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Preface

This book emerged from an “experiment in didactics” that has been under devel-
opment at the University of Florence (Italy) since the academic year 2006/2007:
teaching the mechanics of solids to undergraduate students in mechanical engineer-
ing in a deductive way from a few first principles, including essential elements of
the description of finite-strain behavior and paying attention to the role of invariance
properties under changes in observers.

We do not claim originality for this program and are also conscious of the
advantages of other approaches: ours is just a description of the origin of a
choice dictated by personal taste and history. It has been also motivated by the
consciousness that a merely descriptive style can risk reducing the treatment to a
list of special examples or formulas with unexplained origin, while an inductive
approach could give, even indirectly, prominence to reasoning by analogy, blurring
in some way the logical structure of the theory.

Since its inception, about 170 have taken the 84-hour course each year. All
students had previous training in analysis and geometry, including basic elements
of linear algebra. They were also trained in rational mechanics of mass points and
rigid bodies, which is taught in a course of the same length. Their mathematical
background had been enlarged during the course by requisite notions from tensor
algebra and analysis. We collect the pertinent material in an appendix, where we
clarify further the notation adopted in the text. One of us (PMM) developed the
“experiment” varying the course every year according to student response and the
changes in his perception. The other (LG) began later to transfer appropriate por-
tions of the spirit of the course to analogous courses in other fields of engineering.

There are several introductory textbooks on the mechanics of solids. Some of
them follow a strictly deductive program rather than being primarily descriptive or
having an inductive approach. We have written this book by following our personal
taste, with the goal of organizing the subject matter in a way that prepares the
readers for further study, being conscious that the development of mechanics could
require even modifications of the first principles. Beyond the technical aspects, our
conviction is that the subject must be presented in a critical way, without giving
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the reader the impression that it has been constructed as an immutable structure
crystallized once and for all. In fact, it seems to us that a merely dogmatic approach
to mechanics does not contribute to the possibility of deeply investigating the
foundational aspects of the subject. In contrast, the attention to foundational aspects
is the primary tool for constructing new models, even new theories: families of
interconnected models. The interest for the analysis of the theoretical foundations
is not a mere interest for the formal structure of the theories; rather, it has to be
stimulated in the students in university courses, even though perhaps only a few of
them will be involved in research activities after the completion of their education.
To us, even those who will work as professional engineers can take meaningful
advantage of this type of program so that they might eventually have the flexibility
to learn and (perhaps) manage new models and techniques, those that might be
developed to satisfy future technological needs or, above all, for giving us a better
knowledge of nature. Moreover, an attitude that favors the comprehension and
analysis of the foundational aspects of mechanical theories encourages one to search
for the physical meaning of every formal step we do, on the basis of our analytical,
geometric, and/or computational skills.

In this spirit, we begin with the definition of bodies and deformation, recovering
the kinematics of the rigid ones as a special case. In this way, we establish a link with
the basic courses in rational mechanics of mass points and rigid bodies, showing
how the subject matter we present is a natural continuation of the previous topics.
We distinguish between the space in which we select the reference point for a body
and the one in which we record shapes that we consider deformed. The second
space is what we consider the physical one, the first being just a “room” used
for comparing lengths, areas, volumes, with their prototypical counterparts that
we declare to be undeformed. This unusual distinction allows us to clarify some
statements concerning changes in observers and related invariance properties.

We distinguish also between material and spatial metrics, each defined in the
pertinent space. Then finite-strain measures emerge from the comparison between
one metric and the pullback of the other in the space where we decide to compare
the two. Small-strain deformation tensors arise from the linearization process. This
is the topic of Chapter 1.

Chapter 2 deals with the definition of observers and a class of their possible
changes, those determined by rotating and translating frames (i.e., coordinate
systems) in the ambient physical space. We call these changes in observers classical.
We suggest options for them, all pertaining to the way in which we alter frames in
space, indeed, irrespectively of the type of body considered; in fact, the class of
changes in observers is not to be confused with the class of admissible motions for
a body, although the two classes intersect.

In Chapter 3, we tackle the representation of bulk and contact actions in terms
of the power they develop. We write just the external power on a generic part of the
body and require its invariance under classes of isometric changes in observers. The
integral balances of forces and couples emerge as a result. Then they are used to
derive the action–reaction principle, the existence of the stress tensor, the balance
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equation in Eulerian and Lagrangian descriptions, the expression of the internal
(or inner) power in both representations. The approach follows the spirit of a 1963
proposal by Walter Noll.1

Chapter 4 deals with constitutive issues. We discuss the way of restricting a
priori the set of possible constitutive structures on the basis of the second law
of thermodynamics—here presented as a mechanical dissipation inequality—and
on requirements of objectivity. Our attention is essentially focused on nonlinear
and linearized elasticity. We discuss also the notion of material isomorphism.
Incidentally, when we foresee changes in observers in the reference (material)
space, the requirement that the observers record the same material forces the change
in observer itself to preserve the volume, according to the definition of material
diffeomorphism, irrespectively of the type of body under scrutiny. Such classes of
changes in observers become crucial in the description of material mutations, a topic
not treated here, since it goes beyond the scope of this book.

In Chapter 5, we discuss variational principles in linearized elasticity. Among
them, the Hellinger–Prange–Reissner and Hu–Washizu principles are additional
to the material constituting the course mentioned repeatedly above. The chapter
includes also Kirchhoff’s uniqueness theorem, and the Navier and Beltrami–
Donati–Michell equations. The latter equations are essential tools for the analyses
developed in the subsequent chapter. We end the chapter with some remarks on
two-dimensional equilibrium problems.

Chapter 6 deals with the de Saint-Venant problem: the statics of a linear elastic
slender cylinder, free of weight, loaded just on its bases. There are two ways of
discussing such a problem: in terms of displacements or stresses. We follow the
second approach and are indebted to the 1984 treatise in Italian on the matter by
Riccardo Baldacci.2 The chapter ends with a proof of the basic Toupin’s theorem on
the de Saint-Venant principle.

Chapter 7 includes a description of some yield criteria and a discussion of
their role in the representation of the material behavior. There are several criteria,
introduced for various reasons, not all of the same importance. Our choice is to
include in this book just the classical ones, and nothing more.

In one aspect, Chapter 8 is separate from the program followed in the course
mentioned above. The chapter includes director-based models of rods, a term used
here in a broad sense for rods themselves, beams, shafts, columns, etc. Their
description is a revisitation in terms of invariance of the external power under
changes in observers—the view followed for the three-dimensional continuum—of

1Noll W. (1963), La Mécanique classique, basée sur une axiome d’objectivité, pp. 47–56 of La
Méthode Axiomatique dans les Mécaniques Classiques et Nouvelles (Colloque International, Paris,
1959), Gauthier-Villars, Paris.
2Baldacci R. (1984), Scienza delle costruzioni, vol. I, UTET, Torino.
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a 1985 proposal by Juan Carlos Simo.3 In the chapter, we include both the finite-
strain and linearized treatments; the course that we taught involved just the latter
one.

Chapter 9 is an overview of some bifurcation phenomena. Attention is essentially
focused on the Euler rod.

This book can be used variously for a course in the mechanics of solids, with the
instructor selecting some parts and neglecting others. Ours is just a proposal.

Firenze, Italy Paolo Maria Mariano
Luciano Galano

April 2015

3Simo J. C. (1989), A finite-strain beam formulation. The three-dimensional dynamic problem.
Part I, Comp. Meth. Appl. Mech. Eng. 49, 55–70.

In ending this work, we have to express our gratitude to the Birkhäuser team
for their help and in particular for their understanding of the reasons for our falling
behind the original schedule. Among others, we mention and thank Allen Mann and
Christopher Tominich for the care they have taken in following our work during
different portions of its development. Also, we thank the copyeditor, David Kramer,
for his work.
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Chapter 1
Bodies, Deformations, and Strain Measures

1.1 Representation of Bodies

We have a body—a piece of the phenomenological world—in hand, and we want
to evaluate its changes in shape, under the action of external agencies, with respect
to a shape taken as a reference. In imagining a program for such an analysis, the
first step is to specify exactly what we mean by the word shape. The observation of
condensed matter at various spatial scales often reveals intricate molecular and/or
atomic architectures. This observation in itself furnishes just a partial view of the
material structure of a body, depending on the type of instrument used and its
resolution. The representation of the material’s morphology (the geometry of a body
at various spatial scales) that we may propose—indeed construct—from time to time
is then a partial result with respect to the complex reality. The minimal essential
information that we need to make assertions about the material morphology is the
specification of a region B that the body under investigation might in principle
occupy in space, the Euclidean point space. Once such a choice has been made,
further information on the geometry at finer spatial scales can be added. We could, in
other words, construct a sort of hierarchy going deeper and deeper in the evaluation
of details that we want to include in the representation of the body’s morphology,
which is what we call its shape.

For the moment and the purposes of this book, here we limit the hierarchy to
the (let us say) zeroth degree. Hence, from now on, unless otherwise stated, we
shall identify the shape of a body with the region B of the physical space occupied
by it in certain circumstances. Among infinitely many possibilities, restrictions on
the choices of B are imposed by what we intuitively consider bodies in our daily
experience and the technical requirement that we use tools of mathematical analysis
such as the divergence theorem.

According to these restrictions, an appropriate choice is to consider B to be a
subset of the Euclidean point space Em, m D 1; 2; 3, which is regularly open—it is,
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2 1 Bodies, Deformations, and Strain Measures

a b

Fig. 1.1 The region indicated in panel (a) is an appropriate choice for B. What is indicated in
panel (b) is not appropriate (the aspect certifying the inappropriateness is the presence of the three
dots on the right, which render the set not regularly open)

therefore, by definition, an open set that coincides with the interior of its closure1—
and is endowed with a surface-like boundary, oriented by the (outward) unit normal
n to within a finite number of corners and edges (Fig. 1.1).

From now on we fix m D 3, unless otherwise stated. The choice is made to help
the intuition of the reader in visualizing physical concepts and the interpretation of
them. Over E3, the translation space V3 is naturally defined: it is the space of vectors
generated by differences of points. A basis—that is, a set of linearly independent
vectors spanning V3, say e1, e2, e3—is available. A generic point in B is indicated
by x. Once we take a specific point in E3 and give it the role of the origin of a
coordinate system, we transform V3 into R

3. In the frame selected, x is identified
by a triplet of numbers, namely x1; x2; x3, when (as decided previously) the ambient
space is three-dimensional; otherwise, the list is enlarged or reduced according to
the dimension of the host space. In the subsequent pages, subsets of B with nonzero
volume and the same geometric properties of B itself will be called parts. The same
terminology will be used for subsets of images of B under a special class of maps
describing the change of place of a body.

1.2 Deformations

We fix a possible location B for a body and take it as a reference to define in what
sense another macroscopic shape can be considered deformed.

1The closure of a set A of a given space (which is itself a set) is the union of A with the set
of its accumulation points, the elements not belonging to A but having elements of A in every
neighborhood. The notion of open set foresees the preliminary assignment of a topology in the
space where A is selected, namely a collection of sets (that we call open) containing the empty
set, the whole space, and such that the union of every family of open sets is in the class, as is the
intersection of every collection of finitely many open sets.
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It is not necessary that the body under scrutiny occupy B. It is sufficient that it
could do so. The location B is a geometric setting in which we can compare lengths,
areas, and volumes.

We select B not in the physical space (or better, the space that we consider so),
but rather in an isomorphic copy of it. Hence we distinguish the space E3 (or R3

if you wish) where we choose B from the one, namely QE3 (or QR3), containing all
the other places that we compare with the reference one—the isomorphism between
the two is the natural identification i W E3 7�! QE3 (or iR W R3 7�! QR3)—or it can
be an orientation-preserving isometry (a rotation and a translation). Other reasons
justifying such a point of view will be clear later when we discuss the notion of
observers and their related changes.

Once we assign coordinate systems to E3 and QE3, we require that they have the
same orientation. In the translational space QV3, a basis is indicated by Qe1; Qe2; Qe3, and
a generic point in QE3 is indicated by y, with components y1; y2; y3.

From B, we determine other places in QE3 by means of maps

x 7�! y WD Qy.x/ 2 QE3; x 2 B;

which we presume are (i) one-to-one, (ii) at least piecewise differentiable, and (iii)
orientation-preserving. The last requirement implies that the generic Qy maps every
oriented volume in B onto a volume (remember the requirement of bijectivity) with
the same orientation.

The image of B under Qy (which we call the actual shape or current place of the
body and indicate by Ba WD Qy.B/) has the same geometric properties of B specified
above, thanks to the structural properties presumed for Qy.

The map Qy is what we commonly call a deformation. Maps from R
3 to QR3 that

are C1 and preserve the orientation of R3 satisfy requirements (i) through (iii), but
they are not the only possible deformations. In fact, the theoretical structures that
we present here may give rise to boundary value problems that admit solutions
satisfying the assumptions (i) through (iii) only in some weak sense. Hence, spaces
larger than that of continuous and continuously differentiable point-valued functions
have to be considered. The choice of such spaces is addressed by the physical
features of the phenomenon that we are analyzing. We do not go into details here, for
this essay has just an introductory character. However, we mention the issue just to
warm the reader to be suspicious of phrases maintaining that continuum mechanics
develops only by “selecting a smooth diffeomorphism defined over a compact open
set of the ambient physical space and performing calculations.” Such a point of view
is in fact simplistic, as is clearly suggested by experience, culture, and nontrivial
analysis of specific cases to those who are pushed by intellectual curiosity to go
beyond introductory essays, even just a bit.
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1.3 The Deformation Gradient

The spatial derivative of a deformation evaluated at a point x in B is denoted by F,
namely

F WD DQy .x/ ;

for all x in B where Qy is differentiable.
Consider a smooth curve s 7�! Nx.s/ 2 B with s 2 .�1; 1/ and evaluate at a

certain point, say x D Nx.0/, its tangent

t WD dNx.s/
ds

ˇ
ˇ
ˇ
ˇ
sD0

:

The image of the curve s 7�! Nx.s/ over the current place Ba is determined by the
deformation Qy and is given by the map s 7�! Qy.Nx.s// 2 Ba. Its tangent at y D Qy.Nx.0//
is given by

ta WD dQy.Nx.s//
ds

ˇ
ˇ
ˇ
ˇ
sD0

;

so that by chain rule, we get

ta D DQy.x/t D Ft:

Then F maps linearly tangent vectors to B to tangent vectors to Ba (Fig. 1.2). In
short, we write2 F 2 Hom.TxB;TQy.x/Ba/, which is tantamount to expressing the
inclusion F 2 Hom.R3; QR3/. Consider three linearly independent vectors at x 2 B.
They span R

3: linear combinations of them cover the whole space, so they are a
basis. Write e1, e2, e3 for them and e1, e2, e3 for the dual basis,3 the one in the space
dual to R

3, i.e., the space containing all possible linear forms over4
R
3, indicated

by R
3�. Recall that the elements of the dual of a linear space are called covectors.

We can make an analogous choice at y D Qy.x/. We indicate by Qe1, Qe2, Qe3 the basis
vectors chosen at y, and by Qe1, Qe2, Qe3 the relevant dual basis.

With respect to the (dual) basis e1, e2, e3 in a neighborhood of x 2 B and the
basis Qe1, Qe2, Qe3 at y D Qy.x/ in Ba, F is given by

2Hom.A;B/ indicates the space of linear maps from A to B. Here TxB indicates the linear space
of vectors tangent to all smooth curves on B crossing x. It is called the tangent space to B at x.
Analogously, T

Qy.x/Ba is the tangent space to Ba at y D Qy.x/.
3ei is defined by the condition ei � ej D ei.ej/ D ıi

j , with ıi
j the Kronecker symbol, which is 1 for

i D j and 0 for i ¤ j.
4Recall that there is a natural isomorphism between R

3 and its dual counterpart, and it is defined
by the metric.
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e3

y

e2 ˜ 3

3

x̄(s)

ỹ( x̄(s))

x
e1

ẽ3

a

y = ỹ(x )

ẽ1

t
ta = F t

ẽ2

Fig. 1.2 Deformation of B

F D @Qyi.x/

@xA
Qei ˝ eA;

where (and from now on) uppercase indices refer to coordinates in B, while
lowercase indices indicate coordinates in the actual shape Ba, and we assume
Einstein’s convention to leave understood summation over repeated indices. The
iAth component of F is just

Fi
A D

@Qyi.x/

@xA
;

with a contravariant index5 i and a covariant index6 A.
Commonly, F is called a deformation gradient, and we follow here that

tradition, although the definition of F that we have written at the beginning of this
section involves the derivative DQy.x/ of the map Qy, rather than the gradient rQy.x/,
which has, in the bases considered previously, the form

rQy.x/ D
�
@Qyi.x/

@x

�A

Qei ˝ eA:

5When we change the basis Qe1, Qe2, Qe3 into another basis, the ith component of F is altered as a
vector.
6When we change the dual basis e1, e2, e3 into another one, the Ath component of F is altered as a
covector (the derivative of a function with respect to x, indeed).
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The difference between DQy.x/ and rQy.x/ can be appreciated once we recall that
the basis e1, e2, e3 determines locally a metric, namely a completely covariant
positive definite tensor g with generic component gAB given by

gAB D heA; eBiR3 ;

where the angle brackets indicate a scalar product7 in R
3. Since g is positive

definite, it admits an inverse g�1, which is a symmetric contravariant tensor with
components8 gAB. Using g�1, we get, in fact,

rQy.x/ D DQy.x/g�1;

which is

�
@Qyi.x/

@x

�A

D
�
@Qyi.x/

@xB

�

gBA:

In this case we say that we have raised the index A by using the metric. When g
is the identity second-rank tensor, I–this means that e1, e2, e3 are orthonormal—the
iAth component of rQy.x/ and the corresponding component of DQy.x/ differ just by
the nature of the Ath component, which is contravariant in one case, so that formally,
we have9

rQy.x/ 2 Hom.T�
x B;TQy.x/Ba/;

and covariant in the other case.

1.4 Formal Adjoint F� and Transpose FT of F

For a vector a 2 R
3 and covector b 2 QR3�, the formal adjoint F� of F is defined

by the relation

b � Fa D F�b � a;

where here, the dot in b � Fa indicates the natural product between a vector Fa and a
covector b. In other words, F takes the vector a in R

3 and pushes it forward in QR3.

7We can assume that the scalar product is defined with respect to another frame in R
3 that we

consider orthogonal.
8Of course we can consider the dual basis e1, e2, e3 as obtained from e1, e2, e3, by the action of
g�1, so that eA D gABeB.
9In other words, rQy.x/ maps covectors at x in B into vectors at y D Qy.x/ in the actual shape Ba.
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Then we take a linear form over QR3, namely an element b of QR3�, a covector, and
the value that it assumes over the vector Fa, that is, b � Fa D b.Fa/. Conversely, in
the product F�b � a, we take a covector b in QR3�, pull it back into R

3�, and evaluate
over a 2 R

3 the value of the covector F�b, namely F�b � a D F�b.a/.
For vectors a 2 R

3 and Na 2 QR3, the transpose FT of F is defined by the relation

hFa; Nai QR3 D
˝

a;FT Na˛
R3
;

where in this case, the angle brackets on the left-hand side of the equality indicate
the scalar product in QR3, while the brackets on the right-hand side represent, as
above, the scalar product in R

3. In other words, F pushes forward the vector a 2 R
3

into QR3, where the vector Fa 2 QR3 is multiplied by the vector Na 2 QR3 using the
scalar product in QR3. Conversely, FT pulls back the vector Na 2 QR3 into R

3, where its
image, namely the vector FT Na, is multiplied by a, using the scalar product in R

3. The
two scalar product structures, the one in R

3 and the other in QR3, may in principle be
different, meaning that they can be associated with different metrics.

The link between F� and FT is established by the metric g introduced previously
and the companion metric Qg in QR3 with components determined by the basis
Qe1; Qe2; Qe3, so that Qgij D

˝Qei; Qej
˛

QR3 .

Proposition 1. FT D g�1F� Qg.

Proof. First we recall that for a 2 R
3 and c 2 QR3,

hFa; ci QR3 D Fa � Qgc D Qgc.Fa/:

In other words, to evaluate the scalar product between the two vectors Fa and c,
we can change one vector into its corresponding covector c[ WD Qgc (an element of
R
3�), and we compute the value of such a covector over the other vector. In this case

we say that we have lowered the index of c by using the metric. Roughly speaking,
when Qg is just the second-rank identity tensor, i.e., Qgij D ıij, with the right-hand side
the Kronecker symbol, namely

ıij D
�
1 if i D j
0 if i ¤ j

;

we have hFa; ci QR3 D Fa � ıc D Fa � c[ D cTFa D Fi
AaAc[i . The summation over

repeated indices is understood, as usual. When the metric Qg does not coincide with
the identity, which means that the basis Qe1; Qe2; Qe3 is not orthogonal—in the usual
jargon we say in this case that Qg is not flat—the sum Fi

AaAc[i is affected by the
coefficients Qgij, for we have c[i D Qgijcj. Moreover, with a in R

3 and b in R
3�, we can

write

b � a D ˝g�1b; a
˛

R3
D ˝a; g�1b

˛

R3
:
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In other words, when we have to evaluate b over a, i.e., when we want to compute
b.a/, we can transform the covector b in the corresponding vector by means of the
inverse metric—the covector b becomes the vector g�1b—and we multiply g�1b by
a using the scalar product h ; i

R3
. The natural operation is to calculate b � a D b.a/,

because we have just to compute the value of a linear function over R3 at the vector
a. However, our previous remarks on the use of the inverse metric allow us to write

˝

a;FTc
˛

R3
D hFa; ci QR3 D Fa � Qgc D a � F� Qgc D ˝a; g�1F� Qgc

˛

R3
:

The previous relations prove then the initial statement. ut
In components we get .FT/Ai D gABF�j

B Qgji. For the scalar product we have written
R
3 or QR3 as indices to the angle brackets to specify unambiguously the space where

the scalar product is considered, underlining in this way the role of the different
metrics, which are crucial in proving Proposition 1.

Warning: from now on, for the sake of conciseness, we shall at times use the dot
for both a product of a covector with a vector and the scalar product between two
vectors, leaving understood the action of the pertinent metric when necessary. We
shall taking care to specify every time the meaning in the specific context.

1.5 Homogeneous Deformations and Rigid Changes of Place

A deformation of the form

x 7�! y WD Qy.x/ D wC F.x � x0/; x 2 B;

with w an arbitrary vector in QR3, x0 an arbitrary point in E3, and F constant in space,
is called homogeneous. An example of a homogeneous deformation is the inflation
of a balloon.

A special and significant case of homogeneous deformation occurs when F is in
SO.3/—let us write R for F in this case.10 The deformation

x 7�! y WD Qy.x/ D wC R.x � x0/; x 2 B; (1.1)

is an orientation preserving isometry, a rigid change of place. To recognize the rigid
nature of the deformation induced by w and R, consider two points x1 and x2 in B,
and take their images under (1.1), calling them y1 and y2, respectively. By evaluating
the distance between y1 and y2, namely jy1 � y2j2, and using (1.1), we get

10We recall that R 2 SO.3/ means that R 2 Hom.R3;R3/, det R D C1, R�1 D RT.
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jy1 � y2j2 D h.y1 � y2/; .y1 � y2/i QR3 D hR.x1 � x2/;R.x1 � x2/i QR3
D ˝.x1 � x2/;R

TR.x1 � x2/
˛

R3
D h.x1 � x2/; .x1 � x2/iR3 D jx1 � x2j2 ;

so (1.1) is nothing more than an orientation-preserving isometry, a rigid change of
place.

We then define a body to be rigid when it admits as deformations only
orientation-preserving isometries.

1.6 Linearized Rigid Changes of Place

Consider parameter-dependent families of isometries defined by maps ˛ 7�! w˛ 2QR3 and ˛ 7�! R˛ 2 SO.3/, with ˛ 2 .�1; 1/ and R0 coinciding with the identity,
which are differentiable with respect to the parameter. Define y˛ by

x 7�! y˛ WD Qy˛.x/ D w˛ C R˛.x � x0/:

We call the map x 7�! y a linearized rigid deformation (or small rigid change
of place) when

y D RT
˛

dQy˛.x/
d˛

ˇ
ˇ
ˇ
ˇ
˛D0

:

By computing the derivative, we get

y D RT
˛

dw˛
d˛

ˇ
ˇ
ˇ
ˇ
˛D0
C RT

˛

dR˛
d˛

ˇ
ˇ
ˇ
ˇ
˛D0

.x � x0/:

Since

RT
˛R˛ D I;

we obtain

0 D d

d˛
.RT
˛R˛/ D RT

˛

dR˛
d˛
C dRT

˛

d˛
R˛ D RT

˛

dR˛
d˛
C
�

RT
˛

dR˛
d˛

�T

;

which implies

RT
˛

dR˛
d˛
D �

�

RT
˛

dR˛
d˛

�T

:
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In other words, the second-rank tensor

W WD RT
˛

dR˛
d˛

ˇ
ˇ
ˇ
ˇ
˛D0

is skew-symmetric. By writing Nc for the vector RT
˛

dw˛
d˛

ˇ
ˇ
ˇ
ˇ
˛D0

, we find that the generic

linearized rigid deformation is given by

y D NcCW.x � x0/

with Nc 2 QR3 and W 2 Skw.R3; QR3/.
Define now the vector field

x 7�! u WD Qu.x/ D y � i.x/ 2 QR3;

where i W E3 �! QE3 is the isomorphism (the identification, here) between E3 and QE3.
We call u a displacement. In particular we call u a linearized rigid displacement
when it has the form

u D cCW.x � x0/; (1.2)

with c a vector in QE3 given by the difference Nc � i.x/. Since W is a skew-
symmetric tensor over the three-dimensional space, by definition there exists a
three-dimensional vector q such that for any other a 2 R

3,

Wa D q � a;

so that (1.2) can be written as

u D cC q � .x � x0/:

1.7 Kinematic Constraints on Rigid Bodies

We have already defined bodies admitting only isometries as possible deformations
to be rigid. Each such body has only six degrees of freedom in three-dimensional
Euclidean space: the components of c and q, in other words, the placement of a point
(three parameters), and the orientation (the three Euler angles).

The definition of a rigid body is then based on a restriction on realizable
deformations for the body. Further restrictions can be imposed. They constitute what
we call kinematic constraints. Here we refer to those expressed by scalar-valued
maps f , depending on the displacement, and call then holonomic. We distinguish
two cases:



1.8 Kinematics of a 1-Dimensional Rigid Body 11

f .u/ � 0;

which we call a unilateral constraint, and

f .u/ D 0;

the so-called bilateral constraint. Specific cases of bilateral constraints appear in the
next section.

1.8 Kinematics of a 1-Dimensional Rigid Body

Consider a one-dimensional rigid body. It occupies in the reference place a portion
of a piecewise smooth line in E3. We assume that the body is subjected only to
linearized rigid displacements.

The placement of the body is in reference to an orthogonal frame defined by an
origin O and three linearly independent unit vectors e1, e2, e3, a frame indicated by
fO; e1; e2; e3g. A generic point P of the body has coordinates x1P; x

2
P; x

3
P. The relevant

position vector is xP D .P � O/.
As we have already seen, an arbitrary linearized rigid displacement is defined by

two vectors: the translation c and the rotation q (Fig. 1.3), namely

u.P/ D uP D cC q � xP

with

c D c1e1 C c2e2 C c3e3; q D !1e1 C !2e2 C !3e3:

Fig. 1.3 Rigid body in E3.
Examples of translational and
rotational constraints

x 1

x 3

x 2

q

c

e2

e3

e1

P2
O

P1

m 1

u P 1

m 2
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For a rigid body, every bilateral punctual holonomic constraint is a combination
of two types of single constraints: .i/ displacement uP of a point P along a direction
(simple translational constraint) and .ii/ rotation about a direction prescribed
(simple rotational constraint). Let m be such a direction (Figure 1.3 shows two
possible choices of m corresponding to .i/ and .ii/). In the first case .i/, we write
formally

uP � m D .cC q � xP/ � m D NıP; (1.3)

while in the second case .ii/,

q � m D N#; (1.4)

with NıP and N# two scalars that can be zero (in this case, the constraint is called
ideal). The simple translational constraint at P along the direction m is made by a
physical device imposed on P. Such a device is represented by a simple pendulum
having the axis parallel to m (Fig. 1.3, point P1). The simple rotational constraint
about a direction m is exerted by a device applied to a point. We call it a simple
torsional pendulum (point P2 in Figure 1.3). A combination of two or more simple
translational or rotational constraints at the same point generates what is called a
multiple constraint. Its multiplicity is the number of simple constraints composing it.

For a rigid body, the set of equations of types (1.3) and (1.4), specifying all
bilateral, holonomic constraints imposed on it, determines an algebraic system

Ap D p; (1.5)

where p D �c1; c2; c3; !1; !2; !3�T, and p is the vector of the prescribed translations
and rotations. Here A is the matrix of coefficients (those related to the specific frame
of reference considered), having dimensions nv � 6, with nv the number of simple
constraints. Equation (1.5) determines the kinematic state. In the selected frame, we
have

m D m1e1 C m2e2 C m3e3;

and equations (1.3) and (1.4) can be written in components as

m1c1 C m2c2 C m3c3 C �m3x2P � m2x3P
�

!1 C �m1x3P � m3x1P
�

!2

C �m2x1P � m1x2P
�

!3 D NıP;

m1!1 C m2!2 C m3!3 D N#:

– If the system has only one solution, we say that the rigid body under considera-
tion is kinematically determinate.
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– If the system has no solutions (this case is possible only if p ¤ 0), we affirm
that the body is kinematically impossible—it is not possible to satisfy all the
prescribed displacements that the constraints would impose.

– If the system has infinitely many solutions, we say that the rigid body is
kinematically indeterminate—the number and disposition of constraints are
insufficient to fix the body in space.

Denote by Ol the dimension of ker.A/. It is called the lability of the constrained
body described by (1.5). Here Ol indicates the number of degrees of freedom that
the constrained body can exploit in order to move. For a single rigid body, Ol D
6 � rA, with rA the rank of A.

All these remarks apply also to systems of rigid bodies linked to one another.
A significant case occurs when for a single rigid body we have exactly six

constraints (nv D 6, A is square). If det A ¤ 0, the algebraic system (1.5) admits
only one solution once p is assigned. In that case, the rigid body considered is always
kinematically determinate, and we refer to this circumstance by affirming that it is
kinematically isodeterminate. When p D 0 and det A ¤ 0, the solution is p D 0,
so that the number and disposition of the six constraints are necessary and sufficient
to fix the body in space.

When nv <6, the body is not always kinematically determinate. If nv > 6 and
rank.A/ D 6, we affirm that the rigid body is kinematically hyperdeterminate or
impossible, depending on p: there are too many constraints, and at least six of them
are linearly independent. However, if rank.A/ < 6, the rigid body is once again
kinematically indeterminate or impossible, depending on p: some constraints are
ineffective, since they repeat conditions already imposed.

Consider a one-dimensional rigid body in a plane in three-dimensional space
undergoing planar linearized rigid displacements. Only three degrees of freedom
are involved. If the body is in the plane spanned by the vectors e1; e2 (axes x1; x2,
Fig. 1.4), the translation and rotation vectors defining an arbitrary rigid displacement
are respectively

Fig. 1.4 A one-dimensional
rigid body in the plane x1x2.
Examples of translational and
rotational constraints

x 2

q= 3e3

m1

P2

m2

P1

uP1

x 1

c

e1O

e2
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c D c1e1 C c2e2; q D !3e3:

Consider a unit vector m D m1e1 C m2e2. The constraints (1.3) and (1.4) can be
expressed explicitly as

m1c1 C m2c2 C �m2x1P � m1x2P
�

!3 D NıP (1.6)

!3 D N#; (1.7)

where x1P and x2P are the coordinates of the point P where the constraint is applied.
In this case, A is an nv � 3 matrix, and p has components c1, c2, and !3.

The kinematic classification of rigid bodies in E2 is the same as in the three-
dimensional case. The constraints are represented by specific graphic symbols; the
most commonly used in E2 are shown in Figure 1.5. Analogous symbols hold in E3
with the meaning appropriate to the different dimension of the ambient space.

– The first constraint represented in Figure 1.5 is the simple pendulum (or trolley
or bogie or carriage if you wish). It obstructs the translation of the point P along
the x2 direction (m2 D 1, m1 D 0) and is holonomic, bilateral, and ideal. Its
multiplicity is 1. The same representation holds if the body is in E3.

– The second constraint in Figure 1.5 is again the simple pendulum. It imposes
on the point P that it translate along the x2 direction of the prescribed value NıP

(m2 D 1, m1 D 0) and that it be holonomic and bilateral, and that it produce a
structural failure of amount NıP. Its multiplicity is equal to 1. The displacement
involved in the previous definition is with respect to a reference place, or ground.
The same representation holds if the rigid body is in E3.

– The third constraint in Figure 1.5 is called a hinge. It eliminates the possibility
for P to translate in any direction

uP D 0;

and is equivalent to two simple pendulums applied in P along two linearly
independent directions (for example m1 D 1, m2 D 0 for the first pendulum
and m1 D 0, m2 D 1 for the second). Its multiplicity is 2 (double constraint). In
E3, this constraint is called a spherical hinge; the same graphical representation
of it holds, but the multiplicity is 3 (it is equivalent to three simple pendulums
applied in P along three linearly independent directions).

– The fourth constraint in Figure 1.5 is the simple torsional pendulum. It eliminates
rotations (m3 D 1, !3 D 0) and is holonomic, bilateral, and ideal. Its multiplicity
is 1. In E3, it is represented as shown in Figure 1.3.
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Fig. 1.5 Graphic symbols used to represent different constraints in E2

– The fifth constraint in Figure 1.5 is the glyph, a combination of a translational
pendulum (m2 D 1, m1 D 0) and a torsional pendulum (m3 D 1, !3 D 0). It
allows just translations along the x1 direction. Its multiplicity is 2.

– The sixth constraint in Figure 1.5 is the joint, a combination of a hinge and a
simple torsional pendulum at the same point P. Here uP D 0 for every point of
the body (no linearized rigid displacement is possible). Its multiplicity is 3 (triple
constraint). In E3, this constraint has the same representation, but the multiplicity
is 6, since it is equivalent to a spherical hinge applied at P plus three torsional
pendulums having three linearly independent directions.

Graphics help us to represent arbitrary linearized rigid displacements, defined
by translation and rotation vectors c and q, of a rigid body in a plane embedded in
E3; a generic point P with coordinates x1P and x2P is subjected to a displacement of
components (in the selected frame)

u1P D c1 � !3x2P; u2P D c2 C !3x1P:
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If we suppose that !3 ¤ 0, we call the point C defined by the coordinates

x1C D �
c2

!3
; x2C D

c1

!3
;

the rotation center. The point C is at rest and does not necessarily belong to
the rigid body. The displacement compatible with the constraints is a rotation !3

about C, as depicted in Figure 1.6. The diagrams representing the displacement
components are linear. Moreover, the displacement of every point P is normal to
the vector .P � C/; the point C has finite distance from O, and it is called a proper
rotation center. When !3 D 0, we obtain

u1P D c1; u2P D c2;

and all points P have the same displacement, a rigid translation with components
c1 and c2. It can also be considered a rotation about a point C at infinity in the
direction normal to the displacement, a point indicated by .C/1 and considered an
improper rotation center, as described in Figure 1.7. The direction with improper
point C is inclined with respect to the x1-axis of the considered frame by an angle
˛, considered positive when it is counterclockwise, such that tan˛ D �c1=c2.

– If a (proper or improper) rotation center does not exist, the body is kinematically
determinate or hyperdeterminate, and Ol D 0.

– If C exists and is fixed, the body is kinematically indeterminate and has only
one degree of freedom (Ol D 1); the linearized rigid displacement is an arbitrary
rotation about C or a translation.

– If every point of a straight line can play the role of rotation center, the rigid
body is kinematically indeterminate and has two degrees of freedom (Ol D 2); all
its possible displacements are given by the linear combination of two arbitrary
independent displacements, each one obtained by fixing arbitrarily two different
positions of C on the line.

– If every point in the plane can play the role of rotation center, the rigid body is
kinematically indeterminate and has three degrees of freedom (Ol D 3) in the same
plane.

A constraint limits the possible places of the rotation center C of a rigid
body. Figure 1.8 reports some prominent cases. In the plane, a simple constraint
restricts the possible placement of C to a straight line; a double constraint (the
combination of two simple constraints) determines uniquely the position of C; a
triple constraint states that C does not exist. The kinematic analysis of a rigid body
in the plane reduces to finding the rotation center. Less simple is the analysis in three
dimensions, since a rotation axis is always available but not necessarily a rotation
center.
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Fig. 1.6 Linearized
displacements of a
one-dimensional rigid body
in E2 when !3 ¤ 0
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Fig. 1.7 Translation
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Fig. 1.8 Positions of C given by different ideal constraints

1.9 Kinematics of a System of 1-Dimensional Rigid Bodies

The description of the kinematics of a single rigid body admits a natural generaliza-
tion to a system of K rigid bodies. We refer their position to a frame defined by an
origin O and three linearly independent orthogonal unit vectors e1, e2, e3. A generic
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Fig. 1.9 Bodies h and k in a set of K rigid bodies in E3

point Ph of the hth body has coordinates x1Ph
; x2Ph

; x3Ph
. The pertinent position vector

is xPh D .Ph � O/. An arbitrary linearized rigid displacement of the hth body is
defined by two vectors: the translation ch and the rotation qh, namely

uh D ch C qh � xPh

with

ch D c1he1 C c2he2 C c3he3; qh D !1h e1 C !2h e2 C !3h e3;

so that 6K degrees of freedom are involved (Fig. 1.9). As regards constraints,
equations (1.3) and (1.4) apply to the hth body when they impose restrictions to
displacements relative to the environment. With reference to a set of rigid bodies,
such constraints are called external to distinguish them from those among the same
bodies, which are internal to the system considered. For the external constraints we
rewrite equations (1.3) and (1.4) as

uPh � mh D .ch C qh � xPh/ � mh D NıPh ; (1.8)

qh � mh D N#h: (1.9)
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In components, evaluated with respect to an orthogonal frame, they read

m1
hc1h C m2

hc2h C m3
hc3h C

�

m3
hx2Ph
� m2

hx3Ph

�

!1h C
�

m1
hx3Ph
� m3

hx1Ph

�

!2h

C �m2
hx1Ph
� m1

hx2Ph

�

!3h D NıPh ;

m1
h!

1
h C m2

h!
2
h C m3

h!
3
h D N#h:

Let us assume that every body in the system admits at least one simple constraint
linking it to another body. Such a constraint, in fact an internal one, limits relative
displacements. In this case, equations (1.8) and (1.9) change into

.uPh � uPk/ � mhk D NıPhk ; (1.10)

.qh � qk/ � mhk D N#hk; (1.11)

with the indices h and k referring to the hth and kth bodies connected at the point
Phk, where there is a simple constraint. Here NıPhk and N#hk are the values of possible
relative displacements and/or rotations imposed. The assignment of constraints with
multiplicity greater than 1 is analogous to the case of a single body.

If we apply nv simple constraints to a set of K bodies, the relevant set of equations
of type (1.8), (1.9), (1.10), (1.11) constitutes a system of nv algebraic equations with
6K unknowns, again say

Ap D p;

with p D �

c11; c
2
1; c

3
1; !

1
1 ; !

2
1 ; !

3
1 ; : : : ; c

1
K ; c

2
K ; c

3
K ; !

1
K ; !

2
K ; !

3
K

�T
and A an nv � 6K

matrix in this case. Hence, systems of rigid bodies can be classified into determinate,
isodeterminate, indeterminate, hyperdeterminate impossible families, exactly as
we have done for the single rigid body. Reduction to the two-dimensional case
(Fig. 1.10) will be treated explicitly in the exercises discussed in Section 1.11.

1.10 The Flat-Link Chain Method

As we have already pointed out, the kinematic analysis of a single rigid body reduces
to the determination of the rotation center. A generalization to a system of K bodies
is called the flat-link chain method. For the sake of simplicity, we present it first in
the case K D 2: two rigid bodies constrained by each other. If they have a linearized
rigid displacement, we can evaluate the center of rotation C1 of the body indexed
by 1 and the center of rotation C2 of the body 2 with respect to the environment.
These points are the so-called absolute rotation centers. Since the graphs of the
displacements of the two bodies are linear, they intersect in one point, called the
relative rotation center, denoted by C12, since it represents the rotation center of
one body in the relative displacement with respect to the other. The point C12 can
be proper or improper (the latter case occurs when !31 D !32 ). As with external
constraints, internal constraints give analogous information about the position of
C12 (Fig. 1.8).
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Fig. 1.10 Bodies h and k in a set of K rigid bodies in E2

Theorem 2 (First theorem on flat-link chains). Given two rigid bodies 1 and 2
constrained by each other, if they undergo linearized rigid displacements, the points
C1;C2;C12 are aligned.

Formally, we write

C1;C2;C12 X: (1.12)

Figure 1.11 shows two typical cases. In the first case, we have !31 ¤ !32 , so that C12
is a proper point and the two bodies have the same displacement at C12. In the second
case, !31 D !32 ; C12 is an improper rotation center, and the displacement diagrams
of the two bodies are parallel straight lines. Even in the second case, equation (1.12)
holds. The flat-link chain method consists in finding C1, C2, and C12 associated with
the constraints and the equation (1.12). Prominent cases are listed below:

– C1 and C2 do not exist, the bodies 1 and 2 are at rest (Ol D 0).
– C1 does not exist and C2 is uniquely determined, body 1 is fixed and 2 rotates

around C2 (Ol D 1).
– C1, C2 and C12 are uniquely determined and are distinct points on a straight line
) the bodies 1 and 2 rotate around their own centers as in Figure 1.11 (Ol D 1).

– C1, C2 and C12 are uniquely determined and C1 � C12 ¤ C2 ) body 2 is fixed
and body 1 rotates around C1 (Ol D 1).
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Fig. 1.11 Position of the center C12 in two significant cases

– C1, C2 and C12 are uniquely determined and C1 � C2 ¤ C12 ) the two bodies
move together as a single rigid body (Ol D 1).

– C1, C2, and C12 are uniquely determined and C1 � C2 � C12 ) the two bodies
rotate independently around the respective centers (Ol D 2).

– C1, C2, and C12 are not uniquely determined and equation (1.12) holds for
different positions of the centers) the system of two bodies satisfies Ol � 2.
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Consider now a set of three rigid bodies .K D 3/ and suppose that each body may
undergo a linearized rigid displacement. The points C1, C2, and C3 (the absolute
rotation centers) and the points C12, C13, and C23 (the relative rotation centers) are
well defined.

Theorem 3 (Second theorem on flat-link chains). Given three reciprocally con-
nected rigid bodies 1, 2, and 3, if the three bodies can undergo linearized relative
rigid displacements, the relative rotation centers C12, C13, and C23 are aligned.

Formally, we write

C12;C13;C23 X:

In this case, we should have

C1;C2;C12 X;

C1;C3;C13 X;

C2;C3;C23 X;

C12;C13;C23 X:

(1.13)

To analyze the kinematics of such a three-body system, we must determine the
existence and locations of all rotation centers, considering the external constraints
(for the absolute centers), those internal (for the relative centers), and the four
conditions (1.13). Some typical cases are listed below:

– C1, C2 and C3 do not exist, the system of rigid bodies is at rest .Ol D 0/.
– An absolute center Cj does not exist, the jth body is fixed.
– The condition Ci;Cj;Cij X is not satisfied for some i and j) the bodies i and j

cannot move.
– The condition C12;C13;C23 X is not satisfied) the three bodies do not admit

relative displacements, i.e., they act as a single rigid body.
– The centers C1, C2, C3, C12, C13, and C23 are at different specific points in E2 and

the conditions (1.13) are satisfied) the system is kinematically indeterminate
(in this case, Ol D 1) and a linearized rigid displacement is possible for each body
(Fig. 1.12).

Situations in which one or more centers are placed at the same point or all points
on straight lines can be rotation centers are more complex.

For four or more rigid bodies .K � 4/, the previous theorems hold. For example,
for K D 4, the first theorem has to be applied to every pair of bodies, i.e., six times,
whereas the second theorem has to be applied to every triplet, i.e., four times. In
general, the first theorem has to be applied

�K
2

�

times, while
�K
3

�

times pertain to the
second one.

Further details appear in the exercises.
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Fig. 1.12 The external constraints determine C1 and C3. The internal constraints fix C12 and C23,
while C2 and C13 follow from the theorems on flat-link chains. Conditions (1.13) are satisfied,
and the system is kinematically indeterminate .Ol D 1/. The figure shows the construction of the
diagrams of rigid displacements of each body

1.11 Exercises on the Kinematics of 1-Dimensional Rigid
Bodies

Exercise 4. Analyze the kinematics of the body represented in Figure 1.13.

Remarks and solution. The body is in E2, embedded in E3, and occupies the
segment AB with length a. Its position is in reference to a frame with origin in A and
axis x1 containing the segment AB. The orthogonal axis is indicated by x2, so that
the frame is, in summary, fA; x1; x2g. In A, there is an ideal hinge—it is equivalent
to two independent simple translational constraints—while in B, there is a simple
pendulum inclined by ˛ with respect to the axis x1. Hence we have nv D 3:

- constraint 1 at A � .0; 0/, along m D .1; 0/,
- constraint 2 at A � .0; 0/, along m D .0; 1/,
- constraint 3 at B � .a; 0/, along m D .cos˛; sin˛/.
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Fig. 1.13 One-dimensional rigid body constrained by a hinge and a pendulum

The equation (1.6) applies to each constraint. Then, we can write ( NıP D 0)

8

<

:

c1 D 0;
c2 D 0;
sin˛

�

c2 C !3a�C c1 cos˛ D 0;

which is

0

@

1 0 0

0 1 0

cos˛ sin˛ a sin˛

1

A

8

<

:

c1

c2

!3

9

=

;
D
8

<

:

0

0

0

9

=

;
: (1.14)

For the determinant of the coefficient matrix .det A D a sin˛/, we have two
prominent cases. When ˛ ¤ 0, the three constraints are independent, and c1 D
c2 D !3 D 0 is the solution of (1.14): the body is kinematically isodeterminate, and
no rigid displacement is possible.

Conversely, if ˛ D 0, we have

0

@

1 0 0

0 1 0

1 0 0

1

A

8

<

:

c1

c2

!3

9

=

;
D
8

<

:

0

0

0

9

=

;
;

which admits infinitely many solutions c1 D c2 D 0 and arbitrary !3: the body
is kinematically indeterminate .Ol D 1/. The linearized rigid displacement is a
rotation about A (rotation center). A diagram of the vertical rigid displacements
(the horizontal ones vanish) appears in Figure 1.14. A more synthetic view can be
obtained by considering the rotation center. It must be at A, due to the hinge. At the
same time, it should belong to the straight line passing through B, inclined like the
pendulum; hence if ˛ ¤ 0, a unique location for the rotation center does not exist,
and the body is kinematically isodeterminate, while when ˛ D 0, the rotation center
coincides with A (the body is then labile).
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Fig. 1.14 The special case
˛ D 0; C is the rotation
center
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constrained by three vertical
pendulums
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Exercise 5. Analyze the kinematics of the body in Figure 1.15.

Remarks and solution. The body belongs to a plane in which it occupies the
segment ABD with length 2a, and no out-of-plane displacement is considered. The
frame considered is the same as in the previous exercise, namely

˚

A; x1; x2
�

. In A,
B, and D, there are three ideal simple constraints: pendulums with vertical axis.
Equation (1.6) reduces explicitly to the system

8

<

:

c2 D 0;
c2 C !3a D 0;
c2 C !32a D 0;

which is

0

@

0 1 0

0 1 a
0 1 2a

1

A

8

<

:

c1

c2

!3

9

=

;
D
8

<

:

0

0

0

9

=

;

and admits infinitely many solutions (c2 D 0, !3 D 0, and c1 arbitrary). The body
is kinematically indeterminate (Ol D 1). In other words, although the constraints
would be sufficient in number not to allow the body to move, they are arranged in a
way that leaves horizontal translation free. The rotation center belongs to the three
vertical straight lines passing through A, B, and D.
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Fig. 1.16 One-dimensional rigid body constrained by two hinges

Exercise 6. Analyze the kinematics of the body in Figure 1.16.

Remarks and solution. The body occupies the segment AB with length
p

a2 C l2.
Its position is in reference to the frame

˚

A; x1; x2
�

. In A and B there are two hinges,
whence nv D 4:

- constraint 1 at A � .0; 0/, along m D .1; 0/,
- constraint 2 at A � .0; 0/, along m D .0; 1/,
- constraint 3 at B � .a; l/, along m D .1; 0/,
- constraint 4 at B � .a; l/, along m D .0; 1/.

For each constraint, equation (1.6) can be written explicitly as

8

ˆ̂
<

ˆ̂
:

c1 D 0;
c2 D 0;
c1 � !3l D 0;
c2 C !3a D 0;

which is
0

B
B
@

1 0 0

0 1 0

1 0 �l
0 1 a

1

C
C
A

8

<

:

c1

c2

!3

9

=

;
D

8

ˆ̂
<

ˆ̂
:

0

0

0

0

9

>>=

>>;

and admits only the trivial solution because rank(A)D 3. There are more than three
well-placed simple constraints: the body is kinematically hyperdeterminate, and no
linearized rigid displacement is possible. The rotation center does not exist, because
it should be placed simultaneously at A and B. If we eliminate one constraint,
the body remains with three simple translational constraints, and A becomes a
3 � 3 matrix. Since det A ¤ 0, we still have the trivial solution, and the body is
kinematically isodeterminate.
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Fig. 1.17 Labile rigid body
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Exercise 7. Analyze the kinematics of the body in Figure 1.17.

Remarks and solution. The kinematics develops in the plane where the body has
three simple translational constraints applied at the points A, B, and D. With respect
to the reference frame indicated in the figure, we have

- constraint 1 at A � .0; 0/, along m D .1; 0/,
- constraint 2 at B � .a; 0/, along m D .0; 1/,
- constraint 3 at D � .a;�a/, along m D .0; 1/.

Equation (1.6) reduces to the system

8

<

:

c1 D 0;
c2 C !3a D 0;
c2 C !3a D 0;

or

0

@

1 0 0

0 1 a
0 1 a

1

A

8

<

:

c1

c2

!3

9

=

;
D
8

<

:

0

0

0

9

=

;
: (1.15)

There are just two linearly independent equations. The body has one degree
of freedom (Ol D 1), and the system (1.15) has infinitely many solutions, for
example p D .0;�a!3; !3/T, with !3 arbitrary. The body admits a linearized rigid
displacement, a rotation about C, a point with coordinates

x1C D �
c2

!3
D a; x2C D

c1

!3
D 0;
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Fig. 1.18 Diagrams of
horizontal and vertical
displacements of the body
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coinciding with B. More synthetically, the center C must be placed on the horizontal
straight line crossing A and on the vertical straight line through D; hence C coincides
with B. Figure 1.18 shows the displacement diagrams.

Exercise 8. Analyze the kinematics of the body in Figure 1.19.

Remarks and solution. The body has a rotational constraint applied at A and a
translational one at B. The position of the body is in reference to the frame
˚

A; x1; x2
�

and we have

- constraint 1 at A � .0; 0/, about the x3-axis,
- constraint 2 at B � .a; 0/, along m D .0; 1/.

The kinematic conditions imposed by the constraints are then

�
!3 D 0;
c2 C !3a D 0;

that we rewrite as

�
0 0 1

0 1 a

�
8

<

:

c1

c2

!3

9

=

;
D
�
0

0

�

:

We have rank(A)=2, because there are two linearly independent equations. The
body has one degree of lability (Ol D 1), and the system has infinitely many solutions,
.c1; 0; 0/T, with c1 arbitrary. The body admits horizontal translation. The rotation
center C is the improper point of the vertical direction. In fact, the simple pendulum
at B prescribes the center C on the vertical straight line through B, while the
constraint in A imposes the center C at an arbitrary point at infinity; the two
conditions are satisfied when C is the improper point of the vertical direction.
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Fig. 1.19 Labile rigid body
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Exercise 9. Analyze the kinematics of the structure in Figure 1.20 in which x1B > 0
and x1C > x1B.

Remarks and solution. The structure is the so-called three-hinge arch. It includes
six simple translational constraints, four external and two internal. The position of
the bodies is in reference to the frame

˚

A; x1; x2
�

, where for the constraints in A, C,
and B (internal), we have respectively

- constraint 1 at A � .0; 0/, along m D .1; 0/,
- constraint 2 at A � .0; 0/, along m D .0; 1/,
- constraint 3 at C � .x1C; x2C/, along m D .1; 0/,
- constraint 4 at C � .x1C; x2C/, along m D .0; 1/,
- constraint 5 at B � .x1B; x2B/, along m D .1; 0/,
- constraint 6 at B � .x1B; x2B/, along m D .0; 1/.

The kinematic conditions imposed by the six constraints are then

8

ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂

:̂

c11 D 0;
c21 D 0;
c12 � x2C!

3
2 D 0;

c22 C x1C!
3
2 D 0;

c11 � c12 � x2B.!
3
1 � !32/ D 0;

c21 � c22 C x1B.!
3
1 � !32/ D 0;

i.e.,
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0

B
B
B
B
B
B
B
@

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 �x2C
0 0 0 0 1 x1C
1 0 �x2B �1 0 x2B
0 1 x1B 0 �1 �x1B

1

C
C
C
C
C
C
C
A

8

ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂

:̂

c11
c21
!31
c12
c22
!32

9

>>>>>>>=

>>>>>>>;

D

8

ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂

:̂

0

0

0

0

0

0

9

>>>>>>>=

>>>>>>>;

:

The determinant of the coefficient matrix is

x1Bx2C � x1Cx2B:

There are two cases. When the determinant is different from zero (the first case), the
structure is kinematically isodeterminate, and no rigid displacement is possible (the
six constraints eliminate exactly the six degrees of freedom). When the determinant
vanishes, the structure can exploit one of its six degrees of freedom (Ol D 1), because
there are only five independent constraints. The lability condition is then

x1Bx2C D x1Cx2B;

the case in which the three hinges fall into a line. An example is shown in
Figure 1.21, where x1B D x2B D a and x1C D x2C D 2a. In this case, the previous
linear system admits infinitely many solutions, i.e., .0; 0;�!32 ; 2a!32 ;�2a!32 ; !

3
2/
T,

with !32 the rotation of the body II. The absolute rotation centers of the two bodies
have coordinates (the relative rotation center is at B)

x1C1 D 0; x2C1 D 0; x1C2 D 2a; x2C2 D 2a:

If we consider an arbitrary small rotation of the body II, we have the displacement
represented in Figure 1.22. The problem can be also analyzed by applying the flat-
link chain method, in particular the first theorem. The possible absolute rotation
center C1 of the body I is located at A. Its counterpart C2 for the body II is at C.
Finally, the relative rotation center C12 is at B. Since in the present case, the three
points are distinct, the structure is kinematically indeterminate if A, B, and C are
collinear; otherwise, it is isodeterminate.

Exercise 10. Analyze the kinematics of the structure in Figure 1.23.

Remarks and solution. The structure is composed by two bodies, indicated by I and
II and connected by the pendulum BC. There are two external and three internal
simple constraints (the glyph in D and the pendulum BC); nv D 5, and the structure
has at least one degree of lability (Ol � 1).

To have the possibility of a nonzero displacement, the rotation centers C1, C2,
and C12 must be all on a straight line (first theorem of flat-link chains).
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Fig. 1.21 A kinematically
indeterminate structure with
three hinges

II

A C1

I

a

a

a

a

x 2

x 1

C C2

B C12

3
2

3
1

3
2

3
1

I II

I

II
II

I

x 1

x 2

B C12

C C2

A C1

Fig. 1.22 Diagrams of possible linearized displacements

The rotation center C1 is at B, the intersection of the lines r and s indicating the
axes of the carriages. The relative rotation center C12 is the improper point of the
vertical direction for the glyph at the point D and the pendulum BC. To satisfy the
alignment condition, the rotation center C2 must be located on the line r. Hence,
the position of C2 is indeterminate on the line r. We have then double lability
(Ol D 2). Two independent linearized displacements can be obtained by fixing C2
at two arbitrary distinct points of the line r. Figure 1.24 shows two possible choices
for C2. In the first case, C2 coincides with C; in the second case, C2 is the improper
point of the vertical direction (a circumstance in which we have C2 � C12 ¤ C1:
the body I is fixed and II may translate horizontally). The two independent rigid
mechanisms are depicted in Figure 1.24.
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Fig. 1.23 Kinematically
indeterminate structure
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Fig. 1.24 Diagrams of the linearized displacements of two independent rigid mechanisms

Exercise 11. Analyze the kinematics of the structure in Figure 1.25.

Remarks and solution. The structure is composed of two bodies, I and II. There
are four external and two internal simple constraints: two carriages, a hinge (the
external constraints), and a glyph in B. We have nv D 6, which is the number of
pertinent degrees of freedom. The center C1 of possible rotation of the body I is
the improper point of the vertical direction, because such a point is located on the
lines r and s indicating the axes of the carriages (Fig. 1.26). The rotation center C2
coincides with D. Finally, C12 is the improper point of the vertical direction for the
glyph in B. Hence, the three points are collinear, and

C1 � C12 ¤ C2:
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Fig. 1.25 Kinematically
indeterminate structure
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Fig. 1.26 Diagrams of possible linearized displacements

In other words, there are six constraints, but only five are linearly independent;
in particular, the body II is fixed, and I translates horizontally. Figure 1.26 shows
the pertinent kinematics.

Exercise 12. Analyze the kinematics of the structure in Figure 1.27.

Remarks and solution. We have three bodies: I, II, and III (nine degrees of
freedom). There are six external simple constraints (two glyphs and a hinge) and
four internal simple constraints (two hinges): nv D 10. The centers C1, C2, C3, C12,
and C23 of possible rotation are fixed by the constraints. Moreover, C13 � C1: in
fact, C13 is on the line r (for having C1;C3;C13 aligned) and on the line s (for the
alignment of C12;C13, and C23). Then we have

C1;C2;C12 X;

C1;C3;C13 X;

C2;C3;C23 X= ;

C12;C13;C23 X;
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Fig. 1.27 Kinematically hyperdeterminate structure

Fig. 1.28 Kinematically
impossible system
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where the symbol X= indicates that the third alignment is not verified. Hence,
the structure does not admit any linearized displacement and is kinematically
hyperdeterminate.

Exercise 13. Analyze the kinematics of the two-body system with a structural
failure in Figure 1.28.

Remarks and solution. The structure involves nv D 7 simple constraints. At first,
we do not consider the carriage in B, so we think of a system with six simple
constraints and six degrees of freedom, in which the centers C1, C2, and C12
of possible rotation do not fall into line. Hence, the system is kinematically
isodeterminate, and no rigid displacement is possible. If we consider also the
constraint at B, we realize that the vertical displacement Oı (the structural failure)
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is incompatible. Consequently, the system is kinematically impossible—we cannot
impose Oı at B if I and II are rigid bodies.

Exercise 14. Analyze the kinematics of the structure in Figure 1.29.

Remarks and solution. A frame
˚

E; x1; x2
�

is considered as in the figure. The
structure has 15 degrees of freedom. They are collected in the vector

p D .c11; c21; !31 ; c12; c22; !32 ; c13; c23; !33 ; c14; c24; !34 ; c15; c25; !35/T;

where we have considered the numbering of the bodies in the figure. Also, there are
14 simple ideal constraints (at A and E four constraints, B involves three constraints,
etc.). If we label the constraints (for example, the four external and the ten internal in
sequence), the absolute and relative displacements that they prevent can be collected
in the vector

.u11E; u
2
1E; v3B; u

2
5C; u

1
12E; u

2
12E; v13B; !

3
13; v24D; !

3
24; u

1
34A; u

2
34A; u

1
35A; u

2
35A/

T;

where by v we have denoted displacements inclined at 45ı. The kinematic condi-
tions imposed by the 14 constraints are then

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂

:̂

c11 D 0;
c13 C c23 D 0;
c11 � c12 D 0;
c11 C c21 � c13 � c23 D 0;
c12 � c22 � c14 C c24 D 0;
c23 � c24 D 0;
c23 � c25 D 0;

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂

:̂

c21 D 0;
c25 C 2a!35 D 0;
c21 � c22 D 0;
!31 � !33 D 0;
!32 � !34 D 0;
c13 C 2a!33 � c14 � 2a!34 D 0;
c13 C 2a!33 � c15 � 2a!35 D 0:

The matrix A of the coefficients is of dimension 14 � 15. Its rank is 13: the
structure has a double lability (Ol D 2). Only 13 constraints are independent, and
two arbitrary linearized displacements are possible. With !33 D 0 and c25 D �Oı, a
possible nontrivial solution is

.0; 0; 0; 0; 0; Oı=a; Oı;�Oı; 0;�Oı;�Oı; Oı=a; 0;�Oı; Oı=2a/T:

Figure 1.30 shows the displacements of the bodies with the position of the centers
of rotation. The body I is fixed. With !33 D ˝ and c25 D 0, another solution is

.0; 0;˝; 0; 0;˝; 0; 0;˝; 0; 0;˝; 2a˝; 0; 0/T:

Figure 1.31 shows the displacements with the position of the centers of rotation. In
this second case, the bodies I to IV rotate around E as a single rigid body, while the
body V translates horizontally.
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Fig. 1.29 System of five rigid bodies

1.12 Changes in Volume and the Orientation-Preserving
Property

Homogeneous deformations (rigid-body displacements among them) are a very
specific—although important—case. In general, F may change from place to place
and this is the setting that we primarily discuss here.

Consider a point x in B and take there three linearly independent vectors e1; e2; e3
constituting a parallelepiped in B with volume

V D he1; e2 � e3iR3 D e1 � g.e2 � e3/;

where g is the metric selected in the reference configuration.
Given a deformation and the pertinent F, at the point y WD Qy.x/ we have another

three vectors generated by the action of F over the assigned triplet e1; e2; e3, namely
Qe1 D Fe1; Qe2 D Fe2; Qe3 D Fe3. If we want to exclude from our description, the
collapse of finite-size portions of matter into a point, we have to impose

det F ¤ 0: (1.16)
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Fig. 1.30 Diagrams of the first set of possible linearized displacements

In fact, if we take a vector e in B with nonzero modulus to map onto a vector Qe
also with nonzero modulus, the relation

Qe D Fe;

considered as an algebraic system linking the components of e in a given basis to
those of Qe in another basis, implies that the condition (1.16) is necessary.

The three vectors Qe1; Qe2; Qe3 determine another parallelepiped with volume Va

given by

Va D hQe1; Qe2 � Qe3i QR3 D Qe1 � Qg.Qe2 � Qe3/;

with Qg the metric in the ambient space where there is the deformed configuration.
We have

Va D hFe1;Fe2 � Fe3i QR3 D .det F/V: (1.17)
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Fig. 1.31 Diagrams of the second set of possible linearized displacements

To prove the last identity, we find it useful to select the orthonormal triplet
e1; e2; e3, that is, the three vectors have components .1; 0; 0/, .0; 1; 0/, .0; 0; 1/
respectively. With these assumptions, we get

Va D eijkFk
1F

j
2F

i
3V D .det F/V;

because the determinant of F can be computed by the mixed product of the columns
of the matrix associated with F in some basis, that is, det F D F1 � F2 � F3, with
Fi the ith column of F. The volume has its own algebraic sign: if we change the
orientation of e2 or e3, the volume sign goes from plus to minus, and conversely
for Qe2 or Qe3. The requirement that the deformation be orientation-preserving is then
tantamount to imposing that the algebraic sign of V be preserved in the transition to
Va. To satisfy the condition, it is necessary that

det F > 0;

which is a nonlinear constraint, the basic source of analytical difficulties in tackling
some boundary value problems involving finite strains. The relation between actual
and reference volumes, namely
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Va D .det F/V;

can be expressed in differential form:

dVa D .det F/dV:

By selecting the reference place as a setting in which we make the comparison
between the two volumes, from (1.17) we get

Va � V
V

D det F � 1:

Hence ıV WD det F � 1 represents the local relative volume change.

1.13 Changes in Oriented Areas: Nanson’s Formula

The relation (1.17) also allows us to establish how oriented areas change as a
consequence of the deformation. To this end, we write first the vector product Qe2�Qe3
in (1.17) as Qn#Aa, with Qn# a unit vector that is orthogonal to the parallelogram with
area Aa determined by Qe2 and Qe3 and considered a surface oriented by the normal Qn#.
The same point of view is used for the product e2 � e3 in the reference place, and
we write n#A for it, where A now indicates the area of the parallelogram determined
by e2 and e3 and oriented by the unit normal n#. Using (1.17), we then have

Va D
˝

Fe1; Qn#Aa
˛

QR3 D
˝

e1;F
T Qn#Aa

˛

R3
D .det F/

˝

e1; n
#A
˛

R3
D .det F/V:

Hence, thanks to the arbitrariness of e1, we get

FT Qn#Aa D .det F/n#A;

from which we obtain

Qn#Aa D .det F/F-Tn#A; (1.18)

because det F > 0. However, we can also write

Va D
˝

Fe1; Qn#Aa
˛

QR3 D Fe1 � QgQn#Aa D Fe1 � QnAa;

where Qn is the covector associated with Qn#, namely Qn WD QgQn#. Then, by taking into
account that

˝

e1; n#A
˛ D e1 � gn#A D e1 � nA, with n WD gn#, we can write

Fe1 � n#Aa D .det F/e1 � nA;
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which implies, thanks to the arbitrariness of e1, the relation

QnAa D .det F/F�#nA: (1.19)

The difference between the formulas (1.18) and (1.19) rests essentially in the
way we consider the normal to a surface. The relation (1.18) applies when the
normal is considered a vector, that obtained by the vector product of two linearly
independent vectors spanning the tangent plane to the surface (recall that we are
considering it in three-dimensional Euclidean space) at a certain regularity point. In
contrast, in (1.19) we consider the normal to be a covector, i.e., the spatial derivative
of the function describing the surface, evaluated at the point under scrutiny. In
components, the relations (1.18) and (1.19) can be written respectively as

Qn#iAa D .det F/.F-T/iBn#BA;

QniAa D .det F/.F�#/Bi nBA:

Previous formulas also apply when we consider both Aa and A as infinitesimal
areas, denoting them in this case by daa and da, respectively. Then we can write

Qn#daa D .det F/F-Tn#da (1.20)

or

Qndaa D .det F/F�#nda; (1.21)

depending on how we consider the normal. The latter point of view—the normal to
a surface at a point considered as a covector—is the one that we shall use later in
this book, unless otherwise specified.

Both expressions (1.20) and (1.21) are versions of what is commonly called
Nanson’s formula.

1.14 Finite Strains

Consider a vector w tangent to a smooth curve on B at a point x. When we impose
a deformation, w changes into Qw D Fw. In the transition from w to Qw, the vector w
is (at least in principle) stretched and rotated. The following theorem allows us to
distinguish between the two kinematic behaviors.

Theorem 15 (Polar decomposition theorem). Every linear operator G 2 Hom
.Rm;Rm/ with det G ¤ 0 admits the following decompositions, called left and right,
respectively:

G D RU D VR;
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with R an orthogonal linear operator,11 namely R 2 O.m/, and U and V symmetric
linear operators, i.e., U;V 2 Sym.Rm;Rm/. Both left and right decompositions are
unique. However, if det G > 0, we have R 2 SO.m/.

We do not give a proof here, for one can be found in standard textbooks in
linear algebra. We simply apply the previous theorem to F and interpret the physical
meaning of left and right decompositions

F D RU D VR;

with R 2 SO.3/ because det F > 0, as a consequence of the orientation-preserving
assumption. Since F 2 HomC.R3; QR3/, the superscript C recalls the condition
det F > 0, we have to think of U and V as symmetric linear operators acting over
different, although isomorphic, spaces: U 2 SymC.R3;R3/, V 2 SymC. QR3; QR3/.

In the case RU, we first strain the body. Then we change its location rigidly. By
writing VR, we mean that we are first applying a rigid displacement. That U and V
are associated with the strain can be seen by evaluating how a vector w tangent to a
generic curve in B at x changes its length when it is transformed into Qw D Fw as a
consequence of the deformation Qy.

Write w D ln and Qw D QlQn, with l; Ql 2 R, n and Qn unit vectors with respect to the
metrics g and Qg, respectively. The squared length of w is then given by

l2 D hw;wi D w � gw D l2g � n˝ n;

while the squared length of Qw reads

Ql2 D h Qw; Qwi D Qw � Qg Qw D Ql2 Qg � Qn˝ Qn:
We cannot compare them directly, because they belong to different spaces and are

written with respect to different frames. Hence, we must select a common geometric
setting to make the comparison. If we choose the reference place as the ambient
where we compare the two lengths above, we write

Ql2 D Qw � Qg Qw D Fw � QgFw D w � F� QgFw D l2n � F� QgFn D l2.F� QgF/ � n˝ n;

expressing in this way Ql as a function of l. We define the second-rank tensor C as

C WD F� QgF

and call it the right Cauchy–Green tensor. In components, we have

CAB D Fi
A QgijF

j
B:

11R is said to be an orthogonal linear operator from R
m to itself, and we write R 2 O.m/, when

R 2 Hom.Rm;Rm/ and det R D C1 or �1. The set of orthogonal linear operators O.m/ is a group.
Its subset SO.m/, characterized by det R D C1, is a group as well. When R 2 SO.m/, it describes
a rotation in R

3. Otherwise, R represents a reflection.
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Since det F > 0 for the orientation-preserving condition and also det Qg > 0 by
the definition of a metric, C admits a positive determinant. Moreover, we have

CT D C� D .F� QgF/� D F� Qg�F D F� QgF D C;

i.e., C is symmetric. It is the pullback of the spatial metric Qg in the reference place,
and it is a new metric in B in this sense. The variation of length in transforming w
onto Qw is then given by

Ql2 � l2

l2
D C � n˝ n � g � n˝ n D .C � g/ � n˝ n:

We usually call the second-rank tensor E given by

E WD 1

2
.C � g/

the strain tensor. It has the meaning of a difference of metrics and is

E D EABeA ˝ eB;

with

EAB D 1

2
.CAB � gAB/:

The meaning of relative difference of metrics is attributed to the 1-contravariant,
1-covariant tensor

QE WD g�1E;

which is

QE D QEA
BeA ˝ eB;

with

QEA
B D

1

2
.g�1/AC.CCB � gCB/ D 1

2
. QCA

B � ıA
B/:

Hence, indicating by QC the 1-contravariant, 1-covariant version of the right
Cauchy–Green tensor, we write

QE D 1

2
. QC � NI/;
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where NI is the 1-contravariant, 1-covariant identity tensor NI D ıA
BeA˝ eB. The strain

tensor QE is symmetric. In fact, we have

QC D g�1C D g�1F� QgF D FTF;

so that QCT D .FTF/T D FTF D QC. Moreover, the identity NI is symmetric, too. In
terms of the displacement field

u WD Qu.x/ D y � i.x/ D Qy.x/ � i.x/;

already defined, with i W E3 ! QE3 the identification between the two copies of the
Euclidean space where we have considered reference and actual places, respectively,
the right Cauchy–Green tensor QC becomes

QC D FTF D .I C Du/T.I C Du/;

where I D ıi
A Qei ˝ eA, so that

QE D 1

2
..I C Du/T.I C Du/ � NI/ D 1

2
.DNuC DNuT/C 1

2
DuTDu; (1.22)

where DNu and DNuT have, respectively, components .DNu/AB D ıA
i .Du/iB and .DNuT/AB D

.DuT/Ai ı
i
B. In deriving the relation (1.22), we have exploited the identity

ITI D .gABı
j
B Qgjiı

i
C/eA ˝ eC D ıB

CeB ˝ eC D NI:

The transpose of I, namely IT D ıA
i Qei ˝ eA, changes Du into

DNu D .DNuA/CeA ˝ eC D .gABıi
B Qgij.Duj/C/eA ˝ eC:

By definition, in fact, the displacement u is a vector in the physical space QE3,
an element of its translation space that becomes QR3 once we fix an origin of the
coordinate frame, while E is a tensor in the reference space. The premultiplication
of Du D .Dui/A Qei ˝ eA by IT D .gABı

j
B Qgji/eA ˝ Qei implies the projection of u from

QR3 to R
3. Also, the postmultiplication of DuT D .gABDBuj Qgji/eA˝ Qei by the identity

I D ıi
A Qei ˝ eA determines also the projection of u into R

3. In other words, the
second-rank identity tensor I D ıi

A Qei ˝ eA is a shifter from R
3 to QR3.

The right-hand side of the relation (1.22) is commonly called the Almansi
tensor.

There are many possible measures of strain: functions of C vanishing when C is
the identity can in principle be adopted as strain measures.
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Write ıl for the ratio
Ql � l

l
. We have

ıl D
p
2E � n˝ nC 1 � 1;

or in components,

ıl D
p

2EABnAnB C 1 � 1:

In particular, in the direction of the vector eA of the basis at x we obtain

ılA D
p

2EAA C 1 � 1:

Consider now two linearly independent vectors v and w tangent at x to different
smooth curves in B. When we impose a deformation, we find corresponding vectors
at y in Ba, namely Qv D Fv and Qw D Fw. The change in angle between the two
vectors is defined by

�˛ WD ˛ � ˛a;

in which ˛ is the angle between v and w, and ˛a is the angle between Qv and Qw.
Hence, we compute

�˛ D arccos
hv;wi

phv; viphw;wi � arccos
hFv;Fwi

phFv;FviphFw;Fwi :

In particular, if the two vectors at x are orthogonal, the change of angle is given by

�˛ D 	

2
� ˛a:

Assign an orthogonal basis in a neighborhood of x 2 B. Let eA and eB two vectors
of such a basis. Write ˛AB for the angle between the vectors FeA and FeB, obtained

after deformation, and �AB for the variation in angle �AB D 	

2
� ˛AB. We compute

(prove it as an exercise)

�AB D arcsin
2EAB

p

.1C 2EAA/ .1C 2EBB/
:

Let A be the area of the parallelogram defined by two linearly independent
vectors v and w at the point x, and Aa the area of the parallelogram defined by

Fv and Fw at y. Write ıAvw for the ratio
Aa � A

A
. If we consider an orthogonal basis

at x, the change of area defined by the two vectors eA and eB, namely ıAAB , is
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ıAAB D
q

.1C 2EAA/ .1C 2EBB/ � 4 .EAB/
2 � 1:

The local relative volume change ıV in terms of the Almansi tensor reads

ıV D
q

det.2 QEC I/ � 1:

1.15 Small Strains

The condition

jDuj � 1 (1.23)

defines the small-strain regime.
When the small-strain regime holds, we can confuse reference and actual shapes

without distinguishing them as subsets of different (although isomorphic) spaces.
Hence, in the small-strain regime, we shall write just x for the space variables, and
we shall not distinguish between upper- and lowercase indices, using just the latter.
No distinction is also made, in this setting, between the reference metric g and the
actual one Qg, and we shall write g D gijei˝ej by adopting the convention on indices
just mentioned.

Under the condition (1.23), we can neglect the term
1

2
DuTDu in the expression

of QE, since it is of higher order with respect to jDuj, so that we can approximate
QE by

QE 	 1

2
.DuC DuT/:

Here we have written Du instead of DNu, because in the small-strain regime, we
confuse reference and current configurations, so that we avoid the use of the shifter
I D ıi

A Qei ˝ eA.
We indicate by Q" the symmetric part of Du, namely

Q" WD 1

2
.DuC DuT/ D Sym.Du/;

while by ", we denote its fully covariant version

" D Sym.gDu/;

so that " D "ijei ˝ ej, with the generic component "ij given by
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"ij D 1

2
.ui;j C uj;i/;

where ui WD gijuj is the ith component of the covector field u[ D gu, and the comma
indicates the derivative with respect to the coordinate corresponding to the index to
the right of the comma; in other words, ui;j is the ijth component of gDu, assuming g
constant in space. When

˚

O; x1; x2; x3
�

is orthogonal, we omit the superscript [ that
indicates the action of g, and we have simply ui D ıijuj. The matrix associated with
" with respect to an orthonormal frame

˚

O; x1; x2; x3
�

is given by

	

"ij
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2

�
@u1
@x2
C @u2
@x1

�
1

2

�
@u1
@x3
C @u3
@x1

�

1

2

�
@u1
@x2
C @u2
@x1

�
@u2
@x2

1

2

�
@u2
@x3
C @u3
@x2

�

1

2

�
@u1
@x3
C @u3
@x1

�
1

2

�
@u2
@x3
C @u3
@x2

�
@u3
@x3

1

C
C
C
C
C
C
A

:
(1.24)

The tensor " is what is commonly called a small-strain tensor.
Consider a point x and a unit vector s. The relative variation in length along s in

the small-strain regime is given by

ıl D " � .s˝ s/ D "ijs
jsi:

In particular, with reference to the coordinate system
˚

O; x1; x2; x3
�

introduced

above, the term "11 D @u1
@x1

represents the elongation ı1 along the x1-axis. An

analogous meaning can be attributed to the other terms on the principal diagonal,

i.e.,
@u2
@x2

and
@u3
@x3

. Hence, if we imagine an infinitesimal cube centered at the point

x with edges corresponding to the three coordinate axes, the relative variation in
volume in the small-strain regime, indicated by ıV , is given by the trace of ", namely

ıV D tr " D "11 C "22 C "33 D @u1
@x1
C @u2
@x2
C @u3
@x3
D div u: (1.25)

The result can be obtained formally from what we have already found in the
finite-strain regime. Under the regularity assumptions for the deformation given at
the beginning of these notes, the determinant of F admits the expansion

det F D det.I C Du/ D 1C tr Q"C o.jDuj/:
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Fig. 1.32 Angle variation in
the small-strain regime

12 =2 12 =2 21

x 1

x 2

2

1O

12 = 1 + 2

By neglecting leading-order terms, as allowed by the condition jDuj � 1, and
lowering the first index of Q" by multiplying Q" from the left by the metric, we obtain
once again (1.25), since det F� 1 represents the volume variation in the finite-strain
setting.

Off-diagonal terms in (1.24) have the meaning of angle variation. Precisely,
1

2

�
@u1
@x2
C @u2
@x1

�

describes half the angle variation between the x1 and x2 axes;

see Figure 1.32.
The sums

@u1
@x1
C @u2
@x2

;

@u1
@x1
C @u3
@x3

;

@u2
@x2
C @u3
@x3

;

represent the area variations over the coordinate planes x1x2, x1x3, x2x3, respectively,
in the case of the small-strain regime.

Exercise 16. Linearize the finite-strain area variation.

We have determined " so far from the knowledge of the displacement field
x 7�! Qu.x/. In experiments, however, we are often able to evaluate the elongations
along three independent directions and the angle variations among them at numerous
points. Let us suppose—it is an idealization—that we have a field of these measures,
namely a map x 7�! ".x/ 2 Sym.R3;R3/ assigning to every x a symmetric tensor
". The problem now is to evaluate whether there is a displacement field x 7�! Qu.x/
such that the associated strain field matches the assigned one. In this case, we say
that the strain " is compatible. Formally, such a requirement is tantamount to asking
for conditions of integrability of

"ij D 1

2
.ui;j C uj;i/
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considered as a system of linear partial differential equations in the unknowns ui,
and with data "ij. Let us assume, in fact, that once we know ".�/, it is true that

" D 1

2
.Du[ C .Du[/T/;

where Du[ D gDu D D.gu/, since we assume g to be constant. When the assigned
field x 7�! ".x/ 2 Sym.R3;R3/ is of class C2.B/, we may evaluate its curl twice.
We compute

curl " D 1

2
curl .Du[ C .Du[/T/ D 1

2
.curl Du[ C curl .Du[/T/

D 1

2
.0C Dcurl u[/ D 1

2
Dcurl u[;

so that

curl curl " D 1

2
curl D curl u[ D 0;

because curl D.�/ vanishes. The condition

curl curl " D 0;

in components

"ij;hk C "hk;ij D "ik;hj C "hj;ik;

is a compatibility condition for the strain field ".�/ and is necessary under the
assumed regularity assumptions. The compatibility is also sufficient when B is
simply connected (rigorous proofs can be found in treatises on the integration of
differential forms).

The analysis of compatibility conditions is formally simpler in the finite-strain
regime when a differentiable field x 7�! F.x/ is assigned. In fact, since F D ICDu,
we just need to have

curl F D 0;

to ensure the existence of a displacement field determining F point by point.
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1.16 Finite Elongation of Curves and Variations of Angles

Consider a continuous and continuously differentiable map ' W Œ0; l� �! B, l > 0,
defining a curve on the reference place. Its length l.'/ is given by

l.'/ D
Z l

0

ˇ
ˇ'0.s/

ˇ
ˇ ds;

where the prime denotes differentiation with respect to s, so that '0.s/ is the tangent
to the curve at the point '.s/. When we impose a deformation Qy W B �! QE3, we
have over the deformed shape Ba D Qy.B/ another curve defined by the map N' WD
Qy ı ' W Œ0; l� �! Qy.B/. The vector N'0.s/ D d

ds
Qy.'.s// is then the tangent to the new

curve on Ba at the point Qy.'.s// and is, by the chain rule, N'0.s/ D F'0.s/. The length
of the deformed curve is

l. N'/ D
Z l

0

ˇ
ˇ N'0.s/

ˇ
ˇ ds:

Polar decomposition allows us to write

ˇ
ˇ N'0.s/

ˇ
ˇ D ˝ N'0.s/; N'0.s/

˛ 1
2 D ˝F'0.s/;F'0.s/

˛ 1
2 D ˝RU'0.s/;RU'0.s/

˛ 1
2

D ˝U'0.s/;U'0.s/
˛ 1
2 D ˇˇU'0.s/

ˇ
ˇ ;

so that

l. N'/ D
Z l

0

ˇ
ˇU'0.s/

ˇ
ˇ ds;

and the variation in length ıl, namely

ıl D l. N'/ � l.'/

l.'/
;

is given by

ıl D

Z l

0

ˇ
ˇU'0.s/

ˇ
ˇ ds

Z l

0

ˇ
ˇ'0.s/

ˇ
ˇ ds

� 1;

and it depends only on U. When U is the identity, the deformation from ' to N' is
just a rigid-body change of place.
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Consider now two such curves, say '1 and '2, crossing a point: '1.Ns/ D '2.Ns/,
Ns 2 Œ0; l�. The angle ˛ between the two tangent vectors '0

1.Ns/ and '0
2.Ns/ satisfies the

relation

cos˛ D
˝

'0
1.Ns/; '0

2.Ns/
˛

ˇ
ˇ'0
1.Ns/

ˇ
ˇ
ˇ
ˇ'0
2.Ns/

ˇ
ˇ
:

By imposing a deformation Qy on B, we determine on the current shape Ba two
new curves N'1 D Qyı'1 and N'2 D Qyı'2 meeting at the image of the original crossing
point, namely

N'1.Ns/ D N'2.Ns/:

The two tangent vectors N'0
1.Ns/ and N'0

2.Ns/ then form an angle N̨ such that

cos N̨ D
˝ N'0
1.Ns/; N'0

2.Ns/
˛

ˇ
ˇ N'0
1.Ns/

ˇ
ˇ
ˇ
ˇ N'0
2.Ns/

ˇ
ˇ
D

˝

U'0
1.Ns/;U'0

2.Ns/
˛

ˇ
ˇU'0

1.Ns/
ˇ
ˇ
ˇ
ˇU'0

2.Ns/
ˇ
ˇ
: (1.26)

Hence, the variation in the angle �˛ WD ˛ � N̨ depends only on U.

1.17 Deviatoric Strain

The small strain " can be naturally decomposed additively into spheric and
deviatoric components, indicated respectively by "s and "d:

" D "s C "d;

where

"s WD 1

3
.tr "/I;

with I the second-rank identity tensor, and

"d WD " � 1
3
.tr "/I:

An immediate consequence of the definition of "d is

tr "d D 0;

which specifies that "d describes just the isochoric strain—the shape changes, but
the volume remains invariant.
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When the strain is large, a multiplicative (rather than additive) decomposition of
F emerges. Define first

NF WD .det F/�
1
3 F:

Here NF is the spatial derivative of an isochoric deformation. In fact, we get12

det NF D det F

det F
D 1:

Hence, we can write the decomposition

F D QF NF or F D NF QF

with

QF WD .det F/
1
3 I;

where I is once again the second-rank identity tensor. Using NF, we can also define a
version of the Cauchy–Green tensor NC not accounting for volume changes. It reads

NC WD NFT NF D .det F/� 2
3 C D .det F/� 2

3 FTF:

In components, we get

NCA
B D .det F/� 2

3 .FT/Ai Fi
B:

By direct computation, we obtain

det NC D 1;

which confirms that NC does not account for volume changes.

1.18 Motions

Motions are time-parameterized families of deformations

Qy W B � .t0; t1/ �! QE3;

12For every n � n real matrix M and real number ˇ, the identity detˇM D ˇn det M holds.
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which have the already discussed properties with respect to space and are at least
two times piecewise differentiable with respect to time t 2 .t0; t1/. The vector

Py.x; t/ WD d

dt
Qy.x; t/

is the velocity at the instant t of a material point y D Qy.x; t/ that was at x in its
reference place. Hence, we have the field

.x; t/ 7�! Py.x; t/ 2 QR3;

which is the so-called Lagrangian description of the velocity. More precisely, Py is
a tangent vector to Ba at y D Qy.x; t/; formally, Py 2 TyBa. We can also imagine the
velocity as a vector attached at y at the instant t, irrespective of the reference place
x. In this way, we have the field

.y; t/ 7�! v.y; t/ 2 QR3;

which is the so-called Eulerian description of the velocity. Once again, we have
v 2 TyBa, and above all,

Py D v: (1.27)

The Eulerian and Lagrangian velocities coincide. The same statement does not hold
for the acceleration, for which we have, in Lagrangian description,

Ry.x; t/ WD d2

dt2
Qy.x; t/;

while in the Eulerian representation, we write a for the acceleration at y and t,
defined by

a.y; t/ WD d

dt
Qv.x; t/ D @v

@t
C .Dyv/Py D @v

@t
C .Dyv/v;

where
@v

@t
is computed by holding y fixed. Then we obtain

Ry ¤ a:

Since y D Qy.x; t/, we can compute the derivative of v with respect to x, obtaining
by the chain rule,

Dv.Qy.x; t/; t/ D DyvDy D DyvF;
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where Dy is the derivative with respect to y, while D is the derivative with respect
to x, as adopted so far. However, due to the identity (1.27), we have Dv D DPy D PF
and PF D DyvF, which implies

Dyv D PFF�1

and

tr. PFF�1/ D tr.Dyv/ D div v:

1.19 Exercises and Supplementary Remarks

Exercise 17. Calculate the length variation of segments by taking Ba as a geomet-
ric environment where we compare lengths, volumes, areas. Write such a variation
in terms of the so-called left Cauchy–Green tensor, denoted by B and defined by
B WD FFT with B D B

i
j Qei ˝ Qej D .Fi

A.F
T/Aj /Qei ˝ Qej.

Suggestion. Write l as a function of Ql by exploiting the relation w D F�1 Qw, with
w 2 TxB and Qw 2 TyBa.

Exercise 18. Show that the second-rank tensor A WD BQg�1, with components Aik D
B

i
j Qgjk, is the pushforward in the current shape Ba of the inverse referential metric

g�1, and that the second-rank tensor OA WD QgB�1, with components OAki D Qgkj.B
�1/ji,

is the pushforward of the material metric g in Ba.

Suggestion. Use the relation FT D g�1F� Qg and its counterpart F-T D Qg�1F��g:

Exercise 19. Express the components of " in a spherical coordinate frame
fO; r; 
; 'g, with r the radius from the origin O and in a cylindrical frame
fO; Nr; 
; zg.
Suggestion. Recall that for spherical coordinates, we have x1 D r cos# sin', x2 D
r sin# sin', x3 D r cos', while the cylindrical system is defined by x1 D Nr cos# ,
x2 D Nr sin# , x3 D z.

Exercise 20. Prove formally that the off-diagonal terms in (1.24) describe angle

variation. Precisely,
1

2

�
@u1
@x2
C @u2
@x1

�

represents half the angle variation between

the x1 and x2 axes (Fig. 1.32).

Suggestion. Write (1.26) in terms of u and linearize the resulting expression.

In the subsequent exercises in this section, we identify R
3 with its dual R3� and

denote components just by covariant indices—in this way, we refer essentially to a
flat metric. The choice is simply for notational convenience. There will be, in fact,
some powers of the coordinates, so that we find it convenient to write, e.g., x2i instead
of .xi/2.
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Exercise 21. Consider a prism obtained by translating a compact open subset˝ of
a plane in E3 along an interval .0; l/ of an axis orthogonal to the plane containing˝
and crossing it at the barycenter. The boundary of the prism closure is @˝ � Œ0; l�[
˝ � f0g [ ˝ � flg. Assume that the prism is rather slender, that is, diam˝ � l.
Take an orthogonal frame of reference fO; x1; x2; x3g with origin at the barycenter
of the set ˝ � f0g, the x3-axis coinciding with the prism axis itself, and x1 and x2
corresponding to ˝. Consider a displacement field having in the frame selected the
following components:

u1 D ��ax1x2;

u2 D �a

�
x23
2
� � x21 � x22

2

�

;

u3 D ax2x3;

where � and a are positive constants. Find the components of " and interpret their
physical meaning.

Exercise 22. For the body described in the previous exercise, consider a displace-
ment field having in the frame selected the following components:

u1 D �#x2x3;
u2 D #x1x3;
u3 D w .x1; x2/ ;

where # is a positive constant and w.x1; x2/ a differentiable function. Find " and
interpret the physical meaning of the deformation produced.

Exercise 23. For the body considered in the two previous exercises, consider a
displacement field having the following components in the frame selected:

u1 D c1 .��x1x2x3/ ;

u2 D c1

 

� l3

3
C x3l2

2
� x33
6
� �x3

�

x22 � x21
�

2

!

;

u3 D c1

�

' .x1; x2/ � l2 � x23
2

x2 � 2C �
6

x32 C
�x21x2
2

�

;

where c1 and � are positive constants, and '.x1; x2/ is a differentiable function. Find
" and interpret the physical meaning of the deformation produced.

Exercise 24. Along the prism considered above assign a field x 7�! ".x/ with

	

"ij



.x1; x2; x3/ D
0

@

0 0 "13
0 0 "23
"13 "23 0

1

A ;
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where "13 D 1

2

�
@w

@x1
� #x2 C ax33x1

�

, "23 D 1

2

�
@w

@x2
C #x1 C Nax33x2

�

, w.�/ is a

smooth function of x1 and x2, # > 0, a and Na are constants. Find values of a and Na
ensuring that the strain field x 7�! ".x/ is compatible.

Suggestion. Calculate the second derivative of " and determine a and Na satisfying
"ij;hk C "hk;ij D "ik;hj C "hj;ik.

Exercise 25. In three-dimensional space, consider a point x0, a vector c 2 R
3 with

unit length, and a displacement field

u WD Qu.x/ D .� � 1/ .c � .x � x0// c;

where � > 0 (consider a flat metric). Find the finite-strain change in volume around
the point x0 and the small-strain change.

Suggestion. Since we have considered a flat metric, we have identified c with it dual
counterpart c[. Consider then that det F D det.DuC I/. The rest is a matter of direct
calculation.

Exercise 26. In three-dimensional space and fixing an orthogonal frame of refer-
ence, consider a deformation given by

y1.x/ D kx1 � Nkx2 � 1;
y2.x/ D kx1 C Nkx2;
y3.x/ D 2x3;

with k, Nk > 0, x D .x1; x2; x3/. Find F, C, R, U, where the last two second-rank
tensors are the factors of the left polar decomposition of F.

Suggestion. An algorithm to calculate R and U goes as follows:

1. Construct C and evaluate its eigenvalues �i and the associated eigenvectors
(called also proper vectors) Q�i.

2. Collect the square roots of eigenvalues in a diagonal matrix � WD diag
�p
�i
�

.
Denote by T the matrix having as columns the eigenvectors Q�i, namely T D . Q�i/.
By the definition of eigenvalues, we have � D T QCTT. Also, since QC D UTU D
U2, we have U D T�

1
2 TT.

3. R follows from the polar decomposition: R D FU�1.

The eigenvalues of C are called principal stretches, while the eigenvectors are
called principal stretch directions. In three dimensions, the principal stretches are
solutions of the algebraic equation

�3 � I1�
2 C I2� � I3 D 0;

where I1, I2, and I3 are the principal invariants of C, and B D FFT. They are
given by
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I1 D tr C D trB;

I2 D 1

2

�

.tr C/2 � tr C2
�

D 1

2

�

.trB/2 � trB2
�

;

I3 D det C D detB:

Exercise 27. Consider a deformation involving only a simple shear:

y1.x/ D x1;
y2.x/ D x2 C kx1;
y3.x/ D x3;

with k > 0. Find the principal stretches.

Exercise 28. Consider the cylinder represented in Figure 1.33 with the reference
frame fO; x1; x2; x3g. Its radius is r, the height r=

p
2. Consider a displacement field

with components

u1 D kx23x2;
u2 D �kx23x1;
u3 D kx33;

where k is a positive constant. Check that the resulting deformation is orientation-
preserving and evaluate k so that the elongation of the segment OA (point A has
coordinates .r=

p
2; r=
p
2; r=
p
2// is equal to 0:02l0 in the small-strain regime, with

l0 D r
p
3=
p
2 the initial length of OA.

Remarks and solution. From y D uC x, we get

y1 D kx23x2 C x1;
y2 D �kx23x1 C x2;
y3 D kx33 C x3:

As a consequence, F has components listed in the following matrix:

0

@

1 kx23 2kx3x2
�kx23 1 �2kx3x1
0 0 1C 3kx23

1

A ;

and

det F D 1C 3kx23 C k2x43 C 3k3x63
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Fig. 1.33 Cylinder
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is positive at all points of the cylinder, and the deformation is orientation-preserving.
Find ". With n unit vector orienting the segment OA from O to A, the variation in
length ıl at a generic point of OA along n defined by n1 D n2 D n3 D 1=

p
3 is

ıl D "ijninj D k.2x2x3 � 2x1x3 C 3x23/

3
:

By parameterizing the segment OA by x1 D s; x2 D s; x3 D s; s 2
h

0; r=
p
2
i

, we

have

ılOA D
p
3

Z r=
p
2

0

k.2x2x3 � 2x1x3 C 3x23/

3
ds D k

p
3

6
p
2

r3:

Finally, the data prescribe

ılOA D 0:02l0;

so that we must have

k D 12

100r2
:
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Fig. 1.34 Parallelepiped
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Exercise 29. Consider the body in Figure 1.34, with the reference frame
fO; x1; x2; x3g. Take a displacement field having the following components:

u1 D 1

103

�
3x31
l2
C 2x21

l

�

;

u2 D 1

103

�
2x22

l

�

;

u3 D 1

103
.3x3/ :

Calculate the volume variation ıV in the small-strain regime.

Remarks and solution. We see that

ıV D tr " D @u1
@x1
C @u2
@x2
C @u3
@x3
D 1

103

�
9x21
l2
C 4x1

l
C 4x2

l
C 3

�

:

By integrating over the parallelepiped, we get

ıV D 1

103

Z 2l

0

Z l

0

Z l

0

�
9x21
l2
C 4x1

l
C 4x2

l
C 3

�

dx1dx2dx3 D 21

500
l3:

The body increases its volume.
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Exercise 30. Consider the cube of side l, represented in Figure 1.35, and the refer-
ence frame fO; x1; x2; x3g. Take a displacement field with the following components:

u1 D 3

400l
.x21 � 2x22 C x23/;

u2 D 3

400l
.2x21 � x22 � 3x23/;

u3 D 3

400l
.2x22 C 2x23/:

Find the variation in area of the lateral surface of the cube.

Remarks and solution. In the small-strain regime, the specific changes of area
parallel to the cube faces are

ıA23 D
�
@u2
@x2
C @u3
@x3

�

; ıA13 D
�
@u1
@x1
C @u3
@x3

�

; ıA12 D
�
@u1
@x1
C @u2
@x2

�

:

Considering the cube faces 1 to 6, we have

ıA1 D
3

400l
.�2x2 C 4x3/;

ıA2 D
3

400l
.�2x2 C 4x3/;

ıA3 D
3

400l
.2x1 C 4x3/;

ıA4 D
3

400l
.2x1 C 4x3/;

ıA5 D
3

400l
.2x1 � 2x2/;

ıA6 D
3

400l
.2x1 � 2x2/;

so that

ıAlat D 3

200l

�Z l

0

Z l

0

.4x3 � 2x2/ dx2dx3 C
Z l

0

Z l

0

.2x1 C 4x3/ dx1dx3

C
Z l

0

Z l

0

.2x1 � 2x2/ dx1dx2

�

D 3

50
l2;

a positive value: the body increases its lateral surface area in the deformation.
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Fig. 1.35 Cube
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Exercise 31. Consider the cube represented in Figure 1.36, and the reference frame
fO; x1; x2; x3g. Take a displacement field having in the frame selected the following
components:

u1 D 1

103l
.3x21 C x22 � x1x3/;

u2 D 1

103l
.�x22 C x1x2 C x23/;

u3 D 1

103l
.2x23 C x1x3 � 3x22/:

In the small-strain regime, find the point at which the local relative change in volume
ıV is maximum.

Remarks and solution. In the small-strain regime, the volume variation is given by

ıV D tr " D 1

103l
.8x1 � 2x2 C 3x3/ :

Its maximum occurs at Pm � .l; 0; l/, where ımax
V D 11

103
.

Exercise 32. At a point of a body and with reference to a local and orthogonal
frame fO; x1; x2; x3g, the components of the small-strain tensor are constant and
given by

	

"ij

 D 10�3

0

@

2 1 0

1 1 3

0 3 2

1

A :

Find the ratio between the elongation in direction n and that along m if
n1 D 1=

p
2; n2 D 1=

p
2; n3 D 0 and m1 D 0;m2 D 1=

p
2;m3 D 1=

p
2.
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Fig. 1.36 Cube
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Remarks and solution. The variation in length at a generic point along n is

ıln D "ijninj D 1

103

�
1p
2

1p
2

0

�
0

@

2 1 0

1 1 3

0 3 2

1

A

0

B
B
B
B
@

1p
2
1p
2
0

1

C
C
C
C
A

D 5

2

1

103
;

while along m, it is

ılm D "ijmimj D 1

103

�

0
1p
2

1p
2

�
0

@

2 1 0

1 1 3

0 3 2

1

A

0

B
B
B
B
@

0
1p
2
1p
2

1

C
C
C
C
A

D 9

2

1

103
:

Their ratio is then
5

9
.

Exercise 33. Consider the cube with side l and a reference frame fO; x1; x2; x3g as
in Figure 1.37. Take a displacement field having the following components:

u1 D kx23x2;
u2 D �kx23x1;
u3 D kx33;
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Fig. 1.37 Cube

x 1

l

l

l

x 2

x 3

A

O

with k a positive constant. Find the components of " and E. Calculate the length,
angle, area, and volume variations at A along the coordinate axes and planes in

the two cases and compare the volume variation ıVcube in the cases k D 1

10l2
and

k D 1

100l2
.

Remarks and solution. The deformation gradient F has components (see
Exercise 28)

0

@

1 kx23 2kx3x2
�kx23 1 �2kx3x1
0 0 1C 3kx23

1

A ;

and

det F D 1C 3kx23 C k2x43 C 3k3x63

is positive at all points of the cube, so that the deformation is orientation-preserving.
As regards the components of the small-strain tensor, we get

	

"ij

 D k

0

@

0 0 x2x3
0 0 �x1x3

x2x3 �x1x3 3x23

1

A :

At A with coordinates .l; l; l/, " becomes
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"ij



.A/ D k

0

@

0 0 l2

0 0 �l2

l2 �l2 3l2

1

A :

Hence, at A, the variations of length ıli and angles �ij, i ¤ j, in the axis directions,
and areas ıAij on the coordinate planes and the volume variation ıV are given by

ıl1 D 0; ıl2 D 0; ıl3 D 3kl2;

�12 D 0; �13 D 2kl2; �23 D �2kl2;

ıA12 D 0; ıA13 D 3kl2; ıA23 D 3kl2;

ıV D 3kl2:

Finally, the variation of volume of the cube is

ıVcube D
Z l

0

Z l

0

Z l

0

�

3kx23
�

dx1dx2dx3 D kl5:

Let us consider finite strain. In terms of the displacement, we have

EAB D 1

2
.uA;B C uB;A C uK;AuK;B/;

which is, in the case treated here,

ŒEAB�

D

0

B
B
B
B
B
@

k2x43
2

0 kx2x3 C k2x1x33

0
k2x43
2

�kx1x3 C k2x2x33

kx2x3 C k2x1x33 �kx1x3 C k2x2x33
kx23.6C 9kx23/

2
C 2k2x23.x

2
1 C x22/

1

C
C
C
C
C
A

;

so that at A,

ŒEAB� .A/ D

0

B
B
B
B
B
@

k2l4

2
0 kl2 C k2l4

0
k2l4

2
�kl2 C k2l4

kl2 C k2l4 �kl2 C k2l4 3kl2 C 17

2
k2l4

1

C
C
C
C
C
A

:
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The variations in length of a segment of unit length in the direction of the coordinate
axes are given by

ıl1 D
p

1C k2l4 � 1; ıl2 D
p

1C k2l4 � 1; ıl3 D
p

1C 6kl2 C 17k2l4 � 1:

The angle variations of the coordinate axes are

�12 D 0;

�13 D arcsin

0

@
2.kl2 C k2l4/

�p
1C k2l4

� �p
1C 6kl2 C 17k2l4

�

1

A ;

�23 D arcsin

0

@
2.�kl2 C k2l4/

�p
1C k2l4

� �p
1C 6kl2 C 17k2l4

�

1

A :

The area variations on the coordinate planes are given by

ıA12 D k2l4;

ıA13 D
p

.1C k2l4/.1C 6kl2 C 17k2l4/ � 4.kl2 C k2l4/2 � 1;
ıA23 D

p

.1C k2l4/.1C 6kl2 C 17k2l4/ � 4.�kl2 C k2l4/2 � 1:

The volume variation in a neighborhood of a point is ıV D 3kx23 C k2x43 C 3k3x63
(at A it is ıV D 3kl2 C k2l4 C 3k3l6). The total volume variation ıVcube is then

ıVcube D
Z l

0

Z l

0

Z l

0

�

3kx23 C k2x43 C 3k3x63
�

dx1dx2dx3 D kl5 C k2l7

5
C 3k3l9

7
:

Let us assume that k D 1

10l2
and k D 1

100l2
. In the small-strain regime, we get

ıVcube D l3

10
D 0:1l3; ıVcube D l3

100
D 0:01l3;

while when the strain is finite, we have

ıVcube D 717

7000
l3 	 0:1024l3; ıVcube D 70143

7 � 106 l3 	 0:01002l3:



1.20 Further exercises 65

1.20 Further exercises

Exercise 34. Analyze the kinematics of the rigid body in Figure 1.38 and draw the
diagrams of the displacements.

Some elements of the solution: The body is kinematically indeterminate .Ol D 1/,
x1C D a, x2C D a, C D center of rotation.

Exercise 35. Analyze the kinematics of the structure of three rigid bodies in
Figure 1.39 and draw the diagrams of the displacements.

Some elements of the solution: The structure is geometrically indeterminate
.Ol D 1/; the three bodies behave as a single rigid body rotating around the point
C, which is the intersection of the straight lines passing through A and D with
directions parallel to the axes of the pendulums.

Exercise 36. Analyze the kinematics of the structure in Figure 1.40 and draw the
diagrams of the displacements.

Some elements of the solution: The structure is geometrically indeterminate
.Ol D 1/; the body III does not displace; the body II translates horizontally; the
body I rotates around to hinge at A.

Exercise 37. Analyze the kinematics of the structure in Figure 1.41 and draw the
diagrams of the displacements.

Some elements of the solution: The structure is geometrically indeterminate
.Ol D 1/; the two bodies translate vertically as a single rigid body.

Exercise 38. Analyze the kinematics of the structure in Figure 1.42 and draw the
diagrams of the displacements.

Fig. 1.38 Kinematically
indeterminate
one-dimensional rigid body
in the plane

aa

45o 45o

B x 1

x 2

O DA

Fig. 1.39 Kinematically
indeterminate planar system
of three one-dimensional
rigid bodies

l1 l2

l3

l4

B

D
C

A
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Fig. 1.40 Kinematically
indeterminate planar system

a

B C

A D

a

I

II

III

Fig. 1.41 Kinematically
indeterminate planar structure

C

a

A B

a

Fig. 1.42 Kinematically
indeterminate planar structure C

a

A
B

I II

a

Some elements of the solution: The structure is geometrically indeterminate
.Ol D 1/; the body I rotates around the hinge at A; the body II rotates around
the hinge at C with the same angle magnitude as that for body I but of opposite
sign.

Exercise 39. Analyze the kinematics of the planar structure consisting of four one-
dimensional rigid bodies as shown in Figure 1.43 and draw the diagrams of the
displacements.

Some elements of the solution: The structure is geometrically indeterminate and
admits two types of possible mechanisms .Ol D 2/. In the first possible kinematics,
the body I does not displace, while II; III, and IV translate horizontally as a single
rigid body. In the second mechanism, the bodies III and IV do not displace, while I
rotates around the point A, and II rotates through the same angle around the point B.
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I

II

III IV

aa

a

a

A

B

Fig. 1.43 Kinematically indeterminate planar structure consisting of four one-dimensional rigid
bodies



Chapter 2
Observers

2.1 A Definition

An observer is a representation of (that is, the assignment of reference frames to)
all geometric environments necessary to describe the morphology of a body and its
motion.

This definition extends the standard one, which foresees the assignment of
reference frames just in the ambient physical space. It is worth recalling, however,
that in traditional treatments, there is no distinction between the space including
the reference place and the one in which we evaluate the body shapes considered
deformed. We accept, in contrast, such a distinction here for reasons, which will
become evident in this chapter, related to changes in observers, and for other
technical reasons appearing in the evaluation of minimizers in nonlinear elasticity
and related to energy variations about them—a topic going, however, rather far from
the introductory character of this book.

The word “all” in the definition suggests a way of considering observers in
refined descriptions of the morphology of bodies aiming to represent the finer
architecture of the matter in the aspects that appear (or that we believe are)
sometimes crucial in the phenomena under consideration. In these cases, another
space enters the scene: the one in which we select appropriate additional descriptors
of the material morphology at various spatial scales. We do not go into details here.
A special case of what we have just mentioned is, however, developed with a number
of details in Chapter 8: it is the construction of the so-called direct models of beams
or rods. We remark that it is a special case because the general setting includes in
a unified view the available models of materials with prominent microstructural
effects on the gross behavior such as ferroelectrics, quasicrystals, microcracked
bodies, and polymeric materials. However, for the moment and to maintain the
introductory character of this book, we focus attention on only the ambient physical
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space, the one including the reference place, and the time interval for the description
of the body morphology adopted so far is based solely on the recognition of the
regions in the three-dimensional point space that bodies may occupy.

2.2 Classes of Changes in Observers

When we alter in some specific way frames (i.e., coordinate systems) in the spaces
where we describe the body morphology and its evolution in time, we are defining
classes of changes in observers. We have many options. However, since the space
where we place current shapes of bodies is the Euclidean one, it is natural to think
of changes in observers determined by time-parameterized families of isometries,
in particular those maintaining the orientation of frames. Translations and rotations
can be, in fact, defined in the three-dimensional point space adopted so far, since
they can be assigned together in the n-dimensional case with n > 1, because the
one-dimensional space admits only translations.

In speaking of changes in observers, it is commonly required that all observers
be able to evaluate the same reference place. Such a requirement forces us to
distinguish between the space containing the reference place and the one in which
we include the body shapes considered deformed. In fact, if reference and deformed
shapes were to be described in the same space, since a change in observer alters
frames in the whole space, two observers, i.e., two different frames, would in general
evaluate different reference places. Such a circumstance would be in contrast to
the standard requirement of an invariant reference place, at least in the absence of
material irreversible mutations, a case not treated here.

According to traditional instances, we define classical changes in observers to
be those changes

1. that leave invariant the reference place (then the reference space),
2. that are synchronous,
3. that alter by means of translations and rotations the (physical) space in which we

record motions.

Let O and O0 be two observers, i.e., two classes of frames. At time t, the observer
O records an actual place y for a certain material element, which is in a place y0 for
the observer O0. If O and O0 are connected in time by classical changes as defined
above, then y and y0 satisfy the relation

y0 D w.t/C Q.t/.y � y0/; (2.1)

involving the values of smooth functions t 7�! w.t/ 2 QE3 and t 7�! Q.t/ 2 SO.3/,
and an arbitrary fixed point y0. By differentiation, we get

Py0 D PwC PQ.y � y0/C QPy: (2.2)
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The vector Py0 can be pulled back from O0 to O by means of the inverse of Q,
namely QT, and the projection into O is indicated here by Py� and given by

Py� D QT Py0: (2.3)

To accept such a relation, consider two points y1 and y2, as evaluated by O, and
their counterparts y0

1 and y0
2 in O0 given by (2.1). Their differences y0

1�y0
2 and y1�y2

are elements of the translation space V over QE3. V is an affine vector space, which
reduces to R3 once the origin of a coordinate system is fixed. The vectors y0

1 � y0
2

and y1 � y2 are connected by the relation

y0
1 � y0

2 D Q.y1 � y2/;

which follows from (2.1) by direct calculation. The result justifies immediately the
relation (2.3).

For Py�, we get

Py� D c.t/C q.t/ � .y � y0/C Py; (2.4)

where c.t/ and q.t/ belong to QR3. In fact, by premultiplication by QT, from (2.3) we
get first

Py� D QT Py0 D QT PwC QT PQ.y � y0/C Py:

Since by definition QTQ D OI, with OI the second-rank identity tensor OI D ıi
j Qei � Qej,

by time differentiation we obtain

PQTQC QT PQ D 0;

or better,

QT PQ D �.QT PQ/T;

a relation declaring that the second-rank tensor QT PQ, with components Qi
k
PQk

j , is

skew-symmetric, so that for every vector a 2 QR3, there exists a vector q 2 QR3 such
that .QT PQ/a D q � a. In the common geometric jargon, q is called the axial vector
of QT PQ.

Since Py.x; t/ is equal to v.y; t/—the equivalence between Lagrangian and
Eulerian representations of the velocity, Py and v respectively, was discussed in the
previous chapter—we can substitute Py� with v� and Py with v in (2.4), obtaining its
equivalent relation in the Eulerian representation:

v� D c.t/C q.t/ � .y � y0/C v: (2.5)
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The vectors c and q represent the translational .c/ and rotational .q/ velocities at
which O realizes that O0 is flowing away.

In summary, we affirm that the classical changes in observers just defined are
changes of frames (then of coordinates) in the ambient space QE3 determined by the
action of the Eulerian group.1

2.3 Objectivity

Consider a linear map G from QR3 to QR3, namely G 2 Hom. QR3; QR3/. Take a vector
v 2 QR3 and its image Gv, a vector with components Gi

jv
j. Under classical changes

in observers, the vector v becomes v0 D Qv according to (2.3). Define G0 as the
element of Hom. QR3; QR3/ such that

Q.Gv/ D G0.Qv/:

By premultiplication by QT D Q�1, we get

G0 D QGQT; (2.6)

thanks to the arbitrariness of v. In components, the previous expression can be
written as

G0h
k D Qh

i Gi
j.Q

T/
j
k;

where the indices i; j refer to the coordinates before the change in observer, while
h; k denote coordinates thereafter. By acting from the left, Q 2 SO.3/ projects
the vectorial component of G, the one indicated by the contravariant index of G,
in the frame of the second observer. The action of QT from the right in (2.6)
projects the covariant component of G into the frame defining the second observer.
The procedure can be extended to tensors of arbitrary rank .p; q/ over the ambient
space. Let NG be such a tensor with components NGi1:::ip

j1:::jq
. Under classical changes in

observers, NG becomes NG0 and has components

NG0h1:::hp

k1:::kq
D Qh1

i1
: : :Q

hp

ip
NGi1:::ip

j1:::jq
.QT/

j1
k1
: : : .QT/

jq
kq
: (2.7)

All tensors altered by isometric changes in observers in accord with (2.7) are
called objective.

1Such a group is denoted by QR3 � SO.3/, since it is the semidirect product of QR3 and the special
orthogonal group SO.3/.
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– The relations (2.2) and (2.5) tell us that the velocity in both Lagrangian and
Euleria representations, is not objective.

– By deriving (2.2) in time, we also get that the acceleration Ry.x; t/ in Lagrangian
representation is not objective, because with Ry0 the acceleration evaluated by the
second observer, we have

Ry0 D RwC RQ.y � y0/C 2 PQPyC QRy:

– An analogous result holds for the acceleration in Eulerian representation.
The deformation gradient F is not objective. Here F has components Fi

A. The con-
travariant index i refers to coordinates in the ambient (physical) space QE3. The
covariant index A is associated with coordinates in the reference space, which
remains unchanged by classical changes in observers in QE3. Then with F0 the
deformation gradient evaluated by the second observer, we get

F0 D QF:

2.4 Remarks and Generalizations

We shall assume objectivity for some elements of the framework for the mechanics
of continua presented here—in fact the standard one—with consequences far from
being merely technical.

We record (apprehend) physical events through the intermediary of a framing.
In the setting discussed here, we can distinguish between place and time, a
distinction that we do not have naturally at our disposal in a general relativistic
setting. Also, we exclude here influence of the observation on the phenomena, which
we include, in contrast, in quantum mechanics. In the present classical setting,
a phenomenon is independent of the assignment of frames (a meter, a clock, let
us say) although different framings (different observers) may in general propose
different descriptions of it. The question then arises how to relate statements made
by different observers.

When we require objectivity of some entity (scalar, vector, tensor of any rank
greater than one), we are prescribing a type of relation between evaluations of
such an entity by two different observers related by a sequence of rotations and
translations.

However, objectivity, defined in the standard sense presented here, is not the
sole option for the class of changes in observers discussed so far. It is just one of
the possibilities, indeed a natural one, once we have selected Euclidean space as
the ambient one. A list of other possible classes of changes in observers follows.

– We could imagine considering not only changes of frames based on rotations and
translations in the ambient space but also in the reference space. Such a class
of changes in observers is appropriate when we want to describe the mechanics
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of solids undergoing structural macroscopic irreversible mutations such as the
creation and growth of voids and/or cracks, and the growth of inclusions or
their movement with respect to the rest of the body. In such cases, in fact,
the actual shape is no longer in one-to-one correspondence with the reference
place; rather, it can be connected with another reference place differing from
the original one by only the “defect” pattern. In this case, we have naturally a
family of reference places, and we can use a vector field x 7�! w.x/ 2 R

3 over
B to describe the incoming change of reference place, due to the occurrence of
defects, so that we may assume that x 7�! w.x/ is not always associated with
a diffeomorphism, at least in a neighborhood of x.2 Hence in principle, changes
in observers may involve different evaluations of the vector field w. Changes in
observers determined by the action of the Euclidean group even on the reference
space—a class of changes enlarged with respect to what we have treated so far—
would impose a rule of the type

w� D wC NcC Nq � .x � x0/;

where Nc and Nq are different from the translational and rotational velocities c and
q, respectively, in the ambient space. Also, the same concept of objectivity could
be enlarged to include changes of frames in the reference space.

– It is not strictly necessary that changes in observers be isometric, like the classical
ones. By leaving invariant the reference space, we could alter frames in the
ambient space by means of time-parameterized families of diffeomorphisms.
Then, instead of (2.4), we would have

Py� D PyC Qv; (2.8)

with Qv a superposed velocity field over the current place. When Qv D c.t/Cq.t/�
.y � y0/, the equation (2.8) reduces to (2.4). A generalization of such a class of
changes in observers involves the action of the group of diffeomorphisms over
the reference space.

We do not explore in detail the possible consequences of selecting one of these
changes in observers and requiring the invariance of some appropriate functional.

However, if we were to explore these possibilities, we would understand in what
sense the choice of a class of changes in observers can be considered a structural
ingredient of a mechanical model, not a rule independent of the model itself.

2A map f W R
3 �! R

3 is a diffeomorphism when it is one-to-one and both f and f �1 are
differentiable.



Chapter 3
Forces, Torques, Balances

3.1 A Preamble on the Notion of Force

In beginning the third chapter of his 1977 book A First Course in Continuum
Mechanics, Clifford Ambrose Truesdell III (1919–2000) wrote the following:

Forces and torques, like bodies, motion and masses are primitive elements of mechanics.
They are mathematical quantities introduced a priori, represented by symbols, and subjected
to mathematical axioms that delimit their properties and render them clear and useful for the
description of mechanical phenomena in nature.

That point of view has been successfully pursued by the Truesdellian school.
In the production of that school we find results that allow us to consider mass
and balances of forces and torques (call them also couples) as results emerging
from invariance properties imposed on the power they exert, as external entities
with respect to the body, or some energetic principle. Such invariance requirements
are considered primitive concepts. These results fall within the basic program of
analysis of the foundations in continuum mechanics, based on the search for first
principles allowing reduction of axioms. The program is motivated not only by
aesthetic considerations, but also and primarily by the essential desire to have at
one’s disposal tools that can be safely managed when we want to enlarge the
traditional scheme of continuum mechanics to tackle the description of macroscopic
effects of complex microstructural phenomena. In any case, regardless of the setting
in which we want to address our analyses, we face the problem of describing the
fact that bodies interact with the environment and that their constituents display
analogous behavior toward each other to maintain the integrity of the body itself or
to break it up.

Here, our attention is focused on the mechanics of tangible bodies. We leave
a part the description of corpuscular phenomena at atomic scale, which can be
adequately described by concepts and methods pertaining to quantum theories,
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or we consider just indirectly the effects of such phenomena on the macroscopic
deformative behavior. The mechanisms we are discussing are classical in this sense.

Within the realm of Newtonian mechanics, consider a point with constant mass
m in three-dimensional space. What we call force on the point is, in fact, a model of
a circumstance that alters the motion of that mass point, evaluated by some observer.
Moreover, to alter that motion, we have to exert power.

The first descriptor of the action over the mass point considered is kinematic:
the velocity. Then we have two options: the first is to assume that force is a primitive
concept, indicating it by the common arrow, or to consider power to be primitive,
taking it as a linear functional of the velocity. The two options have been accepted
and pursued successfully. We follow the second one, finding it more flexible when
we want to extend the setting treated here to more intricate situations involving,
e.g., material microstructures—a matter not tackled here but falling within a general
model-building framework including the special case discussed in Chapter 8.

When we write P.v/ for the power over the mass point considered (v is the
velocity), the assumed linearity with respect to v implies

P.v/ D f 
 � v
with f 
 a covector, an element of the vector space dual to the one including v.
However, since v 2 R

3, f 
 belongs to R
3�, which is isomorphic to R

3. Such a
choice defines the force f 
 through the power and justifies automatically its usual
representation in vector form.

Since P.v/ is a scalar, we find it natural to assume that it is invariant under
changes in observers altering v according to

v� D v C cC q � .y � y0/;

with y the current place of the mass point, c and q the translational and rotational
velocities, respectively, defining the relative rigid motion between the observers
considered (see the previous chapter). Invariance of P.v/ means that we impose
the identity

P.v/ D P.v�/

for every choice of c and q. That requirement implies

P.cC q � .y � y0// D 0;

that is,

f 
 � .cC q � .y � y0// D f 
 � cC ..y � y0/ � f 
/ � q D 0:

The arbitrariness of c and q imposes the identities

f 
 D 0
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and

.y � y0/ � f 
 D 0:

They are Newton’s laws requiring that the total force f 
 and the total torque
.y � y0/ � f 
 acting over the mass point be balanced.

Let us define now the quadratic form

1

2
m jvj2 D 1

2
m hv; vi D 1

2
mQgv � v;

with g the metric in space, and assume that v is a differentiable function of time.
It is the kinetic energy of the mass point considered.

Assume that f 
 is the sum of inertial, f in, and noninertial, f , components, with
f in a force such that its power is equal to the negative of the kinetic energy time rate,
namely

d

dt

�
1

2
mQgv � v

�

C f in � v D 0

for every choice of v.
Since neither m nor g depends on time, we obtain

�

mQgdv

dt
C f in

�

� v D 0;

and the arbitrariness of v implies

f in D �mQgdv

dt
;

so that Newton’s law f 
 D f inC f D 0 acquires its common differential form written
first by Euler, namely

f D mQgdv

dt
;

that is,

f D m
dv

dt

when the metric in space is flat, i.e., when Qg is the second-rank identity tensor with
both covariant components. However, we are analyzing bodies extended in space,
not a single mass point or a finite number of copies of it. The problem then is
to extend the previous reasoning to the analysis of continuous bodies extended in
space.
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3.2 Bulk and Contact Actions

To start, we find it expedient to render precise in what sense we consider portions of
a body extended in space. We say that a part of a body is any portion of it occupying
in the reference place B a subset b with nonvanishing volume measure, an open set
coinciding with the interior of its closure and endowed with a surface-like boundary
oriented by the normal at all points but a finite number of corners and edges. We can
consider parts of the body in the actual shape Ba. The previous definition still holds,
and we shall indicate by ba parts taken in Ba.

When we imagine extracting a part ba of1 Ba and to look at it only, its interactions
with the surrounding medium are commonly subdivided into bulk and contact
classes.

The first class includes the interactions between the interior of ba and the set of
the other separate parts of Ba and the rest of the environment in which the body is
placed (in fact a universe of bodies). Contact actions are those exerted between ba

and the other separate parts of Ba and the rest of the environment that share with Ba

at least part of the boundary @ba.
The question is now the representation of such actions. A remark addressing

a reasonable choice is that we have represented the morphology of the body only
by means of the region in the Euclidean point space that it occupies, without any
further description or specification of the material structure. In other words, in our
modeling view, ba is occupied by an uncountable number of material points. The
rate of change in the shape is described by the velocity field, which is in fact a
vector field. We could then imagine reproducing for all points in ba what we have
done for a single material point isolated in space. In other words, for every point, we
consider a velocity (a vector) and a force (consequently a covector) exerting power
over it.

To formalize such a view, we insist that the power be a functional depending on
parts and velocity fields that is linear with respect to the velocity and additive with
respect to disjoint parts. The difference between this and what we have discussed for
the single material point in the previous section rests on the presence of parts, which
is necessary if the body is extended in space. In principle, we can define different
powers. Here, we prefer on the one hand to be minimalist—meaning that we want
to include the smallest number of ingredients—while on the other hand, we have to
account for both bulk and contact actions as described qualitatively above.

We define then the external power Pext
ba
.v/ exerted over ba in the velocity field

v, i.e., the power exerted by all agencies external to ba, by

Pext
ba
.v/ WD

Z

ba

b
a � v d�C
Z

@ba

t � v dH2;

1When we speak of “part b of B” or “part ba of Ba,” we mean “part of the body occupying the
subset b in B,” with the same interpretation for ba.
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where d� is the volume measure and dH2 is the area measure, generically indicated
this way throughout the book, leaving to the domain of integration the specification
of the space in which they are considered. Here b
a is a covector field over ba, so that
the product b
a � v is naturally defined without specifying a scalar product structure.
Once one such a product has been defined, essentially by the assignment of a metric
in space, b
a can be identified with a vector at every point when it is premultiplied by
the metric. Analogous remarks hold also for t, defined uniquely at almost all points
of @ba.

Since Pext
ba
.v/ is a scalar, we find it natural to accept the following axiom:

Axiom 1 (Power invariance). The external power Pext
ba
.v/ is invariant under clas-

sical (isometry-based) changes in observers.

Formally, the axiom can be expressed as follows:

Pext
ba
.v/ D Pext

ba
.v�/;

for every part ba and all velocities c and q appearing in (2.5). Since v� D v C vR,
with vR D cC q � .y � y0/, the axiom implies

Pext
ba
.vR/ D 0;

which is
Z

ba

b
a � .cC q � .y � y0//d�C
Z

@ba

t � .cC q � .y � y0//dH2 D 0:

Since c and q are constant in space, the previous identity becomes

c �
�Z

ba

b
ad�C
Z

@ba

t dH2

�

C q �
�Z

ba

.y � y0/ � b
ad�C
Z

@ba

.y � y0/ � t dH2

�

D 0:

The arbitrariness of c and q implies

Z

ba

b
ad�C
Z

@ba

t dH2 D 0; (3.1)

Z

ba

.y � y0/ � b
ad�C
Z

@ba

.y � y0/ � t dH2 D 0 (3.2)

independently. These two equations are the integral balances of forces and couples
in Eulerian representation, because the fields involved are defined over the current
shape Ba of the body.
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1. The integral balances of forces and couples can both be derived from a unique
source: the invariance of the external power of actions over a generic part ba of
Ba under classical (isometry-based) changes in observers. It is not necessary to
postulate them a priori as two independent axioms.

2. If @ba is partially in common with the external boundary @Ba, over @ba\@Ba the
density t has to be understood as that of the external forces applied to the body
boundary.

3. Contact actions described by t do not include couples. In other words, we assume
that no actions along the boundary @ba develop power in curl v. The assumption
is Augustin-Louis Cauchy’s (1979-1857). Imagine that we divide the body in
Ba virtually into two distinct pieces by an orientable (smooth) surface ˙ . The
adjective orientable indicates that the normal is uniquely defined over the cut
point by point. Denote by A the intersection of ˙ with Ba, i.e., A D ˙ \ Ba.
The action of the atomic bonds linking the two portions of the body across A and
ensuring coherence of the body can be summarized as a force F and a couple M.
Cauchy’s axiom prescribes that when we consider a sequence fAkg of subsets of

A, shrinking to a point y 2 A as k goes to infinity, the averages
F
jAkj and

M
jAkj ,

with jAkj the area of Ak, tend to t.y/ and 0, namely

lim
k!1

F
jAkj D t; lim

k!1
M
jAkj D 0: (3.3)

It is a common usage to call t traction. Cauchy’s assumption has in a sense its
origin in the geometric description of the body morphology. We have, in fact,
identified the body just with the region B that it occupies in three-dimensional
Euclidean point space. In this way, for us a body is just a set containing infinitely
many material points connected to one another. When we cut the body in Ba

through ˙ , we are ideally breaking at each point of ˙ \ Ba the links bridging
across ˙ pairs of material points; Figure 3.1 contains a schematic picture. Such
links can carry, in principle, forces and couples. Material elements are, in fact,
just points, and their instantaneous changes of place are described by the velocity,
a vector field. When we break (ideally, we repeat) the material bond at a point,

Fig. 3.1 Schematic
interpretation of Cauchy’s cut

Σ Σ
a
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the possible couple there is reduced to a force, because the two forces in the
couple are subdivided by symmetry, so one force goes to one side of the cut,
its companion to the other side. This picture justifies the choice of the second
identity in (3.3). The actions described by this scheme are of first-neighbor type.

4. When we cross y 2 Ba with another cut, say Q̇ , oriented at y by a normal different
from the one pertaining to ˙ , in principle the limit process in (3.3) will generate
a traction different from that associated with ˙ , and we can assume that

t D Qt.y; n/;

with n the normal to the cut at y. This assumption is the called Cauchy’s
postulate. It is assumed to hold at every instant along every admissible motion;
we have left implicit the dependence on time. George Karl Wilhelm Hamel
(1877–1954) and Walter Noll later proved that the same t pertains to all cuts
having at y a common normal n. Also, Roger Fosdick and Epifanio G. Virga
have shown in 1989 the independence of t on the curvature of the surface ˙ .

The bulk actions b
a depend on y in addition to the time t. Assume that

sup
y2Ba

ˇ
ˇb
a
ˇ
ˇ < C1:

The validity of the integral balance of forces implies then that there exists k > 0
such that

ˇ
ˇ
ˇ
ˇ

Z

@ba

t dH2

ˇ
ˇ
ˇ
ˇ
� k vol.ba/:

Theorem 2 (Action–reaction principle). Assume that Qt.�; n/ is continuous on Ba

(the overbar indicating closure), and b
a is bounded as above. For every unit vector
n, we have

Qt.y; n/ D �Qt.y;�n/:

Proof. Consider a square D with side length ˛ < 1(the length is, in fact, 1˛, with 1
endowed with dimension, so that ˛ is dimensionless), oriented by the normal n and
with the center at y. Take the parallelepiped given by

P˛ WD
�

Oy D Ny˙ �n j Ny 2 D;�˛
2

2
� � � ˛2

2

�

:

Call the squares given by

D˙˛ WD
�

Oy D Ny˙ �n j Ny 2 D; � D ˙˛
2

2

�

DC˛ and D�˛ .
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The boundary @P˛ is the union DC˛ [D�˛ [
�

@D �



�˛
2

2
;
˛2

2

��

. If y … @Ba,

then for appropriate choices of ˛ we can take P˛ all inside Ba. The volume of P˛ is

˛4; the areas of both DC˛ and D�˛ are ˛2; while the area of

�

@D �



�˛
2

2
;
˛2

2

��

,

the lateral boundary with respect to n, is 4˛3. Since the interior of P˛ is a part of
B˛ , the integral balance of forces (3.1) holds for it. The assumed boundedness of b
a
implies also the inequality

ˇ
ˇ
ˇ
ˇ

Z

@P˛

t dH2

ˇ
ˇ
ˇ
ˇ
� k˛4;

which is

1

˛2

ˇ
ˇ
ˇ
ˇ

Z

@P˛

t dH2

ˇ
ˇ
ˇ
ˇ
� k˛2;

and tends to

1

˛2

Z

@P˛

t dH2 D 0

as ˛ ! 0. The last identity becomes

1

˛2

Z

D
C˛

t dH2 C 1

˛2

Z

D
�˛

t dH2 C 1

˛2

Z

@D�
h

� ˛2

2 ;C ˛2

2

i t dH2 D 0:

Thanks to the assumed continuity for t with respect to y, by letting ˛ go to zero,
shrinking D to y, we see that the first integral in the previous sum tends to Qt.y; n/,
the second to Qt.y;�n/, while the third goes to zero because the integral is of order
˛3. Hence in the limit obtained by shrinking P˛ to y, the relation in the statement
of the theorem follows. �

A shorter proof can be developed, though we achieve conciseness at the cost of
greater abstraction.

Alternative Proof. Consider a plane 	 oriented by the normal n that intersects Ba

and select an arbitrary compact set D with regular boundary in the intersection of
the plane with Ba. Write C˛ for the set

C˛ WD
n

y D NyC �n j Ny 2 D;�˛
2
� � � ˛

2

o

:

For ˛ sufficiently small, we can take C˛ such that its interior is a part of Ba.
Then the integral balance of forces (3.1) holds for it. By letting ˛ go to 0, from the
inequality
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ˇ
ˇ
ˇ
ˇ

Z

@C˛
Qt.y; n/dH2

ˇ
ˇ
ˇ
ˇ
� k vol.C˛/;

determined by the boundedness of b
a, we get

lim
˛!0

Z

@C˛
Qt.y; n/dH2 D 0: (3.4)

In the limit ˛ ! 0, the two copies of D at height
˛

2
and
�˛
2

with respect to the

normal n of D both collapse onto D, and the equation (3.4) reduces to

Z

D

�Qt.y; n/ � Qt.y;�n/
�

dH2 D 0:

The arbitrariness of D implies that the integrand vanishes.

�
The previous theorem is a version of the action–reaction principle. It has a key

role in proving Cauchy’s theorem stating the linearity of Qt.y; n/ with respect to n.

Theorem 3 (Augustin-Louis Cauchy). If Qt.�; n/ is continuous, then Qt.y; �/ is
homogeneous and additive, i.e., a second-rank tensor field y 7�! �.y/ exists
and is such that

Qt.y; n/ D �.y/n.y/:

The version in components of the previous expression depends on whether
we consider the normal n as a vector or a covector. In the latter case, it is the
normalized derivative of the function defining the surface oriented at y by n, namely

n D .Df /i
jDf j Qe

i. When we transform Df into the gradient rf , we get n D .rf /i

jrf j Qei.

Hence in the first case,

ti D � j
i nj;

and �.y/ is a linear operator mapping covectors at y 2 Ba into other covectors at the
same point, and we write �.y/ 2 Hom.T�

y Ba;T�
y Ba/ for short. In the second case,

ti D �ijn
j;

and �.y/ is now a linear operator mapping vectors at y 2 Ba into covectors at the
same point, and we write �.y/ 2 Hom.TyBa;T�

y Ba/.

Proof. The proof here is the standard one by Cauchy. Consider a point y in Ba, an
orthogonal frame .e1; e2; e3/ with origin in y, and a unit vector n (with covector
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counterpart n[) at y not coinciding with any base vector ei. Take a tetrahedron T
with oblique side Q� of area a. Q�/, oriented by n; the other sides Q�i, with area a. Q�i/, are
oriented by the normals ni D � sgn.n[ � ei/ei; in this sense, these faces are mutually
orthogonal. The assumed boundedness of the bulk actions implies, as above, the
validity of the inequality

1

a. Q�/
ˇ
ˇ
ˇ
ˇ

Z

@T
t dH2

ˇ
ˇ
ˇ
ˇ
� k vol.T /

a. Q�/ (3.5)

with k the constant already mentioned above. If we let the diameter2 of T go to zero,
then the right-hand side of the inequality (3.5) goes to zero, too, and we obtain

lim
diamT !0

1

a. Q�/
Z

@T
t dH2 D 0: (3.6)

Such an integral is the sum of the integrals over the faces of the tetrahedron.
In particular, due to the continuity of Qt.�; n/, we get

lim
diamT !0

1

a. Q�/
Z

Q�
t dH2 D Qt.y; n/

and, thanks to Theorem 2,

lim
diamT !0

1

a. Q�/
Z

Q�i

t dH2 D �.n[ � ni/Qt.y; n/:

Since ni is the normal to the ith coordinate side of the tetrahedron, we compute

� .n[ � ni/ Qt.y; ni/

D sgn.n[ � ei/.n
[ � ei/ Qt.y;� sgn.n[ � ei/ei/

D � sgn.n[ � ei/.n
[ � ei/ Qt.y; sgn.n[ � ei/ei/;

but once again, Theorem 2 implies

Qt.y; sgn.n[ � ei/ei/ D sgn.n[ � ei/ Qt.y; ei/;

and we get

�.n[ � ni/ Qt.y; ni/ D �.n[ � ei/ Qt.y; ei/

2The diameter of a set A in a metric space is the maximum distance between two points taken over
all pairs of points in A.
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for .sgn.n � ei//
2 D 1. As a consequence, as diamT ! 0, equation (3.6) can be

written as

Qt.y; n/ �
3X

iD1
.n[ � ei/ Qt.y; ei/ D 0;

which is

Qt.y; n/ D
3X

iD1
.Qt.y; ei/˝ ei/n

[:

Then t is a linear function of n, the proportional factor being the second-rank tensor

�.y/ D
3X

iD1
Qt.y; ei/˝ ei: �

The tensor � defined by the previous expression has components � j
i . The first

is determined by the covector component Qti.y; ej/, the traction over the side with
normal ej. The second component is given by ej itself.

By considering a part ba and taking the normal to @ba as a covector, the integral
balances then read

Z

ba

b
ad�C
Z

@ba

�n dH2 D 0;
Z

ba

.y � y0/ � b
ad�C
Z

@ba

.y � y0/ � �n dH2 D 0:

3.3 Inertial Effects and Mass Balance

We adopt the following assumptions:

1. b
a admits additive decomposition into inertial, bin
a , and noninertial, ba, compo-

nents, namely

b
a D ba C bin
a :
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2. The inertial component satisfies the identity

d

dt
.kinetic energy of ba/C

Z

ba

bin
a � v d� D 0

for every ba and velocity v at all instants where the velocity is time differentiable.
The kinetic energy pertaining to ba with reference to the velocity v is given by

fkinetic energy bag D 1

2

Z

ba

%a hv; vi d�;

where �a WD Q�a.y; t/ is the mass density, with Q�a a continuous and differentiable
function of space y and time t such that the mass M.Ba/ of the body in the actual
configuration Ba at the instant t is given by

M.Ba/ WD
Z

Ba

Q�a.y; t/d�:

3. The mass of the body in its reference place at the instant t is given by

M.B/ WD
Z

B
Q�.x/d�:

If the body does not lose its mass, M.B/ and M.Ba/ coincide. Moreover, we have
d�.y/ D .det F/d�.x/ by a change of coordinates, namely

Z

Ba

%ad� D
Z

B
%a det Fd�:

If not only is the total mass preserved but also mass is not redistributed within the
body, meaning that no generic part loses mass to the rest of the body or acquires
mass from it, we have

M.ba/ D M.b/

when ba D Qy.b/, which is (with � WD Q�.x/
Z

ba

%ad� D
Z

b

%a det Fd� D
Z

b

% d�

and implies

% D %a det F (3.7)

thanks to the arbitrariness of b. Equation (3.7) is the local mass balance
in referential (or Lagrangian) representation. The reference mass density %



3.3 Inertial Effects and Mass Balance 87

depends only on space variables, it is, in fact, % D Q%.x/, while the actual mass
density %a depends also on time, and we have %a D Q%a.Qy.x; t/; t/. Under the
assumption that %a is differentiable with respect to its entries, the time derivative
of the local referential mass balance (3.7) can be written as

0 D P%a det F C %a
Pdet F:

Lemma 4 (Euler identity). The following relation holds:

Pdet F

det F
D div v;

where div is the divergence evaluated with respect to y, namely div v WD trDyv.

Proof. The proof is based on a direct calculation. We have, in fact,

Pdet F D @ det F

@F
� PF D .det F/F�� � DyvF

D .det F/F��F� � Dyv

D .det F/OI � Dyv D .det F/ div v;

with3 OI the second-rank, 1�contravariant, 1�covariant tensor OI D ıi
j Qei ˝ Qej. �

The Euler identity implies

P%a C %a div v D 0; (3.8)

which is the local mass balance in Eulerian representation. However, P%a D
d

dt
Q�a.Qy.x; t/; t/, that is,

P%a D Dy%a � dy

dt
C @%a

@t

ˇ
ˇ
ˇ
ˇ
y fixed

D @%a

@t

ˇ
ˇ
ˇ
ˇ
y fixed

C .Dy%a/ � v:

Hence another way to express the local balance of mass in Eulerian representation
is given by

@%a

@t
C div.%av/ D 0;

where we have left understood that the partial derivative
@%a

@t
is evaluated with y

held fixed.

3We have detF D eijkFk
1F

j
2F

i
3 so that we compute

@detF

@Fk
1

D ekijF
j
2F

i
3 D ekijF

j
2F

i
3F

r
1.F

�1/1r D

ekijF
j
2F

i
3F

k
1ı

r
k.F

�1/1r D .detF/.F�1/1k , which is
@detF

@F
D .detF/F��.
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The pointwise balance of mass helps us in evaluating the consequence of the
assumed link between the rate of the kinetic energy and the power of the inertial
action over Ba for any choice of the velocity field. In fact, by changing coordinates
from the actual to the reference place, we have

d

dt

Z

Ba

%a hv; vi d� D d

dt

Z

Ba

1

2
%a Qgv � v d� D d

dt

Z

B

1

2
%a Qgv � v det F d�;

but now the integration domain B does not depend on time, in contrast to Ba, and
we can commute time derivation with integration, obtaining, with the notation a[ WD
Qgdv

dt
for the covector associated with the acceleration a WD dv

dt
,

d

dt

Z

B

1

2
%a Qgv � v det F d�

D
Z

B

�
1

2
P%a Qgv � v det F C %aa[ � v det F C 1

2
%a Qgv � v Pdet F

�

d�

D
Z

B

�
1

2
P%a Qgv � v det F C %aa[ � v det F C 1

2
%a Qgv � v det Fdiv v

�

d�

D
Z

B

�
1

2
P%a Qgv � v det F C %aa[ � v det F � 1

2
%a Qgv � v P%a

%a
det F

�

d�

D
Z

B
%aa[ � v det F d� D

Z

Ba

%aa[ � v d�;

where we have used the identities d�.y/ D .det F/ d�.x/ and div v D P%a

%a
. As a

consequence, the assumed validity of the identity

d

dt

Z

Ba

1

2
%a hv; vi d�C

Z

Ba

bin
a � v d� D 0

for any choice of the velocity field implies

bin
a D �%aa[:

3.4 Pointwise Balances in Eulerian Representation

Assume that the map y 7�! b
a.y/ is continuous, while y 7�! �.y/ is continuously
differentiable. Gauss’s theorem for tensor fields implies

Z

@ba

�n dH2 D
Z

ba

div �d�;
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so the integral balance of forces can be written as

Z

ba

b
ad�C
Z

@ba

�n dH2 D
Z

ba

�

b
a C div �
�

d� D 0;

and the arbitrariness of ba implies the local balance of forces

b
a C div � D 0 in Ba;

or, by considering the additive decomposition of b
a and the expression of inertial
actions deduced above,

ba C div � D %aa[: (3.9)

The integral balance of couples can be written as

Z

ba

.y � y0/ � b
ad�C
Z

@ba

.y � y0/ � �n dH2 D 0:

With the previous assumptions, Gauss’s theorem implies

Z

@ba

.y � y0/ � �n dH2 D
Z

ba

div ..y � y0/ � �/ d�: (3.10)

If we write p for the difference .y � y0/, the second-rank tensor .y � y0/ � � reads
ep� , with e Ricci’s symbol. By considering, for example, the version of � with
both contravariant components (which is an assumption that is not essential for
the subsequent results, but is useful for the readability of the formula) we obtain
.ep�/ji D eiklpl� kj.

The divergence of ep� implies derivatives with respect to y. Then we get in
components

.ep�/ji ;j D eiklp
l � kj

;j C eikl pl
;j �

jk

D eiklp
l � kj

;j C eiklı
l
j�

jk D eiklp
l � kj

;j � eikl�
lk;

or more concisely,

div.ep�/ D ep div � � e�T D p � div � � e�T:

Substituting into (3.10) and introducing the result in the integral balance of couples,
we get

Z

ba

�

.y � y0/ � .b
a C div �/ � e�T
�

d� D 0:
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The validity of (3.9) and the arbitrariness of ba imply also

e� D 0;
and, by premultiplication by Ricci’s symbol e,

ee� D 0: (3.11)

An algebraic property is

eijkeklm D ıilıjm � ıimıjl;

so that

ee� D � � �T;
and (3.11) can be written as

� D �T; (3.12)

which is the local balance of couples.
The symmetry of the stress tensor—the consequence of the integral balance of

couples—and the fact that its components in every given basis are real numbers
imply that � can be expressed in diagonal form: three linearly independent vectors
eI , eII , eIII exist with their covector counterparts eI , eII , eIII , and three real
numbers �I , �II , �III such that

� D �IeI ˝ eI C �IIeII ˝ eII C �IIIeIII ˝ eIII :

The numbers �I , �II , and �III are called the principal components of the stress, or
the principal stresses for short. Their existence means that there is a basis at y, the
one given by the eigenvectors of � , in which the matrix of the components of � is
diagonal, namely

h

�
j
i

i

D
0

@

�I 0 0

0 �II 0

0 0 �III

1

A :

In other words, in the frame defined by the eigenvectors, we see just normal stresses
in the coordinate planes, shear stresses appearing explicitly only when we rotate the
frame. In any case, from the knowledge of the principal stresses we may deduce
the maximum of the shear stresses emerging in the representations of � when
the frame rotates with respect to the one determined by the eigenvectors. Such a
maximum shear stress is given by

1

2
max .j�I � �IIj ; j�II � �IIIj ; j�III � �Ij/ ;
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as emerges clearly in the graphic representation of the properties of � involving
the so-called Mohr circles, a topic not touched here but common to all second-rank
symmetric tensors.

3.5 Inner Power

Let us consider the external power in Eulerian representation on ba and apply
Gauss’s theorem to the integral over the surface @ba. For that integral, we then get

Z

@ba

�n � v dH2 D
Z

@ba

��v � n dH2 D
Z

ba

div.��v/d�:

In components, we have div.��v/ D .�
j
iv

i/;j, so that by evaluating the derivative
with respect to yj, we get

div.��v/ D v � div � C � � Dyv:

By inserting this last relation into the bulk integral above, we then obtain

Pext
ba
.v/ D

Z

ba

b
 � v d�C
Z

@ba

�n � v dH2

D
Z

ba

b
 � v d�C
Z

ba

�

v � div � C � � Dyv
�

d�

D
Z

ba

�

b
 C div �
� � v d�C

Z

ba

� � Dyv d�:

The validity of the pointwise balance (3.9) implies the identity

Pext
ba
.v/ D

Z

ba

� � Dyv d� D
Z

ba

� � �Sym Dyv C SkwDyv
�

d�:

Since � is symmetric—a consequence of the balance of couples and the validity
of the balance of forces—the product � � SkwDyv vanishes (as always occurs in the
scalar product between symmetric and skew-symmetric real second-rank tensors),
and we obtain

Pext
ba
.v/ D

Z

ba

� � Sym Dyv d�:

The integral on the right-hand side is commonly called the inner power in Eulerian
representation and is denoted by P inn

ba
.v/.
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The identity

Pext
ba
.v/ D P inn

ba
.v/

can be chosen as a first principle. We can require, in fact, a priori that the identity

Pext
Ba
.v/ D P inn

Ba
.v/ (3.13)

hold for every choice of the velocity fields assumed to be differentiable in space and
compactly supported over Ba.

The arbitrariness in the choice of the velocity implies that it is not strictly related
to the specific motion under investigation—the one along which the stress involved
in the expression of the power occurs—and in this sense, the velocity field in the
identity (3.13) can be called virtual. The previous identity, accepted as a first
principle, could be then called the principle of virtual power for the presence of
the virtual velocity. Its immediate consequence would then be the validity of the
pointwise balance equations of forces and couples.

There is a difference between obtaining balance equations from the principle of
the virtual power or deriving them from the invariance of the external power alone,
as done so far.

1. The assumption of the principle of virtual power as a first principle requires that
we prescribe an expression of the inner power, an additional assumption to those
we have made so far. For it, we have also to know the existence of the stress � ,
which is proved here on the basis of the knowledge of the integral balances,
reducing in this way the role of the principle of virtual power as primary origin
of the pointwise balances.

2. The acceptance a priori of (3.13) for every choice of the velocity field is the
prescription of the (so-called) weak form of the balance equations. In other
words, when we write (3.13) as a primary assumption, we should have already
in mind the structure of the balance equations, in contrast to what we do when
we postulate at the beginning the sole expression of the external power, which
is based only on the presumed classification of the actions over a generic part of
the body.

3.6 Balance Equations in Lagrangian Representation

The relations describing how volumes and oriented areas change along a deforma-
tion allow us to write balance equations in terms of fields defined over the reference
shape B. In fact, we have

Z

ba

b
ad� D
Z

b

b
a det Fd�
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and
Z

@ba

�n dH2 D
Z

@b

.det F/�F�� Nn dH2;

where ba D Qy.b/, with b a part of B. As a consequence, if we define b
 and P by

b
 WD b
a det F

and

P WD .det F/�F��;

the integral balances of forces and couples become respectively

Z

b

b
d�C
Z

@b

PNn dH2 D 0 (3.14)

and
Z

b

.y � y0/ � b
d�C
Z

@b

.y � y0/ � PNn dH2 D 0: (3.15)

In this case, we affirm that the integral balance equations are expressed in
Lagrangian (or referential) description (or representation). From (3.14), using
Gauss’s theorem and exploiting the arbitrariness of b, we get

b
 C DivP D 0; (3.16)

where the uppercase letter denoting the divergence operator reminds us that the
derivatives are evaluated with respect to coordinates xA in B. The quantity P is called
the first Piola–Kirchhoff stress after Gabrio Piola (1794–1850) and Gustav Robert
Georg Kirchhoff (1824–1887).

The same technique—a combination of Gauss’s theorem and the arbitrariness of
b—can also be applied to the referential balance of couples (3.15). However, without
repeating all calculations already developed, we just observe that the identity

.det F/� D PF�;

deriving from the definition of P, implies that

PF� 2 Sym.R3;R3/;

since � is symmetric. In components, we write PA
i Fj

A D Fi
APA

j for P D PA
i Qei ˝ eA.

The same reasoning holds if we consider the normal as a vector (so in this case, �
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has both covariant components: � D �ij Qei ˝ Qej) and define a version of P with both
covariant components by

P WD .det F/�F�T;

yielding

PFT 2 Sym.R3;R3/

once again from the symmetry of � . In this case, P D PiA Qei ˝ eA.
The external power in the referential description, denoted by Pext

b .Py/, in terms of
the first Piola–Kirchhoff stress, is given by

Pext
b .Py/ WD

Z

b

b
 � Py d�C
Z

@b

PNn � Py dH2:

By applying Gauss’s theorem to the second integral, we obtain

Z

@b

PNn � Py dH2 D
Z

@b

.P� Py/ � Nn dH2 D
Z

b

Div.P� Py/d� D
Z

b

.P � PF C Py � DivP/d�:

Using the pointwise balance (3.16), we eventually get

Pext
b .Py/ D

Z

b

P � PFd�:

The right-hand side is what is called an inner (or internal) power in referential
description (or representation) and is denoted by P inn

b .Py/.
In a rigid motion of the whole body, the points of the body (i.e., the material

elements) do not change their relative positions, so that the inner power (the stress
power) must vanish. As a consequence, we recover once again the symmetry
of PF�, namely the pointwise balance of couples. To obtain the result, consider
a rigid velocity field

vR WD c.t/C q.t/ � .y � y0/;

or equivalently,

vR D c.t/CW.t/.y � y0/;

with y0 an arbitrary point in the physical space QE3; c.t/ and q.t/ translational and
rotational velocity vectors, respectively; W.t/ a skew-symmetric tensor having q.t/
as characteristic vector, so that Wp D q � p for every p 2 R

3. For vR, we have

DyvR D W:



3.6 Balance Equations in Lagrangian Representation 95

Since

P � PF D P � DyvF D PF� � Dyv;

imposing the absence of inner power along every rigid motion of the whole body
corresponds to the condition

PF� � DyvR D PF� �W D 0

for every W. The arbitrariness of W implies the symmetry of PF�, since the scalar
product between symmetric and a skew-symmetric real tensors always vanishes. The
same result can be obtained by considering the velocity in referential description,
namely

PyR D c.t/CW.t/.y � y0/;

for which, in fact, we have

F D DPyR D WF:

The consequence is that

0 D P �WF D PF� �W

for every choice of W. Hence, the symmetry of PF� follows once again. Previous
calculations show also that in the Eulerian description,

� �W D 0

for every skew-symmetric second-rank tensor W. The arbitrariness of W implies
once again the symmetry of � .

In referential description, the inertia terms can be rederived by requiring that their
power equal the negative of the time variation of the kinetic energy for every choice
of velocity field compactly supported over B. The formal reasoning retraces steps
already taken in the Eulerian representation.

1. Since b
 D .det F/b
a by definition, the assumed additive decomposition of
b
a into inertial, bin

a , and noninertial, ba, components translates into a similar
decomposition of b
, namely

b
 D bin C b;

where bin WD .det F/bin
a and b WD .det F/ba.
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2. As in the Eulerian case, bin is identified by imposing the identity

d

dt
fkinetic energy of Bg C

Z

B
bin � Py d� D 0 (3.17)

for every velocity field .x; t/ 7�! Py.x; t/ compactly supported over B at all
instants t. The kinetic energy of B is here given by

Z

B

1

2
% hPy; Pyi d�;

which can be written also as
Z

B

1

2
%Py � QgPy d�:

Since B is fixed in time, by substituting this last integral into (3.17) and
evaluating the time derivative, we eventually get

Z

B
.%QgRy � bin/ � Py d� D 0;

which implies, thanks to the arbitrariness of Py, compactly supported over B, the
identification

bin D �%QgRy;

so that the pointwise balance of forces in Lagrangian (referential) representation
can be written as

bC DivP D %QgRy;

or alternatively,

bC DivP D %Ry[;

with Ry[ WD QgRy the covector naturally associated with Ry by the metric Qg in
the ambient space. Even in the Lagrangian representation, to derive balance
equations we could accept the identity

Pext
B .Py/ D P inn

B .Py/

as a first principle holding for every choice of differentiable velocity field
compactly supported over B, or equivalently, we could write

Pext
b .Py/ D P inn

b .Py/;
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assuming its validity for every part b and square-integrable velocity field, with
bulk and contact actions at least with the same regularity in space. However, as
in the case of the Eulerian representation, if we followed this point of view, we
should once again postulate not only the expression of the external power but also
the form of the internal power and the existence of the stress, which is, in contrast,
a derived quantity. Moreover, we should also impose that the internal power
vanishes when it is evaluated along any rigid-body motion. These assumptions
correspond even in this case to an a priori assumption of the weak form of the
balance equations, in other words, to have already in mind the structure of such
equations.

3.7 Virtual Work in the Small-Strain Setting

In terms of the displacement field u WD Qu.x; t/ WD Qy.x; t/ � i.x/, and in the small-
strain regime, namely when jDuj � 1, also P 	 � , and we do not distinguish
between reference and current configurations, the external work over a generic
part b of B is denoted by Lext.uI b/ and defined by

Lext.uI b/ WD
Z

b

b
 � u d�C
Z

@b

�n � u dH2;

where � is now considered a function of x rather than y. The reason for this choice
relies on the absence of an explicit distinction between B and Ba, and therefore
between x and y, and we write impartially Div or div “confusing” the derivatives
with respect to x with those with respect to y. Moreover, we have taken into account
that in the small-strain setting, b
 	 b
a.

By applying Gauss’s theorem to the second integral in the definition of Lext, we
obtain

Lext.uIB/ WD
Z

B
b
 � u d�C

Z

B
.u � div� C � � Du/d�

D
Z

B

�

.b
 C div�/ � uC � � Du
�

d�:

If b
 and � satisfy the balance of forces, the last integrand reduces to

� � Du D � � .Sym DuC Skw Du/ :

The validity of the balance of couples implies

� � Du D � � Sym Du D � � ";



98 3 Forces, Torques, Balances

so that

Lext.uIB/ D
Z

B
� � " d�:

The last integral in called the inner (or internal) work and is denoted by Linn.
The identity

Lext D Linn (3.18)

can be interpreted in three ways that are different versions of what is called the
principle of virtual work.

To have a concise expression for the three versions of the principle, as a matter
of notation, we state that a system of actions .b
; �/ is balanced when it satisfies the
balance equations b
 C Div� D 0 and � is symmetric, and a displacement–strain
pair .u; "/ is compatible when " D Sym Du, irrespective of the contravariant or
covariant character of the components of the tensors involved.

1. For every pair of balanced actions and compatible displacement–strain fields,
even independent of one another, in the small-strain setting, the identity

Lext D Linn

holds.
2. Given a pair of fields .b
; �/, if the identity

Lext D Linn

holds for all compatible displacement–strain fields, then the pair .b
; �/ is
balanced.

3. Given a displacement–strain pair .u; "/ of fields, if the identity

Lext D Linn

holds for every field of balanced actions, the pair .u; "/ is compatible.

3.8 Remarks on the External Power Invariance Procedure

The procedure based on power-invariance, used so far, is indeterminate with respect
to powerless terms. In particular, the identification of inertia terms furnishes a
result holding to within powerless addenda (Coriolis-type terms). This circumstance
suggests a way of defining inertial frames. In particular, we may assume that
the result of the power-based identification of the inertial terms is exact in the
reference frame of at least one observer—exactness means here that powerless
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terms vanish. We apply the term inertial to all the observers satisfying the previous
statement and for which a body with uniform velocity remains in that state until
external actions appear.

Traditionally, inertial observers are identified as those in the three-dimensional
ambient space oriented toward the stars that were considered (rather erroneously)
fixed. Relativity theory, in particular its general version, has furnished a way to
overcome the difficulty of identifying privileged frames that we can call inertial.

Another aspect of the procedure is that the representation of the actions and the
balance equations emerge independently of the specification of the state variables.
Moreover, integral balances of forces and couples can be derived, because the
Euclidean group acts naturally over the ambient space selected. Such balances can
be also defined because that space can be naturally equipped with a linear structure.
In fact, when we fix a point in E3 and consider the vectors determined by the
difference of the other points and the fixed one, we construct R3, a linear space.
The integrands of the integral balances of forces and torques are elements of R3�,
the dual space, which can be identified with R

3. Their integrals make sense, because
the integrands belong to a linear space, so that the sum, even of infinitely many
terms, as the integral implies, is well defined, and the result is in the same space as
that of the addenda.

3.9 Discontinuity Surfaces

3.9.1 Classification

The assumption that the stress fields x 7�! P.x/ and y 7�! �.y/ are continuous and
continuously differentiable can be relaxed by accepting that they may experience
bounded jumps across a finite number of surfaces or lines or points in the domain
where they are defined (B or Ba). In this case, we state that they are piecewise C1

and write PC1 for short.
The assumption is dictated by physical circumstances. A body composed of two

different pieces of material glued across a surface is an example. If we think of
corrosion of metallic bodies, one such discontinuity surface is the one distinguishing
the corroded portion from the rest. These examples, two among many, suggest a first
classification of discontinuity surfaces: those exhibiting relative motion with respect
to the rest of the body (second example) and those not exhibiting such motion (first
example).

Another distinction is between coherent and incoherent discontinuity surfaces
(interfaces for short). In the first class we find interfaces across which the rest of the
body can be just folded. When, in contrast, the portions of the body on one side and
the other can slide one with respect to the other, the interface is called incoherent.
Furthermore, we distinguish structured interfaces from the unstructured ones. The
former class includes interfaces that can sustain surface stresses, thin layers modeled
by surfaces endowed with their own energy. The absence of particular interface
stress defines the latter class.
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Below we shall consider only unstructured interfaces moving relatively to the
rest of the body. As a further restriction, accepted just for the sake of simplicity, we
shall consider interfaces that can be represented by means of C2 functions. However,
the extension of the result presented to faceted interfaces does not present special
difficulties.

3.9.2 Geometry and Analysis

Let us consider in B a surface C defined by

C WD fx 2 B j f .x/ D 0g ;

with x 7�! f .x/ 2 R a C2.B;R/ function. At x 2 C, the surface is oriented by the
normal

Nm# WD rf .x/

jrf .x/j
considered as a vector or by

Nm WD Df .x/

jDf .x/j ;

taken as a covector.
By projecting r or D over the surface C, we obtain respectively the surface

gradient and the surface derivative of a given differentiable field, denoted
respectively by rs and Ds. We have, in fact,

rsa WD ra.NI � Nm˝ Nm#/; Dsa WD Da.NI# � Nm# ˝ Nm/;

where NI is here the 1-covariant, 1-contravariant identity tensor NI D ıA
BeA ˝ eB, and

NI# its dual counterpart 1-contravariant, 1-covariant.
The second-rank tensor

L WD �rs Nm#

with contravariant components is called the curvature tensor of C at x. The negative
of its trace, namely

K WD �tr L;

is the Gaussian curvature.
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Consider a field x 7�! a.x/ taking values in some linear space L, namely a.x/ 2
L, x 2 B, continuous everywhere but on a smooth surface C oriented by the normal
Nm# at every point x in C. For ı 2 R

C, we denote by a˙.x/, x in C, the limits

a˙.x/ WD lim
ı!0C

a.x˙ ı Nm#/;

if they exist. We define the jump of x 7�! a.x/ at x 2 C to be the difference

Œa� .x/ WD aC.x/ � a�.x/;

and call

hai .x/ WD 1

2

�

aC.x/C a�.x/
�

the average.
If in L, a product .a1.x/; a2.x// 7�! a1.x/a2.x/ is defined and is distributive with

respect to the sum, for the limit values of a1 and a2 at C we can write

Œa1a2� D Œa1� ha2i C ha1i Œa2� :

The jump, as just defined, plays a role in Gauss’s theorem. In fact, consider, for
example, the stress field y 7�! �.y/ on Ba and assume that it is of class C1 over Ba

except on a surface Ca, where it has bounded jumps. In this case, Gauss’s theorem
prescribes that for every part baC crossed completely by Ca and divided into two
distinguished parts with nonzero volume, we have

Z

@baC
�n dH2 D

Z

baC
div � d�C

Z

baC\Ca

Œ��m dH2; (3.19)

where m is the normal orienting Ca point by point. Assume that Ca evolves
within Ba with velocity field Nv relative to the velocity field v pertaining to Ba in
some motion. A pertinent physical example is that of a solidification front. Other
examples are the evolution of paraelectric–ferroelectric interfaces in ferroelectrics
and ordered–isotropic interfaces in liquid crystals or polymeric classes such as
nematic elastomers. Write Nvm for the component of Nv along the normal m and
consider a field .y; t/ 7�! �a WD Q�a.y; t/ taking values in a finite-dimensional vector
space. Assume also that �a might have bounded discontinuities across Ca and is of
class C1 elsewhere at each t. In this case, a transport theorem states that

d

dt

Z

baC
�ad�

D
Z

baC

�
@�a

@t
C div.�av/

�

d�C
Z

baC\Ca

.Œ�av� � m � Œ�a� Nvm/ dH2;

(3.20)
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provided we give meaning to the products �av and Œ�av� �m, depending on the tensor
nature of �a, a meaning that is obvious when �a is a scalar. Detailed proofs of the
relations (3.19) and (3.20) can be found in several classical treatises of mathematical
analysis.

We are here interested in two significant special cases. The first is the case in
which �a coincides with the density of mass �a. By applying the previous transport
theorem to the integral balance

d

dt

Z

baC
�ad� D 0 (3.21)

and using the pointwise balance of mass (3.8), we obtain

Z

baC\Ca

.Œ�av� � m � Œ�a� Nvm/ dH2 D 0:

The arbitrariness of baC implies the pointwise balance of mass along a moving
discontinuity surface Ca:

Œ�av� � m � Œ�a� Nvm D 0:

Notice that when Nvm D 0, i.e., Ca has no normal motion, and the previous balance
reduces to

Œ�av� � m D 0;

which implies the continuity of the normal component of the momentum across the
fixed Ca. Such a property is lost when Ca moves relatively to the rest of the body,
with normal motion, as we are considering here. To evaluate the details—and this
is the second case mentioned above—we have to choose �a coincident with the
momentum �av

[. Hence by the transport theorem, we obtain

d

dt

Z

baC
�av

[d� D
Z

baC
�aa d� �

Z

baC\Ca

jŒv[�dH2;

where j is shorthand notation defined by

j WD h�ai Nvm �
˝

�av
[
˛ � m#:

Hence, the balance of forces in Eulerian representation,

d

dt

Z

baC
�av

[d� D
Z

baC
bad�C

Z

@baC
�n dH2;
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becomes
Z

baC
.ba C div � � �aa/ d�C

Z

baC\Ca

�

Œ��mC jŒv[�
�

dH2 D 0;

thanks to the transport and divergence theorems.
The arbitrariness of baC implies the pointwise balance of forces (3.9) at points

not belonging to Ca, where, in addition, we obtain

Œ��mC jŒv[� D 0; (3.22)

which is the balance of forces along a moving discontinuity surface. Notice that
when v D 0, or alternatively, j D 0, such a balance reduces to the equation

Œ��m D 0;
which declares the continuity of the normal component of the stress.

The surface Ca has a counterpart in the reference configuration B, because the
map x 7�! y is one-to-one. Let us write C for the preimage in B of Ca under
the deformation x 7�! y. The surface balance of forces (3.22) has a referential
(Lagrangian) counterpart in terms of the first Piola–Kirchhoff stress. To get it, we
have first to consider a version of the transport theorem on B, involving fields of
type .x; t/ 7�! � WD Q�.y; t/, taking values on finite-dimensional linear spaces. If Q�
is a C1 field over B with bounded discontinuity over C, we get

d

dt

Z

bC
� d� D

Z

bC

P� d� �
Z

bC\C
Œ�� Nvr

mdH2; (3.23)

where bC is the counterpart of baC and is completely crossed by C, which divided
it into two disjoint pieces with nonzero volumes. Here Nvr

m is the referential normal
velocity of C. In B, the density of mass is assumed constant. Using Gauss’s theorem
and taking into account the transport theorem (3.23), the referential version of the
balance of forces,

d

dt

Z

bC
�Py[d� D

Z

bC
b d�C

Z

@bC
PNn dH2;

becomes
Z

bC

�

bC DivP � �Ry[� d�C
Z

bC\C

�

ŒP� NmC �ŒPy[� Nvr
m

�

dH2 D 0:

The arbitrariness of bC then implies the pointwise balance of forces (3.16) at points
far from C and the surface balance

ŒP� Nm D ��ŒPy[� Nvr
m

along C.
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3.10 Exercises

In the following exercises, we identify R
3 with its dual and write all components

with the indices in covariant position. The choice is just a matter of convenience,
motivated by the same reasons expressed in Chapter 1.

Exercise 5. At a point P of the actual shape of a body, the components of the stress
tensor with respect to an orthogonal frame are given by

	

�ij

 D

0

@

1 0 3

0 2 0

3 0 1

1

A

(physical units are N=mm2). Calculate the principal stresses and the principal
directions, the maximum and the minimum normal stresses, the maximum modulus
of the shear stresses.

Remarks and solution. The principal stresses �I , �II , and �III are the eigenvalues
of the stress tensor, as defined in Section 3.4, and are the roots of the so-called
characteristic equation, i.e., the third-rank polynomial equation

�3 � I1�
2 C I2� � I3 D 0;

in which I1, I2, and I3 are the invariants of � . Here I1 is the trace �ii of the stress
tensor; I2 is the sum of the determinants of the principal minors of � ; I3 is the
determinant of � :

I1 D �11 C �22 C �33;
I2 D �11�22 C �11�33 C �22�33 � �212 � �213 � �223;
I3 D det.�ij/:

In the special case of the exercise, we have I1 D 4, I2 D �4, and I3 D �16, and
the characteristic equation is

�3 � 4�2 � 4� C 16 D 0;

which can be rewritten as

.�2 � 2� � 8/.� � 2/ D 0:

It admits three real solutions: � D �2, � D 2, and � D 4, so that

�I D �2; �II D 2; �III D 4
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are the principal stresses in N=mm2. Using them, the invariants of � can be
rewritten as

I1 D �I C �II C �III ;

I2 D �I�II C �I�III C �II�III ;

I3 D �I�II�III :

The eigenvectors associated with �I , �II , and �III respectively are called principal
directions and can be determined by substituting for � in the algebraic system

0

@

�11 � � �12 �13
�21 �22 � � �23
�31 �32 �33 � �

1

A

0

@

n1
n2
n3

1

A D
0

@

0

0

0

1

A

the relevant principal stress. For example, taking � D �I D �2, we have

0

@

3 0 3

0 4 0

3 0 3

1

A

0

@

n1
n2
n3

1

A D
0

@

0

0

0

1

A

in the specific case of the exercise. Such an algebraic system admits as a solution
the vector .n1; 0;�n1/. Similarly, we obtain for � D �II D 2 the solution .0; n2; 0/,
and for � D �III D 4, the solution .n1; 0; n1/. Normalizing to have unitary lengths,
we obtain the three eigenvectors nI , nII , and nIII , namely

nI D
�
1p
2
; 0;� 1p

2

�

; nII D .0; 1; 0/ ; nIII D
�
1p
2
; 0;

1p
2

�

:

We also realize that nIII D nI � nII . We can call the stress state in the exercise
triaxial, because all the principal stresses are nonzero. The minimum normal stress
is �I D �2 (compressive stress), and the maximum is �III D 4 (tensile stress).
Hence, in this case there are planes on which the normal stress is zero. Denoting by n
the generic vector normal to one of these planes, we have �ijninj D 0. The maximum
modulus of the shear stresses around P is (in N=mm2)

1

2
j�III � �Ij D 3:

Exercise 6. At a point P of the actual shape of a body, the components of the stress
tensor with respect to an orthogonal frame are given by

	

�ij

 D

0

@

2 �1 1

�1 0 �1
1 �1 0

1

A
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(physical units are N=mm2). Find the principal stresses, the normal stress
component

�n WD � � .On˝ On/ (3.24)

acting on the plane with normal On D
�
1p
3
;
1p
3
;
1p
3

�

and the modulus of the

shear stress

�n WD � On � �n On (3.25)

on the same plane.

Remarks and solution. The invariants of the stress tensor are

I1 D 2; I2 D �3; I3 D 0;
and the characteristic equation is

�3 � 2�2 � 3� D 0:
Its roots are �I D �1, �II D 0, and �III D 3. The principal stresses are distinct,
so that there are exactly three principal planes. The stress state is called biaxial,
because one principal stress is zero. We have from the definition (3.24),

�n D �ij Oni Onj D 0;

and from the definition (3.25),

�n D � On D 2p
3

e1 � 2p
3

e2:

Its modulus is equal to
2
p
2p
3

N=mm2.

Exercise 7. At a point P of the actual shape of a body, the components of the stress
tensor with respect to an orthogonal frame are given by

	

�ij

 D

0

@

2˛ �1 0

�1 2˛ 2

0 2 3

1

A ;

with ˛ a parameter. Decompose the stress into its spherical and deviatoric parts.
If �m.˛/ and J2.˛/ denote the average stress and the quadratic invariant of the
deviatoric stress, calculate the value of ˛ such that �m.˛/ D J2.˛/, if any.
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Remarks and solution. The stress tensor admits the decomposition

�ij D ıij�m C sij (3.26)

with ıij�m the isotropic or spherical component,

�m D 1

3
�ii D 1

3
I1;

and sij the deviatoric component. The decomposition in unique. The principal
directions of sij are the same as those of the total stress, while the eigenvalues of
the tensor s are given by

sI D �I � �m; sII D �II � �m; sIII D �III � �m:

Then we obtain

J1 D s11 C s22 C s33 D 0;

J2 D �1
2

�

s211 C s222 C s233 C 2s212 C 2s213 C 2s223
�

;

J3 D det.sij/;

or, in terms of the principal stresses,

J1 D sI C sII C sIII D 0;

J2 D �1
2

�

s2I C s2II C s2III
�

;

J3 D 1

3

�

s3I C s3II C s3III
�

:

In the case under consideration, the isotropic stress is

�m D 4

3
˛ C 1;

and the deviatoric component is given by

	

sij

 D

0

B
B
B
B
@

2

3
˛ � 1 �1 0

�1 2

3
˛ � 1 2

0 2 �4
3
˛ C 2

1

C
C
C
C
A

:
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J2 (  )
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−80
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Fig. 3.2 Isotropic stress and quadratic invariant of sij versus the parameter ˛

The quadratic invariant J2 D �1
2

sijsij is then

4

3

��˛2 C 3˛ � 6� :

By representing the functions �m.˛/ and J2.˛/ (Fig. 3.2), we see that the equation
�m.˛/ D J2.˛/ has no real solutions, since

4

3
˛ C 1 D 4

3

��˛2 C 3˛ � 6� ) ˛2 � 2˛ C 27

4
D 0;

which has discriminant equal to �23 < 0.

Exercise 8. At a point P of the actual shape of a body, the components of the stress
tensor with respect to an orthogonal frame are the same as in Exercise 5. Calculate
the octahedral tangential stress, namely the modulus �oct of the tangential stress

on the plane with normal nd D 1p
3
.nI C nII C nIII/.

Remarks and solution. We have already calculated the principal stresses and the
principal directions nI , nII , nIII of the stress tensor. Writing �nd for � � .nd ˝ nd/, we
have by definition

�oct D j�dj D j�nd � �ndndj:
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Consequently, we obtain

�d D �2nI C 2nII C 4nIIIp
3

� 4
3

.nI C nII C nIII/p
3

D �10nI C 2nII C 8nIII

3
p
3

and

�oct D j�dj D 2
p
14

3
	 2:494 N=mm2:

3.11 Further Exercises

Exercise 9. Consider a body in a three-dimensional space. Fixing an orthogonal
frame, a generic point y has coordinates .y1; y2; y3/. In this frame, the stress has
components

	

�ij

 D k0

0

@

20y1 C y2 y3 k1y3
y3 30y1 C 200 y1

k1y3 y1 30y2 C k2y3

1

A :

In the absence of inertial effects, find the components of the bulk forces b
equilibrating the stress field and the values of k1 and k2 so that b D 0 for every k0.

Elements of the solution. k1 D �20; k2 D 0.

Exercise 10. At a point P of the actual shape of a body, the components of the stress
tensor with respect to an orthogonal frame are given by

	

�ij

 D

0

@

�5=6 �1=3 13=6

�1=3 5=3 �1=3
13=6 �1=3 �5=6

1

A

(physical units are N=mm2). Calculate the principal stresses of the deviatoric part
of the stress.

Solution. sI D �3; sII D 1; sIII D 2.

Exercise 11. At a point P of the actual shape of a body, the components of the stress
tensor with respect to an orthogonal frame are given by

	

�ij

 D

0

@

0 1 1

1 1=2 1=2

1 1=2 1=2

1

A
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(physical units are N=mm2). Find a plane 	n such that the moduli of normal and
tangential stresses are �n D 3=2, �n D 4=5 or �n D 3=2, �n D 9=10.

An element of the solution: In the first case, the plane does not exist. In the second
case, the plane is available.



Chapter 4
Constitutive Structures: Basic Aspects

4.1 Motivations and Principles

Consider an orthogonal coordinate frame
˚

O; x1; x2; x3
�

in the reference space E3
and write explicitly the components of the balance equations

%Ru[ D bC DivP;

where we have considered that Ry.x; t/ D Ru.x; t/, with u WD Qu.x; t/ the displacement
at the point x and the instant t. We obtain

%Ru[1 D b1 C P11
@x1
C P21
@x2
C P31
@x3

;

%Ru[2 D b2 C P12
@x1
C P22
@x2
C P32
@x3

;

%Ru[3 D b3 C P13
@x1
C P23
@x2
C P33
@x3

;

i.e., a system of partial differential equations with three unknown components of
the displacement, namely ui, i D 1; 2; 3, and nine unknown stress components PA

i ,
i;A D 1; 2; 3. The number of independent stress components is further reduced by
the balance of couples, which implies the symmetry of PF�. The number of stress
components exceeds that of the balance equations. Such is also the case in the spatial
representation of the balance equations.

To overcome the problem, it suffices to link in some way the stress components
with the displacement. The relations establishing these links are what we call
constitutive structures. They are state functions expressing the inner actions at
a point in the matter—the traction in the scheme that we are analyzing here—with
the variables describing the state of the material element at the place considered.

© Springer Science+Business Media New York 2015
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The notion of state is a primitive concept in the continuum theories that we
know. The specification of the list of state variables indicates the way in which
we think that a material element—the organization of the matter at a geometric
point—feels the rest of the body.

– The simplest way to describe the interactions of a material element at x with
the rest of the body is to assume that the stress at x depends on the state of the
matter in an immediate neighborhood of x, meaning that the state of material
elements at finite distance from x in some shape of the body may be disregarded
in calculating the stress at x. We generally call this point of view the principle of
local action. It excludes long-range interactions in space.

– Another question is the behavior in time. For this, our experience of the
macroscopic world suggests that we assume that the stress at the place x and the
instant t is determined by the history of the state up to the time t. We commonly
call such an assumption the principle of determinism.

– Also, it seems natural to assume that when a given observer perceives a body as
made by a certain material class, any other observer must record the same type
of material.

The last statement in the list above has an intrinsic vagueness in the word “same”
and has to be specified with respect to changes in observers. To this end, consider,
for example, two observers O and O0 connected by a classical change. We have
already assumed that the Cauchy stress � is objective, meaning that � 0, namely
the tensor evaluated by O0, is given by Q�QT, with Q the orthogonal tensor with
positive determinant characterizing the isometry from O to O0. Let us assume that
� depends only on the motion Qy.�; �/. The assumption that O and O0 evaluate the
same material class is here interpreted by stating that � 0 depends then on Qy0.�; �/,
the motion perceived by O0. This point of view is what we commonly call the
principle of frame indifference. An analogous interpretation can be given when
instead of isometric changes in observers we consider the enlarged class determined
by diffeomorphisms. In this case, the principle of frame indifference is called the
principle of covariance of the constitutive equations.

In what follows, we shall accept the principles of determinism, locality, and
frame indifference. In this way, we exclude cases in which the stress at a point
could depend on some weighted average of the states of points in a neighborhood of
the considered point that is finitely extended in space.

The axioms that we accept here are intuitive. Their role in the foundations of
continuum mechanics was pointed out by Walter Noll in 1950s.

4.2 Examples of Material Classes

The essential step in defining a material class of bodies is to specify the nature of the
state & of a generic material element or the whole body. Independently of its specific
expression, we say in general that & is an element of a topological space, where
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for each pair of distinct states we can find nonintersecting neighborhood of them.
In short, we say that the state space is Hausdorff. Moreover, when we consider the
state of an entire body, the state space is infinite-dimensional, since & is a collection
of fields. For a single material element, the state space is infinite-dimensional when
& is a history (the past history, according to the axiom of determinism), i.e., & is
nonlocal in time, while it is finite-dimensional when & depends only on the current
time and & is the value of a field mapping the point and instant considered into some
finite-dimensional state space.

In what follows, within the setting of the axioms of determinism, locality, and
frame indifference, we shall refer just to the state of a point and shall consider it an
element of a finite-dimensional space. A list of special cases follows.

– The choice & D F defines what we commonly call simple materials. In this
case, since F is defined over the reference place, the natural stress measure we
have to refer to is the first Piola–Kirchhoff stress P. In particular, we write

P D QP.x;F/;

reducing the expression to

P D QP.F/

when the material does not change its type of response from place to place. In this
case, the material is said to be homogeneous. Moreover, always within the range
of simple materials, we could have

P D QP.x; t;F/

if we are describing aging effects.
– Another choice could be & D .F; PF/, and the first Piola–Kirchhoff stress

would be

P D QP.x;F; PF/:

That choice leads to the simplest approach to the description of the viscous
behavior. We have P D QP.F; PF/ for homogeneous viscous materials and P D
QP.x; t;F; PF/ in the case we need to describe aging effects. In general, however,
viscosity is more completely described by assuming the dependence of the stress
on the entire history of F or portions of it that are finitely extended in time.

– In the previous examples, we have implicitly assumed an isothermal environ-
ment. When such a condition is not satisfied, the temperature enters the list
of state variables. We must ask what the word temperature in fact refers to.
We have a clear definition of temperature for a perfect gas in terms of the
molecular kinetic energy. In the case of solids, that definition can be applied
to the phonons, particles determined by the quantization of the traveling waves,
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in crystals, for phonons can be considered a gas flowing through the atomic
lattice. However, such a concept—it is neither exploited nor detailed here—is
not completely pertinent to all possible changes in solids. A standard way to
introduce temperature in continuum mechanics is to refer to it as a phenomeno-
logical quantity. A thermometric scale or a heating measure is a way of ordering
states. In this way, an empirical temperature # is commonly introduced, with the
idea that it is specified by the laws it satisfies, specifically by the second law
of thermodynamics and its consequences. Once we have accepted this view, for
elastic and/or viscoelastic processes along which heat is absorbed or emitted, we
write

P D QP.x;F; #/

or

P D QP.x;F; PF; #/

respectively for what we call thermoelastic or thermoviscoelastic materials. In
writing such expressions, we are conscious that the temperature is a concept
with a clear meaning at equilibrium, a concept making sense also in a number
of nonequilibrium processes, with related limitations in the interpretation of its
character.

The previous list does not exhaust all possible material classes but gives an idea
of what we are talking about.

4.3 A Priori Constitutive Restrictions and the Mechanical
Dissipation Inequality

Once we have decided on the list of the state variables, a problem is the assign-
ment of the explicit constitutive structure. Experiments address possible choices.
Experiments are, however, necessarily limited and developed in special conditions.
We consider basic principles in determining a priori constitutive restrictions to
the constitutive structures.

The first is the assumption that different observers must perceive the same
material class. Formally, we express this assumption by imposing objectivity or
covariance, as already mentioned.

Another principle limiting possible constitutive relations is the second law of
thermodynamics. Any constitutive relation must be compatible with the second law
of thermodynamics. If we accept such a statement, we have to render explicit the
expression of the second law we are referring to. In the isothermal setting considered
here, we commonly call such a law the mechanical dissipation inequality or the
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isothermal version of the Clausius–Duhem inequality. For every part b of B,
it reads

d

dt
.free energy of b/ � Pext

b .Py/ � 0:

We assume that the inequality holds for every part b of B and choice of the velocity
fields. For the free energy, we accept the expression

ffree energy of bg D
Z

b

 d�;

calling  the free energy density,1 a function of the state variables that is assumed
to be differentiable, so that for every part b of B, we write

d

dt

Z

b

 d� � Pext
b .Py/ � 0;

and we assume that it is valid for every choice of b and Py. The assumption accepted
in the previous chapter that Pext

b .Py/ is invariant under classical changes in observers
and the validity of the regularity assumptions justifying the pointwise balances
imply the identity Pext

b .Py/ D Pinn
b .Py/. Then we can write

d

dt

Z

b

 d� �
Z

b

P � PFd� � 0:

Since b does not vary in time, since it belongs to B, the time derivative and integral
commute, and we obtain

Z

b

� P � P � PF� d� � 0:

1The existence of the free energy can be determined in an abstract setting, without reference to a
specific material class, by resorting to the notions of state, process, and action. We do not need
to specify otherwise the state, except to declare that it is an element of a Hausdorff topological
space. Paths in the state space represent state transformations. They are determined by processes,
operators acting over the state space and representing ways in which the body “perceives” the
external environment. Finally, actions are functionals assigning to every state transformation a
number. Actions depend on the initial state of the path and the process. We commonly require that
actions be continuous with respect to the states and additive with respect to the prolongations of
paths by means of “subsequent” state transformations (the external power that we have defined
previously is an action, for example). In this setting, the free energy is a concept associated with
an action or a class of actions. It is a state function such that the difference of its values over an
arbitrary pair of states is bounded by the infimum of the action considered, provided that the two
states can be connected by a path. We do not go into details. We just mention these aspects for
the sake of completeness and to open a window onto a wider landscape. For further details, the
reader can refer to Miroslav Šilhavý’s treatise referenced at the end of this book as a suggestion for
further reading. Here, we just assume the possibility of defining the free energy as an integral over
the volume of a differentiable density.
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The arbitrariness of b implies the local form of the mechanical dissipation
inequality:

P � P � PF � 0: (4.1)

To exploit it, we have to determine not only the list of state variables entering P but
also those on which the free energy density depends. Below, we discuss again the
examples from the previous section.

4.3.1 Simple Bodies

Let us assume

 D Q .x;F/

and

P D QP.x;F/:

At fixed x we presume that both the free energy and the stress are defined on the
whole set of all possible F’s. An analogous assumption holds when we insert other
state variables. Then the inequality (4.1) reduces to

�
@ 

@F
� P

�

� PF � 0:

The arbitrariness of PF, justified by that of Py and the absence of constraints over PF,
implies the a priori restriction

P D @ 

@F
(4.2)

on the first Piola–Kirchhoff stress, which is transferred to the Cauchy stress by the
standard relation

� D .det F/�1 PF� D .det F/�1
@ 

@F
F�;

where, we recall,

det F D
p

det Qgp
det g

det

�
@yi

@xA

�

:
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The Cauchy stress above is of type � D � j
i Qei � Qej.

With the assumptions made here, the free energy density appears as a potential
for the whole stress. It is not always so, as is evident in the presence of viscous
effects, where the previous property holds just for a part of the stress.

4.3.2 Viscous Bodies: Nonconservative Stress Component

We say that a body manifests viscous behavior when the actual value of the stress
depends on portions in time of the strain history. Among possible dependencies,
the simplest choice is to include in the list of state variables the strain rate. Let us
tentatively assume

 D Q .x;F; PF/

and

P D QP.x;F; PF/;

as we have already mentioned. Substitution into (4.1) implies the inequality

�
@ 

@F
� P

�

� PF C @ 

@ PF �
RF � 0; (4.3)

provided that the map .x; t/ 7�! F WD DQy.x; t/ is twice differentiable in time. Unless
we do not impose constraints on PF and RF, we can choose arbitrarily both PF and RF,
independently of each other. Since the inequality (4.3) is assumed to hold for every
choice of the rates involved, the arbitrariness of RF implies

@ 

@ PF D 0:

Hence the free energy density cannot depend on PF in this setting. The inequal-
ity (4.3) then does not imply (4.2), because the dependence of P on PF would
be incompatible with  , which is independent of the same variable. A way to
solve the controversy is to assume that the first Piola–Kirchhoff stress admits the
decomposition

P D QP.x;F; PF/ D QPc.x;F/C QPd.x;F; PF/;

so that by defining Pc WD QPc.x;F/ and Pd WD QPd.x;F; PF/, the inequality (4.3)
reduces to
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�
@ 

@F
� Pc

�

� PF � Pd � PF � 0;

and the arbitrariness of PF implies

Pc D @ 

@F
;

which is analogous to (4.2), and

Pd � PF � 0: (4.4)

The last inequality verifies the dissipative nature of Pd, implicitly that of the viscous
processes. Its validity for every choice of PF implies

Pd D a.x;F; PF/ PF (4.5)

with a.�/ a positive definite scalar function. If so, we obtain

Pd � PF D a.x;F; PF/j PFj2;

which is greater than or equal to zero and vanishes when PF D 0. Accordingly, the
overall expression for the first Piola–Kirchhoff stress is

P D @ Q .x;F/
@F

C a.x;F; PF/ PF;

and the related Cauchy tensor is

� D .det F/�1
@ Q .x;F/
@F

F� C .det F/�1a.x;F; PF/ PFF�:

A structure for Pd of the type

Pd D A.x;F; PF/ PF;

with A a second-rank positive definite tensor, would also be compatible with (4.4).
However, although the second law permits such a choice, it could have further
undesirable consequences, the analysis of which falls outside the scope of this book,
in which we pay attention essentially to elastic behavior. We consider, in fact, just
conservative processes. For them, the mechanical dissipation inequality reduces to
an identity; the free energy coincides with the internal energy, which is also called
elastic energy.
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4.3.3 Elastic Materials in an Isothermal Setting: Further
Constitutive Restrictions

Consider a body in an isothermal bath displaying conservative behavior under
external action. Assume that the body is simple. By rendering formally explicit what
is expressed in the last lines of the previous section, we write

d

dt

Z

b

Qe.x;F/d� � Pext
b .Py/ D 0; (4.6)

where, as anticipated above, the internal energy density e D Qe.x;F/ appears in
place of the free energy. The two densities are related by the following standard
expression:

 D eC #�;

where # is the temperature, � the entropy. When the temperature and entropy are
constant, the free energy reduces to the internal energy, modulo a constant: the
mechanical dissipation inequality becomes (4.6).

The identity (4.6) excludes the possibility of a dissipative component of the
stress, as can be proved by following the same steps of the previous section. The
structural constitutive choice for P is then the same as the internal energy density—
what we commonly call the elastic energy density in this setting—so that the first
Piola–Kirchhoff stress derives from a potential, and (4.3) reduces to

P D QP.x;F/ D @e

@F
.x;F/: (4.7)

A problem is then the explicit assignment of Qe.x;F/. Help in reducing the
arbitrariness of the choice is given by the requirement of objectivity of the elastic
energy density, which pertains to the inner structure of the material. Classical
changes in observers alter by isometries the entire ambient space in which we
describe the current (macroscopic) configurations of the body. Such changes do not
alter the material structure. It is then natural to require objectivity of the elastic
energy, with an essential consequence.

Definition 1. Let L be a linear space. A function

f W L �! R

is said to be convex if for every � 2 Œ0; 1� and A;B 2 L, the inequality

f .�AC .1 � �/B/ � �f .A/C .1 � �/f .B/

holds.
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Lemma 2. Let f W L �! R be differentiable. Then f is convex over L if and only if

f .A/ � f .B/ � @f

@B
.B/ � .A � B/; (4.8)

for every A and B in L.

The proof proceeds in two steps: (1) We assume that f is convex, and we deduce
the inequality (4.8). (2) Then we take a generic differentiable function f satisfying
the inequality (4.8) and show that as a consequence, it is convex.

Proof. If f is convex, from the definition we get

f .BC �.A � B// � f .B/C � .f .A/ � f .B// ;

which is

f .BC �.A � B// � f .B/

�
� f .A/ � f .B/: (4.9)

We then find the limit

f .BC �.A � B// � f .B/

�
�! d

d�
f .BC �.A � B//

ˇ
ˇ
ˇ
ˇ
�D0
D @f

@B
.B/ � .A � B/

as � �! 0. By inserting the result in the inequality (4.9), we get (4.8). To prove the
converse, let us use Z to indicate the sum �AC .1 � �/B. If f is differentiable and
satisfies the inequality (4.8), we get

f .A/ � f .Z/ � @f

@Z
.Z/ � .A � Z/ D .1 � �/ @f

@Z
.Z/ � .A � B/

and

f .B/ � f .Z/ � @f

@Z
.Z/ � .B � Z/ D �� @f

@Z
.Z/ � .A � B/:

By multiplying the first inequality above by � and the second by .1 � �/, and
summing the results, we get

�f .A/C .1 � �/f .B/ � f .Z/ D f .�AC .1 � �/B/;

i.e., f is convex. �

Theorem 3. In the finite-strain regime, the objectivity of the elastic energy density
of simple bodies, Qe.x;F/, and its possible convexity with respect to F are physically
incompatible.
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Fig. 4.1 If Qe.x;F/ were
quadratic with respect to F, it
would have a unique
minimum

F

ẽ(x,F)

Fig. 4.2 Section of an elastic plate reaching two possible equilibrium configurations under the
same boundary conditions

The theorem excludes the choice of Qe.x;F/ as a quadratic function of F. In
other words, thanks to the a priori restriction (4.7), in the finite-strain regime,
the first Piola–Kirchhoff stress P cannot depend linearly on the deformation
gradient F. Informal evidence of the result emerges, however, when we accept that
an equilibrium configuration of an elastic body satisfies the minimum of the elastic
energy. Hence, if Qe.x;F/ were quadratic (i.e., strictly convex) with respect to F,
there would be a unique minimum (see Figure 4.1). Consider now an elastic plate
undergoing bending as a consequence of some boundary conditions expressed in
terms of displacements. A deformed configuration and its reverse counterpart appear
in Figure 4.2. Both shapes are at equilibrium under the same boundary conditions,
so that we do not have uniqueness. A rigorous proof of the theorem is, however,
necessary.

Proof. Write Qe.F/ instead of Qe.x;F/ for the sake of brevity, because the explicit
dependence on x does not play a role in the proof. If Qe.�/ were a convex function
of F, since it is differentiable by assumption, the previous lemma would allow us
to write
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Qe.QF/ � Qe.F/ � @e

@F
.F/ � .QF � F/

D @e

@F
.F/ � .Q � I/F D @e

@F
F� � .Q � I/:

In other words, the inequality reduces to

Qe.QF/ � Qe.F/ � PF� � .Q � I/ D .det F/� � .Q � I/:

The objectivity of Qe.�/ can be written as Qe.QF/ D Qe.F/, so that

� � .Q � I/ � 0;

since det F > 0. The inequality must hold for every choice of Q. However, we could
find some choices of Q such that the inequality is satisfied if and only if � admits at
least one negative eigenvalue. Should � represent an isotropic stress state, namely
� D �pI, with p a scalar, with the previous choice of Q, the inequality would
exclude the state p � 0, i.e., tension or compression, depending on the choice of the
convenction that we adopt on the positive sign of the traction. �

We should not forget that Q in the proof is associated with changes in observers,
and it has conceptually nothing to do with the class of admissible deformations,
although a body can have a rigid change of place.

Beyond the obstruction indicated by the previous theorem on the possible choices
of the elastic energy density, objectivity implies further restrictions. To satisfy the
objectivity condition

Qe.QF/ D Qe.F/;

if and only if it depends on the symmetric tensor U appearing in the left polar
decomposition or, equivalently, on the square power of U, i.e., QC D FTF, which
is not affected by rotations in the ambient space, being defined on the reference
place. By the left polar decomposition, we have

QC D FTF D .RU/T.RU/ D UTRTRU D UTU:

Then we write

Qe.x;F/ D Le.x; QC/:

However, since QC D g�1C, with C D F� QgF, and in the elastic setting that we treat
here, g does not change, we can also write

Qe.x;F/ D Oe.x;C/;
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or more explicitly,

Qe.x;F/ D Oe.x;C.F; Qg//:
Write also

Qe.x;F/ D �Ne.x;C.F; Qg//
to express the density of mass, and consider once again the spatial metric Qg
independent of time. We assume here also that the mass is pointwise conserved.

Theorem 4. For an elastic material undergoing large strains, the following rela-
tions hold:

P D 2� QgF
@Ne
@C
; � D 2�a Qg@Ne

@Qg :

Proof. First we notice that

P � PF D FF�1 Qg�1P � PF D F�1 Qg�1P � F� Qg PF
D F�1 Qg�1P � �Sym.F� Qg PF/C Skw.F� Qg PF/� :

Moreover, since Qg is independent of time, we compute

PC D F� Qg PF C PF� QgF D F� Qg PF C .F� Qg PF/T:
Hence, by defining the second-rank tensor S by

S WD F�1 Qg�1P;

a tensor commonly called the second Piola–Kirchhoff stress tensor, we can write2

P � PF D 1

2
S � PC;

because S is symmetric (prove the property as an exercise), so that S � Skw.F� Qg PF/
D 0. Also, we consider S a function of x and C, as we are forced to do once the
objectivity restricts the dependence of e on F to that on C, suggesting the same
choice for P, which is fully connected with the energy in the way we have already
shown.

Consequently, from equation (4.6), thanks to the arbitrariness of b, we get

Pe D P � PF D 1

2
S � PC;

2Notice that the choice P D QP.x;C/ corresponds to S D QS.x;C/.
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i.e.,

�

�
@Ne
@C
.x;C/ � 1

2
QS.x;C/

�

� PC D 0;

for every choice of PC, which is tantamount to stating that

QS.x;C/ D 2� @Ne
@C
.x;C/:

From the definition, however,

S D F�1 Qg�1P D 2� @Ne
@C
;

and the first relation of the theorem is proved. For the second relation, we first notice
that

@Ne .x;C.F; Qg//
@Qgij

D @Ne
@CAB

@CBA

@Qgij
D @Ne
@CAB

Fi
BFj

A;

that is

@Ne
@Qg D F

@Ne
@C

F�: (4.10)

Then, using the first relation in the theorem, we compute

� D 1

det F
PF� D 2�

det F
QgF
@Ne
@C

F�;

and using the pointwise balance of mass �a det F D � and the identity (4.10), we
get finally the second relation in the theorem, commonly called the Doyle–Eriksen
formula. �

We make the following comments on the previous results.

– When we require objectivity of the elastic energy, we are requiring that we pay
internal energy (inside the material) only when we change the shape of the
body by crowding and/or shearing the material elements. The energy density
e depends, in fact, just on C or, by extension, on any strain measure in the
isothermal setting that we are considering.

– The stress � can be viewed as a consequence of the change of energy due to the
variation of the metric in space: the geometric meaning of the Doyle–Eriksen
formula. The result is not in contrast with the standard view that the stress is a
consequence of the elongation or the shortening of material bonds. Consider, in
fact, a segment in Ba. By fixing Qg, we can elongate the segment and evaluate the
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superposed strain by computing the new length of the segment with respect to Qg.
Stress emerges in the process. Conversely, we can evaluate the initial length of the
segment; we change Qg and compute the length of the same segment with respect
to the varied metric. If we have changed Qg in a way producing the length of the
segment previously elongated, we have simulated the same process, so we must
have stress once again.

4.3.4 The Small-Strain Regime

In the small-strain regime, since � 	 P, the mechanical dissipation inequality can
be written on B as

d

dt

Z

B
 d� �

Z

B
� � P" d� � 0; (4.11)

and we assume that it holds for every choice of P". For inhomogeneous simple bodies
in an isothermal setting, we assume  D Q .x; "/ and � D Q�.x; "/. We write  D
Q ."/ and � D Q�."/ in the homogeneous case.

The arbitrariness of P" implies that of the part of B, because we can select arbitrary
fields x 7�! P".x/ compactly supported over B, the local form

�
@ 

@"
� �

�

� P" � 0;

i.e.,

� D @ 

@"
; (4.12)

or

� D @e

@"
;

once we substitute the free energy with the elastic one, a substitution permitted
in the elastic isothermal setting. Such a substitution is inappropriate when viscous
effects occur, because the entropy varies as a consequence of the viscous dissipation.
For viscous inhomogeneous materials in the same isothermal conditions, we write
 D Q .x; "; P"/ and � D Q�.x; "; P"/. The additional assumption

� D � e C �d;

with � e D Q� e.x; "/ and �d D Q�d.x; "; P"/, is also necessary, because the mechanical
dissipation inequality requires that  be independent of P", analogously to what we
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have discussed in the finite-strain regime. In this case, the relation (4.12) holds only
for the energy-dependent part � e of the stress, namely

� e D @ 

@"
;

while the dissipative part satisfies the inequality

�d � P" � 0; (4.13)

which implies, for example,

�d D a.x; "; P"/P"; (4.14)

with a.�/ a positive definite scalar function. Once again, the relation (4.14) is not the
sole solution to the dissipation inequality (4.13). However, we prefer to refer just
to it, avoiding here a discussion about the ancillary consequences of solutions of
the type

�d D A.x; "; P"/P";

with A a positive definite fourth-rank tensor, which is symmetric in the first two and
the last two components, namely Aijhk D Ajihk and Aijhk D Aijkh.

4.3.5 Linear Elastic Constitutive Relations

Let us assume that the condition jDuj � 1 applies, ensuring the small-strain regime.
The argument pictured in Figure 4.2 to visualize the physical incompatibility
evidenced in Theorem 3 no longer holds, since in the small-strain regime, we do
not distinguish between reference and actual shapes: they can be (approximately)
considered superposed, modulo the identification of the reference space with the
ambient one. The elastic energy is a function of the small-strain tensor " and can be
chosen to be quadratic:

Qe.x; "/ WD 1

2
.C"/ � "C �0 � ";

where C is a fourth-rank tensor depending possibly on x. When C is independent of
x, we say that the material is homogeneous. The relation (4.12) implies the linear
constitutive equation

� D C"C �0;
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where �0 is the so-called prestress, which is a possible initial stress state, like the
one appearing in extruded metallic artifacts.

We do not consider here the prestress �0, so that the elastic energy density Qe.x; "/
has the form

Qe.x; "/ D 1

2
.C"/ � "; (4.15)

and the constitutive restriction (4.12) implies simply

� D C":

Without distinguishing between covariant and contravariant components,3 we can
write

�ij D Cijhk"hk:

The symmetry of � requires the symmetry of C with respect to its first two
indices, i.e.,

Cijhk D Cjihk:

Moreover, since

Cijhk D @2e

@"ij@"hk
;

by Schwartz’s theorem, C is endowed with major symmetries, namely

Cijhk D Chkij:

Symmetry with respect to the last two indices then follows, namely

Cijhk D Cijkh:

The physical assumption that the energy density is non negative implies the need
of considering C a positive definite tensor:

.CA/ � A � 0 (4.16)

for every second-rank tensor A. The equality sign holds only when A vanishes. In
this case, we say that C is pointwise stable. A special choice of A is A D a ˝ c,
with a and c in R

3, and the condition (4.16) becomes

3We exploit the identification of R3 with its dual.
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Cijhkakchajci � 0:

In particular, for a and c different from the null vector, we have

Cijhkakchajci > 0; (4.17)

a condition called strong positive ellipticity. Pointwise stability implies strong
positive ellipticity, but the converse does not hold.

4.4 Material Isomorphisms and Symmetries

Implicit in the discussion so far about the constitutive relations is the assignment
of a reference shape for the body. A question is whether and in which sense
constitutive relations are sensitive to the choice of the reference place. Preliminary
notions appear necessary to answer this, at least in the specific case of simple bodies
considered above and in what follows.

4.4.1 Objectivity of the Cauchy Stress

In deriving above the Doyle–Ericksen formula, we have obtained the relation

� D 2�a QgF
@Ne.x;C.F; Qg//

@C
F�: (4.18)

We have considered � as the value at .y; t/ of a symmetric-tensor-valued function.
This point of view still remains, but now, the relation (4.18) allows us to consider �
as a value at a certain instant t of a function depending on x, namely, fixing Qg,

� D Q�.F.x; t/; x/: (4.19)

Write now N� for Qg�1� . The second-rank contravariant tensor N� is then

N� D N� ij Qei ˝ Qej;

so that by (4.18),

N� D 2�aF
@Ne
@C

F�: (4.20)
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The value N� 0 measured after a classical change in observer in the ambient space
is then

N� 0 D 2�aQF
@Ne
@C

F�Q� D Q�Q�;

since F becomes QF.
Let us now write O� for the second-rank tensor N� Qg. The tensor O� is obtained from

N� just by lowering by Qg the second index of N� , namely

O� D O� i
j Qei ˝ Qej:

For the value N� 0 evaluated after a classical change in observer, from the
identity (4.20) we obtain

O� 0 D Q O�QT:

All developments in this section are based on the assumption that Q 2 SO.3/ is
of the form

Q D Qi
j Qei ˝ Qej:

The choice is natural because F is 1-contravariant and 1-covariant, so that the
product QF appearing after a classical change in observer can be written as

QF D Qi
jF

j
A Qei ˝ QeA:

If we consider in addition even Q 2 SO.3/ of the form

Q D Qj
i Qei ˝ Qej;

we can write

� 0 D Q�QT (4.21)

for the stress tensor � evaluated after a classical (isometry-based) change in
observer, a value indicated by � 0.

This relation follows directly from (4.18). To get it, we have first to recall that
under classical changes in observers in the ambient space, we have

Qgij 7�! Qh
i QghkQk

j ;
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since Qg is a fully covariant second-rank (symmetric) tensor. By insertion in (4.18),
we get

�
0j
i D 2�aQh

i QghkQk
sQs

rF
r
A

@Ne
@CAB

F�l
B Qj

l

D 2�aQh
i Qghkı

k
r Fr

A

@Ne
@CAB

F�l
B Qj

l

D 2�aQh
i QghkFk

A

@Ne
@CAB

F�l
B Qj

l D Qh
i �

k
h Qj

k;

which is exactly the relation (4.21) in components. It declares that under the
validity of (4.18), the stress tensor � is objective. We generally assume that the
relation (4.21) holds beyond the validity of the relation (4.18). In other words,
we assume that � is objective independently of the material class it is referred to.
We can call the assumption the principle of frame indifference of the stress.

4.4.2 Material Isomorphisms

Let us restrict once again our attention to the class of simple materials. The con-
stitutive structure indicated by (4.19) is referred to a reference place B, as we
have already mentioned. To put in evidence the dependence on the reference
configuration, we could write explicitly B as a subscript of � , namely

� D Q�B.F.x; t/; x/:

The previous relation states that the reference place B is occupied by a body
consisting of a simple material, and nothing more. Consider two distinct points x1
and x2 in B. They are occupied by two different material elements. A question is
how we can give formal expression to the statement “the two elements at x1 and x2
are made of the same simple material” by exploiting only the concepts discussed
so far. A viewpoint on this problem was suggested by Walter Noll in 1958. We say
that the two elements are made of the same type of material elements when (1)
Q�.x1/ D Q�.x2/ and (2) under the same strain, they undergo in time the same stress.
In other words, the two material elements at x1 and x2 have the same mass and are
indistinguishable by local measures of stress under the same strain. In short, we say
that the two elements are materially isomorphic.

The same question can be asked about two points x1 and x2 pertaining to two
distinct reference configurations B1 and B2 of different simple bodies. To allow the
comparison, we assume the possibility of establishing between at least a pair of
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neighborhoods I.x1/ and I.x2/ of x1 and x2 a one-to-one differentiable mapping
f W I.x1/ �! I.x2/, with differentiable inverse, a diffeomorphism. Let us write H
for Df �1.x/.

Definition 5. We say that there is a material isomorphism between x1 and x2 when
at every instant,

1. Q�.x1/ D Q�.x2/,
2. Q�.F/ D Q�.FH/, where we leave understood the dependence on x.

Condition (1) in the previous definition implies that det H is unitary, thanks to
the balance of mass. We summarize formally the previous statement by writing
H 2 UnimC.R3;R3/ and reduce further the notation to Unim to indicate the
unimodular group of linear operators from R

3 into R
3. In particular, we need

UnimC, i.e., the subgroup of second-rank tensors with determinant equal to 1. The
restriction is necessary because if we assume det F > 0, we need also det FH > 0.
When H is the identity, the second condition in the previous definition is trivially
satisfied. However, there could be other linear operators H satisfying that condition.
Write H and K for two of them. We should have then

Q�.F/ D Q�.FH/

and

Q�.F/ D Q�.FK/;

which implies

Q�.F/ D Q�.FHK/:

As a special case, the map f can be selected so as to map at x 2 B the
neighborhood I.x/ onto itself. With this choice, if H satisfies condition (2), then
H�1 does also. In this case, the set of H satisfying condition (2) contains the identity
and is closed under the composition .H;K/ 7�! HK 2 Unim and the inverse
operation. Such a set is then a group, and we call it the symmetry group of the
material occupying the reference place B at a point x. Let us denote it by GB.x/. It is
a subgroup of UnimC. The special orthogonal group SO.3/ is a maximal subgroup
of UnimC. When GB.x/ is a proper subgroup of UnimC and contains SO.3/, then
it coincides with SO.3/ itself. In Noll’s view, the nature of the symmetry group
discriminate between simple solids and simple fluids.

Definition 6. Along orientation-preserving motions we call a material element at
x solid when at every instant, its symmetry group GB.x/ is included in SO.3/ or
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coincides with it, while we call it fluid when the symmetry group is the whole of
UnimC.4

Imagine that a body is solid at x. Choose H D NQT 2 SO.3/. Condition (2) in the
definition of material isomorphism can then be written as

Q�.F/ D Q�.F NQT/;

with NQ of the type NQA
BeA ˝ eB, i.e., a linear operator mapping vectors over the

reference space onto covectors of the same space. When such a NQ acts on the right as
in the previous formula involving the stress, it maps covectors of the reference space
onto covectors of the same space. We use the transpose of NQ when it is applied on
the right to allow the action of the same component (although now in contravariant
position) operating when it acts on the left.

4.5 Symmetry Group and Changes of the Reference Place

Consider another reference place B0, obtained from B by means of a one-to-one
differentiable mapping h W B �! B0 with derivative having nonzero determinant.
Write G for Dh.x/ (recall that we take det G ¤ 0, so that G�1 exists). Write also x0
for h.x/. Assume that it is possible to reach the same actual configuration Ba from B0
and B using different deformations, and write F0 and F for the relevant deformation
gradients evaluated at x0 and x, respectively. Figure 4.3 explains the situation.

Since the deformed configurations are the same, if we are handling a body made
of a simple material, we should have

Q�.F0/ D Q�.FG�1/:

This remark allows us to find a relationship between the two symmetry groups
GB0.x0/ and GB.x/. We have first

4The definition is different from that proposed in 1959 (and refined in 1972) by Noll. In fact, he
calls a material element at x solid when its symmetry group is included in the full orthogonal
group and not only its special subgroup of rotations. In other words, in the definition of solids,
Noll includes reflections. Then he calls a material element having the full unimodular group
as symmetry group fluid. In proposing such a definition, however, Noll does not impose the
orientation-preserving nonlinear constraint det F > 0. In this way, he can select as changes in
observers those involving the full orthogonal group. In other words, with y and y0 the actual
placements of the same material element evaluated by two observers, O and O0 respectively,
which differ from each other by a time-parameterized family of isometries, we have always
y0 D y C w.t/ C Q.t/.y � y0/, with w.t/ 2 R

3, but now Q.t/ 2 O.3/ instead of Q.t/ belonging
just to SO.3/. In this setting, even the notion of objectivity changes, because it involves the full
orthogonal group, i.e., reflections in addition to rotations.
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Fig. 4.3 Reaching the same actual configuration from different reference places

Q�.FG�1/ D Q�.FHG�1/ (4.22)

with H 2 GB.x/. Figure 4.4 clarifies the identity.
We then obtain

Q�.F0/ D Q�.FHG�1/ D Q�.FG�1GHG�1/ D Q�.F0GHG�1/ (4.23)

and

Q�.F0/ D Q�.F0H0/ (4.24)

with H0 2 GB0.x0/.
Notice that GHG�1 is unimodular, because H is. As a consequence, the two

symmetry groups GB.x/ and GB0.x0/ are related, and we have

GB0.x0/ D GGB.x/G
�1:

In particular, when the reference place is just rotated so that G D NQ 2 SO.3/, the
previous relation reduces to

GB0.x0/ D NQGB.x/ NQT: (4.25)
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Fig. 4.4 Sketch justifying the identity (4.22)

The orthogonal tensor NQ appearing in (4.25) acts on the reference place. Let
us now consider a classical change in observer: an isometric transformation of the
ambient space onto itself determined by the action of the Euclidean group over
the physical ambient space. The assumed objectivity of the stress tensor can be
written—as we already know—as

Q�.QF/ D Q Q�.F/QT;

with now Q D Qi
j Qei ˝ Qej, and Q�.F/ D � i

j Qei ˝ Qej. We could ask now for a condition
ensuring that Q belongs to the symmetry group GB.x/, provided that we have the
identification of the reference space with the ambient one. If Q belonged to GB.x/,
we should have

Q�.QF/ D Q�.QFQT/:

Hence, the required condition is

Q�.QFQT/ D Q Q�.F/QT; (4.26)

where we recall that QT appearing on the right-hand side of F acts on the reference
space, while Q in premultiplication positions maps vectors in the ambient space
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into vectors of the same space. The condition (4.26) is in general not necessarily
satisfied by all the elements of SO.3/, those that can be involved in classical changes
in observers. When Q�.�/ satisfies (4.26) for all the elements of SO.3/, we call it
isotropic.5 In fact, tensor-valued functions are defined isotropic with respect to the
full orthogonal group O.3/. Here, since the a priori condition det F > 0 excludes any
role for the subgroup of reflections (the one composed of orthogonal second-rank
tensors with determinant equal to �1), we involve just SO.3/ in the definition of
isotropic functions. Isotropic functions are advantageous because there are explicit
representation theorems for them.

4.6 Isotropic Simple Materials

4.6.1 Simple Bodies

Definition 7. We call a simple material isotropic at a point x in a reference shape
B when its symmetry group GB.x/ contains the full special orthogonal group SO.3/.
When a simple material is isotropic at all points x in B, we call it isotropic without
further specifications.

– Since SO.3/ is maximal in UnimC, if the symmetry group of a simple isotropic
material is a proper subgroup of UnimC, the material is necessarily a solid.

– Every simple fluid is isotropic.

Definition 8. When F D I, we say that a material element placed at x in B is
undistorted after the deformation determining such an F.

Proposition 9. In a simple isotropic material, the stress pertaining to an undis-
torted state of a material element is spherical,6 namely � D �pI, with p 2 R the
so-called pressure,7 and I the second-rank identity tensor.

Proof. In the special case given in the proposition, the condition (4.26) reduces to
Q�.I/ D Q Q�.I/QT, since QIQT D QQT D I. The identity states that � must commute
with every Q 2 SO.3/. Then � has to be of the form ˛I, with ˛ a scalar that we
indicate by �p for future convenience. �

Proposition 10. For a compressible nonviscous simple fluid we have � D �pI,
where the pressure p is a function of the mass density.

5The definition is justified here by the exclusion of reflections due to the orientation-preserving
constraint. In the absence of it, we usually call the tensor-valued functions satisfying (4.26) for all
elements of O.3/ isotropic.
6Recall that a second-rank tensor is called spherical when it is of the form ˛I, with ˛ a scalar and
I the unit second-rank tensor.
7The pressure appears also in different contexts. An example is nonviscous compressible fluids.
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Proof. By the definition of a fluid, the stress � must be such that Q�.F/ D Q�.FH/
for every H 2 UnimC. A special choice of H is H D .det F/

1
3 F�1, which is

unimodular, since we have det H D
�

.det F/
1
3

�3

det F�1 D det F

det F
D 1. The choice

is justified, however, after identification of the reference space with the ambient one.
A consequence is then

Q�.F/ D O�
�

.det F/
1
3 I
�

:

A simple fluid is also isotropic. Then the argument followed in the proof of the
previous proposition implies the spherical structure of the stress, but now the
pressure p is a function of det F, i.e., of the actual density of mass �, thanks to
the mass balance � D �a det F. �

The pressure appears also as a reactive stress determined by the constraint of
incompressibility in both solids and fluids. The next section clarifies the point. In
any case, when the Cauchy stress is spherical, the balance of momentum becomes

�aa[ D ba � Dyp;

or more explicitly,

�
@v[

@t
C �.Dyv

[/v D ba � Dyp;

which is the system of Euler equations.

4.6.2 A Digression on Incompressible Viscous Fluids

Constraints between a body and its surrounding environment appeared already in
Chapter 1, where we also defined rigid bodies as those admitting just motions of
the type Qy.x; t/ D w.t/ C Q.t/.x � x0/, with w.t/ 2 R

3 and Q.t/ 2 SO.3/. This
last requirement can be viewed as an internal constraint, for it deals with the inner
structure of the material, i.e., the possibility of the material elements changing their
places relative to one another.

More generally, we can think of an internal constraint of the type

�.F/ D 0;

with � a differentiable function of its argument. Physical requirements restrict its
generality.
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– Assumption 1: The function � is objective.

This assumption implies that the constraint has to be considered a function of QC,
or equivalently, C, i.e.,

�.F.x; t// D O�.C.x; t//:

By time differentiation, we write

@ O�
@C
� PC D 0:

We have also (see Chapter 1)

PC D 2F�.Sym.QgDyv//F D 2F�DF

with D WD Sym.QgDyv/, so that

@ O�
@C
� PC D 2 @ O�

@C
� F�DF D 2F

@ O�
@C

F� � D D 0: (4.27)

The condition O�.C/ D 0 restricts the class of simple bodies that we are discussing.
Associated with such a constraint we could consider it natural to imagine a reactive
stress � r.

– Assumption 2: � r determines the additive decomposition

� D �a C � r; (4.28)

where �a is the active stress endowed with energetic and/or dissipative factors.
– Assumption 3: � r is powerless, i.e.,

� r � D D 0

for every D. The constraint is, in this sense, holonomic. This assumption and

equation (4.27) imply that � r must be proportional to F
@ O�
@C

F�. Write �p for the

scalar proportionality factor. We must have then

� r D �pF
@ O�
@C

F�: (4.29)

– Assumption 4: We consider a homogeneous viscoelastic simple material, i.e.,

�a D � e.F/C �d.F; PF/: (4.30)
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– Assumption 5: The symmetry group is UnimC, i.e., we are handling a fluid.
Moreover, we assume

� e D 0; (4.31)

i.e., there is no energetic component of the stress.

This assumption implies from the second law of thermodynamics that the free
energy is constant with respect to the strain—we could have taken such a result as
an assumption in place of � e D 0. Moreover, we obtain also (see previous sections)

�d � D � 0:

A possible solution of this inequality is

�d D N�D#; (4.32)

with N� > 0 and D# D Qg�1DQg�1, i.e., D# D Dij Qei ˝ Qej.

– Assumption 6: The material under consideration is incompressible, i.e.,

O�.C/ D det C � 1:

Recall that det C D .det F/2. The volume does not vary when det F D 1, i.e.,
det C D 1. This last assumption implies

@ O�
@C
D @ det C

@C
D C�T det C D C�T D C�1;

the last identity being justified by the symmetry of C. Consequently, we compute

F
@ O�
@C

F� D FC�1F� D Qg�1:

– Assumption 7: The spatial metric Qg is flat (i.e., Qg coincides with the identity).
Then equation (4.29) can be written as

� r D �pI: (4.33)

The previous assumptions imply that when we change the shape of the body
satisfying them, we just have friction among neighboring material elements.
We exclude, in fact, elastic material bonds (Assumption 5) and mass density-
dependent pressure (Assumption 6). Consequently, in physical terms, we are
handling what we commonly call a viscous incompressible fluid.
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Moreover, we compute

div �d D N� div D# D N��v C N�rydiv v D N��v;
the last identity being justified, since the incompressibility assumption above
implies div v D 0 as a consequence of the Euler identity (see Chapter 3).

By taking into account the relations (4.28), (4.30), (4.31), (4.32), and (4.33),
under the validity of the previous assumptions, the pointwise balance of forces
becomes

�aa D N��yv � rypC b;

where the Laplacian �y and gradient ry operators are evaluated with respect to y;
the variable y appears in subscript position just to indicate this circumstance. When
noninertial body forces are absent, i.e., when b D 0, the previous equation reduces to

�a

�
@v

@t
C .ryv/v

�

D N��yv � ryp;

which is the system of the Navier–Stokes equations, after Claude-Louis Navier
(1785–1836) and George Gabriel Stokes (1819–1903).

4.6.3 Isotropic Elastic Solids in the Large-Strain Regime

Objectivity requires that the elastic energy density be a function of the right Cauchy–
Green tensor:

e D Qe.x;C/:
When the material is isotropic, for any NQ 2 SO.3/ we have

Q�.F/ D Q�.F NQ/:

Under the transformation F �! F NQ, we obtain

C D F� QgF �! NQ�C NQ D NQ�F� QgF NQ:

The isotropy can be interpreted by stating that the energy density does not change
under rotations of the reference place. We say, in short, that the energy density e is
rotationally invariant. Then, since C is symmetric, we can find a rotation bringing it
into a diagonal form. In this way, the energy density is in this case a function of the
eigenvalues of C, namely the solutions of the algebraic equation

�3 � I1.C/�
2 C I2.C/� � I3.C/ D 0;
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where I1.C/ is the trace of C, I2.C/ D .det C/tr C�1, I3.C/ D det C. Since the
coefficients of the previous equation are real and their algebraic signs alternate, we
obtain three real eigenvalues �1, �2, �3 such that

I1.C/ D �1 C �2 C �3; I2.C/ D �1�2 C �2�3 C �1�3; I3.C/ D �1�2�3:

Moreover, by the Cayley–Hamilton theorem, C itself satisfies the equation

C3 � I1.C/C
2 C I2.C/C � I3.C/ D 0;

and the circumstance allows us to evaluate both C�1 and C�2. In fact, if we multiply
the previous equation by C�2 and C�1 respectively, we get

OC�2 D 1

I3.C/
. OC � I1OI C I2 OC�1/ (4.34)

and

OC�1 D 1

I3.C/
. OC2 � I1 OCC I2OI/; (4.35)

where the hat indicates that the tensors involved are 1-contravariant, 1-contravariant,
namely

OC�1 WD C�1g D . OC�1/ABeA ˝ eB;

so OC is defined by

OC WD g�1C:

The eigenvalues �i of C are complicated functions of C. Then it appears
convenient to assume that the elastic energy is a differentiable function of the
invariants of C, namely Ii.C/, rather than its eigenvalues, namely

e D Qe.x; I1.C/; I2.C/; I3.C//:

The derivative of e with respect to C is given by

@e

@C
D @e

@I1.C/

@I1.C/

@C
C @e

@I2.C/

@I2.C/

@C
C @e

@I3.C/

@I3.C/

@C
; (4.36)

since the invariants Ii.C/ are differentiable functions of C.
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Lemma 11. The following relations hold:

@I1.C/

@C
D g�1; (4.37)

@I2.C/

@C
D

I2.C/

I2.C/
.C#2 � I1C

# C I2I
#/C .C# � I1I

# C I2C
�1/

(4.38)

@I3.C/

@C
D .C#2 � I1.C/C

# C I2.C/I
#/; (4.39)

where C# D CABeA ˝ eB D g�1Cg�1 and I# is the 1-covariant, 1-contravariant
identity

Proof. We write CAA for the trace of C when the metric in the ambient space is flat
(i.e., gAB coincides with ıAB). When the metric is not flat, we recall that

tr C D CABgBA D C � g�1;

which is identical to the standard notation when g is the identity. Consequently,
by taking the derivative with respect to C, we obtain the relation (4.37). The
determinant of C is given by

det C D eEDBCA1BCA2DCA3E;

where A1;A2;A3 is a fixed even permutation of 1; 2; 3. We compute

@ det C

@CA1B
D eBEDCA2DCA3E D eBEDCA2DCA3ECA1R.C

�1/RA1

D eBEDCA2DCA3ECA1Bı
B
R.C

�1/RA1 D .det C/.C�1/BA1

D .det C/.C�1/A1B;

which implies from (4.39) from (4.35). The proof of the relation (4.38) follows also
from a direct calculation. We get, in fact,

@I2.C/

@C
D @

@C
det Ctr C�1 D .det C/C�1tr C�1 C .det C/

@tr C�1

dC

D .det C/C�1tr C�1 C .det C/tr
@C�1

@C
:

(4.40)

We have also CC�1 D I#, with I# the 1-covariant, 1-contravariant identity, i.e.,

CAB.C
�1/BD D ıD

A ;
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and we compute

@

@CAE
CAB.C

�1/BD D ıE
B.C

�1/BD C CAB
@.C�1/BD

@CAE
D 0:

Then we obtain

@.C�1/BD

@CAE
D �.C�1/AB.C�1/ED:

The derivative
@C�1

@C
is a fourth-rank tensor. Its trace is a second-rank tensor

obtained by saturating the indices A and D. Then we get

tr
@.C�1/
@C

D �C�2:

The second-rank tensors C�2 and C�1 follow from (4.34) and (4.35) respectively
once we multiply from the right by g�1. Insertion of the results into (4.40)
gives (4.38). �

Using the lemma, from the derivative (4.36), we get

P D 2QgF
@e

@C
D 2QgF.r1g

�1 C r2C
# C r3C

#2/; (4.41)

where we have included the mass density in e, for the sake of conciseness, and r1, r2,
and r3 are coefficients emerging from the introduction of (4.37), (4.38), and (4.39)
into (4.36). We leave to the reader the explicit derivation of the coefficients. We just
want to note here the general expression of the derivative of the energy density with
respect to C.

If we do not use (4.34) and (4.35) in the proof of the previous lemma and
insert (4.40) into (4.36), we get

@e

@C
D @e

@I1
g�1 C

�
@e

@I2
C @e

@I3
I3

�

C�1 � @e

@I2
I3C

�2:

4.6.4 Isotropic Simple Materials in the Small-Strain Regime

Consider in the small-strain regime the elastic energy as a quadratic form in ".
Isotropy implies the dependence of the energy on the invariants of ", excluding
I3."/ D det ", because the determinant of a 3 � 3 matrix is cubic. For the second
invariant of ", we can consider the expression
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I2."/ D 1

2

�

.tr "/2 � tr "2
�

:

This formula can be proven by writing " in terms of its eigenvalues and
computing directly I2."/. The result does not depend on the vector basis chosen
because I2."/ is rotationally invariant. Consider8

e."/ D �j"j2 C �

2
.tr "/2:

The resulting stress–strain relationship is of the form

�ij D @e

@"ij
D �.tr "/gij C 2�"ij;

and it emerges from the linearization of (4.41), and the use of g. Notice that we do
not distinguish between g and Qg as well, since we confuse B with Ba on identification
of E3 and QE3. The previous relation can also be written as

�ij D Cijhk"hk; (4.42)

provided that

Cijhk D �gijghk C �.gikgjh C gihgjk/: (4.43)

When the metric is flat, we get

�ij D �.tr "/ıij C 2�"ij

and

Cijhk D �ıijıhk C �.ıikıjh C ıihıjk/:

If the material is homogeneous, then � and � do not depend on x, an assumption
that we accept from now on, unless otherwise specified. In this case, we call � and
� the Lamé constants after Gabriel Lamé (1795–1870). They define in the small-
strain regime the linear elastic constitutive relation (4.42) with C given by (4.43).
In this case, by evaluating the trace of � , we get

tr � D .2�C 3�/tr ";
i.e.,

tr " D 1

2�C 3� tr �;

8Here � has nothing to do with d�, which denotes the volume measure.
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which implies

" D 1

2�

�

� � �

2�C 3� tr � I

�

: (4.44)

Consider a test in which �11 ¤ 0 and �ij D 0, fi; jg ¤ f1; 1g. We get

"11 D 1

2�

�

1 � �

2�C 3�
�

�11;

i.e.,

�11 D E"11;

where E is given by

E D �.2�C 3�/
�C �

and is called Young’s modulus after Thomas Young (1773–1829). Moreover, for
the strain components "22 and "33, we compute

"22 D "33 D � �

2�.2�C 3�/�11

and define

� WD �"22
"11
D �"33

"11
D �

2.�C �/ ;

calling it Poisson’s ratio after Simon-Denis Poisson (1781–1840). In a linear elastic
isotropic material, the elongation along a given direction implies then a transversal
contraction. Algebra leads us to the identity

�

1C � D
�

2�C 3�;

so that we can write the stress–strain linear elastic isotropic relation as

" D 1

2�

�

� � �

1C � tr � I

�

;

an expression that we shall find useful in the subsequent development.

Theorem 12. Take C isotropic in a Cartesian frame. Consider C as a linear map
from the space of symmetric second-rank tensors onto itself. Provided that � ¤ 0, C
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has two eigenvalues, namely 2�C 3� and 2�. The relevant eigenspaces are those
of spherical and traceless second-rank symmetric tensors.

Proof. We consider first two independent mechanisms: uniform pressure and pure
shear. In the first case, the stress � is of the form � D �pI, with p a scalar.
Consequently, from (4.44) we get

" D 1

2�

�
3�

2�C 3� � 1
�

pI:

Then " is spherical: it is of the form eI. We have also

tr " D 3e D � 3

2�C 3�p;

i.e.,

� p D 3ke; (4.45)

with

k D �C 2

3
�;

called the bulk modulus. Then 3k is an eigenvalue of C, as stated by (4.45).
Consider now

" D ˇ Sym.m˝ n/;

with ˇ a scalar and m and n two linearly independent vectors. In this case, we get

� D 2�ˇ Sym.m˝ n/;

i.e., 2� is an eigenvalue of C, which is here isotropic in general. Let ˛ be a generic
eigenvalue of C. By definition, we have

C" D ˛":

Since the tensor C considered here is isotropic, we can write the previous relation as

.2� � ˛/"C �.tr "/I D 0: (4.46)

When ˛ D 2� (one of the two eigenvalues of C), we obtain tr " D 0, since
� ¤ 0. In other words, the eigenspace corresponding to the eigenvalue ˛ D 2� is
the space of traceless tensors. When ˛ D 2�C 3�, equation (4.46) becomes

�3�"C �tr "I D 0;
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which is satisfied when " D 1

3
.tr "/I, since � ¤ 0, so that the eigenspace associated

with the eigenvalue 2�C 3� is the space of spherical tensors. �

The inequalities

� > 0 and 2�C 3� > 0

ensure the positive definiteness of C. Alternatively, we can impose the following
pairs of inequalities:

� > 0 and k > 0;

� > 0 and � 1 < � < 1

2
;

E > 0 and � 1 < � < 1

2
;

by taking into account previous definitions of k, �, E. The positive definiteness of C
implies the positivity of the elastic energy density

e."/ D 1

2
" � C":

4.7 Additional Remarks

In contrast with what we have done so far, we could assume a priori the constitutive
relation

� D C"

with C endowed only with minor symmetries, imagining that this choice defines the
range of linear elasticity. Then we could prove the existence of the elastic energy
under the restrictive condition that C is endowed with major symmetry. According
to tradition, we should then call this case hyperelastic. We have followed the
opposite approach, showing a preference for the hyperelastic setting that we call
simply elastic, for we find it thermodynamically natural and sound. The reader, of
course, can have a different opinion.



Chapter 5
Topics in Linear Elasticity

5.1 Minimum of the Total Energy

Under small-strain linear elastic behavior, we call a triplet of fields Ou.�/, O".�/, O�.�/,
denoted by & , such that

– Ou 2 C2.B/ \ C. NB/,
– Sym DOu 2 C. NB/, with NB the closure of B,
– O".�/ 2 C.B/,
– O�.�/ 2 C1.B/ \ C. NB/,
– div O� 2 C. NB/,
an admissible state.

We write u, ", � for the values Ou.x/, O".x/, and O�.x/, respectively. We then have
u 2 R

3, ", and � 2 Sym.R3;R3/.
We denote by A the space of admissible states. It is a function space.
We consider mixed boundary conditions, which means that we subdivide the

boundary @B of the region B that the body occupies into two distinct pieces @Bu

and @Bf , i.e., @Bu [ @Bf D @B and @Bu \ @Bf D ¿, and we assign surface forces f
along @Bf through a piecewise smooth map x 7�! f .x/ 2 R

3; x 2 @Bf , and prescribe
Qu.x/ D Nu.x/ for x 2 @Bu, with Nu.�/ an assigned continuous function. The body is
also subjected to noninertial body forces b.

For the bulk elastic energy density E."/, we consider the quadratic expression

E."/ D 1

2

Z

B
" � C" d�;

with C endowed with the symmetries already discussed.

© Springer Science+Business Media New York 2015
P.M. Mariano, L. Galano, Fundamentals of the Mechanics of Solids,
DOI 10.1007/978-1-4939-3133-0_5

147



148 5 Topics in Linear Elasticity

Lemma 1. If x 7�! ".x/ 2 Sym.R3;R3/ and x 7�! N".x/ 2 Sym.R3;R3/ are
square-integrable fields, we have

E."C N"/ D E."/C E.N"/C
Z

B
" � CN"d�:

Proof. Due to the symmetry of C, we obtain

N" � C" D " � CN":

Then we compute

."C N"/ � C."C N"/ D " � C"C N" � CN"C 2" � CN": ut

Notice that in the previous proof, C can depend on x, i.e., the material can be
inhomogeneous. Here we assume that the map x 7�! C.x/ is smooth over B and
continuous over its closure NB.

We say that a triplet of fields Ou.�/, O".�/, and O�.�/, a state, is kinematically
admissible when

" D Sym Du; � D C"; u D Nu along @Bu:

The set A.k/ of kinematically admissible states contains stress fields that do not
necessarily satisfy the balance equations with the data b and f prescribed. States
satisfying the balance equations are characterized by the following theorem.

Theorem 2. Let Etot W A.k/ 7�! R be the total energy defined by

Etot.&/ WD E."/ �
Z

B
b � u d� �

Z

@Bf

f � u dH2:

Let also & be a solution of the mixed boundary value problem (as specified
above). Then & realizes the minimum of the total energy, namely

Etot.&/ � Etot. Q&/

for every Q& 2 A.k/, with equality holding when Q& D & modulo a rigid displacement.

Proof. Let the state & be a solution of the mixed boundary value problem. For Q& 2
A.k/, define

& 0 WD Q& � &:
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This new state is such that

"0 D Sym Du0; � 0 D C"0; u0 D 0 on @Bu;

with

u0 D Qu � u; "0 D Q" � "; � 0 D Q� � �:

By the previous lemma, we get

E.Q"/ D E."C "0/ D E."/C E."0/C
Z

B
"0 � C" d� D E."/C E."0/C

Z

B
� � "0d�;

and Gauss’s theorem implies

Z

B
� � "0d� D

Z

@Bf

�n � u0dH2 �
Z

B
u0 � div �d�:

The surface integral in the previous expression is limited to @Bf , because u0 vanishes
identically over @Bu. The definition of Etot implies then

Etot. Q&/ � Etot.&/ D E.Q"/ � E."/ �
Z

B
b � .Qu � u/d� �

Z

@Bf

f � .Qu � u/dH2

D E."0/ �
Z

B
.div � C b/ � u0d�C

Z

@Bf

.�n � f / � u0dH2:

Since & is a solution of the boundary value problem, the relevant stress field is such
that

div � C b D 0 and �n D f along @Bf :

Consequently, we obtain

Etot. Q&/ � Etot.&/ D E."0/ D 1

2

Z

B
"0 � C"0d�:

Then, since C is positive definite,

Etot. Q&/ � Etot.&/ D 0

if and only if

"0 D Q" � " D 0;
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i.e., when Qu equals u modulo a rigid displacement. In fact, take

Qu D uC wC q � .x � x0/;

with w and q constant vectors in space. We get

DQu D DuC eq

with eq a skew-symmetric second-rank tensor with ijth component given by
eijkqk, with eijk the Ricci symbol. The symmetric part of the previous relation is
then Q" D ". ut

5.2 Minimum of the Complementary Energy

Write A.&/ for the set of statically admissible states, i.e., those with stress fields
satisfying the balance equations and the constitutive relation, namely

div � C b D 0; � 2 Sym; �n D f along @Bf ; � D C"

with b, f , and @Bf pertaining to the mixed boundary value problem defined in the
previous section. Let Ec.�/ be defined by

Ec.�/ WD 1

2

Z

B
� �K� d�

with K WD C
�1. Since C is positive definite, K is also positive definite. The quantity

Ec is generally called the complementary energy.
Define also EC

c W A& 7�! R by

EC
c .&/ WD Ec.�/ �

Z

@Bu

�n � Nu dH2:

Theorem 3. Let & be a solution of the mixed boundary value problem, which
implies the inclusion & 2 A.k/ \A.&/. Then & minimizes EC

c , i.e.,

EC
c .&/ � EC

c . Q&/

for every Q& in A.&/. The equality sign holds only when Q& D & .

Proof. For every Q& in A.&/, the admissible state & 0 D Q& � & has a stress field
� 0 D Q� � � such that

div � 0 D 0 and � 0n D 0 along @Bf ; (5.1)
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since both Q� and � satisfy the balance equations with the same data. By the lemma
in the previous section, we write

Ec. Q�/ D Ec.� C � 0/ D Ec.�/C Ec.�
0/C

Z

B
� 0 � " d�: (5.2)

Since & is also kinematically compatible, since it is a solution of the mixed boundary
value problem considered here, " coincides with the symmetric part of Du, and we
have, by Gauss’s theorem,

Z

B
� 0 � " d� D

Z

@B
� 0n � u dH2 �

Z

B
u � div � 0d�;

which reduces to
Z

B
� 0 � " d� D

Z

@Bu

� 0n � u dH2 D
Z

@Bu

. Q� � �/n � u dH2;

due to (5.1). Then by substitution in (5.2), we find

EC
c . Q&/ � EC

c .&/ D Ec. Q�/ � Ec.�/ �
Z

@Bu

Q�n � u dH2

C
Z

@Bu

�n � u dH2 D Ec.�
0/ D 1

2

Z

B
� 0 �K� 0d� � 0;

since K is positive definite. The equality sign holds when � 0 D 0, that is, when
Q� D � . ut

5.3 The Hellinger–Prange–Reissner stationarity principle

We need to satisfy four conditions for solving the mixed problem in linearized
elastostatics: .1/ the strain-displacement compatibility, .2/ the validity of the stress–
strain linear constitutive equations, .3/ the identity u D Nu along the portion @Bu of
the boundary @B where the displacement is prescribed, .4/ the balance equations in
the bulk and along the boundary @Bf where forces are applied. Recall the assumption
@Bf \ @Bu D ¿ with @Bf [ @Bu D @B.

In both theorems discussed in the two previous sections, some conditions are
assumed to hold. A state realizing the minimum of the functionals considered there
satisfies all four conditions. Options are possible. We can start, for example, by
considering the subset of A including admissible states for which just the strain-
displacement compatibility is granted a priori. Let us denote by A&d such a set.
Notice that for u and Qu admissible displacement fields, with ˛ a scalar, we have
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Sym D.u C ˛ Qu/ D Sym Du C ˛Sym DQu. Hence, if & and Q& belong to A&d, then
& C ˛ Q& 2 A&d, the sum of two states being defined by the state composed by the
sum of the relevant fields, namely & C ˛ Q& D .uC ˛ Qu; "C ˛ Q"; � C ˛ Q�/.
Theorem 4 (Ernst David Hellinger, 1914, G. Prange, 1916, Eric Reissner, 1950).
Let EHPR.&/ W A&d 7�! R be defined by

EHPR.&/ WD Ec.�/�
Z

B
� �" d�C

Z

B
b �u d�C

Z

@Bu

�n � .u� Nu/dH2C
Z

@Bf

f �u dH2:

A state renders EHPR stationary if and only if it is a solution of the mixed boundary
value problem in linearized elastostatics.

Before going into the details of the formal proof, we recall that the stationarity
of EHPR is ensured at all states where the first variation of EHPR, denoted by ıEHPR,
vanishes. We say that the condition is ensured at & 2 A&d when the derivative

ıQ&EHPR.&/ WD d

d˛
EHPR.& C ˛ Q&/

ˇ
ˇ
ˇ
ˇ
˛D0

(5.3)

exists and vanishes for every Q& 2 A&d.
The definition has a geometric interpretation. We can think of ıQ&EHPR.&/ as the

derivative of EHPR along the “direction” Q& , evaluated at & . In this way, when we
state that the first variation of EHPR vanishes at a state & , we are saying that the
first derivatives of that functional along all the possible “directions,” evaluated at & ,
vanish.

Proof. Take & and Q& in Asd. By the lemma in Section 5.1, we get

Ec.� C ˛ Q�/ D Ec.�/C ˛2Ec. Q�/C ˛
Z

B
Q� �K� d�:

Hence, by computing the derivative in (5.3), we obtain

ıQ&EHPR.&/ D
Z

B
..K� � "/ � Q� � � � Q"C b � Qu/d�

C
Z

@Bu

. Q�n � .u � Nu/C �n � Qu/dH2 C
Z

@Bf

.f � Qu/dH2:

(5.4)

Since � is symmetric and the compatibility between Q" and Qu is ensured a priori as
Q& 2 A&d, by Gauss’s theorem we obtain

Z

B
� � Q" d� D

Z

B
� � DQu d� D

Z

@B
�n � Qu dH2 �

Z

B
Qu � div � d�: (5.5)



5.4 The Hu–Washizu Variational Principle 153

By inserting the result into (5.4), ıQ&EHPR.&/ reduces to

ıQ&EHPR.&/ D
Z

B
..K� � "/ � Q� C .bC div �/ � Qu/d�

C
Z

@Bu

. Q�n � .u � Nu/dH2 C
Z

@Bf

.f � �n/ � Qu dH2:

(5.6)

If & is a solution of the mixed boundary value problem, we get

ıQ&EHPR.&/ D 0 (5.7)

for every choice of Q& , which is

ıEHPR.&/ D 0: (5.8)

Conversely, if & satisfies the equations (5.8), i.e., (5.7) for every choice of Q& D
.Qu; Q"; Q�/, by the fundamental theorem of calculus, from the expressions (5.5)
and (5.6) it follows that & is a solution of the mixed boundary value problem in
linearized elastostatics. ut

Although the stress fields appearing in the definition of admissible states are
symmetric, they do not correspond necessarily to the tractions satisfying the integral
balances with assigned data b and f .

5.4 The Hu–Washizu Variational Principle

We can weaken further the approach by assuming that none of the conditions of the
mixed boundary value problem in linearized elastostatics is satisfied a priori. Even in
this case, we can show that a solution of the mixed boundary value problem renders
stationary a certain functional, let us denote it by EHW , defined over the whole space
of admissible states.

Theorem 5 (M. Fraeijs de Veubekele Baudouin, 1951, Haichang Hu, 1955,
K. Washizu, 1955, 1968). Let EHW.&/ W A 7�! R be defined by

EHW.&/ WD E."/ �
Z

B
� � " d� �

Z

B
.bC div �/ � u d�

C
Z

@Bu

�n � Nu dH2 C
Z

@Bf

.�n � f / � u dH2:

Then EHW becomes stationary at & if and only if & itself is a solution of the mixed
boundary value problem in linearized elastostatics.
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Proof. With & D .u; "; �/ and Q& D .Qu; Q"; Q�/ in A, & C ˛ Q& 2 A for every ˛ 2 R. By
the lemma in Section 5.1, we also get

E."C ˛ Q"/ D E."/C ˛2E.Q"/C ˛
Z

B
Q" � C" d�:

Then we can compute

ıQ&EHW.&/ WD d

d˛
EHW.& C ˛ Q&/

ˇ
ˇ
ˇ
ˇ
˛D0

D
Z

B
..C" � �/ � Q" � .bC div �/ � Qu � Q� � " � u � div Q�/d�

C
Z

@Bu

Q�n � Nu dH2 C
Z

@Bf

. Q�n � uC .�n � f / � Qu/dH2:

Gauss’s theorem and the symmetry of Q� allow us to write

Z

B
u � div Q� d� D

Z

@B
Q�n � u dH2 �

Z

B
Q� � Sym Du d�;

so that

ıQ&EHW.&/ D
Z

B
..C" � �/ � Q" � .bC div �/ � Qu/d�

C
Z

B
.Sym Du � "/ � Q� d�C

Z

@Bu

Q�n � .Nu � u/dH2

C
Z

@Bf

.�n � f / � Qu dH2:

(5.9)

If & is a solution of the mixed boundary value problem, then ıQ&EHW.&/ D 0 for
every Q& 2 A, i.e.,

ıEHW.&/ D 0: (5.10)

Conversely, assume that (5.10) holds. By taking Q& 2 A of the form Q& D .Qu; 0; 0/,
equation (5.9) implies

Z

B
.bC div �/ � Qu d� D 0 (5.11)

for every Qu 2 A, i.e., bC div � D 0 thanks to the arbitrariness of Qu. The choice that
Qu vanishes near @Bf and the previous result imply also
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Z

@Bf

.�n � f / � Qu dH2 D 0 (5.12)

for every Qu 2 A, i.e., �n D f along @Bf . Also, for Q& 2 A of the form Q& D .0; Q"; 0/,
from equations (5.9) and (5.10) we obtain

Z

B
.C" � �/ � Q" d� D 0 (5.13)

for every Q", i.e., � D C". For Q& 2 A of the form Q& D .0; 0; Q�/, with Q� vanishing
near @B, from equations (5.9) and (5.10), we get

Z

B
.Sym Du � "/ � Q� d� D 0 (5.14)

for every Q� , i.e., the strain–displacement relation " D Sym Du. Moreover, if Q�
vanishes everywhere but @Bu, from equations (5.9) and (5.10) we obtain

Z

@Bu

Q�n � .u � Nu/dH2 D 0 (5.15)

for every Q� , i.e., u D Nu along @Bu. The relations (5.11) to (5.15) then imply that
& D .u; "; �/ is a solution of the mixed boundary value problem in linearized
elastostatics. ut

5.5 The Betti Reciprocal Theorem

Consider a body composed of a linear-elastic material with constitutive tensor C

depending continuously on x and having all major and minor symmetries.
Consider a first pair of bulk and surface actions, namely b
1 and f1, acting over

the body, and denote by u1 the displacement field solving the mixed boundary value
problem with boundary data f1 along @Bf and u D Nu along @Bf .

Take now a second pair of actions b
2 and f2, with the pertinent displacement field

u2 as above. Notice that both b
1 and b
2 may include inertial actions, so that what we
discuss here holds also in elastodynamics.

Theorem 6 (Enrico Betti, 1872). Under the previous conditions, the external work
performed by the actions b
1 and f1 over the displacements u2 equals the analogous

work of the pair b
2, f2 along u1.

Proof. We have already shown in Chapter 3 that the invariance of the external power
under classical changes in observers implies the identity with the internal power
under appropriate regularity conditions of the fields involved. That expression has
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its counterpart in terms of work, as emerges, e.g., by multiplying the pointwise
balances by u and integrating over B. As a consequence, we can write

Z

B
b
1 � u2 d�C

Z

@Bf

f1 � u2 dH2 D
Z

B
�1 � "2 d�

and
Z

B
b
2 � u1 d�C

Z

@Bf

f2 � u1 dH2 D
Z

B
�2 � "1 d�:

Due to the major symmetry of C, we have also

�1 � "2 D C"1 � "2 D "1 � C"2 D "1 � �2;

which proves the theorem, namely

Z

B
b
1 � u2 d�C

Z

@Bf

f1 � u2 dH2 D
Z

B
b
2 � u1 d�C

Z

@Bf

f2 � u1 dH2: ut

5.6 Kirchhoff’s Theorem

Theorem 7 (Gustav Robert Kirchhoff, 1859). The solution of the mixed bound-
ary value problem for the equilibrium of a linear-elastic body is unique to within a
rigid change of place.

Proof. Let u0 and u00 be two solutions of the mixed boundary value problem
specified above; "0 and "00 are the pertinent strain fields, while � 0 and � 00 are
the respective stress fields associated with them by the constitutive tensor C. By
assumption, we have

div � 0 C b D 0 in B; � 0n D f on @Bf ; u0 D Nu on @Bu;

� 0 D � 0T

and

div � 00 C b D 0 in B; � 00n D f on @Bf ; u00 D Nu on @Bu;

� 00 D � 00T:

By subtraction and after denoting by NN� and NNu the differences NN� D � 0 � � 00 and
NNu D u0 � u00, we obtain

div NN� D 0; NN�n D 0 on @Bf ; NNu D 0 on @Bu:
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By multiplication by NNu and integration, we get also

0 D
Z

B
NNu � div NN� d� D

Z

B
NN� � DNNu d� D

Z

B
NN� � NN" d�; (5.16)

where NN" WD Sym DNNu and we have used the symmetry of NN� and the boundary
conditions NN�n D 0 on @Bf and NNu D 0 on @Bu, so that

Z

@B
NN�n � NNu dH2 D 0:

Equation (5.16) can then be written as

Z

B
NN" � CNN" d� D 0;

since the material composing the body is linear-elastic. Since C is positive definite,
equality holds when NN" D 0, i.e., "0 D "00, so u0 differs by u00 just by a rigid
displacement. ut

5.7 The Navier Equations and the Biharmonic Problem

In this section, we consider a flat space, i.e., the metric is orthogonal, namely
gij D ıij. We then use systematically the natural identification of R

3 with its
dual R

3�. For this reason, we shall not distinguish covariant and contravariant
components, and we shall write the standard symbol of gradient, r, instead of
derivative D. The choice is dictated by the desire to express the results in this section
and the following one in traditional fashion.

For the reader’s convenience, we recall here some identities in tensor analysis
before going into details.

– Let x 7�! a.x/ 2 R
3 be a twice differentiable vector field. The following

identities hold:

div..div a/I/ D rdiv a; (5.17)

div.ra/T D rdiv a; (5.18)

div curl a D 0; (5.19)

�a D rdiv a � curl curl a: (5.20)

– If a.�/ is such that

div a D 0 and curl a D 0;



158 5 Topics in Linear Elasticity

then a is harmonic, namely

�a D 0:

– If a.x/ is a covector instead of a vector, then the previous identities hold, provided
that we make the substitution of r with D, even in the definition of the Laplacian
operator and the curl.

We disregard here inertia and assume that the displacement is four times
differentiable. We consider a body composed of a linear-elastic isotropic material,
i.e., we recall

� D C" D 2�"C �tr "I D �.ruCruT/C �.div u/I:

Here � and � are differentiable functions of x. By inserting such an expression into
the balance of forces, we get

div.�.ruCruT/C �.div u/I/C b D 0;

and using the identities (5.17) to (5.19), we compute

��uC 2.Symru/r�C .�C �/rdiv uC .div u/r�C b D 0:

When � and � are constant, the previous balance reduces to

��uC .�C �/rdiv uC b D 0; (5.21)

which is the system of Navier equations. In coordinates, we have

�ui;kk C .�C �/uk;ki C bi D 0;

where the choice of not distinguishing between covariant and contravariant compo-
nents is evident.

Using the identity (5.20), we can rewrite equation (5.21) as

.�C 2�/rdiv u � � curl curl uC b D 0: (5.22)

If we evaluate first the divergence of equation (5.22) and then its curl, we obtain
respectively

.�C 2�/�div u D �div b (5.23)

and

� � curl curl curl u D �curl b: (5.24)
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Since curl u is still a vector, taking into account the identity (5.19), we get

curl curl curl u D �curl u:

As a consequence, equation (5.24) can be written as

��curl u D �curl b: (5.25)

When curl b D 0 and div b D 0, with 1C 2� ¤ 0 and � ¤ 0, the equations (5.23)
and (5.25) reduce to

�div u D 0 and �curl u D 0;

that is,

div�u D 0 and curl�u D 0;

since the Laplacein differential operator commutes with div and curl. These last
relations imply then that �u is a harmonic vector function, namely

��u D 0;

i.e., u is biharmonic.

5.8 The Beltrami–Donati–Michell Equations

The one-to-one stress–strain correspondence in linear elasticity allows us to express
the strain compatibility conditions curl curl " D 0 in terms of the stress � when the
map x 7�! K.x/ D C

�1.x/ is C2.B/. The resulting expression

curl curl.K�/ D 0 (5.26)

assumes a form useful in special analyses developed later when the material is
isotropic, i.e., when

" D 1

2�

�

� � �

1C � .tr �/I
�

: (5.27)

To get such a special form of equation (5.26), we primarily make use of an identity
in tensor analysis that is valid for every twice differentiable symmetric tensor-valued
field:

curl curl " D ��"C 2Symrdiv " � rrtr "C I.�tr " � div div "/;
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provided that " is twice differentiable.1 Then the strain compatibility condition curl
curl " D 0 implies

��"C 2Symrdiv " � rrtr "C I.�tr " � div div "/ D 0: (5.28)

Its trace reads

�tr " � div div " D 0; (5.29)

an expression that can be derived by taking into account the identities

tr�" D tr
@2"ij

@xh@xh
D @2"ii

@xh@xh
D �tr ";

trrdiv " D div div ";

trrrtr " D �tr ":

Equation (5.29) then implies

�" � 2Symrdiv "Crrtr " D 0: (5.30)

In the case of a linear-elastic homogeneous and isotropic material, using the
constitutive relation in the form (5.27) and taking into account the pointwise balance
of forces in the absence of inertia, we can write

2��" D �
�

� � �

1C � .tr �/I
�

D �� � �

1C � .�tr �/I;

� 2�2Symrdiv " D �2Symrdiv

�

� � �

1C � .tr �/I
�

D 2SymrbC 2�

1C �rrtr �;

2�rrtr " D rrtr � � 3�

1C �rrtr �:

As a consequence, we rewrite equation (5.30) as

�� � �

1C � .�tr �/I C 2SymrbC 1

1C �rrtr � D 0: (5.31)

1As we stated in the previous section, we exploit systematically the natural identification of R3

with its dual R3�, confusing in this way covariant and contravariant components, so r with D,
and adopt a flat metric. However, the result holds also in a more general setting (nonflat metric),
provided some care is taken in writing appropriately the intermediate steps and writing r or D
depending on the initial choice of the contravariant, covariant, or mixed nature of the components
of the strain ".
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Its trace is given by

�tr � � 3�

1C ��tr � C 2 div bC 1

1C ��tr � D 0;

i.e.,

1 � �
1C ��tr � D �div b:

Then equation (5.30) becomes

�� C 1

1C �rrtr � C �

1C � div bC 2Symrb D 0; (5.32)

which reduces to

�� C 1

1C �rrtr � D 0 (5.33)

when b is constant. Both (5.32) and (5.33) are called the Beltrami–Donati–Michell
equations after the work of Eugenio Beltrami (1892), L. Donati (1894), and John
Henry Michell (1899, 1900).

5.9 Plane Problems

5.9.1 Plane-Strain States

Take a narrow right but not necessarily circular cylinder loaded in a way that the
displacement along the cylinder’s axis vanishes, while its orthogonal components
remain in the cross-section plane at each point. In this case, we say that the cylinder
is in what we commonly call a plane-strain state. Here we discuss this state
without accounting for inertial effects, i.e., focusing attention on the statics. We
refer analysis to an orthonormal frame fO; x1; x2; x3g with the x3-axis coinciding
with the cylinder’s axis.

Formally, the plane-strain state in the plane x1x2 is defined by the conditions

u1 D Qu1.x1; x2/; u2 D Qu2.x1; x2/; u3 D 0;

where u1, u2, u3 are the displacement components. The associated small-strain
tensor components are

"11 D @u1.x1; x2/

@x1
; "22 D @u2.x1; x2/

@x2
; (5.34)
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"12 D 1

2

�
@u1.x1; x2/

@x2
C @u2.x1; x2/

@x1

�

; (5.35)

"13 D "23 D "33 D 0: (5.36)

Moreover, we realize immediately that

@"11

@x3
D @"22

@x3
D @"12

@x3
D 0:

The question of strain compatibility in the planar case replicates what has been
discussed in the three-dimensional ambient. Given functions

.x1; x2/ 7�! "11 WD Q"11.x1; x2/;

.x1; x2/ 7�! "22 WD Q"22.x1; x2/;

.x1; x2/ 7�! "12 WD Q"12.x1; x2/;
are there differential functions

.x1; x2/ 7�! u1.x1; x2/; .x1; x2/ 7�! u2.x1; x2/;

satisfying (5.34) and (5.35) pointwise over the body?
A necessary condition can be derived when the functions Q"11, Q"22, Q"12 are twice

differentiable. In this case, if the strain were compatible, we would have

@2"11

@x22
D @3u1.x1; x2/

@x1@x22
;

@2"22

@x21
D @3u2.x1; x2/

@x2@x21
;

2
@2"12

@x1x2
D @3u1.x1; x2/

@x1@x22
C @3u2.x1; x2/

@x21@x2
;

from which we deduce what we call the plane compatibility condition:

@2"11

@x22
C @2"22

@x21
D 2 @

2"12

@x1x2
;

or, writing more synthetically,

"11;22 C "22;11 D 2"12;12; (5.37)

where once again, the comma denotes differentiation.
Consider a homogeneous linear-elastic isotropic material. Taking into account

the simplification (5.36), for ˛, ˇ, � D 1; 2 we write

�˛ˇ D 2�"˛ˇ C �"��ı˛ˇ; (5.38)

�23 D 0; �13 D 0; �33 D �"�� ; (5.39)
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so that

�˛˛ D 2.�C �/"˛˛
and

�33 D �

2.�C �/�˛˛ D � �˛˛:

The last relation allows us to write

2�"11 D .1 � �/�11 � ��22;
2�"22 D .1 � �/�22 � ��11;
2�"12 D �12;

so that the compatibility condition (5.37) becomes

�11;22 � ��11;22 � ��22;22 C �22;11 � ��22;11 � ��11;11 D 2�12;12:

The left-hand side term equals

.1 � �/�.�11 C �22/ � �11;11 � �22;22;

as can be shown by computing the Laplacian, so that the compatibility condition
becomes

.1 � �/�.�11 C �22/ D �11;11 C �22;22 C 2�12;12: (5.40)

Since �23 and �13 vanish in the plane-strain conditions, the balance equations can be
written as

�11;1 C �12;2 C b1 D 0;
�21;1 C �22;2 C b2 D 0;
�33;3 C b3 D 0;

with boundary conditions

�11n1 C �12n2 D f1;

�21n1 C �22n2 D f2;

�33n3 D f3;

where f1, f2, f3 are the components of the applied forces f distributed over the body’s
boundary.
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Since �33 depends only on x1 and x2, we must have

b3 D 0;

while since n3 D 0 for the x3-axis coincides with the axis of the cylinder, we must
also have

f3 D 0:

The two last equations are the conditions to be satisfied by the load (bulk and
surface forces) to ensure the possibility of the plane-strain state.

Assume that b1 and b2 are differentiable functions of the space variables. By
taking the derivatives of the first two balance equations above with respect to x1 and
x2 respectively and summing up the results, we get

�11;11 C �22;22 C 2�12;12 C b1;1 C b2;2 D 0;

so that the compatibility equation (5.40) becomes

.1 � �/�.�11 C �22/ D �.b1;1 C b2;2/; (5.41)

which is the reduction of the Beltrami–Donati–Michell equation to the plane-strain
case.

5.9.2 Plane-Stress States

Consider a planar thin film loaded in its plane, say x1x2. In the small-strain regime,
we can reasonably claim that the stress components �13, �23, �33 vanish, determining
what we commonly call a plane-stress state.

Formally, we write

�13 D �23 D �33 D 0; �11;3 D �22;3 D �12;3 D 0:

The balance equations then reduce to

�11;1 C �12;2 C b1 D 0;
�21;1 C �22;2 C b2 D 0;

with boundary conditions

�11n1 C �12n2 D f1; (5.42)
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�21n1 C �22n2 D f2: (5.43)

They imply the same conditions on the load that we have found in the plane-strain
case:

b3 D 0; f3 D 0:
But there is something more. Under conditions of plane stress, the constitutive

relations for a homogeneous, linear-elastic, isotropic body read explicitly

�˛ˇ D 2�"˛ˇ C �tr "ı˛ˇ; (5.44)

0 D 2�"33 C �tr "; 0 D 2�"13; 0 D 2�"23: (5.45)

From equation (5.45)1, we get

"33 D � �

.2�C �/."11 C "22/: (5.46)

Consequently, with the notation

�� WD 2��

2�C �;

we can write

�˛ˇ D 2�"˛ˇ C ��"�� ı˛ˇ; (5.47)

from which we compute

�˛˛ D 2.�C ��/"˛˛: (5.48)

The relations already obtained for planar strain states then hold, provided we
substitute � with

�� WD ��

2.�C ��/
:

By substituting equation (5.48) into (5.47), we obtain, in fact,

2�"˛ˇ D �˛ˇ � �����ı˛ˇ; (5.49)

with ˛, ˇ, � D 1; 2 once more.
For the plane-stress states the Beltrami–Donati–Michell equations can be written

componentwise as

"11;22 C "22;11 D 2"12;12; (5.50)
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"33;11 D 0; "33;22 D 0; "33;12 D 0: (5.51)

Substituting the relation (5.49) into (5.50) and using the balance equations as in
the previous section, we derive an equation differing from (5.41) by the replacement
of � with ��:

.1 � ��/�.�11 C �22/ D �.b1;1 C b2;2/ D � div b:

From (5.51), with the use of (5.46) and (5.49), we obtain also

.�11 C �22/;11 D 0; .�11 C �22/;22 D 0; .�11 C �22/;12 D 0:

In other words, the Beltrami–Donati–Michell equations above require that in
plane-stress states, the trace of the stress tensor must be a degree-one polynomial:

�˛˛ D �11 C �22 D a1x1 C a2x2 C a3;

with a1, a2, a3 constants to be determined. Such a polynomial is a harmonic func-
tion, so that a necessary condition to realize a plane-stress state in a homogeneous,
linear-elastic, isotropic material is

div b D 0;

in addition to b3 D 0, as already derived from the balance equations.

5.9.3 The Airy Stress Function

Let us consider a body consisting of a homogeneous, linear-elastic, and isotropic
material. We assume here that the body forces vanish.

In a state of plane stress or plane strain, the stress components can be expressed
in terms of the second derivatives of a scalar-valued function of x1 and x2 that is
biharmonic when the body actions vanish. The evaluation of such a function depends
on the body shape and the boundary conditions. It is called an Airy stress function
after a 1862–1863 work by Sir George Biddell Airy (1801–1892).

Assume b D 0 and the absence of inertial effects.

Theorem 8. Let .x1; x2/ 7�! � D Q�.x1; x2/ 2 R be of class C3 in B and such that

�11 D �;22; �22 D �;11; �12 D ��;12: (5.52)

The local balance of forces

�˛ˇ;ˇ D 0 (5.53)
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holds. Further, the version of the Beltrami–Donati–Michell equations reading

��˛˛ D 0 (5.54)

is satisfied if and only if Q� is biharmonic. Conversely, if .x1; x2/ 7�! �˛ˇ 2
Sym.R3;R3/ is a single-valued map of class CN .N � 1/ on B and (5.53) holds,
then there exists a CNC2 scalar-valued function satisfying (5.52).

Proof. By computing the divergence of the stress field under the assumption (5.52),
we realize directly that the local balance of forces (5.53) follows. Moreover, since

�11 C �22 D �;22 C �;11 D ��;

the compatibility equation (5.54) supports the biharmonicity condition

��� D 0

for �. To prove the converse assertion, assume that equation (5.54) holds. The
balance of forces means that

�11;1 D ��12;2;
�22;2 D ��21;1;

i.e., that there exist CNC1 functions .x1; x2/ 7�! l WD Ql.x1; x2/ 2 R and .x1; x2/ 7�!
h WD Qh.x1; x2/ 2 R such that

�11 D l;2; �12 D �l;1;

�22 D h;1; �21 D �h;2:

The symmetry of � implies

l;1 D h;2;

i.e., the existence of a CNC2 function .x1; x2/ 7�! � WD Q�.x1; x2/ 2 R defined on B
such that

l D �;2; h D �;1;

a property implying the stress representation (5.52). ut
The previous proof does not exclude the possibility that the Airy stress function
Q� could be multivalued, provided that its second derivatives, i.e., the stress com-
ponents, are single-valued. In any case, when B is simply connected, the previous
conditions require that Q� be single-valued.
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Given a biharmonic function O�, a possible Airy stress function Q� defined by

Q�.x1; x2/ D O�.x1; x2/C a1x1 C a2x2 C a3;

with a1, a2, a3 constants, is biharmonic and generates the same stress state
determined by O�. Given a point Nx D .x1; x2/, we can always choose the constants
generating Q� to be such that

Q�.Nx/ D 0; @ Q�.Nx/
@x1

D @ Q�.Nx/
@x2

D 0: (5.55)

In terms of the Airy stress function, the boundary conditions (5.42) and (5.43)
can be written

�;22n1 � �;12n2 D f1; (5.56)

� �;12n1 C �;11n2 D f2: (5.57)

Consider a simply connected body with boundary in the plane x1x2 a simple
smooth curve that we parameterize by arc length s. Assume also that the condi-
tion (5.55) holds at a point Nx D Qx.0/ of the body’s boundary described by a map
s 7�! Qx.s/ D .Qx1.s/; Qx2.s//. With n the normal to that curve at a point, the tangent t
is characterized by

dQx1.s/
ds

D t1 D �n2;
dQx2.s/

ds
D t2 D n1:

Consequently, the conditions (5.56) and (5.57) become

�;12
dx1
ds
C �;22 dx2

ds
D f1;

��;11 dx1
ds
� �;12 dx2

ds
D f2;

where x1 D Qx1.s/ and x2 D Qx2.s/, and they can be written as

d�;2
ds
D f1; �d�;1

ds
D f2:

If we integrate these last two equations from 0 to s and set the integration constant
to zero, thanks to the condition (5.55)2, we get

�;2.s/ D
Z s

0

f1.�/d� DW H1.s/;

��;1.s/ D
Z s

0

f2.�/d� DW H2.s/;
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i.e.,

�.s/ D
Z s

0

.H1.�/ dx2.�/ � H2.�/ dx1.�// DW H.s/C Oa;

with an integration constant Oa that we can set to zero thanks to the assump-
tion (5.55)1.

Moreover, we can also compute

d�

dn
D �;1n1 C �;2n2 D �H2.s/

dx2
ds
C H1.s/

dx1
ds
DW G.s/:

The biharmonic problem involving the Airy stress function � is completed by the
boundary conditions

�.s/ D H.s/;
d�

dn
.s/ D G.s/;

when the body is simply connected. For multiply connected bodies, the boundary
in the plane x1x2 is the union of a finite number of (disjoint) closed curves. The
condition (5.55) can be set only on one of them, so that in deriving boundary
conditions, integration constants appear and can be evaluated by requiring that the
displacements be single-valued. We do not discuss here the details of the pertinent
analyses, which are by now a classical matter, as is all of the material in this chapter.
We just remark that determining the Airy stress function depends on the shape of
the body and the boundary conditions determined by the applied forces. Explicit
solutions useful in applications can be found in standard treatises on linear elasticity.

5.9.4 Further Remarks

Imagine a plane-strain state characterized by the additional condition

"˛˛ D 0:

In this case, the relation (5.39)3 implies

�33 D 0;

so that we have plane strain with in-plane stress. In this case, the sole non-a-priori
vanishing constitutive relation is (5.38).



Chapter 6
The de Saint-Venant Problem

6.1 Statement of the Problem

6.1.1 Geometry

We consider a long straight cylinder with constant cross section that can even have
holes—the cylinder can be a type of tube—provided that their closures have no
points in common and their boundaries have nonzero minimum distance from the
cross-sectional boundary.

To formalize the previous description, we assign at a point O in E3 three
orthogonal unit vectors e1, e2, e3, identifying E3 with R

3 in this way.
Within the plane span e1 ˝ span e2, we select a region ˝ with the following

properties:

1. ˝ is open and bounded.
2. ˝ is linearly connected, which means that for every pair of points in ˝, there is

a path in ˝ connecting the two.
3. ˝ is of the type

˝ D O�n O�ˇ;
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with ˇ D 1; 2; : : : ;m, O�ˇ a closed set diffeomorphic1 to the closed unit circle
in R

2 for every ˇ and O� an open set diffeomorphic to the open unit circle in R
2.

Moreover, we assume O�ˇ \ O�˛ D ¿ for ˛ ¤ ˇ and

min
ˇ

dist.@ O�; @ O�ˇ/ > 0;

where dist.�; �/ is the standard Euclidean distance.

The body that we consider then occupies a region B WD ˝ � .0; l/ with l 

diam˝, where diam˝ is the diameter of ˝, i.e., the maximum distance between
two arbitrary points in ˝; l is the length of the cylinder, which can be infinite,
a case considered in the last section of this chapter. The axis of the cylinder is
in span e3. The closure of B is NB D N̋ � Œ0; l�. Its boundary is then the union
@˝ � Œ0; l�[� � f0g [� � flg; � � f0g and � � flg are the bases of the cylinder,
while @˝� Œ0; l� is its lateral boundary. We denote by˝.x3/ the cross section at x3.

1. We assume also that the cylinder has constant density of mass and that the origin
of the frame determined by e1, e2, and e3 coincides with the center of mass of
˝.0/. Also, span e1 and span e2 are principal inertial axes of ˝.0/.

2. The cylinder undergoes small strains.

6.1.2 Loads

The following assumptions apply:

1. The lateral boundary does not experience the action of external forces.
2. Bulk actions on the cylinder are neglected.
3. Forces are applied just to the bases of the cylinder.

Consequently, the balance equations read

div � D 0; � 2 Sym. QR3; QR3/

with

�n D 0 on @˝ � .0; l/:

1A set X is diffeomorphic to another set Y if it is possible to establish a one-to-one differentiable
mapping f W X �! Y from X onto Y such that its inverse f �1 W Y �! X is differentiable as
well.
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6.1.3 Material

The cylinder is composed of a linear-elastic homogeneous and isotropic material.
For the theorem discussed in the last section of this chapter we shall relax this

assumption, eliminating the requirement of isotropy.

6.1.4 Assumption on the Structure of the Stress

We write fO; x1; x2; x3g for the coordinate system determined by e1, e2, e3. In this
frame of reference, the matrix of the stress components has the form

0

@

0 0 �13
0 0 �23
�31 �32 �33

1

A : (6.1)

Such an assumption, due to Adhémard Jean-Claude Barré de Saint-Venant
(1797–1886), who first proposed and analyzed the problem discussed here (an
assumption sometimes referred to as Clebsch–de Saint Venant’s), has also a more
intrinsic representation. Write NV for the two-dimensional vector space orthogonal
to span e3. Consider also the decomposition of the real 3-dimensional vector space
into the tensor sum (span e3/˚ NV , as depicted in Figure 6.1.
The Cauchy stress along the cylinder can be decomposed in this way:

� D �33e3 ˝ e3 C Sym.a˝ e3/C L; (6.2)

where a 2 NV and L 2 Sym. NV; NV/. Consequently, de Saint-Venant’s assumption
corresponds to

L D 0: (6.3)

Fig. 6.1 Natural
decomposition of
3-dimensional real vector
spaces

v R
3

span e3

a
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Since we have fixed a global frame of reference for the cylinder, the two
expressions (6.1) and (6.3) of de Saint-Venant’s assumption are exactly the same:
there is no additional generality in (6.3) with respect to (6.1). Hence, we follow
tradition and use the expression (6.1).

6.2 First Consequences of de Saint-Venant’s assumption

By writing explicitly the balance equations in the orthogonal frame chosen and
taking into account the assumption (6.1), we get

@�13

@x3
D 0; (6.4)

@�23

@x3
D 0; (6.5)

@�31

@x1
C @�32

@x2
C @�33

@x3
D 0; (6.6)

�31 D �13; �32 D �23: (6.7)

The first two equations establish that �13 and �23 are functions of x1 and x2 alone:
they do not depend on x3. Consequently, by defining � as the vector with components
�31 and �32, namely

� D �31e1 C �32e2;

the third balance equation (6.6) can be written

div˝� C @�33

@x3
D 0; (6.8)

where div˝ denotes the divergence evaluated over the region ˝, i.e., a divergence
involving only the derivatives with respect to x1 and x2, and � is a function of these
spatial variables only. The absence of applied loads on the lateral boundary of the
cylinder implies

�.x/n.x/ D 0; 8x 2 @˝ � .0; l/;

i.e., using the decomposition (6.2), where now a is � , we obtain

� � n D 0; on @˝ � .0; l/; (6.9)
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at all places where n is defined, which is

�31n1 C �32n2 D 0; on @˝ � .0; l/: (6.10)

In fact, as stated by (6.8), de Saint-Venant’s assumption foresees that the sole
nonzero components of the stress are just �33 and those defining the vector � .
Consequently, at each x3 2 .0; l/, the sole stress components on @˝.x3/, within
the plane containing ˝.x3/, are those involved in the definition of � . And � is
tangent to @˝.x3/ at all points where the normal is uniquely defined. If � were
not tangential to @˝.x3/ at any one of these points, it would have a component
along the normal n that would be not balanced, since external forces along the lateral
boundary of the cylinder are absent by assumption. Consequently, since the cylinder
is at equilibrium, the boundary condition (6.9) is necessary for it.2

6.3 Global Balances for a Portion of the Cylinder

Define

N.x3/ WD
Z

˝

�33 dH2;

T1.x3/ WD
Z

˝

�31dH2;

T2.x3/ WD
Z

˝

�32 dH2;

M1.x3/ WD
Z

˝

�33x2 dH2;

M2.x3/ WD �
Z

˝

�33x1dH2;

Mt.x3/ WD
Z

˝

.�32x1 � �31x2/dH2;

and call them collectively action characteristics. Here N.x3/ is the normal
traction over the cylinder cross section at x3; T1.x3/ and T2.x3/ are the relevant
global shear forces; M1.x3/ and M2.x3/ are the global bending moments around the
x1 and x2 axes, respectively; Mt is the torsion moment around the x3-axis. We write
also N0, T01, T02, M01, M02, and M0t for the counterparts of N, T1, T2, M1, M2, and
Mt over the basis of the cylinder at x3 D 0.

2Regarding notation: In the rest of this chapter, for the sake of notational conciseness, we shall use
a comma in a subscript to denote differentiation with respect to the coordinates of the orthogonal
frame considered for the cylinder, so that, e.g., we shall write �13;3 for (6.4), and so on.



176 6 The de Saint-Venant Problem

M0 t

M01

M02

x 3

x 3

N

T1

Mt

M1

M2

Ω

N0

T01 T02

T2

O

x 1

x 2

Fig. 6.2 The portion of the cylinder from 0 to x3 with the relevant action characteristics, and the
convention on positive algebraic signs

For a portion of the cylinder between 0 and x3, the global balances—those in
terms of action characteristics—reduce to

N0 D N; (6.11)

T01 D T1; (6.12)

T02 D T2; (6.13)

M1 D M01 C x3T02; (6.14)

M2 D M02 � x3T01; (6.15)

M0t D Mt; (6.16)

according to the convention on algebraic signs depicted in Figure 6.2.

6.4 An Explicit Expression for �33

Let us assume that the stress field is twice differentiable. The assumption (6.1) on
its structure allows us to reduce the Beltrami–Donati–Michell equations to

�33;11 D 0; (6.17)

�33;22 D 0; (6.18)
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�33;12 D 0; (6.19)

�33;33 D 0; (6.20)

.1C �/.�31;11 C �31;22/C �33;13 D 0; (6.21)

.1C �/.�32;11 C �32;22/C �33;23 D 0: (6.22)

Equations (6.17), (6.18), and (6.20) imply that �33 can be at most linear in x1, x2,
and x3. Equation (6.19) excludes the dependence of �33 on the product x1x2, while
it allows dependence on the products x1x3 and x2x3. As a consequence, �33 admits
the form

�33 D a0 C a1x1 C a2x2 � x3.c0 C c1x1 C c2x2/; (6.23)

where a0, a1, a2, c0, c1, c2, are integration constants to be determined. The algebraic
sign in front of x3 is selected for the sake of convenience, as will become apparent
in the subsequent developments.

6.5 Values of the Integration Constants

6.5.1 c0 D 0

On inserting (6.23) into (6.6), we obtain

�31;1 C �32;2 D c0 C c1x1 C c2x2; (6.24)

and after differentiation, which is permissible, since we are under conditions
ensuring the validity of the Beltrami–Donati–Michell equations, we obtain

�31;11 C �32;21 D c1; (6.25)

�31;12 C �32;22 D c2: (6.26)

Moreover, by inserting (6.23) into (6.21) and (6.22), we respectively find

�31;11 C �31;22 D c1
1C � ; (6.27)

�32;11 C �32;22 D c2
1C � : (6.28)

By subtracting (6.25) from (6.27) and (6.26) from (6.28), we get
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�31;22 � �32;21 D � �

1C � c1;

�32;11 � �31;12 D � �

1C � c2;

and we can rewrite them as

.�32;1 � �31;2/;2 D �

1C � c1;

.�32;1 � �31;2/;1 D � �

1C � c2;

by exploiting the symmetry of � and the possibility of interchanging derivatives as
ensured by Schwartz’s theorem. These last two equations can be summarized in the
differential form

d.�32;1 � �31;2/ D �

1C � .c1dx2 � c2dx1/;

which implies the equation

�32;1 � �31;2 D �

1C � .c1x2 � c2x1/C Nc; (6.29)

after integration, with Nc a constant to be determined, and the use of the symmetry
of � .

We can write

�31 D �031 C N�31;

�32 D �032 C N�32;

where N�31 and N�32 are special solutions of the equations (6.24) and (6.29), while �031
and �032 are the general solutions to their homogeneous counterparts, namely

�031;1 C �032;2 D 0; (6.30)

�032;1 � �031;2 D 0: (6.31)

We shall discuss two ways of tackling the analysis of such a system of linear
partial differential equations, since the two paths give us different kinds of physical
information at least in the case of pure torsion. For the purpose of this section, we
mention briefly just one of the two approaches, postponing the other to subsequent
sections. The way we follow here is based on the assumption that �031 and �032 admit
a shear stress potential function '.x1; x2/, i.e., a differentiable scalar function
such that
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�031 D
@'

@x1
; �032 D

@'

@x2
: (6.32)

With this choice, equation (6.31) is trivially satisfied, while (6.30) reduces to

�031;1 C �032;2 D
@2'

@x21
C @2'

@x22
D 0;

or in short,

�˝' D 0; (6.33)

where �˝ is the Laplacian operator over the set ˝. The boundary condition (6.10)
can then be written as

�031n1 C �032n2 D �. N�31n1 C N�32n2/;
or, in terms of the shear stress potential function ',

d'

dn
D � . N�31n1 C N�32n2/ ; (6.34)

where

d'

dn
D @'

@x1
n1 C @'

@x2
n2:

For the class of regions ˝ selected here, equation (6.33) admits the existence of
a harmonic shear stress potential function ' in the subset of the space of square-
integrable functions satisfying the condition (6.34) once the right-hand-side term is
assigned. We do not go into the details of the proof, since they are matter of standard
textbooks in functional analysis. We just mention here the result.

Integration of (6.33) over ˝ and Gauss’s theorem imply
Z

˝

�˝' dH2 D
Z

@˝

d'

dn
ds D 0;

where ds is the line measure over @˝. However, equation (6.34) holds, so that we
get

0 D
Z

@˝

. N�31n1 C N�32n2/ds D
Z

@˝

N� � n ds;

where N� is the vector with components N�31 and N�32. Once again, by applying Gauss’s
theorem, we obtain

Z

@˝

N� � n ds D
Z

˝

div˝ N� dH2 D
Z

˝

. N�31;1 C N�32;2/dH2: (6.35)
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Equation (6.24) then implies (after substituting it into (6.35))

0 D
Z

˝

.c0 C c1x1 C c2x2/dH2 D c0j˝j C c1S2 C c2S1;

where j˝j is the area of ˝, while S1 and S2 are the static momenta of the cylinder
cross section ˝ with respect to the axes x1 and x2, respectively. Since these axes
determine over ˝ a central principal inertial frame, by our initial choice, we get

S1 D 0; S2 D 0; (6.36)

which implies

c0 D 0: (6.37)

6.5.2 The Navier Polynomial

With the previous result, the expression (6.23) reduces to

�33 D a0 C a1x1 C a2x2 � x3.c1x1 C c2x2/: (6.38)

Due to the balance (6.11), we also have

N0 D
Z

˝

�33 dH2 D
Z

˝

.a0 C a1x1 C a2x2 � x3.c1x1 C c2x2//dH2

D a0j˝j C a1S2 C a2S1 � x3.c1S2 C c2S1/:

Since in the central principal inertial frame that we have chosen, S1 D 0 and
S2 D 0, by writing A for j˝j to follow traditional notation, we get

a0 D N0
A
: (6.39)

By definition of M1, we compute also

M1.x3/ D
Z

˝

�33x2 dH2

D
Z

˝

�
N0
A

x2 C a1x1x2 C a2x
2
2 � x3.c1x1x2 C c2x

2
2/

�

dH2

D N0
A

S1 C a1I12 C a2I1 � x3.c1I12 C c2I1/;
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where I1 is the moment of inertia of˝ with respect to axis x1, and I12 is the mixed
moment of inertia of ˝ with respect to the axes x1 and x2. However, since such
axes constitute a central principal inertial frame for ˝, we have by definition

I12 D 0

together with S1 D 0. Consequently, we have

M1.x3/ D .a2 � x3c2/I1:

By letting x3 go to zero, we get

M01 D a2I1;

i.e.,

a2 D M01

I1
: (6.40)

In an analogous way, for M2.x3/ we get

M2.x3/ D �
Z

˝

�33x1 dH2 D �.a1 � x3c1/I2;

where I2 is the moment of inertia of ˝ with respect to the axis x2. By letting x3 go
to zero we obtain

M02 D �a1I2;

i.e.,

a1 D �M02

I2
: (6.41)

From the balance (6.14), we get also

x3T02 D M1 �M01 D .a2 � x3c2/I1 � a2I1 D �x3c2I1;

so that

c2 D �T02
I1
: (6.42)

Finally, the balance (6.15) implies

x3T01 D M02 �M2 D �a1I2 C .a1 � x3c1/I2 D �x3c1I2;



182 6 The de Saint-Venant Problem

i.e.,

c1 D �T01
I2
: (6.43)

On inserting (6.37) and (6.39) through (6.43) into (6.23), we obtain

�33 D N0
A
C .M01 C x3T02/

x2
I1
� .M02 � x3T01/

x1
I2
;

i.e., using (6.11), (6.14), and (6.15), we have

�33 D N

A
C M1

I1
x2 � M2

I2
x1; (6.44)

which is called the Navier polynomial.
To get �33, we used both the balance and the Beltrami–Donati–Michell equations,

all the ingredients defining the problem in linear elasticity at hand. In this sense, we
can assert that the formula (6.44) is exact.

6.6 The Neutral Axis

The locus of points where �33 vanishes is a straight line with equation

N

A
C M1

I1
x2 � M2

I2
x1 D 0: (6.45)

It is called the neutral axis. It has a particular expression when the action over the
cylinder reduces to a unique force normal to ˝, applied at a point not coinciding
with the center of mass of ˝.

Consider this case and denote by Nx1 and Nx2 the coordinates of the point where
N0 D N is applied. To use the Navier polynomial, we have to transfer N to the
barycenter of ˝. Two transport couples arise:

M1 D N Nx2; M2 D �N Nx1:

In this case, equation (6.45) becomes

N

A

�

1C Nx2A
I1

x2 C Nx1A
I2

x1

�

D 0;
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i.e.,

1C Nx2
�21

x2 C Nx1
�22

x1 D 0;

where

�21 WD
I1
A
; �22 WD

I2
A
:

The neutral axis is independent of the intensity of the applied traction. It depends
on the point where the traction N is applied and the geometry of ˝ through the
factors �21 and �22. Moreover, we can show by polar duality that the barycenter of ˝
is between the point .Nx1; Nx2/ and the neutral axis. However, we do not go further into
details.

When N is applied at the barycenter of ˝ and is the sole action on the cylinder,
the neutral axis does not exist, since we do not have bending effects and �33 is
constant over ˝.

6.7 A Scheme for Evaluating the �33 Distribution
over Cross Sections

The general scheme for evaluating the stress �33 over a cylinder’s cross section
includes the following main steps:

1. Determine the barycenter of ˝.
2. Find the principal inertial frame for ˝, centered at the barycenter.
3. Reduce the action characteristics to the center of mass of ˝.
4. Determine the neutral axis, if available.
5. Draw two straight lines that are parallel to the neutral axis and tangent to ˝ so

that the cross section is entirely contained in the strip they determine.
6. By using the Navier polynomial, compute the maximum and minimum values of
�33: they are at the tangential points of the two straight lines, when the nautral
axis crosses �. Once they are known, the �33 distribution is given by the straight
line connecting the two values.

6.8 Exercises on the Determination of �33

Exercise 1. The section ˝ depicted in Figure 6.3 consists of a square with side l
and a concentrated mass equal to �kl2, located at the barycenter of the square. The
section is subjected to a bending couple M and a traction N D 10M=l applied at the
barycenter. Find the values of k such that the stress �33 at the point P in Figure 6.3
vanishes. Assume � D 1.
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Fig. 6.3 Square cross section
with a concentrated mass

O

M

P

l

l

N = 10M/l

2

Fig. 6.4 Reference frame
considered

M

O

G

P

l

l

x 1

x 2

2

N = 10M/l

Remarks and solution. The barycenter G coincides with the center of mass of the
square. The particular configuration of the section ˝ implies that the central ellipse
of inertia is a circumference and that every pair of orthogonal axes intersecting at
G determines a principal inertial frame. An example is given by the pair fx1; x2g
(Fig. 6.4).

The moments of inertia are

I1 D I2 D l4

12
D I;

and the section with concentrated mass is equivalent, in terms of the total mass, to
an enlarged square of constant density of mass equal to 1 and area

A D l2.1C k/:
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Fig. 6.5 Square cross section
with a concentrated mass
subjected to a bending
moment

O

M

l

l

l l

2 2

G

P

The bending moment acts “around” x2. Then the normal stress �33 at the point P
is given by

�33.P/ D N

A
� M

I

l
p
2

2
:

By considering the datum N D 10M

l
and imposing �33.P/ D 0, we obtain

k D 10

6
p
2
� 1 	 0:179:

Exercise 2. The section depicted in Figure 6.5 consists of a square with side l and
a concentrated mass equal to 2�l2 connected with the square by a thin plate that
we can consider massless. The section is subjected to a bending couple M applied
as shown in figure. Find the value of the stress �33 at the point P. Assume � D 1,
l D 20 cm, M D 250Nm.

Remarks and solution. Let us denote by (1) and (2) quantities pertaining to the
square and the concentrated mass respectively, the latter being equivalent in terms
of the total mass to a square of unit density of mass and side l

p
2. The whole section

is equivalent to a section with total area

A D A.1/ C A.2/ D l2 C 2l2 D 3l2;

endowed with the same unit density of mass.

The barycenters of the square and the concentrated mass are at �.1/ D l

2
and

�.2/ D 2l so that the coordinates of the section barycenter G in the coordinate system
fO; �; �g in Figure 6.5 are
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Fig. 6.6 Principal inertial
axes

O

M 3 l

2

2 2

l 2

2

l l
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x 1

x 2

M 2

�G D �G D A.1/�.1/ C A.2/�.2/

A
D 3l

2
:

The section’s symmetry determines the principal inertia axes x1 and x2 (Fig. 6.6).
The moments of inertia with respect to the frame fG; x1; x2g are

I.1/1 D
l4

12
C 2l4; I.2/1 D l4; I1 D 37

12
l4 	 493333 cm4;

I.1/2 D
l4

12
; I.2/2 D 0; I2 D l4

12
	 13333 cm4:

In the same frame, the applied bending moment has components

M1 D �M2 D � Mp
2
;

the point P has coordinates

x1.P/ D l
p
2

2
; x2.P/ D l

p
2;

and �33.P/ follows from the Navier polynomial:

�33.P/ D M1

I1
l
p
2 � M2

I2

l
p
2

2
D �234

37

M

l3
	 �19:76 N

cm2
:

The negative sign denotes compression at P.



6.8 Exercises on the Determination of �33 187

Fig. 6.7 Symmetric thin
cross section subjected to
eccentric traction

X
s

s

l

l

l l

(n)

G

X

(n)x 1

x 2 33 (X)

33 (X )X

Fig. 6.8 Distribution of �33 and neutral axis .n/—.n/

Exercise 3. The section in Figure 6.7 is subjected to a traction N applied at the
point X. Find the distribution of the stresses �33 and the neutral axis. Suppose that
l D 70mm, s D 12mm, N D 90 kN.

Remarks and solution. The section has two axes of symmetry that imply the
barycenter G and the principal axes of inertia x1; x2 (Fig. 6.8). The moments of
inertia in the frame fG; x1; x2g and the area are

I1 D I2 D .2lC s/s3

12
C 2

 

sl3

12
C ls

�
lC s

2

�2
!

; A D 4lsC s2:
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In that frame, the point X has coordinates x1.X/ D s=2 and x2.X/ D l C s=2. In
translating N to the barycenter, two bending couples arise:

M1 D N
�

lC s

2

�

; M2 D �N
s

2
:

The �33 distribution is then

�33 D N

A
C M1

I1
x2 � M2

I2
x1;

and the neutral axis, determined by the condition �33 D 0, is

1C 76

1008
x2 C 6

1008
x1 D 0 .x1 and x2 in mm/:

It crosses the section and is depicted in Figure 6.8, where it is denoted by .n/—.n/,
together with the distribution of �33. The maximum positive value of �33 is at the
point X:

�33.X/ D N

A

�

1C 76

1008
x2.X/C 6

1008
x1.X/

�

	 173:8 N

mm2
:

The minimum negative value of �33 is at X0, opposite X with respect to G:

�33.X
0/ D N

A

�

1C 76

1008
x2.X

0/C 6

1008
x1.X

0/
�

	 �122:4 N

mm2
:

6.9 Further Exercises

Exercise 4. Calculate the normal stress �33 at the point A in the section in
Figure 6.9. The moment M is inclined at 45ı.

Exercise 5. For the section in Figure 6.10, find the positions of the point C where a
traction applied is such that the extension of the �33 distribution to the whole plane
vanishes at A (s D 1 cm).

Exercise 6. The section represented in Figure 6.11 is subjected to a normal traction
at C. Find the position of the neutral axis .a D 50mm, l D 100mm, s D 5mm/.

Exercise 7. The section represented in Figure 6.12 is subjected to a normal
compression force N1 applied at C1 and to a normal traction force N2 applied at C2.
Find the normal stress �33 at A. The points C1 and C2 are on a straight line inclined
45ı with respect to the horizontal axis .N1 D 100 kN, N2 D 70 kN, R D 150mm,
r D 70mm/.
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Fig. 6.9 T-shaped cross
section subjected to a bending
couple

a

a/6

A

a/6

a

M

G

x 2

x 1

Fig. 6.10 Symmetric
cylindrical cross section
subjected to an eccentric
traction at a point to be
determined (the width s is
constant for every rectangular
portion)

7.5s

7.5s
A

s

3 15s

Exercise 8. The doubly symmetric T-shaped section in Figure 6.13 is subjected to
a normal traction force N applied at C. Find the �33 distribution, the equation of
the neutral axis and the minimum and maximum values of �33 .l D 100mm, h D
200mm, a D 5:6mm, e D 8:5mm, N D 150 kN/.

Exercise 9. The ˝-shaped section in Figure 6.14 is subjected to a traction at C.
Find the equation of the neutral axis .l D 100mm, s D 10mm/.

Exercise 10. Two compressive forces, N1 and N2, act on the rectangular section in
Figure 6.15. Find the points over the axis x2 such that on applying N2 D 3N1 there,
the whole section does not experience traction at any point.
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Fig. 6.11 Symmetric
cylindrical cross section
subjected to an eccentric
traction at C (the width s is
constant)

a

C
l

s

Fig. 6.12 Tubular section
subjected to two normal
forces

R

A

C 1

4

r

C 2

Exercise 11. A tensile force acts on the T-shaped section in Figure 6.16. Find all
points in the section where on applying there such a force, �33 vanishes at the point
A .l D 40 cm, s D 5 cm/.

6.10 The Jourawski Formula

Equations (6.24) and (6.29) furnish the shear stress components �31 and �32 to
within the constants Nc, to be determined. And the results are exact in the sense
already mentioned. In the presence of T1 and/or T2 over ˝, an approximate
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Fig. 6.13 Double T-shaped
section under traction

h

a

e

e

l

x 1

x 2

C

Fig. 6.14 ˝-shaped section
under traction

s

C

l

l

l

l

evaluation of the shear stresses can be done on the basis of equilibrium reasonings
only—in this sense, the result is approximate, for we do not consider strain
compatibility and the constitutive relations.

The analysis goes as follows: Consider the clamped beam in Figure 6.17, loaded
by a terminal shear force and endowed with constant cross section.
For every portion of the beam between 0 and x3, the global balances (6.12) through
(6.15) reduce to

T1.x3/ D 0; T2.x3/ D T; M1.x3/ D Tx3; M2.x3/ D 0;
where the algebraic sign depends on the assumed positive directions for the action
characteristics as denoted on the right-hand side of Figure 6.17 (we have tacitly
assumed that the beam’s cross section ˝ is such that the principal axis x1 is
orthogonal to the plane of Figure 6.17 and is then out of the page). The analysis
is straightforward, since the constraints are equal to the degrees of freedom and are
well posed.
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Fig. 6.15 Rectangular
section subjected to two
compressive forces

h

x2

l

N2

N1

x̄2

x1

Fig. 6.16 T-shaped section
under traction

s

A

s

l

l

l/ 4

Using the Navier polynomial, we obtain

�33 D M1.x3/

I1
x2 D T

I1
x3x2 D T2

I1
x3x2:

Then the balance equation (6.8) becomes

div˝� D �T2
I1

x2: (6.46)
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l

T

x 2 T

M T

T

M

NN

T l

Ω

O x 3

Fig. 6.17 Clamped beam loaded with a shear force. Assumed positive signs on the sides of a
portion of the beam

Fig. 6.18 Cross section of
the beam with a special part
˝� of it highlighted

x 1 O

T2

b̂

ˆ̂b

x 2

Take a part ˝� of ˝ (a planar region in ˝ with nonzero area) such that the

boundary of ˝� is partially in @˝, and the rest is a straight segment OOb, namely

@˝� D Q@˝� [ OOb with Q@˝� WD @˝� \ @˝. An example is shown in Figure 6.18.

Write Ob for the length of OOb. On integrating the equation (6.46) over ˝�, we get

Z

˝�

div˝� dH2 D �
Z

˝�

T2
I1

x2 dH2: (6.47)

By Gauss’s theorem and the boundary condition (6.9), the first integral becomes

Z

˝�

div˝� dH2 D
Z

@˝�

� � n ds D
Z

OOb
� � n ds D

Z

OOb
�nds;
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where �n is the normal component of � along the segment OOb, i.e., �n D � � n. By the
mean value theorem, we get

Z

OOb
�nds D N�n Ob;

with N�n the mean value of �n over OOb. Moreover, since T2 and I1 are constant along
the cylinder, we also get

Z

˝�

T2
I1

x2 dH2 D T2
I1

Z

˝�

x2 dH2 D T2S�
1

I1
;

where S�
1 is the static moment of inertia of ˝� with respect to the x1-axis. For Ob

sufficiently small, we may assume that N�n well approximates the pointwise value of

�n along OOb. In this case, we then write

�n D �T2S�
1

I1 Ob
; (6.48)

which is commonly called the Jourawski formula, after Dmitrii Ivanovich Zhu-
ravskii (1821–1891), also transliterated as Jourawski from the Cyrillic.

While building a wood-based bridge 60 meters long with nine spans across
the Verebya River for the Russian army, Zhuravskii realized that an evaluation
of the load-bearing capacity of the structural elements based only on the Navier
polynomial was insufficient for the reliability of the bridge, because the shear
stresses had a nonnegligible effect on the structural elements used. From that
observation, Zhuravskii set in motion the ideas that led to the formula (6.48). We
generally write it simply as

�n D �TS

IOb ;

leaving understood that the static moment S and the moment of inertia I have to be
referred to the appropriate axes.

In general, in presence of T1 and T2 over ˝, we have

�n D �
�

T1S�
2

I2 Ob
C T2S�

1

I1 Ob
�

: (6.49)

The minus sign in equations (6.48) and (6.49) indicates that if the component �n

is positive, and is directed outward ˝�.
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6.11 Shear Actions May Produce Torsional Effects:
The Shear Center

Consider a cylinder with cross section as depicted in Figure 6.19. A shear force T
acts on it, as indicated in the figure.

To determine an approximation of the shear stress distribution due to T in terms
of the Jourawski formula, some steps appear necessary:

1. Determine the mass center and the relevant principal inertial frame.
2. Then start considering progressively portions ˝� of the section. Among several

possible choices, the most convenient ones are those for which Ob attains the
smallest value. Other options would weaken the Jourawski approximation.

3. The choice of the progressive portions ˝� determines one of the normals to the

various straight boundaries OOb, i.e., the flows �nn that can be drawn by taking into
account the algebraic sign of the static moment S� and the direction of T . To
draw it, one can imagine that ˝ is filled by a liquid flowing out of ˝ at a point
along the direction where T is applied and in the same direction, by following
the shortest path.

4. Calculate �n using the Jourawski formula as ˝� varies. Take ˝�
1 as in

Figure 6.20. Its static moment S�
1 with respect to the x1-axis is

S�
1 .˝

�
1 /� D �s�1

a

2
:

Then, since T D T2, I1 and s are constants; along the upper horizontal sector of
˝, the distribution of �n is linear. It is zero along the vertical segment at the point

A where �1 D 0 and is maximal at the corner. In the interval Œ.a � s

2
/; .aC s

2
/�,

we essentially extrapolate the distribution. Beyond the corner, the value of the
distribution is equal to the maximum reached on the horizontal part. When we

Fig. 6.19 A special simply
connected cross section of a
de Saint-Venant cylinder

a

a

T

s =
a
40

a
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Fig. 6.20 The section in
Figure 6.19 with the center of
mass G, the principal inertial
frame, and a choice of ˝�

1 ,
progressively growing with
the local instrumental
coordinate �1
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Fig. 6.21 The choice of ˝�
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2

take a part ˝�
2 as in Figure 6.21; its static moment is quadratic in �2, namely

S�
1 .˝

�
2 /� D �s�2

�
a � �2
2

�

� s
a2

2
;

and it has its maximum at �2 D a

2
, i.e., at x2 D 0 for S�

1 , it changes sign

according to x2. Notice that the choice of �1 and �2 is dictated only by the sake
of convenience. The algebraic signs appearing in S�

1 .˝
�
1 / and S�

1 .˝
�
2 / take into
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Fig. 6.22 ˝�

2 crosses the
x1-axis a

a

T

C

B

D

A

x 2

x 1 G

a

2

2

account that ˝�
1 and ˝�

2 are selected in the sector of the coordinate frame where
x2 is negative.
When ˝�

2 crosses the x1-axis, as in Figure 6.22, we have a positive contribution
from the portion of ˝�

2 in the plane sector where x2 is positive.
When we increase ˝� by following the flow of shear stresses �n, the value at D
is zero as a consequence of the boundary condition � � n D 0.

The resulting diagram of the �n distribution is shown in Figure 6.23.
The total shear stress pertaining to the portion AB of ˝ is a force q1, with

modulus given by the area of the diagram pertaining to that portion times the
thickness s, and direction as represented in Figure 6.24. We may determine
analogous forces along the portions BC and CD. Call them q2 and q3, respectively.
By the symmetry of ˝, we have q1 D �q3. Moreover, the sum of the q forces gives
T , so q2 D T . However, the reduction of the force system q1, q2, and q3 to any
point of the plane x1x2, except the points on a straight line—call it r—implies the
presence of an in-plane moment, i.e., a torsional effect over the section. Figure 6.25
summarizes the argument.

Exercise 12. Show that the line r in Figure 6.25 is independent of the reduction
point selected for the force system q1, q2, and q3, obtained by the Jourawski formula
from the scheme in Figure 6.19.

The intersection point between r and the x1-axis—call it CT as in Figure 6.25—
has a special status: no shear force applied there generates torsional effects over the
cylinder’s cross section, irrespective of its orientation.
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Fig. 6.23 The distribution of
the values of �n

The value of τn at any

T

point of the segment

Fig. 6.24 The flow of �n
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A

x 2

x 1 G

T

To prove such a statement, we have to recall first that T in Figure 6.19 is directed
along the x2-axis, which determines a principal inertial frame. Consider a force NT
acting along x1, as depicted in Figure 6.26. By symmetry, the shortest paths followed
by the shear stresses �n to “flow out” along the direction of NT are those denoted by
arrows in Figure 6.27.

Along the segment � in Figure 6.27, �n D 0, by symmetry. We have then two
choices of the portion of ˝ for applying the Jourawski formula (see Fig. 6.28). In
the first case (Fig. 6.28-a), the Jourawski formula furnishes a value pertaining to all
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Fig. 6.25 (a) �n resultants within the section. (b) q1, q2, and q3 as a planar system of forces. (c)
Reduction of the force system to the point on the x1-axis at the center of the vertical part of the
section

points of the segment �1. In the second case (Fig. 6.28-b), by symmetry, half of the
value reached pertains to the segment denoted by �1, while the other half pertains
to that denoted by �2. Analogous reasoning has to be followed when we adopt the
options in Figure 6.29. In any case, the resulting distribution is the one represented
in Figure 6.30.
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Fig. 6.26 Rotated section
about 90ı with a new shear
force

a a

s =
a
40

a

x 1

x 2 G

T̄

Fig. 6.27 The flow of �n
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Fig. 6.28 Two possible
choices of ˝�
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Fig. 6.29 Two other possible
choices of ˝�
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Gx 2

T̄

point of the segment

x 1

The value of n at any

Fig. 6.30 The distribution of the values of �n, according to NT

Exercise 13. Compute explicitly the distribution of the values of �n represented in
Figure 6.30.

The resulting total shear stresses emerging from the distribution in Figure 6.30
are those represented in Figure 6.31. By symmetry, we have q1 D q2. Equilibrium
requires that q3 C q4 D NT . The straight line r analogous to that in Figure 6.25
coincides with the x1-axis. The point CT in Figure 6.25 is then the intersection of
two nonparallel straight lines characterized by the property that a shear force applied
at this point does not generate torsional effects over the section. Every force in the
cylinder’s cross-sectional plane applied at CT can be decomposed along these two
straight lines, and the distribution of the �n-values is the sum of the two distributions
associated with the two components, each not generating torsional effects.

Exercise 14. Determine the shear center of the section in Figure 6.32 in two cases:
a D 2l and a D l. Take a D 40 cm, 20s D a, T D 90 kN.

Suggestion. Find the mass center and the associated central principal inertial frame.
Decompose T along the axes of this frame and proceed as in the discussion above.
Could we follow the same procedure with respect to axes not determining a central
principal inertial frame?
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Fig. 6.31 �n resultants
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Fig. 6.32 L-shaped cylinder
cross section
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Exercise 15. Prove or disprove that the position of the shear center is independent
of the intensity of the applied in-plane force.

Exercise 16. Determine the �n distribution for the sections in Figure 6.33, accord-
ing to the data reported there.

A symmetry axis for the beam’s cross section plays the role of the straight line r
above when we have an applied shear force parallel to it.

Exercise 17. Determine the shear center in all cases in Figure 6.33.
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Fig. 6.33 Cylinder cross sections under shear forces
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6.12 Preliminaries to the Analysis of Torsion

6.12.1 Further Remarks on the Shear Stress Potential
Function over ˝

We established in Section 6.5.1 that the constant c0 appearing in the explicit
expression (6.23) of �33 vanishes. Hence, equation (6.24) reduces to

�31;1 C �32;2 D c1x1 C c2x2 (6.50)

and is supplemented by equation (6.29), which we rewrite here for the sake of
readability:

�32;1 � �31;2 D �

1C � .c1x2 � c2x1/C Nc: (6.51)

We also recall that the integration constants c1 and c2 are determined by the
shear components of the resultant applied forces over the cylinder’s bases in the de
Saint-Venant problem. The constant Nc is still to be determined. As already noted in
Section 6.5.1, we can express a solution to (6.50) and (6.51) as a sum of the solutions
to the homogeneous system (6.30) and (6.31), denoted by �031 and �032, and special
solutions N�31 and N�32. For the homogeneous solution, we have used a shear stress
potential '.x1; x2/ satisfying (6.32) by definition, namely the relations

�031 D
@'

@x1
; �032 D

@'

@x2
;

which allow one to verify that the homogeneous version of (6.51) is satisfied and the
homogeneous version of (6.50) reduces to the condition of harmonicity of ' over
˝, namely

�˝' D 0: (6.52)

A special solution of (6.50) and (6.51) is given by

N�31 D 1

2

�

c1

�

x21 �
�

1C � x22

�

� Ncx2

�

; (6.53)

N�32 D 1

2

�

c2

�

x22 �
�

1C � x21

�

C Ncx1

�

; (6.54)
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as we can verify by substitution in (6.50) and (6.51). Consequently, the boundary
condition (6.34) becomes

d'

dn
D �c1

2

�

x21 �
�

1C � x22

�

n1 � c2
2

�

x22 �
�

1C � x21

�

n2 C Nc
2
.x2n1 � x1n2/ :

Such an expression may suggest that we imagine ' as the sum of three unknown
functions '1, '2, 't, namely

'.x1; x2/ D �c1
2
'1.x1; x2/ � c2

2
'2.x1; x2/C Nc

2
't.x1; x2/;

each term a harmonic function that satisfies the boundary conditions

d'1
dn
D
�

x21 �
�

1C � x22

�

n1; (6.55)

d'2
dn
D
�

x22 �
�

1C � x21

�

n2; (6.56)

d't

dn
D x2n1 � x1n2: (6.57)

This choice allows us to express separately the contributions of the shear
components T01 and T02 of the applied force resultants, since they are included in c1

and c2, the rest pertaining to
Nc
2
't.x1; x2/. On integrating (6.55) along @˝ and using

Gauss’s theorem, we obtain

Z

@˝

d'1
dn

ds D
Z

@˝

�

x21 �
�

1C � x22

�

n1ds D
Z

˝

@

@x1

�

x21 �
�

1C � x22

�

dH2

D 2
Z

˝

x1dH2 D 2S2 D 0;

with the last identity justified by the choice of the reference frame as a central
principal inertial frame. In an analogous way, for (6.56) we get

Z

@˝

d'2
dn

ds D
Z

@˝

�

x22 �
�

1C � x21

�

n2ds D
Z

˝

@

@x2

�

x22 �
�

1C � x21

�

dH2

D 2
Z

˝

x2 dH2 D 2S1 D 0:
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The condition
Z

@˝

d'

dn
ds D 0

generated by (6.52), as shown in Section 6.5.1, implies

Z

@˝

d't

dn
ds D

Z

@˝

.x2n1 � x1n2/ds D 0:

6.12.2 The Prandtl Function

Instead of considering the shear stress potential function '.x1; x2/, we can use the
Prandtl function fp.x1; x2/, named for Ludwig Prandtl (1875–1973) and defined to
be a differentiable function such that

�031 D
@fp
@x2

; �032 D �
@fp
@x1

:

With this choice, equation (6.30), i.e., the homogeneous part of (6.50), reduces to

�˝ fp D 0:

In terms of fp, the boundary condition reads

fp;2n1 � fp;1n2 D �. N�31n1 C N�32n2/:

Consider Figure 6.34, showing a portion of ˝. The components of the normal n
are n1 D cos˛1 and n2 D cos˛2. By the analysis of the triangles determined by the
normal and the tangent to a point of @˝, where they are uniquely defined, we obtain

n1 D dx2
ds
; n2 D �dx1

ds
;

where s is the arc length along @˝, a curve defined in parametric form by continuous
and differentiable functions (it is an assumption) x1 D Qx1.s/ and x2 D Qx2.s/.

By substitution, we get

fp;1
dx1
ds
C fp;2

dx2
ds
D dfp

ds
D
�

N�32 dx1
ds
� N�31 dx2

ds

�

:
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Fig. 6.34 A portion of˝ and
the link between the normal
and the tangent at a point

x 1

Ω
G

x 2

t

2

1

n

Integration of the previous expression leads to

fp.Qx1.s/; Qx2.s// D Qfp.s/ D
Z

@˝

�

N�32 dx1
ds
� N�31 dx2

ds

�

ds

D �c1
2

Z

@˝

�

x21 �
�

1C � x22

�

dx2 C c2
2

Z

@˝

�

x22 �
�

1C � x21

�

dx1

C Nc
2

Z

@˝

.x1dx1 C x2dx2/ :

Then fp.Qx1.s/; Qx2.s// D Qfp.s/ is the sum of three polynomials that can be explicitly
calculated. Let us write

Qfp.s/ D �c1
2
P.x2/C c2

2
Q.x1/C Nc

4
.x21 C x22/:

The boundary condition reduces in this way to the prescription of the Prandtl
function along @˝, namely

Qfp.s/ D h.s/;

with h a known function. The relation between the shear stress potential and the
Prandtl function is given by the identities

';1 D fp;2; ';2 D �fp;1:
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6.13 The Torsion Moment

By recalling the definition in Section 6.3 and using the shear stress potential, we
may write

Mt D
Z

˝

.�32x1 � �31x2/dH2

D �c1
2

�Z

˝

�

x1
@'1

@x2
� x2

@'1

@x1

�

dH2 C
Z

˝

�

x21x2 �
�

1C � x32

�

dH2

�

� c2
2

�Z

˝

�

x1
@'2

@x2
� x2

@'2

@x1

�

dH2 C
Z

˝

�

�x22x1 C
�

1C � x31

�

dH2

�

C Nc
2

�Z

˝

�

x1
@'t

@x2
� x2

@'t

@x1

�

dH2 C
Z

˝

�

x21 C x22
�

dH2

�

D �c1
2

�Z

˝

�

x1
@'1

@x2
� x2

@'1

@x1

�

dH2 C I122 � �

1C � I111

�

� c2
2

�Z

˝

�

x1
@'2

@x2
� x2

@'2

@x1

�

dH2 � I112 C �

1C � I222

�

C Nc
2

�Z

˝

�

x1
@'t

@x2
� x2

@'t

@x1

�

dH2 C I0

�

;

where

I122 WD
Z

˝

x21x2 dH2; I111 WD
Z

˝

x32 dH2;

I112 WD
Z

˝

x1x
2
2 dH2; I222 WD

Z

˝

x31 dH2

are third-rank inertia moments and

I0 WD
Z

˝

.x21 C x22/ dH2

is the polar inertia moment with respect to the center of mass of ˝.
Contributions to the torsion moment by the shear components of the applied

forces appear in the terms multiplied by c1 and c2 (recall that c1 D �T01
I2

and

c2 D �T02
I1

, as derived in Section 6.5.2). Consider the case c1 D 0 and c2 D 0:

Mt D Nc
2

�Z

˝

�

x1
@'t

@x2
� x2

@'t

@x1

�

dH2 C I0

�

:



6.14 Nc and Torsional Curvature 211

By writing Na for the vector with components Na1 D �x2 and Na2 D x1, we compute

Z

˝

�

x1
@'t

@x2
� x2

@'t

@x1

�

dH2

D
Z

˝

�

.x1't/;2 � .x2't/;1
�

dH2 D
Z

˝

div˝ .'t Na/ dH2

D
Z

@˝

't Na � n ds D
Z

@˝

't.x1n2 � x2n1/ds

D �
Z

@˝

't
d't

dn
ds;

with the last equality guaranteed by the boundary condition (6.57) (by definition,
d't

dn
D D't � n/. Then using Gauss’s theorem and taking into account that 't is

harmonic, we get
Z

@˝

't
d't

dn
ds D

Z

@˝

'tD't � n ds D
Z

˝

div˝.'tD't/dH2

D
Z

˝

.'t�'t C D't � D't/ dH2 D
Z

˝

jD'tj2dH2;

so that

Mt D Nc
2

�

I0 �
Z

˝

jD'tj2dH2

�

D Nc
2

�

I0 �
Z

˝

.'2t;1 C '2t;2/ dH2

�

: (6.58)

6.14 Nc and Torsional Curvature

From the relation (6.58), we realize that Nc has physical dimensions of a stress
divided by a length, since the terms in parentheses have dimensions of length to the
fourth power. A kinematic analysis allows us to give further meaning to Nc. To this
end, let us consider the (local) small rotation tensor ! WD SkwDu appearing in
the natural additive decomposition Du D " C !. By abandoning the distinction
between covariant and contravariant components, as we have always done so far in
this chapter, we write

!ik D 1

2
.ui;k � uk;i/ :

Since in this chapter we are under the regularity conditions ensuring the validity
of the Beltrami–Donati–Michell equations, the derivative of ! can be computed,
and we can write

!ik;h D "ih;k � "kh;i; (6.59)



212 6 The de Saint-Venant Problem

Fig. 6.35 Twist of a straight beam: !21;3 describes the consequent curvature

as emerges from a direct computation:

!ik;h D 1

2
.ui;k � uk;i/;h D

1

2
.ui;kh � uk;ih/

D 1

2
.ui;hk � uk;hi/C 1

2
.uh;ik � uh;ik/

D 1

2
.ui;h C uh;i/;k �

1

2
.uk;h C uh;k/;i

D "ih;k � "kh;i:

The component !21;3 has a precise physical meaning: it denotes, in fact, the
torsional curvature �t determined by the relative twist between two cylinder cross
sections (Fig. 6.35 presents an example).

From the relation (6.59) and taking into account that the cylinder is composed of
a linear-elastic isotropic material, we get

!21;3 D "32;1 � "31;2 D 1

2�
.�32;1 � �31;2/ : (6.60)

The specific assumptions c1 D 0 and c2 D 0 considered in the previous section
and corresponding to torsion without shear imply from equation (6.51)

!21;3 D Nc
2�
;

i.e., the torsional curvature in the present conditions, is a constant

�t D !21;3 D Nc
2�
; (6.61)

so that

Nc D 2��t:
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Consequently, we have

�31 D �031 C N�31 D
Nc
2

@'t

@x1
� Nc
2

x2 D Nc
2
.'t;1 � x2/ D ��t .'t;1 � x2/ ;

�32 D �032 C N�32 D
Nc
2

@'t

@x2
C Nc
2

x1 D Nc
2
.'t;2 C x1/ D ��t .'t;2 C x1/ ;

and

"31 D �31

2�
D �t

2
.'t;1 � x2/ ; (6.62)

"32 D �32

2�
D �t

2
.'t;2 C x1/ : (6.63)

All these relations have a counterpart in terms of the Prandtl function fp.
In making them explicit, we find it convenient to adopt for fp a decomposition
analogous to that used for ':

fp.x1; x2/ D �c1
2

fp1.x1; x2/C c2
2

fp2.x1; x2/C Nc
2

fpt.x1; x2/: (6.64)

In the case treated here, namely c1 D 0 and c2 D 0, or better pure torsion, if
we disregard the possible bending effects, since they do not contribute to the shear
stresses, fpt is harmonic over ˝ with a Dirichlet boundary condition, namely

�˝ fpt D 0 in ˝;

fpt.x1; x2/ D 1

2

�

x21 C x22
�

along @˝;

as can be seen by inserting the assumption (6.64) into the boundary condition
derived in Section 6.12.2.

Let us define � by

�.x1; x2/ WD fpt.x1; x2/ � 1
2

�

x21 C x22
�

:

In terms of �, the previous system becomes

�˝�.x1; x2/ D �2 in ˝; (6.65)

�.x1; x2/ D 0 along @˝; (6.66)

and the shear stresses can be written as

�31 D ��t�;2; �32 D ���t�;1: (6.67)
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The choice of introducing �.x1; x2/ is motivated by the possibility of linking �
directly with what we can call torsional stiffness, i.e., the scalar

�Kt WD �
�

I0 �
Z

˝

jD'tj2dH2

�

appearing in the expression (6.58), and linking Mt to the torsional curvature:

�t D Mt

�Kt
: (6.68)

In fact, using (6.67), we can write

Mt D
Z

˝

.�32x1 � �31x2/ dH2 D ���t

Z

˝

.x1�;1 C x2�;2/ dH2

D ���t

Z

˝

p � D� dH2;

with p D .x1; x2/T. We have also

div.� p/ D p � D� C 2�;

as a result of the direct computation of the divergence, so that

Z

˝

p � D� dH2 D
Z

˝

.div.� p/ � 2�/ dH2

D
Z

@˝

�p ds � 2
Z

˝

� dH2 D �2
Z

˝

� dH2;

the last identity justified by the boundary condition (6.66). Hence, we can write

Mt D 2��t

Z

˝

� dH2:

By comparison with the relation (6.68), we obtain

Kt D 2
Z

˝

� dH2:

In other words, the volume delimited by � over ˝ times � is half the torsional
stiffness. It is � that is often called the Prandtl function. Here, we prefer to call fp
as the Prandtl function while we refer to � as the modified Prandtl function. In
any case, terminology a part, the treatment presented in this chapter is completely
standard.
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6.15 Maximality of j�j2

If the modulus of the shear vector � were maximal at a given point of ˝, we would
have there

�˝ j� j2 < 0; (6.69)

since j� j is a function of two variables, namely x1 and x2. In terms of the modified
Prandtl function, the left-hand side of the inequality (6.69) reads

�˝ j� j2 D �˝

�

�231 C �232
� D �2�2t �˝

�

�2;1 C �2;2
�

D �2�2t �˝ .D� � D�/ D �2�2t .�2;11 C 2�2;12 C �2;22/;

due to the validity of equation (6.65). Consequently, the inequality (6.69) can be
verified only over @˝, where we can extend �. Hence, j� j is maximal at the
boundary of ˝.

As an example for visualizing the maximality of j� j, consider ˝ to be a circle
with radius Nr. In this case, we can choose

�.x1; x2/ D Oa.x21 C x22 � Nr2/;
with Oa a constant to be determined. We compute

�˝� D 4Oa; (6.70)

so that we should have

Oa D �1
2

to allow the equation (6.70) to be consistent with (6.65). Then � reduces to

�.x1; x2/ D 1

2

�Nr2 � x21 � x22
�

;

and we have

�31 D ���tx2; �32 D ��tx1;

so that the distribution of � is linear, as its components �31 and �32 are, and it is
maximal at the boundary (see Fig. 6.36). For the constant Kt, we have

Kt D
Z

˝

�Nr2 � x21 � x22
�

dH2 D 	 Nr4
2
D I0;

since ˝ is the circle in Figure 6.36.



216 6 The de Saint-Venant Problem

Fig. 6.36 The distribution of
� on a circular cylindrical
cross section under pure
torsion

r̄

x 2

x 1

G

Mt

6.16 A Kinematic Interpretation of 't in Pure Torsion

The ansatz on the structure of the stress in the de Saint-Venant problem and the
constitutive structures considered imply

"12 D 0:

Moreover, "31 and "32 turn out to be independent of x3, since �31 and �32 are—
recall (6.1). Consequently, the relations (6.59) furnish the following identities:

!21;1 D �"11;2; !21;2 D "22;1;
!32;1 D "31;2; !32;2 D "32;2 � "22;3;
!23;3 D "33;2; !13;1 D "11;3 � "31;1;
!13;2 D �"32;1; !13;3 D �"33;1;

in addition to (6.60). Consider the case of pure torsion: shear external actions,
tractions, and bending moments are absent. Then �33 D 0, and we get

"11 D "22 D "33 D "12 D 0;

while "31 and "32 are given by (6.62) and (6.63). The components of derivatives of
! in the frame adopted for the cylinder become



6.16 A Kinematic Interpretation of 't in Pure Torsion 217

!21;1 D 0;
!21;2 D 0;
!32;1 D �t

2
.'t;12 � 1/ ;

!32;2 D �t

2
't;22;

!32;3 D 0;
!31;1 D �t

2
't;11;

!31;2 D �t

2
.'t;12 C 1/ ;

!31;3 D 0;

in addition to (6.61). On integrating (6.61), we obtain

!21 D �tx3;

while from the other components of !, on integrating the previous relations, we get

!31 D �!13 D �t

2
.'t;1 C x2/ ;

!32 D �!23 D �t

2
.'t;2 � x1/ :

Since Du D " C ! (with the identification of covariant and contravariant
components adopted in this chapter), we then get

u1;1 D 0; u1;2 D ��tx3; u1;3 D ��tx2;

u2;1 D �tx3; u2;2 D 0; u2;3 D �tx1;

u3;1 D �t't;1; u3;2 D �t't;2; u3;3 D 0;

and by integration,

u1 D ��tx3x2; u2 D �tx1x3; u3 D �t't.x1; x2/:

The relation between u3 and 't shows that during pure torsion, there is warping
of the cross section, and it is independent of x3. The warping shape is completely
described by the component of the potential stress function associated with the
torsion.
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6.17 A Geometric Property of �

Consider the intersections of the graph of � and planes parallel to ˝, namely the
closed curves

�.x1; x2/ D const: (6.71)

Let � be the tangent to one of the curves at a point where it can be uniquely
defined. The normal to � and the curve is n. If we calculate the normal and the
tangential components of � there, we get

�n D �31n1 C �32n2 D ��t

�

�;2
dx2
ds
C �;1 dx1

ds

�

D ��t
d�

ds
D 0;

where s is the arc length along the curve, and the last identity is justified by the
relation (6.71) defining the curve itself, and

�� D �31�1 C �32�2 D ���t

�

�;2
dx2
dn
C �;1 dx1

dn

�

D ��t
d�

dn
:

In other words, � is purely tangential to curves �.x1; x2/ D const.
In the same way, a similar property also holds for every piecewise smooth closed

curve in ˝ under conditions of pure torsion. In fact, let � be any such curve and let
D� � ˝ be the region surrounded by it. Using Gauss’s theorem, we obtain

Z

�

� � n ds D
Z

D�

div˝� dH2 D 0

since div˝� D 0 for �33 D 0.

6.18 The Bredt Formula

Consider a thin-walled beam doubly connected, a tube. Its prototype cross section
˝� consists of a piecewise smooth closed curve � without intersections, thickened
smoothly. Precisely, when � is smooth, we write

N̋
� WD

(

x D y.s/C ˛.s/n.s/ j y.s/ 2 �; ˛.s/ 2
"

�
Ob.s/
2
;
Ob.s/
2

#

; s 2 	0; Nl

)

; (6.72)

where Nl is the length of � , Ob.s/ is the width at the point s, n.s/ is the outward unit
normal to � . In the presence of corners, i.e., when � is just piecewise smooth, the
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Fig. 6.37 Examples of ˝�

formal expression of ˝� is more intricate and involves the normal cones at the
corners. Figure 6.37 shows two possible examples of acceptable regions ˝� .

In what follows in this section we shall smooth corners with the aim of furnishing
an approximate evaluation of � , which is analogous in spirit to what we have done
for the Jourawski formula, i.e., a treatment based only on equilibrium reasoning.
As a consequence of the previous results, we know that over ˝� , � is tangential
to the outer and inner boundaries. Under the condition of pure torsion, to ensure
equilibrium, we must have

M0t D Mt D
Z

˝�

.y.s/ � y0/ � � dH2 (6.73)

with Mt the applied torsional moment and y0 an arbitrary point in the plane
containing ˝� . Moreover, the absence of applied shear forces implies that for any
direction denoted by a unit vector Oe,

Z

˝�

� � Oe dH2 D 0: (6.74)

Using the mean value theorem, we can write equation (6.74) as

Z

˝�

� � Oe dH2 D
Z

�

N�.s/Ob.s/ � Oe ds; (6.75)

with N�.s/ the average of � along the thickness of ˝� at s. Write N�.s/ D NN�.s/�.s/,
with NN�.s/ the modulus of N� and � the tangent to � . Then equation (6.75) becomes

Z

�

N�.s/Ob.s/ � Oe ds D
Z

�

NN�.s/Ob.s/�.s/ � Oe ds:
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s2

s1

s1

s2

Ω q2 = ¯̄(s2)b̂(s2 )

q1 = ¯̄(s1 )b̂(s1 )

Mt

Fig. 6.38 A visualization of the constant value q D NN�.s/Ob.s/. The portion of ˝� between s1 and
s2 has no lateral flow of q. Its translational equilibrium can then be written as q1 D q2. In other
words, at the segment at s2, the two portions of ˝� meeting there exchange forces q2 and �q2 by
the action–reaction principle: they are equal in modulus to q1

The validity of the constraint (6.74), determined by the absence of shear external
actions, implies that the product NN�.s/Ob.s/ is constant. Let us denote such a constant
by q, following tradition and paying attention not to confuse it with the rotation
vector used in Chapters 1, 2, 3, and 4; ours is an abuse of notation. However, that
vector does not play a role in this chapter, so that we have opted for the notation
used. Figure 6.38 visualizes the proof of the previous statement.

As a consequence, we have

Z

�

NN�.s/Ob.s/�.s/ � Oe ds D q
Z 2	

0

cos#d# D 0;

where # is the angle between � and Oe. It ranges over Œ0; 2	�, because � is closed and
without self-intersections. It is exactly the arbitrariness of Oe that implies q D const.
Then from the balance (6.73), we get

jMtj D
Z

˝�

j.y.s/ � y0/ � � jdH2 D q
Z

�

j.y.s/ � y0/ � �jds D 2jD� jq:

That the second integral in the previous expression is equal to twice the area jD� j
of the region D� delimited by � follows by the geometric considerations depicted in
Figure 6.39.

From the previous relation, we then get

NN�.s/ D jMtj
2jD� jOb.s/

;
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Fig. 6.39 The product
Œ.y.s/� y0/� �� ds at a point
s of the curve is a vector with
modulus equal to the area of
the parallelogram ABDC,
which is twice the area of the
triangle ABC. By varying s,
the triangles of type ABC
span D� . Then the integral of
j.y.s/� y.0//� �.s/j over �
is the sum of all
parallelograms of type
ABCD, i.e., twice the area
of D� D

D ds
C

y0 B

y(s) A

Mt

which is called the Bredt formula, after Rudolph Bredt (1842–1900). It is well
approximated when Ob.s/ is very small, so that we can “confuse” NN�.s/ with j� j.s/.
The Bredt formula becomes particularly significant when Ob.s/ is constant and very
small. In that case, we write

j� j D jMtj
2jD� jOb

:

We write N�.s/ for the curvature averaged at s along the width. In the spirit leading
to the Bredt formula, we define the torsional angle # of the thin-walled tube with
cross section ˝� , imagining maxs Ob.s/ to be very small, as

# WD
Z

�

N�t.s/ds:

The assumed homogeneous isotropic linear-elastic constitutive structures imply

# D
Z

�

j�.s/j
�

ds D jMtj
2jD� j�

Z

�

1

Ob.s/ds; (6.76)

which is often called the second Bredt formula.

Exercise 18. Prove the formula (6.76).

Exercise 19. Calculate the distribution of � in the section in Figure 6.40.
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a a a

T

h =
a
20

a

Fig. 6.40 A doubly connected section loaded by a shear force not applied at the shear center

6.19 Exercises on the Determination of Shear Stresses

Exercise 20. Find the shear center CT for the cylinder cross section represented
in Figure 6.41, varying the dimensionless parameter k and for k D 1, k D 0, and
k!1. Lengths refer to the dashed line; h is constant.

Remarks and solution. The barycenter G is located on the axis x2 for symmetry
reasons (Fig. 6.42). The cross section is ideally divided into four rectangles of length
ka, ka, a, and 2a, respectively, all having width h. For the pertinent areas A1, A2, A3,
and A4, we obtain (A denotes the total area)

A1 D A2 D kah; A3 D ha; A4 D 2ha; A D
4X

iD1
Ai D ah.3C 2k/:

In the frame fO; �; �g, the coordinates �i of the centers of mass of the four
rectangles are

�1 D �2 D a

�

1 � k

2

�

; �3 D a

2
; �4 D a:

Consequently, the �-coordinate of the section’s barycenter is

�G D

4X

iD1
Ai�i

A
D

a

�
5

2
C 2k � k2

�

.3C 2k/
:

If k! 0, �G ! 5

6
a and if k D 1, then �G D 7

10
a. The principal inertial axes are

denoted by x1 and x2 (Fig. 6.42). The moment of inertia pertaining to the x2-axis is

I2 D 2haka2 C h.2a/3

12
D ha3

�

2kC 2

3

�

:



6.19 Exercises on the Determination of Shear Stresses 223

a a

a

ka

O

hh

Fig. 6.41 Thin cross section consisting of straight parts

a a

ka
z

G

P

x 1

x 2

T
G

(a − G)

dC T

Fig. 6.42 Determination of the position of the shear center

In the calculation, the rectangle 3 has been neglected together with the moment of
inertia of the rectangles 1 and 2 with respect to their barycenter axes. When k! 0,

we have I2 ! 2

3
ha3, and for k D 1, I2 D 8

3
ha3.

Since x2 is a symmetry axis, the shear center belongs to it. To find its coordinate
dCT , we apply a shear force T orthogonal to x2 (Fig. 6.42) and determine the
distribution of � with respect to the rectangles 1 and 2 using the Jourawski formula.
By fixing a local coordinate z as in Figure 6.42, z 2 Œ0; ka�, for rectangle 1 we get

�.z/ D TS�
2 .z/

I2h
D T

az

ha3
�

2kC 2

3

� :

with � directed as in Figure 6.42. For rectangle 2, we get

�.z/ D TS�
2 .z/

I2h
D �T

az

ha3
�

2kC 2

3

� ;
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directed as in Figure 6.42. We should redo the same calculations for the other
rectangular parts of the section and reduce the system of the shear resultants to a
point. If we consider the point P in Figure 6.42, the shear stresses with respect to
rectangles 3 and 4 do not furnish any contribution to the transport moment, so we
do not have to calculate them. Hence, the modulus of the moment MP of the shear
stresses with reference to P is

MP D 2
Z ka

0

T
az

ha3
�

2kC 2

3

�ha dz D T
ha4k2

ha3
�

2kC 2

3

� ;

and it is oriented counterclockwise. Equilibrium requires

MP D �T.dCT C .a � �G// D �T

0

B
B
@

dCT C
a

�
1

2
C k2

�

3C 2k

1

C
C
A
;

from which we get

dCT D �
a.12k3 C 11k2 C 3kC 1/

.6kC 2/.2kC 3/ :

As k ! 0, we get dCT ! �
a

6
, and the shear center coincides with P; for k D 1,

we obtain dCT D �
27a

40
(Fig. 6.43). Finally, if k!1, then dCT ! �1.

Exercise 21. Compute the distribution of the shear stresses induced by the couple
Mt for the two thin sections of Figure 6.44. Lengths refer to the dashed lines. Assume
Mt D 5 kNm, a D 5mm for the tubular section and Mt D 2 kNm, a D 10mm for
the open section.

Remarks and solution. The first section is tubular, and we can use the Bredt formula
with

j˝j D .100C 25	/a2

the area of the region delimited by the dashed line (Fig. 6.45). We obtain

j� j D Mt

2j˝ja 	 112 N=mm2:

The second section is open and can be ideally stretched to an equivalent slender
rectangle with sides a and a.20 C 10	/. Since a � a.20 C 10	/, we can neglect
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1
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7
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G
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P
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40

a
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k = 1

x 1

x 2

x 1

x 2

CT P

Fig. 6.43 Particular situations corresponding to k D 0 and k D 1

5a 5a 5a 5a

a

Mt

5a 5a 5a 5a

a

Mt

10a

Fig. 6.44 Two thin sections subjected to pure torsion

what happens along the smallest sides, focusing attention on the stress distribution
depicted in Figure 6.46. In this case, for the modified Prandtl function we can choose
the expression

� D 4Of
a2
.a � �/�;
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Fig. 6.45 Distribution of the
shear stresses in the tubular
section

5a 5a 5a 5a

Mt
5a

G

5a

Fig. 6.46 Distribution of the
shear stresses in the open
section

5a 5a 5a

Mt
5a

G

5a

5a

max
31

max
31

where � D x2 C a

2
with x2 the principal inertia axis parallel to the short side of the

rectangle and Of a constant to be evaluated (� 2 Œ0; a�). Such a function describes
the deformed shape of a membrane coincident with the rectangle and loaded by a
weight uniformly distributed over it. With this choice of �, the torsional rigidity
�Kt is

�Kt D 2�
Z

˝

� dH2 D 4

3
�Of a2.20C 10	/:

Then from the relation

Mt D ��tKt;

we get

Of D 3

4

Mt

��ta2.20C 10	/ ;

i.e.,

� D 3Mt

��ta4.20C 10	/.a � �/�;
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and consequently,

�31 D ��t
d�

d�
D 3Mt

a4.20C 10	/.a � 2�/:

The maximum modulus of the shear stress is reached at � D 0 and at � D a,
where we get

�max
31 D

Mt

1

3
a3.20C 10	/

;

so that since we have chosen to neglect the contribution of �32 for a� a.20C10	/,
we find that the maximal shear stress is approximately 117 N=mm2.

The two sections experience similar values of the maximal shear stresses. The
advantage in using the first section in technological applications rests in the higher
value of Mt and the lower value of the thickness.

Exercise 22. For the section in Figure 6.47, estimate the stress components �31 and
�32 at the point C by the Jourawski formula. Assume T D 50 kN, R D 100mm.

Remarks and solution. The barycenter G is located on the x2-axis due to the
symmetry. The area is

A D 	R2 � 	R2

16
;

and in the frame fO; x0; x2g, the barycenter is at the point .0; x2.G// with

Fig. 6.47 Symmetric section
with a circular hole subjected
to a shear force acting along
the symmetry axis

Ox 0

R/2

C (− R/2, R/2)

R

T

x 2
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R/2

R

G
C

R/2
R/20

3R/4

x 0

O O

R/2

x 0

H C
R/2G

T

x 1

x 2
dx 2

32 (C)

x 1

x 2

T

A A
31 (A )

31 (C)

l(x 2 )

AA

Fig. 6.48 Barycenter, principal axes of inertia, and determination of the components of the shear
stresses �31.C/ and �32.C/

x2.G/ D R

20
:

The principal inertial frame is represented in Figure 6.48. The moment of inertia
with respect to the x1-axis is

I1 D
�
	R4

4
C 	R2

R2

400

�

�
�
	R4

1024
C 	R2

16

.16/2

400
R2
�

D 	R4
1083

5120
	 0:2115	R4:

We consider the horizontal segment AA0 passing through C. The static moment
S�
1 of the region below AA0 with respect to the x1-axis is

S�
1 D

Z R

R=2
2

q

R2 � x22

�

x2 � R

20

�

dx2 D .63
p
3 � 4	/
240

R3 	 0:4023R3:

Using the Jourawski formula, we obtain

�n D �32.C/ 	 0:3496 T

R2
	 1:748 N=mm2:

This shear component of the stress is directed downward. The total shear stresses
at A and A0 are vectors tangent to the boundary of the section. Their horizontal
components at the points A and A0 (Fig. 6.48) are directed inside the section and
have modulus
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=
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=
4

h

x 1
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π π

Fig. 6.49 Thin section with an eccentric shear force and position of the shear center CT

�31.A/ D �31.A0/ D �32.C/ tan˛; tan˛ D 1p
3
; .˛ D 	=6/:

The �31 component of the stress varies linearly along AA0, so that at C, we have

�31.C/ D �31.A0/
HC

HA0 D
�32.C/p

3

R

2

2

R
p
3
D �32.C/

3
	 0:583 N=mm2;

directed toward the point H (Fig. 6.48).

Exercise 23. The section represented in Figure 6.49 is subjected to a horizontal
shear force T. Find an approximate value of the shear stress at the point A. The
thickness h is constant; lengths refer to the dashed line. The inclined sides are at
45ı. Assume T D 10 kN, l D 150mm, h D 15mm.

Remarks and solution. By symmetry, the shear center CT is at the point shown in
Figure 6.49. The barycenter G is on the x2-axis, but the determination of its precise
position is not necessary for the solution of the exercise. The moment of inertia I2
with respect to the x2-axis is

I2 D lh3

12
C 2

Z l

0

h.z sin˛/2dz D lh3

12
C 2h.sin˛/2

l3

3

D lh3

12
C hl3

3
	 16:917 � 106 mm4

�

˛ D 	

4

�

:
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T T l

CT CT

21

Fig. 6.50 Superposition of the two cases of pure shear and pure torsion

As shown in Figure 6.50, the action of T reduces to the superposition of a shear-
without-torsion T applied at CT and a torsion couple Tl, which can be subdivided
into three equal parts, Mti, i D 1; 2; 3, each given by

Mti D Mt

3
D Tl

3
;

acting on each rectangle of the figure, since they are all equal, so that they have the
same torsional stiffness. By referring to the remarks on rectangles under torsion in
Exercise 21 of this chapter, we write for the shear stress due to torsion at A (say
�tor.A/)

�tor.A/ D Mti

lh3

3

h D T

h2
	 44:44 N=mm2:

It is directed as shown in Figure 6.51.
As regards the shear stress at A induced by the shear action of T (we write �n.A/

for it), using the Jourawski formula, we obtain

�n.A/ D TS�
2

I2h
D Thl23

p
2

16h

�
lh3

12
C hl3

3

� 	 3:527 N=mm2;

which is directed as shown in Figure 6.52.
The linearized elastic setting allows superposition of effects, so that the resultant

shear stress at A has modulus

�.A/ D j3:527 � 44:44j 	 40:91 N=mm2

and is directed upward.
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T l
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l

G

=
4

l/2

h

x 1

x 2

tor

A
tor (A)

2

Fig. 6.51 Case of pure torsion

Fig. 6.52 Case of pure shear

A
G

T

l/2

=
4

x 2

x 1

n (A)

1

Exercise 24. The section in Figure 6.53 undergoes the action of a shear force T
along the symmetry axis. Find the distribution of the shear stresses. Assume a D
45mm, r D 12mm, c D 30mm, h D 90mm, T D 90 kN.

Remarks and solution. The shear center belongs to the x2-axis. The area A, the
position of the barycenter G with respect to the upper margin in Figure 6.53, and the
principal moment of inertia I1 are

A D 3888 mm2; d 	 34:3 mm; I1 	 3975696 mm4:
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aa c

G

h

d

r

r r

T

x 2

x 1

Fig. 6.53 Symmetric section subjected to pure shear

We use the Jourawski formula and consider a family of segments orthogonal to
the dashed line. By varying the segment in the region between the points A and
B1, we find there a linear variation of � from zero along the vertical segment at A
to �.B1/ 	 28:8 N=mm2 at B1, due to the numerical values of T , r, I1, and the
expression of the static moment

S�
1 D rz1

� r

2
� d

�

; z1 2 Œ0; a�;

appearing in the Jourawski formula and evaluated with respect to the coordinate
z1 (Figs. 6.54-a and 6.55). By symmetry, the value of � at E is zero, and the
� distribution decreases linearly to that value of zero starting from �.B2/ 	
9:6 N=mm2. In the left-hand portion of the section in Figure 6.54-c, we consider
segments between F and H with the pertinent local coordinate z2 2 Œ0; h�; �
begins at the value �.F/ 	 46:2 N=mm2 at F and increases parabolically until
the x1-axis as the static moment of vertical portions is a quadratic function of
the vertical abscissa z2 as we vary the segment orthogonal to the dashed line as
in Figure 6.54-c. The value 46:2 N=mm2 is approximately the sum of the values
reached in the linear diagrams on the horizontal side of the section when we prolong
them linearly to the midline of the vertical portion of the section itself. Such a
procedure is standard in all similar cases. When the segment defining the portion
considered crosses the x1-axis, the portion between the segment itself and the x1-
axis has static moment with algebraic sign opposite to that pertaining to the parts
before the x1-axis. Consequently, the � distribution decreases to zero. We determine
analogously the distribution of � in the portions ED2 and D1C. It is endowed with
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Fig. 6.54 Segments in different parts of the section

x 1

x 2

T

28.8 N/mm2

9.6 N/mm2

46.2 N/mm2

51.8 N/mm2

G

Fig. 6.55 Representation of the modulus of the shear stresses in the section
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Fig. 6.56 Symmetric section
under pure shear

2a

2a2a

B

a

3a

A

T

mirror symmetry (Fig. 6.55). Along the remaining vertical part of the section, the
distribution of � is once again quadratic and is equal to that pertaining to the other
vertical part (Fig. 6.55).

6.20 Further Exercises on Shear Stresses

Exercise 25. Find the value of � along the segment AB of the section in Figure 6.56.
Assume a D 10 cm, T D 300 kN.

Solution. � D 252

869

T

a2
	 8:7 N=mm2, directed downward.

Exercise 26. A torsional couple Mt acts on the section in Figure 6.57. Find the
distribution of � over the section. Lengths refer to the midline. Suppose that h D
10mm, a1 D 10h, a2 D 15h, Mt D 2 kNm.

Exercise 27. Find the position of the shear center CT for the section in Figure 6.58.
Lengths refer to the dashed line.

Exercise 28. A shear force T acts on the section in Figure 6.59. Determine the
horizontal segment where the average value of the vertical component of the shear
stress, �n, is maximal.

Exercise 29. A shear force T acts on the rectangular section in Figure 6.60.
Calculate �n over the segment AB as a function of T and l.
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Fig. 6.57 Symmetric section
under pure torsion

a2

a2
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M t

h

h/ 2

h/ 2

Fig. 6.58 Symmetric
C-shaped section
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a/2
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h

x 1

x 2

G

Exercise 30. For the T-shaped section in Figure 6.61, calculate the shear stress �n

at the point B. Assume a D 8 cm, T D 10 kN.

Exercise 31. For the thin section in Figure 6.62, find the position of the segment
AB where the value of �n is maximal according to the Jourawski formula. Assume
h D 30a, a D 10mm.
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Fig. 6.59 Symmetric section
under pure shear

a

a

aa/ 2 a/ 2

T

x2

x0 O

Fig. 6.60 Rectangular
section under pure shear

G

B

A

T

x 1

x 2

l/3

2l

2 l/3 n

l

Exercise 32. Find the position of the shear center CT for the thin section in
Figure 6.63. Lengths refer to the dashed line. Assume h D R=10.
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Fig. 6.61 T-shaped cross
section under an eccentric
shear force

a

T

B
a/4

a/10

a/10

a

Fig. 6.62 Trapezoidal
section under pure shear

BA

h

a

2a
x 2

T

Exercise 33. In the case of pure torsion in Figure 6.64, find the distribution of the
shear stresses. Assume a D 50mm, h D 12mm, Mt D 2700Nm.

6.21 De Saint-Venant’s Principle and Toupin’s Theorem

In the Navier polynomial we find just the resultants of the applied actions. In other
words, different load distributions having the same resultants produce the same �33.
Also, in discussing the determination of the shear stresses �31 and �32, we have
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Fig. 6.63 Thin section with open medium line

Fig. 6.64 Thin tubular
section in pure torsion

a

a

2a

hMt

found constants written once again in terms of load resultants. These circumstances
have their origin in what de Saint-Venant used as a principle—his analysis was
in terms of displacements rather than stresses as we have done in the previous
section—formalized by Richard Toupin in the following theorem, for which we
weaken the assumption of isotropy adopted so far in this chapter and consider the
generic linear-elastic constitutive structures

�ij D Cijhk"hk;

denoting by �M and �m the maximum and minimum eigenvalues of C, respectively.

Theorem 34 (Richard Toupin, 1965, a rigorous version of de Saint-Venant’s
principle). Let a cylinder of arbitrary length and cross section be loaded only on
one end by an arbitrary system of self-equilibrated forces. Then the stored elastic
energy U.s/ in the cylinder beyond a distance s from the loaded end bears a ratio to
the total stored energy U.0/ that always satisfies the inequality
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U.s/
U.0/

� exp

�

� s � l

sc.l/

�

;

where the characteristic decay length sc.l/ is given by

sc.l/ D
s

��

�!20.l/
;

with �� WD �2M
�m

, � the mass density, !0.l/ the smallest characteristic frequency of

free vibration of a cylindrical segment with length l > 0.

In Toupin’s view, the parameter l is at one’s disposal to choose in a manner that
will provide a small value for sc.l/. In other words, the theorem affirms that in a
linear-elastic cylinder loaded at one end by a system of forces statically equivalent to
zero force, and zero couple, the elastic energy (which is stored within the material)
always decays exponentially as we go far from the loaded end, with a decay length
depending strictly on the shape of the cross section.

The theorem determines the way in which we have to interpret de Saint-Venant’s
principle, which was, in contrast, commonly expressed even in classical treatises
by stating that the strains produced in a linear-elastic cylinder loaded as above are
of negligible magnitude at distances that are large compared with the diameter of
the loaded area. Two counterexamples to such a statement of de Saint-Venant’s
principle—expressed in this way although de Saint-Venant himself in his 1853 and
1855 articles suggested that it could not apply to any cross-sectional shape—have
been provided by Toupin. We mention just the first counterexample, which involves
a cylinder with a cross section as depicted in Figure 6.65. Consider two points P
and P0 in a cross section distant from the cylinder’s bases loaded by two torsional
moments Mt and �Mt. With the assignment of such torques, even if they are small,
for sufficiently small thickness s, we can expect, in fact, that the strain at P is much
larger than that at P0.

A formal proof of Toupin’s theorem requires some analytical preliminaries,
which are given below.

6.21.1 Inequalities

Let v and w be two vector fields defined over a region B of Euclidean space, where
they are square integrable. For these fields, we can prove the following inequality:

Z

B
hv;wid� �

�Z

B
jvj2d�

Z

B
jwj2d�

� 1
2

; (6.77)
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Fig. 6.65 Toupin’s
counterexample to the
common statement of de
Saint-Venant’s principle
before his 1965 theorem

s
h

P

Mt

Mt

P

which is called the Schwarz inequality.3 The proof can be found in typical textbooks
on functional analysis.

For all positive numbers ˛, r, and s, we have

p
rs � 1

2

�

˛rC s

˛

�

: (6.78)

It is the geometric–arithmetic mean inequality. By combining the inequalities (6.77)
and (6.78), we get

Z

B
hv;wid� � 1

2

�

˛

Z

B
jvj2d�C 1

˛

Z

B
jwj2d�

�

for all ˛ > 0.

6.21.2 The Rayleigh Principle

For a linear-elastic body with (stored) elastic energy density

e."/ D 1

2
.C"/ � ";

3The inequality was first suggested by Augustin-Louis Cauchy (1789–1857); then it was expressed
in integral form by Viktor Bunyakovsky (1804–1889) and appeared in Hermann Amandus
Schwarz’s (1843–1921) treatise on mathematical analysis.
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the stationary values of the ratio

Z

B
e."/d�

1

2

Z

B
juj2d�

D �!2;

provided that " is compatible, namely " D Sym Du, furnish the characteristic
frequencies of its free vibrations. This is the so-called Rayleigh principle, also called
the Rayleigh–Ritz principle, after John William Strutt (1842–1919), third Baron
Rayleigh, and Walther Ritz (1878–1909).

The smallest characteristic frequency is given by the minimum of the ratio above.
The next largest eigenvalue is given by the minimum of the quotient over the set of
vector fields u orthogonal to all vector eigenfunctions v.˛/ corresponding to the first
eigenvalue. Orthogonality is intended in the sense that

Z

B

˝

u; v.˛/
˛

d� D 0:

Since in this chapter we are exploiting systematically the identification of R
3

with its dual, the previous condition can also be written as

Z

B
u � v.˛/d� D 0:

In the case treated here, the first eigenvalue provided by the ratio above is
zero, and the corresponding vector eigenfunctions describe six linearly independent
rigid-body motions in three-dimensional Euclidean space. And a vector field u is
orthogonal to them when

Z

B
u d� D 0 and

Z

B
.x � x0/ � u d� D 0: (6.79)

Consequently, the first nonzero eigenvalue, denoted by !0, is given by

�!20 D min
u2C

Z

B
e."/d�

1

2

Z

B
juj2d�

;

where C is the space of continuously differentiable vector fields over B satisfying
the conditions (6.79).
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6.21.3 Proof of Toupin’s Theorem

Proof. Let Bs be the part of the cylinder beyond distance s from the loaded end; ˝s

denotes the cross section at s. Since bulk loads are not considered in de Saint-Venant
problem, the integral balances over Bs can be written as

Z

@Bs

t dH2 D 0;
Z

@Bs

.x � x0/ � t dH2 D 0:

Consequently, since the lateral boundary is free of loads, so is the extreme end of
the cylinder included in Bs, the above balances become

Z

˝s

t dH2 D 0;
Z

˝s

.x � x0/ � t dH2 D 0: (6.80)

Also, the elastic energy of Bs—call it U.s/—reduces to half of the work of t over
˝s, namely (� 2 Sym)

U.s/ D 1

2

Z

Bs

.C"/ � " d�

D 1

2

Z

Bs

� � Du d� D 1

2

Z

Bs

�

div.�Tu/ � u � div �
�

d�

D 1

2

Z

@Bs

�n � u dH2 D 1

2

Z

˝s

t � u dH2:

(6.81)

The validity of the balances (6.80) implies also that the previous expression
remains invariant if we superpose on u an arbitrary rigid displacement, i.e., if we
substitute u with

Nu D uC cCW.x � x0/;

with c 2 R
3, W 2 Skw.R3;R3/, x0 an arbitrary fixed point. The balances (6.80)

imply, in fact,

Z

˝s

t � .cCW.x � x0// dH2 D 0;

since c and W are constant and t �W.x� x0/ D q � .x� x0/� t, with q the axial vector
of W. Consequently, we can write

U.s/ D 1

2

Z

˝s

t � Nu dH2:
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Then we estimate U.s/ using both the Schwarz and geometric-arithmetic mean
inequalities, and we obtain

U.s/ � 1

4

�

˛

Z

˝s

jtj2dH2 C 1

˛

Z

˝s

jNuj2dH2

�

(6.82)

for ˛ > 0. However, since the eigenvalues of C2 WD C
T
C, with the superscript T

indicating major transposition,4 are the squares of those pertaining to C, we obtain

jtj2 D .C"/n � .C"/n � �2Mj"j2: (6.83)

However, we have also

�mj"j2 � .C"/ � " D 2e."/ � �Mj"j2: (6.84)

By multiplying the inequalities (6.84) by the ratio
�2M
�m

, we get

�2Mj"j2 � 2
�2M
�m

e."/;

i.e.,

jtj2 � 2��e."/;

which implies

U.s/ � 1

4

�

2˛��
Z

˝s

e."/dH2 C 1

˛

Z

˝s

jNuj2dH2

�

:

Consider a slice of the cylinder included between ˝s and ˝sCl, with l > 0 some
positive distance from ˝s on the opposite side of ˝0, where the external loads are
applied. Denote by Bs;l such a part of the cylinder and define Q.s; l/ as

Q.s; l/ WD 1

l

Z sCl

s
U.�/d�: (6.85)

By integrating the inequality (6.82) from s to sC l, we obtain

lQ.s; l/ � 1

4

 

2˛��
Z

Bs;l

e."/d�C 1

˛

Z

Bs;l

jNuj2d�
!

: (6.86)

4
C
T is such that CA � B D A �CTB, for any pair of second-rank symmetric tensors A and B over R3.
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The next step is to find an estimate for the last integral in the previous inequality.
For this, a lemma is useful.

Lemma 35. For u a vector field integrable over B � E3, we can always choose
c 2 R

3 and W 2 Skw.R3;R3/ such that

Nu D uC cCW.x � x0/

satisfies the integral constraints

Z

B
Nu d� D 0;

Z

B
.x � x0/ � Nu d� D 0: (6.87)

Proof. Without loss of generality, we can choose the arbitrary point x0 to be
coincident with the center of mass of B. We then compute

Z

B
Nu d� D

Z

B
.cCW.x � x0/C u/d� D c vol.B/C

Z

B
u d�;

since
Z

B
.x � x0/d� is the static moment of B, and it vanishes, since it is calculated

with respect to axes crossing the center of mass. Consequently, to satisfy the first
relation (6.87), it suffices to choose

c D � 1

vol.B/

Z

B
u d�:

The second integral in (6.87) leads to

Z

B
.x � x0/ � Nu d� D �c �

Z

B
.x � x0/d�

C
Z

B
.x � x0/ �W.x � x0/d�C

Z

B
.x � x0/ � u d�;

(6.88)

so that the first term on the right-hand side vanishes, for it includes the static moment
calculated with respect to axes crossing the mass center of B. Consider the integrand
in the second term and write p for x � x0. In components, we get

.p �Wp/ WD eijkpkWjlpl;

with eijk the Ricci tensor. However, with q the axial vector of the skew-symmetric
tensor W, we can write

Wjl D ejlmqm;
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so that

eijkpkWjlpl D eijkpkejlmqmpl

D �eikjejlmqmplpk D �.ıilıkm � ıklıim/qmplpk

D pipmqm � pkpkıimqm:

In other words, we can write

p �Wp D Dev.p˝ p/q;

where

Dev.p˝ p/ WD p˝ p � tr.p˝ p/I;

with I the second-rank unit tensor. On inserting such a result into equation (6.88),
the second integral constraint (6.87) can be written as

Iq D OV; (6.89)

where

OV WD
Z

B
p � u d�

and

I WD �
Z

B
Dev.p˝ p/d�

is the tensor of inertia of B, and as such is positive definite. Then the algebraic
equation (6.89) always admits a solution for arbitrary OV . The existence of such a
solution ensures the validity of equations (6.87) and consequently, the orthogonality
of Nu (constructed by adding to u an appropriate rigid displacement) to every rigid
displacement. ut

Due to the property established in the lemma, by the Rayleigh principle, we can
write

1

2

Z

Bs;l

jNuj2d� � 1

�!20.l/

Z

Bs;l

e.N"/d� D 1

�!20.l/

Z

Bs;l

e."/d�;

where N" WD Sym.DNu/ D Sym.Du/ by the definition of Nu. Consequently, the
inequality (6.86) becomes

Q.s; l/ � 1

2l

�

˛�� C 1

˛�!20.l/

�Z

Bs;l

e."/d�: (6.90)
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Moreover, since equation (6.81) shows that the energy U.s/ of a generic portion of
the cylinder of type Bs is given only by the traction work over ˝s, we can write

1

l

Z

Bs;l

e."/d� D 1

l
.U.s/ � U.sC l// D �dQ.s; l/

ds
;

so that the inequality (6.90) can be written as

sc.l; ˛/
dQ.s; l/

ds
C Q.s; l/ � 0; (6.91)

where

sc.l; ˛/ D 1

2

�

˛�� C 1

˛�!20.l/

�

:

The function sc.l; �/ has a minimum sc.l/ at

˛ D 1
q

���!20.l/
; (6.92)

given by

sc.l/ D
s

��

�!20.l/
:

By choosing ˛ as in the formula (6.92) and integrating the inequality (6.91)
between s1 � 0 and s2 � s1, we get

Q.s2; l/

Q.s1; l/
� exp

�

� s2 � s1
sc.l/

�

: (6.93)

The positive definiteness of the constitutive elastic tensor C implies from
equation (6.81) that U.�/ is a nonincreasing function of s. Then since Q.s; l/ is
by definition (6.85) the mean value of the function U.�/ between s and s C l, we
can write

U.sC l/ � Q.s; l/ � U.s/;

so that the inequality (6.93) implies

U.s2 C l/

U.s1/
� exp

�

� s2 � s1
sc.l/

�

:
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By choosing s1 D 0 and s2 D s � l, we obtain the inequality in the statement of
Toupin’s theorem. ut

The idea leading to Toupin’s theorem has been extended variously. We limit here
the discussion to the original case, for that allows us to deepen our comprehension
of the results about the de Saint-Venant problem. Such results will be useful later—
among other things—when we shall go beyond the traditional format of continuum
mechanics as described so far to construct coarse one-dimensional models of beams,
rods, columns, etc., for obvious computational advantages.



Chapter 7
Critical Conditions: Yield Criteria

We have so far focused attention on simple elastic materials,1 being conscious of
our limited view, dictated by our original didactic purposes. Real materials are, in
contrast, often not simple, and when a material’s response to external actions is
elastic, such behavior is not indefinite; rather, it has a finite range, starting from
states that we can consider relaxed—the body is left alone without experiencing
external actions, and the decay of memory process is presumed to be ended—even
in some approximate sense. The notions of elastic range and relaxed state can be
defined rigorously even in a very abstract way in terms of the theory of dynamical
systems. Having in mind that this book is meant essentially for “beginners”, we do
not go into detail. We just mention a well-known example that clarifies the situation:
the traction test of a cylindrical steel specimen. Figure 7.1 shows the typical
recorded stress–strain relationship.

The behavior appears to be linear up to a certain stress value, indicated by
�Y in the figure, where there is a phase transition, and increasing strain does
not produce stress increments (fluctuations apart); also the strain in that region
is irreversible, as can be seen by removing the load. In metals, such a behavior
is the macroscopic appearance of single and/or collective motions of dislocations
through crystal grains: the basic origin of the strain irreversibility. Beyond a certain
value of the strain (elongation in the specific example discussed here), the stress–
strain relationship becomes nonlinearly nondecreasing (hardening regime) until
the stress reaches another value beyond which the material is unstable (softening
regime), and the test can be continued only by controlling the deformation. When
we “reverse” the load, we find similar behavior, and the limit stress value for the
linear-elastic regime can be reached at ��Y (traction–compression symmetry) or
even at a different value. Such a test reveals prominent aspects of what is called
elastic–plastic behavior.

1More precisely, we have been referred to hyperelastic materials, since we have always considered
the (stored) elastic energy.

© Springer Science+Business Media New York 2015
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Fig. 7.1 Stress–strain
relationship typically
recorded in a traction test on a
steel specimen

O

Y

Y

In the case of traction–compression symmetric behavior, with reference to the
one-dimensional case in Figure 7.1, we say that the material behaves in a linear-
elastic way when

j� j � �Y ;

i.e., when

f .�/ WD j� j � �Y � 0: (7.1)

The constraint (7.1) defines the critical condition but does not furnish by itself
information on the postcritical behavior. In other words, from the inequality (7.1)
we are not able to deduce whether the material behavior is elastic–plastic or brittle
or something else when the stress increases beyond �Y .

In three dimensions, the possible expressions of f .�/—what we commonly call
the yield function—are not so simple as that appearing in the yield criterion (7.1).

There are many proposals of criteria available in the current literature. Each is
associated with a certain specific physical mechanism. The choice then depends on
what is suggested by the circumstance under analysis and what we believe to be its
prominent aspects.

We list in this chapter some criteria, some historically prominent, some particu-
larly popular. They are all in reference to a point within a body; in this sense, they
are local.

7.1 Tresca’s Criterion

With Tresca’s criterion, we assume that at a point, a critical stress state is reached
when in one of the planes crossing it, the tangential stress reaches a certain critical
value kT determined by, e.g., a traction test as described above.
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To formalize this, consider the eigenvalues of the pertinent stress at a point—call
them �I , �II , �III . We say that the stress state in the material is admissible at the point
considered when

1

2
max .j�I � �IIj; j�II � �IIIj; j�III � �Ij/ � kT � 0:

Equivalently, we can define

fT.�/ WD
	

.�I � �II/
2 � 4k2T


 	

.�II � �III/
2 � 4k2T


 	

.�III � �I/
2 � 4k2T




;
(7.2)

so that the yield criterion (the admissibility condition for the stress) reads

fT.�/ � 0: (7.3)

The domain described by the inequality (7.3) in the space .�I ; �II ; �III/ is a
straight prism with hexagonal basis, wrapped around the straight line inclined at 45ı
with respect to all three axes �I , �II , and �III as in Figure 7.2. In the plane �III D 0,
the domain is represented in Figure 7.3. The constant kT is estimated by uniaxial
tension–compression tests. In the case of symmetric material behavior, using the

function (7.2), we obtain kT D �Y

2
, since the sole nonzero eigenvalue of

0

@

�Y 0 0

0 0 0

0 0 0

1

A

O II

III

I

III

III

√2
√3

Y

Fig. 7.2 The admissibility domain defined by the yield criterion (7.3) in the space .�I ; �II ; �III/

and deviatoric section
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Fig. 7.3 Tresca’s
admissibility domain in the
plane �III D 0

II

O

I = 2kT

Y = 2kT

II = 2kT

II = − 2kT

I = − 2kT

I

is just �Y . Henry Tresca (1814–1885) introduced this criterion in 1864 and discussed
it in three additional papers published in 1867, 1868, and 1872. Adhémard Jean-
Claude Barré de Saint-Venant (1797–1886) reanalyzed it in 1870 and 1872. The
criterion is now named after Tresca. For the de Saint-Venant problem, the Tresca
criterion reduces to

q

�233 C 4�2 � �Y ;

in which � denotes here the modulus of the shear stress.

7.2 Beltrami’s Criterion

In 1885, Eugenio Beltrami (1836–1900) suggested that one consider the whole
elastic energy as the essential ingredient for the yield criterion. By considering just
linear elasticity, Beltrami proposed to write

1

2
� � " � kB

for the yield criterion, with kB the critical energy estimated by a traction test in the
case of symmetric traction–compression behavior.
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7.3 Huber–von Mises–Hencky Criterion

From experimental data on metals, Titus Maksymilian Huber (1872–1950) observed
that in case of hydrostatic pressure at a point, the material never reaches the limit �Y

measured in the uniaxial traction test. Huber’s observation suggested to Richard
Edler von Mises (1883–1953) in 1913 that a relevant yield criterion should be
written in terms of the deviatoric part �d of the Cauchy stress, defined analogously
to the deviatoric part of "—the tensor "d appearing in Chapter 1—by

�d D � � 1
3
.tr �/I;

with I is the second-rank unit tensor. As in the case of "d, we immediately compute
tr �d D 0. Later, in 1924, with reference to linear elasticity, Heinrich Hencky
(1885–1951) expressed the criterion based on Huber’s and von Mises’s ideas in
terms of the deviatoric part of the elastic energy density. The first step is the
following decomposition in terms of deviatoric stress and strain:

1

2
� � " D 1

2

�

�d C 1

3
.tr �/I

�

�
�

"d C 1

3
.tr "/I

�

D 1

2
�d � "d C 1

6
.tr �/.tr "/:

The last equality follows by taking into account that �d � I D tr �d D 0 and "d � I D
tr "d D 0.

We define the product

ed WD 1

2
�d � "d

as the deviatoric elastic (stored) energy density, denoting it by ed.
When the material in the linear-elastic phase is isotropic, the previous expression

becomes

ed D 1

4�

�

�ij � �

3�C 2�.tr �/ıij

�

�ij � .tr �/2

6.3�C 2�/ D
1

12�

�

3�ij�ij � .tr �/2
�

:

In terms of the deviatoric component of the stress, we simply write

ed D 1

4�
�d � �d D � J2

2�
;

where J2 is the second invariant of �d, i.e., the sum of the determinants of the minors
of �d around its principal diagonal. Huber–von Mises–Hencky’s yield criterion is
expressed by the inequality
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ed � k2HMH

2�
; (7.4)

where kHMH is a constant estimated by a traction–compression uniaxial test.
The ratio of its square with 2� is the relevant deviatoric energy.

Exercise 1. Compute explicitly the deviatoric part of the stress with components

0

@

�Y 0 0

0 0 0

0 0 0

1

A

and show that

kHMH D �Yp
3
:

In the linear isotropic elastic case, the inequality (7.4) reads

jJ2j � k2HMH;

so that the yield function can be chosen as

fHMH.�/ WD J2 C k2HMH;

or alternatively,

fHMH.�/ WD
p

jJ2j � kHMH :

In terms of the principal stresses—the eigenvalues of �—for the first choice of
f .�/ above, the admissibility condition

fHMH.�/ � 0

reads

.�I � �II/
2 C .�II � �III/

2 C .�III � �I/
2 � 6k2HMH � 0:

Such an inequality describes a cylinder with circular base in the space
.�I ; �II ; �III/, wrapped around the straight line inclined at 45ı with respect to
all three axes �I , �II , and �III (see Fig. 7.4). In the plane �III D 0, the admissibility
domain is in Fig. 7.5. For the de Saint-Venant problem, the Huber–von Mises–
Hencky criterion reduces to

q

�233 C 3�2 � �Y :
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II

III

I

III

III

√2
√3

Y

O

Fig. 7.4 Admissibility region determined by the Huber–von Mises–Hencky criterion in the space
.�I ; �II ; �III/ and deviatoric section

7.4 The Drucker–Prager Criterion

The Huber–von Mises–Hencky criterion excludes participation of the hydrostatic
component of the stress at a point in the definition of critical states. The choice
appears appropriate for metals, in general, but it seems to be unsatisfactory
for granular materials (where the hydrostatic pressure governs compactification),
classes of rocks, even concrete. For these cases, Daniel C. Drucker (1918–2001)
and William Prager (1903–1980) proposed in 1952 a modification of the Huber–
von Mises–Hencky criterion that reads

fDP.�/ � 0;

where

fDP.�/ WD
p

jJ2j � kDP1 � kDP2 tr �; (7.5)

with kDP1 and kDP2 appropriate constants. In the case of asymmetric material
behavior (traction–compression), with yield stress �Yt under a traction test and �Yc

in compression conditions, kDP1 and kDP2 have the following form:

kDP1 D 2p
3

.�Yc�Yt/

.�Yc C �Yt/
; kDP2 D 1p

3

.�Yt � �Yc/

.�Yc C �Yt/
:

These two expressions follow by writing first the critical condition
pjJ2j D

kDP1 C kDP2 tr � in the case of uniaxial traction and then the same expression
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Fig. 7.5 The Huber–von
Mises–Hencky admissibility
domain in the plane �III D 0

II

O

Y √2

Y = kHMH√3

Y √2 /√3

Y

I

in compression uniaxial conditions. In the space of the triplet .�I ; �II ; �III/, the
admissibility criterion defines a cone with circular basis. Further extensions of the
Drucker–Prager criterion are available in the current literature.

7.5 Hill’s Criterion

In his scientific career, Rodney Hill (1921–2011) proposed various yield criteria,
first with the aim of accounting for material anisotropies. Here, we recall just briefly
the simplest of his proposals:

fH.�/ WD �d
max � kH;

where �d
max is the maximum absolute eigenvalue of �d, and kH has the same meaning

but with reference to the critical conditions in a uniaxial traction test, i.e., it is the
maximum eigenvalue of the deviatoric stress component. In the space .�I ; �II ; �III/,
the admissibility condition

fH.�/ � 0

describes a region similar to that pertaining to Tresca’s criterion. Figure 7.6 presents
a comparison among the Tresca, Huber–von Mises–Hencky, and Hill criteria in the
case �III D 0. Tresca’s condition appears to be more stringent in favor of safety.
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Huber-von Mises-Hencky

II

O

Tresca

Hill

I

Fig. 7.6 Comparison among three yield criteria in the plane �III D 0

7.6 Objectivity of the Yield Function

Under classical changes in observers, the stress � becomes Q�QT, with Q in SO.3/.
This issue has been already discussed in previous chapters. The action of Q 2 SO.3/
alters the frame(s) in the ambient space but does not change the material properties.
In other words, if � satisfies the admissibility condition (the yield criterion), then
Q�QT must also be admissible. The circumstance is verified when we require that
the yield function f be objective, i.e.,

f .�/ D f .Q�QT/

for any Q 2 SO.3/.
This requirement implies that f has to depend only on the invariants of � , namely

tr � , det � , and the second invariant, i.e.,
1

2

�

.tr �/2 � tr �2
�

. Let us call I2 the second

invariant of � . It is connected with J2, the second invariant of �d, by the relation

J2 D I2 � 1
3
.tr �/2, so that the Huber–von Mises–Hencky and the Drucker–Prager

criteria fall under the objectivity conditions.



Chapter 8
Rod Models

The analysis of the equilibrium of three-dimensional slender cylinders is rather
complicated as it emerges, at least to us, from the discussion of the de Saint-Venant
problem. The difficulty increases when we consider framed structures. The task
becomes formidable in the presence of large strains and dynamics. The presence
of a dominant dimension suggests, however, that one explore the possibility of
constructing coarse models in which the sole independent space variable is the arc
length along the dominant axis—it can be generically a curve. We can construct
different models of these cylinders, or rods, by including or excluding essential
peculiar aspects of their mechanical behavior. Often, ad hoc assumptions appear in
technical theories of rods, leading to the neglect of certain kinematic terms regarded
as small. In the nonlinear case, they often lead to equations no easier to analyze
than those obtained from the three-dimensional theory avoiding the introduction of
further ad hoc assumptions. In this last case, we can derive a rod model in two ways:

1. through some approximation procedure from the three-dimensional nonlinear
elasticity (top-to-bottom procedure);

2. by considering a one-dimensional continuum (the curve determining the domi-
nant axis of the cylinder) and assigning to each point information on the rod’s
cross section.

Both approaches to constructing one-dimensional-in-space-variables rod models
can be followed even when slenderness is not so pronounced or the body is relatively
thick. In these cases, the utility of the resulting equations may be seriously impaired,
although in the case of approximation procedures, convergence would be ensured.

In this chapter, we shall focus our attention on the second way of deriving rod
models. We call the result a directed description of rods.

Before going into details, we warn the reader that we use the term rod in a broad
sense. For us, it is a generic term for (in alphabetical order) arch, bar, beam, column,
ring, shaft, etc.

© Springer Science+Business Media New York 2015
P.M. Mariano, L. Galano, Fundamentals of the Mechanics of Solids,
DOI 10.1007/978-1-4939-3133-0_8

259



260 8 Rod Models

8.1 Basis Conceptual Aspects of the Director-Based
Description of Rods: Reference Places

Consider

– .i/ a smooth curve s 7�! '0.s/ 2 E3, s 2 Œ0; l�;
– .ii/ three unit vector fields s 7�! Oe� .s/ D Oe� .'0.s// 2 S2, � D 1; 2; 3,

orthogonal to each other, Oe3 D Oe1 � Oe2 at every s, and
˝Oe3.s/; '0

0.s/
˛

R3
> 0, where

the prime denotes in this chapter differentiation with respect to s.

We may take in E3 a fixed orthonormal basis e1, e2, e3 such that

Oe� .s/ D Q0.s/e� ;

where Q0.s/ is the value of a differentiable map s 7�! Q0.s/ 2 SO.3/, s 2 Œ0; l�.
The reference shape of a tangible rod is then the set

B WD
(

x 2 E3jx D '0.s/C
2X

˛D1
�˛ Oe˛.s/; .�1; �2; s/ 2 X � .0; l/

)

;

where X is a two-dimensional compact open set in R
2, with piecewise smooth

boundary @X . We shall assume that

ˇ
ˇ
ˇ
ˇ

d'0
ds

ˇ
ˇ
ˇ
ˇ
D 1 for every s, so that l is the length of

the rod. We can consider '0.�/ the line of centroids, i.e., a line crossing at every s
the mass center of the rod section spanned by the vectors Oe1.s/ and Oe2.s/ as �1 and
�2 in vary over X . For the reference place, we can also write

B WD
(

x 2 E3j x D '0.s/C
2X

˛D1
�˛Q0.s/e˛; .�

1; �2; s/ 2 X � .0; l/
)

:

We shall then identify geometrically the physical rod with the closure of B.
The vector Oe3.s/ orients at s the transversal section spanned by Oe1.s/ and Oe2.s/.

When Oe3.s/ D ' 0

0.s/, such a section is properly the cross section at s. The description
of the rod’s geometry in terms of a curve and vector fields over it and above
all, the role these vectors will play later are the reasons for calling the resulting
scheme director-based (or directed). Figure 8.1 reproduces graphically what we have
discussed above.
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s

s

ê1

ê2

ê3

ê3

ê2

ê1

0 (s)

0 (s)

Fig. 8.1 From a three-dimensional shape to a one-dimensional model with directors

8.2 Deformation and Motions

– We assume that during the deformation, the transversal sections (those spanned
by Oe1 and Oe2 in the reference place) behave rigidly (Bernoulli’s hypothesis).

The assumption excludes warping of the rod’s cross section. It allows us to
identify the rod’s shape after deformation with the set

Ba WD
(

y 2 QE3j y D NyC
2X

˛D1
�˛d˛.s/ ;

Ny WD '.'0.s//; d˛.s/ D Q.s/Oe˛.s/; .�1; �2; s/ 2 X � .0; l/� I

' is a one-to-one differentiable orientation-preserving function.1 The curve s 7�!
'.'0.s//, the centroid locus of the deformed rod, can be considered to be parame-
terized by the arc length Ns.s/, given by the map

s 7�! Ns.s/ WD
Z s

0

ˇ
ˇ
ˇ'

0

.z/
ˇ
ˇ
ˇ dz:

1Warning: ' must not be confused with the stress potential function in Chapter 6.
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ê1

ê2

ê3

e3
e2

e1

d2

d1

Q(s)

0 (s)

Q0 (s)

d3

( 0 (s))

s

Fig. 8.2 Kinematics in the director-based rod model

Moreover, we still impose
D

d3.s/; '
0

.s/
E

QR3 > 0

as a counterpart of the analogous condition in the reference shape. Figure 8.2 shows
schematically the kinematics of the director-based model just described.

– Unless otherwise stated, we shall refer to a straight reference shape of the
rod without too much loss of generality, since we are discussing large strains.
Consequently, for us, the actual shape Ba is then

Ba WD
(

y 2 QE3j y D NyC
2X

˛D1
�˛d˛.s/ ;

Ny WD '.s/; d˛.s/ D Q.s/e˛; .�
1; �2; s/ 2 X � .0; l/� :

The current shape of the rod is determined by the two maps s 7�! '.s/ 2 QE3
and s 7�! Q.s/ 2 SO.3/. In other words, we determine the deformed line of
the centroids (the centers of mass) and add at each of its points information
on the current arrangement of the pertinent transversal section. We are then
reducing a rod to a one-dimensional continuum with every point endowed not
only with the standard three translational degrees of freedom of a point in three-
dimensional space, but also with additional rotational degrees of freedom. In this
way, the material element placed at a point in the one-dimensional continuum is
considered a (finite-size) rigid body able to rotate independently of its neighbors;
we picture the rod as a deck of infinitely many two-dimensional cards, each



8.3 Derivatives 263

one coinciding with a rod cross section. For this reason, such a one-dimensional
scheme in space gives rise to a continuum going beyond the traditional format
described so far, where a material element is described just by a geometric point
and, as such, has only three degrees of freedom.

– We shall tacitly assume that the rod does not self-intersect, deforming in the sense
that we assume the existence of a well-defined smooth inverse mapping Ns 7�! s,
with Ns the arc length over the curve ', the deformed rod axis. Then we shall call
the derivative

�.s/ WD dNs.s/
ds

the stretch developed in going from B to Ba.

Each point x in B is parameterized by �1, �2, and s as is every y in Ba at a
fixed instant t. Then we can evaluate the deformation gradient F by computing the
derivatives with respect to �1, �2, and s. The result is

F D d1 ˝ e1 C d2 ˝ e2 C
 

';s C
2X

˛D1
�˛d˛;s

!

˝ e3;

where “; s” as a subscript denotes the derivative with respect to s. In particular,
we set

F0.s/ D F.�1; �2; s/
ˇ
ˇ
�1D�2D0 ;

for the deformation gradient over the line, so that

F0.s/ D d1 ˝ e1 C d2 ˝ e2 C ';s ˝ e3:

Time comes into play for describing motions, i.e., mappings

.s; t/ 7�! y WD '.s; t/C
2X

˛D1
�˛d˛.s; t/ (8.1)

assumed to be twice piecewise differentiable in time.

8.3 Derivatives

Let us begin with the relation

d˛.s; t/ D Q.s; t/e˛;

which defines d˛ , and assume that d˛ is twice differentiable. We then compute

d˛;s D Q;se˛ D Q;sQ
Td˛:
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Actually, the tensor field s 7�! Q;sQT at each instant t is skew-symmetric (for
the proof, we recall that we just need to compute the derivative with respect to s of
the defining relation Q.s/QT.s/ D I, with I the second-rank identity), and we write

d˛;s D ˝d˛ D ! � d˛; (8.2)

where ˝ WD Q;sQT, and !.s; t/ is the corresponding axial vector. An analogous
expression holds for the time derivative of d˛ , namely

Pd˛ D PQe˛ D PQQTd˛;

so that since W WD PQQT is skew-symmetric, we write also

Pd˛ D Wd˛ D w � d˛; (8.3)

where w is the axial vector of W. We have also

@

@t
d˛;s D P! � d˛ C ! � Pd˛ D P! � d˛ C ! � w � d˛

and

@

@s
Pd˛ D w;s � d˛ C w � d˛;s D w;s � d˛ C w � ! � d˛:

Since by Schwartz’s theorem, the two mixed derivatives equal each other, we get

. P! � w � !/ � d˛ D .w;s C w � !/ � d˛;

or more concisely,

w;s � d˛ D .O! �w � !/ � d˛;

where

O
!WD P! � w � !

is the rate of change of ! relative to an observer moving with the spatial frame fd� g.
Write now � for the vector

� WD @'

@s
� d3;

which measures how much the normal to the plane containing what is a cross section
at s in the reference place deviates from the tangent to the deformed centroid axis at
the same s. Then � accounts for shear. We compute
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O
� WD @

@t

�
@'

@s
� d3

�

� w �
�
@'

@s
� d3

�

D @ P'
@s
� Pd3 � w � @'

@s
C w � d3

D @ P'
@s
� w � d3 � w � @'

@s
C w � d3

D @ P'
@s
� w � @'

@s
D

O
@'

@s
;

(8.4)

where we have used the relation (8.3).

8.4 Sectional Stress Power

Consider a cross section at s in the reference place of a three-dimensional rod. The
covector

O�.x/ WD P.x/e3

is the contact action exchanged between the material element at y.x/ in the deformed
shape and the part of the rod having in the reference shape normal �e3 at the same
s. Figure 8.3 illustrates the scenario.

We call the integral over the section of the power density O� � Py, namely

PX WD
Z

X
O� � Py d�1d�2;

the sectional stress power.

y

s

d3

e3

ˆ(x ) = ˜(ỹ(x ))

x

Fig. 8.3 Sketch of the mapping x 7�! O�.x/
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Using (8.1), we obtain

PX D
Z

X
O� � Py d�1d�2 D

Z

X
O� �
 

P'.s; t/C
2X

˛D1
�˛ Pd˛.s; t/

!

d�1d�2

D
Z

X
O� � P'.s; t/ d�1d�2 C

Z

X
O� �

2X

˛D1
�˛w � d˛ d�1d�2

D P' �
Z

X
O� d�1d�2 C w �

Z

X

2X

˛D1
�˛d˛ � O� d�1d�2

D P' � nC w �m;

where

n WD
Z

X
O� d�1d�2 and m WD

Z

X

2X

˛D1
�˛d˛ � O� d�1d�2:

Since in the one-dimensional scheme with directors developed so far, we assign
at every point of the centroid line information on the whole cross section there,
n.s/ is the contact traction at s in that scheme, and m.s/ is a contact couple, which
develops power in the rotational degrees of freedom assigned to every s, in addition
to what holds in the standard continuum scheme. If we take a portion of the rod
between s1 and s2, with s2 > s1, the difference

n.s2; t/ � P'.s2; t/Cm.s2; t/ � w.s2; t/ � n.s1; t/ � P'.s1; t/ �m.s1; t/ � w.s1; t/

is the external power of the contact actions exerted by the rest of the rod over the
part between s1 and s2.

8.5 Power of the External Actions

Let f denote distributed forces over the rod boundary. With b
 the bulk actions, we
define Nn
 and Nm
 respectively as

Nn
.s; t/ WD
Z

@X
f.�1.l/; �2.l/; s; t/ dlC

Z

X
b
.�1; �2; s; t/ d�1d�2;

Nm
.s; t/ WD
Z

@X
.y � y0/ � f dlC

Z

X
.y � y0/ � b
 d�1d�2;
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where l is the arclength along @X , y0 is a fixed point in space, and for the sake
of notational conciseness, we have omitted in the definition of Nm
 to make explicit
the dependence on �1, �2, s, and the time t. Due to the presence of b
, we can
decompose Nn
 and Nm
 additively into inertial and noninertial factors, since b
 can
be so decomposed by definition. Consequently, we shall write

Nn
 D NnC Nnin; Nm
 D NmC Nmin;

where the superscript “in” denotes the inertial components defined by

Nnin.s; t/ WD
Z

X
bin.�1; �2; s; t/ d�1d�2 (8.5)

and

Nmin.s; t/ WD
Z

X
.y � y0/ � bin d�1d�2: (8.6)

By Of and Om we shall denote external noninertial forces and couples applied to
finite numbers Nks � 0 and NNks � 0, respectively, of discrete points of the centroid
line. These points can be the orthogonal projections over the centroid line of points
over the boundary of the rod where localized loads are applied. Also, the isolated
applied forces Of can be the resultants over a specific section of external actions that
can even have inertial nature as in the case of shocks. They generate discontinuities
in the distributions of Nn
 and Nm
, which are necessary to ensure balance at those
points. The power of external actions over a portion of the rod between s1 and s2,
with s2 > s1, under (at least square) integrability assumptions for Nn
, Nm
, and the
velocities, can then be written as

Z s2

s1

. Nn
.s; t/ � P'.s; t/C Nm
.s; t/ � w.s; t// ds

C
NksX

kD1
.Of.sk; t/ � P'.sk; t//C

NNksX

rD1
. Om.sr; t/ � w.sr; t//:

8.6 Changes in Observers

Classical changes in observers in the physical space imply for P'.s; t/ the same
transformation v 7�! v� as that presented in Chapter 2, so that we can write

P'�.s; t/ D P'.s; t/C c.t/C q.t/ � .'.s; t/ � y0/: (8.7)

We have, in fact, two observers rototranslating one with respect to the other. Each
of them may evaluate the velocity P'.s; t/ of a given point '.s; t/ of the centroid
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line and the pullback P'�.s; t/ from the other observer of the velocity measured in
the rototranslational frame. Such a transformation has also an effect on w. In fact,
with w, the rod’s cross-sectional rotational velocity evaluated by a given observer,
the pullback w� in the relevant frame of the velocity measured by the second
(rototranslating) observer reads

w� D wC q: (8.8)

In fact, with d
0

˛ the image of the vector d˛ in the frame defining the second
observer, we have

d
0

˛ D Q.t/d˛

with Q.t/ 2 SO.3/ the orthogonal time-dependent transformation linking the two
observers. The derivative with respect to time reads

Pd0

˛ D PQd˛ C Q Pd˛:
Then, by defining Pd�̨ as

Pd�̨ D QT Pd0

˛

and using the relation (8.3), we obtain

Pd�̨ D QT PQd˛ C Pd˛ D q � d˛ C w � d˛ D .qC w/ � d˛;

which justifies, by comparison with equation (8.3), the choice (8.8).

8.7 External Power Invariance for Director-Based
Rod Models

We write Pext
.s1;s2/

. P';w/ for the power on the part of the rod between s1 and s2, with
s2 > s1, in the one-dimensional, director-based scheme. As we explained in the
previous section, it reads

Pext
.s1;s2/

. P';w/ WD n.s2; t/ � P'.s2; t/ � n.s1; t/ � P'.s1; t/
Cm.s2; t/ � w.s2; t/ �m.s1; t/ � w.s1; t/

C
Z s2

s1

. Nn
.s; t/ � P'.s; t/C Nm
.s; t/ � w.s; t// ds

C
NksX

kD1
Of.sk; t/ � P'.sk; t/C

NNksX

rD1
Om.sr; t/ � w.sr; t/:

In accord with the path described in Chapter 3, we impose now an invariance
requirement.
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Axiom 1 (Power invariance for the director-based rod model). The external
power Pext

.s1;s2/
. P';w/ is invariant under isometry-based changes in observers, i.e.,

Pext
.s1;s2/

. P';w/ D Pext
.s1;s2/

. P'�;w�/

for every choice of c and q, and for every interval .s1; s2/.

Since Pext
.s1;s2/

is linear in the velocities, the axiom implies

Pext
.s1;s2/

.cC q � .' � y0/; q/ D 0;

for every choice of c, q, and the interval .s1; s2/ considered, i.e.,

c �
0

@n.s2; t/ � n.s1; t/C
Z s2

s1

Nn
.s; t/dsC
NksX

kD1
Of.sk; t/

1

A

C q �
�

m.s2; t/ �m.s1; t/C
Z s2

s1

Nm
.s; t/ ds

C .'.s2; t/ � y0/ � n.s2; t/ � .'.s1; t/ � y0/ � n.s1; t/

C
NksX

kD1
.'.sk; t/ � y0/ � Of.sk; t/C

NNksX

rD1
Om.sr; t/

C
Z s2

s1

.'.s; t/ � y0/ � Nn
.s; t/ ds

�

D 0:

The arbitrariness of c and q implies the global balances

n.s2; t/ � n.s1; t/C
Z s2

s1

Nn
.s; t/ dsC
NksX

kD1
Of.sk; t/ D 0 (8.9)

and

m.s2; t/ �m.s1; t/

C .'.s2; t/ � y0/ � n.s2; t/ � .'.s1; t/ � y0/ � n.s1; t/

C
Z s2

s1

Nm
.s; t/ dsC
NksX

kD1
.'.sk; t/ � y0/ � Of.sk; t/

C
NNksX

rD1
Om.sr; t/C

Z s2

s1

.'.s; t/ � y0/ � Nn
.s; t/ ds D 0:

(8.10)
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Take s1 � Ns � s2 and imagine that n.�; t/ has at Ns a bounded discontinuity. For ˛
a nonnegative number, we denote by nC and n� the limits

n˙.Ns; t/ WD lim
˛!0

n.Ns˙ ˛; t/:

The jump Œn� of n is defined by

Œn� WD nC � n�;

and the average hni by

hni WD .nC C n�/
2

:

Analogous definitions hold for m and the other fields defined over the centroid
line involved here. Discontinuity points for n.�; t/ are those where external isolated
actions Of are applied. We then have

n.s2; t/ � n.s1; t/ D
Z s2

s1

@n.s; t/
@s

dsC
NksX

kD1
Œn�.sk; t/:

By inserting the result in the integral balance (8.9), we obtain

Z s2

s1

�
@n.s; t/
@s

C Nn
.s; t/
�

dsC
NksX

kD1

�

Œn�C Of
�

.sk; t/ D 0:

The arbitrariness of the interval of integration (i.e., of the part considered in the
rod) implies that of Nks � 0, so that we must have

@n
@s
C Nn
 D 0 (8.11)

along the centroid line, and

Œn�C Of D 0 (8.12)

at the points of the same line where isolated external actions occur. When Of D 0, the
balance (8.12) requires that n be continuous.

Assume now that m.�; t/ is continuous and continuously differentiable over the
centroid line except at NNks � 0 points, where it has bounded discontinuities. Such
points are those where the (purely noninertial) isolated couples Om are applied. As in
the case of n, we then have

m.s2; t/ �m.s1; t/ D
Z s2

s1

@m.s; t/
@s

dsC
NNksX

rD1
Œm�.sr; t/:
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The integral balance (8.10) then becomes

Z s2

s1

�
@m
@s
C @'

@s
� nC Nm


�

dsC
NNksX

rD1
.Œm�C Om/.sr; t/

C
Z s2

s1

.'.s; t/ � y0/ �
�
@n
@s
C Nn


�

ds

C
NksX

kD1
.'.s; t/ � y0/ � .Œn�C Of/.sk; t/ D 0:

The local balances (8.11) and (8.12) allow us to write the integral balance of
couples as

Z s2

s1

�
@m
@s
C @'

@s
� nC Nm


�

dsC
NNksX

rD1
.Œm�C Om/.sr; t/ D 0:

The arbitrariness of the integration interval implies that of NNks and the validity of the
local balances

@m
@s
C @'

@s
� nC Nm
 D 0 (8.13)

along the centroid line, and

Œm�C Om D 0 (8.14)

at the isolated points where external couples are applied.

8.8 Identification of the Inertial Terms

8.8.1 Kinetic Energy Averaged over the Cross Section

On averaging the kinetic energy density over the generic cross section at s, we obtain

1

2

Z

X
�jPyj2d�1d�2 D 1

2

Z

X
�

 

P' C
2X

˛D1
�˛ Pd˛

!

�
0

@ P' C
2X

ˇD1
�ˇ Pdˇ

1

A d�1d�2

D 1

2
j P'.s; t/j2

Z

X
�.�1; �2; s/ d�1d�2

C P'.s; t/ �
2X

˛D1
w.s; t/ � d˛.s; t/

Z

X
��˛d�1d�2

C 1

2

2X

˛D1

2X

ˇD1
.w.s; t/ � d˛.s; t// � .w.s; t/ � dˇ.s; t//

Z

X
��˛�ˇd�1d�2;
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where we have exploited the natural identification of R
3 with its dual and the

relation (8.3) in the second term on the right-hand side. The integrals
Z

X
��1d�1d�2 and

Z

X
��2d�1d�2

correspond respectively to the static moments S2 and S1 of the cross section at s
with respect to d1 and d2. Since the frame considered is in reference to the cross
sectional center of mass, we have S2 D S1 D 0. Then we get

P'.s; t/ �
2X

˛D1
w.s; t/ � d˛.s; t/

Z

X
��˛d�1d�2 D 0:

Given two nonparallel vectors a, b 2 R
3, the Lagrange formula for the triple

vector product prescribes

a � b � a D .a � a/b � .a � b/a D .jaj2I � a˝ a/b:

Then we compute

1

2

Z

X

2X

˛D1

2X

ˇD1
��˛

2

.w.s; t/ � dˇ/ � .w.s; t/ � d˛/ d�1d�2

D 1

2

Z

X

2X

˛D1

2X

ˇD1
�˛

2

.d˛ � w � dˇ/ � w d�1d�2

D 1

2

0

@

Z

X

0

@

2X

˛D1
�˛

2

I �
2X

˛D1

2X

ˇD1
�˛�ˇd˛ ˝ dˇ

1

A �d�1d�2

1

Aw � w;

where I is the second-rank unit tensor. By defining the scalar �X and the second-
rank tensor IX respectively by

�X .s/ WD
Z

X
�.�1; �2; s/ d�1d�2;

and

IX .s; t/ WD
Z

X

0

@

2X

˛D1
�˛

2

I �
2X

˛D1

2X

ˇD1
�˛�ˇd˛ ˝ dˇ

1

A �d�1d�2;

the kinetic energy at the instant t of the cross section at s in the reference
configuration reads

1

2

Z

X
�jPyj2d�1d�2 D 1

2
�X j P'j2 C 1

2
IX w � w:

We shall write kinX for the right-hand side of the above expression.
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8.8.2 The Inertia Balance and the Identification

We assume that for every portion of the rod between s1 and s2, the inertial
components of Nn
 and Nm
, namely Nnin and Nmin, satisfy the integral balance

d

dt

Z s2

s1

kinX dsC 1
2

Z s2

s1

PIX w �w dsC
Z s2

s1

Nnin � P' dsC
Z s2

s1

Nmin �w ds D 0 (8.15)

for every choice of the velocity fields P' and w. On considering the explicit
expression of kinX and computing the time derivative, the balance (8.15) becomes

Z s2

s1

.�X R' C Nnin/ � P' dsC
Z s2

s1

.IX PwC PIX wC Nmin/ � w ds D 0:

Then, the arbitrariness of the velocity implies

Nnin D ��X R';

Nmin D �IX Pw � PIX w:

Using the relation (8.3), the time derivative of IX reads

PIX D �
Z

X

2X

˛D1

2X

ˇD1
�˛�ˇ. Pd˛ ˝ dˇ C d˛ ˝ Pdˇ/ �d�1d�2

D �
Z

X

2X

˛D1

2X

ˇD1
�˛�ˇ

�

.w � d˛/˝ dˇ C d˛ ˝ .w � dˇ/
�

�d�1d�2:

However, since
�

.w � d˛/˝ dˇ
�

w D .dˇ � w/.w � d˛/;
�

d˛ ˝ .w � dˇ/
�

w D �w � .w � dˇ/
�

d˛;

and obviously,

w � Iw D w � w D 0;
we get

PIX w D �w �
0

@

Z

X

2X

˛D1

2X

ˇD1
�˛�ˇd˛ ˝ dˇ �d�1d�2

1

Aw

D w �
0

@

Z

X

0

@

2X

˛D1
�˛

2

I �
2X

˛D1

2X

ˇD1
�˛�ˇd˛ ˝ dˇ

1

A �d�1d�2

1

Aw:

(8.16)
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Define now the moment of momentum H.s; t/ pertaining at the instant t to the
rod’s cross section at s as

H.s; t/ WD
Z

X
�.y � '/ � Py d�1d�2:

From the definition (8.1), we have

.y � '.s; t// D
2X

˛D1
�˛d˛

and

2X

˛D1
�˛ Pd˛ D

2X

˛D1
�˛w � d˛ D w � .y � '.s; t//:

Consequently, H can be written as

H.s; t/ D
Z

X
�.y � '/ � P' d�1d�2 C

Z

X
�.y � '/ �

2X

˛D1
�˛ Pd˛d�1d�2

D
 
Z

X
�

2X

˛D1
�˛d�1d�2

!

d˛ � P' C
Z

X
�

2X

˛D1
�˛d˛ � w �

2X

ˇD1
�ˇdˇd�1d�2

D
0

@

Z

X

0

@

2X

˛D1
�˛

2

I �
2X

˛D1

2X

ˇD1
�˛�ˇd˛ ˝ dˇ

1

A �d�1d�2

1

Aw;

where we have taken into account .i/ that �1 and �2 are with reference to the cross-
sectional center of mass, so that

S˛ D
Z

X
��˛d�1d�2 D 0; ˛ D 1; 2;

as we have already mentioned, and .ii/ the Lagrange formula for the triple vector
product. On inserting the result into the identity (8.16), we then obtain

PIX w D w � H;

so that

Nmin D �IX Pw � w � H:
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8.8.3 A Further Justification of the Inertia Balance

We can justify the use of (8.15) by recalling the definition (8.5) and (8.6). Since

bin D ��Ry D � d

dt
.�Py/ (8.17)

(see Chapter 3), we can rewrite the definition (8.5) of Nnin as

Nnin.s; t/ D � d

dt
OL.s; t/;

where

OL.s; t/ WD
Z

X
�.�1; �2; s/Py.�1; �2; s; t/ d�1d�2:

Using the definition (8.1), we then have

OL.s; t/ D
Z

X
�.�1; �2; s/ P'.s; t/ d�1d�2 C

Z

X

2X

˛D1
�˛ Pd˛�.�1; �2; s/d�1d�2

D �X .s/ P'.s; t/C
2X

˛D1
Pd˛S˛ D �X .s/ P'.s; t/

In fact, as above, the static momenta vanish, since �1 and �2 are with reference
to the cross-sectional center of mass. Substitution into the above expression of Nnin

determines Nnin D ��X .s/ R', as derived in the previous section. Moreover, since
bin D ��Ry, we can write the relation (8.6) as

Nmin D � d

dt
H

with H as defined in a previous section, where the results show that

H D IX w;

so that

PH D IX PwC PIX w D IX PwC w � H;

a relation already obtained from the assumption (8.15).
The balance (8.15) is a version in the present setting of the integral bal-

ance (3.17).
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8.9 Summary

In summary, the balance equations for the director-based description of rods
presented in this chapter read

@n
@s
C Nn D �X R';

@m
@s
C @'

@s
� nC Nm D IX PwC w � H

along the rod axis and

Œn�C Of D 0;
Œm�C Om D 0;

at the points where concentrated external forces Of and couples Om are applied.
Explicitly, we write

n D T1d1 C T2d2 C Nd3;

where N is the amplitude of the action normal to the cross section; T1 and T2 are
the shear forces in the frame defined over the cross section itself by d1 and d2.
Analogously, for m we write

m D M1d1 CM2d2 CMtd3;

where M1 and M2 are the bending moments around the pertinent d˛ , while Mt is
the torsion moment. We have adopted the same symbols—we refer to T1, T2, N,
M1, M2, Mt—of Chapter 6 for the components of the contact actions over the rod’s
cross section, because in the conditions of the de Saint-Venant problem, they reduce
precisely to those defined in Chapter 6.

For the applied distributed noninertial actions, we write also

Nn D Nq1d1 C Nq2d2 C Npd3

and

Nm D Nm1d1 C Nm2d2 C Nmtd3:

8.10 A Special Case

Consider a straight rod remaining straight after deformation. This case restricts the
treatment to rigid changes of place and approximately to the small-strain regime.
Neglect inertia. Select also the triple fe� g, � D 1; 2; 3, to be orthogonal at each s.
In this case, the balance equations read in components
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dN

ds
C Np D 0;

dT1
ds
C Nq1 D 0;

dT2
ds
C Nq2 D 0;

dM1

ds
� T2 C Nm1 D 0;

dM2

ds
� T1 C Nm2 D 0;

dMt

ds
C Nmt D 0:

We can easily find a solution to such a system when the rod is constrained and
the constraints .i/ are equal to the number of the degrees of freedom and .ii/ are
well posed in the sense explained in Chapter 1.

In the case of piecewise straight rods, the previous equations apply on the straight
portions, providing the addition of corner continuity conditions except in the case
in which concentrated forces or couples are applied, so that a bounded discontinuity
is necessary for n and m, respectively, in order to ensure locally the balance of the
actions, as shown in the previous section.

We provide examples in the following sections, where we apply the previous
notions to the analysis of the statics of framed structures. We also include in these
structures rods with a natural curved reference shape, a case requiring a refined
analysis.

8.11 Starting from a Curved Reference Shape

Let us consider the line of centroids to be an arbitrary smooth curve in the reference
shape. Such a curve is determined by the function s 7�! '0.s/ introduced in
Section 8.1. Write fe�g, � D 1; 2; 3, for the orthogonal fixed basis in the reference
space. As above, we can select a differentiable function

s 7�! Q0.s/ 2 SO.3/

such that

Oe�.s/ D Q0.s/e�:

After deformation, we have

d� .s/ D Q.s/Oe�.s/:
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Then we compute

d�;s D Q;s Oe� C QOe�;s D Q;sQ
Td� C QQ0;se� D ˝d� C QQ0;sQ

T
0Q0e�

D ˝d� C Q˝0 Oe� D ˝d� C Q˝0Q
Td� ;

where ˝0 WD Q0;sQT
0 is a skew-symmetric tensor. The second-rank tensor

˝ C Q˝0Q
T (8.18)

is skew-symmetric, since ˝ and ˝0 are, and

.Q˝0Q
T/T D Q˝T

0 QT D �Q˝0Q
T:

Consequently, with N! the axial vector of the tensor (8.18), we have just to substitute
! with the appropriate N! once a deformed reference shape has been selected.
Imagine that we parameterize the curved reference shape by arc length Qs given by a
map

s 7�! Qs.s/ WD
Z s

0

ˇ
ˇ
ˇ'

0

0.z/
ˇ
ˇ
ˇ dz:

For a function f .Qs.s//, we have

df

dQs D
1

Q�
df

ds
;

where Q� is the stretch from the straight configuration to the reference curved one,
and it is never zero by assumption, i.e.,

Q�.s/ D dQs.s/
ds

:

What we have developed so far applies also to the cases in which s 7�! '0.s/
is piecewise smooth with the sole proviso that we must pay attention to the balance
conditions at corners, as will appear in some exercises discussed in the next sections
of this chapter.

8.12 Statically Determined (Isostatic) Framed Structures

Consider a supported rod of length l, loaded by a distributed force of density Nq in
two-dimensional space, where we fix an orthogonal frame fA; y; sg, as in Figure 8.4.
Let us compute the reactive forces at A and B, those in Figure 8.5, imagining the
rod to be rigid.
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Fig. 8.4 A supported rod in
two-dimensional space

q̄

l

BA
s

y

BAHA

l/2

s

YA YB

q̄l

Fig. 8.5 The scheme of reactive forces

To calculate the reactive forces, we can substitute the distributed load with its
resultant Nql, applied at the barycenter of the load diagram. By equalizing to zero
the sum of forces and that of couples evaluated with respect to the point A, we get

HA D 0; YA C YB D Nql; YBl D Nql2

2
:

Consequently, we obtain

YA D Nql

2
; YB D Nql

2
:

In the present two-dimensional setting, the balance equations read

dN

ds
D 0; dT

ds
C Nq D 0; dM

ds
� T D 0;

where here, T stands for T2 in the balances summarized in Section 8.10, M for M1,
Np D Nm1 D 0, Nq2 D Nq. At the point A, we have

NA D HA D 0; TA D YA D Nql

2
; MA D 0:
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M
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q̄
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2

q̄l
2

q̄l
2

Fig. 8.6 Distributions of the action characteristics. The scheme on the right-hand side (figure top)
indicates the convention on positive signs used here

On integrating the balance equations with the previous conditions, we get

N.s/ D 0; T.s/ D Nql

2
� Nqs; M.s/ D Nql

2
s � Nqs2

2

(see also Figure 8.6).
The same result can be obtained via integral balances evaluated over subsequent

parts of the rod. To this end, it is convenient to start from one of the extreme points
of the rod: let us say A, as indicated by an eye—showing the point of view—in
Figure 8.7. Consider then the generic part from A to a point with abscissa s. The
horizontal component of the balance of forces over that part reads

N.s/ D 0
and does not vary as s varies. The vertical component of that balance is given by

T.s/ � YA C Nqs D 0;
according to the agreement on positive signs indicated in Figure 8.6. Since we are
watching from the left side, the positive algebraic sign are those on the left side in
the rectangle in the figure. Then we write
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BA

l

s

q̄l
2

q̄l
2

q̄

s

s

Fig. 8.7 The choice of subsequent parts over the rod, moving the abscissa s from the point A

T.s/ D Nql

2
� Nqs:

The same convention on algebraic signs holds also for the balance of couples,
calculated with respect to the extreme right-hand point with abscissa s, which is

M.s/ � YAsC Nqs
s

2
D 0;

i.e.,

M.s/ D Nql

2
s � Nqs2

2
:

Further examples are present in the subsequent sections.

8.13 Remarks on the Statics of 1-Dimensional Rigid Bodies
in 3-Dimensional Space

A general expression of what we have done in the previous section opens a path for
the analysis of more intricate structures.

Consider a one-dimensional rigid body that occupies a portion of a piecewise
smooth line in E3 and take an orthogonal frame fO; e1; e2; e3g. The vector position
of a point P is then xP D .P � O/ (Fig. 8.8).

As we have described so far, consider isolated forces Of.i/ and couples Om.j/, applied

respectively to Nks � 0 and NNks � 0 points. In the frame selected, Of.i/ and Om.j/ have

components Of.i/1, Of.i/2, Of.i/3, and Om.j/1, Om.j/2, Om.j/3, respectively. Assume also that
distributed forces Nf.j/.s/ and couples Nm.p/.s/ act on Nr � 0 and NNr � 0 intervals of the
body. Figure 8.8 depicts the situation.
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Fig. 8.8 One-dimensional
body in 3-dimensional space:
external and reactive actions
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With the aim of evaluating the equilibrium in the reference configuration, we
reduce the system of external actions to the origin of the frame considered, i.e., a
force Ofo and a couple Omo applied at O such that

Ofo D
NksX

iD1
Of.i/ C

NrX

jD1

Z s.j/2

s.j/1

Nf.j/.s/ ds;

Omo D
NNksX

jD1
Om.j/ C

NNrX

pD1

Z s.p/2

s.p/1

Nm.p/.s/ dsC
NksX

iD1
xP.i/ � Of.i/

C
NrX

jD1

Z s.j/2

s.j/1

xP.j/ � Nf.j/.s/ds;

where s.�/1 < s.�/2.
The body considered is subjected to nt � 0 translational and nr � 0 rotational

simple constraints, each one reacting with a force Rv or a couple Mv . The balance
equations in the reference frame then read

Ofo C
ntX

iD1
Rv.i/ D 0; (8.19)

Omo C
nrX

iD1
Mv.i/ C

ntX

iD1
xV.i/ � Rv.i/ D 0: (8.20)

Write r for the list .Rv.1/; : : : ;Rv.nt/;Mv.1/; : : : ;Mv.nr//
T, taken as a vector

column and including the components of all reactions, and b for the list



8.13 Remarks on the Statics of 1-Dimensional Rigid Bodies in 3-Dimensional. . . 283

.�Ofo1;�Ofo2;�Ofo3;� Omo1;� Omo2;� Omo3/
T. In terms of r and b, we can write the

balance equations as the algebraic system

Br D b: (8.21)

With nv D nt C nr, the matrix B has dimension 6 � nv .

– If the system (8.21) has only one solution, we say that the body under consider-
ation is statically determinate: the balance equations are sufficient to determine
the unique set of reactive actions able to equilibrate the external ones.

– If the system (8.21) has no solution, we say that the body is hypostatic: the
reactive actions are insufficient to balance the external ones.

– If the system (8.21) has infinitely many solutions, we say that the body is
statically indeterminate or hyperstatic: the number and disposition of the
constraints allow infinitely many choices of the reactive actions that balance the
external ones. The degree of infinity—let us denote it by Oh—is called the degree
of hyperstaticity.

When we have six constraints (nv D 6, B is a square matrix), if det B ¤ 0, the
algebraic system (8.21) has only one solution for every b. In this case, the body is
isostatic. If det B D 0, i.e., rank.B/ D rB < 6, we have two possibilities: rank.B/ D
rank. OB/, with OB the matrix obtained by including in the matrix at the left-hand side
of equation (8.21) the column on the right-hand side of the same equation, with
16�rB solutions and Oh D 6 � rB degree of hyperstaticity, and rank.B/ ¤ rank. OB/,
the hypostatic state.

Since the body considered here is rigid, the work of the external actions must be
zero. Rigidity implies in fact that every admissible motion must be a time-dependent
isometry, so that (see Chapter 3) the power of the external actions must vanish, and
by time-integration, also the work performed by the external actions denoted by
Lext vanishes; indeed, it is evaluated on a rigid displacement. The external actions
include the reactive ones, so that the identity

Lext.uR/ D 0;

with uR a rigid displacement, can be rewritten as

Lext
a .uR/C Lext

r .uR/ D 0; (8.22)

where Lext
a is the work performed by the applied external actions and Lext

r is the work
performed by the reactive actions in the possible constraint failures. By taking into
account the relations (1.5) and (8.21), we can rewrite the identity (8.22) in terms of
the vectors r, b, p, p and the matrices A and B. A consequence is the identity

B D AT;

which is commonly called static–dynamic duality. A consequence is that a rigid
body is kinematically isodeterminate if and only if it is isostatic.
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Fig. 8.9 System of 1-dimensional rigid bodies in 3-dimensional space: external and reactive
actions

– When Oh > 0, there are Oh reactive forces and/or couples, denoted by X1, X2,. . . ,
XOh, that cannot be determined using only the balance equations; X1, X2,. . . , XOh are
called hyperstatic unknowns. We call Oh as the degree of hyperstaticity. When
a structure has a degree of hyperstaticity equal to Oh, we say in short that the
structure is Oh-times hyperstatic, as we say Ol-times labile for the degree of lability
Ol

– The degree of lability Ol and the degree of hyperstaticity Oh are related by

6 � nv D Ol � Oh; (8.23)

when the body has no ringlike portions; in this case, the function defining the
rod’s axis is one-to-one everywhere.

When we consider a system of K interconnected rigid bodies (Fig. 8.9 presents
an example), the balance equations can be summarized once again into an algebraic
system of the type Br D b, but now the matrix B is 6K � nv . The relation (8.23)
becomes

6K � nv D Ol � Oh: (8.24)

– If 6K > nv , we have Ol > 0: the structure is labile in its entirety, although portions
of it could have some degree of hyperstaticity.

– If 6K D nv and rank.B/ D 6K, we have Ol D Oh D 0: the structure is isostatic.
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– If 6K D nv and rank.B/ < 6K, we have Ol D Oh ¤ 0: the structure has a degree
of lability equal to that of hyperstaticity. In other words, there are superabundant
constraints with respect to the degrees of freedom, but they are disposed in a way
allowing some rigid kinematics.

– If 6K < nv , we have Oh > 0: the structure is hyperstatic, although it could have
some degrees of lability.

The condition 6K D nv is necessary but not sufficient to ensure isostaticity; the
condition Ol D Oh D 0 is sufficient.

The previous definitions hold in a two-dimensional setting once we substitute 6
with 3.

Consider now a rigid rod with axis determining a closed circuit in three-
dimensional space. If we cut the circuit at a point, we have twelve action charac-
teristics equally divided between the two sides of the cut as a consequence of the
action–reaction principle. Besides the continuity conditions at the cut, in the absence
of external actions applied there, we do not have sufficient balance equations to
determine the action characteristics at the cut. Consequently, the presence of the
closed circuit can be interpreted as the introduction of a constraint with multiplicity
equal to six. If we are in a two-dimensional space, a closed circuit can be interpreted
as the introduction of a constraint with multiplicity equal to three (see Fig. 8.10).
Write nc for the number of circuits in the structure. The relation (8.24) becomes

6K � .nv C 6nc/ D Ol � Oh: (8.25)

In the two-dimensional setting, we substitute 6 with 3 (see Fig. 8.10).

nc = 1

NS

MS
nc = 2

a

c

b

TS

S

Fig. 8.10 Examples of rods with axes described by one-to-one functions (a) and those admitting
closed circuits (b), (c)
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8.14 Exercises

Exercise 2. Calculate the reactive actions on the rigid rod in Figure 8.11.

Remarks and solution. The structure is isostatic because it is constrained by three
pendulums with axes not intersecting at the same point, so that a rotation center does
not exist. By taking into account the notation in Figure 8.11, the balance equations
read

HA C HC � Of D 0; YB � Of D 0; � OmC Ofl � YB2l � HCl D 0;
where momenta have been calculated with respect to the point A, whence

HA D 2OfC
Om
l
; HC D �

�

OfC Om
l

�

; YB D Of:

The orientation assumed for the reaction HC in Figure 8.11 is not correct: the
negative sign indicates that the effective orientation of HC is opposite to that initially
assumed (Fig. 8.12).

Exercise 3. Find the reactive actions for the cantilever rigid rod in Figure 8.13.

Remarks and solution. The rod is subjected to a distributed triangular load with
maximal value Nq0, statically equivalent to a vertical concentrated force Nq0l=2 applied

HA

HC

A

B

C

l

l

YB

ˆ

ˆ

ˆ

l l

Fig. 8.11 Isostatic rod
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l

m̂
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f̂

f̂ +
m̂
l

Fig. 8.12 Values of the reactive actions

A
BHA

MA

l

YA

q̄0

Fig. 8.13 Cantilever rigid rod with a triangular distributed load

at distance of l=3 from the point B. By evaluating momenta with respect to the point
A and adopting the notation in Figure 8.13, the balance equations read

HA D 0; YA � Nq0l
2
D 0; MA � Nq0l

2

2

3
l D 0;

so we get (Fig. 8.14)

HA D 0; YA D Nq0l
2
; MA D Nq0l

2

3
:
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Fig. 8.14 Values of the reactive actions

Fig. 8.15 Labile rod in
equilibrium conditions
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Exercise 4. Verify the equilibrium of the rigid rod in Figure 8.15.

Remarks and solution. The rod is kinematically indeterminate (labile): the axes of
the three pendulums intersect at the same point C, which is the center of rotation.
Given an arbitrary rigid displacement characterized by the rotation ! about C, the
work of the external forces is given by

Lext D OfuD � OfuE D Of
�

!
l

2
� ! l

2

�

D 0:

The displacements of the points D and E appear in the diagrams of Figure 8.16.
Although the rod is labile, the specific load condition ensures equilibrium.

Exercise 5. Calculate the reactive forces on the structure in Figure 8.17, made of
rigid rods.

Remarks and solution. The structure consists of three rods with nine simple con-
straints (five external constraints and four internal constraints) independent of each
other, so it is isostatic. We compute the reactions of the external constraints using
the balance equations for the system, considered as a unique rigid body, and two
additional balances corresponding to the equilibrium of momenta with respect to the
internal hinges in B and D. On adopting the notation in Figure 8.17, such balances
read
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Fig. 8.16 Diagrams of the rigid linearized displacement of the rod
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Fig. 8.17 Isostatic rod with internal hinges

HA D 0; YA C YC C YE � Of � Nq0l D 0; MA � 4lYA � 2lYC C 3lOf D 0;
� lYA CMA D 0; lYE � Nq0l2 D 0:

Then we obtain (Fig. 8.18)

HA D 0; YA D Of; YC D 0; MA D Ofl; YE D Nq0l:
Equilibrium in the vertical direction for the part DG implies YD D 0, while that

for the part BD requires YB D 0, because YC D YD D 0 and the external force
Of is totally sustained by the part AB. Finally, the internal horizontal reactions HB

and HD vanish, because there are no horizontal forces acting on the system. For the
reaction MA, we act in terms of (virtual) work (Fig. 8.19) to verify the result already
obtained. We eliminate the simple rotational constraint at A (so a hinge has to be
inserted) so that the system may admit a linearized rigid displacement. With these
new conditions, the external work is given by

Lext D �MA! C OfuB D 0:
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Fig. 8.18 Reactions and active forces over the structure
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Fig. 8.19 Calculation of the external reaction MA using the virtual work

The work of the distributed load is equal to zero. As shown in Figure 8.19, we have
uB D l! and

Lext D .�MA C Ofl/! D 0;
which gives MA D Ofl, a value already known.

Exercise 6. Calculate the reactive forces exerted on the structure in Figure 8.20 by
the constraints imposed by the environment.

Remarks and solution. There are four rods and twelve simple constraints (the
internal hinge in C is equivalent to four simple constraints) that do not allow rigid
displacements (they are well posed in this sense).2 First, we write the balance
equations of the whole structure, considering the point D as a pole for momenta

HD C Of D 0; YA C YD � Of D 0; MA � 2lYA � Ofl D 0:

2In fact, the system can be considered to be made of two rigid bodies, and the rotation centers C1,
C2, and C12 are not collinear.
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Fig. 8.20 Isostatic structure

There are four unknowns and three equations. However, if the structure is in an
equilibrium state, every part of it has to be in the same state (Euler’s principle).
Hence we may impose the balance of momenta of the part ABC with respect to C:

MA � lYA D 0;
so that we obtain

HD D �Of; MA D �Ofl; YA D �Of; YD D 2Of:
The reactions with negative signs have opposite orientation to that initially assumed
(Fig. 8.21).

Exercise 7. Find the action characteristics in the structure in Figure 8.22.

Remarks and solution. The structure is isostatic. The balance of forces in the
horizontal direction implies HE D 0. Moreover, the balance of couples evaluated
with respect to the point B reads

�YE3lC Q
l

3
D 0 H) YE D Q

9

�

Q D Nq0l
2

�

:

Finally, the balance of forces in the vertical direction implies YB D 10

9
Q.
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Fig. 8.21 Structure with the reactions of the external constraints
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Fig. 8.22 Simple supported rod with two angular deviations of the axis. The schemes depicted as
rectangles indicate the positive signs used here

Consider three different reference frames denoted by fy1; z1g, fy2; z2g and fy3; z3g
for the parts AC, CD, and DE, respectively. Take a generic section S� in four
different portions of the rod, namely AB, BC, CD, and DE. In AB, consider the
balance of the portion AS�, with S� at z1, in which the value of the load is
Nq.z1/ D Nq0z1=l. The balance equations for AS� can be written as
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8

ˆ̂

<̂

ˆ̂

:̂

N.z1/ D 0
T.z1/C Nq0z1

l

z1
2
D 0

M.z1/C Nq0z1
l

z1
2

z1
3
D 0

H)

8

ˆ̂

<̂

ˆ̂

:̂

N.z1/ D 0
T.z1/ D � Nq0z

2
1

2l

M.z1/ D � Nq0z
3
1

6l

z1 2 Œ0; l�:

By choosing S� in BC, the balance equations of the portion AS� can be written
as

8

ˆ̂

<̂

ˆ̂

:̂

N.z1/ D 0
T.z1/C Q � 10

9
Q D 0

M.z1/ � Q

�
2

3
l � z1

�

� 10
9

Q.z1 � l/ D 0
H)

8

ˆ̂

<̂

ˆ̂

:̂

N.z1/ D 0
T.z1/ D Q

9

M.z1/ D Q

9
.z1 � 4l/

z1 2 Œl; 2l�:

By choosing S� in the third part CD, the balance equations of the portion S�DE
read

8

ˆ̂

<̂

ˆ̂

:̂

N.z2/ � Q

9
D 0

T.z2/ D 0
M.z2/C Q

9
2l D 0

H)

8

ˆ̂

<̂

ˆ̂

:̂

N.z2/ D Q

9
T.z2/ D 0
M.z2/ D �2l

Q

9

z2 2 Œ0; l�:

Finally, in the part DE, the balance equations for the portion OS�E are
8

ˆ̂

<̂

ˆ̂

:̂

N.z3/ D 0
T.z3/ � Q

9
D 0

M.z3/C Q

9
.2l � z3/ D 0

H)

8

ˆ̂

<̂

ˆ̂

:̂

N.z3/ D 0
T.z3/ D Q

9

M.z3/ D Q

9
.z3 � 2l/

z3 2 Œ0; 2l�:

The diagrams of the action characteristics are depicted in Figure 8.23. At the
points C and D shear and axial forces balance each other, due to the presence of a
right angle.

Exercise 8. Calculate the action characteristics in the system in Figure 8.24.

Remarks and solution. The structure is kinematically indeterminate: the external
constraints allow a rigid horizontal translation. However, for the particular load
condition the equilibrium is possible. The balance of forces along the vertical
direction and the one of the couples evaluated with respect to the point A are

YA C YB D 0; � OmC 2lYB D 0;



294 8 Rod Models

Q

2Ql
9

Q
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Q
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Q
9

2Ql
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Ql
3

Fig. 8.23 Diagrams of the action characteristics of the rod

Fig. 8.24 Structure with
horizontal lability
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where YA and YB are respectively the reactions of the supports at A and B, and they
are equal to

YA D �
Om
2l
; YB D

Om
2l
:

To calculate the six reactions of the internal hinges, we separate the three rods
CD, CE and DE and write the pertinent balance equations. The result is shown
in Figure 8.25. Table 8.1 collects the equations of the action characteristics with
reference to the local frames in Figure 8.25. Their diagrams are in Figure 8.26.

Exercise 9. Calculate the action characteristics in the system analyzed in
Exercise 6.

y

z

y

z

z

y

y

z

y

z

D D

E

G
BC

C

A

E

H

m̂

m̂
4l

m̂
4l

m̂
4l m̂

4l

m̂
4l

m̂
4l

m̂
2l

m̂
2l

m̂
2l

m̂
2l

O

Fig. 8.25 Reactive forces and local frames

Table 8.1 Action
characteristics

Part N.z/ T.z/ M.z/

CB, z 2 Œ0; l�
Om
4l

� Om
2l

Om
2l

z

BG, z 2 Œl; 2l�
Om
4l

0
Om
2

EG, z 2 Œ0; 2l� 0
Om
4l

Om
4l

z

DE, z 2 Œ0; 4l� � Om
4l

0 0

HO, z 2 Œ0; l� 0 � Om
4l

� Om
2

� Om
4l

z

OD, z 2 Œl; 2l� 0 � Om
4l

Om
4l
.2l � z/

HA, z 2 Œ0; l�
Om
4l

0 � Om
2

AC, z 2 Œl; 2l�
Om
4l

� Om
2l

Om
2l
.z � 2l/



296 8 Rod Models

m̂
4l

m̂
4l

m̂
2l

m̂
2

m̂
4

3m̂
4

m̂
2

m̂
4l

m̂
4l

Fig. 8.26 Diagrams of the action characteristics

Remarks and solution. The external reactive forces have been already determined
in Exercise 6 of this chapter. We open the circuit CDEG at E and consider the two
internal forces YE and HE (unknown reactive forces of the hinge), as in Figure 8.27.
Then we write the balance of the couples for the portion EDC with respect to C and
for EHG with respect to G (see Fig. 8.27),

lYE � HEl �
Ofl
2
D 0; HEl �

Ofl
2
D 0;



8.14 Exercises 297

l l

l

l/2
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G

O

l/2

l/2

HE

HE

YE

YE

f̂

f̂

2f̂

f̂

f̂ l

f̂

Fig. 8.27 Calculation of two internal reactive forces

obtaining (Fig. 8.28)

YE D Of; HE D
Of
2
:

On adopting the frames of reference in Figure 8.28, we determine the diagrams of
N.z/, T.z/, and M.z/ (Fig. 8.29).

Exercise 10. Find the action characteristics in the truss system in Figure 8.30.

Remarks and solution. The truss system (so called because it consists of rods
connected only by hinges and the external actions are just forces applied over the
hinges) is isostatic. The external reactive forces have been depicted in Figure 8.30,
and they can be determined by the balance equations of the system, considered as a
single rigid body:

HE C
Of2
2
D 0; Of1 C

p
3

2
Of2 � YA � YE D 0; 2lYE � l

p
3

2
Of2 D 0;
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l l
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Ff̂
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f̂
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ˆ
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f/2

f̂

f̂ l

f̂

Fig. 8.28 Values of the internal reactive forces at E

which furnish (Fig. 8.31)

HE D �
Of2
2
; YA D Of1 C

p
3

4
Of2; YE D

p
3

4
Of2:

In a truss system, the only nonzero action characteristic is the normal force N,
which is constant in each rod. The rods subjected to a tensile action are called ties;
those compressed are called struts. A way to determine the normal actions in these
systems is the method of the equilibrium of nodes.

Consider first the node B with all pertinent known and unknown forces and write
their balance equation (Fig. 8.32):

NBC D 0; NAB C Of1 D 0;
where NBC and NAB are the normal actions over the rods BC and AB, respectively.
We then obtain

NBC D 0; NAB D �Of1;
which means that the rod AB is a strut.
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Fig. 8.29 Diagrams of the action characteristics



300 8 Rod Models

Fig. 8.30 Truss system
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Fig. 8.31 External reactive
forces
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Fig. 8.32 Equilibrium of two
nodes

NBC
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NAC
f̂1
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f̂1 +
3

4
f̂2

We then reproduce the same program for the node A, for which we have the
balance equations

NAG C NAC

p
2

2
D 0; Of1 � Of1 �

p
3

4
Of2 � NAC

p
2

2
D 0;
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Table 8.2 Action
characteristics

Rod Type of action Value

AB Strut �Of1
BC Unloaded 0

CD Unloaded 0

DE Unloaded 0

EG Strut Of2
 p

12

8
� 1

2

!

AG Tie Of2
p
12

8

AC Strut �Of2
p
6

4

GC Tie Of2
p
3

2

CE Strut �Of2
p
6

4

Fig. 8.33 Normal actions

G EA

B DC

which give

NAG D
p
12

8
Of2; NAC D �

p
6

4
Of2;

so that the rod AG is a tie and the rod AC is a strut. The indices to N denote the rod.
By following this procedure and considering other nodes, we calculate the unknown
normal actions in each rod. Table 8.2 collects these values (the ties have a positive
normal action; the struts have negative values). We show a synthetic view of the
result in Figure 8.33: the ties are shown by thin lines, while the struts are represented
by thick lines. The method can be generally applied to all isostatic truss structures.

To verify the results, we can use an alternative method based on so-called Ritter’s
sections.

Imagine that we divide the structure into two distinct parts by ideally cutting
three nonparallel rods, with N unknown. Two examples are shown in Figure 8.34.
A section of this type is called a Ritter’s section. Consider the section 1-1 in
Figure 8.34 and the left part of the system (Fig. 8.35). The pertinent balance
equations—they are the balance of couples with respect to the point A, the balance
of couples with respect to C, and the balance of forces in the vertical direction—read
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Fig. 8.34 Examples of
Ritter’s sections
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Fig. 8.35 Ritter’s section method

NBC D 0; lNAG C Of1l � Of1l �
p
3

4
Of2l D 0; NAC

p
2

2
� Of1 C Of1 C

p
3

4
Of2 D 0;

i.e.,

NBC D 0; NAG D Of2
p
3

4
; NAC D �Of2

p
6

4
:

Hence, the beam AG is a tie, while AC is a strut. By considering different cuts, it
is possible to evaluate the normal actions in all the rods (Fig. 8.35).
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Fig. 8.36 Kinematically indeterminate system, with a particular load condition ensuring equilib-
rium

Fig. 8.37 Spatial rod
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8.15 Further exercises on isostatic framed structures

Exercise 11. Calculate the action characteristics in the system in Figure 8.36.

Some elements of the solution: M.A/ D 3Nql2

4
, oriented counterclockwise; M.F/ D

Nql2

2
.

Exercise 12. Calculate the action characteristics in the structure in Figure 8.37.

Some elements of the solution: N.A/ D �2Of, Mt.A/ D 0.
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Fig. 8.38 Helix
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Exercise 13. Calculate the action characteristics in the structure in Figure 8.38.

Some elements of the solution: N D 2pOf
c

, Mt D !R2Of
c

, ! D 4	 , c D
p

!2R2 C 4p2.

Exercise 14. Calculate the action characteristics in the system in Figure 8.39.

Some elements of the solution: The structure is twice labile; NAD D Of,
M.A/ D

Oflp
2

.

Exercise 15. Calculate the action characteristics in the structure in Figure 8.40.

Some elements of the solution: The structure is isostatic; YA D Of, and it is oriented

upward; M.D/ D 5Ofl
2

.

Exercise 16. Find the values of the bending moments in the sections A and B of the
structure in Figure 8.41. Consider Of D Nql and Om D Nql2=2.

Solution. M.A/ D 15Nql2=8, M.B/ D 2Nql2.
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Fig. 8.39 Kinematically indeterminate structure with a particular load condition ensuring equilib-
rium
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Fig. 8.40 Isostatic structure
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Fig. 8.41 Isostatic structure
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Fig. 8.42 Kinematically indeterminate structure with a particular load condition ensuring equilib-
rium

Exercise 17. Calculate the action characteristics in the structure in Figure 8.42.

Some elements of the solution: The structure is twice labile; YC D Nql is directed
downward; HG D 0.

8.16 Weak Balances: The Inner Power

In deriving the inertia terms in the balance equations, we have assumed the
velocity to be continuous along the centroid line, i.e., P' and w are continuous. The
assumption implies that
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n.s2; t/ � P'.s2; t/ � n.s1; t/ � P'.s1; t/

D
Z s2

s1

�
@n
@s
� P' � n � @ P'

@s

�

dsC
NksX

kD1
Œn.sk; t/� � P'.sk; t/

and

m.s2; t/ � w.s2; t/ �m.s1; t/ � w.s1; t/

D
Z s2

s1

�
@m
@s
� w �m � @w

@s

�

dsC
NNksX

rD1
Œm.sr; t/� � w.sr; t/:

By taking into account the previous expressions and using the balance equations,
we can manipulate the expression of Pext

.s1;s2/
. P';w/, obtaining

Pext
.s1;s2/

. P';w/ D
Z s2

s1

�

n �
�
@ P'
@s
� w � @'

@s

�

Cm � @w

@s

�

ds:

We call the right-hand-side integral the inner power in the rod, denoting it by
P inn
.s1;s2/

. We leave the proof to the reader as an exercise.
The corotational derivative (8.4) implies then

P inn
.s1;s2/

D
Z s2

s1

 

n�
O
� Cm � @w

@s

!

ds:

Recall that we have determined the expression for the external power after
evaluating the sectional power, i.e., the average over a generic cross section of the
power developed by the tension over the section itself. Thus, we find it reasonable
to imagine that P inn

.s1;s2/
equals the inner power in the part between s1 and s2 of the

three-dimensional rod. In other words, we should have

Z

X

Z s2

s1

P � PFds d�1d�2 D
Z s2

s1

 

n�
O
� Cm � @w

@s

!

ds: (8.26)

Since (see Section 8.2)

F D
2X

˛D1
d˛ ˝ e˛ C

 

@'

@s
C

2X

˛D1
�˛d˛;s

!

˝ e3

D
2X

˛D1
d˛ ˝ e˛ C

�
@'

@s
C ! � .y � '/

�

˝ e3;
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because

2X

˛D1
�˛d˛;s D ! �

2X

˛D1
�˛d˛ D ! � .y � '/;

we get

PF D
2X

˛D1
Pd˛ ˝ e˛ C

�
@ P'
@s
C P! � .y � '/C ! � .Py � P'/

�

˝ e3

D
2X

˛D1
.w � d˛/˝ e˛ C

�
@ P'
@s
C P! � .y � '/C ! � w � .y � '/

�

˝ e3:

In the basis e1, e2, e3, we have also

P D t1 ˝ e1 C t2 ˝ e2 C O� ˝ e3;

with O� WD Pe3, as introduced in Section 8.4. Then we compute

P � PF D O� � @ P'
@s
C P! � ..y � '/ � O�/

C O� � .! � w � .y � '//C
2X

˛D1
w � .d˛ � t˛/:

(8.27)

A digression is now necessary to express the last term in the previous expression
in a convenient way. The local balance of couples PF� 2 Sym. QR3; QR3/ implies

2X

˛D1

@y

@�˛
� t˛ C @y

@s
� O� D 0: (8.28)

The proof of this statement follows by writing the product FP� in terms of the
explicit expression of F and P above. We have, in fact,

FP� D .d1 ˝ e1/.e1 ˝ t1/C .d2 ˝ e2/.e2 ˝ t2/

C
  

@'

@s
C

2X

˛D1
�˛d˛;s

!

˝ e3

!

.e3 ˝ O�/

D d1 ˝ t1 C d2 ˝ t2 C
 

@'

@s
C

2X

˛D1
�˛d˛;s

!

˝ O�

D @y

@�1
˝ t1 C @y

@�2
˝ t2 C @y

@s
˝ O�:

(8.29)
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The left-hand side of (8.28) is the axial vector of the skew-symmetric part of
the second-rank tensor on the right-hand side of equation (8.29)—prove such a
statement as an exercise. Consequently, since PF� is symmetric, its skew-symmetric
part is zero, and so is the pertinent axial vector.3

3The relation (8.28) allows us to derive in another way the local balance of couples along the rod.
In the coordinates �1, �2, s, used so far, we have

DivP D
2X

˛D1

@t˛
@�˛

C @O�
@s
:

The local balance of forces DivP C b D �Ry then implies

@O�
@s

D �
2X

˛D1

@t˛
@�˛

� b C �Ry:

From the definition of m, we have also

@m
@s

D @

@s

Z

X

2X

˛D1

�˛d˛ � O� d�1d�2 D @

@s

Z

X
.y � '/� O� d�1d�2

D
Z

X

@y

@s
� O� d�1d�2 � @'

@s
�
Z

X
O� d�1d�2 C

Z

X
.y � '/� @O�

@s
d�1d�2

D
Z

X

@y

@s
� O� d�1d�2 � @'

@s
� n �

Z

X
.y � '/�

2X

˛D1

@t˛
@�˛

d�1d�2 �
Z

X
.y � '/� b d�1d�2

C
Z

X
.y � '/� �Ry d�1d�2:

However, we have also

�
Z

X
.y � '/�

2X

˛D1

@t˛
@�˛

d�1d�2 D
Z

X

2X

˛D1

@

@�˛
..y � '/� t˛/ d�1d�2

C
Z

X

2X

˛D1

@y

@�˛
� t˛ d�1d�2 D �

Z

@X

2X

˛D1

.y � '/� t˛�˛ dl C
Z

X

2X

˛D1

@y

@�˛
� t˛d�1d�2;

where �˛ is the ˛th component of the normal to @X in the plane containing it (recall that t˛ is a
vector; �˛ is a scalar).

Consequently, we obtain

@m
@s

D
 
Z

@X

2X

˛D1

@y

@�˛
� t˛ C @y

@s
� O�

!

d�1d�2 � Nm � @'

@s
� n C

Z

X
.y � '/� �Ry d�1d�2

D
 
Z

X

2X

˛D1

@y

@�˛
� t˛ C @y

@s
� O�

!

d�1d�2 � Nm � @'

@s
� n C PH;

where
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Using equation (8.28), we then compute

w �
2X

˛D1
d˛ � t˛ D w �

2X

˛D1

@.y � '/
@�˛

� t˛

D w �
2X

˛D1

@y

@�˛
� t˛ D �w � @y

@s
� O�

D �O� �
 

w � @'
@s
C w �

2X

˛D1
�˛d˛;s

!

D �O� �
 

w � @'
@s
C w � ! �

2X

˛D1
�˛d˛

!

D �O� �
�

w � @'
@s
C w � .! � .y � '//

�

:

(8.30)

Write p for .y�'/. Using the Lagrange formula for the triple vector product, we
obtain

! � .w � p/ � w � .! � p/ D .w˝ ! � ! ˝ w/p D .! � w/ � p: (8.31)

On inserting the result (8.30) in the expression (8.27) and using the identity (8.31),
after integration we obtain

Z

X

Z s2

s1

P � PFds d�1d�2

D
Z s2

s1

�

n �
�
@ P'
@s
� w � @'

@s

�

Cm � . P! � w � !/
�

ds

D
Z s2

s1

0

B
@n�

O
@'

@s
Cm� O!

1

C
A ds:

(8.32)

Nm D
2X

˛D1

Z

@X
.y � '/� t˛�˛ds C

Z

X
.y � '/� b d�1d�2:

The result (8.27) implies then the local balance of couples

@m
@s

C @'

@s
� n C Nm D PH:
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On the other hand, the identity w;s�d˛ D .O! �w�!/�d˛/, derived in Section 8.3,
allows us to write

@w

@s
�m D @w

@s
�
Z

X

2X

˛D1
�˛d˛ � O� d�1d�2

D
Z

X
O� �
 

@w

@s
�

2X

˛D1
�˛d˛

!

d�1d�2

D
Z

X
O� �
 

O
! �w � ! �

2X

˛D1
�˛d˛

!

d�1d�2

D
Z

X

 
2X

˛D1
�˛d˛ � O�

!

� O! d�1d�2 �
Z

X

 
2X

˛D1
�˛d˛ � O�

!

� .w � !/ d�1d�2

D m� O! �m � .w � !/:

When we introduce this result in the right-hand side of equation (8.26) and
compare the result with equation (8.32), we find

m � .w � !/ D 0:
Then for the inner power along the rod, we write

P inn
.s1;s2/

D
Z s2

s1

.n�
O
� Cm� O!/ ds: (8.33)

Then the equality to the external power reads explicitly

n.s2; t/ � P'.s2; t/ � n.s1; t/ � P'.s1; t/
Cm.s2; t/ � w.s2; t/ �m.s1; t/ � w.s1; t/

C
Z s2

s1

Nn
.s; t/ � P'.s; t/ dsC
Z s2

s1

Nm
.s; t/ � w.s; t/ ds

C
NksX

kD1
Of.sk; t/ � P'.sk; t/C

NNksX

rD1
Om.sr; t/ � w.sr; t/

D
Z s2

s1

n.s; t/�
O
� .s; t/ dsC

Z s2

s1

m.s; t/ � !.s; t/ ds:

(8.34)

Such an identity is the weak form of the balance equations for the rod in the scheme
adopted in this chapter.
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8.17 Constitutive Restrictions

The expression (8.32) of the internal power suggests that we adopt a mechanical
dissipation inequality written in terms of the corotational time derivative. Let
 .�1; �2; s; t/ be the free energy at time t of a material element placed at .�1; �2; s/
in the three-dimensional (original) rod. We define the sectional free energy  r.s/
as the average of  over the cross section at s:

 r.s/ WD
Z

X
 .�1; �2; s; t/ d�1d�2:

We then write the mechanical dissipation inequality for a generic part of the rod
between s1 and s2 as

O
Z s2

s1

 r.s/ ds �Pext
.s1;s2/

. P';w/ � 0

for every choice of s1 and s2, with s1 � s2, and the velocity fields. Then
equation (8.33) allows us to write

O
Z s2

s1

 r.s/ ds �
Z s2

s1

.n.s; t/�
O
� .s; t/Cm.s; t/� O! .s; t// ds � 0: (8.35)

Here � and ! are strain measures, collecting what we have implied in the kinematic
choice above: elongation and shear (both in �), bending and twist (both in !).

We consider here only the case of elastic rods, those for which we assume the
following constitutive structures:

 r.s; t/ D Q r.s; �.s; t/; !.s; t//;

n.s; t/ D Qn.s; �.s; t/; !.s; t//;
m.s; t/ D Qm.s; �.s; t/; !.s; t//:

By inserting them in (8.35) and computing the corotational time derivative of  r,
we get

Z s2

s1

 �
@ r

@�
� n

�

�
O
� C

�
@ r

@!
�m

�

� O!
!

ds � 0:

The assumed arbitrariness of
O
� and

O
!, once � and ! are fixed, implies

n D @ r.s; �; !/

@�
; m D @ r.s; �; !/

@!
:
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With respect to the frame d1, d2, d3 at s—a moving frame, in fact, the rea-
son motivating us to write the mechanical dissipation in terms of corotational
derivatives—the vectors � and ! are expressed by

� D O�1d1 C O�2d2 C O"d3;
where O�1 and O�2 are the shears along d1 and d2, and O" is the elongation (stretch) in
the d3 direction, and

! D O�1d1 C O�2d2 C O�td3;

with O�1, O�2, and O�t the curvatures along the relevant directions. In components related
to the frame d1, d2, d3, we then have

T1 D @ r

@ O�1 ; T2 D @ r

@ O�2 ; N D @ r

@O" ;

M1 D @ r

@ O�1 ; M2 D @ r

@ O�2 ; Mt D @ r

@ O�t
:

8.18 Rotated Stress Vectors

For computational purposes, it can be useful to project the interaction vectors n and
m into the local frame in the reference shape, since it is known and fixed once and
for all, unless material mutations occur in the rod, changing its structure, which is,
however, a topic not treated here.

At every s, the orthogonal frame fe� g, � D 1; 2; 3, is related to fd� g by a
rotation Q 2 SO.3/. We then define

nR WD QTn; mR WD QTm;

NnR WD QT Nn; NmR WD QT Nm;
OnR WD QT On; OmR WD QT Om;

and compute

@nR

@s
D QT @n

@s
� ! � nR; (8.36)

@mR

@s
D QT @m

@s
� ! �mR: (8.37)

Moreover, for the velocities P'.s; t/ and w.s; t/, we define their rotated
counterparts as

P'R WD QT P'; wR WD QTw;
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and we obtain

QT @ P'
@t
D @ P'R

@t
C w � P'R (8.38)

and

QTIX Pw D IX PwR; QT.w � IX w/ D wR � IX wR; (8.39)

where we have used the identity QTIX Q D IX , since IX collects the moments of
inertia evaluated in a frame rotating with the section, so that the values in the frame
fd� g are the same as those relative to the frame fe� g. Moreover, we have

QT

�
@'

@s
� n

�

D
�
@'

@s

�

R

� nR; (8.40)

where
�
@'

@s

�

R

WD QT

�
@'

@s

�

and

QT .w � H/ D wR � HR (8.41)

with HR WD IX � wR.

Exercise 18. Prove the relations (8.36) through (8.41).

On multiplying the balance equations by QT from the left, we get

�X

�
@ P'R

@t
C w � P'R

�

D @nR

@s
C ! � nR C NnR;

IX PwR � wR � IX wR D @mR

@s
C ! �mR C

�
@'

@s

�

R

� nR C NmR;

ŒnR�C OnR D 0;
ŒmR�C OmR D 0:

Moreover, as regards � and !, we define

�R WD QT�; !R WD QT!:

We have then

Q P�R D Q PQT� C P� D P� � QT PQ� D P� � w � � D
O
�;



8.18 Rotated Stress Vectors 315

and analogously,

Q P!R DO
! :

Consequently, we compute

n�
O
� Cm� O!D QQTn�

O
� CQQTm� O!

D QTn � QT
O
� CQTm � QT O

!D nR � P�R CmR � P!R;

and we have

Z s2

s2

 

n�
O
� Cm� O!

!

ds D
Z s2

s2

�

nR � P�R CmR � P!R

�

ds:

The last integral is the inner power expressed in terms of the rotated stress vectors,
an expression that suggests that we write the mechanical dissipation inequality in a
form reminiscent of what we have done so far for Cauchy’s bodies:

d

dt

Z s2

s2

 R.s; t/ ds �
Z s2

s2

�

nR � P�R CmR � P!R

�

ds � 0 (8.42)

for any choice of the rates involved. In this case, by reducing the analysis to the
elastic behavior, we can assume that

 R.s; t/ D Q R.s; �R; !R/;

nR.s; t/ D QnR.s; �R; !R/;

mR.s; t/ D QmR.s; �R; !R/;

so that the arbitrariness of P�R and P!R implies

nR D @ Q R.s; �R; !R/

@�R
; mR D @ Q R.s; �R; !R/

@!R
:

If  R admits second derivatives, we obtain
� PnR

PmR

�

D C.s; �R; !R/

� P�R

P!R

�

;

with

C.s; �R; !R/ D

0

B
B
B
@

@2 R

�R�R

@2 R

�R!R

@2 R

!R�R

@2 R

!R!R

1

C
C
C
A
:
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The tensor C links the time rate of the strain vectors to the rate of their
stress counterparts. For this reason, we call C.s; �R; !R/ the tangential stiffness. It
defines the tangent hyperplane to the stress–strain surface. Regarding the reference
place, C.s; �R; !R/ is the stiffness matrix in the infinitesimal strain regime. This
circumstance suggests to us in the frame fe�g a specific form of C.s; �R; !R/ on the
basis of the results emerging in the analysis of the de Saint-Venant problem, namely

C D diag.GAt1;GAt2;EA;EI1;EI2;GKt/;

where diag.:; :; :/ denotes the diagonal matrix with entries in the list; At1 and At2

are the shear areas related to e1 and e2 respectively; A is the cross-sectional area; I1
and I2 are the moments of inertia associated with e1 and e2 respectively; Kt is the
torsional moment of inertia.

By the action of Q, for every differentiable vector field .s; t/ 7�! h.s; t/, we have

Q
@

@t
QTh D Q PQThC Ph D Ph � w � h DO

h :

Then we compute

8

<

:

O
n
O
m

9

=

;
D QCQT

8

<

:

O
�
O
!

9

=

;
:

8.19 A Special Case: In-Plane Deformations
in 3-Dimensional Space

Let us consider finite rotations about e1. We take tensors Q 2 SO.3/ with matrix
form

Q D

0

B
@

1 0 0

0 cos O# sin O#
0 � sin O# cos O#

1

C
A :

We write w.s; t/ and v.s; t/ for what we call axial and transversal displacements
at s and t. They are the values of two functions such that

@'

@s
D v0e2 C .1C w0/e3;

where the apex denotes differentiation with respect to s. By computing the rotated
strain measure �R, we then find
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�R3 D v0 sin O# C .1C w0/ cos O# � 1;
�R2 D v0 cos O# � .1C w0/ sin O#:

When the rotation is small, i.e.,

cos O# 	 1 and sin O# 	 O#;

the previous expressions reduce to

�R3 	 w0 C v0 O#;
�R2 	 v0 � .1C w0/ O#:

In the small-strain regime, when the rotations are small v0 O# and w0 O# are of higher
order with respect to v0 and w0, so that we may write

�R3 	 w0; �R2 	 v0 � O#: (8.43)

If in the second estimate we consider opposite rotations, i.e., # D � O# , with #
counterclockwise when O# is clockwise, we write

�R2 	 v0 C #:

These expressions can be obtained by direct computation or by linearizing the
scheme developed so far in the previous sections. In the next section, we adopt
the first option. Our choice is motivated essentially by the desire for simplicity in
presenting the material. We thereby pave the way for simple applications presented
later.

8.20 Timoshenko’s Rod

We consider a straight rod undergoing axial, shear, and bending planar deformations
in the small-strain regime. Smallness is intended in the sense above. The displace-
ment of a point x in a generic cross section in the plane spanned by e2 and e3 is then
given by (see Fig. 8.43, where # > 0 if the rotation is counterclockwise)

u2 D v.s/;

u3 D w.s/C #.s/�;

and the relevant components of the two-dimensional reduction of the small-strain
tensor are



318 8 Rod Models

Fig. 8.43 Two-dimensional
rod: kinematics without
warping

w

v

y

x 3

x 2

ˆ

O
x

"22 D @u2
@�
D 0;

"23 D 1

2

�
@u2
@s
C @u3
@�

�

D 1

2
.v0 C #/;

"33 D @u3
@s
D w0 C # 0�:

The assumed absence of warping implies that we should consider the cross
section (recall that it has no thickness) to be a rigid body, exactly as we have done
so far.

By comparison with the relation (8.43), as strain measures we can distinguish the
elongation (stretch)

O" D w0; (8.44)

the shear

O� D v0 C #; (8.45)

and the rod curvature

O� D # 0: (8.46)

The relations (8.44) through (8.46) are the compatibility conditions linking the
strain measures O", O� , and O� to the degrees of freedom in the plane, those represented
by the horizontal and vertical displacements w and v, and the rotation # .
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By writing T for the shear stress T2 introduced in Chapter 6 and analogously
M for M1, Nq for Nq2, and Nm for Nm1, in the absence of inertial effects, the balance
equations read in this case

N0 C Np D 0; (8.47)

T 0 C Nq D 0; (8.48)

M0 � T C Nm D 0: (8.49)

The first equation is independent of the other two, which are, in contrast, coupled.
The remaining ingredient is the set of constitutive equations. To assign them, we

can take advantage of de Saint-Venant’s theory, so that we write

O" D N

EA
; (8.50)

O� D T

GA� ; (8.51)

O� D M

EI
; (8.52)

where E and G are the Young’s and shear moduli respectively, A is the area
of the generic cross section, A� is the shear area (A� D At2), I the cross-
sectional inertial moment with respect to the axis orienting the plane (I D I1).
By inserting these constitutive relations and the compatibility conditions into the
balance equations (8.47) through (8.49), we eventually obtain

.EAw0/0 C Np D 0; (8.53)

.GA�.v0 C #//0 C Nq D 0; (8.54)

.EI# 0/0 � GA�.v0 C #/C Nm D 0; (8.55)

which constitute a scheme referred to as Timoshenko’s rod, for Stepan ProkofeviLc
TimoLsenko (1878–1972). The extension of the scheme to the case in which isolated
external forces and/or couples are present is straightforward, along the guidelines
already presented in this chapter.

Exercise 19. Develop a version of Timoshenko’s rod model in the presence of
isolated applied external forces and couples.
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8.21 Weak Form of the Balance Equations

Consider the balance equations (8.47) through (8.49) for a given rod and multiply
them by w�, v�, and #�, respectively. The asterisk in the index position indicates
that the relevant fields are not necessarily solutions of the equations (8.53) through
(8.55). They just satisfy the compatibility conditions (8.44) through (8.46) and those
imposed by the constraints. In this sense, they are virtual. On integrating over the
whole rod and using the compatibility conditions, we eventually write

Z l

0

.Npw� C Nqv� C Nm#�/ dsC N.l/w�.l/ � N.0/w�.0/

C T.l/v�.l/ � T.0/v�.0/CM.l/#�.l/ �M.0/#�.0/

D
Z l

0

.N O"� C T O�� CM O��/ ds;

(8.56)

where O"�, O��, and O�� are the strain measures associated with w�, v�, and #�,
respectively.

Conversely, consider virtual contact actions N�, T�, and M�, so called because
we imagine that they satisfy the balance equations (8.47) through (8.49) but not
necessarily the constitutive relations (8.50) through (8.52) with the real elongation,
shear, and curvature determined by the applied forces and boundary conditions. If
we multiply the compatibility conditions by N�, T�, and M�, integrate over the rod,
and use the balance equations, we derive an equation differing from (8.56) only in
the presence of the asterisk as a subscript for Np, Nq, Nm, N, T , and M rather than w, v,
# , O", O� , and O�.

Exercise 20. Extend the relation (8.56) to the presence of applied forces and
couples at specific points or imposed displacements or rotations at other isolated
points. Then compare the result with the specific expressions used in the exercises
presented later.

Moreover, when we have a system of rods joined variously to each other,
the relation (8.56) has to be extended to the entire system as a sum of the
contributions of the various rods, including both distributed and concentrated forces
and couples, applied displacements, and local structural failures at the constraints
joining different rods or along the rod themselves. In general, we write

Lext D Linn; (8.57)

where Lext is the work of all external actions over a system and

Linn D
KX

kD1

Z lk

0

.Nk O"k C Tk O�k CMk O�k/ ds
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is the overall inner (or internal) work, where K is the total number of rods
constituting the system. The expression can be extended to include localized
structural “failures,” as we shall see later. Depending on the viewpoint adopted,
we can consider virtual the actions (external forces and couples and the triple N,
T , M) or the kinematics (displacements, rotations, strain measures). We have three
ways of interpreting the equation (8.57):

1. The work performed by every balanced system of actions over a framed structure
in every displacement system compatible with the strain equals the internal work
developed in the strain.

2. Given displacements, rotations, and strains, if the equation (8.57) holds for
every system of equilibrated actions, then the strains are compatible with the
displacements and rotations.

3. Given a system of actions, if equation (8.57) holds for every system of compatible
displacements, rotations, and relevant strains, then the system of actions is
balanced.

This last interpretation of equation (8.57) allows us to construct a procedure—called
the force method—to analyze the statics of hyperstatic framed structures. However,
before going into the details of this method—not the only possible one, but the
one presented here—some remarks on the constitutive relations will useful for the
subsequent developments.

8.22 Remarks on the Constitutive Equations

The relations (8.50) through (8.52) hold in the linear-elastic setting. We can extend
our viewpoint while still focusing our attention on the small-strain regime and
considering thermal variations and inelastic strain. Although we have not developed
here a general treatment of thermoelasticity and (at least some aspects of) inelastic
behavior, we mention here the expressions for some relevant constitutive relations
valid in the small-strain regime, restricted to the two-dimensional setting. These
relations will appear in some of the exercises presented later. In the presence of
thermal variations, we have

O" D N

EA
C O"
 (8.58)

with

O"
 D ˛ı
; (8.59)

the temperature-induced elongation given by the temperature variation ı


multiplied by the thermal dilatation coefficient ˛,

O� D M

EI
C O�
 ; (8.60)
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with

O�
 D 2˛ ı

h

(8.61)

the temperature-induced curvature, an expression holding under the hypothesis
that the (two-dimensional) rod of thickness h under investigation undergoes positive
and negative temperature variations of the same magnitude at the extreme sides of
the section (those sides at distance h) and from section to section.

We do not consider here thermal effects on the shear strain, which, however, can
have an inelastic component O�in, a case in which we shall write

O� D T

GA� C O�in:

This type of inelastic effect can appear also for the elongation and the curvature.
In including thermoelastic effects, we shall write

O" D N

EA
C ˛ı
 C O"in

and

O� D M

EI
C 2˛ ı


h
C O�in:

The additive decomposition of the strain measures into elastic and inelastic
components appears acceptable in the small-strain regime. In the presence of
finite strains, we should account for multiplicative decomposition, considering
appropriate additive factors only for the strain rates. However, this is an issue not
tackled here.

8.23 The Force Method

Consider a planar structure consisting of K rods, the kth of them lk long, endowed
with interrod joints and constrained with respect to the external environment. If all
rods are rigid, the structure we consider will have a degree of hyperstaticity Oh > 0. In
addition, the structure could also be labile (Ol > 0) and subjected to a load condition
ensuring equilibrium. To find the Oh > 0 superabundant constraint reactions, we
assume that the rods in the structure are linear elastic.

The force method develops along the following steps.

1. Select the so-called principal structure, removing Oh simple constraints (internal
and/or external), denoting by Xi the reaction of the ith removed constraint. When
such a constraint is external, Xi is the corresponding external reaction (force or



8.23 The Force Method 323

couple); when it is internal, Xi is an internal reaction or an action characteristic.
The resulting reduced structure must have the same degree of lability of the
original structure. In particular, if for the real structure, Ol D 0, the principal
structure must be isostatic. There are infinitely many possible choices of the
principal structure. Experience leads us toward the most convenient choice with
the consciousness that the evaluation of the equilibrium state is independent of
the choice of the principal structure.

2. Determine the distribution of N, T , M on the principal structure with the
original loads, obtaining the so-called 0-system. Write for the resulting action
characteristics N0, T0, M0 just to remind ourselves of their pertinence to the
principal system. The calculation does not require recourse to the constitutive
structures.

3. Consider the principal structure Oh times without the external loads, applying in
the ith step the Xi hyperstatic unknown alone, assumed to have unitary value,
where the ith simple constraint has been eliminated. In this way, we construct
the so-called 1-system, 2-system, . . . , Oh-system. Compute then the pertinent
distributions of N, T , M for all these systems and write for them Ni, Ti, Mi,
i D 1; 2; : : : ; Oh.

4. Since we are working here in the linear setting, we have superposition of effects.
Hence, the real N, T , M distributions are given by

N D N0 C
OhX

iD1
XiNi; T D T0 C

OhX

iD1
XiTi; M D M0 C

OhX

iD1
XiMi:

5. For every step in item 3, write the external power performed by the forces and/or
couples of the ith system on the real displacements of the points where they
are applied and equalize it to the inner power involving Ni, Ti, Mi and the real
compatible strains.

6. Eventually, we have a system of Oh algebraic equations with Oh unknowns. The ith
equation in such a system is

1 � �i C
nf
X

pD1
Rip N�p C

neX

qD1
Riq

Rq

kq

D
KX

kD1

Z lk

0

.Nik O"k C Tik O�k CMik O�k/dsC
mf
X

pD1
Cipı N�p C

meX

qD1
Ciq

Cq

kq
:

(8.62)

– �i represents the real displacement or the rotation of the point where the ith
simple constraint has been removed: �i D 0 if the constraint is ideal, �i D N�i

if the constraint has an inelastic failure equal to N�i, �i D �Xi

ki
if the constraint

is an elastic spring of stiffness ki.
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– N�p are the possible inelastic failures of the external constraints, and Rip the
corresponding reactions in the ith system.

–
Rq

kq
are the possible displacements or rotations of the points of application

of the external elastic constraints with stiffness kq; Riq are the corresponding
reactions in the ith system. We have

Rq D R0q C
OhX

iD1
XiRiq;

with R0q the pertinent reaction in the 0-system.
– ı N�p are the possible inelastic failures of the internal constraints, and Cip

the corresponding reactions in the ith system (generally, Cip are action
characteristics).

–
Cq

kq
are the possible relative displacements or rotations of the sections in

which the internal elastic constraints with stiffness kq are applied; Ciq are
the corresponding reactions in the ith system (generally, Ciq are action
characteristics). We have

Cq D C0q C
OhX

iD1
XiCiq;

with C0q the pertinent reaction in the 0-system.
– In the case we consider of only linear thermoelastic behavior, the real

compatible strains are

O"k D
N0k C

OhX

jD1
XjNjk

EkAk
C ˛kı
k;

O�k D
T0k C

OhX

jD1
XjTjk

GkA�
k

;

O�k D
M0k C

OhX

jD1
XjMjk

EkIk
C 2˛k

ı
k

hk
:

The relation (8.62) can be rewritten as

1 � �i D �i0CX1�i1C � � � CXOh�iOhC �if C �ieC �it; i D 1; 2; : : : ; Oh; (8.63)
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where

�i0 D
KX

kD1

Z lk

0

�

Nik
N0k

EkAk
C Tik

T0k

GkA�
k

CMik
M0k

EkIk

�

ds;

�ij D
KX

kD1

Z lk

0

�

Nik
Njk

EkAk
C Tik

Tjk

GkA�
k

CMik
Mjk

EkIk

�

ds;

�if D
mf
X

pD1
Cipı N�p �

nf
X

pD1
Rip N�p;

�ie D
meX

qD1
Ciq

Cq

kq
�

neX

qD1
Riq

Rq

kq
;

�it D
KX

kD1

Z lk

0

�

Nik˛kı
k CMik2˛k
ı
k

hk

�

ds:

Commonly, we call equations of the type (8.63) for a given framed structure
the Müller–Breslau equations. It is evident that �ij D �ji and �ii > 0, where the
last inequality does not imply summation over repeated indices.

An example clarifies the method. Consider the structure in Figure 8.44. If the rod
is rigid, we will have three degrees of freedom and five rigid constraints, well posed
in the sense that they do not allow any rigid displacement. Hence, the rod is twice
hyperstatic, according to the definition already stated. A choice for the principal
structure is that of Figure 8.45. With this choice, the hyperstatic unknowns X1 and
X2 are the vertical reactions in the carriages at A and B, respectively.

Then the distributions of N0, T0, M0 along the rod’s axis are those illustrated in
Figure 8.46.

Fig. 8.44 Structure with two
superabundant constraints
with respect to the statically
determined state, and a
constraint failure Nı

l/2

f̂

¯

AB

l/2l

Fig. 8.45 Principal structure
of the scheme in Figure 8.44

AB

l/2 /ll 2

z
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AB

l/2 /ll 2

z

0

0

0

f̂

f̂

3
2
f̂ l

f̂

3
2
f̂ l

Fig. 8.46 Distributions of N0, T0, M0 over the principal structure subjected to the original external
load

As a subsequent step, we consider the same structure, but the load is now unitary
and imposed at the point A (X1 D 1). The result of the analysis is shown in
Figure 8.47. An analogous analysis has to be done by applying a unitary force at
the point B (X2 D 1), where we have eliminated a constraint, as was done for A.
The result is shown in Figure 8.48.

Notice that the real displacement of the point A is zero, due to the constraint,
while that pertaining to B is equal to Nı as a consequence of the constraint failure.
The relevant Müller–Breslau equations—they are just a way of expressing formally
the equality between the external power and the internal one along the procedure
just described—are then

0 D �10 C X1�11 C X2�12;

Nı D �20 C X1�21 C X2�22I

X1 and X2 are, we repeat, the unknown reactions of the constraints at A and B,
respectively, and
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AB

l/2 /ll 2

z
1

1

2l

1

1

1

2l

1

Fig. 8.47 Distributions of N1, T1, M1 over the 1-system

Fig. 8.48 Distributions of
N2, T2, M2 over the 2-system
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�10 D
Z 2l

0

�
T1T0
GA� C

M1M0

EI

�

dz;

�20 D
Z 2l

0

�
T2T0
GA� C

M2M0

EI

�

dz;

�11 D
Z 2l

0

�
T21

GA� C
M2
1

EI

�

dz;

�22 D
Z 2l

0

�
T22

GA� C
M2
2

EI

�

dz;

�12 D
Z 2l

0

�
T1T2
GA� C

M1M2

EI

�

dz;

�21 D
Z 2l

0

�
T2T1
GA� C

M2M1

EI

�

dz;

where the contribution of N is absent, since N0, N1, and N2 are identically zero in
this special case.

Often in applications, the contributions of the shear forces are neglected.
Examples of analysis of hyperstatic structures are given in the exercises discussed
later in this chapter.

8.24 The Elastica

Consider a smooth curve in the plane as shown in Figure 8.49.
Let s denote the arc length along the curve. A prime will denote in this section the

derivative with respect to z. By considering the triangle in Figure 8.49, determined
by two normals to the tangents at two neighboring points at distance ds, we get

Fig. 8.49 A smooth curve in
the plane

v

r

ds

d

O

d

s

z



8.24 The Elastica 329

1

r
D d#

ds
;

so that in accordance with the relation (8.46), we have for the curvature O� the identity

O� D d#

ds
D 1

r
:

On the other hand, from the geometric scheme in Figure 8.49, we get

tan# D �dv
dz
;

and the assumed smoothness allows us to write, after differentiation with respect
to z,

.1C tan2 #/
d#

ds

ds

dz
D �d2v

dz2
: (8.64)

Moreover, since

ds2 D .dz2 C dv2/ D .1C v02/dz2;

we may rewrite (8.64) as

.1C v02/ O�
p

.1C v02/ D �v00;

which is

O� D � v00

.1C v02/ 32
: (8.65)

When jv0j � 1, we may accept the approximation

O� 	 �v00;

i.e.,

v0 D �#: (8.66)

If we look at the kinematics described in deriving the scheme of Timoshenko’s
rod, we realize that the identity (8.66) corresponds to the absence of shear strain:

O� D v0 C # D 0:
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In other words, we have described the kinematics of an inextensible rod, which
experiences only bending. This is what we commonly call the Bernoulli rod, after
the 1691 pioneering work of Jacob Bernoulli (1654–1705), although we should
perhaps call it the Bernoulli–Euler rod, due to Euler’s 1744 analysis of the
equilibrium configurations of such a one-dimensional elastic body in terms of the
minimizers of the functional

Z l

0

1

r2
ds

with
1

r
determined by the nonlinear relation (8.65). Also, Euler introduced the

analysis of bifurcated bend states, a problem that we shall discuss later. For the
moment, we restrict attention to the approximation (8.66), and using (8.52), we
write

EIv00 CM D 0: (8.67)

Once M is known, using equation (8.67), we can determine the deflection v.z/ of the
inextensible and unshearable rod considered here. The distribution of the bending
moment along the rod can be easily determined when the rod itself is statically
determinate. Additional difficulties arise when the rod is hyperstatic. In the case
in which M can be differentiated twice and we do not have distributed couples
and thermal effects, and the rod is straight in the reference place, we can use the
balances (8.48) and (8.49) to write

M00 D �Nq;
i.e.,

.EIv00/00 � Nq D 0: (8.68)

On integrating equation (8.67) for statically determinate rods or equation (8.68) for
hyperstatic rods, we determine the deflection v.z/ up to the appropriate integration
constants, which follow from the boundary conditions.

We can also describe inextensible and unshearable rods by beginning with the
rod representation in terms of a one-dimensional continuum, as developed so far. To
this end, consider a deformation such that

d3 D cos#e1 C sin#e3;

d1 D � sin#e1 C cos#e3;

d2 D e2;

where e1, e2, e3 represent the orthogonal reference frame introduced in Section 8.2,
and #.�/ represents the bending angle constrained by the boundary conditions

#.0/ D 0; #.1/ D 0;
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assuming that the rod has unitary length. The strain measure � D '0 � d3 has
components

� D O"d3 C O�d1: (8.69)

For the contact actions n and m, we also have

n D Nd3 C Td1; m D Md2:

According to the constitutive restrictions discussed in Section 8.17, we consider
N, T , M invertible functions of O", O� , # 0 and impose also the conditions

'.0/ D 0; '0.0/ D 0; n.1/ D O�e1; O� > 0: (8.70)

In terms of e1 and e2, the vector n reads

n D N.cos#e1 C sin#e2/C T.� sin#e1 C cos#e2/;

so that

.n � e1/e1 D N cos#e1 � T sin#e1:

Let us assume the absence of distributed and concentrated external actions, so
that the balance of forces reads n0 D 0, that is, n is equal to a constant given by the
boundary condition (8.70), which implies

N D O� cos#; T D �O� sin#:

Consequently, since from (8.69) we have

'0 D .1C O"/d3 C O�d1;

we compute

'0�n D O� O� cos#d3�d1� O�.1C O"/ sin#d1�d3 D �O�..1C O"/ sin#C O� cos#/d2:

The assumed absence of distributed and concentrated momenta allows us to
express the balance of couples m0 C '0 � n D 0 as

.M.O"; O�; #/0/0 � O�..1C O"/ sin# C O� cos#/ D 0;

and by adopting the constitutive relation

M D EI O� D �EI# 0;
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where we assume constant the product EI, we can reduce the balance of couples to
the semilinear differential equation

EI# 00 C O�..1C O"/ sin# C O� cos#/ D 0:

In the absence of elongation and shear strain, i.e., when O" D 0 and O� D 0, the
previous balance becomes

EI# 00 C O� sin# D 0; (8.71)

which is what we call elastica. It was Euler who first classified the solutions of such
an equation.

8.25 Exercises on Isostatic and Hyperstatic Framed
Structures

Exercise 21. Find Nq, ı
 , and #0 such that the vertical displacement �C of the
point C in the structure in Figure 8.50 vanishes. Write ˛ for the thermal dilatation
coefficient of the material. Take k D 2EI=l in the rotational spring, with EI a
constant. Neglect shear and axial deformabilities.

Remarks and solution. First suppose that the elastic spring has infinite stiffness
(Fig. 8.51). In this state, the structure is isostatic. In fact, there are two rods and
six simple constraints (Ol D Oh): the rod BCD is fixed by the joint at B, and the
rod AD does not admit rigid displacements .Ol D Oh D 0/. To calculate the vertical
displacement at C, we follow a virtual-work approach in terms of real deformations
on the original structure (Fig. 8.50) and virtual action characteristics evaluated by

k

l l

l

A
B

C
D

+

q̄

0

Fig. 8.50 A structure with a constraint failure, thermal variations, and distributed load
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l l

l

A

D

BHA

MB

HB

YB

q̄

C

Fig. 8.51 Reactive forces

applying a unitary load Of� D 1 at C on the structure without original load and
spring, as in Figure 8.52-b. With this last loading condition alone, we denote by an
asterisk the pertinent action characteristics.

The reactive forces exerted by the external constraints are displayed in
Figure 8.52. The distributions of M, M�, N�, and the local abscissas z appear in
Figure 8.53; the corresponding equations in the part CB are collected in Table 8.3.
The external virtual work is then

Lext D 1�C C #0l:

In fact, if we suppose that the vertical displacement of the point C is directed
downward, the first term in the external virtual work is positive; the second term
is the work done by the reactive couple at B of the virtual system in the inelastic
rotation #0 of the constraint. Both quantities are oriented clockwise, so the work is
positive. The internal virtual work is given by

Linn D
Z l

p
2

0

�
zp
2

�� Nql2

2
C Nqlzp

2

�
dz

EI
C
Z l

p
2

0

�

� 1p
2

�

˛ı
 dz:

The elastic spring does not contribute to the internal work, because the bending
moment M�.C/ is zero. The contribution of ı
 in the part CB is negative, because
N� is negative in this part. Hence, the identity Lext D Linn can be written explicitly
as follows:

�C D �#0l � ˛ı
 lC 7
p
2

12

Nql4

EI
:
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l l

l

A

D

a

b

B

C

z

l l

l

A

D

B

C

z

1
l

f̂ = 1

q̄

q̄l

3q̄l2

*

2

Fig. 8.52 (a) Effective system, and (b) virtual system

Finally, �C D 0 furnishes

Nq D .#0 C ˛ı
/ 12
7
p
2

EI

l3
:

Exercise 22. For the truss system presented in Figure 8.54, calculate the displace-
ment uA of the point A in the direction of the applied force Of. The axial stiffness EA
of all rods is constant. The force Of in inclined at 45ı. Find the limits of uA for k! 0

and k!1.

Remarks and solution. The structure is isostatic, because it is composed of simple
triangles and is constrained to the ground by three independent pendulums (the
elastic constraint in the top right-hand part of the structure is equivalent to a simple
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z

l

*

*

q̄l2

2

3q̄l2

2

1
√2

z

z

Fig. 8.53 Action characteristics of the two systems employed for calculation

pendulum when k ! 1). The external reactive forces can be determined by
considering the structure as a sole body (Fig. 8.55; moments refer to the point 4):

H5 C
Ofp
2
D 0; Y1 C Y8 �

Ofp
2
D 0; Y1l D 0;

which give (Fig. 8.56)

Y1 D 0; Y8 D
Ofp
2
; H5 D �

Ofp
2
:
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Table 8.3 Action
characteristics

M.z/ M�.z/ N�.z/

CB, z 2
h

0; l
p
2
i

� Nql2

2
� Nqlzp

2
� zp

2
� 1p

2

Fig. 8.54 Isostatic truss
system with elastic spring

l l

l

l

k

A

f̂

Fig. 8.55 External reactive
forces in the structure

l l

l

l

1

2

3 4

8

5

6 A

H 5

7

Y1 Y8

f̂

To compute the axial forces in the rods, we consider the equilibrium of the nodes.
We begin from node 1, continuing with the analyses of nodes 2, 3, and 4. We obtain

N21 D N23 D N34 D N27 D N37 D N45 D N47 D 0:

From the equilibrium of the nodes 7 and 6 (Fig. 8.57), we get

N76 D
Ofp
2
; N57 D �Of; N56 D

Ofp
2
; N78 D �

Ofp
2
:
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Fig. 8.56 Reactive forces
and action characteristics
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Fig. 8.57 Equilibrium of the
nodes 7 and 6

7

6N 57 = -̂f

N 76 =

N 76 =

f̂

f̂

N 56 =

√2

f̂
√2

f̂
√2

f̂
√2

In linear elasticity—the setting in which we are developing the present analysis—
in the absence of prestress states, the elastic energy is

E D 1

2

Z

B
" � C" d� D 1

2

Z

B
� � " d�;

for � D C".
The last integral in the previous identity is the inner work in the body B. Then,

since the inner work is equal to the external work—a consequence of the integration
in time of the equality between the external power and internal power—we can write

E D 1

2
LextI

this identity is commonly called Clapeyron’s theorem.
In the specific case of the exercise, we have

E D 1

2
OfuA; (8.72)
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with uA the displacement to be determined in the direction of Of. The elastic energy
is also given by

E D 1

2

4X

iD1

N2
i

EA
li C 1

2

Of2
2k
;

where the summation is over all the rods with N ¤ 0, and the last term is the elastic
energy accumulated in the linear elastic spring. Then from (8.72), we get

uA D
Ofl

EA

�p
2C 3

2

�

C
Of
2k
;

oriented is the direction of Of. If the spring is rigid .k!1/, we obtain

uA D
Ofl

EA

�p
2C 3

2

�

;

and this is the minimum value of uA. When k! 0, the structure becomes labile, and
uA !1: the equilibrium of the truss is impossible under the applied force Of.

Exercise 23. Compute the elastic deflection z ! v.z/ for the rod in Figure 8.58
using the Bernoulli rod scheme. Assume constant flexural stiffness EI and Of D Nql.
Then evaluate the maximum value of v.

Remarks and solution. The beam is isostatic. In the Bernoulli scheme, it is suffi-
cient to consider the second-order differential equation EIv00 D �M. The reactive
forces are given by the balance equations (Fig. 8.59)

HA D 0; YC � Of � Nql D 0; MA �
Ofl
2
C Nql

l

2
D 0;

which yield

Fig. 8.58 Isostatic rod

l/ 2 l

f̂
q̄

l/ 2
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l/2 l/2 l

HA

MA

A
B C

D

l/2 l/2 l

A
B C
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z1 z3
z2

YC

f̂

f̂ l/2

f̂

2f̂

f̂ l3

48E I
f̂ l3

4E I

q̄ q̄

v

Fig. 8.59 Reaction forces, bending moment, and elastic deflection of the rod

HA D 0; YC D 2Of; MA D 0:

The expressions for the bending moments along the parts AB, BC, and CD
(abscissas z1, z2, z3; Fig. 8.59) are

M.z1/ D 0; M.z2/ D �Ofz2; M.z3/ D �
Ofl
2
C Ofz3 �

Ofz23
2l
:

Denoting by v1, v2, v3 the function v in the parts characterized by z1, z2, z3,
respectively, we have

d2v1
dz21
D 0;

d2v2
dz22
D
Ofz2
EI
;

d2v3
dz23
D � 1

EI

 

�
Ofl
2
C Ofz3 �

Ofz23
2l

!

:

Integration gives



340 8 Rod Models

8

<

:

dv1
dz1
D C1;

v1 D C1z1 C C2
;

8

ˆ̂
<

ˆ̂
:

dv2
dz2
D
Of

EI

z22
2
C C3;

v2 D
Of

EI

z32
6
C C3z2 C C4

;

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

dv3
dz3
D � 1

EI

 

�
Ofl
2

z3 C
Of
2

z23 �
Ofz33
6l

!

C C5;

v3 D � 1
EI

 

�
Ofl
2

z23
2
C
Of
2

z33
3
�
Of
6l

z43
4

!

C C5z3 C C6

;

where the Ck, k D 1; : : : ; 6, are integration constants. The constraints impose
conditions on v. They are listed below:

Point A W dv1
dz1

.0/ D 0:

Point B W

8

ˆ̂
<

ˆ̂
:

dv1
dz1

�
l

2

�

D dv2
dz2

.0/ ;

v1

�
l

2

�

D v2 .0/ :

Point C W

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

v2

�
l

2

�

D 0;
v3.0/ D 0;
dv2
dz2

�
l

2

�

D dv3
dz3

.0/:

The first condition prevents the rotation at A; the others represent the continuity
of v and the rotation at B, the absence of vertical displacement at C, the continuity
of the rotations at the same point. The integration constants are

C1 D 0; C2 D �
Ofl3
48EI

; C3 D 0; C4 D �
Ofl3
48EI

; C5 D
Ofl2
8EI

; C6 D 0:

The elastic deflections v are then

v1 D �
Ofl3
48EI

;

v2 D
Of
6EI

z32 �
Ofl3
48EI

;

v3 D 1

EI

 Ofl
4

z23 �
Of
6

z33 C
Of
24l

z43

!

C
Ofl2
8EI

z3;
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k
k k k

l/4 l/4 l/4 l/4

m̂

m̂

rigid

linear elasticE I

Fig. 8.60 Cantilever rods

Fig. 8.61 Isostatic structure
rigid

A

f̂ rigid

l l l

and the pertinent first derivatives represent the rotation along the rod’s axis; v is
portrayed in Figure 8.59. Its maximum value corresponds to the section D:

vmax D v3.l/ D
Ofl3
4EI

:

Exercise 24. Consider the two cantilevers in Figure 8.60 subjected to a concen-
trated couple at the free end section. Determine the value of k such that the vertical
displacement of the free end is equal in the two cases. For this value of k, determine
the elastic energy E for the two rods.

Solution. k D 5EI

l
, E D 2 Om2l

5EI
for the first cantilever, E D Om2l

2EI
for the second

cantilever.

Exercise 25. The structure in Figure 8.61 consists of two rigid parts and a central
portion of constant flexural stiffness EI. Find the vertical displacement of the section
A. Draw the deflection z! v.z/ at least qualitatively.

Solution. vA D 7Ofl3
3EI

, directed downward.

Exercise 26. The truss system in Figure 8.62 has uniform axial rigidity EA and is
subjected to two concentrated forces Of. Find the horizontal displacement wC of the
point C.

Solution. wC D
Of
2k
C
Ofl

EA

�
5

2
Cp2

�

, directed rightward.
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k

C

l

f̂

f̂

l l l

k

Fig. 8.62 Isostatic truss system

Fig. 8.63 Isostatic structure

k1
k1

l l l

A

l/2 k2

f̂

f̂
rigid

Exercise 27. The structure in Figure 8.63 comprises three rods with infinite
stiffness, connected by elastic springs. Find the vertical displacement vA of the point
A. Assume k1 D k2l2.

Solution. vA D 11Of
8k2

, directed downward.

Exercise 28. Find and draw the diagrams of the action characteristics for the
structure represented in Figure 8.64. The rods have uniform sections and are made
of the same material; the shear deformation is negligible. Assume EI D EAl2,

˛ı
 D 7Ofl2
24EI .

Remarks and solution. The structure has one degree of hyperstaticity. In fact, there
are seven simple constraints and two rods, so

3K � nv D 6 � 7 D �1 D Ol � Oh:

The structure does not admit rigid displacements (Ol D 0); hence Oh D 1. Also,
it is symmetric and symmetrically loaded with respect to the s � s axis (Fig. 8.65).
The balance equations pertaining to the whole system furnish the external reactive
forces, which are all equal to zero. If we eliminate the rod AB and denote by X
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Fig. 8.64 Hyperstatic
structure
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Fig. 8.65 Choice of the hyperstatic unknown and the principal structure

the axial force relating to it (there are no other action characteristics, since the rod
is constrained by two hinges and is not subjected to transversal loads or applied
couples), we can assume that X is a hyperstatic unknown and select the principal
scheme to be the structure without the rod AB. On applying the force method, we
deduce the Müller–Breslau equation

�10 C �11X D � Xl

EA
C ˛lı
:

Here �10 is the horizontal relative displacement between A and B in the 0-system
(the principal system loaded by the external actions) considered with positive sign
if the two points move far away from each other; �11 has the same meaning, but it is
measured in the so-called 1-system (the principal system loaded by the force X D
1). The first term in the right-hand of the compatibility equation is the elongation of
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the pendulum AB due to the force X, with negative algebraic sign because the two
points move toward each other. The second term has the same meaning but is due
to the heating effect and is positive, because it describes an elongation. The systems
“0” and “1” are statically determined. Figure 8.66 shows the reactive forces and the
relevant action characteristics.

The external work and internal work related to the two systems “0” and “1” can
be written (the abscissas are indicated in Fig. 8.66):

Lext D 1�10;

Linn D �
Z l

0

Of
EA

dz �
Z l

0

Ofl
2EI

l dz � 2
Z l=2

0

Ofz
EI

�

zC l

2

�

dz:

On equating the two values of work and considering the relation between EA and
EI, we get

�10 D �41
24

Ofl3
EI
:

In the same way, if we consider the system “1” interacting with itself, we get

Lext D 1�11; Linn D
Z l

0

dz

EA
C
Z l

0

l2

EI
dzC 2

Z l

0

z2

EI
dz;

whence

�11 D 8

3

l3

EI
:

The Müller–Breslau equation becomes

�41
24

Ofl3
EI
C 8

3

l3

EI
X D � Xl

EA
C ˛lı
;

i.e.,

X D 6

11
Of:

The positive algebraic sign indicates that the force X has the direction assumed at
the beginning, i.e., the rod AB is a strut. The diagrams of the action characteristics
in the structure are represented in Figure 8.67 and were computed by direct
superposition of the diagrams of the systems “0” and “1”:

N D N0 C 6

11
OfN1; M D M0 C 6

11
OfM1; T D T0 C 6

11
OfT1:
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Fig. 8.66 (a) Systems “0” and (b) “1.”
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Fig. 8.67 Diagrams of the action characteristics and the qualitative deflections of the rods (dashed
lines)

Since the structure is symmetric, the diagrams of bending moment and axial force
are also symmetric with respect to the s � s axis, while that of the shear action is
skew-symmetric. Figure 8.67 includes the qualitative deflections of the rods. If the
elongations are considered with positive sign, the rod AB shortens, and we obtain

ılAB D � 6
11

Ofl
EA
C ˛lı
 D � 6

11

Ofl3
EI
C 7

24

Ofl3
EI
< 0:

The curvatures of the other three parts depend on the sign of the bending moment.

Exercise 29. The hyperstatic structure in Figure 8.68 consists of a rod with uniform
section and material. Choose a hyperstatic unknown and find its value, neglecting
shear and axial strains.

Remarks and solution. If we suppose that the springs are rigid, we have just four
simple constraints (two hinges, in fact), and there is no lability; hence Oh D 1.
A possible choice of the hyperstatic unknown X is the reactive force in the
horizontal spring at C. By eliminating this constraint, we get the isostatic structure
in Figure 8.69-b. The relevant Müller–Breslau equation is
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Fig. 8.68 Hyperstatic rod
with elastic springs
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Fig. 8.69 (a) Choice of the hyperstatic unknown, (b) principal structure, (c) m-system with
constraint reactions shown
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Fig. 8.70 (a) 0-system, (b) 1-system

�10 C �11X C �1m D � X

k1
;

in which �10 and �11 have the usual meaning and �1m is the horizontal displacement
of the point C in the so-called m-system (Fig. 8.69-c), i.e., the principal system with
the elastic springs and rigid rods loaded by the external actions (the couple Om)
and the hyperstatic unknown X, a rigid version of the principal system. The term
on the right-hand side of the equation reminds us that we have eliminated a sinking
constraint (the spring in C loaded with the compressive force X shortens by X=k1).
Figure 8.70 shows the systems “0” and “1” with the reactive forces and the diagrams
of bending moments M0 and M1.

On considering the systems “0” and “1,” we have

Lext D 1�10; Linn D
Z l

0

Om
l

z

��zh

l

�
dz

EI
:
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From Lext D Linn, we get

�10 D �
Omhl

3EI
:

In an analogous way, on considering the 1-system, we obtain

Lext D 1�11; Linn D
Z l

0

h2z2

l2EI
dzC

Z h

0

z2

EI
dz;

and their equality yields

�11 D h2l

3EI
C h3

3EI
:

For calculating �1m, we consider the system “m” to evaluate displacements and
the system “1” for virtual action characteristics, obtaining

Lext D 1�1m C
� Om

l
� X

h

l

��
h

l

�
1

k2
; Linn D 0:

The equality between the two work values yields

�1m D �
Omh

l2k2
C h2

l2k2
X;

so that from the Müller–Breslau equation, we obtain

X D
Omhl

3EI
C Omh

l2k2
1

k1
C h2

l2k2
C h3

3EI
C h2l

3EI

:

Alternatively, without computing separately the terms of the Müller–Breslau
equation, we can write directly the whole external work and inner (or internal) work
on the structure, namely

Lext D �1 X

k1
C
� Om

l
� X

h

l

��
h

l

�
1

k2
;

Linn D
Z

st

�
M1.M0 CM1X/

EI

�

ds

D 1

EI

Z l

0

��zh

l

���zhX

l
C z Om

l

�

dzC 1

EI

Z h

0

z2Xdz:

By equating the two values, we obtain the value of X.
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Fig. 8.71 Hyperstatic
structure with an internal
rotational elastic spring

k

l

l/2 l/2 l/2 l/2

A
B
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D

E
M

f̂

q̄

Exercise 30. The hyperstatic structure in Figure 8.71 consists of rods with uniform
sections and materials. Choose a hyperstatic unknown, find its value, and draw the
diagrams of the action characteristics. Neglect shear and axial strains for all the
rods with the exception of the pendulum BD. Data: EI D 2l2EA, k D EI=l, Of D Nql=2.

Remarks and solution. If we consider the rod BD to be an internal constraint, a
pendulum, and the elastic spring in C to be rigid, the system comprises two rods,
and there are seven simple constraints. The part AMB is fixed for the joint in A; the
part BCD is also fixed, because it is constrained by an independent hinge (B) and
carriage (D). Consequently, the structure does not admit rigid displacements, and it
is one time hyperstatic (Oh D 1).

Figure 8.72 shows a possible choice for the hyperstatic unknown X, i.e., the axial
force in the pendulum BD, and the corresponding principal scheme. The associated
Müller–Breslau equation is then

�10 C �11X C �1m D �Xl
p
2

EA
: (8.73)

The term on the right-hand side corresponds to the elongation of the pendulum
BD subjected to the axial force X. Figures 8.73 and 8.74 show the diagrams of the
bending moments of the systems “0” and “1,” respectively, and Table 8.4 collects
the equations of these action characteristics with reference to the abscissas z in the
figures.

The coefficients �10 and �11 are

�10 D
Z

st

M0M1

EI
ds; �11 D

Z

st

M1M1

EI
ds:

To find �1m, we consider the systems “m” and “1,” obtaining
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D

E
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B

X

X

X

X

A
B

C

D

l√2

f̂

q̄B

Fig. 8.72 (a) Choice of the hyperstatic unknown, (b) principal structure

Lext D 1�1m; Linn D l

k
p
2

 

3Ofl
4
C X

lp
2

!

I

their equality yields the identity

�1m D l

k
p
2

 

3Ofl
4
C X

lp
2

!

:

We also get

�10 D 35
p
2l3

128EI
Of; �11 D l3

3EI
;

so that equation (8.73) gives

X D
 

1245
p
2

16832
� 747

2104

!

Of 	 �0:25Of:
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E
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3f̂
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f̂

2f̂

3f̂ l
4

f̂ l
2

f̂ l
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3f̂ l
2

3f̂ l
2

q̄

Fig. 8.73 0-system

The pendulum BD is then a strut, instead of a tie as initially assumed. Figure 8.75
shows the diagrams of N, M, and T obtained by superposition of those pertaining to
the 0-system and those of the 1-system, multiplied by X.

Exercise 31. The truss structure in Figure 8.76 consists of rods with uniform
sections and materials. Find and draw the diagram of the axial force along the
rods. Data: ˛ı
 D Of=EA.

Remarks and solution. Figure 8.77 shows the constraint reactions (they are denoted
by R, N, and S). The balances of forces in the horizontal and vertical directions read

Rp
2
� Sp

2
C Of D 0; Rp

2
C N C Sp

2
� Of D 0:

We have two independent balance equations and three unknowns: the structure is
one time hyperstatic (the balance of couples is always verified). We select N D X
as a hyperstatic unknown, so that

R D �X
p
2

2
; S D p2

�

Of � X

2

�

:
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Fig. 8.74 1-system

A
B

C

D

E
M

z
z
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l
√2

z
1

1

Table 8.4 Equations of
bending moments in the
systems “0” and “1.”

Part M0.z/ M1.z/

AM, z 2



0;
l

2

�

�3
2

Ofl C 2Ofz 0

MB, z 2



l

2
; l

�

Of.z � l/ 0

BE, z 2



0;
l

2

�

Ofz zp
2

EC, z 2



l

2
; l

� Ofl
2

� Nq
2

�

z � l

2

�2

C Of
�

z � l

2

�
zp
2

DC, z 2 Œ0; l�
3

4
Ofz zp

2

The relevant Müller–Breslau equation for the special case treated here is

�10 C �11X C �1t D � Xl

EA
C ˛ı
 l:

The coefficient �1t represents the contribution of the thermal variations along
the two diagonal rods, whereas the coefficient ˛ı
 l represents the analogous
contribution along the rod AB. We get (Figs. 8.78 and 8.79)
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Fig. 8.75 Diagrams of the action characteristics

�10 D
Z l

p
2

0

�

�Ofp2
�
p
2

2

dz

EA
D �
Oflp2
EA

;

�11 D 2
Z l

p
2

0

dz

2EA
D l
p
2

EA
;

�1t D 2
Z l

p
2

0

p
2

2
˛ı
 dz D 2˛ı
 l;
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Fig. 8.76 Truss system with
thermal effects

l l

l

AC D

B

+
+

+

f̂

f̂

so that the hyperstatic unknown is

X D Of .
p
2 � 1/

.
p
2C 1/ 	 0:171

Of:

The positive sign indicates that the pendulum AB is a strut. The values of S and
R are

S D Of .3
p
2C 2/

2.
p
2C 1/ 	 1:29

Of; R D Of .
p
2 � 2/

2.
p
2C 1/ 	 �0:121

Of:

The rod DB is a strut, while CB is a tie. Figure 8.80 shows the diagram of the
axial force N.

Exercise 32. The rod in Figure 8.81 has constant section and is made of a uniform
material. Determine and draw the diagrams of the action characteristics, neglecting
shear strain.

Remarks and solution. The structure is twice hyperstatic, because there are five
simple constraints and the rod does not admit rigid displacements. Figure 8.82
shows two possible choices of the principal structure with the corresponding
hyperstatic unknowns. For the specific analysis dealt with here, we consider the
second scheme (for the continuous rods it is generally used the first scheme,
instead). The relevant Müller–Breslau equations in this case are

�10 C �11X1 C �12X2 D �1B;

�20 C �21X1 C �22X2 D �2C;

where �1B and �2C are the vertical displacements of the sections B and C that
vanish due to the translational constraints in the original structure. The systems
“0,” “1,” and “2” are represented in Figure 8.83, where the physical meaning of
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AC D

B

C D

B

X

X

X

N = XR = − X √2
2

S = f̂ − X
2

f̂

f̂

+

A

+

+

f̂

f̂

√2 √2

Fig. 8.77 Choice of the hyperstatic unknown

the coefficients �ij appears. Using as virtual forces the action characteristics of the
1-system first, and those of the 2-system afterward, we write

Lext D 0; Linn D
Z

st

�
M1.M0 CM1X1 CM2X2/

EI

�

ds;

Lext D 0; Linn D
Z

st

�
M2.M0 CM1X1 CM2X2/

EI

�

ds;

where “st” indicates that the integration domain is the whole structure.
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C D

B

f̂

f̂

f̂√2

N0 f̂√2

Fig. 8.78 0-system

Fig. 8.79 1-system

C D

B

1

22

1

2
√2
2

√2 √2

√2

The identity between external work and inner (or internal) work leads to

� 17Nql4

384EI
C l3

24EI
X1 C 5l3

48EI
X2 D 0;

�
Nql
4

8EI
C 5l3

48EI
X1 C l3

3EI
X2 D 0;
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l l

l

AC D

B

f̂

f̂

0.121f̂

0.171f̂ 1.29f̂

0.171f̂
0.121f̂

1.29f̂

Fig. 8.80 Structure with the reaction forces and diagram of the axial force N

Fig. 8.81 Continuous rod
with uniform load

q̄

E I = const
l/2

C
A B

l/2

i.e.,

X1 D 4Nql

7
; X2 D 11Nql

56
:

The balance equations yield the reactive forces YA and MA (HA D 0):

YA D 13Nql

56
; MA D Nql2

56
:
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Fig. 8.82 Principal
structures with the load and
the hyperstatic unknowns

l/2

C

l/2

q̄

q̄

B
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X2X 2
X 1

l/2

C

l/2

B
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X2X 1

Fig. 8.83 Systems “0,” “1,”
and “2.”
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1
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l/2 l/2

21l
2

l

10

B

B

q̄

q̄l

q̄l2

2

Figure 8.84 shows the diagrams of the shear action T and the bending moment M
(the axial force N is zero everywhere). To calculate the maximum bending moments
in the two spans, it is sufficient to find the abscissas z1 and z2 where the shear is
zero. For example, for the span AB, we get

z1 D 13

56
l; M.z1/ D � Nql2

56
C YA

13

56
l � Nq

2

�
13

56
l

�2

D 57

6272
Nql2:
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56
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56
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112

z1

z2

Fig. 8.84 Structure with the reactive forces and diagrams of shear force and bending moment

Fig. 8.85 Hyperstatic
elastic rod

z2

ll

BA

q̄
f̂ = q̄l

E I = const C

z1

Exercise 33. Find the elastic deflection z ! v.z/ of the rod in Figure 8.85 having
constant flexural stiffness EI. Then draw the diagrams of shear force and bending
moment. Assume Of D Nql and neglect the shear strain.

Remarks and solution. The rod is hyperstatic; for this reason, we consider the
fourth-order differential equation EIvIV D Nq, in the Bernoulli scheme. We divide the
rod into two parts AB and BC, in which the elastic deflections are denoted by v1 and
v2, and the abscissas z1 and z2 vary in the interval Œ0; l�. The relevant equations are

EI
d4v1
dz41
D 0 ; EI

d4v2
dz42
D Nq :

Integration is immediate. There are eight boundary conditions, two in A, two in C,
and four in B. They are the kinematic and the static conditions are imposed by the
constraints and by continuity in the middle section. Such conditions are
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Point A W

8

ˆ̂
<

ˆ̂
:

dv1
dz1

.0/ D 0;

EI
d3v1
dz31

.0/ D Of:

Point B W

8

ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

v1.l/ D 0;
v2.0/ D 0;
dv1
dz1

.l/ D dv2
dz2

.0/;

d2v1
dz21

.l/ D d2v2
dz22

.0/:

Point C W
8

<

:

v2.l/ D 0;
d2v2
dz22

.l/ D 0:

They imply

C1 D Nql; C2 D �19Nql2

32
; C3 D 0; C4 D 25Nql4

192
;

D1 D �29Nql

32
; D2 D 13Nql2

32
; D3 D �3Nql3

32
; D4 D 0:

Consequently, we obtain

v1 D Nql

6EI
z31 �

19Nql2

64EI
z21 C

25Nql4

192EI
;

v2 D Nqz42
24EI

� 29Nql

192EI
z32 C

13Nql2

64EI
z22 �

3Nql3

32EI
z2;

M1 D �Nqlz1 C 19Nql2

32
;

M2 D � Nqz22
2
C 29Nql

32
z2 � 13Nql2

32
;

T1 D �Nql;

T2 D �Nqz2 C 29Nql

32
:

Figure 8.86 shows the rod with the diagrams of the elastic deflection v and the action
characteristics.

Exercise 34. The structure in Figure 8.87 consists of rods with constant sections
and uniform material. Find the diagrams of the action characteristics, neglecting
shear strain. Further data: EI=EA D l2=5, k D EI=l, ˛ı
 D Nql3=.2EI/, 2˛ı
=h D
Nql2=.EI/, ı#in D Nql3=.4EI/.
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Fig. 8.86 Elastic deflection and diagrams of bending moment and shear force

Some elements of the solution: The structure is one time hyperstatic; ME D
15Nql2=64, counterclockwise.

Exercise 35. The structure in Figure 8.88 consists of rods with constant sections
and uniform material. Find the diagrams of the action characteristics, neglecting
shear and axial strains. Further data: k D EI=l, ı D Nql4=.2EI/.

Some elements of the solution: The structure is one time labile, one time hyper-
static; MC D 21Nql2=80, clockwise.

Exercise 36. The structure in Figure 8.89 consists of rods with constant sections
and uniform material. Find the diagrams of the action characteristics, neglecting
shear and axial strains. Datum: 2˛ı
=h D 2Nql2=.3EI/. The carriages are inclined
at 45ı.
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Fig. 8.87 Structure with linear thermal loads
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l/2

k
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C

k

Fig. 8.88 Structure with elastic constraints

Some elements of the solution: The structure is one time labile, one time hyper-

static; RA D 3
p
2

2
Nql.

Exercise 37. The structure in Figure 8.90 is made of rods with constant sections
and uniform material. Find the diagrams of the action characteristics, neglecting
shear and axial strains.

Some elements of the solution: The structure is one time labile, one time hyper-

static; NAB D �57
80
Of.



364 8 Rod Models

l l
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−
+

−
+

q̄ q̄

Fig. 8.89 Symmetric structure with skew-symmetric load condition

Fig. 8.90 Structure with
concentrated loads

l/2 l/2 l/2 l/2

l

A

B

f̂ f̂

Exercise 38. The structure in Figure 8.91 consists of a rigid rod and two
deformable rods with constant sections and uniform material. Find the diagrams of
the action characteristics, neglecting shear strain. Datum: ˛ı
 D Of=.2EA/.

Some elements of the solution: The structure is one time hyperstatic; NAB D �
Of
2

.

Exercise 39. The structure in Figure 8.92 consists of a rigid rod and other
deformable rods with constant sections and uniform material. Find the diagrams
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Fig. 8.91 Rod on elastic springs
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l/2
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Fig. 8.92 Structure with inelastic constraint failures

of the action characteristics, neglecting shear and axial strains. Datum: ı D
Ofl3=.12EI/.

Some elements of the solution: The structure is one time hyperstatic; HG D 3Of,
directed rightward.

Exercise 40. The structure in Figure 8.93 consists of deformable rods with constant
sections and uniform material. Find the diagrams of the action characteristics,
neglecting shear strain, and calculate the horizontal displacement of the point C.
Further data: k D 2EA=l, ˛ı
 D Of=.10EA/, EI=EA D l2=5.

Some elements of the solution: The structure is one time labile and one time

hyperstatic; NAC D � 3Of
4.2Cp2/ , wC D

Ofl
EA

.21
p
2C 16/

20
p
2.2Cp2/ , directed rightward.

Exercise 41. The structure in Figure 8.94 is made of deformable rods with constant
sections and uniform material. Find the diagrams of the action characteristics,
neglecting shear and axial strains. Further data: k D EI=l, Of D Nql.

Some elements of the solution: The structure is one time hyperstatic; MA D 19

64
Ofl,

counterclockwise.
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Fig. 8.93 Structure with loads and thermal effects

Fig. 8.94 Symmetric
structure with
skew-symmetric load
condition

q̄ q̄
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f̂ f̂

Exercise 42. The structure in Figure 8.95 consists of deformable rods with constant
sections and uniform material. Find the diagrams of the action characteristics,
neglecting shear and axial strains. Further data: k1 D 3EI=.8l/, k2 D EI=l3.
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l
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f̂

Fig. 8.95 Structure with concentrated forces and elastic constraints

Some elements of the solution: The structure is one time hyperstatic; HA D 4

5
Of,

directed rightward.

Exercise 43. The structure in Figure 8.96 consists of three rigid parts and other
deformable rods with constant sections and uniform material. Find the diagrams of
the action characteristics, neglecting shear and axial strains. Datum: k D EI=l.

Some elements of the solution: The structure is one time labile and one time

hyperstatic; M.B/ D Nql2

6
.

Exercise 44. The structure in Figure 8.97 consists of four rigid rods and four
deformable rods with constant sections and uniform material. Find the diagrams
of the action characteristics, neglecting shear and axial strains with the exception
of the two vertical pendulums with axial stiffness equal to EA. Assume k1 D EAl,
k2 D 2EAl, ˛ı
 D 3Of=.2EA/.

Some elements of the solution: The structure is twice labile and one time hyper-

static; NAB D �4
3
Of.

Exercise 45. The structure in Figure 8.98 consists of a rigid rod (the part BC/ and
a deformable rod (the part AB/. Find the elastic deflection z ! v.z/, according to
the Bernoulli model. Assume k1 D EI=l, k2 D EI=l3.

Some elements of the solution: vB D 2Ofl3
3EI

, vC D
Ofl3
2EI

.
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Fig. 8.96 Structure with
rigid rods
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Fig. 8.97 Hyperstatic symmetric structure

Exercise 46. The elastic rod in Figure 8.99 has constant section and consists of
uniform material. Determine the maximum value of the elastic deflection v.z/,

according to the Bernoulli model. Assume Nq.z/ D Nq0 sin
2	z

l
, ı D Nq0l4

20EI
,

#in D Nq0l
3

EI
, l D 400 cm, Nq0 D 5 kN=m, E D 210000N=mm 2, I D 6000 cm 4.
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Fig. 8.98 A structure with
elastic constraints
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Fig. 8.99 Continuous rod
with inelastic constraint
failures under sinusoidal load

z
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q̄(z)

E I

Fig. 8.100 Rod with elastic
constraints

l

q̄

E I

z

kk

BA

Solution. vmax D 1:84 cm at z D 157:6 cm.

Exercise 47. The elastic rod in Figure 8.100 has constant section and is made of a
uniform material. Find the elastic deflection z ! v.z/, according to the Bernoulli
scheme, and draw the corresponding graph. Assume k D 24EI=l3.

Some elements of the solution: vA D vB D Nql4

48EI
.

Exercise 48. The elastic rod in Figure 8.101 has constant section and is made of a
uniform material. Find the elastic deflection z! v.z/ and draw the corresponding
graph.

Solution. v.z/ D Nq0z5
120lEI

� Nq0l
2

48EI
z2 C Nq0l

4

80EI
.

Exercise 49. The elastic rod in Figure 8.102 has constant section and is made of a
uniform material. Find the elastic deflection z! v.z/ and its maximum value vmax.
Assume k D 3EI=.2l3/.
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Fig. 8.101 Rod with
triangular load

z

q̄0

E I

l

Fig. 8.102 Rod with a single
elastic constraint

E I

z
k

l

f̂

Fig. 8.103 Hyperstatic
structure with uniform load

/ll 2l/2

q̄

k
A

Solution. v.z/ D �
Ofz3
9EI
C
Ofl
3EI

z2, vmax D v.l/ D 2Ofl3
9EI

.

Exercise 50. The structure in Figure 8.103 includes rods with constant section and
uniform material. Find the rotation of the section A, neglecting the shear strain.
Assume k D EI=l.

Solution. The structure is one time hyperstatic; #A D 121Nql2

512k
, clockwise.

Exercise 51. The structure in Figure 8.104 includes deformable rods with constant
section and uniform material. Find the length variation of the pendulum AB,
neglecting shear strain. Assume EA D 6EI=.5l2/, k1 D EI=.4l3/, k2 D l2k1,
˛ı
 D 43Nql3=.48EI/.

Solution. The structure is one time hyperstatic; ılAB D Nql4=.6EI/.
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Fig. 8.104 Hyperstatic
structure with uniform load
and thermal variation

l l
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Chapter 9
Euler’s Analysis of Critical Loads: Bifurcation
Phenomena

9.1 Euler’s Rod: The Critical Load

Consider a cantilever linear elastic inextensible and unshearable rod axially loaded
(Fig. 9.1). In the straight configuration, the rod is at equilibrium, provided the load
P is coaxial with the rod axis—exactly as depicted in Figure 9.1.

A question is whether we can have values of the load P allowing the equilibrium
of deformed configurations under the assumption that the direction of the load
does not change with the deformation. Consider a possible deformed shape, the
one in Figure 9.1, determined by imposing a small strain. Then the constitutive
relation (8.67) holds. At a generic section at z, the moment MP.z/ of the external
force P is given by

MP.z/ D �P.Nv � v.z//;

where Nv is the displacement v.l/ orthogonal to the rod’s original axis. On inserting
such a relation into (8.67) and putting

˛2 D P
EI
; (9.1)

we get

v00 C ˛2v � ˛2 Nv D 0; (9.2)

which implies

v.z/ D a1 sin˛zC a2 cos˛zC Nv;

with a1 and a2 integration constants.

© Springer Science+Business Media New York 2015
P.M. Mariano, L. Galano, Fundamentals of the Mechanics of Solids,
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Fig. 9.1 A scheme for
analyzing bifurcation
phenomena in elasticity. A
possible deformed shape of
the cantilever rod; P does not
change direction with the
deformation

z

P

A

B

A

P

v

B

l

v̄

The boundary conditions read

v.0/ D 0; v0.0/ D 0; v.l/ D Nv:

They imply, respectively,

a2 D �Nv; a1 D 0; Nv.1 � cos˛l/ D Nv:

The last relation requires

Nv cos˛l D 0:

The condition is satisfied when

Nv D 0;

or

cos˛l D 0:

The first condition corresponds to the undeformed rod. The second condition is
satisfied when

˛l D 	

2
C n	; n D 0; 1; 2; : : : :
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Fig. 9.2 Simply supported
rod with axial load: two
possible in-plane
deformations
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By restricting attention to the case n D 0, we find a critical value Pcr of P using the
definition (9.1), namely

Pcr D 	2EI

4l2
:

This is a 1759 result obtained by Leonhard Euler (1707–1783).
Later (1770–1773), Joseph-Louis Lagrange (1736–1813) discussed the same

problem for the supported rod, the one depicted in Figure 9.2. In this case, the
question is to find a value of the load P ensuring the equilibrium of a deformed
configuration like those shown in the same figure. In this case, MP.z/ D Pv.z/, and
equation (9.2) reduces to

v00 C ˛2v D 0 (9.3)

with boundary conditions

v.0/ D 0; v.l/ D 0:
Then equation (9.3) implies

v.z/ D a1 sin˛zC a2 cos˛z;

and the boundary conditions yield

a2 D 0; a1 sin˛l D 0:

The last condition is satisfied when a1 D 0, i.e., when the rod is undeformed, or

sin˛l D 0;
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i.e.,

˛l D n	; n D 1; 2; : : : :
Then we obtain

Pcr D n2	2EI

l2
;

and we are particularly interested in the case n D 1, i.e., when

Pcr D 	2EI

l2
:

By considering the two cases just discussed, we can write for the first critical
load

Pcr D 	2EI

l2c
; (9.4)

with lc D 2l in the case of the cantilever rod and lc D l for the supported one.
The validity of the formula (9.4) goes beyond the two cases above. Consider, for
example, the rod in Figure 9.3 and its possible deformed shape, where the unknown
reaction HB of the support appears explicitly. In this case, the couple exerted by the
external actions P and HB on a rod section at z is given by

MPH.z/ D PvC HBzI
it has to be balanced by M.z/ D �EIv00 to ensure equilibrium. Then we write

v00 C ˛2v D �HB

EI
z (9.5)

Fig. 9.3 Hyperstatic rod
under axial load determining
a critical state

B

l

A

P

v
z

A

P

HBB
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after equating M.z/ with MPH.z/. The resulting differential equation admits a
solution v that is the sum of the solution vhom of the homogeneous equation

v00 C ˛2v D 0;

already discussed, and a special solution Qv of (9.5) given by

Qv.z/ D � HB

EI˛2
z D �HB

P
z:

Then the solution of equation (9.5) is

v.z/ D a1 sin˛zC a2 cos˛z � HB

P
zI

it must satisfy the boundary conditions

v.0/ D 0; v0.l/ D 0; v.l/ D 0;

which give respectively

a2 D 0; a1˛ cos˛l D HB

P
; a1 sin˛l D HB

P
l:

The last two conditions imply

tan˛l D ˛l;

i.e.,

˛l 	 4:4934

and

Pcr 	 2:0456	2EI

l2
:

By comparison with (9.4), we obtain

lc 	 0:699 l:

In all these cases, the critical load corresponds to a bifurcation of the equilibrium
configuration.
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9.2 An Energetic Analysis

The critical load can be derived in terms of energy. Consider the case of the
supported rod and adopt the notation in Figure 9.4. When the rod deforms, the point
B where P is applied undergoes a vertical displacement w given by

w D
Z l

0

.ds � dz/ D
Z l

0

�p

dz2 C dv2 � dz
�

D
Z l

0

�p

1C .v0.z//2 � 1
�

dz 	 1

2

Z l

0

�

v0.z/
�2

dz:

Since we have assumed the rod to be inextensible and unshearable, its elastic
energy depends just on bending, so that the total energy E tot is given by

E tot.v/ D 1

2

Z l

0

EI
�

v00.z/
�2

dz � 1
2

P
Z l

0

�

v0.z/
�2

dz:

Consider now a smooth field z 7�! h.z/ such that h.0/ D h.l/ D 0. With � 2 R,
we define

ıhE tot.v/ WD d

d�
E tot.vC �h/

ˇ
ˇ
ˇ
ˇ
�D0

Fig. 9.4 Supported rod
notation used in Section 9.2

P
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l
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v

z

A

P

B
w

dzds
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and say (we recall) that the formal first variation of E tot vanishes when

ıhE tot.v/ D 0 (9.6)

for an arbitrary choice of h, as we have done in discussing the variational principles
in linear elasticity. The vanishing of the first variation indicates critical points for
the functional E tot. On computing the derivative (9.6), we get

Z l

0

.EIv00.z/h00.z/ � Pv0.z/h0.z//dz D 0:

Since v.0/ D v.l/ D 0 and h is arbitrary, we can choose

v.z/ D h.z/;

and we obtain

P D

Z l

0

EI
�

v00.z/
�2

dz

Z l

0

�

v0.z/
�2

dz

;

so that the critical load is given by the Rayleigh ratio

Pcr D min

Z l

0

EI
�

v00.z/
�2

dz

Z l

0

�

v0.z/
�2

dz

:

Choose

v.z/ D a sin
	z

l
:

On inserting such an expression into the expression for Pcr, we obtain

Pcr D
EI
	4

l4
a2
Z l

0

sin2
	z

l
dz

	2

l2
a2
Z l

0

cos2
	z

l
dz

D 	2EI

l2
:



380 9 Euler’s Analysis of Critical Loads: Bifurcation Phenomena

9.3 Structures with Concentrated Elasticities

The analysis based on the direct balance of couples and that based on the energy can
be both applied to finding the critical load of structures consisting of rigid bodies
connected by springs. Examples are presented in the exercises below.

Exercise 1. Given the stiffness k of the rotational spring connecting the two rigid
bodies in Figure 9.5, find the critical load in terms of k and the length l.

Solution. Pcr D 4k

l
.

Exercise 2. Find the critical load for the body in Figure 9.6 in terms of the stiffness
k and the length l.

Solution. Pcr D kl.

l
2

P
k

l
2

Fig. 9.5 Two rigid bodies connected by a rotational spring

Fig. 9.6 Rigid body with
linear spring

k

l

P
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P

ll

k k

Fig. 9.7 Two rigid bodies with linear springs

Exercise 3. Find the critical loads for the system of two rigid bodies with linear
springs depicted in Figure 9.7.

Solution. P1cr D
 

3 �p5
2

!

kl, P2cr D
 

3Cp5
2

!

kl.

9.4 Further Remarks

Consider the rod in Figure 9.2 and imagine that we begin applying a small load P
and progressively increasing it. The previous analyses show that the rod slightly
compresses first, but when P reaches Pcr, it buckles into one of two possible
distinguished states in the plane. These states are stable, but they are not the sole
ones at equilibrium. The compressed state is again possible, but it is now unstable.

With Nv D v.l=2/ the displacement of the rod’s center line, we can summarize
what we have just described in the diagram in Figure 9.8, where the dashed line
represents unstable states. We can develop a stability analysis using instead of
the Bernoulli scheme, the linearized version of the elastica, as Euler himself did.
The resulting diagram will be in the plane P=.EI/, #.0/ if we consider the equation

EI# 00 C P# D 0
with the boundary conditions

# 0.0/ D # 0.1/ D 0
for a rod of unitary length. Even in this case, the points of bifurcation are Pcr D
EI	2n2, n D 1; 2; : : :.
– As we have seen, a bifurcation analysis in statics involves state variables (v or #

in the previous example) and one or more parameters as P, as we have already
discussed. The analysis then reduces to solving an equation of type

f .&; �/ D 0; (9.7)

where & is the state and � the list of parameters, so that

f W ˙ � R
n �! Y;
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Fig. 9.8 Bifurcation diagram

Pcr

O v̄

P

where ˙ is the state space, and Y another space appropriate for the problem
under consideration.

Once we have found solutions, we have to decide which are stable and which
are unstable. The analysis may be done either in terms of the linearization of
the previous equation or by testing for maxima or minima of a potential (if any)
pertaining to the problem in hands. When the space of solutions is determined
for the full range of the admissible states and all values of the parameters, the
associated bifurcation analysis is called global. In contrast, when we are able to
characterize the space of solutions only in a neighborhood of a given solution,
the pertinent bifurcation analysis is called local.

– The equation (9.7) can undergo changes for small perturbations in the structure
of f or the inclusion of further parameters in the list � for modeling reasons. If
the relevant bifurcation diagram is insensitive to such changes, we say that it is
structurally stable; otherwise, it is structurally unstable.

This last case is often determined in the stability of elastic structures by the
presence of imperfections: the pertinent literature has had a long history since
Warner Tjardus Koiter’s 1945 dissertation.

– Consider the case in which a group G may act on both ˙ and Y. We call the
subgroup G& of G defined by

G& WD
˚Qh 2 GjQh& D &�

the fixer (or symmetry) group of & 2 ˙ , and we say that f is covariant when

f .Qh&; �/ D Qhf .&; �/:

Notice that f is not necessarily covariant with respect to the whole fixer
group G& . Often, the trivial solution of (9.7) admits the entire group G, while
the bifurcating solution has a smaller fixer group. In these cases, we say that the
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bifurcation breaks the symmetry. Such a phenomenon can also be induced by
the occurrence of imperfections that can be created during the loading program.
Pertinent analyses are challenging and not easy to develop.

– All the examples discussed in the previous sections of this chapter deal with
slender bodies. For them, bifurcation of static solutions can be rather easily
reproduced in the laboratory. However, slenderness is not a necessary prerequisite
for exhibiting bifurcation phenomena. That point was raised first in a 1930
paper by Antonio Signorini (1888–1963), who showed that the analysis of the
equilibrium of a nonlinear elastic body under traction boundary conditions can
have nonunique solutions even when small loads act on a natural state. Such
nonuniqueness is intended in the sense that solutions are unequal with respect to
a rigid change of place of bodies and loads. In many cases, such a bifurcation
phenomenon in the space of equilibrated configurations depends only on the
constitutive (fourth-rank) tensor of the linearized elasticity rather than the whole
stored elastic energy. An interpretation by Gianfranco Capriz, dating back to
the early 1970s, of the Signorini phenomenon is that some alternative solutions
have a dynamic nature, rather than being genuinely static. However, in the
linearization process, based on the series expansion used by Euler for the stability
analysis, the inertial terms are of third rank, so that they disappear to leading
order, and the relevant solutions appear to be static.

– Bifurcation analyses can be developed in dynamics. While those in statics
deal with the recognition of the bifurcation of equilibrium states, in dynamics,
attention is focused on qualitative phenomena such as the sudden occurrence of
periodic orbits that change phase portraits.1 Here, the analyses deal with slender
bodies (beams, plates), since a dynamic bifurcation theory for three-dimensional
elasticity is not yet available.

What we have presented in this chapter is just a brief overview of a wide
landscape crammed with technical and conceptual difficulties, full of results but
also of unexplored lands. The topic requires further extended reading, to which this
chapter is just an invitation, just as this book is no more than a brief introduction to
the vast field of continuum mechanics.

1Consider the ordinary differential equation

Py.t/ D A.�/y.t/

with y.t/ 2 R
n. The phase portrait is the collection of pairs .Py; y/ satisfying such an equation under

appropriate initial conditions as � varies.



Appendix A
Tensor Algebra and Tensor Calculus

We collect here some notions of geometry and analysis used in the previous
chapters. This appendix is no more than a brief summary containing a few defi-
nitions and statements of results without proof. The conscientious reader unfamiliar
with the topics collected here should take from these pages some directions for
further reading in appropriate textbooks.

A.1 Vector Spaces

Definition 1. A set V is called a vector space (or a linear space) over a field F if
it is endowed with two operations, C W V � V �! V and ı W V � F �! V , called
respectively addition and multiplication, such that

– addition is commutative, i.e., v C w D wC v for every pair v;w 2 V ,
– addition is associative, i.e., .vCw/Cz D vC.wCz/ for every triple v;w; z 2 V ,
– addition admits a unique neutral element 0 2 V such that v C 0 D v;8v 2 V ,
– with ˛v denoting the product ˛ ıv, for every ˛; ˇ 2 F and v 2 V , multiplication

is associative, i.e., ˛.ˇv/ D .˛ˇ/v, where ˛ˇ is the product in F ,
– multiplication admits a unique neutral element 1 2 F such that 1v D v;8v 2 V ,
– multiplication is distributive with respect to addition, i.e., ˛.v C w/ D ˛v C ˛w

for every pair v;w 2 V ,
– multiplication is distributive with respect to addition in F , i.e., for every pair
˛; ˇ 2 F and every v 2 V ,

.˛ C ˇ/v D ˛v C ˇv:

We do not recall the abstract definition of a field in the algebraic sense, because
we consider here only the special case of F equal to the set of real numbers R.

© Springer Science+Business Media New York 2015
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Definition 2. Elements v1; : : : ; vn of a linear space are said to be linearly depen-
dent if there exist scalars ˛1; : : : ; ˛n not all equal to zero such that

nX

iD1
˛ivi D 0:

In contrast, when the previous equation holds if and only if ˛i D 0 for every i, the
elements v1; : : : ; vn are said to be linearly independent.

From now on, we shall use Einstein notation, and we shall write ˛ivi instead of
nX

iD1
˛ivi, implying summation over repeated indices.

Given v1; : : : ; vn 2 V , we denote by

span fv1; : : : ; vng
the subset of V containing v1; : : : ; vn and all their linear combinations.

Definition 3. A basis (or a coordinate system) in V is a set of linearly independent
elements of V , say v1; : : : ; vn, such that

span fv1; : : : ; vng D V :

In this case, n is the dimension of V .

In particular, when n < C1, we say that V has finite dimension, which will be
the case throughout this book. The dimension of a linear space V is independent of
the selection of a basis for it. Every set of m < n linearly independent elements of
an n-dimensional linear space V can be extended to a basis of V .

Let e1; : : : ; en be a basis of a vector space V over the field of real numbers, in
short a real vector space. Every v 2 V admits a representation

v D viei

with vi 2 R the ith component of v in that basis. In other words, v is independent
of the basis, while its generic component vi exists with respect to a given basis. The
distinction is essential, because we want to write the laws of physics independently
of specific frames of reference (coordinate systems), i.e., of the observers.

Consider the n-dimensional point space E . We can construct a linear space V
over it by taking the difference between points, namely y � x with x and y in E , and
considering V the set of all possible differences between pairs of points in E . Then
V is a linear space with dimension n. We call it the translation space over E . Once
we select a point in E , call it O, we can express all differences of points in reference
to it, by writing

y � x D .y � O/ � .x � O/ D .y � O/C .�1/.x � O/:
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By assigning a basis in V consisting of elements expressed in reference to O,
which becomes the origin of the coordinate system, we identify V with R

n. There
is, then, a hierarchy among E , V , and R

n, the n-dimensional Euclidean point space,
the related translational space, and finally, Rn, determined by an increasing richness
of geometric structure.

We call the elements of a given vector space (a linear space) vectors, although
they can be far from the standard visualization of vectors as arrows in the three-
dimensional ambient space or in the plane. For example, the set of n�m real matrices
is a linear space, and so is the set of all polynomials with complex coefficients in
a variable t, once we identify F with the set of complex numbers and consider
addition and multiplication as the ordinary addition of two polynomials and the
multiplication of a polynomial by a complex number. Several other examples of
even greater complexity could be given, which are more intricate and difficult to
visualize then those we have given.

Definition 4. The scalar (inner) product over V is a function

h�; �i W V � V �! R

that is

– commutative, i.e., hv;wi D hw; vi,
– distributive with respect to vector addition, i.e., hv;wC zi D hv;wi C hv; zi,
– associative with respect to multiplication by elements of F , i.e., ˛ hv;wi D
h˛v;wi D hv; ˛wi, 8˛ 2 F ; v;w 2 V ,

– nonnegative definite, i.e., hv; vi � 0, 8v 2 V , and equality holds only when
v D 0.

When V is endowed with a scalar product, we say that it is a Euclidean space.

We call a point space E Euclidean if its translational space is endowed with a
scalar product. Let n be the dimension of V with respect to E . In this case, we shall
write En, saying that it is an n-dimensional Euclidean point space.

Definition 5. Let fe1; : : : ; eng be a basis in a Euclidean vector space V . We say that
it is orthonormal if

˝

ei; ej
˛ D ıij

with ıij the Kronecker delta:

ıij D
�
1 if i D j;
0 if i ¤ j:

We shall also write ıij and ıi
j for the components of the Kronecker delta, with the

same numerical values but with different meaning of the indices, as we shall make
precise later.
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Take two vectors v D viei, w D wjej in V , expressed in terms of the
basis fe1; : : : ; eng, with n finite, which is not necessarily orthonormal. In terms of
components, we write

hv;wi D ˝viei;w
jej
˛ D viwj

˝

ei; ej
˛ D vigijw

j D viwjgij;

where

gij WD
˝

ei; ej
˛

and

gij D gji;

due to the commutativity of the scalar product. In particular, when the basis is
orthonormal with respect to the scalar product considered, we have

hv;wi D viıijw
j D viwi;

where wi D ıijwj and the position of the index i has a geometric meaning that we
explain below. Before going into details, however, we will say a bit about changes
of frames in V . We call gij the ijth component of the metric tensor over V . The
terminology recalls that gij determines in the basis fe1; : : : ; eng the length jvj of
v 2 V , defined by the square root of the scalar product of v with itself. The meaning
of the word tensor is defined below. We compute

jvj2 WD hv; vi D vigijv
j:

In particular, when gij D ıij, we say in this case that the metric is flat, we have

jvj2 D viıijv
j D vivi D

nX

iD1
.vi/2:

Assume V with finite dimension, as we shall do from now on. Take two bases
fe1; : : : ; eng and fi1; : : : ; ing. Assume that the latter is orthonormal. With respect to
such a basis, we have

ei D Ak
i ik;

with Ak
i appropriate proportionality factors. In turn, we have also

ik D NAi
kei;

with NAi
k other factors. Consequently, we obtain
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ik D NAi
kei D NAi

kAl
iil;

so that since fi1; : : : ; ing is orthonormal, we have

ıij D
˝

ii; ij
˛ D ˝ NAr

i A
l
ril; ij

˛ D NAr
i A

l
r

˝

il; ij
˛ D NAr

i A
l
rılj D NAr

i A
j
r:

We specialize the analysis to R
n to clarify further the nature of the proportionality

factors. Let z D ˚

z1; : : : ; zn
�

be coordinates in reference to an orthonormal
basis fi1; : : : ; ing, and let x D ˚

x1; : : : ; xn
�

be another system of coordinates
associated with a different basis, namely fe1; : : : ; eng, and assume the possibility
of a coordinate change

zj 7�! xi.zj/;

which is one-to-one and differentiable, with differentiable inverse mapping

xi 7�! zj.xi/:

Consider two smooth curves s 7�! x.s/ and s 7�! Ox.s/ intersecting at a point Nx, and
compute the derivatives with respect to s at Nx:

v D dxi

ds
.Nx/ei; w D dOxj

ds
.Nx/ej;

where ei and ej are the elements of the generic basis mentioned above as a
counterpart to the orthonormal one fi1; : : : ; ing. When we express these curves in
terms of the coordinates zi, i.e., if we consider maps s 7�! zi.x.s// and s 7�!
zi.Ox.s//, and we compute once again v and w in the new frame, we get

v D dzi.x.s//

ds
ii D @zi

@xh

dxh

ds
ii

and

w D dzj.Ox.s//
ds

ij D @zj

@xk

dOxk

ds
ij;

since
@zj

@Oxk
D @zj

@xk
for the coordinates of the points over x.s/ and Ox.s/ are always

.x1; : : : ; xn/. Then we compute

hv;wi D
�

dxh

ds
eh;

dOxk

ds
ek

�

D dxh

ds

dOxk

ds
ghk D

�
@zi

@xh

dxh

ds
ii;
@zj

@xk

dOxk

ds
ij

�

D @zi

@xh

dxh

ds

@zj

@xk

dOxk

ds
ıij;
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i.e.,

ghk D @zi

@xh
ıij
@zj

@xk
: (A.1)

The one-to-one mapping x  ! z allows us to consider ghk the pushforward of
ıij in the coordinate system

˚

x1; : : : ; xn
�

. Conversely, we can write

ıij D @xh

@zi
ghk
@xk

@zj

(prove it as an exercise) and consider ıij the pullback of ghk into the coordinate
system

˚

z1; : : : ; zn
�

.
Notice that here we are considering coordinate transformations in the same space.

The relation (A.1) emerges by the computation of the same vectors. In Chapter 1,
we use a version of the previous remarks involving two different spaces with the
same dimension, each space endowed with its own independent metric. Even in this
case, we can speak about pullback and pushforward of these metrics from one space
to the other by means of some bijective mapping. The matrix with gij as the ijth
component has nonzero determinant, due to the definition of gij introduced above.
Hence, the inverse of that matrix exists and represents what we call inverse metric
(or the inverse of the metric), denoted by g�1, in the frame of reference defining gij.
We denote by gij the generic element of g�1.

Definition 6. The cross product of two vectors in V is a map � W V � V �! V
assigning to every pair v;w 2 V a vector v � w 2 V with ith component given by

.v � w/i D ei
jkv

kwj;

with ei
jk a version of the so-called Ricci symbol eijk, defined by

eijk D
8

<

:

1 if ijk are a even permutation of 1; 2; 3;
�1 if ijk are a odd permutation of 1; 2; 3;
0 elsewhere:

The Ricci symbol is such that

eijkeipq D ıjpıkq � ıjqıkp; (A.2)

with ıij the Kronecker delta. The reason for writing some indices in superscript
position and others as subscripts will be clear in the subsequent section.
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A.2 Dual Spaces: Covectors

Consider linear functions f W V �! R over a real vector space V with finite
dimension. Linearity means that for all pairs v;w 2 V and ˛; ˇ 2 R, we get

f .˛v C ˇw/ D ˛f .v/C ˇf .w/:

In particular, for fixed v D viei, we have

f .v/ D vif .ei/;

leaving understood, as usual, the summation over repeated indices.
If we collect in a column the values vi, namely

0

B
B
B
B
B
B
B
@

v1

v2

:

:

:

vn

1

C
C
C
C
C
C
C
A

and in a row the values f .ei/, namely

�

f .e1/; f .e2/; : : :; f .en/
�

we write

f .v/ D vif .ei/ D
�

f .e1/; f .e2/; : : :; f .en/
�

0

B
B
B
B
B
B
B
@

v1

v2

:

:

:

vn

1

C
C
C
C
C
C
C
A

(A.3)

in terms of the standard row–column product. We consider

�

f .e1/; f .e2/; : : :; f .en/
�

the list of components of an element b of a space V�, with dimension n, and we
write

f .v/ D b � v;
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where the right-hand term is a product with the same meaning as the right-hand side
of (A.3). We express b explicitly as

b D bie
i;

with ei the ith element of the basis in V�, defined to be such that

ei � ej D ıi
j ;

where ıi
j is the Kronecker symbol.

The traditional convention is to write in superscript position the indices of vector
components (called contravariant) as for vi, with reference to an element of V in
the scheme followed so far, and in subscript position the indices of elements of
V� (called covariant), to recall the product in the identity (A.3). This convention—
essentially suggested by the identity (A.3)—justifies also the position of the indices
in the formulas collected in the previous section.

We call V� the dual space of V , and b 2 V� a covector. Given v;w 2 V , we
can interpret in terms of covectors the relation expressing in coordinates the scalar
product, i.e., hv;wi D vigijwj. In fact, the factor vigij defines the jth component of a
covector v[, i.e.,

v[j D gjiv
i;

so that we write

hv;wi D gv � w D v[ � w: (A.4)

To describe the action of g on the vector v, in the common jargon of geometry
we say that we are lowering the index of v. A special, although prominent, case
occurs when gij coincides with ıij, i.e., the metric is flat: the column in which
we list the components of v becomes simply a row without any further numerical
factor. Moreover, taking the matrix with gij as the ijth component with nonzero
determinant, the inverse g�1 of the metric exists, and its generic ijth component is
denoted by gij.

Consider a covector c 2 V�. When we apply g�1 to it, we determine a vector c#

with ith component given by

c#i D gijcj:

To describe the action of g�1 on the covector c, we say that we are raising the index
of c. For this reason, given c 2 V� and v 2 V , we obtain a vector c# WD g�1c 2 V
such that

c � v D ˝g�1c; v
˛ D ˝c#; v

˛

: (A.5)
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The two relations (A.4) and (A.5) establish an isomorphism between V and its
dual counterpart V�. We put in evidence that V� is the space of linear functions over
V by writing also Hom.V;R/ instead of V�. Such notation is particularly useful
when we consider linear maps between two different spaces. We already expressed
two such maps when we described the action of the metric g over a vector and the
action of g�1 over a covector, as we specify below.

The map assigning to a vector space V its dual V� is involutive, i.e., the dual of
V� is V:

.V�/� D V :

A.3 Linear Maps between Generic Vector Spaces: Tensors

Take a vector space V over R (in fact, we can consider a generic field F instead of
R, but the restricted choice adopted here is sufficient for what is contained in the
book) and consider a linear map

h W V �! V :

By definition, for v 2 V , h is such that h.v/ 2 V , and for ˛; ˇ 2 R and w 2 V ,

h.˛v C ˇw/ D ˛h.v/C ˇh.w/:

Consequently, we have

h.v/ D h.viei/ D vih.ei/;

where we have adopted the summation convention over repeated indices as usual.
In particular, by listing in a column the numbers vi and denoting by A the matrix
having as columns the vectors h.ei/, namely

�

h.e1/; h.e2/; : : :; h.en/
�

;

we can write

h.v/ D Av

by adopting the standard row–column matrix product. In fact, A is a linear operator
from V to V , namely A 2 Hom.V;V/. Take the generic element er of the vector
basis in V . Then Aer is another vector in V with kth component in the assigned basis
given by .Aer/

k. We define the krth component Ak
r of A as the real number defined by

Ak
r D .Aer/

k D ek � Aer:
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Recall that in the previous formula, the indices k and r are just labels identifying the
element of the basis in V .

The matrix with generic component Ak
r is just a representation of A in the selected

basis. In other words, as a linear operator, A exists in the abstract, independent of the
basis that we might choose in V , while its explicit matrix representation depends on
the choice of the basis; Ak

r is characterized by a contravariant index and a covariant
one. We commonly say that such an A is of type .1; 1/. Let

˚

x1; : : : ; xn
�

be the
coordinates with respect to which we have calculated Ak

r . Consider a change of
coordinates

˚

x1; : : : ; xn
� �! ˚

y1; : : : ; yn
�

, which is one-to-one and differentiable
with differentiable inverse. Write NAk

r for the counterpart of Ak
r in the coordinates

˚

y1; : : : ; yn
�

. We have

NAk
r D

@yk

@xs
As

l

@xl

@yr
:

We summarize all these properties by saying that A is a 1-contravariant, 1-
covariant second-rank tensor. Notice that in this sense, a vector is a tensor of type
.1; 0/, while a covector is a .0; 1/ tensor.

In the same way, we can define other types of second-rank tensors. We can have
A 2 Hom.V;V�/ with components

Ark WD her;Aeki

such that, with the overbar indicating the change of variables as above, we have

NArk D @xl

@yr
Als
@xs

@yk
:

In this case, A is of type .0; 2/. Moreover, we can also have A 2 Hom.V�;V�/ or
A 2 Hom.V�;V/. In the first case, we have

NAr
k D

@xs

@yk
Al

s

@yr

@xl
:

In the second case, the generic component of A is

Ark D .Aer/ � g�1ek D .Aer/s gskej
kI

it is also such that

NArk D @yr

@xl
Als @yk

@xs
:

Given two such linear operators, say A and B, we define a product

.A;B/ �! AB
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giving as a result a second-rank tensor. In this case, we say that we saturate (or
contract) the second component of A with the first component of B, according to the
row–column multiplication convention. Precisely, consider A;B 2 Hom.V;V/. The
product AB is a second-rank tensor with components

.AB/ij D Ai
rB

r
j ;

where we consider, as usual, summation over repeated indices.
Notice that the indices saturated are respectively in covariant and contravariant

positions, according to the row–column multiplication. To account for this, when
we want to multiply tensors having, for example, both contravariant components,
we have to lower or raise the appropriate index by the action of the metric. For
example, consider A;B 2 Hom.V�;V/. Their product saturating one index involves
the metric. To render explicit the convention above, we write sometimes AgB instead
of AB, and when we adopt the more synthetic form, we mean that we are defining a
second-rank tensor with components

.AB/ij D .AgB/ij D AikgksB
sj:

An analogous agreement is understood when we involve second-rank tensors with
both covariant components. In this case, we have to raise one index using g�1. In
other words, when A;B 2 Hom.V;V�/, we write

.AB/ij D .Ag�1B/ij D AikgksBsj:

All previous distinctions can be neglected when the metric is flat, i.e., when gij D
ıij, since no numerical factors induced by the metric appear.

In general, the product AB is noncommutative, i.e., AB ¤ BA.
Instead of saturating just one index, we can saturate both indices, producing a

scalar. In this case, we use the notation A � B, meaning

A � B D AijB
ji

or

A � B D Ai
jB

j
i;

with the appropriate adjustments of the indices by means of the metric as in the
product AB. The product A � B is commutative, i.e., A � B D B � A.

Consider A 2 Hom.V;V/. We define the transpose of A to be the unique element
of Hom.V;V/, denoted by AT, such that

hAv;wi D ˝v;ATw
˛
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for every pair v;w 2 V . We define also the formal adjoint of A to be the unique
element of Hom.V;V�/, denoted by A�, such that

b � Av D .A�b/ � v

for every v 2 V and b 2 V�. We observe that AT and A� also satisfy the relation

AT D g�1A�g:

A proof can be found in Chapter 1 in a case a bit more general in that it includes
linear operators between two different vector spaces. The definitions above in fact
hold also in this case. In particular, take two such spaces, namely V and W ,
and consider A 2 Hom.V;W/. We then have the following inclusions: AT 2
Hom.W;V/, A� 2 Hom.W�;V�/.

When A 2 Hom.V;W�/ or A 2 Hom.V�;W/, transpose and formal adjoint
coincide. They are in Hom.W;V�/ and Hom.W�;V/, respectively.

The characterization just expressed of AT and A� as elements of some sets, those
listed above, assumes that we apply A 2 Hom.V;W/ to vectors of V from the left.
This means that the second index of A saturates that of the vector components. When
we want to apply A from the right, i.e., we want to saturate the first index of A, which
means that we write cA, with c now a covector because A has the first component
in contravariant position, the inclusions written above change. More specifically,
if A 2 Hom.V;W/ when applied from the left, acting on the right we have A 2
Hom.W�;V�/, A� 2 Hom.V;W/, AT 2 Hom.V�;W�/.

From the definition of transpose and formal adjoint, we obtain also

.AT/T D A; .A�/� D A:

Consider, e.g., A 2 Hom.V;V/ and define the determinant of the linear operator
A as the determinant of the matrix with generic element Ai

j, representing A in some
basis. In other words, for n D dimV , we can write

det A D
nX

i1;:::;inD1
ei1:::in Ai1

1 � � � Ain
n ;

or alternatively,

det A D 1

nŠ

nX

i1;:::;inD1

nX

j1;:::;jnD1
ei1:::inej1:::jn Ai1

j1
� � � Ain

jn
;

where ei1:::in is 1 or �1, provided that i1; : : : ; in constitutes an even or an odd
permutation of 1; 2; : : : ; n respectively, 0 otherwise. In particular, if n D 3, det A
is the triple product of its vector columns, e.g.,
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det A D hA1;A2 � A3i ;

where A1, A2, and A3 are the first column, the second column, and the third column
of A. We have also the following:

– det.AB/ D det A det B,
– det AT D det A,
– det A� D det A,
– with ˛ 2 R, det.˛A/ D ˛n det A.

Let us denote by I the identity in Hom.V;V/, namely a second-rank tensor such
that

AI D IA D A:

We define the inverse of A to be the unique linear operator A�1 such that

A�1A D AA�1 D I:

Once we select a basis in V , the matrix representing A�1 is the inverse of the
matrix collecting the components of A in the same basis. We have then

.A�1/ij D
.�1/iCj det A.ji/

det A
;

where A.ji/ is the matrix obtained from the one representing A by deleting the jth
row and the ith column.

The definition of determinant can be extended to tensors of type A 2
Hom.V;W/, with dimV D dimW . A subclass of Hom.V;W/ with dimV D
dimW is given by invertible tensors such that

Q�1 D QT:

We indicate the special case by writing Q 2 O.n/, with n D dimV once again, and
call O.n/, which is endowed with a group structure, the orthogonal group.

With Q 2 O.n/, det Q can be 1 or�1. In the first case, i.e., det Q D 1, we say that
Q belongs to the special orthogonal group, denoted by SO.n/. It is a subgroup of
O.n/, i.e., a subset of O.n/ endowed with the group structure inherited from O.n/.
Elements of SO.n/ represent rotations in the n-dimensional space V , while those in
the remaining part of O.n/, i.e., O.n/nSO.n/, describe reflections in V . The words
“rotation” and “reflection” recall the way Q 2 O.3/ may act on vectors in the three-
dimensional Euclidean point space.

We say that a second-rank tensor A is symmetric if A D AT, while it is
skew-symmetric if A D �AT. Every second-rank tensor admits the additive
decomposition
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A D 1

2
.AC AT/C 1

2
.A � AT/:

We define

Sym A WD 1

2
.AC AT/;

the symmetric part of A, and

SkwA WD 1

2
.A � AT/;

the skew-symmetric part of A.
Consider a skew-symmetric tensor B, i.e., B 2 Skw.V;V/. By definition,

B D �BT. However, there is another property that could be used as a definition of
skew-symmetry: there exists q 2 V such that for every v 2 V , we have

Bv D q � v:

A.4 Tensor Product

With V , W , and U real vector spaces,

f WD V �W �! U

is called a bilinear mapping if

– for every v 2 V , the map w 7�! f .v;w/ is linear;
– for every w 2 V , the map v 7�! f .v;w/ is linear.

Given two vector spaces V and W that we consider real for the purposes of this
book, but that we could also take as defined over a field F not necessarily coinciding
with R, for v 2 V and w 2W , consider the map

.v;w/ 7�! v ˝ w;

where v ˝ w is what we call the tensor product (or the dyad) between v and w.
Such a product is endowed with the following properties:

– for v1; v2 2 V and w 2W ,

.v1 C v2/˝ w D v1 ˝ wC v2 ˝ wI

– for w1;w2 2W and v 2 V ,
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v ˝ .w1 C w2/ D v ˝ w1 C v ˝ w2I
– with ˛ 2 R (or 2 F in general),

.˛v/˝ w D ˛.v ˝ w/ D v ˝ .˛w/:

Here v ˝ w is defined to be an element of Hom.W�;V/. Precisely, for c 2W�, we
have

.v ˝ w/c D .c � w/v;
i.e., v ˝ w has components viwj.

Theorem 7. Let V and W be finite-dimensional vector spaces over R (or F).
Then there exist a finite-dimensional vector space T over R (or F) and a bilinear
mapping V �W �! T indicated by

.v;w/ 7�! v ˝ w

satisfying the following properties:

– If U is a vector space over R (or F) and f W V �W �! U is a bilinear mapping,
there exists a linear map

Qf W T �! U

such that for every pair .v;w/, with v 2 V and w 2W , we have

f .v;w/ D Qf .v ˝ w/:

– If fe1; : : : ; eng is a basis for V and fQe1; : : : ; Qeng is a basis for W , the elements

ei ˝ Qej;

with i D 1; : : : ; n, j D 1; : : : ; n constitute a basis for T .

We usually denote T by V ˝W , since the dyads ei˝ Qej constitute a basis within
it; V ˝W is isomorphic to Hom.W�;V/. Every A 2 Hom.W�;V/ admits, in fact,
the representation

A D Aijei ˝ Qej:

Such a representation is compatible with the definition of Aij. We have, in fact,

Aij D ei � AQej D ei � Aij.ei ˝ Qej/Qej D Aijei � .ei ˝ Qej/Qej

D Aijei � .Qej � Qej/ei D Aijei � ei D Aij:
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By specifying V and W , we have the following relations:

– If A 2 Hom.V;V/ we have

A D Ai
jei ˝ ej;

so that Hom.V;V/ is isomorphic to V ˝ V�, and we write formally

Hom.V;V/ ' V ˝ V�

to summarize the statement symbolically.
– If A 2 Hom.V�;V�/, we have

A D Aj
ie

i ˝ ej;

so that

Hom.V�;V�/ ' V� ˝ V :

– If A 2 Hom.V;V�/, we have

A D Aije
i ˝ ej;

so that

Hom.V;V�/ ' V� ˝ V�:

– If A 2 Hom.V�;V/, we have

A D Aijei ˝ ej;

so that

Hom.V�;V/ ' V ˝ V :

Consider the dyad ei ˝ ej and imagine that the basis fe1; : : : ; eng, , and
consequently the dual basis

˚

e1; : : : ; en
�

, is rotated by Q 2 SO.n/. Define Nei D Qei,

Nei ˝ Nej D Qei ˝ ejQT:

Consequently, under such a rotation, A 2 Hom.V;V�/ becomes

NA D QAQT;
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so that we compute

det NA D det Q det A det QT D det A;

and we find that the determinant of a tensor is invariant under rotations of the basis.
In terms of components, we have

NAi
j D Qi

rA
r
sQ

s
j :

In particular, we could find a rotation such that in the rotated basis, the matrix
representing A has diagonal form. If A is symmetric, such a rotation always exists.
The numbers on the diagonal version of A are its eigenvalues.

Consider A D Aijei ˝ ej 2 Sym.V;V�/, where Sym.V;V�/ is the subset of
Hom.V;V�/ containing all symmetric elements of Hom.V;V�/. Its eigenvalues are
a solution of the algebraic equation

det.A � �I/ D 0;

called the characteristic equation. By raising the first component of A, we see that
the roots � are also eigenvalues of the version OA of A with components

OAi
j D gikAkj:

We obtain, in fact,

det. OA � �I/ D det.g�1.A � �I// D det g�1 det.A � �I/:

The eigenvectors associated with the generic eigenvalue � are solutions to the
equation

Ai
k�

k D �� i:

The solution �1; : : : ; �n expresses the components of the eigenvector associated
with �.

Theorem 8. For every symmetric tensor A 2 Hom.V;V/, with V a n-dimensional
vector space, there exist an orthonormal basis fe1; : : : ; eng and numbers ˛i 2 R,
i D 1; : : : ; n such that

A D
nX

iD1
˛iei ˝ ei:

In the representation of A just presented, we call ˛i the eigenvalues of A, and
ei the corresponding eigenvectors. For a given eigenvalue ˛, the set of all v such
that Av D ˛v is called an eigenspace. If the eigenvalues are all distinct, the related
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eigenvectors are determined uniquely. To visualize the situation, consider the case
n D 3. If ˛1 ¤ ˛2 ¤ ˛3, the eigenspaces are the lines span.e1/, span.e3/, span.e3/.
If ˛2 D ˛3, we have A D ˛1.e1 ˝ e1/ C ˛2.I � e1 ˝ e1/, with I the .1; 1/ unit
tensor, so that the eigenspaces are span.e1/ and its orthogonal complement (a plane
orthogonal to e1). Finally, if ˛1 D ˛2 D ˛3 D ˛, then A is spheric: A D ˛I.

As we have already remarked, a special case of a second-rank tensor is the metric
g 2 Hom.V;V�/. We derived g using the scalar product structure. Conversely,
we can begin by assigning a second-rank symmetric tensor g 2 Hom.V;V�/ and
defining in this way a scalar product. The metric tensor appears also in the explicit
computation of the modulus jAj of a tensor A. Consider A D Ai

jei ˝ ej. We write

jAj2 D A � AT D Ai
jA

j
i:

When A D Aijei ˝ ej, we write

jAj2 D AijA
ji;

where Aji D gjkAklgli. An analogous expression holds when A D Aijei ˝ ej.
Take v;w 2 V and their dyad v˝w 2 Hom.V�;V/. We define the trace of v˝w

to be the number

tr.v ˝ w/ D hv;wi D vigijw
j: (A.6)

For any other A 2 Hom.V�;V/, i.e., A D Aijei ˝ ej, we define its trace as

trA D A � g D Aijgji;

as a direct consequence of (A.6), because

trA D tr.Aijei ˝ ej/ D Aijtr.ei ˝ ej/ D Aij
˝

ei; ej
˛ D Aijgij D Aijgji:

Analogously, when A 2 Hom.V;V�/, i.e., A D Aijei ˝ ej, we write

trA D A � g�1 D Aijg
ji;

since gij is given by the scalar product of the elements of the dual basis, a product
induced by the product over V .

Finally, if A D Ai
jei ˝ ej, we have

tr A D tr.Ai
jei ˝ ej/ D Ai

jı
j
i D A � I D Ai

i;

since ei ˝ ej D ıj
i by definition.
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A.5 Higher-Rank Tensors

We can replicate the tensor product, constructing tensors with rank higher than the
second. We may have, in fact, linear operators of the form

T D T
i1:::ip
j1:::jp

ei1 ˝ ei2 ˝ � � � ˝ eip ˝ ej1 ˝ ej2 ˝ � � � ˝ ejq :

We shall say that T is a p-covariant, q-contravariant tensor, or a tensor of rank
.p; q/, when under a change of coordinate induced by a diffeomorphism x  ! z,
as described above, the generic component of T behaves as

NTh1:::hp

k1:::kq
D T

i1:::ip
j1:::jq

@zh1

@xi1
� � � @zhp

@xip

@xj1

@zk1
� � � @xjq

@zkq
;

where T
i1:::ip
j1:::jq

is the component of the representation of T in terms of the coordinates

xr, while NTh1:::hp

k1:::kq
is its counterpart in terms of the coordinates zs. In this book, besides

various types of second-rank tensors, we use just one of fourth rank, especially in
the form with all covariant components, namely

C D Cijhkei ˝ ej ˝ eh ˝ ek:

For A a second-rank tensor, we write .CA/ for the product contracting all the
indices of A, i.e., CA is a second-rank tensor with ijth component given by

.CA/ij D CijhkAkh:

A.6 Some Notions in Tensor Analysis

Consider (i) a real vector space V , (ii) a tensor space T , e.g., V � V� or something
else, (iii) a domain ˝ in R

n. We discuss here only the case in which V and T have
finite dimension. Take maps

Qv W ˝ �! V (A.7)

and

QT W ˝ �! T : (A.8)

We call them a vector and a tensor field, respectively, and write v for Qv.x/ and
T for QT.x/. In fact, even the map (A.7) defines a tensor field, and it is of type .1; 0/,
while if we considered a covector field
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Qb W ˝ �! V�;

we could always think of it as a tensor field of type .0; 1/. Consider a differentiable
scalar function f W ˝ �! R. Its differential is given by

df D @f

@xi
dxi D

�
@f

@x1
;
@f

@x2
; : : :;

@f

@xn

�

0

B
B
B
B
B
B
B
@

dx1

dx2

:

:

:

dxn

1

C
C
C
C
C
C
C
A

;

where the last identity considers the standard row–column multiplication,
and

˚

x1; : : : ; xn
�

are the coordinates of a point x in ˝. We consider the list
�
@f

@x1
; : : : ;

@f

@xn

�

as that of the components of a covector Df that is the derivative

of f . We define the gradient of f , and denote it by rf , the contravariant version of
Df , i.e.,

rf WD .Df /# D .Df /g�1;

with components .rf /i D .Df /jgji.
A vector field Qv is said to be differentiable at x 2 ˝ if there is a linear mapping

D Qv.x/ 2 Hom.Rn;V/ such that with u 2 R
n,

Qv.xC u/ D Qv.x/C .D Qv.x//uC o.u/

as u ! 0. In the previous expression, o.u/ denotes higher-order terms in the sense
that when D Qv.x/ exists, it satisfies for ˛ 2 R the limit

lim
˛!0

Qv.xC ˛u/ � Qv.x/
˛

D .D Qv.x//u:

The following rules hold:

– 1. For Qv and Qw two vector fields as above,

D.v � w/ D .Dv/�wC .Dw/�v:

– 2. For f a scalar function,

D.fv/ D v ˝ Df C fDv:



A Tensor Algebra and Tensor Calculus 405

– 3. With Qv W Rn �! V and Qw W ˝ �! R
n, denoting by Qv ı Qw their composition

( Qv is a function of Qw), the chain rule

D. Qv ı Qw/.x/ D ..D Qv/ ı Qw/D Qw.x/ D Dw QvD Qw.x/

holds, with Dw denoting the derivative of Qv with respect to Qw, evaluated at x.

Consider Rn and a copy QRn of it. By zi and Qzi we denote coordinates of points
in R

n and QRn, respectively, in Cartesian frames, while xi and Qxi are coordinates of
the same points in other frames, connected to the Cartesian one by diffeomorphisms
x ! z, Qx ! Qz. Metrics g and Qg pertain to these last frames. We write v for Qv as
a function of the coordinates zi, and Nv as a function of xi.

Consider a vector field Qv W Rn �! QRn having derivative Dv WD D Qv.x/ with

components
@vi

@zj
in the Cartesian frame and

@ Nvi

@xj
in the other frame. We consider the

relation

@vi

@zr
D @Qzi

@Qxa

@ Nva

@xj

@xj

@zr
: (A.9)

With the agreement that .Ai
j/ is the matrix with generic component Ai

j, we
compute

det Dv D det

�
@vi

@zr

�

D det

�
@Qzi

@Qxa

@ Nva

@xj

@xj

@zr

�

D det

�
@Qzi

@Qxa

�

det

�
@ Nva

@xj

�

det

�
@xj

@zr

�

:

(A.10)

Moreover, since the metric in QRn pertaining to the Cartesian frame is ıij, for the
metric Qg pertaining to the other frame, we have

Qgab D @Qzi

@Qxa
ıij
@Qzj

@Qxb
;

so that

det.Qgab/ D det

�
@Qzi

@Qxa

�

det
�

ıij
�

det

�
@Qzj

@Qxb

�

D det

�
@Qzi

@Qxa

�

det

�
@Qzj

@Qxb

�

D
�

det

�
@Qzi

@Qxa

��2

:

For the same reason, since in R
n,

det.gbc/ D det

�
@xb

@za

�

det
�

ıak
�

det

�
@xc

@zk

�

;
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we have

det g�1 D det.gbc/ D
�

det

�
@xb

@za

��2

:

Consequently, from the identity (A.10), we get

det D Qv.x/ D
p

det Qgp
det g

det

�
@ Nva

@xj

�

:

For the sake of simplicity, consider Qv to be a function of Rn onto itself: Qv W Rn �!
R

n and write v WD Qv.z/ and Nv WD Qv.x/, considering different coordinates. For a one-
to-one differentiable change of coordinates with differentiable inverse, x ! z, we
have, in fact,

vi D @zi

@xj
Nvj and Nvj D @xj

@zi
vi;

so that we compute

@vi

@zk
D @

@zk

�
@zi

@xj
Nvj

�

D @xl

@zk

@

@xl

�
@zi

@xj
Nvj

�

D @zi

@xj

@ Nvj

@xl

@xl

@zk
C Nvj @

2zi

@xj@xl

@xl

@zk

D @zi

@xj

@ Nvj

@xl

@xl

@zk
C vr @xj

@zr

@2zi

@xj@xl

@xl

@zk
:

Consequently, we have

@vi

@zk
D @zi

@xj

@ Nvj

@xl

@xl

@zk
;

i.e., the components of Dv change as those of a second-rank tensor under changes
of coordinates x ! z as above, only when

@2zi

@xj@xl
D 0;

i.e., for changes of coordinates of the type

zi D ai
jx

j C bi

with ai
j and bi constant; they are called affine. Consequently, for general changes of

frame, to ensure that D Qv.z/ behaves tensorially, we have to define its ijth component
vi
;j, where the comma indicates the presence of a derivative with respect to the

coordinate indicated by the index to the right of the comma, as
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vi
;j D

@vi

@zj
� vr @xk

@zr

@2zi

@xk@xl

@xl

@zj
; (A.11)

an expression that we restrict by defining

� i
kj WD �

@xk

@zr

@2zi

@xk@xl

@xl

@zj

and calling it the Christoffel symbol. In this sense, we may interpret vi
;j as a “gener-

alized” derivative, and we call the process leading to it covariant differentiation. A
summary of these ideas follows.

Theorem 9. Assume that the (“generalized”) derivative of a vector field Qv trans-
forms as a tensor under every change of frames, and in coordinates xi, we have

Nvi
;j D

@ Nvi

@xj
:

Then in any other coordinate system zi, the derivative of Qv has the form

vi
;j D

@vi

@zj
C � i

kjv
k:

The Christoffel symbol as defined above expresses in R
n what we commonly

call a Euclidean connection. In greater generality, we define a connection on a
manifold1 M as an operation Nr that associates to each pair of vector fields v and w
on M a third vector field Nrwv, called the covariant derivative of v along w such that

– (a) Nrwv is linear in each of w and v,
– (b) for scalar functions f we have Nrfwv D f Nrwv,

– (c) Nrw.fv/ D f Nrwf C
�
@f

@xi
wi

�

v.

1Consider a set M endowed with a topology that is Hausdorff, i.e., for every pair of distinct
elements of M, say y1 and y2, there exist nonintersecting open neighborhoods I.y1/ and I.y2/
containing y1 and y2, respectively. We say that M is a topological manifold when it is locally
Euclidean, i.e., every y 2 M has an open subset of M, U.y/, containing it, which is homeomorphic
to an open subset Y of Rn, meaning that it is possible to define a one-to-one mapping ' W U �! Y
of U onto Y . We call the pair .U ; '/ a coordinate chart (or simply chart), and the set F WD
f.Ui; 'i/g of charts such that [i Ui D M, for i 2 I, with I some index set, an atlas. In other words,
F determines a covering of the coordinate system over the whole of M. In particular, we say that
M has dimension n when all Ui are mapped onto sets Y � R

n with dimension n. If for all i; j 2 I,
the change of coordinates between charts is of class Ck, i.e., 'i ı '�1

j is Ck with 1 � k � C1,
and for every chart .U ; '/ such that ' ı '�1

i and 'i ı '�1 are Ck, for all i 2 I, we get .U ; '/ 2 F,
we say that M is a differentiable manifold of class Ck, or simply a differentiable manifold when
k D C1.
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The related Christoffel symbols with respect to coordinates xi are defined by

� i
jk.x/ei D

� Nrej ek
�

.x/:

When the domain and the target space of the vector field considered are different,
e.g., we have Qv W Rn �! QRn, then the expression of vi

;A, where the index A refers

to coordinates in R
n, while i refers to those in QRn, has the same structure already

determined for vi
;j, but now in the related Christoffel symbol � i

kA the indices i and k

refer to coordinates in QRn, while A refers to those in R
n. Derive this as an exercise

by following the same steps leading to the expression of vi
;j. Along the same lines,

we can compute an explicit expression for the components of the derivative of a
covector field Qc W Rn �! R

n�.

Theorem 10. Assume that the (“generalized”) derivative of a covector field Qc
transforms as a tensor under every change of frames, and in coordinates xi, we
have

Nci;j D @Nci

@xj
;

where the overbar recalls that Qc is seen as a function of x D ˚

x1; : : : ; xn
�

. Then in
any other coordinate system zi, the derivative of Qc has the form

ci;j D @ci

@xj
� �k

ijck:

Consider a tensor field x 7�! T WD QT.x/ of the type .p; q/. Its derivative D QT.x/,
when it exists, maps T into a tensor of type .p; qC 1/.
Theorem 11. Assume that the (“generalized”) derivative of a tensor field QT
transforms as a tensor under every change of frames, and in coordinates xi, it is
expressed by

NTi1:::ip
j1:::jq;k

D
@ NTi1:::ip

j1:::jq

@xk
:

Then in every other coordinate system zi, we have

T
i1:::ip
j1:::jq;k

D
@T

i1:::ip
j1:::jq

@xk
� T

i1:::ip
lj2:::jq

� l
j1k � � � � � T

i1:::ip
j1:::jq�1l�

l
jqk

C T
li2:::ip
j1:::jq

�
i1
lk C � � � C T

i1:::ip�1l
j1:::jq

�
ip
lk :

The algebraic signs in the previous formula follow from the calculations leading to
the expressions of vi

;j and ci;j.



A Tensor Algebra and Tensor Calculus 409

In the previous expression, the Christoffel symbols can vanish. In particular, we
call a coordinate system such that � i

jk D 0 Euclidean. In this case, we say that the
connection is trivial. Such is the case in Cartesian frames, i.e., when gij D ıij, called
also Euclidean for this reason. The notion of metric and connection are in principle
unrelated to each other. However, we can establish a correspondence between the
two that is canonical in the sense that � i

jk D 0 corresponds to gij D ıij. To this end,
we say that a connection �k

ij is compatible with a nonconstant metric gij if

gij;k D @gij

@xk
� gil�

l
jk � � l

ik glj D 0:

Theorem 12. Let g.x/ be a nondegenerate metric, meaning that det g ¤ 0. There
exists a unique symmetric connection compatible with this metric. In any coordinate
system

˚

x1; : : : ; xn
�

, it is expressed by the Christoffel formula

�k
ij D

1

2
gkl

�
@glj

@xi
C @gil

@xj
� @gij

@xl

�

:

In particular, a constant metric is compatible with the trivial connection. On
contracting the contravariant index of T with its second covariant component, we
obtain

� i
ki D

1

2
gil

�
@glk

@xi
C @gli

@xk
� @gki

@xl

�

D 1

2
gil @gil

@xk
:

However, since

@ det g

@xk
D @ det g

@g

@g

@xk
D .det g/g�T @g

@xk
;

for a second-rank tensor field A.x/ with det A ¤ 0, the derivative of its determinant
with respect to A exists and is given by

@ det A

@A
D .det A/A�T

(see Chapter 3 for the proof), and we obtain

1

2
gil @gli

@xk
D 1

2 det g

@ det g

@xk
D @

@xk
log

�p

j det gj
�

:

We define the divergence of a vector field Qv to be the trace of its derivative. We
then write

div v D vi
;i D

@vi

@xi
C � i

kiv
k D @vi

@xi
C 1

2 det g

@ det g

@xk
vk

D 1
pj det gj

@

@xk

�p

j det gjvk
�

:
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Notice that in the previous formula, the presence of the absolute value of det g
appears because in the theorem giving the expression of the Christoffel formula,
we have required only that det g ¤ 0. In Euclidean (Cartesian) coordinates, we have
simply

div v D @v1

@x1
C � � � C @vn

@xn
:

In this case, we define the curl of Qv to be the vector field

curl v D .erv/#;

i.e., the vector associated with the covector with components

eijk

�
@vk

@xi

�j

:

In particular, for n D 3, curl v is a vector with components

0

B
B
B
B
B
@

@v3

@x2
� @v

2

@x3
@v1

@x3
� @v

3

@x1
@v2

@x1
� @v

1

@x2

1

C
C
C
C
C
A

:

Analogous definitions hold for covector fields above all in Euclidean (Cartesian)
coordinates, where we can confuse them with vectors, since the metric involved
is ıij. The divergence of a tensor field x 7�! T WD QT.x/ can be defined as the
contraction in DT of the index of D with one of T in a way such that if T is .p; q/, so
that DT is .p; qC1/, its divergence is .p�1; q/ or .p; q�1/, depending on the choice
we adopt, a choice to be specified every time, and when T is .0; q/, its divergence is
.0; q � 1/.

As regards the curl of a tensor, for a second-rank tensor A with components Aij,
denoting by QA its 1-contravariant, 1-covariant version with components QAi

j, we define
curl A to be the .0; 2/ tensor with components

.curl A/ij D eilk

 

@ QAk
j

@x

!l

:

We also write at times

.curl A/ij D eilk
@Alj

@xk
;
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not distinguishing between vector and covector components, since the identification
of one with the other is allowed in the Euclidean (Cartesian) ambient. In such
a setting, the derivative operator D commutes, so that we have DjDk D DkDj.
However, such a property holds just in some coordinate system, due to the presence
of the Christoffel symbols. In fact, in arbitrary coordinates

˚

x1; : : : ; xn
�

, for any
differentiable n-dimensional vector field Qv, we compute

.DkDj � DjDk/v
i D Ri

lkjv
l C Tm

kjDmv
i;

where

Ri
lkj D

@� i
lj

@xk
� @�

i
lk

@xj
C � i

mk�
m
lj � � i

mj�
m
lk

is the so-called curvature tensor or the Riemann tensor and

Ti
jk D � i

jk � � i
kj

is the so-called torsion tensor.
Consider two tensor fields x 7�! T WD QT.x/ and x 7�! S WD QS.x/, respectively,

of type .p; q/ and .r; s/. We have

D.T ˝ S/ D DT ˝ SC T ˝ DS;

where denoting by T.p/.q/ the generic component T
i1:::ip
j1:::jq

, the tensor DT˝ S is intended

to have components .DT ˝ S/.p/.r/.q/.s/k, with the index k referring to
@

@xk
.

We now list some relations used often in the book in the Euclidean (Cartesian)
setting. They involve scalar functions f D Qf .x/, vector fields v D Qv.x/, and second-
rank tensor fields A D QA.x/, all assumed to be differentiable.

– We have

curl Df D 0;
div curl v D 0;
curl Dv D 0;
curl .Dv/T D Dcurl v;

div curl A D curl div AT;

.curl curl A/T D curl curl AT;

div.curl A/T D 0;
curl .fI/ D � .curl .fI//T ;

with I the second-rank identity tensor.
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– With A 2 Hom.V�;V/ and v 2 V , we get

div.ATv/ D v � div AC A � Dv:

– For a differentiable covector field x 7�! c D Qc.x/, assume that Dc is skew-
symmetric and therefore can be written

Dc D @ci

@xj
Skw.ei ˝ ej/;

which we rewrite as

Dc D @ci

@xj
ei ^ ej;

where the wedge product extracts the skew-symmetric part of the tensor prod-
uct˝. We then get

DDc D @2ci

@xk@xj
ei ^ ej ^ ek D 0;

since
@2

@xk@xj
is symmetric, while ej ^ ek is skew-symmetric and the product

Asym � Bskw of a symmetric tensor Asym by a skew-symmetric tensor Bskw always
vanishes. Such a property can be written in terms of differentials of tensors with
all covariant components, i.e., tensors of the type .0; k/, which we write here as

! D !i1:::ik dxi1 ^ � � � ^ dxik :

For these we compute, in fact,

d2! D d.d!/ D @2!i1:::ik

@xp@xq
dxi1 ^ � � � ^ dxik ^ dxp ^ dxq D 0;

for Asym.
– Denoting by � the Laplacian operator � D div D, we have

curl curl v D D div v ��u:

– If x 7�! A WD QA.x/ is symmetric, we obtain

tr curl A D 0;
curl curl A D ��AC 2SymD div A � DDtr AC I.�tr A � div div A/:
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– We consider the integral of a vector (a tensor) field over an m-dimensional
domain˝, with boundary @˝ oriented by the normal n (considered as a covector)
almost everywhere with respect to the “surface” measure dHm�1, as a vector
(a tensor) with components given by the integral of the components of the
integrand. With d� the m-dimensional measure over ˝, we have

Z

@˝

fn dHm�1 D
Z

˝

Df d�;

Z

@˝

v ˝ n dHm�1 D
Z

˝

Dv d�;

Z

@˝

v � n dHm�1 D
Z

˝

div v d�;

Z

@˝

An dHm�1 D
Z

˝

div A d�;

and by considering n a vector,

Z

@˝

v � n dHm�1 D �
Z

˝

curl v d�:

This appendix is just a rough summary of some notions in differential geometry.
For further reading, one might consider the following basic treatises on the subject:

– Abraham R., Marsden J.E., Ratiu T.S. (1988), Manifolds, Tensor Analysis, and
Applications, Springer-Verlag, Berlin;

– Dubrovin B.A., Novikov S.P., Fomenko A.T. (1990 and 1992), Modern Geome-
try: Methods and Applications, Parts I, II, III, Springer-Verlag, Berlin;

– Novikov S.P., Taimanov I.A. (2006), Modern Geometric Structures and Fields,
American Mathematical Society, Providence, Rhode Island;

– Olver P.J. (2000), Applications of Lie Groups to Differential Equations, Springer-
Verlag, Berlin;

– Slawianowski J. (1991), Geometry of Phase Spaces, PWN-Polish Scientific
Publishers, Warsaw and John Wiley and Sons, Chichester;

– Warner F.W. (1983), Foundations of Differentiable Manifolds and Lie Groups,
Springer-Verlag, Berlin.

In concluding this appendix, we mention that most of the subject matter presented
in this book could be presented entirely in the Euclidean setting. However, our
distinction between vectors and covectors or referential and actual metrics is not an
unnecessary complication. To us, the way we have followed in presenting the subject
underlines that the structure of the basic principles in the mechanics of continua does
not vary when we go beyond the Euclidean setting and prepares the reader, from the
first meeting with the topic, to proceed naturally toward an extended perspective—
such as indicated in the analysis of material complexities, just to take one example.
We are, however, conscious that some readers might have a different opinion.
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We propose here a few suggestions for further reading to those who might be
interested in deepening their knowledge of theoretical and applied mechanics. The
list includes only books or book chapters and is not exhaustive. These books have
different styles and viewpoints, and they do not all cover the same topics.

The list reflects just our actual choices, nothing more.

– Antman, S.S.: Nonlinear Problems of Elasticity. Springer-Verlag, Berlin (1995)
– Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer-Verlag,

Berlin (1989)
– Baldacci, R.: Scienza delle Costruzioni, vols. I and II. UTET, Torino (1984) [in

Italian]
– Bažant, Z.P., Planas, J.: Fracture and Size Effect in Concrete and Other Quasi

Brittle Materials. CRC Press LLC, Baton Rouge (1998)
– Bedford, A.: Hamilton’s Principle in Continuum Mechanics. Pitman Publishing

Inc., London (1985)
– Berthram, A.: Elasticity and Plasticity of Large Deformations. Springer-Verlag,

Berlin (2012)
– Bhattacharya, K.: Microstructure of Martensite: Why It Forms, How It Gives

Rise to the Shape-Memory Effect. Oxford University Press, Oxford (2003)
– Capriz, G.: Continua with Microstructure. Springer-Verlag, Berlin (1989)
– Ciarlet, P.G.: Mathematical Elasticity, vol. I: Three-Dimensional Elasticity

(1997); vol. II: Theory of Plates (2000); vol. III: Theory of Shells. North-Holland
Publishing Co., Amsterdam (1988)

– Chorin, A.J., Marsden, J.E.: A Mathematical Introduction to Fluid Mechanics.
Springer-Verlag, New York (2013)

– Corradi Dall’Acqua, L.: Meccanica delle Strutture, vols. 1, 2, and 3. McGraw-
Hill, Milano (2010) [in Italian]

– Dafermos, C.: Hyperbolic Conservation Laws in Continuum Physics. Springer-
Verlag, New York (2010)
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Cambridge (2011)
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Cambridge (1990)
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A
Acceleration, 52
Action-reaction principle, 83
Actions

bulk, 78
characteristics, 175
contact, 78

Actual shape, 3
Average, 101

B
Balance equations

balance of forces along a moving
discontinuity surface, 103

local balances
couples, 90
forces, 89
pointwise balance of mass along a moving

discontinuity surface, 102
surface balance, 104

Basis, 386
Bending moment, 175
Bernoulli rod, 331
Bifurcation, 373–383
Bredt formula, 221, 222
Bulk modulus, 145

C
Cauchy’s postulate, 81
Christoffel symbols, 407
Clapeyron theorem, 338
Compatibility conditions, 48, 319
Constitutive structures, 112

Constraint
bilateral, 11
glyph, 15
joint, 15
kinematic constraints, 10
multiple constraints, 12
multiplicity, 12
simple pendulum, 11, 15
simple torsional pendulum, 11, 15
spherical hinge, 15
unilateral, 11

Convectors, 413
Coriolis-type terms, 98
Critical load, 373–383
Cross product, 390
Cross-section moment of momentum, 274
Current place, 3
Curvature, 319
Curvature tensor, 100, 411

D
Deformation

deformation gradient, 5
homogeneous, 8–9
linearized rigid deformation, 9
rigid change of place, 8

Degree of hyperstaticity, 283
Dimension, 386
Discontinuity surface

coherent, 99
incoherent, 99
structured, 99
unstructured, 99

Displacement, linearized rigid displacement,
10
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Doyle-Ericksen formula, 124
Dyad, 398

E
Eigenspace, 401
Eigenvalue, 238, 400, 401
Eigenvector, 401
Elastic-plastic behavior, 249
Elongation, 319
Energy

complementary energy, 150
cross-section kinetic energy, 271-273
deviatoric elastic energy density, 253
sectional free energy, 313
total energy, 148

Euler equations, 136
Eulerian description, 52
Euler identity, 87

F
Fixer group, 382
Flat link chain method

first theorem, 19–22
second theorem, 22–23

Flat metric, 55
Formal adjoint, 6, 395

G
Gaussian curvature, 100
Geometric-arithmetic mean inequality, 241

H
Hardening, 249
Hyperelastic, 146
Hyperstatic, 283

I
Inner product, 387
Integral balances

couples, 80
forces, 80

Isometry, 8
Isostatic, 284
Isotropic, 135

J
Jourawski formula, 194
Jump, 101

K
Kinematically determinate, 12
Kinematically impossible, 12
Kinematically indeterminate, 13
Kinematically iperdeterminate, 13
Kinematically isodeterminate, 13
Kinetic energy, 77, 86, 273
Kronecker delta, 387

L
Lability, 13
Lagrangian description, 52
Lamé constants, 143
Linear space, 385
Local mass balance, 87
Local relative volume change, 39

M
Mass density

actual, 87
reference, 87

Material isomorphism, 131
Mechanical dissipation inequality, 115
Metric, 4, 6–8, 36, 37, 42, 45, 53, 55, 77, 79,

85, 96, 123, 125, 138, 141, 143, 157,
160, 388, 390, 392, 395, 401, 405, 408,
409

Mixed boundary conditions, 147
Mixed moment of inertia, 180
Modified Prandtl function, 215
Moment of inertia, 180
Motion, 51
Müller-Breslau equations, 326

N
Navier polynomial, 182
Navier-Stokes equations, 139
Neutral axis, 182
Newton laws, 77
Normal traction, 175

O
Objectivity, 72–74, 114, 119, 120,

122–124, 128–130, 132, 134, 139,
257

Observer
changes in observers, 132, 267–269
classical changes in observers,

70
Orthogonal group, 397
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P
Part, 78
Plane compatibility conditions, 162
Pointwise stable, 128
Poisson ratio, 144
Polar decomposition, 40
Power

external power, 78
inner power, 308, 312
power invariance, 79, 269
principle of virtual power, 92
rod inner power, 308, 312
sectional stress power, 265

Prandtl function, 208
Principal invariants, 56
Principal stresses, 90
Principal stretch direction, 55
Principal stretches, 55
Principal structure, 323
Principle

elastic energy, 118
free energy, 118
internal energy, 118
principle of covariance of the constitutive

equations, 112
principle of determinism, 112
principle of frame indifference, 112
principle of local action, 112

Process, 81, 114, 115, 118, 125, 249, 383, 407
Pure torsion, 213

R
Regularly open, 1
Rigid, 10
Ritter’s section, 299
Rod cross-section rotational velocity, 268
Rotation center, 16

S
Schwarz inequality, 241
Second Bredt formula, 222
Shear, 319
Shear force, 175
Shear stress potential function, 178
Simple materials, 113
Small rotation tensor, 211
Small strain regime, 45
Softening, 249
Special orthogonal group, 397

State
admissible state, 147
kinematically admissible states,

148
plane strain state, 161
plane stress state, 164
statically admissible states, 150

State functions, 112
Statically determinate, 283
Statically indeterminate, 283
Static-dynamic duality, 284
Static momenta, 180
Stress, 90, 92, 97, 99, 101, 103, 105–109,

111–113, 117, 119, 121, 122, 125–127,
130, 132, 136, 138, 144, 148–150, 153,
156, 159, 167, 168, 173, 174, 176, 183,
184, 211, 216, 218, 226, 228, 238,
249–251, 253, 255, 256, 261, 317

first Piola-Kirchhoff stress, 93
Stretch, 263
Strong positive ellipticity, 128
Structurally stable, 382
Strut, 297
Symmetry group, 131

T
Tangential stiffness, 317
Tangent space, 4
Temperature-induced curvature, 322
Temperature-induced elongation, 322
Tensor
Almansi tensor, 45

deviatoric, 50, 107
right Cauchy-Green tensor, 41
second Piola-Kirchhoff stress tensor,

123
spheric, 145
strain tensor, 42

Tensor product, 398
Thermal dilatation coefficient, 322
Tie, 297
Torsional curvature, 212
Torsional stiffness, 214
Torsion moment, 175
Traction, 80
Traction-compression symmetry, 249
Translation, 16
Translation space, 386
Transpose, 7, 395
Truss, 297
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V
Vector space, 385
Velocity, 52
Viscous materials, 125

W
Warping, 218, 261, 319
Work

external work, 97
inner work, 98
principle of virtual work, 98

Y
Yield criterion, 250
Yield function, 250
Young modulus, 144
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