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PREFACE

The principal concern of this book is the qualitative theory of the half-linear second
order differential equation

(HL) (r()®(x") +c(t)®(z) =0, ®(x):=|z[P 'sgnz, p>1.

The investigation of (HL) has attracted considerable attention in the last two
decades. Among others, it was shown that solutions of this equation behave in
many aspects like those of the Sturm-Liouville differential equation

(SL) (r(t)z") + e(t)z =0,

which is the special case of (HL) when p = 2. The aim of this book is to present
the substantial results of this investigation. The main attention is focused to the
oscillation theory and asymptotic theory of (HL), and to boundary value problem
associated with this equation. Note that the term half-linear equations is motivated
by the fact that the solution space of (HL) has just one half of the properties which
characterize linearity, namely homogeneity (but not additivity).

The investigation of qualitative properties of nonlinear second order differential
equations has a long history. Recall here only the papers of Emden [151], Fowler
[166], Thomas [349], and the book of Sansone [336] containing the survey of the
results achieved in the first half of the last century. In the fifties and the later
decades, the number of papers devoted to nonlinear second order differential equ-
ations increased rapidly, so we mention here only treatments directly associated
with (HL). Even if some ideas concerning the properties of solutions of (HL) can
already be found in the papers of Bihari [36, 38], Elbert and Mirzov with their
papers [139, 290] are the ones usually regarded as pioneers of the qualitative theory
of (HL).

In later years, in particular in the nineties, the striking similarity between
properties of solutions of (HL) and of (SL) was revealed. On the other hand,
various problems associated with (HL) have been indicated, where the situation
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vi Preface

is completely different comparing the linear and half-linear case, and where the
absence of the additivity of the solution space of (HL) brings completely new
phenomena.

One of the reasons for the research in the field of half-linear equations is that
variety of physical, biological, and chemical phenomena (let us mention at least
non-Newtonian fluid theory or some models in glaceology) are described by the
partial differential equations with the so-called p-Laplacian, and this PDE’s can be
reduced under some assumptions to the ODE’s of the form (HL). Another reason
can be “purely mathematical”, it is natural to ask what results of the deeply
developed qualitative theory of (SL) can be extended to (HL).

The book is divided into 9 chapters. The first one deals with classical topics
like the existence, uniqueness, and the Sturmian theory for (HL). In particular, it
is shown that the linear Sturmian theory extends verbatim to (HL). An attention
is also focused to some elementary half-linear differential equations. The next two
chapters are devoted to the oscillation theory of (HL). Chapter 2 presents basic
methods of the half-linear oscillation theory which are essentially the same as in
the linear case {variational principle, Riccati technique and comparison theorems).
Chapter 3 then delas with the particular oscillation and nonoscillation criteria.
These criteria are sorted according to the method used in their proofs and accord-
ing to the types of conditions that are involved.

Chapter 4 presents a very recent material concerning nonoscillatory solutions
of (HL). In particular, this chapter deals with the asymptotic analysis of nonoscil-
latory solutions of (HL) and with properties of the so-called principal solution of
(HL). The largest chapter of this book is Chapter 5, where we collected various
statements related to half-linear oscillation theory. Among them, let us mention
at least the half-linear Sturm-Liouville problem and the theory of half-linear equa-
tions with almost periodic coefficients. Chapters 6 and Chapter 7 contain mostly
the results concerning boundary value problems associated with (HL) and with
the partial differential equations with p-Laplacian. The main attention is focused
to the Fredholm alternative for the the so-called resonant BVP’s. Note that this is
an example of the problem where linear and half-linear cases are completely differ-
ent. Chapter 8 presents basic facts of the recently established discrete half-linear
oscillation theory and the results presented there can be understood as discrete
counterparts of some statements presented in previous chapters. The last chapter
collects miscellaneous material related to half-linear equations, like more gener-
al differential equations, functional differential equations and various inequalities
related to (HL).

The origin of this book lies in Chapter 3 of the Handbook of Differential Equ-
ations [56] written by the first author. Here, comparing with that chapter in the
Handbook, all material is elaborated in more details and the whole treatment is
approximately three times larger. Also, comparing our book with Chapter 3 of
the recent monograph [6] (this book is devoted to the oscillation theory of various
differential equations), there are some common points, but the most part of our
presentation differs from that of [6]. We present here a systematic approach to the
qualitative theory of half-linear differential equations, while [6] is directed only to
oscillation problems.
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The book is addressed to a wide audience of mathematicians interested in dif-
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CHAPTER 1

BASIC THEORY

In this first chapter we present basic properties of solutions of the half-linear second
order differential equation

(1.1.1) (r@®)@(2)) +c(t)®(x) =0, ®(x):=|z|P ' sgnz, p> 1,

which is the main concern of this book. Recall that the terminology half-linear
differential equation (systematically used by Bihari and Elbert for the first time)
reflects the fact that the solution space of (1.1.1) is homogeneous, but not additive.

We suppose that the functions r, ¢ are continuous and r(¢) > 0 in the interval
under consideration. Note that the most of our results can be formulated under
weaker assumptions that the functions 1/r, ¢ are locally integrable. However, since
we are interested in solutions of (1.1.1) in the classical sense (i.e., a solution z of
(1.1.1) is a C! function such that r®(2’) € C! and satisfies (1.1.1) in an interval
under consideration), the continuity assumption is appropriate for this setting.

As we have already mentioned in the Preface, half-linear equations are closely
related to the partial differential equations with p-Laplacian. In fact, (1.1.1) is
sometimes called the differential equation with the one-dimensional p-Laplacian.
Recall that the p-Laplacian is a partial differential operator of the form

Apu = div (|| Vu|P7>Vu),

where (for v = u(z) = u(z1,...,25)) Vu = (i ...,%) is the Hamilton

8901 !
nabla operator and (for v(z) = (v1(x),...,vx(x)) dive(z) = Zf/:l E‘?T”(x) is the

usual divergence operator. If u is a radially symmetric function, i.e., u(z) = y(t),
t = ||z||, || - || being the Euclidean norm in RY, the (partial) differential operator
A, can be reduced to the ordinary differential operator

Apu(z) =tV (thlé(y’(t)))/, = —.



2 Chapter 1. Basic Theory

In the first section of this chapter we deal with the existence and the unique
solvability of (1.1.1). The principal tool is the half-linear Priifer transformation,
we also offer an alternative approach to the existence and uniqueness problem.
In Section 1.2 we present the basic oscillatory properties of (1.1.1), in particular,
we show that the linear Sturmian oscillation theory extends almost verbatim to
half-linear equations, and that basic concepts of the linear oscillation theory as
Picone’s identity, Riccati equation and other concepts have a natural half-linear
extension. In Section 1.3 we show basic differences between second order linear and
half-linear equations. The last section of this chapter deals with some special half-
linear equations. In particular, we present basic properties of solution of half-linear
equations with constant coefficients and of Euler-type half-linear equation.

1.1 Existence and uniqueness

The first section of this chapter is devoted to the existence and uniqueness theory
for (1.1.1). We introduce the half-linear trigonometric functions and the half-linear
Priifer transformation which are the basic tools used in the proof of the existence
and uniqueness statement for (1.1.1). We also deal with the relationship of half-
linear equation (1.1.1) to various similar equations and systems. An alternative
approach to the uniqueness theory (based on a Gronwall type lemma) is discussed
as well.

1.1.1 First order half-linear system and other forms of half-
linear equations

Consider the Sturm-Liouville linear differential equation
(1.1.2) (r(t)z’") + c(t)x = 0,

which is a special case p = 2 in (1.1.1). Then, given tg, 2o, 21 € R, there exists the
unique solution of (1.1.2) satisfying the initial conditions z(tg) = zo, 2'(t0) = z1,
which is extensible over the whole interval where the functions r, ¢ are continuous
and r(t) > 0. This follows e.g. from the fact that (1.1.2) can be written as the
2-dimensional first order linear system

and the linearity (hence the Lipschitz property) of this system implies the unique
solvability of (1.1.2). On the other hand, if we rewrite (1.1.1) into the first order
system (substituting u = r®(z’)), we get the system

(1.1.3) 2 =TI e T (), o = —c(t)®(x),

where ¢ is the conjugate number of p, i.e., 1/p+1/q¢ =1, and ®~! is the inverse
function of ®. The right hand-side of (1.1.3) is no longer Lipschitzian in z,u,
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hence the standard existence and uniqueness theorems do not apply directly to this
system. Moreover, it is known that the Emden-Fowler type differential equation

(1.1.4) (r(t)]z'[*tsgna’) + p)|z|/*tsgnr =0, o, 8>1,

(which looks similarly to (1.1.1), in a certain sense) may admit the so-called sin-
gular solutions (see Section 9.1 and e.g. the books [202, 292]} i.e., solutions which
violate uniqueness and continuability of solutions of (1.1.4).

Half-linear differential equations occur in various forms in the literature. Elbert
(and some of his collaborators) mostly considered equations of the form

(1.1.5) (r(t) (")) + e(t)z™ =0,

where u™ = |u|"sgnu with n > 0. The alternative notation for nx is n* or
n. Clearly, (1.1.5) is equivalent to (1.1.1) when n = p — 1, and so there is, in
fact, no difference between (1.1.1) and (1.1.5). Note that the equations of these
forms appear in the absolute majority of the quoted papers dealing with half-linear
differential equations. Another form (considered in particular in [70, 197, 262], but
also elsewhere) is

(1.1.6) u” + a(t)|u]*u' ' sgnu = 0,

where a € (0,1] and a(t) is a real function. When taking so-called proper solu-
tions, see the beginning of Section 3.3, this equation is equivalent to (1.1.1) (i.e.,
their solution spaces are the same) provided p = a+ 1, p € (1,2], r(t) = 1 and
(p— 1)e(t) = a(l), in view of the identity (®(z'))’ = (p—1)z”|2'|P~2. Observe also
that the form (1.1.1) enables to consider the case @ =p — 1 > 1, and many of the
results for (1.1.6) can be extended in this direction without difficulties. Sometimes,
slightly more general forms than (1.1.1) are considered, e.g.,

(1.1.7) (R(O2') + Q1) f (x, R(t)a') = 0,

where R, are continuous real functions and R(#) > 0. At least two sets of re-
strictions, which are imposed on f(z,y), appear in the literature:

(i) Bihari [36] required f(z,y) such that it is defined on R? and is Lipschitzian
on every bounded domain in R?, zf(z,y) > 0 if z # 0 (consequently, f(0,y) =0
for all y € R), f(\z, \y) = Mf(z,y) for all A € R, (z,y) € R

(ii) In [143, 145] it is assumed that f(x,y) is defined and continuous on R x Rg,
Ro = [0,00), zf(z,y) > 0if 2y #0, f(Az, Ay) = Af(x,y) for A € RY, (z,y) € R x
Ry, the functions F.(t), F_(t) defined by Fi(t) = tf(¢,1), F_(t) = —tf(—t,—1)
satisfy the relations

/OC dt < /oo at < lim Fi(t)
— < 00, —— < o0, lim = 00,
—o0 1 + b;(t) / —o0 1 + I (t) [t| =00 *

the functions log(1 + £ (t)) and log(1 4 F_(t)) are uniformly Lipschitzian on R.
Some strange effects may occur for (1.1.7) satisfying the latter conditions: For
example, it may have an eventually positive solution, but it has no eventual-
ly negative solution, or the zeros of two (linearly independent) solutions do not
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necessarily separate each other (observe that the latter effect may occur also for
equation (1.1.6), see the beginning of Section 3.3). However, all this “deviati-
ons” disappear if f(—z,—y) = —f(z,y), which is sometimes assumed there, see
also Remark 1.3.1 below. A nontrivial example when the last relation holds is
flz,y) = ®(2)|y|>~P. Then (1.1.7) reads as (R(t)z") + Q(t)®(x)|R(t)2’'|>~? = 0
or, equivalently, |R(t)2'[P~2(R(t)2’") + Q(t)®(x) = 0 or (RP~L(t)®(z")) + (p —
1)Q(t)®(x) = 0, which is an equation of the form (1.1.1). Another approach to
examining second order hall-linear equations is to consider a (more general) first
order system (studied by Mirzov, see [290, 291, 292] and also Subsection 1.2.9) of
the form

(1.1.8) wh = a1 (t)|uz|M sgnug,  uh = —a(t)|ui]™ sgnu,

where \; > 0 (i = 1,2) with A; Ay = 1 are constants and aq, a2 are real functions.

Its relation to equation (1.1.1) becomes apparent looking at system (1.1.3). Finally
note that the half-linear system

Y = by +b2(8)2, 2 = —by )y + ba(t)z

appeared in [141, 142], and it is closely related to the equation with a damping
term

(A(t)y@(2")) + B(t)®(z) + C(t)@(x) = 0,

which is also considered sometimes.

1.1.2 Half-linear trigonometric functions

In proving the existence and uniqueness result for (1.1.1), the fundamental role is
played by the generalized Priifer transformation introduced in [139]. Consider a
special half-linear equation of the form (1.1.1)

!

(1.1.9) (®(2") + (p— 1)®(z) = 0

and denote by S = S(t) its solution given by the initial conditions S(0) = 0,
S’(0) = 1. We will show that the behavior of this solution is very similar to
that of the classical sine function. Multiplying (1.1.9) (with z replaced by 9)
by S’ and using the fact that (®(5")) = (p — 1)|S'|P=25”, we get the identity
[|S'|P + |S|P)" = 0. Substituting t = 0 and using the initial condition for S, we
have the generalized Pythagorian identity

(1.1.10) SHP+ S =1.

The function S is positive in some right neighborhood of ¢ = 0 and using (1.1.10),

S'=1-5P,ie., % = dt in this neighborhood, hence

S(®) ,
(1.1.11) t:/ (1—s?) > ds.
0
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sin3/2 t

1 —+
/i Sing 4
t
3 N\ @ / sing £
-1 —

Figure 1.1.1: Generalized sine functions for p=3/2, p =2, and p =3

Following the analogy with the case p = 2, we denote
1 1
1
Ty / (1—5”)771’ dSZ—/ (1—u)7%u75 du
2 0 PJo

1 11
= -B (_a_> 3
p P q

1
B(z,y) :/O i — v tat

is the Euler beta function. Using the formulas

where

I'(@)l(y) T

B(z,y) = Tty D(@)(l — ) =

sinmwx

with the Euler gamma function I'(z) = [~ #*~' e~" dt, we have

2T
1.1.12 = .
( ) ™ psin%

The formula (1.1.11) defines uniquely the function S = S(t) on [0,7,/2] with
S(mp/2) = 1 and hence by (1.1.10) S’(7,/2) = 0. Now we define the generalized
sine function sin, on the whole real line as the odd 27, periodic continuation of

the function
S(t), 0<
S(WP - t)v s

The generalized cosine function cos, is defined as cos, t = (sin, t)’. The functions
sin, and cos, reduce to the classical functions sin and cos, respectively, in case
p = 2. The generalized Pythagorian identity

(1.1.13) [sing ¢? + | cosp t]P =1

holds.
It is not difficult to see that sin, is a bijective mapping of [—7,/2, 7,/2] onto
[—1,1]. Hence there exists its inverse function; we denote it by arcsin,. Similarly,
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via cos,, we introduce the half-linear extension of arccosine function, denoted by
arccosy.
In addition, we introduce the half-linear tangent and cotangent functions tan,
and cot, by
sin, ¢ cosp t
tan,t = ——, cotyt = ——.
CoSy t sing ¢
The function tan, is periodic with the period 7, and has discontinuities at m,/2 +
kmp, k € Z. The function cot,, is also 7, periodic, with discontinuities at ¢t = km,,
k € Z. By (1.1.9) and (1.1.13) we have

1
tan, t)) = ——— =14 |tan, t|”,
(1.1.14) (tan, | cosp t|P [ tany ¢
(cotpt)’ = —|cot, t[* P(1 + | coty t[P).

Hence (tan, t)’ > 0, (cotpt)’ < 0 on their definition domains, and there exist the
functions arctan,, arccot, that are defined as inverse functions of tan, and cot, in
the domains (—mp/2,7,/2) and (0, 7w, ), respectively. From (1.1.14) we have

1

(arctan, t)’ = T

Remark 1.1.1. (i) The definition of the “half-linear” 7, just introduced comes from
the original paper of Elbert [139]. One can find a slightly different definition in the
literature, namely,

1 ds
— _ 1\/p -
(1.1.15) p 1= 2(p— 1) /o i —3)1/17’

see e.g. [89]. This difference is caused by the fact that instead of (1.1.9), the initial
value problem
(®(z") +P(z) =0, =(0)=0, 2/(0)=1

is taken as defining for the half-linear sine and cosine functions. Note also that if x
solves the last initial value problem, then we have the identity |2’ |[P+|z?/(p—1) =1
instead of (1.1.13) in this modified setting. However, the definition of 7, by (1.1.12)
is now more common, even if sometimes the definition (1.1.15) is still used in some
works, see e.g. [331, 332].

(ii) Interesting results concerning an extension of the sine and cosine functions
can be found in [259] (see also [260]). For m, k > 0, the functions S = S, 4 (§)
and C' = Cp,/,(€) are defined (implicitly) as the inverses of the Abelian integrals

o dz ¢ dz
A e s

Among others, the following two identities are proved

1
(L1.16) S (€) + CLy(n) = 1 provided %Jr =1, 24 s =1, kE=1n,

l

|3
x| =
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and

E/2 1/2 . . L O T
(1+Sz/k<f)) (1+C’2/l( )) =2 provided zt7=% =g
Clearly, a special choice of k,I,m,n in (1.1.16) yields the generalized Pythagorian

identity (1.1.13).

1.1.3 Half-linear Priifer transformation

Using the above defined generalized trigonometric functions and their inverse func-
tions, we can introduce the generalized Priifer transformation as follows. First note
that this transformation will be very useful in proving many qualitative results for
(1.1.1), including the existence and uniqueness of the initial value problem. Let x
be a nontrivial solution of (1.1.1). Put

= V@)l +ra()|a ()P

and let ¢ be a continuous function defined at all points where z(t) # 0 by the
formula

ri () (t)

x(t)
where ¢ is the conjugate number of p, i.e.,, 1/p+ 1/¢g = 1. Hence
(LLI7)  a(t) = p(®)sing(t), 19 (02'(1) = p(t) cos, (1),

Differentiating the first equality in (1.1.17) and comparing it with the second one
we get

(LLI8) P U(0)p(t) cos, (t) = p/(t) sing (1) + plt) cos, (9(0)' (1).

Similarly, applying the function ® to both sides of the second equation in (1.1.17),
differentiating the obtained identity and substituting from (1.1.1) we get

(1.1.19)  — c(t)p? (1)@ (sin, (1))
= (p—1) [PP72 ()0 (1)@ (cosp (1)) — p" 7" (£)B(siny o(t))¢' (1)] -

Now, multiplying (1.1.18) by D(cos, )/p, (1.1.19) by sin, ¢/pP~! and combining
the obtained equations we get the first order system for ¢ and p

R0

¢ = 0 im0l 0 (0)feosy o

@(t) = arccoty,

(1.1.20)
ﬂ:@@%wa%wwwqw—

Remark 1.1.2. Similarly to the definition of m,, also the half-linear Priifer transfor-
mation appears in the literature in various modifications. The definition presented
here has been established by Elbert [139]. Some of these modifications will appear
later in this book, see e.g. Subsection 5.6.1 and the section devoted to half-linear
Sturm-Liouville problems. For some other modifications we refer to [54, 268, 331]
and the references given therein.
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1.1.4 Half-linear Riccati transformation

In the alternative proof of the uniqueness result the following transformation will
find the application. Later we will see its extreme usefulness in the oscillation
theory of (1.1.1). Let = be a solution of (1.1.1) such that z(¢) # 0 in an interval
I. Then w(t) = r(t)®(2'(¢))/P(x(t)) is a solution of the Riccati type differential
equation (or the generalized Riccati differential equation)

(1.1.21) w +c(t) + (p— D)rt79(t)|w]? =0,

where ¢ is the conjugate number of p, i.e., ¢ = p—fl. Indeed, in view of (1.1.1) we
have
/ (ro(z")) @(@) — (p — Drd(a’)]z"~22’
- — —c—(p—1
w ®2<.’I‘> c (p )

= —c—(p—Dri 9w/

rlz' [P

[P

Remark 1.1.3. Using the above Riccati equation (1.1.21) one can derive the first
equation in (1.1.20) as follows. From (1.1.17) we have

_r(t)®(2'(t))  P(cos,p(t) .
= TIG)  Sm ) )

The function v(t) = ®(cos, t)/P(sin, t) satisfies the Riccati equation corresponding
to (1.1.9). This implies

. o ®(cos, o(t) ]
@) = (o) (t)[—@—l)—@—l)]m }w(t)
e cos, (0[] s
Substituting from (1.1.21)
/ o 1—gq q _ _ _ _ 1—gq COSP‘)O P
w/(t) = —e(t) = (p = Dr' (O] = —e(t) = (b= Lr' =0 | T2
and hence
_yleagp | €O5 o(t)|” o cos, (1) |[*]
)+ (o= 1) | 2 - 14| S22,

Multiplying this equation by |sin, ¢(¢)|? and using (1.1.13) we get really the first
equation in (1.1.20).

1.1.5 Existence and uniqueness theorem

Since the right-hand side of system (1.1.20) is Lipschitzian in both p and ¢, the
initial value problem for this system is uniquely solvable and its solution exists on
the whole interval where r, ¢ are continuous and r(¢) > 0. Hence, the same holds
for (1.1.1). This statement is summarized in the next theorem.
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Theorem 1.1.1. Suppose that the functions r,c are continuous in an interval
TCRandr(t) >0 fort € I. Given tg € I and A, B € R, there exists a unique
solution of (1.1.1) satisfying x(to) = A, x'(to) = B which is extensible over the
whole interval 1. This solution depends continuously on the initial values A, B.
Remark 1.1.4. Note that the uniqueness of the IVP for half-linear equation (1.1.1)
is a subtle problem as pointed out in [331]. In that paper, it is shown that the
uniqueness is not generally preserved if we add the forcing term in (1.1.1), i.e., we
consider the equation

(r(H)®(2") + e(t)®(z) = f(b),
where f is a continuous function. More precisely, in [331] it is shown using the
concept of the subsolution of the initial value problem

(ta(p($l))l +g(t,3?) - 07 33((1) = Lo, x’(a) =1, L0,%1€ Rv a > 07
that the initial value problem
(1.1.22) (®(z")Y —®(x) =1, z(0)=1, 2/(0)=0

with p > 2 has in addition to the “obvious” solution z(t) = 1 also a solution for
which z(t) > 1 in a right neighborhood of ¢ = 0. More precisely, the function
() = L+t e > 2/(p—2), is a subsolution of (1.1.22), i.e., it satisfies the
inequality (®(z")) — ®(x) < —1, and the general theory developed in [331, 356]
states that there is a solution of (1.1.4) which is greater than this subsolution for
small ¢ > 0, i.e., it is a solution different from z(t) = 1. We refer to the above
mentioned paper [331] for details.

1.1.6 An alternative approach to the existence theory

In this subsection we offer an alternative approach (comparing with the Priifer
transformation) to the global existence and uniqueness theorem for the IVP

(1.1.23) (1.1.1), z(to) = A, 2/(to) = B.

This statement can be inferred from the following five lemmas and Remark 1.1.5.
The classical results, like the Peano theorem and the Gronwall inequality, play
important roles.

Throughout this subsection, similarly as before, we suppose that r, ¢ are con-
tinuous functions in / = [a,00) and r(t) > 0 in this interval.

Lemma 1.1.1 (Global Existence). The initial value problem (1.1.23} with to =
a has at least one solution defined on the whole interval [a, c0).

Proof. The local existence follows from the Peano theorem. We will show that this
solution can be extended over the entire interval [a, o). Integrating system (1.1.3)
over the interval [a,b], b € [a, 00), we obtain

z(t) = x(a)+/:<1>‘1 <%) ds,
)

u(t) = u(a)—/f(s)@(m(s)ds
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for ¢ € [a, b]. Using Holder’s inequality, we have

ott)— ata < ([ @riopo ds)p/q [ s as

i) u(@ < [ et as) " [ et s

Taking into account that

and

At plP < 2P (AP + [vf?)
for A\,v € R, we get

@) +u®)]? < 277 w(a)|” + 297 u(a)|?

IN
=
4
T
=
m\ﬁ
=
w
e
s
+
=
W
N
=
S
L
&

for ¢ € [a, b], where
(1.1.24) K =27 Yz(a)? + 29 u(a)|?

and

H() = max {2?1 (/t c(s)|pds> Q/p, 9 </t (1/r(s))? =D ds)p/q} .

Using the Gronwall inequality, we have from the above estimate
=) + |u(t)|? < Kexp[H()(t — a)]

for t € [a,b], and thus the solution can be extended over the whole interval [a, b].
Since b € [a, 00) is arbitrary, the assertion of the lemma follows. O

Lemma 1.1.2. The initial value problem (1.1.23) with A = B =0, t5 € [a,00),
possesses only the trivial solution on [a, c0).

Proof. The statement follows from the proof of the previous lemma since the zero
initial conditions imply K = 0 in (1.1.24), and so |z(#)|? + |u(t)|? < 0 for all
t € la,0). O

Lemma 1.1.3. Suppose that either (i) A # 0,B # 0, or (ii) A =0,B # 0 and
p>2,o0r(iii) A#0,B=0 and p < 2. Then the IVP (1.1.23) with to = a has a
unique solution in a right neighborhood of the point a.
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Proof. 1t is easy to see that the right-hand side of system (1.1.3) satisfies locally a
Lipschitz condition on the set D defined in one of the following ways (with respect
to the cases (i) — (iii)):

D = Ja,00) x (R\{0}) x (R\ {0}) for p > 1 arbitrary,
D = J[a,00) x Rx (R\{0}) for p>2,
D = J[a,00) x (R\{0}) xR for p<2.

Hence, the right-hand side of (1.1.3) is Lipschitz in some right neighborhood of a
and the statement follows. O

Lemma 1.1.4. Suppose that A = 0, B # 0 and p < 2. Then the IVP (1.1.23)
with to = a has a unique solution in a right neighborhood of the point a.

Proof. Let y; and yo2 be two (local) solutions of (1.1.23) with with g =a, A =0
and B # 0. Integrating (1.1.1) with y = y; twice from a to t € dom(y1)Ndom(y2)N
[a,00) we get

yi(t) = /atrlq(s)CDl {B - ./: e(T)®(y: (7)) dT} ds, i€ {1,2},
where B = r(a)®(B). Hence

@) =ua(®) = [ r11(s) [071(B - 1) — 87 (B - La(s)] ds,
where .
L) = [ els)Bno)ds, i< {1,2),

and, by the Mean Value Theorem,

yi(t) —y2(t) = (¢ - 1)/ ' 9(s) ()" (Ia(s) — Iu(s)) ds,

where 7(t) lies between B — I (t) and B — Iy(t). Since B-IL(t) — Bast — a,
i € {1,2}, one can find é > 0 such that |n(t)| < 2|B| for t € [a,a + ). Noting that
¢ — 2 > 0 and using integration by parts, we obtain

91 (8) = y2(t)]

= r 98| (8) = Ix(s)| ds
g < [ e - ke

IA

[ 776 [l ) - o) ards

-

|
-/ t ([ rear) ictsliotn(s) - o) as

s

([®(y1(7)) = (y2(7)) dr / ri7i(r) dT}

a a

A </<> i) Il [901(5) - 2(oa()| s
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for t € [a,a + §]. Define the continuous function

. -1
i () (fa rl_q(s)ds> for t € (a,a + 4],
Bri—1(a) for t = a,

Gi(t) =

i € {1,2}. Then, using the above estimates,

|71(t) — G2 (t)] < (¢—1)(2|B|)*~2 /: (/a

for t € [a,a+ d]. By the Mean Value Theorem,

| 2(51(t) — D(@(O)] < (p— DIEWGP?[71(8) — F2(1)]

for t € [a,a + 8], where £(t) lies between §1(¢) and §2(t). Since ;(t) — Bri—!(a)
ast — a, i € {1,2}, £(t) can be made to satisfy |Br?=1(a)|/2 < [£(t)], if t € [a, 00)
is taken sufficiently close to a. Hence there exists 0 < w < & such that

B () — B < (0= 1) (1Br" 1 (@)|/2)" 1) = 22)

for t € [a,a + w]. Now, using the above inequality and the fact that

8

r=5(r) d) (el 0() — ()]} s) ds

(g = 1)(p = DEIB)T (|Br - (@)|/2)" 7" = 21 P(r(a))(e Vipte D),
we find that

[71(t) — j2(t)] < 297P(r(a))ld- DD

<[ t ([ e d) (&) [51(5) — 7o) ds

for t € [a,a+w]. Applying the Gronwall inequality we conclude that §1(t) = g=2(t)
on [a,a + w|, which implies that the solution of the IVP is unique in a right
neighborhood of the point a. O

Lemma 1.1.5. Suppose that A # 0, B = 0 and p > 2. Then the IVP (1.1.23)
with to = a has a unique solution in a right neighborhood of the point a.

Proof. If ¢(a) # 0, the statement can be proved in a similar way as the previous
lemma. Another possibility in this case is to use the method based on the reciprocal
equation (1.2.11) (see the below Subsection 1.2.8). Indeed, if y is a solution of
(1.1.1) satisfying y(a) # 0, y'(a) = 0, then u = r®(y') solves (1.2.11) with u(a) = 0
and v/(a) # 0. Moreover, g < 2 (since p > 2) and so the previous lemma can be
applied.

We have to show that the statement is valid also for the case where c¢(a) = 0
(in fact, the following approach applies for any value of ¢(a)). Let y; and y2 be two
(local) solutions of (1.1.23) with with o = a, A # 0 and B = 0. Then there exists
& > 0 such that y;(¢) # 0 on [a,a + 8], © € {1,2}. Then w; = r()P(y.(¢)/y:(¢)),
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i € {1,2}, solve the generalized Riccati equation (1.1.21) on [a,a + §]. Further,
wy(a) = 0 = wa(a). The initial value problem (1.1.21), w(a) = wo with wy € R,
which corresponds to a nonzero solution y of (1.1.23) on [a, a + J], has exactly one
solution on [a,a + 6] as the function —c(t) — (p — 1)r*~9(¢)|w|? is Lipschitzian in
w. Hence wy (t) = wy(t) and thus y (t)/y1(t) = y4(t)/y=(t), which implies y;(t) =
Kys(t) for t € [a,a + d], where K is a real constant. Since y;(a) = 4 = y2(a), we
get K = 1, and the statement follows. O

Remark 1.1.5. It is not difficult to see that similar statements as above can be
proved also in the case, where we examine the problem of the existence and u-
niqueness of IVP (1.1.23) with ¢ € (a,00) in a left neighborhood of .

1.2 Sturmian theory

In this section we establish the basic oscillatory properties of half-linear equation
(1.1.1). In particular, we show that the fundamental methods of the half-linear
oscillation theory are similar to those of the oscillation theory of Sturm-Liouville
linear equations (1.1.2), and that the Sturmian theory extends verbatim to (1.1.1).

1.2.1 Picone’s identity

The original Picone’s identity [315] for the linear second order differential equation
(1.1.2) was established in 1910. Since that time, this identity has been extended
in various directions and the half-linear version of this identity reads as follows.

Theorem 1.2.1. Consider a pair of half-linear differential operators
Llz] = Lrclz] = (r()®(2") + c(t)@(2), Lrclyl = (R(Y)) + C1)2(y)

and let x,y be continuously differentiable functions such that r®(z'), RO(y') are
also continuously differentiable and y(t) # 0 in an interval I C R. Then in this
interval

(1.2.1) {w [(y)rd() - @(x)R«I»(y’)]} — (R + (O~ )]

o(y)

+ pR'TIP (R RO(ay' [y)) + —— [®(y)Lr.c[z] — () Lr,cy]],

where

p q
(1.2.2) P(u,v) := el _ uv + ot >0
b q

with equality if and only if v = ®(u).

Proof. The identity (1.2.1) can be verified by a direct computation, inequality
(1.2.2) is the classical Young inequality, see e.g. [173]. O
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In the particular case when r = R, C = ¢, y is a nonzero solution of the
equation L, .[y] = 0 and w = r®(y’)/®(y), identity (1.2.1) reduces to

(12.3)  r@®)’|? — e’ = (w®)]al") +pr' U@ PrI (B!, S(x)w(h)).

This reduced Picone’s identity will be used frequently in the sequel.

1.2.2 Energy functional
The p-degree functional

b
(12.4) Flysa,b) = / (Ol 1P — e(t)lyl?) dt

a

considered over the Sobolev space W01 "P(a,b) is usually called the energy func-
tional of (1.1.1). Recall that the Sobolev space W, (a,b) consists of absolutely
continuous functions x whose first derivative is in LP(a,b) and z(a) = 0 = x(b),

1/p
with the norm ||z|| = (fab [/ P + |z|P] dt) or with the equivalent norm ||z|| =

1/p
( fab |z’ [P dt) . This set is sometimes (in the variational context) called the class

of admissible functions. Equation (1.1.1) is the Euler-Lagrange equation of the
functional F. Moreover, if x is a solution of (1.1.1) satisfying z(a) = 0 = z(b),
then using integration by parts we have

b
(L2.5) Flaia,b) = [r(Bz()®(' ()] - / 2(O](r()®(2")) + c(t)B()] dt = 0.

1.2.3 Roundabout theorem

This theorem relates Riccati equation (1.1.21), the energy functional (1.2.4) and
the basic oscillatory properties of solutions of (1.1.1). The terminology Round-
about theorem (or Reid type Roundabout Theorem) is due to Reid [320] (it con-
cerns the linear case), and it is motivated by the fact that the proof of this theorem
consists of the “roundabout” proof of several equivalent statements.

Definition 1.2.1. Equation (1.1.1) is said to be disconjugate on the closed interval
[a, b] if the solution z given by the initial condition z(a) = 0, r(a)®(z'(a)) = 1 has
no zero in (a, b] (by a zero of a solution = we mean such a tg that z(ty) = 0). In
the opposite case (1.1.1) is said to be conjugate on [a, b].

Theorem 1.2.2. The following statements are equivalent.
(i) Equation (1.1.1) is disconjugate on the interval I = [a,b].
(i) There exists a solution of (1.1.1) having no zero in [a,b).

(i1i) There exists a solution w of the generalized Riccati equation (1.1.21) which
is defined on the whole interval [a,b].
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(iv) The energy functional F(y;a,b) is positive for every 0 £y € I/VO1 P(a,b).

Proof. (i) = (ii): Consider the solution Z of (1.1.1) given by the initial condition
#(a) = g, r(a)®(Z'(a)) = 1, where ¢ > 0. Then, according to the continuous
dependence of solutions of (1.1.1) on the initial conditions, disconjugacy of (1.1.1)
on [a,b] implies that this solution is positive on this interval if ¢ is sufficiently
small.

(i) = (iii): This implication is the immediate consequence of the Riccati sub-
stitution from Subsection 1.1.4.

(iii) = (iv): If there exists a solution w of (1.1.21) defined in the whole interval
[a,b], then by integrating the reduced Picone identity (1.2.3) with z € W,?(a, b)
we get

Flasab) = p / P9 P (0, B(2)w(t)) dE > 0

with equality if and only if ®(r9 = (t)z') = ®(2)w(t), ie., 2’ = & (w(t)/r(t))x in

[a,b], thus )
2(8) = 2(a) exp {/ b1 <‘7’f((f))> ds} =0

since z(a) = 0. This means that F(z;a,b) > 0 over I/V(}’p(a7 b) with equality only
if z(t) = 0.

(iv) = (i): Suppose that F > 0 for nontrivial y € W,"”(a,b) and (1.1.1) is not
disconjugate in [a,b], i.e., the solution = of (1.1.1) given by the initial condition
z(a) = 0, r(a)®(z'(a)) = 1 has a zero d € [a, b]. Define the function y € W, " (a, b)
as follows

Then by (1.2.5)
Fy;a,b) = F(y;a.d) = F(x;a,d) =0

which contradicts the positivity of F. O

Remark 1.2.1. (i) It is not difficult to see that the Picone identity could be also
used to show that the existence of a nonzero solution of (1.1.1) implies positive
definiteness of F (the implication (ii)=-(iv)). But we include the generalized Riccati
equation into the Roundabout theorem since such an equivalence is important for
applications of our theory.

(ii) The following statement was proved in [245]: If there exists a solution y
of (1.1.1) such that y(t) # 0 on (a,b), then for every u € W,"?(a,b) one has
F(u;a,b) > 0, with equality if y and u are proportional. This is essentially the
same statement as the implication (i) = (iv) of Theorem 1.2.2, its proof is based
on the Hardy type inequalities (see formula (9.5.4) given in the last chapter).

(iii) Later, in Section 5.8, we give a variant of the Roundabout theorem where
an argument of F(-;a,b) satisfies a different type of boundary conditions; recall
that here we assume the zero boundary conditions.

The following lemma shows that disconjugacy allows an alternative definition
in terms of zeros of solutions.



16 Chapter 1. Basic Theory

Lemma 1.2.1. Equation (1.1.1) is disconjugate on [a,b] if and only if every its
nontrivial solution has at most one zero in [a, b].

Proof. The proof of the “if” part is trivial. The “only if” part will be proved by
a contradiction. Thus suppose that (1.1.1) is disconjugate on [a,b] and that there
is a solution y of (1.1.1) such that y(c1) = 0 = y(e2), a < ¢1 < ¢2 < b. Since
the solution space is homogeneous, there is A € R such that z = Ay satisfies
(1.1.1) with 2(c1) = 0 = z(c2) and 2'(c1) = ®7*(1/r(c1)). Then there is no
solution of (1.1.1) without zeros on [c1,¢3] by Theorem 1.2.2 (the implication
(ii)=(i)) and hence there is no solution of (1.1.1) without zeros on [a,b]. The
implication (i)=(ii) of Theorem 1.2.2 then says that the solution = satisfying
x(a) =0, 2'(a) = ®71(1/r(a)) has a zero in (a, b], and so (1.1.1) is not disconjugate
on [a, b], a contradiction. O

Remark 1.2.2. Similarly to the linear case, two points t1,f2 € R are said to be
conjugate relative to (1.1.1) if there exists a nontrivial solution x of this equation
such that x(t1) = 0 = z(t2). Due to Lemma 1.2.1, disconjugacy and conjugacy
of (1.1.1) on a compact interval I C R can be equivalently defined as follows.
Equation (1.1.1) is said to be disconjugate on an interval I if this interval contains
no pair of points conjugate relative to (1.1.1) (i.e., every nontrivial solution has at
most one zero in I). In the opposite case (1.1.1) is said to be conjugate on I (i.e.,
there exists a nontrivial solution with at least two zeros in I). In Subsection 1.2.6
we will discus the disconjugacy on various types of intervals. In Section 4.2 we will
show that using the concept of the principal solution of (1.1.1), this equivalent
definition applies also to unbounded intervals or to intervals whose end points are
singular points of (1.1.1).

1.2.4 Sturmian separation and comparison theorems

The interlacing property of zeros of linearly independent solutions of linear equa-
tions is one of the most characteristic properties, which among others justifies
the definition of oscillation/nonoscillation of equation. The next Sturm type sep-
aration theorem claims that this property extends to (1.1.1). The proof is based
on the Riccati transformation. In the subsequent subsection we offer also some
alternative methods.

Theorem 1.2.3. Let &1 < ty be two conseculive zeros of a nontrivial solution x
of (1.1.1). Then any other solution of this equation which is not proportional to
has exactly one zero on (i1,t2).

Proof. Let w = r®(x')/®(z), then w is a solution of (1.1.21) which is defined
on (t1,t2) and satisfles w(t1+) = 0o, w(ta—) = —oo. Suppose that there exists a
solution Z of (1.1.1), linearly independent of =, which has no zero in (t1,¢2) and
let W = r®(z'/Z). See also Figure 1.2.1. Since %(t1) # 0, T(t2) # 0 (otherwise Z
would be a multiple of z), we have w(t;) < oo, W(t2) > —oo. Hence the graph of
w has to intersect the graph of w at some point in (Z1,t2), but this contradicts
the unique solvability of (1.1.21) (which follows from the fact that the function
¢+ (p—1)r'=%w|? is Lipschitzian with respect to w). O
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Figure 1.2.1: Proof of the separation theorem based on the Riccati technique

Now we introduce the definition of oscillation and nonoscillation of (1.1.1),
which can be the same as in the linear case.

Definition 1.2.2. Equation (1.1.1) is said to be nonoscillatory (more precisely,
nonoscillatory at 0o), if there exists Ty € R such that (1.1.1) is disconjugate on
[To, T1] for every Ty > Tp. In the opposite case, (1.1.1) is said to be oscillatory.

According to Theorem 1.2.3, the above definition is correct, in the sense that
one solution of (1.1.1) is oscillatory if and only if any other solution of (1.1.1) is
oscillatory. Oscillation of a (nontrivial) solution of (1.1.1) means the existence of
a sequence of zeros of this solution tending to co. That is why we can speak about
(nonjoscillation of equation (1.1.1). Note also that similarly to the linear case, if
the functions r, ¢ are continuous and 7(¢) > 0 in an interval [T, o), then according
to the unique solvability of the initial value problem associated with (1.1.1), the
sequence of zeros of any nontrivial solution of (1.1.1) cannot a have a finite cluster
point.

Along with (1.1.1) consider another equation of the same form
(1.2.6) (RS + CH)D(y) =0,

where the functions R,C satisfy the same assumptions as r, ¢, respectively, in
(1.1.1).
The next statement is an extension of well-known Sturm comparison theorem
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(sometimes called Sturm-Picone comparison theorem, when » and R are different)
to (1.1.1).

Theorem 1.2.4. Let t; < t; be consecutive zeros of a nontrivial solution x of
(1.1.1) and suppose that

(1.2.7) C(t) > c(t), r(t)>R(t) >0

fort € [t1,t3]. Then any solution of (1.2.6) has a zero in (t1,t2) or it is a multiple
of the solution x. The last possibility is excluded if one of the inequalities in (1.2.7)
is strict on a set of positive measure.

Proof. Let x be a solution of (1.1.1) having zeros at t = t; and ¢t = ¢5. Then by
(1.2.5) we have F(x;t1,t2) = 0 and according to (1.2.7)

ta
(1.2.8) Fro(z;ty, te) = / [R(t)|z'|P — C(t)|z|?] dt < 0.

t1
This implies, by Theorem 1.2.2, that the solution y of (1.2.6) given by the initial
condition y(t1) = 0, ¥'({1) > 0 has a zero in (¢1,¢2] and by Theorem 1.2.3 any
linearly independent solution of (1.2.6) has a zero in (¢1,t2). Finally, suppose
that the first zero of y on the right of ¢; is just ¢g, Le., y(t1) = 0 = y(t2). Let
v = R®(y")/P(y) be the solution of the Riccati equation associated with (1.2.6).
Since limy—s,[z(t)/y(t)] = lime—e, +[2'(t)/y'(t)] = 2/(t1)/y (1) exists finite, we

have
lim o) [ = lim RO)e(©)d(y (1) ED)

t—ti+ t—ti+ o(yt) 0

Similarly lim; ¢, v(t) |2(¢)]” = 0. This implies Fro(x;ti,t2) > 0 (in view of
(1.2.3) with R, C, v instead of r, ¢, w respectively}, and hence Fre(z;t1,t2) = 0 by
(1.2.8). This implies, by the same argument as in the part (iii} = (iv) of the proof
of Theorem 1.2.2, that v = R®(z'/x), i.e., z and y are proportional. However,
this is impossible if one of inequalities in (1.2.7) is strict on an interval of positive

length. |

We will employ the same terminology as in the linear case. If (1.2.7) are satisfied
in a given interval I, then (1.2.6) is said to be the majorant equation of (1.1.1)
(or Sturmian majorant) on I and (1.1.1) is said to be the minorant equation of
(1.2.6) (or Sturmian minorant) on I.

1.2.5 More on the proof of the separation theorem

We have already seen that Theorem 1.2.3 can be proved by means of the Riccati
technique (i.e., the equivalence (i)<(iii) of Theorem 1.2.2). Here we offer another
four ways of its proof in order to show a wide variety of different approaches which
are possible in spite of the fact that the additivity of the solution space of (1.1.1)
is lost.

Before we present the proofs, let us give some auxiliary results. First note that
in Subsection 1.3.1 below it is proved that the Wronskian identity applies only
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when p = 2. This means, among others, that there is no extension of the reduction
of order formula (see also Subsection 1.3.1), which is a basis for one of the proofs
of the separation theorem in the linear case. On the other hand, the concept of
Wronskian can be utilized in characterization of linear (in)dependence of solutions
(Lemma 1.3.1), which will be helpful here. The following statement clearly follows
from Lemma 1.3.1. Nevertheless, we offer also an alternative proof.

Lemma 1.2.2. Two nontrivial solutions x and y of (1.1.1) which are not propor-
tional cannot have a common zero.

Proof. Suppose, by contradiction, that = and y are linearly independent solutions
with z(tg) = 0 = y(to). Then /(tg) = A # 0 and y'(t9) = B # 0. Consider the
solution z of (1.1.1) satisfying z(t9) = 0, z(ts) = 1. Then Az and Bz are the
solutions of (1.1.1) satisfying Az(tg) = 0 = Bz(to), AZ'(to) = A, Bz'(tg) = B, in
view of the homogeneity property. Owing to the uniqueness we have r = Az and
y = Bz, which implies x = (4/B)y. Consequently, z and y are proportional, a
contradiction. O

Now we are ready to give several alternative proofs of the separation theorem
(Theorem 1.2.3).

1. Proof based on the Riccati technique: See Subsection 1.2.4.

2. Variational proof: This proof is based on the combination of the implication
(i)=(ii) of Theorem 1.2.2 with Lemma 1.2.1. In fact, there is nothing to prove, in
view of Lemma 1.2.1, since the Roundabout theorem then says that the coexistence
of two solutions of (1.1.1), where one solution has at least two zeros in a given
interval while another one has no zero, is impossible. This can be seen also from
Sturmian comparison theorem where ¢(t) = C(t) and r(t) = R(t). We call this
proof variational since an important role is played by Picone’s identity involving
the p-degree functional F.

3. Proof based on Priifer’s transformation: Without loss of generality we as-
sume z(t) > 0, t € (t1,t2). Hence, by (1.1.17), ¢(t) € (0,7m,) (mod m,) for
t € (t1,t2). See also Figure 1.2.2. By (1.1.20), ¢/(t;) = r'79(t;), i = 1,2, thus
@ is increasing in some neighborhood of ¢;, and so without loss of generality we
may suppose that (1) = 0, ¢(t2) = mp. Let us consider any other solution y
different from Az, A € R. Then y(t;) # 0 by Lemma 1.2.2. We may suppose
y(t1) > 0 and by (1.1.17), 0 = ¢(t1) < @(t1) < 7, where @ corresponds to y like
@ corresponds to z. Since by (1.1.20) ¢’ depends only on ¢ and not on p, there
is also uniqueness for the variable ¢ alone. This uniqueness implies that from
P(t1) > @(t1) it follows @(t) > (t) for all ¢ from the interval under consideration.
Hence @(t2) > p(t2) = mp, and the continuous function @(t) — 7, changes its sign
in [t1,t2]. So there is a point ¢ € (¢1,t2) such that @(t) = m,. By (1.1.17) with y
and ¢ instead of z and ¢, respectively, y(f) = 0.

4. Proof based on the Wronskian: Let y be a solution of (1.1.1) independent
on z. Then

—y(t)a'(t:) = (zy" — ya')(t:) = Wz, y)(t:) # 0,
since z,y are linearly independent. Hence a’(t;}) # 0 # y(t;) (actually, this fol-
lows also from the uniqueness and Lemma 1.2.2). Clearly, «’(¢;)2'(t2) < 0 and
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y(t) 2(t)

Figure 1.2.2: Proof of the separation theorem based on Priifer’s transformation

W{z,y)(#) > 0 Jor < 0] for all ¢ by below given Lemma 1.3.1. Consequently,
y(t1)y(t2) < 0 and therefore y has to vanish somewhere between ¢, and ts.

5. Proof based on the uniqueness of the IVP: Without loss of generality we
assume x(t}) > 0, t € (t1,t2), and we prove that another solution, linearly in-
dependent of z, has at least one zero in ({1,¢2). Thus assume, by a contradic-
tion, that there is a solution y such that y(t) > 0 for ¢ € [t1,t2]. Define the set
Q={A>0: \x(t) <y for t € (t1,t2)}. Clearly, 2 is nonempty and bounded.
Therefore there exists A = sup . Now it is not difficult to see that there exists
t € (t1,t2) such that A\z(#) = y(f). Indeed, if not, then we come to a contradiction
with the definition of A. By a contradiction with this definition it can be also
shown that Az'(f) = y'(f). The uniqueness now yields Az(t) = y(t). Consequently,
z and y are linearly dependent, a contradiction.

1.2.6 Disconjugacy on various types of intervals

Following Lemma 1.2.1, we now extend the concept of disconjugacy to the general
interval I, where it does not matter whether I is closed or open or half-open.

Definition 1.2.3. Equation (1.1.1) is disconjugate on an interval I if every its
nontrivial solution has at most one zero in 1.

However, hereafter we show that the change of the form of I may affect some
of the properties; in particular, the existence of a solution of (1.1.1) without zeros
is no more necessary for disconjugacy in case of general 7.
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Theorem 1.2.5. Equation (1.1.1) is disconjugate on I if it has a solution without
zeros on 1. For a compact or an open interval this condition is also necessary.

Proof. The sufficiency follows from the Sturmian separation theorem (see Theo-
rem 1.2.3). The necessity for a compact interval is in fact the implication (i) = (ii)
of Theorem 1.2.2, in view of Lemma 1.2.1. Suppose next that I = (a, b} is open. Let
d be any point in I and choose {a,}, {b,} so that a, < d < by, a, \yaand b, b
as n — oo. Then there exists a solution y,,(t} which is positive for a,, <t < b,.
Letting n — oo through a suitable subsequence we obtain y, (d) — A, y.,(d) — B,
where A% + B? > 0. Then y,,(t) — y(t), v, (t) — y'(t) for all ¢ in I, where y(t) is
the solution which satisfies the initial conditions y(d) = A, y'(d) = B. Therefore
y(t) > 0 for all ¢ in I. If y(t¢) = O for some ty € I, then also y'(ty) = 0, and hence
y(t) =0, a contradiction. O

The existence of a solution without zeros is not necessary for disconjugacy on
a half-open interval. For example, every nontrivial solution y(t) = Asin,(t — 6),
A >0,0<§ < 27, of equation (1.1.1), with r(¢) = 1 and c¢(t) = (p — 1) (see
Theorem 1.4.1), vanishes exactly once on the interval I = [0, 7).

Theorem 1.2.6. Equation (1.1.1) is disconjugate on the half-open interval I =
[a,b) if it is disconjugate on its interior (a,b).

Proof. We only need to show that if y(¢) is the solution satisfying the initial
conditions y(a) = 0, ’(a) = 1, then y(t) # 0 for a < t < b. Suppose on the
contrary that y(d) = 0, where a < d < b. Since y'(d) # 0, y(t) assumes negative
values in a neighborhood of d. Therefore, if ¢ > 0 is sufficiently small, the solution
§(t) satisfying the initial conditions §(a +¢) =0, §’(a + ¢) = 1 has a zero near d.
But this contradicts the hypothesis that (1.1.1) is disconjugate on (a, b). O

An easy modification of the proof of Theorem 1.2.2, with using the results of
this subsection, yields the variant of the Roundabout theorem, which involves the
disconjugacy on an open interval. Observe how the positive definiteness of the
energy functional is changed to the positive semidefiniteness.

Theorem 1.2.7. The following statements are equivalent.
(i) Equation (1.1.1) is disconjugate on the interval (a,b).
(i) There exists a solution of (1.1.1) having no zero in (a,b).

(iti) There exists a solution w of the generalized Riccati equation (1.1.21} which
is defined on the whole interval (a,b).

(iv) The energy functional F(y;a,b) is nonnegative for every y € W(} P(a,b).

1.2.7 Transformation of independent variable

Let us introduce new independent variable s = (t) and new function y(s) = z(t),
where ¢ is a differentiable function such that ¢’(¢) # 0 in some interval I where
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we consider equation (1.1.1). Then 4 = ¢/(t)£ and hence this transformation

transforms (1.1.1) into the equation of the same form

d ’ d C(t) -1
1.2.9 — t)o t)® | — $ =0, t= ,
129 lrose o ()] + Shem =0 t=p
where ¢! is the inverse function of . In particular, if
0
(1.2.10) ©(t) :/ r=i(r)ydr, Tel,
T

then the resulting equation (1.2.9) is the equation of the form (1.1.1) with r(¢) = 1.

Observe that if [*r1~9(t)dt = oo, then (1.2.10) transforms an unbounded
interval [T, 00) into the interval [0,00) which is of the same form as [T, c0). If
[ r179(t) dt < oo then the interval [T, 00) is transformed into the bounded in-
terval [0,b), b = [°r'=%(t)dt. This fact, coupled with the remark about cluster
points of an oscillatory solution of (1.1.1) given below Definition 1.2.2, shows why
some (non)oscillation criteria and asymptotic formulas for solutions of (1.1.1) sub-
stantially depend on the divergence (convergence) of [~ r'~4(t)dt.

1.2.8 Reciprocity principle

Suppose that the function ¢ in (1.1.1) does not change its sign in an interval I and
let uw = r®(2'). By a simple computation one can verify that u is a solution of the
so-called reciprocal equation

(1.2.11) (mqﬂ(u/)) () D () = 0,

where ®~!(s) = |s|7 ' sgns, ¢ = p/(p — 1), is the inverse function of . The ter-
minology reciprocal equation is motivated by the linear case p = 2. The reciprocal
equation to (1.2.11) is again the original equation (1.1.1)

If ¢4 < 2 are consecutive zeros of a solution z of (1.1.1), then by the Rolle
Mean Value Theorem u has at least one zero in (¢1,t2). Conversely, if {1 <ty are
consecutive zeros of u, then ' = —c(t)x and hence also z has a zero in (¢1,t2).
This means that (1.1.1) is oscillatory if and only if the reciprocal equation (1.2.11)
is oscillatory. This fact will be referred to as the reciprocity principle.

1.2.9 Sturmian theory for Mirzov’s system

As we have mentioned in Subsection 1.1.1, half-linear equation (1.1.1) is a special
case of the first order system

(1.2.12) up = al(t)\uQ|’\1 sgnus, uh= —ag(t)\ul\)‘z Sgn Uy,
where it is assumed that A, Ao > 0 and

(1.2.13) Ao = 1.
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A detailed treatment of (1.2.12) (in most of the parts of that book even without
assuming (1.2.13)) can be found in [292], see also extended english translation of
Mirzov’s book [293].

Mirzov considers a different definition of (non)oscillation where both compo-
nents u1, u2 have “the same significance”, in contrast to our approach, where the
oscillatory properties of (1.1.1) (and hence of system (1.1.3)) are defined via zero
point of a solution z, i.e., as zeros of the component u; in (1.2.12). By Mirzov's
definition, a solution (uq,us) of (1.2.12) oscillates if both components w1, us 0s-
cillate (i.e., have a sequence of zero points tending to co). We will return to the
problem of oscillation of (1.2.12) later.

In this subsection we briefly recall the main result of [292, Chap. 10], a Sturm
type theorem for (1.2.12). In fact, as we will see, its proof is based on the Riccati
type substitution.

Theorem 1.2.8. Let for some k € {1,2}, the inequalities

(1.2.14) 0 < ap(t) S ai(t), as_p(t) <ali . (t) for i <t <ty
hold and let system (1.2.12) have a solution w1, us such that

(1.2.15) ug(t1) = up(ta) =0 and ur(t) £ 0 for t1 <t < tg,
where 0 <t < ts < 00. Then, for any solution vi, ve of the system
(1.2.16) v = at(t)|ve|™ sgnua,  vh = —aj(t)|v M sgnu

the component vy has at least one zero on the interval [t1,12].

Proof. In view of (1.2.15), without loss of generality we can assume that
(1.2.17) up(t;) =0, i=1,2, ug(t) >0 for t1 <t < to.

According to the unique solvability of (1.2.12) (compare the proof of Lemma 1.1.1
and Lemma 1.1.2), ug_(¢1) # 0. Let us show that

(1.2.18) (=) tuz (1) > 0.
Assume the contrary. Then there exists € > 0 such that
(1) luz_(t) <0 fort, <t <t +e.
Thus, by the first inequality in (1.2.14), we have
up(t)=ar (D) us— (O (1) " sgnugx (1) = —ax(t)uz 1 ()| <0

for t7 <t < t; + ¢, which contradicts conditions (1.2.17). Thus the validity of
inequality (1.2.18) is proved. Analogously we can prove that

(1.2.19) (=) tuz_g(t2) < 0.
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From (1.2.13), (1.2.17)-(1.2.19) it is obvious that the function

2(t) = us—k(t)/[ur ()]
is a solution of the generalized Riccati equation
(1.2.20) 2 (1) N gar (0] 2] M 4+ (=1 laz_g (1) = 0,
satisfying the conditions

. k=1 — : _1Yk—1 — _
(1.2.21) t£g1+( 1) 2(t) = oo, tl{gl_( 1)~ 2(t) 0.

Now we suppose that there exists a solution (vy,vg) of system (1.2.16) such
that vg(t) # 0 for {1 <t < ts. Then, as for the function z which solves (1.2.20),
the function p(t) = v3_(t) sgnvg(t)/|vk(t)|2—* is a solution of the equation

P (D s kak ()] 4 (1) a5 (1) = 0,

defined on the interval [t1,¢2]. In view of condition (1.2.21) and the continuity of
the function p on [t1, ta], there exists a point t* € (#1,t2) such that

(1.2.22) 2(t7) = p(t"),  (~D)F'z(t) < (=D p(t)
for t* < t < t3. On the other hand, by conditions (1.2.14),

(-1F Y = —Xaoar(t)e]T = as_k ()
> —Xgogap(t)]z[TTN — a3 (1)

for t1 <t < t3. According to the standard theorem on differential inequalities (see
[174]), (1.2.22) and (1.2.23) result in

(=D L2(t) > (1) Ip(t), for t* <t <ty

The last inequality contradicts (1.2.22). Therefore, our assumption that vg(t) # 0
on [ty,t2] is not true. O

Remark 1.2.3. One can find in [292, Chap. 10] also several other statements related
to Sturmian theory for (1.2.12). These statements are mostly based on the Priifer
transformation applied to (1.2.12), but in contrast to the Subsection 1.1.3, Mirzov
uses the classical sine and cosine functions, i.e., his Priifer transformation is of the
form

ui(t) = o(t)sinp(t), ua(t) = o(t) cos p(t).

The obtained differential equations for g,¢ are then, of course, different from
(1.1.20), but their solutions have essentially the same properties as those of equa-
tion (1.1.20). So also this kind of the Priifer transformation can be used to derive
the results which will be obtained later on in this book using the Priifer transfor-
mation in form (1.1.17) or in its modifications as mentioned in Remark 1.1.2.



1.2. Sturmian theory 25

1.2.10 Leighton-Wintner oscillation criterion

In this subsection we formulate a simple oscillation criterion for (1.1.1). Even if
we will devote a special chapter to oscillation criteria for (1.1.1), we prefer to
formulate this criterion already here, to show an example of the application of the
two basic methods of the oscillation theory of (1.1.1). In the linear case p = 2,
this criterion was proved first by Leighton [233] under the additional assumption
¢(t) > 0. This restriction was later removed by Wintner, see e.g. [341].

Theorem 1.2.9. FEquation (1.1.1) is oscillatory provided

oo oc b
(1.2.23) / Pt dt =0  and / c(t)dt = blim e(t) dt = oo.
—0C

Proof. According to the definition of oscillation of (1.1.1), we need to show that
this equation is not disconjugate on any interval of the form [T, o). To illustrate
typical methods of the half-linear oscillation theory, we present here two different
proofs.

(i) Variational proof. We will find for every T € R a nontrivial function y €
W, P (T, o0) such that

(1.2.24) Fly; Ty00) = /Tw[r(t)y’lp —c(B)]yl"]dt < 0.

The function which satisfies (1.2.24) can be constructed as follows

0 T <t<t,
—1
ftt() ri=a(s) ds( :(,l T (s) d8> to <t <tq,
yt)y =<1 | ustst,
ftL:; rl—q<s) ds( t/: r1—q(5) ds) ty <t < 13,
0 ts <t < oo,

where T < tg < 1 < to < t3 will be specified later. Denote
t1
K= Flystot) = [ O - c0lyP) e
to
Then by a direct computation we have

1—p ts
—/ c(B)lyl? dt.
t2

1
Since the function g(t) = ( ) is monotonically de-
t3) =

Fy;T,00) = K- ” c(t)dt + (/: ria(t) dt)

t1

creasing on [tg, t3] with g(tg) =1 and g( =0, by the second mean value theorem
of integral calculus there exists £ € (t3,%3) such that

/t t ()P (t) dt = /t 5 o(t) dt.
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Using this equality, we have

13 ty 1-p
Flyito, t3) =K — | c(t)dt+ </ riTe(t) dt) .
t1 ta
Let € > 0 and ¢; > ty be arbitrary. The second condition in (1.2.23) implies that
to can be chosen in such a way that ftﬁ e(t)dt > K + ¢ and the first condition
-1
ri=a(t) dt) < e.

tg

in (1.2.23) implies that t3 > ¢3 can be taken such that ( '

Summarizing these estimates, we have
Flystots) < K — (K +¢)+e <0,

hence (1.1.1) is oscillatory by Theorem 1.2.2.

(ii) Proof by the Riccati technique. Suppose, by contradiction, that (1.2.23)
holds and (1.1.1) is nonoscillatory. Then there exists T € R and a solution w
of Riccati equation (1.1.21) which is defined in the whole interval [T, c0). By
integrating (1.1.21) from T to ¢t we get

w(t) =w(T) — / c(s)ds — (p — 1)/T 1 9(s)w(s)|? ds.

The second condition in (1.2.23) implies the existence of T1 > T such that we have
w(T) — f;; c(s)ds <0 for t > T; and hence
¢

w(t) < —(p—l)/ P1=(8)[w(s)[T ds for ¢t > T

r1=4(s)|w(s)|? ds, then |w| = [G’rq’]}l/q and the last inequality

G'(t)
Ga(t)
By integrating this inequality from T3 to t we get

Denote G(t) = f;
reads

> (p—1)7r' ().

t

1 1
G > L [6V (1) - G) 2 (- 1 [ s
q—1 q— 1 Ty
Letting ¢ — oo we have a contradiction with the first condition in (1.2.23). O

1.3 Differences between linear and half-linear
equations

The basic difference between linear and half-linear equations has already been
mentioned at the beginning of this chapter. In this section we point out some
other differences (in fact, they are more or less consequences of the lack of the
additivity of the solution space).
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1.3.1 Wronskian identity

If y1, 92 are two solutions of the linear Sturm-Liouville differential equation (1.1.2),
then by a direct differentiation one can verify the so-called Wronskian identity

(1.3.1) r() [y (Oya(t) — yi By2(t)] = w,

where w is a real constant. In [140], Elbert showed that there is no half-linear
version of this identity. In fact, he considered equation (1.1.1} with »(¢) = 1, i.e.,

(1.3.2) (®(z")) + c(t)®(z) = 0,

which however is not a serious restriction. More precisely, we assume a generalized
Wronskian as a function of four variables W = W {y1, ¥}, y2, ¥5). This function is
subject to the following “reasonable” restrictions (typical for Wronskian), and the
subsequent theorem says that the only possibility is then, in fact, the linear case.
The restrictions are:

(i) W is continuously differentiable with respect to each variable,
(i) W is not identically constant on R*,

(iii) for every pair of the solutions yy, y2 of (1.3.2) the Wronskian W is constant,
i.e., independent of ¢ and of the coeflicient c,

(iv) W has antisymmetry property W(xs, 4,21, 22) = —W(x1, 22,23, 24).

Theorem 1.3.1. Let y1 and y2 be two arbitrary solutions of (1.3.2) and let the
Junction W{y1,y1,y2,v5) be the generalized Wronskian for (1.3.2) salisfying the
conditions (1)—(iil). Then the only possibility is p = 2 and W = U(y1y5 — yiy2),
where the function ¥ = W(u) is continuously differentiable. If, in addition, the
condition (iv) is satisfied, then the function ¥(u) is odd.

Proof. By the polar transformation (1.1.17) (with r(¢t) = 1) we can look for the
Wronskian also in the form W = W®(py, p2, 1, p2), where the functions p;, ¢; are
the polar coordinates of the points (y!,y;), the function ¥ (uy, usz, us, us) is defined
on D =RT xRT xR x R and the partial derivatives 9 = 9¥°/u; (i = 1,2, 3,4)
are continuous functions in D. Let us compute the derivative d¥°/dt. By (1.1.20)
we have dU°/dt = T’y + cI's, where

Iy = W01 S18(S1) + WhpaSy®(Sa) + WI|ST[P + 0857,
[y = —W0p  S{®(S1) — UHp2Sy®(S2) + W3Sy [P + T[S,

(1.3.3)

p’
and S; = sin, ¢;, S} = cosp ¢;, i = 1,2. The condition (iii) implies that
(1.3.4) Iy =Ty =0.

Hence I'y + 1’3 = 0 and taking into account (1.1.13) we get by (1.3.3) ¥+ ¥ = 0.
Let p1, p2 be fixed and p2 = 1 + k, k being a constant. Then

dU°(p1, p2, 01,01 + k)

= = 0§+ 09 =0,
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i.e., along the line (p1, p2, 1,91 + k), —00 < @1 < 00, the function ¥ is constant.
Hence it depends on py,pe and o1 — @2 = @, i.e, U0 = Wl(py, po, 01 — @2).
Substituting this function in (1.3.3) we have for I'; by (1.3.4)

(1.3.5) Uip1S1D(S1) + W5p255®(S2) = Wi(|S1]* — [S2]®).

Let us choose specially ¢1 = ¢, 902 = —p, ¢ € R. Since the function sin, ¢ is
odd and cos, ¢ is even, we have (W]p; — Wips)cos, p®(sin, ¢) = 0. Thus for
¢ #mm,/2, m=0,+1,£2,... it follows that

(1.3.6) Uipr — Ulpy = 0.

Now we fix the value of ¢. Since p; > 0, p2 > 0, we can define the function © by
©(log p1,log p2) = ¥l(p1, p2,2¢). Then for the function © we obtain 90 /9p; =
©,/p; and the relation (1.3.6) becomes 61 — O3 = 0. By a similar argumenta-
tion as above it follows that ©(uy,us) = O (u1 + u2) and so Wi(py, ps,2p) =
©'(log p1 + logpz) for almost every v € R with the exceptions ¢ = mm,/2
(m = 0,41,%2,...). But the continuity of ¥' with respect to its third variable
implies that this relation holds for these exceptional values of ¢ as well, hence
Ul (p1, p2, 01 — w2) = W2(p1pa, 01 — 2). By virtue of (1.3.5), the function W2
satisfies the relation

(1.3.7) Uip1p2(S1B(S1) + S58(S2)) = W5(|S1 [P — [S2fP).
Putting ¢1 = ¢, 92 = 0 in (1.3.7) we have
(1.3.8) Ui p1 p2 cos, e®(sing, p) = V3| sin, ¢

Let sin, ¢ > 0, or say, let 0 < ¢ < 71, and let O(u1,u2) be defined by
(1.3.9) U?(u, ) = O(log u, logsin,, ).

Then from (1.3.8) it follows that (€1 — ©2)cosp, ®(sin, ¢) = 0, hence © =

O(logu + logsin, p) = O(log(usin, ¢)) = Y(using, ), and by (1.3.9)

(1.3.10) U2 (p1p2, ) = U(p1pasing @).

A similar argumentation provides the extension of (1.3.10) from 0 < ¢ < 7, to all
@ € R. Hence we get

(1.3.11) Wy1,41y2,y5) = W(p1pasing (1 — 2)),

where the function ¥ = ¥(u) is continuously differentiable.

In order to prove our theorem, we must show that relation (1.3.11) can be
satisfied only in the case p = 2. Let us substitute this final form into (1.3.7). Then
we have ¥/ p1paT' (01, 02) = 0, where

(1.3.12) T(¢1, w2) = sin, (w1 — @2)[cos, p1P(w1) + cosp Pa®(p2)]
— cosp(p1 — p2)|| sing @1 [P — [ sing 3|7
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Since by (ii) the function W is not identically constant, there is a value ug for
which ¥’'(up) # 0. By the continuity of ¥'(u) we may suppose that ug # 0.
Hence for the values p1, pa, @1, @2 subject to p1pgsing(p1 — @2) = up the equality
I'(p1,92) = 0 holds. Owing to the freedom of choosing the values p1ps > 0 the
equality I'(¢1,¢2) = 0 is valid for all @1, 2 subject to up sin,(¢1 — ¢2) > 0. Let
us choose the value of ¢ small and let ugsin, e > 0. Then I'(2¢, ) = 0, hence

(1.3.13) li (22:€)

=0.
20 e

On the other hand, L'Hospital’s rule yields from (1.3.12)

W(2
i 26 g1 g r 1y =gt
25 e
Combining this with (1.3.13) we obtain the only possible value p = 2 in accordance
with the first part of the theorem, since S1(y) = sin¢.

Applying the restriction (iv) on the Wronskian given by (1.3.11) we have

U(p1p2sing (2 — 1)) = —Y(p1p2sin,(p1 — @2)).

Since the function sin, ¢ is odd, we find ¥(—u) = —¥(u), i.e., the function ¥(u)
is odd, which completes the proof. [l

The absence of a Wronskian type identity implies that we have also no analogue
of the linear reduction of order formula: given a solution & of (1.1.2) with Z(¢) # 0

in an interval I, then
s =a) [
a r(s)Z%(s)

is another solution of (1.1.2).

On the other hand, the concept of Wronskian can be utilized in the characteri-
zation of linear (in)dependence of solutions of (1.1.1). If x, y are two continuously
differentiable functions, then the Wronskian is defined as the function

Wz, y)(t) = z(t)y'(t) — 2/ (H)y (1)

The next statement shows that similarly to the linear case, the Wronskian of two
solutions of (1.1.1) is either identically zero or always nonzero.

Lemma 1.3.1. Let z and y be two nontrivial solutions of (1.1.1) defined on
I. Then either W(xz,y) = 0, in this case © and y are linearly dependent (i.e.,
proportional) on I, or W{(xz,y) # 0 on I and then x and y are linearly independent
on I

Proof. We offer two different approaches. Let us suppose that there is ¢ € I such
that W{(x,y)(to) = 0. Then the system of linear equations

/\1£L‘(t0> — /\gy(to) = 0, /\11‘/(150) — /\Qy/(to) =0
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for the unknowns A1, A2 has a nontrivial solution (A1, Az). Now we have Ay # 0,
Az # 0 because otherwise it would be either z(tg) = 2'(to) = 0 or y(to) = ¢'(to) =
0, which is impossible. Let A = A;/As. Then we have y(tp) = Az(to), v'(to) =
Az’ (o), A # 0. First we suppose A > 0. Let 2, ¢! be the polar coordinates of the
point (r771(tg)x'(to); 2(to)). Then p2, Aol are the corresponding polar coordinates
of the point (r?=!(to)y’(t0); y(to)). Now let ., 0, and ¢, o, be defined as in
(1.1.17) and correspond to x and y, respectively. Then these functions are solutions
of (1.1.20) satisfying the initial conditions ¢, (o) = ©2 = ¢y (to), 02(t0) = 0¥ and
0y(to) = Aol. Owing to the uniqueness we have ¢, (t) = p,(t), 0y(t) = Ao, (t) on
I, consequently y = Az on I, i.e., the solutions z, y are linearly dependent and the
Wronskian is identically zero. In the case A < 0 we consider the function z = —y.
Then z is also a solution of (1.1.1) and z(tg) = Az(tg), 2'(t0) = Ax'(tg) where
A = —\. Since A > 0, we find again z(t) = Az(t) on I, hence y(t) = Az(t), ie.,
the solutions x,y are linearly dependent. If the Wronskian is never vanishing on
I, then there is no A such that y(¢) = Ax(t) on I, consequently the solutions z,y
are linearly independent, which completes the proof.

It is worthy to mention that the proof can be also done via the Riccati equation.
Actually, only the middle part of the proof is changed as follows. We have y(to) =
Ax(to), ¥'(yo) = Az’ (tg), A # 0. Here we assume that z(tg) # 0. If not, then such
a situation can be solved very easily, see Lemma 1.2.2. Put w? = (r®(2'/x))(to)
and w) = (r®(y'/y))(to). The functions we,w, defined by w, = r&(z’/z) and
wy = r®(y’/y) satisty the same Riccati equation (1.1.21) (as long as they exist)
and since w9 = wg, they coincide on the interval of the existence, which implies

that x and y are linearly dependent. O

Remark 1.3.1. (i) It is very easy to see that, in fact, we have two equivalences:
nontrivial solutions z and y of (1.1.1} are linearly dependent [resp. independent)
on [ if and only if W(x,y)(t) =0 on I [resp. W(z,y)(t) # 0 for all ¢t € I].

(if) If we consider a slightly more general equation, like (1.1.7), where the set (ii)
of restrictions (presented after (1.1.7)) is imposed on f, then there is an example
showing that the Wronskian of two solutions of (1.1.7) may be identically zero
on some interval although the solutions are linearly independent, see [143]. This
unpleasant phenomenon however disappears if we add the assumption f(—z, —y) =

1.3.2 Transformation formula

Let h(t) # 0 be a differentiable function such that rh’ is also differentiable and let
us introduce a new dependent variable y which is related to the original variable
z by the formula = = h(t)y. Then we have the following (linear) identity which is
the basis of the linear transformation theory (see [10, 52, 305])

(13.14)  AOI(r(Da’) + c(a] = (r(OR2(R)) + RO ) + c(OR(E)]y.
In particular, if x a solution of (1.1.2) then y is a solution of

(R(t)y') +C(t)y =0
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with R = rh? and C = h[(rh’)’ + ch]. Since the function & is not additive, we
have no half-linear analogue of this transformation identity. This has the following
important consequence. Many oscillation results for linear equation (1.1.2) are
based on the so-called trigonometric transformation which reads as follows. Let
21, 2 be two (linearly independent) solutions of (1.1.2) such that r(z; 2, —2{x2) =
1 and let h = /22 + 23. Then we have the identity (which can be verified by a
direct computation)
1
Rhl(rh"Y +ch) = —.
(hY + ekl =
This means that the transformation x = h(t)y transforms (1.1.2) into the equation

(1.3.15) (%M) +q(ty =0, qt) = W;sz

Equation (1.3.15) can be solved explicitly and

y1 = sin (/f q(s) dS) , Yz2=cos (/tq(s) ds)

are its linearly independent solutions, in particular, (1.3.15) and hence also (1.1.2)
is oscillatory if and only if

/w dt .
r(Olz3(t) + 23(1)]

for any pair of linearly independent solutions x1,z2 of (1.1.2). This fact is used
in proofs of many oscillation results for (1.1.2), see [318, 341] and references given
therein. Since half-linear version of the transformation formula (1.3.14) is missing,
analogous results for half-linear equation (1.1.1) are not known.

1.3.3 Fredholm alternative

Counsider the linear Dirichlet boundary value problem associated with (1.1.2)

(r(®)a") + etz = f(1), t€la,b],
2(a) =0 = z(b).

It is well known that if the homogeneous problem with f(¢) = 0 has only the trivial
solution, then (1.3.16) has a solution for any (sufficiently smooth) right-hand side
f (the so-called nonresonant case). If the homogeneous problem has a solution ¢y,
problem (1.3.16) has a solution if and only if

(1.3.16)

b
/f@m@ﬁZO

In particular, the problem

(1.3.17) " +x=f(t), z(0)=0=z(n),
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has a solution if and only if [ f(t)sintdt =0.
Now consider the half-linear version of the boundary value problem (1.3.17)

(@) + (p— V() = f(t), €],

(1.3.18) 2(0) = 0 = 2(m),

where the generalized 7, is given by (1.1.12). A natural question is whether

(1.3.19) /Oﬂp F()sing tdt =0

is a necessary and sufficient condition for solvability of (1.3.18). This problem
has attracted considerable attention in the last years, see [118] and the references
given therein. It was shown that (1.3.19) is sufficient but no longer necessary for
solvability of (1.3.18). We will deal with this problem in details in Chapter 6.

1.4 Some elementary half-linear equations

In this section we focus our attention to half-linear equations with constant coef-
ficients and to Euler-type half-linear equation.

1.4.1 Equations with constant coefficients

Before passing to half-linear equations with constant coefficients, consider the equ-
ation

(1.4.1) (r(t)y®(z")) = 0.

Here the situation is the same as in case of linear equations. The solution space
of this equation is a two-dimensional linear space and the basis of this space is
formed by the functions 2, (t) = 1, 22(t) = [*r79(s) ds, where ¢ = I is the
conjugate number of p.

Now, consider equation (1.1.1) with »(¢t) = r > 0 and ¢(t) = ¢. This equation
can be written in the form

(1.4.2) (®(2')) + ;@(aﬁ) =0

1/p
and the transformation of independent variable ¢t — At with A\ = ( lel )

transforms (1.4.2) into the equation
(@(z")) + (p—1)sgncd®(x) =0

If ¢ > 0, this equation already appeared in Subsection 1.1.3 as equation (1.1.9). Its
solution given (uniquely) by the initial conditions 2(0) = 0, 2/(0) = 1 was denoted
by sin, t. Consequently, taking into account homogeneity of the solution space of
(1.1.1), we have the following statement concerning solvability of (1.1.9).
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Theorem 1.4.1. For any to € R, zg,21 € R, the unique solution of (1.1.9)
satisfying x(to) = xo, o' (to) = 21 is of the form x(t) = asin,(t — t1), where o, t
are real constants depending on tg, xg, 1.

Now let ¢ < 0, i.e., we consider the equation
(1.4.3) (@) = (p—1)®(x) = 0.

Multiplying this equation by z’ and integrating the obtained equation over [0, ]
we have the identity

(1.4.4) |2/ ()7 = Jz@)|P = [2"(0)]" - [2(0)|P = C,
where C is a real constant. If C' = 0 then 2’ = + 2 thus z; = e’ and 2z, = e~ are
solutions of (1.4.3).

In the remaining part of this subsection we focus our attention to the general-
ized half-linear hyperbolic sine and cosine functions. In the linear case p = 2, these
functions are linear combinations of e! and e t. However, in the half-linear case
the additivity of the solution space of (1.1.1) is lost and one has to use a more
complicated method. Let E = E,(t) be the solution of (1.4.3) with the initial

E5)5(t)
Es(t)
8 T Es(t)

Figure 1.4.1: Generalized hyperbolic sine functions for p =3/2, p =2, and p =3

conditions E(0) = 0, E'(0) = 1, and similarly let F' = F,(¢) be the solution given
by the initial conditions F'(0) = 1, F'(0) = 0. Let us also observe that the function
E corresponds to C' =1 and F to C = —1 in (1.4.4), respectively. Moreover, for
p = 2, lLe., if differential equation (1.4.3) is linear, we have E,(¢) = sinht and
F5(t) = cosht.

Due to (1.4.4), the function E satisfies also the relation

E'={/1+|EP,
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hence F’ > 1 for ¢ > 0. Consequently
E(t) ds
/ {’/1+Ep o V1+sP

In order to compare (asymptotically) the function F(t) with €, let the function

f(s) be defined by
1 for 0<s<1,
fls) = .
1/s for s> 1.

(1.4.5)

Then by (1.4.5) we obtain

B g E(1)
t—1lo Et:1—|—/ 1,7—/ s)ds for KE(t) > 1.
sE0 =1+ [ e [ ) 0

Hence

(1.4.6) logdp := lim [t —log E(t)] = 1 — /OOO {f(s) - ﬁ] ds

The integral in the right-hand side of (1.4.6) can be interpreted as the area of
the domain in the (s, y)-plane given by the inequalities

1
—— <y < f(s) for 0<s<o0.
Taking y as an independent variable, we find for the integral in (1.4.6)
1 o — 1 . 1/p
1—4y/1—yP 1 1
(1.4.7) logd, = 1 _/ SNV T gy =1 / L
0 Yy P, 0 1—u

Since 0 < 1—1/1—yP <yfor0 <y < lwehave0 <logd, <1,ie,1<d, <e. On
the other hand, the integral in (1.4.7) can be expressed by means of the function
U(z) =dlogT'(z)/dz as

L [Tl
\I/(z):—C'—i—/ ﬁdt for Re z >0,
0

where C' is the Euler constant and I'(2) = [~ ¢*~'e~* dt denotes the usual Euler
gamma function. Making use of this relation we obtain

(1.4.8) 1og5p1—]—){c+@(p;1>].

Finally, the relation (1.4.6) can be rewritten as

et

1.4. 1i
(1:49) RN

=0, where 1< 4, <e.

A similar relation is expected also for the function F,(t). We will use the
following auxiliary statement which we present without the proof, this proof can
be found in [139].
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Lemma 1.4.1. Let I1(R), I2(R) be integrals defined by

I(R) = R S I(R) = R S
o Vive L VET

Then - -
lim [Il(R) — IQ(R)] = —cot —.

R—oo p P

Now we return to the asymptotic formula for F,. We want to obtain a relation
similar to (1.4.9). Since F fulfills the differential equation

PP = PP =1,

we have -
Vﬁ =1 for t>0.
Integrating the last equality yields
1F(t) %\/6__1 =t for ¢t>0.
This relation implies that lim; .o F'(f) = co. On the other hand
F(t) 1
Jmle—tog (o] = i [ | oo 0 de
(1.4.10) _ /OO {# _ l} i
1 LVE-T €
because the integral on the right-hand side is convergent. Let A, be introduced by
(1.4.11) log A, = /00 [% — l} dg.
1 LVEeE-T ¢
It is clear that A, > 1. The relation (1.4.10) can be rewritten as
et
(1.4.12) tlingo m =4, with A, > 1

Now we want to establish a connection between A, and é,. By (1.4.6), (1.4.10),
and taking into account the definition of the function f(£), we have

ot - [ Do [ 0 )€
dim [12(R) — L(R)],

where the functions I, (R), I2(R) were introduced in Lemma 1.4.1. Then by this
lemma we get the wanted relation as

(1.4.13) logi— = Zeot .
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We may observe here that this relation implies é; = Ay in the linear case
(p = 2). In fact, we have §; = 2 = As.

By (1.4.8) the value of 8, can be considered to be known, consequently by the
relation (1.4.13) the value of A, is known as well.

Finally, there are interesting functional relations between the half-linear hy-
perbolic sine and cosine functions E,(t), F,(t) as follows
(1.4.14)

Ey(t) = {F((p— 1))} =7 (Fy((p - 1)1), F,(t) = 7" (By((p — 1)1)).

To prove these relations it is sufficient to show that the functions on both sides
of the equalities satisfy the same differential equation and fulfill the same initial
conditions, this is a matter of a direct computation (use e.g. the result of Subsec-
tion 1.2.8).

The relations (1.4.14) provide another connections between the values of §,
and A,. Indeed, by (1.4.4) and (1.4.9) we have

El(t ;
(1.4.15) lim A0 = lim Ep(t) L

t—oo e t—oo et 6;7 ’

On the other hand, this, (1.4.12) and (1.4.14) imply (taking into account that
(p—1)(g— 1) =1 for conjugate pair p, q)

N 210 S (e O SRS
5571 tooo  elp—Dt t—o0 elp—1)t Aq
hence
(1.4.16) Ay =01,
and similarly
(1.4.17) 6g = AP

We remark that the last two relations are equivalent since replacing p by g we
get each from the other. By relations (1.4.13), (1.4.16) (or (1.4.17)) it is sufficient
to know one of the values of Ap,d,, Ay, d;, and then all the other values can be
obtained easily.

As in the linear case where the function sinh ¢ is odd and the function cosh? is
even, the functions E,(t), F(t) behave in a similar way:

(1.4.18) Ep(—t) = —E,(t), Fy(—t) = Fy(1).

To prove this statement it is sufficient to show that the functions on the both
side of the equality are solutions of differential equation (1.4.3) and satisfy the
same initial conditions at ¢ = 0. Then the uniqueness of the initial value problem
(see Subsection 1.1.5) proves (1.4.18).

Now we know all the solutions of differential equations (1.4.3). We display them
in the next theorem.
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Theorem 1.4.2. The solutions of (1.4.3) are:
(1.4.19) Ke', Ke ', KE,(t+to), KF,(t+to),

where K and tg are real parameters. More precisely, there are two one-parameter
families of solutions z(t) = Ke!, z(t) = Ke™' and two two-parameter families
satisfying the following asymptotic formula

lim — =L,

t—oo et
where L = Ke% /8, or L = Ke" /A, with K from (1.4.19).

Proof. Since equation (1.4.3) is autonomous, it is suflicient to consider solutions
whose initial values are prescribed at t = 0, i.e. 2(0) = xg, 2'(0) = 1. If 29 =
0 = x1, then according to the unique solvability, z(¢) = 0. If at least one of the
constants xp, x7 is nonzero, distinguish the cases according to the value of the
constant C in (1.4.4). In case C' = 0, the only possibilities are z(t) = Ke® or
z(t) = Ke™'. More precisely, if zox; > 0, then z(t) = zge’, if xzgx; < 0, then
z(t) = zoe~t. Now, if C' > 0, then by the definition of the function F, we have
z(t) = KE,(t+to). Let K = sgnzo+/C. Since the function E,, is strictly increasing
(observe that E'(0) = 1, F’ is continuous and |E’'|P = 1 + |E|P) there exists tp € R
such that CEp(tp) = x1. Concerning the initial condition for the derivative z’, we
have

l21|P = C + |2o|P =C+ CIEP =C(1+ |EP) =C|F

hence z1 = £ KE'(ty). But E'(tp) > 0 and sgn K = sgnz;, the sign + is the
correct one. If C' < 0, let K = sgnzg+/—C and ty be the solution of C£”(tg) = ;.
Then the function K F,(t +to) is the solution we looked for.

Finally, concerning the asymptotic formula, any solution which is not propor-
tional to e* or e™! satisfies by (1.4.9) or (1.4.12),

p
’

to Lo
lim it) = lim KE@+ to)et“ = Ke or lim & = Ke )
t—oo et t—oo €t+t0 (Sp t— o0 et Ap
hence L = Ke' /8, or L = Ke'o/A,. O

1.4.2 Euler type half-linear differential equation

In this subsection we deal with the Euler type (or generalized Euler) differential
equation

(1.4.20) (@) + ;—;Cb(x) =0,

where v is a real constant. By the analogue with the linear Euler equation we
look first for solutions in the form z(t) = t*. Substituting into (1.4.20) we get the
algebraic equation for A

G =@-DRAP = (-D2A) +7=0.
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The function G is convex, hence the equation G(A) = 0 has two, one or no (real)
root according to the value of . However, even if the first possibility happens,
since the additivity of the solution space of is lost in the half-linear case, we are
not able to compute other solutions explicitly. To get a more detailed information
about their asymptotic behavior, we use the procedure which is also typical in the
linear case, namely the transformation of (1.4.20) into an equation with constant
coefficients.

The change of independent variable s = logt converts (1.4.20) into the equation
(where the dependent variable will be denoted again by z and ' = %)
(1.4.21) (@) = (p-1)®(") +v®(z) = 0.

The Riccati equations corresponding to (1.4.20) and (1.4.21) are

(1.4.22) w' =—vt7? — (p— 1)|w|?
and
(1.4.23) vV=—y+(p—1v—(p— 1! =: F(v),

respectively. The solutions w and v are related by the formula w(t) = ¢ Pv(log t)
and, moreover, we have G(®71(v)) = —F(v).

p—1
The function F' is concave on R with the global maximum at ¢ = (’)}'%1)

p
and the value of this maximum is ¥ — , where ¥ = (”%) . We distinguish the

following three cases with respect to the value of the constant .
I) v < #4. Then the equation F'(v) = 0 has two real roots v1 < ¥ < vg;
II} v = 4. Then the equation F'(v) = 0 has the double root v = ;
IIT) -~y > 4. Then F(v) < 0 for every v € R.

Case I) The constant functions v(s) = vy, v(s) = vy are solutions of (1.4.23).
Clearly, if v is a solution of (1.4.23) such that v(s) < vy, for some s € R, then
v'(s) <0, if v(s) € (v1,v2), then v'(s) > 0, and v'(s) < 0 for v(s) > vz, a picture
of the direction field of (1.4.23) helps to visualize the situation. Any solution of
(1.4.23) different from v(s) = v1 2 can be expressed (implicitly) in the form (S € R
being fixed)

v q
(1.4.24) / —5— 5.
ws) F)

Observe that the integral f :f Fdé 3 is convergent whenever the integration interval

does not contain zeros vy 2 of F), in particular, for any £ > 0

/”16 dv N /°° dv S
— > —00, — > —00.
e (V) vate F1(V)
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Case Ia) v(S) < vy. Then v(s) < v(S) for s > S and v is decreasing. If v
were extensible up to co, we would have a contradiction with (1.4.24) since the
right-hand side tends to oo while the left-hand one is bounded. Later we will show
that v(s) = v is the so-called eventually minimal solution of (1.4.23).

Case Ib) v(S) € (v1,vz). The solution v is increasing, and as s — oo, we have
v(s) — v, otherwise we have the same contradiction as in the previous case.

Next we compute the asymptotic formula for the difference va — v(s). We have

F(v) = F'(v2)(v — v2) + O((v — 12)?), asv — v,

1 1 )
F@) Pl w100 w)]  Flo)w )t Tov )

1
 F(v2)(v—va) +0()

and therefore (since |v(s) — v(S)| < v2 —v; = O(1)), substituting into (1.4.24)

v dy 1 vy — v(s)
o 1 +O()=s—85,
/M )~ Flo) % wg) TOW =

ie.,

vz — v(s) = K exp{F"(va)s},

where K is a positive constant (depending on v(S)), and substituting w(t) =
t1=Py(logt) we have

(1.4.25) vy — P () = KtF'2) S0 as t— o0
since F'(v2) < 0. Substituting w = ®(z'/x) in (1.4.25) we have

O(2'(t))

w4 (e KETO)

and using the formula (14+a)?~! =1+ (p — 1)a+o(a) as @ — 0, we obtain (with

qg=p/(p—1))

2/ (1) B ‘I)_lt(UQ) (1 B ktF/(w))q*l N (I)—lt(/m) (1 _ [N(tF/(W)) ’

as t — oo, here f ~ g for a pair of functions f, g means lim;_, % =1, and K

is a real constant. Thus
a(t) = 7 exp{KtF )} w t* as ¢ — o0,

since F'(vg) < 0, where K is another real constant and Ay = ®~1(vy) is the larger
of the roots of the equation G(\) = 0.
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Case Ic) v(S) > vz. Then v'{s) < 0 and v(s) € (v, v(S)) for s > S. Using the
same argument as in Ib) we have

P w(t) — vy = Kt© ) 0 as ¢ — oo,

K being a positive constant, and this implies the same asymptotic formula for the
solution z of (1.4.20) which determines the solution w of (1.4.22).

Case II) v = 4 = (%)p Then the function £ has the double root ¢ =

-1 _
(”TTIY? . Equation (1.4.20) has a solution z(t) = t¥ (@ = ¢"5 . This means
that (1.4.20) with v = 4 is still nonoscillatory. In the linear case p = 2, hence
4 = 1/4. Thus we are able to compute a linearly independent solution using the
reduction of order formula. This solution is 4 (t) = v/t logt. The reduction of order
formula is missing in the half-linear case, but using essentially the same method
as in Case I, we are able to show that all solutions which are not proportional to
"5 behave asymptotically as 5 1og% t.
To this end, we proceed as follows. Since F(¥) = 0 = F'(?),

Fl) = %F”(T;)(v 40— as v— b,

hence, taking into account that F(%) = —1,
1 1
F(v) — IF7(@)(v—9)2[1+O(v — )]
_ % v — )1 .
= (v—f;)2+0((u 9)7Y) as v — .

On the other hand, using the same argument as in the previous part, we see from
(1.4.24) that any solution v which starts with the initial value v(S) < ¥ fails to be
extensible up to oo and solutions with v(S) > @ tend to @ as ¢ — co. Substituting
for F'(v) in (1.4.24) we have

29

v—0

+O0(oglv—19|))=s-15,
hence

204+ (v — 0)O(log |[v — B|) = (v —D)(s — ).
Since lim,_5(v — 0)O(log |v — ©]) = 0, we have

lim (s — 8) (v(s) — ) = lim s(v(s) — ¥) = 20.

§—00 8—0C

Consequently,

O (log|u(s) = 8]) = O (logs™') = O(logs) as s— oo,
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and thus (v(s) —2)™" = 5% + O(log s), which means

v(s) =0 = 2?”%_@(1—#0(1%8))
140 (lee) s s

27 1
_ _v_'_()(og;s).
s

S

Now, taking into account that solutions of (1.4.22) and (1.4.23) are related by
w(t) = t1Py(logt), we have

20 Lo <log(logt)) 7

log?t

which means that the solution z of (1.4.20) which determines the solution w of
(1.4.22) satisfies

2t ON(D) <1+ 2 )”lle—l 2

logt pt ptlogt

and thus
p—1 2
z(t) ~t' 7 logr t.

Case IIT) The equation F(v) = 0 has no real root and F(v) < 0 for every
v € R. Again

/U(S) F . ( ) ( )
s—S8, and v(s)<v(S) for s> 8.
v(S) (U)

Since the left-hand side of the last equality is bounded for any value v(s), while
the right-hand one tends to 0o as s — oc, no solution of (1.4.23) and hence also
of (1.4.22) is extensible up to co, which means that (1.4.20) is oscillatory. We will
show that oscillatory solutions of (1.4.21) are periodic and we will determine the
value of their period.

To this end, we use the Priifer transformation mentioned in Section 1.1 applied
in a slightly modified form to (1.4.21). Any nontrivial solution of this equation can
be expressed in the form

z(s) = p(s)sin, p(s), 2'(s) = p(s)cos, @(s),

where sin, and cos, are the generalized half-linear sine and cosine functions, re-
spectively. The angular and radial variables ¢, p satisfy the first order differential
system

(1.4.26) ¢ = |cosp,lP —sin, P(cos, ) + > i i | sing, ¢|?,
(1.4.27) plo= cos,p [q)(cosp ©)+ (1 — ﬁ) ®(sin, gp)} p-
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Oscillation of (1.4.21) implies that lim,_..c ¢(s) = 00. Denote

(1.4.28) U(p) := | cosp ¢|P — sin, pP(cos, ) + p j T | sin, [P,

Then equation (1.4.26) can be written in the form

w(s)
(1.4.29) / e
»(9) \I](U)

Here we have used the fact that U(p) > 0 for ¢ € R since if ¢ = 0 (modrp,), then
U(p) =1 (observe that |sin, [P + |cosp ¢|P = 1), and if siny, ¢ # 0, then

WWﬂ—ImwwpDMp—¢®0+;%j}>Q aﬁzggg.
Further, let
(1.4.30) T_/%pd—w_z/ﬂpd—“’
o 0 Y(p) o Ylp)

By (1.4.28) we have U(p + m,) = ¥(y), hence ¢(s + 7) = ¢(s) + 27, and the
substitution t := siny, ¢/cos, ¢ = tan, p gives

(1.431) _— 2/ dt

o0 ﬁ\ﬂp—t‘Fl’

which is the quantity depending only on .
Finally, we will estimate the radial variable p. Denote

R(p) := cosp F(Cosp ¢)+ <1 - ﬁ) ®(siny, w)} :

By (1.4.27) and the identity (s + 7) = ¢(s) + 21, we have

pls+7) [ _ [P R(p) [P R(p)
logip(s) —/s R(w(S))ds_[p(s) \If(so)dw_/o dep.

Now, using the identity ¥/ 4+ pR =p — 1, we get

pls+7) _ [P p-D/p-Q/p)V(p) , _p-1_ _7
p(s) _/0 U(e) RO a

A consequence of (1.4.32) is that the function p(s) exp{—g} is periodic with the
period 7 because of

(1.4.32) log

p(s+7)exp{—(s+7)/q} pls+7) i
p(s) exp{—s/q} =0 p{-7/q¢} = 1.

The previous computations in Case III are summarized in the next theorem.
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P
Theorem 1.4.3. If v > 4 = (”P%l) then equation (1.4.21) is oscillatory and

x(s8) = p(s)exp{—s/q} is a periodic solution of (1.4.21} with the period T given
by (1.4.31).

Remark 1.4.1. Consider the half-linear differential equation

i
P

(1.4.33) 2o (")) + ®(x) = 0.
If o # p— 1 and we look for a solution of this equation in the form z(t) = t*, then
substituting into (1.4.33) we get the algebraic equation for the exponent A

(1.4.34) p-—1DAP=(p—-1—a)®(N)+v=0.

p
This equation has a real root if and only if v < 7, := (‘p*%a‘) and hence

(1.4.33) with o £ p— 1 is nonoscillatory if v < 4,. If v > 7,, using the same ideas
as in case a = 0 treated in main part of this section one can see that (1.4.33) is
oscillatory.

If a =p—1and v >0, equation (1.4.34) has no real root and in this case we
consider the modified FEuler-type equation

(1.4.35) (0 (2)) + “O;pt@(x) —0.

The change of independent variable ¢ — logt transforms (1.4.35) into equation
(1.4.20) and the interval [1, 00) is transformed into the interval [e, c0). The situa-
tion is summarized in the next theorem.

Theorem 1.4.4. If « # p — 1, equation (1.4.33) is nonoscillatory if and only if

—1—al\? -
VS<IJ_I> A
P

Equation (1.4.35) is nonoscillatory if and only if

_a\P
= (57)
p

1.4.3 Kneser type oscillation and nonoscillation criteria

As an immediate consequence of the Sturmian comparison theorem and the above
result concerning oscillation of Euler equation (1.4.20), we have the following half-
linear version of the classical Kneser oscillation and nonoscillation criterion.

Theorem 1.4.5. Suppose that

—1\P?
(1.4.36) lim inf tPe(t) > (p—) = 7.

t—o0 P
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Then the equation
(1.4.37) (®(z") + c(t)®(z) =0
is oscillatory. If

(1.4.38) limsup Pe(t) < 7,

t—oc
then (1.4.37) is nonoscillatory.

Proof. If (1.4.36) holds, then ¢(t) > 4 + ¢/tP for some ¢ > 0 and since the Euler
equation (1.4.20) with v = 4 + ¢ is oscillatory, (1.4.37) is also oscillatory by the
Sturm comparison theorem (Theorem 1.2.4). The nonoscillatory part of theorem
can be proved using the same argument. |

Remark 1.4.2. Using the results of Theorem 1.4.4 and the Sturm comparison
theorem, one can prove various extensions of the previous theorem. For example,
ifa#£p—1,

lIminf¢=%r(t) > 1, limsupt’~%c(t) < Fa,

t—oo t—00
then (1.1.1) is nonoscillatory. An oscillation counterpart of this result, as well as
the criteria in the case @« = p — 1 can be formulated in a similar way.

1.5 Notes and references

Some special results on qualitative theory of differential equations with a homoge-
neous (but not generally additive) solution space first appeared in Bihari’s papers
in 1957-58, see [36, 37]. Equation of the form (1.1.1) was perhaps for the first
time considered by Beesack in 1961 (see [30]) in connection with an extension of
Hardy inequality. He understood half-linear equations as Euler-Lagrange equations
there. In the same paper, Riccati type transformation was introduced. The term
half-linear equation was first used by Bihari in [38] in 1964, see also [39]. As pio-
neering works in the field of qualitative theory of half-linear differential equations
are usually regarded the paper of Mirzov [290] (1976) and of Elbert [139] (1979).
In Mirzov’s work, the first order half-linear system was considered and a Riccati
type transformation was introduced, which then serves to prove Sturm type the-
orem, see Subsection 1.2.9. A survey of Mirzov’s results is presented in his book
[292], see also its extended English translation [293]. Elbert introduced the half-
linear Priifer transformation, which was used to show the existence and uniqueness
of the IVP involving half-linear differential equations (see Subsection 1.1.3) and
Sturmian type theorems (in particular, see the third alternative proof of the sepa-
ration theorem on p. 19). Half-linear Picone’s identity is due to Jaro§ and Kusano
[185], which then plays an important role in the Roundabout theorem (see Sub-
section 1.2.1 and Subsection 1.2.3). An alternative approach was used in the work
[245] of Li and Yeh . The discussion on disconjugacy on various intervals is mostly
based on an extension of “linear” results of Coppel [80]. Concerning the treatment
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of various aspects of the Sturmian theory for half-linear equations we also refer to
the papers of Binding and Drébek [42] and of Yang [374].

The absolute majority of the observations concerning Wronskian in Subsec-
tion 1.3.1 is taken from Elbert’s papers [140, 143]. A note on the Fredholm alter-
native is based on the paper of Drabek [118], a comprehensive treatment of this
problem is given in Del Pino, Drabek and Manasevich [88], see also Chapter 6. Fi-
nally, the results presented in Section 1.4 are essentially contained in Elbert’s work
[142]. This Elbert’s paper deals with system (1.1.3) (with constant coefficients or
coefficients corresponding to the generalized Euler equation), but the results can
be easily reformulated to equations of the form (1.1.1).

Various phenomena in physics, chemistry etc. modeled by half-linear differential
equations and equations with p-Laplacian can be found in the book of Diaz [93].
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CHAPTER 2

METHODS OF OSCILLATION THEORY

In this chapter we describe main methods for the investigation of oscillatory prop-
erties of (1.1.1). As we will see, a crucial role is played by the Roundabout theorem
(Theorem 1.2.2) which provides two important methods: variational principle and
Riccati technique. In the first section of this chapter we formulate the variational
principle, which involves p-degree functional, along with a Wirtinger type inequal-
ity and some applications. In the second section we will see that there exist more
general Riccati transformations than that from the first chapter, and that for
nonoscillation of (1.1.1) merely solvability of Riccati inequality is sufficient. Un-
der additional assumptions, we will be able to consider Riccati integral equation
(inequality) involving improper integrals. Some of the asymptotic properties of
solutions of this equation will be then described. The applications of the results
will be illustrated by various criteria. Already from Sturmian comparison theorem
we have seen that knowing some oscillatory properties of a given equation, we can
obtain some information about the equation whose coefficients are in certain rela-
tion with those of the original one. This idea will be extended in various directions
in the last section of this chapter.

2.1 Variational principle

The variational principle is the classical method of the linear oscillation theory. In
this section we show that the energy functional F given by (1.2.4) plays a similar
role in the half-linear oscillation theory.

47
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2.1.1 Formulation of variational principle

As an immediate consequence of the equivalence of (i} and (iv) of Theorem 1.2.2 we
have the following statement which may be widely used in the proofs of oscillation
and nonoscillation criteria, as will be seen later. When using such a method, we
speak about using a wvariational principle.

Theorem 2.1.1. Fquation (1.1.1) is nonoscillatory if and only if there exists
T € R such that

o) = [ Ty P et)lylPlde > 0

for every nontrivial y € Wy P (T, 00).
Note that the class Wol’p(T, oo) is called the class of admissible functions.
Corollary 2.1.1. Equation (1.1.1) is oscillatory if and only if for any T € R

there exists a nontrivial admissible function y such that F(y; T, 00) < 0.

2.1.2 Wirtinger inequality

A useful tool in the variational technique is the following half-linear version of the
Wirtinger inequality. See also Section 9.5 how the well-known Hardy inequality is
related to this technique.

Lemma 2.1.1. Lei M be a positive continuously differentiable function for which
M'(t) # 0 in [a,b] and let y € Wy"(a,b). Then

b boMP(t
(2.1.1) /Q\M’(t)Hy\pdtSpp/a Wy’pdt.

Proof. Suppose that M’(t) > 0 in [a,b], in the opposite case the proof is similar.
Using integration by parts, the fact that y(a) = 0 = y(b), and the Holder inequality,
we have

b b
[l < p [ agpya
a a
b b ;
_ Mr
p</a |A[[y| ¢ ”th) (/a le’lpdt>
o [ ripa) | [ )

hence (2.1.1) holds. O

IN
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2.1.3 Applications

As an example of application of the above described principle (involving Wirtinger
inequality) we give the next nonoscillation criterion of Hille-Nehari type.
Further applications will be given in Chapters 3 and 5.

Theorem 2.1.2. Denote cy(t) = max{0,c(t)}. If

/ t) dt = oo, / t) dt < oo,
and
(2.1.2) li?isogp (/trl_q(s) ds)p_l (/toc c+(8) d8> <

or [Tr t)dt < oo and

(2.1.3) 1ithis,£p </toc rii(s) ds>p_1 </t c+(s) ds) < % <p;)p_1,

then (1.1.1) is nonoscillatory.

=R
N
3
3|
—_
N’
T

Proof. We will prove the statement in case [ r179(¢)dt = oo. If this integral
converges, the proof is analogous. Denote

V= ]l? (g%)p_] . M(t) = (/f r1=4(5) ds)]_p

and let T € R be such that the expression in (2.1.2) is less than v for ¢t > T.
Using (2.1.2), the Holder inequality and the Wirtinger inequality, we have for any
nontrivial y € Wy (T, 00)

/Tooc(t)|ypdt < /OC (t)|ylP dt = /Tooc+(t)</Tty'<I>(y)ds> dt

: /\yuy\z’ M >f E))ddepV/ooM(t)y’ly”1dt
< w(f Mwanwwm)%QAfU5§;p1|wdQ%
<

MO0 i [
P Pt = )]y P dt
v | apae = [ )

since one may directly verify that

ﬁ%%%=@—mwm»

Hence we have

f@ﬂ@zéﬂWMW—wMHw>o

for any nontrivial y € Wy (T, 0c). O
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-1
Remark 2.1.1. (i) Later we will show that the constant % (p’%l :
nonoscillation criterion is sharp in the sense that if the limsup in (2.1.2) (or in
(2.1.3)) is greater than this constant, then (1.1.1) is oscillatory. Also, when the
previous criterion is applied to Euler type differential equation (1.4.20) in the
previous chapter, we reveal the constant (the so-called critical constant) 4 =
(57)"

»

(if) In (2.1.2) and (2.1.3), the nonnegative part of the function ¢ appeared.
In the next subsection we present an improvement of the previous nonoscillation
criterion, where instead of ¢y the function ¢ directly appears. Many other related
information can be found in Section 3.1. See also Subsection 9.4.2 for an extension
to equations of a higher order.

in the previous

2.2 Riccati technique

The technique based on the connection between the nonexistence of zeros of a
solution to (1.1.1) and the solvability of generalized Riccati equation (1.1.21) has
already been proved to be a very useful tool of oscillation theory. In this section
we further elaborate this important technique. Introduce the generalized Riccati
operator

(2.2.1) Rlw] = w' + ¢(t) + (p — 1)r' (1) |w|?.

2.2.1 Preliminaries

Consider the function
(2.2.2) S(z,y,p) = (p— 1)yl_q\x|q

on Dg = {(z,y,p) : z € R,y € (0,00),p € (1,00)}, which appears in the general-
ized Riccati equation. Recall that 1/p + 1/¢g = 1. Often we use just the notation
S(z,y) := S(x,y,p) when p is fixed. The following lemma describes important
properties of the function S. Later, it will find many applications when dealing
with the equation R[w] = 0. Among others, our aim is to show that S behaves
essentially like its special case 22 /y, which appears in the Riccati equation corre-
sponding to linear Sturm-Liouville equation (1.1.2).

Lemma 2.2.1. For S the following statements hold:
(i) The function S is nondecreasing with respect to |z| on Dg.
(ii) The function S is nonincreasing with respect to y >0 on Dg.
(iti) The function S is nonnegative on Dg, and S(z,y) = 0 if and only if z = 0.

(iv) If (|| /y)9=1 < e, where e is the basis of natural logarithm, then the function
S is nondecreasing with respect to p.
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Figure 2.2.1: The function S with fixed y = 1; S is nondecreasing with respect to
p when x is small

Proof. The proof of the parts (i)-(iii) is trivial. To prove (iv) note that S can be
rewritten as S(w,r,p) = (p — 1)|z|(|z|/y)9~", from which it is easy to compute

that ] |
oS (|x|)q"' (|$|>q—.
=|z|{ — 1—log| — .
dp 2 Y s y

The next technical result will find the application in proving the existence of
positive solutions of the generalized Riccati equation.

O

Lemma 2.2.2. [If
t
(2.2.3) F(a) = lig:n g:lff f(s)ds >0 and F(a) #0

for all large a, then there is ' is such that j,; f(s)ds >0, t € [T,00).

Proof. 1f no such T exists, then for T € [a,00) fixed but arbitrary we define
t
Ty =T(T) = sup{t >T: / fls)ds < 0} s
T

If Ty = oo, then choosing t, — oo such that [;" f(s)ds < 0 for all n, we get
F(T) < 0. Since T was arbitrary, by the first condition in (2.2.3), it yields F(7) =0
for large T', a contradiction to the second condition in (2.2.3). Hence, we must have
T} < oo which implies f,;l f(s)ds >0, t € [T}, 00). O



52 Chapter 2. Methods of Oscillation Theory

2.2.2 More general Riccati transformation

Sometimes it is convenient to use a more general Riccati substitution

where f is a differentiable function. By a direct computation one can verify that
v satisfies the first order Riccati-type equation

i
70

For an application see e.g. Remark 5.1.2 and Subsection 9.2.1.

(2.2.4) v f(O)et) + (p— )= f1(B)]v]? = 0.

Another generalization may be grounded in considering a slightly more general
half-linear equation

(2.2.5) (r()®(z")) +b(t)®(z") + c(t)®(x) = 0.

The Riccati substitution w = r®(z’)/®(x) leads to the equation
(2.2.6) w' + c(t) + RO + (p— D)rt 9 (H)w]? = 0.

Multiplying this equation by exp{ft b(s)/r(s)ds} =: ¢g(t) and denoting v = gw,
equation (2.2.6) can be written in the same form as (1.1.21), i.e.,

v+ e(g(t) + (p— Dri T (g T1(B)v|? = 0.

The same effect is achieved if we multiply the original equation (2.2.5) by g since
then this equation can be again written in the form (1.1.1).

2.2.3 Riccati inequality

From the Roundabout theorem (Theorem 1.2.2) it follows that nonoscillation of
(1.1.1) is equivalent to solvability of the associated Riccati equation (1.1.21) (in a
neighborhood of infinity). Due to the Sturm comparison theorem, nonoscillation
of (1.1.1) is actually equivalent to solvability of the generalized Riccati inequality.
This is formulated, among others, in the next statement. In its proof we also show
that yL[y] = |y|"R[r®(y’/y)] provided y # 0. Recall that the operator £ is defined
in Theorem 1.2.1 and the operator R by (2.2.1).

Theorem 2.2.1. The following statements are equivalent:
(i) Equation (1.1.1) is nonoscillatory.

(i) There is a € R and a (continuously differentiable) function w : [a,0) — R
such that
Rw|(t)y =0 fort € [a,oc).
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(iii) There is a € R, a constant A € R and a (continuous) function w : [a, 00) —
R such that

t
=A- / {c+ S[w,r|}(s)ds fort € [a, ).
(iv) There is a € R and a (continuously differentiable) function w : [a,00) — R

such that
(2.2.7) R[w](t) <0 fort < [a,0).

(v) There is a € R and a positwe function y : [a,00) — R (with r®(y’) continu-
ously differentiable) such that

(2.2.8) Llyl(t) <0 fort € [a,00).

Proof. (1)=-(ii): This implication follows from the Roundabout theorem (Theo-
rem 1.2.2) since nonoscillation of (1.1.1) implies the existence of a € R such that
(1.1.1) is disconjugate on [a, 00).

(if)=-(iil): Trivial.

(iil)=(iv): Trivial.

(iv)=(v): Let w satisfy R[w] < 0 on [a,00). The function

=eof [ (55) )
(t

is a positive solution of the initial value problem y’ = &~} (f D ) y, y(a) =1. We

have

y(ro(y)) +ye®(y) — (p— Lrly'[P + (p — Vrly' P
ly |p( (y)) (y) — (p— rd(y)lylP—2y’
P(y)®(y)

B ,r,|y/‘p71 q
ylPe + lyP — Dt ( "
[y

= [yPRw] <0

yLly|

hence (v) holds.
(v)=(i): Suppose that a function y satisfies (2.2.8) on [a, c0). Then

o(t) == —{yLlyl} (1)
is a nonnegative function on this interval. Set &(t) = ¢(t) — ©(t)/|y|?. Then ¢ > ¢

and
(r(OB()Y +e)B(y) = (OB + (a(t) - %) B(y) = 0.

Thus the equation (r(¢)®(y'))’ +2(t)®(y) = 0 is disconjugate on [a, o). Therefore,
(1.1.1) is disconjugate on [a,o0) as well by the Sturmian comparison theorem
(Theorem 1.2.4) and hence nonoscillatory. O
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Remark 2.2.1. Tt is not difficult to see that (iv)=-(i) can be proved directly. Indeed,
let w be a solution of R[w| < 0. Denote C(t) := —w’ — (p — 1)r*~9(¢)|w|?. Then
w is a solution of w’' + C(t) + (p — 1)rt~9(¢)|w|? = 0 which is the Riccati equation
associated with a Sturmian majorant of (1.1.1) (since C(t) > ¢(t)). This majorant
equation is nonoscillatory and hence (1.1.1) is nonoscillatory as well.

Now we give a variant of the above theorem where certain Riccati integral
inequality appears. In the next subsections we will present another ones where
improper integrals occur in Riccati type equations or inequalities.

Theorem 2.2.2. Suppose that there is a € R, a constant A € R and a (continu-
ous) function w : [a,00) — R such that either

w(t) ZA—/ {e+ Slw,r]}(s)ds >0

or

w(t) < A - /t{ch Sfw, 7]} (s)ds < 0

for t € la,00), where S is defined by (2.2.2). Then (i)—(v) from the previous the-
orem hold. If, in addition, f;c c(t) dt = oo, then the above condilion is necessary

for (i)~ (v)-

Proof. For sufliciency we show that the assumptions imply (iv) of Theorem 2.2.1.
Let

v(t) = A — /t{c+ Slw, r]}(s) ds.

Then v + ¢(t) + S[w,r](t) = 0. We have w > v > 0 or w < v < 0 and hence
S[w,r] > S[v,r] by Lemma 2.2.1. Therefore we get R[v](t) <0 for ¢ € [a, ) and
so (iv) holds. The part concerning necessity is obvious. O

2.2.4 Half-linear Hartman-Wintner theorem

The next theorem is a half-linear extension of the classical Hartman-Wintner the-
orem [174] which relates the square integrability of the solutions of the Riccati
equation

w + e(t) +w? =0

corresponding to (1.1.2) with r(¢) = 1 to the finiteness of a certain limit involving
the function c¢. Later we will show another variants of this important statement.

Theorem 2.2.3. Suppose that

(2.2.9) /OO () dt = 0o

and (1.1.1) is nonoscillatory. Then the following statements are equivalent.
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(i) It holds

o0
(2.2.10) / () w(t)|? dt < oo
for every solution w of Riccati equation (1.1.21).
(ii) There ezists o finite limit

(2.2.11) fy 41 ([ elr) dr) ds

{500 ft r1=4(s)ds

(#i) For the lower limit we have

(2.2.12) im inf J'r7a(s) (f er) dr) ds
e [ris)ds

Proof. (i) = (ii): Nonoscillation of (1.1.1) implies that Riccati equation (1.1.21)
has a solution which is defined on an interval [T, 00). Integrating this equation
from T to t and using (2.2.10) we have

(2.2.13) w(t) = w(T)f/ c(r)dvf(pfl)/Trl’q(T)lw(T)\da

T

wlr) = [ etmyar~@-1) [ r=slump i

Ho-1) [Pl ar
o= / P dr+ (p )/toorlq(fnw(r)qdf,

where C' = w(T) — (p—1) [;° r'=9(7)|w(7)|? dr. Multiplying (2.2.13) by 7"1"1 and

integrating the resulting equation from 7" to ¢, and then dividing by fT (s)ds,
we get
t
frr st feris) (fe(r)dr) ds
fTrl q( )ds fTrl a(r )dT

f; ri=d(s) (f:o ri=4(r)|w(r)]? dT) ds.
f; ri=d(s)ds

(2.2.14) +

By the Holder inequality, we have

/T r179(s)w(s) ds

(2.2.15)

IN
TN
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and hence, taking into account (2.2.10)

i

(rayds)” (Jero@m(o))’

B f; ri=a(s)ds

1
f rl= a( )‘q
— 0, t— oo
fTrl “(
Since also the last term in (2.2.14) tends to zero as t — oo (again in view of
(2.2.10)), we have that

‘ft rl=9(s)u(s) ds

fTN 9(s) ds

t o1 q
lim f fT =C
t—00 fTrl a(s) ds

exists finite.

(ii) = (iii): This implication is trivial.
(iii) = (i): Let w be any solution of (1.1.21) which exists on [T, 00). Then by
(2.2.13) and using computation from the first part of this proof

frl 1(s)w(s)ds _ w(T)_ft i (fT dr) ds

thrl q( ) ds thrl ar )des
bl a( () ()| dr
—(p—l)f (f — )

fTrl 1(s)

Taking into account (2.2.12) and applying the Holder inequality again, there exists
a real constant K such that
1

(ftrl 9 )|qu)

") k1) frrt=a(s) (fart=9(r)w(r)|9 dr) ds

(J‘Trlfq s)ds)’ Jiria(s)ds

Suppose that (2.2.10) fails to holds. Then by L’'Hospital’s rule the last term in the
previous inequality tends to oo and hence

<f ra >|st) 2 Jpr ) (fr Ul (n) | dr) ds
fTrl q( - qurl (s) ds

for large t. Denote M(t) = f; r1=4(s) ([7r'79(r)|w(r)|? dr) ds. Then the last
inequality reads

1

M’(t)rq_l(t)] T M@
[friza(s)yds| qf; ri=a(s)ds

b

hence

(2.2.16) M) <l>q ( ()
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If ¢ < 2, we integrate (2.2.16) from Ty to ¢, 71 > T, and we get

ﬁM“%Tﬂ > q%l[Ml—Q(Tl)—Ml—Q(t)]

(1)q log (f; ri=a(s) ds) if g =2,

q

2%q(f;rl_q(s)ds) ! if ¢ < 2.

Letting ¢ — oo we have a contradiction with the assumption that [~ r!1=9(¢) dt =
oo. If ¢ > 2, we integrate {2.2.16) from ¢ to oo and we obtain

et )
(q—1)Ma=(t) — \q (q*2)(fqtﬂrlfq(s)ds)q_2’

q—1 t
q cgq_l?) . (ﬁr{‘{gz) ds) (/T rlq(s)d8>,

-1
which is again a contradiction since M (t) (ff ri=d(s) ds) —ocast— oo [

hence

Based on the Hartman-Wintner theorem, the following statement says that
nonoscillation of (1.1.1) can be expressed in terms of solvability of Riccati integral
equation involving improper integrals.

Theorem 2.2.4. Suppose that (2.2.9) holds and the integral [~ c(t)dt is con-
vergent. Equation (1.1.1) is nonoscillatory if and only if there is a € R and a
(continuous) function w : [a,00) — R satisfying the Riccati integral equation

(2.2.17) w(t) = /too c(s)ds+(p—1) /toc 149 (s)w(s)|? ds

fort>a.

Proof. Suppose that (1.1.1) is nonoscillatory and let w be a solution of the as-
sociated Riccati equation (1.1.21) which is defined on some interval [T, o0). The
convergence of the integral [~ c(t)dt and (2.2.9) imply that (2.2.10) holds by
Theorem 2.2.3. Integrating (1.1.21) from ¢ to T, t > T, and letting T' — oo we
see that limr_,.. w(T) exists and since (2.2.9) holds, this limit equals zero, i.e., w
satisfles also (2.2.17). Conversely, if w is a solution of (2.2.17), then it is also a
solution of (1.1.21) and hence (1.1.1) is nonoscillatory. O

A simple argument will show that for nonoscillation of (1.1.1} it is sufficient to
assume a solvability of Riccati integral inequality provided an additional require-
ment is satisfied.
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Theorem 2.2.5. Suppose that the integral [~ c(t)dt is convergent and (2.2.9)
holds. Then there is a € R and a (continuous) function w : [a,00) — R satisfying
either

(2.2.18) w(t) > /OO e(s)yds+ (p—1) /OC r9(s)|w(s)|4ds > 0
(2.2.19) w(t) < /:O o(s)ds + (p—1) /too P (8) [ (s)[? ds < 0

if and only if equation (1.1.1) is nonoscillatory.

Proof. The proof is similar to that of Theorem 2.2.2. Indeed, let

ot) = /:O{H STw, 1]} (s) ds,

where S is defined by (2.2.2). Then v’ +¢(t)+ S[w, r](t) = 0. We have w > v > O or
w < v < 0and hence S[w,r] > S[v,r] by Lemma 2.2.1. Therefore we get R[v](t) <
0 for t € [a,00), where R is defined by (2.2.1), and so (iv) from Theorem 2.2.1
holds. The necessity follows clearly from Theorem 2.2.4. O

Remark 2.2.2. Observe that if (2.2.18) and (2.2.19) are replaced by the only con-
dition

(2.2.20) w(t)] >

/too ) d”(p—l)/tm riAs)lw(s) " ds|,

then Theorem 2.2.5 works as well. Indeed, if v(t) = [ {c + S[w,r|}(s)ds, then
|v] < |w| and ©' + ¢(t) + S[w,](t) = 0, and so we get R[v](t) < 0 by Lemma 2.2.1.
Taking into account Theorem 2.2.4, altogether we get that the following statements
are equivalent:

(i) Equation (1.1.1) is nonoscillatory.
(ii) Equation (2.2.17) is solvable in a neighborhood of infinity.
(iii) Inequality (2.2.20) is solvable in a neighborhood of infinity.

For related discussion see Lemma 2.2.4; the comment before it, Remark 2.2.3,
Remark 2.3.1 and Section 5.5.

Compare the following result with the previous one and with Theorem 2.2.2.
We omit the proof since it is similar to those of the above mentioned statements.
Note only that the necessity is shown by means of Theorem 2.2.3 (see also (2.2.13)).

Theorem 2.2.6. Suppose that there is a € R, a constant A € R and a function
w: [a,00) — R such that either

w(t) > A—/tc(s)ds—k/OC Slw, r](s)ds >0
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w(t) < A/tc(s)dsnL/oo Slw,r](s)ds <0

fort € [a,00). Then (1.1.1) is nonoscillatory. If, in addition, (2.2.9) and (2.2.12)
hold, then the above condition is necessary for nonoscillation of (1.1.1).

2.2.5 Positive solution of generalized Riccati equation

In this subsection we give conditions guaranteeing the existence of positive solu-
tion w of the generalized Riccati equation. This positivity then enables to prove
alternatively the results similar to those given at the end of the previous sub-
section, as well as to find an effective estimation for w, which will appear very
handy. In spite of the fact that some of the results will require slightly stronger
assumptions comparing with those in the previous subsection, we present them
here in order to show a variety of different approaches. Moreover, the subsequent
approach will be proved to be very useful in extending our theory to the cases
where the Hartman-Wintner theorem is not applicable (see Chapter 8).

First note that if
oc
/ r79(s) ds = oo

and c(t) > 0 for large ¢, then it is very easy to show that there exists an even-
tually positive solution of generalized Riccati equation (1.1.21) provided (1.1.1) is
nonoscillatory. In this case, in fact, any solution of (1.1.21) is eventually positive
provided c(t) # 0 for large t. Indeed, below given Lemma 4.1.3 says that the only
possibility for a nonoscillatory solution = of (1.1.1} is «(¢)2’(t) > 0 for large ¢.

Next we show that the assumption of the nonnegativity of ¢ may be somewhat
relaxed. Also observe how the positivity of a solution w of (1.1.21) follows from
Theorem 2.2.4, under the condition f:o ¢(s)ds > 0. For the discussion on positivity
of w under some different special conditions see the text after Corollary 3.3.5 in
the next chapter.

Lemma 2.2.3. Assume

(2.2.21) U(T) := liminf /t c(s)ds >0 and W(T)#0
t—oc T

for all large T, and (2.2.9) holds. If y is a solution of (1.1.1) such that y(t) > 0
fort € [T, 00), then there exists S € [T, 00) such that y'(t) > 0 for t €[S, c0).

Proof. The proof is by contradiction. We consider two cases:
Case I. Suppose that y'(t) < 0 for t € [T,00). Then also [®(y)]'(t) < 0 for
t € [T, 00) since
[@()]' (1) = (0 = DIy~ (1) < 0.

Another argument for [®(y)]’(¢) < 0 is that if y is decreasing, then ®(y) is decreas-
ing as well because of the properties of the function ®. Without loss of generality
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we may assume that T is such that f; e(s)ds > 0, t € [T, 0), by Lemma 2.2.2.
Define Q(t,T) = f; c(s) ds. Integration by parts gives

L/$wmmm A@%wmmmw

T

QLT)B(0) = [ Qs TR ds > 0,

Integrating (1.1.1) we have, using the last estimate,

Hence

r Ty (T)

(2.2.22) Y (t) < TR

for t € [T, 00). Integrating (2.2.22) for t > T we see that y(t) — —oo by (2.2.9), a
contradiction. Therefore, 3'(t) < 0 cannot hold for all large ¢.

Case II. Next, if y'(t) # 0 eventually, then for every (large) T (2.2.21) holds
and there exists Ty € [T, o0) such that y'(Tp) < 0. Since y(t) > 0 for ¢t € [T, 00),
the function w(t) = r(¢)® [y’ (t)/y(t)] satisfies generalized Riccati equation (1.1.21)
for t € [T, 00). Integrating (1.1.21) from Ty to ¢, t > Tp, gives

¢ ¢
w(t) = w(Ty) — / c(s)ds — S(w,r)(s)ds,
Ty To
where S is defined by (2.2.2). Therefore, it follows that lim sup,_, . w(t) < 0, using
the facts w(Tp) < 0, w(t) is eventually nontrivial, and (2.2.21) holds. Indeed, there
is M > 0 such that f:ﬁo S(w,r)(s)ds > M and th,U c(s)ds > —M/2 for all large ¢.
Hence there exists T} € [T, 00) such that w(t) < 0 for ¢t € [T, 00) and so y'(t) <0
for ¢ € [Ty, 00), a contradiction to the first part. O

Ezample 2.2.1. Now we give an example of the function ¢(¢), which is not eventu-
ally of one sign, but (2.2.21) holds. Let A > 0, A # 0 and B > 1 be real numbers.

Put
AB Asin At Acos At

C(t) - ATl + A+ - tA

Then we can easily see that

e in At + B
/ c(s)ds:%zo
L

for all t > 0. Observe that in addition to (2.2.21), condition (2.2.23) is satisfied.
Using Example 3.3.1 given in Subsection 3.3.1, one can easily discover a function
¢(t), which is not eventually of one sign, and (2.2.21) holds but (2.2.23) fails to
hold.
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In the next lemma, a necessary condition for nonoscillation of (1.1.1) is given in
terms of solvability of a generalized Riccati integral inequality involving improper
integrals. Note that in Theorem 2.2.4 we obtained the integral equation, even
under weaker (sign) condition on ¢, but for completeness we present here also an
alternative (simpler) approach based on the positivity of w. As already said above,
this approach will be shown to be very useful e.g. in the discrete case treated in
Chapter 8.

Lemma 2.2.4. Let the assumptions of Lemma 2.2.3 hold and assume further that

e 9] t
(2.2.23) / c(s)ds = tlim c(s)ds is convergent.
a —oe a

Let y be a solution of (1.1.1) such that y(t) > 0 for t € [T,00). Then there exists
T, € [T, 00) such that

(2.2.24) w(t) > /OO c(syds + /OO S(w,r)(s)ds

fort € [Ty, 00), where w(t) = r(t)® [y’ (t)/y(t)] > 0.

Proof. By Lemma 2.2.3 there exists T3 € [T, 00) such that w(t) > 0 for ¢t € [T}, 00)
and w satisfies (1.1.21) for ¢ € [T, 00). Integrating (1.1.21) from ¢ to s, s >t > T,
gives

(2.2.25) w(s) —w(t) + /ts c(€) de + /ts S{w,r)(€)dE = 0.

Therefore,
o<mgzww—11«maizsmmmma

and hence

wmz[3@%+l¥ww@&

for s > t > T}. Letting s — oo we obtain (2.2.24). O

Remark 2.2.3. Clearly, condition (2.2.24} is also sufficient for nonoscillation of
(1.1.1), as shown in Theorem 2.2.5.

If we strengthen the assumptions of the previous lemma somewhat, then we
may prove (differently from Theorem 2.2.4) that there exists a solution of (2.2.17).

Lemma 2.2.5. Suppose that (2.2.9) and (2.2.23) hold with ¢(t) > 0 (which is
eventually nontrivial). Let y be a solution of (1.1.1) such that y(t) > 0 for t €
[T, 00). Then there exists Ty € [T, 00) such that w(t) = r(t)® [y'(t)/y(t)] is positive,
nonincreasing, tends to zero and satisfies (2.2.17) for t € [Ty, o).
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Proof. From Lemma 2.2.3 there exists Ty € [T, 00) such that w(t) > 0 for t €
[T, 00). Note that this can actually be proved even much easier since ¢(t) is non-
negative here (see the beginning of this subsection). Further, w satisfies (1.1.21) on
[T, 00). The fact that w'(t) < 0 for t € [T}, 00) follows from (1.1.21). Next we show
that w(t) — 0 as t — co. Since y is positive and increasing, it either converges to
a positive constant L or diverges to oo. First suppose that y(t) — oo as t — oo.
Then, since r(t)®[y’(¢)] is nonincreasing, we have

r)®ly' )] _ (1) (T1)]
o) T 2y

as t — oo. Now, if y(t) — L as t — oo, then r(t)®[y'(t)] — 0 as t — oo and,
consequently, w(t) tends to zero as t — oo. To see that r(t)®[y’(¢)] converges to
zero, note first that it converges since it is positive and nonincreasing. If, however,
r(t)®[y’ ()] converges to a positive constant K, then we get

w(t) =

y(t) > y(T) + K / r1=9(s) ds — oo

Ty

as t — oo, which contradicts the boundedness of y. Finally, the fact that y satisfies
(2.2.17) on [T}, o0) follows from (2.2.25). O

Remark 2.2.4. Clearly, solvability of (2.2.17) is also a sufficient condition for
nonoscillation of (1.1.1), like in Theorem 2.2.4.

Finally we show how a (positive) solution of the Riccati equation can be es-
timated from above in terms of r. This will be very useful in some subsequent
(non)oscillatory criteria and comparison theorems.

Lemma 2.2.6. Let the assumptions of Lemma 2.2.5 be fulfilled. Then the function
w from that lemma satisfies the inequality

(2.2.26) w(t) < </¢: riTi(s) ds)lp

fort > ip.

Proof. Since c is nonnegative, we have w'(t) < —(p — 1)r' ~9()w9(t). Hence,

</at r1=4(s) ds — wl—Q(t)>/ 0 4 (g — D9 (8 (1) < 0.

Integration from ¢g to t, a < tg < t, yields

. to to
/ rT9(s)ds — w'TI(t) < / ri=9(s)ds — w'T(ty) < / riT9(s) ds

w < /() i)

from which (2.2.26) follows. O

and so .
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2.2.6 Modified Riccati inequality

In the most of the above results we have assumed [~ r179(s)ds = oo. Now we
will discuss the complementary case, i.e., the convergence of this integral. It is
supposed that ¢(t) > 0 for large ¢ and that

(2.2.27) /OO rtTa(t) dt < oo.
We denote
(2.2.28) p(t) :/t r " 4(s) ds.

The first auxiliary statement concerns boundedness of solutions of (1.1.1) and
of the associated Riccati equation.

Lemma 2.2.7. Let x be a nonoscillatory solution of (1.1.1) and let w = r®(a’/x)
be the associated solution of (1.1.21). Then x and the function

(2.2.29) 2(t) == pP~ w(t)

are bounded. Moreover,

(2.2.30) PP Ow(t) > —1 for large t

and

(2.2.31) lim sup pP 1 (H)w(t) < 0.
t—o0

Proof. Without loss of generality we can suppose that z(t) > 0 for ¢ € [tg, o0}. The
function r(¢)®(x’) is nonincreasing (since its derivative equals —c(¢)®(z) < 0), the
derivative z’ is eventually of constant sign. That is, z'(t) > 0 for t > ¢( or there is
t; > tg such that 2'(¢) < 0 for ¢t > t1, and that

ri N (s)2' (s) <IN (1) for s> 1> .

Dividing this inequality by r?~!(s) and integrating it over [t, 7] we obtain
(2.2.32) (1) < x(t) + rq_l(t)x’(t)/ r=4(s) ds.

t
If 2/ (¢) > 0 for t > o, then we have from (2.2.32)

2(r) < a(t) + 77 (' (D)p(t)

which shows that z is bounded on [tg, 00). If '(t) < 0 for ¢ > ¢1, then x is clearly
bounded and, letting 7 — oo in (2.2.32), we have

0 <z(t) +ri ()2 (Op(t), t>to.
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In either case we obtain
z'(t)

x(t)

PO s = —1

b

which immediately implies {2.2.30).

The limit inequality (2.2.31) trivially holds if 2/(¢) < 0 for ¢ > ¢;, since in this
case the function z defined by (2.2.29) is negative for ¢ > t1. If 2'(¢t) > 0 for ¢ > ty,
then there exist positive constants c1,¢o such that

() >¢; and rt)®(2'(t)) <co for t>tg,
which implies
C2
g

Since p(t) — 0 as t — oo, we then conclude that

w(t) <

t > to.

flim PP Hw(t) = 0.

This completes the proof. O

Based on the previous lemma we show that nonoscillation of (1.1.1) is equiva-
lent to solvability of a certain modified Riccati integral inequality.

Theorem 2.2.7. Equation (1.1.1) is nonoscillatory if and only if

(2.2.33) /mwmdmﬁ<w

and there exists a continuous function v such that

(2.2.34) PP ru(t) is bounded, pP T (t)u(t) > —1,

and

@235) ) > [ Fds+r [ o sl ds
¢ t
<=1 [P i

for large t.

Proof. “=7: Let x be a solution of (1.1.1) such that z(t) # 0 for t > £y and
let w = r®(z')/®(x) be the corresponding solution of Riccati equation (1.1.21).
Multiplying this equation by pP(t) and integrating over [¢, 7], 7 > ¢ > to, we get

Pl = e = —p [ P e ds - [ sels)ds

(2.2.36) —(p—-1) /tT 1 9(s)pP (s)|w(s)|? ds.
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In view of boundedness of the function p?~lw(t) (compare with the previous lem-
ma), we see that p? (T)w(7) = p(7)p? *(T)w(r) — 0 as T — oo, and

/t ()P (syw(s) ds

< [ | )] ds < o

/t 0 (5)0P () ()7 ds < o0

for ¢ > to. Therefore, letting 7 — oo in (2.2.36), we find that [ pP(s)c(s)ds is
convergent, i.e., (2.2.33) holds, and

i) = [ " P(s)els) ds +p / a5y (s)uls) ds
1) / " 0507 (5) ) |7 ds

hence (2.2.35) holds as equality. The inequality p?(t)w(t) > —1 follows from the
previous lemma.

“<": Suppose that (2.2.33) holds and let w be a continuous function satisfying
conditions of theorem. Further, let us denote by C[tg,o0) the Fréchet space of
continuous functions with the topology of uniform convergence on compact subin-
tervals of [tg, 00). Consider the space

(2.2.37) V= {v e Cty,00) : =1 <v(t) < pP HHw(t), t > to},

which is a closed convex subset of C[tg, 00). Define the mapping F': V — Cltg, o0)
by

(2.2.38) p()(Fv)(t) = / pP(s)c(s) ds —I—p/ 7 4(s)v(s) ds
¢ ¢
Ho-1) [ ) ds
¢
If v € V, then from (2.2.37), (2.2.38) and the inequality stated in theorem

(Fo)(t) < F(p"~ w)(t) < p"H(Bw(t), > to,

and
pNFOE) 411 [ P9 (s) [(p— Dlu(s)] + puls) + 1] ds > 0,

where we have used also the property that the function (p — 1)|£|9 + p€ is strictly
increasing for £ > —1, i.e.,

(2.2.39) (p—DIE|"+pE+1>0 for &> —1.

This shows that " maps V into itself. It can be shown in a routine manner that F is
continuous and F(V) is relatively compact in the topology of C[tg, c0). Therefore,
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by the Schauder-Tychonov fixed point theorem, there exists an element v € V such
that v(t) = (Fv)(t). Define w by w(t) = v(t)/pP~*(¢). Then, in view of (2.2.38),
w satisfies the integral equation

pP(w(t) = /t°° PP (t)e(s) ds +p/too r'9(s)pP tw(s) ds
+(p—1) /tOC r79(s)pP (s)|w(s)|? ds.

Differentiating this equality and then dividing by pP(t) shows that w solves Riccati
equation (1.1.21) and hence (1.1.1) is nonoscillatory. O

2.2.7 Applications

Here we give some examples of (non)oscillation criteria whose proofs are based
on the above described technique. Many other applications can be found in the
subsequent chapters.

We start with a simple consequence of Theorem 2.2.1.

Theorem 2.2.8. If

(2.2.40) /OC sP~1e(s)ds is convergent,
then
(2.2.41) (@) +c®)®(y) =0

18 nonoscillatory.

Proof. Let
1 o0
w(t) = 5151*” {1 + 2/ sP1e(s) ds} .
t
Then

(2.2.42) w'(t) = —p%lt—f’ {1 +2 /OO sP~Le(s) ds} — (1),
t
In view of (2.2.40), there exists 7' > 0 such that
0< 1+2/oospflc(s)ds <2
¢
for t > T, so that

fors] q fors]
[w(t)|? =27%77 {1 + Q/t sPe(s) ds} < %t‘p {1 + 2/ sPe(s) ds} .
t

Consequently, (2.2.42) implies w'(t) + c(t) + (p— 1)|w(t)|? < 0 for t > T'. It follows
from Theorem 2.2.1 that (2.2.41) is nonoscillatory. O
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Now we give more refined criteria. The technique involving the Riccati inequal-
ity was used to prove the classical Hille-Nehari criterion in the linear case. This
criterion claims that if [* 7 1(t)dt = oo and [ c(t)dt converges, then linear
Sturm-Liouville equation (1.1.2) is nonoscillatory provided

tm sup (/tr_l(s) ds) (/too o(s) ds) < i
lim inf (/t r1(s) ds> </toc o(s) ds) > 72.

The next statement is a half-linear extension of this linear criterion. Compare this
result with the criterion given in Subsection 2.1.3.

Theorem 2.2.9. Suppose that [~ r'=9(t)dt = 0o and [~ c(t) dtconverges. If

(2.2.43) o sup (/trlq(s) ds)” </t°° o(s) ds) < ]1) (;0771>p1’
(/too o(s) dS) > 72?9]'%1 <1%1>p17

Proof. We will find a solution of the Riccati type inequality (2.2.7), ie., of the
inequality

(2.2.45) v < —c(t) = (p— 1)r' T4 #)[v]?

and

—1

(2.2.44)  liminf </t si-a(s) ds)pl

t—oo

then (1.1.1) 4s nonoscillatory.

which is extensible up to oo, i.e., it exists on some interval [T, c0). To find this
solution v of (2.2.45), we show that there exists an extensible up to oo solution of
the differential inequality

o
(2.2.46) o< (1 —pyr'Tit)p+CH)e, Ct):= / c(s)ds
¢
related to (2.2.45) by the substitution p = v — C. This solution p has the form

o(t) = 5 (/()d) . (%)

)
Indeed, p' = (1—p)Bri=9(t) (ft ri=d(s) ds) and the right-hand side of inequality
(2.2.46) is

(L=p)r' i)+ COIT = (1—pyr'~(t)
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Consequently, (2.2.46) is equivalent to the inequality

q

(2.2.47) 3> |8+ (j rlq)pl C(t)

However, since (2.2.43) and (2.2.44) hold, there exists € > 0 such that

—1 [p—1\"" t Pt 1 /p—1\"""
_2P <p—> +e< (/ rl‘q> ct) < - (p—> —¢
p p p\ »

for large t and by a direct computation it is not difficult to verify that (2.2.47)
really holds. O

As a direct consequence of the Hartman-Wintner theorem (Theorem 2.2.3) we
have the following generalized Hartman-Wintner oscillation criterion.

Theorem 2.2.10. Suppose that [~ r'=4(t)dt = co. Then each of the following
two conditions is sufficient for oscillation of (1.1.1):

(2.2.48) lim Jirtma(s) (f7 e(r)dr) ds
L t—o00 ft ’f'l_q(s) ds

= 00,

(2.2.49)

—oo < liminf ft rliq(j) (fs A7) dT) s < limsup ft Tliq(ts) (fs A7) dT) ds.
fee Jorta(s)ds t—oo [fri-a(s)ds

Proof. We will prove only sufliciency of (2.2.48); the proof of sufliciency of (2.2.49)
is similar. Suppose that (1.1.1) is nonoscillatory and (2.2.48) holds. Then (2.2.12)
holds and by Theorem 2.2.3 the integral in (2.2.10) converges for every solution w
of (1.1.21) and hence limit (2.2.11) exists as a finite number which contradicts to
(2.2.48). O

We conclude this section by the application of Theorem 2.2.7. The following
criterion is its immediate consequence.

Theorem 2.2.11. Suppose that (2.2.27) holds. Equation (1.1.1) is oscillatory if

(2.2.50) /OC c(s)pP(t) dt = oo,

where p is given by (2.2.28).

This oscillation criterion opens a natural question about the oscillatory nature
of (1.1.1) when the integral in (2.2.50) is convergent. This will be discussed later
(see Theorem 2.3.4 and Section 3.1).
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2.3 Comparison theorems

In this section we present various types of statements where oscillatory properties
of two equations are compared. We usually suppose that oscillatory behavior of one
equation is known and using various inequalities we deduce oscillatory nature of the
second equation. In the first three subsections we give conditions on coefficients,
under which new equation is {non)oscillatory provided the original one is so. Then
we present the so-called telescoping principle, and finally we offer the statement
where two equations with different nonlinearities are compared.

2.3.1 Hille-Wintner comparison theorems

While in the Sturm comparison theorem the coefficients are compared pointwise,
the classical Hille-Wintner theorem (for the linear version see [341, Theorem 2.14])
compares the coeflicients on average. Its half-linear version appeared in many works
(e.g., [180, 182, 227, 247, 253, 242]), under different assumptions. Here we offer
the version where the sign condition on the second coefficients is slightly relaxed
comparing to the usual assumptions. Moreover, we will discuss the complementary
case and various methods of the proof.
Along with equation (1.1.1) consider the equation

(2.3.1) (r(t)®(y")) + é(t)®(y) = 0.

Theorem 2.3.1. Assume that (2.2.9) holds, [ c(t)dt and [* &(t)dt converge.

If
/too c(s)ds

and (2.3.1) is nonoscillatory, then so is equation (1.1.1), or equivalently, the os-
cillation of (1.1.1) implies that of equation (2.3.1).

(2.3.2)

§/ é(s)ds  for large t,
¢

Proof. 1f (2.3.1) is nonoscillatory, then there is a function w satisfying

w(t) = /too &(s) ds+/:o S(w,r)(s) ds (= 0),

for large t, by Theorem 2.2.4. Hence

w(t) > / c(8)ds +/ S(w,r)(s)ds
t t
> / e(s) ds —|—/ S(w,r)(s)ds|,
t t
so (1.1.1) is nonoscillatory by Remark 2.2.2. (|

Remark 2.3.1. (i) Note that without the use of Theorem 2.2.5, under the addi-
tional assumptions c(t) > 0, &(t) > 0 (but, in fact, [~ c(s)ds > 0 suffices), some
authors (e.g., [227]} use the Schauder-Tychonov fixed point theorem to prove the
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Hille-Wintner theorem. A closer examination of that proof then reveals that the
statement of Theorem 2.2.5 (with the additional assumptions) is actually hidden
in it.

(ii) Later, in Section 5.5, we will see that there exists another possibility how
to prove the Hille-Wintner theorem, namely the sequence approach. Note that in
the classical work of Nehari [304], the proof of this theorem in the linear case is
based on the variational technique.

In Subsection 1.4.3 we have presented the criteria of Kneser type, which are
established using the Sturmian comparison theorem and the generalized Euler
equation. Now we use the same idea, but with the Hille-Wintner theorem instead of
the Sturm one, to obtain an improvement, namely the criteria of Hille-Nehari type.
In Subsection 1.4.2 we have shown that Euler equation (1.4.20) is nonoscillatory

P
if and only if y <5 = (”p;l) . Consider now the equation

(2.3.3) (r@)®(z")) + w@(m) =0

(ftrlfq(s) ds)p

with r satisfying (2.2.9). The transformation ¢t — ft r1=4(s) ds of independent vari-
able transforms this equation into the Euler equation (1.4.20). Hence also (2.3.3) is
nonoscillatory if and only if v < 4. This fact, combined with Theorem 2.3.1, lead-
s to the following nonoscillation and oscillation criteria which are the half-linear
extension of the Hille-Nehari (non)oscillation criteria, see [341, Chap. II] and also
Section 3.1.

Theorem 2.3.2. Suppose that [~ r1=9(t)dt = oo and the integral [* c(t)dt is

convergent.
o< (o) ([ eow) 53 (51

(1) If
for large t, then (1.1.1) is nonoscillatory.
(i) If

(2.3.4)  liminf (/trlq(s) ds)zj_1 (/too c(s) ds> > % <%)p_l,

then (1.1.1) is oscillatory.

1

Proof. First of all observe that (2.3.4) implies that [ ¢(s) ds > 0 for large t. Now,

s () (s

the statement follows from Theorem 2.3.1 with é(t) = 4r!1=9(¢) (fL ri=a(s) ds) e
|
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Next we give a complement of Theorem 2.3.1 in the sense of the convergence
of [Fri=i(s)ds.

Theorem 2.3.3. Let c(t) > 0, &(t) > 0 for large t and p(t) == [~

LoriT(s)ds < 0.
Assume that

(2.3.5) /0C e(t)pP (1) dt < oo, /0C é(t)pP(t) dt < 0.
If
(2.3.6) /too e()pP(t) dt < /too é(t)pP (t) dt,

(2.3.1) is nonoscillatory, then so is equation (1.1.1), or equivalently, the oscillation
of (1.1.1) implies that of equation (2.3.1).

Proof. Assume that (2.3.1) is nonoscillatory. Then, by the “only if” part of The-
orem 2.2.7 there exists a continuous function w satisfying (2.2.34) and

i) = [P dsy [ o8 e ds
+p—-1) /too rt=9(s) " (s)|w(s)| ds.

Using (2.3.5) and (2.3.6) we see that w satisfies integral inequality (2.2.35) and
hence (1.1.1) is nonoscillatory by the “if” part of Theorem 2.2.7. O

Now we can apply the last theorem to obtain modified Hille-Nehari criteria.
This will answer the question posed at the very end of Section 2.2. For related
results see Subsection 2.2.6 and Theorem 2.2.11. For another information about
these types of criteria see Section 3.1.

Theorem 2.3.4. Suppose that (2.2.27) holds, p is given by (2.2.28) and the inte-
gral [ pP(t)e(t) dt is convergent.

(i) Equation (1.1.1) is oscillatory if
20 -1 P
(2.3.7) litminfp’](t)/ c(s)pP(s)ds > (p_) .
—00 ¢
(i) Equation (1.1.1) is nonoscillatory if

(238) o0 [ etoras < ()

for large t.
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Proof. First we show that the equation
(2.3.9) (t*2(y") + g(t)@(y) =0,

where ¢ is a continuous function and « is a constant such that o > p — 1, is
oscillatory if

a—p 0 pla—p — W a - 1)P-1
(23.10)  liminf¢ p—l“/ sHEER 0y g » BT DO PR
t—oc ¢ pp
and it is nonoscillatory if
a—p o0 pla—pt1) -1 _ 1)p—1
(2.3.11) t—pil/ s g(s)ds < (p )(appp+ )
t

for all large ¢. Suppose that (2.3.10) holds. Then there exist v* and T such that
7> [(@—p+1)/p]” and

a—ptl o0 pl{a—p+1) p— 1
t -1 s »-1 s)ds > —————~*
/t 9(s) a—p+ 17

for t > T. Since

o o)
p— 1 a—ptl _ pla—p+1) _
7+ 1*}/* =t »1 s p—1 ’}/*Sa pdS,
a—p t

we have
o o0
_ pla—ptl) _pla—ptl) -~
/ sT T g(s)ds >/ §T T Y s¥ P (s,
Jt t

t > T. Noting that the generalized Euler equation (1.4.33) with v = ~* is oscil-
latory by Theorem 1.4.4 and applying Theorem 2.3.3, we conclude that (2.3.9)
is oscillatory. Let vo = [{(@ — p + 1)/p]”. Then equation (1.4.33) with v = g is
nonoscillatory by Theorem 1.4.4. Since (2.3.11) can be written as

°° _pla—ptny -1 a—ptl X pla—pt)
/ s P g(s)ds < pi'}’oti”ill = / S T ypsY P ds,
¢ a—p+1 ¢

it follows from Theorem 2.3.3 that (2.3.9) is nonoscillatory provided (2.3.11) is
satisfied.

The next step of the proof is the transformation of independent variable u(s) =
x(t), s = s(t) = (p(?f))Pff:lu This transformation transforms (1.1.1) into the
equation

(2.3.12) (s*®(u")) + Q(s)®(u) = 0,

where
p—1

LW) P 4(s) [p(H) T e(t(s)),

p—1

o = (



2.3. Comparison theorems 73

t = t(s) being the inverse function of s = s(t). Since @ > p — 1. Then we have
752079 ds < oo, so (2.3.12) satisfies assumption (2.2.27). The results of the
first part of the proof applied to (2.3.12) show that (2.3.12) is oscillatory if

a—p+1 > pla—p —1 _ 1 p—1
(2.3.13) liminf s 71 / e Q) de > (p )(O‘pppJf )
and that (2.3.12) is nonoscillatory if
a—p+1 o0 pla—p -1 _ 1 p—1
(2.3.14) s / 574( ”’1+1)Q(§) de < (p )(appp+ )
S

for all large s. It is a matter of easy computation to verify that inequalities (2.3.13)
and (2.3.14) transform back to (2.3.7) and (2.3.8), respectively, which are directly
applicable to original equation (1.1.1). O

2.3.2 Leighton comparison theorems

First recall that (1.1.1) is said to be disconjugate in a given interval I if every
nontrivial solution of this equation has at most one zero in I, in the opposite case,
i.e., if there exists a nontrivial solution of (1.1.1) having at least two zeros in I,
equation (1.1.1) is said to be conjugate in I. Further, two points t1,t2 € R are
said to be conjugate relative to (1.1.1) if there exists a nontrivial solution z of this
equation such that x(t1) = 0 = x(¢2).

Consider a pair of half-linear differential equations (1.2.6) and (1.1.1). If (1.1.1)
is a Sturmian minorant of (1.2.6) on I = [a,b] and (1.1.1) is conjugate on this
interval, then majorant equation (1.2.6) is conjugate on [a,b] as well. In the next
theorem we replace the pointwise comparison of coeflicients by the integral one (in
a different sense than in the previous subsection). In the linear case p = 2, this
statement was proved by Leighton [234]. Here we offer its half-linear extension.

Theorem 2.3.5. Let x be a solution of (1.1.1) satisfying x(a) = 0 = x(b), z(t) #0
fort € (a,b), and

b
(2.3.15) J(x;a,b) = / [(r(t) — R()|2'|P — (c(t) — C(t))]z|F] dt > 0.

Then every solution y of (1.2.6) has a zero in (a,b), or equations (1.2.6) and
(1.1.1) are identical, and y is a constant multiple of x. If, in addition, the strict
inequality is satisfied, then y has a zero in (a,b).

Proof. We have (with the notation introduced in the proof of Theorem 1.2.4)

Frc(z;a,b)

b
/ (R P — C (1)) dt

b
| / (O — e(t)]f?] di — T (x;0.D)

b
= el - [ sl - doBE)]d - I(wab)
= —J(z;a,b) <0.
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Recalling that J(z;a,b) = 0 corresponds to the case where r = R, ¢ = C and
z' = zy’/y, the conclusion follows from Theorem 1.2.2. O

Remark 2.3.2. In terms of conjugacy, the last statement can be reformulated as
follows: Suppose that the points a,b are conjugate relative to (1.1.1) and let x be
a nontrivial solution of this equation for which z(a) = 0 = z(b). If J(x;a,b) > 0,
then (1.2.6) is also conjugate in [a, b]. Clearly, the Sturm-Picone type comparison
theorem is a consequence of this statement.

Now we give a variant of the Leighton type theorem, along with its dual. Their
statements in terms of conjugacy are obvious.

Theorem 2.3.6. Let R/r be continuously differentiable on (a,b) and x be a so-
lution of (1.1.1) satisfying x(a) =0 = z(b), z(t) # 0 for t € (a,b), and

(2.3.16) /ab { (C - %:) lz|P + 7 <§>/xq>(m’)} (t)dt > 0.

Then every solution of (1.2.6) has a zero in (a,b).

Proof. Putting r = R on the left-hand side of (1.2.1) and rewriting (1.1.1) as

<%R(t)¢(m')) +c(t)®(z) =0

or, equivalently,

(ROB()) — r(t) (R(”) (') + 2wy = o,
identity (1.2.1) becomes

(2.3.17) {% [®(y)RD(2') — <I>(m)R<I><y’)]}

_ (C - §C> jl? + 7 (%) 2®(a’) + pR' TP (RT™ 2!, RO(xy' /y)) -

It is not difficult to see that the function on the left-hand side inside {} tends to
zero as t — a+ or t — b— (see the proof of Theorem 1.2.4), so that after integrating
(2.3.17) from a + € to b — ¢, letting € — 0+ we are led to the contradiction with
(2.3.16), in view of the Young inequality (1.2.2). O

Similarly, assuming that ¢ # 0, C # 0 and C/c € C'(a,b) we can rewrite

(r&(2")) as
c(rC_, 2\ ey rC .,
C ( c <I>(x)> +(C) ¢ (),
so that (1.1.1) becomes

<£<I>(m')>/ + % (%)l %rtb(m’) + C®(z) =0,
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or, equivalently,

(2.3.18) ( (x’))/ - (%)/TCI)(J:’) + C®(z) =0,

so that the coefficients by ®(z) and ®(y) in (2.3.18) and (1.2.6), respectively, are
the same. From (1.2.1) with r replaced by rC/c we then have

o
c

Lons [owC 0w) - o@new] |

7
_ (g - R) '[P+ 7 (% 2®(2') + pR'™IP (R, R®(zy' /y)) -

Now we easily see the following dual comparison result to the previous theorem.

Theorem 2.3.7. Let ¢ # 0, C # 0 and C/c € C(a,b) and = be a solution of
(1.1.1) satisfying z(a) = 0 = z(b), z(t) # 0 for t € (a,b), and

/ab { (% - R) |Z'[P + 7 (%)Q@(f)} (t)dt > 0.

Then every solution of (1.2.6) has a zero in (a,b).

Remark 2.3.3. In Subsection 5.8.3 we give variants of the above theorems in
a Leighton-Levin sense, which are based on the variational technique involving
nonzero boundary conditions.

2.3.3 Multiplied coefficient comparison

First we mention a few background details which serve to motivate the main results
of this subsection. Along with equation (1.1.1) consider the equation

(2.3.19) ()2 ()] + Ac(t)@(y) = 0,

where A is a real constant. We claim that if (1.1.1) is nonoscillatory and 0 <
A <1, then (2.3.19) is also nonoscillatory. If ¢(t) > 0, then this statement follows
immediately from the Sturm comparison theorem (Theorem 1.2.4). If ¢(t) may
change sign, then dividing (2.3.19) by A we obtain an equivalent equation which
is nonoscillatory again by the Sturm theorem. This can be analogously done for
oscillatory counterparts. If the constant A is replaced by a function a(t), then
the situation is not so easy (when ¢(t) may change sign; otherwise the Sturm
theorem can be applied immediately). The following statements give an answer
to the question: “What are the conditions which guarantee that (non)oscillation
of (1.1.1) is preserved when multiplying the coefficient ¢(¢) by a function a()?”.
Along with equation (1.1.1) consider the equation

(2.3.20) [R(YD(z)] + a(t)C(H)®(z) = 0,

where R and C satisfy the same assumptions as r and c, respectively. Related
results in the linear case can be found in [152].
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Theorem 2.3.8. Assume that a(t) is continuously differentiable, r(t) < R(t),
Ct) <e(t), 0<alt)y <1, d(t) <0. Further, let

¢
U(T) := ligigf/Tc(s)dSEO and U(T)#£0

for all large T and [ r'=9(s)ds = oo. Then nonoscillation of (1.1.1) implies
nonoscillation of (2.3.20).

Proof. The assumptions of the theorem imply that there exists a solution y of
(1.1.1) and T € R such that y(¢) > 0 and %’(¢) > 0 on [T, 00) by Lemma 2.2.3.
Therefore, the function w(t) := r(¢)®(y'(¢)/y(t)) > 0 satisfies (1.1.21) on [T, 00).
We have ar'=9w? = (ra)'~9(wa)?. Now, multiplying (1.1.21) by a, we get

0

wa+ca+ (p—1)(ra) " (wa)? > wa+ Ca+ (p—1)(ra)'~%(wa)?
w'a+wa + Ca+ (p— 1)(ra)' 9 (wa)?
(wa)' + Ca + (p — 1)(ra)* 1 (wa)?

v

for t € [T,00). Hence the function v = wa satisfies the generalized Riccati in-
equality v + C(t)a(t) + (p — 1)(r(t)a(t))' ~%v? < 0 for t € [T, 00). Therefore, the
equation

(2.3.21) [at)rt)®(z")] + a(t)C(t)®(z) =0

is nonoscillatory by Theorem 2.2.1, and so equation (2.3.20) is nonoscillatory by
Theorem 1.2.4 since a(t)r(t) < r(t) < R(t). O

Theorem 2.3.9. Assume that a(t) is continuously differentiable, R(t) < r(t),
e(t)y < C(t), a(t) = 1, o’(t) = 0. Further, let

(2.3.22) U, (T) := liminf /L a(s)C(s)ds >0 and U (T)#£0

t—oo  Jp
for all large T and
/ R 9(s)ds = .
Then oscillation of (1.1.1) implies oscillation of (2.3.20).

Proof. Suppose, by a contradiction, that (2.3.20) is nonoscillatory. Then there
exists a solution x of (2.3.20) and T € R such that z(¢f) > 0 and 2/(t) > 0 on
[T, o0) by Lemma 2.2.3. Therefore, the function v(¢) := R(t)®(2'(t)/z(t)) > 0
satisfies

(2.3.23) v +at)Ct) + (p— DRIt =0
on [T, 00). We have

v S v'a  va' (v)’
a — a? a2 a’/
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Dividing (2.3.23) by a and using the the last estimate, we get

0 = +C(t) + ﬁ(p — DR 9(t)(t)

> <a_) Fe(t) + (p— D[R /alt)] " u(t) /a(t)]?

for ¢ € [T, 00). Hence the function w(t) = v(t)/a(t) satisfies the inequality w’(¢) +
c(t) + (p— D[R(t)/a(t)] ~9wi(t) < 0 for t € [T, 0c). Therefore the equation

Rt ]
——® t)®(y) =0
Tew)] +eeq)
is nonoscillatory by Theorem 2.2.1. Now, since R(t)/a(t) < R(t) < r(t), equation
(1.1.1) is nonoscillatory by Theorem 1.2.4, a contradiction. O

(2.3.24)

Remark 2.3.4. A closer examination of the proofs shows that the last two theorems
can be improved in the following way (assuming the same conditions): (a) The-
orem 2.3.8: (1.1.1) is nonoscillatory implies (2.3.21) is nonoscillatory; (b) The-
orem 2.3.9: (2.3.24) is oscillatory implies (2.3.20) is oscillatory. Our theorems
then follow from the above by virtue of the Sturmian comparison theorem (Theo-
rem 1.2.4).

2.3.4 Telescoping principle

Now we want to present an oscillation preserving construction — the so-called
telescoping principle, which was first proved for linear differential equation (1.1.2)
in [230] or in [231], and now it is extended for (1.1.1). The crucial role is played
by the Riccati technique and a standard result concerning differential inequalities.
Suppose that the coefficients of equation (1.1.1) are in C,, where C, denotes the
set of continuous functions on [0,a), a € R* U {oco}, and assume that (1.1.1) has
a solution y which is of one sign in an interval [a’, ) C [0,a). Then, similarly as
in Section 1.1.4, the substitution w = —r®(y’/y) yields the following equivalent
equations

(2.3.25) w'(t) = c(t) + (p — Dr' =28 |w(t)|?

and

(2.3.26) w(t) = wo + / c(s)ds + /(p — D)rt9(s)lw(s)|?ds

’ ’

for t € [a/,b"), where wy = w(a’). Clearly, the solution y has a zero at &’ if and
only w(t) — oo as t — b'—. Equation (1.1.1) is oscillatory if for any nwmbers
a’ > 0 and wo, the unique solution w of (2.3.26) satisfies w(t) — co as t — b'— for
some b’ < a. In employing the latter equivalent condition in the proof of certain
oscillation criterion we can often assume, without loss of generality, that ¢’ = 0.
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Let © = (J!, (a;, b;) be a finite (n < oo) or infinite (n = oc) union of disjoint
open intervals. We assume that

0 < a; <b; <ajy1, the set {a;} has no finite accumulation points.
Let
(2.3.27) 7 = 7(t) = mes([0, 1] \ ),
where mes denotes the usual Lebesgue measure, and let
(2.3.28) A=71(a), A; =71(a;), i=1,2,...,n.

The interval [0, A) is obtained from [0, a) by shrinking each interval (a;,b;) to its
left endpoint. We construct a class of transformations T : C, — C4 as follows:
Let f € Cy. Then F = Tq(f) is defined by F(r) = f(t) if 7 = 7(¢), 7 # A,
and F(A;) = f(a;). The function F is obtained from f by collapsing each interval
(a;,b;) to a point.

The next result is a kind of comparison theorem. We use the above notation.

Theorem 2.3.10. Assume

b;
(2.3.29) / C(t) dt >0, 1eN.

Let R = Tq(r),C = Ta(c). Suppose that z is a solution of
(2.3.30) (R()®(2) + C(H)®(z) =0

on [0, A) such that z(t) £ 0 for t € [0, B) and z2(B) = 0 for some B < A. If y is
a solution of (1.1.1) such that y(0) # 0, r(0)®(y’(0)/y(0)) < R(0)®(2'(0)/2(0)),
then y(b) = 0 for some b < a. More precisely, if B < A;, then there exists a point
b < a; such that y(b) =0, i € N.

Proof. The proof is by induction on n. Let v = —R®(2'/z) and w = —r®(y’/y).
Then

(2.3.31) V() = Ct) + (p — DRI |v(t)|?

on [0, B). If B < A = a4, then on [0, B), w satisfies the same equation (2.3.31),
since ¢ = C' and » = R on [0,a1) = [0, A1). By hypothesis, w(0) > v(0). Hence
by [174, Theorem 4.1], w(t) > v(t) for t € [0, B). Since z(B) = 0, v(t) — oo as
t — B—. Therefore w(t}) — oo as ¢ — b— for some b < B, implying that y has a

zero at b. If A; < B < As, then arguing as above we obtain w(a1) > v(a;) = v(A;).
Integrating (2.3.25) and using (2.3.29) we get

by
w(b) —wlar) =/ [e+ (p— D)r'=9w|?](t) dt > 0.

al

Hence

(2.3.32) w(bl) Z w(al) 2 U(Al).
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Since C, R are simply the functions ¢ and r translated to the left by ¢t — ¢ —
(b1 — a1), w and v satisfy the same generalized Riccati equation on the intervals
[b1, B + (b1 — a1)), [A1, B), respectively. By [174, Theorem 4.1] and (2.3.32) we
conclude that whenever w and v are defined, w(t + (b1 —a1)) > v(t), 41 <t < B.
As above, we see that w(t) — oo as t — b— for some b < B + (b — a;) implying
that y has a zero at b. This completes the proof of the case n = 1. The proof of
the inductive step from 7 to n + 1 is similar and hence omitted. O

Remark 2.3.5. In fact, the last theorem says that if the solution of the Riccati
equation

o(r) = v(0) + /0 Toc(t) dt + /OT(p ) (Tor) =9 () |o(t)| 9t

tends to oo at a point B < A;, then the solution of the Riccati equation

w(t) = w(0) + ./0 c(s)ds +/0 (p— D)r'~9(s)|w(s)|ds

tends to oo at a point b < a4, as long as w(0) > v(0).

The previous theorem plays a crucial role in the following telescoping principle.

Theorem 2.3.11 (Telescoping principle). Assume that the conditions of The-
orem 2.5.10 hold. If (2.3.30) is oscillatory, then so is (1.1.1).

Proof. Let z be a solution of (2.3.30) with z(0) # 0. Let y be a solution of
(1.1.1) satisfying y(0) # 0 and r(0)®(y'(0)/y(0)) < R(0)®(2'(0)/2(0)). By Theo-
rem 2.3.10, y(b) = 0 for some b < 0o (here we set ¢ = c0). Now working with the
half-line [b, oc) instead of [0, 00) and proceeding as before one shows that y must
have a zero to the right of b. Continuing this process leads to the conclusion that
y is oscillatory and hence all solutions of (1.1.1) oscillate. O

Remark 2.3.6. It is not difficult to derive this result also by means of the variational
principle. For this approach in the linear case see [231].

This principle can be applied to get many new examples of oscillatory half-
linear differential equations. We use a process that is the reverse of the construction
(2.3.27)-(2.3.30) in Theorem 2.3.10. Start with any known oscillatory equation
(2.3.30) and assume that 4 = co. Choose a sequence of 4; — co. Cut the plane
at each vertical line t = A; and pull the two half-planes apart forming a gap of
arbitrary length. Now fill the gap with an arbitrary positive continuous function
r and any continuous ¢ whose integral over the length of the gap is nonnegative.
Do this at each point A; and denote the new coefficient sequences by r,c. Then
equation (1.1.1) is oscillatory.

The telescoping principle is also useful in extending various known oscillation
criteria. It implies that any sufficient oscillation condition need only be verified on
“intervals”, namely, on |J;2; (b;,a;11) (only the case n = oo is of interest here),
while on the complementary intervals the coefficients r and ¢ can be arbitrary as
long as 7 > 0 and ¢ has a nonnegative integral over each such interval.
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2.3.5 Comparison theorem with respect to p

The main statement of this subsection gives a kind of comparison theorem with
respect to the power of .

Along with (1.1.1) we consider another half-linear equation with a different
power function ®,(z) = |z|* tsgnz, a > 1,

(2.3.33) (r(t)®o(z") + c(t)Pu(z) =0,

we denote by § the conjugate number of «, i.e., 3 = a/(a — 1) (recall also that ¢
is the conjugate number of p, i.e., g = p/(p — 1)).

Theorem 2.3.12. Let [t P(t)dt = oo and [T c(t)dt converge, U(t) :=
ftoo c(s)ds > 0 with ¥(t) £ 0 for all large t, say t > T, and

(2.3.34) lim inf 7(£) > 0.

t—oc

If a > p and equation (2.3.33) is nonoscillatory, then (1.1.1) is also nonoscillatory.
If, in addition, c(t) > 0 for large t, ¢ being eventually nontrivial, then (2.3.34) may
be replaced by the weaker condition

rima(t
f; ri=a(s)ds

where e is the basis of natural logarithm.

(2.3.35) <e for all large t,

Proof. If (2.3.33) is nonoscillatory, then by Theorem 2.2.4 there is a function v
and T € R such that

v(t) = /foo c(s)ds + /foo S(v,r,a)(s)ds

for t > T, where the function S is defined in Subsection 2.2.1. First assume c(t) > 0.
1-p

By Lemma 2.2.6 we have 0 < v(t) < (f; ri=a(s) ds) . Take ty > T so large

that (2.3.835) holds for ¢t > g, and hence

t > to. Consequently, S(v,r, &)(t) > S(v,7,p)(t), t > to, which yields
v(t) 2/ e(s) d8+/ S(v,r,p)(s)ds,
¢ ¢
and so (1.1.1) is nonoscillatory by Theorem 2.2.5. If ¢(¢) > 0 fails to hold, but

f:o c(s)ds > 0 for all large ¢, then again we have (v(t)/r(t))9~! < e, since v(t) — 0
as t — oo and (2.3.34) holds. The rest of the proof is the same as above. O
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2.4 Notes and references

General statements on the variational principle and the Riccati technique appeared
in various works, and are usually modeled on the classical linear results. Here we
have tried to treat all known approaches in as general as possible settings. An
extension of the Wirtinger inequality along with the application (Theorem 2.1.2)
is taken from Dosly [100]. The proof of Theorem 2.2.3 presented here is a direct
extension of the proof given in Li and Yeh [244], which involves half-linear equation
(1.1.1) with r(¢) = 1. The Hartman-Wintner type theorem has already appeared
in earlier Mirzov’s papers (for system (1.1.8)) and it is presented e.g. in the book
[292]. The results of the subsection concerning modified Riccati inequality as well
as Theorem 2.2.11 are taken from Kusano and Naito [218]. Theorem 2.2.8 is due
to Lie and Yeh [245], while Theorem 2.2.9 is proved in Dosly [102] . The latter
one appeared also e.g. in Yang [376], but it is not quite correct. An extension of
Hille-Wintner comparison theorem can be found e.g. in Lie and Yeh [242] but also
in many other papers, as mentioned in the text. Modified Hille-Wintner theorem
and its applications are proved in Kusano and Naito [218]. The half-linear version
of Leighton type comparison theorem can be found in Jaro§ and Kusano [185],
related statements can also be found in the paper of Rostas [335]. The multiplied
coefficient comparison result and the telescoping principle are extensions of the lin-
ear results mentioned in the text. The last comparison theorem is an improvement
(in differential equations setting) of the result originally stated for (more general)
half-linear dynamic equations on time scales in Rehak [328]. Finally note that a
brief survey of the methods of the half-linear oscillation theory can be found in
Dosly [103, 105].
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CHAPTER 3

OSCILLATION AND NONOSCILLATION CRITERIA

In the previous chapters as well in some of the subsequent ones, we present oscil-
lation and nonoscillation criteria, which immediately manifest applicability of our
methods, or the criteria, which are of rather special types. The aim of this chapter
is to give criteria of a “standard” type, which are mostly generalizations of classi-
cal linear criteria. As a by-product, some interesting relationships will come out.
Again we will see the power of the methods, which are extensions of the “linear”
ones, in particular, the variational principle and the Riccati technique; the latter
one is used more frequently. We will see that if one may use both methods in
proving (non)oscillation criteria, then the Riccati technique usually requires weak-
er assumptions (e.g. on the sign of the coefficient ¢, or on the constant that is
involved in a criterion).

First we will discuss an extension of Hille-Nehari type criteria. In Section 3.2,
we use the averaging technique to obtain generalized criteria of Coles, Kamenev
and Philos type. The end of this chapter is devoted to the theory, which mainly
discusses the situations where classical criteria fail.

Before we start, let us give some general observations:

(i) If [ r!1=9(t)dt = oo in (1.1.1), then this equation can be transformed into
the equation (®(2')) + ¢(t)®(z) = 0, where ¢ = cr?~!, and this transformation
transforms the interval [T, 00) into an interval of the same form. For this reason,
we will formulate sometimes our results for the equation

(3.1.1) (®(z") + c(t)P(x) =0
(mainly in the situations when these results were first established for (1.1.2) with
r(t) = 1 in linear case), the extension to the equation of the form (1.1.1) with

foo r1=9(t)dt = oo is then straightforward. Recall that the generalized Riccati

83
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equation associated to (3.1.1) is
(3.1.2) w' +c(t) + (p— 1)|w|? = 0.

(if) If we suppose that c¢(t) > 0 for large ¢ in (3.1.1), then the situation is
considerably simpler than that in the general case when c is allowed to change
its sign. Indeed, from (3.1.1) it follows that ®(x’} is nonincreasing whenever x is
a positive solution. Hence 2’ is nonincreasing as well, and so x is concave, i.e.,
its graph lies below the tangent line at any point of this graph. This means that
for a positive solution x, one has z(t} < x(T) 4+ z'(T)(t —T) for any ¢ and T
with ¢ > T. In particular, if 2'(T) < 0, then x(¢) cannot be positive eventually.
Consequently, in oscillation criteria for (3.1.1) with ¢(¢) > 0, it is sufficient to
impose such conditions on the function ¢ that for any 7' € R the solution given by
2(T) =0, /(T) > 0 has an eventually negative derivative x'(¢).

3.1 Ceriteria of classical type

In this section we give a generalization of Hille-Nehari type criteria along with
their natural complements. In fact, some of the criteria which we want to present
here occur also in some other parts of this book, either as consequences of more
general criteria or as typical examples of applications of our methods. However, the
principal aim of this section is to gather all information concerning these “classical”
criteria (including their complements), so interesting relationships among all of
them become apparent. Moreover, we will see a wide variety of different approaches
to the proofs.
We introduce the notation

o = (foron) [
o = ([os) o

o = ([Tow)” [ ([ o) con
o = () [ (o)

o = ([ian) [ ([ o

oy </atc(s)ds>_ / (/ ()dT)quq(s)ds.

As it can be easily seen, the discussion in this section cannot be restricted to
the case r(t) = 1, since sometimes we assume [ r!=9(¢)dt < oo, and one of the
objectives of this section is to show the differences between the cases where this
integral diverges or converges.
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3.1.1 Hille-Nehari type criteria

In Subsection 1.2.10 we have proved (by means of two different methods) an exten-
sion of the classical Leighton-Wintner criterion: [ r179(¢)dt = oo = [~ c(t)dt
implies oscillation of (1.1.1). One of the reasoned questions which arises now is:
What about the case when f 1) dt converges7 Note that the dlvergence of this

integral in the sense that lim 1nftHoo f s)ds < limsup,_, f s)ds is discussed
elsewhere (e.g., in Section 3.3). Thus we assume that

0 t
(3.1.3) / e(s)ds:= lim [ c(s)ds exists as a finite number.
a

t—oo [,
We start with the following criterion.

Theorem 3.1.1. Let (3.1.3) hold and
(3.1.4) / r179(t) dt = oco.
If

1 /p—1\""
(3.1.5) liminf A(t) > - <p—> :
t—oo p P

then equation (1.1.1) is oscillatory.

Proof. As said in the next remark, this statement can be viewed as a corollary of
the below given more general theorem, but for convenience we give here the direct
proof, which is based on the Riccati technique. Suppose, by a contradiction, that
(1.1.1) is nonoscillatory Then by Theorem 2.2.4, there is a function w satisfying
the equation w(t) = [~ c(s)ds+ (p—1) [ r'~ q( )Jw(s)|? ds in a neighborhood
p—1
of co. Multiplylng this equation by (fa ri=a(s) ds) , using the assumptions of
p—1
the theorem, and supposing that limsup,_, ., (faL ri=a(s) ds) w(t) =2 M <

(in the case M = oo, to get a contradiction is even easier than for M < co) we
find an & > 0 such that M satisfies the inequality

1/p—1\""
M > - (p—> et M.
p\ »

1/p—1\"""!
|tq—t+—<p—) >0
p\ p

for all t € R, we have the required contradiction. 1

Since

Remark 3.1.1. We have seen how the Riccati technique was directly used in the
proof, but there are also another possibilities:
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(i) The criterion can be seen as a consequence of the more general one (after
the transformation of the independent variable, see Subsection 1.2.7): see Corol-
lary 3.3.4. This comes from [197] and the Riccati technique is used there.

(ii) In [180], it was used the technique involving Riccati integral equation with
certain weight. There is an assumption ¢(¢) > 0 which however is not needed.

(iii) In Theorem 2.3.2, we obtained this criterion by means of the Hille-Wintner
comparison theorem where general equation is compared with the generalized Eu-
ler equation (1.4.20). This approach appeared in [219]. The additional assumption
c(t) > 0 from [219] may be replaced by the weaker one, [ c(s)ds > 0, which
means 1o restriction in view of condition (3.1.5).

(iv) In Section 5.5, we use the sequence approach to prove this criterion.

(v) In [100], the variational principle was used. However, the constant on the
right-hand side of (3.1.5) has to be replaced by (bigger) 1. If, in addition, ¢(t) > 0,
then lim inf can be replaced by lim sup, as a closer examination of that proof shows.
See also the next criterion.

The next theorem shows that liminf in (3.1.5) can be replaced by lim sup
provided additional conditions are satisfied.

Theorem 3.1.2. Let (3.1.3), (3.1.4) hold and C(t) > 0 for large t. If

limsup A(t) > 1,

t—o0
then equation (1.1.1) is oscillatory.

Proof. The statement is a consequence of a stronger statement, namely below
given Theorem 3.3.3, using the transformation of the independent variable. The
Riccati technique plays a key role there. O

Remark 3.1.2. Tt is easy to see that C(t) > 0 is satisfied provided e.g. ¢(t) > 0.
Just the condition ¢(t) > 0 is needed in all other approaches:

(i) The proof by variational principle was mentioned in the previous remark.

(ii) In [180] and [219], the Riccati technique is used.

(iii) In Section 5.5 we will see that this criterion is a consequence of two more
general ones, which are based on the sequence approach.

Now we give a nonoscillatory complement to Theorem 3.1.1.

Theorem 3.1.3. Let (3.1.3) and (3.1.4) hold. If

(3.16) 221 (le

! 1/p—1\""
> < liminf A(¢t) <limsup A(t) < — (p_) \
p P t—00 P

t—oo p
then equation (1.1.1) is nonoscillatory.
Proof. This is Theorem 2.2.9, proved by the Riccati technique. O

Remark 3.1.3. Similarly as the previous criteria, also this one has frequently ap-
peared in the literature:
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(i) The same approach as in the above proof (only with r(¢) = 1, which how-
ever does not matter, in view of the transformation) was used in [197], see Theo-
rem 3.3.6.

(ii) In [180], the sequence approach was used under the assumption ¢(t) > 0.
However, an alternative sequence can be also used and in both cases, ¢(t) > 0
is relaxed to [ c(s)ds > 0, see Section 5.5. Note that (3.1.6) reads there as
A(t) < % (%)p ' for large ¢, the same holds in the next described approach.

(iii) In [227] and [219], the Hille-Wintner theorem is applied to compare a
general equation with Euler type equation, under the assumption ¢(¢) > 0. This is
done in the proof of Theorem 2.3.2, where we see that ¢(t) > 0 may be relaxed to
[ e(s)ds > 0.

(iv) The use of variational priciple is possible as well, see Theorem 2.1.2. How-
ever ¢(t) in \A(t) has to be replaced by ¢4 (t) = max{0, c(t)}.

Remark that the cases where (3.1.5), (3.1.6) fail to hold are discussed in Sec-
tion 3.3

3.1.2 Other criteria

In this subsection we discuss the criteria which are complementary from various
points of view. We start with the question: What about the case where (3.1.4) fails
to hold? Thus let us investigate the complementary case

X0
(3.1.7) / ri=9(t) dt < oo.
[
First we show how the reciprocity principle simply enables to use the previous
criteria under the assumption ¢(t) > 0.
Theorem 3.1.4. Let (3.1.7) hold and c(t) > 0 for large t. If
R N R A N : :
liminf A() > — | —— or limsup A(t) > 1,
l—oo D Y% t—oc
then (1.1.1) is oscillatory. If
. 1 /p—1\""
limsup A(t) < = (p_) )
t—oc P p
then (1.1.1) is nonoscillatory.

Proof. From the oscillatory criteria contained in this theorem we show only the
sufficiency of the first condition, since the latter one is very similar. Let us apply
Theorem 3.1.1 to the reciprocal equation

(3.1.8) (e~ (W) + It e~ (u) = 0,

where & 1(u) = | L\q ! bgn w is the inverse to ®, ¢ being the conjugate number of p.

Denote v, = + , ¥q is introduced correspondingly. First observe that the
Y= 5 q
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condition liminf;_,c A(t) > 7, implies that [~ ¢(t) dt = oc. Taking into account
that (p — 1)(g — 1) = 1, we have [*c(=DU=P)(t)dt = [* ¢(t)dt = co. Hence,
equation (3.1.8) is oscillatory if

(3.1.9) lim inf (/: c(s) ds)q1 (/too ri74(s) ds) > 9,

Now, taking the (p — 1)-th power of both sides, we see that (3.1.9) is equivalent to

liminf A(t) > 7271 =4,

t—o0 q

what we needed to prove.

Concerning the proof of the “nonoscillatory” part of the theorem, first consi-
der the case foo c(t) dt < oo. If this happens, then we use the transformation of
independent variable

(3.1.10) s:/ P () dr, x(s) = y(t),

which transforms (1.1.1) into the equation

(3.1.11) % <<1> (%m)) =L (4(s))e(t(s))B(z) = 0,

where ¢ = 1(s) is the inverse function of s = s(t) given by (3.1.10). The convergence
of [*r1=4(t) dt implies that the new variable s runs through a bounded interval
where (3.1.11) has no singularity, hence any solution of this equation has only a
finite number of zeros in this interval, which means that (1.1.1) is nonoscillatory.
If foo ¢(t) dt = oo, we proceed in the same way as in the first part of the proof and
use Theorem 3.1.3 instead of Theorem 3.1.1. |

Theorem 3.1.5. Let (3.1.7) hold. If

2p—1(p—1\""" . . 1 /p—1\""
e <p_) < liminf A(¢) < limsup A(t) < = <p_> ,
p p t—o0 t—00 p p

then equation (1.1.1) is nonoscillatory.

Proof. One can show in the same way as in the proof Theorem 2.2.9 that the

function o <1%1)p (/LOC . ds) o

satisfies the inequality
t
v < (1L=p)yrt i)|v - C@)|9, C(t) :/ e(s) ds,

which implies that w = v — C satisfies the Riccati inequality (2.2.7). d
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Remark 3.1.4. The variational approach in this nonoscillation criterion is shown
in Theorem 2.1.2. The function ¢ in .4 has to be replaced by c;. The variational

principle can be also used to show that liminf, . A(¢f) > 1 implies oscillation
of (1.1.1). If ¢(t) > 0, then limsup may be replaced by liminf. The proof is very
similar to that of the corresponding case involving .A(¢).

The next criteria with the function B(¢), where (3.1.7) is supposed, can also be
understood as certain complementary cases to the criteria involving A(t).

Theorem 3.1.6. Let (3.1.7) hold, [ (" r'~4(s) ds)pc(t) dt be convergent and
e(t) = 0 for large t. If

—1\?
litminfB(t) > (p_) =¢q"? or limsupB(t) > 1,

p t—oc

then (1.1.1) is oscillatory. If

—1\P
limsup B(t) < <p_) =q 7,
t—oc p

then (1.1.1) is nonoscillatory.

Proof. The criteria involving the constant ¢~ P have already been proved above,
see Theorem 2.3.4. The modified Hille-Wintner comparison theorem plays an im-
portant role there. Concerning the remaining criterion, assume, by a contradiction,
that lim sup,_, . B(t) > 1 and (1.1.1) is nonoscillatory. Let y be a solution of (1.1.1)
such that y(t) > 0 for ¢ > to. Consider the function v = r®(y’/y). According to
Lemma 2.2.7 and Theorem 2.2.7, v satisfies (2.2.34), (2.2.35) and (2.2.31). From
(2.2.35) and (2.2.39) we see that (with p given by (2.2.28))

P =) = [ (0= DR+ (00 +1] ds
+ /t  P(s)els) ds
> [ ress
t > to, which implies
p ) [ P ds < 0 1

t > ty. Taking the upper limit as ¢ — oo, in view of (2.2.31), we find

lim sup o~ (t) /too pP(s)e(s) < 1,

t—oo

which is a contradiction. O
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Remark 3.1.5. (i) In [102], the variational principle was used to show that if the
condition liminf; .. B(t) > 1 is satisfied, then equation (1.1.1) is oscillatory (with
no sign assumption on ¢). If in addition ¢(t) > 0, then a closer examination of that
proof shows that lim inf can be replaced by lim sup.

(ii) Similarly as in the previous case, we may consider “reciprocal complements”
of the criteria in Theorem 3.1.6. If ¢(t) > 0 for large ¢, then it is easy to see that

_ q _
ligninfB(t) > (q_l) =p % or limsupB(t) >1

q t—o0

imply oscillation of (1.1.1), while

q
limsup B(t) < (g> =p 1
t—00 q

implies nonoscillation of (1.1.1). In Section 5.5 (Theorems 5.5.6, 5.5.7 and 5.5.11)
we will obtain these criteria {more precisely, the ones involving the constant p~%) by
means of the sequence approach, even under the weaker assumption ftoo e(s)ds >
0. It is assumed there that (3.1.3) and (3.1.4) hold. Note that in [89] these two
criteria were proved by means of the Riccati technique combined with the Banach
fixed point theorem, under the assumptions c¢(t) > 0 and r(t) = 1. See the text
before Theorem 5.5.11 why we call these criteria of Willet type.

We finish this section with the criteria which are counterparts to the latter
ones, namely the criteria involving the functions C(t) and C(t). Let

p—1 (p—1\""
n:x0+ P <p—> s
P P

where g is the least root of the equation

2p—1(p—1\"""
(p—1)|x|q+px—|-p—<p—) = 0.
p p

p—1
It is not difficult to show that n < 0 since 2”1.%1 (”le) <1forp>1.

Theorem 3.1.7. Let (3.1.4) hold. If
_1\P
liminf C(t) > (p—l> =g
t—00 P

or
A(t) > 0 for large t and limsupC(t) > 1,

t—o0

then (1.1.1) is oscillatory. If

—1\?
7 < liminf C(t) < limsupC(¢) < (p_) =q7?,
t—o00 t—oo D

then (1.1.1) is nonoscillatory.
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Proof. The criteria follow from below Corollary 3.3.4, Theorem 3.3.3 and Theo-
rem 3.3.9, respectively, making use the transformation of the independent variable,
see Subsection 1.2.7. O

Remark 3.1.6. It is easy to see how the corresponding criteria involving the func-

tion C(t) can be obtained from the previous theorem by means of the reciprocity
principle, under the condition ¢(t) > 0, and so we omit this.

Table 3.1.1: Critical constants for p =3/2, p =2, and p =3

general case p:g p=2|p=3
2p—1<p ) 4| 3w
p 3v3 4 27
1(p 1)“ 2 | 1|4
P\ P 3v3 4 27
p- 1)? IR ]
p 3v3 4 27
1) LI O

q 27 4 3v3

3.2 Criteria by averaging technique

In the (non)oscillation criteria for (1.1.1) that have been presented so far, the
integrals f ¢(s)ds or f s) ds appeared, sometimes the function ¢ is multiplied
by a quantity related to the functlon r (see the beginning of Section 3.1). In this
section we present oscillation criteria involving various integral averages of the
function c.

3.2.1 Coles type criteria

The results of this subsection concern the half-linear extension of the averaging
technique introduced in the linear case by Coles in [79]. The statements are for-
mulated for (3.1.1).

Let J be the class of nonnegative locally integrable functions f defined on
[0, 00) and satisfying the condition

(3.2.1) lim sup ( /O ") ds)q_l_u [F(00) = Fu(t)] > 0

t—oc
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for some 1 € [0,q — 1), where

NG
Fu(t)/f()(fofp )d§>q 1d

If F},(0c0) = oo, then f € J. Let Jy be the subclass of J consisting of nonnegative
locally integrable functions f satisfying

G
(3.2.2) lim -0~ — .
t—oo (fo dS)

Observe that if (3.2.1) or (3.2.2) holds, then

(3.2.3) / f(®

On the other hand, every bounded nonnegative locally integrable function satis-
fying (3.2.3) belongs to Jo and Jy C J. Since all nonnegative polynomials are in
Jo, this class of functions contains also unbounded functions. Elements of 7 and
Jo will be called weight functions.

For f € J, we define

INIGIN < >dm
G

The following statement reduces to the Hartman-Wintner theorem (Theo-
rem 2.2.3) when the weight function f is f(t) =1

Af(s, 1) :=

Theorem 3.2.1. Suppose that (3.1.1) is nonoscillatory.
(i) If there exists f € J such that for some T € R

(3.2.4) liminf Ag (7, 1) > —oo
then
(3.2.5) / o()|7 dt < oo

for every solution w of the associated Riccati equation (3.1.2).

(i) Assume that (3.2.5) holds for some solution w of (3.1.2). Then for every
f e and T € R sufficiently large lim, oo Af(T,t) exists finite.

Proof. The proof of this statement copies essentially the proof of Theorem 2.2.3.
(i) Assume, by contradiction, that

(3.2.6) /oo o(0)|7 dt =
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for some solution w of (3.1.2). Integrating from £ to ¢, multiplying the obtained
integral equation by f(¢) and then integrating again from ¢ to ¢, we obtain

/5 owlsds = w(e) /E f(s)ds - /5 (s) /{ () dr ds
<p1yétf@yésumﬂwd7ds
= wl©) [ s aren [
o= [ 506) [ ot as
= 1wl = Axte) [ 15 -0 [ 100 [ toyar as

where ¢ > £ > T. From (3.1.2) we have

£ 3
mo=wn—ﬁgww—@—uﬁwmwm

Since f € J, (3.2.3) holds. This implies

¢ 5 T as
A6, t) = ?T 2‘3 Af(T,t)_/TC<S)dS_fT ffT 7)drd
¢ ¢ f
fT (6) A T — £CSd8 - e
[ [ etsrds oty

Thus

_ iy drf)ds e [ sl ds
(327) wie) = A = wlT) =7 STAT =0 nA¢<w|¢+dn

as t — oo. Since f € J, there exists a positive number A > 0 such that

(3.25) ;”«wulmwuf }  Bo0) — o)

-1 t—o00

where g is the same as in (3.2.1). It follows from (3.2.4), (3.2.6) and the previous
computation that there exist two numbers a and b, b > a > T, such that

(3.2.9) wla) — Af(a,t) < =X
for t > b. Let 2(¢ f J(s)w(s)ds. Then the Holder inequality implies

()]

tmmwmz -
/" (f; fe(n) dT)
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It follows from (3.2.7) and (3.2.9) that

(3.2.10)
) < /\/f ds — ( —1/f Y2 |Q</ e dT> s = o).
Thus
(3:2.11) <T@)—Aﬂw+%p—1ﬁﬁﬂdﬂq<L{W@ﬁk)lq
and
(3.2.12) 0< /\/atf(s) ds < G(t) < |2(0)|.

Tt follows from (3.2.10), (3.2.11) and (3.2.12) that

GG = GG

o[ ) (] i)

Integrating this inequality from ¢ (¢ > b) to oo, we get

Y

1
q—1l—p

GHIH1) = (p = DM [Fu(00) = Fu(t)].
Inequality (3.2.12) then implies

)\1‘1

> (g—1-p [/'f d{Q1ILEAm>—EAm

which contradicts (3.2.8).
(ii) As in the previous part of the proof, (3.2.7) holds. This implies that

Ef@MQ@_p_Uﬁﬂgﬁmmwmm
JE1(s)ds J! f(s)ds '
Since f € Jo, (3.2.3) holds. Thus,
lmkf@kmmwmm:/mqu“<w
§

< [T f(s)ds

By Hélder’s inequality

EﬂW%Mﬂ<mxﬁﬁ@d)(km|qu_
e [ fls)ds e Ji 1 B

(3.2.13)  As(&,t) = w(é) —
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Hence, by (3.2.13), limy_,o, Af(€,t) exists and
Jim A&, =wl€) = (= 1) [ Ju(s)"ds.
— 00 5

This completes the proof. O

As a consequence of the previous statement we have the following oscillation
criterion which is the half-linear extension of the criterion of Coles [79], this state-
ment can be also viewed as an extension of Theorem 2.2.10.

Theorem 3.2.2. The following statements hold:

(i) If there exists f € J such that (3.2.4) holds, then either (3.1.1) is oscillatory,
or limy_,oc A4(-,t) exists as a finite number for every g € Jy.

(i) If there exist two nonnegative bounded functions f,g on an interval [T, o)
satisfying [~ f(t)dt = 0o = [~ g(t)dt such that

Jim Ag(T,1) < lim Ay(T,1),

then equation (3.1.1) is oscillatory.

Proof. (i) Suppose that (3.1.1) is nonoscillatory. Then by Theorem 3.2.1 every
solution of the associated Riccati equation (3.1.2) satisfies [~ |w(t)|? dt < oo and
hence lim; o Ag(-,t) exists finite for every g € Jo.

(ii) Let o, 5 € R be such that

lim A;(T,t) < a < < lim A (T, t).
t—oc t—oc
Let h(t) = g(t) for T < t < t1, where t; is determined such that A,(7T,t) > 3
and f;l g(s)ds > 1. Let h(t) = f(t) for t; < ty where t5 is determined such that
Ap(T,t2) < a and f;l h(s)ds > 2. This is possible because
22 h(s) [2e(r)drds
;2 h(s)ds
7 19(5) = F(5)] Ji () dr ds
7 7
7 g(s)ds+ [,7 f(s)ds

Ap(T,ty) =

i f(s) fre(r)drds " f(s) ds
12 f(s)ds T g(s)ds+ [* f(s)ds

= AT, t2)[1 + o(1)] + o(1),

as to — oo. Continuing in this manner, we obtain a nonnegative and bounded
function h defined on [T, 0c) such that

limsup Ap(T,t) = 8> a > litm inf Ap(T,¢).

t—o0

Hence, by the part (i), equation (3.1.1) is oscillatory. O
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3.2.2 Generalized Kamenev criterion

The classical Kamenev criterion (see [196]) concerns the linear equation z” +
c(t)x = 0 and claims that this equation is oscillatory provided there exists A > 1
such that

(3.2.14) lim sup Py / (t—s)c(s)ds =

t—o0
In what follows we offer a half-linear extension of this criterion.

Theorem 3.2.3. Suppose that there exists A\ > p — 1 such that

(3.2.15) hmsup—A/ L ) p{t $)Pel(s) — (5)1771(5)} ds = oo.

t—0o0 p
Then (1.1.1) is oscillatory.
Proof. Suppose that (1.1.1) is nonoscillatory, i.e., there exists a solution of the

associated Riccati equation (1.1.21). Multiplying this equation by (t — s)* and
integrating it from 7" to ¢, T" sufficiently large, we get

t

(3.2.16) — (t — TV w(T) + )\/T (t —s)*tw(s) ds

+<p—1)/T(t—S)Ar“q(s)\w@)wdw/T(t—s)kc(s> ds = 0.

Using the Young inequality (1.2.2) with

A Y _
p(t—s) T, v:(t—s)%rl(_lqhu(s)\,

we obtain
(L= PP = ()] = (g— DAL — 9 us)] — (g - 1) (%) (L= 5PPr(s)

for T < s < t. This inequality and (3.2.16) imply

/ s [@ — 5)Pe(s) — (i>pr(s>} ds < (t = T)*w(T).

T p
Thus
by P
hmsup / t—s)*P { (t —s)Pe(s) — (5) r(s)} ds < w(T).
t—o0
which contradicts to (3.2.15). O

P
Remark 3.2.1. Clearly, if r(t) = 1, then limy_ 7 f;(t — )P (%) r(s)ds =0
and hence equation (3.1.1) is oscillatory if
1 t
hirls;jp m /0 (t —s)*c(s)ds = oo for some A > p — 1.

which is the half-linear extension of the classical Kamenev linear oscillation crite-
rion.
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3.2.3 Generalized H-function averaging technique — Philos
type criterion

In the linear case, the method used in this subsection was introduced by Philos
[314].

Theorem 3.2.4. Let Dy = {(t,s) : t > s > to} and D = {(t,s) : t > s > t¢}.
Assume that the function H € C(D; R) satisfies the following conditions:

(i) H(t,t) =0 fort >tg and H(t,s) >0 fort > s > tg;

(i) H has a continuous nonpositive partial derivative on Dq with respect to the
second variable.

Suppose that h : Dy — R is a continuous function such that

OH _ 1/q I
e (t,8) = h(t,s)[H(t,s)] for all (t,s) € Dy, q= PR
and
t
(3.2.17) / RP(t,s)ds < oo for all t > L.
to
If

(3.2.18) lim sup m /t: {H(t, s)e(s) — <Z—17h(t, s))p} ds = o0,

t—o0
then (3.1.1) is oscillatory.
Proof. Suppose that (3.1.1) is nonoscillatory and v is a solution of the associated

Riccati equation (3.1.2) which exists on the interval [Ty, o), Ty > to. Since (3.2.17)
holds, we have for t > T > Tj

/T " $)e(s) ds

=m0 m0) - [ (“Ge9) a6 [ s
= HETD) [ (] ) + (= 11Tl s
= HED) - [ {WE )06 + = D ()

4 (%h(t,s))p ds+/Tt (%h(t,s))p ds.

N——
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Hence, for t > T > Ty, we have

/ t {H(t, Sels) - (%h(t, 5)>”} N

= 1 T)(T) = [ (bt 00s) + (0= DH(E ) (s

Since ¢ > 1, by Young’s inequality (1.2.2)
1 p
h(t, s)[H(t, s)]"/Tv(s) + (p — 1) H(t, s)|v(s)|? + (Bh(t, s)) >0

for t > s > Ty. This implies that for every ¢ > Tj

[ {rin- (Yo

< H(t, To)o(To) < H(E, To)lo(To)| < H(E, to)|v(To)l.

Therefore,

/LL {H(t,s)c(s) - (%h(t,s))p}ds _ /LT {H(t,s)c(s) _ (%h(t,s))p}ds
+/Tt {H(t,s)c(s) - (%h(t,s))p} ds

Ty
H(t, to) / le(s)] ds + F (1, 10) [o(T0)|

<
to
1o
— H(i,to) {/ lo(s)| ds + |v(TO)|}.
to
This gives
1 t 1 P To
lim su 7/{Ht,scs—<—ht,s>}d8§/ c(s)| ds + |v(Ty)|,
mSW 70 (t, s)c(s) , (t,s) ; c(s)] |[v(To)|
which contradicts (3.2.18). O

Taking H(t,s) = (t—s)*, A > p—1, the last statement reduces to the half-linear
version of Kamenev’s oscillation criterion presented in Subsection 3.2.2.

The next statement is presented without proof (which can be found in [243]).
Similarly to the proof of the previous theorem, it follows more or less the original
idea of Philos [314]. For comparison with the linear case we also refer to the papers
of Yan [367, 368].
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Theorem 3.2.5. Let H and h be as in the previous theorem, and let

o [ Hs)
(3.2.19) Inf {hfﬂéﬁlf H(t,to)} -

Suppose that

lim su

and there exists a function A € C[to, o0) such that

/htsd8<oo

(3.2.20) /OO Al (s)ds = o0,

where Ay (t) = max{A(t),0}. If

lim sup % /It {H(Ls)c(s) - (%h(t,s))p} ds > A(T)

for T > 1o, then equation (3.1.1) is oscillatory.

3.3 Further extensions of Hille-Nehari type
criteria

The aim of this section is to extend some of the criteria presented in Section 3.1
(in particular, those involving the expressions A(¢) and C(t)), and also to discuss
the cases when the assumptions from those criteria fail to hold.

In [70, 197, 262], the equation

(3.3.1) " + c(t)|z|P 2 |* Psgna =0

with p € (1, 2] is considered. The papers [197, 262] present oscillation and nonoscil-
lation criteria for equation (3.3.1), while the paper [70] deals with conjugacy of a
singular equation of this form. Equation (3.3.1) can be obtained from equation of
the form (3.1.1) by using the identity

(@) = (p— Va7 2.
More precisely, every solution of the equation
(@) + (p — De()®(x) = 0

is also a proper solution of (3.3.1) and vice versa, where a solution = of (3.3.1) is
said to be proper if

mes {{t c R" : 2/(t) =0} \ {t € R" : ¢(t) =0}} =0.

Observe how some of the basic results known for (3.1.1) may fail to hold for
equation (3.3.1) when non-proper solutions are not excluded. For instance, let x
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be a proper solution of (3.3.1) with p € (1,2) and ¢(t) # 0, satisfying z(tg) = 1,
2'(to) = 0. Then this solution is not constant in a neighborhood of ¢y, say (a, b),
since it is proper, and we may construct another solution Z of (3.3.1) such that
Z(t)y = z(t) for t € (a,tg] and Z(t) = 1 for t € ({o,b). Then the different solutions
x and 7 satisfy the same initial conditions at ¢y, and so the uniqueness is violated.
Also the Sturmian separation theorem may be problematic. On the one hand,
it clearly applies to proper solutions of (3.3.1), on the other hand the following
situation may happen: Let us consider the equation z” + |z|P~!|2'|> Psgnz = 0
for p € (1,2). The function sin, « is proper solution while the constant function 1
is non-proper solution of this equation. Both are linearly independent, but their
zeros do not separate each other.

Thus, in general case the analogy of Sturm’s separation theorem is not true
for all solutions, and hence the concept of strong nonoscillation (different from
that in Section 5.4) has to be introduced: strong nonoscillation of (3.3.1) means
nonoscillation of all solutions of (3.3.1). Nonoscillatory equation (3.3.1) is defined
there as the equation having at least one proper nonoscillatory solution. Otherwise
it is oscillatory.

First we reformulate here the results from [197] for equation (3.1.1), where ¢ is
a continuous function on [1,c0), and we will see that they apply also to the case
p > 2, and not only to p € (1,2]. Further extension to equation (1.1.1) with r
satisfying foc r!=9 = oo is obvious, in view of Subsection 1.2.7. The same will be
done for the results of [262]; this is the content of Subsection 3.3.2.

3.3.1 (@), H type criteria

In this subsection we give the criteria in terms of the below defined functions @,
and Hj, which can be viewed as an extension of some of the Hille-Nehari type
criteria given in Section 3.1. Denote

ep(t) = P~ /j 2 /:C(T) dr ds.

tP

Using essentially the same idea as in the proof of Theorem 2.2.3, the following
Hartman-Wintner type lemma can be proved.

Lemma 3.3.1. Let (3.1.1) be nonoscillatory and y(t) # 0 fort > T be its solution.
Then [ |y'(s)/y(s)|Pds < oo if and only if the finite limit lim;_ o c,(t) exists.

As Theorem 2.2.10 follows from Theorem 2.2.3, the following statement follows
from Lemma 3.3.1.

Theorem 3.3.1. Let either lin; .o cp(t) = 00 or

—oo < liminf ¢, (¢) < limsup cp(t).

t—oo t—o0
Then equation (3.1.1) is oscillatory.

Now let us examine how stands the condition from the linear case in our situ-
ation.
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Corollary 3.3.1. Let p € (1,2] and either lim;_,, c2(t) = co or

—00 < litm inf ca(1) < limsup eo(t).
—0OC

{—oc
Then equation (3.1.1) is oscillatory.

Proof. Using the integration by parts, it is easy to verify that

(3.3.2) ep(t) = (p— D)ea(t) + (272;2—?;71) /t sP2%¢cy(s) ds
and
(3.3.3) (p— D)ea(t) = ey(t) — 2%17 e (s) ds

for ¢ > 1. Since liminf;_ o c2(t) > —oo, it follows from formula (3.3.2) that
liminf;— o ¢p(t) > —oo. Thus if the conditions of Theorem 3.3.1 are not satisfied,
then the finite limit in the below formula (3.3.4) exists. In that case, the finite
limit lim;—, o c2(t) also exists by virtue of (3.3.3), which contradicts the conditions
of the corollary. O

In view of Theorem 3.3.1, in the next investigation we suppose that the follow-
ing limit exists as a finite number:

(3.3.4) lim ¢, (t) =: cp(00).

t—oo

The next theorem shows that (3.1.1) is oscillatory if ¢, (¢) does not tend to its limit
too rapidly.

Theorem 3.3.2. Suppose that (3.3.4) holds and

) tpfl p— 1 V4
(3.3.5) h?isolip logi (ep(o0) — cp(t)) > <T> .
Then equation (3.1.1) is oscillatory.

Proof. Suppose, by contradiction, that (3.1.1) is nonoscillatory and w = ®(y'/y),
y(t) # 0 being a solution of (3.1.1), is a solution of the associated Riccati equation
(3.1.2) for large t. Integrating this equation from a to t and using Lemma 3.3.1 we
find that

(3.3.6) w(t) :é_/l o(s) ds—l—(p—l)/too lo(s)[ ds,

where

i=ula)~ [ elshds— -1 [ luoprds
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Note that from the proof of Lemma 3.3.1 it follows that lim;_., ¢,(f) = ¢, and so
equation (3.3.6) takes the form

(3.3.7) w(®) :cp(oo)—/l c(s)d3+(p—1)/toc w(s)[7 ds.

Multiplying both sides of this equation by tP~2 and integrating from T to t, T
sufficiently large, we obtain (integrating one of the terms by parts)

(3.3.8) /Tt 2 [cp(oo) - /1 ") dr} ds
_ /t sP=lw(s) — sP~Hw(s)|4 ds — P! /toC lw(s)|?ds + TP~ /OC w(s)|? ds.

T 5 T

p—1
Since we have the inequality |A|? — A + % (”—;1) > 0 for every A € R, (3.3.8)

implies
1 p—1\" t 1
tP ((jp(OO) - Cp(t)) < T 10g T + TP (jp(OO)

+(p—1)TP! /TOO [w(s)|9ds — Tp_lcp(T).

Therefore
I v f < (P=1Y
lglsogp@(cp(m) —p(t) < — )
which contradicts (3.3.5). O

In many oscillation criteria in this book it is assumed that there exists a finite
limit

(3.3.9) /00 c(s)ds = lim [ c(s)ds.

t—o0

As it can be easily seen, in that case ¢,(cc) = [/ c(t)dt. As we will see in the
next example, Theorem 3.3.2 also covers the case where (3.3.9) fails to hold, see
the next example; in particular the case where

¢ ¢
(3.3.10) Cy 1= litm inf [ e(s)ds < cp(o0) < lim sup/ c(s)ds =: c*.
e t—oo J1

Ezxample 3.3.1. Let A # 0 and v be real numbers,

logt
tr=1 1 +4logt

g{t) = —v (sinlog?t — 1)

and

() = () + =510 = =L79' )+ —L54"(0)
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for ¢t > 1. One can easily obtain

[ clshds =at) + 100+, o) =00~ T 1

1 tp—1
lim inf tc(s) ds =~y — 2N lim su /tc(s) ds =~y + 2N
minf | Y=o s | T
! ! YA
(o) =7, o (6p(00) — ) = —falt) + T
for ¢ > 1. Further,
tminf & (c lim sup £
im inf 207 (ep(00) = (1)) = oo, limsup 7om(ep(o0) = ep(t)) =
when A < 0, while for A > 0 we have
P! G
htrgloglf log t (ep(o0) — cp(t)) =7, hﬁsolclp log (Cp(oo) — ¢p(t)) = oo

Therefore (3.3.10) is satisfied. On the other hand, if A < 0 or A > 0 and v >
P
(%) , then equation (3.1.1) is oscillatory by Theorem 3.3.2.

To formulate the next statements, we introduce the following notation:

Q=7 (eo0) = [etras). = [ oretsyas

(3.3.11) Qy = litminf Qp(t), QF :=limsupQp(t),
— t— 00

(3.3.12) H, = litm inf Hy(t), H* :=limsup H,(t).
— t—00

Observe that if lim; e f s) ds exists, then Q,(t) is the same as A(t) defined in
Section 3.1, provided (1) = 1 Also, H,(t) = C(t) for r(t) = 1.

Corollary 3.3.2. Suppose that (3.3.4) holds and Q. > —oo. If

—1\P?
(3.3.13) hmsup—/ s)ds > (p_) )
t—oc logt D

then equation (3.1.1) is oscillatory.

Proof. Tt is easy to verify that

! _ Qp(®) (S A
@(Cp(oo)—cp(t))— 1(§)gt +@/1 sP7he(s) ds

for ¢t > 1. Therefore the conditions of the previous theorem are satisfied. O
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Corollary 3.3.3. Suppose that (3.3.4) holds. If
p—1\"""
(3.3.14) lim ioglf[Qp(t) + Hy(t)] > <T> ,

then equation (3.1.1) is oscillatory.

Proof. 1t is not difficult to verify that
(3.3.15)

090 = SR [ [Lraee [ ([ arorar) o

and

1

(3.3.16) Q,(t) + Hy(t) = @ 4 %/ Q,(s) ds
1

for t > 1. Then we have

-1
hmmf /Qp Yds > — ( )P .

Hence (3.3.5) holds by (3.3.15) since

—1(p—1\""
e logt/sz/Qp ydrds > £ D <p ) '

lim inf

Corollary 3.3.4. Suppose that (3.3.4) holds. If
1 /p—1\"" —1\"
either @Q, > — (p_) or H, > (p_) ,
p p p
then equation (3.1.1) is oscillatory.

P

tp—1 c Qy(
- _ H) = p P
logt(cp(oo) ¢ (t)) logt logt /

p—1
Proof. Let Q. > (E) . Since

for t > 1, we easily find that (3.3.5) is satisfied and therefore (3.1.1) is oscillatory
by Theorem 3.3.2.

Assume now that H, > (p 1) . Using the fact that

G = =17 [ (s,
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we have

(3.3.17) ¢ (T) _c,,(t)+(p1)/T1°ﬁ <L /1 =le(r) d7> ds

. sP \logs

for T >t > 1. Further we have

1t H,(t) 1 [P Hy(s)
3.3.18 — [ "7le(s)ds = 2 / PR d
( ) logt /4 s els) ds logt + logt J, s s

P
for ¢ > 1. In view of (3.3.18) there exists ¢ € (0, H, - (pp%l) ) such that

t

1 —1\?
liminf — [ s? 'e(s)ds > <p_> +e.
t—oo logt J D

Hence, by (3.3.17) it holds

() > cp(t)-&-(p—l)[(p%l)p—&-s}
<logt log T 1 1 >

=1 =1 " (p—1)p-t (p—1)TP 1

for T >t > 1. If we let T — 00, then the last estimate yields

i;(cp(oo) —cp(t)) > K});)pw} (HW)

for ¢ > 1. Therefore (3.3.5) is satisfied.
Theorem 3.3.3. Suppose that (3.3.4) holds. If

(3.3.19) lim sup[Qp(t) + Hp(t)] > 1,

t—oo

then equation (3.1.1) is oscillatory.

Proof. Assume, by a contradiction, that there is a solution y of (3.1.1) such that
y(t) £0for t > T. If w = ®(y'/y), then w solves the Riccati equation (3.1.2) for

t > T. Multiplying its both sides by tP and integrating from T to ¢, we obtain

(3.3.20)

etlt) = ~Hy0)+1 [ 9 w(e) = =1l (o) ds Tu(T) + T H(T)

for t > T. Using now (3.3.7) we readily find that

QO +0 = 7 [ 0 =~ = Dl () ds

~p- 1P [ e + L (TPu(T) + TH,(D)
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for t > T. Hence by the inequality pz — (p — 1)|2|? < 1, which holds for z € R, we
have

1
Qp(t) + Hp(t) <1+ E(pr(T) +THy(T))
for t > T'. This contradicts (3.3.19). O
To prove the next criterion we need the following two auxiliary statements.

P
First we introduce the notation. Let 0 < A < (%) . Denote by w1(A) and wa(N)

the least and the largest root, respectively, of the equation
(p—Dz[*—(p—1z+A=0.

Lemma 3.3.2. Let (3.1.1) be nonoscillatory and suppose that (3.3.4) holds. If

p—1
0<Q,< %} (%) , then for each solution y of (3.1.1) the estimate

(3.3.21) liminf 7~ 9(y/(1)/y(1)) 2 w1((p ~ 1)Q.)
holds.

Proof. Let y(t) # 0 for t > T be some solution of (3.1.1). Then (3.3.7) holds where
w = ®(y'/y). Set m = liminf;_ P~ w(t). If m = oo, then there is nothing to
prove. Therefore assume that m < oco. If Q. = 0, then equality (3.3.21) is trivial
by virtue of (3.3.7). So we will assume that Q. > 0. For an arbitrary ¢ € (0, Q.)
choose t; > T such that

(3.3.22) Qy(t) > Q. —¢

for ¢ > ¢;. Taking (3.3.22) into account, from (3.3.7) we have tP " lw(t) > Q. — ¢
for t > t;,. Hence we easily conclude that m > @J,. Now choose t5 > t; such that

(3.3.23) tP~w(t) >m—e (> 0)

for t > t5. By (3.3.22) and (3.3.23), from (3.3.7) we find " tw(t) > Q. —c + (m —
¢)?. Since € € (0, Q..) is arbitrary, we conclude that m? — m + Q. < 0. Therefore
m > wi((p— 1)Q.). O

P
Lemma 3.3.3. Let (3.1.1) be nonoscillatory. If 0 < H, < (p%l) , then for each
solution y of (3.1.1) the estimate

(3.3.24) limsup t? &y (t)/y(t)) < wa(H.)

t—oo
holds.

Proof. Let y(t) # 0 for t > T be some solution of (3.1.1). Then w = ®(y’/y) solves
Riccati equation (3.1.2). From this we get (3.3.20). Set M = limsup,_, ., #*~'w(t).
If M < 0, then (3.3.24) holds trivially. Therefore we will assume that 3 > 0.
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Using the inequality pz — (p — 1)|2]? < 1, which holds for 2 € R, from (3.3.20) we
have

(3.3.25) M<1-H,.

Hence, if H. = 0, then (3.3.24) holds. Assume that H, > 0. For arbitrary ¢ €
(0, H,) choose t; > T such that

(3.3.26) H,(t)>H, —¢, tP lwt)<M+e<l1

for t > #;. Since the function px — (p — 1)|x|? increases for z € (—o0,1), from
(3.3.20), taking into account (3.3.25) and (3.3.26), we have

t *ttl (M +2) = (p— (M + )7 + %w(tl) + %Hp(tl)

for t > t1, and therefore M < —H, + e+ p(M +¢) — (p — L)(M +¢)?. Now, since
¢ € (0, H,) is arbitrary, we obtain (p — 1)M? — (p — 1)M + H, < 0. Therefore
M <ws(H.). O

P lw(t) < —H, +e+

Now we are ready to give two theorems which complement Corollary 3.3.4.

Theorem 3.3.4. Let (3.3.4) hold. If either

1 /p—1\""
(3.3.27) 0<Q. <~ (1’71) and H* >1—w((p—1)Q.),
or
1\ P
(3.3.28) 0<H, < <1%) and Q* > ws(IL),

then equation (3.1.1) is oscillatory.

Proof. Suppose by a contradiction that y(¢) # 0 for ¢ > T is some solution of
equation (3.1.1). Let (3.3.27) be fulfilled. Define the function w = ®(y’/y). Then,
for such w, equation (3.3.20) is satisfied. By virtue of Lemma 3.3.2, for any € > 0
there exists ¢t; > T such that

P w(t) > wi((p— 1)Q.) — ¢
for t > t,. Hence (3.8.20) implies
Hy(t) < —on((p—1)Q) +e + 1+, (Fuwlh) + 1Hy (1))

for ¢ > 1. Therefore H* <1 —w((p — 1)Q.), which contradicts (3.3.27).

To prove the sufficiency of (3.3.28), we proceed in the same way as above.
Only instead of (3.3.20) we have (3.3.7) and instead of Lemma 3.3.2 we apply
Lemma 3.3.3. Then we come to

@(t) =ttt — -1~ | " () |7ds < wa(HL) +e.
t

which implies Q* < wo(H.,), a contradiction. |
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Theorem 3.3.5. Let (3.3.4) hold and

i p—1 _ P
OgQ*sl(p—1> : OgH*g<p—1> .
Y4

p P
If
(3.3.29) Q"> Qs +w2(H,) —wi((p - 1)Q-)
(3.3.30) H* > H, +wa(Hy) —wi({p — 1)Q.),

then equation (3.1.1) is oscillatory.

Proof. The proof is by contradiction. Let (3.3.30), resp. (3.3.29) hold and y(t) # 0
for t > T is some solution of equation (3.1.1). Then we have (3.3.20), resp. (3.3.7),
where w is the function defined by w = ®(y'/y). We will assume that H, > 0
resp. (. > 0 since for H, = 0, resp. (}. = 0 condition (3.3.30), resp. (3.3.29) is
equivalent to condition (3.3.27), resp. (3.3.28). By virtue of Lemma 3.3.3, resp.
3.3.2, for arbitrary ¢ € (0,1 — w2(H.)), resp. € € (0,w1((p — 1)Q.)) there exists
t1 > T such that

(3.3.31) P~ (t) < wo(H.,) +¢, tesp. P w(t) > wi((p— 1)Q.) — ¢

for ¢ > 1. Since the function pz — (p—1)|z|? increases in (—o00, 1) and wa(H.)+& <
1, we obtain

(3.3.32) psP~lw(s) — (p — D)]sP rw(s)|? < p(wa(Hy) + ) — (p — 1)(wo(H.) +¢)?

for s > t;. Taking into account (3.3.31) and (3.3.32), we find from (3.3.20), resp.
(3.3.7) that

Hy(t) S —anllp-1Qu) + e +plwa(H.) +)
—(p = 1)alHL) + 2+ () + (1)),

resp.
Qp(t) Swa(Hy) + e — (wi((p — 1)Qu) —&)7

for t > t1. Hence we easily conclude that
H* < —wi((p—1)Q.) + pwa(Hy) — (p — 1)(w2(H.))4,

resp.

Q" <wy(H.) = (wi((p = 1)@))Y,
which contradicts (3.3.30), resp. (3.3.29). O
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In the second part of this subsection we give nonoscillatory criteria in terms
of Q,(t) and H,(t). As it is already pointed out above, in [197] it is distinguished
between nonoscillation and strong nonoscillation (in the sense of the definition
given at the beginning of this section) of equation (3.3.1). It is known (see [70])
that nonoscillation of (3.3.1) is guaranteed by the existence of a solution of the
associated Riccati type inequality in a neighborhood of infinity, while for strong
nonoscillation we need a positivity of such a solution. However, when considering
equation of the form (3.1.1), both concepts coincide. We will see that the theorems
which originally deal with strong nonoscillation, usually involve somehow stronger
assumptions in comparison with the criteria of the same type, in order to guarantee
the positivity of the solution of the Riccati inequality. But we present them here
since they, in addition to nonoscillation, discuss the existence of a solution of
(3.1.1) which is eventually positive and strictly increasing. See also the text before
Theorem 3.3.8.

Let A < 0. Denote by z()\) the greatest root of the equation |2|'/9+ 2+ A = 0.

Theorem 3.3.6. Let (3.3.4) hold. If either

-1 (p—1\"" 1/p—1\""
_ (p) <O, and Q*<<p) ,
p p p\ P

or

—OO<Q*§—

_ — p-l
zpp : (pTl) and Q" < ((Q)"* — 1(Q.),

then equation (3.1.1) is nonoscillatory.

Proof. Choose € > 0 and T" > 0 such that

_ _\p—1 _\p—1
_217_1(u) < Q. —¢, Q*+g<%(u) ’

(3.3.33) T ’
resp. Qu +e < ((Qu +eNV — Q. +¢)

and

(3.3.34) Qe —e<Qpt)y <Q +¢

for t >T. Let A= (%)p’ resp. A = (@« + ¢) and

1

(3.3.35) () = o A+ @p(1))

g

for ¢ > T. Then (3.3.33) and (3.3.34) readily imply —\ — A/ < Q,(t) < A7 — )\
for t > T, so that |w(¢)|? < A/tP for t > T. From the last inequality we readily
conclude that the function w satisfies Riccati inequality (2.2.7) with r = 1. Thus
equation (3.1.1) is nonoscillatory by Theorem 2.2.1. O
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The next theorem can be viewed as a nonoscillatory counterpart to Corol-
lary 3.3.2.

Theorem 3.3.7. Let there exist a finite limit

1 t -1 Iy
(3.3.36) é:= lim — [ sP7l¢(s)ds < (p_>
t—oo logt /| D
and
(3.3.37) G < Gy +w2(8) — w1(),
where
Y A J
= 1 _— - —
G(t) =logt (logt /1 sP7e(s) ds c> .
(3.3.38) G, =liminf G(t) and G™ :=limsup G(¢).
t—oc t—00
Then equation (3.1.1) is nonoscillatory.
Proof. Choose € > 0 and T > 0 such that
(3.3.39) Gy —e<Gt) <G +e, G4 2 <Gy +wié) —wi(E).

Put A = Gy — e+ w2(@) and w(t) = (A= G(t))/tP~! for t > T. By (3.3.39) we have
wi(€) < A=G(t) < wy(€) fort > T. Hence (p—1)|A-G(#)|7—(p—1)(A—-G(t))+¢ < 0
for t > T. By the latter inequality it is easy to conclude that the function w satisfies
the inequality (2.2.7) with » = 1. Therefore equation (3.1.1) is nonoscillatory by
Theorem 2.2.1. O

Corollary 3.3.5. If

I I
—oo < limsup / sP7le(s)ds < liminf / sP7le(s)ds +1 < oo,
t—oo P—1J) t=oo p—1J

then equation (3.1.1) is nonoscillatory.

The remaining theorems in this subsection were originally dealing with strong
nonoscillation of (3.3.1) in the sense of [197]. But now, rewritten for (3.1.1), they
give the conditions for the existence of an eventually positive strictly increasing
solution of (3.1.1), which implies nonoscillation of (3.1.1). Recall that we have no
sign condition on c. There is a comment before Lemma 2.2.3 on positivity of a
solution of the Riccati equation (implied by the existence of a solution y of (1.1.1)
with y(¢)y’(t) > 0). Here we work under different assumptions. In [70, Lemma 2.5],
it was proved the following statement (for general coeflicient ¢); we adjust it for
our needs.

Lemma 3.3.4. Let y be a nontrivial solution of (3.1.1) satisfying y(a) = 0 and
let a function (sufficiently smooth) v be such that v(a) > 0, v'(t) > 0 for t € [a, b]
and L1[v](t) == (P(v)) + c(t)®(v) <0 for t € [a,b]. Then y'(t) £ 0 for t € [a,b].
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Now, in view of the identity vL;[v] = [v|[PR1[w], where Rq[u](t) := w' +c(t) +
(p — DNwl? and w = (v /v) (see Theorem 2.2.1), we see that the positivity of
w satisfying Rq[w] < 0 guarantees the existence of a solution of (3.1.1) which is
positive and strictly increasing. Obviously, (3.1.1) is nonoscillatory.

Theorem 3.3.8. Let (3.3.4) hold. If either

o P o p—1
(3.3.40) - (p—l> <Q. and Q" <: (p—l>
p p\ P
or
_ r
(3.3.41) —00 < Qu < — (7%) and Q* < Q.+ |Q.|Y9,

then equation (3.1.1) is nonoscillatory. Moreover, there exists an eventually posi-
tive strictly increasing solution of (3.1.1).

Proof. The theorem can be proved similarly to Theorem 3.3.6 with the only dif-
ference that when (3.3.41) is fulfilled we should put A = Q. — ¢ and keep in mind
that under conditions (3.3.40) and (3.3.41) the function w is positive. O

For the next statement we need to introduce some notation. Let

21 [p— 1\
7721'0"‘ P <p—) )
p p

where x4 is the least root of the equation

2p—1 (p—1\""
(3.3.42) (p — 1)|2]? + po + pT (pT) —0.

p—1
It is not difficult to show that 1 < 0 since 21’})—_1 (%) < 1 for p > 1. Further,

let A < 1. Denote by () the greatest root of the equation (p—1)|z|?+pzr+ A = 0.
Theorem 3.3.9. Let either

_qN\P
(3.3.43) n<H, and H* < (pTl> ;

or

(3.3.44) —co < H,<n and H" < H. 4+ w2(H,) + (Hy + wa(HL)),

where wo is defined before Lemma 3.38.2. Then equation (3.1.1) is nonoscillatory.
Moreover, there exists an eventually positive strictly increasing solution of (3.1.1).

Proof. Let (3.3.43) be satisfied. Choose ¢ > 0 and T > 0 such that

p—1
(3.3.45) n<H.—e<Hy(t) < H"+e< (T)
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p—1
for t > T. Now put K = 2’;%1 (pp%l) . By (3.3.45) and the definition of the

number 7 we have

(3.3.46) vo < Hy(t) — K < — (3%1)171

p—1
for t > T. Since z1 = — (pp%l) is the greatest root of the equation (3.3.42), in

view of (3.3.46) we find that
(3.3.47) (p—1)|Hp(t) = K|9+p(Hp(t) - K)+ K <0, Hy(t)-K <0
for t > T. Let

(33.49) wl(t) = o (K = Hy(6)

for t > T. According to (3.3.47), the (positive) function w satisfies inequality
(2.2.7) (with r = 1) for t > T'. Therefore (3.1.1) is nonoscillatory by Theorem 2.2.1.

Now consider the case where (3.3.44) is satisfied. Choose € > 0 and T' > 1 such
that

(3.3.49) H* +e < H.+wy(H, —¢) —e+¢Y(H, + wo(H,. —€)),
(3.3.50) H,—e< H)(t) < H +¢.

Let M = H, — ¢ + wo(H, — ). Clearly, —wz(H. — €) satisfies the equation
(3.3.51) (p = D|z|?+pzr+ M =0.

On the other hand, since H. —¢ < 0, we obtain —wq(H,—¢) < —1. Thus —wy(H, —
g) is the least root of equation (3.3.51). Moreover, since (p — 1)|z|? +pz > —1 for
z € R, we have M < —1 and therefore /(M) < 0. Now (3.3.49) and (3.3.50) imply
that —wo(Hy —€) < Hp(t) — M < (M) < 0 for t > T. Therefore (3.3.47) is
satisfied. Using (3.3.47}, we readily find that the function w defined by (3.3.48) is
positive and satisfies inequality (2.2.7) (with » = 1). O

In view of Theorem 3.3.7, the proof of the next statement may be omitted.

Theorem 3.3.10. Let the finite limit (3.3.36) exist and either ¢ > 0 and (3.3.37)
be fulfilled or ¢ < 0 and G* < Gy + wa(é), where G* and G, are the numbers
defined by (3.3.38) and wy is defined before Lemma 3.5.2. Then equation (3.1.1)
is nonoscillatory. Moreover, there exists an eventually positive strictly increasing
solution of (3.1.1).

Corollary 3.3.6. Under the conditions of Corollary 3.3.5, there exists an even-
tually positive strictly increasing solution of (3.1.1).

Remark 3.3.1. Tt is easy to see that if the finite limit (3.3.4) exists, then for the
function @, to be bounded from below it is necessary that c,(o0) = ¢*, ¢* being
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defined in (3.3.10), while for the function @), to be bounded (from both sides) it
is necessary that (3.3.9) holds. Since

¢ 1 1 [t
Cp(t)z/ c(s)ds——Hp(t)——_l/ Yis)ds, t>1,
1 t 24 1

S

for the function H, to be bounded from below it is necessary that c,(c0) = ¢y,
while for H, to be bounded (from both sides) it is necessary in order that (3.3.9)
is fulfilled.

In view of the above observation, condition (3.3.9) is the necessary one for
Theorems 3.3.5, 3.3.6, 3.3.8 and 3.3.9, while for conditions (3.3.27) and (3.3.28) of
Theorem 3.3.4 to hold it is necessary that ¢, (c0) = ¢ and ¢,(00) = ¢, respectively.

According to (3.3.17), if the finite limit (3.3.36) (not necessarily less than

P
(%) ) exists, then (3.3.4) holds. Therefore condition (3.3.4) is necessary for

Theorems 3.3.7 and 3.3.10.
Condition (3.3.4) is not generally used in proving the oscillation criterion in-

p—1
volving H, > (%) (see Corollary 3.3.4). However by (3.3.17) and (3.3.18), the

boundedness of the function H), from below implies that iminf, . ¢p(t) > —oo.
Therefore, if (3.3.4) is not satisfied, then by virtue of Theorem 3.3.1 equation
(3.1.1) is oscillatory. Hence for this criterion condition (3.3.4) is the necessary one,
in a certain sense.

3.3.2 Hille-Nehari type weighted criteria and extensions

Now we present the results originally stated for (3.3.1) with p € (1,2] and ¢ > 0
in [262]. We adjust them for equation (3.1.1), and we will see that they apply for
p > 2 as well. Thus let us consider (3.1.1) where the function ¢ is nonnegative,
as this condition was assumed in [262]. However, one could easily observed that
the below results can be obtained without any further difficulties also under the
relaxed condition, namely that either »/;ti she(s)ds > 0 or [[7 s*c(s)ds > 0 for all
large t and certain A. Which of the two integrals is chosen depends on the value of
A; see the below given definition of ¢*(A) and ¢, (A\). As we show in the next lemma
(for a linear equation this assertion goes back to Fite and Hille), it is reasonable
to assume that [ s*c(s)ds converges for A < p — 1.

Lemma 3.3.5. Let for some A < p — 1 the integral foo s’c(s)ds diverges. Then
equation (3.1.1) is oscillatory.

Proof. Assume for a contradiction that (3.1.1) is nonoscillatory. Then there is a
positive increasing solution y(t) of (3.1.1) for ¢t > T, and w = ®(y’/y) > 0 satisfies
(3.1.2). Moreover,
(3.3.52) limsup ## tw(t) < 1

t—o00
(see the proof of Lemma 3.3.3). Multiplying (3.1.2) by t* and integrating from T
to ¢ we obtain

/t stc(s)ds = —t*w(t) + T w(T) + )\/

T T

t t

s w(s)ds — (p — 1)/ s*wi(s)ds
T
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for t > T. By (3.3.52) the right-hand side of the last equality has a finite limit as
t — 0o0. Hence the integral foo s’c(s) ds converges, a contradiction. O

Introduce the notation

o0
c.(A) = liminf#*~1~ A/ s)ds for A<p—1,
t—o0 t
o0
c*(\) = limsupt?~'~ ’\/ s)ds for A<p—1,
t—o00 +
¢
c(A) = hmmft” - /\/ ste(s)ds for A>p—1,
1
c*(\) = limsupt*™'~ ’\/ c(s)ds for A >p—1.
t—o0 1

We give criteria in terms of the numbers ¢, (A) and ¢*(\). Note that ¢.(0) = Q.,
( ) = @QF, cu(p) = H, and C*(p) = H*, where Q.,Q*, H., H* are defined
n (3.3.11) and (3.3.12). Then the conditions of Corollary 3.3.4 read as ¢.(0) >

p—1 P
Il] (pp]> and c.(p) > (pp;]) . Hence we assume

(3.3.53) c.(0) < % (%)pl and c.(p) < (%)p.

Also note that Theorem 3.3.5 reads as follows: If (3.3.53) holds and either ¢*(0) >
B — A+ c.(0) or ¢*(p) > B — A+ c.(p), then (3.1.1) is oscillatory. Here A and
B stand for the least nonnegative root of ¢ — 2 + ¢,.(0) = 0 and for the greatest
root of (p — 1)x? — (p — D)z + c.(p) = 0, respectively, i.e., A = wi((p — 1)Q.),
B = wz(H,), where w,ws are defined before Lemma 3.3.2. The above algebraic
equations are solvable provided (3.3.53} holds.

Now we are ready to give the main statement of this subsection.

Theorem 3.3.11. Let (3.3.53) be satisfied. If either
1 P
(3.3.54) A > —— <%> + B

for some 0 <A <p—1 or

(3.3.55) ) > A%pﬂ (%) _A

for some A > p — 1, then equation (3.1.1) is oscillatory.

Proof. Assume for a contradiction that (3.1.1) has a nonoscillatory solution. Then
there exists T > 0 such that Riccati equation (3.1.2) has a positive solution
w satisfying liminf;—,o. 7 'w(t) > A and limsup, . "~ 'w(t) < B (see Lem-
ma 3.3.2 and Lemma 3.3.3). Clearly, for any ¢ > 0 there exists {; > T such that



3.3. Further extensions of Hille-Nehari type criteria 115

tPlw(t) < B+e, tP7tw(t) > A — ¢ for t > t;. From (3.1.2) we easily find that

R / T Pels) ds = M)
+ I /,OO ST (sw? ()P TN = (p— D)swT () ds

for t > t; and A < p— 1, while

t A
t t
tp_l_)‘/ sie(s)ds = —tP~Lw(t) + %ﬁ
t1

v AP (st ()P A (- Dswt () ds

t1

for t > t; and A > p — 1. Since max{z?~'(A — (p— 1)z) : 0 <z < o0} = (\/p)¥,
from the last two inequalities we have

tp_Q/Oos/\c(s)ds<B+6+# (3)1’
¢ p—1-A\p

fort >t and 0 < A<p—1,and

t A P
_ trw(ts) 1 A
p—2 A 1 -] —A
t /tls c(s)ds < . +)\—p+1(p +e

for t > t; and A > p — 1. Consequently,
c*()\)<¥ A p+B for A<p—1
< p—1

‘) € — (A>p Afor A>p—1
C S 4 - - - b
T A—p+1i\p p

but this contradicts (3.3.54) and (3.3.55). O

Before we give consequences of the last theorem, let us prove two technical
statements.

Lemma 3.3.6. Let ¢*(\) < oo for A # p — 1. Then the mapping A — (p — 1 —
A)c*(N), resp. A— (p—1—X)e.(N), does not increase, resp. does not decrease, for
A < p—1 and does not decrease, resp. does not increase, for A >p— 1.

Proof. We prove this lemma only in the case when A <p—1. Thecase A >p—1
can be handled in a similar way. Let ¢ > 0. Choose t; > 0 so that

c*()\)—€<tp_]_’\/ sic(s)ds < c*(\) +e
t



116 Chapter 3. Oscillation and Nonoscillation Criteria

for t > t;. It is easy to see that whatever y < p — 1 is, we have

t’H*“/ stc(s) ds:#’*“*/ she(s) ds
¢ t

(o] o0
+ (p— Apioe / gh—ATPTL </ e(T) dT) ds.
Ji s
Hence if A < p, then

(e(N)—e) (1 + %) <rmion /:o she(s)ds < (c"(X)+e) ( . M)
z
O

for ¢ > ¢;. This implies that (p—1—p)c* (1) < (p—1—X)c*(A) and (p—1—p)e.(p)
(P =1 = AN

Lemma 3.3.7. Let ¢*(A) < oo for A\#£p— 1. Then
Iim (p—1—-Ae.(N) = lim  (A—p+1eA),

im —1-=2X)c = im — c .
A—(p—1)— P A= (p—1)+ b

Proof. Let A<p—1, u>p—1and e > 0. Choose 1 > 1 so that
(A —e < tp_l_’\/ shc(s)ds < ¢* +¢
¢

and .
elp) —e < tp_l_”/ ste(s)ds < ¢+«
1

for t > t1. It can be easily verified that

tp_l_’\/ s*e(s)ds
Jt
t oC s
= —t’kl*“/ ste(s)ds + (p — /\)tpflf)‘/ P (/ (1) dT) ds
1 t 1
and

t 00
tpflf“/ stc(s)ds = —tpflf’\/ sc(s) ds
1 t

e’} t 0
4Pl / ste(s)ds 4 (p— A\)tPLH / gh—Al </ e(T) dT) ds.
J1 J1 s

From these equalities we have

t 00
Mi/\(c*(u) —&)— tp_l_“/ ste(s)ds < tp_l_)‘/ sc(s) ds
p—1-=2A 1 t
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for t > ¢; and
— A /‘oo s*c(s) ds + L)\(c*()\) —e) (1 —tPTI Y
t p—p+1
t o] ©w— A
< tp**“/ sfe(s)ds < / ste(s)ds + ——"—(c*(\) +¢)
1 1 -
for ¢t > t1. Hence

(= Aew(p) — (P —1 =A™ (1) < (p— 1= New(N),
(p—=1=XN)c"(A) < (1 —A)e" (),
—(u=p+ D" (V) + (1= Neo(N) < (g —p+ Le(p),

and

(n—p+De(p) < (=N N)+(p—pt+1) /100 se(s) ds.

Finally by Lemma 3.3.6, we obtain

limyp-1)—(p — 1 = A)ew(A) = (0 —p + eu(p),
limy~p-1y)—(p = 1= A)e*(N) < (pp—p+1)e*(p),
Hmy - —p+ Dec(p) = (p— 1 = New (),
iy o+ (ke —p+ 1) (1) < (p— 1= A)c*(A)

From the last four inequalities we conclude that (3.3.56) holds. O
Corollary 3.3.7. Let
(3.3.57) i p—1- Nty > (2=

3. Jim p e " .

Then equation (3.1.1) is oscillatory.

Proof. We may assume that ¢*(\) < oo, otherwise (3.1.1) is oscillatory by Theo-
rem 3.3.11. Then by Lemma 3.3.7, the limit in (3.3.57) exists. Obviously,

lim <|p — 1=\ - (%)p —(p-1- )\)B) > 0.

A—(p—1)—

This implies that (3.3.54) is satisfied for some A\ < p — 1. Therefore (3.1.1) is
oscillatory by Theorem 3.3.11. g

Corollary 3.3.8. Let for some A #p—1

(3.3.58) p—1—Ae(\) > (’%) .

Then equation (3.1.1) is oscillatory.
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Proof. If for some A # p — 1, ¢*(\) = oo, then (3.1.1) is oscillatory by Theo-
rem 3.3.11. Thus we assume that ¢*(\) < oo for A # p — 1. Now, if (3.3.58) holds
for some A # p — 1, then (3.3.57) is satisfied by Lemma 3.3.6. Hence according to
Corollary 3.3.7, equation (3.1.1) is oscillatory. O

To show another consequence, we need the following lemma.

Lemma 3.3.8. Let ¢*(\) < oo for some A < p—1 and c*(u) < oo for some
w>p—1. Then

1
(3.3.59) limsup — [ sP 'e(s)ds < (p—1—XN)e*(N)
t—00 Ogt 1
and
(3.3.60) limsup (p—1—X) / ste(s)ds < (u—p+ 1) ().
A—(p—1)— 1

Proof. Let € > 0. Choose t; > 1 so that

t

tP—l—’\/ ste(s)ds < c*(\) +e, tPTITH / ste(s)ds < c"(p) +¢
' 1

for t > t1. We can easily see that

I Y
—— [ sP7le(s)ds = - / sic(s) ds
logt /; logt J,

p—1-2A tp—)\—Q /OO by
+ o /1 s i Te(r)dr ) ds,
/ sOc(s)ds = (,u—&)/ PRl </ THe(T) d7'> ds
1 1 1

for § < p — 1. From these inequalities we have

and

@ 1,810_16(8) ds < (p—1=X(c"(\) +¢)

for ¢ > t; and
p=1-0) [ Sels)ds < (u=0)(e" ) + )

Hence inequalities (3.3.59) and (3.3.60) hold. O

To show the next two statements, note that according to Lemma 3.3.8, (3.3.57)
follows from (3.3.61) [or (3.3.62)]. Equation (3.1.1) is then oscillatory by Corol-
lary 3.3.7. Also compare Corollary 3.3.9 with Corollary 3.3.2.
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Corollary 3.3.9. If

t

(3.3.61) lim sup — Ple(s)ds > (p —_ l)p
3. imsup — [ sP7'c — ),
L—»ocp logt /4 P

then equation (3.1.1) is oscillatory.

Corollary 3.3.10. If

00 -1 P
(3.3.62) limsup (p —1— )\)/ ste(s)ds > (p_) ,
A—(p—1)— 1 P

then equation (3.1.1) is oscillatory.

Remark 3.3.2. Inequalities (3.3.57), (3.3.58), (3.3.61) and (3.3.62) cannot be weak-
P
ened. Indeed, let c(f) = (”%) t~P for t > 1. Then

1 t
Pl = 1AW = o [ el ds

= (pl)\)/looskc(s)ds— <pTl>p7

and equation (3.1.1) has the nonoscillatory solution y(t) = t®=1/? for t > 1.

We conclude this section with a nonoscillatory complement to Corollary 3.3.8.
In [262], the following criterion (for equation (3.3.1) with p € (1,2] and ¢ > 0)
is proved by means of this statement: If there exists a positive function v which
is locally absolutely continuous together with its first derivative and satisfies the
inequalities v'(t) > 0, v” + c(t)vP~1(v')27P < 0 for t > T almost everywhere, then
equation (3.1.1) is nonoscillatory; see also the text after Corollary 3.3.5. However,
we do not need such a kind of statement since we can simply use Theorem 2.2.1
(equivalence (i)<(v)).

Again, as in oscillation theorems, the condition ¢(¢) > 0 may be relaxed to
either f:o s*c(s)ds > 0 or [ s*c(s)ds > 0 for all large t and certain ), and the
results work as well. Compare the subsequent theorem with Theorem 3.3.9.

Theorem 3.3.12. Let either for some

(p—1)° (p—1)»
or for some A>p—1+
J b plpP~t —(p— )P

the inequality

(3.3.63) p—1- A" (\) < (%)p

be satified. Then equation (3.1.1) is nonoscillatory.



120 Chapter 3. Oscillation and Nonoscillation Criteria

Proof. Introduce the notation

f(t):/toosAc(s)ds for t>1, A< (p—p1)27

(p—1)F
plpP~! — (p— )P’

N =l
P p—1=A\ »p '

From (3.3.63) for some T' > 1 we have

¢
f(t):f/ ste(s)ds for t>1, A>p—1+
1

o p—1 1)2
(3.3.64)  0< K+t 1A (1) < (u) for t>1, A< =1
P P
and
(3.3.65)
(p—1)»

-1 p-1
(p_) <KAtP VA< K for t>1, A>p—1+
P

p [pr=t — (p — 1)p=1]

. p—1
It can be easily seen that if A < @ and 0 <z < (%) or

(p— 1P (17
v el B

then (p — 1)a? — Az + K (A — p+ 1) < 0. Thus, according to (3.3.64) and (3.3.65)

we have

A>p—1+

(b= V(I + 77 F(0)7 = ME + 82 (1) + KA —p+1) <0

for t > T. The last inequality is equivalent to

w'(t) <

| >

(wl(®) + F6) = B w(0) + 70)°

for t > T, where w(t) = Kt* P*!. Then the function

y(t) = exp (/Tt (M)l/@—u ds)

satisfies inequality Lly] < 0 (with r(t) = 1) for ¢ > T, £ being defined in Theo-
rem 1.2.1. Hence (3.1.1) is nonoscillatory by Theorem 2.2.1. O
3.4 Notes and references

The results of Subsection 3.1.1 are mostly extensions of classical linear criteria
(see e.g. Swanson’s book [341]). Since the detailed quotations are given within the
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text, here we only note that these problems have been studied, using various meth-
ods, under different conditions, in many works, see e.g. [102, 180, 197, 219, 227]
by Dosly, Hoshino, Imabayashi, Kandelaki, Kusano, Lomtatidze, Naito, Ogata,
Tanigawa, Ugulava and Yoshida. Concerning Subsection 3.1.2, Theorems 3.1.4
and 3.1.5 are due to Dosly [102], while Theorem 3.1.6 was proved by Kusano
and Naito [218]. Theorem 3.1.7 is extracted from Kandelaki, Lomtatidze, Ugulava
[197]. Besides this, Section 3.1 is supplemented by several new observations.

Coles type criteria (Subsection 3.2.1) are taken from Li and Yeh [244]. Gener-
alized Kamenev criterion, Theorem 3.2.3, was proved also by Li and Yeh in [239].
The results concerning the generalized H-function averaging technique were estab-
lished in Li and Yeh [243]. Related results are given in the papers of Manojlovié,
[265] Li, Zhong, Fan [254] and Yang, Cheng [370].

The results of Section 3.3 are adopted for the equation of the form (3.1.1),
originally for (3.3.1), and come from Kandelaki, Lomtatidze, Ugulava [197] and
Lomtatidze [262]. Only Corollary 3.3.1 is originally due to Mirzov [292].

Finally note that various oscillation and nonoscillation criteria for (1.1.1) can
also be found in the papers of Kusano, Li, and Wang [228, 237].
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CHAPTER 4

NONOSCILLATORY SOLUTIONS

This chapter is devoted to nonoscillatory equations of the form (1.1.1). In the
first section we focus our attention to the asymptotic analysis of nonoscillatory
solutions of (1.1.1). We show that these solutions can be classified into various
classes according to their asymptotic behavior at oo, and integral conditions on
the functions r,c¢ are given which guarantee that (1.1.1) does/does not have a
solution in a given class. The next section contains a comprehensive treatment of
the concept of the principal solution of (1.1.1). The principal solution of (1.1.2)
plays the fundamental role in the oscillation theory of linear equations and we
show that the half-linear extension of this concept is of the same importance. The
last section is devoted to nonoscillatory equations whose solutions have a regular
growth at co.

4.1 Asymptotic of nonoscillatory solutions

This section is devoted to the investigation of asymptotic properties of nonoscil-
latory solutions of equation (1.1.1) when the function ¢ does not change its sign.
In this case, it is possible to associate with (1.1.1) its reciprocal equation

1 SonY L earnee iy
(4.1.1) (W@ (u)) +r ()P (u) = 0.

Recall that the so-called reciprocity principle says that (4.1.1) is nonoscillatory if
and only if (1.1.1) is nonoscillatory, see Subsection 1.2.8. Note also that if ¢(t) <0
for large ¢ then (1.1.1) is nonoscillatory since the equation (r(t)®(x')) = 0 is its
nonoscillatory majorant.

123
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4.1.1 Integral conditions and classification of solutions

If ¢ is different from zero for large ¢, then all solutions of nonoscillatory equation
(1.1.1) are eventually monotone, this result is formulated in the next statement.

Lemma 4.1.1. Let ¢(t) # 0 for large t and x be a solution of nonoscillatory
equation (1.1.1). Then either z(t)x’'(t) > 0 or z(t)a’'(t) < 0 for large t.

Proof. The monotonicity of x follows from the reciprocity principle which ensures
that the so-called quasiderivative 1) .= r®(z’) does not change its sign for large
t. O

Then it is possible, a-priori, to divide the set of solutions x of (1.1.1) into the
following two classes :

Mt = {2: Jt, >0: z(t)z'(t) > 0 for t > t,},

M~ ={a: Jt,>0: z()a'(t) <0 for t > t,}.
Clearly, solutions in M are eventually either positive increasing or negative de-
creasing and solutions in M~ are either positive decreasing or negative increasing.

The existence of solutions in these classes depends on the sign of the function ¢,
as the following results show.

Lemma 4.1.2. Assume c(t) <0 for large t.

(i) Equation (1.1.1) has solutions in the class M~. More precisely, for every
pair (tg,a) € [0,00) x R\ {0} there exists a solution x of (1.1.1) in the class
M~ such that z(lp) = a.

(i1) Equation (1.1.1) has solulions in the class MT. More precisely, for every
pair (ag,a1) € R%, agai > 0 and for any to sufficiently large, there exists a
solution x of (1.1.1) in the class M™ such that z(to) = ag, 2'(to) = ay.

Proof. Claim (i) follows, for instance, from [72, Theorem 1] and [292, Theorems 9.1,
9.2]. Concerning the claim (ii), let = be a solution of (1.1.1) such that x(0)z’(0) > 0.
Since the auxiliary function

(4.1.2) F,(t) = r(t)®(2' (¢))z(t)

is nondecreasing, we obtain z(¢)z’(t) > 0 for ¢t > 0. The assertion follows taking
into account that every solution is continuable up to oo, see Section 1.1. O

In the opposite case, i.e., when ¢(¢) > 0 for large ¢, the existence in the classes
M*, M~ may be characterized by means of the convergence or divergence of the
following two integrals (the notation will be used also in case ¢(t) < 0)

JT:/ r1A(t) dt, JC:/ |e(t)] dt.
0 0

Lemma 4.1.3. Assume that (1.1.1) is nonoscillatory and ¢(t) > 0 for large t.
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(i) If J. = co, then MI™ = {).
(ii) If J, = oo, then M~ = {.

Proof. (i) Let = be a solution of (1.1.1) in the class Mt and, without loss of
generality, suppose z(t) > 0,2'(t) > 0 for t > T > 0. From (1.1.1) we obtain for

t>T
t

()@’ (6) < r(T)®(2(T)) — fl)(w(T))/ c(s)ds

T
that gives a contradiction as ¢ — oco. Claim (ii) follows by applying (i) to (4.1.1)
and using the reciprocity principle. |

Lemma 4.1.4. Assume c(t) > 0 for large t.
(i) If (1.1.1) is nonoscillatory and J, = 0o, J. < co, then Mt #£ 0.
(i1) If (1.1.1) is nonoscillatory and J, < 0o, J. = oo, then M~ # (.
(iii) If J. < 00, J. < oo, then MT # (), M~ £ ().

Proof. Claims (i), (ii) follow from Lemma 4.1.3. The assertion (iii) follows, for
instance, as a particular case from [364, Theorem 3.1, Theorem 3.3] and their
proofs by observing that certain assumptions in the paper [364] (which deals with
a more general equation than (1.1.1)) are not necessary in the half-linear case. O

In view of Lemma 4.1.3, if (1.1.1) is nonoscillatory, ¢ is eventually positive and
Jy + J. = oo, then all solutions of (1.1.1) belong to the same class (M or M ™).
In addition, from the same Lemma 4.1.3, the well known Leighton-Wintner type
oscillation result can be obtained, see Theorem 1.2.9.

In both cases ¢ > 0 and ¢ < 0 eventually, the classes M1, M~ may be divided,
a-priori, into the following four subclasses, which are mutually disjoint:

My ={zrecM : tlggox(t) ={; # 0},

My, ={zeM™: tli)rgox(t) =0},

ML ={zcM": ez (t) = bo, o] < oo},
MY ={zeM™: Jim |z(t)| = oo}

In the following subsections, we consider both cases ¢(t) > 0,¢(t) < 0 and we
describe the existence of solutions of (1.1.1) in the above classes in terms of certain
integral conditions. Similarly to the linear case, we are going to show that the
convergence or divergence of the integrals

i ¢
(4.1.3) Ji = lim i) (/ le(s)] ds) dt,
T—oc 0 0
T T
. H 1—gq —1
Ja TlgnOo ; r )P (/t le(s)] ds) dt,

fully characterize the above four classes.
The next lemma describes relations between J1, Jz2, J;, Je.
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Lemma 4.1.5. The following statements hold.
(o) If Ji < oo, then J, < co.
(b) If Jo < 00, then J. < 0.
(c) If Jo = o0, then J, = o0 or J. = co.
(d) If J, = oo, then J, = oo or J, = 0.
(e) J1 < o0 and J2 < 0o if and only if J. < 0o and J. < oc.

Proof. Claim (a): Let ¢; € (0,7T). Since

/OT P1=0 ()51 (/0 e(t)] dt) ds
> /Otl rlq(s)cpl(/os le(t)] dt) ds + @1('/;1 le(s)] ds) /tlTrlq(s) ds,

the assertion follows. Claim (b) follows in a similar way. Claims (c), (d) follow
from the inequalities

T

/OT ria)e! (/tT c(s)] dS) dt < /OT ) dt o (/0 le(s)) ds),
/OT rlq(t)<I>1(/ot Ic(s)lds) dt < /OT 1) dt @1(/OT le(s)] ds) .

Finally, the claim (e) immediately follows from (a)—(d). O

4.1.2 The case c negative

We start by noting that if ¢(¢) < 0 in the whole interval [0, 00), then for any solution
x € M~ we have z(t)2’(t) < 0 on [0,00). This property can be proved using the
auxiliary function F, given in (4.1.2). Since, as claimed, F is a nondecreasing
function and z is not eventually constant, there are only two possibilities: (a) F,
does not have zeros; (b) there exists t; > «, such that F,(¢t) > 0 for all £ > ¢,.
Thus the assertion follows.

The following hold.
Theorem 4.1.1. Let ¢(t) < 0 for large t.
(i) Equation (1.1.1) has solutions in the class My if and only if Jo < co.
(ii) Equation (1.1.1) has solutions in the class M5 if and only if J; < cc.
Proof. Claim (i) “=": Let x € M. Without loss of generality we can assume

x(t) > 0,2'(t) < 0 for £ > T > 0. Integrating (1.1.1) in (£, 00), t > T, we obtain

(414) “ha =02 0) = [ lenlo(etr)in
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where —\; = lim;_,o[r(¢)®(2'(£))]. Since z(7) > z(c0) > 0 and A, > 0, (4.1.4)
implies

ﬂwm@w»zﬂwmnlmwﬂm.

Hence

t 1 oC
t) < z(T) — o — dr) ds.
(1) < a(T) ~a(o0) [ 07 (5 [ lelrlar) as
As t — oo we obtain the assertion.

Claim (i) “«<": Choose ¢y > 0 such that

(4.1.5) /LOO @*1(%) /too |C(7’)|d7‘> dt < %

Denote by Cl[tg,o0) the Fréchet space of all continuous functions on [tg, c0) en-
dowed with the topology of the uniform convergence on compact subintervals of
[to, 00). Let © be the nonempty subset of C[tg, o) given by

(4.1.6) Q= {u € Clto, 00) : % <ult) < 1} .

Clearly Q2 is bounded, closed and convex. Now consider the operator T : 2 —
C'[to, o0) which assigns to any u € Q the continuous function 7'(u) = y,, given by

@LT)  yalt) = T(u)®) =%+/t°° q>—l($ /:o|c(7')|¢>(u(7'))d7' ) d.

We have ) ) ~ ) ~

- <Tu(t) <= @‘1(—/ d)d

<T@ <5+ [ 07 (s [ ) as
which implies, by virtue of (4.1.5), T(Q) € €. In order to apply the Tychonov
fixed point theorem to the operator T, it is sufficient to prove that T is continuous
in © C Clto, o0) and that T'(£2) is relatively compact in C[to,00). Let {u;},j € N,
be a sequence in 2 which is convergent to u in Cltg,00),u € Q = Q. Since for
S Z to

@‘1(% /:O|C(T)q>(uj(7))d7) < o (Tls) /:O|c(7')|d7'> < 0,

the Lebesgue Dominated Convergence theorem gives the continuity of T in Q. It
remains to prove that T'(€2) is relatively compact in Cltg, 50), i.e., that functions in
T(?) are equibounded and equicontinuous on every compact subinterval of [tg, 00).
The equiboundedness easily follows taking into account that €2 is a bounded subset
of C[tg,o0). In order to prove the equicontinuity, for any u € {2 we have

(4.1.8) 0<—(T)(t) = & (r(l_t) ./:o |c(T)|<I>(u(T))dT)

g@l@%%ﬂmwﬁ7
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which implies that functions in 7'(§2) are equicontinuous on every compact subin-
terval of [tg, 00). From the Tychonov fixed point theorem, there exists z € € such
that = T'(z) or, from (4.1.7),

#(t) = 5 + /too ! <Tls) /:O |C(T)|c1>(x(7))m) ds.

It is easy to show that z is a positive solution of (1.1.1) in [to, c0) and, from (4.1.8),
2’'(t) < 0. Finally, clearly = satisfies the inequality z(¢)2’(t) < 0 in its maximal
interval of existence and the proof of claim (i) is complete.

Claim (ii) “=": Assume, by contradiction, .J; = co. Without loss of generality
let = be a solution of (1.1.1) in the class M}; such that x(t) > 0,2/(t) > 0 for
t > to > 0. Integrating (1.1.1) on (to,t) we obtain for t >ty

1] (t) = 2] (to) +/t le(s)|®(x(s))ds > P(z(to)) /t le(s)|ds,

where ! = r®(z’). Hence

2 (1) > w(te)d™! (L t|c(3)ds> .

r(t) Ji,

Integrating again over (g, t) we obtain a contradiction.

Claim (ii) “«<=”: The argument is similar to that given in Claim (i) “«<=". It is
sufficient to consider in the same set €2, defined in (4.1.6), the operator T : @ —
Clto, o0) given by

¢ 5
bult) = T()(1) = 5 +/, o~ <Tls) ) |c(T)|<1>(u(T))dr> ds
and to apply the Tychonov fixed point theorem. O
Theorem 4.1.2. Let c¢(t) <0 for large t.

(i) If Jy = 00 and Jy < oo, then My =

(ii) If Ji < oo, then MII, = 0.

Proof. Claim (i). Let « be a solution of (1.1.1) in the class M~ such that z(t) > 0,
z2'(t) < 0 for ¢t > T and lim;, #(t) = 0. By Lemma 4.1.5, J, = co and thus,
by [67, Lemma 1], lim;_, o r(t)®(2'(¢)) = 0. Taking into account this fact and
integrating (1.1.1) over (¢,00), ¢t > T, we obtain

% S (% /too c(r)d7’> .

Integrating over (T,t) we have

log f((,?) > —/thﬂ (% /:o |c(T>|dT> ds,
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from which, as t — oo, we obtain a contradiction.
Claim (ii). Let € MZ, and assume z(¢t) > 0,2'(t) > 0 for ¢ > T > 0. From
(1.1.21) we have (with w = r®(z')/®(x))

(4.1.9) % - f(pfl)/wrl_q(s)\w(s)|qu+k7./T o(s) ds

1
¢

< k—l—/ le(s)| ds,
T

where k = r(T)0(2/(T))/®(x(T)). If J. < oo, then there exists a positive constant
k1 such that

or

Integrating again over (7', t) we obtain

log ;:((;)) < q)_l(k’l)/T r79(s) ds

which implies z € Mg, i.e., a contradiction. If J. = oo, choose t; > T such that
k< f;l c(s) ds. Then from (4.1.9) we obtain for t > ¢;

OB )y [ el
Sy =2, ol

2'(t)

B0 g@l@)@l(r(lt)/; e(s)] ds)

Integrating over (t1,t) we have

log j(fl)) < o-1(2) /Tt(b_l(r(l—s) /TSC(T)dT) ds,

which gives the assertion. O

Theorem 4.1.3. Let c(t) < 0 for large t. If J1 < 00 and Jy < o0, then equation
(1.1.1) has solutions in both classes My and M.

Proof. The statement M # 0 follows from Theorem 4.1.1. The existence in the
class My can be proved by using a similar argument as that given in the proof of
Theorem 4.1.1. It is sufficient to consider the set

Q= {u € Clto,00) : 0 < uft) < /too r19(s) ds}
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and the operator T : Q@ — C[tg, 00) given by
yu(t) = T(u)(t) = / rima(t) et (1 - |C(T)|<I>(u(7'))d7) ds
t ty

and to apply the Tychonov fixed point theorem. Details are omitted. a

Remark 4.1.1. The behavior of quasiderivatives of solutions (i.e., of expressions
2zl = +®(2")) plays an important role in the study of principal solutions, espe-
cially in their limit characterization, see the next section. Concerning the solu-
tion x € My, defined as a fixed point in the proof of Theorem 4.1.1, we have
limy— o0 21 (t) = 0. Concerning the solution € My , defined in the proof of
Theorem 4.1.3, it is easy to show that lim;_, s 2! (t) = ¢x < 0. Indeed, the limit

(4.1.10) Jim o' (B ()

exists finite and it is different from zero, because

—2'(t) = rime ! <1 c(r)(I)(u(ﬂ)ch)

to

et (é) ot (%) =2'79pt ().

and the function z/r9=! is negative increasing.

Y

From Theorems 4.1.1, 4.1.2, 4.1.3, we can summarize the situation in the fol-
lowing way. Clearly, as regards the convergence or divergence of Jy, Ja, the possible
cases are the following:

(A1) J1 =00, J2=o00,
(Ag) J1 =00, Jy< o0,
(Az) Ji<oo, Jo=o0,
(Ay) J1 <00, Jy< oo

Then the following result holds.
Theorem 4.1.4. Let c(t) < 0 for large t.

(i) Assume case (Ay). Then any solution of (1.1.1) in the class M~ tends to
zero as t — oo and any solution of (1.1.1) in the class M™ is unbounded.

(i) Assume case (Ag). Then any solution of (1.1.1) in the class M~ tends to
a nonzero limit as t — oo and any solution of (1.1.1) in the class M is
unbounded.

(iii) Assume case (As). Then any solution of (1.1.1) in the class M~ tends to
zero as t — oo and any solution of (1.1.1) in the class M is bounded.

(iv) Assume case (A4). Then both solutions of (1.1.1) converging to zero and
solutions of (1.1.1) tending to a nonzero limit (as t — oo) exist in the class
M~. Solutions of (1.1.1) in the class M+ are bounded.
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From Theorem 4.1.4 we obtain immediately the following statement which
generalizes a well-know result stated for the linear equation in [281, Theorems 3
and 4]; see also [174, Chapters VI, XI)).

Corollary 4.1.1. Let ¢(t) < 0 for large t.

(a) Any solution x of (1.1.1) in the class M~ tends to zero as t — oo if and
only if Jo = oo.

(b) Any solution of (1.1.1) is bounded if and only if J; < oc.

Following another classification used in [299, 347], we distinguish the next types
of eventually positive solutions z of (1.1.1) {clearly a similar classification holds
for eventually negative solutions):

Type (1) tlirgo x(t) =0, tILHOIO zM(t) = 0;

Type (2) tlirgo x(t) =0, tlirglo 2M(t) = ¢; <0;
Type (3) tlirglo x(t) =eo > 0, 111101O () = ¢ <0;
Type (4) tllrgo z(t) = co > 0, llrgo 2@ = ¢ > 0
Type (5) tlirgo z(t) =¢o > 0, illglc 21(t) = oo
Type (6)  Jlim o(t) = oo, lim 2l(t) = ¢

Type (7)  lim a(t) = oo, lim () = 0o

Eventually positive solutions in M~ are of Types (1)—(3), eventually positive
solutions in M" are of Types (4)—(7). From Theorem 4.1.4 and the reciprocity
principle (see Subsection 1.2.8), necessary and/or sufficient conditions for their
existence can be obtained. To this end observe that the integral J, [resp. J.] for
(1.1.1) plays the same role as J. [resp. J,| for the reciprocal equation (4.1.1).
Similarly, for the reciprocal equation (4.1.1) the integrals Ji, J2 become

T

R, = lim c(t)|<I>(/Otr]_q(s)ds)dt,

T— 00 0
T T
Ry = lim | |e(t)] <1>( / r1=4(s) ds) dt,
T—o0 Jg t
respectively. Then the following holds.
Theorem 4.1.5. Let c¢(t) < 0 for large t. Then the following statements hold:

(a) Every eventually positive solution of (1.1.1) in M~ is of Type (1) if and only
ZfJQ = oo and R2 = Q.

(b) Eq.(1.1.1) has solutions of Type (2) if and only if Ry < oc.
(¢) Eq.(1.1.1) has solutions of Type (3) if and only if J» < 0.
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(d) Eq.(1.1.1) has solutions of Type (4) if and only if J; < 00 and Ry < 0.
(e) Fq.(1.1.1) has solutions of Type (5) if and only if J1 < 0o and Ry = co.
(f) Eq.(1.1.1} has solutions of Type (6) if and only if J; = oo and Ry < 0o.
(g9) Every eventually positive solution in M™ is of Type (7) if and only if J1 = oo
and R1 = oo.
4.1.3 Uniqueness in M.

The uniqueness in the class M~ plays a crucial role in the study of the limit
characterization of principal solutions (see Theorem 4.2.7 in the next section).

Lemma 4.1.2 states that, when c is eventually negative, the class M~ is nonemp-
ty. In the linear case, the assumption

(4.1.11) /000 (r%) + c(t)|> it = 0o

is necessary and sufficient for uniqueness in M~ of such a solution; given ¢y suf-
ficiently large and zo > 0, there exists the unique solution z € M~ satisfying
x(tp) = o, see [281, Theorems 3,4]. We will show that also for (1.1.1) such a
property is assured by a natural extension of condition (4.1.11).

Theorem 4.1.6. Let c(t) < 0 for large t. For any (o, zq) € [0,00) xR\ {0}, there
exists a unique solution x of (1.1.1) in the class M~ such that x(to) = zo if and

only if
(4.1.12) /OOC (rl_q(t) + |c(t)\)dt — 0.

The following result can be easily proved and will be useful in the proof of
Theorem 4.1.6.

Lemma 4.1.6. Let c(t) < 0 for large t. If J, = oo, then for every solution x of
(1.1.1) in the class M~ we have lim; o, 21 (¢) = 0.

Proof of Theorem 4.1.6. Necessity. Assume (4.1.12) does not hold, i.e.,
/ le(r)|dr < oo, / P9t dt < oo,
0 0

and let ¢y be so large that

(4.1.13) ot (/: |C(T>|d7’> /: rtA(t) dt < @%(2)'

Consider the solutions x1,z2 of (1.1.1) with the initial values 1 (to) = x2(to) =1
and
(4.1.14)

siit0) = =07 (o2 [T eiar ) aite) = =07 (75 [ etrlar).
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where ¢; are positive constants such that ¢; # ¢2 and
(4.1.15) 1<e <2

Let us show that z; € M7, ¢ = 1, 2. It is easy to show that solutions x; are positive
decreasing on [0, #5]. In order to prove that z; € M, it will be sufficient to show
that x;(t)z;(t) < 0 for any ¢t > to. Clearly solutions z; are positive decreasing in
a right neighborhood of #y. Assume there exists t; > tp such that x;(¢;)xl(t;) =
0,2:(t) > 0,2(t) < 0 for tg <t < t;, i = 1,2. Integrating (1.1.1) on (to,%;) we
have

(4.1.16) r(t)®(2}(t;)) — r(to)®(x(to)) = / e(m)] (i (7)) dr.

to
If 2(t;) =0, from (4.1.14) and (4.1.16) we obtain

ti

o [ lelar = [ letniatrir < o) [ lelir = [ leryiar

to 1o to to
which implies
/ le(T)|dT <0,

that is a contradiction. Now suppose x;(t;) = 0. For ¢ € (¢g,;) from

HOBELE) 2 02l 0) = i [ eyt

to

we obtain
rit) 2 =0 )10 ([ le(riar)
or

2i(ts) — 2(to) = —1> 0 (¢;)? </toc c(T)dT> /tt P14t dt.

Thus, by virtue of (4.1.15),

1< o L(2)" </toc C(T)d'r> /too P9t d,

which contradicts (4.1.13) and the necessity of (4.1.12) is proved.

Sufficiency. Let us show that for any (to,zo) € [0,00) x R\ {0}, there exists
at most one solution z of (1.1.1) in the class M~ such that z(t9) = z¢ when
Jr =00 or J. = oo. Let 2,y be two solutions of (1.1.1) in the class M~ such that
z(to) = y(to), 2’ (o) > y'(to). Consider the function d given by d(t) = x(t) — y(t).
Then d(to) = 0,d'(to) > 0. We claim that d does not have positive points of
maximum greater than ¢y, i.e.,

d(t) >0, d'(t)>0 fort>to.
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Assume there exists ¢; > ¢p such that d(¢1) > 0, d'(t;) = 0 and d'(t) > 0 in a
suitable left neighborhood I of ¢;. Without loss of generality suppose that d(¢) > 0
for t € 1. Now consider the function GG given by

G(t) = r()[2(2'(1)) — (' (1))]-

Hence G(t;) = 0. Taking into account that & is increasing and d’(¢) > 0, we have
G(t) > 0, t € I. In addition, from

we obtain G'(t) > 0, t € I, which gives a contradiction, because G(t;) = 0. Hence
the function d is increasing.

If J. = oo then, by Lemma 4.1.5 we have J; = oco. Then, in view of Corollary
4.1.1-(a), we obtain d(co) = 0, that is a contradiction. If .J, = oo, then taking
into account that d’(t) > 0 for ¢ > tg, the function G satisfies G(t) > 0, G'(¢) > 0
for t >ty and, by Lemma 4.1.6, lim;_.., G(t) = 0, that is a contradiction. Finally
the existence of at least one solution © € M~ such that x(ty) = x¢ is assured by
Lemma 4.1.2-(i). O

4.1.4 The case c positive

As already stated before, when ¢ is eventually positive, equation (1.1.1) may be
either oscillatory or nonoscillatory. In this subsection, similarly to Subsection 4.1.2,
we provide a complete description of the asymptotic behavior of nonoscillatory
solutions of (1.1.1) also when ¢ is positive.

Lemma 4.1.7. Let ¢(t) > 0 for large t and J, = cc.
(i) If Jo = oo, then M}, = 0.
(i) If Jo < oo, then equation (1.1.1) is nonoscillatory and M} # 0.

Proof. In view of Lemma 4.1.3-(ii) any nonoscillatory solution of (1.1.1) is in the
class M*. Then claims (i) and (ii) follow from [180, Theorem 4.2]. O

The following “uniqueness” result will be useful in the proof of the existence
of unbounded solutions. It is, in some sense, an analogue to Theorem 4.1.6 and its
proof can be found in [180, Theorem 4.3].

Theorem 4.1.7. Let ¢(t) > 0 for large t. Let n # 0 be a given constant and assume
Jp = 00, J2 < 00. Then there exists a unique solution z of (1.1.1), x € M, such
that limy_,oc z(t) = 1.

By using the previous result we obtain the next statement.

Theorem 4.1.8. Let c(t) > 0 for large t and assume J, = o0,y < 00. Then
(1.1.1) has unbounded solutions, i.e, M} # 0.
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Proof. Assume, by contradiction, that MY = (. In view of Lemma 4.1.7, let u
be a solution of (1.1.1) in the class M} and let = be another solution of (1.1.1)
such that z(0) = u(0), 2'(0) # «'(0). Hence 2 # u and from Lemma 4.1.3-(il) we
have € M%. In view of Theorem 4.1.7 we have u(00) # z(co). Now consider the
solution w of (1.1.1) given by

u(0)
t) = t
w(t) = 5 e
We have w € M},. But w(oo) = u(oo), that gives a contradiction. O

Lemma 4.1.8. Let c(t) > 0 for large t. If J. < 0o, then (1.1.1) has no unbounded
nonoscillatory solution, i.e., Mt = 0.

Proof. The assertion follows, with minor changes, from [159, Lemma 2]. |
Concerning the existence in the class M, we have the following statement.
Theorem 4.1.9. Let c¢(t) > 0 for large t.
(1) If J. = 00, J1 < 00, then (1.1.1) is nonoscillatory and My # 0.
(i) If Ji = oo, then Mz = 0.

Proof. Claim (i) follows from [159, Theorem 4]. As for the claim (ii), let z € My
and, without loss of generality, assume z(t) > 0,2'(t) < 0 for ¢ > T and z(c0) =
¢z > 0. From (1.1.1) we have

M) = (T - / c(s)®(x(s))ds < —®(ey) /1 c(s)ds

s

() < —cy @ (% /Tt c(s)ds) .

Integrating over (7', 1) we obtain

z(t) —2(T) < —¢, /Tt ot (% /TS c(r)dr) ds

that gives a contradiction as ¢t — . |

or

Lemma 4.1.9. Let ¢(t) > 0 for large t. If (1.1.1) is nonoscillatory and J, < oo,
then My # 0.

Proof. If J. < oo, the assertion follows, as a particular case, from [286, Theo-
rem 2.2]. When J, = oo the assertion follows from [61, Lemma 2-(ii)]. O

By considering the mutual behavior of integrals .J,., J., Jy, J5 it is possible to
summarize the situation in a complete way. Indeed, as regards the convergence or
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divergence of the above integrals, in view of Lemma 4.1.5, we have the following
six possible cases:

(Cl) J,=Jd.=J1=Jy=00,

(C2) J, =T =TJa=00, J. <00,

(C3) J,=J1 =00, J. <00, Jo <00,
(C4) J.=J1=Jo =00, J, <0,

(C5) J.=Ja=00, J, <0, J1 <00,
(C6) J, <00, J. <00, J1 <00, Jy < o00.

If (C1) holds, then, as already claimed in Subsection 4.1.1, equation (1.1.1) is
oscillatory. In the remaining cases, from the above results we obtain the following
theorem, which is a natural extension of the linear case [64, Theorem 1].

Theorem 4.1.10. Let ¢(t) > 0 for large t.

If (C2) holds and equation (1.1.1) is nonoscillatory, then MY # 0, M}, =
M, = M = 0.

If (C3) holds, then equation (1.1.1) is nonoscillatory and ML # 0, M5 # 0,
My, = My = 0.

If (C4) holds and equation (1.1.1) is nonoscillatory, then MZ = M} = My =
0, My # 0.

If (C5) holds, then equation (1.1.1) is nonoscillatory and ML = Mf = 0,
My # 0, My # 0.

If (C6) holds, then equation (1.1.1) is nonoscillatory and M, = 0, M% # 0,
Mg # 0, My # 0.

Proof. The proof follows from the previous statements of this section.

(C2) From Lemma 4.1.3-(ii) and Lemma 4.1.7-(i) we have M = M, = M, =
(). Since (1.1.1) is nonoscillatory, we obtain M+ = M # 0.

(C3) The assertion follows from Lemma 4.1.3-(ii), Lemma 4.1.7-(ii), Lemma
4.1.8.

(C4) From Lemma 4.1.3-(i) and Theorem 4.1.9-(ii) we have ML = M} =
M = . Since (1.1.1) is nonoscillatory, we obtain M~ = Mg # 0.

(C5) The assertion follows from Lemma 4.1.3-(i), Theorem 4.1.9-(i), Lemma
4.1.9.

(C6) From Lemma 4.1.4-(iii), Lemma 4.1.8, Lemma 4.1.9, we obtain M = 0,
M} # 0, My # 0. Finally the existence in M can be proved using an argument
similar to that given in the proof of Theorem 4.1.1 (see also [364, Theorem 3.3]
and its proof). O

Taking into account that the possible cases concerning the convergence or di-
vergence of J., J., J1, J2 are the cases (C1) — (C6), from Theorem 4.1.10 we easily
obtain the following result, which gives a necessary and sufficient condition for the
existence of nonoscillatory solutions of (1.1.1) in the classes MZ, M}, M5, My .

Theorem 4.1.11. Let ¢(t) > 0 for large t.
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(i) Assume (1.1.1) nonoscillatory. The class M1, is nonempty if and only if
J, = oc.

(ii) The class M} is nonempty if and only if Jo < co.

iit) Assume (1.1.1) nonoscillatory. e class M, is monempty if and only i
i) A 1.1.1 lat The class M, i ty i d only i
Jr < oo,

iw) The class Mz is nonempty if and only if J; < oo.
B

4.1.5 Generalized Fubini’s theorem and its applications

In this subsection, we will show that half-linear equation (1.1.1) exhibits a “surpris-
ing” difference in asymptotic behavior of nonoscillatory solutions comparing with
linear equation (1.1.2). In particular, differences between the three cases p = 2,
p < 2, and p > 2 will be shown, especially as regards a possible coexistence of
nonoscillatory solutions with various asymptotics.

We consider equation (1.1.1) under the assumptions ¢(t) > 0 and

(4.1.17) / t)dt = oo, / t)dt < oo.

When (1.1.1) is nonoscillatory and (4.1.17) holds, then by Theorem 4.1.10 every
nontrivial solution z of (1.1.1) satisfies z(¢)z'(¢) > 0 for large ¢, i.e., it belongs to
the class M™. The more detailed description of asymptotic properties of solutions
is given by the limit behavior of the quasiderivative z!! = r®(z'). Hence, in
addition to the previous classification of nonoscillatory solutions, we introduce
two subclasses in M,

ML, = feeMb: limall@) =0,
, lim.
MLp = {reML: lim2l(@) =t € (0,00)}.

Then every solution of (1.1.1) belongs to one of the subclasses M}, M;y 5 and
MZ -

Following the terminology introduced in [180], solutions in the class Mjg are
called subdominant solutions, in M w0 tntermediate solutions and in M, co.B are
called dominant solutions. It is not known (see [180] where this problem has been
formulated), whether intermediate solutions can coexist with dominant and/or
subdominant solutions, and it has been shown in this paper that the existence of
such solutions is determinated by the divergence ol the integrals

I= /OOO c(t) (/Otrlq(s) ds) " dt,

-1

J= /Ooo ria(t) (/:O c(s) ds)q dt.
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Hence the principal role is played by an extension of the classical Fubini theorem on
the change of integration in a double integral. In particular, the question whether

(4.1.18) J=00+=1=00

plays an important role. If p = 2, then J = I (Fubini theorem) and so (4.1.18)
holds. The answer whether (4.1.18) remains to hold when p # 2 (under assumption
(4.1.17)) has been given in [96] and the result reads as follows.

Theorem 4.1.12. Let A, b be continuous nonnegative functions such that the
integral [ b(t) dt < co.

(a) If a > 1, then

(4.1.19) /Ooo b(t)(/OtA(s)ds>adt§2 (/OOO A(t)(/too b(s) ds)l/a dt)

(b) If0 < a <1, then

(4.1.20) /000 A(t)(/too b(s)ds)l/a it < (/OOC b(t)(/ot A(s) ds)adt>l/a.

In particular,

[

(a) If « > 1, then the condition

(4.1.21) /ODO b(t) (/Ot A(s) ds)adt =
tmplies
(4.1.22) /Ooo A(#) (/too b(s) ds)l/a = co.

(b) If 0 < a <1, then condition (4.1.22) implies (4.1.21).

The following examples show that the opposite statements to the second part
of the previous theorem does not hold for p £ 2, i.e., in general, the following cases
are possible, see [96, 180]:

(K1) J=o0, I=00,
(Kay) J=o00, I<oo, whenp>2
(K3) J<oo, I=o00, whenp<?2,
(Ky) J<oo, I<oo.

Ezample 4.1.1. (a) Let
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In this case I < 0o and J = 0.
(b) Let
Aty=1, b)) =(+1)"*(logt+1)", O<a<p<l

In this case I = 0o and J < 0.

Now we can answer the question whether intermediate solutions may coexist
with dominant or subdominant solutions and whether

(4.1.23) ML 5 #0 < M} #0.
We start with the following result.
Lemma 4.1.10. The following statements hold:
(i) If J < oo, then (1.1.1) is nonoscillatory and M}, # 0.
(i) If M} # 0, then J < oo.
(#i) If I < oo, then (1.1.1) is nonoscillatory and M;,B # 0.
(iv) IfMZ, g # 0, then I < co.
(v) If J =00 and I < oo, then (1.1.1) is nonoscillatory and M, o # 0.
(vi) If (1.1.1) is nonoscillatory, then M7, ;U M;_’B # .

Proof. Claims (i), (ii), (iii), (iv) can be found in [180, Theorems 4.1,4.2], see also
some results of [159] obtained for a more general equation.

Claim (v): By (ii) and (iii) we have M}, = @ and M 5 # §. Assume M ; =0,
i.e., all nontrivial solutions belong to M;ro g- Then for any pair of linearly inde-

pendent solutions 2, # we have lim;_ ., Z[!l(¢)/z['(t) = L # 0 and by L'Hospital’s

rule ) (1)
X X
lim =2 — i — [V/pr-1
tpe 7(t) oo 2/(1) 70

which yields a contradiction with the later given Theorem 4.2.7. Hence M;}O £ (.
Claim (vi) also follows from Theorem 4.2.7. O

Concerning the linear equation (1.1.2), i.e., the case p = 2, from the state-
ments (i)—(iv) of Lemma 4.1.10 and the equality I = .J, we have that solutions in
M, , cannot coexist with other types of solutions and (4.1.23) holds, see also [63,
Theorems 1,2].

Using Theorem 4.1.12 and statements (i)—(iv) of Lemma 4.1.10 this result can
be extended to the half-linear equation (1.1.1) as follows.

Theorem 4.1.13. Assume (4.1.17). We have the following statements.
(i) Letp > 2. If M} # 0, then M7, 5 # 0.

(i1) Letp € (1,2]. IfM;B # (), then M}, # 0.
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The following result describes the coexistence of solutions in cases (K3) and
(K4) and shows the discrepancy between the linear and half-linear equations.

Theorem 4.1.14. Assume (4.1.17).

(a) A necessary and sufficient condition for (1.1.1) to have solutions satisfying
Mg =0, MI,#0, MLp#0
isp>2,J=00 and I < .
(b) A necessary and sufficient condition for (1.1.1) to have solutions with
Mg # 0, M;,o # 0, M;,B =0
ispe(1,2), J<ooand I = co.

Proof. The proof of the statement (a) and (b) follows from Lemma 4.1.10, items
(i)-(v) and items (i)-(iv), (vi), respectively. O

The following continuation of Example 4.1.1 illustrates the previous statements.

Ezample 4.1.2. Consider the half-linear differential equation
e—(p—1)t

7
—(p—Dig (s o —
(e Oz )) ) =0
The coefficients of this equation satisfies (4.1.17) (observe that A(t) = r1=9(t) =
e~ (P~ D=9t — ¢ty and, as it was shown in Example 4.1.1, J = oo and I < cc. By
Theorem 4.1.14-(a), equation (1.1.1) possesses nonoscillatory solutions satisfying

(4.1.23).
Remark 4.1.2. (i) Note also when

/OC r9(t) dt < oo, /OC e(t) dt = oo,

then all solutions of (1.1.1) are in the class M~, as we have shown in Subsec-
tion 4.1.4. This case can be treated by applying the previous results to the recip-
rocal equation (4.1.1).

(ii) Finally observe that when both integrals [~ r1=9(¢)dt, [~ c(t) dt are con-
vergent, integrals I, J are convergent as well, and so M;g # () and I\\/[[;ro p#0. It is

an open problem whether Mjo!o £ .

4.2 Principal solution

The concept of the principal solution of the linear second order differential equa-
tion (1.1.2) was introduced in 1936 by Leighton and Morse [236], and plays an
important role in the oscillation and asymptotic theory of (1.1.2). In this section
we show that this concept can be introduced also for (nonoscillatory) half-linear
equation (1.1.1).
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4.2.1 Principal solution of linear equations

First we recall basic properties of the principal solution of linear equation (1.1.2).
Suppose that this equation is nonoscillatory, i.e., any solution of this equation is
eventually positive or negative. Then, using the below described method, one can
distinguish among all solutions of this cquation a solution %, called the principal
solution (determined uniquely up to a multiplicative factor), which is near co less
than any other solution of this equation in the sense that

for any solution x which is linearly independent of Z.
Let x,y be eventually positive linearly independent solutions of (1.1.2), then

r’ (Oy(t) — 2y’ ()] = w,

where w # 0 is a real constant. This means that the function z/y is mono-
tonic (since (z/y)’ = w/(ry?)) and hence there exists (finite or infinite) limit
lime oo () /y(t) = L. If L =0, x is the principal solution of (1.1.2), if L = oo,
the solution y is principal. If 0 < L < o0, we set £ =  — Ly. Then obviously
lim;— o Z(t)/y(t) = 0 and Z is the principal solution. Observe that this construc-
tion of the principal solution is based on the linearity of the solution space of
(1.1.2).

Using the Wronskian identity, the principal solution # of (1.1.2) can be equiv-
alently characterized as a solution satisfying

©dt
(4.2.1) / P =™

Indeed, let y be a solution linearly independent of Z. Then by the previous argu-
ment y/% tends monotonically to oo as ¢ — oo, hence

. ¢ ds Loyt
(4.2.2) AL e T A )

Another characterization of the principal solution of (1.1.2) is via the eventually
minimal solution of the associated Riccati equation

/ w2
4.2.3 w +c(t) + —==0.
(423) +elt) + 175
Let Z,  be linearly independent solutions of {1.1.2}, the solution # being principal,
and let @ = r&’ /&, w = ra’ /z be the solutions of the associated Riccati equation.

Without loss of generality we may suppose that & and = are eventually positive.
We have

rz’(t) _ @) ) _ rt)l' ) - 2 ([zt)]

w(t) —w(t) = 0 &0 Z(t)x(t)



142 Chapter 4. Nonoscillatory Solutions

The numerator of the last fraction is a constant and this constant is positive since

we have
ri)la’(t)o(t) — 2" (H)z(@)] _ (@) S 0.

r(t)z3(t) (1)

This follows from the fact that Z is the principal solution, i.e., /% tends mono-
tonically to co. Hence, the solution @ of the Riccati equation (4.2.3) given by the
principal solution of (1.1.2} is less than any other solution of (4.2.3) near oo, i.e.,
a solution Z of (1.1.2) is principal if and only if

() 2

26~ z(t)

for any solution z linearly independent of Z. Counversely, let & = r#’'/% be the
minimal solution of (4.2.3), i.e., w(t) < w(t) for large ¢, for any solution w of
(4.2.8), and suppose that the solution & of (1.1.2) is not principal, i.e., the integral
in (4.2.1) is convergent. Let 7" € R be such that ["r='(t)Z=%(¢t)dt < 1 and
consider the solution w of (4.2.3) given by the initial condition w(T) = &(T) —
1/(22%(T)). Put v = #?(1 — w). Then v(T) = 1/2 and by a direct computation
we have

(4.2.4) for large ¢

Hence

T eE e ds 2 e e d

v(t)

This means that v is extensible up to oo and hence w has the same property and
w(t) < w(t). This contradiction shows that the eventual minimality of & implies
that (4.2.1) holds, i.e., the associated solution & of (1.1.1) is principal.

The last construction of the principal solution of (1.1.2) which we present here
requires (in addition to nonoscillation of (1.1.2)) the assumption that for any ¢,
the solution of (1.1.2) given by the initial condition x(to) = 0, 2’ () # 0 has a
zero point to the right of tg. We denote this zero point by 7(to). The function 7 is
nondecreasing according to the Sturmian theory, hence there exists lim;_,o 7(t) =:
T and T < oo since we suppose that (1.1.2) is nonoscillatory. Now, the solution
Z given by the initial condition #(T) = 0, Z'(T} # 0 is the principal solution
of (1.1.2). This construction is used in the original paper of Leighton and Morse
[236]. Concerning other papers dealing with the principal solution of (1.1.2) and
its properties we refer to [174] and the references given therein.

4.2.2 Mirzov’s construction of principal solution

This construction defines the principal solution of half-linear equation (1.1.1) via
the minimal solution of the associated Riccati equation (1.1.21). Nonoscillation of
(1.1.1) implies that there exist 7' € R and a solution @ of (1.1.21) which is defined
in the whole interval [T, c0), i.e., such that (1.1.1) is disconjugate on [T, 00). Let
d € (T,00) and let wy be the solution of (1.1.21) determined by the solution
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w

T dq do t

Figure 4.2.1: Mirzov’s construction of principal solution

xq of (1.1.1) satisfying the initial condition z(d) = 0, r(d)®(z'(d)) = —1. Then
wq(d—) = —o0 and wy(t) < w(t) for t € (T,d). See also Figure 4.2.1. Moreover, if
T<d < dz, then

W, (t) < W, (t) < I?)(t) for t e (T, dl).

This implies that for ¢ € (T, 00) there exists the limit we (f) := lmg_oo wa(t)
and monotonicity of this convergence (with respect to the “subscript” variable)
implies that this convergence is uniform on every compact subinterval of [T, 0co).
Consequently, the limit function we, solves (1.1.21) as well and any solution w of
this equation which is extensible up to oo satisfies the inequality w(t) > woo(t)
near oco. Indeed, if a solution w satisfies the inequality @(t) < weo(t) on some
interval (Ty,00), then for ¢ € (T1,00) and d sufficiently large we would have
w(t) < wg(f) < we(t). But this contradicts the fact that wg(d—) = —oo and
that graphs of solutions of (1.1.21) cannot intersect (because of unique solvability
of this equation). Summarizing, we have found a solution wy of (1.1.21) with the
property that

(4.2.5) Weo(t) < w(t), for large t,

for any other solution w of (1.1.21).

Now, having defined the minimal solution ws, of (1.1.21), i.e., a solution we,
such that (4.2.5) holds for any other solution w of (1.1.21), we define a principal
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solution of (1.1.1) at oo as a (nontrivial) solution of the first order equation

(4.2.6) o = ! (w:zf)t)) z,

i.e., the principal solution of (1.1.1) at oo is determined uniquely up to a multi-
plicative factor by the formula

2(t) = 2(T) exp {/trl_q(s)i[)_l(woo(s))ds} .

T

Consequently, a solution & of (1.1.1) is principal if and only if

r)e(@'(t) _ r(t)®(2'(t))
®)) O(2'(1))

which is equivalent to (4.2.4).

(4.2.7) for large t,

(
oz

Remark 4.2.1. (i) Mirzov actually used a slightly different approach in his paper
[291] which can be briefly explained as follows. Suppose that (1.1.1) is nonoscil-
latory and let w be a solution of the associated Riccati equation which exists on
some interval [T, 00) and let W := (7). Denote by

W= {v & (—oo,W): the solution w of (1.1.21) given by the
initial condition w(7T) = v is not extensible up to co},

i.e., W are initial values of solutions of (1.1.21) at ¢t = T which blow down to
—o0 at some finite time ¢ > 7. Note that the set W is nonempty what can be
seen as follows. Let 77 > T be arbitrary and consider a solution z of (1.1.1)
given by xz(T1) = 0, 2'(T1) # 0. Disconjugacy of (1.1.1) on [T, c0) implies that
x(t) # 0 on [T, Ty) and the value of the associated solution of the Riccati equation
w = r®(z')/®(z) at t = T clearly belongs to W. Now, let ¢ := supW and let
Weo be the solution of (1.1.21) given by the initial condition w(T) = ©. Then
this solution is extensible up to co (supposing that this is not the case, we get a
contradiction with the definition of the number @) and the principal solution of
(1.1.1) is defined again by (4.2.6).

(ii) Let b be a regular point of equation (1.1.1) in the sense that for any 4, B € R
the initial condition z(b) = A, r(b)®(x'(h)) = B determines uniquely a solution
of (1.1.1). Let x be a solution given by z,(b) = 0, z;,(b) # 0. Replacing in the
above construction the point ¢t = co by t = b, i.e., wp(f) := limg_s— wq(t), it is not
difficult to see that wy = r®(x})/®(xp). Consequently, what we call the principal
solution x, of (1.1.1) at a regular point b € R is a nontrivial solution satisfying
the condition z3(b) = 0.

4.2.3 Construction of Elbert and Kusano

This construction was introduced (independently of Mirzov’s approach) in the
paper [145] and it is based on the half-linear Priifer transformation.
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Figure 4.2.2: Construction of principal solution by Elbert and Kusano

Let (1.1.1) be nonoscillatory and let T" be such that this equation is disconjugate
on [T, 00). Take a solution x which is positive on [T, 00). By the generalized Priifer
transformation (see Subsection 1.1.3) this solution can be expressed in the form

(4.2.8) z(t) = p(t)sing p(t), 7 1(t)a' (t) = p(t) cosp p(t),

where p is a positive function, the half-linear sine and cosine functions sin,, cos,
were defined in Subsection 1.1.3 and the function ¢ is a solution of the first order
equation

e(t)

p—1

(4.2.9) @ = 7r7U(t)| cos, p(t)|P + |sin, @ (t)]” .

The fact that z(¢) > 0 for t € [T, o) implies that ©(t) € (kmp, (k+ 1)7,) for some
even k € Z and without loss of generality we can suppose that k = 0. Now, let 7 €
(T, 00) and let ¢, be the solution of (4.2.9) given by the initial condition ¢, (1) =
mp. Since any solution of (4.2.9) satisfies ¢’(t) > 0 whenever ¢(t) = 0 (mod ),
the unique solvability of (4.2.9) (compare again with Subsection 1.1.3) implies
that ¢(t) < @ (t) < @r, (t) for t > T whenever T < 71 < 72 (see Figure 4.2.2).
Consequently, the monotonicity of ¢, with respect to 7 implies that there exists
a finite limit

lim @ (T) = ¢~

T—X0
Now, the principal solution is the solution of (1.1.1) given by the initial condition
F(T) = sin, ¢*, F(T)=r'"1(T)cos, p*.

This means that we take p(T") = 1 in the definition of #, this can be done according
to the homogeneity of the solution space of (1.1.1).
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Theorem 4.2.1. A solution T of a nonoscillatory equation (1.1.1) is principal
in the sense of Mirzov’s construction if and only if it is principal in the sense of
Elbert and Kusano.

Proof. Let x; be a nontrivial solution of (1.1.1) satisfying x..(7) = 0. This solution
can be expressed in the form

x,(t) = p(t) sin, @ (t), 92! () = p(t) cosp (1),

where @, is the solution of (4.2.9) satisfying ¢, (7) = 0. The corresponding solution
of the associated Riccati equation (1.1.21)

()@ (a7 (1))
T t) = z = (D t T 2
satisfies w, (7—) = —oo. The minimal solution of (1.1.21) (which defines the princi-

pal solution of (1.1.1) in Mirzov’s definition) is given by w(t) = lim, . w,(t), L.e.,
it is just the solution satisfying @w(T") = ®(cot, ¢*) and this is the solution of Ric-
cati equation (1.1.21) given by the principal solution obtained by Elbert-Kusano’s
construction. O

We finish this subsection with some examples of equations whose principal
solution can be computed explicitly.

Ezample 4.2.1. (i) Consider the one-term half-linear equation
(4.2.10) (r(t)®@(z")) = 0.

As we have mentioned in Section 1.4, the solution space of this equation is a
two-dimensional linear space with the basis 1 (t) = 1, x(f) = ft r1=4(s)ds. The
Riccati equation associated with (4.2.10) is w’+(p—1)r1~¢|w|? = 0 and the general
solution of this equation is
(4.2.11) w(t) = ! ,  w(t) =0.

o (c + [Lria(s) ds)

If [* r179(t) dt = 0o, then by an easy computation one can verify that w(t) = 0 is
the eventually minimal solution of this equation and hence Z(t) = 1 is the principal
solution of (1.1.1). If [ r179(¢) dt < oo, then W(t) = — ([~ r'=9(s) ds)l_p is the
eventually minimal solution of the Riccati equation (we take C' = — ["r'79(s) ds

in formula (4.2.11)) and #(t) = [, r'~9(s) ds is the principal solution of (4.2.10).

(ii) The nonoscillatory equation (®(z')) — (p — 1)®(x) = 0 investigated in
Subsection 1.4.1 has solutions x(t) = e** and all other solutions are asymptotically

equivalent to e'. Consequently, the solution Z(¢) = e~ is the principal solution at
00.

(iii) The Euler type equation

(4.2.12) (®(z)) + tlpfb(m) =0
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is nonoscillatory if and only if v <, = [(p — 1)/p]”, see Subsection 1.4.2. If y = ~,,
then (4.2.12) has a solution z(t) = "% and all linearly independent solutions are
y—1 P p—1
asymptotically equivalent to £ log% t. Consequently, Z(t) = 5 is the principal
solution of (4.2.12). If v < 7, then 21 (t) = M, 25(t) = 2!, where \; < Ay are
the roots of the algebraic equation (p — 1)[|A|P — ®(A)] + v = 0, are solutions of
(4.2.12), and all other linearly independent solutions are asymptotically equivalent
to x2(t). Consequently, Z(t) = x1(t) = e*? is the principal solution of (4.2.12) in
this case.

4.2.4 Comparison theorem for eventually minimal solutions
of Riccati equations

Similarly as in the linear case we have the following inequalities for solutions of a
pair of Riccati equations corresponding to nonoscillatory half-linear equations.

Theorem 4.2.2. Consider a pair of half-linear equations (1.1.1),
(4.2.13) (RS +C()®(y) =0

and suppose that (4.2.13) is a Sturmian majorant of (1.1.1) for large t, i.e., there
exists T € R such that 0 < R(t) < r(t), c(t) < C(¢) for t € [T,00). Suppose that
the majorant equation (4.2.13) is nonoscillatory and denote by w, ¥ eventually
minimal solutions of (1.1.21) and of

(4.2.14) v+ C) + (p— DR™I(H)[v]? = 0,
respectively. Then w(t) < o(t) for large t.

Proof. Nonoscillation of (4.2.13) implies the existence of T € R such that @ and
¥ exist on [T, 00). Suppose that there exists ¢; € [T, 00) such that w(t,) > 0(f1).
Let w be the solution of (1.1.21) given by the initial condition w(t1) = 0(¢y).
Then according to the standard theorem on differential inequalities (see e.g. [232])
we have w(t) > o(t) for t > ¢, i.e., w is extensible up to co. At the same time
w(t) < w(t) for t >ty since graphs of solutions of (1.1.21) cannot intersect (because
of the unique solvability). But this contradicts the eventual minimality of w. O

In some oscillation criteria, we will need the following immediate consequence
of the previous theorem.

Corollary 4.2.1. Let [~ r!=9(t)dt = oo, c(t) > 0 for large t and suppose that
(1.1.1) is nonoscillatory. Then the eventually minimal solution of the associated
Riccati equation (1.1.21) satisfies w(t) > 0 for large t.

Proof. Under the assumptions of corollary, (1.1.1) is the majorant of the one-
term equation (r(t)®(y’))’ = 0. Since [~ r1~9(t)dt = oo, § = 1 is the principal
solution of this equation (compare Example 4.2.1). Hence ©(¢) = 0 is the eventually
minimal solution of the associated Riccati equation which implies the required
statement. O
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4.2.5 Sturmian property of the principal solution

In this short subsection we briefly show that the principal solution of (1.1.1) has
a Sturmian type property and that the largest zero point of this solution (if any)
behaves like the left conjugate point of oo, in a certain sense.

Theorem 4.2.3. Suppose that equation {1.1.1) is nonoscillatory and its principal
solution ¥ has a zero point and let T be the largest of them. Further suppose that
equation (4.2.13) is a Sturmian majorant of (1.1.1) on [T, 00), i.e., 0 < R(t) < r(t)
and C(t) > c(t) for t € [T,00). Then any solution y of (4.2.13) has a zero point
in (T, 00) or it is a constant multiple of &. The latter possibility is excluded if one
of the inequalities between r, R and ¢, C, respectively, is strict on a nondegenerate
subinterval of [T, c0).

Proof. 1f (4.2.13) is oscillatory, the statement of theorem trivially holds, so suppose
that (4.2.13) is nonoscillatory and let § be its principal solution. Denote by @ and
¥ the minimal solutions of corresponding Riccati equations (1.1.21) and (4.2.14),
respectively. According to the comparison theorem for minimal solutions of Riccati
equations presented in the previous subsection, we have w(t) > ©(t) on the interval
of existence of w. Since we suppose that £(T") = 0, this implies that w(T+) = o0,
so the interval of existence of ¥ must be a subinterval of [T, 00), say [T1,0),
i.e., Ty is the largest zero of the principal solution % of (4.2.13). If one of the
inequalities between =, R and ¢, C is strict, it can be shown that the possibility
T =T, is excluded. Now let y be any nontrivial solution of (4.2.13). If y(t) # 0 for
t € [T, 0), then the solution v = R®(y')/®(y) of the associated Riccati equation
(4.2.14) exists on [T1,00) and satisfies there the inequality v(t) < o(t) on [T1, o)
(since 9(T1+) = oo and v(T'—) < o0) and this is a contradiction with minimality
of v. O

Remark 4.2.2. (i) Let T be the largest zero of the principal solution # of (1.1.1),
i.e., the same as in the previous theorem, and suppose that R(t) = r(t) and
C(t) = c(t) for t € [T, 00). Then Theorem 4.2.3 shows that T plays the role of the
left conjugate point of co in the sense that any nonprincipal solution of (1.1.1),
i.e., a solution linearly independent of Z, has exactly one zero in (7, 00). Note that
the fact that this zero is exactly one (and not more) follows from the classical
Sturm separation theorem (Theorem 1.2.3).

(if) In Remark 1.2.2 we have pointed out that the disconjugacy of (1.1.1) on
a bounded interval I = [a,b] (which, by definition, means that the solution
given by x(a) = 0, 2’(a) # 0 has no zero in (a,b]) is actually equivalent to the
existence of a solution without any zero in [a, b]. Theorem 4.2.3 shows that we have
the same situation with unbounded intervals or an interval whose endpoints are
singular points of (1.1.1). For example, if I = R = (—o00, 00), then disconjugacy
of (1.1.1) on this interval (i.e., no nontrivial solution has two or more zeros on
R) is equivalent to the existence of a solution without any zero on R, the solution
having this property is e.g. the principal solution (at co).
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4.2.6 Principal solution of reciprocal equation

In this subsection we suppose that ¢(t) > 0 for large t. We will show that under
certain additional conditions a solution = of (1.1.1) is principal if and only if its
quasiderivative z['l = r®(z’) is the principal solution of the reciprocal equation

(4.2.15) (‘Dl(“/))/ I L0 Y

a1 ) T i)

Recall that & '(u) = |u|9 2u, g = p/(p — 1), is the inverse function of ®. We will
need the following auxiliary statement which is already partially hidden in Lemma
4.1.3. Here we reformulate the statement into the form directly applicable in the
proof of the main result of this subsection (and also in the proof of the main result
of Subsection 4.2.8 given below).

Theorem 4.2.4. Let (1.1.1) be nonoscillatory and J, + J. = co. Then a solution
Z of (1.1.1) is principal solution if and only if its quasiderivative £ 4s principal
solution of (4.2.15).

Proof. Assume that # is the principal solution of (1.1.1). Then % = #[(¢) is a
solution of (4.2.15); let u be another solution of (4.2.15) such that @ # Au for
any A € R. Since reciprocity is a mutual property, the function z = ®~*(u'/c)
is a solution of (1.1.1) and clearly x # uZ for any p € R. Because Z is principal
solution, taking into account that ® is increasing, from Riccati equation (1.1.21)
we obtain for large ¢

(1) - zl(t)
cOP(E(t)  cOP(E(F))

From the relationship between 7, 2! and between z, 2!, we have

(4.2.16)

(4.2.17) g,ii)) Z% .

From Lemma 4.1.3, as claimed, all the solutions of (4.2.15) are in the same class
(M* or M™). Then either u(t)/u'(t) > 0 or a(t)/a'(t) < 0 and from (4.2.17)
we obtain a'(t)/u(t) < u'(t)/u(t) which means that @ is the principal solution of
(4.2.15). The converse can be proved by using a similar argument. O

The following example shows that Theorem 4.2.4 does not hold if the assump-
tion J, + J. = oo is violated. This example is “linear”, i.e., it concerns linear equa-
tion (1.1.2), but it can be modified to half-linear equations (1.1.1) and (4.2.15).

Example 4.2.2. Consider the linear equation

L s log(t+2)
(4.2.18) ((t+ 1) log?(t +2)2' (1)) + T

x(t) = 0.

Clearly, in view of property (4.2.1), Z(t) = (log(t + 2))_1 is a principal solution of

(4.2.18). It is easy to verily, again from (4.2.1), that the quasiderivative of &
t+1

a(t)y = #M(t) = =
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is a nonprincipal solution of the reciprocal equation

t+2” 0\ 1
(log(t Ty (t)> " (t+ 1) log?(t + 2)

Observe that Theorem 4.2.4 cannot be applied since J,. < oo and J. < co.

u(t) =0

4.2.7 Integrals associated with eventually minimal solution
of Riccati equation

In this subsection we present some necessary and/or sufficient integral conditions
for a solution @ to be the minimal solution of (1.1.21). Similarly to some previous
parts of the book, we reformulate the Mirzov results originally stated for first order
system (1.1.8) (see [292, Sec. 15]) to (1.1.1). We will use the following notation:

la]9—]z]9 _
F(m,a)-:{v""@ Ya —x) for x # a,

q®1(a) for z = a,
alv,z) = min{F(x,z): v<z <zt
B(v,z) = max{F(z,z): v<az <z},

and
m, = min{F(z,1): 0<z <1}, m*=max{F(z,1): 0<z <1}
An important role is played by the following statement.

Theorem 4.2.5. Let @ be the minimal solution of Riccati equation (1.1.21)
defined on an interval [tg,00), v be a continuous function on [tg,o0) such that
v(t) < w(t) fort > to, and suppose that the inequality

(4.2.19) liminf (w(t) — v(t))_(q_l) exp (—/ r'9(T)a(v(r), (1)) d7'> < 00

t—o0 to

holds. Then
(4.2.20) /t:O r179(t) exp ( - /t: =)o (v(r), w(T)) dT) dt = 0.

Proof. We assume the contrary. In view of (4.2.19), there exists a sequence {¢y}
such that t; < tg11, klim t, = oo and
— 0

(4.2.21) lerr;o (w(ty) — v(tk))%qfn exp (_ / k P9 (T)a(v(r), (1)) dT) < 0.

to

Consider a sequence of solutions w,, of equation (1.1.21), which are defined by
the initial conditions w, (tg) = W(te) + (v(tg) — w(tp))/(n + 1). Since the solution
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@ is minimal, every solution w,, of (1.1.21) blows down to —oco at some ¢t = T,
e, limy_ 7, w,(t) = —oo and v(t) < wy(t) < @(t) for ty < t < Ty, Obviously,
Ty, < Tpy1 and lim,, ., T}, = oo. Choose a subsequence of the intervals [T},,, T, +1)
such that each interval contains at least one point of the sequence {t;}. Set ¢z, =
max {7&17 to, oy thy .. } N [Th,;, Tn,+1)- By virtue of the continuous dependence of
a solution on the initial data, there exists a solution wy, of (1.1.21) such that

Wk, (tk1) - /U(tki)7 W, (to) < W, (to) < u~)n7‘,+1(t0)7

(4.2.22) * A
v(t) < wy, (t) <w(t) for to <t < ty,.

From (1.1.21) it can be easily obtained that for to <t < ty,,

(4.223)  ((t)—w, (1)) =dy, exp </tr1qm o)l = [0 (7)1 d7>,

o w() — Wy, (7)

where dy, = (0(lg) — Wk, (t0))? L. Let us multiply (4.2.23) by

—r179(t) exp <— /t?”l_q(s)(ﬁ)(s) — Wk, (3))q_1 dS)

to

and integrate the obtained equality from ty to t. Then we get

(4.2.24) exp (— /t: P97 (W (r) — g, (7)) )

=1 —ds, /t: '=9(r) exp < / r! Wy, (s), w(s)) ds) dr,

Equalities (4.2.23) and (4.2.24) imply
(4.2.25)

(w(t)—we, (t)) it

dg, exp( ft ri=a( k7(7’) w(T))dr )
L—dy, fir=a(r) exp (— ft 7’1 9(s) F(wy, (5),0(s)) ds) d
For ¢t = ty,, from (4.2.25) in view of (4.2.22) and the definition of the function «
we obtain
1 di, exp (— ft’“' r=(Ta(v(r),w(r)) dr)

Wty,) —v(ty, )" '
(@(tr) —v(tr))" < 1=, [ a(ryexp (- I 7"1 9(s)a(v(s), 0 (s)) ds) dr

If we pass to the limit in this inequality, in view of (4.2.21) and the equality
lim di, = 0, we obtain the contradiction. |

11—

Using the previous statement, we can now prove the following necessary con-
dition for a solution w of Riccati equation (1.1.21) to be the minimal one.

Corollary 4.2.2. Let

(4.2.26) /OO () dt = oo
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and let w(t) > 0 for t > to be the minimal solution of Riccati equation (1.1.21).
Then

(4.2.27) /: r79(t) exp ( — M. /t: r () () dT> dt = c0.

In particular, if T is the principal solution of (1.1.1), then

it dt

Proof. We assume the contrary. Then in view of (4.2.26) we have

/Oo P () dt = oo

to

and hence

¢
liminf @Y (¢) exp <—m*/ 19 (s)we 1 (s) ds) =0.

t—oo to

Indeed, if this is not the case, then there exists a number d > 0 such that

di® (t) < exp (—m* / "=y () d7—>

to

for ¢t > tg. Consequently,

d/t P U () dr < /t r79(7) exp < — M /T ()T (s) ds> dr.

to to to

Since we have assumed that (4.2.27) is violated, the right-hand side of the last
inequality tends to a finite number as ¢t — oo, while the left-hand side tends to
00, i.e., we obtain a contradiction. Now, if we set v(t) = 0 in Theorem 4.2.5 and
note that a(0,z) = m.297!, then we conclude that (4.2.27) is valid by virtue of
Theorem 4.2.5. Divergence of the integral in (4.2.28) follows from the relationship
between solutions of (1.1.1) and (1.1.21). O

Now we turn our atteution to a sufficient integral condition for a solution of
(1.1.21) to be the minimal one.

Theorem 4.2.6. Let a continuous function v, defined on [tg, 00), be such that for
any solution w of Riccati equation (1.1.21), the inequality v(t) < w(t) is valid for
t > 19, and a solution w of (1.1.21), defined on [to,0), satisfies the condition

(4.2.29) /oo 9t exp (— /tr]q(T)ﬁ(v(T), () dT) dt = .

to to

Then w is the minimal solution of Riccati equation (1.1.21).
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Proof. First we note that if @w(t;) = v(t1) for some t; € [tg,00), then @ is the
minimal solution. Indeed, if not, then there exists a solution w of (1.1.21), defined
on [tg, ) and satisfying the inequality w(t) < w(t) for t > tg. But then w(t;) <
w(t1) = v(t1), which contradicts the fact how the function v is chosen.

Now we consider the case v(t) < w(t) for ¢t > t, and suppose that the conclusion
of the theorem is not true. Then there exists a solution w of (1.1.21) satisfying the
inequalities

(4.2.30) o(t) <w(t) <w(t) for t > tp.
Since for t > tg,

((t) — w(t))qfl _ tdo exp (— fto P U(r)F(w(r), w(r)) dr) |
1 —do [ ri=a(r)exp (— [, ri=9(s)F(w(s), @ (s)) ds) dr

t
to

where do = (0(tg) — w(to))? !, by virtue of (4.2.30) we obtain the inequality

_ doexp (— [F r1=9(7)B(r), @ (7)) dr
P SR T o M L ) e N
1—do fto ri=a(t)exp ( — fto r1=a(s)B(v(s), w(s)) ds) dr
The last inequality yields the contradiction in view of (4.2.29). O

As a consequence of the previous theorem we have the following statement.

Corollary 4.2.3. Let (4.2.26) hold, the integral [~ c(t)dt converge with
(4.2.31) C(t) .= / c(s)ds >0  for large t,
t

and let w be an eventually nonnegative solution of Riccati equation (1.1.21) satis-
fying

foe) t
(4.2.32) / r179(t) exp (— m*/ P (w1 (1) dT) dt = oo.
to to
Then w 1is the minimal solution of (1.1.21). In particular, if
*° dt
4.2.33 —_— =
( ) / a1 (t)ZEm* (t) 0,

then x is the principal solution of (1.1.1).

Proof. According to our assumptions, the function w solves the Riccati integral
equation

(4.2.34) wt) = (p— 1) /too =) () dr + C(8),

which implies that w(t) > 0 for large ¢. Now, the statement follows from the
previous theorem with v(¢) = 0 taking into account that 3(0,w) = m*w?=t. O
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4.2.8 Limit characterization of the principal solution

The “most characteristic” property of the principal solution in the linear case
is the limit characterization (4.2.2). In this subsection we show that the limit
characterization holds provided c(t) # 0 for large ¢ also for half-linear equation
(1.1.1), i.e., we prove that Z is the principal solution of (1.1.1) if and only if

L E(t)
(4.2.35) Jlim O 0

t

=

o

for any solution = of (1.1.1) linearly independent of Z.

First we reformulate and complement some statements of the previous section
to be directly applicable in the proof of the limit characterization of the principal
solution.

When ¢(t) < 0 for large ¢, we denote conditions involving integrals .Jy, Jo as
follows:

(C1) Ja=00; (Cy) Jy =00, Jo <o0; (C3z)J1 <00, Ja< o0,
where the integrals .J;, J3 are defined by (4.1.3)
Lemma 4.2.1. Suppose that c(t) < 0 for large t.
(i) If (C1) holds, then M~ = M, # 0.
(ii) If (C2) holds, then M~ = M # 0.
(iii) If (C3) holds, then My # 0 and Mg # 0.

In addition, when (Cy) or (Cs) holds, there exists a unique solution x of (1.1.1)
in the class My such that z(to) = p for any (to,p) € [0,00) x R~ {0}. When
(Ca) holds, there exists a unique solution x of (1.1.1) in the class My such that
x(to) = p for any (to, 1) € (0,00) x R~ {0}.

Proof. Claims (i)—(iii) follow {rom [59, Theorem 9], see also Theorem 4.1.4. The
existence of solutions in M~ has been shown in [71]. The uniqueness can be ob-
tained by using a similar argument as given in the final part of the proof of [57,
Theorem 4]. O

Lemma 4.2.2. Let c(t) < 0 for large t and assume the case (C3) of the previous
lemma. If x is a solution of (1.1.1) in the class Mg, then

lim r(¢)®(2'(t)) # 0.

{—o0

Proof. Assume lim;_, 7(¢)®(x’(t)) = 0 and, without loss of generality, suppose
0<z(t)<1,2'(t) <0fort>T > 0. Integrating (1.1.1) over (¢,00), t > T, we
obtain

—r(t)®(2'(t)) = /too c(s)®(x(s)) ds < D(2(t)) /too e(s)ds.
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Since x(t) < 1, we have

or

Integrating on (T,t),t > T we obtain

—log ;(g)) < /T‘t o1 <% /:o c(s) ds) dr,

that gives a contradiction as t — oo. O

Lemma 4.2.3. Let c¢(t) > 0 for large t.

(i) Assume J, = oco. Then any bounded nonoscillatory solution x of (1.1.1)
satisfies lim,— o, oM (t) = 0.

(ii) Assume that (1.1.1) is nonoscillatory and J, < oco. Then (1.1.1) has a solu-
tion x such that lim;_,o z(t) = 0.

(iti) Assume J, < 00, J. < 0o. Then any solution x of (1.1.1) in M~ satisfies

lim 2U(t) = ¢,

t—o0
where 0 < |€,| < o0.

Proof. Claim (i): Let « be a bounded nonoscillatory solution of (1.1.1}). In view of
Lemma 4.2.3, z € Mt and, without loss of generality, suppose z(t) > 0,z'(t) > 0
for t > t, > 0. Because z['! is (positive) decreasing on (t, o0), if 2[1(c0) > 0, we
have .
() > 2(ts) + &~ (@] (00)) / P1=4(s) ds
ta
that gives a contradiction as t — oc.

Claim (ii): If J. < oo, the assertion follows, as a particular case, from [286,
Theorem 2.2]. Assume now J. = oo and consider the reciprocal equation (4.2.15)
(its solutions are of the form y = r®(z') = 21}, Taking into account the reciprocity
principle and the fact that 4y} = & 1(y' /), it is sufficient to show that there exists
a solution y of (4.2.15) such that y!!l(co) = 0. Assume that all (nonoscillatory)
solutions y of (4.2.15) satisfy y[*(co) # 0. Let v be a principal solution of (4.2.15)
and, without loss of generality, suppose v(t) # 0, vl (t) # 0 for t >, > 0. Because
|olll] is decreasing, we have

e [ (L1
Ay = tLoo " U2(s)v[1](s)ds = PRIES] tLoo <v(tv) U(t)) '

Because v € M, we have A, < oo, i.e., a contradiction with Theorem 4.2.8 given
in the next subsection.
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Claim (iii): Without loss of generality assume x(t) > 0, 2’(t) < 0 for t > ¢, > 0.
Integrating (1.1.1) on (t,,t) we obtain

mm@—mmmﬂz—[c@@@@ﬁkz—ﬂﬂuﬂlc@ﬂ&

Taking into account that z[! is negative decreasing, as t — oo the assertion follows.
O

Now, we are ready to formulate the main result of this subsection.

Theorem 4.2.7. Suppose that (1.1.1) is nonoscillatory and c(t) # 0 for large t.
Then a solution & is principal if and only if the limit characterization (4.2.35)
holds for every solution x linearly independent of Z.

Proof. The proof follows different ideas in cases ¢(t) < 0 and ¢(t) > 0, so we divide
it into two parts.

(I) The case c(t) < 0 for large t.

“=”": Let & be a principal solution of (1.1.1). Since in case ¢(t) < 0 both
classes M, M~ are nonempty, we have # € M~ and there are two possibilities:
(i) Z(o0) = 0, (ii) Z(oo) # 0. Suppose case (i); if x € M*, (4.2.35) is clearly
satisfled; if z € M7, in view of the homogeneity property, the function

w(t) = ——=x(t)

is a solution of (1.1.1), such that w(0) = Z(0) # 0. By uniqueness in Mg, it
holds z(o0) # 0, that yields the assertion. Suppose case (ii) and, without loss of
generality, assume Z(t) > 0, Z'(t) < 0. Integrating (4.2.15) on (7',1),T large, we
obtain 0
x
0 < #(x) < I(T)J:(T)

Then no solution of (1.1.1) converges to zero as t — oo and, from Lemma 4.2.1,
the case (C2) holds. Using again homogeneity property, it is easy to show that
x € MT. In view of [59, Theorem 4] and also Theorem 4.1.4, = is unbounded and
(4.2.35) follows.

“«<=": Without loss of generality, assume there exists an eventually positive
solution # such that (4.2.35) holds for any solution x of (1.1.1) such that = # AZ,
X € R. Clearly & € M~, otherwise, if ¥ € M™T, by choosing z € M~, condition
(4.2.35) fails. When x € M*, condition (4.2.5) is satisfied. Now assume x € M,
and, without loss of generality, suppose z(t) > 0, 2'(¢) < 0. Taking into account
the homogeneity property and the uniqueness in M, we obtain z(c0) > 0 and so,
from Lemma 4.2.1, the case (C3) holds. Applying Lemma 4.2.2 and taking into
account that r(t)®(2’(t)) is negative increasing, there exists a positive constant m
such that

(4.2.36) ¢(j@>:r@¢WU»>m>Q
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ie.,
(¢
7(t) > & (m) > 0.
a'(t)
Taking into account (4.2.35), we obtain for large ¢
2t _#()
a(t) (1)’

i.e., (4.2.5) holds with @ instead of w.

(II) The case c(t) > 0 for large ¢.

“«<”: Assume that (4.2.35) holds for any solution z of (1.1.1) such that = # Az,
X € R. Suppose that Z is a nonprincipal solution of (1.1.1) and let z be a principal
solution of (1.1.1). Without loss of generality, assume Z(t) > 0, z(t) > 0 for
t > t1 > 0. Then for t > t; we obtain

(4.2.37) 2'(t)/2(t) < @'(t)/z(t)
and, because & # uz for any p € R, from (4.2.35) we have
(4.2.38) tlim Z(t)/z(t) = 0.

In view of (4.2.37), the ratio #(t)/z(t) is positive increasing, that gives a contra-
diction with (4.2.38).

“=": Assume now that Z is the principal solution of (1.1.1) and let us show that
(4.2.35) holds for any solution 2 of (1.1.1) such that # # A&, A € R. Without loss
of generality, assume £(t) > 0, 2(t) > 0 for ¢ > ¢; > 0. In view of (4.2.37), the ratio
Z(t)/x(t) is (positive) decreasing. Three cases are possible: (A) J, = 00, J. < o0;
(B) J, < 00,J. =00; (C) J, < o0, < 0.

Case (A): There are two possibilities: either (A7) all solutions of (1.1.1) are
unbounded (as t — o0), or (As) (1.1.1) has a bounded solution.

Assume (A1): In view of Lemma 4.2.3, 2, # € M". From Theorem 4.2.4, 1) is a
principal solution of (4.2.15) and so the ratio #!!(¢)/z')(t) is (positive) decreasing.
Then there exists the limit

(1] n
m 2 e (F0) — L, L>0.
t—o0 1’[1] (t) t—o0 x/(t)

By L’Hospital’s rule we obtain

im &t) = lim m_(t) = ¢!
t1—>:>o ;Ij(t) t1—>oo ;1:’(15) (I) (L)

If L = 0, the assertion follows. If L > 0, we have

, #(t) @) 170 #@) 22 <) 1
R {:%Q(t):?“](ﬂ} Lz(t):r“](t)} = o(t) #3(t) 2M()  LeY(L) =0

Hence both integrals
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have the same behavior as ¢t — oo, that contradicts Theorem 4.2.8 given in the next
subsection, because # is the principal solution of (1.1.1) and z is a nonprincipal
solution.

Asgsume (Asz): From (4.2.15) we obtain, for ¢ > t1, Z(t) < [E(t1)/x(t1)]z(t),
that yields the boundedness of Z. If z is unbounded, the assertion immediately
follows. Now assume 2 bounded and let lim; o [Z(¢)/2(t)] = d > 0. In view of
Lemma 4.2.3-(i), lim;_ o 21 (¢) = lim;_ o 2!'(t) = 0 and, by L’Hospital’s rule, we

obtain .
Ut T(t
tim 2 i o (E0) g,
t—oo gl (t) t—o0 aj(t)
Using again a similar argument to that given in the final part of the proof of claim
(A1), we obtain a contradiction and in case (A) the proof is complete.

Case (B): Taking into account Lemma 4.1.3 and Lemma 4.2.3-(ii), clearly
#(o0) = 0. If x(c0) > 0, the assertion follows. Now assume z(co) = 0. In view
of Theorem 4.2.4, applying the same argument as in case (A) to the reciprocal
equation, we obtain

lim w =

t—o0 x[l] (t) ’
that implies lim; . [Z (t)/2'(t)] = 0. Hence the assertion follows by using the
L’Hospital’s rule.

Case (C): In view of Lemma 4.2.3 (ii)-(iii), we have Z(co) = 0, Z[!l(c0) # 0.

If 2z € M, or x € M~ and x(oc) # 0, then the assertion follows. Now suppose
z € M, z(c0) = 0. In view of Lemma 4.2.3-(iii), we have z!"(c0) # 0. Taking
into account the homogeneity property, we can suppose Z[!l(co) = z[(c0). Now
define v = #Ml(t), y = ' (¢). Then v and y are solutions of the reciprocal equation
(4.1.1) and v,y € M. Because v(co) = y(00) # 0 and vl (c0) = yH(c0) = 0, we
obtain a contradiction with Theorem 4.1.7 and the proof is complete. |

4.2.9 Integral characterization of the principal solution

Among all (equivalent) characterizations of the principal solution of linear equa-
tion (1.1.2), the most suitable seems be the integral one (4.2.1), since it needs to
know just one solution and according to the divergence/convergence of the charac-
terizing integral it is possible to decide whether or not it is the principal solution.
The remaining characterizations require to know other solutions since they are of
comparison type. In the linear case, this is not serious disadvantage because of
the reduction of order formula which enables to compute all solutions (at least
locally) of the linear second order equation when one solution is already known.
However, in the half-linear case we have no reduction of order formula as pointed
in Section 1.3, so some kind of the integral characterization would be very useful.
An attempt to find an integral characterization of the principal solution of (1.1.1)
has already been presented in Subsection 4.2.7, see (4.2.28), (4.2.33). However,
since my, < m* if p # 2, these formulas do not provide the equivalent integral
characterization of the principal solution. In the main result of this subsection we
present one candidate for the equivalent integral characterization of the principal
solution of (1.1.1).
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First we prove an auxiliary statement concerning the function P introduced in
Subsection 1.2.1.

Lemma 4.2.4. The function P(u,v) defined in (1.2.2) satisfies the following in-
equalities

(4.2.39) P(u,v) 2 %Mg_p (®(u)—v)*, ps2, ®(u)#v, ut0,
and
(4.2.40) P(u,v) < ﬁ\uﬁ_p(fb(u) —v)?, p<2, @) > |v], wv > 0.

More generally, for every T > 0 there exists a constant K = K(T') such that

(4241) Plu,v) 2 KOl (@) =0, p22 ) £o, | 505 <
4
Proof. We present an outline of the proof only, for details we refer to [108, 117].
We have .
1| v v 1
Plu,v) = up{—‘— ———i——}

S ] R T

and

2
=Py _ & 2 _ v 1
WP o 0) = o (g 1)
Denote F(t) = [t|7/q—t+1/p, G(t) = (t—1)?/2. The function H = F — G satisfies
H(-1)=0=H(Q), HO0)=1/p—1/2 2 0 for p < 2 and a closer investigation of
the graph of this function shows that (4.2.39) and (4.2.41) really hold. O

We will also need the following partial result concerning asymptotics of the
nonprincipal solution of (1.1.1).

Lemma 4.2.5. Assume that (1.1.1) is nonoscillatory and J, < oo, J. = oo. Let
x be a nonprincipal solution of (1.1.1). Then lim;_ |z (t)] = cc.

Proof. Let & be a principal solution of (1.1.1). From Lemma 4.1.3 and Lem-
ma 4.2.3-(ii) we have #,z € M~ and #(c0) = 0. Assume |z!'l(00)| < oco. From
Theorem 4.2.7, lim; oo [#(t)/x(t)] = 0. In view of Theorem 4.2.4, 1! is principal
solution of (4.2.15)) and so Theorem 4.2.7 yields lim,_, o [#7(¢)/2[1(¢)] = 0, that
implies #!'!(c0) = 0. This is a contradiction because |#!!| is eventually positive
increasing. g

Now we are ready to formulate and prove the main result of this subsection.

Theorem 4.2.8. Suppose that equation (1.1.1) is nonoscillatory and T is its so-
lution such that T'(t) # 0 for large t.
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(i) Letp € (1,2). If

. o dt
(4.2.42) I(z) := / RO OO = 00,

then T is the principal solution.

(ii) Let p > 2. If & is the principal solution, then (4.2.42) holds.

(iii) Suppose that [ r'=9(t)dt = oo, the function ~(t) := [ c(s)ds exists and
v(t) > 0, but v(t) # 0 eventually. Then Z(t) is the principal solution if and
only if (4.2.42) holds.

(iv) Let c(t) > 0 for large t, [T r1=9(t)dt < co and [~ c(t)dt = oo. Then Z(t)
is the principal solution if and only if (4.2.42) holds.

Proof. (i) Suppose, by contradiction, that a (positive) solution z of (1.1.1) satis-
fying (4.2.42) is not principal. Then the corresponding solution w, = r®(z’'/x) of
the associated Riccati equation (1.1.21) is not eventually minimal. Hence, there
exists another nonoscillatory solution y of (1.1.1) such that

(4.2.43) wy = r®(y'/y) <w, eventually.
Due to the Picone identity given in Subsection 1.2.1 we have
r(O)|2'|P — e(t)a” = [2Pwy) +pr' ()PP (2 (ws), wy)
and at the same time
rOl') - c(va? = (@Pw,) — @ [(r(O2@E)) + (D) = @)
Subtracting the last two equalities, we get
[ (we — wy)]/ = pri 1 (Q)a? P(® ™ (ws), wy).

Let f(t) = xP(wy — wy). By (4.2.43) there exists T sufficiently large such that
f(t) >0 fort > T. Then by Lemma 4.2.4 we have

% = %rlfQ(t)xPP(CI)q(wz),wy)
1—
> S e Ol

b
2r(t)x?|z!|p—2"

Integrating the last inequality from T to T} (77 > T), we have

1 1 1 P T dt
f(T) ~ Ty f(1) & 2/T r(t)x2(t)|2' (t)[P—2
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and letting Ty — oo we are led to contradiction. Hence a solution satisfying (4.2.42)
is principal.

(ii) We proceed again by contradiction. Suppose that Z is the principal solution
and I(Z) < co. Let T be chosen so large that #(¢) > 0 for t > T and

/°° dt < 1
r rOBOF P2 p
Consider the solution w(t) of Riccati equation (1.1.21) given by the initial condition

1

w(T) =w(T) - 2 (T)’

where 10 = r®(&' /%), i.e., ©(T) < w(T). We want to show that @w(t) is extensible
up to oo. To this end, denote f(t) = #P(¢)(w(t) — w(t)). Then f(T') = 1/2 and
using the Picone identity, we have

J{; _ WP(rql(t)@',w@(az)),

hence, integrating this identity from 7T to t

L etasans) L )
(4.2.44) T p/T (s P <7" (s) 7w(s)) ds.

By (4.2.39) of Lemma 4.2.4 we have

g—157
P<r ~:z: ,w> Sl
T 2

which means, using (4.2.44) and taking into account that f(T) = 1/2,

_ (111 - w)27

,r.qfli,/

T

-1

Cplaar(s) o
i) < (2—p [ S pe o <s>/x<s>,w<s>>ds)

(2 p/TOC Qr(t)jQ(;ﬁj/(tﬂp_Q)l <1

Consequently, 1/2 < f(t}) < 1 and f(t) can be continued to oo, hence w(t) is a
continuable up to infinity solution of (1.1.21) and @(t) < w(t) for t > T, i.e., w(t)
is not minimal. Thus, the solution #(¢) is not principal, which was to be proved.
(iii) The principal solution Z(t) of (1.1.1) is associated with the minimal solu-
tion (t) of (1.1.21) and hence it is also the minimal solution of the Riccati integral
equation (the convergence of [ 7'=9(t)|w(t)|? dt follows from Theorem 2.2.3)

A

() =10+ (0 1) [ T re(as)eds, 62T,

and by the assumptions on +(t), there exists T € R such that w(¢) > 0 for t > T.
Since w is the minimal solution, for any other solution w of (1.1.21) we have
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w(t) > w(t) > 0for t > Ty > T, and hence the associated solutions z(t) and Z(t)
satisfy the inequalities z/(t) > 0, &'(t) > 0 for ¢t > 1.

Now the proof goes in different ways according to 1 < p <2 or p > 2.

Case A (1 < p < 2): By the part (i) it is suflicient to show that the integral in
(4.2.42) is really divergent. Suppose the contrary, i.e.,

/°° dt <o
()2 (e (82 '

Let T5 > T be chosen so large that

/°° dt 2p—1)

n TOROFOF = p

Consider the solution @w(¢) of (1.1.21) with the initial condition

1
0(Ty) = (T) — —
w( 2) ’LU( 2) 25:2(/]12)7
and accordingly, let the function f(¢) be defined by

f) =2 (Ow(t) — w(t)].

Clearly, f(T2) = 1/2. Following the computation in the proof of the claim (i), we
find

P(@™H(w(t)), w(t)),

hence by (4.2.40)
) p 1
JAE) " 2(p = 1) r(0)22 ()] (1) [P—2

and integrating this inequality over [T3,1] we find

11 1 p t ds
) 7 zp—l./TZ ()22 (s)[2 (5) ]2

p = ds
2(10— 1) \/sz T(S)i'2(5)|j/($)|p72 <1,

consequently, 1/2 < f(t) <1 for t > T;. Thus, the function @(t) exists on [T3, 00)
and @(t) < @(t), i.e., W(t) is not minimal solution of (1.1.21), hence Z(¢) is not
the principal solution, and this contradiction proves the first case.

Case B (p > 2): By the claim (ii), it is sufficient to show that if the solution
x is not principal then the corresponding integral in (4.2.42) is convergent. Let
w(t) = r(t)®(2’(t)/x(t)) be the associated solution of (1.1.21). Then w(¢) is not
minimal solution of (1.1.21) and let w(¢) be the minimal solution of this equation.
Then we have w(t) > w(t) for t > To with Ty sufficiently large. Consider the
function f(t) given again by

FO) = 2P (O)[w(t) —@(t)] >0 for t> Ty
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By inequality (4.2.40) given in Lemma 4.2.4 we have again
[

= ZplmiP P> Yw), W) >

2 f2

p 1
2(p — 1) ra?|z’'|p—2’

tZT27

hence

11 1 p /t ds
f(T2) © f(T2)  f() ~ 2(p—1) Jy, ra?[a’ P~

then letting ¢ — oo we obtain the desired result

/Oo dt < 00
J (@) (t)]a(t) P2 '

(iv) In view of Lemma 4.1.3, let & be a principal solution of (1.1.1) such that
#(t) > 0,21(t) < 0 for t > T. Using Theorem 4.2.4 and applying the statement
of the part (iil) to the reciprocal equation (4.2.15) we obtain

* 0eG(D)
A@@W%W“"
We have
N L@ (s) 1 boe(s)®(2(s))
@ = /T #2(il(s) = w@ane Ut /T i) @ (s)2 ©

where L = [#(T)ul/(T)]7, i.e., (4.2.42) holds.
Vice versa, let « be a nonprincipal solution of (1.1.1) and let us show that

(4.2.45) I(z) = /Do % ds < 0.

Without loss of generality suppose z(t) > 0, 2/!/(t) < 0 for t > t, > 0. By using
Theorem 4.2.4 and applying again the part (iii) to (4.2.15) we obtain

7 e(t)@(x(t)
Hence the function

[ els)®(a(s) )
Fz(t)*/t st_/t st

@ @

admits limit as ¢ — oo and lim;_,o F(t) = Ly, —00 < L, < oo. Put d, =
[z(tz)z!™(t,)] . From the identity

b * o(s)b(a(s)) Cw(s)
(4.2.47) WWW)P”f@@@%W“‘Lﬁ@M@“}

-1
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also the function z(t)zl(¢) has a limit as t — oo and limy_ . z(t)zM(t) = £,,
—oo < ¢, < 0. We claim that
(4.2.48) lim z(t)z! (1) = —oc.

t—oc

Otherwise there exists a positive constant K such that z(¢)z" () > —K and

[ LD L[S L 0

. 2(s)(zl(s))? K [, |20(s)] K8 |e (t)]

that gives a contradiction with (4.2.46) as t — oo, because, from Lemma 4.2.5
we have lim; . [2!!(t)| = co. Hence (4.2.48) holds and, from (4.2.47) we obtain
(4.2.45). O

Remark 4.2.3. The equivalent integral characterization of the principal solution of
(1.1.1) is stated in the parts (iii) and (iv) of the previous theorem is proved under
some restriction on the functions r, ¢ in (1.1.1). In order to better understand these
restrictions, the concept of the regular half-linear equation has been introduced in
[117] as follows. A nonoscillatory equation (1.1.1) is said to be regular if there
exists a constant K > 0 such that

lim sup
t—00

wWa (t)

for any pair of solutions wi,ws of the associated Riccati equation (1.1.21) such
that wy(t) > wi(t) eventually. It was shown that for regular half-linear equation,
(4.2.42) holds if and only if the solution Z is principal and that under assumptions
of (iii) and (iv) of the previous theorem equation (1.1.1) is regular.

4.2.10 Another integral characterization

The integral characterization (4.2.42) of the principal solution of (1.1.1) reduces
to the usual integral characterization of the principal solution of linear equation
(4.2.1) if p = 2. However, this characterization applies in case p > 2 only to solu-
tions x for which z'(t) # 0 eventually. Moreover, in [60, 61] examples of half-linear
equations are given which show that if the assumptions of the parts (iii) and (iv)
of Theorem 4.2.8 are violated, (4.2.42) is no longer equivalent characterization of
the principal solution of (1.1.1). For this reason, another integral characterization
of the principal solution was suggested in [60].

Theorem 4.2.9. Suppose that either
(i) c(t) <0 for large t, or

(it) c(t) > 0 for large t and both integrals [~ ri1=9(t)dt, [ c(t)dt are conver-
gent.

Then a solution & of (1.1.1) is principal if and only if

e dt
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Proof. (i) Suppose that ¢(t) < 0 for large t.

“=7: Let & be a principal solution of (1.1.1). As already claimed, & € M~
and there are two possibilities: (a) Z(oco) = 0, (b) Z(c0) # 0. Suppose case (a); if
[7ri74(t) dt = oo, the assertion clearly follows. Assume [ r!=9(t)dt < oo and,
without loss of generality, suppose Z(t) > 0,4’ (¢) < 0. Since, for t > T, it holds

r)®(E' (1)) > r(T)2('(T)),
integrating on (¢, 00) with ¢ > T, we obtain
Z(t) < K/ ri=9(s) ds,
¢

where K = @ 1(r(T))|#'(T)|. Then

N i O DA T L el O N
Iz—/T 20) dt>K2/T [ftocrl—q(s)ds]th

oG

1
_ftoo ri=a(s)ds ‘T -

i.e., condition (4.2.49) is verified. Now assume the case (b) when Z(c0) # 0. In-
tegrating (1.1.21) on (7T,t), t > T > 0, and using the same argument as given
in Theorem 4.2.7 (the only if part), the case (C3) defined at the beginning of
Subsection 4.2.8 holds. From [59, Lemma 2], we have [ r'=9(t)dt = co and the
condition (4.2.49) follows.

“ &”: Let x be a nonprincipal solution of (1.1.1) and let us show that for T
large it holds

~ oy
(4.2.50) /Trq_l@';ﬂ(t)<oo.

Suppose x € M and, without loss of generality, assume z(t) > 0,z'(t) > 0 for
t > T > 0. Then there exists K > 0 such that for ¢ > T it holds r(¢)®(2'(t)) >
K >0, ie., 2/(t) > @ Y(K)r'~4(t). Integrating over (T',1) with ¢ > T" we obtain

t t

r(s)ds > <I>71(K)/T r14(s) ds.

2(t) > (T) + qu(K)/

T

Then for t3 > t; > T it holds

ta . 1—q 1 t2 1—q
/ rz(t)dt<— 2(71)/ L ®) _dt
no (1) K2 u [fpriT(s)ds)?
1

?_ g20-0) !

t [t rl=a(e) dt

< 0.

B K2(q-1) f; ri=4(s)ds

As t; — oo we obtain the assertion.
It remains to consider the case € M™. Let & be a principal solution of
(1.1.1). Because z is a nonprincipal solution, we obtain lim;_.[Z(f)/z(t)] = 0
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in view of Theorem 4.2.7. Then £ € My and, using the homogeneity property
and the uniqueness in My, we obtain € M};. In view of Lemma 4.2.1, the case
(C3) holds, that yields [ r!174(¢)dt < co. Hence (4.2.50) is verified because z? is
asymptotic to a positive constant.

(ii) Suppose that ¢(t) > 0 for large ¢ and J, + J. < oc.

“=”: Let  be a principal solution of (1.1.1). In view of Lemma 4.2.3 (ii)-(iii),
we have Z(00) = 0, #!1(0c0) = £ # 0. Without loss of generality, suppose #(t) > 0,
#'(t) < 0 for t > T. Because

. O
Ly TSP

there exists a positive constant k such that #(t) < k [~ &~ (r’l(s)) dsfort >1T.

Then
/TOO 77"‘1—](51)52(3) ds > % /TOO r174(s) {/:o () d’T:| N ds

i.e., condition (4.2.49) is verified.

“«<": Let = be a nonprincipal solution of (1.1.1) and let us show that (4.2.50)
holds. If z € M*, then clearly the condition (4.2.49) follows. It remains to consider
the case x € M. In this case, by using the same argument as given in the proof of
Theorem 4.2.7 — Case C, we obtain z(co) # 0 and so the assertion again follows.

O

4.2.11 Oscillation criteria and (non)principal solution

In this subsection we use the integral characterizations of principal and nonprinipal
solutions of (1.1.1) given at the end of Subsection 4.2.7 in order to establish suffi-
cient conditions for oscillation of (1.1.1). We also present one oscillation criterion
based on the integral characterization given in Subsection 4.2.9.

Theorem 4.2.10. Let (4.2.26) holds and suppose that
(4.2.51) C(t) ::/ c(s)ds s convergent
¢

and C(t) > 0 for large t. Then (1.1.1) is oscillatory provided one of the following
conditions is fulfilled:
() p>2, [Frim@)[C(H)F dt < oo and

/[OO r'79(t) exp (— q/{Lrl‘q(s)(a(s) +C(s) ds) dt < o,

L0 L0
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where
3¢

aft) = [2“(1» - [T ugice)! ds} ;
(i) p € (1,2), [ r=9(t)[C(1)]F dt = oo and

/oo r179(t) exp ( —q /tlt rt(s) (v(s) + C(s))‘F1 ds) dt = oo,

where h h L
10 = [#e-n) [ Peeicerta)

Proof. Assume, by contradiction, that (1.1.1) has a nonoscillatory solution z and
let w be the associated solution of Riccati equation (1.1.21). Then w solves also the
Riccati integral equation (4.2.34). Set p(t) = (p — 1) [ 7'79(s)|w(s)|? ds. Then

Using the inequality p + C > 24/pC, we find
(4.2.53) (1) = —(p = Dr'9(@)]p(t) + C(H)]7 < =29(p — Vr' IH)[C 1)) % p* (2)

for large t.

We will prove the statement (i) only, the proof of (ii) is similar (and it is also
based on Corollary 4.2.3). From (4.2.53) we have p(t) > a(t) for large ¢, say t > ¢o.
Therefore, due to (4.2.52), w(t) > a(t) + C(t). Hence, we obtain

|z(t)| > |z(to)|exp (/ r'=(s) (als) + C’(s))q_1 d8> for t > to.

to

Thus we have the inequality

[ o

,Og oft)] 7 /t :o P19 (4) exp < g /tt P95 (als) + C(s) " ds> dt < oo,

which, by virtue of Corollary 4.2.2 and the condition m, = ¢ for 1 < ¢ < 2,
contradicts the behavior of principal solutions.

The sufficiency of the condition (ii) for the oscillation of (1.1.1) can be proved
by a similar way, using the fact that m* = ¢ for ¢ > 2. O

Now we give some integral conditions for the oscillation, in which no additional
restrictions are imposed on the value of p.
Theorem 4.2.11. Let (4.2.26), (4.2.51) hold, C(t) > 0 for t > tq and
/ IO ()] dE < oo.
to

Then (1.1.1) is oscillatory provided one of the following conditions holds.
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(i) Either

/OC r'=4(t) exp ( — . /t r'=9(s)(3(s) + C()) " d5> dt < co,

ty to

where

0 ==1) [ riC) ds
(i) or
/OO P exp (— m* /t P11 (s)(w(s) + C(s))"" ds> dt = oo,

t1 t1

w(t) = </t:r1_q(s) ds)lp.

Proof. We assume the contrary. Then we have (4.2.52), which yields the inequality
w(t) > C(t) for t > ty. This means that

where t1 > tg, and

(1250 p) 2 (1) [ (Cs) s
t
for t > tp. On the other hand, from (4.2.52) it follows

Pt =—(p =1 9(t) (p(t) + C0))" < (p— ' 1()p"(1)

for t > tg. Consequently,

(4.2.55) p(t) < (/t: r174(s) ds)lp

for t > tg. Relations (4.2.52), (4.2.54), and (4.2.55) imply

ua(t2)] exp ( [ s + e ds) < lus(®)

t1

and ;
_ -1
i)l = st ([ r1=506) ot = () s
ty
for t > t;, where t; > t3. These inequalities contradict the behavior of principal
and nonprincipal solutions of (1.1.1). O

We conclude this subsection by the oscillation criterion for (1.1.1) whose proof
is based on the integral characterization of the principal solution of (1.1.1) given in
Theorem 4.2.8. This criterion is a half-linear extension of the oscillation criterion
of Wintner (see [341, Theorem 2.17]) which claims that (1.1.2) with r(¢) = 1 is
oscillatory provided

[Few{oa [ [t ashar <.



4.2. Principal solution 169

Theorem 4.2.12. Suppose that p > 2, (™ r1=9(t) dt = oo, the integral [ c(t) dt
is convergent and [ ¢(s)ds > 0 for large t. If
(4.2.56)

/ T ( / o) ds)q_gexp {p / () < / ) dT) "~ ds} gt < oo,

then (1.1.1) is oscillatory.

Proof. Suppose, by contradiction, that (1.1.1) is nonoscillatory and let & be its
principal solution at co. Put @ = r®(3')/P (:i) Then w is a solution of Riccati

integral equation (2.2.17). Then, since &’ = ®~1 (1w (t)/r(t)) x, we have
S F o w(s) FOTN([ elr) dr)
&) ‘EXP{/ md} >e"p{/ &-1(r(s) ds}
and
@) [ D=2 )
Fop? = |20 E(0)
_ Qb(t) 2 =, p—2
= |Z(2)]

Consequently,

r(t)E2(t)|7 ()P~ ra—1(t) Utoo c(s) ds’zjq

This implies that

/DO dt < 00
r(t)a ()| (t) P2 ’

and this contradiction with the part (ii) of Theorem 4.2.8 completes the proof. O
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4.3 Half-linear differential equations and
Karamata functions
In this part we establish the criteria, which are natural generalizations of the

results for linear equations (see e.g. [181] and other works, in particular those of
Marié). Since the purpose is to develop nonoscillation theory of the equation

(4.3.1) (®(z")) + c(t)®(z) =0,

where ¢ : [0,00) — R is a continuous function for which

oc t

/ e(t)dt = lim c(s)ds is convergent,
0 t=o0 Jo

in the framework of regularly varying functions in the sense of Karamata, let us

recall briefly those basic definitions and properties of such functions which will be

indispensable later. Note that the detailed presentation of the theory of regularly

varying functions can be found in the books [44, 338]

Definition 4.3.1. A positive measurable function L(#) defined on (0, c0) is said
to be slowly varying function if it satisfies

LOY
tirgom—l for any A > 0.

The next result is a type of representation theorem.

Theorem 4.3.1. A positive measurable function L(t) defined on (0,00) is slowly
varying if and only if it can be written in the form

(4.3.2) L(t) = p(t) exp { L @ ds} , 1>,

to

for some to > 0, where p(t) and Y(t) are measurable functions such that

lim ¢(t) = a € (0,00) and Llim P(t) =0.

1—o00

Definition 4.3.2. If, in particular, ¢(¢) is identically a positive constant in (4.3.2),
then L(t) is called a normalized slowly varying funciion.

The totality of slowly varying functions (resp. normalized slowly varying func-
tions) is denoted by SV (resp. N'SV).

Definition 4.3.3. Let g be a fixed real number. A positive measurable function
f(¢t) is said to be a regularly varying function with indez p if it satisfies

lim w:)\g for any A > 0.

s (D)

Just defined function can be represented as follows.
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Theorem 4.3.2. A positive measurable function [ defined on (0,00) is reqularly
varying with index o if and only if it can be written in the form (4.3.2) where
and 1 are measurable functions such that

(4.3.3) tlim oty =ac (0,00) and tlim P(t) = o.

Definition 4.3.4. A positive measurable function f defined on (0,00) satisfy-
ing (4.3.2) and (4.3.3) with ¢(t) = const is called a normalized regularly varying
function with index p.

Theorem 4.3.3. A positive measurable function [ defined on (0,00) is a reqularly
varying function (resp. a normalized regularly varying function) with index o if and
only if f(t) is expressed as f(t) = t2L(t), where L(t) € SV (resp. L(t) € NSV ).

The totality of regularly varying functions (resp. normalized regularly varying
functions) with index g is denoted by RV(p) (resp. NRV(p)).

Definition 4.3.5. A positive measurable function f is said to be an O-regularly

varying function if it satisfies
f(A)

0< 1itminf J(N) <limsup ——= < ¢ for any A >1.

= f(t) T e f(2)

Theorem 4.3.4. A positive measurable function f is O-regularly varying if and
only if

(4.3.4) f(t)y =exp {f(t) + /t %S) ds} , 1> 1o,

to
for some ty > 0, where £ and 1 are bounded measurable functions on [tg,o0).

Definition 4.3.6. If, in particular, £(t) = const in (4.3.4), then f(¢) is referred
to as a normalized O-regularly varying function.

The totality of O-regularly varying functions (resp. normalized O-regularly
varying functions) is denoted by OR (resp. NOR).

We finish this part, which deals with the theory of Karamata functions, by the
following simple but important property.

Theorem 4.3.5. Let L be any slowly varying function. Then, for any v > 0,

lim t"L(t) = co and tlim t77L(t) = 0.
—0oc

t—o0

4.3.1 Existence of regularly varying solutions

Now we prove nonoscillation theorems for (4.3.1) asserting the existence of so-
lutions in the classes of regularly varying functions. We start with an auxiliary
statement.
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Lemma 4.3.1. Put o(t) = [ c(s)ds and suppose that there ezists a continuous
function P : [to,00) — (0,00), tg > 0, such that lim; .o P(t) =0, |o(t)| < P(t),

t > tg, and

(4.3.5) / Pi(s)ds < 1aq*1P(t), L > to,
t p—-
for some positive constant
1 /p—1\""
(4.3.6) a< - <p—> .
p p
Then equation (4.3.1) is nonoscillatory and has a solution of the form
t
(4.3.7) y(t) = exp {/ O u(s) + o(s)] ds} , 1>,
to
where v s a solution of the integral equation
o0
(4.3.8) o(t) = (p— 1)/ l(s) + o (s)[3ds, ¢ > to,
t
satisfying
(4.3.9) v(ty = O(P(t)) as t — oo.

Proof. Cousider the function y defined by (4.3.7). Recall that if w is a solution of
generalized Riccati equation (3.1.2), then the function exp {ftto O (w(s)) ds} is a
(nonoscillatory) solution of (4.3.1). Hence, y is a solution of (4.3.1) if v is chosen in
such a way that w = v+ o satisfies (3.1.2) on [tp, 00). The differential equation for
v then reads v’ +(p—1)|v+0(¢)|? = 0, which upon integration under the additional
requirement that lim,_,. v(¢) = 0, yields (4.3.8). We denote by Cpl[tp, o0) the set
of all continuous functions v on [tg, 00) such that

()]

v = Sup ——~ < 0.
l[vllp S B

Clearly, Cpltp, 00) is a Banach space equipped with the norm ||v|/p. Let Q be a
subset of Cp[ty, 00) defined by Q = {v € Cp[to,0) : [v(t)| < (p— 1)P(t),t > to}
and define the mapping 7 : Q — Cp[tg, o) by

(4.3.10) To(t)=(p— 1)/ |v(s) + o(s)|%ds, t > tg.
¢
If v € Q, then

7o) < (- 0" [ " Pa(s) ds < pat P(D),
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t > tg, which implies that
_ -1yt
(13.11) Tole <t <pr (TS ) =

Thus 7 maps € into itself. If vy, ve € 2, then, using the Mean Value Theorem, we
see that

[T (t) = Toa(l))

IA

-1 /too [lv1(s) + o(8)]7 = [va(s) + o(s)| | ds

IN

(- 1)g / " @P()) o (5) — va(s)] ds

= pq/toc Pq(s)%@;&(s” ds

< pUg—1)a® ' P(t)|vr — valp,

t > tg, from which it follows that
|Tvr — Toallp < (g — 1)pTa?™ oy — vellp.

In view of (4.3.6) (or (4.3.11)), this implies that 7 is a contraction mapping on
Q. Therefore, by the contraction mapping principle, there exists an element v € €)
such that v = 7 v, that is, a solution of integral equation (4.3.8). Thus the function
y(t) defined by (4.3.7) with this v(¢) gives a solution of (4.3.1) on [tg, 00). The fact
that v satisfies (4.3.9) is a consequence of v € §). This completes the proof. |

Theorem 4.3.6. If

o p—1 o0
! <u) < lim inft”fl/ c(s)ds
t

P P t—oc
o0 L/p—1\""
< limsuptpfl/ e(s)ds < — <p>
t—oc t p p

holds, then equation (4.3.1) is nonoscillatory and has a normalized O-regularly
varying solution.

Proof. If the assumption holds, then there exist positive constants ¢y and a sat-
isfying (4.3.6) such that |[tP~ o (t)] < a, t > to. Put P(t) = at*~P. Then it can
be easily verified that P satisfies |o(t)] < P(¢) and (4.3.5). So, by Lemma 4.3.1,
(4.3.1) has a nonoscillatory solution of the form

(4.3.12)

v =ew{ [ "B (0(s) + () ash=ew{ [ ) £ ols)) s}

to to

t > ty, with v satisfying (4.3.9). Since
|7 [tP (w(t) + o ()] < pI™H(E@TIP()TT = (ap)t,

t > tg, the solution y is a normalized O-regularly varying function by Theo-
rem 4.3.4. [l
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Now let us turn to the case where the coeflicient ¢ satisfies the condition

o0 1/p—1\"""!
(4.3.13) —o0 < lim tpfl/ c(s)ds=1a< - (p_>
t—o0 ¢ p D
or
&9} 1 o 1 p71
(4.3.14) lim tp*]'/ e(s)ds = — <p_) ,
t—oo ¢ p P

and investigate how these conditions affect the regularity indices of nonoscillatory
solutions of (4.3.1) considered as Karamata functions. Suppose first that (4.3.13)
holds. Let A\; and A3, A1 < A2, denote the two real roots of the equation

(4.3.15) A7 = A+a=0.

It is easy to see that (4.3.15) has two distinct real roots if and ounly if ¢ <
p—1
L(21)" . Clearly, & < 0 < D ifa < 0, and 0 < A < A if 0 < a <

P\ P
p—1
% (pp%l) . It should be noticed that p® (A1) < p—1 < p®1(A2).

Theorem 4.3.7. Equation (4.3.1) is nonoscillatory and has two solutions y, and
y2 such that y1 € NRV(®1(\1)) and y2 € NRV(®1(X\2)) if and only if (4.3.13)
holds.

Proof. The “only if” part: Let y; be solutions belonging to NRV(®1(\;)), i =
1,2. From Theorem 4.3.2 it follows that

"t Tt
(4.3.16) im %48 — 5-100,), so that Tim vl o g

t=oo y4(t) —o0 yi(t)
Put w; = ®(y'/y), i = 1,2. Then w; satisfies generalized Riccati equation (3.1.2),
from which, integrating on [t, 00) and noting that lim; . w;(t) = 0, we have
[P hwi(s)|?

(4.317) 171w (1) :(p—l)tp_l/ v ds+t7"l/ o(s)ds, i=1,2,
t t

for all sufficiently large t. Let ¢ — oo in (4.3.17). Using (4.3.16), we then conclude
that

e}
lim tp_l/ els)yds=X i —|N|T=a, i=1,2.
¢

t—o0

The “if” part: Assume that (4.3.13) holds. Put w(t) = t?=' [ ¢(s)ds — a and
consider the functions

(4.3.18) yi(t) = exp{/fj P! <A" +wls) +”"<S)) ds}, i=1,2.

sp—1

Then the function y; is a solution of (4.3.1) on [t;, 00} if v; is chosen in such a way
that w; = (\; +w + v;)/tP~! satisfies (3.1.2) on [t;,00), i = 1,2. The differential
equation for v; then reads

p—1 p—1

(4.3.19) v = = vk —— (A w() H ol = 1) =0, i=1,2,
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We rewrite (4.3.19) as

o PP (i +w(t) = (p— l)w

t
p—1

B[ w0 + it — g7 O+ w(B)o — [AJ9] =0

and transform it into

(4.3.20) (re(®)oi) + L L (O F (1, vi) = 0,
where . .

ri(t) = exp {/1 pe” +w£s)) i Gha)) ds}
and

Fi(t,v) = ‘)\Z +w(t) + U‘q — q(b_l(Al + w(t))v — |Ai|q7 7= 172

It is convenient to express F;(t,v) as Fi(f,v) = Gi(t,v) + h;(1), with G;(¢,v) and
hi(t) defined by

Gi(t,v) = [N +w(t) + 0|7 = q® 7 (N + w(t))v — [N +w(t)]?

and h;(t) = |\ +w(t)|? — |\, i = 1,2. Now we suppose that a # 0 in (4.3.13),
which implies A; # 0 for i = 1, 2. Let tg > 0 be such that |w(t)| < |A\;]/4 for t > to,
i = 1,2. This is possible because w(t) — 0 as t — oo by hypothesis. It follows that
3IN| < [N +w(t)] < B|A| for ¢ > to, i = 1,2. We observe that there exist positive
constants K;(p), L;(p) and M;(p) such that |G,(¢,v)| < K;(p)v?,

0G;
ov

(4.3.21) ‘ (t,v)’ < Li(p)|v|
and |k, ()] < M;(p)lw(t)| for t >ty and |v| < [A;]/4, ¢ = 1,2. In fact, the last two
estimations follow from the Mean Value Theorem, while the estimation for G; is
a consequence of the L’Hospital rule applied to G;:

lim Gi(t,v) 1 lim 0°Gi(t,v)

q -2
7 /\, t q A
v—0 2 2v-0  Gv? 2(p—1)‘ it

Let us examine equation (4.3.20) with ¢ = 1. The following properties of r; are
needed: 71 € NRV(®~}(p) — (p — 1)), lim—oo 71 (t) =0,

. op=1 [*ris) . =r1(t) p—1
43.22) 1 ds=(p—1) 1 - :
520 B [ RS = (=) i Soit = o

(4.3.23)  lim p;(t; / “T(S)h(s) ds =0 if heC[0,00), and lim h(t) =0.
t 0
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Let £1 be a positive constant such that £y < min{1, |A;|/4} and

2(p—1)
p—1—pd=t(A)

and choose t; > tg so that

(4.3.24) [K1(p) + Li(p) + Ma(p)ler < 1,

(4.3.25) w(t) < ety t>t,
and
—1 [ 2p—1
(4.3.26) P ris) (p—1) >t

s < R
) Je s Tp—1-p0i(\) T

Note that (4.3.26) is an immediate consequence of (4.3.22).

Let Co[t1,00) denote the set of all continuous functions on [t1,c0) that tend
to zero as t — oo. Then Cylt1, 00) is a Banach space with the sup-norm ||v| =
sup{|v(t)| : t > t;}. Consider the set Q1 C Cy[t1,00) defined by Q1 = {v €
Colt1,00) : |v(t)] <e1,t > {1} and define the integral operator 7; by

mnxw—iiglmriﬁm@w@»w,

t > t1. It can be shown that 77 is a contraction mapping on €2;. In fact, if v € 0,
then using the above inequalities we see that

(Tio)0)| < p_llmfiﬁ(GM&w$)+hﬂ@D®

S

< [wrdﬂUG@w%$+AL@ﬁdﬁD$

<

/w”“%&@wwﬁ@kws

/ s

2(p—1)
p—1-p2=t(A)

t > t1. Since Fi(t,v(t)}) — 0 as t — oo, we have lim;—, o (71v)(t) = 0 by (4.3.23).

It follows that 7;v € 1, and so 77 maps {2; into itself. Furthermore, if u,v € Q1,
then using (4.3.21) and (4.3.24), we obtain

< [K1(p) + Mi(p)let,

(o) -G < 2 [T s () - Filsu(s) ds

7“1(75),
_ p=1 [Tnls) s,v(8)) — Gi(s,u(s))| ds
_ n@y[ G (5.0(s) = Ca(s,uls)) d
2(p—1)

< L —
- p_l_p(pfl()\l) 1(p)51”1) UH’

t > ty, which implies that

2(p—1)L:(p)
—1—p®-1(N\)

|Tw = Trul < 1llo — ul.
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In view of (4.3.24), this shows that 7; is a contraction mapping on £2;. The con-
traction mapping principle then ensures the existence of a unique fixed element
vy € £ such that vy = 77v1, which is equivalent to the integral equation

(4.3.27) vi(t) = Z;];(t)l /too 7125) Fi(s,v1(s)) ds,

t > t;. Differentiation of (4.3.27) shows that v; satisfies differential equation
(4.3.20) with 7 = 1 on [t1, 00) and so substitution of this v; into (4.3.18) gives rise to
a solution y; of half-linear equation (4.3.1) defined on [t1, 00). Since limy_, o v1 (t) =
0, from the representation theorem we have y; € NRV(®1(\1)).

Our next task is to solve equation (4.3.20) for ¢ = 2 in order to construct
a larger solution y, of (4.3.1) via formula (4.3.18). It is easy to see that ro €
NRY(p® 1 (A3) —p+ 1), limy—o 72(t) = oo and that for any fixed ¢ > 0,

p—1 trg(s) . re(t) p—1
o () /t s ds=r D i = e ) —p 1

2

-1/t h
lim 2 / r2(MS) 100 i he Clta,o0) and Tim A(t) = 0.
t—00 rz(t) Jt, S t—oc

Let €5 > 0 be small enough so that

2(p—1)
pq)*l()\z) —-p+1

[K2(p) + La(p) + Maz(p)lea < 1,

and choose 12 > 0 so large that w(t) < €2, ¢ > {3, and

p—1 ['ra(s) 2(p—1)
Tz(t)/t 2 d8§p<1>*1(/\2)7p+1’

2

t > tg. Define the set 29 C Cytz, 00) and the integral operator 73 by 2 = {v €
Colta, 00) : Jw(t)| < eq,t > ta}, and

Ty =~ [ bt as,

t > t,. It is a matter of easy calculation to verify that 7> is a contraction mapping
on 5. Therefore there exists a unique fixed element vy € 2y of 75, which satisfies
the integral equation

va(t) = —E : /t T2(8)F(57v2(3))d57

Tz(t) 5 S

t > ta, and hence differential equation (4.3.20) with ¢ = 2. Then the function ys
defined by {4.3.18) with this vy is a nonoscillatory solution of (4.3.1) on [ts, 00).
The fact that y2 € NRV(®1(A2)) follows from the representation theorem. This
finishes the proof of the “if” part of the theorem for the case a # 0.
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It remains to consider the case ¢ = 0 in (4.3.13). Then equation {4.3.15) has
the two real roots Ay = 0, A2 = 1. The solution y; € NRV(0) = NSV of (4.3.1)
corresponding to A; has already been constructed in Theorem 4.3.9. The existence
of the solution y» € NRV(1) corresponding to Ay can be proved in exactly the
same manner as developed for the case a # 0. O

Let us consider equation (4.3.1) for which the condition
% 1/p—1\"""
(4.3.28) lim tp—l/ c(s)ds = = <p—>
t—oo t p p

is satisfied. Such an equation can be regarded as a perturbation of generalized
p
Euler equation (1.4.20) with v =5 = (p;pl) . Although (1.4.20) is nonoscillatory,

because it has a solution y(t) = +P~1/?_its perturbation may be oscillatory or
nonoscillatory depending on the asymptotic behavior of the perturbed term as
t — 00, see Section 5.2. OQur purpose here is to show the existence of a class of
perturbations which preserve the nonoscillation character of (1.4.20).

Theorem 4.3.8. Suppose that (4.3.28) holds. Put

- [Carn-}(552)”

and suppose that

(4.3.29) /OO @ dt < 0o
and
(4.3.30) /oo @ dt < oo, where V(t) = /OO ‘Tf” ds.

Then equation (4.3.1) is nonoscillatory and has a normalized regularly varying
solution with index (p—1)/p of the form y(t) = t®P=D/PL(t) with L(t) € NSV and
lim .o L(t) =1 € (0, 00).

Proof. The solution is sought in the form
¢ 7+ Y -1\"
(4.3.31) y(t) = exp/ o (—’V+ (S)j”(s)> ds, 7= <p—> :
T sP= P

for some T' > 0 and v : [T, o0} — R. The same argument as in the proof of the
“if” part of the previous theorem leads to the differential equation for v

(4.3.32) (o) + 2= L ()Pt 0) — 0,

where

8

H(#) = exp (/j PP '(3+Y(s) —p+1 dS)
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and
(4.3.33) F(t,v) = |7+ Y1) +v|? —q® (7 + T(t)v — 74

Choose tg > 0 so that

(4.3.34) IT(4)] <

|21

t > tg. Since
[ (7 + X)) —p+ 1 =pl(F+ )" =37 < pm(p)|Y ()],

t > ty, for some constant m(p) > 0, we see in view of (4.3.29) that r is a slowly
varying function and tends to a finite positive limit as t — oco. It follows that there
exists 1 > tg such that

(4.3.35) r(s)/r(t) <2

for s > t > t;. We rewrite the function F(¢,v) defined by (4.3.33) as F(t,v) =
G(t,v) + h(t), where

Gt,v) = [F+ L) +o|! =@ (7 + L) — |7 + L)

and h(t) = |5+ T(¢)|? — 72. As it is easily seen, there exist positive constants
K(p), L(p) and M (p) such that

(4.3.36) G(t,v)] < K(p)v?,
(4.3.37) ]% < Lp)lo|

and |h(t)] < M(p)|YT(#)| for t > t; and |v] < 7/4. Let T > 1 be large enough so
that

(4.3.38) Ap - DM@ < 7,
t>T, _
16(p — 1)2K(p)M(p)/T @ ds <1,
and
(4.3.39) 16(p — 1)2L(p) M (p) /OO Yls) ds < 1.
T S
We want to solve the integral equation
(4.3.40) v(t) = pr&)l /tOC r—(:jF(s,v(s))ds,
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t > T, which follows from (4.3.32), subject to the condition lim;_,. v(t) = 0. Let
Cy [T, 00) denote the set of all continuous functions v on [T, 0o0) such that

v ()]

v = Su
H H‘I’ tz? \I/(t)

< 0

Clearly, O[T, 00) is a Banach space equipped with the norm ||v||w. Consider the
set Q@ C Cy[T,00) and the mapping 7 : @ — Cy[T, o0) defined by

(4.3.41) Q={velCy[T,00) : [v)| <4lp—- VM)V (), t > 1T}
and

_r—! OOﬁ’svs s:p—_l w@ s,v(s s} ds
To(t) = P [ T s ds = P [ S G () + (o) ds,

t > T. Using (4.3.35),(4.3.36) and (4.3.37), we see that

pr&)l /too @m(sﬂ ds <2(p—1) /too w ds = 2(p— 1)M(p)¥(1),

t > T, and that

2ol [ ot < 2oy [ Q= DM,

= s2p - 1K) [ s < 217K [ 2 as

S S
< 3260 - RGO [

ds <2(p—1)M(p)¥(t),

t > 1T, This shows that v € € implies 7v € 2, and hence 7 maps € into itself. If
u, v € 2, then using (4.3.37) we have

[To(t) - Tult)] < %1 / 165, 0(5)) — G uts))] ds

2p—1) /f’” 4(p — 1)L(p)M(p2\If(s)\v(s) —u(s)]

<

— 8(p—1)2L(p)M(p) /LOO v (S)|:\(IJS()3)_ u)
< so- DMl -l [ as

t > T, from which, in view of (4.3.39), we conclude that 7 is a contraction map-
ping: ||[7v — Tully < ||v — ullw/2. Let v € © be a unique fixed element of of
7. Then v satisfies (4.3.40), and hence (4.3.32), on [T, 00), and the function y
defined by (4.3.31) provides a nonoscillatory solution of (4.3.1) on [T, 00). Since
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S L (F+Y(t)+v(t)) — (p—1)/past — oo,y € NRV((p—1)/p), and y is expressed
as y(t) = tP~V/PL(t), where

L(t) = exp{/lt T+ Y (s) +u(s) =77 ds},

S

t > T. Noting that [Y(t) + v(t)] < 7/2,t > T, by (4.3.34) and (4.3.38), and
applying the Mean Value Theorem, we see with the use of (4.3.41) that [®~* (¥ +
Y(t) +v(t)) =7 < N(p)(Y(t)| + [¥(t)|), t > T, for some constant N(p) > 0.
This, combined with the hypotheses (4.3.29) and (4.3.30), guarantees that L(t)
tends to a finite positive limit as { — oo. O

Now we give some examples illustrating the results developed in this section.
Consider the function c¢;(t) = kt®sin(t?), where k # 0, 3 > 0 and v > 0 are
constants. Note that liminf; . ¢1(t) = —o0, limsup,_, ., ¢1(t) = oo if 5 > 0, and
liminf;— o c1(t) > —oo, limsup,_,., ¢1(t) < oo if §=0.If v > p+ 5, we have by
integration by parts

o0
1
=t / sPsin(s?)ds = —tP+P=7 cos(t?)
t Y

2

1 - ; 1 —7)(1 -2 o
— #tzﬁﬁ—h sin(t7) — A+8-n(+5 7) 1 / gP—2 sin(s?) ds,
v v t

t > 0, from which it follows that
—1 o0 k +IB, —
(4.3.42) P c1(s)ds = ;tp Yeos(tT)+o(t77) as t — oo,
t
ify>p+ 4, and

N E cos(tPtP) _
t”l/ c1(s)ds = —————+O(t7) as t — oo,

if v = p+ . The first example is a consequence of Theorem 4.3.6.

Example 4.3.1. If
k 1/p—1\""
L (p) 7
p+p8 p\ p

then the equation (®(y"))" + kt? sin(t?*#)®(y) = 0 is nonoscillatory and has an
O-regularly varying solution.

An example illustrating Theorem 4.3.7 is derived from the observation that

lim 7! '/too (cl(s) + w) =a,

t—o0 sP

for any constant a, if v > p+ .
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p—1
Example 4.3.2. Let a € (—oo, % (1%1) ), a # 0, and suppose that v > p + 3.

Then the equation

(®(y)) + ((10%)@ + kt? sin(ﬂ)> ®(y) =0

is nonoscillatory for any k£ and has two normalized regularly varying solutions with
nonzero indices ® (A1) and ® !()\2), where A1, A2 denote the two real roots of
the equation [A|? — A4+ a=0.

To give an example to which Theorem 4.3.8 is applicable, consider the function

_q\P
) =a®+ (1) 5 vmpas

Ty (t) = -1 /tm o(s) ds — 233 (%)M _ tp—l/too c1(s) ds.

Using (4.3.42), we have
Y k
Tl = P7I PV cos(t7) + o(t777Y) as t — oo,

gl

which implies that

Put

[7my
and % |y
Uy (t) ::/ Mds:O(t”J’ﬁ_”Y) as t— oo.
¢

s
Since p+ 3 — v < 0, we see that

/ \IllT(t)dt<oo.

Erample 4.3.3. If v > p + (3, then the equation
—1\" 1
(@(y") + ((p—> i kt? sin(t”)) P(y) =0
p

is nonoscillatory for any k& and has a normalized regularly varying solution y with
the index (p — 1)/p of the form y(t) = t®P~V/PL(t), L € NSV, where L satisfies
lim o L(t) =1 € (0, 00).

Let M : [0,00) — [—1,1] be a continuous function which takes both positive
and negative values in any neighborhood of infinity. The functions sin ¢, sin(logt),
sin(e') are simple examples of such a function M. Consider the equation

(p — DaM (1)

= + kt? sin(ﬂ)> d(y) = 0.

(4.3.43) (®(y")) + (

Noting that aM (t) < |a|,t > 0, for any @ € R, and applying the Sturm comparison
theorem for half-linear equations, we conclude from FExamples 4.3.2 and 4.3.3 that

p—1
(4.3.43) is nonoscillatory if |a| < % (%) and v > p+ 0.
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4.3.2 Existence of slowly varying solutions

In this subsection we present conditions guaranteeing the existence of solutions
belonging to the class of slowly varying functions.

Theorem 4.3.9. If

t—o0

(4.3.44) lim tpfl/ e(s)ds =0
4

holds, then equation (4.3.1) is nonoscillatory and has a normalized slowly varying
solution.

Proof. Suppose that the condition from the theorem holds. Put
sP! / e(r)dr|.

Then ¢ is nonincreasing and tends to zero as t — oo. Let £y > 0 be such that

o) < (2] and o) < 24

(4.3.45) @(t) = sup
s>t

for t > to, where o(t) = [, c(s) ds. Put P(t) = ¢(t)t'=*. Then |o(t)| < P(t) holds

and
/too Pi(s)ds = /toc (ﬁ—ﬂ)q ds < o ipql()tt)p_l _ pi l(pq—l(t)P(t)

t > tg. Consequently, by Lemma 4.3.1, (4.3.1) has a nonoscillatory solution of the
form (4.3.12) on [tg, 00) with v satisfying (4.3.9). Since

P 1o(t) = OP 1 P(t)) = o(1) and tP 'o(t) = O 1 P(t)) = o(1)
as t — oo, we conclude that y is a normalized slowly varying function. |

Remark 4.3.1. Tt can be shown that (4.3.44) is a necessary condition for (4.3.1) to
possess a normalized slowly varying solution

(4.3.46) y(t) = exp {/t: @ ds} ,

with ¢ satisfying lim; o () = 0. In fact, (4.3.46) implies that ty'(¢)/y(t) =
Y(t) — 0 as t{ — oo. From generalized Riccati equation (3.1.2), satisfied by w =
®(y'/y), we have

< |7 w(s)]

q oo
P (t) = (p — 1)tp_1/ ds + tp_l/ c(s) ds,
¢

t sP
t > to. Letting t — oo and noting that P~ Lw(t) — 0 ast — oo, we see that (4.3.44)
holds. Consequently, this condition is sufficient and necessary for the existence of
a normalized slowly varying solution.
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For the next result we will need the statement of Lemma 4.3.1, with a slight
modification, namely that condition (4.3.5) is replaced by the more general one:

1
laq_l(t)P(t), t > to,

/:C P(s) ds <

where a(t) is a continuous nonincreasing function satisfying

1L/p—1\""
O<a(t)§a<—(p—)
b b

for some constant a. The proof of such modified lemma is almost the same as that
of the original one, and so it is omitted.

Theorem 4.3.10. Suppose that the hypotheses of Lemma 4.3.1 with the above
modification are satisfied. Let there exist a positive integer n such that

(4.3.47) / a4 PIT ) dt <00 if 1<p<2,

(4.3.48) / A" P dt < 0 if p> 2.

Then, for the solution (4.3.7) of (4.3.1), the following asymptotic formula holds
fort — oo

(4.3.49) y(t) ~ Aexp { /t & op_1(s) + o (s)] ds} ,

Jto

where A is a positive constant. Here the sequence {v,(t)} of successive approzi-
mations is defined by

(4.350)  wo(t) =0, v,(t)=(p—1) /LOO [vn—1(8) +o(s)|?ds, n=1,2,....

Proof. Let y be the solution (4.3.7). Recall that the function v used in (4.3.7) has
been constructed as the fixed element in Cpltg,o0) of the contractive mapping
7 defined by (4.3.10). The standard proof of the contraction mapping principle
shows that the sequence {v,(t)} defined by (4.3.50) converges to v(t) uniformly
on [ty, 00). To see how fast v, (t) approaches v(t) we proceed as follows. First, note
that |v,(¢)| < (p = 1)P(t), t > tg, n = 1,2,.... By definition, we have

wol = -1 [ o)l ds < (p— 1) / " i) ds < 0t (1) P(),
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and
o) —ui(t) < (1) / [o1(5) + o(8)]7 — |o(s)]%] ds
< (1) / PP ()7 (s)  ds
< p? /too a1 (s)P(s)ds < pla?(¢) /too Pi(s)ds
_ q,2(q—1) q— @ 2oy
< (¢ D (P <40 (7) P()

p—1
for t > to, where 7, = ]% (%) . Assuming that

a n(g—1)
(43.51) ontt) = vrtt] <o (X2) ),

Tp

t > tg, for some n € N, we compute

o (8) — va(8)] < (p—1>/toora )4 o ()] — [o(s) + vnor ()]7] ds

A

(p—1g /toc pP()]" on(s) — vn-1(s)] ds

o0 A\ nla—1)
= pq/ ! (@) Pi(s)ds
t r

n(g—1) poo
o (4 [T Pras
Tp t

n{q—1)
P (%) (4 — a® () P(t)

n{g—1)
1 (et
= 7! ( ) P(t),
(I s )
t > tg, which establishes the truth of (4.3.51) for all integers n € N. Now we have

A

IA

v(t) = v (t +ka ) — vt (B)]

from which, due to (4.3.51), it follows that

(S py

[u(t) —vn1 ()] < .
ot @ n(g—1) oo i k
(4.3.52) < v ( . > kZ:O (717) P(t)

n{q—1)
a(t)) Vp (q—1)
= — —P@) = Ka™\¥ tYP(t),
Tp < W S (t) (t)P(t)
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where K is a constant depending only on p and n. Using (4.3.7) and (4.3.52), we
obtain

(4.3.53) y() <exp {/t O o(s) 4+ vn1(s)] d5}> -1

to

:em{/%¢*b@ﬂw@ﬂ—@”b®y+%4@md%.

to
Let 1 < p < 2. Then, by the Mean Value Theorem and (4.3.52),
|27 o(t) + ()] = 27 o () + a1 (®)]] < (¢ = DpPO] 7 ?[o(t) — va-1(t)]
(4.3.54) < La™a=Y(t)PiL(t),

L > to, where L is a constant depending on p and n. Let p > 2. Then, using (4.3.52)
and the inequality |a* — b*| < 2|a — b|* holding for A\ € (0,1) and a, b € R, we see
that

|<I>_] [o(t) +v(t)] — o1 [o(t) + vnfl(t)]’ 2lv(t) — vn,l(t)|q_1
(4.3.55) < Ma™ TV )pii),

VAN

t > tg, where M is a constant depending on p and n. Combining (4.3.53) with
(4.3.54) or (4.3.55) according as 1 < p < 2 or p > 2, and using (4.3.47) or (4.3.48),
we conclude that the right-hand side of (4.3.53) tends to a constant A > 0 as
t — oo, which implies that y(¢) has the desired asymptotic behavior (4.3.49). O

Theorem 4.3.11. Suppose that (4.3.44) holds and that the function a(t) = ¢(t),
where p(t) defined by (4.3.45), satisfies

> gnta=1)(¢) )

(4.3.56) — dt<oo if 1<p<2,
2 ,(n+p—1)(g—1)*

(4.3.57) / — dt <oo if p>2.

Then the formula (4.3.49) holds for the slowly varying solution y(t) of (4.3.1).

Proof. The conclusion follows from the previous theorem combined with the ob-

servation that in this case
(n+1)(a—1) 4 (ntp—1)(g—1)?

D@ty = T ang e gpetgy =

according to whether 1 < p <2 orp > 2. O

Ezample 4.3.4. Consider the equation
(4.3.58) (®(y")) + ktPsin(t)®(y) = 0,
t > 1, where k, 3 and - are positive constants satisfying

(4.3.59) Y>p+0.
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Since

/ sPsin(s?) ds = —t1TP 7 cos(t) + 1+h=n / s777 cos(s7) ds,
t Y Y t

there exists a positive constant K such that

oC
/ ks? sin(sY) ds
¢

which, in view of (4.3.59), implies that

(4.3.60) < Ki'th,

tlim tpfl/ ks® sin(sP~1) ds = 0.
> t

Therefore, equation (4.3.58) has a slowly varying solution by Theorem 4.3.9. In

this case, the function ¢(t) defined by (4.3.45) can be taken to be p(t) = KtPTF~7.

Since o(t) satisfles both (4.3.56) and (4.3.57) for any n € N, because of (4.3.59),

from Theorem 4.3.11 for n = 1 we conclude that the slowly varying solution y(t)

of (4.3.58) has the asymptotic behavior

t [e%e}
(4.3.61) y(t) ~ Aexp {/ p! (/ k7 sin(77) d’T‘) d,s} as t— oo,
to s

which is equivalent to y(t) ~ Ag (Ap being a constant), since the integral in the
braces in {4.3.61) converges as t — oo, because of (4.3.60).

4.4 Notes and references

The asymptotic behavior of nonoscillatory solutions of (1.1.1) (or of more gene-
ral equations) has been deeply studied by the Georgian and Russian mathema-
tical school, wee refer at last to the papers and book of Chanturia, Kiguradze,
Kvinikadze and Rabtsevich [71, 72, 200, 201, 202, 203, 229, 319]. A comprehensive
treatment of this topic can be found in Mirzov’s book [292], see also updated
english translation of this book [293].

The classification of nonoscillatory solutions of linear equation (1.1.2) into the
classes MY, M%, M}, My treated in Section 4.1 was suggested in the paper of
Marini and Zezza [285], and later it was extended to various directions in the
papers of Cecchi, Marini and Villari [63, 64, 65, 66], Chen, Huang and Erbe [74],
Nagabuchi and Yamamoto [300]. The results of Subsection 4.1.2 are taken from the
papers of Cecchi, Dosld and Marini [57, 59]. Asymptotic behavior of nonoscillatory
solutions of (1.1.1) (or of more general equations) when the function ¢ is eventually
positive has been considered by several authors. Here we refer in particular to the
papers of Fan, Li and Zhong [159], J. Wang [359], Li and Cheng [251], Matucci
[286], Wong and Agarwal [364] and to the papers of the Japan mathematicians
Hoshino, Imabayashi, Kitano, Kusano, M. Naito, Ogata, Tanigawa and Usami
[180, 212, 224], see also references given therein. The main part of the results of
Subsections 4.1.3 and 4.1.4 can be found in the papers of Cecchi, Dosla and Marini
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[57, 61]. Subsection 4.1.5 is a part of the paper of Dogla and Vrko¢ [96], this paper
contains also the application of Theorem 4.1.12 to oscillation of Emden-Fowler
equation (1.1.4).

Mirzov’s construction of the principal solution of (1.1.1) is established in his
paper [291]. The construction described in Subsection 4.2.3 is taken from the pa-
per of Elbert and Kusano [145], this paper contains also the main statement of
Subsection 4.2.4. The main result of Subsection 4.2.5, in the form presented here,
is a new result, but implicitly it is hidden in both the papers of Mirzov [290] and of
Elbert and Kusano [145]. Theorem 4.2.4 is taken from the paper of Cecchi, Dosl4
and Marini [61]. Subsection 4.2.7 is the substantial part of [293, Section 15], the re-
maining part of this section of Mirzov’s book is also presented in Subsection 4.2.11.
The limit characterization of the principal solution of (1.1.1) is established in the
papers of Cecchi, Dosld and Marini [60] (the case ¢(t) < 0 eventually) and in
[61] (the case c(f) > 0 eventually). These two papers also contain the integral
characterization of the principal solution suggested in Subsection 4.2.10, while the
characterization suggested in Theorem 4.2.8 of Subsection 4.2.9 is taken from the
paper of Dosly and Elbert [108] (parts (i) — (iii)) and from the paper of Cecchi,
Doglé and Marini [61] — part (iv). A related paper containing the relationship be-
tween the integral characterization of Subsection 4.2.9 and the concept of regular
half-linear equations is the paper of Dosly and Reznitkové [117]. Finally, as men-
tioned above, the most of the results of Subsection 4.2.11 is taken from Mirzov’s
book [293], the last statement of this subsection (Theorem 4.2.12) is taken from
Dosly [106].

A detailed tratment of regularly varying functions and their relationship to
differential equations can be found in the book of Mari¢ [269]. The results of
Section 4.3 are taken form the papers of Jaro§, Kusano and Tanigawa [190] and
of Kusano, Mari¢ and Tanigawa [215]. A related paper on this subject is Kusano,
Mari¢ [214].
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VARIOUS OSCILLATION PROBLEMS

In this rather long chapter we present various results concerning oscillation theory
of equation (1.1.1). Among others, we will see that the methods developed in the
first chapter play very important role in proving subsequent results. We start with
extensions of Lyapunov and Vallée-Poussin inequality. Then we present focal point
and conjugacy criteria. In the second section we describe the so-called perturba-
tion principle in which the main idea lies in comparison of (1.1.1) with two-term
equation. Disconjugacy/nonoscillation domains and equations with (almost) peri-
odic coeflicients are studied in the third section. Section 5.4 deals with strongly
and conditionally oscillatory equations. In Section 5.5 we show that nonoscilla-
tion of (1.1.1) can be characterized by means of certain function sequences. Many
applications will be given as well. Asymptotic formula for distance of zeros and con-
ditions guaranteeing the existence of quick/slow oscillatory solutions are presented
in the sixth section of this chapter. Various aspects of half-linear Sturm-Liouville
problem are treated in Section 5.7. Energy functionals considered on classes of
functions satisfying general boundary conditions are studied in Section 5.8. The
last section is devoted to generalized Hartman-Wintner Theorem, Milloux Theo-
rem, Armellini-Tonelli-Sansone Theorem and interval oscillation criteria. Many of
the statements will be formulated, for simplicity, for (1.1.1) with »(¢) = 1, i.e,,

(5.1.1) (®(y") + c(t)@(y) =0,

¢ being a continuous function on an interval under consideration. An extension to a
general r satisfying foo r1=4(t) dt = oo is straightforward; see also Subsection 1.2.7.

189



190 Chapter 5. Various Oscillation Problems

5.1 Conjugacy and disconjugacy

The first section of this chapter presents (dis)conjugacy and focal point criteria
which are based on various half-linear extensions of the Lyapunov and Vallée-
Poussin type inequalities.

5.1.1 Lyapunov inequality

The classical Lyapunov inequality (see e.g. [174, Chap. XI]) for the linear differen-
tial equation {1.1.2) states that if a,b, a < b, are consecutive zeros of a nontrivial
solution of this equation, then

b
/ c(t)dt > m, c4+(t) = max{0, c(t)}.

This inequality has been extended in many directions and its half-linear extension
reads as follows.

Theorem 5.1.1. Let a,b, a < b, be consecutive zeros of a nontrivial solution of
(1.1.1). Then

b 9P
(5.1.2) /a cy(t)dt > (ff o dt)p—l .

Proof. According to homogeneity of the solution space of (1.1.1), we can suppose

that z(t) > 0 on (a,b). Let ¢ € (a,b) be the least point of the local maxima of x
in (a,b), i.e., '(¢) = 0 and 2'(t) > 0 on [a, c). By the Holder inequality, we have

o= </ =) dt>p = ( / bk (02 (1) dt>p
</ac f%(t) dt>% (/abr(t)(fl(t))p dt) .

Multiplying (1.1.1) by «(t) and integrating from a to ¢ by parts,we get

IA

/ @Oy d = /Cc(t)xp(t)dtg /Cc+(t)xp(t)dt
< w0 [ e

2P(c) < (/:rlq(t) dt)pl (/ac ey (t) dt) 2P (c),
(/:rlq(t) dt) 1_p < /a cy (t)dt.

hence

which yields
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Similarly, if d is the greatest point of local maxima of x in (a,b), i.e., 2'(d) =0
and z'(t) < 0 on (d,b), we have

b

d

(/db rtoa(t) dt)
Consequently,
/ab cy(t)dt > (/:r”(t) dt)lkp%— </dbr1fI(t) dt)

Finally, since the function f(u) = u!"P is convex for u > 0, the Jensen inequality
F((u+0)/2) < [f(w) + f(0)]/2 with u = [Cr'=9(t)dt, v = [+ ~9(t) dt implies

(/acrlff(t) dt)lp + (/dbrlq(t) dt) -
> 2 E (/:rl—q(t) dt+/dbr1—Q(t) dtﬂlp > (ffrlj(i) dt>p_1,

what completes the proof. O

1-p

1-p

A closer examination of the proof shows that Theorem 5.1.1 can be modified
in the following way.

Theorem 5.1.2. If there exists 0 # ¢ € WP (a,b) such that F(&a,b) <0 (F is
defined in Subsection 1.2.2), then (5.1.2) holds.

Remark 5.1.1. Combining the last theorem with the variational principle (see
Section 2.1), we get the following disconjugacy criterion: If

Pl dt h cr(t)dt <27,
([roa) [

then (1.1.1) is disconjugate on [a, b].

5.1.2 Vallée-Poussin type inequality

Another important inequality concerning disconjugacy of the linear differential
equation

(5.1.3) 2" +a(t)r’ +b(t)r =0

was introduced by Vallée-Poussin [354] in 1929 and reads as follows. Suppose that
t1 < ty are consecutive zeros of a nontrivial solution = of (5.1.3), then

e dt
of — <ty A= 0|, B:= b(t)].
[ ot st A= max 0l B o o)
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The half-linear version was originally proved in a somewhat different form, but here
we prefer to formulate this criterion in a simplified form, to underline similarity
with the original criterion of Vallée-Poussin. For the same reason we consider the
equation

(5.1.4) (@) +a(t)®(z) + b(t)®(x) =0

instead of (1.1.1) (if the function » in (1.1.1) is differentiable, then this equation
can be easily reduced to (5.1.4)).

Theorem 5.1.3. Suppose that t; < to are consecutive zeros of a nontrivial solu-
tion x of (5.1.4). Then
(5.1.5)

0 dt
2 <ty —t;, A= t)|, B= b(t)|.
l p_DuiAiB = Jax |a@), B = max [b(t)]

Proof. Suppose that x(t) > 0 in (t1,%2). In case z(t) < 0 in (¢1,12), the proof is
analogical. Let ¢,d € (t1,t2), ¢ < d, be the least and the greatest points of the
local maximum of = in (a,b), respectively, i.e., 2’(t) > 0 for t € ({1,¢), 2/(t) < 0
for t € (d,t2) and 2'(c) = 0 = 2'(d). The Riccati variable v = ®(z'/x) satisfies
v(t1+) = 00, v(c) =0, v(t) >0, t € (t1,¢) and

(5.1.6) v/ ==b(t) —a(t)v — (p—1)v? > —-B— Av— (p— 1)v%.
Hence,
o dv
5.1.7 <c-—t
( ) /0 (p—l)v‘l—i—Av—l—ch !
Concerning the interval (d, t2), we set v = — (I(;((Z/)) > 0 for t € (d, t2), and similarly

as for t € (t1,c) we have

ot dv
5.1.8 <t —d.
( ) /0 (p—1)v2+ Av+ B — 2

The summation of (5.1.7) and (5.1.8) gives

2/ dv < t1 + ¢ d<t i
c— 9 — —
o p—1vi+Av+B ~ L =T
what we needed to prove. O

Remark 5.1.2. (i) Since (5.1.5) is a necessary condition for conjugacy of (5.1.4) in
[t1,t2], the opposite inequality is a disconjugacy criterion: If

2/00 dv >ty — t
o —wi+Av+B~ >0

then (5.1.4) is disconjugate in [t1, 2]
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(ii) A more general Riccati substitution v = «a(t)®(z'/z), t € (t1,¢], v =
—B(t)®(z' /), t € [d,l2), where a, 3 are suitable positive functions, enables to
formulate the Vallée-Poussin type criterion in a more general form than presented
in Theorem 5.1.3, we refer to [111] for details. Concerning the various extensions
of the linear Vallée-Poussin criterion we refer to the survey paper [22] and the
references given therein.

5.1.3 Focal point criteria

Recall that a point b is said to be the first right focal point of ¢ < b with respect
to (1.1.1) if there exists a nontrivial solution x of this equation such that ’'(c) =
0 = z(b) and z(t) # 0 for t € [¢,b). See also below given Remark 5.8.1. The first
left focal point a of ¢ is defined similarly by z(a) = 0 = 2’(¢), z(t) # 0 on (a, (.
Equation (1.1.1) is said to be right disfocal on [c,b) if there exists no right focal
point of ¢ relative to (1.1.1) in (e, b), the left disfocalily on (a,c| is defined in a
similar way. Consequently, (1.1.1) is conjugate on an interval (a,b) if there exists
¢ € {a,b) such that this equation is neither right disfocal on [e,b) nor left disfocal
on (a,c]. This idea is illustrated in the next statement for (5.1.1) considered on
(a,b) = (—o0, 00). The extension of this statement to general half-linear equation
(1.1.1) is immediate.

Theorem 5.1.4. Suppose that the function c(t) £ 0 for t € (0,00) and there exist
constants « € (—=1/p,p— 2] and T > 0 such that

(5.1.9) /Ot s </OS e(T) dT) ds >0 fort>T.

Then the solution x of (5.1.1) satisfying the initial conditions z(0) =1, z'(0) <0
has a zero in (0, 00).

Proof. Suppose, by contradiction, that the solution z has no zero on (0, 00), i.e.,
z(t) > 0. Let w = —®(2'/z) be the solution of the Riccati equation

w' =c(t) + (p— 1)|wl|?.

[
I I
I I
I I
I I
I I
I I
I I
I I
| |
I !

c c

v
o N

Figure 5.1.1: First right focal point and first left focal point
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Since w(0) > 0, we have
(5.1.10) w(t) = w(0) —1-/0 c(s)ds+ (p— 1)/0 lw(s)|? ds

[ et o-1) [ utsyeas

v

and
/Ots w(s)ds > /Ot <8a/osc(7')d7> ds+ G(t),
wher,
b 6t == [ ([ lwipar) ds
Then
(5.1.11) G'(t)y=(p— 1) /Ot [w(r)|2dr >0 fort >0,

and according to (5.1.9),
¢
(5.1.12) G(t) < / s%w(s)ds fort>1T.
Jo
By the Holder inequality we have

[ ([l [ oral! - G55 el

hence by (5.1.12)

1+po¢)q
(5.1.13) / |w ‘qu > Gq( )
(14 payr

Here we need the relation G(t) > 0 for sufficiently large ¢. By (5.1.11) G(¢) is
nondecreasing function of ¢ and G(0) = 0. The equality G(t) = 0 for all t > 0
would imply that w(t) = 0, consequently by (5.1.11) z'(¢) = 0 for ¢ > 0. But this
may happen only if ¢(t) = 0, which case has been excluded. Hence we may suppose
that T is already chosen so large that the inequality G(¢) > 0 holds for t > T.
Denote § =a — (1 —|—pa)% and K = (p— 1)(1 + pa)? > 0. Then by (5.1.11),
inequality (5.1.13) yields G’G~¢ > Kt°. Integrating this inequality from T to t,
we get
—Gl_q ) > ——
g—1 ) q—1
where the integral on the right-hand side tends to oo as t — oo because an easy
computation shows that oo < p— 2 implies § > —1. This contradiction proves that
x must have a positive zero. O

[G(T) - G'(1)] > K/t % ds,
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Remark 5.1.3. (i) Clearly, in Theorem 5.1.4 the starting point tg = 0 can be shifted
to any other value ¢y € R if the condition (5.1.9) is modified to

t s
/(s—to)a </ c(7’)d7’> ds >0 fort>T >t
to to

A similar statement can be formulated on the interval (—co, tg), too.

(ii) In the previous theorem we have used the weight function s*, o € (—1/p, p—
2]. The results of Subsection 3.2.1 suggest to use a more general weight functions.
This research is a subject of the present investigation.

Using the just established focal point criterion we can prove the following
conjugacy criterion for (5.1.1).

Theorem 5.1.5. Suppose that ¢(t) £ 0 both in (—o0,0) and (0,00) and there
exist constants ay, oz € (—=1/p,p—2] and Ty, T2 € R, T} < 0 < Ty, such that
(5.1.14)

0 0 t s
/ s </ e(T) dT) ds >0, t <1, / 592 (/ e(T) dT> ds >0, t > Tb.
t s 0 0

Then equation (5.1.1) is conjugate in R, more precisely, there exists a solution of
(5.1.1) having at least one positive and one negative zero.

Proof. The statement follows immediately from Theorem 5.1.4 since by this the-
orem the solution z given by z(0) = 1, 2'(0) = 0 has a positive zero. Using the
same argument as in Theorem 5.1.4 and the second condition in (5.1.14) we can
show the existence of a negative zero. O

Remark 5.1.4. (1) Assumptions of the previous theorem are satisfied if

s1]l—o0,82T00

(5.1.15) liminf / e(t)dt > 0.

51

This conjugacy criterion for the linear Sturm-Liouville equation (1.1.2) with r(¢) =
1 is proved in [350] and the extension to (5.1.1) can be found in [310].

(ii) Several conjugacy criteria for linear equation (1.1.2) (in terms of its coef-
ficients 7, ¢) are proved using the fact that this equation is conjugate on (a,b) if
and only if

b dt
(5.1.16) / RO

for any pair of solutions of (1.1.2) for which r(z{zs — x12%) = +1. This state-
ment is based on the trigonometric transformation of (1.1.2), see [97, 98] and
also Section 1.3. However, since we have in disposal no half-linear analogue of the
trigonometric transformation, conjugacy criteria of this kind for (1.1.1) are (till
now) missing.
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5.1.4 Lyapunov-type focal points and conjugacy criteria

The next results concern again equation (5.1.1).

Theorem 5.1.6. Let x be a nontrivial solution of (5.1.1) satisfying z'(d) =0 =
z(b) and x(t) # 0 for t € [d,b). Then
14
/ c(s)ds
d

Moreover, if there is no extreme value of x in (d,b), then

(5.1.17) (b—d)P~! sup
d<t<b

> 1.

¢
(5.1.18) (b—d)?~" sup / c(s)ds > 1.
d<t<b.Jd4

Proof. Suppose that z(t) > 0 on [d,b), if z(t) < 0 we proceed in the same way.
Let v=—®(z'/z) and V() = (p— 1) f; |v(s)|? ds. Then we have

(5.1.19) v(t) :/d c(s)ds + V().

Thus, v(d) =0 =V (d) and lim,_;— v(t) = lim;_,— V(¢) = co. Set

/dt c(s)ds

and observe that |v(t)] < C* 4+ V (¢), so that

C* := sup
d<t<b

V(1) = (p—Dlw@)]" < (p— D(C" +V(H)7,

and

V(1)
- D(C + V) ="

Integrating this inequality from d to b and using lim; .,— V(1) = 0o, we obtain

1 b
RO

which implies that (b—d)P~1C* < 1. We remark that the equality cannot hold, for
otherwise |fdt c(s)ds| = C* on [d,b) which implies that ¢(t) = 0, a contradiction,
thus (5.1.17) holds.

If d is the largest extreme point of x in (a,b), then 2'(t) < 0 and hence v(t) >
0 on [d,b). Set Cy = supg<;<p f; c(s)ds. Then we also have C, > 0 since the

assumption C, < 0 contradicts to V(d) = 0, lim;_;,— V(t) = co. Hence, by (5.1.19),
0 <w(t) < Cy+V(t). The remaining part of the proof is similar to the first one. O

The following theorem can be proved similarly as the previous one, and hence
we omit its proof.
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Theorem 5.1.7. Let x be a nontrivial solution of (5.1.1) satisfying x(a) = 0 =
z'(c) and x(t) # 0 for t € (a,c]. Then
C
/ c(s)ds
t

Moreover, if there is no extreme value of x in (a,c), then

(c—a)P™ ! sup > 1.

a<lt<c

(c—a)?! sup / c(s)ds > 1.
¢

a<lt<c

Corollary 5.1.1. If

t
(b—d)P~" sup / c(s)ds <1,
d

d<t<b

then (5.1.1) is right disfocal on [d,b). If

(c—a)P™ sup /c(s)ds <1,
¢

a<t<c
then (5.1.1) is left disfocal on (a, c].

Theorem 5.1.8. Let a < b be consecutive zeros of a nontrivial solution = of
(5.1.1). Then there exist two disjoint subintervals Iy, Is C [a,b] such that

(5.1.20) (b—a)P~t / c(s)ds > min{4,4P~'}
LUl
and
(5.1.21) / e(s)ds <0.
[a,b]\(I1UT2)

Proof. Let ¢ and d denote the smallest and largest extreme points of z on [a,b],
respectively. Without loss of generality, we may assume that ¢ < d (if there is only
one zero of 2’ in (a,b), then ¢ and d coincide). Thus, 2'(d) = 0, z(b) = 0 and
2'(t) # 0 for t € (d,b]. By Theorem 5.1.6, inequality (5.1.18) holds. Then there
exists by € (d,b] such that

by by b
(5.1.22) (b— d)p*l/ e(s)ds > 1, and / c(s)ds > / c(s) ds.
d d d
Similarly, it follows from Theorem 5.1.7 that there exists a1 € [a, ¢) such that
(5.1.23) (c— a)p_l/ e(s)ds > 1, and / c(s)ds > / c(s) ds.

Let Iy = [d, 1] and I, = [a1, ¢]. Now, we divide the proof into the following two
cases.
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Case 1. If p > 2, then

(b—a)pl/huz (s)ds = [(b—d) +(c—a)P (/db o(s) d8+/ajc(s) ds>

Case 2. If 1 < p < 2, then

(b—a) (/Ilu!zc(s)ds>q_l > (b-a) (/db c(s)ds—i—/{jc(s)ds)ql

Vv
=
|
<)

N
SN
o

R
20
w
e
[

&
N—
+
_ TN

Eaa
20
N
L
&
~—
=)
|
—

> (0-a+e-o) (g ) 2t

It follows from Cases 1 and 2 that (5.1.20) holds.
By (5.1.22) and (5.1.23), fbbl ¢(s)ds <0 and [ ¢(s)ds < 0. In order to verify

(5.1.21), it is sufficient to show that fcd e(s)ds < 0. Since y'(c) = 3'(d) = 0, we
have v(c) = v(d) = 0, where v = —®(y'/y). Hence

0 = u(d) — v(c) = /dc(s) ds+ (p—1) /d o(s)|? ds.

This means that fcd ¢(s) ds < 0, which implies that (5.1.21) holds. O
Corollary 5.1.2. Suppose that for every two disjoint subintervals I, Iy C [a,b],
(b— a)p_l/ c(s)ds < min{4,4771}

LUI

Then (5.1.1) is disconjugate on [a,b].

Proof. Suppose by a contradiction that there exists a nontrivial solution x of
(5.1.1) with z(c) = z(d) = 0 for ¢ < ¢ < d < b. Without loss of generality, we
may assume that z(f) # 0 for ¢t € (¢, d). By Theorem 5.1.8, there exist two disjoint
subintervals I7, I C [¢,d] C [a, b] such that

(d—c)P? / c(s)ds > min{4, 471},
J I Ul

Thus (b—a)?~" [, ;, c(s)ds > min{4,47~'}, a contradiction. O



5.1. Conjugacy and disconjugacy 199

Corollary 5.1.3. Suppose that a nontrivial solution z of (5.1.1) has N zeros on
[a,b], where N > 2. Then there exist 2(N — 1) disjoint subintervals I;; C [a,b],
i=1,...,N—1,j=1,2, such that

(5.1.24) NPy U c(s) ds l/p+1.
min{4,4r-1} J, ’
and
(5.1.25) / c(s)ds <0,
@b\

where I = UN_l([ﬂ U Iig).

=1

Proof. Let t;,i=1,..., N, be the zeros of = on [a,b]. By Theorem 5.1.8, for each

i=1,...,N — 1, there are two disjoint subintervals I;; and I;» of [{;,¢;11] such
that

: in{4, 471
(5.1.26) / c(s) ds > M

T UL (tig1 —ti)P
and
(5.1.27) / c(s)ds <0.

it )\(Li1Ul52)

Summing (5.1.26) for ¢ from 1 to N — 1,

. » N-1 1
/Ic(s) ds > min{4,4 }; m
. p—1 N-1 ! L
> min{4, 4" }(N - 1) \/(tz — )Pt (tnv —ty—1)P !
= min{4,4P ' }(N - 1) : -
(") x —tn-))
. p—1 (N_ 1)p71
2 min{d N = D T y — P
= min{4,4P '} (N — 1)”W
> min{4, 4?7 }(N — 1)pm’
which implies
(b—a)r~!

(N-1)P < c(s)ds.

min{4,4r=1} J;
This implies that (5.1.24) holds. From (5.1.27), it is easy to deduce (5.1.25). O
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5.1.5 Further related results

We start with the following Opial type inequality (proved in [32]), which will be
useful in proving the subsequent statement. Note that another Opial type inequal-
ity, which is directly related to equation (1.1.1), is presented in Section 9.5.

Lemma 5.1.1. Let af > 0, a + 3 > 1, be constants and f(t) be a nonnegative,
measurable function on (a,b), and

(5.1.28) K(a,8) = Ki(d, o, B) = Ka(d, o, ) < o0
where
3 \B/etB) [ rd A
N ) { [ ey aypeo dt} ,

8 B/{atB) b a/(a+p)
o) = (755) { / f<a+ﬁ>/a<t><b—t)a+ﬁldt} ,

and d is the (unique) solution of (5.1.28). If x is absolutely continuous function
on [a,b], with x(a) = x(b) =0, then

b b
(5129 | 10 i< ks [ o) a

Theorem 5.1.9. Let (5.1.1) have a solution x satisfyz’ng z(a) =x(b) =0, z(t) #0

for t € (a,b). Let Q(t) = f c(s)ds or Q(t) = ﬁ s)ds. Then there ezists a
(unique) d € (a,b) such that

(5.1.30) /\Q Ut —a)P~tdt = /\Q b—t)P~ 1dt>%

where 1/p+1/q¢=1.

Proof. Multiplying (5.1.1) by «(¢) and integrating by parts over [a, b] gives

b b b
(5.1.31) / & (DI dt / (OO dt = —p / Qp® ()2’ (1) ds

IN

b
p / Q) (B |2 ()] dt

b
< pK(p—1,1) / & (OP dt,

where we have used (5.1.29) of Lemma 5.1.1, since z(¢) is a nontrivial solution of
(5.1.1) f |2’ ()] dt > 0, (5.1.30) follows from (5.1.31). O
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5.2 Perturbation principle

In this section we investigate oscillatory properties of (1.1.1) viewed as a per-
turbation of another half-linear equation of the same form. We present modified
versions of several previously formulated criteria like Leighton conjugacy criterion,
Leighton-Wintner and Nehari type (non)oscillation criteria. The last two subsec-
tions contain criteria where oscillatory properties of (1.1.1) and (5.1.1) are studied
via certain associated linear second order differential equations of the form (1.1.2).

5.2.1 General idea

In the previous sections devoted to oscillation and nonoscillation criteria for (1.1.1),
this equation was essentially viewed as a perturbation of the one-term equation

(5.2.1) (rt)B(2")) = 0.

As we have already mentioned, for oscillation (nonoscillation) of (1.1.1), the func-
tion ¢ must be “sufliciently positive” (“not too positive”) comparing with the
function r. In this section we use a more general approach: Equation (1.1.1) is in-
vestigated as a perturbation of another (nonoscillatory) two-term half-linear equa-
tion

(5.2.2) (r(t)®(z")) + é(t)®(x) =0
with a continuous function ¢, i.e., (1.1.1) is written in the form
(5.2.3) (r)®(z")) + é(t)®(x) + (c(t) — é(t)) (x) = 0.

The main idea is essentially the same as before. If the difference (¢—¢) is sufliciently
positive (not too positive), then (5.2.3) becomes oscillatory (remains nonoscillato-
ry).

Note that in the linear case p = 2, the idea to investigate the linear Sturm-
Liouville equation (1.1.2) as a perturbation of the nonoscillatory two-term equation

(5.2.4) (rit)x") +é(tyr =0

(and not only as a perturbation of the one-term equation (r(t)a’)’ = 0) brings
essentially no new idea. Indeed, let us write (1.1.2) in the “perturbed” form

(5.2.5) (r(®)z') + &t + (c(t) — &)z = 0.

Further, let 2 be a solution of (5.2.4) and consider the transformation x = h(t)u.
This transformation transforms (5.2.5) into the equation

(5.2.6) (FOR2 (WY + [e(t) — &B)]RA (B = 0

(compare (1.3.14)) and this equation, whose oscillatory properties are the same as
those of (1.1.2), can be again investigated as a perturbation of the one-term equa-
tion (r(t)h%(t)u’)’ = 0. In the half-linear case we have in disposal no transformation
which reduces nonoscillatory two-terms equation into an one-term equation, so we
have to use different methods. This “perturbation principle” then becomes a very
useful tool which enables to prove new results in the half-linear case.
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5.2.2 Singular Leighton’s theorem

In this subsection we show that if the points a, b are singular points of considered
equations, in particular, a = —o0, b = oo (or finite singularities, i.e., the points
where the unique solvability is violated), Leighton type comparison theorem (The-
orem 2.3.5) still holds if we replace the solution satisfying y(a) = 0 = y(b) by the
principal solution at ¢ and b.

Theorem 5.2.1. Suppose that ¢ is a continuous function such that the equation
(5.2.7) (r)ey") +ét)@(y) =0

has the property that the principal solutions at a and b coincide and denote by h
this simultaneous principal solution at these points. If

(5.2.8) lim inf / P ) — 50 RO dt > 0, ct) £ (t) in (a,b),

s1la,s27b s1

then (1.1.1) is conjugate in I = (a,b), i.e., there exists a nontrivial solution of this
equation having at least two zeros in I.

Proof. Our proof is based on the relationship between nonpositivity of the energy
functional F and conjugacy of (1.1.1) given in Theorem 1.2.2. We construct a
nontrivial function, piecewise of the class C'!, with a compact support in I, such
that F(y;a,b) < 0.

Continuity of the functions ¢, ¢ and (5.2.8) imply the existence of ¢ € I and
d, 0 > 0 such that (e(t) — é(t))|h(#)|P > d for (t — o, + o). Let A be any positive
differentiable function with the compact support in (£ — g,f + g). Further, let
a<ty<ti<l—p<it+p<ty <tz <bandlet f, g be the solutions of (5.2.7)
satisfying the boundary conditions

flto) =0, f(tr) = h(t1),  g(t2) = h(t2), g(t3) = 0.

Note that such solutions exist if £y, t; and fo,t3 are sufficiently close to a and b,
respectively, due to nonoscillation of (5.2.7) near a and b (this is implied by the
existence of principal solutions at these points) and the fact that the solution space
of this equation is homogeneous. Define the function y as follows

0 t e (a,to],
f(t) t € [to, 1],
(1) = h(t) t €[t t\[t — 0, T+ 0],
P o+ oaw) teli-of+d,
g(t) t € [ta, t3],
0 te [tg,b),
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where & is a real parameter. Then we have
Fotots) = [ b0 - con)
= [Ty —aourra- [ -dolvra
= [vorrawsa [t o
+ [ rone ol - [ e - o]
+ /: [r(t)|g'|P — &(t)|g|P] dt — /: [c(t) — &(1)] |g|P dt.

Denote by wy, wg, wy, the solutions of the Riccati equation associated with (5.2.7)
(5.2.9) w + &)+ (p— Dt () |w]? =0
generated by f, g and h, respectively, i.e.,
wy TR ) ),
o(f) T 9(g) ®(h)

Then using Picone’s identity (1.2.3),

t1 ty
/t [rOLF [P = e@IfIP] dt = wylf[P ]2 +p[ rta@ P L O(fwy) di
= wilfI” |5

where P(u,v) = |u[P/p —uv + |[v|?/q (see Subsection 1.2.1). Similarly,

ts
[ 0l - a0lgP] e = wylgP |1

to

Concerning the interval [¢1, t2], we have (again by identity (1.2.3))
~ t2
Fltnt) = [ bW -l
t1

t2
= WP |2 1 p / P9 Py B(y)wn) dt = walhlP |22
i1

t+o ;
o [ o snyp - o oy sap
gy [FORE[
+(p—1)r () o) hP(1 4 5A) }dt

t+o
= wplhf | +[ r(t) {|W|P + pd(AR) ®(R') + o(5)
t

=0
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— p(h + 6(AR)YP(R)(1 + (p — 1)dA + o(6))
+ (p— DN |P(1 4+ pdA + o(6))} dt
t+o
= wlhPli + [ O+ psanye()
0l — pBe()(ARY — plp — 1)SAINT?
+(p = DIA + (p — DpoAR' P + ()} dt
= bl |5 + o(0)

as § — 04 Consequently,

Flystots) = welfIP |5 +wnlhl” [ +wylgl” |12 + 0(6)

= )P (ws(t1) = wa (b)) + [A(E2)[ (wa(t2) — wg(t2)) + o(6)

as 6 — 0+. Further, observe that the function f/h is monotonically increasing in

(to, 1) since f/h(to) =0, f/h(t1) = Land (f/h)" = (f'h — fh')/h* £ 0in (to, t1).
Indeed, if f'h — fh' = 0 at some point ¢ € (tg,t1), i.e., (f//f)(E) = (K'h)(1),
then w;(#) = wy(t) which contradicts the unique solvability of the generalized
Riccati equation. By the second mean value theorem of integral calculus there

exists & € (tg,¢1) such that

|- e h|p'§:—|f,f dt

to

/t elt) — ) | 17t

0

- / (elt) — &(t)) [P dt.

By the same argument the function g/h is monotonically decreasing in (¢, t3) and
la &2
[ttty =ctentalrde = [ (ete) - a(e) i
to 2]
for some & € (2,t3).
Concerning the interval (¢,t2) we have

/t (et — &) [yl dt

= [ (et - o i

+ /tﬂ) (ct) —e@®) [MP(1+ M) dt +/ (c(t) — @) |h|P dt

-0 t+o

to t+o
= /t (c(t) — é(t)) |h|P di + 5/{7 (c(t) — (1)) |h|PA(L) dt + 0(0)

Y

/t2 (ct) — &(8)) WP dt + 6K + o(6)
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as 6 — 0+, where K = dffjgg A(t) dt > 0. Therefore,

t

t3 &2
[ tetty=centuldez [ (ett) = e 1hp de+ K3+ o(5)

to &1

Summarizing our computations, we have
Flysto,ts) < [R()IP (wy(t) — wn(tr)) + [A(t2)[P (wn(tz) — wy(t2))

£a
7/ (c(t) —e(t)) [h|P dt — (Ko + o(d))

with a positive constant K.
Now, let 4 > 0 (sufficiently small} be such that K6 + o(d) =: ¢ > 0. According
to (5.2.8) the points ¢, can be chosen in such a way that

/82 (e(t) — (1)) [l dt >

S1

whenever s; € (a,11), s2 € (t2,b). Further, since wy, is generated by the solution
h of (5.2.7) which is principal both at ¢ = ¢ and ¢t = b, according to the Mirzov
construction of the principal solution, we have (for ¢1, ¢ fixed for a moment)

lim [wf(tl) — wh(tl)] = 0, lim [wg(tg) — wh(tg)] = 0.

to—a+ t3—b—

Hence

IB(t2) [P [wn(t2) — wy(t2)] < =

() 1? fg (8) — wn(t)] < 5 4

47
if tg < t1, t3 > to are sufficiently close to a and b, respectively. Consequently, for
the above specified choice of tg < t; <t < t3 we have

Flystots) = / @l - 0 ) de - / ety — &) ly P dt

ty to

< (AP [wy(tr) — wr(ta)] + [(E2)[P [wn(t2) — wg(t2)]
—/52 {c(t) — &) |h|P dt — (K6 4+ 0(8)) < Z+Z+Z—s < 0.
The proof is now complete. O

5.2.3 Leighton-Wintner type oscillation criterion

Recall that if [*7r179(t)dt = oo and [ c(t)dt = oo, then (1.1.1) is oscillatory.
This direct extension of the classical linear Leighton-Wintner criterion has been
proved in Section 1.2. This criterion characterizes exactly what means that for
oscillation of (1.1.1) the function ¢ must be sufliciently positive comparing with
the function r in one-term equation (5.2.1). Here we extend this result to the
situation when (1.1.1) is investigated as a perturbation of (5.2.2).
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Theorem 5.2.2. Suppose that h is the principal solution of (nonoscillatory) equa-
tion (5.2.2) and

0 b
(5.2.10) / (c(t) — &) () dt = Lim | (e(t) — &(¢)) hP(t) dt = oo.

b—oo
Then equation (1.1.1) is oscillatory.

Proof. According to the variational principle (see Section 2.1), it suffices to find
(for any T' € R) a function y € W1P(T, c0), with a compact support in (7T, 00),
such that F(y; T, 00) < 0. Hence, let T € R be arbitrary and T < tg < t; < t2 < t3
(these points will be specified later). Define the test function y as follows:

0 T <t<tp,
f(t) to<t<t,
y(t) =< h(t) 1 <t <ty,
g(t) tz <t <ts,
0 t3 <1< o0,

where f,g are solutions of (5.2.2) given by the boundary conditions f(tp) = 0,
ft1) = h(t1), g(t2) = h(ta2), g(t3) = 0. Denote
ey o) )
T T ey T ey

i.e., wy, wy, wy, are solutions of the Riccati equation associated with (5.2.2) gener-
ated by f,g,h respectively. Using exactly the same computations as in the proof
of Theorem 5.2.1, one can show that

3
(5211) FlyiTooo) = K — [ (elt) - a(t)) hP(6) db + K (t2) [wp(t2) — wy(t)],

t1

where .
1
K= 1) g (t) = un(t)] = [ (elt) = ) 7(0)
ty
and € € (Lo, t3). Now, if ¢ > O is arbitrary and T' < {o < {7 are fixed, then, according
to (5.2.10), t3 can be chosen in such a way that f:l (e(s) — E(s))hP(s)ds > K + ¢
whenever ¢ > #3. Finally, again using the same argument as in [100] we have
(observe that w, actually depends also on t3)
tlim hp(tz) [wh(tg) — Wy (tg)] = 0,
3—00
hence the last summand in (5.2.11) is less than ¢ if ¢3 is sufficiently large. Conse-
quently, F(y;to,t3) < 0 if tg,t1,t2,t3 are chosen in the above specified way. |
PN ~ 5 . ~1\? . . .
Ifr(t) =1in (1.1.1) and &(t) = £, ¥ = (pT) , 1.e., (5.2.2) is the generalized

Euler equation with the critical coefficient (1.4.20), then the previous theorem
reduces to the oscillation criterion given by Elbert [141].
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5.2.4 Hille-Nehari type oscillation criterion
The results of this subsection can be viewed as an extension of some criteria given

in Section 3.1.

Theorem 5.2.3. Let [ r1=9(t)dt = 0o and c(t) > 0 for large t. Further suppose
that equation (5.2.2) is nonoscillatory and possesses a positive solution h satisfying
the following conditions:

(i) R'(t) >0 for large t;
(i) it holds

(5.2.12) /OC r(t)(W ()P dt = oo;
(iii) there exists a finite limit

(5.2.13) Jim r()h()®(H' (1)) =: L > 0.
Denote by

t ds

(5219 60 = | i
and suppose that the integral
(5.2.15) /Oo (c(t) — ¢(t)) hP(t) dt = blim ’ (c(t) —e(t))y hP (L) dt
is convergent. If
(5.2.16) liminf G(1) /t " (els) — &(s)) WP (s) ds > %

then equation (1.1.1) is oscillatory.

Proof. Suppose, by contradiction, that (1.1.1) is nonoscillatory, i.e., there ex-
ists an eventually positive principal solution z of this equation. Denote by p :=
r(t)®(x’ /x). Then p satisfies Riccati equation (1.1.21) and using the Picone iden-
tity for half-linear equations (1.2.1), we have

/(T(S)Iy'\p*C(S)Iy\p)dS = )yl |7 +p/ PSP (r Y, p®(y)) ds
T T

for any differentiable function y, where P is given by (1.2.2), and integration by
parts yields

/T TP — )] ds = /T ()P — &(s)lyl?) ds — /T (e(s) — &(s)lyl? ds

(o) | — /T y(r(5)2(y)) — &(s)B(y)] ds

- / (e(s) — &)yl ds.

T
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Substituting y = h into the last two equalities (h being a solution of (5.2.2)
satisfying the assumptions (i) — (iii) of the theorem), we get
¢

¢

(5.2.17) W(5 - p) | :/ (c(s) —é(s))hpds—i—p/ P ($) P11, pb(R)) ds,
T T

where § = r®(h//h). Since [~ r19(t)dt = co, w = 0 is the distinguished solution

of the Riceati equation corresponding to the equation (r(t)®(z'))" = 0 and since

¢(t) > 0, by Theorem 4.2.2 p(t) > 0 eventually. Hence, with L given by (5.2.13),

we have

L+ hP(T)(p(T) — 5(T)) > /

T

t t

(e(s) —é(s))hP ds +p/ rI9(s)P(ri H, p®(h)) ds,
T

and since P(u,v) > 0, this means that
(5.2.18) /Oo P U PR (1), p(t)@(R(1))) dt < .

Now, since (5.2.13), (5.2.15), (5.2.18) hold, from (5.2.17) it follows that there
exists a finite limit

lim RP(t) (p(t) — A(t)) = B

t—o0

and also the limit

) _ L B(0pt) _ L+8
(5.2.19) O Y OO

Therefore,
W) (p(t) — (1) — B = C(t) +p / TP (s) P p(h)) ds,

where C(t) = [[7(c(s) — &(s))hP(s) ds.
Concerning the function P(u,v), we have for u,v > 0

P q q 1
(5.2.20) P(u,v) = Lo+ S = (v_ —vulTP + —) =u?Q (vu'7?),
p

p q quP
where Q(A\) = A7/qg— A+ 1/p > 0 for A > 0 with equality if and only if A =1 and
—1
(5.2.21) fim 2N _a= 1

A1 (A=1)2  2

Hence for every ¢ > 0 there exists § > 0 such that
qg—1 p( U 2
(5.2.22) P(u,v) > <T - 5) u (up—l — 1) ,

whenever [vu! P — 1] < §. This implies that 8 = 0 in (5.2.19) since the case 3 # 0
contradicts the divergence of [~ r(t)(k'(t))P~! dt. If we denote

@) = RP()(p(t) — p(t)), H(t):= r(t)hz(t)zh’(t))p_w
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then using

ft)

v

cl) + (w - 5) /toc r(s) (W ()" (@ - 1)2 ds

o) + (g = /toc H(s)f*(s) ds,

(5.2.23)

where € = pe. Multiplying (5.2.23) by G(1) we get

(5.2.24) G f(t) > GCH) + (% - 5) Gt) /floo H(s)f2(s) ds.

Inequality (5.2.24) together with (5.2.16) imply that there exists a & > 0 such that
L q - > H(s) 2

(5.2.25) GOS() 2 5-+5+ (2-¢) G(z&)/t GG () ds

for large t.
Suppose first that liminf;,. G(t)f(t) =: ¢ < co. Then for every & > 0, we
have [G(t)f(t)]? > (1 — £)c? for large ¢ and (5.2.25) implies

c22—1q+5+(g—é> (1 —8&)c.

Now, letting €,& — 0 we have

1 q
> — + 0+ ~c?
C*2q+ —i—20,

but this is impossible since the discriminant 1 — 2¢(1/(2q) + ) < 0.
Finally, if

(5.2.26) lim inf G(£) () = oo,

denote by m(t) = inf,<{G(s)f(s)}. Then m is nondecreasing and (5.2.25) implies
that

q_ )2
GIOS(1) 2 K + (& - &) m),
where K = 1/(2g) + 0. Since m is nondecreasing, we have for s > t
4\ 2 4 _ 2,2
G()/() 2 K + (5 =) mis) 2 K + (& - ) m2(0),

and hence
m(t) > K + (g — &) m? ()

which contradicts (5.2.26). The proof is complete. O
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P
o _(p—1
c(t)—tp, ”yp—<—p )

Then (5.2.2) reduces to the generalized Euler equation with the critical coefficient
(5.2.27) (@) + L£o(y) =0,

and the solution h(t) = "5 of this equation satisfies all assumptions of Theo-
rem 5.2.3 with
p \'7
Glt)y=|—— log t.
0=(27) o

Thus we get the following corollary.

Corollary 5.2.1. Fquation (5.1.1) is oscillatory provided

> L/p—1\""
liminflogt/ sP~1 [c(s) — 7_”} ds > = (p_> '
t—o0 ¢ sP 2 )

5.2.5 Hille-Nehari type nonoscillation criterion

Now we turn our attention to a nonoscillation criterion which is proved under
no sign restriction on the function ¢ and also under no assumption concerning
divergence of the integral [ r'~9(t)dt (compare with Theorem 5.2.3). The result
of this subsection can be viewed as an extension of Theorems 2.2.9 and 2.3.2 to
the situation when (1.1.1) (or (5.1.1)) is viewed as a perturbation of a two-term
equation.

Theorem 5.2.4. Suppose that equation (5.2.2) is nonoscillatory and possesses a
solution h satisfying (i), (i) of Theorem 5.2.5. Moreover, suppose that

o dt
5228 | e

If G(t) is the same as in Theorem 5.2.3, now satisfying

(5.2.20) limsup G(t) / " (e(s) = a(s)) W (s) ds < QLq
and
(5.2.30) fimint G(6) [ (cls) = ) 17 (s)ds >~

then (1.1.1) is nonoscillatory.
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Proof. Denote again

C(t) = /foo (e(s) —&(s)) hP(s) ds.

To prove that (1.1.1) is nonoscillatory, according to Theorem 2.2.1 it suflices to
find a differentiable function p which verifies differential inequality (2.2.7) for large
t. This inequality can be written in the form (with w = h™P(p + C}))

Llp+C|? | p+CY\ | r(h)P .
o< - 1—qg 3/ NP __ P
P < —p {q ’h r h < b + » +r(h)P —é(t)h
1 q
_ —prliq |:5 ’% _ Ly <¥> + Zl)rq(h/)p:| + T(h/)p _ EhP

—priTip (rq_lh’, —p_;C> +r(h")P — éhP.

We will show that the function

1

2qG(t)

satisfies the last inequality for large . To this end, let v = (p + C)/h, u = r?~ 1A’

The fact that the solution A of (5.2.2) is increasing together with (5.2.28), (5.2.29),
(5.2.30) and the assumption (iii} of Theorem 5.2.3 imply that

v a0l L 14200060

®(u) h(E)r(6)@(h' (1)) 2qG(L)r)h(8) (' (1))

as t — oo. Hence, using (5.2.20) and the same argument as in the proof of the
Theorem 5.2.3, for any € > 0, we have (with @ satisfying (5.2.21))

l1—gq |:1 ’p+c d _hl/,rqfl (p+C) + Tq(h‘/)p:|
q h p

P
=pr I HQ <hi;(g)>

, (1+2¢GC)?
( +5> (h'y” A2 R ()2 2G2

_ (q +p€) 1 (1 + 2¢GC)?

(5.2.31) p(t) =r()h(t)P(H (t) +

2 rh?(h/)P— 4G2¢?
for large t.
Now, since (5.2.29), (5.2.30) hold, there exists § > 0 such that
-3+ 1-3
2; <OMOM) < 57 = L+ 240000 <2

for large ¢, hence € > 0 can be chosen in such a way that

1 (L+2GHCm)? 1
(§+E) 442 <2_q
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for large ¢. Consequently (using the fact that h solves (5.2.2)), we have

' ra Ly <p + C) + r(h/)p] + ()P — &t)h?

—pria F ’M

ql h h p
q 1 (1 +2¢GC)? ND AP
Z - (5 + E) G?rh2(h/yr=2 442 )=tk

1

ny I 1 ' /
>—W+[Thq)(h)] :|:7"hcb(h)+ :| =p.

2qG
The proof is complete. O

If (5.2.2) reduces to Euler type equation (5.2.27), then we obtain the following
corollary from the previous statement.

Corollary 5.2.2. Fquation (5.1.1) is nonoscillatory provided

. > YW\ o1 g L (p=1\"""
lim sup log ¢ (c(s)—— sPThds < - | ——
‘ 2

t—o0 sP p

liminf lo t/oc (c(s) — ﬁ) Pl ds > _3(p=t P—l
t—oc & ¢ sP 2 P .

5.2.6 Perturbed Euler equation

and

If we distinguish the cases p € (1,2] and p > 2, the following refinement of oscil-
lation and nonoscillation criteria from the previous subsection can be proved.

Theorem 5.2.5. Consider the half-linear equation

(5.2.32) <¢><x’>>’+j—§¢><m>+2(%)p_lm)@(x)=o, v=(%)

where § is a continuous function, and the linear second order equation

@y

(5.2.33) (ty") + =0.

Suppose that the integral

(5.2.34) o(t) = / 3ls) ds >0
. s

for large t, (in particular, we suppose that [~ 5(t)/tdt is convergent).

(i) Let p > 2 and linear equation (5.2.33) be nonoscillatory. Then (5.2.32) is
also nonoscillatory.

(i) Letp € (1,2] and half-linear equation (5.2.32) be nonoscillatory. Then linear
equation (5.2.33) is also nonoscillatory.
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Proof. We only present the proof of the part (i), the proof of the claim (ii) is
analogical. Since (5.2.33) is nonoscillatory, the same is true for the differential
equation

—1\?!
(5.2.35) (A2') +Ad(e®)z =0, A=2 <p7) :
which results from (5.2.33) upon the transformation x(t) = 2(s), s = log¢. Since
the integral [~ &(¢)/tdt = [~ §(e®)ds < oo, the function u(s) = Az'(s)/z(s) is a
solution of the Riccati integral equation

(5.2.36) u(s) =A /OO 5(e")dr + % /00 u?(7)dr,

and hence u(s) > 0 for large s according to the assumption on o(t). Now we use
similar ideas as in Subsection 1.4.2. We denote

.. L/p—1\"!
(5.2.37) Flo) =o' —o+7, v:—p(pp> :

p—1
Recall that this function is nonnegative, attains its minimum at gg = (pp%l)

and this minimum is F(gg) = 0. By a direct computation we have

(5.2.38) F"(00) = F"(0) = q(g — 1)(q — 2)|o|” ®sgno.

(p— DA’

Hence, by the Taylor formula

(5.2.39) Flo) < ——==(0—00)? for p>2,

provided g # gy and ¢ > 0, (for p € (1,2) we have the opposite inequality). Hence
F(go +u) < u?/[(p—1)A] for u > 0. Applying the last inequality in (5.2.36), we
obtain

(5.2.40) u(s) >/°O Ad(eT)dT—i—(p—l)/m Flu(r)) dr.

After some computation, one can verify that (5.2.40) is the Riccati integral in-
equality associated with the half-differential equation

(5.2.41) (@(2") — ®(2") + 1 ®(2) + 2006(t)P(2) = 0

which is, in turn, nonoscillatory and this means that (5.2.32) is nonoscillatory
as well since the transformation x(t) = z(s), s = logt, transforms (5.2.41) into
(5.2.32). O

The proofs of the next two theorems are based on the detailed investigation of
the function F' from the previous proof. Since computations are rather complicated,
we skip the proof, we refer to the original paper [149).
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Theorem 5.2.6. Suppose that (5.2.34) holds and (5.2.33) is nonoscillatory. As-
sume that there exists a constant 8 € (0,1) such that for a solution z of (5.2.33)
the functions { = z'/z and 1 defined by

/:C@(T)ch

satisfy the relations

(5.2.42) / w(T)dr < oo, / Cr)p(rydr < ,u( ) for large s.

Then (5.2.32) is nonoscillatory and it has o solution with the asymptotics

p—l

z 7%<logt>[0+o<1>1 C +40,

_ ’%1 + Z¢(logt) + o(C(log 1))

a(t) =
(5.2.43) (e

:zrt)

ast — oo. Moreover, if the assumptions of the previous part of theorem are satisfied
for the principal solution Z of the equation

(5.2.44) 2"+ 8(s)z2=0

and the quantities ¢, i are defined accordingly via Z, then the solution % given
by (5.2.43) with { instead of ¢ is the principal solution of (5.2.44). Let x be any
nonprincipal solution of (5.2.32), then

o di R ON
/ 2Oope <% A =

while for the principal solution T

/°° dt .
2oE@re

Finally, if 1,2 are two nonprincipal solutions of (5.2.32), then there exists the
limit

im 214 _ e R fo).

20 1)

The previous statement, applied to the half-linear differential equation with
the iterated logarithms

p—1 n

@2%)(%fﬂ+<%+%(31% z: — 2>ﬂ@=Q

D Pt log“t-logst-logit

where log, t = log(logt), log,, t = log(log,_, t), gives the following result.
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Corollary 5.2.3. Each nontrivial solution x of (5.2.45) has the asymptotic form
either - )
z(t) =t » (logtlogyt---log, t)» (C+ O(log™"t)),

or ,
2(t) =t (logt logyt---log, )7 (log,.1t)” (C + O(log™")1),
as t — oo, where C # 0 is a real constant and n € N.

We finish this subsection with a statement where we apply linear Hille-Nehari
(non)oscillation criterion to linear equation (5.2.33).

Theorem 5.2.7. Suppose that (5.2.34) holds. Then (5.2.32) is oscillatory if
e 1
1iminfs/ 5(e”)dr > T

and it is nonoscillatory if

,  for large s.

N

s/ 5(e”)dr <

In particular, the differential equation

@y + (242 o) 0

- trlog’t

p—1
is oscillatory for A > % (%) and nonoscillatory in the opposite case.

5.2.7 Linearization method in half-linear oscillation theory

In this subsection we extend some results of the previous subsection to a general
situation. We show that oscillatory properties of (1.1.1) can be studied via prop-
erties of a certain associated linear equation of the form (1.1.2). In particular, we
show that this linear equation plays a role of the Sturmian majorant for p > 2 and
the role of the Sturmian minorant for p € (1,2].

Along with (1.1.1) we consider the equation (5.2.2), we consider both (1.1.1)
and (5.2.2) on an interval I C R, and we suppose that

there exists a solution A of (5.2.2) such that

(5.2.46) h(t) >0 and r(t)®(h'(t)) #0 on I.
We denote
(5.2.47) R(@t) :=r(®)h2 QN (®)F72,  C(t) := (ct) — &(t))hP(1).

and we compare oscillatory behavior of half-linear equation (1.1.1) with the be-
havior of the linear Sturm-Liouville equation

(5.2.48) (RmyY+§C@y=0
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Theorem 5.2.8. Suppose that (5.2.46) holds.

(i) Suppose that p > 2 and that linear equation (5.2.48) is disconjugate in an
interval I. Then half-linear equation (1.1.1) is also disconjugate in this in-
terval.

(it) Suppose that 1 < p < 2 and that half-linear equation (1.1.1) is disconjugate
in an interval I. Then linear equation (5.2.48) is also disconjugate in I.

Proof. We will outline the proof of the part (i), the proof of the part (ii) is similar.
Disconjugacy of (5.2.48) implies the existence of a solution u of the associated
Riccati equation

pu’

O

(5.2.49) u' +C(t) +

on I, where u = 2Ry’ /(yp), y being a positive solution to (5.2.48) on I. Fix a
to € I and consider the solution of generalized Riccati equation {1.1.21) satisfying
the initial condition

w(to) = h P (to)ulto) + walto),
where wy = r®(h'/h). We will show that this solution w exists on the whole
interval I. This then implies the required result — disconjugacy of (1.1.1) on I,
since z(t) = exp {f; r1=4(s)®~ (w(s)) ds} is a solution of {1.1.1) which is positive
on . Let v = hP(w—wy). Then v(ty) = u(tp) and by a direct computation, similar
to that in the proof of Theorem 5.2.3, one can verify that

v+ C(t) + pri () hP (t) P(wp, w) = 0,

where P is defined by (1.2.2). Now we use the inequality from Lemma 4.2.4 to
obtain

1
(5.2.50) P(a,p) < §\a\2—p (-5, p>2, «a,BeR, a#0.
For p € (1,2] we have the opposite inequality, which is then used in the proof of

the part (ii). By (5.2.50), after a short computation, we get

U2

R(D)

v+ C(t) + > 0.

[

Now, the standard statement for differential inequalities (see, e.g. [174]) claims
that v(t) > u(t) for t > to and v(t) < u(t) for t < tg, and this implies that v exists
on the whole interval I which means that w exists on I as well. O

Remark 5.2.1. (i) If p =2, i.e., (1.1.1) reduces to the linear equation (1.1.2), then
(5.2.48) reduces to the equation

[r(OR2 (L)) + h2(8) [e(t) — &(t)]y = 0



5.3. Nonoscillation domains and (almost) periodicity 217

and this is just the equation which results from (1.1.2) upon the transformation
x = h(t)y, where h is a solution (5.2.2), compare (1.3.14). From this point of view,
the statement of Theorem 5.2.8 can be regarded as an extension of the linear
transformation method to half-linear equations.

(if) If we substitute r» = 1, &(t) = vt P, h(t) = t*5 in Theorem 5.2.8, os-
cillatory properties of (5.1.1) are related to oscillatory properties of the linear
equation

(5.2.51) (ty') + g (]%) 0 (e(t) —pt P)y — 0.

p—2
The constant £ (%) in (5.2.51) is worse than the corresponding constant in

Theorem 5.2.5 (it is (p — 1)-times bigger). The explanation of the fact that the
constant in Theorem 5.2.5 is better is the following. In the proof of Theorem 5.2.5,
a modified version of Lemma 4.2.4 has been used. In this modified version, the
variables u,v are restricted to the region 0 < v < ®(u) and under this restric-
tion the constant 1/2 in (4.2.39), (4.2.40) can be replaced by a better constant
(¢ — 1)/2. Note that this restriction on u, v is enabled by additional assumption
of the convergence and nonnegativity of the integral given by (5.2.34), see the
previous section and also [149] for details. However, if no additional restriction on
u, v is available, the constant 1/2 in Lemma 4.2.4 is exact since (4.2.39) reduces
to the equality if v = —®(u).

5.3 Nonoscillation domains and (almost)
periodicity

The aim of this section is to study the properties (like closedness, convexity, but
also many others) of the nonoscillation and disconjugacy domains of the half-linear
equations with two parameters (®(y")) + (—cA(t) + 8B(£))®(y) = 0. Various
eigenvalue problems may be cast in this form. For example, setting A(t) = 1,
fixing a and allowing 3 to be the parameter we obtain weighted Sturm-Liouville
equation with a possibly sign indefinite B. Since the results on equation (5.1.1) with
an (almost) periodic coefficient are closely related to these problems we present
them within this section as well. This is contained in the second and the third
subsection.

5.3.1 Disconjugacy domain and nonoscillation domain

In the paper [270], it was studied the disconjugacy domain for the linear Hill type
equation
Y+ (—a+BB(t)y =0,

where o, are real parameters and B(t) is a real almost periodic function (in a
Bohr sense); see below for the definition of disconjugacy domain and Bohr almost
periodic functions. This complemented the paper [294], where the same equation
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was studied under the condition of the periodicity of B with a period one and a
mean value equal to zero. The theory was further extended to the equation

(5.3.1) Yy 4+ (—aA(l) + 8B(t))y = 0,

where, in particular, 4, B do not need to be (almost) periodic, see the monograph
[289]. What we offer here is a generalization of some aspects of the above mentioned
theory (in particular that in [289]) to the half-linear case. Consider the equation

(5.3.2) (@")) + (—aA(t) + BB(1))2(y) =0

on an interval I. The interval I is mostly taken to be [0, 00), although many results
herein are valid also on (—oc0,00) (or on finite open or half-open intervals). We
assume that «,J are real parameters and A, B are continuous functions, but it
is not difficult to see that the results are still valid if A, B are merely Lebesgue
integrable on every compact subset of I (this may be important in the connection
with generalizations of the concept of almost periodicity — in contrast to the almost
periodic function in the sense of Bohr, almost periodic functions in a more general
sense, e.g. of Weyl, may not be continuous); sometimes, for comparison purposes,
we will present the results in this more general setting. Also, instead of (5.3.2) we
may consider the equation (r(£)®(y"))" + (—aA(t) + SB(t))@(y) = 0, r being a
positive continuous function, and, with some little adjustments, the theory works
as well. The so-called parameter space, i.e., the af-plane (which is equal to R?)
plays an important role. Before we give the definition of its two significant subsets,
recall that equation (5.3.2) is said to be disconjugate on I if every its nontrivial
solution has at most one zero in I, while nonoscillation of equation (5.3.2) means
that every its nontrivial solution has at most a finite number of zeros in I. Also
recall that (5.3.2) is disconjugate on [ if it has a solution without zeros on I. For a
compact or an open interval I this condition is also necessary, see Subsection 1.2.6.
Now we give two important definitions.

Definition 5.3.1. The collection of all (o, ) € R? for which (5.3.2) is disconjugate
(resp. nonoscillatory) on I is called the disconjugacy domain (resp. nonoscillation
domain) of (5.3.2), and denoted by D (resp. A'). The set of points («, ) for which
(5.3.2) is oscillatory is the oscillation domain, denoted by O.

Definition 5.3.2. We say that a function f is Bohr almost periodic (or uniformly
almost periodic) if for any € > 0 there exists L = L(e) such that in each interval
of length L there exists at least one number 7 such that |f(t + 7) — f(t)] < &,
—00 < t < 0o. In other words, if f is continuous and for any ¢ > 0 there exists
a relatively dense set of e-almost periods of this function. Recall that a number
7 = 77(¢) is called an e-almost period of f if for all ¢, [f(t + 7) — f(t)| < €.

We emphasize that any Bohr almost periodic function is continuous. We are
interested in closedness, convexity and boundendess of D (and/or N'). We start
with the simple statement which in fact says that nonoscillation and disconjugacy
coincides when ¢ in (5.1.1) is a Bohr almost periodic function. In particular, D =
N if e(t) = —aA(t) + BB(t), where A, B are Bohr almost periodic. Later this
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statement will be extended to the Stepanoff-almost periodic case. For comparison
purposes, note that for more general equation (1.1.1), the statement works as well
provided 7 is assumed to be Bohr almost periodic.

Theorem 5.3.1. Let ¢ be a Bohr almost periodic function. If (5.1.1) is not dis-
conjugate on (—oo, 00), then it is oscillatory at both +oo.

Proof. Suppose that a nontrivial solution y of (5.1.1) vanishes at two distinct
points t = ¢, and ¢ = t5. For each £ > 0 there are arbitrarily large -almost periods,
say T, of ¢(t). Consider the translated equations (®(y’)) + c(t + 7,)P(y) = 0 with
solutions y, which attain the same initial values at ¢ = ¢, as does y. Also there
is a solution z, of (5.1.1) for which z,(t + 7,) = yn(t). For each £ > 0 there
exists an € > 0 such that y,, vanishes on t; — ¢ <t < t3 + &. Then z, vanishes at
t = t1 + 7, and also near {3 + 7,. Hence every solution of (5.1.1) must vanish on
ty+ 7, <t <ts+ 7, + £ Since the translation numbers 7, are arbitrarily large
(or small), (5.1.1) is oscillatory. O

The lack of periodicity-type assumptions on A, B usually has the effect of
splitting D and A. However, later we will see that D = A may occur even in the
“non-periodic” case.

Next we present the results concerning the basic properties of the disconjugacy
domain. The central role in this subsection is played by the following lemma.

Lemma 5.3.1. Let c(t) be a continuous function on I. The equation
(5.3.3) (@(y") + Ae(t)®(y) =0
is disconjugate on I for each X € R if and only if c(t) =0 on I.

Proof. The sufficiency is trivial since (®(y’))’ = 0 is certainly disconjugate on I.
In order to prove the necessity, let (5.3.3) be disconjugate on I for every A € R.
The variational principle now says that whenever n Z 0 is in WO1 "P(a,b), where
[a,b] C I,

b
(5.3.4) / [P = Aclap?)(t) dt > 0

for every A € R. Now let [a, b] be a given subinterval of I and fix  # 0 in W, (a, b).
Since 7' € LP(a,b) it follows from (5.3.4) that

b
(5.35) A [ < .

where || - ||, is the usual norm in LP(q,b). We emphasize that (5.3.5) is valid for
every A € R. Since |A| can be chosen arbitrarily large it follows from (5.3.5) that

b
(5.3.6) / (clnlP)(t) dt = 0.



220 Chapter 5. Various Oscillation Problems

We find that (5.3.6) holds for every 1 € Wy (a,b) and for every [a,b] C I. Define
the test function ¢, by

t—a fora<t<a+e,
Pe(t) =< ¢ fora+e<t<b—e,
b—t forb—e<t<h

Clearly, . is in W, " (a,b) for each & > 0. Inserting this into (5.3.6) and passing
to the limit as € — 04, it is easily seen that

(5.3.7) /b c(t) dt = 0.

Thus (5.3.7) holds for every compact subinterval [a,b] C I. Hence ¢(t) = 0 on
I O

An interesting formulation of Lemma 5.3.1 is its contrapositive.

Corollary 5.3.1. Let c(t) be a continuous function on I with c¢(t) # 0 in I. Then
there exists at least one value of A € R such that (5.3.3) is not disconjugate on I.

Corollary 5.3.2. Let ¢; be continous functions on I for i = 1,...,n. If the
equation

(5.3.8) (@) + (Arer(t) + -+ + Anen(t))®(y) =0

is disconjugate on I for every point (A1,...,An) in R™, then ¢;(t) = 0 on I for
t=1,...,n.

Note, once again, that the contrapositive of the last corollary is of interest. If
none of the functions ¢; vanishes identically, then there exists at least one point
(A, ..., An) in R™ for which (5.3.8) is not disconjugate on 1.

From the last corollary we get the following theorem.

Theorem 5.3.2. The disconjugacy domain D of equation (5.3.2) is the whole
space R? if and only if A(t) = B(t) =0 on I.

Corollary 5.3.3. If at least one of the functions A, B is not identically equal to
zero, then D is a proper subset of R?.

The question of the boundedness or non-boundedness is a more difficult one.
The next result gives a necessary and suflicient condition for D to contain a full
ray through the origin of R?, and thus a sufficient condition for non-boundedness
of D.

Theorem 5.3.3. The set D contains a proper subspace of the vector space R?
(other than the subspaces formed by the coordinate axes) if and only if the function
A is a constant multiple of the function B over I.
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Proof. Let A be a constant multiple of B. Then there exists k& # 0 in R such
A(t) = kB(t) on I. Equation (5.3.2) then becomes (®(y)) 4+ (—ak+3)B(t)®(y) =
0. Hence D contains the subspace {(«,3) : 3 = ka}.

Conversely, let D contain a proper subspace of R? other than the coordinate
axes. Then S = {(a, ) : 8 = ka} for some k # 0. Hence, on this subspace, we
must have (®(y")) + (—A(t) +£B(t))a®(y) = 0 disconjugate on I for every o € R.
Applying Lemma 5.3.1 with ¢(t) = —A(¢) + kB(t), we find that A(f) = kB(t) on
I, so that A is a constant multiple of B. O

Note that the assumption of linear independence excludes the possibility that
either one of A, B vanishes on I. Hence, form the previous theorem, we have the
following statement.

Corollary 5.3.4. Whenever A, B are linearly independent functions on I, D can-
not contain any full ray through the origin of parameter space.

Remark 5.3.1. Note that if D contains two proper subspaces of R?, then D = R2.
Thus whenever D C R? (which is generally the case), D contains at most one full
ray through (0,0). It is important to point out that D need not always contain
a full ray through (0,0). In fact, in some cases, D may be even a bounded set
(see Example 1 on p. 5 of [289] concerning equation (5.3.1)). However note that,
for example, D is always unbounded whenever A, B are linearly dependent, or if
A(t) =1 on I and B(t) is arbitrary, as, in this case, D D {(¢,0) : a > 0}.

We have seen that D may contain various full rays through the origin of R?. It
should be interesting to determine whether or not D may contain curves of higher
(lower) order than one.

For example, a glance at the geometry of the curve 3 = o shows that, since
D is convex (this will be shown later), the line segment joining the points (a1, o)
and (ag,a3) on this curve must belong to D. However as o varies over R, the
convex hull of the set {(«,3) : 8 = a3} is in fact all of R?. Thus D = R? and so
the coefficients must vanish on 7 (Theorem 5.3.2). From this simple argument it
follows that the equation (®(y'))" + (—aA(t) + o3 B(t))®(y) = 0, t € [0, o), must
be nondisconjugate on [0, 00) for at least one value of & € R (if A and/or B are
not zero on I). A similar argument applies for the general cubic 8 = a;a® +aza® +
aza + aq where a1 # 0, and for the general odd degree polynomial equation (with
nonzero leading coefficient).

The case when 3 = «? (or any even degree polynomial equation) is very differ-
ent. This is because the convex hull of the set {(c,3) : 8 = a?} as « varies over
R is not all of R?, in contrast with the cubic case mentioned above. The idea of
the proof of Theorem 5.3.2 may be used to derive necessary conditions for D to
contain the full parabola 3 = a?. For example, we have the following statement.

Theorem 5.3.4. Let A, B be such that A%(t)+ B2(t) > 0 on a set of positive mea-
sure on I. Then a necessary condition for the disconjugacy domain D to contain
the full parabola 3 = o? is that B(t) <0 on I.

Proof. We proceed as in the proof of Theorem 5.3.2. Since D contains the parabola
{(a,a?) : a € R} it follows that for each interval [a,b] C I and each n # 0 in
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WP (a,b) ff[\n’\p — (—aA + o?B)|nP](t) dt > 0 for each a € R. From this it is
readily derived that, for a fixed interval [a,b] C I and a given 1 # 0 in Wy (a,b),

b b
(5.39) o [ B de - [ (A < 1|

for each o € R. Since ' € LP(a,b) it follows that

(5.3.10) /b(B|n|p)(t) dt <0

for our 7, otherwise the left-hand side of (5.3.9) will exceed the right-hand side
for all sufficiently large o > 0. Since 1 # 0 and [a, b] are arbitrary it follows that
(5.3.10) holds for each 7 # 0 in W, ® (and clearly for 7 = 0) and each [a, ] C I. Let
11 = ¢ be the test function appearing in the proof of Theorem 5.3.2 (which is in
fact based on Lemma 5.3.1). Then, arguing as in that proof, we {ind fj B(t)dt <0
for each [a,b] C I. The conclusion now follows. |

Remark 5.3.2. Note that the above type of proof may be used to show that B(t) <
0 is a necessary condition for D to contain the graph of any even degree polynomial
equation with nonzero leading coefficient.

Other results in the same vein are the following two statements.

Theorem 5.3.5. Let A, B satisfy the hypotheses in Theorem 5.3.4. A necessary
condition for D to contain the parabolic segment {(a,3) : 8 = k/a,k > 0} for
all sufficiently large o (depending on k) is that A(t) >0 on I.

Proof. This is analogous to the proof of Theorem 5.3.4, and so will be omitted. [

Now we give a special type of converse. As we have already said above, the co-
efficients do not need to be continuous in our theory but we make the assumption
of their continuity because of simpler formulation. In fact, there is almost no dif-
ference when we relax the assumption of continuity appropriately. For comparison
purposes, let A, B be locally Lebesgue integrable in I in the following theorem.

Theorem 5.3.6. Let A(t) > 0 almost everywhere on I and essinf A(t) > 0. In
addition, let B € L=(I). If « > ag where

(5.3.11) oo = k?|| B||%, /(essinf A(t))?,

then D contains the parabolic segment {(«, 3) : 8 = k/a} for such «. The lower
bound ag in (5.3.11) is sharp when A, B are constant functions almost everywhere
on I.

Proof. Note that for @ > @y we have /a(essinf A(t)) — k||Bll« > 0, and so
VaA(t) — kEB(t) > 0 almost everywhere on 7 for a > «p. Thus

(5.3.12) aA(t) — kv/aB(t) > 0
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almost everywhere on I for a > ap. Now for a given fixed [a,b] C I and 5 # 0 in
W, " (a,b) we have

b
(5313) [P = (—aa+ k@B PI© de = 0
on account of (5.3.12), with equality holding in (5.3.13) if and only if # = 0. Hence
this p-degree functional is positive definite on W, (a,b) for each [a,b] C I and
consequently (P(y')) +(aA(t)+kv/aB(t))®(y) = 0 must be disconjugate on [0, cc)
for @ > g by the variational principle. Therefore {(«, kv/a) : « > ap} C D which
is what we needed to show.

Next, let A(t) = a, B(t) = b be constant functions almost everywhere on I.
Then it is trivial that D = {(a, 5) : —aa + Bb < 0}. Now the boundary of D is
the ray 8b — aa = 0, or a = {b/a) B (since a > 0). The point of intersection of
the parabolic segment 3 = k+/a for o > ag = k?b?/a® with the boundary of D is
given by equating (b/a) 3 = 32/k* which yields 3 = bk?/a, i.e., @ = ap. Hence the
said parabolic segment originates at the boundary of D for each k£ > 0. O

Remark 5.3.3. Similarly as in Theorem 5.3.5 it is possible to show that D con-
tains the parabolic segment {(c, ka'/*),a > ag} where A\ > 1, k > 0 if g =
k|| B4,/ (essinf A(t))*.

Next two lemmas will serve to prove very important general properties of D.

Lemma 5.3.2. Lei ¢; be continuous functions on I for i =1,2. Assume that each
one of the equations (®(y")) + ¢;(1)®(y) =0, i = 1,2, is disconjugate on I. Then
the equation (®(y")) + ((1 — Ner(t) + Ae2(t)P(y) is disconjugate on I for each
A€ [0,1].

Proof. Let [a,b] C I be a compact subinterval. Then the functional f:[\vﬂp -
ci|n|P)(t) dt, i = 1,2, is positive on Wé P(a,b) by the variational principle. On
account of the same principle, it suffices to show that f;[|n’|p = ((1 = Ner +
Aea)|n|P](t) dt is positive on Wy P(a, b). Now if A € [0,1] and 5 # 0 is in Wy ?(a, b),
then

b b
Ga1g) =N [P =Pl deen [P - el de >0
However the left side of (5.3.14) is equal to f;[m"” — (1 = Ner + Ac)|n|P]() dt

as a simple calculation shows. Hence the latter is positive definite on I/VO1 P(a,b).
This is valid for every [a, b], therefore the result follows. O

Before presenting the following lemma, let us recall that throughout this sub-
section, the interval I is assumed to be equal to [0, 00) or (—oc, 50).

Lemma 5.3.3. Letc;, i = 1,2,..., be a sequence of continuous functions on I
such that

(5.3.15) (@) + ealt)D(y) = 0
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is disconjugate on I for each i = 1,2,.... If ¢, (t) converge uniformly on each
compact subinterval of I to c(t), then the limit equation (5.1.1) is also disconjugate
on I.

Proof. Assume, on the contrary, that (5.1.1) has two distinct zeros 1, t3. Consider
the solutions y, of (5.3.15) with initial data y,(t1) = 0, y,,(t1) = ¢/ (t1). Let J
be a compact interval containing ¢; and {9 in its interior. For sufficiently large n,
cn(t) — e(t)] and |y, () — y(t)| are smaller than any prescribed ¢ > 0 for ¢ € J.
Therefore y,, vanishes near t5. But this contradicts the hypothesis that (5.3.15) is
disconjugate. Thus (5.1.1) is necessarily disconjugate. O

Theorem 5.3.7. In the usual topology of R?, the disconjugacy domain D of
(5.3.2) is a closed set.

Proof. Let (ap,fo) be a limit point of the sequence (a,,8,) € D, n = 1,2,....
Then for each £ > 0 there exists an n such that |a, —ao| <&, |Bn — fo] < € and

(5.3.16) (@(y") + (—anA(t) + B B(t))@(y) = 0

is disconjugate. Now let y be any nontrivial solution of (5.3.2) for (a, 3) = (@, Bo)-
Either y never vanishes in which case (g, 8o) € D, or y(tp) = 0 for some t.
In the latter case let y, be the solution of (5.3.16) which satisfies y,(t9) = 0,
y5, (to) = ¥'(to). Then, by assumption, y,(t) # 0 for ¢ # ¢p. However {y,, } uniformly
approximates y on each interval [tg,tg + &] (by Lemma 5.3.3) for £ > 0 if ¢ is
sufficiently small. Hence y can only change sign at ¢ = £y, and so y(t) # 0 for
t # to in I. Thus every solution y has at most one zero in 1. O

Theorem 5.3.8. When viewed as a subset of parameter space R2, the disconju-
gacy domain of (5.3.2) is a convex set.

Proof. We must show that if (ay,8;) € D, i = 1,2, then the line segment joining
these two points is also in D, i.e., that (1 — A)(ay, 51) + Aae, B2) € D for each
X € [0,1]. This is equivalent to showing that (®(y’)) + [(—(1 — Moy — Aa2) A(t) +
((L=X)B1 4+ AB2)B(t)]®(y) = 0 is disconjugate on I for each A € [0,1]. Simplifying
and rearranging terms in the potential of the last equation, we may rewrite it in the
equivalent form (®(y")) +[(1 =) (—a1 A1)+ 51 B(t))+ A (—ax A(t)+5: B(1))|®(y) =
0 for A € [0, 1]. Since (oy, 3;) € D for i = 1,2, Lemma 5.3.2 yields the conclusion.

O

Ezample 5.3.1. Let A(t) = B(t) = t? on I = [1,00). Since A, B are linearly
dependent, D must contain full ray through (0,0). Moreover we know that D is
closed and convex. Note that (5.3.2), with the above identification, becomes an
Fuler type equation of the form

—o+f3
P

(@) + @(y) =0

for t € I. Thus if —a + 8 < [(p — 1)/p]?, the equation is disconjugate, see Sub-
section 1.4.2, and so {(e,3) : 8 < [(p — 1)/p]’ + @} € D. On the other hand,
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if —a+ 8 > [(p—1)/p]?, the equation is oscillatory. Hence D = {(«a,8) : 8 <
[(p — 1)/p]? + a}. Note that D contains precisely one subspace S of R?, namely,
S ={(a,B) : a=p} (cf. Theorem 5.3.3).

Remark 5.3.4. If ¢(t) = —aA(t) + BB(t) satislies the assumption of Theorem 5.3.1,
then the oscillation domain O is open, since D and O are complementary in the
af-plane.

Now we turn our attention to the nonoscillation domain A (of (5.3.2)). First
note that A~ # @ since D C N and D # . The following examples show the
interplay between D and N.

Example 5.3.2. In contrast with Theorem 5.3.2 one can have A/ = R? without
either of A, B being equal to zero on /. A simple way of seeing this is by choos-
ing A,B € {f € C(I) : f(t) vanishes identically outside a closed and bounded
subinterval of I} For such a choice of A, B it is readily seen that (5.3.2) reduces to
(®(y")) = 0 for all sufficiently large ¢, independently of «, 3. Hence every solution
must have finitely many zeros. So N' = R? for such potentials.

Ezample 5.3.3. We now give an example where {(0,0)} ¢ D C N C R?. To this
end, let A(t) = 1 and B(t) = ¢t P on I = [1,00). Then (5.3.2) takes the form
(®(y)) +(—a+pt P)®(y) =0 fort € I. Now it is clear that {(e,3) : &« > 0,8 <
[(p—1)/p]?} C D by a simple application of Sturm’s comparison theorem with a
generalized Euler equation. Moreover the region {(a, 3) : « < 0} is certainly part
of oscillation domain (i.e., the complement in R? of the nonoscillation domain) by
Leighton-Wintner type criterion (Theorem 1.2.9). Thus D # {(0,0)} and N # R?.

Ezample 5.3.4. The phenomenon N’ = D = {(0,0)} may also occur. Indeed, we
already know (see Theorem 5.3.1) that for the class of potentials which are uni-
formly (i.e., Bohr) almost periodic the notions of disconjugacy and nonoscillation
coincide. Moreover, below mentioned Corollary 5.3.6 says that (5.1.1) is oscillatory
provided M{c} = 0, where the mean value M{c} is defined by

T—oo

1 (T
M{c} = lim T/ e(s+a)ds,
Jo

a € R. Now let A, B be Bohr almost periodic functions with M{A} = M{B} = 0.
Then —aA + 5B is also Bohr almost periodic with M{—aA + B} = 0 for each
(a, B) € R\ {(0,0)}. Hence (5.3.2) is oscillatory for each (o, ) # (0,0). Thus
D =N ={(0,0)}.

Ezxample 5.3.5. In contrast with Theorem 5.3.7 we show that, in general, N is not
a closed set. It suffices to {ind a sequence {c,(¢)} such that ¢,(t) — ¢(t) uniformly
on compact subsets of I as n — oo, and (®{y'))" + ¢, {t)®(y) = 0 is nonoscillatory
(for each n) with (®(y'))’ + ¢(t)®(y) = 0 being oscillatory at oc. Let A(t) = 7,
B(t)=t"P on I =[1,00), and consider the equation

(5.3.17) (") + (—at? + Bt P)®(y) =0

on I. Let (ap,B) = (1/n,14+1/n), n = 1,2,.... Then (5.3.17), with a,, 5, as
parameters, is nonoscillatory at oo for each n = 1,2, ..., since —a,t? + 8,77 <0
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for each t > T, := /n+ 1. Hence for each n, (5.3.17) with (o, 3) = (an,5n)
is disconjugate on [T}, o) and hence must be nonoscillatory on [1, 00). However
—aptP 4+ Bpt™P — 7P (uniformly on compact subintervals of [0,00)), and the
limit equation (®(y’)) + t P®(y) = 0 is an oscillatory Euler type equation. Thus
(an, Bn) € N but lim(ay,, 3,) € N. Hence N cannot be closed in this case. Note
that since D is closed, it follows that D # N for equation (5.3.17).

Remark 5.3.5. Let us summarize what we have seen so far. Recall that equation
(5.3.2) is considered on the interval I, where I equals (—oo,00} or [0,00}. In
contrast with D, the set A is not always closed. Furthermore, there may occur
N = R? without either one of A, B vanishing on I. In general D C N for equation
(5.3.2), however there exists various classes of potentials A, B, for which D = V.
Further, the oscillation domain O may be an open set (e.g., when D = A) and it
may be empty (e.g., when A" = R?). For comparison purposes, it is not difficult
to see that whenever A(t) = 1, B(t) is uniformly almost periodic, then O is open,
connected and nonempty. Indeed, if (ag, 8g) € O, then (ag — &, By} € O for each
& > 0 by the Sturm type comparison theorem. Moreover, O contains the sector
a < —|B|SUP_ o creno €(t). The sets D, N may be unbounded (e.g. when A, B are
linearly dependent) and D may even be a bounded set (so that D is nonempty,
convex and compact), D # {(0,0)}. However if A(t) = 1, then D is unbounded.
It is possible that A" may be bounded (as N' = {(0,0)} can occur). However it is
an open question whether or not A/ may be bounded if A # {(0,0}} (even in the
linear case). We have also seen that O = R?\ {(0,0)} is a possibility so that O is
as large as possible in such a case. Moreover it is immediate that the boundary of
D and N is a continuous curve (since each of these sets is convex).

Already at the beginning of this section, the problem on the equivalence of D
and N was mentioned. There is an interesting question: For which class of poten-
tials A, B does equation (5.3.2) have the property that D = A7 We already know
that this question is related to oscillatory potentials. Indeed, the desired property
is guaranteed by Bohr almost periodicity of the coefficients of the equation, see
Theorem 5.3.1. In Subsection 5.3.3 we extend this statement to the Stepanoff case.
However there are classes of nonoscillating potentials for which ' = D also. Re-
call Example 5.3.1, where D = A provided A(t) = B(t) =t? on [1,00). Here is
another example.

Ezample 5.3.6. Let A(t) > 0on I =[0,00) and A(t) = B(t). Assume further that

¢
(5.3.18) lim [ A(s)ds = oc.

t—oo 0

Then the equation (®(y"}) + (—a+ 5)A(t)P(y) = 0 is oscillatory whenever 8 > «,
on account of (5.3.18) and the Leighton-Wintner type criterion, see Theorem 1.2.9.
Moreover, if 8 < «, we have (§ — a)A(t) < on I and so (5.3.2) is disconjugate.
Hence O = {(a,3) : B> a}andso D =N (= {(o,3) : < a}).

Now any one of a multitude of oscillation criteria for half-linear equations with

positive coeflicients may be used instead of (5.3.18) to obtain still wider classes of
potentials for which D = A .
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We finish this subsection with applications to the (extended) weighted Sturm-
Liouville type equation

(5.3.19) () + (AB(1) — A®)®(y) = 0,

where t € I (= [0,00)) and A € R is a parameter. We turn our attention to
the collection of those A € R for which (5.3.19) is nonoscillatory/oscillatory. The
collection of such A is a vertical line £ through « = 1 in parameter space R2.
Hence we will investigate the number of possible ways in which £ may intersect
N (or D).

Using the technique developed in the proof of Lemma 5.3.1, we can show: If
equation (5.3.19) is disconjugate on [0, 0o0) for every real A, then B(¢) = 0 on I (and
(®(y")) = A(t)®(y) is disconjugate on I'). Therefore it follows that if B(t) # 0,
then there exists at least one value of A for which (5.3.19) is not disconjugate on
I.

Furthermore we have: Let A, B be (nontrivial) Bohr almost periodic functions
with M{A} = M{B} = 0. Then (5.3.19) is oscillatory at infinity for every value
of A (provided the case when AB(t) — A(t) = 0 eventually is excluded).

Theorem 5.3.9. Precisely one of the following five cases occurs for each equation
of the form (5.3.19):

(i) It is oscillatory for every real \.
(ii) It is oscillatory for every real value of X exceptl at some unique point A = Ag.

(iii) There exists a finite interval (A1, A2) in R such that (5.3.19) is oscillatory
for A € (=00, A1) U (A2, 20) and nonoscillatory for A € (A1, \2).

(iv) There exists a point A3 € R such that (5.3.19) is oscillatory (resp. nonoscilla-
tory) for A € (—o0, A3} and nonoscillatory (resp. oscillatory) for A € (A3, 00).

(v) It is nonoscillatory for every real .

Figure 5.3.1: Intersection of £ with N: Cases (i) and (ii)
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N /
4
Figure 5.3.2: Intersection of £ with A/: Cases (iii) and (iv)

3 c

N /
4
Figure 5.3.3: Intersection of £ with A: Case (v)

Proof. Let £ = {(1,\) : A € R} be the ray mentioned above. Since £ is a ray
and N is convex, the claims (i)-(v) are consequences of the geometrical nature of
the intersection of £ with A/. Recall that N is a convex set in general position
in R? (but, as always, containing (0,0)). Enumerating the possibilities is now
an easy matter. There are only five distinct ways in which £ may intersect N:
(i) LNN =10, (ii) LNN = {a single point}, (iii) LNN = {a finite line segment},
(iv) LNN = {a “half-ray”}, (v) LNN = {a full ray} = L. See also Figures 5.3.1-
5.3.3. Each of the possibilities (i)-(v) listed here corresponds to the stated claims,
respectively, in the theorem, as it is not difficult to see. [l

Ezample 5.3.7. We show here that, in fact, each of the possibilities (i)—(v) stated
in Theorem 5.3.9 may occur.

On (i): See the note before Theorem 5.3.9.

On (ii): See the note before Theorem 5.3.9 but now set A = 0 there. Then
(®(y")) + AB(t)®(y) = 0 is oscillatory for each A # 0, and so LNN = {(1,0)} in
this case.

On (iii): It is known that at least in the special case p = 2, such an example
exists, see [289, p. 21], where the results on the structure of A/, given in [294], are
utilized.
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On (iv): Let B(t) = (t+ 1) P on [0, 00) and set A(t) = 0 on [0,00). Then for
A € (—o0,[(p—1)/p]”) (5.3.19) is nonoscillatory (in fact, disconjugate) while for
A€ ([(p—1)/p]P, 00}, (5.3.19) is oscillatory at oo as the equation is of generalized
FEuler type. Replacing B by —B and [(p —1)/p]? by —[(p — 1)/p]? interchanges the
words “nonoscillatory” and “oscillatory”.

On (v): See Example 5.3.2.

5.3.2 Equations with periodic coefficients

In this subsection we give an oscillation criterion for equation (5.1.1), where the
coefficient ¢ is periodic.

Theorem 5.3.10. Suppose that the function c(t) in (5.1.1) is a periodic function
with the period w, c(t) # 0, and

/ i c(t)dt > 0.
0

Then (5.1.1) is oscillatory both att = oo and at t = —o0.

Proof. To prove oscillation of (5.1.1), it is sufficient to find a solution of this
equation with at least two zeros. Indeed, the periodicity of the function ¢ implies
that if x is a solution of (5.1.1) then z(t £ w) is a solution as well and hence any
solution with two zeros has actually infinitely many of them, tending both to oo
and —oo.

The statement of theorem is clearly true if ¢ is a positive constant function since
then x(f) = sin, ut is a solution of this equation, where yu is a constant depending
on ¢ and p. So we need to consider the cases when ¢(t) is not a constant only. Also,
it is sufficient to deal with the case when fow c(t)dt = 0 because otherwise we can
define ¢co = < f: e(t)dt > 0 and é(t) = c(t) — co. Clearly, we have c(t) > &(t). If we
prove (5.1.1) with ¢ instead of ¢ to be oscillatory then by the Sturmian comparison
theorem equation (5.1.1) is also oscillatory.

Now let

clt) = /0 ' (s)ds.

This is a continuous periodic function with the period w. Let v and § be defined
by
C(5) = max C(t), C(y)=_ min C(2).

0<t<w §<t<dw
Then 0 <6 < v <+ wand
t 6
/ e(s)ds > 0, / c(s)ds >0 forteR.
¥ t

Now, by Theorem 5.1.4 and the remark given below this theorem, the solution of
(5.1.1) given by the initial condition z(d) = 1, /() = 0 has a zero in (—o0,§).
Indeed, C(t) £ 0 and

5 5
/ |s — 0]« (/ c(7’)d7’) ds >0 fort>d,
t ¢
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with any o € (—1/p,p — 2]. Now we need to show that this solution has a zero
on (4, 00) as well. We proceed by contradiction, suppose that z(¢) > 0 for ¢ > 4.
Counsider the function w = —®(2’/z) on [J, 0o). This function satisfies the Riccati
differential equation

(5.3.20) w' = c(t) + (p — 1)|w|?

and by integration we have

t+w
(5.3.21) wit +w) — wlt) = (p—1) / lo(s)[2ds,
¢
hence w(t +w) > w(t). Consider now the sequence

w(y), wly +w), wly + 2w), ....

By Theorem 5.1.4 and by our indirect assumption on the solution z(¢), this se-
quence consists of negative terms:

w(y) <wly+w) <wly+2w) < <0,

Indeed, if w(y + kw) > 0 for some k € N, then by Theorem 5.1.4 the solution =(t)
would have a zero in (v + kw, 00). Hence limy_. .. w(y + kw) < 0, consequently by
(5.3.21)

(o9}

mw+@—n/ Jw(s)|9ds < 0,

i.e., the integral f;o |w(s)|?ds is convergent. This implies by (5.3.20) that

t

w(®) =)+ [

’Y

o(s) d8+(p—1)/ lo(s)[ ds

and the function w(f) is bounded. Again by (5.3.20) we find that w’ is also bounded,
say, |w'(t)] < L. Then

w(t) " — Jw(t)] 7!
qg+1

t2
< L/ o (s)| ds,

t1

= /2w’(s)|w(s)\qsgnw(s) ds

t1

v < t1 < t2, hence lim_, o |w(t)]97" exists. Clearly, we have limy_ o, w(t) = 0.
On the other hand, w(d) = 0, and by (5.3.21) we have limy_, o w(§ + kw) > 0
and this contradicts the fact that lim; ..o w(t) = 0. O

5.3.3 Equations with almost periodic coefficients

We start with recalling the concept of almost periodic function. Bohr almost pe-
riodic function has already been defined at the beginning of this section. We em-
phasize that any Bohr almost periodic function is continuous, but the following
generalized almost periodic functions are not necessarily so. In the sequel we as-
sume that f is locally Lebesgue integrable. One of the first generalizations of Bohr
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almost periodicity was due to Stepanoff. We say that f is Stepanoff almost peri-
odic if there exists a real number L > 0 such that for each £ > 0 there exists a
relatively dense set of Stepanoff translation numbers 7¢(¢), i.e., numbers such that

t+1L
sup{%/t |f(s+ () —f(s)ds} <e.

teR

This definition is classical. It is to be noted however that the class of Stepanoff
almost periodic functions may be found by taking the closure of the class of all
finite trigonometric polynomials relative to the metric Dg defined by

t+L
Dsl.4] —p{%/ f(s)—g(s)lds},

tcR

L being a positive real number. The notion of a Weyl almost periodic function is
defined analogously, the only difference being in the definition of the metric. Thus,
the Weyl metric is given by

1 L

Dw(f,g] = lim sup {—/ | f(s) —g(s)] dS} ,
Loocoyer | L Jy

where the limit may be shown to exist. The completion of the class of all finite

trigonometric polynomials relative to this metric gives the space of the Weyl almost

periodic functions. The generalization of almost periodic functions undertaken by

Besicovitch is as follows. The Besicovitch metric is defined by

T
Dilf.g) =lmswp oo [ [7(s) — g(s)] ds
T—oc -T

and the space of all Besicovitch almost periodic functions is obtained by com-
pleting the space of all finite trigonometric polynomials relative to the Besicov-
itch metric. However, we will rather work with the Besicovitch seminorm || f||z =
imsupy_, o 57 f_TT | f(s)| ds. For each one of these notions of almost periodic func-
tions, the mean value M{f} always exists, is finite, and is uniform with respect

to a, a € R, where
T

1
M{f}= Tlgnoo 7/, f(s+a)ds.

It is immediate from the translation properties of such functions that M{|f|}
always exists, since | f| enjoys the same almost periodic properties as does f, and
is finite. Finally note that if we consider almost periodic functions in the sense of
Bohr, Stepanoff, Weyl and Besicovitch, then each such class is included in the next
one. The monographs [35, 51] are very good sources for finding further information
on almost periodic functions.

Now we give an extension of Theorem 5.3.1 from the Bohr almost periodic
case to the Stepanoff almost-periodic case, as we promised in the previous subsec-
tion. Recall that the function ¢ in (5.1.1) may be considered to be merely locally
Lebesgue integrable. This nicely matches the fact that generalized almost periodic
functions do not need to be continuous.
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Theorem 5.3.11. Let ¢ be a Stepanoff almost periodic function. If equation
(5.1.1) is not disconjugate on (—oo, 00), then it is oscillatory at both £oo.

Proof. Let y be a nontrivial solution of (5.1.1) such that for some a < b, y(a) =
y(b) =0.Let ¢ = |n| ™!, n = £1,42,.... Then there exists (by definition) arbitrar-
ily large positive and arbitrarily large negative {7,,}2° ___ (arranged in increasing
order) so that, for each n,

1 L 1
sup{ — c(s+ 1) —c(s)|ds p < —.
upd £ [ lels+m) = elsllds < o

— 0o

Hence
1 petGHDE 1
(5.3.22) —/ e(s+m) —c(s)|ds < —
Ly GOl
for each ¢, ¢ = 0,1,2,.... Since L > 0 is fixed, let m € N be chosen so that

mZL > b — a. Fix such an m. Then (5.3.22) holds for i = 0,1,...,m — 1, and so

1 a+ml m
il _ d hidd
7 /a le(s + 1) — c(s)] ds < B
holds for each n, n = 1, £2,.... Now there exists some 7 > 0, which we now fix,
such that
1o
(5.3.23) Z/a le(s + 1) —c(s)|ds < %

for each n. It follows from (5.3.23) that given v > 0 there exists N > 0 such that

b+
(5.3.24) / ) le(s + ) —c(s)|ds < v

provided |n| > N. Now consider the equations (®(z])) +c(t+7,)P(z,) =0, t € R,
and let z, be the solution corresponding to z,(a) = y(a) =0, z/,(a) = y/'(a)(# 0).
Then z,, is defined and continuous on [a, b+7] and since ¢(t+7,,) approximates c(t)
in the L'-sense over [a,b—+17] (by (5.3.24)), it follows by the continuous dependence
of solutions (see [171]) that there holds sup,ciy iy |2n(t) — y(¥)| < €n, where
gn — 0 as |n|] — oo. Since y(b) = 0, there exists n such that z, vanishes in
some neighborhood (b — §,b+ §) of b where § may be chosen less than or equal to
min{b—a, n}. Hence z, vanishes at two points for all |n| > N.But 2, (t) = y, (t+75)
where y, # 0 satisfies (5.1.1) and yn(a + ) = 0, y,(a + 7,) = y'(a). Hence y,
vanishes at t = a + 7, and near t = b+ 7, for each n. The Sturm type separation
theorem now implies that every solution of (5.1.1) must vanish between a+ 7, and
b+ 7, + 6. Thus (5.1.1) is oscillatory at +oc. O

Thus we see that if ¢ is Bohr almost periodic or, more generally, Stepanoff
almost periodic, then (5.1.1) is either oscillatory at oo and —oco or else is discon-
jugate on R. We show now that this is, in general, false for Weyl almost periodic
functions.
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FEzample 5.3.8. Let ¢ be defined on R as follows: On [0, 00), ¢(t) = 1 (t+1) P, while
on (—o0,0], c(t) = v2(t —1)7P, where y1 > [(p — 1)/p]? and 0 < o < [(p — 1)/p]?
are some constants. Recall that the function ¢ in (5.1.1) may be considered to be
merely locally Lebesgue integrable. Since each of these ¢ gives rise to a generalized
Euler equation on the respective half-axes, we see that the resulting equation is
oscillatory on [0,00) and nonoscillatory on (—oo,0]. Finally note that ¢ is Weyl
almost periodic as it is in L(R).

Corollary 5.3.5. Let A, B be Stepanoff almost periodic functions. Then D =N
for equation (5.3.2).

Proof. If A, B are Stepanoff almost periodic functions, then 8B — «A is a Stepa-
noff almost periodic function, see [35], since «, 3 are real constants. Hence either
(o, B) € Dor (o, 3) € O, by the previous theorem. O

If, in addition to almost periodicity of the potential, suitable conditions on
the mean value are required, then the oscillatory properties are affected in an
interesting way. Before we give the main statement of this part, recall the history
of the problem. In [172], it was shown that under the assumption that ¢ is Bohr
almost periodic, ¢ is not identically zero, the linear equation y” + Ac(t)y = 0 is
oscillatory at both oo and —oo for every real nonzero A if and only if M{c} = 0.
Note that the proof of sufficiency actually follows also from [270, Theorems 2
and 6] or from [80]. This was extended slightly in [289] to include the case of
generalized almost periodic functions in the sense of Stepanoff, under the tacit
assumption that either ¢ or its indefinite integral is uniformly bounded on R.
In each of the cited works use is made of the Bohr uniqueness theorem which
states that a nonnegative almost periodic function ¢ with M{c} = 0 must vanish
identically, if it is Bohr almost periodic, or vanish almost everywhere with respect
to Lebesgue measure, if it is Stepanoff almost periodic. It is a classical result that
this uniqueness theorem fails in the Weyl or Besicovitch case. It turns out that a
natural condition, namely, that M{|c|} > 0, is needed in addition to the original
one, that is, M{c} = 0, in order to extend the result of [172] to the Stepanoff,
Weyl and Besicovitch cases, and that the former condition is necessary. This is
seen by the example: Let c(t) = exp(—2?). Then ¢ is Weyl almost periodic [35,
p. 77) and M{c} = 0 = M{|e|}. But y”"+ Ac(t)y = 0 is nonoscillatory on R if A > 0.
In [136], it was proved the following result: Let ¢ be Besicovitch almost periodic
and assume that M{|c[} > 0. Then the equation y” 4+ Ae(t)y = 0 is oscillatory at
both co and —oo for every real nonzero A if and only if M{c} = 0. What we offer
here is a half-linear extension of the “sufficient part”. Note that in the linear case
the proof of necessity is valid for any class of almost periodic functions with no
change. However, it is based on the linear transformation which has no half-linear
analogue. Therefore, it is an open problem to prove an extension of the “necessary
part”. We start with an auxiliary statement which can be viewed as a certain
variant of Hartman-Wintner type theorem.

Lemma 5.3.4. Suppose that ¢ : [tg,00) — R is a locally Lebesgue integrable
function with M{c} =0 and (5.1.1) is nonoscillatory. If y(t) # 0 is a solution of
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(5.1.1) on [tp, 00), then
1t
lim ?/ lw(s)|?ds =0,
to

t—00
where w is given by the Riccati substitution w = —®(y'/y).

Proof. Let w be defined as in the lemma. Then it satisfies the generalized Riccati
equation

(5.3.25) w —(p—Dw|?—ct)=0

on [tg,00). Since |w|? > 0, it suffices to show that

1 t
limsup = [ |w(s)|%ds = 0.
t—oc to

Assume to the contrary that

1 gt
(5.3.26) limsup—/ lw(s)|?ds > 0.
to

t—oc t

Integrating (5.3.25) from g to ¢ and dividing it by ¢, we have

t to) 1 [ -1/
(5.3.27) wt) _ wit) —/ c(s)ds + 2= [ |w(s)|%ds
¢ t 't/ t /.
for all ¢t > to. It follows from (5.3.26), (5.3.27) and M{c} = 0 that there ex-

ist a positive constant m and an increasing sequence {t,}>2, of (tg,00) with
lim,,_, o t,, = oo such that

w(tn)

(5.3.28) ;

> (p—1)m? for all n large enough.

It follows from M{c} = 0 that there exists ¢* large enough such that

/tt c(s)ds

for t > t*. Using (5.3.29) we have

(5.3.29) <(p—1)(m/2)Ft

(5.3.30) / " e(s) ds = / ") ds — / " () ds < (p— 1)/t + 1)

to to

n

for all t > ¢, > t*. It follows from (5.3.28) and (5.3.30) that

w(ty,) — /f e(s)ds > (p—1)mPt, — (p— 1)(m/2)P(t + L)

(5.3.31) > (p—1)mPt, — (p— 1)(m/2)P[(2° — 1)tn +1,] =0
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for all t € [t,, (2P — 1)t,,] C [t*,00). From the existence of solutions to the initial
value problem, the differential equation

(5.3.32) (®(yn) — (0= 1)(m/2)"@(yn) =0

has a solution y, on [L,, (2P — 1)t,,] satisfying y.(t,) = y(t,) and

S)
Byt — ) — 2 = Dm/2)

It follows from (5.3.30) and (5.3.31) that

(p(yl(tn)) ¢ B +
CO(y(tn) ‘. e(s)ds = w(tn) — /t c(s)ds
> w(ty) — ( — 1) (m/2)P(t + t, )
B % */t (p—1)(m/2)"ds > 0

on [tn, (27 — 1)t,] C [t*,00). Using the Leighton-Levin type comparison theorem
(see Subsection 5.8.3 below), we have

(5.3.33) O tn) ‘

q)(y(tn)) (I)(yn(t»

n [tn, (27 — 1)t,] C [t*, 00). Now define w, = —®(y,, /yn). It is clear that w,, is a
solution of the equation

(5.3.34) wy, = (p = Dlwnl + (p = 1)(m/2)" = 0

on [tn, (2P — 1)t,] C [t*,00) with w,(t,) = w(t,) — 2(p — 1)(m/2)Pt,. Let s, =
[wn () — (m/2)P/ 91~ and vy, (t) = (Mm/2)P/9 + (t, — t + 8,) 7P on [ty ty + 8n) C
[t*,00), where n is large enough such that w,(t,) > (m/2)?/9. Then v,(t,) =
wy,(ty,). From the inequality (a+0)7 > a7 +b", which holds for every v > 1, a > 0,
b > 0, we get

vp(t) = (p—D(tn —t+sa) "
= (p=DIltn —t+s0)" "+ (m/2)"] = (p— 1)(m/2)"
< (= D[m/2)"9 + (tn — L+ 80)' 7] = (p = 1)(m/2)"
= (= Da®) = (p—1)(m/2)"

on [tn,tn + sp) C [t*, 00). Thus
Un () = (p=Dvn )|+ (p—1)(m/2)" < 0 =}, () = (p—Dwn(8)| + (p— 1)(m/2)"

for all t € [tn, (2P — 1)tp] N [tn, tn + sn) C [t*,00). A simple comparison argument
shows that v, (t) < w,(¢) on this interval. It follows from

wn (tn) = w(ty) — 2(p — 1)(m/2)Pt, > (p — 1)(1 = 2'7P)ymPt,
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that t, + s, € [tn, (2P — 1)t,] for n large enough. By the definition of v,, we see
that lim¢_ (1, 4s,)— Un(f) = 0o for n large enough. Hence

(5.3.35) . (lim : wy(t) = 0o for n large enough.
—(tn+spn)—

Now we take k large enough such that iy + sk € [tg, (2P — 1)tx]. Clearly, there
exists a positive constant M such that

O(y'(tn))

Tyl S

on [tg, (27 — 1)tg] C [t*, 00). It follows from (5.3.33) and (5.3.35) that

@ !
o= lim  w,()< lim {—M} < M < 0,
t—(trp+sp)— t—(ty+sk)— (I)(U(tn))
which is a contradiction. O

Theorem 5.3.12. Suppose that ¢ is a Besicovitch almost periodic function with
the mean value M{c} = 0 and M{|c|} > 0. Then (5.3.3) is oscillatory at co and
—o0 for every A # 0.

Proof. Without loss of generality we only show that (5.3.3) is oscillatory co. Sup-
pose, by a contradiction, that (5.3.3) is nonoscillatory (at o) for some A with a
solution y(t} > 0 for large ¢, say t > ty. Then w = —®(y’'/y) is the corresponding
solution of the associated Riccati equation

(5.3.36) w' = Ae(t) 4+ (p — 1)w(t)|?
Integrating (5.3.36) (with any fixed 6 > 0 and ¢ > tg) we get

Cw(t+d) wt) p-1 [

A t+8
z - _ _ q
(5.3.37) 5 /t c(s)ds 5 5 ), lw(s)]9.

Applying the Besicovitch seminorm || - | - defined by

. I
I fll5 = h;nsup ;/ f(s)|ds
—0OC tO

(this is essentially restriction of the seminorm || - || to the interval [tg, 00)) to
(5.8.37), we find

A t+6 -1 t+6 L+ 5 "
0< —/ c(s)dsl| < p_/ lw(s)|9ds| + wt+9) + w(t)

0 Ji B o Ji B 0 B O |l

for all 6 > 0. From Lemma 5.3.4 it follows that M{|w|?} = 0, thus ||Jw|lp =
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|lw(t 4 &)||g- = 0 for all 4 > 0. Using the Fubini theorem we have for some tg > 0

1 t s+48 1 t 8
E/ / \w(r)|Tdrds = E/ / lw(T + s)|?drds
Jitg Js to JO

= — q 4
(%/0 g [w(r + s)|9dsdr

1 9 e
&/0/ |w(s)|? dsdr
to

1 t+68
. / o) ds

t Ji,

IN

for any fixed § > 0. Using the last computation and Lemma 5.3.4 we have
-1 t+0
e LG
¢

Applying the last equality coupled with the fact that |w(t)||p- = 0 to the previous
computation, we see that

=0.

B’

(5.3.38)

for every § > 0. Since ¢ is almost periodic, it follows from [35, p. 97] that

1 [t
513(I)l+ e(t) — ) e(s)ds|| =0.
B/
This and (5.3.38) imply M {|c|} = ||¢|| 7 = 0 which is a contradiction. O

The following statement is an immediate consequence of the Stepanoff unique-
ness theorem, see e.g. [289], and the last theorem.

Corollary 5.3.6. Let ¢ be a Stepanoff almost periodic function, which is not
almost everywhere zero, with M{c} = 0. Then (5.3.3) is oscillatory at 0o and —co
for every A #£ 0.

Since every Bohr almost periodic function is Stepanoff almost periodic, this
corollary includes an extension of the above mentioned result from [172].

5.4 Strongly and conditionally oscillatory
equation

Let us now discuss the problem of strong (non)oscillation of the equation

(5.4.1) (r()®(y")) + Ae(t)®(y) = 0,
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where r, ¢ are subject to the usual conditions with ¢ positive and X is a positive
parameter. This concept was introduced by Nehari in [304] for linear differential
equation and its extension is obvious. Also, it is natural to expect that the situation
for strong (non)oscillation can be completely characterized. Differential equation
(5.4.1) is said to be conditionally oscillatory if there exists a constant Ag > 0
such that (5.4.1) is oscillatory for A > A¢ and nonoscillatory if A < Ag. The value
Ao is called the oscillation constant of (5.4.1). Since this constant depends on
the coeflicients of the equation, sometimes we speak about oscillation constant of
the function ¢ (with respect to r). If equation is oscillatory (resp. nonoscillatory)
for every A > 0, then equation is said to be strongly oscillatory (resp. strongly
nonoscillatory).

5.4.1 Strong (non)oscillation criteria

We start with the assumption | “rl=e(t)dt = co. A complementary case will be
discussed later. Then we need only to consider the case where the function ¢(t)
is integrable on [tg,00). Indeed, if [ c(t)dt = oo, then (1.1.1) is oscillatory by
Leighton-Wintner type criterion, and hence (5.4.1) is strongly oscillatory.

Theorem 5.4.1. Suppose that [~ c(t)dt < oo and [~ r'~9(t)dt = co. Equation
(5.4.1) is strongly oscillatory if and only if
t p— 20
(5.4.2) lim sup </ r174(s) ds) / c(s) ds = oo,
t—o0 t
and it is strongly nonoscillatory if and only if
4 p o0
(5.4.3) lim </ r1=4(s) ds) / c(s)ds = 0.
t—0o0 ¢
Proof. Suppose that (5.4.2) holds. Then

oo p—1 oo
lim sup (/ r4(s) ds) / Ac(s)ds >1
t—o0 t

for every A > 0, and so (5.4.1) oscillatory for every A > 0 by Theorem 3.1.2. This
implies strong oscillation of (5.4.1). Conversely, suppose that (1.1.1) is strongly
oscillatory and (5.4.2) fails to hold. Then, by Theorem 3.1.3 we get, for every

A>0,
o 1/p—1\""
/ Ac(s)ds > — <p_) .
t p b

¢ P

(5.4.4) lim sup (/ r17a(s) ds>
t—o0

This implies (5.4.2), otherwise (5.4.4) would be violated for sufficiently small A.

Now suppose that (5.4.3) hold. Then

Jim </tr1q(s) ds>p_l/too Ae(s)ds =0

1

—1

-1
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for every A > 0, and from Theorem 3.1.3, (5.4.1) is nonoscillatory for every A > 0,
which implies strong nonoscillation of (5.4.1). Conversely, let (5.4.1) be strongly
nonoscillatory. From Theorem 3.1.2, we have

t p—1 o0
lim sup (/ r174(s) ds> / Ac(s)ds <1
t— o0 t

for every A > 0. The arbitrariness of A then implies

t p [}
lim sup (/ r1=4(s) ds> / e(s)ds =0,
t—oc Jit

which is equivalent to (5.4.3). O

-1

Erample 5.4.1. The examples illustrating these concepts we have already seen in
the previous sections. For instance, if [* 7179(t) dt = oo, the equation

Arl=a(t)
(ft ri=a(s) ds)u

is conditionally oscillatory if y = p, strongly oscillatory if p < p and strongly
nonoscillatory if g > p. This follows from the fact that the transformation of
independent, variable ¢ — ft r1=9(s) ds transforms (5.4.5) into the equation

A
(5.4.6) (®(z") + t—uq)(x) =0,
and (5.4.6) is compared with the Euler equation (1.4.20). It is then easy to see
that if g = p, then A = [(p — 1)/p]? is the oscillation constant of ¢P.

(5.4.5) (r()®(z)) + B(z) =0

Now we will discuss the complementary case to the previous one, i.e., the case
when [ Crl=9(t)dt < co. We will present the theorem without proof, since the
idea is the same to that of the proof of Theorem 5.4.1, with the only difference that
instead of Theorem 3.1.2 and Theorem 3.1.3 we use Theorem 3.1.6. Also, similarly
to the previous case, we need only to consider the case where ¢ satisfies

(5.4.7) /oo (/too r174(s) ds>p c(t) dt < oo,

since otherwise (1.1.1) is oscillatory by Theorem 2.2.11, so that (5.4.1) is strongly
oscillatory.

Theorem 5.4.2. Suppose that (5.4.7) holds and [~ r'~9(t)dt < oo. Equation
(5.4.1) is strongly oscillatory if and only if

i sup (/too P-4 (s) ds) /too </°° rloa(r) d7'>pc(8) ds = oo,

and it is strongly nonoscillatory if and only if

Jim (/toorl_q(s)ds) /:o (/w r1=a(r) d7>pc(s) ds = 0.

-1

-1
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Remark 5.4.1. In view of the criteria in Section 3.1, it is not difficult to see that
using similar ideas as in the above two theorems, we can obtain corresponding sta-
tements (under appropriate assumptions) involving the functions A(¢), B(t),C(t)
and C(t), defined at the beginning of Section 3.1. The same holds for the results
of the next subsection.

5.4.2 Qscillation constant

The following theorems provide information about the oscillation constants of
conditionally oscillatory equations of the form (5.4.1). From Theorem 5.4.1 we
conclude that under the assumption [~ r1~9(t) dt = oo equation (5.4.1) is condi-
tionally oscillatory if and only if either

¢ P
0< tlim (/ () ds>

-1 00
/ e(s)ds
¢
¢ P
< lim sup (/ r1a(s) ds>
t—oc

t p—1 o]
M, = ligninf (/ r174(s) ds) / c(s)ds,
L — OQ . t

t P 0
M™* = limsup (/ r174(s) ds) / c(s)ds.
t—o0 t

Theorem 5.4.3. Suppose that [ c(t)dt < co and [ r'=9(t)dt = co. Let 0 <
M, < M* < cc. Then the oscillation constant Ag of (5.4.1) satisfies

1 —1\*7! — 1\
(21 g cmind b (pd .
pM* \ p M* pM, \ p
In particular, if M, = M*, then

oo L (p=INT 1 po N
" pMe N\ p S pM.\ p '

Proof. Let A € (0,\p). Then (5.4.1) is nonoscillatory, and so by Theorem 3.1.1
and Theorem 3.1.2, we have

t p—1 fe's] 1 p— 1 p—1
lim inf (/ r'4(s) ds) / Ac(s)ds =AM, < = (—)
=00 Jt p p

-1

/tooc(s)d8<oo

or

¢ P
0< litminf </ rt74(s) ds)

We introduce the notation

-1
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and

t p—1 [es)
lim sup (/ r1=4(s) ds) / Ae(s)ds = AM™ <1
¢

t—o0

whence, letting A — Ag—, we obtain

1 (p—1\""" 1
< r—- < .
)\0 ~ pM* ( D ) and )\0 =7

Let A € (Ao, 00). Since (5.4.1) is oscillatory, from Theorem 3.1.3 we see that

t p—1 o 1 p— 1 p—1
lim sup </ r19(s) ds) / Ae(s)ds = AM* > — (—) ,
t—oc t p p

which, as A — A\g+, yields

O

Now we will discuss the complementary case to the previous one, i.e., the case
when [ r!79(t)dt < oo (and (5.4.7) holds). Introduce the notation

N. = liminf </toc rl=a(s) ds) /too (/OO =) dT)pc(s) ds,
N* = Timsup </t°° =) ds>_1 /too </°° rl=a(r) dT)pc(s) ds.

From Theorem 5.4.2, it is clear that (5.4.1) is conditionally oscillatory (provided
(5.4.7) holds) if and only if either

0.< lim (/:Orl%s)ds>1/f </:01"1q(7)d7>pc(s)ds<oo

or 0 < N, < N* < o0.

-1

Theorem 5.4.4. Suppose that (5.4.7) and [~ r' 9(t)dt < oo. Let 0 < N, <
N* < oo. Then the oscillation constant Ao of (5.4.1) satisfies

1 [(p—=1\* . 11 [p—1\F
_ < < E— .
N*( P ) Aomm{N*’N*< P )
If, in particular, N, = N*, then
1 /p—1\* 1 [/p—1\*
Ao = ) === .
N=\ p N\ p

We conclude this section with comparison type results involving oscillation
constants.
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Theorem 5.4.5. Let ¢(t) and d(t) be two nonnegative (and eventually nontrivial)
integrable functions, and let Az, 0 < Mg < 00, be the oscillation constant of d (with
respect to r). Assume that [~ r1=9(s)ds = co and the limit

t p—1 oc
Ly = lim </ rt9(s) ds) / d(s) ds
i ¢

o f T els) ds
U = liminf “5g—"—— > Ay,
t=oo [T d(s)ds

exists. If

then (1.1.1) is oscillatory.

Proof. The equation (r(t)®(y")) + Ad(t)®(y) = 0 is oscillatory if A > A4. Thus,

p—1

p—1
> ) , so that for any

by Theorem 3.1.3, we have Ly > v,/A, where v, = % (
0 < € < 7yp/Aq there exists T such that

(/ () d) [ awds> 3

fort > T. As A — Ay, we have

(/o ds)’“ [ tsras>

-1
o < T (ftrl—Q(s)ds)p [7 c(s)ds
im i
- oo Yp/Ad— €

1 t p
P

Since this implies
¢ p
lim inf (/ r74(s) ds)
t—o0

equation (1.1.1) is oscillatory by Theorem 3.1.1. O

for t > T, so that

-1

/too c(s) ds.

-1

/ c(s)ds > vy,
t

Similarly we can prove the following theorem.

Theorem 5.4.6. Let c(t) and d(t) be two nonnegative (and eventually nontrivial)
Junctions, and let Ag, 0 < Ay < 00, be the oscillation constant of d (with respect to
7). Assume that [~ r'79(s)ds < co. Further, suppose that (5.4.7) and the same
condition, with d instead of ¢, hold. Let the limit

Jim (/toorl%s) ds) /toc (/OC Pl (r) dT)pd(s) ds

-1
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exist. If
S o) dr)” efs) ds
htrggolfft (fs ri=a T)dT)pd(S)dS

then (1.1.1) 4s oscillatory.

> A,

5.5 Function sequence technique

In this section, we will see how nonoscillation of (1.1.1) can be expressed in terms of
suitable function sequences, which will be proved to be strictly related to solvability
of the Riccati integral equation (inequality). Several new criteria will be given and
some of the already presented ones will be proved alternatively. The Hille-Wintner
comparison theorem and its extension will be mentioned in this framework as well.

Let us consider equation (1.1.1), where r, ¢ are continuous on [a, co) with r(¢) >
0. Throughout this section we assume that

(5.5.1) / r179(s) ds = oo

and

(5.5.2) / c(s)ds exists and is nonnegative
¢

for large t, say ¢ € [a, 00), without loss of generality.

5.5.1 Function sequences and Riccati integral equation

First we give a characterization of nonoscillation in terms of the sequence {@x(t)}
defined by

(5.5.3) mt)/f o(s)ds, eult / (1)) ds+golt), k—1,2,...,

where the function S is defined by (2.2.2). By induction, it is not difficult to see
that

(5.5.4) prai(t) 2 ou(t), k=0,1,2,...,
i.e., this function sequence is nondecreasing on [a, 00).

Theorem 5.5.1. Fquation (1.1.1) is nonoscillatory if and only if there exists
to € [a,00) such that

(5.5.5) lim e(t) = o(t)

k—o0

fort > tg, i.e., the sequence {p(t)} is well defined and pointwise convergent.



244 Chapter 5. Various Oscillation Problems

Proof. Let (1.1.1) be nonoscillatory. Then there is w satisfying (2.2.17) for large
t, say t > tg > a, by Theorem 2.2.4. Hence w(t) > ¢q(t), and so

w(t) =¢ / S(w,r)(s) ds > wo(t) / S(ipo,7)(s)ds = @1 (1)

By induction, w(t) > @(t) > 0, k = 0,1,2,..., t > tp. Recall that {ok(t)} is
nondecreasing. Now we can easily see that this sequence is bounded above on
[to, 00), and so (5.5.5) holds.
Conversely, if (5.5.5) holds, then it follows from (5.5.4) and (5.5.5) that g (¢) <
o(t), k =0,1,2,..., t € [tg,o0). Applying the Lebesgue Monotone Convergence
Theorem to the second equation in (5.5.3) we have

/6%

Now, (1.1.1) is nonoscillatory by Theorem 2.2.4. O

Corollary 5.5.1. Fquation (1.1.1) is oscillatory if and only if either

(i) there is a positive integer m such that v (t) is defined for k =1,2,... ,m—1,
but om(t) does not exists, i.e., [~ S(¢m—1,7)(s)ds = oo

or

(ii) or(t) is defined for k = 1,2,..., but for arbitrarily large to > a, there is
t* >ty such that limy_,o @ (t*) = co.

The (approximating) sequence {¢x(t)} defined by (5.5.3) is not the only one
that is available. Let us define the sequence {¢x(¢)} by

wo(t):/t c(s)ds, P(t / S(vo,7)(s)ds, Yri1( ):/t S+, r)(s)ds,

kE=1,2,.... Now we proceed similarly as above. Indeed, nonoscillation of (1.1.1)
implies

Yo(t) < ¢o(t) / S(w,r) = w(t).
Hence

’l/)o( ) =+ ¢1 'l/)o / S 'l/)o, dS < w(t)
Similarly,
(5.5.6) Wot) + vr(t) < w(t), k=1,2,...,

which implies 0 < tg(t) < 91 (t) < --- < w(t). The converse is obvious. Hence we
have the following statement. Note that later we show another slightly modified
approaches.
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Theorem 5.5.2. Equation (1.1.1) is nonoscillatory if and only if there exists
to € [a,00) such that

(5.5.7) Jm P (t) = 9(1)

fort > ty, i.e., the sequence {1y (t)} is well defined and pointwise convergent.

Also in this case we have a corollary, which is literatim the same as Corol-
lary 5.5.1, except of ¢ is replaced by .

Remark 5.5.1. Observe that in the proof of Theorem 5.5.1 we use the fact that
nonoscillation of (1.1.1) implies solvability of the Riccati integral equation

w(t) = /too c(s)ds + /too S(w,r)(s)ds,

and then we make estimations which are based on this equation. A closer exami-
nation shows that if this equation is replaced by the Riccati integral inequality

w(t) > /OC c(s)ds + /OO S(w,r)(s)ds,

then everything works as well. Recall that we have already shown that solvability
of this inequality is sufficient for nonoscillation of (1.1.1), see Theorem 2.2.5. What
we show here now is that this fact can be proved alternatively, by means of the
sequence approach (without using Theorem 2.2.1): simply combine the proof of
Theorem 5.5.1 with the observation at the beginning of this remark. Altogether,
we see that under conditions (5.5.1) and (5.5.2), in view of our observations, the
following statements are equivalent:

(i) Equation (1.1.1) is nonoscillatory.

(i) The equation w(t) = [ c(s) ds+ [ S(w, r)(s) ds is solvable in a neighbor-
hood of oo.

(iii) The inequality w(t) > [~ c(s)ds + [, S(w,7)(s)ds is solvable in a neigh-
borhood of co.

(iv) The sequence {p(t)} satisfies (5.5.5).
(v) The sequence {¢(t)} satisfies (5.5.7).
Recall that throughout this section we assume (5.5.1) and (5.5.2).

Theorem 5.5.3. Let ¢(t) > 0 for large t. If
-1

(5.5.8) Jim sup ( / trlq(s)ds)p on(t) > 1

t—oo

for some k € NU {0}, then (1.1.1) is oscillatory.
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Proof. 1f the conclusion is not true, then as in the proof of Theorem 5.5.1 we
have () < w(t), k = 0,1,2,..., t > to and hence, by Lemma 2.2.6, p,(t) <

(ftrl’q(s)ds) " k=012 t > to. But then
to < ) 5Ly Ly ey L2 U0,

t p=1
lim sup </ r=a(s) ds) er(t) <1,
to

t—00
which contradicts (5.5.8). O

Remark 5.5.2. In particular, the condition

¢ P
lim sup (/ r14(s) ds)
t—o00 Ja

guarantees oscillation of (1.1.1), which is in fact the statement of (Hille-Nehari
type) Theorem 3.1.2.

1

/tooc(s)ds>1

The “ip-variant” of the last theorem is the following criterion.

Theorem 5.5.4. Let c(t) > 0 for large ¢. If

(5.5.9) lim sup (/: r11(s) ds)p

t—o0

—1

Utw o(s) ds +¢k(t)} -1

for some k € N, then (1.1.1) is oscillatory.

Proof. If not, then we have inequality (5.5.6). From Lemma 2.2.6 we get

oo t 1-p
/ o(s) ds + pa(t) < (/ 1= (s) ds) Ck=12,....
t to

which contradicts (5.5.9). O

Remark 5.5.3. In particular, the condition

fin sup (/atr]q(s)ds>p umc@)ds
+(p—1)/:orl‘q(s) (/OC C(T)dT)qd$:| >1

guarantees oscillation of (1.1.1). Its consequence is again Theorem 3.1.2.

-1

Next we give an alternative proof of the already presented Hille-Nehari type
criterion (Theorem 3.1.1).

Theorem 5.5.5. If

(5.5.10) (/atr]q(s) ds)p_l /too o(s) ds = o
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for large t, where

1/p—1\"!
(5.5.11) 70>—<2——) ,
p\ p

then (1.1.1) is oscillatory.

1-p
Proof. Condition (5.5.10) can be rewritten as pg(t) > 7o (ft ri=4(s) ds) . Then

a

or(t) = AwS@mﬂ@W$+%@)

=i ./too rHe) </ ri(r) dT) s+ (/t ri=a(s) ds) -
k (/atrl_%) d8>]_p +% (/:Tl_q(s) d8>1_p
7 </at7’1q(s) ds)]_p,

where y1 = ¢ + 7. By induction,
t 1-p
o0z ([ )

(5.5.12) Yo = Yi_1 + .

v

k=1,2,..., where

Clearly, v < V441, £ =0,1,2,.... Now we claim that limg_ ., 7z = oo. If not, let
limg 00 Y = L < o0. Then from (5.5.12) we have L = L? + «. It is not difficult
to see that, in view of (5.5.11), the latter algebraic equation has no real solution.
Hence we must have v, — oo as k — oo, which implies ¢ (t) — oo as k — oo, and
so (1.1.1) is oscillatory by Corollary 5.5.1. O

Remark 5.5.4. Condition (5.5.10) can be rewritten as

t p— 0 p—1
1 -1
lim inf </ r'=4(s) ds> / c(s)ds > — (p_) ;
t—oo a t P p

which is exactly (3.1.5).

The following Willet type criterion is based on the idea similar to the last one,
but with the use of the sequence {¢(t)}. See Remark 3.1.5 for an alternative
approach. Another approach can be found in Theorem 5.5.11.

Theorem 5.5.6. If

(5.5.13) liggf </too c(s) ds) B /too r14(s) (/:O e(r) dT)qu >p 1,

then (1.1.1) is oscillatory.

1
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Proof. Condition (5.5.13) can be rewritten as

R (/SOOC(T)dT)quZ o [T eoas

for large ¢, where 8 > (p—1)p~%. This is equivalent to ¢ (¢) = [ S(vo,7)(s) ds >
dotho(t). Hence, in view of the definition of {5 (¢)} we have

balt) = /tOOS(T/flJr?/)oJ’)(S)dSZ/toos(wo(1+5o),7’)(5)d5

1+ a0 [ " S(up,r)(s) ds > b1,

where 51 - (1+50)q50. By induction, wk+1(t) > 5k7/}0(t), where 5kz = (1+5k71)q50,
k=1,2,.... Clearly, the sequence {J;} is increasing. We claim that it is unbound-
ed. Otherwise, 6z — M < o0 as k — oo would imply M = (1 + M)%5y. However,
as it is not difficult to show, this algebraic equation cannot have a real solution if
8o > (p—1)p~ 7 Hence 8; — oo as k — oo, implying that {t(¢)} is not convergent,
and so the assumptions of Corollary 5.5.1 are satisfied. O

The sequence approach can be also used to show nonoscillatory counterparts
of the above oscillation criteria (see also Section 3.1 where a different technique
is used). First we give a counterpart to Theorem 5.5.6 (i.e., Willet type criterion,
see also Theorem 5.5.11 and the text right before it). Observe that this approach
enables to prove the nonoscillatory criteria where the inequality in the conditions
like (5.5.14) or (5.5.16) does not need to be strict, in the sense that the limsup of
the expressions depending on ¢ (being of the left-hand side) can be equal to the
critical constant (compare with the results of Section 3.1). Recall that we assume
(5.5.1) and (5.5.2).

Theorem 5.5.7. If

(5.5.14) /too rt74(s) (/:O e(T) dT)q ds < p5—0 1 /too c(s)ds

for large t, where g < (p— 1)p~9, then (1.1.1) is nonoscillatory.

Proof. Consider the sequence {1y (£)}. Recall that yo(t) = [ ¢(s) ds. We have
0O = -1 [ sudie) ds < dovnle)
by (5.5.14). Further,
Bl = -1 [ ) + vl

< (p=1)(1+d0)" /t P (s)t(s) ds < 1),
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where §; = (1 4 60)?8p. Inductively, we see that
(5.5.15) ’(/)k+1 (t) < (5k1/}0(t), where §; = (1 + 6k,1)q(50, k= 1,2,....

Clearly, {dx} is nondecreasing. We claim that it converges. Indeed, consider the
fixed point problem x = g(x), where g(z) = do(1+z)?. In fact, it is more convenient
to consider g(z) = dp|1 + x|?, which is not a restriction in view of the form of the
function S. Moreover, we are particularly interested in the first quadrant. We find
fixed points by means of the iteration scheme xz; = |1 + zx—1]9, k = 1,2,....
Note that when d5 = (p — 1)p~ 9, the graph of g is a parabola like curve which has
a unique minimum at 2 = —1 and touches the line y = z at (z,y) = (p—1,p—1).
Therefore, if we choose x¢g = Jp, then we see that the approximating sequence {xy}
is strictly increasing and converges to x = p — 1. If §5 < (p — 1)p~9, then clearly
8 < zx < p—1 for all k. This shows that {45} is bounded and hence converges.
Thus {%} converges by (5.5.15), and so equation (1.1.1) is nonoscillatory in view
of Theorem 5.5.2. O

The counterpart to Theorem 5.5.5 is already stated (Hille-Nehari type) Theo-
rem 2.3.2, but here (5.5.2) holds, and so we have:

Theorem 5.5.8. If
e 1
/ e(s)ds < —
t p

(5.5.16) </: r179(s) ds)p

for large t, then (1.1.1) is nonoscillatory.

1 pfl p—1
()

Concerning the sequence approach (utilizing {¢«(¢)}), the idea of the proof is
similar to that of the previous theorem and so it is omitted. Note only that the
assumptions of the criterion imply the inequality

o< ( | ima(s) d)

where v, = v} | + 7, k = 1,2,..., {7} being a nondecreasing and bounded

p—1
sequence, provided 7y is assumed to be less than or equal to % (pp%l) . Never-

theless, in the next subsection we show a modified approach.
We conclude this subsection by an alternative proof of Hille-Wintner type the-
orem (see Subsection 2.3.1). Along with (1.1.1) consider the equation

(5.5.17) (F(6)® (")) + &) (z) =0,

where 7, ¢ are subject to the same conditions as imposed on r, ¢, respectively. Let
the sequence {@x(t)} be defined by means of 7, ¢ like {4 (t)} is defined by means
of r,c.

Theorem 5.5.9. Assume that
(5.5.18) 7(t) < r(t), / c(s)ds < / é(s)ds for large t.
¢ ¢

If (5.5.17) is nonoscillatory, then (1.1.1) is nonoscillatory.
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Proof. Suppose that (5.5.17) is nonoscillatory. It follows from Theorem 5.5.1 that
there is to > a such that lim; o @r(t) = @(t) < oo, t > 3. By (5.5.18), 0 <
o (t) < Po(t). This implies

/ S (,0(), dS—l—gOo / S (,0(), d8+990( ) (,51(t).

By induction, 0 < <pk( ) < @r(t), k=0,1,2,..., t > tg. Therefore, ¢ (t) < H(t),
kE=0,1,2,..., t > to. This and (5.5.4) 1mply hmkﬁOO wr(t) = p(t), t > L. By
Theorem 5.5.1, (1.1. ) is nonoscillatory. O

Remark 5.5.5. (i) It is easy to see that the approach based on Theorem 5.5.2 works
in the last proof as well. Also, the sequence {#,(¢)}, defined in the next subsection,
can be utilized to prove the Hille-Wintner theorem, even under the conditions of
Theorem 2.3.1, see [180].

(if) Tt is not difficult to see that higher order iterated comparison theorems
can be established by using the nonoscillatory characterizations via function se-
quences. For instance, instead of the second condition in (5.5.18), we may assume
the following one: There exists m € N U {0} such that ¢ (t) — ¢r(t) changes sign
on [T, 00) for arbitrarily large 7" and k£ =0, 1,...,m — 1, but there is ¢y such that

(pm(t> S @m(t% t Z tO-

5.5.2 Modified approaches

In this subsection we introduce another function sequences, which can be used in
our theory as well. We start with the alternative proof of Theorem 5.5.8.

Proof. (Proof of Theorem 5.5.8) Suppose that (5.5.16) holds for ¢ > #4. Introduce

the integral operator
oo t -p
/ r14(s) (/ re(r) dT) lu(s)|9ds
t a

o)) = -1) (| Cpiags) ds)p

and define the sequence of functions {94 (t)}, t > to, by

Fo(t) = </:r1q(s) ds)p_ /too cs) ds,

P (t) = </atr1_q(s) ds)p1 /toc e(s)ds + (HOx—1)(t), k=1,2,....

From (5.5.16) we have

1 /p—1\""! —1\"!
0 < do(t) < = (p—> < <p—>
p\ P p

-1

1

(5.5.19)
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t > ty. By induction,
_1\?!
0 < Pp_1(t) < Ox(t) < (107) ,

n € N, t > tg. Let 9(t) denote the limit limg_. o 9(t), ¢ > to. Applying the Lebesgue
Monotone Convergence Theorem to (5.5.19), we see that ¥(¢) satisfies the integral

equation
o0
/ e(s)ds
t

u(t) = (/:r]_q(s) ds)p
+(p—1) (/at rtTe(s) ds) " /too rta(s) (/as ra(r) d’T‘) -’ lu(s)|%ds

1—p
for ¢t > to. It then follows that the function w(t) = ¥(¢) ( tr ) is a

a

-1

solution of (2.2.17), so that Theorem 2.2.4 implies that (1.1.1) is nonoscﬂlatory O

Next we describe another approach, where a slightly modified sequence appears,
which enables to state new criteria. Let (1.1.1) be nonoscillatory. Then there is w
such that

w(t) = @o(t) + /:0 S{w,r)(s)ds

for large t, say t > to, by Theorem 2.2.4, where po(t) = [, ¢(s) ds. Let us define
the sequence {wx (%)} as follows:

waﬂ—wdﬂ,WHdﬂ—wdﬂ+O7]JKMT1WQ¢ERQWMQ%,

k=0,1,2,..., t > tg. Clearly, vo(t) = wo(t) < w(t), and hence

wo(t) <wi (t) < wo(t)+(p—1) /too rl_q(s)cpg_l(s)w(s) ds < w(t).

Similarly, by induction, it is easy to see that {wg(t)} is a nondecreasing sequence
such that

(5.5.20) we(t) <w(t), k=0,1,2,...,

t > tg. From
/ () (sJun(s) ds < / )t (s ds < o0

we see that the family {wg,w;,ws,...} is equicontinuous, so (5.5.20) says that
there is a subsequence {wy, (t)} with a locally uniform limit on [tg,00) (i.e., the
convergence is uniform in each compact subinterval). In view of the monotonicity,
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{wi(t)} has a locally uniform limit, say w*(t), on [to, o0). Obviously, w*(t) < w(t),
so that

/toc r1=9(s)pl (s)w* (s) ds < oc.

Now the Lebesgue Dominated Convergence Theorem yields

/t T ()8 (s () ds = Tim [ 11 (s)pt (shon(s) ds

k—oc [y

for t > to. It therefore makes clear now that

(5.5.21) o) =wol®) + (=1 [ P o (91 ds.

t > to.
The above observation serves to prove the following necessary condition for
nonoscillation of (1.1.1).

Theorem 5.5.10. If (1.1.1) is nonoscillatory, then

(5.5.22) /:o o(s) exp {(p S /:rlq(f) (/oo () dg)ﬂ dT} ds < oo

and

(5.5.23) /aoo r19(s) </Oo (&) dg)q exp {(p -1) /a r19(T)
« (/OC o(€) dg)q_l dT} ds < oo,

Proof. In view of the above discussion, there is a number ty > a and a function
w* satisfying (5.5.21). This implies that

(5.5.24) (@) (8) = —e(t) = (p = r' (O (O (1).

Equation (5.5.24) is the first order linear equation, and from the formula for its
solution we get

o) - [ " ofs) exp {o-1 [ romer@arf as

ty to

= w*(t) exp {(p —1) /Srlfq(T)gog—l(T) dT} > 0.

to

Hence

w*(to) > /{L c(s) exp{(p— 1)/: ()l () dT} ds.
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This implies (5.5.22). Let z be a function given on [tg, o0) by

Then, in view of (5.5.21),

2(t) = —r (el (W (D) = —r D) — (0 - Dr' 18l (1)2(2),
in view of (5.5.21), which implies (5.5.23), using a similar computation as for

w*. O

Corollary 5.5.2. If the integral in (5.5.22) or in (5.5.23) is divergent, then (1.1.1)
is oscillatory.

We conclude this section by showing another possibility, how to define a suit-
able sequence, which then finds an application. The difference, when comparing it
with the above approach, is that we do not work directly with the functions, which
are defined by means of (known) coeflicients, but with suitable general functions.
Nevertheless, the conclusion then leads to (un)solvability of Riccati type integral
equation {inequality). This approach can be directly used to show the Willet type
criteria (already proved in the previous subsection, see Theorem 5.5.6 and Theo-
rem 5.5.7). The reason for this terminology is the original linear version, see the
paper of Willet [362], where the function sequence technique was used as well.

Theorem 5.5.11. Suppose that B(s) and Q(t, s) are nonnegative continuous func-
tions on [T, 00) and [T, 00) x [T, 00), respectively.

(i) If
(5.5.25) /toc Q(t, 5)B(s)ds < p=IB(t), t>T,
then the equation
(5.5.26) o(t) = B(t) + (p—1) /too Q(t, 5)[v(s)|" ds

has a solution on [T, 00).
(ii) If there exists € > 0 such that

(5.5.27) /OO Qs t)B(s)ds > p 9(1 + £)B(t) £0, t>T,
then the inequality
(5.5.28) o) > B+ (p— 1) /too Q(t, 5)l(s)|? ds

possesses no solution on [T, 00).
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Proof. (i) Let v1(t) = B(t) and define

g1 (B) = B)+(p—1) /too Q(t, s)|lvr(s)|?ds, keN.

Then by (5.5.25)

va(t) = B(t) + (p— 1) /too Q(t,s)B(s)ds < B(t) + (p— 1)p~*B(t) < pB(1),

and vy (t) < va(t). Suppose, by induction, that vi(t) < va(t) <--- < wv,(t) < pB(t).
Then

) < BO+0-1) / QU ) (s) 1ds

< B(t)+(p—1)p° / QU 5)BY(s) ds
< B(t)+(p—1)p? p IB(t) = pB(t).

Thus, the sequence {v,} is nondecreasing and bounded above. Hence, it converges
uniformly to a continuous function v, which is a solution of (5.5.26).

(ii) Suppose, to the contrary, that v is a continuous function satisfying (5.5.28).
Then v(t) > B(t) > 0, which implies v4(t) > B4(t) > 0. Thus

o) > BO+ (p-1) [ QMBS ds > 1+ (= D1+ B
Continuing in this way, we obtain v(t) > @, B(t), where a; =1, a, < an+1 and
(5.5.29) Gn1 =14 (p— Dalp™9(1 +¢).

We claim that lim,_, o @, = co. Assume, to the contrary, that lim,, .. a, = a <
oo. Then a > 1 and from (5.5.29)
a=1+(p-1)1+e)a’p,

but this is the contradiction since the equation A = 1+ (p — 1)(1 + £)A9p~? has
no solution for which A > 0. This contradiction proves that lim,,_, . a, = 0o and
hence B(¢) = 0. This contradiction with (5.5.27) proves the lemma. O

Finally note that a certain variant of the function sequence technique has been
used also in the part devoted to the existence of slowly varying solutions, see
Subsection 4.3.2.

5.6 Distance between zeros of oscillatory
solutions
In the first part of this section we present an asymptotic formula for number of

zeros. The second, respectively third subsection deal with conditions guaranteeing
the existence of quickly, respectively slowly oscillating solutions.
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5.6.1 Asymptotic formula for distribution of zeros

Here we present an asymptotic formula for number of zeros of oscillatory solutions
of the equation

(5.6.1) (@) + (p — D)e(t)d(z) = 0.

It is supposed that ¢(t) > 0 for large ¢ and the results are based on the general-
ized Priifer transformation from Section 1.2. In this transformation, a nontrivial
solution and its derivative are expressed via the generalized half-linear sine and
cosine functions. Recall that the half-linear sine function, denoted by siny, ¢, is the
solution of the equation

(@) +(p—1)@(x) =0

)
satisfying the initial condition z(0) = 0, 2’(0) = 1 and the half-linear cosine
function is defined by cos, t = sin; t. Generalized 7, denoted by =, is introduced
in Subsection 1.1.2.

P

Theorem 5.6.1. Suppose that ¢ is a differentiable function such that c¢(t) > 0 on
an interval [T, 00}, and

(5.6.2) lim ¢ ()]e(t)]™ 5 =0

t—o0

holds. Then (5.6.1) is oscillatory. Moreover, if N[x;T| denotes the number of zeros
of a solution = of (5.6.1) in the interval [a, T], then

(5.6.3) N{z;T] = Pla;T] + Rla; T),
where Plx;T] is the principal term given by
17 s
Plz;T) = —/ [e(s)]Pds
Tp Ja

and R[x;T| is the remainder which is of smaller order than Plx;T] as T — oo
and satisfies

i< L [T
Rl:7) < — [ E8las o),

Proof. Set C(t) := c’(t)[c(t)]_% and define
(5.6.4) C*(t) =sup{|C(s)| : s > t}, t > a.
Then C*(t) is nonincreasing and satisfies lim;_, C*(t) = 0 by (5.6.2). We have

1 t+h

1

le(t +h)) 7 = [e(®)] 7 1h]

p

C(s)ds| < —C(t),

which implies that

s L WITF O
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It follows that lim; .o t’l[c(t)]_% = 0, or equivalently, lim; .o t?c(t) = oo. This
implies, by Theorem 1.4.5, that (5.6.1) is oscillatory.

Now we turn our attention to the proof of the asymptotic formulas for numbers
of zeros. By the Sturmian comparison theorem (Theorem 1.2.4) we have that
Nlx1;T] and N[zo; T] differ at most by one for any solutions z; and z2 of (5.6.1),
S0 we may restrict our attention to the solution zg of (5.6.1) determined by the
initial conditions x¢{a) = 0, z{(a) = 1. This solution is oscillatory by the first part
of the our theorem.

We introduce the polar coordinates p(t), ¢(t) for zo(t) by setting

(5.6.5) [e(8))7 zo(t) = p(t)sing @(t),  z(t) = p(t)cosip(t).

It can be shown without difficulty that p(t) and (t) are continuously differentiable
on [a,c0) and satisfy the differential equations
W)
= —=|sin, ¢|?,
pet) ¥
1 d(t)

= [e(®)]r + D) sin, p®(cos, ¢).

~

A

~

RS
|

(5.6.6)

We use the notation

9(p) = siny p®(cos, @),
in terms of which (5.6.6) is written as
d(t)
pe(t)
From the first equation in (5.6.5) we see that x¢(t) = 0 if and only if @(t) = jm,,

j € Z. We may suppose that ¢(a) = 0. In view of (5.6.2) there is no loss of
generality in assuming that

(5.6.7) o = [e(t)]7 + —% ().

C*(t) <p for t>aq,
where C*(t) is defined by (5.6.4). Since
(5.6.8) lg(p)| <1 for all ¢,

we have

LW ot (1 Lo
(0} + S go) 2 [l (1- 2w >

which implies that ¢'(t) > 0, so that ¢(¢) is increasing for t > a.
We now integrate (5.6.7) over [a, 7], obtaining

669 o) = [ lotds+o [ ) to(s))ds = F(T) + G(T),

where

()= [kibas, 6@ = [ Sy
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From (5.6.8) it is clear that

T | 7
(5.6.10) |G(T)\g1/ i((:’))ds.

Noting that the number of zeros of z(t) in [a, T is given by

Nlzo; T] = {%ﬂ +1,

bS]

where [u] denotes the greatest integer not exceeding u, we see from (5.6.9) and
(5.6.10) that the conclusion of the theorem holds with the choice

Plao;T] = %F(T) _ %/ le(s)] ds.

That the term R[zo;T| = Nlxo;T] — Plxo;T] is of smaller order than Plzg;T]
follows from the observation that

= [ e as

c(s)
< /T C*(s)[c(s)]%ds =0 </T[c(s)]%ds> as T — oo.

This completes the proof. O

Ezxample 5.6.1. Consider the equation
(5.6.11) (@) + (p— DtPd(z) =0, t > 1,

where f is a constant with p + 3 > 0. The function c(t) = t? satisfies

t/lT[c(s)}f{ds — ]ﬁ (15 1),
[ i
1

and so we conclude from Theorem 5.6.1 that the quantity P[z; T| can be taken to
be

p ps
Ple;T) = —2 7%
i 1] (p+ B)mp
and (5.6.3) holds with this P[x;T] and R[x; T satisfying
o Bl
Rlz;T) = logT + O(1).

PTp
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Remark 5.6.1. (i) The results of this subsection cannot be applied to the general-
ized Euler equation 1.4.20, since the function ¢(t) = A(p — 1)t~ ? does not satisfy
(5.6.2). A calculation of Plx;T] and R[z;T] for the generalized Euler equation

(@) + AMp— 1)t P®(z) =0

shows that both of them are of the same logarithmic order as 7' — oc.

(i) In [317], M. Piros has investigated a similar problem under a more strin-
gent restriction on c(¢), namely he supposed that ¢¥(t) is a concave function of
t for some v > 0. Then he proved that the error term R[z;T] in (5.6.3) is O(1).
Exactly, the differential equation (5.6.11) with 5 = 1/v plays the exceptional role
in determining the precise value of R[x; T].

(iii) It is not difficult to see how the results can be extended to the case of a
general 7 in (1.1.1), which satisfies [~ 7179(s) ds = oo, by using the transformation
of independent variable, see Subsection 1.2.7.

5.6.2 Quickly oscillating solution
We start with the definition of quick oscillation.

Definition 5.6.1. A function A : R — R is said to be quickly oscillating if
it is defined in a neighborhood of co and if there exists a sequence {t,}22, with
lim,, oo tr, = cosuch that h(t,) =0,n=1,2,3,..., thy1 > t, and limy, o0 (En41 —
tn) =0.

The following theorem is based on the Lyapunov inequality (Theorem 5.1.1).
Theorem 5.6.2. If equation (5.1.1) has a quickly oscillating solution, then

(5.6.12) /OO ey (t)yds = oo,
where ¢4 (t) = max{0, c(t)}, and

lim sup ¢(t) = oco.

t—o0

Proof. Let y be a quickly oscillating solution of (5.1.1) with zeros ¢,, such that
t, — occand t,, ;1 —t, — 0asn — oco. Consider the consecutive zeros t,, 1 > ¢, > 0
and the interval [¢,,, t,11]. It follows from Theorem 5.1.1 that

oo [2]
/ ce(t)dt > / co(t)dt > 2P(tpy1 — 1) P — 00 ast — 0.
0 t

te

Hence (5.6.12) holds. Applying the Mean Value Theorem for integrals, we have

tnal
er (€ (tnss — o) = / (D) dE > 2ty — )17,
tn

where t, < &, < t41. This implies ¢4 (&,) > 2P(t,41 — t,,) "7, and it follows that
limsup,_, o, ¢(t) = oo. O
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Remark 5.6.2. (i) It is not difficult to see how the statement can be extended to
equation (1.1.1).

(ii) In Subsection 9.2.2 we show how quick oscillation of all solutions of (1.1.1)
and some additional conditions guarantee oscillation of a more general forced non-
linear equation.

5.6.3 Slowly oscillating solution

Also in the results of this subsection, a crucial role is played by the Lyapunov
inequality. We start with the definition.

Definition 5.6.2. A function & : R — R is said to be slowly oscillating if it
is defined in a neighborhood of oo and if there exists a sequence {t,}5° ; with
limy, o tn = 0o such that h(t,) =0,n =1,2,3,. .., tny1 > tpn and limy, o0 (bpy1 —
1) = o0.

Theorem 5.6.3. Suppose that

t4+48
(5.6.13) lim sup 6p_1/ cy(s)ds < 2P
t—o00 t
Jor all § > 0, where c4(t) = max{0,c(t)}. If (5.1.1) is oscillatory, then any its
nontrivial solution y is slowly oscillating.

Proof. Suppose, by contradiction, that (5.1.1) has a solution y with its sequence
of zeros {t,}52 |, which has a subsequence {t,, }$2; such that 0 < t,, 1 —t,, <
& < oo for some ¢ and for all k. Then Theorem 5.1.1 implies that

trg 41 J P 9P
cy(s)ds > > >0
/t +( ) (tnk+l - tnk‘)pil —oort

ng

for any k. Thus we have that

tn, +6 tng+1
5! / c+(s)ds > 51’_1/ ct(s)ds > 2P
¢

ny,

for all k. Therefore,
45
lim sup 5’771/ cy(s)ds > 2P,
t

t—oc

which contradicts (5.6.13). O

We will need the following a lemma, which is proved in [369].

Lemma 5.6.1. Suppose that a nonnegative function f(t) is locally integrable on
[a,00). If there is a dg > 0 such that

t+3d9
lim f(s)ds =0,
t—o0 t
then for any 6 > 0,
t+0
lim f(s)ds =0.

t—oc ¢
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Theorem 5.6.4. Suppose that 0 < A < oo, and for a constant dg > 0,
t+60
(5.6.14) lim c}(s)ds = 0.

t—o00 t
If (5.1.1) is oscillatory, then any its nontrivial solution y is slowly oscillating.

Proof. Suppose to the contrary that (5.1.1) has a solution y with its sequence of
zeros {t, } o2, which has a subsequence {t,, }72 | such that 0 < t,, 1 —t,, <<
oo for some 4 and for all k. Now, we distinguish two cases:

Case 1. [A > 1] By Theorem 5.1.1 and the Holder inequality,

tng+1
2P < (tnk+l - tnk )p—l / C+(S> ds
t

g

tng+1 1/
< (tuat — b IO ( [ aw ds>
t

N

1/x
< g HO-D/A (/t’”““ A (s) ds)
> ] + ;

g

which contradicts (5.6.14).
Case 2. [0 < A < 1] Let

Ei(t)y={s:cs(s) <1,s€ (t, t+ o)},
Exy(t)y={s :ci(s)>1,s€ (t,t+du)}.

t+d0
/ cy(s)ds = / cy(s)ds +/ cy(s)ds.
t E1(¢) Eq(t)

Then (5.6.14) implies that lim; . mes Ey(f) = 0. Using this fact, we see that for
any € > 0, there exists T} such that for all £ > T,

/ cr(s)ds < =
Fa(t) 2

On the other hand, it follows from (5.6.14) that there exists T such that

t+d0 e
/ cy(s)ds < / ci(s)ds <
Ei() ¢ 2

for all ¢ > T5. Thus we obtain that

Then

t+3d¢
0< / ci(s)ds <e
t

for every ¢t > max{T1, Tz}. Then, by Lemma 5.6.1, we get

t+5
lim 677! / ct(s)ds =0
Ji

t—oo

for any § > 0. Using Theorem 5.6.3, we obtain the statement. O
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Remark 5.6.3. If foc r1=4(s) ds = oo, then the above two theorems can be easily
extended to (1.1.1) using the transformation of the independent independent vari-
able (Section 1.2.7). Condition (5.6.13) then remains the same, while (5.6.14) is
replaced by

O [ M s)e (9)]

A
lim ds =0.

e ), r1(s)

5.7 Half-linear Sturm-Liouville problem

In this section we show that the solutions of the Sturm-Liouville problem for half-
linear equation (1.1.1) have similar properties as in the linear case. Of course, we
cannot consider the problem of orthogonality of eigenfunctions since this concept
has no meaning in L?, p # 2.

5.7.1 Basic Sturm-Liouville problem

We start with the problem
(5.7.1) (®(2") + Ac(t)®(z) =0, z(a) =0 = xz(b),

under the assumption that c(t) > 0 and c¢(t) # 0. The value A is called the
eigenvalue if there exists a nontrivial solution z of (5.7.1). The solution z is said
to the eigenfunction corresponding to the eigenvalue A. Clearly, according to the
assumption c(¢) > 0 and the Sturm comparison theorem, only values A > 0 can
be eigenvalues.

Theorem 5.7.1. The eigenvalue problem (5.7.1) has infinitely many eigenvalues
O< M <A< <Ay <o, Ay = 00 as n — oo. The n-th eigenfunction has
exactly n — 1 zeros in (a,b). Moreover, if the function ¢ is supposed to be positive
in the whole interval (a,b), the eigenvalues satisfy the asymptotic relation

(5.7.2) lim Y20 Tp

T e

Proof. The proof of the first part of the theorem is a special case of the problem
treated in the next subsection, so we present only its main idea. Let x(¢; A) be the
solution of (5.7.1) given by the initial condition z(a;A) = 0, 2’(a; A) = 1 and let
©(t; A) be the continuous function given at all points where 2/(f; A) # 0 by the
formula

z(t; A)

(t; A) = arctan, TN

i.e., @(t; A) is the angular variable in the half-linear Priifer transformation for
z(t; A). This means that ¢(z; \) satisfies the differential equation

Ac(t
(5.7.3) ¢ = |cos, P + ch(i|sinp o, wla;N) =0.
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The proof is based on the fact that (b; ) is a continuous function of A and
w(b; A) — oo as A — oco. The continuity property follows from the general theory
of continuous dependence of solutions of first order differential equations on the
right-hand side. The limit property of ¢(b;\) is proved via the comparison of
(5.7.1) with the “minorant” problem with a constant coefficient

(5.7.4) (®(y) + Aed(y) =0, yla') =0=y(t'),

where [a’,0'] C [a,b] is such that ¢(t) > 0 on [a/,b] and ¢ = minge (o p) c(t) > 0.
The eigenvalues and eigenfunctions of (5.7.4) can be computed explicitly and if
O(t; X) is defined for this problem in the same way as @(t; ) for (5.7.1), we have

o(b; A) = 0(b; \) — 00, as A — 0.

Now, the eigenvalues are those A = A, for which ¢(b; A\,,) = nm, and taking into
account that o(¢; A) is increasing in ¢ (this follows from (5.7.3)), zero points of the
associated eigenfunction z,(t) = x(f; A,,) are those tx, k= 1,...,n — 1, for which
(g, ) =kmp, k=1,...,n—1

Concerning the proof of the asymptotic formula (5.7.2), first suppose that the
function ¢(t) = ¢; > 0 is a constant function and consider the problem

(5.7.5) (®(2)) + A1 ®(2) =0, z(a) =0= z(b).

A nontrivial solution of the half-linear equation in this problem satisfying z(a) = 0
is z = sin, (/Ac1 (t —a)) and hence the k-th eigenvalue is given by v/Agci(b—a) =
kmy, thus

Y /\k Tp

koo et
i.e., the asymptotic formula (5.7.2) is automatically satisfied in this case.
Now let us consider the original Sturm-Liouville problem (5.7.1) and its k-th
eigenfunction x(t; A\x). This function has zeros at to = a < t; <tg < -+ < {1 <
ty =b. Put A = Ay in (5.7.1) and in (5.7.5) and define

c1;:= min c(t Cca; = max c¢(t i=1,.... k.
* tio1 <t<t; ()’ " ti_1<t<t; <)7 ’ '

Then the differential equation in (5.7.1) is a Sturmian majorant of the differential
equation in (5.7.5) with ¢; = ¢1; on the interval [t;_1,¢;]. Hence the solution
sin, (/Agcr i(t — ti—1)) of (5.7.5) has no zero on (¢;,_1,%;) so that

(576) \p/ )\kcl,i(ti - tifl) S Tp-
By a similar argument we have m, < {/Arc2(t; — t;—1). On the other hand,
i ti t;
/ \p/ )\kcl’i dt S / \p/ /\kc(t) dt § / \p/ )\kCQJ' dt,
ti—1 ti—1 ti—1
and consequently

ti

Tp — vV Ake(t)

ts

(5.7.7)

t;
< / W({’/Cz,i — i) di
ti—1

i
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Let w(f,d) be defined for any continuous function f on [a, b] by
w(f,8) =max{[f(n) = f(r)|: |11 — 72| <0, 71,72 € [a,0]}.

Making use of this definition we deduce from (5.7.7) that

ti
- [ e
k Jti1

<w(Ve bt —tio) - |t — tioal.

VA

Let ¢; = min;=1,.. 4 ¢1,;- Then by (5.7.6)

km b,
w_pk—/ Ve(t) dt

w({’/a > )(b—a).

\p/ )\k C1
By the first part of the proof Ay — oo as k& — oco. Therefore the continuity of the
function ¢ yields the formula which has to be proved. O

5.7.2 Regular problem with indefinite weight

We consider the Sturm-Liouville problem

(r()B()) + Ae(t)B() = 0,
(5.7.8) {Ax(a) — A'z'(a) =0, Bz(b)+ B'z'(b) =0.

It is supposed that r,¢ are continuous in [a,b] and 7(¢) > 0 in this interval. No
sign restriction on the function ¢ is supposed, A, A’, B, B’ are real numbers such
that A2 + A’?2 > 0, B? + B’? > 0, A is a real-valued eigenvalue parameter.

Theorem 5.7.2. Suppose that AA’ >0, BB’ > 0 and A? + B? > 0. Further sup-
pose that the function ¢ takes both positive and negative values in [a,b]. Then the
totality of eigenvalues of (5.7.8) consists of two sequences {\, }°2, and {\, }>2,
such that

CCA, KA <A <0< AT < AT << A <
and
lim Al =00, lim A, = —oc.
n—oo n—oo

The eigenfunctions z = z(t; A}) and © = 2(t; \,)) associated with A = X} and A,
have ezactly n zeros in (a,b).

Proof. The proofis again based on the half-linear Priifer transformation. Let A € R
and let z(t; \) be the solution of

(5.7.9) (1) (z")) + Ae(t)B(z) = 0

satisfying the initial conditions x{a) = A’,2'(a) = A. Note that this solution
satisfies the boundary condition Ax(a)— A’z'(a) = 0. According to the continuous
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dependence of solutions on a perturbation of the functions r,¢ in (1.1.1), the
function z(t; \) depends continuously on A. In particular, if A\; — A as i — oq,
then x(t; A;) — x(¢; A) uniformly on [a, b] as i — co. If 2(¢; \) satisfies the second
part of the boundary conditions, i.e., Bx(b) + B'z/(b) = 0 for some X\ € R, then A
is an eigenvalue and z(¢; A) is the corresponding eigenfunction.

For A = 0 we can compute z(t; A) explicitly as follows

z(t;0) = A" + rqfl(a)A/ r(s) ds

and it is easy to see that this solution does not satisfy the condition at ¢t = b, so
A =0 is not an eigenvalue.

In what follows we suppose that A > 0. For the solution z(¢; \) we perform
slightly modified Priifer transformation, we express z(¢; A\) and its quasiderivative
in the form
(5.7.10)

x(t; A) = p(t; A)siny (0 A)), 77 1) (X)) = AT T p(t; X) cosp(@(t; N)).

The function p(t; ) is given by
q ¥
ol = izt + (“2) e

The functions p and ¢ satisfy the first order system

c(t)
p—1

A\
) leospor + L sing P

o

Po=p K%)q_l - z%] ®(siny, @) cosp ¢

with the initial conditions

(5.7.11) ¢ = (

(5.7.12) pla; \) = {|A’|p+<@>q|fi?r,

@la; A) = arctan, <(%); AZI) .

Since AA’ > 0, we may assume without loss of generality that
(5.7.13) 0 < p(a;N) < % if A0,
(5.7.14) ola,\) = % if A=0.

Observe that as soon as @(t; A) is known, p = p(t; A) can be computed explicitly
and

p(t; N) = pla, \) exp {/:l(#:))q]_ pC(_S)l

P (sin (io(s; A)))cosp<so<s;A>>ds} .
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Thus, it is important to discuss the initial value problem (5.7.11), (5.7.12). We
denote by f(¢, @, A) the right-hand side of (5.7.11). It is clear that, for each A >
0, the function f(¢,p,\) is bounded for ¢ € [a,b] and ¢ € R. In view of the
Pythagorean identity (1.1.13) the function f(¢, ¢, A) can be written in the form

f(tp,A) = (%)‘11 + {— (%>Q1 + pc@l} | siny, | P.

Similarly as in the standard half-linear Priifer transformation, f(¢,, A) is Lips-
chitzian in ¢, hence unique solvability is guaranteed and the solution ¢ = @(t; A)
depends continuously on (¢, A) € [a, b] x (0, 00).

It is easy to see that A > 0 is an eigenvalue of (5.7.8) if and only if A satisfies

(5.7.15) w(b; A) = arctany, <— (%) ) %) + (n+ )7,

for some n € Z. Here, by virtue of BB’ > 0, we assume without loss of generality
that the value of the function arctan, in (5.7.15) is in (—(n,/2),0] if B # 0 and
equals —(m,/2) if B =0.

Observe that the function @(b; A) is strictly increasing for A € (0, c0). Indeed,
denote as before f(t, ¢, A\) the right-hand side of (5.7.11). Clearly, f(t,, ) is
nondecreasing function of A € (0,00), and, since AA" > 0, the initial value ¢(a; A)
given by (5.7.12) is also nondecreasing for A € (0, 00). Then a standard comparison
theorem for the first order scalar differential equations implies that ¢(f;A) is a
nondecreasing function of A € (0, 00) for each fixed ¢ € [a,b]. Now, let 0 < A < p
be fixed. Since the function ¢(¢; \) is nondecreasing with respect to A, we have
o(t; A) < @(t; ). Assume that @(t; ) = p(t; p) for all ¢ € (a,b). Then ¢'(t; A) =
' (t; 1), and so we have f(t, p(t; N), A) = f(¢, ¢(t; ), 1) from which it follows that
cosp(p(t; A)) = cosp(p(t; ) = 0. This implies that ¢(t;\) = (m+1/2) 7, for
some integer m € Z, and hence, by equation (5.7.11), ¢(t) = 0 for t € (a,b). This
is a contradiction to the assumption that ¢(t) > 0 for some ¢ € [a, b]. Therefore we
have @(tg; \) < (to; ) for some to € (a,b). Then applying a standard comparison
theorem again, we conclude that ¢(b; \) < @(b; ).

Now we claim that z(¢; \) has no zeros in the interval (a, b] for all sufficiently
small A > 0. As stated before, 2(¢; \) — z(¢;0) as A — 0+ uniformly on [a,b]. We
note that z(¢; \) satisfies

2N = A’+/a/ %@(A)— %I(s;)\)

for all a <t < b, where

2 (r(a) A )
{m@(A) — @I(S, )\)} dS,

I(s;\) = /S e(T)®(x(m; A))dr, a<s<hbh

Then it is easy to find that if A =0 or AA" > 0, then x(¢; A\) has no zero in the
closed interval [a, b] for all sufficiently small A > 0, and that if A # 0 and A’ =0,
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then 2(t; A} has no zero in the interval (a, b] for all sufficiently small A > 0. Further,
since

r(t)®(x' (t; N) = r(a)®(A) — )\/ c(8)®(z(s; N)) ds

for a < t < b, we see that if A # 0, then 2'(¢; ) has no zeros in [a,b] for all
sufficiently small A > 0.

Next we claim that the number of zeros of z(¢;A) in [a,b] can be made as
large as possible if A > 0 is chosen sufficiently large. To this end, we consider the
equation

(@) + (p— DpP®(z) =0,

where p > 0 is a constant. Clearly, sin,(pt) is a solution of this equation, and has
zeros t = jmp/p, 7 € Z. Since ¢ is supposed to be positive at some ¢ € [a, b], there
exists [/, V'] C [a,b] such that ¢(t) > 0 on [/, V']. Let k € N be any given positive
integer and take i > 0 so that sin,(ut) has at least k+1 zeros in [a/, ¥']. Let r* > 0
and A, > 0 be numbers such that

r* = max r(t), A, min ¢(t) = (p— D)r*uP.
e (t) Juin t)=(@-1rp

Then, comparing the half-linear equation in (5.7.8) with A > A, and the equation
(r*®(z")) + (p— Dr*pPd®(z) =0, o <t<V,

we conclude by the Sturm comparison theorem that all solution of the equation
in (5.7.8) with A > A, have at least k zeros in [a,b]. Since k was arbitrary, this
shows that the number of zeros of 2(¢; A) in [a,b] can be made as large as possible
if A > 0 is chosen sufficiently large.

Since the radial variable p(¢; A) > 0, it follows from (5.7.10) that z(¢; A) has a
zero at t = ¢ if and only if there exists j € Z such that ¢(c; A) = jw,. Moreover, if
©(c; A) = jmp, then by (5.7.11) we have ¢'(¢; A) = (\/r(¢))?~! > 0. Therefore we
easily see that if o(c; A) = jmp, then (¢, A) > jm, for ¢ < t <b. Consequently, we
have: (i) For all A > 0 sufficiently small
Tp

0 <N < 5 if A#£0,
0<pb;\) <m ifA=0;

(ii) limy oo (b A) = 0.

Now we seek A > 0 satisfying (5.7.15) for some n € Z. The left-hand side ¢(b; A)
of (5.7.15) is a continuous function of A € (0,00), and it is strictly increasing for
A € (0,00), moreover, it has the following properties

vy
< Il ; 2 if A
O_)\_l)f&(p(b,x\)< 5 # 0,
< 1l : if A=
0< Jm, olby A) < mp, i 0,

and limy_, o ¢(b; A) = 0o. On the other hand, by virtue of BB’ > 0, the right-hand
side of (5.7.15) is a nonincreasing function of A € (0,00) for each n € Z. More
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precisely, in case BB’ > 0, it is strictly decreasing and varies from (n + 1)m, to
(n+1/2)m, as A varies from 0 to co. In the case B’ = 0, it is the constant function
(n+1/2)mp.

From what was observed above we find that, for each n = 0,1,2,..., there
exists a unique A} > 0 such that

o(b; \}) = arctan,, (— (:E—’;)q %) + (n+ 1)mp.

Then, each A\, is an eigenvalue of (5.7.8), and the associated eigenfunction z(t; A})

has exactly n zeros in the open interval (a, ), where n = 0,1,2,.... It is clear that
M <A << A < dim A =00
n—oc

The proof concerning the sequence of negative eigenvalues A and the number of
zeros of associated eigenfunctions can be proved in the same way. O

5.7.3 Singular Sturm-Liouville problem

We counsider the equation
(5.7.16) (®(z") + Ae(H)®(z) =0, t € [a,0),

where A > 0 is a real-valued parameter and c is a nonnegative piecewise continuous
eventually nonvanishing function. A solution zp = x¢(t; A) of (5.7.16) is said to be
subdominant if

(5.7.17) {lim xo(t; N) = ko,

for some constant ko # 0, and a solution x7 = x1(¢; ) of (5.7.16) is said to be
dominant if

(5.7.18) tlim [1(t;A\) — k1t —a)] =0

for some constant k1 # 0. We will show that the subdominant and dominant

solutions are essentially unique in the sense that if £o(¢; A\) and Z;1(¢; A) denote the
solutions of (5.7.16) satisfying

(5.7.19) Jlim Fo(6;A) = 1
and
(5.7.20) Jim [ (6 A) = (t = a)] =0,

then 2o(t; A) = koZo(t; A) and x1(t; ) = k121(t; A). According to the results pre-
sented in Section 4.1, any eventually positive solution (5.7.16) has one of the
following properties:



268 Chapter 5. Various Oscillation Problems

(i) limp— oo (2 (¢; ) = const > 0;
(if) lmy oo @(2' (5 A)) = 0, lime_ oo 2(t; A) = 0;
(iil) limy—oo ®(2'(t; X)) = 0, limy— o0 z(t; A) = const > 0.

In view of this result, the dominant and subdominant solutions investigated in this
subsection correspond to cases (i) and (iii), respectively.

The proofs of three statements presented in this subsection are rather complex,
so we skip them and we refer to the paper [146]. We note only that these proofs
are again based on the half-linear Priifer transformation, this time combined with
a detailed asymptotic analysis of solutions of (5.7.16).

Theorem 5.7.3. Suppose that

[ ([ e o

Then for every A equation (5.7.16) has a unique solution To(t; A} satisfying (5.7.19)

and there exists a sequence {/\S))}ZO:O of positive parameters with the properties
that

(1)) 0=A" <A < A < limp o MY = o0

(i) for A € ()\7(107)1,/\%0)), n=12,..., Zo(t; \) has exactly n — 1 zeros in (a, o)
and Tola; \) # 0;

(#i) for X = /\510), n=1,2,..., Z(t; \) has exactly n — 1 zeros in (a,c0) and
jo(a; /\) =0.

Theorem 5.7.4. Let the sequence {)\510)}%0:0 be defined as in the previous theorem.
Then the number of zeros of any nontrivial solution x(t; \) on [a,00) can be

(i) exactlyn if A = /\7(10), n=1,2,...;
ii) eithern —1 orn i )\(02 <A< A%O), and both cases occur.
( ) n—1

Theorem 5.7.5. Suppose that

/ tPe(t) dt < oo.

Then for every A > 0 equation (5.7.16) has a unigue solution Z1(t; X} satisfying

(5.7.20) and there exists a sequence {)\511)};’1‘;0 of positive parameters with the
properties that

(i) 0=A" < AP <Al < limp o A = ooy

(i) for X € ()\EB] , /\511)), n=1,2,..., the solution Z1(t; \) has exactly n zeros in
(a,00) and F1(t; X)) # 0;



5.7. Half-linear Sturm-Liouville problem 269

(iii) for X = AP no=1,2,..., the solution Z1(t; A) has exactly n zeros and
531 ((],, /\) - O;

(iv) the parameters {)\510)} and {)\%1)} have the interlacing property 0 = )\él) =

AD AP X0 AP A <

5.7.4 Singular eigenvalue problem associated with radial
p-Laplacian

As we have mentioned in Section 1.1, radially symmetric p-Laplacian can be ex-
pressed in the form

y_d
dr’
Motivated by this fact, in this short subsection we investigate the (singular) BVP

Ayu(r) =r' =NV =lew)) =0,

(5.7.21) L%+ [e(t) + Mw(®)]®(u), u'(0) =0, u(b) =0,

where L%y :=t~*(t*®(v’))’, @ > 0, b > 0 and w is a continuous positive function.
Similarly as in the previous subsections, the proof of the main statement of
this subsection is based on the (modified) Priifer transformation in the form

O(u) = p(t)sin, p(t), t*®(u') = p(t) cosp (t).

In this modification of the Priifer transformation, p, ¢ are solutions of the system

(5.7.22) ¢’
(5.7.23) p’

[e(t) + Aw(t)]t™ sini o+ (- 1)t“(1_Q)| cosp ]| sin, ©|?79,
p{ — [e(t) + Aw(t)]t* siny, @ cos, @
+(p— 1)ta(1_Q)<I>_l(cosp ©)| siny, @[>~ sgn(sin, <,0)}

For the sake of later applications, we denote the right-hand side of (5.7.22) by
[, A).

Concerning the existence and unique solvability, it can be shown that this
system, has the same properties as system (1.1.20). We present the majority of
the statements of this subsection without proofs, we refer to [356] for details. The
difference with respect to the case treated in Subsection 5.7.2 is that £ = 0 is
generally a singular point of (5.7.21). However, the Sturmian theory (which is the
basic “ingredience” of the proof of the properties of the below defined argument
function (¢, A)) extends also to the singular case treated in this subsection (the
argument is similar to that of Subsection 4.2.5), see also [331, 332].

First we present a statement which concerns the existence and unique solvabil-
ity of the singular initial value problem

(5.7.24) L%+ c(t)®(u) =0, u(0) = ug, u'(0)=0.

Theorem 5.7.6. Suppose that ¢ is continuous in (0,00). Then the initial value
problem (5.7.24) has a unique solution in [0,00) which depends continuously on
ug in the sense of C'! convergence on compact subintervals of [0, 00).
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Let us denote by u(t, A) the solution of
(5.7.25) L%+ [c(t) + Aw(t)]®(u) =0, u(0)=1, »'(0) =0,

and let ©(t,A) be a function satisfying differential equation (5.7.22). The next
lemma will be used in the proof of the last statement of this subsection.

Lemma 5.7.1. The function o(t,A) is continuous in [0,b] X R, it is strictly in-
creasing in A for t > 0, and it has the properties

wb,A\) =0 as A — —oo, p(b,A) = 00 as A — occ.

Theorem 5.7.7. Suppose that the functions ¢, w are continuous in J = [0,b] and
w(t) > 0 for t € J. Then the eigenvalue problem (5.7.21) has a countable number
of simple eigenvalues Ay < Ag < --- < A,y — 00, as n — 00. The eigenfuction u.,
corresponding to A\, has exactly n — 1 zeros in the open interval (0,b). Belween
t = 0 and the first zero of u,, between two consecutive zeros of u, and between
the last zero of u, and t =0 there is exactly one zero of un+1.

Proof. The solution u(t, A) of (5.7.25) vanishes at b if and only if ¢(b, \) = k7,
where ¢ is a solution of (5.7.22) corresponding to (¢, A). Hence, all eigenvalues
A, and eigenfunctions u,, are obtained from

o(b, A\p) = nmpy,  un(t) =u(t, An), neN,

where A\, < A,i; and lim A, = oo by the similar argument as in Lemma 5.7.1.
The argument function (¢, A, ) crosses each line ¢ = kr, with k =1,...,n — 1,
only once, but never other values of k. Hence u,, has n — 1 interior zeros 0 < {1 <
<o+ < tp—1 < b. The Sturm comparison theorem shows that v,y has a zero in
each of the open intervals (¢;,4;41), ¢ =1,...,n— 2. From the strict monotonicity
of p(t,A) in A the inequality ¢(t1, Ant1) > 7, follows; hence u,41 has a zero in
(0,t1). Finally, if w,41 has no zero in (¢,—1,b), then @(tn—1,Ap+1) > nm,. The
function @(t) = @(t, Ant1) — mp is also a solution of @ = f(t, ¢, Ayt1), and it
has an initial value @(t,—1) > ¢(tn—1, \n), which implies @(b) > (b, An) = nap,
which leads to p(b, Ant1) > (n + 1), a contradiction. O

5.7.5 Rotation index and periodic potential

In this subsection we extend the so-called rotation index technique of the inves-
tigation of linear differential equations to half-linear equations. We counsider the
equation

(5.7.26) (@) + (AN +¢(t)®(x) =0
together with the periodic boundary condition

(5.7.27) z(0) — 2(2m,) = 2'(0) — 2’ (2m,) = 0,
or with the anti-periodic boundary condition

(5.7.28) z(0) + z(2mp) = 2/(0) + 2/ (2my) = 0
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where c is a periodic function such that ¢ € L (R). We always assume that the
period of c is 1" = 27y,

Denote by P and A the sets of eigenvalues of the problem (5.7.26), (5.7.27)
and the problem (5.7.26), (5.7.28), respectively. Let Py = PU.A. Before explaining
the difficulty in understanding the structure of P,, let us recall some classical
results for the linear counterpart of (5.7.26), that is, the periodic and anti-periodic
eigenvalues of the following linear Sturm-Liouville operator

(5.7.29) (Lz)(t) := —2"(t) — c(t)z(t) = Az(t),

where c¢(t) is 2m-periodic and ¢ € L'(0,27). Then one has the following classical
result, which is a part of [264, Theorem 2.1].

Theorem 5.7.8. There exist two sequences {\,(c) : n € N} and {\,(c) :n € Z*}
of the reals with the following properties:

(i) They have the following order:

(5.7.30)  Ao(c) < Ai(c) < Aile) < Ayle)
<hee) < <A (0) < Aule) <

(i) X is an eigenvalue of (5.7.29), (5.7.27) if only if A = A, (c) or \.(c) for
some even integer n; and X is an eigenvalue of (5.7.29), (5.7.28) if and only
if A=A, (c) or Ay(c) for some odd integer n.

The proof of Theorem 5.7.8 is essentially based on the Floquet theory for linear
equations with periodic coeflicients and on the classification of symplectic 2 x 2
matrices. Concerning the periodic and anti-periodic problem for (5.7.26), we know
that there is no hope of giving the complete structure of P,, because a Floquet-like
theory for periodic equations (5.7.26) is not available. On the other hand, unlike
the Dirichlet problem, there would be a coexistence problem for eigenvalues A, (¢)
and \,(c):

2 (€) = Rue).

Such a coexistence problem is extraordinarily difficult for general potentials ¢(t).
This also adds to the difficulty in understanding the structure of P,.

In this subsection, we try to give a partial generalization of Theorem 5.7.8
to eigenvalues P, of (5.7.26) for using a more geometric approach, that is, the
rotation index approach, which has been well developed for linear periodic systems;
see [195] and [295]. This approach applies also to (5.7.29) with quasi-periodic or
almost periodic potentials and is very useful in understanding the spectrum and
the dynamics aspect of (5.7.29).

For linear case (5.7.29) with periodic potential ¢, the rotation index function
in [195] is an analytic function on the upper half-plane. When real parameters are
considered, the rotation index function p(A) is defined as follows. Let & = r cosf
and ' = —rsinf in (5.7.29), i.e., we consider the classical Priifer transformation.
Then 6 satisfies

(5.7.31) 0 = (A4 ¢(t)) cos? 0 +sin® § =: O(t,0; \).
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As ®(t,0; M) is 2m-periodic in both ¢ and @, it is known that the rotation index of
(5.7.31)

p(A) = p(A;e) = lim 0(t;00, M) — bo

t—oo t

exists and is independent of g, where 6(¢; 8y, A) is the solution of (5.7.31) satisfying
the initial condition 6(0; 6o, A) = 6. Using the function p(A) all eigenvalues \,, (c)
and A,(c) can be characterized in the following way [295, Theorem 4.3].

Theorem 5.7.9. Let ¢ and p(\;c) be as above. Then

(5.7.32)
(5.7.33)

(¢) =min{A: p(A;q) =n/2}, neN,

A
Anlc) = max{\: p(X;q) =n/2}, neN.

In fact, the graph of p(A) looks like a staircase which is continuous and is
strictly increasing except on the possible platforms p~!(n/2),n € N, while the
endpoints of the platforms p~!(n/2) are exactly the periodic and anti-periodic
eigenvalues of (5.7.29).

In this subsection, when ¢ is a periodic potential, we follow the idea in [295]
of introducing a rotation index function p(\) for (5.7.26). Then, we use (5.7.32)
and (5.7.33) to define two sequences {),(c) : n € N}, {\,(c) : n € N}. It will
be proved that {),(c), \n(c) : n is even} are the periodic eigenvalues of (5.7.26),
(5.7.27) and {\,,(¢), Au(c) : n is odd} are the anti-periodic eigenvalues of (5.7.26),
(5.7.28). Namely, the “if” part of Theorem 5.7.8 (ii) holds for such a half-linear
problem (below presented Theorem 5.7.13).

Differently from the variational structure of (5.7.26) in defining the variational
eigenvalues of higher dimensional p-Laplacian, we extensively make use of the
Hamiltonian structure of (5.7.26) for the half-linear problems (5.7.26), (5.7.27)
and (5.7.26), (5.7.28). However, as in the higher dimensional Dirchlet problem for
p-Laplacian (see Chapter 7), it remain open as to whether the “only if” part of
Theorem 5.7.8 (ii) also holds for the one-dimensional p-Laplacian, namely, whether
those eigenvalues ), (c), A, (c) represent a complete list of eigenvalues of (5.7.26),
(5.7.27) and (5.7.26), (5.7.28). For this reason, we will call these periodic and anti-
periodic eigenvalues ), (c), \,(c), constructed using the rotation index function,
the rotational periodic eigenvalues of (5.7.26).

In accordance with the original paper [382] (compare also Subsection 1.1.1) we
introduce the planar system

(5.7.34) o =07 y), ¥ = (),
which is an integrable Hamiltonian system with the Hamiltonian

z|P q
Hoy) = 2
p q

Let (Cp(t), Sp(t)) be the unique solution of equation (5.7.34) with the initial value
(2(0),y(0)) = (1,0). Some properties of Cp,(t) and S,(¢) are summarized in the
following lemma, its proof follows essentially ideas introduced in Section 1.1.
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Lemma 5.7.2. The functions Cp(t) and Sp(t) have the following properties:
(i) Both Cp(t) and Sp(t) are 2m,-periodic.
(i1) Cp(t) is even in t and Sy(t) is odd in t.

(i) Cp(t +mp) = —Cp(t), Sp(t +mp) = —Sp(1).

(iv) Cp(t) =0 if and only if t = m,/2 + mmp, m € Z; Sp(t) = 0 if and only if
t=mm,, m € Z.

(v) Cht) = —071(Sp(t)) and S,(t) = ®(Cp())-
(vi) [Cp(t)P/p + 1Sp(1)|7/q = 1/p.
Let us define the polar coordinates in R? by

(5.7.35) x=r2PC,(0), y=1r>1S,(6).
Equation (5.7.26) is equivalent to the following Hamiltonian system

(5.7.36) x'—@l(y)—%’yx’y), Y =(A+q(t)®(z)

_OH(tz,y)
N or
where the Hamiltonian is
p q
Ht,z,y; ) = (A + c(t))ﬁ + M
p q

In the polar coordinates (5.7.35), it is not difficult to check that r and 6 satisfy
the following equations, see also Section 1.1,
(5.7.37) r = g()\ +e(t) = DR(C,(0)D(S,(0))r =: U(L,0,7; \),
(5.7.38) 0" = p((A+c()ICp () /p + |Sp(0)?/@) = E(t, 6; A).

For any (zo,y0) € R?, let (2(t;20,y0, \)), y¥(t; 20, Y0, ) be the unique solu-
tion of (5.7.36) satisfying the initial condition (z(0),4(0)) = (z¢,yo). Similarly,
for 8y € R, let (r(t;00,A),0(t;0p,))) be the unique solution of (5.7.37),(5.7.38)
satisfying the initial conditions r(0) = 1, 8(0) = 6y. As E(t,0;\) — the right-
hand side of (5.7.38) — is bounded in , we know that r(¢; 600, A) and 0(¢; 00, A)
are defined on the whole line R. Due to the oddness of (5.7.36) in (z,y) and the
homogeneity of (5.7.37) in r, we have the following relation between the solutions
(x(t; o, Y0, A), y(t; o, yo, A)) and (r(t; 6g, N), 0(t; 0o, A)):

(5.7.39)  [2(t; 0p(ro)Cp(bo), ©q(ro)Sp(0o), A), y(t; ©p(ro)Cp(o), 0q(10)Sp(60), M)
= [iop (ro) /P (8 60, \YCp (0(t5 00, M), 0 (ro)r?/ 9 (85 60, ) S (0(8; 00, A))]

for all rg, 0y € R, where

wp(ro) = |ro|”/Psgn(ro), 1o € R.
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In particular, the Poincaré map Py of (5.7.36) is given by

(5.7.40)

PX(‘P}?(TO)prO)v ‘Pq(TO)Spr))
= (#(2mp305 (r0)Cp (00), 94 (10)Sp (80), N), y(27p3 2 (r0) i (00) 04 (10) S, (80), V)
= (i0p(ro) RY/? (B0) Cp(©1(00)), 04 (r0) RS *(80) S5 (©(60))

for r¢,00 € R, where Rx(8y) := r(2mp; 0y, A) and

(5.7.41) Ox(00) 1= 0(2mp; 60, A).

Thus ©,(0) is the corresponding Poincaré map of (5.7.38).

Equation (5.7.38) is a family of 2m,-periodic equations on the circle S :=
R/m,Z. By the periodicity of Z(t,6; A), we have the following equalities on the
solutions 6(¢; 6y, A) of (5.7.38)

(5.7.42) 6(t + 2mmp; 60, A) = 0(t; 0(2mmy; 60, A), A),
(5.7.43) 0(t; 6o + mmy, A) = 0(t; 00, A) + mmy

for all g € R and all m € Z. In particular, the rotation index of (5.7.38)

0(t; 00, \) — 0
p(A) = p(Aje) i = ‘tlll_m %
_ g O%(00) — o
(5:744) B \n}\lrj»loo 2mm,

exists and is independent of fy; see [171, Theorem 2.1, Chapter 2].

Next, we give without proof an auxiliary statement concerning the behavior of
the function @. In this statement, w € L'(0,27,) is a 27-periodic function, and ¢
is a solution of

1Co(O)F . [5p(0)]"

(5.7.45) 0 =p|w(t) » + . —=: 2(t,0).

The solution of this equation satisfying 0(0) = 8y we denote by 6(i; o).
Lemma 5.7.3. The following statements hold.
(i) If Bo > mp/2+mm, for some m € Z, then 0(t;00) > mp/2+mmp for allt > 0.

(it) Assume that w(t) < 0. If 8y < mm, for some m € Z, then 8(t;6p) < mm, for
all t > 0.

Now we give some properties of the rotation index function p(A).
Theorem 5.7.10. The rotation index has the following properties:
(i) p(N\) is continuous in A € R.

(ii) p(N\) is non-decreasing in A € R.
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(1) p(A) =0 if X < =1 and limy_ 1o p(A) = +00.

Proof. (i) Note that the vector field Z(¢,0; \) depends on A continously. Then
so does the Poincaré map ©,(6y). Now the continuity of p(A) follows from [171,
Corollary 2.1, Chapter 2].

(ii) The monotonicity of p(A) follows simply from the monotonicity of the right-
hand side of (5.7.38).

(iii) Let us first prove that limy_ . p(\) = +oc0. To this end, assume that A >
0. Let us consider differential equation (5.7.26) again. Let 2 = 2,9 = —A~/9®(z’).
Then (5.7.26) is equivalent to the following system:

(5.7.46) B == APOT(y), = (VP L ATV ae(t)o (k).

Let & = #2/PCy(0), § = #2/95,() in (5.7.46). Then #, 4 satisfy the equations

(5.7.47) P = gxl/qc(t)q>(cp(é))qu(sp(é))f,
(5.7.48) 0 = \/P 4 A‘l/qc(t)%.

As before, let 6(t; 6o, ) denote the solution of (5.7.48) with the initial condition
6(0) = by. By (5.7.48), one has

t 4
(5.7.49) Al/Pt—xl/q/ c_(s)ds < 0(t; 00, \) — By < NPt 4+ A~ W/ cy(s)ds
0 0

for all t > 0 and all éo € R, where
ey (t) = max{e(t),0}, c_(t) = max{—c(t),0}.
Comparing (5.7.46) with (5.7.36), we have the relation
(2,9) = (&, A1/95).
In the corresponding polar coordinates, we have

PPIC,(0) = #PCy(0), 17175,(0) = X995, (6).

As a result,
Cy(0)
5.7.50 Cp(8) = ~
( ) i (ICo(O)IP + (p — DAIS,(0)]9)1/7’
AY9C, (6)
5.7.51 Sp(0) = - )
( ) ) (ICo @) + (p — DAIS,(0)|9)1/7

Let us define a homeomorphism Hy : R — R, where 6 = H ,\(é) is determined by
(5.7.50) and (5.7.51). Note that H  fixes the points {mm,, 7,/2+mm, :m € Z} CR
and
0
(5.7.52) lim )
18] — o0 0
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Comparing (5.7.48) with (5.7.38), H preserves solutions
(5.7.53) 0(t; Ha(Fo), A) = Ha(B(t; 60, N)).
By (5.7.52) and (5.7.53) we have

0(t; Ha(00), \) HAO(t:00, 1))

(5.7.54) p(N\) = tlggc ; _ )Ego i
_ jim 2B NP6 D) 656N
oo t@(t, 00, )\) t—00 t

because, when A > 1,
t
0(t; 00, \) > 0o + NPt — )\*l/q/ c_(s)ds — o0 ast — oo.
0

Next, by (5.7.49), we get from (5.7.54)

p(\) = thm M > AP g\,
where
1 27‘{‘1)
c_ = am Jo c_(s)ds

is the mean value. Now it is obvious that p(A) — oo when A — cc.
Next let us prove that p(A) > 0 for all A. Applying Lemma 5.7.3 (i) to w(t) =
A+ c(t), we have §(¢; m,/2, A) > mp,/2 for all £ > 0. Thus

O(t;mp/2, A
p(N) = lim % > 0.

Finally we prove that p(A) = 0 if A < —1. For simplicity, let us assume that
the potential ¢(f) is bounded on R, that is, there is some My > 0 such that
le(t)] < Mp,t € R. Suppose that A < —Mj. Then w(t) = A+ ¢(t) < 0 for all . Tt
follows from Lemma 5.7.3-(ii) that 6(£;0, ) < 0 for all ¢ > 0. Thus

t—o0 t -

0.

This, together with the conclusion p(A) > 0, shows that p(A) =0 for all A <« —1.
For general periodic potentials c(t) € Li _(R), the result can be proved similarly

loc
by using a similar transformation as in the proof of the conclusion limy_,« p(A) =

00. O

Remark 5.7.1. Tt follows from (5.7.49) that the rotation index function has the
following estimates:

(5.7.55) APz XTI < p(\) < AVP 42, A7V A >0,

where &1 are the mean values of 2m,-periodic functions c+(%).
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Now we use the rotation index function p(A) to study the main problem in
this subsection, that is, the periodic eigenvalues P of (5.7.26), (5.7.27) and the
anti-periodic eigenvalues A of (5.7.26), (5.7.28).

Note that (x(t;zo,v0,A), y(£; zo, yo,A)) is a solution of (5.7.26), (5.7.27) or
(5.7.26), (5.7.28) if and only if (zg,yo) is a fixed point of the Poincaré map Pj,
i.e., it satisfies

Py(z0,90) = (%0, %0),

or an anti-fixed point of Pjy:

Py (z0,90) = —(z0, Yo)-
Using expression (5.7.40) for Py the following result is obvious.

Theorem 5.7.11. We have A € P, if and only if there exist some 8y € R and
some n € ZT such that

(5.7.56) 0(2mp;60,A) = 6o + nmp, and  r(2mp; 00, A) = 1.

Moreover, the case n is even (n is odd, respectively) in (5.7.56) corresponds to the
periodic eigenvalues (the anti-periodic eigenvalues, respectively).

Note that the vector field E(t, 0; \) is differentiable in 6. Thus the Poincaré
map ©,(fg) of (5.7.38) (see (5.7.41)) is also differentiable in 6y. The following
statement, which is a result of the area-preserving property of P, is fundamental
in obtaining some eigenvalues in P,. Using (5.7.37) and (5.7.38) we obtain the
following result.

Lemma 5.7.4. It holds

d05(0o) 1
5.7.57 = — R

where Ry is defined right after (5.7.40).

Proof. Consider the space S = (0, 00) x (R/2m,Z). Let 6y be any fixed real number.
For any 61 (> 6p) which is near 6y, consider the following domain in S:

D={(r0):0<r<1,6,<0<6}.

The domain D has the area

1 6, 1
|D|:/ / rdrdf = =(0; — 6).
0 Jo 2

Note that the Poincaré map Py, in the (r, #)-coordinates, is
Pa(r,8) = (rRx(6), ©1(0)).
The image D of D is the following domain in S:
D ={(7.0): 0 <7 < Rx\(©,"(9)), 0x(0) < 0 < Ox(61)},
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see (5.7.40). Here ©1 (") is the inverse of ©,(-). Thus D has the area

~ ©2(61) _ pRA(O7N(6)) 1 2000 L
D) :/ de/ FdF —/ R2(0;(8))dd
01 (60) 0 2 Jo,(00)

1, dOs(0)
75/9 R3(0)—5—d0.

As P, preserves the expression r dr df, we have

1 [ dex (8
(91—00)55/0 R3(6) 26 4.

1
2 de

Differentiating this equality with respect to 61 at 6; = 6y, we get the desired
equality (5.7.57). O
Remark 5.7.2. Equality (5.7.57) can be also proved using equations (5.7.37) and
(5.7.38).

By Lemma 5.7.4, we can state an equivalent form of Theorem 5.7.11.

Theorem 5.7.12. It holds that A € P, if and only if there exist some 0y € R and
some n € N such that

ENC)

(5.7.58) O,(0y) =0 + nm, and =
do |y_g,

Moreover, the case n is even (n is odd, respectively) in (5.7.58) corresponds to the
periodic eigenvalues (the anti-periodic eigenvalues, respectively).

We will establish some relation between condition (5.7.58) with the rotation
index function p(A). To this end, we need the following result.

Lemma 5.7.5. Let h be a homeomorphism of R satisfying
(5.7.59) (@ +mm,) =h(8) + mr,, 6€R, meZ

Define the rotation index of h by

p(h) = lim W.

|| —o0 2mm,
Suppose that n is an integer. Then
(i) p(h) > n/2 if and only if maxe,er(R(6o) — (6o + nmp)) > 0;
(it) p(h) < n/2if and only if maxg,er(h(0o) — (0o + nmp)) <O0.

Now we introduce for (5.7.26) two sequences {)\, (c) : n € N} and {\,(c):n €
77} using the rotation index function p(A).
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Let c(t) be a 2m,-periodic potential with c(t) € L'(0,2m,). Define

(5.7.60) A (0) =min{X € R: p(A;¢) =n/2} for n € N,
(5.7.61) An(c) = max{\ € R: p()\;c) = n/2} for n € N.

Note that these sequences are well-defined by Theorem 5.7.10. Now we prove
the main result in this subsection.

Theorem 5.7.13. If n € ZT is even, then A,(c) and A,(c)are eigenvalues of

(5.7.26), (5.7.27). If n € N is odd, then A, (c) and \,(c) are eigenvalues of (5.7.26),
(5.7.28).

Proof. Let us consider the family of Poincaré maps ©, of (5.7.38). By (5.7.43)
O, satisfles (5.7.59) for each A. By Lemma 2.2, for any fixed 6y, the function
O (bp) — by is strictly increasing in A. Thus the functions

g}lgﬁé(@A(QO)—%)a and (g?gé(@A(%)—@o),

are strictly increasing in A. Now it follows from (5.7.60) and (5.7.61) and from
Lemma 5.7.5 that A = A, (¢) if and only if A satisfies

(5762) g}lgﬁ(@)\(eo) - 6’0) = NTp,

and that A = A, (c) if and only if ) satisfies

(5763) gﬁlé%(@)\(eo) - 90) = NTp.

As a result, if A = ), (c) or A,(c), we know from (5.7.62) or (5.7.63) that there
must be some 0y € R such that (5.7.58) is satisfied. Now the result follows from
Theorem 5.7.12. ]

Remark 5.7.3. (i) We do not know if the converse of Theorem 5.7.13 also holds, that
is, whether all eigenvalues of (5.7.26), (5.7.27) and (5.7.26), (5.7.28) are necessarily
given by tA, (c) and A, (c).

(ii) Since p(A) is nondecreasing, one can see that the ordering (5.7.30) holds also
for the p-Laplacian. As p()\,(c)) = p(A.(c)) = n/2, it follows from the estimates
(5.7.55) that one has the following asymptotic formula for the rotational periodic

eigenvalues )\, (c) and A, (c):
— P
(5.7.64) A, (€), Anlc) ~ (g) as 11 — 0.

We will finish this subsection with another characterization of rotational peri-
odic eigenvalues using the eigenvalues of (5.7.26) with respect to certain two-point
boundary conditions.

The general two-point boundary conditions are of the form

(5.7.65) £x(0) + n2'(0) =0, ox(27w,) + 72/ (2mp) = 0,
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where £, 7, o, T are constants such that £2 412 > 0 and 02 4+72 > 0. The conditions
(5.7.65) can be rewritten as the following concise form:

B (Sp())2(0) + Cp(e)a(0) = 0,
¢_1<Sp(5>>$(2ﬂp> + Cp(ﬁ)ml(%rp) =0,

where «, 5 € [0,7,). In the following, we are only interested in the case § = a €
[0,7,) in (5.7.66), i.e.,

(5.7.66)

1S 0 +C "(0) =0,
. ()0 + )2 0
7 (Sp(@))z(2mp) + Cpla)z’(2mp) = 0.
Hence A is an eigenvalue of (5.7.26), (5.7.67) if and only if
(5.7.68) 02mp; 0, N) = +nmp, neN

Remark 5.7.4. Let us denote by A& eigenvalues of (5.7.26), (5.7.67). It follows from
(5.7.68) that p(A%(c)) = n/2. Thus one has the following relation between A%(c)
and the rotational eigenvalues, which is well known for the linear case p = 2:

(5.7.69) Aa(e) <A%(e) < Au(e), a€l0,m), neN.

By the asymptotic formula (5.7.64) for A, (c) and A,(c), one has the following
asymptotic formula A% (¢):

Ad(c) ~ (n/2)P as n — oo.

Now we give a characterization of rotational periodic eigenvalues using the
eigenvalues of Sturm-Liouville problems.

Theorem 5.7.14. We have for anyn € N

(5.7.70) An(€) = min A (cs),
(5.7.71) An(c) = max A% (cs).

The eigenvalue \o(c) can be characterized using the Neumann eigenvalues

(5.7.72) Xo(c) = max A(cs).

sER
Here cq(t) are translations of c(t), that is, cs(t) = c(t + s).
Proof. For any fixed s € R, let 0(; 8, A, cs) be the solution of the following equa-
o 0, 500

P q
satisfying the initial condition (0) = €y. Then one has the equality

0" = p((r+eult)

O(t;0(—s;00, A, c5), A, ¢) = 0(t — 5560, A, ¢5)
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for all ¢,s5,00 and A. Hence p(X;c) = p(A;cs) for all A and all s. Consequently,
Ap(es) = A, (e) and Ay (cs) = Ap(c) for all s. By (5.7.69), one has

A () < A%(cs) < Ap(c), for all s € R.

Moreover, the eigenvalues A% (¢, ), as functions of s, are continuous in s, see (5.7.68).

Now we are going to prove (5.7.71). Assume first that n € N is even. Then
A = Ap(c) is an eigenvalue of the periodic problem (5.7.26), (5.7.27), that is,
equation (5.7.26) has a nonzero 2m,-periodic function z(¢). We claim that there
exists sgp € R such that

(5.7.73) O (S, (a)z(s0) + Cpla)a'(so) = 0.

Case 1: a = 0. As z(t) is 2mp-periodic, there exists so such that x'(sg) = 0.
Thus (5.7.73) is satisfied.

Case 2: o = mp/2. If (5.7.73) does not hold, then either x(¢) > 0 for all ¢ or
x(t) < 0 for all t. Let ro (3 0) and g be such that

2(0) = ¢p(ro)Cp(fo),  y(0) = —=2(2"(0)) = @q(ro)Sp(bo),

where ¢, is defined right after (5.7.39). Then 6(¢;6p, A, ¢) is bounded because
x(t) # 0 for all t. As a result, we have p(A\) = 0. This is a contradiction because

p(A) = p(An(c)) =n/2 > 0.
Case 3: v € (0,mp/2) U (7 /2, mp). If (5.7.73) does not hold, then the function

(5.7.74) Et) = 2" (8) +yx(t)
is a 2m,-periodic function and satisfies £(¢) # 0 for all ¢, where

LS
Cp(a)
Without loss of generality, we assume that £(t) > 0 for all ¢. It is easy to prove
that for any given 2m,-periodic function £(t), linear equation (5.7.74) has a unique
2mp-periodic solution z(t). In fact, such a 2m,-periodic solution is given by

0
a(t) = [ &(s+1t)exp(ys)ds,

Foo
where the sign — is for o < 7, /2 while the sign + is for & > 7, /2. As £(¢) > 0 for
all ¢, we have z(t) > 0 for all ¢ if @ < 7,/2, or z(t) < 0 for all ¢ if & > 7,/2. Now
we can use a similar argument as in Case 2 to prove that (5.7.73) holds for some
sp € R.

Let now z(t) = x(t + so), where sq satisfles (5.7.73). Then z(¢) satisfies the

differential equation

(5.7.75) (@2 (1)) + (A + sy (£))B(2(t)) = 0.

Moreover, by (5.7.73) and 27,-periodicity of z(t), z(t) satisfies the boundary con-
dition (5.7.67). This means that A = A, (c) is an eigenvalue of (5.7.71), (5.7.67).
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As we have shown, n/2 = p(A.(c);c) = p(An(c);cs,), therefore A,(c) = A (cs,)-
This proves that the maximum in (5.7.71) can be attained when n > 0 is even.
The characterization (5.7.72) also holds because we have (5.7.73) in this case.

Now we consider (5.7.71) when n € N is odd. In this case, for A = \,(c),
(5.7.26) has a nonzero solution z(t) satisfying the anti-periodic boundary condition
(5.7.28). As (5.7.26) is odd in z, it is easy to check that x(¢) satisfies x(t + 2m,) =
—z(t) and z(¢) is a 4mp-periodic solution of (5.7.26). Now a similar argument shows
that (5.7.71) holds also in this case.

Equality (5.7.70) can be proved similarly. O

5.8 Energy functional and various boundary
conditions

The aim of this section is to establish necessary and sufficient conditions for non-
negativity and positivity of the energy functional associated to (1.1.1) over the
class of functions satisfying various boundary conditions. These conditions are
formulated in terms of the so-called coupled points and also in terms of solutions
of the generalized Riccati equation. As applications, the comparison theorems of
Leighton-Levin type will be given.

Along with (1.1.1) consider the p-degree functional

b

(6.8.1)  J(n0,0) = aln(a)\p+ﬂ\77(b)|”+/ [r(t)lﬁ'(t)l”—C(t)\n(t)lp dt

a

over the class of functions € WP (a, b) satisfying the boundary condition

n(a)} [0
(5.8.2) D =1, ]

n(b)

where D is a diagonal 2 x 2 matrix. This condition covers the cases, in which the
values at the endpoints of the interval [a, b] are independent. Since the matrix D
is diagonal, it can be considered in one of the following forms

0 0 0 1 0
D]: 9 D2: s DSZ s D4:
0 1 01 0 0

The class of functions n will be said to be the class of admissible functions.

In [379, 380] the concept of coupled points and regularity condition has been
introduced for the study of quadratic functionals with general boundary conditions.
This concept will be used throughout this chapter. The following definitions are
motivated by the definition of the coupled point in the linear case.

Definition 5.8.1. A point d € (a,b] is said to be the semicoupled point with the
point a relative to the functional J(-; a,b) if there exists a nontrivial solution y(t)
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of (1.1.1) and o € R? such that

(5.8.3) p (Y@ 2 (9,
y(d) 0
(5.6.4) a®(y(@))  [—r@d @) 0 e
B (y(d)) r(d)®(y (d)) D(y(d)) [ c(t) dt

A point d € (a,b) is said to be the coupled point with the point a relative to
the functional J(-;a,b) if it is semicoupled with a and the solution y(-) from the
definition of semicoupled point satisfies

(5.8.5) y(-) Zy(d) on [d,b].

A point a is said to be its own coupled point if y(-) = const # 0 is admissible, is
not a solution of (1.1.1) on [a, ] and

b
oH—ﬁ—/ c(t)dt = 0.

If d is a coupled point with a and the interval [a,d) does not contain any other
point coupled with a, then d is said to be the first coupled point with «.

Definition 5.8.2. The functional J(#;a,b) is said to satisfy the regularity con-
dition if it is nonnegative for any admissible constant function.

Recall that a point d is said to be the conjugate point to the point a if there
exists a nontrivial solution y of (1.1.1) satistying y(a) = 0 = y(d). Let Iy C I.
Recall that equation (1.1.1) is said to be disconjugate on I if there exists no pair
of conjugate points in the interval Ij.

It is easy to see that if D = D, then the definition of the point coupled
with the point a coincides with the definition of point conjugate to the point a.
Observe that a can be its own coupled point only in the case of free end points,
i.e., boundary condition D = Dj,.

The regularity condition is trivially satisfied in the cases of boundary conditions
D1, Dg, Ds, since the only constant admissible function is the zero function. In
case of free endpoints the functional J(-;a,b) satisfies the regularity condition if
and only if

b
(5.8.6) K=a+0- / c(t)ydt > 0.

For comparison purposes, let us recall Roundabout theorems (Theorem 1.2.7
and Theorem 1.2.2, respectively), now slightly reformulated into the forms which
are more consistent with what we are going to study.

Theorem 5.8.1. The following statements are equivalent:
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(i) The functional J(-; a,b) is nonnegative on Wy *(a,b).
(i) Equation (1.1.1) is disconjugate on (a,b).

(iti) The solution w of Riccati equation (1.1.21) which satisfies w(a+) = oo is
defined on the entire interval (a,b).

(iv) The solution w of Riccati equation (1.1.21) which satisfies w(b—) = —oco is
defined on the entire interval (a,b).

Theorem 5.8.2. The following statements are equivalent:
(i) The functional J(-; a,b) is positive on Wy*(a,b).
(ii) Equation (1.1.1) is disconjugate on [a,b].

(iti) The solution w of Riccati equation (1.1.21) which satisfies w(a+) = oo is
defined on (a, b).

(iv) The solution w of Riccali equation (1.1.21) which satisfies w(b—) = —o0 is
defined on [a,b).

We close this introductory part with the technical lemma, which actually was
already used in the proof of Theorem 1.2.4. We present it here for an easy reference.

Lemma 5.8.1. Let n € WP(a,b) and let w be a solution of (1.1.21) defined on
(a,b). If n(a) = 0, n(b) = 0, then

lim w(t)[n()[” =0, lim w(t)n)” =0,

t—at t—b—

respectively.

5.8.1 Disfocality
Let us study the functional J(-;a,b) under the boundary condition n(b) = 0, i.e.,

b
Tl ab) = al@lpP + [ [rOWOF - (ol d
over the set of admissible functions
Uwo = {n € W"P(a,b) : n(b) = 0}.

In this case, D = Dy in (5.8.2) and the definition of coupled point corresponds to
the definition of a focal point, which is defined as follows.

Definition 5.8.3. A point d € (a, b] is said to be focal point (or right focal point)
to a relative to the functional J(-;a,b) if the nontrivial solution y(t) of (1.1.1)
satisfying

(5.8.7) a®(y(a)) - r(a)®(y'(a)) =0

has a zero at t = d.
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Remark 5.8.1. In many works, especially when an equation under consideration is
not considered in the variational context (cf. Subsection 5.1.3), the focal point is
defined with v = 0 in Definition 5.8.3, i.e., a point ¢, € (f, ) is said to be a focal
point to the point fy if there exists a nontrivial solution of the equation such that
y'(to) = 0= y(t1).

Note that the solution of (1.1.1) is by the condition (5.8.7) given uniquely up
to a constant multiple.

First we give a condition for nonnegativity of J(-;a,b) in terms of solutions
of Riccati equation (1.1.21). Denote by y(t) the solution of (1.1.1) which satisfies
the initial conditions y,(b) = 0, y;(b) = —1, and let wy(t) be the corresponding
solution of Riccati equation. The function w; satisfies wy(b—) = —occ.

Lemma 5.8.2. Functional J(n:a,b) is nonnegative on the class of admissible
functions 1) € U,g if and only if wy(t) is defined on [a,b) and satisfies a—wy(a) > 0.

Proof. “=": Let J(-;a,b) be nonnegative on the class of admissible functions.
Suppose that wy(t) is not defined at a point d € [a,b) and it is defined on (d, b),
this means that y,(d) = 0 and y,(t) # 0 for every t € (d.b). Let A € (d.b) be a
real number and define the admissible function

_Jw(N) tea )],
T}A(t)_{yb(t) te[\b),

see Figure 5.8.1. From the definition of the function 7, (¢) it follows

A
Timiad) = alm@P+ [ [FOBOP - cOm@P]

a

+f: ["'(3)|y:’a(t)|p - C(t)be(:‘.)P] dt

A
P (o= [ ) + ro@@O)mel,

(13

—/:yb(t)[(r(t)@(yé(t)))! +c(t}¢(yb(t))] dt

Figure 5.8.1: Construction of the admissible function 7, (t)
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A

= [P (@ = V) w0) — [ ettrde).

a
where the second integral was computed using integration by parts. If A — d+,
then the expression in parenthesis tends to —oco and clearly there exists Ag € (d, b)
such that J(m,;a,b) < 0, a contradiction. This means that w;(t) is defined on
[a,b). The function g, is admissible and a similar computation as above gives

0= (i arb) = (@) (@ — wy(a)).

It holds ys(a) # 0, hence o — wy(a) > 0.

“<”: Let wy(t) be defined on [a,b), @ — wy(a) > 0 and n be an admissible
function. Integrating Picone’s identity (1.2.3) from a to b — ¢, letting € — 0+ and
using Lemma 5.8.1 we get

b
T0r:0.5) = [n(@)|? (o — wp(a)) + / PPy VP () di > 0.

a

|
The next theorem gives the conditions that are equivalent to right disfocality
of (1.1.1) (i.e., the condition (ii)).
Theorem 5.8.3. The following statements are equivalent:
(i) The functional J(-;a,b) is nonnegative on Usy.
(i) There exists no focal point to a in (a,b).
(iti) The solution w of Riccati equation (1.1.21) satisfying w(a) = « is defined
on [a,b).
(iv) The solution wy(t) of Riccati equation (1.1.21) satisfying wy(b—) = —c0 is
defined on [a,b) and o — wy(a) > 0 holds.

Proof. (i)=(ii): Suppose, by contradiction, that the functional is nonnegative on
the class of admissible functions and d € (a, b) is the first focal point to a. Then
there exists a nontrivial solution u(¢) of (1.1.1) such that a®(u(a))—r(a)®(u'(a)) =
0, u(d) =0, and u(t) # 0 for t € (a,d). Let A € (a,d) be a real number and 7, (t)
be an admissible function defined by

B {u(t) t € a, N,

(5.8.8) m(t) : uN)b—1)/(b—A) tel\Y,

see Figure 5.8.2. Then

A
J(m;a,b) = a\m(a)\“r/ (r®' @O = e@®)u@)l”) dt

h b
= eI [r()®(u (A)/u(A))+m/A (r(t) = ()b — t]?) at].
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a(t)

Figure 5.8.2: Construction of the admissible function 7, (%)

The first term in the parenthesis tends to —oo if A — d— and the second one is
bounded. Hence there exists Ag such that J(nx,;a,b) < 0, a contradiction.
(if)=-(iii): This follows immediately from the definition of focal point.
(iil)=-(i): If a solution w of (1.1.21) satisfying w(a) = « is defined on [a, b), then
integrating Picone’s identity from a to b —¢, letting ¢ — 0 and using Lemma 5.8.1
we have

b
J(n;a,b) = / P(rl/pn/,rfl/pw@(n))dt >0,

and so the functional is nonnegative on U,g.
(i)<(iv): See Lemma 5.8.2. O

An analogous method yields the following modification of Theorem 5.8.3.
Theorem 5.8.4. The following statements are equivalent:
(i) The functional J(-;a,b) is positive definite on U,g.
(ii) There exists no focal point to a on (a,bl.

(iti) The solution w of Riccati equation (1.1.21) satisfying w(a) = « is defined
on [a,b].

(iv) The solution wy(t) of Riccati equation (1.1.21) satisfying wy(b—) = —o0 is
defined on [a,b) and o — wy(a) > 0 holds.

Proof. (i)=(i1): Let d € (a,b] be a focal point to a, and y(¢) be the solution of
(1.1.1) which realizes this focal point. Let 7 be an admissible function, which is
equal to y(t) on [a,d] and to zero on [d,b]. Then integrating by parts we have
J(n;a,b) =0, but £ 0, a contradiction.

(if)=(iii): This follows immediately from the definition of focal point.

(iii)=-(i): This follows from the Picone identity and from the properties of the
function P(,-).

(i)<(iv): Analogously to Lemma 5.8.2. O
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Definition 5.8.4. A point d € [a,b) is said to be left focal point to the point b
relative to the functional 7 (-;a,b) if the nontrivial solution y of (1.1.1) satisfying

r(B)@(y' (b)) + BL(y(b)) =0
has the zero at ¢t = d.

In this case D = Ds, the functional J(-; a, b) takes the form

b
Tl a0) = Bu®)P + [ [rf @ — colnte)e] de
over the set of admissible functions
Uox = {n € W"P(a,b) : n(a) = 0}

and Definition 5.8.1 yields: A point d is a coupled point to the point a relative to
the functional J(-;a,b) if there exists a nontrivial solution y,(t) of (1.1.1) such
that

(589) ala) =0,
b

(58.10) @) + D) (3= [ eto)ar) o,

(5.8.11) Ya(-) # Ya(d) on [d,b].

Before presenting the next theorem note that the condition (iv) of that state-
ment is in fact left disfocality of (1.1.1).

Theorem 5.8.5. Let us consider the boundary condition D3. The following state-
ments are equivalent:

(i) The functional J(-;a,b) is nonnegative on Up,.
(i) There exists no coupled point with a in the interval [a,b).

(iti) The solution we(t) of Riccati equation (1.1.21) satisfying wq(a+) = +o0 is
defined on (a,b] and 5+ wq(b) > 0 holds.

(iv) The solution w of Riccati equation (1.1.21) satisfying w(b)+ 0 = 0 is defined
on (a,b], i.e., there exists no left focal point to the point b in (a,b).

Proof. (i)=(ii): Suppose that there exists a point d € (a,b) coupled with a and
Yq 18 a nontrivial solution of (1.1.1) satisfying (5.8.9). Then y,(d) # 0. Indeed, if
ye(d) = 0, then from (5.8.10) it follows y/(d) = 0 and y, = 0, a contradiction.
Then in view of (5.8.11) there exists a point e € (d, b] such that y,(t) # 0 for all
t € [d,e] and y,(-) # const on [d, €], hence w,(-) Z 0 on [d, €]. Define the function
n(t) by

_Jya(t) t<e,
(5.8.12) n(t) = {ya(e) .
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Then
b
T (n5a,b) = r(t)®(y, (1) ya(t)]G + Blyale)F — / c(t)ya(e)[” dt

g (r(e)@(iiﬁi) +8- /eb cft) dt)

= ()P (wnle) + 5= | ety ).

= ‘ya(e)

The function w, is defined on [d, e]. From (1.1.21) and (5.8.10) it follows
wa(e) ~wa(d) + [ ede=~p—1) [ O @
d d

B =—wu(d) + /b e(t) dt.
d

Combining these computations, we get

J(n;0,0) = =lya(e)["(p = 1) /de r! () wa (1) dt.

In view of the fact that w, # 0 on [d, €], this integral is negative, a contradiction.

(ii)=-(iii): Assume that the solution w,(t) is not defined on (a,b]. Then there
exists a point e € (a,b] such that w,(t) is defined on (a,e) and wy(e—) = —oc.
Define the function

b
f(t) = w,a(t) +ﬁ—/t e(t)dt

for t € (a,e). The function f(¢) is continuous and satisfies f(a+) = oo and f(e—) =
—o0. Hence there exists a point d € [a,e) such that f(d) = 0, ie., d satisfies
(5.8.10). Moreover,

ya(e) =0# ya(d>7

(5.8.11) is satisfied and d is a coupled point with a. Hence w, (¢) is defined on {a, b].
Suppose we(b) + 8 < 0. Then the function f(t) satisfies f(a+) = oo and f(b) <0
and again there exists a point d such that f(d) =0, i.e., (5.8.10) holds. We claim
that (5.8.11) holds, too. Indeed, if y,(-) = const on [d, b], then ¢(t) = 0 = w,(t) on
[d,b] and

b
wald) + B — /d c(t) dt = wa(b) + § = f(b) <0,

which contradicts (5.8.10).

(ii)=(iv): Let w(t), wy(t) be the solutions of (1.1.21) given by the initial
conditions w(b) = —f, wa(a+) = 0o, respectively. In view of (iii) it holds w,(b) >
—06 = w(b). Due to the fact that the graphs of two distinct solutions of (1.1.21)
cannot intersect it holds w(t) < wg(t) for every t € (a,b]. Clearly there cannot
exist a point e € (a,b) such that w(e+) = oo, hence w(t) is defined on (a, b].



290 Chapter 5. Various Oscillation Problems

(iv)=-(i): Let w(t) be the solution of Riccati equation {1.1.21) given by the

initial condition w(b) = — 3. From the Picone identity we have for every admissible
function 7n
J(n;a,b) = sh%l+ {(a —wla+¢))|n(a+e)?

b

HEwO) O+ [ PO ) di
ate

The first term tends to zero by Lemma 5.8.1, the second one is vanishing and the

third one is nonnegative, hence the functional is nonnegative. O

Theorem 5.8.6. Let us consider the boundary condition D3. The following state-
ments are equivalent:

(i) The functional J(-;a,b) is positive definite on Up,.
(i) There exists no semicoupled point with a in the interval [a, b].

(i1i) The solution w,(t) of Riccati equation (1.1.21) satisfying we(a+) = +o00 is
defined on (a,b] and satisfies § + w,(b) > 0.

(iv) The solution w of Riccati equation (1.1.21) satisfying w(b)+ 8 = 0 is defined
on [a,b], i.e., there exists no left focal point to the point b in [a,b).

Proof. (1)=(ii): If d € [a,b] is semicoupled with a, then the function n defined
by 7 = y, on [a,d], n = yo(d) on [d,b] satisfies J(n;a,b) = 0 and y, £ 0, a
contradiction.

(if)=-(iii): The existence of w, follows from Theorem 5.8.3. If w,(b) + 5 < 0,
then there exists a point d € [a,b] such that f(d) = 0, where the function f is
defined in the proof of Theorem 5.8.5. The point d is semicoupled with a.

(iii)=-(iv): This follows from the fact that two different solutions of generalized
Riccati equation cannot intersect.

(iv)=-(i): From Theorem 5.8.5, it follows nonnegativity of J(-;a,b) over the
class of admissible functions. The equality holds only if 7 is a constant multiple of
y, where y is the solution of (1.1.1) corresponding to the solution of generalized
Riccati equation given by the initial condition w(b) = —g3. Since n(a) = 0 # y(a),
the only possible case is 7 = 0 and the functional is positive definite. O

5.8.2 Nonexistence of coupled points

Let us discuss the case with both free endpoints. In this case, the coupled point is
defined in the following way: a point d € [a,b) is said to be coupled point with a
if there exists a nontrivial solution y(t) of (1.1.1) satisfying

(5.8.13) ad(y(a)) — r(a)®(y/(a)) = 0,
(5.8.14) F(d)(y' (d)) + B (y(d)) (3 — / c(t) dt) = 0,
(5.8.15) y() # y(d) on [d,b].
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To simplify the proof of our theorem we first give an alternative representation of
the coupled points in Lemmas 5.8.3 and 5.8.4. In the following part we suppose that
the function y is a solution of (1.1.1) satisfying (5.8.13). This solution is defined up
to a constant multiple and the corresponding solution w(t) of generalized Riccati
equation satisfies the initial condition w(a) = a. Denote

6(6) = [ (o= 1pr' (s u(s) " ds,

where w(s) is defined on [a,t). From Riccati equation (1.1.21) it follows that
0(t) = a —w(t) — [ c(s)ds.

Lemma 5.8.3. Let w(t) be defined on [a,e] C [a,b), d € [a,e) be such that
0(d) = K and 8(e) > K, where K is defined in (5.8.6). Then d is a coupled point
with a.

Proof. Tt holds y(d) # 0. Because of

b d

c(t)dt — o+ w(d) + / e(t)dt

Ja

0 = K—&(d):a+ﬂf/

ran(48) [

relation (5.8.14) holds. Since

0 < 6(e) — K = 6(e) — 0(d) = /d (o 1) () s |9 ds,

one has w(-) £ 0 on [d, e], hence y(-) # const on [d,e] and d is a coupled point
with a. O

Lemma 5.8.4. Let J(n;a,b) satisfy the regularity condition. If d € [a,b) is the
first coupled point with the point a, then there exists a point e € (d,b) such that the
solution w(t) of Riccati equation (1.1.21) given by the initial condition w(a) = «
is defined on [a,e], 8(d) = K and 6(e) > K.

Proof. Suppose, that w(t) is not defined on [a, d], i.e., there exists a point T € [a, d]
such that w(t) is defined for ¢ € [a,7) and lim;—,,_ w(t) = —oo. Then

o= | - DR )7 de = oo

and clearly there exist points do € (a,7) and e € (do, 7) such that 6(dy) = K and
8(eg) > K. By the previous lemma dy < d is a focal point, a contradiction.

In the same way as in the proof of the previous lemma we can show that if d
is a coupled point, then (5.8.14) implies (d) = K. The point d is a coupled point,
hence y(d) # 0. Indeed, if y(d) = 0, then it follows from (5.8.14) that 3’(d) = 0 and
in view of the uniqueness of solution of (1.1.1) it holds y(-) = 0, a contradiction.
Because of y(-) # const on [d, 5] and y(d) # 0, there exists a point e € (d,b) such
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that y(¢) # 0 for all ¢ € [d, e] and y(-) # const on [d, e]. Hence w(t) is defined on
[a,€e] and w(-) # 0 on [d, e]. From here

w@=ﬂ®+élhn#*wM@kﬁ>ﬂm=m

which completes the proof. O

Theorem 5.8.7. Consider the boundary conditions D = Dy, i.e., both endpoints
are free. The following statements are equivalent:

(i) The functional J(-;a,b) is nonnegative over WP(a,b).

(i) There exists no coupled point with a in the interval [a,b) and the regularity
condition is satisfied.

(iti) The solution w(t) of Riccati equation (1.1.21) given by the initial condition
w(a) = a is defined on [a,b] and satisfies 5+ w(b) > 0.

(iv) The solution w(t) of Riccati equation (1.1.21) given by the initial condition
w(b) + B =0 is defined on [a,b] and satisfies o —w(a) > 0.

Proof. (i)=(il): The validity of the regularity condition follows immediately from
the nonnegativity of the functional J(n; a,b). Now let y(¢) be a solution of (1.1.1)
satisfying (5.8.13) and d € [a, b) be the first coupled point with a. From Lemma
5.8.4 it follows that there exists e € (d,b) such that the function y(¢) has no zero
on [a,e] and 6(e) > K. Define an admissible function

_ Jy@®) telae),
i) = {y(e) t € le,b].

Then it holds

TOnat) = al@ + A + (L) <o [ dpar
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a contradiction.

(if)=-(iil): Assume that (iii) does not hold, there exists no coupled point on
[a,b) and the regularity condition is satisfied. If w(¢) is not defined on [a, b], then
following the same way as in the first part of the proof of Lemma 5.8.4 we can
show that there exists a coupled point with « on [a, b), a contradiction. Hence w(t)
really exists on [a,b]. Assume that w(b) + § < 0. Then in view of the relations
wbh)+8=K-60b) <0, f8(a) =0, K >0 and the fact that ¢ is a continuous
function, there exist points d, e which satisfies the conditions from Lemma 5.8.3.
Then the point d is a coupled point, a contradiction.

(ili)=-(iv): Denote by w and w the solutions of (1.1.21) given by the initial
conditions w(a) = o and w(b) = —f, respectively. Then w(b) > —f = w(b) and
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w(t) is defined on [a,b]. Due to the fact that two distinct solutions of (1.1.21)
cannot intersect it holds @(t) < w(t) on [a,b] and there cannot exist a point e €
[a, b] such that w(e+) = oo. Hence w(t) is defined on [a,b] and w(a) < w(a) = a.

(iv)=(i): Since w(t) is defined on [a, b] then from the Picone identity it follows

b
J(m;a,b) = [n(a)["(a —w(a)) + [n(b)|” (6 + w(b)) + / Pt/ e Pwd(n)) dt.

The second term equals zero, and the first and the third ones are nonnegative,
hence the functional is nonnegative. [

We close this section with summarizing all cases.

Theorem 5.8.8. Let the matriz D in (5.8.2) be diagonal. The functional J(n; a,b)
is nonnegative for every admissible function n if and only if there exists no coupled
point with a in the interval [a,b) and the regqularity condition is satisfied.

Remark 5.8.2. When p = 2, Theorem 5.8.8 coincides in the scalar case with The-
orem 3 from [95], where general boundary conditions and n-dimensional problem
are considered.

Since Wy P(a,b) C U.o € WHP(a,b), the nonnegativity of functional J(-; a, b)
as a functional with free endpoints (with one free endpoint) implies nonnegativity
of this functional as a functional with one free endpoint (with zero boundary
conditions). Hence we have the result for ordering of coupled points according to
different boundary conditions.

Theorem 5.8.9. Let dy, d;, dyo be the first coupled point with a relative to the
Junctional J(-;a,b) with free endpoints, free left endpoint and zero boundary con-
ditions, respectively. Then

dy <d; <dp.

The same statement holds if “left endpoint” and “d;” are replaced by “right end-
point” and “d.”, respectively.

5.8.3 Comparison theorems of Leighton-Levin type

The aim of this subsection is to establish comparison theorems for focal points
of half-linear ordinary differential equations. Our main tool is the relationship
between nonnegativity of an appropriate functional and the nonexistence of focal
points, established in the previous subsections. Thus, at the same time, we give
complementary results to those in Subsection 2.3.2 and an application of the above
theory. For historical reasons, we speak about comparison theorems of Leighton-
Levin type, see [235, 341, 378] for the linear case.
Let us consider two differential equations

(5.8.16) Lyclz] = (r@)®(2")) + c(t)®(x) = 0,
(5.8.17) Lrclyl = (RH2Y)) + CH)2(y) =0,
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where r(t), R(t), c(t) and C(t) are continuous on [a, b], R(t) and r(t) are positive.
In the classical Sturmian comparison theorem we assume

(5.8.18) R(t) <r(t) for t € [a, b]

(5.8.19) e(t) < C(t) for t € [a, b].

Recall that equation (5.8.17) is then called the Sturmian majorant of (5.8.16).
Here we relax these assumptions.

Recall that in Theorem 2.3.5 we have assumed the existence of a solution to
(5.8.16) satisfying z(a) = 0 = z(b). For the case z(a) # 0 = z(b) using Theorems
5.8.3 and 5.8.4 we obtain the comparison theorem for focal points.

Theorem 5.8.10. Let © be a solution of (5.8.16) such that x(b) =0 # z(a), y be
a solution of (5.8.17) such that y(a) # 0. Denote

a= r(a)@(x/(a)) and A= R(a)q)(gj//((z))).

If

Via] = (o — A)le(@))? + /b [(r(t) - Rl (O + (C(0) - e(t) |x<t>p} dt > 0,

a

then y has a zero in (a,b]. If, in addition, the inequality is strict, then y has a zero
in (a,b).

Proof. Denote

b
Tl a,b) = aln(@)” + / (Pl 17 — i) dt,

b
Ta(;a,b) = Al(a)]? + / (Rl |P — Clnl?) dt.

To prove the theorem, it is sufficient to find a function 7 € C[a,b] such that
7n(b) = 0 and J4(7; a,b) is nonpositive (negative) and then Theorems 5.8.3, 5.8.4
yield the conclusion. Integration by parts shows J,(x;a,b) = 0. Hence

Jalz;a,0) = Ta(z;a,b) — Ta(z;a,b) = =V]z] < 0.

Therefore the functional Ja4(7; a,b) is not positive definite and by Theorem 5.8.4
there exists a focal point to a relative to the functional Ja(-;a,b) on (a,b], or
equivalently, y(¢) has a zero in (a, b]. If the strict inequality holds, the functional
Jal(-;a,b) is not positive semidefinite and by Theorem 5.8.3 there exists a focal
point to @ in (a,b), i.e., y has a zero in (a, b). Theorem is proved. |

Corollary 5.8.1. Suppose (5.8.18) and (5.8.19). Let = and y be solutions of
(5.8.16) and (5.8.17), respectively. Let x(a) # 0 = z(b). If

(5.8.20) R(a)q>(3;/((s))) < r@)e( ‘Z((s))),
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then the function y has a zero in (a,b]. Moreover, y has a zero in (a,b) in the case
when any of the following conditions is satisfied:

(i) The sharp inequality in (5.8.20) is satisfied.
(i) e(-) # C() on (a,b).
(1it) R(to) < r(to) and c(to) # 0 at some ty € (a,b).
Proof. This follows immediately from Theorem 5.8.10. O

Under additional condition on the nonnegativity of the function ¢ the inequal-
ities (5.8.19) and (5.8.20) can be replaced by a more general integral inequality, as
the following theorem shows.

Corollary 5.8.2. Suppose (5.8.18). Let x2(t) and y(t) be solutions of (5.8.16) and
(5.8.17), respectively. Let c(t) > 0, z'(a) < 0 = x(b), z(t) > 0 for ¢ € [a,b),
yla) # 0. If

(5.8.21) r(a)cp(a;((s))> —R(@(I)(Z((s))) —&—/: [C(s) - c(s)} ds >0 forte€a,b,

then the function y has a zero in (a,b]. Moreover, y has a zero in (a,b) if the sharp
inequality in (5.8.21) is satisfied, or if the condition (iii) of Corollary 5.8.1 holds.

Proof. Let a, A be the numbers from Theorem 5.8.10. It holds

b b e
/a [C(t) = oft) ()P dt = /a /0 [c) = c)] ds at.

From (5.8.16) it follows

t
HO2(' (1) = at(o(a)) - | c(s)2(a(s) ds
and x is decreasing or it is constant in some interval [a, ¢| C [a,b) and decreasing

on [c,b]. The same is true also for ||P. Then we can interchange the order of the
integration and we get

/ab[C(t)c(t)}x(t)pdt - /lz a)lp/ )} dt ds

[z (a)]”
> /0 [A —a]ds = [A — o]|z(a)|”

by (5.8.21). Note that o(s) is well-defined and continuous for 0 < s < |z(a)|P. By
this computation we get

Vil 2 [ [rt0 ~ RO] w0 ez o,

and by Theorem 5.8.10 y has a zero in (a, b]. If the strict inequality is satisfied,
then V[z| > 0 and y has a zero in (a, b). O
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The next comparison theorem is an alternative to Theorem 5.8.10.

Theorem 5.8.11. Let r and R be positive functions which are continuously dif-
ferentiable on (a,b). Let x be a solution of (5.8.16) such that x(b) = 0 # z(a) and
y be a solution of (5.8.17) such that y(a) # 0. Denote

a:r(a)fb(x/(a)) and A:R(a)q)(y/(a)).

x(a) y(a)
7
Wi = (G~ )it + [ [(ct0 - gt st
" (f((fj)/xa)@(x’(t))} at 2.,

then y has a zero in (a,b]. If, in addition, the sharp inequality holds, then y has a
zero in (a,b).

Proof. Let x be a solution of (5.8.16) such that 2(b) = 0. Then

(5.8.22) Lrelr] = (r x’) +CD(z)
- (R) (TCD( ))/+C<I>(x)
= [C’ - —c} (%)qu)(x’),

and since integration by parts shows that

/;(g)lﬂb(:p’):r dt [R@(x’)x]z - /

a

’ [§x<r®(x’)>/ + grtb(a:’):v'] dt

r

- —R@O( (@)af0) - [ (Rl - efop] at,

it holds
b b
/ax/JRC[ 2]dt = ]:((S))aaf(a)p—/a [Rla' 7~ Clal?] di
Hence
a b Q
Talwsab) = (A—f((a>)a)|x(a)|p+/ Rzl = Claf?] dt+f((a>)a|x(a)|f’

_ (A— R(a)a)|x(a)|p_/abxﬁR’C[x] dt
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and by (5.8.22),

Talz;a,b) = (A _ ]j((;l)) oz) |z(a)|? — /ab |:(C’ _ Ec)é(m) + (§>/r®(x/)]xdt

= —Wix].
Now the statement follows from Theorems 5.8.3 and 5.8.4. O

An immediate consequence of this theorem is the following corollary. It extends
the result of Reid, proved for the linear equation, see [341, p. 29].

Corollary 5.8.3. Let r, R € C'[a,b] be positive and ¢ € Cla,b] be nonnegative.
Let x and y be solutions of (5.8.16) and (5.8.17), respectively, such that z'(a) <
0= x(b), x is positive on [a,b), y(a) # 0. If

Pa) _y(a) (RE)Y o) _ et
w3 25 Gl <0 e Rz

then y has a zero in (a,b).

If we apply the method from the proof of Theorem 5.8.2, we get the following
corollary.

Corollary 5.8.4. Let r, R € C'[a,b] be positive and ¢ € Cla,b] be nonnegative.
Further let x, y be solutions of (5.8.16), (5.8.17) such that x'(a) < 0 = x(b), x is
positive on [a,b), y(a) # 0, respectively. If (R/r) <0 and

R(a) ! R(t)
o~ A+/a e - Wc(t)} dt>0 fortelab,

then y has a zero in {(a,b).

Remark 5.8.3. As we have already pointed out, the focal point is sometimes defined
with @ = 0 in Definition 5.8.3, i.e., a point #; € (¢o,b) is said to be the focal
point to the point ¢y if there exists a nontrivial solution of (5.8.16) such that
y'(to) = 0 = y(t1). If there exists in every neighborhood of oo such a point #g
and its focal point ¢1, then equation (5.8.16) is called focal oscillatory. This is
motivated by the property following from the Sturmian type theorem of separation
of zeros which states, that (5.8.16) is oscillatory if and only if there exists a pair of
conjugate points in every neighborhood of co. Due to the separation of zeros of two
solutions of (5.8.16), oscillation implies focal oscillation. The reverse statement
does not hold, which can be showed on the example of Euler equation, which
is nonoscillatory on [1,00), but it is focal oscillatory on this interval. For more
details see [303], where the linear systems are studied. Corollary 5.8.1 states, that if
equation (5.8.16) is focal oscillatory, then its Sturmian majorant is focal oscillatory
as well.

The same method as in Theorem 5.8.10 can be applied to the case of the
functional with other boundary conditions. Then we obtain the following results.
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Theorem 5.8.12. Let x be solution of (5.8.16) such that x(a) = 0 # x(b), y be
a solution of (5.8.17) such that y(b) # 0. Denote

ﬁ_mm¢(§g) and B:wa@(y@).

If

wte = - Bl + [ [(r) - R0) 0 + (00 - ) ] a2 0,

a

then y has a zero in [a,b). If, in addition, the sharp inequality is satisfied, then y
has a zero in (a,b).

Proof. The statement follows from the fact that

b
jﬂmmszm@W+/[MM%@P—QM@M@&z—%Mﬁo

and from Theorems 5.8.5 and 5.8.6. |

Corollary 5.8.5. Suppose (5.8.18) and c(t) > 0. Let x and y be solutions of
(5.8.16) and (5.8.17), respectively. Let 2’'(b) > 0 = z(a), z(t) > 0 for t € [a,b),
y(b) # 0. Let 8, B be the numbers from the preceding theorem. If

(5.8.23) B—B+/Wﬂ$—d%dﬁ%)ﬁﬂehﬂ,

then the function y(t) has a zero in [a,b). Moreover, y(t) has a zero in (a,b) if the
sharp inequality in (5.8.23) is satisfied, or if the condition (iii) of Theorem 5.8.1
holds.

Proof. The proof is an obvious modification of the proof of Corollary 5.8.2. O

5.9 Miscellaneous

The topics treated in this section have no immediate unifying point. The results
presented here do not fit into any of the previous sections of this chapter, but we
consider these results sufficiently important to present them in this book.

5.9.1 Extended Hartman-Wintner criterion

In Section 2.1 we have shown that (1.1.1) with [ 7!7%(¢)dt = oo is oscillatory
provided

—o0 < liminf f; rl—‘l(s) f; elr)dr ds < lim sup f; rl_Q(S) f; e(r)dr ds
=00 f; Tliq(s) ds {—00 f,; ’r’1*Q(s) ds
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or
Lrlma(s) [2e(r)dr d
g 47 t(s)ﬁfTC(ﬂ Tds _
o0 fTTl q(s) ds

In this subsection we present one extension of this criterion. We formulate this
criterion for (5.1.1), its extension to the equation with a general r satisfying
S *prl=4(t) dt = oo is immediate. For the sake of convenience, we introduce the
linear operator A : C0,00) — C[0, o) defined by

(5.9.1) (AF)() = 1/Otf(s) ds, >0, (AF)0):=0,

By A™ we denote the n-th iteration of A.

Theorem 5.9.1. Let C(¢ fo s)ds. If there exists n € N such that
(5.9.2) o < liggg}f(A"C)(t) < limsup(A"C) )

or

(5.9.3) Jim (A"C)(1) = oo,

then (5.1.1) is oscillatory.

Proof. The proof is similar to that of Theorem 2.2.3 and of Theorem 2.2.10. Sup-
pose, by contradiction, that (5.1.1) is nonoscillatory and let w be a solution of the
associated Riccati equation (3.1.2). For convenience, we suppose that this solution
is defined on [0, 00), this is no loss of generality since the lower integration limit
0 in the next computation can be replaced by any 7" sufficiently large. Integrating
equation (3.1.2) from 0 to ¢ we get

(5.9.4) w(t) —w(0) +Ct)+(p—1 / lw(s)]9ds = 0.

The application of the operator A™ to the previous equation yields

(5.95)  (Amw)(t) + (A"C)() + (p — 1)A” (/O w(s)[? ds) — w(0) =

Each of the conditions (i), (ii) implies the existence of K > 0 such that (A"C)(¢) >
~K for large t. This implies that [ |w(t)|?dt < co. The proof of this claim
goes by contradiction in the same Way as in the proof of Theorem 2.2.3. Having
proved the convergence of f w(t)|? dt, again in the same way as in the proof of
Theorem 2.2.3, we prove that hthoo(A”C)( ) exists finite, a contradiction with

(i) or (ii). O

The following example presents a construction of the function ¢ for which the
classical Hartman-Wintner criterion (i.e., the case n = 1 in the previous theorem)
does not apply, while the previous theorem with n = 2 does.
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Ezample 5.9.1. Let {an}2%, {b,}52; be two sequences of real numbers defined
by a, =n—2"",b, =n+2"",n € N. Let {g9,}22; denote a sequence of functions
gn 1 [0,00) — R of the class C? such that g,(t) > 0 if t € (an,byn) and g,(t) = 0
otherwise. We also ask that

(5.9.6) / () dt = n.

Next define g : [0,00) — R by

(5.9.7) 9(t) =D (=1)"g(t).

n=1

The function g is also of the class C? and using this function we define

(5.9.8) ot) = (tg(®))",  C(t) = /O o(s) ds.

The reason for defining ¢ in this form is two-fold. From (5.9.8) we find that

(5.9.9) (AC)(t) = %/O /O c(r)dr = g(t),

and from (5.9.6) and the Mean Value Theorem

(5.9.10) max g, (t) > n2"" L.
te(0,00)
Thus, from (5.9.9) and (5.9.10) we obtain liminf;_ . (AC)(t) = —oo, so the

Hartman-Wintner theorem does not apply. Let us consider p = 2 for a moment (so
we actually consider the linear equation) in (5.1.1) and we note that the Lebesgue

measure of the set {t : f(; c(s)ds # O} is finite. This implies that

t
tlim approx/ c(s)ds =0,

so the criterion of Olech, Opial and Wazewski [307] does not apply either. Recall
that

Llim approx f(t) =1
if and only if, by definition,
I=sup{f: mes{t: f(t) > £} = oo} =inf{f: mes{t: f(t) < £} = c0}.

Here mes{-} denotes the Lebesgue measure of the set indicated. Recall also that
the oscillation criterion of [307] states that the equation z” +¢(t)x = 0 is oscillatory
provided

¢
lim approx / cfs)ds = .
t—oc 0
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Nevertheless, by Theorem 5.9.1, equation (5.1.1) with any p > 1 is oscillatory.
Indeed, from (5.9.10) we have limsup,_, . (AC)(t) = occo. Also, for t € (b, ant1) =
(n+27" n+1—2"FD) we have

n/2t n even,

(45 = {—(n +1}/2t n odd.

From the last equality it can be easily shown that (A%C)(¢) is bounded for ¢ €
(0, 00). Hence from (5.9.2) equation (5.1.1) is oscillatory.

Now we give another example, where the classical Hartman-Wintner criterion
fails, but its improvement applies.

Example 5.9.2. Consider the equation
(5.9.11) (@(y)) +t'g(t)®(y) =0,

where A > 1 is a constant and ¢ : [0,00) — R is a T-periodic function with the
mean value zero. We claim that then (5.9.11) is oscillatory. This will be shown as
a consequence of the next lemma, which is stated without proof.

Lemma 5.9.1. Let [A] denote the greatest positive integer less than or equal to A.
Then C(t) = fg s*g(s)ds can be written as

[A]

(5.9.12) C(t)=>_ " 'pi(t) +O(t),

=0

where each p; is a T-periodic continuous function defined on [0, c0) with the mean
value zero and © : [0,00) — R is a bounded continuous function.

From (5.9.12), we can find that for j € N

S il () + 09 (1) i j < [

(5.9.13) (A7C)(1) = {@j(t) if j > [A

where the functions pg, ©7 satisfy the same properties as p;, ©, respectively. Thus
from (5.9.13), lim sup,_, ., (AC)(t) = oo and for j > [A],

—00 < ligninf(Aj)(t) <M
for a certain constant M. Hence, from Theorem 5.9.1 the claim follows. Note that

in this example we have lim inf;__ . (47C)(t) = —co if j < [\], thus the oscillatory
nature of (5.9.11) does not follow from the classical Hartman-Wintner theorem.

5.9.2 Half-linear Milloux and Armellini-Tonelli-Sansone
theorems

Recall that the classical Armellini-Tonelli-Sansone theorem concerns the conver-
gence to zero of all solutions of the second order linear differential equation

(5.9.14) 2" 4+ c(t)z = 0.



302 Chapter 5. Various Oscillation Problems

In particular, by the theorem of Milloux [288], if the function ¢ is continuously
differentiable, nondecreasing, and

(5.9.15) lim ¢(t) = o0

t—oo

then (5.9.14) has at least one solution satisfying

(5.9.16) lim (t) = 0.
t—oc

Note that condition (5.9.15) guarantees oscillation of (5.9.14) by the Leighton-
Wintner criterion. The theorem of Armellini-Tonelli-Sansone deals with the situ-
ation when all solutions of (5.9.14) satisfy (5.9.16). This happens when ¢ goes to
infinity “regularly” (the exact definition is given below). Regular growth mean-
s, roughly speaking, that a function does not increase fast on intervals of short
length.

Here we show that both theorems extend verbatim to (5.1.1). First we present
some definitions. Let S := {(ax, 8x)} be a sequence of intervals such that

(5.9.17) O0<ar < <as<fBa<---<fBr—00 ask— oo
Then
k
(5.9.18) Jlim sup W —:5(S) =5
k—oc k

is called the density of the sequence of intervals S. A nondecreasing positive func-
tion f tends to infinity intermittently (an alternative terminology is quasi-jumping)
as t — oo, provided to every € > 0 there exists a sequence of intervals .S satisfying
(5.9.17) such that 6(S) < = and the increase of f on Ry \ S is finite, i.e.,

(5.9.19) S(f:8) = _[f(ew) = £(Br-1)] < 0.

k=1

In the opposite case we say that f(t) — oo regularly as t — oc.
First we give an extension of Milloux theorem.

Theorem 5.9.2. Suppose that ¢ is a nondecreasing continuously differentiable
function satisfying (5.9.15). Then (5.6.1) possesses at least one nontrivial solution
satisfying (5.9.16).

Proof. From the variety of proofs we present that one based on the modified Priifer
transformation (compare with Subsection 1.1.3). An alternative approach to the
problem is presented in [176, 177, 198§].

For any nontrivial solution = of (5.6.1) there exist a positive function g given
by the formula

L
P

1
o= lor+ 1]
C
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and a continuous function ¥ such that x can be expressed in the form

2(t) = o(t) siny (9(1)), /() = € (t)o(t) cosy(V(1)).

The functions ¥ and g satisfy the differential system

(5.9.20) ¥ =cr(t)+

where

f) = %@(cosp W)sin, ¥, g(¥) = %| cos, V7.

The right-hand side of (5.9.20) is Lipschitzian in ¢, hence a solution of (5.9.20)
is uniquely determined by the initial conditions. We denote by ¥(t, ), o(t,¢) the
solution given by the initial conditions 9(0) = ¢, ¢(0) = 1. Then

ot =ew {= [ Zgto(s. a5

and since () > 0, the function o(t, ¥) is nonincreasing and tends to a nonnegative
limit p(oc, p) as t — oco. Obviously, (oo, ¢) = 0 implies that z(¢t) — 0 as t — oc.
The converse is also true because z is oscillatory.

There are the following two possibilities: (i) We have p(co, @) = 0, the corre-
sponding solution = satisfies x(¢) — 0 as t — oo, and

/Ooo i/((f))g(ﬁ(t,@)) dt = oo,

(ii) o(c0, ) > 0, the solution x oscillates, its amplitude tends to a positive limit,
and

(5.9.21) /OOO ) ot ) dt < 0.

Now, the proof is based on the behavior as ¢ — oo of the function ¥ (¢, ¢1,92) =
(¢, v2) — ¥, v1) which is described in the next two auxiliary statements. Here X
denotes the set of ¢’s such that (5.9.21) holds, this means that the corresponding
solution does not tend to zero as t — oo. The proof can be found in [26].

Lemma 5.9.2. Let 1,92 € X and 1 < @2 < @1 + mp. Then
$(00, 1, p2) 1= i [9(1, p2) — O(1, 1]

exists and equals O or mp.

Lemma 5.9.3. Let ¢y € X. Then for any ¢ > 0 there exists n € (0, 7,) such that
if [ = ol <, then

(5.9.22) [9(t, ) — O(t, o) <& fort>0.
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Now, returning to the proof of our theorem, suppose that X = R. Then the
function ¢ given by (0,0, ) = 0 is nondecreasing as ¢ increases in [0, 7p]. It
must go from 0 to m,, taking on only these two values, by Lemma 5.9.2. But this
is impossible since by Lemma 5.9.3 this function is continuous, so the assumption
X =R was false and the theorem is proved. O

Now we turn our attention to the extension of the Armellini-Tonelli-Sansone
theorem.

Theorem 5.9.3. Let ¢ be a continuously differentiable function for large t. If the
Junction log c(t) — oo regularly, then every solution of (5.6.1) satisfies (5.9.16).

Proof. Counsider the function

2’ (1)
c(t)

where z is a nontrivial solution of (5.6.1). The function H is nonincreasing since

H(t) = |2(0)]P +

(5.9.23) H(1) = ;((’?) (D) < 0.

Consequently, there exists a (finite or infinite) limit H = lim; o, H (%) and H > 0.
Suppose, by contradiction, that there exists a solution x of (5.6.1) which does
not tend to zero. For this solution, obviously, H > 0. By (5.9.23)

H) = H(©O)- / ;EZ) 12/ (s) [P ds

0

~—

[}

-

= s — |z(s)|P) ds
= 10)- [ S8 ) d

= H(0)— /O/(A(s) — |z(s)|P)

Let £ > 0 be a number such that for every sequence S of intervals with 6(S) < e
one has

k
(5.9.24) S= Z log e(a;11) — loge(5;)] Zl
i=1

as k — oo.
In the remaining part of the proof we use the following statement.

Lemma 5.9.4. For every g > 0 there exists n > 0 such that the density of the
sequence S of all intervals, where

(5.9.25) H(t) = |z(@)” <mn,

s less than eq.
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Since the proof of this lemma is rather technical and follows essentially the
original linear idea, we skip it and return to the proof of theorem.
Denote by («;, 3;) intervals, where (5.9.25) holds. On the intervals (3;, i11),
we have
H(t) = [z(t)[” >,

therefore
Pl poin de(t) il e(aiqr)
) < H(0) — H(t) — |a(t)]? H(O)—7n) 1 i
How) <10) =3 [ 00 - 0 T < HO -0 Yo T
which implies by (5.9.24) that H(oy) becomes negative for large k. This is a
contradiction with H = lim;_,. H(t) > 0. O

5.9.3 Interval oscillation criteria

The main idea used in this subsection is based on the fact that oscillation of (1.1.1)
is defined as conjugacy on any interval of the form [T, 00). More precisely, equation
(1.1.1) is oscillatory if and only if there exists a sequence of intervals [a,,b,],
an — o0, such that (1.1.1) is conjugate on [ay, by], no matter how “bad” functions
r,c are on complements of these intervals. The (dis)conjugacy and (dis)focality
criteria of this subsection are closely related, in a certain sense, to the results of
Subsection 3.2.3 which are based on the H-function averaging technique.

We introduce the following notation. We define D := {(t,s) : —co < s <t <
oo} and the class of functions H C C(D, [0, 00)) satisfying H(t,t) =0, H(t,s) > 0
for t > s and having partial derivatives 0H/0t, 0H/9s on D such that

8_H — 1/q 8_H - _ 1/q
o = hy(t, s)[H(t, 5)] and 5 ha(t, s)[H(t, $)]9,

where hy, ho are functions locally integrable on D.

(5.9.26)

Lemma 5.9.5. Assume that x is a solution of (1.1.1) such that z(t) > 0 on an
interval [d,b) and let w = —r®(a’/z). Then for any H € H,

b 1 b
(5.9.27) / H(b,s)c(s)ds < —H (b, d)w(d) + 1;/ r(s)hb(b, s)ds.
d d
Proof. The function w is a solution of the Riccati equation
(5.9.28) w' = c(t) + (p— 1)rt9(t)|w]4.

Multiplying (5.9.28) by H(t, s), integrating it with respect to s from d to ¢ and
using properties of the function H, we obtain

/d H(t,s)c(s)ds :/d H(t, s)w'(s)ds — (p — 1)/d r () H(t, s)|w(s)|? ds

= —H(t,d)w(d) +/d ((hat, SYHY (¢, s)w(s)— (p—1)r' ~9(s)H(t, s)lw(s)|?) ds.
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Now, the inequality

1 /p—1\""
Buw— Alw|? < = (L) |B[PA~ (D
p p

(that can be written in the form
B

=B _1 <p_—_1)” 5
pA T p\ p A
and follows from (1.2.2) with u = B{p —1)/pA, v = w), which holds for fixed

A >0, BeRand any w € R, applied to the function
flw) = ha(t,s)H (8, s)w — (p = 1)r' =4 (s) H (L, 8) ]

P
1
~|w|?

yields
t 1 t
/ H(t,s)c(s) < —H(t, d)w(d) + —/ r(s)h5 (L, s)ds
d PP Ja
Letting ¢ — b— we have the required inequality. |

Corollary 5.9.1. Assume that (1.1.1) is right disfocal on [d,b), i.e., there is no
solution of this equation satisfying x'(d) = 0 = z(by) for any by € (d,b). Then for
any H € H,

b
/ H(b,s)c(s)ds < —p/ r(s)hb (b, s) ds.
d

Remark 5.9.1. (i) Similarly as in Lemma 5.9.5, if x is a solution of {1.1.1) such
that z(t) > 0 on [a,d) and w is the same as in Lemma 5.9.5, then

(5.9.29) / H(s,a)c(s)ds < —H(d, a)w(d) + I%/dr(s)hf(s,a) ds,

Corollary 5.9.1 can be reformulated in a similar way, in particular, if (1.1.1) is
left-difocal on (a, d], then for any H € H

1 e
(5.9.30) / H(s,a)e(s)ds < I;/ r(s)hl(s,a)ds.
a
(if) Combining (5.9.29), (5.9.30) we have the following statement. If equation

(1.1.1) is disconjugate on an interval [a, b], then for any H € H there exists d € [a, b]
such that (5.9.29) and (5.9.30) hold.

Another corollaries of Lemma 5.9.5 can be formulated as follows.

Corollary 5.9.2. Assume that for some d € (a,b) and some H € H,

b
7 /d H(b, s)c(s)ds

p_< (615761)/(1 r(s)hi (s, a) dS—Fm/d r(s)hs (b, s) ds>.

Then every solution of (1.1.1) has at last one zero in (a,b).

(5.9.31) s)ds +
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Corollary 5.9.3. Assume that there exists H € H such that for any d € [a,b] at
least one of the following inequalities holds:

d
(5.9.32) / H(s,a)c(s)ds > pi/ r(s)hl(s,a)ds
or
b
(5.9.33) / H(b, d)e(s) ds > —/ P(s)E (b, s) ds.
d

Then every solution of (1.1.1) has at least one zero in (a,b).

As an immediate consequence of the previous remark we have the following
oscillation criterion.

Theorem 5.9.4. FEquation (1.1.1) is oscillatory provided for each T € R there
erists H € H and either

(i) there ezists a,b € [T,00), a < b, and d € [a,b] such that (5.9.31) holds, or

(ii) there exist a,b € [T,00), a < b, and for any d € [a,b] at least one of condi-
tions (5.9.32) or (5.9.33) holds.

Corollary 5.9.4. Assume that for some H € H and for each T sufficiently large,

¢
(5.9.34) limsup/ |:H(8,T)C(S) — 2%r(s)lﬁ(s,T) ds] ds >0
t—o0 T
and
¢
(5.9.35) lim sup/ {H(t7 s)e(s) — ]%r(s)hg(t, s) ds] ds > 0.
t—oc T

Then (1.1.1) is oscillatory.

Proof. Let T € R be arbitrary (sufficiently large). By (5.9.34) there exists d > T
such that

(5.9.36) /Td [H(S,T)c( )= pir( WP (s, T) ds} ds > 0,

similarly, substituting 7' = d in (5.9.35), by this inequality there exists b > d such
that

(5.9.37) /db {H(b,s)c( ) — pir( YhL (b, s) ds} ds > 0.

Combining (5.9.36) and (5.9.37) we obtain (5.9.31). O

Now, choose H(t,s) = (t — s)* for A > p — 1, then we can take hi(t,s) =
h(t —s) = A(t — s)*M/P)=1. Then we have the following Kamenev type oscillation
criterion for (5.1.1) (compare with Subsection 3.2.2). We skip the proof since it is
similar to those of previous statements of this subsection.
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Corollary 5.9.5. Suppose that for each T € R sufficiently large the following
inequalities hold:

1 1 ¢ N J AP
i — [ (s-T L L
s 5 ,/T(S Petsds >~
and
i 1 t A(s)d AP
— [ - >
s 5 '/T< Peloyds >~

then (5.1.1) is oscillatory.

Remark 5.9.2. The method of this subsection has been extended in several di-
rections: To forced equations, damped equations, half-linear functional differential
equations and to various nonlinear differential equations (not only of the second
order), we refer to [249, 250] and the references given therein. As an example we
present one result of [250]. There is given an interval oscillation criterion for the
half-linear functional differential equation

(5.9.38) (r(t)® (2’ () + c(t)®(x(r (1)) =0,

where 7/(t) > 0 and lim;_,, 7(t) = co. We present this statement without proof,
we refer to [250] for details. This proof is similar to that of Corollary 5.9.4. See also
Section 9.3 for other results concerning half-linear functional differential equations.

In the next theorem, H, hi, hs are the same as in the previous part of this
subsection, only (5.9.26) is replaced by

OH
ot

Theorem 5.9.5. Suppose that for every T € R (sufficiently large) there exists a
nondecreasing function p € C[T, o) such that

= hi(t, s)HY2H(t, 5), %—Ij = —ho(t,s)HY?H{(t, s).

. ' r(r(s)pls) (b5, T) + 28/ T))
h]t{risol:p/T H(s, T)c(s) — o ()P [H (5, TY =27 ds >0
and
‘ r(r($)p(s) (hat,s) + 2 /H D))
i 76,96 - pP<T'<(s>§ 7 H ez

Then (5.9.38) possesses no nonoscillatory solution which is extensible up to co.

Taking H(t,s) = [R(t) — R(s)]*, A > p — 1, where R(t) = [*r'~9(s)ds, and
p(t) = 1, then applying the previous theorem to the Euler type equatlon with
deviated argument

(5.9.39) (@2 (1)) + tlptb(x(t 7)) =0

gives the following result showing that the constant argument deviation does not
affect oscillatory nature of Euler type equations.
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P
Corollary 5.9.6. If v > (%) , then (5.9.39) possesses no nonoscillatory solu-
tion which is extensible up to oc.

Remark 5.9.3. Finally note that one of the advantages of the interval oscillation
criteria is that they can apply in cases where some of the classical criteria fail.
This is, for instance, the case when [ ¢(t)dt = —oco. Consider equation (1.1.1)
with a continuous function 0 < r(t) < 1, ¢ € [0,00), and

(t—3k)y 3k <t <3k+1,
ety = (—t+3k+2)n  3k+1<t<3k+2,
—kor —k|sinwt| 3k+2<t<3k+3,

where
(A+2)N
(A=p+L)pr’
is a constant for fixed A > max{l,p — 1}, k € Ng It is not difficult to verify (see
[361]) that such an equation is oscillatory by Theorem 5.9.4, and [~ ¢(t) dt = —oo.

5.10 Notes and references

Lyapunov type inequality was proved for the first time by Elbert [139] for (1.1.1)
with 7(¢) = 1, but the extension to general (1.1.1) in Theorem 5.1.1 is straight-
forward. Half-linear Lyapunov inequality has been rediscovered in several later
papers, e.g., in [245] by Li and Yeh and in [373] by X. Yang. Vallée-Poussin type
inequality is taken from Dosly and Lomtatidze [111], while focal point criteria were
proved by Elbert and Dosly [107]. Hong, Lian and Yeh [179] showed Lyapunov type
focal points and conjugacy criteria presented in Subsection 5.1.4. Similar results
can be found also in Peha’s paper [310]. Conjugacy criterion based on Opial’s
inequality (Theorem 5.1.9) is taken from X. Yang [373].

Subsection 5.2.3 is based on Dosly and Lomtatidze [112]. More precisely, The-
orem 5.2.3 from Subsection 5.2.4 is [112, Theorem 3.2] and Theorem 5.2.4 of Sub-
section 5.2.5 is [112, Theorem 3.3]. Singular Leighton’s Theorem is formulated in
a simplified form, as can be found in Dosly [101], a more general formulation is
presented in Dosly and Jaro§ [110]. The results on perturbed Euler equation in
Subsection 5.2.6 are due to Elbert and Schneider [149]. A similar idea, applied
to the nonlinear equation of the form (®(z'))’ 4+ t Pg(z) = 0, with a nonlinearity
g satisfying certain additional conditions, can be found in the recent interesting
paper of Sugie and Yamaoka [340]. A related result can be found in the paper of
Rezni¢kova [333]. Finally, the linearization method presented in Subsection 5.2.7
is the main result of the paper of Dosly and Pefla [114].

The theory of disconjugacy and nonoscillation domain in Section 5.3.1 is an
original extension of linear results, as described at the beginning of that section.
The same holds for the results of Subsection 5.3.3 except of Lemma 5.3.4 and
Theorem 5.3.12 that were presented in H. J. Li and Yeh [240]. Half-linear equations
with periodic coefficients (see Subsection 5.3.2) were studied in Dosly and Elbert
[107].
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The results concerning strong and conditional oscillation (Section 5.4) are taken
from Kusano, Naito, Ogata [218, 219], and supplemented by some new ones (which
seem to be original even in the linear case).

The discussion on the function sequence technique in Section 5.5 is based on
the papers [180, 182, 244, 246, 247, 253] by Fan, Hoshino, Hsu, Imabayashi, Ku-
sano, H. J. Li, W. T. Li, Tanigawa and Yeh, and it is extended by numerous new
observations. Note that the function sequence was also used by Mirzov [293] for
the investigation of half-linear systems.

The results of Subsection 5.6.1 are taken from Elbert, Kusano, Tanigawa [14§],
see also [147]. Theorem 5.6.2 dealing with quick oscillation was proved by H. J. Li
and Yeh [245], while Subsection 5.6.3 concerning slow oscillation is based on Lian,
Yeh and H. J. Li [255].

The main statement of Subsection 5.7.1 is taken from the classical paper of El-
bert [139]. Regular problem with indefinite weight (see Subsection 5.7.2) was stud-
ied in Kusano and Naito [216] and the results concerning singular Sturm-Liouville
problem (see Subsection 5.7.3) are due to Elbert, Kusano and Naito [146]. For re-
lated results we refer to Kusano, Naito and Tanigawa [217, 220]. Subsection 5.7.4
devoted to singular eigenvalue problem associated radial p-Laplacian is based on
[356]. The results of Subsection 5.7.5 are taken from the paper of Zhang [382].
Related results concerning half-linear Sturm-Liouville BVP’s are presented in the
papers of Binding and Drabek [42], Eberhard, Elbert, [137] and Huang [183].

Energy functionals considered on classes of functions satisfying various bound-
ary conditions (see Section 5.8) were studied by Mafik [271, 274, 276], see also the
paper of Yeh [377] concerning Levin type comparison theorem. Note that singular
energy p-degree functionals were investigated in [272] also by Mafik.

Generalized Hartman-Wintner’s criterion, as well as related examples (see Sub-
section 5.9.1) are due to Del Pino, Elgueta and Manasevich [90]. Results of Subsec-
tion 5.9.2 are taken from Atkinson, Elbert [26] and Bihari [40]. Interval oscillation
criteria (see Subsection 5.9.3) come from Kong [207], see also Wang, Yang [361] for
similar results and Jiang [194] for interval oscillation criteria of a different nature.



CHAPTER ©

BOUNDARY VALUE PROBLEMS FOR HALF-LINEAR
DIFFERENTIAL EQUATIONS

In this chapter we deal with boundary value problems associated with half-linear
differential equations. This problem has already been partially discussed in Sec-
tion 5.7, but here we focus our attention to different aspects of this problem.

The main part of this chapter deals with the BVP of the form
(6.1.1) (@(2") + A®(z) = f(t), x(0)=0=z(mp),

where X is a spectral parameter and the function f satisfies various smoothness
assumptions depending on the particular investigated problem. In the first sec-
tion we study the so-called nonresonant case, i.e., the situation when A is not
an eigenvalue of the unforced problem (f = 0 in (6.1.1)). The second section is
devoted mainly to the half-linear version of the classical Fredholm alternative for
linear BVP’s. This is perhaps the most interesting part of the qualitative theory
of half-linear differential equations since one meets there phenomena which are
completely different in comparison with the linear case. The last section contains
results concerning solvability of the resonant BVP’s associated with the equation

(®(2")) + An®(x) + g(x) = (1),

An being an eigenvalue of the unforced BVP (6.1.1). In particular, the classical
(linear) Landesman-Lazer and Ambrosetti-Prodi type results are extended to half-
linear equations.

311
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6.1 Eigenvalues, existence, and nonuniqueness
problems

This section is mainly devoted to nonresonant BVP’s, i.e., to (6.1.1) where A is
not an eigenvalue of the below given BVP (6.1.2). First we present a variational
characterization of eigenvalues and then we deal with the existence and multiplicity
results for nonresonant problems.

6.1.1 Basic boundary value problem

Under the “basic” boundary value problem we understand the problem
(6.1.2) (B(z")) + A®(z) =0, z(0) =0 =a(m),

where X is the eigenvalue parameter. Here 7, is the same as in the Section 1.1 and
its value is defined by the formula

Yods
(6.1.3) Tp = 2/0 e
Eigenvalue problem (6.1.2) is a special case of the general Sturm-Liouville problem
for half-linear equations treated in Section 5.7, and its simple structure enables to
determine completely the eigenvalues and eigenfunctions. The situation is essen-
tially the same as in the linear case where the eigenvalues are )\, = n? with the
associated eigenfunctions x,,(¢) = sin nt.

Theorem 6.1.1. The eigenvalues of (6.1.2) are A, = (p — 1)n?, n € N, and the
corresponding eigenfunctions are (up to a nonzero multiplicative factor) z,(t) =
siny(nt), where the half-linear sine function sin, is defined in Section 1.1.

Proof. The proof of this statement follows immediately from the homogeneity of
the solution space of half-linear equations and from the unique solvability the
initial value problem for these equations. The function z; (t) = sin, ¢ is a solution
of (6.1.2) with A = (p — 1) and satisfies (0) = 0 = z(w,) (by the definition of
this function in Section 1.1), and z,(t) = siny(nt) is a solution of (6.1.2) with
An = (p—1)n?. O

6.1.2 Variational characterization of eigenvalues

In the linear case, the Courant-Fischer minimax principle provides a variational
characterization of eigenvalues of the classical Sturm-Liouville eigenvalue problem.
This characterization is based on the orthogonality of the eigenfunctions corre-
sponding to different eigenvalues. In the half-linear case, the meaning of orthogo-
nality is lost, but eigenvalues can be described using the Lusternik-Schnirelmann
procedure, for general facts concerning this approach we refer to [168].
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Let us introduce the functionals over WO] #(0,7p), endowed with the norm

1
]| = (foﬂp z'|P dt) v . as follows:
(6.1.4)

Alw) = ]13 /0 T Pdt, Bl = % /0 e dt, Clo) = /O " () — fb)) dt,

where F(t) = fg f(s) ds. Eigenfunctions and eigenvalues of (6.1.2) are equivalent
to critical points and critical values of the functional

The proof of the next statement (which concerns the differentials A’, B, C' of
the operators A, B, ('} can be found in [118, Lemma 10.3], here | - || denotes the
norm in the dual space (W, ?(0,7,))*.

Lemma 6.1.1. The operators A, B, C" : W, P(0,m,) — (W, (0,7,))* have the
following properties:

(a) A" is (p — 1)-homogeneous, odd, continuously invertible, and ||A’(u)|. =
[ul|P~* for any u € Wy (0, m,).

(b) B’ is (p — 1)-homogeneous, odd and compact.
(¢) C' is bounded and compact.
We also introduce the notation (with ¢ € R)

S = {zeW?0,m,): Blz)=1},
Ke = {ueWyP(0,m) \ {0}, E(uw) = ¢, E'(u) =0}

(hence E(x) = A(x), F'(x) = A'(z) — A(x)B'(z) for x € §).

In our variation characterization of eigenvalues (or, more generally, in all “min-
max” procedures), an important role is played by the so-called Palais-Smale con-
dition.

Lemma 6.1.2. The functional E|s satisfies the Palais-Smale condition, i.e.,
if {ur} C S is a sequence such that E(uy) is bounded and E'(ur) — 0 in
(WyP(0,7,))*, then {ug} contains a convergent subsequence.

Proof. Since E(ur) = A(ug) = I%Huka for ug, € S, it is clear that {uy} is bounded
in VVO1 P(0,7p), so we may assume, without loss of generality, that up — up in
W, ?(0,7,), where — denotes the weak convergence, and that A(uy) — Ay €
R. By compactness, B(uy) — B'(ug) in (W, P(0,m,))*. Since E'(uy) — 0, we
have A’(ux) — A(ug) B’ (ur) — 0 in (W, P(0,7,))*, and thus A’(ug) — AgB'(uo).
Applying Lemma 6.1.1, ux — ug = (A')" (Ao B’ (ug)) in W, (0, 7,). O
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Let us recall also the definition of the Krasnoselskii genus of a symmetric set
A C Wy P(0,7,). Let

F:={ACWyP(0,m,): Ais closed and A = —A}
and let
M={meN: 3h e C(A4R™\ {0}) such that h(—z) = —h(z)}.

Then the Krasnoselskii genus of A is defined by

A { inf M if M £ 0,

o0 if M =0.

Intuitively, v provides a measure of the dimension of a symmetric set. For example,
if  is a bounded symmetric neighborhood of the origin in R™, then v(0Q2) = m.

Using the above given concepts we can now present the formulas for the vari-
ational characterization of all eigenvalues of (6.1.2).

Theorem 6.1.2. Let
Fr={AcF:0& A A >k}, Frn={A€Fp: ACS, Ais compact},
and let

(6.1.5) Bx = min max E(x).
AEFy, zeA

Then fp = Ap = (p— 1)n?P for n € N.

Proof. Let k € N be fixed. Clearly, 5y = A, for some n € N. Thus K3, NS =
{+p'/Pp,}, where @, is the normalized eigenfunction corresponding to A, (i.e.,

lenlly = (Jo" lon(t)|P dt)]/p = 1), and so v(Kg, N'S) = 1. Moreover, it is known
that if 3; = Bj41 = -+ = Bjtm, then (K, NS) > m + 1, see [339, Lemma 5.6].
Thus m = 0 and {8, } must be an increasirig sequence. It follows that Gr > Ag.

Now, consider the functions ¢ = X[(i—1)x,/k.ir, /4] Pk, for i =1,... k, where
X[, 1s a characteristic function of the interval indicated, and let

(6.1.6)  Ap={o1pr1 + -+ arprk, |1’ Blera) + -+ |afP Blokr) = 1},

where o are real constants. Each ¢y ; is in WO1 P(0,7,) and it is a principal eigen-
function, with the eigenvalue A, for the differential equation restricted to the
appropriate subinterval. Observe that A is symmetric and homeomorphic to the
unit sphere in R™. Thus Ay is the compact with y(A;) = k. Moreover, observe
that for u € Ay

B(u) = B(aipp1 + -+ apprr)
= Blaipr1)+ - -+ Blorprr)
= |oa|PB(pr,1) + -+ |o|" Blok.x)
1.
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Thus, Ay, C S and so Ay € Fi. A similar computation shows that E(u) = A(u) =
A for all u € Ag. This implies that
. = inf E < Ap
B ANf, s (u) < Mg,
$0 A = Br. Moreover, the infsup has been achieved on a set in Fy. Using the

compactness of the sets in F,, we replace sup by max, and since the inf is achieved
we replace inf by min. This completes the proof. O

6.1.3 Existence and (non)uniqueness below the first
eigenvalue

In this subsection we consider the problem (6.1.1), i.e., the nonhomogeneous prob-
lem

(6.1.7) (@) + A(x) = f(¢), 2(0)=0=z(m).
Consider the energy functional

(618)  J)a) ::11_)/0”” (P db %/Oﬂ” |x(t)|l’dt+/0ﬂpf(t)m(t)dt

and suppose that A is not an eigenvalue, i.e., A # Ag. For simplicity we deal with
f € C[0,mp] and solution of (6.1.7) is understood in the classical sense, i.e., it
is a function z such that ®(2’) € C'[0,7,| and the equation with the boundary
conditions in (6.1.7) are satisfied. The critical points of J f)‘ are in one to one
correspondence with solutions of (6.1.7).

Due to the variational characterization of the least eigenvalue

Ty

(6.1.9) M = min o @O
SO dt

Jo"
0

where the minimum is taken over all nonzero elements of WO1 (0, 7,), and due to
*

the monotonicity of the operators A’, B’ : W, P(0,7,) — (Wol"p((), Wp)) defined

by

(Al v) = /0 "o ) (B dt, (Blu,v) = /O " o u(t)yo(t) dt

(here {-,-) is the duality pairing between (W&’p(O,Wp)) and Wy P(0,7,)) it is
easy to prove that for A < 0 the energy functional J f’\ has a unique minimizer in
W, *(0,7,) for arbitrary f € (Wol’p((),ﬂp)> . In particular, it follows from here

that given arbitrary f € C[0, mp], the problem (6.1.7) has a unique solution. So,
from this point of view, the situation is the same for p = 2 (linear case) and p # 2.

The case A > 0 is different. It is well known that for p = 2 and A # Ag,
k =1,2,..., for any f € C[0,mp] the problem (6.1.7) has a unique solution,
which follows e.g. from the Fredholm alternative. Let us consider now p # 2 and
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0 < A < A1. Due to the variational characterization of A1 given by (6.1.9), the
energy functional is still coercive but the monotone operators A’, B’ “compete”
because of the positivity of A. While in the linear case p = 2 this fact does not
affect the uniqueness, for p # 2 the following interesting phenomenon is observed.

Theorem 6.1.3. Let 0 < A < Ay = p—1 and p # 2. There exists a function
f € C[0, mp] such that \7]5 has at least two critical points. One of them corresponds

to the global minimizer of .,’7]?\ on Wy (0,m,) (which does exist due to A < \;) and
the other is a critical point of saddle type.

Proof. As we have mentioned before, for 0 < A < A; the functional 7. ]ﬁ\ is coercive
and hence (together with its weak lower semicontinuity) possesses a global mini-
mum. Hence it suffices to construct a critical point of this functional which is not
the global minimizer.

First consider the case p > 2, and let & be a C*[0, 7] function which is equal
to a nonzero constant for ¢ € [¢,7, — ¢] and £(0) = 0 = #(7,), where £ > 0 is
sufficiently small. Define the function f by

f(t) = (@' (1)) + AD(E(1)).

Then Z is a solution of (6.1.7). We will show that this solution is not the above
mentioned global minimizer of J J{\, i.e., (6.1.7) has at least two solutions. To show
this, note that for p > 2 the functional J (we skip the sub/superscripts f, A if
these values are not important at the moment) is twice Fréchet differentiable and
its second derivative at % is given by

Ty

(6.1.10) (TJ"(@)v,v) =(p—-1) </ %P2 dt — )\/ |ZP20? dt)

0 0
for v € Wol"p. Next, let z € C§° be such that suppz C (¢, 7, — ¢). We find from
(6.1.10) and the definition of # that

(@22 = —(p— m/ "2 dt < 0
o

which together with the fact that J/(Z) = 0 shows that % is not a local minimum.
Now we deal with the case p € (1,2). We will follow the presentation of [164],
where the interval [—1, 1] instead of [0, 7] is considered, i.e., BVP (6.1.7) is con-
sidered with the boundary condition u(—1) = 0 = u(1). In this modification, the
construction of the forcing term f is more transparent.
Fix the numbers 0 < e < g7 < ez < 1/2 and let m > g = p/(p — 1) be a real
constant which will be specified later. Define a function ug € C?[—1,1] such that

up(t) = |¢|™ for |t| < ey,
tug(t) >0 for g1 < |t| < &q,
uo(t):%—’%—wm for es < Jt| < 1.

Notice that the condition tu((t) > 0 for &1 < |t| < &2 can be satisfied because
up(Ee1) < wup(des) follows from &7 + [(1/2) —e2|™ < 27 ™. Clearly, we have
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up(£1) = 0 and (®(ug)) € C[-1,1]. Similarly as in the case p > 2, we define the
right-hand side f of (6.1.7) by

J(t) = (®(up(1))" + A®(uo(t))
and we will show that the functional J does not attain its minimum at ug (over
Wi (=1,1)).
To prove this claim, we note that J is Fréchet differentiable and its derivative
is given by

1 1 1
(6.1.11) (T'(u),v) :/ @(u')v/dtf)\/ ‘b(u)vdt+/ fudt
1 -1 —1
for all v € WyP(—1,1). Next, let z € C''[~1,1] be any function such that
z(t) =1 for || < e,
0<z2(t) <1 fore<|t| <ey,
z()y =0 foreg <Jt| < 1.

We find from (6.1.11) and the definition of z that

(T (u),2) = /61 cI)(u/)Z’dt—)\/El b(u)zdt + E fzdt.

—€1 —E&1 —&1

Now we investigate the function

(6112)  C(0) = ~(T (o +02),2) (T (uo), 2)) for o€ [~1,1]
Observe that (@) = J(a) + Ji(a), where
Jo) =2 /_ (D (o + ) — Blup)) dt
and
Ji(a) = é/gqtl% By +02') — D] i — /MQI [ (o + ) — B(ug)] di.

Since ug(t) = [t|™ for |t| < 1, there exists (possibly infinite) nonpositive limit

(6.1.13) J(0) = lim J(a) = —(p—1)A luglP~2dt = —(p—1)A [ [t|"®P=2) dt,

and the finite limit _ _
(6.1.14)  J1(0) = lim Jy (o) = (p — )/a<|t<51 (JuoP 22" — Aluo|P~227) dt.
Combining (6.1.12) with (6.1.13) and (6.1.14), we arrive at

lim ¢(a) = —(p — 1)A ) t[™P=2) dt + ., (0).

a—0 _e

and we find that ¢(0) = —oo provided m{p —2) < —1, which shows that at ug the
functional J does not attain its minimum. O
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The last result of this subsection presents a nonuniqueness result regardless of
the value of the eigenparameter A. We skip the proof, but its idea is similar as
above, only the construction of the forcing term f is technically more complicated
when A > Aq.

Theorem 6.1.4. Let p # 2 and A > 0. Then there exists [ € C[0,T] such that
(6.1.7) has at least two distinct solutions.

6.1.4 Homotopic deformation along p and Leray-Schauder
degree

The Leray-Schauder degree of a mapping associated with the investigated BVP is
one of the most frequently used methods when dealing with this problem. First
consider the associated problem

(6.1.15) (Pp(a")) = f(t), 2(0)=0=ua(my), ®p(s)=]s["""sgns

(note that ®, = ®), where f € LP(0,,) for some 3 > 1, and the energy functional
corresponding to this problem

(6.1.16) () = - / (P dt + / FOa(t) dt.
P Jo Jo

Here we use the index p by ® and ¥ to emphasize their dependence on the power
p. The functional ¥, is coercive, continuous and convex over VVO1 (0,7,), and
hence it possesses the unique global minimum which is the critical point and
hence a solution of (6.1.15). This means that we have correctly defined mapping
G, : LP(0,m,) — C1[0,m,] which assigns to the right-hand side f of (6.1.15) the
solution x of this problem. This mapping is completely continuous. Moreover, if
Py, is a real sequence such that p,, — p and f,, € L#(0,m,) is such that f, — f €
LP(0,7,) (— denotes again the weak convergence), then lim,, oo G, (fn) = Gp(f)
as it is shown in [91].

Now, for fixed p > 1, we define T, : C[0,7,] — C[0,7p] by Tp(x) = = —
Gp(APp(z)) with A € R. Obviously, the equation T,(z) = 0 has a nontrivial
solution if and only if A = A, (p) = (p—1)nP and this solution is . (¢) = asin,(nt),
a€eR, a#0.

The following statement concerns a homotopic deformation along the power
p of the Leray-Schauder degree of the mapping 7}, with A # A,. Note that the
classical result of the linear theory is that the Leray-Schauder degree of Ty with
respect to the ball

B(0,r):= {u € C0, 1] : lulle = ten[%)a;(] lu(t)] < r}
is
(6.1.17) d(Ty, B(0,7),0) = (=1)",

where 7 is the number of the eigenvalues of problem (6.1.2) with p = 2 which are
less than A.



6.1. Eigenvalues, existence, and nonuniqueness problems 319

Theorem 6.1.5. Let p > 1 be arbitrary, A # A\, (p) = (p — 1)n?, n € N. Then for
every r > 0, the Leray-Schauder degree d(T},, B(r,0),0) is well defined and satisfies

(6.1.18) d(TPaB(r7O)7O) =(-D"
where n is the number of eigenvalues of (6.1.2) which are less than .

Proof. Suppose that p > 2and A > A\ = (p—1),1e, A= (p—1)(n+ s)P for some
s € (0,1) and n € N. In the remaining cases the idea of the proof is the same. We
will show that d(T,, B(r,0),0) = (—1)" for every r > 0.

Let A : [p,00) — R be defined by A(x) = [(n+s)7m/7p]*, where 7, is given by
(6.1.3) with « instead of p. Obviously, 7, depends continuously on « and hence A
is continuous. Next, define the mapping

T(a,z) =2 — Go(A(a) Py ().

The mapping G (a, z) := G (A(a) Py (z)) is completely continuous and T'(cv, x) # 0
for all « € [p, 00) (for details see [91, Theorem 4.1]). Hence, from the invariance of

the degree under homotopies and from (6.1.17) we obtain the required statement.
O

Now we apply the previous statement to derive solvability conditions for the
BVP

(6.1.19) (®(2") +g(t,x) =0, 2(0) =0=a(m),
where ¢ : [0, 7,] x R — R is a continuous function.

Theorem 6.1.6. Suppose that there exists n € N such that the nonlinearity ¢ in
(6.1.19) satisfies

Lglts) g(t,s)
6.1.20 An < alt) := lim inf < limsu =:0(t) < A\,
(6.1.20) (t) = lm ey e ®(s) (1) < Ans

uniformly on [0, 7], the first and the last inequalities being strict on a subset of
positive measure in [0, 7). Then the BVP (6.1.19) has a solution.

Proof. Let v € (An, Apt1). According to Theorem 6.1.5, it suffices to construct a
homotopic bridge connecting (6.1.19) with the problem

(@(z")) +v®(z) =0, z(0)=0=z(m).

The degree of the mapping associated with this problem has been computed in
Theorem 6.1.5. This homotopy is defined as follows

H(r,z) = Gp(rv®(z) + (1 — 1)g(t, 2(1))).

Using the standard method it can be proved that there exists » > 0 such that
x— H(r,x) # 0 for z € 9B(r,0) for every 7 € [0,1] if > 0 is sufficiently large.
This proof goes by contradiction. Supposing that there exists z,, € C[0, 7] and
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with ||z, ||c — oo and 7, € [0,1] such that =, = H{(r,, ), functions v and ¢ are
constructed (using essentially the same construction as in the linear case) in such
a way that the half-linear equation

(@) +c(t)®(v) =0, v(0) =0=1v(mp),

with A, < a(t) < e(t) < b(t) < A\p11 has a nontrivial solution. Since the first and
the last of the previous inequalities is strict on the set of positive measure (since
inequalities in (6.1.20) are of the same character), we have a contradiction with
the Sturmian comparison theorem. O

6.1.5 Multiplicity nonresonance results

In order to illustrate one of the basic methods for the investigation of the generally
nonresonant case, we consider the following simple BVP in this subsection. We
investigate the number of solutions of the BVP

(6.1.21) (@(u)) + A®(u) =1, u(0)=0=u(m,).

We denote the number of solutions of (6.1.21) by N,(A). Note that in the linear

case p = 2 we have

1 if A# k? for all k € N,
No(A)y=<¢0 ifA=(2k—1)?forallk €N,
oo if A= (2k)? for all k € N.

In this section we show, among others, that

(6.1.22) lim Np(A) = oco.

A—0o0

An important role in the proof of the main result of this subsection is played
by the quantity ¢ («), which is the first positive zero of the derivative u’ of the
initial problem

(6.1.23) (@) +AD(u) =1, u(0)=0, '(0) = a.

Multiplying both sides of (6.1.23)} by «’ and integrating the obtained equality from
0 to t, we get the identity

"E|e P P
WO | Ju0F _ P |

q p q p—1
Thus, for t € (0,tr ()

u(®) ds
(6.1.24) = / 7
0o (aP+gs—Ag—1)s?)

if @ > 0, and

()
(6.1.25) t:/ ds -
0 (lafP —gs = Mg —1)sP) /P
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if & < 0. Hence, we consider the function

ds

(6.1.26) F@) = /0 (lafe + gsgn(a)s — A(q — 1)sp) /P’

here we adjust the usual sgn function as follows

1 ifa>0,
) =) e <o

It follows that

(6.1.27) tala) = F(h(a)),
where h(a) is the unique positive root of the equation
(6.1.28) Mg — 1D)zP — gsgn(a)z = |aff.
Also, from (6.1.24)-(6.1.26), for ¢t € (¢, ¢x(«)], we have
- (0 ez

Conversely, if we have a function u of the form (6.1.29), it can be directly verified
that w is a solution of the differential equation in (6.1.23) and hence the (unique)
solution of this initial value problem on the interval [0, x{a)].

Next, we extend u to obtain a global solution u (a, t) of (6.1.23). Define ux (v, t)
as the 2[ty(a) 4 ta(—a)] periodic extension of the function

t
(e t) =  u(2tr(a) — 1) tcta(a
ir(=a, 2(tr(a) + ta(=a) — 1))t € [2ta(a), 2(ta(@) + tr(—a))].

Note that the zeros of uy(c, t) are the numbers 2kty(a) + 2(k — v)ir(—a), k € N,
v € {0,1}. The basic properties of the function 7 (), which we will need in proving
the main result of this subsection, are summarized in the next lemma.

Lemma 6.1.3. The function tx(«) has the following properties
(i) tx is strictly decreasing and continuous on (—oo,0) and on [0, 00).

(i) tx has a jump discontinuity at o = 0; more precisely

/
. iy -1
0= lim ty(@) < 1 (0) = %” [pA} .

(iti) It holds

1/p
_Tpp—1
LJm i) 2{/\] '
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Proof. From (6.1.26), (6.1.27) it follows

h(a) ds
(6.1.30) tx(a) _/0 (lalP + gsgn(a)s — A(g — 1)sp)V/?

Substituting s — sg(«) in (6.1.30) and calling on (6.1.28) with = g(«), we obtain

6 1 3 r q
. 1-p S S

To examine the behavior of h(«) with respect to o we note that the Implicit
Function Theorem together with (6.1.28) imply the h(c) is of the class C! on
R\ {0} and

dh pP(a)

(6.1.32) 7o (@) = g1 (@) — sgn(a)]

From the definition of h{«a), we easily see that the denominator on the right-hand
side of (6.1.32) is positive, hence h(«a) is strictly increasing and continuous for
a € [0,00) and strictly decreasing and continuous on (—o0, 0). Thus, the statement
(i) immediately follows from (6.1.31).

To show (ii), we first observe that h(0—) = 0 and hence from (6.1.30) we
conclude that lim,_o— tx(a) = 0. Next, setting @ = 0 in (6.1.31) and using the
fact that A(0) = (p/A)Y/®P=1) = (p/\)9~1, from (6.1.31), we obtain

(6.3 no= ()" [

The substitution s = 7¢ in (6.1.33) yields

no = (227 [ _adr_am [p=1]"7
) s T—m)7p 2 | A '

This shows the statement (ii). Finally, to show (iii), we note that h(a) — oo as
|a| — oo. Letting o — oo in (6.1.31), it follows from the Lebesgue Dominated
Convergence Theorem that

/p 1 1/p
i _ (=1 _ds _mp-l
al—l}:lgoot/\(a)_ ( A ) /0 (1_317)1/17 a 2 |: A ’

This concludes the proof of lemma. [l

Now we are ready to prove the main result of this subsection and some of its
consequences. Together with the sequence of A\, = (p — 1)k? of (6.1.2) we will
consider also the sequence p = (p — 1)(gk)P. We observe that ur < (=)(>)Aa
if p > (=)(<)2. The numbers p; will play an important role in our results, the
reason is their nonuniform distribution with respect to the Ap’s for p # 0 which
gives rise to the existence of a large number of solutions of (6.1.21) for large A.

We say that a function u € C'[0,7,] belongs to the classes E; (E?) (E, ) if u
possesses exactly k — 1 zeros on (0, 7,) and u'(0) >(= 0)(<)0.
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Theorem 6.1.7. The following statements hold:
(a) If A € (0, \1), then (6.1.21) has exactly one solution u, and v € ET .
(b) If x= A1, then (6.1.21) has no solution.

(¢) If X is strictly between Agi—1 and uy, then (6.1.21) possesses at least one
solution in u € EJ; .

(d) If X is strictly between i and lopy1, then (6.1.21) possesses at least one
solution in E, e

(e) If X\ = p, then (6.1.21) possesses a solution u € EY.

(f) If X is strictly between py, and Aoy, then (6.1.21) possesses a solution in I,
and a solution in k.

Proof. (a) Assume that 0 < A < A; = p— 1. From Lemma 6.1.3 we find that
2tx(e) > m, for a > 0. Hence, there is no solution of (6.1.21) with nonnegative
derivative at ¢ = 0. Again, from Lemma 6.1.3, but for @ < 0, we see that there
exists a unique a* < 0 such that 2¢)(a*) = mp. It follows that ux(a®,t) is the
unique solution of (6.1.21) and belongs to F; .

(b) Suppose that A = A; = p — 1. The absence of solutions to (6.1.21) follows
in this case directly from the fact that 2¢)(a) > 7, for @ > 0 and 2¢5(«) < 7, for
a < 0.

(¢) We assume A strictly between Agx—1 and pi. Consider the function

(6.1.34) Fle) = 2(k — D[ta(q) + tr(—a)] + 2tr ().

From Lemma 6.1.3 we see that f is continuous on (0,00), f(0+) = qk(m,/\)/P
and we have lim,_. f(a) = (2k — 1). This implies that there exists @ > 0 such
that f(a) = m, and hence ux(&,t) is a solution of (6.1.21) with exactly 2k — 2
zeros in (0,7,). Clearly u € Ef, .

(d) This proof is analogous to the previous one, only instead of f defined by
(6.1.34) we consider the function

(6.1.35) fla) = 2k[tr(a) + ta(—a)] + 2tr(a)

on the interval (—c0, 0).

(e) If A = pk, we have 2kt5(0) = 7, and, therefore, u(t) = u»(0,¢) is a solution
of (6.1.21) with exactly k — 1 zeros in (0, ,). Clearly, u € E?. Note that all zeros
of uw are double in this case.

(f} Finally, suppose that A is between Ag; and pg. In this case, we define the
function

fla) = 2k[ta(a) + tx(—a)).
The function f is continuous on (—o0, 0) and (0, 00}, f(0+) = ¢kn,/ ((p — 1)/)\)1/p
and again we have lim,_ . f(a) = 2kn, ((p — 1)//\)1/’). Reasoning as in the pre-

vious parts of the proof, we obtain the existence of solutions u, v of (6.1.21) with
u €k, veE Ly, O
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Corollary 6.1.1. Letp # 2. Then (6.1.21) is solvable for all A > 0 except A = X\;
and, eventually, those numbers \ of the form \ = Aop_1 for k < 1/|q —2|.

From the previous corollary we obtain, in particular, that (6.1.21) is solvable
for all large positive A. Furthermore, as A — oo, the number of solutions N,(A)
tends oo, as the following statement shows.

Theorem 6.1.8. Let p # 2. Then the number of solutions Np(\) of (6.1.21)
satisfies

(6.1.36) Ny(\) >3 (ﬁ) v

1 1
q 5’ -2
for all A > 0. In particular, limy_,.. Np(A) = co.

Proof. We will assume that p > 2, the case p € (1,2) can be treated in a similar
way. Let us fix A > 0 and denote by M the number of positive integers such that
(f) of Theorem 6.1.7 holds, i.e.,

My = card{k EN : (up)VP < AVP < (Azk)l/p}-

Clearly,

A 1/p A 1/p
My > max keN:k<(—> — min k‘EN:(—) <kpy+1,
Lk Aok

and hence
A\
1= —— —— |
* <p—1> <q 2)

(6.1.37)
A\ VP ( \ )1/p
Me> || — -1 = |l — +1
! [(Mk > Ak
Next, let us denote by M, and My the number of positive integers such that (c)
and (d) of Theorem 6.1.7 holds, respectively. Estimates similar to those for M,
yield

(0:4:3%) wos (Gin) (Ga) s
(6.0.39 woz (G2) (1) -5

From (6.1.37)-(6.1.39) we obtain

A N\
Np(/\)ZMc+Md+]V[fZ3< > <———>—3,

what we needed to prove. [l
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We finish this subsection with a statement which extends and complements the
previous results of this subsection. We prefer to present the result without proof
because of its technical complexity.

Theorem 6.1.9. Let p # 2 and set

_J-1/2-p)  ifpe(l2),
k(p)_{1/<p—2) ip>2

Let either A = Ao with k > 1, or A = Agpy1 with k > k(p), k € N. Then there
exists a number 0 < & < 1 such that (6.1.7) has at least one solution for any
f =1+ h with HhHLOO(O,TFP) < 4.

6.2 Fredholm alternative for one-dimensional
p-Laplacian

As we have mentioned at the beginning of this chapter, the investigation of the
BVP (6.1.7) when A = Ay is an eigenvalue is perhaps the most interesting part
of the qualitative theory of half-linear differential equations, since in comparison
with the classical Fredholm alternative for the linear boundary value problem

u” +mPu = h(t), u(0)=0=u(r),

which has a solution if and only if
(6.2.1) / h(t)sinmt dt =0,
0

in case of the half-linear BVP (6.1.7), the situation is very different.

In this section we discuss a possible extension of the Fredholm alternative to
(6.1.7). We suppose that A = Ay for some k € N, so the problem (6.1.2) possesses a
nontrivial solution x(¢) = sin,(kt). The half-linear version of (6.2.1) when A = A4
and m =1 is is the orthogonality condition

(6.2.2) / " h(t)sing ¢ dt = 0.
0

In the first subsection we describe the situation when A = A\; = p — 1, the
second subsection deals briefly with resonance at higher eigenvalues.

6.2.1 Resonance at the first eigenvalue

First we present (without proofs) some technical statements which concern certain
initial value problem, and present essentially asymptotic formulas for zero points
of the solution of this IVP (compare with Lemma 6.1.3 of the previous subsection).
These auxiliary statements are used in the proof of the three main results of this
subsection which concern the BVP

(6.2.3) @) + (p— 1)d(u) = %h(t) w(0) = 0 = u(m,).
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The factor 1/¢ = (p — 1)/p is inserted here for convenience, some computations
are then formally slightly easier.

Lemma 6.2.1. Let u, be a solution of

1
(6.2.4)  (2(u)) + (p—1)®(u) = —h(t), u(0)=0, W'(0)=0a, g¢= le,

q _
Then uq(t)/a — siny t as |a] — oo in C[0, K]-sense, for every K > 0. In par-
ticular, for large |al, us has a first positive zero 1§ and so does ul, at a point
t(a) > 0. Moreover, for a > 0 (o < 0), uq is strictly incerasing (decreasing) for
t € (0,t(c)) and strictly decreasing (increasing) in (t(a),t$), and t(a) — 7,/2,
t¢ — mp as |a] — oo. For a fized M > 0, all these convergences are uniform in h

Lemma 6.2.2. Assume that h € L2 [0,27,) and denote

loc

Iy = / " R(t) sin, ¢ dt.
0

Then

Ih
p®(a)

where o(|a|'~P) is uniform with respect to all h such that ||h| 1~ 2x,) < H for a
fixed constant H > 0.

Lemma 6.2.3. Let h € C'[0,2r,], and denote

1 7p /2 mp/2 ’
Jh =53 / (cospt)™® / h(s)cos, sds
2p° Jo t
/2 2
+ (/ h(m, — s) cos, 8d8) dt.
t

(6.2.6) t¢ =7, + (p — D Jnle2P) 4 o(jaP7P)), as |a] — oo,

(6.2.5) 5 =mp + +o(lal*"?) as|a| — oo,

If I, =0, then

where o(|a|*3~P)) is uniform with respect to all h with ||h| 19 2r,) < H for some
fized positive constant H. Moreover, if || is sufficiently large, 1§ < m, for p €
(1,2) and t§ > m, forp > 2.

The next statement concerns the topological degree of the mapping associated
with BVP (6.2.3). For h € L*>=(0,m,) and A € [0,00) define an operator T 5 by
T\ n(v) = u if and only if

1
(6.2.7) (®(u')) = A Eh(/\%t) —(p—1)®@)|, u(0)=ulm,) =0.

Now we define T}, := 17 p.
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Lemma 6.2.4. Assume that for h € L>(0,7,) one has I, # 0. Then solutions
to the boundary value problem (6.2.3) are a-priori bounded and there exists R > 0
such that

(6.2.8) deg[[ - Th; BR(O), 0] =0.

The first theorem of this subsection shows that (6.2.2) is sufficient but generally
not necessary for solvability of the BVP (6.2.4).

Theorem 6.2.1. Let us assume that h € C'[0, 7], h £ 0, and (6.2.2) holds.
Then (6.2.3) has at least one solution. Moreover, if p # 2, then the set of possible
solutions is bounded in C[0, mp].

Proof. Set X = C}[0,7y] = {u € C'0,m,];u(0) = u(m,) = 0}, and let the
operator T p, be defined by (6.2.7).

Standard arguments based on the Ascoli-Arzeld Theorem imply that T’y 5 is a
well defined operator which is compact from X into X*. Moreover, T} ;, depends
continuously (in the operator norm) on the perturbations of h € L*(0,7,) and
A € R. A formula for the change of the index for T’ o, when the spectral parameter
A € R crosses the first eigenvalue Ay = 1 can be found in the proof of Theorem
6.1.5 or [118, Theorem 14.9]. Adapting that result to our case, we have that for
small € > 0, and any R > 0,

(629) deg[] — T]_E70; BR(O), 0] = 1, deg[I — T1+5,0; BR(O), 0] = —1,

where Br(0) := {u € X;||ul]|x < R}. Using the homogeneity in equation (6.2.7)
and the boundary conditions in this BVP we have that for fixed h € L>(0, 1,) we
can take R > 0 so large that (6.2.9) extend to

(6.2.10) deg[I — Th—c n; Br(0),0] =1, deg[l — Th4¢p; Br(0),0] = —1.

We distinguish between the two cases 1 < p < 2 and p > 2.

Case 1 < p < 2. Let h € C*[0,,) be such that orthogonality condition (6.2.2)
holds. For ¢ > m,, let us extend h to [0,00) as a C'-function (e.g., as a linear
function h(t) = b/ (7p)t+ h(mp)). We claim that there exists a constant R > 0 such
that for any A € [1,2P7!] the boundary value problem

(6.2.11) (@) + Ap —1)®(u) = 2h()\%t), u(0) = u(m,) =0,
has no solution with |u|lc1jo,x,] > R

To prove this claim we argue by contradiction. Thus we suppose there exist
sequences {u, }3; € CH0, 7], {\n}52, C [1,2P71], such that A, — A € [1,2P71],
and [[unllcijo,r,) — ©0, and un, A, satisfy (6.2.11). By Lemma 6.2.1 it is not
difficult to see that |a,| — oo, where as before a,, = u/(0). So, assume that
an, — oo (the case @, — —oc is similar). Then u,, is the solution of the initial
value problem

(®(u)) + An(p — 1)P(uy) = %h()\}/pt), 1, (0) = 0,u,(0) = an,
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on [0,00), and hence v, (t) := un(t)\;(l/p)) solves the initial value problem
1
(@(vr)) + (p— 1)®(vn) = 8 0 =0, v, (0) = G,

(229

where &, = gn)\yl/p — 00. By Lemma 6.2.1 the first positive zero point {7 of
v, satisfies t7" — m, as n — oo and similarly the second positive zero point
approaches 2m,. Then condition (6.2.2) and Lemma 6.2.3 imply that ¢t < w1,

for n large enough. But this contradicts the fact that 0 = u,(7,) = ’Un(Tl'p/\}l/p)
because 1 < A, < 2P~! for any n € N. Thus the claim is proved.

From this claim we have that for £ > 0 small the homotopy H : [1,1+¢]x X —
X defined by H(u, A\) = w — T p, (u), where hy(f) = h()\%t), satisfies H(u, \) # 0
for all A € [1,1 + ¢] and [|ul[¢1jo,r,; > R. Thus, from the homotopy invariance
property of the Leray-Schauder degree, we obtain that

deg[[ — leh;BR(O),O] = deg[[ — T1+e,h1+5§BR(O)7O] = -1,

by (6.2.9). This proves that for given h € C*|0, 7| satisfying I, = 0 the boundary
value problem (6.2.3) has at least one solution. Moreover, it follows from our
considerations that all possible solutions of (6.2.3) are a-priori bounded in the
C'[0, 7, norm.

Case p > 2. Let h be as in the previous ase. We claim now that there exists a
coustant R > 0 such that for any A € [1/2, 1] the boundary value problem (6.2.11)
has no solution with |u|¢y[0,x,) > R.

The proof of this claim follows the same steps as in the previous case, we obtain
now

deg[[ - Tl,h; BR(O),O} = deg[[ — T175,h175;BR(0)7O] = 1,
by (6.2.10). Thus the proof is completed. O

The eigenvalue problem (6.1.7) with A = A; and f = 0 is closely related to the
LP-Poincaré inequality

(6.2.12) / 2 () [P dt > C/ z(t)[P dt, for all z € Wy P(0,m,).
0 0

The constant C = Ay is precisely the largest C' > 0 for which (6.2.12) holds. Then
Jo 12’ P =M\ [ [xP > 0 for all x € W,?(0,7,) while it minimizes and equals 0
exactly on the ray generated by the first eigenfunction sin, t. Now we consider the
following question: What is the sensitivity of this optimal Poincaré’s inequality
under a linear perturbation? We consider then the energy functional

1 Tp -1 Ty 1 Tp
(6.2.13) E(u) = _/ W — p_/ P + _/ ha,
P Jo p 0 q.Jo

and ask whether E' is bounded from below. It is easy to see that a necessary condi-
tion for this is that h satisfies the orthogonality condition (6.2.2}, for otherwise F
is unbounded below along the ray generated by the first eigenfunction. If p = 2, an
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L?-orthogonal expansion into the Fourier series yields that this condition is also
sufficient for the boundedness from below. However, this approach seems to be
of no use when p # 2. Under the additional assumption h € C*[0, 7], the result
answering the sufficiency is provided by the following statement. Note that some
of its conclusions are already implied by the previous theorem.

Theorem 6.2.2. Assume that h € C'[0,7,] , h £0, and (6.2.2) holds.

(i) For 1 < p < 2 the functional E is unbounded from below. The set of its
critical points is nonempty and bounded.

(ii) Forp > 2 the funciional E is bounded from below and has a global minimizer.
The set of its critical points is bounded, however E does not satisfy the
Palais-Smale condition at the level 0.

Proof. Let us consider the energy functional E : W, (0, 7,) — R given by (6.2.13)
whose critical points are solutions of boundary value problem (6.2.3). We will
distinguish between the case 1 < p < 2 and the case p > 2.

(i) Case 1 < p < 2. For & > 1, say o, — o0, n € N, consider the solutions to the
initial value problem (6.2.4) given by wu,(t) = uq,, (t) for ¢ € [0,t7), u,(t) = 0 for
t e [t9n, m,] (recall that t& < 7, by Lemma 6.2.3). Clearly u, € W, 7(0,7,),n €
N.

By Lemma 6.2.3, it follows that

(2—p)Jn

(6.2.14) Op i=mp — 7" = D)
(077

+0(a?37P)y as n — oco.

We shall prove that the energy functional F defined in (6.2.13) satisfies
(6.2.15) lim E(u,) = —o0.
n—od

By definition,

1 Tp—"0n 1 Tp—0n 1 Tp—"0n
(6.2.16) E(uy) = —/ lul, [P — p=- [16n|P + —/ hay,.
PJo p 0 q.Jo

Multiplying (®(u
we find

7";)_5", Trp_(sn 1 7";)_671
(6.2.17) —/ lun P+ (p — 1)/ |un|P = —/ Pty .
0 0 q .Jo

Then, from (6.2.16) and (6.2.17),

1 Tp—"0n Tp—0n
(6.2.18) Blup) = — - V Il P — (p — 1)/ und .
0 0

/
[s3

D+ p-1)0(uq,) = %h by g, and integrating over [0, m,—dy],

q

On the other hand from the Poincaré inequality, we have that

Tp—"0n . P pmp—0n
ul P> (p—-1 L / Up |P
Lz () [
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and then, from (6.2.18)

5 - Tp—0n
(6.2.19) E(up) < —p (1 - l) -1 / s, |P.
Tp 0

Now since by (6.2.14),

—p B
l(l — %) — 1] = pon +0(8,) = M ai(l—p) Lo (ai(l—p)) ,

Tp Tp Tp

as n — 00, we have un(t) = apsin, t + o(ay,) for ¢t € [0, 7, — §,], and it follows
from (6.2.19) that

E(uy)

IN

2o 7 b
SR Chud JR/PEIER ag/ sin ¢ dt + o(a?)
0

Tp
. mp—0n
+o(a?(17P)) aﬁ/ sin} t dt + o(a})
0

2 T

(6.2.20) _ _r2opdh af;f’/ sin? ¢ dt + o(a% )
Tp 0

for n — oo. Thus (6.2.15) follows from (6.2.20).

(ii) Case p > 2. For a large positive number «, let us consider the solutions u,
and u_, of the initial value problem (6.2.4). Then from Lemma 6.2.3, u_,, and u,
are respectively, lower and upper solutions (see later Subsection 6.3.1 for precise
definitions) of the boundary value problem (6.2.3}). Now, from Lemma 6.3.2 given
in Subsection 6.3.1 we obtain that £ attains its minimum on the set of functions
between u_, and u,, at a (global) critical point of E. The set of such global
critical points is compact, from Theorem 6.2.1. Let —K be the minimum value
of E on this set. Since given any ¢y € C§°(0,7,) and sufficiently large o, lies
between u_q and uq, so that we get E(y) > —K. Finally, by density of C§°(0, m,)
in Wy?(0,7,) we get E(u) > —K for any u € Wy'?(0,7,). Moreover, F/ minimizes
precisely on the (nonempty) set of its critical points.

Finally we will exhibit an example which shows that the Palais-Smale condition
fails for p > 2 at the level zero, recall that this condition is defined in Lemma 6.1.2.
Let h € C'[0, 7, be such that orthogonality condition (6.2.2) holds for p > 2.
Counsider the solutions u,, = u,(t), n € N, of the initial value problem (6.2.4) with
ul, (0) = a, — 00 as n — oo. Then, from the fact that (6.2.4) is equivalent to its
first integral

o) + [ua®)F = a” + W(ua), W(s):= /0 h(7a(£)) d€,

where 7, = u, ' is the inverse function of u,. Substituting ¢ = #(«) in the last

identity we obtain
a\’ WB) 5.
<5> =l-—g o A= ta (),
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and after a short computation we have o = 3+ O(3?77) and thus for ¢ € [0, 2],
we get

(6.2.21) Un(t) = apsing t + 0?7 P) as n — oo.

Since uy, solves the initial value problem (6.2.4), the function vy, (t) := u, (¢7" t/7p)
solves the boundary value problem

(62:22) @) + -1 (22) 00 = (F) h, a0 = wnlrm) =0

t ?ﬁ n q

where h(t) = h(t3" /7, t). From (6.2.21) and [Allctio,2x,) < H, it follows that

(6.2.23) v (t) = aysing t + O(a27P) as n — oo,
and
(6.2.24) h(t) = h(t) + 0(a217P)) as n — .

Also, from Holder inequality and (6.2.22), we have that

(6.2.25)  sup  |(E'(vn), )]
1l 1.0 <1

sup

1p <1
Wy

1 [™ Tp P T
+- Mpl<(p—1 |- ) —1| sup P (v )
qJo i Il 1051 Jo
1/”7’ 1(7Tp>p/7r7’~
+=f hp—= (I h
T P Tp % 1 Tp . %
<p-Dlwmr) 1 [ B |h — h|?
" 0 q 0
p Tp %
e ) ()
q i 0

JAEICATE Y [ et

1l

By (6.2.6),
p —
(6.2.26) Zp —1] = plp—2) Jna207P) 4o (ai(l‘p)) 7
tr T
and by (6.2.24),
(6.2.27) |h(t) — h(t)| = o(a?1 7)),

as n — oo, then from (6.2.26) and (6.2.27), we find that

sup B (o) )] < PO D@2

1— 1-
Jhan P+ O(an p)
Il 0 <1 )
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as n — oo, i.e., limy, o E'(v,) = 0.

From (6.2.2), (6.2.22), (6.2.23), (6.2.25), (6.2.26) and (6.2.27) we obtain that

1 Tp _1 Tp 1 Tp
Bl = |3 [T =22 [Tl L [
PJo q4Jo

P Jo
—1 p T
< P (?) —1‘/ [on?
p t 0
L] [ L (mp \'| ™
+—/ hun+—(;j,> / huy,
q1Jo pg \t" 0
—1)(p—2 -
< wha?\,p—i—o(afﬂ”) as n — oo,
Tp

Le., lim, oo E(vy,) = 0. Hence {v,}2%, C W,P(0,7,) is an unbounded Palais-
Smale sequence. O

Our next result shows, in particular, another interesting difference with the
linear case p = 2. If p # 2, then the set of functions f for which (6.1.7) with
A = A; is solvable has nonempty interior in L°°(0, m,).

Theorem 6.2.3. Let p # 2. Then there exists an open cone C C L>(0,m,) such
that for any h € C problem (6.2.3) with A = Ay has at least two solutions. Moreover

(6.2.28) / h(t) sin, ¢ dt # 0
0

forall h eC.

Proof. With the notation of the proof of Theorem 6.2.1 let us define 7, : X — X
by T} =T, Thus for each v € X and h € L*(0,7,), u = Th(v) satisfies

(@)Y = h (= 1O(), u(0) = u(r,) = 0.

As mentioned before, T} is a well defined compact operator and depends contin-
uously (in the operator norm) on the perturbations of the (parameter) function A
(with respect to the L>(0, 7,)-norm).

Let us first construct an auxilliary function hg € C2[0,7,] for which the bound-
ary value problem (6.2.3) (with h = ho) has a solution and, moreover,

/ ’ ho(t) sin, tdt # 0.
0

For 0 < e« 1, set

p+1

p—1 p—1(e—t)p-1 f
= v or t€|0,¢
p+1 8;)4:_} [ ’ )7

B for t € [e,mp/2],
Ug(mp — 1) for ¢ e (mp/2,m,).

ue(t) =
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Let us define h. := ¢[(®(ul)) + (p — 1)®(u.)]. Straightforward calculation yields
h. € C?[0,m,] and, by definition, u. € X is a positive solution of the boundary
value problem (6.2.3) with A = h.. On the other hand, the following asymptotic
estimates for € — 04 hold

1 1 [T
-1, = —/ he(t) sin, tdt
q : q Jo 8() i

2/ ’ (@(u;))’smptdtm(p—l)/ * () sin tdt
0 0

Tp Tp

‘2T p 2

= —2/ |u’€|p_2ulgcosptdt—|—2(p—1)/ |te [P~ %, siny, ¢ dt
0 0
€ (6 N t)2 3 _ '

= 2/0 WcosptdtJrQ(pl)/o e [P~ 2u, sing, ¢ dt

%
+2(p — 1)/ |ue [P~ u, siny, ¢ dt.

&€

Using the facts that sin, e = ¢ + o(¢) and cos, e = 1+ o(1), we obtain

. et 2
A 72/0 E o) de+20(2)
pfl p—1 Ty
+ <;m) (p— 1)/0 sin, t dt + o(1)
2 3 p_l p—1 Tp ]
= —552 Py (m> (p—l)/o sin, tdt + o(1).

Hence, for 1 < p < 2, we have I. > 0 while for p > 2, we have I. < 0,if 0 <& < ¢gg
with €9 small enough. So we can take iy := h.,. We have to distinguish between
the cases 1 < p <2 and p > 2.

Case 1 < p < 2. In this case we have

(6.2.29) / ho(t) sinp, tdt > 0,
0

and the boundary value problem (6.2.3) with h = hg has a positive solution ug =
ug, € X. By (6.2.29) there exists 6 > 0 so small that for u_s(t) := uo(t) — ¢ and
for

hs = q[(®(uls)) + (p — DP(u—s)]

we also have
(6.2.30) / h_s(t) sin, tdt > 0.
0

Fix such a §. Clearly we can choose a small number p > 0 such that for any h with
|h — h—sllsc < p one has h < h_gs,5 on (0,7,), and also [, h(t) sin, t dt > 0. Let
us fix such an A and extend it e.g. by zero for ¢ > m,. Then, from Lemma 6.2.1,
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it follows that for « sufficiently large and positive, the solution u, of the initial
value problem

(B()) + (p — 1)@ (ug) = gh,
ua(0) =0, u,(0) =«

satisfies ua > u_s/2,ua(mp) > 0. Since h < h_s/s, it then follows that u_s/o
and u, are respectively lower and upper solutions of the boundary value problem
(6.2.3) with this h.

Hence setting u = u_s/2 and & = u, in Lemma 6.3.2 of later Subsection 6.3.1
we obtain the existence of at least one solution u, which lies between u and 4. We
claim that there exists at least a second solution. Assume the opposite, namely
that only one solution exists. Then, from Lemma 6.3.2, it follows that for a certain
bounded open set 2 in C'[0, 7] which contains u, we have

(6.2.31) deg[l — T;2,0] = 1.

On the other hand, Lemma 6.2.4 guarantees that for R > 0 so large that Q C
Bgr(0), we have

(6.2.32) deg[I — Ty; Br(0},0] = 0.

Now, (6.2.31), (6.2.32) and the additivity of the Leray—Schauder degree yield that
the boundary value problem (6.2.3) has a second solution in Br(0)\{2. Hence
the boundary value problem (6.2.3) has at least two distinct solutions for any
h € B,(h_s). The existence of an open cone C with the desired property is now a
consequence of the homogeneity of the boundary value problem (6.2.3).

Case p > 2. Now we have

(6.2.33) / ho(t) sin, ¢ dt < 0,

0
and the boundary value problem (6.2.3) with h = hy has a positive solution ug.
By (6.2.33) there exists § > 0 so small that for us(t) := uo(t) + 0 and hs :=
q[(@(uf)) + (p — 1)®(us)] we also have

(6.2.34) / " hs(t) sin, ¢ dt < 0.
0

It follows from (6.2.34) and Lemma 6.2.1 that for large and positive «, the solution
of the initial value problem

1
(B(0)) + (0= 1 B(us) = s, ua(0) =0, w1 (0) = —a
satisfles u_a < us,u_a(mp) < 0. Then we are in a position to proceed symmet-

rically to the previous case. In this form we have completed the proof of our
statement. O
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A by-product of the proof of this theorem is the following general fact. For any
h € L*°(0, m,) such that (6.2.2) holds, one has that the set of all possible solutions
of (6.1.7) is bounded and the degree of the associated fixed point operator equals
0. Combining this and Theorem 6.2.1 yields, in particular, that for any A % 0 of
the class C'' and p # 2, there are a-priori estimates for the solution set.

6.2.2 Resonance at higher eigenvalues

In this subsection we briefly deal with the solvability of (6.1.7) when A = Ay, k > 2,
i.e., we deal with the resonance problem at higher eigenvalues A = (p — 1)kP.

Following [268], we introduce the following notation. In addition to the orthog-
onality condition (6.2.2) (with f instead of h), the following numbers (for a fixed
k € N) will appear

(m+1)m, /K

i / F(t) siny ktdt,
mmy, [k
(m+1/2)my /b

B, = / f(t) cos, kt dt,
(m=1/2)my /k

and the “higher order” orthogonality condition

(6.2.35) HU%zAMf®$%Mﬁ:0

will also play an important role. Further, we denote

T t
L (f) ::/ f(t) cosp kt (/ f(s)sing ks ds) dt
0 0
and its “approximation” by a Riemann-like sum

Sk(f) = Z A, B,

0<n<m<k—1

Similarly as in the case of resonance at the first eigenvalue, we will need the
following statement concerning the asymptotics of the first zero of the solution for
the initial value problem

(6.2.36) (@(u)) 4+ A\e®(u) = f(t), u(0)=0, u'(0) = aq,

this time with a higher eigenvalue Mg, k > 2 (compare the statement with Lem-
ma 6.2.1). We skip the proof. Note only that it is based on a modified Priifer
transformation.

Lemma 6.2.5. Assume that p# 2, k> 2, f € L'(0,7,) and f # 0. Then, given
0 < e < mp/k, there exists a constant o™ > 0 such that for |a| > o* any solution of
(6.2.36) has precisely one zero t! in the interval [w(1 — 1/k) + &, m,(1 +1/k) — €].
As |a| — oo, the dependence of t: on « is

1

(6.2.37) th = mp + mﬂc(f)—i—oﬂa“*p).
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If F.(f) = 0, we have the formula

p—2

6.2.38 th =
0238 e =T G 1P

Li(f) + ofja=7).

sgn(t, — ) = sgn(p — 2) sgn(Li(f))-
In particular, if both Fr(f) =0 and Sk(f) > 0, then sgn(ty, — m,) = sgn(p — 2).

Theorem 6.2.4. Assume that p # 2, k > 2, f # 0 in (0,7p) and f € L'(0,7,)
satisfies (6.2.35) and Li(f) # 0. Then BVP (6.1.7) with A = A\ = (p — 1)kP has
at least one solution. The set of all possible solutions is bounded in C'[0,,]. The
inequality Ly (f) > 0 is satisfied if f satisfies both (6.2.35) and Si(f) = 0. The
equation Sk(f) = 0 holds true if at least one of the following two sets of k — 1
orthogonality conditions is satisfied:

(a) Apm =0 form=0,1,...,k—2;
(b) By =0 form=0,1,...,k— 1.

Proof. The proof is in principle the same as the proof of Theorem 6.2.1 and it
is based on the topological degree argument. We define the operator 1}, s in the
same way as in the proof of that theorem.

Case 1 ((p — 2)Lr(f) < 0). We claim that there exists a constant R > 0 such
that for any p € [1, (1 + 1/k)/?] the BVP

(6.2.39) (D(u)) + e ®(u) = pf(u/?t),  w(0) =0 = u(m,)

has no solution for which |ju|x > R, where X = C}[0,m,]. By contradiction,
suppose that there are sequences

{peloz, C [1, 1+ k™ HYP|  and {u,}52, € X

such that each pair (ju,, u,,) satisfies equation (6.2.39) and ||u,||x — oo asn — oo.
In analogy with the proof of Theorem 6.2.1 (for p € (1,2)) we may assume also
that i, — p* € [1,(1+1/k)Y/P] as n — oo, together with o, := u/,(0) — oo. Each
u, can be extended to a solution of the initial value problem

(@(up)) + pnAe®(un) = pin f (1/7t), wa(0) = 0, u},(0) =
on Ry = [0,00), and hence v, (t) = un(u;l/pt) solves the initial value problem

(@) + AD(on) = f(1), 0a(0) =0, v,(0) = an,
where &, = ui/pan — oo. Let 0 < ¢ < (mp/k) be sufficiently small. By Lemma
6.2.5 there is precisely one zero point t}, of v, in the interval [(1 —1/k)m, +¢, (1 +
1/k)m, — €] and ¢, — m, as n — oo, according to (6.2.37). Similarly, the next
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larger zero point t2 of v, approaches (1 + 1/k)m, as n — co. Moreover, equation
(6.2.38) yields ¢}, < m,. On the other hand, for every n € N

U (pP7p) = un(m,) =0 with 1< p/P € [1,(1 4+ 1/k)1 (/P
forces t., < u,l/ P < 42 which contradicts the definition of ¢} and 2 and proves
boundedness of solutions of (6.2.39).

Case 2 ((p — 2)Li(f) > 0). Similarly as in the previous part of the proof
we reach contradiction assuming that there is a solution of (6.2.39) with |ju| x
arbitrarily large for any u[(1 — 1/k)P~', 1], only the inequality ¢} > m, is to be
reversed.

The remaining part of the proof of the statement up to “... bounded in
C1[0,7,).” is similar to that of Theorem 6.2.1. The proof of the statement starting

with “The inequality Ly (f) > 0...” is a matter of a direct computation, we refer
to [268] for details. O

o

Now we will present a statement showing that the boundedness of solution
space of (6.1.7) at resonance is not “stable” in the sense that a small perturbation
of the right-hand side f by a term which is transversal to the hyperplane {f €
LY0,mp) : [ f(t)sin, tdt = 0}. This statement is proved in [268] as a corollary
of a more general statement, but we prefer to formulate here only that corollary,

and we refer to [268] for more details.

Theorem 6.2.5. Suppose that p # 2, ¢ : (0,7,) — R is a continuous bounded
function, g Z 0 and fow”g(t) sin,tdt = 0. Let a,e > 0 be arbitrary. Then there
exists a constant v € R, 0 < || < €, such that (6.1.7) with A = Ay = (p — 1)
and f(t) = g(t) + v has a solution satisfying |u'(0)| > «. In particular, there
exist a sequence v, # 0, v, — 0, and a sequence of solutions wu,, of (6.1.7) with
f(t) = g(t) + vn such that |ul,(0)] — 00 as n — o0, i.e., |un|lc1 — 0.

6.3 Boundary value problems at resonance

We start this section with a multiplicity result of Ambrosetti-Prodi type, i.e., a
statement concerning the BVP of the form (6.2.3), where the right hand-side & is
split as in the below formula (6.3.1). In the subsequent subsection we extend the
classical Landesman-Lazer linear solvability condition to half-linear BVP’s, and
the last subsection is devoted to the Fuéik spectrum and solvability of half-linear
BVP’s with asymmetric nonlinearities.

6.3.1 Ambrosetti-Prodi type result

To simplify the presentation of the results of this subsection, we will use the
following notation. We set

LP = [P(0,m,), Wy*=W,?(0,71,), C'=cC0,m,)
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and
Co = {ueC0,m], u(0) =0=mu(mp)},
Cy = {ueC'0,m,), u(0) =0 = u(m,)}.
Let us split any h € L as follows
(6.3.1) h(t) = h(t) + hsin, t,

where h € R and
(6.3.2) / h(t)sin, t dt = 0.
0

The aim of this subsection is to prove the so-called Ambrosetti-Prodi type
results for the BVP
(6.3.3) .

(@) + (p—1)®(w) = h(t),  u(0)=0=u(r,), h(t)=h(t)+hsin,t.

We define the spaces L, Wol POLp, CH, C’é as those formed respectively by
elements of L=, WP, LP, C*, C}, which satisfy (6.3.2). We also define the energy
functional associated with (6.3.3)

1 Ty 1 Tp Tp
(6.3.4)  En(u) = -/ /[P dt — -/ P dt +/ hudt, q=—2—.
P Jo q Jo 0 p—1
The following two concepts concern the geometry of the functional £j,.

Definition 6.3.1. We say that a functional F : Wol’p — R has a local saddle point
geometry, if there exist u, v € VVO1 P which are separated by WO1 ' in the sense that

Eu)< inf FEw), EW < inf E(w),

weW, P weW,?

and any continuous path from u to v has a nonempty intersection with WOI P,
We say that F has a local minimizer geometry if there exists R > 0 so that

Tp 1/p
inf FE(u)< inf E(u), |ulh, :</ u/p> .
llully,p<R (u) lull.p=R (u) [[wll P A ||

The following statement can be regarded, in a certain sense, as a complement
of Theorem 6.2.2.

Theorem 6.3.1. Assume h € ct, h # 0, then Ey, has a local saddle point geom-
etry for 1 < p < 2 and a local minimizer geometry for p > 2.

Proof. For 1 < p < 2, let u(t) = 4(t) + asingt, @ € Wol"p. By the variational
character of the first eigenvalue A1 = p — 1 it follows that there exists n > 0 such

that
1 Tp 1 Tp Tp . Tp Tp .
Eﬁ(a):—/ |a’\P——/ \a\u/ hﬁzn/ \a’v’—/ hii
P Jo q.Jo 0 0 0
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and E; (1) is bounded from below on the subspace W,P. On the other hand, from
the proof of Theorem 6.2.2 we find that there exist sequences {un}, {va,} C Wy
such that Ej (u,) — —oo, Ej(v,) — —o0 and 4, — o0, U, — —00, respectively
(note that 7, has the analogous meaning as % at the beginning of the proof). This
means that for n large enough, u,, v, are separated by W()l * in the sense of the
previous definition.

Next, for p > 2, from Theorem 6.2.2, there exists I > 0 such that

(6.3.5) I'=inf FE;(v) < Ej;(u),

vEW,

for any u € Wy, ||lulli, = R and all global minimizers of E; belong to the ball
of radius R in W,"*. Assume now that there exists a sequence u, € W,” with
|lunll1,p = R such that E;(u,) — I. Since we can assume that this sequence
is weakly convergent in VVO1 P say to u, then u, — = in LP. The weak lower
semicontinuity of F; and (6.3.5) imply

B (u) < liminf By (ug) = 1
and hence |un|l1, — |Jull1,p- Thus u, strongly converges to u in W,”*, which

implies that |lu|1,, = R and E; (u) = I. But this is a contradiction, hence £; has
a local minimizer geometry. |

In the proof of the main result of this section we will need the following sta-
tements. The first one concerns the Palais-Smale condition and it is a variant of
Lemma 6.1.2.

Lemma 6.3.1. Let h be written in the form (6.3.1) and h # 0. Then E), satisfies
a Palais-Smale condition, i.e., if En(u,) — c € R, E} (un) — 0, then u, contains
a subsequence which converges strongly in Wolp

We will also need the concepts of the upper and lower solutions and associated
statements.

We call a function u € C'! with absolutely continuous ®(u') a lower solution of
(6.3.3) if u(0) <0, u(my) <0 and

(@) + (- 1w =h

a.e. in (0,m,). If all inequalities are reversed, we have the definition of an upper
solution U. We write u < v if u(t) < v(t) on (0, 7,) and either u(0) < v(0) (u({mp) <
v(mp)) or u(0) = v(0) (u(mp) = v(np)) and v/ (0) < v'(0) (v (mp) > v/ (7p)). A lower
solution u is said to be strict if every solution « of (6.3.3) such that u < v on
[0, 7] satisfies w < w. The strict upper solution is defined in an analogous way.
For h € L> we define an operator T} : Cg — C} by Th(v) = u if and only if

(@(u’))/ =h(t)—(p-1P(v), t € (0,7), u(0)=0=mu(mr,).
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Lemma 6.3.2. Assume that u and u are respectively lower and upper solutions
of (6.3.3) with u < u. Then this problem has at least one solution u satisfying

u(t) <ult) <u(t), te0,m):

Moreover, if u and @ are strict and satisfy u < W, then there exists Ro > 0 such
that for R > Ry
deg[[ - Th; Q, 0] =1,

where Q = {u e C} : u<u<u}NBe(0,R).

The previous statement is used in the proof of the next results which play the
fundamental role in the proof of the main statement of this subsection.

Lemma 6.3.3. Let (6.3.3) be solvable for hy(t) = h(t)+h;singt, i = 1,2, hy < ha.
Then it is solvable for any h(t) = h(t) + hsin, t with h € (hq, ho).
Lemma 6.3.4. Let h € L> \ L. Then either (6.3.3) has no solution or all

solutions of (6.3.3) are a-priori bounded in Ci by a constant depending on the
value of

/ h(t) sinptdt’ ,
0
and there exists IRy such that for all R > Ry,
deg[l —Th; Ba (0, R),0] = 0.

Lemma 6.3.5. Let the assumptions of Lemma 6.3.3 be fulfilled. Then (6.3.3) has
at least two solutions for any h(t) = h(t) + hsing t with h € (hy, ho), b # 0.

Now we are in a position to formulate and to prove the main statement of this
subsection which, in addition, summarizes previous partial results. This statement
can be regarded as a complement of Theorem 6.2.3.

Theorem 6.3.2. Let p # 2. Then there exists an open dense set (with respect to
L*™ norm) S C L™ with C*[0,m,) N L>®\ {0} C S. For every h € S there exists a
ball in L*°(0, ) centered at h such that (6.3.3) has solution for every h belonging

to this ball. Moreover, for any h € S there exist real numbers Hy = Hy(h),
H_ <0< Hy, such that (6.3.3) with h(t) = h(t) + hsing t has

(i) no solution if h & [H_, H|;
(i3) at least two solutions if h € (H—, Hy) \ {0};
(i4) at least one solution if h € {H_,0,H,}.

Proof. Let S C L™ be defined as follows: h € S if and only if E; has a local saddle
point geometry if p € (1,2) or has a local minimizer geometry if p > 2. From
Theorem 6.2.2 it follows that O\ {0} C S, hence S is dense in L. Since the local
geometry of the functional F; is invariant with respect to small perturbations of
h e L™, the set S is also open.
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Let us fix for a moment some ko € S and consider p > 0 so small that the local
geometry of Fp, is the same as that of £, for any h € Bre (ho; p) (the ball of radius

p around hg in L°). According to Lemma 6.3.1, for h € B (iL(h 2) \D’f the func-
tional Ej, satisfies the Palais-Smale condition. Hence for any h € By (hg; p) \ L
the problem (6.3.3) has at least one solution by a standard variational argument
applied to E}, (Saddle Point Theorem for p € (1, 2) and the minimization argument
when p > 2, see [339]) But from Corollary 6.3.3 it follows that problem (6.3.3) has
also a solution for any h € Bre(ho;p) N L>, and hence, in particular, problem
(6.3.3) has a solution for any h € S. .
Let us fix now h € S and consider h(t) = h(t) + hsin, t. Define

H =H (h):=infh, Hy;=H_(h):=suph,

where the infimum and supremum are taken over all h such that (6.3.3) (with

above fixed h) has a solution. Then from the above formulated lemmata we have

H_ < H,. Let us prove that Hy are finite. Suppose, by contradiction, that there

exist sequences hn € R, u, € C& such that h, — oo and u, is a solution of

(6.3.3) with h = h,,. Dividing the differential equation in (6.3.3) by &, and setting
1

Un = hpn """y, we find that v, € C’& satisfies
h(t)

(@(vn)) + (p—1)®(vn) = = +siny t,

or equivalently
(6.3.6)

¢
Un:/ !
0

It also follows from Lemma 6.3.4 that v, is uniformly bounded in Cj. Now, the
Ascoli-Arzeld Theorem implies that for a subsequence of v, (denoted again v, ) we
have v, — vg in Cp. The Lebesgue Dominated Convergence Theorem and (6.3.6)
imply that

ds.

O (v, (0)) + /OS (? +sin, 7 — (p — 1)<I>(vn(7))> dr

v (t) = /0 ot [@(U{J(O)) + /OS (sin, 7 — (p — 1)®(vo(7))) dT} ds,
i.e., vy is a solution of
(@) + (p—1)®(vo) = siny t, vo(0) = 0 = vo(mp),

which contradicts the later given Corollary 7.1.2 (see Subsection 7.1.3). This proves
that H; < oo and similarly we prove that also H_ > —occ.

Now, from the definition of the numbers Hy it follows that (6.3.3) has no
solution if A ¢ [H_, H;]. On the other hand, from Lemma 6.3.3, it follows that
(6.3.3) has a solution for any h € (H_, H;). Then Corollary 6.3.5 implies that
(6.3.3) has at least two solutions if b € (H_, Hy)\ {0}.

It remains to prove that (6.3.3) has a solution if A = H. To this end, let
us assume that h, — Hy as n — oo and let u, be a solution of (6.3.3) with
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h(t) = h(t) + hy sin, t. According to Lemma 6.3.4 the sequence u,, is bounded in
C} and the Ascoli-Arczel4 Theorem implies that for some subsequence (denoted
again u,) 4, — ug in Cp. The same argument as ahove yields that ug is a solution
of

(@) + (p—1)®(u) = h(t) + Hysing t, u(0) =0 = u(mp).

Similarly we can prove that (6.3.3) has a solution for h = H_. This completes the
proof. O

6.3.2 Landesman-Lazer solvability condition

The paper of Landesman and Lazer [232] published in 1970 is the pioneering
work concerning solvability of the linear BVP at resonance. Since that time, the
conditions ensuring solvability of BVP’s in this situation (the so-called Landesman-
Lazer conditions) have been extended in many directions. The main statement of
this subsection establishes the Landesman-Lazer solvability conditions for the the
half-linear BVP

(6.3.7) (@(z)) + An®(z) + g(z) = h(t), =(0)=0=xz(mp).

It is supposed that h € L%(0,m,), ¢ is a bounded continuous function such that
there exist finite limits lim, 10 g(2) = g+. By ¢, we denote the normalized
eigenfunction corresponding to the n-th eigenvalue, i.e., A, = (p — 1)nP, @, (t) =
o sing (nt), where a;, > 0 is such that ||¢n|/z» = 1.

Let the functionals A, B be given by (6.1.4), G(t) = fot g(s)ds,

Cla) = /0 "G ®) — b)) dt

and

(6.3.8) J(u) == Alu) — ApBu) — C(u), FEu)=

The main result of this subsection reads as follows.

Theorem 6.3.3. The boundary value problem (6.3.7) has a solution provided one
of the following two conditions ts satisfied

o / ot dt+ g / or(ydt > / o (Dh(t) dt

(6.3.9) o [Tawag [T eroa
0 0

or
o / Gt (t) di + g / po(ydt < / on(Dh(t) dt
0 0 0
(6.3.10) < o [ ewd [ oo
0 0

where ¢f = max{0,¢,}, v, = min{0, p,}.
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Before giving the proof which is based on the fact that critical points of the
functional J are weak solutions of (6.3.7), we introduce some concepts and aux-
iliary statements which we will need in this proof. The proof relies on a saddle
point-type theorem for linked sets, which in turn relies on a variational character-
ization of eigenvalues A,,.

Let € be a closed subset of W, (0, ,) and Q be a submanifold of W, (0, 7,)
with relative boundary &Q. Following [339, Definition 8.1] we say that £ and 9O
link if ENAQ = ), and for any continuous map h : W, ?(0,7,) — Wy ?(0,7,) such
that h|sg = id, there holds h(Q) N E # (. The following lemma is proved in [339,
Theorem 8.4].

Lemma 6.3.6. Let J € O (W, (0,7,)) satisfy the Palais-Smale condition. Con-
sider a closed subset £ C Wy'P(0,m,) and a submanifold Q C WyP(0, ) with
relative boundary 8Q, and let I' :— {h € C(Wy?(0,7,), Wy P(0,7,)) : hlag = id}.
Suppose that £ and 0Q link, and infs J(u) > supgg J(u). Then

B = inf sup J(h{u))

hel' g
is a critical value of J.

Lemma 6.3.7. If either (6.3.9) or (6.3.10) is satisfied, then J satisfies the Palais-
Smale condition.

Proof. Tet {uy} € Wy*(0,7,) be a sequence such that |J(ug)| < ¢ and J'(ug) — 0
in (W, ?(0,7,))*. We must show that {u;} has a subsequence which converges
in VVO1 P(0,7,). First we show that {uy} is bounded. By contradiction, suppose
that ||ug|| — oo and consider the sequence vy = wug/||ugl||. Then {vy} is bounded
and hence without lost of generality we can suppose that this sequence is weakly
convergent to some vg. We assume that

J’(uk) = A’(uk) - /\HB’(uk) - C”(uk) - 07
hence, dividing this relation by [|ug||?~*, we have

C'(ur)

Al(vg) — A B'(vi) — ur[P-1

By the boundedness of C’ we know that C(uy)/|lux[?~* — 0 and by the compact-
ness of B’ we know that B’(vz) — B’(vo). Thus vy, — vo = (4) 1 (A, B'(wp)) in
Wol’p(O, 7p). It follows that vy = £¢,. We assume that vy = ©,, the case vy = —¢,,
can be treated analogously.

Now we add the inequalities

—cp < pJ(ug) <ep
and (|| - ||+ denotes the norm in (Wy?(0,7,))*)

=1 Ca)llln | < = (" () i) < (1 )|
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to get

A

—ep— | )l lux] < —p / Glug) + / glur)ug + (p— 1) / g
0 0 0

< ep [ ()l lul )

A

Dividing by |Jug|| and writing G(ur)/||uk|l = §(ur)vi, where

(s) = G(s)/s for s # 0,
’ 0 for s =0,

we get

< P
[l |

+ 1" ()l

/0 lgus) — p(us)os + (p — 1) / -

The right-hand side of the last inequality approaches 0 and |, " hoy, — foﬂ” hyy, as

0
k — 00, 80

Tp

dn [l = atudloe = 0 =p) [ e
Recall that W, ”(0,,) embeds compactly into C[0, 7,], so without loss of of gen-
erality, v = ug/||vk|| — pn uniformly, and hence ug(t) — oo for {t: ¢, (t) > 0}
and ug(t) — —oo for {t: @, (t) < 0}. But ug(t) — oo implies g(ug(t)) — g+ as
well as g(ux(t)) — g+, by the application of L'Hospital’s rule to G(s)/s. Thus, by
the Lebesgue Dominated Convergence Theorem,

Ty

lim l9(ur) — pg(ur)ve = (1 — p) {g+ /Oﬂp o+ 9- /Oﬂp 90;} ;

k—oo 0
g+/ wiﬁgf/ 99;:/ heon,
0 0 0

which contradicts (6.3.9) or (6.3.10). Hence, the sequence {uj} is bounded. By
compactness there is a subsequence such that B’(uy) and C’(ug) converge in
(WyP(0,7,))*. Since J'(ur) — 0, A'(ug) converges in (W,"(0,7,))*. Finally,
up = (A")"Y(A(uy)) converges in Wy?(0,,). This completes the proof. O

and so

Now we are ready to prove the Landesmann-Lazer solvability condition (The-
orem 6.3.3) for half-linear BVP at resonance.

Proof. We show, using below given auxiliary results (a) — (g), that the assumptions
of Lemma 6.3.6 are satisfied provided (6.3.9) and (6.3.10) hold. This implies then
the statement of theorem.

Let @, :={tu : 0 <t <T,ue€A,}forT > 0, where A,, is defined by (6.1.6),
and let & = {u € WyP(0,7,) : A(u) > eB(u)}. We will divide our arguments
into several steps.
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(a) If b« Q1 — WyP(0,7,) is a continuous map such that h|ag, , is odd,
then we have h(Qn,1) NEx,,, # 0. Indeed, suppose not, so h(Qn.7) C (Ex,.1)°,
where ()¢ denotes the complement of the set indicated. Since 0 € &, ,, we have
(Exnir)® C WyP(0,m,)\ {0} and we can compose with the radial projection onto S
to get, without loss of generality, h(Qn,7) C SN(Ex,,, ). Since E(h(u)) < Aps1 for
u € Q. 1, where E is given by (6.3.8), is a compact set, we may assume that there
exists an £ > 0 such that E(h(u)) < A\pq41 — ¢ for every u € Q,, . Now, Theorem
6.1.2 implies that the genus v({u € § : FE(u) < Ag1 —€}) < n, so there is a
continuous odd i : {u € S: E(u) < Ay — e} — R™\ {0}. Hence, the composed
map hoh : Q.1 — R”\ {0} is continuous such that h o h(—z) = —h o h(z)
for x € 09, . But Q, r is homeomorphic to the closed unit ball in R", so the
previous statement contradicts the classical Borsuk-Ulam theorem (see [86, p. 21]).

(b) The next statement we present without proof, we refer to [131] for the
details.
Given ¢ < min{|Ap+1 — Anls ]An — An—1]}, there exists an & € (0,£) and a one-
parameter family of homeomorphisms 1 : [-1,1] x § — & such that (i) n(t,u) = u
if F(u) € (—oo,\p — ] U [N\, +&,00) or if u € Ky, where K, is defined in the
Subsection 6.1.2, (ii) F(n(t,u)) is strictly decreasing in ¢ if E(u) € (A, —€, A\, +€)
and u € Ky, (iil) n(t, —u) = —n(t, u).

(¢} In this part of the proof we define

8” = {tu: teR, uen(—1,E, NS},
Qn,T = {tu: 0<t<T,uen(l,A,)}

where A,, is defined by (6.1.6). By the part (b), A(u) — A\, B(u) > 0 for u € &,
with equality if and only if u = cp,, for some ¢ € R. Similarly, A(u) — A\, B(u) <0
for Q,, 7 with equality if and only if u = cp,, for some ¢ € R. Using the part (a)
and the fact that n(t, ) is an odd homeomorphism, we can prove the following
statement.

(d) It b : Qn,T — Wol’p((),wp) is continuous such that h\aéw, is odd, then
h(Qn_yT) N &, # 0. To show this, suppose, by contradiction, that h : Qn,T —
W,*(0,,) is continuous such that hlss, . is odd with h(Qnr)NEn,,, = 0. Then
the function h : Q.7 — WyP(0,7,) defined by h(tu) := h(tn(1,u)) for u € A,
and 0 < ¢ < T does not satisly the conlusion (a), a contradiction.

(e) Let h : Q, 1.7 — WyP(0,7,) be continuous such that h
then we have

Qn_1,1 is Odda

hMQn—1,7) N g,\n = .

To prove this claim, suppose that it does not hold. Then, as in the proof of the part
(a), we may assume that A(Q,_1.7) C (E,,)°NS. Then A : Qp_1.7 — W, P(0,7,)
given by A(u) = n(1, h(u)) is a continuous function which is odd on its boundary
and with the image in (£),)° NS, a contradiction with the part (a).

In the remaining part of the proof we suppose that (6.3.9) holds and we prove
the infsup assumption of Lemma 6.3.6 with £ = &,,,, and Q = Q,L,T. It follows
that QN E = 0. This fact and the statement of the part (c¢) imply that £ and 8Q
link.
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(f) If condition (6.3.9) is satisfied, then there exists R > 0 and § > 0 such that
(J'(tu),u) < =4 for all t,u with ¢ > R and u € n(1,A,). To prove this, suppose
tr — oo and ug € (1, A,,) such that

lim sup{J'(txug), ug) > 0.

k—oo

Since 7(1,A,) is compact, we may assume that uy — wuo in n(1,A,). If uwg #

+p'/Pi,, then
Ty Tp
|l =2 [ ol <
0 0

for some £ > 0 (note that this is the stage of the proof where it is technically
important to use n(1, A,,) rather than A,,). Thus

Ty , Tp e
[ e = [ <=3
0 0

for k large enough. Hence
€ he e
Ot ) < =587 = [ lottun) — hluy
0

for large k, which leads to a contradiction of the lim sup assumption. Hence, sup-
pose that ug = p'/Py,. We still have

Ty Ty
/ P — An/ ug? < 0,
0 0

(J'(teur), up) < — /pr [g(tsur) — hlug

SO

for all k € N. The fact that g is bounded and that u, — p'/P¢, allows to apply
the Lebesgue Dominated Convergence Theorem to get

klim (J (tpug),ug) < —p/P (g+/ «pﬁH—gf/ O —/ h«pn) <0,
0 0 0 0

by (6.3.9). Once again a contradiction is reached. The case uy = —p'/Pyp,, is similar.
(g) The proof is finished by the following statement. If (6.3.9) is satisfied, then
there exists T' > 0 such that

inf J(u) > sup J(u).

5>‘n+l BQH.T

To prove this, notice that for u € £, ., we have

1 I u) — hu
I 2 2 Ot = ) [l / (G(u) — hal,
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which is clearly bounded below by some value «. By the previous part of the proof
we have

J(tu) = J(Ru)+ J(tu) — J(Ru)
= J(Ru)+ /t<J’($u),u> ds
< c—4(t— Ig)
for all u € n(1,A,), all t > R, and some ¢ € R. Thus there exists a T' > R such
that J(tu) <c—86(T — R)y < aforallt > T and u € n(1,A,). O

6.3.3 Fucik spectrum

The concept of the Fucik spectrum has been introduced in connection with the
boundary value problems associated with the equation

(6.3.11) v+ f(u)=0

involving the so-called asymmetric nonlinearity f {(another terminology is the
Jumping nonlinearity), i.e., a function f such that there exist finite limits
f- = lim L(u) f+ = lim L(u)

3

U——0o0 (7 u—+toc U ’

but f_ # fi.

If these limits are equal, solvability problem is closely connected with the re-
lationship of this limit to the classical spectrum of the linear part —u” (together
with considered boundary conditions, Dirichlet, periodic, Neuman,...). If f_ 2 fy,
the crucial role is played by the pairs [, v], g, v € R, for which the equation

(6.3.12) —y" =y, —vy_

has a nontrivial solution satisfying boundary conditions under consideration. Here
yT = max{0,y}, y_ = max{—y,0}. In case of the Dirichlet boundary condition
(other types of boundary conditions can be treated in a similar way), it is not
difficult to verify that (6.3.12) together with the boundary condition y(0) = 0 =
y(m) has a nontrivial solution if and only if 4 = 1 (v € R arbitrary), or v = 1
(1 € R arbitrary), or u and v are related by one of the following identities with

keN
k k k+1 k k E+1

1.

=1, +— =1, +

i i R
In case of the scalar p-Laplacian — (\y’\p_zy’)/ (instead of the operator —u") the
situation is very similar. Consider the BVP

(6.3.13) (@) + p®(xt) —v®(z7) =0, z(0) =0 = 2(m).

Using the generalized sine function sin, (which satisfies the boundary condition
in (6.3.13)), it easy to compute that the Fuéik spectrum of (6.3.13) consists of the
trivial part

v el ={p-1,A, e R}YU{[\p—1], \eR}
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and the hyperbola like curves oz, Yak+1,1, and Xag41,2, where

k k

sz = {[M,l/]m—f—m—l},
k+1 k

Sokr11 = {[M,V]-Werl},
k k+1

Yogt12 = {[My”]-m+mzl}-

A general treatment of the Fuc¢ik spectrum for the one-dimensional p-Laplacian
can be found e.g. in [118, 332], see also [55] for some computational aspects of the
problem. More precisely, the results of [332] concern the more general differential
equation

(6314) (@0 + e(t)P(u) + wB)u(ut)? ! — vl )P =0,

where ¢, w are continuous functions on an interval I = [a,b], w(t) > 0 for t € I
and o > 0 is a real constant. Problem (6.3.14) is considered together with the
Sturm-Liouville boundary conditions

(6.3.15) N ®(u)(a) +(t*®w))(a) = 0,
(6.3.16) 3P (u)(b) + 1t @(W))(b) = 0,

where 2 +v2 > 0,73+ >0.Ifa>00ora=0and 0 <o < p— 1, the BVP is
referred to as regular, denoted by (R), and is said to be singular, denoted by (S),
in the opposite case. In the latter case, the boundary condition (6.3.15) at t = 0
is always u/(0) = 0.

In the next theorem, a function u is said to be initially positive or initially
negative at a if u(a+) > 0 or u(a+) < 0, respectively. Also, we denote by Ay the
k-th eigenvalue of the “normal” BVP

(6.3.17) 4t (u)) + [e(t) + Aw(#)]®(u) =0

with boundary conditions (6.3.15), (6.3.16). The proof of the next theorem is based
on a version of the Priifer transformation applied to (6.3.14), we skip this proof
because of its technical complexity.

Theorem 6.3.4. The Fudik spectrum o of (6.3.14), (6.3.15), (6.3.16)} is closed in
the uv-plane R?. It takes the form o = oF Uo~, where (u,v) € o, if and only if
(v,p1) € 6. The sets o, o~ are closed and the eigenfunctions corresponding to
points of these sels are initially positive and negative, respectively. Furthermore,

an{AA) :AeR ={(A, M) keN}Cotno™.

The eigenfunctions corresponding to the connected components 02', o,, k€N,
of o, 0 have exactly k — 1 zeros on (a,b). The firsi (trivial) component of oy
consists of {A\1} x R, while for k > 2, o} is a C' curve (u,v(p)) with v'(u) < 0
and with the following asymptotics (the relations for U,j follow by symmetry):
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(i) Singular case a =0 and o > p— 1:

E=2i: vix)=
k=2i4+1: v(co)=

19 V(A?_*_) = o0,

I;, I/()\i+1+) = Q.

(i) Regular case a >0 or0<a <p-—1:

E=2i: vix)=
k=2i4+1: v(co)=

Lo vNE) = oo,

gba V()\i+1+) = 00,

where A2, X%, \! are eigenvalues of (6.3.16) with the boundary conditions

A% y(a) =0, u(b) =0,
AT ufa) =0, V3P (u)(b) + 7a(t*@(u'))(b) =0,
A @ (u)(a) + 7t ®(u')(a) =0, u(b) =0,

respectively.

Using this description of the Fucik spectrum, one can prove the following state-
ment concerning solvability of the BVP’s associated with the differential equation

(6.3.18) Y e(u) + f(t,u) =0.

Note that the uniqueness condition on the initial value problem associated with
(6.3.18) supposed in this theorem can be found e.g. in [332].

Theorem 6.3.5. Let [ be continuous in [a,b] X R and the initial value problem
(6.3.18) with the initial values u(0) = ug, ' (0) = 0 in case (S) (i.e., a =0), and
u(a) = up, (t*®(uw))(a) = uy in case (R), has a unique solution. Suppose that
there exists o function h € L>(a,b), 0 # h(t) > 0, such that

—x < —K < nglﬂlzgof % < liqirisogp fqgi’;;)

< (MwH+c—h)(t)

or

(upw + ¢+ h)(t) < liminf 1) < lim sup ftw)

U— 00 <I>(u) U—00 @(u) = ('u}H_lw teo h) (t>

and

o f(t,u) . (t’u)
+ R)(t) < liminf <1
(k1w +c+ h)(t) < At O(u) 71}2312? ()

ekﬁ

< (Vk+1w +ec— h)(t)a

where (\,0) € oF, (uk,vk) € 03, (i1, Vks1) € 0y, are elements of the Fucik
spectrum of (6.3.14), (6.3.15), (6.3.16) with no, k, k+1 zeros in (a,b), respective-
ly. Then (6.3.18), (6.3.15), (6.3.16) has a solution. The same conclusion holds if
(0,A\1) € o1, (pk, Vi) € 0f and (fky1, Vit1) € Opyy -
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We finish this subsection with a statement concerning the unique solvability of
“Fucik type” initial value problem. The proof of this statement can be found in
[332].

Theorem 6.3.6. Let ¢,d € C(I). Then the initial value problem

)y + ()P —d(t)(u )P =0, tel,
u(0) =ug, w(0)=0 in case (S),
u(0) =ug, (*®(u))(a) =1w1 in case (R)

has a unique solution.

6.4 Notes and references

The description of eigenvalues and eigenfunctions of the boundary value (6.1.2)
can already be found in the paper of Elbert [139]. Let us mention very recent paper
[41] by Binding, Boulton, Cepicka, Drabek and Girg, where it is shown that for
p > 12/11 (see also the detailed numerical analysis in that paper) the functions
fn(t) = siny(nmpt) form a Riesz basis in L?(0,1) and a Schauder basis in L*(0,1)
for any 1 < « < oo. The variational characterization of the eigenvalues of the
BVP (6.1.2) presented in Subsection 6.1.2 is taken from the paper of Drabek and
Robinson [131]. The results of Subsection 6.1.3, in particular, the construction
of the forcing term f in (6.1.7) for which this BVP with A < A; has at least
two solutions are originally presented in the papers of Del Pino, Elgueta and
Manasevich [91] (case p > 2) and of Fleckinger, Hernandez, Taka¢ and de Thélin
[164] (the case p € (1,2)). The statement given in Theorem 6.1.4 which extends the
previous results to general A is taken from Drabek and Takac¢ [134]. The results of
Subsection 6.1.4 are presented in the paper of Del Pino, Elgueta and Manasevich
[91]. Finally, statements given in Subsection 6.1.5 form the main part of the paper
Del Pino, and Manasevich [92]. The method used in that paper follows the idea
introduced in the paper of Guedda and Veron [170].

Concerning the statements presented in Section 6.2, the main results of this
section, i.e., those in Subsection 6.2.1, come from Del Pino, Driabek and Manase-
vich [88], an abbreviated version of this paper is [87]. Note that the proof of the
main auxiliary statement of this subsection, Lemma 6.2.1 follows essentially the
proof of Lemma 6.1.3 and requires the assumption that the forcing term is of the
class C'. The second part of this section (Subsection 6.2.2) is a very brief extract
of the paper of Manasevich and Taka¢ [268], unfortunately, we found no space to
present other interesting results of that paper here. Note only that Lemma 6.2.5
extends the statement of the above mentioned Lemma 6.2.1, it requires the forcing
term to be only in L' and its proof follows completely different idea than that of
Lemma 6.2.1. Related results concerning both resonant and nonresonant BVP’s
can be found in the papers of Binding, Drdbek, Huang [43], Dréabek [118, 122],
Lindqvist [257], Manasevich, Mawhin [266], and Zhang [381].

The first subsection of Section 6.3 is a substantial part of the paper of Drabek,
Girg and Manasevich [124]. Note that the linear motivation of the results of
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that paper is the paper Ambrosetti and Prodi [18]. The extension of the linear
Landesman-Lazer solvability conditions (originally published in [232]) is taken
from the paper of Drabek and Robinson [131]. The concept of the Fuéik spectrum
of the linear second order differential operator is introduced in the papers of Fucik
[167] and of Dancer [85]. The half-linear version of the basic results of that paper
can be found e.g. in the book of Drabek [119]. Theorems 6.3.4 and 6.3.4 are taken
from the paper of Reichel and Walter [332], the related results can be found e.g.
in the paper Fabry, Manasevich [158]. Concerning an attempt to extend the re-
sults on the Fredholm alternative to the Fuéik-type BVP we refer to the paper of
X. Yang [375].

Finally note that we have presented in this chapter only the results which are
relatively closely related to the equation (1.1.1). There are many papers devoted
to BVP’s associated with the equation (®(y)) = f(¢,y,3’), these papers extend
corresponding results for the equation y” = f(¢,y,%'). As an example let us men-
tion at least the papers of J. Wang [357] and of Averna and Bonanno [27], see
also the references given therein. Another possible line of the generalization of
linear results is suggested in the paper of Manasevich and Sedziwy [267], where
the Lienard type equation is investigated.
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CHAPTER [

PARTIAL DIFFERENTIAL EQUATIONS WITH
p-LAPLACIAN

Similarly to the boundary value problems for half-linear ordinary differential e-
quations, also partial differential equations with p-Laplacian are treated in many
papers. Recall that the p-Laplacian is the partial differential operator

(7.1.1) Apu(z) = div(||Vu(@) [P Vu(z)), == (z1,...,2n) €RY,

where p > 1, div := Z,{Ll % is the usual divergence operator,

ou ou
\Y =,
u() (amf ,3xN)
is the Hamilton nabla operator and | - || denotes the Euclidean norm in R¥ .

In the first section we deal with Dirichlet BVP for partial differential equations
involving p-Laplacian (7.1.1). The second section is devoted to higher dimensional
BVP at resonance, in particular, to higher dimensional analogue of the results
given in Section 6.2. The last section of the chapter contains a brief treatment of
the oscillation theory of PDE’s with p-Laplacian.

7.1 Eigenvalues and comparison principle

In this section we deal with the properties of the first two eigenvalues of the Dirich-
let BVP for p-Laplacian. Then we present maximum and comparison principles
for this operator and we conclude this section with a brief description of the Fuc¢ik
spectrum of the Dirichlet boundary value problem associated with p-Laplacian.

353
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7.1.1 Dirichlet BVP with p-Laplacian

In this subsection we deal with the properties of the first eigenvalue and the
associated eigenfunction of the Dirichlet boundary value problem

- N
(7.1.2) {Apu +A0(u) =0, ze€QCRY,

u(z) =0, xze€0Q,

where € is a bounded domain in RY and ) is an eigenvalue parameter.
The solution of problem (7.1.2) is understood in the weak sense; we say that
A is an eigenvalue if there exists a function u € Wol’p(Q), u # 0, such that

(7.1.3) /QHVuH”*Q(Vu, V) dx:)\/QQD(u)ndx,

for every 7 € W, P(Q), where (-, -) denotes the scalar product in RV, The function
u is called an eigenfunction.

The first eigenvalue A\; = A1(£2) is obtained as the minimum of the Rayleigh
quotient

(7.1.4) A = up Ja VU de
o o Jolopde

where the infimum is taken over all v € Wol’p(Q), v # 0. If u realizes the infimum
in (7.1.4), so does also |u|, and this leads immediately to the following statement.

Theorem 7.1.1. The eigenfunction u associated with the first eigenvalue A1 does
not change its sign in Q). Moreover, if u > 0, then actually u > 0 in the interior
of .

Proof. The statement concerning the positivity of u follows from the Harnack
inequality [352, p. 724]. O

In the proof of the main result of this subsection we will need the following
inequalities, for the proof see [258].

Lemma 7.1.1. Let wi,ws € RV,

(i) If p > 2, then

— P
(7.1.5) wal? > pllws [P, (ws — w1} + L0z — 0l
1]
(ii) If 1 <p <2, then
wy — wi [P
(T16)  Juwal? > plwl(wn, (s = w01)) + C(p) ez 1]

(lwll + [[w2 )2

where C(p) is a positive constant depending only on p.
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The main statement of this subsection reads as follows.

Theorem 7.1.2. The first eigenvalue of (7.1.2) is simple and isolated for any
bounded domain Q C RN,

Proof. Here we follow Lindqvist’s modification [258] of the original proof of Anane
[19] where it is supposed that the boundary 9 is of the Holder class C'%“. Recall
that the space C™®, « € (0,1), is a subspace of C™ formed by the functions f

such that 5 5
D - D
ap ID0@ = D@
e lz —yll

for differentiation indices |3| < n, where |8| =81 +--- 4+ 8x and

I

D= ——
ozi! ""%?vN

This assumption on the boundary of Q is removed in Lindgvist’s proof by intro-
ducing the functions v + &, v + ¢ instead of u, v, respectively (used by Anane).

Suppose that u,v are eigenfunctions of (7.1.2) with A = A\;. Let £ > 0 and
denote v. = v+¢, u. = u+e. Further, let n = u, —vPul™P, j = v. —uPv!~P. Then
n,7 € WoP(Q) and

Vi = {1 +(p—1) (Z—Z)p}VU—p (Z—i)p_l Vo.

A gimilar formula holds for V7. Inserting the test functions 7 and 7 into (7.1.3)
and adding both equations, we get

(7.1.7)

] (u? —ovP)dx

( N i+ {4 -0 (%) Y ivedr] @

(”E) Ve ||P~ 2 (Vue, Vo)
1

'U« E

u L
A
L
+p (5—) Vel Ve, V)| da

— [ w2~ ) (IVloguc|P - |V og e |”) da
Q
- / pvP ||V logu.||P%(Vlogu,., (Vlogv. — Vlogu.)) dx
9)

- / puP||Vlogve [P~ 2(Vlog v, (Vlogu. — Viogv.))dr > 0
o)
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by the inequality given in Lemma 7.1.1. It is obvious that

T

7.1.8 li
( ) 8*1}’614’ QO |:

>z _ P_ P _
= vé’_l](ua vl dz = 0.

Let us first consider the case p > 2. According to inequality (7.1.5) we have
1 1 1
0 T — /Q <E + u_’g) |ve Ve — ueVue||? da

_/\1/Q K%)pl - (g)pﬂ (u? — v?) dz

for every £ > 0 (here we have used inequality (7.1.5) with w; = Vlogu., ws =
Vlog v, and vice versa). In view of (7.1.8), taking a sequence ¢, — 0+ as k — oo
and using Fatou’s lemma in the previous computations we finally arrive at the
conclusion that ¥Vu = uVuv a.e. in Q. Hence there is a constant x such that
u = wv a.e. in 2 and by continuity this equality holds everywhere in .

Now we turn the attention to the case 1 < p < 2 where the situation is similar
as in the previous case. Applying inequality (7.1.6) in (7.1.7) we obtain

IA

IN

[ve Ve — u: Vo, |2
0 < Cp/uevs”U’éﬂva &
(©) J, (vl (0 ) G + el 2
p—1 p—1
[ - e
Q| \Ue Ve

for every £ > 0. Using (7.1.8), we again arrive at the desired dependence u = xv
for some constant .

As for the isolation of the first eigenvalue \;, we proceed as follows. Since Ay
is defined as the minimum of the quotient (7.1.4), it is isolated from the left. If v
is an eigenfunction associated with an eigenvalue A > A; then v changes its sign
in Q. Indeed, suppose that v does not change its sign in 2. Then using the same
method as in the previous part of the proof, we get (for details we refer to [19])

OS/Q(M — N(? =) de = (A = ) (%‘%)

which is a contradiction.

Now, suppose, by contradiction, that there exists a sequence of eigenvalues
An — A1+ and let u, be the sequence of associated eigenfunctions such that
|lunl| = 1. This sequence contains a weakly convergent subsequence in W7 (Q),
denoted again u.,, and hence strongly convergent in LP(£2). Since we have w,, =
—/\nAgl(fb(un)) (this is a usual argument in the theory of partial equations with
p-Laplacian, we refer e.g. to the monograph [168]), the sequence u,, converges
strongly in Wy'?() to a function of the W,® norm equal to 1 associated with
A1. However, by the Jegorov theorem, the sequence u,, converges uniformly to a
function u except for a set of arbitrarily small Lebesgue measure. However, this
is a contradiction with the fact that the eigenfunction associated with the first
eigenvalue does not change its sign in 2. O
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7.1.2 Second eigenvalue of p-Laplacian

In this subsection we briefly deal with the variational description of the second
eigenvalue of p-Laplacian and with a nodal domain property of the associated
eigenfunction. We again suppose that €2 is a bounded domain in R™.

We consider the eigenvalue problem (7.1.2) and we introduce the functionals

:]%/QHVqudx, Blu /\u|pda: Flu) = A%(u) — B(u).

Tt is clear that the critical point u of F associated to a critical value ¢ (i.e., F(u) = ¢
and F'(u) = 0) is an eigenfunction associated to the eigenvalue

1
2v/—c¢
Conversely, if © # 0 is an eigenfunction associated to a positive eigenvalue A,

= (2)\A(u))7%u will be also an eigenfunction associated to A = 1/[2A(v)] and v
is a critical point of F' associated to the critical value ¢ = —1/[4\?].

)\ =

Let us consider the sequence {¢,, }nen defined by

7.1.9 ' = inf  sup F'(v),
( ) ¢ KlélA,,,, ;g}z (v)

where
A, = {K C WyP(Q) : K is a symmetrical compact and v(K) > n}

and v(K) denotes the Krasnoselskii genus of K, i.e., the minimal integer n such
that there exists a continuous odd mapping of K’ — R™ \ {0}. It can be proved
(using the Palais-Smale condition for F) that the sequence ¢, consists of the critical
values of F' and ¢, — 0—. The sequence of eigenvalues A, defined by

1
2/ —cn
is positive, nondecreasing and tends to co. Note that it is an open problem whether
(7.1.10) describes all eigenvalues of (7.1.2) (in contrast to the scalar case N = 1,
compare with Subsection 6.1.2).

We denote by Z(u) = {z € @ : wu(z) = 0} the so-called nodal contour of the
function u and let N(u) denote the number of components (the so-called nodal
domains) of Q\ Z(u). For each eigenfunction u associated to A we defline

(7.1.10) Ap =

N(A) =max {N(u): u is a solution of (7.1.2)}.

At the end of this subsection, we present without proof the main result of [21].
The next statement shows, among others, that the second eigenvalue A2 can be
characterized by (7.1.10).

Theorem 7.1.3. For each eigenvalue X of (7.1.2) it holds An(n) < A. Moreover,
the value Az given by (7.1.10) satisfies

A2 = inf{A : X is positive eigenvalue of (7.1.2), A > A}
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7.1.3 Comparison and antimaximum principle for
p-Laplacian

The (strong) comparison principle and antimaximum principle are well known
statements for the classical linear Laplace operator (see e.g. [78] for the antimaxi-
mum principle). Here we present some of their extensions to the p-Laplacian. We
do not present details of all proofs, in some cases we give only a brief outline of
ideas used there.

We start with the so-called strong comparison principle and boundary point
principle. We will use the usual convention that for f,g € L°(}) the relation
f # g in a domain Q C RY means that f(z) # g(z) for z € ' C Q with ' having
positive measure.

The strong comparison and boundary points principles concern a pair of nonau-
tonomous Dirichlet BVP’s with the p-Laplacian

(7.1.11) “Apu = A®(u)+f, 2€Q, u=0, z€0Q,
(7.1.12) —Apy = AD(w)+g, 2€Q, v=0, €.

Theorem 7.1.4. Let Q C RY be a bounded domain whose boundary is a connected
C?%% manifold for some a € (0,1) and let 0 < X < )i, where \; is the first
eigenvalue of —Ap in Q. Further, let 0 < f < g with f # g in Q. Ifu,v € Wol’p(Q)
are solutions of (7.1.11) and (7.1.12), respectively, then the strong comparison
principle holds:

(7.1.13) 0<u<wvin$) and @<6—u§00n3Q,
ov ~ Ov

where % denotes the derivative in the direction of the exterior normal.

For f = 0 and u = 0 the previous statement is known as the strong maximum
principle and can be found e.g. in [355, Theorem 5]. The proof of Theorem 7.1.4 is
based on the so-called weak comparison principle combined with certain regularity
results for weak solutions of (7.1.11), (7.1.12). Recall that the weak comparison
principle reads as follows.

Theorem 7.1.5. Let Q C RY be a bounded domain with (21’“ boundary 09 for
some o € (0,1). Further let f,g € LUQ), ¢ = p/(p—1), f,§ € W /P2(5Q)
with f < g in Q and f < § in 0Q. Consider a pair of Dirichlet BVP

(7.1.14) —Apu = AW+ f, €, u=f ondQ,
(7.1.15) —Apv = AP(v)+g, z€Q, v=_7g on O

and let u,v be weak solutions of (7.1.14) and (7.1.15), respectively. Then

(i) if A <0, then u < v almost everywhere in §);

(i) if A< X, 0< f<ginQand f=§=0in 0, then 0 < u < v almost
everywhere in Q with u,v € L*(Q).
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As we have shown in Subsection 6.1.3, if 0 < A < Ay, the uniqueness of a
solution of Dirichlet BVP is generally violated. However, if the forcing term f in
(7.1.11) is nonnegative, the uniqueness is preserved as the next statement shows.

Corollary 7.1.1. Suppose that the assumptions of Theorem 7.1.5 concerning

(7.1.14) are satisfied with f = 0 and f > 0, but f £ 0 in Q. Then (7.1.11)
has a unique solution.

Proof. Suppose that uy,uy € WyP(Q) are two solutions of (7.1.11). Then these

solutions satisfy
31Li

ov

and this enables to apply the inequality of Diaz and Saa [94, Lemma 2] which
reads

—A “A
(7.1.16) /Q < p 7”1”) (u? — ub) da >0,

p— p—
Uy Uy

u; > 0 in €,

<0ondQ, i=1,2,

with equality if and only if u;,us are proportional (see also the proof of Theo-
rem 7.1.1). Substituting from (7.1.11) we obtain

| 1@ (i - %) (u 8 d > 0.
Q uf ub

However, the integrand in the last integral is nonpositive, and hence it must vanish
a.e. in © and (7.1.16) implies that uz = puy for some positive p. Inserting this
relation into (7.1.11) we conclude that (x — 1)f = 0 in Q, so ¢ = 1 and hence
U1 = Uu2. O

Another consequence of the maximum principle is the following nonexistence
result for the resonance problem at the first eigenvalue of —A,,.

Corollary 7.1.2. Let f € L>™(Q), f >0, f Z0 and A\ = Ay in (7.1.11). Then
this BVP has no solution in W, ?(Q).

Proof. Let u € W, P(2) be a solution of (7.1.11) with A\ = A,. First, similarly as
in the proof of the maximum principle one can show that » > 0 in 2 and % <0
on 9Q. Let ¢ be the (positive) eigenfunction associated with A;. Next, we apply
again (7.1.16) for v and tp, t > 0. We have

/Q (-Apu B —Ap(tw)) (W — (to)?) dz > 0,

upmt o (tp)r!

and letting ¢ — oo we arrive at the inequality [, fo/®(u)dz < 0, but this is a
contradiction since f > 0 and f # 0. O

Now pass to the antimaximum principle for p-Laplacian. This principle con-
cerns the situation when the spectral parameter A is such that A > A; but it is
close enough to A;.
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Theorem 7.1.6. Let Q C RY be a bounded domain with a C™® boundary, for
some o € (0,1). Assume that f € L>(Q) f >0, f £ 0 in Q. Then there exists
a constant § = 6(f) with the following property: if A € (A, A1 +90) and u €
Wy (Q) is a weak solution of (7.1.11), then u € CYP(Q) for some 3> 0 and the
antimazimum principle holds:

ou
ov
Proof. Suppose, by contradiction, that there is no constant 4 > 0 with the claimed
property. Then there exists a sequence {ax} C (A1, 00) with ax — Ay such that
(7.1.11) with A\ = oy, has a (weak) solution u, € W, ?(Q) N L>(Q) which does not
satisfy inequalities (7.1.17). This means

(7.1.17) u<0inf) and >0 on KL

(7.1.18) —Apup = ap®(ug) + flz), 2€Q, ur=0, z €.
We claim that
(7.1.19) luglloe = 00 as k — oo,

where ||+ || is L norm. Suppose not, then there is a subsequence of {uy},
denoted again {uy}, which is bounded in L>(§2). A regularity result of Lieberman
[256, Theorem 1] implies that {u;} is bounded in C*#(Q) for some 3 € (0,1).
Moreover, by the Ascoli-Arzela Theorem, {uy} is relatively compact in C'5"(Q)
for some * € (0, 8). Thus, we may extract a convergent subsequence ., — u* in
CY7"(Q) as k — oo. Letting k — oo in the weak formulation of (7.1.18), we arrive
at

/ [ Vu*|[P~2(Vu*, Vw) dz = M\ / CO(u ) )wde +/ fwdx
Q Q o
for all w € Wy (). So u* € C*#"(Q) is a weak solution of (7.1.11) with A = Ay,
a contradiction to Corollary 7.1.2, which proves (7.1.19).
Now set vg = ug/||vkllco, i€y ||Uk]|oc = 1. Thus, BVP (7.1.18) becomes

f(z)

(7.1.20) —Apvg = ox®(vp) + —— -
[[urlloe

zef, uv.=0, z¢cdf.

Since {vy} is relatively compact in C LAT(8Y), let us extract a convergent subse-
quence v,, — v* in CH%"(Q). Again, letting k — oo in the weak formulation of
(7.1.20), we arrive at

/ V0" [P~ 2(Vo*, Vi) dr = /\1/
Q

S (v )w dx + / fwdz
Q 0

for all w € W, P(Q). We conclude that v* € C7" () is an eigenfunction of (7.1.2)
with ||v*]|e = 1, hence v* = k¢ for some nonzero v € R. We distinguish the cases
v >0 and v < 0.

(I) Case v > 0. Then there exists an integer ko such that each v, , for k > ko,
satisfles the strong maximum principle of Theorem 7.1.4, i.e.,

Ovn,
(7.1.21) Un, >0, 2€Q and g L <0, 2 € 00

14
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We rewrite (7.1.20) as follows
(7.1.22)

h
—ApUn, = MNPy, ) + (an, — A)P(vn,) + e (T’)’“ reQ, vy, =0, z €,
for k > ko. Since
h(z .
fﬂk, (LE) = (O‘nk; - )\1)(1)(1)7119) + # = m Qv
ny || oo

the nonexistence result of Corollary 7.1.2 applies to (7.1.22) and gives the required
contradiction.

(II) Case v < 0. For large k, the function —wv,, satisfies (7.1.21), but this
contradicts our assumption that u,, = |un,|/cctn, does not satisfy inequality
(7.1.17). O

Remark 7.1.1. A similar statement as presented in the previous section can be
formulated also for “Fucik type” equation

—A, =a®wt) - BuT) + f(z), z€Q, u=0, x €,

we refer to [162] for details.

7.1.4 Fucik spectrum for p-Laplacian

The situation with the Fué¢ik spectrum of the p-Laplacian in higher dimension is
more complicated in comparison with the one-dimensional p-Laplacian. To show
this difference, we briefly present the main results of the paper [81]. Recall that
we look for pairs («, 3) for which there exists a nontrivial solution of the BVP

(7.1.23) ~Apu=awP P =Bu Y xeQ, u=0, xc o

Here, again, u™ = (Ju| +u)/2, v~ = (Ju| — u)/2.

Similarly as in the one-dimensional case, the Fuéik spectrum 2, of the operator
—A,inQ) C RY consists of the trivial part A\; x R and R x A1, where A, is the first
eigenvalue of —A, in Q. In this subsection we show the variational description of
the first nontrivial curve of the Fucik spectrum and we also show the application
of this result in the investigation of solvability of the BVP

(7.1.24) -Apu= flz,u), 2€8, uv=0, z€d

We start with the variational construction of the first nontrivial curve of 3.
Let s > 0 and consider the functional

(7.1.25) T, () :/Q||Vqudx—s/Q(u+)pda:

over VVO1 P(Q) and its restriction J, over the manifold

§= {u e WIP(Q) ; / lul? da: = 1}.
Q
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Using the method of Lagrange multipliers, one can verify that the points of ¥, on
the line parallel to the axis of the first quadrant passing through the point (0, s)
are exactly of the form (s + J,(u), Js(u)), where u is a critical point of .J.

The first critical point of J is obtained by the minimization; this is the eigen-
function ¢ corresponding to the first eigenvalue A\; of —A, in  and js(cp]) =
A1 — s. The corresponding point of £, is (A1, A1 — s) which is a point of the trivial
part Ay x R. One can also show that —¢y is a strict local minimum of J; with
js(—cpl) = A1. The corresponding point of X, is (A + s, A1) which is a point of
R x )\1.

To find a third critical point, we use the Mountain Pass Theorem combined
with the following result.

Theorem 7.1.7. Let

= {yeC([-1,1],5) : v(=1) = —p1, ¥(1) = 1}
and let

7.1.26 = inf J(u).
( ) c(s) inf | max (u)

Then c(s) is the critical value of Js with ¢(s) > \;.

The idea of the proof of the main results of this subsection is based on the
statements of the following two auxiliary results (which we present without proofs,
we refer to [81] for details).

Lemma 7.1.2. The straight lines of the trivial part of ¥, A X R and R x Ay are
isolated in X,.

Lemma 7.1.3. Let r € R and denote O := {u € S : Jy(u) < r}. Then every
nonempty connected component of O contains a critical point of Js.

The point (s + ¢(s), ¢(s)) obviously does not belong to the trivial part of ¥,.
Countinuing in this way for every s > 0, and then taking the points symmetric with
respect to the diagonal of the first quadrant, we obtain the first nontrivial part C
of 3,,. This fact is summarized in the next theorem.

Theorem 7.1.8. Let s > 0. The point (s + ¢(s), c(s)) is the first nontrivial point
of £, on the line parallel to the diagonal passing through the point (s,0). In par-
ticular, if s = 0, we have

(7.1.27) A2 = inf  max / IVull? de.
veluey[-1,1] Jo

Proof. Suppose, by contradiction, the existence of a point of the form (s+ u, i) €
¥, such that A\ < g < ¢(s). By Lemma 7.1.2 one can suppose that Js has no
critical value in the interval [A1, u]. To reach a contradiction with the definition of
¢(s), we construct a path v € T' on which J, attains values less than or equal to b
what yields the required contradiction. This construction can be briefly described
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as follows. Let u € S be a solution of (7.1.23) corresponding to o = s+ p, 8 = p.
Necessarily, u changes its sign in . Define the path

(1—tyu+tut

t) =
wO = T e,

- llp =1 llwrors

which starts at u and goes to ut/||ut|],. Then, the construction consists of the
functions uy(t), uz(t) which are defined analogously; ug starts at u™ /|lut]], and
ends at u~ /||u " ||p, uz goes from —u~ /|u ||, to u. A simple calculation, using
(7.1.23), then shows that .J, attains values less than or equal to x on these curves.
We have Js(u™ /||u"||p) = p — s. Using the fact that u™/||u" ||, is not a critical
point and applying Lemma 7.1.3 with » = 1 — s, one can construct a path w4(t)
going from u~ /||u~ ||, to @1 or —¢; and the value of J, on this curve is less than
or equal to p — s. To explain the idea, suppose that the path goes to ;. Since
|Js(v) — Js(—v)| < s for every v € S, the value of J, over the path —u4 remains less
than or equal to (¢ — s) + s = p and allows to continue from —¢p; to —u™ /||u"||,.
Drawing a diagram of these curves, one can see that they can be glued in such a
way that the resulting path starts at —¢1, ends at ¢ and the value of J along
this curve remains less than or equal to pu. O

Note that the characterization of the second eigenvalue (7.1.27) is slightly d-
ifferent than that presented in Subsection 7.1.2 which is based on the Lusternik-
Schnirelmann procedure.

Now we present a statement showing that the first nontrivial curve C is de-
creasing and asymptotically approaches the trivial part of >,,.

Theorem 7.1.9. The curve C is decreasing in the sense that 0 < s < s’ implies
s+c(s) < s'+e(s) and c(s) > c(s"). Moreover, if p > N and there exists a point of
the boundary 9 in whose neighborhood 98) is regular, then ¢(s) — A1 as s — oo.

To apply the previous description of the curve C, consider BVP (7.1.24) and
denote

— liming L &3 Y (C)
[ TR R L

R O RN S Yo ()
S T T

where F(x,s) = [; f(2,t)dt and the limits are supposed to be uniform with
respect to x.

Theorem 7.1.10. Let (,3) € C and suppose
(i) M <vi(z) <T(z)<a, 1 <q_(z) <T_(z) <fF ae in Q;
(ii) 6_(x) > A1, 64 > A1 on a subset of ) of positive measure;
(i) Ay(z) <o or A_(z) < 3 a.e. in Q.
Then BVP (7.1.24) has at least one (weak) solution in W' (€2).
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We skip the proof of the previous theorem, it follows a similar idea as that
of Theorem 6.1.6 in the previous chapter. The significant role is played by the
following Sturmian type statement.

Lemma 7.1.4. Let (a,3) € C and let the functions a,b € L™(2) satisfy
(i) M <alz) <a, \; <blz) <f ae inQ;
(it) a(x) > M\ and b(z) > A1 on a subset of Q@ of positive measure;
(iit) a(z) < a or Blx) < B a.e. in Q.
Then the BVP
—Apu=a(@)(utH?P™ —b@)(uT P e, u=0, z€0Q
has a solution.

Remark 7.1.2. Combining the idea used in the above described variational con-
struction of the first nontrivial curve of the Fuc¢ik spectrum of —A, with the
construction of higher variational eigenvalues given in Subsection 7.2.3, one can
construct “higher variational curves” of the Fuéik spectrum, see [311], where also
the application of that variational result is used to study solvability of (7.1.24)
with nonlinearity g “near” the variational part of the Fucik spectrum.

7.2 Boundary value problems at resonance

This section is in a certain sense higher-dimensional analogue of some parts of
Subsections 6.2 and 6.3. In particular, we show how the Fredholm alternative and
Landesman-Lazer solvability conditions extend to partial differential equations
with p-Laplacian.

7.2.1 Resonance at the first eigenvalue in higher dimension
Consider the boundary value problem at resonance
(7.2.1) “Apu=M®u)+ f(z), z€Q, u=0, z€Q,

where f € L>(), Ay is the first eigenvalue of —A, in ©. We denote by ¢, the
associated eigenfunction. Similarly as in the one-dimensional case, we will suppose
the orthogonality condition

(72.2) (fon) = /Q F (@)1 () d = 0.

In this subsection, we will not give proofs of the statements, we rather present
ideas used in these proofs. These ideas are in principle different in case p > 2 and
in the case p € (1,2). The former case is usually referred to as the degenerate case,
while the case p € (1,2) is called singular case. However, unifying point in both
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cases is the well-known fact that (weak) solutions of (7.2.2) are critical points of
the energy functional

1 P A Py — r)udr
(7.2.3) T (u) :=5/QHVUH dx_;/ﬂw a /Qf( Juds

If p > 2, it is verified that the set of global minimizers uy of 7, parametrized
by A € [0, A1), contains a sequence that converges to a solution of (7.2.1) in C''(Q)
as A — A1. On the other hand, if p € (1,2), the existence of a solution of (7.2.1)
is obtained from a minimax principle performed in the orthogonal decomposition

Wol’p(Q) = Lin{e1} + [Lin{e1}]",  w =191 +ut,

relative to the scalar product (7.2.2). Note that the case p > 2 is more difficult;
the proof is based on the “quadratization” of the functional 7 (i.e., a second-
order Taylor formula) near the principal eigenfunction ;. Note also that this
quadratization procedure, as pointed out in [342], can be regarded, in a certain
sense, as a higher dimensional counterpart of the Priifer transformation which
plays the crucial role in the proofs of many results for one-dimensional p-Laplacian.
Again, we refer to the above mentioned paper of Takad¢ [342] for details.

Now we turn our attention to the formulation the main results of this subsec-
tion.

(I) Degenerate case p > 2. First we formulate technical assumptions on the
domain 2. In the degenerate case, we suppose the following two hypotheses.

Hypothesis (H1). If N > 2, then ) is a bounded domain whose boundary 92
is a compact manifold of the class C1@ for some « € (0, 1) and € also satisfies the
interior sphere condition at every point of 9Q. If N = 1, then € is simply an open
interval in R.

Note that for N > 2 the hypothesis (H1) is satisfied provided Q C R" is a
bounded domain with C? boundary. In addition to properties of the first eigen-
value A; and the associated eigenfunction ¢ established in Subsection 7.1.1, let
us mention that under the hypothesis (H1) there exists a constant 8 € (0, ) such
that 1 € C#(Q), see [351] and [256]. Throughout this and the next subsections
the constants «, § have just this meaning.

To introduce the second (rather technical) hypothesis, we use the following
notation. By D,, we denote the completion of VVO1 P () with respect to the norm

1/2
[ollpn = ( / |w1|p-2wn2dx)

and by Qp we denote the quadratic form

L p—2 2 _ <V(Pl’v¢>

2
}dm

1) / F2 de,
Q
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and finally let
(7.2.4) U:={zxecQ:Vp(x)#0}.

Hypothesis (H2). If N > 2 and 09 is not connected, there is no function
v € Dy, Qo(v) =0, with the following four properties:

(i) v = p1xs a.e. in Q, where S C Q is a set with 0 < my(S) < mn(£2), where
mpy (-} and x are the N-dimensional Lebesgue measure and the characteristic
function of the set indicated, respectively;

(ii) S is connected and S N G # 0;

(iii) every connected component of the set U is entirely contained either in S or
else in 2\ S

(vi) (8S)NQ c Q\U.

Note that it is conjectured in [342] that (H2) holds provided (H1) does.

The first result concerns a-priori uniform boundedness of solutions of (7.2.1)
for A € [0, A1].

Theorem 7.2.1. Let K be a nonempty, x-weakly compact set in L>°(§) such that
0 # K and (7.2.2) holds for oll f € K. Then there exists a constant C = C(K)
with the following property: If X € [0,\], f € K, and if u € Wy P(Q) is a critical
point of T, i.e., a weak solution of (7.2.1), then |luljcrs < C.

The previous statement is used in the main result of this subsection concerning
the degenerate case.

Theorem 7.2.2. Let f € L>(£) satisfies the orthogonality condition (7.2.2).
Then (7.2.1) possesses a weak solution u € Wol’p(Q); Moreover, if f £ 0 in €, the
set of weak solutions of (7.2.1) is bounded in C+#(Q).

Note that the boundedness result of the previous theorem is uniform for f € K
(compare with the analogical statement for the one-dimensional p-Laplacian). The
following result complements Theorem 7.2.1 for K N [Lin{p;}]* = 0.

Theorem 7.2.3. Let K be a nonempty x-weakly compact set in L™ () that satis-
fies {f, 1) # 0 for every f € K. Then there exists a constant C = C(K) > 0 with
the following property: If f € K and if u € Wol’p(Q) s a weak solution of (7.2.1),
then ||ul|crs < C.

The next corollary to Theorem 7.2.3 shows that (7.2.1) may have no solution
if the orthogonality condition (7.2.2) is violated.

Corollary 7.2.1. Given an arbitrary g € L™ () with 0 < g #£ 0 in §), there exists
a constant v = v(g) > 0 with the following property: If f € L>=(Q), f # 0, is such
that

f=pg+f, with some pcR and f € L>(Q),

and || ]|z < 7|ul, then (7.2.1) has no weak solution u € WP ().
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(I) Singular case 1 < p < 2. In the statements of this part of subsection we
suppose only the hypothesis (H1). We need to redefine the space D, as follows.
We define v € D, if and only if v € Wy(Q2), Vo(z) = 0 a.e. in Q\ U, where U
is defined in (7.2.4), and

172
[ollyy = ( /U ||V<p1|p_2||Vv|2da:> .

We refer to [342] for some comments concerning this definition of D, .

Theorem 7.2.4. Let f € L>=() satisfy [ & [Dy, ]+ and (f, 1) = 0. Then prob-
lem (7.2.1) possesses a weak solution u € WOI’I’(Q). Moreover, if K is a nonempty
x-weakly compact set in L>=(SY) such that K N [Dy, ] =0 and {f,¢1) = 0 for all
[ € K, then there exists a constant C = C(K) > 0 with the property: If f € K and
u € WyP(Q) is a weak solution of (7.2.1), then |julcrs < C.

Theorem 7.2.5. Let f € L>°(Q) satisfy f € [Dy, |t and (f, 1) = 0. Then there
exists a constant g = A(K) € (0, A1) such that for Ao <A < A\ and f € K, BVP
(7.2.1) with X instead of A1 has at least three (pairwise distinct) weak solutions
u1, Ua, ug specified as follows:

(i) The energy functional (7.2.3) possesses a critical point uy € Wy™*(Q) (hence
a weak solution of the BVP under consideration) such that u; is not a strict local
minimizer and satisfies ||u1||cr.e < C, where C = C(K) is a constant independent
of both A € [Mo, A1) and f € K.

(ii) The functional (7.2.3) possesses two (distinct) local minimizers ug,uz €
W, P (), at least one of which is global.

In analogy with Theorem 7.2.3 for p > 2, if f stays away from the subspace
[Lin{1 }]*, one can show the following uniform boundedness result and its corol-
lary.

Theorem 7.2.6. Let K be a nonempty x-weakly compact set in L°°(QY) that sat-
isfies (f, 1) £ 0 for every f € K. Then the conclusion of Theorem 7.2.3 is valid
also for p € (1,2).

Corollary 7.2.2. Let g € L™°(Q) be an arbitrary function with 0 < g £ 0 in Q.
Then the conclusion of Corollary 7.2.1 remains valid.

7.2.2 Resonance at the first eigenvalue — multiplicity results

The results of this subsection can be understood, in a certain sense, as a multidi-
mensional analogue of results given in Subsection 6.3.1. We adopt the same nota-
tion and hypotheses (H1), (H2) as in the previous subsection. Also, the principal
idea of the proof is similar and consists in quadratization of the energy functional
J given by (7.2.3). In contrast to the previous section, we formulate the results
simultaneously for the degenerate case p > 2 and the singular case p € (1, 2).

Let f € Wol"p(Q), we express f as the orthogonal sum

f=Cor+ 7, where ¢ = AP g (17 0y =0,
(1, 01)
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In the singular case, instead of (H2) (which holds in this case automatically),
we suppose the following restriction on the function f.

Hypothesis (H3): fT € L>(Q) satisfies fT & [D,,]*.

For the formulation convenience, we will consider our BVP in the form

(7.2.5) —Apu =\ Pu) + f(x) +Cp1(x), 2€Q, u=0, x€N.

Theorem 7.2.7. Let fT € L>(Q) satisfy fT # 0 and (fT,¢1) = 0. Then there
exist two constants £, < 0 < &*such that BVP (7.2.5) has at least one weak
solution u € Wol’p(Q) if and only if (. < ¢ < ¢*. Moreover, there are two additional
constants (g, ¢t € R, such that (7.2.5) possesses at least two distinct weak solutions
provided ¢y < ¢ < ¢¥.

Remark 7.2.1. In contrast to the one-dimensional case treated in Subsection 6.3.1,
it is an open problem whether (; = ¢, and (* = ch.

Theorem 7.2.8. Let fT be the same as in the previous theorem. If { = 0 in
(7.2.5), then the set of all weak solutions to this BVP is bounded in C*3(Q). If
§ > 0 is given, then the set of all weak solutions of (7.2.5) is bounded in C1# ()
uniformly for |¢| = 4.

7.2.3 Landesman-Lazer result in higher dimension

In this subsection we present the extension of the results given in Subsection 6.3.2.
We consider the boundary value problem

(7.2.6) —Apu — A®(u) + g{z,u) = f(z), z€Q, u=0, z€0Q,

where QO C RY is a bounded domain whose boundary dQ (in case N > 2) is a
compact connected manifold of the class C?.

As we have already mentioned before, in contrast to the one-dimensional case
N =1, the structure of all eigenvalues of (7.1.2) is not known. On the other hand,
there are several possibilities how to find a sequence of the so-called variational
eigenvalues which tend to infinity. Here we present the method used in [133] which
enables to find one such sequence and also to give a variational proof of the exis-
tence of at least one solution of (7.2.6) if g satisfies some additional conditions (of
Landesman-Lazer type) and A is any (even non-variational) eigenvalue of (7.1.2).

Consider the functional

_ JalVul?

I(u) = ==
Jo lul?
for w € W, () \ {0}, and the manifold
S ={ueWyP(Q): ||lullpr =1}

It is a matter of straightforward computation to verify that the eigenvalues and
eigenfunctions of —A,, correspond to the critical values and critical points of I|s,
respectively.
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For any k € N, denote
Fr: = {ACS: 3 a continuous odd surjection h: S¥71 — A},
where S*~! represents the unit sphere in R*. Next define

Ak: = inf I(u).
e = g s 1)

It is proved in [133] that A\x,k =1,2,..., are the critical values of I|s, and hence
the eigenvalues of —A,,.

Let {p1} be the eigenvalues defined by the Lusternik—Schnirelmann character-
ization (see e.g. [168]) involving a minimax over sets of genus greater than k. Then
A1 = p1, A2 = pe and Ap > pg, k = 3,4, .... In particular, Ay — oo as k — oo.
It is worth mentioning that whether equalities Ay = ug, & = 3,4, ..., hold true is
an open problem if N > 2. Also, as already pointed out, it is not clear if {Az}72,
form the complete set of eigenvalues of —A, if N > 2. On the other hand both
problems are solved positively for N = 1 as we have shown in Subsection 6.1.2.

In our further considerations we will use the standard spaces W, *(2), LP(Q),
C(Q) and C1(Q) (or CL(€2), respectively), with the corresponding norms

: 1/p
( / ||W|de) 7 ||u||m—( / |updx) ,
Q Q

lulle = maxfu(@)], luller = [lulle + max [Vu(z)],

B
[

respectively. The subscript 0 indicates that the traces (pr values) of functions
are equal zero on 0§). Moreover, for the element A € C(£)) we use the following
(L2-non-orthogonal) decomposition

where h € R and

/Q h(z)o1 () = 0.

The particular subspace formed by ﬁ@x) will be denoted by C(Q). By Be(f, p) we
denote the open ball in the space C'(2) with the center f and radius p.

In this subsection we will assume that g = g(z, s) is a continuous function in
both variables, which is bounded and the limits
“(): = lim_g(.s)

exist finite for all € 2. The reader can have in mind e.g. the function
g(z,s) = arctans, z € Q,seR,

for which ¢~ (2) = —n/2, ¢"(x) =m/2.
Our main results concern the solvability of (7.2.6) and read as follows, the
proofs can be found in [133] and [121].
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Theorem 7.2.9. Assume that A is an eigenvalue of —A, (variational or nonva-
riational) and either

(7.2.7) /( o gt (x)v(x) dz + /( )<0g_(ac)v(a:) dz > /Qf(:lc)v(a:) dx,

(7.2.8) /( o gt (x)v(x) do + /( )<0g_(x)v(x) da < /Qf(:r)w(:n) dx

hold for any nonzero eigenfunction v associated with the eigenvalue A. Then (7.2.6)
has at least one solution.

Note that according to the previous theorem the boundary value problem
(7.2.9) —Apu — M ®(u) +earctanu = f, x €Q, u=0, z€0Q,

has at least one solution if

1
el

T <
T
2

/ fa)pr (@) de < 2
Q 2

The above inequalities do not make any sense if ¢ = 0, i.e., Theorem 7.2.9 does
not cover the solvability of (7.2.6) with A = A\; and g =0, i.e., of

(7.2.10) “ANpu—M®u)=f, x€Q, u=0, z€0.

However, we can apply the following result, which is, in a certain sense, similar to
Theorem 7.2.7

Theorem 7.2.10. Let p # 2 and fle C(Q). Then the problem (7.2.10) has at
least one solution if f = f. For 0 # f € C(Q) there exists p = p(f) > 0 such that
(7.2.10) has at least one solution for any f € Bc(f, p). Moreover, there exist real
numbers F_ < 0 < Fy such that the problem (7.2.10) with f = f+ f has

(i) no solution for f & [F_, F.];
(i) at least two distinct solutions for f € (F_,0)U (0, Fy);
(iii) at least one solution for f € {F_,0,F,}.

Remark 7.2.2. (i) Let us emphasize that Theorem 7.2.9 generalizes the classical
result of Landesman and Lazer [232] and its proof can be found in [133]. However,
we have to admit that both (7.2.7), (7.2.8) are sufficient conditions only and their
necessity is an open problem even in the special case g(x, s) = arctan s. One might
get the impression that letting ¢ — 0 in (7.2.9) we obtain that

/ J(@)or () dz = 0
Q
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is sufficient condition for the solvability of (7.2.10). Even if this is the case, it
cannot be proved passing to the limit for ¢ — 0 in (7.2.9) because of the lack of
a-priori estimates of corresponding solutions.

(i) Note that Theorem 7.2.9 provides necessary and sufficient condition for the
solvability of the problem (7.2.10). This condition is in fact also of Landesman-
Lazer type ([232], [133]). Indeed, given f € C(Q), f # 0, the problem (7.2.10) with
the right-hand side f(z) = f(z) + f has a solution if and only if

~ 1
F_ -
D= 1o

/Q F@)er (@) dr < Fy ().

However, it should be pointed out that this condition differs from the original
condition of Landesman and Lazer due to the fact that F_ and F depend on
the component f of the right-hand side f {and not on the perturbation term
g = g(z,u)). By homogeneity we have that for any ¢ > 0,

Fi(tf) = tF=(f).

(iii) The proof of Theorem 7.2.9 relies on the combination of the variation-
al approach and the method of lower and upper solutions. One of the principal
troubles is connected with the fact that usual apriori estimates and Palais-Smale
condition fail. Let us also point out that the proof of Theorem 7.2.10 essentially
uses the results obtained in [127], [342] and [165]. Finally note that the approach
used in this proof is very different from that used to prove Theorem 7.2.9.

7.3 Oscillation theory of PDE’s with p-Laplacian

In this section we briefly present main ideas of the oscillation theory of the partial
differential equation

(7.3.1)  Aputc(z)®(u) =0, Ayu=div(|Vu|P7?Vu), zcRY p>1.

First, using the Picone identity, we show that Sturmian comparison theory ex-
tends to (7.3.1). Then we present criteria which guarantee nonexistence of positive
solutions of (7.3.1) in the whole R, we also give some oscillation criteria for this
equation. The last subsection deals with partial differential equations with the so-
called pseudolaplacian which is another partial differential operator which reduces
to the operator of the form (r(¢)®(z'))" in the scalar case N = 1.

Throughout this section we use the following notation:

Q, {z eRY: ] = 7},
S, = 09, ={zeRY :|z| =r},

wy is the area of the unit sphere in RV,
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7.3.1 Picone’s identity for equations with p-Laplacian

Consider a pair of partial differential operators with p-Laplacian

I[u] := div(r(2)||Vu|["~2Vu) + c(z)®(u)
and
L{u] := div(R(x)||Vu|[P~?Vu) + C(z)®(u).

It is assumed that r, ¢, R, C' are defined in some bounded domain G ¢ RV with
piecewise smooth boundary G and that r, R € C'*(G) are positive functions in G,
and ¢,C € C(G). The domain D;(G) of [ is defined to be the set of all functions
of the class C'(G) with the property that r||Vu|P~2Vu € C1(G) N C(G). The
domain Dr(G) of L is defined analogously.

The proof of the below given N-dimensional extension of Picone’s identity is
similar as in the scalar case, see [191].

Theorem 7.3.1. Let u € Di(G), v € DL(G) and v(z) # 0 for x € G. Then

v (s [P @) VP~ = 2 R F0]) )

= [r(z) = R@)][Vul]” + [C(z) = c(@)]|ul”

+ R(x) {pr F(p—1) H%pr —p H%wHH (V) (%w)}

+ oy [P0V = )Ll
Taking » = R, ¢ = C in the previous theorem, and using the fact that if
v is a solution of {[v] = 0 for which v(z) # 0 in G, then the function w =

[r(z)]|Vu|[P~2/®(v)] Vv is a solution of the Riccati type partial differential equation

(132)  dvwse@) + - D@l =0, a= Lo,
we have Picone’s identity in the special form
r(@)||Vull” = e(@)ul’ = div(w(@)|uP) + pr'= (@) P(ri~" (2)Vu, w(z)®(u)),

where ] Jyll
~ T y

Plz,y) = i (2,y) + s

As a consequence of Theorem 7.3.1 we have the following extension of the

Leighton comparison theorem.The proof of this statement is again similar to the

“ordinary” case, compare Subsection 2.3.2.

Theorem 7.3.2. Suppose that the boundary OG is of the class C. If there exists
a nontrivial solution u € Di(G) of l[u] = 0 such that © =0 on G and

/G{[R(w) —r@)]|Vul]? = [C(z) = c(@)]ulP} dz <0,

then every solution v € Dy (G) of L[v] = 0 must vanish at some point of G, unless
v is a constant multiple of u.
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Another consequence of Picone’s identity is the following Sturmian separation
theorem.

Theorem 7.3.3. Suppose that G is the same as in the previous theorem and there
exists a nontrivial solution v € D;(G) of [[u] = 0 with w = 0 on OG. Then every
solution v of lu] = 0 must vanish at some point of G, unless v is a constant
multiple of u.

Remark 7.3.1. Recall that if we study properties of solutions of PDE’s with p-
Laplacian (7.3.1) in a radially symmetric domain G = Bx = {z € R" : ||z|| < R}
with a radially symmetric potential ¢, i.e., c(z) = b(||x||) for some b: [0, 0) — R,
then one can look for solutions in the radial form w(z) = v(r) = o(||z|) and v
solves the ODE of the form (1.1.1)

d | Noig (4 Ny
o {r @(drvﬂ + 77 h(r) = 0.

This method of the investigation of oscillatory properties of (7.3.1) has been used
e.g. in [113, 219], see also the references given therein.

7.3.2 Nonexistence of positive solutions in RV

Concerning the linear differential equation
(7.3.3) Ay +c(x)u =0,

there is a voluminous literature dealing with oscillatory properties of (7.3.3). As
for the classical results concerning oscillation of this equation, we refer to [341,
Chapter 4], the paper [337], and the references given therein. The oscillation theory
of (7.3.3) recognizes two types of oscillation. Equation (7.3.3) is said to be weakly
oscillatory, if every solution has a zero outside of every ball in R" and it is said to
be strongly or nodally oscillatory if every solution has a nodal domain outside of
any ball in RY. Recall that a bounded domain D C RY is the nodal domain of a
function u, if u(x) = 0 for x € 9D and u(z) # 0 in D. Moss and Piepenbrick [296]
showed that both definitions are equivalent in the linear case if the function c is
locally Holder continuous. Equivalence of these definitions for (7.3.1) is an open
problem.

We investigate here properties of (7.3.1) using essentially the following two
methods:

(i) Variational principle — consisting in the relationship between the existence
of a positive solution of (7.3.1) in a domain © C RY and positivity of the “p-
degree” functional

(73.4) F(ws Q) = /Q (V@) = c(@)|u()?} de

over the class of functions satisfying u|,, = 0, i.e., over WyP(Q).
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(i) Riccati technique — this method is based on the fact that if u is a nonzero
solution to (7.3.1) then the vector function

[Vul[P~2Vu
7.3.5 S el I
satisfies the Riccati type equation
(7.3.6) divw+c(z) + (p — D|lw||? =0,

where ¢ is the conjugate number of p, i.e., 1/p+1/g=1.

We start with two auxiliary statements based on the Riccati technique. Denote

1
(7.3.7) Qry=— e(x) dx,
WN S| <r
and for some r¢ > 0 denote
-1
(7.3.8) W)y =L2"2 ]| de,

WN - Sro<lz)|<r
where w is the solution of Riccati equation (7.3.6), defined on €2, .

Lemma 7.3.1. Suppose that u is a solution of equation (7.3.1) and there exists
a number ro such that u(x) > 0 on §,,. Let w be the corresponding solution of
Riccali equation defined by (7.3.5). Denote by

QUro) + 2 fs, (w,)dS if ro >0,
[

0 Zf’f‘o ZO,

where v in the surface integral is the unit outside normal vector to the sphere Sy, .
The following inequality holds for every r > rg

QUr)+W(r) Scotrr (ﬁw/(r)) %.

Proof. Let us compute Q(r) + W(r). By (7.3.7) and (7.3.8) we have

QW) = Qoo+ oo [ (o) + o el)

WwN

Using this, Riccati equation (7.3.2) and the Gauss theorem, we get

Q) +W(r) = Q(ro)+i/5 (w,z/>dS—L/Sl<w,u>dS

WN o WN

1
co—— | {(w,v)dS.
WN Jg,
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The Schwarz and Holder inequalities imply

1
Qr)+W(r) < CO+—/ [wl [lv|dS
WN Js,

1 d v
< oot —[/ ||w|\qazs} [/ ds}
WN LJs, Sy
1 \7rp—1 Tona
= o+ (—) [p—/ ||w\|qczs} ri
p—1 WN Js,
1 3 N-
= ¢+ (EW/(T')) ’r'Np :
which completes the proof. O

Lemma 7.3.2. Suppose that u is a solution of (7.3.1) which is positive in RY and
Q(r)y >0 for allr > 0. Further, suppose that there exist continuous nonnegative
functions m, m, M, M such that the inequalities

mr) < (p-—1) /OT[Q(t) +m()) M,

M) < / TlQ@MP () + 110,

m(r) < W(r) and W(r)MP (r) <1

hold for all v > 0. Then
(7.3.9) m(ry <W(r) and W(E)MP~Y(r) <1 forallr > 0.

Proof. From the assumptions and from Lemma 7.3.1 with ro = 0 it follows that
i) < -1 [ 1w+ mlt i
0
< -1 [ Q0+ Wi
0

< /OW’(t)dt:W(r)

and the first inequality in (7.3.9) holds. Moreover, for every R > r
r a
/ [Q)MP=L () + 1]%t4 M5 gt
T R q
= [ @ s wpw @it
r - q
< p-Da-1 [ @O+ werw ol

R
< (¢- 1>/ W/ (W4 (t)dt < [W I < W et (r)
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holds and the limit process R — oo implies M (t)W9~1(t) < 1 which is equivalent
to the second inequality in (7.3.9). O

Now we use the previous statements to prove results concerning nonexistence
of positive solutions of (7.3.1) in the whole space R™. In the linear case (p = 2)
statements of this kind are formulated either in terms of spectral properties of
the Schrédinger operator defined by the left-hand side of (7.3.3) (more precisely,
by the existence of negative eigenvalues of the associated differential operator, see
[337]) or in terms of the existence of a nodal domain of a solution of (7.3.3) (like
in [166, 297, 298)).

However, in the general case p > 1 we have no complete analogue of the spectral
theory of linear differential operators (since the additivity of the solution space
of (7.3.1) is lost and remains only homogeneity). Also, we miss a “systematic”
oscillation theory of (7.3.1) leaned on the (modified) Courant-Hilbert variational
principle consisting essentially in equivalence between oscillation of linear equations
and positivity of associated quadratic functionals.

Theorem 7.3.4. Letc(z) Z0 and p > N. If

(7.3.10) lim inf/ e(z)dx >0,
lzll<r

T—=00

then (7.3.1) possesses no positive solution in RY.

Proof. Suppose, by contradiction, that u is a solution of (7.3.1) positive on R,
We will use the functions Q(r) and W(r) defined by (7.3.7) and (7.3.8), where
ro = 0. Due to the fact that ¢ Z 0 we have u # const, hence w #Z 0 and there
exists a point 1 > 0 such that W(r;) > 0. Then, in view of (7.3.10), there exists
T2, T2 > 71, such that

1
Q(r) > —§W(r1) for r > ry.
From here and from the fact that W (r) is a nondecreasing function we obtain
1 1
W) < W(r) = 2W(r) < W(r) + Q)

for all 7 > ry. Then using Lemma 7.3.1 we get

1 a a _pye Wi(r)
Z < < fN=DF AT
W] < [@ s W] <N ET
and equivalently

p—1 PO-NE W'(r)

24 - Wa(r)
for r > r5. Integrating this inequality we obtain

-1 (7 . "Wt W) qw AW
p—/ =3 g < ()dt:/ —g/ ar
24 ro Wq<t) W(rs) Wa W(ra) Wa

T2
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for every r > ro. If r tends to infinity, then the integral on the left-hand side
diverges, since p > N implies ¢(1 — N)/p > —1 and the integral on the right-hand
side converges. This contradiction completes the proof. |

In the next theorem we treat the case without the restriction p > N.

Theorem 7.3.5. Let Q(t) > 0, {m;}3°,, {M,;}22, be the sequences of nonnegative
Junctions, continuous on (0, 00), satisfying

(7311) m = M1 = 0,
@312 w6 < -1 [ QO+ m@rd Vi
0
1313 M) < [ @@MIO+ - Miar
for every r > 0. If
(7.3.14) sup sup mi(r)]V[]’-’_l(r) > 1,
i,5€N r>0

then (7.3.1) possesses no positive solution in RY.

Proof. Suppose, by contradiction, that u is a solution of (7.3.1) which is positive
in RY. By Lemma 7.3.2, it holds for every i € N

my(r) < W(r), W(T)]V[ipfl(r) < 1.
Combining these results we have

Trzi(r)le’-’_l(r) <1

for every i,j € N and r > 0 which contradicts (7.3.14). O
Corollary 7.3.1. Let @ >0 and p < N. If
T _ N _ p—1
suprp*N/ Qq(t)tlvfjlvdt > N =p
>0 0 (p—1)P

then (7.3.1) possesses no positive solution on RY.
Proof. Define the set of functions as follows:
m;=M; =0 forieN\{2},
ma(r) = (o= 1) [ QUi — -1 [ @orta
0 0

and

e q — 1 p=N
My(ry= [ 0 Mige=-LZ 75
A7) / p-N'
From here it follows

p—1 r) = (p_ )p rp—N " q %
man M) = /0 QU dr.

Now Theorem 7.3.5 implies the conclusion. |
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7.3.3 Oscillation criteria

In this subsection we turn our attention to criteria for nonexistence of positive
solutions to (7.3.1) in the exterior domain Q,, for ro > 0 arbitrarily large. The
following theorem shows that the (deeply) developed oscillation theory of ordinary
differential equation (1.1.1) can be used to study oscillations of (7.3.1) in the sense
of weak oscillation.

Theorem 7.3.6. Suppose that the half-linear ODE
1
3.1 "1e(2)) + —C(r)d(z) = = —
(7.3.15) (r () —I—WNC'(T) (2) =0, o

is oscillatory, where
C(r) ::/ c(x)dS.
S,

Then equation (7.3.1) has no positive solution in the exterior domain Q, forr >0
arbitrarily large.

Proof. Let z = z(r) be an oscillatory solution of (7.3.15) and r, — oo be its zeros.
Then integration by parts yields

(7.3.16) / [rnwz’(m - ﬁcmz(rw dr = 0.

Now, for the function y : RY — R defined by y(z) = z(||z|) and D,, = {z : 7, <
llz|| < rnt1}, we have by a direct computation

Fp(y: Dn) = /D UIVy@)” = e(@)[y(2)[) de

[

_ /+ {|z/(r)p (/S dST) - (/S c(x)dSr> |z(r)p] dr

n

B /r,,,+1 [WNTN,I‘Z/(T)‘;D _ C(r)\z(f’)m dr

n

o4l
= WN/ |:’)"N1|Z/(T)|p - iC(rﬂz(T)p} dr = 0.

Now, if a positive solution u = u(z) exists in an exterior domain Qp for some
R, then integrating the Picone identity given in Theorem 7.3.1 over D, with n
sufficiently large, and with w given by (7.3.5), we have

| V@I - ey do .

Moreover, since u(z) > 0 in Q and y|sq = 0, the functions u,y are not propor-
tional, which means that last inequality is strict, a contradiction. O
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As a consequence of Theorems 2.3.5 and 2.2.3 applied to (7.3.15) and using the

fact that T
/llzcllﬁr clw)do :/0 (/S o(x) dST) dr

we have the following statement.

Corollary 7.3.2. Equation (7.3.1) has no solution positive in the exterior domain
Q,, for every ro > 0 provided one of the following conditions holds:

(i) Let p > N hold and

lim c(x) dr = oc.
TSzl <r

(1) Letp—lZN,ae(—%,p—N—l] and

1 ¢
lim a—/ re / e(x) dx) dr = oo.
teo gt Jy ( lzll<r

The disadvantage of Theorem 7.3.6 lies in the fact that integrating the function
over the sphere S, we loose the information about the distribution of the potential
¢ over this sphere, which may be important in some cases. This disadvantage is
improved in the next theorem which introduces the H-functions averaging tech-
nique (compare with Subsection 3.2.3) in the oscillation theory of PDE’s with
p-Laplacian. We present the statement without proof, this proof can be found in
[275].

Theorem 7.3.7. Let ro > 0 be fizred and denote D := {(r,z) e Rx RY : ry <
lz|| <7}, Do :={(r,z) e R xRN : rq < ||lz| < r}. Let H(r,x) € C(D, [0, 00)),
afx) is a nonnegative continuous function for ||z|| > ro such that H has a contin-
wous partial deriwative with respect to x;, i = 1,..., N, on Dy and the following
conditions hold:

(i) H(r,x) =0 if and only if r = ||z|.

(i) There exists a positive function k € Clrg, 00) such that the function f(r,p) :=
k(p) fs H(r,x)dS is nonincreasing with respect to p for every r > p > 1.
p

(iii) The vector-valued function h(r,z) defined on Dy by

h(r,z) =V, H(r,xz)+ Ha(z;;g) Va(z)

satisfies

/ H'"?(r,z)||h(r, 2)||Pa(x) dz < oo.
ro<||z||<r
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If

lim sup (/ H(r,x)dS)
=00 Sro
[h(r,2)|[Pa(z) ]

X /mgloclgr {H(r, z)a(x)e(c) — P HT () T = 00,

then (7.3.1) has no positive solution in the exterior domain §,. for arbitrary
7> 0.

-1

7.3.4 Equations involving pseudolaplacian

Another partial differential equation which reduces to half-linear equation (1.3.2)
in the “ordinary” case is the partial differential equation with the so-called pseu-
dolaplacian

We consider the partial differential equation
(7.3.17) Apu + c(x)®(u) =

and the associated energy functional
P
- —c(@)[ulf p da

x)\u|p} dx,

Fplu; Q)

Il
S
—
]

I
S~
g
=
g

1
where ||z||, = (Zf\il \xi|p) " denotes the p-norm in RY. This functional plays an

important role in variational principle for equations with pseudolaplacian. Another
important object associated with (7.3.17) is a Riccati type equation which we
obtain as follows. Let u be a solution of (7.3.17) which is nonzero in © and denote

(o2 ()

Then, using the fact that (7.3.17) can be written in the form divv = —e(2)®(u),
we have

. 1 . /
divw = 52(a) {®(u)dive — ®(u){Vu,v)}
_ |U\p ’
= —C(l') - ( |U|2p 2 Z aml
N

= —c(z)-(p— U; ® <%>

= —c(z) = (p = DfwlF,
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where (-, -) denotes the usual scalar product in RY, ¢ = p/(p — 1) is the conjugate
exponent of p and ||z||, = (Zfil |:L’L\‘1) " denotes the g-norm in R™. Consequently,
the vector variable w satisfies the Riccati type equation

(7.3.18) divw + c(z) + (p — Djwll§ = 0.

For equation (7.3.17) we can establish oscillation theory and theory for eigen-
value problems similar to that for classical p-Laplacian. An important role is played
in this theory by the following Picone type identity.

Theorem 7.3.8. Let w be a solution of (7.3.18) which is defined in Q and u €
WhP(Q). Then
P = [ lute)Puls)ds

o0

[Vu)p o In@lgeuE)e
s [ [P - (uto), autula) + T g

Moreover, the last integral in this formula is always nonnegative, it equals zero
only if u # 0 in Q and

ety (30 (2)

Having at disposal the previous theorem, one can extend many results of previ-
ous subsections to equations with pseudolaplacian. We refer to [48, 104] for details.

7.4 Notes and references

The results concerning the properties of the first eigenvalue and of the associated
eigenfunction of (7.1.2), as presented here, are taken from the paper of Lindqgvist
[258]. Under various restrictions on the domain €2, statements of this kind are
proved in several preceeding papers, let us mention at least the paper of Anane
[19]. The properties of the second eigenvalue of (7.1.2) are established in Anane,
Tsouli [21]. The main statements of Subsection 7.1.3 can be found e.g. in the paper
of Cuesta and Takac [83], see also the paper of the same authors [84]. The proof
of Theorem 7.1.6 as presented here can be found in the book of Drabek, Krejci
and Takac [128, Theorem 7.3, p. 156]. Recent papers dealing with (anti)maximum
principle for p-Laplacian are the papers of Godoy, Gossez and Paczka [169] and of
Fleckinger, Gossez, Hernéndez, de Thélin and Takac [162, 163, 164], see also refer-
ences given in those papers. The presentation of Subsection 7.1.4 follows the paper
Cuesta, de Figueiredo and Gossez [82] which is essentially abbreviated version of
the paper [81] of the same authors. Related recent papers are Alif [12], Arias,[24],
Dréabek, Robinson [132], Micheletti and Pistoia [287] and Perera [311, 312].

The results of first two subsections of Section 7.2 are taken from the papers of
Taka¢ [342, 343]. Note that several additional results concerning the structure of
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the solutions of (7.2.5) are hidden in the proofs of statements of Subsection 7.2.1,
7.2.2. However, these proofs are technically rather complicated and long to be pre-
sented here (each of the above mentioned two Takd¢’s papers has more than 30
pages), so we refer to [343, 342] for details. Related results can also be found in the
papers of Alziary, Drabek, Fleckinger, Girg, Taka¢ and Ulm [17, 121, 126]. The
results of Subsection 7.2.3 can be found in the papers of Drabek and Robinson
[123, 133], for related results and references we also refer to the papers of Arcoya
and Orsina [23], Drébek [120] and Drabek and Holubova [127]. Let us also mention
the recent papers [68], [69], and [125] by Cepicka, Drabek, Girg, and Tak4¢ dealing
with various aspects of the boundary value problems associated with p-Laplacian,
where, in particular, topics like bifurcation from infinity near eigenvalues and solv-
ability of BVP’s under Landesman-Lazer type conditions are discussed.

Picone’s identity, as presented in Subsection 7.3.1, was proved by Jaros, Kusano
and Yoshida [191]. However, this identity can be found in various modifications
(sometimes implicitly) also in other papers, e.g. in the papers of Allegretto [13, 14]
and Allegretto, Huang [15, 16] and in the paper of Dunninger [135]. The criteria
for the nonexistence of positive solutions of (7.3.1) given in Subsection 7.3.2 are
presented in Dosly and Marik [113], this paper also contains some criteria given in
Subsection 7.3.3. The linear version of these results can be found in the paper of
Schminke [337]. The concluding part of this subsection is taken from Matik’s paper
[275], this statement is a direct extension of [360, Theorem 1] of Q. R. Wang to
(7.3.1). Related results and references can be found also in another Ma¥ik’s paper
[279].

There exist many papers dealing with various oscillation and spectral proper-
ties of PDE’s with p-Laplacian, recall here at least the papers Anane, Charkone
and Gossez [20] Bennewitz and Saité [34], Fiedler [161], and the papers of Jaros,
Kusano, Mafik, M. Naito,, Y. Naito, Ogata, Usami and Yoshida [193, 218, 219,
224, 277, 278, 301], but this is really only a very limited sample of papers where
equations of the form (7.3.1) are treated.

The basic properties of solutions of PDE’s with pseudolaplacian (7.3.17) can be
found in the papers of Bognar [45, 46, 47]. Oscillation and nonoscillation criteria
for this equation as well as the properties of the first eigenvalue of the Dirichlet
BVP associated with pseudolaplacian are presented in the papers of Bognar and
Dosly [48] and Dosly [104].

Finally note that throughout the whole book, the exponent p in the p-Laplacian
is a constant. Recently, several papers appeared (see, e.g. X. L. Fan, Q. Zhang, D.
Zhao [160] and the references given therein), where the exponent p may depend
on the independent variable z € R i.e., the investigated operator is of the form
div(||Vu(z)|[P*)=2Vu(x)). However, this more general situation is not treated in
our book.



CHAPTER 8

HALF-LINEAR DIFFERENCE EQUATIONS

The aim of this chapter is to present discrete versions of some of the results for
(1.1.1) given in the previous parts of the book. First we recall some basic facts
on linear difference equations, then we mention difficulties related to the discrete
case. The largest part is devoted to the oscillation theory of half-linear difference
equations. For comparison purposes, some of the statements will be proved in
details. The chapter is concluded with the theory of half-linear dynamic equations
on time scales, which unifies and extends the continuous and the discrete theory.
We focus our attention to those types of results which explain the discrepancies
between the continuous and the discrete cases. We also show some phenomena
that are not usual in the differential/difference equations case.

If it will not be said otherwise, by an interval we mean the discrete interval
in this chapter, e.g., [0, N] ={0,1,2,..., N} C Z, etc. We also introduce a usual
convention, namely for any sequence {aj} and any m € Z we put S r ' ay = 0
and [} ag = 1.

8.1 Basic information

We start with pointing out basic differences and similarities between discrete and
continuous oscillation theories, we also briefly discuss the discretization procedure
which leads from (half-linear) differential equations to difference equations.

8.1.1 Linear difference equations

In the last two decades, a considerable attention has been devoted to the oscillation
theory (as well as to some other aspects of the qualitative theory) of the Sturm-
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Liouville difference equation
(8.1.1) AlrpAzy) + cpzpe1 =0,

where Az, = xp41 — xx is the usual forward difference operator, r, ¢ are real-
valued sequences and rp # 0. Oscillation theory parallel to that for the Sturm-
Liouville differential equation (1.1.2) has been established and many oscillation
and nonoscillation criteria have now their discrete counterparts for (8.1.1). We
refer to monographs [1, 11, 138, 175, 199] for general background. Basic tools of
the linear discrete oscillation theory are the discrete quadratic functional

N
a(z;0, N) Z [ri( ATk Ckxi+1]7
k=0
the Riccati difference equation (related to (8.1.1) by the substitution w = rAxz/x)

w,%
8.1.2 Awp +cp + —=— =0
( ) k k T + Wk

and the link between them, the (reduced) discrete Picone identity

N
_ 2
(8.1.3) Fa(2;0,N) = wyys k=0 +kz_0 R, (relxp —wrprk)”,

w being a solution of the Riccati equation, which is defined for £ =0,..., N + 1.

A natural idea, suggested by similarity of oscillation theories for linear equation
(1.1.2) and half-linear equation (1.1.1), is to look for half-linear extension of these
results and to establish a discrete half-linear oscillation theory parallel to that
for (1.1.1). Therefore, the subject of this chapter is the theory of the half-linear
difference equation

(8.1.4) Alrp®(Azg)) + cp®(zpe1) =0,

where r, ¢ are real-valued sequences and ry # 0. At a first glance we see the differ-
ence from the continuous case, namely the presence of the shift in the second term,
i.e., zx+1 instead of z;. This is due to the discretization, see the next subsection.
One can use a different discretization scheme, but what we have used here is the
most usual one. Moreover, any index different from the index & + 1 in the second
term in (8.1.4) would destroy the below discrete Sturmian theory.

8.1.2 Discretization, difficulties versus eases

As we have said above, (8.1.4) can be understood either as a generalization of
(8.1.1) or as a discrete counterpart of (1.1.1). Before starting qualitative inves-
tigation of (8.1.4), let us recall the process of discretization of (1.1.1). Thus
consider differential equation of the form (1.1.1) with the coefficients 7, ¢, i.e.,
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(F()P(2")) +&(t)®(z) = 0, where 7(£) > 0 and &(t) are continuous functions on (a
real interval) [a,b]. For small h = (b —a)/N, N € N, we have

z2(t)y — z(t — h)

/ o~
2'(t) ~ o

1 {F(t-ﬁ-h)@[z(t—i—h) —z(t)] F)P[z(t) — 2(t — h)] }
h h ’

(F()2(' (1)) ~ 7

Let t = a+ kh, where k is a discrete variable taking on the integer values 0 < k <
N. If z(t) is a solution of the above half-linear differential equation on [a, ], then
we have

e+ (k+ 1)h)®[z(a+ (k+ 1)h) — z(a + kh)]—
—#(a+ kh)®[z(a + kh) — z(a + (k — 1)h)] + h?%é(a + kh)®(2(a + kh)) =~ 0.

Now we set yx1 = 2(a+ kh), rp = #(a + kh) and cx, = h?¢(a + kh). Hence we get

"1 PWra2 — Yrt1) — "o P(Yrs1 — yr) + k@ (yr41) = 0

and thus
A(re®(Aye)) + ca®(yr+1) =0

for 0 < k < N—2. Note that g, is defined for 0 < k < N. Observe that the resulting
7 is positive. But since we want to establish the theory in a full generality, we
allow 7 to attain also negative values. This enables to consider equations like the
Fibonacci recurrence relation x40 = x541 + 24 for which, when rewritten into the
self-adjoint form (8.1.1), one gets 7, = (—1)*, see e.g. [11]. We will see that the
principal results of our theory apply also in such cases. Possible negativity of r is
the first interesting example of differences between the discrete and the continuous
cases.

In contrast to the continuous case, there is no problem with the existence
and uniqueness for solutions of (8.1.4). Expanding the forward differences, this
equation can be written as

Ter1P(Tri2 — Try1) — TP (2py1 — k) + ek P(@pt1) =0

and hence

Tppo = Tpp1 + O ( [re®(rri1 — k) — qu)(karl)]) .

Tk+1
This means that given the initial conditions zy = A,z; = B, we can compute
explicitly all other x;. Moreover, given any N € N, the values x5,..., x5 depend
continuously (in the norm of RV 1) on zg, z;.

Clearly, all of the problems, which are due to the lack of additivity of the
solution space {see Section 1.3 for the continuous case), are transferred into the
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discrete case. However, in the discrete case one has to overcome another difficulties.
Indeed, we will see that the results for (8.1.4) are similar to those for (1.1.1),
but the proofs are often more difficult. The reason is that the calculus of finite
differences and sums is sometimes more cumbersome than the differential and
integral calculus. For example, we have no discrete analogue of the chain rule for
the differentiation of the composite function, or no discrete analogue of the method
of substitution in integration. On the other hand, there are some points where the
discrete calculus is “easier”, for example, if an infinite series > ay, is convergent,
we have lim,_, a, = 0, while the convergence of the integral [~ f(t)dt gives
generally no information about lim,— . f(%).

In the continuous case we have seen how the transformation of independent
variable enables to rewrite equation into the equation of the same form but with
r(t) = 1, see Section 1.2.7. Some of the results obtained for this easier equation then
can be easily rewritten for original equation. Since there is no discrete analogy of
this transformation, it is convenient to investigate half-linear difference equations
with general r, if possible.

8.2 Half-linear discrete oscillation theory

This is the main section of the chapter devoted to half-linear difference equati-
ons. First we establish the basic facts of the discrete half-linear oscillation theory.
In particular, we show that the variational principle and the Riccati technique,
properly modified, are the fundamental methods of this theory similarly as in the
continuous case. Then we use these methods to illustrate the main difficulties in
the “discretization” of (non)oscillation criteria and some other results presented
in the previous parts of this book.

8.2.1 Discrete roundabout theorem and Sturmian theory

Let us again emphasize that general discrete oscillation theory can be established
under the mere assumption r; # 0, while we have to suppose that r(¢) > 0 in the
continuous case. This fact affects the following definition of the basic concepts of
oscillation theory.

Definition 8.2.1. We say that an interval (m,m + 1] contains a generalized zero
of a solution = of (8.1.4) if x,,, # 0 and ZmZm+17m < 0. Equation (8.1.4) is said
to be disconjugate on [0, N] provided the solution x of (8.1.4) given by the initial
conditions zg = 0, ro®(x1) = 1 has no generalized zero in (0, N + 1].

If rp, > 0, a generalized zero of x is just the zero of & at m + 1 or the sign
change xpzmy1 < 0.

In order to present the central statement of half-linear discrete oscillation the-
ory, namely the discrete Roundabout theorem, we have to introduce another im-
portant concepts. Along with (8.1.4) consider the generalized Riccati difference
equation

Tk
(8.2.1) Awg + ¢ + wi (1 (D () +<I>1(wk))> -0
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Define the class D = D(0, N) of the so-called admissible sequences by
DON)={z:[0,N+1] - R;z0=0=2n+1}
and the discrete p-degree functional F4 on D(0, N) by

N

Faly; 0,N) =D [l Ayel” = exlyesr 7]
k=0

Often we will write just F4(y). Note that (8.1.4) can be viewed as the Euler-
Lagrange equation associated to certain discrete variational problem involving Fg.
Very important role in the proof of the Roundabout theorem is played by Picone’s
identity, that is the discrete counterpart to Theorem 1.2.1, which was proved in
[323].

Theorem 8.2.1. Consider a pair of the second order half-linear difference oper-
ators of the form

yr] = A(re®(Ayr)) + cr®(yr+1)

and
L[Zk-] = A(Rk(I)(AZk)) + qu)(zk+1)

on [0, N], with ri, # 0 % Ri. Let yy, zi be defined on [0, N + 2] and let z #£ 0 for
k€ [0,N +1]. Then for k € [0, N],

822) 0G0 a(an) - omReda) ) -

@(Zk-)
= (Cr — cu)lyr 1P + (re — Ri)|Ayrl?

Yie+1 Rz
0] — L 0]
<I>(Zk+1){l[yk] (zh41) — L{ze]®(yrs1) } + o G(yr, 2k ),
where
Zk+1 ZkJrl(I)(AZk) Zk+1<I>(AZk)
2. = Ay |p — —/——~— 7 poy ZRTITANTERI P
(8.2.3) G(yk, 2k) - |Ayx| 2B (net) Yk ” + 228 lyx” >0

with equality if and only if Ayr = yr(Azg/2k).

Now we are ready to formulate the main statement of this chapter, a discrete
Roundabout theorem.

Theorem 8.2.2. The following statements are equivalent:
(i) Equation (8.1.4) is disconjugate on [0, N].
(ii) There exists a solution of (8.1.4) having no generalized zero in [0, N + 1].

(#1i) There exists a solution w of the generalized Riccati difference equation (8.2.1)
(related to (8.1.4) by the substitution wy = ry®(Axy/xy)), which is defined
for every k € [0, N + 1] and satisfies r, + w, > 0 for k € [0, N].
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(iv) The discrete p-degree functional F4(y; 0, N) is positive for every nontrivial
y € DO, N).

Proof. (i) = (ii): First note that for the solution z of (8.1.4) given by o = 0,
x1 = ® (1 /rp), we have rragar1 > 0 for k € [1, N]|. Now consider the solution
2l of (8.1.4) satisfying the initial conditions 2z = & > 0, 2l¥ = &=1(1/rp).
Then, according to the above mentioned continuous dependence on initial values,
zl¥ — gz on [0, N + 1] as ¢ — 0. Hence, if we choose ¢ sufficiently small, then
& = 2 satisfies 7, Z4Zpq1 > 0 for k € [0, N].

(ii) = (iii): Let & be a solution of (8.1.4) having no generalized zeros in [0, N+1],
and let wy = rp®(Azy/xr). Then

Alr®(Axy,))P(xy) — i ®(Azg ) (P(Tp41) — P(71))

Aw, =
k D(zp41)P(2r)
R o 1S B riD(A)
= TG Wkt bz + Azy) o T O(zx)® (1 + Azy/z1)

= —cp — wg (1 To(lt <I>—11 (w/m)))

Tk
= —cp—wp|1— .
o ( (@ 1(ry) + <1>—1<wk>>)
Moreover, rpxizro1 > 0 if and only if rp® (2 )P (2g41) > 0 and
Tk@(mk)®($k+1) = rk<I>(:vk)<I>(xk + A.Z'k)

wo)e (070 + 0 () T2 )

= CI)2(ajk)(I>(<I>71(’I‘k) + ®71<wk))

for k € [0, N]. Hence ryzaxy1 > 0 if and only if @ (ry) + & Y(wi) > 0, ie., if
and only if 7, + wg > 0.

(iii) = (iv): Assume that wy is a solution of (8.2.1) with 7 +wy > 0. Note that
then z given by wi = re®(Azr)/®(2x), ie., Azy = D~ (wy/ri)2k, is a solution
of (8.1.4). From the Picone identity (8.2.2) applied to the case ¢, = Ci, rp = Ry
and wy = rp®(Az,)/P(z;) we obtain

Alyrrs®(Ayx)] — Allye|Pwr] = yre1 Are®(Aye)) + prlyis1 P + Gyn, wi),
where

~ WgTk
G = | Ayg|P —
(yk7wk) T'k| ykl (I)((I)—l(rk) + P!

(on)) lye+1|P + wi|yg "

Hence 3
el Ay " = prlyer [P = Alwrlye "] + G (yr, we)-
The summation of the above given equality from 0 to N yields

N

Fay) = welye P10+ Gy, wr),
k=0
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compare with the quadratic case (8.1.3). Then Fy(y) > 0 by inequality (8.2.3),
since ryzr4+1/2; > 0. In addition, if F4(y) = 0, then, again by (8.2.3), Ay, =
yr Azg /2. Further, we have yp = 0 and therefore y = 0. Consequently, F4(y) > 0
for every nontrivial admissible sequence y.

(iv) = (i): Suppose that Fy is positive for all nontrivial admissible sequences
and (8.1.4) is not disconjugate in [0, N + 1], i.e., the solution x given by the initial
condition xg = 0, 71 = ®~1(1/rp) has a generalized zero in the interval [0, N + 1],

ie., rmZmTmt1 < 0 or Zpyq = 0 for some m € {1,..., N}. Define y = {yk}]kvjz)l
as follows

Tk k= 0, e,y

Y =

0 k=m+1,...,N+1

Then we have (using summation by parts applied to Fy(x;0,m — 1))
}—d(y; 0, N) = }—d(x; 0,m — 1) =+ [rm‘Aym‘p] = ?“k'i’(ACUk)xk\gL + rm‘xm|p
DAz,
- ‘xm|p |:7”m qg(xm)) ‘|‘7'm:| = |xm|p [wm +rm] <0

since Wy, +rm < 0 if and only if rp 22,41 < 0 as we have shown in the previous
part of this proof. O

Remark 8.2.1. (i) Similarly as in the continuous case, it can be shown that the
disconjugacy of (8.1.4) on [0, N] may be equivalently defined as the property of
(8.1.4) when any its nontrivial solution has at most one generalized zero in the
interval (0, N + 1], and the solution § satisfying 3o = 0 has no generalized zero in
(0, N +1].

(ii) Picone’s identity could be used to prove (ii) = (iv) directly.

The Roundabout theorem may serve to provide very easy proofs of Sturm type
theorems. Indeed, the proof of the following comparison theorem is based on the
equivalence (i) < (iv), while the proof of the subsequent separation theorem is
based on the implication (ii) = (i) and the homogeneity of the solution space of
(8.1.4).

Theorem 8.2.3. Let the operators | and L be as in Theorem 8.2.1. Suppose that
Ry > 1, and e, > Cy, for k € [0, N]. If llyx] = 0 is disconjugate on [0, N]|, then so
is the equation L[zy] = 0.

Theorem 8.2.4. Two nontrivial solutions y' and y!?! of (8.1.4), which are not

proportional, cannot have a common zero. Let m < n. If y!) satisfying y%] =0
has a generalized zero in (n,n + 1], then y!? has a generalized zero in (m,n + 1].
IfyW has generalized zeros in (m, m+1] and (n,n+1], then y'? has a generalized
zero in (m,n +1].

Remark that the last theorem does not exclude the situation where two linearly
independent solutions have common generalized zero. Taking e.g. the equation
Yk+2 + 2Uk+1 + 2yr = 0 (every three-term linear recurrence relation Agygis +
Biyk+1 + Cryr = 0 can be written in the form (8.1.1)), one gets the example,
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where such a case may really happen. Indeed, its two linearly independent solutions
are y, = 2°/2sin(37k/4) and z, = 2¢/2 cos(37k/4). Both these solutions have a
generalized zero in (1,2].

In the next sections, the following concepts will be widely used.

Definition 8.2.2. Equation (8.1.4) is said to be nonoscillatory if there exists
M € N such that this equation is disconjugate on [M, N] for every N > M. In
the opposite case, (8.1.4) is said to be oscillatory. Oscillation of (8.1.4) may be
equivalently defined as follows. A nontrivial solution of (8.1.4) is called oscillatory
if it has infinitely many generalized zeros. In view of the fact that the Sturm
type separation theorem extends to (8.1.4), we have the following equivalence:
One solution of (8.1.4) is oscillatory if and only if every solution of (8.1.4) is
oscillatory. Hence we can classify equation (8.1.4) as oscillatory or nonoscillatory.

8.2.2 Methods of half-linear discrete oscillation theory

We start with what is usually refereed to as the (discrete) Riccati technique. This
method is based on the equivalence (i) < (iii) of Theorem 8.2.2. Note that this
technique can be refined in various ways, as shown in the next subsection. Observe
that in contrast to the continuous theory the condition ry + wr > 0 is involved
here.

Theorem 8.2.5. Equation (8.1.4) is nonoscillatory if and only if there exists a
sequence wy, with r, +wy, > 0 for large k, satisfying generalized Riccati equation
(8.2.1).

(Discrete) variational principle extends to (8.1.4) as follows, and it is based on
the equivalence (i) < (iv) of Theorem 8.2.2.

Theorem 8.2.6. (i) Equation (8.1.4) is nonoscillatory if and only if there exists
N € N such that

o

Faly; Nooo) = > [re] AywlP — crlyrsr[?] > 0
k=N

for every nontrivial y € D(N), where
D(IN) ={x:N—=R;IM > N withz;, =0 if k & (N, M)}.

(ii) Equation (8.1.4) is oscillatory if and only if for any N € N there ezists a
(nontrivial) y € D(N) such that Fq(y; N, c0) < 0.

Another well-known method, which is available in the half-linear discrete os-
cillation theory is the (discrete) reciprocity principle. Here we suppose that rp > 0
and ¢; > 0 (even if for the transformation itself, it suffices to assume ry # 0 and
cr # 0). If we denote up = ry®(Ayyg), where y is a solution of (8.1.4), then u
satisfies the reciprocal equation

(8.2.4) Ale, 107 (Aug)) + ry 107 (ung1) =0,
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where ! is the inverse function of @, i.e., ® !(2) = |z|? !sgnx and ¢ is the
conjugate number of p, i.e., 1/p+ 1/q = 1. Conversely, if y, = cij{@‘l(Auk_l),
where u is a solution of (8.2.4), then gy solves the original equation (8.1.4). Since
the discrete version of the Rolle mean value theorem holds, see e.g. [1], we have the
following equivalence: (8.1.4} is oscillatory [nonoscillatory] if and only if (8.2.4) is
oscillatory [nonoscillatory].

Finally note that till now we have no reasonable discrete version of the gen-
eralized Priifer transformation. This is caused, in particular, by the absence of a
discrete chain rule.

8.2.3 Refinements of Riccati technique
Define the operator R by

Tk
R[wk] = Awg + ¢ + Wi <1 q)(q)l(wk)—l—@l(?"k))) .

Before presenting variants and improvements of the Riccati technique, let us
give one technical result. One can see that the third term in the operator R, i.e.,
the third term in the generalized Riccati difference equation, is of quite compli-
cated form in contrast to its continuous counterpart and this sometimes causes
difficulties when handling with it. Nevertheless, the next lemma shows what could
be expected, namely that the function

S(w,y) = S(a,y,p) = x (1 N @(Q—l(:v)er <I>—1(y))>

exhibits behavior similar to that of the function z?/(x + y), which appears in
Riccati difference equation (8.1.2) associated to linear difference equation (8.1.1).

Lemma 8.2.1. The function S(x,y,p) has the following properties:
(i) S(x,y,p) is continuously differentiable on
D= {(2,9.p) € R x R x (1,00),2 # —y}.
(i) Lety > 0. Then m%(m,y,p) >0 forx +y >0, where g—i(m,y,p) =0 if and
only if x =0.

(iti) Let x +y > 0. Then %(I,y,p) > 0, where the equality holds if and only if
z=0.

(iv) S(x,y,p) >0 for x +y > 0, where the equality holds if and only if x = 0.

(v) Suppose that the sequence (xg,yr), k = 1,2,..., is such that zp +yp > 0
and there exists a constant M > 0 such that y, < M for k=1,2,.... Then
S(zk, yk,p) — 0 implies x, — 0. Moreover, liminfy_, . yx > 0.

(vi) Let S(x,y,p) = @ — S(x,y,p) hold. Then S(z,y,p) = S(y,x,p) on D and
g;i(x,y,p) > 0 for z +y > 0, where the equality holds if and only if y = 0.
If y <1, then S(z,y,p) <1 for all z +y > 0.
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(vii) Let x,y > 0. Then %(m,y,p) > 0.
(viti) Suppose that sgny = sgn(x +y) and y £ 0. Then

(p —1)|=|71€P~2
(¢! (z) + 2~ (y))’

S(z,y,p) =

where € is between ®~1(y) and ®~1(x) + ¢~ 1(y).

The equivalence of disconjugacy of (8.1.4) and solvability of (8.2.1) (satisfying
ry + wg > 0), coupled with the Sturmian comparison theorem for (8.1.4) (The-
orem 8.2.3), lead to the following refinement of the Riccati equivalence from the
previous subsection.

Theorem 8.2.7. The following statements are equivalent:
(i) Equation (8.1.4) is nonoscillatory.

(i) There is N € N and a sequence w such that Rlwg] =0 and rg + wg > 0 for
ke [N,0).

(iti) There is N € N, a constant A € R and a sequence w such that

k1
wp = A=Y [ej + S(wy, ;)]

=N
and ri +wy, > 0 for k € [N, 00).

(iv) There is N € N and a sequence w such that Rlwy] < 0 and ri +wyg > 0 for
k€[N, 00).

(v) There is N € N and a sequence y such that
(8:2.5) TeYkYee1 > 0 and yryllye] <0
for k € [N, 00), where | is defined in Theorem 8.2.1.

Proof. We show the following implications:
(i) = (ii): This implication is in fact a part of Theorem 8.2.5.

(ii) = (iii): Trivial.
(iii) = (iv): Trivial.
(iv) = (v): Let w satisfy Rfw;] < 0 with 74 + wy, > 0 on [N, 00) and let
k—1
up = H (1+ @ Y(w;/rj)), k>N,
J=N

be a solution of the first order difference equation

Auy = <I>_1(wk/rk)uk, uny =1,
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Then uy, # 0 since

1

1 +®_1(wk/rk) = m

(@7 (k) + @7 (wk)] #0.

Recall that ® () + ® L(wg) > 0 if and only if wy + 74 > 0. Further,

_ |uk+] |ka(I>(Auk)A(P(uk)

ugerlug] = uper [A(rE®(Aug)) + cxP(ugs1)] B (ur)® (i)
|uk+1 ‘ka(P(AU]g)Aq)(uk)
D (up)P(urs1)
- A(re®(Aug))®(ug) — ra®(Aug) AD(ug)
= Uptr1P(upt1) & (up)®(ups)
» prk(b(Auk) _ (I)(uk)
+ il + o P ) (12 )

= Jups1|["R[wi] <0,
for k € [N, 00), since wy = rp®(Aug/uy) and

D(ug) 1 Tk

Slurs) 2+ Aug/ur) | (@ () + @ (wy))

Hence (v) holds.

(v) = (i): Suppose that a sequence uy satisfying (8.2.5) on [V, 00) exists. Then
i := —up41l[ug] is a nonnegative sequence on this discrete interval. Further, set
T =11 and & = ¢ — i /|ug+1|P. Hence & > ¢ and

AT P(Aug)) + G P(urr1) = A(reP(Aug)) + (Ck — > b(ugpy1) =0.

lug41[P

Thus equation A(7, ®(Aug))+ P (urr1) = 0 is disconjugate on [N, 00) and there-
fore (8.1.4) is also disconjugate on [N, oc) by the Sturm comparison theorem (The-
orem 8.2.3) and hence nonoscillatory. O

The following two statements can be understood as the discrete counterparts
of the Hartman-Wintner theorem. In fact, they describe the asymptotic behavior
of Zk S(wj,r;) in the dependence on the behavior of Zk ¢;. We have already seen
that the results (the techniques of proofs) in the discrete case are mostly more
complicated than those in the corresponding continuous case. However, the next
result shows that this is not always true. Thanks to the necessary condition for
the convergence of infinite series and the special form of the third term of the
generalized Riccati difference equation together with the condition ry + wy > 0,
the next two statements and their proofs (and also some of their applications) are
simpler (and stronger) in a certain sense than those for differential equations. Note
that these statements have no continuous analogies. It is worthy to emphasize that
in the following theorems we do not require the sequence r to be positive. On the
other hand, it is still an open problem to prove them for a more general class
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of positive sequences r than those which are bounded above (the boundedness
substantially simplifies the problem). Note that even in the linear case we have no
“full discrete version” for (8.1.1) of the Hartman-Wintner theorem for equation
(1.1.2) with the condition [*"r~!(s)ds = co. At present, the “corresponding”
discrete version is known only under the restriction limsup, ,_ k=3/2 3" r; < oo.
In fact, this can be slightly extended using the “weighted averaging” technique,
see [73, 156]. Finally note that by the “full discrete version” we mean that there
is no additional restriction on ¢. Actually, subsequent theorems in the second part
of this subsection show that it is possible to obtain similar kind of results under
the condition > r,]fq = 00, but with additional condition on c.

Theorem 8.2.8. Assume that
(8.2.6) there exists M > 0 such that r, < M for k € N.

Further suppose that {8.1.4) is nonoscillatory. Then the following statements are
equivalent:

(i) It holds

k
(8.2.7) hkrriggf;cj > —00.

(i) For any monoscillatory solution y with rryryr+1 > 0, k > N, for some
N €N, the sequence wy, = r,®(Ayi)/®(yr), k> N, satisfies
>
(8.2.8) S(w;,r;) < oo.
=N
Moreover, this implies liminfy_, . 7 > 0.
(iii) The limit
k
(8.2.9) lim ch exists (as a finite number).
k—o0 =
Proof. (i) = (ii): In view of the nonnegativity of the function S, see Lemma 8.2.1
(iv), the sequence Zf: ~ S(wj,r;) is nondecreasing for k > N. Therefore there
exists the limit of this sequence equal either to a finite (positive) number or to oo.

Suppose, for the contrary, that there is a nonoscillatory solution y of (8.1.4) such
that

(8.2.10) we = =g

> =7k
and

(8.2.11) S(w;,r;) = 00.

oo
J=N
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From (8.2.1) we have

k
(8.2.12) Wpp1 = WN — Zq ZSw],r] k>N.
j=N j=N
Now, from (8.2.7), (8.2.11) and the last equation we obtain limg_,. wr = —oo.

But this contradicts (8.2.10) since (8.2.6) holds. Therefore we must have (8.2.8).
Moreover, S(wg,rr) — 0 is a necessary condition for Z]oiN S(wj,r;) < oo, and
this implies wy — 0 by Lemma 8.2.1 [(v)]. The condition r; 4+ wy > 0 now implies
liminfg_,e0 7% > 0.

(i) = (iii): Let w be a sequence as in (ii). According to the above observation,
we know that wy — 0. Now, by letting & — oo in equation (8.2.12) we obtain the
statement (iii).

(iif) = (i): This implication is obvious. O

The following result is a counterpart to the previous theorem.

Theorem 8.2.9. Assume that (8.2.6) holds and (8.1.4) is nonoscillatory. Then
the following statements are equivalent:

(i) It holds

(8.2.13) liminf } ~¢; = —o0.

(i) There exists a nonoscillatory solution y of (8.1.4) with ryyryr+1 >0, k> N
for some N € N, such that (8.2.11) holds, where wy = rx®(Ayr)/P(yr) >
—rg fork > N.

(iti) It holds

(8.2.14) lim ) " ¢; = —c0.

Proof. (i) = (ii): This follows from Theorem &8.2.8.
(ii) = (iii): From (8.2.1) using ry + wg > 0, k > N, and (8.2.6) we get

k k k
Z € = —Wkt1 + Wiy — Z S(wy,ri) <M+ wy — Z S(wj, 1) — —0.
j=N j=N j=N
(iii) = (i): Trivial. O

The following theorem gives a necessary condition for nonoscillation of (8.1.4)
in terms of the existence of solution of generalized Riccati difference equation in
a summation form. Compare with Theorem 2.2.4.
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Theorem 8.2.10. Let (8.2.6) and (8.2.9) hold. If (8.1.4} is nonoscillatory, then
there exists a sequence wy, such that riy, +wy > 0, k> N for some N € N, and

(8.2.15) wy = ch + ZS(wj,rj).
j=k =k

Proof. In view of the assumptions, (8.2.9) holds. From (8.2.1) we get (8.2.12) and
letting & — oo in this equation, we obtain

oC o<
0= Wy — Z Cj — Z S(wj,rj)
J=N j=N
by Theorem 8.2.8. Replacing N by k we obtain (8.2.15). O

It is clear that the necessary condition in the above theorem is also sufficient for
nonoscillation of (8.1.4). One can easily verify it by applying the difference operator
to the both sides of (8.2.15) and making use the fact that rp + wr > 0, £ > N.
Then the statement follows from Theorem 8.2.7. But the next theorem shows that
such a type of condition guaranteeing nonoscillation can be somewhat relaxed.

Theorem 8.2.11. Lei (8.2.6) and (8.2.9) hold. Suppose that ri, > 0 for large k. If
there exists a sequence zy, such that rp+z; > 0, k > N for some N € N, satisfying

(8.2.16) w=Y i+ Y S(zr) =0,
j=k j=k

or

(8.2.17) <Y e+ Y S(zmy) <0,
i=k =k

then (8.1.4) is nonoscillatory.
Proof. Suppose that (8.2.6) and (8.2.7) hold and either (8.2.16) or (8.2.17) is

fulfilled. Let - -
wy = ch + ZS(zj,rj).
j=k j=k

Then Awg = —ci — S(zk,7r%). We have 2z, > wi > 0 or 2 < wr < 0 and
hence S(zy, i) > S(wg, k), kK > N, according to Lemma 8.2.1 (ii). Obviously,
ri +we > 0 and Awg + pr + S(wk, i) < 0 for k > N. Now, equation (8.1.4) is
nonoscillatory by Theorem 8.2.7. |

In what follows we will show that the conditions for nonoscillation similar to
those in the last two theorems can be obtained also in a different way, but with
different assumptions. We present the statements without proofs. In fact, they are
similar to the continuous case, see Subsection 2.2.5. We start with an auxiliary
statement showing that under certain assumptions one can find a positive solution
of (8.2.1). This fact plays an important role in the proof of the next two theorems.
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Lemma 8.2.2. Assume r; >0,

k—o0

k
lim inf Z c; 20 and #O0
j=N
for all large N, and
(8.2.18) oy =00
k=1

If (8.1.4) is nonoscillatory, then (8.2.1) possesses an eventually positive solution.

Compare the next statement with Theorems 8.2.10 and 8.2.11. Note that if
¢ > 0 in these statements, then it is easy to prove the existence of a (positive)
sequence satisfying (8.2.15). See also the continuous case (Theorem 2.2.4).

Theorem 8.2.12. Let the assumptions of the previous lemma hold and let Z;C:l cj
be convergent. Then (8.1.4) is nonoscillatory if and only if there exists a positive
sequence w satisfying

(8.2.19) wg > Z(Zj +ZS(wj,rj)
=k =k

for large k. In fact, w is given by wy = rp®(Ayg/yi) > 0, where y is an eventually
positive solution of (8.1.4).

We conclude this section with the statement which claims that under slightly
stronger assumptions than those of the previous theorem, a positive solution of the
generalized Riccati difference equation can be estimated from above by a known
sequence. This will be important in some of the subsequent applications of the
Riccati technique.

Theorem 8.2.13. Let the assumptions of the previous theorem hold. Assume
Jurther that ¢, > 0 (and eventually nontrivial) for all large k, say k > N. If (8.1.4)
is nonoscillatory with an eventually positive solution y, then wi = rp®(Ayy/yr) >
0 for k > N and satisfies wi — 0 as k — co. Moreover, the inequality

17
k—1 P
wg < E 71]1.7(1
j=N

holds for k > N.

8.2.4 Discrete oscillation criteria

In a discrete Leighton-Wintner criterion, similarly as in the continuous case, equa-
tion (8.1.4) is viewed as a perturbation of the one-term equation

(8.2.20) A(ry®@(Azy)) = 0.
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In accordance with the continuous case, we need (8.2.20) to be nonoscillatory in
this approach, so we suppose that rp > 0 for large k, otherwise this equation is
oscillatory — each sign change of 7 is a generalized zero of the constant solution
T = 1.

Theorem 8.2.14. Suppose that ry > 0 for large k,

(8.2.21) ir};q =00 and ick = o0.

Then (8.1.4) is oscillatory.

Proof. We will see that the idea of the proof is exactly the same as in the continu-
ous case. Let N € N be arbitrary. For N < n < m < M (which will be determined
later) define a sequence y € D{N), D being defined in Theorem 8.2.6, as follows

0 k=N,

k—1 1 n—1 1 -1
'ZNrij Z;Vrij N+1<k<n,
j= j=

n+l1<k<m-1,

M-1 M1 -t
rj_q er_q m<k<M-—1,
j=k j=m
0 k> M.

|
—

Yk

Then we have
M—1

[e@]
Falyi Nyoo) = > [rulAul” — clyrii ) = Y [rul Agwl? — cxlynia [P)
k=N k=N

k=N k=n k=m
1

n— 1-p n—1 m—1
1—gq
L - E Ck|yk+1‘p—g Ck
; k=N k=n

n—1 m—1 M—-1
= <Z +2 + ) [re| Ayel” — cklyera ]

M1 M1 1-p
17
- Ck|yk+1|p+ E Ty 1 .
k=m

k=m
Now, using the discrete version of the second mean value theorem of the summation
calculus (see e.g. [99]), there exists m € [m — 1, M — 1] such that

M-1 W
Z ck|Yr+1|P = Z Ck-
k=m k=m

Let n > N be fixed. Since (8.2.21) holds, for every € > 0 there exist M >m > n
such that

i M-1 1=p
Z e > Faly; Nym— 1)+ & whenever m > m and (Z r,iq) <e.
k=m

k=n
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Consequently, we have

M—1 1-p
Fay; N,oo) < Faly; Non— 1) — ch+<zr ) <0

what we needed to prove. |

In Subsection 1.2.10 we have presented an alternative proof of the continuous
Leighton-Wintner criterion — based on the Riccati technique. Next we show the
difficulties in an attempt to follow this idea in the discrete case. The “Riccati proof”
goes by contradiction. Suppose that (8.2.21) holds and (8.1.4) is nonoscillatory, i.e.,
there exists a solution of (8.2.1) satisfying ry +wy > 0 for large k. The summation
of (8.2.1) from N to k — 1, where N, k are sufficiently large, yields

k—

k-1 k-1
w,, = WN — E ¢ — g (w;,75) E S(wj,r;) =: G.
i=N J=N

j=N

In the continuous case we obtained the analogous inequality

3
w(t) < —(p— 1)/ r9(s)|w(s)|? ds =: G(t)
T
which leads to the inequality

(8.2.22)

and integrating it we get [~ r!79(t)dt < oo, a contradiction.

The inequality w, < Gy is the discrete analogue of (8.2.22), and to get a
contradiction from this inequality is a difficult problem even in the linear case
p=2.

On the other hand, if the first condition in (8.2.21) is changed to (8.2.6),
then oscillation of (8.1.4) follows from a very simple argument, which is in fact
based on the Riccati technique. Indeed, if (8.1.4) is nonoscillatory, then there is w
satisfying ry +wy > 0 and (8.2.12) for large k > N. Since S is nonnegative, we get
w < WN — Z;:I]V ¢;, consequently wi — —oo as k — oo. From ry +wy > 0 we
obtain wr > —M, a contradiction. Note that in contrast to the above Leighton-
Wintner type criterion,  does not need to be positive. But if it is positive, then
the previous criterion is better. Also observe, that the statement which was just
proved can be easily obtained from Theorems 8.2.8 and 8.2.9 as well. Another
criterion which immediately follows from these two theorems is that a sufficient
condition for oscillation is

(8.2.23) hm mf Z ¢; < limsup Z ¢;

k—o0
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provided (8.2.6) holds. Notice that this criterion has no continuous analogue. Also
it is interesting to see what role is played by the condition 74 +wy > 0. In a certain
sense, (8.2.23) can be understood as a discrete counterpart to Theorem 2.2.10.

Note that the Leighton-Wintner type criterion is completed by the Hille-Nehari
type criterion, when Y ¢; converges, see Theorem 3.1.1 for the continuous ver-
sion. In [3], the Hille-Nehari type criterion was proved in a more general setting, for
half-linear dynamic equations. Its difference equations version is given in the next
statement. In the proof, the equivalence (i) < (iv) from Theorem 8.2.7 is used.
Additional assumptions are required in comparison with the continuous case. The
criterion was for the first time proved under condition (8.2.6), but later it was
shown that (8.2.6) can be replaced by a weaker condition, namely (8.2.24). A
nonoscillatory counterpart to the following theorem is the discrete Hille-Nehari
criterion presented in the next section.

Theorem 8.2.15. Lel r > 0 and ¢, > 0 for large k with (8.2.9) and

(8.2.24) lim
If

k—1 p—l o 1/p—1 p—1
8.2.25 lim inf pia ¢ >—<—> ,
som o (S4) (Ta) > 1(5

then (8.1.4) is oscillatory.

In [323], the same technique as that in Theorem 8.2.14 was used to prove the
Hille-Nehari type criterion which differs from the last theorem as follows: ¢x does
not need to be eventually positive, 7, does not need to satisfy (8.2.24), but (8.2.18)
holds, the constant on the right-hand side of (8.2.25) being replaced by (the larger
one) 1. Similarly as in the continuous case, the complement to that criterion, in
the sense of the convergence of Y > r,ifq, can be proved easily by means of the
discrete reciprocity principle mentioned in Subsection 8.2.2.

From the above criteria it can be seen that if (8.2.6) holds, then the nonexis-
tence of the limit in (8.2.9) as a finite number (except in the case (8.2.14)) implies
oscillation. From this point of view, the cases when (8.2.9) or (8.2.14) holds seem
to be interesting for the examination. More precisely, we look for additional condi-
tions, which guarantee oscillation of (8.1.4) in these cases. In the case when (8.2.9)
holds, such conditions already exist. See e.g. the above Hille-Nehari type criterion.
Many other criteria in this case are presented in the following two papers: In [324],
oscillation criteria are proved making use Theorem 8.2.12 and Theorem 8.2.13. For
example, under the assumptions of Theorem 8.2.13, equation (8.1.4) is oscillatory
provided there is a v > 0 such that p — v > 1 and

k j v
. 1—
lim r 1Y e = oo.
k—o0 — ¢ J
i

J=1
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Note that the Hille-Nehari type criterion with 7, = 1 is given there as a conse-
quence of a more general theorem, which is based on the discrete function sequence
technique. In [325], discrete counterparts to some of the criteria from Section 3.3
are proved. The main tool in that paper is Theorem 8.2.10. Also, the Hille-Nehari
type oscillation criterion with 7, = 1 can be found there, as a corollary of the
following theorem. The sequence ¢ does not need to be nonnegative.

Theorem 8.2.16. Suppose that (8.2.9) holds, ri, =1, and

k . -9 o0 —1
PRy e 1 (p—1\*
Jim sup ijl(jk ) Z =j+1% 1 (p ) .
k—oo > LG+ P\ P

Then (8.1.4) is oscillatory.

Concerning the case when (8.2.14) holds, the situation becomes more difficult
and we still have no reasonable conditions of such type. But it really makes a sense
to look for these conditions since both oscillation and nonoscillation are possible
in this case. Indeed, for example, if ¢, = a < 0 and r; = 1, then equation (8.1.4) is
nonoscillatory by comparison theorem (since A(®(Ayy)) = 0 is nonoscillatory) and
(8.2.14) holds. The next criterion, which is in fact corollary of [322, Theorem 5],
proved by the Riccati technique, enables to give an example of oscillatory equation
(8.1.4) with ¢ satisfying (8.2.14).

Theorem 8.2.17. If there exist two sequences of integers my and ng, ng > me~+1,
such that my, — oo for k — oo, and

71)‘-,—1

§ Cj Z Ty + Tngs

J=myg
then equation (8.1.4) is oscillatory.

Ezample 8.2.1. Let my =4k, k ¢ N.Putry =land ¢y, =1, ¢mu+1 =1, Cmps2 =
1, emy43 = —4 for £ € N. Then

Mg +2
E ¢ =3>2="Tm, +Tm,+3

J=my
for all £ € N. Equation (8.1.4) is oscillatory by Theorem 8.2.17. It is clear that
Zjoil Cj = —00.
8.2.5 Hille-Nehari discrete nonoscillation criteria
The following theorem is a discrete version of Theorem 2.2.9.
Theorem 8.2.18. Suppose that v, > 0 for large k, (8.2.9) and (8.2.24) hold. If

k—1 p—1 00 1/p—1 p—1
(8.2.26) lim sup (Z r;q> ch < ; <—)
=k

k—oc P
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and

NS p—1(p—1\"""
8.2.27 lim inf ri=a ¢ | >— (—) :
samn e (E0) (S )52 (S

then (8.1.4) is nonoscillatory.

Proof. 1t is sufficient to show that the generalized Riccati inequality Rlwg] < 0
has a solution w with ri +wy > 0 in a neighborhood of infinity. We recommend the
reader to compare this proof with that of Theorem 2.2.9 to see difference between
the discrete and the continuous case.

Set

k—1 1-p 20
(8.2.28) wy = C (Z rjfl) +> ¢,
=k

where (' is a suitable constant, which will be specified later. The following equal-
ities hold by the Lagrange Mean Value Theorem,

k-1 1-p
A (z) B

where Zkil r;fq < < Zk rjlfq. Similarly,

1 - i
(@~ (re) + @~ (we))
1 —1 —1 —1
= (D 1(r) + D (wp)) {(I)((I) (ri) + @7 (wg)) — (@ (rk))}
= P 6720 (wy),

(O Hrg) + D Hwy))
where & is between ®~!(ry) and ®~1(rg) + ®~!(wy). Hence
O (ry) — @7 (wr)| < & < @7 (re) + [ (wi)|

and
p—1

|wk‘ T'l_q k—1 p—l X0
N 1—

—q i—k
. J
27

Therefore wy/ry, — 0 for k — oo according to (8.2.24), (8.2.26) and (8.2.27).
Further, we have

Tk
Awy + cp — wy (1 B () + ‘I)l(w’“))>
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(p — 1)|wy|260~"
D(D—(rg) + P~ (wg))

_ - N c
= ®=bnt {@(@wk) T ) ni}

= (1-p)Cry "+

where

_ |& P29
T B@ () + b L(wy))

Concerning the asymptotic behavior of this sequence and of

-1

we have
k
1— 1—
LR SR v
lim = lim ——— 2 -1
kﬁook 1 k—oo k—
= Sl
7

since (8.2.24) holds. Further,

L e S ¥ .y S ek S ()
B@ () + O (wp)) D@ () — B (Jun]))

as k — oo since |wg|/ry — 0 as k — oo. Consequently,

(8.2.29) limsup v, < 1.

k—o0

Now, inequalities (8.2.26) (8.2.27) imply the existence of € > 0 such that
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(8.2.30)
- k—1 R -1
2p—1(p—1>” ! - 1<p—1>p
- S +e< rs | <= — —<
p p 2 JX_; e\ p

p—1

1 p
for k sufficiently large. Let 4, = v/, é = ¢ (#) and let C' = (%) in
(8.2.28). According to (8.2.29), 44 < 1/(1 — &) for large k. Further,

”<L<:>1>1—Lp_1~
R p—1) ™
1\t “INTHp—1 1 Pl
- ) ) )
D P D D p—1
—1\* —1\" 1 /p-1\"""
— ()[R ) s
p p p\ P

Lo !
w>l<p 1) .

Yk p p

=

Therefore, the second inequality in (8.2.30) implies

k—1 p—l 0
ct > c+<zr;q) Se ||

Jj=k

By a similar computation (using the first inequality in (8.2.30)) we get

) k-1 p=l o0
—Ci < |C+ (ZT;_Q> Do || A

i=k

Consequently,
q

k—1 p—l S
C+ (Zr;q> ch <C
=k

for large k and hence R|wy| < 0. Finally, since ry > 0 and wy /1y — 0 as k — oo,
we have 7, + wy > 0 for large k and the proof is complete. O

If we compare the previous statement with Theorem 2.2.9 (which is a contin-
uous counterpart of this theorem), we see that assumption (8.2.24) has no con-
tinuous analogue. This is a consequence of the fact that we have no “reasonable”
version of the differentiation chain rule in the discrete case, and its partial discrete
substitution — the Lagrange Mean Value Theorem — needs additional assumptions.
On the other hand, there is the discrete Hille-Nehari type nonoscillation criterion,
given also in [115], where (8.2.24) is not needed. However, another price has to be
paid: the constant is not as good as that at the right-hand side of (8.2.26), and
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only a positive part of ¢ is involved. The proof is based on the variational method
(Theorem 8.2.6). The crucial role is played by the half-linear discrete version of
the Wirtinger type inequality. In the proof of this inequality we need the following
technical result.

Lemma 8.2.3. Let

SUD> 550 725 [(D_l (;Igtissp)) - S] P22,
(8.2.31) = .
.

e |:t — <I>—1 (;(t:SS)>j| P S 2.

Then for given > a > 0 and for £ = A3 + (1 — XN« given by the Lagrange mean
value theorem P — aP = p®(&)(S — a) we have max{A, (1 — A} < u.

Proof. If p > 2, then A > 1/2, i.e,, max{\, 1 — A} = X and for p < 2 we have
A < 1/2. The conclusion now can be easily verified by a direct computation via
the Lagrange Mean Value Theorem applied to the function t — tP, ¢ > 0. O

SUP¢>s>0

Lemma 8.2.4. Let My be a positive sequence such that AMy is of one sign for
k> N € N. Then for every y € D(N) we have

MP
(8.2.32) Z |AME ||y P < pPlu(l +¢n)]P Z mekl
k=N
where
|AM|
8.2.33 PN = su
( ) Y kzg [AM_1 |

and i is given in the previous lemma.

Proof. Suppose that AM; > 0 for £k > N; in case AM; < 0 we would proceed
in the same way. Using summation by part, the Holder inequality, the Lagrange
Mean Value Theorem and the Jensen inequality for the convex function & — [£]?,
we have

> IAMlyksa [P

k=N
Z MA(lyslP) =p > M|®(&)|| Ayl
k= k=N
0 M 1/p oo 1/q
sp <Z AM [P~ TN Ll > (Z AMkH‘I)(fk)q)
k=N k=N
o0 ]\/[p 1/p oc 1/q
—F (Z N 1IAykl”> (Z AM| Dlyel? + (1 - Ak>|yk+1|”])
k=N k=N
o0 1/p oo
M A M|
= (Z AN, 1'Ay’“|p> [ 2 AN, A
k k=
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oo 1/q
+ Y |AMk|yk+1|p> max{Ag, (1 — Ak)]’] )

k=N

where & = A\ryx + (1 — A\p)yp41 is a number between yg, ygrt1, i€, Ap € [0,1].
Now, by Lemma 8.2.3, max{As, 1 — A\¢} < p and since y; = 0 for k¥ < N, we have

AM, AMy, >
Z - ar Al < (s ) > Al

Consequently, we have

o0 /q
| A M| >T
AM, P < 1+ sup ——
E |AMg||yk-t1] _p[u< p DM |

k=N k2N
1/p 1/q
(3 o) (3 it
k k=N
and hence
o > ]WP
P i 1 P
];VIAMkHkaI <P [u(1 +¥w)] Z N AT
what we needed to prove. O

Theorem 8.2.19. Suppose that ry, > 0 for large k, (8.2.18) holds, Y. ¢} < oo,
¢t = max{0, c},

Zk Pl p(p—1) 1—g
(8.2.34) N = [sup 7]1 <00, Yy:i= [sup b ] < 00.
E>N E r k>N Tk—1
Further suppose that
(8.2.35) 0 < limsup(1 +¥n)P oy = ¥ < oc.
N—oo
If
k—1 =S} P 1 p—1 1
S 1—gq — -
(8.2.36) hl?i»bip (Z T ) jz;c < pup : < ; ) T

then (8.1.4) is nonoscillatory.

Proof. According to Theorem 8.2.6, it suffices to find N € N such that we have

o

> el AyxlP = cxlyrial”] > 0

k=N
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for any nontrivial y € D(N). To this end, let

k-1 I-p
Mk = <Z?“J1»_q> .

Then, using the Lagrange Mean Value Theorem,

p—1 A p—1

V - 1- -1

|A k‘ = €P < Ty q) = P Tk :
k k

where & € (Zkil r;_q, Sk rjl-_q). Hence

-1 _ -1 _
(8.2.37) %Té 1< [AM| < il—lp”}v 3
—q —q
() (£ )
thus
|A]\/fk‘ << Tk >]q
‘A]Wk,ﬂ T\ TE_1
and

MP L] e 7P
k T STk e .
|AM|P p—1 S plg
Now, according to (8.2.36), there exists ¢ > 0 such that
k—1 p—1
: 1—¢q P — 1 1
hlrfrisip (ZT]- > Zc Mp T ( » ) e

and (8.2.35) implies the existence of Ny € N such that (1 4+ ¢¥x)P 1oy < ¥ +¢
for N > Ny. Now, using the summation by parts and applying the same idea as
in the proof of Lemma 8.2.4, we have for any nontrivial y € D(N)

oG oC oC

Yoalyen < D eyl =D ZC A (lyl”)
k=N k=N k=N \j=
SIDORUS Do) AN
j=N

p—1\"" ! M| ®(£40)]|1A
< ( 5 > Mp,l(\p+€)k;v kP (&) Ayk

1
(p— i ]\/[p e /p
pP— l,up ] (U +¢) |AM|P~ 1
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00 1/q
<l +vn) Y |AMk|yk+1p1

k=N

(p—1)p!
PPl (W te)

_ s My,
X [p(1 4 )] P17 (Z Wﬁykp>
k=N

(1 + )] pPla

IN

e}

- 1 -
(I+yn)? ]'(’ON\I/—H D relAyel” < il Ayl
k=N k=N

IA

Hence

o
D [rel Ayel” = crlyra P > 0
k=N

for every nontrivial y € D(N), what we needed to prove. O

8.2.6 Some discrete comparison theorems

We start with a discrete version of Theorem 2.3.12, where at the same time we
make the comparison in a Hille-Wintner sense (for differential equations case see
Theorem 2.3.1). Observe that in contrast to the continuous counterpart, i.e., The-
orem 2.3.12, we do not need here a condition of type (2.3.34) or (2.3.35). This is
owing to the fact that for .S to be nondecreasing with respect to p, the expression
w/r does not need to be small, as it is in the continuous case. On the other hand,
we have to use more complicated technique in the proof: the Riccati one combined
with the Schauder fixed point theorem. The reason is that the inequality (8.2.19)
is involved instead of the discrete counterpart of equation from Theorem 2.2.4.
However, if ¢; > 0 or r; is bounded, then we can simply use just the Riccati
technique in view of Theorem 8.2.10 and the note before Theorem 8.2.12. Along
with (8.1.4) consider the equation of the same form

(8.2.38) A(qu)a(AIk)) + qu>a(xk+l> =0,
where ®,(x) = |2|* !t sgnx, o > 1. Let 8 stand for the conjugate number of a.

Theorem 8.2.20. Suppose that 0 < R < i and
(8.2.39) D> Ci=Y ;>0 (£0)
j=k j=k

for large k (in particular, we assume that these series are convergent). Further
assume that Zkoc:1 R'78 = co. If a > p and equation (8.2.38) is nonoscillatory,
then (8.1.4) is also nonoscillatory.
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Proof. By Theorem 8.2.12, the nonoscillation of (8.2.38) implies the existence of
m1 € N such that

(8240) 2k > ZCJ -+ ZS(Z]‘,RJ',OJ) =: Zy

=k =k
for k > my (clearly, with 2z + Rx > 0). Let ma € N be such that (8.2.39) holds
and Z;ik ¢; > 0 for k > mg. Set m = max{m;,mo} and define the set  and
the mapping 7 by

Q={wel>®  :0<w, <Zy for k>m}

and

(Tw) = ch + ZS(U}j,Rj,p), k>m, wel,
j=k j=k

respectively. We show that 7 has a fixed point in . We must verify that

1) € is bounded, closed and convex subset of £°°,
2) 7 maps € into itself,

3) T is relatively compact,

4) 7 is continuous.

ad 1) Clearly, €2 is bounded and convex. Let 2™ = {27}, n =1,2,..., be any
sequence in {2 such that ™ approaches z (in the sup norm} as n — oo. From our
assumptions, for any ¢ > 0 there exists V € N such that sup,-,, |} — 2| < ¢ for
all n > N. Thus, for any fixed k, we have lim,,_. o 2} = zx. Since 0 < x} <z, for
all n, then 0 <z < zx. We have k > m arbitrary and hence x belongs to (2

ad 2) Suppose that w €  and define 2, = (Tw)g, k > m. Obviously, 2 > 0
for k > m. We must show that z, < Z, k > m. We have

dei+ > Sw,Ryp) <Y Ci+ > S(w;, Ry.p)
j=k j=k j=k j=k

Y Ci+ Y Swy, Rja) <Y Ci+ Y Sz, Ry )
=k J=k

i=k =k

Tk

IA

by the assumptions of theorem and by Lemma 8.2.1 [(i),(iv)]. Hence, 7Q C Q.

ad 3) According to [77, Theorem 3.3], it suffices to show that 7€) is uniformly
Cauchy. Let € > 0 be given. We show that there exists N € N such that for any
k,l> N |(Tx)y — (Ta)] < e for any © € . Without loss of generality, suppose
k < l. Then we have

-1 -1
(8.2.41) (Ta)e — (Tanl = D e+ > S(ay,R;.p)
j=k j=k

-1 -1
= ch + ZS(mj,Rj,p)
j=k 3=k
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for large k. Taking into account the properties of ¢ and S(xg, R, p), for any e > 0
one can find N € N such that

-1 -1

€ e
chj<§ and ZkS(xj,Rj,p)<§ for { > k> N.
j= =k

From here and (8.2.41), |(Tx)r — (Tx);] < €, hence T is relatively compact.

ad 4) Let 2™ = {z}}, k > m, be a sequence in ) converging to z. The fact that
T x™ converges to 7x can be easily shown by means of the discrete version of the
Lebesgue Dominated Convergence Theorem.

Therefore, it follows from the Schauder fixed point theorem that there exists
an element w € 2 such that w = 7w. In view of the definition of 7', this (positive)
sequence w satisfies the equation

o o

W :ch+ZS(wj7Rj p), k>m,

and hence also the equation (8.2.1) with R instead of r. Consequently, the sequence
y given by

Yo =m0 £ 0 and iy = (14 (/R ) e, b= m,
is a nonoscillatory solution of
A(Ry®(Ayk)) + cr®(Yri1) =0

and hence this equation is nonoscillatory. The statement now follows from Theo-
rem 8.2.3. [l

The next result is an extension of the so-called (discrete) telescoping principle,
which was introduced in [208] for the second order linear difference equation (8.1.1).
Note that in [208] the authors consider equation (8.1.1) only under the assumption
7t > 0 and hereby the following result with 7 # 0 is new even in the linear case (in
spite of the fact that the idea of the proof remains essentially the same). Compare
with the continuous case, see Subsection 2.3.4.

Before presenting the main result, let us introduce some concepts and assump-
tions. Denote by S the set of all real sequences y = {y; : k& € N}. Assume

J

i=1

where m;,n; € N, i =1,..., 7, are such that m; < n; < m;41 and card(N\T) = oc.
Based on the set I, we define an interval shrinking transformation 7 =77 : N — N
as follows:

K = 7(k) = card([1, k] N I),
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where I¢ = N\ I. Let M; = 7(m;). Then M; = 7(k) for k € [ms,ni], i =1,...,].
This transformation 7 induces a transformation 7' = 77 : § — & defined as follows:
Forye S

Ty=Y ={Yg : K € N} with Yx = y, when 7(k) = K.

Theorem 8.2.21. Let r, # 0, k € N, and assume that (8.2.42) holds. Let R =Tr
and C =Tc for T =Ty. Assume
(8.2.43) Y =0 i=1,...,j

k=m;+1

Suppose that X = {Xk : K € N} is a solution of the equation
(8.2.44) A(RK‘I)(AXK)) —|—OK(I)(XK+1) =0,

such that Rk Xk Xky1 > 0 for K < N and RnXnXny1 < 0. If the sequence
y is a solution of equation (8.1.4) such that y1 # 0 and M ®(Ay)/P(y) <
R1D(AX:)/®(X1), then there existsl < n such that riyiyiv1 < 0, where N = 7(n).
More precisely, if N < M;, then there exists | < m; such that riyiy+1 < 0,
i=1,2,...,7.

Proof. In this proof, by ¥y ¢ X we mean either y > X or y does not exist.
The proof is by induction. Assume that the conclusion is not true. Then wy =
—rp®(Ayg)/P(ys) satisfies

(8.2.45) Awg = ¢ + wi ((é—l(rk) _r£_1(wk>)p—1 B 1)

or, equivalently,

(8.2.46) Wh+1 ZCk--i-S(wk,Tk), k=1,....n,
and wg <71k, k=1,...,n, where

= WETEL

b(wk,rk) =

(@1 (re) = @7 (wp))P~t

Observe that the behavior of the function S is similar to the behavior of the func-
tion S from Lemma 8.2.1. In particular, S(wg, %) is nondecreasing with respect
to the first variable for rp > wy. Let Vi = —Rx P(AX)/P(Xk). Then

(8.2.47) Vi1 =Ck +S(Vk,Ri), K=1,...,N -1,

Vik < Rg, K=1,...,N—1and Vy £ Ry.

If N < M; = mq, then for k = 1,...,N, K = k, and hence Rx = rg,
Py = pi, and equation (8.2.47) is the same as (8.2.46). By the hypothesis wq > V1,
comparing (8.2.46) and (8.2.47) step by step (using the above property of S), we
find that wgy11 > Vig1, k= 1,..., N — 1. In particular,

wy =wy > Vy £ Ry =7n.
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This implies that w, < r,, contradicting the assumption.
If My < N < My, then arguing as above we find that wy,,+1 = wa,+1 >
Var, +1. Adding (8.2.45) for & from my + 1 to ny and using (8.2.43), we obtain

ni

ny
Wpy 41 — Wiy +1 = g cx + E S(wg, ) > 0,
k=mi+1 k=mi+1

hence wy, 11 > W, +1 = Vin, +1. Noting that 7(n1 + 1) = Ny, we see that wy, Vi
satisfy the same generalized Riccati equation for n; +1 < k <nand M; +1 <
K < N, respectively. As before, we see that w, > Vy £ Ry = r, and, again, this
implies that w,, £ r,, contradicting the assumption. The proof of inductive step
from ¢ to i + 1 is similar and hence is omitted. O

Theorem 8.2.22 (Telescoping principle). Under the conditions and with the
notation of Theorem 8.2.21, if (8.2.44) is oscillatory, then (8.1.4) is oscillatory.

Proof. Let X be a solution of (8.2.44) with X; # 0. Let y be a solution of (8.1.4)
satisfying y1 # 0, r1®(Ay)/P(y1) < R1P(AX,)/P(X1). By Theorem 8.2.21, there
exists [} > 0 such that r;, yi;, 41, +1 < 0. Now, working on the solution for &k > 1, +1
instead of k£ > 1 and proceeding as before, we show that there exists Io > {; + 1
such that r,y;,y,+1 < 0. Continuing this process leads to the conclusion that y
is oscillatory, hence (8.1.4) is oscillatory. O

8.3 Half-linear dynamic equations on time scales

In this section we develop the theory of half-linear dynamic equations on time sca-
les, which unifies and extends the continuous and the discrete theory. In addition,
such a theory explains some discrepancies between them. The understanding of
these discrepancies is important, for example, for numerical approximations. The
statements are presented without proofs. Our attention is focused mainly to those
types of the results which explain the discrepancies, or show some phenomena that
are not usual in the differential/difference equations case.

8.3.1 Essentials on time scales, basic properties

In 1988, Stefan Hilger [178] introduced the calculus on time scales in order to unify
continuous and discrete analysis. By a time scale T (an alternative terminology is
measure chain) we understand any closed subset of the real numbers R with the
usual topology inherited from R. Typical examples of time scales are T = R and
T = Z — the set of integers (or hZ defined as {hk : k € Z} with a positive h). The
operators p,o : T — T are defined by

o(t)y=inf{s€T: s>t}, plt)=sup{se€T: s<t}

and are called the right jump operator and left jump operator, respectively. The
quantity p(t) = o(t) — t is called the graininess of T. A point t € T is said to
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Figure 8.3.1: Examples of time scales

be right-dense, right-scattered, if o(t) = t, o(t) > t, respectively. Their “left-
counterparts” are defined similarly via p(¢). If f : T — R, the delta-derivative is

defined by

P (O (0]

s—to(a)#t  o(s) —t

A function f : T — R is called rd-continuous provided it is continuous at all right-
dense points in T and its left-sided limits exist (finite) at all left-dense points in T.
For a,b € T and a delta differentiable function f, the “Newton integral” is defined
by f; fA(t) At = f(b) — f(a). For the concept of the Riemann delta integral and
the Lebesque delta integral see [50, Chapter 5. Note that we have

b b
o(t)=t, u(t) =0, f*=f, / f(t) At:/ f(t)dt, when T =R,

while

b—1

b
o) =t+1, pult) =1, f =Af, / f) At =" f(t), when T = Z.

These are the most typical time scales, but there exist much more examples, which
may bring quite surprising unusual (and unpleasant, sometimes) phenomena in
some aspects of the theory. Let us mention at least T = ¢ = {¢* : k € Ny} (or
T = ¢?U{0}), where ¢ > 1 is a real number. Then o(t) = ¢t and u(t) = (¢—1)t, and
a dynamic equation considered on such a time scale is called g-difference equation.
The last example of the time scale which we present here is the set P defined as
the union of closed mutually disjoint intervals. The basic facts of the time scale
calculus can be found in [178] and the general theory of dynamic equations on
time scales along with an excellent introduction into the subject is presented in
[49, 50].
Now consider the linear dynamic equation on a time scale T

(8.3.1) (r(t)z™)2 + c(t)z® =0,
where 2 =z oo and r,¢: T — R with »(¢) # 0, and its half-linear extension

(8.3.2) (r(t)®(@>)2 + c(t)®(2%) = 0.
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Obviously, (8.3.2) reduces to (1.1.1) if T =R and to (8.1.4) if T = Z, respectively.

By means of the approach, which is an extension of that in Subsection 1.1.6, it
can be shown that the initial value problem involving equation (8.3.2) is globally
uniquely solvable provided the coefficients r, ¢ are rd-continuous. However, it has to
mentioned, that the part with a reciprocal equation cannot be extended reasonably
here, since it requires A and o to be commutative (i.e., f27 = f°2), which is not
true in general. Also the approach based on the Priifer transformation has not been
developed yet. The reason is that there is no “real” chain rule for differentiation
on time scales.

8.3.2 Oscillation theory of half-linear dynamic equations

Concerning (8.3.1), the foundation of oscillation theory of this dynamic equation
was established in [154], and then elaborated in many works. Here we offer the
half-linear extension of this theory.

Similarly as in the above cases, the central role is played by the Roundabout
theorem. In that theorem, the Riccati dynamic equation

(8.3.3) w™ + ¢e(t) + Sw, r](t) = 0,

where

V () r(t)
Sho,rl(t) = lim = (1<1>(q>—1(r(t))+>\¢>_1(w(t))>7

and the p-degree functional

b
Flysa,b) = / (AP - ety ] At

play the same role as their continuous and discrete counterparts. Observe how the
function S looks like when p =2 or T = R or T = Z. Here are another important
concepts: We say that a solution y of (8.3.2) has a generalized zero at t in case
y(t) = 0. We say y has a generalized zero in (¢, o(t)) in case r(t)y(t)y(o(t)) < 0. We
say that (8.3.2) is disconjugate on the interval I, if there is no nontrivial solution of
(8.3.2) with two (or more) generalized zeros in /. The definition of (non)oscillation
of (8.3.2) is obvious. Note that in the generalized Roundabout theorem, which
formally looks the same as its special cases T = R or T = Z. the solution w of
(8.3.3) has to satisfy the additional condition ®~1(r(#)) + u(t)® = (w(t)) > 0.

Thanks to this theorem, an extension of the Sturmian theory can be develop-
ed, and the generalized Riccati technique and variational principle are at disposal.
Consequently, many statements (in particular, (non)oscillation criteria and com-
parison theorems) for (8.3.2) can be stated. Our aim here is not to present all
those which have already been established. We just want to stress some interest-
ing points where, in particular, the role of graininess (i.e., the role of what time
scale is just chosen) can be seen.

For instance, the unification and extension of Theorems 3.1.1 and 8.2.15 is the
following Hille-Nehari type criterion.



8.3. Half-linear dynamic equations on time scales 415

Theorem 8.3.1. Suppose that [ r1~4(t) At = co and [~ c(t) At, with c(t) > 0,
converges. Let

L arin
t—00 fat ri=a(s) As

t p o0 p—1
1 -1
lim inf (/ r19(s) As) / c(s) As > — (p_) ,
t—oc + p p

then (8.3.2) is oscillatory.

Observe that for T = R, condition (8.3.4) is trivially satisfied, while it reduces
to (8.2.24) when T = Z. It is easy to see that if r(¢t) = 1, then (8.3.4) holds when
T = Z. However, this fails to hold when T = ¢N¢. In general, a “larger” graininess
is “worse” for this condition to be satisfied.

On the other hand, a “larger” graininess may make some conditions to be
satisfied “more easily”. Indeed, a closer examination of the proof of the comparison
theorem with respect to p (Theorem 2.3.12) shows that a crucial role is played the
monotonicity of the function S = S(x,y,p) with respect to p. For that, in the
continuous case, we need z — zlogz > 0, where z = (x/y)?'. As said above, in
the corresponding discrete case, there is no such a condition. In the general time
scale case, this condition reads as

(8.3.4)

if

-1

1 log(1 — Azl
;im (1 + Az)log( ;)\z) Azlog z >0
—

Observe that this condition really reduces to z — zlogz > 0 if 4 =0 (T = R) and
it is trivially satisfied if p =1 (T = Z).

We conclude this section by showing another phenomenon, concerning half-
linear dynamic equations, where it can be seen how the graininess affects oscillatory
properties in such a manner, that is not known from the differential/difference
equations case. Consider the generalized Euler type dynamic equation

(8.3.5) [ (y*)]° + ———=(y") = 0.

By means of the Hardy inequality on time scales combined with the variational
principle and the Sturm type comparison theorem, it can be shown that this equa-
tion is nonoscillatory provided v < ¢7P. Now consider the generalized Euler type
dynamic equation in a slightly different form

(8.3.6) [@(y*)]~ + La(y) = 0.

Let 0 < v < ¢ P. Assume that T is such that u(t)/t — 0 as t — oco. Then
(8.3.6) is nonoscillatory by the time scale extension of Theorem 3.1.3. Note that
this extension requires condition (8.3.4), which in our case reduces to u(t)/t — 0.

Now pick a time scale such that f:o t7PAt = o0, e.g., let T = {ka c ke No}.
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Let v be the same as before. Equation (8.3.6) is then oscillatory by the criterion
corresponding to the Hille-Wintner theorem. Thus we have an example showing
that oscillatory properties of equation (8.3.6) may be completely changed when one
replaces a time scale by a different one, leaving the form of the equation the same.
In particular, there is no “important” (time scale-invariant) critical constant ¢~7
in (8.3.6) as it seems to be in (8.3.5) (till now we know that (8.3.5) is oscillatory
provided v > ¢ 7 and u(t)/t — 0 as t — oo by the above Hille-Nehari type
criterion; unfortunately, for other time scales this question remains open). On the
other hand, interesting questions arise like what a “critical” graininess of the time
scale is, which is a “border” between oscillation and nonoscillation of (8.3.6). In
other words, whether there exists a time scale whose graininess is bounded by
certain critical function, and (8.3.6) is nonoscillatory on such a time scale, while
if we take a time scale which has the graininess greater than this critical function
at infinitely many points, then (8.3.6) becomes oscillatory.

8.4 Notes and references

The results concerning half-linear difference equation are taken from Rehak [322,
323, 321, 324, 325, 326] and Dosly, Rehék [115]. The paper [326] by Rehak deals
with strong (non)oscillation of (8.1.4) and also contains the examination of gen-
eralized discrete Euler equation, which cannot be solved explicitly. The concept
of recessive solution for (8.1.4) (i.e., the discrete counterpart of principal solution)
is introduced in Dosly, Rehak [116] via the minimal solution of generalized Ric-
cati difference equation. Some of its basic properties and applications are given
there as well. Another characterization of recessive solution can be found in Cec-
chi, Dosla, Marini [62]. The papers [273, 280] by Mafik deals with the discrete
p-degree functional considered for sequences satisfying another type of boundary
conditions than those mentioned above. Forced oscillation is investigated in Dosly,
Graef, Jaros [109], while oscillation and nonoscillation of half-linear difference equ-
ations generated by deviating arguments is studied in Wong, Agarwal [365]. Vari-
ous aspects of qualitative theory of (8.1.4), like existence/nonexistence of positive
nondecreasing solutions or comparison theorems can be found [75, 76, 77, 238, 261]
by Cheng, Li, Lu, Patula, Yeh. Very recent monograph [2] by Agarwal, Bohner,
Grace and O’Regan deals specially with the discrete oscillation theory. The liter-
ature concerning the results on qualitative theory of difference equations, which
are quasilinear or involving similar types of nonlinearities is very extensive. The
monograph [1] by Agarwal as well as above mentioned [2] can serve as a good
source for searching such references.

The part devoted to half-linear dynamic equations is based on the papers [3]
by Agarwal, Bohner, Rehédk, and [327, 328, 330] by Rehak. Further related results
can be found in Rehak’s paper [329)].



CHAPTER 9

RELATED DIFFERENTIAL EQUATIONS AND
INEQUALITIES

The aim of this chapter is to study the equations which are in various relation-
ships to half-linear second order equations. We start with a natural generalization
of half-linear equations — the so-called quasilinear equations, i.e., the equations
where the exponents in nonlinearities of the first and second term are generally
different. In two subsequent sections we discuss how a forcing term and the presence
of deviating arguments, respectively, affect oscillatory properties. In the fourth
section we mention few words about half-linear equations of higher order. The
chapter is concluded by the section devoted to the classical inequalities that are
related to half-linear equations.

9.1 Quasilinear differential equations

In this section we change the notation which we have used throughout the whole
book. Till now, ¢ was the conjugate number of p, i.e., ¢ = p/(p — 1). In this section,
q is any real number satisfying ¢ > 1 and the conjugate number of p will be denoted
by p*. We will mainly deal with the quasilinear equation

(011) (D@, (")) +e(t)Byla) =0, By(s) = [slP2s, By(s) = || s;

we will briefly treat also some more general equations. Note that in some literature,
if p=2 and q is general (with ¢ > 1), then (9.1.1) is called semilinear equation,
while for p and ¢ general (with p, ¢ > 1), it is called to be quasilinear. The functions
r, ¢ satisfy the same assumptions as in (1.1.1). Observe that in general, the solution
space to (9.1.1) is neither additive nor homogeneous. If p = ¢, then (9.1.1) reduces
to (1.1.1). This means that the investigation of (9.1.1) is more complicated than

417
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that of (1.1.1). We will see that the loss of homogeneity brings some phenomena
which are not usual in the (half-)linear case.

In the literature, under the quasilinear equations are often understood also
equations in slightly more general forms. In fact, many of the results, in particular,
asymptotic and oscillatory properties, can be easily extended to such equations.
For instance, the second term may read as +e(¢) f(x) (with ¢(t) > 0) or £F (¢, x),
f and F being continuous, where the sign condition

(9.1.2) sgn f(x) = sgnx, resp. sgn F(t, ) = sgnx (for each fixed t)

is satisfied, and some monotonicity assumption, as well as (strong) sub/super-
linearity, are usually required. Sometimes, the monotonicity assumption can be re-
laxed to the existence of suitable monotone functions which estimate the nonlinear-

!/

ity. Another generalization lies in replacing the first term in (9.1.1) by (r(¢)p(z')),
where ¢ : R — R is continuous, strictly increasing and such that

(9.1.3) sgnp(u) =sgnu and ¢(R) =R.
Recall that very important role is played by the fact whether the integral

/OC r/0=P) (5) ds

is convergent or divergent — asymptotic behavior of solutions may be then sub-
stantially changed. Similarly as for half-linear equations, in some cases equation
(9.1.1) can be studied with » = 1, owing to the transformation of independent
variable. Since the structure of solution spaces of quasilinear equations is much
more complicated, in the most of cases we have to assume that the coefficient ¢
is eventually nonnegative or nonpositive — clearly, the character of results may be
then completely different.

Note that using the substitution r®,(z’) =: u, equation (9.1.1) can be written
as the first order system of the form

(9.1.4) ' = a1 (t)|ul™sgnu, o = as(t)|z[ 2 sgnz

with suitable functions a1, as and real constants A;, As. The last system has been
investigated in several papers of Mirzov and the results are summarized in his
book [292]. In some works, more general systems appear, e.g. of the form 2’ =
a(t)f1(2)91(y), ¥ = b(t) f2(2)g2(y), where the fanctions a,b, /1, fa, g1, g2 are sub-
ject to suitable conditions. There is very extensive literature on quasilinear equa-
tions. As a sample of papers dealing with (9.1.1) and related equations we refer to
[28, 58, 155, 212, 263, 334] and the references given therein. Let us mention also
the monographs [6, 202]. We do not want to repeat that “quasilinear” theory which
has already been processed in various works. The principal aim of this section is
to point at relationships with the “half-linear” theory.

9.1.1 Quasilinear equations with constant coefficients

First we focus our attention to the initial value problem

(9.1.5) (@p(a")) + ABy(x) =0, 2(0) =a, 2'(0) = b.
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We will modify the method used in the definition of the half-linear sine function
sin, and of other half-linear trigonometric functions.

Theorem 9.1.1. For any A > 0, the initial value problem (9.1.5) has a unique
solution defined on the whole real line R.

Proof. The crucial fact used in the proof is that

(O O _BP el

9.1.6
( ) p* q D q

)

as can be verified by differentiation. Clearly, if « = 0 = b, the last identity implies
that the trivial solution is the unique solution. If ¢ = 0 or b = 0, supposing that
there are two different solutions x1,zo satisfying the same initial conditions, we
find that the absolute value of their difference z = |x; — x2| satisfies a Gronwall
type inequality and hence z = 0. This idea, slightly modified, applies also to the
case when both a # 0 and b #£ 0. O

The remaining part of this subsection will be devoted to the initial value prob-
lem

(9.1.7) (Bp(2))) + Aby(z) =0, 2(0)=0, 2/(0) =a > 0.

Denote by t, the first positive zero of the derivative «’, i.e., z(¢) > 0, z’(¢) > 0 for
t € (0,ty). Further denote by R := x(t,). Then using the same idea as above we
have the identity

@@Or 2 _ R

9.1.8
( ) p* q q

Solving this equality for 2’ and integrating, we find

1
> t /
P d
(9.1.9) <L> / _dls)ds
At/ o (Re—ai(s))r
which after a change of variables can be written as
o ® d
(9.1.10) - < q*> L / s
) RS o (1—s0)w
For ¢ € [0,¢/2], let us set
2t
@ d
(9.1.11) arcsing, t 1= 2/ %
2Jo (1—s9)%

and note that this integral converges for ¢ € [0,q/2]. Substituting ¢ = 77 in
(9.1.11), we obtain

L-/1 1 [2t\?
(9.1.12) arcsing,, t = §B (—, —, (E) ) )
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~ (1 1 v
B(—7—*,y> :/ 7571(1—7)7% dr
q p 0

denotes the incomplete beta function. Next, substituting ¢t = ¢/2 in (9.1.12), we

define -
Tpg 1= 2 arcsing, (g) =B (E, E) )

where B denoted the classical Euler beta function.

The function arcsing, is a bijection of [0, ¢/2] onto [0, 7pe/2], so we can define
first sing, : [0,7pe/2] — [0,¢/2] as the inverse function of arcsin,, and then to
define this function for ¢ € R in the obvious way: sin,,t = singg(m,, — t) for
t € [7pg/2,Tpq] and then extend this function over R as odd and 2m,, periodic
function. It is a simple matter to verify that sin,q is the unique (global) solution
of the initial value problem

where

29
p*qqfl

Similarly as in case p = ¢ we denote cospgt = - sin,,t. Then from (9.1.6) and
(9.1.13) we have

(9.1.13) (@, (z")) + d,(x) =0, =z(0)=0, £'(0) =1.

) q
(9.1.14) | cospq tIF + (5) [ singq |7 = 1.
From (9.1.10) and (9.1.11) we find that
2 pP=9q . qx
9.1.15 t=— = RS (—)
( ) ) T arcsinipg { 5
and hence
1 1

2R Ap*)PgPT  -p

(9.1.16) 7(t) = == singg <%R ; t) :

for all ¢ € R. From (9.1.8) we can express R in terms of a to obtain

4=p
q—v pa )
R =1 a9,
Ap*

Substituting this expression into (9.1.16), and setting

we find that the solution of (9.1.7) is
o
d.1 = —————si A ,
(9.1.17) x(t) Aol N siny, (Apg (Ja], A1),

and this solution is 7(«)-periodic function with

2Mpg

)= e

= 4t,.
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Theorem 9.1.2. For any given a # 0, the set of eigenvalues of the problem
(9.1.18) (,(2")) + APy(z) =0, z(0)=0=uaz(T),

whose (nontrivial) solution = satisfies '(0) = a, is given by

{20y T alpe
(9.1.19) AMa) = (T) o n €N,

with the corresponding eigenfunctions

ol | nw
smpq( pq), n € N.
NTpg T

Proof. For a given oo € R, by imposing that x in (9.1.17) satisfies the boundary
conditions in (9.1.18), we obtain that A is an eigenvalue of this problem if and only
if

Tna(t) =

1 1 1 1
—(p*Yage™ N\«
5(0")va

and hence (9.1.19) follows. The expression for eigenfunctions follows then directly

from (9.1.17). O

q—

»
¢ T =nmpq, neN,

al

9.1.2 Existence, uniqueness and singular solutions

Equation (9.1.1) and system (9.1.4) are sometimes called of Emden-Fowler type
(or generalized Emden-Fowler) since if p = 2 in (9.1.1), this equation reduces to
Emden-Fowler equation. It is known that this equation may possess the so-called
singular solution, i.e., the global existence or uniqueness may be violated.

Recall that a solution x of (9.1.1) is called the singular solution of the first
kind if = becomes eventually trivial, i.e., there exists 7" € R such that = # 0
for t < T and =(¢t) = 0 for t > T, and a solution z is singular solution of the
second kind if there exists a finite time 7' such lim_7_ |z(t)] = co. The set of
singular solutions of the first and second kind will be denoted by S; and Sg,
respectively. A solution which is not singular is called proper. There is also an
alternative terminology concerning singular solutions. A solution x of (9.1.1) is
called the extinct solution (of the first kind) if there exists T € R such that z £ 0
for t < T and limy—r_y(t) = 0 = limy—7_ ¢'(£), i.e., it has the same meaning
as the singular solution of the first kind. For the meaning of the extinct solution
of the second kind see the end of Subsection 9.1.7. Finally note that the singular
solution of the second kind is sometimes called blowing-up solution.

Theorem 9.1.3. Suppose that r(t) > 0, c(t) < 0 for large t.
(i) If p=gq, i.e., (9.1.1) reduces to (1.1.1), then S; =0, Se = 0.
(i) If p < q, then S; = 0 and Sy # 0.

(111) If p > q, then S1 # 0 and Sy = 0.
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Proof. Equation (9.1.1) can be written as a system of the Emden-Fowler type for
the vector (z,u) = (2,r®,(2"))

(9.1.20) = a (t)|ulMsgnu, o = as(t)|z|*? sgnz,

where A\ =1/(p—1), Ao = ¢—1, a1 (t) = 1/®p-(r(t)), a2(t) = —c(t). Using results
of Mirzov [292, Theorems 9.1, 9.2] on the nonexistence of singular solutions of
system (9.1.20), we obtain for (9.1.1) that S; = @) when p < ¢ and Sz = §§ when
p > q. The existence of singular solutions of (9.1.1) was proved by Chanturia [71,
Theorems 1, 3]. From there it follows for (9.1.1) that So £ if p < g and Sy #
ifp>gq. |

Observe that ¢(t) is assumed to be negative in the theorem. The different
situation happens when ¢(t) is positive and satisfies additional conditions, as the
following theorem shows.

Theorem 9.1.4. Suppose that r(t) = 1 and c(t) is continuously differentiable and
positive on [a,00). Then for any A and B, the solution of the initial value problem
(9.1.1), x(tg) = A, '(tg) = B, to € [a,00), exists on [a,c0) and is unique.

Proof. We give only the sketch of the proof. Similarly as in Subsection 1.1.6 we
distinguish the cases where the right-hand side of system (9.1.20) satisfies or not
the Lipschitz condition with respect to the initial conditions and the values p
and ¢. Then we apply Peano theorem, Picard theorem and Gronwall inequality,
similarly as in Lemmas 1.1.3-1.1.5. A different approach needs to be used to prove
the uniqueness for the only remaining case where ¢ < 2 and A = B = 0. This
approach requires the continuous differentiability of ¢, it is based on certain energy
functions related to (9.1.1), and serves to show the global existence in the general
case as well. |

In fact, the last theorem can be established under less restrictive assumptions

on c(t), namely ¢(t) > 0 is locally of bounded variation on [a, 00).

9.1.3 Asymptotic of nonoscillatory solutions

The classification of nonoscillatory solutions of (1.1.1) can be extended under the
assumption that ¢(t) # 0 for large ¢ also to (9.1.1):

Mt ={z:3t, >0: z(t)2'(t) >0 for t > t,},
M~ ={x:3t, >0: z(t)a'(t) <0 for t >t}

The following theorem deals with the existence of solutions in these classes. It
is closely related to Theorem 9.1.3.

Theorem 9.1.5. Suppose that r(t) > 0, c(t) < 0 for large t.
(i) If p=gq, i.e., (9.1.1) reduces to (1.1.1), then M~ # § and MT # 0.
(it) If p < q, then M~ £ (.
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(iii) If p > q, then MT = (.

Proof. We will use Theorem 9.1.3. Assume p < ¢. Using a result of Chanturia [72,
Theorem 1], we get that there exists a solution x of (9.1.1) such that |z(0)] > 0,
z(t)a’(t) < 0 for t > 0. Since S; = 0, we obtain x € M. Now assume p > g.
It remains to show that M™ #£ @. Let & be a solution of (9.1.1) satisfying the
initial condition x(0)2’(0) > 0. Then we can assume that = is defined on (0, 00)
since Sy = 0. Consider the function F, given by F,(t) = r(t)®,(2’(t))x(t). Then
F,(0) >0 and

%Fx(t) = [r()®, (&' ()] z(t) + r()®p(z'(2))2" (1)

= —c()@q(z(t)x(t) + r(t)Pp(z'(1))2'(t) = 0.

Thus F, is a nondecreasing function, which implies z(t)2’(¢) > 0. Taking into
account that, in this case, Sy = @), the assertion follows. O

In Section 4.1 we have seen that certain integrals of functions 7, ¢ play an
important role in the asymptotic classification of nonoscillatory solutions of (1.1.1).
As an illustration of the extension of these results to (9.1.1) we give two statements.
The first one deals with the existence in M~ and the Schauder-Tychonov fixed
point theorem plays a crucial role in its proof.

Theorem 9.1.6. Suppose that (1) > 0, c(t) < 0 for large t, [~ ' P (t)dt < oo

" /oo le(t)|Dq (/too P (s) ds) dt < oo,

where ®,(s) = |s|9" ! sgns. Then there exists at least one solution x of (9.1.1) in
the class M~ such that lim;_.o z(t) = 0 and

. x(t)
9.1.21 lim -t =4, 0<{y< oo
( ) tinolo j‘t rl_p* (S) ds .¢]

Proof. Let tp be so large that

/toc c(t)]Pq (/toc ri=P (s) ds) dt < 1—®,(1/2)

and denote with C[tg, c0) the Fréchet space of all continuous functions on [ty, o0)
endowed with the topology of uniform convergence on compact subintervals of
[to, 00). Let © be the nonempty subset of Cltg, o0) given by

Q—{ueC[to,oo) : %/:O@p* (Tls)) d8<u(t)</too€[>p* (%) ds}.

Clearly §2 is bounded, closed and convex. Cousider the operator 7 : 2 — Cltg, 00)
defined by

T(u)(t) = / T o, [Tls) <1+ /{ c(T)éq(u(T))dT)] ds.
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Now it is not difficult to verify that 7 is continuous in Q and 7 () is relatively
compact in Cltg, 00). Therefore, by the Schauder-Tychonov fixed point theorem,
there exists a fixed element x € Q which is a desired solution. The assertion on
the asymptotic estimation follows from the fact that the argument of the lim-
it in (9.1.21) is bounded and z’(t)/r'~P" (t) is monotone. Indeed, we apply the
L’Hospital rule to the limit in (9.1.21). O

It is known (see [200, Theorem 4] and [202, Corollary 17.4]) that if p = 2,
r(t) = 1, ¢ > 2 and liminf; o t9¢(t) > 0, then Mt = (. Consequently, when
p < q the class MT may be empty. The next theorem gives the conditions ensuring
that M™ is nonempty. Following [203], an eventually positive solution z € Mt is
said to be strongly increasing if lim,_ o, (t) = 00, limy—, oo 7(£) @, (2 (t)) = 0, and
an eventually positive solution x € M is said to be weakly increasing if at least
one of the limits lims o 2(¢) and lim . ()P, (2'(t)) exists finitely.

Theorem 9.1.7. Suppose that r(t) > 0, c(t) < 0 for large t, p < q and

/OO P () Dy (/t lc(s)] ds) dt < oo
/DO oy (/trl—f@ ds) dt < .

Then M contains a one parametric family of strongly increasing solutions and a
one parametric family of weakly increasing solutions.

or

Proof. This result was shown in [229, Theorem 1 and its corollary] for system
(9.1.20). Putting Ay = 1/(p—1), Ao = g—1, a1(t) = 1/®,«(r(t)) and az(t) = —c(?),
the assertion follows. O

9.1.4 Sufficient and necessary conditions for oscillation

Since the Sturmian theory does not extend to (9.1.1) in general, the concept of
oscillation of equation cannot be defined by means of the existence of one (arbi-
trary) oscillatory solution, and so we simply require oscillation of all nontrivial
(proper) solutions (recall that a solution is said to be oscillatory if it has arbi-
trarily large zeros). Nevertheless, there are quite many oscillation criteria in the
(half-)linear case which can be more or less extended to the quasilinear case. For
instance, if 7(t) = 1 and [* ¢(s) ds = lim;_o [ ¢(s) ds = oo, then all proper solu-
tions of (9.1.1) are oscillatory, see e.g. [206]. Of course, some of the refined criteria
for (1.1.1), which need very sophisticated methods, are impossible to extend. On
the other hand, in the quasilinear case, one can find equations (in particular, the
so-called strongly sub/super-linear ones, which do not include (half-)linear ones),
for which some phenomena occur that are not known in the (half-)linear case. By
this we mean, for instance, the below mentioned effective conditions for oscillation
which are necessary and sufficient at the same time.
For illustration, we consider a more general equation of the form

(9.1.22) (r(t)ey')) + F(t,y) =0,
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where 7, ¢ and F satisfy the conditions presented at the beginning of this section
(in particular, (9.1.2) and (9.1.3)). In the course of the progress, we will show
how the situation looks like for the special case (9.1.1), ie., ¢(-) = ®,(-) and
F(t, ) = c(t)®q(-) with ¢(t) > 0.

In the sequel, we will assume that

(9.1.23) / ot (%)‘ dt = oo for every constant C # 0
and
(9.1.24) o Huv) > H(u)p H(v) for all u,v with uv > 0.

Further, we will use the condition: for each fixed B > 0

t o1
(9.1.25) lim M —0
A=0>0 [ 71 (B/r(3)

uniformly on any interval of the form [tg,o0), tqg > a. Clearly, in the case of
equation (9.1.1), condition (9.1.23) reduces to [*r'~?"(s) = oo and conditions
(9.1.24), (9.1.25) are trivially satisfied.

The crucial role is played by the following concepts. We say that equation
(9.1.22) is strongly superlinear if there exists a constant v > 0 such that the
function |v|~7|F (¢, v)| is nondecreasing in |v| for each fixed ¢t and

20 d —-M d

(9.1.26) / _140 < oo and / _171} < oo for any M > 0;
oY) oo PTH(U)

equation (9.1.22) is strongly sublinear if there exists a constant 6 > 0 such that

|v|~%|F(t,v)| is nonincreasing in |v| for each fixed ¢,

N 0

/ %<oo and / %<oo for any N > 0.
o le7'(v)] —n [ (V)]

According to this definition, (9.1.1) is strongly superlinear if p < ¢ and strongly

sublinear if p > ¢. Observe that the (half-)linear case is not included.

The proofs of the “only if” parts of the following theorems are hased on the
Schauder-Tychonov fixed point theorem: we show that there exist certain nonoscil-
latory solutions provided that the integral in below given conditions (9.1.27) or
(9.1.28) is convergent. The idea is similar to that of the proof of Theorem 9.1.6;
strong super/sub-linearity is not needed there. The “if” parts are proved by con-
tradiction where a proper analysis of nonoscillatory solutions of (9.1.22) is made.
For illustration, in order to see the role of the strong superlinearity, let us mention
at least that the existence of an eventually positive solution y of (9.1.22) leads to
the inequality

t 1 0 y(t) du
A 1—/F,Ad>d</ _du
1/150 ¥ (r(s) . (T 2) T s < (o) ot (u)

where A;, A, are positive constants, provided the assumptions of the following
theorem hold. This however contradicts (9.1.27) because of (9.1.26).
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Theorem 9.1.8. Let (9.1.23) and (9.1.24) hold. Suppose that equation (9.1.22)
is strongly superlinear. Then all proper solutions of (9.1.22) are oscillatory if and

only if

(9.1.27) /aoo ’(,01 (i—t)/tm F(s,C) ds)’ dt =

for every constant C # 0.

Theorem 9.1.9. Let (9.1.23), (9.1.24) and (9.1.25) hold. Suppose that equation
(9.1.22) is strongly sublinear. Then all proper solutions of (9.1.22) are oscillatory
if and only if

(9.1.28) /:0 ’F (t,C/at 0! <%> ds)’ dt = 0o

for all constants B # 0, C > 0.

It is easy to see that in the case of (9.1.1) (with ¢(¢) > 0), conditions (9.1.27)
and (9.1.28) reduce to

/: (%/twc(s)dsy*]dt:oo and /:Oc(t) </;r1"’*(5)d8)q1dt=°@

respectively.
Similar kind of problems and further extensions are discussed e.g. in [67] for a
slightly more special equation of the form

(r(t)z') +c(t) f(z) = 0.

In particular, both cases when [ * %t) dt is either convergent or divergent are con-
sidered. A comparison technique is employed there. Recall also that when consid-
ering certain special case, namely the equation 2’ +¢(t)®,(z) = 0, above theorems
go back to the classical results of Atkinson [25] and of Belohorec [33].

9.1.5 Generalized Riccati transformation and applications

In this subsection we show that the Riccati type substitution may be helpful in
the theory of quasilinear equations, even if the resulting first order generalized
Riccati equation is not “pure” in the sense that besides the independent variable
w it contains a solution x of the original second order equation. Here we prove
oscillation criteria for quasilinear equation. Other application will be shown in the
next subsection. Observe that in the two applications given below, the forms of
Riccati substitutions are different.
For illustration, we consider the more general equation

(9.1.29) (®(z")) + F(t,2) =0

under the assumptions that the continuous function F satisfies sgn F'(¢t,z) = sgnz
for ¢ € [tp, o0).
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Theorem 9.1.10. All proper solutions of (9.1.29) are oscillatory if one of the
following three conditions is satisfied:

(i) for alld >0

o0
inf |EF(t,y)|dt = ¢,
/ 6<lyl (t.9)]

(ii) for some 0 <A <p—1andall >0

o F(t
/ t inf ( ’yl) dt = oo,
s<ly| |y[P~

(iii) for all §,8" with & > 6 >0

inf  |F(t,y)|dt =
/ 65536/‘ (t, )] 00,

and there exists a positive continuous function ¢ satisfying foo oly) dy = o0, such
that |F(t,y)| > ¢(ly|) for large t and large |y|.

Proof. To illustrate ideas used in the proof, we prove the part (ii), the proof
of the remaining two statements is analogical. Suppose, by contradiction, that
(9.1.29) has a proper solution = which is positive for large ¢ (if  is negative, we
proceed analogously). Then from (9.1.29) we have that also z'(¢) > 0 and we put
w(t) = ®(z'/x). Then w satisfies the Riccati type equation

(9.1.30) w' + (p —1)|w P F;(va_if((g)

:0’

recall that p* denotes the conjugate number of p. Multiplying (9.1.30) by t* and
integrating over [to, t], to sufficiently large, we have
(9.1.31)

trw(t) — )\/t s lw(s)ds + (p— 1) /t sMw(s)P ds + /t SAM ds < ¢,

to to to zp! (S)

where ¢ > 0 is a real constant.
Suppose first that [~ s*'w(s) ds < co. Then it follows from (9.1.31) that

t 1A t
/ SAM ds <c+ /\/ M tw(s) ds,
to

w1 (s) to

and taking the limit as ¢ — oo, we get

/00 SXM ds < oo
to zP~1(s) '

However, this is impossible since assumptions of our theorem imply that for #g
sufficiently large

S 7 00 Fls. 1
(9.1.32) / s)‘M ds > / s™ inf (s,2) ds = oo,
iy to

xP~1(s) é<x Pl
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where § = z(tg) > 0.
Suppose next that

(9.1.33) / s Lw(s) ds = oo.
Then, by (9.1.31),

(9.1.34) /t HEETE) oy ts*—lw(s)ds—(p—1)/tskw(s)p*d5-

zb1(s) to to

Note that the second integral in equation (9.1.34) is estimated by means of the
Holder inequality as follows

¢
(9.1.35) / M Lw(s) ds / QA=p)/p AP=1/Py(s) ds
to

t o
( s pds) (/ s wP*(s) d8>
to
t}\ p+1 5 t . 7%*
< | (/ P (s) ds)
—1- "
(tg

AL (p— 1= A [ .
= /p - /\)_) /s)‘w” (s)ds.

IN

Since (9.1.33) implies that

¢
/s’\w” (s)ds —» o0 ast— oo,
to

we see from (9.1.35) that there exists ¢; > to such that
¢ p—1 [t )
/ s tw(s) ds < —/ sMwP (s)ds, t>t.
to A to

Using this inequality in (9.1.34) we conclude that

/Oos’\F(S’—I(S))dsgc.

xP—1(s)

This however contradicts (9.1.32) which holds also in this case. O

9.1.6 (Half-)linearization technique

The linearization method is a typical method of the qualitative investigation of
various nonlinear differential equations. The reason is obvious: linear equations
are generally easier to investigate than the nonlinear ones. Naturally, a quasilinear
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equation can be compared also with the half-linear one. In Subsection 2.3.5 we
have presented comparison theorem, where two half-linear equations with the same
coefficients but different power functions were compared. Here we first compare
the linear equation

(9.1.36) (r(tya") +e(t)yr =0
with the nonlinear one
(9.1.37) (r(t)a"Y +e(t) f(z) =0,

where 7(t) > 0, ¢(t) > 0 and f is a continuous function satisfying u f(u) > 0 for u #
0. Further, oscillatory properties of quasilinear equation (9.1.1) are investigated
using the half-linear oscillation theory.

Oscillation of nonlinear equation is defined as in Subsection 9.1.4. To recall
the concept of strong and conditional oscillation of (half-)linear equations, see
Section 5.4. The proof of the following theorem is omitted. Note only that several
cases are distinguished, according to whether [ ™ q(s) ds is convergent or divergent,
and the value of

tim sup ( / (s) ds) ( /t uls) ds> and_limsup ( / a(s) ds) ( /t Ts) d3>

is zero or a positive number or infinity. Further, among others, Sturmian compar-
ison theorem and strongly (non)oscillation criteria play important roles.

Theorem 9.1.11. (i) Assume

/midt:oo and lim M:oo.
o T(t)

lu| o0 U

If (9.1.36) is either strongly oscillatory or conditionally oscillatory, then (9.1.37)
s oscillatory.
(if) Assume

> 1
/ —dt < oo and limM:oo
a T’(t) lul—0 u

If (9.1.36) is either strongly oscillatory or conditionally oscillatory, then (9.1.37)
s oscillatory.

Next we present the half-linearization method, which is a partial generalization
of (i) of the previous theorem. A Riccati-type substitution is employed there.

Theorem 9.1.12. Let p > ¢q. Denote n(t) = ft r1=4(s)ds and assume that
(9.1.38) / PP () dE = 00

and

t—oc

¢
(9.1.39) liminf/ c(s)ds > —o0.
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If the half-linear differential equation
(9.1.40) (r(n” " (OB()) + ac(t)B(y) =0

is oscillatory for every positive constant a (i.e., it is strongly oscillatory), then
(9.1.1) 4s oscillatory, i.e., it has no nonoscillatory proper solution.

Proof. Let x be a nonoscillatory proper solution of (9.1.1), say «(t) > 0 for t > to.

Define N
w(t) = w.

Then we have

(9.1.41)  w' = —c(t) = (¢ = )r(t) iq(g)'p = —c(t) — (g — L)r' P jw[P 2= O

and hence

(9142 wlt) = wito) = [ ets)ds (= 1) [ o) s

Now, with respect to the integral

L(to,t) := / 7r(s) [" ()" ds,

to z1(s)

we need to consider the following cases.
I) L(tp,00) < oo. In this case, there exists a positive constant R such that
L(to,t) < R for t > to. Using the Holder inequality we obtain, with v = ¢/p > 1,

xlfv(t) —x1*7(t0) < (v- 1)/t xx;((i))
t 1/p*
< w—nwmiwm([ﬂw%@w)

< (y= DRV ().

By (9.1.38) there exists a constant M > 0 and T > ¢ such that z'7(t) <
MnY? (1) for t > T, or z(t) > ((1/M)n~ 7 YO for ¢ > T and

a—p d1
9.1.43 xr=1({) > ,

where d; = (1/M) R Using (9.1.43) in equation (9.1.41) we obtain

fort > T,

w(t) < —elt) - dlzgq—_ll) <r(t)iﬂ"1> o, T

Hence, by Theorem 2.2.1 we find that equation (9.1.40) is nonoscillatory, a con-
tradiction.
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IT) L(tg, 00) = co. In view of condition (9.1.39), for some constant L, equation
(9.1.42) gives

(9.1.44) —w(t) > L+ (¢ — 1)L(to, 1), > to.

Let T > ¢y be such that A = L + (¢ — 1)L(tg,t) > 0 for t € [T, 00). Then (9.1.44)
ensures that w is negative on [T, c0). Now, (9.1.44) gives
(¢ = Dr®)]2" (D) a'(t)

[L+ (g — 1)L (to, t)]z9(t) >—(g—1) O P> T,

and consequently, for all t > T’

log H (L+(q— 1)L(t0,t))] > log (%)q_] .

Hence, L+ (q—1)L(to,t) > A(X(T)/z(t))? . So, inequality (9.1.44) yields z/(t) <

—Aqri-?” (t), for t > T, where Al(qu_l(T))l/(p_l). Thus, we have

¢
z(t) < a(T) — Al/ PP (s)ds, t>T,
T

and this, taking into account (9.1.38), implies z(t) — —o0 as { — o0, a contradic-
tion. |

9.1.7 Singular solutions of black hole and white hole type

Looking at the form of equation (9.1.1), a natural question arises, namely what
we can say about equation of the type (9.1.1) (or of a similar type), where p
and/or ¢ are less than 1. Such a question has already been extensively discussed
in the literature. The qualitative behavior of the singular Emden-Fowler equation
(r(t)y") + c(t)y?~! = 0 and its generalization (r(t)®(y’)) + c(t)y?~! = 0, where
p>1,q9 <1 and r,c are positive continuous functions, has been investigated in
details by many authors, see e.g [204, 225, 345, 353]. We emphasize that here by
singularity we mean the singularity of equations at dependent variables (some-
times called singularity at the phase variables) in contrast to the equations with
singular coefficients. Since the theory of the above mentioned singular Emden-
Fowler equations has been well processed in the literature we rather focus our
attention to other types of singular equations where some new phenomena may
occur. Equations of the form (|y/[P~1) + ¢(#)|y|?~ = 0, or of similar forms, where
p,q € R with p ## 1 and ¢ is either always positive or always negative continuous
function, have appeared very recently, see e.g. [186, 187, 188, 225, 346]. Note that
such forms allow us to consider equations with singular nonlinearity in the differ-
ential operator (when p < 1) or even doubly singular equations (when p < 1 and
g < 1). Some new interesting phenomena may occur for the equations of the latter
forms. To be more more precise, first let us consider the equation

(9.1.45) ('[P~ + ety =0,
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where p < 1, ¢ € R and ¢ is a positive continuous function defined on [a, 00). We
want to show that equation of the form (9.1.45) may have, along with proper and
“usual” blowing-up and extinct solutions, also singular solutions of a new type that
we call black hole solution. It is defined as a solution y of (9.1.45) which exists on
some interval [tg,T), T < oo, and has the properties lim;—7_ y(t) € (0,00) and
lim¢— 7 |y’ (t)| = 0o. A simple example of a singular equation of the form (9.1.45)
(with ¢ = 1) having this type of solution is

(9.1.46) (' P-1Y + (%)pl o,

where p < 1. For any given 7 > a and M > 0, the function y(t) = M+(T—t)?/(P=1)
defined and positive on [a, T) is a decreasing solution of (9.1.46) with a singularity
of black hole type at T. Similarly, for any M > 0 the function y(t) = M — (T —
t)/(P=1) provides an example of a “local” increasing black hole solution of (9.1.46)
which is defined and positive in some sufficiently small left neighborhood of T'.

Next we show that there does exist a wide class of equations of type (9.1.45)
which admit black hole solutions.

Theorem 9.1.13. For any T > a and any M > 0, equation (9.1.45) possesses an
increasing black hole solution defined on some interval [to,T), a <tg < T, if and
only if p < 0.

Proof. “=7”: Assuming that y is a positive increasing black hole solution of (9.1.45)
defined on [tg, T), after some easy computation, we obtain

1

T T T
/ </ e(r) dT) ds < o0,
t() s

which is possible only if p < 0.
“<": To prove this part we use a standard argument based on the Schauder
fixed point theorem. We show that the operator T : Q — C[tg, o¢] given by

T(u)(t) = M — /L ’ ( / C Pt () d7> . ds,

t € [to, T], with T > a and M > 0 being given arbitrarily, has a fixed point in the
set 2 which is defined by
M
Q=<Sue C[tQ,T] : ? < u(t) <Mte [to,T] .

Details are omitted. |

A closer examination of the previous proof shows that if there is made a special
choice of M, then the desired black hole solution is guaranteed to exist on the
entire given interval [a,T') and the above theorem can be restated as the following
“global” existence result.
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Theorem 9.1.14. Suppose that p # q. Then, for any T > a, equation (9.1.45)
possesses an increasing black hole solution defined on [a,T) if and only if p < 0.

Corresponding theorems dealing with decreasing black hole solutions can be
proved in a very similar way. We stress that black hole solutions exist regardless
q is greater than or less than 1.

Introducing certain energy functions, under the assumption ¢ € C''[a, c0), it
can be shown that the only decreasing solutions of (9.1.45) [resp. all increasing
singular solutions of (9.1.45)] are black hole solutions provided p < 0 and ¢ < 0
[resp. p < 0 < q].

Similarly as for nonsingular quasilinear equations, it can be shown the exis-
tence of “classical” singular solutions and proper solutions with some prescribed
asymptotic behavior.

By analogy with the concept of black hole solutions we introduce the so-called
white hole solutions that appear to be singular solutions of a new type. Consider
the equation

(9-1.47) ('[P~ + eyl =0,

where p,q € R are constants with p > 1, and ¢ is a positive continuous function
defined on [a,00). A solution y of (9.1.47) is said to be white hole solution of
(9.1.47) if it is defined on some interval [to, T), T < oo, lime,p_ y(t) € R\ {0}
and lim;,7y'(t) = 0. An example of a nonlinear equation of the form (9.1.47)
(with ¢ = 1) which possesses a singular solution of this new type is (9.1.46), where
p > 1. The desired solutions are defined exactly as those ones right after (9.1.46).
However, now we assume p > 1, and so they are of white hole type. Another simple
example is the “almost linear” equation (|y|)’ + |y| = 0. As easily seen, for any
real T and any M > 0, the function y(t) = M cos(T — t) defined and positive on
[to,T), to > T — 7/2, is its increasing singular solution which is of the white hole
type. In a very similar way as in the above theorems on black hole solutions, it
can be shown that, regardless of ¢ is greater or less than one, equation (9.1.47)
always has singular solutions of white hole type if and only if p > 1. It concerns
both solutions, decreasing and increasing, and the “global” existence result can
be stated as well provided p # ¢. Note that in the results concerning both cases,
i.e., black hole and white solutions, the assumption on the positivity of ¢ may be
somewhat relaxed, which however then has to be compensated by some additional
requirements.
We finish this section by examining the (singular) equation

(9.1.48) (y'[P=1) + Ayl =0,

t € [a,00), where A > 0, p € R\ {0,1}, ¢ € R\ {0} and p # ¢. Equation (9.1.48)
has for any given T > a the solution y(t) = M(T — t)?/®P=9 ¢ ¢ [a,T), where

1/(p—1)
M = ()\Kpfl)l/(P*Q), K = ’p—q
p

[r=

Now we distinguish three cases:
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t t

Figure 9.1.1: Extinct solutions of the first kind and of the second kind, respectively

a T t
Figure 9.1.2: Blowing-up solution

(iy If p/(p — q) > 1, then (9.1.48) has an extinct solution of the first kind, i.e.,
a solution y such that lim; ,7_ y(¢) = 0 = lim; 7 3/ (¢).

(if) If 0 < p/(p — q) < 1, then (9.1.48) has an extinct solution of the second
kind, i.e., a solution y such that lim; ,7_ y(¢t) = 0 and lim;_.p_ y'(t) = —c0.
Sometimes we call it a solution with a “zero black hole” at T'.

(iii) If p/(p — ¢) < 0, then (9.1.48) has a blowing-up solution, i.e., a solution y
such that lim;_7_ y(t) = oo = limy_,r_ ¢/ ().

9.1.8 Curious doubly singular equations

The so-called doubly singular equations are also of interest. Some of them have
already been discussed in the previous subsection. Besides this, note that, for
instance in [186], equations of the form (|y/|P~1) — ¢(¢)|y|9~ = 0, where p < 1,
g < 1 are constants, and ¢ is a positive continuous function, are studied. The results
presented there are more or less “standard” (i.e., conditions for the existence of
singular solutions or of solutions with prescribed asymptotic behavior). However, a
closer look at doubly singular equations reveals that they may offer very interesting
possibilities. A very natural question comes up: What about the doubly singular
case where the exponents are equal (i.e., the half-linear singular case)?
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What we present next comes from Jaroslav Jaros who started the study which
could answer the above question. In 1999, in [184], he gave an interesting example
of doubly singular equation of the second order, namely,

I
(9.1.49) <r(t)l,) +emt—o,
Y )

where r > 0 and ¢ are continuous functions. This equation may play a very signifi-
cant role in the theory of the class of quasilinear equations where the exponents in
nonlinearities are less than 0 (or, more generally, where the exponents may be arbi-
trary real numbers). Its importance is compared with the classical Sturm-Liouville
equation. Fven, it seems to be more important from a certain point of view. In-
deed, as easily seen, equation (9.1.49) can be explicitly solved — the corresponding
Riccati equation is a linear equation of the first order.

In the particular case r(¢) = 1 and ¢(t) = A, A € (0, 0), we obtain the equation

/
(9.1.50) (5) At o

The solution of (9.1.50) is

(1) = |Kt+ M|V §f X£1 (K #0),
7 et it A=1 (K, M #0).
Now, if A > 1, then y is blowing-up, if 0 < A < 1, then y is extinct of the first
kind, and if A < 0, then y is extinct of the second kind.

9.1.9 Coupled quasilinear systems

Quite recently, it has been started the investigation of the coupled quasilinear
systems, i.e., the systems of the form

(9.1.51)

where o € {—1,1}, r,q, p, ¥ are positive continuous functions defined on [a, 00),
and «, 8,y,d are constants greater than 1. Various extensions can also be consid-
ered; for instance, the expression ¢(t)®(y) is replaced by F(t,y) (with F being
the same as at the beginning of this section) or some of the constants «, 3,7, & are
allowed to be less than 1 which then covers a singular case. It is not difficult to see
that system (9.1.51) includes a wide class of fourth order nonlinear equations, for
instance those of the form 5 4 (1)@, (y) = 0. An advantage of the investigation
of system (9.1.51) is that its form may enable better understanding the structure
of solution space of (9.1.51) than in the case of fourth order equations (there in-
deed exist results that nicely illustrate this fact — the situations which seem to
be quite different for the fourth order equations are shown to be “symmetric”
when rewritten into the system). Moreover, since (9.1.51) consists of two second
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order equations in a formally “self-adjoint” form, theory of such systems can be
understood as an extension of the approach known from the extensive theory of
second order scalar nonlinear differential equations of the form (9.1.1). Motivated
ourselves in such a way, some kind of results can be expected, even though the
raise of the order makes usually problems much more difficult.

We choose here some of the typical results — problems of the (non)existence
of singular solutions, and some aspects of oscillation and asymptotic theory. We
present them without proofs. Note only that the analysis of nonoscillatory solutions
and the Schauder or Schauder-Tychonov fixed point theorem play an important
role there. Usually we look for fixed points of certain vector operators in the subsets
of Cartesian products of the Banach spaces C[a, b] or of the Fréchet spaces Cla, 00).
Compare the next statement with Theorem 9.1.3.

Theorem 9.1.15. Leto =1 and o, 3,7, > 1.

(i) If (a — 1)(B—1) > (v — 1)(6 — 1), then, for any T > a, system (9.1.51)
possesses an extinct singular solution, i.e., the solution (x,y) such that z(t) > 0,
y(t) >0 on[a,T) and z(t) = y(t) =0 on [T, c0).

(it) If (o — 1)(B—1) < (v — 1)(6 — 1), then system (9.1.51) has no extinct
singular solution.

For comparison purposes, the next statement is presented for a more general
system of the form

(r(t)®a (") = —F(t,y),
(a®)®s(y) = Gt ),

where F, G : [a,00) x R — R are continuous functions, nondecreasing with respect
to the second variable, and such that wf'(k,u) > 0, uG(k,u) > 0 for every u # 0
and k € [a,00). Further we assume here that o > 1, § > 1,

R COREER AR )

/ \F(t,C)\dt<oo,/ IG(t, C)| dt < o,

(9.1.52)

and

where o* and §* are the conjugate numbers of o and 3, respectively, and C is
any nonzero constant. We will need the next definition: We call system (9.1.52)
strongly superlinear (resp. strongly sublinear) if A\ > 0 and p > 0 exist such that
|F(t,u)|/|u|* and |G(t,u)|/|u|* are nondecreasing (resp. nonincreasing) in |u| for
each fixed t € [a,00), and Ay > (o — 1)(8 — 1) (vesp. Au < (o — 1)(8 — 1)). The
following notation will be useful:

w0 = [ e (G [T IFG0as) a
s0,(0) = /:ocpﬁ* (ﬁ/tmm(s,c*)ds) dt,
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Ps(C) = /f ‘G <t,c/at Do (%) d)‘ i,
Pp,(C) /aoo ¥ (t,c/at e (%S)) ds)‘ dt,

where C is a nonzero real constant. The next result deals with oscillation of
(9.1.52), which means oscillation of all its solutions. An oscillatory solution of
(9.1.52) is defined as the solution whose both components oscillate. Note that in
view of the sign conditions, one component of solution of (9.1.52) is oscillatory if
and only if another component is so. This can be easily seen by using the Rolle
Theorem. Compare the following statement with the results of Subsection 9.1.4.

Theorem 9.1.16. (i) Assume Siy,(C) = P&, (C) = P2, (C) = 00, 8%(M) < o0,
for all C # 0 and a constant M # 0. Let (9.1.52) be strongly superlinear. Then
(9.1.52) is oscillatory if and only if

/:C’d)ﬁ* {ﬁ./th{s7.loo¢>m <T17_)/:OF(77,C)d77) d’]’:| ds}’ dt = oo

for every C # 0.

(it) Assume Si,(C) = P&, (C) = Sep(C) = o0, Pp (M) < o0 for all C #
0 and a constant M # 0. Let (9.1.52) be strongly sublinear. Then (9.1.52) is
oscillatory if and only if

Tle(e tcbﬁ* "Gl [ on (EN an) ar| ds)| g = oo
[T Lo ([ oG o (G5) ) o] )
for every C # 0.

The last result which we choose to present here deals with the so-called regu-
larly decaying solutions, and allows to consider singular systems.

Theorem 9.1.17. Let o = =1, a > 1, 3 > 1, v #% —1 and 6§ # —1. System
(9.1.51) has a regularly decaying solution, i.e., a solution (x,y) such that x(oc) =
0 = y(oo), r(t)Pu(z') is bounded and ¢(t)®(y’') tends to a nonzero limit, if and
only if

/ rl/(lfa)(s) ds < o0, / ql/(lfﬁ)(s)ds < 00,

/Oo o(t) </t°o /B (g) ds)y_l dt < o0
/Oow(t) </t°° pt/0=2)(s) ds>61 dt < oo.

Note that many other results concerning asymptotic and oscillatory behavior
of (9.1.51) have been established, even for the systems with “worse” nonlinearities,
with forcing terms, and singularities. On the other hand, the theory of half-linear

and
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coupled systems (i.e., when &« = 3 = v = § in (9.1.51)) has not been developed yet.
Of course, the results for the general system may be applicable here, but what we
have in mind is the theory which is more refined, and uses the homogeneity of the
solution space. In other words, an extension of the theory described in the first two
chapters of this book to the half-linear systems of the form (9.1.51) is still missing.
Finally observe that instead of two equations one can consider n second order
equations, e.g., of the form (r1(t)®,, (2])) = ©1(£)Py, (x2), (ro(t)Pa, (z5)) =
P2() Py, (23), .., (ra(t)Pa, (2)) = wn(t)®s, (1), n € N. Such a system then
may be reduced to 2n-th order (scalar) quasi- or half-linear equation. There exist
some isolated results for scalar equations of this form, see Subsection 9.4.2.

9.2 Forced half-linear differential equations

The main concern of this section is to study the influence of the forcing term
on oscillatory properties of investigated equations. First we deal with forced half-
linear equations and then we turn our attention to forced quasilinear equation
(9.1.1).

9.2.1 Two oscillatory criteria

Consider the forced half-linear equation
(9.2.1) (r(® (")) +et)@(2) = f(1),

where r, ¢ and f are continuous functions on [a, o) with (¢) > 0. We start with a
weighted oscillatory criterion where an important role is played by the sign of the
forced term in subintervals. Throughout this subsection, ¢ has its usual meaning,
i.e., it is a conjugate number to p.

0 there exist T < 51 < t1 < 89 < &9

Theorem 9.2.1. Suppose that for any T >
t) > 0t € [s2,t2]. Denote

such that f(t) <0 fort € [s1,t1] and f(
D(Si,ti) = {u S Cl[si,ti] : u(t) 5_'5 0, U(Sl) =0= u(ti)}, 1=1,2.

If there exists a function h € D(s;,1;) and a posilive nondecreasing function ¢ €
C[T,o00) such that

o L[N 000 (o) 0Ny
(9.2.2) h (t)cp(t)c(t)dt>pp/ )2 <2|h(t)+h(t) @(t)> dt,

83
fori=1,2, then every solution of (9.2.1) is oscillatory.

Proof. Suppose that z is a nonoscillatory solution of (9.2.1) which is eventually of
one sign, say z(t) > 0 for ¢ > T, and let the function w be defined by the modified
Riccati substitution

r(t)®(e’ (1))

wll) = o) g
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Then w solves the generalized Riccati equation

¢'(t) wl® o))
(t) (r®e())et — (z(t)

By the assumptions of theorem, one can choose s1,t; > Tp so that f(¢) < 0 on
I = [sy,t1] with s; < t;. From (9.2.3) we have for t € T

©'(t)
©(t)

(9.2.3) w' = —p(t)e(t) + w—(p—1)

w(t)|?
(r()e@))at

Multiplying (9.2.4) by h? and integrating over I we obtain

(9.2.4) p(t)e(t) < —w'(t) + w(t) = (p—1)

“ 2 “ 2 / “ 2 ()
A hE(t)e(t)e(t)dt < — A h=(t)w'(t) dt + A h=(t) o0) w(t) dt

noL )
@1fllh(”wuwu»w1“'

Integrating the last inequality by parts and using the fact that h(s1) =0 = h(1),
we get

/lhz(t)gp(t)c(t)dt < / 2|h ()| |B ()||w(t |dt+/ h2(t ;((f))w(t)dt
iy 2 Iw £
1/ B2 COrOE
§ o)

2
/(mmmuuwwmﬂmwm

- —1/ h2(t) |w ));]q _ dt.

Now, the application of the Young inequality yields for ¢ € [sy, t1]

¢'(t)
©(t)

@wmww+

thus

e i< o [ HOED (ol + o 2 ) e

s1 pr

which contradicts our assumption. When x is eventually negative, we may employ
the fact that f(#) > 0 on some interval in any neighborhood of oo to reach a similar
contradiction. O
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Remark 9.2.1. If p = 2 and ¢(¢t) = 1, then the above theorem reduces to the
result of Wong [363]. In particular, condition (9.2.2) reads as f; [e(t)h2(t) —
r(t) (R (£))?] dt > 0.

Now we will see that a “large amplitude” of the forcing term may generate
oscillation of all solutions of (9.2.1).

Theorem 9.2.2. Let ¢(t) > 0 fort > a. If

¢ t
(9.2.5) litm inf [ f(s)ds=—o0, limsup/ f(s)ds = o0,
—*® Ja t—00 a
and
t s q—1
litminf/ r79(s) (/ flw) du) ds = —oo,
t s q—1
limsup/ r179(s) (/ Fuw) du) ds = oo,
t—oc Ja a

then every solution of (9.2.1) is oscillatory.

Proof. Assume the contrary. Then without loss of generality, we can assume that
there is a nonoscillatory solution = of (9.2.1), say, () > 0 for t > T > a. From
(9.2.1), we have (r(t)®(2')) < f(¢) for t > T. Thus, it follows that

(9.2.6) r(t)®(z'(t)) — r(T)P(2'(T)) < /T f(s)ds.

By (9.2.5) there exists ty > T sufficiently large so that z’(tg) < 0 and 2/(¢) < 0
for t > to. Replacing T by to in (9.2.6), we get

v <o 7(s) cz)

and
t s g—1
z(t) < x(to) —|—/ r174(s) ( flw) du) ds.
to Jtg
Therefore, liminf;_, ., 2(t) = —oco, which contradicts the fact that x(t) > 0 even-
tually. O

9.2.2 Forced super-half-linear oscillation

Along with (unforced) half-linear equation (1.1.1) consider the forced super-half-
linear equation

(9-2.7) Myl = (RO, (y") + C()2q(y) = f(1).

The functions ®,, &, have the same meaning as for quasilinear equation (9.1.1),
here with 1 < p < ¢. Further, R, C, f are continuous functions with R(¢) > 0. Now
we give without proof a nonlinear variant of Picone’s identity which will be needed
to prove the main results of this subsection.
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Theorem 9.2.3. Let x and y be continuously differentiable functions such that
R®,(y") is also continuously differentiable and y(t) # 0 in an interval I C R.
Then in this interval

|z|? ’ /_ e _ Q*P_& P
028 {Fr0e,00) = ROk - {coirr - L
~ ROQU" 4/ /3) + 3 (M = 1),

where Q) denotes the form defined by Q(u,v) = |u|? — pu®,(y) + (p — 1)|v|? which
satisfies Q(u,v) > 0 for all u,v € R with the equality if and only if u=v.

To obtain the first result concerning equation (9.2.7), assume that C(¢) > 0 on
some interval [a, b]. Further, consider the functional

b 1—p r—q p—1 a—p
6(s00) = [ {ROWP - - 1 (g = )0 -p) OISO P at

over Wy P (a,b), with the convention that 00 = 1.

Theorem 9.2.4. If there exists a nontrivial n € W, '*(a,b) such that
(9.2.9) G(n,a,b) <0,

then every solution y of (9.2.7) defined on [a,b] and satisfying y(¢) f(t) < 0 in this
interval must have a zero in |a,b].

Proof. Assume by a contradiction that (9.2.7) has a solution y satisfying y(¢) f (¢) <
0 and y(t) # 0 on [a,b]. Then identity (9.2.8) with x(t) replaced by n(t) reduces
to

(9.2.10)

i A ' wr O o
{grmmn,) ) = ronr - { o= L0 e reaea ).

Denote by F(y) the expression in the brackets on the right-hand side of (9.2.10)
considered as the function of y and observe that

(9.2.11)
. . _ ‘f| _p=1 p—gq _ p—1 g—p
= a-p = — —1(qg— —pYa—t (¢—1 p—1
I;l;l(’)lF(y) I;;l(’)l{C(t)'?A + P 1 (p—1) (g—D(g—p)etCatlf

if p<gq,and F(y) > C(t) if p=¢. Thus, in both cases (9.2.10) reduces to

(9.2.12) {(IJZZ)R(t)@p(y/)} < R@®)|y'P

~ (=17 T (g = 1)(g—p) = Cf

Integrating inequality (9.2.12) from a to b we obtain

q—p

7P = ROQM ny'/y).

b /
0<G(n;a,b) —/ R()Q (n’, %) dt,
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which is a contradiction unless G(n; a, b) = 0 in [a, b]. The last relation implies that
y must be a constant multiple of 1, and so we get, in particular, y(a) = y(b) =
0. O

Corollary 9.2.1. Let there exist two sequences of disjoint intervals (a,,b, ),
(at,b}), to < a, < b, <af <bf,a, — oo asn — oo such that C(t) > 0

n

on la; b, U[al, b+] f@) <0 onla,,b,], f(t) >0 onlaf,bf],n=1,2,..., and

nr-n n»’n n*r'n
two sequences of nontrivial continuously differentiable functions n,, (t) and ;7 (t)

defined on [a;,,b;] and [a),b]], respectively, such that
M (@) = 11 (b)) = 1 (a) = i (b)) = 0,

forn =1,2,..., and G(nF;ar,bF) < 0 for n € N. Then all solutions of (9.2.7)
are oscillatory.

The next result is a Leighton type comparison theorem where equation (9.2.7)
is compared with (1.1.1). Theorem 9.2.3 plays an important role there.

Theorem 9.2.5. If there exists a nontriwial solution x of (1.1.1) in [a,b] such
that z(a) = 2(b) = 0 and

b
Hiab) = [ {0 - Rl
+[(p -V (= V(g - O [FOIF = ew)| 2} dt 2 0,

then every solution y of (9.2.7) satisfying y(t)f(t) < 0 in (a,b) has a zero in [a,b].

Proof. If x is a nontrivial solution of (1.1.1) satisfying x(a) = =(b) = 0, then
integration by parts yields

b
(9.2.13) / ()2 P — c(t)|alP} dt = 0.
Thus, combining (9.2.9) with (9.2.13) we obtain H(z;a,b) = —G(x;a,b) > 0 and
the conclusion follows from Theorem 9.2.3. O

Now we give a Sturm-Picone type comparison theorem involving equations
(9.2.7) and (1.1.1).

Corollary 9.2.2. Let C(t) > 0 in [a,b]. If r(t) > R(1),

(p— )5 (g — 1)(g — p) =L [CE)] =T ()7 > c(t)

in [a,b] and there exists a nontrivial solution x of (1.1.1) such that x(a) = x(b) =
0, then any solution of (9.2.7) satisfying y(¢) f(¢t) < 0 in (a,b) has a zero in [a,b].

As a consequence of Theorem 9.2.5, we have the following general comparison
result which relates oscillation of the forced super-half-linear equation (9.2.7) to
that of conjugacy of two sequences of associated “minorant” half-linear equations
(9.2.14) and (9.2.15) below considered on the sequences of corresponding disjoint
intervals [a,,b,,] and [a}, b}], respectively.

n?n mnUn
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Corollary 9.2.3. Let there exist two sequences of disjoint intervals (a,, ,b;,) and
(af. b)), to < a, <b, <af <bf,a, — 00 asn — oo such that C(t) > 0 on

[a;,, 651U [a), b, f(t) <0 on[a;,b;], f(t) >0 on [af,bF], n=1,2,..., and
two sequences of half-linear equations

(9.2.14) (rp (@) + ¢, () ®(z) =0
(9.2.15) (ra (")) + ¢, M) (x) =0,
where v, ¢, [an b — R and rf, el 2 o), 0] — R are continuous functions
with v, (t) > 0 and v}t (t) > 0, with respective nontrivial solutions x, and z;}

satisfying x,, (a, ) =z, (b)) =z} (a}t) =2 (b)) =0,n=1,2,..., and

P—q P

+ [ -1 g - g —p) = Cw)] = )

=)l de > 0
for every n. € N. Then all solutions of (9.2.7) are oscillatory.

In the next result, by consecutive sign change points of the oscillatory forcing
function f we understand points ¢1,ts € [tg, 00), t1 < ta, such that f() > 0 (resp.
f(t) €0)on [t1,tz] and f(t) < 0 (resp. f(t) > 0) on (¢, —e,t1) U (L2, ta + <) for
some £ > 0.

Corollary 9.2.4. Assume that C(t) > 0 on [tg, o0)

(9.2.16) r(t) > R(t),

p—1 g—p

(9.2.17) (p— 1)t (g~ Dig —p) =t [COITFO]FF > eft)

for t > to, and either (9.2.16) or (9.2.17) do not become an identity on any
open interval where f(t) = 0. Moreover, suppose that (1.1.1) is oscillatory and
the distance between consecutive zeros of any solution of (1.1.1) is less than the
distance between consecutive sign change points of the forcing function f. Then
every nontrivial solution of (9.2.7) is oscillatory, too.

Before presenting the last result of this section, recall that the concept of quick
oscillation has been introduced in Subsection 5.6.2.

Corollary 9.2.5. Let C(t) > 0 for t > 5. If (9.2.16) and (9.2.17) hold and
every solution of (1.1.1) is quickly oscillatory, then every nontrivial solution of
the forced equation (9.2.7) is oscillatory, too, provided that the forcing function f
is moderately oscillatory, i.e., it changes sign on [T, 00) for each T > to and the
distance between consecutive sign change points of f is bounded from below.
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9.3 Half-linear differential equations with
deviating arguments

The aim of this section is to study half-linear equations where the argument (ar-
guments) in the non-differential term (terms) are deviating. The presence of such
deviation may cause phenomena which are not usual in the “ordinary case”. For
instance, the equation (®(z')) = ¢(t)®(x) with ¢(¢) > 0 is nonoscillatory by the
Sturmian comparison theorem since its Sturmian majorant (®(z))’ = 0 is nonoscil-
latory. However, the presence of a deviating argument may generate oscillation of
some or all of its solutions. Indeed, for example the function sin, ¢ is an oscillatory
solution of the functional differential equations (®(z'(t))) = (p—1)®(x(t—mp)) and
(®(2' (1)) = (p—1)®(z(t+mp)). This is obvious if one realizes that sin,(t —7,) =
sin, (¢ 4 7,) = —sin, t. On the other hand, we will see that some of the aspects of
behavior of solutions of the functional differential equations are shared with the
corresponding ordinary differential equations, in particular, when a deviation is
small or when one deals with the existence of some nonoscillatory solutions.

Since the Sturmian theory in general does not extend to the deviating case
(in particular, oscillatory and nonoscillatory solutions may coexist), oscillation of
a given functional equation is defined here as the oscillation of all its nontrivial
solutions. Recall that a solution is said to be oscillatory if it has arbitrarily large
zeros. A solution which is of eventually one sign is said to be nonoscillatory.

Some of the parts of proofs, which are rather technical, are omitted; we refer
to the sources where they can be found.

9.3.1 Oscillation of equation with nonnegative second
coefficient

Let us consider the half-linear functional equation
(9.3.1) (r()®(2' (1)) + c(t)®(x(7(£))) =0

on the interval [a,00). In addition to the usual assumptions on ¢(¢t) and r(t),
throughout this subsection we suppose that [~ r!'~9(s)ds = oo, ¢(t) > 0 (and
eventually nontrivial), 7(¢) is a continuously differentiable function with 7/(¢) > 0
and lim;_,o 7(t) = 00.

In the first theorem we compare oscillation of (9.3.1) with oscillation of certain
first order equation.

Theorem 9.3.1. Let 7(t) < t. If for oll large T > b > a so that 7(t) > b, t > T,
the first order delay equation

p—1

()
(9.3.2) V() + cft) ( /b Tl_q(s)d8> y(7(8)) = 0

is oscillatory, then (9.3.1) is oscillatory.
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Proof. Let x be a nonoscillatory solution of (9.3.1). Then there is {1 > a such that
x'(t) > 0 for t > t1. It can be shown, see [6, Lemma 3.13.1], that there is t5 >
such that 7(¢) > t; and

7(t)
(9.3.3) x(r(t)) = Tq_l(T(t))x/(T(t))/ r1=4(s) ds

t1

for t > to. Using (9.3.3) in equation (9.3.1), we obtain

r(t) p—l
(r() (@ ()P~ + e(t) (Tq_l(T(t))fC'(T(t))/t r'7a(s) d8>

< (r(O @)1 + (2P () =0

for t > ty. Setting w(t) = r(¢)(z’(¢))?~! in the above inequality, we get

~(t) ot
(9.3.4) w'(t) + c(t) (/t r1=9(s) ds) w(r(t)) <0

for t > to. Integrating (9.3.4) from ¢ > ¢5 to € and letting £ — oo, we find

oc T(s) p=l
w(t) > /t e(s) </t 17 (n) dn) w(T(s)) ds.

Clearly, the function w(t) is strictly decreasing for ¢ > ¢;. Hence, by [6, Lem-
ma 3.13.6], there exists a positive solution y of (9.3.2) with lim, .. y(¢t) = 0. But
this contradicts the assumption that (9.3.2) is oscillatory. O

Remark 9.3.1. The statement of Theorem 9.3.1 can easily be extended to the
quasilinear equation

(9.3.5) (Bo (@' (1)) + c(t)®p(x(r(2))) =0

with « > 1. Equation (9.3.2) then reads as

(1) p-l
(9.3.6) /() +c(t) </b rlq(s)ds> y(r () [P~/ =D gon 4 (7(t)) = 0.

The next lemma is a classical result, see e.g. [6]. A similar result can be stated
also when ¢ is nonpositive and 7(¢t) > t. Such a modification will find an application
in the next subsection.

Lemma 9.3.1. Let 7(t) <t fort > a. If

1
1
liminf/ c(s)ds > t

t—o0 T(t)

then
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(a) the inequality z'(t) + c(t)x(r(t)) < 0 has no eventually positive solution,
(b) the inequality x'(t) + c(t)x(r(t)) > 0 has no eventually negative solution,
(c) the equation x'(t) + c(t)z(7(¢)) = 0 is oscillatory.

The above lemma when applied to (9.3.2) leads to the following statement.

Theorem 9.3.2. If for every T > b>a so that t > 7(1) > b, t > T,

¢ (s) p=l 1
(9.3.7) lim inf/ c(s) / r9(n) dn ds > —,
f=oo Jrt) b e

then equation (9.3.1) is oscillatory.

Remark 9.3.2. Utilizing (9.3.6), the above theorem can be extended to (9.3.5)
provided (9.3.7) is replaced by

a—1

/‘00 e(s) (/bT(S) r=9(n) dn) ds = o0

In the proof of the next theorem, a generalized Riccati type transformation
plays a crucial role.

when a < p.

Theorem 9.3.3. Let 7(t) <t fort > a. If there exists a positive function p(t) €
Clla, 00) such that

o R0 A W
(9.3.8) h?lilip/a (p(S)C(S) pPr( ())(p(S)T,(S))p1> ds = oo,
then equation (9.3.1) is oscillatory.

Proof. Let z be a nonoscillatory solution of (9.3.1), say «(t) > 0 for £ > a. As in
Theorem 9.3.1 there exists ¢ > a such that for t > ¢4,

(9.3.9) Z'(t) >0 and ()@ ()P < r(r )@ (r()PL

Define w(t) = p(t)r(t)(a’(t)/x(7(t)))P~* for t > t1. Then for t > #;, w satisfies the
Riccati type equation

rt)(@ (8P~ (r(8)

(9.3.10) w'(t) = —p(t)e(t) + aP(7(t))
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or

(9.3.11)  w'(t) < —p(t)e(t) +

Integrating the above inequality from ¢, to ¢, we get

0 <w(t) <w(t)— /t (p(S)C(s) - pPT(T(S))%> ds.

Taking lim sup of both sides as t — oo, we find a contradiction to (9.3.8). O

The following corollary is immediate. Note that it can be proved also by a
slightly different approach based on the Riccati type transformation and Hélder’s
inequality, see [6, Corollary 3.13.3].

Corollary 9.3.1. Let condition (9.3.8) of Theorem 9.3.3 be replaced by

lim sup / t p(s)e(s)ds = oo and  lim tT(T(S))( (g;(,

The the conclusion of Theorem 9.3.8 holds.

For simplicity, the next criterion is proved for equation (9.3.1) where r(t) = 1,
i.e., for

(9.3.12) (@(z")) + c(t)®(z(r(t))) = 0.

Its extension to the general case is not diflicult; the formulation is given in the
subsequent remark. It is shown that if the delay 7(¢) is sufficiently close to ¢, in a
certain sense, then some oscillation criteria for (1.3.2) can be extended to (9.3.12).
Oscillation criteria presented here are half-linear extensions of some results for
the linear second order retarded equations (the case p = 2 in (9.3.12)) given in
[153, 306].

First we present without proof a technical auxiliary statement, the proof can
be found in [8].

Lemma 9.3.2. Suppose that the following conditions hold:

(i) x(t) € C?[T, 00) for some T >0,
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(i) z(t) >0, 2'(t) >0, and 2" (t) <0 fort > T.
Then for each ki € (0,1) there exists a constant Ty, > T such that

le(t)

#(r() > "

z(t), fort>Ty,,

and for every ko € (0,1) there exists a constant Ty, > T such that
x(t) > kota'(t), fort > Ty,.
Theorem 9.3.4. Let 7(t) <t for t > a. Denote fort > a
~(t) :=sup{s > tog : 7(s) < t}.

Equation (9.3.12) is oscillatory if either of the following holds:

00 p—1
(9.3.13) lim sup P~ / e(s) (®> ds > 1,
t—oc ¢ S
or
(9.3.14) lim sup tp_l/ c(s)ds > 1.
t—oc 7(%)

Proof. Suppose to the contrary that (9.3.12) has a nonoscillatory solution z(t).
Without loss of generality we may suppose that x(¢) > 0 for large ¢, say ¢t > ¢;.
Then also 2(7(¢)) > 0 on [t1,00) for ¢; large enough. Since ¢(t) > 0 on [t1, 00),

(9.3.15) (®(2'(1))) = —e®)(®(z(7(1))) < 0.

Hence, the function ®(z') is decreasing. Since sup{ec(t);t > T} >0 for any T' > 0,
we see that either

(a) «'(t) > 0 for all t > ¢y, or
(b) there exists ¢z > t; such that 2'(t) < 0 on [ta, 00).
If (b) holds, then it follows from (9.3.15) that
0> [l2' ()P~ %' (1)) = (p — D2’ ()P 22" (1), for ¢ > 1.

Thus, 2”(t) < 0 for t € [t2,00). This and 2'(t) < 0 on [t2,00) imply that there
exists t3 > t2 such that x(t) < 0 for ¢ > t3. This contradicts z(t) > 0. Thus, (a)
holds.

Integrating (9.3.15) from ¢ > #; to co, we obtain

- /fDO c(8)®(z(r(s)))ds = /too b(2'(s)) ds
= /too([x'(s)]pl)'ds = lim [2/(s)]P~! = 2/ (®)]P .

8§—0C
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Since z/(t) > 0 for t > t;, we find
(9.3.16)

[ ()P~ = lim [/ (s)]P7F + /t h c(s)®(z(7(s))) ds > /t ” o(s) [z (r(s))]"~ L ds.

It follows from (ii) of Lemma 9.3.2 that, for each ko € (0,1), there exists a Ty, > #;
such that

©310)  @OF 2K O e [ et s,

for t > Tx,. By (i) of Lemma 9.3.2, for each k; € (0,1), there exists a Tj,, such
that

-1 p—1 T(t) o -1
(9.3.18) e = 7 (T2 @y,
for t > Ty, . Then, by (9.3.17) and (9.3.18), for ¢ > t4 := max{Tk,, Tk, },

et > it | " e(s)la(r(s))P ds

(9.3.19) S A R /OO e(s) (@)P—l [2(s)]P" ds
) p—1
=0 0 [T (T2 fagepetas,
where k := min{k, k2 }. Since 2/(t) > 0, it follows that
Lpﬂtr)*l Ooc s ﬂ " ()P ds
(9.3.20) vz [ (M) i
> k2Pl /oo c(s) (@)P ds, for t > t4.

Hence,

oc p—1
limsup tP~1 / c(s) <®) ds :==a < co.
¢

t—o0 S

Suppose that (9.3.13) holds, then there exists a sequence {s,} with the properties
limy, o 85, = 00 and

o) p—1
lim sﬁfl/ c(s) (T—(:l> ds =a>1.

For €1 := (a — 1)/2 > 0, there exists an integer N; > 0 such that

1 00 p—1
(9.3.21) ot a—e; <sb! / c(s) <ﬂ> ds,

2 s
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for n > Ni. Choose k such that

5 N\ 1/2-1)
<a+ 1) < k<l

By (9.3.20) and (9.3.21),

oc p—1
1> kz(pfl)sgfl/ c(s) (@) ds > <L) <a+ 1) =1,
n s a+1 2

for s, large enough. This contradiction shows that (9.3.13) does not hold.
Now, by v(¢) >t and (9.3.17), we have

o0

[P = ke / () (r(s)))P L ds,

7(®)
for t > Tk,. Since z(t) is increasing and 7(s) > t for s > ~(t), it follows that

o0

c(s)[z(r(s)]P tds > kg_ltpfl[x(t)]pfl/ c(s)ds.

7(t)

P 2Rt [

7(®)
Dividing [z(¢)]P~! in both sides of the above inequality, we get
(9.3.22) kzg‘ltf’*l/ e(s)ds <1,
7(®)
for t > Ty,. Thus,

lim sup tp’l/ c(s)ds :==b < oo.
v

t—o0 (t)

Suppose that (9.3.14) holds. Then there exists a sequence {¢,,} with limy,_.o &, =
oo such that

(o]
lim P! / c(s)ds =b > 1.
n—oo ’Y(tn)

Thus, for €5 := (b —1)/2 > 0, there exists an integer N2 > 0 such that

b1 =
(9.3.23) % —b—ey < tf;l/ o(s)ds,
Y

for n > Nj. Choose kz € (2(b+1)'79,1). By (9.3.22) and (9.3.23),

_ > 2 b+1
1> kb 1tp—1/ c(s)ds > ——  —— =1,
R M b+1 2

for t,, large enough. This contradiction proves that (9.3.14) does not hold. O



9.3. Half-linear differential equations with deviating arguments 451

Remark 9.3.3. In an extension of the above theorem to equation (9.3.1), condition
(9.3.13) is split into the following two conditions provided r is differentiable: If
r'(t) <0, then for t > T > a,

e ([0 735 () v

if ¥/(¢) > 0, then for t > T > a,

li:irisolip (/Tt rta(s) ds)p_l /too (@)plc(s) ds > 1.

Condition (9.3.14) takes the form

t p—1 oC
lim sup (/ r14(s) ds) / c(s)ds > 1.
t—o0 T 7(t)

Ezxample 9.3.1. Consider the functional differential equation

g —
(9.3.24) 2@ + X Dagan) =0
Since
o< 9p o p—1 )
tmsuper-t [ 2L ((3/2)) s =2~ Dimsuprrt [~ Las
t—oc i sP S t—00 t sP

1
— _ ; p—1 —
=2(p—1)limsupt ((p — 1)tP1> =2>1,

t—oc

it follows from (9.3.13) of Theorem 9.3.4 that (9.3.24) is oscillatory. In fact, if
the coefficient 2P(p — 1)t P of (9.3.24) is replaced by kt P with k > 2P~ 1(p — 1),
(9.3.24) will again be oscillatory.

In the next theorem we assume that 7(¢) < ¢ and we denote

o= (7).

Theorem 9.3.5. Equation (9.3.12) is oscillatory if the differential equation
(9.3.25) (@(z")) + Au(t)e(t)®(z) =0
is oscillatory for some A € (0,1).

Proof. By contradiction, suppose that there exists an eventually positive solution
x of (9.3.12) and we may also assume that z(7(¢)) > 0 on [t1, c0) for some t; > tg.
Then z”(t) <0, 2’(t) > 0 on [ta,00) for some to > t1. Since A € (0, 1), it follows
from Lemma 9.3.2 that

-

(1) 2 A0V 1D



452 Chapter 9. Related Differential Equations and Inequalities

for t large enough. Thus,

t

(9.3.26) (e ()P = Nzt~ (T(t)> -

for t large enough. Let

Then, by (9.3.26),

A o) + o — Dl

(" (@)~ ()P~ — [ ()~ ()P

# 2+ -1 ()
Dl ()~ ()20
|

w'(t) +

IA
o

This and Theorem 2.2.1 imply that (9.3.25) is nonoscillatory, but this is a contra-
diction. Hence, (9.3.12) is oscillatory. O

Remark 9.3.4. Theorem 9.3.5 is an extension of Theorem 2.2 of [153].
Theorem 9.3.6. Let (1) <t fort > a. If
t p—1
(9.3.27) 1imsup/ c(s) (ﬂ> ds = oo,
t—oc S
then equation (9.3.12) is oscillatory.

Proof. Suppose to the contrary that (9.3.12) has a nonoscillatory solution z(t)
which may be assumed to be eventually positive. As in the proof of the Theo-
rem 9.3.4, there exists t; > ¢y such that x(r(¢)) > 0, z'(¢t) > 0, and z”(t) < 0 for
t > t1. By (i) of Lemma 9.3.2, there exists ¢t > ¢; such that

1 1/(p—-1) T(t)

etz (3) atn,

t
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or

for t > to. Since 2'(t) > 0 and z(7(t)) > 0 for t > #4,

@ OP = clatror 2 o) (D) fatop

for t > t. Integrating the above inequality from ¢, to ¢ and using the increasing

property of x(t), we get
p—1
e(s (ﬁ) [z(s)]P *ds

P - [ )P -

INA
\
N | —
—
N o~
2
&

IN
\
N | —
)
—~
-
N
et
=
|
—
—
0 ~
o
o~
&)
p—
TN
\}
RN
=
N—
bS]
|
—
=8
o

or

[/ (O < 2 ()P —%mtz)}p—l / C($)<T(t)> T

t2

for ¢t > t. This and (9.3.27) imply [2/(¢)]P~! < 0 for ¢ large enough. This is a
contradiction. Thus, (9.3.12) is oscillatory. O

9.3.2 Oscillation of equation with nonpositive second
coefficient

Let us consider half-linear functional equations in the form

(9.3.28) (r®)®(2'(1))) — c®P(2((¢))) = 0

and

(9.3.29) (r®2(2'(t))) — Zci(t)¢(ﬂf(7i(t))) =0,

on the interval [a, o), where ¢; and 7;, i = 1,...,n, satisfy the same conditions

as ¢ and 7, respectively, and the conditions imposed on r,c and 7 are the same
as in the previous subsection. We will see that (9.3.28) has all bounded [resp.
unbounded] solutions oscillatory provided the deviation |7(t) — t| is large enough
in some sense and 7(¢) is retarded [resp. advanced]. Even though from such results
oscillation of (9.3.28) does not follow, for equations of mixed type, i.e., involving
both retarded and advanced arguments, it is possible to establish oscillation of all
solutions. This may happen for equation (9.3.29).

For simplicity, similarly as in some of the above results, we will deal with
details only the case when r(t) = 1. The extension to the general case is not
difficult. Nevertheless, the main statement will be formulated for general r.
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We begin by considering the functional differential inequality

(9.3.30) (@ (1)) - ct)B(a(r(t))} sgna(r(t)) = 0.

Let = be a nonoscillatory solution of (9.3.30). It is easy to see that z’ is eventually
of constant sign, so that either z(¢t)a’(t) < 0 or x(¢)2’(¢t) > 0 for large ¢. Thus =
is bounded of unbounded according to whether the first or the second inequality
holds. Note that if z(¢t) > 0, say for ¢ > b, then (9.3.30) implies that a'(¢) is
increasing for ¢ > T, where T' > a is chosen so large that lim,>¢ 7(¢) > b, and
hence z is a convex function on [T, 00). Our first result shows that in the case
when 7(¢) is a retarded argument, it may happen that (9.3.28) admits no bounded
nonoscillatory solution.

Theorem 9.3.7. Suppose that T(t) <t fort > a and either

¢
(9.3.31) lim sup / c(s)(r(t) — 7(s))P"tds > 1
t—oo  Jr(t)
or
L t q-1
(9.3.32) limsup/ (/ e(n) dn) ds >1
t—oo  Jr(t) s
or
¢ p—1
- 1

(9.3.33) lim inf o(s) <“’ T(S)) ds > .

=0 Jigr ()2 2 €

Then every bounded solution of (9.3.30) is oscillatory.

Proof. Let x be a bounded nonoscillatory solution of (9.3.30). Without loss of
generality we may assume that z(t) > 0 and 2'(¢t) < 0 for t > b > a.

Suppose first that (9.3.31) holds. Let T > b be such that inf;>7 7(t) > b. Since
x is convex on [T, 00), we have 2(7(s)) > —z'(7(s))(7(t) —7(8)), t > s > T. Multl—
plying this inequality by ¢(¢), substituting for the left-hand side by (®(z'(s)))’ =

—((—=2'(s))P~1Y and integrating from 7(t) to ¢, we have

t

(=2 (7)) = (=2 @) = (=2 (r(1)))P /a) c(s)(r(t) = 7(s))P " 'ds,

whence it follows that

t
(=2’ (r(0))" (/ c(s)((t) — 7(s))P"ds — 1) <0,
7(t)
t > T'. But this is inconsistent with (9.3.31).
Suppose next that (9.3.32) holds. Integration of (9.3.30) over [0, ] gives

t t

(—a (o)) = (—a' (6P + / e a(r)P > / ) (e(r)?

(o2 o
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which implies

(9.3:34) ()= ([ ety a)
t > ¢ > T. Substituting (9.3.34) into

(9.3.35) x(s) = 2(t) +/ (—2'(n)) dn,

we have

-1

o) > | t ( / t c(z)(wﬁ(z)))ﬁldz)q dn,

t > s> T.Putting s = 7(t) in (9.3.35) and using the fact that x(7(¢)) is decreasing,

we conclude that
t t g—1
x(7(t)) (/ (/ e(2) dz) dn — 1> <0,
J7(t) \Jn

t > T, which contradicts (9.3.32).

Concerning the part with condition (9.3.33), we proceed similarly as in the
proof of Theorem 9.3.1 and application of Lemma 9.3.1, and so we omit details.
Note only that condition (9.3.33) ensures oscillation of the delayed equation

v+t (5 “))H v(252) -0

This completes the proof. |

A dual statement to Theorem 9.3.7 holds in the case where 7(t) is an advanced
argument.

Theorem 9.3.8. Suppose that 7(t) >t for t > a and either

Jim sup / " ) (s) — ()P > 1

t—o0

T(t) s qg—1
lim sup/ (/ c(n) dn) ds > 1
t—oc Jt Ji

(t+r(1))/2 RN
liminf/ e(s) (T(S) S) ds > %.
¢ 2

t—oc 2

Then every unbounded solution of (9.3.30) is oscillatory.

or

or

Proof. The proof is similar to that of Theorem 9.3.7, and hence is omitted. O

The following theorem follows from the above results, now extended to the case
of general . Recall that throughout this section we assume [~ r!~9(t) dt = oco.
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Theorem 9.3.9. (i) All bounded solutions of (9.3.29) are oscillatory if there exists
ie{l,2,...,n} such that ;(t) <t for t > a and either

t i (t) Pl
lim Sup/ ci(s) </ r79(n) dn) ds >1
t—oo  Jr(t) 7:(s)

—1

¢ ¢ q—1
lim sup/ r74(s) (/ ci(n) dn) ds > 1
t—oo Jry(t) /s

¢ (s47:(s))/2 Pt 1
liminf/ ci(s) / r=9(n) dn ds > —.
b=o0 St (1))/2 7i(s) €

(i) All unbounded solutions of (9.3.29) are oscillatory if there is j € {1,2,...,n}
such that 7;(t) >t for t > a and either

75(t) 75(s) Pl
lim sup/ c;i(s) / r4(n) dn ds >1
f=oo Ji 7 (t)

-1

75 (t) t q
limsup/ rt74(s) </ ci(n) dn) ds > 1
t—oo t s

(t+75(8))/2 75(s) Pt 1
lim inf/ ci(s) / r9(n) dn ds > —.
tmoe Jy (s+75())/2 e

(i11) All solutions of (9.3.29) are oscillatory if there are 4,j € {1,2,...,n} such
that ;(t) and 7;(t) satisfy the conditions of (i) and (i), respectively.

or

or

or

or

Proof. In view of the assumption [ *rl=9(s)ds = 0o, we can prove the statement
only for the case where r(t) = 1, and an extension is immediate.

(i) Suppose to the contrary that (9.3.29) has a bounded nonoscillatory solution
x. Then, from (9.3.29) we see that x satisfies the differential inequality

(9-3.36) {(®(='(1))" — c:()®(2(7(1)))} sgna(i(t)) > 0

for all sufficiently large ¢. This, however, is impossible since the possibility of the
existence of bounded nonoscillatory solutions to (9.3.36) is excluded by Theo-
rem 9.3.7.
(if) Argumentation is similar to that of (i), with making use of Theorem 9.3.8.
(iii) This is an immediate consequence of (i) and (ii). O
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9.3.3 Existence and asymptotic behavior of nonoscillatory
solutions

We are now interested in the existence and asymptotic behavior of nonoscillatory
solutions of equation (9.3.29). If = is a nonoscillatory solution of (9.3.29), then
there is tg > a such that either

(9.3.37) x(t)z'(t) >0 fort > ty,
or
(9.3.38) x(t)x' (1) <0 for t > to.

If (9.3.37) holds, then it is not difficult to show that z is unbounded, and the limit
My = limy_ o 7(£)P(2/(¢)) exists, either infinite or finite. If (9.3.38) holds, then
z is bounded and the finite limit z(co0) = limy_.c 2(t) exists. Compare with Sec-
tion 4.1 where asymptotic behavior of solutions to “ordinary” half-linear equations
is studied.

In what follows we only need to consider eventually positive solutions of equa-
tion (9.3.29), since if z satisfies (9.3.29), then so does —z. Let = be an eventually
positive solution of (9.3.29) satisfying (9.3.37) whose quasiderivative r®(z’) has a
finite limit M,. The twice integration of (9.3.29) for t > T yields

(9.3.39) z(t) ==(T)+ /trlq(s) <Mz — /OC zn:ci(u)xpfl(n(u)) du) ds,
T 5 =1

where T' > t1 is chosen so that infi>r 7,(¢) > t1,i=1,...,n.
Similarly, if = is an eventually positive solution of (9.3.29) satisfying (9.3.38),
then we obtain

n q-1
(9.3.40) z(t) = z(00) +/t r14(s) </ Zci(u)mpl(ﬁ(u))du> ds,

t>T.
Based on these integral representations of (9.3.29), we can prove the following
existence theorems.

Theorem 9.3.10. Equation (9.3.29) has a nonoscillatory solution x such that

(9.3.41) lim % c R\ {0}

if and only if

(9.3.42) /Do ci(s) (/Ti(s} 4 (u) du) . ds < o0,

i=1,2,...,n.
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Proof. The necessity follows from (9.3.39). To prove the sufficiency, let k& > 0 be
arbitrarily fixed, and let 1" > a be so large that

* = i i ; >
T* = min {tlél; Tl(t)} > 1o

n o0 'r.i(s) p—1 2p—1 -1
Z/ ¢i(s) / () du ds < ————,
= Jr . 2p

T

and

which is possible thanks to (9.3.42). Consider the subset Q of the Fréchet space
C|T*, 00) and the mapping 7 : 2 — C[T*, c0) defined by

Q= {m e C[T*, ) : g/f r9(s)ds < z(t)

and

tl_qs Pl OOnc-u:vp_1 (uw)) du " S
(Tx)(t) = /Tr ()<k /;() (z())d> ds  t>T,
0 T*<t<T.

Now, by means of the Schauder-Tychonov fixed point theorem, it is easy to show
that 7 has a fixed element in 2, which satisfies equation (9.3.29) and condition
(9.3.41). O

The proof of the next theorem is similar to that of the previous one, and hence
it is omitted.

Theorem 9.3.11. Egquation (9.3.29) has o nonoscillatory solution x such that
tlim z(t) € R\ {0}

if and only if

(9.3.43) /00 <r(1—5) /:C ci(u) du) - ds < o0,

i=1,2,....n.

It remains to discuss the existence of an unbounded nonoscillatory solution
x of (9.3.29) which has the property that the limit in (9.3.41) tends to $oo,
and of bounded solution x of (9.3.29) having the property that lim;_ . z(¢) = 0.
However, this is a difficult problem and there are no general criteria available for
the existence of such solutions. Therefore, we confine ourselves to the case where
at least one of the 7;(¢) is retarded and show that some sufficient conditions can
be derived under which (9.3.29) has a nonoscillatory solution tending to zero as
t — 00. Such a solution is often referred to as a decaying nonoscillatory solution.
Our derivation is based on the following theorem.
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Theorem 9.3.12. Suppose that there exists an ig € {1,2,...,n} such that
(9.3.44) Tig (t) < t, Ci (t) >0

for t > a. Further, assume that there exists a positive decreasing function ¢(t) on
[T, 00) satisfying

o o0 q—1
(9.3.45) o> [ ri ( / a-(u)(so(n(u)))pldu) ds,
{ s
t > T, where T is chosen so that infy>7 7;(t) > a, i = 1,...,n. Then equation

(9.3.29) has a decaying nonoscillatory solution.

Proof. Let A = {z € C[T,00) : 0 < z(p(t))}. With each z € A we associate the
function Z € C'a, 00) defined by

z(t) for ¢ > T,
zZ(T) 4+ [p(t) —p(T)] fora<t<T.

Define the mapping H : A — C[T, c0) as follows

(H2)(t) = /fﬂ%)( Ochi(u)(Z(n(u)))pldu> ds,

t > T. It now follows from the Schauder-Tychonov fixed point theorem that H has
a fixed element z(t) in A which is a solution to (9.3.29) tending to zero as t — co.
The fact that z(t) > 0 for t > T can be verified exactly as in [313, p. 170]. O

To apply the last theorem, it is convenient to distinguish the following three
cases:

(9.3.46) /oo icl(s) ds < oo and /OO r174(s) (/:O zj;cl(u) du) - ds < o0,

(9.3.47) /OO ilcl(s) ds < oo and /OO r1=a(s) (/jo ici(u) du) o ds = o0,

and

(9.3.48) /OO zn:ci(s) ds = 0.

Condition (9.3.46), which is nothing else but (9.3.43), always guarantees the
existence of a decaying nonoscillatory solution of (9.3.29).

Theorem 9.3.13. Suppose that (9.3.44) holds for some ig € {1,2,...,n}. If
(9.3.43) is satisfied, then (9.3.29) has a nonoscillatory decaying solution.
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Proof. Let T be large enough so that min;{inf;>7 7(t)} > max{1l,a} and

| <1®§ci<u) du)q_l bl

We shall show that () = 1 + (1/t) satisfies (9.3.45). Indeed, we have

:/tocrl_q(s) </°° ,nl i) <1+%>Fl du> s

t > T'. The conclusion now follows from Theorem 9.3.12. [l

We now state the existence theorems which are applicable to the cases (9.3.47)
and (9.3.48).

Theorem 9.3.14. Suppose that (9.3.44) holds for some ig € {1,2,...,n}, and

g—1
1
limsup/ / ch(u) du ds < —,
t—oco #) J =1 €

where o(t) = min; (). Then equation (9.3.29) has a nonoscillatory decaying
solution.

Proof. Let

and choose T > a so that inf;>7 o(t) > a, and

(9.3.49) Qr = sup Q( Yds <
t>T Jo(t)

Define ¢(t) = exp (— (1/Qr) f(; Q(s)ds). Since for i = 1,2,...,n,

p(r(t) = exp<QlT ﬂ’(t)%)ds) exp (—é / Q(s)ds)

< con(-g- [ QW) =t

A
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t > T, in view of (9.3.49), we have

/LOO r1a(s) (/S ZC’ T(u))P! du) " ds

(A

< eQrexp <_Ql_1 /: Q(s) d8> = eQry(t) < ¢(t),

t > T. The conclusion now follows from Theorem 9.3.12.

Theorem 9.3.15. Suppose that (9.3.44) holds for some iy € {1,2,...

ther, assume that there exists T > a such that inf;>p o(t) > a,

Q§:ti££’Q(t)>O and sup/ ch Ydu < = (QT1> ,

t>T

e/too Q(s)p(s)ds < e/t Q(s)exp <é /: Qu) du) ds

,n}. Fur-

where the functions Q(t) and o(t) are as in the previous theorem. Then equation

(9.3.29) has a nonoscillatory decaying solution.

Proof. Let
t n
Pr= sup/ Z cis)ds

21 Jo() i

and

| T atetnisnr i

A
9]
s
8
i
S
&=
—~~
5
V)
~—
~—
3
i
QU
V)

IN

t > T. Consequently, we obtain

/ </ ch (s (u)Pt du) o ds
(%) ed /toC exp (—PiT/:Zj:cl(u) du) ds
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L) e [T esren (<L [ aw] 4
— | — e ci(syexp | ——- ci(u)du | ds
Qr \p t P\TRr ). &

Pr (Pr\"! q /t -
< T q _4 .
s o < p) ctexp | —5- ) ;q(s)ds

< p(t),

IN

This establishes the existence of a strictly decreasing function ¢(t) > 0 satisfying
(9.3.45). The conclusion now follows from Theorem 9.3.12. |

9.4 Higher order half-linear differential equations

This section is devoted to a brief discussion of oscillatory properties and solvability
of boundary value problems associated with higher order half-linear differential e-
quations, i.e., with equations whose solution spaces are homogeneous but generally
not additive.

9.4.1 p-biharmonic operator

In this short subsection we consider the eigenvalue problem for the so-called p-
biharmonic operator

(9.4.1) A(|AuP2Au) = A®(u), z € Q, u(z) =0= Au(z), = € 09,

where 2 C RY is a bounded domain with the smooth boundary 92 and A is the
classical Laplace operator. As a special case, we consider the one-dimensional case
N=1

(9.4.2) (®@") = A®(u), t €(0,1), u(0)=u"(0)=0==u(l)=1u"(1),

where the general results for (9.4.1) can be considerably improved.
We start with (9.4.2) where we have a complete picture about eigenvalues and
eigenfunctions, as the next statement shows.

Theorem 9.4.1. The set of eigenvalues of (9.4.2) is formed by a sequence
0<Mp) < Az(p) <+ < Ap(p) = 0.

For any n € N, the function p — \,(p) is continuous. Every eigenvalue A\, (p) =
n?P )\, is simple and the corresponding one-dimensional space of solutions of prob-
lem (9.4.2) with A = A\, (p) is spanned by a function having exactly n bumps (i.e.,
the points at which u and u” equal zero) in (0,1). Fach n-bump solution is con-
structed by the reflection and compression of the eigenfunction u1 associated with
the first eigenvalue A1.

More precisely, one can verify that u(t) = ui(1 —¢t) for ¢t € [0,1], i.e., uy is
symmetric with respect to ¢ = 1/2. Now, the eigenfunction u,, corresponding to
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the eigenvalue A, = n?P)\ is of the form

uy(nt) t

wn () = '—ul(nt -1) t

k*l)”ul(nt —n+1) te[zL1].

n

Now we turn our attention to the general case (9.4.1). The solution of this
problem is defined as follows. Consider the Dirichlet problem for the Poisson equ-
ation

(9.4.3) —Aw=f ze€Q, w=0, zeco.

This problem has a unique solution for every f € LP(Q), p > 1, so the linear
operator T : LP(€2) — WP N W, P(Q) which assigns to the right-hand side f
of (9.4.3) its solution w, i.e., w = T(f), is well defined. Using this operator and
denoting v = —Awu in (9.4.1), this differential equation can be rewritten as the
operator equation

(9.4.4) B(v) = \T(®(T(v))), € Q.

Now, a function u € W22(Q) N Wy P(Q) is called a solution of (9.4.1) if v = —Au
solves (9.4.4) in LY(Q?), ¢ = p/(p — 1) being the conjugate exponent. The parameter
A is called an eigenvalue if the solution u is nontrivial.

The next result can be seen as an extension of the results of Section 7.1 con-
cerning the first eigenvalue of the p-Laplacian.

Theorem 9.4.2. The problem (9.4.1) has the least positive egenvalue A1(p) which
is simple and isolated in the sense that the set of solutions of (9.4.1) with A = A\1(p)
forms an one-dimensional linear space spanned by a posilive eigenfunction i
such that Au, < 0 in Q and % < 0 on 082, where v is the exterior normal to
Q. Moreover, there exists 6 > 0 such that (9.4.1) possesses no eigenvalue on the
interval (A1(p), A\1(p) + 68). Problem (9.4.1) has a positive solution if and only if
A = A1. The function p — A\ (p) is continuous.

9.4.2 Higher order half-linear eigenvalue problem

We consider the eigenvalue problem
(9.4.5)
(n)

(r(t)@(u(”))> + (=) Ae(®)®(uw) =0, uP(a) =0=uD0), i=0,...,n—1,

where r € C™[a,b], ¢ € Cla, b] are positive functions and A is the eigenvalue param-
eter. There are only a few papers dealing with higher order half-linear differential
equations. The reason is that the lack of additivity of the solution space makes
here much more “damage” than in the second order case.
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Theorem 9.4.3. The eigenvalue problem (9.4.5) has an infinite sequence of real
eigenvalues
0< Ay <Ag < oo < A — 00,

To each )i there corresponds an essentially unique eigenfunction ug that has ex-
actly k—1 zeros in (a,b), all simple. The zeros of uy, interlace with those of ugy1.

Remark 9.4.1. The problem (9.4.5) is a special case of the general n-th order BVP
which using the Elbert’s notation {see Subsection 1.1.1) y?* := |y[P sgny can be
written as

(9.4.6) (an—1(t)(.-. (a1 (&) ((a()uPo*) ) *) . )Pr=*Y = Xb($)uP™*,
where «a;, b are positive functions, p; > 0,7 =20,...,n— 1 and

boP1 - Pn—1 = P-

The last condition assures that the solution space of (9.4.6} is homogeneous. We
have presented here the main result of [150] in a simplified form. The reason is
that the main general statement of [150] requires several technical restriction on
the boundary conditions associated with (9.4.6) which are automatically satisfied
in the simplified setting of Theorem 9.4.3.

Another problem associated with the equation
(9.4.7) (=)™ (r(t)@ ™))™ + ¢(t)D(u) =0,
or with the more general equation

" (k)

(9.4.8) L (ak(t)cp(u“f))) =0, an(t) >0,
k=0
where a;(t), ¢ = 0,...,n, are continuous functions, is their oscillation theory,

analogous to the linear case (p = 2 in (9.4.8)). Following the linear case, two
point ¢1, %o are said to be conjugate relative to (9.4.8) if there exists a nontrivial
solution of (9.4.8) satisfying u(¥(t;) = 0 = u(t3), i = 0,...,n — 1. Equation
(9.4.8) is said to be nonoscillatory, if there exists T' € R such that the interval
[T, 00) contains no pair of points conjugate relative to (9.4.8). In the opposite
case, this equation is said to be oscillatory. The main tool of the higher order
linear oscillation theory is the fact that (9.4.8) with p = 2 is nonoscillatory if and
only if there exists T' € R such that

(9.4.9) | /T h

for every nontrivial y € Wg"*(T, 00). The reason for the fact that half-linear high-
er order oscillation theory is almost “terra incognita” is that we have only the
following implication at disposal.

iak(t)(y““)f] dt >0
k=0
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Theorem 9.4.4. If there exists T' € R such that the (energy) functional

(9.4.10) FM(y; T, 00) ::/T [Z ak.(t)|y(k)|p] dt >0
k=0

for every nontrivial y € WP (T, 00), then (9.4.8) is nonoscillatory.

Proof. Suppose that (9.4.8) is oscillatory, i.e., for any T' € R there exists a pair of
conjugate points ¢, ¢, € [T, 00) relative to this equation and let u be the solution
having zero points of multiplicity n at t; and ¢5. Define the function

0 t e [T, tl],
y(t) == u(t) te [t ta],
0 te [tg, OO)

Then y € Wy""(T, c0). Now, multiplying (9.4.8) by y, integrating the obtained
equation from 7" to oo, using by parts integration (similarly as in Subsection 1.2.2)
we find that ]-",[;n] (y) = 0, a contradiction. O

The previous statement, coupled with the Wirtinger inequality (Lemma 2.1.1},
gives the following result concerning the higher order Euler type differential equa-
tion. This result can be understood as a partial extension of the statement which
claims that the differential equation

(9.4.11) (—=1)my 4 =0

is nonoscillatory if and only if v < [(2n — 1)!1]2 /4™

Theorem 9.4.5. The differential equation

(9.4.12) (—1)" (cb(u(”)))(n) + tnlp@(u) =0

is monoscillatory provided
y<p " [Jkp—1)7.
k=1

Proof. The Wirtinger inequality (2.1.1) with M(t) = (p — 1 — )P~ 1t P o #£
p — 1, gives for any y € (T, c0)

oc _ 1 _ P o0
/ £y [P dt > ('p—o“) / £4=P |y P dt.
T p ¢

Applying this inequality, respectively, with o = 0, —p, ..., —(n — 1)p, we find that

the functional -
mp _ p} dt
/T [\y "= gyl

is positive for every y € WP (T, o), which implies the required result. O
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9.5 Inequalities related to half-linear differential
equations

Here we want to present integral inequalities involving a function and its deriva-
tive (or its integral) which are related to (1.1.1). There are two main connections:
we give inequalities which can be viewed as a necessary (and sometimes sufficient)
condition for the existence of certain solutions of (1.1.1). Further there are inequal-
ities which may serve as a tool for proving some qualitative results for (1.1.1). In
fact, there are inequalities like that of Lyapunov or of Vallée-Poussin (see Sec-
tion 5.1) which belong to the class satisfying these connections but we decided to
present them in the framework of a different topic since they do not belong to the
wide class of inequalities involving a function and its derivative, in contrast to the
inequalities of Wirtinger type, of Hardy type and of Opial type.

9.5.1 Inequalities of Wirtinger and Hardy type

We start with Wirtinger type inequalities. These are studied in the literature in
various modifications, let us mention at least [29]. We recall here the inequality,
proved in Section 2.1, which will be later shown to be related to other inequalities:
Let p > 1, M be a positive continuously differentiable function for which M’(t) # 0
in [a,b] and let w € Wy(a,b). Then

b b
MP(t
(9.5.1) | e <y [ Wuﬂpdt.

We call this inequality the “half-linear” version of the Wirtinger inequality because
it fits to the variational principle and it is used to prove nonoscillatory criteria for
(1.1.1), see Section 2.1.

Next we will discuss well-known Hardy inequality. First recall its classical ver-
sion from [173]: Let p > 1, a function f be nonnegative and such that [ fP(t)dt

exists. Denote F(t) := f; f(s)ds. Then

(9.5.2) /:o (%)pdt < <%>p/aoo FP(t) dt,

unless f = 0. The constant [p/{p — 1)]? is the best possible.

There exist several proofs of this statement. In one of them, (9.5.2) may be
viewed as a necessary condition for the existence of a positive increasing solution
of generalized Euler equation (1.4.20), where v = v, = ((p — 1)/p)?, which indeed
exists (see Section 1.4.2). In particular, this equation is nonoscillatory. On the
other hand, the following estimation shows that (9.5.2) is a sufficient condition
for nonoscillation of this equation. Indeed, let a function f be such that £ €

Wy'?(a,00), where £(t) = f; f(s)ds, a > 0. Then we have
¢ P
/ f(s)ds } dt

Feas) = [ {ler-2ierfoa= [ {If(t)l” .
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> /:O{f(t)l”— . p</atf($)d5)p}dt~

Now the last expression is positive by (9.5.2) provided f is nontrivial, which is our
case, if we assume that £ # 0. Hence, (1.4.20) with v = =y, is nonoscillatory by
Theorem 2.1.1.

One of the possible connections between Hardy and Wirtinger inequality is the
following one. If b = 0o and M (¢) =t in (9.5.1), we get the inequality

o = |y
| owrazs [0
a a

which is the same type of inequality as (9.5.2), but with arguments satisfying
different boundary conditions.

There is a large amount of various extensions of the Hardy inequality. We
mention here those ones which are related to our topic. Beesack [30] (see also his
nice survey [31]) showed that if f > 0, ' and ¢ are continuous functions in (a, b),
r>0,p>1, f;r(t)fp(t)dt < 00, 7(t) = O[(t — a)P 1] or ri—1( f ri=a(s)ds =
O(t —a) as t — a+, ¢ being the conjugate number of p, and (1.1.1) has a SOhlthIl
y with y(t) > 0 and ¢'(¢) > 0 in (a,b), then

(9.5.3) / b c(t)FP(t) dt < / b () fP(t) dt

where F' is defined as above. A similar theorem holds when p < 0. If 0 < p <
1 then inequality in (9.5.3) is reversed. Analogous theorems are obtained with
ff s) ds instead of F.

As a consequence of more general statements, Li and Yeh [241] obtained the
result similar to the one of Beesack: Let ' and ¢ be continuous functions in (a, b)
with =(¢) > 0. If (1.1.1) has a positive increasing [decreasing] solution y on (a, b)
and a nonnegative u € AC(a,b) satisfies

a0 0 gy > s 000 50

[in case of a decreasing y, limsup and liminf are interchanged], then

B
0. im i ,/ P eyP >
(9.5.4) A_}(lzrf,glib_/f‘ {riu'|P — cuP}(t)dt > 0,

where equality holds if and only if « is a constant multiple of y. If 0 < p < 1,
then “>” should be replaced by “<”. Li and Yeh used these inequalities to prove
the variational principle differently {rom the proof of (i)=-(ii) of the Roundabout
theorem (Theorem 1.2.2).

Last but not least it should be mentioned the work of Kufner and his colleagues

[210, 211]. They substantially generalized the results of Beesack and others, e.g.,
in the following manner, which is interesting from our point of view. Let ¢ and r
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be positive, measurable and finite almost everywhere on (a,b), where —co < a <
b<oo.Ifl<p<a<oo,re€AC(a,b) and r € L'~9(a,t) with 1/p+1/g =1 for
every t € (a,b), then

b = b »
(9.5.5) (/ c(t)|u(t)“dt> sK(/ r(t)u/(t)l”dt>

holds for every u € AC(a,b) satisfying u(t) — 0 as { — a+, where K is some
positive constant independent of u, if and only if there exists A > 0 such that the
differential equation

(9:5.6) AP (E)()) + e(t) () =0

has a solution satisfying y" € AC(a,b), y(t) > 0,y'(t) > 0 for every t € (a,b). These
extensions could be perhaps used to establish new sophisticated nonoscillation
criteria. Note that it is known several other sufficient and necessary conditions in
terms of r and ¢ for the validity of (9.5.5).

9.5.2 Inequalities of Opial type

Opial inequality is another inequality involving a function and its derivative, which
has appeared in many various modifications. Here we present the version of Boyd
and Wong [53]. For this we consider half-linear equation of the form

(9-5.7) [r(#)® (y)]) = As' (1) B (y) =0,

where r is a positive continuous function on [0, a], s is a nonnegative continuously
differentiable function on [0, a] and A > 0 is a constant. Suppose that the boundary
value problem (9.5.7), y(0) = 0, 7(a)®(y’(a)) = As(a)®(y(a)) has a nonnegative
solution y. Then for an absolutely continuous v with u(0) = 0,

- Oar<t>u’<t>|pdt > [ sl (6 (1) e,

where Ay is the largest eigenvalue. Equality is attained if and only if v is a constant
multiple of y. Let us mention, for example, one special case. If r = 1, then (9.5.7)
reduces to the explicitly solvable equation [r(t)® (y)]" = 0, and the eigenfunction
corresponding to the eigenvalue Ao = (fy '~ %(s) ds)l_p is y(t) = fot ri=4(s)ds.
Opial inequality then reads as

</Oa ri4(s) d5>p1/0a r(t) ! (8)|Pdt >p/0a ! (P~ (4)] dt,

with equality if and only if u(t) = KfoLrl’q(s) ds, K € R. From many other
works with variants of Opial inequality which hold for the functions with various
boundary conditions let us again mention the survey by Beesack [31] of integral
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inequalities modeled on the classical inequalities of Hardy, Opial and Wirtinger.
The inequalities therein are mainly of the “generalized Opial type”, namely

b
/ (el [PHe — elulP /) (8) dt > 0,
a

where (a, b) is finite or infinite interval, » and ¢ are positive functions. They hold
for all functions u in C'(a,b) that satisfy certain boundary conditions and they
are again viewed as necessary conditions for the existence of certain solutions of
some differential equations. If o = 0, u(a) = 0 or u(b) = 0 or both, then we get an
inequality of Hardy type, while for @ = 1, u(a) = 0 or u(b) = 0 or both, we have
an inequality of Opial type. Some authors call the case when @ = 0 and p = 2 as
the inequality of Wirtinger type but it does not seem to match the terminology
in the most of other literature. Another variant of Opial inequality similar to that
of Boyd and Wong, which is related to half-linear equation, can be found in Li
and Yeh [241], and reads as follows. Let r > 0 and s be continuously differentiable
functions on (a, b). If the equation

() ()] — %s/a)@(y) _g

has a positive increasing solution y on (a,b) and a nonnegative absolutely contin-
uous function u satisfies

L) SO e W) s,
hmmf{“%(y(t» p} (”th%f{“%(y(t» p} (®)

B
lim inf / {rlu/| — suP~ "'} (t)dt >0
A—a+,B—b— A
with equality only if u is a constant multiple of y. A similar statement holds when
y is a positive decreasing solution.
Finally it should be mentioned that there exists a monograph devoted to Opial
inequalities and their applications, namely [9].

9.6 Notes and references

There is a huge amount of papers dealing with quasilinear equations; a sample of
them is mentioned at the beginning of this chapter. Quasilinear equations with
constant coefficients {see Subsection 9.1.1) were studied by Drabek and Manase-
vich [129] and Otani [308, 309], see also the paper of Talenti [344] which gives
another point of view on the problem. The results of Subsections 9.1.2 and 9.1.3
are modeled on Cecchi, Dosla, Marini [57], except of Theorem 9.1.4 proved in
Kitano, Kusano [206]. The statements of Subsection 9.1.4 are taken from Elbert,
Kusano [144]. Another results concerning asymptotic properties of nonoscillatory
solutions of (9.1.1) and of more general equations of this type can be found e.g.
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in [4, 58, 59, 157, 205, 222, 227, 248, 253, 299, 319, 334, 347, 364, 372] by Agar-
wal, Cecchi, Dogla, Evtuchov, Fan, Grace, Kiomura, Kusano, W. T. Li, Marini, M.
Naito, Ogata, Rabtsevich, Rogovchenko, Tanigawa, Yang and Yoshida. The results
of Subsection 9.1.5 are due to J. Wang [358]. Theorem 9.1.11 was proved by Cec-
chi, Marini, Villari [67]. Theorem 9.1.12 is taken from Agarwal, Grace, O’'Regan
[6]. Black resp. white hole solutions were studied by Jaros, Kusano in [187] resp.
[188]. Subsection 9.1.8 is based on the lecture by Jaros [184]. Theorem 9.1.15 was
proved by Tanigawa [348]. The statements of Theorem 9.1.16 are the continuous
versions of the results due to Marini, Matucci, Rehék [284]. The same authors
proved Theorem 9.1.17 in [282]. Further results on coupled nonlinear differential
systems (in particular, existence of singular solutions and asymptotic theory) can
be found in some papers of the four last quoted authors, as well as of Jaros and
Kusano, e.g. in [189, 226, 283]. First order systems of four nonlinear equations,
which cover coupled systems, were studied by Kusano, Naito and Wu [221].

The results of Subsection 9.2.1 are taken from Li and Cheng [252], related
results are given in the paper of Yang [371]. Oscillation of a more general half-linear
forced equation than (9.2.1) is investigated in Kusano, Ogata [223] and Wong,
Agarwal [366], but for simplicity we present here the results of [252]. Damped half-
linear equations were studied in Agarwal, Grace, O’Regan [6]. Subsection 9.2.2 is
based on Jaros, Kusano, Yoshida [192].

Subsection 9.3.1 contains the result taken from Agarwal, Grace, O’'Regan [6].
The remaining subsections of Section 9.3 follow Agarwal, Grace, O’Regan [6] and
Kusano, Lalli [213], se also the papers of Agarwal, Grace and O’Regan [5, 7].

The results of Subsection 9.4.1 are taken from the paper of Drabek and Otani
[130] and the result of Subsection 9.4.2 is a simplified version of the main result
of the paper of Elias and Pinkus [150]. See also the paper of Pinkus [316]. Recent
results and references concerning higher order half-linear and quasilinear equations
can be found e.g. in the paper of Naito and Wu [302], we also refer to the older
paper of Kratochvil and Necas [209).

The last section, which is devoted to inequalities, presents classical results or
their extensions. A detailed discussion concerning a relevant literature is given
within the text.
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A
a-priori uniform boundedness, 366
admissible
function, see function, admissi-
ble
sequence, see sequence, admissi-
ble
alternative, Fredholm, 31, 325
Ambrosetti-Prodi type result, 338
antimaximum principle, see princip-
le, antimaximum
arccosy, see function, generalized,
arccosine
arccoty, see function, generalized,
arccotangent
arcsing, see function, generalized,
arcsine
arctany, see function, generalized,
arctangent
Armellini-Tonelli-Sansone theorem,
see theorem, Armellini-To-
nelli-Sansone
asymmetric nonlinearity, 347
asymptotic of nonoscillatory soluti-
ons
of half-linear equations, 123
of half-linear equations with de-
viating arguments, 457
of quasilinear equations, 422
averaging technique, see technique,
averaging
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B
basic
boundary value problem,
see problem, basic bound-
ary value
Sturm-Liouville problem,

see problem, basic Sturm-
Liouville

Besicovitch almost periodic function,
see function, almost period-
ic, Besicovitch

black hole solution, see solution, of
black hole type

blowing-up solution, see solution,
blowing-up

Bohr almost periodic function,
see function, almost period-
ic, Bohr

boundary point principle, see prin-
ciple, boundary point

C
classification of nonoscillatory solu-
tions
of half-linear equations, 124
of quasilinear equations, 422
Coles type oscillation criterion, see
criterion, oscillation, gener-
alized Coles
comparison theorem, see theorem,
comparison
condition
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Dirichlet boundary, 347
Landesman-Lazer, 342, 368, 371
orthogonality, 325, 335, 364
Palais-Smale, 313, 339
Sturm-Liouville boundary, 348
conditionally oscillatory equation,
see equation, conditionally
oscillatory
conjugacy criterion, see criterion,
conjugacy
conjugate
equation, see equation, conjuga-
te
number, see number conjugate
point, see point, conjugate
constant
critical, 50, 416
oscillation, 238
cosy, see function, generalized, cosine
coty, see function, generalized, cotan-
gent
coupled
point, see point, coupled
quasilinear system, see system,
coupled quasilinear
Courant-Fischer minimax principle,
see principle, Courant-
Fischer minimax
criterion
conjugacy, 190, 195, 196, 200,
305
disconjugacy, 191, 192, 198, 305
disfocality, 305
focal point, 193, 196, 305
nonoscillation
generalized Kneser, 43
discrete generalized Hille-Ne-
hari, 401
generalized Hille-Nehari, 49,
67, 70, 85, 249
generalized Willet, 90, 248,
253
Hille-Nehari extended, 109
Hille-Nehari modified, 71
Hille-Nehari weighted, 119
of Q, H type, see criterion,

nonoscillation, Hille-Nehari
extended
oscillation

discrete generalized Leighton-
Wintner, 397

generalized Kamenev, 96

generalized Kneser, 43

generalized Leighton-Wintner,
25

generalized Philos, 97

based on principal solution,

166

discrete generalized Hille-Ne-
hari, 400

for equations with p-Laplaci-
an, 378

for forced half-linear
equations, 438
for half-linear equations with
deviating arguments, 444,
453
generalized Coles, 95
generalized Hartman-Wintner,
68
generalized Hille-Nehari, 85,
207, 210, 246
generalized Hille-Nehari on
time scales, 414
generalized Kamenev, 307
generalized Leighton-Wintner,
125, 205
generalized Willet, 90, 247,
253
Hartman-Wintner extended,
298
Hille-Nehari extended, 100
Hille-Nehari modified, 71
Hille-Nehari weighted, 113
interval, 305
of Q, H type, see criterion, os-
cillation, Hille-Nehari ex-
tended
strong nonoscillation, 238
strong oscillation, 238
critical
constant, see constant, critical
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point, see point, critical

D
Diaz-Saa inequality, see inequality,
Diaz-Saa
decaying solution, see solution, de-
caying

degenerate p-Laplacian, see p-Lapla-
cian, degenerate
delta-derivative, 413
density of sequence of intervals, 302
Dirichlet boundary condition, see
condition, Dirichlet bound-
ary
Dirichlet boundary value problem
with p-Laplacian, see prob-
lem, Dirichlet boundary
value with p-Laplacian
disconjugacy
criterion, see criterion, conjuga-
cy
domain, see domain, disconjuga-
cy
disconjugate
equation, see equation, disconju-
gate
half-linear difference equation,
see equation, disconjugate,
half-linear difference
half-linear dynamic equation,
see equation, disconjugate,
half-linear dynamic
discrete
comparison theorem with res-
pect to p, see theorem, com-
parison, discrete, with res-
pect to p
Hartman-Wintner theorem, see
theorem, discrete, Hart-
man-Wintner
Hille-Nehari type nonoscillation
criterion, see criterion, non-
oscillation, discrete general-
ized Hille-Nehari
Hille-Nehari type oscillation cri-
terion, see criterion, oscilla-

tion, discrete generalized
Hille-Nehari
Hille-Wintner comparison theo-
rem, see theorem, compari-
son, discrete, Hille-Wintner
Leighton-Wintner type oscillati-
on criterion, see criterion,
oscillation, discrete general-
ized Leighton-Wintner
p-degree functional, see functi-
onal, discrete p-degree
Picone identity, see identity, dis-
crete Picone
quadratic functional, see functi-
onal, discrete quadratic
reciprocity principle, see princi-
ple, reciprocity for half-line-
ar difference equations
Riccati technique, see technique,
Riccati, for half-linear dif-
ference equations
roundabout theorem, see theo-
rem, discrete, roundabout
Sturm comparison theorem, see
theorem, comparison, dis-
crete, Sturm
Sturm separation theorem, see
theorem, discrete, Sturm se-
paration
Sturmian theory, see theory, dis-
crete Sturmian
telescoping principle, see princi-
ple, telescoping, discrete
variational principle, see princi-
ple, variational for half-line-
ar difference equations
Wirtinger inequality, see inequ-
ality, Wirtinger, discrete
disfocality criterion, see criterion,
disfocality
distribution of zeros, 255
divergence operator, see operator, di-
vergence
domain
disconjugacy, 218
nodal, see nodal, domain
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nonoscillation, 218
oscillation, 218
dominant solution, see solution, do-
minant
doubly singular equation, see equa-
tion, doubly singular
duality pairing, 315
dynamic equation on time scales, 413

E
eigenfunction, 261, 354
eigenvalue, 261, 354, 463
anti-periodic, 271, 272
first, 325, 354
Neumann, 280
periodic, 271, 272
rotational periodic, 272
second, 357
variational, 368
eigenvalue parameter, see parameter,
eigenvalue
Emden-Fowler equation, see equati-
on, differential, Emden-
Fowler
energy functional, see functional, en-
ergy
E,, see function, generalized, hyper-
bolic sine
e-almost period, 218
equation
conditionally oscillatory, 238
conjugate, 14, 16, 193
difference
generalized Riccati, 386
half-linear, 384
Riccati, 384
Sturm-Liouville, 384
differential
Emden-Fowler, 3, 421
Emden-Fowler, singular, 431
generalized 2n-th order Euler,
465
generalized Euler, 37, 146,
178, 466
generalized Fuler with deviat-
ed argument, 308

generalized Riccati, 8, 24
half-linear Euler, see equati-
on, differential, generalized
Euler
half-linear singular, 435
quasilinear, 417
quasilinear, with constant co-
efficients, 418
Riccati, associated to equati-
on with deviating argu-
ments, 446
Riccati, associated to forced e-
quation, 439
Riccati, associated to quasilin-
ear equation, 427
semilinear, 417
Sturm-Liouville, 2
disconjugate, 14, 16, 20, 148, 283
half-linear dynamic, 414
disconjugate, half-linear diffe-
rence, 386
doubly singular, 432, 435
dynamic
generalized Euler, 415
generalized Riccati, 414
half-linear, 413
Euler-Lagrange, 14
Fibonacci recurrence, 385
focal oscillatory, 297
forced, 9, 438
forced super-half-linear, 440
generalized integral Riccati, 57
generalized sum Riccati, 395
half-linear, of 2n-th order, 438,
463
half-linear, with deviating argu-
ment, 444, 453
Hill, 217
left disfocal, 193, 288, 306
majorant, 18
minorant, 18
nodally oscillatory, 373
nonoscillatory, 17, 100
nonoscillatory, 2n-th order, 464
nonoscillatory, difference, 390
one-term, 201
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oscillatory, 17
oscillatory, 2n-th order, 464
oscillatory, difference, 390
oscillatory, quasilinear, 424
perturbed, 201

Euler, 212
g-difference, 413
reciprocal, 22, 123
regular, 164
right disfocal, 193, 286, 306
strongly nonoscillatory, 100, 238
strongly oscillatory, 238
strongly sublinear, 425
strongly superlinear, 425
two-term, 201
weakly oscillatory, 373, 378
weighted of Sturm-Liouville ty-

pe, 217, 227

with almost periodic coefficients,
218, 230

with periodic coefficients, 229,
271

Euler

beta function, see function, Eu-

ler beta

gamma, function, see function,
Euler gamma
type differential equation, see
equation, differential, gene-
ralized Euler
type dynamic equation, see
equation, dynamic, general-
ized Euler
Fuler-Lagrange equation, see equa-
tion, Euler-Lagrange
even order half-linear equation, see
equation, half-linear, of 2n-
th order
existence and uniqueness
for half-linear equations, 8
for quasilinear equations, 421
extinct solution, see solution, extinct

F
Fibonacci recurrence relation, see
equation, Fibonacci
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recurrence
first
coupled point, see point, first
coupled
eigenvalue, see eigenvalue, first
left focal point, see point, first
left focal
right focal point, see point, first
right focal
focal
oscillatory equation, see equati-
on, focal oscillatory
point, see point, focal
point criterion, see criterion, fo-
cal point
forced

equation, see equation, forced
super-half-linear equation, see
equation, forced super-half-
linear
F,, see function, generalized, hyper-
bolic cosine
Fredholm alternative, see alternative,
Fredholm
Fubini type theorem, see theorem,
generalized Fubini
Fudik spectrum, 347, 361
nontrivial part, 362
trivial part, 361
function
admissible, 14, 282
almost periodic
Besicovitch, 231
Bohr, 218
Stepanoff, 231
uniform, 218
Weyl, 231
Euler beta, 5
Euler gamma, 5
generalized
arccosine, 6
arcsine, 6
arctangent, 6
cosine, 5
cotangent, 6
hyperbolic cosine, 33
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hyperbolic sine, 33
sine, 5
tangent, 6
trigonometric, 4
trigonometric, modified, 419
half-linear
arccosine, see function, gener-
alized, arccosine
arccotangent, see function, ge-
neralized, arccotangent
arcsine, see function, general-
ized, arcsine
arctangent, see function, gen-
eralized, arctangent
cosine, see function, general-
ized, cosine
cotangent, see function, gen-
eralized, cotangent
hyperbolic cosine, see functi-
on, generalized, hyperbolic
cosine
hyperbolic sine, see function,
generalized, hyperbolic sine
sine, see function, generalized,
sine
tangent, see function, general-
ized, tangent
trigonometric, see function,
generalized, trigonometric
Karamata, see function, regular-
ly varying and function,
slowly varying
normalized regularly varying,
171
normalized slowly varying, 170
normalized O-regularly varying,
171
O-regularly varying, 171
quickly oscillating, 258
radially symmetric, 1, 269
rd-continuous, 413
regularly varying, 170
slowly oscillating, 259
slowly varying, 170
weight, 92

function sequence technique, see te-

chnique, function sequence

functional

discrete quadratic, 384

discrete p-degree, 387

energy, 14, 282, 315, 318, 328,
338, 365, 373, 380, 465

p-degree on time scales, 414

p-degree, see functional, energy

G

generalized

arccosine function, see function,
generalized, arccosine
arccotangent function, see func-
tion, generalized, arccotan-
gent
arcsine function, see function,
generalized, arcsine
arctangent function, see functi-
on, generalized, arctangent
Coles oscillation criterion, see
criterion, oscillation, gener-
alized Coles
cosine function, see function, ge-
neralized, cosine
cotangent function, see function,
generalized, cotangent
discrete Picone identity, see id-
entity, generalized, discrete
Picone
Euler
differential equation, see
equation, differential, gene-
ralized Euler
dynamic equation, see equa-
tion, dynamic, generalized
Fuler
Fubini theorem, see theorem, ge-
neralized Fubini
Hartman-Wintner oscillation
criterion, see criterion, os-
cillation, generalized Hart-
man-Wintner
Hille-Nehari
nonoscillation criterion, see
criterion, nonoscillation, ge-
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neralized Hille-Nehari
oscillation criterion, see crite-
rion, oscillation, generalized
Hille-Nehari
hyperbolic cosine function, see
function, generalized, hy-
perbolic cosine
hyperbolic sine function, see
function, generalized, hy-
perbolic, sine
Kamenev oscillation criterion,
see criterion, oscillation, ge-
neralized Kamenev
Kneser nonoscillation criterion,
see criterion, nonoscillation,
generalized Kneser
Kneser oscillation criterion, see
criterion, oscillation, gener-
alized Kneser
Leighton-Wintner oscillation cri-
terion, see criterion, oscilla-
tion, generalized Leighton-
Wintner
Philos oscillation criterion, see
criterion, oscillation, gener-
alized Philos
T, See Tp
Picone identity, see identity, ge-
neralized, Picone
Priifer transformation, see tra-
nsformation, generalized,
Priifer
Pythagorian identity, see identi-
ty, generalized, Pythagorian
Riccati
difference equation, see equa-
tion, difference, generalized
Riccati
difference inequality, see ine-
quality, generalized Riccati
difference
differential equation, see equ-
ation, differential, generali-
zed Riccati
differential inequality, see in-
equality, generalized Riccati

differential
dynamic equation, see equa-
tion, dynamic, generalized
Riccati
integral equation, see equati-
on, generalized integral Ric-
cati
integral inequality, see inequ-
ality, generalized Riccati in-
tegral
operator, see operator, gener-
alized Riccati
sum equation, see equation,
generalized sum Riccati
sum inequality, see inequality,
generalized Riccati sum
transformation, see transfor-
mation, generalized, Riccati
sine function, see function, gen-
eralized, sine
tangent function, see function,
generalized, tangent
trigonometric function, see func-
tion, generalized, trigonom-
etric
Willet nonoscillation criterion,
see criterion, nonoscillation,
generalized Willet
Willet oscillation criterion, see
criterion, oscillation, gener-
alized Willet
Wronskian, see Wronskian, gen-
eralized
zero, see zero, generalized, of so-
lution
genus, see Krasnoselskii genus
graininess, 412

H
half-linear

arccosine function, see function,
generalized, arccosine

arccotangent function, see func-
tion, generalized, arccotan-
gent

arcsine function, see function,
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generalized, arcsine

arctangent function, see functi-
on, generalized, arctangent

Coles oscillation criterion, see
criterion, oscillation, gener-
alized Coles

cosine function, see function, ge-
neralized, cosine

cotangent function, see function,
generalized, cotangent

difference equation, see equati-
on, difference, half-linear

dynamic equation, see equation,
dynamic, half-linear

equation, with deviating argum-
ent, see equation, half-line-
ar, with deviating argument

Euler differential equation, see
equation, differential, gene-
ralized Euler

Hille-Nehari

nonoscillation criterion, see
criterion, nonoscillation, ge-
neralized Hille-Nehari
oscillation criterion, see crite-

rion, oscillation, generalized
Hille-Nehari

hyperbolic cosine function, see
function, generalized, hy-
perbolic cosine

hyperbolic sine function, see
function, generalized, hy-
perbolic, sine

Kamenev oscillation criterion,
see criterion, oscillation, ge-
neralized Kamenev

Kneser nonoscillation criterion,
see criterion, nonoscillation,
generalized Kneser

Kneser oscillation criterion, see
criterion, oscillation, gener-
alized Kneser

Leighton-Wintner oscillation cri-
terion, see criterion, oscilla-
tion, generalized Leighton-
Wintner

Philos oscillation criterion, see
criterion, oscillation, gener-
alized Philos

T, See Tp

Picone identity, see identity, ge-
neralized, Picone

Priifer transformation, see tran-
sformation, generalized,
Priifer

Pythagorian identity, see identi-
ty, generalized, Pythagorian

sine function, see function, gen-
eralized, sine

singular differential equation,
see equation, differential,
half-linear singular

tangent, function, see function,
generalized, tangent

trigonometric function, see func-
tion, generalized, trigonom-
etric

Willet nonoscillation criterion,
see criterion, nonoscillation,
generalized Willet

Willet oscillation criterion, see
criterion, oscillation, gener-
alized Willet

half-linearization technique, see tech-
nique, half-linearization

Hamilton nabla operator, see opera-
tor, nabla

Hamiltonian, 273

Hamiltonian system, see system, Ha-
miltonian

Hardy inequality, see inequality, Har-
dy

Hartman-Wintner extended oscillati-
on criterion, see criterion,
oscillation, Hartman-Wint-
ner extended

Hartman-Wintner theorem, see the-
orem, Hartman-Wintner

for half-linear difference equati-

ons, see theorem, discrete,
Hartman-Wintner

H-function averaging technique for
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equations with p-Laplacian,
see technique, H-function
averaging for equations
with p-Laplacian
H-function generalized averaging te-
chnique, see technique, H-
function generalized averag-
ing
Hill equation, see equation, Hill
Hille-Nehari extended
nonoscillation criterion, see cri-
terion, nonoscillation, Hille-
Nehari extended
oscillation criterion, see criteri-
on, oscillation, Hille-Nehari
extended
Hille-Nehari modified
nonoscillation criterion, see cri-
terion, nonoscillation, Hille-
Nehari modified
oscillation criterion, see criteri-
on, oscillation, Hille-Nehari
modified
Hille-Nehari type
discrete nonoscillation criterion,
see criterion, nonoscillation,
discrete generalized Hille-
Nehari
discrete oscillation criterion, see
criterion, oscillation, discre-
te generalized Hille-Nehari
nonoscillation criterion, see cri-
terion, nonoscillation, gen-
eralized Hille-Nehari
oscillation criterion, see criteri-
on, oscillation, generalized
Hille-Nehari
oscillation criterion on time sca-
les, see criterion, oscillation,
generalized Hille-Nehari on
time scales
Hille-Nehari weighted
nonoscillation criterion, see cri-
terion, nonoscillation, Hille-
Nehari weighted
oscillation criterion, see criteri-

on, oscillation, Hille-Nehari
weighted
Hille-Wintner
comparison theorem, see theor-
em, comparison, Hille-Wint-
ner
discrete comparison theorem,
see theorem, comparison,
discrete, Hille-Wintner
homotopic deformation along p, 318

I
identity
Picone, for equations with p-La-
placian, 372
Picone, for forced quasilinear
equations, 441
discrete Picone, 384
generalized
discrete Picone, 387
Picone, 13
Pythagorian, 5
half-linear
Picone, see identity, general-
ized, Picone
Pythagorian, see identity, ge-
neralized, Pythagorian
Picone, for equations with pseu-
dolaplacian, 381
Wronskian, 27
inequality
modified Riccati integral, 64
Diaz-Saa, 359
generalized Riccati difference,
392
generalized Riccati differential,
52
generalized Riccati integral,
54, 57
generalized Riccati sum, 397
Hardy, 466
Lyapunov, 190
Opial, 200, 468
Poincaré, 328
Vallée-Poussin, 191
Wirtinger, 48, 466
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Wirtinger, discrete, 405
Young, 13
initial value problem, see problem,
initial value
integral characterization of principal
solution, see solution, prin-
cipal, integral characteriza-
tion
intermediate solution, see solution,
intermediate
intermittent growth, 302
interval oscillation criterion, see cri-
terion, oscillation, interval
isolation of the first eigenvalue, 356

J
jump operator, see operator, jump
jumping nonlinearity, 347

K
Kamenev type oscillation criterion,
see criterion, oscillation, ge-
neralized Kamenev
Karamata function, see function, reg-
ularly varying and function,
slowly varying
Kneser type
nonoscillation criterion, see cri-
terion, nonoscillation, gen-
eralized Kneser
oscillation criterion, see criteri-
on, oscillation, generalized
Kneser
Krasnoselskii genus, 314, 357

L

Landesman-Lazer condition, see con-
dition, Landesman-Lazer

left disfocal equation, see equation,
left disfocal

Leighton comparison theorem, see
theorem, comparison,
Leighton

Leighton-Levin comparison theorem,
see theorem, comparison,
Leighton-Levin

Leighton-Wintner type

discrete oscillation criterion, see
criterion, oscillation, discre-
te generalized Leighton-
Wintner
oscillation criterion, see criteri-

on, oscillation, generalized
Leighton-Wintner

Leray-Schauder degree, 318, 319

limit characterization of principal so-
lution, see solution, princi-
pal, limit characterization

linear (in)dependence of solutions, 29

linearization method, see method, li-
nearization

linearization technique, see techni-
que, linearization

linked sets, 343

local minimizer geometry, 338

local saddle point geometry, 338

lower solution, see solution, lower

Lusternik-Schnirelmann characteri-
zation, 312, 369

Lyapunov inequality, see inequality,
Lyapunov

M
majorant equation, see equation, ma-
jorant
mean value, 225, 231
measure chain, 412
method
linearization, 215
variational, see principle, varia-
tional
Milloux theorem, see theorem, Mil-
loux
minimal solution, see solution, mini-
mal
minorant equation, see equation, mi-
norant
Mirzov system, see system, Mirzov
multiplied coefficient comparison the-
orem, see theorem, compar-
ison, multiplied coefficient

N
nabla operator, see nabla, operator
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Neumann eigenvalue, see eigenvalue,
Neumann
nodal
contour, 357
domain, 357, 373
nodally oscillatory equation, see equ-
ation, nodally oscillatory
nonexistence of positive solutions of
equation with p-Laplacian,
376
nonhomogeneous problem, see prob-
lem, nonhomogeneous
nonoscillation
criterion, see criterion, nonoscil-
lation
domain, see domain, nonoscilla-
tion
nonoscillatory equation, see equati-
on, nonoscillatory
nonprincipal solution, see solution,
nonprincipal
nonresonance problem, see problem,
nonresonance
nontrivial part of Fuc¢ik spectrum, see
Fucik spectrum, nontrivial
part
normalized
regularly varying function, see
function, normalized regul-
arly varying
slowly varying function, see fun-
ction, normalized slowly va-
rying
normalized
O-regularly varying function, see
function, normalized O-reg-
ularly varying
number conjugate, 2

0]
one-term equation, see equation, one-
term
operator
divergence, 1, 353
generalized Riccati, 50
jump, 412

nabla, 1, 353
p-biharmonic, 462
Schridinger, 376
Opial inequality, see inequality, Opial
O-regularly varying function, see fu-
nction, O-regularly varying
orthogonality condition, see conditi-
on, orthogonality
oscillation
constant, see constant, oscil-
lation
criterion, see criterion, oscil-
lation
domain, see domain, oscillation
oscillatory equation, see equation, os-
cillatory
own coupled point, see point, own
coupled

P
Palais-Smale condition, see conditi-
on, Palais-Smale
parameter
eigenvalue, 312, 463
spectral, 311, 327
p-degree functional, see functional,
energy
perturbation principle, see principle,
perturbation
perturbed
Euler equation, see equation,
perturbed, Euler
equation, see equation, pertur-
bed
Philos type oscillation criterion, see
criterion, oscillation, gener-
alized Philos
Tp, D, 0
Picone identity
for equations with p-Laplacian,
see identity, Picone, for equ-
ations with p-Laplacian
for equations with pseudolapla-
cian, seeidentity, Picone, for
equations with pseudolapla-
cian
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for forced quasilinear equations,
see identity, Picone, for for-
ced quasilinear equations
for half-linear difference equati-
ons, see identity, generaliz-
ed, discrete Picone
for half-linear equations, see id-
entity, generalized, Picone
for linear difference equations,
see identity, discrete Picone
p-Laplacian, 1, 353
degenerate, 364
singular, 364
Poincaré inequality, see inequality,
Poincaré
Poincaré map, 274
point
conjugate, 16, 148, 283
conjugate, of 2n-th order equa-
tion, 464
coupled, 283, 288, 290
critical, 315
first coupled, 283
first left focal, 193
first right focal, 193
focal, 284, 285, 297
left focal, 288
own coupled, 283
regular, 144
right focal, 284
right-dense, 413
right-scattered, 413
semicoupled, 282
singular, 269
Priifer type transformation, see tran-
sformation, generalized,
Priifer
principal solution, see solution, prin-
cipal
principle
antimaximum, 359
boundary point, 358
Courant-Fischer minimax, 312
perturbation, 201
reciprocity, 22, 123
reciprocity for half-linear differ-

ence equations, 390
strong comparison, 358
telescoping, 77
telescoping, discrete, 410
variational, 48
variational for equations with p-
Laplacian, 373
variational for equations with
pseudolaplacian, 380
variational for half-linear differ-
ence equations, 390
problem
basic boundary value, 312
anti-periodic, 271
basic Sturm-Liouville, 261
Dirichlet boundary value with p-
Laplacian, 354
eigenvalue for 2n-th order half-
linear equation, 463
half-linear Sturm-Liouville, 261
initial value, 8
nonhomogeneous, 315
nonresonance, 31, 312, 320
periodic, 271
regular boundary value, 348
regular Sturm-Liouville with in-
definite weight, 263
resonance, 337
resonance at higher eigenvalues,
335
resonance at the first eigenvalue,
325, 364, 367
singular boundary value, 348
singular Sturm-Liouville, 267
singular Sturm-Liouville with p-
Laplacian, 269
proper solution, see solution, proper
pseudolaplacian, 380

Q

g-difference equation, see equation,
g-difference
Q), H type
nonoscillation criterion, see cri-
terion, nonoscillation, Hille-
Nehari extended



Index

509

Q, H type
oscillation criterion, see criteri-
on, oscillation, Hille-Nehari
extended
quadratization of energy functional,
367
quasi-jumping, 302
quasiderivative, 124
quasilinear differential equation, see
equation, differential, quasi-
linear
with constant coefficients, see
equation, differential, quasi-
linear, with constant coeffi-
cients
quickly oscillating
function, see function, quickly
oscillating
solution, see function, quickly
oscillating

R
radially symmetric function, see fun-
ction, radially symmetric
Rayleigh quotient, 354
rd-continuous function, see function,
rd-continuous
reciprocal equation, see equation, re-
ciprocal
reciprocity principle, see principle,
reciprocity
for half-linear difference equati-
ons, see principle, reciproci-
ty for half-linear difference
equations
reduction of order formula, 29
regular
boundary value problem, see
problem, regular boundary
value
equation, see equation, regular
growth, 302
point, see point, regular
Sturm-Liouville problem with
indefinite weight, see prob-
lem, regular Sturm-Liouvil-

le with indefinite weight
regularity condition, 283
regularly varying function, see func-
tion, regularly varying
resonance problem
at higher eigenvalues, see prob-
lem, resonance at higher ei-
genvalues
at the first eigenvalue, see prob-
lem, resonance at the first
eigenvalue
Riccati
difference equation, see equati-
on, difference, Riccati
differential equation, see equa-
tion, differential, Riccati
modified integral inequality, see
inequality, modified Riccati
integral
technique, see technique, Riccati
Riccati type
difference equation, see equati-
on, difference, generalized
Riccati
difference inequality, see inequ-
ality, generalized Riccati
difference
differential equation, see equa-
tion, differential, generali-
zed Riccati
differential inequality, see inequ-
ality, generalized
Riccati differential
dynamic equation, see equation,
dynamic, generalized Ricca-
ti
integral equation, see equation,
generalized integral Riccati
integral inequality, see inequali-
ty, generalized Riccati inte-
gral
sum equation, see equation, gen-
eralized sum Riccati
sum inequality, see inequality,
generalized Riccati sum
transformation, see transforma-
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tion, generalized, Riccati

right disfocal equation, see equation,
right disfocal

right focal point, see point, right fo-
cal

right-dense point, see point, right-
dense

right-scattered point, see point,
right-scattered

rotation index, 272, 274

roundabout theorem, see theorem,
roundabout

S
Schrédinger operator, see operator,
Schrédinger
second eigenvalue, see eigenvalue, se-
cond
semicoupled point, see point, semi-
coupled
semilinear differential equation, see
equation, differential, semi-
linear
sequence, admissible, 387
sin,, see function, generalized, sine
singular
boundary value problem, see
problem, singular boundary
value
Emden-Fowler differential equa-
tion, see equation, differen-
tial, Emden-Fowler,
singular
half-linear differential equation,
see equation, differential,
half-linear singular
Leighton comparison theorem,
see theorem, comparison,
singular Leighton
p-Laplacian, see p-Laplacian,
singular
point, see point, singular
solution, see solution, singular
Sturm-Liouville problem, see
problem, singular Sturm-Li-
ouville

Sturm-Liouville problem with p-
Laplacian, see problem, sin-
gular Sturm-Liouville with
p-Laplacian

slowly oscillating

function, see function, slowly os-
cillating

solution, see function, slowly os-
cillating

slowly varying function, see function,
slowly varying

Sobolev space, see space, Sobolev

solution

blowing-up, 421, 434

decaying, 437, 458

dominant, 137, 267

extinct

of the first kind, 421
of the second kind, 421

intermediate, 137

lower, 330, 339

minimal, of generalized Riccati
equation, 143

minimal, of Riccati equation,
142

nonprincipal, 148

of black hole type, 432

of white hole type, 433

principal, at a regular point, 144

principal, construction of Elbert
and Kusano, 144

principal, integral characteriza-
tion, 158, 164

principal, limit characterization,
154

principal, Mirzov’s construction,
142

principal, of generalized Euler
equation, 147

principal, of linear equation, 141

principal, of one-term equation,
146

principal, of reciprocal equation,
149

principal, Sturmian property,
148
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proper, 99, 421
quickly oscillating, see function,
quickly oscillating
singular, 3, 421
of the first kind, 421, 434
of the second kind, 421, 434
slowly oscillating, see function,
slowly oscillating
strongly increasing, 424
subdominant, 137, 267
upper, 330, 339
weakly increasing, 424
with zero black hole, 434
space, Sobolev, 14
spectral parameter, see parameter,
spectral
Stepanoff almost periodic function,
see function, almost period-
ic, Stepanoff
strong
comparison principle, see princi-
ple, strong comparison
nonoscillation criterion, see cri-
terion, strong nonoscillation
oscillation criterion, see criteri-
on, strong oscillation
strongly
increasing solution, see solution,
strongly increasing
nonoscillatory equation, see equ-
ation, strongly nonoscillato-
ry
oscillatory equation, see equati-
on, strongly oscillatory
sublinear equation, see equation,
strongly sublinear
sublinear system, see system,
strongly sublinear
superlinear equation, see equa-
tion, strongly superlinear
superlinear system, see system,
strongly superlinear
Sturm
comparison theorem, see theo-
rem, comparison, Sturm
comparison theorem for forced

super-half-linear equation,
see theorem, comparison,
Sturm, for forced super-
half-linear equation
discrete comparison theorem,
see theorem, comparison,
discrete, Sturm
discrete separation theorem, see
theorem, discrete, Sturm se-
paration
separation theorem, see theo-
rem, Sturm separation
separation theorem for equation-
s with p-Laplacian, see the-
orem, Sturm separation for
equations with p-Laplacian
Sturm-Liouville
boundary condition, see condi-
tion, Sturm-Liouville
boundary
difference equation, see equati-
on, difference, Sturm-Liou-
ville
differential equation, see equa-
tion, differential, Sturm-
Liouville
half-linear boundary value prob-
lem, see problem, half-line-
ar Sturm-Liouville
Sturmian
discrete theory, see theory, dis-
crete Sturmian
majorant equation, see equati-
on, majorant
minorant equation, see equation,
minorant
theorems, see theorem, compar-
ison, Sturm and theorem,
Sturm separation
theory, see theory, Sturmian
subdominant solution, see solution,
subdominant
subsolution, 9
system
coupled quasilinear, 435
Hamiltonian, 273
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Mirzov, 22
strongly sublinear, 436
strongly superlinear, 436

T
tan,, see function, generalized, tan-
gent
technique
averaging, 91
function sequence, 243
half-linearization, 430
H-function averaging for equa-
tions with p-Laplacian, 379
H-function generalized avera-
ging, 97, 305
linearization, 429
Riccati, 50
Riccati, for equations with p-La-
placian, 374
Riccati, for equations with pseu-
dolaplacian, 380
Riccati, for half-linear difference
equations, 390
Riccati, for quasilinear equati-
ons, 427
telescoping principle, see principle,
telescoping
theorem
Armellini-Tonelli-Sansone, 304
comparison
discrete, Hille-Wintner, 408
discrete, Sturm, 389
discrete, with respect to p, 408
for minimal solutions, 147
Hille-Wintner, 69, 249
Leighton, 73
Leighton, for equations with
p-Laplacian, 372
Leighton, for forced super-
half-linear equation, 442
Leighton-Levin, 293
multiplied coefficient, 75
singular Leighton, 202
Sturm, 17, 23, 294
Sturm, for forced super-half-
linear equation, 442

with respect to p, 80
with respect to p, on time
scales, 415
discrete
Hartman-Wintner, 393
roundabout, 387
Sturm separation, 389
generalized Fubini, 138
Hartman-Wintner, 54, 100, 233
Milloux, 302
roundabout, 14, 21, 283
roundabout, on time scales, 414
Sturm separation, 16, 18
Sturm separation for equations
with p-Laplacian, 373
theory
discrete Sturmian, 389
Sturmian, 13
time scale, 412
topological degree, 326
transformation
generalized
Priifer, 7, 24
Riccati, 8
half-linear
Priifer, see transformation,
generalized, Priifer
of dependent variable, 30
extended, 217
of independent variable, 21
trigonometric, 31
trigonometric transformation, see
transformation, trigono-
metric
trivial part of Fuéik spectrum, see
Fucik spectrum, trivial part
two-term equation, see equation,
two-term

U
uniformly almost periodic function,
see function, almost period-
ic, uniform
upper solution, see solution, upper

A%
Vallée-Poussin inequality, see inequ-
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ality, Vallée-Poussin
variational

characterization of eigenvalues,
314

characterization of the least ei-
genvalue, 315

eigenvalue, see eigenvalue, vari-
ational

principle, see principle, variati-
onal

principle for equations with p-
Laplacian, see principle, va-
riational for equations with
p-Laplacian

principle for equations with pse-
udolaplacian, see principle,
variational for equations
with pseudolaplacian

principle for half-linear differen-
ce equations, see principle,
variational for half-linear
difference equations

w
weakly
increasing solution, see solution,
weakly increasing
oscillatory equation, see equati-
on, weakly oscillatory
weight function, see function, weight
weighted Sturm-Liouville type equa-
tion, see equation, weighted
of Sturm-Liouville type
Weyl almost periodic function, see
function, almost periodic,
Weyl
white hole solution, see solution, of
white hole type
Willet type
nonoscillation criterion, see cri-
terion, nonoscillation, gen-
eralized Willet
oscillation criterion, see criteri-
on, oscillation, generalized
Willet
Wirtinger

discrete inequality, see inequali-
ty, Wirtinger, discrete
inequality, see inequality, Wir-
tinger
Wronskian
generalized, 27
identity, see identity, Wronskian

Y
Young inequality, see inequality,
Young

Z
ZEro
generalized, of solution, 386, 414
of solution, 14
zero black hole solution, see solution,
with zero black hole
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