Has a fixed point . This fixed point is then the mild solution of the IVP (10.1)-(10.3).
For ¢ € D define the function x(-) : (—oo, b] — E such that:

o), if t<0
x(t) =
T()p(0), if teJ
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Then x(+) is an element of Dy, and xy = ¢(0).
Set

() = z(t) + x().

Obviously if y satisfies the integral equation

y(1) = T(1) (¢(0) — g(0,$(0))) + g(t,y) + /0 T(t — s)v(s)ds
+ Z T(t—t) I, t€J,

O<ti<t

then z satisfies zo = 0 and
2(1) = g(t, 2 +x) — T(1)g(0, ¢(0))

+ /I T(t—s)v(s)ds + Z T(t—t )Ly, ted.
0

O<p <t

where v(f) € F(t,z, + x;) a.e. t € [0,b] and Iy € L (z(t; + x(£;).
Let

D) ={zeD,:z =0}.
For any z € DY), we have
lzlls = llzollp + sup{|z(s)| : 0 <'s < b} = sup{|z(s)| : 0 < 5 < b}.

Thus (DY, || - ||») is a Banach space.
Let the operator P : D) — P (DY) defined by

0 ift € (—o0,0];

P(z) =4qhe D2|h(l) = { g(t,zr + x) — T(1)g(0, $(0))
+ o Te—s)v()ds+ » Tt—t)Lh. if tel.

O<tr<t

The operator N has a fixed point is equivalent to P has one, so it turns to prove that
P has a fixed point. Consider these multi-valued operators:

A,B: D) — P(DY)
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defined by
0. ifr <0;
A(z) := {heD): h(r) =4 g(t.z +x) — T(1)g(0. ¢(0))
+ Z T(t— 1)Lk, Iy € Ie(z(ty) +x(1))  ifrel,
O<t <t

and

0, if r <0;

B@:= (heD): ko= [ - s)u(s)ds
O iftelJ,
where
v e Sp.={velLl([0,b,E):v(r) € F(t,z + x,) fora.e.t € [0, b]}.
It is clear that
P=A+B

Then the problem of finding mild solutions of (10.1)—-(10.3) is then reduced to
finding mild solutions of the operator inclusion z € A(z) + B(z). We shall show

that the operators A and B satisfy all conditions of the Theorem 1.32. The proof
will be given in several steps.

Step 1: A is a contraction
Letz;,z0 € Dg, then from (10.1.1)

Hy(A(z1). A@z2)) = llg(t. 21, + x0) — g(t. 2, + 1) |

+Hd( 3 TG - I ) + (),

O<ry<t

Z T(t — ) (z2(t;) + x(tk_))

O<n<t

< lgllzr = 2all + MY 21 (50) — 22(8)|
1

< (g +MY c)la —2zl.
1
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which is a contraction since

lo+MY <1
1

Step 2: 5 has compact, convex values, and it is completely continuous. This will
be given in several claims.

Claim 1: 5 has compact values. The operator B is equivalent to the composition
Lo Sp of two operators on L' (J, E) £ : L'(J, E) — DY) is the continuous operator
defined by

L(v(t)) = /0 tT(t—s)v(s)ds, tel.

Then, it suffices to show that £ o Sr has compact values on Dg.

Letz e Dg arbitrary, v, a sequence in Sg , then by definition of Sg, v,(¢) belongs
to F(t,z;),a.e.t € J. Since F(t, z;) is compact, we may pass to a subsequence.
Suppose that v, — v in L' (J, E), where v(f) € F(t,2),a.e.t € J.

From the continuity of L, it follows that Lv,(f) — Lv(¢) pointwise on J as
n— oo.

In order to show that the convergence is uniform, we first show that {£v,,} is an
equi-continuous sequence.

Let 71, 7, € J, then we have:

|£n(e) = La(w2)| = |/0 | T(t1 — s)v(s)ds
- [fz T(t2 — 5)va(5)ds|
0
= /Tl }(T(Tl —5)—T(r2 — S))||v,1(s)|ds
0

+ / 1Tt = )l [on(s)lds

1

As 71 — 15, the right-hand side of the above inequality tends to zero. Since T'(¢)
is a strongly continuous operator and the compactness of 7(f),t > 0, implies
the continuity in uniform topology. Hence {Lv,} is equi-continuous, and an
application of Arzéla-Ascoli theorem implies that there exists a subsequence
which is uniformly convergent. Then we have Lv,, — Lv € (L o Sp)(z) as
J > 00, and so (L o SF)(z) is compact . Therefore B is a compact valued multi-
valued operator on D).
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Claim 2: B(z) is convex for each z € D). Let h, hy € B(z), then there exists
vy, V2 € Sg. such that, for each ¢t € J we have

0, ift € (—o0,0],

hi(1) = [ l T(t — s)vi(s)ds
0 ifredi=12.
Let 0 < § < 1. Then, for each ¢t € J, we have
0, ift € (—o0,0],
(6h1 + (1= 9)h2)(1) = /0 T 90801 6) + (1 - Hva))ds
iftel,
Since F(t, z,) has convex values, one has

8/’!] + (1 — 5)]’12 (S B(Z)

Claim 3: B maps bounded sets into bounded sets in D}

Let B = {z € DY; ||zco < ¢},g € R a bounded set in DY. We know that for
each h € B(z), for some z € B, there exists v € Sg, such that

h(t) = /{; T(t — s)v(s)ds.

v € Sp. ={velL(0,b.E): v(t) € F(t,z + x;)
From (10.1.4) we have

llzs +xslp < llzsllp + llxllo
< Kpg + KpM|¢p(0)] + My | ¢l
= gx.
Then

o) = M) [ prds
= My (g)lpllr =1,
This further implies that:
[12lloe <1

Then, for all & € B(z) C B(B) = |, B(z). Hence B(B) is bounded.
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Claim 4: 5 maps bounded sets into equi-continuous sets.

Let B be, as above, a bounded set and 4 € (z) for some z € B. Then, there exists
v € Sp such that

h(t) = /Ot T(t—s)v(s)ds, tel

Letty, 5 € J\{t1, 2, ..., tn}, T1 < 7. Thus if € > 0, we have
T1—€
|h(z2) — h(t))| < / 1T(z2 —5) = T(r1 — s)|[|v(s)|ds
0

+ / T = 5) = T = ) [o(s)lds

1—€

+/ 1T = 9)lu(s)lds

T

=¥ [T =9 =T =9 (o)
@) [ 1T =9 = T = 9 lap)ds

) [T =9 lap(o)ds

As 11 — 1, and € becomes sufficiently small, the right-hand side of the above
inequality tends to zero, since 7'(¢) is a strongly continuous operator and the
compactness of T(¢f) for + > 0 implies the continuity in the uniform operator
topology.

This proves the equi-continuity for the case where ¢t # t;,i = 1,...,m+ 1. It
remains to examine the equi-continuity at ¢t = ¢;.

First we prove the equi-continuity at t = ;, we have for some z € B, there exists
v € Sp such that

h(t) = /Ot T(t—s)v(s)ds, tel

Fix §; > O such that {#,k # i} N [t; — &1, ¢ + 8;] = 0. For 0 < p < §;, we have

ti—p
Ih(t: — p) — h(t)] < fo 1T = p— ) — T — )| [v(s)]ds
wygom [ ps)ds.
ti—p

which tends to zero as p — 0.
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Define
flo(f) =n(t), tel0,4]

and

. h(1), if 7 € (t;, ti41]
hi(1) =
hthy, if t=y

Next, we prove equi-continuity at ¢ = ti+. Fix §; > 0 such that {f,k # i} N [t; —
8a, t; + 82] = (. Then

h(t;) = fo " T(t; — s)v(s)ds,

For 0 < p < §,, we have

Vi(t; + p) — (e < /0 TG+ p = 5) = TGt — ) [J(s)|ds
ti+p

Y (gM / p(s)ds

The right-hand side tends to zero as p — 0.

The equi-continuity for the cases 11 < 7 < 0O and 1; < 0 < 1, follows from
the uniform continuity of ¢ on the interval (—oo, 0] As a consequence of Claims
1-3 together with Arzela—Ascoli theorem it suffices to show that B maps B into a
precompact set in E.

Let 0 < ¢ < b be fixed and let € be a real number satisfying 0 < € < t. For z € B,
we define

1—e
he(t) = T(€) / T(t—s—e)v(s)ds,
0
where v € Sg ;. Since T(¢) is a compact operator, the set

He(t) = the(r) : he € B(2)}

is precompact in E for every €, 0 < € < t. Moreover, for every & € B(z) we have
t t—e
|h(2) — he(2)| = }/ T(t—s)v(s)ds — T(e)/ T(@t—s— e)v(s)ds}
0 0
t
= |/ T(t — s)v(s)ds|
1—€

< MY(gs) fﬁ p(s)ds
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Therefore, there are precompact sets arbitrarily close to the set H(f) = {h(t) : h €
B(z)}. Hence the set H(t) = {h(t) : h € B(B)} is precompact in E. Hence the
operator B is totally bounded.

Claim 5: 5 has closed graph.

Let z, — z«, h, € B(z,), and h, — hy. We shall show that i, € B(z«). h, €
B(z,) means that there exists v, € Sp, such that

h,(f) = AZT(t—s)v,,(s)ds, tel.

We must prove that there exists v« € Sr ., such that

hy(t) = /Ot T(t — s)v«(s)ds.

Consider the linear and continuous operator K : L!(J, E) — Dg defined by

Kv)(@) = /l T(t — s)v(s)ds.
0
We have

From Lemma 1.11 it follows that K o Sp is a closed graph operator and from the
definition of X one has

h,(t) € Ko Sp_,.

As 7z, = z« and h, — h., there is a vy« € Sg,, such that

hy(t) = /Ot T(t — s)v«(s)ds.

Hence the multi-valued operator B is upper semi-continuous.

Step 3: A priori bounds on solutions. Now, it remains to show that the set
E={zeD)| ze Mz +ABz, 0 <A <1}

is unbounded.

Let z € £ be any element. Then there exist v € Sp; and Z; € I;(z(#;)) such that
2(t) = Ag(t.z + x;) — AT(1)g(0. ¢(0))

+A / lT(t—s)v(s)ds+k > T— 1)L
0

O<ty <t
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Then

lz(O)] < airllz + x|l + o2 + M(ay||pllp + @2)
t m k=m
M [ W+ xds + MY el2(0) + x|+ M Y [1O)
0 k=0 k=0
< a1(Kp|z(1)| + (MK, + Mp)||¢[Ip) + a2

M@l + ) + M /O ()W (Kplz(s)| + (MK, + Mp) [ ]10))ds

+M Y 2] + MY cilx(0)]

k=0 k=0

k=m

+M ) |1(0)]

k=0

< o1 (Kp|z()| + (MK}, + M)||$llp) + a2 + M(c1]|§llp + a2)

+M/O POV (Kslz(5)] + (MK, + My) | $l0)ds + MY exlz(t])

k=0
m k=m
+M*Y el pllo +M Y 1(0)],
k=0 k=0

Then, we have:

|2(0)] = Co + a1 ((Kplz(0)] + (MK + M) [19lp))

M /0 PO (Kole(o)| + MKy + M) 9 llp))ds + M > exlz(a)
k=0

Since
m
MZ c <1,
k=0
then

KoJ20)] + (MKy + My) ]l < C1 + C» /0 ()Y (Kplz(s)]

+(MKy, + My)||¢llp)ds
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Consider the function w(¢) defined by
p(t) = sup{Kp|z(s)| + (MK, + M,)||¢llp: O<s=<t}, 0<t=<b
Then, we have, for all ¢ € J,||Kj|z()| + (MK}, + Mp)||¢|pll < p(2).

Let t* € J such that u(r) = Kp|z(t*)| + (MK}, + M})| ¢ || p, then by the previous
inequality we have, for r € J,

M@SQ+QAP@WWW®

Let us note the right-hand side of the above inequality by v(?), i.e.,

vm=a+qlp@wmmw
Then, we have

u() <v() forallreJ
U(O) = C

Differentiating both sides of the above equality, we obtain

V(1) = Cop)Y (1), ae. teJ

and using the nondecreasing character of the function ¥, we obtain

V(1) = Cop(Y (v(0). ae. te,

that is

lﬂlzv(g)) < Cyp(t), ae. teld.

Integrating from O to t we get

t .U/(S) - t ; :
memm_QAmw.

By a change of variables we get

[0 < = [T
= Glplp = )
w0 V(W) ol v
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Hence there exists a constant K such that
u(@) <v() <K forall rel.
Now from the definition of p it follows that
K |2()| + (MK, + Mp)l|plpll < u(b) <K forall z €&,

which means that £ is bounded. As a consequence of Theorem 1.32, A(z) + B(z)
has a fixed point z* on the interval (—oo, b], so y* = z* + x is a fixed point of the
operator N which is the mild solution of problem (10.1)—(10.3). O

10.2.3 Extremal Mild Solutions

In this section we shall prove the existence of maximal and minimal solutions of
problem (10.1)—(10.3) under suitable monotonicity conditions on the multi-valued
functions involved in it. We need the following definitions in the sequel.

Definition 10.3. We say that a continuous function v € D, is a lower mild
solution of problem (10.1)—(10.3) if v(r) = ¢(r), t € (—00,0], and there exist
v(-) € L'(Ji, E) and Ty € Ii(3(t;)), such that v(r) € F(t,7,) aet € [0,b], and §
satisfies,

(1) < T(1) (¢(0) — g(0,$(0))) + g(z. T, +/0 T(t — s)v(s)ds
+ > T—t)T. tel, t#1.

O<ty <t

and ﬁ(t,j) —0(fy < Iy where Iy € [i(V()), t = t, k = 1,...,m Similarly an
upper mild solution w of IVP (10.1)—(10.3) is defined by reversing the order.

Definition 10.4. A solution x,; of IVP (10.1)—(10.3) is said to be maximal if for
any other solution x of IVP (10.1)-(10.3) on J, we have that x(f) < xj(¢) for each
tel.

Similarly a minimal solution of IVP (10.1)—(10.3) is defined by reversing the
order of the inequalities.

We consider the following assumptions in the sequel.

(10.4.1) The multi-valued function F(¢,y) is strictly monotone increasing in y for
almost each t € J.

(10.4.2) The IVP (10.1)—(10.3) has a lower mild solution ¥ and an upper mild
solution w with v < w.

(10.4.3) T(¢) is preserving the order, that is 7(f)v > 0 whenever v > 0.

(10.4.4) The functions I,k = 1,...,m are continuous and nondecreasing.
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Theorem 10.5. Assume that assumptions (10.1.1)—(10.1.6) and (10.4.1)—(10.4.4)
hold. Then IVP (10.1)—(10.3) has minimal and maximal solutions on Dy,

Proof. We can write U and w as
() = v* () + x(t)
w(t) = w* () + x(t)

where v* € DY and w* € DY and x(¢) is defined in the above section.
Then o is lower solution to IVP (10.1)—(10.3) if v*satisfies

v*(1) < =T(1)g(0.¢(0)) + g(z. v + x(1)) + /l T(t — s)v(s)ds
0
+ > T—t)T tel t#1.

O<ty <t

and v*(t,:r) —v*(t; < Zjsuchthat [, (v*(t)), t = t, k = 1,..., mrespectively
(w) is upper solution to IVP (10.1)-(10.3) if w* satisfies the reversed inequality. It
can be shown, as in the proof of Theorem 10.2, that .4 is completely continuous and
B is a contraction on [v*, w*]. We shall show that A and B are isotone increasing
on [v*,w*]. Let z,Z € [v*, w*] be such that z < Z, z # Z. Then by (10.4.4), we have
foreacht € J

A(z) = {h e D) : h(t) = =T (t)g(0. $(0)) + g(t. z + x;)
+ Z T(l — lk)Ik, € I]&(l{)}
O<y <t
< {heD):h(t) = —T(1)g(0, $(0)) + g(t.Z + x,)

+ Z T(t — )i, Ti € I(z(1y))

O<t <t
= A(2).
Similarly, by (10.4.1), (10.4.3)

B(z) =qhe Dg Ch(r) = /tT(t—s)v(s)ds, vE Sp,z§
0

=

heD): h(t) = /l T(t—s)v(s)ds, f € SF,z}
0

= B@).



276 10 Impulsive Functional Differential Inclusions with Unbounded Delay

Therefore A and B are isotone increasing on [v*, w*]. Finally, let y € [v*, w*] be
any element. By (10.4.2), (10.4.3) we deduce that

vt < AW®) 4+ Bw*) < AQ) + B(y) < Aw*) + B(w*) < w*,
which shows that A(y) + B(y) € [v*,w*] for all y € [v*,w*]. Thus, A and B

satisfy all the conditions of Theorem 1.37, hence IVP (10.1)—(10.3) has maximal
and minimal solutions on J. O

10.2.4 Example

As an application of our results we consider the following impulsive partial
functional differential equation of the form

a 0
E[wua—[mme&a+9£wﬂ

2 0
= 83_52 [v(t, §) —[_ Ki(0)g:1(t + Q,S)dQ]

0
+f K>(0) [0 (1, v(t + 0.), Os(t. v(t + 0. £)d6)]

for £ € [0, 7], t € [0,b]\{t1. 12, . ... 1w} (10.4)

v(rF E) — 2(67.8) € bilz(i7, €)|B(0, 1), E € [0, 7], k=1,....m (10.5)
0

v(z,0) —/ Ki(0)gi1(t+6.0)d0 =0, t € J := [0, b] (10.6)

0
v(, n)—f Ki(0)g1(t+6,7)d0 = $(t,x), t € J :=[0,B], £ € [0,7], (10.7)

v(0,&,) =v9(0,8) for —oo <0 <0andé& € |0, ], (10.8)

where by > 0, k = 1,....m, K; : (—00,0] - R,K; : (—00,0] — R and
g1 :J xR — Rand vy : (—00,0]X[0, 7] — R are continuous functions, 0 =

o <t <tp <+ <ty <twy1 =b, v@) = lim vt +hx), () =
(h,x)—>(0+ X)

" )lir(% )v(tk +h,x), where Q1, Q> : J xR — R, are given functions, and B(0, 1)
X)—> (07 x

the closed unit ball. We assume that for each ¢ € J, Q(¢, -) is lower semi-continuous
(i.e., the set {y € R : Q;(¢t,y) > u} is open for each i € R), and assume that for
eacht € J, Qs(t,-) is upper semi-continuous (i.e., the set {y € R : O»(t,y) < u} is
open for each i € R).
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Let
Y(O)(E) = v(t.§), tel, & €[0,n],
Ik(y(tk_))(i:) = bkv(tk_v‘i:)v g: € [O’ 7{]7 k = 1’ e, m
F(r,9)(x) = [ Ko(O)[Q1 (2, v(t + 0,8), Qa(t, v(t + 0,)db],
0 € (—o0,0], £ €0, ],
h((t,¢) = [° Ki(0)gi(t + 6, 7)db,
and

P(0)(€) = ¢(0.8). 0 € (—00,0], § €0, 7].
E = L?[0, 7] and define A : D(A) C E — E by Aw = w” with domain
D(A) = {w € E,w,w are absolutely continuous, w” € E, w(0) = w(xr) = 0}.
Then

o0
Aw = an(w, W)Wy, w € D(A)

n=1

where (-,-) is the inner product in L? and w,(s) = \/gsin ns, n = 1,2,...1s
the orthogonal set of eigenvectors in A. It is well known (see [168]) that A is the
infinitesimal generator of an analytic semigroup 7'(¢), t € (0, b] in E and is given by

o0
T(Hw = Z exp(—n*t)(w, wy)w,, w € E.

n=1

Since the analytic semigroup 7(f), ¢t € (0, b] is compact, there exists a constant
M > 1 such that

1T <M.

It is clear that F' is compact and convex valued, and it is upper semi-continuous (see
[101]). Assume that there are p € C(J,RT) and ¥ : [0, 00) — (0, c0) continuous
and nondecreasing such that

max(|Q1(z,y)[. |2, y)) < p@O¥(ly]), t€J, andy € R.
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Assume that there exist functions l~1, l~2 e L'(J,R*) such that
101(t,w) — Q1 (8. W)| < [ (®)|w—Ww|, teJ, wweR,
and
102(t.w) — Qa(t.W)| < L()lw—W|, t€J, ww € R.

We can show that problem (10.1)—(10.3) is an abstract formulation of problem
(10.4)—(10.8). Since all the conditions of Theorem 10.2 are satisfied, the problem
(10.4)—(10.8) has a solution z on (—o0, b] x [0, ].

10.3 Non-densely Defined Impulsive Neutral Functional
Differential Inclusions

In this section, we use the extrapolation method combined with a fixed point
theorem for the sum of completely continuous and contraction operators, to
establish sufficient conditions for the existence of mild solutions and extremal mild
solutions for some classes of non-densely defined impulsive semi-linear neutral
functional differential inclusions in separable Banach spaces with infinite delay.
More precisely, we will consider the following first order impulsive semi-linear
neutral functional differential inclusions of the form:

D0~ 8.0 - AN — g0t 3)] € Flt ).

aetelJ=[0b,t#n k=1,....m (10.9)
Ayli=q € L)), k=1,....m (10.10)
y(1) = ¢(1), te(—00,0], (10.11)

where F : JxD — 2F is a compact and convex valued multi-valued map,g : JxD —
E is a given function, ¢ € D where D is the phase space that will be specified later
I, € C(E,E),(k=1,2,...,m) are bounded valued multi-valued maps, P(E) is
the collection of all E-subsets, A : D(A) C E — E is a non-densely defined closed
linear operator on E, and E a real separable Banach space with norm |.|.
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10.3.1 Mild Solutions

We shall consider the space
D, ={y: (—o0,b] > E|y € PCN D},
and let || - ||, be the seminorm in Dj, defined by

115 := lyollo + supily(@)| : 0 < s < b}, y € Dp.

Assume that F is compact and convex valued multi-valued map.
Let us start by defining what we mean by a solution of problem (10.9)—(10.11).

Definition 10.6. A function y € D, is said to be a mild solution of system (10.9)—
(10.11) if y(r) = ¢(¢) for all t € (—o0, 0], the restriction of y(-) to the interval
[0, b] is continuous, and there exist v(-) € L'(Jy, E) and Z; € Ii(y(f;)), such that
v(t) € F(t,y,) a.e t € [0, b], and y satisfies the integral equation,

y(@) = To(1) (¢(0) — g(0,9(0))) + gt y)) + /O Ty (r = s)v(s)ds

+ Z Ti(t— 1)k, t€J. (10.12)

O<t <t

Before beginning our result, we shall introduce the following hypotheses:

(10.6.1) There exists a constant M, such that:
1T\ lpe) = M; 1
(10.6.2) There exist constants ¢, > 0, k = 1, ..., m such that
Hy(It(y), It (x))| < ck|y — x| foreach x,y € E.
(10.6.3) Fis L'-Carathéodory with compact convex values.
(10.6.4) There exist a function p € L'(J,Ry) and a continuous nondecreasing
function ¢ : [0, 00) — (0, 00) such that
|F(t, x)|| = sup{|v|/v € F(t,x)} < p(t)¥(||x||p) fora.e.t e Jandeachx € D,
with

(1 —O(le—MZCk) u

lim su =l
e Co + Ml v (Ko + (MK, + My)[10)

>1,  (10.13)
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where

Co = a1 (MK}, + M) ||¢llp + az + M(et1[|¢]lp + a2)

m

+M? Y cllgllp +M Y 11O)].

k=0 k=0

(10.6.5) The function g(t, .) is continuous on J and there exists a constant [, > 0
such that

lg(t,u) — g(t,v)| < l|lu—v| foreach u,v e D.
(10.6.6) There exist constants «; and o, such that
llg(t, w)|| < aillu|lp + an foreach (¢,u) € [0,b] x D.

Theorem 10.7. Assume that (10.6.1)—(10.6.6), ¢ € D and ¢(0) € Xy, (0, ¢(0)) €

m

Xo hold. If l; + M Z cx <1, then the IVP (10.9)—(10.11) has at least one mild

1
solution on (—oo, b].

Proof. Transform the problem (10.9)—(10.11) into a fixed point problem. Consider
the multi-valued operator: N : D — P(D) defined by

P (1), if 1t <0,

NO) =heD:h@) = To@® (@(0) —2(0.$(0)) + g(t.y) +/o Ty (t — s)v(s)ds

+ Y Ti(t— 10Tk v € Spy. Tk € L((5)) if relJ.

o<t <t

Now we shall show that the operator N has a fixed point . This fixed point is then
the mild solution of the IVP (10.9)—(10.11).
For ¢ € D define the function x(+) : (—oco, b] — E such that:

o (1), if t<0
x(t) =
To(H)p(0), if tel.

Then x is an element of Dj,and xy = ¢(0).
Set

y(0) = z(1) + x(1).
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Obviously if y satisfies the integral equation

y() = To(1) (9(0) — (0, ¢(0))) + (1. y:) + /0 Ty (t — s)v(s)ds
+ Z T](Z‘—tk)Ik, tel.

O<p <t

then z satisfies zo = 0 and
2(1) = g(t,z + x) — To(1)g(0, $(0))

+/(; Ti(t — s)v(s)ds + Z Ti(t — )Ly, ted.

o< <t

where v(t) € F(t,z, + x;) a.e t € [0,b]. and Ty € L(z(f;, + x(t;)
Let

DgI{ZEDbZZOZO}.
For any z € Dg, we have
lzlls = llzollp + sup{|z(s)| : 0 < s < b} = sup{|z(s)| : 0 < s < b}.

Thus (DY, || - ||») is a Banach space.
Let the operator P : D) — P (DY) defined by

0 if t € (—00,0];
P(z) = {h e DY|h(t) = { g(t.z + x) — To(H)g(0. $(0))
+ o Tit—s)ds+ Y Ti(t—u)Ti, if 1€l

O<n <t

The operator N has a fixed point is equivalent to P has one, so it turns to prove that
P has a fixed point. Consider these multi-valued operators:

A,B: D) — P(D})
defined by
0, ift <0;
A(z) :={heD): h(r) =4 g(t.z +x) — To(1)g(0. $(0))

+ Y Tt =T T € L) +x(t))  iftel,

O<y <t
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and

0, ift <0;

B(z):= JheDy: h(r)= /t T (t — s)v(s)ds
O iftrel,
where
v e Sy, ={velLl([0,b,E): v(r) € F(t,z + x,) fora.e.t € [0, b]}.
It’s clear that
P=A+B

Then the problem of finding mild solutions of (10.9)—(10.11) is then reduced to
finding mild solutions of the operator inclusion z € A(z) + B(z). We shall show that

the operators A and B satisfy all conditions of the Theorem 1.32. The proof will be
given in several steps.

Step 1: A is a contraction
Letz, 20 € Dg, then from (10.6.2) and 10.6.5

Hy (A(z1). A(z2)) =< (18t 21, + ) — (1,2, + 1) |

+Hd< Z T (t — ) (i (1) + x(1),

O<tr<t

Z Ti(t — )l (z2(t;) + x(fk_))

O<ny <t

< lellzn — 2l + MY 21 (5) — 2208
1

< (lg +Mch) lz1 — zall

1

which is a contraction since
m
b +MY <l
1

Step 2 5 has compact, convex values, and it is completely continuous. This will
be given in several claims.
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Claim 1: B has compact values. The operator B is equivalent to the composi-
tion £ o S of two operators on L'(J,E) £ : L'(J,E) — D) is the continuous
operator defined by

L(v(t))z/otTl(t—s)v(s)ds, tel

Then, it suffices to show that £ o Sr has compact values on Dg.

Letz e D2 arbitrary, v, a sequence in Sg , then by definition of Sg, v, (#) belongs
to F(t,z;),a.e.t € J. Since F(t, z;) is compact, we may pass to a subsequence.
Suppose that v, — v in L' (J, E), where v(f) € F(t,2),a.e.t € J.

From the continuity of £, it follows that Lv,(f) — Lv(¢f) point wise on J as
n— oo.

In order to show that the convergence is uniform, we first show that {Lv,} is an
equi-continuous sequence.

Let 71, 7, € J, then we have:

|[Ln(11)) = L(va(r2))| = |/rl Ti(t1 — s)va(s)ds
0
- /sz Ti (12 — $)va(s)ds|
= f l|(T1(T1 —5) = Ti(r2 — 5))|[va(s)|ds
0
+ [ = ol

As 11 — 1, the right-hand side of the above inequality tends to zero. Since
T:(¢) is a strongly continuous operator and the compactness of Ty(f),t > 0,
implies the continuity in uniform topology. Hence {Lv,} is equi-continuous, and
an application of Arzéla-Ascoli theorem implies that there exist a subsequence
which is uniformly convergent. Then we have Lv,, — Lv € (L o Sp)(z) as
J > 00, and so (L o Sp)(z) is compact. Therefore B is a compact valued multi-
valued operator on Dg.

Claim 2: B(z) is convex for each z € D). Let hy,h, € B(z), then there exists
vy, V2 € Sk, such that, for each ¢ € J we have

0, if 1 € (—00, 0],

t
hi(t) = / Ti(t — s)v;(s)ds
0
ifteldi=1,2.
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Let 0 < § < 1. Then, for each ¢ € J, we have
0, ifr € (—00,0],
(8h1 + (1 =8)h2)(1) = /0, T1(t — $)[§v1(s) + (1 — 8)va(s)]ds
ifrel,
Since F(t, z;) has convex values, one has
Shy + (1 =68)h, € B(2).
Claim 3: B maps bounded sets into bounded sets in D) Let B = {z € DY; [|z] 00 <

q},q € RT abounded set in D). We know that for each i € B(z), for some z € B,
there exists v € Sg, such that

h(t) = /Ot Ti(t — s)v(s)ds.

v € S, = {v e L'([0,b],E): v(t) € F(t,z + x;)
From (10.6.4) we have

”Zx + xx“D < ||ZS||D + ||xx||D
< Kpqg + Kp:M|¢p(0)| + Ml llp

Then

o) = M) [ pras
=My (g)lpllp =1,
This further implies that:
IAlloe <1

Then, for all h € B(z) C B(B) = ., B(z). Hence B(B) is bounded.
Claim 4: 3 maps bounded sets into equi-continuous sets.

Let B be, as above, a bounded set and 4 € 3(z) for some z € B. Then, there exists
v € Sg, such that

h(t) = /Ot T(t—s)v(s)ds, telJ
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Letty, 0 € J\{t1,t2, ... tm}, T1 < Tp. Thus if € > 0, we have
T1—€
|h(r2) — h(T1)| < / 1T1(r2 — 5) — T1 (71 — s)[[[v(s)|ds
0

+/n 171 (2 — ) — Ty (1 — )|l |v(s)lds

—€

+/ T — )l u(s)lds

< () /0 Tt = ) = Tz — ) laep(s)ds

71

+V(qx) IT1(t2 —s) — T (71 — 5)lpE)p(s)ds

Y(ge) f 17152 — ) |y p(s)ds.

As 71 — 1, and € becomes sufficiently small, the right-hand side of the above
inequality tends to zero, since T)(¢) is a strongly continuous operator and the
compactness of T(¢) for r > 0 implies the continuity in the uniform operator
topology.

This proves the equi-continuity for the case where t # f#;,i = 1,...,m + 1.
It remains to examine the equi-continuity at = ;.

First we prove the equi-continuity at ¢ = ¢, we have for some z € B, there exists
v € Sp such that

t
h(t) =/ Ti(t —s)v(s)ds, teld
0
Fix §; > O such that {f;,k # i} N [t; — 81, t; + 61] = @. For 0 < p < §;, we have

ti—p
|h(ti — p) — h(1)] 5/0 IT1(ti — p—5) = T1 (1; — 5) l[v(s)|ds

ti
+uGom [ pyds
ti—p
which tends to zero as p — 0.
Define
ho(t) = h(r). t€[0.1]
and

R h(t), ift € (t;, tiy1]
hi(t) =
h(h), if t=14



286 10 Impulsive Functional Differential Inclusions with Unbounded Delay

Next, we prove equi-continuity at # = 1. Fix §, > 0 such that {f,k # i} N
[[,' — 6.t + 82] = @. Then

iz(t,-) = /Oti Ti(t; — s)v(s)ds,

For 0 < p < §,, we have
ti
i+ p) — h(t)] < /O 172Gt + p— ) = Tyt — 9)[[v(5)|ds

ti+p
Y gOM / p(s)ds

The right-hand side tends to zero as p — 0.

The equi-continuity for the cases 11 < 75 < 0 and r; < 0 < 1, follows from
the uniform continuity of ¢ on the interval (—oo, 0] As a consequence of Claims
1-3 together with Arzeld—Ascoli theorem it suffices to show that 5 maps B into a
precompact set in E.

Let 0 < ¢ < b be fixed and let € be a real number satisfying 0 < € < t. For z € B,
we define

1—e
b =10 [ Tie=s—eneias
0
where v € Sg ;. Since T () is a compact operator, the set
He(1) = {he(n) = he € B(2)}
is precompact in E for every €, 0 < € < t. Moreover, for every i € B(z) we have
t t—e
|h(t) — he(t)| = ‘/ Ti(t — s)v(s)ds — Ty (¢) / Ti(t—s— 6)v(s)ds|
0 0
t
—1[ Tia-9peal
1—€
t
= Mitq) [ s
t—e
Therefore, there are precompact sets arbitrarily close to the set H(f) = {h(t) : h €

B(z)}. Hence the set H(t) = {h(t) : h € B(B)} is precompact in E. Hence the
operator B is totally bounded.

Claim 5: 5 has closed graph.

Let z, — z«, h, € B(z,), and h, — hy«. We shall show that i, € B(z«). h, €
B(z,) means that there exists v, € Sg, such that

h,(t) = /O[Tl(t—s)vn(s)ds, tel.
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We must prove that there exists v« € Sr ., such that

he(t) = /: T1(t — s)v«(s)ds.

Consider the linear and continuous operator K : L!(J, E) — Dg defined by

K = — s)v(s)ds.
(o)) = [ Tite=sna
We have

[(ha(2) — (M (£)) < ||hy — hlloo = 0, as n > oo.

From Lemma 1.11 it follows that KC o S is a closed graph operator and from the
definition of C one has

hn(t) €Elo SF,Zn'

As z,, = z« and h, — hy, there is a v« € Sf,, such that

t
he(t) = / T1(t — s)v«(s)ds.
0
Hence the multi-valued operator B is upper semi-continuous.
Step 3: A priori bounds on solutions. Now, it remains to show that the set
E={zeD) ze MMz +ABz, 0<A <1}

is unbounded.

Let z € £ be any element. Then there exist v € Sg, and Z; € I;(z(#;)) such that
2(t) = Ag(t.z + x;) — ATo(1)g(0, ¢(0))

—i—)&/tTl(t—s)v(s)ds—I—A > Tt -t
0

O<ty<t

Then

2] < anllz + x|l + 2 + M(e1 1@l + 2)

M [ Wl xlDds + MY alz () + XG0
0 k=0

k=m

+M Y 1 (0)]

k=0
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< a1 (Kplz(0)| + (MKy + M) ¢llp) + a2 + M(c1l|pllp + 2)

iy /0 PV (Kplz(s)| + (MK, + M) [ ]10))ds

m m

k=m
MY ez + MY ex @] + MY L O0)]
k=0 k=0 k=0
< a1 (Kplz(0)| + (MK, + Mp)|1¢llp) + a2 + M(c1l|@llp + o2)

+M [0 PV (Kolz(5)] + (MK, + M) [ $llp)ds + M S elz(l)

k=0
m k=m
MY a0+ M Y 1KO)].
k=0 k=0

Then, we have:

2(D] = a1 ((Kp|2()] + (MK, + Mp)|¢]p))

m

+M /0 PV (Kol2(5)| + (MK + Mp) | pllp)ds + M crlz(t])
k=0
m k=m
+M2) " erlipllp + M D I O)].
k=0 k=0

Thus

(1 -k, —MZCk)HZHDg < ar + (MKp + Mp)|¢llp + a2 + M(e [ Pllp + 2)
k=0

+M|pll v (Ksllforzllpy + MKy + My)l|$ 1)

m k=m
+M2 Y eillpllo + MY (0]
k=0 k=0

Co + Mplliy (Kollzllpy + (MK, + Mp) |1 $]1)
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By the previous inequality we have,

(1 —a1Kp —MZCk) llzll po

k=0 <1 (10.14)
Co +M|pllp: W(KbIIZIIDg + (MK}, + M,)|1$llp)

From (10.13) it follows that there exists a constant R > 0 such that for each z € £
with ||z]| p) > R the propriety is not satisfied. Hence ||z|| ,0 < R for each z € £ which
means that £ is bounded. As a consequence of Theorem 1.32, A + B has a fixed
point z* on the interval (—oo, b], so y* = z* + x is a fixed point of the operator N,
which is the mild solution of problem (10.9)—(10.11). ad

10.3.2 Extremal Mild Solutions

In this section we shall prove the existence of maximal and minimal solutions of
problem (10.9)—(10.11) under suitable monotonicity conditions on the multi-valued
functions involved in it. We need the following definitions in the sequel.

Definition 10.8. We say that a continuous function v € D}, is a lower mild solution
of problem (10.9)-(10.11) if ¥(r) = ¢(t), t € (—00,0], and there exist v(:) €
L'(Jx, E) and Z; € I(9(t;)), such that v(7) € F(t, ;) a.e t € [0,b], and ¥ satisfies,

v(t) < To(2) (#(0) — g(0,$(0))) + g(t, ) +/0 Ti(t — s)v(s)ds
+ Y N-th. tel. t#un,

O<n <t

and 17(th') —0(t;, < Iy where Iy € Li(V(t)).t = tyr,k = 1,...,m Similarly an
upper mild solution w of IVP (10.9)—(10.11) is defined by reversing the order.

Definition 10.9. A solution x;; of IVP (10.9)—(10.11) is said to be maximal if for
any other solution x of IVP (10.9)-(10.11) on J, we have that x(t) < xp(¢) for
eacht e J.

Similarly a minimal solution of IVP (10.9)—(10.11) is defined by reversing the
order of the inequalities.

We consider the following assumptions in the sequel.

(10.9.1) The multi-valued function F(z,y) is strictly monotone increasing in y for
almost each t € J.

(10.9.2) The IVP (10.9)—(10.11) has a lower mild solution v and an upper mild
solution w with v < w.

(10.9.3) T () is preserving the order, that is T} (f)v > 0 whenever v > 0.

(10.9.4) The functions I,k = 1, ..., m are continuous and nondecreasing.
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Theorem 10.10. Assume that assumptions (10.6.1)—(10.6.6) and (10.9.1)—(10.9.4)
hold. If ¢ € D, $(0) € Xy and g(0, ¢(0)) € Xo, then IVP (10.9)—(10.11) has minimal
and maximal solutions on Dy,

Proof. We can write v and w as
v(r) = v* () + x(r)
w(t) = w* (1) + x(2),

where v* € D) and w* € DY and x(¢) is defined in the above section.
Then o is a lower solution to IVP (10.9)—(10.11) if v* satisfies

V*(1) < ~To(Dg(0. $(0)) + g(t vF +x(0)) + /0 Tt — s)u(s)ds
+ Z Ti(t—t)Iy, teld, t#n,

o<t <t
and v*(t,j) —v*(t; < Iy such that 7, € L(v*(%)), t = tk = 1,....m.
Respectively w is upper solution to IVP (10.9)—(10.11) if w* satisfies the reversed

inequality.

It can be shown, as in the proof of Theorem 10.2, that A is completely continuous
and B is a contraction on [v*, w*]. We shall show that A and 3 are isotone increasing
on [v*, w*].

Let z,Z € [v*,w*] be such that z < Z, z # Z. Then by (10.9.4), we have for
eachreJ

Az) = {h € Dj): h(t) = —To(1)8(0,$(0)) + g(t.z + x;)
+ Z T] (l — lk)Ik, € Ikz(l‘k_)§
O<t <t
< heD):h(t) =—Ty(1)g(0.¢(0)) + g(t.% + x,)

+ Y T — 1T Th € LE(E))

o< <t

= A@@).
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Similarly, by (10.9.1), (10.9.3)

B(z) =

t
he Dg Ch(t) = / Ti(t —s)v(s)ds, v € Sp,z}
0

=

heD):h(t) = /t Ti(t —s)v(s)ds, f € SF,Z}
0
= B().

Therefore A and B are isotone increasing on [v*, w*].
Finally, let y € [v*, w*] be any element. By (10.9.2), (10.9.3) we deduce that

vt = AQ@T) + BO®) = AG) + B() = AW + Bw') < w,

which shows that A(y) + B(y) € [v*,w*] for all y € [v*,w*]. Thus, A and B
satisfy all the conditions of Theorem 10.7, hence IVP (10.9)—(10.11) has maximal
and minimal solutions on J. O

10.3.3 Example

To apply our previous results, we consider the following impulsive partial neutral
functional differential equation

0
2 [v(t, o[ Ko+ e)f)de}

—00

82 0
= [v(t, ) —/ Ki(0,v(t+ 9),§)d91|

0
+ / K2 (0)[Q1 (1. $(6. £)). 0a(t. $(6. £))1d6:

teJ=[0b, t#t k=1,....m 0<& <1, (10.15)

v(t E) — vy, €) € bilv(r7 . £)BO.1), £€[0.1], k=1,....m  (10.16)

0

v(t,0) —/ Ki1(6,v(t + 6),0)d0 =0, t € J, (10.17)
—oo
0

v(t, 1) —/ K0, v(t+0),1)d0 =0, teJ, (10.18)
—oo

v(0,8) =v9(0,§) —c0o< 0 <0,0<§&<1, (10.19)
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where by > 0, k = 1,...,m, K; : (00,0l x R — R, K> : (—00,0] —
R, Q1, O : J xR — Rand vy : (—00,0] x [0, 1] = R are continuous functions,
- _ . + _ . et
u(ty) = (h.g)l_l)r(r(l)_f) vty + h§), v() = (h,S)EI(I(I)JF,g) v(tx + h, &) and B(0, 1) the
closed unit ball. We assume that for each t € J, Q(t,-) is lower semi-continuous
(i.e., the set {y € R : Q(¢,y) > u} is open for each p € R), and assume that for
eacht € J, O,(t,-) is upper semi-continuous (i.e., the set {y € R : O»(t,y) < u}is
open for each u € R).
We choose E = C([0, 1], R) endowed with the uniform topology and consider
the operator A : D(A) C E — E defined by:

D(A) = {y € C*([0.11.R) : y(0) = y(1) = 0} Ay =)".

It is well known (see [100]) that the operator A satisfies the Hille—Yosida condition
with (0, +00) C p(A), (Al —A)7"| < 4 for A > 0, and

Xo =D(A) ={y € E:y(0) =y(1) =0} #E.
So the extrapolation method can be applied. We define:

LOE))E) = belv(r . §)IBO. 1), £ € [0, 1], k=1.....m
0

F(t,9)(é) =/ K (0)[Q1(2.9(0.8)). Qa(2. (8. 6))]d0, 1 € J, § €0, 1],

g 9)(E) = [* Ki(0.9(0)(E)d0, 1€ J, € €0,1],
yO)(§) =v(t.§), 1€, §€0,1],
¢(0)(§) = v0(0.6), 0 <0, £ €[0,1].
Then problem (10.1)—(10.3) is an abstract formulation of the problem (10.15)—
(10.19) with F compact and convex values, and it is upper semi continuous (see

[101]). Assume that there are p € C(J,R™) and ¥ : [0, 00) — (0, o0) continuous
and nondecreasing such that

max(|Qi (1, y)]. 1Q2. ) = pOY(|y). r€J, and y € R.

Under suitable conditions, the problem (10.15)—(10.19) has by Theorem 10.7 a
solution on (—o0, b] x [0, 1].
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10.4 Controllability of Impulsive Semi-linear Differential
Inclusions in Fréchet Spaces

In this section, we use the extrapolation method combined with a recent nonlinear
alternative of Leray-Schauder type for multi-valued admissible contractions in
Fréchet spaces to study the existence of the mild solution for a class of non-densely
defined first order semi-linear impulsive functional differential inclusions with finite
delay in the semi-infinite interval J := [0, 00), and with single valued jump. More
precisely we consider the first order semi-linear impulsive functional differential
inclusions of the form:

Y () —Ay(t) € F(t,y:) + Bu(?t), a.e.t € \{t1,t2,...} (10.20)
Ayli=y = LO(5)), k=1,..., (10.21)
y() =¢(@), t€H, (10.22)

where J := [0, 00), F : J x D — P(E) is a multi-valued map with compact values,
(E.|-1), D, P(E),B, u(:), ¢, y; are as in the above section and A : D(A) CE — E'is
a non-densely defined closed linear operator on E

Let Ay the dense part of A, and let (7(7)),>0 the strongly continuous semigroup
generated by Apdefined on Xy = D(A)and let (T (?)),>0 the extrapolated semigroup
of (To(?));>0 Whose generator is (A1, D(A})).

10.4.1 Main Result

We shall consider the space

PC = {y i [-r,00) > E: y(t) is continuous everywhere except for some

f atwich y(60), y() exist with y(re) = y(r7) k= 1... }

Set

={:[-r,o0) > E:yePCND}

Definition 10.11. We say that the function y € 2 is a mild solution of system
(10.20)—(10.22) if y(r) = ¢ (¢) for all r € [—r, 0], the restriction of y(-) to the interval
[0, 00) is continuous and there exists v(-) € L! ([0, 00), E), such that v(z) € F(z,y,)
a.e [0, 00), and such that y satisfies the integral equation,

y(t) = To(H)e(0) + /0 Ti(t — s)v(s)ds + /0 T\ (t — s)Buy(s)ds

+ > Tt — (). 0=t < oo. (10.23)

O<ty<t
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Definition 10.12. The system (10.20)—(10.22) is said to be infinite controllable on
the interval [—r, c0)\{#}, k = 1,... if for every initial function ¢ € D and every
y1 € E, and for each n € IN, there exists a control u € L([0, #,], U), such that the
mild solution y(¢) of (10.20)—(10.22) satisfies y(t,) = y;.

Let us introduce the following hypotheses:

(10.12.1) The function F : J x £ — P,,(E) is an L'-Carathéodory map.
(10.12.2) There exist a function p € L'(J,R4) and a continuous nondecreasing
function ¢ : [0, c0) — [0, 00) such that

|F(t,x)|| < p®O)¥(||lx||lp) fora.e.t e Jandeachx e D,

[ e

(10.12.3) There exists M > 0 such that

with

|71 (2) sy < M for each ¢ > 0.
(10.12.4) For all R > 0 there exists Iz € L] ([0, 00), R+) such that
Hy(F(t,x), F(t,%)) < [r(®)||x —X||p forall x, X € D with ||x]|, |X]| <R,
and
d(0,F(t,0)) < Iz(r) forae. t€J.
(10.12.5) There exist constants ¢, > 0,k = 1, ..., such that

[Ix(y) — I (x)| < cxlx —X| foreach x,x € E.

(10.12.6) For every n > 0, the linear operator W : L*(J,, U) — E (J, = [0,t,]),
defined by

tn
Wu = / T(t, — s)Bu(s)ds,
0

has a bounded inverse operator W™! which takes values in Lz(JﬂU)\
KerW, and there exist positive constants M, M, such that |B|| < M and
W=l < M.

o0
Theorem 10.13. Assume that hypotheses (10.12.1)—(10.12.6) hold. If M Z <1,
k=1
then the IVP (10.20)—(10.22) is infinite controllable on [—r, 00).
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Proof. Using hypothesis (10.12.6) for each y(-) define the control

(1) = W | y1 = T(t,)$ (0) — /Otn T(tn — s)v(s)ds

= Y T(s = )LGE)) | (0.

O<tr<s
where
veESr, ={velL'(J,E):v(t) e F(t,y,) a.et € J},

We shall now show that when using this control, the operator N : 2 — P(£2)
defined by

¢([)7 iftGH,

10O + [ 1= 9(s)ds

NG) = {heR: ()= ' 0

+/ Ty (t — s)(Buy)(s)ds
0

+ > Ti(t = L) ift e,

O<p <t

has a fixed point. This fixed point is then the mild solution of the IVP (10.20)-
(10.22)

We define on §2 a family of semi-norms, thus rendering 2 into Fréchet space.
Let 7 be sufficiently large, then Vn € IN we define in £2 the semi-norm:

Iylln = sup{e™ Oy : —r < 1 < 1},
where
t A
L, = / L, (s)ds,
—-r
with
0, ifteH,

(1) = S _
L(O[M?M Mit, + M) + M*M M, Y cp,  ift €[0.4,],
k=0
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Thus 2 = U §2,, where

n>1
2, = {y o] > E: ye DﬂPC,,(J,E)}
and
PC, = {y :[0,t,] > E: y(¢) is continuous everywhere except for some
te atwich y(r). y(r) exist with y(1) = y() k= 1,...n— 1}

Then £2 is a Fréchet space with the family of the semi-norms {||. ||, }nev-

Now, using the Frigon alternative, we are able to prove that the operator N has a
fixed point.

Lety € AN(y) for some A € [0.1], and for some v € Sg,. For each n € IN and
t € [0, t,] we have:

y() = A |:T0(t)¢(0) + fo Ti(t — s)v(s)ds + fo T\ (t — s)Buy(s)ds

+ ) Tt — ()

O<ty<t

then, we have

@O < ITollligllo + / ITi(t = 9)[[v(s)llds + f I Ty (¢ — 5)||Buty(s) | s
0 0
+ Y T = L))

o<y <t

< Mlgllp +M [ PV (lysds + M / 1811y s) s

+M Y L OE)]

k=1

W | yi — To(t,)$(0)

§M||¢||D+M/O p(s)lﬂ(||ys||)ds—i—MM/0

- /O Ty — v — Y T — k) | )]s

O<tr<t

+M Y LG ()]

k=1
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= Ml¢lp +Mf0 p(S)W(IIySII)derMMATl/O il + 7o @) 9 O]

M /0 "y de +M S GG | ds

O<tn<s
+M L ((5))]
k=1
t
<M|plp+M /0 P (Ilysll)ds + MM Mit,|y:| + MM Mit,M|¢| p

MM v, /0 P (ly. d + M?F 1, / S IG()lds

0 O<t<s

+M Y G,

k=1

It follows that

[y(0)| < MM Mitalyi| + [M + MM My, |61l

o+ 0500 [ ptorui s

M, / S L) lds + M Y IO
O<fr<s k=1

< MM Mt,|y| + [M + MM A_llrn]ll¢lly
o t

M+ 02530 [ porwndias
0

MM, /0 S (KOG — 1(0)] + 11(0))ds

O<tr<s

+M Y (IG:(50) = 1(O)] + [1(0)])
k=1

< MM Mtylya| + [M + MV Mo, |11l
t

v b [ powinas
0

MW T, /0 S 1O — 1(0)ds

O<fp<s
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+M Y G — ()] + MM M, /0 S 11(0)lds
k=1

O<n<s
+M Y |1(0)
k=1
< MM Mty | + M + MV 16 1

+[M + MM Mt,] Y 10
k=17

t r
+[M + ¥, | / ()Y (lysll)ds + MM M / D clv(i)lds
0 0 k=1

MY eyt

k=1
Set
C = MM Mitalyi| + [M + MMM 16 1o + [ M + MMM 3 11(0)].
k=1

Now, we consider the function p defined by:
(o) = sup{ly(s)| : —r < s <11 <1,

Let t* € [—r, t,,] such that u(7) = |y(t*|
It is clear that:
if * € H, then u(t) = ||¢llp
if r* € [0, t,], we have for each ¢ € [0, t,]

u(0) < €+ [M + M1, 01, fo PV (1)ds

n

+M2A_4A71/0f Z crp(s)ds +MZC/</,L(Z‘).

O<tr<s k=1
Then

[1 M Z ck] 1w(t) < C + [M + M%M] / D)V (u(s))ds

k=1 0

t
+M2A_4V1/ Z cri(s)ds.
0

O<t<s
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Thus we have

pto = €+ [ 616 (169 + o))

where
C
= ——,
1— Mzck
k=1
and
~ 1 _ _
M) = ———— [M MM Mltn]p(s) + MMM Y o

I—MZCk
k=1

Let us take the right-hand side of the above inequality as v(f), then we have:

v(0) =Ci, u() =<v@  Vrel0.1]
and

v (1) = M@ (1) + ¥ (1))

Using the nondecreasing character of vy, we get:

v (1) < M@O)(0(1) + Y (v(0))aet € [0,1,].

This implies that for each ¢ € [0, ¢,]

v() ds
/(0) s+ W(S) - / M(s)ds < /(0) s+ Y(s)

Thus from (10.12.2) there exists a constant M,, such that
v(t) < M,, Vit e [0,1,]

From the definition of w, we conclude that

sup{ly(®). r € [0.8,]} <M

299
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Set
Up={ve Ibln=M+1f
Clearly Uj is a closed subset of £2,,. We shall show that N : Uy — P(Up) is a

contraction and an admissible operator.
First, we prove that N is a contraction; that is, there exists y < 1, such that

Hy(N(),N(y*)) < yly—y*ll». foreach y,y* € Up.

Let y,y* € Uy and h € N(y). Then there exists v(¢) € F(¢,y;) such that for each
t € [0,1,)

h(t) = To(1)e(0) + /t Ti(t — s)v(s)ds + /t T\ (t — s)Buy(s)ds
0 0
+ Z Ti(t — ) L (v(5)-

O<t <t

From (10.12.4) it follows that

Hence there exists v* € F(t,y]) such that
[v(@) —v*()] < @)y —y; b, VYt €0,2,].

Let us define V¢ € [0, 1,]

h*(l) = To(l)¢(0) + /t T, (f — s)v*(s)ds + /t T, (l — S)Buy* (s)ds
0 0
+ Z Ty (t — )L (" (7).

O<ny <t

Then we have
b0 =101 = | [ 116 =916 = v 6ds + [ 120 B, ~ u)0las
0 0

+ Y T - 0ROE) — LS )]

O<t <t
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t t
M / L(5)llys — y7 s + M / 1, (5) — 1y (5)]dls
0 0

+M Y aly(t) =y

O<n <t

t
<M / L) s — v ods
0

oyt » tn ~ .
~|—MM/0 w [/0 Tt — 1)[v(r) —v*(1)]de
+ Y Tl OROE) — v @) ||as

O<tr<t
+M Y ely(t) =y ()]

O<n <t

t
<M / L()lys — v ods
0
o t
MM o, [ L()ys — ¥ lpds
0

t
AT [ Y aly) -y @lds

O<tr<s

+ Y aly() =y ()lds

O<t <t

t
< [ 023300 [ 1,60l 57 s
0

t
AT Y aly) =y @lds

O<tr<s

+ D alv@) =y ()l

o< <t

t
< [ arit ] [ ety -y s
0

t
AR [ 0 Y ey = lads
0

O<tr<s

+Me™ D " erlly = y*[luds.

O<n <t
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which gives:

t
|h(t) — h*(1)] < | 3 / Ii(s)e™Ods + Me™™ O 3" ¢ | [ly —y* [l
0 O<p <t
- .
< _eth(x)|6 + Mean(t) Z Ck:| ”y N y* ”n
_T k=1
[ 3 3 "
< _eTL"(t) - —+ MefL"(t) ch ”y _y*”n'
T T =1

As 7 is sufficiently large, thus
* 3 § L, (1) *
() = @ < | 2+ MY e | Oy =y
t k=1
Then, it follows

_ 3 -
|h(t) — h* ()] < [; +Mch] ly = y*[ln-

k=1

Therefore,

3 n
Ih—h*|l, < [; +Mch} R
k=1

By an analogous relation, obtained by interchanging the roles of y and y*, it
follows that

3 n
Hy(N(y).N(")) < (; + MZCk) Iy =" lln-
k=1

So, N is a contraction.
Now, N : 2, = P.,(82,) is given by

0, ifte H,

/lTl(t—s)v(s)ds
0

N(y) =3he2,:h() = t
) ) ( +/0 Ty (t — 5)(Buy) (s)ds

+ ) M= wLG)),  ifre (0,5,

O<p <t
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where v € Sp. = {u € L'([0,1,], E) 1 u € F(t,y,) a.e. t € [0,1,]}. From (10.12.4)-
(10.12.6) and since F is compact valued, we can prove that forevery y € §2,, N(y) €
Pep(82,), and there exists y* € §2, such that y* € N(y*). Let h € £2,, y* € U and
e > 0. Now, if y € N(y*), then we have

1" = 3lln < 1y* = Alln + 13 = Alla-

Since £ is arbitrary we may suppose that & € B(y,¢) = {k € 2, : ||k — Y|, < &}.
Therefore,

1" =3ln = 1y* = NGl + &.

On the other hand, if y &€ N(y*), then ||y — N(y*)|| # 0. Since N(y*) is compact,
there exists x € N(y*) such that ||y — NOy*)||l, = ||y — x||,,. Then we have

Iy* = xlln < Iy* = Alla + lx = Alla.
Therefore,
Iy* = xlln < [Iy* = NGl + &

So, N is an admissible operator contraction. Finally, by Lemma 1.27, N has at least
one fixed point, y, which is a mild solution to (10.20)—(10.22). O

10.4.2 Example

As an application of our above result, we consider the following impulsive partial
functional inclusion,

8Zg;x) —dAZ(1,%) € F(t—r,x) + Bu(t), ae.1€ M\t 1, .. box € 2 (10.24)
bz(ty,x) = 2(6h) —z2(t7), k=1,...,x € 082 (10.25)

2(t,x) =0, t€[0,00)\{t1.12,...},.x € 2 (10.26)

2(t,x) =¢(t,x), teHxeR (10.27)

where d,r,b; are positive constants, £2 is a bounded open in IR" with regular
boundary 0£2, A = iaa—;, ¢ € D={y : Hx 2 — IRy is continuous

i=1
everywhere except for a countable number of points at which ¥ (s7), ¥ (st) exist
with Y (s7) = ¥(s), and [y (0,x)| < 00}, 0 =1) <) < th < -++ < by < -+,
+ ; — ; . n
() = lim z2(ty + h,x) 2(t,) = Iim z(tx — h,x), F :[0,00) X IR" —
(D) polm (1 )2(5) ol (t ), F 110, 00)
P(IR") is a multi-valued map with compact values.
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Consider E = C(£2,1R") the Banach space of continuous functions on £2 with
values in IR", y(t) = z(t,.). Let A the operator defined in E by Ay = dAy, Ii :
E — D(A) such that I, (y(#;,)) = biy(; ), then the problem (10.24)—(10.27) can be
written as

Y (t) — Ay(t) € F(t,y;) + Bu(t) ae.t € J\{t1,h,...}, (10.28)
Ayl = L)) k€ {1.2,..} (10.29)
y@) =¢@) teH (10.30)

We have,

D@A)={y: yeE AyeE and ye =0}
and
Xo=D@A)={y: y€E, yho=0#E
So, we can apply the extrapolation method.

It is well known from [100] that A satisfies the properties:

1) (0,00) C p(L)
ii) |[R(A,A)| < 1 for some A >0

It follows that A satisfies (Hy).
Also from [106], the family

To(f(s) = (4m) 7 [ T f(o)dr

IR"

fort > 0, s € R", and f € X, with T(0) = I, define a strongly continuous
semigroup on E, its generator Ay coincides with the closure of the Laplacian
operator with domain Xy, and there exist constants Ny > 0,0 > 0 such that
IToll < Noe“" for ¢ > 0.

Thus under appropriate conditions on the function F and the operator B as those
mentioned in hypotheses (10.12.1)-(10.12.6) the problem (10.24)—(10.27) has at
least one mild solution.

10.5 Notes and Remarks

The results of Chap. 10 are taken from Abada et al. [1, 3]. Other results may be
found in [54, 74, 107].



Chapter 11
Functional Differential Inclusions
with Multi-valued Jumps

11.1 Introduction

In this chapter, we are concerned by the existence of mild solutions of functional
differential inclusions with delay and multi-valued jumps in a Banach space.

11.2 Semi-linear Functional Differential Inclusions with
State-Dependent Delay and Multi-valued Jump

11.2.1 Introduction

In this section, we shall be concerned with the existence of integral solutions defined
on a compact real interval for first order impulsive semi-linear functional inclusions
with state-dependent delay in a separable Banach space of the form:

Y (1) € Ay(t) + F(t.ypyy). t€1=1[0,0], (11.1)
Ay(t) € I(y,), k=1,2,....m, (11.2)
y(#) = ¢, te(-00,0] (11.3)

where F : J x D — E is a given multi-valued function, D = {{ : (—00,0] —
E,y is continuous everywhere except for a finite number of points s at which
v(sT), ¥ (s+) exist and ¥ (s7) = ¥ (s)}, ¢ € D,where D is the phase space
that will be specified later (0 <r <00),0 =ty < 1] < --+ < by < byt = b,
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I, :D—>E(k=12,....,m),p:IxD — (—00,b],A: DA) C E — Eis
a non-densely defined closed linear operator on E, and E a real separable Banach
space with norm |.|.

11.2.2 Existence of Integral Solutions

In this section, we will employ an axiomatic definition for the phase space D which
is similar to those introduced in [142]. Specifically, D will be a linear space of
functions mapping (—oo, 0] into E endowed with a semi norm ||.||p, and satisfies
the following axioms introduced at first by Hale and Kato in [132]:

(A1) There exist a positive constant H and functions K(-), M(-) : Rt — R¥
with K continuous and M locally bounded, such that for any b > 0, if
y : (—=00,b] — E,y € D, and y(-) is continuous on [0, b], then for every
t € [0, b] the following conditions hold:
(i) y;isin D;
() [y®| = H|ly:lp:
(i) [lyillp < K@) sup{ly(s)| : 0 < <1} +M(®)|yollp, and H, K and M are

independent of y(-).

Denote
K, = sup{K(t) : teJ} and M), = sup{M(¢t) : t € J}.

(A) The space D is complete.

11.2.3 Main Results

Before starting and proving our main theorem for the initial value problem (11.1)—
(11.3), we give the definition of the integral solution.

Definition 11.1. We say that y : (—oo,b] — E is an integral solution of (11.1)-
(11.3) if y(r) = ¢(¢) for all r € (—o0,0], the restriction of y(-) to the interval
[0, b] is continuous, and there exist v(-) € L'(J;, E) and Z; € I;(y(t)), such that
v(t) € F(t,yo1y,) a.€ t € [0, D], and y satisfies the integral equation,

1) y(@) = ¢(0) —i—A/oty(s)ds + /Otv(s)ds + Z S't—t)Iy, tel.

O<ty<t

(ii) / y(s)ds € D(A) fort € J,
0
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From the definition it follows that y(tf) € D(A), for each t > 0, in particular
¢(0) € D(A). Moreover, y satisfies the following variation of constants formula:

y(t) = S'(H)p(0) + %/ZS(t—s)v(s)ds + Z S(t—t)Iy t>0. (11.4)

0 O<t <t

We notice also that if y satisfies (11.4), then

y(t) = S' ()¢ (0) + Ali)r&fots'(t—s)mv(s)ds + Z S (t—t)Iy, t>0.

O<ny <t

we always assume that p : I x D — (—o0,b] is continuous. Additionally, we
introduce following hypotheses:

(Hep) The function t — ¢, is continuous from R(p~) = {p(s, @) : (s,9) €
J x D, p(s,¢) < 0} into D and there exists a continuous and bounded
function L? : R(p~) — (0, 00) such that ||¢;||p < L?(¢)||¢|p for every
teR(p).
(11.1.1) A satisfies Hille—Yosida condition;
(11.1.2) There exist constants ¢, > 0, k = 1, ..., m such that

Hy(Ie(y). ()| = cxly — x| foreach x,yeD.

(11.1.3) The valued multi-valued map F : J x D — E is convex and Carathéodory;

(11.1.4) the operator S'(¢) is compact in D(A) wherever ¢ > 0;

(11.1.5) There exist a function p € L'(J,Ry) and a continuous nondecreasing
function ¥ : [0, 00) — (0, 00) such that

|F(t,x)|lp = sup{|v| : v € F(t,x)} < p()¥ (||x||p) fora.e.r € Jand eachx € D,
b
With/ e “p(s)ds < o0,
0

[(My + L? + MK})||§]lp + Ky |u
t

c1+ ¢ [ ep(s)y (Kpu + (My + L + MK,)||¢|p) ds
0
(11.5)

lim sup
u—>—+00

> 1,

where

ce®?K,

1= + (My + L + MK,) |9l (11.6)

m
1 —Mewab Z Cr
k=1
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and

1 [1I(0)| + ek (My + L? + MK3) l|¢llp] - (11.7)

m
cC =

k
0 = — MK (11.8)

m .
1—Me®bKp, Y ok
k

=1
The next result is a consequence of the phase space axioms.
Lemma 11.2 ([139], Lemma 2.1). Ify : (—oo,b] — E is a function such that
yo = ¢ and y|; € PC(J : D(A)), then
Iysllo < My +L?) 1§ llp + Kasup{lly(@)[l; 6 € [0, max{0,s}]}, s € R(p7)UJ,

where L? = sup,er(,—) L? (1), My = sup,e; M(t) and K, = sup,c; K().
Theorem 11.3. Assume that (Hp) and (11.1.1)~(11.1.5) hold. If

Me®"K,, ch <1, (11.9)
k=1

then the problem (11.1)—(11.3) has at least one integral solution on (—oo, b].

Proof. Consider the multi-valued operator:
N:PC ((—oo, b, D(A)) — P(PC ((—oo, b, D(A))) defined by

o (1), if 1<0,

— S'$©0) + 4 IS(t — s)v(s)ds
N(y) = {h € PC((—o00,b],D(A)) : h(t) = 0

+ Y S (=0T v € Spyy, - Tk € L))
O<t <t

if reJ,
For ¢ € D define the function ¢ : (—oo, b] — E such that:
¢ (), ifr<0

pt=
S'(Hep(0), if rel.
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Then ¢y = ¢. For each x € B, with x(0) = 0, we denote by ¥ the function defined by

0, te(—00,0],
x(1) =
x(),teld,

We can decompose it as y(1) = ¢(1) + x(t), 0 < < b, which implies y, = ¢, + x;,
for every 0 < t < b and the function x(.) satisfies

d t
x(t) = E/o S(t — s)v(s)ds

+ Z S(t—t)I tel,

O<ty <t

where:

v(s) € Sy, and Ty € Iy (v, + ) Let

possi) T Pntsns 4
Bgz{xel?b: xo =0 € D}.
For any x € B)) we have
lxlls = llxollp + sup{|x(s)| : 0 < s < b} = sup{|x(s)| : 0 <'s < b}.

Thus (BY, || - ||») is a Banach space. We define the two multi-valued operators A, B :
B) — P(B)) by:
0, ift € (—o0,0];
— 0. — _
A(x):=qh € Bh : h(t) Z S’(t—tk)Zk, T €Iy (xtk + ¢u) , ifred,

O<tr<t

and

e

if 1€ (—o00,0];

B(x):=he B :h(t) = ;

o | SE—s)v(s)ds.v(s) €S

if telJ.
dt Jo

oxs+65) T Potsxs+65)

Obviously to prove that the multi-valued operator N has a fixed point is reduced
that the operator inclusion x € A(x) + B(x) has one, so it turns to show that the
multi-valued operators .4 and B satisfy all conditions of Theorem 1.32. For better
readability, we break the proof into a sequence of steps.
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Step 1: A is a contraction. Let x|, x, € B). Then for ¢ € J

Hy (A(x1), A(x2)) = Hy Z S'(t— t)I(x) + bu)s

O<t <t

DS (-t I, + )

O<ty<t

< Me?? 3 |L(xl) = L2

o< <t

m

< Me®” Z Ck“lek — x,zk o
k=1

m
< Me‘”th ch ||X] —x2||D .
k=1

Hence by (11.9) A is a contraction.

Step 2: B has compact, convex values, and it is completely continuous. This will
be given in several claims.

Claim 1: B has compact values. The operator B is equivalent to the composition
L o Sp on L'(J,E), where £ : L'(J,E) — B} is the continuous operator
defined by

L)) = dit/otS(t—s)v(s)ds, tel.

Then, it suffices to show that £ o S has compact values on Bg.

Let x € B? arbitrary and v,, a sequence such that v,(7) € S . _,a.e.
b y n 5eq n(0) € S Fottxi+d0 T Potex+dn)

t € J. Since F (t,xp(m i) T @ (x4 q;’)) is compact, we may pass to a subsequence.
Suppose that v, — v in L} (J, E) (the space endowed with the weak topology),
where v(r) € .F (t,.xp(t!xt 430 T Dot +q3,))’ a.e. t € J. An application of Mazur’s
theorem [185] implies that the sequence v,, converges strongly to v and hence v(z) €
SF;"p(nx,ﬂx) s’ From the continuity of L, it follows that Evfl(t) —> Lv(r)
pointwise on J as n — oo. In order to show that the convergence is uniform, we
first show that {Lv,} is an equi-continuous sequence. Let 71, 7, € J, then we have:

d [m
L (on(11)) — L(vn(12))] = ‘z /0 S(r1 — $)vn(s)ds

d [7
—d—t/; S(t2 — s)vu(s)ds
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< | tim / 1851 = 5) = (52 — )| Brva(s)ds

A—00 0

+

»
lim/ S'(ty — $)Byv,(s)ds
2

A—00

As 11 — 1, the right-hand side of the above inequality tends to zero. Since S'(z)
is a strongly continuous operator and the compactness of S'(¢),# > 0, implies
the uniform continuity (see [16, 168]). Hence {Lv,} is equi-continuous, and an
application of Arzéla-Ascoli theorem implies that there exists a subsequence which
is uniformly convergent. Then we have Lv,, — Lv € (£ o Sf)(x) as j > oo, and

so (£ o Sr)(x) is compact. Therefore B is a compact valued multi-valued operator
on BY.

Claim 2: B(x) is convex for each z € DY. Let hy,hy € B(x), then there exist

v,V €S = , such that, for each ¢t € J we have
! 2 F'xﬁ(t.Xrer;x)+¢p(t--\‘t+q;r)

0, ift € (—o0, 0],
hi(t) = [ ,i=1,2.
% /(; S(it—s)vi(s)ds iftel,
Let 0 < § < 1. Then, for each ¢ € J, we have
0, if t € (—00,0],

@S+ (A=) () = ,
& /0 S(t—9)[v1(s) + (1 —8)va(s)]ds  ifreJ.

Since F has convex values, one has
Shy + (1 = 8)hy € B(x).

Claim 3: B maps bounded sets into bounded sets in 5
Let B, = {x € BY : |lx|l» < ¢} ¢ € R a bounded set in ).

It is equivalent to show that there exists a positive constant / such that for each
x € B, we have || B (x)||, < I. So choose x € By, then for each & € B(x), and each

x € B,, there exists v € § oz _ . such that
e FXpidn T Potes+d0

d t
h(t) = = /0 S(t — s)v(s)ds.
From (A) we have

1% vy + Ponrin D < Kog + My + L)l D + KsM|$(0)] = g
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Then by (11.1.6) we have

t
()] < M (q) / O p(s)ds = .
0
This further implies that
Il < 1.

Hence B(B) is bounded.
Claim 4: B maps bounded sets into equi-continuous sets.

Let B, be, as above, a bounded set and 2 € B(x) for some x € B. Then, there

existsv € S Lz _ . such that
F X480 T Pot+dn)

h(t) = d%/:S(t—s)v(s)ds, teld.

Letty, 5 € J\{t1,f2, ..., tn}, T1 < T2. Thus if € > 0, we have

|h(z2) — h(T1)| <

Alig}o/() a [S' (12 — 5) — S’ (11 — 5)|B)v(s)ds

T
+ | lim / [S'(ta — 5) — S’ (71 — 9)]|Bv(s)ds
A—00 71—
©
+ | lim / S'(ty — 8)Byv(s)ds
A—> 7

< (g /0 IS (2 = 5) — S’ (51 — ) lap(s)ds

T

+9(g+) IS"(z2 — 5) = (71 — $) | BEyp(s)ds

T —€

(%3
MY (gx) / ¢ p(s)ds.
7

As 11 — 1, and € becomes sufficiently small, the right-hand side of the above
inequality tends to zero, since S'(¢) is a strongly continuous operator and the
compactness of S'r) for ¢ > 0 implies the uniform continuity. This proves the equi-
continuity for the case where ¢t # ;,i = 1,...,m + 1. It remains to examine the
equi-continuity at ¢ = f;. First we prove the equi-continuity at t = ¢;, we have for

some x € By, there exists v € S 4 _, such that
Ko+ TP +dr)

h(t) = dit/OlS(t—s)v(s)ds, tel.



11.2  Semi-linear Functional Differential Inclusions with State-Dependent. . . 313

Fix 8; > O such that {#, k # i} N [t; — &1, ¢ + 8;] = @. For 0 < p < &1, we have
Li—p
e =) =] < fim [ 6= =) =56 =9) Bro(o)lds

ti
MY (q) / e p(s) ds:
ti—p

which tends to zero as p — 0. Define
ho(t) = h(r), t€[0.1]
and
R h(1), ift € (t;, tiy1]

hi(t) =
h(th), if t=t.

Next, we prove equi-continuity at t = ti+ . Fix 6, > 0 such that {t,k # i} N
[t; — 82,1; + 8;] = @. Then

fz(ti) = foti T(t; — s)v(s)ds.

For 0 < u < §,, we have

IA(t; + p) — h(ty)| < Alim /ti I (8"t + o — s) = §'(t; — 9)) Byv(s)ds
—>0 Jo

ti+p

+ M (g2) / ¢ p(s) d:

The right-hand side tends to zero as  — 0. The equi-continuity for the cases 7; <
7, < 0and 11 < 0 < 1, follows from the uniform continuity of ¢ on the interval
(—00, 0] As a consequence of Claims 1-3 together with Arzeld—Ascoli theorem it
suffices to show that 5 maps B into a precompact set in E.

Let 0 < t < b be fixed and let € be a real number satisfying 0 < ¢ < t. For
X € By, we define

1—e€
he(f) = S'(€) Alingo /0 S'(t — s — €)Byv(s)ds,

where v € § Fx . Since

ot +d0 T Pota+d)

A—00

1—€
lim / S'(t— s — €)Byv(s)ds
0

< M (gs) /0 T sy,
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the set

€ B,

1—e€
lim S(t—s—e)Byu(s)ds:ves ~ X
{ A ( ) A ( ) F'xﬂ(lJrer;r)+¢P(l--¥t+<23r)

A—00

is bounded
Since S'(¢) is a compact operator for ¢ > 0, the set

He(t) = {he(r) : he € B(x)}

is precompact in E for every €, 0 < € < t. Moreover, for every & € B(x) we have

(1) — he(D)] < Me* (gx) / e p(s)ds.

Therefore, there are precompact sets arbitrarily close to the set H(f) = {h(f) : h €
B(x)}. Hence the set H(t) = {h(t) : h € B(B,)} is precompact in E. Hence the
operator B is totally bounded.

Step 3: A priori bounds.

Now it remains to show that the set
&= {xe 82 tx € AA(x) + AB(x) forsome 0 < A < 1}

is bounded.
Let x € £. Then there exist v € S

that for each t € J,

- ~and Z; € Iy (x, + ¢,,) such
F’xﬂ(fm-ﬁ-rl’t)+¢p(ur+¢r) k k( K ¢tk)

x(1) =A%/S(r—s)v(s)+k Z S (t—t) 1.
0

O<t <t

This implies by (11.1.2), (11.1.5) that, for each t € J, we have

t

0] = 206 [ POV Uty ay + e )
0

M I (x, + )|

k=1
< AMe” / e p() Y (Ky x| + My + L + M) 1) ds
0
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+AMe®! Z |Ik (er + ‘l;rk) - Ik(o)\

k=1

+AMe”" Y " |1(0)]
k=1

t

< AMe” f e p()Y (Kplx()| + My + L + MKy)$]1p) ds
0

+AMe” Y "L (0)] + AMe” > " ci (Kylx(s)| + (My + L? + MKy)|lp)
k=1 k=1

t

< ce® + Me™! /eﬂ”sp(s)l// (Kb|x(s)| + My, +L? + MK;,)||¢||D) ds
0

1K, Y e |x<r)|} .
k=1

Hence from (11.6) to (11.8) we have

t

(My + L? + MK)[|¢]l D + Kp|x(s)| < c1 + ¢ / e~ p(s)Yr (Kp|x(1)]
0

+(Mp, + L + MKy) | ¢llp) ds.
Thus

My + L? + MKy)||¢llp + Kbllxl 50

; <1.  (11.10)
c1 + ¢ [ ep(s)y (Kplx(0)| + My, + L? + MK,) | ¢l D) ds.
0

From (11.5) it follows that there exists a constant R > 0 such that for each x € £ with
||x||32 > R the condition (11.10) is violated. Hence ||x|| g0 < R foreach x € £, which
means that the set £ is bounded. As a consequence of Theorem 1.32, A + B has
a fixed point x* on the interval (—oo, b], so y* = x* + ¢ is a fixed point of the
operator N which is the mild solution of problem (11.1)—(11.3). O
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11.2.4 Example

To illustrate our previous result we consider the partial functional differential
equations with state dependent delay of the form

d 0
5,V 8) = —5v(t.8) + ma(v(t — 0 (v(1,0)). £)).

¢
£ €[0,n], t€0,D], (11.11)
v(1,0) = v(t, ) =0, 1 € [0, 5], (11.12)
v(6,8) = v(0,§), £ €[0,7], 6 € (—o0,0], (11.13)
Av(t)(E) = [1 it — s)v(s, £)ds, (11.14)

where vy : (—00, 0] X [0, 7] — R is an appropriate function, y; € C[0, c0),R), 0 <
ty <ty <---<t, <b.the functionm : [0,b)] > R,a: RxJ - R,0 : R — R*
are continuous and we assume the existence of positive constants by, b, such that
|b(t)| < by|t| + b, forevery t € R.

Let A be the operator defined on E = C([0, ], R) by

D(A) ={g e C'([0.7].R) : g(0) = 0}; Ag =g
Then
D(A) = Co([0. 7], R) = {g € C([0. 7], R) : g(0) = 0}.

It is well known from [100] that A is sectorial, (0, +00) C p(A) and for A > 0

1
[R(A,A)||pE) < T

It follows that A generates an integrated semigroup (S(¢)),>o and that ||S'(#) || pe) <
e M for t > 0 for some constant ;& > 0 and A satisfied the Hille-Yosida condition.
Set y > 0. For the phase space, we choose D to be defined by

D=C, ={¢peC((—00,0],E) :  Jim ¢"% ¢ (0) exists in E}

with norm

lpll, = 5o O]e”|¢(9)|, ¢ €C,.

€(—o00,
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By making the following change of variables

YO)(E) = v(t.£). 1> 0, § € (0. 7],
$(0)(E) = vo(0.£). 6 <0, & €[0.1],
F(t.p)(€) = m()b(p(0.£)). £ € [0.7]. ¢ € C,
p(t,¢) =1t—0a(p(0,0))

L) = [0 e(s)v(s. §)ds,

the problem (11.11)—(11.14) takes the abstract form (11.1)—(11.3). Moreover, a
simple estimates shows that

IF @ @)l < m@billgllp + bo'/?] for all (1,¢) €IxD,

/°° ds /°° ds N
_— _— OO,
1Y) 1 bis+ bym!/?

0 2\ /2
i = / (7k(s)) i) < oo
oo els
Theorem 11.4. Let ¢ € D be such that H, is valid and t — ¢, is continuous on
R(p~), then there exists a integral solution of (11.11)—(11.14) whenever

0 1/2 m
(1+(/ e‘“ds) )de< 1.
— k=1

11.3 Impulsive Evolution Inclusions with Infinite Delay
and Multi-valued Jumps

with

and

11.3.1 Introduction

In this section, we are concerned by the existence of mild solution of impulsive
semi-linear functional differential inclusions with infinite delay and multi-valued
jumps in a Banach space E. More precisely, we consider the following class of
semi-linear impulsive differential inclusions:

X (@) € A(O)x(t) + F(t,x;), t€J=1][0,b], t #1, (11.15)
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Ax|,_, € L)), k=1,....m (11.16)
x() =¢@), 1€ (—00,0] (11.17)

where {A(7) : t € J} is a family of linear operators in Banach space E generating
an evolution operator, F be a Carathéodory type multi-function from J x B to the
collection of all nonempty compact convex subset of E, B3 is the phase space defined
axiomatically which contains the mapping from (—o0,0] into E, ¢ € B, 0 = t5 <
< o0 <ty < tpyy1 = b, Iy o E — P(E), k = 1,...,m are multi-valued
maps with closed, bounded and convex values, x(t,jr) = lim;_ o+ x(tx + h) and
x(t;) = lim;,_, o+ x(# — h) represent the right and left limits of x(¢) at t = #;. Finally
P(E) denotes the family of nonempty subsets of E.

11.3.2 Existence Results

Definition 11.5. A function x € € is said to be a mild solution of system (11.15)—
(11.17) if there exists a function f € L'(J, E) such that f € F(t,x,) forae.t € J

() x(t) = TE.0)$0) + [y T(t.9)f()ds + Yoo T L(x(1)):  ae.t €
Jk=1,....,m

(i) x(1) = ¢(1), 1€ (—00.0],
with I, € Zp (x(;")).
We will need to introduce the following hypothesis which are assumed hereafter.

(A) {A(r) : t € J} be a family of linear (not necessarily bounded) operators,
A(t) : D(A) C E — E, D(A) not depending on ¢ and dense subset of E
and T : A = {(t,5) : 0 < s <t < b} - L(E) be the evolution operator
generated by the family {A(¢) : 1 € J}.

(11.5.1) The multi-function F(.,x) has a strongly measurable selection for every
x € B.

(11.5.2) The multi-function F' : (t,.) — P (E) is upper semi-continuous for
ae.teJ.

(11.5.3) There exists a function & € L!(J,RT) such that

I1FE I <@+ [|¥]z) forae.tel;
(11.5.4) There exists a function § € L'(J,R7) such that for all £2 C B, we have

x(F@t, D)) <B@) sup x(82(s)) forae.t€J,
0

—00=<s=<

where £2(s) = {x(s); x € £2} and y is the Hausdorff MNC.
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(11.5.5) There exist constants a; > 0,k = 1, ..., m such that
Il < ax, where I, € Ti(x(t])).

Remark 11.6. Under conditions (11.5.1)—(11.5.3) for every piecewise continuous
function v : J — B the multi-function F(¢,v(f)) admits a Bochner integrable
selection (see [144]).

Let
SZ;,Z{XGQZ X()ZO}.
For any x € £, we have

Ixlly = llxlz + sup [lx]| = sup [x]|.
0<s<b 0<s<b

Thus (25, ||.||») is a Banach space.
We note that from assumptions (11.5.1) and (11.5.3) it follows that the superpo-
sition multi-operator SL. : €, — P(L'(J, E)) defined by

Sp.={f € L'(J,E) : f(t) € F(t,x;), ae.telJ}

is nonempty set (see [144]) and is weakly closed in the following sense.

Lemma 11.7. If we consider the sequence (x') € R, and {f, ,Tzof Cc L'(J,E),
where f, € S}p(”xn) such that x* — x° and f,, — f° then f° € S}..

Now we state and prove our main result.

Theorem 11.8. Under assumptions (A) and (11.5.1)—(11.5.5), the problem
(11.15)—(11.17) has at least one mild solution.

Proof. To prove the existence of a mild solution for (11.15)-(11.17) we introduce
the integral multi-operator N : &, —> P (), defined as

y:y(t) = T(t,0)¢(0) + [y T(t, 5)f (s)ds
Nx) = Y 0en< T )L (x(1)), rel (11.18)

y(@) = ¢(1), t € (—o0,0],

where SIF and I € Zy(x).
It is clear that the integral multi-operator N is well defined and the set of all mild
solution for the problem (11.15)-(11.17) on J is the set FixN = {x : x € N(x)}.
We shall prove that N satisfies all the hypotheses of Lemma 1.40. The proof will
be given in several steps.
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Step 1. Using in fact that the maps F and Z has a convex values it easy to check
that N has convex values.

Step 2. N has closed graph.

Let {x" ;;o‘f, {" }n T, x" = x*, 7" € N((x"),n > 1) and 7" — z*. Moreover, let
{1120 C L'(J, E) an arbitrary sequence such that f, € SL forn > 1.

Hypothesis (11.5. 3) implies that the set {fn}+ ] 1ntegrably bounded and for a.e.
t € J the set {f; (t)} relatlvely compact, we can say that {fn 7 is semi-compact
sequence. Consequently {fn} is weakly compact in L' (J, E) SO wWe can assume
w.l.g that f,, — f*.

From Lemma 1.43 we know that the generalized Cauchy operator on the interval
J,G:LY\(J,E) = C(J,E), defined by

Gf(t) = /0 tT(t,s)f(s)ds, tel. (11.19)

satisfies properties (G1) and (G2) on J.

Note that set {f,}, +°° is also semi-compact and sequence (fn °7 weakly con-
verges to f* in L! (J E) Therefore, by applying Lemma 1.44 for the generalized
Cauchy operator G of (11.19) we have in C(J, E) the convergence Gf, — Gf. By
means of (11.19) and (11.18), for all ¢t € J we can write

z(1) = T(1,0)¢(0) + / Tt )f(s)ds + Y T )K" (1))

O<ty <t

= T(,0)$(0) + / T s + 3 TR (1)

O<tn<t

=T(1,0)$(0) + G(t) + Y T(t, )" (1))

o<t <t
where SL, and Iy € Z;(x). By applying Lemma 1.43, we deduce
2 = T(,0)¢(0) + Gf + T (., )i(x™ (1))

in C(J,E) and by using in fact that the operator S}. is closed, we get f* € SL.
Consequently

(1) > T(t.0)$(0) + Gf + T(t. Ie(x™ (1)),

therefore z* € N(x*). Hence N is closed.
With the same technique, we obtain that N has compact values.

Step 3. We consider the MNC defined in the following way. For every bounded
subset 2 C 2,
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v1(£2) = max £2), mod (£2)), 11.20
(2) = max (41(%). mod (2)) (11.20)

where A($2) is the collection of all the denumerable subsets of §2;

Y1(2) = supe X y({x(1) : x € 2}); (11.21)
r€J

where mod ¢(£2) is the modulus of equi-continuity of the set of functions £2 given
by the formula

mod ¢(£2) = hm sup max ||x(t1) —x(®)|; (11.22)

—0xe ln—nl=
and L > 0 is a positive real number chosen such that
g =M (2 sup/ ~LE=9 B (5)ds + e ch) <1 (11.23)
0 k=1

where M = sup, yea [IT(2, 9]

From the Arzeld—Ascoli theorem, the measure v; gives a nonsingular and regular
MNC (see [144])

Let {yn} °7 be the denumerable set which achieves that maximum v, (N(£2)), i.e.;

Vi (N(2)) = (Vl({)’n}n °), mod C({Yn} 7).

Then there exists a set {xn °Y C £2 such thaty, € N(x,),n > 1. Then

ya(t) = T(2,0)¢(0) + / T(t,)f (s)ds + Y Tt ) (x(1)), (11.24)

O<tp<t

where f € S} and Iy € Z;(x,), so that

Y1) = ndGhLLSY

We give an upper estimate for y; ({y, };":"f ).
Fixed ¢ € J by using condition (11.5.4), for all s € [0, 7] we have

XSRS < 0 (F(s, {xa(9)1,59))
< X({F (s, x0()) 3,8
< B(s)x(xa(s)3,23
< B(s)e™ sup e y ({xu(D}5

teJ

= B(s)e v ({0}, 2.
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By using condition (11.5.3), the set {f,,}+ | is integrably bounded. In fact, for every
t € J, we have

11 < 1F @ @)l
< a@ + [l ().

The integrably boundedness of {fn}+°° follows from the continuity of x in J; and
the boundedness of set {xn}n=1 C 2. By applying Lemma 1.45, it follows that

UGhHEIE) < 2m / B0 (1 (e, 20t

= My (%) / B(et.
Thus, we get

Y1) < i) = ni(GhHESS

— supe ™2y, (b5, 1) / B My ()2 )e“ch

teJ
=qn ({xn};j_zo?)v
(11.25)
and hence yl({xn}” °7) = 0, then yl({xn(t)} °7) = 0, for every € J. Consequently

Y} 25) = 0.

By using the last equality and hypotheses (11.5.3) and (11.5.4), we can prove that set
{f,,};r [ 1s semi compact Now, by applying Lemmas 1.43 and 1.44, we can conclude
that set {Gf,l *° is relatively compact. The representation of y, given by (11.24)
yields that set {yn}+ | is also relatively compact in £, therefore v(£2) = (0,0).
Then §2 is a relatively compact set.

Step 4. A priori bounds.

We will demonstrate that the solutions set is a priori bounded. Indeed, let x € N.
Then there exists f € Sll:(‘.x,(.)) and I; € Z;(x) such that for every t € J we have

Ix(0)] = | Tz, 0)¢(0) +/ T(t,5)f (s)ds + Z T(t, 1)L (x (1)) |

O<t <t

<M + Y Nadl) + M / Fls)ds

O<p <t

<M(I$O)] + Y llal) + M / a(s)(1 + [x[g1.]ds.

O<p <t
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Using condition (A1) we have

k@)l < MO+ ) IIakII)+M/(; a(s)(1 + Npllglls + Ky sup [[x(6)[)ds

O<n<t 0<f=s

<M(l¢pO] + D llal) + M1 + Nyllgls) el
k=1

t
—I—MK,,/ a(s) sup ||x(6)]|ds.
0

0<0<s

Since the last expression is a nondecreasing function of ¢, we have that

Sup k@)l < 1M O + Y llaxll) + M1 + Nylipllm)llerll
=0=t k=1

t
+MKb/ a(s) sup [|x(6)]ds.
0

0<f<s

Invoking Gronwall’s inequality, we get

sup [lx(9)] < gl
0<6<t

where

¢ =M + D llal) + M1 + Nylpll)lletll -

k=1 o

11.3.3 An Example

As an application of our results we consider the following impulsive partial
functional differential equation of the form

D2(t,x) € alt,x) Lyz(t,x) + [0 P(O)r(t. 2(t + 6, x))d,

x €[0,x], t €[0,b],t # 1, (11.26)

2t x) — 207 %) € [=bila(t . ). bl ).
xe0,x), k=1,....,m, (11.27)
2(t,0) = z(t,w) =0, teJ:=]0,b], (11.28)

z2(t,x) = ¢(t,x), —oco<t=<0, xe][0,n], (11.29)
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where a(#,x) is continuous function and uniformly Hélder continuous in 7,
by > 0,k = 1,....m, ¢ € D, D = {¥y : (—00,0] x [0,7] —

R; v is continuous everywhere except for a countablenumber of points at whichir
(s7), ¥ (st) existwith Y(s7) = ¥()L 0 = fh <t < fh < +++ < b, <
tnp1 = b, 2(t) = lim, 4y ot o 2t + 1, %), 2(67) = limgg—0— ) 20t + h.x),
P : (—00,0] — R a continuous function, r : R X R — P, x(R) a Carathéodory
multi-valued map.

Let

YO®) = 2(1,%), x€[0,x], 1€ =[0,b],
L)) @) = [=bele(rr 2. belz(6r . 0], x € [0.7], k=1.....m.
F(t,$)(x) = [2o P(O)r(t, 2(t + 6,.x))df
PO (x) =p(0,x), —oco<t<0,xe]0,n].
Consider E = L2[0, ] and define A(r) by A(f)w = a(t, x)w” with domain
D(A) = {w € E : w,w are absolutely continuous, w” € E, w(0) = w(rr) = 0}.

Then A(¢) generates an evolution system U(¢, s) satisfying assumptions (11.5.1) and
(11.5.3). We can show that problem (11.26)—(11.29) is an abstract formulation of
problem (11.15)—(11.17). Under suitable conditions, the problem (11.15)—(11.17)
has at least one mild solution.

11.4 Impulsive Semi-linear Differential Evolution
Inclusions with Non-convex Right-Hand Side

11.4.1 Introduction

In this section, we shall be concerned by the existence of mild solution of
impulsive semi-linear functional differential inclusions with infinite delay in a
separable Banach space E. First, we consider the following class of semi-linear
impulsive differential inclusions:

X(t) e AQ)x(t) + F(t,x;), teJ=][0,b], t #t, (11.30)
Ax|_, € L(x(5)), k=1,....m (11.31)
x(1) = ¢(@), 1€ (—00,0] (11.32)

where {A(f) : t € J} is a family of linear operators in Banach space E generating
an evolution operator, F be a lower semi-continuous multi-function from J x B to
the collection of all nonempty closed compact subset of E, B is the phase space
defined axiomatically which contains the mapping from (—o0, 0] into E, ¢ € B,
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0=t <t < - -+ <ty < tn+1 = b, I, : E - P(E), k =1,...,m are
multi-valued maps with closed and bounded values, x(t,f) = lim;,_, o+ x(tx + h) and
x(t;) = limj_so— x(# + h) represent the right and left limits of x(#) at t = #;. Finally
P(E) denotes the family of nonempty subsets of E. We mention that the model with
multi-valued jump sizes may arise in a control problem where we want to control
the jump sizes in order to achieve given objectives.

11.4.2 Existence Results

In this section, we give our main existence result for problem (11.30)—(11.32).
Before stating and proving this result, we give the definition of the mild solution.

Definition 11.9. A function x € € is said to be a mild solution of system (11.15)—
(11.17) if there exist a function f € L!(J, E) such that f € F(t, x,) for a.e. t € J and
I € Ti(x(5))

() x(t) = TE.0)(O) + [y T(t.)f ()ds + Yoo T(t. 1)L, ae.t €], k =
1,....m

(11) x(t) = ¢(t)’ re (—O0,0],
We will assume the following hypothesis

(A) {A(r) : t € J} be a family of linear (not necessarily bounded) operators,
A(t) : D(A) C E — E, D(A) not depending on ¢ and dense subset of E
and T : A = {(t,5) : 0 < s <t < b} — L(E) be the evolution operator
generated by the family {A(¢) : t € J}.

Let F be a multi-function defined from J x B to the family of nonempty
closed convex subsets of E such that
(11.9.1) (t,x) — F(.,x) is L ® Bj,-measurable (B, is Borel measurable).
(11.9.2) The multi-function F : (¢,.) — P(E) is lower semi-continuous for a.e.
tel.
(11.9.3) there exists a function o € L'(J,R*) such that

|F(t,¥)|| <a(r), forae.teld, VY € B;
(11.9.4) There exists a function 8 € L' (J,R™) such that for all D C B, we have

Y(F(t,D)) < B@) sup x(D(s)) forae.telJ,
0

—00<s<

where, D(s) = {x(s); x € D} and y is the Hausdorff MNC.
(11.9.5) There exist constants a;,c; > 0,k = 1, ..., m, such that

il < arllx|| + bk, where I € Ik(x(t,:r)).

X Uk(D)) < cxx(Ik(D)).
with 1 =M Y, _ llax| > 0.
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Remark 11.10. Under conditions (11.9.1)—(11.9.3) for every for every piecewise
continuous function v : [0, b] — B the multi-function F (¢, v(¢)) admits a Bochner
integrable selection (see [144]).

Now we state and prove our main result.

Theorem 11.11. Under assumptions (A) and (11.9.1)—(11.9.5), the problem
(11.30)—(11.32) has at least one mild solution.

We note that from assumptions (11.9.1) and (11.9.3) it follows that the superpo-
sition multi-operator

S;:® — P(L'(J,E)),
defined by
Skw =Sy ={f € L'U.E) : f(t) € F(t.x,), ae.t€l}
is nonempty set (see [144]).

Proof. We break the proof into a sequence of steps.

Step 1. The Monch’s condition holds. Suppose that 2 € B, is countable and
£2 Cco({0} U N(£2)) We will prove that £2 is relatively compact.

We consider the MNC defined in the following way. For every bounded subset
2C

vi(82) = DrenAa(é)()/l (D), mod ¢(D)), (11.33)

where A($2) is the collection of all the denumerable subsets of §2;

yi(D) = supe X y({x(r) : x € D}); (11.34)
teJ

where mod ¢(D) is the modulus of equi-continuity of the set of functions D given
by the formula

mod (D) = %im sup max |lx(f1) — x(2) | (11.35)

0 xep In—n|<é

and L > 0 is a positive real number chosen so that

t m
g =M (2 sup [ e L9 B(s5)ds + - ch) <1 (11.36)

et Jo P
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where M = sup, yea | T(2, 9)]-
From the Arzeld—Ascoli theorem, the measure v; give a nonsingular and regular

MNC (see [144])
Let {yn} | be the denumerable set which achieves that maximum v;(N($2)),
ie.;

vitN(2) = (1 (), 25), mod c((ya},29))-

Then there exists a set {x,,}” 1 C £2 such that y, € N(x,), n > 1. Then

yu(t) = T(t,0)$(0) + / T(t.s)f(s)ds + Y T(t.0)l. (11.37)

O<p <t

where f € SI. and Iy € Zx(x), so that
)/l({yn} ) = yl({an}n 1

We give an upper estimate for y, ({y,,};;"‘f ).
Fixed t € J by using condition (11.9.4), for all s € [0, 7] we have

X )52 < X (F s, ((9)1,5))
< B(s) (e (s)},2
< B(s)e™ supe o (032)

= B(s)e"y1 (1} 25

By using condition (11.9.3), the set {fn *° is integrably bounded. In fact, for every
t € J, we have

I < 1F @ @)

< a(r).

By applying Lemma 1.45, it follows that
KGO =2M [ B O (e

= 2My; ({x,}.12°) / B(t)edt.
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Thus, we get

A

Y1 (6 ,29) < vi (a2

sup e 2My, (%) [ B ds + My (e S

teJ

< gni((na;2).
(11.38)
Therefore, we have that

y1(x350) = v1(2) < 110} UN)y1 (01, 29) = g (), 27)-

From (11.36), we obtain that

Y2 = 11(2) = yilyn =y

Coming back to the definition of y;, we can see

X({xn} ) = X({Yn} ) =0.

By using the last equality and hypotheses (11.9.3) and (11.9.4) we can prove
that set {fn} is semi- compact Now, by applying Lemmas 1.43 and 1.44, we can
conclude that set {an * is relatively compact in C(J, E).

The representation of yn given by (11.37) yields that set {y,, > is also relatively
compact in C(J, E), since v; is a monotone, nonsingular, regular MNC, we have that

vi(£2) < 1@ ({0} UN(£2)) < vi(N(£2)) = vi({ya};5) = (0,0).

Therefore, §2 is relatively compact.

Step 2. It is clear that the superposition multioperator S} has closed and
decomposable values. Following the lines of [144], we may verify that S}. is
Ls.c.

Applying Lemma 1.46 to the restriction of S}. on  we obtain that there exists a
continuous selection

w:Q — L'(J,E)
We consider a map N : & — @ defined as
t
x(t) = T(t,0)¢(0) + / T(t, s)w(x)(s)ds.
0

Since the Cauchy operator is continuous, the map N is also continuous; therefore, it
is a continuous selection of the integral multi-operator.
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Step 3. A priori bounds.

We will demonstrate that the solutions set is a priori bounded. Indeed, let x € AN,
and A € (0, 1). There exists f € S} and Iy € Z;(x) such that for every t € J we have

x|l = [|AT(z,0)¢(0) + A /0 T(t,s)f (s)ds + A Z T(t, 1)y |

O<n <t

<M (||¢<0>|| Y el + ||bk||) +M f a(s)ds,
k=1 k=1 0

hence,
(1 -uy ||ak||> el < M (||¢<0)|| ESS ||bk||) .
k=1 k=1

Consequently

MO + llell + > 154D _
1=M 3 llal

So, there exists N* such that ||x|| # N*, set

C.

lxll <

U={xeQ: |x]<N*.

From the choice of U there is no x € dU such that x = AN,x for some A € (0, 1).
Thus, we get a fixed point of Ny in U due to the Monch’s Theorem. O

11.4.3 An Example

As an application of our results we consider the following impulsive partial
functional differential equation of the form

La(t.x) € a(t.x) Szt x) + [0 P(O)r(t.z(t + 6,x))d.

xe[0,7], t€[0,b].t # 1. (11.39)
265,20 — 2(6,%) € [=belz(e, ), b2t 0],

xel0n], k=1,....m, (11.40)

2,0) = z(t,m) =0, teJ:=][0,b], (11.41)

72(t,x) = ¢(t,x), —oco<t=<0, xe]0,n], (11.42)
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where a(t, x) is continuous function and uniformly Holder continuous in ¢, by > 0,
k=1,...,m, ¢ €D.

D = {¥ : (—00,0] x [0,7] — R; V¥ is continuous everywhere except for
a countable number of points at which ¥ (s™), ¥ (s) exist with ¥ (s7) = ¥ (s)},
0=ty <t <t <-+ <ty <tyyr = b, 2(t) = limg o+ 2t + h.x),
z(f;7) = limgy—©—x 2(tx + h.x), P : (—00,0] — R a continuous function, r :
R xR — Py x(R) a multi-valued map.

Let

y@®)(x) = z(t,x), x€[0,xn], teJ=]0,b],
T () (x) = [=belz(tp . %), belz(t )], xe[0,x], k=1,....m,
F(1,¢)(x) = [ PO)r(t, z(1 + 6, x))db
P(O)(x) = p(0.x), —oo<t<0, xe0,7].

Consider E = L?[0, ] and define A(¢) by A(t)w = a(t, x)w” with domain
D(A) = {w € E : w,w are absolutely continuous, w” € E, w(0) = w(rr) = 0}.

Then A(f) generates an evolution system U(t, s) satisfying assumption (11.9.1) and
(11.9.3). We can show that problem (11.39)—(11.42) is an abstract formulation of
problem (11.30)—(11.32). Under suitable conditions, the problem (11.30)—(11.32)
has at least one mild solution.

11.5 Impulsive Evolution Inclusions with State-Dependent
Delay and Multi-valued Jumps

11.5.1 Introduction

In this section, we are concerned by the existence of mild solution of impulsive
semi-linear functional differential inclusions with state-dependent delay and multi-
valued jumps in a Banach space E. More precisely, we consider the following class
of semi-linear impulsive differential inclusions:

X'(1) € A(Dx(t) + F(t. Xp(1x). t€J =10,b], t # 1, (11.43)
Ax|,_, € Tx(t), k=1,....m (11.44)
x(t) = ¢(t), te (—00,0], (11.45)

where {A(¢) : t € J} is a family of linear operators in Banach space E generating
an evolution operator, F be a Carathéodory type multi-function from J x B to the
collection of all nonempty compact convex subset of E, 5 is the phase space, which
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contains the mapping from (—o00,0] into E, ¢ € B, 0 = 1, < 11 < --- <
thy < twy1 = b, Iy : E — P(E), k = 1,...,m are multi-valued maps with
closed, bounded and convex values, x(t,jL) = lim,_, o+ x(tx + h) and x(f;) =

lim,_, o+ x(tx — h) represent the right and left limits of x(¢) att = . p : J x B —
(—o0, b].

Our goal here is to give existence results for the problem (11.43)—(11.45) without
any compactness assumption. We prove existence and compactness of solutions
set for problem (11.43)—(11.45), and we provide a conditions which guarantee the
existence of a mild solution by using a fixed point theorem du to Monch [162].

11.5.2 Existence Results for the Convex Case

In this section we shall prove the existence of mild solutions of problem
(11.43)—(11.45). We assume that the multi-valued nonlinearity of upper
Carathéodory semi-continuous type satisfies a regularity condition expressed in
terms of the measures of non-compactness. We apply the theory of condensing
multi-valued maps to obtain global and compactness of the solutions set.

We need the following definition in the sequel.

Definition 11.12. A function x € 2 is said to be a mild solution of system (11.15)—
(11.17) if there exist a function f € L'(J, E) such that f € F(t,x,(.,) fora.e.r € J

1) x(r) = T, 0)¢(0) + jo’ T(t,s)f(s)ds + ZMN Tt t)(x(t)), ae.t €
Jk=1,....,m

(i) x(r) = ¢(), 1€ (—00,0],
with Iy € Z (x(t;)).
we introduce the following hypotheses.

(A) {A(?) : t € J} be a family of linear (not necessarily bounded) operators,
A(t) : D(A) C E — E, D(A) not depending on ¢ and dense subset of E
and T : A ={(t,s) : 0 <5 <t < b} — L(E) be the evolution operator
generated by the family {A(¢) : t € J}.

(H¢) The function t — ¢, is continuous from R(p~) = {p(s,¢) : (s,¢) €
J x B, p(s,¢) < 0} into B and there exists a continuous and bounded
function L? : R(p~) — (0, 00) such that ||¢||z < L?(¢)||¢|| s for every

teR(p).

(11.12.1) The multi-function F(.,x) has a strongly measurable selection for
every x € B.

(11.12.2) The multi-function F : (¢,.) — P, x(E) is upper semi-continuous for
ae.rteJ.

(11.12.3) there exists a function € L'(J,R™) such that

1F@ v < a@@ + [[¥lls) forae.rel:
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(11.12.4) There exists a function 8 € L!(J, R™) such that for all 2 C B, we have

Y(F(t,2)) <B@) sup x(2(s)) forae.telJ,

—00<s<0

where, £2(s) = {x(s);x € £2} and y is the Hausdorff MNC.
(11.12.5) There exist constants ay, ¢, > 0,k = 1, ..., m such that
D Il < . where I, € Ti(x(5)).
2) x(I(D)) < cx (D) for each bounded subset D of E.

The next result is a consequence of the phase space axioms.

Lemma 11.13 ([139], Lemma 2.1). Ify : (—o0,b] — R is a function such that
yo = ¢ and y|; € PC(J,R), then

Iysls < My + L) |$]l5 + Ky sup{lly(D)]|: 6 € [0, max{0,s}]}, s€R(p™)UJ,
where

LY = sup LP(p).
1€R(p7)

Remark 11.14. We remark that condition (Hy) is satisfied by functions which are
continuous and bounded. In fact, if the space B satisfies axiom C, in [142] then
there exists a constant L > 0 such that ||¢||z < Lsup{||¢(0)| : 6 € (—o0,0]}
for every ¢ € B that is continuous and bounded (see [142], Proposition 7.1.1) for
details. Consequently,

supg<o ¢ (O)l

s <L
l¢rlls < 1615

l¢llg, forevery ¢ € B\ {0}.

Remark 11.15. Under conditions (H¢) and (11.12.1)—(11.12.3) for every piecewise
continuous function v : J — B the multi-function F(¢, v(¢)) admits a Bochner
integrable selection (see [144]).

Let
SZ/,Z{XGQZ X()ZO}.
For any x € 2, we have

Ixlle = llxllz + sup [lx]| = sup [|x].
<s< <s<

Thus (5, ||.||») is a Banach space.
We note that from assumptions (11.12.1) and (11.12.3) it follows that the
superposition multi-operator S;. : £, — P(L'(J, E)) defined by

Sp=4{f € L"(J,E): f(1) € F(t,Xp(1)), ae.t€J}

is nonempty set (see [144]) and is weakly closed in the following sense.
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Lemma 11.16. If we consider the sequence (x") € R, and {fn}jl'zolo c L'(J,E),
where f,, € S}p( ) such that x* — x° and f,, — f° then f° € S..
p(att)

Now we state and prove our main result.

Theorem 11.17. Under assumptions (A)—(H¢) and (11.12.1)—(11.12.5), the prob-
lem (11.43)—(11.45) has at least one mild solution.

Proof. To prove the existence of a mild solution for (11.43)—(11.45) we introduce
the integral multi-operator N : &, —> P(}), defined as

y:iy(t) = T(t,0)¢(0) + [y T(t, s)f (s)ds
N@) =1 Docna TE ) I(x(t)), tel (11.46)

y(@) = ¢(1), t € (—o0,0],

where SL and Iy € Z;(x).
It is clear that the integral multioperator N is well defined and the set of all mild
solution for the problem (11.43)—(11.45) on J is the set FixN = {x : x € N(x)}.
We shall prove that the integral multioperator N satisfies all the hypotheses of
Lemma 1.40. The proof will be given in several steps.

Step 1. Using in fact that the maps F' and Z has a convex values it easy to check
that NV has convex values.

Step 2. N has closed graph.

Let {x”}::o? C Ry, {z”};:f, X' — x*, 7" € N((*"),n > 1) and 7" — z*. Moreover,
let {f,, ;:':Of C L'(J, E) an arbitrary sequence such that f, € Sk forn > 1.

Hypothesis (11.12.3) implies that the set {f,, ;:f integrably bounded and for a.e.
t € J the set {f,,() :'=°f relatively compact, we can say that {f,, j=°f is semi-compact
sequence. Consequently {fn}j_"? is weakly compact in L!(J, E), so we can assume
that f, — f*.

From Lemma 1.43 we know that the generalized Cauchy operator on the interval
J,G:L'(J,E) — R, defined by

Gf(t) = /0 lT(t,s)f(s)ds, tel (11.47)

satisfies properties (G1) and (G2) on J.

Note that set {fn}::? is also semi-compact and sequence (fn):':c’i> weakly con-
verges to f* in L'(J, E). Therefore, by applying Lemma 1.44 for the generalized
Cauchy operator G of (11.19) we have the convergence Gf, — Gf. By means of
(11.19) and (11.18), for all t € J we can write

50 = T090) + [ T+ 3 TC1R(w)

o<t <t
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= 10060 + [ Tasfds+ Y T00RE )

O<n <t

= T(1,00$(0) + Gf(t) + Y T(t,t)L(x" (1)),

o<t <t

where Sk, and I € Zi(x).
By applying Lemma 1.43, we deduce

2 = T(,0)¢(0) + Gf + T(., )Ii(x™ (1))

in £, and by using in fact that the operator S} is closed, we get f* € SL.
Consequently

(1) > T(t.0)¢(0) + Gf + T(t. Ie(x™ (1)),

therefore z* € N(x*). Hence N is closed.
With the same technique, we obtain that N has compact values.
Step 3. We consider the MNC defined in the following way. For every bounded
subset 2 C 2,

v1(82) = Qma(%)(m(f?), mod ¢(£2)), (11.48)

€A

where A(S2) is the collection of all the denumerable subsets of £2;

Y1(2) = supe M y({x(1) : x € 2}); (11.49)
teJ

where mod ¢(£2) is the modulus of equi-continuity of the set of functions 2
given by the formula

mod ¢(£2) = glm sup max |x(¢;) —x(%)]l, (11.50)

—0xe@ In—n|<s8

and L > 0 is a positive real number chosen such that

t m
g=M (2 sup/ e~ B(s)ds + eL’ch) <1 (11.51)
0

el pat

where M = SUP(; en Tz, 5)|.

From the Arzeld—Ascoli theorem, the measure v; gives a nonsingular and regular
MNC (see [144]).
Let {y,} :f:"f be the denumerable set which achieves that maximum vy (N(£2)), i.e.;
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vi(N($2)) = (i (i}, 29), - mod c({ya},29)).
Then there exists a set {xn}+ C £2 such thaty, € N(x,), n > 1. Then
yu(t) = T(1,0)¢(0) + / T(t)f(s)ds + Y T(t. t)L(x(1)). (11.52)
O<ti<t

where f € Sk and I, € Z;(x,), so that

N2 = neGHIE

We give an upper estimate for y; ({y, }:‘:o? ).
Fixed t € J by using condition (11.12.4), for all s € [0, f] we have

AAHONED) < X (F s, {xa()312D))
< (F (s X () 1,55
< B(s) ()33
< B(s)e" sup e (032

= B(s)e"y1 (fn} 27

By using condition (11.12.3), the set {fn 7 is integrably bounded. In fact, for every
t € J, we have

121 < 1F @ @)l
< a@ + [l ().

The integrably boundedness of {f,,}Jroo follows from the continuity of x in J; and
the boundedness of set {)c,,}+ . C §2. By applying Lemma 1.45, it follows that

UGhHEIE) < 2m / B0 (1 (0t

= My ()0 / Bet.
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Thus, we get

A

Y1 2) <= i) = ni(GhR()},SS

supe 20y (5,32) [ O by (.12 )euzck

teJ

< gn(xn2), (11.53)

and hence yl({xn} °7) = 0, then yl({xn(t)}n °7) = 0, forevery r € J. Consequently

Yi(ahss) = 0.

By using the last equality and hypotheses (11.12.3) and (11.12.4) we can prove
that set {f,, > is semi- compact Now, by applying Lemmas 1.43 and 1.44, we can
conclude that set {an} is relatively compact. The representation of y, given by
(11.24) yields that set {y,,};l":1 is also relatively compact in £, therefore v;(§2) =
(0,0). Then £2 is a relatively compact set.

Step 4. A priori bounds.

We will demonstrate that the solutions set is a priori bounded. Indeed, let x € N.
Then there exists f € S}; and I;, € Z;(x) such that for every t € J we have

Ix0) | = | 7.0 (0) + /0 T ()ds + Y Tt 10Lx(w)]

o<t <t

<M (||¢<0>|| + Zak) +M [ f(s)ds

k=1
m b
<M (||¢<0)|| + Zak) +M /0 o(5) (1 + 12l o s
k=1

Using Lemma 11.13, we have

x| < M <||¢><o>|| + Zak) +M / a(s)(l + My + 19915

k=1

+ Kp sup IIX(Q)II)dS

0<6<s

=M <||¢>(0)|| + Zak) + M+ My + L) $lls) el )

k=1

t
+MK;,/ a(s) sup |x(0)]|ds.
0

0<6<s
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Since the last expression is a nondecreasing function of ¢, we have that

sup [lx(0)[| =M <||¢(0)|| + Zak) + M1+ My + L) $l5) el )

0<0<t k=1

t
+MK;,[ a(s) sup |x(0)]ds.
0

0<0<s

Invoking Gronwall’s inequality, we get

sup [x(8)]| < g1 luton,
<0<b

where

(=M (||¢(0)|| + Zak) + M1+ My + L) |pl8) el 1)

k=1

11.5.3 Existence Results for the Non-convex Case

This section is devoted to proving the existence of solutions for (11.43)—(11.45)
with a non-convex valued right-hand side. Our result is based on Monch’s fixed
point theorem combined with a selection theorem due to Bressan and Colombo (see
[86]). We will assume the following hypotheses: Let F be a multi-function defined
from J x B to the family of nonempty closed convex subsets of E such that

(11.18.1) (t,x) — F(.,x) is L ® B,-measurable (B, is Borel measurable).

(11.18.2) The multi-function F : (¢,.) — Py(E) is lower semi-continuous for a.e.
teld,

(11.18.3) there exists a function € L'(J,R™) such that

|F(t, ¥)|| <a(f), forae.tel, VY € B;
(11.18.4) There exists a function B € L'(J, R™) such that for all £2 C B, we have

x(F(t,82)) < B(t) sup y(£2(s)) forae.teJ,

—00<s<0

where, £2(s) = {x(s); x € §2} and y is the Hausdorff MNC,
(11.18.5) There exist constants a;, by, c, > 0,k = 1, ..., m, such that
D 4l < allxll + b, where I € Ti(x(5)).
2) x(Ix(D)) < ¢ x(D) for each bounded subset D of E.

Now we state and prove our main result.
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Theorem 11.18. Assume that (A)-(H¢) and (11.18.1)—(11.18.5) hold. If
MZak < 1.
k=1

Then the problem (11.43)—(11.45) has at least one mild solution.
Proof. We note that from assumptions (11.18.1) and (11.18.3) it follows that the
superposition multi-operator
Sp: R, — P(L'(J,E)),
defined by

S ={f € L"J,E): f() € F(t,Xp(1)), ae.t€J}

is nonempty set (see [144]).

Clearly, fixed points of the operator N are mild solutions of the problem
(11.43)—(11.45).

The proof will be given in several steps.

Step 1. The Monch’s condition holds.

Suppose that £2 C B, is countable and 2 C co({0} U N(£2)) We will prove that
£2 is relatively compact. We consider the MNC defined in (11.48) and L > 0 is a
positive real number chosen such that

t m
qg:=M (2 sup/ e K79 B(s)ds + e ch) <1 (11.54)
teJ JO k=1
where M = sup, yea [ T(2, 9)]-
From the Arzela—Ascoli theorem, the measure v; give a nonsingular and regular

MNC (see [144]).
Let {y,} ;;‘"f be the denumerable set which achieves that maximum vy (N(£2)), i.e.;

viN(2)) = (1}, 2. mod c({ya},2D))-

Then there exists a set {x,} >0 C £ such that y, € N(x,), n > 1. Then

(1) = T(t,0)¢(0) + /0 T(t.s)f(s)ds + Y T(t. )k, (11.55)

O<n <t



11.5 Impulsive Evolution Inclusions with State-Dependent Delay... 339

where f € S} and Iy € Zy(x,), so that

D) = ndGHSY

We give an upper estimate for y; ({y, };:':"? ).
Fixed t € J by using condition (11.18.4), for all s € [0, f] we have

X3 = X (F s, xa(5)3,29))
< B x({(xa(9)},29)
< B(s)e" sup e~ y ({x, (1)},

teJ

= B(s)e"y1 (1}, 25

By using condition (11.18.3), the set {f,, ° is integrably bounded. In fact, for every
t € J, we have

I < 1F @ @)

<a().

By applying Lemma 1.45, it follows that
XUGHE)}) < 2M / B (y1({x,},2))dr

=2y (1) [ e
Thus, we get
NS < i)
= supe 20 (15,15) [ Bls)etds + My ({2 )e“zck

=< qni ({xn}r_r:olo)
(11.56)
Therefore, we have that

Y1 20) = v1(2) < 110} UNE)yi (0}, 27) < gri ()}, 27)-

From (11.51), we obtain that

1 525) = 71(2) = v =)
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Coming back to the definition of y;, we can see

X3S = x5 =0

By using the last equality and hypotheses (11.18.3) and (11.18.4) we can prove
that set {f, ;;Of is semi-compact. Now, by applying Lemmas 1.43 and 1.44, we can
conclude that set {Gf; ;L:o‘f is relatively compact.

The representation of y, yields that set {y, ;;of is also relatively compact in 2,
since v; is a monotone, nonsingular, regular MNC, we have that

11(2) < v1(Ea({0} UN(2))) < vi(N(2)) = vi({y};°) = (0,0).

Therefore, £2 is relatively compact.

Step 2. It is clear that the superposition multioperator S} has closed and
decomposable values. Following the lines of [144], we may verify that S}. is
Ls.c..

Applying Lemma 1.46 to the restriction of S}. on £, we obtain that there exists
a continuous selection

w:®, — L'(J,E)

We consider amap N : £, — £, defined as

x(t) = T(t,0)¢(0) + /Ot T(t, s)w(x)(s)ds

Since the Cauchy operator is continuous, the map N is also continuous, therefore, it
is a continuous selection of the integral multi-operator.

Step 3. A priori bounds.

We will demonstrate that the solutions set is a priori bounded. Indeed, let x € AN,
and A € (0, 1). There exists f € Sk and I; € Zy(x) such that for every ¢ € J we have

x| = |AT(,0)¢(0) + A /0 T(t.s)f(s)ds +A D T(t.t)l].

O<ty <t

<M <||¢(0)|| + el Y e+ Zbk) + M/ a(s)ds.
k=1 k=1 0

hence,

(l —MZak) x| =M (II¢(0)II + llelle + Zm) :

k=1 k=1
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Consequently

M{IpO + el + %=1 o) _
1 _Mka=1 Ak

So, there exists N* such that ||x|| # N*, set

C.

Xl <

U=1{xe®R: x| <N*.

From the choice of U there is no x € dU such that x = ANx for some A € (0, 1).
Thus, we get a fixed point of Ny in U due to the Monch’s Theorem. O

11.5.4 An Example

As an application of our results we consider the following impulsive partial
functional differential equation of the form

2

Ez(t,x) € a(t,x)a—z(t, x) + m(t)b(t, z(t — 0 (z(¢,0))), x),
ot ox2

x € [0,x], t €0,b],t # 1, 11.57)
Z(t]j—sx) _Z(tk_9x) € [_bk|z(tk_’x)vbk|Z(tk_’x)]7

xel0,x], k=1,...,m, (11.58)

72(t,0) = z(t,m) =0, teJ:=]0,b], (11.59)
z2(t,x) = ¢(t,x), —oco<t=<0, xe][0,n], (11.60)

where a(t, x) is continuous function and uniformly Holder continuous in ¢, by > 0,
k=1,....,m ¢ €D,

D = {y : (—00,0] x [0,7] = R; ¥ is continuous everywhere except for a
countable number of points at which ¥ (s7), ¥ (s*) exist with ¥ (s7) = ¥ (s)},

0=t <t <fh < <ty <lyyr = b, 2(t;) = limy, o+ 2(t + h.x),
2(t) = limgg-0—0 2(tc + h,x), b : R xR — Py (R) a Carathéodory multi-
valued map, 0 : R — R.

Let

y@O)(x) = z(t,x), x€[0,7x], teJ =][0,b],
L) (x) = [=bilz(t; . %), belz(r,x)], x€[0,n], k=1,...,m,
F(t,9)(x) = b(t)a(t, 2(t — 0 (2(2,0))), x)

#0)(x) = ¢(0.x), —oco<1=0, xe[0,n],
p(t,¢) =t —0(4(0,0)).
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Consider E = L*[0, 7] and define A(¢) by A(t)w = a(t, x)w” with domain
D(A) = {w € E: w,w' are absolutely continuous, w” € E, w(0) = w(r) = 0}.

Then A(r) generates an evolution system U(z, s) satisfying assumption (11.12.1) and
(11.12.3). For the phase space, we choose B = B, defined by

B,=l¢eD: lim e’¢(0) exists
f——o0

with the norm

¢, = sup e”lg(O)].-
0e(—00,0]

Notice that the phase space B, satisfies axioms (A1) and (A3) (see [142] for more
details).

We can show that problem (11.57)—(11.60) is an abstract formulation of problem
(11.43)—(11.45). Under suitable conditions, the problem (11.43)—(11.45) has at least
one mild solution.

11.6 Controllability of Impulsive Differential Evolution
Inclusions with Infinite Delay

11.6.1 Introduction

In this section,we are concerned by a controllability problem for a system governed

by a semi-linear functional differential inclusion in a separable Banach space E in
the presence of impulse effects and infinite delay.

X(t) € AQ)x(t) + F(t,x;) + (Bu)(t), t€J=10,b], t 1, (11.61)

Ax\tztk e L(x(®)), k=1,...,m (11.62)

x(t) = ¢(@), te(—00,0]. (11.63)

Assuming that the compactness of the evolution operator generated by the linear

part (11.61)—(11.61) is not required. Our aim here is to give global existence and
controllability results for the above problem.
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11.6.2 Existence and Controllability Results

In this section, we shall establish sufficient conditions for the controllability of the
first order functional semi-linear differential inclusions (11.61)—(11.63).
We define what we mean by an mild solution of problem (11.61)—(11.63).

Definition 11.19. A function x €  is said to be a mild solution of the system
(11.15)—(11.17) if there exist a function f € L'(J,E) such that f € F(t,x,) for
ae.teJ

@) x(1) = T(,00¢(0) + fo T(2,5) [(Ba)(s) + f ()] ds + Yoy, Tt 1) I (x(t2),

ae.teJ, k=1,...,m
(i) x(t) = ¢(1), 1€ (—00,0],
with I} € Ik(x(t,j'))
Let us introduce the following hypotheses:

(A) {A(t) : t € J} be a family of linear (not necessarily bounded) operators,

A(t) : D(A) C E — E, D(A) not depending on ¢ and dense subset of E
and T : A = {(t,5) : 0 <s <t < b} - L(E) be the evolution operator
generated by the family {A(?) : r € J}.

(11.19.1) The multi-function F(.,x) has a strongly measurable selection for every
x € B.

(11.19.2) The multi-function F : (t,.) — Py x(E) is upper semi-continuous for
ae.teJ.

(11.19.3) there exists a function o € L'(J, R") such that

IF@ I < a@ + [¥s) forae.rel:;

(11.19.4) There exists a function 8 € L'(J, R™) such that for all bounded 22 C B,
we have

x(F(t, D)) <B(t) sup x(£2(s)) forae.t€J,

—00<s=<0

where, £2(s) = {x(s);x € £2} and y is the Hausdorff MNC.
(11.19.5) There exist constants a;, k = 1, ..., m such that
D |l < ax.  where I, € Ti(x(5)).
2) I are completely continuous.

Remark 11.20. Under conditions (11.19.1)—(11.19.3) and (A1) for every piecewise
continuous function v : J — B the multi-function F (¢, v(¢)) admits a Bochner
integrable selection (see [144]).

Before stating and proving our main result in this section, we define controllability
on the interval J.
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Definition 11.21. The system (11.61)—(11.63) is said to be controllable on the
interval J, if for every xo,x; € E there exists a control u € L*(J, U), such that
there exists a mild solution x(¢) of (11.61)—(11.63) satisfying x(b) = x;.

Let
ﬂbZ{XGQ : XOZO}.
For any x € £, we have

Ixlls = llxllz + sup [lx]| = sup [lx]|.
0<s<b 0<s<b

Thus (2, ||.||») is a Banach space .
We note that from assumptions (11.19.1) and (11.19.3) it follows that the
superposition multi-operator S;. : €, — P(L'(J, E)) defined by

S, ={feL'(J,E) :f(t) € F(t,x;), ae.teJ}

is nonempty set (see [144]) and is weakly closed in the following sense.

Lemma 11.22. If we consider the sequence (x") € R, and {fn},‘;"f Cc L'(J.E),
where f,, € S}F(_’xn) such that X" — x° and f,, — f° then f° € S}p.

Now, we are able to state and prove our main theorem:

Theorem 11.23. Assume that hypotheses (11.19.1)—(11.19.5) hold. Moreover we
suppose that

(Cl) B is a continuous operator from U to X and the linear operator W :
L*(J,U) — X, defined by

b
Wu = / T(t,s)Bu(s) ds,
0
has a bounded inverse operator W=' : X — L*(J, U)/KerW such that |B|| <
M and |W™Y|| < M,, for some positive constants My, M.

(C2) There exists a function ¢ € L'(J,R") such that for all 2 € P,(E), we have

)(U(W_I(Q)(t)) < () xe(82) foraetel,

Then the problem (11.61)—(11.63) has at least one mild solution.

To prove the controllability of the problem. Using hypothesis (C1) for an arbitrary
function x(-) define the control

N b
w0 = W71 = 10060 = Y- TG00~ [ 16,07 5],
k=1
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where u.(-) € L*(J,E). We introduce the integral multi-operator N : £, —>
P (), defined as

y:y(@0) = T(,0¢(0) + fo T(1,9) [f(s) + Bur(s)] ds
N(x) = + ZO<tk<z T(t’ tk)Ik(x(tk))’ tel
(1) = $(1), t € (—o00,0],
(11.64)

where S} and Iy € Zi(x).
It is clear that the integral multi-operator N is well defined and the set of all mild
solution for the problem (11.61)—(11.63) on J is the set FixN = {x: x € N(x)}.
Consider now the operator G* : L!(J, E) — C(J, E) defined by

t b
(G*f)(t) = /0 T(t,s)BW_l[xl—T(b,0)¢(0)— /0 (b, T)f(r)ds](t) (11.65)

Lemma 11.24 ([84]). The operator G* satisfies the proprieties (G1’)—(G2).

We shall prove that the integral multi-operator N satisfies all the hypotheses of
Lemma 1.40.

Proof. We break the proof into a sequence of steps.

Step 1. Using the fact that the maps F and Z has a convex values it easy to check
that N has convex values.

Step 2. N has closed graph.

Let {x"}7% C @, {}120, " — x*, 2" € N((*"),n > 1) and 7" — z*. Moreover,
let {f,} 0 C L!(J, E) an arbitrary sequence such that f, € S} for n > 1.
Hypothesis (11.19.3) implies that the set {ﬂ,};};"f is integrably bounded and for
a.e. t € J the set {f, (t)};f:of is relatively compact, we can say that {f, jzof is semi-
compact sequence. Consequently {ﬁl}jﬁf is weakly compact in L'(J, E), so we can
assume that f,, — ™.
From Lemma 1.43 we know that the generalized Cauchy operators, G, G* :

L'(J,E) — R, defined by

Gf () = [y Tt 9)f(s)ds, tel] (11.66)

(G*f)(1) = [y T(t.5)BW™! [xl —T(b,0)$(0) — [ T(b, 0)f (7) ds] (t)
(11.67)

satisfies properties (G1) and (G2) on J.
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Note that set {fn}Jr [ is also semi-compact and sequence (fn)+ . weakly con-

verges to f* in L'(J, E). Therefore, by applying Lemmas 1.44 and 11.67 we have
the convergence Gf, — Gf and G*f, — G*f. By means (11.18), for all t € J we
can write

z(t) = T(1,0)9(0) + Gfu(1) + G*fu (1)

- /0 T(t,5)BW™" (Z T(b, rk)1k<x<rk)>) + ) T LK (1)),

O<n <t

(11.68)
where S}, Iy € Z;(x) and
By applying Lemma 1.43, we deduce

N
(1) = T(.,00¢(0) + Gf,(.) + G*f,() — GBW™! (Z T(b, rk)lk(x"(tk)))

k=1
+ Y T L (1))

O<n <t

N
20 = T(.,0)p(0) + Gf + G*f — GBW™' (Z T(b, 1) (x* (zk)))
k=1

+ Y T DL (1)

O<t <t

in €, and by using in fact that the operator Sy is closed, we get f* € Sk.
Consequently

N
ZX(0) = T(1,00$(0) + Gf + G*f — GBW™! (Z T(b, 1) (x* (tk))>

k=1

+ Z T(t, )l (x* (1)),

O<y <t

therefore z* € N(x*). Hence N is closed.
With the same technique, we obtain that N has compact values.

Step 3. We consider the MNC defined in the following way. For every bounded
subset 2 C 2,

v(82) = (y(£2), modc($2)), (11.69)
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y is the modulus of fiber non-compactness

y(82) = sup ye({x(t) : x € 22}), (11.70)

reJ
where 2(t) = {y(t) : y € £2}.

modc(£2) is the modulus of equi-continuity of the set of functions §2 given by the
formula

modc (@) = lim sup max () — (o) (11.71)

xeR In—n|<

and g > 0 is a positive real number chosen such that

g:= (M+M2M1 /bg(s)ds) (/bﬂ(s)ds) <1 (11.72)
0 0

From the Arzeld—Ascoli theorem, the measure v give a nonsingular and regular
MNC, see [144].
Let 2 C R, be a bounded subset such that

V(N(£2)) > v(£2). (11.73)
For any ¢ € [0, b] we have
N(2)(1) C T(..0)$(0) + (G + G*) 0 Spg).

From the boundedness of the operators {T'(7, 5)}o<s.<» and B. Obviously there
exist constants M, M; such that

||T(t,s)||(X) <M<M, forevery 0 <s,t<b (11.74)
B < My < M. (11.75)
We give an upper estimate for v(N(§2)). By using (11.6.4) and (11.74)—(11.75)

x(T(t.5)f(5)}) <MB(s) sup x(2[p],)

—00<s<0
< MB(s)y(£2).

Where f € Sy, and 2[¢]; = {x[¢]; : x € 2}
Applying the Proposition 1.12, we have

$(G 0 Sy (1) < My (2) / B(s)ds
0 (11.76)

b
< iy(Q) [0 B(s)ds.
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By using the condition (C2) and the estimates (11.74)—(11.76) we obtain

X ({ TBW s = T6.0)90) — | "1 f)f(r)dr]} )
0

< MM, (s)x (ubm, t)f(r)dr})

o b
< Piy(@) ( /0 ﬂ(s)ds) £(s)

f € Skq)- By Proposition 1.12, we have

- b b
1(6" oSty 0) < ity ([ poras) ([ coms).

Thus, we get

_ o b b
(N (D)) < (M i, / §<s)ds) ( / ﬂ(s)ds) »(2).
0 0
Then

Y(N(£2)) < qy(£2).

Where g is the constant in (11.72), consequently y(§2) = 0.

By using the last equality and hypotheses (11.19.3) and (11.19.4) we can prove
that set {f,, ::"f is semi-compact. Now, by applying Lemmas 1.43 and 1.44, we can
conclude that set {(G + G*)f, ;L:"‘l’ is relatively compact. Therefore v(§2) = (0, 0)
and mod¢(£2) = 0. Then §2 is a relatively compact set.

Step 4. A priori bounds.

Letx € AN(x); 0 < A < 1, then we have

O < [ 7.0)$(0) + /0 T(t,5)[F(s) + Bus(s)lds
+ > T )h(x(n) |

O<y <t

< Mg +M Y Kl +M /0 () lds + MMy /0 s llds

O<tr<t

— Mg +M ¥ Il + M /0 £ lds

O<ny <t



11.6 Controllability of Impulsive Differential Evolution Inclusions... 349

t N
bty [ W [ = 70,060 = Y60 (x()

k=1

b
_ /0 T(b, 0)f (2) ds ] (5) s

< Ml + M Y I+ [l

O<y <t

N

+ MMLW! 31 = T(6.00$ (0) = D Tb. 1) (x(1)
k=1

b
_/0 T(b, 7)f (7) dS] Oz oo

< MlgO) + M Y I+ [ ol

O<tr<t

N
+ MM B [ = T(0,006(0) = 30 T(b, ) Ik(x(10)
k=1

b
_/0 T(b, 1)f () dS] 2.0

< MIpO 1+ Y+ [ 17l

k=1

m b
+ MM M,~/b [IIMII + M| ¢ 0)] +MZak+M/O IF )l df]

k=1

Using the hypothesis (11.19.3) and the condition (A1) we have

@]l < MIgO)| + MY ar + M fo a(s)(1 + [l )ds

k=1

m b
+ MM M>V/b [nxln + MO +MY a+M /0 als)(1 + ||x[¢]s||>ds}
k=1

<M|pO)| +M)_a +M/0 a(s)(1 4+ Npllplls + K sup [|x(0)])ds

=1 0<6h<s

m b
+ MM M b [nxln +MI$O +M ap+M fo a(s)(1 + Nolp 15
k=1
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+Kp sup [|Ix(0) II)dS]

0<6<s

t b
<C"+M / als) sup [ x(0)|)ds + M*MM>~N/b / a(s) sup [x(0)])ds,
0 0

0<6<s 0<6<s
where
C, = M1 + MM My\b) ) a,
Co = M (IO + MM/B) x| + MI$O)]])
C3 =M (1 + Nyll¢llg) (1 + MMMN/b) [t 1,

and C* = C; + C; + C;. Consider the function () = supy<4, [|x(8)]], so the
function

v(r) = /Ota(s)u(s)ds (11.77)
is nondecreasing and we have
V() = a()u(f), forae.rel. (11.78)
Applying the last inequality
V(1) < a(t)(C* + M>M My/bu(b) + Mv (1)), (11.79)

multiplying both sides of (11.79) by the function L(r) = exp (—M fot a(s)ds), we
obtain

V' ()L(1) < a(t)L(1)(C* + M*MM>~/bv(b) + Mu(r)).
It follows that
(L)) < a()LE)(C* + M>M;MyNbu(b)). (11.80)

Integrating from O to b both sides of (11.80) we get

b b
v(b) exp (—M/(; ot(s)ds) < (c* +M2M1M2«/Zv(b))/0 a(t)L(r)dt.
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Thus

b
Lv(b) < C* [ a(t)L(t)dt,
0

where £ be a constant such that

b b
£ =exp (—M/ a(s)ds) — Mlesz/E/ a(t)L(t)dt > 0.
0 0

Consequently

§ C* [V a()L(r)dt

=C.
14

v(b)
Using the nondecreasing character of v, we obtain
v(t) < C, forallrel.
Then

@)l = €* + M (1+MMM2/B) T,

11.6.3 An Example

351

(11.81)

As an application of our results we consider the following impulsive partial

functional differential equation of the form

8%z(z‘,x) € a(t, x) ;—;z(t, x) + m(t) /_too W (t, x, s —t)ds,
x €[0,7], t €[0,b],t # &,
26 2) — 20 x) € [=belate . 0. bil2( )],
xel0,x], k=1,...,m,
72(t,0) = z(t,m) =0, teJ:=]0,b],

z(t,x) = ¢(t,x), —oco<t<0, xe€l0,r],

(11.82)

(11.83)
(11.84)
(11.85)

where a(t, x) is continuous function and uniformly Holder continuous in ¢, by > 0,

k= 1,...,m,¢ED5
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D = {y : (—00,0] x [0,7] = R; ¥ is continuous everywhere except for a
countable number of points at which ¥ (s7), ¥ (s1) exist with ¥/ (s7) = ¥ (s)},

0=ty <t <Bh < <ty <lygr = b, 2(t) = limyy o+ 2t + h.x),
() = limg g0 2tk + h,x), b : R xR — Py (R) a Carathéodory multi-
valued map, o : R — Ry.

Let

y(@)(x) = z(t,x), x€][0,x], teJ =]0,b],
T () (x) = [—bilz(t, %), bilz(r , x)]), x€[0,7), k=1,...,m,
F(t,¢)(x) = m(t) fioo Wi (t,x, s — t)ds
d(O)(x) = p(0,x), —oco<t=<0, xel0,nx]
Consider E = L?[0, ] and define A(t) by A()w = a(t,x)w” with domain
D(A) = {w € E : w,w' are absolutely continuous, w” € E, w(0) = w(r) = 0}.
Then A(f) generates an evolution system U(z, s) satisfying assumption (11.19.1) and

(11.19.3).
Assume that B: U — Y, U C J is a bounded linear operator and the operator

b
Wu:/ T(t, s)Bu(s) ds,
0

has a bounded inverse operator W™ : E — L2(J, U)/ ker W.
For the phase space, we choose B = By, defined by B, = {¢ 1 (—00,0] —

E : Fora > 0 ¢(®) is bounded and measurable function on[—a, 0], and fi)oo h(s)
SUP,<g<o [9(©)|dO} where h : (=00, 0] — (0, 400) is a continuous function with

0
= / h(s)ds < o0,

—00
endowed with the norm

0

6l = [ 1) sup ip(@)lae.
—00 s<6<0
Notice that the phase space By is Banach space (see [142] for more details).
We can show that problem (11.26)—(11.29) is an abstract formulation of problem

(11.15)—(11.17). Under suitable conditions, the problem (11.61)—(11.63) has at least
one mild solution.

11.7 Notes and Remarks

The results of Chap. 11 are taken from Benchohra et al. [68, 70]. Other results may
be found in [7].



Chapter 12
Functional Differential Equations
and Inclusions with Delay

12.1 Introduction

In this chapter, we shall prove the existence of solutions of some classes of
functional differential equations and inclusions. Our investigations will be situated
in the Banach space of real functions which are defined, continuous, and bounded on
the real axis R. We will use some fixed point theorems combined with the semigroup
theory.

12.2 Global Existence for Functional Differential Equations
with State-Dependent Delay

12.2.1 Introduction

In this section we will use Schauder’s fixed point theorem combined with the
semigroup theory to have the existence of solutions of the following functional
differential equation with state-dependent delay:

V() = A0 + (. Youy)), ae. teld: =Ry (12.1)
y(1) = ¢(), te (—00,0] (12.2)

where f : J x B — E is given function, A : D(A) C E — E is the infinitesimal
generator of a strongly continuous semigroup 7'(¢), ¢ € J, B3 is the phase space to be
specified later, ¢ € B, p : J x B — R, and (E, |.|) is a real Banach space.
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12.2.2 Existence of Mild Solutions

Now we give our main existence result for problem (12.1)—(12.2). Before starting
and proving this result, we give the definition of the mild solution.

Definition 12.1. We say that a continuous function y : (—oo0, 4+00) — FE is a mild
solution of problem (12.1)-(12.2) if y(¢) = ¢(¢), t € (—o0, 0] and the restriction of
y(.) to the interval R is continuous and satisfies the following integral equation:

¥(0) = T($(0) + / Tt = (5, Ypisp)ds. 1 € J.
Set

R(p7™) = {p(s.d) : (s.¢) € J X B, p(s.¢) = 0}.

We always assume that p : J x B — R is continuous. Additionally, we introduce
the following hypothesis:

(Hy) The function t — ¢, is continuous from R(p~) into B and there exists a
continuous and bounded function £¢ : R(p~) — (0, 0o) such that

lgell < L2 @Il for every 1 € R(p™).

Remark 12.2. The condition (Hy) is frequently verified by functions continuous
and bounded. For more details, see for instance [142].

Lemma 12.3 ([140], Lemma 2.4). Ify : R — E is a function such that yo = ¢,
then

Iyslls < M + L?)|$ll5 + Lsup{|y(8)| : 6 € [0,max{0,s}]}, s € R(p7) UJ,
where £L¢ = sup L?(1).
1E€R(p™)

Let us introduce the following hypotheses:

(12.3.1) A: D(A) C E — E is the infinitesimal generator of a strongly continuous
semigroup T'(¢),t € J which is compact for r > 0 in the Banach space E.
Let M' = sup{||T||s@) : t = 0}.

(12.3.2) The function f : J x B — E is Carathéodory.

(12.3.3) There exists a continuous function k : J/ — R4 such that:

Ift.u) —f@.v)| < k@|u—vls. 1€J. uveb,
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and

t
k* = sup/ k(s)ds < oo. (12.3)
0

teJ

(12.3.4) The function t — f(,0) = fy € L'(J,R4) with F* = ||fy]| 1.

Theorem 12.4. Assume that (12.3.1)—(12.3.4), (Hy) hold. If k*M'l < 1, then the
problem (12.1)—(12.2) has at least one mild solution on BC.

Proof. Consider the operator N : BC — BC defined by:

¢(1), if 1 € (—00, 0],

t

(Ny)(1) =
T 90)+ [ 7= 5)f(5:3y00) ds. i 1€ 0.
0
Let x(.) : R — E be the function defined by:
¢ (1), if t € (—o0, 0];
x(r) =
T() ¢(0),ift e J,
then xp = ¢. For each z € BC with z(0) = 0, we denote by z the function
0, ifze (—o0,0];
() =
z(2), ift e J.

If y satisfies y(r) = (Ny)(), we can decompose it as y(t) = z(t) + x(¢), t € J, which
implies y, = z, + x, for every ¢ € J and the function z(.) satisfies

z(1) = fol T(t — $)f (S, Zp(s.z,4x,) T Xp(s.z,4+x,))ds, t € J.
Set
BC, = {z € BC' : z(0) = 0}
and let
lzllsc; = suptlz()] : ¢ € J}, z € BC).

BCj is a Banach space with the norm ||.|| sc;- We define the operator A : BC, —
BCj by:

'
A2 (1) = [ T(t —9)f (s, Zp(s.zs+x;) T xp(x,z;+xs))ds’ teld.
0
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We shall show that the operator A satisfies all conditions of Schauder’s fixed point
theorem. The operator A maps BCj, into BCy, indeed the map .A(z) is continuous on
R for any z € BC), and for each t € J we have

t
[AR) ()| < M /0 [F (s, Zp(s.etre) F Xpis.zotan) —f(s,0) + f(s,0)|ds
t t
<M /0 (s, ) lds + M’ /0 K(5) 120y ooy 58
t
5MV+M/MMMW+W+ﬂ+MMWMW.
0

Set
C:=(m+ L + IMH)| | 5.

Then, we have

1 t

AG)()| < M'F* ~|—M'C/ k(s)ds —i—M’/ l|z(s)|k(s)ds
0 0
< M'F* + M'CK* + M'l||z k™

Hence, A(z) € BCj,.
Moreover, let ¥ > 0 be such that

M'F* + M'Ck*
r> —

- 1 =Mkl
and B, be the closed ball in BC|, centered at the origin and of radius r. Let z € B,
and t € Ry. Then

|A@) ()] < M'F* + M'Ck* + M'k*Ir.
Thus
IA@lsc; < 7.

which means that the operator .A transforms the ball B, into itself.
Now we prove that A : B, — B, satisfies the assumptions of Schauder’s fixed
theorem. The proof will be given in several steps.

Step 1: A is continuous in B,.

Let {z,} be a sequence such that z; — z in B,. At the first, we study the

convergence of the sequences (zg(&zg,)),,e N,s elJ.
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If s € J is such that p(s, z;) > 0, then we have,
”ZZ(s,zg) — 20 llB = IIZZM) = Zps.an 18 + 12pst) = 2otz 18
=< L”Zn - Z”B + ”Zp(s.zf;) — Zp(s.z5) ”B»

which proves that zz(s,z?) — Zp(szy) 0 B as n — oo for every s € J such that

o(s, zg) > 0. Similarly, is p(s, z;) < 0, we get

||ZZ(s,z§) —Zps.an B = ||¢Z(s.zg!) — Ppis.znllB =0

which also shows that z’;(s ™ Zpls.zy) in B as n — oo for every s € J such that

p(s, zs) < 0. Combining the pervious arguments, we can prove that ZZ(s.zs) — ¢ for
every s € J such that p(s, z;) = 0. Finally,

| A@zn) () — A2) (D]

t
= M//o (8, 25y F Fotsrte)) =S (8 Zpsaota) + Xo(s.zta))|ds

t
=< M// I (s, Zp(s.i+x;) T xp(s.zg?-i-xv)) —f(s, Zp(s.zs+x) T xp(s,z.v+xx))|ds-
0
Then by (12.3.2) we have

J (8, T npay) T Xolsi4x) = F (82 2otz + Xp(szgtxy))s aS 11— 00,
and by the Lebesgue dominated convergence theorem we get,
A = A@lac; > 0. as n — oo.

Thus A is continuous.

Step 2: A(B,) C B, this is clear.
Step 3: A(B,) is equi-continuous on every compact interval [0, 5] of Ry for
b > 0.Let 7, 1, € [0, b] with 7, > 71, we have:

|A@)(r2) — AR) (1)

T1
=< / ”T(TZ —5)—T(t; — S)”B(E) lf(sa Zp(s.z+x;) T x,o(s,z_;ers))lds
0
)
[T = ol 5ty + S s
T
T1
< / 1T(r2 =) = T(t1 = $) |BE)lf (5. Zp(s.25+x,) + Xp(s.zytxy) — (5, 0)|ds
0

+ / T = 5) = T(r1 = )l 5. O)lds
0
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™
+ / ”T(TZ - S)HB(E) lf(& Zp(s.zstxs) T xp(s,zd-i-xx)) _f(s’ O)|ds
71
)
4 / 1702 — ) lsce [F 5. 0) ds
71
7
<c / 172 — ) — Tt — ) lsw k(s)ds
0
7]
L [ IT(ts — ) — T(t1 — ) |y k(s)ds
0
71
4 / 172 — ) — T(t1 — ) lagey (s 0)ds
0
)
e f 172 — )l k(s)ds
7]
%)
+rL/ 1T (2 — $)|l Bk (s)ds
7]

)
4 / 1702 — ) lsce [ 5. 0)ds.
71

When 17, — 11, the right-hand side of the above inequality tends to zero, since
T(r) is a strongly continuous operator and the compactness of 7'(¢) for t > 0
implies the continuity in the uniform operator topology (see [168]), this proves
the equi-continuity.

Step 4: A(B,)(r) is relatively compact on every compact interval of 7 € [0, 00).
Let r € [0,b] for b > 0 and let ¢ be a real number satisfying 0 < ¢ < t. For
z € B, we define

t—¢
AGQ)(0) = T(e) /0 T(t = 5 — )/ (5, Zpsmtmy + Koo ).

Note that the set

1—e
{ / T(t—5—&)f (S, Zp(szo4x,) + Xp(s,204+x,))dS 1 2 € By
0

is bounded.
Since T'(¢) is a compact operator for ¢ > 0, the set,

{A:(2)(@) 1z € B}

is precompact in E for every ¢, 0 < ¢ < t. Moreover, for every z € B, we have
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|A@) (1) — A:(2) (1)

¢
=< / T(t—9)f (s, Zp(sizs+xy) T xp(s.zs+x.y))d5
—

t t
<MF*e+ M’C/ k(s)ds + rM’/ Ik(s)ds,
—e t—e
—-0 a &—0.

Therefore, the set {.A(z)(¢) : z € B,} is precompact, i.e., relatively compact.
Step 5: A(B,) is equi-convergent.

Letr € Ry and z € B,, we have,

t
AQ O] < M / £ Zptss 1 + Tyt Ids
t t
<MF*+ M’C/ k(s)ds + M’r/ Lk(s)ds
0 0

<MF*+ M’C/:k(s)ds + M'rl /Otk(s)ds.
Then by (12.3.4), we have
[AG)(@)| — M* < M'F* + M'Ck* + M'rik*, as t — +oo.
Hence,
|A(z)(1) — A(z)(+00)| = 0, as t - +oo.

As a consequence of Steps 1-4, with Lemma 1.26, we can conclude that
A : B, — B, is continuous and compact. From Schauder’s theorem, we deduce
that A has a fixed point z*. Then y* = z* + x is a fixed point of the operators N,
which is a mild solution of the problem (12.1)-(12.2). |

12.2.3 An Example

Consider the following functional partial differential equation

2 0 b4
%Z(t,x) - %z(t, X) = e_t[ z (s —o1(t)oy (/0 a(0)|z(t, 9)|2d9) ,x) ds,

xe[0,7], te Ry (12.4)
72(t,0) = z(t,m) =0, t € R, (12.5)
2(0,x)) = z0(0,x), t € (—00,0], x € [0, 7], (12.6)
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where 7y 2 0. Set

0

Flt9) ) = [ 1 (5. )ds,

and
p(t. ) = 1 — 01(1)0 ( [ " @y 9)|2d9) ,
0

oi:Rt - Rt,i=1,2and a : R — R are continuous functions.
Take E = L?[0, r] and define A : E — E by Aw = " with domain

D(A) = {w € E, w, 0 are absolutely continuous, v” € E, w(0) = w(x) = 0}.

Then

o0
Aw = an(a),a)n)w,,,a) € D(A)

n=1

where w,(s) = ,/%sin ns,n = 1,2,... is the orthogonal set of eigenvectors in

A. Tt is well known (see [168]) that A is the infinitesimal generator of an analytic
semigroup 7T'(¢),t > 0 in E and is given by

T(Hw = Zexp(—nzt)(a),a)n)wn, w €E.

n=1

Since the analytic semigroup 7'(¢) is compact, there exists a positive constant M
such that

1T ) <M.

Let B=BCU(R™,E) and ¢ € B, then (Hy).
The function f (¢, ¥ )(x) is Carathéodory, and

[F (2. Y1) (x) = f(t, ¥2) ()] < e [P (t.x) — Ya (. )],

thus k(z) = e™', moreover we have

t
k* =sup{/ e ’ds, IER+} =1, fo=0.
0
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Then the problem (12.1)—(12.2) is an abstract formulation of the problem (12.4)—
(12.6), and conditions (12.3.1)—(12.3.4), (Hy) are satisfied. Theorem 12.4 implies
that the problem (12.4)—(12.6) has at least one mild solutions on BC.

12.3 Global Existence Results for Neutral Functional
Differential Equations with State-Dependent Delay

12.3.1 Introduction

In this section we prove the existence solutions of a functional differential equation.
Our investigations will be situated in the Banach space of real functions which
are defined, continuous, and bounded on the real axis R. We will use Schauder’s
fixed point theorem combined with the semigroup theory to have the existence
of solutions of the following functional differential equation with state-dependent
delay:

d
EB’(I) —g(t, yp(t,y,))] = Aly(1) — g(t, y,o(lfy,))] +f(t7Yp(t.yx))v ae reJ =Ry
(12.7)

y(1) = ¢(1), te(—00,0], (12.8)

where f, g : J x B — E are given functions, A : D(A) C E — E is the infinitesimal
generator of a strongly continuous semigroup 7'(¢), ¢ € J, B3 is the phase space to be
specified later, ¢ € B, p : J x B — R, and (E, |.|) is a real Banach space.

12.3.2 Existence of Mild Solutions

Definition 12.5. We say that a continuous function y : (—oo0, +00) — E is a mild
solution of problem (11.15)—(11.16) if y(t) = ¢(¢), t € (—o0, 0] and the restriction
of y(.) to the interval R is continuous and satisfies the following integral equation:

y(0) =T®)[$(0) — g0, d(0)] + g(t, yp(ry)) + /0 T(t = $)f (5, Yp(syy))ds, 1 € J.
Set

R(p™) ={p(s.d) : (s.¢) € J X B, p(s.¢) = 0}.
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We always assume that p : J x B — R is continuous. Additionally, we introduce
the following hypothesis:

(Hy) The function t — ¢, is continuous from R(p~) into B and there exists a
continuous and bounded function £? : R(p~) — (0, 0o) such that
lgell < L2 @)l for every 1 € R(p™).

Remark 12.6. The condition (Hy) is frequently verified by functions continuous
and bounded.
Lemma 12.7 ([139]). Ify : R — E is a function such that yy = ¢, then

Iysls < (M + L) |$ll5 + Isup{|y(0)] : € [0,max{0,s}]}, s € R(p™) UJ,
where £L¢ = sup L?(p).

tER(p™)
Let us introduce the following hypotheses:

(12.7.1) A : D(A) C E — E is the infinitesimal generator of a strongly continuous
semigroup 7T'(¢),t € J which is compact for # > 0 in the Banach space E.
Let M’ = sup{|| Tz : t = 0}.

(12.7.2) The function f : J x B — E is Carathéodory.

(12.7.3) There exists a continuous function k : / — R4 such that:

If(t.u) —f (. v)| < k(@®)[lu —vlls. t€J, u.veB

and

t
k= sup/ k(s)ds < oo.
0

teJ

(12.7.4) The function t — £(t,0) = fy € L'(J,R4) with F* = ||fy]| 1.
(12.7.5) The function g(t,-) is continuous on J and there exists a constant k, > 0
such that

lg(t,u) — g(t,v)| < kq|lu — v|| g, for each, u,v € B
and

g" 1= sup|g(t,0)| < oco.
teJ

(12.7.6) For each ¢ € J and any bounded set B C B, the set {g(t,u) : u € B} is
relatively compact in E

(12.7.7) For any bounded set B C B, the function {r — g(t,y;) : y € B} is equi-
continuous on each compact interval of R .
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Remark 12.8. By the condition (12.7.3), (12.7.4) we deduce that
F@. 9] <k@)llulls +F*, t€J, ueb,
and by (12.7.5) we deduce that:
lg(t,u)] < kellulls + 8" teJ, ueb.

Theorem 12.9. Assume that (12.7.1)—(12.7.7) and (Hg) hold. If (M'k* + o) < 1,
then the problem (12.1)—(12.2) has at least one mild solution on BC.

Proof. Transform the problem (12.1)—(12.2) into a fixed point problem. Consider
the operator N : BC — BC defined by:

¢ @); if 1 € (—o0, 0],

(Ny)(1) = T(1) [¢(0) — g(0.¢(0))]
8t Ypan) + /0 T(t—5) f(5. Yp(syy) ds: ift € J.

Let x(.) : R — E be the function defined by:
¢ (1); if t € (—o0, 0];
x(t) =
T() ¢(0); ifr e J,
then xy = ¢. For each z € BC with z(0) = 0, we denote by z the function
0; ifz € (—o0,0];
zZ(t) =
z(2); ift e J.

If y satisfies y(r) = (Ny)(r), we can decompose it as y(t) = z(t) + x(¢), t € J, which
implies y, = z, + x, for every ¢ € J and the function z(.) satisfies

2(t) = 8(t. Zp(rz+x) + Xoztxy) — T()8(0.¢(0))
+ /()t T(t — $)f (S, Zp(s,24x,) F Xp(s.zg4x,))dS, 1 € J.
Set
BC|, = {z € BC' : z(0) = 0}
and let

Izllsc; = suptlz(®)| : t € J}, z € BC,.
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BCj is a Banach space with the norm |. || B¢, We define the operator A : BC) —
BCj by:

A@) (1) = 8(t. 2p(124+x) T Xp(rz+x)) — T(1)8(0,9(0))

t
+/ T([ — s)f(s, Zp(sizs+x;) T xp(s.zs+x‘;))dsv tel.
0

We shall show that the operator A satisfies all conditions of Schauder’s fixed point
theorem. The operator A maps BC|, into BCy,, indeed the map A(z) is continuous on
R4 for any z € BCj), and for each t € J we have

AR D] < 180t Zptzrx) + Xoteertan)| + M 180, $(0))]
+M /0 t (5. Zp(s.zstxe) + Xp(scota)) —f (5, 0) + £ (s, 0)|ds
< M' (k|15 + &) + kellzptztay + Xotatanlls + €*
M /0 [F(s. 0)lds + M’ /0 KO eptsatnn + T s
< M'(k||plls + g*) + ke(l2(8)] + (m + L? + IMH)||¢||5) + &*

+M'F* + M f k(s)(1|z(s)| + (m + L? + IM'H)||¢| 5)ds.
0

Set

Ci:= (m+ L? + IM'H)|$| 5.
Cy = M (kellplls + &%) + ke(m + L? + IM'H) || ¢l 5 + g* + M'F*.

Then, we have

t t

|A@) ()| < Co + kyl|z(1)| + M'Cy / k(s)ds + M’/ 1|z(s)|k(s)ds
0 0
5 C2 + kgl”Z“BC(/) + M/Ck* + M,l”Z”BC(’)k*

Hence, A(z) € BCj,.
Moreover, let r > 0 be such that

C + M'Ck*
rz—
T 1= IM'k* + ay)
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and B, be the closed ball in BC6 centered at the origin and of radius r. Let z € B,
and r € Ry. Then
|A@) ()] < Ca + kylr + M'Ck* + M'k*Ir.
Thus
[A@ s, =

which means that the operator A transforms the ball B, into itself.
Now we prove that A : B, — B, satisfies the assumptions of Schauder’s fixed
theorem. The proof will be given in several steps.

Step 1: A is continuous in B,.

Let {z,} be a sequence such that z;, — z in B,. At the first, we study the

convergence of the sequences (ZZ(J,Zg))VtG]N’ seld.

If s € J is such that p(s, z;) > 0, then we have,
”ZZ(M?) - Zp(s.zx)”B =< ”ZZ(s.ZD — Zp(s,2) ”B + ”Zp(s.,z’;) - Zp(s.zx)”B
= l”Zn - Z”Br + ||Zp(S,z§.') — Zp(s,z5) ”Bv

which proves that z;(s.zg_,) — Zpsz) i B as n — oo for every s € J such that

p(s, z;) > 0. Similarly, is p(s, z;) < 0, we get

||ZZ(.;,zg) — Zp(sz0) I8 = ”d’;l(s,zg) — o520 llB =0

which also shows that 2 ., — Zp(s.z) in B as n — oo for every s € J such that

p(s, z;) < 0. Combining the pervious arguments, we can prove that zz(%) — ¢ for
every s € J such that p(s, z;) = 0. Finally,

|A @) (1) — A2) (0]

< 18t 2y g4y F Xoed+10) — 8 Zptuzrtr) F Xotrat)|
+ M /0 , (. 2ps.mtxy) T Fotsctt0) =S (8 Zpts.zx) + Xps.zp+x)) |ds
<1801 2y agpay F Xolsn) = 8 Lot F ptszctn)|
+M' /0 t F (5. Zo(s.c4x5) T Xos.2r4x)) — S (82 Zp(s.zytxs) T Xp(s.zo+x0))dS.
Then by (12.7.2), (12.7.5) we have

f(s, Zz(s,zg.'-f-xy) + xp(x,z?+xs)) — f(s, Zp(s.zs+x) T xp(S.zs-i-xA-))’ asn — oo,

8, ZZ(r.z’,z-l-x,) + xl’(l=1;1+xz)) — g(t, Zp(tzta) T xp(l,Zt'Fxr))’ asn — oo,
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and by the Lebesgue dominated convergence theorem we get,
[ A@z) — A@)lpc; — 0, asn — oo.

Thus A is continuous.

Step 2: A(B,) C B,. This is clear.
Step 3: A(B,) is equi-continuous on every compact interval [0, ] of R4 for
b > 0.Let 7, 1p € [0, b] with 7, > 71, we have:

|A(2)(r2) — A2 (1)
=< |g(7—'2» Zp(12.20) 1) + Xp(12,20 +xf2)) —g(z1, Lp(t1 .20, 1) + Xp(, 2oy Fxg ))l
T (v2) — T(x1) |3 |80, ¢ (0))]

T
+ / IT(2 —s) = T(t; — S)”B(E) £ (s, Zp(s.zs+x;) T xp(s,zs+xs))|ds
0

(%}
+ / 17 (2 — )18y [F (5, 2Zp(s.204x0) F Xp(s.z0+x0)) S

7|
=< |g('52» Lp(12.20) 1) + Xp(12,20 +x12)) —g(71, Lp(t1 .20, 1) + Xp(r) 2oy Xy ))l

+T(22) = T(@) e kellplls + 87)

71
+ /0 ”T(TZ - S) - T(Tl - S)”B(E) lf(s’ Zp(s.z5+x5) + xp(s,zs+x_q)) _f(sa 0)|dS
7
T / 1T (e — 5) — T(t1 — ) lscey [ (5. 0) s
0
+ f 1752 — )13 (5 sy + Xpto i) — (52 0)d
71

+ / T2 = 93 f 5. 0) ds

71
< kgl8(T2. Zp(rr 2y +30y) F Xp(r2,2y +302)) — 8(T1 Zp(r1 .20y ey ) T X120y xey)|

T () = T(@) e kellplls + 87)

7]
L0 / 17(es = 5) = T(t1 — )| k(s)ds
0
7]
L / IT(es — 5) — T(t1 — ) s k(s)ds
0

+ / 1T = 5) = T(t = 9)llagey (5. O)lds
0
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2}
+Ci [ IT(z2 — )| By k(5)ds
7

)
L / 1702 — 5) | k(s)ds

T

+ / 1T = 9)lage (5, 0)|ds.

3!

When 1, — 71, the right-hand side of the above inequality tends to zero. Since
(12.7.7) and T(¢) is a strongly continuous operator and the compactness of T'(z)
for t > 0, implies the continuity in the uniform operator topology (see [168]),
this proves the equi-continuity.

Step 4: The set A(B,)(¢) is relatively compact on every compact interval of
[0,00). Let ¢ € [0, b] for b > 0 and let ¢ be a real number satisfying 0 < ¢ < 1.
For z € B, we define

As(@) (1) = 8(t. Zptztx) T Xoz+x))) — T(E)(T(t — €)g(0,¢(0)))
7@ [0 06 sy + s o)
Note that the set
18t Zp(t.2+x) + Xptzi4x)) — T(t — €)g(0,$(0))
+ /0 - T(t — 5 — &)f (S, Zp(s.zytxs) T Xp(s.2+x,))dS © 2 € B}
is bounded.
18t Zp(t.zix) F Xoz4x)) — T(t — €)g(0, ¢(0)).
+ /01_8 T(t — s —)f (5, Zp(s,z+x,) T Xp(s.z+x,))ds| =1
Since T'(f) is a compact operator for # > 0, and (12.7.6) we have that the set,
{A:()(0) 2 € B}
is precompact in E for every ¢, 0 < ¢ < t. Moreover, for every z € B, we have
|A@) (1) — A () (1)]

t
= / T(t—9)f (s, Zp(s.zs+x;) T xp(s.zs+x.y))d5
—e
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t t
<MF*e+ M’C/ k(s)ds + rM// Ik(s)ds,
t

t—e¢ —&

—-0 as &—0.
Therefore, the set {.A(z)(?) : z € B,} is precompact, i.e., relatively compact.
Step 5: A(B,) is equi-convergent.
Letr € Ry and z € B,, we have,

MA@ ] = 18t 2p.a+x) T+ Xp(ta+x0)| +M'|(0,$(0))]

'
+M//. [ (S5 Zp(s.z5+x0) +x/>(s,zx+xx))|ds
0

t t
< Gy + kelr + M’C/ k(s)ds + M’rl/ k(s)ds.
0 0
Then we have
|A@) ()| = C3 < Cy + kolr + M'CK* + M'Irk™, as t — +o0.
Hence,
|A() (1) — Az)(+00)| — 0, as t — +oo.

As a consequence of Steps 1-5, we can conclude that A : B, — B, is continuous
and compact. From Schauder’s theorem, we deduce that A has a fixed point z*.
Then y* = z* + x is a fixed point of the operators N, which is a mild solution of the
problem (12.7)—(12.8). O

12.3.3 An Example
Consider the following neutral functional partial differential equation:

9 92
E[Z(t’ x) —g(t, z(t — o (t,2(,0)), x))] = P [z2(t, x) — g(t, z(t — 0 (2, 2(2, 0)), x))]

f(@t,z(t —o(t,2(¢,0)),x)), x € [0, 7], t € Ry (12.9)
2t,0) = z2(t, 1) = 0, t € Ry, (12.10)
72(0,x) = 70(0,x), t € (—00,0], x € [0, 7], (12.11)

where f, g is a given functions, and 0 : R — R™. Take E = L?[0, ] and define
A E — Eby Aw = »” with domain

D(A) = {w € E, w, »are absolutely continuous, o” € E, w(0) = w(w) = 0}.
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Then

o0
Aw = an(a),wn)wn,w € D(A),

n=1

where w,(s) = ,/% sinns,n = 1,2, ... is the orthogonal set of eigenvectors in A.

It is well known that A is the infinitesimal generator of an analytic semigroup
T(t),t > 0in E and is given by

oo
T(Hw = Zexp(—nzt)(a),a)n)a)n, w €E.

n=1

Since the analytic semigroup 7'(¢) is compact for r > 0, there exists a positive
constant M such that

1T <M.

Let B=BCU(R™,E) and ¢ € B, then (Hy), where p(t, ) =t — o (¢).

Hence, the problem (12.1)-(12.2) is an abstract formulation of the problem
(12.9)-(12.11), and if the conditions (12.3.1)-(12.3.6), (Hg) are satisfied.
Theorem 12.9 implies that the problem (12.9)—(12.11) has at least one mild solutions
on BC.

12.4 Global Existence Results for Functional Differential
Inclusions with Delay

12.4.1 Introduction

In this section we are going to prove the existence of solutions of a class of semi-
linear functional evolution inclusion with delay. Our investigations will be situated
in the Banach space of real continuous and bounded functions on the real half
axis Ry. We will use Bohnenblust—Karlin’s fixed theorem, combined with the
Corduneanu’s compactness criteria. More precisely, we will consider the following
problem

y () —Ay(t) € F(t,y;), ae. teJ: =R, (12.12)

y@) =¢(1), teH, (12.13)

where F' : J x C(H,E) — P(E) is a multi-valued map with nonempty compact
values, P(E) is the family of all nonempty subsets of E, A : D(A) C E — E'is the
infinitesimal generator of a strongly continuous semigroup 7'(¢),t € J, ¢ : H - E
is given continuous function, and (E, |.|) is a real Banach space.
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12.4.2 Existence of Mild Solutions

Let us introduce the following hypotheses:

(12.5.1) A: D(A) C E — E is the infinitesimal generator of a strongly continuous
semigroup 7'(¢),t € J which is compact for # > 0 in the Banach space E.
Let M = sup{||T(1)|lpx) : t = O}.

(12.5.2) The multi-function F : J x C(H,E) —> 'P(E) is Carathéodory with
compact and convex values.

(12.5.3) There exists a continuous function k : J/ — R4 such that:

Hy(F(t,u), F(t,0)) < k(0)|Ju—vl|,
for each t € J and for all u,v € C(H, E) and
d(0, F(1,0)) < k(2),

with

t
k* = sup/ k(s)ds < oo. (12.14)
0

teJ

Theorem 12.10. Assume that (12.5.1)—(12.5.3) hold. If k*M < 1, then the problem
(12.12)—(12.13) has at least one mild solution on BC.

Proof. Consider the multi-valued operator N : BC — P(BC) defined by:
o(0), if € H,

N@) := {heBC:h@t) = { T(H)$(0)

+/ T(t—s)f(s)ds, feSp, iftel.
’ (12.15)

The operator N maps BC into BC; for any y € BC, and h € N(y) and for each t € J,
we have

WmsmquAvmm
smmuMAwmmm+w@WWs

smw+Mlmmmwuw

= M|$ll + M(llyllzc + DK :=c.

Hence, h(t) € BC.
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Moreover, let » > 0 be such that r > %, and B, be the closed ball in BC
centered at the origin and of radius r. Let y € B, and t € Ry. Then,

|h(1)| < M| ¢|l + Mk* 4+ Mk*r.
Thus,
IAllgc < r.
which means that the operator N transforms the ball B, into itself.

Now we prove that N : B, — B, satisfies the assumptions of Bohnenblust—
Karlin’s fixed theorem. The proof will be given in several steps.

Step 1: We shall show that the operator N is closed and convex. This will be
given in two claims.

Claim 1: N(y) is closed for each y € B,. Let (h,),>0 € N(y) such that h,, — h
in B,.. Then for h, € B, there exists f, € Sr, such that:

h, (1) = T(t)¢(0) + /0 T(t — s)fn(s)ds.

Since F has compact and convex values and from hypotheses (12.5.2), (12.5.3), an
application of Mazur’s theorem [185] implies that we may pass to a subsequence
if necessary to get that f, converges to f € L'(J,E) and hence f € Sr,. Then for
eacht e J,

ha(t) — h(7) = T(1)p(0) + /0 T(t — s)f(s)ds.

So, h € N(y).
Claim 2: N(y) is convex for each y € B,.

Let hy, hy € N(y), the there exists fi, f2 € Sk, such that, for each ¢ € J we have:
hi(t) = T(H)¢(0) + /: T(t —s)fi(s)ds,i = 1,2.
Let 0 < § < 1. Then, we have for each ¢ € J:
(Bh + (1 =8)ho)(1) = T()9(0) + /OZT(t— 9)[8fi(s) + (1 = 8)fa(s)]ds.

Since F(t,y) is convex, one has

Shy + (1= 8)h, € N().
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Step 2: N(B,) C B, this is clear.
Step 3: N(B,) is equi-continuous on every compact interval [0, 5] of Ry for
b > 0. Let 71, 1, € [0, b] with 7, > 71, we have

W) = h(e)] = 1T =) = T = s 9]

+ [ =9 = 70 = 9 lmslro)las
+f 1T — 5) sy 5l

< 1T~ )~ T — s 9]
# [T =9 = 70 = 9l K6 |+ 17 0 s
+f 17 — )l K5 el + 1 (s, 0) s

< 1T — )~ T — s 9]
04 1) [ 1T =9 = 7@ = 9 k(s
o4 [ 1T — ) s k(s)ds.

When 1, — 11, the right-hand side of the above inequality tends to zero, since
T(¢) is a strongly continuous operator and the compactness of 7'(¢) for r+ > 0,
implies the continuity in the uniform operator topology (see [168]). This proves
the equi-continuity.

Step 4: N(B,) is relatively compact on every compact interval of R;. Let ¢ €
[0, b] for b > 0 and let ¢ be a real number satisfying 0 < ¢ < ¢. For y € B,, let
heN(y), f € Spy and define

he(t) = T(1)¢p(0) + T(e) /(; ) T(t—s—e)f(s)ds.
Note that the set
%T(t)qb(O) + /l_g T(t—s—¢)f(s)ds:y€B,
0
is bounded.

|T ()¢ (0) + /0 ) T(t—s—e)f(s)yds| <r.
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Since T'(¢) is a compact operator for ¢ > 0, the set,
H(t) = {he(?) : he € N(y),y € B,}

is precompact in E for every ¢, 0 < ¢ < t. Moreover, for every y € B, we have
t
o~ 0] =M [ olds
1—&
t
<M [ @)yl + 17, 0)ds
11—

<M +r) /t k(s)ds

—0 as &—0.

Therefore, the set H(t) = {h(t) : h € N(y),y € B,} is precompact, i.e., relatively
compact. Hence the set H(t) = {h(¢) : h € N(B,)} is relatively compact.

Step 5: N has closed graph.

Let {y,} be a sequence such that y, — y«,h, € N(y,) and h, — h,. We shall
show that i« € N(y«). h, € N(y,) means that there exists f,, € Sg, such that

h,(t) =T(@) ¢(0) + /f T(t—s)fu(s)ds, teJ.
0
We must prove that there exists fi
he(t) =T() ¢(0) + /tT(t— s) f«(s) ds, t € J.
0

Consider the linear and continuous operator K : L' (J, E) — BC defined by

K()(t) = /t T(t — s)v(s)ds.
0
We have
IK() (1) — K(fi) ()] =
| (7 (1) = T(2) $(0)) — (ha (1) = T(2) $(0))| = |hn(2) — hs (D)

< |hy — hxlloo = 0, as n — oo.

From Lemma 1.11 it follows that K o Sg is a closed graph operator and from the
definition of K has

hn(t) - T(t)qb(O) €Ko SF,)’n'
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Asy, — y« and h, — hy, there exist fi € Sr, such that:

t
m(0) =100 = [ 70920,
Hence the multi-valued operator N has closed graph, which implies that it is upper

semi-continuous.

Step 6: N(B,) is equi-convergent. Let i1 € N(y), there exists f € S, such that
foreach t € Ry and y € B, we have

WmsmquLvmw

t
< M|¢| + Mk* + Mr/ k(s)ds
0

< M||¢|| + MK* + Mrk*.
Then,
|h(H)] — L < M| @|| + MK*(1 +r), as t — +oo.
Hence,
|h(t) — h(+o0)| — 0, as t — +o0.

As a consequence of Steps 1 — 6, and Lemma 1.26, we conclude from
Bohnenblust—Karlin’s theorem that N has a fixed point y which is a mild solution
of the problem (12.12)—(12.13).

O
12.4.3 An Example
Consider the functional partial differential inclusion
0 9?
—z(t,x) — —z(t,x) € F(t,z(t —r,x)), x € [0, ], t € ] := Ry, (12.16)
ot 0x?
z2(t,0) = z(t,®) =0, t € J, (12.17)
z(t,x) = ¢ (1), t € H, x € [0, 7], (12.18)

where F is a given multi-valued map. Take E = L?[0, 7] and define A : E — E by
Aw = " with domain

D(A) = {w € E; w, are absolutely continuous, o” € E, w(0) = w(w) = 0}.
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Then,

o0
Aw = an(w,wn)wn, w € D(A)

n=1

where w,(s) = /2
It is well known (see [168]) that A is the infinitesimal generator of an analytic

semigroup 7'(¢),¢ > 0 in E and is given by

sinns,n = 1,2, ..., is the orthogonal set of eigenvectors in A.

T(Hw = Zexp(—nzt)(a),a),,)a)n, w €E.

n=1

Since the analytic semigroup 7'(¢) is compact for + > 0, there exists a positive
constant M such that

1T & <M.

Then the problem (12.12)—(12.13) is the abstract formulation of the problem
(12.16)—(12.18). If conditions (12.5.1)—(12.5.3) are satisfied, Theorem 12.10
implies that the problem (12.16)—(12.18) has at least one global mild solution
on BC.

12.5 Global Existence Results for Functional Differential
Inclusions with State-Dependent Delay

12.5.1 Introduction

In this section we are going to prove the existence of solutions of a functional
differential inclusion. Our investigations will be situated in the Banach space of
real functions which are defined, continuous, and bounded on the real axis R.
We will use Bohnenblust—Karlin’s fixed theorem, combined with the Corduneanu’s
compactness criteria. More precisely we will consider the following problem:

V() —Ay(1) € F(t,yp(y)), ae. t€J:=Ry (12.19)

y(1) = ¢(1), te (—00,0], (12.20)

where F : J x B — P(E) is a multi-valued map with nonempty compact values,
P(E) is the family of all nonempty subsets of E, A : D(A) C E — E is the
infinitesimal generator of a strongly continuous semigroup 7'(¢),t € J, and (E, |.|)
is a real Banach space. B is the phase space, ¢ € B, p:J x B — R.
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12.5.2 Existence of Mild Solutions

Now we give our main existence result for problem (12.19)-(12.20). Before starting
and proving this result, we give the definition of the mild solution.

Definition 12.11. We say that a continuous function y : (—o0, +00) — E is a mild
solution of problem (12.19)—(12.20) if y(r) = ¢(¢) for all t € (—o0,0], and the
restriction of y(-) to the interval J is continuous and there exists f(-) € L!'(J, E):
f(t) € F(t,Yoy,)) a.€. in J such that y satisfies the following integral equation

y(t) =T@)e(r) — /0’ T(t—s)f(s)ds foreachteJ. (12.21)

Set

R(p™) ={p(s.d) : (s.9) € J X B, p(s.¢) = 0}.

We always assume that p : J x B — R is continuous. Additionally, we introduce
the following hypothesis:

(Hy) The function t — ¢, is continuous from R(p~) into B and there exists a
continuous and bounded function £? : R(p~) — (0, 0o) such that
lgell < L2 @)l for every 1 € R(p™).
Remark 12.12. The condition (Hy), is frequently verified by functions continuous
and bounded.
Let us introduce the following hypotheses:

(12.11.1) A: D(A) C E — E is the infinitesimal generator of a strongly continuous
semigroup 7(f), t € J which is compact for r > 0 in the Banach space E.
Let M’ = sup{||T||p) : t = 0}.

(12.11.2) The multi-function F : J x B — P(E) is Carathéodory with compact
and convex values.

(12.11.3) There exists a continuous function k : J/ — R such that:

Hy(F(t,u), F(t,v)) < k(?) |lu—v|5
foreacht € J and for all u, v € B and
d(0, F(t,0)) < k(1)

with

t
k"= sup/ k(s)ds < oo. (12.22)
0

teJ
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Theorem 12.13. Assume that (12.11.1)—~(12.11.3),(Hy) hold. If k*M'L < 1, then
the problem (12.19)—(12.20) has at least one mild solution on BC.

Proof. Consider the multi-valued operator N : BC — P(BC) defined by:
o (1), ift € (—o0,0];

N(y):=3heBC: h(t) = '
T(t) ¢(0)+/ T(t—s)f(s)yds, ifrel,
0

where f € § F Yoty -
Let x(-) : R — E be the function defined by:
o), if 1 € (—00,0];
x(t) =
T(t) $(0),ift e J.
Then xy = ¢. For each z € BC with z(0) = 0, we denote by z the function
0, ifte (—o0,0];
z(r) =
z(1), ift € J,

if y(-) satisfies (12.21), we can decompose it as y(r) = z(¢) + x(¢), ¢ € J, which
implies y, = z, + x, for every ¢ € J and the function z(-) satisfies

z2(t) = /: T(t—s)f(s)ds, teld,
where f € Sk g F5osas -
Set
BC|, = {z € BC' : z(0) = 0}
and let
Izllsc; = sup{lz(®)| : t € J}. z € BCy,.

BC| is a Banach space with the norm || - ”BC(’)'
We define the operator A : BCj — P(BC}) by:

0, ift <0;

A(z) := { h e BC: h(t) = t
/ T(t—s)f(s)ds, iftel,
0



378 12 Functional Differential Equations and Inclusions with Delay

Wheref € SF’ZP(-YYZS +x5) +X/J($.zs +xs5) ©

The operator A maps BCj, into BCj, indeed the map A(z) is continuous on R
for any z € BCy, h € A(z) and for each ¢ € J we have

t
()] < M’ / 1F(s)]ds
0
t
<M / k) 200ty + Fptomtn |5 + [F(5, 0))ds
0

<M | k(s)ds+ M// k(s)(L|z(s)| + (M + £+ LM'H)||¢|5)ds
0 0

t
<Mk*+ M’/ k(s)(L|z(s)| + (M + L? + LM'H)| ¢ | 5)ds.
0
Set

C:=M+ L+ LMH)|p|5.

Then, we have

t t

lh()| < M'k* + M'C / k(s)ds + M’ / Liz(s)|k(s)ds
0 0
< M'K* + M'CK* + M'L|iz] sy K*.

Hence, A(z) € BC,.
Moreover, let r > 0 be such that

M'k* + M Ck*
r>—
- 1 -Mk*L

)

and B, be the closed ball in BC6 centered at the origin and of radius r. Let z € B,
and t € Ry. Then

|h(t)] < M'k* + M'Ck* + M'k*Lr.
Thus
IAllge < r.
which means that the operator A transforms the ball B, into itself.

Now we prove that A : B, — P(B,) satisfies the assumptions of Bohnenblust—
Karlin’s fixed theorem. The proof will be given in several steps.
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Step 1: We shall show that the operator A is closed and convex. This will be
given in several claims.

Claim 1: A(z) is closed for each z € B,.

Let (h,)n>0 € A(z) such that h, — h in B,. Then for h, € B, there exists
I € SF 25y tre) Fipss 4y SUCh that for each 7 € J,

mm=é?wﬂm®w

Using the fact that F has compact values and from hypotheses (12.11.2), (12.11.3)
we may pass a subsequence if necessary to get that f, converges to f € L'(J, E) and

hence f € Sz, 1) +xpiutay - LeN foreach s € J,

ha(f) — k(1) = /0 T(t — s)f (s)ds.

So, h € A(z).
Claim 2: A(z) is convex for each z € B,.

Let hy, hy € A(z), the there exists f1./2 € SF.z,. ) +xpsz 14y SUCh that, for each
t € J we have:

hi(t) = /OtT(t— $)fi(s)ds,i = 1,2.

Let 0 < § < 1. Then, we have for each ¢ € J:

B+ (=)0 = [ TG—9BA6) + (1= Ba0lds
Since F has convex values, one has
Shy + (1 —8)h, € A(2)
Step 2: A(B,) C B, this is clear.
Step 3: A(B,) is equi-continuous on every compact interval [0, 5] of Ry for

b > 0.Let 1,1, € [0,b],h € A(z) with 7, > 71, we have:

|A(T2) — h(z1)]

s/me—w—Nn—mmmwmm
0

(%)
+/|ﬁm—nm@wm¢

1
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71
= /0 17 (z2 = 5) = T(x1 = )l BE) k()|2p(s 25+x0) T *p(s.z64x0) 1B + [F (s, 0)[)ds

(%)
T / 1702 — )50y K pts24 + Tp(ozan 15 + [F(s. Ol
71

1
<c /0 1702 = 5) — T(r1 — )|y k(s)ds

L / T — ) = T(e1 — 9) sy k(s)ds
0
71
+/ IT(z2 —5) — T(tr1 — 5) || ) k(s)ds
0

©
+C / 1702 — 9) ey k(s)ds
T

1

rz
i / 172 — ) |3y k(s)ds
T

1

)
+ [ 17(e2 — 9) |3z k(s)ds.
T

1

When 1, — 12, the right-hand side of the above inequality tends to zero, since
T(?) is a strongly continuous operator and the compactness of 7'(¢) for t > 0
implies the continuity in the uniform operator topology (see [168]), this proves
the equi-continuity.

Step 4: A(B,) is relatively compact on every compact interval of [0, 00).

Let z € [0,b] for b > 0 and let & be a real number satisfying 0 < ¢ < . For
z € B, we define

he(t) = T(e) /O - T(t — s — e)f (s)ds.

Note that the set

%/f—s T(t—s—e)f(s)ds:ze€ Br}
0

is bounded.

/f—5 T(t—s—e¢)f(s)ds
0

<r.

Since T'(¢) is a compact operator for ¢ > 0, the set,

{the(t) 1z € B,}
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is precompact in E for every ¢, 0 < ¢ < t. Moreover, for every z € B, we have
|h(1) — he (1)
t
<M / [f (s)|ds
t—e¢

t t t
< M’/ k(s)ds + M’C/ k(s)ds + rM’/ Lk(s)ds,
5 t t

—& —& —&

—0 as &—0.

Therefore, the set {h() : z € B,} is precompact, i.e., relatively compact.

Step 5: A has closed graph.

Let {z,} be a sequence such that z, — z«, h, € A(z,) and h, — h,. We shall
show that A, € A(z«). h, € A(z,) means that there exists f, € Sp
such that ’

(5,25 +x5) +Xp(x.z'xl +x5)

h,(t) = /Ot T(t—s) fu(s) ds,

we must prove that there exists fi

he(t) = j: T(t—s) fx(s) ds.

Consider the linear and continuous operator K : L' (J, E) — B, defined by

Kw)@) = /ZT(I— s)v(s)ds.
0
we have
IK(f) (@) = K(F) O] = [ha(1) = he (D] < [[hn — hslloc — 0,as5 n — 00

From Lemma 2.2 it follows that K o Sy is a closed graph operator and from the
definition of K has

[e]
hn ([) €k SF’Z:;(S.z? —+x5) +XP(S~Z.¥ +x5)

As z, — z« and h, — hy, there exist fi € Sp such that:

o(s.2% 4xs) +Xp(x.z* +x5)

he(t) = [0 T(t—s) fx(s)ds.

Hence the multi-valued operator A is upper semi-continuous.
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Step 6: A(B,) is equi-convergent.
Let z € B,, we have, for h € A(2):

t
ol <1 [ i)
0
t t
<MK* + M’C/ k(s)ds + M'r/ Lk(s)ds
0 0

t t
<Mk* + M’C/ k(s)ds + M’rL/ k(s)ds.
0 0

Then by (12.22), we have
|h(®)| > I <Mk*(1 +C+rL), as t — +oo.

Hence,
|h(t) — h(+00)| = 0, as t — +oo.

As a consequence of Steps 1-4, with Lemma 1.26, we can conclude that A : B, —
P(B,) is continuous and compact. From Bohnenblust—Karlin’s fixed theorem, we
deduce that A4 has a fixed point z*. Then y* = z* +x is a fixed point of the operators
N, which is a mild solution of the problem (12.19)—(12.20). O

12.5.3 An Example

Consider the following functional partial differential equation

Da(t,x) — Lzt x) € F(t.2(t — 0(1,2(1,0)), %)

xe€[0,x], t € Ry (12.23)
2,0) =z(t, ) = 0, t € Ry, (12.24)
72(0,x) = 70(0,x), t € (—00,0], x € [0, 7], (12.25)

where F is a given multi-valued map, and o : R — R™ is continuous.
Take E = L?[0, r] and define A : E — E by Aw = " with domain

D(A) = {w € E, w, »are absolutely continuous, »” € E, w(0) = w(w) = 0}.

Then

o0
Aw = an(a),wn)a)n,a) € D(A)

n=1
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where w,(s) = % sinns,n = 1,2, ... is the orthogonal set of eigenvectors in A.
It is well known (see [168]) that A is the infinitesimal generator of an analytic
semigroup T'(¢), ¢ > 0 in E and is given by

T(Hw = Zexp(—nzt)(a),a)n)a)n, w €E.

n=1

Since the analytic semigroup 7(7) is compact, there exists a positive constant M
such that

1T e <M.

12.6 Notes and Remarks

The results of Chap. 12 are taken from [2, 5, 46—49, 70]. Other results may be found
in [139, 171].



Chapter 13
Second Order Functional Differential
Equations with Delay

13.1 Introduction

In this chapter, we present some existence of global mild solutions for some classes
of second order semi-linear functional equations with delay.

13.2 Global Existence Results of Second Order Functional
Differential Equations with Delay

13.2.1 Introduction

In this section we provide sufficient conditions for the existence of global mild
solutions for two classes of second order semi-linear functional equations with
delay. Our investigations will be situated in the Banach space of real continuous and
bounded functions on the real half axis R . First, we will consider the following
problem

y'(t) = Ay(t) + f(t,y,); ae teJ:=Ry (13.1)
yt)=¢@); teH, Y(0) =g, (13.2)

where f : J x C(H,E) — E is given function, A : D(A) C E — E is the
infinitesimal generator of a strongly continuous cosine family of bounded linear
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operators (C(f)),er, on E, ¢ : H — E is given continuous function, and (E, |.|) is a
real Banach space. Later, we consider the following problem

V() = Ay@) +f(t, ypay)): ae ted =Ry (13.3)
() =¢(1) €B; Y(0) =g, (13.4)

where f : J x B — E is given function, A : D(A) C E — E as in problem (11.25)—
(7.1), ¢ € B,p: JxB — R, and (E, |.|) is areal Banach space. The main results are
based upon Schauder’s fixed theorem combined with the family of cosine operators.

Our purpose in this section is to consider a simultaneous generalization of the
classical second order abstract Cauchy problem studied by Travis and Weeb in
[179, 180]. Additionally, we observe that the ideas and techniques in this section
permit the reformulation of the problems studied in [38, 67] to the context of partial
second order differential equations.

13.2.2 Existing Result for the Finite Delay Case

In this section by BC := BC([—r, +00)) we denote the Banach space of all bounded
and continuous functions from [—r, +00) into R equipped with the standard norm

Ivllse = sup  |y(®)].

t€[—r,+00)

Now we give our main existence result for problem (13.1)—(13.2). Before starting
and proving this result, we give the definition of a mild solution.

Definition 13.1. We say that a continuous function y : [—r, +00) — E is a mild
solution of problem (11.25)—(7.1) if y(t) = ¢(¢), t € H, y(.) and y'(0) = ¢, and

y(@) = C(t)¢p(0) + S(t)p + /0 C(t—s)f(s,y5)ds, t e J.

Let us introduce the following hypotheses:
(13.1.1) C(¢) is compact for # > 0 in the Banach space E. Let
M = sup{||C|lp&) : t = 0}, and M’ = sup{||S||p&) : t > 0}.

(13.1.2) The function f : J x C(H, E) — E is Carathéodory.
(13.1.3) There exists a continuous function k : / — R4 such that:

lf@t,u) —f(t,v)| <k@®|lu—v|, t€J, u,v € C(H,E)

and

t
k* = sup/ k(s)ds < oo.
0

teJ
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(13.1.4) The function t — f(¢,0) = fy € L'(J,R) with F* = ||[fp|l 1.
(13.1.5) For each bounded B C BC and ¢ € J the set:

W®M®+S®¢+ACU—Wﬁmﬂﬁy€&

is relatively compact in E.

Theorem 13.2. Assume that (13.1.1)—(13.1.5) hold. If K*M < 1, then the problem
(13.1)—(13.2) has at least one mild solution on BC.

Proof. Let the operator: N : BC — BC be defined by:

é(1), ifteH,

(Ny) (1) = ¢
C(@) ¢(0) + S()p + / C(t—s) f(s,y,) ds, if t € J.
0

The operator N maps BC into BC; indeed the map N(y) is continuous on [—r, 4+00)
for any y € BC, and for each ¢ € J, we have

IWMMSMMWMMM+MAV@m—ﬂwﬂfwww
SMMWMMM+M/vmwm+M/uwmm
0 0

SMMWMMM+MP+M[MMMW
<M|¢|l + Mgl + MF* + M|y|sck* := c.
Let
C = M| + Mg,

Hence, N(y) € BC.

Moreover, let r > 0 be such that r > le%,f: , and B, be the closed ball in BC

centered at the origin and of radius r. Let y € B, and t € R. Then,

[(Ny)(D)| < C+ MF* + Mk*r.
Thus,

INWIlc < r,

which means that the operator N transforms the ball B, into itself.



388 13 Second Order Functional Differential Equations with Delay

Now we prove that N : B, — B, satisfies the assumptions of Schauder’s fixed
theorem. The proof will be given in several steps.

Step 1: N is continuous in B,.

Let {y,} be a sequence such that y, — y in B,. We have

|(Nyn) (@) = (Ny) (1) SM/O If (s, y5,) =S (s, s)lds.

Then by (13.1.2) we have f(s, y5,) — f(s,ys), as n — oo, for a.e. s € J, and by the
Lebesgue dominated convergence theorem we have

||(Nyn) - (Ny)”Bc — 0, asn — oo.

Thus, N is continuous.

Step 2: N(B,) C B, this is clear.
Step 3: N(B,) is equi-continuous on every compact interval [0, 5] of Ry for
b > 0.Let 71, 7; € [0, b] with 7, > 71, we have

IND)(72) = N()(11)]
= €z = 9) = C(r1 = s l1#ll + [1S(r2 — 5) = S(T1 — ) |5 9|

+/me—®—cm—@m@Wmmm
0

+/1wm—om@mmmm

3

< 1C(ra =) = C(r1 = )l Pl + 1S(z2 — 5) — S(r1 — 5) sy | |l

+Ame—@—cm—@h@vmkrfmm+ﬂxwm

+/|wm—nm@vmwr¢mm+ﬂaww
< (2 — ) — €1 — )5 ] + 152 — ) — S — ) s I

7
44/|W@—9—Cm—@hmﬂmh

0

7
+/|wm—o—cm—@h@waww

0

)

+r/ |C(r2 — s)||B(E)k(s)ds

7

)
+/|wm—om®wmmw
71
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When 17, — 17, the right-hand side of the above inequality tends to zero, since
C(1), S(1) are a strongly continuous operator and the compactness of C(¢), S(¢) for
t > 0, implies the continuity in the uniform operator topology (see [179, 180]).
This proves the equi-continuity.

Step 4:N(B,) is relatively compact on every compact interval of [0,0c0) by
(13.1.5).
Step 5: N(B,) is equi-convergent.

Lety € B,, we have:

Ny = Mgl + M el +M/0 If (s. ys)lds

t
< C+ MF* —i—Mr/ k(s)ds
0

< C+ MF* —I—Mr/otk(s)ds.
Then
|((Ny)()| = C < C+ MF* + Mk*r, as t — +o0.
Hence,
|(Ny)(2) — (Ny)(+00)| = 0, as 1 — +o0.
As a consequence of Steps 1-5, with Lemma 1.26, we can conclude that
N : B, — B, is continuous and compact. From Schauder’s theorem, we deduce

that N has a fixed point y* which is a mild solution of the problem (13.1)—(13.2).
O

13.2.3 Existing Results for the State-Dependent Delay Case

In this section by BC := BC(R) we denote the Banach space of all bounded and
continuous functions from R into E equipped with the standard norm

Iyllsc = sup [y(1)].
teR

Finally, by BC' := BC'(R4) we denote the Banach space of all bounded and
continuous functions from R into E equipped with the standard norm

[yllser = sup |y(®)].
tER 4
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Now we give our main existence result for problem (13.3)—(13.4). Before starting
and proving this result, we give the definition of a mild solution.

Definition 13.3. We say that a continuous function y : (—o0,+0o0) — E is a
mild solution of problem (11.15)—(11.16) if y(r) = ¢(¢), t € (—00,0], y(.) is
continuously differentiable and y'(0) = ¢ and

y(t) = C(t)p(0) + S(t)p + /0 Ct—5)f (S, Yp(yp)ds, t € J.
Set

R(p™) = {p(s,$) : (s.9) € J x B, p(s,$) < 0}.

We always assume that p : J x B — R is continuous. Additionally, we introduce
the following hypothesis:

(Hy) The function t — ¢ is continuous from R(p~) into B and there exists a

continuous and bounded function £? : R(p~) — (0, o) such that
il < L2@) gl forevery 1 € R(p™).
Remark 13.4. The condition (Hy) is frequently verified by functions continuous
and bounded.
Let us introduce the following hypotheses:

(13.3.1) C(¢),S(t) are compact for t > 0 in the Banach space E. Let M =
sup{[|Cllp&) : t > 0}, and M’ = sup{||S||p) : t > 0}.

(13.3.2) The function f : J x B — E is Carathéodory.

(13.3.3) There exists a continuous function k : J/ — R4 such that:

F@u) —ftv)| <k@®lu—v|, teJ, u,veB

and

t
k* = sup/ k(s)ds < oo.
0

teJ

(13.3.4) The function t — f(t,0) = fy € L'(J,R) with F* = ||fo]l.1.
(13.3.5) For each bounded B C BC’ and ¢ € J the set:

(S(e + /0 Clt — (5. Yp(upy)ds - v € B}

is relatively compact in E.
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Theorem 13.5. Assume that (13.3.1)—(13.3.5),(Hy) hold. If K*MIl < 1, then the
problem (13.3)—(13.4) has at least one mild solution on BC.

Proof. Consider the operator: N : BC — BC define by:

¢ (). if 1 € (—o0, 0],

(Ny)(1) = '
C(1) ¢(0) + S + /0 C(t —5) f(s, Ypryy) ds, if 1 € J.

Let x(.) : R — E be the function defined by:
P(0): if 1 € (—00,0];
x(t) =
C(t) ¢(0); ift € J,

then xo = ¢. For each z € BC with z(0) = 0, y'(0) = ¢ = 7(0) = ¢, we denote
by 7 the function

0; ift € (—o0,0];
z7() =
z(n); ift € J.

If y satisfies y() = (Ny)(t), we can decompose it as y(t) = z(t) +x(t), t € J, which
implies y; = z; + x; for every ¢ € J and the function z(.) satisfies

t
1) = S)pr + f Clt = 5) (5. 2ptsm ) -+ Xotoay)ds. 1 €.
0

Set
BC| = {z € BC' : z(0) = 0}
and let
Izllsc; = supilz(®)| : t € J}, z € BC,.

BC| is a Banach space with the norm |.|| sc;- We define the operator A : BC) —
BC| by:

t
A@) (1) = S¢1 + / C(t —5) (5, Zp(s.254x) T Xp(s.zetx,))ds, T € J.
0

We shall show that the operator A satisfies all conditions of Schauder’s fixed point
theorem. The operator A maps BCj, into BCj,, indeed the map .A(z) is continuous on
Ry for any z € BC), and for each t € J we have
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t
|-A(Z)(t)| = M/”(pl ” + M/(; lf(s» 2p(s,z5+x5) + xp(s,a-l—x;)) —f(S, 0) +f(sv O)|dS
t t
< Mg\ + M /0 (s, 0)ds + M /0 K(5) 12000 ) + ooy 58
t
< M| 1| + MF* + M/ k(s)(l|z(s)| + (m + L2 + IMH)||¢ || 3)ds.
0

Let
C=(m+ L+ IMH)|]| 5.

Then, we have:

t t
A@) ()| < M|l | + MF* + MC / k(s)ds + Ml / k(s)|z(s)|ds
0 0
< M'|lgi[| + MF* + MCK* + Mi||z| gy k™.

Hence, A(z) € BCj,.

7 * *
Moreover, let r > 0 be such that » > M”‘”‘”ﬁl%, and B, be the closed ball

in BC|, centered at the origin and of radius r. Let y € B, and r € R.. Then,
|A@) (1) < M'||lg1|| + MF* + MCK* + MIk*r.
Thus,

[A@ s, = .

which means that the operator N transforms the ball B, into itself.
Now we prove that A : B, — B, satisfies the assumptions of Schauder’s fixed
theorem. The proof will be given in several steps.

Step 1: A is continuous in B,.

Let {z,} be a sequence such that z, — zin B,. At the first, we study the convergence
of the sequences (ZZ(S’ZH))nEINs seJ.
If s € J is such that p(s, z;) > 0, then we have,

||Z7)(5,Z;‘) - Z/J(s.zx)”B = ”ZZ(&Zg) — Zp(s,2) ”B + ”Zp(s.z}’) - Zp(s.,zs)”B

< lllzn — zlla, + IZpes.zm) — Zp(siz) 1B

which proves that Z;l)(s.z’?) — Zpsz) in B as n — oo for every s € J such that
p(s,zs) > 0. Similarly, is p(s, z;) < 0, we get

||ZZ(5,ng) — Zp(sz0) llB = ||¢Z(S»Z?) — pis.20llB =0
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which also shows that /., — Zp(s.z) in B as n — oo for every s € J such that

p(s, z;) < 0. Combining the pervious arguments, we can prove that ZZ o) @ for
every s € J such that p(s, z;) = 0. Finally,

| A@zn) (1) — A) (D)

t
=< M/ f (s, ZZ(S,ZQ-HX) + xp(s,zg'+xs)) —f(s, Zp(s.zs+x;) T xp(s.zs+xs))|ds-
0 .

Then by (13.3.2) we have
1 (s, ZZ(s,szs) + Xps.ar+x)) = S Zps.04x) T Xp(s.z4x,))s @SR —> 00,
and by the Lebesgue dominated convergence theorem we get,
[Azn) — A@lpc; — 0. asn — oo.

Thus A is continuous.

Step 2: A(B,) C B, this is clear.
Step 3: A(B,) is equi-continuous on every compact interval [0, ] of R for
b > 0.Let 71, 1; € [0, b] with 7, > 71, we have

|A(2)(72) — A(2) (1)
< IS(z2 — s) — S(z1 — 9) |z lle1 |l

L
+ /0 [C(r2 —5) — C(r1 — 5) sy lf (5. ZZ(sﬁzfg-i-xA.) + xp(s,z§f+xs))|ds

»
4 [ 10 = 6.2 + ol
71

< IS(z2 — s) — S(z1 — 9) |la) @1l

71
+ [ 100 =) = 0 =M /5 100 + s =60l
7]
+ [ e =9 - @ - 9 e 5.0lds
0
rz
+ / IC(w2 = ) @) (5, Zps ngexy) T Xp(s.p4x)) — (5, 0)|ds
71

)
T / 1C(t = )l f (5. O)\ds
71
< |I8(2 —5) = S(t1 — )|z il

7
e / 1C(t2 — ) — C(t1 — )y k(s)ds
0
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71
+lr/ |C(r2 —5) — C(t1 — 5) || BE)k(5)ds
0
7
+ [ e =5 = C@ = 9l s.0lds
0
o
+C/ |C(r2 — 9) || k(s)ds
7]
)
+lr/ |C(r2 — ) || k(s)ds
7]

153
+/ |C(t2 = 5)||BE)f (5, 0)|ds.
7

When 17, — 17, the right-hand side of the above inequality tends to zero, since
C(1) are a strongly continuous operator and the compactness of C(z) for t > 0
implies the continuity in the uniform operator topology (see [179, 180]). This
proves the equi-continuity.

Step 4: N(B,) is relatively compact on every compact interval of [0, co). This is
satisfied from (13.1.5).
Step 5: N(B,) is equi-convergent.

Lety € B,, we have:

t
AR (0] < M'[lon ]l + M/O (5. 2oty + Xp(s.iban) s
t
< M'||1|| + MF* + MCK* + Mrl / k(s)ds.
0

Then
|A) (1) = C < M'||@1]| + MF* + MK*(C + Ir), as t — +oo.
Hence,
|A®) (1) — A(R)(+00)| = 0, as t — +oo.
As a consequence of Steps 1-5, with Lemma 1.26, we can conclude that
A : B, — B, is continuous and compact. we deduce that A has a fixed point z*.

Then y* = z* + x is a fixed point of the operators N, which is a mild solution of the
problem (13.3)—(13.4). a
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13.2.4 Examples

Example 1. Consider the functional partial differential equation of second order:

%z(i,x) = %z(r,x) +f(t,z(t—r.x)), xe[0,n], teJ:=Ry, (13.5)
z(t,0) = z(r,m) = 0, 1 € Ry, (13.6)
26, %) = ¢(), B = w(x), r€H, xe[0,7], (13.7)

where f is a given map. Take E = L*[0, 7] and define A : E — E by Aw = o” with
domain

D(A) = {w € E; w, ®’ are absolutely continuous, w” € E, w(0) = w(xw) = 0}.

It is well known that A is the infinitesimal generator of a strongly continuous
cosine function (C(f)),eron E, respectively. Moreover, A has discrete spectrum, the
eigenvalues are —n*,n € IN with corresponding normalized eigenvectors z,(7) :=
(%)% sinnt, and the following properties hold:

(a) {z, : n € IN} is an orthonormal basis of E.
(b) Ify € E,thenAy = — Y 72 n* <y,2; > 2.
(c) Fory € E,C(t)y = > o2, cos(nt) < y,z, > z,, and the associated sine family is

oo

sin(nt
S(t)y=2 ,Sn) <Y,Zn > Zn

n=1

which implies that the operator S(¢) is compact for all # > 0 and that
ICOI = IS@Il < 1, forall z > 0.

(d) If @ denotes the group of translations on E defined b @(¢)y(§) = y(§ +1) where
y is the extension of y with period 2, then C(r) = %(cb(t) + @(—1)):;A = B2,
where B is the infinitesimal generator of the group @ on

X ={yeH(0,7):y(0) = x(n) = 0}.

Then the problem (13.1)-(13.2) is an abstract formulation of the problem (13.5)—
(13.7). If conditions (13.1.1)—(13.1.5) are satisfied. Theorem 13.2 implies that the
problem (13.5)—(13.7) has at least one mild solution on BC.

Example 2. Take E = L*[0,7n]:B = Cy x L*(g.E) and define A : E — E by
Aw = " with domain

D(A) = {w € E; w, w’ are absolutely continuous, o” € E, w(0) = w(x) = 0}.
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It is well known that A is the infinitesimal generator of a strongly continuous
cosine function (C(?)),er on E, respectively. Moreover, A has discrete spectrum, the
eigenvalues are —n*,n € IN with corresponding normalized eigenvectors z,(7) :=
(%)% sinnt, and the following properties hold:

(a) {z,:n € IN} is an orthonormal basis of E.
(b) If y € E, then Ay = _Z:O:1 n* < v,70 > Zn.
(c) Fory € E,C(t)y = > o2, cos(nt) < y,z, > z,, and the associated sine family is

oo

sin(nt)
S(l‘)yZZ n <Y,Zn > Zn

n=1

which implies that the operator S(7) is compact for all # > 0 and that |C(7)|| =
S| < 1forallt € R.
(d) If @ denotes the group of translations on E defined by

D@)y(§) =y +0).
where y is the extension of y with period 27, then
1
C) = 3(@() + (). 4 = B
where B is the infinitesimal generator of the group @ on
X ={ye H'(0,7) : y(0) = x(r) = 0}.

Consider the functional partial differential equation of second order:

32 82 0
WZ(“) = @Z(M) + / a(s —1)z(s — p1 () p2(llz()[), x)ds,

xel0,n], ted:=Ry, (13.8)
2(t.0) = z(t,w) = 0, t € Ry, (13.9)
0z(0,
z(t,x) = (1), Z(at ) _ w(x), teH, xe[0,7], (13.10)
where p; : [0,00) — [0,00),a;R — R be continuous, and L =

0 2

( / a ((s)) ds) % < o00. Under these conditions, we define the function
—oo 8(s

FUXBSE p:1IxB—Rby

0

FE) @ = / a(s)Y (s, 2)ds.

p(s.¥) = s — p1(s)p2([[Y (O],

we have ||[f (¢, )]s < Ly.
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Then the problem (13.3)—(13.4) is an abstract formulation of the problem (13.8)—
(13.10). If conditions (13.1.1)—(13.1.5) are satisfied. Theorem 12.4 implies that the
problem (13.8)—(13.10) has at least one mild solution on BC.

13.3 Notes and Remarks

The results of Chap. 13 are taken from Alaidarous et al. [21, 22] and Benchohra
et al. [55-57, 82, 83]. Other results may be found in [111, 166].
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