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Introduction

The clarification of the notion of a fundamental solution of a linear differential
operator

0

P@) =) ay*, meNy, ay €C, o €Nj, 0% =07 .00, 0 =7
7

|| <m

is attributed to Laurent Schwartz in Malgrange [175, p. 29] . L. Schwartz writes in
his seminal treatise “Théorie des distributions”:

The usual definition of a fundamental solution as a classical solution of the
homogeneous equation with a certain singularity has to be completely rejected.
Instead, E € D’(R") is a fundamental solution of P(9) if and only if the equation
P(d)E = § holds in the sense of distributions, see Schwartz [246, pp. 135, 136].

That distribution theory is necessary not just for the definition of a fundamental
solution, but also for its calculation is shown already by the trivial operator P(d) = 1
(where E = §), or less trivially, by the simple transport operator P(d) = d; — ds,
whose fundamental solutions are given by E = Y(x1)8(x; + x2) + T(x; + x2), ¥
denoting the Heaviside function and 7 being an arbitrary distribution in D’(R").

Already in this simple example, two questions immediately arise:

(i) Whatis T(x; + x)? (i1) How is Y(x1)8(x; + x;) defined?

Therefore, we collect in Chap. 1: Distributions and Fundamental Solutions some
facts from distribution theory. E.g., question (i) is answered in Sect. 1.2, where the
composition of distributions with smooth maps and the pullback of distributions
are investigated. Similarly, for (ii), one needs pullbacks and multiplication of
distributions, and this leads to (an easy case) of a distribution with support on a
hypersurface (see Example 1.2.14),i.e.,

Y(x1)8(x1 + x2) : D(R*) — C : ¢ —> /Ooo ¢(t,—1) dr.

vii



viii Introduction

Our presentation of distribution theory differs from the usual introductions to
distributions perhaps mainly by two topics: Definition of single and double layers
and use of the jump formula for the verification of fundamental solutions (see
Sect. 1.3), and the treatment of distribution-valued functions (see Sect. 1.4).

In this book, only operators and systems with constant coefficients are con-
sidered. The systems are taken from applications in physics, operators of higher
order usually appear as determinants of such systems. The Malgrange—Ehrenpreis
theorem, see Proposition 2.2.1 in Chap.2: General Principles for Fundamental
Solutions, asserts that each not identically vanishing differential operator has a
fundamental solution. It can be represented as a (generalized) inverse Fourier-
Laplace transform, hence, “in principle” as an n-fold definite integral. Our main
goal consists in deriving representations of fundamental solutions which are “as
simple as possible”. Let us now try to explain this expression by discussing three
examples of differential operators of increasing complexity.

In 1788, P.S. de Laplace used the algebraic function |x|~' as a fundamental
solution of the operator A; = 97 4+ 93 + 93, which justly bears his name. The
above definition of a fundamental solution by L. Schwartz requires the additional
factor —1/(4n), i.e.,

I 1
47 x| 47 \[xF + x5 + X3

fulfills A3E = §, see Example 1.3.14 (a) and the remark in Zeilon [306, p. 2]. Hence,
the Laplacean Aj possesses a fundamental solution in the form of an algebraic
function. Furthermore, E is uniquely determined by either of the properties of being
homogeneous or of vanishing at infinity, respectively (see Sect.2.4).

In 1959, S.L. Sobolev found the representation

E= € Li(R’) C D'(R?)

Y(—x1x2x3)

E(t.x) = Y(t)[T Ko(2v/—x1x2x3/1) — Y(xaxaxs)

- N()(Z X1XQX3/I):|

(see Examples 2.3.8 and 2.6.4) of the unique temperate fundamental solution
with support in the half-space {(t,x) € R*t > 0} (see Proposition 2.4.13
for the uniqueness) of the operator P(d) = d; — d,0,03. Hence the “simplest”
representation of E in this case is by means of the higher transcendental functions
Koy, Ny, i.e., Bessel functions which are given by definite integrals over elementary
functions. The operator d, — 0,0,05 is not hyperbolic. We call operators of
this type quasihyperbolic, see Example 2.2.2, Definition and Proposition 2.4.13,
and Chap. 4: Quasihyperbolic Systems, in contrast to the literature where such
operators are often called “correct in the sense of Petrovsky”, cf. Gindikin and
Volevich [109, p. 168], or “weakly parabolic”, cf. Dautray and Lions [53, p. 222].

Very often, linear differential operators occurring in physics are products of lower
order operators or can be reduced to such operators. We show in Chap. 3: Param-
eter Integration how fundamental solutions in such cases can be represented by
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integrals with respect to parameters generating the convex combinations of these
lower order operators. As our third example, let us consider Timoshenko’s beam
operator, i.e.,

534 IOI 34 I( E )3232

+ — S (1+ =)

a7+ —
AT GAktA Gk

see Examples 2.4.14,3.5.4,4.1.6, and 4.3.7. It can be rewritten in the form
R(D) = (0> — ad* + b)* — (c0* — d)* — &

and the forward fundamental solution E of R(d) can be represented as a parameter
integral with respect to A, i over the forward fundamental solutions Ej , of the
operators [0 —ad? + b+ A(cd? —d) + pe]?. This leads to a representation of E as a
definite integral over Bessel functions, see formulas (3.5.9/3.5.10) in Example 3.5.4.
This representation of E already yields a precise description of the support and of
the singular support, respectively, of E.

Alternatively, the singularities of the forward fundamental solution/matrix of
such a quasihyperbolic operator/system can be deduced a priori from the representa-
tion by Laplace inversion (see Sects. 4.1, 4.2, and 4.3). Let us also note that Laplace
inversion in such cases often leads to completely different integral representations
of E, see Example 4.1.6 for Timoshenko’s operator. For homogeneous hyperbolic
operators, such representation formulas are traditionally known under the name of
“Herglotz—Petrovsky formulas”, and we consider these formulas in Sect. 4.4 and the
analogues for homogeneous elliptic operators in Sect. 5.2 in Chap. 5: Fundamental
Matrices of Homogeneous Systems.

Let us finally summarize that the main goal of this book consists in presenting the
most important procedures for constructing fundamental solutions and in illustrating
them by physically relevant examples. Clearly, we could not include each and every
method and/or operator appearing in the literature. Furthermore, we emphasize
that the many applications of fundamental solutions for theoretical purposes (e.g.,
hypoellipticity, surjectivity of operators, etc.) as well as in practical matters (solution
of Cauchy or boundary value or mixed problems in the natural sciences) have barely
been touched upon in this treatise for the lack of space.
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Chapter 1
Distributions and Fundamental Solutions

This chapter is an introduction to distribution theory illustrated by the verification
of fundamental solutions of the classical operators AK (A — A, (A, + M)F, 05,
(@2 — AK, 0y -+ 0k, (3 — AALE, (3, £iAA,)* (for A > 0,k € N), which are listed
in Laurent Schwartz’ famous book “Théorie des distributions,” see Schwartz [246].
The theory of distributions was developed by L. Schwartz in order to provide a
suitable tool for solving problems in the analysis of several variables, e.g., in the
theory of partial differential equations or in many-dimensional harmonic analysis.
Taking into account this emphasis on many dimensions, we present mainly examples
in R” instead of R'. For example, in Example 1.4.10 we derive the distributional
differentiation formula

x| =1 _ |x|25jk — XX |S™ .
Bjak(ﬁ) = Vp( |_x|"+2 ) + " Sjk& 1 f],k <nn ?é 2.

In contrast to the classical textbooks on distribution theory (by Barros-Neto [8];
Blanchard and Briining [16]; Donoghue [61]; Duistermaat and Kolk [65]; Friedlan-
der and Joshi [84]; Gel’fand and Shilov [104]; Grubb [118]; Hervé [129]; Hirsch
and Lacombe [131]; Horvath [141]; Petersen [228]; Strichartz [266]; Vladimirov
[280]; Zuily [309], etc.), we use the distributional jump formula for differentiation
in order to verify the formula above and many of the fundamental solutions to the
above list of classical operators, see Examples 1.3.10 and 1.3.11.

In Sect.1.2 we define the pullback of distributions by mappings. Due to
its importance in Sect.4.4, we give explicit expressions for hf (84, )h5(8e,) =
84, (h1)84, (h2) = §(h1(x) —a1)8(ha(x) —az). In Sect. 1.4, we introduce distribution-
valued functions. Apart from the ubiquitous use of analytic continuation for
the construction of fundamental solutions, this is also motivated by providing
a theoretical foundation for the partial Fourier transform (in contrast to ad hoc
constructions as, e.g., in Treves [274]).

© Springer International Publishing Switzerland 2015 1
N. Ortner, P. Wagner, Fundamental Solutions of Linear Partial Differential
Operators, DOI 10.1007/978-3-319-20140-5_1



2 1 Distributions and Fundamental Solutions

The convolvability and the convolution of distributions are investigated in
Sect. 1.5 using L. Schwartz’ general definition: S, 7 € D’(R") are convolvable if
and only if S(x — y)T(y) € D’ (R;‘)@)D/L1 (R}). Their convolution is then defined as

S%T = (1,56 -070) = [ Se=nTO)d.

n

These definitions require a study of the space D’Ll of integrable distributions which
is a special case of the spaces D;,, 1 < p < co. As an application of this general
definition of convolution for distributions, we derive the Liénard—Wiechert fields of
a moving charged particle in electrodynamics.

In Sect. 1.6, we treat the Fourier transform in the space S’ of spherical distribu-
tions (omitting the more general Gel’ fand—Shilov Fourier transformation F : D" —
Z'.) A proof for the injectivity of F : L! — BC employing the Carleman transform
is already given in Proposition 1.1.8. The non-surjectivity of F : L! — Cy is shown
by means of new explicit examples in Example 1.6.8. Several methods for calculat-
ing the Fourier transform of integrable distributions are compared in Example 1.6.9.
In Proposition 1.6.21, we investigate Poisson’s summation formula in D; o (R").

Let us finally mention that this chapter is an elaboration and extension of a one-
semester course on distribution theory given several times by the authors.

1.1 Definition of Test Functions and Distributions:
D(R), £(R), D'(R)

Let us introduce some basic notation and then repeat the essential definitions of
distribution theory, cf. Schwartz [246], Horvath [141], Treves [273], Strichartz
[266], Hormander [139].

Throughout, we denote by € a non-empty open subset of R” and write 9; = Bix,-
for the partial derivatives. For x € R", o, € NI}, we use multi-index notation in
the following form:

X =x x| =, ol =agla,),
a>p ifandonlyif Vj:o; > B
o al gl
=—— fora > 8, 0% = 9% ... 9% = )
('B) Bl —p)! =P ! Ty O

Generally,

P(0) =P(01.....0,) = Y as0", a,€C. meNy,

|| <m

denotes a linear differential operator of order at most m with constant coefficients.
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Let us next define the two basic locally convex topological vector spaces £(£2)

and D(R2). In order to avoid technical complications, the topologies on these
spaces are defined through the convergence of sequences instead of by means of
seminorms.

Definition 1.1.1

(1)

(@)

For @ # © C R” open, the C-vector space of infinitely often differentiable
functions is denoted by

E(Q)=C®(Q)={¢: Q2 —> C;¢isC™)}.

For ¢ € £(R2), its support supp ¢ is the closure in Q of the set {x € Q;
¢ (x) # 0} wherein ¢ does not vanish.
The space of test functions on 2 is

D(Q) = {¢ € £(2); supp ¢ is compact}.

We shall often write £ and D instead of £(R") and D(R"), respectively.
The sequence (¢ )ren € E(Q)N is called convergent to ¢ in £() iff ¢y and the
derivatives of ¢ converge uniformly to ¢ and the corresponding derivatives of
¢, respectively, on each compact subset of 2, i.e.,

lim ¢y = ¢ in E(RQ) (or ¢ — ¢ in E(NQ)) —

k—00
Vo eNj: VK C Q compact: Ve >0:INeEN: V>N : [|[0%r—0P |l koo <€

wherein ||¢|lx.co = Sup,ex |¢(x)|. The sequence (¢)ren € D(Q)N converges
to ¢ in D(R) if, in addition to being convergent in £(£2), the supports of all ¢
are contained in a fixed compact subset of 2, i.e.,
lim ¢ = ¢ in D(Q) <—
k—>00
(1) ¢ > ¢ inE(2) (i) IK C Q2 compact : Vk € N : supp ¢ C K.

Addition, multiplication with scalars, and point-wise multiplication render
£(R2) and D(L2) C-algebras.

L.A. Cauchy’s celebrated example of a non-analytic C* function shows that

D(£2) is non-trivial:

Example 1.1.2 Let y : R — R : x — {

0, if x <0,
. Then y € C'(R)

—1/x

e ifx>0

since
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_ x@ =y e el
lim ————— = lim =0 =Ilim 5
N0 X N0 X N0 X
0, ifx <0,
(by de I’'Hopital’s rule), and hence y'(x) = is again
271X ifx>0
continuous. By induction, we infer that
ifx <0,

xOx) =

Pr(x)x e X ifx>0

for k € N and certain polynomials Py, and thus y € C¥(R). This implies y € £ =
NkenCr(R).

For xyp € R" and € > 0 such that the closed ball B.(xg) = {x € R"; |x — xo| < €}

is contained in €, we have y(1 — |x — x0|?/€?) € D(RQ) and hence D() # {0}.

O

Example 1.1.3 For ¢p € D \ {0}, we can consider the sequences

1 1, x
= — d = — —).
P T ¢ and Yi(x) T ¢(k)
Whereas ¢, converges to 0 in £ and in D, converges (to 0) in &, but not in D,
since the supports of Y, are not uniformly bounded. O

The space of distributions D’ (2) is the dual space of D(L2) in the sense of locally
convex vector spaces. We define D'(2) directly, thereby circumventing the non-
metrizability of D(2).

Definition 1.1.4
(1) For @ # Q C R" open,

D'(Q) = {T : D(Q) —> C; T C-linear and T(¢;) — 0if ¢ — 0in D(Q)}.

(2) The sequence (Ty)ien € D' ()N is called convergent to T in D'(R2) (and we
write limg— 00 Ty = T) iff T € D’(2) and the sequences Ty (¢p) convergeto T(¢)
for each ¢ € D(£2). Analogously, we define lim, .y, 7 = T for a family T of
distributions depending on a parameter A in C* (or any metrizable topological
space).

The convergence of sequences in D’(£2) is often called weak convergence, since
it refers to the “weak” topology on D’(€2). The evaluation T(¢) of a distribution T
on a test function ¢ is often written as (¢, T), which is a hint at the bilinearity of the
evaluation mapping

D) xD'(Q) — C: (¢, T) —> T(¢) = (¢, T).



1.1 Definition of Test Functions and Distributions: D(£2), £(R2), D’'(R2) 5

In order to indicate the “active” variable in a distribution 7', it is often convenient
to write 7 € D'(R?) or T, or T(x); e.g., this is necessary in (¢ (x,y), T(x)) and in
(Pp(x,y), T(Y)), ¢ € D(Ri’;), which numbers are, in general, different.

Proposition 1.1.5 D'(Q) is sequentially complete with respect to the weak topol-
ogy, i.e., if (Ti)rex € D' ()N and limy_ o0 (¢, Tx) exists for each ¢ € D(Q), then

(#.7) = lim (6. T2)

defines a distribution T € D' (2).

For the proof, which relies essentially on the Banach—Steinhaus theorem for the
barrelled space D(2), we refer to Robertson and Robertson [236], Ch. IV, Cor. 1 to
Thm. 3, p. 69; Donoghue [61], Sect. 20, p. 100; Vladimirov [280], 1.4, pp. 14, 15;
Gel’fand and Shilov [104], App. A, pp. 368, 369.

Distributions generalize Lebesgue (locally) integrable functions and Radon
measures.

Definition 1.1.6 A Lebesgue measurable function f : Q — C is called locally
integrable on Q iff [ |f(x)|dx is finite for all compact K C 2.
For example, every continuous function on €2 is locally integrable, )—lc is locally

integrable on R \ {0}, but not on R, whereas — is locally integrable also on R.

NEG
Proposition 1.1.7

(D) Iff : Q — Cis locally integrable, then the associated linear functional

0@ — €9 [ puarear

is a distribution.
(2) Forf,g : Q —> C locally integrable, we have Ty = T, if and only if f = g
almost everywhere, i.e., {x € Q;f(x) # g(x)} is a set of Lebesgue measure 0.

We can therefore identify the equivalence classes of locally integrable functions
which are equal almost everywhere with their associated distribution. For shortness,
we shall often write just f instead of 7.

Proof
(1) Obviously, Ty is linear. On the other hand, if ¢y — ¢ in D(R2), then

‘/Q(¢k(x)—¢(x))f(x) dx) < ||¢k—¢>||1<,oo~/Klf(x)|dx

for compact K C 2 such that supp ¢, C K forall k € N. Hence Ty (¢x) — Tr(¢)
fork — oo, i.e., Ty € D'(Q).
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(2) Ty = T, means that [, (f(x) — g(x))¢(x) dx = 0 for each ¢ € D(R2) and this

implies
/R” (f(.X) - g(x))q&(x)e—iéx dx =0

for each ¢ € D(Q2) and each £ € R". By the injectivity of the (classical)
Fourier transform (see Proposition 1.1.8), we conclude that (f (x)— g(x))¢(x) =
0 almost everywhere for ¢ € D(£2) and hence f = g almost everywhere. O

Proposition 1.1.8 Let

BCR") = {f : R" — C; f is continuous and bounded}.

Then

F:L'(R") —> BCR") : f —> (g . /R e dx)

is well defined, linear, continuous, and injective.

Proof

(a)

(b)

(c)

The continuity of Ff follows from Lebesgue’s theorem on dominated conver-
gence, and we obviously have || Ff|leo < |If|l:- This implies Ff € BC(R") and
the continuity of F.

Let us show that the mapping F is injective by using the Carleman transform,
see Carleman [42], (44), (45), p. 27; Gurarii [121], Sect. 12, pp. 147-158;
Hormander [137], Example 1.4.12, p. 1.19; Newman [189]. We first assume
n =1 and take f € L'(R') with Ff = 0. The function

0
/ f(x)e ™ du, if Imz > 0,
(o0}
8(@) = -~ '
— / fx)e ™ dx, ifImz=<0
0

is well defined on R due to Ff = 0, continuous on C, and obviously analytic
on C \ R. Morera’s theorem (or Rudin [238], Thm., p. 4) implies that g is
entire. Since g is bounded (due to ||g]lec < |If]l1). and lim, o g(iy) = 0, we
conclude from Liouville’s theorem that g vanishes identically. Hence g(0) =
fi)oof(x)dx = 0, and use of the shifted functions x +— f(x + §) yields
f_s oof(x) dx = O for all £ € R and hence f = 0 almost everywhere.

Finally, we use induction on the dimension n. If f € L' (R"), then

fu R~ — C:¥ — f(x1,x)
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belongs, by Fubini’s theorem, to L! (R”_l) for x; € R\ N, where N is a null-set
in R. Furthermore, for £’ € R ! fixed,

ger(v1) == (Ff)(E) = /Rmf(xl,x')e_if/x/ dx’

is integrable for all £ € R*™!, and Fge (1) = Ff(§) = 0 for & € R. Hence,
by part (b) above, g¢- vanishes almost everywhere. Therefore, Fubini’s theorem
implies

o:/ / |g5/(x1)|dx1d§’=/ / |ge (x1)| d&dx;.
R*—1 JR\N R\V JRi—!

Thus fR,,,l |ge/ (x1)| d&" = 0 forx; € R\ N, where N C N; is another null-set in
R. By the continuity of & > g¢(x), this implies g¢(x;) = 0 for all ¢’ € R*™!
and x; € R\ N;. The induction hypothesis then furnishes fR,,,l If (1, x) | dx' =
0 for x; € R\ N; and thus f = 0 almost everywhere. O

The Riemann-Lebesgue lemma states that the range of the Fourier transform in
Proposition 1.1.8 is actually contained in the space Co(R") of continuous functions
vanishing at infinity.

Definition 1.1.9 Assume @ # Q C R” open.

(1) We define the space L _(2) of locally integrable functions as a subspace of
D(Q):

Li.(Q) = {T; € D'(Q); f : @ —> C locally integrable}.
(2) Similarly, for 1 < p < oo, we define

LV () = {Ty € D'(Q); |f| is locally integrable},

L[X(Q) = {T; € L} (2); f = 0 outside a compact subset of 2},

loc

L2 (Q) = {Ty € D'(Q); |f| is locally bounded}, L°(RQ) = L2(2) N LI(RQ).

(3) Finally, the spaces of Radon measures M(R2), of integrable (or bounded)
measures M'(2), and of measures with compact support M.(2), respec-
tively, are defined as the subspaces of D’(2) arising by the application of
the corresponding class of measures to test functions. (In a similar vein as
in Proposition 1.1.7, the Riesz—Markov theorem implies that two complex
measures 41, 4y fulfilling |u;|(K) < oo for all compacts sets K C €2 coincide
as measures if and only if they coincide as distributions.)

In order to convince the reader that distributions generalize measures and
functions, let us present the following table, cf. Horvéth [145], p. 10; Vo-Khac Koan
[282], p. 168 and p. 175.
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Table 1.1.10 If  # Q@ C R"openand 1 < p < g < oo, then the following
inclusions hold:

LP(Q) CLUQ) CLAR) CLI(R) C M(RQ)

N n n n n
L®(Q) LI(Q) I[(Q) LY(Q) cM\(Q)
n n n n n

2(Q) CLL.(Q) C L (Q) CLL(QCM(Q) C D(Q)

loc loc

Example 1.1.11 A particularly important example of a measure with compact
support is the Dirac measure. For a € Q@ C R”" open, we set

84:D(RQ) — C:¢p— ¢(a).
In particular § is short for §y € D’ (R").

Then 8, € M () \ L. (), since, by Lebesgue’s theorem on dominated
convergence,

loc

lim (0, T) =0 if p;(x) = x(1 —jlx—al?)

Jj—>00

and y is as in Example 1.1.2 and T = Ty € L}

loc
x(1) #0.
Although § cannot be represented by locally integrable functions, it is the (weak)

limit of such functions. In fact, if k € L' (R") with [ k(x)dx = 1, then

(£2); on the other hand, (p;, §,) =

l@)e‘”k(f):& in D'RY),

since, for ¢ € D, Lebesgue’s theorem implies

k(D= [ pwn(D)ac= [ senkmra—
- /R HOKO)dy = 9(0) = (9.3,

Well-known special cases of this are the following (Y denotes the Heaviside
function, i.e., Y(#) = 1 fort > Oand Y(r) = O forz <0) :
(i) limeo Ce ™Y (e — |x|) = § with C = w2 (% + 1);
Ce
i i — § with C = 7~ (rFD/2 (2t1
(i) limeo (X i = SwithC=m L),
cf. Example 1.6.12 below and Duoandikoetxea [67], (1.30), p. 19;
(iii) limo Ce2e /e = § with C = 7~/2.
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The examples (ii) and (iii) correspond to the classical summability methods
named after Abel-Poisson and Gauf3—Weierstral3, respectively. O

Example 1.1.12 Let us next consider distributions that cannot be represented
by measures. For f € L!(S"!) (where S""! is equipped with the usual surface
measure do) satisfying

/ f(w)do(w) =0 (the so-called “mean-value zero condition”), (1.1.1)
Sn—1

we define the principal value (in French “valeur principale™) vp(|x|™f (ﬁ)) €
D/(R") by the limit

vp(lxl T () = €1{1(1) Y(|x| — ENxI_nf(ﬁ)’

i.e.,

() =tim [ 290 (Dyae e

NO Jpyyze X7 N x|

In order to show that this limit exists and yields a distribution, let us give yet another
representation of it. If ¢ € D and R > 0 is such that supp¢ C {x € R"; |[x| < R},
then Eq. (1.1.1) implies (cf. Duoandikoetxea [67], (4.2), p. 69)

1 ¢(x) . x
(¢,Vp(|x| f(m))) N !l\r‘% e<lx|<R |x|"f(|x|)dx
¢ (x) —¢>(0)f<1) dx

= lim
|x|

eNO Je<|x|<R ||
() — ¢(O)f(i) dr,
W<k Xl |x]
where the last integral is convergent due to |¢p(x) — ¢(0)] < |V@| oo - |x|. This
inequality also furnishes that

(G vp(IxT"f () =~ 0 if ¢ — 0in D,

and hence that Vp(|x|_”f (I)’;—‘)) is a distribution. (Alternatively, this is also implied
by Proposition 1.1.5.)

The distributions Vp(|x|_”f (ﬁ)) are the kernels of the classical singular integral
operators of the “first generation,” cf. Meyer and Coifman [179], pp. 2, 3. Particular
cases are vp - = vp(|x|" sign(ﬁ)) e D'(RY), which is the kernel of the Hilbert
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transform on R!, and the distributions

8,~k|x|2 — NX;jXk 1 lfj =k,

T = VP(W) € D'(RY), I=jk=n O = 0else

which originate as second derivatives of the kernel |x|>™", if n # 2, or log |x|, if
n = 2, respectively, i.e., of the Newtonian potential. Here fix(w) = i — nwjwi
obviously fulfills the mean-value zero condition (1.1.1).

A complex approximation of vp % € D'(R") follows from Sokhotski’s formula

1 1
li — = vp - Finé, 1.1.2
el\r‘r(l)x:lzle Vpx 7 ( )

see Sokhotski [256]. In fact, by Example 1.1.11, (ii),

. 1 X Fie . X T ins
1m = m = limm 17T 0.
e\O X £ i€ e\0 x2 + €? e\0 x2 + €?

On the other hand, for ¢ € D(R') with supp¢ C [—R, R] and € \ 0, we obtain

R X O
5~ >:/ (¢() — $(0))x /qs(x) $O)
R

X2+ e x2 4 €2

1
<¢,Vp ;)

Let us generalize Sokhotski’s formula to the distributions vp(|x|™"f (ﬁ)).
Whereas a straight-forward calculation yields the complex limit representation

£
e\o |x]? + ie

= vp(l ()

Sokhotski’s formula corresponds to a different kind. Let us assume that f € L' (S"™")
is real-valued, fulfills (1.1.1), and flog|f| € L'(S"') (where we formally set
0log0 = 0.) Then

)

e\Om vp (X f (7)) + €8, (1.1.3)

where
L= _% /Snilf(a)) log |f ()] do (w) F % /SM [f(@)] do ().

Indeed, under the above conditions on f, the functions f (ﬁ) /(|x]" £ ief(ﬁ))
are locally integrable for € > 0. Furthermore, for ¢ € D(R") with |x| < R for all
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X € supp ¢, we have

. F () i $0)—6(0) . x
10 40 iy & e o e

=k X" Eief ()" x|
Y L f(w)do(w)
1
o0 11{1(1)/0 e g—1 1 £ ief (w)

= (¢ V(" (E) + C8).

where

Co=lim [ f(@)log0" £ ief (@)l dote)

n Jen—1

—tim [ s [log R~ loglelf(@)) % 7 signf(@)] dotw)

1 im
= /Sn_lf(w) log |f(w)| do(w) F P /s"—l If (w)| do(w).

In particular, Heisenberg’s formula

. 1 1 .
hm( — — - ) = —27id
e\O\Xx + 1€ X — 1€

can be generalized in the following way to n dimensions:

m( G )
SO\ +ief () " —ief (1)

) =T lis

if f € L'(S8"") is real-valued.
To give a concrete example, let us consider f(w) = wjop forl <j <k <n
(comp. T above). Then

| f@ oz (@)l aot) =0
and

If(w)|do(w) = 4 wiw, do(w) =4 ol - v(w)do(v),
Jpmr=s | s |

wesh—1 wesn—1
®120,0, >0 ®12>0,0,>0
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where v(x) = (0,...,0,x;)7 € R". Since divv = 0, GauB’ divergence theorem
implies

237!
w)|do(w) =4 ydy = ——
/lf()l() / e
Sn—1 Yern—l |¥|<1
x1=>0

The last equation follows from Guldin’s rule. For 1 <j < k < n, we thus obtain

8.
nl'(3 +1)

WjWi ( XXk ) ij‘["/2
im - =
O |x]" + iewjwy x| +2

O

For a further generalization of Sokhotski’s formula, see part (b) of the proof of
Proposition4.4.1.

The two equations in formulae (1.1.2) and (1.1.3) actually follow one from the
other by complex conjugation if we take into account the following definition.

Definition 1.1.13 For T € D'(Q), the complex conjugate T, the real part Re T, and
the imaginary part Im T are defined by

(p.T) = (¢, T), ReT:%(T—f—T), ImT:%(T—T),

respectively.

Example 1.1.14 Let us now generalize the setting of Example 1.1.12. We take again
f € LY(S"!), and we assume that all moments up to the order / € Ny vanish, i.e.,

VYo € Ny with |a| <1: / o*f(w)do(w) = 0.
Sn—1

If, furthermore, g : (0, 00) —> C is measurable and fulfills fol lg(») | dr < oo,
then again the distribution

vp(g(kDf (7)) = lim Y(lx| — e)g(x)f (fp) € D'(R")

is well defined. In fact, if ¢ (x) = O for |x| > R, then an appeal to Taylor’s theorem
furnishes, similarly as in Example 1.1.12,

aO{
(00— 32 T2 ey .

o<t

(@, vp(2 (XD () = /

[x[<R
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For example, if n = 3, k > 0, and Yj,,(w), | € Ng, m € Z, |m| < I, are the usual
spherical harmonics, then

Ty = VP(|X|_1/21—1—1/2(k|x|)Y1m(§—|)) € D'(R%)

continues the respective C* function on R? \ {0}, which originates as a solution
of the Helmholtz equation (A3 + k*)u = 0 by separation of variables. These
distributions are important in the application of the pseudopotential method, see
Stampfer and Wagner [260, 261]. O

1.2 Multiplication, Support, Composition

In order to extend operations defined on functions to distributions, we use the
method of transposition (similarly as in Definition 1.1.13): The evaluation of the
transformed distribution AT on test functions ¢ is expressed by evaluation of 7 on
A1¢, where A; is a transposed operator constructed such that ATy coincides with
Ty, i.e., the equation

(d)v TAf) = (Al¢s Tf)s ¢ € D(Q),

is, as a definition, extended to general T € D’'(Q2).

Definition 1.2.1 For g € £(Q) and T € D'(Q2), the multiplication g - T is defined

Obviously g - T € D'(R), since ¢ — ¢ in D(Q) implies gy — g¢ in D(RQ).
More abstractly, the mapping D' () —> D/(Q) : T +—> g - T is the transpose
of the linear continuous mapping D(2) — D(2) : ¢ —> g - ¢. Note that this
multiplication is consistent with that for locally integrable functions, i.e., g - Ty =
T,s, since

(6. Ter) = /Q S0 dr = (- 2.T)).

Similarly, we define next the restriction of distributions in D’(£2) to an open subset
Q) C Q as the transpose of the imbedding D(2;) < D(L2). This also furnishes
the concept of support for distributions.

Definition 1.2.2
(1) If@ # Q C Q C R are open sets, then the restriction is defined by

D(Q)—D(Q):Tr>T|g, : ¢ — T(p),
¢ (x), if x € €2y,

for ¢ € D(2).
0, ifxeQ\Q :

where qA&(x) = {
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(2) For T € D'(R2), we define the support by
suppT := Q \ U{Q; Q1 C Q open, T|g, = 0}.

Apparently, for f € £(RQ), suppT; = suppf. In contrast, for Ty € L (Q),
U = Q \ supp T is the largest open set such that [, |f(x)|dx = 0.

The next proposition shows that T actually vanishes outside its support. This
also implies that distributions are “local objects,” or, in other words, that the spaces
D’ (2) constitute a sheaf.

Proposition 1.2.3

(1) ForT € D'(R) holds T|o\suppr = 0.
(2) Let Q@ = Ui/ with @ # Q,Q; C R" open fori € I, I being an arbitrary
index set. Then the following holds:
(@) IfS, T € D'(Q) fulfill S|q, = T|g, foralli € I, then S = T
(b) IfTL € D’(Q,)fulﬁll TiIQiﬂQ_,' = Tj|Qimij0}’ all l,j e I with Qi n Qj 75 @,
then T € D/(Q) Viel: T|QI =T;.
Proof

() IfT € D'(Q) and ¢ € D(Q) with suppp N suppT = @, then there exist
0 < €] < €, and open balls

B,-j::{xER"; |x—m,~|<6j}, i:1,...,l, j:1,2,

such that supp¢ C U!_,B;; and Vi : B C Q and T|p, = 0.

Let y(r) = Y(r)e~'/", t € R, be as in Example 1.1.2, and set p;(x) = y(1 —
|x — m;|?/8%), x € R”, for some § € (€1, ;). Then ¥;(x) = p,(x)/[zj L ()]
is a partition of unity on Uile,-l ie., Zi:l Yi(x) = lin Uile,-l, and such that
Y- ¢ € D(By). Therefore,

1
Zwl ¢.T) =Zwl ¢.Ts,) =

(2) Note that condition (a) follows from (1): (S — T)|g, = 0 implies § = T in
D(Q).
For (b), we can construct—similarly as in (1)—a partition of unity subordi-
nate to the covering Q;, i € I, i.e., ¥; € D(R;) satisfying

(1) YK C Q2 compact: supp y; N K = @ for all but finitely many i € I;
(i) Vxe Q:) g vilx) =1,
cf. Schwartz [246], Ch. I, Sect. 2, Thm. II, p. 22.
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We then define 7 by (¢, T) = > ;o (¢¥i, Ti). Then T € D'(2), and for
¢ € D(K)) it follows

(6. T) =) (Vi T:) = D {pvi. Tlang) = Y (¢viT)) = (¢.T). O
iel iel iel
Definition 1.2.4 For @ # Q C R” open, let the space £'(R2) of distributions on Q
with compact support be defined as

E'(Q) = {T € D'(Q); supp T is compact}.

Example 1.2.5 For 1 < p < oo, we obviously have I2(Q2) C £'(Q2).
We also observe that distributions in £'(2) can be continued by 0 to yield
distributions in &' (R") :

Q) > &R :Tr— (g (py.T)). ¢ € DR"),

where { € D(2) is such that y = 1 onsuppT.
We also mention that, by the same token, £’ (€2) coincides with the dual of £(R2) :
For T € £'(R2), the mapping

T:8(Q)— C:¢ —> (py.T)

(with  as above) is well defined, linear, and continuous, i.e., ¢ — ¢ in E(2)
implies T(¢r) — T(¢).

Finally, the equation supp §, = {a} for a € € shows once more that §, € £'(2)\
LY(Q). O

Example 1.2.6 Whereas distributions in €2 with compact support can always be
extended to R” (see Example 1.2.5), this is not necessarily the case for § € D'(Q2).

(a) We first consider a situation in which extension is possible. If f € L'(S*™!)
does not satisfy the mean-value zero condition (1.1.1), then lim o Y(|x| —
e)|x|7'f (ﬁ) does not exist in D’ (R"). Nevertheless, we can continue

$ = bl (1) € LR\ 10) € DR (0]

to a distribution 7 in D’ (R"). In fact,

wr = [ PO (e [ EDH(H)ax s o

|x]" x| >t X" A

yields a distribution in D’(R") such that T'|gn\ (o3 = S.
Note that now—in contrast to Example 1.1.12—there does not exist any
“canonical” extension of § in D'(R") : If the above partition of the integration



16

(b)
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domain into |x| < 1 and |x| > 1 is changed, this changes T by an additional
8-term. More generally, the condition T'|gn\(oy = S makes T unique up to a
distribution with support in {0}.

However, as in Example 1.1.12, T can be represented by a limit in D’(R") :

¢(x) —¢(0) ¢ (x)
1) = !I\IAI(I)[/eslxsl - || f(ﬁ) et l>1 |x|):l f(%) dx}

—hm[<¢> ¥ = 9l 7)) - 400 / / f(w)da(w)}

and hence

_ 11m|:Y(|x| —6)|x|_"f<| I) tloge [ flw)do() 5}.

Sn—l
In particular, if fg,— f(w)do(w) = 0, then T = vp(|x|_”f(‘§—|)).
If n =1 and f(w) = Y(w), then

X = !i\l‘l(l)[Y(x —e)x~' + (loge)§]

is an extensmn of Y(x—e)x~! € L] (R\{0}) in D'(R"). Note thatx' ¢ L\ (R),
since Y (x)x~! is not locally integrable on R.

Similarly as in Example 1.1.14, g(|x|)f ( |X‘) can always be extended to yield
a distribution in D'(R") if f € L'(S""!) and g : (0, 00) —> C is measurable
and fulfills fol |g(r)|F' T dr < oo for some I € Ny. In fact, for ¢ € D(R"),

($.T) = L|<1(¢<x>‘2 P00 el () @

|| <1

] o@sr (1) d

[x[>1

furnishes a distribution 7 with T|gm\o; = g(|x|)f (il) Again, there is no
“canonical” extension.

Seen from a more general point of view, the above continuation process
can be subsumed under the title “regularization of algebraic singularities,” cf.
Gel’fand and Shilov [104], Ch. I, 1., pp. 45-81, and Ch. 111, 4., pp. 313-329;
Komech [154], Ch. 3, Sect. 1, 2, pp. 164—172, and Ch. 4, Sect. 1, 2, pp. 186-195;
Palamodov [224], Ch. 1, Sect. 3, pp. 11-14, and Ch. 4, Sect. 2, pp. 67-70.

Let us now treat a case where extension is impossible. We take S(x)
Y(x)e'’* e L' (R \ {0}) and we will show that there does not exist any

loc

T € D'(R) with T[g\f0y = S. In fact, let ¢ € D(R) with

(i) suppg C (0,00), (i) Yx € R: p(x) = 0, (iii) Yx € [1.2] : p(x) = 1,
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and set ¢ (x) = e ¥ (k?x). Then ¢y — 0 in D(R) (but not in D(R \ {0}) since
the supports of ¢ are not uniformly bounded in R \ {0}.) On the other hand,

2k2

(6. 5) = & /0 el (k) dx = e /

1
ey > =z exp(—k+3k*) — oo,
k—2

in contradiction to {¢y, S) = (¢, T) — 0 if an extension T € D’'(R) did exist.
More generally, one sees in the same way that f € C(R" \ {0}) has no distri-
butional extension in D’ (R") if f is positive and Vk € N : limy—¢ |x[*f(x) = oo,
cf. Hirsch and Lacombe [131], Ch. III, 7, 2F, Ex. 4b, p. 275; Zuily [309],
Exercise 14, p. 31, and Sol. Exercise 14, pp. 41, 42. O

Let us next treat the composition of distributions with diffeomorphisms. If @ #
Q1,2 CR"and h : Q —> 5 is a diffeomorphism and f : 2, —> C is locally
integrable, then Ty is given by the following formula:

(. Tyon) = /Q $(f (h(x)) dx

¢ -1
W T,
Tqem O T

- /Q S ONF )] det(iY ()] dy = {

This shows that the following definition of composition for distributions is consis-
tent with that for functions.

Definition 1.2.7 For a diffeomorphism 2 : Q; —> €, of open sets in R" and
T € D'(2,), we define the composition T o h = T(h(x)) € D'(21) of T with h by

¢

h LTy, D(R).
|deth’|o ) ¢ € D(S21)

(¢.Toh) =

Example 1.2.8 If a € Qy and b = h(a) € Q», then §, o h = |deth'(a)|~'5,,
cf. Hormander [139], Ch. VI, Ex. 6.1.3, p. 136. In particular, if A € GI,(R), then
§0A = |detA|™'8, and, if A = cI,, ¢ > 0, this equation implies that § is, according
to the following definition, homogeneous of degree —n, i.e., §(cx) = ¢™"8. O

Definition 1.2.9 Let @ # Q2 C R” be an open cone, i.e. an open subset fulfilling
cQ = Q forall ¢ > 0. Then T € D'(Q) is called homogeneous of degree A € C iff
Ve>0:T(ex) = Tocl, = 'T.

Example 1.2.10 If f € L'(S™™!) fulfills the mean-value zero condition (1.1.1), then
we easily see that T = Vp(|x|_”f(|§—‘)) € D'(R") is homogeneous of degree —n. In

contrast, if [, f(w) do(w) # 0, then |x|_”f(ﬁ) e Ll _(R"\{0}) C D'(R"\ {0})
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is still homogeneous of degree —n, but the extension constructed in Example 1.2.6
(a) ceases to be homogeneous in D' (R"). If ¢ > 0, then

X

T(ex) = lim [c_"Y(c|x| — e)|x|_"f( ) e loge /S  f(@)do() 5}

Il

— u\né[y(|x| . §)|x|_”f(ﬁ) + log E /Sn_lf(a)) do(w) 8}

+ ¢ "(logc) / f(w)do(w) 4,
Sn—l
and hence we conclude that
T(cx) = ¢ "T+c "(logc) / f(w)do(w)$. O
5”71

Example 1.2.11 Letus consider next the composition of principal values with linear
mappings.

Obviously, if T € D’(R") is homogeneous of degree A, then the same holds for
T oAif A € GlI,(R). In particular, if f € L'(S"™!) fulfills the mean-value zero
condition (1.1.1),then T = Vp(|x|_”f(|§—‘)) € D'(R") is homogeneous of degree —n
and the same holds for 7' o A. We evidently have

—n Ax n
7o Alwevey = 14X (777) € LR\ {0,

and hence T o A coincides with § = vp(|Ax|™"f (ﬁ)) outside the origin.

Let us determine the difference T o A — S € D/'(R"). For ¢ € D(R"), we have

(6. 7oA =5) = lim(@. (¥ = bl F( (7)) 04 = ¥l - 6)|Ax|—nf(|/2_§l)>

Ax

=1 Ax|™"
lim | glax f(| yve

)Y (lAx] =€) = ¥(lx| — )] dx
= lim | detA|™'x
e\0

_ el Y _
< [ @b ()Y — 0 - v - o]

= lim | detA|"'x
e\0

X /Snlf(w)/o"oqs(rA—lw)[Y(r— €)= Y(rlA™ w|— )] gda(a)),
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Since
/oo P(rAT ) [Y(r—€) — Y(r|[A™ 0| — €)] d—: = —¢(0)log|A™ w| + O(e)
0

for € \ 0, we conclude that

o AX 8 1
ToA= vp(|Ax| f(m)) — detA| Sn_lf(a)) log|A™ w| do(w).

(For the particular case of A = cI,,, we recover the result of Example 1.2.10.)
Note that, more generally, if 4 : R* —>R" is a diffeomorphism fulfilling /2(0) =0,
then an analogous calculation yields the formula

(vp (I () ) o = vo( (1K1 "F () )

1)

7cn—!
_m S”_lf(a)) log [1(0)™ w| do(w).

(Here, as above,

- —npf P
"f(5))oh) =limY(|x| —e€)|h "
vo((I77 (i) o 1) = lim ¥ (bl = I (5 0)
in D’(R").) Using a partition of unity we see that the last formula also holds if /4 is
continuous, 2~ '(0) = {0}, and & is a C' bijection near 0. This is already an instance
where we use the composition of distributions with more general, not necessarily
diffeomorphic, mappings. O

Definition 1.2.12 Let @ # Q C R" be open, & : 2 —> R be C* and submersive,
ie,Vx € Q : Vh(x) # 0, and T € D'(R). Then the pullback h*T of T by h is
defined by

9T = (5, [ 9¥ = h) e,

(Cf. Friedlander and Joshi [84], (7.2.4/5), p. 82.) We shall also often write T o h or
simply T (h(x)) instead of h*T.

Proposition 1.2.13 The mapping h* : D'(R) — D'(Q) : T — W*T =Tohis
well defined and sequentially continuous. Furthermore, if T = Ty € LIIOC(R), then
T o h is locally integrable and it coincides with the classical composition Tyo, of

functions.
Proof

(1) Let ¢ € D(L2). Using a partition of unity and appropriate coordinates, we can
assume that 387}“1 # 0andthaté = h, & = x,,..., & = x, are coordinates in a
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neighborhood of supp ¢. Substituting the new variables we obtain

%/ﬂqﬁ(x)Y(s—h(X)) de= %/w(E)Y(s—&) d =/w(s, E2.... Ea) dE'=: (9),

where

%)‘_M £ =(5.....E).

v = 0@] o3 ) | = e
and y € D(R!). Hence h*T is defined by the formula (¢, h*T) = (x,T),
and A*T is a distribution because the mapping D(2) — D(R) : ¢ —> g
is obviously linear and, by Lebesgue’s theorem on dominated convergence,
sequentially continuous. Furthermore, 7y — T implies Ty o h — T o h.

(2) If T =Ty € L. (R) and ¢, £, x are as above, then

loc

G.Troh) = (1.Ty) = / X($)(s) ds
= /f(s)/W(S,gz,-..,En)d&...dénds

— [r6voe aet(i—’;)\ %

= [ rooe e ax = .1)

by Fubini’s theorem and the substitution formula for multiple integrals. O

Let us remark that the pullback 2* : D'(2,) —> D’(21) can be defined similarly
if Q; C R" and 2, C R™ are open subsets and & : 2; —> 2, is submersive, i.e.,
the rank of 4'(x) is m for all x € Q, cf. Friedlander and Joshi [84], Thm. 7.2.2,
p. 84; Hormander [139], Thm. 6.1.2, p. 134. Furthermore, 2*T = T o h is also well
defined if T € D'(R2,) is a continuous function in a neighborhood of the set where A
is not submersive. This follows easily by a partition of unity argument, cf. Komech
[154], Ch. I, Sect. 1, Rem. 1.1, p. 132.

Example 1.2.14 Let us specialize now Definition 1.2.12 to the case of T = §, €
D'(R'). We assume that @ # Q C R"isopen, 1 : @ — R C* a € h(R2), and h
is submersive in a neighborhood of M = h~!(a). Then M is a C* hypersurface of
R”, and we equip it with the Riemannian metric g induced by the standard metric
Z?=1 dx; ® dx; on R”. The metric g generates the surface measure do, i.e.,

/M $(x) do () = /U $ () [det(g () du
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if ¢ € C(M) such that supp ¢ lies in a coordinate patch parameterized by x = x(u),
ueUCR" ! andg = Z}fk_:ll gix(u) du; @ duy.
If f : M — C is locally integrable (with respect to do), then the single layer

distribution Sy (f) € D' (Q) with density f is defined by

(6. Su() = /M S W o). ¢ € DQ). (12.1)

(Note that Sy (f) € D’'(R2) is well defined, since M N supp ¢ is a closed subset of
supp ¢ and hence is compact for ¢ € D(£2).) In a physical context, Sy(p) describes
a mass or charge distribution of density p on the submanifold M.

Since 8, = lim\ iY(e — |s —al) in D'(R!) (see Example 1.1.11), we infer
from Proposition 1.2.13 that §, o & = lime\o %Y(e — |h(x) — a|) in D'(Q) is the
limit of constant mass densities on the layers {x € Q; a — € < h(x) < a + €}. These
layers have the approximate width % and this gives intuitive understanding to
the formula

_ ¢ (x)
($,8,0h) = le(x)|do(x), ¢ € D(Q), (12.2)

cf. Friedlander and Joshi [84], (7.2.10), p. 83; Hormander [139], Thm. 6.1.5, p. 136.

In order to verify formula (1.2.2), we introduce coordinates & = h, & =
X2,..., & = x, as in the proof of Proposition 1.2.13. Then x,...,x, are local
coordinates on M, and employing

0=dh=Y dhdg=>dx :—Zaj—hdx,- on M
j=2

J=1

we can express the metric g on M in the following form:

= Z(Sj L ajh.akh)dxj@dxk: Zgjkdxj®dxk-

k=2 " (01h)? k=2
Hence
o2h
(g)jk=2..n =1 +v-0v"  withv = ﬁ P
Onh
and Schur’s formula yields
|VA|?
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and

¢ (x(a.§"))
1917 (x(a. §)

= [ a6 et &' =

(¢.8a0h) = (x.8a) = x(a) = d¢’

()
u V()]

do (x),

where £ = (&,....&) and ¢ € D(Q),x € D(R') are as in the proof of
Proposition 1.2.13. Thus, in short-hand, formula (1.2.2) can be written as

8a0h = 8(h(x) —a) = Sy(|VA|™). (1.2.2)
Note that supp(§, o h) = M

Let us next specialize formula (1.2.2) to some particular cases.

(a) Ifn =1, thenh :  — R (with Q C R open) fulfills the submersion condition
iff h'(x) # O for all x € M = h™'(a), which must be a discrete set in 2. Then
we obtain

h*8y=840h= )" T )|5 e D (Q).

xeh—1(a)

For example,

§.(0) =8(x* —a) = (6 ya+68_ya) € D'(R), a>o0,

ZI
§osin = §(sinx) = Y 8ix € D'(R),
k€eZ
8(sinl)y = — Z k281 /4r) € D'(R\ {0}).
w2 keZ\{0}

In the last example, we have h : @ = R\ {0} — R : x r— sin}( and
= {(kn)""; k € Z \ {0}}. Note that the sum for 8(sin )—lc) converges also in
D’ (R), since Y 22, k2 converges; in contrast, S(exp(— )sin %) € D'(R\{0})
does not even have an extension in D’'(R), cf. Example 1.2.6 (b).
(b) We suppose next that / is a positive definite quadratic form, i.e., h(x) = x’ Cx
with C = CT € GI,(R) positive definite. Then there exists a linear map A €
Gl,(R) such that #(Ay) = y"ATCAy = |y|?, and hence

(0. 8(xTCx—1)) = (.81 0h) = (p,8,0hoAcA")
— | detAl (g 0 A,y (yP)) = 9l / $(Aw) do (),
2 Jo

since |V]y|?| = 2|y| = 2 fory = w € $"~'. Note that | detA| = (det C)~"/2.
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If, e.g., h(x) = Zl . l/al, x € R3, aj,a3,a3 € (0,00), and ¢ € D(R?),
then

(6.5000) = (9.6(1 -3 2))

a
i=1

=
AN

~ N

aimaz (" [ : . .
== ¢ (a) cos ¢ sin ¥, a, sin ¢ sin 9, a3 cos ¥) sin ¥ dpdd.
0o Jo

More generally, if 4(x) = x” Cx is a definite quadratic form with r positive
and s = n — r negative eigenvalues, then there exists A € Gl,(R) such that

h(Ay) — |y1|2 _ |y"|2’ y = (y/’y//)’ y/ e Rr, y// c R‘Y,
and hence

(@, 8("Cx—1)) = (¢,810h) = |detAl(p o A, 811> = IY"I)

detA| [ ht
_ [deta] / / ¢(A @re )ch’_ltsh‘_ltdo(a)l)do(wz)dt,
2 0 Sr—1x§s—1 wy sht

since |V(|y')> = [y"]?)| = 2yl = 2y/ch?t 4 sh’t fory = (i;gﬂi) anddo(y) =
Veh?r + sh?rch™'tsh*rdo(w)) ® do(w,) ® dr.

If also a linear term is presentin 4, i.e.,

h(x) = h(Ay) = |y =1y P=yn, y = /)" 30), Y €R", ¥ €R’, rts+1=n,
and A € Gl,(R), then
Hw

(e olyiiee]
(¢, 8oh) =|detA|/ / / PlA| L )tf_lzg—lda(a)l)dcr(wz)dtldtz.
0 Jo Js—ixsl

2
1~ 5L

Of course, this is trivial, since generally
9500 -0 = [ p(gNar. ¢ DR,

fora C! function g : R"™! — R. O
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Example 1.2.15 General formulae for fundamental solutions often contain expres-
sions of the type &4, (n1)84,(h2). Such a product has to be interpreted in the sense of
the remark following Proposition 1.2.13, i.e., as

a 2

h
h*8y=840h, a= (‘“) eR’® h= (h‘) :Q —R?* §, e DR

Analogously to Example 1.2.14, let us suppose that # : 2 — R™ is submersive on
M = h™'(a), a € R™. Then §, o h can be expressed by the surface measure do on
the submanifold M C 2 of codimension m :

¢ (x) do(x)

,8,0h) = , € D(Q2), (1.2.3)
¢ ) M +/det(H (x) - B (x)T) ¢ @)
alhl . 8nh1
. do .
or, in short-hand, §, o h = ———, wherein /' = : : denotes
/det(h’ . h/T) . .
oy ... 0.y,

the Jacobian of A.
Let us apply formula (1.2.3) to two particular cases.

(a) The density pertaining to a point mass or an electrical charge moving on the
trajectory x; = u(t),...,x—1 = uy—1(t), u C', in space-time R} can be
defined by the distribution § o & € D'(R") where  : R" — R"™! : (£,x) —
x — u(t). As is intuitively clear,

9 36—uo) = [ pCunar g e DR,
This also results from formula (1.2.3), since

h(t,x) =x—u(t) = h' = (—it,[,_)and /' - KT =1, +i-i”
do
dar

= Jdet(W - K'T) = /1 + [i?> =
(b) An elementary example of a distribution with support on a codimension 2

submanifold is provided by

2_R2
son. h=|" ., R>0, beR"\{0.
bTx—1
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Then
(@.h*8) = (¢.5(|x|* — RSB x — 1))
Y(|p|IR—1) 212 _3
== 2 (|pPR® - 1) /2
gz (PR = D
n—1
b
- 2 _ (p|—2 b
X /Sni2 ¢(|b|2 + VR> —|b| ;w,v,) do(w)
ifvg, ..., V1, ﬁ is an orthonormal basis in R”. In fact,
2xT 4x|> 2xTb
W=(") wenT = WIE2E0N et W) = 4(bPRE — 1) on M
b 2xTb |b)?
and do (x) = (R*> — |b|72)""2/2do (w). O

1.3 Differentiation

If@ # Q C R"isopenandf € C'(R), ¢ € D(R), then we can extend the functions
f-¢,01f-¢. f- 014 to all of R by 0. These extended functions are in C' (R") and
C(R"), respectively, and fulfill (in R*) 9;(f¢) = ¢ - 0,f + f - 91¢. Therefore, if
supp ¢ is contained in the strip

{xeR"; |x;] <R} =[-R.R] xR,

then Fubini’s theorem yields
@1 = [ -0ras= [ posas= [ r-ap+ o

_ / Foonpdet / [(($)(R. ) — (F$) (RN Y = —(81. Ty).
Q R~

This shows that the following definition of 9;T is consistent with the usual
differentiation in case T is C'.

Definition 1.3.1 For § # Q C R"” open, T € D'(R2), and « € N{, we define the
(higher) partial derivatives of T by

T : D(Q) — C: ¢ —> (=1)I(5%¢, T).
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Proposition 1.3.2 9% : D'(Q) — D'(Q) is well defined, linear, and sequentially
continuous. If f € C™(R) and |a| < m, then 0°Ty = Tyey. Furthermore, \T =
lime_o %(T(xl +e,X)=T),ifT(x1 +€,x) = Tohwith h(x) = (x1 +€,%,...,%,)
(cf. Definition 1.2.7), and similarly for the other derivatives.

Proof The first part is implied by the linearity and continuity of the mapping
3 D(Q) — D(Q) : ¢ —> (=1)*132¢.

The equation 0* Ty = T, follows by induction from the introduction above.
Finally, for ¢ € D(Q2),

lim + (¢, T(x1 +€,4) = T) = lim <M T

e—>0 € e—0

> = _(31¢v T),

since
_ N 1
im 21 € =@ lim/ (014) (vt + et,X') dt = —01p
e—0 € =0 Jo
holds in D(£2). O

Proposition 1.3.3 For @ # Q C R" open, f € C®(Q), T€ D'(Q),h: Q2 — R
submersive, a, § € N, S € D'(R), we have

(@) 3%0PT = 0P3T (commutativity);

(®) (F-T) =3 4y (g) 0Pf - 0*~PT (Leibniz formula);

() 9;(Soh) = g_'; - (8’ o h) (chain rule).

Proof This follows by transposition from the corresponding rules in D(£2). O

Example 1.3.4 Whereas densities of point charges as, e.g., the Dirac measure
(cf. Example 1.1.11) can be described in the framework of measure theory, this is no
longer the case for dipoles (cf. Schwartz [246], Ch. I, Sect. 2, p. 20) and for “double
layers” on surfaces, which are both genuine distributions.

(@) Ifw € S" !, 1R, and a € R”, then Proposition 1.3.2 implies that
lim £(8a+€w —§8,) = lim £(ésa(x —ew) —8,) = —I § ;0,84
e—>0 € e—>0 € = I
=

=—lw" V8, € D'(R"),

and hence —[w” - V§, corresponds to a dipole in direction w located at a and
with strength . For ¢ € D, we have

(p,—lw" -V8,) =lo” - V(a).
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Let us next assume that M is a C? hypersurface in R" given by M = h~!(a)
with & : @ — R C? and submersive near M, cf. Example 1.2.14. M is
orientable and we shall orient it by the unit normal v = %. Forf:M — C
locally integrable, we have defined the single layer distribution Sy (f) € D’ (2)
in (1.2.1). Similarly, we now define the double layer distribution Dy(f) €
D' (Q2) with density f by

(6. Du(h) = / FO)- 0,60 o). ¢ € D). (13.1)

where 9,¢(x) = V()" - Vo(x) = Y7, vj(x)9;¢(x), x € M, is often called
the normal derivative of ¢ on M. According to (a), Dy(f) corresponds to a
distribution of dipoles in direction v spread out on M with density —f. Note
that, similarly to the equation g - §' = g(0)8’ — g’(0)§ € D’'(R), one readily
obtains

g Du(f) = Du(f - glm) — Su(f - 9,8), g €&(Q), (1.3.2)

by evaluation on test functions.
Let us express next §/ o by single and double layer distributions. Employing
Proposition 1.3.3 (c¢) and (1.2.2) we find (for ¢ € D(L2))

" d;h ¢ djh
(9.8 oh) = Z(¢’ W 0j(8a 0 h)) = —2(3 (|¢th|2) 8,0 h)
j=

=3[l
=~ [, rwip /¢Z (|Vh|2)|w|

¢8h
IVhI2 IVhI

and hence
8, 0 h = Du(IVh|™?) = Su(IVA™" - V7 (g)) in D' (). (1.3.3)
For illustration, let us apply the above in two easy cases where M is a sphere.

If 2(x) = |x| and @ > 0, then M = h™'(a) = aS"!, and |Vh| = 1 yields
8,0h =48(x| —a) = Su(1), ie,

wsom=[ swaww=a [ paie. ¢ <DR).
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Similarly, from } 7, 9 (‘3;2) = % we obtain 8’ o h = §'(|x| —a) = Dy —

%SM, where Sy := Sy(1), Dy := Dy(1). Evaluation on a test function
yields

(¢,8/ 0oh) = —a"_I/S”_la)T -Vo(aw)do(w) — (n — l)a"_Z/S”_1¢>(aa)) do(w)

0

ad
_ _ n—1 = —— o
=3 /sn*l a"'¢(aw) do(w) = % (¢,84 0 h)

in consistence with Proposition 1.3.2, which implies
;o 1 0. .
8, = lim —(8,(x + €) — 8,) = lim —(§4—c — 8,) = ——38, in D'(R),
e—0 € e—0 € da

cf. also Seeley [249], p. 3.
Analogously, if P(x) = |x|> and @ > 0, then

1 1
§p20P =8Sy(|VP™) = —Sy=—26,0h
2a 2a
and [VP|7!- VT(ﬁ) = 2 yields
1 n—2
§,0P=— Dy—""Z5,
a© 42 M 4y M
or
n—3 ) n—4
0.8,0P) = =S [ 0" Tptan ao@)-""2 [ praw) oo,
sn—1 sn—1

cf. Seeley [249], p. 3, where a missing sign should be inserted. Again, this
follows also from

1 0 1 0 1
i - _ —- __ _(__
2P = 2a da (8z20P) (Za

1
!
%2 9 8q.0h) = é 0h+ 8 oh.

42(1
O

Definition 1.3.5 Let @ # Q C R” open and P(x, d) = Z\a\ <m Ge(x)0” be a linear
differential operator with coefficients a, € C*®(R2). A distribution E € D’'(R2) is
called a fundamental solution of P(x,0) at § € Q iff P(x, 0)E = §¢ holds in D'(2).
If P(9) = }|4)<,n @0 has constant coefficients, then £ € D'(R") is called a
fundamental (or elementary) solution of P(9) iff P(0)E = § holds in D'(R").

(Cf. Schwartz [246], Ch. V, Sect. 6, Eq. (V, 6; 24), p. 136; Zeilon [306], pp. 1, 2.)
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Example 1.3.6 The Heaviside function Y is a fundamental solution of the differen-
tiation operator < in a single variable, i.e., & ¥ = § in D’ (R), si
perator 7- in a single variable, i.e., 3- in , since

d o0
(9. ¥ =—(¢"Y) = —/O ¢'(x)dx = $(0) = (¢.8), ¢ € D(R).

More generally, this reasoning applies if f : R —> C is continuously differentiable
outside a discrete set D (i.e., D N K is finite for each compact set K C R), if f has
right and left limits in all points of D (and hence 7; € L{°(R)), and if f’, which is

defined on R\ D, is locally integrable on R. We then have

(1)) =Ty + ) s(f, @)éa, (13.4)

a€D

where s(f, a) = lime[f(a + €) —f(a — €)] is the jump of f at a. Formula (1.3.4) is
often called the distributional jump formula, see Schwartz [246], Eq. (11, 2; 7), p. 37
(where [f’] stands for Ty); Vo-Khac Koan [282], BC, 1V, p. 186, Prop.; Hirsch and
Lacombe [131], Ch. III, Thm. 2.10, p. 300.

Formula (1.3.4) can easily be generalized to higher derivatives by induction. This
gives the following: Let f : R — C be m times continuously differentiable outside
the discrete set D, and such that f ® 0 < k < m, have limits from the left and from
the right and £, defined on R \ D, is locally integrable on R. Then

m—1

dm

(1) = Ty + DO s a)sl, (1.3.5)
k=0 aeD

cf. Schwartz [246], (11, 2; 8), p. 37.
Applied to the function f(x) = Y(x)e**, A € C, formula (1.3.4) yields

d
T/ =AY - +8 = Af +36, (a—/\)f:&
ie.f=YeMe L® (R) is a fundamental solution of % —A. In the next proposition,
we similarly derive from (1.3.5) a fundamental solution of [T/L, (& — A)%*!,
a €Ny O

Proposition 1.3.7 Letm € N, a € N, and A1, ..., A, € C be pairwise different.
Then the ordinary differential operator

Pro = T1(& -2)""

Jj=1

[e]

has as fundamental solution the L},

function E) , given by
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Ejo(x) = %(%)a Y et !;[ (Aj— )™ (1.3.6)
j= j
10\, o
s ) ),
7=l k#j

E) o is the only fundamental solution of P) o (%) with support in the interval [0, 00).
Proof

(1) We consider first the case « = 0 and set up E = E} ( in the form
m
E=Y- Zaje*/’x, a; e C.

Then we obviously have Py o(<)E|gy\(; = 0. If the coefficients a; are chosen
such that E is C"~2 and E?~ has a jump of height one at 0, i.e., if

O:s(E,O):Zaj, OZS(E/,O):ZAjajv el
j=1 j=1
0=s(E"2.0)=Y A, 1=sE".0=) }"a

j=1 j=1

then (1.3.5) implies that PA,O(%)E = §. The coefficients a; are the solution of
Vandermonde’s system of linear equations

11 1 a 0
Al Az . Am an 0
=t pm=t ) \a,, 1

The solution of this system is given by

g =[]=207" =P 07"
k#j

(2) E; o depends holomorphically on A, i.e., the mappings

{A e C"; Ay, ..., A, are pairwise different} —> C : A —> (¢, E) o)
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are holomorphic for each ¢ € D(R). In accordance with (1.3.6), the «-th
derivative with respect to A of E, o yields the distribution ¢!E} 4. Let us check
that E) ,, is a fundamental solution of P, , (%) by induction with respect to |«|.

If$p € D,a = (ay,a') € N7, and PA,Q(%)E;W = §, then we infer that

d
—(Pra(—3)p.Era)

=9 0= L dyg )=
0= 8_M¢(0) - BAI (d)vPl,a(d_x)El,a) - axl

0E) o
= _(1 + al)(P)»,(al—l,a/) _%)QS’EA,A%) (Pk Ot( dx)¢ E)L )

if = (—& — A1)y with ¥ € D(R), this implies

oE A Ko
(Ph.or+1.0) (= dx)l/f n —5) = (L + a)(Pra(—§)V. Exe) = (1 + an)y(0),
and hence ; +1a aﬁ’” is a fundamental solution of P (o, 41, a/)(ddx)

(3) The uniqueness of Ej, follows from the fact that P, a( ) is a hyperbolic
operator, see Definition2.4.10 and Proposition2.4.11 below or Hormander
[138], Def. 12.3.3, p. 112, and Thm. 12.5.1, p. 120. Alternatively, this is
implied by the fact that the distributional solutions 7 of the homogeneous
equation PA,O[(%)T = 0 are classical solutions and hence are real-analytic,
cf. Proposition 1.3.18 below. O

Note that the transition from Ej o to E) o, as in part (2) of the proof above is a
special case of Proposition 1.4.2 below.

Example 1.3.8 Let us illustrate formula (1.3.6) by considering some physically
relevant specific cases.

(a) If P(%) = PA,O(%) = ]_[;.":1(% — A;) with pairwise different A; € C, then

E=E, =Y ie*ﬂ‘ ]_[(A,- AL

=l kA
In particular, for Ay = —A; = iw, w € C\ {0} we obtain the fundamental
solution E(x) = —Y (x) sin(wx) to the operator > + w?, which will frequently

appear below.
(b) If P(%) = (% — A)"*!, then we obtain E = %Y (x)x"e**. More generally, for
P(E)= (L =)L —p)t A # ueC.rs €Ny, we have

| . () +s— v
= (o S e

. (r+s— ) ¥
+ M( 1) Z (A M)r+v—/+1)
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In particular, if r = s and p = —A # 0, then we obtain the following
fundamental solution of (di—zz — A%t

E:

2(=1) " (r\@r =¥ sinh(Ax), if j is even,
> YO 2L\ S
rt = \j) @y —cosh(Ax), if j is odd

i—0

1 1 9 \rsinh(Ax)
= O (5557) —51

The last equation can be checked, quite laboriously, by induction. It also
follows, more easily, from Proposition 1.4.2 below. O

Example 1.3.9 More generally as in Example 1.2.6 (a), where the distribution x:_l

is defined such as to yield an extension in D’(R) of Y(x)x~! € L] (R\ {0}), we will
now extend Y (x)x* € LI (R\ {0}), A € C, by differentiation.

loc

ForRed > —1, we set x} = Y(x)x* € L, (R) C D'(R). If Re A > 0, then the

loc
distributional jump formula (1.3.4) implies

o) = h\né %(Y(x —ent) = h\né (Y(x— )" + €*8) = A

Therefore, the following definition of xi for A € C\ —N by

1 d
A A+m
— R , Re L —-m—1,
X FESTG) ) (™) eA>—m

is unambiguous, i.e., it does not depend on the choice of m € Ny satisfying m >
—Re A — 1; cf. Hormander [139], (3.2.3), p. 68.
Similarly, we obtain x:Ll = %(Y(x) log x), since

d
[ F— — =1 — ~1 .
(Y(x)logx)' = 3{1}) (Y(x — €) logx) 11\1‘1})(Y(x €)x ' + 8. -loge)

=lim(Y(x—e)x ' +6§-1 =x7!,
6{1(1)( (x—e€)x oge) Xy

cf. Example 1.2.6 (a).

Note, however, that x_‘,_k, k = 2,3,..., is defined as the finite part at A = —k
of the meromorphic distribution-valued function A +— xﬁ_,
%(Y(x) logx)® in C°°(R \ {0}) but not in D’(R), cf. Example 1.4.8 below.

and it coincides with
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Let us finally represent xi, A € C\ —N, as a distributional limit. For m € Ny
with Re A > —m — 1, we infer from the jump formula (1.3.5) that
1 d"
o= I
A+1D---(A+ m) s\.o dxm

Y(x— e)x“'m)

it

o IO - 0
3{%(“ €)x +;(A+1)---(A+j+1)5€ )

Since
§0) (= e)k (+K) N+1
8¢ :Z §UY 4 0"y fore — 0,
we obtain
m—1
_ _ A+i+1 ()
)cA 1111(1)<Y(x xt + XQAA i€ 8 )
: (D)
where A, ; = — ; .
* ; (—DA+DA+j+1)
The polynomial
. Lo A+id
PA)=@A+1)-(A+it+DAy=) (-1
k
k=0

has the degree i and the zeros —1, -2, ..., —i, and it fulfills P;(—i — 1) = 1. Thus
we conclude that

( )’ . (1)

Pi(A —— (A+1 A , Ayi= 7,
@) = @+ 1@+ A i"A+i+1)
and hence
(_1)i6/1+i+1

x+—11m(Y(x—e)x +Z 3“)), AeC\-N, ReA > —m—1,

iA+i+1)
(1.3.7)
cf. Schwartz [246], (I1, 2; 26), p. 42; Horvath [143], 2.2.5.5, p. 87.
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In particular, we have

Xy 11\1‘1})<Y(x €)x NG 8),

_ 2 2
x+5/2:11\1‘1})<Y(x—6)x_5/2— 5+—8’). |
€ €

Example 1.3.10 Let us now generalize the one-dimensional distributional jump
formula (1.3.4) to several dimensions.

We suppose that @ # © C R"is open, M C  is a closed C'-hypersurface, and
f:Q\'M — Ris C!. We also assume that f has (in general different) boundary
values from both sides of M and that the partial derivatives d;f, defined in © \ M,
are locally integrable on 2.

Let us then define the jump vector field s(f) of f along M by the formula

s¢f) M —R":x+—v(x)- li_r>r%)(f(x+ €v(x)) —f(x—ev(x))),

where v(x) is a unit normal of M at x. (Note that s(f)(x) does not depend on the
choice of v(x).)

By our assumptions, the gradient V£ is locally integrable, i.e., Tyy € L} ()" C
D'(Q)". The distributional jump formula corresponding to (1.3.4) can then be
stated as

VTy = Ty + Su(s(f)), (1.3.8)

where Sy (s(f)) € D'(2)" is—analogously to Example 1.2.14—given by

(6. Su(s())) = /M S do(x) € R, ¢ € DQ):

cf. Schwartz [245], (11, 2; 43), p. 94; Schwartz [246], Egs. (I, 3; 1), (IL, 3; 2), p. 43.

In fact, in order to prove (1.3.8), we can use a partition of unity argument and
assume that M is locally given by &~ = 0 for some C! function h. Then Gauf’
theorem yields for a test function ¢ € D(L2) the following:

(6. 0,T) = / O8)f dr = — /h e [ agrar

h(x)>0

:/\ ¢ 0;f dx — /qﬁ(x)whmf(x—th(x))da(x)

/ ¢(X)W hmf(x + €Vh(x)) do(x)

= (. Toy) + (9. Su(s(H))))-

This implies (1.3.8).
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In particular, if f,h € C'(Q) and h is submersive on M = h~'(0), and v(x) =

Vh(x)
Vico]+ then

V) -f) =Yh) - Vf+Su-f), (1.3.9)

since

VA i e+ €Vh() = f@v(),  x € M.

SO = Ghoor Im

Of course, (1.3.9) also follows from (1.2.2), since, by Proposition1.3.3,
V() -f) = Y(h) - Vf + f - Vh-§ o h. (Note that the measure § o & can be
multiplied with the continuous functionf - VA.)

For a vector field v € C'(Q)" and h as above, there hold formulas similar
to (1.3.9),e.g.,

VI (h)-v) =Y(h)-Viv+ Sy -v),
where the divergence Vv of v is usually denoted by div v, and, for n = 3,
Vx(XYh)-v)y=YMh)-Vxv+ Sy(v xv),

where V x v is the curl of v.
The most general version of the jump formula refers to currents, i.e., differential
forms with distributional coefficients, and it can be expressed in the form

d(Y(h) - ) = Y(h) - do + Su( g A @),
cf. Schwartz [246], (IX, 3; 11), p. 346. O

Example 1.3.11 In order to calculate the second distributional derivatives of Y (h)-f,
where f, h € C>(2) and / is submersive on M = h~'(0), we use the notation
AT ... 90,T 01
vvIiT = : : : , Vv=1| 1,
0,01 T ... 02T On

n

for the Hesse matrix of T € D’'(2). Applying formula (1.3.9) twice we obtain (with

Vh(x
Su = Su(1) and v = i)

VVI(Y(h)-f) = V[Y(h) - VIf + fu7 - Sy
=Y -VVf+v-VIf Sy + Vvl Sy+7-Vo©) - Sy
+f - (VSu) 7. (1.3.10)
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For the calculation of VS);, we refer to Proposition 1.3.12 below, where we
obtain

VSy = Dy(v) — Sy (v - tr W), (1.3.11)

where tr W = VT is the trace of the Weingarten mapping, i.e., (n — 1) times the
mean curvature of M. Of course, Eq. (1.3.11) has to be understood componentwise,
ie., as 0;Sy = Du(vj)) —Su(vjueW),j=1,....n

Upon inserting (1.3.11) into (1.3.10) we conclude that

VVI(Y(h)-f) = Y(h) - VV'f + f-Dy(v) - v"
+ (U'VTf+ Vil +f.VOI) —furw- va)SM.

When we use formula (1.3.2), we obtain
f-Dy(v)-v" =Dy (fvv”) — SM(U . BV(fvT)),

and we finally arrive at formula (1.3.12) in the next lemma, which resumes our
assumptions and the result for the Hesse matrix of the discontinuous function Y (h)-f.

Lemma Let @ # Q C R" be open, f,h € C*(Q) with h submersive on M :=
h=10). Let v = % and W = (I, — vwh)VvT be the Weingarten map with the
trace tt W = VTv. (Thus tr W is the sum of the eigenvalues of W, i.e., the principal
curvatures of M.) Let the single and double layer distributions Sy(g), Dy(g), g €
C(M), be defined as in Examples 1.2.14 and 1.3.4, respectively. Then the following
holds in D'(R2) :

VVT(Y(h) - f) = Y(h) - VVTf + Dy (fvv”) (1.3.12)

+ SM(v VI Vf T = au(f)va) + SM(f- W—w'tr W)).

|

Let us incidentally observe that the Weingarten map is originally given by the
linear mapping

W:TM — TM :w— W Vv = (VvT)Tw,

TM denoting the tangent space of M atx € M. If we continue w by 0 on the normal
space R - v, we obtain the symmetric n X n matrix

w=wvHl . @, —vv?) =1, —vvl) VT,

referred to as Weingarten map in the lemma above.
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Let us illustrate formula (1.3.12) in the case of h(x) = |x| — R, i.e., M = RS""!,
R > 0. Then

|x|?1, — xxT n—1

X T
V= — Vv' = =W, W= —-,
R

x|’ kP
and thus
xx
VY (Y(lx| = R)-f) = Y(1xl — R) - VV'f + Dygr 1( =)

R’I, — nxx"
+SRS,,1( VIf 4 Vf - ——(xTVf) +f ﬂ)

In particular, for a rotationally symmetric function f(x) = g(|x|), g € C*(R\
{0}), we have

YV (= ) ) = Vel = R (T a2 )
(1.3.13)
" @ Dyt () + (glgf) — "’;ff))sRsnfl(xxT) 4 g(—)l ' Segr—1 (1).

Proposition 1.3.12 For @ # Q C R" open and M C Q a closed oriented
C2-hypersurface with unit normal v, let Sy (f), Dy(f) be defined as in formulas
(1.2.1), (1.3.1), respectively. Then

VSu(1) = Dy (v) — Sy (v - V).

(Here Vv is defined by extending v arbitrarily as a C'unit vector field near M. Then
divv = VT coincides with tt W on M, and hence, on M, VTv does not depend on
the specific extension of v.)

We shall give two different proofs of this equation.

First proof Locally, we can represent M as h~' (0)with 4 C? and submersive. When
we set v = Vh/|Vh| and B = |Vh|~'VVTh, we infer from Proposition 1.3.3 and
from the formulas (1.2.2), (1.3.2), (1.3.3) the following:

VSu(1) = V(|Vh|-8oh) = V(|Vh|)-8oh+ |[Vh|*>v-§ oh
— BVh-8oh+ |Vh[v- (DM(|Vh|—2) — Su(|VA " VT(|Vh|_1u))>

= Su(Bv) + Dy (v) — Sy (IVh| =20, (IVA|V ) — Sy (Vh - VT (VR ~2Vh)).
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Since
|Vh|~23,(|Vh|Vh) = (W"Bv)v + By

and

v,

Ah
Vh-VT(|Vh|™2Vh) = —2(vTBv)v + Vi

we conclude that

VSu(1) = Dy (v) + SM<(UTBU - %)v) = Dy (v) — Sy (tr W-v).

The last equation follows from VvT = B(I, — vvT), which implies

Ah
trW = tr((I,,—va)B(I,,—va)) =trB—vBy = W—UTBU. O

Second proof We apply here Gaul3” divergence theorem, and for this reason, we
have to restrict a little the generality supposing that M is C*. Let x € M and h :
U — R C?onaball Uaround x suchthat M N U = A~ (0) and VA # 0in U. We
set again v = Vh/|Vh|on U.

For ¢ € D(U) and fixed j € {I,...,n}, we define the C' vector field w =

wie(x) = VI (vh)Si — 3 (vegh).

Then divw = 0 and hence
0= / divwdx = viwdo = / [vjVT(v¢>) — vTaj(v¢)] do
X€U; h(x)<0 MNU MNU

= / [vio,@ + vig viv—¢ vTajv —0;¢]do
MNU —_——
=0

= (¢, —Du(v)) + Su(v;V V) + 3;Su(1)),

i.e., 9;Su(1) = Dy(v;) — Su(v; tr W) taking into account that VI'v = tr(VvT) =
tr(B(I, —vv")) =t W. O

Let us mention that the above jump formulas are—in different notation—also
treated in Gel’fand and Shilov [104], Ch.III, Section 1, p. 209, and in Estrada and
Kanwal [71], 2.7, p. 68. An extension to covariant derivatives in general Riemannian
spaces is given in Wagner [297].



1.3 Differentiation 39

Let us apply now the many-dimensional jump formula (1.3.12) to verify funda-
mental solutions of some hypoelliptic operators by distributional differentiation.

Definition 1.3.13

(1) For T € D'(R), the singular support sing supp T is the complement in 2 of the
largest open set U C 2 such that T|y € C*°(U).

(2) The differential operator with constant coefficients P(d) = 3, |<,, 42 0%, do €
C, is called hypoelliptic if and only if sing supp(P(3d)T) = singsupp T for all
TeD.

To give a trivial example, singsupp Y™ = {0} for all m € N,. Clearly,

a fundamental solution E of a hypoelliptic operator fulfills singsuppE = {0}.

Conversely, by Schwartz [246], Ch. V, Thm. XII, p. 143, an operator possessing

such a fundamental solution is necessarily hypoelliptic. For example, it follows from

Proposition 1.3.7 that all linear differential operators with constant coefficients in

one dimension are hypoelliptic.

Example 1.3.14

(a) Letus employ the jump formula (1.3.12) to show that

1
Elog x|, if n = 2, r'%)

= Cp = ——m
) n 2 2 n/2°
calx, ifn £ 2 (2= n)2m

is a fundamental solution of the Laplacean A, = Z?=1 3%, cf. Schwartz [246],
(1, 3; 10), (II, 3; 14), pp. 45, 46, Ex. 2, p. 288.

Note that E is C* outside the origin, in agreement with the (hypo)ellipticity
of A,, and that A,E = 0 holds in C*°(R" \ {0}). Therefore, formula (1.3.13)
yields

Ay (Y(lx| —R)-E) = w(VV'(Y(|x| —=R) - E))
= g(R)Dgsr—1(1) + (¢'(R) — %8(R) + &(R))Sgs—1 (1),

if E(x) = g(]x|). Since
(¢, 8(R)Drsr—1 (1)) = —g(R)R"™" / 0’ V¢ (Rw) do ()

N

converges to O for R N\ 0 and fixed ¢ € D, and
(9.& B85 (1) = ¢ RR [ 9(Ro) do (@)

converges to ¢ (0) (due to (2 — n)c, [g.—1 do = 1), we conclude that
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(b)
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AE = lim A, (Y(|x| —R) - E ——8

More generally, the same calculation yields for the Hesse matrix of E the
formula
1 ( |x|21, — nxxT)
v
1S 1] p |x[+2

1
VV'E = -1,§ +
n

with [S"7!| = fs"—l do = szn—"/zz), cf. also, for n = 3, Frahm [80], (3), p. 826;
Calderén [41], p. 428.

Exactly in the same way, we obtain that E = 5tz = 5. is a fundamental
solution of the Cauchy—Riemann operator 0, + 10,, cf. Schwartz [246], (II, 3;
28), p. 49.

In fact, by means of the jump formula (1.3.9),
. 1
(01 +10,)(Y(Ix| = R) -E) = IR Sgrst (1),

and hence
. 1 . .
(01 + 182)2_711 = }1{‘1%)(81 + 182)(Y(|x| —R)- E) = 4.

Similarly, the Helmholtz operator A, + A, A > 0, is (hypo)elliptic and has the
fundamental solution

An/4—1/2

_ _ 1—n/2 _
E = g(xl) = W' PN (VARD, daQ) = Sy

where N, denotes the Neumann function of order « (cf. Gradshteyn and Ryzhik
[113], 8.403, p. 951; Schwartz [246], (VII, 10; 17), p. 287).
In fact, (A, 4+ A)E vanishes classically for x # 0, since

<d2 N n— 12 +/\)<r1_"/2Nn/2—1(\/xr)) =0

dr? r dr

for r > 0, cf. Gradshteyn and Ryzhik [113], Eq. 8.491.6, p. 971. On the other
hand, limg~ o g(R)R"™! = 0 and

lim ¢'(R)R"™" = —d,(A) VA lim R">N,/»(VAR)
R\0 RN\

— dn(A)AI/Z—n/ﬁt

2"2T (%) G 1
T 2oz |Snml)”
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cf. Abramowitz and Stegun [1], (9.19), p. 360, and hence formula (1.3.13)
implies

(A, + ME = Ileig%)(An + A)(Y(Jx| = R) - E)

= Ileig%)(g(R)DRsHu) + 8 (R)Sgs—1 (1)) = 6.

Note that, in the case of n > 3, the limit of E for A N\ O tends to the
fundamental solution of A, in part (a), whereas in the cases n = 1,2, one
has to subtract from E suitable constants (depending on A) in order to obtain
convergence of the limit in D', see Ortner [197], 4.6, pp. 15-18.

(d) Let us finally verify, by the same method, that

Y() s - g1 et
E(t,x) = W € (S LlOC(RI‘,X ) (1314)
is a fundamental solution of the heat operator 0, — A,,, cf. Schwartz [246], (VII,
10: 26), p. 289.
Similarly to the reasoning above, we set M, = {(t,x) € R""!; t = €} and
obtain
. . e/ 40
(2 =~ AnE = im(@, — A,) (Yt —€) - E) = lim (W)’
and
—IxP?/(4€)
e 2
- ) = —n/2 —|x*/(4¢)
@50 (e ) = @m0 | e eI g

=7 | $e,2vey) e dy — (4,5)
Rn

for e \, 0 and ¢ € D(R"*!) due to Lebesgue’s theorem on dominated
convergence, cf. also Hirsch and Lacombe [131], 8.3, Thm. 3.3, p. 310.

Note that the above verifications of fundamental solutions can also be performed
without using the jump formula if C*° approximations are employed. For example,
for A, one can utilize

E=limg(/IP ) or E= lim (1 -y (kx)s(lx).

with g as in (a) and ¥ € D(R'), ¥ = 1 near 0, cf. Folland [76], Thm. 2.16, p. 30;
[77], (2.17), p. 75. O
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Proposition 1.3.15 Let xo € @ C R" open and T € D' (Q) with suppT = {xo}.
Then there exists a linear differential operator P(0) = Zlalfm a,d%, m € Ny,
ay € C, such that T = P(0)8,,.

For the proof, we refer to Schwartz [246], Ch. III, Thm. XXXV, p. 100;
Donoghue [61], Sect. 21, p. 103; Friedlander and Joshi [84], Thm. 3.2.1, p. 36;
Hoérmander [139], Thm. 2.3.4, p. 46.

Example 1.3.16 Let us verify now the fundamental solution of the Laplacean in
Example 1.3.14 (a) by employing Proposition 1.3.15. First we note that a homoge-
neous distribution T € D'(R") of degree A with support in {0} is necessarily of the
form

T = Zaaa%’, ay € C, A =—n—m,

loe|=m

for some m € Ny. Hence, if n # 2 and E = c,|x|*>™" as in Example 1.3.14 (a), then
A,E, which is homogeneous of degree —n and has its support confined to 0, must
be a multiple of §, i.e., AE = a4, a € R. Finally, by application to the rotationally
invariant test function x(|x|) € D(R"), y € D(R'), x = 1 near 0, we obtain

a = (x(Ix]), AE) = (Au(x(IxD). E) = c,,|s"—1|/0 (x"(r) + =L Y (r)rdr
= ¢S (r' (1) + (n— 2)X(V))|fio =2 —n)c,x(0)|S" ! = 1.

The same procedure also works for the Cauchy—Riemann operator d; + i d, and
for the heat operator d; — A,,.. For the latter operator, one uses the “quasihomogene-
ity” of E, i.e., the property

E(t, cx) = ¢ "E(1, x), c>0. O

Example 1.3.17 Let us consider here the solution of the equation i(x)™ - T = 0 for
T € D'(Q), h submersiveon M = h~'(0) C Q,m € N.

(a) First, if T € D'(R'), m € N, and x" - T = 0, then supp7 C {0}
and Proposition 1.3.15 implies that T = Y'_, ;6% for some k € Ny and
aj € C, j=0,....k a # 0.If k were larger than or equal to m, then
0= (¢, x"-T) = (=D*k'ay # 0for p(x) = x¥*"y(x), x € D(R) with y =1
near 0, yields a contradiction. Conversely, x” - §7) = 0 forj = 0,...,m — 1,
and hence

m—1
(TeDR): " T =0 = {Za,-(s@; 4 € c}.
j=0
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(b) More generally, by Schwartz [246], Ch. III, Thm. XXXVI, p. 101, the equation
XT =0,me N, T e D’'(R"), holds if and only if T can be represented
(uniquely) in the following form:

m—1
T=>46"®T., T eDR, ie,
j=0
m—1
(6. T) =Y ((—0Y$)(0.X), Tix)), ¢ € DR,
Jj=0

see Definition 1.5.1 below.
Still more generally, by Schwartz [246], Ch. III, Thm. XXXVII, p. 102, we

have
m—1 )
VT e D(Q) :h(0)" T =0 <= 3To..... Ty € D'(M): T =Y LT}
j=0

if n : Q@ — Ris submersiveon M = h='(0) C Q, m € N, D'(M) = {S :
D(M) — C linear and sequentially continuous}, and L(’) (S) € D'(RQ) is the
multi-layer potential on M defined by

(0. LY(9) = ((=d,Y¢],,.S). SeDM). ¢eDEQ).

where d,¢ = v - V¢, v = % in a neighborhood of M. Note that the single
and double layer potentials defined in (1.2.1), (1.3.1), respectively, are special
cases of this:

Su() =LY @), Du(f) = L)),
if
Ly (M) = D'(M) : f +—> (¢ — /Mf'q&do). (1.3.15)

We also emphasize that (—d, ) ¢|y and hence Sz(\]) does not depend on M only,
but also on 4 for j > 2.

(c) In order to illustrate these assertions, let us consider 4(x) = |x|> — R*>, R > 0,
such that M = RS""!. By the above, the distributional equation (|x|*>—R?)-T =
0 has the solutions T = Sy (Ty), To € D'(M). For n = 2, e.g., we have, by

expansion with respect to the angle ¥,

h(x)-T =0 < 3Juo,..., € M'([0,27]): T = Z,uk(z?)dﬁk(Soh)
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ie.

1< d“é
(6.T) = ﬁ;(—l)’%ﬁ,m

where ¢ € D(R?) and ¢(9) = ¢(Rcos?,Rsin®) € C*®(R). Herein, we
used the structure theorem for distributions with compact support, see Schwartz
[246], Ch. III, Thm. XX VI, p. 91. O

Similarly as for the equation x™ - T = 0, T € D’'(R), we can also describe all
distributional solutions of the equation T = 0, cf. Horvéth [141], Ch.4, Sect. 3,
Prop. 3, p. 327; Hormander [139], Thm. 3.1.4, Cor. 3.1.6.

Proposition 1.3.18 Leta < b € R and set @ = (a,b) C R.

(1) VT eD'(Q):T'=0«<=T e CCD(Q).

2) VmeN:VTeD(Q): T =0T =3 " . c;€C.

3) % : D'(Q) —> D'(RQ) has a sequentially continuous linear “right-inverse”
R:D'(2) — D' (Q), i.e, RfulfillsNT € D'(RQ) : R(T) =T.

(4) A linear constant coefficient ordinary differential operator P(%) has only

classical solutions, i.e., P(%)T = 0forT € D'(Q) implies that T € C*®(RQ).

Note that (4) is indeed a consequence of the (hypo)ellipticity of P(%), but we
prefer to prove it here without making use of the algebraic characterization of
hypoelliptic operators by L. Hérmander.

Proof

(1) If T’ = 0, then T vanishes on the hyperplane

b
H=1{¢: ¢ € D)} = { € DQ): / V() dr = (Y1) = 0} = ker ]

of D(R2). If we fix y € D(2) with (x,1) = l andsetpr¢ = p—(¢,1)-y € H,
then

ie,T=(x,T)ecC.

(2) This follows from (1) by induction.
(3) For y and pr as in (1), we define

R:D(Q) — D(Q): T — (¢ > (—/ (prop)(1) dr, T))
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and infer (RT)' = T from

/ (prep) (1) dr = / ¢/ (0 di — ('.1) / () di = p).
0

(4) This also follows inductively, once the first-order case P(%) = % — A is settled.
In this case, 0 = (£ —1)T = e* &L (e7™T) implies, by (1), thate ™ T =c € C
and T = ce™ € C®(RQ). O

Let us yet give an elementary, but useful formula for the dependence of
fundamental solutions on linear transformations of the operators, see Garnir [99],
p. 284; Wagner [285], Satz 4, p. 10.

Proposition 1.3.19 Let E be a fundamental solution of the operator P(0) =
Z‘W‘Sm g0 and A = (aj)1<jk<n € GL,(R). Then |detA|™' - E o A7 is qa
fundamental solution of the composed operator (P o A)(d) = Zlal <m Ca(AD).

Proof For T € D'(R"), the chain rule yields
(A);(To A7) = (Z ajkak) (ToA™T) = (9;,T) 0 A™'T.
k=1

Therefore,
(PoA))(EoA™T) = (P(E) o A™ =80A7' = |detA] - §

by Example 1.2.8. O

1.4 Distribution-Valued Functions

Definition 1.4.1 Let @ # Q2 C R” be open.

(1) For a metric space X, a mapping f : X —> D'(RQ2) is called confinuous if and
only if the mappings

(@.f) : X — C:Ar— (p.f (V)

are continuous for all ¢ € D(2). The vector space of all such continuous
functions f : X — D'(R) is denoted by C(X, D'(R)).

(Hence the “continuity” of f refers to the “weak topology” on D’ (£2); due to
the fact that D’'(2) is a Montel space and X is a metric space, this is equivalent
to the continuity of f with respect to the “strong topology” on D’'(2), see Treves
[273], 36.1.)
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(2) Similarly, if @ # U C R'is open and m € Ny U {oo}, thenf : U —> D'(Q) is
called m times continuously differentiable if this holds in the weak sense, i.e.,

(p.f) :U—>C: A+ (¢, f(A))isC"
for all ¢ € D(R2), and we set
C"(U.D(Q):={f:U— D(Q):fC"}.

(Note that 9f/9A;(A) € D'(Q) for f € C'(U,D'(Q)) and A € U by
Prop. 1.1.5. Therefore, 9f/9A; € C"~'(U,D'(Q)) for f € C"(U,D'(R)) and
meNU{oo},j=1,....,D).
(3) The space C’"([O, 00), D’(Q)) is defined analogously, i.e., it consists of func-
tions f € C™((0,00),D'(R)) for which fV(r) converges if 1 N\, 0 for all
j=0,...,m.

(As before, note that the notion of “weak differentiability” introduced above
coincides with that of “strong differentiability” due to the Montel property of the
space D'(2), see Treves [273], Prop. 36.11, p. 377.)

Let us employ the notion of differentiable distribution-valued functions to give
a useful formula for fundamental solutions of powers of differential operators with
non-vanishing constant term.

Proposition 1.4.2 Let P1(0), ..., Pi(0) be linear differential operators in R" with
constant coefficients and assume that U C R' open, m € N, and E € C’”(U , D (R"))

such that E(A) is a fundamental solution of ]_[jl-=1 (P,-(a) - /\,) Then % 0YE(A) is a
fundamental solution of]_[jl.=1 (Pj(a) - Aj)aj_l—lfork € U and a € N} with |a| < m.

Proof The assertion is shown in exactly the same way as part (2) of the proof of
Proposition 1.3.7, which refers to the case P;(d) = %. O

Example 1.4.3 1f we apply Proposition 1.4.2 to the Helmholtz operator A, + A =
A, — (—A) considered in Example 1.3.14 (c), we obtain that

Er(A) =

(_l)k—l 1 A"/4_1/2 1—nj2

(k—1)! % (2l+n/2nn/2—l Il Nn/2—1(ﬁ|x|))
(_l)k—lkn/ét—k/z .

= ST )] XA 2N, o (VA |x])

is a fundamental solution of (A, 4+ A)* for A > 0, k € N, cf. Schwartz [246], (VII,
10; 17), p. 287. (For the differentiations with respect to A, we used the recurrence
formula 8.472.3 in Gradshteyn and Ryzhik [113], p. 968.) O

Often in applications, one encounters operators of the form H;=1 (P(8) —Aj)ett,
where all the operators P; in Proposition 1.4.2 coincide. Its fundamental solution can
then be expressed through one of P(d) — A, see Proposition 1.4.4 below, which goes
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back to Ortner [202], Prop. 1, p. 82. The special case of P(d) = % appeared already
in Proposition 1.3.7.

Proposition 1.4.4 Let P(0) be a linear differential operator in R" with constant
coefficients and assume that U C R open, m € N, and E € C’”(U, ’D’(R”)) such
that E(A) is a fundamental solution of P(0) — A. Then

l
Z l TGERY),  q=]]0y -,

k=1

k#j
is a fundamental solution of]_[ 1(P(a) A ) forpalrvwse different A; € U, j =
1,....,L,anda € Ny withoay <m, j=1,...,1.
Proof

(1) Let us first consider the case « = 0. Then we have to check that

! 1 !

(TT@ - 2)) X[EG) - [T - 207" =6,
Jj=1 J=1 lk:é;

Since (P(a) - Aj)E (Aj) = 4, this is equivalent to

l 1

S ([T — 407 (P@) — 195 = 5.

j=1 k=1

which in turn follows from the following resolution in partial fractions:

1
Z 1‘[@ — w7 ==
j=1

Jj=1
k#/

(Note that Res,—y, [ Ti—; (z — A) ™! ]_[k 1(/\ —A07h)

(2) The general formula in the proposmon 1s now a consequence of Proposi-
tion 1.4.2 applied to the fundamental solution

1

!
FO) = YO[B TG - 407

j=1 k=1
k#j
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of the operator 1—[]1:1 (P(3) — A;). In fact,
I !

5= Yyl (55 )

j=1

<

Let us mention that—instead of the assumption |¢| = |¢|; < m in Proposi-
tion 1.4.2—we can make do here with || < m, since this is all one needs to

perform the inductive steps in part (2) of the proof of Proposition 1.3.7. O

Example 1.4.5 If we apply Proposition 1.4.4 to the Laplacean P(0) = A,, we
obtain

(_1)\a\+l—l |x|1—n/2
4(2m)n/2-1

Ol'
=1

1
1 ;
¥ = AT N ],
J

!
¢ =[Gy = a7,
k=1
k#j
as a fundamental solution of the rotationally invariant operator ]_[ - (A + A )a’ i
Aj, j = 1,...,1, being pairwise different positive numbers, cf. Cheng et al. [49]
(21), p. 189; Muhlisov [184], (3.17), p. 141; Paneyah [225], Teorema 2, p. 128. 0O

Similarly as for differentiability, the holomorphy of distribution-valued functions
is defined in the weak sense, see the next definition.

Definition 1.4.6 Let @ # Q C R” and @ # U C C' be open subsets.
(1) A mapping f : U — D'(Q) is called holomorphic (or analytic) if and only if
(0.f) : U— C:Ar—(¢.f(D)

is holomorphic for each ¢ € D(LQ2).
) Ifl = 1,1ie, U C C, then f is called meromorphic if f is defined and
holomorphic in U \ D for a discrete set D C U, and if
VAo € D:3k € Ny : (A — Ao)*f(X) can be continued holomorphically to Ao.

The residue and the finite part of f at Ay € D are then defined in the weak sense:

(. Res (1) :=Res (./(1). (g Pf f(1)):= PE (4.S(). § D).
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Proposition 1.4.7 If f : U — D'(Q) is holomorphic, Ay € U and r > 0 such
that B, = {A € C; |\ — Ao| < r} C U, then f can be developed into a convergent
Taylor series in B,, i.e., the series Z\a\ <m (A_Oﬁ")a 3%f(Ao) converges uniformly to
f(A) for A € B, if m — oo. Similarly, if U C C and f is meromorphic in U, then f
can be developed into a Laurent series around any Ay € U, and Resy=y,f(A) and

Pfy—1,f(X) are the coefficients of (A — Ao) ™" and (A — A¢)°, respectively.

For the proof in the case of / = 1, we refer to Horvath [143], (1.2.8), p. 65,
and p. 75; Grothendieck [117], Thm. I, 5, pp. 37, 38; Ortner and Wagner [219],
Prop. 1.5.5, p. 21.

Example 1.4.8 In Example 1.3.9, the distribution xi, A € C\ —N, was defined by
differentiation. We now see that the mapping

C\-N— DR : A r—x,

is holomorphic, since the integral
o0
/ Yp(x)dx, o eDR), Rel> -1,
0

depends analytically on A and hence the same holds for

(="
O+ 1) +m)

o0
(p.x}) = G (x) dx
form € N,ReA > —m—1,and A & —N.

The distribution-valued function xi has simple poles at A = —k, k € N, with the
residues

Res 1} = (D §*=D 1.4.1
Aze_skx+ = m ) ( o )
since
( l+k)(k) Y(k)

hm ()L+k))cA (/\—}-1) At k=1 = (1—k)---(=1)

The Taylor series of f(A) = xi around A = 0 is given by

Z )(0) v ZY(X_)'logkx,\k, Al <1.

!
— K = k!
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This implies, in particular, that x:_l, as defined in Example 1.2.6, is the finite part of
A
xpatA =—1

d , ot d xu d
A + _ ¢ +) _ _ -1
A£f1x+ N AEEI dx()L + 1) dx MP=fo( w ) dx(Y(x) logx) =,
see Example 1.3.9 for the last equation. More generally, let us define

= xfkai’ k e N. (1.4.2)

From the first two terms in the above Taylor series of xi, we then conclude that

dk /1+k dk x
X_k = Pf Pf +
C e v B ey Rl s e prem
_ d_k P [ Y(x) Y(x)logx ]
dxk p=olp(u—1)---(n—k+1) =1 --(n—k+1)
— y . i 1 (1! . ®
= M((H—l)"'(u—k+l))ﬂ=0+(k_l)!(Y()log)
G (k=1) —1y(k=1) I
= om0 v+ (G @ = 15

Let us yet derive a limit representation for x:_k corresponding to the one for
xi, A € C\ —N, given in Example 1.3.9. From formula (1.3.7), we infer for k € N

» N N —1 (_1)i€A+i+1 0

— Pf :Pfl'[Y— —]
T+ =_kx+ l=—ke{l(l) (r—e)x +;i!(k+i+l)
(_1)i6/1+i+1

= lim Pf [Y(x % +Zm z)]

e\0A=—k

3 ( 1)1 i—k+1 (_1)k—18(k—1) €A+k
= lim|Y(x — k @ Pf
1\‘5[ (r—e)x Zl'(k—l—l)8 TR l=—k<l+k)]

ok (=D'e™ ! (=D oge iy
_11m[Y(x €)x Zz'(k—z—1)8 + =) 8 ],
cf. Horvath [143], (2.2.5.6), p. 88. O

Example 1.4.9 Next, let us subsume the extensions of homogeneous distributions
of degree —n from R" \ {0} to R" in Example 1.2.6 under the framework of analytic
continuation of distribution-valued functions.
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We consider S"~! as a C* submanifold of R”, we denote by D’(S"!) the dual of
D(S"!) = C°°(S"!) as in Example 1.3.17, and we embed L'(S"™!) = LL (S"™!)
by means of the surface measure, see (1.3.15). For F € D'(§"!) and A € C, we
define F - |x|* € D'(R") by the equation

(¢.F - Inl") = ((¢(tw). F)).4"""). ¢ € DR"). (1.4.3)
Then the mapping
AeCi=A—ngNy} — DR : A—> F- x|}
is holomorphic since the same holds for the function
AeC;—A—ngNg} — D'R'): A AT
see Example 1.4.8.
The function A + F|x|* has at most simple poles in A = —n —k, k € Ny, where
the residues are given by

(¢,12R_t%s_kF|x|l) = ((¢p(1w), F(w)), :R_es o

=D° )

= ((¢ (1), F(w)), ~—~ 8V (1)

9“9 (0
= (((wTV)k¢)(O),F(w)) = 3 PO o ko),

loe|=k
i.e.,

(0%, F (w))

—1)k
AzR_ens_kacM = (=1)f Z %8 = ( k') (" VK, F(w))8,

lor| =k

cf. Ortner and Wagner [219], Prop. 2.2.1, p. 35. In particular, A + F|x|* is
holomorphic at A = —n iff (1,F) = 0, or, in other words, iff F fulfills the
(generalized) mean-value zero condition, cf. (1.1.1).

Similarly, by (1.4.2), (1.4.3),

(. Flx| ™)

((p(t0), F(o)), 157"
:((¢(ta)),F(a))),l:12 potn=)

= (¢, Pf_Fil"), ¢ eDR.
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In particular, for k = 0, we have
(9. Pf Flal') = ((¢(tw). F(@)).13)
ﬂgM(MMFw>+¢@unm4
i.e., the distribution

o™= Pf Flx' = hgg)[F XY (Jx] — €) + (1,F)(10ge)8] (1.4.4)

coincides with the extension T € D’'(R") of S = F-|x|™ € D'(R"\ {0}) constructed
directly in Example 1.2.6 (a) in case of F = f € L'(S""). If the mean-value zero
condition (1, F) = 0 holds, then

F- ™= gglg)[F T (x] = )] = vp(F - [x[™),

cf. Example 1.1.12.

Furthermore, we can transfer the limit representation for xﬁr e D'(R"Y) in (1.3.7)
to this more general case. If A € C with —A —n & Noand m € Ny, Re A > —m —n,
¢ € D, then

(¢, F - |x*) = (¢ (tw), F(w)), £5"")

= ((¢(1w), F(w)) lim[Y(t_e)t)»+n 1y Z (—1)irtnti (1)]>
= ’ V) A +n+ i)
S e ey EOO
+§A+n+i|042::i(w’F(w)> ol ]
ie.,
2 1 (_ )z A+n+i re
J hm[F x| Y(|X|—e)+zm((w V),F(w)>5]. (14.5)

(Of course, the distribution F - |x|*Y(|x| — €) is defined completely analogously as
F- |)c|)k in (1.4.3). Note also that, conversely, formula (1.3.7) is contained in (1.4.5)
upon takingn = land F: 8° = {1,—1} — C, F(1) = 1, F(—-1) =0.)
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Similarly as in Example 1.4.8, formula (1.4.5) also yields limit representations
for the finite parts in the poles A = —n —k, k € Ny :

Fol ™™ = Pf Pl = li\l‘n[F- kY (x| — €)—
=—n— e \(0

llk ) kl
-3 VL ey pona + CUREE oy ]
Z |

cf. Petersen [228], p. 40. (The special case of k = 0 is again formula (1.4.4).)
These limit representations can be transformed into integral representations for
(¢, F-|x|*).If A € C with—A —n &Npandm € No, ReA > —m —n, ¢ € D, then

o

[ o @) ta= [T Fen it a
€ 1

m—1

1 p )
+ / (1), F()) - ;5( £ (9(0).F©))) t=0];*+ Ldr
(1.4.6)
Mzl bt 1
Y T Y — (0% F(@)) (39)(0).

A+n+i ‘ ol

i=0 la|=i

Due to the substraction of regularization terms, the integral in (1.4.6) converges for
€ \{ 0 and hence (1.4.5) furnishes

(6. F - Ix]) = /1 (b (10). F(@)) A" di +

+/ol[(¢(m))’F(“’)> -2 %(3“¢>)(0)(w“,F(w))]t“”—‘dt+

la|<m

(1.4.7)

P o Y D) g
i=0 =i

ifReA > —n—m, A & —n — Np.

In the case of F € L!'(S"™"), this representation was given in Horvath [146], (2),
p. 174. If we take the finite part of formula (1.4.7) in the poles A = —n —k, k € Ny
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(setting m = k + 1), we obtain
(6. F- ™) = / ($(10). F@)) 7" di +
1

1 F C (#)0) (. F g
+/0 [($0). F@) = Y- = @"$) () (0" F@)) | ar-

|| <k

k—1 o
Y 5 Y g
i=0 :

loe|=i

cf. Petersen [228], p. 40; Horvath [146], p. 175. Generalizations of these formulas to
the quasihomogeneous case can be found in Ortner and Wagner [219], Prop. 2.2.1,
p. 35.

Let us finally mention that each homogeneous distribution in D’(R" \ {0}) can
be cast in the form F - |x|* with a unique F € D'(S""), see Garding [89], Lemmes
1.5, 4.1, pp. 393, 400; Ortner and Wagner [219], Thm. 2.5.1, p. 58, and Section 5.1
below. O

Example 1.4.10 Let us investigate now the special case of the distributional gradi-
ent of a distribution which is homogeneous of the degree 1 — n.

IfU =G-|x|™, G € D'(8" '), see (1.4.3), then U is homogeneous of degree
—nin R"\ {0}, and

Ve>0:U(cx) =c"U + ¢ "(loge)(1,G) 4,

see Example 1.2.10 for the case of G € L'(S"™"). Hence U is homogeneous in R" if
and only if the mean-value zero condition (1, G) = 0 holds, i.e., iff A > G - |x|* is
holomorphic in A = —n. In this case,

G-l™ = Pf G-[xl" =vp(G-IxI™),

cf. Examples 1.2.6 and 1.4.9.

Let us now consider the distribution T = F - |x|'™, F € D/(S"™"), which is
homogeneous of degree 1 — n in R”. Its gradient VT is homogeneous of degree
—n on R" \ {0}, and hence VT = G - |x|™" holds in D/(R" \ {0}) for some G €
D' (S"™1)", cf. the remark at the end of Example 1.4.9. From Proposition 1.3.15 and
Example 1.3.16, we conclude that

JceC": VT =G |x|™ + ¢§ in D' (R").

Since T and VT are even homogeneous on R”, G must satisfy the mean-value zero
condition (1, G) = 0. Therefore, G - |x|™" = vp(G - |x|™"). Furthermore, in case
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F € C(S"™!), the jump formula (1.3.9) implies
VT = V(F- 3! = ¥ lim(F- 15 ¥ (] —e)
N0

= lim [G+ 11 ™"Y (1x] = €) + Sesr1 (€ "XF(£)] = vp(G - x| ™) + {@. F) .

In fact, for ¢ € D(R"),

(. S5 (2 (7)) = lim e / o YW do )
= lime™" d(ew)ewF(w) €' do(w) = ¢(0)(w, F(w)).
e\0 sn—1

Of course, the formula

V(F - |x|"™) = vp(G- |x|™) + (».F) § in D'(R"), (1.4.8)
where V(F - |x|'"™) = G- |x|™ in D'(R" \ {0}),

persists for all F € D'(S""') by density, cf. Schwartz [246], p. 166, and
Proposition 1.5.14 below. This generalizes Petersen [228], Thm. 15.8, p. 42.
The most notable special cases of (1.4.8) are V|x|'™ = (1 —n) vp(x|x|~'™") and

|x|?1, — nxx”

|_x|n+2

2 —
YV " = 2 = )V 1™ = (2 = n) vp( ) + 208 s,
n

cf. Example 1.3.14 (a). The last equation implies, in particular,
AP = w(VVI PP = a(32IS"5L8) = 2 —n)IS"™|é,

in accordance with Example 1.3.14 (a). O

Example 1.4.11 As aconcrete example for the analytic continuation of fundamental

solutions with respect to parameters, let us deduce a fundamental solution of A, +

A, A € C\ {0}, from that for A > 0 which was constructed in Example 1.3.14 (c).
Let us start from the fundamental solution

/412

21+4n/27n/2-1" A >0,

FQ) = —id,(Wx|"™H), (VX)) d,(h) =
which differs from the fundamental solution E(A) = d,(A)[x|'™"/>N,ja—1 (v/A |x])
verified in Example 1.3.14 (c) by the solution —i d,, (1) |x|"™/2J,,/»— (v/A |x|) of the
homogeneous equation.

Both distributions E(4) and F (1) depend holomorphically on the parameter A €
C\ (—00,0] if v/ and A"/4~1/2 are defined as usually on U = C\ (—o0,0]. By



56 1 Distributions and Fundamental Solutions

analytic continuation, the equations (A, + A)E(X) = (A, + A)F(A) = § carry over
from positive A to the whole slit plane U, and hence E(A), F(A) are fundamental
solutions of A, + A for A € U.

For F(X), we can more easily perform the limit on the branch cut (—oo, 0). If
Ao < 0, then Gradshteyn and Ryzhik [113], Eq. 8.407.1, p. 952, yields

. . — 1 . — i (n— 1 .
lim(Ao +i€)" V2,1 (VAo i€ l) = Aol 2 L G/l )

2|A0|n/4—l/2
= TKn/Z—l(V [0l Ix]),

and hence

|l—n/2 n/4—1/2

Clx %

G(p) = ey

K1 (V1 |x])

is a fundamental solution of A, — u, u > 0.

Either by applying the same process of analytic continuation to the fundamental
solution of (A, + A)%, A > 0, calculated in Example 1.4.3, or by differentiation
with respect to p according to Proposition 1.4.2, we deduce that

1 ak—l (_1)k|x|k—n/2’un/4—k/2
(k— 1)' 8,&"‘1 G(/’L) = 2n/2+k_l7l'"/2(k _ 1)' Kn/z—k(\/ﬁlxb (149)

is a fundamental solution of (A, — w)¥, u > 0, k € N. The expression in (1.4.9)
coincides with formula (VII, 10; 15) in Schwartz [246], where the same method
of analytic continuation combined with a limit on the boundary is used in reverse
order, i.e., in passing from (A, — )* to (A, + A)* for A, u > 0. O

Example 1.4.12

(a) LetA = (a;) = AT € R™" be a symmetric, positive definite matrix. By linear
transformation, we can derive a fundamental solution of the elliptic operator
VIAV = >_ij=14;0;0; from the one of A, we considered in Example 1.3.14
(a), i.e.,

1
Elog |x|, if n = 2, 1"(%)

E = = —"——.
E) n 2_ 2 n/z
calx", ifn#£2 (2= n)2m

By Proposition 1.3.19, it follows from x”Ax = |x|> o /A that (detA)~'/?E o
A~'2 is a fundamental solution of VTAV. In particular, if » € N\ {2} and
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A1 >0,...,A, > 0, we obtain that

" X2\ (2—-n)/2
- )12 (S
EQ) = eulhi- 1) 7 1 %)

j=

is a fundamental solution of Y7, 4;37.
Let us suppose now that n > 3 in order to avoid the appearance of logarithms.
The set

T, ={AeC"VEcR\ {0} D A& #0}

Jj=1

= {1 € C"; 0 ¢ convex hull of {A;,...,4,}in C}

is an open cone in C”, and it is arcwise connected. The distribution-valued
function

n

2 —n
A— EQL) = C—"(Z ﬁ)(z " DRy

\/1'[};11/ j=1 A

can be continued analytically along any path in I, starting at some A €
(0,00)" and yields a homogeneous fundamental solution of 7, Ajaf. Since
such a fundamental solution is unique, as one sees by employing the Fourier
transformation (see Example 1.6.11 (b) or Proposition 2.4.8 below), E(1) does
not depend on the path chosen, i.e., the function

I, —D®RY):A— EQ)

is well defined and analytic. For example, for the operator 3% + i(3% + 3%), we
have Ay = (1,1,1), and by extending E(A) analytically from (1, 1, 1) to Ao along
the quarter circle A = (1,ei‘/’,ei"), 0<¢ =< % we obtain the fundamental
solution

i
47 (/32 —i(x5 + x3)

where the square root has its usual meaning in the complex right half-plane.

Let us observe, incidentally, that, for even n, the function A + /A;---A,
can be extended analytically from (0, c0)" to ', since (A1, A2) — /A4, can
be defined analytically on

EQ) =

[ ={AeC% Vre0,1]:th + (1 —1)Ay # 0},
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(b)
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and since, obviously, 'y C (I'2)f, k € N. (In fact, we can set /A1, =
A/ A2/AL due to Ay/A; € C\ (—00,0].) In contrast, for n odd, such
an analytic extension to [, is impossible. However, the functions A >

2

Ay Ay Zj’;l %)1/2 and A — E(A) can be extended from(0, c0)" to T, for
J

eachn € N.

Let us next deduce fundamental solutions of the wave operators 9> — A, and
9> — A; from those of the Laplaceans A3 and Ay, respectively.

Forz € C\ (—00,0], weset A = (1,...,1,z) € T, and we consider the
limit for z = —1 + i€, € \( 0. For n = 3, we have
-1 ’ X1
F(2) =E\) = ——F———, X = ;
4 \Jzlx |2 + X3 2

and
Y- WP .Y(Ix’lz—)%)

47 (/x5 —|x|2 4\ |X |2 — X3

This is a fundamental solution of A, — 3%, and, obviously, the same holds for
the real part

lim F(—1 + ie) =
6{%( + ie)

Y — Y1)
4 (/x5 — X2

Its support consists of both the forward and the backward light cone, i.e., of
{x € R?; |x3] > |¥|}.
In order to deduce therefrom the “forward” fundamental solution

€ Lipe (RY).

_ Y-k
S AP
of the (hyperbolic) wave operator 3 — A,, (G being uniquely determined by the

condition G = 0 for t < 0, see Hormander [138], Thm. 12.5.1, p. 120), we note
that we have

Lloc (R

1,X1 xz)

Y (2 —|x?)

A A e

and F(t,x) = %[G(z‘, x) + G(—t,x)]. But then the inclusion relations M :=
supp (02 — A2)G C {(t,x) € R* t > |x|} and

(0> — Ay)F =6, F =

= supp [—(8,2 — Ay))G(—t,x) + 2(8t2 - Az)F] C{(~t,x) e R* ¢ > |x|}
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imply that (3> — A,)G vanishes outside the origin. From the homogeneity of

(3,2 — A»)G, we conclude that (3,2 — A)G = ¢6 for some ¢ € R. Finally, ¢ = 1

follows from (3% — A2)G(—t,x) = ¢§(—t,x) = ¢§ and (3> — Ar)F = 6.
Similarly, forn = 4and A = (1,1, 1,z),z € C\ (—o00, 0], we have

~1
A (Vz X P+ x5/ VD)

F(z):=E) =

X = (x1,x2,x3).
This yields

i 1 i
—lim—:—(v — +ind x/z—x2>
42 N0 Y2 =22 —ip  4n? Pivp—2 (1~ =)

lim F(—1+i¢) =
e\0 4

(1.4.10)

as a fundamental solution of Az — Bﬁ. Outside the origin, Eq. (1.4.10) follows
from Sokhotski’s formula (1.1.2) limp o (t—ip) ™' = vp ! +im8 in D'(R}) and
by employing the pull-back

h:R*\{0} — R:ix+—1={]* =,

cf. Definition 1.2.12, Proposition 1.2.13. Since vp |’|2;2 8(|x'|>=x3) € D'(R*\
X' —X4

{0}) are homogeneous of degree —2, they can be written in the form H(w) -
|x| 72 (see the remark at the end of Example 1.4.9), and this shows that they can
uniquely be extended in D’ (R*) as homogeneous distributions of degree—2. For
example, for §(|x'|*> — x2), this extension is given by

@5~y = [ PRI D G0 g cpme,
R} 2|

The limit relation in (1.4.10), which originally holds in D’ (R*\ {0}) only, must
persist in D’(R*), since the bijection

D'(S"") — {T € D'(R"\{0}); T homogeneous of degree A} : H —> H-|x|*

is of course an isomorphism of topological vector spaces, cf. Ortner and Wagner
[219], Thm. 2.5.1, p. 58. Hence, if F(—1+i€) = H,-|x|~% converges in D' (R*\
{0}), then H, converges in D'(S%), and F(—1 + i€) converges also in D’ (R*)
for e N\ 0.

Finally, by the same procedure as for n = 3, we obtain the forward
fundamental solution

1
G=—8(—x) e DR
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of the wave operator 3,2 — Aj. Here
(. —8(t—| ) = / ‘Mx' Yax,  pe DRY).  (14.11)

(This is the unique extension by zero of ;- 8 (t — |x|), which is defined by pull-
back in D' (R* \ {(z,0); t € R}).)

We shall take up the calculation of fundamental solutions for the wave operator
9> — A,, n > 4, in Example 1.6.17 below. O

Example 1.4.13 Let us finally deduce a fundamental solution of the Schrodinger
operator d; — 1A, from that of the heat operator d, — A,,, cf. Examples 1.3.14 (d),
and 1.6.16 below.

As in Hormander [139], Section 3.3, let us consider more generally the operator
9, — VT'AV for a symmetric matrix A € C"™". First, if A = AT € R"™" is positive
definite, then |x|?> 0A'/?2 = x"Ax and hence we obtain from (1.3.14) the fundamental
solution

_ _ Y(¥) i Ta= /(4
(detA) V2E(t, —) o ATV = — 7 AT
( (4mt)"/2{/det A

of the operator 3, — VTAV, see Proposition 1.3.19.
Let us next consider the set

= {A = AT € C""; Re A is positive definite},

which is an open subset of the linear subspace of all symmetric matrices in C"",
and let us show that the mapping

Y(@) Tl
U—sDRTY: A+ E = — "/ ¥4 /M)
R T Gy JdetA

is well defined and holomorphic. In fact, U is convex and hence simply connected,
and detA # 0 for A € U, since

(/n e_"TA)‘dx)2 -detA=7a"#0

holds for positive definite A € R™" (by linear transformation from the Eulerian
integral) and thus on U by analytic continuation. Therefore +/detA and E, are
uniquely defined on U by analytic continuation from their classical values atA = I,,.
More specifically, we have

- —1
VdetA = 72 (/ e_"ledx)

n
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for A € U. (Cf. also the method of analytic continuation of +/detA in Hérmander
[139], 3.4, p. 85.) For example, for A = zl,,z € C, |z] = 1, Rez > 0, we have
VdetA = (/21022 with the usual determination of log z in the complex right half-
plane.

Also, by analytic continuation, the equation (3, — VIAV)E, = § holds for each
A € U. Let us finally extend this equation by continuity to the set

U ={AcC™; A=A", detA #0, ReA > Oie., Vx € R":x’ (ReA)x > 0}.
(1.4.12)
On the one hand, +/detA is still uniquely defined by continuity on Uj, cf. the
discussion in Example 1.6.14 below. (In particular, for the Schrodinger operator
9 —iA,, we have A = il, = lim~o(€ + 1)I, and hence v/detA = el"/4))

On the other hand, Y (£)r /2 e A71x/(41) ceases to be a locally integrable func-
tion if Re A is no longer positive definite. When approximating A by A+¢€1,, € 0,
we obtain for the distributional limit

Y(5) 2 e ATV ¢ ([0, 00), D'(RY)) € D'(RITFY),

1.x

i.e.,

o0
(¢’ Y(t)t—n/Z e—xTA_lx/(4t)> — / ( ¢t(;/7;€) e—xTA_lx/(4t) dx)dt, ¢ e D(Rn+l).
0 R”

This can be justified by regularization with respect to ¢, cf. Hormander [139],
Thms. 3.3.4, 3.3.5, p. 82. More easily, this follows by Fourier transformation, see
Example 1.6.14 below. In fact, for ¢t > 0, we have

G, x) 2 e AT gy — 72 fdetA | e y) e M dy,  (1.4.13)

RVI Rll
where y(t.y) = Fu(p(t.x) = [ppt.x)e™dx € SR}F"). Note that, by
Lebesgue’s theorem on dominated convergence, the integral on the right-hand side

of (1.4.13) continuously dependson A € U; and ¢ > 0.
Summarizing we conclude that

Y(t)

EA = m e_xTA—lx/(4T) e C([O7 OO), ID/(RE)) (1414)

yields a fundamental solution of 9, — VTAV for A € U,. In particular, if A = il,,
we obtain the fundamental solution

F = Y(ne™"/*(4mny™/? /40 ¢ ([0, 00), D' (RY))
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of the Schrodinger operator 3, — iA,. Applied to a test function ¢ € D(R"*!), this
means

e inm/4 oo L2 dr
Ix[*/(41) —
2ngrn/2 /0 ( R” P (1. x)e™ dx) M2’

cf. Schwartz [246], (VII, 10; 31), p. 290, where some signs have to be corrected;
Treves and Zerner [275], p. 184; Vladimirov [279], Sect. 10, 12 Ex. (e), p. 156;
Rauch [232], Sect. 4.2 (8), p. 138. O

(9. F) =

1.5 Tensor Product and Convolution

Definition 1.5.1 For § # Q; C R", § # Q, C R'openand S € D'(Q;), T €
D'(R2,), we define the fensor product S @ T € D' (21 x ;) by

(¢sS® T) = ((d)(xvy)ssx)v Ty>v ¢ S D(Ql X 92)

The next proposition will show that S ® T indeed belongs to D'(2; x €3), and
that

(¢, S®T) = ((¢(X, ), Ty)s Sx)

holds as well.

Proposition 1.5.2 Under the assumptions of Definition1.5.1, the following
holds:

(1) V¢ € D(21 x Q) : (v = (p(x.7).54)) € D(Q2):
2) SQTe D/(Ql X 7);
(3) Vo € D(Q1 x Q) : ($.S®T) = ({p(x.). 7). Sy).

Proof
(1) If yy = yin Q; for k — oo, then ¢ (x, yx) — ¢ (x,y) in D(£2,) and hence

[ — Ciyr— (p(x,).5)

is a continuous function. Furthermore, if y € 2, and y' = (y2, ..., y,), then

Hpen ) —p] - 5% i D@L
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for h — 0 in R, and hence f is differentiable with %f = (g—;l’_,Sx) as partial
] ]
derivatives. Inductively, we obtain in this way f € C*°(£2,) and 85 f= (8’}8 ¢, Sx)
for B € Nj.
Finally, if we denote by

pry i Q2 xQp — Qi (x,y) >y

the projection on the second group of variables, then suppf C pr,(supp¢) C
2,. Therefore f has compact support and belongs to D(£2;).
The map

S®T:D(Q1 x Q) — C: ¢ (($(x.7).5). 7))
is well-defined by (1) and it is obviously linear.

If ¢y — 0in D(Q; x Q) for k — o0, then there exists a fixed compact
set K C Q) x 2, such that supp¢; C K for all k € N. Denoting, as above,

Ji(@) = (¢(x,y), Sx) we obtain, for all k € N, that suppfy C pr,(K), which is

a compact subset of €2,. In order to show that f; — 0 in D(2;) for k — oo,
we still have to verify that the functions 35 fi = (85¢k, Sy), B € NZ, converge
uniformly to 0. Obviously, it is sufficient to consider the case § = 0, and this
follows from the inequality

[{ilx. ). S| = Cmax max |9 (. y)1.

LYEN("; xX€
lorf <t

where C and / depend on S and pr;(K) only, but not on k£ and y, cf.
Proposition 1.5.3 below. Hence

(0, SRT) = {,,T) - 0 for k— oo

and, consequently, S ® T defines a distribution in D' (2] x 2,).
By exchanging the rdles of x and y, we conclude from (2) that the mapping

ST :D(Q) x2) —> C: ¢ +—> ((¢p(x.).T)),5,)

also defines a distribution in D’ (2| x ). Obviously, S® T and S ® T coincide
on all test functions of the form v (x)p(y) with ¢ € D(21) and p € D(£2;). Let
U=SQT—-S®T € D'( x Q). In order to conclude that U vanishes, it is,
by Proposition 1.2.3, enough to show that ¢, (x)¢2(y)U = 0 for each (¢1, ¢2) €
D(21) x D(2y). Since ¢ (x)p2(»)U € E'(R™H™"), the fact that this distribution
vanishes is a consequence of the injectivity of the Fourier transformon &’ O &,
see Proposition 1.6.5 below:

F(p1(x)p2(0)U)(E. 1) = ($1(x)e ™ pa(y)e ™, U) = 0. O
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The next proposition characterizes the continuity condition distributions must
satisfy (see Definition 1.1.4) by inequalities, cf. Hormander [139], Thm. 2.1.4, p. 35;
Vo-Khac Khoan [282], BC I, Prop., p. 163.

Proposition 1.5.3 Let @ # Q C R" open. A linear map T : D(Q2) —> C belongs
to D' () if and only if

VK C Q compact : 3C > 0:3dm e N : V¢ € D(Q2) with supp¢p C K :
[{¢,T)| < C max max|0%¢(x)| = C max ||0¢||co- (1.5.1)
«EN XEQ le|<m

| <m

Proof Let us suppose first that 7 fulfills condition (1.5.1). If ¢ — 0 in D(2) for
k — o0, then the supports of ¢, k € N, are contained in a compact set K C 2 and
hence limy— o0 (¢, T) = 0 by (1.5.1), since the derivatives 0% ¢ converge uniformly
to 0 for k — oo. Hence T € D'(R2) holds.

Conversely, let us take T € D’(2) and assume that (1.5.1) does not hold for some
compact K C 2. Then there exist ¥ € D(2) with supp ¥ C K and

Vk e N: [(Yn,T)| > k‘meg; 0% Ykl oo -

ol
N—
=lay

Since ¥ does not vanish identically, we have a; > 0, we can define ¢, = Y /ay,
and we obtain a contradiction from [{¢, T)| > 1 and maxq < [|0% @k [loc = %, which
implies ¢ — 0 in D(L2). O

In the next example, we will see that the tensor product of distributions is
consistent with the usual tensor product in the case of locally integrable functions.

Example 1.5.4 Forf € Ll (1),g € L}, .(Q2), we have Ty ® Ty = Tjxg(y) since

loc loc

(0. Ty ® T,) = /Q ( ; @ (x, y)f (x) dX)g(y) dy = /Q @ (x, y)f (x)g(y) dxdy

1X€2

for ¢ € D(Q2 x 23) by Fubini’s theorem.
Another obvious example of a tensor product of distributions is the following:

8xo ® 83y = S(xpue) € D'R™™) if xp € R, yp € R". O

Example 1.5.5

(a) If, as in Definition 1.5.1,@ # Q; CR™, 0 # Q, C R"open, S € D'(Q2)), T €
D'(Q»), and @ € N, B € N, then, obviously,

AP (S @ T) = 0°S ® I’T.
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Therefore, for « € N”, a fundamental solution of 9% in R" is

1—1 n—1 —e

t“ x“
@ =Dt Y(f)®"'®m Y(1)= @ o Y(x1)...Y(xn), e=(1,...,1).

In particular, the operator (9;3,)" in R? (with m € N) has the fundamental
solution

_ (xl xZ)m—l

= m_De Y(x1)Y(x2).

If the linear transformation A : R> — R? is determined by the matrix A =
1 ¢ .
(1 ) , ¢ > 0, then x;x, 0 A = x7 — ¢x3, and hence, by Proposition 1.3.19,
—c
the iterated one-dimensional wave operator (8% - 6235)’" has the fundamental
solution

i (3= Gy o)
E —IT = " Y( - _)
|detA] = ° ¢ 22m=1(y — 12 \M

In the traditional physical variables (¢, x) instead of (x, x,), we obtain that

et

F =
c-22m=l(m —1)12 c

is a fundamental solution of (8> — ¢23%)™, m € N. It is uniquely determined by
the condition

supp F C {(t.x) e R*; 1 > 0},

since (3% — ¢?9%)™ is hyperbolic with respect to (1,0), cf. Hormander [138],
Thm. 12.5.1, p. 120, or Prop. 2.4.11 below. O

The classical convolution of absolutely integrable functions on R” is defined by

¢ = [ =

and renders L'(R") a Banach algebra. In order to generalize this convolution to

dis

tributions, let us apply the distribution Ty« to a test function ¢ € D(R") :
0.Te) = [ 9000 5 D0 a5 = [ 9= 1)) dndy

= /Rz’1 D (x + y)f (x)g(y) dxdy = (1,¢A(7} ® T,)).
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where we used Fubini’s theorem, a linear transformation, and the abbreviation
¢2(x,y) = ¢(x +y), x,y € R" For arbitrary distributions S, T € D’(R"), the
product ¢ (S ® T) € D'(R?") is always well defined, but it can be applied to the
constant function 1 on R?" only if it belongs to the space D/Ll (R?") of integrable
distributions.

Definition 1.5.6 The space of integrable distributions is defined by

D), =D, (R") = {Z 9Ly f € L'(R"), m € No}.

lo|<m

Example 1.5.7 Apparently, L'(R") C D (R”) C D’'(R™). However, note that D
also contains non-integrable functions as, e.g., el € C®(R"). In fact, the equation

e — 11" e — 1 —ixke
X X

shows that e’ = f; 4 f7 with f; € L'(R), j = 1,2.
We shall see in Proposition 1.5.8 below that distributions in D’Ll can always be

“integrated,” i.e., applied to the constant function 1. For example, for ei"z, the above

representation yields
) 3 0o 2 _ 1—i 2 ,ix?
(1,e"y = 2 / € T &

2 ) x4

By contour integration and partial integration, we obtain

3 oo ixz_l_'Zixz oo—t21 2y —1
-/ ¢ - mwe dx:—3\/i_/ ¢ Lr- (; ) =1y
0

2 ) x*

__M o, E 512 gy — ds 1+i
_20[e(1+) dJ/ f ff

which value coincides of course with the well-known Fresnel integral [°C_ el dx.
Definition and Proposition 1.5.8 For 1 <p < oo let
Dir = Dpr(R") = {¢ € E(R"); Ya € N : 0%¢ € LP(R")}.

IfT € D, withT = 3, ., fa, Jo € L'(R"), and ¢ € Do (R"), then the
expression

Pl Ty, = 3 (=1l / fol@) - 0 () dx

loe|<m

does not depend on the choice of the representation of T.
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Proof We have to show that ), °fe = 0in D'(R") for f, € L'(RY), i.e.,

Vo e DR Y 0 [ fi- 0w ar=o.

| <m

implies the same equation for all ¢ € Dy (R"). But this follows from Lebesgue’s
theorem on dominated convergence if we approximate ¢ € Dy (R") by the
sequence of test functions ¢ (x) := ¢(x)¥(7) € D(R") with fixed ¥ € D(R")
satisfying ¢ = 1 in a neighborhood of 0:

0= jim S0 [ ferpde= Y0 [ poga o

| <m | <m

The Mackey topology t on Dy with respect to D’Ll is the finest locally convex
topology which coincides with the Fréchet space topology of £ (see Definition 1.1.1)
on bounded subsets of Dy, cf. Schwartz [246], Ch. VI, Sect. 8, p. 203, and
D’Ll is the dual of Dy equipped with the Mackey topology, i.e., the integrable
distributions are just the continuous linear functionals on (Dyeo, 7). (In fact, ¢ — ¢
in (Dre, 7) for k — oo is equivalent to the uniform boundedness with respect to k
of each derivative 0% ¢, and the convergence of ¢ to ¢ in £, and this implies

fa-a“¢kdx—>/ fo F
er Rﬂ

for f, € L'(R"). The converse is more involved, cf. Ortner and Wagner [219],
Section 1.3, p. 11.)

Furthermore, the sequential convergence in D’Ll is given by evaluation on Djco,
ie., Ty — Tin D/Ll for k — oo if and only if (¢, Ty) — (¢, T) for all ¢ € Dyeo.

In accordance with the formula (see the motivation before Definition 1.5.6)

(. Treg) = (1. ®T)),  f.gel', ¢ €D,

we now define the convolution of distributions.

Definition 1.5.9

(1) Two distributions S, T € D’'(R") are called convolvable if and only if ¢* - (S ®
T) € Dy, (R?") for each ¢ € D(R"). (Herein, ¢ € E(R?) is defined by

P (x.y) = dp(x+).)
(2) The convolution S+ T € D' (R") of two convolvable distributions S, T € D’ (R")
is defined by

(#.5%T) = Dol 1,62 - (S® Ty, & € DRY).
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Let us remark that ¢ — ¢ in D implies ¢?* — ¢* in Do (R?") and hence, by
the closed graph theorem, ¢ - (S® T) — ¢ - (S® T) in D’Ll (R?"). This furnishes
that S * T is a continuous linear form on D(R"), i.e., S * T € D'(R"). Furthermore,
S* T = T % § is immediate from the definition.

It can also be shown that S, T are convolvable iff (¢ * S‘) -T € D’Ll (R") for

each ¢ € D(R"). (Herein ¢ and S are convolvable due to Example 1.5.11 below.)
For Definition 1.5.9 and the last mentioned property, cf. Schwartz [242], Exp. 22;
Horvéth [141], p. 381; Horvéth [144], Déf., p. 185; Roider [237]; Shiraishi [252],
Def. 1, p. 22; Ortner and Wagner [219]; Ortner [204].

Furthermore, from the very definition of convergence in (Dy, 7), it follows
that S, T are convolvable iff lim;— o0 {¢2 xx, S ® T) exists for each ¢ € D(R")
and for each special approximate unit ()Yi)ken, 1.€., a sequence of test functions
1« € D(R™), k € N, such that the set {;; k € N} is bounded in Do (R?") and
VN >0:3m e N:Vk>m: pukx) = 1forx € R” with [x] < N. In this
case, the above limit does not depend on the choice of y; and yields (¢, S * T), cf.
Vladimirov [279], Ch. 2, 7.4, pp. 102-105; [280], 4.1, pp. 59-63; Dierolf and Voigt
[58], Thm. 1.3, p. 190.

Proposition 1.5.10 Let S,T € D'(R") be convolvable and P(3) = 3, <,, dad
be a differential operator with constant coefficients. Then the distributions P(0)S, T
and S, P(0)T are convolvable and

PO)(S * T) = (P()S) * T = S % (P(9)T).

In particular, if E is a fundamental solution of P(0), i.e., P(0)E = 8, then U = ExT
solves the inhomogeneous equation P(0)U = T if E and T are convolvable.

Proof The convolvability of 9,5 and T follows from the equation
¢ S ®T) = 9(¢*(S®T)) — (9$)*(S®T),
j=1,...,n. This also yields

(. (9,8 * T) = (1,¢"(3;S ® T))
= (L.0;(¢*(S®T))) — (3j9.S * T) = (¢, ;(S % 7)),

since (1,0;V) = 0forV € D}, by 1.5.8. O

Example 1.5.11 The condition ¢* - (S®T) € D}, (R*) is satisfied if $* - (S®T) €
E'(R?™), since & C D,,. (This inclusion is a consequence of the continuity
of the imbedding (Dye,7) < &, cf. Definition 1.5.8, or, alternatively, of the
structure theorem for distributions with compact support, see Schwartz [246],
Ch. III, Thm. XXVI, p. 91. In a similar vein, M c D’Ll since integrable Radon
measures also yield continuous linear functionals on (D, 7).)
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If 2 - (S® T) € &(R?) for each ¢ € D(R"), we shall sometimes call S, T
convolvable by support. Since

supp(¢” - (S® 7)) = (suppS x suppT) N {(x.y) € R*"; x +y € supp g},
we conclude that S, T are convolvable by support if and only if the mapping
F:suppSxsuppT — R": (x,y) —>x+y

is proper. For example, this is the case if one of the distributions S, T belongs to
&', or if one of them has its support contained in the half-space {x € R"; x, > 0}
and the other one in the cone {x € R"; x, > c|x'|} for some ¢ > 0 and with the
abbreviation x’ = (xq,...,X,—1).

Note that, generally,

supp (S* T) C supp S + supp T (1.5.2)

if S,T are convolvable. In contrast, if S, T are convolvable by support, then the
mapping F above must be closed (as a proper mapping between locally compact
spaces), and hence its image is closed and supp (S * 7) C suppS + supp7, cf.
Horvath [141], Ch.V, Sect. 9, Lemma 1, p. 385. The two distributions § = 1 ®
8, T = x28(x1x2 — 1) € D'(R?) provide an example of convolvable distributions,
which are not convolvable by support, and where

supp (S * T) = supp (signx;) = R* 2 suppS + supp7 = R x (R \ {0}).

Indeed, for ¢ € D(R?), we have u = ¢* - (S® T) € M'(R*) C D}, (R?) since

/ = (1, ® [ 16t y2) dt. a8y — 1)) = / 160)]dy < oo,
R4 —00 R2

Similarly, we obtain § * T = 1 ® sign € D’ (R?).

The inclusion (1.5.2) implies in particular that the three spaces L) C M, C &
are convolution algebras, and the same holds as well for D}, := {S € D’; suppS C
I'}, where I is an acute closed convex cone with vertex in 0.

As we shall see in Example 1.5.13, also the spaces L! ¢ M!' C D/Ll are
convolution algebras, and hence all the spaces in the diagram

Ll ¢ M. c ¢
N N N
L' ¢ M c D/Ll

are convolution algebras.
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A simple concrete example of convolution in the convolution algebra
DjoyR) = {T € D'(R"); suppT C [0,00)} is provided by x{~" % x’fl for
A,pu € C, cf. Example 1.4.8. These distributions are convolvable by support. If
ReA > 0andRe p > 0, then x4 X/}~ "€ L! (R), and classical integration yields

loc

A—1 pn—1 Atp—1
X X X
+ + + (1.5.3)

T T TOh+p

The distribution-valued function

A—1
Xy .
. ifAeC\ N,
F:C—> Dy R): A — { T N

§W  if A = —k, k € N,

is holomorphic since, by (1.4.1),

k
Resj——g x2 71 —(_1,) §®

lim F(A) = +___— _H =6®,  keN.

A—>—k @) Res;—— '(1) (—k_ll)k 0

By analytic continuation, the convolution equation (1.5.3) persists therefore in the
form F(A) * F(u) = F(A 4+ p) forall A, u € C. Sometimes, we shall express the
factthat F : C — Dfo,oo) (R) is a group homomorphism by saying that A — F(A) is
a convolution group. For example, the equation F(—1) x F(A) = F(A—1), which is
equivalent to %F (A) = F(A — 1), comprises the original recurrent definition of xi
in Example 1.3.9.

When going back to x4, x’fl we conclude that

xﬁ_l*x+ = B(A, p,)xl—w ' A, € C\ —Ny,

if B denotes the beta function, i.e., Euler’s integral of the second kind. In particular,
for 0 < Rewa < 1, Abel’s integral equation

)
0o (x—y)~

glx) =

can be cast in the form g = I'(1 — &) - f * F(1 — «), and hence it has the solution

1 1 /
f= mF(u—l)*g= mF(a)*g
B X! , _sin(am) [ £'()
TTi—ar@ T h o= ®

where we assume that g € C'([0, 00)) and g(0) = 0.
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In contrast, if e.g., A = 0 and u € C\ —Np, then

el = () e = P (0.0

_ d _
= Pl 9 Adp-t
- (ﬁfoB(A’“)) o (EESB(A’“)) TR
d _ _
= ﬁ(AB(X,M)) -l 1+10gx-xi !
A=0
= (Y (1) — Y (w)x" +logx- 27" (1.5.4)

Here we used the definition

d
logx-xﬁ_ = axﬁ_ A e C\—N,

which furnishes a meromorphic function of A with double poles for A € —N, cf.
Example 1.4.8. As in formula (1.4.2), we also define

logx - x3* = Agfk(logx.xi), keN. (1.5.5)

An analogous calculation as in Example 1.4.8 then yields, e.g., that logx - x;l =
% (%Y(x) -log? x), and

1 [ele]
(¢,1ogx-x;1)=/0 Mdogxdx—i—/l ww@ ¢ € D(R).

1 1

Finally, in order to calculate, e.g., xJ" * x}', one employs the formula

ZZfO(f(z)g(z)) =Resf(a) - Pf ¢'(2) + Pf f(z)- Pf g(z) + Pf /() -Resg(2)

for meromorphic functions f, g having both a simple pole in zy. Then (1.5.4), (1.5.5),
and Gradshteyn and Ryzhik [113], Eq. 8.366.8 imply

e = P ) = v o) ] + Prflogx- 2]
= MPZfO[(% —p-y (1)) - (% +x7" + p-logx-x7")] + logx - x7!

nz
=2logx-x}' — =6 (1.5.6)

|

Let us define now D}, in analogy with Definition 1.5.6.
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Definition 1.5.12 For 1 < p < oo, we set

Dpy =Dy RY) = { 37 0%i fu € /R, m € No/.

| <m

Example 1.5.13 For 117 + é > 1, the convolution
D;,(R") xD;,(R") — D, (R") : (S, T) —> S« T

is well deﬁnedlf + - =14 ;, r e |[l,o0].
In fact, if ¢ E D and S €Dy, T €Dy thenS = 3, ., %% fo €L,

and hence (¢ * S) -T € Dp»-Dy, C D/Ll by Hoélder’s inequality. Moreover, from
Proposition 1.5.10and I”*L? C L due to Young’s inequality, we obtain ST € Dj,.
In particular, D/Ll is also a convolution algebra, as well as L' and M, cf.
Example 1.5.11.
As a non-trivial example, let us consider the convolution of xl
x*=1 A, € C. Just as Xt also A > x* = (xA )" is meromorphic, has simple
poles for A € N, and

I and

xh= APkai = (") k €N,

cf. (1.4.2). ForRe A < % and Re 1 < %, the two distributions x} !, x**~! belong to
D’Lz (R') and are therefore convolvable. More generally, xfl, x*~! are convolvable
if and only if Re (A + 1) < —1, see Ortner [199]. For Re A,Re u € (0, %), we have
xﬁ__l, x#~1 e Ll + I?, and hence the convolution can be calculated classically. This
yields

— _ A+ 1
XA i} AU sin(Am)x T 4 sin ()i 1, Red.Re i € (0. 1)
rA) T(pn) (A + w)sin((A + w)r)

(1.5.7)

By analytic continuation, this formula remains true as long as Re (A + u) < —1,
cf. also Brédimas [22], where (l 5.7) appears as a definition for A, u ¢ Ny and

A+ u ¢ Z. (Note that A — )lC"T and yu — )l‘fi( y are entire functions, and therefore

the right-hand side of (1.5.7) depends analytically on A, u satisfying Re (A 4+ p) <
-1.)

Again, as in Example 1.5.11, we can deduce from (1.5.7) a formula for x:Ll * X_
in two steps:

1

xI_l 1 = APf ()cf‘,__1 *x’i_l)
=0

- sin(j;n) xi_l + (W(l) —Y(n) — JTCOt(/uz))xli—l + log |x| ST
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forReu < 1, u & —Ny, and this implies

2
al! = Pfo(x:_l #x71) =log |x| - x| 7" + % 8, (1.5.8)
=

where log |x| - |x| 7! := Pfi—_; (log |x| - |x|*) = PfA=_1(ii%|x|l).
If we combine the formulas (1.5.6) and (1.5.8) for x| * x;l, we obtain

2
|x|_1 * |x|_1 = ()c:_1 +x:1) * ()c:_1 +x:1) = 4log|x| - |)c|_1 + % 8

in accordance with Wagner [286], Satz 7, p. 478.
Note that the inversion formula for the one-dimensional Hilbert transformation,
i.e.,
1 1

VP HVp = —28,

is also an immediate consequence of the above formulas:

1 1

1 _ _ _ _ _ _ _ _ _ _
Vp;*vp; = ()c+1—)c_l)>l<(x+l —x_l):x+ *x+l+x_l 5 x| —2x+l % X_

2 2
= 2log x| - x|~ = % 5 — 2[1og | - 7! + % 5] — 2.

|

Similarly to the possibility of extending equations by analytic continuation
with respect to parameters (see above), it is also possible to extend equations and
operations by density from the level of functions to that of distributions. The most
direct way to show that distributions can be approximated by C*® functions is by
regularization, i.e. by convolution with §-sequences.

Proposition 1.5.14 Let € D(R") with [ (x) dx = 1 and set Yy (x) = k" (kx)
fork e N.Then Yy, * T € ER") and Y, * T — T in D'(R") for T € D'(R").

Proof

(1) ¥ and T are convolvable by support, see Example 1.5.11. Furthermore, for
¢ € D, the functions

6 * U0 = / (x+ ) Ye(y) dy

belong to D, and converge in D to ¢ for k — oo, since

A

[ o mmma—p] = 186+ - 401w du

A

< LIV8leo - [ty 0],
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by the mean value theorem. From this limit in D follows ¥ * T — T in D’
due to

(Y *T) = (¢ TR Yi)er = (P * Vi, T) — ($,T),  k — oo.

(2) Let us finally show that (4 * T)(x) = (h(x —y),Ty) for h € D, which implies
hx T € £ by the proof of Proposition 1.5.2.
Let ¢ € D and take y € D such that y = 1 in a neighborhood of supp ¢ —
supp h. Then Definition 1.5.9 and Proposition 1.5.2 imply

(p.h*T) = £(1,p*(h®T))er = p{p> 1 (). h(x) ® T))
— ([ s+ VhW20) e T3) = (10 [ $htu—y) d.T,)
= (=1 10). W) & Ty) = (= 1) 10), Ty), ()
— ((h(x = ). T3). (),
and thus (7 * T)(x) = (h(x — ). T,). o

Let us turn now to examples of convolution products in several variables.

Example 1.5.15 Since the C* mapping
h:R"\ {0} — (0,00) : x —> |x]

is submersive, T(|x|) := A*T is well defined for T € D/((O, oo)), see Defini-
tion 1.2.12, and it is obvious that T, = T'(|x|) is radially symmetric,i.e., T\ oA = T
for all orthogonal linear mappings A : R* — R". (Conversely, it can be shown
that each radially symmetric distribution in D’(R" \ {0}) is a pull-back of some
T € D'((0,00)).)

Let us consider now the convolution of f(|x|), g(|x|) assuming first that f, g €
L!((0,00)). For n > 2, we obtain the following:

JxD) * g(lx) = /R”f(lx —&Dg(€]) d§

o0 b4
= IS"_ZI/ / F(V)x2 + 02 —2|x|o cos B)g(0)o™ " sin" 2 0 dAdo

2n 3 Sn 2
_ X5 / / pof(Pe(@) Al p. o)™ dpdo.

|X|" T2

(1.5.9)
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where A(|x|, p, ) denotes the area of a triangle with side lengths |x|, p, o if such a
triangle exists, and A(|x|, p, o) = 0 otherwise, i.e.,

1
A(lxl. p.0) = 2 ¥(p + 0 — XY (x| — |p — o])x

x V(p+ o —xD(Ix| + p— 0)(|x| + 0 — p)(|x| + p + 0),

cf. John [151], Ch. IV, p. 80; Trimeéche [277], Ch. 2, p. 90.

Since the pull-back is continuous, see Proposition 1.2.13, an approximation of
8p, p > 0 by functions in D((0, 00)) C L!((0, 00)) implies the following formula
for the convolution of the spherical layers §, o |x| = (x| — p) = Syg—1(1)
(cf. Example 1.2.14):

2n—3po.|sn—2|
|_x|n—2

8(1x| — p) # 8(Jx| —0) = Ad.p.0)' ™ e LL R, p.o >0,

cf. Hormander [137], Ex. 4.2.8, pp. 381, 404; Ortner and Wagner [206], p. 585.
Let us deduce now from (1.5.9) a solution of A,U = §(]x| — p), p > 0. By
Proposition 1.5.10, we obtain such a solution U by setting U = E * §(|x| — p). For
n = 3, U can be physically interpreted as the electrostatic potential of a uniformly
charged sphere if we take for E the only radially symmetric fundamental solution
which decreases at infinity, i.e., E = cf. Example 1.3.14. More generally,

as in Example 1.3.14, then (1.5.9)

_ 1

4|x|’
ifn >3, and E = c,|x*™", ¢, =
furnishes

1
@-n)ls"=1]°

_ 2n—3|Sn—2|p
S 2=n)Sl 2

o0
/ o> " A(|x|, p, o) do.
0
With the substitution t = (”ﬂf‘ﬁ and from the definition of Gauf}’ hypergeo-

metric function (Gradshteyn an(f nyzhik [113], Eq.9.111), we infer

3—n n
U= 2 F(i_)lp N
2 —n) /T T(*55) - |x|"~2

+1x]
<[ o (o + b = o — (o= ) o
lo—Ixl

B 2n—21—‘(g)pn—l
RNV

1
/ [(p + |)c|)2 _ 4p|x|-[]—n/2+1 (‘C(l _ T))(n_3)/2d1'
0

(1.5.10)

! F(n—l " _ ! 4p|x| )
= sy~ hn=1 ———=.
C—mp+py22'\2 2 (0 + |x])?
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If we use one of Kummer’s quadratic transformations (see Gradshteyn and Ryzhik
[113], Eq.9.135), namely

2Fi(a, Bro+ B+ Lisin® @) = 2F1 (20, 2B + B + Lisin® )

with

4 1 —
sin? @ = ﬂ and sinz% = —(1 — o |x||)
2 P+ |x|

we finally obtain

n—1

lp — Ixl|
U= (2_,1)80_}_ x])—2 2F1(n—1,n—2;n_1;%(1_ﬁ))
= Pl [p+ Il + |,o—|x||]2—n
2—n )
= %[Y(P —|x) + Y(x| —p) - (%)n—z]' s

Of course, the final formula can be deduced much more rapidly observing that U
is rotationally symmetric and harmonic for |x| # p and hence

U:

Cl, if |x| < P,
Gl + G, ifl>p )

Moreover, by Lebesgue’s theorem on dominated convergence, we deduce
from (1.5.10) that U is continuous along the sphere |x| = p and vanishes at
infinity, facts which are also evident from physical reasons for n = 3. Hence, for
n>3,

n—2
Ue) = [ ¥~ + ¥l =)+ (1) ]
and
_ _ _ 1 LIQr—l yn—1 L
C=v0= [ B0 = e T = 5

cf. also Donoghue [61], Sect. 8, p. 39, and the verification of (1.5.11) in Hirsch and
Lacombe [131], Ex. 1, p. 344.
Note that, for ¢ = |S§"7!| - p"~!, the distribution

n—2
i=U—cE = LY(p—|x|)[1—(ﬁ) ]eLg ce
2—n |x|
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satisfies the equation
Anp = 8(x] = p) — 8" [p" " - 8.
Hence A,V = T for arbitrary T, V € D’ implies
Txpu=ANVsu=VxA,u=Vxs(xl—p) —cV,

which extends the mean value property V * §(|x| — p) = ¢V fulfilled for harmonic
distributions (where T = 0) to the inhomogeneous case, cf. Schwartz [246], Ch. VI,
Sect. 10, p. 217; Hirsch and Lacombe [131], Ex. 3, p. 332; Ortner and Wagner
[216], p. 836. O

Example 1.5.16 As our final example concerning convolution, let us calculate the
Liénard—Wiechert potentials and fields, i.e. the electromagnetic potentials and fields
induced by a moving point charge inR>.

(a) In general, the potentials ® € D'(R*), A € D'(R*)? fulfill the wave equations
(507 — A3)® = 4mp, (507 — AA =227,

where p, J denote the charge and current densities, respectively, and ¢ > 0 the
speed of light, cf. Heald and Marion [124], (4.55), (4.56), p. 142; Becker and
Sauter [10], (66.3), p. 194.

By Example 1.4.12 (b) and Proposition 1.3.19, the wave operator }23? — A3

has the fundamental solution G = ﬁ 8(ct — |x|). According to (1.4.11), G €

M(R?") is the Radon measure given by

6.6) = (. ——sci—x) = — [ 2WVeD g g epwey,
Amt Am Jr3 |x| :

and, by the hyperbolicity of the wave operator, G is the only fundamental solu-
tion with support in the half-space ¢t > 0, see Hormander [138], Thm. 12.5.1,
p. 120.

By convolution with G, we obtain the retarded potentials

T

1 1
@:p*;8(ct—|x|), A—IJ*;S(CI—PCI).

If p, J result from the point charge py moving on the trajectory x = u(f) (with
u:R—R¥inC"), ie., p = po(x—u(r)), J = poit(x—u(r)), (cf. Heald and
Marion [124], p. 266), then ®, A are called the Liénard—Wiechert potentials.

Let us assume that the speed of the point charge remains below a bound
strictly smaller than c, i.e.,

Jeo < ¢: Ve R |iu(d)] < co. (1.5.12)
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(b)

1 Distributions and Fundamental Solutions

Then G, p as well as G,J are convolvable by support (see Example 1.5.11).
In fact, in order to show that ¢* - (G ® p) has compact support for ¢ € D(R*),
it suffices to show that the sets
My = {(t,y,s,u(s)) €eR® 5,1 e R, y e R®
with [y| = ct, |[s+t]| <N, |y + u(s)| < N}
are bounded if N € N. But this follows from the boundedness of  on My, which
boundedness is in turn implied by
0 < (c—co)t = |yl —cot =N+ |u(s)| — co(ls| = N)
< N + cols| + [u(0)| — cols| + coN = N(1 + co) + |u(0)].

Hence the inequality (1.5.12) is a sufficient condition for the convolvability of

Gand§ (x — u(t)), and thus for the existence of the Liénard—Wiechert potentials
D, A.

Let us now calculate ® = G x4xp and A = G * 4”] under the condition
lit]loo < co stipulated in (1.5.12). For ¢ € D(R*), we have

(@, @) = po (b, 8(x — u(r)) * ;8(ct — |x]))
= po (¢ (s + 1,x + ), 8 (x — u(s))), 18(ct = |y])

= 0 /_ $(s + t.u(s) + ) ds, 18(ct — b))

=po/ 0+ Eu) + ) dsdy.

The substitution
h:R*— R*: (s5,y) — (t,x) = (s + |f—,‘,u(s) +y)

is bijective, since the equation ¢(f — s) = |y| = |x — u(s)| has a unique solution
s(t, x). This is due to the strict monotonicity of f : s > |x — u(s)| — c(t — s)
because of ||f|leo = ¢ — ¢o > 0. Furthermore, h is C' except for y = 0 and h~"
is continuous since 4 is proper. For y # 0, the determinant of the Jacobian of
his

R T
B(I,x)zdet 1 clyl =1_y—u(s)>o’

a(s, ) i(s) I clyl

deth’ =
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and hence

6.9 =am [ 9.0

= ¢ /R4¢>(r,x)

ie.,

79

drdx
clyl = yT - ia(s)
drdx
clx —u(s)| — ()" - (x — u(s))’
Lo

(1, x) =

e —u(s)| — zi(s)T - (x — u(s))’

wherein s(¢, x) is the retarded time determined by the equation c(f — 5) = |x —
u(s)|, cf. Heald and Marion [124], (8.50), p. 267; Feynman et al. [74], (21.33).
By the same token, we obtain A(t,x) = %@(t, x) - it(s(t, x)). An extension of
the formula for ® in a curved space-time can be found in Friedlander [83],

Eq. (5.6.7), Thm. 5.6.1, p. 214.

Note that ®(z, x) is finite and positive except on the curve x = u(f) where ®
becomes infinite. Moreover, & is locally integrable, since, for K C R* compact,

/ O(r, x) drdx = p()/ [y| ™! dsdy < oo.
K h~1(K)

()

Let us finally calculate the so-called Liénard—Wiechert fields £, B from its

potentials ®, A. We suppose here that u is C2. Generally,

1
E=—grad®—-0,A and B = curlA,
c

see Heald and Marion [124], (4.40),

(4.42), pp. 139, 140.

If we consider r = |x —u(s)| and w = %(x —u(s)) as depending on ¢, x (with
s(t,x) as in (b)), then ¢(t — s) = |x — u(s)| = r implies

ds
(1-3) =
and hence
ds
- T . ] _— = =
(c w u(s)) o c,
Furthermore,

Vr=—-cVs=Vix—u(s)|=w

or r .. . 0s

o= i)

po Os po d(rw)

— = = —— . 1.5.1

r ot cr ot (1.5.13)

1

— W - u(s))Vs =w+ —(w! - i(s))Vr,
c
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and hence

v cw as wads
= =Ww—, §=———=.
c—wl -i(s) ot c ot

This implies the following:

10s _ poVr as ,00 d
vo=av(i5) =S+ TR
_ pow (0s po 0/ Os
N (8t) cr az(wat)
_ pow <8S) Pow s po 0w Os
ot cr 02 cr Ot Ot
and
1 0 9 /13(rw)
Zga=_P72(C
c 0 c2 8t( ot )
_ _Po 9rdGw)  po 9 (rw)
2ot Ar o
_ pow <8r)2 oo Ordw  pow %r  po O*w
22\t c2rot 0t 2r 02 2 972
Because of =1- 1%—, we finally obtain

2 2
Wm0/ lal], (1.5.14)

1
€ = —gnd = 04 =5+ g+ G
which is commonly called Feynman’s formula, but in fact goes back to
O. Heaviside, cf. Feynman et al. [74], (21.1), and footnote on p. 21-11; Heald
and Marion [124], (8.54a), p. 268.
For completeness, let us also calculate the magnetic induction. From for-
mula (1.5.13), we infer

B=curlA=VxA=—

Py (1 3(7W))

c r ot

_ _@[(vl) orw) | ——(v x (rw))]

c r ot r ot

Since

V x (w) =V x (x — u(s)) = -V xu(s) = —-Vsxiu(s) = l% w X i(s)
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we obtain
Po a(rw)  po 0 ow
B="—=Vrx —=+ —— —
cr? e ot c2r ot (rw x ot )
po Os y a(rw)  po Or y ow n PO 0w
= — W _ —_—— W - —Ww -
cr? ot ot c2r ot o  ¢2 or?

10 ad 0 ad 9’
:@(1___”). Xa_‘/: &_r X_W+P_2WX w

cr c ot c2r ot Y ot 3
1 dw 1 3w
poWX(;E ;W)wag,

cf. Feynman et al. [74], (21.1’); Heald and Marion [124], (8.64), p. 269; Becker
and Sauter [10], 69, 3), p. 204. O

1.6 The Fourier Transformation

First let us motivate—following Schwartz [246], Ch. VII, Sect. 2, p. 233—why the
classical Fourier transformation

F:L'(R") —> BCR") : f —> (g: > /R e dx), (1.6.1)

cf. Proposition 1.1.8, cannot be extended continuously to yield a mapping from
D'(R") to D'(R").
In fact, the classical Fourier transform (1.6.1) yields F (e ~<h") = (Z)/2e=hF/(49

fore > 0, see, e.g., Example 1.6.14 below. Therefore, due to 11\1‘11 (me)™/2e /e =
e\0

8, see Example 1.1.11, (iii), we must have
. elyl? . TNY2 4
F1 = lim Fe~H*) = hm(—) e hP/EO — 27y,
e\0 eN\O\ €

and, consequently, Fx* = (id)*F1 = (2mx)"(id)*$. Hence, if F(e*) could be
defined by continuous extension on D’ (R), then we had

X . l xk . l ik (k)
P = F(Jim 30 5) =2 Jim 34

However, the last series diverges in D’ (R) since, by E. Borel’s theorem (see Treves
[273], Ch. 38, Thm. 38.1, p. 390; Zuily [309], Ch. 1, Exercise 1, pp. 16, 18, 19),

3p € D(R) : Vk € Ny : ¢V (0) = k!.
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Following L. Schwartz, we therefore define the Fourier transform on the space of
temperate distributions S'(R"), which arises as the “closure” of L' (R") with respect
to differentiation and multiplication by polynomials.

Definition 1.6.1

(1) The vector space
S=SR") =1{p €ER"); Va,B eNj :x‘)‘BﬂQS e L'(R")}

is called the space of rapidly decreasing C*° functions.
The sequence (¢ )ren € S(RMN converges to ¢ in S(R") iff, for all o, B €

Nj. the sequences x%0P (¢ — ¢) converge to 0 in L' (R") for k — oo. (In other
words, the topology on S is generated by the seminorms ¢ > |x*9%¢|;; they
render S a Fréchet space, i.e., a complete metrizable locally convex topological
vector space.)

(2) The space of temperate distributions S’ (originally called “distributions
sphériques” by L. Schwartz) is the dual of S, i.e.,

S§'=8'R") ={T : S(R") — C linear; T(¢y) — 0 if ¢y — 0in S for k — oo}.

As for distributions, we write T(¢) = (¢, T) for¢p € S, T € S’,and Ty — T
in & iff limg—00 (¢, T) = (¢, T) foreach ¢ € S.

Proposition 1.6.2 D is dense in S. Hence 8" — D’ : T +— T|p is injective and
S’ can be identified with a subspace of D'. The spaces D;,(R"), 1 < p < oo, (see
Definition 1.5.12) are subspaces of S'; in particular, M and £ are subspaces of
&S'. Furthermore, S' is stable under differentiation and under multiplication with
polynomials:

VI eS :VaeNj:9°Te S x*TeS.

Proof

(1) Let y € D with y(x) = 1 for x in a neighborhood of 0. If ¢ € S, then ¢y (x) :=
¢(x)x(3) € Dand ¢ — ¢ in S for k — oo. Hence D C § is dense and
s cD.

(2) The stability of S" under differentiation and under multiplication by polynomi-
als follows from that of S. Since

PR~ S fr— (¢ > /Rnf(x)qﬁ(x) dx), 1 <p=<oo,

is a continuous embedding, we also obtain that D}, = {3 <, fu; m €
No. f» € L?(R™)} is contained in S. O
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Let us summarize the various inclusions in a table, cf. Table 1.1.10, and Schwartz
[246], p. 420. (Note that the inclusion Dy, C Dy for p < g follows from the
boundedness of the functions in Dy». The inclusion D;, C D}, for p < q is
non-trivial if our definition of the spaces D’L,, in Definition 1.5.12 is taken as basis;
however, it is immediate if D’L,, is defined by duality as in Schwartz [246], Ch. VI,
Sect. 8, p. 199. The two empty places in the table correspond to the topological
vector spaces Oy and (’)/C, which are investigated in Schwartz [246], Ch. VII,
Sect. 5, p. 243.)

Table 1.6.3 If 1 < p < g < oo, then the following inclusions hold:

DCSCDLlCDLpC'DLqCDLOOC c &
N n N N N N
&c <CcD,CcD, CD,CDxCSCD
Definition and Proposition 1.6.4 For ¢ € S(R") C L'(R"), the Fourier transform

F¢ defined in (1.6.1) also belongs to S(R") and the mapping F : S — S is
continuous. Therefore the adjoint

F:SRY) — SR :Tr— (¢~ (F$.T))

is well defined and continuous. It is called the Fourier transformation on the space
of temperate distributions. For integrable functions, the two definitions coincide,
ie., ]:Tf = T]:ffOVf el (Rn)

Proof

(1) Since x*3%¢ € L'(R") for ¢ € S(R") and o, € NI, we conclude that
F(x*oPp) = (10)*(i&)P Fp € BC(R"). This implies £20P Fp € L' (R") for
all o, B € Nj and hence F¢ € S.

(2) Finally, if f € L'(R"), then Fubini’s theorem yields

0.71) = [ FOOrOE= [ swree et = g.1). 0

As used already above, let us denote the reflection about the origin by i.e.,
“:DR") — DR") : ¢ —> (x> $(x) = p(—)),
DR — D'R"): T — (¢ > T(¢) = (¢, T)),

and similarly”": § — S and”: &’ — §’. The next proposition, which is often called
the Fourier inversion theorem, will show that the Fourier transformation is, up to a
constant, the complex conjugate of its inverse.
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Proposition 1.6.5 For T € S'(R"), we have F(FT) = (2n)”T, and hence F :
S’ — S is an isomorphism (of topological vector spaces) with the inverse F~' =
Q2m)™" o F.

Proof Tt suffices to show that F(F¢) = (27r)"¢v> for ¢ € S and to apply
transposition for 7 € S’. We shall employ F1 = (27)"§, as explained in the
introduction, and the Fourier exchange formula F(¢ * ) = (F¢) - (Fy) in the
case of ¢, ¥ € S, where it is an immediate consequence of Fubini’s theorem. We
then obtain

(Y, F2¢) = (FY, Fp) = s((Fop) - (Fp), 1)

= (F(px¥). 1) = (p ¥, F1) = 21)"(¢ ¥, 8) = 2m)" (¥, §).
o

Let us observe that Proposition 1.6.5 also furnishes the injectivity of the map F :
L'(R") — BC(R"), which has been proved directly in Proposition 1.1.8.

In the next proposition, we collect some further important properties of the
Fourier transformation.

Proposition 1.6.6
(1) ForT € S'(R"), a € N!, A € Gl,(R), we have

F(°T) = (&) FT, F(T) = (i0)*FT, F(ToA) = |detA|” (FT)oA™'T.

Q) IfT € D’Ll (R"), then FT is a continuous function with at most polynomial
growth, and FT is given by the formula FT(§) = p,co (e, TX)D/1 .
L
(3) IfT € E'(R"Y), then FT is the restriction to R" of the entire function

C'—C:l{+— g(e_'”‘{, T,)¢r.

(4) Iff € *(R"), then Ff € L*(R") and | Ff |2 = 2m)"*|f]l2, i.e.,
Qm)™?F : [*(R") — L[*(R") is an isomorphism of Hilbert spaces.
Moreover,

FD(R") = {g € Lip(R"); Im € No : g()(1 + |E) ™" € L*(R")}.

In particular, this implies D}, C D,,.
(5) The Fourier exchange theorem F (S x T) = FS - FT holds in the following two
special cases: (a) S,T € D},; (b)Se&, TeS'.
Proof

(1) follows by application to test functions.
QT = Zlalfm a*f, with f, € L', then, by (1) and Proposition 1.6.4,
FT = Zlal <m(1§)* Ffy is continuous and of polynomial growth. Furthermore,
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Definition 1.5.8 implies

Dy (€7 Ty, = D0 (=) /R T ) dx =Y (6) Ffa = FT.

la|<m le|<m

For T € &', the function g(¢) = ¢(e™™,T\)er, ¢ € C", is analytic since the
Cauchy—-Riemann equations
0 J _
O e T =0, j=1,...n
d¢; 9g;
hold. Furthermore, for £ € R", g(§) = (FT)(§) by (2) since &' C D’Ll.
For¢ € S,

IFPIE = s (Fp. Fd)s = s(Fp. Fdls = (F2h. ) = Qn)'s(d. d)s
= )" 3.
If f € L*>(R"), then the linear form
S(R") — C: ¢ +—> (¢, Ff)

is continuous with respect to the L?-norm on S(R") since

(. F)| = UF SN < IFll2- Il = )2 [19l2 - If -

Therefore, by Riesz’ representation theorem, Ff € L*(R"). The equality
IFfl> = 2n)"?|f|l.. which by the above is valid for f € S, then follows
generally for f € L? from the density of S(R") in L?(R").

Obviously, if T = 3., 0%« € DL(R"), fo € L*(R"), then Ff, €
L*(R"), FT = 314 <w(i6)* Ffo, and (1 4 [E)™"FT € L*(R"). Conversely,
if g € Ll (R") and g(§)(1 + |£))™™ € L*(R"), then also h := (1 + |§|*)™"g €
LPRYandT=F 'g=(1-A)"F'he D,.

In particular,

' CF ' ({g € C(R"):; 3m e N : g(€)(1 + [E])™™ € BC(R™)}) C D).

(@) If f,g € L*(R"), then (Ff) - Fg € L[*>-L*> C L' and hence, by
Proposition 1.6.4, F~'((Ff) - Fg) € BC and

FU(Ff) - Fg)x) = 2m)™ / " (F(E)(Fe)(€) d§

= n)™" / Feo) () (Fe)(©) de

= 2n)"(F(r-f). Fg)
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where (7_.f)(y) = f(x+) and (-, -) denotes the inner product in L?(R"). Since
(2n)™2F : L*(R") — L*(R") is a Hilbert space isomorphism, we obtain

FUE) - Fo)o) = (1. 5) = / FG4 gy dy = (% ) ).

This implies F(f * g) = (Ff) - Fg for f,g € L?, and the same holds also for
S,T € D}, dueto F(3°T) = (i§)* FT.

(5) (b) Analogously to part (2) of the proof of Proposition 1.5.14, we obtain ¢ xS €
€ and (¢ * S)(x) = (p(x—y),Sy) forp € £, S € &'. Furthermore, if ¢ € S
and & € Ny, then x*¢(x — y) — 0 € E(RY) for [x| — oo and hence ¢ xS € S
if¢p €S, S € &' This shows that the mapping

S—)C:¢|—>(¢*S’,T)
is well defined and continuous for S € £, T € S’. Since
(p*8.T) = ((p(x+).8,).T.) = (¢.S*T), ¢ €D,

weobtain SxT € S’ forS€ &', T € & and (¢p S, T) = (¢, S« T) forp € S.
Finally, for¢ € S,

(@, F(S*T)) = (Fp, S+ T) = (F¢) * 5, T);

on the other hand, since &' C D/

2> part (a) furnishes

(Fp) * S = F(2n)"d - FS) = F(¢p - FS)
and hence
(@, F(S*T)) = (F(¢p-FS).T)=(¢p-FS,FT) = (¢, (FS) - FT).

Therefore, F(SxT) = (FS)-FT forS € £, T € &', and the proof is complete.
O

Example 1.6.7 Let us calculate the Fourier transforms of the distributions xi,
A € C, defined in Example 1.3.9 and reconsidered in Example 1.4.8.

If ReA > —1, then e™“x% € L'(R') for e > 0, and x}, = limeoe “x%
S’(RY), and hence

in

o0
Fx' = lim F(e™x}) = 1im/ e €O gy — (1 4+ A) lim(e + i&) ™1,
+ e\O ( +) o Jo ( )6\0( E)

by Euler’s definition of the gamma function. (The limits in these equations must be
performed in S ’(Ré), and 7" = exp(w - log z) is defined with the usual cut along the
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negative real axis, i.e., forw € C, z € C\ —[0,00).) For —1 < Re A < 0, the last
limit yields a locally integrable function, i.e.,

(FAE) = (1 + e IRy (g)g 71 4 b2y (—g))g[ 1],

If we set £ = (Ei)v for p € C as in Example 1.5.13, then analytic continuation
with respect to A (see Sect. 1.4) yields

(}*xi)(g) =T+ ,\)[e—(Hl)m/z E;A—l 4 @ Din/2 E:A—l], 1eC\Z,

(1.6.2)
cf. Gel’fand and Shilov [104], p. 360.
For A = m € Z, we have
Foly = F(Pf x xy) = Rid Fxh (1.6.3)

— }i (F(l +A)[ _()H—I)M/ZE —A— l+e(k+l)1n/2§_k 1]) meZ.

IfReA < 0and A ¢ —N, then (1.6.2) implies that .7’-')&F is locally integrable and
given by

(FX)(E) =T (1 + )& (1.6.4)
=T (1 4 A)|g| A TGO GFD/2 c 11 (R),  Red <0, A ¢ —N.

If A = —m, m € N, then (1.6.3) yields

st (1, 104 )r (g 1) <%«s>+1>

A=—m
( lg)m ! ( g_-)m— .
(m ! [w(m) log(lg)] m—1)! [W(m) —log || — Slgn E]’
(1.6.5)
cf. Lavoine [160], p. 85. In particular
Fopl) = F(;' —x7') = log(—if) — log(i¢) = —im sign.  (1.66)

Formula (1.6.6) can also be deduced in the following way: x - vp )lc = 1 implies

27§ = F1 :]-'(x-vp)l—c) _ldEJ:(VP ),

and hence F(vp %) = —im sign & + C. The constant C has to vanish since sign £ and
F(vp %) are odd. For (1.6.6), cf. Zuily [309], ex. 73, pp. 144, 159; Friedlander and
Joshi [84], p. 101; Schwartz [246], (VII, 7; 19), p. 259.
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We have showed at the beginning that

A
L

T —A—1
N lim(ig + €) (1.6.7)

holds for ReA > —1. The fraction on the left-hand side is an entire function of
A, since the factor 1/T'(1 + A) cancels the simple poles of A > }'xﬂ_ at A =
—1,-2,...,cf. Example 1.4.8. For Re A < 0, the limit with respect to € on the right-
hand side yields a locally integrable function, which obviously depends analytically
on A. Therefore, the map

C— S R):pr— (i +0) = 11\1‘13)(15 + o

is well-defined and entire. Analytic continuation of (1.6.7) then implies
FX =T+ 1) +0)*"  1eC\-N (1.6.8)
In particular,

FY=(iE+0)"! = 11{1(1)(15 +e)7 =—ivpi +7b (1.6.9)

by Sokhotski’s formula (1.1.2) in Example 1.1.12. Note that formula (1.6.9) follows
also from (1.6.6):

—27 vp % =FF Vp% = —in F(signx)
and hence
FY = 1F( + signx) = $(2n8 — 2ivp %) = —ivp% + 7é.
By multiplication with monomials, formula (1.6.9) yields

d

F¥l = F(&"-Y) = (idé

) FY =i""(vp %)(m) + "8, m € N.

For the sake of subsuming the example of }')c%F into a more general framework,
let us mention that the Fourier transform of a temperate distribution with support
in an acute closed convex cone I' in R" (which is [0, o0) C R in the case above) is
always representable as the distributional boundary value of a function holomorphic
in a tube domain (which is {§—ie; § € R, € > 0} in the case above). In this situation,
the Fourier—Laplace transform (L£S)( + i) = F(e "*S,) provides an algebra
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isomorphism of the convolution algebra consisting of the temperate distributions
S with support in I with an algebra of holomorphic functions on the tube domain
C + iR", C = intT'*, cf. Definition and Proposition 4.1.2 below and Vladimirov
[280], Sect. 12, p. 185, where F, L are defined slightly differently. O

Example 1.6.8 Let us next investigate a one-dimensional Fourier transform which
strikingly shows that the spaces FL”, p # 2, cannot be characterized by regularity
or growth properties.

For this purpose, let us consider the entire function

T:C— ERY 1 A — Ty = exp(Ax + ie").

(a) For Re A > 0, we have T) € &’ since, on the one hand, Y(—x)T), € L>® C &'
for ReA > 0; on the other hand, Y(x)T; € L' C D’Ll for ReA < 0, and the
equation

d ‘
(a — /\)(Y(x)Tl) = el§ 4 1Y () Tast (1.6.10)

shows inductively that Y (x)T € D’ NL., foreach A € C.
Let us observe that the evaluatlon of T) on a test function ¢ € S is, in
general, not given by the integral fR ¢ (x)Tx(x) dx. Indeed, e.g. for A = 2 and

¢(x) = 1/ cosh(x) € S(R), obviously

exp(2x + ie")
cosh x

¢-Tr = ¢ L'(R).

What is more conspicuous, even the improper Riemann integral

exp(2x + ie*) o0 g2l
dx = dx = d
[ oomwa= [ 2 [ r

coshx 241

is apparently divergent, cf. the remark in Petersen [228], p. 84: “The extension
..to S, however, is not necessarily given by an integral.” More precisely, for
a temperate Radon measure u € S'(R") N M(R"), the evaluation (¢, i) can
be written as fR,, ¢ (x)u(x) for each ¢ € S if and only if u is, as a measure,
of polynomial growth, i.e., 3k € No : u/(1 + |x|)¥ € M'(R"), see Schwartz
[246], (VII, 4; 6), p. 241, or, equivalently, iff the function f(r) = f < [ (x)
increases not faster than a polynomial, see Schwartz [246], (VII, 4; 7), p. 242;
Strichartz [266], p. 44. This condition is not fulfilled for T if Re A # 0.
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(b) For 0 < ReA < 1, we have Y(—x)T) € L' and YX)T)— € L', and hence,
substituting ¢ = e* and using (1.6.10) and partial integration we obtain

FTy = f[y(—xm +iels — i(% — A+ 1)(Y(x)n_1)]
=F(Y(—0)T;) +ie' + (§ +i(d — D) F(Y()Th—y)

0
= / exp(Ax + ie* — ix§) dx + ie'

—00

+ (E+iA—1) /Ooo exp((A — Dx + ie* — ix§) dx

1 o]
:/ ==l qr 4 el +($+1(/\—1))/ A—iE=2,it 4,
1

0

o0
:/ AiE=Teilt qr 4 del + it lg_lei’ﬁo
0
o0
= / ATl dr = T(A —i8) i = T(A — if) eETHT/2,
0

We point out that the integral fooo A~=1ei dt is an improper Riemann integral,
in contrast to the absolutely convergent integrals, which represent Fourier
transforms of L'-functions, in the beginning of the calculation.

Since the mappings

{AeC;Red >0} — D'(R): A +> FTj and A > T'(A — i§)eETH7/2

are both holomorphic and coincide for 0 < Re A < 1, we conclude by analytic
continuation that

FTy = T(A —if)eTH7/2, Re A > 0. (1.6.11)
By the continuity of the mapping
{LeC;ReA>0} — SR : A>T,
we furthermore obtain from (1.1.2) that
FTo = Fexp(ie*) = }in}) [(A —if)eHibT/2

POAT=18) (cyinm

= 1.
AI{E) A —i€
1
=il —i§)e™? lim —— =iT(1 —i§)e™>vp } + 7.

N0 €+
(1.6.12)



1.6

The Fourier Transformation 91

(c) By means of Stirling’s formula, see Gradshteyn and Ryzhik [113], Eq. 8.328.1,

(d)

we can estimate the growth of FT) precisely:
Jim [0 i§)]e™ ™A= tm A — g2 7R = Vo
—00

In particular, (1.6.12) implies

lim V£ |(FTo)(¥)| = v27,  and lim /—£ |[(FTp) ()| = 0.

£—>00 E—>—00
Therefore, the locally integrable function
T —ig)e /2 -1

f(&) :=]-"T0—ivp§—7r5=1 F

belongs to N,>L7(R) N Co(R), whereas its inverse Fourier transform

(F7f)(x) = Ty — ¥ = exp(ie®) — Y(—x) € L°(R)

is not contained in any I”-space, 1 < p < oo. This shows that FL! is a proper
subspace of Cy and that the Fourier transform according to the Hausdorff—Young
theorem

F:IPR) — LYR"Y), 1=p<2,

+l=1,

_ =

1
P
is not surjective.

A much more involved concrete example with these properties is due to
R. Salem, see Donoghue [61], Sect. 52, p. 265; Goldberg [111], pp. 8, 9; Stein
and Weiss [264], remark 4.1, p. 31; Hérmander [139], Ex. 7.1.13, p. 385.

The non-surjectivity of F : L'(R) — Co(R) can also be seen more easily
by employing the function g(§) = (exp(i£2) — 1)/ € Co(R) with the non-

integrable inverse Fourier transform
1 /i _ i
(—‘/ — e/ 8) * — signx
2V rm 2

i 1 i [ i

= ——signx+ —i/— [ e "/*dr = —= sign
2 gx+21Vn/0 o MY
3/2

L))

see Gradshteyn and Ryzhik [113], Section 8.25, for the definition and the
asymptotic of Fresnel’s integrals S, C. (For F _1(ei52) see Example 1.6.9 (d)
below; in order to justify the use of the Fourier exchange theorem, one
could recur to Schwartz [246], Ch. VII, Thm. XV, p. 268, since e™'/4 ¢ O,
signx € §'.)

Fleg=[F ' = D]« [F'(p}]
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A different proof of the non-surjectivity of 7 : L'(R) — Co(R) relies
on Banach’s homomorphism theorem. Since this mapping is continuous and
injective, surjectivity would imply that the inverse mapping 7! : Co(R) —
L'(R) was likewise continuous, i.e.,

3C>0:Vf e L'R) : [If]h = ClIFS lloo-

A sequence of functions contradicting this inequality is

filx) = 1_+Os(kx) eMel'R), keN.

By Proposition 1.6.6, (5), the Fourier transform of f; can be calculated:

F©) = —an (10D i) ot (120D | et

. . 1
= 171[Y(k— I&]) mgné] * m

= i(arctan(§ + k) + arctan(§ — k) — 2 arctan ).

Whereas ||Ffi| oo is bounded by 7 for each k € N, we have
1 — cos(kx
|lfk||1=2/ 1= costkr) )e_xdleog(1+k2)—>oo, k — oo,
0 X

by Grobner and Hofreiter [115], 336.8c, p. 139. Other slightly less explicit
sequences of this kind can be found in Jorgens [153], ex. 13.5, p. 200; Rudin
[240], Sect. 9, ex. 2, p. 193; Larsen [159], Thm. 7.8.1, p. 198. O

Example 1.6.9 Let us next investigate the calculation of Fourier transforms of
integrable distributions by means of approximation.

(a) Smooth approximation.

If7T = ZMSm a%f, € D’Ll, fo € L', then FT is a continuous function of

polynomial growth (see Proposition 1.6.6), and
(FT)() = Do (€7, T)pr, = lim (e, (3)7)
L R—o00

for arbitrary ¢ € Do with ¢(0) = 1. In fact,

E G = 20 [ (e o) a

|| <m

- Y@ [ fweta= e

| <m

by Lebesgue’s theorem.
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Approximation by cut-off (“partial summation”).

Let us suppose here that f € D’Ll R") N L. (R") and that K C R"is a
measurable neighborhood of 0 such that ygxf — f in D’Ll for R — oo. (For a
set A C R", we denote the characteristic function of A by y4.) Then

(FNE) = o (&), = fim (€, ) = fim [ 7o)
L R—00 R—o0 JRpK
i.e., the Fourier transform of f is given by the conditionally convergent integral

/ e f(x) dx := Jim / e (x) dx.
n > JRK

Let us illustrate the above procedure first in the case of T) = exp(Ax + ie")
considered in Example 1.6.8. For A = 1,f =T € D/Ll N L. by (1.6.10). But

loc

if we set K = [—1, 1], and £ = 0, then the corresponding limit

) R expR )
lim | e ™f(x)dx = lim / exp(x 4 ie*) dx = lim e dr
R—00 RK R—00 —R R—00 exp(—R)

does not exist, and hence Ff(0) = i (see formula (1.6.11)) cannot be calculated
by cut-off, and y-rrf = Y(R — |x|) exp(x 4 ie*) cannot converge to f =
exp(x + ie) in D},.

In contrast, for 0 < ReA < 1, the cut-offs Y(R — |x|)T, converge to T) in
D;,. In fact, Y(—x)Ty € L' and hence Y(—R — x)T converges to 0 in L', and
all the more so in D’Ll . On the other hand, as in (1.6.10),

Y(x—R)T, = Y(x — R) exp(Ax + ie¥)
- —i(% —A+ 1)[Y(x — R)exp((h — Dx +ie%)]
+ i6g - exp((A — DR + ie®)

converges to 0 in D}, for R — oo since Y(x) exp((A — 1)x + ie*) € L' and
| (R)| exp((Re A — 1)R) — O for ¢ € Dyeo.

Therefore, for 0 < ReA < 1, the Fourier transform of 7, is given by the
improper Riemann integral

o

(FT)&) = / exp((h — i) + ie) dv = /Owei,ﬂ_ig_l B

—0o0

as has been proved directly in Example 1.6.8 (b).
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(d) Finally, let us consider f(x) = exp(i|x|?) € D, (RN L! (R"), see Exam-

loc

ple 1.5.7. If we put K = [—1, 1]", then
n L
xexf = [TYR~1x]) €™

Jj=1

converges to f in D’Ll (R") for R — 0. To verify this, it suffices to consider the
case n = 1. By Example 1.5.7, we have

£ 2 . E) £ 2
Lx_l_DCZeLx —elr

3 1
f=fif i) = 35— e L'R). p0) = — 5 € L'(R).

Therefore, by the jump formula (1.3.5),

Y(Ix| = R)f = Y(Ix| = R)fi + (Y(Ix| = R)f)" — H(R)S; + fo(—R)S
—f(R)8r + fo(—R)é—r

converges to 0 in D}, (R) due to f>, f; € Co(R).
Hence, according to what has been said in (b), the Fourier transform of f is
given by the following improper integral:

n (o] (o] n )
Fe e =] / P86 dyy = e ( / e dr) = ()2,
j=177%°

—0o0

see Grobner and Hofreiter [115], 334.1a/2a, p. 131.

Let us observe—following A. Cayley, cf. Bass [9], p. 624—that, in contrast,
forn > 2 and K = {x € R"; |x| < 1},the sequence ygxf does not converge to
fin D/Ll (R") for R — o0, and Ff cannot be calculated as the pointwise limit

limg— oo fIX\ =S (x)e™% dx. In fact, the improper integral

R—00

2 © o 1 © )
lim e dy = 8" / Plen dr = S |8 / /2 lel d
x|<R 0 2 0

diverges forn > 2.

(e) The above example of el shows that, in general, the Fourier transform of

feD, NI

ioc Cannot be represented as the limit of the Fourier transforms of
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radial cut-offs. However, for T € D’Ll , its Fourier transform F7T can always be

represented by spherical Riesz means of higher order:
T =3 1< 0 fu € L', and ¢ € D;oo, then

(¢, YR — [x)(1 — B5)"T)
S (—he / 0 YR — 1x) (1 — 12)" (0] d

lo| <m

~ Y 1y / FO@EH@ A= (.T). R oo,

lo|<m

by Lebesgue’s theorem, and hence limg o0 Y (R — |x[)(1 — i E2)"T = T holds
in D}, and

VE € R (FT)(§) = lim (Y(R—|x)(1 - LRy T e,

Similar spherical Riesz approximations of the Fourier transform can be
found in Gonzalez-Vieli [112], Prop. 1, p. 293.

If m is the smallest integer such that a representation 7' = Z\a\ <m %o S €
L', exists, then limgo0 Y (R — |x]) (1 — M ) T = T holds in D}, —according to
the above reasoning—for all [ > m. Note that this limit relatlon can happen to
be valid already for [ < m. This is, e.g., the case for T = e € D, (RY), where
m > 1 and [ = 0 can be taken (see (d)), or T = eil’ ¢ D}, (R"), where [ = [5]
works. O

Example 1.6.10 Let us consider now the Fourier transformation on radially sym-
metric distributions.

(a) Letus first repeat from Example 1.5.15 that T € D'(R") or T € D'(R" \ {0}) is
called radially symmetric if and only if T o A = T for each A in the orthogonal
group O,(R). We denote by D.(R"), D.(R" \ {0}) the corresponding closed
subspaces of radially symmetric distributions in D’(R") and in D'(R" \ {0}),
respectively.

Since

R\ {0} — (0.00) x 8"~ 1 +— (], )
is a diffeomorphism, we obtain the following isomorphisms:
DI(R'\ {0}) —> D'((0,00)) —> DLR"\ {0}) : T +> T|(0.00) > T 0 |x].

Unfortunately, if ¢ € D,(R" \ {0}) with [*5 ¢(r)dt = 1, then e '¢p(L) — §
in D/(R!) for ¢ — 0, whereas e_lq&(%) — 0 in D/(R") for n > 2,
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see Example 1.1.11. Hence the above isomorphisms cannot produce an isomor-
phism from D.(R") to D/(R") by continuous extension.

In the literature (see Schwartz [243], Exp. 7: “Les opérateurs invariants
par rotation, I’opérateur A”; Treves [271], Lecture 5: “Rotation invariant
differential polynomials™; Treves [272], Section 3.10, p. 249), this problem is
solved by considering the mapping

D'((0,00)) —> DLR"\{0}) : T +—> |x|>™ - (T o |x]),
which allows an extension to the isomorphism
D'([0, 00)) —D/R") : T+ (¢ — %(/ ¢(Viw)do, T))).
Sn—1

Here D'([0,00)) is the dual of D([0,00)) = {¢ : [0,00) — C C=;
supp ¢ compact}, and we have an isomorphism

D'([0.00)) —> {5 € D'(R"): suppS C [0.00)} : T+ (¢ > ($lj0.00). T)-
We shall select instead a different route. If we extend the mapping
DR\ {0}) — DR\ {0}) : T —> |x|'™" - (T o |x]),
by continuity, we obtain the isomorphism
®: D.(R") = D,R") : T+ (¢ — %</SH P(tw)do, T))), (1.6.13)
which is the transpose of the isomorphism
D,(R") —> D,R") : ¢ — (1~ Z14(1,0,...,0)
with the inverse
D,(R") — DR : ¢ — (x> g2 ¥ (Ix]).

For example, this implies that

{T € DI(R"); suppT C {0}} = q>({zm: ald®; a4 eC k=0,....me NO})
k=0

- {ZakAkS; a € C. k=0,...,meN0},
k=0
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since, for ¢ € D(R"),

(¢,¢(5(2"’))— de/ ¢>(tw)d“’)‘

dtzk
2Dk 4 1)

k
rarn @O

= %/s ((@"9)*)(0) do =

see Horvith, Ortner and Wagner [147], p. 445, for the last equation.
In other words, a radially symmetric distribution with support at the origin
is a linear combination of powers of the Laplacean applied to §. Similarly, a
radially symmetric distribution supported by the sphere [x| = R, R > 0, is
a linear combination of powers of the operator Z;’Zl x;0; applied to the single
layer distribution Sgg.—1 (1) defined in Example 1.2.14.
(b) Let S/(R") denote the space of temperate, radially symmetric distributions.

Because of Proposition 1.6.6, (1), F : S/(R") = S/ (R") is well defined and an
isomorphism. Combining the Fourier transformation with the isomorphism ®

in (1.6.13) we therefore obtain an isomorphism 7 : S/(R') —> S/(R") (a kind
of Hankel transform) such that the following diagram commutes:

SR —— S(R!)

ols ols

SR —— S/(R")

For a radially symmetric integrable function f(x) = g(|x|), a classical
calculation yields the Poisson—Bochner formula for Ff, see Bochner [17],
Sect. 43.5, (15), p. 235; Schwartz [246], (VII, 7; 22), p. 259:

EN© = [ = [ gl as
— |Sn—2| /Oog(r)rn—l d}’/ —1|§|rc039 o 2 0do
0 0
= (2m)"?|g| /2! /0 Oog(r)r”/an/z_l(rla)dr, (1.6.14)

see Grobner and Hofreiter [115], 511.11a, p. 189. Hence, for g = g € L'(R),
we have g € S/(R!) and

He)(1) = Q)" /0 () (i) dr
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By density, we conclude that 7 : S/(R!) —— S/(R") is the transpose of the
map

78R S SR ¢ — (21)"2 / POy 5l d.
0

‘H is called the generalized Hankel transformation, cf. Zemanian [307], Ch. V;
Brychkov and Prudnikov [28], 6.4, p. 82.

In particular, if S € D, (R") N D(R"), and § = &(T), T € D/(R'), then
FS = ®(HT) € C(R") is defined pointwise and given by

1
(FS)(E) = 5y (£ oy (). T3,

Note that 7~/ 2+lln/2_1(z) is an even entire function, which, restricted to R,
belongs to Dy (R), and that T € D;, (R').

(c) A particular case, which, on the other hand, is equivalent with the Poisson—
Bochner formula (1.6.14), arises if § = §(|x| — R) = Sgg—1(1), R > 0, i.e., S
is a uniform mass distribution on the sphere M = RS"™!, cf. Example 1.2.14.
Then S = ®T with T = R"' (6 + §_&) € D.(RY) N &'(RY), and

FS = F(8(1x| —R)) = @nR)"?|]™* T o1 (RIE]). (1.6.15)

By integration with respect to R, we obtain

Fr®=p) = () (kgD

Note that, for n > 2, f(§) = |&]7"/?%1J,/o—1(R|§]) yields probably the
simplest example of a function in Co(R") N (] L%(R") such that the inverse
9> nz—”l

Fourier transform F~'f = (27R)™28(|x| — R) does not belong to any L-
space, cf. Example 1.6.8 (c) forn = 1. O

Example 1.6.11

(a) Let us apply the Poisson—Bochner formula (1.6.14) to the radially symmetric
functions f(x) = (|x|*> + €*)*, € > 0, 1 € C. For ReA < —%, they are
integrable, and hence

F((x* +€)*) = @u)2 g™/ /Ooo(r2 + e (r[E]) dr

27?2 ( 2€ )11/2+A

T I(=A) E K242 (€l§]), (1.6.16)
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where K, denotes McDonald’s function, see Gradshteyn and Ryzhik [113],
Eq.6.565.4.
Since the mapping

T:C— SR :A— Ty = (x> + )

is entire, we conclude that

272 De\n/2+A
() Kuaalelél

(1) \[E]

can analytically be continued in S’(R") to all A € C. If this continuation is
denoted by S as well, then S, = FT, holds forall A € C. ForReA < 0, S is
an integrable function, and (1.6.16) thus persists unchanged for Re A < 0.

In particular, for A = —k, k € N, we obtain anew the unique temperate fun-
damental solution E of the iterated metaharmonic operator (A, —e>)¥, € >0 :

S:{AeCiReA < -5} — SR : A~

(_1)/(611/2—/( |x|—n/2+k
= 20/ k=1 n/2 (k = 1)1

E=F'((-EP—eH™) Kook (€]x]),
cf. formula (1.4.9).

If we define the Bessel kernelby G, « = F ' ((|€*+€?)™/?), € >0, A €C,
cf. Schwartz [246], (VII, 7; 23), p. 260; Donoghue [61], p. 292, then

G ! ("")“_")/ZK (elx]) £0, A ¢ —2N,
Ae = — - (n—1)/2\€[X]), X s —<41INg,
2(A+n)/2 lnn/ZF(%) €

and hence Gy € L' + & C D,, C D}, and the Fourier exchange theorem
(see Proposition 1.6.6 (5)) yields

VYA, u€C:Gre*Gue=Grype (1.6.17)

cf. Schwartz [246], (VI, 8; 5), p. 204; Petersen [228], Ch. II, Sect. 9, Ex. 9.1,
p. 107.Dueto Gy = (62 —A)XS, k € Ng, the composition law (1.6.17) also
comprises the fact noted above that G ¢ is the unique fundamental solution in
S’ of (€2 — A, k € Ny.

The limit € N\ 0 in formula (1.6.16) yields the elliptic M. Riesz kernels. For
Re A > —n, we have |x|* = lim~(|x|* + €2)*/2 in &’(R"), and hence

2% 2€\ Otn)/2
Fllafy =tim| 2 () Koemyaelg)
exo[r(—%)(la) asnra(elsD)]
2)H—n n/Zl-' Atn
= ”—A(Z) €74, —n<Rel <0, (1.6.18)
INCE))

see Abramowitz and Stegun [1], 9.6.2, 9.6.10, p. 375.
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We now define the M. Riesz kernels by Ry := F~'(|§|~*), where
C\ (n+2Ng) — S'(R") : A —> |&| ™

is holomorphic and has simple poles for A = n + 2k, k € Ny; in these
poles, we set || := Pfy—,1 |£|™*, see Example 1.4.9. Then A > R;
is also holomorphic in C \ (n 4+ 2Ny), and formula (1.6.18) implies by analytic
continuation that
n—A

_ ')
=

2/17T /ZF(E)

R; 2" A &n+2No, A & —2No,

cf. Riesz [235], (1), p. 16; E.M. Stein [263], (4), p. 117; Horvath [146], p. 180;
Wagner [287], Bsp. 1, p. 413.

For Re A,Re u < %, we have Ry, R, € [? + &', and the Fourier exchange
formula in Proposition 1.6.6 (5) then implies the “composition law” R, * R, =
Rj+,. This convolution equation is generally valid for Re(A + u) < n, see
Ortner [199], pp. 44—46; Ortner and Wagner [219], Ex. 3.3.2, p. 96.

In particular, due to

R = F(E1*) = (A0S, k € No.

this composition law also implies that E = (—1)*Ry is a fundamental solution
of AX provided A = 2k is not a pole of R, , i.e., 2k & n + 2N, or, equivalently,
n odd or [n even and k < 7]. Therefore, we obtain as fundamental solution of
Ak in these cases

(~DAT (2 — k)

E=(-D)Ryy=—-—— 2~
(=1 Ra 22%k(k — 1)lzn/2

|x|?", noddork < %, (1.6.19)

in agreement with the result for k = 1 in Example 1.3.14 (a).
Let us remark that, for k < 7, E is the only homogeneous fundamental
solution of A’,‘l. In fact, the equation A’;F = § implies for homogeneous F that F
is homogeneous of degree 2k—n. Furthermore, since homogeneous distributions
are temperate, see Donoghue [61], Sect. 32, p. 154, we infer |x|**- F(F—E) = 0
and thus supp (]-" (F — E)) C {0}. Therefore F — E is a polynomial of degree
2k —n < 0 and hence vanishes, cf. also Proposition 2.4.8 (1).

In the excluded cases, where n = 2/, [ € N, and k > [, we have

S=ResRy = ——— R
Ao 2% (k — 1)!x! A=ak

|x|2k—n (n _ A) (_l)k—l+l |x|2k—n

2 ) T 2Tk~ D)k — D)ia!
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and AKS = 0, and hence
(=) R = (=A)"( PE R;)

S
= (A i (R ——)zl' Ri—ox = Ry = 6,
( )Aanlk A A =2k lgrzlk A2k 0

cf. Ortner [198], pp. 6-9. Thus (—1)*Ry yields also in these cases a fundamen-
tal solution of the polyharmonic operator AX. Since

n—\
Ry = Pf (M |x|l—n)
A=2k 2lnn/2r(%)

r( ) Ox|*2

n—A\
= P pi ( % )
A=2\2A7n/2T (%) B ’

. l=2"(2l7f"/21“(%)

and the first summand on the right-hand side is a polynomial solution to A’; U=
0, we eventually obtain the following fundamental solution E of A’;Z :

(=D)"'x**D Jog ||
= ., k>IeN, 1.6.20
221 (k — )(k — D)7 = ( )

cf. Schwartz [246], (VII, 10; 21), p. 288; Ortner and Wagner [219], Ex. 2.7.2,
p. 68. O

Example 1.6.12 In a similar vein, we can investigate the Poisson kernel, which
appears in the solution of the Dirichlet problem for A, in the half-space. Applying
the Poisson—-Bochner formula (1.6.14) to the functions e_*‘)", Re A > 0, we obtain

o0
Fe M) = @my gt /0 ey (rIED dr

2" (D2 ()
= O+ [E]2)mtD/2

see Gradshteyn and Ryzhik [113], Eq. 6.623.2. This yields the Poisson kernels

AT (2

_ (=AY
Py=7F (e ) - [7[(/\2 4 |_x|2)](n+l)/2’

which satisfy the composition law P, * P, = P;;, for Re A, Re u > 0. The limit
relation lim o P = F~'(1) = & appeared already in Example 1.1.11 (ii).

Example 1.6.13 Let us next employ the Poisson—Bochner formula in order to
calculate F (JO(R|x|)) in even dimensions, cf. Ibragimov and Mamontov [148],

sin(R|x|)
x| )

Thm. 2.1, p. 352. In odd dimensions, we shall obtain in the same way F (
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Upon using a partial Fourier transformation (see Definition 1.6.15 below), these
two Fourier transforms will furnish the forward fundamental solution of the wave
operator 3> — A, cf. Example 1.6.17 below.

(a) Let us first deduce—by means of partial integrations—a slight modification of
the Poisson-Bochner formula. We shall set k = [5 — 1] and assume that f(x) =
g(Jx|) € L'(R") is radially symmetric and such that i(s) = Y(s)g(+/s) € L'(R)
and fulfills the condition

lim s 24 (hxs ) =0,  j=0,....k—1, wheres, = Y(s)s'.

§—>00

If we use the substitution » = /s and partial integration in the Poisson—Bochner
formula (1.6.14), we obtain

(FN)(E)

IR / " B2, (5 JE]) d

k n/2
__hen) / (h* s )(S) ) [s”/4_1/21n/2—1(x/§|§|)] ds

2(k— DT
_ (=D)kgn/2 ;2 \n/2—k=1
T k=) (E) x

o
< / (o S5 ()22 (U5 T8 ds,
0

by Gradshteyn and Ryzhik [113], Eq. 8.472.3. With the abbreviations

(S _ G)k_l

ho=h, = (k 0!

1
=) h(o) do,

this implies
. 2 ooh Jo(V/s |€]) ~(ifniseven, L6l
N© = 0 [T 0 | o (1621

Wil if n is odd.

By density, this formula can be extended to such i € £’ ((O, oo)) for which also
hy € 5’((0, oo))

(b) In particular, if 1 = 81(;‘2) , R > 0, then
k—1 k—1

Sy ) (k)
hk—h(s)*(k 7 = e ((kil)') = 8,
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and hence (1.6.21) yields

]:(51(;(2) ox?) = (—1)kn"? | .
2 Sin(RIg]). if n s odd

Conversely, this implies, for R > 0, the following:

F(JoRlx)) = 27" (=1)"271607 Vo P € S (RY).  neven,
(1.6.22)
and

X n n— (= )
]:-(sm(‘f” \)) o=l (D /2 3)/28 ol es (R) 1 odd.
(1.6.23)
When evaluated on test functions, the composition 81(;? o |£|?> is—according
to Definition 1.2.12—given by

. ¢ €DR").

s=R?

(9.8 0 I61) = (1)k(dk/ s”/z‘lqs(ﬁw)dw)
Sn—l

The result in Ibragimov and Mamontov [148] is formulated in this way.
Naturally, o |x|? can also be expressed by composition with |x|. In fact,
ifg:(0,00) = (O, 00) : t > 12, then

k
olx2 = (g*(6%)) o el = > 8% o al,
j=0

and a short calculation yields
k! L i\ [G-1))2 ek
o=z 2 (o) ()

Example 1.6.14 Let us next determine the Fourier transform of Gaussian kernels.
For n = 1, Cauchy’ s integral theorem implies

Fer) =t |

R

O

exp(—(x + %)2) dx = /e §/4,

For positive A1, ..., A,, this yields in R"

]-"(exp(—)tlxl1 _"'_Anx,zl)) __T
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For a positive definite, symmetric matrix A € R™", diagonalization furnishes

7["/2
/detA

Finally, by analytic continuation, we see that (1.6.24) persists as long as A belongs
to the set Uj, introduced already in (1.4.12), of symmetric complex non-singular
matrices with positive semi-definite real part, cf. Hormander [139], Thm. 7.6.1,
p. 206; [140], Lemma 2.4.3, p. 44; Zorich [308], p. 160.

In fact, the mapping

]_—(e—xTAx) —

exp(—3 ETAT'E). (1.6.24)

U — S'(R") : A —> exp(—xT Ax)
is continuous, and it is analytic on
U = {A = AT € C"™"; Re A is positive definite},

which is an analytic submanifold of C"*". The analytic continuation of v/detA to U
is given by

-1
VdetA = n"? ( / exp(—x" Ax) dx) .

n

see Example 1.4.13. Furthermore, the continuity of

n,n/Z

Ui —> D'(R") : A —> F(exp(—x"Ax)) -exp(3 £7A7'¢) = JdetA

implies that ~/det A can continuously be extended as a non-vanishing function from
U to its closure U; = U. Therefore, both sides of (1.6.24) are well-defined and
continuous on U}, and analytic if restricted to U. Since they coincide for real-valued
positive definite symmetric matrices, the equality in (1.6.24) is valid on all of U;.
In one way or other, this can also be found in Zuily [309], Exercises 66,
78, pp. 141, 145; Vladimirov [280], pp. 114-117; Strichartz [266], pp. 47, 48;
Friedlander and Joshi [84], Exercise 8.9, p. 111. Note that the calculation of
F(e™'4%) for A € U, by continuity amounts to an approximation with GauB—

WeierstraB kernels, since A + el € U for A € U, € > 0, and e A+ehx —
e—elx\z . e—xTAx O

Definition and Proposition 1.6.15
(1) For ¢ € S(RY x RY), the partial Fourier transform defined by

FEOe = [ peneray
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also belongs to S(R™"), and F, : S — S is continuous. Therefore, the adjoint
Fy : SR™) — SR"™) : T+ (¢ > (F0.T))

is well defined and continuous. It is again called partial Fourier transform.
(2) For a subset A C R, the mapping

Fy: C(A,S’(R;’)) — C(A,S’(R;f)) e (xe F(f(x)

is also called partial Fourier transform. The two mappings in (1) and (2)
coincide on C(R™, 8'(R")) N S’ (R™ ™).
Proof The statement in (1) is proved analogously as in Proposition 1.6.4, which

could be conceived as the special case m = 0 of the partial Fourier transform. The
consistency statement in (2) is proven by density. O

Example 1.6.16 Let us determine a fundamental solution of the heat operator 9, —
A, by partial Fourier transform.

IfEeS (R;‘;’l) fulfills (d; — A,)E = §, then partial Fourier transform with
respect to x yields

W(FE) + €7 - FE = (1) ® 1(£).

For fixed £ € R”, the only fundamental solution of the ordinary differential operator
4 411> with support in [0, 00) is ¥ (#) exp(—t|§|?), see Example 1.3.6. The equation

@ + [EP) (Y (e ™) = 500 @ 1(8)

then holds in S’ (R;fg’l), and hence E = F{! (Y(t)e_"f‘z) is a fundamental solution
of the heat operator 9, — A,,.
In order to calculate this inverse partial Fourier transform, one uses that

R — S'(RY) : 1+ Y(n)e "

is continuous outside 0 and has limits from both sides at 0. Hence a slight
generalization of Proposition 1.6.15 (2) and formula (1.6.24) imply that

_ g2 Y (1) Jcf?
E=F 1(Y(z‘)e €l ) = @nty 2 exp(—z).

We have verified this fundamental solution already in Example 1.3.14 (d).

Let us remark that E is the only temperate fundamental solution with support
in the half-space [0, 00) x R”. Indeed, if (, — A,))F = 0, F € S’(R;’;’l), and
suppF C [0,00) xR", thene™F € S’ fore > 0 and (0, + € — A,)(e"“'F) = 0, and
hence (it + € + |£]?)F(e™'F) = 0, which implies, successively, F(e 'F) = 0,
e “F =0, and thus F = 0. O
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Example 1.6.17 Let us next use the partial Fourier transformation as in Exam-
ple 1.6.16 to deduce the forward fundamental solution of the wave operator 92 — A,,.
For the spatial dimensions n = 2 and n = 3, respectively, we have already derived
this fundamental solution in Example 1.4.12 (b) from that of the Laplacean by
analytic continuation with respect to parameters.

If (0> — AE = § and E € S'(R"*"), then the partial Fourier transform with
respect to x fulfills

(@ + |EP)F.E = 8() @ 1(%). (1.6.25)

For fixed & € R”, the only fundamental solution of the ordinary differential
operator % + |£]* with support in [0, 00) is Y(¢) %, see Example 1.3.8 (a),
and it satisfies (1.6.25) in S’(R"*!). Hence E = ‘FE_I (Y (1) %) is a fundamental
solution of 9> — A, and it is the only one with support contained in the half-space
t > 0, see Hormander [138], Thm. 12.5.1, p. 120.

In this case, the function

sin(z|§1)
I§]

is continuous, and we can therefore, by Proposition 1.6.15 (2), calculate the inverse
Fourier transform with respect to ¢ for 7 fixed. Thus for odd n, formula (1.6.23) in
Example 1.6.13 yields

R— S'(RY) 1> Y(0)

n—3

8@ — 1)

g CDOVY0 oy o YO
T T ogmD2 2 e

O (DY T e -

T @) 2 \7 o
Y@ 19\ /1
= Gmyo (78—) (27 §(t— |x|)), nodd, n > 3. (1.6.26)

Note that E € S'(R""!) NC(R}, £'(R?)): the explicit expression for E in (1.6.26)
above holds for ¢t # 0. Formula (1.6.26) is well-known, cf. Shilov [250], 4.7.1,
pp- 288-290; Schwartz [241], (17,25), p. 47.

In contrast, for even n, we shall represent Y(7) ““‘(ﬂ as a Bessel transform in
order to be able to apply formula (1.6.22). For ¢t > 0, we have by Gradshteyn and
Ryzhik [113], Eq. 6.554.2, or Oberhettinger [194], 2.7, p. 6, the representation

sin(tl§]) _ " rdo(rl&]) dr
€] o VE—2




1.6 The Fourier Transformation 107

By means of formula (1.6.22), this yields

i) )
g ) =0 / T

—D)2 1y (s /2
_ =D (1) 5020 o Ly dr

n/2 / m r2
_ = 1)"/2= lY(l)/ (1)2—1) 112 dv
$ (|x" =)

E=7F" (Y(t) 2 (Jo(rlED) dr

ZJT”/Z \/—
D7y .
= @ = 1P+ 97780 ()
(_I)Vl/z—l(n —_ 3)” (l—n)/2 > 2
=gy YOs e - ), meven, (1.6.27)

cf. Schwartz [241], (17,31), p. 47. Note that the composition in (1.6.27) is well
defined outside the origin since there V(* — |x|?) # 0, and that E € C(R}, £'(RY))
is already determined by E|ga+1\¢o;- We observe furthermore that the wave operator
3,2 — A, is hyperbolic, and thus the fundamental solutions E derived above are the

only ones with support in the half-space + > 0, cf. Proposition 2.4.11 below, or
Hormander [138], Def. 12.3.3, p. 112, and Thm. 12.5.1, p. 120. O

Example 1.6.18 Let us also use partial Fourier transformation in order to determine
H=FITifT = Y(©)§(*> — [E]* —m?) € S'(R!}") for fixed m > 0. Since
(v2 — |€]> = m*)T = 0, the distribution H solves the Klein—Gordon equation, i.e.,
(0> — A, +m?)H = 0. Note also that T and H are relativistically invariant, i.e., they
are invariant under transformations in the orthochrone Lorentz group. Actually, H
yields the kernel for the state space of a spinless elementary particle, a meson, see
Schwartz [244], 31, p. 197; [247], Ch. 4, p. 68. In Bogolubov, Logunov and Todorov
[18], App. E, (E.4), p. 334, H is called Pauli—Jordan positive frequency function.

Before calculating H let us observe that f(z,£) = > — |£|> — m? is submersive
in R™"1\ {0} and hence 8(¢2 — |£]> — m?) = f*8 € D/(R"T! \ {0}) is well defined
by Definition 1.2.12. Furthermore, the singular supports of f*§ and Y (t) are disjoint
sets, and hence T = Y(7)8(v? — || — m?) € S’(R"T) is also well-defined.

For ¢ € D(R"*!), Definition 1.2.12 implies

(.T) = <d/(/m

: $(r.5) dr)ds, 5(5))
) 0

PWEP 2.8 o

R 2[R+ m2

This shows that 7 € C (Rg S (Ri)) and that T is given by

T:Rf — S'R})):§— (2).

1
TR
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Therefore, Definition 1.6.15 yields
eit«/ |&12+m2 )
AxJIER +m?)

The distribution § = eVE*+7* /(47 \/|€[2 + m?) continuously depends on 7, and
hence the partial inverse Fourier transform with respect to £ can be calculated for ¢
fixed, see Proposition1.6.15, and H = F~'T = ]-"S_lS € C(Rtl, S’(R;)).

Let us first determine J,~ 1S. for

eV |€]2 +m?
S :=—€L1(R’g), z€C, Rez> 0.

A \/|E]2 + m?

Then the Poisson-Bochner formula (1.6.14) and the substitution /72 + m? = ms
furnish

H=F'T=F"(F'T) = fgl(

. 1 o0 e—zm 1
Fe S = 20/ 22 [2H1 g n/2=T m’ﬂ Jnj2-1(r|x]) dr

mn/2

o0
= / e (5% — 1)(”_2)/4J(n_2)/2(m«/ s2 — 1|x|) ds
1

2n/2+2nn/2+1 |x|n/2—l

mn=D/2

= () +3/2

(X + 2~ K 12 (m/ 12 + 22)
by Gradshteyn and Ryzhik [113], Eq.6.645.2, p. 721. Hence, for fixed r € R, H(¢)
is given by the following limit in S’(R?) :
H(1) = F; ' (S=i) = lim F; ' (Se—
(1) £ (S-ir) 6{1(1) g ( )

b
T 0 212

(x> = 2 = 2ier) ™" "VAK Gy o (m/|x]2 — 2 = 2iet).

Let us finally calculate this limit if the space dimension # is at most 3. If n = 2,
then Gradshteyn and Ryzhik [113], Eq. 8.468, p. 967, yields

H(@) =1 _m (Ix* = 2 = 2ier) 4Ky o (m/|x]2 — 2 — 2ier)

m
e\0 (27[)5/2

= lim 1 e~ |x|2—r2—2iet
eNO 872 /|x|2 — 12 — 2iet

V=) i
82/|x|* — 2

s [ S sign - coson /)
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which is locally integrable in Rf. Similarly, for n = 1, we use Gradshteyn and
Ryzhik [113], Egs. 8.407.2 and 8.405 to conclude that H () is locally integrable and
given by

H(®) = MKO(m«/xz _ t2)

472

+ W [~No(mv©> —x2) +isignt - Jo(mv/i —x2)].
(1.6.28)

We remark that the last formula also yields—after a linear transformation and a
differentiation—the Fourier transform of the distribution x,6(x1x, — 1) considered
in Example 1.5.11.

The case n = 3 is more complicated. For |¢| # |x|, we obtain as above that

H(f) = Mm(m /|x|2 _ t2)

83 /|x|* — 12

mY (t| — lx]) B
- m[Nl(m\/W) —mgnt-]l(m\/m”_

Note that—except for r = 0, where H(0) = #\lel (m|x|) € L. (R®—the
distributions H(t) are not locally integrable in the case n = 3, since Kj(€) ~ ¢!

for € N\, 0. However, due to N;(¢) ~ —% for € N\ 0, the principal value

Hi(¢) ;= vpH(t) = h\né Y(|lxl = |#]| — €)H(1) € S'(R)

is well defined, and we conclude that the support of H(f) — H,(?) is contained in
the section |x| = |¢| of the light cone. In order to determine H on the light cone, we
consider the limit

. m Ki(my/|x]? — 2 — 2ier) 1

Hy(t) := lim —[ — - ]
N08TIL X2 =2 = 2iet m(|x|? — 2 — 2iet)

Here Lebesgue’s theorem can be applied and yields the locally integrable function

Hy(r) = Hi (1) — 1/(8713(|x|2 — tz)). On the other hand, Sokhotski’s formula (1.1.2)
implies that

1

1 i
lm——— = (—)+—5 — ) e D'(R
el\% |x|? — 2 — 2iet P |x|2 — 22 2t (bl = Iel) (R,)
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for fixed ¢ # 0. Therefore, we finally obtain for n = 3 the following:

mY (|x| — |t]) mY (|t] — |x])
H(t):v(—K my/|x|2 —2) + —————— Ny (mV/ 2 — |x|?
P 8m3/|x|* — 2 1( b ) 167w2./12 — |x|? 1( b )

. mY (|t — |x[)
—isignt - ———=J1(my/ 2 — |x|?
£ 1672/12 — |x|? ( )
i

+ Ten2s 8(|t| — |x]), t#0. (1.6.29)
For formula (1.6.29), cf. Schwartz [244], 29.4, p. 186, and 31.5, p. 200; [247],
pp- 83, 84; Methée [176, 177]; Bogolubov, Logunov and Todorov [18], App. E,
(E.4), p. 334; Ortner and Wagner [223], Cor. 1 (d), p. 139.
Let us yet sketch the connection of H with the forward fundamental solution
E (see Definition2.4.12) of the Klein—-Gordon operator P(3) = 9> — A, + m?.
As we shall expound systematically below (see Props.2.4.13, 4.4.1, in particular
formula (4.4.4)), we have

E = .7-';51( [T+ €+ [§]° + mz]_l)

lim
e\0

=Y F;{ (lim[(ir + €)* + [£]> + m?] ™ = [T — )+ |E7 +m*] )

lim
e\0

= —Zier(t)]-":; (sign T-8(c — &P — mz)) = 2inY()(H — H).
In particular, for n = 3, we obtain

_ =l mYe—Ix)

At 42— AP

in accordance with formula (2.3.16) below.
Note that in quantum field theory, instead of E, the fundamental solution

E

J (m ?— |x|2)

E=r} (!i{r(l)[—rz + &P+ m? —ie] ),

the so-called Feynman propagator, is employed, see, e.g., Zeidler [305], Sec-
tion 14.2.2, p. 776, where E is denoted by R = i Gp ;. Since, by Sokhotski’s formula,

tim[ 2+ (6 7 —i€] " = vp[—c + £ 2] Hid (=4 6 )
€

= li\r‘r(l)[(ir + 2 + €7 + m?] 7 4+ 2inY (D)8 (=7 + €] + m?)
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we conclude that
E = E +2inH = 2in[Y(-0)H + Y(OH].

For n = 3, this equation yields the result in Zeidler [305], Thm. 14.3, p. 780. O
Example 1.6.19 Let us next investigate Fourier series of periodic distributions.

(a) T € D'(R") is called periodic if T o 7y = T for all k € Z", where 7, : R" —
R" : x + x — a denotes the translations. By T" = R"/Z", we denote the
torus with the induced C°°-manifold structure. If, furthermore, DI’) R ={T e

D’'(R"); T periodic}, and D’'(T") is the dual of C*°(T"), then

®:D'(T") > —D,R") : S— (p > (Y us.S))
keZr

is an isomorphism.
In analogy with &', we consider the space s” of temperate sequences, which
is defined as

s =5 2" = {(a)rezr € C¥; AN eN:Vk € 2" : |ar| < N(1 + |k|oo)"}.

Similar considerations as for the Fourier transformation in Proposition 1.6.5
then show that

Fp i DI(T") = —s'(Z") : T— (2, 1), oy

and
Flis' (2 > —D/(T") : (ckem —> Y cxe®™™
keZ

are isomorphisms, see Schwartz [246], Ch. VII, Thm. I, p. 225; Vo-Khac Koan
[283], p. 69, 4°.

The following commutative diagram shows that the Fourier transform F,
induces in particular the Parseval identity, which is the restriction of F, to

LT :
Co(T") = L*(T") < LY(T") < D'(T")
[
S(Z") = P(Z") < c(Z") — s'(Z")

Of course, all the inclusion maps in this diagram are continuous.



112 1 Distributions and Fundamental Solutions

(b) A very important periodic distribution is 8 := ) ;.. 6k € D[/,(R"), which is
the image of §o € D’'(T") under ®. For n = 1, we have

d
Spp=1-— o g T (xY (x —xz)) € D)~ (R),

and hence also dp» = 611 ® --- ® dp1 € D} (R"). Let y € D(R") such that
> vezn Tex = 1, cf. Vladimirov [280], Sect. 7.1, p. 127. Then, for T € D[’,(R”),

T=(Zrkx)-T=Zrk(x-T)=(Zrk8)*(X-T)

kezn kezr kezn
=8m* (y+T) € Djoo xE = D} C S'(RY),
see Example 1.5.13. Thus every periodic distribution is temperate, and we

obtain FT = (Fdt) - F(xT) by Proposition 1.6.6 (5b). For S € D'(T") and
k € 7", we have

F(x - ®(5))@2rk) = (e, y - &(8)) = (x(x)e™ >, &(5))

= (D u(x@e>),8) = (77, 85) = (F,5) (k).

ez

Furthermore, due to t;§1» = 81, the Fourier transform U := F () fulfills
U = e .U fork € Z", and hence supp U C 2nZ". This is equivalent to
U= > rezn Pr(0)82x for certain polynomials Py (x). On the other hand, due to
2™k gy = S, we have T, U = U and hence U = P(9)é1 (55) for a single
polynomial P. Actually, P must be a constant, since, for k € Z",

P0)omi(£) =U=¢e"-U =" P0)sm (L)
= PO —ik)(" - 1(57)) = P = ko (55),

and thus P(d — ik) = P(d) for each k € Z". Thus U = adr(5_) for some
a € C. By the Fourier inversion theorem Proposition 1.6.5, we have

(27)" 8 = FFém = FU= F(adr (%)) =aQn)" (Fép)2nx)=a*(2m)"8yn.
Since a > 0 due to
0 < (7 6pn) = (F7' (™), abm (),

we finally conclude that a = 1 and

F(r) = 8m(55) = @n)" Y oy

keZn
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or, in other terms, the equation

D e =2n)" ) Somr. (1.6.30)

keZm keZm

holds in &’ (R"). Formula (1.6.30) is called Poisson’s summation formula. 0O

Before showing that (1.6.30) holds more generally, namely in D} (R"), let us
first introduce the standard topologies on the spaces Dy ».

Definition and Proposition 1.6.20 If the topology on the space Drr, 1 < p < 00,
(see Definition 1.5.8) is defined by the seminorms

Dpr(RY) —> [0,00) : ¢ —> [0%¢[,. o €N,

then they are Fréchet spaces, i.e., complete metrizable locally convex topological
vector spaces. Furthermore, if 117 + é = land1 < p < oo, then the dual of Dr»

coincides with D}, as defined in Definition 1.5.12.

For the proof, we refer to Schwartz [246], Ch. VI, Thm. XXV, p. 201. O
In the next proposition, we state the validity of the Poisson summation for-
mula (1.6.30) in D .
Proposition 1.6.21 The equation Y 7, e = Sp(55) holds in D} (R"), i.e.,
the series Y cqn(F@)(k) converges uniformly for ¢ in bounded subsets of Dy
to the limit (¢, 51 (52)) = (27)" Y 1czn $(27k). (Note, however; that the series
> kezn 027k does not converge in D oo, i.e., uniformly on bounded subsets of D)

Proof The linear functional

U:Dp —C:pr— > (Fp)(K)

keZn

is well defined and continuous since it is given as the composition of the following
four linear and continuous maps:

(1=4Apn)" F G
D,y — Dy — L' Cy— C,

where G(f) = Y ez f(k) - (1 + [k
Since U coincides with 1+(5-) on the dense subset S(R") of D.i(R") by
Example 1.6.19, we conclude that )., € converges to §1»(55) in D). O

If ¢ € D(R") with ¢(0) = 1 and supp¢ C {x € R”; |x| < 1}, then the set
B = {1j¢; | € 2"} is bounded in D; 1, but, obviously,

(ug, D &) =

kezn
[k[<N

Lif|l| <N

0, else
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does not converge uniformly for I € Z" to its limit 1 if N — oo. Hence, as observed
in the proposition, the series ) ;. 627« does not converge in D} . (However, one
can show that )", 7. 82,1 converges uniformly on compact subsets of Dy1.)

Example 1.6.22 Here we shall apply the Poisson summation formula to calculate
fundamental solutions on the torus.

(a) Let us consider a linear partial differential operator P(0) = |, |<,, d«0“ With
constant coefficients a, € C and acting on D’ (T"). We assume that P(i§) does
not vanish for large real &, which is, in particular, the case for elliptic operators.
By the Seidenberg—Tarski inequality, see Hormander [135], Lemma 3, p. 557;
[136], App., Lemma 2.1, p. 276, we have

dm € N : Vk € Z" with |k| > m : |PQ2rik)| > |k|™™.
Therefore, the series

E:= Y PQmik) ek (1.6.31)

kezh
PQ2mik)£0

converges in D (R"), cf. the proof of Proposition 1.6.21. Furthermore, E €
DI’, (R™) and it solves the following equation:

POE= Y &M=gpn— > &7k
keZl kEZ!
P(27ik)#0 P(Q2rik)=0

F := ®7'E can be conceived of as a “fundamental solution” to P(9) on
the torus T" in the following sense: If we try to solve in D’'(T") the equation
P(O)F = § + f for f € C®(T") with § = ®~!(§p) € D'(T") and F € D'(T"),
then we have to assume (F,f)(k) = —1 for k € Z" with P(2rik) = 0 since

PQ2rik) - F,F = F,(P()F) = Fp(8 +f) = 1 + Fpf.
Therefore,
JgeC¥(T) :f=g— Y & and[(F,g)(k) = 0 for P(2rik) = 0].
P(zlfii;:O

If we assume furthermore that g = 0, then F is given by (1.6.31) up to a
trigonometric polynomial of the form Y~ <y pasity=o €k

(b) We shall apply now the Poisson summation formula (1.6.30) in order to
calculate the fundamental solution E € DI/,(R”) of the iterated metaharmonic

operator P(9) = (a*> — A,)", a > 0, [ € N, on the torus.
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If 1> %, then ¢(§) = (a® + [£]) ' - € Dy (R") and

n/2—1
FD)) = Fe((@+ L)) yr—) = 2 ) Kyyoi(aly—x).

(I=D!'\ |y -~

see Example 1.6.11 (a). Hence Proposition 1.6.21 yields

272 ( 2a

ankx

=Y P = 2 Pk = 0™ ) (FO®

keZm keZm keZm

a"/* Z K> 1(alk — x[)
2n/2+l l(l— 1)|7Tn/2 Ik xln/z I

(1.6.32)

By analytic continuation, formula (1.6.32) yields a fundamental solution of
(a* — A,)" on the torus for all a € C with positive real part Rea. Note that
the series in (1.6.32) is fast convergent due to the asymptotic expansion

T
Kip-i(@) = | 5-e (1 + 0(l2™). |zl > o0, Rez >0,

see Abramowitz and Stegun [1], 9.7.2, p. 378.
Let us finally consider the Laplacean on the torus. According to (a),

1 _ . "
E,i=—— Y k& €D NDR")
kezm\{0}
is a fundamental solution of A, on T" in the sense that AL,E, = d — 1 in

D' (R") or, equivalently, A,®'E, = § — 1 in D'(T").
If n = 1, then

Ei(x) = —ZL Z 2 cos(2mkx)

converges uniformly for x € R and hence El € BC(R). Since Ef = —1 +
> ez 8 in D (R), we have Ej(x) = ——x +ax+ bfor0 < x < 1. The
constants a, b are determined by

1 1
szl(o)z_Z_;_zz__
b=E(0)=E(l)=-14+a+b=a=1

Thus E; (x) = —%(x2 —x+ %), 0 < x < 1, and this determines E; completely
by periodicity.
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Let us yet calculate E5, which plays a role in the study of the electronic structure
of crystals, see Glasser [110]. By (a), the series

27i(kx—+my)
Bev=-7 Y mrar
(k,m)€Z2\{0}
converges in D) (R?). Apparently, we have
S Q2ike
Ex(x,y) = Ei(x) — mEZX\:{O}e ’ kgz: T m)

The sum of the inner series is of course well known. It is also a special case of the

fundamental solution on the torus of the (one-dimensional) metaharmonic operator
2 . . .

dr’m?® — Cf?, which was considered more generally in (b). For m € Z \ {0} and

x € [0, 1], we have

2mikx

> znlﬁ > VIk = K_i2(2mlk — x|)

2012 N
ez 37 (K + m?) kez

_ L . cosh(mzr(l - 2x))

dmm po 47rm sinh(mz)

—2mmlk—x| __

Hence we obtain, for x € [0, 1] and y € R, the following:

1

Ex(x,y) = —%(xz —x+ —)

1 X cos(2mwmy)
6) ~ 2r 2= msih(nn)

- h 1 —2x)).
27 m sinh(mir) €08 (mzr( x))

m=1

Let us finally represent E; by a Jacobian theta function. We shall employ 4 in
the form

o0
94(zq) = 1+2 ) (=1)"q" cos@mz), gl < 1.

m=1

see Gradshteyn and Ryzhik [113], Eq. 8.180.1, p. 921; Abramowitz and Stegun [1],
16.27.4, p. 576. Since

’

cos(2mmy) cosh(mn(l - 2x)) . cos(an(y +i(x — %))) -
sinh(mr) N Zi: 1 — e 2mm ¢
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we obtain with ¢ := e™ and z = x + iy that

1/, 1 1 >
Ez(x,y)z—z(x —x+g)—gzz
+

m=1

cos(an(y +ilx— %)))
m(1 = g*")

m

1 1 1 . —
= ——<x2 —x+ —) - Elong + Elog |04(im(z—3).e77)

6
(1.6.33)

’

where log Qg = anozl log(1 —e_z’"”), see Oberhettinger [195], (2.26), (2.30), p. 26.
Formula (1.6.33) holds for 0 < x < 1 and y € R; it seems to have been obtained for
the first time in Glasser [110], (20), p. 189.

Since

AEy=8p—1=-1+) & and Aylog(+)?) = 4ré in D'(R?),
kez?

see Example 1.3.14, we conclude that f(x,y) := E, — % log(x? +y?) is an even C*®
function on the unit disc x> 4+ y? < 1. In particular, E»(x,y) = % log(x? + y?) +
£(0) + O(x? + y?) for (x,y) — 0. Since the constant £(0) plays an important role in
statistical mechanics, let us represent it by special functions. We have

fO) = lim B2 y) = Llog(x” +)9)]

m |27 P4 (im(z — 3), e_”)‘)

Lo L 1og (i
e (i

12 27

1 1 1 ir —7
=5 EIOgQO + Elog‘”ﬂi(i’e )|-

The numerical evaluation of the two series log Qp = > o log(1 — e™"") and

o0
95(Z.e7™) = —4i Y (=1)"me™™" sinh(m)
m=1

1 ( 47 Y% (=1)" 'me=™" sinh(mm)

~ 0.2085777932.
l_[?rlo=l(1 _ e—2m7‘[) )

O



Chapter 2
General Principles for Fundamental Solutions

The correct definition of a fundamental solution of a linear differential operator
was anticipated by N. Zeilon in 1911 and finally given in the framework of
distribution theory by L. Schwartz in 1950, see Schwartz [246], pp. 135, 136.
More generally, L. Schwartz defined fundamental matrices E € D'(R")™! for
systems A(3) = (A,-,-(a))KW of differential operators by A())E = I8, or,

more explicitly, Zj{:lAik(a)Ekj = §;6 for 1 < i,j < [ The reason for this
more general definition lies in the importance of such systems in the natural
sciences: Physical phenomena are in general described by vector or tensor fields
(as, e.g., displacements, electric and magnetic fields etc.) instead of by single
scalar quantities, as e.g., the temperature. Therefore we present three such systems
in Examples2.1.3 and 2.1.4 describing the displacements in isotropic, cubic and
hexagonal elastic media, respectively.

The content of the Malgrange—Ehrenpreis Theorem is that every non-trivial linear
differential operator with constant coefficients has a fundamental solution. We give
a short new constructive proof of this fact in Proposition2.2.1. Section2.3 deals
with the existence of remperate fundamental solutions, a problem which was solved
first by S. Lojasiewicz and L. Hérmander.

Apart from the question of existence of fundamental solutions, the search
for uniqueness criteria such as support or growth properties in dependence on
the operator is essential. This question is investigated in Sect.2.4. An existence
and uniqueness theorem for homogeneous elliptic operators (for the definition of
ellipticity, see Definition2.4.7) is given in Proposition2.4.8. On the other hand, if,
for N € R"\ {0}, there exists a tube domain T = {i§ + oN; £ e R",0 > g9} C C"
such that detA does not vanish on 7, then a fundamental matrix E of the system
A(9) is uniquely determined by the condition 30 > oy : e "NE € S'(R")™,
see Definition and Proposition2.4.13. Furthermore, the support of E is contained
in the half-space Hy = {x € R"; xN > 0}. In the literature, such systems are
called temperate evolution systems (B. Melrose) or systems correct in the sense
of Petrovsky (S.G. Gindikin, L. Hérmander). For shortness and due to the many

© Springer International Publishing Switzerland 2015 119
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similarities with hyperbolic operators (see Definition 2.4.10), we prefer to call such
systems quasihyperbolic (cf. Example 2.2.2 and Definition and Proposition 2.4.13).

In Sect. 2.5, the effect on the fundamental matrix of linear transformations of
the coordinates is studied since this allows to reduce many operators and systems
to simpler ones. Finally, in Sect. 2.6, the construction of fundamental solutions by
invariance methods is explained.

2.1 Fundamental Matrices

As we have said above, it is more often systems of differential equations than scalar
operators which originally occur when one sets up models to describe physical
processes. Scalar operators of higher order then appear as the determinants of such
systems. Let us therefore introduce the notion of fundamental matrices of linear
square systems A (d) of differential operators, and let us explain the connection with
the fundamental solutions of their determinants P(d) = detA(9). In the following,
I; € Gl;(R) denotes the [ x [ unit matrix.

Definition 2.1.1 Let A(9) = (A,;j(a))lﬁiziﬁl, where A;(9) = )", |<,, @jad”, be an
I x I matrix of linear differential operators in R"” with constant coefficients a;;, € C.
A matrix E € D' (R")* is called a right-sided or a left-sided fundamental matrix of
A(0), respectively, iff the respective equation

l

. . 8, ifi=j
=18, ie, VI <ij<i:y Ap@Ey=] " ’
A()E =18, ie, V1 <ij<lI ;Ak(a)EkJ { 0. else,
or
! 8§, ifi=j
ExA@0) =18, ie. V1 <ij<I:) Au(d)Ey = { 0: else

k=1

holds in D’ (R")™!. If E is a right-sided as well as left-sided fundamental matrix of
A(0), then it is called a two-sided fundamental matrix of A(9).

Note that the term “fundamental matrix” is not generally in use. Instead, it is
also called Green’s matrix, Green’s tensor or simply fundamental solution. For
Definition 2.1.1, see Malgrange [174], pp. 298, 299; Schwartz [246], Eq. (V, 6; 30),
p. 140; Petersen [228], pp. 56, 57; Hormander [136], p. 94; Jones [152], p. 421.

Let us observe that the transposed matrix E” of a right-sided fundamental matrix
E of A(d) is a left-sided fundamental matrix of the transposed system A(d)” and
vice versa. As we shall see in Sect. 2.2, a system A(d) has a right- or a left-sided
fundamental matrix if and only if its determinant operator detA(d) does not vanish
identically. In this case, we can construct a two-sided fundamental matrix E of
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A(0) in the following way: Take a fundamental solution F of detA(d) and set
E := A(0)*F, where A(3)* denotes the adjoint matrix to A(d). In fact,

P(0) =detA(d), P)F =6, E=A@0)YF

% AW)E = A@D)AQ)“F = LPO)F = I;§ Q.11
and E * A(0)§ = A(0)A(0)F = I8.

(This procedure is a classical one: see Weierstrass [300], pp. 287-288; Hérmander
[136], Section 3.8, p. 94.) However, in general, a right-sided fundamental matrix is
not necessarily a left-sided one, and conversely, see Example 2.1.2.

d/dx 1
Example 2.1.2 For A(d) = ( /0 1) , a right-sided fundamental matrix is of the

form (Y(X) +Ci —Y(ng—i- (&)

) , whereas a left-sided fundamental matrix is given

Y G —Yx) —-C
by () + G ) 3 , Cl,...,C4 € Cbeing arbitrary.
Cy §—Cy
Y —Y(x)—
The two-sided fundamental matrices are of the form E = ( (x())—i—C (z) C) ,
C € C.In fact, E = A(0)F, where F = Y(x) + C is a fundamental solution of

detA(9) = & O

Example 2.1.3 Let us use formula (2.1.1) in order to calculate the fundamental
matrix of the Lamé system A(d) governing elastodynamics inside a homogeneous
isotropic medium.

If u = (u1,u,u3)” denotes the displacement in an elastic medium, p,f
the densities of mass and force, respectively, then A(d)u = pf where d =
(97,91, 02, 93), V = (91,02, 93)7,

A(9) := pl30? — B(V), B(V) := puAsls + (A + )V - V7, (2.1.2)

and A, u > 0 denote Lamé’s constants.

Generally, the matrix A = ol + BE - £ € C*/ (witha, B € C and £ € R/) has
the eigenvalues a + B|£|? with multiplicity 1 and o with multiplicity /— 1 and hence
detA = o' (a + B|£|?). Similarly, the ansatz A = yI, + £ - £7 yields

A = o[(a + BIEP - BE - E7].
Therefore,

P(9) = detA(d) = det((pd; — pA3)s — (A + p)V - V')

) o (2.1.3)
= (pd; — uA3)*(pd; — (A + 2u) Az)
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and
A@) = (08% — uA[(08? = (A + 21) A3) s + (A + )V - V]

For the two different irreducible factors of P(d) in (2.1.3), let us introduce the
abbreviations

Wi (@) = pd; — s, Wy(d) = pd; — (A +21)As.

These two wave operators account for the propagation of shear and of pressure
waves, respectively, in the medium, see Achenbach [2], 4.1, pp. 122-124. By
formula (1.4.11) and Proposition 1.3.19, their forward fundamental solutions Fy, F),
are given by

b= b=t

Cs ‘p

depl P Am(+ 2l

s =

where ¢, = \/% s Cp = H% are the velocities of the shear and pressure waves,

respectively.

From the uniqueness (see Proposition2.4.11 below) of the forward fundamental
solution F of the hyperbolic operator P(3) = W,(3)>W,(9) and the convolvability of
Fy, F,, we obtain that F = F * F; * F,,. Hence we infer from (2.1.1) that the unique
fundamental matrix E of A(d) with support in the half-space # > 0 is given by

E = A(d)F = W,@)[W, ()]s + (A + )V - VI |(Fy % Fy % F)
= W, + A+ )V -V ](Fs % Fy) (2.14)
=LF,+ A+ p)V-VI(F % Fp).

From formula (2.1.4), we conclude that the fundamental matrix E can be
expressed by means of the fundamental solution F; * F, of the fourth-order operator
W, (0)W,(9); in particular, there is no need to calculate the fundamental solution of
the sixth-order operator P(39) = detA(d) = W,(3)*W,(9), as was done in Piskorek
[229], p. 95.

In order to derive Stokes’s representation of the fundamental matrix £ from the
year 1849, see Stokes [265], let us apply the “difference device”, which shall be
developed in more generality in Sect. 3.3. Due to

We@W, )[4+ 20)F, — uF.] = [+ 20 We(0) — uW, ()]
= (k+ w)pd?s.

we conclude, by convolution with the fundamental solution 1Y (f) ® §(x) of the
operator 7, that the forward fundamental solution Fy * F » of W(3)W,(0) has the
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following representation:

1
Fy*F, = G [tY (1) ® 8(x)] * [(A + 21)F, — pF]. (2.1.5)

Since F,, € C(R3\{0}, &'(R})) is given by (A+2)F,(x) = #M(SIX\/% (t) forx # 0,
we obtain

)

[Y() ® 8] * A+ 20)Fy = ——

(2.1.6)

for x # 0, and (2.1.6) then holds in D’(R*) by homogeneity. If we insert (2.1.6) and
the analogous equation for [1Y(r) ® §(x)] * wFy into (2.1.5), we obtain

A | (G B R ST )

a8 =2 -on= (g 3ot -o0])

K P
For the differentiation of F * F),, we then employ the many-dimensional jump
formula (1.3.13):

_ 2
1 {M—b’M t[Y(|x| —cst) = Y(|x| — C.Dt)]

p) V-VI(F,%F,) = —

1 1
p— T —_— J— _— J—
XX I:C?tS 8(|'x| CSt) c;t3 8(|'x| CPt):I}

Inserting this into (2.1.4) finally yields Stokes’s formula for the forward fundamental
matrix E of Lamé’s system A(d) defined in (2.1.2):

T T

x> — xx |x| XX |x|
o1 b ST PR o ) L S T P i
AT ( o )+ 420t 20 ( cp)

! I I
# gm0 )= 8) =1 (= )

cf. Achenbach [2], (3.95/96/98), pp. 99f.; Achenbach and Wang [3], (8.15), p. 282;
Duff [62], pp. 270f.; [64], p. 79; Eringen and Suhubi [69], (5.10.30), p. 400; Love
[171], (36), p. 305; Mura [185], (9.34), p. 63; Willis [302], (34), p. 387; Wagner
[293], p. 406. |

(2.1.7)

Example 2.1.4 Let us consider now the equations of anisotropic elastodynamics.
The investigation of this 3 by 3 system will also show the importance of higher order
partial differential operators in mathematical physics. We shall develop here only the
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algebraic part of the construction of the fundamental matrix, and we shall postpone
the application of the Herglotz—Petrovsky formula to Chap.4, where hyperbolic
operators and systems will be analyzed.

(a) In a homogeneous anisotropic medium, the displacements u,, the stresses o,
and the strains v,, satisfy the following equations (where we use Einstein’s
summation convention):

Py = 3,004 + ply, Opg = Ogps
1
Vpg = E(aqu,, + Opuy); (2.1.8)
Opg = CpgrsVrs (Hooke’s law), Cpgrs = Cqprs = Crspg-

Herein p,q,r,s € {1,2,3}, cyq are the elastic constants, and p,f denote
the densities of mass and of force, respectively, cf. Achenbach and Wang [3],
(2.1/2), (2.4), p. 274; Buchwald [31], (2.1-5), p. 564; Duff [62], (1.1), p. 249;
Eringen and Suhubi [69], (5.2.19), p. 346; Herglotz [127], (3.48), p. 75, and
(6.9), p. 156; Musgrave [186], (6.1.4/6), p. 67; (3.11.1/2), p. 28; Payton [226],
(1.1.1-5), p. 1; Poruchikov [231], (2.1.1-6), p. 4.

Abbreviating the symmetric matrix (cpg50405)rs by B(V) we derive the
system

A@)u = (pl0; — B(V))u = pf

(cf. Duff [62], (1.2), p. 250; Musgrave [186], (6.1.7), p. 68) by elimination of
0pq and vy, In the sequel, we put p = 1.

The dimension of the linear space of tensors (cpq) of rank 4 fulfilling the
symmetry relations stated in (2.1.8) equals 21. This fact is exploited when the
“contracted index notation” is used (cf. Musgrave [186], (3.13.4-6), p. 33; Pay-
ton [226], p. 3): The indices 11,22, 33,12, 13,23 are replaced by 1,2, 3,6, 5, 4,
respectively. Consequently, (2.1.8) takes the form ¢ = Cv, where 0 =
(011,022, 033,023,013,012)" € R% & = (v11, V22, v33, 2023, 2013, 2v12) " € RO,
and C € R®6,

Let us consider such particular cases of the elastic constants for which the

6 x 6-matrix C has the form C = (H 0

0 L) with two symmetric 3 X 3-matrices

H, L. This implies the equations
o1l Uil 023 V23 hj p=gq,r=s,

on|=H|vn|, |os|=2Lvis|. ¢un=1 li—ss—3 :Pp#qr#s,
033 V33 012 V12 0 : else,
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if j corresponds to pg or gp, and k to rs or sr, respectively (1 < p,q,r,s < 3,
1 <j,k < 6). Hence the matrix B(£) assumes the form

B(§) = (hfksjsk)j‘kzlls

In€3 + 2nkrds + 13365 I3 + 5E 10616 + 5HE
+ 133616 + & B €2 + 203618 + I} &g+ £ 8
Iné1& + 6B hé&é& + 68 11EF + 2000616 + 18]
(2.1.9)

with 8 := 12351 + 11352 + 11253-
(b) Let us specify the above for isotropic media. In such media, the tensor (cpqrs) is
determined by two independent constants, the Lamé constants A, i1, whereby

Cpqrs = ASpqgm + ,Uv(8pr5qs + 517s5qr)
or

A+2u A A
HO
C:(OL)’ H=| 2 Ar+20 X |, L=uph,
A A A+2u

cf. Eringen and Suhubi [69], (5.2.20), p. 346; Payton [226], (1.1.7), p. 2;
Sommerfeld [259], p. 272.

Then B(§) = u|&)?I+(A+p)E-ET asin (2.1.2) and the determinant operator
of the system degenerates:

P(3) = det(1397 — B(V)) = (87 — nA3)* (07 — (X + 2p) As),

cf. (2.1.3).
(c) Cubic media are characterized by the three independent constants a = ¢j; —Ca4,
b = c12 + c44, ¢ = c44, Whereby the tensor (c,qs) is given as

Cpgrs = (b - C)Spqgrs + C((Spr(sqs + 8ps8qr) + (Cl - b)(spqui(srj(ssj
or

a+c b—c b-c
C=(HO), H=|b—c a+c¢c b-—c]|, L = cls,
0L
b—c b—c a+c
(2.1.10)

cf. Chadwick and Smith [46], (6.1), p. 60; Dederichs and Leibfried [55], (13),
p.- 1176. If a = b, then the cubic medium is isotropic with A = b — ¢, u = c.
Thus the difference b — a is a measure of the anisotropy of the cubic material,
cf. Liess [165], p. 274.
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From (2.1.9) and (2.1.10), we infer & = 0 and

500
B(§) =clgPL+bE-E"—(b—a)| 0 & 0
00 ¢&

cl§]* +ak]  bEI& b&&
= b&i&  clElP +a&  bE ,

b&1&3 bkrks  clE|* +ak;
cf. Duff [62], p. 271; Liess [165], p. 274; Sommerfeld [259], p. 272.
If, as before, A(t,£) = t%I; — B(£), then the determinant operator P(d) =
det A(d) is of degree 6 and, in general, irreducible. In fact, A(z, £) = M —b&-£7,
where M is the diagonal matrix with the elements 72 — c||? + (b — a)g,?, j=

1,2, 3. For the determinant of the difference M — b& - n” of the diagonal matrix
M and the rank-one matrix b€ - 7, we have the general formula

det(M — b& - n7) = detM — beT (M*) Ty = det M — bn" M,
and this implies
3 3
P(@) = detA@) = [[W;0) = b Y B W1 (D)Wy2(D). (2.1.11)
j=1 j=1
where
Wi(0) = 8;—cAs+(b—a)d;, j = 1,2,3, and W4(d) = W1(3), W5(3) = Wa(9).

According to (2.1.11), the slowness surface {(t.£) € R*; P(r,£) = 0} is
3 bg?
then given by ) /
=1 T =l + (- a)E]
(3.35), p. 14; Liess [165], p. 274.
A similar calculation yields for the adjoint matrix of A(d) the following:

= 1 cf. Duff [62], p. 271; Mura [185],

A@)Y = Wit 1)) Wj42(8) — b2, Wi (3) — b2, Wi (9),
and A(0)!, | = b3;0;41Wj12(d). j = 1.2.3,

Therefore, the forward fundamental matrix E of A(d) is given by E = A*(9)F
where F is the forward fundamental solution of P(d) = detA(9d).

Let us finally determine for which values of a, b, ¢ the determinant operator
det A(9) is reducible. Due to the apparent symmetry in &, &, &3, the polynomial
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P(z, &) splits into factors either if it has the form 1_[/:;1 (T2 —alg) + ﬂgjz), ie.,
if b = 0, or if there exists a factor 7> — «|£|?, which is symmetric in £, &, &3.
This second assumption implies that either @ = b, i.e., the medium is isotropic,
or else a = —2b. In this last case,

P(z.§) = (T —clgP)[(+—0)[E17)* —b* (5] +& +55 —§15 616 -5 |-

(Concerning the case b = 0 cf. Chadwick and Norris [45] (4.2), p. 601; (1.3),
p- 590: “For cubic media there is just one constraint on the elastic moduli, i.e.,
b = 0, under which the slowness surface is composed of three spheroids.” Cf.
also Chadwick and Smith [46], (8.10), p. 74.)

For media of hexagonal symmetry, the elastic constants fulfill

Cci1 C12 € cas 0 0
HO 11 €12 €13
C= oL) H=|cncncnl|, L= 0 cu 0 .
€13 €13 €33 0 0 %(Cll_clz)

cf. Fedorov [72], (9.22), p. 31; Musgrave [186], p. 94; Payton [226], (1.3.2),
p. 3. In the tensor (cpqss), there thus remain 5 independent constants, which we
will choose, in accordance with Buchwald [31] (6.7), (6.10), pp. 572, 573, as

1

ay=cy, ay=¢33, a3 =C13+C44, a4 = 5(611 —cC12), a5 = C44.

(2.1.12)
With this notation, we obtain
aif] + @il +ask; (a1 — a6 az£1&3
B(§) = (a1 —anér1€&r  ai€] + ai€3 + asé; az6x§3 ,
az&1&3 a3k as(&] + ) + ax63

(2.1.13)

cf. Kroner [158], (4), p. 404; Payton [226], (1.5.10), p. 6.

As observed already by Christoffel in 1877 (see Payton [226], p. 7), the
determinant operator P() = detA(d) = det(l30? — B(V)) splits. In fact,
2 I3 —B(§) = M—1-n" with n = (/a1 — asé1. /a1 — asr, asés/ Jay — as)"

and M the diagonal matrix with the elements

a
mip =my = v —as(§]+&5)—asé3, m33:r2—a5($12+$22)—<a2—a 3a ) 3
| —das
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Putting p? = £7 + &2, we obtain

262

. as§
P(t,§) = detM — n" M*'p = mll[mllm33 —ma3(ar — as)p* —mi- 3 3a ]
| —as

= (0 —aip? — astD) | (% — asp? — asE)(* — asp’ — )

- @02 —asp’ - 8]

a)p —day

Hence P(9) is the product of the wave operator > — asA; — asd3 and of the
quartic operator

R() := 3?—3,2(a1A2+a23§+a5A3)+a1a5A§+(a1a2—a§+a§)A23§+a2a53§,
(2.1.14)

cf. Mura [185], (3.38), p. 14; Payton [226], (1.5.13), p. 6.
There are exactly two cases in which the operator R(d) in (2.1.14) is a product
of two wave operators:

R(1.§) =0 &= 20" = (@ +as)p’ + (a2 + a5)§ + VD,

D := [(ay —as)p> — (ar — a5)g32]2 + da2p’E2.

/D is a polynomial in £ if and only if either a3 = 0 or a3 (a1 —as)(ax —as),
cf. Chadwick and Norris [45], (1.2), p. 589; Payton [226], p. 96. In these cases
only, P(d) splits into 3 wave operators. Explicitly, in the case of a; = 0, we
have

P(8) (82 — a4A2 — 61583)(82 — a1A2 — a58 )(8 — a5A2 — azag)
and in the case of @3 = (a; — as)(a» — as), we obtain

P(0) = (07 — agAy — as03) (37 — a1 Ay — a203) (0% — asA3).

2.2 The Malgrange—Ehrenpreis Theorem

The Malgrange—Ehrenpreis theorem states that every (not identically vanishing)
partial differential operator with constant coefficients possesses a fundamental
solution in the space of distributions, i.e.,

VP(d) € C[d1,...,d,] \ {0} : IE € D'(R") : P(I)E = 6, (2.2.1)

see Malgrange [174], Thm. 1, p. 288; Ehrenpreis [68], Thm. 6, p. 8§92.
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Let us first give a short historical account concerning the development of the
concept of fundamental solution. Before 1950, in which year the first edition of the
first part of Schwartz [246] appeared, not even the guestion about the existence of
a fundamental solution did make sense, since there did not at all exist a generally
adopted definition of a fundamental solution. The definitions before L. Schwartz
usually referred to special types of operators and, correspondingly, to a special kind
of the singularity of the fundamental solution, see, e.g., Courant and Hilbert [51],
pp- 351, 363-365, 370; Levi [164], p. 276; Bureau [33], p. 15; Somigliana [258];
Fredholm [82]. Let us also mention the different definition of J. Hadamard, later
used by F. Bureau, of a fundamental solution of a hyperbolic second order operator,
which is not equivalent to Schwartz’s definition, see Liitzen [173], p. 103; Leray
[163], p. 66; Hadamard [123]; Bureau [36, 37].

In 1950, L. Schwartz wrote: “Les définitions habituelles d’une solution élémen-
taire comme solution usuelle du systeme homogene ayant en un point une singularité
d’un certain type, doivent, a notre avis, étre totalement rejetées” (Schwartz [246],
p. 135, 136).

In particular, the earlier definitions determined fundamental solutions only up
to multiplicative constants. E.g., before 1950, both functions £ = _#\XI and
F = \71| served as fundamental solutions for the three-dimensional Laplacean
Aj. L. Schwartz’s definition (i.e., that in Definition 1.3.5) excludes F, since
A3F = —4768. Hence “...Schwartz clarifie la notion de solution élémentaire en
la définissant comme une solution d’une équation ayant la mesure de Dirac § pour
second membre” (Malgrange [175], p. 29; cf. also Horvéth [142], p. 236, 237;
Dieudonné [60], p. 255).

Let us remark that L. Schwartz’s definition was, for locally integrable fundamen-
tal solutions, anticipated by N. Zeilon in 1911 (see Schwartz [246], first ed., Vol. 1,
(V, 65 25), p. 135 and footnote (1)) : “Es soll:

jede Funktion F(x,y,z) ein Fundamentalintegral der linearen Differential-

gleichung
d 9 0
a ' a A :O
f(ax dy BZ)M

genannt werden, die der Bedingung geniigt, dass

f i,i,i /F(x—k,y—u,z—v)dld,udv
ox dy d9z/) Jp

gleich 1 ist, wenn das Integrationsgebiet D den Punkt x,y,z einschliesst, und gleich 0,

wenn dieser Punkt ausserhalb D liegt. Oder, was auf dasselbe herauskommt: Wenn
¢ (x,v, z) eine willkiirliche Funktion ist, so soll:

u=/F(x—)k,y—p,,z—v)qb()t,p,,v)dkd,udv
D
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im Gebiete D eine Losung geben der Gleichung:

g a9 0
f(ax’ dy’ az)“ =
Dabei ist D als ganz willkiirlich vorausgesetzt, namentlich muss es gestattet sein, es
beliebig klein zu machen.” (Zeilon [306], pp. 1, 2; Liitzen [173], p. 103.)

Already in 1948, L. Schwartz posed the problem to show that every not identi-
cally vanishing linear partial operator with constant coefficients has a fundamental
solution (see Treves, Pisier, and Yor [276], p. 1078; Garding [93], p. 80). This
problem was solved, independently, in Malgrange [174], Thm. 1, p. 288, and in
Ehrenpreis [68], Thm. 6, p. 892. Both used the Hahn—Banach theorem in order to
extend a certain linear functional. The key step in their proofs consisted in showing
the continuity of this functional on a suitable subspace of the space of all test
functions.

Immediately thereafter, the search for explicit general formulae yielding funda-
mental solutions began; in particular, since such formulae were known for several
special classes of differential operators (e.g., for hyperbolic operators and, more
generally, for operators correct in the sense of Petrovsky, see Hormander [138],
p. 120, (12.5.3) and p. 143; for elliptic and, more generally, hypoelliptic operators,
see Hormander [133], p. 223; Mizohata [182], p. 142-144). We owe the first
explicit general formula to L. Hérmander, who generalized the procedure used for
hypoelliptic operators in his thesis (Hormander [133], p. 223). F. Treves adapted
this method (dubbed “Hormander’s staircase”, see Gel’fand and Shilov [106],
Ch. 1II, Section 3.3, p. 103) in order to obtain a fundamental solution depending
continuously on the coefficients of the differential operator (see Treves [270, 272]).
A detailed description is contained in Ortner and Wagner [215].

An inconvenience of the “staircase” construction consists in its use of partitions
of unity based on the location of the zeroes of P(z). In Konig [155], a new method
of proof of the Malgrange—Ehrenpreis theorem (2.2.1) was given. It avoided the use
of partitions of unity, but involved n parametric integrations over inverse Fourier
transforms of modulus one functions. In Ortner and Wagner [213], a formula
involving only one parametric integration was given; in the still simpler proof below,
which is due to Wagner [296], we represent a fundamental solution by sums of
inverse Fourier transforms of modulus one functions.

Proposition 2.2.1 Let P(§) = ) |, <, ca€” € C[] \ {0} be a not identically
vanishing polynomial on R" of degree m. If P, (§) = Z|a|=m ce* and n € R”
with Py(n) # 0, the real numbers Ao, ..., An are pairwise different, and a; =
]_[km=0’k¢j(kj — M)~ then

Za] A . —l(P (15+Af’7)) (2.22)

is a fundamental solution of P(0), i.e., P(0)E = 4.
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Proof

(1) Let us first observe that, for A € R fixed, N = {§ € R"; P(i§+An) = 0} is aset
of Lebesgue measure zero. In fact, after a linear change of the coordinates, we
can assume that P,,(1,0,...,0) # 0, and then [, d§ = [p.— (ngf dé;)ds’ =0

by Fubini’s theorem and since the sets Ny = {§; € R; P(i(§.£) + An) = 0}
are finite for £ = (&,...,&,) € R"™'. Hence

P(& + An)

S(¢) =

and formula (2.2.2) is meaningful.
(2) For S € S'(R") and ¢ € C", we have

P@) (e F'S) = P03 + O F 'S = S F (P(iE + 0)S).

Taking § = P(i§ + An)/P(i§ + An) with 1 € R, this implies

vt PGE+ADNY o1 5
(5 (e y)) = (PR
Furthermore,

F'(PGE + An)) = F; ' (P(=i& + An) = P(=d + An)s,

and hence
./ PGE+ An) _ _
Anx 1 — ANXp_ — _ Anx
P(8)(e F (—P@Hn)) MB(—d + An)8 = P(=d + 247) (€*78)
m—1
=P(=0 4248 = A"P,2m8 + Y _ ATy,
k=0

for certain distributions 7y € £'(R"). (Note that e*™§ = §.)

Since ay, . . ., a,, fulfill the system of linear equations

- 0, ifk=0,....m—1
A,k: ’ ) ) k)

Z;“f i {1, itk = m,

=
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cf. Proposition 1.3.7, we obtain

m m—1
1 _
PJ)E = aj[ AP, (2n) 8 + § AT =8,
Pm(277) j=0 T k=0 !

i.e., E is a fundamental solution of the operator P(d). This completes the proof. O

Example 2.2.2 Let us illustrate the construction formula (2.2.2) for fundamental
solutions in the case of quasihyperbolic operators, which will be studied more
thoroughly in Chap. 4.

An operator P(d) in R” is called quasihyperbolic in the direction N € R" \ {0}
iff the condition

dop e R: Vo >0p:VE€R": P(iE+0N) #0 (2.2.3)

holds. Hence P(d) is quasihyperbolic iff P(z), z € C”", has no zeroes for large Re z
in direction N, cf. Ortner and Wagner [207], Def. 2, p. 442. For quasihyperbolic
operators, there exists one and only one fundamental solution F satisfying

Jo >0y :e "MF e S'(R") (2.2.4)

if 0p is as in (2.2.3). Furthermore, suppF C Hy := {x € R"; Nx > 0}, and
e NF € S§'(R") and the equation F = ™V F~!(P(i§ + oN)™!) hold for each
o > oy if oy is as in (2.2.3), see Proposition2.4.13 below or Ortner and Wagner
[209], Prop. 1, p. 530.

Let us show now that the fundamental solution E in (2.2.2) coincides with F
fulfilling (2.2.4) if » = N and the real numbers Ao, ..., A,, in Proposition2.2.1 are
chosen larger than oy. In fact, with these choices, we obtain

AjNx —1 P(IE +A]N) _ AMNXD(_ . —1 ;
e (P(ig —HL,-N)) = PO+ AN (P(ié‘ +/¥;N))

_ ) _ 1
= P+ 2 ()
)

m—1

= P(=0+ 25N)F = [P.QNA! + Y Qu@AF]F
k=0

and hence

1 - P(i€ + AN
E— Zajeszvx}-g—l( (i€ + A;N) )
j_

Pn(2N) =5 P(iE + A;N)
N
= m Zaj[Pm(ZN)Kj + Z Qk(a)xf]p —F. .

j=0 k=0
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By means of formula (2.1.1), we can infer from the Malgrange—Ehrenpreis
theorem for scalar operators (i.e., (2.2.1)) the existence of fundamental matrices
for square systems of linear partial differential operators with constant coefficients,
cf. also Malgrange [174], Prop. 6, p. 299; Agranovich [4], pp. 37, 38; Hormander
[136], pp. 94, 95.

Proposition 2.2.3 For the system A(9) € C[3]™, the following four assertions are
equivalent:

(1) A(0) has a right-sided fundamental matrix;
(2) A(0) has a left-sided fundamental matrix;
(3) A(0) has a two-sided fundamental matrix;
(4) detA(0) does not vanish identically.

Proof Trivially, (3) implies (1) and (2). Furthermore, if (4) is satisfied, then the
Malgrange—Ehrenpreis theorem in the scalar case (see (2.2.1) or (2.2.2)) implies the
existence of a fundamental solution F of P(d) = detA(d), and formula (2.1.1) then
yields the two-sided fundamental matrix E = A(3)*F of the system A(d). Hence (4)
implies (3). It thus remains to show only that (1) implies (4). (Then, by symmetry,
i.e., using transposition, also (2) will imply (4).)

If E is a right-sided fundamental matrix of A(9d), i.e., if A(J)E = I,8, then,
evidently, A(d) cannot be the zero matrix. Let £ > 0 denote the rank of the matrix
A(0) and assume, contrary to (4), that k < . After a possible renumbering of the

in the rows and columns corresponding to i,j = 1,...,k + 1, and consists of
zeroes in the remaining places, then C;;(d) = Q(3d) # 0. On the other hand,
C(0)8 = C(9)A(0)E must have a zero in the upper left corner since

A having rank k. This contradicts the assumption k < [ and thus shows that (1)
implies (4). Hence the proof is complete. O

2.3 Temperate Fundamental Solutions

We next investigate the problem of the existence of a femperate fundamental
solution E of an operator P(d). After Fourier transformation, this problem is
equivalent to the division problem P(i§) - FE = 1 in §'(R") formulated by
L. Schwartz in 1950, cf. Garding [93], p. 80; Schwartz [248], p. 9. Obviously, in
the dense open subset R” \ Z, Z := {£ € R"; P(if) = 0} of R", the distribution
FE must coincide with P(i)~!. Hence the division problem consists in extending
P(i&)~! € D'(R"\ 2) to a distribution in S’(R"). The historically first solutions
in Hormander [135] (see Thm. 3, p. 567) and in Lojasiewicz [168, 169] were
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based on an estimate of |P(i§)| from below by powers of the distance from £ to Z.
These methods of proof rely on the so-called Hormander—tojasiewicz inequalities,
Whitney’s extension theorem and partitions of unity and hence do not produce
explicit formulae for fundamental solutions, cf. the elaborated presentations in
Treves [271], pp. 221-242; Krantz and Parks [156], pp. 115-135.

In 1969, Bernstein and Gel fand [13] presented a new method of proof of the
division problem relying on the analytic continuation of the function A — P*, which
continuation was posed as problem by .M. Gel’fand at the International Congress
of Mathematicians in 1954 (see Gel’fand [102], p. 262):

“...the following two problems are of interest:

I. Let P(x, x2,...,x,) be a polynomial. Consider the area in which P > 0. Let
@(x1,...,x,) be an infinitely many differentiable function equal to zero outside a
certain finite area. We shall examine the functional

(P/1 .(p) = / Pl('xl""axn)(p(xl,...,xn)d.xl ...d.xn.
P>0

It is necessary to prove that this is a meromorphic function of A (it would be natural
to call it a ¢-function of the given polynomial), whose poles are located in points
forming several arithmetic progressions, as well as to calculate the residues of this
function.”

Whereas the proof in Bernstein and Gel’fand [13] is based on Hironaka’s theorem
on the resolution of singularities, I.N. Bernstein succeeded later to perform the
analytic continuation of P* by means of a functional equation, similarly as for
the gamma function where one uses the equation I'(1) = w, see Bernstein
[11, 12]. We shall employ this approach to prove the existence of temperate
fundamental solutions.

Proposition 2.3.1 Let P(0) = } <, @0" € Cl[0i,...,9,] \ {0} be a not
identically vanishing linear differential operator with constant coefficients. Then
P(0) possesses a temperate fundamental solution, i.e., AE € S'(R") : P(0)E = 6.

Proof
(1) Let us first assume that P(i§) is real-valued and non-negative, i.e., V& € R" :
P(i&) > 0. Then, obviously, the mapping
F:{le€C;ReA >0} — S'(R") : A —> P(i§)* (2.3.1)

is well-defined and holomorphic. Bernstein’s functional equation (see Bernstein
[12], p. 273, Thm. 1’; Bjork [15], Ch. 1, 5.7, 5.8) stipulates the existence of a
differential operator Q(A,&,d) € C[A,&q,...,&,,04,...,0,] with polynomial
coefficients and of a polynomial (1) € C[A] such that

O, £, 0PI = b(L)P(iE)* (23.2)
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holds for all complex A with ReA > 0. (The normalized polynomial b(A)
of minimal degree such that Eq. (2.3.2) is fulfilled with a suitable Q is called
the Bernstein—Sato polynomial of P(i§). A systematic study of Bernstein—Sato
polynomials is contained in Yano [304].)

By means of the functional equation (2.3.2), we can holomorphically con-
tinue the function F in (2.3.1) to the whole complex plane C with the exception
of the points in the arithmetic progressions {A —k; b(1) = 0, k € No}. In these
exceptional points Ay, F(A) is meromorphic, and we set F(1¢) := Pf)—,, F(1),
cf. Definition 1.4.6, Proposition 1.4.7, which holds for every Hausdorff, qua-
sicomplete locally convex space, and in particular for S’(R"). Therefore, for
Re A > —k, k € Ny, we have

b(A) b+ b +k—1)

F(A) = Pf[ P(ig)“k] e S'(R).
By analytic continuation, the equation P(i§) F(A) = F(A + 1) holds for each
A € C. In particular, F(—1) solves the division problem P(i§)F(—1) = 1, and
E=F"! (F (- 1)) is a temperate fundamental solution of P(9d). (It is sometimes
called Bernstein’s fundamental solution.)
For general P(0), we set E = P(—0d)E; where E| is the temperate fundamental
solution constructed in (1) of the operator Q(9) = P(d)P(—0d). Note that Q(9)
has the symbol

Q0(i§) = P(i§)P(i§) = |P(i&)[%,

which is real-valued and non-negative. The proof is complete. O

Let us explain Bernstein’s method of construction of temperate fundamental

solutions by several explicit examples.

Example 2.3.2 Let us first consider the negative Laplace operator P(0) = —A,,
similarly as in Dieudonné [59], 17.9.2; Horvéth [146], Ex. 1, p. 176; Wagner [287],
Bsp. 1, p. 413.

(a) In this case, P(if) = |£|> is non-negative, and F(1) = P(if)* = |£* is

holomorphicin C\{—3—j; j € No} and has simple poles in A = —5—j, j € No.
In fact, from Example 1.4.9, we obtain, for k € Np,

(0%, 1)

0“6
o!

1 1
R *=_ R P=o(=Df Y
A=—(r?fk)/z|§| 2A=—9}S—k|§| 2( ) =t
o|=

0 1k odd,
= ﬂ”/ZA{,S . N

m : keven, k= 2]
For the last equation see Gel’fand and Shilov [104], Ch. I, 3.9, (5°), p. 73; Ortner
and Wagner [219], Ex. 2.3.1, p. 41.
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(b) In this case, the functional equation (2.3.2) is simple and reads as
1
FIEPT = A+ D@+ DIE, (2.3.3)

cf. Yano [304], (2), p. 112. Hence Q(4,£,0) = %An is here independent of &
and A, and b(A) = (A + 1)(A + 5).

As in the proof of Proposition2.3.1, we set F(Ag) = Pf)—,, F(1) in the poles
Ao = —35 —Jj, j € No. Then the equation P(i§) F(A) = F(A + 1) holds for each
A € C, and, therefore, E(A) = F~'(F(})) fulfills —A,E(X) = E(A + 1). On
the other hand, if we apply the inverse Fourier transform to (2.3.2), then we
obtain the Bernstein—Sato recursion formula

O, —id, —ix)E(A + 1) = b(M)E(M). (2.3.4)

(Equations (2.3.2) and (2.3.4) hold in all points A € C where F (1), the analytic
continuation of P(if)*, is holomorphic.) In our case, (2.3.4) reads

— 1P EQ+ 1) = A+ DA+ HEQ), A eC\{-%—jjeNo}.
(2.3.5)

(c) The distributions E(A) coincide with the elliptic M. Riesz kernels introduced
and investigated in Example 1.6.11(b), i.e., E(A) = R_5,. Note that Eq.(2.3.5)
furnishes a new method to derive the fundamental solutions E(—k) of the
iterated operator (—A,)¥, k € N, from the fundamental solution E(—1) of —A,,
if b(=2), ..., b(—k) do not vanish, namely

O(—k,—id, —ix)  Q(=2,—id, —ix)
b(—k)  b(=2)

E(—k) = E(-1). (2.3.6)

Hence, if nis odd, or k € N, k < %, then Example 1.3.14(a) and (2.3.6) imply
that

T2 —k

EER = gy

|x|2k—n

is a fundamental solution of (—A,,)*. This result agrees with (1.6.19).
Similarly, if the numbers b(—j) do not vanish for / + 1 <j < k, then

Q(—k. —id. —ix)  Q(—1—1,—id. —iv)

EER === b(—1—1)

E(=D),

and this yields for P(d) = —A,, neven, [ = g, k> 1,

(2 —1)!

S T T

(_% |X|2)_n/2+kE(—%)



2.3  Temperate Fundamental Solutions 137

in agreement with (1.6.20). Note that—in both cases—formula (2.3.5) allows
to derive the fundamental solutions E(—k) of the iterated operators P(9)* from
E(—1) respectively from E(—7) simply by multiplications with powers of |x]|.

O

Let us consider now, more generally as in Proposition 2.3.1 and Example 2.3.2,
powers of complex-valued polynomials.

Proposition 2.3.3 Given a polynomial P(§) = Z‘Q‘Sm au€*, a, € C, £ e R", of
degree m and a measurable bounded function k : {§ € R"; P(§) # 0} — Z, we
set

0 :P() =0,

P = . . '
exp(A[27ik(§) + iarg(P(£)) + log|P(§)[]) : P(§) # 0,

where 7 = |z| - €l¥2% z € C, with argz € (—m, 7).
Then P(§)* € LI (R") forall A € C withRe A > —%, and the mapping

loc
{AeC;Red>—1} — S'(R") : 1 +—> P(E)"

is well-defined and holomorphic.

Proof Obviously, for Re A > 0, the function

|P(§)*| = exp(—Im A[27k(£) + arg P(£)]) - |P(£)[*<*

is polynomially bounded and thus yields a temperate distribution. Furthermore, if
¢ € S(R"), then

0. P@") = [ 90 P st

analytically depends on A € C with ReA > 0.
For negative real values of A, we use the estimate

IC>0:YN>0:Ve>0: / Y(e — |P(€]) dE < CN""'e!/m
lEl<N

to conclude that f\$\<N |P(£)*| d§ is finite for Red > —% and grows at most
polynomially if N — oo, cf. also Ricci and E.M. Stein [233], Prop., p. 182. O

Example 2.3.4 Let us first observe that Bernstein [12], p. 273, Thm. 1’; Bjork [15],
Ch. 1, 5.7, 5.8, prove the existence of polynomials Q, b for arbitrary complex-valued
polynomials P(i§) such that the functional equation

O(A, £ 0)P({&)* ! = b(A)P(iE)* (23.2)
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holds in the algebraic sense, i.e., if P(if)* is considered as a symbol which is subject
to the relations P(i§)P(i§)* = P(i§)*" and 3;P(E T = (A + DP(E)" - .
For non-negative polynomials P(if), we set k() = 0 in Proposition2.3.3. Then
the algebraic validity of (2.3.2) implies that (2.3.2) also holds in S’(R"), first
for large Re A since there P(i§)” is sufficiently often differentiable, and then, by
analytic continuation, for all complex A unless A is one of the poles of F(1) =
P(i£)*. For complex-valued polynomials, the relation between the algebraic and the
distributional validity of (2.3.2) is more complicated. Let us illustrate this fact in the
simple case of the Cauchy—Riemann operator P(d) = 9d; + i05.
For P(i§) = i) — &, the equations

(& — &M =i + D& — &)* dy(i61 — £)'! = —(A + D) (i& — &)
hold in the algebraic sense. Let us define the distribution-valued function
F:{leC;Red>—1} — S'(R?) : A —> (if; — &)* = etloeliéi=h)

where log(i§; — &) = log|é| + iarg(i§; — &), ie., we choose k = 0 in
Proposition 2.3.3. Then, due to the discontinuity of F(A1) along the half-line & =
0, & > 0, the jump formula (1.3.9) yields

I (F(A+ 1) =i(A + DF(X) —2isin(A7)8(&) ® Y(E2)E T,

(2.3.7)
and BQ(F(A + 1)) =—-AX+ DFQA)

for ReA > —1. Since F(0) = 1 and thus 9, (F(O)) = 0, the second equation in
(2.3.7) shows that F(1) can analytically be extended to the whole complex plane.
Therefore (2.3.7) remains valid for all complex A if Y(Ez)éz“'l is replaced by ézﬁ'_"l

(Note that sin(kn)ézlrl also depends holomorphically on A.)
In particular, for A = —2, we obtain

31 (F(=1)) = —iF(=2) — 278, (F(=1)) = F(-2),
and hence (9; + id,) (F(—1)) = —27ié, i.e.,

1

(01 +iaz)m =34,

which is in accordance with Example 1.3.14(b). ]

We consider next quasihyperbolic operators, for which the continuation of A
P(i£)* to the whole complex plane can be achieved without poles, and without the
use of Bernstein’s equation (2.3.2).
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Proposition 2.3.5 For P(d) € C[0;,...,0,] and N € R" \ {0} suppose that
VYo >0:VEeR": P(i§ +0N) #0, (2.3.8)

i.e., P(0) is quasihyperbolic in the direction N with oy = 0, see (2.2.3). Further-
more, let the function

X:=R"x(0,00) — C: (£,0) —> log(P(i§ + oN))

be determined by the choice of a value at (§,0) = (0, 1) and continuous extension
in the simply connected space X .
Then the distribution-valued function

F:C— SRY:A+— F\) = ;ig%) P(i§ + oN)*
is well-defined and entire. Furthermore, E()) := F~! (F()k)) € S'(R") fulfills
VA e C:suppE(A) C {xeR"; x-N >0}
and Z’k € Ny : P(O)'E(—k) = §, i.e., E(—k) is a temperate fundamental solution of
P(9)".

Proof

(a) An appeal to the Seidenberg—Tarski lemma, i.e., Lemma 2 in Hormander [135],
p. 557, furnishes that

|P(i& + oN)| > co*(1 + |E> + 02)~* (2.3.9)

for some positive constants ¢, k and all £ € R” and 0 > 0. This implies that
P(iE+oN)* €S (Rg) forall A € Cand o > 0. Furthermore, also the boundary
value for o Y\ 0 exists in S’(Rg‘) due to Atiyah, Bott and Garding [5], pp. 121-
122; Hormander [139], Thm. 3.1.15; Zuily [309], Exercise 52, p. 93. Hence F
is well-defined.

Let U be the open complex right half-plane U = {z € C; Rez > 0} and
consider

T:UxC— S'R"):(z,A) —> P(if + zN)*.
Then T is holomorphic since this holds for the integrals
[o@rie e gpes.

due to the estimate (2.3.9) and Lebesgue’s theorem. By Morera’s theorem, we
conclude that F(A) = lim,~\ o T(0, A) is entire.
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(b) Let us next show that E(A)|y = 0if H := {x € R"; Nx < 0}. For that reason,
let us define

G(z,A) == eZNX}'E_l(P(iS + ZN)*),

which is a holomorphic function on U x C with values in D’(R"). Since
G(z,A) = G(Rez, A), this implies that G is independent of z. For A € C fixed,
we then obtain

E() = FH(FO) = lim 7 (P(i§ + oN)})
= (y@ "V F (PG + oN)Y) = G(1.2).
This implies
E(A) = lim G(o,1) = lim [e”Nxal co T FY(P(iE + aN)A)] = 0inD'(H)

since e®™o’ converges to 0 in £(H) for each [ € N and the set {o~'P(i§ +
oN)*; 6 > 1} is bounded in &’ (Rg‘) for suitable [ € N. (More precisely, if
ReA > 0, then we can choose any [ > m - Re A if m = degP; for ReA < 0,
one can either use the estimate (2.3.9) or argue by analytic continuation from
the case Re A > 0.)

Finally, P(i§)* - F(—k) = 1 implies P(d)*E(—k) = §, and hence the proof is
complete. O

Example 2.3.6 Let us investigate the entire function A +— E(A) = F _I(F ()L))
in Proposition2.3.5 in the particular case of the wave operator P(d) = 3*> — A,.
(Note that E(—1) has already been calculated in Example 1.4.12 for n = 2, 3 and in
Example 1.6.17 for general n.)

P(9) is (quasi)hyperbolic in the direction N = (1, 0) since

P(i(z.£) + oN) = P(it + 0,i§) = (it + 0)> + |]* #0

foro > 0 and (7, &) € R"™"!. We observe that (it + 0)* + |£]?> € C \ (o0, 0] for
o > 0 and therefore

log P(i(t, §) + oN) = log |P(i(r.£) + oN)| + iarg P(i(r.§) + oN)

is a continuous functionon X = R:,ng x (0, 0o) if we take the argument of P (i(r, &)+
crN) in the interval (—, 7). This yields

li{‘n log[(it + 0)* + [§*] = log |12 - |§|2| +inY(z? — |E*) sign .
o\
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Hence, forRe A > —1, the distributions F(1) = lims\o P(i(‘l,', &) —}—UN)A are locally
integrable and given by

F(A) — |'L'2 _ I%-|2|)L . I:Y(IHZ _ 'L'Z) + Y(‘L'Z _ |§|2) X ei”ASignT:I.

(a) Let us calculate E(A) = JF'F() first by partial Fourier transform, see
Definition 1.6.15.
Foro > 0, ReA < —1 and fixed £ € R”, the function [(it + 0)? + |§|2])k
is absolutely integrable with respect to t, and its inverse Fourier transform is
given by

1 o0

F N ([Gr +0)* + |§|2]*) e [(it + 0)* + |f§|2]A dr

27 oo

e—at o+ioco
/ W+ €Y dp.
o

271 Jy—ico

The last integral is a well-known inverse Laplace transform, see Badii and
Oberhettinger [7], Part II, Eq. 4.27, p. 240, which gives

F ' ([Gr +0)* + ISIZ]A) =e 'Y (1) FE/—EA) (@)I/ZH J-1 /-2 (|ED).
Hence
_ T 20E]\ 1/2+A
Ed) = T(=1) e I[Y(t)(T) J—l/z—x(lé‘lt)]- (2.3.10)

For Re X < —%, the right-hand side in (2.3.10) continuously depends on
t, and we can fix ¢ in order to perform the inverse Fourier transform with
respect to £ by means of the Poisson—-Bochner formula (1.6.14). This yields,
forRe A < —n,

ﬁ21/2+ky(t)|x|—n/2+l [ele) A D)2
ST, £ o) oy ) dp

B 221+1y(t _ |x|)(t2 _ |x|2)—k—(n+l)/2
© g eDAT (=) (=4 - o5

EQ) =

(2.3.11)
by Gradshteyn and Ryzhik [113], Eq. 6.575.1, p. 692. Note that the right-hand

side in (2.3.11) is locally integrable for Re A < —%, and hence the same is

true for E(A) and (2.3.11) holds for Re A < —% by analytic continuation.

Let us remark that Z; = E(—%) is traditionally called hyperbolic Marcel
Riesz kernel, and that (2.3.11) is also given in Schwartz [246], Eq. (I, 3; 31),
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p- 50; Atiyah, Bott and Garding [5], (4.20), p. 147; Dieudonné [59], (17.9.4.5),
p- 267; Riesz [234], p. 156; Riesz [235], p. 4.

As observed already by M. Riesz, the “composition law” Z * Z, = Z, 1,
holds for all A, u € C. In fact, Z;,Z, € Dy = {T € D'(R"*!); suppT C I'}
if T is the forward wave cone I' = {(#,x) € R"*!; ¢ > |x|}, and hence Z, Z,
are convolvable by support, see Example 1.5.11. Furthermore, for Re A < 1, we
have Z, € D/Lz (since F (—%) is a polynomial times an L?-function), and hence
Zy * Z, = Zyy+, holds by the exchange theorem Proposition 1.6.6 (5). This
relation then persists for all complex A, o by analytic continuation.

Note that E(—k), k € N, is the only fundamental solution of the hyperbolic
operator (37 — A,)* with support in the half-space ¢ > 0, see Hormander [138],
Thm. 12.5.1, p. 120. If k > %, then E(—k) is locally integrable and, according
to (2.3.11), given by

21_2kY(l‘ _ |x|)(t2 _ |x|2)k—(n+1)/2
(k— D! (=D (k — 1)

E(—k) = (23.12)

For k < % we obtain the fundamental solution E(—k) by analytically

continuing E(X), ReA < —”2;1, in (2.3.11) since A — E(A) is entire. For
t # |x| and k = 1, the result coincides with the formulas in (1.6.26), (1.6.27).

(b) A second evaluation of the inverse Fourier transform of F(A) employs the
Lorentz invariance and the homogeneity of F(4), which properties are passed
onto E(A). Since, furthermore, supp E(A) is contained in the half-space {(¢, x) €

R"*!; t > 0} by Proposition 2.3.5, we conclude that
Vi eCwithRed < =221 :3c € C: E(L) = cY(t — |x|)(# — |x|) ™+ TD/2,

Finally, in order to determine the constant ¢ = c(A), we use formula (2.3.10)
for Re A < —n, and we obtain

c=EQ)1,0) = F(—T% /Rn(2|§|)1/Z+AJ—1/2—A(|§|)dé

23/2—}—/\—}1 [els) L2+it
= - r "J_1/2-2(r)dr
22T (=)L () Jo /
22A+1

m DL (=) (=2 — 251

Therefrom (2.3.11) follows for Re A < —% by analytic continuation.
(c) Let us eventually calculate E(A1) by means of an improved version of the so-
called Cagniard-de Hoop method, see de Hoop [132], Achenbach [2].

IfReA < =2t and ¢ > 0, then [(it + 0)* + |§|2]l € Ll(RZ,ng) and hence
E(A) is given by the following absolutely convergent Fourier integral (see the proof
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of Proposition?2.3.5):

ot o
EA) = G(o,A) = # /_OO eirt (/ e[ (it + 0)> + |§|2]*dg)df
The substitution p = it + o then yields

1
EQ}) = " U(p) dp.
2 mi Rep=0o

where U denotes the analytic function
U:{peC;Rep>0}—SR):pr— }'5_1((p2 + ISIZ)A).

Let us represent U(p) by a one-fold integral. If p > 0, then the scale
transformations § = p-n, n = (s,7) € R"and ¥/ = /1 +52¢ € R"! yield,
due to the rotational symmetry of U(p), the following:

pZ)H—n

@nm)"

_ p2/\+n
(27)"

U(p) = [ P14 |nl2T d
R”

o0
/ S e ds-/ (1+[¢H*de.
oo Rr—1

The inner integral can easily be evaluated:

(n—1)/2

(” (5

A =D/2P (=) — 221y
T(—})

/ 1+ ¢ de = / 1+ A 2dt =
Rn—l

Applying Cauchy’s integral theorem we next deform the integration contour for
s from the real axis to one along s = iv £ 0, 1 < v < oo. This yields

%)
/ eip|x\s(1 + SZ)/\-Hn—l)/Z ds
—00
00
= —2sin(7 (A + %))/1 e PRV (p? — )AHE=D/2 gy

2 00 £ A+ (n—1)/2
= B sin(7(A + 25+ )/ e_”’(— - 1) dr
X |x]

|x[?
Making use of the complement formula for the gamma function we obtain
2A+n

= - - vz
2=Ig=D2T ()T (A + )| l?
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where L;(f) = fooo f(®)e™P" dt denotes the Laplace transform of f. Due to

20+n __ 1

—2A—n—1
p = m Et(Y(t)f ),

the convolution theorem for the Laplace transformation then yields

1
= 2 DAL ()]

Y(r—|x|) ! o1 { S A+(n—1)/2
L‘,( —— — /(t—s) Bt o) ds ).
L(=24 —m (A + =) Jiy |x]

The definite integral therein is evaluated by means of Grobner and Hofreiter [115],
421.4,p. 175:

Ulp)

Y(t— |x]) L =2t
[(=2A —n)T(A + =H) M(t )

N
|x]?

( §2 )k+(n—1)/2

_ 2Py — |x])

= (P — )+ D/2,
r(—A-— Tl)

Hence

ZZA—HE,«(Y(Z‘ _ |x|)(t2 _ |x|2)—k—(n+l)/2)
n— n—1
A =D/2F (= Q)T (—A — 551

Ulp) =

3

and, due to U = L(E ()L)), we infer that

22/1+ly(t _ |x|)(t2 _ |x|2)—l—(n+l)/2

B = — AT T (<A = 1y

forRe A < — ”'2H in accordance with (2.3.11). O

Example 2.3.7 Let us generalize the last example so as also to cover the convolution
group E(A) of the Klein-Gordon operator P(d) = 92 — A, + m?*, m > 0.

Similarly as in Example2.3.6 (a), we use partial Fourier transformation with
respect to f and x. As above, we have E(A) = F~! (F()L)) where

FO) = |2 = 6P+ m?[* - [YOEPR = 7 4 md) + ¥ (22 = [¢2 = m?) - ebeisien]
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and

2 2N\ 1/2+A
F N FQ)) = \1/;1;(;) (2 |‘§|t tm ) Jo122(tVIEP + m?), Red <0.
(2.3.13)

Hence, applying the Poisson—Bochner formula (1.6.14) yields, for Re A < —n,

ﬁ21/2+k Y(t)|x|_”/2+1
T(—A) (2 )"/ 2412+

o0
X / p"2(p* + m) Ay (plx]) - Ty jpa (14 P2 + m2) dp.
0

Finally, Gradshteyn and Ryzhik [113], Eq. 6.596.6, p. 706, furnishes

EQ) =

2A—(n—1)/2y(t _ |x|)m)»+(n+l)/2 (tz B |x|2)—k/2—("+1)/4x
7 (=D/2T(=}) (2.3.14)

X Jp—@rny2(my/2 — |x]?).
As in Example2.3.6, formula (2.3.14) holds for ReA < —% by analytic
continuation.

In particular, forn = 2 and A = —1, we obtain the fundamental solution of the
Klein—Gordon operator 3,2 — Ay + m? in two space dimensions:

E(-1) = ZWA cos(m+/7 — |x2) € LL (R})). (2.3.15)

E() =

(As always for hyperbolic operators, this is the only fundamental solution with
support in the half-space ¢ > 0.)
For n = 3, the calculation of E(—1) is slightly more difficult since the assumption

Rek < —% is not satisfied for A = —1. From the equations

3F(A+1)=-2(A+ DrF(A) and E})=F '(F(L)),
we deduce tE(A + 1) = —2(A + 1)9,E(A). This implies, forn = 3 and ¢ # 0,
E(-1) = > SE(-2) = P 7 T)]

_ 5(t— [x) — mY(r— |x|)

At dn )P — a2

[Y(t
(2.3.16)

Ji(my/2 = |x]?).
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(For the definition of % 8(t— |x|), see Example 1.4.12.) Since E(A) € C(Rtl, D’(R”))
for ReA < —% by Eq.(2.3.13), formula (2.3.16) yields a representation of the
fundamental solution E(—1) of the Klein-Gordon operator 9> — A3 + m? which
is valid in D’ (R%).

In general, E(—k) is the unique fundamental solution of the iterated Klein—
Gordon operator (3> — A3z + m?)*, k € N, with support in the half-space t > 0
according to Proposition 2.3.5. O

Example 2.3.8 Let us next consider quasihyperbolic operators in R**! of the form
P(d) = d; + R(94, ..., d,), which contain as particular cases the heat operator and
the Schrodinger operator.

(@) If N = (1,0,...,0), then the condition (2.3.8) of quasihyperbolicity takes the
form

VYo >0:VY(r,§) e R" 1 o 4 it 4+ R(i§) # 0,
which is equivalent to
inf{Re R(i§); £ € R"} > 0. (2.3.17)

If condition (2.3.17) is satisfied, then the numbers z = o +it 4+ R(i§) belong
to the complex half-plane Rez > 0 for 0 > 0, (z,£) € R""!, and we can
take the usual determination of z* for A € C. Thus, by Proposition2.3.5, the
convolution group of P(9) is defined by

EQ) = F'(F() = lim F (o + it + R(#)"].

For ReA < 0 and z € C with Rez > 0, the function ¢ — Y(r)e ¥r*~! =
e t]_)‘_l is integrable and its Fourier transform is

o0
]_‘r(e—ztt;)»—l) — / e—(z+it)tt—k—l dr = F(—A)(Z + i‘C))L.
0

Hence

F(@+int) = Fi— ) I (2.3.18)

Note that (2.3.18) holds for each A € C since the left-hand side is obviously
entire in A, and so is the right-hand side if one takes into account that tjrl_l and
I'(—A) have both simple poles at A € Ny, cf. Example 1.4.8.
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By partial Fourier transformation, we conclude that

EG) = 7o F () = 7o (tim | S e
o =7 ) =77 (1 S )
. (2.3.19)
. .
_ (RGN
]:5 (e ) F(—A)

We observe that the function
R — S'(R}) : 1 — F; ' (e7F09)

is infinitely differentiable and hence can be multiplied with t:f—l/ r'A).

Let us mention that the convolution equation E(X) x E(u) = E(A + p)
holds generally for all complex A, p if P(d) is quasihyperbolic, see Ortner
and Wagner [218], Prop., p. 147. However, in the non-hyperbolic case, the
convolvability of E(A), E(u) is more difficult to establish; it relies on the fact
that E(A) € Djy o, ® O¢(RY), where Dy = {T € D'(R"); suppT C
[0, 00)}, cf. Ortner and Wagner [219], Section 3.7, p. 114, and (’)’C(R") =
Nken(1 + [x]*) 7D} (R"), see Schwartz [246], p. 244.

In particular, the equation E(k) * E(—k) = 8, k € N, shows that

tl;_—l

E(h) = F ) oty

is a fundamental solution of (8, + R(a))k. As we will see in Proposition 2.4.13
below, this fundamental solution is the only one which is temperate and vanishes

fort < 0.
(b) Let us specialize the above now to the heat and the Schrodinger operator,
respectively.
If we set R(§) = —|£|%, then we obtain the convolution group of the heat

operator 9, — A,. From (2.3.19) and (1.6.24), we obtain

1 (o lEP ! e h?/n) t;n/Z—l—A
E A, = - - 0. _

Hence the locally integrable functions

Y(t)t—n/2—1+ke—\x|2/(4t)
(k — 1))(4m)n/?

E(—k) =

are the fundamental solutions of (d; — An)k, k € N, cf. (1.3.14) and
Example 1.6.16 for the case k = 1.
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For the Schridinger operator 3, — i, we have R(i§) = i|€|* and

eilx2/(4n—inm/4 t:_n/Z—l—k

. 1,
E\) = F-V (e Py . £ = , 2.3.20
W=7 1oy (=) (4m)"72 (23:20)
see Example 1.6.14.
The multiplication in these products is understood as explained in (a), i.e.,
for ¢ € DRI, we set

——1

(¢ E(l)) (47t) n/2 —1m'[/4 _"/2/¢(t x)e‘|x‘2/(4’)dx F( A))

Note that E(A) is not locally integrable for ReA > —Z. In particular, the
fundamental solution E(—1) of the Schrddinger operator d; — iA,, is locally

integrable only for » = 1 and else is given by the iterated, not absolutely
convergent integral
e—irm/4 [od) dr
JE(=1)) = t, ilx|/ (41) dx ,
e A o

cf. Treves [274], 6.2, p. 45.
(c) Following S.L. Sobolev, let us finally consider the quasihyperbolic operator d, —
010,03 and construct its fundamental solution E. By (2.3.19), we have
E = ]:E—l(e—iélézézt) SY(0).
Since the mapping

R?lfz — S’(Rés) 2 (61,8) — e 16263

is continuous, we can apply the partial Fourier transform (see Definition 1.6.15),
and we conclude that

]:é_l (e—iflfzfst) — .7:5—1152.7:5—}1 (e—iflfz&r) — ]:g,l%_2 [8()63 _ téng)]-
Note that, for fixed t > 0,
8(xs — th1£2) € C(RY, ,,. S'(RL)) NS'(RY (, )
and also

8()(3 - tngZ) € C(R;lm’ S/(Rél Ez)) n S/(REI &, Xz)
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Therefore we can fix now x3 in order to evaluate the partial Fourier transform

El éz [8 (x3—1&; éz)]. This inverse Fourier transform of a delta distribution along
the hyperbola £, = %2 has already been calculated in Example 1.6.18 up to a
linear transformation. There we have shown that

_ Y(ly2| = Iy1])
F Y080 =15 =) = == == Ko(my3 = 37)

Y —
+—(|yl§|;n y21) [—No(m,/y% —y3 ) +isigny;-Jo(my/y; —)’%)] € Lioe(R}).

see (1.6.28).
By Proposition1.6.6 (1), 7~ YT o A) =
S'(R"), A € G1,(R). Hence, if we set

|deltA|(]-"_1T) o A7!T for T €

1
T=Ym)s(m —nm—m’) and  Af = 5(51 +6.6-8) =
we infer

Y(—x1x2)
272

[—No (ZmM) + isign(x; + x2) - Jo (ZmM)]

F Y (E + )86 —m?)) =
4 Y(xle)

Ko(2my=xix;)

Adding this with the distribution reflected at the origin yields

Y( Xl)Cz) Y(-xlx2)

F (& —m?) = Ko(2my=xix2) —

N() (2m. /X1X2 )
Finally, upon distinguishing the cases x3 > 0 and x3 < 0, we arrive at

E=YOF;,[805 - tE18)]

Y (—x1x2x3)

= Y(t)[T KO(Z —XIXZX3/I) — M

2t N()(Z xleX3/t):|.

2.321)

Note that—in contrast to the Schrédinger operator—the fundamental solu-
tion E in (2.3.21) is locally integrable. This was observed already in Sobolev
[255], p. 1247, where E is derived by introducing the similarity variable ===

and by performing the “ansatz” E = Y(TT)A(X"?”). The ensuing third- order
ordinary differential equation for A splits and yields Bessel functions, see
Example2.6.4 below. Note that two errors with respect to signs should be
corrected in Sobolev’s final result, see Sobolev [255], (8), p. 1247. A further
derivation of the formulain (2.3.21) is given in Ortner [205], see Prop. 6, p. 158.
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We also remark that Sobolev’s operator d, — d;0,03 serves as a prototype of
g-hyperbolic operators (here g = %) introduced and studied in Gindikin [107],
pp. 6, 71. O

Let us next investigate fundamental solutions of homogeneous differential
operators. For the particular case of elliptic homogeneous operators, we refer to
Hormander [139], Thm. 7.1.20, p. 169.

Proposition 2.3.9 If P(0) = Z‘a‘:ﬂ aq0” is a linear differential operator which is
homogeneous of degree m € N, then there exists a fundamental solution E which
is associated homogeneous of degree m — n. More precisely, if m < n, then E =
F-|x|™™ and if m > n, then E = F - |x|"™ + Q(x) log |x|, where F € D'(8"!)
and Q is a homogeneous polynomial of degree m — n. (Recall that (¢, F - |x|*) =
(¢ (tw), F(w)), £57""), X € C, ¢ € D(R"), see Example 1.4.9.)

Proof

(a) Let us first consider the following division problem on the sphere:
Pliw)-U=1, UeD (S,
cf. Gérding [89], p. 407.

Without restriction, we may assume that P(N) # 0 for N = (0,...,0,1).
We employ the stereographic projection

p:R7T— ST\ N} g — Cn > =1

1
1+ [n?
in order to transform the equation P(iw) - U = 1 into

P27, |0 = 1) -1"(1 + ) ™"p*(U) = 1.

By Proposition2.3.1 and by the identification of temperate distributions on R~
with distributions on S"~! (see Schwartz [246], Ch. VII, Thm. V, p- 238), we
obtain U € D'(S""!) which solves P(iw) - U = 1 on S"~! \ {N}. Finally, near
N, U is uniquely determined by P(iw) - U = 1 due to P(N) # 0.

(b) If we define, as in (1.4.3),V =U - |§]™ € S'(R") by

(. V) = ((p(tw), U(w)), 5" "), ¢ e SR,

then P(if) -V = 1 holds in S'(R"). Hence E = F~!V is a fundamental solution
of P(d).

(c) If m < n, then V is homogeneous in R" of degree —m and hence E is
homogeneous of degree m — n. By Gérding [89], Lemmes 1.5, 4.1, pp. 393,
400, or Ortner and Wagner [219], Thm. 2.5.1, p. 58, E = F~V can be cast in
the form E = F - |x|™" for some F € D'(S"™").

(d) If m > n, then V is still homogeneous in R” \ {0}, but can cease to be
homogeneous in R”, cf. Examples1.2.10, 1.4.10 for the case of m = n.
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Generally, by analytic continuation, U - |£|* is homogeneous of degree A where
this function of A is analytic, i.e. for A € C\ {—n,—n —1,...}. In the possible
poles A = —m, m > n, we set

1
— C1EIAY — (1) PN o
R:= Res (U-[£") = (-1) > — (0%, 0) 55, (2.3.22)
o(GNg
la|=m—n

see Example 1.4.9, and we have

R
frd . A frd 1 . A_—
V= P = lim (U g - o]

From this we conclude that

V(et) = lim [W-[)(c8) - c—mHim]

R
. —m 7 . A : A —m . A
=c AE)n_lm[U |&] Tom m] + lgn_lm(c MU - €|

=c¢ "V 4+ c "(logc)R

for ¢ > 0, cf. Ortner and Wagner [219], (2.5.1), p. 59.

Hence V is associated homogeneous of order min R", i.e., Ve > 0 : V(c€) =
¢V + ¢7"(log c)R with R homogeneous. Due to Proposition 1.6.6 (1), this
implies

E(cx) = " "E — " "(logc) - F 'R, ¢ >0, (2.3.23)

where Q := —F 'R is a homogeneous polynomial of degree m — n. By the
structure theorem Prop. 2.5.3 in Ortner and Wagner [219] (cf. also Grudzinski
[119], Thm. 4.25°, p. 178), we conclude that E has the representation E =
F - |x|™™™ + Q(x) log |x| for some F € D’(S""!). This completes the proof. O

Example 2.3.10

(a)

(b)

Reconsidering the case of P(3) = (—A,)*, let us comment on the structure of
the fundamental solution E given explicitly in (1.6.19) and (1.6.20). Indeed, E is
homogeneous if the degree m = 2k of P(d) satisfies m < n. On the other hand,
if m > n and n is even, then E is equal to a polynomial times a logarithm, see
(1.6.20). However, if n is odd, then there is no logarithmic term present since
the residue R in (2.3.22) vanishes due to (w“, 1) = 0 for « € Nj of degree
|a| = m —n = 2k — n, this degree being odd.

Similarly, for a homogeneous quasihyperbolic operator, the logarithmic term
disappears if the solution U of the division problem P(iw) - U = 1 is chosen
as in Proposition2.3.5, i.e., U = lim,\ o P(iw + oN)~™'. Then V = U - [§|™™
must be homogeneous. In fact, as we have seen in the proof of Proposition2.3.5,
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lim,no P(if + oN)* is entire and coincides with U - |£|* for ReA > 0. Thus
also A — U - |£|* is entire and Resy—_,, U - |€]* = 0. O

2.4 Uniqueness and Representations of Fundamental
Solutions

In the following, we investigate properties of distributions which imply uniqueness
for fundamental solutions, namely

(i) growth and decay properties,

(i1) support properties.
We first consider systems with non-vanishing symbol, cf. Petersen [228], Lemma

8.6 B, p. 296; Szmydt and Ziemian [267], Prop. 2, p. 219; Gindikin and Volevich
[108], p. 16, [109], p. 58, for the scalar case.

Proposition 2.4.1 Let A(3) € C[0]™ be a quadratic system of linear partial
differential operators in R". Then the following conditions are equivalent:

(1) A(d) has one and only one two-sided fundamental matrix in S'(R")™!;
(2) A(9) has a two-sided fundamental matrix in O(R")™;
(3) A(i&) is invertible for each &€ € R", i.e.,, VE € R" : detA(i§) # 0.

Proof

(1) = (3):  This follows from the fact that
T:=B-e™ e &' (R"™\ {0}
solves the homogeneous equation A(9)T = 0 if detA(i&) = 0 and B € C*/\ {0}
satisfies A(i&)B = 0.

(3) = (2): Due to the Hormander—Lojasiewicz inequality (see Hormander
[135], Lemma 2, (2.5), p. 557; Hormander [138], Ex. A.2.7, (A.2.6), p. 368),
the assumption in (3) implies that A(if)~™' and its derivatives have at most
polynomial growth for |§| — oo, i.e.,

A(IS)_I e OM(R”)ZXI,

cf. Schwartz [246], p. 243, for the definition of the spaces Oy (R"), O¢(R") and
the equation Oy (R") = FO(R"). Hence

E = Ay F " (det(A(i£)) ") € OL(R™™!

is a two-sided fundamental matrix of A(0).
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2= 1): IfE € O,(RY)* and F € S'(R")* are two-sided fundamental
matrices of A(d), then they are convolvable and hence

E=E*A@)F = (ExA®)8§)*F =F.

The proof is complete. O

Example 2.4.2 As in Example 1.4.11, let us consider the metaharmonic operator
P@) = A,+ A, A € C\ [0, 00). Then condition (3) in Proposition 2.4.1 is satisfied
since P(if) = A — |£|* # 0 for & € R". The fast decreasing fundamental solution E
of P(9) is then given by

An/4—1/2

E = —idyW P H L (VA)., di) = Sy

where +/A is defined in the slit plane C \ [0,00) by 0 < arg+v/A < 7, see
Example 1.4.11. (Note that H](jl) (z) decreases exponentially if |z7] — oo with
Imz > 0.)

In particular, for A = —p, p > 0, the unique temperate fundamental solution
of (A, — )k, k € N, is given in terms of MacDonald’s function, see (1.4.9) and
Example 1.6.11(a). O

Example 2.4.3 As another application of Proposition2.4.1, we consider the time-
harmonic Lamé system

A(V) = —pt’l3—B(V),  B(V):=pAsls+ (A +w)V-V'.

As in Example2.1.3, A, u > 0 denote Lamé’s constants. Then the system A(V)
arises from the one in formula (2.1.2) by partial Fourier transform with respect
to the time variable . Hence we obtain, for fixed t > 0, the following locally
integrable fundamental matrix F of A(V) by partial Fourier transform applied to the
fundamental matrix £ in Stokes’s formula (2.1.7):

FeFE— Llx)> —xx” eieh/e xx! —itltl/c,
A p|x|? 4 (A + 2u)|x|3
1 3xx! : it|x| : it|x|
_ —irlx|/ MY it /ey i}
+ ; 2(13 2)[e ””ﬂ(1+ ) e“f(1+ ‘ )]
drp|x]Pt x| Cp Cs
2.4.1)
Herein, ¢, = \/% ,Cp = H# are the velocities of the shear and pressure waves,
respectively.

By analytic continuation, with respect to p, (2.4.1) yields a fundamental matrix
of A(V) for all p € C\ {0}. For p € C\ [0,00), let us choose ,/p such that
Im /p < 0,ie,Im(c;"), Im(c,") < 0. This implies that F € O(R?)> and, by
Proposition2.4.1, F is the only temperate fundamental matrix if p € C\ [0, co) and
/P as above.
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For p > 0, which is the physically relevant case, there exist many temperate
fundamental matrices. If we take the real part in (2.4.1), we obtain

I)x|? — xxT T|x xxT cos(z|x|/c
e B ) et
mplx|? Cs 4 (A + 2p) x|
1 3xxT T|x| T|x|
I — )[ (—)— ( ) 242
+ e (= e, )~ (242

e (TR T
+ tlxl(c, sin( — ) —¢; sin .
cp Cs

For (2.4.2), see Mura [185], (9.40), p. 65; Norris [190], (B3), p. 187; Ortner and
Wagner [217], p. 331. O

Let us generalize now Proposition2.4.1 to symbols with finitely many real
zeroes, cf. Zuily [309], Ex. 82, p. 147; Gel’fand and Shilov [106], Ch. III, Section
2.4, p. 135; Friedman [85], p. 98.

Proposition 2.4.4 Let P(d) be a linear differential operator such that the set
Z = {& € R" P(i§) = 0} is finite. Then two temperate fundamental solutions
of P(0) differ only by an exponential polynomial dez O¢ (x)e™, where Oe(x) =
Z\a\sm agox® with m € Ny and agy € C.

Proof This is evident by Fourier transformation: If T € §” and P(9)T = 0, then
P(i&)(FT) = 0 and thus supp(FT) C Z. Therefore, by Proposition 1.3.15,

FT = 2m)" ) 0:(id)é.

tez

and hence T = Zsez Qs (x)e™e. O

As an example, let us first investigate temperate fundamental solutions of
ordinary differential operators, cf. Proposition 1.3.7, Example 1.3.8.

Proposition 2.4.5 Letm € N, o € N and A,..., A, € C be pairwise different.

>
Let us set signt = { ! 1 ; ; 8’ } . Then the ordinary differential operator
"d a+1
o= [1(4 )
hal) E oM

has the following temperate fundamental solution:

Y(—xsign(Re 1)) sign(—Re 1)) (i)“’ (e*-f" 1o - Ak)—ak—l)'

E =
: ! oA o

J

m

1
(2.4.3)
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E is uniquely determined in S'(R") up to an exponential polynomial of the form

aj
)L.
Z chkxke Al Cjik € C.

Re ;=0 k=0

Proof Similarly as in the proof of Proposition 1.3.7, we first assume that « = 0 and
set

E=Y"Y(-xsign(ReA))aje™*.  a;€C.
j=1

Considering the jump conditions for E as in the proof of Proposition 1.3.7 yields

0 :4k=0,....m=2,

ZalkijIgn(_Rekl):{ 1l :k=m-1,

j=1

and hence g; = sign(—Re ;) ]_[k#(kj — AL

Ifao #0and Vj = 1,...,m : Rel; # 0, then differentiation with respect to
A as in the second part of the proof of Proposition 1.3.7 furnishes formula (2.4.3).
Finally, if the real part of some of the roots A; vanishes, then one uses a limit process.
The uniqueness statement of Proposition 2.4.5 is a consequence of Proposition 2.4.4.
This completes the proof. O

Example 2.4.6 In the simple case of P(%) = d(l_ZZ —A2, 1 € C\ {0}, formula (2.4.3)
yields the temperate fundamental solution

ign(Re A
E = —% [Y(—x sign(Re A))e“ + Y(x sign(Re A))e_“],
which is unique if Re A # 0 and else is unique up to cje** + c,e™**. O

Definition 2.4.7 The operator P(d) = Zlal <m Ga0” of order m with the principal
part P,,(0) = Z‘a‘:ﬂ a,0“ is called elliptic if and only if V& € R"\{0} : P,,(§) # 0.

For this definition, cf. Hormander [139], Def. 7.1.19, p. 169. Note that elliptic
operators are “hypoelliptic”, i.e., each solution u € D’(2) of P(d)u = 0 in some
open set 2 C R” is necessarily C* in 2, see Hormander [138], Thms. 11.1.1,
11.1.10, pp. 61, 67; Zuily [309], Exercise 97, p. 187. Hence each fundamental
solution E of an elliptic operator P(d) is C* outside the origin.

Proposition 2.4.8 Let P(0) be an elliptic operator in R" which is homogeneous of
degree m.

(1) P(d) has a fundamental solution E such that E(x) - |x|™"%" / log |x| is bounded
for |x| = o0, ie.,

AC > 0: Vx e R" with |x| > 2: |E(x)| < C|x|" " log |x|. (2.4.4)
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If m < n then there exists precisely one fundamental solution E satisfying
(2.4.4); if m > n, then E is uniquely determined by condition (2.4.4) up to
polynomials of degree m — n.

(2) For odd dimensions n > 3, there exists one and only one fundamental solution
E which is homogeneous and even.

Proof

(1) We have already shown in Proposition2.3.9 that P(d) has an associated
homogeneous fundamental solution of the form

E(x) = F - [x["™" + Q(x) log |x|

for some F € D’(S"~!) and a homogeneous polynomial Q of degree m. Due to
the ellipticity of P(d), the distribution F is C°°, and hence the estimate (2.4.4)
follows.

On the other hand, a fundamental solution E; satisfying (2.4.4) is necessarily
temperate, and, because of P(d)(E — E;) = 0, we conclude that P(i§) - F(E —
E;) = 0 and that the support of F(E — E,) is contained in {0}. Therefore,
F(E — E}) is a sum of derivatives of § (see Proposition 1.3.15)and E— E; = R
for a polynomial R. Due to (2.4.4), R must vanish if m < n, and R is of degree
atmostm —n if m > n.

(2) If P(0) is elliptic in R" and n > 3, then the order m of the symbol P(i§) is
necessarily even, see Lions and Magenes [167], Prop. 1.1, p. 121. Let us recall
now some steps in the construction of the fundamental solution E in the course
of the proof of Proposition2.3.9.

First, the division problem P(iw) - U = 1 is solved on the sphere 8" !.
Due to the ellipticity of P(d), the solution U = P(iw)™' € C®(S"7) is
uniquely determined. Note that U is an even function on S"~! since m is
even. This implies that the distribution V. = U - |§|™ € D’'(R") is even
and homogeneous of degree —m. In fact, U - |£|* is analytic in A and yields
homogeneous distributions for A € C\ {—n — k; k € Ny}, see Example 1.4.9.
Hence V is clearly homogenous if m < n. In the case m > n, this is also true
since then R = Resy—_,, U - |£|* vanishes due to the fact that U is even:

(1)

Res U - |E1* =
Res U~ = G

(" - V)", U(w))§ = 0

for m > n, m even, n odd. Thus E = F~!V is an even and homogeneous
fundamental solution of P(0).

If E|, E; are two even, homogeneous fundamental solutions of P(d), then
E;, i = 1,2, are both homogeneous of degree m —n and E| — E; is a polynomial
by part (1). Hence E; — E, is an even polynomial of the odd degree m — n
and consequently vanishes. This shows that an even, homogeneous fundamental
solution of P(d) is uniquely determined and completes the proof. O
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The second part of Proposition 2.4.8 goes back to Wagner [292], Prop. 1, p. 1193.

Example 2.4.9 Let us illustrate the uniqueness assertions in Proposition2.4.8 for
homogeneous elliptic operators of degree 2, i.e.,

P@d) = Z ZaijBiBj = V7AV, A=AT e CP,

i=1 j=1

by calculating explicitly the associated homogeneous fundamental solutions
of P(0).

(a) Let us consider first the two-dimensional case n = 2. Then the set

M, ={A € C¥2; A = AT, VTAV is elliptic}
={AeC¥ A=ATand Vx e R*\ {0} : xTAx # 0}

consists of three connectivity components. In fact, x” Ax does not vanish for x #
0if and only if x”Ax = a(x; —A1x2)(x; —A2x2) witha € C\ {0}, A1, 1, € C\R.
Therefore, M, is the disjoint union of the components MY, M;' , M5 given by the
sets of matrices of the form

a( ! _(A‘JFM)/Z), aeC\{0} A, A € C\R,
—(A1 +42)/2 A1da
where either ImA; - ImA; < OorImA; > 0 (i = 1,2) orImA; < 0 (i =
1,2), respectively. Hence Mg , M;' .M are the components which contain the
matrices corresponding to the operators A, (3; —i0,)?, (3; +i0,)?, respectively.
(Note that the set I', in Example 1.4.12 corresponds to the diagonal matrices in
M,, and that ', C Mg)

According to Proposition2.3.9, we obtain a fundamental solution E of
P(3) = VTAV, A € M;, in the form

E=F, V=U@) f|2eS R, Uw) =-— € C>(S").

wTAw
Hence
(#.V) = —((¢(10), (0" A) "), 131), ¢ € S(R?).

Furthermore, according to Proposition2.4.8, E is uniquely determined up to a
constant by the condition

3C > 0:V e R? with |x| > 2: |[E(x)| < Clog|x|.
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As in the proof of Proposition2.3.9, we observe that £ and V are homoge-
neous if and only if

R= ll“\;e_szU. HEE (/sl U(w) da(a)))8

vanishes. In order to evaluate this integral, let us use the gnomonian projection

w = :tﬁ (1), do(@) = %, which projects both the upper and the lower

semicircle onto the real axis R!. This yields

/ do(w) . 2/°° dr
st (@1 — ) (@) — ) S (t—A1)(t—A2)

)0 :ImA;-ImA, > 0,
T | ) mp,-ImA, < 0.
(2.4.5)

Therefore, E and V are homogeneous iff A € M2+ UM, .

Let us finally calculate E. For A € Mg , we can find E by analytic
continuation from the real-valued case. Starting from the fundamental solution
E= % log | x| of A, see Example 1.3.14(a), the linear transformation formula
in Proposition 1.3.19 yields, upon addition of a constant,

1
E=——— log(x"A%x (2.4.6)
4 A/det A &l )

as fundamental solution of VAV for positive definite A € R?*2. (Note that
x"Ax = |+/Ax|.) Formula (2.4.6) is then generally valid for A € M) if we take
into account that x”A%x # ta;; fort < 0 and x € R%. (On C \ ay; - (—o0, 0],
the logarithm can be defined continuously.) Furthermore, +/detA is uniquely
determined if it is chosen positive for positive definite A and continuously
extended for A € M.

If P(9) is expressed in the form P(d) = (d; — A102)(d; — A202), Im A, -
ImA, <0, (and hence A € Mg), then we obtain

sign(Im Ay)
=——"11 A A . 24.7

2iCh — 1) og[(x2 + A1x1)(x2 + A2x1)] (2.4.7)
We observe that the multiplicative constant d(4;, A,) in (2.4.7) preceding the
logarithm is connected with the residue R = Resy——_,(U - |£|*) in the proof of
Proposition2.3.9. In fact, (2.3.23) yields F ~IR = —2d(A1, A,) in accordance
with formula (2.4.5) which furnished

4risign(ImA;)

R =
AL—2X

5, Imkl'lm/\2<0.
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E.g.,if P(d) = 3% + 3% + 2id;0,, then we obtain for a fundamental solution
of P(9)

E=

1 . 1 1 . 2X1x
log(|x|?—2ix1x,) = ——— [— log(|x|*+4x3x2)—i arctan( )]
4«/5]{ g(l | 1 2) 4\/57[ ) g | I 1 2) |X|2

Let us yet give an explicit formula for a homogeneous fundamental solution
E of P(d) = VIAVifA € Mzi. We set, without loss of generality, P(d) =
(01 — A102)(0; — A207) with € = sign(ImA;) = sign(ImA,) € {£1} and
A1 # Ay, and

A
€ X2 1 Ad ) (2.4.8)

E=— .1
27i(A; — A7) Og<x2 + Aaxy

Note that ;‘ii—m € C\ (—00,0] for x € R?\ {0}. We define the logarithm in

the usual way in the slit plane C\ (—oo, 0]. In order to verify (2.4.8), we use the
jump formula (1.3.9) and obtain

(31 — Ajaz) IOg(Xz + ijl) = 27‘[168()(1) ® Y(—XZ), J = 1,2,
and hence

PO)E = — . [(31 —2A202) — (04 —1132)]2ni€5(x1) ®Y(—x2) = 6.

€
27ti(/\1 - Az)

The case of A} = A, € C\ R follows by a limit procedure. We obtain

ign(Im A
mgn(m). X1 ]:5’

p— 2 J—

AeC\R.

The formulas (2.4.6-2.4.8) will be generalized in Proposition3.3.2 below,
where we shall consider R(J) = ]_[;=1(31 — 1;02)%t1 see also Somigliana
[258], Wagner [285], Ch. III, Satz 4, p. 40.

In contrast to the two-dimensional case n = 2, the set

M, ={A € C”"; A = AT, VTAV is elliptic}
={AeC”™; A=ATand Vx € R"\ {0} : xTAx # 0}

is connected if n > 3. Let us prove this fact analogously to the proof of Prop. 1.1
in Ch. II of Lions and Magenes [167], p. 121.
For £, n € R" linearly independent, we first show that

T
B:= (é§ A ETA”) eM).
ETAn n"An



160

()

2 General Principles for Fundamental Solutions

In fact, if n € R" \ {0} is fixed and £ € R" \ Ry, then the zeroes A, A, of the
parabola t — (£ + tn)TA(€ + 1) belong to C \ R and depend continuously
on £. If £ is replaced by —&, then A, A, change their signs, and hence, since
R”" \ Ry is connected for n > 3, we musthave Im A; - Im A, < 0, i.e.,B € Mg

If A € M, and, without loss of generality, a;; = 1, then this implies éTAg S
C\ (—o0, 0] by part (a). Hence A can be joined in M,, to I, by means of the path
tA+ (1 —0l,, 0 <t<1,andthus M, is connected.

If A = I,, then the unique homogeneous fundamental solution of P(d) =
VTAV = A, is given by

e
— (2) |x|2—n
(2 —n)2m"/2
according to Example 1.3.14(a). A linear transformation in Gl,(R) then yields,
by Proposition 1.3.19, the homogeneous fundamental solution E of P(d) =
VTAV for real-valued positive definite A:

')

E=— 2 _
(2 —n)2nn/2

(det A)"=I/2(xT A2dx)=n/2+1 (2.4.9)

Finally, (2.4.9) remains valid by analytic continuation for each A € M,, if the
values of +/det A and of v/ xTA%x are determined by continuity.

To illustrate formula (2.4.9) for a concrete example, let us consider the
operator

1io
P@) =97+ 35 +2i010, +93=V'AV, A=[i10
001

Then (2.4.9) yields

1
E:

4 x% + x% — 2ix1x + 2x§

in agreement with Hormander [139], Exercise 7.1.39, p. 388.

In order to deduce the associated homogeneous fundamental solutions E of
Proposition2.4.8 for the powers (VIAV)X, k € N, we can apply the same
procedure as above. Passing from the fundamental solutions of A in (1.6.19)
and (1.6.20) by a linear transformation to (VI'AV)* for A real-valued and
positive definite, we obtain

(DT (=R (det)W—D27, o ad N —n/2 4k . n
E= DD L7 (O A*n) ™" tnoddork <3,

—1)1/2=1 (et A)(n—D/2—k ad .\ — : .
e (T A% ™2+ 10g(TA%) :n even and k = 4.
(2.4.10)
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Again, (2.4.10) remains valid by analytic continuationif n = 2 and A € Mg or

if n > 3 and A € M,. (Therein, the functions A +— (detA)(”_l)/ 2=k and A

log(x"A%x) have to be determined by continuity.) Furthermore, E is the only

homogeneous fundamental solution if 7 is odd or k < 5 and else is uniquely

determined by the condition (2.4.4) up to polynomials of degree 2k — n. O

We next consider hyperbolic systems of differential operators. For these, the
uniqueness of the fundamental matrix is implied by support properties.

Definition 2.4.10 Let N € R"\ {0}.

(1) A linear differential operator P(J) = a,0%, a, € C, in R" with
P | <m
principal part P,,(0) = Zloc|=m a,0“ is called hyperbolic in the direction N
if and only if

(i) Py(N) # 0 and (i) Jop € R : Vo > 09 : VE € R : P(if + oN) # 0.

(2) A quadratic system A(d) € C[d]™ of linear differential operators in R" is called
hyperbolic in the direction N if and only if P(d) = detA(9) is hyperbolic in the
direction N.

These definitions go back to Garding [88]; see also Hormander [138],
Def. 12.3.3, p. 112; Atiyah, Bott and Garding [5], Section 3, p. 126; Garding
[93], Section 8, p. 55. In the cited literature, it is also shown that A(9) is hyperbolic
in the direction N if and only if A(d) possesses a two-sided fundamental matrix E
with support in a cone contained in {x € R"; xN > 0} U {0}, see also Ch. IV.

Let us next show that, if A(d) is hyperbolic in the direction N, then there exists
only one fundamental matrix with support in the closed half-space Hy = {x €
R"; xN > 0}.

Proposition 2.4.11 Let A(0) be a system which is hyperbolic in the direction N
and let E be a two-sided fundamental matrix with support in a cone K contained
in {x € R"; xN > 0} U {0}. Then each right-sided and each left-sided fundamental
matrix of A(0) with support in Hy = {x € R"; xN > 0} coincides with E.

Proof If F is a fundamental matrix satisfying suppF C Hy, then E and F are
convolvable by support (see Example 1.5.11), and we conclude that

E = ExA(Q)F = (ExA(3)8)*F = (I;§)xF = F.

|

In particular, Proposition2.4.11 applies to the system of elastodynamics considered
in Examples 2.1.3, 2.1.4.

Definition 2.4.12 Let P(d) be an operator in R” which is hyperbolic in the direction
N. Then the only fundamental solution E of P(d) with support in Hy = {x €
R"; xN > 0} is called the forward fundamental solution of P(d) with respect
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to N. Similarly, if A(d) is a system which is hyperbolic in the direction N, then
the only fundamental matrix with support in Hy is called the forward fundamental
matrix of A(d) with respect to N. In particular, if P(0) = P(d;,9,...,0d,) and
N = (1,0,...,0), we will just speak of the forward fundamental solution without
mentioning N, and similarly for a matrix A.

If an operator is hyperbolic with respect to N, then it is also hyperbolic with
respect to the direction —N (see, e.g., Hormander [136], Thm. 5.5.1, p. 132), and the
forward fundamental solution with respect to —N is called the backward fundamen-
tal solution with respect to N. We also note that, in a physical context, in particular
in connection with the wave equation or the Klein—Gordon equation, the forward
and backward fundamental solutions are also called “retarded” and “advanced
fundamental solutions”, respectively, or “retarded and advanced potentials”, see,
e.g., Friedlander [83], p. 117; Zeidler [305], 12.5.3, p. 715; Komech [154], Ch. V,
6.2. (Let us mention that the forward fundamental solution of the wave equation is
called “advanced” in Hormander [138], p. 195.)

If A(9) is only quasihyperbolic instead of hyperbolic, i.e., P(d) = detA(d)
fulfills condition (2.2.3), then support conditions alone do not suffice to ensure the
uniqueness of the fundamental matrix.

Definition and Proposition 2.4.13 A(d) € C[0]"™ is called quasihyperbolic in the
direction N € R" \ {0} iff P(d) = detA(0) fulfills the condition
dop e R: Vo >o0p:VE eR": P(iE+0N) #0. (24.11)

If A(0) is quasihyperbolic and oy is as in (2.4.11), then there exists a two-sided
fundamental matrix E satisfying

suppE C Hy = {x e R"; xN > 0} and Vo > 0 : e “VE € S'(R")™.
(2.4.12)

Furthermore, each right-sided and each left-sided fundamental matrix F of A(0)
satisfying 30 > oy : e NF € S'(R")™ coincides with E. For ¢ > 0y, 0 as in
(2.4.11), E has the representation

E =" F Y AGE +oN)T"). (2.4.13)

If Ey is the fundamental solution of P(d) satisfying 3o > oo : e "VE; € S'(R"),
then E = A*(J)E;.

Proof In order to reduce the assertion to Proposition2.3.5, we set Q(d) = P(d +
o0oN). Then Q(0) satisfies condition (2.3.8) in Proposition2.3.5, i.e.,

Yo >0:VE € R": Q(i§ + oN) = P(i§ + (0 + 09)N) # 0.

Hence, by Proposition2.3.5, Q(d) possesses a fundamental solution G € S'(R")
such that suppG C Hy. Then E; = e®™G is a fundamental solution of P(d)



2.4 Uniqueness and Representations of Fundamental Solutions 163

satisfying e "™E; € S'(R") and supp E; C Hy. For o > 0y, this implies
e—UNXEl — X(Nx)e—(G—U())Nxe—U()NXEl c S/(Rn)

if we take y € ER}), y(t) = 1fort > 0and x(r) = 0 for ¢ < —1, and observe that
K (Nx)e=@—00Nx ¢ D, o (R"). Therefore, if E = A*()E;, then E is a two-sided
fundamental matrix of P(d) fulfilling supp E C Hy and e °ME € S'(R")™ for
each o > oy.

For a further right-sided fundamental matrix F of A(d) which fulfills G =
e "MF e §'(RM)™! for some 0 > 0y, we conclude that

A(@ 4+ oN)(G—e ™ME) = e ™AOQ)(F—E) =0

and hence A(i + oN)F(G — e °ME) = 0. Because of detA(i§ + oN) = P(i +
oN) # 0 for £ € R", we have G = e °ME, i.e., F = E. An analogous reasoning
applies if F is a left-sided fundamental solution. This completes the proof. O

For scalar hyperbolic operators, the formula in (2.4.13) coincides with (12.5.3)
in Hormander [138], p. 120; for the generalization to quasihyperbolic operators and
systems, see Ortner and Wagner [207], Prop. 1, p. 442, Ortner and Wagner [209],
Prop. 1, p. 530, and Ortner and Wagner [218], Prop. 9, p. 147.

Example 2.4.14 Let us apply Proposition2.4.13 to a less known quasihyperbolic
but non-hyperbolic system arising in elasticity, namely Rayleigh’s system.

According to S. Timoshenko, the transverse vibrations in a homogeneous bar are
governed by the following 2 x 2 system of linear partial differential equations (cf.
Graff [114], pp. 181-183, in particular Eqs. (3.4.11/12); Timoshenko and Young
[269], pp. 330, 331):

PAu — KAG(D*u — d,Y) = q, (2.4.14)
EIRY + kAGDgu — ) — pld>y = 0. (2.4.15)

In the above equations, u(#, x) denotes the displacement of the bar at the co-ordinate
x and at time ¢, and ¥ (¢, x) is the slope of the deflection curve diminished by the
angle of shear at the neutral axis. The positive parameters A, I, p, E, G and « stand
for the cross-section area, the moment of inertia, the mass density, Young’s modulus,
the shear modulus, and Timoshenko’s shear coefficient, respectively.

If we neglect the inertia term —pl3?v in (2.4.15), this equation becomes

EIPY + kAG(du — ) = 0,

cf. Fliigge [79], (6a/b), p. 313; Love [171], Ch. XX, § 280, (7), p. 431, “Rayleigh’s

equation”. With the abbreviations ¢ = ,/ % and B = %, we can rewrite this
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system as

u\ _ (4/(kAG) I GRS
ofs)=(707) o= (T

Let us show that B(d) is quasihyperbolic in the direction N = (1, 0). In fact, for
o > 0 = oy and for (7, §) € R?, the determinant

P(0) = detB(9) = (a?3? — 0%)9* — a*p20?, a,f >0, (2.4.16)
fulfills
P(0 +it,i§) = —a*(0 +it)* (82 + p*) —£* # 0.

On the other hand, degP = 4 and P4(N) = 0 imply that B(d) and P(d) are not
hyperbolic in the direction N.

By Proposition 2.4.13, there exists a temperate two-sided fundamental matrix E
of B(d) with support in {(¢,x) € R?; ¢t > 0}, and E is uniquely determined by the
condition e °’E € S’ (R?)?>*? for some o > 0. As explained in Sect.2.1, E has the
representation E = B(0)*F where F is the fundamental solution of P(3) = det B(d)
(see (2.4.16)) with e °'F € S’'(R?), o > 0. An explicit expression for F was given
in Ortner and Wagner [214], Prop. 2, p. 226. In Example 4.1.9, we shall come back
to Rayleigh’s operator P(d) in (2.4.16). O

2.5 Linear Transformations

We recall that Proposition 1.3.19 describes the effect of linear transformations of
the independent variables x on the fundamental solution of a scalar operator P(9),
ie., |detB|™' - E o B~'T is a fundamental solution of (P o B)(d) if P(0)E = §
and B € Gl,(R). Let us slightly generalize this formula and then provide some
examples.

Proposition 2.5.1 Let A(0) = (A,-,-(a))l<l.i<l e C[o]™ be an 1 x | matrix of
linear differential operators in R" with constant coefficients, S,T € GI;,(C), B €
GlL,(R), ¢ € C", and denote by A(d) the following transformed system of constant
coefficient operators:

A(d) =S-ABI +c¢)-T,

ie.,

1 l

Aij(a) = Z SiktmjAlm (Cl + Z bis0s, ..., cp + meas)_
1 s=1 s=1

k=1 m=
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Then
E=|detB|™"-T7" (e “E)oB'T). 57" (2.5.1)

yields a right-sided fundamental matrix of A(9) if E is a right-sided fundamental
matrix of A(9).

Proof For U € D/(R") and ¢ € R”", we generally have P(d + ¢)(e”U) =
e~ “P(d)U if P(0) is a linear differential operator with constant coefficients. This
implies that A(d + ¢)(e™™E) = I;6 if A(Q)E = I}, ie., if E is a right-
sided fundamental matrix of A(d), see Definition2.1.1. Obviously, we then obtain
AY(Q)E' = 1,8 for A'(0) = S-A(@ +¢)-T and E! = e *T~! . E-S~'. Finally,
analogously to the proof of Proposition 1.3.19,

(AD)E), = | detB|™" - [(A' 0 BYO)(E' 0 B™T)],

1
= |detB|™' ) (A} 0 B)(9)(E}; 0 B~'T)
k=1

= |detB|™'8;- 80 B™'T = §; - 8(x),

and hence A(Q)E = I,6. O
Example 2.5.2
(a) The iterated transport operator in R" has the form P(3d) = (A +

Y a0)", a € R\ {0}, A € C., m € N. Since P(d) = 9} has the
fundamental solution

1
Y((XI)XT)' ® §(x), X = (x2,...,%),
and
aya ...... a A
. 010...0 0
P(0) =P(Bd+c)=(Bd+co)f, B=]| l.e=1 |
00...01 0

(where we suppose without restriction of generality that a; # 0), we infer that
E= ar L (e E) o B~'T is a fundamental solution of P(d).

la

For a test function ¢ € D(R"), we obtain

(¢p.E) = (p o BT, e “E) = (¢ o BT, Y(xy)e ™" @ §(x'))

1
(m—1)!

= 1)‘ / ¢ (a)e ™" dr.
(2.5.2)
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For formula (2.5.2), cf. Garnir [97], Vladimirov [279], § 10, Section 11, p. 154.
(b) More generally, let us consider now the powers of a linear first-order operator
with complex constant coefficients, i.e., P(9) = (/\ + Zj 1 a;0 ) ALeC,ac
C", m € N, with ¢ = Rea,f = Ima linearly 1ndependent in R". Without

restriction of generality, we can assume that det # 0. We then have

,31 ,32
P(3) = P(B3 + ¢) where P(3) = (9, + id,)" is the iterated Cauchy—Riemann
operator and

(04 T4 % (o 7% 1
BiBr.o oo, B 0
B=]100120 01, c=
: 0
0 0...... 0 1
By Example 1.3.14(b) and Lemma 2.5.3 below,
xm—l S
1 ® (X ) //: (X:%.“,xn)7

T m—D 2700 + i)

is a fundamental solution of P(9) in R". Hence Proposition2.5.1 yields the fol-
lowing representation of a fundamental solution £ of P(3) = (A+Y_7_, a; 3;)"

¢ € DR") = (¢,E) = ($p o B",e"E)

1 e M
- BT, _-r 8 '
Zn(m— H! @e X1+ ixp ®8())

- = —as S
= 2n(m = 1)'/ ¢ (s + tf)e s dsdt

Lemma 2.5.3 If E, is a fundamental solution of the operator P1(0) = 0d; +
R(0), 0 = (02,...,0,), then the iterated operators P,,(0) = P1(9)" = (31 +
R(0' ))m, m € N, have the fundamental solutions

—1
xy

T (- 1)'

m



2.5 Linear Transformations 167

Proof In fact, form > 2, we have

m—2 —1
_ N xy
Pi(0)E, = =) E, + =D P1(0)E;
m 1
=Epy + — §=E,_,.
1+ (m— 1)' 1

O

Let us point out that the formula in Lemma 2.5.3 can be conceived as a special
case of the Bernstein—Sato recursion formula Q(A, —id, —ix)E(A + 1) = b(A)E(L),
see (2.3.4), when taking Q(A,£,0) = 91, b(A) = i(A + 1) and E,, = E(—m), i.e.,
—ixlEm = —imEm_H.

Example 2.5.4 The general iterated anisotropic metaharmonic operator has the
form

P(0) = (VTAV + 'V — )" = (ZZa/k88k+Zb3 - ) ,

=1 k=1

where A = (ajx)1<jr<n is a real, symmetric, positive definite matrix, b € C", A €
C. =1+ 1b"A""b € C\ (—00,0], meN.

For p >0, the uniquely determined temperate fundamental solution E of
P(d)=(A, — p)™ was derived in Example1.4.11, see (1.4.9), and also in
Example 1.6.11 (a):

( 1)m|x|m n/2 n/4 m/2

E= 2n/2+m—lﬂn/2(m ) Vl/2 m(\/_|x|)

By analytic continuation, this expression continues to yield the only temperate
fundamental solution as long as . € C\ (—o0, 0], cf. also Example 2.4.2.

If we define the matrix B as the square root of the positive definite real matrix A,
ie., B= /A, and set ¢ = %B‘lb, then
P(Bd+c) = ((c"+ VBBV +¢) —u)"

= (V'B"BV + 2¢"BV + "¢ — )" = (VIAV + 6"V — 1)" = P(d)
because of © = A+ %bTA_1 b. Hence the temperate fundamental solution of P(3) =
(VTAV + bV — L) is given by
exp(—3bTA™x)
+detA

—1Mmex _leA—l_x TA—l m/2—n/4
CrewCipata (S i,

/2=l n/2 (i — 1)1/det A 0
(2.5.3)

E = |detB|"' (e “E) o B~ = (EoA™'?)
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A direct verification of this fundamental solution by Fourier transformation is given
in Lorenzi [170], pp 841-844. O

Example 2.5.5 Similarly as in the last example, let us deduce now a fundamental
solution E of the iterated anisotropic heat and Schrodinger operators

P@) = 3, — VIAV + 'V - 1)" = ( ZZa,ka 8k+Zb8 —/\) ,

=1k=1

where A = AT € C™" is non-singular (i.e., detA # 0) and with positive semi-
definite real part, b € C", A € C.

By Example 1.4.13 and Lemma 2.5.3, a fundamental solution E of P(d) = (9, —
VTAV)™ is given by

_ Y(n)m!
T (drty2/detA(m — 1)!

™47 ¢ ([0, 00), D' (RY)),

see (1.4.14). Setting o = A — $bTA™'b, ¢ = (—pu, —5b"A™")T € C"*!, we obtain
P@+c)=[0—pu— (V' —3b"ATHAV — 347 ') ]"
= (0, — VTAV 4+ b"V — 1)" = P(d)
and hence
Ev — eut . ehTAfl)c/Z -E

—1
Y(nem ek oA/ (40 4+bTAT 5/

T 4ty JdetA(m — 1))

€ C([0,00), D'(R)).

|

Example 2.5.6 As our final example, we consider an iterated anisotropic Klein—
Gordon operator of the form

P(a):(8,2+,83,—VTAV+bTV—A)m:(82+,33t ZZajkB 3k+2b3 x) ,
=1 k=1

where A = (aj)1<jk<n is a real, symmetric, positive definite matrix, b € C", 8,1 €
C.pu2=10b"A"b—B) -2 #0, meN.
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By formula (2.3.14) in Example 2.3.7, the forward fundamental solution of the
operator P(3) = (37 — A, + p?)™ is locally integrable if m > “5' and given by

2—m—(n—l)/2y(t _ |x|)u—m+(n+l)/2

E 2D G — 1))

(t2 _ |x|2)m/2—(n-i-l)/4X

X a2V — [x]?).

10
. _ _ 1( B
As in Example?2.5.4, we set B = (O «/Z) € GL+1(R), ¢ = 5(_A,1/2h) and

conclude that
2 _ m ~
P(BY +¢) = (% + Bd, + L= — VTAV 4+ TV — 1pTA7 b + p2y" = P(D).

Hence the forward fundamental solution of P(9) is

E= |detB|—l(e—ﬁt/2+bTA_1/2x/2E) oB!
_ 27Dy (1 — JXTA- ) D/2 e BU/24b AT x/2
7=D/2(m — 1)1/detA
X (l2 - XTA_lx)m/z_(n+l)/4.lm_(n+1)/2 (,LL\/ 2 — XTA_I)C). O

2.6 Invariance with Respect to Transformation Groups

In some cases, the invariance of a differential operator P(d) under a group of linear
transformations offers a means for the calculation of a fundamental solution. More
precisely, such an invariance leads from the constant coefficient operator P(d) in n
dimensions to a linear operator in fewer variables having however, in general, non-
constant coefficients. In order to exploit the invariance of P(d), we have to employ
some uniqueness class for the fundamental solution (see Sect. 2.4), and we use the
following proposition, cf. Wagner [285], Satz 6, p. 11.

Proposition 2.6.1 Letr P(0) = Z\a\sm ay0“ be a linear constant coefficient
operator in R" and A € Gl,(R) such that Po A = A - P for some A € C\ {0}.
Furthermore, assume that the subspace H C D'(R") is an AT-invariant “set of
uniqueness” for P(9), i.e.,

O)VT e H:ToA” e H; (i)3E € H : P(O)E = 6.

Then the unique fundamental solution E € H of P(0) fulfills

EoA” = A E. (2.6.1)
| detA|
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Proof By Proposition 1.3.19, we have
(PoA™")(0)(]detAl - EoAT) = 6.

Dueto PoA™! = A7!P, we infer that A~!| detA| - E o0 AT is a fundamental solution
of P(0) belonging to # by assumption (i). From the uniqueness property (ii), we
then conclude the equation in (2.6.1). O

Example 2.6.2 Let us first consider the iterated Laplacean P(0) = A, m € N.
Then P o A = P if A belongs to the orthogonal group O, (R), and P o A = ¢>"P if
A = cl, ¢ € R. On the other hand, the subspace H = £’+Cy C S’ is invariant under
orthogonal linear transformations and under dilatations. Furthermore, there exists at
most one fundamental solution of P(d) in . In fact, if T € H and P(d)T = 0, then
[x|*"FT = 0 and hence FT = Z|Ol|52m cq0%8, ¢4 € C, see Proposition 1.3.15.
Therefore, T = 2m)™" Zlal <om Ca(—1X) is a polynomial, which must vanish due
toT € H.

If there exists at all a fundamental solution E of P(d) in H, then Proposition 2.6.1

implies
VA€O,[R):EoA” =E and VeceR:E(ex) = > "E,

i.e., E is radially symmetric and homogeneous of degree 2m—n. By Example 1.6.10,
E then must have the form E = c|x|*"™ € L] (R"), ¢ € C. Note that such
distributions belong to H only if m < 7.

Ifm < %, then there exists a fundamental solution in 7, which necessarily has
the form E = c|x|*"™", see formula (1.6.19), and E is unique in H by the above
reasoning. In contrast, for m < % and n even, A,’{’|x|2”’_” =0. O
Example 2.6.3 Let us next consider the heat operator P(d) = d,—A,,. This operator

! O), B € 0,(R),

has the following invariance properties: Po A = P for A = (0 B

20

and PoA = ?PforA = (CO ) , ¢ € R. By Proposition 2.4.13, there exists a

cl,
unique fundamental solution E in

H={TeS R, T=0forr<0}.

Furthermore, H is invariant under the linear transformations A considered above,
and hence Proposition2.6.1 implies that E(z, Bx) = E for each B € O,(R) and
E(c*t,cx) = ¢"E for ¢ > 0.

Since the heat operator 9, — A, is hypoelliptic, we know that E is infinitely dif-
ferentiable outside the origin. Therefore, f(s) := E(1, 4/s,0,...,0) € C*®((0, 00))
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and E can be represented by f in R**1\ {0} :

1 2 —n/2 d —n/2 |x|?
t>0,c=— = E(t,x) = "E(c*t,cx) =t n/ E(l,—) =" f(—),
t

Vi Vi !

ie., Elgeti\op = YO "2 f (|x)?/1).

In order to determine the explicit form of the function f, we use the differential
equation (3; — A,)E = 0 in R"T! \ {0}. Setting s = |x|>/t and r = |x| we obtain,
fort > 0,

@ = ADE = (3, — 8, = L )E = —" 7 asf" + Qn+ 5)f' + 5]

- _;—"/2—‘(s% + g) (4% -+ l)f-

Hence f must fulfill

(s% n g)(4§—s n 1)f(s) —0, s>0.

If g = 4f' + f, then sg’ + %g = 0 yields g(s) = Ds™/? and 4f' + f = Ds™"/?
implies

fs) = e““(D/ o "%t do + c), C.DeC.
1
Thus we obtain that
, w2/t
E(t,x) = Y()r /e~ (D / o "2t do + c).
1

Since E(t,x) is defined and regular for r = 1 and x = 0, we conclude that the
constant D must vanish, i.e.,

E, = C,Y(t) e /@ e I} R, C,€R,
where we indicate the dependence on the space dimension n now by an additional
index.

Let us yet determine the value of C, by Hadamard’s method of descent, cf.
Delache and Leray [56], p. 317. The distribution

W= En * (S(t,x’) ® 1x,1) - En—l ® lxn € S/(Rn—H)a x/ = (xla ce axn—1)7

is well-defined and satisfies (0, — A,)W = 0 and W = 0 for r < 0. By
Proposition2.4.13, we have W = 0, i.e., E, * (§¢»y) ® 15,) = E,—1 ® 1,,. For
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t = 1,x' = 0, this implies
© 2
Co_i = E,_1(1,0) = / E,(1,0,x,)dx, = Cn/ e/t dx, = 2/7C,.
R —00

Because of Ey = Y(7), i.e., Cy = 1, we finally obtain

= YO e
n
(4mr)n/2

in accordance with (1.3.14) in Example 1.3.14 (d), see also Examples1.6.16
and 2.3.8 (b). O

Example 2.6.4 We shall apply Proposition2.6.1 also in the case of the Sobolev
operator P(3) = 9, — 010,03 in R*, cf. Example 2.3.8 (c). This operator is quasi-
hyperbolic with respect to ¢, and hence there exists one and only one fundamental
solution E in the subspace

H={TeSR") T=0fort<O0}.

C1 00
The relations Po A = cP for A = ((C) g) € G4UYR), B=]0c20],c;eR
0 O Cc3

with ¢ = cjcac3 > 0 then yield E(ct, c1x1, ¢axa, c3x3) = ¢! E. This implies that
E can be represented by composition with the function i(t, x) = xjxpx3/t. More
precisely, if

U={(t.x) € R*; t # 0, (x1x2, X1x3, X2x3) # 0}

andh: U — R: (1,x) —> xlx;”,

then % is C*° and submersive, and

gy =T ) =

Y(l) (X1X2X3) c D' (U)
t

holds for some distribution in one variable A € D’(R).

If we express (3; — d10203)E by the function A(s) of the variable s = =22, we
obtain that

(3 — i =~

= NS ) (S Ao

. . 2 .
holds in D’ (U). From this we conclude that (s% + 1)(sdd7 + % +1DA =0in D'(R).

S*A" 4+ 3sA” + (s + DA + A)oh
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The solutions of s- 7"+ T = 0 in D'(R!) are given by T = A§ +va(%), A,Be
C. Hence A fulfills in D’(R) the ordinary differential equation

sA" + A"+ A = A8 + Bvp(3).

For s > 0, we substitute u = 2./s and write M(u) = A(s) = A(u?/4). Then

4 = 24 and thus M fulfills M” + 1M’ + M = 4Bu™>. From Gradshteyn and

Ryzhlk[ll3] Egs. 8.577,8.571, we then obtain

A(s) = C1Jo(24/5) + CaNo(24/5)

+c3[fo(2ﬁ) o &~ N2 vB) /OoJo<u>d—“}, §> 0.
u zﬁ u

25

Similarly, for s < 0, we substitute # = 2,/—s and obtain

A(s) = Calp(2+/—=5) + CsKo(2+/=s)
+Cs [lo(zf ) /

2/=s

W
Ko(”)d—:—Ko(Z\/—_S) /1 Io(u)dﬂ, §<0,

cf. Sobolev [255], Eq. (7), p. 1247.
Let us consider now (9, — 010,03)Y ()t~ A(x1xox3/1) in D'(R*). If we specify
A by

A(s) = Y(9No(2/5) — 2 Y (=5)Ko(23/~9)

then the asymptotic expansions of Ny and Kj at O (see Gradshteyn and Ryzhik [113],
Egs. 8.444.1, 8.447.3) imply that

1
A(s) = —(2y + log|s|) + O(s* log |s]). s — 0, (2.6.2)
s

and hence f(t,x) = Y(O)t ' A(x1xox3/1) fulfills (9, — 0,0,03)f = 0 for t # O.
Therefore, by the jump formula,

(0,—010203)f = 1{1(1)(3,—313233)Y(t—6)f =T®8(1), T= li\r‘r(l)f(e,x) e D'(RY).

Because of (2.6.2), the equation (sA’ ) + A = 0 holds in D’(R). The functions
ge(s) = A(s/e) then satisfy sg6 +g + € 'ge =0, and lim~ g = 0in D'(R)
inductively yields that lim.\ o €*g. = 0 holds in D’(R) for each « € R.
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In particular, for « = —1, we conclude by composition with /;(x) = xjxpx3 that

7=l =l () =i (i 24 () =

holds in U; = {x € R3; (x1x2, x1x3, X2x3) # 0}, i.e., outside the three coordinate
axes.

If c1,¢2,c3 € R with ¢ = cicacs > 0, then f(ct, c1x1, €22, c3x3) = ¢~ 'f and
hence T'(cix1, c2X2, c3x3) = ¢ 'T. Since T|y, = 0, this implies that T is a multiple
of §. Thus (9, — 8,0203)f = C§, and C # 0 due to f € S’(R*) and the uniqueness
statement in Proposition2.4.13. As a consequence,

Y(t 2
E = Clg[Y(x1x2x3)No(2 X1X2X3/l) - ;Y(—x1x2x3)K0(2 —)C1XQX3/I):|

is, for appropriate C,, the unique fundamental solution of d; — 9;0,03 satisfying
E € SR* and E = 0 for t < 0. In fact, (2.3.21) shows that we must choose
C = 1 O

—5

Example 2.6.5

(a) In a very similar way, one could consider the operators d; — i ]221 djand 0, —

]_[jz;";rl d;, which are quasihyperbolic with respect to ¢ and hence have one and
only one temperate fundamental solution £ with support in the half-space where
t>0.

For P(d) = d; — 10103, formula (1.4.14) yields

Y .
£ =20 gl e o(f0,0) 8 %),

On the other hand, the invariance method as in Example2.6.4 leads to the
representation

E A(s), §=—,

t t

ZEA()&)ZE

t t

and to the ordinary differential equation (d%s)(l + i%)A = 0, which has the
correct solution Ce*, ¢ € C.

(b) By partial Fourier transformation as in Example2.3.8 (c), the fundamental
solutions of d,—id10,0304 and of 9,—0d,d,03040s, respectively, can be expressed
as simple definite integrals involving Bessel functions. E.g., for P(d) = 9, —
010,030405, we obtain the following representation of the fundamental solution
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E by a simple definite integral:

£= 20 [ ko roor( 5 - Trcom(E 5]
_ %No(u)[Y(—X)KO(g\/z) - %Y(X)No(g @)]}%

where X = ]_[;1 x;. In contrast, the invariance method leads to the fourth-order
ordinary differential equation [1 + d%(s%)»*] A(s) = 0. O

Example 2.6.6 Let us finally apply the invariance method to the Klein—Gordon
operator P(3) = 3> — A, + ¢2, ¢ € C\ (—00, 0], which is invariant under Lorentz
transformations. For the method in general, see Szmydt and Ziemian [267, 268].

Since the operator P(9) is hyperbolic, there exists one and only one fundamental
solution E in

H={TeD R, T=0fort <0},

see Proposition2.4.11. If we define the Lorentz product by

e (o

then A = (a;)o<ij<n € Gl,4+1(R) is called a proper Lorentz transformation if agy >
0 and [AC),AC)] = > — |x|? for each C) € R""!. Since P(9) and H are invariant
under proper Lorentz transformations A, Proposition2.6.1 yields E = E o A.

Therefore, outside the origin, E is the pull-back of a one-dimensional distribution
T by the submersive function

t
h:R”+1\{0}—>R:<)|—>t2—|x|2,
X

cf. Proposition 1.2.13 and Garding and Lions [96], i.e.,
Elgirig; = YO (T), T e D'(RY, supp T C [0, 00).
Note that supph*(T) is contained in the union {({) € R""'; || > |x|} of the

forward and the backward propagation cones, and that therefore Y(¢) and h*(T)
can be multiplied in R**! \ {0} without difficulties.
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The equation (07 — A, + cz)E|Rn+1\{0} = 0 then furnishes for T € D'(R!) the
ordinary differential equation

n—+1 c?
T+ —-T=0.
2 +4

From Gradshteyn and Ryzhik [113], Eq. 8.491.3 (corrected), p. 971, we infer that

T|(0.00) = " ™4[ C1I(1=my2(c/U) + CaN(1—yj2(cv/u) ] € C((0, 00)).

By the recursion formula

u'T//+

(W2 D) = 7, (o),

where # > 0 and Z, = J, or Z, = N, (cf. Gradshteyn and Ryzhik [113],
Eq. 8.472.3, p. 968), we see that T coincides on R \ {0} with the distribution

k
= —k[Y(u)u"/z(DlJ (cv/u) + DoN, (cv/u))] € D'(R),

if v = { (1): nodd,} and k = v + (n —1)/2 = [5], D1,D, € C. From

2 . neven

Proposition 1.3.15, we conclude that

T=S+ quS(j), aj € C.
=0

Since, by Leibniz’ formula,

dk+2U dk+2 k+1 U

u-U)—(k+2)

W T duk? duk 1

holds for U € D'(R]), we obtain, due to "+1 —k+2)=—-(v+1),

u.s/’+”+15’+ —S5= Dld_[ (Y@yu"J, (e /)"

2 4
+ (L= v) (Y@ T, (/) + %ZY(u)u”/ZJV (ev/i) |
dt "
DZJ [M(Y(u)u”/zN\, (cﬁ))
+ (1 =) (Y()u">Ny (c/u)) + CZZY(M)MV/ZNV (cﬁ)].
(2.6.3)
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The expressions in the brackets on the right-hand side of (2.6.3) must vanish for

u # 0 since they are classical solutions of uU” + (1 — v)U’ + %U =0,u > 0.
Moreover, this equation holds also in D'(R}) for U = Y (w)u"/?J, (c/u). On the

other hand, for U = Y (u)Ny(c+/u), the asymptotic expansion

2
No(z) = ;[logg + y] + 0(z*log2). zZ\\ 0,

yields

, 2 o 2 1
wl" + U+ —U=wlU) +-U==-34.
4 4 T

Similarly, for v = %, we set
1/4 2
U = Y(wu'*Nyja(c/u) = —/ — Y(u) cos(c/u)
e

and obtain
1 c? c? 1

U// _U/ _U= U//__U/ _U=
wm U U= WUy =30+ 7 e

8.

Therefore, eventually,
1 2 odd,
ws'+ Ty Cs—cpp,  c=) 7 "
2 4 : neven.

N

A2me

Since a non-trivial linear combination of derivatives of §, i.e., U = Z]’.":O a;é 0 e
D'(R) \ {0}, cannot fulfill an equation of the type

2
U’ + %IU’ + %U = st/ gec,

we conclude that Dy = 0 and E|ge+1\(oy = Y ()™ (T) where T is a multiple of
d* 0: nodd, .
M[Y(u)u”/z.lv(c\/ﬁ)] €eD'(R),v = L. even and k = [5].

By the recursion formula in Gradshteyn and Ryzhik [113], Eq. 8.472.3, p. 968,

the analytic distribution-valued function

V:{veC;Rev>—1} — D'RY) : v — Y(u)u"?J,(c/u)
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satisfies %VV = —% »—1. and hence it can be extended to an entire function.

Therefore, if E, denotes the fundamental solution of 8% — A, + 2, then
Enlgriingoy = CiY O* (Viaowy2) = CY () Vi 2 (2 = |x]*)
for some C, € R.

In order to determine the values of the constants C,, we employ—as in
Example 2.6.3—Hadamard’s method of descent in the form used in Delache and
Leray [56], p. 317. Since

W= En * (8(t,x’) ® lx,,) - En—l &® lx,, € D/(Rn_l—l)v -x/ = ()Cl, “e 7-xn—l)s

is well-defined and satisfies (02— A, +c?)W = 0and W = 0 for t < 0, we conclude
that W vanishes, i.e., E, * (8¢v) ® 1x,) = Ep—1 ® 1y,. This yields the equation

/tZ_IX/Iz
2C,Y(t — |X)) / (= Y * =D T (/2 = X2 — x2) dx,
0

= n—lY(t)V(Z—n)/Z(tz_|xl|2)-

v=(1-n)/2

Upon inserting t = 1 and x’ = 0, this implies

1
Co1J(—2)/2(c) = 2C, / (1=x2)"2 Iy (cy/1 — 22) dx,
0 v=(1—n)/2
du

[2m cJ ©
= nJd(2—n)/2\C),
V1 —u?lv=(1-n)2 ¢

see Oberhettinger [194], Eq. 4.38, p. 39. Hence C,, = ,/ﬁ Ch—1.
Because of

1
= 2C,,/ u’ T T, (cu)
0

Ey = CoY(O)Vi2(£P) = CoY ()1 J1)a(ct) = COY(f)\/g sin(ct)

and Ey = Y(t)c'sin(ct), see Example1.3.8(a), we have Cy = V3 and,
consequently,

c /2

n/2
G = (Z) Co = Sonapm
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The final formula

N (Gl i) s
_¢ U)o 22 2.2
En - 2(n+l)/27r(n—l)/2 (t |x| ) JU(C t |X| )

v=(1—n)/2

agrees with the result in (2.3.14). For the explicit result for E,, see also Schwartz
[246], (VI, 5; 30), p. 179; Linés [166], 12.9, 12.11, pp. 49, 50; Courant and Hilbert
[52], Ch. VI, § 12.6, pp. 693-695; Léonard [162], p. 36; Ortner and Wagner [207],
Ex. 5, p. 457. O



Chapter 3
Parameter Integration

In its simplest form, the method of parameter integration yields a fundamental
solution E of a product P;(d)P,(d) of differential operators as a simple integral
with respect to A over fundamental solutions E, of the squared convex sums
()LPl @)+ 01— /\)Pz(a))z. Heuristically, this relies on the representations of E and
of E, as inverse Fourier transforms, i.e.,

1 ® [ dA !
P (i§)P,(i§) /0 (AP1(§) + (1 — )Pa(§))° /o ’

where the equation (F) is Feynman’s first formula, see (3.1.1) below (for the name
cf. Schwartz [245], Ex. I-8, p. 72). Note that Eq. (3.1.1) boils down to the formula
al—pl = fab x72dx, 0 < a < b, from elementary calculus.

By generalizing the integration over [0, 1] to one over the simplex

!
Yo = {(Al,...,kl) ERI; A1=>0,...,4 EO,ZAJZ 1}
j=1

one can represent a fundamental solution of the product ]_[]l: 1 Pj(8)°‘-f+1, o€ Nf), by
a parameter integral with respect to A over fundamental solutions E, of the iterated

I . . .
operator (Zj’:l A ,~Pj(8))|a|+ . These representations are applied to constructing
fundamental solutions of products of wave and of Laplace operators, respectively,
i.e., of

! !
n(atz - AjAn)o‘ﬂ_l and of H(An—l + /\jai)aj+l

j=1 j=1
for positive, pairwise different A1, ..., A;, see Sects. 3.2 and 3.3.
© Springer International Publishing Switzerland 2015 181
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By means of more sophisticated parameter integration formulas, it is also possi-
ble to represent fundamental solutions of indecomposable operators as parameter
integrals over fundamental solutions of simpler operators. For example, starting
from formula

1 3 1/ dAdu
a?—=b*—c* 27 Jqe<n (a+ Ab 4 pe)>/1— A2 — 2

for a,b,c € R with a> > b> + %, we represent a fundamental solution of
Timoshenko’s beam operator

(33—(13)2(-1—[))2—(03)2(—6[)2—82, a,b,c,deR, a>|c|, eeC,

as a double integral over fundamental solutions Ej ,, of the squared one-dimensional
Klein—-Gordon operators (32 — ad?> + b + A(cd? — d) + pe)?. This double integral
can be reduced to a simple one by known integral formulas, see Example 3.5.4.

An important application of the method of parameter integration is the explicit
representation of the forward fundamental solution of the product (92 — A3)(9? —
aAz—bE)%) of wave operators in Example 4.2.7. For proper choices of the parameters
a,b > 0, this operator exhibits the phenomenon of conical refraction in a most
illustrative way. Obviously, the qualitative discussion of conical refraction could be
performed similarly in the case of the operator (3> —A,)(0?—a; 93— - -—a,02), a; >
0,j=1,....n.

3.1 Parameter Integration for Decomposable Operators

By employing the so-called Feynman formula

1! da -~
%_/0 [Aa + (1 — )b (.1.1

fora,b € C with Aa + (1 — A)b # Ofor A € [0, 1] (cf. Feynman [73], Appendix,
(14a), p. 785), D.W. Bresters derived the forward fundamental solution E of the
product of two Klein-Gordon operators R(3) = (a13?> — A, + B1) (020> — A, + B2)
from the forward fundamental solutions E) of the iterated Klein—-Gordon operators
0,.(9)* where

0,(0) = (hoy + (1 = VN)e2)d; — Ay + AB1 + (1 — 2)Ba. Aelo,1],

cf. Bresters [25, 26].
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Let us explain this construction method in the slightly more general case where
R(d) = P1(0)P»(0d) is quasihyperbolic in the direction N, and the “intermediate”
operators

01(0) = AP1(9) + (1 = A)P2(d), A €[0.1],

are “uniformly” quasihyperbolic in this direction (see Definition 3.1.1 below).
Then R(3) and Q;(d)> have fundamental solutions E and Ej, respectively,
given by

E ="V F ' (R(E +oN)),
Ey = "N F! ([APl(ig + oN) + (1 — M)Pa(iE + crN)]_z).
Therefore, setting n = 1§ + o N, formula (3.1.1) yields the following:

di
AP\(n) + (1= 2)P.(p)]

1
-1 _ —1_
R() —mw&w]—l[

and hence E = [} E; dA.

In Proposition 3.1.2 below, we shall generalize this to the case that R is a product
of [ factors. Instead of (3.1.1), which refers to two factors, we shall make use of
“Feynman’s first formula” referring to / factors, i.e.,

do (1)
=({-1)! , >0,...,a; >0, 3.1.2
a...a ¢=1 /21_1 (Mar + -+ Aay)! “ “ ( )

see Schwartz [245], p. 72; Bresters [25], Eq. 4.17, p. 129; Brychkov, Marichev and
Prudnikov [29], Eq. 3.3.4.3, p. 590; Folland [78], Eq. (7.6), p. 200. Herein, ¥;—;
denotes the (/ — 1)-dimensional standard simplex, i.e.,

!
Yo = {(Al,...,kl) ERI; A1=>0,...,4 EO,ZAJZ 1}
j=1

and do(A) is the measure dA; ...dA,—; on X_;.

For the operators involved, we shall assume uniform quasihyperbolicity, i.e., that
the constant gy in (2.2.3) can be chosen independently of the parameter A. More
precisely:

Definition 3.1.1 A set of differential operators {Q,(9); A € A} is called uniformly
quasihyperbolic in the direction N € R" \ {0} if and only if the condition

Joo eR:Vo >0p:VE €R 1 VA € A: Q)(if + oN) # 0 (3.1.3)

is satisfied.
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For a product of factors from a set of uniformly quasihyperbolic operators,
Feynman’s formula (3.1.2) can be applied, cf. Ortner and Wagner [211], Prop. 1,
p. 307.

Proposition 3.1.2 Suppose that P;(09), j = 1,...,1, are differential operators in R"
such that the set {Q,(0) := Z/l‘=1 A;Pi(0); A € Xy} is uniformly quasihyperbolic
in the direction N € R" \ {0}. Let 09 be as in (3.1.3), @ € N, and denote by E and
by E,, respectively, the fundamental solutions of ]_[jl»=1 P;(9)%*! and of O, (9)lal+
which satisfy e °*NE,e "VE, € S'(R") for 0 > 0y, see Proposition 2.4.13. Then
E), continuously depends on A € ¥;— and we have

_ (el +1-1)!

E |
o S

Ex A%da(R). (3.1.4)

Proof By differentiation with respect to a;, Feynman’s formula (3.1.2) implies

—a— ol +1-1)! A%do(A
[Tarer = ded+ =D [ ®__ G1s)
=1 o! S (Aay + ... A
fora; > 0,...,a4;>0and o € N}
We next observe that (3.1.5) holds more generally for @ € C' under the
assumption that the convex hull of a4, ..., a; € C does not contain 0, i.e.,

VAe X y:Aay+...4a; #0.
In fact, this results from analytic continuation since the set
{acCiVAeX | ha+ ... \a; # 0}
is arcwise connected in C’.

Due to the uniform quasihyperbolicity of 0, (9), A € X, we may insert a; =
P;(i§ + oN), o > 0y, into (3.1.5), and this yields

Z [—1)!
l_[Pj(lg + O,N)—aj—l — (Ial +a' )

j=1

01 (i& + oN) "2 do (1)
P/

(3.1.6)

According to formula (2.4.13) in Proposition 2.4.13, we have

Ey =™ FH(OaGE + oN) 7).
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As in the proof of Proposition 2.3.5, see in particular (2.3.9), the Seidenberg—Tarski
lemma implies that

T — S'(RY) : A —> Q5 (i + oN)

is continuous, and hence the same holds for A + E . This finally implies, for ¢ € D,

l
(9.E) = (F' (- ¢). [T Pi(i + oM7)
j=1

0,.(G€ + oN) = 1%dg (1))
o! S

— (]_-—l(e(INx ¢)

(e +1-1)!
B o!

= M/E (QS,EA) A“da(k)

o!

/ (]_——l (eoNx . ¢), 0,.(€ + O’N)_M_Z> Aadc(k)
P/

5. (o] —i—f— !
ol

.y /2 N Ex A%do(L)).

O

Example 3.1.3 Generalizing Example 2.5.2 we now consider products of transport
operators, i.e.,

l n )
R(®) = ]"[(d,» + Zai,-ai)a’+l
j=1 i=1

forA = (a;) € R™!, d € C!, a € N},

(a) Without loss of generality, we may suppose that

IN€R'N\{O}:Vj=1.....0: ) azN; >0 (3.1.7)
i=1
holds. (Otherwise, just multiply some of the vectors (ayj, ..., a,)" € R, j =

1,...,1, by —1.) Assumption (3.1.7) implies that the operators

! n
00 = Y Ai(d+ Y aih). A€ i,
j=1 i=1

are uniformly quasihyperbolic (and even hyperbolic) with respect to N. Hence
we can apply Proposition 3.1.2.
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(b)

3 Parameter Integration

The fundamental solution E; of the operator Q3(9)!*! is given by the
distribution

(¢, Ep) = m / G (ALr)e~Hd e+ qp # € D(R"),

see (2.5.2). Therefore, formula (3.1.4) in Proposition 3.1.2 yields the following
representation for the fundamental solution E of R(0):

(¢, E) = i A% / e et d g (AL T) dido (M)
-1

= / / ye P (Ay) dy; ... dy, (3.1.8)

(In (3.1.8), the substitution y; = tA;, ...,y = tA—1,yy =t(1 — A —--- —
A1), dy = #~'dtdo (1) was used.) For the case of « = 0, I < n, cf. Garnir
[97], p. 97.
Let us consider in particular the case of [ < n,rankA = [, and describe E in a
more explicit manner.

If V is the subspace of R" spanned by the / columns A; = (ay;, . .. ,a,,j)T, j=

.1, of A, and V1 denotes the orthogonal complement of V in R”, if C is

the cone in V spanned by Ay, . .., A;, dz(x) the Euclidean measure on V induced
from R” and 4 is the vector space isomorphism

h:R — V iy Ay,

then

(¢.E) = / K ()% e W (x) dr (x),

1
Vdet(ATA) - ! Jc

or, equivalently,

_ Xe@h e

® SvL N
Vdet(ATA) - !

where ¢ is the characteristic function of C and E is represented as the tensor
product of a locally integrable function with the Dirac measure at 0 in VL.
In particular, for / = n, we obtain

Xe@h (et
E(x) = R’
) dA o] € L}, (R")
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as fundamental solution of R(d) = [[i_,(d + o a;0)% T for A €
Gl,(R), d € C". The two-dimensional iterated wave operator (37 — 93)"
considered in Example 1.5.5 is contained herein as the special case of d =
0, A= G 11), a=m—1,m—1),andC = {x € R2: x; > |22}
We shall consider the remaining case / > n in Example 3.4.5 below. O
Example 3.1.4 Let us generalize now Example 2.5.5 and consider products of heat
or Schrodinger operators, i.e.,

1

R®) =T(0— VAV - d; + zn:bjkak)aj+l,

j=1 k=1

where the matrices A; € C™", j = 1,...,n, are symmetric and have positive semi-
definite real parts, B = (by) € C™", d = (d;) € C', and the condition

!
VA € S s det( )0 As4y) #0 (3.1.9)

J=1

is satisfied.

Then R(0) is quasihyperbolic with respect to 7 and its uniquely determined
fundamental solution E with supp E = 0 for # < 0 and at most exponential growth
(see Proposition 2.4.13) can be represented by formula (3.1.4) in Proposition 3.1.2.
In fact, if

Pi(0) = 3, — VAV —d; + Y _ by
k=1

then the set {Q; () := 211:1 AjPj(0); A € X1} is uniformly quasihyperbolic since

! n
01 = YA = 3 — VAV —d() + 3 bW,

j=1 k=1

where AL) = Y i_; LAj. b)) = Yooy Aibje. d(A) = Y i, Ajdj. and Re A(X) is
positive semi-definite.
Hence E is given by formula (3.1.4):

_ (el +1-1)

E |
o S

Ex A%do(R), (3.1.4)
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where E), is the fundamental solution of Q; (9)%!t/, i.e.,

. Y02 exp([d(A) — $b(A)TA) T B(A)]D)
o (47 )2 JAt A (| + 1 — 1)1

x exp(—%xTA()L)_lx + %b(k)TA(A)_lx) € C([0. 00). D'(RY)),

see Examples 2.5.5, 1.4.13 and 1.6.14 for the definition of ,/detA(A). Note that
E; is locally integrable if || + [ > 5 or ReA(A) is positive definite. Similarly,
E € L} .(R") holds if one of the conditions

Q) |la| +1> g or (ii) Vj = 1,...,1: ReA; is positive definite (3.1.10)

is satisfied.

The representation of E in (3.1.4) was given first in Ortner and Wagner [211],
Prop. 6, p. 318. It also exhibits the support, the singular support and the analytic
singular support of E, namely supp E = {(¢, x); t > 0},

{0}, i.e., P(d) hypoelliptic  : (ii) in (3.1.10) holds,

sing supp {(0,x); x e R"} : else,
and sing supp, E = {(0,x); x € R"}.

For I = 2, the definite integral in (3.1.4) is a simple one. Hence the fundamental
solution of a product of fwo anisotropic heat or Schrodinger operators can be
represented as a simple integral over elementary functions. The fundamental
solution of the more general operator

(a, —VIAV —d; + Z blkak) (a, — VALY —dy + Xn:bZkak) —
k=1 k=1

is investigated in Ortner and Wagner [207], Prop. 4, p. 450, and Remark 4, p. 452.
We will come back to operators of this kind in Sect. 3.5. O

Let us now apply the method of parameter integration to products of operators
which are not necessarily quasihyperbolic.

Proposition 3.1.5 Suppose that P;(09), j = 1, ..., are differential operators in R"
such that the symbols of 05 (0) := Zj’:l AjPj(0), A € Zi_1, do not vanish, i.e.,

VAe X 1:VEER": Q,(&) # 0.
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Let E and E),, respectively, denote the uniquely determined temperate fundamental
solutions Of]_[;=1 P;(3)%*" and of 0(3)**!. (By Proposition 2.4.1, E and Ej even
belong to the space O(R").)

Then the parameter integration formula holds:

(le| +1—=1)!

E = '
o S

Ex A%da(R). (3.1.4)

Proof The proof proceeds in literally the same way as the proof of Proposition 3.1.2
if we set therein o = 0. O

Example 3.1.6 Let us consider the following product of anisotropic metaharmonic
operators:

l

R(0) = l_[(VTAjV —di+ Z bjkak)aj+l. (3.1.11)

j=1 k=1

Here we suppose that o € Nf) and A; € R™" are real-valued symmetric
positive definite matrices. This implies that their convex combinations A(A) =
Zjl.=1 AjAj, A € Xy, are also positive definite. Furthermore, bj,d; € C must
fulfill the condition

VAe S p(d) i=d) + %b(A)TA(A)_lb(A) € C\ (=00,0]

if bi(A) = i) Ajby and d(A) = Yi_, Ayd).
Then the temperate fundamental solutions E; of

Qk(8)|a|+l = (VTA(/X)V — d(/l) + Zbk(k)ak)lal-‘rl, A€ X,

k=1

are given by formula (2.5.3) in Example 2.5.4. Therefore, Proposition 3.1.5
yields for the temperate fundamental solution E of R(d) in (3.1.11) the integral
representation

B (=1)lel+! / A% exp(—3b(M)TAA) %)
-1

T on/2+lel+Hi=1 g1 /2 JdetA(L)
STAG) 0\ lel+D/2=n/4
x( o ) - Kuja—fal— (VL) - XTA(R)1x) do(R).

p(d)
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Let us specialize this formula for the case of two factors, i.e., I = 2. Here we
shall assume that

R(a) = (An — dl)(zn: dka% — dz), a, >0, dy,d, € C,

with d(A) = Ad; + (1 — A)d, € C\ (—o00,0] for 0 < A < 1. Then the temperate
fundamental solution of R(d) is a locally integrable function given by

1 1 1 2 —n/4+1
©2Q2m)n? /0 ()Ldl + (1 —-2A)d» ; A+ (11— /\)ak)

Kn/z_z(\/(kdl +(- A)dz) X - l)ak) [Tr+a- M) da.

k=1
(3.1.12)

Formula (3.1.12) coincides with the one given in Garnir [100], 4., p. 1132, if the
substitution u = A/(1 — A) is performed. In Garnir [100], this formula is verified
by differentiation.

In particular, if 1 < n < 3, then E is continuous at 0 and

re-3%

EO) = =5

(ml + (1= Do) TR+ (1= 2)a) ™ da
0 k=1

Hence E(0) can be expressed by elementary functions for n = 1,2, whereas, for
n = 3, itis an elliptic integral in the generic case of pairwise different a,, az, as.
Let us also mention that, by limit considerations, (3.1.12) remains valid and
yields a locally integrable fundamental solution in the case di = 0 and d, €
C\ (—o0,0]. O

Let us next apply the method of parameter integration to products of homoge-
neous elliptic operators.

Proposition 3.1.7 Suppose that P;(0), j = 1,...,1, are differential operators in R"
which are homogeneous of degree m and such that each operator

l
01(0) =) AP,  AeZi,
=1

is elliptic. Let a € Né and assume that E), are fundamental solutions of Q (9)1*1+!
which depend continuously on A € X;_ and satisfy the estimate

VYA€ X :3C>0:VxeR with |x| > 2: |Ex(x)| < Clx|"“HD " 10g |x].
(3.1.13)
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Then the parameter integration formula

_ (jal +1-1)!
o! S

E E; A%da(M). (3.1.4)

yields a fundamental solution E of R(0) = ]_[]Z.:l P;(9)%+! which grows at most as
a constant multiple of |x|"1*1+D=" 1og |x| for |x| = oo.

Proof Upon applying the Fourier transform to the equation Q3 (9)E; = § we
obtain Q) (i§)!**/ FE; = 1 and hence FE coincides with Q; (if)~%!~ for & # 0.

We note that Fy(w) := Q) (iw) ! € ¢>($"~!) and that, by Example 1.4.9,
the map u +— F) - |€]* € S’(R") is meromorphic with at most simple poles in
—n — Ny. Therefore,

El::}'_l( Pf FA'|.§|“>
u=—m(|e|+1)

is a fundamental solution of Q; (3)!*/*! which is associated homogeneous of degree
m(|a| 4+ 1) — n. Hence, due to Proposition 2.4.8 and the estimate (3.1.13), E; =
E), + g5, where g is a polynomial of degree at most m(|ee| 4 ) — n.

Since E; and EA continuously depend on A € X,_;, the same holds for the
polynomials g, . If E is defined by (3.1.4), we thus obtain, with another polynomial
q of degree < m(|| 4 I) — n, the following:

I—1)! i
F(E—q) = (“)‘“:x—‘l) R
= M RIIAY
- a! L,l M=—5(f\oz\+z)(FA [£]") A%do (R)
(|| +1—1)!

= o N—lel—1 .
B a! u=—r£’(f|a|+z)(( S 01 (i) A da(k)) |§|M)

- R
= ;L=—nIz)(f\‘a\+l)(R(la)) £1*)

by Feynman’s formula (3.1.5). This implies R(d)E = §. Furthermore, E has the
required growth by construction. O

Example 3.1.8

(a) Similarly as in Example 3.1.6, let us consider here products of anisotropic
Laplaceans, i.e., R(@) = []i=;(VTA;V)!*%. As before, € Nj and A; € R™"
are real-valued symmetric positive definite matrices, and we set

1
0, = VIA(W)V, A\ = ZA,»A,.
j=1
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For the fundamental solutions E; of Q,(9)*/*!, we obtain from Exam-
ple 1.6.11 (b) and Proposition 1.3.19

(xTA(l)_lx)Ial_H_”/z

E, =
P T 220 (o] + 1= )l JdetAQR)
(—1)Ia|+lr(§—|a|—1) cnoddor o] +1< 2,
X (=1)"2 1 log(:TA(V)~1x)

(ol + 1= D! :nevenand |o| +1> 3.

Herewith, Proposition 3.1.7 furnishes

_ (Jo| +1—1)!
o! S
_ (_1)\a\+lr(§ —la| =1 A“(xTA()L)—lx)W'H‘”/Z

22(|a|+l)a!7{"/2 DI ‘/detA(l)

if nis odd or o + [ < 3, and

Ex A%da(X)

do (1)

B (_l)n/z—l / )L“(xTA()L)_lx)W'H_"/z
22l Do (|| +1— a2 Jg,_ JdetA(X)
x log(x"A(A)"x) do(1)

ifnisevenand |a| +1> 3.

In particular, for / = 2 and @ = 0, we obtain the following fundamental
solution E of the operator R(9) = (VIA;V)(VTA,V) :
L(5—2) (' (TAN) k)22
16772 Jy JdetA(Q)

( 1)11/2 1/ (xTA(/X) x)z n/2
1677/2 VdetA(d)

‘n#2,4,
E =
logxTAM) " 'x)dd 1n =24,

(3.1.14)
where A(A) = AA; + (1 — A)A,.
Finally, let us evaluate formula (3.1.14) in the cases n = 2 and n = 3, which
can be found in the literature.
(b) For n = 2, we shall calculate a fundamental solution of R(d) = Az(ala% +
azag), a; > 0, a; > 0, a; # ay. Up to linear transformations, R(d) represents
the general case of a product of two anisotropic Laplaceans in R?.
Omitting a quadratic polynomial in x = (x1,x2) (which is a solution of
the homogeneous equation), formula (3.1.14) yields with A} = I, and A, =
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0
a the following representation for a fundamental solution of R(d) :

a
E = E| + E;, where

2 (Tog(B[A + (1 — Mas) + 2[4 + (1 — Vay))

T16r )y A+ - Nal PR+ (1 - Da? di

E;

and E; is derived from E; by interchanging the roles of x;,x, and of ay, ay,

respectively.
Let us evaluate the last integral by partial integration and employing the

formula
dA . 2 ad + B Lc
[@d + BIV2[yA + 68132 a8 —PBy \| yA+36 '
This implies
E — X2 A+ (1=Nay
" 8n(ar —a) VA + (1= Nay
xlog (B[4 + (1= Vas] + B + (1= Ha) |,
B x2 /1 A+ (1=Nay
SJT(Cl] — 612) 0 A+ (1 — A)al
5 x%(l —az) +x§(1 —ay)
B+ (1 =Na] + 3[4+ (1= A)ai]
2
_ X 2 %2 2 2
T {log x| a log(ax; + alxz)}
xqbi(l —a) + 5(1 —a))]
+ .I ’
8n(a; —ay)
where
1 1 dA
Il = ° 2 2.2
o VIA+ (A =Dal][A + (0 —Aay] xi+uPx;
and u? = At (-Ma a — ay®

CA+(0=-Ma T (I —a)ur—(1—ay)’
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Upon substituting A by u we obtain

! du
I, =-2
1 /m OF + w21 —au? — (1 —ay)]
2

2 ! X5 1—a
-2 2 [ 2 02 2 ]du.
xi(l—a) + x5(1 —ay) Jyajamtxy +utx; (1 —a)u? — (1 —ay)

Hence we have, up to second-order polynomials,

X2 —x? arx? —ax?
E=F+—2 log|x*— L 2 log(axx? + a1x2),
8 (a; — az) £ 8m Jajaz(a, — az) £ ! 2
where

e ! du : du
F = 4—_ > Z)Cz - 2 2.2
w(ay — ar) ) Jara, X7 + uPx; Varja X5 + U=X
x%x% ! du

- 2n(ay —ay) JaTa X3+ utxs

(In the second integral, we have used the substitution v = %.) By means of the
addition theorem of the arctangent, we finally obtain

XX A/ A1 — A/a2)X1X2
12 arctan(ﬂ)'

F= 2 2
Vaxi + Jarx,

B 27‘[((11 - az)

Hence we conclude that the operator A;(a; 3% +a23%), a; >0, a; >0,a; # ay,
has the fundamental solution

xz — x2 Clzxz — alxz
E— 172 oo lx2 — 1 2 lo 2 4 g
S(ar —ap) ¢ A Jarana — @) glaxxy + a1xy)

M arctan((\/a; \/CTZ)XI?). (3.1.15)
2t (ay — az) Jaxxy + Jaix;

By linear transformations (see Sect.?2.5), the result in (3.1.15) is equivalent
to the formula for a fundamental solution of the operator (a3? + 33)(b*9? +
%) given in Galler [86], p. 49. Similarly, Ay(a;9? + a»03) is also linearly
equivalent to the operator 3‘1‘ + 33 + )/8%8%, which describes deflections of elastic
orthotropic plates. Its fundamental solution can be found in P. Stein [262],
Eq. (BY), p. 11; Ortner [200], p. 140; Wagner [285], p. 44. Below, we shall
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also deduce (3.1.15) as a special case of Somigliana’s formula, which refers to
arbitrary homogeneous operators in the plane, i.e., to ]_[jl.=1 (01 —A;02)% T, A €
C e Nf), see Proposition 3.3.2 and Example 3.3.3 below.

Let us yet evaluate formula (3.1.14) for n = 3. Without restriction of generality,
we can suppose that A;, A, are diagonal matrices with the positive entries a; and
b;, respectively, in the diagonal. We assume, furthermore, that b‘ > Zz > b3 .
Upon setting ¢;(A) = a;A + b;(1 — 1), the fundamental solution Ein 3. 1. 14) ‘of
the operator

R(0) = (a197 4 a203 + a303)(b10? + b233 + b333)

assumes the form

dA

- CJ(A) ver(Aea(d)es()
1 (! di
= T sr ij /

j=1 ci(A)y/xica(M)ez (M) + x5¢1(M)e3(R) + xier(A)ea(R)

3
1 o du

= xf/ d , (3.1.16)
- o (gn+b)vf+ph+g

where we have used the substitution &t = %5 and the notations

3,2 3,2
- i _ J
[ =aaas Z . g = bibybs Z b
j=1 Jj=1
h = xj(axbs + asby) + x5(a1bs + azby) + x3(ar1bs + axby),
cf. Bureau [35], p. 474.

By Grobner and Hoftreiter [115], Eq. 213.6a, the integrals in (3.1.16) yield
logarithms or arctangents in dependence on the signs of bizf —ajbih + czj2 g, j=
1,2, 3, respectively. With the abbreviation ‘

¥j = (a;bi — bjai)(ajbx — bjay), i)k} =1{1,2,3},

we obtain

bff —ajbjh + ajzg = )/jxf. (3.1.17)
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From the inequalities 2. > 2 >
ai az

furnishes E = Z;=1 E; with

by

o we infer y; > 0, y» <0, y3 > 0, and this

sl log(ajnx,-u/—m +aig — %bjhl) =13
. 877 \bll| /T + sajh—byf] o
j =
_ —xz arctan( 2 _)/Z(bZ\/f +a \/E) )
8 /=72 arby (Vg — 3h) + b3f + ag
(3.1.18)

Formula (3.1.18) coincides, up to some signs, with the formulas given in Garnir
[100], 8., p. 1139, and in Bureau [35], (2), p. 474.

A more symmetric representation of E can be reached by employing
Eq.(3.1.17) in (3.1.18). This yields

_L[Z ilog(“/«/«?‘F bivF + ~/7ij)
8n L VY \ a8+ DT — v

2x3 V22 ):| L1
+ = arctan(—a2ﬁ+b2\/f . (3.1.19)

Formula (3.1.19) was given first in Herglotz [125], III, (40), p. 81 (where e, =
ag = é, o = /—Va), and it is a particular case of the fundamental solution
derived for certain homogeneous elliptic quartic operators in Wagner [292], see
p- 1205. O

3.2 Products of Operators Belonging to a One-Dimensional
Affine Subspace

We shall next show that the parameter integration formula (3.1.4) in Proposi-
tion 3.1.2 reduces to a formula containing only one-dimensional parameter integrals
for operators of the form

1
R@®) =[](Pi® + AP.@)""".  aeN) AeR,

j=1

i.e., when all the factors P;(d) + A;P»(d) of R(d) are contained in an affine line of
the vector space C[d] of all linear constant coefficient operators. For « = 0, this
formula was derived in Wagner [285], p. 18; for general «, see Ortner and Wagner
[211], Prop. 2, p. 308; Ortner [202], Prop. 5, p. 92.
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Proposition 3.2.1 Suppose that the operators Q,(0) = P1(d) + AP2(d), A €
[c,d] C R, are uniformly quasihyperbolic with respect to N € R" \ {0}. Let
A0, ..., A € [c,d] and such that Ay, ..., A; are pairwise different. Let oy € R be as
in (3.1.3) with A = [c,d], « € N., and denote by E and by E,, respectively, the
Jfundamental solutions of

1
R@) = [T(P1@) + 4P@)" " andof 2@,

Jj=1

respectively, which satisfy e "VE € S'(R") and e "*VE; € S'(R") for o > 0.
Then E), continuously depends on A € [c, d] and we have

i ) )

IR
E=(al+1-D> —(=) || G-1+2E;dx
(|Ol| )j=l C(j! (81,) I:C] X0 ( ! ) g i|

where ¢ 1= T, (Aj — AL,
o

Proof

(1) Let us first show that

9 \Y 4 (A — A)lelti=2
—aj—1 _ _ X ]
Jl—!(s FA = el I)Z ( ) [C’ o (54 AnlelH dk}
3.2.1)
if s, € Csuch thats + At # 0 for A € [c,d].
In fact, by Grobner and Hofreiter [115], Eq. 421.4, p. 175,

4j (A — A)lal+i=2 B (A — Ag)lel+i1
do (AN T (o 41— 1)(s + At)(s + Aon)llH!

and hence Eq. (3.2.1) is equivalent to

! 1 , _
3 o 1 9 \% c-()L»—)LO)W'H 1
oe|+1—1 A—ai—1 Ny J\T
(5 4+ Ao [ s + 207 _Zw!(ax-) [ s+Ar
=1 ] j j

(3.2.2)

Setting d; = ]_[k 1(/\ — A)7!, we have ¢; = (Hizlak!_la‘;‘;)dj and
k#j

hence (3.2.2) is equlvalent to

Z L diChs — do)lel+i=
o5 [(s + Aon) s + A,-rrl} = (—nlelae [Z M}

=1 =1 s+ At
(3.2.3)
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We therefore consider the rational function f(s) of s given by

1 !
— al+1—1 -1 M dj(dj = Ag) !

£(5) := (s + Aot)! H(s-i-/\jt) — (=) ‘ZT

j=1 j=1

By the definition of d, all its residues Res;=—j;f(s) vanish, and thus f is a
polynomial in s of degree at most || — 1. Furthermore, 95 = 0 because the
coefficients of f(s) are polynomials in A of degree at most || — 1.

(2) Due to the uniform quasihyperbolicity of the family of operators Q,(d) =
P1(3) + AP,(0), A € [c,d], we can insert s = Pj(oN + i), t = Pr(oN + if),
o > 0y, £ € R”, into (3.2.1), and this yields

1
RN +i§)™" = [[[Pi(ON + i€) + 4,P2(0N +i£)] ™
j=1

~ ! 1 9 \Y A (/\j_,\)lalﬂ—zd/\
_(|a|+l_1),-=zl 07(37) [A [Pl(aN+iS)+APz<oN+is>1a+l]

(3.2.4)

Furthermore, by formula (2.4.13) in Proposition 2.4.13 applied to the funda-
mental solutions E of R(d) and E; of 0 (9)%*/, respectively, we obtain

E=¢""F ' (RoN +i§)7")
(lel +1=1) ZZ: L2y /M(x )lal+i=2
= o — —_ — C; s —
=1 O{j! B/Xj / 20 !

X e(INx‘/—_-S—1 ([PI(UN + IS) + A.P2(O'N + ig)]_‘a‘_l) dk:|

l o A
1 ( a3\ i
= (| +1-1 E —| = ; A — ) 2E da ).

Ao

Here, as before, the interchange of the Fourier transform with the parametric
differentiations and with the integration is justified by means of the Seidenberg—
Tarski Lemma. O

Example 3.2.2 'We shall apply Proposition 3.2.1 to the construction of the forward
fundamental solution E of the following product R(3) of wave operators:

1
RO) =@ — ,A0%*". @ eNj. A;> 0. 4; # A forj # k. (3.2.5)
j=1
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This basic operator was investigated for « = 0 already in Herglotz [125], II, see
(171), (175), p. 313, and later, for arbitrary «, in Gal’pern and Kondrashov [87]
and in Bresters [25] with the goal of deducing regularity results for the fundamental
solution, R(d) being considered as a prototype of general hyperbolic operators.

If G denotes the fundamental solution of (3> — A,)/** with support in 7 > 0,
then (32 — AA,)!**/ has for A > 0 the fundamental solution

E, = A‘"/ZG(L %)

see Proposition 1.3.19. Therefore, Proposition 3.2.1 entails the formula

SNSRI X\ dA
_ _ el . el +1=2 A W
E = (|a|+1 1)2%!(%) [c,/O (A=) G(t, ﬁ) )WZ} (3.2.6)

for the fundamental solution E of R(d) in (3.2.5). (Here, as before, we have set
tw=mﬁw—hﬁwﬂ

Letus suppose now additionally that ||+ > “Z1. Then G € L, (R"*") is given

loc

by formula (2.3.12) and E is locally integrable as well From (3.2.6), we obtain the
following representation of E :

p1=2lal-21 Ly o
E(t,x 179 oF
9= (] + 1= 2)!x =D/ (ja| + 1 — ;a ( ) (iF))
3.2.7)
where
|x] /Af (2 |x|2 lel+H=(+1D)/2 4y
rien =x( ) g T VR

£2—21-2la|

Vi
_ |x| 24 214-2|a|—(n+3)/2
_YQ_7iyﬁm75u Il

1 2 —la|—14+1/2
lel+i=2(1 _ pylelti=e+n/2( 1 _ (1 _ || du.
* /0 ‘ (=) ( ( by ﬂ) "
(3.2.8)

For the last equation, we employed the linear substitution A = (|x|2/)u+A;(1—u).
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The integral in (3.2.8) is a particular case of Euler’s integral representation of
Gaul3” hypergeometric function , F. This yields

A2 — x[2) 22l =(+3)/2
4 ) B(|a|+l—1,|a|+l—%)

Fi(t,x) = Y(t— %)
x|

szl(Ial+l—1,|a|+l—%;2|a|+21—";1;1—m).

A]H"U“_I/ZIZI-FZ\M—Z

3.2.9)

In order to represent F; by elementary functions, we shall distinguish two cases
according to the parity of n. O

Example 3.2.3 Let us now first investigate in detail the product R(d) of wave
operators in (3.2.5) if the space dimension n is odd, i.e., n = 2k + 1, k € Np.

We then can evaluate formula (3.2.9) by using Eqs. 7.2.1.12 and 7.3.1.105 in
Brychkov, Marichev and Prudnikov [30] (see pp. 431, 461):

d e
d—zk(ZC "2Fi(a,bici2)) = (=D = o)z o Fi (@, bic — ki2)
and
Fi( +‘2+1)( 2 )2”
Fia,a+ 32a+ 152 = (——) -
2 I++V1-z2
This yields
Loa+1—k - V(2
Fi(a.a+ 3; —kiz) = — ) (———
2Fi(a.a+5:2a + 2 2a(2a—1)~~(2a—k—|—l)(dz) (1+./1—z)
Zk—2a22a

d ‘ / 2a
- 2aQ2a—1)---Qa—k+1) (d_z) (I —=+1-=2)". (3.2.10)

Inserting (3.2.10) into (3.2.9) and setting r = |x| furnishes

B r \T(al +1— D (| + [ — k)22lel+2=2 0 g K el +21—2
F]—Y([——) _ﬁ (\/I]t—r) .

N TQRla| +21—1)/%;

Combining the last formula with (3.2.7) finally yields for || + [ > k the following:

1
E = X
2k mk (2]a| + 21— 2)!

1

Y(r— =) ‘ "
(0 KRNI L 2|a|+21—2i|
Xj; o! ( rar) (axj) [\/A—j(\/zﬂ r) . (G211
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where, as always, ¢; 1= ]_[m l(k — X)) %! In the case & = 0, formula (3.2.11)

coincides with Wagner [285] Satz4 p- 20; Galler [86], Satz 16.1, p. 61. Formulas
in terms of F. John’s spherical means for the fundamental solutions of products of
wave operators in odd space dimensions were deduced in Gal’pern and Kondrashov
[87], see (56), p. 133.

Let us yet specify (3.2.11) for the space dimensions n = 1 and n = 3,
respectively. For the operator ]_[;:1(8,2 — 2;01)%*1 with A; positive and pairwise
different and o € Nlo, we obtain the following forward fundamental solution
E € Ll (R?) by setting k = 0in (3.2.11):

loc

l Y(t — ﬂ) o
_ 1 Z V4 (i) ’[ Cj (\/)Tjt— |x|)2a+2z—2]
2(2|O{| +2[—2)' = Oéj! BAJ \/A_]
For n = 3, we obtain the forward fundamental solution E € LllOC (R*) of the

operator ]_[] (82 — A;A3)% ! (for pairwise different positive A;, @ # 0 or [ > 2)
by setting k = 1in (3.2.11):

I Y(t—L) o
1 A ( 0 ) ’[ Cj 2| |+21—3}
— ——(/At—r)7 .
47‘[(2|O{| + 21— 3)! ; ajlr BAJ \/A_] \/7]

|

Example 3.2.4 Let us now consider the product R(d) of wave operators in (3.2.5)
for even space dimensions n = 2k, k € N.

We then evaluate formula (3.2.9) by employing the differentiation formulas
7.2.1.10,7.2.1.12,7.2.1.14 and the representation 7.3.2.157 in Brychkov, Marichev
and Prudnikov [30] (see pp. 431, 432, 477). This yields, fora € N :

Fi(aa+ 3:2a+3 —kiz) =
F(2a—k+ é)zk—Za—l/Z d k—1
- Tea+ D) (_) [T 2R @.a+ 5320+ 5:9)]
3

dz

I'Qa—k+ )L /aF—2a=12 /g \*1! d a1

= ( 2)21\/_Z 3 (_) [22”_1/2(—)a 2Fi(1, 50+ %§Z)]
@I+ 3)T'@a+3) dz dz

_ T@a—k+ )2 d - zza—1/2<i)a_l><
37 I'(2a)? dz dz

L/ dyae!
x (1—2z)* 1(d—z) 2F1(1,§;§;z)]
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_ ['(2a —k 4 3)2%—3k—2a=1/2 i)k_l Z2a_l/2<i)a—1x
/7T (2a) & &

x (1 —z)“‘l(d%)”_lé%[log(i - ﬁ) - 2ﬁ]].

Inserting a = || + [ — 1 we obtain from (3.2.7) and (3.2.9)

22|a|+21—6 ! 1 9 o d k—1
E— Z N ek 2el—2+32( € Plol+2—5/2,
kT 2la| + 21— 2)? = o A ! dz

X(diz)ww—z(l g)lel+i= z((;iz)law-z#[log(ité)_Zﬁ]}

|x| (Ajtz _ |x|2)21—|—2|a|—k—3/2
v(i-—=)-
% ( S AR 2 e ]
J

By means of

=1—|x|2/(};1?)

2 d L2 91 JAit L2 2
P L S P L I e A ('L
ljt dz 2 ror 1—ﬁ r

it follows that

B (1)1 ’Y(’_\/Lr,) AN ¢ [0\
‘(2n)kr(2|a|+2l—2)2j=zl o! (87,) [ﬁ(ﬁ) g

0\ lal+i=2 9\ lal+i—2
x(/\jt r2)2|a|+21 5/2( ) 2l +21— 4( ) y

ror ror

{\/)T,t(xjt — ) og (\/_ z 1)-(1,;2—#)—1}}

(3.2.12)

is the fundamental solution of R(3) = ]_[]Z= (02 — XjAy)% ™! for @ € NI with
la| > k— l—— for pairwise different Ay, ..., A; > Oand ¢; = ]_[m l(k — AL

In the case « = 0 and £k = 1, we obtain a relatively 51mple formula for the
fundamental solution of ]‘[Fl(a —AiAy), e,

— 1 : r —1)2 ! B
2720 —3)12 ; Y(t - ﬁ)% (H(M ) ‘)x

k#j
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% ()thz _ r2)21—5/2(i)l_2r21—4<i)l_zx

ror ror
oy )
% VAt =) 10%(—’t LA 1) - W = r2>‘1} :
r r
(3.2.13)

In different form, this fundamental solution was presented in Wagner [285], Satz 5,
p- 21.

In particular, for / = 2, the forward fundamental solution of the operator (8,2 —
AlAz)(af — AzAz) is given by

E= M[Y(t - \/L)L_) (tarcosh(@) — |2 - ,,_2)
1— 1 r

(o= ) (rareosn(22) - - ).

cf. Wagner [285], Ch. II, Bsp. 7, p. 29. O

Example 3.2.5 Letus finally derive Herglotz’ integral representation of the forward
fundamental solution of the product R(d) of wave operators in (3.2.5), cf. Herglotz
[125], II.

Let us assume first that 2|o| + 2/ > n. By means of one of Kummer’s
transformation formulas for the hypergeometric functions, i.e.,

— e c—a c—a+1 4z(z—1
JFi(a,1—aic;z) = (1 —2)°7 (1 — 22)° ‘2F1( 7 LA ))7

2 Y -2

see Abramowitz and Stegun [1], Eq. 15.3.32, p. 561, and setting a = 3%” c =
2]a| + 21— ”42'1, = %(1 — \//\_jt/|x|), we have ?17(_72_1;2 =1- 5—'; and the functions

Fj(t,x) in (3.2.9) assume the form

(1=m)/2

x|\ |x

Fi(t.x) = Y(t— || )| | — ( /Ajt_|x|)21+2\a\—(n+3)/2x
J

N/UNGY

x 22|a|+21_(ﬂ+3)/23(|(¥| iy - 1’ |Ol| iy - %)X

3—n n—1 n+1 1 VAjt
F , ;2 20— ——-(1——) ). 3.2.14
2 1( 5 > | + > 2( N )) ( )
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If we express the hypergeometric function in (3.2.14) by Euler’s integral
representation and use the doubling formula for the gamma function, we obtain

_ x| \20D2 (1=n)/2 24 2la|—(n+3)/2
Fy(t.x) = Y(t—\/_)r(n_l)\/—H (YAt = 1) x

n—3)/2
(el +1=2)" " syniy  olaltaimn—t | S VA =/
_— s (1—y) 1 1 ds.
C(lal+1-3) Jo 2 |x|

Upon employing the linear transformation s = and inserting F;

v—1
At/ =1
into (3.2.7), we arrive at Herglotz’ representation for the fundamental solution E
of the operator [j_ (87 — A;A,)% ! :

F(g)|x|2\a\+21—n—l

' VAt
EC.9 =5 om 2)!r(2|a|+21—n)Z@(_) [\/71 (|"| )}

j=1
(3.2.15)

where
Ku)=Yu—1) / (V2 = 1)=I/2(y — y)2lalF2=n=lqy,
1

see Herglotz [125], II, Eqs. (171), (175), p. 313; [126], p. 556, for « = O.
A completely different derivation of (3.2.15) will be given below employing the
“difference device”, see Example 3.3.4.

The above derivation of (3.2.15) was performed under the assumptions thatn > 2
and 2|«| + 2] — n > 0. However, due to the representation

K(u) 2 -

— = T*F(2 20—n), T=Yu-)@-1)"32eLl (R),
where C — D'(R) : z + F(z) is the convolution group given by F(z) =
Y(u)u*~'/T(z) for Rez > 0, see Examples 1.4.8 and 1.5.11, we can express E
in the form

_ D@L (i)“"[_ L, (ﬂ/rﬂ
E= Z \/_(T*F(2|oc|+2 ) o)L

2m1/2(n — 2)! P
(3.2.16)
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Formula (3.2.16) is valid for n > 2 and arbitrary o € Nf). This can be justified by
considering

1
EQ) = ' F! (H[(it +0) + A,-|g:|2]“f“+z), 1€C, o>0,

J=1

similarly as in Example 2.3.6.

Formula (3.2.16), which extends Herglotz’ formula (3.2.15) from the case of
sufficiently many factors, i.e., [a| + 1 > 3, to the general case, becomes particularly
simple if || + [ = 7. Then F(2|a| + 21 — n) = F(0) = § and hence

3 r'(3) L0\ ¢ RV NG T
E‘mWRWJMMZ;EG%)[QTYQ_7EXEF_Q ]

(3.2.17)

is the fundamental solution of R(9) = ]_[jl.=1(8,2 — AjA,)%*! with supportin > 0

if [ + 7= 2 and ¢; = [Timi (A — A) ™%, O
ki

Let us next state an analogue of Proposition 3.2.1 for the case of elliptic operators
with the goal of constructing a fundamental solution of the product ]_[]Z.=1 (A1 +

2;02)%+1 of Laplaceans.
Proposition 3.2.6 Suppose that P1(9), P»(d) are differential operators in R" which
are homogeneous of degree m and such that each operator

0,(0) = P1(0) + AP»(0), A € [c,d] CR,

is elliptic. Let o € Nf) and Ay, ..., A; € [c,d] and such that Ay, ..., A; are pairwise
different and set ¢; = ]_[fc:l(/\j — M) "% Furthermore assume that E) are
) A

fundamental solutions of Q) (3)“""H which depend continuously on A and satisfy
the estimate (3.1.13) for A € [c, d].
Then the parameter integration formula

1 ;i A

1/ 0\Y J
E= I-D> —( = = eH2E )
(Joe| + )j=l C\fj! (8)&,) [C, ( j ) A i|

Ao

yields a fundamental solution E of R(3) = ]_[]Z.:l (P1(9) —I—)ijz(a))aj +l, which grows
at most as a constant multiple of |x|"1*1+D=" 1og |x| for |x| = oco.

Proof As in the proof of Proposition 3.1.7, we conclude that E) = E; + g, where

E=rF Pt (0io) g,

p=—m(la|+1)
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0} (0)E), = 8, and g; is a polynomial of degree at most m(|e| + ) — n. As Ej and
E,, also g, depends continuously on A € [c,d], and we therefore obtain, with a
polynomial g,

I
FE-¢q) = (a|+1— 1)2%(%) |:c// (A —A)‘”“H 2TE, dk:|
J Ao

=177

1 /0
= ol +1-0 Y o1 (51 ) o

aj! \ 0

(=%

Jj=1

Aj (Aj _ A)\a\+l—2 ) :|
Pf da )-lg - |.
) M=—m(la|+l)|:(/xo (P1 (i) + APa(iw)) "™ i

If we take into account formula (3.2.1), we obtain

l

F(E—-q = Pf []_[(Pl(iw) + APa(ie)) IEI“]

p=—m(le|+D |
j=1

which implies R(3)(E — g) = 8, cf. Proposition 2.4.8. O

Example 3.2.7 Let us apply now Proposition 3.2.6 to the product R(d) =
]_[]Z.:l(An_l + A;02)4*! of Laplace operators, where o € Nf) and Aq,..., A
are positive and pairwise different.

For « = 0, the operator R(d) was considered for the first time in Herglotz
[125], II, § 10, p. 316; [126], p. 559. Herglotz’ expression for a fundamental
solution of R(9d) is not completely explicit insofar as it contains a quadrature, see
Herglotz [125], 11, (199a), (200a), p. 318. Explicit results were given in Ortner [201],
p. 182. For even n, a different formula was derived in Galler [86], Sétze 15.1, 15.2,
pp- 59, 60.

From Proposition 3.2.6, we obtain the following representation of a fundamental
solution E of R(0) :

E = (lo|+1 1)i 1 ( d )[ /A"(x MG (¢ X")dk}
= (lo| +1— ——) | = M) ITTEG X, — |,
oot \ oA e NIREVIY

(3.2.18)
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where ¢; = ]_[k l(k )% Ao >0, X' = (x1,...,x,—1) and G is a fundamental

solution of A'“'H According to Egs. (1.6.19) and (1.6.20) in Example 1.6.11, we
can set

(DT — || 1)
20D (o] + 1 — 1)1/

(_1);1/2—1 |x|2(|a|+1)—n IOg |x|
20 FD=1 (ja| + = D)!(Ja| + [— )l

| |2(|(x|+l)—n

if nisoddor |a| +1 < 5.
Gx) =

ifnisevenand || +1> 3.
(3.2.19)

Let us observe that E is locally integrable and C*° outside the origin.

(a) Letus now first investigate the case where ||+ < 5 and n = 2k is even. Then

we can set Ap = 01in (3.2.18) and obtain

_ (DTG — o) -
£ o] + 1 2t £ Z o] (ax ) (F). (3.2.20)

where, for x # 0,

Aj 2\ Ja|+i—k dA
() — a2 2 K an
A = [T (e )T

With the abbreviation p = [x'| = (/x} + -+ + x?_,, we infer

1 9 k=la|—I=1 ), (Aj —A)M_H_Z\/Xdk
Fi(x) = _ '
0= G =i 1)!( 2pap) / P

If we apply the binomial expansion to

(A — A)\a\+l—2 — p4—2(\a\+1) . [xi + /\jpz _ (xi + Apz)]\am—z,
we obtain

4 (A — W)l 2 2 da
0 X+ Ap?

e =2 3 JAdd " E (e +1-2
z(l +A»> " 4 Z e P2l D o

J 0 Xﬁ —+ A.,Oz i

i=1

<@ e [ Vi
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= %(ﬁ + A )laH_l 2[ VA arctan(@)] 2 lali[:_z (Ial +1- 2)

P>\ p? X P i
( 1) ( )IaH-l 2—, ilXI: i—1 A’Jl:—r-‘rl/Z (_xn>2r
r=0 r i—r + % p '

This implies that, in the case n = 2k and k > || + /, a fundamental solution
E of R(0) has the form

E: (_l)k_l ZI:L i aj C; i k_lal_l_l)(
lal+i+k=1 (|| + [ — 2)!7k = ot 0k "\ pdp

)]

o 26\l Ap
xp {7(;“1) [—xn

— arctan(

loe|+1—2

+ <|a|+l.l— )( 1y (_z )
i=1
' Al e,
()

r=0

(3.2.21)

cf. Ortner [201], p. 182, no. 1. We postpone the case of even n with n < 2(|a|+1)
to Example 5.2.5. Note that E in (3.2.21) is homogeneous of degree 2(|o| 4 ) —
n < 0, and thus E is the only homogeneous fundamental solution of R(d), or,
put differently, E is the only fundamental solution which vanishes at infinity.
In particular, for« = 0, [ = 2, n = 6, we obtain for the fundamental
solution E of (As + 1102)(As + A202), A; > 0, A # A, the formula

_ 1 Vii=Vi  x . («/l_lp)_ . (\//TZP)
= 0 1) p 3 arctan - arctan . ,

where p = ,/x% + ---+x§.

(b) Let us consider now odd n = 2k 4+ 1 > 3, but still under the hypothesis of
le| +1 < 3, ie., |a| +1 < k. As before, the fundamental solution becomes
unique under the assumption of homogeneity.

Then formula (3.2.20) persists, where now

Fi) ﬁ ( 9 )k—a—l /lj O — A)|a|+l—2 0
i(x) = — —————— dA.
! T(k—la| -1+ H\ 2p0p o 2Tt
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The last integral originates by || 4+ [ — 1 indefinite integrations of the function
(2 + Ap?)~Y/2_ and hence it coincides with

B(|0l| +1-1, %)(XZ + Aij)\a\+l—3/2p2—2|a|—21
up to a polynomial in A; of degree at most || 4+ I — 2. Since

l

1/ 901\% .
> Q(ﬁ) (A) =0 fori=0,....Ja|+1-2, (3.2.22)
j=1 7t J

as a consequence of formula (3.2.2) for t+ = 0, we obtain for the case n =
2k + 1, |o| +1 <k,

(=12 L1 ( 9 )
2 (o] 4 1= §) S ot 9

9 k—|a|—1 (x3+/xjp2)|a|+z—3/2
G m 2l +1=1) ’

cf. Ortner [201], p. 182, no. 2 (where a numerical factor should be corrected).

In particular, for« = 0, [ = 2, n = 5 and positive )Lj, we obtain the
following formula for the homogeneous fundamental solution E of (A4 +
Alag)(A4 + Az&%) :

1
E = s pzz_x%_i_..._i_xi'

8n2[\/x§ + A% + \/xé + 220

Let us next stick to the case of odd dimensionn = 2k + 1, k > 1, but assume
that || + [ > k. Then formula (3.2.20) still holds with

Fj(x) = /;j(x,» . A)MH—Z(pz + x_z)

lo|+1—k—1/2 d)
Vi

for some fixed Ao > 0. Note that E is the only fundamental solution of R(d)
which is homogeneous and even according to Proposition 2.4.8, (2), and hence
E is independent of the choice of Ay.

If we employ the substitution x2 + Ap*> = u?, dA = 2udu/p?, we obtain

A

A’.
Fi(x) = / ]()Lj —)L)‘“"H_z(xﬁ n Apz)lalﬂ—k—l/zkk—\a\—z i
Ao

A 2+ gy
— 2p2—2k/ (xi + Ajpz _ Mz)\am—z

’—x§+lop2 (uz _ x%)|a|+l—k
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la|4+1—2 I |+l ‘ '
2 2—2k Z ( )(_1)1()(2" +Ajp2)|a|+l_2_lx
/W w2l +i—k+i) 4,
X —_—
’—x3+lop2 (u2 _ x;%)lal—'—l_k

The last integral over a rational function can easily be evaluated, see Grobner
and Hoftreiter [116], Egs. 15.21 b) and f):

22k e | +1-2 i 2\ la|+i—2—i
Fi) =207 )~ o EDOR A x
i=0
+Il—k—1 R R . _
_ At 41 e 5 Qi+3)Q2i+5)...Qi+2r—1) 2:2)~"
2 (ol +1—k=1). (el +1—k—1) (2 —2)elFFr

Qi+3)Qi+5) ... Qe[ +I-k+)—1)
(lo| + 1=k = D122l 1kt

al+l—k+i—1 kD)2
lor] i 22l k=21

2| +1—k+i)—2r—1

r=0

Qi+ 3)2i+5) ... Q(e| + -k + i) — a2+

(Jou] + I — k — 1)1 2lerl+i=k
U—xy u=A/x3+A;p?
log( ) ] .
u+xn) Y= fa5m0m

As in case (b), we use Eq.(3.2.22) in order to conclude that the sum

of the contributions from the lower integration limit /x2 + Aop? vanishes.
Therefore, (3.2.20) yields for the homogeneous fundamental solution E of
R@) = [Tz (Auo1 + A;02)%* ! in the case n = 2k + 1, |a| + 1 > k, the

following:

(e - |a|—l+2)Z ( )0‘./6‘|0‘|_'_Zl:_2(|a|+l—2)(_1)i
ot \ar; ) i

 92(lal+D—1 _ n/2
22Ul +D=1(|gr| 4 [ — 217"/ por

la|+1—k—1 . . .
(2 4 4Pl * Z Qi+3)Q2i+5)...Qi+2r—1)
m (a|+1—k—=1)...(a| +1—k—r)

r=1

XA Ja|— H—k+r(2x2) r —2(la|+1—r—1)

Qi +3Qi+5)... el +1-k+D -1
(o +1—k — 1)l 2l T
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loe] +1—k+i—1 2(r—|a| I4+k=4+1) 2—2k

P 2(la|+1)—k—r—5/2
X XA
r:zo el T Tk —2r =1 A7)

Qi+3)Q2i+5)...2»a| +1—k+i)—1) 2 22K(2 4 ) el
(lee] + 1 =k — 1)1 2lel+1=k
(e
X lo,
X2+ A%+ x,

In particular, forn = 3,i.e.,k = 1,ando = 0, [ = 2, positive A| # A,, we
obtain the uniquely determined homogeneous and even fundamental solution £
of (Az + A193)(As + 2203) :

1 [ 02 5 (\/xg/?n +p2+X3/«/ﬂ)]
_ — og ,
am \/x§+)up2+ 3+ dap? A=Az VB 2+ pr+x3/ A2

(3.2.23)

where p* = x? + x3, cf. Garnir [100], p. 1140; Brillouin [27], § 6; Bureau [35],
p. 483; Bureau [36], p. 23; Wagner [285], Ch. 111, 4. Bsp, pp. 45—46.

Let us finally observe that the above formulas for £ remain valid by analytic
continuation as long as Ay, ...,A; € C\ (—o0, 0] are pairwise different. O

3.3 The Difference Device

For a polynomial Q(z) = ]_[5 1(z— A))%*1 in one complex variable z (with A; € C
pairwise different and o € N o), we have shown already in Proposition 1.4.4 how to

derive fundamental solutions of the operator Q(P(a)) = 1_[;'=1 (P(8) A ])a’ ! from
fundamental solutions E) of P(d) — A. (Proposition 1.4.4 refers to the case of real
A;j, but it holds indeed also for E; depending holomorphically on complex A.) This
essentially algebraic formula relies on the partial fraction decomposition of Q(z)!.

In this section, we shall consider instead operators of the form Q(Pl(a), Pg(a))
for homogeneous polynomials Q(z;,22), i.e., Q(z1,22) = ]_[]Z-:l(Zl — Ajzp)%ith,
In this case, the algebraic decomposition procedure stops short of producing a
fundamental solution of Q(Pl(a), Pz(a)), but it yields instead a solution F of the
equation

Q(P1(3),P2(8)) (Pl(a) Aon(a))‘“‘“ !

cf. Ortner [202], Prop. 2, p. 86. We emphasize that this so-called “difference
device” works independently of any assumptions on the involved operators, as, e.g.,
quasihyperbolicity or ellipticity.
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Proposition 3.3.1 Let P(0), P2(0) be linear constant coefficient differential oper-
ators in R" and E : U —> D'(R") such that E()) is a fundamental solution of
P1(0) — AP,2(0) for A € U. We assume that either U C R is open, m € N, and
E depends C™ on A, or that U C C is open and E depends holomorphically on A.
Then

! o 1
F= ZL(_) (GEQ)),  dyi= =2 ]y =207,

a;!

%
satisfies
! +l oe|+1— 1
[T(P1(®) = 2P2(@)“ " F = (P1(3) — AoP2(3)) (33.1)
j=1
for Ay € C and pairwise different Ay,...,A; € U and a € NlO witha; < m, j =

., I (in case E depends only C™ on 1).

Proof Fori=0,...,q;, letus define

di= d aj_id»
T TR a

Then the Leibniz formula yields

On the other hand, by differentiation of the equation (P;(9) — AP2(3))E(A) = §
with respect to A, we obtain
i+10'E()

=il i
PTh i'P>(0)'8.

(P1(0) — AP2(9))

Therefore,

! @ 1
[1(P1@® — 4P2()“ "' F = Z > d (]_[ Pi(9) — Akpz(a))“k“)
j=1

j=1 i=0 k

< (BL0) 1P @) " (P~ yPa@) 2 @(A,)

(P1(®) = 2P2@) ! S dit(Py(3) — AP2(3)) " P2(3)'s.

i=0

21N

o~
II ~
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By Fourier transformation in £ and setting s = P(i§), 1t = —P,(i§), & €
R”, (3.3.1) reduces to
] ] j
(s + Agn)lH=1 = Z(H(s + /\kt)““'l) D o diil(s + A% (=0’ (33.2)
Jj=1 k=1 i=0 ‘
ke
Upon division by ]_[jl.=1 (s + A;n)%™T1, (3.3.2) is equivalent to
/ [ 9
(s + AT T [+ 40707 = dii(=0)(s + A1) 7" (3.3.3)
j=1 Jj=1 i=0 ‘
If we abbreviate ¢; = ]_[i=1 (A — )~ ! as in Proposition 3.2.1, then
k#j
) 1 a aj—i
dil = — — (A — o)1y,
st (Olj—i)!(?)/\j) (6% = Ao) )
Furthermore,
A —i—1 i__ 1 d ! A —1
(S + ]t) (—[) = l—' B_A,j (S + ]l)
and hence the right-hand side of (3.3.3) yields, by Leibniz’ rule,
XZ: 1 (i)aj [Ci(%’ — )l }
= Olj! 3)&] s + Ajl‘
Therefore, (3.3.3) is a consequence of formula (3.2.2). O

Let us observe that the limiting cases of Ao = 0 and Ay — o0, respectively, lead

to the formulas
L
R@) Y 0732‘2(%,'-“'“‘%]-15@;)) = Py(9)“1*""18
j=1 "7
and

1
1 ol
R(d)) :@axj(ch(xj)) = Py (9)leIH1s,
j=1 """

(3.3.4)
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wherein R(0) = ]_[;=1(P1(8) - )ijz(EJ))Olj+1 and ¢; = [[iei(A; — A) """, In par-
ot

ticular, for P,(d) = 1, formula (3.3.4) reduces to the assertion in Proposition 1.4.4.

We shall next apply Proposition 3.3.1 to homogeneous operators in the plane,
ie., to R(0) = ]_[;=1(31 — Xj02)% T For @ = 0, a fundamental solution of this
operator was constructed in Somigliana [258], § 2, (5), p. 147; Herglotz [125], I,
(98), p. 111; Bureau [32], 8, (15°), p. 12; Wagner [285], Satz 4, p. 40. For arbitrary
o, a formula was presented first in Galler [86], (4.1), p. 15.

Proposition 3.3.2 Let! > 1 and R(d) = ]_[;:1(31—/1/32)“14'1, o € Nb, for pairwise
different Ay, ..., A; € C\ R. Let log z be defined as usually for z € C\ (—00,0],
i.e., log(re) = logr +ip forr > 0and ¢ € (—m, 7). Forj=1,...,1, set

!
e 1 o _
=[] — 27" and Pi(x1.x2) = @a‘j{/_[cj(xz + Ayl t2],
k=1

ke
Then a fundamental solution E of R(0) is given by

l

Z sign(Im A;)P;(x) log(xz + Ajx1). (3.3.5)
j=1

i
E -
2 (laf +1—2)!

In particular, if R(d) has real coefficients and x; # 0, then

l

- ! 2 2.2
E(x) = m ; [—ImP, . log(x2 + ZX]XZRCA]' + |A]| .Xl)
IIT{/\j>0
Re A;
+2Rer-aIctan(m) .
xllm /\j
(3.3.6)
Proof
(a) In order to apply Proposition 3.3.1 to the operator R(d), we set A¢ = —i and

consequently d; = (A; + i)l"‘H‘l_lcj. Then F = Z;zl ocj!_lf)zj_ (djE(Aj)) fulfills
R()F = (3, + i9,)!+=1§ if E(X) is a fundamental solution of d; — A,
depending holomorphically on A for A in an open neighborhood of {1, ..., A;}.
By a linear transformation (see Proposition 1.3.19) of the fundamental solu-
tion m of the Cauchy—Riemann operator d; + id,, see Example 1.3.14
(b), we infer that we can set E(1) = —sign(Im A)/(Zni(xz + Axl)), A € C\R,
and hence
i zl: sign(fm ;) (9 \¥ (X + 1)+,
Oéj! B/Xj Xy + ijl '

_2—
JTj=1
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(b) If E is defined by Eq.(3.3.5), then (3; + id,)!**~'E = F. In fact, this is

(©)

(d)

obvious in the open set U = {x € R* x; # Oorx, > 0}, since there
log(x, + Ajx1), j = 1,...,1, and hence also E are C*° and can be classically
differentiated. Along the half-ray x; = 0, x, < 0, the function log(x, + Ax;) €
Ll .(R?) is discontinuous with the jump 27 sign(Im 1), and hence, by the jump
formula (1.3.9),

A+i

(01 +102) log(xz + Axy) = 2mwisign(ImA)S(x;) @ Y(—x2) + ————.
X2 + Axg

Furthermore, for = 0, the identity (3.2.2) yields

1

1 a \%
e (4 g lali-1
= Olj!(akj) L% =20 ]

j=1

for arbitrary Ay € C, and hence

1/ 0\% 0, ifk=0,....|la|+1-2,
Z_'(_) i) = _ (3.3.7)
— qj! ' ‘ 1, ifk=lo|+1-1.

This implies that the sum over the jump terms vanishes when the differentiations
in (3, 410,)/* =1 E are performed, i.e., (9, 4id,)!**~' E = F holds in D’ (R?).
The equation R(J)F = (9; + id,)/*I**=1§ then furnishes

(91 4 18) = [R()E — 8] = 0.

From Liouville’s theorem, we therefore conclude by induction that R(0)E = §
since R(J)E and its derivatives vanish at infinity. Hence E is a fundamental
solution of R(d), which by Proposition 2.4.8, is uniquely determined up to
polynomials of degree || + / — 2 by the growth condition (2.4.4).

Finally, if R(0) has real coefficients, and e.g., A, = )L_l, ImA; >0, o = ap,
then P, = P;, and we can add the terms for j=12:

sign(Im A1) Py (x) log(xy + A1x1) + sign(Im A,) P, (x) log(xy + Arxy)

= 2iIm(P; (x) - log(x, + A1x1))
= 1ImP1 log(xg + Z)CIX2RCAI + |)Ll|2x%) + 21RCP1 . arg(x2 + )lel).

Here logz = log|z| + i argz is determined as in the proposition, i.e., argz €
(—m, m) for z € C\ (—o0, 0]. Note that then

Rez T
argz = —arctan(—) + — sign(Imz)
Imz 2
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holds for z € C \ R, and hence, due to ImA; > 0,

x2 + x1Re Ay

arg(x; + Ajxp) = — arctan(
xllmkl

) + — signx
b gnx
holds for x; # 0. Therefore, for x; # 0,

l

i Z sign(Im A;)P;(x) log(xz + A;x1)
Jj=1

O = a2

1

- 1 2 2.2
= m ; |:—Im(P,) log(x; 4+ 2x1x;Re /\j + M]l x7)
IIT{/lj>0
Re A;
+ 2Re(P)) mctan(%) — nRe(P)) signx1:|.

(3.3.8)

Due to formula (3.3.7), Z/l'=1 ReP; =1 Zj’:l P; = 0, and thus the last term
in (3.3.8) can be omitted. This yields formula (3.3.6) and concludes the proof.

O
Example 3.3.3 Let us apply Proposition 3.3.2 to the operator
R@) =[[@ +0203). by >0, b+ biforj# k.
j=1
This amounts to setting / = 2m, o = 0 and A; = ib;, Ajp,, = —ibj, j=1,...,m.

Forj =1,...,m, we then obtain ¢; = (—1)"id;/ (2b;), where d; = [[;L, (b7 —b;)~".
k#j

Furthermore, P; = ¢;(x, + ibjx1)*" % and hence

(_1)m+1d,

-1 m+1d_
20 L Im(x, + ibjxl)zm_2 = —( )

RePj = % > q(bpx1, x2)

with

m—2
_ 2m—2 k. 2k+1 2m—2k—3
q(x1,x2) = kE= (2k n 1)(—1) Kt ,

and, similarly,

(=D"d
20,

(=1)"d
2b;

ImP; = Re(x; + ibjxl)zm_2 = p(bjxi, x2)
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with

m—1
2m—2
plx1,x) = Z( o )( l)k 2k 2m 2%=2.

k=0

Therefore we obtain as fundamental solution E of ]_[ 1(32 +b28 7) the expression

( 1)m+1 m d 5 )
= — bix1,x2)1 bix 2q(bjx, t .
TG 2, ! {ppn. ) Togd + 70) + 2q(bya v arctan ()|

(3.3.9)

Formula (3.3.9) appears for the first time in Galler [86], Section 11, p. 48 (with
X1 =Y, X3 = X).

In particular, if we set m = 2, by = 1 and b, = ,/as, a; > 0, formula (3.3.9)
furnishes the expression in (3.1.15) fora; = 1. O

Example 3.3.4 Letus next apply the difference device, i.e. formula (3.3.1) in Propo-
sition 3.3.1, to the product of wave operators R(0) = ]‘[jzl(af — LAt o €
Nlo, for A; positive and pairwise different. This operator has been treated in
Examples 3.2.2 to 3.2.5 with the method of parameter integration.

Setting Ay = 0 in Proposition 3.3.1 we obtain R(d)F = 8?'“'”1_28 if
F= Z aj A|oz|+l 1 E(A ))

¢ = ]_[f];l'(k i— M) "% ! and E(A)is the forward fundamental solution of 3> — A A,,.
]

Since F and the fundamental solution (2|a| + 2 — 3)!_1&'“'”1_3 ® 8(x) of

8?'“'”1_2 are convolvable by support, we can represent the forward fundamental

solution E of R(d) in the form

I Plal+2-3

1
E=Y" —87| A eE) ¢ [ =———n :
j:zlaf!a%[f TEOD*\ lal +21—3 @0

If2la| +21—3>n—2,ie.,2|a| +2l—n > 0, then
20| +21-3

_+
Q2la] +21-3)!

2la|4-21—n—1

+
Qla+20—n—1)!

E(A) * ( ® S(X)) =Ei(A) * ( & S(x)),
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where Ej (1) is the forward fundamental solution of 97~2(d> — AA,), A > 0. From
the subsequent Lemma 3.3.5 (for the case k = 1), we infer that

—n 2\ (n=3)/2
Y( — x|/ VA2 (2 — B

E@) = (n— 2)1[S"1[A :

and hence

r'(%) L1 a\Y
E = 2 | =
() = S 2tn = 2) T 2] + 21 =) ;qi!(a,xj)

lel+1=2_2-n || /t dal42imnat (2 PP\ @=3/2
el oy (ML (t—1) 2o M dr |.
[/ ' ( x/%‘) 1/ /% ( /\j)

(3.3.10)
Up to the substitution t = vl’;‘_, formula (3.3.10) coincides with Herglotz’
J
representation of E in (3.2.15). O

Lemma 3.3.5 Let n,k € N with n > 2k. Then the fundamental solution G of the
operator 3"~*(9? — A,)* with support in t > 0 is given by the locally integrable
function

TG+ 1=R)Y (@ — [ — |32
- (k — 1)!(n — 2k)! 221 7n/2

G(1, %) (3.3.11)

Proof Let us repeat first that, according to Example 2.3.6, the forward fundamental
solution of (92 — A,)¥ is the value for A = —k of the entire function

C—SR™: A EQ)
which, forRe A < 1%", is locally integrable and given by

22A+1y(t _ |x|)(t2 _ |x|2)—A—(n+1)/2

EA) = ,
@ D20 (=) (-4 — 5L
see (2.3.11).
On the other hand, the distribution-valued function
2A+n—1
{AeCRed > -2} — SR™) : A — Fl) := —F—— ®5(x)

T (2A + n)
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can be extended to an entire function, cf. Example 1.5.11, and E(A), F(A) are
convolvable by support for each A € C. Due to

K02 — ADME(—k) * F(—k)] = 5,

we conclude that the forward fundamental solution G of 97~2(3? — A,)* is given
by G = E( k)*F( k)

If -2 < Re A < 5%, then E(A) is locally integrable and the convolution E(4) *
F(}) can be represented by the absolutely convergent integral

ZZ)H_IY(Z‘— |x|)

E(A)* F(A) = m(=D/20 (=)L (=X — SHT (24 + n)

t
(l _ _L,)2/1+n—l (‘52 _ |x|2)—/l—(n+l)/2d1,.

Ix|
From Eq. 421.4 in Grobner and Hofreiter [115], we conclude that

2l—n|x|—2/1—n

— Y — (@ — xR,
m(=DA2T (=4 + £L)

(3.3.12)

EQ) * F() =

n+1

coincides, for these A, with E(X) % F(A) since A — E(1) * F(A) is also entire.
In particular, setting A = —k and using the doubling formula of the gamma
function we obtain

21—n|x|2k—n

G = E(—k) x F(—k) = Y(t— |x|)(t2 _ |x|2)—k+(n—l)/2

w(=D/2(f — DIT (=k + 1)

TG+ 1 =Y = ) (@ = ) D2k
B (k — 1)1(n — 2k)1 22k=17n/2 '

|

Example 3.3.6 From (3.3.11) for k = 1, we obtain the following representation of
the solution u of the Cauchy problem

(0> = A)u = 0fort >0, u(0,x) =0, (3,u)(0,x) = u;(x)

by convolution:

n—2

— [G * (8(H) ® u1(x))]

1 o2 1
(n )i (/ (= rz)(n—3)/2(_|sn_l| - ui(x — rw) dd(w))rdr).

u(t,x) = %

(3.3.13)
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In this form, G already appears in Herglotz [125], II, (177),(178), p. 314; [126],
p. 557; John [151], (2.32), p. 33; Courant and Hilbert [52], Ch. VI, § 12, 1.,
Eq. (2), p. 682. We note that our deduction of formula (3.3.13) is, in contrast to
the references, independent of the parity of the dimension n. A different unified
deduction of (3.3.13) for all dimensions # by means of partial Fourier transformation
is contained in Shilov [250], Section 4.7.1, pp. 290-292. O

3.4 Products of Operators from Higher-Dimensional Affine
Subspaces

Generalizing the considerations in Sect. 3.2, which refer to operators of the form

)
R@®) =[](Pi® + AP.@)""".  aeN) AeR,

=1
we consider here products of the form

1

R®) = [[(Po@) + Y APi®). A= (hy) e R™,

j=1 i=1

i.e., all the factors of R(d) are contained in the affine subspace of C[d] spanned by
Po(d) + AP;(d), A € R, i = 1,...,m. The corresponding formulas were derived in
Ortner and Wagner [211].

Proposition 3.4.1 Let lm € N, m < [l —1, and let A = (A;) be a real m x |
matrix. We denote by A; the j-th column of A, i.e., Aj = (Ayj, ... ,lmj)T e R™ and
we suppose that Aj, — Ay, ..., A, — Ay are linearly independent in R™ for pairwise
different indices j\, ... ,jm, k € {1,...,1}. Let Ay € R" and define

Ti = {po/\o + szA]” P = (pOs s spm) € Em}

i=1

where T, is the standard simplex in R"T! see 3.1, and j := (j1, ..., jm), 1l <ji <

We suppose that the operators Q,,(0) = Po(3) + u1P1(9) + -+ + wmPn(0) are
uniformly quasihyperbolic with respect to N € R" \ {0} for & = (i1, ..., km) €
M := U;T;, and we denote by E and by E,, the fundamental solutions of

l

R@) =[](Po@® + D> _APi(®)  andof 0,(0).

j=1 i=1
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respectively, which satisfy e "*NE, e *NE, € S'(R") for o > 09, 09 as in (3.1.3)
with respect to o € M. Then E,, continuously depends on . € M and

(1—1)! .
E:m Z Cj Tdetl I(Ajl—,u,...,Ajm—,u)E,Ld,u
: J

L<ji<<jm=l
(3.4.1)
if the constants cj are given by

l
Cj = sign[det(Ajl —Ao,...,Ajm —A())] l_[ det_l(Aj —Ak,...,Ajm —Ak).

1

k=
kE{j1segm}

Proof According to Proposition 3.1.2, E can be represented by the formula
E=(- 1)!/ Eppdo(p), (3.4.2)
X1

since, for p € X1,

1 m m
> o[Po@ + D APi®)] = Po@) + ) miPi®). = Ap.

j=1 i=1 i=1

Upon application to a test function ¢ € D(R"), the assertion therefore follows from
the representation of the “Dirichlet averages” fEH f(Ap)do(p), f € C(M), in the
following lemma. O

Lemma 3.4.2 Let [,m, A, Ao, Tj, M, c; be as in Proposition 3.4.1 and assume that
f € C(M). Then we have

1
/E 0ot =

X Z ¢ /T det ™ N (Aj = oo A, — ) f(r)dp. (34.3)
J

Isji<<jm=l

Proof

(a) First we note that the linear combinations of functions of the form
fu)=@+v-p)™, veR" t>max{—v-u; u M}, (3.4.4)

are dense in the Banach algebra C(M) due to the Stone—Weierstral} theorem, see
Hewitt and Stromberg [130], Thm. 7.30, p. 95. In fact, products of functions
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(b)

3 Parameter Integration

of the form in (3.4.4) can be approximated by functions of the same kind by
differentiation and integration processes according to the formula

1 @ ! X1 — ) dx
t+v-wis+w-p)' (=D Jy 4+ A=x)s+ v+ 1 —xw) - pu?’

cf. Grobner and Hofreiter [115], Eq. 421.4. Hence it suffices to verify for-
mula (3.4.3) in the lemma for functions of the form given in (3.4.4).

Let us fix now v € R and t > max{—v - u; u € M} and consider the function
f(uw) = (t +v- )~ in C(M). Due to Feynman’s formula (3.1.2), we have

_ do(p) !
Lllf(Ap)da(p) = LH CTo- Ao 1)' l—[(t—l-v Ak~
(3.4.5)

We next reduce the product on the right-hand side of (3.4.5) to a sum over
products with m + 1 factors only. This is accomplished by means of the many-
dimensional version of Lagrange’s interpolation formula in Lemma 3.4.3 below.
This yields

1

[[e+v-A0 =@+v-A0"" > g[e+v-A)7". (G406

k=1 Iji<<jm=l i=1

where

lL[ det(Aj, — Aog,..., Aj, — Ag)
det(Aj, — Apv.o s A, — Ag)

ej 1=

k=1

k{1, im}

(In Lemma 3.4.3, we use P = zf)_’”, Z="v, 20 =t+ V- A, and we replace A;
by Ap—Ajforj=1,...,1)

The products on the right-hand side of (3.4.6) can in turn be represented by
Feynman integrals by employing (3.1.5):

m Z m—1
_ _ (I=1! do(p)
(t+v-A)" Tt +v-A)" = / )
1.1:[1 / (—m-=1!Js, (+ pov- A0+Zl=1ptv'/\j,~)l

The last integral is transformed into one over 7}, which is the convex hull of
Ao, Aj,, ..., Aj,, by the linear substitution u = pgAo + Z:"zl piAj,. In fact,

this subst1tut10n has the Jacobian

ap; B
de t((a,u,k>,k 1o ) = det 1(A,il_AOs---’Ajm_AO)s
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and pg is determined by p through the system of linear equations
pot+pittom=1 pho+ ) ph;=p,
i=1
and hence Cramer’s rule implies

_ det(Aj, — p,.... A, — 1)
det(Aj, — Ao, ..., Aj, — Ao)

Po

Therefore,

do(p) 1
/zz_l t+v-Ap)  (I—m—1)!

X Z Cj detl_m_l(Ajl —,u,...,Ajm —,u)(t+ U'ﬂ)_ldﬂa
T

I<ji<<jm=l

which is formula (3.4.3) in the special case of f(u) = (t + v - ). O

The following many-dimensional version of Lagrange’s interpolation formula
was first formulated and proven in Ortner and Wagner [212], Lemma 1, p. 86; it has
proven useful in quantum field theory, cf. Wagner [289], (2), p. 2429; Metzner and
Neumayr [178], p. 623.

Lemma34.3 Let 1 <m < I, Ay,...,A; € C" such that A, ..., A;, as well
as Nj, — Ay, ..., Aj, — Ay are linearly independent for pairwise different indices
Jiseesjmk € {1,..., 0. Forj = (1,...sjm), 1 < j1 < -+ < jm < I, determine
z(j) € C™ by the system of linear equations Aj, - z(j) = 1,i = 1,...,m. Then, for
each complex homogeneous polynomial P(zy,z) in m + 1 variables of the degree
[ — m, we have

li[ (20— Ax-2)det(A,, ..., A;)

P(z0,2) = Z P(1,z(j)) det(Ajl _Ak“‘Ajm —Ay) '

j=(/1~---J{n) {<=1 .
I<ji<o<jm=l KEL e}
(3.4.7)

Proof Forj = (ji,...,jm), 1 <j1 <--- <ju <[, define the polynomial P; by

I
Pi(z0,2) := l_[ (z0 — Ak - 2).

k=
kg .. im}

By the definition of z(j), we have P;(1,z(j')) = 0 for j # j'. The vector (z9,2) :=
(1 — Ax - 2(5), z(j)) is the solution of the system of linear equations zg + Ay -z = 1,



224 3 Parameter Integration

Aj -z=1,...,A;, -z=1, and hence we deduce from Cramer’s rule that

det(Ajl —_ Ak, ey Ajm —_ Ak)

L= Ag-z(j) =
k- 2() det(Aj,.....A;,)

This yields

l_[ det(Aj, — Ap. ..., Aj, — Ag)

!
PLzG) = [] (=Awz() = det(A,, ... A;,)

k=1 k=1

ST KEG 1w}

£0.

Therefore, the set
M = {Pl ]: (ilv"'vjm)s 1 S]l < e <jm < l}

is linearly independent in the complex vector space H which consists of all
homogeneous polynomials in (z9,z) € C""! of the degree [ — m. Since H has the

dimension (ri), this implies that M constitutes a basis of H. Now (3.4.7) is nothing
else than the co-ordinate representation of a polynomial P € H with respect to M.
|

The number m of integrations in the parameter integral in (3.4.1) representing
the fundamental solution of the operator R(3) = 1_[;=1 (Po(d) + Y12, A;Pi(9)) can
further be reduced by one if one of the operators P(d),...,P;(d) is a constant,
a case which covers our successive examples, i.e., products of transport, heat or
Klein—Gordon operators. The assumption that one of the operators P;(9), . .., P;(9)
is a constant also allows to comprise the case of iterated factors, i.e., of higher
multiplicities.

Proposition3.44 Letl <m <l a € Nf) and let A = (Ajj) be a real m x | matrix
with the columns Aj = (Ayj, ..., /\mj)T eR",j=1,...,l. Letd,,...,d € Rsuch

that the vectors
Ajy — Ay Ajpr = Mic) gt
djl —di djm+1 —di

are linearly independent for pairwise different indices ji, ..., jm+1,k € {1,...,1}.
We suppose that the operators Po(d) + Y i, iiP;(d) — v are uniformly quasihy-
perbolic with respect to N € R" \ {0} when (u,v) = ({1,..., Um, V) varies
in the convex hull of (211), cees (2[’). Denote by E, , the fundamental solution of
(Po(d) + it wiPi(d) — v)"*! satisfying e °VE, , € S'(R"), 0 > 0¢. Then E,; ,,
continuously depends on (i, v), and the fundamental solution E of the operator

I m aj+1
R(D) = H(Po(a) + Z AjPi(9) — dz)

j=1 i=1



3.4 Products of Operators from Higher-Dimensional Affine Subspaces 225

is given by

m+1

1 o
E=m Y (]‘[ — ad;;) [c,- /E Epui0).01(0) d(r(p)i| : (3.4.8)

1gji<fmpr <1 Ni=1 I
where, for j = (j1,. .., Jm+1),

! det* T (A, — Ao A — A
Cj:: 1_[ et ( ! J1 Jm+1 J)

_ dy—dy ... dj, —di\’
k¢{1'1{(-:;m+1} detak+1 J1 Im+1
Ay —Ap .o N — Mg

Jm1

(3.4.9)

and pi(p) == Y10\ pi; € R™, vi(p) := 310 pidy € R.

Proof 1f E(1) is the fundamental solution given by (2.4.13) of an operator of the
form ]_[;=1(Pj(8) — ;) which is uniformly quasihyperbolic for A € U C R
open, then E(A) depends C* on A and the operator ]_[;=1(Pj(8) — A)%*! has the
fundamental solution o! ™! 0YE(A), see Proposition 1.4.2. The use of this fact reduces
the proof of the general case of higher multiplicities to the one where @ = 0. We
also note that the case [ = m + 1, where j = (1,...,0]),¢; = 1,uj(p) = Ap
and v;j(p) = p - d, is an immediate consequence of Proposition 3.1.2. We therefore
assume in the following that / > m + 1.

Furthermore, we observe that the operator R(d) as well as the expressions
in (3.4.8) and (3.4.9) remain unchanged if Py and (2;) are replaced by Py +
> biPi — byt and by (’;:) — b, respectively, for a fixed vector b in the convex
hull of (21‘), o (’;I’). After these replacements, 0 is contained in the convex hull of

(211)’ . (21’), and we can thus apply Proposition 3.4.1 with Ag = 0. This implies

(1—1)! . Njy e N
E= "7 det
(—m—2)! 2 sign|de d ... d )

1<ji < <1 <1 1
!
Aj = Ai ... Ay, — A
X 1_[ det_l 2 Jmtl X
k=1 d]l _dk djm+1 _dk
k¢{jls~~~\jm+l}
Ny —p .. Aj, ., — 1 ]
X / det—m=2 (! It " Blv_m_lE,w dudv,
T djl—v...djerl—v (l—l)'
where 7} is the convex hull of the vectors (8), (g_fll ) I (1;]'"+1) and —(li”i)! a-m=E,

Um—+1

is the fundamental solution of the operator (PO(B) + Y0 wiPi(d) — v)l.
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We evaluate the v — integral by partial integrations. (Let us remark, in paren-
theses, that integrals over continuous, distribution-valued functions like the one
above can be handled in exactly the same way as ordinary integrals, since we
can think of the distributions as being evaluated on a test function.) Notice

dj —v ... d

Ny —p .. Aj, ., — 1
that det( ! It ) vanishes along that part of the boundary 97;
jm-‘rl -V

which lies on the affine hyperplane through the points (1), .., (3{”“) in R"*1,
/1 Im+1
Therefore, we obtain

Aj .. A
sign [det J1 Jm4-1 }X
djl R djm+l

ANy —p .. Aj,  — 1
X /detl_m_2 ( . o ) ot E, , dudy =

djl_V djm+1_V
Tj

=({l-m-2)! ded™! (Aj — Ajzv e, Ajl — Ajm+1) /E EIL_/(P)ij(P) do(p) +
I—

N i (I—m—2)!

-2
L (I—m—2—1)

det' (Aj, = Ajyo oo Ay — A ) X

m+1

X Z(—l)m+k sign[det(Ajl e N Ny e A<,~m+l)]x
k=1

o ANy—p o A ,
o g (7 Y )
Tk djy = vik() - dj, o — vix(p) s

(3.4.10)

where Tj; is the part of the boundary of 7; which lies in the subspace of
m+1 Aj Aj,_ Aj Aj,, ) . .
R™*! spanned by ( dj{ll), o d;:,ll)’ ( d}{::ll), o dijII) and vjx(p) is determined

by the requirement (V_ kltﬂ)) € Tjx. (Here we have used that T;; is part of the
js ’

lower integration border with respect to v iff the bases (}!)...., (2{""“) and
ljy 1

(Ajl), o (Ajk—l) (0), (Afk+1), o (3{”“) induce the same orientation in R”*1))

dj dip— 77\ d/'k+1 Tm+1

The first term on the right-hand side of Eq. (3.4.10) already yields the desired
expression for E. Thus we have to show that the remaining terms cancel each other
if summed up for all j = (1,...,Jm+1), | < J1 < -+ < jmt1 < l. Without loss
of generality, it is sufficient to consider that part of the boundary which lies in the
subspace spanned by (211), cee (3”:) That means, we gather all terms pertaining to
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> det! (A —Ag.. o A= A Ay — Ag)x

k=m+1
A A= o Ap— A —

« deg-m-2- 1= M oo Me—p\

di —v(p) ... dpy—v(u) dp —v(p)

I
A —As ..o Ay — Ay A — Ay
X || det_l<d1 d‘ p d‘ dk d)z(). (3.4.11)
J— 1— s ... Gy — Ug k — Us

s#k

Sincepu = Y I, pr A, v() = Y| prd,, for some positive py, . . ., P, it follows
that

Al—,u Am—,u Ak—pt Al...AW,Ak
det = cdet ,
di —v(@) ... dp—v(p) dp —v(p) .

for some real number ¢ which depends on p but not on k. Furthermore, if we replace

(3:) by (/Z]I:i;\ll) k =12,...,1, we see that (3.4.11) is equivalent to the following

equation:

1
. AL A A
> det’ (Mg, A Ag)det 27 (] ] x
dy ... dy d
k=m+1
!
(A A A, A
det™ | =0.
% _I_L ¢ (ds d ... dy, dk)
etk

If weset Ay = Z:n=1 o A, then the identity to be proven reduces to

XZ: C(/l(l (dk — Xm: Ogr dr)l_m_z_lx
k=m+1 r=1
! m m _
X Y_l:_[ﬁ_ll:asl (dk - ;akr dr) — 01 (dg' — ;C{S, dr)} = O (3412)
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Identity (3.4.12) in turn is implied by the classical equation,

P P
Zzl_[zk—zy)l— , 0<i<p-2,
k=1 =1
ssﬁk
(for pairwise different complex numbers zy, . .., z,), which can be proven either by

applying the residue theorem to the meromorphic function z' [[;_,(z — z) ™' on C
or by invoking Lagrange’s interpolation theorem, cf. also (3.3.7). Thus the proof is
complete. O

Example 3.4.5 Let us consider now products of transport operators, i.e.,

] n
oj+1
R(D) = ]‘[(dj + Za,;,.a,.) " A=(a)eR™ deC aeN),
j=1 i=1
(3.4.13)

in the case [ > n, which we have postponed in Example 3.1.3.
As in (3.1.7), we may suppose, without loss of generality, that N € R” can be
chosen such that )", a;N; > 0 forj = 1,..., 1. We shall furthermore assume that

A; A; A
Ay, A €eRand [T, Kl e ot respectively,
! djl djn dk

are linearly independent for pairwise different indices ji, ..., j,,. k € {1,...,[}.
(3.4.14)

Here, similarly as before, A;, j = 1,...,, denote the columns of the matrix A, i.e.,
Aj = (alj, ey a,,j)T.

Let us assume first that N = (1,0,...,0)", d € R, anday; = 1, j = 1,...,L
If we set A;j; = a;11,, then Proposition 3.4.4 yields the following formula for the
fundamental solution E of R(d) with supportin x; > 0 :

(¢.E)=(n—1)! Y (l—[ 33,’) [C//E (¢’Eu,-(p>,v,-<p))d0(p)},

1< << <l J

where ¢ € D(R") and

Lo det (A, — Ay A, — Ay

o= I

) ot dy—d;, ... diy—d,
¢{11 Jn} Ajy—Ap ... A, — A
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— li[ detak—i_l(Ajl"" ’Aju)

di dj, ...d,
k=1 or+1 7 I
iy det®

kE{j1oe i} € (Ak Ajl e A )

Jn

and ;(p) := Y, pifj, € R™ v(p) == YOI, pidj € R
Furthermore, in our case,

1

o0
(B Enjipyo) = —— / "' (1 i (p)t)e M dt
(n—=1!Jo

according to (2.5.2). Employing the substitution x = (t, uj(p)t)T =Y 1 piAj we
obtain for the Jacobian

alxy, ..., x,) 1
T el det(A) LA
a(t7p25--'9pn) ( / j)

and hence

1 —1
[ 16 B o) = o ety )5
S0 (n—1)!

« / ¢ () e iy ey Ay onljy) T dx,
G
where C; is the cone spanned by A;,,... ,A;,.
The case of arbitrary ay; is reduced to the foregoing one by putting A; :=
aiy1j/ay;. Thisislegitimate if N = (1,0,...,0),andhencea;; > 0,j =1,...,1. By
rotational invariance and analytic continuation with respect to di, k = 1,...,1, we
then infer that the operator R(d) in (3.4.13) has the following uniquely determined
fundamental solution E with support in Hy = {x € R"; Nx > 0}, provided
Z?=1 ajiN; > Oforj=1,...,]> n, and the condition in (3.4.14) is satisfied:

(=% . _
EW= ) W (]‘[(a,), aZj;)[e,»e—% ----- ) G5 |
i Ji

I<ji<<jp=l i=1
(3.4.15)

where xc,(x) denotes the characteristic function of the cone C; spanned by
Aj, ..., A, and

det™*1(4;,,....A;,)

E‘j = \det(Ajl, Ce ’Ajn)

_llj

dedi ...d\
k=1 ar+1 a: o

i i det¥

ke e.jn} G€ (Ak Ajl LA )

Jn
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Formula (3.4.15) goes back to Ortner and Wagner [211], Prop. 5, p. 315. As in
this reference, let us remark that the formula in (3.4.15) implies that the (analytic)
singular support of E coincides with the union of the cones spanned by subsets of
cardinality n — 1 of the set of vectors {A,, ..., A;}. Of course, this is also immediate
from the theory of singularities and lacunas for hyperbolic operators in Atiyah, Bott
and Garding [5], which we shall expound in Chap. 4 below. O

Because of the condition (3.4.14), the representation of E in (3.4.15) is not
applicable if the constants dj vanish. In this case, we shall use Proposition 3.4.1:

Example 3.4.6 Let us consider here products of homogeneous transport operators,
i.e.,

1 n
R(d) = ]_[(Z ai,-a,-), A = (aj) € R, (3.4.16)

j=1 i=1

still in the case [ > n.
Similarly as before, we assume that

D agN; >0, j=1.....01 and det(4;,.....A;) #Ofor 1 <jj <.+ <j, <L
i=1

(3.4.17)

As in Example 3.5.5, we then reduce the general case to the case where N =

(1,0,...,0) and a;; = 1, j = 1,...,l. We choose an arbitrary vector Ay =

(@10, ..., an)" € R" such that > iy aioN; > 0 and define C; as the cone generated

by Ao.Aj, ..., A;,_, and Xc; as its characteristic function for 1 < j; < .-+ <

Jn—1 = L. In this way, we obtain the following formula for the uniquely determined

fundamental solution E of the operator R(d) in (3.4.16) and with support in Hy =
{x € R"; Nx > 0}, provided (3.4.17) is valid:

1 —n
E(x) = T Do cixe () det ™ (x AL LA, (3.4.18)

’ Igji<<jp—1=I

where
1
cj:=sign(det(Ao. 4j,.....4;, ) ] det(AwAj.... AL
KUt}

Formula (3.4.18) was given in Ortner and Wagner [211], p. 317.
As in this reference, let us also specialize (3.4.18) to the following quartic
operator in R
RO = [] @+ eds+edy) =0 —2070; + ) + (97 — 0;)".
ce{£1}?
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If we choose N = Ay = (1,0, 0)7, then formula (3.4.18) readily yields
1
E = < (t—max{[x, y[}) Y(r — max{|x]. [y]}) € C(R). (3.4.19)

The singular support of E is the union of the wedges spanned by each two of the
four vectors (1,¢€1, )7, € € {£1}2, in accordance with the Atiyah-Bott-Garding
theory we have hinted at above and which we shall study in Chap. 4. O

Example 3.4.7 Turning now to the case of products of heat operators, let us observe
that the representation in Example 3.1.4 of the fundamental solution of

1

R@) =[](0 = V"4V —d; + zn:bjkak)aj+l,

j=1 k=1

contains / — 1 integrations. This is well-suited only if the number [ of factors is

smaller than the dimension ("42'2) of the space of polynomials in x of degree at most

2. A different case occurs in particular if R(9) is isotropic, i.e., if
I
RO) =[]0 —aqr,—d)**'.  a>0.deC j=1....L (3.4.20)
j=1

In this case, we will apply Proposition 3.4.4, and we shall assume therefore that

)#0,1§i<j<

a; — ag a; — ag

ai,...,a; are pairwise different, and that det ( di—dy dy— di

k<l

In fact, setting m = 1, Py(d) = 9d;, P1(d) = —A, and renaming j = (ji,j2) as
(i,j), we only have to insert into formula (3.4.8) the fundamental solution E,, , of
the iterated heat operator (3, — uA, — v)?, which, by Example 2.5.5, is given by

Y(l‘) tl—n/2 |x|2
y = exp(vt— —)
Uy 4t

Finally, with the substitution
u = tugy(p) = t(aipr + ajp2), (p1, p2) € Ty,
which implies

i — aid; di —d;
aidj — aj r4 iy

iy (p) =

’

ai — aj ai — aj
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we obtain the following formula for the uniquely determined fundamental solution
E of the operator R(d) in (3.4.20) satisfying e *’E € S'(R"*!) foro > 0y :

R INEAVEASS
E= G 2 aia (ad) (a_dj)

1<i<j<l
ay dj — ag
_ |ot|—ot—atj+1-3 det—%— 1 J
I:(al a;) ( ﬂ e (d di dy— dy x
ki k#j
¢t a; a; ait 2 di _ d
X exp( det ! ) / u™? exp(—ﬁ + — u) dui|.
a; — aj d; d at du  a;—a;

(3.4.21)

Formula (3.4.21) goes back to Ortner and Wagner [211], Prop. 7, p. 318. As in
this reference, let us yet deduce the case of equal constants d; from (3.4.21) by a
limit argument. This special case appears in Galler [86], Satz 17.1, p. 66.

For @ = 0, (3.4.21) furnishes

R e TR

Hét

where

ai a; — a;
cj = (@i —a)'™ l_[ det™! (d dl,: dj d) —Cji.
Sy

di—d;
aj—aj

Taking into account that Z —1 ki CU( ) =O0fors =0,...,] — 3, we see that

the first / — 2 terms of the power series expansion of exp(j’:j’ (u— ait)) can be
i—aj

dispensed with. Substituting d; by d 4 €d; and letting € tend to 0 we therefore obtain
the (I — 1) — st term of this power series, i.e.,

Y(r) e Lopan 2 =2 —xl?/(du) Z di —di\'"?
- n _ lt X U d i
(47t)"/2(l—2)!;/0 u (u—a e ”ZC/ p—

j=1

J#i

Since the last sum yields (—1)72 ]_[i=1’k¢i(ai — a;)~!, we obtain the following

representation for the fundamental solution E of the operator R(d) = ]_[;:1(3, -
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ajA, — d) satisfying e 'E € S'(R"™!) for o > 09, provided aj, . .., a; are positive
and pairwise differentand d € C :

1

oLy Z(ﬁ(a ))/ " Gt — e g
= G (= ik e '
(4m)"/2(1 — 2)! pile 0

i=1 ol
(3.4.22)

Of course, formula (3.4.22) could also easily be deduced from Proposition 3.2.1.
O

Example 3.4.8 As our final example, we give integral representations for the
fundamental solutions E of products of isotropic Klein—-Gordon operators, i.e.,

1
RO) =[]@ —ajpr,—dp**'. 122, 4>0j=1.....L. deC, a €Nj.
j=1

(3.4.23)

We restrict ourselves to treating space dimensions n = 1,2, 3,4, since then E is
locally integrable.

Similarly as in Example 3.4.7, we invoke Proposition 3.4.4 and rename again
i = (i.j2) as (i,j). Here E,, is the fundamental solution of (3> — uA, — v)2,
which, according to Example 2.3.7, is given by

V=AY (1 — |x|/ ST X2\ G—/4 X2
Epv = v (t2 - u) I(3—n)/2( v (t2 — u) )

200+3)/ 27 (=D)/2 yn/2 L L

In (3.4.8), we substitute & = wqj(p) = aip1 + ajp2, (p1,p2) € Xy, as a new
integration variable, and this yields

hij() == v (p) =

a; — aj d,' dj a; — aj

(ai aj) d,' — dj
det + . (3.4.24)
As in Example 3.4.7, we replace the integral from g; to a; by two integrals from O to
a; and 0 to a;, respectively. This can be accounted for by changing the summation
from1l <i<j<mtol <ij<m,i#j. Finally, note that the Heaviside function
Y(t — |x|/ /1) in the integrand brings about the factor ¥ (¢ — |x|/,/a;) and changes
the lower limit of integration from O to |x|?/#>.

Hence we obtain the following formula for the forward fundamental solution £
of the operator R(d) in (3.4.23), provided that n < 4, a;,i = 1,...,, are pairwise
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a; — ag a; — dg

differentanddet( )#Ofor1§i<j<k§l:

di — di dj — di
1 1 I\ d\%
E= 2 +3)/2 7 (1—1)/2 Z il oy (8_d,) (a_d]) X
I<ij=<I ! h
i?zj
l
el oy [T G = ar |x|
x | (a; — aj)lel—o—eit! 3( det™! )Y(t——)x
[ ! E di — di d; — di Jai
ki k]
a; - - |x|2 (3—n)/4 |x|2
X / " by () I (12 -— Ii3—ny 2\ 1/ hii (1) (f2 - —) du |,
x|?/22 2 2
(3.4.25)
where h;; is defined in (3.4.24).
Formula (3.4.25) goes back to Ortner and Wagner [211], Prop. 8, p. 320. O

3.5 Parameter Integration for Indecomposable Operators

In this section, we deduce a parameter integral which represents the fundamental
solution of a quasihyperbolic operator of the form R(d) = Py(3)> — P1(9)> —--- —
P;(9)* by means of the fundamental solutions of the operators Q,,(3)%, |u| < 1,
where Q,(0) = Po(0) + 211:1 wjP;(9). This method was devised and applied
to various examples in Ortner and Wagner [207]. Instead of Feynman’s formula,
see (3.1.2), we shall employ the integral representation

I
(- 2) = i O+ ran ++ ) dp
o) AT =) ey (L [uAHEEDE
3.5.1)
valid for suitable complex b, ay, . .., a;, A according to the following lemma.

Lemma 3.5.1 Let us denote by C the open forward light cone {(t,x) € R'!; t >
|x|} and let A € CwithRe A < IT_Z Then the identity (3.5.1) holds for each (b, a) in
the tube domain C + iR'*!,
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Proof

(1) Let us first assume that (b, a) € C. Apparently, the integral on the right-hand
side of (3.5.1) is rotationally symmetric with respect to a and hence coincides
with

/ (b + wilal)® du
(ners; <1y (1 — [p[H)A+ErD/2

1 du/dﬂl
= [ e+
/m=—l {wer1\w</1=a7} (1 = ui — | P)A+iED2

l du ! dr
= s wn_ TP o Gr
-5 m=—1(b * pulaD (1—ppr+! /o TR YRR
_ g2y FEW2@ )t TEITCA-F)
224HIT (=22) 20(—A)
2p(—p — =L
= le) . (bz _ |a|2)A’
-2+ 1

where we have used Grobner and Hofreiter [115], Eqs. 421.4, 431.1, and the
doubling formula for the gamma function. (In this deduction, we have assumed
[ > 2, but the result holds also in the case [ = 1.)

(2) The second step consists in extending the validity of Eq.(3.5.1) by analytic
continuation with respect to (b,a). For (b,a) € C + iR'™!, we note that

(Reb)? — Z}=1(Re aj)* > 0 and

l l
(Imb)* = "(Ima)* <0 if RebImb= ) Req;Ima,.
j=1 j=1

Hence

l

1 1
b’ =) a = (Reb)’ — > (Req)’ — [(Im b)* = (Im aj)z}
j=1

j=1 j=1
1
+ Zi[RebImb - ZReajImaj:|

j=1
belongs to C \ (—o0, 0]. Therefore
!

(b2 — Z czjz)A = exp(x\ log<b2 — Z ajz))

j=1 j=1
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is well-defined when we take the principal branch of the logarithm on C \

(—00,0].
Similarly, the numerator in the integral in (3.5.1) is well-defined since
Re (b + Y i, ay) > 0 for (b.a) € C+ iR and || < 1. O

In Lemma 3.5.1, we assumed that the power A fulfills Re A < 17—1 as otherwise
the factor (1—||?)™~+1/2 in the integral in (3.5.1) ceases to be locally integrable.
In the next lemma, we formulate what Eq. (3.5.1) amounts to when A = —1.

Lemma 3.5.2 Let (b,ay,...,a;) € C' such that b + Z]Z.ZI wja; # 0 for each
w € REwith || < 1. Denote by )(fF the holomorphic distribution-valued function

X1/ T, ifA e C\ =Ny,

C — Doy (R) 1 A +—> 1 1=
[0.00) + s if A = —k € =N,

see Example 1.5.11 and Hormander [139], (3.2.17), p. 73.
Then A +— Xﬁ_ o (1 —|ul?), n € Rl is a holomorphic function with values in
E'(RY and

l

o : 2 o
(P-X@) =3a o+ Twa) A o) G52

Jj=1 j=1
In particular, forl = 2,

1 d
(b + s + poay) 2t (3.5.3)

(b2 — a% - a%)_l = —
27 lul<1 1—|ul?

and, forl =3,
_ 1 _
(0 —ai a3 —a) " = / (b pay + paay + pzaz) do (). (3.5.4)
S

Proof For (b,a) € C + iR as in Lemma 3.5.1, we can conceive formula (3.5.1)

as an evaluation of the distribution ), = x +l_(l_l)/ Zo(l—|uP) e€ (R) on the
. 1 21 .
test function (b + > =i wia)”" € E(RL), ie.,

LV TG=h : % 11
(bz _ X;af) - #((lwr X;Wj) L) Red < ——.  (355)
J= J=

By analytic continuation with respect to A, formula (3.5.5) holds for (b,a) € C +
iR*and X € C\ (4 + No).
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Since the domain
!
Q= {(b,a) eC* Ve R with [l < 1:b+ Y wa; # o}
j=1

is connected and contains C + iR‘*!, formula (3.5.2) then follows from (3.5.5) by
setting A = —1 and using analytic continuation with respect to (b, a). Finally, (3.5.3)
follows directly from (3.5.2), whereas (3.5.4) is a consequence of

@500 -luf) =5 [ #udo. g es®),

cf. formula (1.2.2). O

Let us apply now Eqgs. (3.5.3) and (3.5.4) in order to represent the fundamental
solutions of quasihyperbolic operators of the form Py(9)>—P;(3)>—---—P;(9)%, [ =
2,3.

Proposition 3.5.3 Suppose that the operators Q,,(9) = Po(a)—}-Z;:l wiPi(9), u e
A = S?, are uniformly quasihyperbolic with respect to N € R"\ {0}. Then
also the operator R(0) = Py(3)> — P1(3)> — P»(d)*> — P3(0)? is quasihyperbolic
with respect to N. Let o9 € R be as in (3.1.3) and denote by E and by E,, the
fundamental solutions of R(3) and of Q,(3)*, p € S?, respectively, which satisfy
e "NE, e NE, € S'(R") for o > 0y. Then E,, continuously depends on u € S*
and E = % fsz E, do(w).

Proof If 0 > op and £ € R" and b = Py(i§ + oN), a; = P;(if + oN), then
b+ Z?:l pja; does not vanish for pu € S2, and hence formula (3.5.4) holds and
yields

R(iE+oN)™! = 1 / 0, (i + oN)"2do(w).
4 S2?
This incidentally implies that R(i§ + oN) # 0 and hence that R(9) is quasihyper-
bolic.
Applying the Seidenberg—Tarski lemma as in the proof of Proposition 2.3.5
we conclude that £, continuously depends on u € S? and that, by Fourier
transformation, E = % fSZ E, do (). This completes the proof. O

In particular, if P3 = 0, then Proposition 3.5.3 reduces, in accordance with
formula (3.5.3), to the representation

1 dAd
E M

E=— L,
21 Jjowerz o<ty JT—AZ— 2

(3.5.6)
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for the fundamental solution E of Py(d)> — P1(d)> — P»(d)? in terms of the
fundamental solutions E) , of the uniformly quasihyperbolic operators (PO(B) +

APV@) + puP2(d)° A4 2 < 1

Example 3.5.4 As a first application of Eq. (3.5.6), let us calculate the fundamental
solution of Timoshenko’s beam operator, viz.

El ol I E
PO) =+ =0+ ——0'— —(1+ =—)0%3% 357
©) t+pA X+GAKt A<+GK)'X ( )

The operator P(d) describes the transversal deflection of a vibrating beam taking
into account the effects of rotatory inertia and of shearing forces, see Timoshenko
and Young [269], Eq. (129), p. 331. The constants have the following meaning: E
is Young’s modulus, p is density, A is the area of cross-section, J is the moment of
inertia, G is the shear modulus, and « is Timoshenko’s shear coefficient.

The operator R(d) = GAkI~'p~! - P(9) can be written in the form

R(D) = (7 — ad* + b)* — (cd> —d)* — ¢, (3.5.8)
Gk +E GAk |Gk — E| Gk +E .. VGkE

where a = . b= , = ,d=b———, e=21b ——.
2p 2pl 2p |Gk — E| |Gk — E|

For the validity of formula (3.5.6), we have to assume that the operators
01, (@) =% —ad® +b+A(c*—d) +pe, A+ pu’<l,
are uniformly quasihyperbolic with respect to . This is satisfied due to a > |c|.

By formula (2.3.14), the fundamental solution Ej ; of Oy , (9)? with support in
t > 0is given by

Y( a—)tct—|x|),/(a—)&c)t2—x2]l(\/(b_ld_}_pw)(ﬂ_ x2 ))

Eiw= a—Ac

4(a—Ac)/b—Ad + e

If we insert E) ,, into (3.5.6) and substitute © = +/1 — A2 v, we obtain an integral
of the form

! Th(VA+ B
/Jl(x/A+Bv) dv =/ (VAT Beosy)
-1 VA+BvvV1—-v2 Jo A+ Bcosy
= —2% Jo(v/A + Bcosg) dg
0

_ _ZnaiA[Jo(\/%(A N M))JO(\/%(A— i) )]
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where we have used Gradshteyn and Ryzhik [113], Eq. 6.684.1. Since Jy(z) and
J1(z)/z are entire functions of z, these equations make sense and are valid for
complex values of A and B as well.

With the abbreviations C+ := \/ % (A + VA2 — B? ), this yields

1 dv
/_IJ‘(““B”)mJ—l_vz

- h[cﬂl(ﬁ)]@(c_) — C_J1(Co)Jo(C4)].

In our case,

a—Ac

2 2
A:=(b—kd)(t2— xk), B::evl—AZ(tz— * )
C

and, on account of d% + ¢* = b?, we obtain

a— AC

VA2 —B? = (zz— )(d—/\b),

A+ VA2 —B2 = (ﬁ—i) (bEd)(1F ).

a—Ac

Therefore, the fundamental solution £ (with support in # > 0) of the operator
R(d) in (3.5.8) is given by the following definite integral:

( a—kct—|x|)d/\
Va—Ac(d— Ab)

(3.5.9)
Cy = ,/%(tz - ic) N IETTE)

The singular support of E consists of the rays |x|/f = +/a % ¢, or, with respect to
the physical constants, |x|/t = /E/p and |x|/t = /Gk/p, which rays correspond

1 ! Y
E=g /_ 1 [C+T1(C)Jo(C=) — C_J1(C=)Jo(C)]

with
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to the different velocities of pressure and of shear waves. In relation to these two
velocities, there arise three different representations of E :

0, if va+c < Iit|’
. . I
E(t,x) = 1 KA, t,x)dA, ifa—c< - <Ja+c, (3.5.10)
: o 1]
K(A,t,x)dA, 1f75«/a—c,
-1

where 1o = a/c — x*/(ct*) and

C1J1(C+)Jo(C-) — C_J 1 (C-)Jo(Cy)
8va—Ac(d— Ab)

Formula (3.5.10) was deduced for the first time in Ortner [203], Satz 1, p. 551,
by a different method. The derivation above stems from Ortner and Wagner [207],
Ex. 4, p. 456, and Prop. 7, p. 457, where a typographical error in the definition of
the constant e should be corrected. A further derivation of (3.5.10) can be found
in Ortner and Wagner [208], Prop. 3, p. 530. A completely different representation
of the fundamental solution E was derived by analytic continuation in Ortner and
Wagner [214], Prop. 1, p. 219, see Example 4.1.6 below.

Note that the generalization of the classical Euler—Bernoulli beam operator,
ie., 9> + EI/(pA)d?, to the operator P(d) in (3.5.7) is usually attributed to
S. Timoshenko, but was in fact anticipated by Bresse [23], p. 126, cf. Deresiewicz
and Mindlin [57], p. 178; Mindlin [181], p. 320.

The analogous generalization of Lagrange’s plate operator 9> + D/(ph)A3,
where p, h, D denote density, thickness and flexural rigidity, respectively, was given
independently in Uflyand [278], p. 291, and in Mindlin [180]. This generalized
operator has the form

KA, t,x) =

M) = (Az - % af) (DA2 - pl—h; 33) + phd?,

see Mindlin [180], Eq. (37), p. 36; Mindlin [181], p. 320. The fundamental solution
of M(d) with support in # > 0 can be represented by a simple definite integral over
Bessel functions similarly as in (3.5.10), see Ortner and Wagner [208], Prop. 4,
p. 533. O

Example 3.5.5

(a) Let us derive next the fundamental solution E of a three-dimensional analogue
of Timoshenko’s operator, namely, of

R(0) = (Cl()at2 —boA; + Co)(alatz —biA3;+c1) — & (3.5.11)
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This operator is hyperbolic for positive ag, a, by, by and complex cg, c¢i,d. If
R(0) is written in the form

R(a) = %((ao + Cll)atz —(bo + bl)A3 + co + Cl)z
(e a1)0? — (bo — b1) Az + co — C1)2 —d,

then the parameter integration formula (3.5.6) yields

1 / / E dAdu (3.5.12)
= A py  —_—— D
2m A24u2<l g Vv 1—A%2— MZ
where E, ,, is the forward fundamental solution of the operator
031(0)* = (@07 — brAs + ¢z + pd)?,

and ay = (ap + a1)/2 4+ A(ap — a;)/2 and analogously for b, and c;.
Making use of Example 2.5.6 we obtain

I
1 Y7z =) 2 P
Ep,=——>% S0 gl ot pud, | —— -
8t g b)/? ’ a, b

Hence, inserting Ej ,, into (3.5.12) and substituting . = ~'1 — A2 cos¢, we

infer
1 boda t |x| /"
= Y — Jo(vVA+ B d
1672 /_1 ﬁbi/z ( iy /_bx) A 0( cos@) ¢
1 ! o da
= — Y Jo(C)Jo(Co)————= 3.5.13
T IR G SIS — (3513
where

A:cl-(ﬁ—ﬁ), Bzd«/l—/\z'(ﬁ—ﬁ),

Ci = \/% (Ai«/ﬂ) = \/% (CA:I: ,/Ci_d2(1—,12))\/£_%.

This representation of E was deduced first by a different method in Ortner
[203], Lemma 2, p. 550, and rederived with the method of parameter integration
as above in Gawinecki, Kirchner and Lazuka [101], Thm. 2, p. 830.
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As in Example 3.5.4, let us yet specify formula (3.5.13) for the case d*> =
coci. Then

N Bt

C:l: —_ —— M .
V2 | Jeaa=ny| Var b
If v; = {/b;i/a;, i =0, 1, are the wave speeds and vy < vy, then

x
0, ifv < |_t|’

1 /AOJ (CH)J(C )—d)L if vy < —|x| <
- o(C+)Jo(C- , ity < — <y,
E@.x) = 167 -1 \/Cl_lbi/z t

! dA o x
/ Jo(C)o(Co) ——7.  if |_t| < vo.
B e (3.5.14)
where

_ (bo + b7 = (ap + a) |x?
(b1 — bo)?> 4 (aop — ar) |x|?

x|

Ao e(—l,l)forv0<7<v1.

(b) Let us apply the result in (3.5.14) in order to derive a representation of the
fundamental solution of the operator

R(d) = 87 — ad*As + BAL —SAs, a>0, >0 8cC. (3.5.15)

For B = 0, this is the “Boussinesq operator” in dimension three, see Ortner
[203], p. 552; in space dimensions one and two, it describes water waves
in the Boussinesq approximation for long waves, see Whitham [301], (1.20),
p. 9, and (11.7), p. 366, and Example 3.5.6 below. Let us observe that R(9) is
quasihyperbolic with respect to .

The operator R(d) in (3.5.15) becomes a limit case of the operator in (3.5.11),
ifwesetag=1,a, =0,by=B/a, by =a,co=8/a—B/a*, ci=1,d*> =

—~ in(3.5.14)

. Employing the substitution u = — + o
CoC1 P y g u o 1+A

we obtain

1 2 1 2
C+=a\/(x8—,3 tz—ﬂ and C_=a\/ocu—,3 tz—ﬁ,
u \ u
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and the integration limits A = —1, Ao, 1 yield u = oo, |x|?/1%, B/a,
) dA 2du
respectively. Furthermore, =] ey Hence
Y 1 2\ d
E(t,x) = (t)/ Jo( Jas ——)Jo(—,/au—ﬁ,/t ﬁ) 372
o u
(3.5.16)

where uy = max{g, b:_z\z}_

In the above mentioned special case of water waves in the Boussinesq
approximation, we have § = 0, and we obtain the following representation
for the fundamental solution E of R(d) = 9? — ad?A3 —8A3, >0, § € C:

_ Yo \f o _ |x|2 \f / |x|2
E(t’X) 8ma ‘x|2/t2 M3/2

Y [ \f Rk
= Sl ) JO( —z)JO(\/_\/t2 — 1:2) = cz' (3.5.17)

In contrast, if we set § = 0 in (3.5.15), we obtain a three-dimensional
analogue of Rayleigh’s operator, see Example 2.4.14. Then (3.5.16) yields

Y o0 x|? x2 du
w8l )

(3.5.18)

uy = max{a, i } for the fundamental solution E of > — d? A3 + BAZ.
Formula (3.5.18) can be tested by setting § = 0, which furnishes

1 d Y(t)te W/
E(,x) = 2O JO(— u — |x|2)3—”2 _ Y@e 7"

8ra w22 NN ud/ 47 o|x|
upon using Gradshteyn and Ryzhik [113], Eq. 6.554.4. The result is in accor-
dance with the fundamental solution of the metaharmonic operator 1 — aA3
derived in Example 1.4.11. O

Example 3.5.6 Let us eventually derive formulas for the fundamental solutions of
the Boussinesq operators

B,(3) = 0> —ad?A, — 8A,, a>0,8¢eC,

for the physically relevant dimensions n = 1, 2. These formulas appear for the first
time in Ortner [203], Sétze 2, 3, p. 553.
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As in Examples 2.6.3 and 2.6.6, we employ Hadamard’s method of descent: If
E, denotes the fundamental solution of B, () satisfying E, - e °' € S&'(R"*") for

o > 0y (see Proposition 2.4.13), then

E,® 1y = E3 % (8(1,x1,x2) ® lxs) and E; ® 1y, = E3 % (S(I,xl) ® l(xqus))'

(a) Setting x’ = (x1,x;), we obtain from (3.5.17)

— Y(t)/ (\/’)/ J(r\/lx’lzﬂﬁ dxs rdr
0

ﬁ\/tz—tz) \/|x’|2 + 22 N

o

Y(?) t] ( $ )/‘X’J (r|x/|«/1+u2) du rdr
= A" 0 - 0
2 Jo 0 Va2 -2 ) 1+ u? V2 — 12

Y(t) J( [§ )J( B )N( B ) dr
=—— -7 .
4a Jo NVe')™ N 0 2JaNE =2 ) NE=2
Here we have used Eq. 6.596.2 in Gradshteyn and Ryzhik [113], and the result

coincides with Ortner [203], Satz 2, p. 553.
(b) Similarly, by integration with respect to x;, x», we obtain from (3.5.17)

E\(t,x1) =

Y@ [ ( 8 )/OO ( il pdp rdr
- J() T J()
0 0

2a ﬁ\/tz—tz)\/x%_h(g V-2

o

3 @ t \/? oo
=2 ), Jo( aT) /Im/m]o(\/&)dvrdr
B Y(l) 00 N 2=xiPv2 \/? v
=5 |x1|/t(/0 Jo( &r)lo(ﬁ)r dt)dv
_ Y(r) Y |x1|2 B [fj (\/E /,z_w)
- e 8= o v?

X J()( \/_ 22 — |X1 - UJ()(\/7‘/ |)§}12|2)

le(%\/mndv.

Here we have used Eq. 5.54.1 in Gradshteyn and Ryzhik [113], and the result
coincides with Ortner [203], Satz 3, p. 553. O
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In order to deduce the fundamental solutions of the Euler—Bernoulli beam and
plate operators with elastic embedding, i.e., of 3> + A2 + ¢2, let us first simplify
formula (3.5.6) in the special case of operators Py(9)> — P1(d)* 4 c2. This goes back
to Ortner and Wagner [207], Prop. 3, p. 448.

Proposition 3.5.7 Let py(0), p1(9) be operators in R" such that
dog € R: VE € R" : Repo(i§) + |Rep1(i§)| < 0p. (3.5.19)

Then the family Q) (0) = 9; — po(dy) + Ap1(0x), A € [—1, 1], of operators in the
n + 1 variables (t, x) is uniformly quasihyperbolic with respect to t. Also

R@) = (3 —po(3)’ —p1(3)* + 2 ceC,

is quasihyperbolic in the direction t.
If E and F), denote the fundamental solutions of R(d) and of Q; (0), respectively,
with e 'E, e "'Fy € S'(R"™), A € [-1,1], 0 > 0y, then

1
E= é/ Jo(ctv/T = A2)F) dA.
-1

Proof

(1) According to Definition 3.1.1, the uniform quasihyperbolicity of Q,(d), A €
[—1, 1], is equivalent to the existence of oy > 0 such that, for each ¢ > g and
(7,£) € R""!, the complex numbers it + o — po(i€) + Ap;(i€) do not vanish,
i.e., such that

{po(i&) —Ap1(i&); E e R} N{z € C; Rez > 0o} = 0.

Evidently, this is equivalent to the condition that the real parts of po(i§) £ p; (i§)
are bounded by oy for £ € R”, and this yields condition (3.5.19).

(2) If we assume the validity of (3.5.19), we can apply Proposition 3.5.3, and
in particular formula (3.5.6) holds. In this formula, E) , now denotes the
fundamental solution of (3, —po(9y) + Ap1(9y) + ic,u)z, and E, ,, continuously
dependson A € [-1,1], u € C.

By Proposition 2.5.1 and Lemma 2.5.3, we have E , = et ) and thus

t 1 1-22 —ipct q ¢t 1
E= —/ FA(/ i)dk - —/ Jo(etN/T — A2)Fy dA
21 J V1222 1= A2 —p? 2 )

by Poisson’s integral representation of Jj. O

Example 3.5.8 As an application of Proposition 3.5.7, let us give a representation
of the fundamental solution of the operator R(d) = 3? + (A, + a)®> + ¢, a,c € C.
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This operator describes, for n = 1,2 and a,c € R, the transverse vibrations
of prestressed and elastically supported beams or plates, respectively, cf. Graff
[114], (3:3.11) and (3.3.25), pp. 173, 175.

In this case, 03 (d) = 9, + iA(A, + a), A € [—1, 1], is a Schrodinger operator,
and its fundamental solution is, according to Example 2.5.5,

Y([)e_i/wrei(Sign Mnz/4 i|-x|2
_ p(

= (4t A))/? —m) € C([0.00). D'(RY)). (3.5.20)

Hence the fundamental solution E of R(d) is given by

Y(r)yr/2+ pl |x|2  nm — dA
E = W/O COS(ACZI + m — T)J()(Cl 1-— Az)m (3521)

Note that, for general n, the integral in (3.5.21) must be conceived as the integral of
a continuous distribution-valued function [0, 1] — D'(R/F1).

For n = 1, the integral in (3.5.21) is absolutely convergent, for n = 2,3, it is
still conditionally convergent, and it yields in these three cases a locally integrable
function of (¢, x). Substituting 7 = A we obtain the following forn = 1,2,3:

Y@ tcos( x]2  nm
= G
’ (3.5.22)

More precisely, E € C(R?) ifn = 1 and E € L (R?) if n = 2. For formula (3.5.22)
in the case n = 1, see also Shreves and Stadler [253], (3.11), p. 202.
Similarly, Proposition 3.5.7 can be applied to operators of the form

0, — aA, —b)> — (cA, 4+ 20"V + d)> — K?
and, still more generally,
(0, — alaf — = anaﬁ — 20"V —b)? - (claf 4+ 4 cnai + 29"V 4+ d)? — h?,

see Ortner and Wagner [207], Prop. 4 and Remark 4, pp. 450, 452. O

Let us generalize now Proposition 3.5.7 so as to yield a representation of the

convolution group E(A) of an operator of the form R(9) = (9, —170(3,6))2 —p1(8,)*+

2.

Proposition 3.5.9 Let po(d), p1(9) be operators in R" such that (3.5.19) holds. Let
E(X), A € C, denote the convolution group of the quasihyperbolic operator R(0) =

(8 — po(3,))’ —p1(3)* + 2 c € C, e,

EQ) =e""F} ([(ir +o —po(ig))2 —p1(i€)* + cz]k), o > 0.
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Then E(A) can be represented by the fundamental solution F,, of Q,(0) = 0; —
po(9y) + up1(9y) in the following way if Re A < 0 :

22 A g (et /1 — p?)

T(A) Jo (A= @»Fn

EQ) = F,du. (3.5.23)

(Note that E(—k), k € N, is the uniquely determined fundamental solution of R(9)
satisfying e 'E(—k) € S'(R"™!) for o > 0¢.)

Proof If 0y is asin (3.5.19), 0 > 0p and Re A < —%, then Lemma 3.5.1 implies

E(A) = e’ T_El ([(i‘[ + 0 —po(ig))z _pl(ii_-)Z + Cz]/\)

)21

A+ i oo 1 (/ (it + 0 — po(i§) + up1 (i) + icv
i u2+4v2<l

- T (1- M2 _ v2)1+3/2 d,udv).

Since
" F (G + 0 +4)%) = M0, (3.5.24)

see Example 1.5.11, Lemma 3.5.2 and (1.6.8), we obtain

1

B =222 o |

n24v2<l1

e !=Po§)+up1(8)] | g—iver
(1 — p2 — 2)A+3/2

dudv.

Upon substituting v = /1 — u2u and using Poisson’s integral representation of the
Bessel function we infer that

A+ 3 ! , .
E)) =— - 2 170 f 1(1 — P TATIF (e oGOt )

1
X / (1 — )73 cos(et/1 — plu) dudp
—1

— 1 1
_ LA+ (E)Hl Y5y / It (VL= W) ey ittt i G0 g
L(=2X) /7 \2 1 (1 —=p)tn2 T

If we apply (3.5.24) once more, i.e., if we use
ot ——1{ (: . . -1
Fu =" F 2 ((ir + 0 = po) + 1 (i6) ™)

_ ]:E_l (Y(t)e—t[—po(i%')-Hll’l(ié‘-)])’
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and employ the doubling formula for the gamma function, we finally conclude that

“Aghp Al plg =2
EQ) = 2% Jo—i(cty/1—p )F du.
F(=4) Jo (—pt+nz 2k

By analytic continuation, the last formula then holds for ReA < 0, and this
completes the proof. O

Example 3.5.10 Let us apply Proposition 3.5.9 in order to represent the convolution
group E(X) of the operator R(d) = 9*> + (A, + a)*> + ¢, a,c € C, which was
considered already in Example 3.5.8.

Then formulas (3.5.20) and (3.5.23) imply that

E — Y(r)2rtimn A+t rl x> nm\Joa—i(ety/1—p?) dp
() = T 2T (=) 2+ ) COS(Mat+ 4_W - T> (1 —p2)3+n/2 /2
(3.5.24)

In particular, E(—k), k € N, is the fundamental solution of R(9).

Note that E(A) is an entire distribution-valued function, but that (3.5.24) holds
only forRe A < 0. Also in this case, (3.5.24) must be interpreted for general n as the
integral of a continuous distribution-valued function [0, 1] — D’ (R;‘:;)l), compare
Example 3.5.8 for the case A = —1. O

We finally generalize Proposition 3.5.3 in order to represent the convolution
groups of quasihyperbolic operators of the form R(3) = Py(d)?> — Py(3)> — --- —
P;(0)%. As an example, we shall then deduce a second time the convolution group
of the Klein—Gordon operator 9 — A,, — ¢, cf. Example 2.3.7.

Proposition 3.5.11 Suppose that the operators Q,,(0) = Py(9) + Zjlz | 1iPi(0),
|| < 1, are uniformly quasihyperbolic with respect to N € R" \ {0}. Then also the
operator R(3) = Py(3)>—P(8)*>—---—P(0)? is quasihyperbolic with respect to N.
Let og € R be as in (3.1.3) and denote by E(A) and by F, (1) the convolution groups
of R(0) and of Q,,(9), || < 1, respectively, i.e., E(A) = e"Nx]:g_l(R((fN + ié)l),
F,(\) = e"Nx}'E_l(Q,L(crN + i6)*), o > 00, see Sect.2.3. If, furthermore, x*. is
defined as in Lemma 3.5.2, then

ri -2

EQ) = =2 (Fu@0). 2" o (1= 1) (3525)

holds for A € C\ (% + No).

Proof Upon multiplication by e "°™ and Fourier transformation, (3.5.25) is equiva-
lent to

1-2
R(oN +if)* = % (Qu(oN +i§)* x " o (1= ).

which immediately follows from Eq. (3.5.5) in the proof of Lemma 3.5.2. O
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Example 3.5.12 We shall apply Proposition 3.5.11 in order to calculate the convolu-
tion group of the Klein-Gordon operator 3> — A, —c?, ¢ € C. The result was derived
already once in Example 2.3.7 with the help of the partlal Fourier transformation and
the Poisson—Bochner formula.

Ifwesetl=n+1, Po(d) =0;, Pj(0) =0;, j=1,....n=1—-1, Pi(d) =c,
then R(3) = Py(9)* — P1(3)> — -+ — Pi(d)*> = 9> — A, — ¢* and

-1
00 (0) = Po(d) + Y wiPi(d) + vP(0) = 0, + Z 140 + ve.

J=1 J=1

Therefore, according to (2.3.19), the convolution group F, ,(4) of Q, ,(9) is
given by

Fuo(A) =" F ((it +otve+iy ujgj)l)
j=1
=7 (eXP(—m i) Mj&)) AT =TS — ) x T O).
j=1

Hence Eq. (3.5.25) in Proposition 3.5.11 yields for the convolution group of * —
A, — c? the representation

FG=X o -
EQ) = — 2oy 27 078G — p0. 17" 0 (1= [pf =v?) - (3.5.26)

forA € C\ (3 + No).
For fixed r > 0 and Re A < —Z, we can evaluate (3.5.26) by classical integration:

rl_k Ytt—ZA—l—n L 2
-1 e (1B oy,

EQ) = D27 (22))

2D HLy(r — x|y 2A=lmn e/ 1=kl —ver( | |x|2 Z—A—n/Z—ld
AT (=MD(=A—5) _me (_ _v) ’

It (Gl [ il / P 2y gy
72T (=M (=1 — %
2A—(n—l)/26)k+(n+l)/2y(t _ |x|)(t2 — |x| )—A/Z—(n+l)/4
B 7(=D/2r(=})

Ly~ (nt1y/2(cy/ 2 = [x).
(3.5.27)

The last equation follows from Poisson’s integral representation for the Bessel
function, see Gradshteyn and Ryzhik [113], Eq. 8.431.1.
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The result for E(1) in formula (3.5.27) is valid for ReA < —"=! since then

2
the right-hand side is a locally integrable function. For A = —k, k € N, k > %

we obtain for E(—k) the fundamental solution of the iterated Klein—Gordon operator
(8,2 —A,—c*)¥, and the expression in (3.5.27) was given in Schwartz [246], Eq. (VII,
5; 30), p. 179; de Jager [149], (4.3.25), p. 92.

In order to give a representation for the fundamental solution E(—1), we use, as
in Example 2.3.7, the recursion formula

200+ 1) 9EQ)

EA+1) = ; 5

This furnishes, for n = 2m, m € N,

9 \m-
E(=1) = 2"\ (m — 1)!<E> 'E(—m)

1 0 \m—1 Y(t—|x|)
= () [ V™)

cf. Léonard [162], p. 36; Ortner and Wagner [207], Ex. 5, p. 457.
Similarly, for odd n = 2m — 1, we obtain

1) = 5 ()" (¥ = (e~ )],

227)mt 1ot

cf. Léonard [162], p. 36; Bresters [24], (5.15), p. 580. O



Chapter 4
Quasihyperbolic Systems

Whereas the method of parameter integration is applicable to both elliptic and
hyperbolic operators (but in general relies on the product structure of the operator),
the method of Laplace transform is applicable only to quasihyperbolic systems.
The first systematic treatment of fundamental solutions by means of the (inverse)
Laplace transform dates back to Leray [163].

For the representation of fundamental matrices of hyperbolic systems A(d)
the Laplace transform £ : S'(I') — H(T®) according to V.S. Vladimirov is
better suited. Here C is chosen a priori as the hyperbolicity cone of A(d) and
' = C*, T¢ = C + iR". In contrast, for quasihyperbolic, but non-hyperbolic
systems, we use the more general Laplace transformation £ : S — H¢ according
to L. Schwartz. Here C is not necessarily a cone.

The representations of fundamental matrices as inverse Laplace transforms lead
to the determination of the singularities of these fundamental matrices and, in
particular, allow for the investigation of the phenomenon of conical refraction, see
Sects. 4.2, 4.3. For example, conical refraction occurs in cubic elastodynamics,
but does, except for one special case, not occur in hexagonal elastodynamics, see
Examples 4.3.9, 4.3.10.

Since many physically relevant hyperbolic systems are also homogeneous, we
derive in Sect. 4.4 representations of fundamental matrices for such systems
involving n — 2 integrations. These so-called Herglotz—Géarding formulas for strictly
hyperbolic homogeneous systems (Proposition 4.4.1, Corollary 4.4.2) generalize the
Herglotz—Petrovsky—Leray formulas, which apply to operators. In Proposition 4.4.3
the assumption of strict hyperbolicity is relaxed using the method of parameter
integration.

© Springer International Publishing Switzerland 2015 251
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By means of the Herglotz—Gérding formula, we derive a representation of the
fundamental matrix of hexagonal elastodynamics in the form of a simple integral
over elementary functions, see Example 4.4.5. In the final Example 4.4.8 we deal
with Maxwell’s system of crystal optics. We derive an explicit expression for the
so-called static term, we investigate the singularities of the fundamental matrix and
determine the set of conical refraction, and we present an explicit formula for the
fundamental matrix in the uniaxial case.

4.1 Representations by Laplace Inversion

Let us first define the Laplace transformation for distributions similarly as in
Vladimirov [280], § 9; Vladimirov, Drozzinov and Zavialov [281], § 2.5. In the
following, I' denotes a convex, acute, closed cone in R” with vertex in 0, and we
write * = {# € R"; Vx € ' : § - x > 0} for the dual cone. We denote by
C = (I'*)° the interior of ['* and by 7€ = C + iR" the corresponding tube domain
in C" with basis C.

Definition 4.1.1 For I" and C as above, let us define
S'(T) ={S € S'(R"); suppS C T'}

and

H(T®) = {f : T* — C holomorphic; I, v,M > 0:Vp e T :
[F(p)| < M(1 + |pI*)*d(Rep,dC) ™"}

(Here d(1, 0C) = min{|d — {|; { € dC} denotes the distance from ¢ € C to the
boundary dC of C.)

We equip the space S’(I") with the topology induced by S’(R"), and we consider
H(TC) as the locally convex inductive limit of the Banach spaces

HMY(TC) = {f € H(T); f(p)(1 + |p|*) "d(Re p, dC)" is bounded}
with the norms given by
|z ey = sup{lf(p)I(1 + IpI>) d(Rep, dC)": p € T€}.

For an integrable function S(x) € L'(I"), we define the Laplace transform in the
usual way:

(LS)(p) = /F e ”S(x)dx, peTC.
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Then LS € H(T€) and
(LS +iE) = / e . e TS () dx = Fe TS () (§)

= Do (675, e_ﬁxs(x))pb = Do (1,7 D1

where p = ¢ + i& € TC. This leads to the following definition.

Definition and Proposition 4.1.2 For S € S'(T'), the Laplace transform LS €
H(TC) is defined by

LS(p) = Fu(e™*S(0)) () = oo (1, e S,

forp = © +iE € TC. Then the mapping L : S'(T') — H(TC) is an isomorphism of
locally convex topological vector spaces. The Laplace inverse L™ is given explicitly
by the formula

L) = ™) Fe(F(9 — i6)) 4.1.1)
forf € H(T®) and arbitrary ¢ € C.

Proof If we fix K C C compact, then
Je>0:3IM>0:V9 € K:VxeTl :cosh(elx])-e ™ < M,

cf. Schwartz [246], p. 302. Therefore, also cosh(elx|) -e™ - S € S'(R") if ¥ =
Rep € K and S € §'(T"). Hence

—px 1 —px
e S(x) = o@D - cosh(e|x|)e ”*S(x) € S-S’ C O, C D},

and thus (£S)(p) = D, (1, e_’”‘S(x))D/1 is well defined.
L

The holomorphy of £S on T¢ follows from that of e ¥ with respect to p. In order
to show that £ is well defined, it remains to verify for f = LS the inequality
in Definition 4.1.1. This is shown in Vladimirov [280], § 12.2, p. 189, using
the representation of temperate distributions as derivatives of slowly increasing
functions in Schwartz [246], Ch. VI, Thm. VI, p. 239.

These estimates also yield the continuity of the mapping L. The injectivity of
the Laplace transform follows from that of the Fourier transformation. For the
surjectivity of £, we refer to Vladimirov [280], § 10.5.

Finally note that, for S € S’(T"), the function f(p) = (LS)(p) € H(T), and
hence f(} —i§) € (’)M(R’g) cdS (R’g) for each fixed ¥ € C. This implies

(L)) =" F (O + i) = ™ - 2n) " Fe(f© —i8))

by the Fourier inversion theorem, see Proposition 1.6.5. O
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Let us remark that the Laplace transform in Schwartz [246], Ch. VIII, is defined
differently and with different notation. As domain of definition for the Laplace
transform, L. Schwartz uses a larger topological vector space, namely

S, ={SeDR"); VEe C:e %S5 e SR},

where C C R” is open and convex. Evidently, S'(I") C S(. if C = (I'*)°, but the
converse is not true as shows the example e " € S¢. (Also note that L. Schwartz
writes §’(C) instead of S;..) We shall develop the Laplace transform in L. Schwartz’
sense in Definition 4.1.7 and in Definition and Proposition 4.1.8.

We also mention that the notation in Vladimirov [280] is slightly different from
ours insofar as there 7€ = R" +iC, (Fg)(n) = [g. €™ g(x) dx for g € S(R") and
(LS)(p) = [gn €7 S(x)dxif p € R* +iCand S € L'(T).

For hyperbolic systems A(d) € C[d]*/, we can determine the fundamental matrix
as an inverse Laplace transform in view of formula (2.4.13). For the cone C in
Definition 4.1.1, we use the hyperbolicity cone I'(P(d), N) with P(d) = detA(9),
see Atiyah, Bott, and Garding [5], Def.3.21, p. 132; Garding [90], p. 222.

Definition 4.1.3 Let N € R" \ {0} and P(0) = Z‘Q‘Sm ay0* be an operator of
degree m which is hyperbolic in the direction N (see Definition 2.4.10), and denote,
as always, by P,,(0) its principal part Z\rx\=m aq0*.

(1) The hyperbolicity cone T' (P(d), N) is the connectivity component containing N
of the set {$} € R"; P,,(¢) # 0}.

(2) The dual cone K(P(3),N) = {x € R"; Vi € T'(P(0),N) : x0 > 0} is called
the propagation cone of P(0).

Let us next collect some properties of the cone C = I'(P(d), N), which we shall
use when employing the Laplace transform.

Proposition 4.1.4 Let P(3) be hyperbolic in direction N, i.e., P,,(N) # 0 and Vo >
0o : Y& € R" : P(if + oN) # 0, see Definition 2.4.10.

(1) T'(P(3),N) is an open convex cone;

(2) P(0) is hyperbolic in each direction ¥ € I'(P(d), N); more precisely, if 6y = 0,
then P(i§ + 9) # 0 forall &£ € R" and ¥ € I'(P(9), N);

(3) P is real-valued up to a constant factor, i.e., Pn/P.y(N) is real valued;

(4) the polynomial 6 — P, (& + oN) has only real roots for each & € R".

For the proof we refer to Héormander [136], Section 5.3; [138], Section 12.4.
Let us apply now the Laplace transform in 4.1.2 to hyperbolic systems.

Proposition 4.1.5 Let A(0) € C[0]™! be a hyperbolic system with respect to the
direction N € R"\ {0}, i.e., P(d) = detA(9) fulfills P,,(N) # 0 and P(i§ +oN) # 0
for & € R" and 0 > 0y, see Definition 2.4.10.
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If we set C = T'(P(3),N), then A(p + ooN)~' € H(TC)™*! and the forward
fundamental matrix E of A(d) (i.e., the one with support in the half-space Hy =
{x € R"; xN > 0}) is given by the formula

E=¢e""". L7 A(p + ooN) 7). 4.1.2)

Furthermore, supp E C K(P(9d), N).

Proof Forp = & +i§ € TC, ie, ® € C, £ € R", Proposition 4.1.4 (2) yields
P(p + ooN) = P(i§ + ¥ + o9pN) # 0. Therefore, an application of the Seidenberg—
Tarski lemma as in the proof of Proposition 2.3.5 implies that P(p + ooN)™' €
H(TC) and hence also A(p + ooN)~' € H(T€)™.

On the other hand, if 4 = tN, t > 0, then formula (2.4.13) furnishes, with
o =0p+T,

E— eﬂx+m)Nx.7_-—l(A(i§ +0 + O'()N)_l) — eo()NxE—l(A(p + UON)_I)' O

For scalar hyperbolic operators, formula (4.1.2) coincides with Atiyah, Bott, and
Garding [5], Eq. (4.2), p. 142; Garding [90], p. 224; [94], (6.2), p. 43. A version for
systems is contained in Chazarain and Piriou [48], Ch. VI, Prop. 3.1.6, p. 309.

Example 4.1.6 Let us now treat a second time Timoshenko’s beam operator

ol I
P@) =9 + a4 Lo - (1 )azaz,

©) ! GAk ' A + G/ '
see (3.5.7), which is hyperbolic in the #-direction. Its forward fundamental solution
E was already represented in Example 3.5.4 by integrals over products of Bessel
functions using the method of parameter integration. We shall now derive a com-
pletely different representation of E by calculating the inverse Laplace transform

in formula (4.1.2) by means of analytic continuation, comp. Ortner and Wagner
[214].

(a) After renaming the constant factors, Timoshenko’s beam operator assumes the
form

T(9) = (@®9 — P)(b*? — 3%) + 2?92 (4.1.3)

We suppose that 0 < a < band ¢ € C\{0}. Upon setting N = (1, 0), formula (4.1.2)
yields

1
E=¢e""L .
© ([GZ(PI + 00)? —P%] [bz(Pl + 09)? —Pé] + A (p1 + 00)2)

Here C = I'(T(9),N) = {(1,%2) € R?*; at¥; > |$|} andp € T = C + iR
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If we put 9, = 0, we obtain E from formula (4.1.1) as a one-fold Laplace inverse
of a Fourier integral:

g= ( /°° (& + ™) d )
C 2 P\ o [@(p1 + 00)? + E2][B2(p1 + 00)% + E2] + A(p1 + 0p)?
1
= 5L (Fp.iv) + F(p. ~iv)).

where in the last formula p stands for a single complex variable p € (09, c0) + iR
and

o0 e_zsdé
F(p,z) = , Rez > 0.
¢.2) /0 @R L PGP L)+ ¢

For positive z, the inverse Laplace transform ﬁ;_ln(F (p, z)) can be represented
by a simple integral. In fact, if p > 0y, then the substitution & = ps yields

e ds

o0
F ) = - )
?.2) p /0 p2(a? + s2)(b? + s2) + 2

(4.1.4)

and this equation holds by analytic continuation for each p in the tube (0p, 00) +iR.
Therefore, (4.1.4) implies, still for positive z and ¥ > oy,

1 0o 9-+ico |
LA (F(p.2) Y A E——
0 4

102 . 2 2
2mic —ioo PPt oy

| oo c(t —zs)
) /o Y- ZS)[I - COs(x/(a2 + s2) (b + Sz))}ds

= @ t/z|:1 —cos( ct—z) )i|ds
2 Jy V(@ + )0 + 5%)

cf. Badii and Oberhettinger [7], 11, 2.33, p. 219.
E is obtained from E;_l,,(F (», z)) by analytic continuation with respect to z. If
two semi-circles are chosen as integration paths from 0O to iz/|x| and to —it/|x|,

respectively, and the reflection s — —s is used in the second one, this yields

Y c(t +ilx|s)
E(t,x) = T2 c[l — cos( \/(az TR Sz))i|ds, 4.1.5)

where C is the circle through O and it/|x| which is symmetric with respect to
the imaginary s-axis and oriented in the counterclockwise direction. We observe
that the differential form integrated in (4.1.5) has no branch points, but essential
singularities at s = =ia, +ib. Therefore the following representation of E by
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residues is valid:

0 1t < alx|,
i .
E(t,x) — — ;Ra . Cl|X| <t< b|X|, (416)
— = (Ra+Ry) :blal <1,
c

where

R, = Eﬁ[cos( \/(azci;)lzlj)_’_ 52))} z€{a,b}.

(b) Representation of E by a definite integral in the inner cone ¢ > b|x|.

In this case, we can, by Cauchy’s theorem, deform the closed contour C of
the integral in (4.1.5) such that it consists of part of the real axis and of a large
semi-circle in the upper half-plane. If we let the radius of this semi-circle tend to
infinity, the corresponding contribution to E converges to 0, and we conclude that,
for t>blxl,

R 00 ~ c(t + ilx|s)
E(t,x) = m/m[l COS( (a2+s2)(b2+s2))]ds

1 o0 ct cxs
=— 1 —cos cosh ds.
JTC 0 /(aZ + SZ)(bZ + SZ) /(aZ + SZ)(bZ + 52)
Finally, the real substitution
(az—l—sz)(bz—l—sz):L 0<v<L ie s:iA(v)
492’ 2ab° 77 2v ’

where

—d
A@v) = V2v \/—(a2 +07) + 1+ (B2 —ad)??,  ds= - :
20A(v) /1 + (b — a?)?v?

furnishes, in the cone 7 > b|x|, the integral representation E = E()) with

ED(t,x) = 4.1.7)

1 /1/(2‘”’) 1 — cos(2ctv) cosh(cxA(v))
0

v.
2mc? VA() /1 + (b2 — a?)2v?

(c) Representation of E in the region b|x| > ¢ > alx]|.
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In this case, the contour C in (4.1.5) is homotopic to the curve consisting of the
real axis and of the branch I' of a hyperbola defined by

2 2
b
I'= {s € C; —Re (s%) = (Ims)? — (Res)? = ? —; and Ims > 0}.

If we divide T into the two parts I+ = {s € I'; Res > 0} and orient I and 'y
starting from (1 4 i)oo, then we obtain, for blx| > ¢ > a|x| and with E!) as defined
in (4.1.7),

o L B c(t + ilx|s)
E@t.x) = E(t.x) + 2mc? /r|:1 COS( (@ + sH)(? + 52) @

) 1 { [ B ( c(t + ilx|s) )] }
=EV(tx) + o Re /F+ 1 —cos o T dsy .

The parametrization

1 1 1

(@ +HV* + %) = e 0<v< gy ie,s= > (B(v) +iC(v)),
where
B(v) —(C(v) + iB(v))dv

= ﬁ\/ﬂF(al + 8 + V1 +4a?b?v?2,  ds = :
C(v) 42 /1 — (b2 — a2)2v24/1 + 4a2b?v?

finally yields, in the region b|x| > ¢ > alx|,

E(t,x) = EV(t,x) —

/1/(b2—a ) dv 5
4 c? Jo v2/1 — (b2 — a®)2v24/1 + 4a2b?0?

X {C(v)[1 — cos(cxB(v)) cosh(2ctv — c|x|C(v))] 4+ B(v) sin(c|x|B(v)) sinh(2ctv — c|x|C(v))}.
(4.1.8)

]

In order to represent fundamental matrices of quasihyperbolic systems which are
not hyperbolic by inverse Laplace transforms, let us introduce now the distributional
Laplace transform as it was formulated in Schwartz [246], Ch. VIII.

Definition 4.1.7 For a convex open set C C R”, we set

S, ={SeDR"); V¥ € C:e"S(x) € S'(R")}



4.1 Representations by Laplace Inversion 259

and

He = {f : T¢ = C +iR" — C holomorphic;
VK C Ccompact: 3u, M > 0:Vp e TX : |[f(p)| < M(1 + |p|)*}.

We equip S with the coarsest topology such that all the mappings
S’C—>S’:S»—>e_ﬁx5, % eC,

are continuous. On the other hand, H¢ is the projective limit of the inductive limits
of the Banach spaces

HYS = {f € HS f(p) - (1 + |p|»)™" is bounded on TX}

for u > 0, K C C compact, i.e., Hc = limlim Hg’K.
XK u

Definition and Proposition 4.1.8 For S € S/, the Laplace transform LS € Hc is
defined by

LS(p) = Foe™"S(0))(€) = pyoo (1,€77"S ))pr,

forp = 9 +if € TC. Then the mapping L : S —> Hc is an isomorphism of
locally convex topological vector spaces. As in 4.1.2, the Laplace inverse L™ is
given explicitly by the formula L™ (f) = e’”(27r)_"]:g (f(ﬁ — if;‘)) forf € Hc and
arbitrary fixed v € C.

Proof For K C C compact, the reasoning in the proof of 4.1.2 shows that if S € S;.

then e™”*S(x) belongs to O and is bounded therein for ¥ = Rep € K. Hence

(LS) () = D, (1. e_f”’ﬂS'()c))DLl is well defined and (LS)(¢ + i€) is bounded in

Ou (Rg) for ¥ € K. Furthermore, LS is holomorphic in p and hence LS € Hc¢.
Conversely, forf € Hc and ¢ € C,

Sy 1= F(F(0 + ) = Q) "Fe(f(9 — i) € OL(R")

and e’*Sy € D (R") is independent of ¥ € C, see Schwartz [246], Prop. 5, p. 305.
This shows that L is surjective and hence an isomorphism of linear spaces.

In order to show that £ is also a topological isomorphism, one first verifies that
the topology on S(. coincides with the projective limit topology (see Robertson and
Robertson [236], Ch. V, § 4, p. 84) with respect to the mappings

Sp—> Op 1 S e s, ¥ eC.
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Hence L is an isomorphism if H¢ is equipped with the projective limit topology
with respect to the mappings

He — Oy f — f(¥ +i§), v eC.

Cauchy’s inequalities (cf. Schwartz [246], p. 306) then imply that H¢ is also the
projective limit (with respect to ¢ € C) of the inductive limits (with respect to u >
0) of Hg’w}. Finally, if K C C is the convex envelope of the points 94, ..., 9, € C,
then the set

a(®,x) =e ™ Ze_ )0 ek
o=/ (S0 e
is bounded in Do (RY) (cf. Schwartz [246], p. 301), and hence

[F® +if) = Xm:]-"(a(z?, x) e S) () ¥ € K}

J=1

is a bounded subset of Oy, (Rg). Therefore, the above topology on H¢ coincides with
the one given after Definition 4.1.7. O

Analogously to Proposition 4.1.5, we can apply Proposition 4.1.8 to systems
A@0) € C[0]™ such that P(0) = detA(d) is quasihyperbolic with respect to
N € R"\ {0} and fulfills P(¥ + i§) # 0if £ € R" and ¥ € C for a convex open set
in R” containing {oN; ¢ > 0y}. If E denotes the uniquely determined fundamental
matrix of A(9) satisfying e "ME € S’(R")™ for ¢ > 0y (see Proposition 2.4.13),
then E = L7'(A(p)™").

Example 4.1.9 Let us resume Rayleigh’s system, which was introduced already in
Example 2.4.14.

(a) According to Example 2.4.14, Rayleigh’s system is given by the quasihyper-
bolic matrix

B(9) -0 b B>0 (4.1.9)
= . o, >0, L.
:Bzax 3)% - :32

with the determinant
P(3) = detB(3) = —9! + 2920 — y20?, y =ap.

In order to apply the inverse Laplace transform as in Proposition 4.1.8, let us
show first that P(p)~! € H for a suitable non-empty open convex set C C RZ.
Since the subsets

A
2. preC,[Repy| 56}

Ay :{p%;pIEC,ReplzN}, Az:{ﬁ7
«'p; —Y
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of the complex plane are disjointif 0 < € < g and N = N(e, @, y) is large enough,
we can use a set C of the form C = {# € R?; %, > N, |%,| < €}. This reasoning also
shows that P(¢ + i£) does not vanish for £ € R? and ¥ = o((), o > 0, and hence

B(d) and P(9) are quasihyperbolic in the direction ((1)), cf. also Example 2.4.14.

(b) Let us next derive by inverse Laplace transformation a representation of the
uniquely determined fundamental solution F of P(d) fulfilling F € S'(R?) and
F=0fort<O0.

By Proposition 4.1.8,

F=L,"'(P(p)7")

Px

e 1 ,
T 2n)? }—S(—(ﬁz —i&)* + o?2(P —i&1)2 (P2 —162)* — y2 (D — 151)2) € Sc.
(4.1.10)

where C is as above. Note that P(p) ™' = —[p§ — &®p?p3 + y?p}]~! is the limit of
—T(p)~" = —[(@’pi —p2) (&’pi —p3) + pil™!

in H(T€) fora \{ 0,b = a,c = y if T(d) denotes the Timoshenko operator
in (4.1.3). Therefore, we obtain from formulae (4.1.7) and (4.1.8) the following
integral representation of F by performing the limit in Sy, :

Y(r) [°° 1—cos(2ytv)cosh(yxA(v))
F=- dv 4.1.11
27y Jo vA(V)V1 + a*v? ( )

N Y)Yt —alx]) /1/0‘2{ 1 — cos(yxv'v — a2v?) cosh(2ytv — y|x|v/ v + a2v?)
2
Ty 0

4 v — a2y?
sin(y |x|vVv — aZv2) sinh(2ytv — y|x|v/v + a?v2)y dv
n }_, (4.1.12)
/v +a2v2 v

where A(v) = vV —202v2 + 2041 + a?v2.

In contrast to the general Timoshenko operator, we are able to express the
integral (4.1.11) in terms which can be combined with the integral in (4.1.12). In
fact, the function

1 — e cosh(yxA(v))
v/ 1 + a*v?A(v)
can analytically be continued from the positive real axis (where each square root

involved is positive) to the slit plane U = C \ {iw; a2 < w < a2}. Note
that +/1 4+ a*v? then assumes negative values on the negative real axis and thus

fw) =
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f(=v) = f(¥) for v € U. Since f(v)v*/? is bounded in the half-plane Imv > 0 for
t > 0 and x € R fixed, Cauchy’s theorem allows us to express ffzof(v) dv by an
integral along the upper half of the branch cut, i.e., along 'y = +0 + i[0, ¢ 2],
which paths we orient in the direction towards +ioco. Hence, for ¢ > 0,

/_:f(v)dv =/F+f(v)dv—/rf(v)dv ZZRB(/rJrf(v)dv)'

Upon parameterizing I'y by v = iw, 0 < w < o2, and using the identity

A(U)|I‘+ = \/—2052112 +2vV1 + a*v?

= Vw+ a2w? +ivw — a2n?

Iy
we obtain

1 *®1-— 2yt h(yxA 1 o
el e (UL

2ry* Jo VA(W)/1 + atv? dry? | o
1 /1/“2 { —1 4+ e 2™ cos(yxv/w — a2w?) cosh(yxv/w + a2w?)

4my? Jo Vw — a2w?
(4.1.13)

N e 2w sin()/xm) Sinh(yxm) } dw
N '

w
Hence, inside the cone t > a|x|, F = F (M coincides with the integral in (4.1.13).

On the other hand, for 0 < ¢ < a/|x|, we have to add to F!) the integral in (4.1.12).
Therefore, the identities

cosh(a — b) —e % coshb = sinh(a — b) + ¢ “sinh b = e ?sinha, a,beC,

furnish

2 N
- / v sinh(2y tv)e 7 VIFeT? [Sln(V|X|V v—a?v?)  cos(yxvv— “2”2)]@
o ), NETTE Er R DR

valid for 0 < ¢ < «|x|. Altogether this yields

P Y(t—alx|) /1/“2 { —1 4 72" cos(yx+/v — a2v?) cosh(yx+/v + a2v2)
0

L & sin(yx/v = o) sinh(yxy/v + a7v?) } dv
Vo +a2? v

4my?
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Y() — Y(1— 1/e
+ 10 471(1/2 olr) / sinh(2y ro)e 7V IHEE (4.1.14)
0

[sin()/ |x|vVv —a?v?)  cos(yxvv — a?v?) ] dv
X —
VU + a?v? Vv —a?v?

comp. Ortner and Wagner [214], Prop. 2, p. 226.

)

v

(c) Let us finally derive a formula for the first column of the fundamental matrix
E of Rayleigh’s system B(d) in (4.1.9). This column represents the vector (]'/‘/)
in (2.4.14/2.4.15) caused by an instantaneous point force g = 4(t, x).

By formula (2.1.1),

ax
E = BY()F = o F.
—59, 207 — 92

Let us first show that F and 9,F are continuous functions, i.e., F, 9,F € C(R?). This
is a consequence of formula (4.1.10) upon showing that

P(9) — i1, —iEy) " = —[E} + o2E2 (01 — i81)% + Y2 (91 — &)

belongs to Ll(Rg), and that the same holds for £&P(1 — i&;, —i&)~!. This can be
verified by successive integration of the function

APy — i1, i)™ = r((E2 — r0)? + r202) P (E + re)? + P92) 2,

where r = /a2&; + y2, first with respect to £, then with respect to &.
Starting from the representation of F in (4.1.14) we obtain

Y(t—alx]) ¢ i e 2 dy
OF(t,x) = oy /0 cos(yxvv — a2v?) sinh(yxy/v + 0521)2)1“/1?0641)2

. o2 .
n [Y() — Y(r — a|x|)] signx / cos(yxm) e hiviFa?? sinh(2ytv) dv '
2my 0 v/ 1 —atv?

(4.1.15)

(Note that delta terms along the cone t = «|x| do not occur due to the continuity of
the fundamental solution F.)
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Similarly,
PF(1,x) = °‘|x|) / “Teos(yxv/v — a?v?) cosh(yxv/v + a®v?)
o Vo=
sin(yxv/v = a?v?) sinh(yx/v £ @20 Ly
B Jor ot e av
Y(t) - Y(t — alx]) / cos(yxm) e
Ny 1
N SiH(V|X|m)]e—yllem sinh(2y1v) do
Vot oo -

Combining the terms in (4.1.14) to (4.1.16) we obtain the following formula for the
first column of the fundamental matrix:

2 —
En) _ @ —F =Y(t—alx|) /a (si@xw) dv
En _ZOF o \&txv)) v

VO = (= ala))] [ " (hl(t’ N v)) v

ha(t, x, v)
where
1 [1 + (20%v — 1)e 2" cos(yxv/v — a2v?) cosh(yx+/v + a2v?)
§1= 47TO{2 VU—O[ZUZ
(2% + De™?" sin(yxv'v — a?v?) sinh(yxv/v + o¢?v )]
Vv + a?v?
P _V|X|V v+ Ginh(2ytv) [(Za v — 1) cos(yxvv — a?v )
e 47TO{2 VU—O[ZUZ
(2a v+ 1) sin(y|x|vv — o?v )]
Vv + o?v?
—Zytv
&= cos(yxv v — «2v?) sinh(yxvv + 0?2v2) ————
V1T=a®?’
y51gnx x|V v+a2v? smh(2ytv)
By = Vo — a2v ylxlv/ Rl
5 ol cos(yxvv —a2v?)e” e
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Example 4.1.10 In a similar way as Rayleigh’s system, let us treat the quasihyper-
bolic, but not hyperbolic operator P(9) = 9> — 9,0> — 92, which is also known as
Stokes’ operator, see Gel’fand and Shilov [105], Ch. III, 4.1, Ex. 3, p. 134; Duff
[63], p. 473; Morrison [183], p. 154, (7); Nardini [188]; Dautray and Lions [54],
(3.81), p. 49, p. 285.
Similarly as in the last example, the two sets
i

A= {T;Pl €C, Rep; > N}, Ay = {p3; p» € C, |Repy| < 1}
P1

are disjoint if N is large enough and hence P(p)~! € H¢ for C = {¢ € R?*; ¥ >

N, || < 1}. We therefore obtain a fundamental solution E fulfilling E € S’(R?)
and E = 0 for ¢t < 0 by inverse Laplace transform:

=gt T ) = L (R + R i)
= — _— = — 1xX —1X
20 77\ Jo PP+ pE? + 82 2 ’ ’

where p here stands for a single complex variable in (0, c0) + iR.
For positive p and z, we substitute £ = ps in the integral for F(p, z) and obtain

0o e—zf 00 e~ s
F(p,7) = — _dE= S —; P
¢-2) /0 p? +p§2 4+ &2 ] /0 p(1 + 5% + ps?)

/00 T ] 1 ds
= e "”[—— ] .
0 p pH14+s211452

By analytic continuation, this holds for p in the complex right half-plane (and
positive z), and hence

_ 1 [ ds (UFe o rl 1
LN Fp.) = | el s e

27i o 1452 Jy—ico p p+l+4s72
© - ds
— Y t— 1 _ e—(l+s 2)([-1&)
/0 ( zs)[ ] 1+ s2
t/z _ ds
— t 1— e—(l+s 2)(1—2zs) .
@ /0 [ ] 1+ 52

E is obtained from £~!(F(p, z)) by analytic continuation with respect to z. As in
Example 4.1.6, we choose two semi-circles as integration paths from 0 to %iz/|x|
and use the reflection s — —s in the second integral. This yields

E = Y@ [1- e—(1+s—2)(r+i\x|s)] ds
27 1+ 52
c
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where C is the circle through 0 and if/|x| which is symmetric with respect to the
imaginary s-axis and oriented in the counterclockwise direction. Note that we cannot
replace C by the real axis as we did in Example 4.1.6 since the integrand tends
to infinity for x # O if s tends to infinity in the upper half-plane. Therefore we
substitute # = —1/s and let u run over the straight line Im u = 2 parallel to the real
axis. This implies

Y(t) 2i+o00 5 ‘ |
E=--" —qa f— ik
27 Jri—oo exp( (1+u)( )) 1+ u2

In particular, for x = 0, we can shift the integration to the real axis and obtain

pe.o =vo| ;- [Ter i) = Ewh = 10 [

by Grobner and Hofreiter [115], Eq.314.8b.
In Ortner and Wagner [207], Prop. 4, p. 450, a fundamental solution of the more
general operator

0, —al, —b)* — (cA, +2(w,V,) + d)* — I

was represented by a simple integral over Bessel and exponential functions. In the
special case of the operator P(d) above, this yields the following representation of E:

= 1O [ st _B

see Ortner and Wagner [207], p. 450, Rem. 1. O

Example 4.1.11 As our final example, let us investigate the system of dynamic
linear thermoelasticity, cf. Ortner and Wagner [209].

(a) We consider a homogeneous, isotropic elastic medium in R3?. As in Exam-
ple 2.1.3, we denote by p,f the densities of mass and of exterior force,
respectively, and by u = (ul,uz,u3)T the displacements. Whereas, in the
absence of heat sources, u satisfies Lamé’s system, i.e.,

pdiu—pldsu— (O + WV -V'u = pf,

see (2.1.2), variations of the temperature 7'(¢,x) lead to the so-called Duhamel—
Neumann law

00 u — pAsu— (A + )V -Viu + BVT = of, (4.1.17)
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where B = (31 + 2u)a and o is the coefficient of thermal expansion, see
Sokolnikoff [257], Eq. (99.5), p. 359; Sneddon [254], Eq. (1.5.13), p. 23; Nowacki
[191], Eq. (18), p. 41; [192], Eq. (2.21), p. 267; Boley and Weiner [20], p. 31.

An equation describing the effects of strain on the diffusion of heat was derived
in Biot [14] on the basis of the theory of irreversible thermodynamics:

0T — kAT + 1o,V -u = Q. (4.1.18)

Here Q measures the supply of heat (more precisely : Q = (k/A) x amountof heat

generated per unit time per unit volume), « is the temperature conductivity coeffi-

cient, n = BTy/(cp), and ¢, T denote, respectively, the specific heat per unit mass

and the temperature at rest (cf. Sneddon [254], Eq. (1.5.4), p. 21; Nowacki [191],

Eq.(17), p. 41; [192], Eq. (2.20), p. 267; Carlson [43], Eq. (7.24), pp. 310, 328.
The four equations in (4.1.17) and (4.1.18) can be written in matrix form as

2 _ T
A(a)( ) (Pf ) where A(3) = ((pa, PADL =+ wV -V BV )
Q r’al‘vT 8 —KA3

1.19)
As we shall see below, A(d) and, equivalently, D(d) = detA(a) are

quasihyperbolic in the t-direction, see (2.2.3) and Definition 2.4.13, and we

denote the corresponding fundamental matrix of A(d) by E4 and the corresponding

fundamental solution of D(d) by Ep. By formula (2.1.1), we have E4, = A*(9)Ep.
A straight-forward calculation yields D(3) = (pd?> — uA3)?P(9) where

P(@) = (007 — (A + 20)A3) (3 — K A3) — BndAs.
On the other hand,

P + H@)V - VT —BW(3)V

ad —
ATO=WOL T w@a v woyen — (. +20)

where W(0) = pd? — uAs and H(@) = (A + p + nB)d, — (A + pw)kAs. By
Example 1.4.12 (b) (see also Example 1.6.17), the forward fundamental solution of
the wave operator W(9) is given by

E [—
w = 471,u|x| |x|

By convolution, we therefore obtain Ep = Ew * Ew *x Ep if Ep is the fundamental
solution of P(d). This furnishes

LEy + HO)V -V'Ey x E —BVE
E, = 3w (9) ) w* Lp i BVEp ’ (4.1.20)
—nd;V'Ep (P37 — (A +210) A3)Ep

cf. Ortner and Wagner [209], Eq. (4), p. 527.



268 4 Quasihyperbolic Systems

In order to simplify the further procedure, we introduce dimensionless variables,
comp. Sneddon [254], Ch. 2. We abbreviate by E, the fundamental solution of the
operator

Pe(d) = (9 — A3)(3] — As) —€d, A3 = 8] —0;As — (1 + €), A3+ A3, € €C,

(4.1.21)
which will be called thermoelastic operator in the sequel. Linear transformations
of the coordinates yield a~'b=3d~'E.(t/a,x/b) as fundamental solution of the
operator

a*dd} — a*b’dd* Ay — ab*d(1 + €)3, Az + b*d A3

fora,b,d > 0. Therefore, putting

_Kkp _ P _ (A+2p B
a= ., b=« ., od=2" 0 =T
A42u A+2u K3p? A+2u

yields a representation of Ep in terms of E, :

EP(tv x) =

1 E(A+2ut‘/k+2,ux)
KPVA+ 21 ‘ ’ '

Kp K/p
Note that t/a,x/b and E. = ab’dEp are dimensionless quantities. The quantity
a~' has been called characteristic frequency by Chadwick and Sneddon (see
Sneddon [254], p. 41; Nowacki [193], p. 207). The physical values of € for four
metals are given in Chadwick [44], p. 279; Chadwick and Sneddon [47], p. 228,
and lie in the range from 10™* to 10~

(b) In order to apply Proposition 4.1.8 to P.(d) and represent its fundamental
solution E, by an inverse Laplace transform, let us first determine an open
convex set C C R* such that P.(p)~' € Hc. Forp = ¢ + i§ € C*, let us set
{=prandz = Zfzzpjz. Then we have

Pp) =0 —z—(1+e)lz+ 2 = 0. 2).

For z — 00, the three roots of ¢ — Q(¢, z) have the following asymptotic expansion:
_ € _
Gi=zt+e+0@),  ha=+/i-54+0"),

Therefore, if |z| is large and Q(¢, z) = 0, then either [{ —z| < 1 4 |e| or |§ £ /7] <
1+ %, and hence, setting ' = (¥, 93, ¥4), we conclude that P.(p) # 0if |z| >
a, Rel > |¢|> + a and a is sufficiently large. Considering that the roots of ¢ +>

(¢, z) are bounded for bounded z we obtain that P.(p) does not vanish in the tube
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domain 7€ where C = {# € R*; ¢ > |1'|> +a} for sufficiently large @ > 0. Hence
P.(p)~' € H¢ by the Seidenberg—Tarski lemma, cf. the proof of Proposition 2.3.5.

(c) According to Proposition 4.1.8, we can represent the fundamental solution
E. of P.(d) as inverse Laplace transform in the sense of L. Schwartz:
E. = L7'(P.(p)™"). If we choose ¥ = ¥3 = %4 = 0 and ¥, > a, then

— -l ! !
&‘@*erﬁﬂwamw+@m+me

1 . .
@LP_IH(F([?,IIXD + F(pv —1|X|)),

where now p stands for a simple complex variable p € (a, c0) + iR and

e “rdr

F(p.2) 2”/00 Rez >0
)= —— , ez > 0.
‘ 2o G+ +P) +epr ‘

For positive z, the inverse Laplace transform E;_I,T(F (p, z)) can be represented
by a simple integral. In fact, if p > a, then the substitution » = ps yields

2 / o e Psds
0

Fp.z) = — =~
P=="" ] Trpdd+d+es

(4.1.22)

and this representation holds by analytic continuation for each p € (a, 00) + iR.
Therefore, (4.1.22) implies, still for positive z, that

oo 9tico  gpli—zs) 1 s2(1 + %)
LU (Fp,2) = —/ sds/ (_ - )d
p—>t( (p.2) 2 Jo oo 1+ sz(l +o\p +psz)(1 + sz) + es? p

_ 2 % _sY(—z) | — o= (+52(1+)(t=29)/(s*(1+5D) | 4
0 1 + Sz(l + 6)

Z
2mY (1) / t/z(l—e_(l+s2(l+s))(f—zs)/(52(1+sz))) sds
0

oz 1+2(1+e€)

If, as in Example 4.1.6, we choose semi-circles from O to iz/|x| and from O to
—it/|x|, respectively, as integration paths, and use the reflection s +— —s in the
second one, we arrive at the representation

E =— Y(0)i 1 — e~ (H2(+) (Hilxls) /(2 (1+57) sds . (4123)
42|x| Je 1+ s2(1+e¢)

where C is the circle through 0 and if/|x| which is symmetric with respect to the
imaginary s-axis and oriented in the counterclockwise direction. We observe that
the differential form integrated in (4.1.23) has essential singularities in 0 and in =+i.
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As in Example 4.1.6, we have to distinguish two cases: If # > |x], then the circle C
is homotopic, in C\ {0, i, —i}, to the real axis, and hence E. = E.; fort > |x|, where

|x|(1 + 1+ 6)92)) (_t(l + 1+ e)sz)) sds
2712|x| s(1 + 52) s2(1 + 52) 1+ (1 +e€)s?

(4.1.24)

el =

On the other hand, if 0 < ¢ < |x|, then C is homotopic to the real axis and a
loop around the essential singularity s = i oriented in the clockwise sense. Hence
E.=E. + E., for0 <t < |x| and € # 0, where

Ec» =

S
e A AC el wy s o

1+ (A +e)sH)(t + ilx|s)
Xp(_ S2(1 +S2) )

(4.1.25)

The representation of E, in (4.1.24/4.1.25) was derived by a different method in
Ortner and Wagner [209], pp. 538-542, see in particular formulae (12), (13).

Let us specialize formulae (4.1.24) and (4.1.25) to the uncoupled case ¢ = 0.
Hence E is the fundamental solution of (3; — A3)(9? — A3). It was derived first by
W. Nowacki, see Nowacki [191], Egs. (10), (11), p. 267; [192], Egs. (2.29), (2.30),
p- 269; [193], Eq. (4.25), p. 198. For € = 0, we have

E 1 /Oo, (|x|) ( t) sds 1 /°° in (x| )_wz dv
=— sin(— )exp(—= ) —— = —— sin(|x|v)e™" ——
ol 272 |x| s A +s2 2m2x| Jo v(l + v?)

= ;[ZEr ( il ) + et Erfc(«/——i- \/_> — e Erfc(ﬁ_ ﬂ)}

87 x| 2.4/t 2./t
by using a well-known Fourier sine transform, see Oberhettinger [196], (3.29),
p. 126.
Furthermore,

1 s (t + i|x|s) 1 _
Eoy = R : (_—)_1 = (M,
"2 7 x| Sgis% 1+ s? (exp 52 47 |x| (¢ )

and hence

Eolt,x) = Sl;(l?c' [215 (;}) 4 ethl Erfc(ﬁ + 2%)

—ef—lf‘Erfc(J |\/|_>+2Y(|x| N(e ’_'x—l)}. (4.1.26)

A representation of E, as a definite integral appears already in Bureau [38],
Eq. (50.8), p. 197.
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(d) Let us yet derive a representation for the temperature caused by a hot spot in
a thermoelastic medium. This is expressed by the element T(7,x) = (Eq)as =
(00? — (A + 2) A3)Ep in the lower right corner of the fundamental matrix E4
in (4.1.20). Scaling to dimensionless variables as in (a) yields

A+ 2p)3? r x
T(t,x) = % T€<;, Z) where T, = (92 — As)E..

When differentiating E., we employ the fact that E, , vanishes fort = |x| = r and
that the same holds for (9, — 9,)Ec . Therefore, the formulae (4.1.24/4.1.25) imply

Y(@) [ . (|x|(1 + (1 + e)sz)> ( 1+ (1 + e)sz)) 1+ (1 + €)s?
in ———————— ) exp(—

Le(t3) = 272|x| Jo s(1 4+ s2) s2(1 + 52) 31+ 52)
Y(O)Y (x| — ) { 14 (1 +€)s? (_ 1+ (1 +e)s?)(t + i|x|s)>}
27 |x| s=i| $3(1+s2) s2(1 + s2) ’

The constant and the linear term of the Taylor expansion of 7, with respect to
€ can be represented by error functions as in (4.1.26). This linear expansion was
derived for the first time in Hetnarski [128], Eq. (4.28), p. 935; cf. also Ortner and
Wagner [209], p. 548. For the remaining entries of the fundamental matrix E4, we
refer to Wagner [288].

4.2 Singularities of Fundamental Solutions
of Quasihyperbolic Operators

In the following, we present part of the singularity theory which was developed for
hyperbolic operators in Atiyah, Bott, and Géarding [S] and Hérmander [138]. We
restrict ourselves to estimates for the singular support, leaving aside the analogous
estimates for the wave front set developed by L. Hormander. At some instances, we
give generalizations to quasihyperbolic operators.

Definition 4.2.1 For a polynomial P(n) and § € R", the polynomial P¢(77) denotes
the localization at infinity of P in the direction §, i.e., P¢(n) is the lowest non-
vanishing coefficient with respect to 7 in the MacLaurin series of "P(n + %),
m = degP > 0. Thus "P(n + %) = #P:(n) + O(*!) for t — 0. Herein,
p = mg(P) is called the multiplicity of & with respect to P. For P = 0, we set
P: =0.

For Definition 4.2.1, cf. Atiyah, Bott, and Garding [5], Def. 3.36, p. 135; Géarding
[90], p. 223.
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Example 4.2.2

(a) If £ =0, then P¢ = P and mg(P) = deg P.
b) IfP = Zlalsm ayn® and Py = Z\a\=k agn®, 0 < k < m, are the homogeneous
components of P, then

P14 5) = Pu®) + 1[0 - VPuE) + Pur(©)]
+ tz[%nT ' VVTPM(S) -n+ nT : VPm—l(é) + Pm—Z(S)] + O(IS), t— 0,

where VP, is the gradient of P,, and VVTP,, is the Hesse matrix of P,,. Hence,
if P,,(§) # 0, then mg(P) = 0 and P¢(n) is the constant P, (§). If P, (§) = 0,
but VP, (§) # 0 or Py—1(§) # 0, then mg(P) = 1 and Pg(n) = n’ - VP, (§) +
P,,—1(§), a linear polynomial. If P,,(§) = P,,—1(§) = 0 and VP,,(§) = 0, but
VVTP,,(§) # 0, then mg(P) = 2 and P¢(n) is a second-order polynomial with
principal part 10" - VV'P,(§) - n. O

For a quasihyperbolic operator P(—id), we can estimate the singular support of
the fundamental solution E, which was defined in 2.4.13, from below by means
of the localizations Pz. We point out that—in contrast to the hyperbolic case—the
operators Pg(—id) are not necessarily quasihyperbolic. (For example, if P(§, &) =
1 + £ &, then P(—id) is quasihyperbolic in the direction N = (1,0), whereas
P,0)(—id) = —id, is not.) The next proposition generalizes the “Localization
Theorem” in Atiyah, Bott, and Garding [5], 4.10, p. 144. It was formulated in Ortner
and Wagner [209], Prop. 3, p. 534.

Proposition 4.2.3 Suppose that P(—id) and the localization P¢(—id) are quasihy-
perbolic operators in the direction N for some & € R"\ {0}. Denote its fundamental
solutions according to Proposition 2.4.13 by E and Eg, respectively. Then supp Ez C
sing supp E.

Proof Assume that oy is chosen such that P(n —ioN) # 0 and P¢(n —ioN) # 0
for all £ € R" and 0 > 0y. The representation of E in (2.4.13) implies, for ¢ € D
and t € R\ {0}, that

4 F1 (™) (n)
iEx/t _
(¢.eE) = /R Pt Eji—ioN) 4.2.1

For p = mz(P) and m = degP, the polynomial " 7?P(n + £/t — ioN)
converges to the localization Pg(n — ioN) if ¢ tends to 0. As in (2.3.9), we use
the Seidenberg—Tarski lemma to obtain the estimate

" PIP(+ &/t —ioN)| = k7N (1 + | + i) 422
for some positive constant k and all » € R"” and r € R\ {0}. (Here we employ

the quasihyperbolicity of P and P¢, which implies that the polynomial Q(t,n) =
"PP(n + &/t — ioN) has no real zeros.) The inequality (4.2.2) enables us to use



4.2 Singularities of Fundamental Solutions of Quasihyperbolic Operators 273

Lebesgue’s dominated convergence theorem in Eq. (4.2.1) in order to conclude that

FH ™M) (n)

lim(¢, #"e /' E) = dn = (¢, E).
lim{g, "~"e ) e Petn—ion) (¢, Ee)

Outside of sing supp E, the distribution #~"¢ /' E converges to 0 if t — 0 in virtue
of the Riemann-Lebesgue lemma, and hence E; vanishes on R" \ sing supp E. This
implies the assertion of Proposition 4.2.3 and completes the proof. O

The content of Proposition 4.2.3 can be expressed by the following bound for the
singular support of E from below:

U supp E¢ C singsupp E. (4.2.3)

EER"\{0}
P¢(—id) quasihyperbolic

Note that if the operator P(—id) is hyperbolic in the direction N, then the
localizations Pg(—id) are necessarily also hyperbolic in this direction (see Atiyah,
Bott, and Gérding [5], Lemma 3.42, (3.45), p. 136), and hence

P(—i0) hyperbolic — U supp E¢ C singsupp E. (4.2.4)
geR"\{0}

In order to give a bound for singsupp E from above, let us define the so-
called wavefront surface, a notion introduced first in Atiyah, Bott, and Garding [5],
Def. 5.15, p. 155.

Definition 4.2.4 For an operator P(—id) which is hyperbolic with respect to N €
R” \ {0}, the union of the propagation cones of its localizations is called the
wavefront surface W(P(—id), N), i.e.,

W(P(-id).N) = | ) K(Pe(-id).N).
£eR"\{0}

Proposition 4.2.5 Let P(—id) be hyperbolic with respect to N € R"\ {0}, and let E
denote the forward fundamental solution of P(—id). Then E is real-analytic outside
the wavefront surface W(P(—id), N).

For a proof we refer to Atiyah, Bott, and Garding [5], Thm.7.24, p. 177, or
Hoérmander [138], Thm. 12.6.6, p. 132.

Let us summarize the different bounds for the singular support of the forward
fundamental solution E of a hyperbolic differential operator P(—id). If sing supp, E
denotes the analytic singular support of E, i.e., the complement of the open set
where E is real-analytic, and E(Q(d), N) denotes the forward fundamental solution
of the operator Q(d) with respect to N, then Propositions 4.2.3 and 4.2.5 imply the
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following sequence of inclusions:

U supp E(Pg(—id), N) C singsupp E C singsuppy E C
£€Rr"\{0}

c |J K@P(=id).N) = W(P(—id).N)  (4.2.5)
£eR\{0}

cf. Garding [90], Eq. 4, p. 225.

In most of the physically relevant cases, all the inclusions in (4.2.5) are identities.
In particular, sing supp E(P(—id), N) = W(P(—id), N) holds if the dimension n does
not exceed four (since then either the principal part of P is complete, or the reduced
dimension of it is at most three), see Atiyah, Bott, and Garding [6], Thm. 7.7, p. 175.

Let us now give a mathematical definition of the term conical refraction, see also
Garding [91], pp. 24, 25; [92], pp. 360-362; Liess [165], Ch. 6; Musgrave [186],
11.3, p. 143. For the terms “slowness surface” and “normal surface,” see Duff [62],
p. 251; [64], p. 50.

Definition 4.2.6 Let P(—id) be hyperbolic with respect to N € R” \ {0} and
with principal part P,,(—id), m = deg P. We suppose that P,,(§) does not contain
multiple factors. As always Hy = {x € R"; xN > 0}.

(1) The set & = {¢£ € R*; P,(§) = 0} is called the slowness surface or normal
surface of P(—id).

(2) The operator P(—i0) is called strictly hyperbolicift VE € E\{0} : VP,,(§) # 0.

(3) The hypersurface E* dual to E is defined by

[l

*={t-VP,(£); 1 € R & €R", Py(§) = O},

and it is called the characteristic surface or wave surface of P(—id).
(4) We say that conical refraction occurs if and only if E* N Hy is a proper subset
of sing supp E where E is the forward fundamental solution of P(—id).

Note that E* N Hy is contained in sing supp E due to the inclusion in (4.2.3).
Indeed, Pg(—id) coincides with the first-order operator —iVP,,(§)7 -V + P,— (£) if
P, (§) = 0and VP, (§) # 0 and hence VP,,(§) € E*, see Example 4.2.2.

Thus if sing supp E = W(P(—id), N) (which holds in most physically relevant
examples), then

sing suppE = (E*NHy) UC where C = U K(P:(—10),N).

§€R"\{0}
Py (£)=0, VP, (§)=0

In other words, C is the union of the propagation cones of the localizations Pz (—id)
in the directions of the singular or conical points £ on the slowness surface, and
conical refraction occurs if C is not contained in E*.
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Evidently, for a strictly hyperbolic operator, & is non-singular, the set C is empty,
and hence sing supp E = E* N Hy. We also mention that the strict hyperbolicity of
P(—i0) is equivalent to the condition that (P + Q)(—id) is hyperbolic for each lower
order operator Q, i.e., for arbitrary Q with degQ < deg P, see Hormander [138],
Cor. 12.4.10, p. 118.

Let us also remark that some authors call the projective hypersurfaces & and E*
slowness cone and characteristic cone, respectively, in order to distinguish them
from their affine representations X = {§ € E; £&-N = 1}, X* = {x € E*; x-N = 1},
which they call “surfaces,” cf. Duff [62], pp. 251, 252. We shall indifferently call
both E and X slowness surface.

Example 4.2.7 Let us illustrate the notions of Definition 4.2.6 in the simple example
of P(d) being the product of two anisotropic wave operators in R?, i.e.,

P(3) = P(—id) = (07 — A3)(0? —al, — bd3), a,b>0.

We set N = (1,0, 0,0) and denote by E the forward fundamental solution of P(9).
This operator was also considered in Bureau [34].
More generally, the fundamental solution of the operator

(07 = D)3} — b} — a2l — as3). ;> 0,

was represented by elliptic integrals in Herglotz [125], III, § 10, (184),
p. 104. This representation immediately results by the method of parameter
integration from Proposition 3.2.1. We restrict ourselves here to the simpler case
a; = ay = a,asz = b since our main goal here is to illustrate the propagation of
singularities and the occurrence of conical refraction. In this simpler case, the
elliptic integrals reduce to elementary transcendental functions, see the formulas
below.

(a) Letus first consider E from the qualitative viewpoint and determine the singular
support of E.
If either 0 < a,b < 1 or 1 < a, b, then the slowness surface

E={(r.§eR 7’ =il ore® = al§] + &) + b3}
is a non-singular projective variety and hence, by (4.2.5),

sing suppE = W(P(d),N) = E* N Hy

- {(t,x) eRY = lforr= /1 +d) + %x%}.

On the other hand, if e.g., 0 < @ < 1 and b > 1, then E is singular in the
intersection points of the two hypersurfaces 2 = |£|? and t> = a(£} + £7) + bé3,
i.e., on the set

1—a

M= {(z.6) eR% o = (¢ and (& + £D);— = €3].
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In order to determine the localizations P, &) in the directions (t,§) € M, let us
observe first, that, generally,

(P1-P2)s = (P1)g - (P2)s and  mg(Py - P2) = mg(P1) + mg(P2),

for arbitrary polynomials Py, P, in n variables and £ € R”, cf. Atiyah, Bott, and
Garding [5], (3.40/41), p. 136. Therefore, setting P, (7, £) = 12 — |£|?, P2(1.§) =
12 —a(£} + £2) — b&; and taking (t,§) € M, we obtain
Pisy(m) = P e () - (P)we(m) = [n" - (VP)(.©)] - [n" - (VP2)(1.§)]
= 4(tno — &im — &2m2 — &3m3) (Tno — a§im — aganz — bé3n)

and hence
P(r)(—i0) = —4(10,—£101 —£202—§303) (10, —ak101 —akr0, —b&303).  (4.2.6)

The set C of conical refraction is therefore given by

C= J K@Puy(=id).N)
(x.£)eM\{0}

- {A(r, —E) + (1 = A)(1, —at1, —aks — bE3); A € [0,1], (1,6) € M, T > 0}.

If we consider the surface {x € R?; (1,x) € singsuppE}, it consists of the
characteristic surface

2 2
+x2+ﬁ:1}’

2
X*:{xER3; x| = 1or 1—22
a b

which is the union of the unit sphere and an intersecting ellipsoid, as well as the two
frusta {x € R?®; (1,x) € C}, which lie on the convex envelope of X*, see the broken
lines in Fig. 4.1, right part. These frusta are contained in circular cones around the

x3-axis with vertices in the points (0,0, £./(b —a)/(1 —a)).
Hence (4.2.5) implies that the singular support of E is given by
sing suppE = W(P(d),N) = (E*NHy)UC
= {(t,x) eR* 1=|xlort= ,/(—ll(x% +x%) + %x%
or (1,x) = (|§],A81 + (1 = Mag1, A& + (1 — Vakr, A&3 + (1 - M)bé3),
0<A=<LEeR.EOG-1=E +6)1-a).

This equation also holds in the case wherea > 1 and 0 < b < 1.



4.2 Singularities of Fundamental Solutions of Quasihyperbolic Operators 277

X={£cR% (1£) e 5} X UfxeR% (1x) e C)
15 15
1 1
05" 05
W 0f >0
-05} -05
-1 -1
-15 -15
45 -1 05 0 05 1 15 215 15
£y

Fig. 4.1 Slowness surface and wavefront surface for (8> — A3)(9? — %Az — 23%)

(b) We eventually derive an explicit representation of E. By applying the method of
parameter integration according to Proposition 3.2.1, we obtain E = fol E, dA,
where E) is the forward fundamental solution of

[02 — (A + a(l — 1)) Ay — (A + (1= 1))3]" = (P1(d) + AP>(3))’,

wherein P (0) = 97 — alA, — bd% and P5(0) = (a — 1)Ay + (b — 1)03.

By formula (2.3.12) and a linear substitution, we have

E), = ! Y([ IX/IZ + 'x% )
P St a(— VAT b0 =h) Atal—2)  axb0-n )
where X' = (x1, x2), i.e.,
]2 S
1 1 Y<t_ \/aﬂ(l—a) + b-H(Sl—b))

= 1.
E=s2 ), (a+ A(1—a))/b+ A(1—b)

Let us first investigate the case when 0 < a < b < 1. Then conical refraction
does not appear, see (a). From Gradshteyn and Ryzhik [113], Eq. 2.246, we infer

E= WS;ﬂ'xD[F(AZ(z, x)) — F(A1(1,x))], 4.2.7)
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the function

F) = 4.2.8)

2 ” (\/b—i—k(l—b)x/l—a—«/b—a)
V(A —a)b—a) & va+A(l—a)

being a primitive of the function

1

(a+ 1A —a)/b+A(1-0)

and
Ix/ |2 2

X3
a+A(l—a) b—}—)&(l—b)}'

min

Aa(t,x) = { } {A c[0.1]; 2>

max

In this case, the set supp E\sing supp E consists of two connectivity components:

In the inner cone
— 4. 1,724 1,2
Ml—{(t,x)eR,t>,/a|x| +bx3},

we have A; = 0, A, = 1, and hence E is constant in M| and given by

£ 1 | ((«/1—a—\/b—a)\/5)
= [¢) .

M e JA—ab—-a) Vb—ab—b—a

On the other hand, in the region M, = {(t,x) € R*; t > |x|} \ M|, we have 0 <

A1(t,x) < 1and A, = 1. More precisely, A = A,(z, x) is the unique solution in [0, 1]
of the equation

(4.2.9)

W2 23

Tatrd—a)  b+Al-b)

(4.2.10)

Hence, for (¢, x) € M>,

E(t,x) =

1 log(\/a—i-/\l(t,x)(l—a)—(«/l—a—\/b—a))
47 /(1 = a)(b—a) Vb+ a0 —b)VT—a—~b—a )

4.2.11)

(c) Eventually, let us investigate a case in which conical refraction occurs.
We assume that 0 < a < 1 and b > 1. Since (1 —a)(b — a) is again positive, the
formulas (4.2.7) and (4.2.8) are still valid. However, the set supp E\ sing supp E
splits into six connected components. As before, in the innermost cone

|x’|2+x_§}
b s

M, = {(t,x) €R* 1> |x]and 2 >
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E is constant and given by the same constant as in (4.2.9). In the region

Y12 2
M, = {(r,x) €R% 1> x| and? < X1 4 % }
a
we have, as before, A, = 1 and E is given by formula (4.2.11) as in case (b).
In the two regions
I /|2 2
Mz {(tx)€R40<t<|x|andt2> band :|:x3>0}

we obtain that A; = 0 and A, (¢, x) is the unique solution in [0, 1] of the equation
in (4.2.10). This furnishes, for (f,x) € M3+ U M; _, the following:

E(t,x) =

1 o (\/b—l—)\z(tx)(l—b)«/l—a—db—a]f)
47 /(1 =a)(b—a) Va+ (I —a)-(Vb—ab—~b—a))
Finally, suppose that (z, x) belongs to the regions

| |2 2

X
Myt = {(t,x) e suppE; t < |x]and * < —— + % and + x3 > 0},

i.e., (t,x) is in the exterior of both of the cones ¢ > |x| and t > (|¥'|*/a + x3/b)!/?,
but inside the region bounded by the frustum C of conical refraction, see (a). Then
the Eq. (4.2.10) has two zeroes A (¢, x) < A,(t,x) inside the interval [0, 1] and

1
4 /(1 —a)(b —a)X
o (\/b+lz(tx)(1—b)\/1—a—«/b—a \/a—i-kl(tx)(l—a))
Vb + () (1 =b)VT—a—vb—a +Ja+ l(t,x)(1—a)

B0 = < [FO(6) — FO4(2)] =

holds in My 4. O

Let us next generalize slightly Proposition 4.2.5 from hyperbolic to quasihyper-
bolic operators. This will allow to determine the singularities of the fundamental
solutions of Rayleigh’s operator in Eq.(2.4.16) as well as of the thermoelastic
operator in Eq.(4.1.21). For this purpose, we shall accommodate Thm. 10.2.11,
p- 23, in Hormander [138] to our needs. We first adopt the notations in Hérmander
[138], Section 10.2.
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Definition 4.2.8 Let P(n) be a polynomial in R".

(1) We denote by L(P) the set of all its localizations in the following sense:

P

o0
L(P) = By where By = { ;
(P)= () By ¥ = el

N=1

§eR". [g] = N/,

(wP)() = P(—§), CI° = ) 1(*Q)©O)

n
@ €Ny

and the closure By of By is taken in the finite dimensional vector space of all
polynomials of degree smaller or equal to that of P.

(2) The lineality A(P) is the set {§ € R"; ;P = P}. We denote by A(P)L its
orthogonal complement, i.e.,

AP)t =1{£eR"; Vne AP): ETnp=0}.

Note that L(P) contains the set L;(P) = {P¢/||P|; § € R"\ {0}} of normalized
localizations at infinity of P in specific directions (see Definition 4.2.1). In general,

L(P) is strictly larger than L;(P). For example, if P(n) = n —n3 — --+ — 1>
corresponds to the Schrodinger operator, then L;(P) = {1,—1}, but L(P) =
{(£1,0" - niw € S ' w, = 0}. In fact, if ® € S"! with w; = 0 and
& = (2, —tw,, ..., —tw,), then

Pn+8&) _ . PO)+20poy + -+ mwn) _ 7

lim ———— = lim - 1.
i=oo |[P(n +&)|| o0 VAn =3 + 472

Also note that A(w” - 7)* = R-w for v € R\ {0}.

In the following proposition, which goes back to Ortner and Wagner [209],
Prop.4, p. 535, we show that, under an additional condition, the union of the
linear subspaces A(Q)*, where Q runs through the set L(P) of localizations of
P, yields an upper bound for the singular support of the fundamental solution of
a quasihyperbolic operator P(—id).

Proposition 4.2.9 Suppose that P(—i90) is a quasihyperbolic operator in the direc-
tion N, i.e., P(n —ioN) # O for all n € R" and 0 > 0y. Assume further that
P(n + ¢ —ioN) # 0 for some 0 > 0y, all real n and all ¢ in a ball Z C C"
with center in 0, and let E denote the fundamental solution of P(—id) according to
Proposition 2.4.13. Then

singsuppE C U A(Q)* .
Q€L(P)
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Proof Let us consider the shifted polynomial P;(n) = P(n — ioN) and take Q €
L(Py). If & is a sequence with |§| — oo such that

. Pi(n—&)
=1 _—
Q00 = e el

then all the coefficients of the polynomial n + P;(n — &) converge when divided
by the factor ||zg P ||. Hence it follows that

P —
0(n+ioN) = lim P =)
k=00 ||zg P1|

holds in the Banach space of polynomials of degree at most deg P considered in
Definition 4.2.8 (1). Moreover, the sequences of positive numbers ||t P1 ||/ | z¢, Pl
and ||z P||/ ||z, P1]| are bounded due to Taylor’s formula (see Hormander [138],
Eq. (10.1.8), p. 5), and hence we conclude, passing to an appropriate subsequence of
&k, that a positive multiple of Q(n + ioN) belongs to L(P). Since A(Q(n +ioN)) =
A(Q), we therefore obtain

U a@t= J s

Q€L(P) Q€L(Py)

Furthermore, the fundamental solution of P;(—id) according to Proposi-
tion 2.4.13 is given by e °*VE, which has the same singular support as E. Therefore,
instead of P, we may consider the shifted polynomial P, and hence we can assume
from the outset that oy = 0. But in this case, E coincides with the fundamental
solution constructed in Hormander [139], Eq.(7.3.22), p. 190, since, with the
notations adopted there, we have

P(—£—0) $(—§)
RN A0 = —>2
sy CPEFO.HRO =T

in virtue of Hérmander [139], Eq. (7.3.19), p. 189, and of the assumption P(§ 4+ ) #
0 for £ € R", { € Z. Note that ® can be chosen so as to have its support contained
in the ball Z, cf. Hérmander [139], Lemma 7.3.12, (ii), p. 190. Finally, the proof is
completed by invoking Hérmander [138], Thm. 10.2.11, p. 23. O

Let us note that the condition
do>00:VCe€Z:VneR":P(n+¢—ioN) # 0, 4.2.12)

which is assumed in Proposition 4.2.9, is always valid if P(—id) is a hyperbolic
operator (in the direction N), cf. Hormander [138], Thm. 12.4.4, p. 114, but fails to
be true for every quasihyperbolic operator. An example for this is provided by the
Schrodinger operator P(—id) = d; —iA,, N = (1,0,...,0).
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Example 4.2.10 Let us apply now Propositions 4.2.3 and 4.2.9 in order to determine
the singular support of the fundamental solution F of Rayleigh’s operator

R(—id) = P() = (a0 — 0%)0? — y?0?, o,y >0,
see Examples 2.4.14, 4.1.9. Of course, sing supp F’ could also be read off from the
explicit formula in (4.1.14).
(a) If weset N = (1,0) and R(7, ) = (a?7% — n*)n* + y*72, then R(10)(z, ) =
o?n* +y? and R(1 14)(t, n) = 20 (ot F ). Hence, with notations as in (4.2.5),
sing supp F D supp E(—a*3* 4+ y*,N) U supp E(«d; F 0, N)
={(t.x) eR*t=0o0rt=alx|}

by Proposition 4.2.3.
(b) Let us first note that the condition (4.2.12) is satisfied, i.e.,

Rt 4+t —ion+8)#0 for (r,n) €R* (e C (| <C. 0>0

and appropriate positive constants C, 0. This is a consequence of the reasoning
in Example 4.1.9 (a) if we set p; = i(t + {1 —i0), p2 = i(n + {2).

Let us next determine L(R). If Q € L(R), i.e., if Q = lim tzR/| %R|| for § € R?
with |€] — oo, then we can assume that £/|£| converges to @ = (a,b) € S'.
If a?a® # b*> and b # 0, i.e., if the principal part of R does not vanish in , then Q
is one of the constants 41 and A(Q)* = {0}.

Furthermore, if @a = b, then ||7R|| grows at least as |§|* and Q belongs to the
vector space of polynomials spanned by 1 and R,,. Hence

AQ)r CR-(£a,1) = {(t,x) € R%: 1 = +ax}.

Finally, if » = 0 and & remains bounded, then ||z¢R|| grows as a multiple of &}
and

0=C(*(1-C)*+7y?). €1 >0 CeR

On the other hand, for |&,| — oo and &, /&, — 0, we have Q = 1.
Therefore, by Proposition 4.2.9,

singsupp F C {(t,x) e R* t =0or¢ = ax}.
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Combining this estimate with the one in (a) we obtain the following precise
description of the singular support of F :

singsuppF = {(t,.x) e R, r =0 orr = a|x|}.

Hence the singular support of F does not depend on the lower order term —)/23,2.
O

Example 4.2.11 Similarly, let us yet determine from Propositions 4.2.3 and 4.2.9
the singular support of the fundamental solution E. of the thermoelastic operator
P.(0) in (4.1.21).

First we note that condition (4.2.12) is satisfied, i.e., if R(—id) = P¢(d) with

R(t,n) = —it> = *|n)* + (1 + o)it|n|* + n]*, (z.n) € R,
then
R(t4+up—io,n+u) #0 for (z,n) € R*, (uo,u) € C*, |(uo,u)| < C, 0 > oy.

This follows from the reasoning in Example 4.1.11 (b) if we set { = o + i(t + up),
Z2=— Z;l(nj +u)% ¥ = —Imu.

Similarly as in Example 4.2.10, the set L(R) is determined by the localizations
R, where © = (wp, ®') € S? fulfills |wg| = |&’|. In fact, if O = lim ©zR/||%:R|
for £ € R* with |§] — oo and £/|§] — o, then Q is constant if |wy| # ||
and else contained in the vector space of polynomials spanned by 1 and R,,. Hence
Propositions 4.2.3 and 4.2.9 imply that

singsupp E. = {(t,x) € R*; 1 = |x|}.

4.3 Singularities of Fundamental Matrices of Hyperbolic
Systems

If one tries to transfer the singularity theory for hyperbolic scalar operators
in Sect. 4.2 to systems, one encounters the fact that some singularities of the
forward fundamental solution E(P(—id), N) of the determinant operator P(—id) =
det A(—id) can disappear in the fundamental matrix E(A(—id), N) of A(—id).

Let us illustrate this phenomenon by the example of the simple diagonal system

82— A, 0

A(—1d) =
( ) 0 3? — LIAQ — bB%

, O<a<l1,b>1. 4.3.1)
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For N = (1,0,0,0), we have

§(t— |x|) 0
Ls(i— L3+ + 43)

a

Hence

sing suppEy = {(t,x) eRY r=|xlort= \/%(x% +x3) + %xg},

and this set coincides with the part £* N Hy of the characteristic surface E* already
considered in Example 4.2.7.

On the other hand, we have constructed the forward fundamental solution Ep =
E(P(—i0), N) of

P(—id) = detA(—id) = (37 — A3)(0? — aA, — bd3)

in Example 4.2.7, and we have noted that its singular support consists of
sing supp E4 and, additionally, of the two frusta C of conical refraction, i.e.,
sing suppEp = (E* N Hy) U C, where

C = {(t,x) = (|l A& + (1 = Mgy, A& + (1 — Makr, A + (1 — A)bE3):;
EeRL0<A<LEDG-1)=E+E)1-a).

A physically more relevant example of this phenomenon of extinction of
singularities will be observed in Example 4.3.10 below for the system of elastic
waves in hexagonal media.

Similarly to Definition 4.2.1, let us now define localizations of [ x [ matrices A(n)
of polynomials.

Definition 4.3.1 For an [ x [ matrix A(n) of polynomials in R"” and £ € R”, the
localization Ag¢(n) is the lowest non-vanishing coefficient with respect to ¢ in the
MacLaurin series of "A(n + %), m = degA > 0. Thus "A(n + %) = A:(n) +
O(#*1) fort — 0, and p = mg(A) is called the multiplicity of £ with respect to A.

In the next lemma, we establish a connection between the localizations of A and
of its determinant P.

Lemma 4.3.2 Let A be a square matrix of polynomials on R", P = detA, and
& € R". Then the following holds:

(i) If detAg does not vanish identically, then P = detAg;
(i) if (Ag)™ does not vanish identically, then (A*)s = (Ag)™.
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Proof Let p = mg(A) and A be of size [ x [ and of degree m. Then
" PAM + &) = Ae(n) + O(1) fort — 0,
and hence
APy + §) = det(!"PA( + £)) = detAg () + O(t) fort — 0.

This shows that Py = detAg if detA; does not vanish identically.
The second assertion follows analogously from

AP AN (4 £y — (7 PA( + £) = A" + 0()  fort — 0.

Example 4.3.3 Let us investigate the localizations of the matrix
A(n) = (?70 771) with detA = P = n% - n%.
n1 Mo

If §2 # &2, then Ay = A(§) € R¥? and Py = P(§) = detA¢ in accordance with
Lemma 4.3.2. Similarly, for £ = 0, A = A and P¢ = P = detA;.

If, however, § # 0 and & = &), then Az = A(§) € R¥? fulfills detA; = 0
whereas Pe = 2(§ono — &1m1) is a first-order polynomial. Note that this case is
excluded in Lemma 4.3.2. O

In the following proposition, we shall give an estimate of sing supp E(A(—id), N)
from below for hyperbolic systems A(—id). This “Localization Theorem” general-
izes Atiyah, Bott, and Garding [5], 4.10, p. 144 (see Proposition 4.2.3) from the
scalar case to the matrix case. It was stated first without proof in Esser [70], p. 191,
last line, and formulated and proved in Ortner and Wagner [221], Prop. 1, p. 1243.

Proposition 4.3.4 Let A be an | x | matrix of polynomials on R" such that A(—id)
is hyperbolic in the direction N € R"\ {0} and set P = detA. Then, for 1 <j, k <1,

U supp[(A;‘,fl)g (—i0)E(P¢(—id), N)] C sing supp E(A(—id), N)j.
£€R"\{0}

Proof Let1 <j,k <1, and g, r € Ny such that

“AR( + §) = (A)e(n) + O) and P+ £) = Pe() + O(1) fort — 0.
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According to Proposition 2.4.13, E(A(—id),N)x = A;‘kd —id)E(P(—id), N).
Furthermore, the operators P(—id + %) are hyperbolic, and, due to

P(—id + £)e S/ E(P(—id), N) = e 5" P(~id)E(P(—id), N) = 6,
the uniqueness of the fundamental solution of P(—id+ %) with supportin Hy implies
E(P(—id + £),N) = e #/"E(P(-id), N)
and E(f' P(—id + £),N) = e /' E(P(~id), N).
This furnishes the following limit relation in D’ (R") :
lim (e T E(A(—id), N)j = lim #7 e AN (—i9) E(P(—i0), N)
— . t— -
= lim A3 (—i0 + Y[ e S E(P(—id), N)]
= lim A% (i + YEWP(—id + £),N)
= (A}): (—i0)E(P;(—id), N). (4.3.2)
(For Eq. (4.3.2), we used that
lim E(¢' P(—id + £),N) = lim " F (" P(n + £ —ioN)™")
t—0 ¢ t—0 n t
= "™ F, 1 (Pe(n—ioN)™") = E(P¢(—id),N), o > o0,
holds in D’ (R") as a consequence of (2.4.13), the uniform estimate (with respect to
t) of |7"P(n + % — ioN)™!| by a polynomial in 7 (see Atiyah, Bott, and Gérding
[5], Lemma 3.51, p. 137), and Lebesgue’s theorem on dominated convergence.)

Finally, we observe that

lim 1" e TS E(A(—10), N)j = 0
11—

ol s
represented by a function f € C*°(U), and ¢ - f € D(R") for ¢ € D(U) implies

holds in D' (U) if U = R" \ sing supp E(A(—id), N)j. (In fact, E(A(—ia),N)j

}i_%(dh 11T 1 (x)) = }21(1) T F(p f)(%) =0

due to F(¢ - f) € S.) Hence, by (4.3.2), the distribution (A]"i‘,f)g(—ia)E(Pg (—i0), N)
vanishes on U. This completes the proof. O

Clearly, the singular support of the fundamental matrix E(A(—id), N) is bounded
by that of the fundamental solution E(P(—id), N) of its determinant P = detA. We
formulate this fact in the following proposition.
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Proposition 4.3.5 Let A be an | x | matrix of polynomials on R" such that A(—id)
is hyperbolic in the direction N € R" \ {0} and set P = detA. Then

1
sing supp E(A(—id),N) = U sing supp E(A(—id), N)j C singsupp E(P(—id), N).
k=1

Proof Due to Proposition 2.4.13, we have
E(A(=id). N)j = A (—id)E(P(—id), N).
and hence, obviously,
sing supp E(A(—i0), N);x C sing supp E(P(—id),N)

forl <j, k<L O

For strictly hyperbolic polynomials P, the following corollary to Propo-
sitions 4.3.4, 4.3.5 shows that the singular supports of E(A(—id), N) and of
E(P(—id), N) coincide, at least if P and A*! are homogeneous. Note the contrast to
the introductory example in Sect. 4.3 where P was not strictly hyperbolic.

Corollary 4.3.6 Let A(—id) be an [ x | matrix of differential operators such that
each entry of A is homogeneous and that P(—id) = detA(—id) is homogeneous
and strictly hyperbolic in the direction N € R" \ {0}, see Definition 4.2.6. Then

sing supp E(A(—id), N) = sing supp E(P(—id), N).

Proof

(a) By Proposition 4.3.5, singsuppE(A(—id),N) is a subset of singsupp
E(P(—id), N). On the other hand, by the strict hyperbolicity of P(—id), we
have

singsupp E(P(—id).N) = | J supp E(P¢(—id).N) = E* N Hy,

£ERM\{0}
P(§)=0

see (4.2.5). Proposition 4.3.4 implies that

M= )  supp[(A}):(—i0)E(P(~id). N)]

§ER"\{0}P(§)=0

is contained in sing supp E(A(—id), N). Therefore, the assertion in Corollary 4.3.6
is a consequence of M = E* N Hy, and this follows if we show that, for each
& € R"\ {0} with P(§) = 0, there exist 1 < j, k < [ such that (A;»l,fl)g is a non-
vanishing constant.
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(b) Let us assume to the contrary that £ € R" \ {0} with P(§) = 0 and A;‘kd either
vanishes or (A]"i‘,f)g is of degree > 1 for each 1 < j, k < [. Then, in particular,
A¥(£) = 0. Since P is strictly hyperbolic and homogeneous, there exists 1 <
J < nsuch that 9;P(§) # 0. But this yields a contradiction due to

I+ (9;P)(§) = (A - A*)(§) = (3,A)(§) - A™(§) + A(§) - (3,4™)(§)
= A§) (A" ()

and 0 # (3;P(£))' = detA(£) - det((3,4%)(£)) = 0. O

Example 4.3.7 Letus illustrate our concepts by considering the 2x2 system leading
to Timoshenko’s beam operator, which was treated in Examples 3.5.4 and 4.1.6.

According to Boley and Chao [19], p. 579, Graff [114], pp. 181183, in particular
Egs. (3.4.11/3.4.12), and Timoshenko and Young [269], pp. 330, 331, the transverse
vibrations of a homogeneous bar can be described by the system

pAd? — KkAGD? KAGO, u q 433)
KAGd,  —pld? +EI* —kAG | \V) \0 "

where u(t, x) denotes the displacement of the bar at the coordinate x and at time ¢,
and ¥ (¢, x) is the slope of the deflection curve diminished by the angle of shear at
the neutral axis. The parameters A, I, p, E, G, and k stand for the cross-section area,
the moment of inertia, the mass density, Young’s modulus, the shear modulus, and
Timoshenko’s shear coefficient, respectively.

With the abbreviations

the system (4.3.3) takes the form
C2
b*07 — 03 —370x (KAGM) _ (q)
3, a2 82 32 b_z —EIYy 0

PP -2 -5,
9 AP —+ S

Hence, if we set
A(—i0,, —10,) =

then P(—id) = det A(—id) coincides with the Timoshenko beam operator

T(3) = (a®0 — ) (b9 — 8) + 202
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Its forward fundamental solution was derived in Example 4.1.6, see Eqgs. (4.1.7/
4.1.8).

Fora # b, i.e., E # kG, P(—id) = T(0) is strictly hyperbolic. Note, however,
that P is not homogeneous and thus Corollary 4.3.6 cannot be applied as it stands.
But still the method in the proof of Corollary 4.3.6 works almost without change:
We just have to show that (A?,f)(z,g) is a non-vanishing constant for (z, £) € R?\ {0}
satisfying P4(7, &) = 0 and suitable j, k. This is obvious since P4(z, §) = 0 implies
£ = +ar or § = £bt and thus (A3)) ;) = —i€ # 0 due toa > 0,b > 0. Hence
we obtain from (4.2.5) that

sing supp E(A(—id), N) = sing supp E(P(—id), N)
={(t.x) € R%: t = alx| or t = b|x|},

where N = (1,0). O

Example 4.3.8 Let us determine similarly as in Example 4.3.7 the singular support
of the response caused by an instantaneous point load exciting transverse vibrations
in isotropic plates according to the theory of Ya.S. Uflyand and R.D. Mindlin.

The three “displacement components” u, o, ¢, obey the system

A(—i0)(u, oy, o) = (g,0,0)" (4.3.4)

of linear partial differential equations, where

hpd* —al, ady ady
A(=id) = —ad,  pJo? —DP —DF0 +a -D29.9,
—ad, —DX 9,9, pJ3} — D32 — D159 + a

and p, h, D, v, g denote mass density, thickness, flexural rigidity, Poisson’s ratio, and
the transverse load, respectively, see Uflyand [278], (2.5), p. 291, Mindlin [180],
Eq. (16), p. 33. Furthermore, we have J = h*/12, D = Eh*/(12(1 — v?)) and we
have set a = %p,h where p characterizes some elastic property of the plate.

As above, we define P(—id) = detA(—id) and N = (1,0, 0) and obtain for the
solution u of (4.3.4) with respect to g = §(¢, x, y) the following:

u 5 8
U=|a | =EA(=id).N)* | 0| = A—id)E(P(—id),N) * | 0
ay 0 0
A (=id)1)
= | A4(=id),; | E(P(=id), N). (4.3.5)
AM(—id)3
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An algebraic calculation yields

V
Ay +a

AY(=id)y, = (092 — DA, + a)W(D), W(D) = pJd> — pl=
AY(=id)o1 = ad W (D), AY(=id)31 = ad,W(d),
and hence
P(—i0) = detA(—id) = (hpd? —aA,)A™(=id)1; + ad, A (=id)a1 + ad,A*(—id)3
= W(@)[(hpd; — als)(pJ3] — DA + a) + a*As]
= aW()[(Ar — “22) (DA — pJd?) + phd?]. (4.3.6)

Note that the limit case for J — 0,a — oo of the second factor M(d) in (4.3.6)
coincides with the Lagrange-Germain plate operator phd? + DA3. For the operator
M () in the general case, see Uflyand [278] (2.7), p. 291; Mindlin [180], Eq. (37),
p. 36; [181], p. 320, and also compare the remark at the end of Example 3.5.4.

If we insert the expression for P(—id) in (4.3.6) into the representation of U
in (4.3.5), we conclude that

u LR —L2A +1
U=|o|= 9, E(M(9),N). 4.3.7)
&y dy

Employing (4.2.5), we then infer from (4.3.7) that

[pJ [h
sing supp U = sing supp E(M(9),N) = {(t,x) eR: 1= %|x| ort = —p|x|}
a

D E
if M(9) is strictly hyperbolic, i.e., if the velocities v; = ,/— = ,/————— and
oJ p(1—v?)

2
vy = hi - 3—“ are different (cf. Uflyand [278], (2.7), p. 291). O
p\ 3

Example 4.3.9 Let us illustrate now the application of Propositions 4.3.4, 4.3.5 by
determining the singular support of the fundamental matrix of the system of elastic
waves in cubic media. A treatment by this method was given for the first time in
Ortner and Wagner [221], Section 4.3, p. 1256.

This system of differential operators reads as A(—id) = —33*> + B(V) where

§ 00
BE) = cléPL+bE-E"—(b—a)| 0 & 0 |,
00§
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see Example 2.1.4 (c). Hence A(—id) consists of second-order homogeneous
operators.

According to Ortner and Wagner [221], Prop. 2, p. 1253, the system A(—id) is
hyperbolic in the direction N = (1, 0, 0, 0) if and only if

¢>0, a+c>0 and —1(a+3c)<b<a+2. (43.8)

In the following, we shall assume that the inequalities in (4.3.8) are satisfied.

(a) Let us determine first sing supp E(P(—id), N) where P(z,§) = detA(z, ) and
N =(1,0,0,0).

The slowness surface & = {(7.§) € R*; P(z, &) = 0} is given geometrically by
the vectors (z, £) for which det(z2l; — B(£)) = 0, i.e., where 72 is an eigenvalue
of the matrix B(£). Clearly, if B(§) has three different non-zero eigenvalues, then
(7,&) is a non-singular point on E. Therefore, singular points (z,§) € E arise if
two eigenvalues coincide, i.e., if A(z, ) is of rank at most one, or if T = 0. In the
following, we suppose that b # 0, ¢ > 0 and a®> # b>.

If A(t,€&) has rank one, then all the rows of the matrix A(t, &) must be

proportional, and this yields the following fourteen cases:

(a)gizgjzo,gkzi%, (k= {1,2,3),
22 e ?
B =G=t=——.

In order to determine sing supp E(P(—id), N), we use the inclusion relations
in (4.2.5), which in this case will be seen to be equalities. In fact, we will show
that

supp E(P(r¢)(=i9), N) = K(P(r£(=10).N)

holds for all localizations P ¢ (—id), and hence

sing supp E(P(—id), N) = U supp E(P(r ¢)(—19), N). (4.3.9)
(z.£)eR*\{0}

If (z, §) is a non-singular point on &, then, as always, supp E(P ¢ (—id), N) is a
half-ray in the subspace R - (3. P, VP)(t, £) of the characteristic surface E*.

In order to calculate the localizations in the singular points of P (see (), (8)
above), we use the explicit formula for P according to (2.1.11):

3 3
Pr.&) =[[(> = cle + b —a)&)) —b > T[> - cleP + b — 0)&).

j=1 =1 kA
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Now, if (7, §) is one of the singular points of type (@), i.e., if (7,§) = (1 =,0,0),
say, then

4a
Py (Mo, 01, M2, 1m3) = —7(770 —Jem)

Hence supp E(P(;£)(—id), N) = K(P(r)(—i0), N) yields a half-ray on E* as in the
non-singular case.
Let us finally investigate the singular points of type (8), i.e., let us assume that

(r,§) = (1, 0,0, ), say, where « = 1/+/a + 3¢ — b. Due to

i 00
A(m) =A(mo.n) = (g — 'V —by' -y + (b—a)| 0 73 0 |,
0 0nm
we obtain
A+ 57 (x.§) = sT7A(T.§) +57'D(n) + A1)
Here A(t,£) = —ba’e - e, e = (1,1, 1), is a rank-one matrix. Furthermore D =

(djt)1<jk<3 With
djk = —bOl(T]j + ) forj # k and dji = 2(7]0 —aun —co Z ?’}k).
k=1
Therefore,
S'P(n+ 571 (. ) = s° det[A(n + 57 (7, 6))]
= —s’ba’e’ - D)™ -e + O(s’), s— 0.
Thus
33
Pgy(n) = —ba?e” - D()™ - e = —ba® Y )" D(D.
j=1 k=1
Setting o = e’ -/ = n1 + N2 + 13 we obtain
303
Z Z D(n);‘f = 12(no—cao)* —8(a—b)ao (1o —cao) +4(a—b)*a? Z nink;
j=1 k=1 1<j<k<3
since )i p<3 Mk = 1(0? —|n'|*) and @® = 1/(a + 3¢ — b), this yields
2

i iD(n i = 12(770 - %)2 —2(a— b)2a2(|;7’|2 - ‘%)

j=1 k=1
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i

T.x, then ;< =

If y1,y2, y3 is an orthogonal coordinate system with y; = % e

ay3
\%(81 + 3 + d3) and hence
Pl (—id) = ba2[12<8, — Lag)z —2(a—b)2* (@7 + a’;)], g2
J3a T Oy
which has the fundamental solution (with respect to N = (1,0, 0, 0))
E(P(15)(—i0),N) ! lofa bl yOOT +) ( v )
(.) —10), = 3 . . V3 ).
4rba’|a — b \/az(a—b)ztz —6(y% +y%) V3a
(4.3.10)
Therefore, the equality (4.3.9) finally yields
sing supp E(P(—id),N) = (E*NHy) U C (4.3.11)
where
— blt
C= {(t,x) eRY 1= a(tx;Extx3), V32— (£x £ x0 £ x3)% < %}.

(The characteristic surface 2* has been defined in Definition 4.2.6.)

(b) Let us consider now the singular support of the fundamental matrix
E(A(—id), N). According to Proposition 4.3.5 and (4.3.11),

sing supp E(A(—id),N) C (E* N Hy) UC,
and we will show that this inclusion is in fact an equality. For this respect we

will employ Proposition 4.3.4. Let us therefore first determine the adjoint matrix
A%(z, £). We obtain

AN (1, E) = (2 — cl§ — ag)) (2 — cl§ — a]) — VEPEL,
A (1. 8) = bEE(T” — cl€]* — (a— b)E)).
where {i,], k} = {1,2,3}.

If now (t, &) is a non-singular point on the slowness surface &, i.e., P(7,§) = 0
and { = (3. P, VP)(z,§) # 0, then { € E*, P (1) = 1" - ¢ and

supp E(P(r£)(—19). N) = {Asign({o)¢: A = 0}
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Since (z, &) is a non-singular point on E, the matrix A(z, §) has three different
eigenvalues, and AM(z, &) does not vanish. Therefore,

supp E(P(5)(—i0), N) = | _J supp((A}‘f)u,s)(—iB)E(Pu,s) (—iB),N))
J.ke{1,2,3}

is contained in sing supp E(A(—id), N). Hence E* N Hy C sing supp E(A(—id), N).
Let us finally show that the set C of conical refraction is also contained in the
singular support of the fundamental matrix E(A(—id), N).
If, as above, (7,£) = (1, o, «, @) is one of the singular points on E of type (8),
then E(P(, ) (—id), N) is as in (4.3.10); let us calculate the localization (A%3) .. (1),
n = (mo.1") € R* From

A () = byma(ng — c|n'|> — (a — b)13)

we obtain

T 2[90[2 —
Ai‘@zl(ﬁo +on+ é) =~ (0 —cao —(a=b)ans) + 0, s =0,

where 0 = 1 + 12 + n3. This implies

(A9 we)(n) = 2ba* (g — cao — (a — b)ans).

We conclude that the support of E(P;¢)(—i0), N) coincides with that of
(A1) (r.6) (1) E(P(r (i) N).

(Note that (A‘i‘g)(z,s) (—i8)8(y3 + /(+/3)) vanishes and therefore the distribution
(A (r.6)(—10)E(P (1 £)(—id), N) is, essentially, a first-order derivative of the forward
fundamental solution of a wave operator in two space dimensions and thus has the
support K (P, £ (—id), N).) Hence, by Proposition 4.3.4,

C= |J suppE(Pqg(id).N).
(7.£) singular
point of type (8)

is contained in sing supp E(A(—id), N). O

Example 4.3.10 As we have already hinted at in the beginning of this section,
a physically relevant example of the non-occurrence of conical refraction in the
fundamental matrix (in contrast to the fundamental solution of its determinant)
appears for elastic waves in hexagonal media. This non-occurrence of conical
refraction was conjectured first in Payton [226], p. 67, in contrast to a “presage”
in Musgrave [187], p. 579, and proven in Ortner and Wagner [220], Prop. 4, p. 424,
and, differently, in Ortner and Wagner [221], Section 3.3, p. 1252.
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According to Example 2.1.4 (d), the propagation of such waves is described by
the matrix A(—id) = —130> + B(V), where B is given by

@€l +as€d +asE; (a1 —aEih az1&
B() = (a1 —as)éi&r  asé] + ar1&3 + asé az6r83 ,
az& azér&3 as(§} + &) + 283

compare (2.1.13). According to Ortner and Wagner [220], Prop. 2, p. 419, the system
A(—10) is hyperbolic if and only if the elastic constants fulfill the conditions

a;>0,a;,>0,a4>0,as >0, and as + Jaya; > |as|. 4.3.12)

We assume, moreover, that the inequalities in (4.3.12) are strict, which is equivalent
to detA(0, £) # 0 for & € R*\ {0}, and which, physically, amounts to the positivity
of the propagation speeds (see Payton [226], p. 5).

As in the prior Example 4.3.9, we subdivide the investigation into two parts:
In (a) we calculate sing supp E(P(—id),N) for P = detA, and in (b) we
deduce therefrom the shape of sing supp E(A(—id),N). As before, we set
N = (1,0,0,0).

(a) The determinant P(7, &) = detA(z, §) splits into two factors: P = W, - R, where
Wi(r.§) = ° —aup” —ast3, p*=§& + 6,

corresponds to a wave operator, and

R(z,§) = " =t (a1p” + @263 + as|€]?) + arasp* + (a1a2 — a3 + a3) p°€3 + arastsy

corresponds to a homogeneous hyperbolic fourth-order operator, which, in general
is irreducible, cf. Example 2.1.4 (d).

The slowness surface E = P~!(0) becomes singular in the points (z, £) where
the surfaces W; = 0 and R = 0 intersect. This occurs on the &3-axis, i.e., if (z, &) is a
multiple of (1, 0,0, £1/,/as). Furthermore, depending on the values of ay, ..., as,
& can become singular along “ridge points” on circular cones, compare Fig. 4.2, left
side, for titanium boride (a hexagonal medium for which the values of ay, . .., a5 can
be found in Ortner and Wagner [220], p. 415) and Figs. 4.3, 4.4 below.

According to Atiyah, Bott, and Garding [6], Thm. 7.7, p. 175, we have

sing supp E(P(~id), N) = W(P(=id).N) = | ]  K(P@g(=id).N)
(.£)eR\ {0}
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Fig. 4.2 Slowness surface and wavefront surface for titanium boride
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Fig. 4.3 Slowness and wave-front surface for a; = as

i.e., all the inclusions in (4.2.5) are identities. Let us discuss now the propagation
cones K (P ¢ (—i0), N) more in detail. We distinguish four cases:

() If (z,€) € E \ {0} is a non-singular point, then P, ¢ is a first-order operator
and K (P, £)(—i0), N) is the corresponding half-ray which supports the forward
fundamental solution E(P (. ¢ (—id), N). The union of these half-rays yields the
wave surface, i.e., the surface E*, which is dual to E and depicted on the right
side of Fig.4.2.

(B) If (z, &) is a “ridge point” on &, i.e., Wi(z,&) = R(z,&) = 0, but (§1, &) # 0,
then Prg) = (Wi)g) - Rg) is a product of two linearly independent first-
order operators, and K (P, ¢ (—i0), N) is the convex hull of the two half-rays
K((W1)(,6)(—10),N) and K(R(r£)(—i0), N). This yields the set C of conical
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Fig. 4.4 Slowness and wave-front surface for a, = as

refraction (see Definition 4.2.6), which, in Fig. 4.2, right part, is represented by
the broken lines corresponding to two frusta on the wavefront surface.

Furthermore, additional ridge points occur in the case a; = as. In this
case, the quartic surface R(z, £) = 0 becomes singular along the circular cone
& = 0, T = *ayp, see Fig.4.3, left part, R ¢) is a product of two linearly
independent first-order operators, and K (R, ¢ (—id), N) yields the two broken
vertical lines in Fig. 4.3, right part, which represent a cylindrical lid in the
singular support of E(P(—id), N).

(y) If a # a5 and (7,§) = (1,0,0, ﬂ:ﬁ), which lies on the x;-axis, then
Wi(r,§) = R(r,£) = 0 and (W1)(r¢) and R(; ) are proportional. Hence P ¢,
is a square of a first-order operator, similarly as in Example 4.3.9, case («).
Therefore K (P ¢ (—id),N) = {¢-(1,0,0, & ,/as); t > 0} is already contained
in the dual surface E* of E.

(6) Ifa = asand (7,§) = (1,0,0, :bﬁ), then all three sheets of E intersect in
(7, &), see Fig. 4.4, left side.

In this case, we can calculate P, ¢) by means of Lemma 4.3.2. In fact,

210 F 2./as 03 0 F j% m
Awg(n) = 0 20 F2/asns Fmm (4.3.13)
TEm T7sm 2m0F 24asn

and hence

2
a
P (n) = detAqg(n) = 2(no F as 773)[4(770 F Jas ;) — a_z 7’)/2], (4.3.14)

where n’ = (11, n2).
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In order to determine K (P, ¢ (—id), N), we start with the hyperbolic operator
3,(0> — A,). Its forward fundamental solution E; is given by the following
convolution, where X’ = (x,x;) :

Y _ /
Ey = (Y() @ 5(1) * (Zn(’ﬂ—\/% ® (1))
_ Y — X)) @ 6(x3) [* ds
2 1| §2 — |x/|2
Yt~ X)) ®8(x3) o (t+ ?— |x’|2)
- 2 & ™ '

By applying a linear transformation according to Proposition 1.3.19, we obtain

a

E(P(r)(—id),N) = 5a2 Y(|as|t — 2/asx|) 8(xs £ Jfast)x
3

47i
|as|t + ,/a%tz — das|x'|?
X log(

2. /as|x'|

as fundamental solution of the operator corresponding to (4.3.14). This implies

) 4.3.15)

K(Pe)(=i0).N) = {(1.9) € RY 1 = F—, |¥] = las/e 3 (4.3.16)

N W

Hence in this case,

sing supp E(P(—id),N) = W(P(—id),N) = (E* N Hy) U C
where E* is the wave surface (see Definition 4.2.6) and C, the set of conical
refraction, consists of the union of the two circular lids given in (4.3.16) and of the
two frusta described in (B), see Fig. 4.4, right part, where, as before, C is represented
by broken lines.

(b) Finally, we aim at determining the singular support of the fundamental matrix
E(A(—i10), N). As in Example 4.3.9 (b), we have

sing supp E(A(—id),N) C (E* N Hy) UC,
where E* is the wave surface, and the set C of conical refraction in the case
ap # as is either empty, or consists of two frusta (and for a; = as contains
an additional cylindrical lid), see (8) above, and in the case a, = as contains
additionally two circular lids, see (§) and Fig. 4.4, right part. As in (a), let us
discuss now the various types of points (z, §) € E.
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(a) Similarly as in Example 4.3.9 (b), we verify that E* N Hy always pertains to
the singular support of E(A(—id), N).

(B) In contrast to what happens in (a), we shall see that the frusta originating from
the ridge points on E (see Figs.4.2 and 4.3, broken lines in the right part) do
not appear in sing supp E(A(—id), N). This will be shown in Sect. 4.4 below
by means of the Herglotz—Garding formula for the fundamental matrix, see
Example 4.4.5 (b). Hence if a, # as, then sing supp E(A(—id), N) coincides
with the part 2* N Hy of the wave surface.

(y) As we have seen already before, if a; # as, then the singular points of the
velocity surface E which lie on the £3-axis do not contribute to the set of conical
refraction for P(—id) and neither, consequently, for A(—id).

(8) Ifa; = asand (,€) = (1,0,0, :tﬁ), then we shall employ Proposition 4.3.4
to show that the corresponding circular lids in (4.3.16), see Fig. 4.4, right part,
are also present in the singular support of E(A(—id), N).

By Lemma 4.3.2 (ii) and (4.3.13), we have

2
a
Ao (M) =Awe ()i = a—; mna,

and the explicit formula for E(P(; ¢ (—id), N) in (4.3.15) implies that
supp((A19) (r.p) (D) E(P () (=10). N)) = K (P(r)(~i0). N).

Hence, by Proposition 4.3.4, the two circular lids in (4.3.16) belong to
sing supp E(A(—id), N). In the special case of a; = a, = as, this fact was
established already in Payton [227]. O

4.4 General Formulas for Fundamental Matrices
of Homogeneous Hyperbolic Systems

For a hyperbolic / x [ matrix A(d;, V) of differential operators in R}, for-
mula (4.1.2) for its forward fundamental matrix, i.e., £, = e®- £~} (A(p +00N)_1),
N = (1,0,...,0), yields essentially a representation by n integrations. In the
following, we shall reduce the number of integrations to n — 2 under the hypothesis
that all the polynomials in the elements of the matrix A are homogeneous of the
same degree. The primary result we derive is called the Herglotz—Gdrding formula
since it is a modification based on Gérding [92], Thm. 2, p. 375, of the Herglotz—
Petrovsky—Leray formula.

In concrete examples, the Herglotz—Garding formula proves advantageous over
the Herglotz—Petrovsky—-Leray formula, which will be stated in Corollary 4.4.2. The
Herglotz—Gérding formula was presented first for scalar operators in Wagner [295],
Prop. 1, p. 309, and, for systems, in Ortner and Wagner [220], Prop. 1, p. 415. Note
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that the integral over R"~! in this formula, viz. (4.4.2), amounts to an integration
over the (n — 2)-dimensional slowness surface X = {£ € R"!; P(1,£§) = 0}
due to the delta-factor in 7. We consider first only systems with strictly hyperbolic
determinant, cf. Definition 4.2.6 (2) above, and postpone the general case to
Proposition 4.4.3.

Proposition 4.4.1 Let A(7,§) = A(t,&1,...,&—1) be a real | x | matrix of
polynomials which are homogeneous of degree m and suppose that P(0) = det A(d)
is strictly hyperbolic with respect to t and that P(t, £) does not contain t as a factor.
Define the measure T € D' (R" \ {0})! by

T = A"(t,£) §(P(z, £)) sign((3. P) (. £)). (4.4.1)

Furthermore, set sﬂ_ = Y(s)s* € L (R!) forRe A > —1 and let sﬁ__”’_l be the finite

loc
part evaluated at n—m— 1 of the meromorphic extension to the whole complex plane

of the holomorphic function
{LeC;Red>—1} — S'(R): A —> s,

cf- Example 1.4.8.
Then the forward fundamental matrix E of A(0) fulfills

E(t,x) = =2Q2n)""Y (1) / T(1, &)Re[i" ' Fs7" (1 + x€) d§ + Y(1)Q(t, %),
Rn—l

(4.4.2)
where Q vanishes if n is even or m < n, and is otherwise an | x | matrix of
homogeneous polynomials of degree m — n.

In particular, if n = 4 and m = 2, then

E(t,x) = _rmoa /RS AYM(1,8) 8(P(1,€)) sign((0:P)(1., ))8(r + x£) dé.

472 Ot
(4.4.3)
Proof

(a) Let us first explain why the formula in (4.4.2) is meaningful.

Due to the homogeneity of 7', the restriction of T to the hyperplane = 1 is well
defined (see Ch. V below); furthermore, the integral fR”*l ---d€ in (4.4.2) has to be
understood in the distributional sense, i.e., for ¢ € D(R},) with ¢ = 0 fort < 0,
we have '

9.5) = =200 [ 10,00 +(9.0) < €
where

Y (&) = (p(t.0), Re[i" T Fs' 7" (1 + x§)) € CP(RET)
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and T(1, &)y (§) is an [ x [ matrix of integrable measures. (In fact the support of
T(1,£) is contained in the zero set of P(1,&) and this set is compact due to the
hyperbolicity of P(d).) Note also that the multiplication with Y (¢) in formula (4.4.2)
is well defined since the support of E intersects the hyperplane + = 0 in the origin
x = 0 only, and since a homogeneous distribution of degree m — n can uniquely be
continued from R" \ {0} to R" (for m > 1).

(b) In order to deduce the representation of E in (4.4.2), we start from the
formula for E in Proposition 2.4.13. By the homogeneity of P = detA, we
can set op = 0 in (2.4.11). Furthermore, the entries of the inverse matrices
A(it £ 0,i£)™! grow at most polynomially when o\ 0. Hence the two limits
limy\ o A(it £ 0,if)! exist in D'(R")*! (cf. Atiyah, Bott, and Gérding [5],
p. 121) and yield homogeneous distributions of degree —m.

Since
F ' (lim A(it £ 0,i6)7"
(im Ar  0:6)™)
are the two fundamental matrices of A(d) with support in =7 > 0 respectively, we
obtain

E=Y@®)i™2nF'T where
(4.4.4)

_ b . -1 _ : —1 7 pnyIxI
T—nggl(l)(A(t i€, §) A(t +i¢,§) )ES(R) .

Next we apply Sokhotski’s formula (1.1.2) in Example 1.1.12, i.e.,

1
li = vp- Findin S'(R)).
e{I(l)s:I:ie Vps:Fm in&'(Ry)

If we use the pullback by 2 : 2 — R C*, Q C R”" open (see Definition 1.2.12),
and v :  — R" is a continuous vector field satisfying v(x)? - Vi(x) # 0 for each
x € Q with h(x) = 0, then we conclude, by employing a suitable partition of unity,
that

) 1 _ 1 L T oy
!{1(1) m = vp(h) i sign(v’ - Vh) - (§ o h) in D'(R2).

In particular,

. 1 1
llx%(h(x “iev(®)  hx+ iev()

) = 2misign(v’ - Vh) - (§ o h)
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and
1
T = %Aad(r, £) 31{% (P(r —ie, &) — P(x +ie. §)7")
= A¥(¢, £) sign(d, P) - §(P(z, §)). (4.4.5)

Note that here © = R" \ {0} and that the last expression is defined in D’ (2) as
in Definition 1.2.12, i.e.,

d

(¢, sign(@.P) - 8(P(z.£))) = —

( / $(x.£) sign(d.P(r. £)) drds)
P(r,£)<0

s=0
for ¢ € D(Q).
(c) In the following, we abbreviate n = (t, £).

Since T is homogeneous in R” of degree —m, its ‘“characteristic,” i.e., the
restriction T|gi—1 € D'(S"7') is well defined, and T coincides in R" \ {0} with
T|g—1 - |n|™", see Example 1.4.9 and Garding [89], Lemmes 1.5, 4.1, pp. 393, 400;
Ortner and Wagner [219], Thm. 2.5.1, p. 58. Hence the difference

U=T=Tls1 ™"

is also homogeneous of degree —m and has support restricted to {0}. In particular,
U vanishes if m < n. Due to T = (—1)"t!T, we have also U = (—1)"*'U, and,
by the homogeneity of U and since supp U C {0}, U= (—1)"™"U. Therefore U
vanishes generally if n is even.

Thus formula (4.4.4) yields

E(t,x) = 2nY()Re(i' ™ F~'T)
=27Y(®)Re(i' " F ' (T|gim1 - [n|™™)) + Y()O(1. %), (4.4.6)
where Q = 27 Re(i'™F~'U) is an [ x [ matrix of homogeneous polynomials of
degree m — n, and taking the real part is justified by the reality of A and of U.
Hence it remains to express more explicitly the inverse Fourier transform of the

homogeneous distribution F - [n|* for A = —m and F = T|g—1 € D'(S"7!), see
Example 1.4.9.

(d) Let us recall that, for F € D'(S"!), the distribution-valued function A
F - |n|* is analytic in C \ (—n — No) and that we set

Felo™ ™= Pt (F-lo"),  keN,

in the possible poles, see Example 1.4.9. For its inverse Fourier transform, the
following formula holds, see Garding [89], Lemme 6.2, p. 406; Hormander
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[139], Thm.7.1.24 and formula (7.1.24), p. 172; Ortner and Wagner [219],
Cor.2.6.3, p. 64:

(. F'F-Inl") = Q2m) " pe—1{{p (), (}'sf’”‘l)(ya))),F(—a)))D/(SH)
447
for ¢ € D(R").

Here sf’”_l is as defined in Example 1.3.9. Recall that A +— sf’”_l is analytic

except for simple polesin A = 1 —n —k, k € N, in which si‘”’_l is defined
as the finite part. Its Fourier transform F. s)f”_l was calculated in Example 1.6.7.
Furthermore, (¢ (y), (Fsﬁ_+"_l)(yw)) depends C*® on w € S"~.

If we insert formula (4.4.7) with F = T|g—1 into the representation of the
fundamental matrix E in (4.4.6), we obtain, for ¢(¢,x) € D(R") with ¢ = 0 for
t<0,

($.E) = 2m) " ""Re[i' " ((§ (1. ). (Fs"T" N (11 + x8)), (Tlgr—1)(—7. —€))] + (¢, Q)
= —2m)' (¢ (. %), Re[I" T FST (17 + x6)), (Tlgi—1)(7. £)) + (¢, Q).

According to Example 1.6.7, we obtain four different expressions for the
distribution Re[i" 1 Fs"-"~!] € S'(R}) in dependence on the parity and the size of
n:

(Cnee TN
sl (1og|tl+y—;;).mzn,nodd,
(_l)n/zn m—n .3
Re [im+1]_-st_1‘_—m—l] — Z(m——n)' t signt .m > n,n even,
d \ n—m—1 1
(_1)(n_1)/2(d_t) VP :m < n,nodd,
(=12 80D (r) :m < n,neven,

where y denotes Euler’s constant. In particular, formula (4.4.3), i.e., the case m =
2,n = 4, follows from (4.4.2) due to Re [13}'sh_] = s

(e) Finally, we make use of the “gnomonian projection,” i.e. the diffeomorphism

(z.§)

{(—1, xR — eSS n £0}: (1,6) — .
[(z, )]

For a function f € L'(S"™!), we have

_ (L) Lo\ &
frmao = [ () (i) Jav e
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do denoting the surface measure on S"~'. In particular, if f : R" \ {0} — C is
locally integrable, homogeneous of degree —n and even, then

| smasm=2 [ raed
Sn—1 Rr—1
Similarly, if ¢ is a Radon measure on R” \ {0} which fulfills

u({n € R"; n; =0}) =0,

and which, as an element of D’(R" \ {0}), is even and homogeneous of degree —n,

then
/ Wlsi—1 = 2/ Il g1yxre—1-
Sn—l Rn—l

By the homogeneity of u, the restrictions jt|g:—1 and ji|yxge—1 are well-defined
Radon measures.
In our case,

() = pu(z.§) = ($(t.0), Re[(" T Fi 7" (i + x8)) - T(2. §)

is even and the hyperplane {n € R"; n; = 0} is a null-set with respect to p, since
P(z, &) does not contain t as a factor. Furthermore, p is homogeneous in R" \ {0}
except for m > n and odd n. In this last case, p(n) is associated homogeneous
(see Gel’fand and Shilov [104], p. 83) and the gnomonian projection changes just
the polynomial term Q(z, x).

Hence we conclude that, still for ¢ (¢, x) € D(R") with ¢ = 0 for r < 0,

9.5) = 200" [ 10006 + (9.0),
where
V(®) = (Pt Re[I" F ]+ x6)
is a C* function,
70,6 = A%(1§)5(P(1.) sign((3.P)(1, )

is a matrix of Radon measures and 7'(1, ) (§) is a matrix of integrable measures.
O
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Let us next derive the Herglotz—Petrovsky—Leray formula from the Herglotz—
Garding formula in Proposition 4.4.1. For its classical form, we refer to Herglotz
[126], pp. 609, 610, (4)—(13); [127] (7.58), p. 192; for the distributional generaliza-
tion, see Leray [163], Ch. IV; Atiyah, Bott, and Garding [5], pp. 176, 177; Gel’fand
and Shilov [104], Ch. I, 6.3, (24), p. 139; for systems, see Ortner and Wagner [217],
Thm., p. 324, and formulas (HP), (HPS), p. 325.

Corollary 4.4.2 Letm,n,l,A, P = detA, sﬁ, Q be as in Proposition 4.4.1. Then the
forward fundamental matrix E of A(0) fulfills

@ [ ALY
@y Jy 0:P)(1.8)

where X = {&€ e R"™'; P(1,£) = 0} is the slowness surface,

E(t,x) = Re [{" T Fs 7 (t + x€)|y|(§) + Y()O(t, x)

(4.4.8)

n—1

y =D (=1V7'gdE A A dE i AdE A AdE

j=1

denotes the Kronecker—Leray form and |y | the corresponding positive measure on X.
In particular, if m = 2 and n = 4, then

YO) [ AQLE™

E(t,x) = Can? [y (3.P)(1,§)

§'(t +xE)[y1(6). (4.4.9)

Proof We employ formula (4.4.2) in order to represent £ and we apply to it
formula (1.2.2) in Example 1.2.14, which expresses the evaluation of §(P(1,§))
on a test function. This yields

E = 220! ¥0) [ A& Re [ A i) sin(0:P(1.6) O
where VP = (351 o agil)T-

Clearly, the surface measure do on the slowness surface X is given by do =

Iagg I d§&,...d&,—;. On the other hand, since the equation Z" 1o (1 §) d§; =0

holds on X, we conclude that

1 OP(LE) |
Yy = 8P/8.§ Zgj ag] g /\"'/\dgn—l
_(afP)(l,S)

3P/, d§r A e A dE
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holds on X. (Here we have used Euler’s equation for the homogeneous function
P(z, £) in the second equality.) Hence

do d§y ... d&— b

IVP(LE) — [0P/o&]  @:P)(1.§)]

This implies formula (4.4.8), and the special case (4.4.9) follows again from
Re[i*Fs, ] = né'. O

Let us note that in many physically relevant systems as in crystal optics or
in elastodynamics, the assumption of strict hyperbolicity in Proposition 4.4.1
and in Corollary 4.4.2 is not satisfied. In order to encompass such cases of not
strictly hyperbolic systems, the distribution 7 in formula (4.4.1) has to be defined
differently. In fact, §(P(z,£)) = P*§ is a priori not meaningful in D' (R" \ {0}) if P
is not submersive outside the origin. Already L. Garding has hinted at the necessary
modification of the definition of 7 in this case, see Garding [92], p. 375, third note.
In the next proposition, we give a representation of 7 by a parameter integral for
general hyperbolic systems. We emphasize that, in general, 7 is not a measure but a
(possibly higher) derivative of a measure for not strictly hyperbolic systems.

Proposition 4.4.3 Let A(0;, V) be an | x | system of linear differential operators
with constant coefficients in R} . We assume that the elements of the matrix A(t, §)
are real-valued and homogeneous of degree m and that P(d) = detA(d) is even
in T and hyperbolic in the direction t “without infinite propagation speed,” i.e.,

VE € R\ {0} : P(0,§) # 0.
Then formula (4.4.2) holds for the forward fundamental matrix E of AQQ) if T €
D' (R \ {0)* is defined by

T = (=) 1A% (1, §) §% D (2 — ga(£)) do (1) (4.4.10)
Ti—1
where

k

I k
k=20 86 = YA, P.) = detA@d) = [](22 =£(®)

Jj=1 j=1
0 <fi(§) <fo§) <+ < fi§) forE e R",
Sicr = A €RN A =0 A0, A 4+ A = 1}, do(A) = dAy ... dA

Furthermore, 8%~V (12 — g, (£)) is defined explicitly in (4.4.11/4.4.12) in the proof
below.
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Proof First we remark that we cannot compose Sokhotski’s formula with P unless
P is submersive. Therefore formula (4.4.5) in the proof of Proposition 4.4.1 does
not hold any longer if P is not strictly hyperbolic. In order to express the limit

[ L L n
S = Z—MEI\I‘%(P(‘E —ie, )7 —P(r +ie,§)7") € D'(R],),

we use the method of parameter integration, in particular Feynman’s first for-
mula (3.1.2). This yields

k

P(r+ie. §)7" = [[((r+ie)*~£(8) ' = (k—l)!/ ((r+ie)’—ga(§)) “do(d)

j=l 2:k—l

and hence, for t > 0,

=P [ (i) - (@i - @) oo
_1)k—1 _

B T T S
_1)k—1 _

= (zlk—)m/E (%at)k lzma(zz — g1(§)) do(})

= (! /2 56D (+2 — g,()) do(A):

herein the next to last equation is justified by Sokhotski’s formula composed with
> — g (§).

Let us mention that the measure 5(12 — 8 (E)) eD (R?S \ {0}) is well defined
for ¢ € D(R"\ {0}) by

@3 —0@) =5 [ 008+ 6 ® ]
2 S gl((§:4)-411)

since g, (§) > 0 for &£ # 0 and A € X;—,. Furthermore,

(¢, 8 V(2 = ga(6))) = (¥.8(7* — ga(§))) (4.4.12)

where = 2!7%(=9,1)¥"1¢ € D((R\ {0}) x R"™!), and this function depends
continuously on A € ¥;_. O

Example 4.4.4 1In order to illustrate the formula (4.4.10) in Proposition 4.4.3 in the
case of a scalar operator which misses by far the condition of strict hyperbolicity,
let us apply it to calculate the forward fundamental solution E(—k) of the iterated
wave operator (3> — A3)X, k > 2, in three space dimensions. According to
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formula (2.3.12) we should obtain

217Y (1 — ) (@ — [xP)*

E(=h) = (k— DIk —2)'

In the notation of Proposition 4.4.3, we have here P(z, ) = (¢ — |§|*)*,
f](g) = |g|27 .] = 17 vks gl(g) = |S|2, Ae Ek—lv

=D o /Rt
and T = 7. )8 (2 — |E]*) € D'(R*\ {0}).

Therefore, by (4.4.10) and (4.4.2),

E(—k) = —(22);(;1 T(1, &)Re[i* T Fi 7] (¢ + x£) d§
(=D*r()

/ §EDA — &) (1 + x£)** sign(r + x£) dE.
) (4.4.13)

T 82k — )2k — 4)!
The precise meaning of the integral in (4.4.13) is the following: The evaluation of
E(—k) on a test function ¢ € D((0, 00) x R?) is given as

(—=1F
872(k — 1)!(2k — 4)!

(. E(=h)) = (Y (). 84— 5P)

where
V() = / & (t, x)(t + xE)** sign(t + x&) drdx € C°°(R ).

Due to (¢ + x&)**sign(t + x§) € CK"'(R3, L1, (R ) for k > 3, we conclude that
E(—k) is locally integrable for k > 3. Therefore, it ‘suffices to determine E (—k) in
the two open sets t > |x| and 0 < ¢ < |x| in the case k > 3. The case k = 2 can be
treated likewise by integrating once with respect to z.

(a) Letus first determine E(—k) inside the forward light cone C = {(¢,x) € R*; ¢ >
|x|}. Therein, t + x¢ > 0 for |§| = 1 and hence

="
82(k — 1)!1(2k — &)1 ERD

E(—k) = ((t+xE)* 8% Do (1- |$|2)>£’(R§)'
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If we consider the holomorphic function
S:C—ER):Ar— yho(l-|EP) =S,

as in Lemma 3.5.2 and use analytic continuation in formula (3.5.1), then we
obtain

rad—a
FED s

(P~ Py =
Setting A = k — 2 and employing Xﬂ__k = §%=D_ we conclude that

E(—k) = (=D = [x[H* e G b
VA= DIk=HTG-b k=D =2l

holds in C.
(b) Let us now verify that the distribution

U = ((r +xE)** sign(r + x£), 8“7V o (1 — [£))

vanishes in the open set 0 < ¢ < |x|. Upon introducing spherical coordinates for &
we obtain

o0 /2
U=2 / S(k_l)(l -0 / (t + |x|p cos 0)*** sign(r + |x|p cos 0) sin 6 df p>dp
0 0
2 o0
= _(Zk——n3)|x| /(; D (1 = p?) (¢ + |x|p cos 0)% 3 sign(z + |x|p cos §) ’;;0 pdp

21 o0
- 8(7(—1) 1— 2
(2k—3)|x|/0 pET =7y

2k—3

x [+ Ixlp)* 7 sign(t + |xlp) — (¢ — |x|p)* 7 sign(z — Ix|p) ] dp

2

A 2k—3 2k—3 (k—1) 2
= t t— , § 1— , )
2k —3)K] £t + Ixlp)™ 7 + (= Ixlp)™ 7, p (I =p%))er((0.00))

(4.4.14)

In formula (4.4.14), we apply the diffeomorphism
h:(0,00) — (—o0,1)ipr—1—p> =0
as in Definition 1.2.7. Then §*=V (1 — p?) = §*~V o h. Furthermore, if

¢(p) = (t + x|p)* 7 + (1= 1x1p)* 7 € £((0. 00)),
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then ¢ o k™! is a polynomial in o of degree k — 2. Hence

2w
=T 50D (] _ 2
U= Gy #0840 = )
_ 27 ¢-p -1 (k—1)
= k=3 ((|deth’| oh )(")’8 (@)
T 1 e (=11 (e
— Bl sk=y — & () = 0.
G @ ol = G e O =0
Therefore U vanishes for 0 < ¢ < |x|. O

Example 4.4.5 Next we illustrate the Herglotz—Gérding formula (4.4.3) in the case
of the system of linear elastodynamics in hexagonal media, cf. Example 2.1.4 (d)
and Example 4.3.10.

Let us first repeat that the displacements u = (uy, uz, u3)” in such a medium
obey the system A(d)u = f, where f is the density of force and A(d) = 30> —B(V),
B as in formula (2.1.13). As we have observed already in Example 4.3.10, A(d)
is not strictly hyperbolic due to the various singularities on the slowness surface
E = P7(0), P = detA. Concerning the Herglotz—Gérding representation for the
forward fundamental matrix E of A(9), i.e.,

= YO s+ ) de. (44.15)
4 R3

we first aim in (a) at describing T € D'(R* \ {0})** more explicitly than by
the parameter integral in (4.4.10). We shall then deduce therefrom in (b) that
in general hexagonal media (i.e., for a; # as) no conical refraction occurs,
compare Example 4.3.10 (b), (8).Finally, in (c), we reduce the three-fold integral
in (4.4.15) to a one-fold integral with respect to &;. This remaining integral is a
complete Abelian integral pertaining to a Riemannian surface of genus 3 (for general
t,x,ai,...,ds).

In order to ensure that A(d) is hyperbolic and that the propagation speeds are
positive, we shall generally assume in the sequel that the inequalities

a; >0, a, >0, ay >0, as > 0and |as| < as + Jajaz

hold true.
(a) As has been mentioned in Example 2.1.4 (d), the factorization of P(z,§) =
detA(z, &) yields

3

P(r.£) = Wi(r.£) - R(.§) = [ [ (> = £(®)).

J=1
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where
Wit §) =1 —fi)) =" —asp’ —ask;. p* =& + 6.
and
3
R(z.&) = [ [(> = £®) = t* = P (a1p” + 283 + as|E)
j=2
+arasp* + (@iaz — a5 + a3)p’E; + aass,
see (2.1.14).

The general formula for 7 in Proposition 4.4.3 furnishes T = A%S with

3
S= [ 9~ 0©) 000 e DRAIOD. 02 = Y A6,
2 =1

(4.4.16)
i.e.,

do(A)dg,

1 / (0: 1’9 (V82(6). &) + (9:1)°¢ (= v/82(6). §)
R} /%,

8) =<
-5 8 g.(&)

see (4.4.10-4.4.12).

We emphasize that formula (4.4.16), which determines S as a distribution, is
not explicit enough for calculations. First note that the original definition of S as a
distributional limit, i.e.,

S = 1 lim[P(r —ie.£) ™' — P(t +ie,§)7'].
271 €\0

shows that S coincides with the measure §(P) sign(d,P) whenever we can pull back
Sokhotski’s formula, i.e., outside the set

M ={(z,§) € RY; P(r,§) = 0, 3.P(z,§) = 0}.

Furthermore, due to

§(R) S(W
) = 00 - = Tt + S

(cf. Gel’fand and Shilov [104], p. 236, up to the modulus), we conclude that

S = S‘EV—I? sign(d.R) + 5(wW1)

sign(t)

holds in R* \ M.
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Hence S coincides with a Radon measure in R* \ M. As we shall see below,
T = A .S is given in all of R* \ {0} by a matrix of Radon measures, in spite
of the fact that, in general, S is the second derivative of a measure according to
formula (4.4.16). Indeed, an easy calculation yields

R+EW, §6EW, a&iEW
A =1 55W, R+ EW) ashritW | 4.4.17)
az§15Wr az6r5Wp Wi

with Wa(t, §) = (a1 —aq)(t?—asp*—ar£2) +a3é2 and Wi(t, §) = 12 —a; p*—ast?.
Moreover, R = W W, — pZWZ for Wy = 72 — a5p2 — a2§32. From (4.4.17) we infer
that A* vanishes on M since W; = R = 0 implies that p = 0 or W, = 0. Similarly,
A% vanishes to the second order if P has a three-fold zero, which occurs, e.g., if
a, = as and p = 0, see Example 4.3.10 (b) (§). Hence T = A*! - § is a matrix of
Radon measures on R* \ {0}.

More explicitly, with & = (&, —£;,0)7, we obtain

T=A4.§

R+ EW, §6EW, aséi&W, 5®) 501
=| &&W2 R+ EW, as6H6W, (Vl sign(d.R) + Tl Sign(f))
a3 16 W1 azr 5w WiW;

2

G i—‘ZW4 %Wz; azé1§3
_ 25 : 2 :

=7 8(Wp)signt + %W4 i—éW4 asbrts 8(R) sign(d.R) (4.4.18)
as1€3 azbrks Ws

due to R = —p?>W, for W; = 0 and

Wo | WoWi  WoWs W,
Wi WiWs  p2W, 2

forR = 0, W; # 0.

(b) Next we determine the singular support of E by inserting the expression for T
in (4.4.18) into the Herglotz—Garding formula (4.4.15).

The explicit formula for 7 = A% . S in (4.4.15) shows that E is smooth as long
as the plane

H(,«,x) = {ég' € RS; t+x§ = 0}

does not contain points on the slowness surface X where p = 0 and, furthermore,
intersects the zero sets of W;(1,£) and of R(1,&) both transversely. The last
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condition means that neither (¢,x) € E*

R(1,&) = 0.

If IT(; 5 contains a point (0,0,%3) € X where p = 0, then t = *£x3/./as or
t = #£x3/./a; and the description of the wavefront surface W(P(—id), N), which
coincides with the singular support of the forward fundamental solution Ep of
P(—id), in Example 4.3.10 (a) shows that Ep and a fortiori E are smooth at such a
point (¢, x) unless it belongs to &* N Hy. This implies that sing supp E = E* N Hy,
or, in other words, that no conical refraction occurs if R is non-singular, i.e., if
ai 7é as, dp 7é as and as 7é 0.

Let us yet show that the same holds generally as long as a, # as. For az = 0,
we have R = W3 W, and hence

nor Il . contains a singular point of

ggT é/g/T 000
T = |:—2 s(Wy) + 5 S(W3)+1000 8(W4)i| sign t
P P 001

where & = (&1, &,0)7 and £ = (&, —&,0)7. This shows that no conical refraction
appears in the case az = 0.
On the other hand, for a; = as,

a; —az\2
R=W;—a}’s - (%57) &

with W5 = 1% — a;p? — “32£2 and thus R(1,£) = 0 becomes singular along the

circle & = 0, p = 1/ /aj. Setting f(§) = a3p* + (%)zég we can decompose
R near this circle, i.e., R = (W5 + £3/f)(Ws — £ 4/f) and obtain

signt

&8(R) sign(d.R) = Wi

[8(Ws — &) — 8(Ws + & V)]

Similarly,

W (R) sign(@.R) = S [(VF + 5 )a0vs —

+ (Vi + 25 28)sws + 6]

and

Wb sign(0.) = S5 [(VF + 50 ) 508 — )

+ (\/f-i- az;al 53)5(W5 + 53\/J_C)]
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Altogether this yields

T = sign tl:%f—; S(Wy)+

B(F+9528) 92+ 9528) oy
I _ 8 _ §(Ws — &f)
SR+ 9508 BT+ 9528 b | T o
az§ az§r VI 551E
ST+ 2558 S2(J+95%)  —af
bt _ g B 8(Ws + &)
TG +9328) 2 +55%8)  —wb |7 o |
—az§; —az§ VI + 4528
(4.4.19)

From (4.4.19) we conclude that E(¢, x) is C*° unless Il ) is tangential to one of the
zero sets of the factors W5 & £ 4/f of R, i.e., that conical refraction does not occur
in the case a; = a5 # as.

Note that the key point in the reasoning above is that the adjoint matrix A%(1, )
cancels factors in the denominators occurring in the additive decomposition of
8(detA) near singular points of the slowness surface detA = 0.

(c) Let us next reduce the three-dimensional integral in the Herglotz—Gérding
representation (4.4.15) for the fundamental matrix E of the hexagonal system
A(0) to a one-fold integral with respect to &;.

When we insert the decomposition for 7 = A%S in (4.4.18) as a sum of two
surface measures on the ellipsoid W; = 0 and on the quartic R = 0, respectively,
into (4.4.15), we obtain E = E| 4+ F where

Y()

B = 4n?

E&T
o [ 5 sania.ensi ) ae
RS P

and

Y(t)

F=-— / @(§)6(R(1,£))d(t + x§) d (4.4.20)

with § = (&.—£,0)7, p = /€2 + £2 and

Ewy(1.6) L2Wa(18) ashibs
P(€) = B2 W, (1,8) f,—zzW4(1,§) bty | S1EOR(E)). (4.4.21)

az§1 &3 az6r& Wi(1,8)
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Let us start by evaluating the simpler part E;. Putting V = (85, —9;,0)7, we
infer

Bo=-Y0g g1 /R 3 %8(%(1,5» sign(r + x£) d.

Because the integrand in the last integral is rotationally symmetric with respect to
&1, &, we can set therein x; = 0 and x, = |x’| and obtain

Y(t)
Er=—gp V/w

Y(t) ~
4n2 |x | / £ 8(1 — ay|€’ |2 —a5§3)8(t+ [X'|& + x3&3) dE.

'|& + x3€3) A&

Upon using the homothecy n' = Jas§'/t. n3 = ./as&s/t, the integral
representing E, takes the form treated in Example 1.2.15 (b):

Y(z = X X
El = —%V_ ’722 —2 |n|2)8<1 + | |772 + 3773)(1,7
4 Jazazt 9] s T Va /@
12 2
Y (1) ~5cTY(%+ﬁ—t2)/ A + Bo, d0(@)
- T o(w),
472 asast |_x’| 5 w2 N é st (A +Bw1)2 + C2w22

as as

), b2 =

. . - _ 1]
where, in the notation of Example 1.2.15,R = ¢ LU p= (0, ~Var T

ka
NS
&

WPE o, A
= + =2 and hence
as as

P - N VA L et PSR4 U il
NZLE Jas [bPi bl

Therefore, A> — B> + C* = |¥|*/(aq|b|**) > 0 for |x'| > 0. For A, B, C € R with
A? — B* + C? > 0, an application of the residue theorem yields

A + Bo, do(w)
5 do(w) = Re —_
st (A + Bw))? + C2w2 st A+ Bw; +iCw,
_ 27Y(|Al - |B|)signA
/A2 _B2 ¥ C? ’
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Hence

Y() ¢ R - s
E, = ViYlt——=)Y|—+—=—-¢)—
! 47 . Jas [ ( A/as) ( as + as )|)c/|2

v(e— by —y(r— JEE 4+ 2)
. Jas a4 as) « IT _ ==T
= iy ] XxT —Xx")

_JEE L8
8(t oW T o o
XX,

AayJast|x' |2

and this expression coincides with the formula for E; in Ortner and Wagner [220],
Prop. 5, p. 429.

Let us finally derive a representation by a one-fold integral for F. Here we use
the general formula (1.2.3) in Example 1.2.15 referring to (¢, § o i) for the function

R R e [T
R(1,§)

Thereby, (¢, § o h) is expressed by an integral over the space curve
Cro = h7'(0) = {§ € R%; 1 42§ = R(1,£) = 0}

depending on (z,x) € R*. From #/'" = (x, VR(1, £)) we obtain

2 T
det(h’ _h/T) — det( . |X| X VR(LS)) — |xX VR(LS)IZ
X'VR(1.£) [VR(1.§)?

and hence

F =

ROF / _¢§)do§) (4.4.22)
C

42 ' Je x x VR(1, )|

where ¢ (£) is as in (4.4.21) and do denotes the measure of arc-length on C; .
If C; is locally parameterized by s = &3, then &(s) is perpendicular to x and to
VR(1, £) and this implies

bs) = xx VR(LEE) x x VR(1, )
(x x VR(1,£(s)))3  (x10:R —x20,R)(1,&(5))
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By the rotational symmetry of F with respect to xj, x,, we can set x, = 0, x; = |X/|
and conclude that

do(£) E(s)lds ds

hex VR(LE| — [xx VRLE] — ¥] - [9:R(1,&())]

and hence

F=-—

Y(1) 8/ $(E(s)) ds
4m2|x| e [02R(1, ()]

where the integration is performed over the union J;, of the intervals in s = &;
which parameterize the space curve C, .

In order to compare this expression with the more explicit formula in Ortner and
Wagner [220], Prop. 5, p. 429, where F here corresponds to E; + E3 + Ejy, let us
deduce, by way of example, the element F»3 in the second row, third column of the
matrix F.

From formula (4.4.20) we infer that

Fp3 = —Y(t)m/ £263 8(R(1,£))8'(t + x§) sign(9:R(1.§)) d§

Y(l)ag

32/ §38(R(1,§))8(r + x§) sign(d-R(1, §)) d§
Y(t)aga 1 ssign(d.R(1,&(s))) ds

A W), [RMEG)]

where the space curve
={£ e R’ 1+ [¥'|&) + x38 = R(1.§) = 0}

is parameterized by s = & € J, ..

The equation R(1, &1, &, s) = 0 has the form ap* + Bp> + y = 0, where p*> =
512 + 522 and @ = ajas, B = 2ae¢s*> — a; — as, ag = %(alaz + a% — a%), y =
(1 — as?)(1 — ass?). This yields the discriminant

2
1
D(s) = IBT —ay = Z(al + as — 26165‘2)2 —ajas(1 — azsz)(l — assz).
Hence, the points § € C, fulfill & = s, & = —(¢ + x35)/|x| and & =

W12/ (aras|x’|?) where
a + as
+ =5 W —ask i’ & VD).

P12 = —aias(t + x35)>

The intervals J; , are determined by the inequalities D(s) > 0, p;2(s) > 0.
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Finally,
MR = dap’ty 4 2BE = 26Qap® + B) = +£4&/D(s).
Therefore
1 __ Jaasly|
|2R(LES)] 4, /m124/D(s)
and

Fpy = Y(t)a3 alas 9, Z / SY(MJ(S)) Y(D(s)) ds. 6 = =+1,

V 14i(s)/D(s)

in agreement with the corresponding entry of the matrix E3 in Ortner and Wagner
[220], Prop. 5, p. 429. (Note that the sign factors €; = sign(d.R(1, §)) are constant
along connected components of the curve C;,. They are described in more detail
in Ortner and Wagner [220], p. 433. Furthermore, the two possible signs we can
choose for &, account for an additional factor 2.)

Let us yet observe that the integrals representing E are, from the viewpoint of
algebraic geometry, complete Abelian integrals of genus g = 3 for generic g;, 1, x,
see Remark 1 in Ortner and Wagner [220], p. 434. In contrast, the genus g of the
curves C;, reduces to 0 if R(z, §) is a product of two wave operators. This occurs
in the two cases a3 = 0 and a% = (a; — as)(a; — as). In these cases, E is given by
algebraic functions, see Ortner and Wagner [220], Section 6. Furthermore, the genus
of C;, is also 0 if (z, x) belongs to the x3-axis, i.e., if p = 0, a fact first observed in
Payton [226], Ch. 3, 11, p. 105-111, cf. Ortner and Wagner [220], Prop. 6, p. 442.
Moreover, E(t, x) is given by complete elliptic integrals, i.e., g = 1, if a; = as or if
(1, x) belongs to the hyperplane x3 = 0, see Ortner and Wagner [220], Sections 6.3
and 7.1. O

Due to the two §-factors occurring in the integral in (4.4.3) in Proposition 4.4.1,
this representation of E in the case m = 2, n = 4 can always be reduced to a
one-fold definite integral similarly as this was done in Example 4.4.5 above for the
hexagonal system. The resulting integral is an Abelian integral over the algebraic
curve C; = {£ € R% t + x£ = P(1,£) = 0}. In formula (A), p. 327, in Ortner and
Wagner [217], this integral was stated as parameterized with respect to &;. In the
next proposition, we parameterize it with respect to arc-length. In the case of crystal
optics, the respective representation was stated in Burridge and Quian [40], pp. 76,
77, and in Wagner [298], (7.2), p. 2679.

Proposition 4.4.6 Let A(9;, V) be a strictly hyperbolic (with respect to t) Ix] matrix
of differential operators in R* which are homogeneous of degree m = 2 and set
P(0) = detA(d). We assume that P(t,§) does not contain t as a factor. Then the
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forward fundamental matrix E of A(9) is given by

__ro (1.6 si _ do®)
E= = 0, CMA (1, &) sign(d.P(1,§)) X VP(LD)| (4.4.23)

where do denotes the measure of arc-length on the curve C;, = {£ € R*; t + x£ =
P(1,§) = 0}.
Proof From (4.4.3) we obtain

Y

E=-—
472

0, / AYM(1, &) sign(d.P(1,£)) 8 o hdE
R3

if we set, as in Example 4.4.5 above,

h:R*—R?: & F4aE )
R(1,§)

From det(#' - W'T) = |x x VP(1,£)|? and Example 1.2.15, we then conclude that

R TGIAG! :
[ o@sona= [ LOBEL 4w,

This implies the result. O

Before applying the formulas (4.4.3), (4.4.9), (4.4.23), which all refer to homo-
geneous hyperbolic systems A(d) of degree two in dimension four, let us yet deduce
an alternative form in which the adjoint matrix A%(1,£) on the slowness surface
X is expressed by normalized eigenvectors of A(1, £). Such a representation was
first used in Griinwald [120] for the system of crystal optics and later in Burridge
[39] for the elastodynamic system. In the systematic account given in Ortner and
Wagner [217], the respective formulas are presented in Section 2.2.2 (“Griinwald’s
formula”) under (G) and (G’), p. 326.

Proposition 4.4.7 Let B(V) = B(01, 02, 03) be a symmetric | x [ matrix of homoge-
neous differential operators of second degree in R* and set A(d) = 1,0> — B(V). We
assume that P(d) = det A(0) is strictly hyperbolic in the direction N = (1,0, 0, 0)
and does not contain 9, as a factor. As before, X = {€ € R3; P(1,£) = 0} denotes
the slowness surface, C;, = {£ € X:t+ xE = 0} for (t.x) € R* and |y| is the
Leray measure, see Corollary 4.4.2. For & € X, let e(§) be a normalized eigenvector
of B(§) for the eigenvalue one, i.e., |e(§)| = 1 and B(§)e(§) = e(§).
Then the forward fundamental matrix E of A(0) is given by

E=—10) [ 81+ x8) e(®) - &) |y 1) (4.4.24)

__Y(t) eyt 0P8
=520 /C «®)«®) T gpa e 0 ©) (4.4.25)
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Proof The strict hyperbolicity of P(d) implies that (9.P)(1,&) # O for § € X
and hence the symmetric matrix A(1, §) has rank / — 1 for §¢ € X. Therefore the
eigenvectors e(§) are uniquely determined up to a sign. Note, furthermore, that
A(1,£) - A*(1,£) = 0 and hence the rows of A%(1, £) are all proportional to e(£).
This furnishes A% (1, §) = ce(£) - e(£)” where

w(A¥(1,8)) = ctr(e(®) - e(®)") = cle(®))* = c.

From

OP(r.§) _ ddetA(r.§) _ Zl:

da::
ad . v _ ad
a7 e A (T, 8) o 2T tr(A (, S)),

L
1
’ T
ij=1

we obtain tr(A“d(l, g)) = %(BTP)(l, ¢€) and hence

A(LE) = SOP)(1,E)-e(6) - e(6)'. (44.26)

Inserting the expression for the adjoint matrix in (4.4.26) into (4.4.9) and (4.4.23),
respectively, then furnishes (4.4.24-4.4.25). O

Example 4.4.8 Let us apply now the above formulas to Maxwell’s system of crystal
optics, which describes the propagation of light in homogeneous dielectric media.

(a) Asusual, we denote by £ and H the electric and magnetic field, and by D and B
the dielectric and magnetic induction, respectively. If, furthermore, p, J denote
the charge and current densities, respectively, and c is the speed of light, then
Maxwell’s equations read in the Gauf unit system as follows:

1 1 4
curl€ = —— 9,8, divD =4np, curlH = —3,D+—HJ, divB=0
c c c
(4.4.27)
For anisotropic materials, these equations are supplemented by
D = €€, B=uH (4.4.28)
€1 00
with u > 0, ¢ = | 0 e 0 | and ¢; positive. We consider homogeneous media
00 €3

only, i.e., media wherein c, u, €; are constants.
By inserting Eqs. (4.4.28) into (4.4.27) we obtain two uncoupled 3 x 3-systems
of equations for the field vectors £ and H :

2
€0%E + %curl(curl £) = —4nd,J, (4.4.29)
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2
4
8,27-[ + %curl(e‘1 curl H) = % curl(e 1)) (4.4.30)

For (4.4.30) cf. Garding [92], (10), p. 363, and p. 377. The system in (4.4.30) has
the form

4
A@) = (92— By(V))H = % curl(e™1J) (4.4.31)
with the symmetric matrix

a5 + dat;  —dsfiEy —dabiEs
Bi(§) = | —ds&i&r aEl+diE —di6E
—hk1Es —di62ds  diE + dof]
2
where we have set d; = —, j = 1,2, 3. In the following, we suppose that 0 <
g e,

J
d1 < dz < d3.
Similarly, the system in (4.4.29) has the form

2
(€02 — By(V))E = —4ndd.  By(§) = %(m% —£-gT).

This system for £ could be treated by a modification of Griinwald’s formula (see
Ortner and Wagner [217], p. 325), but for simplicity, we shall restrict our analysis
to the system in (4.4.31) referring to the magnetic field .

Let us next calculate P(z, §) = detA(z, £). Obviously, we have B;(§)§ = 0 for
£ € R? and hence det B;(£) = 0. On the other hand,

3 3
wBi(E) = Y E(di +diy).  w(BiEY) = [P Edindia

j=1 Jj=1

where djy3 = d;, j = 1,2, 3. This yields P(z, §) = det(lst> — By (§)) = °- R(1, £)
where

3 3
R(r.§) =" =12 & (diy1 +djpa) + €D Eldj1dyoa. (4.4.32)
j=1 j=1

cf. Courant and Hilbert [52], (13), p. 606; Garding [92], (11), p. 363; Liess
[165], (6.7.6), p. 272.
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Let us observe that Maxwell’s system in (4.4.31) does not fulfill all the
requirements for the application of Griinwald’s formula in Proposition 4.4.7 due
to two circumstances: First, the determinant P(d) contains twice the factor 9, and,
second, neither P(d) nor R(d) in (4.4.32) are strictly hyperbolic. In the following,
we shall show how to circumvent these shortcomings by approximation.

(b) Instead of A(3) = 1397 — B1(V), let us consider the perturbation A;(9) given by
Ac(d) = [* - -V -V —B|(V), ¢>0,
which was already employed in Griinwald [120], p. 519. Due to

AT §)E = (= [E7)E and Ai(r.§)e = A(r.§)e fore LE,

we conclude that P(t,§) = detAq(r,&) = (2 — {|§]*)R(r,§) with R as
in (4.4.32). Hence P(t,£) does not contain the factor . Note, however, that
P;(d) is still not strictly hyperbolic, since the part X; = {§ € R* R(1,£) = 0}
of the slowness surface of P;, which is called Fresnel’s surface since Hamilton,
has four singularities, which we will discuss later on. Nevertheless, Griinwald’s
formula (4.4.24) can be applied if |y| is replaced by a suitable measure similarly
as in Example 4.4.5.

If Xor = {E €R% |E| =1/ \/E } denotes the trivial part of the slowness surface,
then e(§) = &/|&| for § € Xy and the fundamental matrix E; of A;(0) splits into
two parts: E; = Ep¢ + E1 where

Yo [, -
FEol M T

Eog=— ly[(§)

and

B =10 / 81+ 38) e(®) - e©) 171 (4.4.33)

We note that E; is independent of {. If £ € X, is parameterized by o € S?, then

Y
Eo; = _87r+23ﬂ . 5’<t+ x—\;%)a) o' do(w)
Y()

_ Sﬂz\/_v V7 (t+\/E)da(a))
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The last surface integral gives the area of a spherical cap of height min{2, 1 +
\/Et/ |x|}. Therefore

Eo; = — 41(3_v VT[z Y(jx |—\/—t) ft]

Y(@) Llx|? — 3xxT
= YO - V(L30T

841 - VB,

é‘2l3

where we have used formula (1.3.13) to perform the differentiations.
If ¢ tends to zero from above, then we obtain the so-called static term for the
magnetic field of crystal optics:

tY (1) (1 B 3xxT)

1
FEE )T AROEXIO)LE (4.4.34)

Ey=1mEy; =
0 0 0 = VP

Formula (4.4.34) for the static term E was derived first in Ortner and Wagner [217],
pp- 334, 335, see also Wagner [298], (6.2), p. 2676. The corresponding formula for
the static term of the electric field, i.e.,

Ey=-— o

- Y(l)t«/d1d2d3 VVT(Z d-xz)_l/z

Jj=1

was given in Ortner and Wagner [222], Thm. 1, p. 314. A more complicated
expression for Eo was found earlier in Burridge and Quian [40], (5.11), p. 78, and
(B19), p. 93.

Let us yet show that E coincides with E, for large ¢, or, more precisely, in the
component L containing N = (1,0,0,0) of the complement of singsuppE =
W(P(—id), N), see Proposition 4.2.5. In fact, if (¢, x) belongs to the region L, then
t + x¢ # 0 for £ € X, and hence there E; vanishes and E = E.

(c) Let us now reduce the “non-trivial” part E; of the fundamental matrix E,
see (4.4.33), to a one-fold integral over the curve C;, defined as the intersection
of the part X; = {£ € R?; R(1,£) = 0} of the slowness surface with the plane
t+x£ =0.

Similarly as in the proof of Proposition 4.4.7, we conclude that

=10y / 8(1 + x€) e(®) - ®) |y 1(®) (4.4.35)
Y () 19.R(1,£)
05, /C )" o g 06 (4.4.36)

see also (4.4.24-4.4.25). As before, for £ € X, e(§) are normalized eigenvectors of
B1(§) to the eigenvalue 1.
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Note that the affine part of the slowness surface, i.e.,

P(1.§) = det(l3 — B,(§)) = R(1.§) =0

is given by

3 3
X = %%‘ eER:1- Z £ (djp1 + div2) + |EF Z%zdjﬂdjﬂ = 0}

J=1 Jj=1

and is called Fresnel’s surface.

We observe that X; is the union of the two sheets where either one of the
two non-zero eigenvalues A, 3(§) of the matrix B;(§) equals 1. Therefore, X; is
non-singular apart from the points where A, and A3 coincide, i.e., where By (§) — I3
has rank one. For such £, all vectors orthogonal to £ must be eigenvectors of By (£),
and inserting (&,, —£;, 0) yields &, &,£3(d) —d») = 0. Due to the assumption that the
constants d; are pairwise different, we conclude that the singular points of X must lie
on one of the three coordinate planes. The rank one condition then readily yields that
X1 has exactly four singular points, which—due to the ordering 0 < d; < d» < d3—

are given by
1 dz—dl 1 d3_d2
=+ [— ,0, £,/ — , 4.4.37
: ( \/d2d3—d1 \/d2d3—d1) ( .

cf. Liess [165], p. 273.

Hence X; is homeomorphic to two disjoint spheres glued together at the four
singular points of X, which two by two are pairwise opposite and span the “optical
axes,” see Fig. 4.5, taken from Fladt and Baur [75], 6. Abschnitt, p. 346, by courtesy
of Springer-Verlag. In this figure, the outer sheet of X; and two of the four singular

Fig. 4.5 Fresnel’s surfaces
X, and X7, respectively;
taken from Fladt and Baur
[75], p. 346, © by Friedr.
Vieweg & Sohn
Verlagsgesellschaft mbH,
Braunschweig 1975
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points are plainly visible. (Note that the x-axis in Fig. 4.1 corresponds to the &,-axis
in our notation.)

The dual surface of X;, the wave surface X; = {VR(1,£)/3.R(1,§); § € X;},
has the same shape as X;. It is given by

3
{S GR3 1—252( j+1 _+12)+ |§|22§2dj_+11 j_+l2 ZO}’
j=1 Jj=1

see Poincaré [230]; Esser [70], (6.a), p. 203; Garding [92], pp. 359, 360; Wagner
[298], (4.5), p. 2671.

Let us next investigate the singular support of the fundamental matrix
E = Ey + E) of the system A(d) = 30> — B;(V) governing the magnetic field,
see (4.4.31). Plainly, sing supp E C sing supp E(P(—id), N), where N = (1,0,0,0)
and

P(x.£) = det(iT — Bi(§)) = 7 - R(z. )
with R(t, £) as in (4.4.32). Therefore
sing supp E(P(—id), N) = {(¢,0); t > 0} U sing supp E(R(—id), N).
According to Proposition 4.2.5 and formula (4.2.5),
sing supp E(R(—i0), N) = W(R(—1d),N) = (E] N Hy) U C,
where 87 = {(t,x); t > 0, 7 € X{'} and the set of conical refraction C is given by
the union of the propagatlon cones K(Rq ¢ (—id), N) in the directions (1, £) of the

four singular points on the slowness surface & of R, see (4.4.37).
A straight-forward calculation (see Liess [165], p. 75) yields

Rag)(t.n) =4[t — 5(dy + d3)Erm — 5(di + d2)§3773]2

— [(ds — d)éim + (di — d2)$3773] — 2 (dy — di)(d3 — do)1p5.

If y1, y2, y3 is an orthogonal coordinate system with y, = x;, y3 = /d2(§1x1 +E3x3)
and y; running in the direction of (ds — d2)&1x1 + (di — d2)&3x3, then R(1 ) (—i0)
becomes a shifted planar wave operator, viz.

) d ¢ 0 a 12 02 0?
~Ron(Cit) =4[5~ 550 - Vgt ] -2 (5 5n)
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where ¢ = /(dy — d1)(d; — d»)/ds. Its forward fundamental solution is given by

' Y(ct — /(2y1 + c1)? + 4y3)
E(R(.¢(=10),N) = — 8(ys + Vdor),
27'rc‘\/czt2 — (2y1 +ct)?2 — 4y}

see Example 1.4.12 (b) and Proposition 1.3.19.
Therefore the set C of conical refraction consists of the four lids

K(R(1.£(—10),N) = supp E(R(1 £)(—i0),N)

(with £ as in (4.4.37)), which are the so-called Hamiltonian circles, cf. Ludwig
[172], p. 117. Since K(R(1 ¢ (—id), N) is given by the conditions y3 + /d2t = 0

and t > %,/ 2y + c1)? + 4y§, their affine representations, i.e., the intersection
with + = 1, are circles in the planes &x; + &x3 + 1 = 0 with centers
x = —%(51 (dr + d3),0,&(d; + dz)) and diameter ¢, see also Esser [70], p. 206.
Two of these circles, which yield the convex hull of the parts of the wave surface X}

with negative Gaussian curvature, are visible in Fig. 4.5. Summing up we obtain

sing supp E(P(—id), N) = {(t,x) e R* r>0and [x =0 or; € XT]} U

U {(t,x) € R4; t>0, Eix +&5x3+1=0,
& asin (4.4.37)

x| + £1(da + d3)ix; + &3(dy + do)txs + dat® < 0. (4.4.38)

Let us come back to the original goal of determining the singular support of the
fundamental matrix E of the system A(d) in (4.4.31). Similarly as in Example 4.3.9
(b), one applies Proposition 4.3.4 in order to show that sing supp E coincides with
the singular support of E(P(—id), N), which was described in (4.4.38).

Let us yet discuss the relationship of E with the curve integral over C, , in (4.4.36)
in the various connected components of supp E \ sing supp E. First note that the
propagation cone K(A(—id), N) is the convex hull of the set ] = {(z,x) € R*; 1>
0, 7 € X} and that E = Ey + E; vanishes outside this set, i.e., E; = —Ej holds
in the complement of supp E = K(A(—id), N). In fact, if r > 0 and (¢,x) & suppE,
then C,, consists of two curves and the integral in (4.4.36) has to cancel E.
In contrast, in the lacunary part L, i.e., in the component of R* \ singsupp E
containing N = (1,0,0,0), C,, is empty and hence E = E, see part (b). If (,x)
lies in between the two sheets of E}, see Fig.4.5, then C; consists only of one
curve. If (¢, x) belongs to one of the four regions bounded by the outer sheet of &
and by one of the four lids on the convex hull of E}, then again C; . consists of two

curves, which now are both situated on the outer sheet of X;.
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(d) Let us finally calculate the fundamental matrix of the system of crystal optics in
the “uniaxial” case where the two optical axes coincide, if, say, 0 < d} = d, <
d3, i.e., 0< €3 < €] = €).

Without restriction of generality, we can set d; = d, = 1, and we denote d3 by d.
Hence the system reads as

PR —ddk -3 ddo, 9103
AQ9) = ddid, 2 —ddP—02 0203 . (4.4.39)
9193 9203 9 — 9% — 33

We shall use formula (4.4.35) in order to calculate E;. Due to

R(1,§) = (1 —dl§'> = &)1~ |€])) where & = (5.£)",

the part X; of the slowness surface now consists of the sphere [§] = 1 and of the
ellipsoid of revolution d|¢|* + &7 = 1. Furthermore,
615 56 T
Cer-Jer- 1) 1P =1
e(§) =

g_z_i T . 12 2 _
(ergr) sasrg=t

Consequently, the integral in (4.4.35) splits into two summands: E; = F + G, where

EE/ET a68/EP -6k

FZ_% s §6E/IE7 BE/EP —5E |80 +x5) do(§)
—£1& —6& €]
and
=19 EET/ER0) sy
¢ 8”23t {éeRZ;dE’2+é‘32=1}< 0 0) 3 +35) 1)

Y(1) /11> 0 =
=——79 8(t d
a2 Sz( o o (1 +xn)do(n)

with £ = (&, —&)" and ¥ = (x,/~/d, —x1/~/d, x3)" upon using the substitution
m =&Nd, = —&Vd, 03 = .
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Let us consider first the matrix F. We split it up into two parts: F = F| + F»,
with

Fi= g3, [ 667800+ 36) do(®
and F, = g(g (5 ET/1ET )5(t+ x€) do (§).
The integral for F is the simplest one:
F = ;(3 vy / Y(+38) do ()
;(Tt) VYT (27 minf2, 1+ |t|}) = ?V[Y(le —n-(- %)]
= —% 8(t— |x|) — vp(—y(t)ﬁla; o (’3 - 3|f|CzT))

Hence

B+ 1 = 100 @) — 20—+ o Tl (1 - 25)).
(4.4.40)

The element (F,)33 in the lower right corner of F; is also easy to calculate; it yields

(Fa) = 2037 / Y(i + x€) do (€)
() (Y0
- 2m {2 o |} = 5 8= ). (4.4.41)

Finally, let us consider the remaining integrals in > and G, which have the same
form. By differentiation, we obtain

Aze = —

82

@ (%-IE/T
0 &7

0 ) 8" (t + x£)do (§)

i (V/V/T O)/ 8'(t + x£) do(§)
SZ

8772 0 Az
Y(t) V/V/T 0 5
= - 0; 2,1
47 ( 0 AZ) mm{ " le}

I\7!/T
=19 (W O)S(r—m):U
4t 0 A,
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Let us now solve this Poisson equation for F; in R? (where we consider 7, x3 as
parameters) by convolution with the fundamental solution § = % log |X'| of A,
(see Example 1.3.14). This procedure yields F, as solution since, on the one hand,
S and U are convolvable by support (see Example 1.5.11), and, on the other hand,
F, converges to 0 for |¥'| — oo, i.e., (F2,$(t.x3)) € B'(R?) for ¢ € D(R?), see
Schwartz [246], p. 200, for the definition of B.

Therefore,

Y(r) (V'vT 0 1 ,
F=—= 8t — |x|) % —1 :
2= ( . AZ)[ (1 = [x]) % 5~ log ]

Y(r)

In particular, (F3)33 = 8(t— |x|) as we have already obtained above. In contrast,

Ant
, (F)u (F2)12
F, =
(F2)21 (F2)»
is given by
Y(t
F, = o () V VT8t — lx[) * log Ix'[].
Since

S—1x) _dG—IxD) _ ¢ o
T rrp e kD

=50 = - W = Z D s g - ),
2 Jr -2

we can express F, by the logarithmic potential of a uniform charge on a circle in the
plane.

If R is the radius of such a uniformly charged circle, then the logarithmic potential
is continuous, constant for |x’| < R, and equals 2R - % log |X'| for |X'| > R, i.e.,

1
7 log |¥| * §(R — |¥'|) = Rmax{log ||, log R}.
b

Hence

F) = |x3|) V/T[a(,/ — x| )*—log % |]

4 - x3

_Y(t—|X3|) /T / 2
= TVV max{loglxl,log\/t —x%}
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_Ya-ln)
== V-0 ]

_St—D AXT Y=Y =0 [ 1 (w2 ]

dmt Ix/|2 4w le|4 —2)61)62 x% — x%

(4.4.42)
Similarly,

51— |2/d+x2 —ax 0

- 4rtd ’|2 52

x% — x% —2x1x 0

,|4 —2x1% x% —x% 0

0 0 O
(4.4.43)

Y(r—|x3|)Y( 2/ d + 22 —

- 4 P

|x

Collecting all the terms for the fundamental matrix E of the system of uniaxial
crystal optics we obtain from (4.4.40—4.4.43)

E=Ey+F +F,+G=H ( ,/lx’lz/d-l—xz) 1I3Z‘Y(l‘)®8(x)
+HS(— x]) + H4[Y<t— JIX2/d +x§) Y- |x|)] +HsY(t — |x])

where X' = (2) and

2

. x; —x1x2 0
H=—|_ 2 ;
! dmd|x' |*t xxy x 0
0 0 O
2 xx 0
He— 1 1 ! 2 0 x-x"
P [P | P
0 0 |¥J?

2_ .2
X3 —x] —2x1x%2 0

1 20 H t I 3x-xT
—7 |- - , =vp|l——6—-———]|.
arf | TP — 5 0 SR PR e

0 0 O

H4:Vp
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This explicit representation of E was already given in Ortner and Wagner [217],
Prop. 3, p. 342; there it was derived differently from the fundamental matrix of a
particular hexagonal elastodynamic system by a limit process.

Let us mention that the form factors H; and H3 of the two delta terms with

support on the two parts of the wave surface # = |x| and t = /|x'|?/d + x3,
respectively, also result from the more general formula in Wagner [298], Thm. 10.1,
p- 2687, which gives an explicit representation of the so-called sharp waves in the
biaxial case of crystal optics. O



Chapter 5
Fundamental Matrices of Homogeneous Systems

In this last chapter we exploit the homogeneity of a system in order to reduce
the number of integrations in the representation of its fundamental matrix by
inverse Fourier transform. Let us roughly sketch the idea. If P(9) is an elliptic and
homogeneous operator of degree m, we obtain for a fundamental solution E the
following:

E() = f‘l(ﬁ) = i7"Q2m) (1, e PE) ).

Upon introducing polar coordinates § = rw this yields
E() =i"Qn)"(r" 7 yl(@), e P(ro) ™)
=i " ({Iyl(@), Pl@) ™ (" e)
=i " ({lyl(@), P(o) ™ F(@E" ™) (—xw))

Since F' (tf’:’”_l) is explicitly known from elementary distribution theory, this yields
a very symmetrical formula for E, see Proposition 5.2.1 It is, however, of limited
practical value for the calculation of E, see Example 5.2.2.

For practical purposes, it is more convenient to single out one (e.g., the last)
coordinate and to consider the Fourier transforms F7 of homogeneous distribu-
tions 7 represented in the form 7 = Fy(¥'/x,)(x,)% + F—(—x'/x,)(x,)%, see
Propositions 5.1.6-5.1.8. This leads to a representation of a fundamental matrix
of a homogeneous elliptic system A(d) as an integral with respect to & € R"!
of A(€’, 1)~! multiplied by a kernel of the type K(£’x" + x,), see Proposition 5.2.3.
Among other examples, we employ this formula to calculate the fundamental matrix
of hexagonal elastostatics (Example 5.2.6) and to represent the fundamental solution
of the operators

O 4+ 05 4 03 4+ 200395,  a>—1,
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in terms of elliptic integrals (Example 5.2.11). The special case a = 0 was treated
first in Fredholm [82].

5.1 Homogeneous Distributions and Their Fourier
Transforms

The notion of homogeneity of distributions was defined in Definition 1.2.9. The
representation of a homogeneous T € D'(R” \ {0}) in the form T = F - |x|*
with a “characteristic” F € D'(S""!) and the formula for its Fourier transform
appeared already in several places, see Example 1.4.9, in particular formula (1.4.3),
Example 1.4.12, and the proofs of Proposition 2.3.9 and of Proposition 4.4.1. Let
us now explain systematically the representation of homogeneous distributions in
generalized polar coordinates following Garding [89], and the formulas for their
Fourier transforms first derived in Gel’fand and Shapiro [103], see also Gel’fand
and Shilov [104], and Ortner and Wagner [219].

In Example 1.4.9, we embedded L' (S"~!) into D’(S"~") by means of the surface
measure do, i.e.,

L'S™) DS ) fr— (¢ > / 1 do), ¢ e DO =C®ES"),
Sn—1
see (1.3.15), and defined F - |x|* € D'(R") for F € D'(S""') and A € C by

(¢.F-|x") = ((¢(to), F()), "), ¢ € DR"),

see (1.4.3).

More generally, let us consider now a C* function p : R"\ {0} — (0, co) which
is homogeneous of degree one, and let us denote by I' the compact C*° manifold
I' = p~!(1). As in Corollary 4.4.2, we use the Kronecker—Leray form

y = S 1Y dE A AdE A dEar A A d,

J=1

in order to orient I' and equip it with the measure |y|. Then L!(T") is embedded in
D'(T') = D(T') by means of |y|, i.e.,

LND) = D'(N) i f — (¢ - /F f@@@)yl@). ¢ eDI)=C=).
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Furthermore, y is such that the formula

[ rwar= [ o) i)

holds for f € L'(R").
Definition 5.1.1 For p and I as above, A € C and F € D'(T"), let us define F - p* €
S'(R") by

(9. F ") = swlpm) (@ (). F@)ow). 5" Nsw. ¢ € SR,

Note that, for F € LY(T") and ReA > —n, the distribution F - p* is locally
integrable in R” and coincides with the function F(w)p(x)* in “generalized polar
coordinates” p = p(x) > 0, w = [ﬁ e I" forx e R"\ {0}.

Proposition 5.1.2 For p,I', F as in Definition 5.1.1 and A € C\ (—n — Ny), the
distribution F - p* is homogeneous of degree A. Furthermore, the mapping

C— SR : A+ F-p

is meromorphic with at most simple poles in —n — No. At A = —n — k, k € Ny, the
residues are given by

A (_1)k o o
Res F.p'= " = (0%, F(w)) 86,

A=—n—k o
a€Nj
lor| =k
and the finite parts are Pfi—_,_ F - p* = F - p~"7%. These finite parts are

homogeneous distributions in R" \ {0}, but, in case the respective residues do not
vanish, only “associated homogeneous” in R", i.e.,

(F-p7" M ex)=c"* F.p" k4 e Floge- ) Res (F-p"). c>0.
=—n—k

Proof Since the function ¥ (1) = (¢ (fw), F(w)) belongs to S(R) for ¢ € S(R"), the
distribution F-p* is well defined, homogeneous of degree A for A € C\(—n—Ny) and
meromorphic in A due to the properties of the meromorphic function A tﬁ_‘”’_l,
cf. Example 1.4.8.

Furthermore, formula (1.4.1) implies that

_v90)
k!

R ’F' A, — R 7t/\+n—l
A=_enS_k(¢ o") l=_ens_k(w )

= % ((((0131 + -+ wnan)kq&)(()),p(w))
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—1k
= ¥ Ol rwn- .0, pesm
a€Nj

la|=k
Evidently,

Pf (¢,F ,Ol> — A=I_)£_k(l//’ ti—l—n—l) — (w’ t-l_—k_l) — <¢,F . ,O_n_k).

A=—n—k

Finally, if R = Resy=—,— F - ,0A for k € Ny and ¢ > 0, then

R
. —n—k — 1 . A -
(F-p™ ) ex) A—1>133—k(F P T k)(cx)
¢"kR
= I (*'F' *_—)
l—)lg}—k ¢ p A+n+k

— C—n—k .F- p—n—k 4 . lim k(cl _ C—n—k)F . p/\
=" pR 4 ¢ oge - R. O

Conversely, the following structure theorem will show that each homogeneous
distribution on R” has a unique “polar coordinate” representation, i.e., T = F - p*,
at least if A € —n — Ny, see also Gel’fand and Shilov [104], pp. 303, 310; Gel’fand
and Shapiro [103], pp. 40, 43; Garding [89], Lemme 1.5, p. 393, and Lemme 4.1,
p.- 400; Lemoine [161], Thm. 3.1.1, p. 135; Hormander [139], Thms. 3.2.3/4, pp. 75,
79. A generalization of this structure theorem to quasthomogeneous distributions is
contained in Krée [157], (33), (34), pp. 17, 18; von Grudzinski [119], Thm. 4.25,
p. 178; Ortner and Wagner [219], Thm.2.5.1, p. 58.

Proposition 5.1.3 Let p, T be as above and set, for A € C,
S, (R") = {T € S'(R"); T is homogeneous of degree A}.

Then the following are isomorphisms of locally convex topological vector spaces:

(1) ForA € C\ (~n—Np) : D'(T') —> S, (R") : F —> F - p*;
Q) forr=-n—k, keNy: Dy(T)x Ny —> S} (R") : (F,S) —> F - p* +8,

where

D (T) = {F € D'(T); (0", F) = 0 for o« € N} with || = k}
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and

Ny = {T €S, ,(R"); suppT C {0}} = {Z cad?8; ¢y € c}.
la|=k

Proof From the diffeomorphism

)(:R"\{O}—)(O,oo)xr:xr—>(p(x),ﬁ), (.1.1)

we obtain that the mapping
U, : C®(T) AN {f € C*°(R"\ {0}); f homogeneous of degree A} :FF.p

is an isomorphism of Fréchet spaces. Note that the inverse mapping W; ! assigns to
the homogeneous function f the function

(o) — f(('(tw) - = F(1,0),

which, in effect, is independent of 7, i.e., W' (f) = f|r = F € C*°(T"). Applied to
a test function ¢ € D((0, 00) x I'), we obtain

(. F(t.0)) = (p() 7" (¢ 0 ) (). ().
In this way, we can extend the mapping ;! in order to yield the isomorphism

W, : {T € D'(R"\ {0}); T homogeneous of degree A} — {F € D’((0, 00) x T'); ;F = 0}
T (¢ (p0) " (g0 ). T)).

(In order to show that ¥, is well defined, one observes that
((0:$) 0 x) - p) "+ = (V) (B 0 ) - px) "

and that Euler’s equation yields VT(x - px)TA T) = 0. The space {F €
D'((0,00) x T'); 0,F = 0} can be identified with D’(T") in a natural way, and then
the inverse mapping of W is given by W (F)=F- ,OA|RH\{0}, which was defined
in Definition 5.1.1.)

Since F - p* € S'(R") for F € D'(T"), we note incidentally that each distribution
in D'(R" \ {0}) which is homogeneous is the restriction of a temperate distribution
to R"\ {0}. In particular, if A € C\ (—n—Np), then F- p* is homogeneous of degree
A in R” by Proposition 5.1.2, and this shows that actually, for such A,

S (R") — {T € D'(R"\ {0}); T is homogeneous of degree A} : T > T|gn\(0}
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is an isomorphism of topological vector spaces. (Note that 7 € S (R") and
suppT C {0} imply T' = 0, see Proposition 1.3.15.)

On the other hand, for A = —n — k, k € Ny, Proposition 5.1.2 states that F - ,oA

is homogeneous in R” if and only if all the moments (w®, F) vanish for |¢| = k,

ie,if F e D,’((I‘), and, furthermore, 7' with support in O is homogeneous of degree

A iff T belongs to Ny. This yields the isomorphism in (2) and concludes the proof.

|

If T is homogeneous of degree A € C in R”, then its Fourier transform
FT is again homogeneous in R", the degree of homogeneity being —A — n,
see Proposition 1.6.6 (1). In contrast, if 7 is homogeneous in R" \ {0}, but
not homogeneous in R”, then T = F - p‘""‘, k € Ny, and it is associated
homogeneous in R”, see Proposition 5.1.2. Hence its Fourier transform F7 is also
just associated homogeneous, and, as we shall see below, FT has a logarithmic
behavior.

In the next proposition, we give a formula for 7 in terms of the one-dimensional
Fourier transform ]—'xi, which was investigated in Example 1.6.7. This formula
appears in Gel’fand and Shapiro [103], § 5, (16), p. 81; Garding [89], Lemme 6.2,
p. 406; Hormander [139], Thm.7.1.24 and equation (7.1.24), p. 172; Ortner and
Wagner [219], Cor.2.6.3, p. 64. An extension to quasihomogeneous distributions
was given in Krée [157], (49), p. 24; see also Ortner and Wagner [219], Prop. 2.6.2,
p. 62.

Proposition 5.1.4 As in Example 1.4.8, let 1, = Y(1)i* € L} (R!) for ReA >

—1 and denote the holomorphic extension of this distribution-valued function to
C \ (—N) again by tﬁ_. For k € N, we write t;" = Pfi—— tﬁ_. Let p,T" be as in
Definition 5.1.1, A € C and F € D'(T"). Then the formula

FF-pH)x) = (FE (@ 0. F(w))

is valid when interpreted in the following sense:

Vé € SRY) : (¢, F(F-p")) = pry{{p (). (FET (@ - 1)), F(@)) pr(r).-

(5.1.2)
By formulas (1.6.8) and (1.6.5), F£i" " e S'(R}) is given explicitly by
r(x+n)1in3)(ig+e)—l—" :A+n—1€C\ (-N),
+n—1 __
]:ti & 15)’”‘ [1//(m)—10g|§|——51gn§]:k+n—1=—m€—N.
(m—1)!

(5.1.3)
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Proof Let us first assume that ¢ € D(R"),F € L'(T) and —n — 1 < Re A < —n.
Then Fubini’s theorem yields due to Definition 5.1.1

(p. F(F-p")) = (Fp.F-p)

oy /F (F) 1) F@)]y @), )

_ OO A+n—1 —itwx __
= [T [ [ swe =)o o
_ OO A+n—1 —itox _
= [ [ sw( [ Ftee - naa i)

= ((p(x), (FT" ) (wx)), F(w)).

Note that tf’”‘l €D, (R!) for —n — 1 < Re A < —n and hence
o0
(]:ti-l-n—l)(%.) — (e—irf’ ti+n—l> — / (e—irf _ l)t/\-i-n—l dr.
0

Formula (5.1.2) then holds generally for ¢ € S, A € Cand F € D'(T") by density
and analytic continuation. O

Often in applications, it is advantageous to employ the two hyperplanesx, = £1
instead of the general hypersurface I' appearing in Proposition 5.1.4. In contrast
to (5.1.1), we obtain for I' = {x € R"; |x,| = 1} the diffeomorphism

2R\ (R™ X {0}) —> (0,00) X T : x —> <|xn|, i)

|,

where the coordinate plane x, = 0, which in projective geometry represents
the points at infinity, is now excluded from the domain of y. This fact leads to
additional requirements on the homogeneous distribution 7 in order to describe its
Fourier transform in terms of the characteristic of T on the hyperplanes |x,| = 1.
We mention that we have already made use of the characteristic of homogeneous
distributions on the hyperplanes |x,| = 1 in the proof of Proposition 4.4.1 when we
composed the “gnomonian projection” with the Fourier transform.

Definition 5.1.5 As in Proposition 5.1.4, we denote by ti € D'(R") the analytic
extension with respect to A of Y(t)tA, Re A > —1, outside the poles (i.e., for A €
C \ (=N)), and the finite parts otherwise, and we set /* = (tﬁ_)v. For n > 2 and
£ € R™!, we then define §(x' F £'x,)(x,)}. € S'(R") by

(6. 8(' FEx)a)h) = (p(xE0,0).2k), ¢ € SRY. (5.1.4)
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Note that, for A € C\ (-n — Np), Tx = 8 F &'x,)(x,)1™ " represent
the two homogeneous distributions of degree A that have the restriction ¢ on the
hyperplanes x, = %1, respectively. (In particular, the distributions 7+ are, outside
the origin, measures supported by the two half-rays #(¢’, 1), r > 0, respectively.)
Hence a general homogeneous distribution T of degree A € C has, at least formally,
outside of the hyperplane x,, = 0 the representation

T = /Ru—l [F+(é§’)8(x’ _ g’xn)(xn)f‘j'n—l + F_(g:/)g(x/ + S’xn)(xn)x_“_l] dég'/,

(5.1.5)
where F+ = T|,,—+1. In order that (5.1.5) is valid, we have to require an extra
growth condition on the characteristics F4, see the next proposition.

Proposition 5.1.6
(1) Fix A € C and set, for ¢ € S(R"),
FLE) = (0.8( F &)@ i),
Then
, [ (HIEP)HRILD R ae C\ (—n—N),
€

(14 &' 10g(2 + |€ ) Droo R"™) : A = —n — k, k € No,
(2) Let us suppose that

(1 + |§/|2)(H+Rek)/2rD/Ll (Rn—l) . e C \ (_n _ N()),

Fyi e
(L+ &) (log2 + |&'*)'D, (R : A = —n — k, k € Ny,

respectively. Then formula (5.1.5), i.e.,

(. T) = (fL.Fe) + (P F-), ¢ eSRY, (5.1.6)

yields a distribution T € S'(R") which is homogenous of degree A in
R" \ {0} and which coincides with F+ when restricted to the hyperplanes
x, = =1, respectively. In accordance with the corresponding notation for
locally integrable restrictions F+, we shall denote T by

/

T=F, (j—) o)+ F_<—x—) (o)™

Xn
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Proof
(1) Let us first assume that ReA > —n. Then the functions fi are given by the

integrals

o
A€ = [ eEnsnia
0
and hence are clearly C*°. Furthermore, for & # 0, we set £ = |€'|w and

2

substitute s = |&’|¢ which yields

This shows thatfi (€')|€'|Re** is bounded. Since
o0
0fL = / 0¢)(E'r, £ry T ar a e Ny,
0

we conclude thatfi € (14 |g])~+ReD2D, oo (R™T).
Next, forRe A < —n, A &€ —n — Ny, we can use the formula

Ak, ATh Al
(5) (r& +k)) - r+(x)’

see Example 1.3.9, in order to reduce the estimate of fi to the case above.
Similarly, in the case A = —n — k, k € Ny, we employ the formula

= (_kl!)k [(r@10g) " + (W + 1) - w(1)s®)],

see Example 1.4.8, in order to reduce it to the estimation of the integrals
O ey oo ’
gy (&)= | ¢ (E't, £1) logtdt
o s
=& / ¢><a)s, :tm)[logs —log|&1ds, & #0.
0

From g%, € (1 + |&'12)7"/210g(2 + |&'|?)Dyoo (R"™") we then infer that f7 €
(1 + €)% 1og(2 + |E'|*)Dpee (R*™") for A = —n — k, k € N.

By the duality of D/Ll and Dreo, T in (5.1.6) is well defined and fulfills the
asserted conditions. O

The conditions stated in Proposition 5.1.6 can be formulated in terms of

weighted D;,—spaces, which were introduced in Ortner and Wagner [206] and
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comprehensively investigated in Ortner and Wagner [219], see also Guzman-Partida,
Ortner, and Wagner [122] and Wagner [299].
From the representation of 7 in formula (5.1.5/6) (under the hypotheses formu-

lated in Proposition 5.1.6), we also obtain a representation of F7T by applying the

Fourier transform to the distributions §(x’ F &’ xn)(xn)ﬁ:”_l.

Proposition 5.1.7 Let A € C and F+ € D'(R"™") such that the hypothesis in
Proposition 5.1.6, (2), is satisfied. If T = F1 (L) - (o)} + F-(=%) - (x)2 is
defined as in Proposition 5.1.6, then its Fourier transform has the representation

(FT)(x) = (FAT" NEY +x,), F (&) + (FAT DY EY —x,), F-(£)),

which has to be understood in the following sense:

(¢. FT) =Y ((p). (FATNEY £x,)). FL()). ¢ € SRY).

+

(Here the outer brackets can be evaluated due to the hypothesis on F4., since
(FEHEY £x0) = FEO F §x))i™™) € S'RY (5.1.7)

depends on £’ € R"™! as described in Proposition 5.1.6, (1).)
Proof
(a) For¢ € S(R"), we have

(¢, FT) = (F$,T) = D _((FH) ), 6 F Ex) )i, Fo(€))

+

—Z P (), Fu(8(¢ F Ex) )5 7")), Fa ().

Hence it remains to prove the equation in (5.1.7).

(b) For £’ € R"™!, let us consider the points w = (¢, £1)7/+/1 + |§’|? on the unit
sphere S"~! and set p(x) = |x|. Then we obtain directly from the definitions
that

5()6/ ¥ %./xn)(xn)jjn—l — (1 + |§./|2)—(A+n)/2 8o - p)k
and hence, by Proposition 5.1.4, that
]_-(S(x/ ¥ S/xn)(xn)i-i-n—l) — (1 + |S/|2)—()H—n)/2 F(Sw . ,O)L)
_ (1 + |gg- |2) (A+n)/2 (]_-I)H—n 1)(0))()
= (FAH(EY £ x,).
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at least if t”” !is homogeneous, i.e., for A € C\(—n—Ny). But (5.1.7) remains

true also in the case of A € —n — Ny by taking the finite part on both sides. O

When applying Proposition 5.1.7 to the calculation of a fundamental solution
E of a homogeneous differential operator P(d) of degree m, we shall suppose that
E = i"™F T where T is homogeneous of degree A = —m in R" \ {0} and solves
the division problem P(§)T = 1 in R". Hence P(§', £1)F+ = 1, £ € R if
F4 = T|y,=+ and therefore we shall assume that F_ = (—1)”F+. Let us specialize
now Proposition 5.1.7 to this situation.

Proposition 5.1.8 Letn > 2, m € Nand F+ € D’(R’g/_1 Af m < n, we assume
that F+ € (1 + |,§/|2)(”_’”)/2D’L1 (R™™YY, and else, if m > n, we assume that Fy €

(1 + |E'12) =2 (1og(2 + |§’|2))_1D’Ll (R™™Y). We set F— = (—1)"F, and define
T € S'(R") by (5.1.6) for . = —m. Then

Cry'iT(FID() =

2(-1)"? 1 m—n /

W((E +x)" "W (m—n+1) —log |&'x + x,|]. F+-(£")) : m > n, n even,
(—1)n=/2 e ,

W((E X 4 x,)" " sign(E'x + x,), F+(§)) :m > n, nodd,
2= (vp H) T TVEN 4 x,), F(E)) m < n, neven,
27 (= 1)/ (g=m=D gy 4 x,), F+ (&) tm < n, nodd.

Proof According to Proposition 5.1.7, we have
Q)i FIT = i (FT)”

= i [((F" T EY = x0), F () + (F" T (—EY + x0), F-(E))]
= i"((=)"(Fr" T EY +x0) + (FETTHEY + x), FrE)).

From Example 1.6.7, in particular formulas (1.6.5) and (1.6.9), we obtain

—ifymn i
(1—)' [w(m—n—i- 1) —log|t| — ;signt] tm>n,
]_—t;m+n—l — (m — n)
in—m—Z (Vp %)(n—m—l) + in—m—lﬂg(n—m—l) “m<n,

(5.1.8)
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and hence

]_—t;m+n—l 4 (_l)m(]_-t;m-l—n—l)v

L [(m—n+1)—loglt]] : m > n, neven,
(m—n)!
: _t m—n
_17T( 1) signt :m>n, nodd,
= (m—n)!

Sjr—m—2 (vp % )("—’"—” ©m < n, neven,

Zin—m—lﬂg(n_m_l) m<n,n odd.
(5.1.9)
This immediately yields the four expressions for T in the proposition. O

Note that the four formulas in Proposition 5.1.8 coincide with the corresponding
representation formulas for a fundamental solution of a homogeneous differential
operator P(d) in Gel’fand and Shilov [104], Ch.1, 6.2, (2)—(6), p. 129, if FL =
P(£’,1)7! and the integration over = 8" ! is transformed into one over &, = 1
by the “gnomonian projection,” cf. also the proof of Propositions 4.4.1 and 5.2.1
below.

As the following illustrative example will reveal, it is often advantageous in
concrete calculations to use, instead of the kernel in (5.1.9), the one in (5.1.8),
which is a boundary value of a holomorphic function in Im# < 0 and thus allows
the application of the residue theorem.

Example 5.1.9 In order to illustrate the “projective representation” of homogeneous
distributions in Definition 5.1.5 to Proposition 5.1.8, let us calculate a fundamental
solution of the iterated wave operator (3> — A3)?.

As a solution of the division problem (2 — |£|*)?T = 1, we use

T N2 2\—2
T = lim((z —ie)” &%) .

i.e., T has the form in (5.1.6) with F+ = lim.\o ((1 Fie)?— |§|2)_2. More precisely,
T coincides in R* \ {0} with T} = F+(§) . 1;4 + F_ (—%) - 7~* and therefore, by
homogeneity, T = T} + ¢4, c € C.

Then the fundamental solution E; = F~!T} of (Bt2 — A3)2 is, according to
Proposition 5.1.7, given by

Ey = @m)[((FI) (—6x = 0. F(§) + (FIT) (=x + 1. F-(©))]
= @m) ™ lim| ((Fiy)(Ex —0). (1 —ie)” —[P) )

FUEE G+ 0. (1 +ie) — 57 )]



5.1 Homogeneous Distributions and Their Fourier Transforms 345

Note that the hypothesis in Proposition 5.1.6, i.e., F+ € (10g(2 + |§|2))_1D/L1 (Rg)
is satisfied.

Due to Example 1.6.7, F t:_l = ¥ (1) — log(if) where log z denotes the principal
branch of the logarithm, i.e., the one with a cut along (—o0, 0]. Hence, by radial
symmetry with respect to x,

Y (1) —log(igx—n)  y(1) —log(iex + r))} ‘
[(1-i02 = gP7 [ +i02 - [¢PT’
2mpdp
(1-i02 - & — pI’
3 ) © 2npdp
+[w (1) —log (il +1)] /0 (i - pz]z}d&

1 /“[log(i(&lxl—t))—w(l) log(i(sllxIth))—w(l)}dg
T 202n)3 (1—i0)2 — &2 (1+i0)> — & v

E; =(@2m)~™* [
R3

= e [ v -t -] [

—0o0

—00

where 1 &+ i0 symbolizes a distributional limit of 1 & ie for € \{ 0.
By changing &) to —£) in the second integral, we obtain

1 Re/m 10g(i(§1IXI—t))—1/f(1)d

B a-op-e

&

o  tog(i(éi x| — 1) v (1)
T207) Re[/_w 1—i0+& ai
% log(i(&1|x| — 1)) — (1)
R s d&}’

the last two integrals being understood as conditionally convergent integrals of the
form limg_so0 Re ff )

Instead of considering the limit for € \ 0, we use in the first integral the complex
variable z = & —i0, & € R, running infinitesimally below the real axis. Since
log(i(z|x| - t)) is holomorphic for Imz < 0, we can close the contour in the lower

half-plane and conclude that the first integral vanishes, i.e.,

0.

. /w—iO log(i(chd —0) — v (), _

—060—i0 14z
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In fact,
0 log(i(Re|x| —¢ ,
lim Re i/ glReM = 0) b oo g,
R—o00 — 1 4+ Rel?

0
= lim Re |:in log(R|x|) — (5 +9) d(p} =0. (5.1.10)
R—o0 —

Similarly, closing also the contour for the second integral in the lower half-plane
yields

Re /°°+i° log(i(zlx| = 1)) — (1)

dz = Re [—27tiRes log(i(zlxl — 1)) — w(1)}
00+i0 1—z

z=1 1—z
— Re [27ri[10g(i(|x| —1) - w(l)]] — 7% sign(r — |x|)

and, therefore,

1
E, = Ton sign(t — |x|).

Note that E = F~!T = F~!((x —i0)? — |>§|2)_2 is the forward fundamental
solution of (3> — A3)?, and in fact, E = (87)~'Y(t — |x|) = E; + (167)7!
in accordance with T = T; + ¢4. (The forward fundamental solution E is a
special case of formula (2.3.12), which refers to the iterated wave operator for
arbitrary dimensions.) So we conclude in hindsight that ¢ = 3. Of course,
the value of the constant ¢ can also be directly inferred from the equation
T=T +cs.

0

5.2 General Formulas for Fundamental Matrices of Elliptic
Homogeneous Systems

Let us first apply Proposition 5.1.4 in order to deduce the classical formulas for
fundamental matrices of systems of homogeneous partial differential operators
according to G. Herglotz, F. John, .M. Gel’fand, and G.E. Shilov.

Proposition 5.2.1 Let A(§) be an | x | matrix of polynomials which are homo-
geneous of degree m. Let p,T',y be given as in the beginning of Sect.5.1 and
suppose that p = p, detA(£) does not vanish identically and F(w) € D'(I')™!
Sulfills A(w)F(w) = I and F = (—=1)"F. Then a fundamental matrix E of A(d)
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is given by E(x) = pr) (K (@ - x), F(®))p/(r) where Ky, € S'(R}) is defined
as

" log |t :m > n,neven,

(_1)(n—1)/2
4Q2m)—1(m — n)!

""signt i m > n,nodd,

Ky =
(=)0 dynem—-t ]
—(—) Vvp— :m <n,neven,
2m)r dr t
—1)(»=D/2
(zéﬁ (n=m—=1) m<n,n odd.
)"

Proof We apply Proposition 5.1.4 to

E =i"F Y F-p™) = Qu)™"F(F-p™)

= 2n) """ pm (FL" (@ - x), F(@)) (1)

Since F is even or odd, respectively, in accordance with m, we conclude that

im

= 202a)

E, ([FE"=" + D)"(FE ) (0x), F(0)).

The above formulas for K,,, in the four cases are then implied by (5.1.9) when
omitting polynomials of degree m — n in the first case. O

In the special case of p(x) = |x|,i.e., ' = " ! and y = do, the four formulas
for K,,, in Proposition 5.2.1 coincide with Gel’fand and Shilov [104], Ch.1, 6.2,
(2)—(6), p. 129. In the case of elliptic homogeneous polynomials and m > n, the
first two formulas in Proposition 5.2.1 appear in Herglotz [125], I, (185), p. 125,
and Herglotz [126], pp. 528, 610; Gel’fand and Shilov [104], Ch.1, 6.1, (11), (12),
pp- 126, 127; John [151], (3.54a), (3.63), pp. 66, 69; Shimakura [251], Ch.III,
(1.23), p. 49; Galler [86], (3.1), p. 9.

If P is a real-valued homogeneous polynomial of principal type (i.e., V€ € R" \
{0} : VP(§) # 0, cf. Hormander [138], Def. 10.4.11, p. 38), then a solution F €
D'(T') of P(w)F(w) = 1 can be represented as a principal value distribution:

F=vpPw) ' = 11\% Y(|P(w)| — €)P(w)~' € D'().

In this case, the formulas in Proposition 5.2.1 were deduced first in Borovikov
[21], (5a)—(5d), p. 16. Let us also refer to Garding [89], Note on p. 406, where it
is stated that the formulas in Proposition 5.2.1 are valid for general homogeneous
operators P due to the solution of the division problem in Hormander [135]. (In fact,
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if P(§) = detA(&) does not vanish identically, then there exists G € D'(T')
with P - G = 1 on account of Hormander [135], Thm. 1; see also the proof of
Proposition 2.3.9. Since P is homogeneous of degree Im, we can suppose that G is of
parity (—1)" and that F = A . G fulfills F = (—1)"F.) By means of “Borovikov’s
formula,” a fundamental solution of the homogeneous operators of degree three in
three variables P(9) = 93 + 93 + 03 was constructed in Wagner [291], and more
generally, for P(3) = 83 + 33 + 93 + 3ad,0,93, a € R, in Wagner [290].

Whereas, for general A, the formulas in Propositions 5.1.7 and 5.1.8 are
better suited to a further reduction of the number of integrations, the formulas of
Proposition 5.2.1 are applied in the literature for rotationally symmetric operators,
i.e., for powers of the Laplacean Ak, and for completeness we shall repeat this
calculation in the next example in the case of odd n.

Example 5.2.2 Let p(§) = |§], T = 8", P(§) = |§|* for £ € R" and k €
N. Then F(0) = 1 for @ € $"! fulfills F = F and [g Ky(wx) do (o) is a
rotationally invariant fundamental solution of Aﬁ. For illustration, let us evaluate
this integral over the sphere in the case of odd n.

First, if 2k > n, then we obtain, by rotational symmetry,

(—1)n=h/2 2k—n
E= ook =) /S,,_l o> do (@)
(_1)(n—l)/2|sn—2|
= 4Qn) 2k —n)!
(—1) =012 (i=1)/2 |y A

C4Qry k=TS o

/ (Jx| - | cos ¥ |)* " sin" % 9 A
0

1
PRHD/2(1 ) 0=3/2 g

_ (=) D2 2 N )
2ng (=D/2T 2k —n + 1)1"(”2;1) (k—1)!

B (—1) (=172 |y 2k=n B (_1)k|x|2k—nl—w(§ —k)
22k7rn/2—11"(k _ % + 1)(k _ 1)! 22k7rn/2(k_ 1)!

in accordance with (1.6.19). (In the last two equations, we employed the doubling
and the complement formula of Euler’s Gamma function, respectively.)
Second, if n is odd and 2k < n, then

— (_1)(n—1)/2 / 5(;1—2/(—1)( )d ( )
= 20T o w - x)do(w
(_1)(n—1)/2|sn—2| /n L o
S A LA | §(—2k=1) . 9 =29 do
2oy | (Jx| - cos ¥) sin

(_1)(n—l)/227r(n—l)/2|x|2k—n

_2\(=3)/2 ¢(n—2k—1)
STy ()
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_ (DR () DR (DT (n — 2K)
2=l (=20 (25 (k=D (L — k)

_ CDE PTG - k)

o 2%pn2(k—1)!

see (1.6.19). O

For general homogeneous elliptic systems that are not necessarily rotationally
invariant, we use Proposition 5.1.8, which distinguishes one variable and hence is
not as symmetric as Proposition 5.2.1, but is better suited for calculations, see, e.g.,
Wagner [292].

Proposition 5.2.3 Let A(§) be an | x | matrix of polynomials which are homoge-
neous of degree m and such that P(0) = detA(9) is elliptic. Then a fundamental
matrix E of A(0) is given by the formulas

n/2—1
(2275)”1();71 )' /(E ¥+ x2)" " log |EX + xaAE', 1)TAE : m > n, neven,

7(— 1)(n /2 m—n . I AT T
(E X+ x,) sign(&'x" 4+ x,)AE", )" 'dE": m > n, nodd,

EQ) = Qm)r(m—
—2 —1 e n—m— 1.7 / _
( (23‘[)" ((Vp %)( l)(%_ X +x) A1) l) :m < n, neven,
_1)(n—D/2
: é—l)n-l (U E Y +x).AE DT . m < n, nodd.

If m < n, then E is homogeneous of degree m — n and E is uniquely determined
by the property of homogeneity. If m > n and n > 3 is odd, then E is the only
fundamental matrix which is homogeneous and even.

Proof Due to the ellipticity of P(d), the estimate
3C > 0:VE e R": |P(§)| = ClE|™
holds and therefore
Fr(E)=AE )7 =A4¢E pPE D)™, FeRT
fulfills
Fie (L+ €)™ og2 + [€')'L'R"™)

and hence the assumptions of Proposition 5.1.8 are satisfied. The uniqueness of E
in the case of odd dimensions n follows from Proposition 2.4.8. O
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Example 5.2.4 As a first application of Proposition 5.2.3, let us derive a fundamen-
tal solution of the operator

P(a) — (a% _ ZZaZ) (82 —282)1
= (37 —2(Re2)910 + |2°33)! (37 + 2(Re2)91 + |2[*33)"

forz € C withImz > 0 and [ € N. In particular, if z = € +ivV1 —€2, 0 <€ < 1,
then

P(0) = (3] +2(1 — 263705 + 35)’

is the iterated operator of the orthotropic plate, cf. P. Stein [262] for [ = 1. A
fundamental solution of P(d) can also be deduced from Proposition 3.3.2, which
goes back to Galler [86], (4.1), p. 15.

From the formula in Proposition 5.2.3, we infer, by setting m = 41,

/ (éx1 +x2)4’_210g|§x1 + x2| d
27r2(4l 2)! '

2)1(%‘2 _ ZZ)I

As usual, we define the complex logarithm in the slit plane C\ (—o0, 0]. For x; # 0,
the function w — log(wx; + x») is holomorphic in the upper half-plane and

log |éx1 + x| = li\I‘I})RC log((§ + i€)x; + x2).

Therefore, we can apply the residue theorem and conclude with z; = z, zp = —2
that
1 (wxy + xz)‘” 2 log(wx; + x2)
=————Re|2 R
2724 = 2)! [ i Z g — 2w — )l
_ 1 . d \"7" (wxy + x)¥ 2 log(wxy + x2)
 r@Al-2)1(1—-1)! dw (w+ 2)l(w? — 22!
W=z
n i =1 (wx; + xz)‘il_z log(wx; + x2) 52
dw w—2)!w? —22)! B}
w=—z

A different representation of a fundamental solution of P(9) is given in Galler [86],
pp- 54-56.
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The particular case [ = 1 in formula (5.2.1) yields

£ 1 Im |:(zx1 +x2)?log(zx) +x2)  (=2x1 + x2)? log(—2x; + xz):|
27 22(z2 — 72) 22(22 = 72) ‘

Forz =€ +iv1 —€2with0) <€ < %,Weobtain

1
" rJl—ée

[(x% + %xlxz + x%) log(x% + 2exixy + x%) +

xX2—x2 2e 1—€2x2

+(2 =2 x1x24x3) log (X3 —2€x1x+x3) |+ =2 arctan| ——————1— ).

(7 =2 x102+3) log (x{—2€x1x2+x3) | Lome 212 + 2

In order to deduce the fundamental solution in Wagner [285], p. 44, which is

symmetric in xj, X, we have to subtract the polynomial 1617(x% - x%) arcsin €. This
yields

- — €
E=fg-"L Z arctan
16me N
1
= W[(x% + %xlxz + x%) log(x% + 2ex1x0 + x%) +
b4 —€

) N x% —x% € x% —xg
+ (x% —Zx1% —l—x%) log(x] — 2ex1x2 +X%)] + 16 arctan( )
e

as a fundamental solution of the operator
I +2(1-26%)3795 +935, O<e<l.

By the method of parameter integration, an equivalent result was derived in
Example 3.1.8, see in particular formula (3.1.15). O

Example 5.2.5 Let us apply now the representation formula for a fundamental
solution in Proposition 5.2.3 to products of anisotropic Laplace operators in even
space dimension. Except for the case n = 2, which was treated in Example 3.3.3,
this was omitted in Example 3.2.7 since the method of parameter integration in this
case leads to more complicated expressions, see Ortner [201].

We consider the operator

P(0) = H(An 1+ b232 neven,n >4, 21> n,
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where b; are positive and pairwise different. The formula in Proposition 5.2.3 yields
the following representation of a fundamental solution E of P(d) :

2(—=1)"*! (E'X + x,)2" o /
£= lo + x, | dE'.
(ZH)H(ZZ - n)' Rr—1 1_[;=1(|§/|2 + bjz) g |‘§>: X X, | S

If we introduce polar coordinates in R"™!, ie., if we set p = |£'], £&X =
p|x'| cos ¥, then we obtain

2(_1)11/2—1 . 27.[11/2—1 9] pn—de 5
@uy'@-n! TG-DJo [T (0 +5)

g / (P | cos § + )" log || cos & + x| sin" ™ ? d
0

_ ( l)n/Z 1 / n de
22 (21— )l(2 - 2)! [Ti=, (02 +b2)
x/ (p|x'| cos ¥ + x,)* " log | p|x| cos ¥ + x,| sin" > ¥ do.
0

Upon inverting the order of integration and considering log(z|x'| cos ¢ + x,) as
a holomorphic function of z for Imz > 0, we can apply the residue theorem and
conclude that

(= 1)n/2—l Re[/ 27[12 (iby)"~ 31_[(192 b2) Ly
2” IJT”/Z'H(Zl—n)'(ﬂ—Z)‘ oy

x (ib;|x'| cos ® + x,)* " log(ibj|x| cos & + x,,) sin" > & dﬁi|

1
T 22— (2 — 2)12 g(k )%
]

1
x / (ibjl' | + x,)* " log by |x[u + x,) (1 — u?)" > 72 du.
-1

(Note that the last integral is real valued as the substitution u to —u shows.)

Similarly as in Galler [86], pp. 57, 58, we evaluate the last integral by partial
integration and differentiation with respect to |x'|. Setting r = |x’| and b; = q, this
yields for n > 6 the following:

1
J = / (iaru + x,)* " log(iaru + x,)(1 — u?)"*72 du
-1
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_ n—4
@l —n+ Diar

x u(l —u?)"*73 du

4—n 18 /1 Gari + x,)?"+2x
= <=0, iaru + x,
QRI—n+1)QRl—n+2)a®> r J_

! 1
/_l(iam + x,) 2! [log(iaru + x,) — m] X

. 1 1 _
x [log(lam + x,) — Tl 2 +2](1 —®)"2 3

Repeating this process 5 — 2 times we obtain an explicit formula for J :

P 4-—n)(6—n)---(-2) (l )n/2—2
QRl—n+1)Q2I—n+2)---2l—4a—*
1 -4
/ (iaru + x,)** |:10g(iaru + x,) — Z 7:|du
-1 j=21=n+1

3 (_1)”/22”/2_2(§—2)‘(2[—]’!)' 18 n/2—-21
= 21— 3)lia"> GO

X {(xn + iar)zz_3 [log(x, + iar) — Ci] — (x, — iar)zz_3 [log(x, —iar) — Cz,l]}

3 (_1)”/22”/2_1(§—2)‘(2[—]’!)' 18 n/2—-21
Ql=3)la> CON-

r r

r

x Im [(x, + iar)* > (log(x, + iar) — Ci)],

where Cj, = ZJZI —n 1" This yields

(—1)"/? n/2-21
= Qa0 —3)! Z(H(”2 5" )( a) 7
x Im[(x, + ib;r)* 7 (log(x, +ibjr) — Ci)]. (5.2.2)

where r = || = (33 + -+ +x2_)V/2
Obviously, the complex logarithm log(x, + ib;r) can be expressed by log(x? +
b?|¥'|?) and arctan(b;|x'| /x,); this leads to the formula in Galler [86], (15.1), p. 59.
Let us yet specify the formula in (5.2.2) for the case n = 4, I = 2. Then we
obtain the following fundamental solution E of

P(d) = (A3 + bI33) (A3 + b393), by >0, by > 0, by # by.

1

=~ 4nr bz bz Z( 1y~'Im [(x4 + ib;r) (log(xs + ibjr) — 1)]
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1
= +
42(by + by) | 8w2(B2 —b?) [

by log(b%r2 + xﬁ) — by log(bgr2 + xﬁ)]

X4 ((bl —bz)rx4)
4+ ————— arctan| ——
472r(b3 — b?) bibyr? + x5

with r = (&2 + x3 + x3)!/2. This is in accordance with the example in Galler [86],
p- 59. O

Example 5.2.6 Let us deduce now from Proposition 5.2.3 Fredholm’s formula,
which refers to the case of a system of homogeneous quadratic operators in R3. We
then specify this formula for the system of hexagonal elastostatics deriving thereby
Kroner’s formula.

Let A(£) be a real-valued [ x [ matrix of polynomials in R* which are homoge-
neous of second degree and such that P(d) = detA(d) is an elliptic operator. Let
E € S'(R*)™ be the unique homogeneous and even fundamental matrix of A(d).
We aim at deriving the explicit formula for £ found first in Fredholm [81], see also
Kroner [158], Willis [303], Ortner and Wagner [217], (F), (F’), (F”), pp. 332, 333.

(a) We apply Proposition 5.2.3 and obtain

1
E— _ﬁ (85X +x3),AE", D7)
§1X1 +X3 -1
47r2|X2| Sl’ X ) "
x|

~an? A(Slxz’ —E1x1 — x3,%0) " dEy,

see Fredholm [81], formula (6), p. 4, for the second-last expression.

Since P(zxp, —zx; — X3,Xx2) is a real-valued polynomial of degree 2/ in
z € C which does not vanish for real z and generic x, it generically has,
with multiplicity, / complex roots zz = z(x), k = 1,...,/, in the upper
half-plane. Let us suppose in the following that P has no multiple factors and
hence that these [ roots are pairwise different for generic x € R3. If we set
wi = wi(x) = (—zx(x)x; — x3)/x2, then the residue theorem yields

E(x) = 5 ZResA(zxz,—le —x3.x0) 7"

I=Zk

|xz|1 Z A(zpxz, Wixa, x2)™
0.P(zx2, —2X1 — X3, X2)| =4,

__isignx Z Alze, wi, 1) 523)
21 =1 ()Czalp—xlazp)(Zk,Wk, 1)’ o




52

(b)
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see Fredholm [81], (9/10), pp. 6,7; Garding [95], p. 129; Kroner [158], p. 404;
Willis [303], (A12/13/15), p. 433; Ortner and Wagner [217], (F), p. 332.
Formula (5.2.3) has to be interpreted in the following sense: The summands
in (5.2.3) are well defined almost everywhere and determine thereby the
fundamental matrix E since E is C* outside the origin and homogeneous
of degree —1 and hence locally integrable. Note that (zx, wy), k = 1,...,1,
in (5.2.3) are those intersection points of the algebraic curve P(z,w,1) = 0
with the line zx; + wx, + x3 = 0 which fulfil the condition Im z; > 0.
Let us yet specify formula (5.2.3) for the system of hexagonal elastostatics.
According to formula (2.1.13) in Example 2.1.4 (d), the matrix B(§) of the static
hexagonal system has the form

a €l + as€d +asEl (a1 — a6k azé1&
B(§) = (a1 —an)é1€&  aél + a1€3 + asé; a3k
az€i & az§r§3 as(E} + &) + ax§3

As has been noted in Examples 2.1.4,4.3.10, and 4.4.5, the determinant P(§) =
det B(£) splits, i.e., P(§) = Wi (£)R(§) where R(§) = W W, + p*W, and

P> = EL4+E, Wi = asp’+asé;, Wa = (a1 —as)Wa—a3;, Wi = asp” +ark3.
As in Example 4.4.5, we shall suppose that

a1 >0, a; >0, ag >0, as > 0and |a3| < as + Jaia;.
Following Kroner [158], p. 404, we shall make for simplicity the additional

assumption that |as| < |as — \/a1az|. Then the discriminant A of the quadratic
function

R(&1, 6, 1) = ajasp* + (a1a2 — a3 + a2)p* + azas, o’ =& +&,
in o2, i.e.,
A = dld} + ai + at — 2d5(ayay + a2) — 2aiaxd?
= [(Vaiaz + as)* — &3] - [(Varaz — as)* — a3

is positive and hence R(&, &, 1) is a product of two real-valued positive
quadratic functions:

ayay —a% +a§ + VA
>
2a1a5

R(1,6.1) = a1as(p” + Co)(p> + C3), Cos = 0.
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The zeros £ = (zx,wx), kK = 1,2,3, are determined by P(z, wy, 1) =
0, zkx; + wixa + x3 = 0 and Imz; > 0. In particular, a first zero results from
Wi, 1) = 0,ie, p* = —%, and that yields

—x1x3 + i) /x5 + Z2 —xpx3 — bxy sign(xa) (/o3 + E[x'|?

W =
P2 C P2

1 =

Due to Wi (z;,wy, 1) = 0, we obtain

(2201 P — x102P) (21, w1, 1) = (R - (0201 W, —x182W1))(zl, wi, 1)

= (,OZWZ)(ZI, wi, 1) - 2a4(x2z1 — x1wy).

Similarly, the formula

R—EW, —£6W, —a&i6W,
B(g)ad = —Slég.sz R— gZZWZ —Cl3§2§3W1 , W= 611,02 + a52§-32,
316 W —a3fo55W WiWs
(5.2.4)

cf. (4.4.17), yields for W; = 0, i.e., ,02 = —Z—i,
W% —Z1W1 0
Bzi.wi. D = | _zw, 20| Walzi,wi, D).
0 0 O
Since E is necessarily real-valued, we can take the real part of the resulting

expressions. When inserting B(z;, wi, 1)* into formula (5.2.3), this implies the
following for the first summand E; in the fundamental matrix E of B(9) :

2
1 wi —Z71W1 0

£ = Re| —zjwy 2 0
drras . /x3 + < |x)? !
3 0 0 O
| B3 =3t —xix(d + 1) 0
= 24 2 2.2
dmas|x'|*r —x0(3 + ) g —xr 0
0 0

: _ 2 as |4/12
with rp = /3 + & |x'|2.
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Similarly, for k = 2,3, E,i = (zx, wy) are the solutions of R(zx, wy, 1) =

0, zxx; + wixa + x3 = 0 with Im z; > 0. This yields 0> = —C3 3 and hence
—x1X3+i[x2| /X5 + C |/ |2 —xpx3 — ixy sign(x2) 1/ x5+ Cy[x' |2
U&= 2 v Wk = 2 ’

where here and in the sequel k = 2, 3.
Since R(zx, wi, 1) = 0, we obtain
(0201 P—x102P) (2 Wi 1) = (W1 - (1201 R — x102R)) (24, Wi, 1)
= (a5 — asCy) - (—2a1a5Cy + aras — a3 + a2) - 2(xazx — X1w)

=2i (a5 — a4Ck)(—1)k_l \/X(signxz)rk
where r;, = ,/x% + Ci|x/|%. Also, from (5.2.4) and R(zy, wy, 1) = 0, we infer

—2W, —zwiWa —a3u W,
d - . -
B(zy, wi, 1)a = | —zwmi W, —W]% Wy, —asw Wi |

—azu Wi —aswiWy - WiWs

where we have set V~V1 = as — ayCy, W3 = as — a1Cy, Wz = (a1 — a4)(az —
a5Ck) — Cl%.

Therefore, we finally obtain E = E| + E, + E3 where Ey, kK = 2, 3, are given
by

Wa (6222 — x2r2) Waxixa(x2 + 12) asWixixs|x'|?
szlxz(x§ + r,%) Wz(x%x§ - x%r,%) azWyxaxs3|x'|?

WY P aWioxs|X)? —W W x|

(—Dt!

E=—0r
¢ 4 Wi Ar X |*

(Note that the constants ‘7V,~ also depend on k = 2, 3.)

Up to a missing factor 1/(ajasas), this result was deduced first in Kroner
[158], (6), p. 405. Further derivations can be found in Willis [303], (36), p. 426;
Mura [185], (5.37), p. 29; Chou and Pan [50]. ]

We now aim at representing fundamental solutions of homogeneous elliptic
operators in three variables by algebraic integrals. For this purpose, we present
a variant of the formula in Fredholm [82], (4), p. 3, which was later rederived in
Herglotz [125] and in Bureau [33], (40), p. 31.

Proposition 5.2.7 Let P(§,, &, &) be a homogeneous elliptic polynomial of degree
m = 2k, k > 2, in three variables. For (x1,x2, 1) € R?, leta, = a,(x1,x2,1), v =
1,...,r, be the solutions of the equation P(xy,, —A — x10t,, x2) = 0 which fulfil
Ima, > 0. We suppose that P has no multiple factors and hence «, are pairwise
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different for almost all x € R3. Then a homogeneous fundamental solution F of P(d)
is given by

o 151gnx2 / Z (x3 — A)"3dA
2m(m—3)! (@1 P) (@t 21 1) -y — (3,P) oy — A0 1)

(5.2.5)

=1

Formula (5.2.5) has to be interpreted as explained for formula (5.2.3) in Exam-
ple 5.2.6.

Proof From Proposition 5.2.3, the equation signt = 2Y(¢f) — 1 and by omitting a
homogeneous polynomial of degree m — 3, we obtain the following fundamental
solution F of P(0) :

dg’
=i A EY +x)" (5.2.6)
47‘[2(111 — 3)‘ /\/{;-/GRZ;E/X/+X320} P(S/’ 1)
For x, # 0, the substitution « = &, A = —&'x' = —&x; — &, and the residue

theorem yield

F ! / s — 2y / - do dx (5.2.7)
= X3 — _ 2.
42(m — 3)! x| J_oo } —00 P(a, —“;%“, 1)

dA
— — )" 3 )
2m(m—3)!|x| 3)'|x2| / (5 =4) Z 1 (1P — L0yP) (o, —2E2 1)

This implies formula (5.2.5), which holds for almost all x € R>. Let us yet observe
that the integral in (5.2.6) is absolutely convergent and hence the same holds for
the integral in (5.2.5). However, in general, it is not legitimate to interchange the
integral in (5.2.5) with the sum over v. O

Example 5.2.8 As an introductory example to formula (5.2.5) in Proposition 5.2.7,
let us calculate anew the unique homogeneous and even fundamental solution E of
a product of anisotropic Laplaceans in R :

P(3) = (Ag + 1103) (A + 1203, AL >0, > 0,41 # Ay,

see Example 3.2.7 (c).
In this case, the roots o, = «, (x1,x2, A) of the polynomial P(xe, —A — x1¢, x7)
that lie in the upper half-plane satisfy one of the equations

2 (A +x10(u)2

o
v X

+ A, =0, v=1,2,
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and thus are given by

A +iloly/A2 + 4,02
2

o P

, p2=x%+x§,v=1,2.

A straight-forward calculation yields

A + x1ay A + xja,
- - _ 1) X1
X X

(81P)(ozu, - , 1) -xz—(azp)(au, -

=2i(=1)"(A1 — Ap) signxa /A2 + A, 02,

Hence

1 /‘X3 [ 1 1 i|
F=———— X3 — A — di
4 (A1 — A2) —oo( ’ : \/AZ + Ay p? \/AZ + Arp?

X3+ /x3 +Alp2)}

1 2
= Aap? — \Jo2 + Aip? +x3log[ —
47T(Al_k2)|:\/x:’)+ 2P \/X3+ ' T Og(x3+ )C2+A.2,O2
V3

Note that F differs from the unique homogeneous and even fundamental solution

A
m log )k_; The fundamental solution
E is also a limit case of formula (3.1.18). O

E in (3.2.23) just by the linear term

Example 5.2.9 Let us deduce now from Proposition 5.2.7 the even and homoge-
neous fundamental solution E of I. Fredholm’s operator P(9) = 9} + 95 + 05.
Up to a multiplicative constant, £ had been calculated in Fredholm [82] using the
addition theorem for elliptic integrals. By the method employed here, which avoids
the use of this addition theorem with the help of the transformation formula for
double integrals in Proposition 5.2.10 below, E and, more generally, the fundamental
solutions of the elliptic real-valued operators Z;=1 Z,;l qikafag were derived in
Wagner [292], Prop. 3, p. 1198.

(a) We first notice that E is homogeneous of degree one and hence £ = Z;=1 X;0,E
holds by Euler’s identity. By the symmetry of P(d) with respect to the three
coordinates, it then clearly suffices to find a representation of d;E(xy, 1, x3).

Since 03 is odd with respect to x3, we then obtain from formula (5.2.7) in
the proof of Proposition 5.2.7 that

RE(, 1, x3) ! /” d/\/w do
x1,1,x3) = ——
I 3 472 J, oo Plat,—A —x1a, 1)

B 1/’(3dA/°o do
C 4n? ), o 0 (A Fxj@)t 17
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Let us assume that x3 > 0 and substitute (o, 1) = = '/4(s, 1). This yields

BAE(. 1.x3) 1 /°° du [ ds
x1,1,x3) = ——— — .
L 1672 [t B oo st (L xis) + 1

Abbreviating A = 1 + x{ and using the shift 7 = s + (x}/A) furnishes

1 ® d © dr
03E(x1, 1,x3) = ——/ il S (5.2.8)

16724 Jy=+ I8 J—oo t* +pP2 +qt + 1
where
p:6_x% q:4x1(1—x‘1‘) r:xi‘—x‘l‘—i—l ©
A2’ A3 ’ A? A

(b) For the evaluation of the double integral in (5.2.8), we make use of for-
mula (5.2.10) in Proposition 5.2.10 below. In our case, r(u) = cu +d, ¢ =
Al d = (% —x} + 1)A~* and hence

n(z) = (z —2pz+p*—4d + 2)

A, 12x 468 —40xt + 4 1633 (1 —xf)?
= 2 z— e + A62 .

Therefore, by Eq. (5.2.10) below,
1 22 1 z
33E(x1,1,x3)=——~An/ E—
16m%A a VR vz
1 2 dz
8 v/A \/z3 — 12x]A7222 — (428 — 40x] + 4) A4z + 16x7 (1 — x})?A~0

The limits z;» of the integration are the largest real roots of (z) = oo and
of 1(z) = x3*, respectively, i.e., z2 = oo and u(z;) = x3*. The translation
y = z— 4x3A~% and the substitution y = 4u/A result in

1 o dy

1/°° u
8rvA Ly P —dA2y 8wy A —u

where u(z) = x3_4, ie.,

03E(x1, 1,x3) = — x3 > 0,

- 4 _ _
=447 = 2501+ A7)
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and thus
823u] — P(x1, 1.x3) - 25u; — 23 = 0.
Setting { = 2x3u; and employing that E is even in each of the variables

X1, X2, x3 and, moreover, homogeneous of degree one, we finally obtain

Lo
E=——
8

il I/oo du (5.2.9)
X; —_— L
T j=1 ! ¢/(2x) N 4u? —u

_ 524(%)%)

¢ being the largest real root of ¢* — (x{ + x5 + x3)¢ — 2x}x%x3 and F denoting
the elliptic integral of the first kind, i.e.,

¢ d
F(w,k)=/ S — peR 0<k<l.
0 V1—Ksin’a

Up to the factor —%, formula (5.2.9) coincides with the formula in Fredholm
[82], p. 6. O

The following proposition from Wagner [292], Prop.2, p. 1196, expresses a
double integral containing a polynomial of fourth degree in the denominator by
a simple integral parameterized by a root of the cubic resolvent of the polynomial.

Proposition 5.2.10 Let 11,2 € R with w1 < o and let p,q,r be once
continuously differentiable real-valued functions on [j41, [L2] such that

O(u.t) = t* + p(WF + q(ut + r(p)

does not vanish for i € [j41, 2] and t € R. Define

R(u.2) = 2 = 2p(w)2> + (p(n)* — 4r())z + q(1)?

and denote by zi () the largest (necessarily simple and positive) root of the three
real roots of R(i, z) = 0. Let us furthermore assume that

Vi€ [, pal = (9,R) (1, 21 (1)) # O.

Leta = z1((1), b = z1(2), and define u(z) for z between a and b as the continuous
function which satisfies R(,u(z),z) = 0and u(a) = uy, u(b) = ws.
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Then, for eachf € L' ([it1, i12]), the following equation holds:

o0 dt b ﬁ
/_oo A PP +at ) / S (k) @R (1Q)-2)

fﬂ l:zf () dp

In particular, if p, q are constant and r is a linear function of u, r(n) = cu +
d, ¢ # 0, we have

H2 o) dr br b dZ
/M f(u)du/_oo P ———— ;/ﬂ f(u(z))ﬁ, (5.2.10)

where

1 2
uz) = —(z2 —2pz+p* —4d + q_)
4c Z

and {;, denote the largest real roots of |1(z) = {Z;, respectively.
For the proof we refer to Wagner [292], p. 1196.

Example 5.2.11 Let us now exemplify Proposition 5.2.10 in a more complicated
context and calculate the (uniquely determined) even and homogeneous fundamen-
tal solution E of the homogeneous quartic operator

P(0) = 0 + 95 + 0% + 2ad%03,

which is elliptic for a > —1 and which contains Fredholm’s operator as the special
case a = 0. For a = 1, we obtain the decomposable operator

A2+ 9% = (Ay +i02)(Ay — i02);

its fundamental solution can be deduced from Example 3.2.7 (c) by analytic
continuation, see also Example 5.2.8.

The calculation of E runs along similar lines as that in Example 5.2.9, and we
shall mainly point out the new features.

(a) Asin Example 5.2.9, we assume that x3 > 0 and obtain

9E(x1, 1, x3) ! /X3 dx /oo da
x1,1,x3) = ———
ST 472 J, oo @ + (A 4 x10)* + 2a02(A + xj2)? + 1

o /°° du [ ds
1672 it S oo st A (14 x19)* 4 2as(1 + x15)2+p
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Now we set A = 1 + x} + 2ax? and t = s + (x} + ax;)/A and this yields

1 > d *° dr
83E(-xls 17-x3) - / _M

1672A I o 4 gt
where
. 6x2 + 2a(l — ax? + x}) 4 —xH(1 —a?)
p - A2 ’ q - A3 ’
B —xt+1+al3(1 +x)(1 +a*) +x{a®(@® +6)] w
r = A4 + Z

Setting 7(1) = cp + d (with ¢ = A~") and employing formula (5.2.10) in
Proposition 5.2.10, i.e., the substitution

1/, 2 7
M(z)z—(z —2pz+p —4d+—)
4c 4
2

A 4
= Z(Zz —2pz— E(l — az)[xff - 4ax? - 10)c‘1t — 4axf + 1] + q?)’

this furnishes

03E(x1, 1,x3) =
 8avA ), -2 —4A—4(1— )} — 4ax§ — 10x} — 4ax? + 1]z + ¢*

Herein z; denotes the largest real root of p(z) = x3_4.

The translation y = z — 4x?A™2(1 — @*) and the substitution y = 4u/A result
in

RE(, 1, x3) ! /oo dy
x1,1,x3) = —
TR e VA L, A —daA Ty + 4@ - DAY
1 /°° du
lor Ju, \/u[uz—au— %(1 —a?)]

where j4(z1) = x3* and thus

_ 401 +4xA (1 —a?)
Ax}

)

yi[yl —4aA™ 'y + 4(a® — 1)A7?]
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i.e.,
w[4x3u] — daxjuy + a®x — P(x1, 1,x3)] = x{(1 — d).

Setting { = 2x3u; we finally obtain

signxz [ du
e =250 [
T Jyed) \/u[uz —au— %(1 —d?)]

where ¢ is the largest real root of
03— 2ax3¢% — (P(x) — a®x3) ¢ — 2(1 — a*)x2adad. (5.2.11)

(b) Due to the symmetry of P with respect to xy, x», it remains to calculate one of
the derivatives 0, E and d,E. Let us assume now x; > 0 and set x, = 1. Then

NE(x, 1,x3) ! /Xl dx /OO do
x1,1,x3) = —— .
e } 42 J, oo 0+ (A + x30)* + 2a(A + x30)2 + 1

We substitute successively & = As and 4 = A2 and obtain

91 E(x1, 1, x3) ! /ood /oo ds
xi,1,x3) = ——— .
PSR T TR [ Y S (T )+ 2ap(l + x9)” + 122

Upon setting A = 1 + xg‘ andt = s+ xg/A, this yields

nE ) =—— [ au [ &
o) =gy | W E e gt

where

B 2x%(3 + aAp) (1 —x§ + aAp) 1 —x§ +x§ + 2aAp + A3p?
p=——pm—— 4= 5 I'= T :

In this case, the cubic resolvent R in Proposition 5.2.10, i.e.,

R(p.2) = 2 = 2p(w)2 + (p(w)* — 4r()z + (1)’
is a quadratic polynomial o> 4+ B + y in w. Its derivative IR/ du with respect

to 4 evaluated in the zeros p12(z) of R(u,z) = 0 yields the discriminant of R
with respect to i, i.e.,

oR
™ (h12(2),2) = £/ B2 —day.
">
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For z = 0, this discriminant vanishes since it is the discriminant of g(j).
Therefore,

\/E B A7/2
B —4day 4\/AZZ _ 4x§\/A4ZZ _ SX%AZZ —4Q1 _x§)2 4 4q2A2

and hence

AS/Z

d
alE(X],l,.x3) - <

/ \/AZZ 4x2\/A4 —8:2A2%—4(1—x%)? + 4a2A2

where z; is the largest real root of R(xl_z, 7). Substituting A%z = 4uA + 4x§ we
obtain

alE(XI, lv-x3) /
167
ul? = 3(1 = a?)]

where u; is the largest real root of R(xl_z, 4A"u + 4x§A‘2). This implies u; =
¢/(2x2) where { is the largest real root of the polynomial in (5.2.11) for x, = 1.
Hence finally,

2
1 © du
el [
=1 829\ Julu* — (1 — a?)]
© du

SR\ ulu — au—3(1 - az)]:|

+x3] (5.2.12)

¢ being the largest real root of the polynomial in (5.2.11).
More generally, if
32
P(3) = (33,03,93)C |
%
with a real-valued symmetric matrix C fulfilling c; > 0 and cjx \/Cii + ¢ji /Crx >

0 for each permutation ijk of 123, then the (uniquely determined) even and
homogeneous fundamental solution E of P(d) is given by

1< o0 du
E@=—7—> Il | (5.2.13)
TS e Juleput + Cifu— L det




366 5 Fundamental Matrices of Homogeneous Systems

where {i,j,k} = {1,2,3} and ¢ is the largest of the three real roots of the
polynomial

& = 2(caax] + €131 + c12x3) 8 — (Ciix] + C39x3 + C33x3
— 2Cj“§x%x% ZCTgx%xg 2 3§x§x§)§ 2(det C)x%x%x%,

see Wagner [292], Prop. 3, p. 1198.

Note that the operator P(3) = 9} + 3 + 03 +2ad393 corresponds to the particular
case of the matrix

1a0 1 —a 0
C=|a10]|,withcd=]|-a 1 0 and detC = 1 — &%
001 0 01—a2

As in Example 5.2.9, the definite integrals in (5.2.13) are elliptic integrals of the first
kind.
Another particular case is the operator

P(3) = 8% + 0% + 0% + 2c(0202 + 920% + 0202). ceR,

lce
which corresponds to the matrix C = | ¢ 1 ¢ | . This operator is elliptic iff ¢ >
ccl

2, and (5.2.13) yields the following representation for the even and homogeneous
fundamental solution E, see Wagner [292], pp. 1202, 1203:

3
1 S (2—1) v -
- - ijF(arcsin( 2Dy ), \/ "+${2)), ifec>1,
82— 1 JetZe—nee+n c

AV 2(1—=c?) xj 1 .
= 62 Zx] (arcsm(\/{_*_(l_c)x}), JaTo ) ifc € [0, 1),

1
T \rZI%'[EY( 23] = DK i)

j=1

+ sign(2cx; 4 x; + xi)F(arcsin( V2 lx") k )i| if c € (=35.0],

Jett—og )7 V20F9

(5.2.14)
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where

v d
F((p,k)z/ S peR 0<k<1 KK =FEZK
0 1 —k2sin’a

and ¢ denotes the largest of the three real roots of
&= 2¢|x|** + (¢ — D(clx|* + x‘f + xg + x§)§ —4(c—1D*(c+ %)x%x%x%.

(c) For reasons of control, let us yet derive some special cases and limit cases
from formulas (5.2.12-5.2.14). E.g., the even and homogeneous fundamental
solution E of the decomposable operator

I 03+ 03 4+ 20702 = (A +192)(Ay —i109)

arises by setting a = 1 in (5.2.12). This immediately yields

2 /2
Fo__FP X arctan(x3 . éu), (5.2.15)
42t 8w o

where p? = x} + 3 and { = x3 + /x} + p*, cf. Wagner [292], Ex.1,
p. 1204. Furthermore, formula (5.2.15) can also be deduced from (3.2.23) or
Example 5.2.8 by analytic continuation with respect to A1, A;.

More generally, we can infer from formula (5.2.13) the fundamental solutions of
products of anisotropic Laplaceans in R, i.e., of the operators

P(d) = (@197 4 a3 + a303) (b1 07 4 brd3 + b33), 0<ay,b;, i=1,23.

This leads to the expression in (3.1.19), which was originally found in Herglotz
[125] and rederived in Garnir [100], Bureau [35], cf. also Wagner [292], Prop. 4,
p. 1203 and Ex. 2, p. 1204.

Also note that the limit ¢ — 1 in formula (5.2.14) yields correctly the
fundamental solution E = —|[x|/(87) of P(9) = AZ. Of course, according to
Proposition 5.2.3, the even and homogeneous fundamental solution E depends
analytically on the coefficients of the homogeneous elliptic polynomial P.

Another limit case of (5.2.14) is the non-elliptic operator Py(d) = 8793 + 9703 +
3%3%, A generalization of it, namely

L+ > 920
1<jk=<n

is considered in Hormander [134] for the study of regular and temperate fundamen-
tal solutions.
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Indeed, Py(d) = lime\ o Pc(0), where

Pc(9) = €(3] + 93 + 93) + Po(d) = €[0] + 05 + 03 + 2cP(d)],  c= o

and hence we apply formula (5.2.14) in the case ¢ > 1 to obtain the fundamental

solution E, of P.(d) for 0 < € < % :

1 > , V1= 422 T+e
E. = |x;|F| arcsin V1x2e )
— + 2e

e iz \/462;+2xf(1 —2¢)(1 4 ¢)

Here ¢ satisfies the equation
1 ! 1 1 11
§3_ g|x|2§2+ (Z_ 1) (Z|x|4+x‘1‘+x§+x‘3‘)§—4(z— 1) (Z + E)x%xgxg =0,

and hence 2¢{ converges to i for € N\ 0 where u denotes the largest of the three
real roots of
() = p(p — |x*)* — 4xixpxs. (5.2.16)

Development in series yields

N —x2
1—462\/§|xj| _ l_G(M 23‘3])_‘_0(62)7 arcsin(l—S) — Z—\/%—I—O(S)
\/462§'+2x]2(1—26)(1+€) 2x; 2

for e \( 0, § N\ 0, and hence

VI—4&2 |x;
arcsin( eV2 1y ):%—ax/;+0(6), a= %—1.
j

\/4624 +22(1-26)(1 +¢)
On the other hand,

l+e€ € )
—1-S4+0@) * 0,
1+ 2¢ 5 HOE) fore

and we must therefore investigate F(5 — ay/e, 1 — §) for e N 0.
Elementary estimates furnish

1
F(%—aﬁ,l—%) =1og4—§10ge—10g(a+ V14 a%) + 0(/e) fore \ 0
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and hence

)

x|

3
1 1
E. = O(Ve) — yp Z |x,~|[log4 - Eloge - log(
Jj=1

Since Po(d)T = 0 if T € D'(R?) depends on only one coordinate, we obtain the
following homogeneous fundamental solution E of Py(9) :

L Lilxmog(@)

4 = ||

where 1 is the largest real root of the polynomial Q given in (5.2.16). O



Appendix: Table of Operators/Systems
with References to Fundamental
Solutions/Matrices

A.1 Ordinary Differential Operators

No. Operator (name) References

All & Example 1.3.6
Al2 {$-2 2€eC Example 1.3.6
Al3 (£-)Fl 1eCreN Example 1.3.8 (b)

(% _A')r+l(d% _ I’L)XJFl’
A.l4 Example 1.3.8 (b)
A#pueC,r,s €Ny

(‘11_:2"_(1)2, w € C\ {0}
A.1.5 Examples 1.3.8 (a), 2.4.6
(vibrating string, Helmholtz)

(& -2 * 2 eC\{0}reN,
A.l1.6 Example 1.3.8 (b)
(iterated metaharmonic)

L4t rec
A.1.7 Garnir [98], p. 183
(static elastically supported bar)

(f—; —AH)? + p%, p. A € C (static )
A.1.8 Oberhettinger [196], p. 5
prestressed elastically supported bar)

Propositions 1.3.7, 2.4.5

[TE =2)o™!, o« eNg, Petersen [228], Ex. 12.18, p. 141
A19 =i
! Komech [154], Lemma 2.1, p. 147
A; € C pairwise different
Vo-Khac Khoan [283], Thm., p. 109
© Springer International Publishing Switzerland 2015 371
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A.2 Systems of Ordinary Differential Operators

No. System References

—

A21 Example 2.1.2

S Bl
—_

Gel’fand and Shilov [105], Ch. II, § 4, p. 58
AS 4B,
A22 Treves [272], pp. 27, 28
A,B € C™" detA # 0
E=Y(NA 'exp(—BA™ 1)

2
Afn +B o sin(vBATTY)
A23 E=ypa 2D
A.B € C™" detA # 0 VBA

A.3 Elliptic Operators

No. Operator (name) References
d; 410, = 20; Examples 1.3.14 (b), 1.3.16, 2.3.4
A3l
(Cauchy-Riemann) Rudin [239], ex. 8, p. 205
0+ A0+ p, A, ueC,
A32 Ortner [200], Op. 2, p. 156
ImA # 0
(01 4+ A+ ). A peC,
A33 Example 2.5.2
ImA #0,leN

A34 Proposition 3.3.2

!

1_[(31 - kjaz)ajﬂ,)tj € C\R,

j=1

A;j pairwise different, o € Nf)
Example 1.3.14 (a)

A3.5 A, (Laplace)

Ortner [200], Op. 8, p. 157

A3.6 A’;, k € N (iterated Laplace) Ortner [200], Op. 9, p. 157

A3.7 A, (Laplace) Examples 1.3.14 (a), 1.3.16, 1.4.10
A3.8 Aﬁ, k € N (iterated Laplace) Examples 1.6.11, 2.3.2 (c), 2.6.2,5.2.2
A39 A,+ A, A > 0 (Helmholtz) Example 1.3.14 (c)

(Ay+ 2% A>0keN
A3.10 Example 1.4.3

(iterated Helmholtz)
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No. Operator (name) References
A3.11 A,—A, n>2,A > 0 (metaharmonic) Examples 1.4.11, 1.6.11,2.4.2
(A=W, n>2,1>0keN Example 1.6.11
A3.12
(iterated metaharmonic) Ortner [200], Op. 13, p. 158
(01 — 2102) (01 — A202), A1, A2 € C,
A3.13 Example 2.4.9
Imll «Im Az <0
A3.14 3+ 33+ 2i9,9, + 02 Example 2.4.9
A3.15 F +i(d3 + %) Example 1.4.12 (a)
VTAV, A =AT e C¥*? Examples 1.4.12, 2.4.9 (a)
A3.16
(anisotropic Laplace) Ortner [200], Op. 17, p. 159
(VIAV)F, A=AT e C"™" keN
A3.17 Example 2.4.9 (c)
(iterated anisotropic Laplace)
(VTAV)(VTBV), A, B € R™",
Example 3.1.8 (a)
A3.18 A = AT B = BT positive definite
Ortner [200], Op. 27, p. 160
(product of anisotropic Laplaceans)
!
[TV av)st!, A e R,
—
A3.19 7 Example 3.1.8 (a)
A= A]-T positive definite, o« € Nf)
(product of anisotropic Laplaceans)
0 +2(1—22)R3% +95, 0<e<1
A.3.20 Examples 3.1.8 (b), 3.3.3,5.2.4
(static orthotropic plate)
@1 +2(1 —2eH)3135 + 35)%, 0 <e < 1
A3.21 Galler [86], § 14
(iterated orthotropic plate)
@ +2(1 — 2623232 + 8%, 0 <e <1,  Example5.2.4
A3.22
[ € N (iterated orthotropic plate) Galler [86], p. 55
(a18% + azag + a38§)(b1 8% + bzi)% + b38§)
A.3.23 Example 3.1.8 (c)
a; > 0, bj >0
A+ 0>0 Garnir [98], p. 184
A3.24
(static elastically supported plate) Ortner [200], Op. 21, p. 159
A325 (—1)"AY 4+ 2% 2 e C\{0},meN Ortner [200], Op. 20, p. 159
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No. Operator (name) References

(=A, + V)"A,, A € C\ {0}, Ortner [200], Ops. 22, 23,
A.3.26

m€N,n=2,3 pp- 159, 160

i
[Ta 42, a N,
i

A327 Example 1.4.5
A; > 0 pairwise different

(product of Helmholtz operators)
(VTAV + bTV — 1),
A=Al e R"" positive definite,
A.3.28 Example 2.5.4
beC',LeCmeN

(iterated anisotropic metaharmonic)

!
[TV7AV + 6]V —dyett,

j=1 Example 3.1.6
A329 A= AjT € R™" positive definite, a=0,l=2:
bjeC"d €C,a € Nf) Ortner [200], Op. 30, p. 161
(product of anisotropic metaharmonic)
A330 A3+ 8% Example 5.2.11 (c)
(A + A1 33)(Ag + 1,89), Examples 3.2.7 (c), 5.2.8
A3 A >0, Ap # As Wagner [285], Bsp. 4, p. 45

!
H(Anfl + bfai)a]+l ’
—
A332 Examples 3.2.7, 5.2.5
b; > 0 pairwise different, o € Nf)
(product of anisotropic Laplaceans)

Ortner [200], Bsp. 3.3, p. 143,

A2 — 4%, c € C\ {0} Op. 31, p. 161
A.3.33

(static one-sided stretched plate) Wagner [284]

Dundurs and Jahanshahi [66]
A334 ¥+ 3 1eN Galler [86], § 12, p. 49
1

[ 1@} + 5795,

A335 o Example 3.3.3

b; > 0 pairwise different



A.5 Hyperbolic Operators

No.

A.3.36
A.3.37
A.3.38

A.3.39

A.3.40

Operator (name) References
at + 93 + 03 Example 5.2.9
at + 03 + 0% + 2a010%, a > —1 Example 5.2.11

Ot + 03 + 93 + 2c(0303 + 9303 + 9303), ¢ > —%  Example5.2.11
(02,92, 05)C(®, 82,007,

Example 5.2.11
C = CT € R¥*3 positive definite
A3+ 161433, L e C\ {0} Jahanshahi [150]

(static circular cylindrical shell) Wagner [284]

A.4 Elliptic Systems

No. System (name) References
(ot> + pA3)L + A+ w)VVT, A, p,t>0
A4l Example 2.4.3
(time-harmonic Lamé system)
“13% + a48§ + ‘153% (ay — a4)0,0, a3003
(Lll - a4)8132 a43% + aIB% + a58§ a33233 N
AA42 az0;03 a3,03 asAy + ay03 Example 5.2.6 (b)
a; >0, a,>0, ag >0, as > 0and |a3| < as + J/aja,
(hexagonal elastostatics)
A.5 Hyperbolic Operators
No. Operator (name) References
AS51 0y---0,1<I<n Ortner [200], Op. 42, p. 164
AS52 3*=290"--0" o €N} Example 1.5.5 (a)
A53 0797, meN Example 1.5.5 (b)
i +Ah+u AeR ueC
AS54 Ortner [200], Op. 44, p. 164
(transport operator)
@V+21)" aeR"\{0},LeC,meN
ASS

(iterated transport operator)

Example 2.5.2 (a)

375
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No. Operator (name) References

1
[T@V +d)s*', a; € R\ {0},
=1
A56 Examples 3.1.3, 3.4.5
d; € C,a €N},

(product of transport operators)

I
l_[(ajTV), a; € R"\ {0}
AS5.7 =1 Example 3.4.6

(product of homogeneous transport operators)
[T @+ed+ed)
A58 ety Example 3.4.6
=0} —207(37 + 0}) + (97 — 97)°

(8t2 — )", ¢c>0,meN

AS59 Example 1.5.5 (b)
(iterated wave operator)
> — Ay
A.5.10 Example 1.4.12 (b)
(wave operator in two space dimensions)
9> — As Example 1.4.12 (b)
AS.11
(wave operator in three space dimensions) Ortner [200], Op. 51, p. 165
0, —ad3)> — BA, t €ER, B >0
AS5.12 Example 4.3.9
(wave operator in two space dimensions)
0, —ad; — B33)* —4a?Ay, > 0,>0
A5.13 Example 4.4.8
(wave operator in two space dimensions)
@ = Ak k=2 Examples 4.4.4, 2.3.6
AS5.14
(iterated wave operator) Ortner [200], Op. 53, p. 165
?—A,
A5.15 Examples 1.6.17, 2.3.6
(wave operator in n space dimensions)
@ —A)k keN
A5.16 Example 2.3.6
(iterated wave operator)
5. - — A, k€EN,n> emma 3.3.
AS517 (@2 — Ak, kEN 2k L 335
I
[T@ —x8)9F", a eN,
=1 Examples 3.2.2, 3.2.3, 3.2.4,
A.5.18
A; > 0 pairwise different 325,334

(product of wave operators)
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No. Operator (name) References

(0> — A3)(? —alA, — bd3), a>0,b>0
A5.19 Example 4.2.7
(product of anisotropic wave operators)

1
[1@ = a,—a2).

i
A520 Wagner [285], Bsp. 5, p. 27
a; > 0 pairwise different

(product of anisotropic wave operators)

!
[0 —aa,— ).

=1
AS5.21 ! Wagner [285], Bsp. 8, p. 30
a; > Opairwise different

(product of anisotropic wave operators)

(3, + @d3) (3, + ds3)” — BA,),

A522 a€RB>0 Example 4.3.10

(product of transport and wave operators)

3? - 33 +m?*, mecC Examples2.3.7, 3.5.12
A.5.23 ‘

(Klein—Gordon operator) Ortner [200], Op. 56, p. 166

@ —A,+m), meC,keN
A.5.24 Examples 1.6.18, 2.3.7, 2.6.6, 3.5.12
(iterated Klein—Gordon operator)

(@ + B3, — VIAV + b7V — 1),

A = AT € R positive definite,
A5.25 Example 2.5.6
beC B AeC,meN

(anisotropic Klein—-Gordon operator)

1
1_[(3% —A,— Cj)aj+l,
j=1 Proposition 1.4.4
A.5.26
¢j € C pairwise different, o € N Ortner [200], Op. 62, p. 167

(product of Klein—Gordon operators)

ﬁ(a? —a;A, —dp) T,
As27 Example 3.4.8
a;>0,dj€C,a €Nj,n<4
(product of Klein—Gordon operators)
(E)t2 — aai +b)? — (cai —d)? — ¢,
AS528 a>0,c>0,b,dee€C Examples 3.5.4,4.1.6

(Timoshenko beam operator)
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No. Operator (name) References
(@002 — boAz + o) (@102 — bi1As + ¢1) — d*,

A.5.29 ag,bg,a1,by > 0,c9,c1,d € C Example 3.5.5
(generalized Timoshenko operator)

(02 — M) (@ — @) + B, o f > 0
A5.30 Example 3.5.4
(Uflyand—Mindlin plate operator)

Ortner and Wagner [210],
AS531 (92— Ay)* 44292, c e C\ {0}

p. 192

(87,83, 03)C(d7, 93, 83)"

C=C"eR” c33>0,c11.000 >0, Wagner [294], Prop. 3,
A.5.32

C12 = —4/C11€22,C13 = —4/C11C33, p. 150

23 < —ofexncy, CIS > — cucy
A.5.33 3? + 33 + 3% + 3ad,0,03, a < —1 Wagner [290], Thm., p. 286

A.6 Hyperbolic Systems
No. System (name) References
(03} — pA)L— A 4+ wVVT A p>0

A6.1 Example2.1.3

(Lamé system, isotropic elastodynamics)
Ortner and Wagner [217],

(P97 — AL — A+ VYV A up>0  p.329
A6.2

(two-dimensional Lamé system) Eringen and Suhubi [69],
p. 412
P1(9) (as — a1)010, —a3d;03
(as — a1)010, P»(9) —a30,0s |,
—a30,03 —a3 0,03 P3(9)
A63  Pi(3) = pd} — a7 — as03 — asd3. Examples 2.1.4 (d), 4.3.10, 4.4.5

Pz(a) = patz - 043% - a13% - a58§,
P3(3) = pB,Z - asAz - azag

(elastodynamics in hexagonal media)



A.7 Non-elliptic Non-hyperbolic Operators

No. System (name)

(092 — cA3); —bVVT+
700
030
0 0 3?

A64 4 (b—a)

(elastodynamics in cubic media)

d303 + d» 33
—d38182
—d23133

—d30,0,
&P + i
—d1 0,03

—d,0,0;
—d10,0; |,
a0 + d,

L —
A6.5
0<d <dy<ds
(crystal optics)
92 —do3 — 32
do, 0,
0103

dd,,
2 —do? — 82
9,05

FIER
0,03 |,
A66 P — A,
0<d#1

(uniaxial crystal optics)

3
Ziy“au —mly =iV —mly,m >0

A6T =

(Dirac system)

0d; 01 0y 03
d 9, n 0
dp —m d, 0
d3 0 0 0,

,o,n>0
A.6.8

(rotating liquid)

A.7 Non-elliptic Non-hyperbolic Operators

References

Examples 2.1.4 (c), 4.3.9

Example 4.4.8

Example 4.4.8 (d)

Vladimirov [279],
§§2.8,11.12
Ortner [200],
Op. 75, p. 169

Vladimirov, Drozzinov

and Zavialov [281], p. 224

Examples 1.3.14 (d), 1.3.16,

No. Operator (name) References
A.7.1 9, — A, (heat operator)
1.6.16,2.6.3
@ — A, keN
A72 Example 2.3.8

(iterated heat operator)

379
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A3

A4

A5

Al.6

AT

A8

A9

A.7.10
A7.11
A7.12

A7.13

A7.14

Appendix: Table of Operators/Systems with References to Fundamental. . .

Operator (name)

d; —1iA,, (Schrédinger operator)

9, — VIAV, A = AT e R,

A positive definite

(anisotropic heat operator)

3 —VTAV, A= AT e C™,
Re A positive semi-definite
(anisotropic Schrodinger operator)
@, —iA)5, keN

(iterated Schrodinger operator)

@, —VIAV+b'V—-2)", beC" 1 €C,
A =AT € C™" detA # 0,

Re A positive semi-definite

(anisotropic Schrodinger / heat operator)

" + 32, modd
o —an
3, —i0,0,

d; — 010,03 (Sobolev operator)
0; — 0102030405

2 2_ a2 2
Nttt =0 — =0,
(ultrahyperbolic operator)

1 n .
[0~ va¥-d+ Yn)”"
k=1

j=1

B = (by) €C™", d=(dj) €C,a €N},
Aj=A] € C™" detA; # 0,

Re A; positive semi-definite (product of

anisotropic Schrodinger / heat operators)

References
Example 1.4.13

Example 1.4.13

Example 1.4.13

Example 2.3.8

Example 2.5.5

Galler [86],
Satz 12.2, p. 51
Galler [86],
Satz 13.1, p. 52
Example 2.6.5
Examples 2.3.8, 2.6.4
Examples 2.6.5
Gel’fand and Shilov [104]
Ch. III, § 2.5, p. 279
Ortner and Wagner [219],
Ex.2.7.5,p. 74

Example 3.1.4



A.7 Non-elliptic Non-hyperbolic Operators
No. Operator (name) References
!
[ [0 —an, —ayt,
j=1
A715 Example 3.4.7
a; > 0 pairwise different, d; € C, a € Nf)
(product of heat operators)
!
[ —aa,—a).
—
A716 7 Example 3.4.7
a; > 0 pairwise different, d € C
(product of heat operators)
!
[ 1@ £iaAL.
= Galler [86],
A7.17
a; > 0 pairwise different Sitze 18.1/2, p. 67
(product of Schrodinger operators)
Z+ (A, +a)?+c* aceC
A.7.18  (prestressed, elastically supported Examples 3.5.8, 3.5.10
beam / plate)
Ortner [200],
A7.19 92 + 9* (Euler-Bernoulli beam)
Op. 38, p. 163
3+ A3 Ortner [200],
A7.20
(Lagrange—Germain’s plate operator) Op. 38, p. 163
(0 — A3)(0] — A3) —€d, Az, € 2 0
A7.21 Examples4.1.11,4.2.11
(thermoelastic operator)
A7.22 92 — 3,9 — 9% (Stokes’ operator) Example 4.1.10
Ortner and Wagner [207],
A723 0,—0;Az— As
Rem. 3, p. 451
@, —aA, —b)*> — (cA, + 20"V 4+ d)*> — k>,  Ortner and Wagner [207],
A.7.24
a,b,c,d,h € C,w € C",|Rec| <Rea Prop. 4, p. 450
% —ad?A, — 8A,, Examples 3.5.5 (b), 3.5.6
A7.25
a > 0,8 € C (Boussinesq operator) Ortner [203], p. 552
O —ad; A, + BA;,
A.7.26 Examples 3.5.5 (b), 4.1.9
a > 0, B > 0 (Rayleigh operator)

381
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No. Operator (name) References
Ortner [200],
A7127 (3 —AA3)A5, A >0
Op. 65, p. 167
Ortner [200],
AT28 AR —€?),e>0
Op. 68, p. 168
A.7.29 3? + 3% + 3% (Zeilon’s operator) Wagner [291]

A.7.30 3? + 3% + 3% + 3a0,0,03, a > —1 Wagner [290]

A.8 Non-elliptic Non-hyperbolic Systems

No. System (name) References
a?d> -2 9,
,o,>0
A8.1 B, #—p2 Examples 2.4.14, 4.1.9
(Rayleigh’s system)

(0} — pA3)ls — (A + V-Vl BV

'A% 0, — kA3
A8.2 Example 4.1.11
oA, Bok,n>0

(dynamic linear thermoelasticity)
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Klein—Gordon
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Laplace operator, viii, 39, 42, 129, 135, 136,
151, 157-161, 170, 181, 206, 327
anisotropic, 190-192, 206, 209, 216, 351,
358, 367
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Radon measure, 5, 7
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Temperate
distributions, 82, 150
sequences, 111
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Thermoelasticity, system of dynamic linear,
266
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