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FIGURE 3.9 Steady flow into and out of a tank.

The mass flowrate from an outlet, & (slugsis or kgfs), is given by m= QQ, where Q(n3fs or mgfs) is the volurme
Sflowrage 1f the outlet area is A and the fhud flows across this area (normal to the area) with an average velocity ¥,

then the volume of the flud crossing this area in a time interval &2 is M4 &2, equal to that in a volume of length ¥ &
and cross-sectional area 4 (see Fig. 3.9). Hence, the volume flowrate (volume per unit time) is 2= F"A. Thus, ~
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Preface

This book is intended for junior and senior engineering students who are interested in learning some
fundamental aspects of fluid mechanics. We devel oped this text to be used as afirst course. The princi-
ples considered are classical and have been well-established for many years. However, fluid mechanics
education has improved with experience in the classroom, and we have brought to bear in this book our
own ideas about the teaching of this interesting and important subject. This sixth edition has been pre-
pared after several years of experience by the authors using the previous editions for introductory
coursesin fluid mechanics. On the basis of this experience, along with suggestions from reviewers, col-
leagues, and students, we have made anumber of changesin this edition. The changes (listed below, and
indicated by the word New in descriptions in this preface) are made to clarify, update, and expand cer-
tain ideas and concepts.

New to This Edition

In addition to the continual effort of updating the scope of the material presented and improving the
presentation of all of the material, the following items are new to this edition.

With the wide-spread use of new technologies involving the web, DVDs, digital cameras and the
like, there is an increasing use and appreciation of the variety of visual tools available for learning.
This fact has been addressed in the new edition by the inclusion of numerous new illustrations,
graphs, photographs, and videos.

Illustrations: The book contains more than 260 new illustrations and graphs. These illustrations
range from simple ones that help illustrate a basic concept or equation to more complex ones that
illustrate practical applications of fluid mechanicsin our everyday lives.

Photographs: The book contains more than 256 new photographs. Some photos involve situations
that are so common to us that we probably never stop to realize how fluids are involved in them.
Othersinvolve new and novel situationsthat are still baffling to us. The photos are a so used to help
the reader better understand the basic concepts and examples discussed.

Videos: The video library for the book has been significantly enhanced by the addition of 80 new
video segments directly related to the text material. They illustrate many of the interesting and prac-
tical applications of real-world fluid phenomena. There are now 159 videos.

Examples: All of the examples are newly outlined and carried out with the problem solving method
of “Given, Find, Solution, and Comment.”

L earning objectives: Each chapter begins with a set of learning objectives. This new feature pro-
vides the student with a brief preview of the topics covered in the chapter.

List of equations: Each chapter ends with a new summary of the most important equations in
the chapter.

Problems: Approximately 30% new homework problems have been added for this edition. They are
al newly grouped and identified according to topic. Typically, the first few problemsin each group
are relatively easy ones. In many groups of problems there are one or two new problems in which
the student is asked to find a photograph/image of a particular flow situation and write a paragraph
describing it. Each chapter contains new Life Long Learning Problems (i.e., one aspect of the life
long learning as interpreted by the authors) that ask the student to obtain information about a given,
new flow concept and to write a brief report about it.

Fundamentals of Engineering Exam: A set of FE exam questions is newly available on the book
web site.



X

Preface

Fr<1

V1.5 Floating
Razor Blade

Key Features

[llustrations, Photographs, and Videos

Fluid mechanics has always been a“visual” subject—much can be learned by viewing various as-
pects of fluid flow. In this new edition we have made several changes to reflect the fact that with
new advances in technology, this visua component is becoming easier to incorporate into the
learning environment, for both access and delivery, and is an important component to the learning
of fluid mechanics. Thus, approximately 516 new photographs and illustrations have been added to
the book. Some of these are within the text material; some are used to enhance the example prob-
lems; and some are included as margin figures of the type shown in the left margin to more clearly
illustrate various points discussed in the text. In addition, 80 new video segments have been added,
bringing the total number of video segmentsto 159. These video segmentsillustrate many interest-
ing and practical applications of real-world fluid phenomena. Many involve new CFD (compu-
tational fluid dynamics) material. Each video segment is identified at the appropriate location
in the text material by avideo icon and thumbnail photograph of the type shown in the left mar-
gin. Each video segment has a separate associated text description of what is shown in the
video. There are approximately 160 homework problems that are directly related to the topicsin
the videos.

Examples

One of our aimsis to represent fluid mechanics asit really is—an exciting and useful discipline. To
this end, we include analyses of numerous everyday examples of fluid-flow phenomena to which
students and faculty can easily relate. In the sixth edition 163 examples are presented that provide
detailed solutions to a variety of problems. Many of the examples have been newly extended to
illustrate what happens if one or more of the parameters is changed. This gives the user a better feel
for some of the basic principles involved. In addition, many of the examples contain new pho-
tographs of the actual device or item involved in the example. Also, all of the examples are newly
outlined and carried out with the problem solving methodology of “ Given, Find, Solution, and Com-
ment” as discussed on page 5 in the “Note to User” before Example 1.1.

Fluids in the News

The set of approximately 60 short “Fluids in the News® stories has been newly updated to reflect
some of the latest important, and novel ways that fluid mechanics affects our lives. Many of these
problems have homework problems associated with them.

Homework Problems

A set of more than 1330 homework problems (approximately 30% new to this edition) stresses the
practical application of principles. The problems are newly grouped and identified according to topic.
An effort has been made to include several new, easier problems at the start of each group. The follow-
ing types of problems are included:

1) “standard” problems, 9) new “Lifelong learning” problems,

2) computer problems, 10) new problems that require the user to obtain
3) discussion problems, a photograph/image of a given flow situation and
4) supply-your-own-data problems, write a brief paragraph to describeit,

5) review problems with solutions, 11) simple CFD problems to be solved using
6) problems based on the “Fluids in the News”  FlowLab,

topics, 12) new Fundamental of Engineering (FE) exam
7) problems based on the fluid videos, guestions available on book web site.

8) Excel-based lab problems,

Lab Problems—There are 30 extended, |aboratory-type problems that involve actual experimen-
tal data for simple experiments of the type that are often found in the laboratory portion of
many introductory fluid mechanics courses. The data for these problems are provided in Excel
format.
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Life Long Learning Problems—There are more than 40 new life long learning problems that in-
volve obtaining additional information about various new state-of-the-art fluid mechanics topics
and writing a brief report about this material.

Review Problems—There is a set of 186 review problems covering most of the main topics in
the book. Complete, detailed solutions to these problems can be found in the Student Solution
Manual and Sudy Guide for Fundamentals of Fluid Mechanics, by Munson, et a. (© 2009 John
Wiley and Sons, Inc.).

Well-Paced Concept and Problem-Solving Development

Since this is an introductory text, we have designed the presentation of material to alow for the
gradua development of student confidence in fluid problem solving. Each important concept or no-
tion is considered in terms of simple and easy-to-understand circumstances before more compli-
cated features are introduced. Each page contains abrief summary (a highlight) sentence that serves
to prepare or remind the reader about an important concept discussed on that page.

Several brief components have been added to each chapter to help the user obtain the “big
picture” idea of what key knowledge isto be gained from the chapter. A new brief Learning Objec-
tives section is provided at the beginning of each chapter. It is helpful to read through thislist prior
to reading the chapter to gain a preview of the main concepts presented. Upon completion of the
chapter, it is beneficial to look back at the original learning objectives to ensure that a satisfactory
level of understanding has been acquired for each item. Additional reinforcement of these learning
objectivesis provided in the form of a Chapter Summary and Study Guide at the end of each chap-
ter. In this section a brief summary of the key concepts and principles introduced in the chapter is
included along with a listing of important terms with which the student should be familiar. These
terms are highlighted in the text. A new list of the main equations in the chapter isincluded in the
chapter summary.

System of Units

Two systems of units continue to be used throughout most of the text: the International System of
Units (newtons, kilograms, meters, and seconds) and the British Gravitational System (pounds,
slugs, feet, and seconds). About one-half of the examples and homework problems are in each set
of units. The English Engineering System (pounds, pounds mass, feet, and seconds) is used in the
discussion of compressible flow in Chapter 11. This usage is standard practice for the topic.

Topical Organization

In thefirst four chapters the student is made aware of some fundamental aspects of fluid motion, in-
cluding important fluid properties, regimes of flow, pressure variations in fluids at rest and in mo-
tion, fluid kinematics, and methods of flow description and analysis. The Bernoulli equation isin-
troduced in Chapter 3 to draw attention, early on, to some of the interesting effects of fluid motion
on the distribution of pressure in aflow field. We believe that this timely consideration of elemen-
tary fluid dynamics increases student enthusiasm for the more complicated material that follows. In
Chapter 4 we convey the essential elements of kinematics, including Eulerian and Lagrangian math-
ematical descriptions of flow phenomena, and indicate the vital relationship between the two views.
For teachers who wish to consider kinematics in detail before the material on elementary fluid dy-
namics, Chapters 3 and 4 can be interchanged without |oss of continuity.

Chapters 5, 6, and 7 expand on the basic analysis methods generally used to solve or to begin
solving fluid mechanics problems. Emphasis is placed on understanding how flow phenomena are
described mathematically and on when and how to use infinitesimal and finite control volumes. The
effects of fluid friction on pressure and velocity distributions are also considered in some detail. A
formal course in thermodynamics is not required to understand the various portions of the text that
consider some elementary aspects of the thermodynamics of fluid flow. Chapter 7 features the ad-
vantages of using dimensional analysis and similitude for organizing test data and for planning ex-
periments and the basi ¢ techniques involved.
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Owing to the growing importance of computational fluid dynamics (CFD) in engineering de-
sign and analysis, material on this subject isincluded in Appendix A. This material may be omitted
without any loss of continuity to the rest of the text. Thisintroductory CFD overview includes exam-
plesand problems of variousinteresting flow situations that are to be solved using FlowL ab software.

Chapters 8 through 12 offer students opportunities for the further application of the principles
learned early in the text. Also, where appropriate, additional important notions such as boundary lay-
ers, transition from laminar to turbulent flow, turbulence modeling, and flow separation are intro-
duced. Practical concerns such as pipe flow, open-channel flow, flow measurement, drag and lift, the
effects of compressibility, and the fluid mechanics fundamental s associated with turbomachines are
included.

Students who study this text and who solve a representative set of the exercises provided
should acquire auseful knowledge of the fundamentals of fluid mechanics. Faculty who use thistext
are provided with numerous topics to select from in order to meet the objectives of their own
courses. More material isincluded than can be reasonably covered in one term. All are reminded of
the fine collection of supplementary material. We have cited throughout the text various articles and
books that are available for enrichment.

Student and Instructor Resources

Student Solution Manual and Study Guide, by Munson, et a. (© 2009 John Wiley and
Sons, Inc.)—This short paperback book is available as a supplement for the text. It provides detailed
solutions to the Review Problems and a concise overview of the essential points of most of the main
sections of the text, along with appropriate equations, illustrations, and worked examples. This sup-
plement is available through your local bookstore, or you may purchase it on the Wiley website at
www.wiley.com/college/munson.

Student Companion Site—The student section of the book website at www.wiley.com/
college/munson contains the assets listed below. Access is free-of-charge with the registration code
included in the front of every new book.

Video Library CFD Driven Cavity Example
Review Problems with Answers FlowLab Tutorial and User’'s Guide
Lab Problems FlowL ab Problems

Comprehensive Table of Conversion Factors

Instructor Companion Site—The instructor section of the book website at www.wiley.com/
college/munson contains the assets in the Student Companion Site, as well as the following, which
are available only to professors who adopt this book for classroom use:

m [nstructor Solutions Manual, containing complete, detailed solutions to all of the problems
in the text.

m Figures from the text, appropriate for use in lecture slides.

These instructor materials are password-protected. Visit the Instructor Companion Site to register
for a password.

FlowL ab®—In cooperation with Wiley, Ansys Inc. is offering to instructors who adopt this text the
option to have FHlowLab software installed in their department lab free of charge. (This offer isavailable
intheAmericas only; feesvary by geographic region outside the Americas.) FlowLab isa CFD package
that allows studentsto solve fluid dynamics problemswithout requiring along training period. This soft-
wareintroduces CFD technology to undergraduates and uses CFD to excite students about fluid dynam-
ics and learning more about transport phenomena of al kinds. To learn more about FlowLab, and
request to have it installed in your department, visit the Instructor Companion Site at www.wiley.com/
college/munson.

WileyPLUS. WileyPLUS combines the complete, dynamic online text with all of the teaching and
learning resources you need, in one easy-to-use system. The instructor assigns WileyPLUS, but
students decide how to buy it: they can buy the new, printed text packaged with a WileyPLUSreg-
istration code at no additional cost or choose digital delivery of WileyPLUS, use the online text
and integrated read, study, and parctice tools, and save off the cost of the new book.
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WileyPLUS offers today’s engineering students the interactive and visual learning materials they
need to help them grasp difficult concepts—and apply what they’ve learned to solve problemsin a
dynamic environment. A robust variety of examples and exercises enable studentsto work problems,
see their results, and obtain instant feedback including hints and reading references linked directly
to the online text.

Contact your local Wiley representative, or visit www.wileyplus.com for more information
about using WileyPLUS in your course.
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FLUIDS IN THE NEWS

Throughout the book are many brief

news stories involving current, sometimes
novel, applications of fluid phenomena.
Many of these stories have homework
problems associated with them.

SUMMARY SENTENCES \
A brief summary sentence is given on each

page to prepare or remind the reader about an

F I ui ds i n

t h e N e w s

Weather, barometers, and bars One of the most important
indicators of weather ions is ic pressure. In
general, a falling or low pressure indicates bad weather; rising
or high pressure, good weather. During the evening TV

weather reporting in 1914, and defined as 10° N/m?. The defi-
nition of a bar is probably related to the fact that standard sea-
level pressure is 1.0133 X 10°N/m? that is, only slightly
larger than one bar. For typical weather patterns, “sea-level

weather report in the United States, ic pressure is
given as so many inches (commonly around 30 in.). This value
is actually the height of the mercury column in a mercury
barometer adjusted to sea level. To determine the true atmos-
pheric pressure at a particular location, the clevation relative to
sea level must be known. Another unit used by meteorologists
to indicate atmospheric pressure is the bar, first used in

q ic pressure remains close to one bar.
However, for extreme weather conditions associated with tor-
nadoes, hurricanes, or typhoons, dramatic changes can occur.
The lowest atmospheric sea-level pressure ever recorded was
associated with a typhoon, Typhoon Tip, in the Pacific Ocean
on October 12, 1979. The value was 0.870 bars (25.8 in. Hg).
(See Problem 2.19.)

2.6 Manometry

Manometers use
vertical or inclined
liquid columns to
measure pressure.

A standard technique for measuring pressure involves the use of liquid columns in vertical or inclined
tubes. Pressure measuring devices based on this technique are called manometers. The mercury
barometer is an example of one type of manometer, but there are many other configurations possi-
ble, depending on the particular application. Three common types of manometers include the piezome-

ter tube, the U-tube

, and the inclined-tubx

important concept discussed on that page.
PHOTOGRAPHS AMD ILLUSTRATIONS

More than 515 new photographs and illustra-
tions have been added to help illustrate
various concepts in the text.

FLUID VIDEOS

A set of 159 videosillustrating
interesting and practical applica
tions of fluid phenomenais
provided on the book website.
Aniconin the margin identifies
each video. Approximately

160 homework problems are
tied to the videos.

(Photograph courtesy of
Cameron Balloons.)

buoyancy

2.13 Chapter Summary and Study Guide

Pascal’s law

surface force

body force

incompressible fluid

hydrostatic pressure
distribution

pressure head

absolute pressure

gage pressure

vacuum pressure

barometer

manometer

Bourdon pressure
gage

center of pressure

buoyant force

Archimedes’ principle

center of buoyancy

Xiv

In this chapter the pressure variation in a fluid at rest is considered, along with some impor-
tant consequences of this type of pressure variation. It is shown that for incompressible fluids
at rest the pressure varies linearly with depth. This type of variation is commonly referred to
as hydrostatic pressure distribution. For compressible fluids at rest the pressure distribution will
not generally be hydrostatic, but Eq. 2.4 remains valid and can be used to determine the pres-
sure distribution if additional information about the variation of the specific weight is specified.
The distinction between absolute and gage pressure is discussed along with a consideration of
barometers for the measurement of atmospheric pressure.

Pressure measuring devices called manometers, which utilize static liquid columns, are
analyzed in detail. A brief discussion of mechanical and electronic pressure gages is also
included. Equations for determining the magnitude and location of the resultant fluid force
acting on a plane surface in contact with a static fluid are developed. A general approach for
determining the magnitude and location of the resultant fluid force acting on a curved surface
in contact with a static fluid is described. For submerged or floating bodies the concept of the
buoyant force and the use of Archimedes’ principle are reviewed.

The following checklist provides a study guide for this chapter. When your study of the
entire chapter and end-of-chapter exercises has been completed you should be able to

m write out meanings of the terms listed here in the margin and understand each of the related

concepts. These terms are particularly important and are set in italic, bold, and color type
in the text.

calculate the pressure at various locations within an incompressible fluid at rest.

calculate the pressure at various locations within a compressible fluid at rest using Eq. 2.4

if the variation in the specific weight is specified.

m use the concept of a hydrostatic pressure distribution to determine pressures from measure-
ments using various types of manometers.

m determine the magnitude, direction, and location of the resultant hydrostatic force acting on a

plane surface.

ko

V2.6 Atmospheric

2.11.1 Archimedes’ Principle

When a stationary body is completely submerged in a fluid (such as the hot air balloon shown in
the figure in the margin), or floating so that it is only partially submerged, the resultant fluid force
acting on the body is called the buoyant force. A net upward vertical force results because pres-
sure increases with depth and the pressure forces acting from below are larger than the pressure
forces acting from above. This force can be determined through an approach similar to that used
in the previous section for forces on curved surfaces. Consider a body of arbitrary shape, having
a volume ¥, that is immersed in a fluid as illustrated in Fig. 2.24a. We enclose the body in a par-
allelepiped and draw a free-body diagram of the parallelepiped with the body removed as shown
in Fig. 2.24b. Note that the forces F,, F,, F3, and F, are simply the forces exerted on the plane
surfaces of the parallelepiped (for simplicity the forces in the x direction are not shown), W is the
weight of the shaded fluid volume (parallelepiped minus body), and Fj is the force the body is
exerting on the fluid. The forces on the vertical surfaces, such as F; and F,, are all equal and can-
cel, so the equilibrium equation of interest is in the z direction and can be expressed as

Fy=F,—F —W 2.21)
If the specific weight of the fluid is constant, then
Fy = Fy = y(h = h)A

where A is the horizontal area of the upper (or lower) surface of the parallelepiped, and Eq. 2.21
can be written as

Fy = y(hy = A = y[(hy = h)A = ¥]
Simplifying, we arrive at the desired expression for the buoyant force
(2.22)

BOXED EQUATIONS

Important equations are boxed to
help the user identify them.

CHAPTER SUMMARY AND
STUDY GUIDE

-

At the end of each chapter isabrief sum-

mary of key concepts and principles intro-
duced in the chapter along with key terms
and a summary of key equations involved.



LEARNING OBJECTIVES

At the beginning of each chapter isa
set of learning objectives that provides
the student a preview of topics covered
in the chapter.

EXAMPLE PROBLEMS

Featured in this Book

XV

A set of example problems provides the
student detailed solutions and comments
for interesting, real-world situations.

XAMPLE 2.4 BHLTICRIS U TRIELLTL IS

GIVEN A closed tank contains compressed air and oil
(G = 0.90) as is shown in Fig. E2.4. A U-tube manometer using
mercury (SGy, = 13.6) is connected to the tank as shown. The col-
umn heights are i, = 36 in., i, = 6 in.,and s = 9 in.

FIND  Determine the pressure reading (in psi) of the gage.

SoLuTion

Following the general procedure of starting at one end of the
manometer system and working around to the other, we will start
at the air—oil interface in the tank and proceed to the open end
where the pressure is zero. The pressure at level (1) is

1= Paic + Yol + o)

B FIGURE E24

CHAPTER OPENING PHOTO: Floating iceberg: An iceberg is a large piece of fresh water ice that originated as
snow in a glacier or ice shelf and then broke off to float in the ocean. Although the fresh water ice is lighter
than the salt water in the ocean, the difference in densities is relatively small. Hence, only about one ninth of
the volume of an iceberg protrudes above the ocean’s surface, so that what we see floating s literally “just the
tip of the iceberg.” (Photograph courtesy of Corbis Digital Stock/Corbis Images)

Learning Objectives

After completing this chapter, you should be able to:

m determine the pressure at various locations in a fluid at rest.

= explain the concept of manometers and apply appropriate equations to
determine pressures.

m calculate the hydrostatic pressure force on a plane or curved submerged surface.

m calculate the buoyant force and discuss the stability of floating or submerged
objects.

In this chapter we will consider an important class of problems in which the fluid is either at rest
or moving in such a manner that there is no relative motion between adjacent particles. In both
instances there will be no shearing stresses in the fluid, and the only forces that develop on the sur-
faces of the particles will be due to the pressure. Thus, our principal concern is to investigate pres-
sure and its variation throughout a fluid and the effect of pressure on submerged surfaces. The
absence of shearing stresses greatly simplifies the analysis and, as we will sce, allows us to obtain
relatively simple solutions to many important practical problems.

This pressure is equal to the pressure at level (2), since these two
points are at the same elevation in a homogeneous fluid at rest. As
we move from level (2) to the open end, the pressure must de-
crease by y,hs, and at the open end the pressure is zero. Thus, the
‘manometer equation can be expressed as

Pair + Youlhy + ) = yughs = 0

or

Par + (SGa)(vio)(hi + ho) = (SGug)(Vio)hs =
For the values given

36+6

Par = —(0.9)(62.4 1b/ft’) <? ft)

+ (13.6)(62.4 1b/f€)<%ﬂ)
50 that
Par = 440 1b/f°

Since the specific weight of the air above the oil is much smaller
than the specific weight of the oil, the gage should read the pres-
sure we have calculated; that is,

440 Ib/fi
144 in 2/f¢*

3.06 psi (Ans)

Pgige =

COMMENTS Note that the air pressure is a function of the
height of the mercury in the manometer and the depth of the oil
(both in the tank and in the tube). It is not just the mercury in the
manometer that is important.

Assume that the gage pressure remains at 3.06 psi, but the
manometer is altered so that it contains only oil. That is, the mer-
cury is replaced by oil. A simple calculation shows that in this
case the vertical oil-filled tube would need to be iy = 11.3 ft tall,
rather than the original 45 = 9 in. There is an obvious advantage
of using a heavy fluid such as mercury in manometers.

REVIEW PROBLEMS

2.111  An open container of oil rests on the flatbed of a truck that
is traveling along a horizontal road at 55 mi/hr. As the truck slows.
uniformly to a complete stopin 3 s, what will be the slope of the oil
surface during the period of constant deceleration?

2112 A 5-gal, cylindrical open container with a bottom area of
120 in.? is filled with glycerin and rests on the floor of an elevator.
(a) Determine the fluid pressure at the bottom of the container
when the elevator has an upward acceleration of 3 ft/s>. (b) What
resultant force does the container exert on the floor of the elevator
during this acceleration? The weight of the container is negligible.
(Note: 1 gal = 231 in.%)

2113 An open rectangular tank 1 m wide and 2 m long contains

2121 (See Fluids
mirror telescop
scope uses a 6-ft-diameter tank of mercury rotating at 7 rpm to pro-
duce its parabol
mine the difference in elevation of the mercury, Ak, between the
edge and the center of the mirror.

haped mirror as shown in Fig. P2.121. Deter-

Receiver
| Light rays

gasoline 1o a depth of | m. If the height of the tank sides is 1.5 m.

what is the maximum horizontal acceleration (along the long axis of
the tank) that can develop before the gasoline would begin to spill?

2.114  If the tank of Problem 2.113 slides down a frictionless plane
that is inclined at 30° with the horizontal, determine the angle the
free surface makes with the horizontal.

BF

7y
IGURE P2.121

M Lab Problems

2.115 A closed cylindrical tank that is 8 ft in diameter and 24 ft
Tong i completely filled with gasoline. The tank, with its long a
horizontal, is pulled by a truck along a horizontal surface. Deyef?

2.1

of the tank) when the truck undergoes an acceleration of S4(/s’.

LAB PROBLEMS

22 This problem involves the force needed to open a gate that
covers an opening in the side of a water-filled tank. To proceed with
this problem, go to Appendix H which is located on the book’s web
site, www.wiley.com/college/munson.

WileyPLUS and on the book website
isaset of lab problemsin Excel format
involving actual data for experiments of
the type found in many introductory fluid

mechanics |abs.

WileyPLUS on the book web site are
nearly 200 Review Problems covering
most of the main topicsin the book.
Complete, detailed solutions to these
problems are found WileyPLUS or

in the supplement Student Solution

Manual and Sudy Guide for Funda-
mentals of Fluid Mechanics, by
Munson, et al. (© 2009 John Wiley
and Sons, Inc.).

Review Problems

Go to Appendix G for a set of review problems with answers. De-
tailed solutions can be found in Student Solution Manual and Siudy

Problems

Guide for Fundamentals of Fluid Mechanics, by Munson et al.
(© 2009 John Wiley and Sons, Inc.).

Note: Unless otherwise indicated, use the values of fluid prop-
erties found in the tables on the inside of the front cover. Prob-
lems designated with an (¥) are intended to be solved with the

id of a programmable calculator or a computer. Problems des-
ignated with a (f) are “open-ended” problems and require c:
thinking in that to work them one must make various
assumptions and provide the necessary data. There is not a
unique answer to these problems.

Answers to the even-numbered problems are listed at the
end of the book. Access to the videos that accompany problems
can be obtained through the book’s web site, www.wiley.com/
college/munson. The lab-type problems can also be accessed on
this web site.

Section 3.2 F = ma along a Streamline

3.1 Obtain a photograph/image of a situation which can be ana-
lyzed by use of the Bernoulli equation. Print this photo and write
a brief paragraph that describes the situation involved.

Air flows steadily along a streamline from point (1) to point (2)
with negligible viscous effects. The following conditions are mea-
sured: At point (1) z; = 2 m and p, = 0 kPa; at point (2) 2, = 10
m, p, = 20 N/m?, and V, = 0. Determine the velocity at point (1).

front of the object and V; is the upstream velocity. (a) Determine
the pressure gradient along this streamline. (b) If the upstream
pressure is p;, integrate the pressure gradient to obtain the pres-
sure p(x) for —o = x = —a. (¢) Show from the result of part (b) that
the pressure at the stagnation point (x = —a) is p, + pV3/2, as
expected from the Bernoulli equation.

Dividing /
streamline
vy \ x=0
— x

Stagnation a
point e

BN

B FIGURE P35
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Student Solutions Manual and Study Guide

FUNDAMENTALS OF
FLUID MECHANICS

HOMEWORK PROBLEMS

Homework problems at the end
of each chapter stress the practi-
cal applications of fluid
mechanics principles. Over
1350 homework problems are
included.
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Axial Velocity (m/s)
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STUDENT SOLUTION MANUAL AND STUDY GUIDE

<— A brief paperback book titled Sudent Solution Manual and
Sudy Guide for Fundamental s of Fluid Mechanics, by
Munson, et al. (© 2009 John Wiley and Sons, Inc.), is
available. It contains detailed solutions to the Review
Problems and a study guide with a brief summary and
sample problems with solutions for most major sections of

Y

the book.

5.118 Water flows by gravity from one lake to another as sketched in
Fig. P5.118 at the steady rate of 80 gpm. What is the loss in available
energy associated with this flow? If this same amount of loss is asso-
ciated with pumping the fluid from the lower lake to the higher one at
the same flowrate, estimate the amount of pumping power required.

B FIGURE P5.118

5.119 Water is pumped from a tank, point (1), to the top of a wa-
ter plant aerator, point (2), as shown in Video V5.14 and Fig.
P5.119 at a rate of 3.0 ft¥/s. (a) Determine the power that the pump
adds to the water if the head loss from (1) to (2) where V, = 0'is 4 fi.
(b) Determine the head loss from (2) to the bottom of the aerator
column, point (3), if the average velocity at (3) is V; = 2 fi/s.

B FIGURE P5.119

5.120 A liquid enters a fluid machine at section (1) and leaves at
sections (2) and (3) as shown in Fig. P5.120. The density of the fluid
is constant at 2 slugs/ft’. All of the flow occurs in a horizontal plane
and is frictionless and adiabatic. For the above-mentioned and ad-
ditional conditions indicated in Fig. P5.120, determine the amount
of shaft power involved.

f Py =50 psia
o Vy=351tis

Section (2)

Section (3)

B FIGURE P5.120

5.121 Water is to be moved from one large reservoir to another at
a higher elevation as indicated in Fig. P5.121. The loss of available

CFED FHowLab

A

Section (2)

8-in. inside-
diameter pipe

Section (1)

B FIGURE P5.121

energy associated with 2.5 ft*/s being pumped from sections (1) to
(2)is loss = 61V /2 ft%/s?, where V is the average velocity of wa-
ter in the 8-in. inside diameter piping involved. Determine the
amount of shaft power required.

5.122 Water is to be pumped from the large tank shown in Fig.
P5.122 with an exit velocity of 6 m/s. It was determined that the
original pump (pump 1) that supplies 1 kW of power to the water
did not produce the desired velocity. Hence, it is proposed that an
additional pump (pump 2) be instailed as indicated to increase the
flowrate to the desired value. How much power must pump 2 add to
the water? The head loss for this flow is &, = 2500, where / is in
m when Q is in m/s.

Nozzle area = 0.01 m?
Pipe area = 0.02 m?

B FIGURE P5.122

5.123 (See Fluids in the News article titled “Curtain of air,” Sec-
tion 5.3.3.) The fan shown in Fig. P5.123 produces an air curtain to
separate a loading dock from a cold storage room. The air curtain is
ajetof air 10 ft wide, 0.5 ft thick moving with speed V = 30 ft/s. The
loss associated with this flow is loss = K, V2/2, where K, = 5. How
much power must the fan supply to the air to produce this flow?

) r
Vv 301sy | Air curtain
N

T
i
l\ l | (0.5-ft thickness)

\
\‘UH““ 'l

| f—Open door

B FIGURE P5.123

Section 5.3.2 A
ined with Linear

of the Energy Equati

5.124 If a 3-hp motor is required by a ventilating fan to produce a
24-in. stream of air having a velocity of 40 ft/s as shown in
Fig. P5.124, estimate (a) the efficiency of the fan and (b) the thrust
of the supporting member on the conduit enclosing the fan.

5.125 Air flows past an object in a pipe of 2-m diameter and exits
as a free jet as shown in Fig. P5.125. The velocity and pressure up-
stream are uniform at 10 m/s and 50 N/m?, respectively. At the

For those who wish to become familiar with the

basic concepts of computational fluid dynamics, a
new overview to CFD is provided in Appendices
A and |. In addition, the use of FlowL ab software
to solve interesting flow problemsis described in

Appendices Jand K.
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CHAPTER OPENING PHoTO: The nature of air bubbles rising in a liquid is a function of fluid properties such
as density, viscosity, and surface tension. (Left: air in ail; right: air in soap.) (Photographs copyright 2007
by Andrew Davidhazy, Rochester Institute of Technology.)

Learning Objectives

After completing this chapter, you should be able to:

determine the dimensions and units of physical quantities.

identify the key fluid properties used in the analysis of fluid behavior.
calculate common fluid properties given appropriate information.
explain effects of fluid compressibility.

use the concepts of viscosity, vapor pressure, and surface tension.

Fluid mechanics is that discipline within the broad field of applied mechanics that is concerned
with the behavior of liquids and gases at rest or in motion. It covers a vast array of phenomena
that occur in nature (with or without human intervention), in biology, and in numerous engineered,
invented, or manufactured situations. There are few aspects of our lives that do not involve flu-
ids, either directly or indirectly. 1
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The immense range of different flow conditions is mind-boggling and strongly dependent
on the value of the numerous parameters that describe fluid flow. Among the long list of para-
meters involved are (1) the physical size of the flow, ¢; (2) the speed of the flow, V; and (3) the
pressure, p, as indicated in the figure in the margin for a light aircraft parachute recovery sys-
tem. These are just three of the important parameters which, along with many others, are dis-
cussed in detail in various sections of this book. To get an inkling of the range of some of the
parameter values involved and the flow situations generated, consider the following.

m Size ¢
Every flow has a characteristic (or typical) length associated with it. For example, for flow
(Photo courtesy of CIR- of fluid within pipes, the pipe diameter is a characteristic length. Pipe flows include the
RUS Design Corpora- flow of water in the pipes in our homes, the blood flow in our arteries and veins, and the
tion.) air flow in our bronchial tree. They also involve pipe sizes that are not within our every-

day experiences. Such examples include the flow of oil across Alaska through a four-foot

diameter, 799 mile-long pipe, and, at the other end of the size scale, the new area of inter-
I : est involving flow in nano-scale pipes whose diameters are on the order of 10 8 m. Each
—x of these pipe flows has important characteristics that are not found in the others.

VL1 Mt S Helers Characteristic lengths of some other flows are shown in Fig. 1.1a.

Eruption m Speed, V
s A As we note from The Weather Channel, on a given day the wind speed may cover what
we think of as a wide range, from a gentle 5 mph breeze to a 100 mph hurricane or a
250 mph tornado. However, this speed range is small compared to that of the almost
imperceptible flow of the fluid-like magma below the earth’s surface which drives the
motion of the tectonic plates at a speed of about 2 X 1078 m/s or the 3 X 10* m/s
hypersonic air flow past a meteor as it streaks through the atmosphere.

Characteristic speeds of some other flows are shown in Fig. 1.1b.

108 —

) o
w «— Jupiter red spot diameter

V1.2 E coli swim- 106 Ocean current diameter 106 —
ming

<— Diameter of hurricane

«— Meteor entering atmosphere
104 -~ Mt. St. Helens plume 10% - 106 —

<— Space shuttle reentry

=— Rocket nozzle exhaust

-— Average width of middle Water jet cutting

Mississippi River ~— Speed of sound in air _ Mariana Trench in Pacific
102 — 102 —f= Tornado 10% - Ocean
< Boeing 787 . . ™~ Hydraulic ram
bl N(/?\%RgAmes NP Water from fire hose nozzle L Sl ek
~— Flow past bike rider <— Car engine combustion
| Diameter of Space Shuttle }
c 100 —{  main engine exhaust jet 109 —=— Mississippi River 102 - Fire hydrant
< < Qutboard motor prop " Auto tire
€ -— Standard atmosphere
. . = o “Excess pressure” on hand
102 = Water pipe diameter 102 = Syrup on pancake £ 100 | held out of car traveling 60
<— Rain drop Sy meh
<— Atmospheric pressure on
Mars
~— Water jet cutter width )
10 —=— Amoeba 10 —f=— Microscopic swimming 102 — Pressurs chayg’nge causing
=— Thickness of lubricating oil animal ears to “pop” in elevator
:;yer ”t] Joufrnal bltlear’ltnbgl g Pressure at 40 mile altitude
<— Diameter of smallest bloo
106 vessel 106 — Glacier flow 10% —
-— Artificjal kidney filter <— Vacuum pump
pore size Sound pressure at normal
108 —=— Nano-scale devices 108 = Continental drift 106 talking
(a) (b) (0

B FIGURE 1.1 Characteristic values of some fluid flow parameters for a variety of flows. (a) Object
size, (b) fluid speed, (c) fluid pressure.
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m Pressure, p
The pressure within fluids covers an extremely wide range of values. We are accustomed
to the 35 psi (Ib/in.?) pressure within our car’s tires, the “120 over 70" typical blood pres-
sure reading, or the standard 14.7 psi atmospheric pressure. However, the large 10,000 psi
pressure in the hydraulic ram of an earth mover or the tiny 2 X 107° psi pressure of a sound
wave generated at ordinary talking levels are not easy to comprehend.
Characteristic pressures of some other flows are shown in Fig. 1.1c.

The list of fluid mechanics applications goes on and on. But you get the point. Fluid me-
chanics is a very important, practical subject that encompasses a wide variety of situations. It is
very likely that during your career as an engineer you will be involved in the analysis and design
of systems that require a good understanding of fluid mechanics. Although it is not possible to ad-
equately cover all of the important areas of fluid mechanics within one book, it is hoped that this
introductory text will provide a sound foundation of the fundamental aspects of fluid mechanics.

1.1 Some Characteristics of Fluids

One of the first questions we need to explore is, What is a fluid? Or we might ask, What is the dif-
ference between a solid and a fluid? We have a general, vague idea of the difference. A solid is“hard”
and not easily deformed, whereas afluid is“soft” and is easily deformed (we can readily move through
air). Although quite descriptive, these casua observations of the differences between solids and fluids
are not very satisfactory from a scientific or engineering point of view. A closer look at the molecu-
lar structure of materials reveals that matter that we commonly think of as a solid (steel, concrete, etc.)
has densely spaced molecules with large intermolecular cohesive forces that allow the solid to main-
tain its shape, and to not be easily deformed. However, for matter that we normally think of as alig-
uid (water, ail, etc.), the molecules are spaced farther apart, the intermolecular forces are smaller than
for solids, and the molecules have more freedom of movement. Thus, liquids can be easily deformed
(but not easily compressed) and can be poured into containers or forced through a tube. Gases (air,
oxygen, etc.) have even greater molecular spacing and freedom of motion with negligible cohesive in-
termolecular forces and as a consequence are easily deformed (and compressed) and will completely
fill the volume of any container in which they are placed. Both liquids and gases are fluids.

Both liquids and
gases arefluids.

F | u i d s i n t h e N e w s

Will what worksin air work in water ? For the past few years a
San Francisco company has been working on small, maneuver-
able submarines designed to travel through water using wings,
controls, and thrusters that are similar to those on jet airplanes.
After al, water (for submarines) and air (for airplanes) are both flu-
ids, soit isexpected that many of the principles governing theflight
of airplanes should carry over to the“flight” of winged submarines.
Of course, there are differences. For example, the submarine must

be designed to withstand external pressures of nearly 700 pounds
per square inch greater than that inside the vehicle. On the other
hand, at high altitude where commercial jetsfly, the exterior pres-
sureis 3.5 psi rather than standard sea level pressure of 14.7 psi,
so the vehicle must be pressurized internally for passenger com-
fort. In both cases, however, the design of the craft for minimal
drag, maximum lift, and efficient thrust is governed by the same
fluid dynamic concepts.

F Although the differences between solids and fluids can be explained qualitatively on the ba

N sis of molecular structure, a more specific distinction is based on how they deform under the action
of an external load. Specifically, a fluid is defined as a substance that deforms continuously when

acted on by a shearing stress of any magnitude. A shearing stress (force per unit area) is created
whenever a tangential force acts on a surface as shown by the figure in the margin. When common
solids such as steel or other metals are acted on by a shearing stress, they will initially deform (usu-
aly avery small deformation), but they will not continuously deform (flow). However, common flu-
ids such as water, ail, and air satisfy the definition of afluid—that is, they will flow when acted on
by a shearing stress. Some materials, such as durries, tar, putty, toothpaste, and so on, are not eas-
ily classified since they will behave as a solid if the applied shearing stressis small, but if the stress
exceeds some critical value, the substance will flow. The study of such materialsis called rheology

Surface
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and does not fall within the province of classical fluid mechanics. Thus, all the fluids we will be
concerned with in this text will conform to the definition of a fluid given previoudly.

Although the molecular structure of fluids is important in distinguishing one fluid from an-
other, it is not yet practical to study the behavior of individual molecules when trying to describe
the behavior of fluids at rest or in motion. Rather, we characterize the behavior by considering the
average, or macroscopic, value of the quantity of interest, where the average is evaluated over asmall
volume containing a large number of molecules. Thus, when we say that the velocity at a certain
point in afluid is so much, we are redly indicating the average velocity of the moleculesin a small
volume surrounding the point. The volume is small compared with the physical dimensions of the
system of interest, but large compared with the average distance between molecules. Is this a rea-
sonable way to describe the behavior of afluid? The answer is generally yes, since the spacing be-
tween molecules is typically very small. For gases at normal pressures and temperatures, the spac-
ing is on the order of 10~ mm, and for liquids it is on the order of 10~" mm. The number of
molecules per cubic millimeter is on the order of 10 for gases and 10% for liquids. It is thus clear
that the number of molecules in a very tiny volume is huge and the idea of using average values
taken over this volume is certainly reasonable. We thus assume that all the fluid characteristics we
are interested in (pressure, velocity, etc.) vary continuously throughout the fluid—that is, we treat
the fluid as a continuum. This concept will certainly be valid for al the circumstances considered
in this text. One area of fluid mechanics for which the continuum concept breaks down is in the
study of rarefied gases such as would be encountered at very high altitudes. In this case the spac-
ing between air molecules can become large and the continuum concept is no longer acceptable.

1.2 Dimensions, Dimensional Homogeneity, and Units

Fluid characteris-
tics can be de-
scribed qualitatively
in terms of certain
basic quantities
such as length,
time, and mass.

Since in our study of fluid mechanics we will be dealing with a variety of fluid characteristics,
it is necessary to develop a system for describing these characteristics both qualitatively and
quantitatively. The qualitative aspect servesto identify the nature, or type, of the characteristics(such
as length, time, stress, and velocity), whereas the quantitative aspect provides a numerical measure
of the characteristics. The quantitative description requires both a number and a standard by which
various quantities can be compared. A standard for length might be a meter or foot, for time an hour
or second, and for mass a slug or kilogram. Such standards are called units, and severa systems of
units are in common use as described in the following section. The qualitative description is con-
veniently given in terms of certain primary quantities, such aslength, L, time, T, mass, M, and tem-
perature, ©. These primary quantities can then be used to provide a qualitative description of any
other secondary quantity: for example, area = L?, velocity = LT %, density = ML™3, and so on,
where the symbol = is used to indicate the dimensions of the secondary quantity in terms of the
primary quantities. Thus, to describe qualitatively a velocity, V, we would write

V=LT!

and say that “the dimensions of a velocity equal length divided by time” The primary quantities
are also referred to as basic dimensions.

For awide variety of problems involving fluid mechanics, only the three basic dimensions, L,
T, and M are required. Alternatively, L, T, and F could be used, where F is the basic dimensions of
force. Since Newton's law states that force is equal to mass times acceleration, it follows that
F = MLT 20or M = FL™ T2 Thus, secondary quantities expressed in terms of M can be expressed
in terms of F through the relationship above. For example, stress, o, is aforce per unit area, so that
o = FL™2, but an equivalent dimensional equation is o = ML 1T 2, Table 1.1 provides alist of di-
mensions for a number of common physical quantities.

All theoretically derived equations are dimensionally homogeneous—that is, the dimensions of
the left side of the equation must be the same as those on the right side, and all additive separate terms
must have the same dimensions. We accept as afundamental premise that all equations describing phys-
ical phenomena must be dimensionally homogeneous. If this were not true, we would be attempting to
equate or add unlike physical quantities, which would not make sense. For example, the equation for
the velocity, V, of a uniformly accelerated body is

V=V, +at (1.1
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Dimensions Associated with Common Physical Quantities

FLT MLT FLT MLT
System System System System
Acceleration LT 2 LT 2 Power FLT ! ML2T 3
Angle FoLoT® MOLOTO Pressure FL2 ML 1T 2
Angular acceleration T2 T2 Specific heat LT 201 L2T 20!
Angular velocity T T — - — ——
Area L2 L2 Specific weight FL ML™“T
, — — Strain FoLOTO MOLOT®
Density FL™*T ML® Stress FL-2 ML 2
Energy FL ML 1:2 Surface tension FL™?® MT ~2
Force F MLT Temperature (G] (G]
Frequency T! T! P
Heat FL ML?T 2 Time T T
2T-2
Length 1 1 Torque FL ML2T
M8$ FLflTZ M VeIOCIty LT_l LT_l
Modulus of elasticity FL™2 MLT 2 Viscosity (dynamic) FL2T MLT
Moment of a force FL ML2T 2 Viscosity (kinematic) LTt LT
Moment of inertia (area) L L Volume L3 L3
Moment of inertia (mass) FLT? ML? Work FL ML?T 2
Momentum FT MLT !
where V, is the initia velocity, a the acceleration, and t the time interval. In terms of dimensions
the equation is
LT =LT '+ LT?
and thus Eq. 1.1 is dimensionally homogeneous.
Some equations that are known to be valid contain constants having dimensions. The equa-
tion for the distance, d, traveled by a freely falling body can be written as
d = 16.1t2 (1.2
and a check of the dimensions reveals that the constant must have the dimensions of LT ~2 if the
equation isto be dimensionally homogeneous. Actually, Eq. 1.2 isaspecia form of the well-known
equation from physics for freely falling bodies,
gt?
d=— 13
5 (13)
in which g is the acceleration of gravity. Equation 1.3 is dimensionally homogeneous and valid in
any system of units. For g = 32.2 ft/s* the equation reduces to Eq. 1.2 and thus Eq. 1.2 is valid
only for the system of units using feet and seconds. Equations that are restricted to a particular
system of units can be denoted as restricted homogeneous equations, as opposed to equations valid
General homo- in any system of units, which are general homogeneous equations. The preceding discussion indi-

geneous equations
arevalid in any

system of units.

cates one rather elementary, but important, use of the concept of dimensions: the determination of
one aspect of the generality of a given equation simply based on a consideration of the dimensions
of the various terms in the equation. The concept of dimensions also forms the basis for the pow-
erful tool of dimensional analysis, which is considered in detail in Chapter 7.

Note to the users of this text. All of the examples in the text use a consistent problem-solving
methodology which is similar to that in other engineering courses such as statics. Each example
highlights the key elements of analysis: Given, Find, Solution, and Comment.

The Given and Find are steps that ensure the user understands what is being asked in the
problem and explicitly list the items provided to help solve the problem.

The Solution step is where the equations needed to solve the problem are formulated and
the problem is actually solved. In this step, there are typically several other tasks that help to set
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up the solution and are required to solve the problem. The first is a drawing of the problem; where
appropriate, it is always helpful to draw a sketch of the problem. Here the relevant geometry and
coordinate system to be used as well as features such as control volumes, forces and pressures,
velocities, and mass flow rates are included. This helps in gaining a visual understanding of the
problem. Making appropriate assumptions to solve the problem is the second task. In a realistic
engineering problem-solving environment, the necessary assumptions are developed as an integral
part of the solution process. Assumptions can provide appropriate simplifications or offer useful
constraints, both of which can help in solving the problem. Throughout the examples in this text,
the necessary assumptions are embedded within the Solution step, as they are in solving a real-
world problem. This provides a realistic problem-solving experience.

The final element in the methodology is the Comment. For the examples in the text, this
section is used to provide further insight into the problem or the solution. It can also be a point
in the analysis at which certain questions are posed. For example: |s the answer reasonable,
and does it make physical sense? Are the final units correct? If a certain parameter were
changed, how would the answer change? Adopting the above type of methodology will aid
in the development of problem-solving skills for fluid mechanics, as well as other engineering
disciplines.

_EXAMPLE Il Restricted and General Homogeneous Equations

GIVEN A liquid flowsthrough an orifice located in the side of
atank as shown in Fig. E1.1. A commonly used equation for de-
termining the volume rate of flow, Q, through the orificeis

Q = 0.61AV2gh

where A is the area of the orifice, g is the acceleration of gravity,
and h isthe height of the liquid above the orifice.

FIND Investigate the dimensional homogeneity of this for-
mula
SoLuTION

The dimensions of the various terms in the equation are Q =
volumeltime = L3T %, A = area = L2, g = acceleration of gravity =
LT 2 and h = height = L.

These terms, when substituted into the equation, yield the dimen-
sional form:
(LT3 = (061)(L3)(V2)(LT ML)
or
(L3T 1) = [(0.61)V2)(L’T 1)

It is clear from this result that the equation is dimensionally
homogeneous (both sides of the formulahave the same dimensions
of L3T %), and the numbers (0.61 and V2) are dimensionless.

If we were going to use this relationship repeatedly we might
be tempted to simplify it by replacing g with its standard value of
32.2 ft/<* and rewriting the formulaas

Q = 490AVh (2)
A quick check of the dimensions reveals that

L3T1 = (4.90)(L%?)

(b)
B FIGURE E1.1

and, therefore, the equation expressed as Eq. 1 can only be di-
mensionally correct if the number 4.90 has the dimensions of
LY2T~1. Whenever a number appearing in an equation or for-
mula has dimensions, it means that the specific value of the
number will depend on the system of units used. Thus, for
the case being considered with feet and seconds used as units,
the number 4.90 has units of ftY/%/s. Equation 1 will only give
the correct value for Q (in ft%/s) when A is expressed in square
feet and h in feet. Thus, Eq. 1 is a restricted homogeneous
equation, whereas the original equation is a general homoge-
neous equation that would be valid for any consistent system of
units.

COMMENT A quick check of the dimensions of the vari-
ous terms in an equation is a useful practice and will often be
helpful in eliminating errors—that is, as noted previously, all
physically meaningful equations must be dimensionally ho-
mogeneous. We have briefly alluded to units in this example,
and this important topic will be considered in more detail in
the next section.
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1.2.1 Systems of Units

In addition to the qualitative description of the various quantities of interest, it is generally neces-
sary to have a quantitative measure of any given quantity. For example, if we measure the width
of this page in the book and say that it is 10 units wide, the statement has no meaning until the
unit of length is defined. If we indicate that the unit of length is a meter, and define the meter as
some standard length, a unit system for length has been established (and a numerical value can be
given to the page width). In addition to length, a unit must be established for each of the remain-
ing basic quantities (force, mass, time, and temperature). There are several systems of unitsin use
and we shall consider three systems that are commonly used in engineering.

International System (SI). In 1960 the Eleventh General Conference on Weights and
Measures, the international organization responsible for maintaining precise uniform standards of
measurements, formally adopted the International System of Units as the international standard.
This system, commonly termed SI, has been widely adopted worldwide and is widely used
(although certainly not exclusively) in the United States. It is expected that the long-term trend will
be for al countries to accept Sl as the accepted standard and it is imperative that engineering stu-
dents become familiar with this system. In SI the unit of length is the meter (m), the time unit is
the second (s), the mass unit is the kilogram (kg), and the temperature unit is the kelvin (K). Note
that there is no degree symbol used when expressing a temperature in kelvin units. The kelvin tem-
perature scale is an absolute scale and is related to the Celsius (centigrade) scale (°C) through the
relationship

K=°C+ 27315

Although the Celsius scale is not in itself part of Sl, it is common practice to specify temperatures
in degrees Celsius when using S units.
The force unit, called the newton (N), is defined from Newton’s second law as

1N = (1kg)(1m/s%)

Thus, a 1-N force acting on a 1-kg mass will give the mass an acceleration of 1 m/s?. Standard grav-
ity in Sl is9.807 m/s* (commonly approximated as 9.81 m/s”) so that a 1-kg mass weighs 9.81 N un-
der standard gravity. Note that weight and mass are different, both qualitatively and quantitatively! The
unit of work in Sl is the joule (J), which is the work done when the point of application of a 1-N force
is displaced through a 1-m distance in the direction of aforce. Thus,

1J=1N'm
The unit of power is the watt (W) defined as a joule per second. Thus,
IW=1Js=1N-m/s

Prefixes for forming multiples and fractions of Sl units are given in Table 1.2. For example,
the notation kN would be read as “kilonewtons’ and stands for 10° N. Similarly, mm would be
read as “millimeters’ and stands for 102 m. The centimeter is not an accepted unit of length in

W TABLE 1.2
Prefixes for Sl Units

Factor by Which Unit Factor by Which Unit

Is Multiplied Prefix Symbol Is Multiplied Prefix Symbol
108 peta P 102 centi c
10 tera T 1073 milli m
10° giga G 1078 micro m
10° mega M 107° nano n
10° kilo k 10 %2 pico p
10° hecto h 1075 femto f
10 deka da 10718 atto a
107! deci d
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Two systems of
unitsthat are
widely used in en-
gineering are the
British Gravita-
tional (BG) System
and the Interna-
tional System ().

the Sl system, so for most problems in fluid mechanics in which Sl units are used, lengths will be
expressed in millimeters or meters.

British Gravitational (BG) System. In the BG system the unit of length is the foot (ft),
the time unit is the second (s), the force unit is the pound (Ib), and the temperature unit is the
degree Fahrenheit (°F) or the absolute temperature unit is the degree Rankine (°R), where

°R = °F + 459.67

The mass unit, called the slug, is defined from Newton's second law (force = mass X accel-
eration) as

11b = (1dug)(1ft/s%)

This relationship indicates that a 1-Ib force acting on a mass of 1 slug will give the mass an ac-
celeration of 1 ft/s.
The weight, W (which is the force due to gravity, g) of a mass, m, is given by the equation

W = mg
and in BG units
W(Ib) = m(slugs) g(ft/s)

Since the earth’s standard gravity is teken as g = 32.174 ft/s* (commonly approximated as 32.2 ft/s?),
it follows that a mass of 1 slug weighs 32.2 Ib under standard gravity.

F | u i d s i n

t h e N e w s

How long is a foot? Today, in the United States, the common
length unit is the foot, but throughout antiquity the unit used to
measure length has quite ahistory. Thefirst length unitswere based
on the lengths of various body parts. One of the earliest units was
the Egyptian cubit, first used around 3000 B.c. and defined as the
length of the arm from elbow to extended fingertips. Other mea-
sures followed, with the foot simply taken as the length of aman’s
foot. Sincethislength obvioudly variesfrom person to personit was
often “standardized” by using the length of the current reigning

royalty’sfoot. In 1791 a specia French commission proposed that
anew universal length unit called ameter (metre) be defined as the
distance of one-quarter of the earth’s meridian (north pole to the
equator) divided by 10 million. Although controversial, the meter
was accepted in 1799 as the standard. With the development of ad-
vanced technology, the length of a meter was redefined in 1983 as
the distance traveled by light in a vacuum during the time interval
of 1/299,792,458 s. The foot is now defined as 0.3048 meters. Our
simple rulers and yardsticks indeed have an intriguing history.

English Engineering (EE) System. In the EE system, units for force and mass are de-
fined independently; thus special care must be exercised when using this system in conjunction
with Newton's second law. The basic unit of mass is the pound mass (Ibm), and the unit of force isthe
pound (Ib).* The unit of length is the foot (ft), the unit of time is the second (S), and the absolute tem-
perature scale is the degree Rankine (°R). To make the equation expressing Newton's second law
dimensionally homogeneous we write it as

F=— (1.4)

where g, is a constant of proportionality which allows us to define units for both force and mass.
For the BG system, only the force unit was prescribed and the mass unit defined in a consistent
manner such that g, = 1. Similarly, for Sl the mass unit was prescribed and the force unit defined
in a consistent manner such that g, = 1. For the EE system, a 1-1b force is defined as that force
which gives a 1 Ibm a standard acceleration of gravity which is taken as 32.174 ft/s%. Thus, for
Eq. 1.4 to be both numerically and dimensionally correct

(11bm)(32.174 ft/<?)
O

1llb =

!t is also common practice to use the notation, Ibf, to indicate pound force.
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1.0 1.0 1.0
3 F2 0.2
0.06
" k slug N
m ¢ lbm Ib
M2 0.04 -
0.5 0.5 L1 054 o1
m1 0.02 4
0-0 0 0 0-0 B FIGURE 1.2 Comparison
Length Mass Force of SI, BG, and EE units.
so that
~ (11bm)(32.174 ft/s?)
% = (11b)
With the EE system, weight and mass are related through the equation
a — ™
Qe

where g isthe local acceleration of gravity. Under conditions of standard gravity (g = g) the weight
in pounds and the mass in pound mass are numerically equal. Also, since a 1-1b force gives a mass of
1 lbm an acceleration of 32.174 ft/s* and a mass of 1 slug an acceleration of 1 ft/s?, it follows that

1dlug = 32.174 1bm

In this text we will primarily use the BG system and S for units. The EE system is used very
sparingly, and only in those instances where convention dictates its use, such as for the compressible
flow material in Chapter 11. Approximately one-half the problems and examples are given in BG units
and one-half in Sl units. We cannot overemphasize the importance of paying close attention to units
when solving problems. It is very easy to introduce huge errors into problem solutions through the
use of incorrect units. Get in the habit of using a consistent system of units throughout a given solu-
tion. It really makes no difference which system you use as long as you are consistent; for example,
don’'t mix slugs and newtons. If problem data are specified in Sl units, then use Sl units throughout
the solution. If the data are specified in BG units, then use BG units throughout the solution. The rel-
ative sizes of the SI, BG, and EE units of length, mass, and force are shown in Fig. 1.2.

Tables 1.3 and 1.4 provide conversion factors for some quantities that are commonly en-
countered in fluid mechanics. For convenient reference these tables are reproduced on the inside of
the back cover. Note that in these tables (and others) the numbers are expressed by using computer
exponential notation. For example, the number 5.154 E + 2 is equivalent to 5.154 X 107 in scien-
tific notation, and the number 2.832 E — 2 is equivalent to 2.832 X 10 2. More extensive tables of
conversion factors for a large variety of unit systems can be found in Appendix E.

W TABLE 1.3
Conversion Factors from BG and EE Units to SI Units

(See inside of back cover.)

B TABLE 1.4
Conversion Factors from Sl Units to BG and EE Units

(Seeinside of back cover.)
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GIVEN A tank of liquid having a total mass of 36 kg rests on
asupport in the equipment bay of the Space Shuttle.

FIND Determine the force (in newtons) that the tank exerts on

the support shortly after lift off when the shuttle is accelerating
upward as shown in Fig. E1.2a at 15 ft/s.

SOLUTION

A free-body diagram of thetank isshownin Fig. E1.2b, where W isthe
weight of the tank and liquid, and F; isthe reaction of the floor on the
tank. Application of Newton's second law of motion to thisbody gives

> F=ma
or
F— W = ma @

where we have taken upward as the positive direction. Since
W = mg, Eq. 1 can be written as

Fr=m(g + a) @

Before substituting any number into Eq. 2, we must decide on a
system of units, and then be sure al of the data are expressed in
these units. Since wewant F; in newtons, we will use Sl unitsso that

F, = 36 kg[9.81 m/< + (15 ft/s9)(0.3048 m/ft)]

Exanrie 1.2 DR

EFIGURE El.2a
NASA.)

(Photograph courtesy of

Thedirection isdownward since the force shown on the free-body
diagram isthe force of the support on the tank so that the force the
tank exerts on the support is equal in magnitude but opposite in
direction.

COMMENT As you work through a large variety of prob-
lems in this text, you will find that units play an essential role in
arriving at a numerical answer. Be careful! It is easy to mix units
and cause large errors. If in the above example the acceleration
had been |eft as 15 ft/s? with m and g expressed in S| units, we
would have calculated the force as 893 N and the answer would
have been 72% too large!

= 518 kg - m/s>
Since1 N = 1kg- m/s?, it follows that
F; = 518N (downward on floor) (Ans)
HEFIGURE Ei.2b
F I ui d s i n

t h e N e w s

Units and space travel A NASA spacecraft, the Mars Climate
Orbiter, was launched in December 1998 to study the Martian
geography and weather patterns. The spacecraft was slated to
begin orbiting Mars on September 23, 1999. However, NASA
officials lost communication with the spacecraft early that day
and it is believed that the spacecraft broke apart or overheated
because it came too close to the surface of Mars. Errors in the

maneuvering commands sent from earth caused the Orbiter to
sweep within 37 miles of the surface rather than the intended 93
miles. The subsequent investigation revealed that the errors were
due to asimple mix-up in units. One team controlling the Orbiter
used Sl units whereas another team used BG units. This costly
experience illustrates the importance of using a consistent sys-
tem of units.
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1.3 Analysis of Fluid Behavior

The study of fluid mechanics involves the same fundamental laws you have encountered in physics
and other mechanics courses. These laws include Newton's laws of motion, conservation of mass,
and the first and second laws of thermodynamics. Thus, there are strong similarities between the
general approach to fluid mechanics and to rigid-body and deformable-body solid mechanics. This
isindeed helpful since many of the concepts and techniques of analysis used in fluid mechanics will
be ones you have encountered before in other courses.

The broad subject of fluid mechanics can be generally subdivided into fluid statics, in
which the fluid is at rest, and fluid dynamics, in which the fluid is moving. In the following
chapters we will consider both of these areas in detail. Before we can proceed, however, it will
be necessary to define and discuss certain fluid properties that are intimately related to fluid be-
havior. It is obvious that different fluids can have grossly different characteristics. For example,
gases are light and compressible, whereas liquids are heavy (by comparison) and relatively in-
compressible. A syrup flows slowly from a container, but water flows rapidly when poured from
the same container. To quantify these differences, certain fluid properties are used. In the fol-
lowing several sections the properties that play an important role in the analysis of fluid behav-
ior are considered.

14 Measures of Fluid Mass and Weight

The density of a
fluid is defined as
its mass per unit
volume.

1.4.1 Density

The density of afluid, designated by the Greek symbol p (rho), is defined as its mass per unit vol-
ume. Density is typically used to characterize the mass of a fluid system. In the BG system, p has
units of slugs/ft® and in Sl the units are kg/m°.

The value of density can vary widely between different fluids, but for liquids, variations
in pressure and temperature generally have only a small effect on the value of p. The small
change in the density of water with large variations in temperature isillustrated in Fig. 1.3. Ta-
bles 1.5 and 1.6 list values of density for several common liquids. The density of water at 60 °F
is 1.94 slugs/ft® or 999 kg/m?. The large difference between those two values illustrates the im-
portance of paying attention to units! Unlike liquids, the density of a gasis strongly influenced
by both pressure and temperature, and this difference will be discussed in the next section.

The specific volume, v, is the volume per unit mass and is therefore the reciprocal of the den-
sity—that is,

v =— 15
p (1.5
This property is not commonly used in fluid mechanics but is used in thermodynamics.

1000

990
@ 4°C p = 1000 kg/m®
980

970

Density, p kg/m®

960

950

0 20 40 60 80 100
Temperature, °C

B FIGURE 1.3 Density of water as a function of temperature.
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Specific weight is
weight per unit vol-
ume; specific grav-
ity istheratio of
fluid density to the
density of water at
a certain tempera-
ture.

— =

1.5

13.55

| - Water

Mercury

1
_v A

B TABLE 1.5
Approximate Physical Properties of Some Common Liquids (BG Units)

(See inside of front cover.)

B TABLE 1.6
Approximate Physical Properties of Some Common Liquids (S Units)

(Seeinside of front cover.)

1.4.2 Specific Weight

The specific weight of afluid, designated by the Greek symbol y (gamma), is defined as its weight
per unit volume. Thus, specific weight is related to density through the equation

Y = pg (1.6)

where g is the local acceleration of gravity. Just as density is used to characterize the mass of a
fluid system, the specific weight is used to characterize the weight of the system. In the BG sys-
tem, y has units of Ib/ft® and in Sl the units are N/m?®. Under conditions of standard gravity
(g = 32,174 ft/s* = 9.807 m/s%), water at 60 °F has aspecific weight of 62.4 |b/ft* and 9.80 kKN/m?®.
Tables 1.5 and 1.6 list values of specific weight for several common liquids (based on standard grav-
ity). More complete tables for water can be found in Appendix B (Tables B.1 and B.2).

1.4.3 Specific Gravity

The specific gravity of afluid, designated as SG, is defined as the ratio of the density of the fluid
to the density of water at some specified temperature. Usually the specified temperature is taken
as 4 °C (39.2 °F), and at this temperature the density of water is 1.94 slugs/ft* or 1000 kg/m?. In
equation form, specific gravity is expressed as

=" 17

PH,0@4°C

and since it is the ratio of densities, the value of SG does not depend on the system of units used.
For example, the specific gravity of mercury at 20 °C is 13.55. This is illustrated by the figure in
the margin. Thus, the density of mercury can be readily calculated in either BG or S| units through
the use of Eq. 1.7 as

Prg = (13.55)(1.94 slugs/ft®) = 26.3 slugs/ft®

or
prg = (13.55)(1000 kg/m®) = 13.6 x 10°kg/m’

It is clear that density, specific weight, and specific gravity are al interrelated, and from a
knowledge of any one of the three the others can be calculated.

Ideal Gas Law

Gases are highly compressible in comparison to liquids, with changes in gas density directly re-
lated to changes in pressure and temperature through the equation

P=TT (1.8

where p is the absolute pressure, p the density, T the absolute temperature,® and R is a gas con-
stant. Equation 1.8 is commonly termed the ideal or perfect gas law, or the equation of state for

2We will use T to represent temperature in thermodynamic relationships although T is also used to denote the basic dimension of time.
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an ideal gas. It is known to closely approximate the behavior of real gases under normal condi-
tions when the gases are not approaching liquefaction.

Pressure in afluid at rest is defined as the normal force per unit area exerted on a plane surface
(real or imaginary) immersed in afluid and is created by the bombardment of the surface with the fluid
molecules. From the definition, pressure has the dimension of FL™2, and in BG units is expressed as
Ib/ft? (psf) or Ib/in.2 (psi) and in Sl units as N/m? In SI, 1 N/m? defined as a pascal, abbreviated as
Pa, and pressures are commonly specified in pascals. The pressure in the ideal gas lawv must be ex-
pressed as an absolute pressure, denoted (abs), which means that it is measured relative to absolute
zero pressure (a pressure that would only occur in a perfect vacuum). Standard sea-level atmospheric
pressure (by international agreement) is 14.696 psi (abs) or 101.33 kPa (abs). For most calculations these
pressures can be rounded to 14.7 psi and 101 kPa, respectively. In engineering it is common practice
to measure pressure relative to the local atmospheric pressure, and when measured in this fashion it is
caled gage pressure. Thus, the absolute pressure can be obtained from the gage pressure by adding the
vaue of the atmospheric pressure. For example, as shown by the figure in the margin on the next page,
apressure of 30 psi (gage) in atireis equa to 44.7 psi (abs) at standard atmospheric pressure. Pressure
is a particularly important fluid characteristic and it will be discussed more fully in the next chapter.

Exawpie 1. + I

GIVEN The compressed air tank shown in Fig. E1.3a has a
volume of 0.84ft%. The temperature is 70 °F and the atmos-
pheric pressure is 14.7 psi (abs).

FIND Whenthetank isfilled with air at agage pressure of 50 psi,
determine the density of the air and the weight of air in the tank.

SoLuTION

Theair density can be obtained from the ideal gas law (Eq. 1.8)

P~ RT
so that
(501b/in.2 + 14.7 Ib/in.?)(144 in.?/ft?)

(1716 ft - Ib/slug - °R)[(70 + 460)°R]
= 0.0102 slugs/ft®

p=
(Ans)

Note that both the pressure and temperature were changed to ab-
solute values.

0.5

0.4

0.3
(50 psi, 0.276 Ib)

7, 1b

0.2

0.1

-20 0 20 40

p, psi

60 80 100

B FIGURE E1.3b

B FIGURE E1.3a
Jenny Products, Inc.)

(Photograph courtesy of

The weight, W', of theair is equal to

W = pg X (volume)
= (0.0102 slug/ft%)(32.2 ft /s*)(0.84 ft3)
= 0.276 lug - ft/s>

sothat since 11b = 1 slug - ft/s?
W = 0.276 Ib (Ans)

COMMENT By repeating the calculations for various values of
the pressure, p, the results shown in Fig. E1.3b are obtained. Note
that doubling the gage pressure does not double the amount of air
in the tank, but doubling the absolute pressure does. Thus, a scuba
diving tank at agage pressure of 100 psi does not contain twicethe
amount of air as when the gage reads 50 psi.
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44.7 +— 30

147+ 0

O 4
(abs)  (gage)
p, psi

1.6 Viscosity

B TABLE 1.7

Approximate Physical Properties of Some Common Gases at Standard Atmospheric Pressure
(BG Units)

(Seeinside of front cover.)

B TABLE 1.8

Approximate Physical Properties of Some Common Gases at Standard Atmospheric Pressure
(Sl Units)

(Seeinside of front cover.)

The gas constant, R, which appears in Eq. 1.8, depends on the particular gas and is related to
the molecular weight of the gas. Values of the gas constant for several common gases are listed in Ta-
bles 1.7 and 1.8. Also in these tables the gas density and specific weight are given for standard at-
mospheric pressure and gravity and for the temperature listed. More complete tables for air a stan-
dard atmospheric pressure can be found in Appendix B (Tables B.3 and B.4).

N

V1.3 Viscous fluids

V1.4 No-dlip
condition

Real fluids, even
though they may be
moving, always
“dtick” tothe solid
boundaries that
contain them.

The properties of density and specific weight are measures of the “heaviness’ of afluid. It is clear,
however, that these properties are not sufficient to uniquely characterize how fluids behave since
two fluids (such as water and oil) can have approximately the same value of density but behave
quite differently when flowing. There is apparently some additional property that is needed to de-
scribe the “fluidity” of the fluid.

To determine this additional property, consider a hypothetical experiment in which a mater-
ia is placed between two very wide parallel plates as shown in Fig. 1.4a. The bottom plate is
rigidly fixed, but the upper plate is free to move. If a solid, such as steel, were placed between the
two plates and loaded with the force P as shown, the top plate would be displaced through some
small distance, da (assuming the solid was mechanically attached to the plates). The vertical line
AB would be rotated through the small angle, 63, to the new position AB’. We note that to resist
the applied force, P, a shearing stress, 7, would be developed at the plate-material interface, and
for equilibrium to occur, P = 7A where A is the effective upper plate area (Fig. 1.4b). It is well
known that for elastic solids, such as steel, the small angular displacement, 53 (called the shear-
ing strain), is proportional to the shearing stress, r, that is developed in the material.

What happens if the solid is replaced with a fluid such as water? We would immediately no-
tice a mgjor difference. When the force P is applied to the upper plate, it will move continuously
with a velocity, U (after the initial transient motion has died out) as illustrated in Fig. 1.5. This be-
havior is consistent with the definition of a fluid—that is, if a shearing stress is applied to a fluid
it will deform continuously. A closer inspection of the fluid motion between the two plates would
reveal that the fluid in contact with the upper plate moves with the plate velocity, U, and the fluid
in contact with the bottom fixed plate has a zero velocity. The fluid between the two plates moves
with velocity u = u(y) that would be found to vary linearly, u = Uy/b, as illustrated in Fig. 1.5.
Thus, a velocity gradient, du/dy, is developed in the fluid between the plates. In this particular case
the velocity gradient is a constant since du/dy = U/b, but in more complex flow situations, such

—_—— — — — —

) B FIGURE 1.4 (9 Deformation of
Fixed plate material placed between two parallel plates. (b)
(a) (b) Forces acting on upper plate.
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as that shown by the photograph in the margin, this is not true. The experimental observation that
the fluid “sticks” to the solid boundaries is a very important one in fluid mechanics and is usually
referred to as the no-slip condition. All fluids, both liquids and gases, satisfy this condition.

In asmall time increment, 6t, an imaginary vertical line AB in the fluid would rotate through
an angle, 68, so that

t::\nSBzSB:B—;I

Since éa = U 6t it follows that

U ot
B =—
p b
We note that in this case, 63 is a function not only of the force P (which governs U) but also of
time. Thus, it is not reasonable to attempt to relate the shearing stress, 7, to 8 asis done for solids.
Rather, we consider the rate at which 88 is changing and define the rate of shearing strain, vy, as

. OB

Y= M
which in this instance is equal to

,_U_du

Y7 b ay

A continuation of this experiment would reved that as the shearing stress, 7, is increased by in-
creasing P (recdl that 7 = P/A), the rate of shearing strain is increased in direct proportion—that is,

T Xy
or

du
T X —/
dy
This result indicates that for common fluids such as water, oil, gasoline, and air the shearing stress
and rate of shearing strain (velocity gradient) can be related with a relationship of the form

du
T:MCTy

where the constant of proportionality is designated by the Greek symbol w (mu) and is called the ab-
solute viscosity, dynamic viscosity, or simply the viscosity of the fluid. In accordance with Eq. 1.9,
plots of T versus du/dy should be linear with the slope equal to the viscosity asillustrated in Fig. 1.6.
The actual value of the viscosity depends on the particular fluid, and for a particular fluid the vis-
cosity is also highly dependent on temperature as illustrated in Fig. 1.6 with the two curves for wa-
ter. Fluids for which the shearing stress is linearly related to the rate of shearing strain (also referred
to as rate of angular deformation) are designated as Newtonian fluids after I. Newton (1642-1727).
Fortunately most common fluids, both liquids and gases, are Newtonian. A more genera formula-
tion of Eq. 1.9 which applies to more complex flows of Newtonian fluids is given in Section 6.8.1.

(1.9)
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Crude oil (60 °F)

Shearing stress, ©

Water (60 °F)

Water (100 °F)

Air (60 °F)

B FIGURE 1.6 Linear
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Rate of shearing strain,
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F | u i d s i n

variation of shearing stress with rate of
shearing strain for common fluids.

t h e N e w s

An extremely viscousfluid Pitch isaderivative of tar once used for
waterproofing boats. At elevated temperatures it flows quite readily.
At room temperature it feels like a solid—it can even be shattered
with ablow from ahammer. However, itisaliquid. In 1927 Profes-
sor Parnell heated some pitch and poured it into afunnel. Since that
timeit has been allowed to flow freely (or rather, drip owly) from

the funnel. The flowrate is quite small. In fact, to date only seven
drops have fallen from the end of the funnel, although the eighth
drop is poised ready to fal “soon.” While nobody has actualy seen
a drop fal from the end of the funnel, a beaker below the funnel
holds the previous drops that fell over the years. It is estimated that
the pitch is about 100 billion times more viscous than water.

Fluids for which the shearing stress is not linearly related to the rate of shearing strain are
designated as non-Newtonian fluids. Although there is a variety of types of non-Newtonian flu-
ids, the simplest and most common are shown in Fig. 1.7. The slope of the shearing stress versus
rate of shearing strain graph is denoted as the apparent viscosity, u,,. For Newtonian fluids the ap-
parent viscosity is the same as the viscosity and is independent of shear rate.

For shear thinning fluids the apparent viscosity decreases with increasing shear rate—the harder
the fluid is sheared, the less viscous it becomes. Many colloidal suspensions and polymer solutions
are shear thinning. For example, latex paint does not drip from the brush because the shear rate is
small and the apparent viscosity is large. However, it flows smoothly onto the wall because the thin
layer of paint between the wall and the brush causes alarge shear rate and a small apparent viscosity.

For non-Newtonian
fluids, the apparent
viscosity is a func-
tion of the shear
rate.

Bingham plastic

Shear thinning —,

~— Newtonian

Shearing stress, 7

B FIGURE 1.7 Variation of shearing
stress with rate of shearing strain for several
du types of fluids, including common non-Newtonian

Rate of shearing strain, == .
e dy fluids.

~—— Shear thickening




The various types
of non-Newtonian
fluids are distin-
guished by how
their apparent
viscosity changes
with shear rate.

V1.6 Non-
Newtonian behavior
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For shear thickening fluids the apparent viscosity increases with increasing shear rate—the
harder the fluid is sheared, the more viscous it becomes. Common examples of this type of fluid
include water—corn starch mixture and water—sand mixture (“quicksand”). Thus, the difficulty in
removing an object from quicksand increases dramatically as the speed of removal increases.

The other type of behavior indicated in Fig. 1.7 is that of a Bingham plastic, which is neither
afluid nor a solid. Such material can withstand a finite, nonzero shear stress, 744, the yield stress,
without motion (therefore, it is not a fluid), but once the yield stress is exceeded it flows like a fluid
(hence, it is not a solid). Toothpaste and mayonnaise are common examples of Bingham plastic ma-
terias. Asindicated in the figure in the margin, mayonnaise can sit in a pile on a slice of bread (the
shear stress less than the yield stress), but it flows smoothly into athin layer when the knife increases
the stress above the yield stress.

From Eq. 1.9 it can be readily deduced that the dimensions of viscosity are FTL™2 Thus, in
BG units viscosity is given as Ib - s/ft? and in Sl units as N - s/m2 Values of viscosity for several
common liquids and gases are listed in Tables 1.5 through 1.8. A quick glance at these tables reveals
the wide variation in viscosity among fluids. Viscosity is only mildly dependent on pressure and the
effect of pressure is usually neglected. However, as previousy mentioned, and as illustrated in Fig.
1.8, viscosity is very sensitive to temperature. For example, as the temperature of water changes from
60 to 100 °F the density decreases by less than 1% but the viscosity decreases by about 40%. It is
thus clear that particular attention must be given to temperature when determining viscosity.

Figure 1.8 shows in more detail how the viscosity varies from fluid to fluid and how for
a given fluid it varies with temperature. It is to be noted from this figure that the viscosity of
liquids decreases with an increase in temperature, whereas for gases an increase in temperature
causes an increase in viscosity. This difference in the effect of temperature on the viscosity of
liquids and gases can again be traced back to the difference in molecular structure. The liquid
molecules are closely spaced, with strong cohesive forces between molecules, and the resistance
to relative motion between adjacent layers of fluid is related to these intermolecular forces. As

Dynamic viscosity, uN * s/m?
~

4 Water

Air

Hydrogen

8
B FI RE 1.
6-20 0 20 40 60 80 100 120 G U 8

Temperature, °C

Dynamic
(absolute) viscosity of some common
fluids as a function of temperature.
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Viscosity is very
sensitive to
temperature.

the temperature increases, these cohesive forces are reduced with a corresponding reduction in
resistance to motion. Since viscosity is an index of this resistance, it follows that the viscosity
is reduced by an increase in temperature. In gases, however, the molecules are widely spaced
and intermolecular forces negligible. In this case, resistance to relative motion arises due to the
exchange of momentum of gas molecules between adjacent layers. As molecules are transported
by random motion from aregion of low bulk velocity to mix with moleculesin aregion of higher
bulk velocity (and vice versa), there is an effective momentum exchange which resists the rela-
tive motion between the layers. As the temperature of the gas increases, the random molecular
activity increases with a corresponding increase in viscosity.

The effect of temperature on viscosity can be closely approximated using two empirical for-
mulas. For gases the Sutherland equation can be expressed as

CT¥2
T+S

I (1.10)
where C and Sare empirical constants, and T is absolute temperature. Thus, if the viscosity isknown
at two temperatures, C and S can be determined. Or, if more than two viscosities are known, the
data can be correlated with Eq. 1.10 by using some type of curve-fitting scheme.

For liquids an empirical equation that has been used is

w = De®T (1.11)

where D and B are constants and T is absolute temperature. This equation is often referred to as
Andrade's equation. As was the case for gases, the viscosity must be known at least for two tem-
peratures so the two constants can be determined. A more detailed discussion of the effect of tem-
perature on fluids can be found in Ref. 1.

_EXAMPLE |IW-W Viscosity and Dimensionless Quantities

GIVEN A dimensionlesscombination of variablesthat isimpor-
tant in the study of viscous flow through pipesis called the Reynolds
number, Re, defined as pVD/u where, asindicated in Fig. EL4, p is
thefluid density, V the mean fluid vel ocity, D the pipe diameter, and
w the fluid viscosity. A Newtonian fluid having a viscosity of
0.38 N - s/m? and aspecific gravity of 0.91 flows through a25-mm-
diameter pipe with avelocity of 2.6 m/s.

FIND Determine the value of the Reynolds number using (a) S|
units, and (b) BG units.

SoLuTION

(@) Thefluid density is calculated from the specific gravity as
p = G pyo@a-c = 0.91 (1000 kg/m®) = 910 kg/m?
and from the definition of the Reynolds number
pVD (910 kg/m?)(2.6 m/s)(25 mm)(102 m/mm)

Re = =
1% 0.38N - s/m?

= 156 (kg - m/s%)/N

However, since 1N = 1kg- m/s? it follows that the Reynolds
number is unitless—that is,

Re = 156 (Ans)

The value of any dimensionless quantity does not depend on the
system of units used if al variables that make up the quantity are

Pl

BFIGURE E1.4

expressed in a consistent set of units. To check this we will calcu-
|ate the Reynolds number using BG units.

(b) We first convert al the Sl values of the variables appear-
ing in the Reynolds number to BG values by using the conver-
sion factors from Table 1.4. Thus,

p = (910 kg/m®)(1.940 X 107%) = 1.77 slugs/ft®

V = (2.6 m/s)(3.281) = 8.53ft/s

D = (0.025m)(3.281) = 8.20 X 10 2ft

= (038N - s/m?)(2.089 X 107%) = 7.94 x 10 °Ib- s/ft




and the value of the Reynolds number is
R (1.77 slugs/ft3)(8.53 ft/s)(8.20 X 10 2ft)
e =

7.94 x 10 Ib- s/ft?
= 156 (slug - ft/s?)/Ib = 156

since1lb = 1slug- ft/s%

(Ans)

1.6  Viscosity 19

COMMENTS The values from part (a) and part (b) are the
same, as expected. Dimensionless quantities play an important
role in fluid mechanics and the significance of the Reynolds
number as well as other important dimensionless combinations
will be discussed in detail in Chapter 7. It should be noted that in
the Reynolds number it isactually theratio w/p that isimportant,
and thisisthe property that is defined as the kinematic viscosity.

GIVEN The velocity distribution for the flow of a Newtonian
fluid between two wide, parallel plates (see Fig. E1.5a) is given

by the equation
_v[, XT
o= 32-C)

SOLUTION

For this type of parallel flow the shearing stress is obtained from
Eq. 1.9,

du

T =

dy

Thus, if the velocity distribution u = u(y) is known, the shearing

stress can be determined at al points by evaluating the velocity
gradient, du/dy. For the distribution given

)

du 3y
dy - hZ (2)
(@) Along the bottomwall y = —h so that (from Eq. 2)
du_ 3v
dy h

and therefore the shearing stressis
<3v> ~ (0.041b- s/ft?)(3)(2 ft/s)
H\h) ™ (02in)aft/12in)
= 14.41b/ft? (in direction of flow) (Ans)
This stress creates a drag on the wall. Since the velocity distribu-

tion is symmetrical, the shearing stress along the upper wall
would have the same magnitude and direction.

(b) Along the midplane wherey = Qit follows from Eq. 2 that
du
— =90
dy

and thus the shearing stress is

Thottom —
wall

(Ans)

Tmidplane — 0

—EXAMPLE |- Newtonian Fluid Shear Stress

where V is the mean velocity. The fluid has a viscosity of
0.04 b - s/ft?. Also, V = 2 ft/sandh = 0.2in.

FIND Determine: (a) the shearing stress acting on the bottom
wall, and (b) the shearing stress acting on a plane paralel to the
walls and passing through the centerline (midplane).

e— 5 — e 5 —]

\
yg\
_>:
)

)
B FIGURE El1.5a

COMMENT From Eqg. 2 we see that the velocity gradient
(and therefore the shearing stress) varies linearly with y and in
this particular example varies from 0 at the center of the channel
to 14.4 |b/ft? at the walls. This is shown in Fig. E1.5b. For the
more general case the actual variation will, of course, depend on
the nature of the velocity distribution.

15 2
N Thottom wan = 14.4 Ib/ft° = Topwall —_ A
10
b
s
=
5
Tmidplane = 0
90.2 -0.1 0 0.1 0.2
y, in.

B FIGURE E1.5b

Quite often viscosity appears in fluid flow problems combined with the density in the

form

w
vV=—
p
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Kinematic viscosity
is defined asthe
ratio of the ab-
solute viscosity to
the fluid density.
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Thisratio is called the kinematic viscosity and is denoted with the Greek symbol v (nu). The dimen-
sions of kinematic viscosity are L?/T, and the BG units are ft>/s and Sl units are m?/s. Values of kine-
matic viscosity for some common liquids and gases are given in Tables 1.5 through 1.8. More exten-
sivetables giving both the dynamic and kinematic viscositiesfor water and air can befound in Appendix
B (Tables B.1 through B.4), and graphs showing the variation in both dynamic and kinematic viscos-
ity with temperature for a variety of fluids are also provided in Appendix B (Figs. B.1 and B.2).

Although in this text we are primarily using BG and Sl units, dynamic viscosity is often ex-
pressed in the metric CGS (centimeter-gram-second) system with units of dyne - s/cm?. This com-
bination is called a poise, abbreviated P. In the CGS system, kinematic viscosity has units of cm?/s,
and this combination is called a stoke, abbreviated St.

Compressibility of Fluids

/N

V1.7 \ater
balloon

F | u

1.7.1 Bulk Modulus

An important question to answer when considering the behavior of a particular fluid is how eas-
ily can the volume (and thus the density) of a given mass of the fluid be changed when thereis a
change in pressure? That is, how compressible is the fluid? A property that is commonly used to
characterize compressibility is the bulk modulus, E,, defined as

E, = ——

vy (1.12)

where dp is the differential change in pressure needed to create a differential change in volume,
d¥, of avolume V. Thisis illustrated by the figure in the margin. The negative sign is included
since an increase in pressure will cause a decrease in volume. Since a decrease in volume of a
given mass, m = p¥, will result in an increase in density, Eqg. 1.12 can also be expressed as

dp

do/p

The bulk modulus (also referred to as the bulk modulus of elasticity) has dimensions of pressure,
FL™2 In BG units, values for E, are usualy given as Ib/in. (psi) and in Sl units as N/m? (Pa).
Large values for the bulk modulus indicate that the fluid is relatively incompressible—that is, it
takes a large pressure change to create a small change in volume. As expected, values of E, for
common liquids are large (see Tables 1.5 and 1.6). For example, a atmospheric pressure and a
temperature of 60 °F it would require a pressure of 3120 psi to compress a unit volume of water
1%. This result is representative of the compressibility of liquids. Since such large pressures are
required to effect a change in volume, we conclude that liquids can be considered as incompress-
ible for most practical engineering applications. As liquids are compressed the bulk modulus in-
creases, but the bulk modulus near atmospheric pressure is usually the one of interest. The use of
bulk modulus as a property describing compressibility is most prevalent when dealing with lig-
uids, although the bulk modulus can also be determined for gases.

(1.13)

i d s i n t h e N e w s

This water jet is a blast Usualy liquids can be treated as in-
compressible fluids. However, in some applications the com-
pressibility of aliquid can play akey rolein the operation of ade-
vice. For example, a water pulse generator using compressed
water has been developed for use in mining operations. It can
fracturerock by producing an effect comparable to a conventional
explosive such as gunpowder. The device uses the energy stored
in a water-filled accumulator to generate an ultrahigh-pressure
water pulse gected through a 10- to 25-mm-diameter discharge
valve. At the ultrahigh pressures used (300 to 400 MPa, or 3000

to 4000 atmospheres), the water is compressed (i.e., the volume
reduced) by about 10 to 15%. When a fast-opening valve within
the pressure vessel is opened, the water expands and produces a
jet of water that upon impact with the target material produces an
effect similar to the explosive force from conventional explosives.
Mining with the water jet can eliminate various hazards that arise
with the use of conventional chemical explosives, such as those
associated with the storage and use of explosives and the genera-
tion of toxic gas by-products that require extensive ventilation.
(See Problem 1.87.)
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1.7.2 Compression and Expansion of Gases

When gases are compressed (or expanded), the relationship between pressure and density depends
on the nature of the process. If the compression or expansion takes place under constant temper-
ature conditions (isothermal process), then from Eq. 1.8

% = constant (1.14)

If the compression or expansion is frictionless and no heat is exchanged with the surroundings
(isentropic process), then

*—Isothermal p
— = constant (1.15)
p

where k is the ratio of the specific heat a constant pressure, c,,, to the specific heat a constant volume,

¢, (i.e, k = ¢y/c,). The two specific heats are related to the gas congtant, R, through the equation

R = ¢, — ¢,. Aswasthe case for the ideal gaslaw, the pressure in both Egs. 1.14 and 1.15 must be ex-

The value of the pressed as an absolute pressure. Values of k for some common gases are given in Tables 1.7 and 1.8,
bulk modulus and for ar over arange of temperatures, in Appendix B (Tables B.3 and B.4). The pressure-density
dependsonthetype  variations for isothermal and isentropic conditions are illustrated in the margin figure.

of processinvolved. With explicit equations relating pressure and density, the bulk modulus for gases can be de-

termined by obtaining the derivative dp/dp from Eq. 1.14 or 1.15 and substituting the results into
Eq. 1.13. It follows that for an isothermal process

Ev = p (1.16)
and for an isentropic process,

E, =kp (1.17)

Note that in both cases the bulk modulus varies directly with pressure. For air under standard at-
mospheric conditions with p = 14.7 psi (abs) and k = 1.40, the isentropic bulk modulus is 20.6 psi.
A comparison of thisfigure with that for water under the same conditions (E, = 312,000 psi) shows
that air is approximately 15,000 times as compressible as water. It is thus clear that in dealing with
gases, greater attention will need to be given to the effect of compressibility on fluid behavior. How-
ever, as will be discussed further in later sections, gases can often be treated as incompressible flu-
ids if the changes in pressure are small.

L STVIIOIK iseriropic Compression of a Gas

GIVEN A cubicfoot of air at an absolute pressure of 14.7 psi is
compressed isentropically to% ft® by the tire pump shown in Fig.
El.6a.

FIND What isthefinal pressure?

SoLuTiON

For an isentropic compression
b
P pf

where the subscriptsi and f refer to initial and final states, respec-
tively. Since we are interested in the final pressure, p;, it follows

that
pr\<
Pr=\—")h
Pi

B FIGURE El.6a




c, ft/s
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with k = 1.40 for air

As the volume, V, is reduced by one-half, the density must dou- 400
ble, since the mass, m = p V, of the gas remains constant. Thus,

pr = (2)*%%(14.7 psi) = 38.8 psi (abs) (Ans) 300

COMMENT By repeating the calculations for various values
of theratio of the final volume to the initial volume, V;/V;, the re-
sults shown in Fig. E1.6b are obtained. Note that even though air is
often considered to be easily compressed (at |east compared to lig-
uids), it takes considerable pressure to significantly reduce a given
volume of air asis done in an automobile engine where the com-
pression ratio is on the order of Vi/Vi = 1/8 = 0.125. 50 Coe s

350

250

200

pr, psi

150

100

0

0 02 0.4 06 058 1
VN,

B FIGURE E1.6b

The velocity at
which small distur-
bances propagate
inafluidiscalled
the speed of sound.
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1.7.3 Speed of Sound

Another important consequence of the compressibility of fluidsis that disturbances introduced at
some point in the fluid propagate at a finite velocity. For example, if afluid is flowing in a pipe
and a valve at the outlet is suddenly closed (thereby creating a localized disturbance), the effect
of the valve closure is not felt instantaneously upstream. It takes a finite time for the increased
pressure created by the valve closure to propagate to an upstream location. Similarly, a loud-
speaker diaphragm causes a localized disturbance as it vibrates, and the small change in pressure
created by the motion of the diaphragm is propagated through the air with a finite velocity. The
velocity at which these small disturbances propagate is called the acoustic velocity or the speed of
sound, c. It will be shown in Chapter 11 that the speed of sound is related to changes in pressure
and density of the fluid medium through the equation

dp

=g (1.18)

or in terms of the bulk modulus defined by Eq. 1.13

_ B
c= \/; (1.19)

Since the disturbance is small, there is negligible heat transfer and the process is assumed to be
isentropic. Thus, the pressure—density relationship used in Eq. 1.18 is that for an isentropic process.
For gases undergoing an isentropic process, E, = kp (Eq. 1.17) so that

K
c= /2
p
and making use of the ideal gas law, it follows that

c = VKRT (1.20)

Thus, for ideal gases the speed of sound is proportional to the square root of the absolute temper-
ature. For example, for air at 60 °F with k = 1.40 and R = 1716 ft - Ib/dlug - °R, it follows that
¢ = 1117 ft/s. The speed of sound in air at various temperatures can be found in Appendix B
(Tables B.3 and B.4). Equation 1.19 is also valid for liquids, and values of E, can be used
to determine the speed of sound in liquids. For water at 20°C,E, = 219 GN/m? and
p = 998.2 kg/m° so that ¢ = 1481 m/s or 4860 ft/s. As shown by the figure in the margin, the
speed of sound in water is much higher than in air. If afluid were truly incompressible (E, = o)
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the speed of sound would be infinite. The speed of sound in water for various temperatures can be
found in Appendix B (Tables B.1 and B.2).

GIVEN A jet aircraft flies at a speed of 550 mph at an altitude
of 35,000 ft, where the temperature is —66° F and the specific
heat ratioisk = 1.4.

SOLUTION

L STXTIUIINR sveed of Sound and Mach Number

FIND Determinetheratio of the speed of the aircraft, V, to that
of the speed of sound, c, at the specified altitude.

From Eq. 1.20 the speed of sound can be calculated as

c= VkRT
= V/(1.40)(1716 ft-Ib/slug-°R)(—66 + 460)°R
= 973ft/s

Sincetheair speed is

, _ (850 mi/hn)(5280 f/mi)
- (3600 ghr) - S
theratiois
V 807 ft/s
~= =082 A
¢~ orafys 08 (Ans)
COMMENT This ratio is called the Mach number, Ma. If

Ma< 1.0theaircraft isflying at subsonic speeds, whereasfor Ma >
1.0itisflying at supersonic speeds. The Mach number isan impor-
tant dimensionless parameter used in the study of the flow of gases
at high speeds and will be further discussed in Chapters 7 and 11.
By repeating the calculations for different temperatures, the
results shown in Fig. E1.7 are obtained. Because the speed of

0.9

0.6

0.5
-100 -50 0 50 100

T,degF
B FIGURE E17

sound increases with increasing temperature, for a constant
airplane speed, the Mach number decreases as the temperature
increases.
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Vapor Pressure

Liquid

Vapor, p,

Liquid

A liquid boils when
the pressureis
reduced to the
vapor pressure.

It is a common observation that liquids such as water and gasoline will evaporate if they are sim-
ply placed in a container open to the atmosphere. Evaporation takes place because some liquid
molecules at the surface have sufficient momentum to overcome the intermolecular cohesive forces
and escape into the atmosphere. If the container is closed with a small air space |eft above the sur-
face, and this space evacuated to form a vacuum, a pressure will develop in the space as a result
of the vapor that is formed by the escaping molecules. When an equilibrium condition is reached
so that the number of molecules leaving the surface is equal to the number entering, the vapor is
said to be saturated and the pressure that the vapor exerts on the liquid surface is termed the
vapor pressure, Po. Similarly, if the end of a completely liquid-filled container is moved as shown
in the figure in the margin without letting any air into the container, the space between the liquid
and the end becomes filled with vapor at a pressure equal to the vapor pressure.

Since the development of a vapor pressure is closely associated with molecular activity, the
value of vapor pressure for a particular liquid depends on temperature. Values of vapor pressure for
water at various temperatures can be found in Appendix B (Tables B.1 and B.2), and the values of
vapor pressure for several common liquids at room temperatures are given in Tables 1.5 and 1.6.

Boiling, which is the formation of vapor bubbles within a fluid mass, is initiated when the ab-
solute pressure in the fluid reaches the vapor pressure. As commonly observed in the kitchen, water
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at standard atmospheric pressure will boil when the temperature reaches 212 °F (100 °C)—that is,
the vapor pressure of water at 212 °F is 14.7 psi (abs). However, if we attempt to boil water at a
higher elevation, say 30,000 ft above sea level (the approximate elevation of Mt. Everest), where
the atmospheric pressure is 4.37 psi (abs), we find that boiling will start when the temperature is
about 157 °F. At this temperature the vapor pressure of water is 4.37 psi (abs). For the U.S. Stan-
dard Atmosphere (see Section 2.4), the boiling temperature is a function of altitude as shown in
the figure in the margin. Thus, boiling can be induced at a given pressure acting on the fluid by
raising the temperature, or at a given fluid temperature by lowering the pressure.

An important reason for our interest in vapor pressure and boiling lies in the common ob-
servation that in flowing fluids it is possible to develop very low pressure due to the fluid mo-
tion, and if the pressure is lowered to the vapor pressure, boiling will occur. For example, this
phenomenon may occur in flow through the irregular, narrowed passages of a valve or pump.

ized regions to When vapor bubbles are formed in a flowing fluid, they are swept along into regions of higher
MEEENEFAT [T pressure where they suddenly collapse with sufficient intensity to actually cause structural dam-
sure thereby caus- . . : . -
; S age. The formation and subsequent collapse of vapor bubbles in a flowing fluid, called cavita-
ing cavitation. A . . . o2
tion, is an important fluid flow phenomenon to be given further attention in Chapters 3 and 7.
19 Surface Tension
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At the interface between aliquid and a gas, or between two immiscible liquids, forces develop
in the liquid surface which cause the surface to behave as if it were a “skin” or “membrane”
stretched over the fluid mass. Although such a skin is not actually present, this conceptual anal-
ogy allows us to explain several commonly observed phenomena. For example, a steel needle
or arazor blade will float on water if placed gently on the surface because the tension devel-
oped in the hypothetical skin supportsit. Small droplets of mercury will form into spheres when
placed on a smooth surface because the cohesive forces in the surface tend to hold all the mol-
ecules together in a compact shape. Similarly, discrete bubbles will form in a liquid. (See the
photograph at the beginning of Chapter 1.)

These various types of surface phenomena are due to the unbalanced cohesive forces act-
ing on the liquid molecules at the fluid surface. Molecules in the interior of the fluid mass are
surrounded by molecules that are attracted to each other equally. However, molecules along the
surface are subjected to a net force toward the interior. The apparent physical consequence of this
unbalanced force along the surface is to create the hypothetical skin or membrane. A tensile force
may be considered to be acting in the plane of the surface along any line in the surface. The in-
tensity of the molecular attraction per unit length along any line in the surface is called the sur-
face tension and is designated by the Greek symbol o (sigma). For a given liquid the surface ten-
sion depends on temperature as well as the other fluid it is in contact with at the interface. The
dimensions of surface tension are FL ™~ with BG units of Ib/ft and S units of N/m. Values of sur-
face tension for some common liquids (in contact with air) are given in Tables 1.5 and 1.6 and in
Appendix B (Tables B.1 and B.2) for water at various temperatures. As indicated by the figure in
the margin, the value of the surface tension decreases as the temperature increases.

i d s i n t h e N e w s

Walking on water Water striders are insects commonly found on
ponds, rivers, and lakes that appear to “walk” on water. A typical
length of a water strider is about 0.4 in., and they can cover 100
body lengths in one second. It has long been recognized that it is
surface tension that keeps the water strider from sinking below
the surface. What has been puzzling is how they propel them-
selves at such ahigh speed. They can't pierce the water surface or
they would sink. A team of mathematicians and engineers from
the Massachusetts Institute of Technology (MIT) applied conven-
tional flow visualization techniques and high-speed video to

examine in detail the movement of the water striders. They found
that each stroke of theinsect’slegs creates dimples on the surface
with underwater swirling vortices sufficient to propel it forward.
It is the rearward motion of the vortices that propels the water
strider forward. To further substantiate their explanation, the MIT
team built aworking model of awater strider, called Robostrider,
which creates surface ripples and underwater vortices as it moves
across a water surface. Waterborne creatures, such as the water
strider, provide an interesting world dominated by surface ten-
sion. (See Problem 1.103.)
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Capillary actionin
small tubes, which
involves a liquid—
gas-solid interface,
is caused by sur-
face tension.
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A2

ApnR? o B FIGURE 1.9 Forcesacting on one-half of a liquid drop.

The pressure inside a drop of fluid can be calculated using the free-body diagram in Fig. 1.9.
If the spherical drop is cut in half (as shown), the force developed around the edge due to surface
tension is 2Ro. This force must be balanced by the pressure difference, Ap, between the internal
pressure, p;, and the external pressure, p,, acting over the circular area, wR2. Thus,

2mRo = Ap mR2
or
20
Ap=p —pe= R (1.21)

It is apparent from this result that the pressure inside the drop is greater than the pressure sur-
rounding the drop. (Would the pressure on the inside of a bubble of water be the same as that on
the inside of a drop of water of the same diameter and at the same temperature?)

Among common phenomena associated with surface tension is the rise (or fall) of a liquid
in a capillary tube. If a small open tube is inserted into water, the water level in the tube will rise
above the water level outside the tube, as is illustrated in Fig. 1.10a. In this situation we have a
liquid—gas—solid interface. For the case illustrated thereis an attraction (adhesion) between the wall
of the tube and liquid molecules which is strong enough to overcome the mutual attraction (cohe-
sion) of the molecules and pull them up the wall. Hence, the liquid is said to wet the solid surface.

The height, h, is governed by the value of the surface tension, o, the tube radius, R, the spe-
cific weight of theliquid, vy, and the angle of contact, 6, between the fluid and tube. From the free-
body diagram of Fig. 1.10b we see that the vertical force due to the surface tension is equal to
27Ro cosh and the weight is y7R°h and these two forces must balance for equilibrium. Thus,

ymReh = 2R cosf
so that the height is given by the relationship

h— 20 cos6

R (1.22)

The angle of contact is afunction of both the liquid and the surface. For water in contact with clean
glass6 = 0°. Itisclear from Eq. 1.22 that the height isinversely proportional to the tube radius, and
therefore, as indicated by the figure in the margin, the rise of aliquid in a tube as a result of capil-
lary action becomes increasingly pronounced as the tube radius is decreased.

If adhesion of molecules to the solid surface is weak compared to the cohesion between mol-
ecules, the liquid will not wet the surface and the level in atube placed in a nonwetting liquid will
actualy be depressed, as shown in Fig. 1.10c. Mercury is a good example of a nonwetting liquid
when it isin contact with a glass tube. For nonwetting liquids the angle of contact is greater than
90°, and for mercury in contact with clean glass 6 = 130°.

B FIGURE 1.10 Effect of capillary
action in small tubes. (a) Rise of column for a liquid
that wets the tube. (b) Free-body diagram for calculat-
ing column height. (c) Depression of column for a
nonwetting liquid.
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LTV Copillary RiseinaTube

FIND What diameter of clean glass tubing is required so that
therise of water at 20 °C in a tube due to capillary action (as op-
posed to pressure in the tube) islessthan h = 1.0 mm?

GIVEN Pressures are sometimes determined by measuring the
height of a column of liquid in a vertical tube.

SoLuTION
From Eq. 1.22 Note that as the alowable capillary rise is decreased, the diame-
20 COSO ter of the tube must be significantly increased. There is dways
h= some capillarity effect, but it can be minimized by using a large
YR enough diameter tube.
so that
R— 20 cosh
vh 100
For water a 20°C (from Table B.2), o = 0.0728 N/m and 20
v = 9.789 kN/m?. Since§ =~ 0° it followsthat for h = 1.0 mm,
B 2(0.0728 N/m)(1) c 60
~ (9.789 X 10° N/m®)(L1.0 mm)(10~2 m/mm) e
= 0.0149m 40 (1 mm, 29.8 mm)
and the minimum required tube diameter, D, is 20
D = 2R = 0.0298 m = 29.8 mm (Ans) 0
0 0.5 1 1.5 2

h, mm

COMMENT By repeating the calculations for various values

of thecapillary rise, h, theresultsshowninFig. EL.8 areobtained. B FI1 G U R E E1.8

Surface tension effects play arole in many fluid mechanics problems, including the move-
ment of liquids through soil and other porous media, flow of thin films, formation of drops and
bubbles, and the breakup of liquid jets. For example, surface tension is a main factor in the for-
mation of drops from a leaking faucet, as shown in the photograph in the margin. Surface
phenomena associated with liquid—gas, liquid-iquid, and liquid—gas—solid interfaces are ex-
ceedingly complex, and a more detailed and rigorous discussion of them is beyond the scope of
this text. Fortunately, in many fluid mechanics problems, surface phenomena, as characterized
by surface tension, are not important, since inertial, gravitational, and viscous forces are much
more dominant.

(Photograph copyright
2007 by Andrew David-
hazy, Rochester Insti-
tute of Technology.)

F I u i d s i n t h e N e w s

Spreading of oil spills With the large traffic in oil tankers there
isgreat interest in the prevention of and responseto oil spills. As
evidenced by the famous Exxon Valdez oil spill in Prince
William Sound in 1989, oil spills can create disastrous environ-
mental problems. It isnot surprising that much attention isgiven
to the rate at which an oil spill spreads. When spilled, most oils
tend to spread horizontally into a smooth and slippery surface,
called a slick. There are many factors which influence the abil-
ity of an oil slick to spread, including the size of the spill, wind

speed and direction, and the physical properties of the oil. These
properties include surface tension, specific gravity, and viscos-
ity. The higher the surface tension the more likely a spill will re-
main in place. Since the specific gravity of ail is less than one,
it floats on top of the water, but the specific gravity of an oil can
increase if the lighter substances within the oil evaporate. The
higher the viscosity of the oil the greater the tendency to stay in
one place.
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1.10 A Brief Look Back in History

Some of the earliest
writings that per-
tain to modern fluid
mechanics can be
traced back to the
ancient Greek civi-
lization and subse-
quent Roman

Empire.

Before proceeding with our study of fluid mechanics, we should pause for a moment to consider
the history of this important engineering science. As is true of all basic scientific and engineering
disciplines, their actual beginnings are only faintly visible through the haze of early antiquity. But,
we know that interest in fluid behavior dates back to the ancient civilizations. Through necessity
there was a practical concern about the manner in which spears and arrows could be propelled
through the air, in the development of water supply and irrigation systems, and in the design of
boats and ships. These developments were of course based on trial and error procedures without
any knowledge of mathematics or mechanics. However, it was the accumulation of such empirical
knowledge that formed the basis for further development during the emergence of the ancient Greek
civilization and the subseguent rise of the Roman Empire. Some of the earliest writings that pertain
to modern fluid mechanics are those of Archimedes (287—212 B.c.), a Greek mathematician and in-
ventor who first expressed the principles of hydrostatics and flotation. Elaborate water supply sys-
tems were built by the Romans during the period from the fourth century B.c. through the early
Christian period, and Sextus Julius Frontinus (a.n. 40—103), a Roman engineer, described these sys-
tems in detail. However, for the next 1000 years during the Middle Ages (also referred to as the
Dark Ages), there appears to have been little added to further understanding of fluid behavior.

As shown in Fig. 1.11, beginning with the Renaissance period (about the fifteenth century)
a rather continuous series of contributions began that forms the basis of what we consider to be
the science of fluid mechanics. Leonardo da Vinci (1452-1519) described through sketches and
writings many different types of flow phenomena The work of Galileo Galilei (1564—1642) marked
the beginning of experimental mechanics. Following the early Renaissance period and during the
seventeenth and eighteenth centuries, numerous significant contributions were made. These include
theoretical and mathematical advances associated with the famous names of Newton, Bernoulli,
Euler, and d’ Alembert. Experimental aspects of fluid mechanics were also advanced during this
period, but unfortunately the two different approaches, theoretical and experimental, developed
along separate paths. Hydrodynamics was the term associated with the theoretical or mathemati-
cal study of idealized, frictionless fluid behavior, with the term hydraulics being used to describe
the applied or experimental aspects of real fluid behavior, particularly the behavior of water. Fur-
ther contributions and refinements were made to both theoretical hydrodynamics and experimen-
tal hydraulics during the nineteenth century, with the general differential equations describing fluid
motions that are used in modern fluid mechanics being developed in this period. Experimental hy-
draulics became more of a science, and many of the results of experiments performed during the
nineteenth century are still used today.

At the beginning of the twentieth century, both the fields of theoretical hydrodynamics and
experimental hydraulics were highly developed, and attempts were being made to unify the two. In
1904 a classic paper was presented by a German professor, Ludwig Prandtl (1875-1953), who in-
troduced the concept of a “fluid boundary layer,” which laid the foundation for the unification of

Geoffrey Taylor N
Theodor von Karman
Ludwig Prandt| INE—
Osborne Reynolds I
Ernst Mach EEE—
George Stokes NN
Jean Poiseuille N
Louis Navier =
Leonhard Euler N
Daniel Bernoul|i N
Isaac Newton I
Galileo Galilei HNEEE———
Leonardo da Vinci IS
1200 1300 1400 1500 1600 1700 1800 1900 2000
Year

B FIGURE 1.11 Timeline of some contributors to the science of fluid mechanics.
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Therich history of
fluid mechanicsis
fascinating, and
many of the contri-
butions of the
pioneersin the field
are noted in the
succeeding
chapters.

Isaac Newton

Ernst Mach

the theoretical and experimental aspects of fluid mechanics. Prandtl’s idea was that for flow next to
asolid boundary athin fluid layer (boundary layer) develops in which friction is very important, but
outside this layer the fluid behaves very much like a frictionless fluid. This relatively simple con-
cept provided the necessary impetus for the resolution of the conflict between the hydrodynamicists

and the hydraulicists. Prandtl is generally accepted as the founder of modern fluid mechanics.

Also, during the first decade of the twentieth century, powered flight was first successfully
demonstrated with the subsequent vastly increased interest in aerodynamics. Because the design of
aircraft required a degree of understanding of fluid flow and an ability to make accurate predictions
of the effect of air flow on bodies, the field of aerodynamics provided a great stimulus for the many
rapid developments in fluid mechanics that took place during the twentieth century.

As we proceed with our study of the fundamentals of fluid mechanics, we will continue to
note the contributions of many of the pioneers in the field. Table 1.9 provides a chronological list-

B TABLE 1.9

Chronological Listing of Some Contributors to the Science of Fluid Mechanics Noted in the Text?

ARCHIMEDES (287-212B.C.)
Established elementary principles of buoyancy and
flotation.

SEXTUSJULIUS FRONTINUS (A.D. 40-103)
Wrote treatise on Roman methods of water
distribution.

LEONARDO daVINCI (1452-1519)

Expressed elementary principle of continuity;
observed and sketched many basic flow phenomena;
suggested designs for hydraulic machinery.

GALILEO GALILEI (1564-1642)
Indirectly stimulated experimental hydraulics;
revised Aristotelian concept of vacuum.

EVANGELISTA TORRICELLI (1608—1647)
Related barometric height to weight of
atmosphere, and form of liquid jet to trajectory
of freefall.

BLAISE PASCAL (1623-1662)
Finaly clarified principles of barometer, hydraulic
press, and pressure transmissibility.

ISAAC NEWTON (1642—1727)

Explored various aspects of fluid resistance—
inertial, viscous, and wave; discovered jet
contraction.

HENRI dePITOT (1695-1771)
Constructed double-tube device to indicate water
velocity through differential head.

DANIEL BERNOULLI (1700-1782)

Experimented and wrote on many phases of fluid
motion, coining name “hydrodynamics’; devised
manometry technique and adapted primitive energy
principle to explain vel ocity-head indication;
proposed jet propulsion.

LEONHARD EULER (1707-1783)

First explained role of pressurein fluid flow;
formulated basic equations of motion and so-called
Bernoulli theorem; introduced concept of cavitation
and principle of centrifugal machinery.

JEAN le ROND d’ALEMBERT (1717-1783)
Originated notion of velocity and acceleration com-
ponents, differential expression of continuity, and
paradox of zero resistance to steady nonuniform
motion.

ANTOINE CHEZY (1718-1798)

Formulated similarity parameter for predicting flow
characteristics of one channel from measurements on
another.

GIOVANNI BATTISTA VENTURI (1746-1822)
Performed tests on various forms of mouthpieces—
in particular, conical contractions and expansions.

LOUISMARIE HENRI NAVIER (1785—1836)
Extended equations of motion to include
“molecular” forces.

AUGUSTIN LOUIS de CAUCHY (1789-1857)
Contributed to the general field of theoretical
hydrodynamics and to the study of wave motion.

GOTTHILF HEINRICH LUDWIG HAGEN
(1797-1884)

Conducted original studies of resistance in and
transition between laminar and turbulent flow.

JEAN LOUISPOISEUILLE (1799-1869)
Performed meticul ous tests on resistance of flow
through capillary tubes.

HENRI PHILIBERT GASPARD DARCY (1803-1858)
Performed extensive tests on filtration and pipe
resistance; initiated open-channel studies carried out
by Bazin.

JULIUSWEISBACH (1806-1871)

Incorporated hydraulicsin treatise on engineering
mechanics, based on original experiments,
noteworthy for flow patterns, nondimensional
coefficients, weir, and resistance equations.

WILLIAM FROUDE (1810-1879)

Devel oped many towing-tank techniques, in
particular the conversion of wave and boundary layer
resistance from model to prototype scale.

ROBERT MANNING (1816-1897)
Proposed several formulas for open-channel
resistance.

GEORGE GABRIEL STOKES(1819-1903)

Derived analytically various flow relationships
ranging from wave mechanics to viscous resistance—
particularly that for the settling of spheres.

ERNST MACH (1838-1916)
One of the pioneersin the field of supersonic
aerodynamics.
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B TABLE 1.9 (continued)

OSBORNE REYNOL DS (1842-1912) LUDWIG PRANDTL (1875-1953)
Described original experimentsin many fields— Introduced concept of the boundary layer and is
cavitation, river model similarity, pipe resistance— generaly considered to be the father of present-day

and devised two parameters for viscous flow; adapted  fluid mechanics.
equations of motion of aviscous fluid to mean LEWISFERRY MOODY (1880-1953)

conditions of turbulent flow. Provided many innovations in thefield of hydraulic
JOHNWILLIAM STRUTT, LORD RAYLEIGH machinery. Proposed a method of correlating pipe
(1842-1919) resistance data which is widely used.

Investigated hydrodynamics of bubble collapse, ] ;

wave motion, jet instability, laminar flow analogies, =~ THEODOR VON KARMAN (1881-1963)

Osborne Reynolds

and dynamic similarity. On_e of the repognized_ Ieaders_of twent.ieth_ century
fluid mechanics. Provided major contributions to our

VINCENZ STROUHAL (1850-1922) understanding of surface resistance, turbulence, and

Investigated the phenomenon of “singing wires.” wake phenomena.

EDGAR BUCKINGHAM (1867-1940) PAUL RICHARD HEINRICH BLASIUS

Stimulated interest in the United States in the use of (1883-1970)

dimensional analysis. One of Prandt!’s students who provided an analytical

MORITZ WEBER (1871-1951) solution to the boundary layer equations. Also,

demonstrated that pipe resistance was related to the

Emphasized the use of the principles of similitudein Reynolds number.

fluid flow studies and formulated a capillarity
similarity parameter.

{-‘ .
@Adapted from Ref. 2; used by permission of the lowa Institute of Hydraulic Research, The University of lowa.
Ludwig Prandtl

ing of some of these contributors and reveals the long journey that makes up the history of fluid
mechanics. This list is certainly not comprehensive with regard to all of the past contributors, but
includes those who are mentioned in this text. As mention is made in succeeding chapters of the
various individuals listed in Table 1.9, a quick glance at this table will reveal where they fit into
the historical chain.

It is, of course, impossible to summarize the rich history of fluid mechanicsin a few para-
graphs. Only a brief glimpse is provided, and we hope it will stir your interest. References 2 to 5
are good starting points for further study, and in particular Ref. 2 provides an excellent, broad, eas-
ily read history. Try it—you might even enjoy it!

1.11 Chapter Summary and Study Guide

This introductory chapter discussed several fundamental aspects of fluid mechanics. Methods for
describing fluid characteristics both quantitatively and qualitatively are considered. For a quanti-
tative description, units are required, and in this text, two systems of units are used: the British Grav-
itational (BG) system (pounds, slugs, feet, and seconds) and the International (Sl) System (new-
tons, kilograms, meters, and seconds). For the qualitative description the concept of dimensionsis
introduced in which basic dimensions such as length, L, time, T, and mass, M, are used to provide
adescription of various quantities of interest. The use of dimensionsis helpful in checking the gen-
erality of equations, as well as serving as the basis for the powerful tool of dimensional analysis
discussed in detail in Chapter 7.

Various important fluid properties are defined, including fluid density, specific weight, spe-
cific gravity, viscosity, bulk modulus, speed of sound, vapor pressure, and surface tension. The ideal
gas law is introduced to relate pressure, temperature, and density in common gases, along with a
brief discussion of the compression and expansion of gases. The distinction between absolute and
gage pressure is introduced and this important idea is explored more fully in Chapter 2.

The following checklist provides a study guide for this chapter. When your study of the en-
tire chapter and end-of-chapter exercises has been completed you should be able to

= write out meanings of the terms listed here in the margin and understand each of the related
concepts. These terms are particularly important and are set in italic, bold, and color type
in the text.
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fluid
units
basic dimensions
dimensionally
homogeneous
density
specific weight
specific gravity
ideal gas law
absolute pressure
gage pressure
no-slip condition
rate of shearing strain
absolute viscosity
Newtonian fluid
non-Newtonian fluid
kinematic viscosity
bulk modulus
speed of sound
vapor pressure
surface tension

Review Problems

Chapter 1 W Introduction

determine the dimensions of common physical quantities.
determine whether an equation is a general or restricted homogeneous equation.
use both BG and Sl systems of units.

calculate the density, specific weight, or specific gravity of afluid from a knowledge of any
two of the three.

calculate the density, pressure, or temperature of an ideal gas (with a given gas constant)
from a knowledge of any two of the three.

relate the pressure and density of a gas as it is compressed or expanded using Egs. 1.14
and 1.15.

use the concept of viscosity to calculate the shearing stress in simple fluid flows.
calculate the speed of sound in fluids using Eq. 1.19 for liquids and Eq. 1.20 for gases.
determine whether boiling or cavitation will occur in a liquid using the concept of vapor
pressure.

use the concept of surface tension to solve simple problems involving liquid—gas or liquid—
solid—gas interfaces.

Some of the important equations in this chapter are:

Specific weight v = pg (1.6)
Specific gravity G=—"r— (L7)
PH,0@4°C
_P
Ideal gas law P=TT (1.8)
. . du
Newtonian fluid shear stress T=u d—y (2.9
Bulk modulus = —i 112
Speed of sound in an ideal gas c = VKRT (1.20)
Capillary rise in a tube h= Z‘TLF‘:SH (122)
Y
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Problems

Note: Unless specific values of required fluid properties are
given in the statement of the problem, use the values found in
thetableson theinside of the front cover. Problems designated
with an (*) areintended to be solved with the aid of a program-
mable calculator or acomputer. Problemsdesignated with a ()
are “open-ended” problems and require critical thinking in
that to work them one must make various assumptions and
provide the necessary data. There is not a unique answer to
these problems.

Answersto the even-numbered problemsarelisted at the
end of the book. Accessto the videos that accompany problems
can be obtained through the book’s web site, www.wiley.com/
college/munson. The lab-type problems can also be accessed on
thisweb site.

Section 1.2 Dimensions, Dimensional Homogeneity,
and Units

1.1 Theforce, F, of the wind blowing against a building is given by
F = CppV?2A/2, whereV isthe wind speed, p the density of the air,
A the cross-sectional area of the building, and Cpis a constant termed
the drag coefficient. Determine the dimensions of the drag coefficient.

1.2 Verify the dimensions, in both the FLT and MLT systems, of
the following quantities which appear in Table 1.1: (a) volume,
(b) acceleration, (c) mass, (d) moment of inertia (ared), and (€) work.

1.3 Determine the dimensions, in both the FLT system and the
MLT system, for (a) the product of force times acceleration, (b) the
product of force times velocity divided by area, and () momentum
divided by volume.

1.4 Verify the dimensions, in both the FLT system and the MLT
system, of the following quantities which appear in Table 1.1: (a)
frequency, (b) stress, (c) strain, (d) torque, and (€) work.

1.5 If uis aveocity, x a length, and t a time, what are the di-
mensions (in the MLT system) of (a) au/at, (b) 9°u/axat, and (c)
J(du/at) dx?

1.6 If pisapressure, V avelocity, and p afluid density, what are
the dimensions (in the MLT system) of (a) p/p, (b) pVp, and
(c) p/pV>?

1.7 If Visavelocity, € alength, and v afluid property (the kine-
matic viscosity) having dimensions of LT %, which of the fol-
lowing combinations are dimensionless: (a) Vv, (b) V€/v, (¢) V&,
(d) V/ev?

1.8 If Vis a velocity, determine the dimensions of Z, «, and G,
which appear in the dimensionally homogeneous equation

V=Za-1)+G
1.9 Thevolumerate of flow, Q, through a pipe containing aslowly
moving liquid is given by the equation
TRAp
8ul

where Risthe piperadius, Ap the pressure drop along the pipe, u a
fluid property called viscosity (FL™2T), and € the length of pipe.
What are the dimensions of the constant 77/8?Would you classify
this equation as a general homogeneous equation? Explain.

1.10 According to information found in an old hydraulics book,
the energy loss per unit weight of fluid flowing through a nozzle
connected to a hose can be estimated by the formula

h = (0.04 t0 0.09)(D/d)*v?/2g

where h is the energy loss per unit weight, D the hose diameter, d
the nozzle tip diameter, V the fluid velocity in the hose, and g the
acceleration of gravity. Do you think this equation is valid in any
system of units? Explain.

1.11 The pressure difference, Ap, across a partial blockage in an
artery (called a stenosis) is approximated by the equation

2
Ap = KU'M—V + Ku(ﬁ - 1) pV?
D A

where V is the blood velocity, u the blood viscosity (FL™2T),
p the blood density (ML™3), D the artery diameter, A, the area of the
unobstructed artery, and A, the area of the stenosis. Determinethe di-
mensions of the constants K, and K,. Would this equation be valid in
any system of units?

1.12 Assumethat the speed of sound, ¢, in afluid dependson an elas-
tic modulus, E,, with dimensions FL =2, and the fluid density, p, in the
form ¢ = (E,)%p)°. If this is to be a dimensionaly homogeneous
equation, what are the values for a and b? Is your result consistent
with the standard formula for the speed of sound? (See Eq. 1.19.)

1.13 A formula to estimate the volume rate of flow, Q, flowing
over adam of length, B, is given by the equation

Q = 3.09 BH?

where H is the depth of the water above the top of the dam (called
the head). This formula gives Q in ft*/s when B and H are in feet.
Is the constant, 3.09, dimensionless? Would this equation be valid
if units other than feet and seconds were used?

T1.14 Cite an example of arestricted homogeneous equation con-
tained in atechnical article found in an engineering journal in your
field of interest. Define all terms in the equation, explain why it is
a restricted equation, and provide a complete journa citation (ti-
tle, date, etc.).

1.15 Make use of Table 1.3 to express the following quantities in
Sl units: (a) 10.2 in./min, (b) 4.81 slugs, (c) 3.02 Ib, (d) 73.1 ft/<,
(e) 0.0234 b - s/ft2

1.16 Make use of Table 1.4 to express the following quantitiesin
BG units. (@) 142 km, (b) 814N/m? (c) 1.61kg/m?
(d) 0.0320N - m/s, (e) 5.67 mm/hr.

1.17 Express the following quantities in Sl units: (a) 160 acres,
(b) 15 gdllons (U.S.), (c) 240 miles, (d) 79.1 hp, () 60.3 °F.

1.18 For Table 1.3 verify the conversion relationships for: (a) area,
(b) density, (c) velocity, and (d) specific weight. Use the basic
conversion relationships: 1 ft = 0.3048 m; 11b = 4.4482 N; and
1slug = 14.594 kg.

1.19 For Table 1.4 verify the conversion relationships for: (a) ac-
celeration, (b) density, (c) pressure, and (d) volume flowrate. Use
the basic conversion relationships: 1 m = 3.2808 ft; IN = 0.22481
Ib; and 1 kg = 0.068521 slug.

1.20 Water flows from a large drainage pipe at a rate of
1200 gal/min. What is this volume rate of flow in (a) m¥s,
(b) liters/min, and (c) ft%/s?

1.21 An important dimensionless parameter in certain types of
fluid flow problemsis the Froude number defined asV/\/g¢, where
V is avelocity, g the acceleration of gravity, and ¢ alength. Deter-
mine the vaue of the Froude number for V = 10 ft/s,
g = 32.2ft/s%, and £ = 2 ft. Recalculate the Froude number using
Sl units for V, g, and €. Explain the significance of the results of
these calculations.
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Section 1.4 Measures of Fluid Mass and Weight

1.22 Obtain a photograph/image of a situation in which the den-
sity or specific weight of a fluid is important. Print this photo and
write a brief paragraph that describes the situation involved.

1.23 A tank contains 500 kg of a liquid whose specific gravity is
2. Determine the volume of the liquid in the tank.

1.24 Clouds can weigh thousands of pounds due to their liquid
water content. Often this content is measured in grams per cubic
meter (g/m®). Assume that a cumulus cloud occupies a volume of
one cubic kilometer, and its liquid water content is 0.2 g/m°. (a)
What is the volume of this cloud in cubic miles? (b) How much
does the water in the cloud weigh in pounds?

1.25 A tank of oil hasamassof 25 slugs. (a) Determineitsweight
in pounds and in newtons at the earth’s surface. (b) What would
be its mass (in slugs) and its weight (in pounds) if located on the
moon'’s surface where the gravitational attraction is approximately
one-sixth that at the earth’s surface?

1.26 A certain object weighs 300 N at the earth’s surface. Deter-
mine the mass of the object (in kilograms) and its weight (in new-
tons) when located on a planet with an acceleration of gravity equal
to 4.0 ft/s%

1.27 The density of a certain type of jet fuel is 775 kg/m®. De-
termine its specific gravity and specific weight.

1.28 A hydrometer is used to measure the specific gravity of lig-
uids. (See Video VV2.8.) For a certain liquid, a hydrometer read-
ing indicates a specific gravity of 1.15. What is the liquid’'s den-
sity and specific weight? Express your answer in S| units.

1.29 An open, rigid-walled, cylindrical tank contains 4 ft® of wa-
ter at 40 °F. Over a 24-hour period of time the water temperature
varies from 40 to 90 °F. Make use of the data in Appendix B to
determine how much the volume of water will change. For a tank
diameter of 2 ft, would the corresponding change in water depth
be very noticeable? Explain.

11.30 Estimate the number of pounds of mercury it would take to
fill your bathtub. List all assumptions and show all calculations.

1.31 A mountain climber’s oxygen tank contains 1 Ib of oxygen
when he begins histrip at sealevel where the acceleration of grav-
ity is 32.174 ft/s>. What is the weight of the oxygen in the tank
when he reaches the top of Mt. Everest where the acceleration of
gravity is 32.082 ft/s’? Assume that no oxygen has been removed
from the tank; it will be used on the descent portion of the climb.

1.32 The information on a can of pop indicates that the can con-
tains 355 mL. The mass of afull can of pop is 0.369 kg while an
empty can weighs 0.153 N. Determine the specific weight, den-
sity, and specific gravity of the pop and compare your results with
the corresponding values for water at 20 °C. Express your results
in Sl units.

*1.33 The variation in the density of water, p, with temperature,
T,intherange20°C = T = 50 °C, isgiven in the following table.

Density (kg/ ) |998.2 | 997.1| 995.7 | 994.1| 992.2 | 990.2| 988.1
Temperaiure(°C)| 20 | 25 | 30 | 35 | 40 | 45 | 50

Use these data to determine an empirical equation of the form
p = ¢; + T + c;T?which can be used to predict the density over
the range indicated. Compare the predicted values with the data
given. What is the density of water at 42.1 °C?

1.34 If 1 cup of cream having a density of 1005 kg/m? is turned
into 3 cups of whipped cream, determine the specific gravity and
specific weight of the whipped cream.

11.35 The presence of raindrops in the air during a heavy rain-
storm increases the average density of the air—water mixture. Esti-
mate by what percent the average air—water density is greater than
that of just till air. State all assumptions and show calculations.

Section 1.5 ldeal GasLaw

1.36 Determine the mass of air in a2 m® tank if the air is at room
temperature, 20 °C, and the absolute pressure within the tank is
200 kPa (abs).

1.37 Nitrogen is compressed to a density of 4 kg/m® under an ab-
solute pressure of 400 kPa. Determine the temperature in degrees
Celsius.

1.38 The temperature and pressure at the surface of Mars during
a Martian spring day were determined to be —50 °C and 900 Pa,
respectively. (a) Determine the density of the Martian atmosphere
for these conditions if the gas constant for the Martian atmosphere
is assumed to be equivalent to that of carbon dioxide. (b) Compare
the answer from part (a) with the density of the earth’s atmosphere
during a spring day when the temperature is 18 °C and the pres-
sure 101.6 kPa (abs).

1.39 A closed tank having a volume of 2ft® is filled with
0.30 Ib of a gas. A pressure gage attached to the tank reads 12 psi
when the gas temperature is 80 °F. There is some question as to
whether the gas in the tank is oxygen or helium. Which do you
think it is? Explain how you arrived at your answer.

1.40 A compressed air tank contains 5 kg of air at a temperature
of 80 °C. A gage on the tank reads 300 kPa. Determine the vol-
ume of the tank.

1.41 A rigid tank contains air at a pressure of 90 psiaand a tem-
perature of 60 °F. By how much will the pressure increase as the
temperature is increased to 110 °F?

1.42 The helium-filled blimp shown in Fig. P1.42 is used at var-
ious athletic events. Determine the number of pounds of helium
within it if its volume is 68,000 ft* and the temperature and pres-
sure are 80 °F and 14.2 psia, respectively.

B FIGURE Pi1.42

*1.43 Develop a computer program for calculating the density
of an ideal gas when the gas pressure in pascals (abs), the tem-
perature in degrees Celsius, and the gas constant in J/kg - K are
specified. Plot the density of helium as afunction of temperature
from 0 °C to 200 °C and pressures of 50, 100, 150, and 200 kPa
(abs).

Section 1.6 Viscosity (Also see Lab Problems 1.104
and 1.105.)
1.44 Obtain a photograph/image of a situation in which the vis-

cosity of a fluid is important. Print this photo and write a brief
paragraph that describes the situation involved.

1.45 For flowing water, what is the magnitude of the velocity gra-
dient needed to produce a shear stress of 1.0 N/m??



1.46 Make use of the data in Appendix B to determine the dy-
namic viscosity of glycerin at 85 °F. Express your answer in both
Sl and BG units.

1.47 One type of capillary-tube viscometer is shown in Video
V1.5 and in Fig. P1.47. For this device the liquid to be tested is
drawn into the tube to a level above the top etched line. The time
is then obtained for the liquid to drain to the bottom etched line.
The kinematic viscosity, v, in m%s s then obtained from the equa-
tion » = KR* where K is a constant, R is the radius of the capil-
lary tube in mm, and t is the drain time in seconds. When glyc-
erinat 20°Cisused asacalibration fluid in aparticular viscometer,
the drain time is 1430 s. When a liquid having a density of 970
kg/m?® is tested in the same viscometer the drain time is 900 s.
What is the dynamic viscosity of this liquid?

Glass
strengthening ——¢
bridge

Etched lines

Capillary
tube

B FIGURE P1.47

1.48 The viscosity of a soft drink was determined by using a cap-
illary tube viscometer similar to that shown in Fig. P1.47 and Video
V1.5, For this device the kinematic viscosity, v, is directly propor-
tiona to the time, t, that it takes for a given amount of liquid to
flow through a small capillary tube. That is, v = Kt. The following
data were obtained from regular pop and diet pop. The corre-
sponding measured specific gravities are also given. Based on these
data, by what percent is the absolute viscosity, u, of regular pop
greater than that of diet pop?

Regular pop Diet pop
t(s) 377.8 300.3
G 1.044 1.003

1.49 Determine the retio of the dynamic viscosity of water to air at
a temperature of 60 °C. Compare this vaue with the corresponding
ratio of kinematic viscosities. Assume the air is at standard atmos-
pheric pressure.

1.50 Theviscosity of acertain fluidis5 X 10~ poise. Determine
its viscosity in both Sl and BG units.

1.51 The kinematic viscosity of oxygen at 20 °C and a pressure
of 150 kPa (abs) is 0.104 stokes. Determine the dynamic viscosity
of oxygen at this temperature and pressure.

*1.52 Fluids for which the shearing stress, 7, is not linearly
related to the rate of shearing strain, vy, are designated as non-
Newtonian fluids. Such fluids are commonplace and can exhibit
unusual behavior, asshownin Video VV1.6. Some experimental data
obtained for a particular non-Newtonian fluid at 80 °F are shown
below.
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7(bf) | 0 | 211 | 78 | 185 | 317
yey | o | s0o | 100 | 150 | 200

Plot these data and fit a second-order polynomia to the data using
a suitable graphing program. What is the apparent viscosity of this
fluid when the rate of shearing strain is 70 s? Is this apparent vis-
cosity larger or smaller than that for water at the same tempera-
ture?

1.53 Water flows near aflat surface and some measurements of the
water velocity, u, parallel to the surface, at different heights, y, above
the surface are obtained. At the surface y = 0. After an analysis of
the data, the lab technician reports that the velocity distribution in
therange 0 < y < 0.1 ft is given by the equation

u=081+ 92y + 41 x 10%?

with uin ft/s when y isin ft. (a) Do you think that this equation
would be valid in any system of units? Explain. (b) Do you think
this equation is correct? Explain. You may want to look at Video
1.4 to help you arrive at your answer.

1.54 Calculate the Reynolds numbers for the flow of water and
for ar through a 4-mm-diameter tube, if the mean velocity is 3 m/s
and the temperature is 30 °C in both cases (see Example 1.4). As-
sume the air is at standard atmospheric pressure.

1.55 For air at standard atmospheric pressure the vaues of the
constants that appear in the Sutherland equation (Eq. 1.10) are
C = 1458 X 10 °kg/(m-s-K¥?) and S= 110.4K. Use these
values to predict the viscosity of air at 10 °C and 90 °C and com-
pare with values given in Table B.4 in Appendix B.

*1.56 Usethe values of viscosity of air givenin Table B.4 at tem-
peratures of 0, 20, 40, 60, 80, and 100 °C to determine the con-
stants C and Swhich appear in the Sutherland equation (Eq. 1.10).
Compare your results with the values given in Problem 1.55. (Hint:
Rewrite the equation in the form

T2 ( 1) S
- | = T 4+ —
o C C
and plot T¥%u versus T. From the slope and intercept of this curve,
C and S can be obtained.)

1.57 The viscosity of afluid plays a very important role in deter-
mining how afluid flows. (See Video VV1.3.) The value of the vis-
cosity depends not only on the specific fluid but also on the fluid
temperature. Some experiments show that when aliquid, under the
action of a constant driving pressure, is forced with a low veloc-
ity, V, through a small horizontal tube, the velocity is given by the
equation V = K/u. Inthis equation K is a constant for a given tube
and pressure, and w is the dynamic viscosity. For a particular lig-
uid of interest, the viscosity is given by Andrade’s equation (Eg.
11D withD = 5 X 10~ 7 Ib- s/ft? and B = 4000 °R. By what per-
centage will the velocity increase as the liquid temperature is in-
creased from 40 °F to 100 °F? Assume all other factors remain con-
Stant.

*1.58 Use the value of the viscosity of water given in Table B.2
at temperatures of 0, 20, 40, 60, 80, and 100 °C to determine the
constants D and B which appear in Andrade’s equation (Eq. 1.11).
Calculate the value of the viscosity at 50 °C and compare with
the value given in Table B.2. (Hint: Rewrite the equation in the
form

1
In/_L:(B)?+ InD

and plot In u versus 1/T. From the slope and intercept of thiscurve,
B and D can be obtained. If a nonlinear curve-fitting program is
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available the constants can be obtained directly from Eq. 1.11 with-
out rewriting the eguation.)

1.59 For a pardlel plate arrangement of the type shown in Fig.
1.5 it is found that when the distance between plates is 2 mm, a
shearing stress of 150 Pa develops at the upper plate when it is
pulled at a velocity of 1 m/s. Determine the viscosity of the fluid
between the plates. Express your answer in S| units.

1.60 Two flat plates are oriented parallel above afixed lower plate
as shown in Fig. P1.60. The top plate, located a distance b above
the fixed plate, is pulled along with speed V. The other thin plate
is located a distance cb, where 0 < ¢ < 1, above the fixed plate.
This plate moves with speed V,, which is determined by the vis-
cous shear forces imposed on it by the fluids on its top and bot-
tom. The fluid on the top is twice as viscous as that on the bot-
tom. Plot the ratio V,/V as a function of ¢ for 0 < ¢ < 1.

b

cb u
v

—_—V

»
Y
<

B FIGURE P1.60

1.61 There are many fluids that exhibit non-Newtonian behavior
(see, for example, Video V1.6). For a given fluid the distinction
between Newtonian and non-Newtonian behavior is usually based
on measurements of shear stress and rate of shearing strain. As-
sume that the viscosity of blood is to be determined by measure-
ments of shear stress, 7, and rate of shearing strain, du/dy, ob-
tained from a small blood sample tested in a suitable viscometer.
Based on the data given below determine if the blood is a New-
tonian or non-Newtonian fluid. Explain how you arrived at your
answer.

7(N/m?) | 004006012 [0.18] 030 | 052| 112 | 2.10
dwdy %) | 22514501 11.251 225 45.0 [ 90,01 225 | 450

1.62 The ded shown in Fig. P1.62 dlides dong on a thin horizontal
layer of water between the ice and the runners. The horizontal force
that the water puts on the runners is equal to 1.2 Ib when the ded's
speed is 50 ft/s. Thetotal areaof both runnersin contact with the wa-
ter is 0.08 ft?, and the viscosity of the water is 3.5 X 107° Ib- s/ft2
Determine the thickness of the water layer under the runners. Assume
alinear velocity distribution in the water layer.

B FIGURE Pi1.62

1.63 A 25-mm-diameter shaft is pulled through acylindrical bear-
ing as shown in Fig. P1.63. The lubricant that fills the
0.3-mm gap between the shaft and bearing is an oil having a kine-
matic viscosity of 8.0 X 10™* m?/s and a specific gravity of 0.91.
Determine the force P required to pull the shaft at a velocity of 3
m/s. Assume the velocity distribution in the gap is linear.

‘ Bearing ‘ Lubricant

; Shaft

| 0.5m ]
B FIGURE P1.63

1.64 A 10-kg block slides down a smooth inclined surface as
shown in Fig. P1.64. Determine the terminal velocity of the
block if the 0.1-mm gap between the block and the surface con-
tains SAE 30 oil at 60 °F. Assume the velocity distribution in
the gap is linear, and the area of the block in contact with the
oil is 0.1 m?,

0.1 mm gap

20°

B FIGURE P1.64

1.65 A layer of water flows down an inclined fixed surface with
the velocity profile shown in Fig. P1.65. Determine the magnitude
and direction of the shearing stressthat the water exerts on the fixed
surface for U = 2m/sand h = 0.1 m.

B FIGURE P1.65

*1.66 Standard air flows past aflat surface and velocity measure-
ments near the surface indicate the following distribution:

y (ft) | 0006 | 001 | 002 | 004 | 006 | 008
uftyss | 074 | 151 | 303 | 637 | 1021 | 1443

The coordinate y is measured normal to the surface and u is the
velocity parallel to the surface. (a) Assume the velocity distribu-
tion is of the form

u=Cy + Cy*

and use astandard curve-fitting technique to determine the constants
C; and C,. (b) Make use of the results of part (a) to determine the
magnitude of the shearing stressat thewal (y = 0)andaty = 0.05 ft.

1.67 A new computer drive is proposed to have a disc, as shown
in Fig. P1.67. The disc is to rotate at 10,000 rpm, and the reader
head is to be positioned 0.0005 in. above the surface of the disc.
Estimate the shearing force on the reader head as result of the air
between the disc and the head.
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B FIGURE P1.67

1.68 The space between two 6-in.-long concentric cylinders is
filled with glycerin (viscosity = 8.5 X 10~2Ib - s/ft?). The inner
cylinder has aradius of 3 in. and the gap width between cylinders
is 0.1 in. Determine the torque and the power required to rotate
the inner cylinder at 180 rev/min. The outer cylinder is fixed. As-
sume the velocity distribution in the gap to be linear.

1.69 A pivot bearing used on the shaft of an electrical instrument
isshown in Fig. P1.69. An oil with aviscosity of u = 0.010 Ib- g/ft?
fills the 0.001-in. gap between the rotating shaft and the station-
ary base. Determine the frictional torque on the shaft when it ro-
tates at 5,000 rpm.

<_|_> 5,000 rpm

[«— 0.2 in.

0.001 in 1=0.010 Ib - s/ft?

B FIGURE P1.69

1.70 The viscosity of liquids can be measured through the use of a
rotating cylinder viscometer of the type illustrated in Fig. P1.70. In
this device the outer cylinder is fixed and the inner cylinder is rotated
with an angular velocity, w. The torque I required to develop w is
measured and the viscosity iscal culated from these two measurements.
(a) Develop an equation relating w, , 7, ¢, R,, and R. Neglect
end effects and assume the velocity distribution in the gap is lin-
ear. (b) The following torque-angular velocity data were obtained
with arotating cylinder viscometer of the type discussed in part ().

Torque(ft - Ib)

Angular
velocity (rad/s)

[131 | 26.0 | 395 | 527 | 649 | 786

‘1.0 ‘ 2.0‘ 3.0‘ 4.0‘ 5.0‘ 6.0
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For this viscometer R, = 2.50in., R, = 2.45in., and ¢ = 5.00in.
Make use of these data and a standard curve-fitting program to de-
termine the viscosity of the liquid contained in the viscometer.

Fixed
outer
cylinder

T
\ o 7
[R
Ry
Rotating

inner
cylinder

B FIGURE P1.70

1.71 A 12-in.-diameter circular plate is placed over a fixed bot-
tom plate with a0.1-in. gap between the two platesfilled with glyc-
erin as shown in Fig. P1.71. Determine the torque required to ro-
tate the circular plate slowly at 2 rpm. Assume that the velocity
distribution in the gap islinear and that the shear stress on the edge
of the rotating plate is negligible.

Torque
- /

B FIGURE P1.71

Rotating plate

N

0.1 in. gap

T1.72 Vehicle shock absorbers damp out oscillations caused by
road roughness. Describe how a temperature change may affect the
operation of a shock absorber.

1.73 Some measurements on a blood sample at 37 °C (98.6 °F)
indicate a shearing stress of 0.52 N/m? for a corresponding rate
of shearing strain of 200 s . Determine the apparent viscosity
of the blood and compare it with the viscosity of water at the
same temperature.

Section 1.7 Compressibility of Fluids

1.74 Obtain a photograph/image of a situation in which the com-
pressibility of afluidisimportant. Print this photo and write a brief
paragraph that describes the situation involved.

1.75 A sound wave is observed to travel through a liquid with a
speed of 1500 m/s. The specific gravity of the liquid is 1.5. De-
termine the bulk modulus for this fluid.

1.76 Estimatetheincreasein pressure (in psi) required to decrease
a unit volume of mercury by 0.1%.

1.77 A 1-m?volume of water is contained in arigid container. Es-
timate the change in the volume of the water when a piston applies
a pressure of 35 MPa.

1.78 Determine the speed of sound at 20 °C in (a) air, (b) helium,
and (c) natura gas (methane). Express your answer in m/s.

1.79 Air is enclosed by a rigid cylinder containing a piston. A
pressure gage attached to the cylinder indicates an initial reading
of 25 psi. Determine the reading on the gage when the piston has
compressed the air to one-third its origina volume. Assume the



36

Chapter 1 W Introduction

compression process to be isothermal and the local atmospheric
pressure to be 14.7 psi.

1.80 Repeat Problem 1.79 if the compression process takes place
without friction and without heat transfer (isentropic process).

1.81 Carbon dioxide at 30 °C and 300 kPa absolute pressure ex-
pands isothermally to an absolute pressure of 165 kPa. Determine
the final density of the gas.

1.82 Natura gasat 70 °F and standard atmospheric pressure of 14.7
psi (abs) is compressed isentropically to a new absolute pressure of
70 psi. Determine the final density and temperature of the gas.

1.83 Compare the isentropic bulk modulus of air at 101 kPa (abs)
with that of water at the same pressure.

*1.84 Develop a computer program for calculating the final gage
pressure of gas when the initial gage pressure, initial and final vol-
umes, atmospheric pressure, and the type of process (isothermal or
isentropic) are specified. Use BG units. Check your program
against the results obtained for Problem 1.79.

1.85 An important dimensionless parameter concerned with very
high-speed flow is the Mach number, defined as Vic, where V is the
speed of the object such as an airplane or projectile, and c is the
speed of sound in the fluid surrounding the object. For a projectile
traveling at 800 mph through air at 50 °F and standard atmospheric
pressure, what is the value of the Mach number?

1.86 Jet airlinerstypically fly at atitudes between approximately O
to 40,000 ft. Make use of the datain Appendix C to show on agraph
how the speed of sound varies over this range.

1.87 (See Fluids in the News article titled “This water jet is a
blast,” Section 1.7.1) By what percent is the volume of water de-
creased if its pressure is increased to an equivalent to 3000 at-
mospheres (44,100 psi)?

Section 1.8 Vapor Pressure

1.88 During a mountain climbing trip it is observed that the wa-
ter used to cook ameal boils at 90 °C rather than the standard 100
°C at sea level. At what dtitude are the climbers preparing their
meal ? (See Tables B.2 and C.2 for data needed to solve this prob-
lem.)

1.89 When afluid flows through a sharp bend, low pressures may
develop in localized regions of the bend. Estimate the minimum
absolute pressure (in psi) that can develop without causing cavita-
tion if the fluid is water at 160 °F.

1.90 Estimate the minimum absolute pressure (in pascals) that can
be developed at the inlet of a pump to avoid cavitation if the fluid
is carbon tetrachloride at 20 °C.

1.91 When water at 70 °C flows through a converging section of
pipe, the pressure decreases in the direction of flow. Estimate the
minimum absolute pressure that can develop without causing cav-
itation. Express your answer in both BG and S| units.

1.92 At what atmospheric pressure will water boil at 35 °C? Ex-
press your answer in both SI and BG units.

Section 1.9 Surface Tension

1.93 Obtain a photograph/image of a situation in which the sur-
face tension of a fluid is important. Print this photo and write a
brief paragraph that describes the situation involved.

1.94 When a 2-mm-diameter tube is inserted into a liquid in an
open tank, the liquid is observed to rise 10 mm above the free sur-
face of the liquid. The contact angle between the liquid and the tube

is zero, and the specific weight of the liquid is 1.2 X 10* N/m?.
Determine the value of the surface tension for this liquid.

1.95 Small droplets of carbon tetrachloride at 68 °F are formed
with a spray nozzle. If the average diameter of the droplets is
200 wm, what is the difference in pressure between the inside and
outside of the droplets?

1.96 A 12-mm-diameter jet of water discharges vertically into the
atmosphere. Due to surface tension the pressure inside the jet will
be dlightly higher than the surrounding atmospheric pressure. De-
termine this difference in pressure.

1.97 Asshownin VideoV 1.9, surfacetension forces can be strong
enough to alow a double-edge steel razor blade to “float” on wa-
ter, but a single-edge blade will sink. Assume that the surface ten-
sion forces act at an angle 6 relative to the water surface as shown
in Fig. PL97. (a) The mass of the double-edge blade is
0.64 X 1073 kg, and the total length of its sides is 206 mm. De-
termine the value of 6 required to maintain equilibrium between
the blade weight and the resultant surface tension force. (b) The
mass of the single-edge blade is 2.61 X 10~ 3kg, and the total
length of its sides is 154 mm. Explain why this blade sinks. Sup-
port your answer with the necessary calculations.

Surface tension

force
0

B FIGURE P1.97

1.98 To measurethe water depth in alarge open tank with opaque
walls, an open vertical glass tube is attached to the side of the
tank. The height of the water column in the tube is then used as
a measure of the depth of water in the tank. (a) For a true water
depth in the tank of 3 ft, make use of Eq. 1.22 (with # = 0°) to
determine the percent error due to capillarity as the diameter of
the glass tube is changed. Assume a water temperature of 80 °F.
Show your results on a graph of percent error versus tube diam-
eter, D, intherange 0.1in. < D < 1.0in. (b) If you want the
error to be less than 1%, what is the smallest tube diameter al-
lowed?

1.99 Under theright conditions, it is possible, due to surface ten-
sion, to have meta objects float on water. (See Video VV1.9.) Con-
sider placing a short length of asmall diameter steel (sp. wt. = 490
Ib/ft%) rod on a surface of water. What is the maximum diameter
that the rod can have before it will sink? Assume that the surface
tension forces act vertically upward. Note: A standard paper clip
has a diameter of 0.036 in. Partially unfold a paper clip and see
if you can get it to float on water. Do the results of this experi-
ment support your analysis?

1.100 An open, clean glass tube, having a diameter of 3 mm, is
inserted vertically into a dish of mercury at 20 °C. How far will
the column of mercury in the tube be depressed?

1.101 Anopen, clean glasstube(f = 0°) isinserted vertically into
a pan of water. What tube diameter is needed if the water level in
the tube is to rise one tube diameter (due to surface tension)?

1.102 Determine the height that water at 60 °F will rise due to
capillary action in a clean, 3-in.-diameter tube. What will be the
height if the diameter is reduced to 0.01 in.?

1.103 (See Fluidsin the News article titled “\Walking on water,”
Section 1.9.) (a) The water strider bug shown in Fig. P1.103 is



supported on the surface of a pond by surface tension acting along
the interface between the water and the bug's legs. Determine the
minimum length of this interface needed to support the bug. As-
sume the bug weighs 10™* N and the surface tension force acts
vertically upwards. (b) Repeat part (a) if surface tension were to
support a person weighing 750 N.

B FIGURE P1.103

B Lab Problems

1.104 This problem involves the use of a Stormer viscometer
to determine whether a fluid is a Newtonian or a non-Newton-
ian fluid. To proceed with this problem, go to Appendix H,
which is located on the book’s web site, www.wiley.com/col-
lege/munson.

1.105 This problem involves the use of acapillary tube viscometer to
determine the kinematic viscosity of water as a function of tempera-
ture. To proceed with this problem, go to Appendix H, which islocated
on the book’s web site, www.wiley.com/college/munson.
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B Life Long Learning Problems

1.106 Although there are numerous non-Newtonian fluids that oc-
cur naturally (quick sand and blood among them), with the advent
of modern chemistry and chemical processing, many new, man-
made non-Newtonian fluids are now available for avariety of novel
application. Obtain information about the discovery and use of
newly developed non-Newtonian fluids. Summarize your findings
in abrief report.

1.107 For years, lubricating oils and greases obtained by refining
crude oil have been used to lubricate moving parts in a wide vari-
ety of machines, motors, and engines. With the increasing cost of
crude oil and the potential for the reduced availability of it, the
need for nonpetroleum based lubricants hasincreased considerably.
Obtain information about non-petroleum based lubricants. Sum-
marize your findings in a brief report.

1.108 It is predicted that nano-technology and the use of nano-sized
objects will allow many processes, procedures, and products that, as
of now, are difficult for us to comprehend. Among new nano-
technology aress is that of nano-scale fluid mechanics. Fluid behav-
ior at the nano-scale can be entirely different than that for the usual
everyday flows with which we are familiar. Obtain information about
various aspects of nano-fluid mechanics. Summarize your findingsin
a brief report.

B FE Exam Problems

Sample FE (Fundamentals of Engineering) exam question for fluid
mechanics are provided on the book’s web site, www.wiley.com/
college/munson.
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CHAPTER OPENING PHoTO: Floating iceberg: An iceberg is a large piece of fresh water ice that originated as
snow in a glacier or ice shelf and then broke off to float in the ocean. Although the fresh water ice is lighter
than the salt water in the ocean, the difference in densities is relatively small. Hence, only about one ninth of
the volume of an iceberg protrudes above the ocean’s surface, so that what we see floating is literaly “just the
tip of the iceberg.” (Photograph courtesy of Corbis Digital Stock/Corbis Images)

Learning Objectives

After completing this chapter, you should be able to:
m determine the pressure at various locations in a fluid at rest.

m explain the concept of manometers and apply appropriate equations to
determine pressures.

m caculate the hydrostatic pressure force on a plane or curved submerged surface.

m calculate the buoyant force and discuss the stability of floating or submerged
objects.

In this chapter we will consider an important class of problems in which the fluid is either at rest
or moving in such a manner that there is no relative motion between adjacent particles. In both
instances there will be no shearing stresses in the fluid, and the only forces that develop on the sur-
faces of the particles will be due to the pressure. Thus, our principal concern is to investigate pres-
sure and its variation throughout a fluid and the effect of pressure on submerged surfaces. The
absence of shearing stresses greatly smplifies the analysis and, as we will see, alows us to obtain
relatively simple solutions to many important practical problems.

21 Pressure at a Point

As we briefly discussed in Chapter 1, the term pressure is used to indicate the normal force per
unit area at a given point acting on a given plane within the fluid mass of interest. A question that
immediately arises is how the pressure at a point varies with the orientation of the plane passing
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p, 6x &y

B FIGURE 2.1 Forceson an arbitrary wedge-shaped element of fluid.

through the point. To answer this question, consider the free-body diagram, illustrated in Fig. 2.1,
that was obtained by removing a small triangular wedge of fluid from some arbitrary location
within afluid mass. Since we are considering the situation in which there are no shearing stresses,
the only external forces acting on the wedge are due to the pressure and the weight. For ssimplic-
ity the forces in the x direction are not shown, and the z axis is taken as the vertical axis so the
weight acts in the negative z direction. Although we are primarily interested in fluids at rest, to
make the analysis as general as possible, we will allow the fluid element to have accelerated mo-
tion. The assumption of zero shearing stresses will still be valid so long as the fluid element moves
as arigid body; that is, there is no relative motion between adjacent elements.

The equations of motion (Newton’s second law, F = ma) in the y and z directions are, re-

spectively,
. OX 0y 0z
> F, = p, x5z — psoxdssind = p 5
OX 8y 6z OX 8y 6z
> F, = p,8x8y — p;xdscosh — y il Rt}

where ps, py, and p, are the average pressures on the faces, y and p are the fluid specific weight
and density, respectively, and a,, a, the accelerations. Note that a pressure must be multiplied
by an appropriate area to obtain the force generated by the pressure. It follows from the geom-
etry that

8y = 8scos 8z = 8ssinf

so that the equations of motion can be rewritten as

oy
The pressure at a - ps= pa,—
point in a fluid at By ° & 2
rest is independent 0z
of direction. P. = Ps = (pa, + 7v) 5

Since we are redlly interested in what is happening at a point, we take the limit as §x, 8y, and 6z
approach zero (while maintaining the angle 6), and it follows that

e : Py = Ps Pz = Ps

or ps = py = p,. Theangle 6 was arbitrarily chosen so we can conclude that the pressure at a point
inafluid at rest, or in motion, isindependent of direction as long as there are no shearing stresses
present. This important result is known as Pascal’s law, named in honor of Blaise Pascal (1623—
1662), a French mathematician who made important contributionsin the field of hydrostatics. Thus,
as shown by the photograph in the margin, at the junction of the side and bottom of the beaker, the
pressure is the same on the side as it is on the bottom. In Chapter 6 it will be shown that for mov-
ing fluids in which there is relative motion between particles (so that shearing stresses develop), the
normal stress at a point, which corresponds to pressure in fluids at rest, is not necessarily the same
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in all directions. In such cases the pressure is defined as the average of any three mutually per-
pendicular normal stresses at the point.

2.2 Basic Equation for Pressure Field

The pressure may
vary across a fluid
particle.

Although we have answered the question of how the pressure at a point varies with direction, we
are now faced with an equally important question—how does the pressure in afluid in which there
are no shearing stresses vary from point to point? To answer this question consider a small rectan-
gular element of fluid removed from some arbitrary position within the mass of fluid of interest
asillustrated in Fig. 2.2. There are two types of forces acting on this element: surface forces due
to the pressure, and a body force equal to the weight of the element. Other possible types of body
forces, such as those due to magnetic fields, will not be considered in this text.

If we let the pressure at the center of the element be designated as p, then the average pres-
sure on the various faces can be expressed in terms of p and its derivatives, as shown in Fig. 2.2.
We are actually using a Taylor series expansion of the pressure at the element center to approxi-
mate the pressures a short distance away and neglecting higher order terms that will vanish as we
let 8%, 8y, and 6z approach zero. This is illustrated by the figure in the margin. For simplicity the
surface forces in the x direction are not shown. The resultant surface force in the y direction is

ap 6y> ( ap 6y>
= _— —_ + —_—
oF, (p oy 2 O0X 6z p oy 2 OX 6z

Ip
oF, = —a—y OX 8y 6z

or

Similarly, for the x and z directions the resultant surface forces are
oF, = _% OX 8y 6z oF, = _® OX Oy 06z
9X 0z
The resultant surface force acting on the element can be expressed in vector form as
8F = 8F,i + oF,] + 8Fk

dpdz

(p+—§f~v)5x§y
z
: oz
[0 P23 x5 ——f| > R e O L
o paam
e A Sx y6x0ydz
Sy |
(p—-§E§E)5x5y
R
~ y

X

B FIGURE 2.2 surface and body forces acting on small fluid
element.



The resultant sur-
face force acting on
asmall fluid ele-
ment depends only
on the pressure
gradient if there are
no shearing
stresses present.
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or
P P~ IPa
=——i+—]+—= .
oF <6XI ayj P k>3x6y62 (2.2)

where i, j, and k are the unit vectors along the coordinate axes shown in Fig. 2.2. The group
of terms in parentheses in Eq. 2.1 represents in vector form the pressure gradient and can be
written as

P~ JIp-~ I~
L
x| ay’ | oz

where

00 0)- 0,

oy T e

V()=

and the symbol V is the gradient or “del” vector operator. Thus, the resultant surface force per
unit volume can be expressed as

oFs

SXdy 8z

Since the z axis is vertical, the weight of the element is
—5Wk = —y 8x 8y dzk

where the negative sign indicates that the force due to the weight is downward (in the negative z
direction). Newton’s second law, applied to the fluid element, can be expressed as

> 8F = éma

where 3, 8F represents the resultant force acting on the element, a is the acceleration of the ele-
ment, and ém is the element mass, which can be written as p 6x 8y éz. It follows that

> 6F = 6F, — 8Wk = éma
or
—Vpoxdydz — y ox 8y dzk = p Sx 8y dza
and, therefore,
—~Vp — yk = pa (2.2)

Equation 2.2 isthe general equation of motion for afluid in which there are no shearing stresses.
We will use this eguation in Section 2.12 when we consider the pressure distribution in a mov-
ing fluid. For the present, however, we will restrict our attention to the special case of a fluid
at rest.

2.3 Pressure Variation in a Fluid at Rest

For afluid at rest a = 0 and Eqg. 2.2 reduces to
Vp + 'ylz =0
or in component form

J J J
P_g ®_, P_

= - 2.3
ox ay az 7 23

These equations show that the pressure does not depend on x or y. Thus, as we move from
point to point in a horizontal plane (any plane parallel to the x—y plane), the pressure does not
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For liquids or gases
at rest, the pressure
gradient in the ver-
tical direction at
any point in a fluid
depends only on the
specific weight of
thefluid at that
point.

/N

V2.1 Pressureon a

change. Since p depends only on z, the last of Egs. 2.3 can be written as the ordinary differ-
ential equation

dp _

@ 0 (2.49)

Equation 2.4 is the fundamental equation for fluids at rest and can be used to determine how
pressure changes with elevation. This equation and the figure in the margin indicate that the pres-
sure gradient in the vertical direction is negative; that is, the pressure decreases as we move up-
ward in afluid at rest. There is no requirement that y be a constant. Thus, it is valid for fluids with
constant specific weight, such as liquids, as well as fluids whose specific weight may vary with
elevation, such as air or other gases. However, to proceed with the integration of Eq. 2.4 it is nec-
essary to stipulate how the specific weight varies with z

If the fluid is flowing (i.e., not at rest with a = 0), then the pressure variation is much more
complex than that given by Eq. 2.4. For example, the pressure distribution on your car as it is dri-
ven aong the road varies in a complex manner with x, y, and z. This idea is covered in detail in
Chapters 3, 6, and 9.

2.3.1 Incompressible Fluid

Since the specific weight is equal to the product of fluid density and acceleration of gravity
(y = pg), changes in y are caused either by a change in p or g. For most engineering applications
the variation in g is negligible, so our main concern is with the possible variation in the fluid den-
sity. In general, afluid with constant density is called an incompressible fluid. For liquids the vari-
ation in density is usualy negligible, even over large vertical distances, so that the assumption of
constant specific weight when dealing with liquids is a good one. For this instance, Eq. 2.4 can be

directly integrated
P2 Z
J dp = —yJ dz
Py Z

p—p=—¥2z%—z)

to yield

or

pr— P =¥z~ 2z) (255

where p, and p, are pressures at the vertical elevations z; and z,, asisillustrated in Fig. 2.3.
Equation 2.5 can be written in the compact form

pp— p.=vh (2.6)
or
pp=vyh+p, (2.7)

where h is the distance, z, — z, which is the depth of fluid measured downward from the location
of p,. Thistype of pressure distribution is commonly called a hydrostatic distribution, and Eq. 2.7

Free surface
(pressure = p,)

y B FIGURE 2.3 Notation for
pressure variation in a fluid at rest with a
X free surface.
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pA=0 _, shows that in an incompressible fluid at rest the pressure varies linearly with depth. The pressure
A=Y g increase with depth to “hold up” the fluid above it.
It can also be observed from Eq. 2.6 that the pressure difference between two points can be
specified by the distance h since
23.1 ft .
h=PL™ P
W=101Ib Y
In this case h is called the pressure head and is interpreted as the height of a column of fluid of
specific weight y required to give a pressure difference p, — p,. For example, a pressure differ-
ence of 10 psi can be specified in terms of pressure head as 23.1 ft of water (y = 62.4 |b/ft3), or
A water 518 mm of Hg (y = 133 kN/m?). Asiillustrated by the figure in the margin, a 23.1-ft-tall column
1 of water with a cross-sectional area of 1 in.? weighs 10 Ib.
pA=101b
F | ui d s i n t h e N e w s

Giraffe’'sblood pressure A giraffe’'slong neck allowsit to graze
up to 6 m above the ground. It can also lower its head to drink at
ground level. Thus, in the circul atory system there is a significant
hydrostatic pressure effect due to this elevation change. To main-
tain blood to its head throughout this change in elevation, the gi-
raffe must maintain a relatively high blood pressure at heart
|level—approximately two and a half times that in humans. To
prevent rupture of blood vesselsin the high-pressure lower leg re-

gions, giraffes have a tight sheath of thick skin over their lower
limbs which acts like an elastic bandage in exactly the same way
as do the g-suits of fighter pilots. In addition, valves in the upper
neck prevent backflow into the head when the giraffe lowers its
head to ground level. It isalso thought that blood vesselsin the gi-
raffe’s kidney have a special mechanism to prevent large changes
in filtration rate when blood pressure increases or decreases with
its head movement. (See Problem 2.14.)

When one works with liquids there is often a free surface, asisillustrated in Fig. 2.3, and it
is convenient to use this surface as a reference plane. The reference pressure p, would correspond
to the pressure acting on the free surface (which would frequently be atmospheric pressure), and
thus if we let p, = p, in Eq. 2.7 it follows that the pressure p at any depth h below the free sur-
face is given by the equation:

p=vyh+ py (2.8)

Asisdemonstrated by Eq. 2.7 or 2.8, the pressure in a homogeneous, incompressible fluid
at rest depends on the depth of the fluid relative to some reference plane, and it is not influ-
enced by the size or shape of the tank or container in which the fluid is held. Thus, in Fig. 2.4

Liquid surface
(p=pg)

BFIGURE 2.4 Flud
pressure in containers of arbitrary
shape.

Specific weight y
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the pressure is the same at all points along the line AB even though the containers may have
the very irregular shapes shown in the figure. The actual value of the pressure along AB de-
pends only on the depth, h, the surface pressure, p,, and the specific weight, vy, of the liquid in
the container.

L SLUTTIERY Pressure-Depih Relationship

GIVEN Because of aleak in a buried gasoline storage tank, Open

water has seeped in to the depth shown in Fig. E2.1. The specific

gravity of the gasolineis SG = 0.68.

FIND Determine the pressure at the gasoline-water interface T

and at the bottom of the tank. Express the pressure in units of 17 ft

Ib/ft?, Ib/in.2, and as a pressure head in feet of water. Gasoline l
1) — ST e o o
) — Water T

SOLUTION

Since we are dealing with liquids at rest, the pressure distribution
will be hydrostatic, and therefore the pressure variation can be
found from the equation:

B FIGURE E2.1

It is noted that arectangular column of water 11.6 ft tall and 1 ft2

YH,0

With p, corresponding to the pressure at the free surface of the
gasoline, then the pressure at the interfaceis

pr = SGyuoh + po

— 3 2
= (0.68)(62.4 Ib/ft3)(17 ft) + po : g%zt:%zt NS e i
= 721 + po (Ib/ft?) B
_908lb/ft? Ib/in2 A
If we measure the pressure relative to atmospheric pressure (gage P2 = 144 in%/f2 ezl (Ans)
pressure), it follows that p, = 0, and therefore
P OBIDIE et (Ang)
p, = 721 |b/ft? (Ans) Yo 624 1b/ft ’
By = 721 1b/fe? 5,01 Ib/in2 (Ans) COMMENT Observe that if we wish to express these pres
Y 144in 22 ' ' sures in terms of absolute pressure, we would have to add the lo-
721 Ibft? cal atmospheric pressure (in appropriate units) to the previous
P _ AT 11.6 ft (Ans)  results. A further discussion of gage and absolute pressureis given

YA

in cross section weighs 721 lb. A similar column with a 1-in.?
cross section weighs 5.01 Ib.

We can now apply the same rel ationship to determine the pres-
sure at the tank bottom; that is,

p=vh+p

P2 = Yuohuo + P

in Section 2.5.

The transmission of
pressure through-
out a stationary
fluid is the princi-
ple upon which
many hydraulic
devices are based.

The required equality of pressures at equal elevations throughout a system is important for
the operation of hydraulic jacks (see Fig. 2.5a), lifts, and presses, as well as hydraulic controls on
aircraft and other types of heavy machinery. The fundamental idea behind such devices and systems
is demonstrated in Fig. 2.5b. A piston located at one end of a closed system filled with a liquid,
such as ail, can be used to change the pressure throughout the system, and thus transmit an applied
force F, to a second piston where the resulting force is F,. Since the pressure p acting on the faces
of both pistons is the same (the effect of elevation changes is usually negligible for this type of hy-
draulic device), it follows that F, = (A,/A)F,. The piston area A, can be made much larger than
A, and therefore a large mechanical advantage can be developed; that is, a small force applied at
the smaller piston can be used to develop a large force at the larger piston. The applied force could
be created manually through some type of mechanical device, such as a hydraulic jack, or through
compressed air acting directly on the surface of the liquid, as is done in hydraulic lifts commonly
found in service stations.



If the specific
weight of a fluid
varies significantly
as we move from
point to point, the
pressure will no
longer vary linearly
with depth.
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Fo=pA, FL=pA,

(@ (b)
B FIGURE 2.5 (a) Hydraulicjack, (b) Transmission of fluid pressure.

2.3.2 Compressible Fluid

We normally think of gases such as air, oxygen, and nitrogen as being compressible fluids since
the density of the gas can change significantly with changes in pressure and temperature. Thus, al-
though Eq. 2.4 applies at a point in a gas, it is necessary to consider the possible variation in y
before the equation can be integrated. However, as was discussed in Chapter 1, the specific weights
of common gases are small when compared with those of liquids. For example, the specific weight
of air at sealevel and 60 °F is 0.0763 Ib/ft*, whereas the specific weight of water under the same
conditions is 62.4 Ib/ft3. Since the specific weights of gases are comparatively small, it follows
from Eq. 2.4 that the pressure gradient in the vertical direction is correspondingly small, and even
over distances of several hundred feet the pressure will remain essentially constant for a gas. This
means we can neglect the effect of elevation changes on the pressure in gases in tanks, pipes, and
so forth in which the distances involved are small.

For those situations in which the variations in heights are large, on the order of thousands of
feet, attention must be given to the variation in the specific weight. As is described in Chapter 1,
the equation of state for an ideal (or perfect) gasis

p

P=5T

where p is the absolute pressure, R is the gas constant, and T is the absolute temperature. This re-
lationship can be combined with Eq. 2.4 to give

d_ _9op
dz RT
and by separating variables
P dp P2 gr dz
—=In—-=—=| — 2.9
‘[pl p pl R Z T ( )

where g and R are assumed to be constant over the elevation change from z, to z,. Although the
acceleration of gravity, g, does vary with elevation, the variation is very small (see Tables C.1 and
C.2in Appendix C), and g is usually assumed constant at some average value for the range of el-
evation involved.
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1 Before completing the integration, one must specify the nature of the variation of tempera-
Isothermal ture with elevation. For example, if we assume that the temperature has a constant value T, over
S g the range z, to z, (isothermal conditions), it then follows from Eq. 2.9 that
- 9=z — 2)
06 Incompressible P2 = Pa exp{ - RT, ] (2.10)

0 5000 10,000

7 -z ft Thisequation providesthe desired pressure—€l evation relationship for an isothermal layer. As shown
in the margin figure, even for a 10,000-ft altitude change the difference between the constant tem-
perature (isothermal) and the constant density (incompressible) results are relatively minor. For
nonisothermal conditions a similar procedure can be followed if the temperature—elevation rela-

tionship is known, as is discussed in the following section.

—EXAMPLE pAw A Incompressible and Isothermal Pressure-Depth Variations

GIVEN In 2007 the Burj Dubai skyscraper being built in the
United Arab Emirates reached the stage in its construction where
it became the world’s tallest building. When completed it is ex-
pected to be at least 2275 ft tall, although its final height remains
a secret.

FIND (a) Edtimatetheratio of the pressure at the projected 2275-
ft top of the building to the pressure at its base, assuming the air to be
at acommon temperature of 59 °F. (b) Compare the pressure calcu-
lated in part (@) with that obtained by assuming the air to be incom-
pressible with y = 0.0765 |b/ft* at 14.7 psi (abs) (values for air at
standard sealevel conditions).

SOLUTION

For the assumed isothermal conditions, and treating air as a com-
pressible fluid, Eq. 2.10 can be applied to yield

Br_ g9 2)
Py RT,
(32.2 ft/s%)(2275 ft) -
- exp{ (1716 ft - Ib/dug - *R)[(59 + 460)°R]} dla
- 0921 (Ans) — e 1

B FIGURE E2.2 (Figure
courtesy of Emaar Properties, Dubai,
UAE.)

If the air is treated as an incompressible fluid we can apply
Eq. 2.5. In this case

P=p— ¥z — z)

or
fluid and incompressible fluid analyses yield essentially the

P2 _ 1_@ same result.

 (14.71b/in?)(144 in /i)

COMMENTS Note that there is little difference between
the two results. Since the pressure difference between the bot-
tom and top of the building is small, it follows that the varia-
tion in fluid density is small and, therefore, the compressible

Py P1 We see that for both calculations the pressure decreases by ap-
(0.0765 Ib/ft3)(2275 ft) proximately 8% as we go from ground level to the top of this tallest
=1 =0918  (ANS)  pyilding. It does not require avery large pressure difference to sup-

port a2275-ft-tall column of fluid aslight asair. Thisresult supports
the earlier statement that the changes in pressures in air and other
gases due to elevation changes are very small, even for distances of
hundreds of feet. Thus, the pressure differences between the top and
bottom of a horizontal pipe carrying agas, or in a gas storage tank,
are negligible since the distances involved are very small.
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Standard Atmosphere

The standard
atmosphereisan
idealized repre-
sentation of mean
conditionsin the
earth’s atmosphere.
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An important application of Eq. 2.9 relates to the variation in pressure in the earth’s atmosphere.
Ideally, we would like to have measurements of pressure versus altitude over the specific range for
the specific conditions (temperature, reference pressure) for which the pressure is to be determined.
However, this type of information is usually not available. Thus, a“standard atmosphere” has been
determined that can be used in the design of aircraft, missiles, and spacecraft, and in comparing
their performance under standard conditions. The concept of a standard atmosphere was first de-
veloped in the 1920s, and since that time many national and international committees and organi-
zations have pursued the development of such a standard. The currently accepted standard atmos-
phere is based on areport published in 1962 and updated in 1976 (see Refs. 1 and 2), defining the
so-called U.S. standard atmosphere, which is an idealized representation of middle-latitude, year-
round mean conditions of the earth’s atmosphere. Several important properties for standard atmos-
pheric conditions at sea level are listed in Table 2.1, and Fig. 2.6 shows the temperature profile for
the U.S. standard atmosphere. As is shown in this figure the temperature decreases with altitude
in the region nearest the earth’s surface (troposphere), then becomes essentially constant in the next
layer (stratosphere), and subsequently starts to increase in the next layer. Typical events that occur
in the atmosphere are shown in the figure in the margin.

Since the temperature variation is represented by a series of linear segments, it is possible
to integrate Eq. 2.9 to obtain the corresponding pressure variation. For example, in the troposphere,
which extends to an altitude of about 11 km (~36,000 ft), the temperature variation is of the form

T=T,- Bz (2.11)

B TABLE 2.1
Properties of U.S. Standard Atmosphere at Sea L evel®

Property Sl Units BG Units
Temperature, T 288.15K (15°C) 518.67 °R (59.00 °F)
Pressure, p 101.33 kPa(abs) 2116.2 Ib/ft? (abs)
[14.696 Ib/in.% (abs)]
Density, p 1.225 kg/m® 0.002377 slugs/ft®
Specific weight, y 12.014 N/m® 0.07647 Ib/ft®
Viscosity, u 1.789 X 105N - s/ 3.737 X 1077 Ib - s/ft?

aAcceleration of gravity at sealevel = 9.807 m/s? = 32.174 ft/<.

&
50 &
47.3 km
(p=0.1 kPa)
(&)
40 o
Q\Z
5
32.2 km (p=0.9 kPa)
£ 30
N
]
2
< 20
@ 20.1 km (p=5.5 kPa)
Stratosphere ©
3
10 i 11.0 km (p = 22.6 kPa)
p=101.3 kPa (abs)
Troposphere 15°C
0 . . . .
%60 =0 0 0 0 o 0 FI1GURE 2.6 Variation

of temperature with altitude in the

Temperature T, °C U.S. standard atmosphere.
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where T, is the temperature at sealevel (z = 0) and B is the lapse rate (the rate of change of tem-
perature with elevation). For the standard atmosphere in the troposphere, g = 0.00650 K/m
or 0.00357 °R/ft.

Equation 2.11 used with Eq. 2.9 yields

3 B E 9/Rg
p= pa<1 Ta) (2.12)

where p, is the absolute pressure at z = 0. With p,, T,, and g obtained from Table 2.1, and with
the gas constant R = 286.9 J/kg - K or 1716 ft - Ib/slug - °R, the pressure variation throughout the
troposphere can be determined from Eg. 2.12. This calculation shows that at the outer edge of the
troposphere, where the temperature is —56.5 °C, the absolute pressure is about 23 kPa (3.3 psia).
It is to be noted that modern jetliners cruise at approximately this altitude. Pressures at other al-
titudes are shown in Fig. 2.6, and tabulated values for temperature, acceleration of gravity, pres-
sure, density, and viscosity for the U.S. standard atmosphere are given in Tables C.1 and C.2 in
Appendix C.

2.5 Measurement of Pressure

Pressureis desig-
nated as either ab-
solute pressure or
gage pressure.

Since pressure is a very important characteristic of afluid field, it is not surprising that numer-
ous devices and techniques are used in its measurement. As is noted briefly in Chapter 1, the
pressure at a point within a fluid mass will be designated as either an absolute pressure or a
gage pressure. Absolute pressure is measured relative to a perfect vacuum (absolute zero pres-
sure), whereas gage pressure is measured relative to the local atmospheric pressure. Thus, a gage
pressure of zero corresponds to a pressure that is equal to the local atmospheric pressure.
Absolute pressures are always positive, but gage pressures can be either positive or negative
depending on whether the pressure is above atmospheric pressure (a positive value) or below
atmospheric pressure (a negative value). A negative gage pressure is also referred to as a suction
or vacuum pressure. For example, 10 psi (abs) could be expressed as —4.7 psi (gage), if the lo-
cal atmospheric pressure is 14.7 psi, or aternatively 4.7 psi suction or 4.7 psi vacuum. The con-
cept of gage and absolute pressure is illustrated graphically in Fig. 2.7 for two typical pressures
located at points 1 and 2.

In addition to the reference used for the pressure measurement, the units used to express
the value are obviously of importance. Asis described in Section 1.5, pressure is a force per unit
area, and the units in the BG system are Ib/ft? or Ib/in.?, commonly abbreviated psf or psi, re-
spectively. In the S| system the units are N/m?; this combination is called the pascal and written
as Pa (1N/m? = 1 Pa). As noted earlier, pressure can also be expressed as the height of a col-
umn of liquid. Then, the units will refer to the height of the column (in., ft, mm, m, etc.), and in
addition, the liquid in the column must be specified (H,0, Hg, etc.). For example, standard atmos-
pheric pressure can be expressed as 760 mm Hg (abs). In this text, pressures will be assumed to
be gage pressures unless specifically designated absolute. For example, 10 psi or 100 kPa would
be gage pressures, whereas 10 psia or 100 kPa (abs) would refer to absolute pressures. It is to be

1

— )
Gage pressure @ 1
Local atmospheric

\ pressure reference

Pressure

é v Gage pressure @ 2

Absolute pressure (suction or vacuum)

@1
Absolute pressure
@2

B FIGURE 2.7 Graphica
representation of gage and absolute
Absolute zero reference pressure.
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pvapor M)
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B
Mercury
B FIGURE 2.8 Mercury barometer.

noted that pressure differences are independent of the reference, so that no special notation is re-
quired in this case.

The measurement of atmospheric pressure is usually accomplished with a mercury barom-
eter, which in its simplest form consists of a glass tube closed at one end with the open end im-
mersed in a container of mercury as shown in Fig. 2.8. The tube is initially filled with mercury
(inverted with its open end up) and then turned upside down (open end down), with the open end
in the container of mercury. The column of mercury will come to an equilibrium position where
its weight plus the force due to the vapor pressure (which develops in the space above the column)
balances the force due to the atmospheric pressure. Thus,

Pam = Yh + Puvapor (2.13)

where v is the specific weight of mercury. For most practical purposes the contribution of the va-
por pressure can be neglected since it is very small [for mercury, pyao = 0.000023 Ib/in.? (abs) at
a temperature of 68 °F], so that p., = vh. It is conventional to specify atmospheric pressure in
terms of the height, h, in millimeters or inches of mercury. Note that if water were used instead of
mercury, the height of the column would have to be approximately 34 ft rather than 29.9 in. of
mercury for an atmospheric pressure of 14.7 psial This is shown to scale in the figure in the mar-
gin. The concept of the mercury barometer is an old one, with the invention of this device attrib-
uted to Evangelista Torricelli in about 1644.

GIVEN A mountainlake hasan averagetemperature of 10 °C and
amaximum depth of 40 m. The barometric pressure is 598 mm Hg.

SoLuTION

LILLTICIE soromerric prossure

FIND Determine the absolute pressure (in pascals) at the deepest
part of the lake.

The pressure in the lake at any depth, h, is given by the equation
p=vh+p

where p, isthe pressure at the surface. Since we want the absolute
pressure, P, will be the local barometric pressure expressed in a
consistent system of units; that is

Poarometric
Y Hg

and for yny = 133kN/m?
Po = (0.598 m)(133 kN/m®) = 79.5 kN/m?

= 598 mm = 0.598 m

From Table B.2, yn,0 = 9.804 kN/m? at 10 °C and therefore

p = (9.804 kN/m®)(40 m) + 79.5 kN/m?
= 392 kN/m? + 79.5 kN/m?
= 472 kPa (abs) (Ans)

COMMENT This simple example illustrates the need for
close attention to the units used in the cal culation of pressure; that
is, be sure to use a consistent unit system, and be careful not to
add a pressure head (m) to a pressure (Pa).
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Weather, barometers, and bars One of the most important
indicators of weather conditions is atmospheric pressure. In
general, afalling or low pressure indicates bad weather; rising
or high pressure, good weather. During the evening TV
weather report in the United States, atmospheric pressure is
given as so many inches (commonly around 30 in.). Thisvalue
is actually the height of the mercury column in a mercury
barometer adjusted to sea level. To determine the true atmos-
pheric pressure at aparticular location, the elevation relative to
sea level must be known. Another unit used by meteorologists
to indicate atmospheric pressure is the bar, first used in

weather reporting in 1914, and defined as 10° N/m?. The defi-
nition of abar is probably related to the fact that standard sea-
level pressure is 1.0133 X 10° N/m? that is, only slightly
larger than one bar. For typical weather patterns, “sea-level
equivalent” atmospheric pressure remains close to one bar.
However, for extreme weather conditions associated with tor-
nadoes, hurricanes, or typhoons, dramatic changes can occur.
The lowest atmospheric sea-level pressure ever recorded was
associated with a typhoon, Typhoon Tip, in the Pacific Ocean
on October 12, 1979. The value was 0.870 bars (25.8 in. HQ).
(See Problem 2.19.)

2.6 Manometry

A standard technique for measuring pressure involves the use of liquid columnsin vertical or inclined
tubes. Pressure measuring devices based on this technique are called manometers. The mercury
barometer is an example of one type of manometer, but there are many other configurations possi-
ble, depending on the particular application. Three common types of manometersinclude the piezome-
ter tube, the U-tube manometer, and the inclined-tube manometer.

Manometers use
vertical or inclined
liquid columns to
measure pressure.

2.6.1 Piezometer Tube

The simplest type of manometer consists of a vertical tube, open at the top, and attached to the
container in which the pressure is desired, asillustrated in Fig. 2.9. The figure in the margin shows
an important device whose operation is based upon this principle. It is a sphygmomanometer, the
traditional instrument used to measure blood pressure.

Since manometers involve columns of fluids at rest, the fundamental equation describing
their useis Eq. 2.8

= ;/_]:ube open at top

Column of
mercury

Container of
mercury

/Arm cuff

p=yh+po
which gives the pressure at any elevation within a homogeneous fluid in terms of a reference pres-
sure p, and the vertical distance h between p and p,. Remember that in a fluid at rest pressure will
increase as we move downward and will decrease as we move upward. Application of this equa
tion to the piezometer tube of Fig. 2.9 indicates that the pressure p, can be determined by a mea-
surement of h, through the relationship
Pa = viMy

where vy, is the specific weight of the liquid in the container. Note that since the tube is open at
the top, the pressure p, can be set equal to zero (we are now using gage pressure), with the height

Open

|

N

+)>

B FIGURE 2.9 Piezometer tube.



The contribution of
gas columnsin
manometers is usu-
ally negligible
since the weight of
the gasis so small.

V2.2 Blood pres-
sure measurement
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Open

N

Y2
(gage
fluid)

B FIGURE 2.10 Simple U-tube manometer.

h, measured from the meniscus at the upper surface to point (1). Since point (1) and point A within
the container are at the same elevation, p, = p..

Although the piezometer tube is a very simple and accurate pressure measuring device, it has
severd disadvantages. It is only suitable if the pressure in the container is greater than atmospheric
pressure (otherwise air would be sucked into the system), and the pressure to be measured must be
relatively small so the required height of the column is reasonable. Also, the fluid in the container in
which the pressure is to be measured must be a liquid rather than a gas.

2.6.2 U-Tube Manometer

To overcome the difficulties noted previously, another type of manometer which is widely used
consists of atube formed into the shape of aU, asis shown in Fig. 2.10. The fluid in the manome-
ter is called the gage fluid. To find the pressure p, in terms of the various column heights, we start
at one end of the system and work our way around to the other end, simply utilizing Eg. 2.8. Thus,
for the U-tube manometer shown in Fig. 2.10, we will start at point A and work around to the open
end. The pressure at points A and (1) are the same, and as we move from point (1) to (2) the pres-
sure will increase by y,h,. The pressure at point (2) is equal to the pressure at point (3), since the
pressures at equal elevations in a continuous mass of fluid at rest must be the same. Note that we
could not simply “jump across’” from point (1) to a point at the same elevation in the right-hand
tube since these would not be points within the same continuous mass of fluid. With the pressure
at point (3) specified, we now move to the open end where the pressure is zero. As we move ver-
tically upward the pressure decreases by an amount +y,h,. In equation form these various steps can
be expressed as

Pa + vihy — yh, =0
and, therefore, the pressure p, can be written in terms of the column heights as

Pa = v — viy (2.14)

A major advantage of the U-tube manometer lies in the fact that the gage fluid can be different
from the fluid in the container in which the pressure is to be determined. For example, the fluid
in A in Fig. 2.10 can be either a liquid or a gas. If A does contain a gas, the contribution of
the gas column, y;h;, is aimost always negligible so that p, = p,, and in this instance Eq. 2.14
becomes

Pa = v2h,

Thus, for a given pressure the height, h,, is governed by the specific weight, vy,, of the gage fluid
used in the manometer. If the pressure p, is large, then a heavy gage fluid, such as mercury, can
be used and a reasonable column height (not too long) can still be maintained. Alternatively, if the
pressure p, is small, alighter gage fluid, such as water, can be used so that a relatively large col-
umn height (which is easily read) can be achieved.
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GIVEN A closed tank contains compressed ar and oil
(SGyii = 0.90) asis shown in Fig. E2.4. A U-tube manometer using
mercury (SGy = 13.6) is connected to the tank as shown. The col-
umn heightsareh; = 36in., h, = 6in.,andh; = 9in.

FIND Determine the pressure reading (in psi) of the gage.

SoLuTION

Following the general procedure of starting at one end of the
manometer system and working around to the other, we will start
at the air—oil interface in the tank and proceed to the open end
where the pressure is zero. The pressure at level (1) is

P1 = Par T Yai(hy + hy)

This pressure is equal to the pressure at level (2), since these two
points are at the same elevation in ahomogeneousfluid at rest. As
we move from level (2) to the open end, the pressure must de-
crease by y,,5hs, and at the open end the pressure is zero. Thus, the
manometer equation can be expressed as

Par T You(hy + M) — yughs = 0
or

Par T (SGoin)(Yh,0)(hy + hp) — (SGpg)(vi,0)hs = 0
For the values given

12
+ (13.6)(62.4 |b/ft3)(%ft>

Bar = —(0.9)(624 Ib/ftY) (M ft)

L SLITIUIPRY sirple UTube Manomerer

Pressure
gage

Air

Oil

B FIGURE E24

Since the specific weight of the air above the oil is much smaller
than the specific weight of the oil, the gage should read the pres-
sure we have calculated; that is,

440 |b/ft?
_ MO 5 psi

Poe = 1aginz/te (Ans)

COMMENTS Note that the air pressure is a function of the
height of the mercury in the manometer and the depth of the ail
(both in the tank and in the tube). It is not just the mercury in the
manometer that isimportant.

Assume that the gage pressure remains at 3.06 psi, but the
manometer is altered so that it contains only oil. That is, the mer-
cury is replaced by oil. A simple calculation shows that in this
case the vertical oil-filled tube would need to be h; = 11.3 ft tall,

so that rather than the original h; = 9 in. There is an obvious advantage
Par = 440 Ib/ft? of using a heavy fluid such as mercury in manometers.
The U-tube manometer is also widely used to measure the difference in pressure between
Manometers are of-

ten used to measure
the difference in
pressure between
two points.

(5)T.
N

7

2

— (3)

B,
Y.
W (4)
h

two containers or two points in a given system. Consider a manometer connected between con-
tainers A and B asis shown in Fig. 2.11. The difference in pressure between A and B can be found

3

BEFIGURE 211
manometer.

Differential U-tube



Yh,

Yahs

Ps

Pa—Ps

26  Manometry 53

by again starting at one end of the system and working around to the other end. For example, at
A the pressure is p,, which is equal to p;, and as we move to point (2) the pressure increases by
v:h;. The pressure at p, is equal to p;, and as we move upward to point (4) the pressure decreases
by y,h,. Similarly, as we continue to move upward from point (4) to (5) the pressure decreases by
vshs. Findly, ps = pg, since they are at equal elevations. Thus,

Pa + yihw — v2ho — y3hs = pg

Or, as indicated in the figure in the margin, we could start at B and work our way around to A to
obtain the same result. In either case, the pressure difference is

Pa — Pg = v2hp + y3shs — yihy

When the time comes to substitute in numbers, be sure to use a consistent system of units!

Capillarity due to surface tension at the various fluid interfaces in the manometer is usu-
ally not considered, since for a simple U-tube with a meniscus in each leg, the capillary effects
cancel (assuming the surface tensions and tube diameters are the same at each meniscus), or we
can make the capillary rise negligible by using relatively large bore tubes (with diameters of
about 0.5 in. or larger; see Section 1.9). Two common gage fluids are water and mercury. Both
give a well-defined meniscus (a very important characteristic for a gage fluid) and have well-
known properties. Of course, the gage fluid must be immiscible with respect to the other flu-
ids in contact with it. For highly accurate measurements, special attention should be given to
temperature since the various specific weights of the fluids in the manometer will vary with
temperature.

L FTXTIIH Uube Manomerer

GIVEN Aswill be discussed in Chapter 3, the volume rate of
flow, Q, through a pipe can be determined by means of aflow noz-
Zlelocated in the pipe asillustrated in Fig. E2.5a. The nozzle cre-
atesapressuredrop, pa — Pg, dong the pipewhichisrelated to the
flow through the equation Q = KVp, — pg, Where K isaconstant
depending on the pipe and nozzle size. The pressure drop is fre-
quently measured with adifferential U-tube manometer of the type
illustrated.

SOLUTION

(&) Although the fluid in the pipe is moving, the fluids in the
columns of the manometer are at rest so that the pressure variation
in the manometer tubes is hydrostatic. If we start at point A and
move vertically upward to level (1), the pressure will decrease by
~v1hy and will be equal to the pressure at (2) and at (3). We can now
move from (3) to (4) where the pressure has been further reduced
by y,h,. The pressures at levels (4) and (5) are equal, and as we
move from (5) to B the pressure will increase by y,(h; + h).
Thus, in equation form

Pa — vihy — ¥2hp + y4(hy + hy) = pg
or

Pa — Ps = ho(y2 — v1) (Ans)

COMMENT It isto be noted that the only column height
of importance is the differential reading, h,. The differential

FIND (a) Determine an equation for p, — pg in terms of the
specific weight of the flowing fluid, v, the specific weight of
the gage fluid, y,, and the various heights indicated. (b) For
v1 = 9.80 kKN/m?3, y, = 15.6 KN/m3, h; = 1.0 m,andh, = 0.5m,
what is the value of the pressure drop, p, — pPs?

A >

Flow nozzle
B FIGURE E2.5a

manometer could be placed 0.5 or 5.0 m abovethe pipe (h, = 0.5m
or hy = 5.0 m), and the value of h, would remain the same.

(b) The specific value of the pressure drop for the data given is

Pa — Ps = (0.5 m)(15.6 kKN/m® — 9.80 kN/m°)
= 2.90 kPa (Ans)

COMMENT By repeating the calculations for manometer
fluids with different specific weights, vy,, the results shown in
Fig. E2.5b are obtained. Note that relatively small pressure
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differences can be measured if the manometer fluid has nearly 3
the same specific weight as the flowing fluid. It is the difference (15.6 kN/m3, 2.90 kPa)
in the specific weights, y, — v, that isimportant.

Hence, by rewriting the answer ash, = (pa — Ps)/(v2 — 1)
it isseen that even if the value of p, — pg issmall, thevalue of h, 2
can be large enough to provide an accurate reading provided the
value of y, — v, isalso small.

8 10 12 14 16
¥, kN/m3

B FIGURE E2.5b

Inclined-tube
manometers can be
used to measure
small pressure dif-
ferences accurately.

6, deg

2.6.3 Inclined-Tube Manometer

To measure small pressure changes, a manometer of the type shown in Fig. 2.12 is frequently used.
One leg of the manometer is inclined at an angle 6, and the differential reading ¢, is measured
along the inclined tube. The difference in pressure p, — pg can be expressed as

Pa + v1ihy — v2lo SN0 — y3hy = pg
or
Pa — Pg = Y2f28N0 + y3hy — yihy (2.15)

where it is to be noted the pressure difference between points (1) and (2) is due to the vertical dis-
tance between the points, which can be expressed as ¢, sin 6. Thus, for relatively small angles the
differentia reading aong the inclined tube can be made large even for small pressure differences.
The inclined-tube manometer is often used to measure small differences in gas pressures so that
if pipes A and B contain a gas then

Pa — Pg = Y2f2 SN0
or

Pa — Ps
b=—— 2.16
2= Sne (2.16)
where the contributions of the gas columns h; and h; have been neglected. Equation 2.16 and the
figure in the margin show that the differential reading ¢, (for a given pressure difference) of the in-
clined-tube manometer can be increased over that obtained with a conventional U-tube manome-
ter by the factor 1/sin 6. Recall that sn® —0as 6 — 0.

B FIGURE 212 Inclined-tube manometer.
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2.7 Mechanical and Electronic Pressure Measuring Devices

A Bourdon tube
pressure gage uses
a hollow, elastic,
and curved tube to
measure pressure.

V2.3 Bourdon gage

Although manometers are widely used, they are not well suited for measuring very high pressures,
or pressures that are changing rapidly with time. In addition, they require the measurement of one
or more column heights, which, although not particularly difficult, can be time consuming. To over-
come some of these problems numerous other types of pressure measuring instruments have been
developed. Most of these make use of the idea that when a pressure acts on an elastic structure the
structure will deform, and this deformation can be related to the magnitude of the pressure. Prob-
ably the most familiar device of this kind is the Bourdon pressure gage, which is shown in
Fig. 2.13a. The essential mechanical element in this gage is the hollow, elastic curved tube (Bour-
don tube) which is connected to the pressure source as shown in Fig. 2.13b. As the pressure within
the tube increases the tube tends to straighten, and although the deformation is small, it can be
translated into the motion of a pointer on a dial asillustrated. Since it is the difference in pressure
between the outside of the tube (atmospheric pressure) and the inside of the tube that causes the
movement of the tube, the indicated pressure is gage pressure. The Bourdon gage must be cali-
brated so that the dial reading can directly indicate the pressure in suitable units such as psi, psf,
or pascals. A zero reading on the gage indicates that the measured pressure is equal to the local
atmospheric pressure. This type of gage can be used to measure a negative gage pressure (vacuum)
as well as positive pressures.

The aneroid barometer is another type of mechanical gage that is used for measuring atmos-
pheric pressure. Since atmospheric pressure is specified as an absolute pressure, the conventional
Bourdon gage is not suitable for this measurement. The common aneroid barometer contains a hol-
low, closed, elastic element which is evacuated so that the pressure inside the element is near
absolute zero. As the external atmospheric pressure changes, the element deflects, and this motion
can be translated into the movement of an attached dial. As with the Bourdon gage, the dial can
be calibrated to give atmospheric pressure directly, with the usual units being millimeters or inches
of mercury.

For many applications in which pressure measurements are required, the pressure must be
measured with a device that converts the pressure into an electrical output. For example, it may be
desirable to continuously monitor a pressure that is changing with time. This type of pressure mea-
suring device is called a pressure transducer, and many different designs are used. One possible
type of transducer is one in which a Bourdon tube is connected to a linear variable differential
transformer (LVDT), asisillustrated in Fig. 2.14. The core of the LVDT is connected to the free
end of the Bourdon tube so that as a pressure is applied the resulting motion of the end of the tube
moves the core through the coil and an output voltage develops. This voltage is a linear function
of the pressure and could be recorded on an oscillograph or digitized for storage or processing on
a computer.

(@ (b)

B FIGURE 2.13 (a) Liquid-filled Bourdon pressure gages for various pressure ranges.
(b) Internal elements of Bourdon gages. The “C-shaped” Bourdon tube is shown on the left, and the
“coiled spring” Bourdon tube for high pressures of 1000 psi and above is shown on the right.
(Photographs courtesy of Weiss Instruments, Inc.)
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B FIGURE 214 Pressure
AA transducer which combines a linear variable
/ T differential transformer (LVDT) with a
Input Bourdon gage. (From Ref. 4, used by
pring permission.)
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Tire pressure warning Proper tire inflation on vehicles is im-
portant for more than ensuring long tread life. Itiscritical in pre-
venting accidents such asrollover accidents caused by underinfla-
tion of tires. The National Highway Traffic Safety Administration
is developing aregulation regarding four-tire tire-pressure moni-
toring systems that can warn adriver when atireis more than 25
percent underinflated. Some of these devices are currently in
operation on select vehicles; it is expected that they will soon
be required on all vehicles. A typical tire-pressure monitoring

system fits within the tire and contains a pressure transducer
(usually either a piezo-resistive or a capacitive type trans-
ducer) and a transmitter that sends the information to an elec-
tronic control unit within the vehicle. Information about tire
pressure and a warning when the tire is underinflated is dis-
played on the instrument panel. The environment (hot, cold,
vibration) in which these devices must operate, their small
size, and required low cost provide challenging constraints for
the design engineer.

Itisrelatively com-
plicated to make
accurate pressure
transducers for the
measurement of
pressures that vary
rapidly with time.

One disadvantage of a pressure transducer using a Bourdon tube as the elastic sensing ele-
ment is that it is limited to the measurement of pressures that are static or only changing slowly
(quasistatic). Because of the relatively large mass of the Bourdon tube, it cannot respond to rapid
changes in pressure. To overcome this difficulty, a different type of transducer is used in which the
sensing element is a thin, elastic diaphragm which is in contact with the fluid. As the pressure
changes, the diaphragm deflects, and this deflection can be sensed and converted into an electri-
cal voltage. One way to accomplish this is to locate strain gages either on the surface of the di-
aphragm not in contact with the fluid, or on an element attached to the diaphragm. These gages
can accurately sense the small strains induced in the diaphragm and provide an output voltage pro-
portional to pressure. This type of transducer is capable of measuring accurately both small and
large pressures, as well as both static and dynamic pressures. For example, strain-gage pressure
transducers of the type shown in Fig. 2.15 are used to measure arteria blood pressure, which is a
relatively small pressure that varies periodically with a fundamental frequency of about 1 Hz. The
transducer is usually connected to the blood vessel by means of aliquid-filled, small diameter tube
called a pressure catheter. Although the strain-gage type of transducers can be designed to have
very good frequency response (up to approximately 10 kHz), they become less sensitive at the
higher frequencies since the diaphragm must be made stiffer to achieve the higher frequency re-
sponse. As an alternative, the diaphragm can be constructed of a piezoelectric crystal to be used as
both the elastic element and the sensor. When a pressure is applied to the crystal, a voltage devel-
ops because of the deformation of the crystal. This voltage is directly related to the applied pres-
sure. Depending on the design, this type of transducer can be used to measure both very low and
high pressures (up to approximately 100,000 psi) at high frequencies. Additional information on
pressure transducers can be found in Refs. 3, 4, and 5.
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B FIGURE 2.15 (a) Two different sized strain-gage pressure transducers
(Spectramed Models P10EZ and P23XL) commonly used to measure physiological
pressures. Plastic domes are filled with fluid and connected to blood vessels through a
needle or catheter. (Photograph courtesy of Spectramed, Inc.) (b) Schematic diagram of
the P23XL transducer with the dome removed. Deflection of the diaphragm due to
pressure is measured with a silicon beam on which strain gages and an associated
bridge circuit have been deposited.

2.8 Hydrostatic Force on a Plane Surface

When a surface is submerged in a fluid, forces develop on the surface due to the fluid. The deter-
I o mination of these forces is important in the design of storage tanks, ships, dams, and other hy-
W draulic structures. For fluids at rest we know that the force must be perpendicular to the surface
since there are no shearing stresses present. We also know that the pressure will vary linearly with
depth as shown in Fig. 2.16 if the fluid is incompressible. For a horizontal surface, such as the bot-

V2.4 Hoover dam
‘ ﬂﬂ tom of a liquid-filled tank (Fig. 2.16a), the magnitude of the resultant force is smply Fg = pA,

o N ———
; P

. G { #  where p is the uniform pressure on the bottom and A is the area of the bottom. For the open tank
S, e shown, p = yh. Note that if atmospheric pressure acts on both sides of the bottom, asisillustrated,
e — the resultant force on the bottom is simply due to the liquid in the tank. Since the pressure is con-

stant and uniformly distributed over the bottom, the resultant force acts through the centroid of the
area as shown in Fig. 2.16a. As shown in Fig. 2.16b, the pressure on the ends of the tank is not
uniformly distributed. Determination of the resultant force for situations such as this is presented
below.
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Free surface Free surface

P=0 \_ o i i P=0 N\ i
Specific weight = y Specific weight =y
h Fr p=rh
p=7h
4 /
/N p=0 /N /N p=0 /\
(a) Pressure on tank bottom (b) Pressure on tank ends

B FIGURE 2.16 (a) Pressure distribution and resultant hydrostatic force on the
bottom of an open tank. (b) Pressure distribution on the ends of an open tank.

The resultant force For the more general case in which a submerged plane surface is inclined, as is illustrated
of a static fluid on a in Fig. 2.17, the determination of the resultant force acting on the surface is more involved. For
plane surface is due the present we will assume that the fluid surface is open to the atmosphere. Let the plane in which

to the hydrostatic the surface lies intersect the free surface at 0 and make an angle 6 with this surface asin Fig. 2.17.
pressuredistribution ~ The x—y coordinate system is defined so that O is the origin and y = O (i.e., the x-axis) is directed
on the surface. along the surface as shown. The area can have an arbitrary shape as shown. We wish to determine

the direction, location, and magnitude of the resultant force acting on one side of this area due to
the liquid in contact with the area. At any given depth, h, the force acting on dA (the differential
area of Fig. 2.17) is dF = yh dA and is perpendicular to the surface. Thus, the magnitude of the
resultant force can be found by summing these differential forces over the entire surface. In equa
tion form

%
s Location of
s resultant force
d

(center of pressure, CP)

B FIGURE 2.17 Notation for hydrostatic force on an inclined plane
surface of arbitrary shape.



The magnitude of
the resultant fluid
forceisequal to the
pressure acting at
the centroid of the
area multiplied by
thetotal area.
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where h = y sin §. For constant y and 60
FR=v9n0JydA (2.17)
A

The integral appearing in Eq. 2.17 is the first moment of the area with respect to the x axis, so we
can write

JydA:ycA
A

wherey, isthe y coordinate of the centroid of area A measured from the x axis which passes through O.
Equation 2.17 can thus be written as

Fr = vAy.sino

e

where h, is the vertical distance from the fluid surface to the centroid of the area. Note that the
magnitude of the force is independent of the angle 6. As indicated by the figure in the margin, it
depends only on the specific weight of the fluid, the total area, and the depth of the centroid of
the area below the surface. In effect, Eq. 2.18 indicates that the magnitude of the resultant force
is equal to the pressure at the centroid of the area multiplied by the total area. Since all the differ-
ential forces that were summed to obtain Fy are perpendicular to the surface, the resultant Fr must
also be perpendicular to the surface.

Although our intuition might suggest that the resultant force should pass through the cen-
troid of the area, this is not actually the case. The y coordinate, yg, of the resultant force can be
determined by summation of moments around the x axis. That is, the moment of the resultant force
must equal the moment of the distributed pressure force, or

or more simply as

FrYr = J ydF = J ysin@y? dA
A A
and, therefore, since Fr = YAy, sin 6

Lyz dA

YA

The integral in the numerator is the second moment of the area (moment of inertia), |,, with re-
spect to an axis formed by the intersection of the plane containing the surface and the free surface
(x axis). Thus, we can write

Yr =

f— IX
YA
Use can now be made of the parallel axis theorem to express |, as
L=l + AV

where |, is the second moment of the area with respect to an axis passing through its centroid and
paralel to the x axis. Thus,

Yr

L

YA

Yr + Ve (2.19)

As shown by Eg. 2.19 and the figure in the margin, the resultant force does not pass through the
centroid but for nonhorizontal surfaces is aways below it, since l,./y.A > O.

The x coordinate, Xz, for the resultant force can be determined in a similar manner by sum-
ming moments about the y axis. Thus,

A
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The resultant fluid
force does not pass
through the cen-
troid of the area.

and, therefore,

ver
Ja”
YeA YeA

where I, is the product of inertia with respect to the x and y axes. Again, using the parallel axis
theorem,! we can write

XR:

lye
+ 2.20
VoA X (2.20)

XR:

where |, is the product of inertiawith respect to an orthogonal coordinate system passing through
the centroid of the area and formed by atrandation of the x—y coordinate system. If the submerged
area is symmetrical with respect to an axis passing through the centroid and parallel to either the
X or y axes, the resultant force must lie along the line x = X, since I, is identically zero in this
case. The point through which the resultant force acts is called the center of pressure. It is to be
noted from Eqgs. 2.19 and 2.20 that as y, increases the center of pressure moves closer to the cen-
troid of the area. Since 'y, = h./sin 0, the distance y, will increase if the depth of submergence, h,,
increases, or, for a given depth, the area is rotated so that the angle, 6, decreases. Thus, the hydro-
static force on the right-hand side of the gate shown in the margin figure acts closer to the cen-
troid of the gate than the force on the left-hand side. Centroidal coordinates and moments of iner-
tia for some common areas are given in Fig. 2.18.

) A=ba
a
2
C®_X I = é ba’
| 2 1
2 _ 3
y lye = 75 ab
. b e b .
2 2 | lye=0
(a) Rectangle (b) Circle
_ xR — - a _ba’
A=72 —d— A=2 he= 36
2
I,. = 0.1098R* lye = 22-(b - 20)
I, =0.3927R* h
C =0. Cr_
®—x 4R ye ®© X a
vl 37 _— vl 3
| R i R | e l_b+d *»l
3
b ‘
(c) Semicircle (d) Triangle
R?
4R A=
}‘—’{ 3
lie = l,c = 0.05488R"
l..=-0.01647R*

we =

(e) Quarter circle

B FIGURE 2.18 Geometric properties of some common shapes.

Recall that the parallel axis theorem for the product of inertia of an area states that the product of inertia with respect to an orthogonal
set of axes (x—y coordinate system) is equal to the product of inertia with respect to an orthogonal set of axes parallel to the original set
and passing through the centroid of the area, plus the product of the area and the x and y coordinates of the centroid of the area. Thus,

Ly = Lye + AXYe
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t h e N e w s

The Three Gorges Dam The Three Gorges Dam being con-
structed on China's Yangtze River will contain the world's
largest hydroelectric power plant when in full operation. The
dam is of the concrete gravity type, having alength of 2309 me-
ters with a height of 185 meters. The main elements of the pro-
ject include the dam, two power plants, and navigation facilities
consisting of a ship lock and lift. The power plants will contain
26 Francistype turbines, each with a capacity of 700 megawatts.
The spillway section, which is the center section of the dam, is
483 meters long with 23 bottom outlets and 22 surface sluice

gates. The maximum discharge capacity is 102,500 cubic meters
per second. After more than 10 years of construction, the dam
gates were finally closed, and on June 10, 2003, the reservoir
had been filled to its interim level of 135 meters. Due to the
large depth of water at the dam and the huge extent of the stor-
age pool, hydrostatic pressure forces have been a major factor
considered by engineers. When filled to its normal pool level of
175 meters, the total reservoir storage capacity is 39.3 billion
cubic meters. The project is scheduled for completion in 2009.
(See Problem 2.79.)

_EXAMPLE 2.6

GIVEN The 4-m-diameter circular gate of Fig. E2.6a is lo-
cated in the inclined wall of a large reservoir containing water
(y = 9.80 kN/m®). The gate is mounted on a shaft along its hor-
izontal diameter, and the water depth is 10 m above the shaft.

FIND Determine

(a8 the magnitude and location of the resultant force exerted
on the gate by the water and

(b) the moment that would have to be applied to the shaft to
open the gate.

SoLUTION

(@) Tofind the magnitude of the force of the water we can apply
Eq. 2.18,

Fr = yh.A
and since the vertical distance from the fluid surface to the cen-
troid of the areais 10 m, it follows that

Fr = (9.80 X 10° N/m®)(10 m)(47 m?)

= 1230 X 10°N = 1.23 MN (Ans)

To locate the point (center of pressure) through which Fy acts,
we use Egs. 2.19 and 2.20,
IXYC + X, Ixc
YeA YeA

For the coordinate system shown, Xz = O since the area is sym-
metrical, and the center of pressure must lie along the diameter A-
A. To obtain yg, we have from Fig. 2.18

XR = YR =

7R
Ixc = T
and Y. isshown in Fig. E2.6b. Thus,
_ (/4)(2 m)’ 10m
Y& = (10 m/sin 60°)(4x m?) * sin60°

= 0.0866 m + 11.55m = 11.6 m

Hydrostatic Force on a Plane Circular Surface

Center of
pressure

B FIGURE E2.6ac

and the distance (along the gate) below the shaft to the center of
pressureis

Yr — Y = 0.0866 m (Ans)

We can conclude from this analysis that the force on the gate due
to the water has a magnitude of 1.23 MN and acts through a point
along its diameter A-A at a distance of 0.0866 m (along the gate)
below the shaft. The force is perpendicular to the gate surface as
shown in Fig. E2.6b.

COMMENT By repeating the calculations for various values
of the depth to the centroid, h, theresults shown in Fig. E2.6d are
obtained. Note that as the depth increases, the distance between
the center of pressure and the centroid decreases.

(b) The moment required to open the gate can be obtained with
the aid of the free-body diagram of Fig. E2.6c. In thisdiagram W
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is the weight of the gate and O, and O, are the horizontal and 0.5
vertical reactions of the shaft on the gate. We can now sum mo-
ments about the shaft 0.4
>M. =0
£ 03
and, therefore, £
|
M = Fr(Yr — Yo = 02
= (1230 x 10° N)(0.0866 m) o1 (10m, 0.0886 m)
=1.07 X 10°N-m (Ans) '
oo 5 10 15 20 25 30

he, m

B FIGURE E2.6d

—EXAMPLE pAvdl Hydrostatic Pressure Force on a Plane Triangular Surface

GIVEN An aquarium contains seawater (y = 64.0b/ft¥)toa FIND Determine

depth of 1 ft as shown in Fig. E2.7a. To repair some damageto  (a)  the magnitude of the force of the seawater on this triangular
one corner of the tank, atriangular section isreplaced withanew  greq and

section asillustrated in Fig. E2.7b.

(b) thelocation of thisforce.

SoLuTION

(@) The various distances needed to solve this problem are
shown in Fig. E2.7c. Since the surface of interest liesin aver-
tical plane, y. = h, = 0.9ft, and from Eq. 2.18 the magnitude
of the forceis

FR = yhcA
= (64.0 Ib/ft3)(0.9t)[ (0.3 ft)%/2] = 2.591b (Ans)

COMMENT Note that this force is independent of the tank
length. Theresultisthe sameif thetank is0.25ft, 25 ft, or 25 miles
long.

(b) They coordinate of the center of pressure(CP)isfound from
Eq. 2.19,

Median line

SA
N
0.15ft ' 0.15 ft
(d)

0.1 ft]

B FIGURE E2.7b-d

B FIGURE E2.7a (Photograph courtesy
of Tenecor Tanks, Inc.)




and from Fig. 2.18
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| _ (03031t _ 00081 , so that
o % 3 0.0081/72 ft*
=————— 4 0= 0.00278 ft Ans
so that . (0.9t)(0.09/2 ft?) (Ans)
0.0081/36 ft*
R = —/2 + 0.9ft
(0.9f1)(0.09/2 ft°) COMMENT Thus, we conclude that the center of pressureis
= 0.00556 ft + 0.9 ft = 0.906 ft (ANs)  0,00278 ft to the right of and 0.00556 ft below the centroid of the
Similarly, from Eq. 2.20 area. If thispoint is plotted, we find that it lies on the median line
| for the area asillustrated in Fig. E2.7d. Since we can think of the
Xp = LR X, total area as consisting of a number of small rectangular strips of
YeA area 6A (and the fluid force on each of these small areas acts

(©3MO31F . o00eL

through its center), it follows that the resultant of all these parallel
forces must lie along the median.

3f ft*
72 )

2.9 Pressure Prism

The magnitude of
the resultant fluid
forceis equal to the
volume of the pres-
sure prismand
passes through its
centroid.

An informative and useful graphical interpretation can be made for the force developed by a fluid
acting on a plane rectangular area. Consider the pressure distribution along a vertical wall of atank
of constant width b, which contains a liquid having a specific weight . Since the pressure must
vary linearly with depth, we can represent the variation as is shown in Fig. 2.19a, where the pres-
sure is equal to zero at the upper surface and equal to yh at the bottom. It is apparent from this
diagram that the average pressure occurs at the depth h/2, and therefore the resultant force acting
on the rectangular area A = bh is

h
Fr= Pa A = 7(2>A

which is the same result as obtained from Eq. 2.18. The pressure distribution shown in Fig. 2.19a
applies across the vertical surface so we can draw the three-dimensional representation of the pres-
sure distribution as shown in Fig. 2.19b. The base of this “volume” in pressure-area space is the
plane surface of interest, and its altitude at each point is the pressure. This volume is called the pres-
sure prism, and it is clear that the magnitude of the resultant force acting on the rectangular surface
is equa to the volume of the pressure prism. Thus, for the prism of Fig. 2.19b the fluid force is
1 h
— (yh)(bh) = — A
~ o = (5)
where bh is the area of the rectangular surface, A.

The resultant force must pass through the centroid of the pressure prism. For the volume un-
der consideration the centroid is located along the vertical axis of symmetry of the surface, and at

a distance of h/3 above the base (since the centroid of atriangle is located at h/3 above its base).
This result can readily be shown to be consistent with that obtained from Egs. 2.19 and 2.20.

Fr = volume =

Wiz

Fr

oz,

BEFIGURE 2.19

F—yh% . .
Pressure prism for vertical

(a) (b) rectangular area.
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The use of the pres-
sure prism concept
to determine the
force on a sub-
merged area is best
suited for plane
rectangular
surfaces.

h2
p
BEFIGURE 2.20
Graphical representation of
hydrostatic forces on a
(a) (b) vertical rectangular surface.

This same graphical approach can be used for plane rectangular surfaces that do not extend
up to the fluid surface, as illustrated in Fig. 2.20a. In this instance, the cross section of the pres-
sure prism is trapezoidal. However, the resultant force is still equal in magnitude to the volume of
the pressure prism, and it passes through the centroid of the volume. Specific values can be ob-
tained by decomposing the pressure prism into two parts, ABDE and BCD, as shown in Fig. 2.20b.
Thus,

Fr=F +F,

where the components can readily be determined by inspection for rectangular surfaces. The loca-
tion of Fg can be determined by summing moments about some convenient axis, such as one pass-
ing through A. In this instance

FRYa = Fiyi + FaoYs

and y; and y, can be determined by inspection.

For inclined plane rectangular surfaces the pressure prism can still be developed, and the
cross section of the prism will generally be trapezoidal, asis shown in Fig. 2.21. Although it is usu-
ally convenient to measure distances along the inclined surface, the pressures developed depend
on the vertical distances as illustrated.

The use of pressure prisms for determining the force on submerged plane areas is convenient
if the area is rectangular so the volume and centroid can be easily determined. However, for other
nonrectangular shapes, integration would generally be needed to determine the volume and centroid.
In these circumstances it is more convenient to use the equations developed in the previous section,
in which the necessary integrations have been made and the results presented in a convenient and
compact form that is applicable to submerged plane areas of any shape.

The effect of atmospheric pressure on a submerged area has not yet been considered, and we
may ask how this pressure will influence the resultant force. If we again consider the pressure dis-
tribution on a plane vertical wall, as is shown in Fig. 2.22a, the pressure varies from zero at the
surface to yh at the bottom. Since we are setting the surface pressure equal to zero, we are using

B FIGURE 2.21 Pressurevariation
along an inclined plane area.
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Patm Patm

1N

Pam A _ Patm A

Fr

Y

-
(@) (b)

B FIGURE 2.22 Effect of atmospheric pressure on the resultant
force acting on a plane vertical wall.

atmospheric pressure as our datum, and thus the pressure used in the determination of the fluid
force is gage pressure. If we wish to include atmospheric pressure, the pressure distribution will
be as is shown in Fig. 2.22b. We note that in this case the force on one side of the wall now con-
sists of Fg as a result of the hydrostatic pressure distribution, plus the contribution of the atmos-
pheric pressure, p;mA, where A is the area of the surface. However, if we are going to include the
effect of atmospheric pressure on one side of the wall, we must realize that this same pressure acts
on the outside surface (assuming it is exposed to the atmosphere), so that an equal and opposite force
will be developed as illustrated in the figure. Thus, we conclude that the resultant fluid force on the
surface is that due only to the gage pressure contribution of the liquid in contact with the surface—
the atmospheric pressure does not contribute to this resultant. Of course, if the surface pressure of

The resultant fluid
force acting on a
submerged areais

affected by the the liquid is different from atmospheric pressure (such as might occur in a closed tank), the resul-
pressure at the free tant force acting on a submerged area, A, will be changed in magnitude from that caused simply
surface. by hydrostatic pressure by an amount p; A, where p; is the gage pressure at the liquid surface (the

outside surface is assumed to be exposed to atmospheric pressure).

L FLITIUIPNY Use of the Pressure Prism Concept

GIVEN A pressurized tank contains oil (SG = 0.90) and hasa FIND What isthe magnitude and location of the resultant force
square, 0.6-m by 0.6-m plate bolted to its side, asisillustrated in  on the attached plate?

Fig. E2.8a. The pressure gage on the top of the tank reads 50 kPa,

and the outside of the tank is at atmospheric pressure.

rhy )
f—f=—Ps— /O|I surface

h,=2.6m

(@) (b)
HEFIGURE E28
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SOLUTION

The pressure distribution acting on the inside surface of the plateis
shown in Fig. E2.8b. The pressure at a given point on the plate is
duetotheair pressure, p, at the oil surface, and the pressure dueto
the ail, which varies linearly with depth as is shown in the figure.
Theresultant force on the plate (having an area A) is due to the com-
ponents, F, and F,, where F, and F, are due to the rectangular and
triangular portions of the pressure distribution, respectively. Thus,

Fl = (ps + 'yhl)A
=[50 X 10° N/m?
+ (0.90)(9.81 X 10° N/m?)(2 m)](0.36 m?)
=244 X 10°N

The magnitude of the resultant force, Fg, istherefore
Fr=F,+ F, =254 X 10°N = 254 kN (Ans)

The vertical location of Fg can be obtained by summing mo-
ments around an axis through point O so that

FrYo = F1(0.3m) + F,(0.2 m)
or

(24.4 x 10°N)(0.3 m) + (0.954 X 10°N)(0.2m)
25.4 X 10°N

Yo =

= 0.296 m (Ans)
and Thus, the force acts at a distance of 0.296 m above the bottom of
h, — hy the plate along the vertical axis of symmetry.
F, = 'y( )A
2 COMMENT Notethat the air pressure used in the calculation
= (0.90)(9.81 X 10° N/m?) (O-GJ)(O_;;G m?) of the force was gage pressure. Atmospheric pressure does not af-
2 fect the resultant force (magnitude or location), since it acts on
=0.954 x 10°N both sides of the plate, thereby canceling its effect.
2.10 Hydrostatic Force on a Curved Surface
The equations developed in Section 2.8 for the magnitude and location of the resultant force act-
[ ing on a submerged surface only apply to plane surfaces. However, many surfaces of interest
7|< (such as those associated with dams, pipes, and tanks) are nonplanar. The domed bottom of the
V2.5 Pop bottle beverage bottle shown in the figure in the margin shows a typical curved surface example. Al-

though the resultant fluid force can be determined by integration, as was done for the plane sur-
faces, this is generally a rather tedious process and no simple, general formulas can be devel-
oped. As an alternative approach we will consider the equilibrium of the fluid volume enclosed
by the curved surface of interest and the horizontal and vertical projections of this surface.

For example, consider a curved portion of the swimming pool shown in Fig. 2.23a. We wish
to find the resultant fluid force acting on section BC (which has a unit length perpendicular to the
plane of the paper) shown in Fig. 2.23b. We first isolate a volume of fluid that is bounded by the
surface of interest, in this instance section BC, the horizontal plane surface AB, and the vertical
plane surface AC. The free-body diagram for this volume is shown in Fig. 2.23c. The magnitude
and location of forces F, and F, can be determined from the relationships for planar surfaces. The
weight, W, is simply the specific weight of the fluid times the enclosed volume and acts through
the center of gravity (CG) of the mass of fluid contained within the volume. The forces F,; and Fy,
represent the components of the force that the tank exerts on the fluid.

In order for this force system to be in equilibrium, the horizontal component F,; must be
equal in magnitude and collinear with F,, and the vertical component F,, equal in magnitude and
collinear with the resultant of the vertical forces F, and IW. This follows since the three forces act-
ing on the fluid mass (F,, the resultant of F, and W, and the resultant force that the tank exerts on
the mass) must form a concurrent force system. That is, from the principles of statics, it is known
that when a body is held in equilibrium by three nonparallel forces, they must be concurrent (their
lines of action intersect at a common point), and coplanar. Thus,

FH:F2
FV:F1+W

and the magnitude of the resultant is obtained from the equation

Fe= V(RS + (o
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2.10

Hydrostatic Force on a Curved Surface

O

HBEFIGURE 2.23
(d) force on a curved surface.

Hydrostatic

The resultant Fg passes through the point O, which can be located by summing moments about an
appropriate axis. The resultant force of the fluid acting on the curved surface BC is equal and op-
posite in direction to that obtained from the free-body diagram of Fig. 2.23c. The desired fluid

force is shown in Fig. 2.23d.

_EXAMPLE 2.9

GIVEN A 6-ft-diameter drainage conduit of the type shown in
Fig. E2.9ais half full of water at rest, as shown in Fig. E2.9b.

Hydrostatic Pressure Force on a Curved Surface

FIND Determine the magnitude and line of action of the resul-
tant force that the water exerts on a 1-ft length of the curved sec-
tion BC of the conduit wall.

(a) (b)

B FIGURE E2.9

SoLuTION

(Photograph courtesy of CONTECH Construction Products, Inc.)

1.27 ft
A B Al__
N =523 Ib
iCG 325 \:J
51
F. w F j O
1ft 1 ftI I
c
FV
© (@

We first isolate a volume of fluid bounded by the curved section
BC, the horizontal surface AB, and the vertical surface AC, as
shown in Fig. E2.9c. The volume has a length of 1 ft. The forces
acting on the volume are the horizontal force, F,, which acts on
the vertical surface AC, the weight, W', of the fluid contained
within the volume, and the horizontal and vertical components of
the force of the conduit wall on thefluid, F,; and Fy, respectively.
The magnitude of F; isfound from the equation

Fi = yh. A = (62.4 1b/ft) (3 ft) (3ft?) = 2811b

and this force acts 1 ft above C as shown. The weight W' = yV,
where ¥ isthefluid volume, is

W = y¥ = (62.4b/ft%) (97/4 1t?) (1 ft) = 441 1b

and acts through the center of gravity of the mass of fluid, which
according to Fig. 2.18 is located 1.27 ft to the right of AC as
shown. Therefore, to satisfy equilibrium
Fy=F,=281Ib Fy =W = 4411b
and the magnitude of the resultant forceis
Fr= V(Fn)? + (F)?

= V/(2811b)?2 + (4411b) = 523Ib  (An9)
The force the water exerts on the conduit wall is equal, but oppo-
site in direction, to the forces Fy and F,, shown in Fig. E2.9c.

Thus, the resultant force on the conduit wall is shown in
Fig. E2.9d. Thisforce acts through the point O at the angle shown.
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COMMENT Aninspection of thisresult will show that theline
of action of the resultant force passes through the center of the con-
duit. In retrospect, thisis not a surprising result since at each point
on the curved surface of the conduit the elemental force due to the

pressureis normd to the surface, and each line of action must pass
through the center of the conduit. It therefore foll ows that the resul-
tant of this concurrent force system must also pass through the cen-
ter of concurrence of the elemental forces that make up the system.

This same general approach can also be used for determining the force on curved surfaces
of pressurized, closed tanks. If these tanks contain a gas, the weight of the gas is usually negli-
gible in comparison with the forces devel oped by the pressure. Thus, the forces (such as F, and F,
in Fig. 2.23c) on horizontal and vertical projections of the curved surface of interest can simply
be expressed as the internal pressure times the appropriate projected area.

F | u i d s i n t h e N e w s

Miniature, exploding pressure vessels Our daily lives are safer
because of the effort put forth by engineers to design safe, light-
weight pressure vessels such as boilers, propane tanks, and pop
bottles. Without proper design, the large hydrostatic pressure
forces on the curved surfaces of such containers could cause the
vessel to explode with disastrous consequences. On the other
hand, the world isamorefriendly place because of miniature pres-
sure vessels that are designed to explode under the proper condi-
tions—popcorn kernels. Each grain of popcorn contains a small

amount of water within the special, impervious hull (pressure ves-
sel) which, when heated to a proper temperature, turns to steam,
causing the kernel to explode and turn itself inside out. Not all
popcorn kernels have the proper properties to make them pop well.
First, the kernel must be quite close to 13.5% water. With too little
moisture, not enough steam will build up to pop the kernel; too
much moisture causes the kernel to pop into a dense sphere rather
than the light fluffy delicacy expected. Second, to alow the pres-
sure to build up, the kernels must not be cracked or damaged.

211 Buoyancy, Flotation, and Stability

2.11.1 Archimedes Principle

When a stationary body is completely submerged in a fluid (such as the hot air balloon shown in
the figure in the margin), or floating so that it is only partially submerged, the resultant fluid force
acting on the body is called the buoyant force. A net upward vertical force results because pres-
sure increases with depth and the pressure forces acting from below are larger than the pressure
forces acting from above. This force can be determined through an approach similar to that used
in the previous section for forces on curved surfaces. Consider a body of arbitrary shape, having
avolume ¥V, that isimmersed in afluid asillustrated in Fig. 2.24a. We enclose the body in a par-
alelepiped and draw a free-body diagram of the parallelepiped with the body removed as shown
in Fig. 2.24b. Note that the forces F;, F,, F3, and F, are simply the forces exerted on the plane
surfaces of the parallelepiped (for simplicity the forces in the x direction are not shown), W' isthe
weight of the shaded fluid volume (parallelepiped minus body), and Fy is the force the body is
exerting on the fluid. The forces on the vertical surfaces, such as F; and F,, are al equal and can-
cel, so the equilibrium equation of interest is in the z direction and can be expressed as

FB:FZ_Fl_W

(Photograph courtesy of
Cameron Balloons.)

(2.21)
If the specific weight of the fluid is constant, then
F, — F1 = y(h, = h)A

V2.6 Atmospheric
buoyancy

where A is the horizontal area of the upper (or lower) surface of the parallelepiped, and Eq. 2.21
can be written as

Fg = y(h, — h)A — y[(h, = h)A — V]
Simplifying, we arrive at the desired expression for the buoyant force
FB = 7\7‘

(2.22)




V2.7 Cartesian
Diver

Archimedes' princi-
ple states that the
buoyant force has a
magnitude equal to
the weight of the
fluid displaced by
the body and is
directed vertically
upward.

F 1

u
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Centroid
of displaced
volume

Centroid

(c)

(b)
BFIGURE 224

Buoyant force on submerged and floating bodies.

where vy is the specific weight of the fluid and ¥ is the volume of the body. The direction of the
buoyant force, which is the force of the fluid on the body, is opposite to that shown on the free-
body diagram. Therefore, the buoyant force has a magnitude equal to the weight of the fluid dis-
placed by the body and is directed verticaly upward. This result is commonly referred to as
Archimedes principle in honor of Archimedes (287-212 B.c.), a Greek mechanician and mathe-
matician who first enunciated the basic ideas associated with hydrostatics.

The location of the line of action of the buoyant force can be determined by summing moments
of the forces shown on the free-body diagram in Fig. 2.24b with respect to some convenient axis. For
example, summing moments about an axis perpendicular to the paper through point D we have

Feye = Foy1 — Foiys — Wy,
and on substitution for the various forces
VY = ¥y — (V1 — V)Y, (2.23)

where ¥, is the total volume (h, — h;)A. The right-hand side of Eqg. 2.23 is the first
moment of the displaced volume ¥ with respect to the x—z plane so that y, is equal to the y co-
ordinate of the centroid of the volume ¥. In a similar fashion it can be shown that the x coordi-
nate of the buoyant force coincides with the x coordinate of the centroid. Thus, we conclude that
the buoyant force passes through the centroid of the displaced volume as shown in Fig. 2.24c.
The point through which the buoyant force acts is called the center of buoyancy.

i d s i n t h e N e w s

Concrete canoes A solid block of concrete thrown into apond or
lake will obviously sink. But, if the concrete is formed into the
shape of acanoe it can be made to float. Of course the reason the
canoe floats is the development of the buoyant force due to the
displaced volume of water. With the proper design, this vertical
force can be made to balance the weight of the canoe plus passen-
gers—the canoe floats. Each year since 1988 there is a National
Concrete Canoe Competition for university teams. It's jointly

sponsored by the American Society of Civil Engineers and Master
Builders Inc. The canoes must be 90% concrete and are typically
designed with the aid of acomputer by civil engineering students.
Final scoring depends on four components: a design report, an
oral presentation, thefinal product, and racing. For the 2007 com-
petition the University of Wisconsin's team won for its fifth con-
secutive national championship with a 179-1b, 19.11-ft canoe.
(See Problem 2.107.)
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These same results apply to floating bodies which are only partially submerged, asillustrated

I o in Fig. 2.24d, if the specific weight of the fluid above the liquid surface is very small compared
,l! with the liquid in which the body floats. Since the fluid above the surface is usualy air, for prac-
V2.8 Hydrometer tical purposes this condition is satisfied.

In the derivations presented above, the fluid is assumed to have a constant specific weight,
v. If abody isimmersed in a fluid in which y varies with depth, such as in a layered fluid, the
magnitude of the buoyant force remains equal to the weight of the displaced fluid. However, the
buoyant force does not pass through the centroid of the displaced volume, but rather, it passes
through the center of gravity of the displaced volume.

L SLXTTPREY 5uovant Force on a Submerged Object

GIVEN The0.4-lb lead fish sinker shown in Fig. E2.10aisat- FIND Determine the difference between the tension in the line
tached to a fishing line as shown in Fig. E2.10b. The specific ~ above and below the sinker.
gravity of the sinker is SGg o = 11.3.

Pressure
envelope

(a)
B FIGURE E2.10

SoLuTION

A free body diagram of the sinker is shown in Fig. E.10b, where  Hence, from Egs. 1 and 4 the differencein the tensionsis

W istheweight of the sinker, Fg isthe buoyant force acting on the - _ . _

sinker, and T, and Tg are the tensionsin the line above and below Ta=To =W = W/Csnier = WL =~ (1/Cna)] ()
the sinker, respectively. For equilibrium it follows that = 041b[1 - (1/11.3)] = 0.3651b (Ans)

Ta—Te=W —Fg () COMMENTS Note that if the sinker were raised out of the
water, the difference in tension would equal the entire weight of
the sinker (T, — Tz = 0.4 1b) rather than the 0.365 Ib when it is

W = Ysnker V¥ = ¥ Csinker V (2 inthewater. Thus, since the sinker material is significantly heav-
ier than water, the buoyant force is relatively unimportant. As
seen from Eq. 5, as SG bECOMES Very large, the buoyant force
becomes insignificant, and the tension difference becomes nearly
Fg = yV¥ (3) egual totheweight of the sinker. On the other hand, if SGgye = 1,
then T, — Tz = 0 and the sinker isno longer a“sinker.” It is neu-
trally buoyant and no external force from the line is required to
Fg = W/SCgner (4) holditin place.

Also,

where vy isthe specific weight of water and V isthe volume of the
sinker. From Eq. 2.22,

By combining Egs. 2 and 3 we obtain
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In this example we replaced the hydrostatic pressure force on the body by the buoyant force,
Fg. Another correct free-body diagram of the sinker is shown in Fig. E2.20c. The net effect of
the pressure forces on the surface of the sinker is equal to the upward force of magnitude Fg (the
buoyant force). Do not include both the buoyant force and the hydrostatic pressure effects in your

calculations—use one or the other.

F | u i d s i n

t h e N e w s

Explosive L ake In 1986 a tremendous explosion of carbon diox-
ide (CO,) from Lake Nyos, west of Cameroon, killed more than
1700 people and livestock. The explosion resulted from a build up
of CO, that seeped into the high pressure water at the bottom of the
lake from warm springs of CO,-bearing water. The CO,-rich water
isheavier than pure water and can hold avolume of CO, morethan
five times the water volume. As long as the gas remains dissolved
in the water, the stratified lake (i.e., pure water on top, CO, water
on the bottom) is stable. But if some mechanism causes the gas

bubbles to nucleate, they rise, grow, and cause other bubbles to
form, feeding achain reaction. A related phenomenon often occurs
when apop bottle is shaken and then opened. The pop shoots from
the container rather violently. When this set of events occurred in
Lake Nyos, the entire lake overturned through a column of rising
and expanding buoyant bubbles. The heavier-than-air CO, then
flowed through the long, deep valleys surrounding the lake and as-
phyxiated human and animal life caught in the gas cloud. Onevic-
tim was 27 km downstream from the lake.

Stable

Unstable

The stability of a
body can be deter-
mined by consider-
ing what happens
when it is displaced
fromits equilibrium
position.

/N

V2.9 Sabhility of a
floating cube

2112 Stability

Another interesting and important problem associated with submerged or floating bodies is con-
cerned with the stability of the bodies. As illustrated by the figure in the margin, a body is said to
be in a stable equilibrium position if, when displaced, it returns to its equilibrium position. Con-
versely, it is in an unstable equilibrium position if, when displaced (even dlightly), it moves to a
new equilibrium position. Stability considerations are particularly important for submerged or float-
ing bodies since the centers of buoyancy and gravity do not necessarily coincide. A small rotation
can result in either a restoring or overturning couple. For example, for the completely submerged
body shown in Fig. 2.25, which has a center of gravity below the center of buoyancy, a rotation
from its equilibrium position will create a restoring couple formed by the weight, W, and the buoy-
ant force, Fg, which causes the body to rotate back to its original position. Thus, for this configu-
ration the body is stable. It is to be noted that as long as the center of gravity falls below the cen-
ter of buoyancy, this will always be true; that is, the body is in a stable equilibrium position with
respect to small rotations. However, as is illustrated in Fig. 2.26, if the center of gravity of the
completely submerged body is above the center of buoyancy, the resulting couple formed by the
weight and the buoyant force will cause the body to overturn and move to a new equilibrium po-
sition. Thus, a completely submerged body with its center of gravity above its center of buoyancy
isin an unstable equilibrium position.

For floating bodies the stability problem is more complicated, since as the body rotates the
location of the center of buoyancy (which passes through the centroid of the displaced volume) may

\V4 \V4

Restoring Overturning
couple couple

Stable

BEFIGURE 2.25
Stability of a completely immersed
body—center of gravity below
centroid.

Unstable

B FIGURE 2.26
Stability of a completely immersed
body—center of gravity above
centroid.
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SETEa cg ! ] GE !C, R
N ; Fe J ; Fo O

¢ = centroid of original c' = centroid of new Restoring
displaced volume displaced volume couple

Stable
B FIGURE 2.27 Sability of afloating body—stable configuration.

lOW low
CG CG

: c
Marginally stable FB;

c = centroid of original ~ ¢' = centroid of new Overturning
displaced volume displaced volume couple B FIGURE 2.28 Stability of a
Unstable floating body—unstable configuration.

change. Asis shown in Fig. 2.27, afloating body such as a barge that rides low in the water can be
stable even though the center of gravity lies above the center of buoyancy. This is true since as the
body rotates the buoyant force, Fg, shifts to pass through the centroid of the newly formed displaced
Very stable volume and, as illustrated, combines with the weight, W', to form a couple which will cause the

body to return to its origina equilibrium position. However, for the relatively tal, slender body
I : shown in Fig. 2.28, a small rotational displacement can cause the buoyant force and the weight to
w form an overturning couple as illustrated.

It is clear from these simple examples that the determination of the stability of submerged or
floating bodies can be difficult since the analysis depends in a complicated fashion on the particular
geometry and weight distribution of the body. Thus, although both the relatively narrow kayak and
the wide houseboat shown in the figures in the margin are stable, the kayak will overturn much more
easily than the houseboat. The problem can be further complicated by the necessary inclusion of other
types of external forces such as those induced by wind gusts or currents. Stability considerations are
obvioudly of great importance in the design of ships, submarines, bathyscaphes, and so forth, and
such considerations play a significant role in the work of naval architects (see, for example, Ref. 6).

V2.10 Sability of a
model barge

2.12 Pressure Variation in a Fluid with Rigid-Body Motion

Although in this chapter we have been primarily concerned with fluids at rest, the genera equa-
tion of motion (Eq. 2.2)

~Vp — yk = pa
was developed for both fluids at rest and fluids in motion, with the only stipulation being that there
were no shearing stresses present. Equation 2.2 in component form, based on rectangular coordi-
nates with the positive z axis being vertically upward, can be expressed as
P _ P _ P

pay p —— =yt (2.24)

Even though a fluid = pa,
ay a9z

may be in motion, if ax

lMeYESESAEE A general class of problems involving fluid motion in which there are no shearing stresses

body there will be . . . . . .

no shearing occurs when a mass qf fluid undergo&g rlglq-body motlon: Eor example, if acgn.tf?u ner of flwd ac-

Stresses present. celerates along a straight path, the fluid will move as a rigid mass (after the initial sloshing mo-
tion has died out) with each particle having the same acceleration. Since there is no deformation,



Thereis no shear
stressin fluids that
move with rigid-
body motion or
with rigid-body
rotation.
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there will be no shearing stresses and, therefore, Eq. 2.2 applies. Similarly, if afluid is contained
in atank that rotates about a fixed axis, the fluid will simply rotate with the tank as a rigid body,
and again Eq. 2.2 can be applied to obtain the pressure distribution throughout the moving fluid.
Specific results for these two cases (rigid-body uniform motion and rigid-body rotation) are devel-
oped in the following two sections. Although problems relating to fluids having rigid-body motion
are not, strictly speaking, “fluid statics” problems, they are included in this chapter because, as we
will see, the analysis and resulting pressure relationships are similar to those for fluids at rest.

2.12.1 Linear Motion

We firgt consider an open container of aliquid that is trandating along a straight path with a constant
acceleration a as illustrated in Fig. 2.29. Since a, = 0, it follows from the first of Eqgs. 2.24 that the
pressure gradient in the x direction is zero (dp/ax = 0). In the y and z directions

p _
78y = —pa, (2.25)
w°_
P —pg+a) (226)

The change in pressure between two closely spaced points located at y, z, and y + dy, z + dz can
be expressed as

p ap
= +
dp ay dy P dz
or in terms of the results from Egs. 2.25 and 2.26
dp = —pa,dy — p(g + &, dz (2.27)

Along aline of constant pressure, dp = 0, and therefore from Eq. 2.27 it follows that the slope of
this line is given by the relationship

ez__ % (2.28)

dy g+ta
This relationship isillustrated by the figure in the margin. Along a free surface the pressure is con-
stant, so that for the accelerating mass shown in Fig. 2.29 the free surface will beinclinedif a, # 0.
In addition, al lines of constant pressure will be parallel to the free surface as illustrated.

Free surface a, a
slope = dz/dy if

3,
\\\\\\\\ gzl Constant ©
- —— 27 pressure
P3 Jines
7 y
(a) (b)

B FIGURE 2.29 Linear acceleration of a liquid with a free surface.
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The pressure distri-
butionin a fluid
mass that is accel-
erating along a
straight path is not
hydrostatic.
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For the specia circumstance in which a, = 0, a, # 0, which corresponds to the mass of
fluid accelerating in the vertical direction, Eq. 2.28 indicates that the fluid surface will be hor-
izontal. However, from Eq. 2.26 we see that the pressure distribution is not hydrostatic, but is
given by the equation

d _
az 7

For fluids of constant density this equation shows that the pressure will vary linearly with depth,
but the variation is due to the combined effects of gravity and the externally induced acceleration,
p(g + &), rather than simply the specific weight pg. Thus, for example, the pressure along the bot-
tom of aliquid-filled tank which is resting on the floor of an elevator that is accelerating upward
will be increased over that which exists when the tank is at rest (or moving with a constant veloc-
ity). It is to be noted that for a freely falling fluid mass (a, = —g), the pressure gradients in all
three coordinate directions are zero, which means that if the pressure surrounding the massiis zero,
the pressure throughout will be zero. The pressure throughout a “blob” of orange juice floating in
an orbiting space shuttle (a form of free fal) is zero. The only force holding the liquid together is

(9+a)

surface tension (see Section 1.9).

—EXAMPLE 2.11

GIVEN The cross section for the fuel tank of an experimental
vehicle is shown in Fig. E2.11. The rectangular tank is vented to
the atmosphere and the specific gravity of the fuel is SG = 0.65.
A pressure transducer is located in its side as illustrated. During
testing of the vehicle, the tank is subjected to a constant linear ac-
celeration, a,.

FIND (a) Determine an expression that relates a, and the pres-
sure (in Ib/ft?) at the transducer. (b) What is the maximum acceler-
ation that can occur before the fuel level drops below the trans-
ducer?

SOLUTION

Pressure Variation in an Accelerating Tank

“Transducer

0.75 ft 4

B FIGURE E2.11

l 0.75 ft l

(@) For aconstant horizontal acceleration the fuel will move as
arigid body, and from Eq. 2.28 the slope of the fuel surface can
be expressed as

dz_ 3

dy g

sincea, = 0. Thus, for somearhitrary a,, the changein depth, z,, of
liquid on the right side of the tank can be found from the equation

4 ay

To075ft . g

or

z = (0.75 ft)(%)

Since there is no acceleration in the vertical, z, direction, the
pressure along the wall varies hydrostatically as shown by Eq.
2.26. Thus, the pressure at the transducer is given by the rela-
tionship

p=vyh

where h is the depth of fuel above the transducer, and therefore
p = (0.65)(62.4 Ib/ft3)[0.5 ft — (0.75 ft)(a,/g)]

a

=203 — 30'45 (Ans)

for z, = 0.5 ft. As written, p would be given in Ib/ft%.

(b) The limiting value for (a,)ma (When the fuel level reaches
the transducer) can be found from the equation

05ft = (0.75ft) {(ay;mﬂ
or
(ay)max = 27:3

and for standard acceleration of gravity

(a)max = 5(32.2ft/s?) = 21.5ft/s? (Ans)

COMMENT Note that the pressure in horizontal layers is not
constant in thisexample since 9p/dy = —pa, # 0. Thus, for exam-

ple, p1 # pe.




Afluid contained in
atank that is rotat-
ing with a constant
angular velocity
about an axis will
rotateasarigid

body.

Z = constant

dp

o SPe

(@)
B FIGURE 2.30 Rigid-body rotation of a liquid in a tank. (Photograph courtesy of Geno Pawlak.)
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2.12.2 Rigid-Body Rotation

After an initial “start-up” transient, a fluid contained in a tank that rotates with a constant angular
velocity w about an axis as is shown in Fig. 2.30 will rotate with the tank as a rigid body. It is
known from elementary particle dynamics that the acceleration of afluid particle located at a dis-
tance r from the axis of rotation is equal in magnitude to rw?, and the direction of the acceleration
is toward the axis of rotation, as is illustrated in the figure. Since the paths of the fluid particles
are circular, it is convenient to use cylindrical polar coordinatesr, 6, and z, defined in the insert in
Fig. 2.30. It will be shown in Chapter 6 that in terms of cylindrical coordinates the pressure gra-
dient Vp can be expressed as

J
@" +17p" +@"

Vp = 2.29
P ar & r oo e(, 0z % ( )
Thus, in terms of this coordinate system
a=-rew’é a=0 a=0
and from Eq. 2.2
p 2 p p
— = —=0 — = - 2.30
ar P g oz ! (230)

These results show that for this type of rigid-body rotation, the pressure is a function of two vari-
ables r and z, and therefore the differential pressure is

9 9
do = Par + Pgz
ar 9z
or
dp = pro?dr — ydz (2.31)

On a horizonta plane (dz = 0), it follows from Eq. 2.31 that dp/dr = pw?r, which is greater than
zero. Hence, asillustrated in the figure in the margin, because of centrifugal acceleration, the pres-
sure increases in the radia direction.

Along a surface of constant pressure, such as the free surface, dp = 0, so that from Eq. 2.31

(using y = pg)

dz _ 1o’
dr g
Integration of this result gives the equation for surfaces of constant pressure as
2r2
2=2" 4 constant (2.32)
Axis of
| rotation
|
W
| [ ] a=ro’
|
Q.|_> o
|
i r
(b) (©
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4

lines

plk/ P
Constant p2\-/ \\P2
pressure Ps

IME/

y
/ B FIGURE 2.31 Presure
X distribution in a rotating liquid.

This equation reveals that these surfaces of constant pressure are parabolic, asillustrated in Fig. 2.31.

The free surfacein Integration of Eq. 2.31 yields

arotating liquid is
curved rather than

UL, Jdpzpwzjrdr—yfdz

or

pwzr 2

p= > vz + constant (2.33)

where the constant of integration can be expressed in terms of a specified pressure at some arbi-
trary point ro, Z,. This result shows that the pressure varies with the distance from the axis of ro-
tation, but at a fixed radius, the pressure varies hydrostatically in the vertical direction as shown
inFig. 2.31.

—EXAMPLE pARPA Free Surface Shape of Liquid in a Rotating Tank

GIVEN It has been suggested that the angular velocity, , of a —r
rotating body or shaft can be measured by attaching an open —R—"
cylinder of liquid, as shown in Fig. E2.12a, and measuring with
some type of depth gage the change in the fluid level, H — hy, Depth H Initial
caused by the rotation of the fluid. gage _d/ep“‘
FIND Determine the relationship between this change in fluid SQ'__:_:__ i
level and the angular velocity. T T
H

h hy

SoLuTiON { Z| l
0
The height, h, of the free surface above the tank bottom can be de- :‘:l - ':‘: o
termined from Eq. 2.32, and it follows that
w2r? (a) (b)
h=Tg+h° BEFIGURE E2.12

Theinitia volume of fluid in the tank, ¥;, is equa to

V, = wR?H cylindrical shell is taken at some arbitrary radius, r, and its vol-

The volume of the fluid with the rotating tank can be found with ¢ ">

the aid of the differential element shown in Fig. E2.12b. This d¥ = 27rhdr
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The total volume is, therefore, or
R 2.2 24
wr TR W’R?
V =27TJ' r(—+ho)dr: + 7Rhg H-—hy= AnNS
o 29 49 0 4g ( )
Since the volume of thefluid in the tank must remain constant (as-
shows that the change in depth could indeed be used to determine
2 TR the rotational speed, although the relationship between the
7RH = + 7R, . . .
change in depth and speed is not alinear one.
F I u i d s i n t h e N e w s

Rotating mercury mirror telescope A telescope mirror has the
same shape as the parabolic free surface of a liquid in a rotating
tank. The liquid mirror telescope (LMT) consists of a pan of liquid
(normally mercury because of its excellent reflectivity) rotating to
produce the required parabolic shape of the free surface mirror. With
recent technologica advances, it is possible to obtain the vibration-
free rotation and the constant angular vel ocity necessary to produce
aliquid mirror surface precise enough for astronomical use. Con-
struction of the largest LMT, located at the University of British

Columbia, has recently been completed. With adiameter of 6 ft and
arotation rate of 7 rpm, this mirror uses 30 liters of mercury for its
1-mm thick, parabolic-shaped mirror. One of the major benefitsof a
LMT (compared to anormal glass mirror telescope) isitslow cost.
Perhaps the main disadvantage isthat aLMT can look only straight
up, athough there are many galaxies, supernova explosions, and
pieces of spacejunk to view in any part of the sky. The next genera-
tion LMTs may have movable secondary mirrors to allow a larger
portion of the sky to be viewed. (See Problem 2.121.)

2.13 Chapter Summary and Study Guide

Pascal’s law
surface force
body force
incompressible fluid
hydrostatic pressure
distribution
pressure head
compressible fluid
U.S. standard
atmosphere
absolute pressure
gage pressure
vacuum pressure
barometer
manometer
Bourdon pressure
gage
center of pressure
buoyant force

Archimedes’ principle

center of buoyancy

In this chapter the pressure variation in a fluid at rest is considered, along with some impor-
tant consequences of this type of pressure variation. It is shown that for incompressible fluids
at rest the pressure varies linearly with depth. This type of variation is commonly referred to
as hydrostatic pressure distribution. For compressible fluids at rest the pressure distribution will
not generally be hydrostatic, but Eg. 2.4 remains valid and can be used to determine the pres-
sure distribution if additional information about the variation of the specific weight is specified.
The distinction between absolute and gage pressure is discussed along with a consideration of
barometers for the measurement of atmospheric pressure.

Pressure measuring devices called manometers, which utilize static liquid columns, are
analyzed in detail. A brief discussion of mechanical and electronic pressure gages is also
included. Equations for determining the magnitude and location of the resultant fluid force
acting on a plane surface in contact with a static fluid are developed. A general approach for
determining the magnitude and location of the resultant fluid force acting on a curved surface
in contact with a static fluid is described. For submerged or floating bodies the concept of the
buoyant force and the use of Archimedes' principle are reviewed.

The following checklist provides a study guide for this chapter. When your study of the
entire chapter and end-of-chapter exercises has been completed you should be able to

= write out meanings of the terms listed here in the margin and understand each of the related
concepts. These terms are particularly important and are set in italic, bold, and color type
in the text.

m calculate the pressure at various locations within an incompressible fluid at rest.

m calculate the pressure at various locations within a compressible fluid at rest using Eg. 2.4
if the variation in the specific weight is specified.

m use the concept of a hydrostatic pressure distribution to determine pressures from measure-
ments using various types of manometers.

m determine the magnitude, direction, and location of the resultant hydrostatic force acting on a
plane surface.
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m determine the magnitude, direction, and location of the resultant hydrostatic force acting on

a curved surface.

m use Archimedes’ principle to calculate the resultant hydrostatic force acting on floating or

submerged bodies.

m anayze, based on Eq. 2.2, the motion of fluids moving with simple rigid-body linear motion

or simple rigid-body rotation.

Some of the important equations in this chapter are:

d
Pressure gradient in a stationary fluid d—z = —vy (2.9
Pressure variation in a stationary incompressible fluid p, = yh+p, (2.7
Hydrostatic force on a plane surface Fr = yh.A (2.18)
I
Location of hydrostatic force on a plane surface Vg = yx; + Ve (2.19)
C
Lyye
Xg=—1+ 2.20
R VA Xe (2.20)
Buoyant force Fg=17yV (2.22)
o . ap ap ap
Pressure gradient in rigid-body motion —— = pa,, —— =pa, ——_ =7y + pa, (2.24)
X ay 0z
S . p , 9P ap
Pressure gradient in rigid-body rotation o pro‘, 0 0, P —y (2.30)
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Review Problems

Go to Appendix G for a set of review problems with answers. De-
tailed solutions can be found in Student Solution Manual and Study

Problems

Guide for Fundamentals of Fluid Mechanics, by Munson et al.
(© 2009 John Wiley and Sons, Inc.).

Note: Unless otherwise indicated, use the values of fluid prop-
ertiesfound in the tables on the inside of the front cover. Prob-
lems designated with an (*) are intended to be solved with the
aid of a programmable calculator or a computer. Problemsdes-
ignated with a (1) are *“ open-ended” problemsand require crit-
ical thinking in that to work them one must make various
assumptions and provide the necessary data. There is not a
unique answer to these problems.

Answerstothe even-numbered problemsarelisted at the
end of the book. Accessto the videosthat accompany problems
can be obtained through the book’s web site, www.wiley.com/
college/munson. The lab-type problems can also be accessed on
thisweb site.
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Section 2.3 PressureVariation in a Fluid at Rest

2.1 Obtain a photograph/image of a situation in which the fact
that in a static fluid the pressure increases with depth isimportant.
Print this photo and write a brief paragraph that describes the
situation involved.

2.2 A closed, 5-m-tall tank is filled with water to a depth of 4 m.
The top portion of the tank is filled with air which, as indicated by
a pressure gage a the top of the tank, is a a pressure of 20 kPa
Determine the pressure that the water exerts on the bottom of the tank.

2.3 A closed tank is partialy filled with glycerin. If the air
pressure in the tank is 6 Ib/in.? and the depth of glycerin is 10 ft,
what is the pressure in Ib/ft? at the bottom of the tank?

2.4 Blood pressure is usually given as a ratio of the maximum
pressure (systolic pressure) to the minimum pressure (diastolic
pressure). As shown in Video V2.2, such pressures are commonly
measured with a mercury manometer. A typical value for this ratio
for a human would be 120/70, where the pressures are in mm Hg.
(8) What would these pressures be in pascals? (b) If your car tire
wasinflated to 120 mm Hg, would it be sufficient for normal driving?

2.5 An unknown immiscible liquid seeps into the bottom of an
open oil tank. Some measurements indicate that the depth of the
unknown liquid is 1.5 m and the depth of the oil (specific
weight = 8.5 kN/m?) floating on top is 5.0 m. A pressure gage
connected to the bottom of the tank reads 65 kPa. What is the
specific gravity of the unknown liquid?

2.6 Bathyscaphes are capable of submerging to great depthsin the
ocean. What is the pressure at a depth of 5 km, assuming that
seawater has a constant specific weight of 10.1 kN/m3? Express
your answer in pascals and psi.

2.7 For the great depths that may be encountered in the ocean the
compressibility of seawater may become an important consideration.
(a) Assume that the bulk modulus for seawater is constant and
derive a relationship between pressure and depth which takes into
account the change in fluid density with depth. (b) Make use of
part (a) to determine the pressure at a depth of 6 km assuming
seawater has a bulk modulus of 2.3 X 10° Pa and a density of
1030 kg/m?® at the surface. Compare this result with that obtained
by assuming a constant density of 1030 kg/m®.

2.8 Sometimes when riding an elevator or driving up or down a
hilly road a person’s ears “pop” as the pressure difference between
the inside and outside of the ear is equalized. Determine the
pressure difference (in psi) associated with this phenomenon if it
occurs during a 150 ft elevation change.

2.9 Develop an expression for the pressure variation in aliquid in
which the specific weight increases with depth, h, asy = Kh + ,,
where K isaconstant and vy, isthe specific weight at the free surface.

*2.10 In a certain liquid at rest, measurements of the specific
weight at various depths show the following variation:

h (ft) y (Ib/ftd)
0 70
10 76
20 84
30 01
40 97
50 102
60 107
70 110
80 112
90 114
100 115
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Problems

The depth h = 0 corresponds to a free surface at atmospheric pres-
sure. Determine, through numerical integration of Eq. 2.4, the cor-
responding variation in pressure and show the results on a plot of
pressure (in psf) versus depth (in feet).

12.11 Because of eevation differences, the water pressure in the
second floor of your house is lower than it isin the first floor. For
tall buildings this pressure difference can become unacceptable. Dis-
cuss possible ways to design the water distribution system in very tall
buildings so that the hydrostatic pressure difference is within accept-
able limits.

*2.12 Under normal conditions the temperature of the atmosphere
decreases with increasing elevation. In some situations, however,
a temperature inversion may exist so that the air temperature in-
creases with elevation. A series of temperature probes on a moun-
tain give the elevation—temperature data shown in the table below.
If the barometric pressure at the base of the mountain is 12.1 psia,
determine by means of numerical integration the pressure at the
top of the mountain.

Elevation (ft) Temperature (°F)

5000 50.1 (base)
5500 55.2

6000 60.3

6400 62.6

7100 67.0

7400 68.4

8200 70.0

8600 69.5

9200 68.0

9900 67.1 (top)

12.13 Although it is difficult to compress water, the density of
water at the bottom of the ocean is greater than that at the surface
because of the higher pressure at depth. Estimate how much higher
the ocean’'s surface would be if the density of seawater were
instantly changed to a uniform density equal to that at the surface.

2.14 (SeeFluidsinthe News article titled “ Giraffe's blood pres-
sure,” Section 2.3.1.) (a) Determine the changein hydrostatic pres-
surein agiraffe’s head as it lowers its head from eating leaves 6 m
above the ground to getting a drink of water at ground level as
shown in Fig. P2.14. Assume the specific gravity of blood is
G = 1. (b) Compare the pressure change calculated in part (a) to
the normal 120 mm of mercury pressure in a human’s heart.

B FIGURE P2.14
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Section 2.4 Standard Atmosphere

2.15 Assume that a person skiing high in the mountains at an
altitude of 15,000 ft takes in the same volume of air with each
breath as she does while walking at sea level. Determine the ratio
of the mass of oxygen inhaled for each breath at this high altitude
compared to that at sea level.

2.16 Pikes Peak near Denver, Colorado, has an elevation of
14,110 ft. (a) Determine the pressure at this elevation, based on
Eqg. 2.12. (b) If theair isassumed to have a constant specific weight
of 0.07647 Ib/ft*, what would the pressure be at this altitude?
(c) If the air is assumed to have a constant temperature of 59 °F,
what would the pressure be at this elevation? For al three cases
assume standard atmospheric conditions at sealevel (see Table2.1).

2.17 Equation 2.12 providesthe rel ationship between pressure and
elevation in the atmosphere for those regions in which the
temperature varies linearly with elevation. Derive this equation and
verify the value of the pressure given in Table C.2 in Appendix C
for an elevation of 5 km.

2.18 Asshown in Fig. 2.6 for the U.S. standard atmosphere, the
troposphere extends to an altitude of 11 km where the pressure is
22,6 kPa (abs). In the next layer, called the stratosphere, the
temperature remains constant at —56.5 °C. Determine the pressure
and density in this layer at an dtitude of 15 km. Assume
g = 9.77m/< in your caculations. Compare your results with
those given in Table C.2 in Appendix C.

2.19 (SeeFluidsinthe Newsarticletitled “\Weather, barometers,
and bars,” Section 2.5.) Therecord low sea-level barometric pres-
sure ever recorded is 25.8 in. of mercury. At what altitude in the
standard atmosphere is the pressure equal to this value?

Section 2.5 Measurement of Pressure

2.20 On agiven day, a barometer at the base of the Washington
Monument reads 29.97 in. of mercury. What would the barometer
reading be when you carry it up to the observation deck 500 ft
above the base of the monument?

2.21 Bourdon gages (see Video V2.3 and Fig. 2.13) are commonly
used to measure pressure. When such a gage is attached to the
closed water tank of Fig. P2.21 the gage reads 5 psi. What is the
absolute air pressure in the tank? Assume standard atmospheric
pressure of 14.7 psi.

12 in.

Bourdon gage

Water

B FIGURE P2.21

2.22  Onthe suction side of apump aBourdon pressure gage reads
40 kPa vacuum. What is the corresponding absolute pressure if the
local atmospheric pressure is 100 kPa (abs)?

Section 2.6 Manometry

2.23 Obtain a photograph/image of a situation in which the use of
a manometer is important. Print this photo and write a brief
paragraph that describes the situation involved.

2.24 A water-filled U-tube manometer is used to measure the pressure
insdeatank that contains air. The water level in the U-tube on the side
that connects to the tank is 5 ft above the base of the tank. The weater
level in the other side of the U-tube (which is open to the atmosphere)
is 2 ft above the base. Determine the pressure within the tank.

2.25 A barometric pressure of 29.4 in. Hg corresponds to what
value of atmospheric pressure in psia, and in pascals?

2.26 For an atmospheric pressure of 101 kPa (abs) determine the
heights of the fluid columns in barometers containing one of the
following liquids: (a) mercury, (b) water, and (c) ethyl acohol.
Calculate the heights including the effect of vapor pressure, and
compare the results with those obtained neglecting vapor pressure.
Do these results support the widespread use of mercury for
barometers? Why?

2.27 A mercury manometer is connected to a large reservoir of
water as shown in Fig. P2.27. Determine the ratio, h,/h,, of the
distances h,, and h,, indicated in the figure.

Water

B FIGURE P2.27

2.28 A U-tube manometer is connected to a closed tank containing
air and water as shown in Fig. P2.28. At the closed end of the

¥F Closed valve

<— Air pressure = 16 psia
4 ft

1
2 ft
Water l

i

Pressure
gage

Gage fluid
(y =90 Ib/ft3)

B FIGURE P2.28



manometer the air pressureis 16 psia. Determine the reading on the
pressure gage for a differentia reading of 4 ft on the manometer.
Express your answer in psi (gage). Assume standard atmospheric
pressure and neglect theweight of the air columnsin the manometer.

2.29 A closed cylindrica tank filled with water has a hemispherica
dome and is connected to an inverted piping system as shown in Fig.
P2.29. The liquid in the top part of the piping system has a specific
gravity of 0.8, and the remaining parts of the system are filled with
water. If the pressure gage reading at A is 60 kPa, determine: (a) the
pressure in pipe B, and (b) the pressure head, in millimeters of
mercury, at the top of the dome (point C).

Hemispherical dome
/SIB =0.8
4m
3m
2m
S .
Water

B FIGURE P2.29

2.30 Two pipes are connected by a manometer as shown in Fig.
P2.30. Determinethe pressuredifference, pa — Pg, between the pipes.

1.3 m

Gage fluid
(SG=2.6)

B FIGURE P2.30

2.31 A U-tube manometer is connected to a closed tank as shown in
Fig. P2.31. The air pressure in the tank is 0.50 ps and the liquid in

—

Air

Open

i

.
>
=

——

F

G =3.05
B FIGURE P2.31
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the tank is ail (y = 54.0 Ib/ft). The pressure at point A is 2.00 psi.
Determine: (a) the depth of ail, z and (b) the differentid reading, h,
on the manometer.

2.32 For the inclined-tube manometer of Fig. P2.32 the pressure
in pipe A is 0.6 psi. The fluid in both pipes A and B is water, and
the gage fluid in the manometer has a specific gravity of 2.6. What
is the pressure in pipe B corresponding to the differential reading
shown?

B FIGURE P2.32

2.33 A flowrate measuring device is installed in a horizontal
pipe through which water is flowing. A U-tube manometer is
connected to the pipe through pressure tapslocated 3 in. on either
side of the device. The gage fluid in the manometer has a specific
weight of 112 Ib/ft3. Determine the differential reading of the
manometer corresponding to a pressure drop between the taps
of 0.51b/in.2,

2.34 Small differences in gas pressures are commonly measured
with a micromanometer of the type illustrated in Fig. P2.34. This
device consists of two large reservoirs each having a cross-
sectional area A, which are filled with a liquid having a specific
weight y; and connected by a U-tube of cross-sectional area A,
containing a liquid of specific weight y,. When a differential gas
pressure, p; — P, is applied, a differential reading, h, develops.
It is desired to have this reading sufficiently large (so that it can
be easily read) for small pressure differentials. Determine the
relationship between h and p; — p, when the area ratio A/A, is
small, and show that the differential reading, h, can be magnified
by making the difference in specific weights, vy, — y;, small.
Assume that initialy (with p, = p,) the fluid levels in the two
reservoirs are equal.

P P2

N 7

1
i

Y2

A J
B FIGURE P2.34

2.35 The cyclindrical tank with hemispherical ends shown in Fig.
P2.35 contains a volatile liquid and its vapor. The liquid density is
800 kg/m®, and its vapor density is negligible. The pressure in the
vapor is 120 kPa (abs), and the atmospheric pressure is 101 kPa
(abs). Determine: (a) the gage pressure reading on the pressure
gage; and (b) the height, h, of the mercury manometer.
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Open
Vapor -
1m I
L Liquid i
llm
C Mercury

B FIGURE P2.35

2.36 Determine the elevation difference, Ah, between the water
levels in the two open tanks shown in Fig. P2.36.

Water
HFIGURE P2.36

2.37 For the configuration shown in Fig. P2.37 what must be the
value of the specific weight of the unknown fluid? Express your
answer in Ib/ft3,

Open Open
‘/Water/’
5.5 in.
4.9 in.

—  Unknown 3.3 in.

T fluid

1.4 in.
| <

B FIGURE P2.37

2.38 An air-filled, hemispherical shell is attached to the ocean
floor at a depth of 10 m as shown in Fig. P2.38. A mercury
barometer located inside the shell reads 765 mm Hg, and a
mercury U-tube manometer designed to give the outside water
pressure indicates a differential reading of 735 mm Hg as
illustrated. Based on these data what is the atmospheric pressure
at the ocean surface?

Shell wall

735 mm

10m

Mercury

Shell

B FIGURE P2.38

*2.39 Both ends of the U-tube mercury manometer of Fig. P2.39
areinitialy open to the atmosphere and under standard atmospheric
pressure. When the valve at the top of the right leg is open, the level
of mercury below thevalveish;. After thevalveisclosed, air pressure
is applied to the left leg. Determine the relationship between the
differentia reading on the manometer and the applied gage pressure,
pg- Show on a plot how the differentia reading varies with p, for
h, = 25, 50, 75, and 100 mm over the range 0 = p, = 300 kPa.
Assume that the temperature of the trapped air remains constant.

Mercury

- B FIGURE P2.39

2.40 The inverted U-tube manometer of Fig. P2.40 contains oil
(SG = 0.9) and water as shown. The pressure differential between
pipes A and B, pa — pg, is —5kPa. Determine the differential
reading, h.

.

0.3
Water \

m

+7

B

B FIGURE P2.40

2.41 Aninverted U-tube manometer containing oil (SG = 0.8) is
located between two reservoirs as shown in Fig. P2.41. The



Carbon tetrachloride

B FIGURE P2.41

reservoir on the left, which contains carbon tetrachloride, is closed
and pressurized to 8 psi. The reservoir on the right contains water
and is open to the atmosphere. With the given data, determine the
depth of water, h, in the right reservoir.

2.42 Determine the pressure of the water in pipe A shown in Fig.
P2.42 if the gage pressure of the air in the tank is 2 psi.

@p:Zpsi

Air

/33:0.9

.
T
1ft

B FIGURE P242

2.43 In Fig. P2.43 pipe A contains gasoline (SG = 0.7), pipe B
contains oil (SG = 0.9), and the manometer fluid is mercury.
Determine the new differential reading if the pressure in pipe A is
decreased 25 kPa, and the pressure in pipe B remains constant. The
initial differential reading is 0.30 m as shown.

T

0.4 m 0il

Gasoline L—Mercury

B FIGURE P243

244 The inclined differential manometer of Fig. P2.44 contains
carbon tetrachloride. Initiadly the pressure differential between
pipes A and B, which contain a brine (SG = 1.1), is zero as
illustrated in the figure. It is desired that the manometer give a
differential reading of 12 in. (measured along the inclined tube)
for a pressure differential of 0.1 psi. Determine the required angle
of inclination, 6.
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Brine

Carbon \(

tetrachloride

B FIGURE P2.44

2.45 Determine the new differential reading along theinclined leg
of the mercury manometer of Fig. P2.45, if the pressure in pipe A
is decreased 10 kPa and the pressure in pipe B remains unchanged.
The fluid in A has a specific gravity of 0.9 and the fluid in B is
water.

80 mm

Mercury

B FIGURE P245

2.46 Determine the change in the elevation of the mercury in the
left leg of the manometer of Fig. P2.46 as a result of an increase
in pressure of 5 psi in pipe A while the pressure in pipe B remains
constant.

Water

0il (SG =0.9)

5

—
N
=]

1.
zin diameter

diameter Mercury
HFIGURE P246

2.47 The U-shaped tube shown in Fig. P2.47 initially contains
water only. A second liquid with specific weight, vy, less than water
is placed on top of the water with no mixing occurring. Can the

Y—

D, =1.5D,|

Water—~

B FIGURE P247
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height, h, of the second liquid be adjusted so that the left and right
levels are at the same height? Provide proof of your answer.

*2.48 An inverted hollow cylinder is pushed into the water as is
shown in Fig. P2.48. Determine the distance, ¢, that the water rises
in the cylinder as afunction of the depth, d, of the lower edge of the
cylinder. Plot theresultsfor 0 = d =< H,whenHisequal to 1 m.As-
sumethetemperature of the air within the cylinder remains constant.

T
T4
Open end/

B FIGURE P248

Section 2.8 Hydrostatic Force on a Plane Surface (Also
see Lab Problems 2.122, 2.123, 2.124, and 2.125.)

2.49 Obtain a photograph/image of a situation in which the
hydrostatic force on a plane surface is important. Print this photo
and write a brief paragraph that describes the situation involved.

*2.50 A Bourdon gage (see Fig. 2.13 and Video V2.3) is often
used to measure pressure. One way to calibrate this type of gage
is to use the arrangement shown in Fig. P2.50a. The container is
filled with aliquid and a weight, W', placed on one side with the
gage on the other side. The weight acting on the liquid through a
0.4-in.-diameter opening creates a pressure that is transmitted to
the gage. This arrangement, with a series of weights, can be used
to determine what a change in the dial movement, 6, in Fig. P2.50b,
corresponds to in terms of a change in pressure. For a particular
gage, some data are given below. Based on a plot of these data,
determine the relationship between 6 and the pressure, p, where p
is measured in psi.

W (lb) |0 | 104 | 200 | 3.23 | 405 | 524 | 631 |

6(deg) TO1 20 | 40 | 60 | 80 | 100 | 120 |
Bourdon Gage W
\/ —I_'__ll 0.4-in.-diameter
/l Liquid
\(—b)/ (a)

B FIGURE P2.50

2.51 You partialy fill a glass with water, place an index card on
top of the glass, and then turn the glass upside down while holding
the card in place. You can then remove your hand from the card
and the card remains in place, holding the water in the glass.
Explain how this works.

2.52 A piston having a cross-sectional area of 0.07 m? is located
in a cylinder containing water as shown in Fig. P2.52. An open
U-tube manometer is connected to the cylinder as shown. For
h, = 60 mmand h = 100 mm, what is the value of the applied
force, P, acting on the piston? The weight of the piston is
negligible.

P

l 7ston

BB
hl
e

Water

(-

B FIGURE P2.52

1
1

Mercury

2.53 A 6-in.-diameter piston is located within a cylinder which is
connected to a 3-in.-diameter inclined-tube manometer as shown in
Fig. P2.53. The fluid in the cylinder and the manometer is il
(specific weight = 59 Ib/ft3). When aweight, W', is placed on the
top of the cylinder, the fluid level in the manometer tube rises from
point (1) to (2). How heavy is the weight? Assume that the change
in position of the piston is negligible.

w

Piston

B FIGURE P2.53

2.54 A circular 2-m-diameter gateislocated on the sloping side
of aswimming pool. The side of the pool is oriented 60° relative
to the horizontal bottom, and the center of the gate is located
3 m below the water surface. Determine the magnitude of the
water force acting on the gate and the point through which it
acts.

2.55 A vertica rectangular gate is 8 ft wide and 10 ft long and
weighs 6000 Ib. The gate slides in vertical slots in the side of a
reservoir containing water. The coefficient of friction between the
dots and the gate is 0.03. Determine the minimum vertical force
required to lift the gate when the water level is 4 ft above the top
edge of the gate.

256 A horizontal 2-m-diameter conduit is half filled with a
liquid (SG = 1.6) and is capped at both ends with plane vertical
surfaces. The air pressure in the conduit above the liquid surface
is 200 kPa. Determine the resultant force of the fluid acting on
one of the end caps, and locate this force relative to the bottom
of the conduit.

2.57 Forms used to make a concrete basement wall are shown in
Fig. P2.57. Each 4-ft-long form is held together by four ties—two
at the top and two at the bottom asindicated. Determine the tension
in the upper and lower ties. Assume concrete acts as a fluid with
aweight of 150 lb/ft3.

2.58 A structure is attached to the ocean floor as shown in Fig.
P2.58. A 2-m-diameter hatch is located in an inclined wall and
hinged on one edge. Determine the minimum air pressure, p;,
within the container that will open the hatch. Neglect the weight
of the hatch and friction in the hinge.
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Concrete

Form —| [\ to 10 ft
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!

B FIGURE P257

\V4 Free surface

1 Seawater

Hatch

Hinge

Air pressure, p;

B FIGURE P2.58

2.59 A long, vertical wall separates seawater from freshwater. If
the seawater stands at a depth of 7 m, what depth of freshwater is
required to give a zero resultant force on the wall? When the
resultant force is zero will the moment due to the fluid forces be
zero? Explain.

2.60 A pump supplies water under pressure to a large tank as
shown in Fig. P2.60. The circular-plate valve fitted in the short
discharge pipe on the tank pivots about its diameter A-A and is
held shut against the water pressure by a latch at B. Show that the
force on the latch is independent of the supply pressure, p, and the
height of the tank, h.

Supply

Pressure p
N ((—4—

Water

B

B FIGURE P2.60

2.61 A homogeneous, 4-ft-wide, 8-ft-long rectangular gate weigh-
ing 800 Ib is held in place by a horizontal flexible cable as shown
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ﬁo

Water

B FIGURE P2.61

in Fig. P2.61. Water acts against the gate which is hinged at point
A. Friction in the hinge is negligible. Determine the tension in the
cable.

12.62 Sometimes it is difficult to open an exterior door of a
building because the air distribution system maintains a pressure
difference between the inside and outside of the building. Estimate
how big this pressure difference can be if it is “not too difficult”
for an average person to open the door.

2.63 Anareaintheform of anisoscelestriangle with a base width
of 6 ft and an altitude of 8 ft lies in the plane forming one wall of
a tank which contains a liquid having a specific weight of
79.8 Ib/ft%. The side slopes upward, making an angle of 60° with
the horizontal. The base of the triangle is horizontal and the vertex
is above the base. Determine the resultant force the fluid exerts on
the areawhen the fluid depth is 20 ft above the base of the triangu-
lar area. Show, with the aid of a sketch, where the center of pres-
sure is located.

2.64 Solve Problem 2.63 if the isosceles triangle is replaced with
a right triangle having the same base width and altitude as the
isosceles triangle.

2.65 A vertica plane area having the shape shown in Fig. P2.65 is
immersed in an oil bath (specific weight = 8.75 kN/m®). Deter-
mine the magnitude of the resultant force acting on one side of the
areaasaresult of the oil.

Oil bath

B FIGURE P2.65

2.66 A 3-m-wide, 8-m-high rectangular gate is located at the
end of a rectangular passage that is connected to a large open
tank filled with water as shown in Fig. P2.66. The gate is hinged
at its bottom and held closed by a horizontal force, Fy, located
at the center of the gate. The maximum value for F, is 3500 kN.
(a) Determine the maximum water depth, h, above the center
of the gate that can exist without the gate opening. (b) Is the
answer the same if the gate is hinged at the top? Explain your
answer.
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h
!
4 m 3 ¢ Fy
Pl am
Hinge j

B FIGURE P2.66

2.67 A gate having the cross section shown in Fig. P2.67 closes an
opening 5 ft wide and 4 ft high in awater reservoir. The gate weighs
500 Ib and its center of gravity is 1 ft to the left of AC and 2 ft above
BC. Determine the horizontal reaction that is developed on the gate
acC.

,,,,,, \VAREN——
Water
8 ft
Hinge
b A
4 ft Gate
B C
s q

B FIGURE P2.67

2.68 The massless, 4-ft-wide gate shown in Fig. P2.68 pivots
about the frictionless hinge O. It is held in place by the 2000 Ib
counterweight, W. Determine the water depth, h.

Width = 4 ft

B FIGURE P2.68

*2.69 A 200-Ib homogeneous gate of 10-ft width and 5-ft
length is hinged at point A and held in place by a 12-ft-long
brace as shown in Fig. P2.69. As the bottom of the brace is
moved to the right, the water level remains at the top of the
gate. The line of action of the force that the brace exerts on the
gate is along the brace. (a) Plot the magnitude of the force
exerted on the gate by the brace as a function of the angle of
the gate, 0, for 0 = 6 = 90°. (b) Repeat the calculations for the
case in which the weight of the gate is negligible. Comment on
the results as 6 — 0.

Moveable
stop

B FIGURE P2.69

2.70 An open tank hasavertical partition and on one side contains
gasoline with adensity p = 700 kg/m? at adepth of 4 m, as shown
in Fig. P2.70. A rectangular gate that is4 m high and 2 m wide and
hinged at one end is located in the partition. Water is slowly added
to the empty side of the tank. At what depth, h, will the gate start to
open?

Partition

Gasoline

B FIGURE P2.70

2.71 A 4-ft by 3-ft massless rectangular gate is used to close the
end of thewater tank shownin Fig. P2.71. A 200 Ib weight attached
to the arm of the gate at a distance ¢ from the frictionless hinge is
just sufficient to keep the gate closed when the water depth is 2 ft,
that is, when the water fills the semicircular lower portion of the
tank. If the water were deeper the gate would open. Determine the
distance ¢.

-~ €4j1/Hinge

200 Ib

Gate—

B FIGURE P2.71

2.72 A rectangular gate that is 2 m wide is located in the vertical
wall of atank containing water as shown in Fig. P2.72. It is desired
to have the gate open automatically when the depth of water above
the top of the gate reaches 10 m. (a) At what distance, d, should the

,,,,,,,,, v ]
bl Water

T
d
i

B FIGURE P2.72



frictionless horizontal shaft be located? (b) What is the magnitude
of the force on the gate when it opens?

2.73 A thin 4-ft-wide, right-angle gate with negligible massisfree
to pivot about a frictionless hinge at point O, as shown in Fig.
P2.73. The horizontal portion of the gate covers a 1-ft-diameter
drain pipe which contains air at atmospheric pressure. Determine
the minimum water depth, h, at which the gate will pivot to alow
water to flow into the pipe.

Width = 4 ft
\

Right-angle gate L E:?TT =
h

Hinge
N\

O

l«—1-ft-diameter pipe

'

~—3 ftfﬂl

BEFIGURE P2.73

2.74 An open rectangular tank is 2 m wide and 4 m long. The
tank contains water to adepth of 2 m and oil (SG = 0.8) on top of
the water to adepth of 1 m. Determine the magnitude and location
of the resultant fluid force acting on one end of the tank.

*2.75 An open rectangular settling tank contains aliquid suspen-
sion that at a given time has a specific weight that varies
approximately with depth according to the following data:

h (m) y (N/m’)

0 10.0
0.4 10.1
08 102
12 10.6
16 11.3
20 12.3
24 12.7
28 12.9
32 130
36 13.1

The depth h = 0 corresponds to the free surface. Determine, by
means of numerical integration, the magnitude and location of the
resultant force that the liquid suspension exerts on avertical wall of
the tank that is 6 m wide. The depth of fluid in the tank is 3.6 m.

2.76 The closed vessel of Fig. P2.76 contains water with an air
pressure of 10 psi at the water surface. One side of the vessel

10 psi

10 ft i
0 Axis
_— 6-in.-diameter

Water

B FIGURE P2.76
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contains a spout that is closed by a 6-in.-diameter circular gate
that is hinged along one side asillustrated. The horizontal axis of
the hinge is located 10 ft below the water surface. Determine the
minimum torque that must be applied at the hinge to hold the
gate shut. Neglect the weight of the gate and friction at the hinge.

2.77 A 4-t-tal, 8-in.-wide concrete (150 Ib/ft®) retaining wall is
built as shown in Fig. P2.77. During a heavy rain, water fills the
space between the wall and the earth behind it to a depth h. Deter-
mine the maximum depth of water possible without thewall tipping
over. The wall simply rests on the ground without being anchored
toit.

*2.78 Water backs up behind a concrete dam as shown in
Fig. P2.78. Leakage under the foundation gives a pressure distribu-
tion under the dam as indicated. If the water depth, h, is too great,
the dam will topple over about its toe (point A). For the dimensions
given, determine the maximum water depth for the following widths
of the dam: ¢ = 20, 30, 40, 50, and 60 ft. Base your analysis on a
unit length of the dam. The specific weight of the concrete is
150 Ib/ft>.

A
Water | . 80 ft
" . I VAR
il Na o | hre10
Pa=71hr
Pg=7h

\ ¢
BEFIGURE P2.78

2.79 (See Fluids in the News article titled “ The Three Gorges
Dam,” Section 2.8.) (a) Determine the horizontal hydrostatic force
on the 2309-m-long Three Gorges Dam when the average depth of
the water against it is 175 m. (b) If al of the 6.4 billion people on
Earth were to push horizontally against the Three Gorges Dam,
could they generate enough force to hold it in place? Support your
answer with appropriate calculations.

Section 2.10 Hydrostatic Force on a Curved Surface

2.80 Obtain a photograph/image of a situation in which the
hydrostatic force on a curved surface is important. Print this
photo and write a brief paragraph that describes the situation
involved.
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2.81 A 2-ft-diameter hemispherical plexiglass “bubble’ is to be
used as a special window on the side of an above-ground swimming
pool. The window is to be bolted onto the vertical wall of the pool
and faces outward, covering a 2-ft-diameter opening in the wall.
The center of the opening is 4 ft below the surface. Determine the
horizontal and vertical components of the force of the water on the
hemisphere.

2.82 Two round, open tanks containing the same type of fluid rest
on atable top as shown in Fig. P2.82. They have the same bottom
area, A, but different shapes. When the depth, h, of the liquid in
the two tanks is the same, the pressure force of the liquids on the
bottom of the two tanks is the same. However, the force that the
table exerts on the two tanksis different because the weight in each
of the tanks is different. How do you account for this apparent
paradox?

Area = A
HFIGURE P2.82

Area = A

2.83 Two hemispherical shellsare bolted together as shownin Fig.
P2.83. The resulting spherical container, which weighs 300 Ib, is
filled with mercury and supported by a cable as shown. The
container isvented at the top. If eight bolts are symmetrically located
around the circumference, what is the vertical force that each bolt
must carry?

Cable

Vent /Sphere diameter = 3 ft

B FIGURE P2.83

2.84 The 18-ft-long gate of Fig. P2.84 is a quarter circle and is
hinged at H. Determine the horizontal force, P, required to hold
the gate in place. Neglect friction at the hinge and the weight of
the gate.

B FIGURE P2.84

2.85 Theair pressure in the top of the 2-liter pop bottle shown in
Video V2.5 and Fig. P2.85is40 psi, and the pop depthis10in. The
bottom of the bottle has an irregular shape with adiameter of 4.3in.
(a) If the bottle cap has adiameter of 1 in. what isthe magnitude of
the axial force required to hold the cap in place? (b) Determine the
force needed to secure the bottom 2 in. of the bottle to its cylindri-
cal sides. For this calculation assume the effect of the weight of the
pop is negligible. (c) By how much does the weight of the pop in-
crease the pressure 2 in. above the bottom? Assume the pop hasthe
same specific weight asthat of water.

1-in. diameter

Pair = 40 psi

12in.

«— 4.3-in. diameter

B FIGURE P2.85

2.86 Hoover Dam (see Video 2.4) isthe highest arch-gravity type
of damin the United States. A cross section of the dam is shown in
Fig. P2.86(a). The walls of the canyon in which the dam is located
are sloped, and just upstream of the dam the vertical plane shownin
Figure P2.86(b) approximately represents the cross section of the
water acting on the dam. Use this vertical cross section to estimate
the resultant horizontal force of the water on the dam, and show
where thisforce acts.

45 ft

-

1 660 ft 1

290 ft
(a) (b)

B FIGURE P2.86

2.87 A plugin the bottom of apressurized tank is conical in shape,
as shown in Fig. P2.87. The air pressure is 40 kPaand the liquid in

@ 40 kPa

Liquid

A RVAN
Im
¢ 600

B FIGURE P2.87




the tank has a specific weight of 27 kN/m?. Determine the magni-
tude, direction, and line of action of the force exerted on the curved
surface of the cone within the tank due to the 40-kPa pressure and
theliquid.

2.88 The homogeneous gate shown in Fig. P2.88 consists of one
quarter of acircular cylinder and is used to maintain a water depth
of 4 m. That is, when the water depth exceeds 4 m, the gate opens
dightly and lets the water flow under it. Determine the weight of
the gate per meter of length.

B FIGURE P2.88

2.89 The concrete (specific weight = 150 lb/ft®) seawall of Fig.
P2.89 has a curved surface and restrains seawater at a depth of 24 ft.
The trace of the surface is a parabola as illustrated. Determine the
moment of the fluid force (per unit length) with respect to an axis
through the toe (point A).

Seawater :
y=0.2%

24 ft

|

e

B FIGURE P2.89

2.90 A cylindrica tank with its axis horizontal has a diameter of
2.0mand alength of 4.0 m. The ends of the tank are vertical planes.
A vertical, 0.1-m-diameter pipe is connected to the top of the tank.
Thetank and the pipe are filled with ethyl acohol to alevel of 1.5m
above the top of the tank. Determine the resultant force of the
alcohol on one end of the tank and show where it acts.

2.91 If the tank ends in Problem 2.90 are hemispherical, what is
the magnitude of the resultant horizontal force of the alcohol on
one of the curved ends?

2.92 Anopentank containing water hasabulgeinitsvertical side
that is semicircular in shape as shown in Fig. P2.92. Determinethe
horizontal and vertical components of the force that the water ex-
erts on the bulge. Base your analysis on a 1-ft length of the bulge.

2.93 A closed tank isfilled with water and has a4-ft-diameter hemi-
spherical dome as shown in Fig. P2.93. A U-tube manometer is con-
nected to the tank. Determine the vertical force of the water on the
domeif thedifferential manometer reading is 7 ft and the air pressure
at the upper end of the manometer is 12.6 psi.
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Problems

B FIGURE P2.92

Air

| Gage
fluid
(SG=3.0)

B FIGURE P2.93

2.94 A 3-m-diameter open cylindrical tank contains water and hasa
hemispherical bottom as shown in Fig. P2.94. Determine the magni-
tude, line of action, and direction of the force of the water on the
curved bottom.

Water

—3m—

B FIGURE P2.94

2.95 Three gates of negligible weight are used to hold back water
in achannel of width b asshownin Fig. P2.95 on the next page. The
force of the gate against the block for gate (b) is R. Determine (in
terms of R) the force against the blocks for the other two gates.

Section 2.11 Buoyancy, Flotation, and Stability

2.96 Obtain a photograph/image of a situation in which
Archimedes’ principle is important. Print this photo and write a
brief paragraph that describes the situation involved.

2.97 A freshly cut log floats with one fourth of its volume pro-
truding above the water surface. Determine the specific weight of
the log.
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(@) (b)

(c)
HFIGURE P2.95

2.98 A river barge, whose cross section is approximately rectan-
gular, carries a load of grain. The barge is 28 ft wide and
90 ft long. When unloaded its draft (depth of submergence)
is 5 ft, and with the load of grain the draft is 7 ft. Determine:
(a) the unloaded weight of the barge, and (b) the weight of the
grain.

2.99 A tank of cross-sectional area A is filled with a liquid of
specific weight y; as shown in Fig. P2.99a. Show that when a
cylinder of specific weight y, and volume ¥ is floated in the lig-
uid (see Fig. P2.99b), the liquid level rises by an amount
Ah = (yo/ v1) ¥/A

L ’’’’’’ Y = 3 F——
Ah y
S VA — 1
S T
N
(a) (b)

B FIGURE P2.99

2.100 When the Tucurui Dam was constructed in northern
Brazil, the lake that was created covered alarge forest of valuable
hardwood trees. It was found that even after 15 years underwater
the trees were perfectly preserved and underwater logging was
started. During the logging process a tree is selected, trimmed,
and anchored with ropesto prevent it from shooting to the surface
like amissile when cut. Assumethat atypical large tree can be ap-
proximated as atruncated cone with a base diameter of 8 ft, atop
diameter of 2 ft, and a height of 100 ft. Determine the resultant
vertical force that the ropes must resist when the completely sub-
merged tree is cut. The specific gravity of the wood is approxi-
mately 0.6.

12.101 Estimate the minimum water depth needed to float a canoe
carrying two people and their camping gear. List all assumptions
and show all calculations.

2.102 Aninverted test tube partialy filled with air floatsin aplas-
tic water-filled soft drink bottle as shown in Video V2.7 and Fig.
P2.102. The amount of air in the tube has been adjusted so that it
just floats. The bottle cap is securely fastened. A slight squeezing of
the plastic bottle will cause the test tube to sink to the bottom of the
bottle. Explain this phenomenon.

Air

Test tube —_|

/
Water ~—Plastic bottle

B FIGURE P2.102

2.103 Anirregularly shaped piece of asolid material weighs8.05 Ib
in air and 5.26 Ib when completely submerged in water. Determine
the density of the material.

2.104 A 1-m-diameter cylindrical mass, M, is connected to a 2-
m-wide rectangular gate as shown in Fig. P2.104. The gate is to
open when the water level, h, drops below 2.5 m. Determine the
required value for M. Neglect friction at the gate hinge and the

pulley.

_ 'C‘

h diameter

o l 1:’“

B FIGURE P2.104

2.105 When a hydrometer (see Fig. P2.105 and Video VV2.8) hav-
ing a stem diameter of 0.30 in. is placed in water, the stem pro-
trudes 3.15 in. above the water surface. If the water is replaced with
a liquid having a specific gravity of 1.10, how much of the stem
would protrude above the liquid surface? The hydrometer weighs
0.0421b.

)

Fluid
surface

Hydrometer —

rrrrrerere”

rrrereeees

—

N

B FIGURE P2.105



2.106 A 2-ft-thick block constructed of wood (SG = 0.6) is sub-
merged in oil (SG = 0.8), and has a 2-ft-thick aluminum (specific
weight = 168 lb/ft®) plate attached to the bottom asindicated in Fig.
P2.106. Determine completely the force required to hold the block
in the position shown. Locate the force with respect to point A.

\V4

6 ft Oil

Aluminum

- I
0.5 ft g

A |

T?g\

B FIGURE P2.106

2.107 (See Fluids in the News article titled “ Concrete canoe,”
Section 2.11.1.) How much extra water does a 147-1b concrete ca-
noe displace compared to an ultralightweight 38-1b Kevlar canoe of
the same size carrying the same load?

2.108 An iceberg (specific gravity 0.917) floats in the ocean (spe-
cific gravity 1.025). What percent of the volume of the iceberg is
under water?

Section 2.12 PressureVariation in a Fluid
with Rigid-Body Motion

2.109 Obtain a photograph/image of asituation in which the pres-
sure variation in a fluid with rigid-body motion is involved. Print
this photo and write a brief paragraph that describes the situation
involved.

2.110 Itisnoted that while stopping, the water surfacein aglass of
water sitting in the cup holder of acar is slanted at an angle of 15°
relative to the horizontal street. Determine the rate at which the car
is decelerating.

2.111 An open container of oil rests on the flatbed of atruck that
istraveling along a horizontal road at 55 mi/hr. Asthe truck slows
uniformly to acomplete stop in 5 s, what will be the slope of the oil
surface during the period of constant deceleration?

2.112 A 5-ga, cylindrical open container with a bottom area of
120 in.2 isfilled with glycerin and rests on the floor of an elevator.
(a) Determine the fluid pressure at the bottom of the container
when the elevator has an upward acceleration of 3 ft/s%. (b) What
resultant force does the container exert on the floor of the elevator
during this acceleration? The weight of the container is negligible.
(Note: 1 gal = 231in.3)

2.113 An open rectangular tank 1 m wide and 2 m long contains
gasoline to a depth of 1 m. If the height of the tank sidesis 1.5 m,
what is the maximum horizontal acceleration (along the long axis of
the tank) that can devel op before the gasoline would begin to spill?

2.114 If thetank of Problem 2.113 slides down africtionless plane
that isinclined at 30° with the horizontal, determine the angle the
free surface makes with the horizontal.

2.115 A closed cylindrical tank that is 8 ft in diameter and 24 ft
long is completely filled with gasoline. The tank, with itslong axis
horizontal, is pulled by a truck along a horizontal surface. Deter-
mine the pressure difference between the ends (along the long axis
of the tank) when the truck undergoes an acceleration of 5 ft/<%.
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Problems

2.116 The open U-tube of Fig. P2.116 is partially filled with alig-
uid. When this device is accelerated with a horizontal acceleration
a, a differential reading h develops between the manometer legs
which are spaced a distance ¢ apart. Determine the relationship be-
tween a, ¢, and h.

a
h —
_y

=i

B FIGURE P2.116

2.117 Anopen 1-m-diameter tank contains water at a depth of 0.7
mwhen at rest. Asthe tank is rotated about its vertical axisthe cen-
ter of the fluid surface is depressed. At what angular velocity will
the bottom of the tank first be exposed? No water is spilled from the
tank.

2.118 An open, 2-ft-diameter tank contains water to a depth of 3 ft
when at rest. If the tank isrotated about its vertical axis with an an-
gular velocity of 180 rev/min, what is the minimum height of the
tank walls to prevent water from spilling over the sides?

2.119 A childridingin acar holds a string attached to afloating,
helium-filled balloon. As the car decelerates to a stop, the balloon
tilts backwards. As the car makes a right-hand turn, the balloon
tilts to the right. On the other hand, the child tends to be forced
forward as the car decelerates and to the left as the car makes a
right-hand turn. Explain these observed effects on the balloon and
child.

2.120 A closed, 0.4-m-diameter cylindrical tank is completely
filled with oil (SG = 0.9) and rotates about its vertical longitudinal
axis with an angular velocity of 40 rad/s. Determine the difference
in pressure just under the vessel cover between a point on the cir-
cumference and a point on the axis.

2.121 (See Fluids in the News article titled “ Rotating mercury
mirror telescope,” Section 2.12.2.) The largest liquid mirror tele-
scope uses a 6-ft-diameter tank of mercury rotating at 7 rpm to pro-
duce its parabolic-shaped mirror as shown in Fig. P2.121. Deter-
mine the difference in elevation of the mercury, Ah, between the
edge and the center of the mirror.

=
A
Mercury <H>w =7 rpm

B FIGURE P2.121

B Lab Problems

2.122 This problem involves the force needed to open a gate that
covers an opening in the side of awater-filled tank. To proceed with
this problem, go to Appendix H which islocated on the book’s web
site, www.wiley.com/college/munson.


http://www.wiley.com/college/munson
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2.123 This problem involves the use of a cleverly designed appa-
ratus to investigate the hydrostatic pressure force on a submerged
rectangle. To proceed with this problem, go to Appendix H whichis
located on the book’s web site, www.wiley.com/college/munson.

2.124 This problem involves determining the weight needed to hold
down an open-bottom box that has slanted sideswhen the box isfilled
with water. To proceed with this problem, go to Appendix H which is
located on the book’s web site, www.wiley.com/college/munson.

2.125 This problem involves the use of a pressurized air pad to
provide the vertical force to support a given load. To proceed with
this problem, go to Appendix H which islocated on the book’s web
site, www.wiley.com/college/munson.

B Life Long Learning Problems

2.126 Althoughitisrelatively easy to calculate the net hydrostatic
pressure force on a dam, it is not necessarily easy to design and
construct an appropriate, long-lasting, inexpensive dam. In fact, in-
spection of older dams has revealed that many of them are in peil
of collapse unless corrective action is soon taken. Obtain informa-
tion about the severity of the poor conditions of older dams
throughout the country. Summarize your findingsin a brief report.

2.127 Over the years the demand for high-quality, first-growth
timber has increased dramatically. Unfortunately, most of the trees
that supply such lumber have aready been harvested. Recently,
however, several companies have started to reclaim the numerous
high-quality logs that sank in lakes and oceans during the logging
boom times many years ago. Many of these logs are still in excel-
lent condition. Obtain information, particularly that associated with
the use of fluid mechanics concepts, about harvesting sunken logs.
Summarize your findingsin abrief report.

2.128 Liquid-filled manometers and Bourdon tube pressure gages
have been the mainstay for measuring pressure for many, many
years. However, for many modern applications, these tried-and-true
devices are not sufficient. For example, many new uses need small,
accurate, inexpensive pressure transducers with digital outputs.
Obtain information about some of the new concepts used for pres-
sure measurement. Summearize your findings in a brief report.

B FE Exam Problems

Sample FE (Fundamentals of Engineering) exam question for fluid
mechanics are provided on the book’s web site, www.wiley.com/
college/munson.
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CHAPTER OPENING PHoTo: Flow past a blunt body: On any object placed in a moving fluid there is a stag-
nation point on the front of the object where the velocity is zero. This location has a relatively large pres-
sure and divides the flow field into two portions—one flowing to the left, and one flowing to the right of
the body. (Dye in water.) (Photograph by B. R. Munson.)

Learning Objectives

The Bernoulli equa-
tion may be the most
used and abused
equation in fluid
mechanics.

After completing this chapter, you should be able to:
m discuss the application of Newton's second law to fluid flows.
m explain the development, uses, and limitations of the Bernoulli equation.

m use the Bernoulli equation (stand-alone or in combination with the continuity
equation) to solve simple flow problems.

apply the concepts of static, stagnation, dynamic, and total pressures.
calculate various flow properties using the energy and hydraulic grade lines.

In this chapter we investigate some typical fluid motions (fluid dynamics) in an elementary way.
We will discuss in some detail the use of Newton's second law (F = ma) asit is applied to fluid
particle motion that is “ideal” in some sense. We will obtain the celebrated Bernoulli equation
and apply it to various flows. Although this equation is one of the oldest in fluid mechanics and
the assumptions involved in its derivation are numerous, it can be used effectively to predict and
analyze a variety of flow situations. However, if the equation is applied without proper respect
for its restrictions, serious errors can arise. Indeed, the Bernoulli equation is appropriately called
“the most used and the most abused equation in fluid mechanics.”

A thorough understanding of the elementary approach to fluid dynamics involved in this chap-
ter will be useful on its own. It aso provides a good foundation for the material in the following
chapters where some of the present restrictions are removed and “more nearly exact” results are
presented.
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94 Chapter 3 W Elementary Fluid Dynamics—The Bernoulli Equation

31 Newton's Second Law

Inviscid fluid flow
is governed by
pressure and grav-
ity forces.

Cylindrical

As afluid particle moves from one location to another, it usually experiences an acceleration or de-
celeration. According to Newton's second law of motion, the net force acting on the fluid particle
under consideration must equal its mass times its acceleration,

F=ma

In this chapter we consider the motion of inviscid fluids. That is, the fluid is assumed to have zero
viscosity. If the viscosity is zero, then the thermal conductivity of the fluid is also zero and there
can be no heat transfer (except by radiation).

In practice there are no inviscid fluids, since every fluid supports shear stresses when it is
subjected to a rate of strain displacement. For many flow situations the viscous effects are rela-
tively small compared with other effects. As afirst approximation for such cases it is often possi-
ble to ignore viscous effects. For example, often the viscous forces developed in flowing water
may be several orders of magnitude smaller than forces due to other influences, such as gravity or
pressure differences. For other water flow situations, however, the viscous effects may be the dom-
inant ones. Similarly, the viscous effects associated with the flow of a gas are often negligible, al-
though in some circumstances they are very important.

We assume that the fluid motion is governed by pressure and gravity forces only and exam-
ine Newton's second law as it applies to a fluid particle in the form:

(Net pressure force on aparticle) + (net gravity force on particle) =
(particlemass) X (particle acceleration)

Theresults of the interaction between the pressure, gravity, and acceleration provide numerous use-
ful applications in fluid mechanics.

To apply Newton’s second law to afluid (or any other object), we must define an appropri-
ate coordinate system in which to describe the motion. In general the motion will be three-
dimensional and unsteady so that three space coordinates and time are needed to describe it. There
are numerous coordinate systems available, including the most often used rectangular (X, y, z) and
cylindrical (r, 6, z) systems shown by the figure in the margin. Usually the specific flow geometry
dictates which system would be most appropriate.

In this chapter we will be concerned with two-dimensional motion like that confined to the
x—z plane as is shown in Fig. 3.1a. Clearly we could choose to describe the flow in terms of the
components of acceleration and forces in the x and z coordinate directions. The resulting equations
are frequently referred to as a two-dimensional form of the Euler equations of motion in rectan-
gular Cartesian coordinates. This approach will be discussed in Chapter 6.

Asis done in the study of dynamics (Ref. 1), the motion of each fluid particle is described
in terms of its velocity vector, V, which is defined as the time rate of change of the position of the
particle. The particle's velocity is a vector quantity with a magnitude (the speed, V = |V|) and di-
rection. As the particle moves about, it follows a particular path, the shape of which is governed
by the velocity of the particle. The location of the particle along the path is a function of where
the particle started at the initial time and its velocity along the path. If it is steady flow (i.e., noth-
ing changes with time at a given location in the flow field), each successive particle that passes
through a given point [such as point (1) in Fig. 3.1a] will follow the same path. For such cases the

|‘_/S

i Streamlines

(b)

B FIGURE 3.1 (a Flowinthex-zplane (b) Flow in terms of streamline and normal
coordinates.
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path is afixed line in the x—z plane. Neighboring particles that pass on either side of point (1) fol-
low their own paths, which may be of a different shape than the one passing through (1). The entire
x—z planeis filled with such paths.

For steady flows each particle slides along its path, and its velocity vector is everywhere
tangent to the path. The lines that are tangent to the velocity vectors throughout the flow field
are caled streamlines. For many situations it is easiest to describe the flow in terms of the
“streamline” coordinates based on the streamlines as are illustrated in Fig. 3.1b. The particle
motion is described in terms of its distance, s = g(t), along the streamline from some convenient
origin and the local radius of curvature of the streamline, & = %(s). The distance along the
streamline is related to the particle’s speed by V = ds/dt, and the radius of curvature is related
to the shape of the streamline. In addition to the coordinate along the streamline, s, the coordi-
nate normal to the streamline, n, as is shown in Fig. 3.1b, will be of use.

To apply Newton's second law to a particle flowing along its streamline, we must write the
particle acceleration in terms of the streamline coordinates. By definition, the acceleration is the
time rate of change of the velocity of the particle, a = d\/dt. For two-dimensiona flow in the x—z
plane, the acceleration has two components—one along the streamline, a;, the streamwise accel-
eration, and one normal to the streamline, a,, the normal acceleration.

The streamwise acceleration results from the fact that the speed of the particle generally
varies along the streamline, V = V(s). For example, in Fig. 3.1a the speed may be 100 ft/s at
point (1) and 50 ft/s at point (2). Thus, by use of the chain rule of differentiation, the s com-
ponent of the acceleration is given by a; = dV/dt = (9\V/9s)(ds/dt) = (9V/9s)V. We have used the
fact that speed is the time rate of change of distance, V = ds/dt. Note that the streamwise ac-
celeration is the product of the rate of change of speed with distance along the streamline, a\/ds,
and the speed, V. Since dV/ds can be positive, negative, or zero, the streamwise acceleration
can, therefore, be positive (acceleration), negative (deceleration), or zero (constant speed).

The normal component of acceleration, the centrifugal acceleration, is given in terms of the
particle speed and the radius of curvature of its path. Thus, a, = V2/%®, where both V and % may
vary along the streamline. These equations for the acceleration should be familiar from the study
of particle motion in physics (Ref. 2) or dynamics (Ref. 1). A more complete derivation and dis-
cussion of these topics can be found in Chapter 4.

Thus, the components of acceleration in the s and n directions, a; and a,, are given by
T\ v

as’ STy

where % is the local radius of curvature of the streamline, and s is the distance measured along
the streamline from some arbitrary initial point. In general there is acceleration along the stream-
line (because the particle speed changes along its path, d\/ds # 0) and acceleration normal to the
streamline (because the particle does not flow in a straight line, & # ). Various flows and the ac-
celerations associated with them are shown in the figure in the margin. As discussed in Section
3.6.2, for incompressible flow the velocity is inversely proportional to the streamline spacing.
Hence, converging streamlines produce positive streamwise acceleration. To produce this acceler-
ation there must be a net, nonzero force on the fluid particle.

To determine the forces necessary to produce a given flow (or conversely, what flow results
from a given set of forces), we consider the free-body diagram of a small fluid particle asis shown
in Fig. 3.2. The particle of interest is removed from its surroundings, and the reactions of the

(3.)
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~N
Fluid particle

-~ — X

B FIGURE 3.2 |solation of asmall fluid particle in a flow field. (Photo courtesy
of Diana Sailplanes.)
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surroundings on the particle are indicated by the appropriate forces present, F,, F,, and so forth.
For the present case, the important forces are assumed to be gravity and pressure. Other forces,
such as viscous forces and surface tension effects, are assumed negligible. The acceleration of grav-
ity, g, is assumed to be constant and acts verticaly, in the negative z direction, at an angle 0 rela-
tive to the normal to the streamline.

3.2 F = ma along a Streamline

In a flowing fluid
the pressure varies
from one location
to ancther.

/ 5,
T0soy=0
(p - opy) on oy
on
6z

Consider the small fluid particle of size 6s by én in the plane of the figure and éy normal to the
figure as shown in the free-body diagram of Fig. 3.3. Unit vectors along and normal to the stream-
line are denoted by § and 1, respectively. For steady flow, the component of Newton's second law
along the streamline direction, s, can be written as

oV Vv
OFs=dmas=émV—=pé¥V— 3.2
E s as s p s (32

where X 8F, represents the sum of the s components of al the forces acting on the particle, which
has mass ém = p 6V, and V 9V/ds is the acceleration in the s direction. Here, 6% = dsén dy is
the particle volume. Equation 3.2 is valid for both compressible and incompressible fluids. That
is, the density need not be constant throughout the flow field.

The gravity force (weight) on the particle can be written as §W = y 6%, where y = pg is
the specific weight of the fluid (Ib/ft> or N/m?®). Hence, the component of the weight force in the
direction of the streamline is

SW = —8W sinh = —y 8V sind

If the streamline is horizontal at the point of interest, then 6 = 0, and there is no component of
particle weight along the streamline to contribute to its acceleration in that direction.

Asisindicated in Chapter 2, the pressureis not constant throughout a stationary fluid (Vp # 0)
because of the fluid weight. Likewise, in aflowing fluid the pressure is usually not constant. In gen-
eral, for steady flow, p = p(s, n). If the pressure at the center of the particle shown in Fig. 3.3 is
denoted as p, then its average value on the two end faces that are perpendicular to the streamline are
p + épsand p — dp.. Since the particle is “small,” we can use a one-term Taylor series expansion
for the pressure field (as was done in Chapter 2 for the pressure forces in static fluids) to obtain

_pss

) ~
Ps= s 2

X

R 9

(p+ 6p,) 0sdy

76s8y=0
Particle thickness = 8y /

o (p+ dpy) dndy

/

B FIGURE 3.3 Free

55‘5 (p- 6p,) 858y body diagram of a fluid particle for
z . .
Normal to streamline which the important forces are those

Along streamline due to pressure and gravity.
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Thus, if 6F is the net pressure force on the particle in the streamline direction, it follows that

The net pressure oF

force on a particle
is determined by the
pressure gradient.

ps — (p — dps)dndy —

(p + 8ps) 6N 8y = —2 8ps bn 8y
p p

= ——-0Séndy = ———6V
s s

Note that the actual level of the pressure, p, is not important. What produces a net pressure

force is the fact that the pressure is not constant throughout the fluid. The nonzero pressure gradi-
ent, Vp = dp/ass + ap/an A, iswhat provides a net pressure force on the particle. Viscous forces,
represented by 7 s 8y, are zero, since the fluid is inviscid.

Thus, the net force acting in the streamline direction on the particle shown in Fig. 3.3 is given by

9
> 8Fs = 8Ws + 8Fys = (—7 sing — £>8V

(3.3)

By combining Egs. 3.2 and 3.3, we obtain the following equation of motion along the streamline

direction:

. d
—ysnﬁ—jz

av

34
as PV os (34)

= pay

We have divided out the common particle volume factor, 8%, that appears in both the force and
the acceleration portions of the equation. Thisis a representation of the fact that it is the fluid den-
sity (mass per unit volume), not the mass, per se, of the fluid particle that is important.

The physical interpretation of Eq. 3.4 isthat a change in fluid particle speed is accomplished
by the appropriate combination of pressure gradient and particle weight along the streamline. For
fluid static situations this balance between pressure and gravity forces is such that no change in
particle speed is produced—the right-hand side of Eq. 3.4 is zero, and the particle remains sta-
tionary. In a flowing fluid the pressure and weight forces do not necessarily balance—the force
unbalance provides the appropriate acceleration and, hence, particle motion.

GIVEN Consider the inviscid, incompressible, steady flow
along the horizontal streamline A—B in front of the sphere of ra-
dius a, as shown in Fig. E3.1a. From a more advanced theory of
flow past a sphere, the fluid velocity along this streamline is

L SLXTTUREN] Prossure Variation along a streamiine

FIND Determine the pressure variation along the streamline
from point A far in front of the sphere (x, = — and V, = V) to
point B on the sphere (x; = —aand Vg = 0).

a3
V= Vo(l + —3>
X

-la 0

1V,
as shown in Fig. E3.1b. 0.75V,
z
J V 05 Vo
Vo=Vl  V=Vi V= ol ’
. 0.25V,
' ‘od
4\ -3a
(@)
ap
ox
—————— 0.610pV,%/a
| E
-3a -2a -a 0 X -3a

o

(d) B FIGURE E3.1




98

Chapter 3 B Elementary Fluid Dynamics—The Bernoulli Equation

SoLuTION

Sincetheflow issteady and inviscid, Eq. 3.4 isvalid. In addition,
since the streamline is horizontal, sin9 = sin0° = 0 and the
equation of motion along the streamline reduces to

w_ vV

as  PVos @

With the given velocity variation along the streamline, the
acceleration termis

oV Vv 2 3V,a’
ovi-ufe £)(2)

9s X X x*
3 3

where we have replaced s by x since the two coordinates are iden-
tical (within an additive constant) along streamline A-B. It follows
that V aV/os < 0 along the streamline. The fluid slows down
from V, far ahead of the sphere to zero velocity on the “nose” of
the sphere (x = —a).

Thus, according to Eq. 1, to produce the given motion the
pressure gradient along the streamline is

ap _ 3pa’Vi(1+ a¥%d
X x*

@

This variation isindicated in Fig. E3.1c. It is seen that the pres-
sure increases in the direction of flow (9p/ox > 0) from point A
to point B. The maximum pressure gradient (0.610 pV3/a) occurs
just slightly ahead of the sphere (x = —1.205a). It isthe pressure
gradient that slows the fluid down from V, = V, to Vg = 0 as
shown in Fig. E3.1b.

The pressure distribution along the streamline can be obtained
by integrating Eq. 2 from p = 0(gage) at x = —oo to pressurep at
location x. The result, plotted in Fig. E3.1d, is

o]

COMMENT The pressure at B, a stagnation point since
Vg = 0, isthe highest pressureaong the streamline (ps = pV3/2).
As shown in Chapter 9, this excess pressure on the front of the
sphere (i.e., pg > 0) contributes to the net drag force on the
sphere. Note that the pressure gradient and pressure are directly
proportional to the density of the fluid, arepresentation of the fact
that the fluid inertiais proportional to its mass.

(Ans)

F | u i d s i n

t h e N e w s

Incorrect raindrop shape The incorrect representation that
raindrops are teardrop shaped is found nearly everywhere—
from children’s books, to weather maps on the Weather Chan-
nel. About the only time raindrops possess the typical teardrop
shape is when they run down a windowpane. The actual shape
of afalling raindrop is afunction of the size of the drop and re-
sults from a balance between surface tension forces and the air
pressure exerted on the falling drop. Small drops with a radius
less than about 0.5 mm are spherical shaped because the sur-
face tension effect (which is inversely proportional to drop

size) wins over the increased pressure, pV3/2, caused by the
motion of the drop and exerted on its bottom. With increasing
size, the drops fall faster and the increased pressure causes the
drops to flatten. A 2-mm drop, for example, is flattened into a
hamburger bun shape. Slightly larger drops are actually con-
cave on the bottom. When the radius is greater than about
4 mm, the depression of the bottom increases and the drop
takes on the form of an inverted bag with an annular ring of wa-
ter around its base. This ring finally breaks up into smaller
drops. (See Problem 3.28.)

Equation 3.4 can be rearranged and integrated as follows. First, we note from Fig. 3.3 that along
the streamline sin @ = dz/ds. Also, we can write V dv/ds = 3d(V?)/ds. Finaly, dong the streamline the
value of nis constant (dn = 0) so that dp = (9p/os) ds + (ap/an) dn = (dp/ds) ds. Hence, as indi-
cated by the figure in the margin, along a given streamline p(s, n) = p(s) and dp/ds = dp/ds. These
ideas combined with Eq. 3.4 give the following result valid along a streamline

dz dp 1 d(v?)

Yds ds 2P ds

Streamline

This simplifies to

For steady, inviscid (3.9)
flow the sum of cer-
tain pressure, ve-
locity, and
elevation effectsis J dp + EVZ +gz=C
constant along a 2

streamline.

1
dp + Epd(Vz) +ydz=0  (dongastreamline)
which, for constant acceleration of gravity, can be integrated to give
(along a streamline) (3.6)

where C is a constant of integration to be determined by the conditions at some point on the
streamline.



V3.2 Balancing
ball

V3.3 Flow past a
biker
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In generd it is not possible to integrate the pressure term because the density may not be con-
stant and, therefore, cannot be removed from under the integral sign. To carry out this integration we
must know specifically how the density varies with pressure. This is not always easily determined.
For example, for a perfect gas the density, pressure, and temperature are related according to
p = p/RT, where R is the gas constant. To know how the density varies with pressure, we must also
know the temperature variation. For now we will assume that the density and specific weight are con-
stant (incompressible flow). The justification for this assumption and the consequences of compress-
ibility will be considered further in Section 3.8.1 and more fully in Chapter 11.

With the additional assumption that the density remains constant (a very good assumption
for liquids and also for gases if the speed is “not too high”), Eq. 3.6 assumes the following sim-
ple representation for steady, inviscid, incompressible flow.

p + 3pV2 + yz = constant along streamline (3.7

Thisisthe celebrated Bernoulli equation—avery powerful tool in fluid mechanics. In 1738 Daniel
Bernoulli (1700-1782) published his Hydrodynamics in which an equivalent of this famous equa-
tion first appeared. To use it correctly we must constantly remember the basic assumptions used
in its derivation: (1) viscous effects are assumed negligible, (2) the flow is assumed to be steady,
(3) the flow is assumed to be incompressible, (4) the equation is applicable along a streamline. In
the derivation of Eq. 3.7, we assume that the flow takes place in a plane (the x—z plane). In gen-
eral, this equation is valid for both planar and nonplanar (three-dimensional) flows, provided it is
applied along the streamline.

We will provide many examples to illustrate the correct use of the Bernoulli equation and will
show how a violation of the basic assumptions used in the derivation of this equation can lead to
erroneous conclusions. The constant of integration in the Bernoulli equation can be evaluated if suf-
ficient information about the flow is known at one location along the streamline.

L SEULIIER] The Bernoull Equation

GIVEN Consider the flow of air around a bicyclist moving
through still air with velocity V,, asis shown in Fig. E3.2.

FIND Determine the difference in the pressure between points

(1) and (2).

SoLuTION

In a coordinate fixed to the ground, the flow is unsteady as the bi-
cyclist rides by. However, in a coordinate system fixed to the bike,
it appears as though the air is flowing steadily toward the bicyclist
with speed V,. Since use of the Bernoulli equation is restricted to
steady flows, we select the coordinate system fixed to the bike. If
the assumptions of Bernoulli’s equation are valid (steady, incom-
pressible, inviscid flow), Eq. 3.7 can be applied as follows along
the streamline that passes through (1) and (2)

P+ 3pVE + vz = Py + 3pV3 + 2

We consider (1) to be in the free stream so that V; = V, and (2) to
be at the tip of the bicyclist's nose and assume that z; = z, and
V, = 0 (both of which, asis discussed in Section 3.4, are reason-
able assumptions). It follows that the pressure at (2) is greater than
that at (1) by an amount

P — P1 = 3pV3 = 3pV3 (Ans)

COMMENTS A similar result was obtained in Example 3.1
by integrating the pressure gradient, which was known because

B FIGURE E3.2

the velocity distribution along the streamline, V(s), was known.
The Bernoulli equation is a general integration of F = ma. To
determine p, — p;, knowledge of the detailed velocity distri-
bution is not needed—only the “boundary conditions” at (1) and
(2) are required. Of course, knowledge of the value of V along
the streamline is needed to determine the pressure at points
between (1) and (2). Note that if we measure p, — p, we can de-
termine the speed, V,. As discussed in Section 3.5, this is the
principle upon which many velocity measuring devices are
based.

If the bicyclist were accelerating or decelerating, the flow
would be unsteady (i.e., V, # constant) and the above analysis
would be incorrect since Eq. 3.7 is restricted to steady flow.
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The difference in fluid velocity between two points in a flow field, V, and V,, can often be
controlled by appropriate geometric constraints of the fluid. For example, a garden hose nozzle
is designed to give a much higher velocity at the exit of the nozzle than at its entrance where it
is attached to the hose. As is shown by the Bernoulli equation, the pressure within the hose must
be larger than that at the exit (for constant elevation, an increase in velocity requires a decrease
in pressure if Eq. 3.7 isvalid). It is this pressure drop that accelerates the water through the noz-
zle. Similarly, an airfoil is designed so that the fluid velocity over its upper surface is greater (on
the average) than that along its lower surface. From the Bernoulli equation, therefore, the aver-
age pressure on the lower surface is greater than that on the upper surface. A net upward force,
the lift, results.

3.3 F = ma Normal to a Streamline

/3.4 Hydrocyclone
separator

\
L
X

Toapply F = ma
normal to stream-
lines, the normal
components of
force are needed.

V3.5 Aircraft wing
tip vortex

In this section we will consider application of Newton’s second law in a direction normal to
the streamline. In many flows the streamlines are relatively straight, the flow is essentially
one-dimensional, and variations in parameters across streamlines (in the normal direction) can
often be neglected when compared to the variations along the streamline. However, in nu-
merous other situations valuable information can be obtained from considering F = ma normal
to the streamlines. For example, the devastating low-pressure region at the center of atornado
can be explained by applying Newton's second law across the nearly circular streamlines of
the tornado.

We again consider the force balance on the fluid particle shown in Fig. 3.3 and the figure in
the margin. Thistime, however, we consider componentsin the normal direction, i, and write New-
ton’s second law in this direction as

dmV?2  p&V V?
> 6F, = TR (3.8)

where X 8F, represents the sum of n components of all the forces acting on the particle and 6m
is particle mass. We assume the flow is steady with a normal acceleration a, = VZ/®R, where R is
the local radius of curvature of the streamlines. This acceleration is produced by the change in di-
rection of the particle’s velocity as it moves along a curved path.

We again assume that the only forces of importance are pressure and gravity. The compo-
nent of the weight (gravity force) in the normal direction is

oW, = —6W cos® = —y &V cos

If the streamline is vertical at the point of interest, # = 90°, and there is no component of the par-
ticle weight normal to the direction of flow to contribute to its acceleration in that direction.

If the pressure at the center of the particle is p, then its values on the top and bottom of the
particle are p + &p, and p — 8p,, where dp, = (9p/on)(8n/2). Thus, if 8F,, is the net pressure
force on the particle in the normal direction, it follows that

OFpn = (P — 8p,) 6S8y — (p + Op,) 8sdy = —2 8p, 8s by

J J
— —Pssonsy = —Pov
an an

Hence, the net force acting in the norma direction on the particle shown in Fig 3.3 is given by
ap
> 8F, = 6W, + 6F,, = (—y cosf — an)av (3.9)
By combining Egs. 3.8 and 3.9 and using the fact that along a line normal to the streamline
cos = dz/dn(see Fig. 3.3), we obtain the following equation of motion along the normal direction
dz ap _pV?

—’}/% — % = R (310a)



Weight and/or pres-
sure can produce
curved streamlines.
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The physical interpretation of Eq. 3.10 is that a change in the direction of flow of a fluid
particle (i.e., a curved path, ® < ) is accomplished by the appropriate combination of pressure
gradient and particle weight normal to the streamline. A larger speed or density or a smaller radius

of curvature of the motion requires a larger force unbalance to produce the motion. For example,
if gravity isneglected (asiscommonly donefor gasflows) or if theflow isin ahorizontal (dz/dn = 0)

plane, Eqg. 3.10 becomes

AN

V3.6 Free vortex

Section 6.5.3.)

P _ _pV°

Zo 1
an R (3-100)

This indicates that the pressure increases with distance away from the center of curvature
(9p/on is negative since pVZ%R is positive—the positive n direction points toward the “inside”
of the curved streamline). Thus, the pressure outside a tornado (typical atmospheric pres-
sure) is larger than it is near the center of the tornado (where an often dangerously low
partial vacuum may occur). This pressure difference is needed to balance the centrifugal
acceleration associated with the curved streamlines of the fluid motion. (See Fig. E6.6ain

EXAWPLE 3. I

GIVEN ShowninFigs. E3.3a,b are two flow fieldswith circu-

lar streamlines. The velocity distributions are
V(r) = (Volro)r for case(a)

and

V() = (Vc;ro)

for case (b)
where V, isthe velocity at r = rg.

FIND Determine the pressure distributions, p = p(r), for each,
giventhat p=poatr = ry.

SoLuTION

We assume the flows are steady, inviscid, and incompressible
with streamlinesin the horizontal plane (dz/dn = 0). Because the
streamlines are circles, the coordinate n points in a direction op-
posite that of the radial coordinate, 9/on = —a/dr, and the radius
of curvatureisgiven by % = r. Hence, Eq. 3.9 becomes

»_pVv?
o r
For case (a) this gives
ap
— = p(Volro)’r
ar p(Volro)

whereas for case (b) it gives

ap _ p(Voro)f
or rs
For either casethe pressureincreases asr increases since dp/ar > 0.

Integration of these equations with respect to r, starting with a
known pressurep = pyatr = ro, gives

P — Po = (pV5/2)[(rro)* — 1] (Ans)

V= (Vylrgr V= (Vorollr

rirg
(c)
B FIGURE E3.3

for case (a) and
P — Po = (pV§/2)[1 — (ro/r)’] (Ans)
for case (b). These pressure distributions are shown in Fig. E3.3c.

COMMENT The pressure distributions needed to balance the
centrifugal accelerations in cases (a) and (b) are not the same be-
cause the velocity distributions are different. Infact, for case (a) the
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pressure increases without bound as r — oo, whereas for case (b)  case (b) represents afree vortex (an approximation to atornado, a

the pressure approaches a finite value as r — «. The streamline  hurricane, or the swirl of water in a drain, the “bathtub vortex™).

patterns are the same for each case, however. See Fig. E6.6 for an approximation of this type of flow.
Physically, case (a) representsrigid body rotation (as obtained

in a can of water on a turntable after it has been “spun up”) and

If we multiply Eq. 3.10 by dn, use the fact that dp/on = dp/dn if sis constant, and integrate

U e across the streamline (in the n direction) we obtain

sure, elevation, and

velocity effectsis dp V? .
ST ET G " + adn + gz = constant across the streamline (3.11)
streamlines.

To complete the indicated integrations, we must know how the density varies with pressure and
how the fluid speed and radius of curvature vary with n. For incompressible flow the density is
constant and the integration involving the pressure term gives smply p/p. We are still left, how-
ever, with the integration of the second term in Eq. 3.11. Without knowing the n dependence in
V = V(s n) and R = %R(s, n) this integration cannot be completed.

Thus, the final form of Newton's second law applied across the streamlines for steady, in-
viscid, incompressible flow is

V2 .
p+p J adn + yz = constant across the streamline (3.12)

As with the Bernoulli equation, we must be careful that the assumptions involved in the derivation
of this equation are not violated when it is used.

34 Physical Interpretation

In the previous two sections, we developed the basic equations governing fluid motion under a
fairly stringent set of restrictions. In spite of the numerous assumptions imposed on these flows,
a variety of flows can be readily analyzed with them. A physical interpretation of the equations
will be of help in understanding the processes involved. To this end, we rewrite Egs. 3.7 and 3.12
here and interpret them physically. Application of F = ma along and normal to the streamline re-

sultsin
p + 3pV2 + yz = constant along the streamline (3.13)
and
V2
p+p f adn + yz = constant across the streamline (3.14)
z as indicated by the figure in the margin.

The following basic assumptions were made to obtain these equations. The flow is steady
and the fluid is inviscid and incompressible. In practice none of these assumptions is exactly
true.

p+ % PV 4 yz
= constant

L‘ A violation of one or more of the above assumptions is a common cause for obtaining an

~_ /! incorrect match between the “real world” and solutions obtained by use of the Bernoulli equa-

V2 /\ /b\ tion. Fortunately, many “real-world” situations are adequately modeled by the use of Egs. 3.13

ftﬂsta@n?m 74 and 3.14 because the flow is nearly steady and incompressible and the fluid behaves as if it were
nearly inviscid.

/ The Bernoulli equation was obtained by integration of the equation of motion along the “nat-

ural” coordinate direction of the streamline. To produce an acceleration, there must be an unbalance

of the resultant forces, of which only pressure and gravity were considered to be important. Thus,




The Bernoulli
equation can be
written in terms of
heights called
heads.

34  Physical Interpretation 103

there are three processes involved in the flow—mass times acceleration (the pV?/2 term), pressure
(the p term), and weight (the yz term).

Integration of the equation of motion to give Eq. 3.13 actually corresponds to the work-
energy principle often used in the study of dynamics [see any standard dynamics text (Ref. 1)].
This principle results from a general integration of the equations of motion for an object in a way
very similar to that done for the fluid particle in Section 3.2. With certain assumptions, a statement
of the work-energy principle may be written as follows:

The work done on a particle by all forces acting on the particle is equal to the change
of the kinetic energy of the particle.

The Bernoulli equation is a mathematical statement of this principle.

As the fluid particle moves, both gravity and pressure forces do work on the particle. Recall
that the work done by a force is equal to the product of the distance the particle travels times the
component of force in the direction of travel (i.e., work = F - d). Theterms yz and p in Eq. 3.13
are related to the work done by the weight and pressure forces, respectively. The remaining term,
pV?/2, is obviously related to the kinetic energy of the particle. In fact, an aternate method of de-
riving the Bernoulli equation is to use the first and second laws of thermodynamics (the energy
and entropy equations), rather than Newton’s second law. With the appropriate restrictions, the gen-
eral energy equation reduces to the Bernoulli equation. This approach is discussed in Section 5.4.

An alternate but equivalent form of the Bernoulli equation is obtained by dividing each term
of Eq. 3.7 by the specific weight, v, to obtain

p V2 .

— + — + z = constant on a streamline

Y 2
Each of the terms in this equation has the units of energy per weight (LF/F = L) or length (feet,
meters) and represents a certain type of head.

The elevation term, z, is related to the potential energy of the particle and is called the eleva-
tion head. The pressure term, p/y, is called the pressure head and represents the height of a column
of the fluid that is needed to produce the pressure p. The velocity term, V%2g, is the velocity head
and represents the vertical distance needed for the fluid to fal freely (neglecting friction) if it is to
reach velocity V from rest. The Bernoulli equation states that the sum of the pressure head, the ve-
locity head, and the elevation head is constant along a streamline.

—EXAMPLE LI-¥ Kinetic, Potential, and Pressure Energy

GIVEN Consider the flow of water from the syringe shown in  plunger will produce a pressure greater than atmospheric at point
Fig. E3.4(a). Asindicated in Fig. E3.4b, aforce, F, applied to the (1) within the syringe. The water flows from the needle, point (2),

(@)

B FIGURE E34

with relatively high velocity and coasts up to point (3) at the top of

;’)\ itstrajectory.
(i . et
dll FIND Discussthe energy of thefluid at points(2), (2), and (3) by
¢ using the Bernoulli equation.
(@)
Energy Type
Kinetic Potential Pressure
1 Point pV?/2 yz p
1 Small Zero Large
2 Large Small Zero

( ) 3 Zero Large Zero
F

(b)
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SoLuTION

If the assumptions (steady, inviscid, incompressible flow) of the
Bernoulli equation are approximately valid, it then follows that
the flow can be explained in terms of the partition of the total en-
ergy of the water. According to Eq. 3.13 the sum of the three types
of energy (kinetic, potential, and pressure) or heads (velocity, ele-
vation, and pressure) must remain constant. The table above indi-
cates the relative magnitude of each of these energies at the three
points shown in the figure.

The motion resultsin (or is due to) a change in the magnitude
of each type of energy as the fluid flows from one location to an-
other. An alternate way to consider this flow is as follows. The

pressure gradient between (1) and (2) produces an acceleration to
gject the water from the needle. Gravity acting on the particle be-
tween (2) and (3) produces a deceleration to cause the water to
come to amomentary stop at the top of its flight.

COMMENT |If friction (viscous) effects were important,
there would be an energy loss between (1) and (3) and for the given
p1 the water would not be able to reach the height indicated in the
figure. Such friction may arise in the needle (see Chapter 8 on
pipe flow) or between the water stream and the surrounding air
(see Chapter 9 on external flow).

F | u i d s i n

t h e N e w s

Armed with awater jet for hunting Archerfish, known for their
ability to shoot down insects resting on foliage, are like subma-
rine water pistols. With their snout sticking out of the water, they
gject ahigh-speed water jet at their prey, knocking it onto the wa-
ter surface where they snare it for their meal. The barrel of their
water pistol isformed by placing their tongue against agroovein
the roof of their mouth to form a tube. By snapping shut their
gills, water is forced through the tube and directed with the tip of

their tongue. The archerfish can produce a pressure head within
their gills large enough so that the jet can reach 2 to 3 m. How-
ever, it is accurate to only about 1 m. Recent research has shown
that archerfish are very adept at calculating where their prey will
fall. Within 100 milliseconds (a reaction time twice as fast as a
human's), the fish has extracted all the information needed to pre-
dict the point where the prey will hit the water. Without further vi-
sual cuesit charges directly to that point. (See Problem 3.41.)

A net force is required to accelerate any mass. For steady flow the acceleration can be in-
terpreted as arising from two distinct occurrences—a change in speed aong the streamline and
achange in direction if the streamline is not straight. Integration of the equation of motion along
the streamline accounts for the change in speed (kinetic energy change) and results in the Bernoulli
equation. Integration of the equation of motion normal to the streamline accounts for the cen-
trifugal acceleration (V?/%) and results in Eq. 3.14.

When afluid particle travels along a curved path, a net force directed toward the center of cur-

The pressure varia-
tion across straight
streamlinesis hy-
drostatic.

vature is required. Under the assumptions valid for Eq. 3.14, this force may be either gravity or pres-
sure, or acombination of both. In many instances the streamlines are nearly straight (%% = «) so that
centrifugal effects are negligible and the pressure variation across the streamlines is merely hydro-

static (because of gravity aone), even though the fluid is in motion.

GIVEN Water flows in a curved, undulating waterslide as
shown in Fig. E3.5a. As an approximation to this flow, consider

)’ AT A\ :

B FIGURE E3.5a
Schlitterbahn® Water parks.)

(Photo courtesy of

L FTXTIHIEN rossure Variation in a Flowing Stream

(4)
tg Free surface \ - //
(p=0 p 3) Nas
() P \ /
> MR "l

BEFIGURE

the inviscid, incompressible, steady flow shown in Fig. E3.5b.
From section A to B the streamlines are straight, while from C to D
they follow circular paths.

FIND Describethe pressure variation between points(1) and (2)
and points(3) and (4).
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Static, Stagnation, Dynamic, and Total Pressure

With the above assumptions and the fact that % = o for the por-
tion from A to B, Eq. 3.14 becomes

p + yz = constant
The constant can be determined by evaluating the known variables at
thetwo locationsusing p, = 0(gage), z, = 0,andz, = h,_;togive
Pr=p+ ¥z —z) =P+ vy (Ans)

Note that since the radius of curvature of the streamlineisinfinite,
the pressure variation in the vertical direction isthe same asif the
fluid were stationary.

However, if we apply Eqg. 3.14 between points(3) and (4) we ob-
tain(usingdn = —dz)

Z4\/2

With p, = 0and z, — z; = h,_5 this becomes
2

Y2
Ps=Yhys —p J' o 4z (Ans)

R
Z

To evaluate the integral, we must know the variation of V and &
with z. Even without this detailed information we note that the in-
tegral hasapositive value. Thus, the pressure at (3) islessthan the
hydrostatic value, yh,_s, by an amount equal to p fzz: (V¥/R) dz
This lower pressure, caused by the curved streamline, is neces-
sary to accelerate the fluid around the curved path.

COMMENT Note that we did not apply the Bernoulli equa-
tion (Eq. 3.13) across the streamlines from (1) to (2) or (3) to (4).
Rather we used Eq. 3.14. Asisdiscussed in Section 3.8, applica

+ —(—dz) + yz, = p3 + yZ
s pL 9]{( )+ Ps ™ 7% along them) may lead to serious errors.

tion of the Bernoulli equation across streamlines (rather than

35 Static, Stagnation, Dynamic, and Total Pressure

Each termin the
Bernoulli equation
can be interpreted
as a form of pres-
sure.

A useful concept associated with the Bernoulli equation deals with the stagnation and dynamic pres-
sures. These pressures arise from the conversion of kinetic energy in a flowing fluid into a “pres-
surerise” asthefluid is brought to rest (asin Example 3.2). In this section we explore various results
of this process. Each term of the Bernoulli equation, Eq. 3.13, has the dimensions of force per unit
area—ps, Ib/ft?2, N/m2. The first term, p, is the actual thermodynamic pressure of the fluid as it
flows. To measure its value, one could move along with the fluid, thus being “static” relative to the
moving fluid. Hence, it is normally termed the static pressure. Another way to measure the static
pressure would be to drill a hole in aflat surface and fasten a piezometer tube as indicated by the
location of point (3) in Fig. 3.4. As we saw in Example 3.5, the pressure in the flowing fluid at (1)
isp, = vhy, + p; thesameasif the fluid were static. From the manometer considerations of Chap-
ter 2, we know that p; = yh, 5. Thus, since hy; + h,_3 = hit follows that p, = yh.

The third term in Eq. 3.13, yz, is termed the hydrostatic pressure, in obvious regard to the hy-
drogtatic pressure variation discussed in Chapter 2. It is not actually a pressure but does represent the
changein pressure possible due to potentia energy variations of the fluid asaresult of elevation changes.

The second term in the Bernoulli equation, pV?/2, is termed the dynamic pressure. Its in-
terpretation can be seen in Fig. 3.4 by considering the pressure at the end of a small tube inserted
into the flow and pointing upstream. After the initial transient motion has died out, the liquid will
fill the tube to a height of H as shown. The fluid in the tube, including that at its tip, (2), will be
stationary. That is, V, = 0, or point (2) is a stagnation point.

If we apply the Bernoulli equation between points (1) and (2), using V, = 0 and assuming
that z; = z,, we find that

P, = Py + 3pV3

=
=
e We
@
i)
°|

=
g
S

B FIGURE 3.4 Measurement

o

i=V Vo= of static and stagnation pressures.
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V3.7 Stagnation
point flow

Stagnation streamline

Stagnation point
5 ==

t
Y

/Stagnation point

(a1)

B FIGURE 3.5 Stagnation points.

Hence, the pressure at the stagnation point is greater than the static pressure, p,, by an amount
pV3/2, the dynamic pressure.

It can be shown that there is a stagnation point on any stationary body that is placed into a
flowing fluid. Some of the fluid flows “over” and some “under” the object. The dividing line (or sur-
face for two-dimensiona flows) is termed the stagnation streamline and terminates at the stagnation
point on the body. (See the photograph at the beginning of Chapter 3.) For symmetrica objects (such
as a baseball) the stagnation point is clearly at the tip or front of the object as shown in Fig. 3.5a.
For other flows such as awater jet against a car as shown in Fig. 3.5b, there is also a stagnation point
on the car.

If elevation effects are neglected, the stagnation pressure, p + pV?2/2, isthe largest pressure
obtainable along a given streamline. It represents the conversion of al of the kinetic energy into a
pressure rise. The sum of the static pressure, hydrostatic pressure, and dynamic pressure is termed
the total pressure, pr. The Bernoulli equation is a statement that the total pressure remains con-
stant along a streamline. That is,

p + 3pV? + yz = p; = constant along a streamline (3.15)

Again, we must be careful that the assumptions used in the derivation of this equation are appro-
priate for the flow being considered.

F | u i d s i n

t h e N e w s

Pressurized eyes Our eyes need a certain amount of internal pres-
sure in order to work properly, with the normal range being be-
tween 10 and 20 mm of mercury. The pressure is determined by a
balance between the fluid entering and leaving the eye. If the
pressure is above the normal level, damage may occur to the op-
tic nerve where it leaves the eye, leading to a loss of the visual
field termed glaucoma. Measurement of the pressure within the
eye can be done by several different noninvasive types of instru-

ments, all of which measure the slight deformation of the eyeball
when aforceis put on it. Some methods use a physical probe that
makes contact with the front of the eye, applies a known force,
and measures the deformation. One noncontact method uses a
calibrated “puff” of air that is blown against the eye. The stagna-
tion pressure resulting from the air blowing against the eyeball
causes a slight deformation, the magnitude of which is correlated
with the pressure within the eyeball. (See Problem 3.29.)

Knowledge of the values of the static and stagnation pressuresin afluid implies that the fluid

speed can be calculated. This is the principle on which the Pitot-static tube is based [H. de Pitot
(1695-1771)]. As shown in Fig. 3.6, two concentric tubes are attached to two pressure gages (or a
differential gage) so that the values of p; and p, (or the difference p; — p,) can be determined. The
center tube measures the stagnation pressure at its open tip. If elevation changes are negligible,

ps=p +3pV°
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(3)
[ ]
e (4)
v (1)
— . °
——————— |
P @ B FIGURE 3.6 ThePitot-gatic tube.

where p and V are the pressure and velocity of the fluid upstream of point (2). The outer tube is
made with several small holes at an appropriate distance from the tip so that they measure the sta-
tic pressure. If the effect of the elevation difference between (1) and (4) is negligible, then

Ps=PL=pP
Pitot-static tubes By combining these two equations we see that
megwreflwd vg Ps — Py = %sz
locity by converting
velocity into pres- which can be rearranged to give
sure.
V' ="V2ps — ps)/p (3.16)

The actual shape and size of Pitot-static tubes vary considerably. A typical Pitot-static probe used
to determine aircraft airspeed is shown in Fig. 3.7. (See Fig. E3.6a as0.)

Heated outer case

RFour static pressure ports
Stagnation '
pressure port @

Mounting flange

Static pressure fitting
Heater leads —

(a)

.,%!
V3.8 Airspeed
indicator

<2 in.

B FIGURE 3.7 Airplane

Pitot-static probe. (a) Schematic, (b) Photo-

graph, (Photograph courtesy of SpaceAge
(b) Control, Inc.)
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Bugged and plugged Pitot tubes Although a Pitot tubeisasim-
ple device for measuring aircraft airspeed, many airplane acci-
dents have been caused by inaccurate Pitot tube readings. Most of
these accidents are the result of having one or more of the holes
blocked and, therefore, not indicating the correct pressure
(speed). Usually thisisdiscovered during takeoff when timeto re-
solve the issue is short. The two most common causes for such a
blockage are either that the pilot (or ground crew) has forgotten to
remove the protective Pitot tube cover, or that insects have built

their nest within the tube where the standard visual check cannot
detect it. The most serious accident (in terms of number of fatali-
ties) caused by a blocked Pitot tube involved a Boeing 757 and
occurred shortly after takeoff from Puerto Platain the Dominican
Republic. The incorrect airspeed data was automatically fed to
the computer, causing the autopilot to change the angle of attack
and the engine power. The flight crew became confused by the
false indications, the aircraft stalled, and then plunged into the
Caribbean Seakilling all aboard. (See Problem 3.30.)

Exavirie 3.0 R

GIVEN Anairplaneflies 200 mi /hr at an elevation of 10,000 ft
in a standard atmosphere as shown in Fig. E3.6a.

FIND Determine the pressure at point (1) far ahead of the air-
plane, the pressure at the stagnation point on the nose of the
arplane, point (2), and the pressure difference indicated by a Pitot-
static probe attached to the fuselage.

SOLUTION

From Table C.1 we find that the static pressure at the altitude
givenis

p, = 1456 lb/ft? (abs) = 10.11 psia
Also, the density is p = 0.001756 slug/ft®.

If the flow is steady, inviscid, and incompressible and eleva-
tion changes are neglected, Eq. 3.13 becomes

(Ans)

pVi

2

With V; = 200 mi/hr = 293 ft/s and V, = 0 (since the co-
ordinate system is fixed to the airplane) we obtain

p, = 1456 Ib/ft? + (0.001756 slugs/ft®)(293? ft/s%)/2
= (1456 + 75.4) |b/ft? (abs)

P2 =Py

Hence, in terms of gage pressure
p, = 75.4 Ib/ft?> = 0.524 ps (Ans)
Thus, the pressure difference indicated by the Pitot-static tube is

V2
= P21 _ o504ps
2
COMMENTS Notethat it isvery easy to obtain incorrect re-
sults by using improper units. Do not add Ib/in.2 and Ib/ft?. Recall

that (slug/ft®)(ft¥/s%) = (slug - ft/s>)/(ft?) = Ib/ft%

P2 — P (Ans)

(1)

V, = 200 mph g T
Pitot-static tube

L 4

B FIGURE E3.6a
courtesy of Hawker Beechcraft.)

(Photo

0.8 (200 mph, 0.951)
~ 0.6
o
2 0.4
0.2
0
0 100 200 300 400 500 600
V;, mph

B FIGURE E3.6b

It was assumed that the flow is incompressible—the density re-
mains constant from (1) to(2). However, sincep = p/RT, achangein
pressure (or temperature) will cause a change in density. For thisrel-
atively low speed, the ratio of the absolute pressures is nearly unity
[i.e, p/p, = (10.11 psia)/(10.11 + 0.524 psia) = 0.951], sothat
the density changeis negligible. However, by repeating the cal cula-
tions for various values of the speed, V,, the results shown in Fig.
E3.6b are obtained. Clearly at the 500 to 600 mph speeds nor-
mally flown by commercial arliners, the pressure ratio is such
that density changes are important. In such situations it is neces-
sary to use compressible flow concepts to obtain accurate results.
(See Section 3.8.1 and Chapter 11.)

The Pitot-static tube provides a simple, relatively inexpensive way to measure fluid speed.
Its use depends on the ability to measure the static and stagnation pressures. Care is needed to
obtain these values accurately. For example, an accurate measurement of static pressure requires
that none of the fluid’'s kinetic energy be converted into a pressure rise at the point of



Accurate measure-
ment of static pres-
sure reguires great
care.
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B FIGURE 3.9 Typical pressure distribution along
a Pitot-static tube.

measurement. This requires a smooth hole with no burrs or imperfections. As indicated in
Fig. 3.8, such imperfections can cause the measured pressure to be greater or less than the ac-
tual static pressure.

Also, the pressure along the surface of an object varies from the stagnation pressure at
its stagnation point to values that may be less than the free stream static pressure. A typical
pressure variation for a Pitot-static tube is indicated in Fig. 3.9. Clearly it is important that
the pressure taps be properly located to ensure that the pressure measured is actually the static
pressure.

In practiceit is often difficult to align the Pitot-static tube directly into the flow direction. Any
misalignment will produce a nonsymmetrical flow field that may introduce errors. Typically, yaw
angles up to 12 to 20° (depending on the particular probe design) give results that are less than 1%
in error from the perfectly aligned results. Generaly it is more difficult to measure static pressure
than stagnation pressure.

One method of determining the flow direction and its speed (thus the velocity) is to use a di-
rectional-finding Pitot tube asisillustrated in Fig. 3.10. Three pressure taps are drilled into a small
circular cylinder, fitted with small tubes, and connected to three pressure transducers. The cylinder
is rotated until the pressures in the two side holes are equal, thus indicating that the center hole
points directly upstream. The center tap then measures the stagnation pressure. The two side holes
are located at a specific angle (8 = 29.5°) so that they measure the static pressure. The speed is
then obtained from V = [2(p, — p,)/p]¥2

The above discussion is valid for incompressible flows. At high speeds, compressibility be-
comes important (the density is not constant) and other phenomena occur. Some of these ideas are
discussed in Section 3.8, while others (such as shockwaves for supersonic Pitot-tube applications)
are discussed in Chapter 11.

The concepts of static, dynamic, stagnation, and total pressure are useful in a variety of flow
problems. These ideas are used more fully in the remainder of the book.

IS
B & Ifo =0
7l 4*7 (2) Pr=Ps=p
v
(1) p,=p+ipV2
R N 22 B FIGURE 3.10 Cross section

of a directional-finding Pitot-static tube.
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3.6 Examples of Use of the Bernoulli Equation

The exit pressure
for an incompress-
iblefluid jetis
equal to the sur-
rounding pressure.

V3.9 Flow froma
tank

In this section we illustrate various additional applications of the Bernoulli equation. Between any
two points, (1) and (2), on a streamline in steady, inviscid, incompressible flow the Bernoulli equa-
tion can be applied in the form

Py + 3pVi+ vz = py + 3pV3 + vz (3.17)

Obvioudly if five of the six variables are known, the remaining one can be determined. In many in-
stances it is necessary to introduce other equations, such as the conservation of mass. Such consid-
erations will be discussed briefly in this section and in more detail in Chapter 5.

3.6.1 Free Jets

One of the oldest equations in fluid mechanics deals with the flow of aliquid from a large reservoir.
A modern version of this type of flow involves the flow of coffee from a coffee urn as indicated by
the figure in the margin. The basic principles of this type of flow are shown in Fig. 3.11 where a jet
of liquid of diameter d flows from the nozzle with velocity V. (A nozzle is a device shaped to ac-
celerate a fluid.) Application of Eq. 3.17 between points (1) and (2) on the streamline shown gives

vh = 3pV?

We have used the facts that z, = h, z, = 0, the reservair is large (V, = 0) and open to the atmos-
phere (p, = 0 gage), and the fluid leaves as a “free jet” (p, = 0). Thus, we obtain

h
V= 277 - \V/2gh (3.18)

which is the modern version of a result obtained in 1643 by Torricelli (1608—1647), an Italian
physicist.

The fact that the exit pressure equals the surrounding pressure (p, = 0) can be seen by ap-
plying F = ma, as given by Eq. 3.14, across the streamlines between (2) and (4). If the streamlines
at the tip of the nozzle are straight (@ = ), it follows that p, = p,. Since (4) is on the surface of
the jet, in contact with the atmosphere, we have p, = 0. Thus, p, = 0 aso. Since (2) is an arbi-
trary point in the exit plane of the nozzle, it follows that the pressure is atmospheric across this
plane. Physicaly, since there is no component of the weight force or acceleration in the normal
(horizontal) direction, the pressure is constant in that direction.

Once outside the nozzle, the stream continues to fall as a free jet with zero pressure throughout
(ps = 0) and as seen by applying Eq. 3.17 between points (1) and (5), the speed increases according to

V=v2g(h+ H)

where H is the distance the fluid has fallen outside the nozzle.

Equation 3.18 could also be obtained by writing the Bernoulli equation between points (3)
and (4) using the fact that z, = 0, z; = €. Also, V; = 0 since it is far from the nozzle, and from
hydrostatics, p; = y(h — ).

HFIGURE 3.11
Vertical flow from a tank.
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(1)

(a) (b)

BEFIGURE 3.12 B FIGURE 3.13 Vena

contracta effect for a sharp-edged orifice.

Horizontal flow from a tank.

As learned in physics or dynamics and illustrated in the figure in the margin, any object
dropped from rest that falls through a distance h in a vacuum will obtain the speed V = \/2gh,
the same as the water leaving the spout of the watering can shown in the figure in the margin. This
is consistent with the fact that all of the particle’s potential energy is converted to kinetic energy,
provided viscous (friction) effects are negligible. In terms of heads, the elevation head at point (1)
is converted into the velocity head at point (2). Recall that for the case shown in Fig. 3.11 the pres-
sure is the same (atmospheric) at points (1) and (2).

For the horizontal nozzle of Fig. 3.12a, the velocity of the fluid at the centerline, V,,will be
dightly greater than that at the top, V;, and slightly less than that at the bottom, V5, due to the dif-
ferences in elevation. In general, d < h as shown in Fig. 3.12b and we can safely use the center-
line velocity as a reasonable “average velocity.”

If the exit is not a smooth, well-contoured nozzle, but rather aflat plate as shown in Fig. 3.13,
the diameter of the jet, d;, will be less than the diameter of the hole, dy,. This phenomenon, called
a vena contracta effect, is a result of the inability of the fluid to turn the sharp 90° corner indi-
cated by the dotted lines in the figure.

Since the streamlines in the exit plane are curved (® < «), the pressure across them is
not constant. It would take an infinite pressure gradient across the streamlines to cause the
fluid to turn a “sharp” corner (% = 0). The highest pressure occurs along the centerline at (2)
and the lowest pressure, p, = p; = 0, is at the edge of the jet. Thus, the assumption of uni-
form velocity with straight streamlines and constant pressure is not valid at the exit plane. It
is valid, however, in the plane of the vena contracta, section a—a. The uniform velocity as-
sumption is valid at this section provided d; < h, as is discussed for the flow from the nozzle
shown in Fig. 3.12.

The vena contracta effect is a function of the geometry of the outlet. Some typical configu-
rations are shown in Fig. 3.14 along with typical values of the experimentally obtained contrac-
tion coefficient, C. = A/A,, where Ay and A, are the areas of the jet at the vena contracta and the
area of the hole, respectively.

The diameter of a
fluid jet is often
smaller than that of
the hole from
which it flows.

F | u i d s i n t h e N e w s

Cotton candy, glass wool, and steel wool Although cotton candy
and glass wool insulation are made of entirely different materials
and have entirely different uses, they are made by similar processes.
Cotton candy, invented in 1897, consists of sugar fibers. Glasswool,
invented in 1938, consists of glassfibers. In acotton candy machine,
sugar ismelted and then forced by centrifugal action to flow through
numerous tiny orifices in a spinning “bowl.” Upon emerging, the
thin streams of liquid sugar cool very quickly and become solid
threads that are collected on a stick or cone. Making glass wool in-

sulation is somewhat more complex, but the basic processissimilar.
Liquid glassisforced through tiny orifices and emerges asvery fine
glassstreamsthat quickly solidify. Theresulting intertwined flexible
fibers, glass wool, form an effective insulation material because the
tiny air “cavities” between the fibers inhibit air motion. Although
steel wool looks similar to cotton candy or glasswool, it is made by
an entirely different process. Solid steel wiresare drawn over specia
cutting blades which have grooves cut into them so that long, thin
threads of steel are peeled off to form the matted steel wool.
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The continuity
equation states that
mass cannot be cre-
ated or destroyed.

V, =2V,

A =2A,

TVTT

(a) Knife edge (b) Well rounded
Cc=A/A, = (d/d)?

Y
YYY

(c) Sharp edge (d) Re-entrant

B FIGURE 3.14 Typical flow patterns and contraction coefficients
for various round exit configurations. (a) Knife edge, (b) Well rounded, (c) Sharp
edge, (d) Re-entrant.

3.6.2 Confined Flows

In many cases the fluid is physically constrained within a device so that its pressure cannot be pre-
scribed a priori as was done for the free jet examples above. Such cases include nozzles and pipes
of variable diameter for which the fluid velocity changes because the flow area is different from
one section to another. For these situations it is necessary to use the concept of conservation of
mass (the continuity equation) along with the Bernoulli eguation. The derivation and use of this
equation are discussed in detail in Chapters 4 and 5. For the needs of this chapter we can use a
simplified form of the continuity equation obtained from the following intuitive arguments. Con-
sider a fluid flowing through a fixed volume (such as a syringe) that has one inlet and one outlet
as shown in Fig. 3.15a. If the flow is steady so that there is no additional accumulation of fluid
within the volume, the rate at which the fluid flows into the volume must equal the rate at which
it flows out of the volume (otherwise, mass would not be conserved).

The massflowrate from an outlet, m(sdugs/sor kg/s), isgiven by m = pQ, where Q (ft¥s or m¥s)
is the volume flowrate. If the outlet areais A and the fluid flows across this area (normal to the area)
with an average velocity V, then the volume of the fluid crossing thisareain atimeinterval 6t is VA ét,
equal to that in a volume of length V 6t and cross-sectional area A (see Fig. 3.15b). Hence, the vol-
ume flowrate (volume per unit time) is Q = VA. Thus, m = pVA. To conserve mass, the inflow rate
must equal the outflow rate. If theinlet isdesignated as(1) and the outlet as(2), it followsthat m, = m,.
Thus, conservation of mass requires

p1iAVL = poAV,

If the density remains constant, then p; = p,, and the above becomes the continuity equation for
incompressible flow

AV; = AV, 0rQp = Q, (3.19)

For example, if as shown by the figure in the margin the outlet flow areais one-half the size of the
inlet flow area, it follows that the outlet velocity is twice that of the inlet velocity, since
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,T/vmume:vl StA =\ ot —]

) Volume =\, 6t A,

Fluid parcel at t=0 ‘L | Same parcel at t = 5t

B FIGURE 3.15 (a) Flow through a syringe. (b) Steady flow into
and out of a volume.

V, = AVy/A, = 2V,. The use of the Bernoulli equation and the flowrate equation (continuity equa-
tion) is demonstrated by Example 3.7.

—EXAMPLE c#ra Flow from a Tank—Gravity

GIVEN A stream of refreshing beverage of diameter d = 0.01m FIND Determine the flowrate, Q, from the bottle into the
flows steadily from the cooler of diameter D = 0.20 m asshown  cooler if the depth of beverage in the cooler isto remain constant
inFigs. E3.7aand b. ah=020m

1.10
QQ, 1.05
(0.05, 1.000003)
1.00
0 0.2 0.4 0.6 0.8
d=0.01m dab
(b) ©

B FIGURE E3.7
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For steady, inviscid, incompressible flow, the Bernoulli equation
applied between points (1) and (2) is

V3 + vz 1)
h,andz, = 0,Eq. 1

p1 + %PV% tyz=pt+

With the assumptionsthat p, = p, =
becomes

0,z =

2Vi+gh=3V3 @

Although theliquid level remains constant (h = constant), thereisan
average velocity, V;, across section (1) because of the flow from the
tank. From Eq. 3.19 for steady incompressible flow, conservation of

massrequiresQ, = Q,, whereQ = AV. Thus, A}V, = AV, or
7DV = T,
Hence,
d 2
Vi = <B) Vs, ©)
Equations 1 and 3 can be combined to give
f \/ (981 M/S)(020m) _ ;g0
1- d/D 1 — (0.01 m/0.20 m)*
Thus,
Q=AV,=AV, = Z(O'Ol m)%(1.98 m/s)
=156 X 10 m*/s (Ans)

COMMENTS Note that this problem was solved using
points (1) and (2) located at the free surface and the exit of the
pipe, respectively. Although this was convenient (because most
of the variables are known at those points), other points could be
selected and the same result would be obtained. For example,
consider points (1) and (3) asindicated in Fig. E3.7b. At (3), lo-
cated sufficiently far from the tank exit, V; = 0Oand z; = z, = 0.
Also, p; = vyh since the pressure is hydrostatic sufficiently far
from the exit. Use of this information in the Bernoulli equation
applied between (1) and (3) gives the exact same result as ob-
tained using it between (1) and (2). The only difference is that
the elevation head, z; = h, has been interchanged with the pres-
sure head at (3), ps/y = h.

In this example we have not neglected the kinetic energy of
the water in the tank (V;, # 0). If the tank diameter islarge com-
pared to the jet diameter (D > d), Eq. 3 indicates that V; < V,
and the assumption that V; = 0 would be reasonable. The error
associated with this assumption can be seen by calculating the
ratio of the flowrate assuming V,; # 0, denoted Q, to that as-

suming V; = 0, denoted Q,. Thisratio, written as
Q_ V., Vayi-@ofi_ 1
Q  Valp-w \V2gh V1 - (d/D)*

is plotted in Fig. E3.7c. With 0 < d/D < 0.4 it follows that
1 < Q/Qu = 1.01, and the error in assuming V; = O isless than
1%. For thisexamplewith d/D = 0.01 m/0.20 m = 0.05, it follows
that Q/Q, = 1.000003. Thus, it is often reasonable to assume
V, = 0.

The fact that a kinetic energy change is often accompanied by a change in pressure is shown

by Example 3.8.

GIVEN Air flows steadily from a tank, through a hose of di-
ameter D = 0.03 m, and exits to the atmosphere from a nozzle of
diameter d = 0.01 m as shown in Fig. E3.8. The pressure in the
tank remains constant at 3.0 kPa(gage) and the atmospheric con-
ditions are standard temperature and pressure.

FIND Determine the flowrate and the pressure in the hose.

SOLUTION

L ECUTINIERD riow rrom a Tamk—pressure

by =3.0 kPa lf=0-03 m d=0.01m
=12
0 o @3)

B FIGURE E3.8

If the flow is assumed steady, inviscid, and incompressible, we
can apply the Bernoulli equation along the streamline from (1) to
(2)to(3) as
P+ 30Vi+ vz =po +30VE+ vz
=ps+ 30Vt vz

With the assumption that z, = z, = z; (horizontal hose), V; = 0
(large tank), and p; = 0 (freejet), this becomes
A

p

V3 =




and
P2 = Py — 3pV3 ()]

The density of the air in the tank is obtained from the perfect gas
law, using standard absol ute pressure and temperature, as

_ P
P~ R,
= [(3.0 + 101) kN/m?]
10° N/kN
286.9N - m/kg - K)(15 + 273)K
= 1.26 kg/m®

X

Thus, we find that
v [2(3.0 X 10°N/m?) ——
8 1.26 kg/m®

Q= AV, = %dzv3 = %(0.01 m)?(69.0 m/s)

or

= 0.00542 m%/s (Ans)

The pressure within the hose can be obtained from Eg. 1 and
the continuity equation (Eq. 3.19)

AN, = AgV;

Hence,

d 2
V, = AV /A, = <B) Vs

0.01 m)?
= (m) (69.0 m/s) = 7.67 m/s
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and from Eq. 1

p, = 3.0 X 10° N/m? — 1 (1.26 kg/m®)(7.67 m/s)?

= (3000 — 37.1)N/m? = 2963 N/m? (Ans)

COMMENTS Notethatthevalueof V;isdetermined strictly by
the value of p, (and the assumptionsinvolved in the Bernoulli equa
tion), independent of the “shape” of the nozzle. The pressure head
within the tank, p;/y = (3.0 kPa)/(9.81 m/s?)(1.26 kg/m°) =
243 m, is converted to the velocity head at the exit, V 3/2g =
(69.0 m/s)?/(2 X 9.81 m/s*) = 243 m. Although we used gage
pressure in the Bernoulli equation (p; = 0), we had to use
absolute pressure in the perfect gas law when calculating the
density.

In the absence of viscous effects the pressure throughout the
hose is constant and equal to p,. Physically, the decreases in
pressure from p; to p, to p; accelerate the air and increase its
kinetic energy from zero in the tank to an intermediate valuein
the hose and finally to its maximum value at the nozzle exit.
Since the air velocity in the nozzle exit is nine times that in the
hose, most of the pressure drop occurs across the nozzle
(py = 3000 N/m?, p, = 2963 N/m?, and p; = 0).

Since the pressure change from (1) to (3) is not too great
[i.e, in terms of absolute pressure (p, — ps)/p; = 3.0/101 =
0.03], it follows from the perfect gas law that the density change
isalso not significant. Hence, the incompressibility assumption is
reasonable for this problem. If the tank pressure were consider-
ably larger or if viscous effects were important, the above results
would be incorrect.

F I u i d s i n

t h e N e w s

Hi-tech inhaler The term inhaler often brings to mind a treat-
ment for asthma or bronchitis. Work is underway to develop a
family of inhalation devices that can do more than treat respira-
tory ailments. They will be able to deliver medication for
diabetes and other conditions by spraying it to reach the blood-
stream through the lungs. The concept is to make the spray
droplets fine enough to penetrate to the lungs' tiny sacs, the
alveoli, where exchanges between blood and the outside world
take place. This is accomplished by use of a laser-machined
nozzle containing an array of very fine holes that cause the

liquid to divide into a mist of micron-scale droplets. The device
fits the hand and accepts a disposable strip that contains the
medicine solution sealed inside ablister of laminated plastic and
the nozzle. An electrically actuated piston drives the liquid from
its reservoir through the nozzle array and into the respiratory
system. To take the medicine, the patient breathes through the
device and a differential pressure transducer in the inhaler
senses when the patient’s breathing has reached the best condi-
tion for receiving the medication. At that point, the piston is au-
tomatically triggered.

In many situations the combined effects of kinetic energy, pressure, and gravity are important.

Example 3.9 illustrates this.

GIVEN Water flows through a pipe reducer asis shown in Fig.
E3.9. The static pressures at (1) and (2) are measured by the in-
verted U-tube manometer containing oil of specific gravity, SG,
less than one.

—EXAMPLE c#N Flow in a Variable Area Pipe

FIND Determine the manometer reading, h.
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SOLUTION

With the assumptions of steady, inviscid, incompressible flow, the
Bernoulli equation can be written as

p: + %PV% tyz=p; + %PV% + 75

The continuity equation (Eq. 3.19) provides a second relationship
between V; and V, if we assume the velocity profiles are uniform
at those two locations and the fluid incompressible:

Q= ANV = AV,
By combining these two equations we obtain
PL— P = ¥(Z — z) + 3pV3[1 — (A/A)] @

This pressure difference is measured by the manometer and can
be determined by using the pressure-depth ideas developed in

Chapter 3 B Elementary Fluid Dynamics—The Bernoulli Equation

T
h
|
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¢

Chapter 2. Thus,

pr—v(@Z—2z) -y —yh+ SGyh+ vyl =p,

or

Pr—P=v2%—2z)+ (1 - SG)yh )

As discussed in Chapter 2, this pressure difference is neither
merely yhnor y(h + z, — ).
Equations 1 and 2 can be combined to give the desired result

asfollows:

o= 2os-(3)]

orsinceV, = Q/A,

h = (Q/A,)°

B FIGURE E3.9

COMMENT The difference in elevation, z; — z,, was not
needed because the change in elevation term in the Bernoulli
equation exactly cancels the elevation term in the manometer
equation. However, the pressure difference, p, — p,, depends on
the angle 6, because of the elevation, z; — 2z, in Eq. 1. Thus, for a
given flowrate, the pressure difference, p; — p,, asmeasured by a
pressure gage would vary with 6, but the manometer reading, h,
would be independent of 6.

A

1- (Az/ A1)2

201 %) A

/N

V3.10 Venturi
channel

Cavitation occurs
when the pressure
isreduced to the

vapor pressure.

In general, an increase in velocity is accompanied by a decrease in pressure. For example,
the velocity of the air flowing over the top surface of an airplane wing is, on the average, faster
than that flowing under the bottom surface. Thus, the net pressure force is greater on the bottom
than on the top—the wing generates a lift.

If the differences in velocity are considerable, the differences in pressure can aso be con-
siderable. For flows of gases, this may introduce compressibility effects as discussed in Section
3.8 and Chapter 11. For flows of liquids, this may result in cavitation, a potentially dangerous sit-
uation that results when the liquid pressure is reduced to the vapor pressure and the liquid “boils.”

Asdiscussed in Chapter 1, the vapor pressure, p,, is the pressure at which vapor bubbles form
in aliquid. It is the pressure at which the liquid starts to boil. Obvioudly this pressure depends on
the type of liquid and its temperature. For example, water, which boils at 212 °F at standard
atmospheric pressure, 14.7 psia, boils at 80 °F if the pressureis 0.507 psia. That is, p, = 0.507 psia
at 80 °F and p, = 14.7 psiaat 212 °F. (See Tables B.1 and B.2.)

One way to produce cavitation in aflowing liquid is noted from the Bernoulli equation. If the
fluid velocity is increased (for example, by a reduction in flow area as shown in Fig. 3.16) the pres-
sure will decrease. This pressure decrease (needed to accelerate the fluid through the constriction)
can be large enough so that the pressure in the liquid is reduced to its vapor pressure. A smple ex-
ample of cavitation can be demonstrated with an ordinary garden hose. If the hose is “kinked,” a
restriction in the flow area in some ways analogous to that shown in Fig. 3.16 will result. The water
velocity through this restriction will be relatively large. With a sufficient amount of restriction the
sound of the flowing water will change—a definite “hissing” sound is produced. This sound is a
result of cavitation.
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(Absolute

1
|
P |
|
pressure) :

B FIGURE 3.16 Pressure
variation and cavitation in a variable
X area pipe.

Large Q Incipient cavitation

B FIGURE 3.17 Tip cavitation from a propeller. (Photograph
courtesy of Garfield Thomas Water Tunnel, Pennsylvania State University.)

. In such situations boiling occurs (though the temperature need not be high), vapor bubbles form,

cause damage to and then they collapse as the fluid movesinto aregion of higher pressure (lower velocity). This process

equipment. can produce dynamic effects (imploding) that cause very large pressure transients in the vicinity of the
bubbles. Pressures as large as 100,000 psi (690 M Pa) are believed to occur. If the bubbles collgpse close
to a physica boundary they can, over a period of time, cause damage to the surface in the cavitation
area Tip cavitation from a propeller isshown in Fig. 3.17. In this case the high-speed rotation of the
propeller produced a corresponding low pressure on the propeller. Obviously, proper design and
use of equipment are needed to eliminate cavitation damage.

—EXAMPLE LI NN Siphon and Cavitation

GIVEN A liquid can be siphoned from a container asshownin  as shown in Fig. E3.10b. The end of the siphon is 5 ft below the
Fig. E3.10a provided the end of the tube, point (3), is below the  bottom of the tank, and the atmospheric pressure is 14.7 psia.
free surface in the container, point (1), and the maximum elevation

of the tube, point (2), is “not too great.” Consider water at 60° F FIND  Determine the maximum height of the hill, H, over which
being siphoned from alarge tank through a constant diameter hose  the water can be siphoned without cavitation occurring.
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SOLUTION

If the flow is steady, inviscid, and incompressible we can apply
the Bernoulli equation along the streamline from (1) to (2) to (3) as
follows:

P+ 3pVE+ vz = po +3pVE + ¥2,
=ps + 3pV3 + vz (1)
With the tank bottom as the datum, we have z, = 15ft, z, = H,
and z; = —5ft. Also, V,; = 0 (large tank), p, = 0 (open tank),
ps; = O(freejet), and from the continuity equation AV, = AzVs, or

because the hose is constant diameter, V, = V5. Thus, the speed of
the fluid in the hose is determined from Eq. 1 to be

Ve = V29(z — z5) = V2(3221t/P)[15 — (—5)] ft
= 359ft/s =V,

Use of Eq. 1 between points (1) and (2) then gives the pressure p,
at the top of the hill as

P =Py + 3pVi+ vz — 3pV3 — v2

=y~ 2) — pV3 @)
From Table B.1, the vapor pressure of water at 60 °F is
0.256 psia. Hence, for incipient cavitation the lowest pressure in
the system will be p = 0.256 psia. Careful consideration of Eq. 2
and Fig. E3.10b will show that this lowest pressure will occur at
the top of the hill. Since we have used gage pressure at point (1)
(p. = 0), we must use gage pressure at point (2) also. Thus,

p, = 0.256 — 14.7 = —14.4 ps and Eq. 2 gives

(—14.4 1b/in.2)(144 in.%/ft?)
= (62.4 Ib/ft%)(15 — H)ft — 3(1.94 slugs/ft®)(35.9 ft/s)?

or

B FIGURE E3.10b

H = 28.2ft (Ans)

For larger values of H, vapor bubbleswill form at point (2) and the By using the fluid properties listed in Table 1.5 and repeating
siphon action may stop. the calculations for various fluids, the results shown in
Fig. E3.10c are obtained. The value of H is afunction of both the

COMMENTS Note that we could have used absolute pres- SERIBEG L EUnSIIe) 57, ETe SV LEr FTeslie By

sure throughout (p, = 0.256 psia and p; = 14.7 psia) and ob-

tained the same result. The lower the elevation of point (3), the 0
larger the flowrate and, therefore, the smaller the value of H al- 351 1
lowed. 30 ——
We could also have used the Bernoulli equation between (2) 25
and (3), with V, = Vj, to obtain the same value of H. Inthiscase =
it would not have been necessary to determine V, by use of the T
Bernoulli equation between (1) and (3). 1o =
The above results are independent of the diameter and length 101155 _ 2 E
of the hose (provided viscous effects are not important). Proper 5 E & 2 =
design of the hose (or pipe) is needed to ensure that it will not col- o L= = ° °
lapse due to the large pressure difference (vacuum) between the Fluid
inside and outside of the hose. B FIGURE E3.10c

3.6.3 Flowrate Measurement

Many types of devices using principles involved in the Bernoulli equation have been developed
to measure fluid velocities and flowrates. The Pitot-static tube discussed in Section 3.5 is an
example. Other examples discussed below include devices to measure flowrates in pipes and



The flowrate varies
as the square root
of the pressure dif-
ference across the
flow meter.

Q~VAp

Ap=p;-p;
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Orifice

— Y Nozzle

TR

| B FIGURE 3.18 Typica devices
(1) (2) for measuring flowrate in pipes.

conduits and devices to measure flowrates in open channels. In this chapter we will consider
“ideal” flow meters—those devoid of viscous, compressibility, and other “real-world” effects.
Corrections for these effects are discussed in Chapters 8 and 10. Our goal here is to understand
the basic operating principles of these simple flow meters.

An effective way to measure the flowrate through a pipe is to place some type of restric-
tion within the pipe as shown in Fig. 3.18 and to measure the pressure difference between the
low-velocity, high-pressure upstream section (1), and the high-velocity, low-pressure downstream
section (2). Three commonly used types of flow meters are illustrated: the orifice meter, the noz-
Zle meter, and the Venturi meter. The operation of each is based on the same physical principles—
an increase in velocity causes a decrease in pressure. The difference between them is a matter of
cost, accuracy, and how closely their actual operation obeys the idealized flow assumptions.

We assume the flow is horizontal (z, = z,), steady, inviscid, and incompressible between
points (1) and (2). The Bernoulli equation becomes

py + 3pVi = p, + 3pV3

(The effect of nonhorizontal flow can be incorporated easily by including the change in elevation,
z, — 2, in the Bernoulli equation.)

If we assume the velocity profiles are uniform at sections (1) and (2), the continuity equation
(Eg. 3.19) can be written as

Q=AV, = AV,

where A, is the small (A, < A,) flow area at section (2). Combination of these two equations re-
sults in the following theoretical flowrate

2(py — p2)
P[l - (Az/Al)z]

Thus, as shown by the figure in the margin, for a given flow geometry (A, and A,) the flowrate
can be determined if the pressure difference, p; — p,, is measured. The actual measured flowrate,
Q.cua» Will be smaller than this theoretical result because of various differences between the “real
world” and the assumptions used in the derivation of Eq. 3.20. These differences (which are quite
consistent and may be as small as 1 to 2% or as large as 40%, depending on the geometry used) can
be accounted for by using an empirically obtained discharge coefficient as discussed in Section 8.6.1.

Q=~A (3.20)
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—EXAMPLE 3.1 1 R EATTER S

GIVEN Kerosene (SG = 0.85) flows through the Venturi
meter shown in Fig. E3.11a with flowrates between 0.005 and
0.050 m%/s.

FIND Determine the range in pressure difference, p; — p,,
needed to measure these flowrates.

SoLUTION

Chapter 3 B Elementary Fluid Dynamics—The Bernoulli Equation

0.005 m®/s < Q <0.050 m%/s
B FIGURE E3.11a

If the flow is assumed to be steady, inviscid, and incompressible,
the relationship between flowrate and pressure is given by Eq.
3.20. This can be rearranged to give

o1 py Q1 — (?2/A1)2]
2A3

With the density of the flowing fluid

p = SG py,o = 0.85(1000 kg/m?) = 850 kg/m?
and the arearatio

A,/A;, = (D,/D,)? = (0.06 m/0.10 m)*> = 0.36

the pressure difference for the smallest flowrate is
(1 - 0.36%)

— = ¥s)? ¥
Py — P, = (0.005 Y850 ky/m) o~ o e T

= 1160 N/m? = 1.16 kPa
Likewise, the pressure difference for the largest flowrate is
(1 - 0.36%)
2[(7/4)(0.06)?]?
= 1.16 X 10° N/m? = 116 kPa

P — P, = (0.05)%(850)

Thus,

1.16 kPa =< p, — p, = 116 kPa (Ans)

COMMENTS These values represent the pressure differ-
ences for inviscid, steady, incompressible conditions. The ideal

results presented here are independent of the particular flow
meter geometry—an orifice, nozzle, or Venturi meter (see
Fig. 3.18).

It is seen from Eq. 3.20 that the flowrate varies as the
square root of the pressure difference. Hence, as indicated by
the numerical results and shown in Fig. E3.11b, a 10-fold in-
crease in flowrate requires a 100-fold increase in pressure dif-
ference. This nonlinear relationship can cause difficulties when
measuring flowrates over a wide range of values. Such mea-
surements would require pressure transducers with a wide
range of operation. An aternative is to use two flow metersin
parallel—one for the larger and one for the smaller flowrate
ranges.

120

(0.05 m%s, 116 kPa)

100

80

60

PPy, kPa

40
(0.005 m¥s, 1.16 kPa)
20

0 0.01 0.02 0.03
Q, m%/s

B FIGURE E3.11b

0.04 0.05

Other flow meters based on the Bernoulli equation are used to measure flowrates in open chan-
nels such as flumes and irrigation ditches. Two of these devices, the duice gate and the sharp-crested
weir, are discussed below under the assumption of steady, inviscid, incompressible flow. These and
other open-channel flow devices are discussed in more detail in Chapter 10.

Sluice gates like those shown in Fig. 3.19a are often used to regul ate and measure the flowrate
in open channels. As indicated in Fig. 3.19b, the flowrate, Q, is a function of the water depth up-
stream, z;, the width of the gate, b, and the gate opening, a. Application of the Bernoulli equation
and continuity eguation between points (1) and (2) can provide a good approximation to the actual
flowrate obtained. We assume the velocity profiles are uniform sufficiently far upstream and down-

stream of the gate.




The flowrate under
a dluice gate de-
pends on the water
depths on either
side of the gate.
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W Sluice gate
width =b

ERRERRRRRRREE

(3)

(a) (b)
B FIGURE 3.19 Suice gate geometry. (Photograph courtesy of Plasti-Fab, Inc.)

Thus, we apply the Bernoulli equation between points on the free surfaces at (1) and (2) to
give

pL+ 3pVi+ vz = po + 3pV3 + V2

Also, if the gate is the same width as the channel so that A, = bz, and A, = bz, the continuity
equation gives

Q = A]_Vl = bVlzl = A2V2 = bV222

With thefact that p, = p, = 0, these equations can be combined and rearranged to give the flowrate
as

_ 29(zy — z,)
Q=12zb 1— (2/2)? (3.21)

In the limit of z; > z, this result simply becomes
Q = zbV2gz

This limiting result represents the fact that if the depth ratio, z,/z,, is large, the kinetic energy of
the fluid upstream of the gate is negligible and the fluid velocity after it has fallen a distance
(z, — 2,) = z, is approximately V, = V2gz,.

Theresults of Eq. 3.21 could also be obtained by using the Bernoulli equation between points
(3)and (4) and thefact that p; = yz, and p, = yz, since the streamlines at these sections are straight.
In this formulation, rather than the potential energies at (1) and (2), we have the pressure contri-
butions at (3) and (4).

The downstream depth, z,, not the gate opening, a, was used to obtain the result of Eq. 3.21.
As was discussed relative to flow from an orifice (Fig. 3.14), the fluid cannot turn a sharp 90° cor-
ner. A vena contracta results with a contraction coefficient, C. = z,/a, less than 1. Typicaly C; is
approximately 0.61 over the depth ratio range of 0 < a/z < 0.2. For larger values of a/z; the
value of C, increases rapidly.

|_EXAMPLE 3.12

GIVEN Water flows under the dluice gate shownin Fig. E3.12a.  FIND  Determine the approximate flowrate per unit width of

the channel.
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SOLUTION

Under the assumptions of steady, inviscid, incompressible flow,
we can apply Eqg. 3.21 to obtain Q/b, the flowrate per unit width,
as

Q_ [2z-2)

b “N1- (z/z)
In this instance zz = 5.0 m and a= 0.80m so the ratio
a/z, = 0.16 < 0.20, and we can assume that the contraction co-
efficient is approximately C. = 0.61. Thus, z, = C.a = 0.61
(0.80 m) = 0.488 m and we obtain the flowrate

Q_ (0.488m) \/2(9.81 m/s?)(5.0m — 0.4«5238 m)
b 1 — (0.488 m/5.0 m)

= 4.61 m%*/s (Ans)

COMMENT If we consider z, > z, and neglect the kinetic
energy of the upstream fluid, we would have
Q

b =2 V205 = 0488m 1/2(9.81 m/s2)(5.0 m)

= 4.83m?/s

In this case the difference in Q with or without including V; is not
too significant because the depth ratio is fairly large
(z/z, = 5.0/0.488 = 10.2). Thus, it is often reasonable to
neglect the kinetic energy upstream from the gate compared to
that downstream of it.

By repeating the calculations for various flow depths, z;, the
results shown in Fig. E3.12b are obtained. Note that the
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B FIGURE E3.12a
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B FIGURE E3.12b

flowrate is not directly proportional to the flow depth. Thus,
for example, if during flood conditions the upstream depth dou-
bled fromz = 5mtoz = 10 m, the flowrate per unit width of
the channel would not double, but would increase only from
4.61 m?/sto 6.67 m?/s.

Another device used to measure flow in an open channel is a weir. A typical rectangular,
sharp-crested weir is shown in Fig. 3.20. For such devices the flowrate of liquid over the top of
the weir plate is dependent on the weir height, P,,, the width of the channel, b, and the head, H,
of the water above the top of the weir. Application of the Bernoulli equation can provide a sim-
ple approximation of the flowrate expected for these situations, even though the actual flow is

quite complex.

Between points (1) and (2) the pressure and gravitational fields cause the fluid to accelerate
from velocity V; to velocity V,. At (1) the pressure is p; = yh, while at (2) the pressure is essen-
tially atmospheric, p, = 0. Across the curved streamlines directly above the top of the weir plate
(section a—a), the pressure changes from atmospheric on the top surface to some maximum value
within the fluid stream and then to atmospheric again at the bottom surface. This distribution is
indicated in Fig. 3.20. Such a pressure distribution, combined with the streamline curvature and
gravity, produces a rather nonuniform velocity profile across this section. This velocity distribu-
tion can be obtained from experiments or a more advanced theory.

Pressure distribution
» Width =b

b

B FIGURE 3.20

Rectangular, sharp-crested weir geometry.
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For now, we will take a very simple approach and assume that the weir flow is similar in
many respects to an orifice-type flow with a free streamline. In this instance we would expect the
average velocity across the top of the weir to be proportional to V2gH and the flow area for this
rectangular weir to be proportional to Hb. Hence, it follows that

Q = C,Hb V2gH = C,b V/2g H¥2

where C, is a constant to be determined.

Simple use of the Bernoulli equation has provided a method to analyze the relatively com-
plex flow over aweir. The correct functional dependence of Q on H has been obtained (Q ~ H¥?,
as indicated by the figure in the margin), but the value of the coefficient C; is unknown. Even a
more advanced analysis cannot predict its value accurately. As is discussed in Chapter 10, exper-
iments are used to determine the value of C,.

Q- H¥?

—EXAMPLE 3.13

GIVEN Water flows over atriangular weir, asis shown in Fig. W tan @
E3.13. [ tanz

FIND Based on asimple analysisusing the Bernoulli equation, =%
determine the dependence of the flowrate on the depth H. If the ~ —
flowrate is Q, when H = H,, estimate the flowrate when the / \‘f T
depthisincreasedto H = 3H,. _/ ‘)\

SOLUTION

B FIGURE E3.13

With the assumption that the flow is steady, inviscid, and incom-
pressible, it is reasonable to assume from Eq. 3.18 that the aver-
age speed of the fluid over the triangular notch in the weir plateis

proportional to \/2gH. Also, the flow area for a depth of H is Qu,  Cytan(6/2) V2g (3Hy)”
H[H tan (6/2)]. The combination of these two ideas gives Qx, G tan(6/2) V29 (Ho)*?
Q=AV= Hztang(c2 V2gH) = C, tan%\/Zg H%2  (Ans) = 15.6 (Ans)

COMMENT Note that for a triangular weir the flowrate is

where C, is an unknown constant to be determined experimentally.  proportional to H¥?2, whereas for the rectangular weir discussed

Thus, an increase in the depth by afactor of three (from Hoto ~ above, it is proportional to H¥2, The triangular weir can be accu-
3Hy) resultsin an increase of the flowrate by a factor of rately used over awide range of flowrates.

3.7 The Energy Line and the Hydraulic Grade Line

As was discussed in Section 3.4, the Bernoulli equation is actually an energy equation repre-
senting the partitioning of energy for an inviscid, incompressible, steady flow. The sum of the
various energies of the fluid remains constant as the fluid flows from one section to another. A
useful interpretation of the Bernoulli equation can be obtained through the use of the concepts

The hydraulic of the hydraulic grade line (HGL) and the energy line (EL). These ideas represent a geometri-
grade line and en- cal interpretation of a flow and can often be effectively used to better grasp the fundamental
ergy linearegraph-  processes involved.

ical forms of the For steady, inviscid, incompressible flow the total energy remains constant along a stream-

Bernoulli equation.  |ina The concept of “head” was introduced by dividing each term in Eq. 3.7 by the specific weight,

v = pg, to give the Bernoulli equation in the following form
P,V

; + z—g + z = constant on astreamline = H (3.22)
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Under the assump-
tions of the Bernoulli
equation, the energy
lineishorizontal.
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B FIGURE 3.21
hydraulic grade line.

Representation of the energy line and the

Each of the terms in this equation has the units of length (feet or meters) and represents a certain
type of head. The Bernoulli equation states that the sum of the pressure head, the velocity head,
and the elevation head is constant along a streamline. This constant is called the total head, H.

The energy line is a line that represents the total head available to the fluid. As shown in
Fig. 3.21, the elevation of the energy line can be obtained by measuring the stagnation pressure
with a Pitot tube. (A Pitot tube is the portion of a Pitot-static tube that measures the stagnation
pressure. See Section 3.5.) The stagnation point at the end of the Pitot tube provides a measure-
ment of the total head (or energy) of the flow. The static pressure tap connected to the piezometer
tube shown, on the other hand, measures the sum of the pressure head and the elevation head,
p/y + z This sum is often called the piezometric head. The static pressure tap does not measure
the velocity head.

According to Eq. 3.22, the total head remains constant along the streamline (provided the as-
sumptions of the Bernoulli equation are valid). Thus, a Pitot tube at any other location in the flow
will measure the same total head, as is shown in the figure. The elevation head, velocity head, and
pressure head may vary along the streamline, however.

The locus of elevations provided by a series of Pitot tubes is termed the energy line, EL.
The locus provided by a series of piezometer taps is termed the hydraulic grade line, HGL. Un-
der the assumptions of the Bernoulli equation, the energy line is horizontal. If the fluid veloc-
ity changes along the streamline, the hydraulic grade line will not be horizontal. If viscous effects
are important (as they often are in pipe flows), the total head does not remain constant due to a
loss in energy as the fluid flows along its streamline. This means that the energy line is no longer
horizontal. Such viscous effects are discussed in Chapters 5 and 8.

The energy line and hydraulic grade line for flow from a large tank are shown in Fig. 3.22.
If the flow is steady, incompressible, and inviscid, the energy line is horizontal and at the eleva-
tion of the liquid in the tank (since the fluid velocity in the tank and the pressure on the surface

B FIGURE 3.22 Theenergy line
and hydraulic grade line for flow from a tank.




For flow below
(above) the hy-
draulic gradeline,
the pressureis
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BEFIGURE 3.23
Use of the energy line and the
hydraulic grade line.

are zero). The hydraulic grade line lies a distance of one velocity head, V2/2g, below the energy
line. Thus, a change in fluid velocity due to a change in the pipe diameter results in a change in
the elevation of the hydraulic grade line. At the pipe outlet the pressure head is zero (gage) so the
pipe elevation and the hydraulic grade line coincide.

The distance from the pipe to the hydraulic grade line indicates the pressure within the pipe,
as is shown in Fig. 3.23. If the pipe lies below the hydraulic grade line, the pressure within the
pipe is positive (above atmospheric). If the pipe lies above the hydraulic grade line, the pressure is
negative (below atmospheric). Thus, a scale drawing of a pipeline and the hydraulic grade line can

positive (negative).

—EXAMPLE I K- Energy Line and Hydraulic Grade Line

GIVEN Water is siphoned from the tank shown in Fig. E3.14
through a hose of constant diameter. A small holeis found in the
hose at location (1) asindicated.

FIND When the siphon is used, will water leak out of the hose,

or will air leak into the hose, thereby possibly causing the siphon
to malfunction?

SOLUTION

Whether air will leak into or water will leak out of the hose de-
pends on whether the pressure within the hose at (1) is less than or
greater than atmospheric. Which happens can be easily determined
by using the energy line and hydraulic grade line concepts. With
the assumption of steady, incompressible, inviscid flow it follows
that the total head is constant—thus, the energy lineis horizontal.

Sincethe hose diameter is constant, it follows from the continuity
equation (AV = constant) that the water velocity in the hoseis con-
stant throughout. Thus, the hydraulic grade line is a constant dis-
tance, V2/2g, below the energy lineas shownin Fig. E3.14. Sincethe
pressure at the end of the hose is atmospheric, it follows that the hy-
draulic grade lineis at the same elevation as the end of the hose out-
let. The fluid within the hose a any point above the hydraulic grade
linewill be at less than atmospheric pressure.

Thus, air will leak into the hose through

A
the hole at point (1). (Ans)

be used to readily indicate regions of positive or negative pressure within a pipe.

HGL with valve closed and

E_EL with valve open or closed

— HGL with valve open
Valve

B FIGURE E3.14

COMMENT In practice, viscous effects may be quite impor-
tant, making this simple analysis (horizontal energy line) incor-
rect. However, if the hose is “not too small diameter,” “not too
long,” thefluid “not too viscous,” and the flowrate “ not too large,”
the above result may be very accurate. If any of these assumptions
are relaxed, a more detailed analysisis required (see Chapter 8). If
the end of the hose were closed so that the flowrate were zero, the
hydraulic grade line would coincide with the energy line
(V%2g = 0 throughout), the pressure at (1) would be greater than
atmospheric, and water would leak through the hole at (1).

The above discussion of the hydraulic grade line and the energy line is restricted to ideal sit-
uations involving inviscid, incompressible flows. Another restriction is that there are no “ sources’
or “sinks’ of energy within the flow field. That is, there are no pumps or turbines involved. Al-
terations in the energy line and hydraulic grade line concepts due to these devices are discussed in
Chapters 5 and 8.
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3.8 Restrictions on Use of the Bernoulli Equation

Ap
Ap ~ V?

The Bernoulli
equation can be
modified for com-
pressible flows.

Proper use of the Bernoulli equation requires close attention to the assumptions used in its de-
rivation. In this section we review some of these assumptions and consider the consequences of
incorrect use of the equation.

3.8.1 Compressibility Effects

One of the main assumptions is that the fluid is incompressible. Although this is reasonable for
most liquid flows, it can, in certain instances, introduce considerable errors for gases.

In the previous section, we saw that the stagnation pressure, Py, is greater than the static
Pressure, Pyaic: Dy an amount Ap = Pyag — Psaic = pV?%/2, provided that the density remains con-
stant. If this dynamic pressure is not too large compared with the static pressure, the density change
between two pointsis not very large and the flow can be considered incompressible. However, since
the dynamic pressure varies as V2, the error associated with the assumption that a fluid is incom-
pressible increases with the square of the velocity of the fluid, as indicated by the figure in the mar-
gin. To account for compressibility effects we must return to Eq. 3.6 and properly integrate the term
J dp/p when p is not constant.

A simple, athough specialized, case of compressible flow occurs when the temperature of a
perfect gas remains constant along the streamline—isothermal flow. Thus, we consider p = pRT,
where T is constant. (In general, p, p, and T will vary.) For steady, inviscid, isothermal flow, Eq.
3.6 becomes

d
RT J ?p + %Vz + gz = constant

where we have used p = p/RT. The pressure term is easily integrated and the constant of integration
evaluated if z;, p;, and V; are known at some location on the streamline. The result is
vi RT <p1> V3
n 0, 29 + 2z (3.23)
Equation 3.23 is the inviscid, isothermal analog of the incompressible Bernoulli equation. In the
limit of small pressure difference, p,/p, = 1 + (py — po)/P, = 1 + &, with e < 1 and Eq. 3.23
reduces to the standard incompressible Bernoulli equation. This can be shown by use of the ap-
proximation In(1 + &) = e for small e. The use of Eq. 3.23 in practical applications is restricted by
the inviscid flow assumption, since (as is discussed in Section 11.5) most isotherma flows are ac-
companied by viscous effects.

A much more common compressible flow condition is that of isentropic (constant entropy)
flow of aperfect gas. Such flows are reversible adiabatic processes—* no friction or heat transfer” —
and are closely approximated in many physical situations. As discussed fully in Chapter 11, for
isentropic flow of a perfect gas the density and pressure are related by p/p* = C, where k is the
specific heat ratio and C is a constant. Hence, the [ dp/p integral of Eqg. 3.6 can be evaluated
as follows. The density can be written in terms of the pressure as p = p¥“C™¥* so that Eq. 3.6
becomes

1
C¥« J p Y<dp + EVZ + gz = constant
The pressure term can be integrated between points (1) and (2) on the streamline and the constant
C evaluated at either point (C¥* = pt*/p, or C¥* = p¥¥/p,) to give the following:
k

p2
Cl/kj p—l/kdp — Cl/k<k — 1) [p(zk—l)/k _ p(lk—l)/k]
pl

G 2)




For small Mach
numbers the com-
pressible and in-
compressible
results are nearly
the same.
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Thus, the final form of Eq. 3.6 for compressible, isentropic, steady flow of a perfect gasis

V3 Vi
( k )pl P S <k>z + ?2 + gz, (3.24)

The similarities between the results for compressible isentropic flow (Eq. 3.24) and incompressible
isentropic flow (the Bernoulli equation, Eq. 3.7) are apparent. The only differences are the factors
of [k/(k — 1)] that multiply the pressure terms and the fact that the densities are different (p, # p»).
In the limit of “low-speed flow” the two results are exactly the same, as is seen by the following.

We consider the stagnation point flow of Section 3.5 to illustrate the difference between the
incompressible and compressible results. As is shown in Chapter 11, Eqg. 3.24 can be written in
dimensionless form as

_ _ kk—1
% _ Kl LK ; 1 Maﬁ) - 1} (compressible) (3.25)
1

where (1) denotes the upstream conditions and (2) the stagnation conditions. We have assumed
z, = 2, V, = 0, and have denoted Mg, = V,/c, as the upstream Mach number—the ratio of the
fluid velocity to the speed of sound, ¢, = VKRT;.

A comparison between this compressible result and the incompressible result is perhaps most
easily seen if we write the incompressible flow result in terms of the pressure ratio and the Mach
number. Thus, we divide each term in the Bernoulli equation, pVZ/2 + p; = p,, by p; and use the
perfect gas law, p; = pRT;, to obtain

P2~ P _ Vi
o} 2RT,
Since Mg, = V,/VKRT; this can be written as
- kMa2
% = Tl (incompressible) (3.26)
1

Equations 3.25 and 3.26 are plotted in Fig. 3.24. In the low-speed limit of Ma, — 0, both of the
results are the same. This can be seen by denoting (k — 1)M&8/2 = & and using the binomia expan-
son, (L +&"=1+ng + nin—1)&%/2 + ---, where n = k/(k — 1), to write Eq. 3.25 as

P2 — P kMa%( 1 2-k

= + = +

Py 2 ! 4 M2, 24

For Ma, < 1 this compressible flow result agrees with Eqg. 3.26. The incompressible and com-
pressible equations agree to within about 2% up to a Mach number of approximately Ma, = 0.3.
For larger Mach numbers the disagreement between the two results increases.

Mat + ) (compressible)

1

0.8 /
Compressible /

(Eq. 3.25)

0.6
i —
o k=1.4
o
0.4
Incompressible
0.2 (Eq. 3.26)

B FIGURE 3.24 Pressure

ratio as a function of Mach number

0 0.2 0.4 0.6 0.8 1 for incompressible and compressible
Ma, (isentropic) flow.
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Thus, a“rule of thumb” is that the flow of a perfect gas may be considered as incompress-

ible provided the Mach number is less than about 0.3. In standard air (T, = 59 °F, ¢, =

kRTl =

1117 ft/s) this corresponds to a speed of V, = Mayc, = 0.3(1117 ft/s) = 335 ft/s = 228 mi/hr. At
higher speeds, compressibility may become important.

GIVEN The jet shown in Fig. E3.15 flies at Mach 0.82 at an
altitude of 10 km in a standard atmosphere.

FIND Determine the stagnation pressure on the leading edge
of itswing if the flow is incompressible; and if the flow is com-
pressible isentropic.

SoLUTION

—EXAMPLE ¥ Bl Compressible Flow—Mach Number

From Tables 1.8 and C.2 we find that p, = 26.5 kPa (abs),
T, = —49.9°C, p = 0.414 kg/m?, and k = 1.4. Thus, if we as-
sume incompressible flow, Eq. 3.26 gives

—p kM 0.82)°
Po—p_kMa _  (082)
P1 2 2

= 0471

or
P, — pp = 0.471(26.5 kPa) = 125 kPa (Ans)
On the other hand, if we assume isentropic flow, Eq. 3.25 gives

— 14 — 1 14/(14-1)
B Py _ {[1 it (0.82)2} - 1}
Pz 2

= 0.555

B FIGURE E3.15
Pure stock/superstock.)

(Photograph courtesy of

lift and drag on the arplane; see Chapter 9) is approximately
14.7/12.5 = 1.18 times greater according to the compressible
flow calculations. This may be very significant. As discussed in
Chapter 11, for Mach numbers greater than 1 (supersonic flow)
the differences between incompressible and compressible results
are often not only quantitative but also qualitative.

or

p, — p; = 0.555(26.5 kPa) = 14.7 kPa

COMMENT We seethat at Mach 0.82 compressibility effects
are of importance. The pressure (and, to afirst approximation, the

Note that if the airplane were flying at Mach 0.30 (rather than
0.82) the corresponding values would be p, — p; = 1.670 kPafor
incompressible flow and p, — p; = 1.707 kPa for compressible
flow. The difference between these two resultsis about 2%.

(Ans)

The Bernoulli
equation can be
modified for un-
steady flows.

3.8.2 Unsteady Effects

Another restriction of the Bernoulli equation (Eq. 3.7) is the assumption that the flow is steady. For
such flows, on a given streamline the vel ocity is afunction of only s, the location along the stream-
line. That is, along a streamline V = V(s). For unsteady flows the velocity is also a function of
time, so that along a streamline V = V(s, t). Thus when taking the time derivative of the velocity
to obtain the streamwise accel eration, we obtain ag = 9\V/ot + V oV/osrather thanjusta; = V 9V/ds
as is true for steady flow. For steady flows the acceleration is due to the change in velocity re-
sulting from a change in position of the particle (the V 9V/ds term), whereas for unsteady flow
there is an additional contribution to the acceleration resulting from a change in velocity with
time at a fixed location (the 9\/ot term). These effects are discussed in detail in Chapter 4. The
net effect is that the inclusion of the unsteady term, 9\V/ot, does not allow the equation of motion
to be easily integrated (as was done to obtain the Bernoulli equation) unless additional assump-
tions are made.

The Bernoulli equation was obtained by integrating the component of Newton’s second law
(Eq. 3.5) along the streamline. When integrated, the acceleration contribution to this equation, the
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1 pd(V?) term, gave rise to the kinetic energy term in the Bernoulli equation. If the steps leading
to Eq. 3.5 are repeated with the inclusion of the unsteady effect (dV/ot # O) the following is
obtained:

Y% 1
pEds + dp + Epd(vz) +ydz=0  (alongastreamline)

For incompressible flow this can be easily integrated between points (1) and (2) to give

"x' 1 =9V 1 :

p, + Epvi + yz; = pJ' Rds +p, + Epvg + vz, (along astreamline)  (3.27)
V3.11 Oscillations o
ina U-tube Equation 3.27 is an unsteady form of the Bernoulli equation valid for unsteady, incompressible,

Leo2m Lesom inviscid flow. Except for the integral involving the local acceleration, dV/ot, it is identical to the
- steady Bernoulli equation. In general, it is not easy to evaluate this integral because the variation
of dV/ot along the streamline is not known. In some situations the concepts of “irrotational flow”
and the “velocity potential” can be used to simplify this integral. These topics are discussed in
Chapter 6.

[ITUICERT nsicady Flow—UTube

GIVEN Anincompressible, inviscid liquid is placed in averti- ?p;n

cal, constant diameter U-tube as indicated in Fig. E3.16. When y RN

released from the nonequilibrium position shown, the liquid TVZ

column will oscillate at a specific frequency. ‘g ¥ )

FIND Determine this frequency. ] _____T__ o,

\Equilibrium

1) position

SoLuTiON v L

The frequency of oscillation can be calculated by use of Eq. 3.27 \f/

as follows. Let points (1) and (2) be at the air—water interfaces of
the two columns of the tube and z = 0 correspond to the equilib-
rium position of these interfaces. Hence, p, = p, = 0 and if
z, = z,thenz; = —z Ingeneral, zisafunction of time, z = Z(t).
For a constant diameter tube, at any instant in time the fluid speed
is constant throughout the tube, V; = V, = V, and the integral  Which has the solution Z(t) = C,sin(V2g/{t) + C,cos

B FIGURE E3.16

representing the unsteady effect in Eq. 3.27 can be written as (V2g/€1). The values of the constants C, and C, depend on the
s s initial state(velocity and position) of theliquid at t = 0. Thus, the
J e ds = (LVJ ds= ¢ av liquid oscillates in the tube with a frequency
ot dt Js, dt
o = \V29/¢ (Ans)
where ¢ is the total length of the liquid column as shown in the
figure. Thus, Eq. 3.27 can be written as COMMENT Thisfrequency depends on the length of the col-
umn and the acceleration of gravity (in a manner very similar to
y(—2) = pt av + vz the oscillation of a pendulum). The period of this oscillation (the
dt time required to complete an oscillation) ist, = 27V¢/2g.

Since V = dz/dt and y = pg, this can be written as the second-
order differential equation describing simple harmonic motion
d%z 29

w et 0

In afew unsteady flow cases, the flow can be made steady by an appropriate selection of the
coordinate system. Example 3.17 illustrates this.
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Exapie 3.7 R

GIVEN A submarine movesthrough seawater (SG = 1.03) ata
depth of 50 m with velocity V, = 5.0 m/sasshownin Fig. E3.17.

FIND Determine the pressure at the stagnation point (2).

SOLUTION

In a coordinate system fixed to the ground, the flow is unsteady.
For example, the water velocity at (1) is zero with the submarine
initsinitial position, but at the instant when the nose, (2), reaches
point (1) the velocity there becomes V; = —V,i. Thus,
dV,/dt # 0 and the flow is unsteady. Application of the steady
Bernoulli equation between (1) and (2) would give the incorrect = (12,900 + 505,000) N/m?

result that “p, = p, + pV3/2.” According to this result the static = 518 kPa (Ans)
pressureis greater than the stagnation pressure—an incorrect use
of the Bernoulli equation.

We can either use an unsteady analysis for the flow (which is
outside the scope of thistext) or redefine the coordinate system so
that it is fixed on the submarine, giving steady flow with respect
to this system. The correct method would be

B FIGURE E3.17

similar to that discussed in Example 3.2.

COMMENT If the submarine were accelerating, 0V, /dt # 0,
the flow would be unsteady in either of the above coordinate sys-
tems and we would be forced to use an unsteady form of the
Bernoulli equation.

pVi . ,
p, = > + yh = [(1.03)(1000) kg/m°] (5.0 m/s)?/2
+ (9.80 X 10° N/m®)(1.03)(50 m)

Some unsteady flows may be treated as “quasisteady” and solved approximately by using the
steady Bernoulli equation. In these cases the unsteadiness is “not too great” (in some sense), and the
steady flow results can be applied at each instant in time as though the flow were steady. The Slow
draining of atank filled with liquid provides an example of this type of flow.

3.8.3 Rotational Effects

Another of the restrictions of the Bernoulli equation is that it is applicable along the streamline. Ap-
in applying the plication of the Be_rnoulli equation across streamlines (i.e, fr(_)m apoint on one streamline tg_a po_i nt
Bernoulli equation on another streamline) can lead to considerable errors, depending on the particular flow conditions in-
across streamlines. volved. In general, the Bernoulli constant varies from streamline to streamline. However, under certain
restrictions this constant is the same throughout the entire flow field. Example 3.18 illustrates this fact.

| STXTINIENTY Use of Bernoull Equation across Streamlines

GIVEN Consider the uniform flow in the channel shown in Fluid Pa't'c'es spin

Fig. E3.18a. The liquid in the vertical piezometer tube is sta-
tionary.
p5: T l
H

Care must be used

FIND Discuss the use of the Bernoulli equation between
points (1) and (2), points(3) and (4), and points (4) and (5).

A
y

3) T \( =
SoLuTioN =8 ®
. L. . . . (2) _
If the flow is steady, inviscid, and incompressible, Eq. 3.7 written | p, =p, z=0
between points (1) and (2) gives Vo
P+ 30V + vz = p, + 3pV3 + v2 @
= CRIEEl = (G BEFIGURE E3.18
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SinceV,; = V, = Vyandz, = z, = 0, itfollowsthat p, = p, = po Again from Example 3.5 we recall that
and the Bernoulli constant for this streamline, C,», is given by
Ps=ps + yH = yH

If we apply the Bernoulli equation across streamlines from (4) to

Along the streamlinefrom (3)to(4) wenotethat V; = V, =,  (5), we obtain theincorrect result “H = p,/y + V/2g.” The cor-
and z; = z, = h. As was shown in Example 3.5, application of ~ rectresultisH = p,/y.
F = ma across the streamline (Eq. 3.12) gives p; = p; — yh be- From the above we see that we can apply the Bernoulli equation
cause the streamlines are straight and horizontal. The above facts ~ across streamlines(1)~(2) and (3)<(4) (i.e,, C1, = Cay) but not across
combined with the Bernoulli equation applied between (3) and (4) ~ streamlines from (4) to (5). The reason for this s that while the flow
show that p; = p, and that the Bernoulli constant along this inthechannel is*irrotetional,” itis*rotational” between theflowing

streamline is the same as that along the streamline between fluidin the channel and the stationary fluid in the piezometer tube.

Cp = %PVg *+ Po

(1) and (2). That is, Cz4 = Cyp, OF Because of the uniform velocity profile acrossthe channel, itisseen
L 1 that the fluid particles do not rotate or “spin” asthey move. The flow
Ps + 3pV3 + yz3 = Py + 5pV5 + vZ = Cyy = Cpp is“irrotational ” However, asseenin Fig. E3.18b, thereisavery thin

shear layer between (4) and (5) in which adjacent fluid particlesin-
teract and rotate or “spin.” Thisproducesa“rotational” flow. A more
complete analysiswould show that the Bernoulli equation cannot be
p + 3pV2 + yz = constant throughout the flow applied across streamlinesif the flow is“rotational” (see Chapter 6).

Similar reasoning shows that the Bernoulli constant is the same
for any streamlinein Fig. E3.18. Hence,

As is suggested by Example 3.18, if the flow is “irrotational” (i.e., the fluid particles do not

“spin” as they move), it is appropriate to use the Bernoulli equation across streamlines. However,

K if the flow is “rotational” (fluid particles “spin”), use of the Bernoulli equation is restricted to flow

V3.12 Flow over a along a streamline. The distinction between irrotational and rotational flow is often a very subtle

cavity and confusing one. These topics are discussed in more detail in Chapter 6. A thorough discussion
can be found in more advanced texts (Ref. 3).

3.8.4 Other Restrictions

Another restriction on the Bernoulli equation is that the flow is inviscid. Asis discussed in Section
3.4, the Bernoulli equation is actually afirst integral of Newton's second law along a streamline. This
general integration was possible because, in the absence of viscous effects, the fluid system consid-
ered was a conservative system. The total energy of the system remains constant. If viscous effects
are important the system is nonconservative (dissipative) and energy losses occur. A more detailed
analysis is needed for these cases. Such materia is presented in Chapter 5.
The final basic restriction on use of the Bernoulli equation is that there are no mechanical
oo devices (pumps or turbines) in the system between the two points along the streamline for which
equation is not S - ; 8 ) .
valid for flows that the equation is applied. These devices represent sources or sinks of energy. Since the Bernoulli
involve pumps or equation is actually one form of the energy equation, it must be altered to include pumps or tur-
turbines. bines, if these are present. The inclusion of pumps and turbines is covered in Chapters 5 and 12.
In this chapter we have spent considerable time investigating fluid dynamic situations gov-
erned by a relatively simple analysis for steady, inviscid, incompressible flows. Many flows can
be adequately analyzed by use of these ideas. However, because of the rather severe restrictions
imposed, many others cannot. An understanding of these basic ideas will provide a firm founda-
tion for the remainder of the topics in this book.

The Bernoulli

3.9 Chapter Summary and Study Guide

In this chapter, several aspects of the steady flow of an inviscid, incompressible fluid are discussed.
Newton’s second law, F = ma, is applied to flows for which the only important forces are those
due to pressure and gravity (weight)—viscous effects are assumed negligible. The result is the often-
used Bernoulli equation, which provides a smple relationship among pressure, elevation, and veloc-
ity variations aong a streamline. A similar but less often used equation is also obtained to describe
the variations in these parameters normal to a streamline.

The concept of a stagnation point and the corresponding stagnation pressure is introduced
as are the concepts of static, dynamic, and total pressure and their related heads.
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steady flow
streamline
Bernoulli equation
elevation head
pressure head
velocity head

static pressure
dynamic pressure
stagnation point
stagnation pressure
total pressure
Pitot-static tube
freejet

volume flowrate
continuity equation
cavitation

flow meter
hydraulic grade line
energy line

Several applications of the Bernoulli equation are discussed. In some flow situations, such
as the use of a Pitot-static tube to measure fluid velocity or the flow of a liquid as a free jet
from a tank, a Bernoulli equation alone is sufficient for the analysis. In other instances, such
as confined flows in tubes and flow meters, it is necessary to use both the Bernoulli equation
and the continuity equation, which is a statement of the fact that mass is conserved as fluid
flows.

The following checklist provides a study guide for this chapter. When your study of the
entire chapter and end-of-chapter exercises has been completed, you should be able to

= write out meanings of the terms listed here in the margin and understand each of the related
concepts. These terms are particularly important and are set in italic, bold, and color type
in the text.

m explain the origin of the pressure, elevation, and velocity terms in the Bernoulli eguation
and how they are related to Newton’s second law of motion.

m apply the Bernoulli equation to simple flow situations, including Pitot-static tubes, free jet
flows, confined flows, and flow meters.

m use the concept of conservation of mass (the continuity equation) in conjunction with the
Bernoulli equation to solve simple flow problems.

m apply Newton's second law across streamlines for appropriate steady, inviscid, incompress-
ible flows.

m use the concepts of pressure, elevation, velocity, and total heads to solve various flow prob-
lems.

m explain and use the concepts of static, stagnation, dynamic, and total pressures.
m use the energy line and the hydraulic grade line concepts to solve various flow problems.
m explain the various restrictions on use of the Bernoulli equation.

Some of the important equations in this chapter are:

Streamwise and normal 9V \2
elerati =V—, =— 3.1
acceleration as s a, R (3.1
Force balance along a streamline  (dp 1, _ .
for steadv inviscid flow J ) + 2V +gz=C (along a streamline) (3.6)
The Bernoulli equation p + 3pV? + yz = constant along streamline (3.7)
Pressure gradient normal to )
streamline for inviscid flow in o _ PV (3.10b)
absence of gravity an R
Force balance normal to a \2
streamline for steady, inviscid,  p + pJ dn + yz = constant across the streamline  (3.12)
incompressible flow R
Velocity measurement for a — V20 — 0Vp
Pitot-static tube V= V2P~ pa/p (3.16)
h
Free jet V=22 = \2gn (3.18)
p
Continuity equation AV, = AV, orQ, = Q, (3.19)
2 —
Flow meter equation Q=A (pl—pZ)Z (3.20)
pl1 — (AY/A)°]
. . _ 29z — z,)
Sluice gate equation Q=1zb 5 (3.22)
1-(z/7)
p V2 .
Total head y + 2—9 + z = constant on astreamline = H  (3.22)
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Review Problems

Go to Appendix G for a set of review problems with answers. De-
tailed solutions can be found in Student Solution Manual and Study

Problems

Guide for Fundamentals of Fluid Mechanics, by Munson et al.
(© 2009 John Wiley and Sons, Inc.).

Note: Unless otherwise indicated, use the values of fluid prop-
ertiesfound in the tables on the inside of the front cover. Prob-
lems designated with an (*) are intended to be solved with the
aid of a programmable calculator or a computer. Problemsdes-
ignated with a (1) are “ open-ended” problemsand requirecrit-
ical thinking in that to work them one must make various
assumptions and provide the necessary data. There is not a
unique answer to these problems.

Answersto the even-numbered problemsarelisted at the
end of the book. Access to the videos that accompany problems
can be obtained through the book’s web site, www.wiley.com/
college/munson. The lab-type problems can also be accessed on
thisweb site.

Section 3.2 F = ma along a Streamline

3.1 Obtain a photograph/image of a situation which can be ana-
lyzed by use of the Bernoulli equation. Print this photo and write
a brief paragraph that describes the situation involved.

3.2 Air flows steadily along a streamline from point (1) to point (2)
with negligible viscous effects. The following conditions are mea-
sured: At point (1) zz = 2 mand p, = 0 kPa; at point (2) z, = 10
m, p, = 20 N/m?, and V, = 0. Determine the velocity at point (1).

3.3 Water flows steadily through the variable areahorizontal pipe
shown in Fig. P3.3. The centerline velocity is given by V =
10(1 + x)i ft/s, where xisin feet. Viscous effects are neglected.
(a) Determine the pressure gradient, ap/dx, (as a function of X)
needed to produce this flow. (b) If the pressure at section (1) is
50 psi, determine the pressure at (2) by (i) integration of the pres-
sure gradient obtained in (a), (ii) application of the Bernoulli
equation.

Q )

—_—
. (2)

(1)
e x

BEFIGURE P33

3.4 Repeat Problem 3.3 if the pipeis vertical with the flow down.

3.5 An incompressible fluid with density p flows steadily past
the object shown in Video V3.7 and Fig. P3.5. The fluid velocity
along the horizontal dividing streamline (—~ = x = —a) isfound
to beV = V(1 + a/x), where a is the radius of curvature of the

front of the object and V, is the upstream velocity. (a) Determine
the pressure gradient along this streamline. (b) If the upstream
pressure is py, integrate the pressure gradient to obtain the pres-
surep(X) for — = x = —a. (c) Show from the result of part (b) that
the pressure at the stagnation point (x = —a) is p, + pV3/2, as
expected from the Bernoulli equation.

Dividing /
Stagnation

streamline
x=0
»L X
a
point

W\
\

B FIGURE P35

3.6 What pressure gradient along the streamline, dp/ds, isrequired
to accelerate water in a horizontal pipe at a rate of 30 m/s>?

3.7 A fluid with a specific weight of 100 Ib/ft® and negligible vis-
cous effects flows in the pipe shown in Fig. P3.7. The pressures at
points (1) and (2) are 400 Ib/ft> and 900 Ib/ft?, respectively. The
velocities at points (1) and (2) are equal. Is the fluid accelerating
uphill, downhill, or not accelerating? Explain.

30°
4

®(2)

B FIGURE P3.7

3.8 What pressure gradient along the streamline, dp/ds, isrequired
to accelerate water upward in a vertical pipe at a rate of 30 ft/s??
What is the answer if the flow is downward?

3.9 Consider a compressible fluid for which the pressure and
density arerelated by p/p" = C,, wheren and C, are constants. In-
tegrate the equation of motion aong the streamline, Eq. 3.6, to
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obtain the “Bernoulli equation” for this compressible flow as
[n/(n — 1)]p/p + V?/2 + gz = constant.

3.10 Anincompressible fluid flows steadily past a circular cylin-
der as shown in Fig. P3.10. The fluid velocity along the dividing
streamline (— =< x = —a) is found to be V = V, (1 — a¥/x%),
where a is the radius of the cylinder and V, is the upstream ve-
locity. (a) Determine the pressure gradient along this streamline.
(b) If the upstream pressure is p,, integrate the pressure gradient
to obtain the pressure p(x) for —o = x = —a. (c) Show from
the result of part (b) that the pressure at the stagnation
point (x = —a) is py + pV3/2, as expected from the Bernoulli
equation.

Dividing _/
streamline
VO \ x=0
—_— X
Po Stagnation/ /\
point a

B FIGURE P3.10

3.11 Consider a compressible liquid that has a constant bulk mod-
ulus. Integrate “F = ma” aong a streamline to obtain the equiva-
lent of the Bernoulli equation for this flow. Assume steady, inviscid
flow.

Section 3.3 F = ma Normal to a Streamline

3.12 Obtain a photograph/image of a situation in which Newton’'s
second law applied across the streamlines (as given by Eq. 3.12)
is important. Print this photo and write a brief paragrph that de-
scribes the situation involved.

3.13 Air flows along a horizontal, curved streamline with a 20 ft
radius with a speed of 100 ft/s. Determine the pressure gradient
normal to the streamline.

3.14 Water flows around the vertical two-dimensional bend with
circular streamlines and constant velocity as shown in Fig. P3.14.
If the pressure is 40 kPa at point (1), determine the pressures at
points (2) and (3). Assume that the velocity profile is uniform as

indicated.
/ 19
4m
(3)
2m <
1m K
>\/ = 10m/s

(2) >

(1)
B FIGURE P3.14

*3.15 Water flows around the vertical two-dimensiona bend with
circular streamlinesasis shown in Fig. P3.15. The pressure at point
(1) is measured to be p, = 25 psi and the velocity across section
a—a is as indicated in the table. Calculate and plot the pressure
across section a—a of the channel [p = p(2) for 0 = z = 2ft].
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z(ft) V (ft/9)
0 0
0.2 8.0
0.4 14.3
0.6 20.0
0.8 195
1.0 15.6
12 83
14 6.2
16 37
18 2.0
2.0 0
19
20 ft

B FIGURE P3.15

3.16 Water in a container and air in atornado flow in horizontal
circular streamlines of radius r and speed V as shown in Video
V3.6 and Fig. P3.16. Determine the radial pressure gradient, op/or,
needed for the following situations: (a) The fluid is water with
r=3in.andV = 0.8ft/s. (b) Thefluid isair withr = 300 ft and
V = 200 mph.

B FIGURE P3.16

3.17 Air flows smoothly over the hood of your car and up past the
windshield. However, abug in the air does not follow the same path;
it becomes splattered against the windshield. Explain why thisis so.

Section 3.5 Static, Stagnation, Dynamic,
and Total Pressure

3.18 Obtain a photograph/image of a situation in which the con-
cept of the stagnation pressure is important. Print this photo and
write a brief paragraph that describes the situation involved.

3.19 Atagiven point on a horizontal streamlinein flowing air, the
static pressureis —2.0 psi (i.e., avacuum) and the velocity is 150 ft/s.
Determine the pressure at a stagnation point on that streamline.



13.20 Estimate the maximum pressure on the surface of your car
when you wash it using a garden hose connected to your outside
faucet. List all assumptions and show calculations.

3.21 When an airplane is flying 200 mph at 5000-ft atitude in a
standard atmosphere, the air velocity at a certain point on the wing
is 273 mph relative to the airplane. (a) What suction pressureis de-
veloped on the wing at that point? (b) What is the pressure at the
leading edge (a stagnation point) of the wing?

3.22 Some animals have learned to take advantage of Bernoulli ef-
fect without having read a fluid mechanics book. For example, a
typical prairie dog burrow contains two entrances—a flat front
door, and a mounded back door as shown in Fig. P3.22. When the
wind blows with velocity V, across the front door, the average ve-
locity acrossthe back door isgreater than V, because of the mound.
Assume the air velocity across the back door is 1.07V,. For awind
velocity of 6 m/s, what pressure differences, p, — p,, are generated
to provide afresh air flow within the burrow?

1.07 V,
Vo —
—_— 2

(1 .

[ ]

{ = QJ

B FIGURE P3.22

3.23 A loonisadiving bird equally at home “flying” in the air or
water. What swimming velocity under water will produce a dy-
namic pressure equal to that when it fliesin the air at 40 mph?

3.24 A person thrusts his hand into the water while traveling 3 m/s
in amotorboat. What is the maximum pressure on his hand?

3.25 A Pitot-static tube is used to measure the velocity of he-
lium in a pipe. The temperature and pressure are 40 °F and
25 psia. A water manometer connected to the Pitot-static tube in-
dicates a reading of 2.3 in. Determine the helium velocity. Is it
reasonable to consider the flow as incompressible? Explain.

3.26 Aninviscid fluid flows steadily along the stagnation stream-
line shown in Fig. P3.26 and Video V3.7, starting with speed V,, far
upstream of the object. Upon leaving the stagnation point, point
(2), the fluid speed along the surface of the object is assumed to be
givenby V = 2V, sin 0, where isthe angleindicated. At what an-
gular position, 6,, should a hole be drilled to give a pressure differ-
enceof p; — p, = pV3/2? Gravity is negligible.

B FIGURE P3.26

3.27 A water-filled manometer is connected to a Pitot-static tube
to measure anominal airspeed of 50 ft/s. It isassumed that achange
in the manometer reading of 0.002 in. can be detected. What is the
minimum deviation from the 50 ft/s airspeed that can be detected
by this system? Repeat the problem if the nominal airspeedis5 ft/s.
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3.28 (See Fluids in the News article titled “ Incorrect raindrop
shape,” Section 3.2.) The speed, V, at which araindrop falsisa
function of its diameter, D, as shown in Fig. P3.28. For what sized
raindrop will the stagnation pressure be equal to haf the internal
pressure caused by surface tension? Recall from Section 1.9 that
the pressureinsideadropis Ap = 4/D greater than the surround-
ing pressure, where o is the surface tension.

30

0 0.05 0.1
D, in.

B FIGURE P3.28

0.15 0.2

3.29 (See Fuids in the News article titled “Pressurized eyes,”
Section 3.5.) Determine the air velocity needed to produce a stag-
nation pressure equal to 10 mm of mercury.

3.30 (SeeFluidsinthe News article titled “ Bugged and plugged
Pitot tubes,” Section 3.5.) An airplane’s Pitot tube used to indicate
airspeed is partialy plugged by an insect nest so that it measures
60% of the stagnation pressure rather than the actual stagnation
pressure. If the airspeed indicator indicates that the plane is flying
150 mph, what is the actual airspeed?

Section 3.6.1 Free Jets

3.31 Obtain a photograph/image of a situation in which the con-
cept of afreejet isimportant. Print this photo and write abrief para-
graph that describes the situation involved.

3.32 Water flowsthrough aholein the bottom of alarge, open tank
with aspeed of 8 m/s. Determine the depth of water inthetank. Vis-
cous effects are negligible.

3.33 Water flows from the faucet on the first floor of the building
shown in Fig. P3.33 with amaximum velocity of 20 ft/s. For steady

Tk
T

IN
=

V=20 ft/s fj

]

12 ft G'J_ i

=17
B FIGURE P3.33
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inviscid flow, determine the maximum water velocity from the
basement faucet and from the faucet on the second floor (assume
each floor is 12 ft tall).

13.34 The “super soaker” water gun shown in Fig. P3.34 can
shoot more than 30 ft in the horizontal direction. Estimate the
minimum pressure, p,, needed in the chamber in order to ac-
complish this. List all assumptions and show all calculations.

B FIGURE P3.34

3.35* Aninviscid liquid drains from alarge tank through a square
duct of width b as shown in Fig. P3.35. The velocity of the fluid at
the outlet is not precisely uniform because of the difference in ele-
vation acrossthe outlet. If b < h, thisdifferencein velocity is negli-
gible. For given b and h, determine v asafunction of x and integrate
the results to determine the average velocity, V = Q/b2 Plot the ve-
locity distribution, v = v(x), acrosstheoutletif h = 1andb = 0.1,
0.2, 0.4, 0.6, 0.8, and 1.0 m. How small must b be if the centerline
velocity, v at x = b/2, isto be within 3% of the average velocity?

B FIGURE P3.35

3.36 Several holes are punched into a tin can as shown in Fig.
P3.36. Which of the figures represents the variation of the water ve-
locity asit leaves the holes? Justify your choice.

(a) (b) (c)
HFIGURE P3.36

3.37 Water flows from a garden hose nozzle with a velocity of
15 m/s. What is the maximum height that it can reach above the
nozzle?

3.38 Water flows from a pressurized tank, through a 6-in.-diameter
pipe, exits from a 2-in.-diameter nozzle, and rises 20 ft above the
nozzle as shown in Fig. P3.38. Determine the pressure in the tank if
the flow is steady, frictionless, and incompressible.
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|
Y ein.
B FIGURE P3.38

3.39 Aninviscid, incompressible liquid flows steadily from the large
pressurized tank shown in Fig. P3.39. The velocity at the exit is
40 ft/s. Determine the specific gravity of theliquid in the tank.

@10 psi

Air
! -
5 ft Liquid
10 ft
A/zxo ft/s

B FIGURE P3.39

3.40 Water flows from the tank shown in Fig. P3.40. If viscous ef-
fects are negligible, determine the value of h in terms of H and the
specific gravity, SG, of the manometer fluid.

e

o

G
B FIGURE P3.40

3.41 (SeeFluidsin the News article titled “ Armed with a water
jet for hunting,” Section 3.4.) Determine the pressure needed in
the gills of an archerfish if it can shoot ajet of water 1 m vertically
upward. Assume steady, inviscid flow.

Section 3.6.2 Confined Flows (Also see Lab Problems
3.118 and 3.120.)

3.42 Obtain aphotograph/image of a situation that involves a con-
fined flow for which the Bernoulli and continuity equations are
important. Print this photo and write a brief paragraph that de-
scribes the situation involved.



3.43 Air flows steadily through a horizonta 4-in.-diameter pipe and
exitsinto the atmosphere through a 3-in.-diameter nozzle. The veloc-
ity at the nozzle exit is 150 ft/s. Determine the pressure in the pipe if
viscous effects are negligible.

3.44 A fire hose nozzle has adiameter of 13 in. According to some
fire codes, the nozzle must be capable of delivering at least
250 gal/min. If the nozzleis attached to a 3-in.-diameter hose, what
pressure must be maintained just upstream of the nozzle to deliver
this flowrate?

3.45 Water flowing from the 0.75-in.-diameter outlet shown in
Video V8.14 and Fig. P3.45 rises 2.8 in. above the outlet. Deter-
mine the flowrate.

[

2.8 in.

L — 0.75in.
= éﬂ

B FIGURE P3.45

3.46 Pop (with the same properties as water) flows from a
4-in.-diameter pop container that contains three holes as shown in
Fig. P3.46 (see Video 3.9). The diameter of each fluid stream is
0.15 in., and the distance between holes is 2 in. If viscous effects
are negligible and quasi-steady conditions are assumed, determine
the time at which the pop stops draining from the top hole. Assume
the pop surface is 2 in. above the top hole when t = 0. Compare
your results with the time you measure from the video.

/Surface att=0

|2in. |iO.15in.
2in. |T
1o, |

B FIGURE P3.46

3.47 Water (assumed inviscid and incompressible) flows steadily
in the vertical variable-area pipe shown in Fig. P3.47. Determine
the flowrate if the pressure in each of the gages reads 50 kPa..

B FIGURE P347
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3.48 Airisdrawn into awind tunnel used for testing automobiles
as shown in Fig. P3.48. (a) Determine the manometer reading, h,
when the velocity in the test section is 60 mph. Note that thereis a
1-in. column of oil on the water in the manometer. (b) Determine
the difference between the stagnation pressure on the front of the
automobile and the pressure in the test section.

K /Wind tunnel

A
~ 60 mph —
—_— -
r~ ~

/ ¥~ Open Fan

lh d1in.
Water - 0il (SG=0.9)

B FIGURE P3.48

3.49 Small-diameter, high-pressure liquid jets can be used to cut
various materials as shown in Fig. P3.49. If viscous effects are negli-
gible, estimate the pressure needed to produce a 0.10-mm-diameter
water jet with aspeed of 700 m/s. Determine the flowrate.

B FIGURE P3.49

3.50 Water (assumed inviscid and incompressible) flows steadily
with a speed of 10 ft/s from the large tank shown in Fig. P3.50. De-
termine the depth, H, of the layer of light liquid (specific weight =
50 Ib/ft3) that covers the water in the tank.

T 10 ft/s

f
H
i

Water 4 ft

50 Ib/ft3

B FIGURE P3.50

3.51 Water flowsthrough the pipe contraction shown in Fig. P3.51.
For the given 0.2-m difference in manometer level, determine the
flowrate as a function of the diameter of the small pipe, D.
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B FIGURE P3.51

3.52 Water flows through the pipe contraction shown in Fig. P3.52.
For the given 0.2-m difference in the manometer level, determine
the flowrate as afunction of the diameter of the small pipe, D.

B FIGURE P3.52

3.53 Water flowsthrough the pipe contraction shownin Fig. P3.53.
For the given 0.2-m difference in the manometer level, determine
the flowrate as a function of the diameter of the small pipe, D.

B FIGURE P3.53

3.54 A 0.15-m-diameter pipe discharges into a 0.10-m-diameter
pipe. Determine the velocity head in each pipe if they are carrying
0.12 m%s of kerosene.

3.55 Carbon tetrachloride flowsin apipe of variable diameter with
negligible viscous effects. At point A in the pipe the pressure and
velocity are 20 psi and 30 ft/s, respectively. At location B the pres-
sure and velocity are 23 psi and 14 ft/s. Which point is at the higher
elevation and by how much?

3.56 Thecircular stream of water from a faucet is observed to ta-
per from adiameter of 20 mm to 10 mm in adistance of 50 cm. De-
termine the flowrate.

3.57 Water is siphoned from the tank shown in Fig. P3.57. The
water barometer indicates areading of 30.2 ft. Determine the max-
imum value of h allowed without cavitation occurring. Note that
the pressure of the vapor in the closed end of the barometer equals
the vapor pressure.

3.58 Asshown in Fig. P3.58, water from a large reservoir flows
without viscous effects through a siphon of diameter D and into a
tank. It exitsfrom ahole in the bottom of the tank as a stream of di-
ameter d. The surface of the reservoir remains H above the bottom
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/Closed end

3-in.
diameter

30.2 ft

5-in. diameter

B FIGURE P3.57

g

B FIGURE P3.58

of the tank. For steady-state conditions, the water depth in the tank,
h, isconstant. Plot agraph of the depth ratio h/H asafunction of the
diameter ratio d/D.

3.59 A smooth plastic, 10-m-long garden hose with an inside diam-
eter of 20mmisused to drain awading pool asisshownin Fig. P3.59.
If viscous effects are neglected, what is the flowrate from the pool ?

0.2m

B FIGURE P3.59

3.60 Water exits apipe as afree jet and flows to a height h above
the exit plane as shown in Fig. P3.60. The flow is steady, incom-
pressible, and frictionless. (a) Determine the height h. (b) Deter-
mine the velocity and pressure at section (1).

4-in. diameter

B FIGURE P3.60



3.61 Water flows steadily from a large, closed tank as shown in
Fig. P3.61. The deflection in the mercury manometer is 1 in. and
viscous effects are negligible. (a) Determine the volume flowrate.
(b) Determine the air pressure in the space above the surface of the
water in the tank.

Q-

1-ft diameter

8t 3-in. diameter
1 in.
Mercury

B FIGURE P3.61

3.62 Blood (SG = 1) flowswith avelocity of 0.5 m/sin an artery.
It then enters an aneurysm in the artery (i.e., an area of weakened
and stretched artery walls that cause a ballooning of the vessel)
whose cross-sectional areais 1.8 timesthat of the artery. Determine
the pressure difference between the blood in the aneurysm and that
in the artery. Assume the flow is steady and inviscid.

3.63 Water flows steadily through the variable area pipe shown in
Fig. P3.63 with negligible viscous effects. Determine the manome-
ter reading, H, if the flowrate is 0.5 m%s and the density of the
manometer fluid is 600 kg/m®.

Density = 600 kg/m®

/

Area = 0.05 m? Area = 0.07 m?

B FIGURE P3.63

3.64 Water flows steadily with negligible viscous effects through
the pipe shown in Fig. P3.64. It is known that the 4-in.-diameter
section of thin-walled tubing will collapse if the pressure within it
becomes less than 10 psi below atmospheric pressure. Determine
the maximum value that h can have without causing collapse of the
tubing.

4-in.-diameter thin-walled tubing

B FIGURE P3.64

3.65 Helium flows through a 0.30-m-diameter horizontal pipe
with atemperature of 20 °C and a pressure of 200 kPa(abs) at arate
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of 0.30 kg/s. If the pipe reduces to 0.25-m-diameter determine the
pressure difference between these two sections. Assume incom-
pressible, inviscid flow.

3.66 Water is pumped from alake through an 8-in. pipe at arate of
10 ft¥s. If viscous effects are negligible, what is the pressure in the
suction pipe (the pipe between the lake and the pump) at an eleva-
tion 6 ft above the lake?

3.67 Air flowsthrough aVenturi channel of rectangular cross sec-
tion asshownin Video \V3.10 and Fig. P3.67. The constant width of
the channel is 0.06 m and the height at the exit is 0.04 m. Com-
pressibility and viscous effects are negligible. (a) Determine the
flowrate when water is drawn up 0.10 m in a small tube attached
to the static pressure tap at the throat where the channel height is
0.02 m. (b) Determine the channel height, h,, at section (2)
where, for the same flowrate asin part (a), the water is drawn up
0.05 m. (c) Determine the pressure needed at section (1) to pro-
duce this flow.

b = width =0.06 m
0.02m

Free jet

0.04 m

B FIGURE P3.67

3.68 Water flows steadily from the large open tank shown in Fig.
P3.68. If viscous effects are negligible, determine (a) the flowrate,
Q, and (b) the manometer reading, h.

k1
h
T

T

Q $
? Mercur,

0.08 m y

0.10m
B FIGURE P3.68

3.69 Water from afaucet fillsa 16-0z glass (volume = 28.9in.3) in
20 s. If the diameter of the jet leaving the faucet is 0.60 in., what is
the diameter of the jet when it strikes the water surface in the glass
which is positioned 14 in. below the faucet?

3.70 Air flows steadily through a converging—diverging rectangu-
lar channel of constant width as shown in Fig. P3.70 and Video
V3.10. The height of the channel at the exit and the exit velocity
are Hy and V,, respectively. The channel is to be shaped so that the
distance, d, that water is drawn up into tubes attached to static
pressure taps along the channel wall is linear with distance along
the channel. That is, d = (d,»/L) X, where L is the channel length
and d, is the maximum water depth (at the minimum channel
height; x = L). Determine the height, H(x), as a function of x and
the other important parameters.
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B FIGURE P3.70

*3.71 The device shown in Fig. P3.71 is used to spray an appro-
priate mixture of water and insecticide. The flowrate fromtank Ais
to be Q4 = 0.02 gal/min when the water flowrate through the hose
is Q = 1 gal/min. Determine the pressure needed at point (1) and
the diameter, D, of the device For the diameter determined above,
plot theratio of insecticide flowrate to water flowrate as afunction
of water flowrate, Q, for 0.1 = Q = 1 gal/min. Can this device be
used to provide a reasonably constant ratio of insecticide to water
regardless of the water flowrate? Explain.

0.10-in. diameter

0.015-in.
diameter

[~ Insecticide

B FIGURE P3.71

3.72 If viscous effects are neglected and the tank is large, deter-
mine the flowrate from the tank shown in Fig. P3.72.

Water
50-mm
diameter

B FIGURE P3.72

3.73 Water flows steadily downward in the pipe shown in Fig.
3.73 with negligible losses. Determine the flowrate.
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/ Open

0il SG=0.7

B FIGURE P3.73

3.74 Air at 80 °F and 14.7 psia flows into the tank shown in Fig.
P3.74. Determine the flowratein ft¥/s, Ib/s, and slugs/s. Assumein-
compressible flow.

0.5 in. Hg vacuum
0.6-in.
diameter

B FIGURE P3.74

3.75 Water flows from a large tank as shown in Fig. P3.75. At-
mospheric pressureis 14.5 psia, and the vapor pressureis 1.60 psia.
If viscous effects are neglected, at what height, h, will cavitation
begin? To avoid cavitation, should the value of D, be increased or
decreased? To avoid cavitation, should the value of D, beincreased
or decreased? Explain.

I l—D3=4in.—l
I
% T D/I:m T D, =2in.

B FIGURE P3.75

3.76 Water flows into the sink shown in Fig. P3.76 and Video
V5.1 at arate of 2 gal/min. If the drain is closed, the water will
eventualy flow through the overflow drain holes rather than over
the edge of the sink. How many 0.4-in.-diameter drain holes are
needed to ensure that the water does not overflow the sink? Neglect
viscous effects.



0.4-in. diameter
holes

B FIGURE P3.76

3.77 What pressure, p;, is needed to produce a flowrate of
0.09 ft¥s from the tank shown in Fig. P3.77?

Gasoline 2.0 ft
Salt wat
e 361t

6
0.06-ft diaM

B FIGURE P3.77

3.78 Water is siphoned from the tank shown in Fig. P3.78. Deter-
mine the flowrate from the tank and the pressures at points (1), (2),
and (3) if viscous effects are negligible.

[©hv4

B FIGURE P3.78

3.79 Water is siphoned from a large tank and discharges into
the atmosphere through a 2-in.-diameter tube as shown in Fig.
P3.79. The end of the tubeis 3 ft below the tank bottom, and vis-
cous effects are negligible. (a) Determine the volume flowrate
from the tank. (b) Determine the maximum height, H, over
which the water can be siphoned without cavitation occurring.
Atmospheric pressure is 14.7 psia, and the water vapor pressure
is0.26 psia.
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—>| [« 2-in. diameter

3ft

BFIGURE P3.79

3.80 Determine the manometer reading, h, for the flow shown in
Fig. P3.80.

0.37m
h
' { .,
0.08-m <) _ ’.Lz ! Free
diameter = = jet
T\

0.05-m diameter
B FIGURE P3.80

3.81 Air flows steadily through the variable area pipe shown in
Fig. P3.81. Determine the flowrate if viscous and compressibility
effects are negligible.

T Water

B FIGURE P3.81

3.82 JP-4 fuel (SG = 0.77) flows through the Venturi meter
shown in Fig. P3.82 with a velocity of 15 ft/s in the 6-in. pipe.
If viscous effects are negligible, determine the elevation, h, of
the fuel in the open tube connected to the throat of the Venturi
meter.
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T H
I

V=15 ft/s
B FIGURE P3.82

3.83 Repeat Problem 3.82 if the flowing fluid is water rather than
JP-4 fuel.

3.84 Qil flowsthrough the system shown in Fig. P3.84 with negli-
gible losses. Determine the flowrate.

_ 2
A=20in. ~_

TD_

G SiCI).86
=)
5lﬂ

{\$=2.5

B FIGURE P3.84

3.85 Water, considered an inviscid, incompressible fluid, flows
steadily as shown in Fig. P3.85. Determine h.

ﬁ L Air
EE

Water

|
Q=4 1ftds E

0.5-ft diameter ‘
3 ft

|

1-ft diameter

T%__

!
3.86 Determine the flowrate through the submerged orifice shown
in Fig. P3.86 if the contraction coefficient isC, = 0.63.

B FIGURE P3.85
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A -
S VA
6 ft
4 ft % =
3-in. || 2ft
diameter i

B FIGURE P3.86

*3.87 An inexpensive timer is to be made from a funnel as indi-
cated in Fig. P3.87. Thefunnel isfilled to the top with water and the
plug isremoved at timet = O to alow the water to run out. Marks
areto be placed on thewall of the funnel indicating thetimein 15-s
intervals, from 0 to 3 min (at which time the funnel becomes empty).
If the funnel outlet has a diameter of d = 0.1 in., draw to scale the
funnel with the timing marks for funnels with angles of 6 = 30, 45,
and 60°. Repeat the problem if the diameter is changed to 0.05 in.

30

|
|

/’I 1:0045
|

| 1:15

Plug
B FIGURE P3.87

3.88 A long water trough of triangular cross section isformed from
two planks asisshown in Fig. P3.88. A gap of 0.1 in. remains at the
junction of the two planks. If the water depth initially was 2 ft, how
long atime doesiit take for the water depth to reduce to 1 ft?

B FIGURE P3.88

*3.89 A spherical tank of diameter D has adrain hole of diameter
d at its bottom. A vent at the top of the tank maintains atmospheric
pressure at the liquid surface within the tank. The flow is quasi-
steady and inviscid and the tank isfull of water initially. Determine
the water depth as a function of time, h = h(t), and plot graphs of
h(t) for tank diametersof 1, 5, 10, and 20 ft if d = 1in.

3.90 Whenthedrain plug is pulled, water flows from aholein the
bottom of a large, open cylindrical tank. Show that if viscous ef-
fects are negligible and if the flow is assumed to be quasisteady,
then it takes 3.41 times longer to empty the entire tank than it does
to empty thefirst half of the tank. Explain why thisis so.

*3.91 The surface area, A, of the pond shown in Fig. P3.91 varies
with the water depth, h, asshowninthetable. Attimet = Oavalveis



opened and the pond is allowed to drain through a pipe of diameter D.
If viscous effects are negligible and quasisteady conditions are as-
sumed, plot the water depth asafunction of time from when thevalve
is opened (t = 0) until the pond is drained for pipe diameters of
D =05,10,15,2.0,25,and 3.0ft. Assumeh = 18ftatt = 0.

B FIGURE P3.91

h (ft) A [acres (1 acre = 43,560 ft?)]
0 0
2 0.3
4 0.5
6 0.8
8 0.9

10 1.1
12 15
14 18
16 2.4
18 2.8

3.92 Water flows through a horizontal branching pipe as shown in
Fig. P3.92. Determine the pressure at section (3).

V3
A, =0.07 m?
()
— Vs
5 P, = 350 kPa
/ @ A =0.02m?
(1
Vi=4m/s
p; =400 kPa
A =0.1m?

B FIGURE P3.92

3.93 Water flows through the horizontal branching pipe shown in
Fig. P3.93 at arate of 10 ft¥s. If viscous effects are negligible, de-
termine the water speed at section (2), the pressure at section (3),
and the flowrate at section (4).

/ A, =0.07 ft?
p, = 5.0 psi
2)
Ay =0.2ft2

1) V, = 20ft/s
—) —
A =12 3
Q, = 10ft%s

=10 psi ~

Pr=op )

B FIGURE P3.93
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Problems

3.94 Water flows from alarge tank through alarge pipe that splits
into two smaller pipes as shown in Fig. P3.94. If viscous effects are
negligible, determine the flowrate from the tank and the pressure at
point (1).

T [ =] ‘f
3m
i

0.03-m diameter
0.05-m diameter

&) i

0.02-m diameter
HFIGURE P3.94

3.95 An air cushion vehicle is supported by forcing air into the
chamber created by a skirt around the periphery of the vehicle as
shownin Fig. P3.95. The air escapes through the 3-in. clearance be-
tween the lower end of the skirt and the ground (or water). Assume
the vehicle weighs 10,000 Ib and is essentially rectangular in shape,
30 by 65 ft. The volume of the chamber is large enough so that the
kinetic energy of the air within the chamber is negligible. Deter-
mine the flowrate, Q, needed to support the vehicle. If the ground
clearance were reduced to 2 in., what flowrate would be needed? If
the vehicle weight were reduced to 5000 Ib and the ground clear-
ance maintained at 3 in., what flowrate would be needed?

Fan Q
Vehicle
Skirt :J%%
4—/ %L»
3in.

B FIGURE P3.95

3.96 Water flowsfrom the pipe shownin Fig. P3.96 asafreejet and
strikes acircular flat plate. The flow geometry shown is axisymmet-
rical. Determine the flowrate and the manometer reading, H.

T
H
<~ 0.1-m i
diameter
lV \Y
\ | 0.4 mm
0.2m
K |
— 0.01-m
diameter
Pipe

fo

B FIGURE P3.96

3.97 Air flows from a hole of diameter 0.03 m in aflat plate as
shown in Fig. P3.97. A circular disk of diameter D isplaced adis-
tance h from thelower plate. The pressure in the tank is maintained
at 1 kPa. Determine the flowrate as a function of h if viscous
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B FIGURE P3.97

effects and elevation changes are assumed negligible and the flow
exitsradially from the circumference of the circular disk with uni-
form velocity.

3.98 A conical plug is used to regulate the air flow from the
pipe shown in Fig. P3.98. The air leaves the edge of the cone
with a uniform thickness of 0.02 m. If viscous effects are negli-
gible and the flowrate is 0.50 m%s, determine the pressure
within the pipe.

B FIGURE P3.98

3.99 Water flows steadily from anozzleinto alarge tank as shown
in Fig. P3.99. The water then flows from the tank as ajet of diame-
ter d. Determine the value of d if the water level in the tank remains
constant. Viscous effects are negligible.

\
_ v
= =

/ 0.15-ft diameter

3 ft

B FIGURE P3.99

3.100 A small card is placed on top of a spool as shown in
Fig. P3.100. It is not possible to blow the card off the spool by
blowing air through the hole in the center of the spool. The harder
one blows, the harder the card “sticks’ to the spool. In fact, by
blowing hard enough it is possible to keep the card against the

Chapter 3 B Elementary Fluid Dynamics—The Bernoulli Equation

fCard

T ~— Spool

QO —>

B FIGURE P3.100

spool with the spool turned upside down. (Note: It may be neces-
sary to use a thumb tack to prevent the card from dliding from the
spool.) Explain this phenomenon.

3.101 Water flows down the sloping ramp shown in Fig. P3.101
with negligible viscous effects. The flow is uniform at sections (1)
and (2). For the conditions given, show that three solutions for the
downstream depth, h,, are obtained by use of the Bernoulli and con-
tinuity equations. However, show that only two of these solutions
areredlistic. Determine these values.

V=10 fts == |h =11t h,

H=2 ftI e v,

B FIGURE P3.101

3.102 Water flows in a rectangular channel that is 2.0 m wide as
shown in Fig. P3.102. The upstream depth is 70 mm. The water sur-
facerises40 mm asit passes over aportion where the channel bottom
rises 10 mm. If viscous effects are negligible, what is the flowrate?

1
7O?m/_10mm

B FIGURE P3.102

Q =

*3.103 Water flows up the ramp shown in Fig. P3.103 with negligi-
bleviscouslosses. The upstream depth and vel ocity are maintained at
h, = 0.3mandV; = 6 m/s. Plot agraph of the downstream depth,
h,, as a function of the ramp height, H, for 0 = H = 2 m. Note that
for each value of H there are three solutions, not al of which are re-
alistic.

V] =6 M/S = T

i

B FIGURE P3.103




Section 3.6.3 Flowrate Measurement (Also seelLab
Problems 3.119 and 3.121.)

3.104 Obtain a photograph/image of asituation that involves some
type of flow meter. Print this photo and write a brief paragraph that
describes the situation involved.

3.105 A Venturi meter with a minimum diameter of 3 in. isto be
used to measure the flowrate of water through a 4-in.-diameter
pipe. Determine the pressure difference indicated by the pressure
gage attached to the flow meter if the flowrate is 0.5 ft¥/s and vis-
cous effects are negligible.

3.106 Determine the flowrate through the Venturi meter shown in
Fig. P3.106 if ideal conditions exist.

p, = 735 kPa @ ® b, = 550 kPa

y=9.1 kN/m3
HFIGURE P3.106

3.107 For what flowrate through the Venturi meter of Problem
3.106 will cavitation beginif p, = 275 kPagage, atmospheric pres-
sure is 101 kPa (abs), and the vapor pressure is 3.6 kPa (abs)?

3.108 What diameter orifice hole, d, is needed if under ideal con-
ditionsthe flowrate through the orifice meter of Fig. P3.108 isto be
30 gal/min of seawater with p; — p, = 2.37 Ib/in.2? The contrac-
tion coefficient is assumed to be 0.63.

pl

. -
) E— e
ﬁl@ —~ iameter

B FIGURE P3.108

o

3.109 Waeter flows over awelir plate (see Video \V10.13) which has
aparabolic opening asshownin Fig. P3.109. That is, the openingin
the weir plate has awidth CHY2, where C is a constant. Determine
the functional dependence of the flowrate on the head, Q = Q(H).

v CHl/Z

|/

B FIGURE P3.109

3.110 A weir (see Video VV10.13) of trapezoida cross section is
used to measure the flowrate in a channel as shown in Fig. P3.110.
If the flowrate is Q, when H = ¢/2, what flowrate is expected
whenH = €7
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Problems

B FIGURE P3.110

3.111 Theflowrateinawater channel is sometimes determined by
use of adevice called aVenturi flume. AsshowninFig. P3.111, this
device consists simply of a hump on the bottom of the channel. If
the water surface dips a distance of 0.07 m for the conditions
shown, what is the flowrate per width of the channel? Assume the
velocity is uniform and viscous effects are negligible.

B FIGURE P3.111

3.112 Water flows under the inclined sluice gate shown in
Fig. P3.112. Determine the flowrate if the gate is 8 ft wide.

1.6 ft
!

B FIGURE P3.112

Section 3.7 The Energy Lineand the Hydraulic
Gradeline

3.113 Water flowsin avertical pipe of 0.15-m diameter at arate of

0.2 m¥sand apressure of 200 kPaat an elevation of 25 m. Determine
the velocity head and pressure head at elevations of 20 and 55 m.

3.114 Draw the energy line and the hydraulic grade line for the
flow shown in Problem 3.78.

3.115 Draw the energy line and the hydraulic grade line for the
flow of Problem 3.75.

3.116 Draw the energy line and hydraulic grade line for the flow
shown in Problem 3.64.

Section 3.8 Restrictionson the Use of the Bernoulli
Equation
3.117 Obtain a photograph/image of a flow in which it would not

be appropriate to use the Bernoulli equation. Print this photo and
write abrief paragraph that describes the situation involved.
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Bl Lab Problems

3.118 This problem involves the pressure distribution between
two parallel circular plates. To proceed with this problem, go to Ap-
pendix H which islocated on the book’s web site, www.wiley.com/
college/munson.

3.119 This problem involves the calibration of a nozzle-type
flow meter. To proceed with this problem, go to Appendix H which
islocated on the book’s web site, www.wiley.com/college/munson.

3.120 This problem involves the pressure distribution in a two-
dimensional channel. To proceed with this problem, go to Appen-
dix H which is located on the book’s web site, www.wiley.com/
college/munson.

3.121 Thisproblem involves the determination of the flowrate un-
der a dluice gate as a function of the water depth. To proceed with
this problem, go to Appendix H which islocated on the book’s web
site, www.wiley.com/college/munson.

B Life Long Learning Problems

3.122 The concept of the use of a Pitot-static tube to measure the
airspeed of an airplane is rather straightforward. However, the de-
sign and manufacture of reliable, accurate, inexpensive Pitot-static
tube airspeed indicators is not necessarily simple. Obtain informa-
tion about the design and construction of modern Pitot-static tubes.
Summarize your findingsin a brief report.

Chapter 3 B Elementary Fluid Dynamics—The Bernoulli Equation

3.123 In recent years damage due to hurricanes has been signifi-
cant, particularly in the southeastern United States. The low baro-
metric pressure, high winds, and high tides generated by hurri-
canes can combine to cause considerable damage. According to
some experts, in the coming years hurricane frequency may in-
crease because of global warming. Obtain information about the
fluid mechanics of hurricanes. Summarize your findingsin a brief
report.

3.124 Orifice, nozzle, or Venturi flow meters have been used for a
long time to predict accurately the flowrate in pipes. However, re-
cently there have been several new concepts suggested or used for
such flowrate measurements. Obtain information about new meth-
ods to obtain pipe flowrate information. Summarize your findings
in abrief report.

3.125 Ultra-high-pressure, thin jets of liquids can be used to cut
various materials ranging from leather to steel and beyond. Ob-
tain information about new methods and techniques proposed for
liquid jet cutting and investigate how they may alter various
manufacturing processes. Summarize your findings in a brief
report.

B FE Exam Problems

Sample FE (Fundamentals of Engineering) exam questions for fluid
mechanics are provided on the book’s web site, www.wiley.com/
college/munson.
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CHAPTER OPENING PHOTO: A vortex ring: The complex, three-dimensional structure of a smoke ring is indi-
cated in this cross-sectional view. (Smoke in air.) [Photograph courtesy of R. H. Magarvey and C. S.
MacLatchy (Ref. 4).]

Learning Objectives

After completing this chapter, you should be able to:

m discuss the differences between the Eulerian and Lagrangian descriptions of
fluid motion.

identify various flow characteristics based on the velocity field.

determine the streamline pattern and acceleration field given a velocity field.
discuss the differences between a system and control volume.

apply the Reynolds transport theorem and the material derivative.

K In this chapter we will discuss various aspects of fluid motion without being concerned with the

VA.1 Sreaklines actual forces necessary to produce the motion. That is, we will consider the kinematics of the

¢7 R motion—the velocity and acceleration of the fluid, and the description and visualization of its motion.

The analysis of the specific forces necessary to produce the motion (the dynamics of the motion)

will be discussed in detail in the following chapters. A wide variety of useful information can be

gained from athorough understanding of fluid kinematics. Such an understanding of how to describe
and observe fluid motion is an essential step to the complete understanding of fluid dynamics.

.1 The Velocity Field

In general, fluids flow. That is, there is anet motion of molecules from one point in space to another
point as a function of time. As is discussed in Chapter 1, a typical portion of fluid contains so
many molecules that it becomes totally unrealistic (except in specia cases) for us to attempt to
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account for the motion of individual molecules. Rather, we employ the continuum hypothesis and
consider fluids to be made up of fluid particles that interact with each other and with their
surroundings. Each particle contains numerous molecules. Thus, we can describe the flow of afluid
in terms of the motion of fluid particles rather than individual molecules. This motion can be
described in terms of the velocity and acceleration of the fluid particles.

Theinfinitesimal particlesof afluid aretightly packed together (asisimplied by the continuum
assumption). Thus, at a given instant in time, a description of any fluid property (such as density,
pressure, velocity, and acceleration) may be given as a function of the fluid’'s location. This
representation of fluid parameters as functions of the spatial coordinates is termed a field
representation of the flow. Of course, the specific field representation may be different at different
times, so that to describe a fluid flow we must determine the various parameters not only as a
function of the spatial coordinates (X, v, z for example) but aso as a function of time, t. Thus, to
completely specify the temperature, T, in a room we must specify the temperature field,
T = T(x Y, z t), throughout the room (from floor to ceiling and wall to wall) at any time of the
day or night.

Shown in the margin figure is one of the most important fluid variables, the velocity field,

V=uxy zti + oy zt) +wxy,ztk
where u, v, and w are the x, y, and z components of the velocity vector. By definition, the velocity
of a particle is the time rate of change of the position vector for that particle. Asis illustrated in
Fig. 4.1, the position of particle A relative to the coordinate system is given by its position vector,
r»» which (if the particle is moving) is a function of time. The time derivative of this position gives
the velocity of the particle, dr,/dt = V. By writing the velocity for all of the particles we can
obtain the field description of the velocity vector V = V(X, Y, z, t).

Since the velocity is a vector, it has both a direction and a magnitude. The magnitude of V,
denoted V = |V| = (U + v* + w?)"2, is the speed of the fluid. (It is very common in practical
situations to call V velocity rather than speed, i.e., “the velocity of the fluid is 12 m/s") As is
discussed in the next section, a change in velocity results in an acceleration. This acceleration may
be due to a change in speed and/or direction.

i d s i n t h e N e w s

Follow those particles Superimpose two photographs of a
bouncing ball taken a short time apart and draw an arrow between
the two images of the ball. This arrow represents an approxima-
tion of the velocity (displacement/time) of the ball. The particle
image velocimeter (PIV) uses this technique to provide the in-
stantaneous velocity field for a given cross section of aflow. The
flow being studied is seeded with numerous micron-sized parti-
cles which are small enough to follow the flow yet big enough to
reflect enough light to be captured by the camera. The flow is

illuminated with alight sheet from a double-pulsed laser. A digi-
tal camera captures both light pulses on the same image frame,
allowing the movement of the particles to be tracked. By using
appropriate computer software to carry out a pixel-by-pixel inter-
rogation of the double image, it is possible to track the motion of
the particles and determine the two components of velocity in the
given cross section of the flow. By using two camerasin a stereo-
scopic arrangement it is possible to determine al three compo-
nents of velocity. (See Problem 4.62.)
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L SLUTICERY Velocioy Field Representation

GIVEN A velocity field isgiven by V = (Vo/€) (— Xi + ¥j)
where V, and € are constants.

SoLuTION

FIND At what location in the flow field is the speed equal to
Vy? Make a sketch of the velocity field for x = 0 by drawing ar-
rows representing the fluid velocity at representative locations.

The %, y, and z components of the velocity are given by
u= —Vox/¢,v = Vyy/{,andw = 0sothat thefluid speed, V, is

v,
V= (0407 + WY = 2 (x o+ y ) (@)

ThespeedisV = V,at any location onthecircleof radius¢ centered
atheorigin [(x* + y?)? = (] asshowninFig. E4la.  (Ans)

The direction of thefluid velocity relative to the x axisis given
intermsof § = arctan (v/u) asshown in Fig. E4.1b. For thisflow

v_ Voy/t _y
u  —Vex/¢ —x

Thus, along the x axis (y = 0) we see that tan6 = 0, so that
6 = 0° or 6 = 180°. Similarly, along the y axis (x = 0) we ob-
taintan § = *oo sothat§ = 90° or § = 270°. Also, fory = Owe
find V = (=Vyx/€)i, while for x = 0 we have V = (Vyy/¢)j,

tan 6 =

A

(a)

indicating (if V, > 0) that the flow is directed away from the ori-
gin along the y axis and toward the origin along the x axis as
shown in Fig. E4.1a.

By determining V and 6 for other locationsin the x—y plane, the
velocity field can be sketched as shown in the figure. For example,
ontheliney = xthe velocity isat a45° angle relative to the x axis
(tan6 = v/u = —y/x = —1). At the origin x =y = 0 so that
V = 0. Thispoint is a stagnation point. The farther from the origin
the fluid is, the faster it is flowing (as seen from Eq. 1). By careful
consideration of thevelocity field it is possible to determine consid-
erable information about the flow.

COMMENT Thevelocity field given in this example approxi-
mates the flow in the vicinity of the center of the sign shown in
Fig. E4.1c. When wind blows against the sign, some air flows
over the sign, some under it, producing a stagnation point as indi-
cated.

B FIGURE E41
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Either Eulerian or
Lagrangian meth-
ods can be used to
describe flow
fields.

The figure in the margin shows the velocity field (i.e., velocity vectors) for flow past two
square bars. It is possible to obtain much qualitative and quantitative information for complex
flows by using plots such as this.

4.1.1 Eulerian and Lagrangian Flow Descriptions

There are two general approaches in analyzing fluid mechanics problems (or problems in other
branches of the physical sciences, for that matter). The first method, called the Eulerian method,
uses the field concept introduced above. In this case, the fluid motion is given by completely
prescribing the necessary properties (pressure, density, velocity, etc.) as functions of space and time.
From this method we obtain information about the flow in terms of what happens at fixed points
in space as the fluid flows through those points.

A typical Eulerian representation of the flow is shown by the figure in the margin which
involves flow past a row of turbine blades as occurs in ajet engine. The pressure field is indicated
by using acontour plot showing lines of constant pressure, with grey shading indicating theintensity
of the pressure.

The second method, called the Lagrangian method, involves following individua fluid
particles as they move about and determining how the fluid properties associated with these particles
change as a function of time. That is, the fluid particles are “tagged” or identified, and their
properties determined as they move.

The difference between the two methods of analyzing fluid flow problems can be seen in the
example of smoke discharging from a chimney, as is shown in Fig. 4.2. In the Eulerian method one
may attach a temperature-measuring device to the top of the chimney (point 0) and record the
temperature at that point as a function of time. At different times there are different fluid particles
passing by the stationary device. Thus, one would obtain the temperature, T, for that location
(X = X, Y = Yo, and z = zy) asafunction of time. That is, T = T(Xy, Yo, Zo, t). The use of numerous
temperature-measuring devices fixed at various locations would provide the temperature field,
T = T(X, Y, z t). The temperature of a particle as a function of time would not be known unless the
location of the particle were known as a function of time.

In the Lagrangian method, one would attach the temperature-measuring device to a particular
fluid particle (particle A) and record that particle's temperature as it moves about. Thus, one would
obtain that particle’stemperature asafunction of time, T, = Tx(t). The use of many such measuring
devices moving with various fluid particles would provide the temperature of these fluid particles
as a function of time. The temperature would not be known as a function of position unless the
location of each particle were known as a function of time. If enough information in Eulerian form
is available, Lagrangian information can be derived from the Eulerian data—and vice versa.

Example 4.1 provides an Eulerian description of the flow. For a Lagrangian description we
would need to determine the velocity as a function of time for each particle as it flows aong from
one point to another.

In fluid mechanics it is usually easier to use the Eulerian method to describe a flow—in
either experimental or analytical investigations. There are, however, certain instances in which the
Lagrangian method is more convenient. For example, some numerical fluid mechanics calculations
are based on determining the motion of individual fluid particles (based on the appropriate
interactions among the particles), thereby describing the motion in Lagrangian terms. Similarly, in

Location O:
T=TXy, Yo 1) Particle A:

0 Ta=Tal)
Y |
OI [

X

B FIGURE 4.2 Eulerianand
Lagrangian descriptions of temperature of a
flowing fluid.
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some experiments individual fluid particles are “tagged” and are followed throughout their motion,
providing a Lagrangian description. Oceanographic measurements obtained from devices that flow
with the ocean currents provide thisinformation. Similarly, by using X-ray opaque dyesit ispossible
to trace blood flow in arteries and to obtain a Lagrangian description of the fluid motion. A
Lagrangian description may aso be useful in describing fluid machinery (such as pumps and
turbines) in which fluid particles gain or lose energy as they move aong their flow paths.

Another illustration of the difference between the Eulerian and Lagrangian descriptions can
be seen in the following biological example. Each year thousands of birds migrate between their
summer and winter habitats. Ornithologists study these migrations to obtain various types of
important information. One set of data obtained is the rate at which birds pass a certain location on
their migration route (birds per hour). This corresponds to an Eulerian description—"flowrate” at a
given location as a function of time. Individual birds need not be followed to obtain this information.
Another type of information is obtained by “tagging” certain birds with radio transmitters and
following their motion along the migration route. This corresponds to a Lagrangian description—
“position” of a given particle as a function of time.

4.1.2 One-, Two-, and Three-Dimensional Flows

Generdly, a fluid flow is a rather complex three-dimensional, time-dependent phenomenon—
V=VXVzt) = ui + vJ + wk. In many situations, however, it is possible to make simplifying
assumptions that allow a much easier understanding of the problem without sacrificing needed
accuracy. One of these simplifications involves approximating areal flow as a simpler one- or two-
dimensiona flow.

In almost any flow situation, the velocity field actually contains al three vel ocity components
(u, v, and w, for example). In many situations the three-dimensional flow characteristics are
important in terms of the physical effects they produce. (See the photograph at the beginning of
Chapter 4.) For these situationsit is necessary to analyze the flow in its complete three-dimensional
character. Neglect of one or two of the velocity componentsin these caseswould lead to considerable
misrepresentation of the effects produced by the actual flow.

The flow of air past an airplane wing provides an example of a complex three-dimensional
flow. A feel for the three-dimensional structure of such flows can be obtained by studying Fig. 4.3,
which is a photograph of the flow past a model wing; the flow has been made visible by using a
flow visualization technique.

In many situations one of the velocity components may be small (in some sense) relative to
the two other components. In situations of this kind it may be reasonable to neglect the smaller
component and assume two-dimensional flow. That is, V = ui + vj, where u and v are functions
of x and y (and possibly time, t).

It is sometimes possible to further simplify a flow analysis by assuming that two of the
velocity components are negligible, leaving the velocity field to be approximated as a one-
dimensional flow field. That is, V = ui. Aswe will learn from examples throughout the remainder
of the book, although there are very few, if any, flows that are truly one-dimensional, there are

B FIGURE 4.3
Flow visualization of the
complex three-dimensional
flow past a model wing.
(Photograph by M. R. Head.)
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Solenoid on,valve open

/N

many flow fields for which the one-dimensional flow assumption provides a reasonable
approximation. There are also many flow situations for which use of a one-dimensional flow field
assumption will give completely erroneous results.

4.1.3 Steady and Unsteady Flows

In the previous discussion we have assumed steady flow—the velocity at a given point in space does
not vary with time, oV/ot = 0. In reality, amost all flows are unsteady in some sense. That is, the
velocity does vary with time. It is not difficult to believe that unsteady flows are usually more difficult
to analyze (and to investigate experimentally) than are steady flows. Hence, considerable simplicity
often results if one can make the assumption of steady flow without compromising the useful ness of
the results. Among the various types of unsteady flows are nonperiodic flow, periodic flow, and truly
random flow. Whether or not unsteadiness of one or more of these types must be included in an
analysis is not always immediately obvious.

An example of a nonperiodic, unsteady flow is that produced by turning off a faucet to stop
the flow of water. Usually this unsteady flow process is quite mundane and the forces devel oped
as a result of the unsteady effects need not be considered. However, if the water is turned off
suddenly (as with the electrically operated valve in a dishwasher shown in the figure in the margin),
the unsteady effects can become important [as in the “water hammer” effects made apparent by

In other flows the unsteady effects may be periodic, occurring time after time in basically
the same manner. The periodic injection of the air—gasoline mixture into the cylinder of an
automobile engine is such an example. The unsteady effects are quite regular and repeatable in a

V4.7 Flow types
the loud banging of the pipes under such conditions (Ref. 1)].
regular sequence. They are very important in the operation of the engine.
F I u i d s i n t h e

N e w s

New pulsed liquid-jet scalpel High-speed liquid-jet cutters are
used for cutting a wide variety of materials such as leather
goods, jigsaw puzzles, plastic, ceramic, and metal. Typicaly,
compressed air is used to produce a continuous stream of water
that is gjected from atiny nozzle. Asthis stream impacts the ma-
terial to be cut, a high pressure (the stagnation pressure) is pro-
duced on the surface of the material, thereby cutting the mater-
ial. Such liquid-jet cutters work well in air, but are difficult to
control if the jet must pass through a liquid as often happensin

surgery. Researchers have developed a new pulsed jet cutting
tool that may allow surgeons to perform microsurgery on tissues
that are immersed in water. Rather than using a steady water jet,
the system uses unsteady flow. A high-energy electrical dis-
charge inside the nozzle momentarily raises the temperature of
the microjet to approximately 10,000 °C. This creates a rapidly
expanding vapor bubble in the nozzle and expels atiny fluid jet
from the nozzle. Each electrical discharge creates asingle, brief
jet, which makes a small cut in the material.

/N

V4.8 Jupiter red

In many situations the unsteady character of a flow is quite random. That is, there is no
repeatable sequence or regular variation to the unsteadiness. This behavior occurs in turbulent
flow and is absent from laminar flow. The “smooth” flow of highly viscous syrup onto a pancake
represents a “deterministic” laminar flow. It is quite different from the turbulent flow observed in
the “irregular” splashing of water from a faucet onto the sink below it. The “irregular” gustiness
of the wind represents another random turbulent flow. The differences between these types of
flows are discussed in considerable detail in Chapters 8 and 9.

It must be understood that the definition of steady or unsteady flow pertains to the behavior
of afluid property as observed at a fixed point in space. For steady flow, the values of all fluid
properties (velocity, temperature, density, etc.) at any fixed point are independent of time. However,
the value of those properties for a given fluid particle may change with time as the particle flows
along, even in steady flow. Thus, the temperature of the exhaust at the exit of a car’s exhaust pipe
may be constant for several hours, but the temperature of a fluid particle that left the exhaust pipe
five minutes ago is lower now than it was when it left the pipe, even though the flow is steady.

4.1.4 Streamlines, Streaklines, and Pathlines

Although fluid motion can be quite complicated, there are various concepts that can be used to
help in the visualization and analysis of flow fields. To this end we discuss the use of streamlines,
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y streaklines, and pathlines in flow analysis. The streamline is often used in analytical work while
the streakline and pathline are often used in experimental work.

A streamlineis aline that is everywhere tangent to the velocity field. If the flow is steady,
nothing at a fixed point (including the velocity direction) changes with time, so the streamlines
% are fixed lines in space. (See the photograph at the beginning of Chapter 6.) For unsteady flows

the streamlines may change shape with time. Streamlines are obtained analytically by integrating

the equations defining lines tangent to the velocity field. As illustrated in the margin figure, for
two-dimensional flows the slope of the streamline, dy/dx, must be equal to the tangent of the
angle that the velocity vector makes with the x axis or

x d_v (4.1)

V4.9 Streamlines dx u

If the velocity field is known as a function of x and y (and t if the flow is unsteady), this equation
can be integrated to give the equation of the streamlines.

For unsteady flow there is no easy way to produce streamlines experimentaly in the laboratory.
Asdiscussed bel ow, the observation of dye, smoke, or some other tracer injected into aflow can provide
useful information, but for unsteady flows it is not necessarily information about the streamlines.

—EXAMPLE .Myl Streamlines for a Given Velocity Field

GIVEN Consider the two-dimensional steady flow discussed FIND  Determine the streamlines for this flow.
inExample 4.1,V = (Vo/€)(=Xi +¥j).

SOLUTION
Since y

u=(—Vy/Oxandv = (Vo/€)y )

it follows that streamlines are given by solution of the equation

dy v MMy _ Y

dx u  —(V/Ox X
in which variables can be separated and the equation integrated to

give 2
[2--]2
y X L
C=4
or
c=1
Iny = —Inx + constant 0 <
2 e C=-1 2
Thus, aong the streamline o4
xy = C, where C is a constant (Ans) 4
By using different values of the constant C, we can plot various C==

linesin the x-y plane—the streamlines. The streamlinesfor x = 0 B

are plotted in Fig. E4.2. A comparison of this figure with Fig.
E4.1a illustrates the fact that streamlines are lines tangent to the
velocity field.

COMMENT Note that a flow is not completely specified by
the shape of the streamlines alone. For example, the streamlines
for the flow with Vy/€ = 10 have the same shape as those for the
flow with Vo/€ = —10. However, the direction of the flow is op-
positefor these two cases. The arrowsin Fig. E4.2 representing the
flow direction are correct for Vy/€ = 10 since, from Eq. 1,
u = —10xand v = 10y. That is, the flow is from right to | eft. For
Vo/t = —10thearrowsarereversed. Theflow isfrom left to right.

B FIGURE E4.2
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A streakline consists of all particlesin aflow that have previously passed through a common
point. Streaklines are more of a laboratory tool than an analytical tool. They can be obtained by
taking instantaneous photographs of marked particles that all passed through a given location in
the flow field at some earlier time. Such a line can be produced by continuously injecting marked
fluid (neutrally buoyant smoke in air, or dye in water) at a given location (Ref. 2). (See Fig. 9.1.)
If the flow is steady, each successively injected particle follows precisely behind the previous one,
forming a steady streakline that is exactly the same as the streamline through the injection point.

For unsteady flows, particles injected at the same point at different times need not follow the
same path. An instantaneous photograph of the marked fluid would show the streakline at that instant,
but it would not necessarily coincide with the streamline through the point of injection at that particular
time nor with the streamline through the same injection point at a different time (see Example 4.3).

The third method used for visualizing and describing flows involves the use of pathlines. A
pathline is the line traced out by a given particle as it flows from one point to another. The pathline
is a Lagrangian concept that can be produced in the laboratory by marking a fluid particle (dying
a small fluid element) and taking a time exposure photograph of its motion. (See the photograph
at the beginning of Chapter 7)

N

V4.10 Sreaklines

F | u i d s i n t h e N e w s

Air bridge spanning the oceans It has long been known that
large quantities of material are transported from onelocation to
another by airborne dust particles. It is estimated that 2 billion
metric tons of dust are lifted into the atmosphere each year.
Most of these particles settle out fairly rapidly, but significant
amounts travel large distances. Scientists are beginning to un-
derstand the full impact of this phenomena—it is not only the
tonnage transported, but the type of material transported that is
significant. In addition to the mundane inert material we all
term “dust,” it is now known that a wide variety of hazardous

materials and organisms are also carried along these literal
particle paths. Satellite images reveal the amazing rate by
which desert soils and other materials are transformed into air-
borne particles as aresult of storms that produce strong winds.
Once the tiny particles are aloft, they may travel thousands of
miles, crossing the oceans and eventually being deposited on
other continents. For the health and safety of all, it isimportant
that we obtain a better understanding of the air bridges that
span the oceans and also understand the ramification of such
material transport.

If the flow is steady, the path taken by a marked particle (a pathline) will be the same as the line
formed by all other particles that previously passed through the point of injection (a streskline). For
such cases these lines are tangent to the velocity field. Hence, pathlines, streamlines, and streaklines
are the same for steady flows. For unsteady flows none of these three types of lines need be the same
(Ref. 3). Often one sees pictures of “streamlines” made visible by the injection of smoke or dye into
aflow asisshowninFig. 4.3. Actually, such pictures show streaklinesrather than streamlines. However,
for steady flows the two are identical; only the nomenclature is incorrectly used.

For steady flow,
streamlines, streak-
lines, and pathlines
are the same.

—EXAMPLE .Mc8 Comparison of Streamlines, Pathlines, and Streaklines

GIVEN Water flowing from the oscillating slit shown in Fig.
E4.3a produces a velocity field given by V = uysinfw(t —
y/vo)]iA + o], where U, v,, and o are constants. Thus, the y com-
ponent of velocity remains constant (v = ) and the x component
of velocity at y = 0 coincides with the velocity of the oscillating
sprinkler head [u = Uy sin(wt) aty = 0].

SOLUTION

FIND (a) Determine the streamline that passes through the ori-
ginatt = 0; att = 7/2w. (b) Determine the pathline of the parti-
cle that was at the origin at t = 0; at t = /2. (c) Discuss the
shape of the streakline that passes through the origin.

(@ Sinceu = uysinfw(t — y/vy)] and v = vy it follows from
Eq. 4.1 that streamlines are given by the solution of
L %

dx U usinfw(t — y/vg)]

in which the variables can be separated and the equation inte-
grated (for any given timet) to give

ofolofe- D)o




or

y)} =YX+ C
V)

0

Ug(ve/w) cos [w (t @)

where C is a constant. For the streamline at t = 0 that passes
through the origin (x = y = 0), the value of C is obtained
from Eg. 1 as C = uwy/w. Hence, the equation for this

streamlineis
)-1]

Similarly, for the streamline at t = 7/2w that passes through the
origin, Eq. 1 gives C = 0. Thus, the equation for this streamlineis
y

- geelo(F )] - SeelF- %)

2w
—sin ( 3 (Ans)

0

u [ (wy
cos| —
w 1)0

X=— 2 (Ans)

w

2

wy

= — CO0s
w Vo

or

“y

o)

COMMENT Thesetwo streamlines, plotted in Fig. E4.3b, are
not the same because the flow is unsteady. For example, at the ori-
gin (x=y=0) the velocity is V=1,] a t=0 and
V = Uy + vyj a t = 7/20. Thus, the angle of the streamline
passing through the origin changes with time. Similarly, the shape
of the entire streamlineis a function of time.

(b) The pathline of a particle (the location of the particle as a
function of time) can be obtained from the velocity field and
the definition of the velocity. Since u = dx/dt and v = dy/dt

we obtain
o = UpSin [w(t ﬂ and

dt
They equation can be integrated (since v, = constant) to give the
y coordinate of the pathline as

X
w

y

Vo

dy

at o

y =t + C 4

where C, isaconstant. With thisknown y = y(t) dependence, the
x equation for the pathline becomes

{ ( vt + C;
o(t——
Vo

Clw

v

0

dx .
E = UOSn
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This can be integrated to give the x component of the pathline as

i+

where C, is a constant. For the particle that was at the origin
(x=y=0)atimet = 0,Egs.4and5giveC; = C, = 0. Thus,
the pathline is

10

X = —{u sin(C
= . -

0

©)

x=0 and y= vt 6) (Ans)

Similarly, for the particle that was at the originat t = 7/2w, Egs.
4and 5 give C, = —7v/2w and C, = —7Uy/2w. Thus, the path-

line for this particleis
T
x=u0<t——) and y=vo(t )
2w

The pathline can be drawn by plotting the locus of x(t), y(t) values
fort = 0 or by eiminating the parameter t from Eq. 7 to give

o ()

Vo

=—X
y Uy

8 (Ans)
COMMENT The pathlines given by Egs. 6 and 8, shown in
Fig. E4.3c, are straight lines from the origin (rays). The pathlines
and streamlines do not coincide because the flow is unsteady.

(c) Thestreaklinethroughtheoriginat timet = Oisthelocus of
particles at t = O that previously (t < 0) passed through the ori-
gin. The genera shape of the streaklines can be seen as follows.
Each particle that flows through the origin travelsin astraight line
(pathlinesare raysfrom the origin), the slope of which lies between
*vy/Uy as shown in Fig. E4.3d. Particles passing through the ori-
gin at different times are located on different rays from the origin
and at different distances from the origin. The net result is that a
stream of dye continually injected at the origin (astreakline) would
have the shape shown in Fig. E4.3d. Because of the unsteadiness,
the streakline will vary with time, although it will always have the
oscillating, sinuous character shown.

COMMENT Similar streaklines are given by the stream of
water from a garden hose nozzle that oscillates back and forth in
adirection normal to the axis of the nozzle.

In thisexample neither the streamlines, pathlines, nor stresklines
coincide. If the flow were steady, al of these lines would be the
same.

Yy
N,
AY
Y )
/I
2nvgla e
7 )
/, Streamlines
\ through origin
¢ = X
~
t=0 v, /w\\\
o N
Oscillating "t =720
sprinkler head ,/
| | | |
TQ —2Uy/® 0 2u/o X
(a) (b) H FIGURE E4.3(a), (b)
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(c) (d) H FIGURE E4.3(c), (d)

4.2

The Acceleration Field

N

V4.11 Pathlines

Acceleration isthe
time rate of change
of velocity for a
given particle.

Asindicated in the previous section, we can describe fluid motion by either (1) following individual
particles (Lagrangian description) or (2) remaining fixed in space and observing different particles
as they pass by (Eulerian description). In either case, to apply Newton's second law (F = ma) we
must be able to describe the particle acceleration in an appropriate fashion. For the infrequently
used L agrangian method, we describe the fluid acceleration just asisdonein solid body dynamics—
a = a(t) for each particle. For the Eulerian description we describe the acceleration field as a
function of position and time without actually following any particular particle. This is analogous
to describing the flow in terms of the velocity field, V = V (x, Y, z t), rather than the velocity for
particular particles. In this section we will discuss how to obtain the acceleration field if the velocity
field is known.

The acceleration of a particle is the time rate of change of its velocity. For unsteady flows
the velocity at a given point in space (occupied by different particles) may vary with time, giving
riseto aportion of the fluid acceleration. In addition, afluid particle may experience an acceleration
because its velocity changes as it flows from one point to another in space. For example, water
flowing through a garden hose nozzle under steady conditions (constant number of gallons per
minute from the hose) will experience an acceleration as it changes from its relatively low velocity
in the hose to its relatively high velocity at the tip of the nozzle.

421 The Material Derivative

Consider a fluid particle moving along its pathline as is shown in Fig. 4.4. In generd, the particle's
velocity, denoted V , for particle A, is a function of its location and the time. That is,

Va = Va(ra t) = Va[Xa(t), Ya(t), za(1), t]

Particle A at
time t

Particle path N

Z,\(t)

B FIGURE 44
Yalt) Velocity and position of particle A
X at timet.




The material deriv-
ative is used to de-

scribe time rates of
change for a given

particle.

Particle A
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where X, = Xa(t), Ya = Ya (1), and z, = z, (t) define the location of the moving particle. By
definition, the acceleration of a particle is the time rate of change of its velocity. Since the velocity
may be a function of both position and time, its value may change because of the change in time
aswell asachangein the particle's position. Thus, we use the chain rule of differentiation to obtain
the acceleration of particle A, denoted a,, as
)y=—-=—"5+—F——+ ————+ —— 4.2
3 = ot ox dt 9y dt oz dt (4-2)
Using the fact that the particle velocity components are given by u, = dx,/dt, v, = dy,/dt,
and w, = dz,/dt, Eq. 4.2 becomes
Vo AV oV a Vo
=—" 4+ U——F+ v+ Wy—
WMT T T Ty AT,
Since the above is valid for any particle, we can drop the reference to particle A and obtain the
acceleration field from the velocity field as

aVv oV aVv oV
=—+ to—+w—

= u—+o W (4.3)
ot X ay 0z
Thisis a vector result whose scalar components can be written as
Ju ou au Ju
a=—_+tu_+ov_+w_
ot X ay 0z
d J J d
a ="t ul 0+ W (4.4)
ot ox ay 0z
and
ow ow ow ow
a,="—"+UuU—+v—+wW—
ot oX ay 0z
where a,, a,, and a, are the x, y, and z components of the acceleration.
The above result is often written in shorthand notation as
_Dv
Dt
where the operator
D J J d d
O _a0) a0, a0 i) s
Dt at IX ay 9z

is termed the material derivative or substantial derivative. An often-used shorthand notation for
the material derivative operator is

PO wev) @9)
Dt ot ’
The dot product of the velocity vector, V, and the gradient operator, V( ) = a( )/oxi + a( )/
ayj + a( )/azk (a vector operator) provides a convenient notation for the spatial derivative terms
appearing in the Cartesian coordinate representation of the material derivative. Note that the notation

V -V represents the operator V - V() = ud( )/ax + va( )/ay + wa( )/dz

The material derivative concept is very useful in analysis involving various fluid parameters,
not just the acceleration. The material derivative of any variable is the rate at which that variable
changes with time for a given particle (as seen by one moving along with the fluid—the Lagrangian
description). For example, consider a temperature field T = T(X, y, z t) associated with a given
flow, like the flame shown in the figure in the margin. It may be of interest to determine the time
rate of change of temperature of a fluid particle (particle A) as it moves through this temperature



158

Chapter 4 ®m Fluid Kinematics

field. If the velocity, V = V (X, Y, z 1), is known, we can apply the chain rule to determine the rate

of change of temperature as

ATa _ 9Ta, 9Tad | Tadys | 0Tadz,
dt ot ox dt oy dt 9z dt
This can be written as
DT oT oT aT oT aT
—=—4+UuU—+v—+W—=—"+V-VT
Dt ot X ay az at

As in the determination of the acceleration, the material derivative operator, D( )/Dt, appears.

EXAWPLE 4. I

GIVEN Anincompressible, inviscid fluid flows steadily past a
ball of radius R, as shown in Fig. E4.4a. According to a more ad-
vanced analysis of the flow, the fluid velocity along streamline
A-Bisgiven by

- R% -
V = uX)i = V0<1 e F)I
where V, is the upstream velocity far ahead of the sphere.

FIND Determine the acceleration experienced by fluid parti-
cles as they flow along this streamline.

SOLUTION

Along streamline A—B there is only one component of velocity
(v = w = 0) so that from Eq. 4.3

Vv Y (au au).A
a=—-+u — L u— i
ot ax ot ax

or

ou au
= — + u— = =
&= 5 Yo 3 =0, =0
Since the flow is steady the velocity at a given point in space does
not change with time. Thus, du/ot = 0. With the given velocity dis-
tribution along the streamline, the acceleration becomes

R®
a, = u% = Vo(l F ;) VO[R?’(—3X74)]
or
oz L (R

COMMENTS Along streamline A-B(—c =x = —R and
y = 0) the acceleration has only an x component and it is negative
(a deceleration). Thus, the fluid slows down from its upstream

d

X

(VE/IR)

-0.2

-0.4

-0.6

(b)
B FIGURE E4.4

velocity of V = Vol @ X = —oo toits stagnation point velocity of
V = 0atx = —R, the“nose” of the ball. The variation of a, along
streamline A-B is shown in Fig. E4.4b. It is the same result as is
obtained in Example 3.1 by using the streamwise component of
the acceleration, a, = V 9V/ds. The maximum decel eration occurs
a x = —1.205R and has a value of &, = —0.610 V&R Note
that this maximum deceleration increases with increasing velocity
and decreasing size. Asindicated in the following table, typical va-
ues of this deceleration can be quite large. For example, the
A, mex = —4.08 X 10*ft/s? value for a pitched baseball is a decel-
eration approximately 1500 times that of gravity.
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In general, for fluid particles on streamlines other than A-B,

Object o (ft/s) R(ft) 3 max (ft/S)  all three components of the acceleration (a,, &, and &) will be
Rising weather nonzero.

balloon 1 4.0 —0.153
Soccer ball 20 0.80 —305
Baseball 90 0.121 —4.08 x 10*
Tennis ball 100 0.104 —5.87 x 10*
Golf ball 200 0.070 —3.49 x 10°

The local derivative
isaresult of the un-
steadiness of the
flow.

V4.12 Unsteady
flow

e

V, >V,

4.2.2 Unsteady Effects

As is seen from Eq. 4.5, the material derivative formula contains two types of terms—those
involving the time derivative [a( )/dt] and those involving spatial derivatives [d( )/d%, a( )/ay,
and d( )/9z]. The time derivative portions are denoted as the local derivative. They represent
effects of the unsteadiness of the flow. If the parameter involved is the acceleration, that portion
given by aV/ot is termed the local acceleration. For steady flow the time derivative is zero
throughout theflow field [9( )/t = 0], and thelocal effect vanishes. Physically, thereisno change
in flow parameters at a fixed point in space if the flow is steady. There may be a change of those
parameters for a fluid particle as it moves about, however.

If aflow is unsteady, its parameter values (velocity, temperature, density, etc.) at any location
may change with time. For example, an unstirred (V = 0) cup of coffee will cool down in time
because of heat transfer to its surroundings. That is, DT/Dt = 9T/t + V - VT = a9T/ot < 0.
Similarly, afluid particle may have nonzero acceleration as aresult of the unsteady effect of the flow.
Consider flow in a constant diameter pipe asis shown in Fig. 4.5. The flow is assumed to be spatially
uniform throughout the pipe. That is,V = V() i a al pointsin the pipe. The value of the acceleration
depends on whether V; is being increased, aV,/0t > 0, or decreased, 9Vy/ot < 0. Unless V, is
independent of time (V, = constant) there will be an acceleration, the local acceleration term. Thus,
the acceleration field, a = aVy/ot i, is uniform throughout the entire flow, although it may vary with
time (9Vy/dt need not be constant). The acceleration due to the spatial variations of velocity (u du/ox, v
dv/dy, etc.) vanishes automatically for this flow, since du/ox = O and v = w = 0. That is,

Y N oV Y vV aV Vo

U~ +to - +w _=—-=—"i
ot X ay 0z ot ot

4.2.3 Convective Effects

The portion of the material derivative (Eq. 4.5) represented by the spatial derivatives is termed
the convective derivative. It represents the fact that a flow property associated with a fluid
particle may vary because of the motion of the particle from one point in space where the
parameter has one value to another point in space where its value is different. For example,
the water velocity at the inlet of the garden hose nozzle shown in the figure in the margin is
different (both in direction and speed) than it is at the exit. This contribution to the time rate
of change of the parameter for the particle can occur whether the flow is steady or unsteady.

B FIGURE 4.5 Uniform, unsteady
flow in a constant diameter pipe.
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The convective de-
rivativeis a result
of the spatial varia-
tion of the flow.
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ot =0

Cold B FIGURE 4.6 Steady-sate
5 0 operation of a water heater. (Photo courtesy

Tin of American Water Heater Company.)

It is due to the convection, or motion, of the particle through space in which there is a gradient
[V()=a( )/oxi + a( )/ay] + d( )/dzk]intheparameter value. That portion of the acceleration
given by the term (V - V)V is termed the convective acceleration.

Asisillustrated in Fig. 4.6, the temperature of a water particle changes as it flows through
a water heater. The water entering the heater is always the same cold temperature and the water
leaving the heater isalwaysthe same hot temperature. The flow is steady. However, the temperature,
T, of each water particle increases as it passes through the heater—T,; > T;,. Thus, DT/Dt # 0
because of the convective term in the total derivative of the temperature. That is, dT/ot = 0, but
u dT/ox # 0 (where x is directed along the streamline), since there is a nonzero temperature gradient
along the streamline. A fluid particle traveling along this nonconstant temperature path (9 T/ox # 0)
at a specified speed (u) will have its temperature change with time at a rate of DT/Dt = u 9T/ox
even though the flow is steady (dT/ot = 0).

The same types of processes areinvolved with fluid accelerations. Consider flow in avariable
area pipe as shown in Fig. 4.7. It is assumed that the flow is steady and one-dimensiona with
velocity that increases and decreases in the flow direction as indicated. As the fluid flows from
section (1) to section (2), its velocity increases from V; to V.. Thus, even though aV/ot = 0 (steady
flow), fluid particles experience an acceleration given by a, = u du/dx (convective acceleration).
For x; < x < x,, itisseenthat du/ox > 0 sothat a, > 0—thefluid accelerates. For x, < X < Xg,
it is seen that du/ox < 0 so that a, < 0—the fluid decelerates. This acceleration and deceleration
are shown in the figure in the margin. If V; = V3, the amount of acceleration precisely balances
the amount of deceleration even though the distances between x, and x; and X; and X, are not the
same.

The concept of the material derivative can be used to determine the time rate of change of
any parameter associated with a particle asit moves about. Itsuseis not restricted to fluid mechanics
alone. The basic ingredients needed to use the material derivative concept are the field description
of the parameter, P = P(x, Y, z t), and the rate at which the particle moves through that field,
V=V(xYy1zt).

u=Vy=V, <V,

X2

X1 3

B FIGURE 4.7 Uniform, steady flow in a variable
area pipe.



—EXAMPLE MY Acceleration

GIVEN Consider the steady, two-dimensional flow field dis-
cussed in Example 4.2.
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from a Given Velocity Field

FIND Determine the acceleration field for this flow.

where the velocity is given by V = (Vo/€)(—xi + yj) so that

u= —(Vp/€)x and v = (Vy/€)y. For steady [d( )/ot = 0], two-

dimensiona [w = 0and d( )/dz = 0] flow, Eq. | becomes
N,V

a=u—+v
X ay

U au). v o\ »
U—+o— i +(u—+v—|j
ax o ay ax ay

Hence, for this flow the acceleration is given by
a=|(-2)e(-2)+ (2)wo)i
(oo ()i

or
V2x Viy
= TOZ = Toz (Ang)
COMMENTS The fluid experiences an acceleration in both

the x and y directions. Since the flow is steady, there is no local
acceleration—the fluid velocity at any given point is constant in
time. However, there is a convective acceleration due to the
changein velocity from one point on the particle’s pathline to an-
other. Recall that the vel ocity isavector—it has both amagnitude
and adirection. In this flow both the fluid speed (magnitude) and
flow direction change with location (see Fig. E4.1a).

For this flow the magnitude of the acceleration is constant on
circles centered at the origin, asis seen from the fact that

=@+ grape=(2 ey @

SoLuTiON
In general, the acceleration is given by y
i —v
DV oV 4 ———>a
=Dt~ et TV VUY) ! ! Streamline
I
vV Vv Vv Vv
=—+tu__—+v_—+tw__ @
ot F)e ay 0z

¢ — —_———

B FIGURE E4.5

Also, the acceleration vector is oriented at an angle 6 from the x
axis, where

tng = 2 =Y

a X
This is the same angle as that formed by a ray from the origin to
point (X, ). Thus, the acceleration is directed along rays from the
origin and has a magnitude proportional to the distance from the
origin. Typical acceleration vectors(from Eq. 2) and velocity vec-
tors(from Example 4.1) are shown in Fig. E4.5 for the flow in the
first quadrant. Note that a and V are not parallel except along the
x and y axes (a fact that is responsible for the curved pathlines of
the flow), and that both the acceleration and velocity are zero at
theorigin (x = y = 0). Aninfinitesimal fluid particle placed pre-
cisely at the origin will remain there, but its neighbors (no matter
how close they are to the origin) will drift away.

—EXAMPLE MM The Material Derivative

GIVEN A fluid flows steadily through atwo-dimensiona nozzle
of length ¢ as shown in Fig. E4.6a. The nozzle shapeis given by

y/€ = £ 05/[1 + (x/0)]

If viscous and gravitational effects are negligible, the velocity
field is approximately

u=Vdl+ x/¢|, v=—Vy/t @)
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and the pressurefield is
P — Po = —(pV3/2)[(2 + YA)/€? + 2x/¢]

where V, and p, are the velocity and pressure at the origin,
x =y = 0. Notethat the fluid speed increases as it flows through
the nozzle. For example, along the center line (y = 0), V = V, a
x=0andV = 2V at x = ¢.

FIND Determine, as a function of x and y, the time rate of
change of pressure felt by a fluid particle as it flows through the
nozzle.

SoLUTION

The time rate of change of pressure at any given, fixed point in
this steady flow is zero. However, the time rate of change of pres-
sure felt by a particle flowing through the nozzle is given by the
material derivative of the pressure and is not zero. Thus,

D J d d d d
—ID=—IO+U—p v—p=u—p+v—p 2
Dt ot IX ay IX ay
where the x- and y-components of the pressure gradient can be
written as
» - pVs <x )
— = —\ =+
X €\l ! &
and
a V3
P _ PV (Z) @
ay ¢ \¢

Therefore, by combining Egs. (1), (2), (3), and (4) we obtain

2wl )G 1) () ()

or
28] ()] o

B FIGURE E4.6b
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¢ (1+x0

B FIGURE E4.6a

COMMENT Linesof constant pressure within the nozzle are
indicated in Fig. E4.6b, along with some representative stream-
lines of the flow. Note that as a fluid particle flows along its
streamline, it moves into areas of lower and lower pressure.
Hence, even though the flow is steady, the time rate of change of
the pressure for any given particleis negative. Thiscan be verified
from Eq. (5) which, when plotted in Fig. E4.6¢, showsthat for any
point within the nozzle Dp/Dt < 0.

B FIGURE E4.6c
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4.2.4 Streamline Coordinates

In many flow situationsit is convenient to use acoordinate system defined in terms of the streamlines
of the flow. An example for steady, two-dimensiona flows is illustrated in Fig. 4.8. Such flows
can be described either in terms of the usual x, y Cartesian coordinate system (or some other system
such as the r, 6 polar coordinate system) or the streamline coordinate system. In the streamline
coordinate system the flow is described in terms of one coordinate along the streamlines, denoted
s, and the second coordinate normal to the streamlines, denoted n. Unit vectors in these two
directionsare denoted by Sand f, asshown in thefigure. Careisneeded not to confuse the coordinate
distance s (a scalar) with the unit vector along the streamline direction, 3.

The flow plane is therefore covered by an orthogonal curved net of coordinate lines. At any
point the s and n directions are perpendicular, but the lines of constant s or constant n are not
necessarily straight. Without knowing the actual velocity field (hence, the streamlines) it is not
possible to construct this flow net. In many situations appropriate simplifying assumptions can be
made so that this lack of information does not present an insurmountabl e difficulty. One of the magjor
advantages of using the streamline coordinate system is that the velocity is always tangent to the s
direction. That is,

V =V3

This allows simplifications in describing the fluid particle acceleration and in solving the equations
governing the flow.
For steady, two-dimensional flow we can determine the acceleration as

a—&— S+ a,n
Dt a5 a,

where a; and a,, are the streamline and normal components of acceleration, respectively, asindicated
by the figure in the margin. We use the material derivative because by definition the acceleration
is the time rate of change of the velocity of a given particle as it moves about. If the streamlines

Streamlines

B FIGURE 4.8
Streamline coordinate system
for two-dimensional flow.
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The orientation of
the unit vector
along the stream-
line changes with
distance along the
streamline.

are curved, both the speed of the particle and its direction of flow may change from one point to
another. In general, for steady flow both the speed and the flow direction are afunction of location—
V = V(s,n) and 5= §s, n). For a given particle, the value of s changes with time, but the value
of n remains fixed because the particle flows aong a streamline defined by n = constant. (Recall
that streamlines and pathlines coincide in steady flow.) Thus, application of the chain rule gives

_D(V® DV, D3

a Dt D'[S Dt

or
(av aVds oV dn)A (a“s 95ds 03 dn)
=\—+ -0+ )5+ V| T+ +
gt 9sdt  oandt gt oasdt  ondt

This can be simplified by using the fact that for steady flow nothing changes with time at a given
point so that both 0\/ot and 0%/t are zero. Also, the velocity along the streamlineisV = ds/dt and
the particle remains on its streamline (n = constant) so that dr/dt = 0. Hence,

o= (V) v(v)
Js Js

The quantity 05/0s represents the limit as 6s— 0 of the change in the unit vector along the
streamline, 85, per change in distance along the streamline, 6s. The magnitude of § is constant
(I8 = 1; itisaunit vector), but its direction is variable if the streamlines are curved. From Fig. 4.9
it is seen that the magnitude of 95/ds is equal to the inverse of the radius of curvature of the
streamline, %R, at the point in question. This follows because the two triangles shown (AOB and
AQ'B’) are similar triangles so that 8s/% = [65|/|5] = |88], or |6%/8s| = 1/R. Similarly, in the
limit 6s— 0, the direction of 65/8s is seen to be normal to the streamline. That is,

B h
Jas 55—0 O0S R
Hence, the acceleration for steady, two-dimensional flow can be written in terms of its streamwise
and normal components in the form
2 VZ

a—Vﬂ?erV—ﬁ or —Vﬂ 4.7)
9s R & as’ &n R '

The first term, a, = V 0V/os, represents the convective acceleration along the streamline and the
second term, a, = V 2/%, represents centrifugal acceleration (one type of convective acceleration)
normal to the fluid motion. These components can be noted in Fig. E4.5 by resolving the
acceleration vector into its components along and normal to the velocity vector. Note that the unit
vector h is directed from the streamline toward the center of curvature. These forms of the
acceleration were used in Chapter 3 and are probably familiar from previous dynamics or physics
considerations.

)

o 3(9)

B FIGURE 4.9 Reationship between the unit vector along the
streamline, S, and the radius of curvature of the streamline, 9R.
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4.3 Control Volume and System Representations

Both control vol-
ume and system
concepts can be
used to describe
fluid flow.

(Photograph courtesy
of NASA))

As is discussed in Chapter 1, a fluid is a type of matter that is relatively free to move and
interact with its surroundings. As with any matter, a fluid’s behavior is governed by fundamental
physical laws which are approximated by an appropriate set of equations. The application of laws
such as the conservation of mass, Newton's laws of motion, and the laws of thermodynamics form
the foundation of fluid mechanics analyses. There are various ways that these governing laws can
be applied to afluid, including the system approach and the control volume approach. By definition,
asystem is a collection of matter of fixed identity (always the same atoms or fluid particles), which
may move, flow, and interact with its surroundings. A control volume, on the other hand, is a
volume in space (a geometric entity, independent of mass) through which fluid may flow.

A system is a specific, identifiable quantity of matter. It may consist of a relatively large
amount of mass (such as al of the air in the earth’s atmosphere), or it may be an infinitesimal size
(such as a single fluid particle). In any case, the molecules making up the system are “tagged” in
some fashion (dyed red, either actually or only in your mind) so that they can be continually
identified as they move about. The system may interact with its surroundings by various means (by
the transfer of heat or the exertion of a pressure force, for example). It may continually change size
and shape, but it always contains the same mass.

A mass of air drawn into an air compressor can be considered as a system. It changes shape
and size (it is compressed), its temperature may change, and it is eventually expelled through the
outlet of the compressor. The matter associated with the original air drawn into the compressor
remains as a system, however. The behavior of this material could be investigated by applying the
appropriate governing equations to this system.

One of the important concepts used in the study of statics and dynamics is that of the free-
body diagram. That is, weidentify an object, isolateit fromits surroundings, replaceits surroundings
by the equivalent actions that they put on the object, and apply Newton's laws of motion. The body
in such cases is our system—an identified portion of matter that we follow during its interactions
with its surroundings. In fluid mechanics, it is often quite difficult to identify and keep track of a
specific quantity of matter. A finite portion of a fluid contains an uncountable number of fluid
particles that move about quite freely, unlike a solid that may deform but usually remains relatively
easy to identify. For example, we cannot as easily follow a specific portion of water flowing in a
river as we can follow a branch floating on its surface.

We may often be more interested in determining the forces put on a fan, airplane, or
automobile by air flowing past the object than we are in the information obtained by following a
given portion of the air (a system) as it flows along. Similarly, for the Space Shuttle launch vehicle
shown in the margin, we may be more interested in determining the thrust produced than we are in
the information obtained by following the highly complex, irregular path of the exhaust plume from
the rocket engine nozzle. For these situations we often use the control volume approach. We identify
a specific volume in space (a volume associated with the fan, airplane, or automobile, for example)
and analyze the fluid flow within, through, or around that volume. In general, the control volume
can be a moving volume, although for most situations considered in this book we will use only
fixed, nondeformable control volumes. The matter within a control volume may change with time
as the fluid flows through it. Similarly, the amount of mass within the volume may change with
time. The control volume itself is a specific geometric entity, independent of the flowing fluid.

Examples of control volumes and control surfaces (the surface of the control volume) are
shown in Fig. 4.10. For case (a), fluid flows through a pipe. The fixed control surface consists of
the inside surface of the pipe, the outlet end at section (2), and a section across the pipe at (1). One
portion of the control surfaceisaphysical surface(the pipe), while the remainder is simply a surface
in space (across the pipe). Fluid flows across part of the control surface, but not across al of it.

Another control volume is the rectangular volume surrounding the jet engine shown in Fig.
4.10b. If the airplane to which the engine is attached is sitting still on the runway, air flows through
this control volume because of the action of the engine within it. The air that was within the engine
itself at time't = t, (a system) has passed through the engine and is outside of the control volume
at alater timet = t, asindicated. At this|later time other air (adifferent system) iswithin the engine.
If the airplane is moving, the control volume is fixed relative to an observer on the airplane, but it
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Jet engine
Y Balloon
Pipe | I
T S i
[ |
L (N | : i |
\ ) | |
AN —— J ‘ [
(1) @ e -
(a) (b) (c)
— — — — Control volume surface :| System at time t; :| System at time t, > t;

B FIGURE 4.10 Typical control volumes: (a) fixed control volume, (b) fixed or moving
control volume, (c) deforming control volume.

is a moving control volume relative to an observer on the ground. In either situation air flows
through and around the engine as indicated.

Thedeflating balloon shown in Fig. 4.10c provides an example of adeforming control volume.
As time increases, the control volume (whose surface is the inner surface of the balloon) decreases
in size. If we do not hold onto the balloon, it becomes a moving, deforming control volume as it
darts about the room. The mgjority of the problems we will analyze can be solved by using afixed,
nondeforming control volume. In some instances, however, it will be advantageous, in fact
necessary, to use a moving, deforming control volume.

In many waysthe rel ationship between asystem and acontrol volumeissimilar to therelationship
between the Lagrangian and Eulerian flow description introduced in Section 4.1.1. In the system or
Lagrangian description, we follow the fluid and observe its behavior as it moves about. In the control
volume or Eulerian description we remain stationary and observe thefluid’sbehavior at afixed location.
(If a moving control volume is used, it virtually never moves with the system—the system flows
through the control volume.) These ideas are discussed in more detail in the next section.

All of the laws governing the motion of a fluid are stated in their basic form in terms of a

The governing laws . .
system approach. For example, “the mass of a system remains constant,” or “the time rate of change

of fluid motion are

stated in terms of of momentum of a system is equal to the sum of all the forces acting on the system.” Note the word
fluid systems, not system, not control volume, in these statements. To use the governing equations in a control volume
control volumes. approach to problem solving, we must rephrase the laws in an appropriate manner. To this end we

introduce the Reynolds transport theorem in the following section.

44 The Reynolds Transport Theorem

We are sometimes interested in what happens to a particular part of the fluid as it moves about.
Other times we may be interested in what effect the fluid has on a particular object or volume in
space as fluid interacts with it. Thus, we need to describe the laws governing fluid motion using
both system concepts (consider a given mass of the fluid) and control volume concepts (consider
agiven volume). To do this we need an analytical tool to shift from one representation to the other.
The Reynolds transport theorem provides this tool.
All physical laws are stated in terms of various physical parameters. Vel ocity, acceleration, mass,
temperature, and momentum are but a few of the more common parameters. Let B represent any of
v these (or other) fluid parameters and b represent the amount of that parameter per unit mass. That is,

B=mb

where mis the mass of the portion of fluid of interest. For example, as shown by the figure in the

margin, if B = m, the mass, it follows that b = 1. The mass per unit mass is unity. If B = mv?/2,

the kinetic energy of the mass, then b = V2/2, the kinetic energy per unit mass. The parameters B

and b may be scalars or vectors. Thus, if B = mV, the momentum of the mass, thenb = V. (The
B be Blm momentum per unit mass is the velocity.)

The parameter B is termed an extensive property and the parameter b is termed an intensive
property. The value of B is directly proportional to the amount of the mass being considered,
mv Y whereas the value of b isindependent of the amount of mass. The amount of an extensive property
that asystem possesses at agiveninstant, By, can be determined by adding up the amount associated
with each fluid particle in the system. For infinitesimal fluid particles of size 6% and mass p 6V,

Lmy2 Ly2



Differences be-
tween control vol-
ume and system
concepts are subtle
but very important.
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this summation (in the limit of 6V — 0) takes the form of an integration over all the particles in

the system and can be written as

Bys =

lim E bi (pi 6V) =

V=0

‘[ pb d¥
sys

The limits of integration cover the entire system—a (usually) moving volume. We have used the
fact that the amount of B in a fluid particle of mass p 6V is given in terms of b by 6B = bp 6.

Most of thelaws governing fluid motion involve the time rate of change of an extensive property
of afluid system—the rate at which the momentum of a system changes with time, the rate at which
the mass of a system changes with time, and so on. Thus, we often encounter terms such as

d(J de)
By \Jys"

dt dt
To formulate the laws into a control volume approach, we must obtain an expression for the time
rate of change of an extensive property within a control volume, B, not within a system. This can

be written as
v
dBy d(Jw”bd )

dt dt
where the limits of integration, denoted by cv, cover the control volume of interest. Although Egs.
4.8 and 4.9 may look very similar, the physica interpretation of each is quite different.
Mathematically, the difference is represented by the difference in the limits of integration. Recall
that the control volume is a volume in space (in most cases stationary, although if it moves it need
not move with the system). On the other hand, the system is an identifiable collection of mass that
moves with the fluid (indeed it is a specified portion of the fluid). We will learn that even for those
instances when the control volume and the system momentarily occupy the same volume in space,
the two quantities dBy,/dt and dB,,/dt need not be the same. The Reynolds transport theorem
provides the relationship between the time rate of change of an extensive property for a system
and that for a control volume—the relationship between Egs. 4.8 and 4.9.

(4.8)

(4.9)

—EXAMPLE 4.7 Byl

Rate of Change for a System and a Control Volume

GIVEN Fluid flows from the fire extinguisher tank shown in

Fig. E4.7a.

FIND Discussthe differences between dBg /dt and dB,,/dt if B

represents mass.

SoLuTION

With B = m, the system
and 4.9 can be written as

mass, it followsthat b = 1 and Egs. 4.8

a( [ pav)
dmsys _ wsp

dBys
dt ot dt
and
d dv
dB;, _ dm,, _ (pr ) (@ BFIGURE E4.7
dt  dt dt
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Physically these represent the time rate of change of mass within
the system and the time rate of change of mass within the control
volume, respectively. We choose our system to be the fluid within
the tank at the time the valve was opened (t = 0) and the control
volume to be the tank itself as shown in Fig. E4.7b. A short time
after the valve is opened, part of the system has moved outside of
the control volume asis shown in Fig. E4.7c. The control volume
remains fixed. The limits of integration are fixed for the control

The actual numerical value of the rate at which the mass in the
control volume decreases will depend on therate at which the fluid
flows through the nozzle (i.e., the size of the nozzle and the speed
and density of the fluid). Clearly the meanings of dBy/dt and
dB,, /it are different. For this example, dB,,/dt < dBg./dt. Other
situations may have dB, /0t = dBg/dt.

stant, so that

volume; they are afunction of time for the system.
Clearly, if massis to be conserved (one of the basic laws gov-
erning fluid motion), the mass of the fluid in the system is con-

Ontheother hand, itisequally clear that some of thefluid hasleft the
control volumethrough the nozzle on the tank. Hence, the amount of
mass within the tank (the control volume) decreases with time, or

d

[ System

— — Control
surface

dt

(b)
B FIGURE E4.7

(©)

<0
dt

The moving system
flows through the
fixed control
volume.

(a)
HBEFIGURE 4.1

44.1 Derivation of the Reynolds Transport Theorem

A simple version of the Reynolds transport theorem relating system concepts to control volume
concepts can be obtained easily for the one-dimensional flow through a fixed control volume such
as the variable area duct section shown in Fig. 4.11a. We consider the control volume to be that
stationary volume within the duct between sections(1) and (2) asindicated in Fig. 4.11b. The system
that we consider is that fluid occupying the control volume at some initial time t. A short time
later, at timet + &t, the system has moved slightly to the right. The fluid particles that coincided
with section (2) of the control surface at time t have moved a distance 6¢, = V, ét to the right,
where V, is the velocity of the fluid as it passes section (2). Similarly, the fluid initialy at section
(1) has moved a distance 8¢, = V, 6t, where V, is the fluid velocity at section (1). We assume the
fluid flows across sections (1) and (2) in a direction normal to these surfaces and that V, and V, are
constant across sections (1) and (2).

Asisshownin Fig. 4.11c, the outflow from the control volumefromtimettot + étisdenoted
as volume |1, the inflow as volume I, and the control volume itself as CV. Thus, the system at time
t consists of the fluid in section CV; that is, “SYS = CV” attimet. At time t + 6t the system
consists of the same fluid that now occupiessections(CV — 1) + Il. Thatis, “SYS=CV — | + II”
at timet + &t. The control volume remains as section CV for al time.

— — — Fixed control surface and system
boundary at time t

— — — System boundary at time t + &t
(b)
Control volume and system for flow through a variable area pipe.

(c)
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If B is an extensive parameter of the system, then the value of it for the system at time
tis
Bsys(t) = Bcv(t)
since the system and the fluid within the control volume coincide at this time. Its value at time
t+ dtis
Bys(t + 6t) = By (t + 6t) — By(t + 8t) + By(t + 6t)

Thus, the change in the amount of B in the system in the time interval 6t divided by this time
interval is given by

0Bgs Byt + 8t) — Bydt) Byt + 8t) — By(t + 8t) + By(t + 6t) — By(t)

ot ot ot

By using the fact that at the initial time t we have By (t) = B,(t), this ungainly expression may
be rearranged as follows.

8Bys _ Boft + 60 —Bult) Bt + ) Byt +

ot ot ot ot

(4.10)

In the limit 8t — O, the left-hand side of Eq. 4.10 is equal to the time rate of change of B for the
system and is denoted as DBy /Dt. We use the material derivative notation, D( )/Dt, to denote this
time rate of change to emphasize the Lagrangian character of this term. (Recall from Section 4.2.1
that the material derivative, DP/Dt, of any quantity P represents the time rate of change of that
quantity associated with a given fluid particle as it moves along.) Similarly, the quantity DBg,s/Dt
represents the time rate of change of property B associated with a system (a given portion of fluid)
as it moves along.

In the limit 6t — O, the first term on the right-hand side of Eq. 4.10 is seen to be the time
rate of change of the amount of B within the control volume

o Bolt 80 ~ Bo(t) _ 9By, 8<vab dv) @1

5t—0 ot ot ot

Thethird term on the right-hand side of Eq. 4.10 representsthe rate at which the extensive parameter
B flows from the control volume, across the control surface. As indicated by the figure in the
margin, during the time interval fromt = O tot = 6t the volume of fluid that flows across section
(2) is given by 6V = A, 8¢, = A,(V,8t). Thus, the amount of B within region I, the outflow
region, is its amount per unit volume, pb, times the volume

Bi (t + 8t) = (p2bo)(8¥ ) = paboAsV, 6t

where b, and p, are the constant values of b and p across section (2). Thus, the rate at which this
property flows from the control volume, B, iS given by

. B, (t + ot
5 tim BALH 2D

= p2AV, b, (4.12)
5t—0 ot

Similarly, the inflow of B into the control volume across section (1) during the time interval
ot corresponds to that in region | and is given by the amount per unit volume times the volume,
8V| = Al 6€1 = Al(Vl 8t) Heﬂce,

By (t + ot) = (psby)(6V1) = pabsAV; 6t

where b, and p, are the constant values of b and p across section (1). Thus, the rate of inflow of
the property B into the control volume, By, is given by

. . Bt + ot
g, = lim 220

= p1AlViby (4.13)
5t—0 ot
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If we combine Egs. 4.10, 4.11, 4.12, and 4.13 we see that the relationship between the time
rate of change of B for the system and that for the control volume is given by

DB B . .
sys
Dt = 87tcv + Bout - Bin (414)
or
DBys 9B
= —" 4+ p,ANLb, — pAVib, (4.15)

Dt ot

This is a version of the Reynolds transport theorem valid under the restrictive assumptions
associated with the flow shown in Fig. 4.11—fixed control volume with one inlet and one outlet
having uniform properties (density, velocity, and the parameter b) across the inlet and outlet with
the velocity normal to sections (1) and (2). Note that the time rate of change of B for the system
(the left-hand side of Eqg. 4.15 or the quantity in Eq. 4.8) is not necessarily the same as the rate
of change of B within the control volume (the first term on the right-hand side of Eq. 4.15 or the
quantity in Eq. 4.9). Thisistrue because the inflow rate (b,p,V1A;) and the outflow rate (b, p,V, Ay)
of the property B for the control volume need not be the same.

L SLLTTCIRY Use of the Reynolds Transport Theorem

The time derivative
associated with a
system may be dif-
ferent from that for
a control volume.

GIVEN Consider again the flow from the fire extinguisher
shown in Fig. E4.7. Let the extensive property of interest be the
system mass (B = m, the system mass, or b = 1).

SOLUTION

FIND Write the appropriate form of the Reynolds transport
theorem for this flow.

Again we take the control volume to be the fire extinguisher, and
the system to be the fluid within it at time t = 0. For this case
there is no inlet, section (1), across which the fluid flows into the
control volume (A; = 0). Thereis, however, an outlet, section (2).
Thus, the Reynolds transport theorem, Eq. 4.15, along with Eq.
4.9 withb = 1 can be written as

L)

= + p, AV
Dt at P2R2V2

D) (Ans)

COMMENT If we proceed one step further and use the basic
law of conservation of mass, we may set the left-hand side of this

The physical interpretation of this result is that the rate at which
the mass in the tank decreases in time is equal in magnitude but
opposite to the rate of flow of mass from the exit, p, A,V,. Note
the units for the two terms of Eq. 2 (kg/s or slugs/s). Note that
if there were both an inlet and an outlet to the control volume
shown in Fig. E4.7, Eq. 2 would become

cv

ot

In addition, if the flow were steady, the left-hand side of Eq. 3
would be zero (the amount of mass in the control would be con-

= p1AVL — P AV, ©)

equation equal to zero (the amount of mass in a system is con-  stant in time) and Eq. 3 would become

stant) and rewrite Eq. 1 in the form

ot

P1ANV1 = poAN,

Thisisoneform of the conservation of mass principle discussed in
Sect. 3.6.2—the mass flowrates into and out of the control volume

= —p,AV. ) .
Pt @ e equal. Other more general forms are discussed in Chapter 5.

Equation 4.15 isa simplified version of the Reynolds transport theorem. We will now derive
it for much more general conditions. A general, fixed control volume with fluid flowing through
itisshownin Fig. 4.12. The flow field may be quite simple (as in the above one-dimensional flow
considerations), or it may involve a quite complex, unsteady, three-dimensional situation such as
the flow through a human heart as illustrated by the figure in the margin. In any case we again
consider the system to be the fluid within the control volume at the initial time t. A short time
later a portion of the fluid (region Il) has exited from the control volume and additional fluid
(region I, not part of the origina system) has entered the control volume.
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and system for flow through an arbitrary, fixed inlet and outlet.
control volume.

The simplified _We corjsider an extens_ive fluid property B and seek to determ_i ne how the rate of change of B

Reynolds transport associated with the system is related to the rate of change of B within the control volume at any

theorem can be instant. By repeating the exact steps that we did for the simplified control volume shown in Fig.

easily generalized. 4.11, we see that Eq. 4.14 is valid for the general case also, provided that we give the correct
interpretation to the terms B,,; and B;,. In general, the control volume may contain more (or less)
than one inlet and one outlet. A typical pipe system may contain severa inlets and outlets as are
shown in Fig. 4.13. In such instances we think of all inlets grouped together (I = 1, + 1, + I, + -+)
and all outlets grouped together (Il = 11, + Il, + 1l + ---), at least conceptualy.

The term By, represents the net flowrate of the property B from the control volume. Its
value can be thought of as arising from the addition (integration) of the contributions through
each infinitesimal area element of size 6A on the portion of the control surface dividing region
I and the control volume. This surface is denoted CS,. Asisindicated in Fig. 4.14, in time 6t
the volume of fluid that passes across each area element is given by 6% = 8¢, A, where
8¢, = 8¢ cos@ is the height (normal to the base, 6A) of the small volume element, and 6 is the
angle between the velocity vector and the outward pointing normal to the surface, n. Thus,
since 8¢ = V ét, the amount of the property B carried across the area element 6A in the time
interval 6t is given by

6B = bp 6% = bp(V cos 0 8t) A

The rate at which B is carried out of the control volume across the small area element 5A, denoted

8By IS
. . pb8¥  (pbVcos# &t) 5A
OBy = lim = lim = pbV cosd 6A
st—»0 ot 5t—0 ot

Outflow

portion of

control

surface oV = 8¢, 6A 6€r11\
)

AN

(a) (b) (c)
B FIGURE 4.14 Outflow across a typical portion of the control surface.
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B FIGURE 4.15 Inflow across a typical portion of the control surface.

By integrating over the entire outflow portion of the control surface, CS,;, we obtain

Bou = J dByy = J pbV cos 6 dA
CSout CSout
The quantity V cos6 is the component of the velocity normal to the area element SA. From the
definition of the dot product, this can be written as V cos6 = V - i. Hence, an alternate form of
the outflow rate is

Bou = J pbV - A dA (4.16)

In asimilar fashion, by considering the inflow portion of the control surface, CS;,, as shown
in Fig. 4.15, we find that the inflow rate of B into the control volume is

B, = —J pbV cos 6 dA = —J pbV « A dA (4.17)
We use the standard notation that the unit normal vector to the control surface, h, points out from the
control volume. Thus, as is shown in Fig. 4.16, —90° < # < 90° for outflow regions (the normal
component of V is positive; V - i > 0). For inflow regions 90° < § < 270° (the normal component
of V is negative; V - i < 0). The value of cos¥é is, therefore, positive on the CV ,, portions of the
control surface and negative on the CV,, portions. Over the remainder of the control surface, there is
no inflow or outflow, leadingtoV - A = V cos 6 = 0 on those portions. On such portionseither V = 0
(the fluid “sticks” to the surface) or cos§ = O (the fluid “ dides’ aong the surface without crossing it)
(see Fig. 4.16). Therefore, the net flux (flowrate) of parameter B across the entire control surface is

Bout—Bm=J pr-ﬁdA—(—J pr-ﬁdA>
CSout CSin

- j pbV - A dA (4.18)

cs

where the integration is over the entire control surface.

CS
CS;,
\ V=0 CSout
n
A VeReo A BFIGURE 4.16
n - Possible velocity configurations
V-h<o V-fi>0 on portions of the control sur-

face: (a) inflow, (b) no flow
(a) (b) (c) across the surface, (c) outflow.
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By combining Egs. 4.14 and 4.18 we obtain
DBy _ 9Bg,

Dt ot

+prV-ﬁdA
cs

This can be written in a dightly different form by using B, = [, pb d¥ so that

DBys ¢ )
= 2| pbd¥ + | pbV -7 dA (4.19)
Dt  at], -

Equation 4.19 is the genera form of the Reynolds transport theorem for a fixed, nondeforming
control volume. Its interpretation and use are discussed in the following sections.

4.4.2 Physical Interpretation

The Reynolds transport theorem as given in Eq. 4.19 is widely used in fluid mechanics (and other
areas as well). At first it appears to be a rather formidable mathematical expression—perhaps one
to be steered clear of if possible. However, a physical understanding of the concepts involved will
show that it is arather straightforward, relatively easy-to-use tool. Its purpose is to provide a link
between control volume ideas and system ideas.

The left side of Eq. 4.19 is the time rate of change of an arbitrary extensive parameter of a
system. This may represent the rate of change of mass, momentum, energy, or angular momentum
of the system, depending on the choice of the parameter B.

Because the system is moving and the control volume is stationary, the time rate of change
of the amount of B within the control volume is not necessarily equal to that of the system. The first
term on the right side of Eq. 4.19 represents the rate of change of B within the control volume as
the fluid flows through it. Recall that b isthe amount of B per unit mass, so that pb d¥ isthe amount
of B in a smal volume dV. Thus, the time derivative of the integral of pb throughout the control
volume is the time rate of change of B within the control volume at a given time.

The last term in Eq. 4.19 (an integral over the control surface) represents the net flowrate of
the parameter B across the entire control surface. As illustrated by the figure in the margin, over a
portion of the control surface this property is being carried out of the control volume (V - i > 0);
over other portionsit is being carried into the control volume (V - i < 0). Over the remainder of
the control surface there is no transport of B across the surface since bV - i = 0, because either
b=0,V =0orV isparale to the surface at those locations. The mass flowrate through area
element 6A, given by pV - A 8A, is positive for outflow (efflux) and negative for inflow (influx).
Each fluid particle or fluid mass carries a certain amount of B with it, as given by the product of
B per unit mass, b, and the mass. The rate at which this B is carried across the control surface is
given by the area integral term of Eq. 4.19. This net rate across the entire control surface may be
negative, zero, or positive depending on the particular situation involved.

4.4.3 Relationship to Material Derivative

In Section 4.2.1 we discussed the concept of the material derivativeD( )/Dt = d( )/ot + V - V( ) =
a( )ot + ua( )ox + v a( )Py + wa( )/oz The physica interpretation of this derivative is that it
provides the time rate of change of a fluid property (temperature, velocity, etc.) associated with a
particular fluid particle asit flows. The value of that parameter for that particle may change because
of unsteady effects [the d( )/ot term] or because of effects associated with the particle’s motion
[theV - V() term].

Careful consideration of Eq. 4.19 indicates the same type of physical interpretation for the
Reynolds transport theorem. The term involving the time derivative of the control volume integral
represents unsteady effects associated with the fact that values of the parameter within the control
volume may change with time. For steady flow this effect vanishes—fluid flows through the control
volume but the amount of any property, B, within the control volume is constant in time. The term
involving the control surface integral represents the convective effects associated with the flow of the
system across the fixed control surface. The sum of these two terms gives the rate of change of the
parameter B for the system. This corresponds to the interpretation of the materia derivative,
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The Reynolds
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steady effects.

D( )/Dt = a( )/t + V - V( ), in which the sum of the unsteady effect and the convective effect
givestherate of change of aparameter for afluid particle. Asis discussed in Section 4.2, the material
derivative operator may be applied to scalars (such as temperature) or vectors (such as velocity). This
is also true for the Reynolds transport theorem. The particular parameters of interest, B and b, may
be scalars or vectors.

Thus, both the material derivative and the Reynolds transport theorem equations represent
ways to transfer from the L agrangian viewpoint (follow a particle or follow a system) to the Eulerian
viewpoint (observe the fluid at a given location in space or observe what happens in the fixed
control volume). The material derivative (Eq. 4.5) is essentially the infinitesimal (or derivative)
equivalent of the finite size (or integral) Reynolds transport theorem (Eg. 4.19).

444 Steady Effects
Consider a steady flow [9( )/ot = 0] so that Eq. 4.19 reduces to

DBy
= J pbV - A dA (4.20)
Dt «

In such cases if there is to be a change in the amount of B associated with the system (nonzero
left-hand side), there must be a net difference in the rate that B flows into the control volume
compared with the rate that it flows out of the control volume. That is, the integral of pbV - i over
the inflow portions of the control surface would not be equal and opposite to that over the outflow
portions of the surface.

Consider steady flow through the “black box” control volume that is shown in Fig. 4.17. If
the parameter B is the mass of the system, the left-hand side of Eq. 4.20 is zero (conservation of
mass for the system as discussed in detail in Section 5.1). Hence, the flowrate of mass into the
box must be the same as the flowrate of mass out of the box because the right-hand side of Eq.
4.20 represents the net flowrate through the control surface. On the other hand, assume the
parameter B is the momentum of the system. The momentum of the system need not be constant.
In fact, according to Newton's second law the time rate of change of the system momentum equals
the net force, F, acting on the system. In general, the left-hand side of Eq. 4.20 will therefore be
nonzero. Thus, the right-hand side, which then represents the net flux of momentum across the
control surface, will be nonzero. The flowrate of momentum into the control volume need not be
the same as the flux of momentum from the control volume. We will investigate these concepts
much more fully in Chapter 5. They are the basic principles describing the operation of such
devices as jet or rocket engines like the one shown in the figure in the margin.

For steady flows the amount of the property B within the control volume does not change
with time. The amount of the property associated with the system may or may not change with
time, depending on the particular property considered and the flow situation involved. The difference
between that associated with the control volume and that associated with the system is determined
by the rate at which B is carried across the control surface—the term [ pbV - f dA.

4.45 Ungteady Effects

Consider unsteady flow [9( )/t # 0] so that all terms in Eq. 4.19 must be retained. When they
are viewed from a control volume standpoint, the amount of parameter B within the system may
change because the amount of B within the fixed control volume may change with time

Control volume

v, e v

out

\F BFIGURE 417 Seady flow
through a control volume.
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B FIGURE 4.18 Unsteady
———~ Control surface flow through a constant diameter pipe.

[the d( [, pb d¥¥)/ot term] and because there may be a net nonzero flow of that parameter across
the control surface (the [ pbV - 1 dA term).
For the special unsteady situations in which the rate of inflow of parameter B is exactly
balanced by its rate of outflow, it follows that [ pbV - 7 dA = 0, and Eq. 4.19 reduces to
ys 0

DB .
SC T L pb d¥ (4.21)

For such cases, any rate of change in the amount of B associated with the system is equal to the
rate of change of B within the control volume. This can beillustrated by considering flow through
aconstant diameter pipe asis shown in Fig. 4.18. The control volume is as shown, and the system
is the fluid within this volume at time t,. We assume the flow is one-dimensional with V = Vi,
where V(1) is a function of time, and that the density is constant. At any instant in time, all
particles in the system have the same velocity. We let B = system momentum = mV = mVi,
where m is the system mass, so that b = B/m = V = Vi, the fluid velocity. The magnitude of
the momentum efflux across the outlet [section (2)] is the same as the magnitude of the momentum
influx across the inlet [section (1)]. However, the sign of the efflux is opposite to that of the influx
sinceV - h > Ofor theoutflow and V - i < Ofor theinflow. Notethat V - i = 0 along the sides
of the control volume. Thus, with V - i = —V, on section (1), V - i = V, on section (2), and
A, = A, we obtain

J pbV - A dA = J p(Vol )(V - A1) dA
~ | ovii-voaa | povyvoaa

@ @

It is seen that for this special case Eq. 4.21 isvalid. The rate at which the momentum of the system
changes with time is the same as the rate of change of momentum within the control volume. If
V, is constant in time, there is no rate of change of momentum of the system and for this special
case each of the terms in the Reynolds transport theorem is zero by itself.

Consider the flow through a variable area pipe shown in Fig. 4.19. In such cases the fluid
velocity isnot the same at section (1) asit is at (2). Hence, the efflux of momentum from the control
volumeis not equal to the influx of momentum, so that the convective term in Eq. 4.20 [the integral
of pV(V - ) over the control surface] is not zero. These topics will be discussed in considerably
more detail in Chapter 5.

B FIGURE 4.19 Flow
———~- Control surface through a variable area pipe.
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B FIGURE 4.20 Exampleof a moving control volume.

44.6 Moving Control Volumes

For most problems in fluid mechanics, the control volume may be considered as a fixed volume
through which the fluid flows. There are, however, situations for which the analysis is simplified
if the control volume is alowed to move or deform. The most general situation would involve a
control volume that moves, accelerates, and deforms. As one might expect, the use of these control
volumes can become fairly complex.

A number of important problems can be most easily analyzed by using a nondeforming
control volume that moves with a constant velocity. Such an example is shown in Fig. 4.20 in
which a stream of water with velocity V, strikes a vane that is moving with constant velocity V..
It may be of interest to determine the force, F, that the water puts on the vane. Such problems
frequently occur in turbines where a stream of fluid (water or steam, for example) strikes a series
of blades that move past the nozzle. To analyze such problems it is advantageous to use a moving
control volume. We will obtain the Reynolds transport theorem for such control volumes.

We consider a control volume that moves with a constant velocity as is shown in Fig. 4.21.
The shape, size, and orientation of the control volume do not change with time. The control volume
merely transates with a constant velocity, V,, as shown. In general, the velocity of the control
volume and the fluid are not the same, so that there is a flow of fluid through the moving control
volumejust asin the stationary control volume cases discussed in Section 4.4.2. The main difference
between the fixed and the moving control volume cases is that it is the relative velocity, W, that
carries fluid across the moving control surface, whereas it is the absolute velocity, V, that carries
the fluid across the fixed control surface. The relative velocity is the fluid velocity relative to the
moving control volume—the fluid velocity seen by an observer riding along on the control volume.
The absolute velocity is the fluid velocity as seen by a stationary observer in a fixed coordinate
system.

The difference between the absolute and relative velocities is the velocity of the control
volume, V, =V — W, or

V=W +V, (4.22)

Since the velocity is a vector, we must use vector addition as is shown in Fig. 4.22 to obtain the
relative velocity if we know the absolute velocity and the velocity of the control volume. Thus, if
the water leaves the nozzle in Fig. 4.20 with avelocity of V, = 100i ft/sand the vane has avelocity
of V, = 20i ft/s(the same as the control volume), it appears to an observer riding on the vane that
the water approaches the vane with avelocity of W = V — V, = 80i ft/s. In general, the absolute

Control volume and system

— N\ = at time t
Particle Aat t, = 0
R 2 N - / ———= Control volume
N /,/ attime t; > t,
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ay
S~_7 /
//4\ /
l \ VB Vi /\
\ N ~ .
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B FIGURE 4.21 Typical moving control volume and system.
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Arelative to control B FIGURE 4.22
to control volume Relationship between absolute and relative

volume velocities.

velocity, V, and the control volume velocity, V., will not be in the same direction so that the
relative and absolute velocities will have different directions (see Fig. 4.22).

The Reynolds transport theorem for a moving, nondeforming control volume can be derived
in the same manner that it was obtained for a fixed control volume. Asisindicated in Fig. 4.23, the
only difference that needs be considered is the fact that relative to the moving control volume the
fluid velocity observed is the relative velocity, not the absolute velocity. An observer fixed to
the moving control volume may or may not even know that he or she is moving relative to some
fixed coordinate system. If we follow the derivation that led to Eq. 4.19 (the Reynolds transport
theorem for a fixed control volume), we note that the corresponding result for a moving control
volume can be obtained by simply replacing the absolute velocity, V, in that equation by the relative
velocity, W. Thus, the Reynolds transport theorem for a control volume moving with constant
velocity is given by

DB

D?SZ;U pbdV + j pbW - A dA (4.23)

where the relative velocity is given by Eq. 4.22.

447 Selection of a Control Volume

Any volume in space can be considered as a control volume. It may be of finite size or it may be
infinitesimal in size, depending on the type of analysis to be carried out. In most of our cases,
the control volume will be a fixed, nondeforming volume. In some situations we will consider
control volumes that move with constant velocity. In either case it is important that considerable
thought go into the selection of the specific control volume to be used.

The selection of an appropriate control volumein fluid mechanicsisvery similar to the selection
of an appropriate free-body diagram in dynamics or statics. In dynamics, we select the body in which
weareinterested, represent the object in afree-body diagram, and then apply the appropriate governing
laws to that body. The ease of solving a given dynamics problem is often very dependent on the
specific object that we select for use in our free-body diagram. Similarly, the ease of solving a given
fluid mechanics problem is often very dependent on the choice of the control volume used. Only by
practice can we develop skill at selecting the “best” control volume. None are “wrong,” but some are
“much better” than others.

Solution of atypica problem will involve determining parameters such as velocity, pressure,
and force at some point in the flow field. It is usually best to ensure that this point is located on
the control surface, not “buried” within the control volume. The unknown will then appear in the
convective term (the surface integral) of the Reynolds transport theorem. If possible, the control

Control volume //"‘\\
and system at time t K N W=V -V

———— System at time

t+ ot Flow as seen by an
observer moving with
velocity Vgy
Pathlines as BEFIGURE 4.23

seen from the Control volume and system as seen
moving control by an observer moving with the
volume control volume.
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B FIGURE 4.24 Various control volumes for flow through
a pipe.

surface should be normal to the fluid velocity so that the angle 6 (V - i = V cosé as shown by
the figure in the margin) in the flux terms of Eq. 4.19 will be 0 or 180°. This will usually simplify
the solution process.

Figure 4.24 illustrates three possible control volumes associated with flow through a pipe.
If the problem is to determine the pressure at point (1), the selection of the control volume (a) is
better than that of (b) because point (1) lies on the control surface. Similarly, control volume (a) is
better than (c) because the flow is normal to the inlet and exit portions of the control volume. None
of these contral volumes are wrong—(a) will be easier to use. Proper control volume selection will
become much clearer in Chapter 5 where the Reynolds transport theorem is used to transform the
governing equations from the system formulation into the control volume formulation, and
numerous examples using control volume ideas are discussed.

4.5 Chapter Summary and Study Guide

field representation

velocity field

Eulerian method

Lagrangian method

one-, two-, and three-
dimensional flow

steady and unsteady
flow

streamline

streakline

pathline

acceleration field

material derivative

local acceleration

convective acceleration

system

control volume

Reynolds transport
theorem

This chapter considered several fundamental concepts of fluid kinematics. That is, various aspects
of fluid motion are discussed without regard to the forces needed to produce this motion. The
concepts of a field representation of a flow and the Eulerian and Lagrangian approaches to
describing a flow are introduced, as are the concepts of velocity and acceleration fields.

The properties of one-, two-, or three-dimensional flows and steady or unsteady flows are
introduced along with the concepts of streamlines, streaklines, and pathlines. Streamlines, which
are lines tangent to the velocity field, are identical to streaklines and pathlines if the flow is steady.
For unsteady flows, they need not be identical.

As a fluid particle moves about, its properties (i.e., velocity, density, temperature) may
change. The rate of change of these properties can be obtained by using the material derivative,
which involves both unsteady effects (time rate of change at a fixed location) and convective
effects (time rate of change due to the motion of the particle from one location to another).

The concepts of a control volume and a system are introduced, and the Reynolds transport
theorem is developed. By using these ideas, the analysis of flows can be carried out using a control
volume (avolume, usually fixed, through which the fluid flows), whereas the governing principles
are stated in terms of a system (a flowing portion of fluid).

The following checklist provides a study guide for this chapter. When your study of the entire
chapter and end-of-chapter exercises has been completed you should be able to

m write out meaning of the terms listed here in the margin and understand each of the related
concepts. These terms are particularly important and are set in italic, bold, and color typein
the text.

m understand the concept of the field representation of a flow and the difference between
Eulerian and Lagrangian methods of describing a flow.

m explain the differences among streamlines, streaklines, and pathlines.
m calculate and plot streamlines for flows with given velocity fields.

m use the concept of the material derivative, with its unsteady and convective effects, to deter-
mine time rate of change of a fluid property.

m determine the acceleration field for a flow with a given velocity field.
m understand the properties of and differences between a system and a control volume.

m interpret, physicaly and mathematically, the concepts involved in the Reynolds transport
theorem.
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Some of the important equations in this chapter are:
Equation for streamlines y_v (4.0
a dx u ’
oV oV oV Y
Acceleration a=—+u—+ov—+w— (43
ot X ay 0z
D d
Material derivative bO) = ) +(V-V)() (4.6)
Dt ot
Streamwise and normal components _v v V2
of acceleration a = oS’ TR 4.7
. DBsys By,
Reynolds transport theorem (restricted form) Dt - ot + p ANV, — piAjVib, (4.15)
DBys o
Reynolds transport theorem (general form) Dt = 3t J pbdV + f pbV -hdA (4.19)
cv cs
Relative and absolute velocities V=W+V, (4.22)
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Review Problems

Go to Appendix G for a set of review problems with answers. De-
tailed solutions can be found in Student Solution Manual and Study

Problems

Guide for Fundamentals of Fluid Mechanics, by Munson et al.
(© 2009 John Wiley and Sons, Inc.).

Note: Unlessotherwiseindicated, use the values of fluid prop-
ertiesfound in thetableson theinside of the front cover. Prob-
lems designated with an (*) are intended to be solved with the
aid of a programmable calculator or a computer. Problems
designated with a (1) are“ open-ended” problems and require
critical thinking in that to work them one must make various
assumptions and provide the necessary data. There is not a
unique answer to these problems.

Answersto the even-numbered problemsare listed at the
end of the book. Access to the videos that accompany problems
can be obtained through the book’s web site, www.wiley.com/
college/munson. The lab-type problems can also be accessed on
thisweb site.

Section 4.1 TheVelocity Field

4.1 Obtain a photograph/image that shows a flowing fluid. Print
this photo and write a brief paragraph that describes the flow in
terms of an Eulerian description; a Lagrangian description.

4.2 Obtain a photograph/image of a situation in which the
unsteadiness of the flow is important. Print this photo and write a
brief paragraph that describes the situation involved.

4.3 Obtain a photograph/image of a situation in which a fluid is
flowing. Print this photo and draw in some lines to represent how
you think some streamlines may look. Write a brief paragraph to
describe the acceleration of a fluid particle as it flows along one
of these streamlines.

4.4 The x- and y-components of a velocity field are given by
u= —(Vy/€) xand v = —(V,/€) y, where V;, and € are constants.
Make a sketch of the velocity field in the first quadrant
(x> 0,y > 0) by drawing arrows representing the fluid velocity
at representative locations.

4.5 A two-dimensional velocity field is given by u = 1 + y and
v = 1. Determine the equation of the streamline that passes
through the origin. On a graph, plot this streamline.

4.6 The velocity field of a flow is given by V=
(52 — 3)l + (X + 4)] + 4yk ft/s, wherex, y, and zarein feet. De-
termine the fluid speed at the origin (x = y = z = 0) and on the x
axis(y = z=0).

4.7 A flow can be visualized by plotting the velocity field as
velocity vectors at representative locations in the flow as shown in
Video V4.2 and Fig. E4.1. Consider the velocity field given in
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polar coordinatesby v, = —10/, and v, = 10/. Thisflow approx-
imatesafluid swirling into asink asshownin Fig. P4.7. Plot the ve-
locity field at locationsgivenby r = 1, 2, and 3with6 = 0, 30, 60,
and 90°.

N

BFIGURE P4.7

4.8 The velocity field of a flow is given by V=
20y/(x? + yA)¥21 — 20x/(x? + y )1/21 ft/s, where x and y are in
feet. Determine the fluid speed at points along the x axis; along the
y axis. What is the angle between the velocity vector and the x axis
at points(x, y) = (5, 0), (5, 5), and (0, 5)?

4.9 The components of a velocity field are given by u = x +y,
v = xy® + 16, and w = 0. Determine the location of any stagna-
tion points (V = 0) in the flow field.

410 The x and y components of velocity for a two-dimensional
flow are u = 6y ft/sand v = 3 ft/s, wherey isin feet. Determine
the equation for the streamlines and sketch representative stream-
linesin the upper half plane.

4.11 Show that the streamlines for a flow whose velocity compo-
nentsareu = ¢(x* — y?) andv = —2cxy, where cisaconstant, are
given by the equation x% — y¥3 = constant. At which point
(points) is the flow parallel to the y axis? At which point (points) is
the fluid stationary?

412 A velocity field is given by V = xi + x(x — 1)(y + 1)],
whereu and v arein ft/sand x and y are in feet. Plot the streamline
that passesthrough x = Oandy = 0. Compare this streamline with
the streakline through the origin.

4.13 Fromtimet = 0tot = 5 hr radioactive steam isreleased from
anuclear power plant accident located at x = —1 mileand y =
3 miles. Thefollowing wind conditions are expected: V = 10i — 5]
mphfor0 <t < 3hr,V = 151 + 8] mphfor3 <t < 10hr, and
V = 5imphfort > 10 hr. Draw to scale the expected streakline of
the steam for t = 3, 10, and 15 hr.

*4.14 Consider a ball thrown with initial speed V, a an angle
of 6 as shown in Fig. P4.14a. As discussed in beginning physics, if
friction is negligible the path that the ball takes is given by

y = (tan 0)x — [g/(2 V2 cos? 0) x>

That is, y = ¢,x + c,x2 where ¢, and ¢, are constants. The path
is a parabola. The pathline for a stream of water leaving a small
nozzle is shown in Fig. P4.14b and Video VV4.12. The coordinates
for this water stream are given in the following table. (a) Use the
given datato determine appropriate valuesfor ¢, and ¢, in the above
equation and, thus, show that these water particles also follow a
parabolic pathline. (b) Use your values of ¢, and c, to determine
the speed of the water, V,, leaving the nozzle.

x(n)  y(in) 1
0 0 =
0.25 0.13 @ Se
0.50 0.16 4} N
0.75 0.13 N\
1.0 0.00 N
125 ~0.20 @
1.50 ~053 y
175 ~0.90 v
2.00 ~143

\

BFIGURE P4.14

4.15 The x and y components of a velocity field are given by
u = x¥ and v = —xy2 Determine the equation for the streamlines
of this flow and compare it with those in Example 4.2. Is the flow
in this problem the same as that in Example 4.2? Explain.

4.16 A flow in the x~y plane is given by the following velocity
field: u=3 and v =6m/s for 0 <t < 20s, u= —4 and
v=0m/s for 20 <t < 40s. Dye is released at the origin
(x=y=0)fort= 0. (a) Draw the pathlinesat t = 30 s for two
particles that were released from the origin—onereleased at t = 0
and the other released at t = 20 s. (b) On the same graph draw the
streamlinesat timest = 10sandt = 30s.

4.17 In addition to the customary horizontal velocity components of
the air in the atmosphere (the “wind”), there often are vertical air cur-
rents(thermals) caused by buoyant effects due to uneven hesting of the
air asindicated in Fig. P4.17. Assumethat the velocity field in acertain
region is approximated by u = Uy, v = vy (1 — yh)for0 <y < h,
and u = uy, v = 0 for y > h. Plot the shape of the streamline that
passes through the origin for values of uy/v, = 0.5, 1, and 2.

y
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B FIGURE P4.17

*4.18 Repeat Problem 4.17 using the same information except
that u = ugy/h for 0 =y =< h rather than u = u,. Use values of
Uy/ve = 0, 0.1, 0.2,0.4, 0.6, 0.8, and 1.0.

4.19 As shown in Video V4.6 and Fig. P4.19, a flying airplane
produces swirling flow near the end of itswings. In certain circum-
stances this flow can be approximated by the velocity field
u= —Ky/(x? + y?) andv = Kx/(x? + y?), where K is a constant
depending on various parameters associated with the airplane (i.e.,
its weight, speed) and x and y are measured from the center of the
swirl. (a) Show that for this flow the velocity is inversely propor-
tional to the distance from the origin. That is, V = K/(x? + y?)¥2,
(b) Show that the streamlines are circles.
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4.20 (See Fluids in the News article titled “Follow those parti-
cles” Section 4.1.) Two photographs of four particlesin aflow past
a sphere are superposed as shown in Fig. P4.20. The time interval
between the photosis At = 0.002 s. The locations of the particles,
as determined from the photos, are shown in the table. (a) Deter-
mine the fluid velocity for these particles. (b) Plot agraph to com-
pare the results of part (a) with the theoretical velocity which is
given by V = Vy(1 + a%?), where ais the sphere radius and V, is
the fluid speed far from the sphere.

Particle xatt = 0s(ft) x at t = 0.002 s(ft)
1 —0.500 —0.480
2 —0.250 -0.232
3 —0.140 —0.128
4 —0.120 —0.112
y, ft
®t=0
©t=0.002s
S 5 5 x, ft
-0.4 -0.2

B FIGURE P4.20

4.21 (SeeFluidsin the News articletitled “\Winds on Earth and
Mars,” Section 4.1.4.) A 10-ft-diameter dust devil that rotates one
revolution per second travels across the Martian surface (in the x-
direction) with aspeed of 5 ft/s. Plot the pathline etched on the sur-
face by a fluid particle 10 ft from the center of the dust devil for
time0 = t = 3 s. The particle position is given by the sum of that
for astationary swirl [x = 10 cos(27t), y = 10 sin(27t)] and that
for auniform velocity (x = 5t, y = constant), wherex and y arein
feet and t isin seconds.

Section 4.2 TheAcceleration Field

4.22 The x- and y-components of a velocity field are given by
u=(Vo/€)xandv = —(V,/€)y, whereV, and ¢ are constants. Plot
the streamlines for this flow and determine the acceleration field.

4.23 A velocity field is given by u = cx? and v = cy?, wherecis
a constant. Determine the x and y components of the acceleration.
At what point (points) in the flow field is the acceleration zero?

4.24 Determine the acceleration field for athree-dimensional flow
with velocity componentsu = —x, v = 4x%2 andw = x — y.

T4.25 Estimatethe deceleration of awater particlein araindrop as
it strikes the sidewalk. List all assumptions and show all calcula-
tions.

4.26 The velocity of air in the diverging pipe shown in Fig. P4.26
isgiven by V; = 4t ft/sand V, = 2t ft/s, wheret isin seconds. (a)
Determine the local acceleration at points (1) and (2). (b) Isthe av-
erage convective acceleration between these two points negative,
zero, or positive? Explain.

Problems 181
V, = 4t ft/s V, = 2t ft/s

(1)

(2)
B FIGURE P4.26

4.27 Water flowsin apipe so that its velocity triples every 20 s. At

t=0ithasu = 5ft/s. That is, V = u(t)i = 5(3"®)i ft/s. Deter-
mine the acceleration whent = 0, 10, and 20 s.

4.28 When a valve is opened, the velocity of water in a certain
pipeisgivenby u = 10(1 — e™"), » = 0, andw = 0, whereuisin
ft/sand t isin seconds. Determine the maximum velocity and max-
imum acceleration of the water.

4.29 The velocity of the water in the pipe shown in Fig. P4.29 is
given by V; = 0.50t m/sand V, = 1.0t m/s, wheret isin seconds.
Determinethelocal acceleration at points (1) and (2). Isthe average
convective accel eration between these two points negative, zero, or
positive? Explain.

vazz

1.0t m/s
——

V) =
0.50t m/s

B FIGURE P4.29

4.30 A shock waveisavery thinlayer (thickness = ¢) in ahigh-
speed (supersonic) gas flow across which the flow properties
(velocity, density, pressure, etc.) change from state (1) to state
(2) as shown in Fig. P4.30. If VV, = 1800 fps, V, = 700 fps, and
€ = 10"%in., estimate the average deceleration of the gas as it
flows across the shock wave. How many g's deceleration does
this represent?

)

Shock wave —_
HFIGURE P4.30

T4.31 Estimate the average acceleration of water as it travels
through the nozzle on your garden hose. List all assumptions and
show all calculations.

4.32 Asavalveisopened, water flows through the diffuser shown
inFig. P4.32 at an increasing flowrate so that the velocity along the
centerline is given by V = ui = V(1 — e ®) (1 — x/€) i, where
Uy, C, and ¢ are constants. Determine the acceleration as a function
of xandt. If V, = 10ft/sand ¢ = 5 ft, what value of c (other than
¢ = 0) isneeded to make the acceleration zero for any xatt = 1s?
Explain how the acceleration can be zero if the flowrate is increas-
ing with time.
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u u= %Vo(l -9

u=Vy(l-e

B FIGURE P4.32

4.33 A fluid flows along the x axis with a velocity given by
V = (x/t) i, where x isin feet and t in seconds. (a) Plot the speed
for0=x=10ftand t = 3s. (b) Plot the speed for x = 7 ft and
2 =t = 4. (c) Determinetheloca and convective acceleration. (d)
Show that the acceleration of any fluid particle in the flow is zero.
(e) Explain physically how the velocity of a particle in this unsteady
flow remains constant throughout its motion.

4.34 A hydraulic jump is a rather sudden change in depth of a
liquid layer as it flows in an open channel as shown in Fig. P4.34
and Video V10.12. In a relatively short distance (thickness = ¢)
the liquid depth changes from z; to z,, with a corresponding change
in velocity from V, to V,. If V, = 1.20ft/s, V, = 0.30ft/s, and
¢ = 0.02 ft, estimate the average deceleration of the liquid as it
flows across the hydraulic jump. How many g's deceleration does
this represent?

Hydraulic jump

—
—
f/
VAN S /r
”'—:—:”’Z’l—’” _/g\/\
t
B FIGURE P4.34

4.35 A fluid particle flowing along a stagnation streamline, as
shownin Video V4.9 and Fig. P4.35, slows down as it approaches
the stagnation point. Measurements of the dye flow in the video
indicate that the location of a particle starting on the stagnation
streamline a distance s = 0.6 ft upstream of the stagnation point
at t = 0 is given approximately by s = 0.6e %%, where t is in
seconds and s is in feet. (a) Determine the speed of a fluid
particle as a function of time, Vpaiad(t), as it flows along the
streamline. (b) Determine the speed of the fluid as a function of
position along the streamline, V = V/(s). (c) Determine the fluid
acceleration along the streamline as a function of position,

a = ays).

Stagnation point, s=0

Fluid particle

B FIGURE P4.35

4.36 A nozzle is designed to accelerate the fluid from V; to V,
in a linear fashion. That is, V= ax + b, where a and b are

constants. If the flow is constant with V; = 10m/s at x, = 0 and
V, =25m/s at x, = 1 m, determine the local acceleration, the
convective acceleration, and the acceleration of the fluid at points
(1) and (2).

4.37 Repeat Problem 4.36 with the assumption that the flow is not
steady, but at the time when V;, = 10 m/sand V, = 25m/s, it is
known that oV, /dt = 20 m/s* and 9V,/ot = 60 m/s2.

4.38 Anincompressible fluid flows past a turbine blade as shown
in Fig. P4.38a and Video V4.9. Far upstream and downstream of
the blade the velocity is V,. Measurements show that the velocity of
the fluid along streamline A—F near the blade is as indicated in
Fig. P4.38b. Sketch the streamwise component of acceleration, as,
as afunction of distance, s, along the streamline. Discuss the im-
portant characteristics of your result.
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B FIGURE P4.38

*4.39 Air flows steadily through avariable area pipe with aveloc-
ity of V. = u(x)i ft/s, where the approximate measured values of
u(x) are given in the table. Plot the acceleration as a function of x
for 0 = x = 12in. Plot the acceleration if the flowrate isincreased
by afactor of N (i.e., the values of u are increased by afactor of N)
for N = 2, 4, 10.

x (in.) u (ft/s) x (in.) u (ft/s)
0 10.0 7 20.1
1 10.2 8 174
2 13.0 9 135
3 20.1 10 11.9
4 28.3 11 10.3
5 284 12 10.0
6 258 13 10.0

*4.40 Asisindicated in Fig. P4.40, the speed of exhaust inacar's
exhaust pipe varies in time and distance because of the
periodic nature of the engine's operation and the damping
effect with distance from the engine. Assume that the speed is
given by V = V,[1 + ae ™ sin(wt)], where V, = 8fps, a = 0.05,
b=0.2ft" and w = 50rad/s. Calculate and plot the fluid
accelerationat x =0, 1, 2, 3,4, and5ftfor0 =t = 7/25s.
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V= VIl + ae™sin(wt)]

4.41 Water flows over the crest of a dam with speed V as shown in
Fig. P4.41. Determine the speed if the magnitude of the normal ac-
celeration at point (1) isto equa the acceleration of gravity, g.

B FIGURE P4.41

4.42 Assume that the streamlines for the wingtip vortices from
an airplane (see Fig. P4.19 and Video VV4.6) can be approximated
by circles of radius r and that the speed isV = K/r, whereK isa
constant. Determine the streamline acceleration, a;, and the normal
acceleration, a,, for this flow.

4.43 A fluid flows past a sphere with an upstream velocity of
V, = 40 m/s as shown in Fig. P4.43. From a more advanced theory
it isfound that the speed of the fluid aong the front part of the sphere
isV = 3V, sin 9. Determine the streamwise and normal components
of acceleration at point A if the radius of the sphereisa = 0.20 m.

\%
A
40°
Vo ‘ P a
> .

B FIGURE P4.43

*4.44  For flow past asphere asdiscussed in Problem 4.43, plot agraph
of the streamwise acceleration, a;, the norma acceleration, a,, and the
magnitude of the acceleration as afunction of 0 for 0 =< 6 = 90° with
V, = 50ft/sand a = 0.1, 1.0, and 10 ft. Repeet for V, = 5 ft/s. At
what point is the acceleration a maximum; a minimum?

*4.45 Thevelocity componentsfor steady flow through the nozzle
shown in Fig. P4.45 are u = —Vyx/€ and v = V, [1 + (y/{)],

y
// @ \\1
77 RSERE
€2 |

B FIGURE P4.45
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where V, and ¢ are constants. Determine the ratio of the magnitude
of the acceleration at point (1) to that at point (2).

*4.46 A fluid flows past a circular cylinder of radius a with an
upstream speed of V, as shown in Fig. P4.46. A more advanced the-
ory indicates that if viscous effects are negligible, the velocity of the
fluid along the surface of the cylinder is given by V = 2V, sin 6.
Determine the streamline and normal components of acceleration
on the surface of the cylinder as afunction of V,, a, and 6 and plot
graphs of a, and a, for 0 =6 = 90° with V, = 10 m/s and
a = 0.01, 0.10, 1.0, and 10.0 m.

\%
y

B FIGURE P4.46

4.47 Determine the x and y components of acceleration for the
flow given in Problem 4.11. If ¢ > 0, is the particle at point
X=X >0 and y= 0 accelerating or decelerating? Explain.
Repeat if x, < 0.

4.48 When flood gates in a channel are opened, water flows
along the channel downstream of the gates with an increasing
speed given by V = 4(1 + 0.1t) ft/s, for 0=t = 20 s, where t
isin seconds. For t > 20 s the speed is a constant V = 12 ft/s.
Consider alocation in the curved channel where the radius of
curvature of the streamlinesis 50 ft. For t = 10 s determine (a)
the component of acceleration along the streamline, (b) the
component of acceleration normal to the streamline, and (c)
the net acceleration (magnitude and direction). Repeat for
t=30s.

449 Water flows steadily through the funnel shown in
Fig. P4.49. Throughout most of the funnel the flow is approxi-
mately radial (along rays from O) with a velocity of V = ¢/r?,
wherer isthe radial coordinate and c is a constant. If the veloc-
ity is 0.4 m/s when r = 0.1 m, determine the acceleration at
points A and B.

!‘70_12 m—>
|

B FIGURE P4.49

450 Water flows though the dlit at the bottom of a two-
dimensional water trough as shown in Fig. P4.50. Throughout most
of the trough the flow is approximately radial (along rays from O)
with avelocity of V = ¢/r, wherer istheradial coordinate and cis
aconstant. If the velocity is 0.04 m/swhenr = 0.1 m, determine
the acceleration at points A and B.
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B FIGURE P4.50

451 Air flowsfrom apipe into the region between two parallél cir-
cular disks as shown in Fig. P4.51. The fluid velocity in the gap be-
tween the disks is closely approximated by V = VyR/r, where Ris
the radius of the disk, r is the radial coordinate, and V, is the fluid
velocity at the edge of the disk. Determine the acceleration for
r=1,2or3ftifV, = 5ft/sand R = 3ft.

Disks

AN = R
u T U\Pipe '

B FIGURE P4.51

4.52 Air flows into a pipe from the region between a circular disk
and a cone as shown in Fig. P4.52. The fluid velocity in the gap be-
tween the disk and the coneis closely approximated by V = V,R?/r?,
where Risthe radius of the disk, r isthe radia coordinate, and V; is
the fluid velocity at the edge of the disk. Determine the acceleration
forr = 0.5and 2ftif V, = 5ft/sand R = 2 ft.

Cone

Disk

\

B FIGURE P4.52

Section 4.2.1 TheMaterial Derivative

453 Air flows steadily through a long pipe with a speed of
u = 50 + 0.5x, wherexisthedistanceaongthepipeinfeet, anduis
inft/s. Dueto hest transfer into the pipe, the air temperature, T, within
the pipeis T = 300 + 10x °F. Determine the rate of change of the
temperature of air particles asthey flow past the section a x = 5ft.

4.54 A company produces a perishable product in a factory
located at x = 0 and sells the product along the distribution route
x > 0. The selling price of the product, P, is a function of the
length of time after it was produced, t, and the location at which it
issold, x. That is, P = P(x, t). At a given location the price of the
product decreasesin time (it is perishable) according to 0P/t = —8
dollarg/hr. In addition, because of shipping costs the price increases
with distance from the factory according to 9P/ox = 0.2 dollars/mi.
If the manufacturer wishesto sell the product for the same 100-dollar

price anywhere along the distribution route, determine how fast he
must travel along the route.

4.55 Assumethe temperature of the exhaust in an exhaust pipe can
be approximated by T = To(1 + ae ™) [1 + ¢ cos(wt)], where Ty =
100°C,a=3,b=0.03m™, ¢ = 0.05 and w = 100 rad/s. If the
exhaust speed isaconstant 3 m/s, determinethetimerate of change of
temperature of the fluid particlesat x = O andx = 4mwhent = 0.

4.56 A bicyclist leaves from her home at 9 A.m. and rides to a
beach 40 mi away. Because of a breeze off the ocean, the tempera-
ture at the beach remains 60 °F throughout the day. At the cyclist’s
home the temperature increases linearly with time, going from
60 °F at 9 A.M. to 80 °F by 1 pm. The temperature is assumed to
vary linearly as a function of position between the cyclist's home
and the beach. Determine the rate of change of temperature ob-
served by the cyclist for the following conditions: (a) as she pedals
10 mph through atown 10 mi from her home at 10 A.m.; (b) as she
eats lunch at arest stop 30 mi from her home at noon; (c) as she ar-
rives enthusiastically at the beach at 1 p.m., pedaling 20 mph.

457 The temperature distribution in a fluid is given by
T = 10x + 5y, where x and y are the horizontal and vertical coor-
dinates in meters and T is in degrees centigrade. Determine the
time rate of change of temperature of afluid particle traveling (a)
horizontally with u = 20 m/s, v = 0 or (b) verticaly withu = 0,
v =20m/s.

Section 4.4 The Reynolds Transport Theorem

4.58 Obtain a photograph/image of a situation in which afluid is
flowing. Print this photo and draw a control volume through which
thefluid flows. Write abrief paragraph that describes how the fluid
flows into and out of this control volume.

4.59 Thewind blowsthrough thefront door of ahouse with aspeed
of 2 m/s and exits with a speed of 1 m/s through two windows on
the back of the house. Consider the system of interest for this flow
to be the air within the house at time t = 0. Draw a simple sketch
of the house and show an appropriate control volume for this flow.
On the sketch, show the position of the system at timet = 1s.

4.60 Water flows through a duct of square cross section as shown
in Fig. P4.60 with a constant, uniform velocity of V = 20 m/s.
Consider fluid particlesthat liealong line A-B at timet = 0. Deter-
mine the position of these particles, denoted by line A’—B', when
t = 0.20s. Use the volume of fluid in the region between lines
A-B and A'—B’ to determine the flowrate in the duct. Repeat the
problem for fluid particles originally along line C-D; along line
E—F. Compare your three answers.

B B' D F
[ ° Py ° ]
J T
V=20 m/s |
— | 0.5m
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B FIGURE P4.60

4.61 Repeat Problem 4.60if the velocity profileislinear from 0 to
20 m/s across the duct as shown in Fig. P4.61.

20 m/s

0 m/s B FIGURE P4.61



4.62 In the region just downstream of a sluice gate, the water
may develop areverse flow region as is indicated in Fig. P4.62
and Video V10.9. The velocity profile is assumed to consist of
two uniform regions, one with velocity V, = 10 fps and the other
with V, = 3 fps. Determine the net flowrate of water across the
portion of the control surface at section (2) if the channel is 20 ft
wide.

|.— Control surface

f
] 1w
= |
EEI — 121t
2) f
V, = 10 ft/s

B FIGURE P4.62

4.63 At timet = 0 the valve on an initially empty (perfect vac-
uum, p = 0) tank is opened and air rushes in. If the tank has avol-
ume of ¥, and the density of air within the tank increases as
p = p(1 — e ™), where b is aconstant, determine the time rate of
change of mass within the tank.

T4.64 From calculus, one obtains the following formula (Leibnitz
rule) for the time derivative of an integral that contains time in both
the integrand and the limits of the integration:

dx,

ax Lt
dt

d v % of
J f(x, t)dx = J adx + f (X t) = (X, 1) at

dt Jx %

Discuss how this formula is related to the time derivative of the
total amount of aproperty in asystem and to the Reynolds transport
theorem.

4.65 Water enters the bend of a river with the uniform velocity
profile shown in Fig. P4.65. At the end of the bend there is are-
gion of separation or reverse flow. The fixed control volume ABCD
coincides with the system at timet = 0. Make a sketch to indicate
(a) thesystem at timet = 5 sand (b) the fluid that has entered and
exited the control volume in that time period.

V=1m/s

Control volume

B FIGURE P4.65

4.66 A layer of oil flows down a vertical plate as shown in
Fig. P4.66 with a velocity of V = (V,/h?) (2hx — x?) | where V,
and h are constants. (a) Show that the fluid sticks to the plate and
that the shear stress at the edge of the layer (x = h) iszero. (b) De-
termine the flowrate across surface AB. Assume the width of the
plateisb. (Note: The velocity profile for laminar flow in a pipe has
asimilar shape. See VVideo V6.13.)
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4.67 Weater flows in the branching pipe shown in Fig. P4.67 with
uniform velocity at each inlet and outlet. The fixed control volume
indicated coincideswith the system at timet = 20 s. Make asketch
toindicate (a) the boundary of the system at timet = 20.1 s, (b) the
fluid that left the control volume during that 0.1-sinterval, and (c)
the fluid that entered the control volume during that time interval.

V;=2m/s

Vy=25mis 3

— — — Control volume

B FIGURE P4.67

V,=1m/s

4.68 Two plates are pulled in opposite directions with speeds of
1.0 ft/s as shown in Fig. P4.68. The il between the plates moves
with avelocity givenby V = 10vyi ft/s, wherey isin feet. The fixed
control volume ABCD coincideswith the system at timet = 0. Make
asketch to indicate (a) the system at timet = 0.2 sand (b) the fluid
that has entered and exited the control volume in that time period.

y
[«<—0.2 ft —=—0.2 ft
B ‘ C
— Ee— e 75
Control ;1 [
volume\q\ 0-1 ft uly) = l?y ft/s
P f I X
0.1ft ‘
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B FIGURE P4.68

4.69 Water issquirted from asyringewith aspeed of V = 5 m/shy
pushing in the plunger with a speed of V,, = 0.03 m/s as shown in
Fig. P4.69. The surface of the deforming control volume consists of
the sides and end of the cylinder and the end of the plunger. The sys-
tem consists of the water in the syringe at t = 0 when the plunger
isat section (1) as shown. Make a sketch to indicate the control sur-
face and the systemwhent = 0.5s.
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Cylinder\

|, Plunger

>V, =0.03 m/s > V=5m/s

(1)
«——0.08 m —~
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4.70 Water enters a 5-ft-wide, 1-ft-deep channel as shown in
Fig. PA.70. Across theinlet the water velocity is 6 ft/sin the cen-
ter portion of the channel and 1 ft/sin the remainder of it. Farther
downstream the water flows at a uniform 2 ft/s velocity across
the entire channel. The fixed control volume ABCD coincides
with the system at time t = 0. Make a sketch to indicate (a) the
system at timet = 0.5 sand (b) the fluid that has entered and ex-
ited the control volume in that time period.

1 ft/s

!

2 ft/s

I
|
|
|
I

6 ft/s : 1ft 5 ft
g
1 ft/s |
|

B FIGURE P4.70

4.71 Water flows through the 2-m-wide rectangular channel
shown in Fig. P4.71 with a uniform velocity of 3 m/s. (a) Directly
integrate Eq. 4.16 with b = 1 to determine the mass flowrate (kg/s)
across section CD of the control volume. (b) Repeat part (a) with
b = 1/p, where p isthe density. Explain the physical interpretation
of the answer to part (b).

77777 Control surface
HEFIGURE P4.71

4.72 The wind blows across a field with an approximate velocity
profile as shown in Fig. P4.72. Use Eq. 4.16 with the parameter b
equal to the velocity to determine the momentum flowrate across the
vertical surface A-B, which isof unit depth into the paper.

15 ft/s

@

N
o
=

10 ft

LB

T> G e e G = —

B FIGURE P4.72

B LifeLong Learning Problems

4.73 Even for the simplest flows it is often not be easy to visualy
represent various flow field quantities such as velocity, pressure, or
temperature. For more complex flows, such as those involving three-
dimensional or unsteady effects, it is extremely difficult to “show the
data” However, with the use of computers and appropriate software,
novel methods are being devised to more effectively illustrate the
structure of a given flow. Obtain information about methods used to
present complex flow data. Summarize your findingsin abrief report.

4.74 For centuries people have obtained qualitative and quantita-
tive information about various flow fields by observing the motion
of objects or particlesin aflow. For example, the speed of the cur-
rent in a river can be approximated by timing how long it takes a
stick to travel a certain distance. The swirling motion of atornado
can be observed by following debris moving within the tornado
funnel. Recently various high-tech methods using lasers and
minute particles seeded within the flow have been developed to
measure velocity fields. Such techniques include the laser doppler
anemometer (LDA), the particle image velocimeter (PlV), and oth-
ers. Obtain information about new |aser-based techniques for mea-
suring velocity fields. Summarize your findingsin abrief report.

B FE Exam Problems

Sample FE (Fundamentals of Engineering) exam questions for fluid
mechanics are provided on the book’s web site, www.wiley.com/
college/munson.


http://www.wiley.com/college/munson

CHAPTER OPENING PHoTo: Wind turbine farms (this is the Middelgrunden Offshore Wind Farm in Denmark)
are becoming more common. Finite control volume analysis can be used to estimate the amount of energy
transferred between the moving air and each turbine rotor. (Photograph courtesy of Semens Wind Power.)

Learning Objectives

Many fluid me-
chanics problems
can be solved by us-
ing control volume
analysis.

After completing this chapter, you should be able to:
m select an appropriate finite control volume to solve a fluid mechanics problem.

m apply conservation of mass and energy and Newton's second law of motion to
the contents of a finite control volume to get important answers.

m know how velocity changes and energy transfers in fluid flows are related to
forces and torques.

m understand why designing for minimum loss of energy in fluid flows is so
important.

To solve many practical problemsin fluid mechanics, questions about the behavior of the contents
of afinite region in space (a finite control volume) are answered. For example, we may be asked
to estimate the maximum anchoring force required to hold a turbojet engine stationary during a
test. Or we may be called on to design a propeller to move a boat both forward and backward. Or
we may need to determine how much power it would take to move natural gas from one location
to another many miles away.

The bases of finite control volume analysis are some fundamental laws of physics, namely,
conservation of mass, Newton’s second law of motion, and the first and second laws of thermody-
namics. While some simplifying approximations are made for practicality, the engineering answers
possible with the estimates of this powerful analysis method have proven valuable in numerous in-
stances.

Conservation of mass is the key to tracking flowing fluid. How much enters and leaves a
control volume can be ascertained.
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Newton’s second law of motion leads to the conclusion that forces can result from or cause
changes in aflowing fluid’s velocity magnitude and/or direction. Moment of force (torque) can re-
sult from or cause changes in a flowing fluid’'s moment of velocity. These forces and torques can
be associated with work and power transfer.

The first law of thermodynamics is a statement of conservation of energy. The second law
of thermodynamics identifies the loss of energy associated with every actual process. The me-
chanical energy equation based on these two laws can be used to analyze a large variety of steady,
incompressible flows in terms of changes in pressure, elevation, speed, and of shaft work and loss.

Good judgment is required in defining the finite region in space, the control volume, used
in solving a problem. What exactly to leave out of and what to leave in the control volume are im-
portant considerations. The formulas resulting from applying the fundamental laws to the contents
of the control volume are easy to interpret physically and are not difficult to derive and use.

Because a finite region of space, a control volume, contains many fluid particles and even
more molecules that make up each particle, the fluid properties and characteristics are often aver-
age values. In Chapter 6 an analysis of fluid flow based on what is happening to the contents of
an infinitesimally small region of space or control volume through which numerous molecules
simultaneously flow (what we might call a point in space) is considered.

51 Conservation of Mass—The Continuity Equation

The amount of
massin a systemis
constant.

5.1.1 Derivation of the Continuity Equation

A system is defined as a collection of unchanging contents, so the conservation of mass principle
for a system is simply stated as

time rate of change of the system mass = 0

or

DMy
=0 5.1
Dt (5.1

where the system mass, My, is more generally expressed as

Mgs = J p dV (5.2)
sys

and the integration is over the volume of the system. In words, Eq. 5.2 states that the system mass
is equal to the sum of al the density-volume element products for the contents of the system.

For a system and a fixed, nondeforming control volume that are coincident at an instant of
time, asillustrated in Fig. 5.1, the Reynolds transport theorem (Eq. 4.19) with B = massandb = 1
allows us to state that

D

d
- V= ¥+ V - hdA .
Dt stpd ot vapd Jcsp nd (53

System Control Volume

(a) (b) (c)

B FIGURE 5.1 System and control volume at three different
instances of time. (a) System and control volume at timet — &t. (b) System and
control volume at time t, coincident condition. (c) System and control volume at
timet + ot.
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The continuity
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ment that massis
conserved.
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or
. time rate of change net rate of flow
time rate of change
of the mass of the of mass through
of themass of the = .
contents of the coin- the control

coincident sySeM 4 jent control volume  surface

In Eqg. 5.3, we express the time rate of change of the system mass as the sum of two control vol-
ume quantities, the time rate of change of the mass of the contents of the control volume,

9
2 sy
ot L P

and the net rate of mass flow through the control surface,
J pV - hidA
cs

When a flow is steady, all field properties (i.e., properties at any specified point) including
density remain constant with time and the time rate of change of the mass of the contents of the
control volume is zero. That is,

d
po LI pd¥ =0

The integrand, V - i dA, in the mass flowrate integral represents the product of the compo-
nent of velocity, V, perpendicular to the small portion of control surface and the differential area,
dA. Thus, V - i dA is the volume flowrate through dA and pV - h dA is the mass flowrate through
dA. Furthermore, as shown in the sketch in the margin, the sign of the dot product V - A is* +”
for flow out of the control volume and “—" for flow into the control volume since i is considered
positive when it points out of the control volume. When all of the differential quantities, pV - f dA,
are summed over the entire control surface, as indicated by the integral

J pV - hdA
cs

the result is the net mass flowrate through the control surface, or

| v-naa= S-S, (5.

where mis the mass flowrate (Ibm/s, slug/s or kg/s). If theintegral in Eq. 5.4 is positive, the net flow
is out of the control volume; if the integral is negative, the net flow is into the control volume.

The control volume expression for conservation of mass, which is commonly called the con-
tinuity equation, for afixed, nondeforming control volume is obtained by combining Egs. 5.1, 5.2,
and 5.3 to obtain

J
J pdV+JpV-ﬁdA=O (5.5)
ot Jov cs

In words, Eq. 5.5 states that to conserve mass the time rate of change of the mass of the contents
of the control volume plus the net rate of mass flow through the control surface must equal zero.
Actually, the same result could have been obtained more directly by equating the rates of mass flow
into and out of the control volume to the rates of accumulation and depletion of mass within the
control volume (see Section 3.6.2). It is reassuring, however, to see that the Reynolds transport the-
orem works for this simple-to-understand case. This confidence will serve us well as we develop
control volume expressions for other important principles.

An often-used expression for mass flowrate, m, through a section of control surface having
areaAis

m= pQ = pAV (5.6)
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Mass flowrate
equals the product
of density and vol-
ume flowrate.

/

N2

N

V5.1 Snk flow

where p is the fluid density, Q is the volume flowrate (ft3%s or m3%s), and V is the component of
fluid velocity perpendicular to area A. Since

I’h=JpV-ﬁdA
A

application of Eq. 5.6 involves the use of representative or average values of fluid density, p, and
fluid velocity, V. For incompressible flows, p is uniformly distributed over area A. For compress-
ible flows, we will normally consider a uniformly distributed fluid density at each section of flow
and alow density changes to occur only from section to section. The appropriate fluid velocity to
use in Eq. 5.6 is the average value of the component of velocity normal to the section area in-
volved. This average value, V, defined as

JpV-ﬁdA
A

V= oA (5.7)

is shown in the figure in the margin.
If the velocity is considered uniformly distributed (one-dimensional flow) over the section
areg, A, then

J pV - h dA
v=" -y 5.8
A (58
and the bar notation is not necessary (as in Example 5.1). When the flow is not uniformly distrib-
uted over the flow cross-sectional area, the bar notation reminds us that an average velocity is be-
ing used (as in Examples 5.2 and 5.4).

5.1.2 Fixed, Nondeforming Control Volume

In many applications of fluid mechanics, an appropriate control volume to use is fixed and nonde-
forming. Several example problems that involve the continuity equation for fixed, nondeforming
control volumes (Eg. 5.5) follow.

—EXAMPLE

LYl Conservation of Mass—Steady, Incompressible Flow

GIVEN Water flows steadily through a nozzle at the end of a  tions, the nozzle exit velocity must be at least 20 m/s as shown in
fire hose as illustrated in Fig. E5.1a. According to local regula=  Fig. E5.1b.

B FIGURE E5.1a

FIND Determine the minimum pumping capacity, Q, required
inmds.

Section (1) (pump discharge)

/ Section (2) (nozzle exit)

Flow

< Control volume
B FIGURE E5.1b
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The pumping capacity sought is the volume flowrate delivered by
the fire pump to the hose and nozzle. Since we desire knowledge
about the pump discharge flowrate and we have information
about the nozzle exit flowrate, we link these two flowrates with
the control volume designated with the dashed linein Fig. E5.1b.
This control volume contains, at any instant, water that is within
the hose and nozzle from the pump discharge to the nozzle exit
plane.

Equation 5.5 is applied to the contents of this control volume
to give

0 (flow is steady)

%pd\%-l—fpV-ﬁdA—O @
cs

cv
The time rate of change of the mass of the contents of this control
volume is zero because the flow is steady. Because there is only
oneinflow [the pump discharge, section (1)] and one outflow [the
nozzle exit, section (2)], Eq. (1) becomes
PPV — p1AV, = 0

so that with m = pAV

m = @
Becausethe massflowrateis equal to the product of fluid density, p,
and volume flowrate, Q (see Eq. 5.6), we obtain from Eq. 2

p2Q2 = p1Q1 (©)]
Liquid flow at low speeds, asin this example, may be considered
incompressible. Therefore
P2 = P1 4)
and from Eqgs. 3 and 4
Q=0Q ()

The pumping capacity is equal to the volume flowrate a the nozzle
exit. If, for smplicity, the vel ocity distribution at the nozzle exit plane,
section (2), isconsidered uniform (one-dimensiona), then from Eq. 5

Q= Q= VoA,
2
v h2_ 7 (_40mm
= Vo7, D2 =(20ms) (1000 mm/m)
= 0.0251 m®¥/s (Ans)

COMMENT By repeating the calculations for various val-
ues of the nozzle exit diameter, D,, the results shown in Fig.
ES5.1c are obtained. The flowrateis proportional to the exit area,
which varies as the diameter squared. Hence, if the diameter
were doubled, the flowrate would increase by a factor of four,
provided the exit velocity remained the same.

0.15

0.10
0
(\”E»
o

0.05

(40 mm, 0.0251 m3/s)
0
0 20 40 60 80 100

D,, mm

B FIGURE E5.1c

—EXAMPLE .34 Conservation of Mass—Steady, Compressible Flow

GIVEN Air flows steadily between two sections in a long,
straight portion of 4-in. inside diameter pipe as indicated in
Fig. E5.2. The uniformly distributed temperature and pressure at
each section are given. The average air velocity (nonuniform ve-
locity distribution) at section (2) is 1000 ft/s.

FIND Calculate the average air velocity at section (1).

SOLUTION

The average fluid velocity at any section is that velocity which
yields the section mass flowrate when multiplied by the section
average fluid density and section area (Eg. 5.7). We relate the
flows at sections (1) and (2) with the control volume designated
with adashed line in Fig. E5.2.

Equation 5.5 is applied to the contents of this control volume
to obtain

Control volume Pipe

Section (1) D,=D,=4in Section (2)
p; = 100 psia p, = 18.4 psia
T, = 540 °R T, =453 °R

V, = 1000 ft/s
B FIGURE E5.2

0 (flow is steady)
:‘/J{(:V + J pV-hdA=0

Thetime rate of change of the mass of the contents of this control
volume is zero because the flow is steady. The control surface
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integral involves mass flowrates at sections(1) and (2) so that from
Eq. 5.4 we get

JpV-ﬁdA=r'nz—ml=O
cS

or
m = (1)
and from Egs. 1, 5.6, and 5.7 we obtain
P1A1\71 = P2 A2\72 2
orsince Ay = Ay
— pzf
V; = —V. 3
' P1 2 &

Air at the pressures and temperatures involved in this example
problem behaves like anideal gas. The ideal gas equation of state
(Eg. 1.8)is

p= @)

Thus, combining Egs. 3 and 4 we obtain
v, = AN
piT,
(18.4 psia)(540 °R)(1000 ft/s)

= (opsa@sscR) | 2OMA

(Ans)

COMMENT We learn from this example that the continuity
equation (Eq. 5.5) is valid for compressible as well as incom-
pressible flows. Also, nonuniform velocity distributions can be
handled with the average vel ocity concept. Significant average ve-
locity changes can occur in pipe flow if the fluid is compressible.

GIVEN The inner workings of a dehumidifier are shown in
Fig. E5.3a. Moist air (amixture of dry air and water vapor) enters
the dehumidifier at the rate of 600 Ibm/hr. Liquid water drains out

B FIGURE E5.3a

SoLuTION

L SLXTTFEN Conservation of Mass—Two Fluids

of the dehumidifier at arate of 3.0 Ibm/hr. A simplified sketch of
the processis provided in Fig. E5.3b.

FIND Determine the mass flowrate of the dry air and the water
vapor leaving the dehumidifier.

Iy 3

Section (1) i Cooling coil
| Contrc‘ﬂ/volume /Motor
m, = \‘r** - : -
600 Ibm/hr | . }
— | —_—

Section (2)
Condensate
(water)

Section (3)

my = 3.0 Ibm/hr
B FIGURE E5.3b

The unknown mass flowrate at section (2) islinked with the known
flowrates at sections(1) and (3) with the control volume designated
with a dashed line in Fig. E5.3b. The contents of the control vol-
ume are the air and water vapor mixture and the condensate (lig-
uid water) in the dehumidifier at any instant.

Not included in the control volume are the fan and its motor,
and the condenser coils and refrigerant. Even though the flow in
the vicinity of the fan blade is unsteady, it is unsteady in a cycli-
cal way. Thus, the flowrates at sections (1), (2), and (3) appear
steady and the time rate of change of the mass of the contents of




51

the control volume may be considered equal to zero on a time-
average basis. The application of Egs. 5.4 and 5.5 to the control
volume contents results in

JpV-ﬁdA=—r'nl+r'nz+r'rg=O
cs
or

m, = M, — my = 600 Ibm/hr — 3.0 lbm/hr

= 597 Ibm/hr (Ans)
COMMENT Note that the continuity equation (Eg. 5.5) can
be used when there is more than one stream of fluid flowing
through the control volume.

193

Conservation of Mass—The Continuity Equation

The answer is the same with a control volume which includes
the cooling coils to be within the control volume. The continuity
equation becomes

m, =M — Mg + m, — My @
where m, is the mass flowrate of the cooling fluid flowing
into the control volume, and s is the flowrate out of the
control volume through the cooling coil. Since the flow
through the coils is steady, it follows that m, = ms. Hence,

Eqg. 1 gives the same answer as obtained with the original con-
trol volume.

GIVEN Incompressible, laminar water flow develops in a
straight pipe having radius R asindicated in Fig. E5.4a. At section
(2), the velocity profile is uniform; the velocity is equal to a con-
stant value U and is parallel to the pipe axis everywhere. At sec-
tion (2), the velocity profile is axisymmetric and parabolic, with
zero velocity at the pipe wall and a maximum value of u,,,, at the
centerline.

FIND
(@) How areU and uy,,, related?

(b) How are the average velocity at section (2), V,, and U,
related?

SOLUTION

—EXAMPLE -8 Conservation of Mass—Nonuniform Velocity Profile

Section (1)

Control volume

dA, = 2zr dr

Section (2)

B FIGURE E5.4a

(@) An appropriate control volumeis sketched (dashed lines) in
Fig. E5.4a. The application of Eq. 5.5 to the contents of this con-
trol volumeyields

0 (flow is steady)

%pd\f—i—ij-ﬁdA—O @
cs

cv

At the inlet, section (1), the velocity is uniform with V; = U so
that

J pV - ndA = —p,AU @)
@

At the outlet, section (2), the velocity is not uniform. How-
ever, the net flowrate through this section is the sum of flows
through numerous small washer-shaped areas of size dA, = 27r dr
as shown by the shaded area element in Fig. E5.4b. On each of

dAZ
dr

B FIGURE E5.4b

these infinitesimal areas the fluid velocity is denoted as us.
Thus, in the limit of infinitesimal area elements, the summation
isreplaced by an integration and the outflow through section (2)
is given by

R
J pV - NdA = pzf u27rr dr 3
@ 0
By combining Egs. 1, 2, and 3 we get

R
pzj U22’7Tr dar — p]_AlU =0 (4)
0

Since the flow is considered incompressible, p; = p,. The para-
bolic velocity relationship for flow through section (2) isused in
Eq. 4toyield

R
AT J {1 - (LRﬂr dr — AU =0 ®)
0

Integrating, we get from Eq. 5

r2 r

4 \R
277umax (E - R)o - 7TR2U =0
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or

Unax = 2U (Ans)

(b) Since this flow is incompressible, we conclude from Eq.
5.7 that U isthe average velocity at al sections of the control vol-
ume. Thus, the average velocity at section (2), V,, is one-half the
maximum velocity, Un.,, there or

(Ans)

COMMENT The relationship between the maximum veloc-
ity at section (2) and the average velocity is a function of the
“shape” of the velocity profile. For the parabolic profile as-
sumed in this example, the average velocity, Unme/2, iSthe actual
“average” of the maximum velocity at section (2), U, = Upa,
and the minimum velocity at that section, u, = 0. However, as
shown in Fig. E5.4c, if the velocity profile is a different shape
(non-parabolic), the average velocity is not necessarily one half
of the maximum velocity.

L \72 = umax/2
(parabolic)

AN

)
/
) ‘

=

|
I Umax

=V, # Up2
(non-parabolic)

B FIGURE E5.4c

GIVEN A bathtub isbeing filled with water from afaucet. The
rate of flow from the faucet is steady at 9 gal/min. The tub volume
isapproximated by arectangular space asindicated in Fig. E5.5a.

FIND Estimate thetimerate of change of the depth of water in
the tub, 9h/at, in inches per minute at any instant.

SoLUTION

We use the fixed, nondeforming control volume outlined with a
dashed line in Fig. E5.5a. This control volume includes in it, at
any instant, the water accumulated in the tub, some of the water
flowing from the faucet into the tub, and some air. Application of
Egs. 5.4 and 5.5 to these contents of the control volume resultsin

% ,Li' Pair AVair + % Jwater Pwater AV\ater
volume volume

— Myger + My =0 (@)
Recall that the mass, dm, of fluid contained in a small volume
dv isdm = p dV. Hence, thetwo integralsin Eg. 1 represent the
total amount of air and water in the control volume, and the sum
of the first two terms is the time rate of change of mass within
the control volume.

Note that the time rate of change of air mass and water mass
are each not zero. Recognizing, however, that the air mass must
be conserved, we know that the time rate of change of the mass of
air in the control volume must be equal to the rate of air mass flow
out of the control volume. For simplicity, we disregard any water
evaporation that occurs. Thus, applying Egs. 5.4 and 5.5 to the air
only and to the water only, we obtain

ad ;
J’air Pair Nair + My = 0

at
volume

L FLXTIURERS Conservation of Mass—Unsteady Flow

Control volume

—

l‘ 5 ft ul
B FIGURE E5.5a

for air, and

d .
& Jwater Pwater WVater = Muyater

volume

@)
for water. The volume of water in the control volume is given by

Jwaer Pwater Vvater = Pwater [h(z ft)(s ft)

volume

+ (L5t — h)A] ©)

where A is the cross-sectional area of the water flowing from the
faucet into the tub. Combining Egs. 2 and 3, we obtain

oh .
Pwater (10 ftz - Aj)g = Myater

and, thus, since m = pQ,
oh

o Qwater

(1012 - A)
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For A < 10 ft* we can conclude that 3
ih _ Quater 2.5
at  (10ft?) e 5
z
or £15
dh 9 ga/min)(12 in./ft g (1 in., 1.44 in./min)
—= = (g )(3 2) = 1.44in/min (Ans) £ 1
ot (7.48 gallft})(10 1t
0.5
COMMENT By repeating the calculations for the same 0
flowrate but with various water jet diameters, D;, the results 0 10 20
shown in Fig. E5.5b are obtained. With the flowrate held constant, 1B}, i

thevalue of oh/at isnearly independent of thejet diameterforval- B F1 G U R E E5.5b
ues of the diameter less than about 10 in.

30
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The appropriate
sign convention
must be followed.

/N

V5.2 Shop vac filter

/N

V5.3 Flow through
a contraction

gz

The preceding example problems illustrate some important results of applying the conserva-
tion of mass principle to the contents of a fixed, nondeforming control volume. The dot product
V - fis“+" for flow out of the control volume and “—" for flow into the control volume. Thus,
mass flowrate out of the control volume is “+" and mass flowrate in is “—." When the flow is
steady, the time rate of change of the mass of the contents of the control volume

d
— dv
at L P
is zero and the net amount of mass flowrate, m, through the control surface is therefore also zero
gy — DMy, =0 (5.9)

If the steady flow is also incompressible, the net amount of volume flowrate, Q, through the con-
trol surface is also zero:

> Qu— 2Qn=0 (5.10)

An unsteady, but cyclical flow can be considered steady on a time-average basis. When the flow
is unsteady, the instantaneous time rate of change of the mass of the contents of the control vol-
ume is not necessarily zero and can be an important variable. When the value of

dJ
S pav
)

is“+,” the mass of the contents of the control volume is increasing. When it is“—,” the mass of
the contents of the control volume is decreasing.

When the flow is uniformly distributed over the opening in the control surface (one-dimensional
flow),

m = pAV
where V is the uniform value of the velocity component normal to the section area A. When the
velocity is nonuniformly distributed over the opening in the control surface,

m = pAV (5.12)
where V is the average value of the component of velocity normal to the section area A as defined
by Eg. 5.7.

For steady flow involving only one stream of a specific fluid flowing through the control vol-
ume at sections (1) and (2),
m= P1A1\71 = P2A2\72 (5.12)
and for incompressible flow,
Q=AV, =AYV, (5.13)
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For steady flow involving more than one stream of a specific fluid or more than one specific
fluid flowing through the control volume,

Emin = Emout

The variety of example problems solved above should give the correct impression that the
fixed, nondeforming control volume is versatile and useful.

F | u i d s i n

t h e N e w s

New 1.6 GPF standards Toilets account for approximately 40%
of all indoor household water use. To conserve water, the new
standard is 1.6 gallons of water per flush (gpf). Old toilets use
up to 7 gpf; those manufactured after 1980 use 3.5 gpf. Neither
are considered low-flush toilets. A typical 3.2 person household
in which each person flushes a 7-gpf toilet 4 times a day uses
32,700 gallons of water each year; with a 3.5-gpf toilet the
amount is reduced to 16,400 gallons. Clearly the new 1.6-gpf
toilets will save even more water. However, designing a toilet

that flushes properly with such a small amount of water is not
simple. Today there are two basic types involved: those that are
gravity powered and those that are pressure powered. Gravity
toilets (typical of most currently in use) have rather long cycle
times. Thewater starts flowing under the action of gravity and the
swirling vortex motion initiates the siphon action which builds to
apoint of discharge. In the newer pressure-assisted models, the
flowrate is large but the cycle time is short and the amount of
water used isrelatively small. (See Problem 5.32.)

5.1.3 Moving, Nondeforming Control Volume

It is sometimes necessary to use a hondeforming control volume attached to a moving reference
frame. Examples include control volumes containing a gas turbine engine on an aircraft in flight,
the exhaust stack of a ship at sea, and the gasoline tank of an automobile passing by.

As discussed in Section 4.4.6, when a moving control volume is used, the fluid velocity rela
tive to the moving control volume (relative velocity) is an important flow field variable. The relative
velocity, W, is the fluid velocity seen by an observer moving with the control volume. The control
volume velocity, V., is the velocity of the control volume as seen from a fixed coordinate system.
The absolute velocity, V, isthe fluid velocity seen by a stationary observer in afixed coordinate sys-
v tem. These velocities are related to each other by the vector equation

V=W +V,

Some problems are
most easily solved
by using a moving
control volume.

(5.14)

as illustrated by the figure in the margin. This is the same as Eq. 4.22, introduced earlier.
For a system and a moving, nondeforming control volume that are coincident at an instant
of time, the Reynolds transport theorem (Eq. 4.23) for a moving control volume leads to

DMgs 9

2| pdv+ | pw-naa
Dt atL,p Lp

W

(5.15)

From Egs. 5.1 and 5.15, we can get the control volume expression for conservation of mass
(the continuity equation) for a moving, nondeforming control volume, namely,

(5.16)

aj pdV+JpW-ﬁdA=O
at o «

Some examples of the application of Eq. 5.16 follow.

_EXAMPLE M Conservation of Mass—Compressible Flow with
a Moving Control Volume

GIVEN Anairplane movesforward at aspeed of 971 km/hr as
shown in Fig. E5.6a. The frontal intake area of the jet engine is
0.80 m? and the entering air density is 0.736 kg/m°. A stationary
observer determines that relative to the earth, the jet engine
exhaust gases move away from the engine with a speed of

1050 kmy/hr. The engine exhaust areais 0.558 m?, and the exhaust
gas density is 0.515 kg/m?®.

FIND Estimate the mass flowrate of fuel into the engine in
kg/hr.
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Vp\ane =
971 km/hr
A —
o
Control volume /{_ fuelin
(@ Vplane = L
Y V, = 1050 km/hr
[ [ | e V2 =
—_— ||| —
W, = _ W, = 1050 + 971 =
97l kmhr 4 \ 2021 km/hr
Section (2)
Section (1)
(b) B FIGURE E5.6
SoLuTiON

The control volume, which moves with the airplane (see Fig.
E5.6h), surrounds the engine and its contents and includes all flu-
ids involved at an instant. The application of Eq. 5.16 to these
contents of the control volume yields

0 (flow relative to moving control
volumeis considered steady on a
time-average basis)

d
= pdV-l—JpW-ﬁdA:O (@)
cv cs
Assuming one-dimensional flow, we evaluate the surface integral
in Eq. 1 and get

—Myg — pIAWL + p2AW, = 0

n

or

m;ud = p2PoW, — pr AW, @)
n

We consider the intake velocity, Wi, relative to the moving con-
trol volume, as being equal in magnitude to the speed of the air-
plane, 971 km/hr. The exhaust velocity, W,, also needs to be
measured relative to the moving control volume. Since a fixed

observer noted that the exhaust gases were moving away from the
engine at a speed of 1050 km/hr, the speed of the exhaust gases
relative to the moving control volume, W,, is determined as fol-
lows by using Eq. 5.14

V2 = W2 + Vplane
or
W, =V, = Vyiane = 1050 km/hr — (=971 km/hr)
= 2021 km/hr
and is shown in Fig. E5.6b.
From Eq. 2,

Mg = (0.515 kg/m?)(0.558 m?)(2021 km/hr)(1000 m/km)

— (0.736 kg/m®)(0.80 m?)(971 kmy/hr)(1000 m/km)
= (580,800 — 571,700) kg/hr

Iy = 9100 kg/hr (Ans)
in

COMMENT Note that the fuel flowrate was obtained as the
difference of two large, nearly equal numbers. Precise values of W,
and W, are needed to obtain amodestly accurate value of M.

in

GIVEN Water entersarotating lawn sprinkler through its base
at the steady rate of 1000 ml/s as sketched in Fig. E5.7. The exit
area of each of the two nozzlesis 30 mn?.

FIND Determine the average speed of the water leaving the
nozzle, relative to the nozzle, if

(@) therotary sprinkler head is stationary,
(b) the sprinkler head rotates at 600 rpm, and
(c) the sprinkler head accelerates from O to 600 rpm.

—EXAMPLE .34al Conservation of Mass—Relative Velocity

A, =30 mm?
Section (2)

B FIGURE E5.7
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SOLUTION

(@) We specify a control volume that contains the water in the
rotary sprinkler head at any instant. This control volume is non-
deforming, but it moves (rotates) with the sprinkler head.

The application of Eq. 5.16 to the contents of this control volume
for situation (a), (b), or (c) of the problem results in the same ex-
pression, namely

0 flow is steady or the
control volumeisfilled with
an incompressible fluid

ade\v‘%-‘[pw-ﬁdA:O
tcv ks
or

2 Pout Aot Wour = 2Pin AnWin = 0 @)

The time rate of change of the mass of water in the control vol-
ume is zero because the flow is steady and the control volumeis
filled with water.

Because there is only one inflow [at the base of the rotating
arm, section (1)] and two outflows [the two nozzles at the tips of
the arm, sections (2) and (3), each have the same area and fluid
velocity], Eg. 1 becomes

PP, + p3AWs — pi AW, = 0 %)

Hence, for incompressible flow with p; = p, = ps, EQ. 2 becomes
A2W2 =F A3W3 - A]_Wl = 0
W|th Q = A1W1, A2 = A3, and W2 = W3 |t fO||0\NS that

Q

W, = ——
27 2A,

or

(1000 mi/s)(0.001 m*/liter)(10° mm%m?)

(1000 mi/liter)(2)(30 mm?)
= 16.7m/s

L =

(Ans)

(b), (c) Thevalue of W, isindependent of the speed of rotation
of the sprinkler head and represents the average velocity of the
water exiting from each nozzle with respect to the nozzle for
cases (a), (b), and ().

COMMENT Theveocity of water discharging from each noz-

Zle, when viewed from a stationary reference (i.e., V,), will vary as

the rotation speed of the sprinkler head varies since from Eq. 5.14,
VZ = W2 - U

where U = wRisthe speed of the nozzle and w and R are the an-

gular velocity and radius of the sprinkler head, respectively.

When a moving, nondeforming control volume is used, the dot product sign convention
used earlier for fixed, nondeforming control volume applications is still valid. Also, if the flow
within the moving control volume is steady, or steady on a time-average basis, the time rate of
change of the mass of the contents of the control volume is zero. Velocities seen from the con-
trol volume reference frame (relative velocities) must be used in the continuity equation. Rela-
tive and absolute velocities are related by a vector equation (Eq. 5.14), which also involves the

control volume velocity.

5.1.4 Deforming Control Volume

Careisneeded to
ensure that absolute
and relative veloci-

ties are used cor- lead to

Occasionaly, a deforming control volume can simplify the solution of a problem. A deforming
control volume involves changing volume size and control surface movement. Thus, the Reynolds
transport theorem for a moving control volume can be used for this case, and Egs. 4.23 and 5.1

rectly.
DMgys

Dt

d

" (5.17)

deV-l—JpW-ﬁdA:O

The time rate of change term in Eq.

5.17,
0

ot vadv

is usually nonzero and must be carefully evaluated because the extent of the control volume varies
with time. The mass flowrate term in Eq. 5.17,

ij'ﬁdA

cs
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must be determined with the relative velocity, W, the velocity referenced to the control surface.
Since the control volume is deforming, the control surface velocity is not necessarily uniform and
identical to the control volume velocity, V,, as was true for moving, nondeforming control vol-
umes. For the deforming control volume,

V=W + Vg (5.18)

where V4 is the velocity of the control surface as seen by afixed observer. The relative velocity, W,
must be ascertained with care wherever fluid crosses the control surface. Two example problems that
illustrate the use of the continuity equation for a deforming control volume, Eq. 5.17, follow.

—EXAMPLE M. Conservation of Mass—Deforming Control Volume

The velocity of the
surface of a de-
forming control
volume is not the
same at all points
on the surface.

GIVEN A syringe(Fig. E5.8) is used to inocul ate a cow. The Qleak = '

plunger has aface area of 500 mm?. Theliquid inthe syringeis  pynge, ' %2 | Q,-

to beinjected steadily at arate of 300 cm¥min. Theleakagerate  motion I A= 300 cm*min

past the plunger is 0.10 times the volume flowrate out of the W 500 mm? === \"

needle. <  — Section (2)
Section (1) Control volume

FIND With what speed should the plunger be advanced? BEFIGURE E5.8

SoLuTioN

The control volume selected for solving this problem is the de-  Note that

forming oneillustrated in Fig. E5.8. Section (1) of the control sur- o0

face moves with the plunger. The surface area of section (1), Ay, is ot Vo 5

considered equal to the circular area of the face of the plunger, A,
athough thisis not strictly true, since leakage occurs. The differ-
enceissmall, however. Thus,

Al = Ap
Liquid also leaves the needle through section (2), which involves

fixed area A,. The application of Eq. 5.17 to the contents of this
control volume gives

where V,, is the speed of the plunger sought in the problem state-
ment. Combining Egs. 2, 4, and 5 we obtain

0 —pA\V, + M, + pQiex = 0 (6)
However, from Eq. 5.6, we see that
m, = pQ, )
and Eq. 6 becomes
_pAlvp + pQ; + pQeac = 0 (8)
Solving Eq. 8 for V, yields
_ Q2 + Qeak

d .
EJPdV"‘mz"‘PQmek:O )

Even though Qe and the flow through section area A, are
steady, the time rate of change of the mass of liquid in the

where ¢ is the changing length of the control volume (see Fig.
E5.8) and Ve 1S the volume of the needle. From Eq. 3, we
obtain

d

13L4
E LP d¥ = pA r @

shrinking control volume s not zero because the control volume vV, 9)
is getting smaller. To evaluate the first term of Eq. 2, we note £
that Since Qe = 0.1Q,, Eq. 9 becomes
+ 0.1 11
J pd¥ = p(£A; + Vreede) ) v, = Q, Q. _11Q,
cv Al A]_

and

_ (1.2)(300 cm¥min) (1000 mm3>
P (500 mm?) cm®

= 660 mm/min (Ans)

GIVEN Consider Example5.5.

—EXAMPLE LM}l Conservation of Mass—Deforming Control Volume

FIND Solvethe problem of Example 5.5 using adeforming con-
trol volumethat includes only thewater accumulating in the bathtub.
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SoLuTioN
For this deforming control volume, Eq. 5.17 leads to where A and V,; are the cross-sectional area and velocity of the
p water flowing from the faucet into the tube. Thus, from Egs. 1, 2,
—J pd¥ + J pW -AdA =0 (1) and 3 weobtain
at water cs
volume ih _ VJAI _ Qwater
Thefirst term of Eq. 1 can be evaluated as at  (10ft2 — A) (10t — A)

% LM pdV = % [ph(2 ft)(5 ft)]

volume

The second term of Eq. 1 can be evaluated as

pr-ﬁdA=—p(v,-+E)A,- ®)

or for Ay < 10ft?

oh 9(gal/min)(12 in./ft)
ot (7.48 gal/ft3)(10 1)

= 1.44in./min (Ans)
ah

= p (1012
p(10f) =

@)
COMMENT Note that these results using a deforming con-

trol volume are the same as that obtained in Example 5.5 with a

oh fixed control volume.

The conservation of mass principle is easily applied to the contents of a control volume. The
appropriate selection of a specific kind of control volume (for example, fixed and nondeforming,
moving and nondeforming, or deforming) can make the solution of a particular problem less com-
plicated. In general, where fluid flows through the control surface, it is advisable to make the con-
trol surface perpendicular to the flow. In the sections ahead we learn that the conservation of mass
principle is primarily used in combination with other important laws to solve problems.

5.2 Newton's Second Law—The Linear Momentum
and Moment-of-Momentum Equations

V5.4 Smokestack
plume momentum

Forces acting on a
flowing fluid can
change its velocity
maghitude and/or
direction.

5.2.1 Derivation of the Linear Momentum Equation
Newton's second law of motion for a system is

time rate of change of the = sum of external forces
linear momentum of the system  acting on the system

Since momentum is mass times velocity, the momentum of a small particle of mass pdV is
Vpd¥. Thus, the momentum of the entire system is |, syszdV and Newton's law becomes

% j Vpd¥ = > Fy. (5.19)
sys

Any reference or coordinate system for which this statement is true is called inertial. A fixed coor-
dinate system is inertial. A coordinate system that moves in a straight line with constant velocity
and is thus without acceleration is also inertial. We proceed to develop the control volume formula
for this important law. When a control volume is coincident with a system at an instant of time,
the forces acting on the system and the forces acting on the contents of the coincident control vol-
ume (see Fig. 5.2) are instantaneously identical, that is,

2 FSyS = E Fcontentsof the (5.20)

coincident control volume

Furthermore, for a system and the contents of a coincident control volume that is fixed and non-
deforming, the Reynolds transport theorem [Eq. 4.19 with b set equal to the velocity (i.e., momen-
tum per unit mass), and By, being the system momentum] allows us to conclude that

D
J VpdVZaJ vpdv+fvpv.ﬁdA (5.21)
Dt Jys at o, .
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Fo

Fe Coincident

B FIGURE 5.2 External forces acting on system and
coincident control volume.

or
time rate of change time raFe of change net rate of flow
! . of the linear .
K of the linear _ of linear momentum
= momentum of the +
) momentum of the contents of the through the
Vst il system control surface

propulsion control volume

Equation 5.21 states that the time rate of change of system linear momentum is expressed
as the sum of the two control volume quantities: the time rate of change of the linear momentum
of the contents of the control volume, and the net rate of linear momentum flow through the con-
trol surface. As particles of mass move into or out of a control volume through the control sur-
face, they carry linear momentum in or out. Thus, linear momentum flow should seem no more
unusual than mass flow.

For a control volume that is fixed (and thus inertial) and nondeforming, Egs. 5.19, 5.20, and 5.21

-
-

Flow out provide an appropriate mathematical statement of Newton's second law of motion as

= d
ot J Vpd¥ + J VpV - ndA = E Feontents of the (5.22)
ot Jo cs control volume

We call Eg. 5.22 the linear momentum equation.
In our application of the linear momentum equation, we initially confine ourselves to fixed,

> nondeforming control volumes for simplicity. Subsequently, we discuss the use of a moving but
inertial, nondeforming control volume. We do not consider deforming control volumes and accel-
Flow in erating (noninertial) control volumes. If a control volume is noninertial, the acceleration compo-

control volume  NeNts involved (for example, translation acceleration, Coriolis acceleration, and centrifugal accel-
Fiuid out eration) require consideration.

J The forces involved in Eq. 5.22 are body and surface forces that act on what is contained in

T the control volume as shown in the sketch in the margin. The only body force we consider in this

4 Vw chapter is the one associated with the action of gravity. We experience this body force as weight, IW'.
/ \ Fuall : . .

/L \ The surface forces are basically exerted on the contents of the control volume by material just out-

77T7 a side the control volume in contact with material just inside the control volume. For example, awall

in contact with fluid can exert a reaction surface force on the fluid it bounds. Similarly, fluid just

Fiuan outside the control volume can push on fluid just inside the control volume at a common interface,
usually an opening in the control surface through which fluid flow occurs. An immersed object
can resist fluid motion with surface forces.

| The linear momentum terms in the momentum equation deserve careful explanation. We clar-
N ify their physical significance in the following sections.
V5.6 Force dueto a
water jet 5.2.2 Application of the Linear Momentum Equation

The linear momentum equation for an inertial control volume is a vector equation (Eq. 5.22). In
engineering applications, components of this vector equation resolved along orthogonal coordi-
nates, for example, X, y, and z (rectangular coordinate system) or r, 6, and x (cylindrical coordinate
system), will normally be used. A simple example involving steady, incompressible flow is con-
sidered first.
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—EXAMPLE 5.10 EELLEL

GIVEN AsshowninFig. E5.10a, a horizontal jet of water ex-
its a nozzle with a uniform speed of V,; = 10 ft/s, strikes a vane,
and is turned through an angle 6.

SOLUTION

Momentum—Change in Flow Direction

FIND Determine the anchoring force needed to hold the vane
stationary if gravity and viscous effects are negligible.

We select acontrol volume that includes the vane and a portion of
the water (see Figs. E5.10b, ¢) and apply the linear momentum
equation to this fixed control volume. The only portions of the
control surface across which fluid flows are section (1) (the en-
trance) and section (2) (the exit). Hence, the x and z components
of Eq. 5.22 become

0 (flow is steady)
EJ pdV+JUpV-ﬁdA=EFX
at ks
and
0 (flow is steady)
ﬁj pdV+JWpV-ﬁdA:EFZ
at k=
or

UpAsV, — UppAVy = XFy (@)

{Aiz 0.06 ft?

6 Nozzle

Vi

(a)

Control VRS S g SpMpSpSpSESpSpSSpSSpSp %
volume

6 Nozzle
V.

1

B FIGURE E5.10

and
WopAV, — WipAV, = SF, )

whereV = ui + wk, and 3F, and 3F, are the net x and z compo-
nents of force acting on the contents of the control volume. De-
pending on the particular flow situation being considered and the
coordinate system chosen, the x and z components of velocity, u
and w, can be positive, negative, or zero. In thisexamplethe flow is
in the positive directions at both the inlet and the outlet.

The water enters and leaves the control volume as afree jet at
atmospheric pressure. Hence, there is atmospheric pressure sur-
rounding the entire control volume, and the net pressure force on
the control volume surface is zero. If we neglect the weight of the
water and vane, the only forces applied to the control volume con-
tents are the horizontal and vertical components of the anchoring
force, Fa, and Fp,, respectively.

With negligible gravity and viscous effects, and since p, = p.,
the speed of the fluid remains constant so that V, = V, = 10 ft/s
(see the Bernoulli equation, Eq. 3.7). Hence, at section (1),
u; = Vi, w; = 0, and at section (2), u, = V; cos, w, = V; Sin 6.

By using thisinformation, Egs. 1 and 2 can be written as

V]_COS 0 P A2V1 - V]_ P Alvl = FAX (3)
and
V]_Sin (7] P A2V1 - O P A]_Vl = FAz (4)

Equations 3 and 4 can be simplified by using conservation of
mass, which states that for this incompressible flow AV, =
AN, or A, = Ay sinceV, = V,. Thus

Fax = —pAVZ + pAVIcosh = —pAVZ (1 — cosh) (5)
and
Far = pAVZsing (6)
With the given data we obtain

Fa = —(1.94 slugs/ft®)(0.06 t?)(10 ft/s)’(1 — cos6)
= —11.641 — cos#h) slugs - ft/s?

= —11.64(1 — cos6) Ib (Ans)
and
Fa = (1.94 dugs/ft3)(0.06 ft2)(10 ft/s)®> sin
=1164sn6lb (Ans)

COMMENTS Thevaluesof Fu, and F,, asafunction of 9 are
shown in Fig. E5.10d. Note that if 8 = 0 (i.e., the vane does not
turn the water), the anchoring force is zero. The inviscid fluid
merely slides along the vane without putting any force on it. If
0 = 90°, then Fp, = —11.641band F5, = 11.64 |b. It isnecessary
to push on the vane (and, hence, for the vane to push on the water)
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15 to theleft (F4, is negative) and up in order to change the direction
of flow of the water from horizontal to vertical. This momentum
1o . change requires aforce. If @ = 180°, the water jet is turned back
5 S on itself. This requires no vertical force (F,, = 0), but the hori-
zontal force (Fa, = —23.3 Ib) is two times that required if
o 0 6 = 90°. This horizontal fluid momentum change requires a hor-
2 0 izontal force only.
5 0 Note that the anchoring force (Egs. 5, 6) can be written in
ud 10 terms of the mass flowrate, m = pA,Vy, as
s Fax = —mV4(1 — cos6)
and
-20
Fa, = mMVySin 6
-25
6, deg In this example exerting a force on a fluid flow resulted in a
HFIGURE E5.10d changeinitsdirection only (i.e., changeinitslinear momentum).
F I u i d s i n t h e N e w s

Where the plume goes Commercial airliners have wheel brakes
very similar to those on highway vehicles. In fact, antilock brakes
now found on most new cars were first developed for use on air-
planes. However, when landing, the major braking force comes
from the engine rather than the wheel brakes. Upon touchdown, a
piece of engine cowling translates aft and blocker doors drop
down, directing the engine airflow into a honeycomb structure
called a cascade. The cascade reverses the direction of the high-
speed engine exhausts by nearly 180° so that it flows forward. As

predicted by the momentum equation, the air passing through the
engine produces a substantial braking force—the reverse thrust.
Designers must know the flow pattern of the exhaust plumes to
eliminate potential problems. For example, the plumes of hot ex-
haust must be kept away from parts of the aircraft where repeated
heating and cooling could cause premature fatigue. Also, the
plumes must not re-enter the engine inlet, or blow debrisfrom the
runway in front of the engine, or envelop the vertica tail. (See
Problem 5.67.)

—EXAMPLE 5.11

GIVEN Asshownin Fig. E5.11a, water flows through a noz-

Linear Momentum—Weight, Pressure, and Change in Speed

FIND Determine the anchoring force required to hold the noz-

zle attached to the end of alaboratory sink faucet with aflowrate zlein place.

of 0.6 liters/s. The nozzle inlet and exit diameters are 16 and 5
mm, respectively, and the nozzle axis is vertical. The mass of the
nozzleis 0.1 kg. The pressure at section (1) is 464 kPa.

SoOLUTION

The anchoring force sought is the reaction force between the
faucet and nozzle threads. To evaluate this force we select a con-
trol volume that includes the entire nozzle and the water contained
in the nozzle at an instant, as is indicated in Figs. E5.11a and
E5.11b. All of the vertical forces acting on the contents of this con-
trol volume are identified in Fig. E5.11b. The action of atmos-
pheric pressure cancels out in every direction and is not shown.
Gage pressure forces do not cancel out in the vertical direction and
are shown. Application of the vertical or z direction component of
Eq. 5.22 to the contents of this control volume leads to

0 (flow is steady)

ad
— WpdVJFJWpV'ﬁdA:FA_Wn_plAl
Ccs

cv

— Wy + A @)

where w is the z direction component of fluid velocity, and the
various parameters are identified in the figure.

Note that the positive direction is considered “up” for the
forces. We will use this same sign convention for the fluid veloc-
ity, w, in Eq. 1. In Eq. 1, the dot product, V - f, is“+" for flow
out of the control volume and “ =" for flow into the control vol-
ume. For this particular example

V-hdA= =w| dA ©

with the “ +” used for flow out of the control volume and “—"

used for flow in. To evaluate the control surfaceintegral in Eq. 1,
we need to assume a distribution for fluid velocity, w, and fluid
density, p. For simplicity, we assume that w is uniformly distrib-
uted or constant, with magnitudes of w; and w, over cross-
sectional areas A; and A,. Also, thisflow isincompressible so the




204

Chapter 5 B Finite Control Volume Analysis

/Control volume
=— D;=16 mm —

Wy

Section (1)

Section (2)

Wy

B FIGURE E5.11a

fluid density, p, isconstant throughout. Proceeding further we ob-
tain for Eq. 1

(=rm)(—wy) + 1(—wy)
=Fa— Wy — piAL — W, + PA; (3

wherem = pAV isthe mass flowrate.

Note that —w; and —w, are used because both of these veloc-
ities are “down.” Also, —rm, is used because it is associated with
flow into the control volume. Similarly, +m, isused becauseitis
associated with flow out of the control volume. Solving Eq. 3 for
the anchoring force, F5, we obtain

Fa = mw;, — mw, + W, + pA; + W, — pA (4)
From the conservation of mass equation, Eq. 5.12, we obtain
m =, =m ©)
which when combined with Eq. 4 gives
Fao=mw, — w,) + W, + piA + W, — pAs (6)

It is instructive to note how the anchoring force is affected
by the different actions involved. As expected, the nozzle
weight, W, the water weight, W, and gage pressure force at
section (1), p,A;, al increase the anchoring force, while the
gage pressure force at section (2), p,A,, acts to decrease the
anchoring force. The change in the vertical momentum
flowrate, m(w; — w,), will, in this instance, decrease the an-
choring force because this change is negative (w, > w;).

Control volume

F, = anchoring force that holds
nozzle in place
W, = weight of nozzle
W,,= weight of water contained in
the nozzle
p; = gage pressure at section (1)
A, = cross section area at
section (1)
p, = gage pressure at section (2)
A, = cross section area at
section (2)
w; = zdirection velocity at
control volume entrance
¥ W, W, = zdirection velocity atl
control volume exit

B FIGURE E5.11b

To complete this example we use quantities given in the
problem statement to quantify the terms on the right-hand side
of Eq. 6.

From Eq. 5.6,

m = pwiA; = pQ
= (999 kg/m?)(0.6 liter/s)(10~ % m7liter)
= 0,599 kg/s @

and

w22
YA w(D¥/4)

(0.6 liter/s)(10~ *m¥liter)

- (16 mm)%4(1000° mm?%/m?) = ARSI ®)
Also from Eg. 5.6,
WS S
2 A, w(D¥4)
(0.6 liter/s)(10~ *m3iter)
= 30.6 m/s 9)

- (5 mm)%4(1000> mm%m?)

The weight of the nozzle, W;, can be obtained from the nozzle

mass, m,, with
W, = mg = (0.1kg)(9.81 m/s’) = 0.981 N (10)

The weight of the water in the control volume, “W;,, can be ob-
tained from the water density, p, and the volume of water, ¥,, in
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the truncated cone of height h. That is,
W = PVl
where
W, = &mh(D? + D3 + D;D,)
1 (30 mm)
~ 12" (1000 mm/m)
(16 mm)? + (5 mm)? + (16 mm)(5 mm)

(10002 mm?/m?)
=284 x10°m?
Thus,
W, = (999 kg/m°)(2.84 X 107° m®)(9.81 m/s?)
= 0.0278 N (12)

The gage pressure at section (2), p,, is zero since, as discussed in
Section 3.6.1, when a subsonic flow discharges to the atmosphere
asin the present situation, the discharge pressureis essentially at-
mospheric. The anchoring force, F,, can now be determined from
Egs. 6 through 11 with

Fa = (0.599 kg/s)(2.98 m/s — 30.6 m/s) + 0.981 N
+ (464 kPa)(1000 PaykPa) OO
4(1000? mm?/m?)
+ 0.0278N — 0
or
Fo= —165N + 0981 N + 93.3N + 0.0278 N
= 778N (Ans)
Since the anchoring force, Fa, is positive, it acts upward in the z

direction. The nozzle would be pushed off the pipe if it were not
fastened securely.

COMMENT The control volume selected above to solve

problems such asthese is not unique. The following is an alternate
solution that involves two other control volumes—one containing

Patm

—
):I'I
|

A AA AT

Tttt

< —
=
—

B FIGURE ES5.11c
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only the nozzle and the other containing only the water in the noz-
zZle. These control volumes are shown in Figs. E5.11c and E5.11d
along with the vertical forces acting on the contents of each con-
trol volume. The new forceinvolved, R,, represents the interaction
between the water and the conical inside surface of the nozzle. It
includes the net pressure and viscous forces at this interface.

Application of Eq. 5.22 to the contents of the control volume
of Fig. E5.11c leadsto

Fa= Mo+ R — pam(AL — Ay) (12)

The term pym(A; — Ay) is the resultant force from the at-
mospheric pressure acting upon the exterior surface of the
nozzle(i.e., that portion of the surface of the nozzle that is not
in contact with the water). Recall that the pressure force on a
curved surface (such as the exterior surface of the nozzle) is
equal to the pressure times the projection of the surface area
on a plane perpendicular to the axis of the nozzle. The projec-
tion of this area on a plane perpendicular to the z direction is
A, — A,. The effect of the atmospheric pressure on the inter-
nal area (between the nozzle and the water) is already in-
cluded in R, which represents the net force on this area.

Similarly, for the control volume of Fig. E5.11d we obtain

R, = m(w; — W) + Wy + (P1 + Pam)As
— (P2 = Pam)A:
where p; and p, are gage pressures. From Eq. 13 it is clear that
the value of R, depends on the value of the atmospheric pressure,
Pams SINCe A; # A,. That is, we must use absolute pressure, not
gage pressure, to obtain the correct value of R,. From Eq. 13 we
can easily identify which forces acting on the flowing fluid
change its velocity magnitude and thus linear momentum.
By combining Egs. 12 and 13 we obtain the same result for F,
as before (Eq. 6):
Fa=mw, — wy) + W, + pA + W, — pA;
Note that although the force between the fluid and the nozzle wall,
R,, isafunction of p4,, the anchoring force, F4, isnot. That is, we

were correct in using gage pressure when solving for F, by means
of the original control volume shown in Fig. E5.11b.

(13)

l(pl + patm)Al

I(2)

—f(pz + patm)AZ

2

B FIGURE E5.11d
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Control
volume

V5.7 Running on
water

A control volume
diagramissimilar
to a free-body
diagram.

Several important generalities about the application of the linear momentum equation (Eg.

5.22) are apparent in the example just considered.

. When the flow is uniformly distributed over a section of the control surface where flow into

or out of the control volume occurs, the integral operations are simplified. Thus, one-
dimensional flows are easier to work with than flows involving nonuniform velocity distri-
butions.

. Linear momentum is directional; it can have components in as many as three orthogonal

coordinate directions. Furthermore, along any one coordinate, the linear momentum of a
fluid particle can be in the positive or negative direction and thus be considered as a pos-
itive or a negative quantity. In Example 5.11, only the linear momentum in the z direction
was considered (all of it was in the negative z direction and was hence treated as being
negative).

. The flow of positive or negative linear momentum into a control volume involves a nega-

tive V - A product. Momentum flow out of the control volume involves a positive V - f
product. The correct agebraic sign (+ or —) to assign to momentum flow (VpV - h dA)
will depend on the sense of the velocity (+ in positive coordinate direction, — in negative
coordinate direction) and the V - i product (+ for flow out of the control volume, — for
flow into the control volume). This is shown in the figure in the margin. In Example 5.11,
the momentum flow into the control volume past section (1) was a positive (+) quantity
while the momentum flow out of the control volume at section (2) was a negative (—) quantity.

. The time rate of change of the linear momentum of the contents of a nondeforming control

volume (i.e., 9/dt [, Vp d¥) is zero for steady flow. The momentum problems considered in
this text al involve steady flow.

. If the control surface is selected so that it is perpendicular to the flow where fluid enters or

leaves the control volume, the surface force exerted at these locations by fluid outside the
control volume on fluid inside will be due to pressure. Furthermore, when subsonic flow ex-
its from a control volume into the atmosphere, atmospheric pressure prevails at the exit cross
section. In Example 5.11, the flow was subsonic and so we set the exit flow pressure at the
atmospheric level. The continuity equation (Eq. 5.12) allowed us to evaluate the fluid flow
velocities w; and w, at sections (1) and (2).

. The forces due to atmospheric pressure acting on the control surface may need consideration

asindicated by Eq. 13 in Example 5.11 for the reaction force between the nozzle and the fluid.
When calculating the anchoring force, F,, the forces due to atmospheric pressure on the con-
trol surface cancel each other (for example, after combining Egs. 12 and 13 the atmospheric
pressure forces are no longer involved) and gage pressures may be used.

. The externa forces have an algebraic sign, positive if the force is in the assigned positive

coordinate direction and negative otherwise.

. Only external forces acting on the contents of the control volume are considered in the lin-

ear momentum equation (Eg. 5.22). If the fluid alone is included in a control volume, reac-
tion forces between the fluid and the surface or surfaces in contact with the fluid [wetted
surface(s)] will need to be in Eq. 5.22. If the fluid and the wetted surface or surfaces are
within the control volume, the reaction forces between fluid and wetted surface(s) do not ap-
pear in the linear momentum equation (Eq. 5.22) because they areinternal, not external forces.
The anchoring force that holds the wetted surfacg(s) in place is an externa force, however,
and must therefore be in Eq. 5.22.

. The force required to anchor an object will generally exist in response to surface pressure

and/or shear forces acting on the control surface, to a change in linear momentum flow
through the control volume containing the object, and to the weight of the object and the
fluid contained in the control volume. In Example 5.11 the nozzle anchoring force was re-
quired mainly because of pressure forces and partly because of a change in linear momen-
tum flow associated with accelerating the fluid in the nozzle. The weight of the water and
the nozzle contained in the control volume influenced the size of the anchoring force only
dlightly.
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Motorized surfboard When Bob Montgomery, a former pro-
fessional surfer, started to design his motorized surfboard
(caled a jet board), he discovered that there were many engi-
neering challenges to the design. The idea is to provide surfing
to anyone, no matter where they live, near or far from the ocean.
The rider stands on the device like a surfboard and steersiit like
asurfboard by shifting his’her body weight. A new, sleek, com-
pact 45-horsepower engine and pump was designed to fit within

the surfboard hull. Thrust is produced in response to the change
in linear momentum of the water stream as it enters through the
inlet passage and exits through an appropriately designed noz-
zle. Some of the fluid dynamic problems associated with de-
signing the craft included one-way valves so that water does not
get into the engine (at both the intake or exhaust ports), buoy-
ancy, hydrodynamic lift, drag, thrust, and hull stability. (See
Problem 5.68.)

To further demonstrate the use of the linear momentum equation (Eq. 5.22), we consider
another one-dimensional flow example before moving on to other facets of this important

equation.

—EXAMPLE 5.12 BRI LTI

GIVEN Water flows through a horizontal, 180° pipe bend as
illustrated in Fig. E5.12a. The flow cross-sectional area is con-
stant at a value of 0.1 ft? through the bend. The magnitude of the
flow velocity everywhere in the bend is axial and 50 ft/s. The
absolute pressures at the entrance and exit of the bend are 30 psia
and 24 psia, respectively.

SoLUTION

m—Pressure and Change in Flow Direction

FIND Calculate the horizontal (x and y) components of the an-
choring force required to hold the bend in place.

Since we want to evaluate components of the anchoring force to
hold the pipe bend in place, an appropriate control volume (see
dashed line in Fig. E5.12a) contains the bend and the water in the
bend at an instant. The horizontal forces acting on the contents of
this control volume are identified in Fig. E5.12b. Note that the
weight of the water is vertical (in the negative z direction) and
does not contribute to the x and y components of the anchoring
force. All of the horizontal normal and tangential forces exerted
on the fluid and the pipe bend are resolved and combined into the
two resultant components, Fn, and F,,. These two forces act on
the control volume contents, and thus for the x direction, Eq. 5.22
leads to

JUpV-ﬁdA=FAX )
cs

(a)

B FIGURE E5.12

At sections (1) and (2), the flow is in the y direction and therefore
u = 0 at both cross sections. There is no x direction momentum
flow into or out of the control volume and we conclude from Eqg. 1
that

0

Fac= (Ans)

For the y direction, we get from Eq. 5.22
j vpV - NdA = Fpy + pA; + DA, 2
cs

For one-dimensional flow, the surface integral in Eq. 2 is easy to
evaluate and Eq. 2 becomes

(Fo)(=my) + (—v)(+1p) = Fay + piAL + PA,  (3)
Pipe bend
and water Fa

\

plAl—>
[Jpe———

TZ
S
%/

/

Control volume Fa

(b)
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Note that the y component of velocity is positive at section (1) but
is negative at section (2). Also, the mass flowrate term is negative
at section (1) (flow in) and is positive at section (2) (flow out). From
the continuity equation (Eqg. 5.12), we get

m=m = m 4

and thus Eq. 3 can be written as
—m(vy + V) = Fay + PiA + PA (5)

Solving Eq. 5 for F,, we obtain
Fay = —M(v; + v5) — piA — PA; (6)

From the given data we can calculate the mass flowrate, m, from
Eqg. 5.6 as

m = p,Aw,; = (1.94 dugs/ft3)(0.1 ft?)(50 ft/s)
= 9.70 slugs/s

For determining the anchoring force, Fp, the effects of atmos-
pheric pressure cancel and thus gage pressures for p; and p, are
appropriate. By substituting numerical values of variables into
Eq. 6, and using the fact that 1 1b = 1 slug - ft/s®> we get

Fay = —(9.70 lugs/s)(50 ft/s + 50 ft/s)
— (30 psia — 14.7 psia)(144 in./ft?)(0.1 ft?)
— (24 psia — 14.7 psia)(144 in.2/ft?)(0.1 ft?)

Fpy= —9701b — 2201b — 1341b = —13241b  (Ans)

The negative sign for Fu, is interpreted as meaning that the y
component of the anchoring force is actually in the negative y
direction, not the positive y direction as originally indicated in
Fig. E5.12b.

COMMENT As with Example 5.11, the anchoring force for
the pipe bend is independent of the atmospheric pressure. How-
ever, the force that the bend puts on the fluid inside of it, R,

Water in 180° bend R,

/
Control volume R/

(c)
B FIGURE E5.12 cont.

depends on the atmospheric pressure. We can see this by using a
control volume which surrounds only the fluid within the bend as
shown in Fig. E5.12c. Application of the momentum equation to
this situation gives

R = —m(vy + v5) — PiAL — PA

where p; and p, must be in terms of absolute pressure because
the force between the fluid and the pipe wall, R, is the complete
pressure effect (i.e., absolute pressure). We see that forces exerted
on the flowing fluid result in a change in its velocity direction (a
change in linear momentum).

Thus, we obtain

R, = —(9.70 slugs/s)(50 ft/s + 50 ft/s)
— (30 psia)(144 in.%ft?)(0.1 ft?) @
— (24 psia)(144 in.%ft?)(0.1 ft?)
= —17481b

We can use the control volume that includes just the pipe
bend (without the fluid inside it) as shown in Fig. E5.12d to
determine F,, the anchoring force component in the y direction
necessary to hold the bend stationary. The y component of the
momentum equation applied to this control volume gives

Fay = R+ Pam(AL + A) (8)

where R, isgiven by Eq. 7. The pam(A; + Ay) term represents the
net pressure force on the outside portion of the control volume.
Recall that the pressure force on the inside of the bend is ac-
counted for by R,. By combining Egs. 7 and 8 and using the fact that
Pam = 14.7 Ib/in.2 (144 in.%t%) = 2117 |b/ft? we obtain

Fpy = —17481b + 2117 Ib/f? (0.1 f2 + 0.1 1?)
= —13241b

in agreement with the original answer obtained using the control
volume of Fig. E5.12b.

Control volume /

In Examples 5.10 and 5.12 the force exerted on a flowing fluid resulted in a change in flow
direction only. This force was associated with constraining the flow, with avane in Example 5.10,
and with a pipe bend in Example 5.12. In Example 5.11 the force exerted on a flowing fluid
resulted in a change in velocity magnitude only. This force was associated with a converging
nozzle. Anchoring forces are required to hold a vane or conduit stationary. They are most easily
estimated with a control volume that contains the vane or conduit and the flowing fluid involved.
Alternately, two separate control volumes can be used, one containing the vane or conduit only
and one containing the flowing fluid only.

V5.8 Fire hose

3
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—EXAMPLE 5.13 QEELLEL

GIVEN Air flows steadily between two cross sectionsin along,
straight portion of 4-in. inside diameter pipe as indicated in Fig.
E5.13, where the uniformly distributed temperature and pressure at
each cross section are given. If the average air velocity at section (2)
is1000 ft/s, we found in Example 5.2 that the average air velocity at
section (1) must be 219 ft/s. Assume uniform velocity distributions
at sections (1) and (2).

SoLuTION

The control volume of Example 5.2 is appropriate for this prob-
lem. The forces acting on the air between sections (1) and (2) are
identified in Fig. E5.13. The weight of air is considered negligibly
small. The reaction force between the wetted wall of the pipe and
the flowing air, R,, is the frictional force sought. Application of
the axial component of Eq. 5.22 to this control volume yields

J upV - NdA = —R + piA — pA, (1)
cS

The positive x direction is set as being to the right. Furthermore,
for uniform velocity distributions (one-dimensiona flow), Eq. 1
becomes

(tu)(—my) + (+u)(+p) = R + piAL — pA, (D
From conservation of mass(Eq. 5.12) we get

m=m = m (©)
so that Eq. 2 becomes
m(u, — uy) = =R+ APy — p2) (4
Solving Eq. 4 for R,, we get
Re = Ao(pr — P2) — MUz — Wy) 5
The equation of state gives
b=t (©)
and the equation for area A, is
A = LD% (7)
4

Thus, from Egs. 3, 6, and 7

(22
" \RT,/\ 4 Uz
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Momentum—Pressure, Change in Speed, and Friction

FIND Determinethefrictional force exerted by the pipe wall on
the air flow between sections (1) and (2).

V, =

Control volume 2
" Vi T TN 1000 ft/s Y
171 (= )
( >~ < R —>
Qg % P2A2  Flow
Section (1) Pipe Section (2)
p; = 100 psia p, = 18.4 psia
T, = 540 °R T,= 453 °R

B FIGURE E5.13

English Engineering (EE) units are often used for this kind of
flow. The gas constant, R, for air in EE unitsis

_ 1716(ft - Ib)/(slug - °R)
~ 32.174(Ibm/slug)
(18.4 psia)(144 in.%/ft?)
[53.3(ft - Ib)/(Ibm - °R)] (453 °R)
m(4in.)?
4(144 in2/ft?)

= 53.3(ft - Ib)/(Ibm - °R)

Hence, m =
(1000 ft/s) = 9.57Ibm/s  (8)

Thus, from Egs. 5 and 8

m(4in.)? ) _
R, = —2 (100 psia — 18.4 psia)

— (9,57 Ibm)(1000 ft/s — 219 ft/s)/

32.174(1bm - ft)/(Ib - )
= 10251b — 2321b

or

R, = 7931b (Ans)

COMMENT For this compressible flow, the pressure differ-
ence drives the motion which resultsin africtional force, R,, and
an acceleration of the fluid (i.e., a velocity magnitude increase).
For a similar incompressible pipe flow, a pressure difference re-
sultsin fluid motion with africtional force only (i.e., no changein
velocity magnitude).

|_EXAMPLE M K-} Linear Momentum—Weight, Pressure,
and Nonuniform Velocity Profile

GIVEN Consider the flow of Example 5.4 to be vertically
upward.

Friction,

FIND Develop an expression for the fluid pressure drop that
occurs between sections (1) and (2).
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SoLUTION

A control volume (see dashed lines in Fig. E5.14) that includes
only fluid from section (1) to section (2) is selected. The forces
acting on the fluid in this control volume are identified in Fig.
E5.14. The application of the axial component of Eq. 5.22 to the
fluid in this control volume resultsin

J wpV - AdA = pA — R — W — pA, (1)
cs

where R, is the resultant force of the wetted pipe wall on the
fluid. Further, for uniform flow at section (1), and because the
flow at section (2) is out of the control volume, Eq. 1 becomes
(w)(-) + | (Ho(hw, dag) = iy~ R,
Ao @

=W = pA

The positive direction is considered up. The surface integral over
the cross-sectional area at section (2), A,, is evaluated by using
the parabolic velocity profile obtained in Example 5.4,
w, = 2wy[1 — (1/R)?], a8

R
szpwszzsz W3 2771 dr
' o
R r 272
=27Tpf (2W1)2{1—<*)] rdr
b R

R
J WopWy dA, = 4 pW; -~ ©)
o 3
Combining Egs. 2 and 3 we obtain

—WprR2 + WpmRR = p A — R, — W — pA, (4

or

Solving Eq. 4 for the pressure drop from section (1) to section (2),
p1 — P, weabtain

_PE R W
Pr—P2= "5 +A1+ A, (Ans)
COMMENT We seethat the drop in pressure from section (1)

to section (2) occurs because of the following:

1. The change in momentum flow between the two sections
associated with going from a uniform velocity profile to
a parabolic velocity profile, pw2/3

2. Pipe wall friction, R,

3. The weight of the water column, W'; a hydrostatic pres-
sure effect.

If the velocity profiles had been identically parabolic at sections
(1) and (2), the momentum flowrate at each section would have

been identical, a condition we call “fully developed” flow. Then,
the pressure drop, p; — p,, would be due only to pipe wall fric-
tion and the weight of the water column. If in addition to being
fully developed, the flow involved negligible weight effects (for
example, horizontal flow of liquids or the flow of gasesin any
direction) the drop in pressure between any two sections,
pP. — P2, would be aresult of pipe wall friction only.

Note that although the average velocity is the same at section
(1) as it is at section (2) (V; = V, = w;), the momentum flux
across section (1) is not the same as it is across section (2). If it
were, the |eft-hand side of Eq. (4) would be zero. For this nonuni-
form flow the momentum flux can be written in terms of the av-
erage velocity, V, and the momentum coefficient, B, as

j wpV - hdA
= pV2A
Hence the momentum flux can be written as

I wpV - A dA = —BWopmR2 + BwWipmR?

whereB; = 1 (B = 1 for uniformflow)and 8, = 4/3(8 > 1for
any nonuniform flow).

THOW

|poA,

r\2
w2=2w1l1 = {ﬁ }

/ Section (2)
N ]

~ [l

r
R L/Control volume

-

é‘

I
I
|
|
I
|
I
Fluid only —|
|
|
I
|
I
I
|
[

Wy

)‘/Section (1)
F/

B FIGURE E5.14

—EXAMPLE LYY Linear Momentum—Thrust

GIVEN A datic thrust stand as sketched in Fig. E5.15 isto be
designed for testing a jet engine. The following conditions are
known for atypical test: Intakeair velocity = 200 m/s; exhaust gas
velocity = 500 m/s; intake cross-sectional area = 1 m?; intake

static pressure = —22.5kPa = 78.5 kPa (abs); intake static temper-
ature = 268 K; exhaust stetic pressure = 0 kPa= 101 kPa (&bs).

FIND Estimate the nominal anchoring force for which to design.
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SoLUTION

The cylindrical control volume outlined with a dashed line in
Fig. E5.15 is selected. The external forces acting in the axial di-
rection are also shown. Application of the momentum equation
(Eg. 5.22) to the contents of this control volume yields

J upV - NdA = pA + Fy — oA,
CS

~ Pam (Al - AZ) (1)

where the pressures are absolute. Thus, for one-dimensional flow,
Eq. 1 becomes

(Fup)(=rmy) + (Fu)(+my) = (P1 = Pam)As
= (P2 = Pam)A2 + Fin 2

The positive direction is to the right. The conservation of mass
equation (Eq. 5.12) leads to

m=rm = p,Ally = M, = p,Al, (3
Combining Egs. 2 and 3 and using gage pressure we obtain

m(u, — U;) = p A — pA; + Fyp (4)
Solving Eq. 4 for the thrust force, Fy,, we obtain

Fin = —PiAL + poA, + MU, — Uy) (5

We need to determine the mass flowrate, m, to calculate Fy,, and
to calculate m = p,AU;, we need p;. From theideal gas equation
of state

211

Control volume

—_— =
} _¥ = Do (A~ Ay)

|

|<— PA

| )
N

= 1

Section (2)

B FIGURE E5.15

Thus,

m = p,Au; = (1.02 kg/m?)(1 m?)(200 m/s)

= 204 kg/s ©)

Finally, combining Egs. 5 and 6 and substituting given data with
p, = 0, we obtain

Fa = —(1 m?)(—22.5 kPa)(1000 Pa/kPa)[ 1(N/m?)/Pa]
+ (204 kg/s)(500 m/s — 200 m/s)[1 N/(kg - m/s?)]

or

Fy, = 22,500 N + 61,200 N = 83,700 N (Ans)

COMMENT Theforce of the thrust stand on the engineis di-
rected toward the right. Conversely, the engine pushes to the | eft
on the thrust stand (or aircraft).

_ p,_ (78.5KPa)(1000 Pa/kPa) 1(N/nv)/Pal
PLTRT, T (2869 J/kg- K)(268 K)(1N - m/J)
= 1.02 kg/m®
F I ui d s i n t h e N e w s

Bow thrustersInthe past, large ships required the use of tugboats
for precise maneuvering, especialy when docking. Nowadays,
most large ships (and many moderate to small ones as well) are
equipped with bow thrusters to help steer in close quarters. The
units consist of a mechanism (usually a ducted propeller mounted
at right anglesto the fore/aft axis of the ship) that takes water from
one side of the bow and gects it as a water jet on the other side.
The momentum flux of this jet produces a starboard or port force

on the ship for maneuvering. Sometimes a second unit isinstalled
in the stern. Initially used in the bows of ferries, these versatile
control devices have became popular in offshore oil servicing
boats, fishing vessels, and larger ocean-going craft. They permit
unassi sted maneuvering alongside of ailrigs, vessels, loading plat-
forms, fishing nets, and docks. They also provide precise control at
slow speeds through locks, narrow channels, and bridges, where
the rudder becomes very ineffective. (See Problem 5.69.)

—EXAMPLE YR NY Linear Momentum—Nonuniform Pressure

GIVEN A duice gate across a channel of width b is shown in
the closed and open positionsin Figs. E5.16a and E5.16b.

SOLUTION

FIND Isthe anchoring force required to hold the gate in place
larger when the gateis closed or when it is open?

We will answer this question by comparing expressions for the
horizontal reaction force, R,, between the gate and the water
when the gate is closed and when the gate is open. The control

volume used in each case is indicated with dashed linesin Figs.
E5.16a and E5.16bh.
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When the gate is closed, the horizontal forces acting on the Closed sluice Open sluice
contents of the control volume are identified in Fig. E5.16c. Ap- gate e
plication of Eq. 5.22 to the contents of this control volume yields Control volume _Z Control volume

0 (no flow)
J upX - MdA = 3yH?b — R, ()
cs
Note that the hydrostatic pressure force, yH?b/2, is used. From @

Eq. 1, the force exerted on the water by the gate(which is equal to
the force necessary to hold the gate stationary) is

Water only
Rx = %’szb (2) Control volume/ Control volume
which is equal in magnitude to the hydrostatic force exerted on i o U X
the gate by the water. 1 \ R
When the gate is open, the horizontal forces acting on the con- (i TH ) Hb } \ﬂ_ (% vH ) Hb
tents of the control volume are shown in Fig. E5.16d. Application —>} } —ﬂ‘
of Eq. 5.22 to the contents of this control volume leads to L N
Section
J upV - AdA = 2yH% — R, — 3yh?b — F; (3) @
& (c) (d)

Note that because the water at sections (1) and (2) is flowing ™ F1 G U R E E5.16
along straight, horizontal streamlines, the pressure distribution at
those locations is hydrostatic, varying from zero at the free sur-
face to y times the water depth at the bottom of the channel (see
Chapter 3, Section 3.4). Thus, the pressure forces at sections (1)
and (2) (given by the pressure at the centroid times the area) are
yH?0/2 and yh?b/2, respectively. Also, the frictional force be- R, = 3yH% — 3yh® — F; — pudhb (6)
tween the channel bottom and the water is specified as F;. The
surface integral in Eqg. 3 is nonzero only where there is flow
across the control surface. With the assumption of uniform veloc-

ity distributions, R = 1yH%0 — 1yhb — Fy — m(up — uy) 7

If H > h, the upstream vel ocity, u,, ismuch lessthan u, so that the
contribution of the incoming momentum flow to the control sur-
face integral can be neglected and from Eq. 5 we obtain

By using the continuity equation, m = pbHu; = pbhu,, Eq. (6)
can be rewritten as

J UpV - AL dA = (Up)p(—upHb + (+u)p(+uhb  (4) Hence, sinceu, > uy, by compariljg the expressions for R, (Eqs.
s 2 and 7) we conclude that the reaction force between the gate and
the water (and therefore the anchoring force required to hold the
gate in place) is smaller when the gate is open than when it is
—puiHb + puhb = 3yH — R —3y"b = F; (5  closed. (Ans)

Thus, Egs. 3 and 4 combine to form

All of the linear momentum examples considered thus far have involved stationary and non-
deforming control volumes which are thus inertial because there is no acceleration. A nondeform-
ing control volume trandlating in a straight line at constant speed is also inertial because there is

The linear momen-
tum equation can
be written for a

moving control no acceleration. For a system and an inertial, moving, nondeforming control volume that are both
volume. coincident at an instant of time, the Reynolds transport theorem (Eq. 4.23) leads to
D d
J VpdVZJ VpdV+JVpW'ﬁdA (5.23)
Dt Jgs ot Jo s
K When we combine Eq. 5.23 with Egs. 5.19 and 5.20, we get
V5.9 Jelly fish d o
g o J Vpd¥ + J VpW - ndA = E F contents of the (5.24)
ot cv cs control volume

When the equation relating absolute, relative, and control volume velocities (Eq. 5.14) is used with
Eq. 5.24, the result is

d A
ot J (W + Vg)p d¥ + J (W + Vg )pW - NdA = E Feontents of the (5.25)

ot cs control volume
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For a constant control volume velocity, V,, and steady flow in the control volume reference frame,

J
9 f (W + Vo)p d¥ = 0 (5.26)
at Jo
Also, for this inertial, nondeforming control volume
J (W + Vg )pW - AdA = J pr-ﬁdA+vch pW - A dA (5.27)
cs cs cs
For steady flow (on an instantaneous or time-average basis), Eq. 5.15 gives
J pW -ndA=0 (5.28)
cs

Combining Egs. 5.25, 5.26, 5.27, and 5.28, we conclude that the linear momentum equation for
an inertial, moving, nondeforming control volume that involves steady (instantaneous or time-

average) flow is

The linear momen-

tum equation for a )
&q J WpW - hdA = E Fcontents of the
cs

moving control vol- control volume

ume involves the
relative velocity.

Example 5.17 illustrates the use of Eg. 5.29.

—EXAMPLE 3 WAl Linear Momentum—Moving Control Volume

GIVEN A vane on wheels moves with constant velocity V, and the vane is moving to the right with a constant speed of

when a stream of water having a nozzle exit velocity of V, is 20 ft/s.
turned 45° by the vane as indicated in Fig. E5.17a. Note that

this is the same moving vane considered in Section 4.4.6 FIND Determine the magnitude and direction of the force, F,

earlier. The speed of the water jet leaving the nozzleis 100 ft/s,  exerted by the stream of water on the vane surface.

B FIGURE E5.17

Moving —
control
volume

(b)

(5.29)
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SoLUTION

To determine the magnitude and direction of the force, F, exerted
by the water on the vane, we apply Eq. 5.29 to the contents of the
moving control volume shown in Fig. E5.17b. The forces acting
on the contents of this control volume are indicated in
Fig. E5.17c. Note that since the ambient pressure is atmospheric,
all pressure forces cancel each other out. Equation 5.29 is ap-
plied to the contents of the moving control volume in component
directions. For the x direction (positive to the right), we get

J W,pW - hdA=—-R,
cs
or
(+Wy)(—ry) + (+W, cosd5®)(+mp) = —R, @
where
m = p WA and m, = pWoA,.

For the vertical or z direction (positive up) we get

JWZpW-ﬁdA:RZ—WW
cs

or
(+W, sin45°)(+11,) = R, — W, @)

We assume for simplicity that the water flow isfrictionless and that
the change in water elevation across the vane is negligible. Thus,
from the Bernoulli equation (Eqg. 3.7) we conclude that the speed of
the water relative to the moving control volume, W, is constant or

W, =W,

The relative speed of the stream of water entering the control vol-
ume, Wi, is

W, =V, — V, = 100ft/s — 20ft/s = 80ft/s = W,
The water density is constant so that
p1 = pp = 1.94 dugs/ft

Application of the conservation of mass principle to the contents
of the moving control volume (Eq. 5.16) leads to

My = piWiA; = pWoA, = 11,

Combining results we get
R, = pW3 A, (1 — cos45°)

or

R, = (1.94 slugs/ft3)(80 ft/s)%(0.006 ft?)(1 — cos 45°)

=218Ib
Also,
R, = pWi(sin 45°)A; + °IW,,
where
W = pgALl

Thus,

R, = (1.94 slugs/ft3)(80 ft/s)(sin 45°)(0.006 ft?)
+ (62.4 1b/ft%)(0.006 ft2)(1 ft)
=5261b + 0.371b = 531b

Combining the components we get
R= VR + R = [(21.81b)*> + (53 Ib)*}¥? = 57.31b

The angle of R from the x direction, «, is

R,
a= tan’lﬁ = tan"* (53 1b/21.8 1b) = 67.6°
X
The force of the water on the vane is equal in magnitude but op-
posite in direction from R; thus it points to the right and down at
an angle of 67.6° from the x direction and is equal in magnitude
to 57.3 Ih. (Ans)

COMMENT The force of the fluid on the vane in the x-
direction, R, = 21.8 Ib, is associated with x-direction mation of the
vane a a constant speed of 20 ft/s. Since the vane is not accelerat-
ing, this x-direction force is opposed mainly by a wheel friction
force of the same magnitude. From basic physics we recall that the
power thissituation involvesisthe product of force and speed. Thus,

P =RV
_ (21.81b)(201t/s)
~ 550(ft - Ib)/(hp - 5)
= 0.79 hp
All of this power is consumed by friction.

It is clear from the preceding examples that a flowing fluid can be forced to

. change direction
speed up or slow down
have a velocity profile change

O wWN R

. do none of the above

. do only some or al of the above

A net force on the fluid is required for achieving any or all of the first four above. The forces
on a flowing fluid balance out with no net force for the fifth.
Typica forces considered in this book include

(a) pressure
(b) friction
(c) weight




The angular mo-
mentum equation is
derived from New-
ton’s second law.
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and involve some type of constraint such as a vane, channel, or conduit to guide the flowing fluid.
A flowing fluid can cause a vane, channel or conduit to move. When this happens, power is pro-
duced.

The selection of a control volume is an important matter. For determining anchoring forces,
consider including fluid and its constraint in the control volume. For determining force between a
fluid and its constraint, consider including only the fluid in the control volume.

5.2.3 Derivation of the Moment-of-Momentum Equation?

In many engineering problems, the moment of a force with respect to an axis, namely, torque, isim-
portant. Newton’'s second law of motion has already led to a useful relationship between forces and
linear momentum flow. The linear momentum equation can also be used to solve problems involving
torques. However, by forming the moment of the linear momentum and the resultant force associated
with each particle of fluid with respect to a point in an inertial coordinate system, we will develop a
moment-of-momentum equation that relates torques and angular momentum flow for the contents of
acontrol volume. When torques are important, the moment-of-momentum equation is often more con-
venient to use than the linear momentum equation.
Application of Newton's second law of motion to a particle of fluid yields

D

ot (VP V) = 0Fprice (5.30)
where V is the particle velocity measured in an inertial reference system, p is the particle density,
oV isthe infinitesimally small particle volume, and 6F 4. iS the resultant external force acting
on the particle. If we form the moment of each side of Eq. 5.30 with respect to the origin of an
inertial coordinate system, we obtain

D

where r is the position vector from the origin of the inertial coordinate system to the fluid parti-
cle (Fig. 5.3). We note that

D Dr D(Vp 8V)
—[(r xV)pd¥]=—XVpd¥ +1r Xx —— 5.32
ot LT X V)pd¥] =" x Vp r Dt (532
and
Dr
—=V 5.33
Dt (5.33)
Thus, since
VXV=0 (5.39)
by combining Egs. 5.31, 5.32, 5.33, and 5.34, we obtain the expression
D
Nt [(r X V)p 6\7‘] =rx 8Fparticle (535)

Dt

B FIGURE 5.3 |Inertial coordinate system.

2This section may be omitted, along with Sections 5.2.4 and 5.3.5, without loss of continuity in the text material. However, these sec-
tions are recommended for those interested in Chapter 12.
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For a system, the
rate of change of
moment-of-momen-
tum equals the net
torque.

Equation 5.35 is valid for every particle of a system. For a system (collection of fluid particles),
we need to use the sum of both sides of Eq. 5.35 to obtain

J E[(r X V)pd¥] = E(r X Fys (5.36)
os Dt
where
D21 X SFpgriae = X, (1 X Fys (5.37)
We note that
D D

since the sequential order of differentiation and integration can be reversed without consequence. (Re-
call that the material derivative, D( )/Dt, denotes the time derivative following a given system; see
Section 4.2.1.) Thus, from Egs. 5.36 and 5.38 we get

D
J (r x V)pd¥ = D (r X F)ys (5.39)
Dt Jgs
or
the time rate of change of the = sum of external torques

moment-of-momentum of the system  acting on the system

The sketch in the margin illustrates what torque, T = r X F, is. For a control volume that is in-
stantaneously coincident with the system, the torques acting on the system and on the control vol-
ume contents will be identical:

D (r X Flgs= 2 (r X Fy (5.40)

Further, for the system and the contents of the coincident control volume that is fixed and nonde-
forming, the Reynolds transport theorem (Eq. 4.19) leads to

D 9
J (rxV)pdV=J (rXV)pdV+J (r x V)pV - it dA (5.41)
Dt Jys ot o o

or
timerate of change timerate of change net rate of flow
of the moment-of- of the moment-of- of the moment-of-
momentum of the = momentum of the + momentum through
system contents of the the control surface
control volume

For acontrol volume that is fixed (and therefore inertial) and nondeforming, we combine Egs. 5.39,
5.40, and 5.41 to obtain the moment-of-momentum equation:

J o
o J' (r X V)p dv + J (r X V)pV -NdA = E(I’ X F)contentsofthe (5.42)
ov

ot cs control volume

An important category of fluid mechanical problems that is readily solved with the help of
the moment-of-momentum equation (Eg. 5.42) involves machines that rotate or tend to rotate around
asingle axis. Examples of these machines include rotary lawn sprinklers, ceiling fans, lawn mower
blades, wind turbines, turbochargers, and gas turbine engines. As a class, these devices are often
called turbomachines.

5.2.4 Application of the Moment-of-Momentum Equation®

We simplify our use of Eq. 5.42 in several ways:

1. We assume that flows considered are one-dimensional (uniform distributions of average ve-
locity at any section).

3This section may be omitted, aong with Sections 5.2.3 and 5.3.5, without loss of continuity in the text material. However, these sec-
tions are recommended for those interested in Chapter 12.
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Change in moment
of fluid velocity
around an axis can
result in torque and
rotation around
that same axis.
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= \4\; Control volume
\
e Section (2)

B FIGURE 5.4 (a) Rotary water Fiw
sprinkler. (b) Rotary water sprinkler, plane view.
(c) Rotary water sprinkler, side view. (0

2. We confine ourselves to steady or steady-in-the-mean cyclical flows. Thus,

0
— r XxV)pd¥ =0
atL( o

at any instant of time for steady flows or on a time-average basis for cyclical unsteady
flows.

3. We work only with the component of Eq. 5.42 resolved along the axis of rotation.

Consider the rotating sprinkler sketched in Fig. 5.4. Because the direction and magnitude of the flow
through the sprinkler from the inlet [section (1)] to the outlet [section (2)] of the arm changes, the
water exerts a torque on the sprinkler head causing it to tend to rotate or to actually rotate in the di-
rection shown, much like a turbine rotor. In applying the moment-of-momentum equation (Eq. 5.42)
to this flow situation, we elect to use the fixed and nondeforming control volume shown in Fig. 5.4.
This disk-shaped control volume contains within its boundaries the spinning or stationary sprinkler
head and the portion of the water flowing through the sprinkler contained in the control volume at
an instant. The control surface cuts through the sprinkler head's solid material so that the shaft torque
that resists motion can be clearly identified. When the sprinkler isrotating, the flow field in the sta-
tionary control volume is cyclical and unsteady, but steady in the mean. We proceed to use the ax-
ial component of the moment-of-momentum equation (Eq. 5.42) to analyze this flow.
The integrand of the moment-of-momentum flow term in Eq. 5.42,

J (r x V)pV - fdA

can be nonzero only where fluid is crossing the control surface. Everywhere else on the control
surface this term will be zero because V - i = 0. Water enters the control volume axially through
the hollow stem of the sprinkler at section (1). At this portion of the control surface, the compo-
nent of r X V resolved along the axis of rotation is zero because as illustrated by the figure in the
margin, r X V liesin the plane of section (1), perpendicular to the axis of rotation. Thus, there is
no axial moment-of-momentum flow in at section (1). Water leaves the control volume through
each of the two nozzle openings at section (2). For the exiting flow, the magnitude of the axia
component of r X V isr,V,,, wherer, isthe radius from the axis of rotation to the nozzle centerline
and V,, is the value of the tangential component of the velocity of the flow exiting each nozzle as
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The algebraic sign
of r X V isobtained
by the right-hand
rule.

observed from a frame of reference attached to the fixed and nondeforming control volume. The
fluid velocity measured relative to a fixed control surface is an absolute velocity, V. The velocity
of the nozzle exit flow as viewed from the nozzle is called the relative velocity, W. The absolute
and relative velocities, V and W, are related by the vector relationship

V=W+U (5.43)

where U is the velocity of the moving nozzle as measured relative to the fixed control surface.
The cross product and the dot product involved in the moment-of-momentum flow term of
Eq. 5.42,

J (r x V)pV - hdA

can each result in a positive or negative value. For flow into the control volume, V - f is negative.
For flow out, V - h is positive. The correct algebraic sign to assign the axis component of r X V
can be ascertained by using the right-hand rule. The positive direction along the axis of rotation is
the direction the thumb of the right hand points when it is extended and the remaining fingers are
curled around the rotation axis in the positive direction of rotation asillustrated in Fig. 5.5. The di-
rection of the axial component of r X V issimilarly ascertained by noting the direction of the cross
product of the radius from the axis of rotation, ré&., and the tangential component of absolute ve-
locity, V,&,. Thus, for the sprinkler of Fig. 5.4, we can state that

{J (r x V)pV - hdA = (—ryVp)(+m) (5.44)
cs axia
where, because of mass conservation, m is the total mass flowrate through both nozzles. As was
demonstrated in Example 5.7, the mass flowrate is the same whether the sprinkler rotates or not. The
correct algebraic sign of the axial component of r X V can be easily remembered in the following
way: if V, and U are in the same direction, use +; if V, and U are in opposite directions, use —.
Thetorqueterm [ X (r X F)gontents of the control volume ] Of the moment-of-momentum equation (Eq.
5.42) is analyzed next. Confining ourselves to torques acting with respect to the axis of rotation
only, we conclude that the shaft torque is important. The net torque with respect to the axis of ro-
tation associated with normal forces exerted on the contents of the control volume will be very
small if not zero. The net axial torque due to fluid tangential forces is also negligibly small for the
control volume of Fig. 5.4. Thus, for the sprinkler of Fig. 5.4

E[U X I:)contentsof the:| = Tt (5.45)
axial

control volume:

Note that we have entered T4 as a positive quantity in Eq. 5.45. This is equivalent to assuming
that Ty 1S in the same direction as rotation.

For the sprinkler of Fig. 5.4, the axial component of the moment-of-momentum equation (Eq.
5.42) is, from Egs. 5.44 and 5.45

_r2V92m = Tshaft (546)

We interpret T, being a negative quantity from Eq. 5.46 to mean that the shaft torque actually
opposes the rotation of the sprinkler arms as shown in Fig. 5.4. The shaft torque, Ty, OPPOSES
rotation in all turbine devices.

B FIGURE 5.5 Right-hand rule convention.
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We could evaluate the shaft power, V'VMU associated with shaft torque, Tg,4, by forming the
product of Tg. and the rotational speed of the shaft, . [We use the notation that
W = work, (-) = d( )/dt, and thus W = power.] Thus, from Eq. 5.46 we get

Wshaft = Tshaft w = _r2V92m(1) (547)
Power is equal to i _ i _
angular velocity Since r,w is the speed of each sprinkler nozzle, U, we can also state Eq. 5.47 in the form
times torque.

Wit = —UzVjoh (5.48)

Shaft work per unit mass, W, iS equal to Wy,,/m. Dividing Eq. 5.48 by the mass flowrate, m,
we obtain

, | t Wengge = —UpVio (5.49)

V5.11 Impul se-type
lawn sprinkier

Negative shaft work asin Egs. 5.47, 5.48, and 5.49 iswork out of the control volume, that is, work
done by the fluid on the rotor and thus its shaft.

The principles associated with this sprinkler example can be extended to handle most sim-
plified turbomachine flows. The fundamental technique is not difficult. However, the geometry of
ah some turbomachine flows is quite complicated.

Example 5.18 further illustrates how the axial component of the moment-of-momentum equa-
tion (Eq. 5.46) can be used.

L ILLTICRENT voment of Momentum—Toraue

GIVEN Water entersarotating lawn sprinkler through its base ‘ r,=

at the steady rate of 1000 ml/s as sketched in Fig. E5.18a. The exit | 200 mm Nossle exit
areaof each of thetwo nozzlesis 30 mm? and the flow leaving each Control volume \ B _K‘ area = 30 mm?
nozzleisin the tangential direction. The radius from the axis of ro- T

tation to the centerline of each nozzleis 200 mm.
Flow out

FIND (a) Determinetheresisting torque required to hold the
sprinkler head stationary.

(b) Determine the resisting torque associated with the sprinkler
rotating with a constant speed of 500 rev/min.

(c) Determine the speed of the sprinkler if no resisting torqueis
applied. (@

Q= 1000 ml/s

SoLUTION

To solve parts (a), (b), and (c) of this example we can use the
same fixed and nondeforming, disk-shaped control volume illus-
trated in Fig. 5.4. As indicated in Fig. E5.18a, the only axial
torque considered is the one resisting motion, Ty

(@ Whenthesprinkler head isheld stationary as specified in part ®
(a) of thisexample problem, the velocities of the fluid entering and
leaving the control volume are shown in Fig. E5.18b. Equation
5.46 applies to the contents of this control volume. Thus,

Tenait = —r2Vpon (@)

Since the control volume is fixed and nondeforming and the flow
exiting from each nozzle is tangential,

Vo2 = Va 2

©
Equations 1 and 2 give BEFIGURE E5.18

Tepart = —T2VoM ©)
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In Example 5.7, we ascertained that V, = 16.7 m/s. Thus, from
Eqg. 3 with

(1000 ml/s)(10~ 2 m¥/liter)(999 kg/m?)

m=Qp= (1000 mi/liter)
= 0.999 kg/s
we obtain
o (200 mm)(16.7 m/s)(0.999 kg/s)[ 1(N/kg)/(m/s?)]
shaft (1000 mm/m)
or

Tehat = —3.34N-m (Ans)

(b) When the sprinkler is rotating at a constant speed of 500
rpm, the flow field in the control volume is unsteady but cyclical.
Thus, theflow field is steady in the mean. The vel ocities of the flow
entering and leaving the control volume are as indicated in Fig.
E5.18c. The absolute velocity of thefluid leaving each nozzle, Vs,
isfrom Eq. 5.43,

Vo =W, — Uy 4)
where
W, = 16.7 m/s

as determined in Example 5.7. The speed of the nozzle, U, is ob-
tained from
U, = row )

Application of the axial component of the moment-of-momentum
equation (Eq. 5.46) leads again to Eq. 3. From Egs. 4 and 5,

V2 = 16.7m/s — Iow
(200 mm)(500 rev/min)(2 rad/rev)

= 16.7 —
6.7m/s (2000 mm/m)(60 s/min)

or

V, = 16.7m/s — 10.5m/s = 6.2 m/s

Thus, using Eq. 3, with m = 0.999 kg/s (as calculated previ-

ously), we get

(200 mm)(6.2 m/s) 0.999 kg/s [ 1(N/kg)/(m/s?)]
(1000 mm/m)

shaft —

or

Tehat = —1.24N-m (Ans)
COMMENT Note that the resisting torque associated with
sprinkler head rotation is much less than the resisting torque that
isreguired to hold the sprinkler stationary.

(c) When no resisting torque is applied to the rotating sprinkler
head, amaximum constant speed of rotation will occur as demon-
strated below. Application of Egs. 3, 4, and 5 to the contents of the
control volumeresultsin

Tonatt = —I2(Wo — row)m (6)
For no resisting torque, Eq. 6 yields
0= —ry(W, — row)m
Thus,
_ b

2

© ™

In Example 5.4, we learned that the relative velocity of the
fluid leaving each nozzle, W, is the same regardless of the speed
of rotation of the sprinkler head, w, aslong as the mass flowrate
of the fluid, m, remains constant. Thus, by using Eq. 7 we obtain

W,  (16.7 m/s)(1000 mm/m)

= . = (200 mm) = 83.5rad/s
or
B (83.5 rad/s)(60 s/min) _ 797 A
©= 2 7 rad/rev a A (Ans)

For thiscondition (T4 = 0), the water both enters and leavesthe
control volume with zero angular momentum.

COMMENT Note that forcing a change in direction of a
flowing fluid, in this case with a sprinkler, resulted in rotary mo-
tion and a useful “sprinkling” of water over an area.

By repeating the calculations for various values of the angular
velocity, w, the results shown in Fig. E5.18d are obtained. It is seen
that the magnitude of the resisting torque associated with rotation is
lessthan the torque required to hold the rotor stationary. Eveninthe
absence of aresisting torque, the rotor maximum speed isfinite.

, rpm

400

0 200 600 800

B FIGURE E5.18d

When the moment-of-momentum equation (Eq. 5.42) is applied to a more general, one-
dimensional flow through a rotating machine, we obtain

Tt = (_r:“n)(i rinvf)in) + r:nout(iroutveout)

(5.50)
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by applying the same kind of analysis used with the sprinkler of Fig. 5.4. The “—" is used with
mass flowrate into the control volume, my,,, and the “+” is used with mass flowrate out of the
control volume, M, to account for the sign of the dot product, V - f, involved. Whether
“+" or“—" isused with the rV, product depends on the direction of (r X V),a. A Simple way to
determine the sign of the rV, product is to compare the direction of V, and the blade speed, U. As
shown in the margin, if V, and U are in the same direction, then the rV, product is positive. If V,
and U are in opposite directions, the rV, product is negative. The sign of the shaft torque is
“+7if Tgq IS in the same direction along the axis of rotation as w, and “ —" otherwise.
The shaft power, Wy, is related to shaft torque, Ty by

Wshan = Tqa @ (5:51)
Thus, using Egs. 5.50 and 5.51 with a“ +" sign for T, in EQ. 5.50, we obtain
Wshaft = (_mn)( * rin‘“VHin) + mout( * rou'(w\/(ﬂout) (552)
orsincerow = U
Wshaft = (_mn)( * UinVOin) + r'nout( * Uoutveout) (5-53)

The “+" is used for the UV, product when U and V, are in the same direction; the “—"

When shaft torque
and shaft rotation
arein the same
(opposite) direc-
tion, power isinto
(out of) the fluid.

From Eq. 5.53, we obtain

is used when U and V, are in opposite directions. Also, since + T4 Was used to obtain Eq. 5.53,
when Wy, is positive, power is into the fluid (for example, a pump), and when Wy, is negative,
power is out of the fluid (for example, a turbine).

The shaft work per unit mass, Wy, Can be obtained from the shaft power, Wy, by divid-
ing Eq. 5.53 by the mass flowrate, m. By conservation of mass,

m=m, = My

Wehatt =

_( * Uinvein) + ( * Uoutveout) (554)

The application of Egs. 5.50, 5.53, and 5.54 is demonstrated in Example 5.19. More exam-
ples of the application of Egs. 5.50, 5.53, and 5.54 are included in Chapter 12.

L ILLTTCRENE]Y voment of Momentum—power

GIVEN An air fan has a bladed rotor of 12-in. outside di-
ameter and 10-in. inside diameter as illustrated in Fig.
E5.19a. The height of each rotor blade is constant at 1 in.
from blade inlet to outlet. The flowrate is steady, on a time-
average basis, at 230 ft¥min and the absolute velocity of the

SOLUTION

air at blade inlet, V,, is radial. The blade discharge angle is
30° from the tangential direction. The rotor rotates at a con-
stant speed of 1725 rpm.

FIND Estimate the power required to run the fan.

We select a fixed and nondeforming control volume that includes
therotating blades and the fluid within the blade row at aninstant, as
shown with adashed linein Fig. E5.19a. The flow within this con-
trol volume is cyclical, but steady in the mean. The only torque we
consider isthe driving shaft torque, Ty Thistorqueis provided by
amotor. We assume that the entering and leaving flows are each rep-
resented by uniformly distributed velocities and flow properties.
Since shaft power is sought, Eq. 5.53 is appropriate. Application of
Eq. 5.53 to the contents of the control volumein Fig. E5.19 gives

0(Vyisradial)
Wenart = —My(=UNMp1) + (= U5Ve0) (@)

From Eq. 1 we see that to calculate fan power, we need mass
flowrate, m, rotor exit blade velocity, U,, and fluid tangential ve-
locity at blade exit, V,,. The mass flowrate, m, is easily obtained
from Eq. 5.6 as

(2.38 x 102 dlug/ft3)(230 ft3/min)
(60 /min)
= 0.00912 slug/s 2
Often, problems involving fans are solved using English Engi-
neering units. Since 1slug = 32.174 Ibm, we could have used as

the density of air p,, = (2.38 X 102 slug/ft®)(32.174lbm/slug)
= 0.0766 lbm/ft°.

m=pQ =
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N

Section (1)
Fixed control volume

Tshaf‘l

—————D,=2r,=12in.—————

D, =2r,=10in.——

RN
=l
i >0
ci>nhm

ﬁj lhi

Fixed
control volume

(@)
B FIGURE E5.19

Then
(0.0766 |bm/ft)(230 ft3/min)
(60 s/min)
The rotor exit blade speed, U,, is
(6in.)(1725 rpm)(27 rad/rev)
(12 in./ft)(60 S/min)

m =

= 0.294 Ibm/s

U,

rz(l) =
= 90.3ft/s 3
To determine the fluid tangential speed at the fan rotor exit, V,,,
we use Eq. 5.43 to get

V2 = W2 + U2 (4)

The vector addition of Eq. 4 is shown in the form of a “velocity
triangle” in Fig. E5.19b. From Fig. E5.19b, we can see that

Vgo = U, — W, cos 30° 5)

To solve Eq. 5 for V,, we need a value of W,, in addition to the
value of U, already determined (Eq. 3). To get W,, we recognize
that

W2 sin30° = Vrz (6)

where V,, isthe radial component of either W, or V,. Also, us-
ing Eq. 5.6, we obtain

m = pAV;, )
or since

Ag = 27Tr2h (8)

n.

(b)

where h is the blade height, Egs. 7 and 8 combine to form
m = p27Tr2th2 (9)

Taking Egs. 6 and 9 together we get

pQ
p2mr,h sin 30°

— m —
~ p2mrhsin30°
3 Q

~ 2mr,hsin 30°

W, (20)

Substituting known valuesinto Eg. 10, we obtain
(230 ft3/min)(12 in./ft)(12 in./ft)
2~ (60 s/min)2m(6in.)(1in.) sin 30°
= 29.3ft/s

By using this value of W, in Eq. 5 we get
Vo = U, — W, cOs 30°
= 90.3 ft/s — (29.3 ft/s)(0.866) = 64.9 ft/s
Equation 1 can now be used to obtain
(0.00912 slug/s)(90.3 ft/s)(64.9 ft/s)
[1(slug - ft/s?)/1b][550(ft - Ib)/(hp - 5)]

Wshaft = mUyVy, =

with BG units.
With EE units
A (0.294 Ibm/s)(90.3 ft/s)(64.9 ft/s)
St 132,174 (Ibm - ft)/(Ib/s2)][550 (ft - Ib)/(hp - 5)]




In either case

COMMENT Note that the “+” was used with the U,V,, surerise) on the air. How much useful effect depends on the effi-
product because U, and V,, arein the same direction. Thisresult, ciency of the energy transfer between the fan blades and the fluid.
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0.097 hp, is the power that needs to be delivered through the fan
shaft for the given conditions. Idedlly, al of this power would go
into the flowing air. However, because of fluid friction, only some
of this power will produce useful effects (e.g., movement and pres-

Wyt = 0.097 hp (Ans)

5.3 First Law of Thermodynamics—The Energy Equation

Thefirst law of

thermodynamicsis
a statement of con-
servation of energy.

5.3.1 Derivation of the Energy Equation

The first law of thermodynamics for a system is, in words

time rate of net time rate of net time rate of
increase of the energy additionby  energy addition by
total stored energy = heat transfer into  + work transfer into
of the system the system the system

In symbolic form, this statement is

o[ wwv-(3a- zau) (- T

s
or

D . .
Dt J ep dV = (Q_net + \N_net)sys (5.55)
sys in in
Some of these variables deserve a brief explanation before proceeding further. The total stored
energy per unit mass for each particle in the system, e, isrelated to the internal energy per unit
mass, U, the kinetic energy per unit mass, V2/2, and the potential energy per unit mass, gz, by the
equation
2
e=ﬂ+7+gz (5.56)

The net rate of heat transfer into the system is denoted with Qretins and the net rate of work trans-
fer into the system is labeled W, . Heat transfer and work transfer are considered “ +” going into
the system and “—" coming out.

Equation 5.55 is valid for inertial and noninertial reference systems. We proceed to develop
the control volume statement of the first law of thermodynamics. For the control volume that is
coincident with the system at an instant of time

(Qnet + Wnet)S/s = (Qnet + Wnet)coincident (5.57)
in in in in control volume
Furthermore, for the system and the contents of the coincident control volume that is fixed and
nondeforming, the Reynolds transport theorem (Eq. 4.19 with the parameter b set equal to e) allows
us to conclude that

D d
J epdV=J epdV+JepV-ﬁdA (5.58)
Dt Jgs at Jo -
or in words,
the time rate . . the net rate of flow
i the time rate of in-
of increase of the total stored energy
_ crease of the total stored
of thetota = enerav of the contents + out of the control
stored energy o volume through the

of the system of the control volume control surface
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The energy equa-
tion involves stored
energy and heat
and work transfer.

S

1 Control Volume

Qnst:Q'l+Q2_Q3_Q'4

W = FV
= FV cosd

Chapter 5 B Finite Control Volume Analysis

Combining Egs. 5.55, 5.57, and 5.58 we get the control volume formula for the first law of ther-
modynamics:

Jd . .
< J ep dV + J epV - AdA = (O + Wiy (5.59)
cv cs

Jat in in

The total stored energy per unit mass, e, in Eq. 5.59 is for fluid particles entering, leaving, and
within the control volume. Further explanation of the heat transfer and work transfer involved in
this equation follows. _

The heat transfer rate, Q, represents all of the ways in which energy is exchanged between
the control volume contents and surroundings because of atemperature difference. Thus, radiation,
conduction, and/or convection are possible. As shown by the figure in the margin, heat transfer
into the control volume is considered positive, heat transfer out is negative. In many engineering
applications, the process is adiabatic; the heat transfer rate, Q, is zero. The net heat transfer rate,
Qnetin: Can also be zero when X Qi — X Quy = 0.

The work transfer rate, W, also called power, is positive when work is done on the contents
of the control volume by the surroundings. Otherwise, it is considered negative. Work can be trans-
ferred across the control surface in several ways. In the following paragraphs, we consider some
important forms of work transfer.

In many instances, work is transferred across the control surface by a moving shaft. In rotary
devices such as turbines, fans, and propellers, a rotating shaft transfers work across that portion of
the control surface that dices through the shaft. Even in reciprocating machines like positive dis-
placement internal combustion engines and compressors that utilize piston-in-cylinder arrangements,
arotating crankshaft is used. Since work is the dot product of force and related displacement, rate
of work (or power) is the dot product of force and related displacement per unit time. For a rotat-
ing shaft, the power transfer, Wy, is related to the shaft torque that causes the rotation, Tq,., and
the angular velocity of the shaft, w, by the relationship

Wanatt = Tenari

When the control surface cuts through the shaft material, the shaft torque is exerted by shaft ma-
terial at the control surface. To alow for consideration of problems involving more than one shaft
we use the notation

= E W_shaft - 2 Wt (5.60)
n out
Work transfer can also occur at the control surface when a force associated with fluid nor-
mal stress acts over a distance. Consider the simple pipe flow illustrated in Fig. 5.6 and the con-
trol volume shown. For this situation, the fluid normal stress, o, is simply equal to the negative of
fluid pressure, p, in all directions; that is,

(5.61)

This relationship can be used with varying amounts of approximation for many engineering prob-
lems (see Chapter 6). _

The power transfer, W, associated with a force F acting on an object moving with velocity V
is given by the dot product F - V. Thisis illustrated by the figure in the margin. Hence, the power
transfer associated with normal stresses acting on a single fluid particle, SW,gma sressr €8N be evalu-
ated as the dot product of the normal stress force, 8F,oma sreser @d the fluid particle velocity, V, as

o=-p

6V.Vnormal aress = OF normal stress * V
If the normal stress force is expressed as the product of local normal stress, o = —p, and
fluid particle surface area, h A, the result is
Wooma sres = 0N SA =V = —pR 6A -V = —pV - I 6A

For al fluid particles on the control surface of Fig. 5.6 at the instant considered, power transfer
due to fluid normal stress, W, oima sress 1S

Wooma = J oV - fdA= f —pV - A dA (5.62)

stress cs cs



Work is transferred
by rotating shafts,
normal stresses,
and tangential
stresses.

ID_>V
|
— 1

6\Ntangent|al stress — 0
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Section (1) Control volume  Section (2) Pipe

max

B FIGURE 5.6 Simple fully
developed pipe flow.

Note that the value of V\/normaJ sress 101 particles on the wetted inside surface of the pipe is zero be-
cause V - h is zero there. Thus, W, ma sress €8N be nonzero only where fluid enters and leaves the
control volume. Although only a simple pipe flow was considered, Eq. 5.62 is quite general and
the control volume used in this example can serve as a general model for other cases.

Work transfer can also occur at the control surface because of tangentia stress forces. Ro-
tating shaft work istransferred by tangential stressesin the shaft material. For afluid particle, shear
stress force power, 6Wiangenia sressr CaN b€ evaluated as the dot product of tangential stress force,
OF tangential stress @Nd the fluid particle velocity, V. That is,

5V\/tangen'(ial stress 8Ftangential sress * V

For the control volume of Fig. 5.6, the fluid particle velocity is zero everywhere on the wetted in-
side surface of the pipe. Thus, no tangential stress work is transferred across that portion of the
control surface. Furthermore, if we select the control surface so that it is perpendicular to the fluid
particle velocity, then the tangential stress force is also perpendicular to the velocity. Therefore,
the tangential stress work transfer is zero on that part of the control surface. Thisis illustrated in
the figure in the margin. Thus, in general, we select control volumes like the one of Fig. 5.6 and
consider fluid tangential stress power transfer to be negligibly small.

Using the information we have developed about power, we can express the first law of ther-
modynamics for the contents of a control volume by combining Egs. 5.59, 5.60, and 5.62 to obtain

ad . .
- J ep d¥ + f eV - NdA = Qug + Wyt — J pV - A dA (5.63)
ot Jo cs in netin cs

When the equation for total stored energy (Eq. 5.56) is considered with Eq. 5.63, we obtain the
energy equation:

\V& . .
aj epdV+J<ﬂ+p++gZ>pV'ﬁdA:Qna+Wshan (5.64)

ot in netin

5.3.2 Application of the Energy Equation

In Eq. 5.64, the term d/at [, ep d¥ represents the time rate of change of the total stored energy,
e, of the contents of the control volume. This term is zero when the flow is steady. This term is
also zero in the mean when the flow is steady in the mean (cyclical).

In Eq. 5.64, the integrand of

.op Ve ) .
U+—+—+09z|pV - -ndA
Jcs( P 2 g )P

can be nonzero only where fluid crosses the control surface (V - i # 0). Otherwise, V - f is zero
and the integrand is zero for that portion of the control surface. If the properties within parenthe-
ses, U, p/p, V?/2, and gz, are all assumed to be uniformly distributed over the flow cross-sectional
areas involved, the integration becomes simple and gives
2 2
J <U+p+v+gz>pv'ﬁdA= 2<u+p+v+gz)m
cs p 2 flow p 2
out

2
—ﬂE(U+E+\;+gz)m (5.65)

in
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The energy equa-
tion is sometimes
written in terms of
enthal py.

i mcut

5 Streamtube
my,

e EFIGURE 5.7
\Y; Streamtube flow.

Furthermore, if there is only one stream entering and leaving the control volume, then

. P VA ) .
U+ =+ —-+09z)pV- -ndA=
J’cs< P 2 gz)p

. op Vv ) . ( p V2 ) :

(u + p + 2 + gz OlJtmout a+ p + 5 + gz inmn (5.66)
Uniform flow as described above will occur in an infinitesimally small diameter streamtube as il-
lustrated in Fig. 5.7. Thiskind of streamtube flow is representative of the steady flow of a particle
of fluid along a pathline. We can also idealize actual conditions by disregarding nonuniformities
in afinite cross section of flow. We call this one-dimensional flow and although such uniform flow
rarely occurs in reality, the simplicity achieved with the one-dimensional approximation often jus-
tifiesits use. More details about the effects of nonuniform distributions of velocities and other fluid
flow variables are considered in Section 5.3.4 and in Chapters 8, 9, and 10.

If shaft work is involved, the flow must be unsteady, at least locally (see Refs. 1 and 2). The
flow in any fluid machine that involves shaft work is unsteady within that machine. For example,
the velocity and pressure at a fixed location near the rotating blades of a fan are unsteady. How-
ever, upstream and downstream of the machine, the flow may be steady. Most often shaft work is
associated with flow that is unsteady in a recurring or cyclical way. On a time-average basis for
flow that is one-dimensional, cyclical, and involves only one stream of fluid entering and leaving
the control volume, Eg. 5.64 can be simplified with the help of Eqgs. 5.9 and 5.66 to form

1. . p p V2. — V2 . )
m{uom — U + () - () + ="+ Y% — Zn) | = Qne + Wegy | (5.67)
P out PJin 2 in netin

We cdll Eq. 5.67 the one-dimensional energy equation for steady-in-the-mean flow. Note that Eq. 5.67
isvalid for incompressible and compressible flows. Often, the fluid property called enthalpy, h, where
B=d+ P (5.68)
p
is used in Eg. 5.67. With enthalpy, the one-dimensional energy equation for steady-in-the-mean
flow (Eq. 5.67) is

e . V2, - V2 . .
M) R = Ry + ="+ 0(Zax — Zn) | = Quee + Wora (569)
n

netin

Equation 5.69 is often used for solving compressible flow problems. Examples 5.20 and 5.21
illustrate how Egs. 5.67 and 5.69 can be used.

_EXAMPLE 3¥4!}] Energy—Pump Power

GIVEN A pumpdeiverswater at asteady rateof 300 gal/minas  the pumpiszero. Theriseininternal energy of water, U, — Uy, as-
shown in Fig. E5.20. Just upstream of the pump [section (1)]  sociated with atemperature rise acrossthe pumpis 93 ft - [b/lbm.
where the pipe diameter is 3.5 in., the pressure is 18 psi. Just  The pumping process is considered to be adiabatic.
downstream of the pump [section (2)] where the pipe diameter is

1in., the pressureis 60 psi. The change in water elevation across FIND  Determine the power (hp) required by the pump.
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SoLUTION

First Law of Thermodynamics—The Energy Equation

Weincludein our control volume the water contained in the pump
between its entrance and exit sections. Application of Eg. 5.67 to
the contents of this control volume on atime-average basis yields

0 (no elevation change)
V2 _ VZV\
m|:c|2 - ﬂl arF (E) - (E) S = . aF g(ZZ S Zl):|
p/2 pP/1 2
0 (adiabatic flow)

+ Wshaft (@N]

n netin

=Q

We can solve directly for the power required by the pump,
Wanatt net in, from EQq. 1, after wefirst determine the massflowrate,
m, the speed of flow into the pump, V;, and the speed of the flow
out of the pump, V,. All other quantitiesin Eg. 1 are given in the
problem statement. From Eq. 5.6, we get

(1.94 slugs/ft®)(300 gal /min)(32.174 Ibm/slug)

m=pQ =

(7.48 gal /ft3)(60 s/min)
= 41.81bm/s )
Also from Eq. 5.6,
Q Q
V===
A 7D%4
SO
~ Q  (300gal/min)4(12in/ft)*
YT A (7.48 galft)(60 Smin)m(35in.)?
= 10.0ft/s ©)
and

vooQ_ (300 gal/min4 (12 in./ft)?
27 A, (7.48galft})(60 gmin)m(Lin.)?
= 123ft/s @)

227

Control volume

Q=
300 gal/min.

Section (2)

Section (1) p, = 60 psi

p; = 18 psi
U, — Uy = 93 ft-Ib/lbm
B FIGURE E5.20

Substituting the values of Egs. 2, 3, and 4 and values from the
problem statement into Eq. 1 we obtain

Weat = (41.8 1bm/s) { (93 ft-1b/Ibm)

netin
(60 psi)(144 inZ/ft?)
(1.94 lugs/ft%)(32.174 Ibm/slug)
(18 psi)(144 in Z/ft?)
(1.94 slugs/ft®)(32.174 lbm/slug)
(123 ft/s)? — (10.0ft/s)?
2[32.174 (Ibm-ft)/(Ib-s)] }
% 1
[550(ft-Ib/s)/hp]

=322hp (Ans)

COMMENT Of the total 32.2 hp, internal energy change ac-
counts for 7.09 hp, the pressure rise accounts for 7.37 hp, and the
kinetic energy increase accounts for 17.8 hp.

—EXAMPLE 5.21

GIVEN A steam turbine generator unit used to produce elec-
tricity is shown in Fig. E5.21a. Assumethe steam enters aturbine
with avelocity of 30 m/s and enthalpy, h;, of 3348 kJ/kg (see Fig.
E5.21b). The steam leaves the turbine as a mixture of vapor and
liquid having a velocity of 60 m/s and an enthalpy of 2550 kJ/kg.
The flow through the turbine is adiabatic, and changes in eleva-
tion are negligible.

FIND Determine the work output involved per unit mass of
steam through-flow.

Energy—Turbine Power per Unit Mass of Flow

B FIGURE E5.21a
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SOLUT'ON Control volume
We use a control volume that includes the steam in the turbine | __ .
from the entrance to the exit as shown in Fig. E5.21b. Applying Q
Eqg. 5.69 to the steam in this control volume we get Section (1)
. . - V; = 30 m/
O{eevationcrangelisnegiigibie) h -~ 3342 iJ/kg W =7 Section (2)
%abatic flow) ' e V, = 60 mis
I v vi-vVv3? } \ ) F, = 2550 kl/kg
—hy + + = &
m he =y 2 9z~ 2) Q{}‘f‘ Wﬁ;’"ﬁ; D mFicURE Es.216
The work output per unit mass of steam through-flow, Wy, netin, C2N
be obtained by dividing Eq. 1 by the mass flow rate, m, to obtain
Were 2 2 Thus,
_ netin_F]_t‘f]+V2_V1 (2)
Wﬁéafitn T m2 1 2 Wage = 3348 kJ/kg — 2550 kJ/kg — 1.35 kJ/kg
net out
SINCe Weatt net out= — Wepat net in» WE Obtain = 797 kJkg (Ans)
2 2
Wy =hy — hy + VE =V COMMENT Note that in this particular example, the change
net out 2 in kinetic energy is small in comparison to the difference in en-
or thalpy involved. Thisis often truein applicationsinvolving steam
turbines. To determine the power output, Wy, We must know
Wy = 3348 kJ/kg — 2550 kJ/kg the mass flowrate, m.
net out
[(30 m/s)? — (60 m/s)?][1 J/(N-m)]
2[1 (kg-m)/(N-s)](1000 J/kJ)

If the flow is steady throughout, one-dimensional, and only one fluid stream is involved, then the
shaft work is zero and the energy equation is

.. (P P , Vou— Vi ~
w m[uom — U+ <p> - (p) + =+ 9z Z) | = Qu (5.70)
out in in
V/5.12 Pelton wheel We call Eg. 5.70 the one-dimensional, steady flow energy equation. This equation is valid for in-

turbine compressible and compressible flows. For compressible flows, enthalpy is most often used in the
one-dimensional, steady flow energy equation and, thus, we have

Vgut B V|2n

2 + 9(Zow — Zin)] = Qnet (5.71)

| o — Fo +

An example of the application of Eq. 5.70 follows.

L SLLTICHEIEFY reroy—Temperature Change

GIVEN The 420-ft waterfall shown in Fig. E5.22a involves FIND Determine the temperature change associated with this
steady flow from one large body of water to another. flow.

SoLUTION

To solve this problem we consider a control volume consisting of  the change of internal energy of the water, t, — U, by the rela-
a small cross-sectional streamtube from the nearly motionless  tionship

surface of the upper body of water to the nearly motionless sur- U
face of the lower body of water asis sketched in Fig. E5.22b. We T,-T,= t t th 1)
need to determine T, — T,. This temperature change is related to ¢
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Section (1)
4

Control
volume

420 ft
Section (2)

B FIGURE E5.22b

because the flow isincompressible and atmospheric pressure pre-
vails at sections (1) and (2). Furthermore,

Vi=V,=0 4

because the surface of each large body of water is considered mo-
tionless. Thus, Egs. 1 through 4 combine to yield

B FIGURE E5.22a
[Photograph of Akaka Falls (Hawaii)

courtesy of Scott and Margaret Jones) _ 9z — 2)
L-Ti=—
where ¢ = 1 Btu/lbm - °R) is the specific heat of water. The ap- < that with
plication of Eq. 5.70 to the contents of this control volume leadsto
p p V2 — 2 ¢ = [1Btu/(lbm- °R)] (778 ft - Ib/Btu)
Mo, +6+ (=) —(2) + 25— +9z-2) — [778ft- Ib/(lbm - ©
Py YA 2 [778ft - Ib/(Ibm - °R)]
. 32.2 ft/s?)(420 ft
= O @ T,-T= ( ; et
in [778ft - Ib/(Ibm - °R)][32.2 (Ibm - ft)/(Ib - §%)]

We assume that the flow is adiabatic. Thus Quein = 0. Als0, = 0.540 °R (Ans)

G)-C), @

COMMENT Note that it takes a considerable change of po-
tential energy to produce even a small increase in temperature.

A form of the energy equation that is most often used to solve incompressible flow prob-
lems is developed in the next section.

5.3.3 Comparison of the Energy Equation with the Bernoulli Equation

When the one-dimensional energy equation for steady-in-the-mean flow, Eq. 5.67, is applied to a
flow that is steady, Eq. 5.67 becomes the one-dimensional, steady-flow energy equation, Eq. 5.70.
The only difference between Eq. 5.67 and Eq. 5.70 is that shaft power, W netin 1S Z€r0 if the
flow is steady throughout the control volume (fluid machines involve locally unsteady flow). If in
addition to being steady, the flow is incompressible, we get from Eq. 5.70

-~ - P Pin V2 - V|2n .
M| Ugy — Uin t o = + = + g(zout - Zm) = Qnet (5-72)
1% pP 2 in
Dividing Eqg. 5.72 by the mass flowrate, m, and rearranging terms we obtain
Pou | Vo Pn , Vi o
%Ut + ;ut + 0z = f + ?n + 9z, — (uout = Upn — qlnnet) (5-73)
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Minimizing lossis
the central goal of
fluid mechanical
design.

where

Qnetin
T
is the heat transfer rate per mass flowrate, or heat transfer per unit mass. Note that Eq. 5.73 in-
volves energy per unit mass and is applicable to one-dimensional flow of a single stream of fluid
between two sections or flow along a streamline between two sections.

If the steady, incompressible flow we are considering also involves negligible viscous effects
(frictionless flow), then the Bernoulli equation, Eq. 3.7, can be used to describe what happens be-
tween two sections in the flow as

pV3 pVi
20ut + YZy = Pin + 2In + vz,

Pout + (5.74)

wherey = pg is the specific weight of the fluid. To get Eq. 5.74 in terms of energy per unit mass, S0
that it can be compared directly with Eq. 5.73, we divide Eq. 5.74 by density, p, and obtain

Pout Vgut Pin Vizn
— + + =—+—+0z .
p o TG = ot G (5.75)
A comparison of Egs. 5.73 and 5.75 prompts us to conclude that
(5.76)

Uout — Uin — Onet = 0
n
when the steady incompressible flow is frictionless. For steady incompressible flow with friction,
we learn from experience (second law of thermodynamics) that

o — Gy — G > O (5.77)
n

In Egs. 5.73 and 5.75, we can consider the combination of variables
p V2
~+-—+0z
p 2 g

as equal to useful or available energy. Thus, from inspection of Egs. 5.73 and 5.75, we can con-
clude that U, — U, — Qnain represents the loss of useful or available energy that occursin an in-
compressible fluid flow because of friction. In equation form we have

Uoye — Uin — Oper = 0SS (5.78)
in
For africtionless flow, Egs. 5.73 and 5.75 tell us that loss equals zero.
It is often convenient to express Eq. 5.73 in terms of loss as
u \ 3 i \ i2n
Pot | 2°m + 9z = % 5 T P~ loss (5.79)

An example of the application of Eq. 5.79 follows.

—EXAMPLE WY Energy—Effect of Loss of Available Energy

GIVEN As shown in Fig. E5.23a, air flows from a room
through two different vent configurations: a cylindrical hole in
the wall having a diameter of 120 mm and the same diameter
cylindrical hole in the wall but with a well-rounded entrance.
The room pressure is held constant at 1.0 kPa above atmos-
pheric pressure. Both vents exhaust into the atmosphere. As dis-
cussed in Section 8.4.2, the loss in available energy associated
with flow through the cylindrical vent from the room to the vent

exit is 0.5V3/2 where V, is the uniformly distributed exit veloc-
ity of air. The loss in available energy associated with flow
through the rounded entrance vent from the room to the vent exit
is 0.05V4/2, where V, is the uniformly distributed exit velocity
of air.

FIND Compare the volume flowrates associated with the two
different vent configurations.
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SoLUTION

We use the control volume for each vent sketched in Fig. E5.23a.
What is sought is the flowrate, Q = A,V,, where A, isthe vent exit
cross-sectional area, and V, is the uniformly distributed exit veloc-
ity. For both vents, application of Eq. 5.79 leads to

0 (no elevation change)

V2
p2+2+92:pl+£ﬁ+ 1 — 110s;
p 2 p 2

0(V, = 0) )

where ;10ss, is the loss between sections (1) and (2). Solving Eq.
1 for V, we get

TP =]

2

\%
1|0$2 = K|_ ? (3)

where K| istheloss coefficient (K, = 0.5 and 0.05 for the two vent
configurations involved), we can combine Egs. 2 and 3 to get

e {(5E)-wg] e

Solving Eq. 4 for V, we obtain

_ P1 — P2
Ve =\ ol + KO/2] ®

Therefore, for flowrate, Q, we obtain

_ _ LDE Pr — P2
Q= Aa = =\ ol + K)/2] o

For the rounded entrance cylindrical vent, Eq. 6 gives
(120 mm)?
" 4(1000 mm/m)?
(1.0 kPa)(1000 Pa/kPa)[ 1(N/m?)/(Pa)]
. \/(1.23 kg/m*)[(1 + 0.05)/2][1(N-s)/(kg-m)]

Since

or
Q = 0.445m°s (Ans)
For the cylindrical vent, Eq. 6 gives us
(120 mm)>?
- 4(1000 mm/m)?

\/ (1.0 kPa)(1000 Pa/kPa)[ 1(N/m?)/(Pa)
(1L23kg/mP)[(L + 0.5)/2][1N-S)/(kg'm)]
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Control |

volume\ﬁ‘
|

V2
—> D,=120mm | ==

A "
Sect 2
Section (1) for I ()

both vents is
in the room and

2
|
|
|
|

involves V; = 0 l

p; = 1.0 kPa \
Vs,
| —
L\Section (2)
Control
volume ™
H FIGURE E5.23a
or
Q= 0.372m%s (Ans)

COMMENT By repeating the calculations for various values
of the loss coefficient, K, the results shown in Fig. E5.23b are
obtained. Note that the rounded entrance vent allows the passage
of more air than does the cylindrical vent because the loss asso-
ciated with the rounded entrance vent is less than that for the
cylindrical one. For thisflow the pressure drop, p, — p,, has two
purposes: (1) overcome the loss associated with the flow, and (2)
produce the kinetic energy at the exit. Even if there were no loss
(i.e., KL = 0), apressure drop would be needed to accelerate the
fluid through the vent.

0.5
0.4 |(0.05, 0.445 m%/s)
»
(0.5, 0.372 m%/s)
@ 03
™
=
0.2
0.1
0
0 0.1 0.2 0.3 0.4 0.5

KL
B FIGURE E5.23b

An important group of fluid mechanics problems involves one-dimensional, incompressible,
steady-in-the-mean flow with friction and shaft work. Included in this category are constant density
flows through pumps, blowers, fans, and turbines. For this kind of flow, Eq. 5.67 becomes

r:nl\-]out_[]in-"%_

7"'%"‘ HZow = Zn) | = Qna"' Wea,

V2, — V2
o (5.80)

netin
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The mechanical
energy equation
can bewrittenin
terms of energy per
unit mass.

V5.13 Energy
transfer

Chapter 5 B Finite Control Volume Analysis

Dividing Eq. 5.80 by mass flowrate and using the work per unit mass, Wy, = Wg,aft /m, we
obtain netin netin

Pout Vgut Pin Vin
— 4+ —+0Zu="—+ = + 0z, + W,
P 2 9Zout P 2 Y4 r;*etafitn
If the flow is steady throughout, Eq. 5.81 becomes identica to Eq. 5.73, and the previous observation
that Uy, — Uy — Onetin €QUas the loss of available energy is valid. Thus, we conclude that Eq. 5.81

can be expressed as

2

- ([]out - uin - C{net) (5-81)

Pout Vout _ Pin Vin
QZou =

PR (5.82)

Thisisaform of the energy equation for steady-in-the-mean flow that is often used for incompressible
flow problems. It is sometimes called the mechanical energy equation or the extended Bernoulli equa-
tion. Note that Eq. 5.82 involves energy per unit mass (ft - lo/dlug = ft%s* or N - m = m?%s?).

According to Eq. 5.82, when the shaft work is into the control volume, as for example with a
pump, alarger amount of losswill result in more shaft work being required for the samerisein avail-
able energy. Similarly, when the shaft work is out of the control volume (for example, a turbine), a
larger loss will result in less shaft work out for the same drop in available energy. Designers spend
agreat deal of effort on minimizing lossesin fluid flow components. The following examples demon-
strate why losses should be kept as small as possible in fluid systems.

L SLTTCREIPTY reroy—Fan Work and Efficency

GIVEN An axial-flow ventilating fan driven by a motor that
delivers 0.4 kW of power to the fan blades produces a 0.6-m-
diameter axial stream of air having a speed of 12 m/s. The flow
upstream of the fan involves negligible speed.

SoLuTION

FIND Determine how much of the work to the air actually pro-
duces useful effects, that is, fluid motion and arise in available
energy. Estimate the fluid mechanical efficiency of this fan.

We select a fixed and nondeforming control volume as is illus-
trated in Fig. E5.24. The application of Eq. 5.82 to the contents of
this control volume leads to

0 (atmospheric pressures cancel) 0(V,=0)

V2
Weheft —I0$=(7F£+2+gz>—(7;il+£l+gl (@)
netin P 2 P 2

0 (no elevation change)

Where Wy netin — 10SSis the amount of work added to the air that
produces a useful effect. Equation 1 leads to

o — vi o (12m/sp
e = 108 = S = (kg m)/(N-D)]
= 72.0 N-m/kg (2 (Ans)

A reasonable estimate of efficiency, n, would be the ratio of
amount of work that produces auseful effect, Eq. 2, to the amount
of work delivered to the fan blades. That is
W,
it — loss

U A3)
netin

To calculate the efficiency, we need a value of W et in, Which is
related to the power delivered to the blades, Wyt net in- VWE NOte
that

W,
_ 5 @)

Wenait =
netin

Section (1)

<
=
I
——
~

NNV /S

\ Stream surface
\< Section (2)

Control volume
ST e
f ;»

\
Ean w‘ D, = V=12 m/s

motor | Jj 0.6m

|
|

-
~

B F

G URE E5.24
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where the mass flowrate, m, is (from Eq. 5.6) or
D2 W, = 95.8 N-m/ki 6
r'h=pAV=p7T42V2 ©) et g ©
) ) ) From Egs. 2, 3, and 6 we obtain
For fluid density, p, we use 1.23 kg/m® (standard air) and, thus,
from Egs. 4 and 5 we obtain _ 720N-m/kg
) "= 958N-mka N-mvkg 0.752 (Ans)
Wahatt
Wepat = n?m
rain - (pmD2/4)\V, COMMENT Notethat only 75% of the power that was deliv-
_ (0.4 KW)[1000 (Nm)/(skW)] ered to the air resulted in useful effects, and, thus, 25% of the
(1.23 kg/m®)[ (7)(0.6 m)?/4](12 m/s) shaft power is lost to air friction.
F I u i d s i n t h e N e w s

Curtain of air Anair curtain is produced by blowing air through
along rectangular nozzle to produce a high-velocity sheet of air,
or a“curtain of air” Thisair curtain is typicaly directed over a
doorway or opening as a replacement for a conventional door.
The air curtain can be used for such things as keeping warm air
frominfiltrating dedicated cold spaces, preventing dust and other
contaminates from entering a clean environment, and even just
keeping insects out of the workplace, still allowing people to en-
ter or exit. A disadvantage over conventional doors is the added

power requirements to operate the air curtain, although the ad-
vantages can outweigh the disadvantage for various industrial
applications. New applications for current air curtain designs
continue to be developed. For example, the use of air curtains as
a means of road tunnel fire security is currently being investi-
gated. In such an application, the air curtain would act to isolate
a portion of the tunnel where fire has broken out and not allow
smoke and fumes to infiltrate the entire tunnel system. (See
Problem 5.123.)

If Eqg. 5.82, which involves energy per unit mass, is multiplied by fluid density, p, we obtain
PV pVi

Pout T =+ YZo = Pin + —+ YZin + PWengst

2 2 netin

— p(loss) (5.83)

wherey = pg isthe specific weight of the fluid. Equation 5.83 involves energy per unit volume and

the unitsinvolved areidentical with those used for pressure (ft - Ib/ft* = Ib/ft>or N - m/m* = N/m?).
If Eq. 5.82 is divided by the acceleration of gravity, g, we get

/N

V5.14 Water plant

aerator
2 2
p;“t+\;‘;“+zout=pyi”+\2/$+zn+hs—m (5.84)
where
Mot Vot
s = Wat netin/9 = W ~ 50 (5.85)
isthe shaft work head and h; = loss/gisthe head loss. Equation 5.84 involves energy per unit weight

The energy equa-
tion written in
terms of energy
per unit weight
involves heads.

(ft-1b/lb = ftor N - m/N = m). In Section 3.7, we introduced the notion of “head,” which is energy
per unit weight. Units of length (for example, ft, m) are used to quantify the amount of head involved.
If aturbine isin the control volume, hg is negative because it is associated with shaft work out of
the control volume. For a pump in the control volume, hy is positive because it is associated with
shaft work into the control volume.
We can define a total head, H, as follows
2
H= P + v +z
Yy 2

Then Eq. 5.84 can be expressed as

Houw = Hin + hs_ hL
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Hou T
L hsI h,

>
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e e e =
sllslls]|l]ls] lse
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= = = = - _n
e N N = o o

hs+hy

l

h >0,
hy<0

B FIGURE 5.8 Total-head changein

fluid flows.

Some important possible values of H,, in comparison to H;, are shown in Fig. 5.8. Note that h;
(head loss) always reduces the value of H,,, except in the ideal case when it is zero. Note also that
h, lessens the effect of shaft work that can be extracted from a fluid. When h, = 0 (ideal condi-
tion) the shaft work head, h, and the change in total head are the same. This head change is some-
times called “ideal head change.” The corresponding ideal shaft work head is the minimum required
to achieve a desired effect. For work out, it is the maximum possible. Designers usualy strive to
minimize loss. In Chapter 12 we learn of one instance when minimum loss is sacrificed for sur-
vivability of fish coursing through a turbine rotor.

L ILXTICREIPE reroy-—tead Loss and Power boss

GIVEN The pump shown in Fig. E5.25a adds 10 horsepower
to the water as it pumps water from the lower lake to the upper
lake. The elevation difference between the lake surfaces is 30 ft
and the head lossis 15 ft.

FIND Determine
(@
(b)

the flowrate and
the power loss associated with this flow.

SOLUTION

(@ Theenergy equation (Eq. 5.84) for thisflow is

P, Vi pr VP
St = —tzmry=0 1
v zg 2 v Zg 1 3 L ()

where points 2 and 1 (corresponding to “out” and “in” in Eq.
5.84) are located on the lake surfaces. Thus, p, = p, = 0 and
V, = V; = 0sothat Eq. 1 becomes

hy=h +2z -2z

@
where z, = 30ft, z = 0, and h. = 15 ft. The pump head is ob-
tained from Eq. 5.85 as
hs = Wshaft netin/Y Q
= (10 hp)(550 ft-Ib/s/hp)/(62.4 Ib/ft3) Q
= 88.1Q

where hgisin ft when Qisin ft/s.

Section (2)
Y

30 ft

Section (1)
\

B FIGURE E5.25a

Hence, from Eq. 2,
88.1Q = 15ft + 30ft

Q= 196ft¥s (Ans)

COMMENT Note that in this example the purpose of the
pump isto lift the water (a30-ft head) and overcome the head loss
(a 15-ft head); it does not, overall, alter the water's pressure or
velocity.
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(b) The power lost due to friction can be obtained from
Eq. 5.85 as

Wioss = ¥ Qhy = (62.4 Ib/t3)(1.96 ft¥/s)(15 ft)
= 1830 ftdb/s (1 hp/550 ftib/s)

= 3.33hp (Ans)

COMMENTS The remaining 10hp — 3.33hp = 6.67 hp
that the pump adds to the water is used to lift the water from the

First Law of Thermodynamics—The Energy Equation
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lower to the upper lake. This energy is not “lost,” but it is stored
as potential energy.

By repeating the calculations for various head losses, h,, the
results shown in Fig. E5.25b are obtained. Note that as the head
loss increases, the flowrate decreases because an increasing por-
tion of the 10 hp supplied by the pump is lost and, therefore, not
available to lift the fluid to the higher elevation.

3.5

(15 ft, 1.96 ft3/s)

B FIGURE E5.25b

15 20 25

A comparison of the energy equation and the Bernoulli equation has led to the concept of
loss of available energy in incompressible fluid flows with friction. In Chapter 8, we discussin de-
tail some methods for estimating loss in incompressible flows with friction. In Section 5.4 and
Chapter 11, we demonstrate that loss of available energy is also an important factor to consider in

compressible flows with friction.

F I u i d s i n

t h e N e w s

Smart shocks Vehicle shock absorbers are dampers used to pro-
vide asmooth, controllable ride. When going over abump, therel-
ative motion between the tires and the vehicle body displaces a
piston in the shock and forces a viscous fluid through a small ori-
fice or channel. The viscosity of the fluid produces ahead loss that
dissipates energy to dampen the vertical motion. Current shocks
use a fluid with fixed viscosity. However, recent technology has
been devel oped that uses a synthetic oil with millions of tiny iron
balls suspended in it. These tiny balls react to a magnetic field

generated by an electric coil on the shock piston in a manner that
changes the fluid viscosity, going anywhere from essentialy no
damping to asolid almost instantly. A computer adjuststhe current
to the coil to select the proper viscosity for the given conditions
(i.e., wheel speed, vehicle speed, steering-wheel angle, lateral ac-
celeration, brake application, and temperature). The goal of these
adjustments is an optimally tuned shock that keeps the vehicle on
asmooth, even keel while maximizing the contact of thetireswith
the pavement for any road conditions. (See Problem 5.107.)

5.3.4 Application of the Energy Equation to Nonuniform Flows

The forms of the energy equation discussed in Sections 5.3.2 and 5.3.3 are applicable to one-
dimensiona flows, flows that are approximated with uniform velocity distributions where fluid

crosses the control surface.
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The kinetic energy
coefficient is used
to account for non-
uniform flows.

AT A RN

a=2
Parabolic
(laminar)

a=~1.08
Turbulent

a=1
Uniform

B Finite Control Volume Analysis

If the velocity profile at any section where flow crosses the control surface is not uniform,
inspection of the energy equation for a control volume, Eq. 5.64, suggests that the integral

V2
J’ —pV -hdA
s 2

will require specia attention. The other terms of Eq. 5.64 can be accounted for as aready dis-
cussed in Sections 5.3.2 and 5.3.3.
For one stream of fluid entering and |eaving the control volume, we can define the relationship

v? o . aout\7gut ainVi2n>
—popV - -DdA=m(— — ——
L 2’ ( 2 2

where « is the kinetic energy coefficient and V is the average velocity defined earlier in Eq. 5.7.
From the above we can conclude that

maV/? JVZ N
= | —pV-HdA
2 A2

for flow through surface area A of the control surface. Thus,

J(vz/Z)pv - dA
a=2 e (5.86)

It can be shown that for any velocity profile, « = 1, with @« = 1 only for uniform flow. Some typical
velocity profile examples for flow in a conventional pipe are shown in the sketch in the margin. There-
fore, for nonuniform velocity profiles, the energy equation on an energy per unit mass basis for the
incompressible flow of one stream of fluid through a control volume that is steady in the mean is

V2 : iV
Pat | ZoaVox | 2o = P | GinYin | OZn + W — lOSS (5.87)
P 2 P 2 netin

On an energy per unit volume basis we have

oV o VP
P ouzt 0m+'Yzout:pin+p inVin

Pout + ¥z, + pWerr — p(|OSS) (5.88)

2 netin

and on an energy per unit weight or head basis we have

7 v Wahaft

Pout AoV gut Pin ainV i2n netin
—+ — + =— 4+ — 4+ 2z, + —h 5.89
y 2 T = 29 TET g L (5.89)

The following examples illustrate the use of the kinetic energy coefficient.

L SLXTIURERTY Ereray—Efrect of Nouniform Velocity Profile

GIVEN The small fan shown in Fig. E5.26 moves air at a  energy coefficient, a,, is equal to 1.08. The rise in static pres-
mass flowrate of 0.1 kg/min. Upstream of the fan, the pipe di-  sure across the fan is 0.1 kPa and the fan motor draws 0.14 W.
ameter is 60 mm, the flow is laminar, the velocity distribution is

parabolic, and the kinetic energy coefficient, a4, isequal to 2.0. FIND Compare the value of loss cal culated: (a) assuming uni-
Downstream of the fan, the pipe diameter is 30 mm, the flow is  form velocity distributions, (b) considering actual velocity distri-
turbulent, the velocity profile is quite uniform, and the kinetic  butions.
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SoLUTION

Application of Eq. 5.87 to the contents of the control volume
shown in Fig. E5.26 leads to

0 (changein gzis negligible)

V2 Vi
kot 2+g4=pl+al 1+gzl/
P 2 p 2

netin
or solving Eqg. 1 for loss we get
P2 — Py aVi a3
10SS = Wyt — + -
o - (%5 2)+ 5 -3 &

To proceed further, we need values of Weygt netin: Vi, and V,. These
guantities can be obtained as follows. For shaft work

_ power to fan motor

Wotart = i
or
_ (0.14W)[(LN - m/s)/W] .
Worert = 0.1 kg/min (60 5/min)
= 84.0N - m/kg ©)

For the average velocity at section (1), V4, from Eq. 5.11 we obtain
= m
“ A
m
= 4
o(wDY4) @
(0.1 kg/min) (1 min/60 s) (1000 mm/m)>?
(1.23 kg/m®)[ 7(60 mm)?/4]
= 0.479 m/s

For the average velocity at section (2), V,,
_ (0.1 kg/min) (1 min/60 s) (1000 mm/m)?

2 (1.23 kg/m®)[ 7(30 mm)%/4]
=192m/s ©)
(@) For the assumed uniform velocity profiles (a; = a, = 1.0),
Eq. 2yields
P-p) Vi V3
g ()55 o

Using Egs. 3, 4, and 5 and the pressure rise given in the problem
statement, Eq. 6 gives
N-m (0.1kPa)(1000 Pa/kPa)(1 N/m?/Pa)

kg 1.23 kg/m®
(0.479 m/s)? (1.92 m/s)?

T A1(kg-m/(N-9)]  2[1(kg-m)/(N- )]

loss = 84.0

237

Turbulent
flow

Section (2)
a,=1.08

Control volume

D; =60 mm —

Section (1)
;=20
Laminar flow
m= 0.1 kg/min
HFIGURE E5.26

or
loss = 84.0N - m/kg — 81.3N - m/kg
+ 0.115N - m/kg — 1.84 N - m/kg
= 0.975N - m/kg (Ans)

(b) For the actua velocity profiles (a; = 2, &, = 1.08), Eq. 1

gives
_ \72 vz
_ (pz pl) S (. 0

loss = w,
shaft P 2 2

netin
If we use Egs. 3, 4, and 5 and the given pressure rise, Eq. 7
yields
(0.1 kPa)(1000 Pa/kPa)(1 N/m?/Pa)

1.23 kg/m®
1.08(1.92 m/s)?

2[1(kg- m)/(N-s)]

loss = 84N - m/kg —

. 2(0.479 m/s)?
2[1(kg-m)/(N- )]

or
loss = 84.0N - m/kg — 81.3N - m/kg
+ 0.230N - m/kg — 1.99 N - m/kg

= 0.940N - m/kg (Ans)

COMMENT The difference in loss calculated assuming uni-
form velocity profiles and actual velocity profiles is not large
compared t0 Wyt net in fOr this fluid flow situation.




238 Chapter 5 M Finite Control Volume Analysis

L SLXTINREIEA Ereray—Efrect of Nonuniform Velocity Profile

GIVEN Consider the flow situation of Example 5.14. ing the equation for pressure drop obtained presently with the re-

) ~ sult of Example 5.14, obtain an expression for loss between sec-
FIND  Apply Eq. 5.87 to develop an expression for the fluid  tiong (1) and (2).

pressure drop that occurs between sections (1) and (2). By compar-

SoLuTiON
Application of Eq. 5.87 to the flow of Example 5.14 (see Fig. Now we combine Egs. 2 and 5 to get
E5.14) leads to 2002 1OW2
0 (no shaft work) Pr=P2=p 2 2 +9(z —2z) +loss| (6)
P | W3 P Wi However, from conservation of massW, = W, = W so that Eq. 6
= +0gz=—+ + gz — loss + 1 ' 2 :
2 T, 7 A S Sz

Solving Eg. 1 for the pressure drop, p; — p,, we obtain pw?

= E SLEI Pr =P = o + p9(z — z1) + p(loss) (7)

a2W§ al\TV%

> o t 9z —z)+ |OSS} (2)  Theterm associated with changein elevation, pg(z, — zy), isequal
to the weight per unit cross-sectional area, W/A, of the water con-

Sincethefluid velocity at section (1), w;, isuniformly distributed  tained between sections (1) and (2) at any instant,

over cross-sectional area A, the corresponding kinetic energy

Pr=pP2=p

coefficient, a4, is equal to 1.0. The kinetic energy coefficient at 09z, — 21) = — (8
section (2), a,, needs to be determined from the velocity profile A
distribution given in Example 5.14. Using Eq. 5.86 we get Thus, combining Egs. 7 and 8 we get
2
pwe W
J w3 dA, P Pe= -+ o+ plloss) ©)
A,
)= ———5 3
: w3 3) The pressure drop between sections (1) and (2) is due to:
Substituting the parabolic velocity profile equation into Eq. 3 we 1. The changein kinetic energy between sections(1) and (2) as-
obtain sociated with going from auniform velocity profile to a par-
R abolic velocity profile.
P J (2wy)*[1 = (/R)?*2ar dr 2. Theweight of thewater column, that is, hydrostatic pressure
= —2 — effect.
(PAIWZ)W2 3. Viscous loss.

FFrom conservation of mass, since Ay = A, Comparing Eq. 9 for pressure drop with the one obtained in

W, = W, (4) Example5.14 (i.e. the answer of Example 5.14) we obtain
Then, substituting Eg. 4 into Eq. 3, we obtain pW2 I w2 R W
=dr=q =— 4+ =+ —
. p Toa tellos) =Ty (10)
p8W§27TJ [1— (r/R?P*rdr or
y = 0
z pmRW3 R, w2
loss= — — — (Ans)
or pA 6
R
a, = Lg J [1 - 3(/R? + 3(t/R)* — (/R°]r dr COMMENT We conclude that while some of the pipe wall
R ) ©) friction force, R,, resulted in loss of available energy, a portion of
=2 this friction, pAw?/6, led to the velocity profile change.

5.3.5 Combination of the Energy Equation
and the Moment-of-Momentum Equation®

If Eq. 5.82 is used for one-dimensional incompressible flow through a turbomachine, we can use
Eq. 5.54, developed in Section 5.2.4 from the moment-of-momentum equation (Eq. 5.42), to evaluate

“This section may be omitted without loss of continuity in the text material. This section should not be considered without prior study
of Sections 5.2.3 and 5.2.4. All of these sections are recommended for those interested in Chapter 12.
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shaft work. This application of both Egs. 5.54 and 5.82 alows us to ascertain the amount of loss that
occurs in incompressible turbomachine flows as is demonstrated in Example 5.28.

Exaneie 525 I

GIVEN Consider the fan of Example 5.19. ciency equation and a practical meansfor estimating lost shaft
energy.

FIND Show that only some of the shaft power into the air
is converted into useful effects. Develop a meaningful effi-

SoLuTiON
We use the same control volume used in Example 5.19. Applica-  However, when Eq. 5.54, which was devel oped from the moment-
tion of Eq. 5.82 to the contents of this control volume yields of-momentum equation (Eq. 5.42), is applied to the contents of
o P the control volume of Fig. E5.19, we obtain
2 1
= + — + = + — + + =
p 2 % p 2 %4 Wﬁ;af,tn loss @ Werart = +UsVip (4

netin
Asin Example 5.26, we can see with Eq. 1 that a “useful effect” Combining Egs. 2, 3, and 4, we obtain
in this fan can be defined as T ’
= + (V3/2) + gz
useful effect = Wy, — loss n = {[(p/p) + (V5/2) + gz]

netin = [(p/p) + (VI/2) + 9z ]}/U Ve, (B (Ans)

(P V3 ) <Pl Vi ) Equation 5 provides us with a practical means to evaluate the ef-
B ( T e 3 @ @ (Ans) ficiency of the fan of Example 5.19.

Combining Egs. 2 and 4 btai
In other words, only a portion of the shaft work delivered to the Omoining =4s. = and <, we obian

air by the fan bladesis used to increase the available energy of the _ (P2 ﬁ
air; the rest is lost because of fluid friction. l0ss = UzVie [( Tt
A meaningful efficiency equation involves the ratio of shaft p. V3
work converted into a useful effect (Eq. 2) to shaft work into the T, T (6 (Ans)

air, Wt netin- THUS, We can express efficiency, 1, as

W COMMENT Equation 6 provides us with a useful method of
shaft

eein — loss evaluating the loss due to fluid friction in the fan of Example
T e (3 5.9 in terms of fluid mechanical variables that can be mea-
netin sured.

54 Second Law of Thermodynamics—Irreversible Flow®

The second law of thermodynamics affords us with a means to formalize the inequality

Uy = Uy — O =0 (5.90)
n
for steady, incompressible, one-dimensional flow with friction (see Eq. 5.73). In this section we
The second law of continue to develop the notion of loss of useful or available energy for flow with friction. Min-
thermodynamics imization of loss of available energy in any flow situation is of obvious engineering impor-
formalizes the no- tance.
tion of loss.

54.1 Semi-infinitessmal Control Volume Statement
of the Energy Equation

If we apply the one-dimensional, steady flow energy equation, Eq. 5.70, to the contents of a con-
trol volume that is infinitesimally thin as illustrated in Fig 5.8, the result is

m{du 4 d(E) + d(f) +g (dz)} = 60 (5.91)

5This entire section may be omitted without loss of continuity in the text material.



240 Chapter 5 M Finite Control Volume Analysis

The second law of
thermodynamicsin-
volves entropy, heat
transfer, and tem-
perature.

z Semi-infinitesimal
control volume
4
o g
X
AN L
\

Flow

B FIGURE 5.9 Semi-infinitesmal control volume.

For al pure substances including common engineering working fluids, such as air, water, oil, and
gasoline, the following relationship is valid (see, for example, Ref. 3).

Tds=di+ pd (i) (5.92)

where T is the absolute temperature and s is the entropy per unit mass.
Combining Egs. 5.91 and 5.92 we get

. 1 p V? o
m{Tds . pd(p> + d(p) + d(2> + gdz} = SQ{}?

or, dividing through by m and letting 8Gy = 6Q_net/r'n, we obtain

d V&
Fp +d (2) + gdz= —(Tds — 50w (5.93)
in

5.4.2 Semi-infinitesmal Control Volume Statement
of the Second Law of Thermodynamics

A genera statement of the second law of thermodynamicsis

D 5Qpe

or in words,

thetimerate of increase of the  sum of theratio of net heat

entropy of asystem = transfer rate into system to
absolute temperature for each
particle of massin the system
receiving heat from
surroundings

The right-hand side of Eq. 5.94 isidentical for the system and control volume at the instant when
system and control volume are coincident; thus,

5 (5(%nnet> _ E@?ﬂ?‘)w (5.95)

sys

With the help of the Reynolds transport theorem (Eq. 4.19) the system time derivative can be ex-
pressed for the contents of the coincident control volume that is fixed and nondeforming. Using
Eq. 4.19, we obtain

DJ SpdV=aJ SpdV-‘rj spV - hdA (5.96)
Dt Jgs ot Jo s



The relationship
between entropy
and heat transfer
rate depends on the
process involved.
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For a fixed, nondeforming control volume, Egs. 5.94, 5.95, and 5.96 combine to give

9 6Qpe
atf sp dV + J SV - AdA= 2( = ) (5.97)

At any instant for steady flow

d

2 = .
n Ls,)d 0 (5.98)

If the flow consists of only one stream through the control volume and if the properties are uni-
formly distributed (one-dimensional flow), Egs. 5.97 and 5.98 lead to

8Qna
M = Sn) = 27+ (5.99)
For the infinitesimally thin control volume of Fig. 5.8, Eq. 5.99 yields
5Qnet
mds= > T‘” (5.100)

If al of the fluid in the infinitesimally thin control volume is considered as being at a uniform tem-
perature, T, then from Eq. 5.100 we get

Tds = 60«
in

or
Tds — 8G = 0 (5.101)
in

The egudlity is for any reversible (frictionless) process; the inequality is for al irreversible (fric-
tion) processes.

5.4.3 Combination of the Equations of the First and Second Laws
of Thermodynamics

Combining Egs. 5.93 and 5.101, we conclude that

d 2
—“O + d(é) + gdz} =0 (5.102)

The equality is for any steady, reversible (frictionless) flow, an important example being flow for
which the Bernoulli equation (Eq. 3.7) is applicable. The inequality is for all steady, irreversible
(friction) flows. The actual amount of the inequality has physical significance. It represents the
extent of loss of useful or available energy which occurs because of irreversible flow phenom-
ena including viscous effects. Thus, Eq. 5.102 can be expressed as

_[O,Lp + d(f) + gdz} = 6(loss) = (T ds — 5Ce) (5.103)

The irreversible flow loss is zero for a frictionless flow and greater than zero for a flow with
frictional effects. Note that when the flow is frictionless, Eg. 5.103 multiplied by density, p,
isidentical to Eq. 3.5. Thus, for steady frictionless flow, Newton's second law of motion (see
Section 3.1) and the first and second laws of thermodynamics lead to the same differential
equation,

d 2
?p + d(é) +gdz=0 (5.104)
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Zero loss is associ-
ated with the
Bernoulli equation.

If some shaft work is involved, then the flow must be at least locally unsteady in a cyclical
way and the appropriate form of the energy equation for the contents of an infinitesimally thin con-
trol volume can be developed starting with Eq. 5.67. The resulting equation is

d 2
—[p + d(v) +g dz} — 5(105S) — S (5.105)
p 2 netin

Equations 5.103 and 5.105 are valid for incompressible and compressible flows. If we combine
Egs. 5.92 and 5.103, we obtain

1
du + pd (p) — 80« = 8(loss) (5.106)
in

For incompressible flow, d(1/jp) = 0 and, thus, from Eqg. 5.106,
di — 8q, = 8(l0ss) (5.107)
in

Applying Eqg. 5.107 to a finite control volume, we obtain

ot — Uin — qnet = loss
in

which is the same conclusion we reached earlier (see Eq. 5.78) for incompressible flows.
For compressible flow, d(1/p) # 0, and thus when we apply Eq. 5.106 to afinite control vol-
ume we obtain

out 1
Uoe — G + f pd (p) — Opee = lOSS (5.108)

in

indicating that U, — Uiy, — Onein 1S NOt equal to loss.

5.4.4 Application of the Loss Form of the Energy Equation

Steady flow along a pathline in an incompressible and frictionless flow field provides a simple ap-
plication of the loss form of the energy equation (Eg. 5.105). We start with Eq. 5.105 and integrate
it term by term from one location on the pathline, section (1), to another one downstream, section
(2). Note that because the flow is frictionless, loss = 0. Also, because the flow is steady through-
out, Wyt netin = O. Since the flow is incompressible, the density is constant. The control volume
in this case is an infinitesimally small diameter streamtube (Fig. 5.7). The resultant equation is

p, V5 p. , Vi
4+ L4+t ogz=—4+—4+0z 5.109
P 9% 0 2 94 ( )

which is identical to the Bernoulli equation (Eq. 3.7) already discussed in Chapter 3.
If the frictionless and steady pathline flow of the fluid particle considered above was com-
pressible, application of Eq. 5.105 would yield

2@Jrv—ng z—V—%Jr Z 5.110
P > 92—2 9z (5.110)

To carry out the integration required, | 12 (dplp), a relationship between fluid density, p, and pres-
sure, p, must be known. If the frictionless compressible flow we are considering is adiabatic and in-
volves the flow of an ideal gas, it is shown in Section 11.1 that

Bk = constant (5.111)
p

where k = c,/c, is the ratio of gas specific heats, ¢, and c,, which are properties of the fluid. Us-

ing Eq. 5.111 we get
dp Kk <pz p1>
—=—|=-= 5.112
L p k—=1\p2 p1 ( )
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(5.113)

Note that this equation is identica to Eqg. 3.24. An example application of Egs. 5.109 and 5.113

follows.

GIVEN Air steadily expands adiabatically and without friction
from stagnation conditions of 100 psiaand 520 °R to 14.7 psia.

SOLUTION

—EXAM M N A'N Energy—Comparison of Compressible and Incompressible Flow

FIND Determinethevelocity of the expanded air assuming (a)
incompressible flow, (b) compressible flow.

(@) If theflow isconsidered incompressible, the Bernoulli equa-
tion, Eq. 5.109, can be applied to flow through an infinitesimal
cross-sectional streamtube, like the one in Fig. 5.7, from the stag-
nation state (1) to the expanded state (2). From Eqg. 5.109 we get

0 (1 isthe stagnation state)

V3 V,
p2+22+gz—p1+72£+gl @
P P

0 (changesin gz are negligible for air flow)

We can calculate the density at state (1) by assuming that air be-
haves like an ideal gas,

or

P (100psia)(144inFf)
T RT, (1716ft- Ib/slug - °R)(520 °R)
= 0.0161 slug/ft® @)

p

Thus,

B \/2(100 psia — 14.7 psia)(144 in.%/ft?)
2V (0,016 Slug/ft)[ 1 (Ib - 2)/(slug - ft)]

= 1240 ft/s (Ans)

The assumption of incompressible flow is not valid in this case
since for air a change from 100 psiato 14.7 psia would undoubt-
edly result in asignificant density change.

(b) If theflow isconsidered compressible, Eq. 5.113 can be ap-
plied to the flow through an infinitesimal cross-sectional control
volume, like the one in Fig. 5.7, from the stagnation state (1) to
the expanded state (2). We obtain

0 (1 isthe stagnation state)
k P2, V3

+ =+ =
k*lpz 2 ?Zz

0 (changesin gz are negligible for air flow)

or

&k (P P2
vz k-1 <P1 Pz) @
Given in the problem statement are values of p, and p,. A value
of p, was calculated earlier (Eg. 2). To determine p, we need to
make use of a property relationship for reversible (frictionless)
and adiabatic flow of an ideal gas that is derived in Chapter 11;
namely,

Ek = constant (5)
P

wherek = 1.4 for air. Solving Eq. 5 for p, we get
(pz)l/k
P2 = P1 P

14.7 psia
100 psia

Then, from Eq. 4, with p, = 100 Ib/in.%(144 in.?/ft?) = 14,400
Ib/ft?> and p, = 14.7 |b/in.2(144in.2/ft2) = 2117 Ib/ft?,

V. \/ (2)(14) ( 14,400 Ib/fZ 2117 Ib/fE? )
2 1.4 — 1 \0.0161 slug/ft®  0.00409 slug/ft3
= 1620 (Ib - ft/slug)¥?[ (1 Slug - ft/s2)/Ib]¥2

or

1/1.4
p, = (0.0161 slug/ft3) { ] = 0.00409 slug/ft®

or

V, = 1620 ft/s (Ans)
COMMENT A considerable difference exists between the air
velocities calculated assuming incompressible and compressible
flow. In Section 3.8.1, a discussion of when a fluid flow may be
appropriately considered incompressible is provided. Basicaly,
when flow speed is less than a third of the speed of sound in the
fluid involved, incompressible flow may be assumed with only a
small error.
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55 Chapter Summary and Study Guide

conservation of mass

continuity equation

mass flowrate

linear momentum
equation

moment-of -
momentum
equation

shaft power

shaft torque

first law of
thermodynamics

heat transfer rate

energy equation

loss

shaft work head

head loss

Kinetic energy
coefficient

In this chapter the flow of afluid is analyzed by using important principles including conservation of
mass, Newton's second law of motion, and the first and second laws of thermodynamics as applied to
control volumes. The Reynolds transport theorem is used to convert basic system-orientated laws
into corresponding control volume formulations.

The continuity equation, a statement of the fact that mass is conserved, is obtained in a
form that can be applied to any flow—steady or unsteady, incompressible or compressible. Sim-
plified forms of the continuity equation enable tracking of fluid everywhere in a control volume,
where it enters, where it leaves, and within. Mass or volume flowrates of fluid entering or leav-
ing a control volume and rate of accumulation or depletion of fluid within a control volume can
be estimated.

The linear momentum equation, aform of Newton’s second law of motion applicable to flow
of fluid through a control volume, is obtained and used to solve flow problems. Net force results
from or causes changes in linear momentum (velocity magnitude and/or direction) of fluid flow-
ing through a control volume. Work and power associated with force can be involved.

The moment-of-momentum equation, which involves the relationship between torque and
changes in angular momentum, is obtained and used to solve flow problems dealing with turbines
(energy extracted from a fluid) and pumps (energy supplied to a fluid).

The steady-state energy equation, obtained from the first law of thermodynamics (conser-
vation of energy), is written in several forms. The first (Eg. 5.69) involves power terms. The sec-
ond form (Eq. 5.82 or 5.84) is termed the mechanical energy equation or the extended Bernoulli
equation. It consists of the Bernoulli equation with extra terms that account for energy losses due
to friction in the flow, as well as terms accounting for the work of pumps or turbines in the flow.

The following checklist provides a study guide for this chapter. When your study of the en-
tire chapter and end-of-chapter exercises has been completed you should be able to

= write out meanings of the terms listed here in the margin and understand each of the related
concepts. These terms are particularly important and are set in italic, bold, and color type
in the text.

m select an appropriate control volume for a given problem and draw an accurately labeled con-
trol volume diagram.

m use the continuity equation and a control volume to solve problems involving mass or vol-
ume flowrate.

m use the linear momentum equation and a control volume, in conjunction with the continuity
equation as necessary, to solve problems involving forces related to linear momentum change.

= use the moment-of-momentum egquation to solve problems involving torque and related work
and power due to angular momentum change.

m use the energy equation, in one of its appropriate forms, to solve problems involving losses
due to friction (head loss) and energy input by pumps or extraction by turbines.

m use the kinetic energy coefficient in the energy equation to account for nonuniform flows.

Some of the important equations in this chapter are given below.
. J o
Conservation of mass ot J pdv + J pV-hdA=0 (5.5)
Mass flowrate m = pQ = pAV (5.6)
J pV - hdA
Average velocity V=2 (5.7)
pA
Steady flow mass conservation Dy, — > i, =0 (5.9)
Moving control volume d o
mass conservation ot L/p dav + Ls pW -hdA=0 (5.16)
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Deforming control volume DMgs 9 R
mass conservation Dt ot LI pd¥ + pr -AdA=0 (5.17)
Force related to change in 9
linear momentum — | Vpd¥ + VPV ndA = E Feontentsof e~ (5-22)
at cv control volume
Moving control volume force related
to change in linear momentum J WpW - dA = 3 Fggggsgtsvg{u‘gz (529)
Vector addition of absolute and relative velocities V=W+U (5.43)
Shaft torque from force E[(r X F)contents of the:| = Tt (5.45)
control volume_| axial
Shaft torque related to change in _ )
moment-of-momentum (angular Tenatt = (=M)(E0Voin) + Mo ETouVoor)  (5.50)
momentum)
Shaft power related to change in ) _ _
moment-of-momentum (angular Warart = (—=Min)( = UinVein) + Mo = UouVoow)  (5.53)
momentum)
First law of p V2 ) _
thermodynamics ot f ep d¥ + J <u +—+ B + gz> pV - NdA = Qg + Wyt (5.64)
(Conservation of os p in netin
energy)
; i ~ gut - Vizn
Conservation of power  m| hy, — hy, + 2 + 9(Zow — Zn) Qna + Wee  (5.69)
netin
Conservation of D V2 P V2
mechanical energy LA 0+ W — lOss (5.82)
P 2 P 2 net in
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Review Problems

. Moran, M. J,, and Shapiro, H. N., Fundamentals of Engineering Thermodynamics, 6th Ed., Wiley,

Go to Appendix G for a set of review problems with answers. De-
tailed solutions can be found in Student Solution Manual and Study

Problems

Guide for Fundamentals of Fluid Mechanics, by Munson et a. (©
2009 John Wiley and Sons, Inc.).

Note: Unless otherwise indicated, use the values of fluid
properties found in the tables on the inside of the front cover.
Problems designated with an (*) are intended to be solved
with the aid of a programmable calculator or a computer.
Problems designated with a (1) are “open-ended” problems
and require critical thinking in that to work them one must
make various assumptions and provide the necessary data.
Thereisnot a unique answer to these problems.

Answers to the even-numbered problems are listed at the
end of the book. Access to the videos that accompany problems
can be obtained through the book’s web site, www.wiley.com/
college/munson. The lab-type problems can also be accessed on
thisweb site.

Section 5.1.1 Derivation of the Continuity Equation

5.1 Explain why the mass of the contents of a system is constant
with time.

5.2 Explain how the mass of the contents of a control volume can
vary with time or not.

5.3 Explain the concept of acoincident control volume and system
and why it is useful.

5.4 Obtain a photograph/image of a situation for which the con-
servation of mass law is important. Briefly describe the situation
and its relevance.


http://www.wiley.com/college/munson

246

Chapter 5 B Finite Control Volume Analysis

Section 5.1.2 Fixed, Nondefor ming Control Volume—
Uniform Velocity Profile or Average Velocity.

5.5 Water enters a cylindrical tank through two pipes at rates of
250 and 100 gal/min (see Fig. P5.5). If the level of the water in the
tank remains constant, calculate the average velocity of the flow
leaving the tank through an 8-in. inside-diameter pipe.

Section (1)

on (2 Q =
Section (2) ~ 100 gal/min
Qz = \
=
250 gal/min ! Section (3)

B FIGURE P5.5

5.6 Water flows out through a set of thin, closely spaced blades as
shown in Fig. 5.6 with aspeed of V = 10 ft/s around the entire cir-
cumference of the outlet. Determine the mass flowrate through the

inlet pipe.

%met

—| <—0.08-ft diameter

Blades

[T 011t

60°

!

¥

V=10 ft/s

B FIGURE P5.6

5.7 The pump shown in Fig. P5.7 produces a steady flow of 10
gal/s through the nozzle. Determine the nozzle exit diameter, D,
if the exit velocity isto be V, = 100 ft/s.

Section (1)

Pump Section (2) Vo

<D

f

B FIGURE P5.7

5.8 Water flowsinto asink asshownin Video V5.1 and Fig. P5.8
at arate of 2 gallons per minute. Determine the average velocity
through each of the three 0.4-in.-diameter overflow holes if
the drain is closed and the water level in the sink remains
constant.

Three 0.4~in.-diameter
overflow holes Q = 2 gal/min

B FIGURE P5.8

5.9 The wind blows through a 7 ft X 10 ft garage door opening
with aspeed of 5 ft/sas shownin Fig. P5.9. Determine the average
speed, V, of the air through the two 3 ft X 4 ft openingsin the win-
dows.

16 ft

| 22 ft
BEFIGURE P59

5.10 The human circulatory system consists of acomplex branch-
ing pipe network ranging in diameter from the aorta (largest) to the
capillaries (smallest). The average radii and the number of these
vessalsis shown in the table below. Does the average blood veloc-
ity increase, decrease, or remain constant asit travelsfrom the aorta
to the capillaries?

Vessel Aver age Radius, mm Number
Aorta 12.5 1
Arteries 2.0 159
Arterioles 0.03 1.4 x 10’
Capillaries 0.006 3.9 x 10°




5.11 Air flows steadily between two cross sections in a long,
straight section of 0.1-m inside diameter pipe. The static tempera-
ture and pressure at each section are indicated in Fig. P5.11. If the
average air velocity at section (1) is 205 m/s, determine the average
air velocity at section (2).

Section (1) Section (2)
p; = 77 kPa (abs) p, = 45 kPa (abs)
T, =268K T,=240K
V; =205 m/s

B FIGURE P5.11

5.12 A hydraulic jump (see Video \V10.10) isin place downstream
from a spillway as indicated in Fig. P5.12. Upstream of the jump,
the depth of the stream is 0.6 ft and the average stream velocity is
18 ft/s. Just downstream of the jump, the average stream velocity is
3.4 ft/s. Calculate the depth of the stream, h, just downstream of
the jump.

- 18 ft/s

T

B FIGURE P5.12

5.13 An evaporative cooling tower (see Fig. P5.13) is used to cool
water from 110 to 80°F. Water enters the tower at a rate of
250,000 Ibm/hr. Dry air (no water vapor) flows into the tower at a
rate of 151,000 Ibm/hr. If the rate of wet air flow out of the tower
is 156,900 Ibm/hr, determine the rate of water evaporation in
Ibm/hr and the rate of cooled water flow inlbm/hr.

Wet air
m = 156,900 Ibm/hr

J

Warm water g
m = 250,000 Ibm/hr

Dry air ==
m = 151,000 Ibm/hr

B FIGURE P5.13

Cooled
water

5.14 At cruise conditions, air flows into a jet engine at a steady
rate of 651bm/s. Fuel entersthe engine at asteady rate of 0.60 lbm/s.
The average velocity of the exhaust gasesis 1500 ft/srelativeto the
engine. If the engine exhaust effective cross-sectional area is
3.5 ft?, estimate the density of the exhaust gases in Ibm/ft3.
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Problems

5.15 Water at 0.1 m¥/sand alcohol (SG=0.8) at 0.3 m*/sare mixed
inay-duct asshownin Fig. 5.15. What is the average density of the
mixture of acohol and water?

Water and
alcohol mix

~

—»
Water
Q=0.1m%s

/

Alcohol (SG =0.8)
Q=03ms

B FIGURE P5.15

5.16 Freshwater flows steadily into an open 55-gal drum initially
filled with seawater. The freshwater mixes thoroughly with the sea-
water and the mixture overflows out of the drum. If the freshwater
flowrate is 10 gal/min, estimate the time in seconds required to de-
crease the difference between the density of the mixture and the
density of freshwater by 50%.

Section 5.1.2 Fixed, Nondefor ming Control Volume—
Nonuniform Velocity Profile

517 A water jet pump (see Fig. P5.17) involves a jet cross-sectional
areaof 0.01 m?, and ajet velocity of 30 m/s. Thejet is surrounded by
entrained water. The total cross-sectional area associated with the
jet and entrained streamsis 0.075 m?. These two fluid streamsleave
the pump thoroughly mixed with an average velocity of 6 m/s
through a cross-sectional area of 0.075 m Determine the pumping
rate(i.e., the entrained fluid flowrate) involved in liters/s.

6 m/s

Entrained
water

111

Entrained
water

Yivy

B FIGURE P5.17

5.18 Two rivers merge to form a larger river as shown in
Fig. P5.18. At alocation downstream from the junction (before the
two streams completely merge), the nonuniform velocity profileis
as shown and the depth is 6 ft. Determine the value of V.

3 ft/s

Iy
50 ft
'

Depth = 3 ft

Depth = 5 ft

B FIGURE P5.18
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5.19 Various types of attachments can be used with the shop vac
shown in Video V5.2. Two such attachments are shown in Fig. P5.19
—a nozzle and a brush. The flowrate is 1 ft¥/s. (a) Determine the
average velocity through the nozzle entrance, V,. (b) Assume the air
enters the brush attachment in aradia direction al around the brush
with avelocity profilethat varieslinearly from 0to V,, along thelength
of the bristles as shown in the figure. Determine the value of V,,.

Q=11

Q=11ts

@
T
.é}% DI
f«—2-in. dia.

Vi »‘ Vy ‘<—3—in. dia.—»‘
B FIGURE P5.19

5.20 An appropriate turbulent pipe flow velocity profileis

R—r\"-
V=uc< R > i

where u., = centerline velocity, r = local radius, R = pipe radius,
andi = unit vector aong pipe centerline. Determine the ratio of av-
erage velocity, u, to centerline velocity, ug, for (@) n = 4, (b) n = 6,
(c) n = 8, (d) n = 10. Compare the different velocity profiles.

5.21 Asshownin Fig. P5.21, at the entrance to a 3-ft-wide channel
the velocity distribution is uniform with a velocity V. Further down-
stream the velocity profile is given by u = 4y — 2y, where uisin
ft/sand yisin ft. Determine the value of V.

u=4y-2y

B FIGURE P5.21

5.22 A water flow situation isdescribed by the velocity field equation
V =(3x+2)1 + (2y — 4)] — 5z ft/s

wherex, y, and zarein feet. (a) Determine the mass flowrate through
the rectangular areain the plane corresponding to z = 2 feet having
cornersat (x,y,2) = (0,0, 2), (5,0, 2), (5,5, 2), and (0, 5, 2) asshown
inFig P5.22a. (b) Show that massis conserved in the control volume
having cornersat (x,y,2 = (0,0, 2), (5,0,2), (5,5, 2), (0,5, 2), (0, 0, 0),
(5,0,0),(5,5,0),and (0, 5, 0), asshown in Fig. P5.22b.

Z Z|
2 2
VA AT 5
| 1,7 y y
51 ___V 5
X X
(@) (b)

B FIGURE P5.22

5.23 Anincompressible flow velocity field (water) is given as

V= —%é, +?1é9m/s

where r isin meters. (a) Calculate the mass flowrate through the
cylindrical surfaceatr = 1mfromz = 0toz= 1 masshownin
Fig.P5.23a. (b) Show that massis conserved in the annular control
volumefromr = 1mtor = 2mandz = 0toz= 1 m asshown
in Fig. P5.23b.

(@ (b)
B FIGURE P5.23

5.24 Flow of aviscousfluid over aflat plate surface resultsin the
development of aregion of reduced velocity adjacent to the wetted
surface as depicted in Fig. P5.24. This region of reduced flow is
called aboundary layer. At the leading edge of the plate, the veloc-
ity profile may be considered uniformly distributed with avalue U.
All along the outer edge of the boundary layer, the fluid velocity
component parallel to the plate surface is also U. If the x direction
velocity profile at section (2) is

=)
U \s

develop an expression for the volume flowrate through the edge of
the boundary layer from the leading edge to alocation downstream
at x where the boundary layer thicknessis é.

Section (2)

Outer edge
of
boundary
layer

Section (1) U

-
—
-

f,——
/”
X

B FIGURE P5.24

s

Section 5.1.2 Fixed, Nondefor ming Control Volume—
Unsteady Flow

5.25 Air at standard conditions enters the compressor shown in Fig.
P5.25 at arate of 10 ft/s. It leaves the tank through a 1.2-in.-diame-
ter pipe with a density of 0.0035 slugs/ft® and a uniform speed of
700 ft/s. (a) Determine the rate (Slugs/s) at which the mass of air in
the tank isincreasing or decreasing. (b) Determine the average time
rate of change of air density within the tank.

Compressor

_ 3
Tank volume = 20 ft 12in.

| 700fys
f0.0035 slugs/ft®

10 ft¥/s

0.00238 slugs/ft3
H FIGURE P5.25



5.26 Estimate the time required to fill with water a cone-shaped
container (see Fig. P5.26) 5 ft high and 5 ft across at the top if the
filling rateis 20 gal/min.

ri5 ft

5 ft

B FIGURE P5.26

15.27 Estimate the maximum flowrate of rainwater (during a heavy
rain) that you would expect from the downspout connected to the gut-
ters of your house. List all assumptions and show all calculations.

Section 5.1.3 Moving, Nondeforming Control Volume

5.28 For an automobile moving along a highway, describe the con-
trol volume you would use to estimate the flowrate of air across the
radiator. Explain how you would estimate the velocity of that air.

Section 5.1.4 Deforming Control Volume

5.29 A hypodermic syringe (see Fig. P5.29) is used to apply avac-
cine. If the plunger is moved forward at the steady rate of 20 mm/s
and if vaccineleaks past the plunger at 0.1 of the volume flowrate out
the needle opening, calculate the average velocity of the needle exit
flow. The inside diameters of the syringe and the needle are 20 mm
and 0.7 mm.

.\

Q\eak -
_>[

<
<

BFIGU

QUU
[ —— —

R E P5.29

5.30 The Hoover Dam (see Video VV2.4) backs up the Colorado
River and creates Lake Mead, which isapproximately 115 mileslong
and has a surface area of approximately 225 square miles. If during
flood conditions the Colorado River flows into the lake at arate of
45,000 cfs and the outflow from the dam is 8000 cfs, how many feet
per 24-hour day will the lake level rise?

5.31 Storm sewer backup causesyour basement to flood at the steady
rate of 1 in. of depth per hour. The basement floor area is 1500 ft2.
Wheat capacity (gal /min) pump would you rent to (a) keep the water
accumulated in your basement at aconstant level until the storm sewer
is blocked off, and (b) reduce the water accumulation in your base-
ment at arate of 3in./hr even while the backup problem exists?

5.32 (See Fluids in the News article “New 1.6 gpf standards,’
Section 5.1.2.) When atoilet is flushed, the water depth, h, in the
tank as afunction of time, t, isas given in the table. The size of the
rectangular tank is 19 in. by 7.5 in. (a) Determine the volume of
water used per flush, gpf. (b) Plot theflowratefor0 =t <= 6s.

t () h (in.)
0 5.70
0.5 5.33
10 4.80
2.0 3.45
3.0 240
4.0 1.50
5.0 0.75
6.0 0

Problems 249
Section 5.2.1 Derivation of the Linear Momentum
Equation

5.33 What is fluid linear momentum and the “flow” of linear
momentum?

5.34 Explain the physical meaning of each of the terms of the lin-
ear momentum equation (Eq. 5.22).

5.35 What isaninertial control volume?
5.36 Distinguish between body and surface forces.

5.37 Obtain a photograph/image of a situation in which the linear
momentum of afluid changes during flow from one location to an-
other. Explain briefly how force isinvolved.

Section 5.2.2 Application of the Linear Momentum
Equation (Also see Lab Problems5.140, 5.141, 5.142,
and 5.143))

5.38 A 10-mm diameter jet of water is deflected by a homoge-
neous rectangular block (15 mm by 200 mm by 100 mm) that
weighs 6 N as shown in Video V5.6 and Fig. P5.38. Determine the
minimum volume flowrate needed to tip the block.

0.10 m

B FIGURE P5.38

5.39 Determine the anchoring force required to hold in place the
conical nozzle attached to the end of the laboratory sink faucet
shown in Fig. P5.39 when the water flowrate is 10 gal/min. The
nozzle weight is 0.2 Ib. The nozzle inlet and exit inside diameters
are 0.6 and 0.2 in., respectively. The nozzle axisis vertica and the
axial distance between sections (1) and (2) is 1.2 in. The pressure at
section (1) is68 psi.

Section (1)

Section (2) l

4 PD2=0.2 in.
Q=10 gal/min
B FIGURE P5.39
5.40 Water flows through a horizontal, 180° pipe bend asis illus-

trated in Fig. P5.40. Theflow cross section areais constant at avalue
of 9000 mmZ The flow velocity everywhere in the bend is 15 m/s.
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B FIGURE P5.40

The pressures at the entrance and exit of the bend are 210 and 165 kPa,
respectively. Calculate the horizontal (x and y) components of the an-
choring force needed to hold the bend in place.

5.41 Water enters the horizontal, circular cross-sectional, sudden
contraction nozzle sketched in Fig. P5.41 at section (1) with a uni-
formly distributed velocity of 25 ft/s and a pressure of 75 psi. The
water exits from the nozzle into the atmosphere at section (2) where
the uniformly distributed velocity is 100 ft/s. Determine the axia
component of the anchoring force required to hold the contraction
in place.

Section (2)

[
b
D, =3in. | Py =
:p1=75psi
— '_:V1:25ft/s T
[
1
[

0 psi
_>
Section (1)

V, =
100 ft/s

B FIGURE P5.41

5.42 The four devices shown in Fig. P5.42 rest on frictionless
wheels, are restricted to move in the x direction only, and are ini-
tially held stationary. The pressure at the inlets and outlets of each
is atmospheric, and the flow is incompressible. The contents of
each device is not known. When released, which devices will move
to the right and which to the |eft? Explain.

|
g o_o
(@ (b)
lﬁ @ ©
(d)

(©

B FIGURE P5.42

5.43 Exhaust (assumed to have the properties of standard air)
leaves the 4-ft-diameter chimney shown in Video V5.4 and
Fig. P5.43 with a speed of 6 ft/s. Because of the wind, after afew
diameters downstream the exhaust flows in a horizontal direction
with the speed of the wind, 15 ft/s. Determine the horizontal com-
ponent of the force that the blowing wind puts on the exhaust
gases.

15 ft/s

B FIGURE P5.43

5.44  Air flows steadily between two cross sectionsin along, straight
section of 12-in.-inside diameter pipe. The static temperature and pres-
sure a each section are indicated in Fig P5.44. If the average air
velocity at section (2) is 320 m/s, determine the average air velocity at
section (1). Determine the frictional force exerted by the pipe wall on
theair flowing between sections (1) and (2). Assume uniform velocity
distributions at each section.

e D L e

Section (1) Section (2)
p; = 690 kPa (abs) p, = 127 kPa (abs)
Ty =300 K T,=252K
V, =320 m/s

B FIGURE P5.44

5.45 Determine the magnitude and direction of the anchoring force
needed to hold the horizontal elbow and nozzle combination shown
in Fig. P5.45 in place. Atmospheric pressure is 100 kPa(abs). The
gage pressure at section (1) is 100 kPa. At section (2), the water ex-
its to the atmosphere.

160 mm

Section (2)

300 mm

=
Q
g

V1 _>§)
[
T \Section (1)
p; = 100 kPa
Vi =2m/s

B FIGURE P5.45

5.46 Water flows as two free jets from the tee attached to the pipe
shown in Fig. P5.46. The exit speed is 15 m/s. If viscous effects
and gravity are negligible, determine the x and y components of the
force that the pipe exerts on the tee.

V=15m/s
Area = 0.3 m?
Area=1m? -
1l y
1l -
| |_X V=15m/s
! Area = 0.5 m?
- =Y.
\Pipe \Tee

B FIGURE P5.46



5.47 A converging elbow (see Fig. P5.47) turns water through an
angle of 135° in avertical plane. The flow cross section diameter is
400 mm at the elbow inlet, section (1), and 200 mm at the elbow out-
let, section (2). The elbow flow passage volume is 0.2 m® between
sections (1) and (2). The water volume flowrateis 0.4 m*/sand the
elbow inlet and outlet pressures are 150 kPa and 90 kPa. The elbow
mass is 12 kg. Calculate the horizontal (x direction) and vertical
(z direction) anchoring forces required to hold the elbow in place.

z
Section ‘|
(1)\: D, = 400 mm
_» ..... %
D, =
200 mm Section (2)

B FIGURE P5.47

5.48 The hydraulic dredge shown in Fig. P5.48 is used to dredge
sand from ariver bottom. Estimate the thrust needed from the pro-
peller to hold the boat stationary. Assume the specific gravity of the
sand/water mixtureis SG = 1.2.

2-ft diameter 30 fUs

B FIGURE P5.48

5.49 A dtatic thrust stand isto be designed for testing a specific jet
engine. Knowing the following conditions for atypical test,
intake air velocity = 700 ft/s
exhaust gas velocity = 1640 ft/s
intake cross section area = 10 ft?
intake static pressure = 11.4 psia
intake static temperature = 480 °R
exhaust gas pressure = 0 psi
estimate anominal thrust to design for.
5.50 A horizontal, circular cross-sectional jet of air having adiam-

eter of 6 in. strikes a conical deflector as shown in Fig. P5.50.
A horizontal anchoring force of 5 Ibis required to hold the conein

\

B FIGURE P5.50
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place. Estimate the nozzle flowrate in ft%/s. The magnitude of the
velocity of the air remains constant.

5.51 A vertica, circular cross-sectional jet of air strikesaconica de-
flector asindicated in Fig. P5.51. A vertical anchoring force of 0.1 N
is required to hold the deflector in place. Determine the mass (kg) of
the deflector. The magnitude of velocity of the air remains constant.

Fa=0.1N

V=30m/s B FIGURE P5.51

552 Water flows from a large tank into a dish as shown in Fig.
P5.52. (a) If at the instant shown the tank and the water in it
weigh W, Ib, what is the tension, T,, in the cable supporting the
tank? (b) If at the instant shown the dish and the water in it weigh
W, Ib, what is the force, F,, needed to support the dish?

~—Tank

o

B FIGURE P5.52

5.53 Two water jets of equal size and speed strike each other as
shown in Fig. P5.53. Determine the speed, V, and direction, 6, of
the resulting combined jet. Gravity is negligible.

V, = 10 ft/s mmp

V, =10 ft/s

B FIGURE P5.53



252

Chapter 5 B Finite Control Volume Analysis

5.54  Assuming frictionless, incompressible, one-dimensiona flow
of water through the horizontal tee connection sketched in Fig.
P5.54, estimate val ues of the x and y components of the force exerted
by the tee on the water. Each pipe has an inside diameter of 1 m.

Section (3) Section (2)

i

Section (1)

V,=6m/s
p; = 200 kPa

B FIGURE P5.54

5.55 Determine the magnitude of the horizontal component of the
anchoring force required to hold in place the sluice gate shown in
Fig. 5.55. Compare this result with the size of the horizontal com-
ponent of the anchoring force required to hold in place the sluice
gate when it is closed and the depth of water upstream is 10 ft.

B FIGURE P5.55

5.56 Therocket shownin Fig. P5.56. is held stationary by the hor-
izontal force, F,, and the vertical force, F,. Thevelocity and pres-
sure of the exhaust gas are 5000 ft/s and 20 psia at the nozzle exit,
which has a cross section area of 60 in.2. The exhaust mass flowrate
isconstant at 21 |bm/s. Determine the value of the restraining force
F,. Assume the exhaust flow is essentially horizontal.

: =

—
A s
ﬁ\

z

B FIGURE P5.56

5.57 A horizontal circular jet of air strikes a stationary flat plate as
indicated in Fig. 5.57. Thejet velocity is40 m/s and the jet diameter

Vo

=

90°

B FIGURE P5.57

is 30 mm. If the air velocity magnitude remains constant as the air
flows over the plate surface in the directions shown, determine: (a)
the magnitude of F, the anchoring force required to hold the plate
stationary; (b) the fraction of mass flow along the plate surface in
each of the two directions shown; (c) the magnitude of F, the an-
choring force required to allow the plate to move to theright at a
constant speed of 10 m/s.

5.58 Water is sprayed radially outward over 180° as indicated in
Fig. P5.58. The jet sheet isin the horizontal plane. If the jet veloc-
ity at the nozzle exit is 20 ft/s, determine the direction and magni-
tude of the resultant horizontal anchoring force required to hold the
nozzlein place.

8 in— 0.5in.
_ ¥ V=
& 20ft/s

B FIGURE P5.58

559 A sheet of water of uniform thickness (h = 0.01 m) flows
from the device shown in Fig. P5.59. The water enters vertically
through theinlet pipe and exits horizontally with a speed that varies
linearly from O to 10 m/s along the 0.2-m length of the dlit. Deter-
mine the y component of anchoring force necessary to hold this de-
vice stationary.

B FIGURE P5.59

5.60 A variable mesh screen produces a linear and axisymmetric
velocity profile asindicated in Fig. P5.60 in the air flow through a

Variable mesh screen

e
| :
[ :
D=2ft - -1 - -
I
i I A
Section (1) Section (2)
p; = 0.2 psi p, = 0.15 psi
V; =100 ft/s

B FIGURE P5.60



2-ft-diameter circular cross section duct. The static pressures up-
stream and downstream of the screen are 0.2 and 0.15 psi and are
uniformly distributed over the flow cross section area. Neglecting
the force exerted by the duct wall on the flowing air, calculate the
screen drag force.

5.61 Water flows vertically upward in a circular cross-sectional
pipe as shownin Fig. P5.61. At section (1), the velocity profile over
the cross-sectional areais uniform. At section (2), the velocity pro-

fileis
R—r\V".
V=wc( R ) k

where V = local velocity vector, w, = centerline velocity in the
axial direction, R = pipe radius, and r = radius from pipe axis.
Develop an expression for the fluid pressure drop that occurs be-
tween sections (1) and (2).

3
- - -7
Section (2) |»r+1
"
>\ —— e — |
Section (1) 7 (>

B FIGURE P5.61

5.62 In alaminar pipe flow that is fully developed, the axial ve-
locity profileis parabolic. That is,

s3]

asisillustrated in Fig. P5.62. Compare the axial direction momen-
tum flowrate calculated with the average velocity, U, with the axial
direction momentum flowrate calculated with the nonuniform ve-
locity distribution taken into account.

\ /

| [ o —
_RAL__'L TR

j \

/ \

B FIGURE P5.62

15.63 Water from a garden hose is sprayed against your car to
rinse dirt from it. Estimate the force that the water exerts on the car.
List all assumptions and show calculations.

5.64 A Pelton wheel vane directs a horizontal, circular cross-
sectional jet of water symmetrically asindicated in Fig. P5.64 and
Video V5.6. The jet leaves the nozzle with a velocity of 100 ft/s.
Determine the x direction component of anchoring force required
to (a) hold the vane stationary, (b) confine the speed of the vane to
avalue of 10 ft/sto the right. The fluid speed magnitude remains
constant along the vane surface.
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BN
| 100) N 400y

ft/s ft/s 10 ft/s

— % —— ——
D=1in. D=1in.

45/; 45°§;

(a) (b)

HFIGURE P5.64

45&

100

5.65 How much power is transferred to the moving vane of Prob-
lem 5.64?

5.66 The thrust developed to propel the jet ski shown in Video
V9.11 and Fig. P5.66 isaresult of water pumped through the vehi-
cle and exiting as a high-speed water jet. For the conditions shown
in the figure, what flowrate is needed to produce a 300-1b thrust?
Assumetheinlet and outlet jets of water are free jets.

3.5-in.-diameter
outlet jet

W —=

AN
25-in.2 inlet area

B FIGURE P5.66

5.67 (See Fluids in the News article titled “Where the plume
goes,” Section 5.2.2.) Air flows into the jet engine shown in Fig.
P5.67 at arate of 9 slugs/s and a speed of 300 ft/s. Upon landing,
the engine exhaust exits through the reverse thrust mechanism
with a speed of 900 ft/s in the direction indicated. Determine the
reverse thrust applied by the engine to the airplane. Assume
the inlet and exit pressures are atmospheric and that the mass
flowrate of fuel isnegligible compared to the air flowrate through
the engine.

V5 = 900 ft/s
(3)

N
- 4-ft diameter
N

(1)
V, = 300 ft/s

@
V, = 900 ft/s

B FIGURE P5.67

5.68 (See Fluids in the News article titled “Motorized surf-
board,” Section 5.2.2.) Thethrust to propel the powered surfboard
shown in Fig. P5.68 is aresult of water pumped through the board
that exits as a high-speed 2.75-in.-diameter jet. Determine the
flowrate and the velocity of the exiting jet if the thrust is to be
300 Ib. Neglect the momentum of the water entering the pump.



254

Chapter 5 B Finite Control Volume Analysis

B FIGURE P5.68

5.69 (SeeFluidsinthe Newsarticletitled “ Bow thrusters” Sec-
tion 5.2.2). The bow thruster on the boat shown in Fig. P5.69 is
used to turn the boat. The thruster produces a 1-m-diameter jet of
water with a velocity of 10 m/s. Determine the force produced by
the thruster. Assume that the inlet and outlet pressures are zero and
that the momentum of the water entering the thruster is negligible.

B FIGURE P5.69

5.70 A snowplow mounted on atruck clears a path 12 ft through
heavy wet snow, as shown in Figure P5.70. The snow is 8 in. deep
and itsdensity is 10 Ibm/ft%. The truck travels at 30 mph. The snow
isdischarged from the plow at an angle of 45° from the direction of
travel and 45° above the horizontal, as shown in Figure P5.70. Esti-
mate the force required to push the plow.

0 =45° L)\ Dm_\

(in plane of blade) =
1
d=8 in.L J
!

B FIGURE P5.70

U =30 mph

Section 5.2.3 Derivation of the M oment-of-M omentum
Equation

5.71 What is fluid moment-of-momentum (angular momentum)
and the “flow” of moment-of-momentum (angular momentum)?

5.72 Describe the orthogonal components of the moment-of-
momentum equation (Eq. 5.42) and comment on the direction of each.

5.73 Describe a few examples (include photographs/images) of
turbines where the force/torque of a flowing fluid leads to rotation
of ashaft.

5.74 Describe a few examples (include photographs/images) of
pumps where a fluid is forced to move by “blades’ mounted on a
rotating shaft.

Section 5.2.4 Application of the M oment-of-M omentum
Equation

5.75 Water enters a rotating lawn sprinkler through its base at the
steady rate of 16 gal/min as shown in Fig. P5.75. The exit cross-
sectiond area of each of the two nozzles is 0.04 in.?, and the flow
leaving each nozzleistangentia. The radius from the axis of rotation
to the centerline of each nozzle is 8 in. (a) Determine the resisting
torque required to hold the sprinkler head stationary. (b) Determine
the resisting torque associated with the sprinkler rotating with a con-
stant speed of 500 rev/min. (c) Determine the angular velocity of the
sprinkler if no resisting torqueis applied.

| r=8in. Nozzle exit .,
i/ /area =0.04 in.
~N
)

Q=16 gal/min

B FIGURE P5.75

5.76 Five liters/s of water enter the rotor shown in Video VV5.10
and Fig. P5.76 along the axis of rotation. The cross-sectional area
of each of the three nozzle exits normal to the relative velocity is
18 mm?. How largeis the resisting torque required to hold the rotor
stationary? How fast will the rotor spin steadily if the resisting
torqueisreducedto zeroand (a) # = 0°, (b) 6 = 30°, (c) # = 60°?

Nozzle exit area normal to
/relative velocity = 18 mm?

Q=5 liters/s

B FIGURE P5.76

5.77 Shown in Fig. P5.77 is a toy “helicopter” powered by air
escaping from a balloon. The air from the balloon flows radially
through each of the three propeller blades and out through small
nozzles at the tips of the blades. Explain physically how this flow
can cause the rotation necessary to rotate the blades to produce the
needed lifting force.

5.78 A simplified sketch of a hydraulic turbine runner is shown in
Fig. P5.78. Relative to the rotating runner, water enters at section
(1) (cylindrical cross section area A, at r,=1.5 m) at an angle of
100° from the tangential direction and leaves at section (2) (cylin-
drical cross section area A, at r,=0.85 m) at an angle of 50° from
the tangential direction. The blade height at sections (1) and (2) is
0.45 m and the volume flowrate through the turbine is 30 m%s. The
runner speed is 130 rpm in the direction shown. Determine the shaft
power developed.



Balloon

B FIGURE P5.77

Section (1)

Section (2) +
HFIGURE P5.78

5.79 A water turbine with radial flow hasthe dimensions shown in
Fig.P5.79.The absol ute entering velocity is 50 ft/s, and it makes an

V, =50 ft/s

1 ft—|
30°

/.
h

Section (1) Section (2)

B FIGURE P5.79
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angle of 30° with the tangent to the rotor. The absolute exit veloc-
ity isdirected radially inward. The angular speed of therotor is 120
rpm. Find the power delivered to the shaft of the turbine.

5.80 Shownin Fig. P5.80 are front and side views of a centrifugal
pump rotor or impeller. If the pump delivers 200 liters/s of water
and the blade exit angle is 35° from the tangential direction, deter-
mine the power requirement associated with flow leaving at the
blade angle. The flow entering the rotor blade row is essentialy ra-
dial asviewed from a stationary frame.

B FIGURE P5.80

5.81 The velocity triangles for water flow through aradial pump
rotor are asindicated in Fig. P5.81. (a) Determine the energy added
to each unit mass (kg) of water as it flows through the rotor. (b)
Sketch an appropriate blade section.

B FIGURE P5.81

5.82 An axial flow turbomachine rotor involves the upstream (1)
and downstream (2) velocity triangles shown in Fig.P5.82. |Is this
turbomachine a turbine or a fan? Sketch an appropriate blade sec-
tion and determine energy transferred per unit mass of fluid.

(Wi [ =[w,|

W U, =30 ft/s w, / |u,=301ts

60"/

B FIGURE P5.82

Ly, =20fts



256

Chapter 5 B Finite Control Volume Analysis

5.83 An axia flow gasoline pump (see Fig. P5.83) consists of aro-
tating row of blades (rotor) followed downstream by a stationary row
of blades(stator). The gasoline entersthe rotor axialy (without any an-
gular momentum) with an absolute velocity of 3 m/s. Therotor blade
inlet and exit angles are 60° and 45° from the axia direction. The
pump annulus passage cross-sectional area is constant. Consider the
flow as being tangent to the bladesinvolved. Sketch velocity triangles
for flow just upstream and downstream of the rotor and just down-
stream of the stator where the flow is axial. How much energy is
added to each kilogram of gasoline? Isthisan actual or ideal amount?

Rotor

Stator
/<\45°

Arithmetic
mean radius blade
sections

Vi =3m/s
60°

B FIGURE P5.83

5.84 Sketch the velocity trianglesfor the flows entering and leaving
the rotor of the turbine-type flow meter shown in Fig. P5.84. Show
how rotor angular velocity is proportional to average fluid velocity.

Turbine

B FIGURE P5.84
Technology, Inc.)

(Courtesy of EG& G Flow

5.85 By using velocity triangles for flow upstream (1) and down-

stream (2) of a turbomachine rotor, prove that the shaft work in per

unit mass flowing through the rotor is
V3-V2+U3Z-UZ2+W2-W3

Wenait =
netin 2

where V = absolute flow velocity magnitude, W = relative flow
velocity magnitude, and U = blade speed.

Section 5.3.1 Derivation of the Energy Equation

5.86 Distiguish between shaft work and other kinds of work asso-
ciated with aflowing fluid.

5.87 Define briefly what heat transfer is. What is an adiabatic
flow? Give several practical examples of nearly adiabatic flows.

Section 5.3.2 Application of the Energy Equation —No
Shaft Work and Section 5.3.3 Comparison of the Energy
Equation with the Bernoulli Equation

5.88 What is enthalpy and why is it useful for energy considera-
tionsin fluid mechanics?

5.89 Citeafew examplesof evidence of loss of available energy in
actual fluid flows. Why does loss occur?

5.90 Is zero heat transfer a necessary condition for application of
the Bernoulli equation (Eq. 5.75)?

591 A 1000-m-high waterfall involves steady flow from one large
body to another. Detemine the temperature rise associated with this
flow.

5.92 A 100-ft-wide river with aflowrate of 2400 ft¥/s flows over a
rock pile as shown in Fig. P5.92. Determine the direction of flow
and the head loss associated with the flow across the rock pile.

(1)

Rock pile
B FIGURE P5.92

5.93 Air steadily expands adiabatically and without friction from
stagnation conditions of 690 kpa (abs) and 290 K to a static pres-
sure of 101 kpa (abs). Determine the velocity of the expanded air
assuming: (a) incompressible flow; (b) compressible flow.

5.94 A horizontal Venturi flow meter consists of a converging—di-
verging conduit as indicated in Fig. P5.94. The diameters of cross
sections (1) and (2) are 6 and 4 in. The velocity and static pressure
are uniformly distributed at cross sections (1) and (2). Determine
the volume flowrate (ft¥/s) through the meter if p, — p, = 3 psi,
the flowing fluid isail (p = 56 lbm/ft®), and the loss per unit mass
from (1) to (2) isnegligibly small.

Section (2)
HFIGURE P5.94

595 Qil (SG = 0.9) flows downward through avertical pipe con-
traction as shown in Fig. P5.95. If the mercury manometer reading,
h, is 100 mm, determine the volume flowrate for frictionless flow.
Is the actual flowrate more or less than the frictionless value?
Explain.

5.96 An incompressible liquid flows steadily along the pipe
shown in Fig. P5.96. Determine the direction of flow and the head
loss over the 6-m length of pipe.



7

100 mm —»‘ L

B FIGURE P5.95

B FIGURE P5.96

5.97 Water flows through a vertical pipe, as is indicated in
Fig. P5.97. Isthe flow up or down in the pipe? Explain.

N [y S

J

h

= B
Mercury

B FIGURE P5.97

5.98 A circular disk can belifted up by blowing on it with the de-
vice shown in Fig. P5.98. Explain why this happens.

Disk
attached
to tube

Disk
to be
lifted

B FIGURE P5.98
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5.99 A siphonisused todraw water at 20°C from alarge container
as indicated in Fig. P5.99. Does changing the elevation, h, of the
siphon centerline above the water level in the tank vary the flowrate
through the siphon? Explain. What is the maximum allowable
value of h?

3

{

B FIGURE P5.99

5.100 A water siphon having a constant inside diameter of 3in. is
arranged as shown in Fig. P5.100. If the friction loss between A and
B is 0.8V2/2, where V is the velocity of flow in the siphon, deter-
mine the flowrate involved.

3in.—=

B FIGURE P5.100

5.101 Water flows through a valve (see Fig.P5.101) at the rate of
1000 Ibm/s. The pressure just upstream of the valveis 90 psi and the
pressure drop across the valve is 50 psi. The inside diameters of
the valve inlet and exit pipes are 12 and 24 in. If the flow through
the valve occurs in a horizontal plane determine the loss in avail-
able energy acrossthe valve.

!

12 in.

- 24 in.

B FIGURE P5.101

5.102 Compare the volume flowrates associated with two differ-
ent vent configurations, a cylindrical hole in the wall having a di-
ameter of 4 in. and the same diameter cylindrical hole in the wall
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but with a well-rounded entrance (see Fig. P5.102). The room is
held at aconstant pressure of 1.5 psi above atmospheric. Both vents
exhaust into the atmosphere. The loss in available energy associ-
ated with flow through the cylindrical vent from the room to the
vent exit is 0.5V%2, where V, is the uniformly distributed exit veloc-
ity of air. The loss in available energy associated with flow through
the rounded entrance vent from the room to the vent exit is
0.05V3/2, where V, is the uniformly distributed exit velocity of air.

4 in.

\d

—_—

7

I
B FIGURE P5.102

5.103 A gasexpandsthrough anozzle from apressure of 300 psia
to a pressure of 5 psia. The enthalpy change involved, h; — h,,
is 150 Btu/lbm. If the expansion is adiabatic but with frictional ef-
fects and theinlet gas speed is negligibly small, determine the exit
gas velocity.

5.104 For the 180° elbow and nozzle flow shown in Fig. P5.104,
determinethelossin available energy from section (1) to section(2).
How much additional available energy is lost from section (2) to
where the water comes to rest?

Section (2)
12 in.

p; =15 psi
V,=5ftls >

Section (1)
HEFIGURE P5.104

5.105 Anautomobile enginewill work best when the back pressure
at theinterface of the exhaust manifold and the engine block is min-
imized. Show how reduction of losses in the exhaust manifold, pip-
ing, and muffler will also reduce the back pressure. How could
losses in the exhaust system be reduced? What primarily limits the
minimization of exhaust system losses?

15.106 Explain how, in terms of the loss of available energy in-
volved, a home sink water faucet valve works to vary the flow
from the shutoff condition to maximum flow. Explain how you
would estimate the size of the overflow drain holes needed in the
sink of Video V5.1 (Video V3.9 may be helpful).

5.107 (See Huidsinthe Newsarticletitled“ Smart shocks” Section
5.3.3.) A 200-Ib force applied to the end of the piston of the shock ab-
sorber shownin Fig. P5.107 causesthe two ends of the shock absorber
to move toward each other with aspeed of 5 ft/s. Determine the head
loss associated with the flow of the oil through the channel. Neglect
gravity and any friction force between the piston and cylinder walls.

Qil

Piston —{{ |

Channel —
1-in. diameter —| TH

@200 Ib

B FIGURE P5.107

Section 5.3.2 Application of the Energy Equation—-With
Shaft Work

5.108 What is the maximum possible power output of the hydro-
electric turbine shown in Fig.P5.108?

Turbine

B FIGURE P5.108

5.109 The pumper truck shown in Fig. P5.109 is to deliver
1.5 ft¥/s to a maximum elevation of 60 ft above the hydrant. The
pressure at the 4-in.-diameter outlet of the hydrant is 10 psi. If head
losses are negligibly small, determine the power that the pump
must add to the water.

60 ft

10 psi
4-in.
diameter

I k A

Hydrant
HFIGURE P5.109




5.110 Thehydrodectricturbineshownin Fig. P5.110 passes8 million
gal/min across a head of 600 ft. What is the maximum amount of
power output possible? Why will the actual amount be less?

Turbine

B FIGURE P5.110

5111 A pump is to move water from alake into a large, pressur-
ized tank as shown in Fig. P5.111 at arate of 1000 gal in 10 min or
less. Will a pump that adds 3 hp to the water work for this purpose?
Support your answer with appropriate calcul ations. Repeat the prob-
lem if the tank were pressurized to 3, rather than 2, atmospheres.

p=2atm
Air

B FIGURE P5.111

5.112 A hydraulic turbineis provided with 4.25 m®s of water at
415 kPa. A vacuum gage in the turbine discharge 3 m below the
turbine inlet centerline reads 250 mm Hg vacuum. If the turbine
shaft output power is 1100 kW, calculate the power loss through
the turbine. The supply and discharge pipe inside diameters are
identically 80 mm.

5.113 Water issupplied at 150 ft3/s and 60 psi to a hydraulic tur-
bine through a 3-ft inside diameter inlet pipe as indicated in Fig.
P5.113. The turbine discharge pipe has a 4-ft inside diameter. The
static pressure at section (2), 10 ft below the turbineinlet, is 10-in.
Hg vacuum. If the turbine devel ops 2500 hp, determine the power
lost between sections (1) and (2).

p; =60 psi3
. Q =150 ft’/s
Section (1
ion (1) D,=3

ft

10 ft

p, = 10-in. Hg
vacuum
D,=4 ft

\Section (2)
HEFIGURE P5.113
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5.114 A centrifugal air compressor stage operates between an in-
let stagnation pressure of 14.7 psia and an exit stagnation pressure
of 60 psia. The inlet stagnation temperature is 80 °F. If the loss of
total pressure through the compressor stage associated with irre-
versible flow phenomena is 10 psi, estimate the actual and idea
stagnation temperature rise through the compressor. Estimate the
ratio of ideal to actual temperature rise to obtain an approximate
value of the efficiency.

5.115 Water is pumped through a 4-in.-diameter pipe as shown in
Fig. P5.115a. The pump characteristics (pump head versus
flowrate) are given in Fig. P5.115h. Determine the flowrate if the
head lossin the pipeish, = 8V?/2g.

(a)
B FIGURE P5.115

5.116 Water is pumped from the large tank shown in Fig. P5.116.
The head loss is known to be equal to 4V2/2g and the pump head is
h, = 20 — 4Q°, where h, isin ft when Q isin ft*/s. Determine the
flowrate.

Pipe area = 0.10 ft?
HFIGURE P5.116

5.117 When afan or pump is tested at the factory, head curves
(head across the fan or pump versus volume flowrate) are often
produced. A generic fan or pump head curve is shown in
Fig.P5.117a. For any piping system, the drop in pressure or head
involved because of loss can be estimated as a function of vol-
ume flowrate. A generic piping system loss curve is shown in
Fig.P5.117b. When the pump or fan and piping system associated
with the two curves of Fig.P5.117 are combined, what will the
flowrate be? Why? How can the flowrate through this combined
system be varied?

n c
3 a = £
= £ 29
o =
c 3 o9
35 T

©
@ © S &
I»rv I.e_
= re

Q, Volume flowrate Q, Volume flowrate
(a) (b)

B FIGURE P5.117
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5.118 Water flowsby gravity from onelaketo another as ketched in
Fig. P5.118 at the steady rate of 80 gpm. What isthelossin available
energy associated with this flow? If this same amount of lossis asso-
ciated with pumping the fluid from the lower lake to the higher one at
the same flowrate, estimate the amount of pumping power required.

B FIGURE P5.118

5.119 Water is pumped from atank, point (1), to the top of awa-
ter plant aerator, point (2), as shown in Video V5.14 and Fig.
P5.119 at arate of 3.0 ft¥/s. (a) Determine the power that the pump
addsto the water if the head lossfrom (1) to (2) whereV, = Qis4ft.
(b) Determine the head loss from (2) to the bottom of the aerator
column, point (3), if the average velocity at (3) isV; = 2 ft/s.

/- Aerator column

7
.,

(3)
Nue” 1 5 ft
N 3\ﬁ ‘
\ i (Pump) «~

2

q
<
2

Vg

B FIGURE P5.119

5.120 A liquid enters a fluid machine at section (1) and leaves at
sections(2) and (3) as shown in Fig. P5.120. The density of thefluid
isconstant at 2 slugs/ft®. All of the flow occursin ahorizontal plane
and is frictionless and adiabatic. For the above-mentioned and ad-
ditional conditions indicated in Fig. P5.120, determine the amount
of shaft power involved.

T p, = 50 psia
V, =35 ft/s

Section (2)
I

Section (3)” | >
p3 = 14.7 psia
I i V3 =45 ft/s
Section (1) 3

>( Ay=5in?
p; = 80 psia
V) = 15 ftfs
A, =30in?

B FIGURE P5.120

5.121 Water isto be moved from one large reservoir to another at
ahigher elevation asindicated in Fig. P5.121. Theloss of available

Section (2)

8-in. inside-
diameter pipe

B FIGURE P5.121

energy associated with 2.5 ft3/s being pumped from sections (1) to
(2)isloss = 61V ?/2 ft?/s?, where V is the average velocity of wa-
ter in the 8-in. inside diameter piping involved. Determine the
amount of shaft power required.

5.122 Water is to be pumped from the large tank shown in Fig.
P5.122 with an exit velocity of 6 m/s. It was determined that the
origina pump (pump 1) that supplies 1 kW of power to the water
did not produce the desired velocity. Hence, it is proposed that an
additional pump (pump 2) be installed as indicated to increase the
flowrate to the desired value. How much power must pump 2 add to
the water? The head loss for thisflow ish, = 250Q? whereh, isin
mwhen Qisinm®/s.

Nozzle area = 0.01 m?

V:6m/s/ . /Pipearea:0.02m2
1 Pump | Pump
t L #2 | L #1
2m
| S T VA
xS

B FIGURE P5.122

5.123 (SeeFluidsin the News article titled “ Curtain of air,” Sec-
tion 5.3.3.) The fan shown in Fig. P5.123 produces an air curtain to
separate aloading dock from a cold storage room. The air curtain is
ajet of air 10 ft wide, 0.5 ft thick moving with speedV = 30 ft/s. The
loss associated with thisflow isloss = K, V?/2, whereK, = 5. How
much power must the fan supply to the air to produce this flow?

\\l//l

[ Fan
| |

| *V: 30 ft/s | |l - Air curtain
| l | | (0.5-ft thickness)
Phvol

| |=—Open door

B FIGURE P5.123

Section 5.3.2 Application of the Energy Equation—
Combined with Linear momentum

5.124 If a2-hp motor is required by a ventilating fan to produce a
24-in. stream of air having a velocity of 40 ft/s as shown in
Fig. P5.124, estimate (a) the efficiency of the fan and (b) the thrust
of the supporting member on the conduit enclosing the fan.

5.125 Air flows past an object in a pipe of 2-m diameter and exits
asafreejet asshown in Fig. P5.125. The velocity and pressure up-
stream are uniform at 10 m/s and 50 N/m?, respectively. At the



.4 m/s

.—12 m/s

/)

P=50 NIm” 10 s
B FIGURE P5.125

pipe exit the velocity is nonuniform as indicated. The shear stress
along the pipe wall is negligible. (a) Determine the head |oss asso-
ciated with aparticle asit flowsfrom the uniform vel ocity upstream
of the object to alocation in the wake at the exit plane of the pipe.
(b) Determine the force that the air puts on the object.

5.126 Water flows through a 2-ft-diameter pipe arranged horizon-
taly inacircular arc as shown in Fig. P5.126. If the pipe discharges
to the atmosphere (p = 14.7 psia) determine the x and y components
of the resultant force exerted by the water on the piping between
sections (1) and (2). The steady flowrate is 3000 ft¥/min. Thelossin
pressure due to fluid friction between sections (1) and (2) is 60 psi.

y

90° Section (2)

1000 ft

Section (1)

s Y)
%) Flow \ BEFIGURE P5.126

5.127 Water flows steadily down the inclined pipe asindicated in
Fig. P5.127. Determine thefollowing: (a) the differencein pressure

\/\\

/
Section (1)

Mercury

B FIGURE P5.127
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p: — P., (b) the loss between sections (1) and (2), (c) the net axial
force exerted by the pipe wall on the flowing water between sec-
tions(1) and (2).

5.128 Water flows steadily in a pipe and exits as afree jet through
an end cap that contains afilter as shown in Fig. P5.128. The flow
isin ahorizontal plane. The axial component, R, of the anchoring
force needed to keep the end cap stationary is 60 Ib. Determine the
head loss for the flow through the end cap.

B FIGURE P5.128

5.129 When fluid flows through an abrupt expansion as indicated
in Fig. P5.129, the loss in available energy across the expansion,
loss,,, is often expressed as

ﬁ)z Vi

I0$ex:(l—A2 2

where A, = cross-sectional area upstream of expansion, A, =
cross-sectional area downstream of expansion, and V,; = velocity
of flow upstream of expansion. Derive this relationship.

_»

-
0

Section (1)

Section (2)
HEFIGURE P5.129

5.130 Two water jets collide and form one homogeneous jet as
shown in Fig. P5.130. (a) Determine the speed, V, and direction, 6,
of the combined jet. (b) Determinethelossfor afluid particle flow-
ing from (1) to (3), from (2) to (3). Gravity is negligible.

Vi=4m/s

B FIGURE P5.130
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Section 5.3.4 Application of the Energy Equation to
Nonuniform Flows

5.131 Water flows vertically upward in a circular cross-sectional
pipe. At section (1), the velocity profile over the cross-sectional area
isuniform. At section (2), the velocity profileis

R-r\/".
V=wc( R ) k

where V = local velocity vector, w, = centerline velocity in the
axial direction, R = pipeinside radius, and, r = radius from pipe
axis. Develop an expression for the loss in available energy be-
tween sections (1) and (2).

5.132 Thevelocity profilein aturbulent pipe flow may be approx-
imated with the expression

u (R - r)l/”
u \ R

where u = local velocity in the axial direction, u, = centerline ve-

locity in the axial direction, R = pipe inner radius from pipe axis,

r = local radius from pipe axis, and n = constant. Determine the

kinetic energy coefficient, o, for (@) n =5, (b) n =6, (c) n = 7,

dn=8,(eyn=09, (f) n = 10.

5.133 A small fan movesair at amassflowrate of 0.004 Ibm/s. Up-
stream of the fan, the pipe diameter is2.5in., theflow islaminar, the
velocity distribution is parabolic, and the kinetic energy coefficient,
a4, isequal to 2.0. Downstream of thefan, the pipediameteris1in.,
the flow is turbulent, the velocity profileis quite flat, and the kinetic
energy coefficient, a,, is equal to 1.08. If therise in static pressure
acrossthefan is0.015 psi and the fan shaft draws 0.00024 hp, com-
pare the value of loss cal culated: (a) assuming uniform velocity dis-
tributions, (b) considering actual velocity distributions.

Section 5.3.5 Combination of the Energy Equation
and the Moment-of-M omentum Equation

5.134 Air enters aradia blower with zero angular momentum. It
leaves with an absolute tangential velocity, V,, of 200 ft/s. The ro-
tor blade speed at rotor exit is 170 ft/s. If the stagnation pressure
rise acrosstherotor is 0.4 psi, calculate the loss of available energy
across the rotor and the rotor efficiency.

5.135 Water entersapump impeller radially. It leaves the impeller
with a tangential component of absolute velocity of 10 m/s. The
impeller exit diameter is 60 mm, and the impeller speed is 1800
rpm. If the stagnation pressure rise across the impeller is 45 kPa,
determine the loss of available energy across the impeller and the
hydraulic efficiency of the pump.

5.136 Water enters an axial-flow turbine rotor with an absolute ve-
locity tangential component, V,, of 15 ft/s. The corresponding blade
velocity, U, is 50 ft/s. The water leaves the rotor blade row with no
angular momentum. If the stagnation pressure drop across the tur-
bineis 12 psi, determine the hydraulic efficiency of the turbine.

5.137 Aninward flow radial turbine (see Fig. P5.137) involves a
nozzle angle, a4, of 60° and an inlet rotor tip speed, U, of 30 ft/s.
Theratio of rotor inlet to outlet diametersis 2.0. Theradial compo-
nent of velocity remains constant at 20 ft/s through the rotor, and
the flow leaving the rotor at section (2) is without angular momen-
tum. If the flowing fluid is water and the stagnation pressure drop
across the rotor is 16 psi, determine the loss of available energy
across the rotor and the hydraulic efficiency involved.

5.138 Aninward flow radial turbine (see Fig. P5.137) involves a
nozzle angle, a,, of 60° and an inlet rotor tip speed of 30 ft/s. The
ratio of rotor inlet to outlet diametersis 2.0. The radial component
of velocity remains constant at 20 ft/s through the rotor, and the

B FIGURE P5.137

flow leaving the rotor at section (2) is without angular momentum.
If the flowing fluid isair and the static pressure drop across the ro-
tor is0.01 psi, determine the loss of available energy acrossthe ro-
tor and the rotor aerodynamic efficiency.

Section 5.4 Second Law of Thermodynamics—
Irreversible Flow

5.139 Why do all actual fluid flowsinvolve loss of available energy?
M Lab Problems

5.140 This problem involves the force that a jet of air exerts on a
flat plate as the air is deflected by the plate. To proceed with this
problem, go to Appendix H which islocated on the book’s web site,
www.wiley.com/college/munson.

5.141 Thisproblem involvesthe pressure distribution produced on
aflat plate that deflectsajet of air. To proceed with this problem, go
to Appendix H which is located on the book’s web site, www.
wiley.com/college/munson.

5.142 This problem involvesthe force that ajet of water exertson
avane when the vane turnsthe jet through agiven angle. To proceed
with this problem, go to Appendix H which islocated on the book’s
web site, www.wiley.com/college/munson.

5.143 This problem involves the force needed to hold a pipe elbow
stationary. To proceed with this problem, go to Appendix H which is
located on the book’s web site, www.wiley.com/college/munson.

B Life Long Learning Problems

5.144 What are typical efficiencies associated with swimming
and how can they be improved?

5.145 Explain how local ionization of flowing air can accelerate
it. How can this be useful ?

5.146 Discuss the main causes of loss of available energy in a
turbo-pump and how they can be minimized. What are typical
turbo-pump efficiencies?

5.147 Discuss the main causes of loss of available energy in a
turbine and how they can be minimized. What are typical turbine
efficiencies?

B FE Exam Problems

Sample FE (Fundamentals of Engineering) exam questions for fluid
mechanics are provided on the book’s web site, www.wiley.com/
college/munson.


http://www.wiley.com/college/munson
http://www.wiley.com/college/munson
http://www.wiley.com/college/munson
http://www.wiley.com/college/munson
http://www.wiley.com/college/munson
http://www.wiley.com/college/munson

CHAPTER OPENING PHoTto: Flow past an inclined plate: The streamlines of a viscous fluid flowing slowly
past a two-dimensional object placed between two closely spaced plates (a Hele-Shaw cell) approximate
inviscid, irrotational (potential) flow. (Dye in water between glass plates spaced 1 mm apart.) (Photography
courtesy of D. H. Peregrine.)

Learning Objectives

After completing this chapter, you should be able to:
m determine various kinematic elements of the flow given the velocity field.

m explain the conditions necessary for a velocity field to satisfy the continuity
equation.

m apply the concepts of stream function and velocity potential.
m characterize simple potential flow fields.
m analyze certain types of flows using the Navier—Stokes equations.

In the previous chapter attention is focused on the use of finite control volumes for the solution
of avariety of fluid mechanics problems. This approach is very practical and useful, since it does
not generally require adetailed knowledge of the pressure and velocity variations within the control
volume. Typically, we found that only conditions on the surface of the control volume were needed,
and thus problems could be solved without a detailed knowledge of the flow field. Unfortunately,
there are many situations that arise in which the details of the flow are important and the finite
control volume approach will not yield the desired information. For example, we may need to
know how the velocity varies over the cross section of a pipe, or how the pressure and shear stress
vary along the surface of an airplane wing. In these circumstances we need to develop relationships
that apply at a point, or at least in a very small infinitesimal region within a given flow field. This
approach, which involves an infinitesimal control volume, as distinguished from a finite control
volume, is commonly referred to as differential analysis, since (as we will soon discover) the
governing equations are differential equations.
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In this chapter we will provide an introduction to the differential equations that describe (in
detail) the motion of fluids. Unfortunately, wewill aso find that these equations are rather complicated,
non-linear partial differential equations that cannot be solved exactly except in a few cases, where
simplifying assumptions are made. Thus, athough differential analysis has the potential for supplying
very detailed information about flow fields, thisinformation is not easily extracted. Nevertheless, this
approach provides a fundamental basis for the study of fluid mechanics. We do not want to be too
discouraging at this point, since there are some exact solutions for laminar flow that can be obtained,
and these have proved to be very useful. A few of these are included in this chapter. In addition, by
making some simplifying assumptions many other analytical solutions can be obtained. For example,
in some circumstances it may be reasonable to assume that the effect of viscosity is small and can
be neglected. This rather drastic assumption greatly simplifies the analysis and provides the
opportunity to obtain detailed solutions to a variety of complex flow problems. Some examples of
these so-called inviscid flow solutions are also described in this chapter.

It is known that for certain types of flows the flow field can be conceptually divided into two
regions—avery thin region near the boundaries of the system in which viscous effects areimportant,
and aregion away from the boundaries in which the flow is essentially inviscid. By making certain
assumptions about the behavior of the fluid in the thin layer near the boundaries, and using the
assumption of inviscid flow outside this layer, a large class of problems can be solved using
differential analysis. These boundary layer problems are discussed in Chapter 9. Finally, it isto be
noted that with the availability of powerful computersit isfeasibleto attempt to solve the differential
equations using the techniques of numerical analysis. Although it is beyond the scope of this book
to delve extensively into this approach, which is generally referred to as computational fluid
dynamics (CFD), the reader should be aware of this approach to complex flow problems. CFD has
become a common engineering tool and a brief introduction can be found in Appendix A. To
introduce the power of CFD, two animations based on the numerical computations are provided
as shown in the margin.

We begin our introduction to differential analysis by reviewing and extending some of the
ideas associated with fluid kinematics that were introduced in Chapter 4. With this background the
remainder of the chapter will be devoted to the derivation of the basic differential equations (which
will be based on the principle of conservation of mass and Newton's second law of motion) and
to some applications.

6.1 Fluid Element Kinematics

Fluid element mo-
tion consists of
translation, linear
deformation, rota-
tion, and angular
deformation.

In this section wewill be concerned with the mathematical description of the motion of fluid elements
moving in aflow field. A small fluid element in the shape of a cube which isinitially in one position
will move to another position during a short time interval 6t as illustrated in Fig. 6.1. Because of
the generally complex velocity variation within the field, we expect the element not only to translate
from one position but also to have its volume changed (linear deformation), to rotate, and to undergo
a change in shape (angular deformation). Although these movements and deformations occur
simultaneously, we can consider each one separately asillustrated in Fig. 6.1. Since element motion
and deformation are intimately related to the velocity and variation of velocity throughout the flow
field, we will briefly review the manner in which velocity and acceleration fields can be described.

Element at t, Element at ty + 5t
T
r |
/ N e B - S
f | ‘ \ B \ - 7
[ , | : . | / /
I j | ‘ \ \ / /
| I } } + |+ \ \ + / /
e e r—— — | /
i \ ///,J I
General Translation Linear Rotation Angular
motion deformation deformation

B FIGURE 6.1 Typesof motion and deformation for a fluid element.



The acceleration of
afluid particleis
described using the
concept of the ma-
terial derivative.

6.1  Fluid Element Kinematics 265

6.1.1 Velocity and Acceleration Fields Revisited

Asdiscussed in detail in Section 4.1, the vel ocity field can be described by specifying the velocity
V at al points, and at all times, within the flow field of interest. Thus, in terms of rectangular
coordinates, the notation V (X, y, z, t) means that the velocity of afluid particle depends on where
it is located within the flow field (as determined by its coordinates, x, y, and z) and when it
occupies the particular point (as determined by the time, t). As is pointed out in Section 4.1.1,
this method of describing the fluid motion is called the Eulerian method. It is aso convenient to
express the velocity in terms of three rectangular components so that

V = Ui + o) +wk (6.1)

where u, v, and w are the velocity components in the x, y, and z directions, respectively, and
i,j,andk are the corresponding unit vectors, as shown by the figure in the margin. Of course,
each of these components will, in general, be a function of X, y, z, and t. One of the goals of
differential analysis is to determine how these velocity components specifically depend on X, y,
z, and t for a particular problem.

With this description of the velocity field it was also shown in Section 4.2.1 that the
acceleration of a fluid particle can be expressed as

Y% Y oV oV

a=—+UuU—+v—+W— (6.2)
ot OX ay 0z

and in component form:
au ou au au
a=—_tu_+ov_+w_
ot X ay 0z
v v v v
a=—+tUu_+ovo_—+tw_ (6.3b)
ot X ay 0z
ow ow ow ow
=—4+UuU—+0v—+W—

(6.39)

a, = P u X v ay w P (6.3¢)
The acceleration is also concisely expressed as
DV
a Dt (6.9
where the operator
D J J d d
0O ), a0 o), a0 69
Dt ot X ay dz
is termed the material derivative, or substantial derivative. In vector notation
D() _a()
= - + . .
St (VV0) (6.:6)
where the gradient operator, V( ), is
() ()~ 0().
Vi)=—7Fi+—Fj+—k 7
) X I ay : 0z 6.7)

which was introduced in Chapter 2. As we will see in the following sections, the motion and
deformation of a fluid element depend on the velocity field. The relationship between the motion
and the forces causing the motion depends on the acceleration field.

6.1.2 Linear Motion and Deformation

The simplest type of motion that a fluid element can undergo is trandation, as illustrated in Fig.
6.2. In asmall time interval 6t a particle located at point O will move to point O’ asisillustrated
in the figure. If al points in the element have the same velocity (which is only true if there are no
velocity gradients), then the element will simply translate from one position to another. However,



266 Chapter 6 W Differential Analysis of Fluid Flow

Therate of volume
change per unit
volume isrelated
to the velocity
gradients.

u st B FIGURE 6.2 Trandation of a fluid element.

because of the presence of velocity gradients, the element will generally be deformed and rotated
as it moves. For example, consider the effect of a single velocity gradient, du/0x, on a small cube
having sides 6x, 8y, and 6z. As is shown in Fig. 6.3a, if the x component of velocity of O and B
is u, then at nearby points A and C the x component of the velocity can be expressed as
u + (du/ax) éx. This difference in velocity causes a “stretching” of the volume element by an
amount (au/ax)(8x)(ét) during the short time interval &t in which line OA stretches to OA’ and BC
to BC' (Fig. 6.3b). The corresponding change in the original volume, 6 ¥ = 6x 8y 6z, would be

Changein 6V = (2?( 8x> (8y 6z)(6t)

and the rate at which the volume 6V is changing per unit volume due to the gradient du/dx is

1 d(6V¥) ) {(au/ax) St] ou
8V dt  amol ot | ox 68)
If velocity gradients dv/dy and dw/dz are also present, then using a similar analysisit follows that,

in the general case,

L dEV) o aw

ov dt ax oy oz VY (69)

This rate of change of the volume per unit volume is called the volumetric dilatation rate. Thus, we
see that the volume of a fluid may change as the element moves from one location to another in the
flow field. However, for anincompressiblefluid the volumetric dil atation rate is zero, since the element
volume cannot change without a change in fluid density (the element mass must be conserved).
Variationsin thevelocity in thedirection of the velocity, asrepresented by the derivatives au/ax, dv/ady,
and dw/az, simply cause alinear deformation of the element in the sense that the shape of the element
does not change. Cross derivatives, such as du/dy and dv/dx, will cause the element to rotate and
generally to undergo an angular deformation, which changes the shape of the element.

6.1.3 Angular Motion and Deformation

For simplicity we will consider motion in the x—y plane, but the results can be readily extended to
the more genera three dimensional case. The velocity variation that causes rotation and angular
deformation isillustrated in Fig. 6.4a. In a short time interval 6t the line segments OA and OB wiill
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X Linear deformation of a fluid
(a) (b) element.



V6.3 Shear
deformation

Rotation of fluid
particlesisrelated
to certain velocity
gradientsin the
flow field.

6.1  Fluid Element Kinematics 267

Ju
o at
Ju
u+ <=0y
B » B B
T
8/
—/
/
sy syl /
//
v A
J _— J
u v+ SoX | " Vsa R a—zax)st
(6] OX A (6] OX HBEFIGURE 6.4
Angular motion and deforma-
(a) (b) tion of a fluid element.

rotate through the angles da and 88 to the new positions OA" and OB’, as is shown in Fig. 6.4b.
The angular velocity of line OA, wop, IS
wop = lim oa
st—0 Ot
For small angles

dv/0X) &x 6t 9
(0v/0X) 38t _ dv

tan da = da = 5 = (6.10)
so that
[ (9v/0x) 8t L)
%m:gﬂ{ﬁt}:ax

Note that if dv/dx is positive, wga Will be counterclockwise. Similarly, the angular velocity of the
line OB is

. OB
wos = M 5t
and
m%z%=wﬂﬁm=$& (6.11)
so that
[ (au/ay) 6t au
“’OB:;:TO[&}: ay

In thisinstance if du/dy is positive, wog Will be clockwise. The rotation, w,, of the element about the
zaxisisdefined asthe average of the angular velocities wo, and wog of the two mutually perpendicular
lines OA and OB.! Thus, if counterclockwise rotation is considered to be positive, it follows that

()
“2 7 2 ax ay

Rotation of the field element about the other two coordinate axes can be obtained in a similar
manner with the result that for rotation about the x axis

(o)
T ay oz

1<au aw)
w,=—=|——-—
Yo 2\az  ax

With this definition w, can also be interpreted to be the angular velocity of the bisector of the angle between the lines OA and OB.

(6.12)

(6.13)
and for rotation about the y axis

(6.14)
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The three components, w,, w,, and w, can be combined to give the rotation vector, w, in the form

m=wxf+wyf+w|2

(6.15)

An examination of this result reveds that w is equa to one-half the curl of the velocity vector. That is,

o=3culV=3VxV

(6.16)

since by definition of the vector operator V x V

i
1 1|9
VXV =2 |—
2

k

a 0

T 2|ox ay oz

u

\orticity in a flow

v w

(o, +1<w_aw)r+1(“_“’>|z
field isrelated to 2\ay oz 2\oz  ax/))  2\ax oy

fluid particle rota-
tion.

The vorticity, £, is defined as a vector that is twice the rotation vector; thet is,

[=20=VXV (6.17)

The use of the vorticity to describe the rotational characteristics of the fluid simply eliminates the

— (%) factor associated with the rotation vector. The figure in the margin shows vorticity contours of

vorticity. (See also Fig. 4.3.)

the wing tip vortex flow shortly after an aircraft has passed. The lighter colors indicate stronger

We observe from Eqg. 6.12 that the fluid element will rotate about the z axis as an undeformed
block (i.e., won = —wgg) Only when du/dy = —av/ox. Otherwise the rotation will be associated
with an angular deformation. We also note from Eq. 6.12 that when du/dy = dv/ox the rotation
around the z axisis zero. More generally if V x V = 0, then the rotation (and the vorticity) are zero,
and flow fields for which this condition applies are termed irrotational. We will find in Section 6.4
that the condition of irrotationality often greatly simplifies the analysis of complex flow fields.
However, it is probably not immediately obvious why some flow fields would be irrotational, and we
will need to examine this concept more fully in Section 6.4.

_EXAMPLE

6.1 B 1sil413%

GIVEN For acertain two-dimensional flow field the velocity
is given by the equation

V= (¢ =y - 2]
SoLuTION

FIND Isthisflow irrotational ?

For an irrotational flow the rotation vector, w, having the compo-
nents given by Egs. 6.12, 6.13, and 6.14 must be zero. For the pre-
scribed velocity field

u=x2—y?

and therefore

w=20

v=-29

o= 5(2- )= Zi-2 - (-2 =0

Thus, the flow isirrotational . (Ans)

COMMENTS Itisto benoted that for atwo-dimensional flow
field (where the flow isin the x-y plane) w, and w, will always be

zero, since by definition of two-dimensional flow uand v are not
functions of z, and w is zero. In thisinstance the condition for ir-
rotationality simply becomes w, = 0 or 9v/dx = du/dy.

The streamlines for the steady, two-dimensiona flow of thisex-
ample are shown in Fig. E6.1. (Information about how to calculate

1

B FIGURE E6.1
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streamlines for a given velocity field is given in Sections 4.1.4  OA and OB of Fig. 6.4 rotate with the same speed but in opposite
and 6.2.3.) Itisnoted that all of the streamlines (except for theone  directions.

through the origin) are curved. However, because the flow isirro- Asshownby Eq. 6.17, thecondition of irrotationality i sequival ent
tational, there is no rotation of the fluid elements. That is, lines tothefact that thevorticity, £, iszero or thecurl of thevelocity iszero.

In addition to the rotation associated with the derivatives du/ay and dv/dx, it is observed
from Fig. 6.4b that these derivatives can cause the fluid element to undergo an angular
deformation, which results in a change in shape of the element. The change in the original right
angle formed by the lines OA and OB is termed the shearing strain, vy, and from Fig. 6.4b

5y = da + 5

where &y is considered to be positive if the origina right angle is decreasing. The rate of change
of &y is called the rate of shearing strain or the rate of angular deformation and is commonly
denoted with the symbol y. The angles 6« and 63 are related to the velocity gradients through Egs.
6.10 and 6.11 so that

i Sy i (dv/0x) 8t + (9u/ay) 6t
= lim— = lim
Y st>0 O st—0 ot
and, therefore,
v Ju
y=—+_— 6.18
Y= x Ty (6.18)

Aswe will learn in Section 6.8, the rate of angular deformation is related to a corresponding shearing
stress which causes the fluid element to change in shape. From Eqg. 6.18 we note that if
au/ay = —av/ax, the rate of angular deformation is zero, and this condition corresponds to the case
in which the element is smply rotating as an undeformed block (Eg. 6.12). In the remainder of this
chapter we will seehow the variouskinematical relationships devel oped in this section play animportant
role in the development and subsequent analysis of the differential equations that govern fluid motion.

6.2 Conservation of Mass

Conservation of
mass requires that
the mass of a
systemremain
constant.

Asisdiscussed in Section 5.1, conservation of mass requires that the mass, M, of a system remain
constant as the system moves through the flow field. In equation form this principle is expressed as

DMgs

Dt
We found it convenient to use the control volume approach for fluid flow problems, with the control
volume representation of the conservation of mass written as

aJ’pd‘v‘+JpV-ﬁdA=0 (6.19)
ot o s

where the equation (commonly called the continuity equation) can be applied to a finite control
volume (cv), which is bounded by a control surface (cs). Thefirst integral on the left side of Eq. 6.19
represents the rate at which the mass within the control volume is changing, and the second integral
represents the net rate at which mass is flowing out through the control surface (rate of mass
outflow — rate of mass inflow). To obtain the differential form of the continuity equation, Eq. 6.19
is applied to an infinitesimal control volume.

6.2.1 Differential Form of Continuity Equation

We will take as our control volume the small, stationary cubical element shown in Fig. 6.5a. At
the center of the element the fluid density is p and the velocity has components u, v, and w. Since
the element is small, the volume integral in Eq. 6.19 can be expressed as

d

ap
— dV = — xdy d 6.20
. L” 2 ooy o2 (6.20)
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The continuity
equation is one of
the fundamental
equations of fluid
mechanics.

| |
v, u— 2pu) X|sy 5z
: 3y P 2 Y al |V
Ip ru > | e —t——
y W y T 2(pu) 8x
e - V4 57 pu+j£(_ 7}5y 6z
X OX
X X
z z
(a) (b)

B FIGURE 6.5 A differential element for the development of conservation of mass equation.

The rate of mass flow through the surfaces of the element can be obtained by considering the flow
in each of the coordinate directions separately. For example, in Fig. 6.5b flow in the x direction is
depicted. If we let pu represent the x component of the mass rate of flow per unit area at the center
of the element, then on the right face

d(pu) 8x

pu|x+(8x/2) =pu+ oxX 2 (621)
and on the left face
d(pu) 8x
PUlx—(o = PU = =~ (6.22)

Note that we are really using a Taylor series expansion of pu and neglecting higher order terms
such as (8x)?, (8x)%, and so on. When the right-hand sides of Egs. 6.21 and 6.22 are multiplied by
the area 8y 6z, the rate at which massis crossing the right and left sides of the element are obtained
asisillustrated in Fig. 6.5b. When these two expressions are combined, the net rate of mass flowing
from the element through the two surfaces can be expressed as

Netrateof mass _ [ . dlpu) x| o
outflow in x direction y

ox 2

d(pu)
ox

d(pu) &
- {pu— (pu) o Xy 5z (6.23)

ox 2:| 6y 6z =
For simplicity, only flow in the x direction has been considered in Fig. 6.5b, but, in general,
there will also be flow in the y and z directions. An analysis similar to the one used for flow in the
x direction shows that
Netrateof mass _ 9(pv)

outflow iny direction ~ gy dx 8y 8z (6.24)

and
Net rateof mass _ 9(pW)
outflow in zdirection ~ 9z Ox 8y oz (6.25)
Thus,
d(pu Jd(pv A(pwW
Netrateof _ [ 9(pY) N (pv) N (pw) 5 oy 2 626)
mass outflow ax ay

From Egs. 6.19, 6.20, and 6.26 it now follows that the differential equation for conservation of massis

ap  alpu) 9 a(pw
ap , opu) | apv) W) o 6.27)
ot ox ay oz

As previously mentioned, this equation is also commonly referred to as the continuity equation.



For incompressible
fluids the continuity
equation reduces to
a simple relation-
ship involving cer-
tain velocity gradi-
ents.
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6.2 Conservation of Mass

The continuity equation is one of the fundamental equations of fluid mechanics and, as
expressed in Eq. 6.27, is valid for steady or unsteady flow, and compressible or incompressible
fluids. In vector notation, Eq. 6.27 can be written as

ap

§+V-pV:O (6.28)
Two special cases are of particular interest. For steady flow of compressible fluids
V-pvV =0
or
Jd(pu d(pv d
(p)+ (P)+ (p)ZO (6.29)
ox ay 0z

This follows since by definition p is not a function of time for steady flow, but could be a function
of position. For incompressible fluids the fluid density, p, is a constant throughout the flow field
so that Eq. 6.28 becomes

V-V=0 (6.30)
or
0 d J
o, ov oW _ (6.31)
X ay oz

Equation 6.31 appliesto both steady and unsteady flow of incompressible fluids. Note that Eq. 6.31
is the same as that obtained by setting the volumetric dilatation rate (Eqg. 6.9) equal to zero. This
result should not be surprising since both relationships are based on conservation of mass for
incompressible fluids. However, the expression for the volumetric dilatation rate was devel oped
from a system approach, whereas Eg. 6.31 was developed from a control volume approach. In the
former case the deformation of a particular differential mass of fluid was studied, and in the latter
case mass flow through a fixed differential volume was studied.

L SEULIGHF Continuity Equation

GIVEN The velocity components for a certain incompress-
ible, steady flow field are

u=x2+y>+ 2

vV=Xytyz+z
w="?

SoLUTION

FIND Determine the form of the z component, w, required to
satisfy the continuity equation.

Any physically possible velocity distribution must for an incom-
pressible fluid satisfy conservation of mass as expressed by the
continuity equation

u  Jv  IwW
== A 2 L 2

=0
X 9y 0z
For the given velocity distribution
au
—= and —=x+z
ax ay

so that the required expression for dw/dzis

5}
M —-X—-(x+t2=-3x—-12
0z

Integration with respect to z yields

2

W= —3xz — ZE + f(x, y) (Ans)

COMMENT The third velocity component cannot be explic-
itly determined since the function f(x, y) can have any form and
conservation of mass will still be satisfied. The specific form of
this function will be governed by the flow field described by these
velocity components—that is, some additional information is
needed to completely determine w.
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For some problems,
velocity components
expressed in cylin-
drical polar coordi-
nateswill be
convenient.

y

B FIGURE 6.6 Therepresentation of
velocity components in cylindrical polar coordinates.

6.2.2 Cylindrical Polar Coordinates

For some problemsit is more convenient to express the various differential relationshipsin cylindrical
polar coordinatesrather than Cartesian coordinates. Asisshown in Fig. 6.6, with cylindrical coordinates
apoint islocated by specifying the coordinatesr, 6, and z. The coordinate r isthe radial distance from
the z axis, 6 is the angle measured from a line parallél to the x axis (with counterclockwise taken as
positive), and z is the coordinate along the z axis. The velocity components, as sketched in Fig. 6.6,
are the radial velocity, v,, the tangential velocity, v,, and the axia velocity, v,. Thus, the velocity at
some arbitrary point P can be expressed as

V =& + v, + v (6.32)

where &, &, and &, are the unit vectors in ther, 6, and z directions, respectively, as are illustrated
in Fig. 6.6. The use of cylindrical coordinates is particularly convenient when the boundaries of
the flow system are cylindrical. Several examplesillustrating the use of cylindrical coordinates will
be given in succeeding sections in this chapter.

The differential form of the continuity equation in cylindrical coordinates is

J 10(rpv A pv J(pv
£+7(Pr)+}(p9)+ (pvy)
ot roJor r o6 9z

-0 (6.33)

This eguation can be derived by following the same procedure used in the preceding section (see
Problem 6.20). For steady, compressible flow

13rpo) | 10(pvy) | 3pv) _

0 (6.34)
r or r a0 0z
For incompressible fluids (for steady or unsteady flow)
1a(rv 10 v,
10(ro) 1wy  0v, (6.35)

roor rog oz

6.2.3 The Stream Function

Steady, incompressible, plane, two-dimensional flow represents one of the simplest types of flow
of practical importance. By plane, two-dimensional flow we mean that there are only two velocity
components, such as u and v, when the flow is considered to be in the x—y plane. For this flow
the continuity equation, Eq. 6.31, reduces to

Jau v
7_'_7—

=0 6.36
ax oy (6:36)



el ocity compo-
nentsin a two-
dimensional flow
field can be ex-
pressed in terms of
a stream function.
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We till have two variables, u and v, to deal with, but they must be related in a special way as
indicated by Eq. 6.36. This equation suggests that if we define afunction (X, y), called the stream
function, which relates the velocities shown by the figure in the margin as

u_
ay

_ 9

Yy
0X

(6.37)

then the continuity equation is identically satisfied. This conclusion can be verified by simply
substituting the expressions for u and v into Eq. 6.36 so that

9 (alp) L0 ( 3lﬂ) Ay Ay 0
ox \ 9y VAN Xy Iy ox
Thus, whenever the velocity components are defined in terms of the stream function we know that
conservation of masswill be satisfied. Of course, we still do not know what ¢s(x, y) isfor aparticular
problem, but at least we have simplified the analysis by having to determine only one unknown
function, (x, y), rather than the two functions, u(x, y) and v(x, y).
Another particular advantage of using the stream function is related to the fact that lines
along which ¢ is constant are streamlines. Recall from Section 4.1.4 that streamlines are linesin
the flow field that are everywhere tangent to the velocities, asis illustrated in Fig. 6.7. It follows
from the definition of the streamline that the slope at any point along a streamline is given by

dy v
dx u

The change in the value of ¢ as we move from one point (X, y) to a nearby point (x + dx, y + dy)
is given by the relationship:

4

g

ad
dy =—dx+ —dy= —vdx +ud
zpaxx ayy vox + udy

Along aline of constant ¢y we have diy = 0 so that

—vdx +udy=0

and, therefore, along a line of constant

which is the defining equation for a streamline. Thus, if we know the function (X, y) we can plot
lines of constant ¢ to provide the family of streamlines that are helpful in visualizing the pattern

Streamlines

B FIGURE 6.7 Vedocity and velocity
components along a streamline.
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The changein the
value of the stream
function is related
to the volume rate
of flow.
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v+ dy

(a) (b)
B FIGURE 6.8 Theflow between two streamlines.

of flow. There are an infinite number of streamlines that make up a particular flow field, since for
each constant value assigned to s a streamline can be drawn.

The actual numerical value associated with a particular streamline is not of particular
significance, but the change in the value of ¢ is related to the volume rate of flow. Consider two
closely spaced streamlines, shown in Fig. 6.8a. The lower streamline is designated » and the upper
one ¢ + dis. Let dq represent the volume rate of flow (per unit width perpendicular to the x—y
plane) passing between the two streamlines. Note that flow never crosses streamlines, since by
definition the velocity is tangent to the streamline. From conservation of mass we know that the
inflow, dg, crossing the arbitrary surface AC of Fig. 6.8a must equal the net outflow through surfaces
AB and BC. Thus,

dg = udy — v dx
or in terms of the stream function
P P
=—dy+ — .
dq ay dy X dx (6.38)
The right-hand side of Eq. 6.38 is equal to dis so that
dq = dy (6.39)

Thus, the volume rate of flow, g, between two streamlines such as i/, and s, of Fig. 6.8b can be
determined by integrating Eq. 6.39 to yield

2
a= | w=ve-m (6.40)
The relative value of s, with respect to s, determines the direction of flow, as shown by the figure
in the margin.

In cylindrical coordinates the continuity equation (Eqg. 6.35) for incompressible, plane, two-
dimensional flow reduces to

a(ro, 0

1o(re) | 19w,

=0 (6.41)
ror r o0

and the velocity components, v, and v,, can be related to the stream function, ¢(r, 6), through the
equations

_1w

s
YT 0

. (6.42)

Vy

as shown by the figure in the margin.

Substitution of these expressions for the velocity components into Eq. 6.41 shows that the
continuity equation is identically satisfied. The stream function concept can be extended to
axisymmetric flows, such as flow in pipes or flow around bodies of revolution, and to two-
dimensional compressible flows. However, the concept is not applicable to general three-dimensional
flows.



GIVEN The velocity components in a steady, incompressible,
two-dimensional flow field are
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[ STNTIURFEY stream Function

FIND
(@) Determine the corresponding stream function and

Thefirst of these equations can be integrated to give
P=y+ (%)
where fy(x) is an arbitrary function of x. Similarly from the sec-
ond equation
P= =2 + fyfy)
where f,(y) isan arbitrary function of y. It now follows that in or-
der to satisfy both expressions for the stream function

y=-2¢+y*+C (Ans)

where C is an arbitrary constant.

COMMENT Sincethe velocities are related to the derivatives
of the stream function, an arbitrary constant can always be added
to the function, and the value of the constant is actually of no con-
sequence. Usualy, for simplicity, we set C = 0 so that for this
particular example the simplest form for the stream function is

y=—2+y? (1) (Ans)
Either answer indicated would be acceptable.

(b) Streamlines can now be determined by setting ¢ = constant
and plotting the resulting curve. With the above expression for
¢ (with C = 0) the value of ¢ at the origin is zero so that the
equation of the streamline passing through the origin (the ¢y = 0
streamline) is

0=—-22+y?

u=2y (b) Show on asketch severa streamlines. Indicate the direction
o of flow along the streamlines.
SoLuTION
(&) From the definition of the stream function (Egs. 6.37) v=0 y =
8¢
==
and
)
v = _& = 4X
aX

7/
N

B FIGURE E6.3

S~ | .—
NN

or
y = *=V2x
Other streamlines can be obtained by setting s equal to various
constants. It follows from Eg. 1 that the equations of these stream-
lines (for ¢ # 0) can be expressed in the form
2 2
y_ X _
b Y/2
which we recognize as the equation of a hyperbola. Thus, the
streamlines are a family of hyperbolas with the y = O stream-
lines as asymptotes. Several of the streamlines are plotted in
Fig. E6.3. Since the velocities can be calculated at any point, the
direction of flow along a given streamline can be easily de-
duced. For example, v = —diy/ox = 4x sothat v > 0if x > 0
and v < 0 if x < 0. The direction of flow is indicated on the
figure.

6.3 Conservation of Linear Momentum

To develop the differential momentum equations we can start with the linear momentum

equation

DP

FE=—
Dt |4

(6.43)

where F is the resultant force acting on a fluid mass, P is the linear momentum defined as

P=J V dm
sys
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Both surface forces
and body forces
generally act on
fluid particles.

and the operator D( )/Dt is the material derivative (see Section 4.2.12). In the last chapter it was
demonstrated how Eq. 6.43 in the form

E Feontents of the = % J Vpd¥ + J VpV - ndA (6.44)
control volume cv cs

could be applied to a finite control volume to solve a variety of flow problems. To obtain the

differential form of the linear momentum equation, we can either apply Eq. 6.43 to a differential

system, consisting of a mass, 6m, or apply Eg. 6.44 to an infinitesimal control volume, 6%, which

initially bounds the mass ém. It is probably simpler to use the system approach since application

of Eg. 6.43 to the differential mass, 6m, yields

D(V 8m)
Dt

o5F =

where SF is the resultant force acting on dm. Using this system approach ém can be treated as a
constant so that

DV

oF = dm—

Dt

But DV/Dt is the acceleration, a, of the element. Thus,
8F = dma (6.45)

which is simply Newton's second law applied to the mass §,,,. This is the same result that would
be obtained by applying Eq. 6.44 to an infinitesimal control volume (see Ref. 1). Before we can
proceed, it is necessary to examine how the force 6F can be most conveniently expressed.

6.3.1 Description of Forces Acting on the Differential Element

In general, two types of forces need to be considered: surface forces, which act on the surface of the
differential element, and body forces, which are distributed throughout the element. For our purpose,
the only body force, 6F, of interest is the weight of the element, which can be expressed as

8F, = dmg (6.46)
where g is the vector representation of the acceleration of gravity. In component form

S6Fp, = dmag, (6.47a)

oF, = omg, (6.47b)

oFy, = 6mg, (6.47¢)

where g,, g,, and g, are the components of the acceleration of gravity vector in the x, y, and z
directions, respectively.

Surface forces act on the element as a result of its interaction with its surroundings. At any
arbitrary location within afluid mass, the force acting on asmall area, A, which liesin an arbitrary
surface, can be represented by 6F,, as is shown in Fig. 6.9. In general, 6F will be inclined with
respect to the surface. The force 6F can be resolved into three components, 6F,, 6F;, and 6F,,
where 6F, is normal to the area, 6A, and 8F, and 8F, are parallel to the area and orthogonal to
each other. The normal stress, o, is defined as

Arbitray B F 1 G U R E 6.9 Components of force acting
surface  on an arbitrary differential area.



Surface forces can
be expressed in
terms of the shear
and normal
stresses.
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(b) (a)

z

B FIGURE 6.10 Double subscript notation for stresses.

and the shearing stresses are defined as

n sA—0 OA
and
oF,
= lim —
72 sA—0 OA

We will use o for normal stresses and 7 for shearing stresses. The intensity of the force per unit
areaat apoint in abody can thus be characterized by a normal stress and two shearing stresses, if the
orientation of the area is specified. For purposes of anadysisit is usually convenient to reference the
area to the coordinate system. For example, for the rectangular coordinate system shown in Fig. 6.10
we choose to consider the stresses acting on planes paralld to the coordinate planes. On the plane
ABCD of Fig. 6.10a, whichisparallél to the y—z plane, the normal stressis denoted o, and the shearing
stresses are denoted as 7, and 7. To easily identify the particular stress component we use a double
subscript notation. The first subscript indicates the direction of the normal to the plane on which
the stress acts, and the second subscript indicates the direction of the stress. Thus, normal stresses have
repeated subscripts, whereas the subscripts for the shearing stresses are always different.

It isalso necessary to establish asign convention for the stresses. We define the positive direction
for the stress as the positive coordinate direction on the surfaces for which the outward normal isin
the positive coordinate direction. This is the case illustrated in Fig. 6.10a where the outward normal
to the area ABCD isin the positive x direction. The positive directions for o, 7,,, and 7, are as shown
in Fig. 6.10a. If the outward normal points in the negative coordinate direction, as in Fig. 6.10b for
the area A’'B'C’D’, then the stresses are considered positive if directed in the negative coordinate
directions. Thus, the stresses shown in Fig. 6.10b are considered to be positive when directed as shown.
Note that positive normal stresses are tensile stresses; that is, they tend to “stretch” the material.

It should be emphasized that the state of stress at a point in a material is not completely
defined by simply three components of a “stress vector.” This follows, since any particular stress
vector depends on the orientation of the plane passing through the point. However, it can be shown
that the normal and shearing stresses acting on any plane passing through a point can be expressed
in terms of the stresses acting on three orthogonal planes passing through the point (Ref. 2).

We now can express the surface forces acting on a small cubical element of fluid in terms
of the stresses acting on the faces of the element as shown in Fig. 6.11. It is expected that in general
the stresses will vary from point to point within the flow field. Thus, through the use of Taylor
series expansions we will express the stresses on the various faces in terms of the corresponding
stresses at the center of the element of Fig. 6.11 and their gradients in the coordinate directions.
For simplicity only the forcesin the x direction are shown. Note that the stresses must be multiplied
by the area on which they act to obtain the force. Summing all these forces in the x direction yields

) a7 oT
SFg = (UXX + ZX) 5X By 62 (6.482)
ax oy | oz



278 Chapter 6 W Differential Analysis of Fluid Flow

(Tyx+ a—gyﬂ%) 6x 6z
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B FIGURE 6.11 Surfaceforcesin the x direction acting on a
fluid element.

for the resultant surface force in the x direction. In a similar manner the resultant surface forces in
the y and z directions can be obtained and expressed as

ot Jo T
5Fy, = (xy + 2y >6x Sy 8z (6.48D)
ax oy oz

Ty, 0Ty, Jo
oFg=|—+—+—|6xdyéz (6.48c)
X oy 0z

The resultant surface force can now be expressed as
8F = 8Fi + 8Fgj + OFk (6.49)

and this force combined with the body force, 6F,, yields the resultant force, 8F, acting on the
differential mass, Sm. That is, 6F = 6F + 6F,,.

6.3.2 Equations of Motion

The expressions for the body and surface forces can now be used in conjunction with Eg. 6.45 to
develop the equations of motion. In component form Eq. 6.45 can be written as

oF, = dma,
oF, = dma,
oF, = éma,

where ém = p 6x 8y 6z, and the acceleration components are given by Eg. 6.3. It now follows
(using Egs. 6.47 and 6.48 for the forces on the element) that

. do aT T au au au au
The motion of a PO + —— + Xy p( +u—+ov—+ W) (6.50a)
fluid is governed ox ay 0z ot X Y% 0z
by a set of nonlin-
X ) T Jdo a7 v v Jv v
ear differential po, + o+ — = p( +ul s 2w (6.50b)
equations. X ay 0z ot dX ay 0z
ar aT Jo ow ow ow ow
pg, + —2 4 24 2 ==p(+'u+ +w— (6.50¢)
ax o ay oz ot X ay 9z

where the element volume 6x 8y 6z cancels out.

Equations 6.50 are the general differential equations of motion for a fluid. In fact, they are
applicable to any continuum (solid or fluid) in motion or at rest. However, before we can use the
equations to solve specific problems, some additional informeation about the stresses must be obtained.
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Otherwise, we will have more unknowns (all of the stresses and velocities and the density) than
equations. It should not be too surprising that the differential analysis of fluid motion iscomplicated.
We are attempting to describe, in detail, complex fluid motion.

6.4 Inviscid Flow

Euler’'s equations
of motion apply to
aninviscid flow
field.

Asisdiscussed in Section 1.6, shearing stresses develop in a moving fluid because of the viscosity
of the fluid. We know that for some common fluids, such as air and water, the viscosity is small,
and therefore it seems reasonable to assume that under some circumstances we may be able to
simply neglect the effect of viscosity (and thus shearing stresses). Flow fields in which the shearing
stresses are assumed to be negligible are said to be inviscid, nonviscous, or frictionless. These terms
are used interchangeably. As is discussed in Section 2.1, for fluids in which there are no shearing
stresses the normal stress at a point is independent of direction—that is, o« = o, = 0. In this
instance we define the pressure, p, as the negative of the normal stress so that

- p = Oy — O-yy = 0y
The negative sign is used so that a compressive normal stress (which is what we expect in a fluid)
will give a positive vaue for p.
In Chapter 3 the inviscid flow concept was used in the development of the Bernoulli equation,
and numerous applications of thisimportant equation were considered. In this section we will again

consider the Bernoulli equation and will show how it can be derived from the general equations of
motion for inviscid flow.

6.4.1 Euler’s Equations of Motion

For aninviscid flow in which all the shearing stresses are zero, and the normal stresses are replaced
by —p, the general equations of motion (Egs. 6.50) reduce to

op au au au au
——=pl—+u—+v—+w— 6.51a

PO o =P (at ax oy az) (6:51a)

9 9 9 9 9
pgy—p=p<v+uv+vv+wv) (6.51b)

ay ot ax o ay 9z

9 W aw oW  aw
sz_p=p<+u+v+w> (6.51¢)

0z ot ax ay 0z

These equations are commonly referred to as Euler’s equations of motion, named in honor of
Leonhard Euler (1707-1783), afamous Swiss mathematician who pioneered work on the relationship
between pressure and flow. In vector notation Euler’'s equations can be expressed as

pg—Vp=p {(Z\t/ + (V- V)V} (6.52)

Although Egs. 6.51 are considerably simpler than the general equations of mation, Egs. 6.50,
they are still not amenable to a genera analytical solution that would allow us to determine the
pressure and velocity at all points within an inviscid flow field. The main difficulty arises from the
nonlinear velocity terms (u ou/ox, v du/dy, etc.), which appear in the convective acceleration.
Because of these terms, Euler’s equations are nonlinear partial differential equations for which we
do not have a general method of solving. However, under some circumstances we can use them to
obtain useful information about inviscid flow fields. For example, as shown in the following section
we can integrate Eq. 6.52 to obtain arelationship (the Bernoulli equation) between elevation, pressure,
and velocity along a streamline.

6.4.2 The Bernoulli Equation

In Section 3.2 the Bernoulli equation was derived by a direct application of Newton’s second law
to a fluid particle moving along a streamline. In this section we will again derive this important
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cid fluids

Streamline

B FIGURE 6.12 Thenotation for
X differential length along a streamline.

equation, starting from Euler’s equations. Of course, we should obtain the same result since Euler’s
equations simply represent a statement of Newton's second law expressed in a general form that
is useful for flow problems and maintains the restriction of zero viscosity. We will restrict our
attention to steady flow so Euler’s equation in vector form becomes

pg — Vp = p(V - V)V (6.53)

We wish to integrate this differential equation along some arbitrary streamline (Fig. 6.12) and select
the coordinate system with the z axis vertical (with “up” being positive) so that, as shown by the
figure in the margin, the acceleration of gravity vector can be expressed as

g=—-gVvz

where g is the magnitude of the acceleration of gravity vector. Also, it will be convenient to use
the vector identity

(V-V)V=3V(V:V)-V x(VxXV)

Equation 6.53 can now be written in the form
—ngz—Vp—— VIV -V)—pV x (VxXV)

and this equation can be rearranged to yield

v
7p+ V(V2) + gVz =V X (V x V)

We next take the dot product of each term with a differential length ds along a streamline (Fig.
6.12). Thus,

v 1
AL +ds+ S V(V?) - ds + gVz- ds = [V x (V x V)] - ds (6.54)

Since ds has a direction along the streamline, the vectors dsand V are parallel. However, as shown
by the figure in the margin, the vector V x (V x V) is perpendicular to V (why?), so it follows that

[VX(VXxV)]+-ds=0

Recall also that the dot product of the gradient of a scalar and a differential length gives the
differentiad change in the scalar in the direction of the differential length. That is, with ds =
dxi + dyj + dzk we can write Vp - ds = (dp/ox) dx + (ap/ay)dy + (9p/dz)dz = dp. Thus, Eq.
6.54 becomes

d
?p +Zd(V?) + gdz=0 (6.55)

where the change in p, V, and z is aong the streamline. Equation 6.55 can now be integrated to
give
d V2
J ?p + B + gz = constant (6.56)

which indicates that the sum of the three terms on the left side of the equation must remain a
constant along a given streamline. Equation 6.56 is valid for both compressible and incompressible
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inviscid flows, but for compressible fluids the variation in p with p must be specified before the
first term in Eq. 6.56 can be evaluated.
For inviscid, incompressible fluids (commonly called ideal fluids) Eq. 6.56 can be written as

+

v? .
> + gz = constant along a streamline (6.57)

© o

and this equation is the Bernoulli equation used extensively in Chapter 3. It is often convenient to
write Eq. 6.57 between two points (1) and (2) along a streamline and to express the equation in the
“head” form by dividing each term by g so that

Vi V3
By, kB, (6.58)
29 Y 2

It should be again emphasized that the Bernoulli equation, as expressed by Egs. 6.57 and 6.58, is
restricted to the following:

m inviscid flow m incompressible flow
m steady flow m flow along a streamline

You may want to go back and review some of the examples in Chapter 3 that illustrate the use of
the Bernoulli equation.

6.4.3 Irrotational Flow

If we make one additional assumption—that the flow is irrotational—the analysis of inviscid
flow problems is further simplified. Recall from Section 6.1.3 that the rotation of a fluid
element is equal to 3(V X V), and an irrotational flow field is one for which V x V = 0 (i.e.,
the curl of velocity is zero). Since the vorticity, ¢, is defined as V x V, it aso follows that in
an irrotational flow field the vorticity is zero. The concept of irrotationality may seem to be
arather strange condition for a flow field. Why would a flow field be irrotational? To answer
this question we note that if 3(V x V) = 0, then each of the components of this vector, as
are given by Egs. 6.12, 6.13, and 6.14, must be equal to zero. Since these components include
the various velocity gradients in the flow field, the condition of irrotationality imposes specific
relationships among these velocity gradients. For example, for rotation about the z axis to be
zero, it follows from Eq. 6.12 that

1/0v ou
(,()ZZE 87_7 =O
X ay

and, therefore,
aw _au

= 6.59

X oy (659
Similarly from Egs. 6.13 and 6.14

J J
7W = ov (6.60)
ay oz
d d
u_ ow (6.61)
0z X

A general flow field would not satisfy these three equations. However, auniform flow asisillustrated
in Fig. 6.13 does. Sinceu = U (aconstant), v = 0, and w = 0, it follows that Egs. 6.59, 6.60, and
6.61 are al satisfied. Therefore, a uniform flow field (in which there are no velocity gradients) is
certainly an example of an irrotational flow.

Uniform flows by themselves are not very interesting. However, many interesting and
important flow problems include uniform flow in some part of the flow field. Two examples are



282 Chapter 6 W Differential Analysis of Fluid Flow

Flow fields invol v-
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ing stresses.

E — u = U (constant)
— =0

—_ w=0

B FIGURE 6.13 Uniform flow in the x
z direction.

shown in Fig. 6.14. In Fig. 6.14a a solid body is placed in a uniform stream of fluid. Far away
from the body the flow remains uniform, and in this far region the flow is irrotationa. In Fig.
6.14b, flow from alarge reservoir enters a pipe through a streamlined entrance where the vel ocity
distribution is essentially uniform. Thus, at the entrance the flow is irrotational.

For an inviscid fluid there are no shearing stresses—the only forces acting on afluid element
areits weight and pressure forces. Since the weight acts through the element center of gravity, and
the pressure acts in a direction normal to the element surface, neither of these forces can cause the
element to rotate. Therefore, for an inviscid fluid, if some part of the flow field is irrotational, the
fluid elements emanating from this region will not take on any rotation as they progress through
the flow field. This phenomenon is illustrated in Fig. 6.14a in which fluid elements flowing far
away from the body have irrotational motion, and as they flow around the body the motion remains
irrotational except very near the boundary. Near the boundary the velocity changes rapidly from
zero at the boundary (no-slip condition) to some relatively large value in a short distance from the
boundary. Thisrapid changein velocity givesriseto alarge velocity gradient normal to the boundary
and produces significant shearing stresses, even though the viscosity is small. Of course if we had
a truly inviscid fluid, the fluid would simply “slide” past the boundary and the flow would be
irrotational everywhere. But this is not the case for real fluids, so we will typically have a layer
(usually very thin) near any fixed surface in a moving stream in which shearing stresses are not
negligible. This layer is called the boundary layer. Outside the boundary layer the flow can be
treated as an irrotational flow. Another possible consequence of the boundary layer is that the main
stream may “separate” from the surface and form a wake downstream from the body. (See the

Uniform Boundary }
approach velocity layer Separation

— /

 — Inviscid
_— |rrotat|o_na|
flow region

Fully developed region —»}

\ ’-— Entrance region —»} é;
E)
S

Uniform
entrance
velocity

(b)

B FIGURE 6.14 \Variousregions of flow: (a) around bodies; (b) through channels.

Inviscid,
irrotational core

Boundary layer
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photographs at the beginning of Chapters 7, 9, and 11.) The wake would include a region of slow,
perhaps randomly moving fluid. To completely analyze this type of problem it is necessary to
consider both the inviscid, irrotational flow outside the boundary layer, and the viscous, rotational
flow within the boundary layer and to somehow “match” these two regions. This type of analysis
is considered in Chapter 9.

As isillustrated in Fig. 6.14b, the flow in the entrance to a pipe may be uniform (if the
entrance is streamlined), and thus will be irrotational. In the central core of the pipe the flow
remains irrotational for some distance. However, a boundary layer will develop along the wall
and grow in thickness until it fills the pipe. Thus, for this type of internal flow there will be an
entrance region in which there is a central irrotational core, followed by a so-called fully
developed region in which viscous forces are dominant. The concept of irrotationality is
completely invalid in the fully developed region. Thistype of internal flow problem is considered
in detail in Chapter 8.

The two preceding examples are intended to illustrate the possible applicability of
irrotational flow to some “real fluid” flow problems and to indicate some limitations of the
irrotationality concept. We proceed to develop some useful equations based on the assumptions
of inviscid, incompressible, irrotational flow, with the admonition to use caution when applying
the equations.

6.4.4 The Bernoulli Equation for Irrotational Flow

In the development of the Bernoulli equation in Section 6.4.2, Eq. 6.54 was integrated along a
streamline. This restriction was imposed so the right side of the equation could be set equal to
zero; that is,

[VXx(VxV)]-ds=0

(sincedsis parallel to V). However, for irrotational flow, V x V = 0, so the right side of Eq. 6.54
is zero regardless of the direction of ds. We can now follow the same procedure used to obtain Eq.
6.55, where the differential changes dp, d(V?), and dz can be taken in any direction. Integration of
Eq. 6.55 again yields

d 2
J ?p + VE + gz = constant (6.62)

where for irrotational flow the constant is the same throughout the flow field. Thus, for
incompressible, irrotational flow the Bernoulli equation can be written as

V2 \%
2l+?$+21=%+?;+22 (6.63)

between any two points in the flow field. Equation 6.63 is exactly the same form as Eq. 6.58 but
is not limited to application along a streamline. However, EQ. 6.63 is restricted to

m inviscid flow m incompressible flow
m steady flow m irrotational flow

It may be worthwhile to review the use and misuse of the Bernoulli equation for rotational flow
asisillustrated in Example 3.18.

6.4.5 The Velocity Potential

For an irrotational flow the velocity gradients are related through Egs. 6.59, 6.60, and 6.61. It
follows that in this case the velocity components can be expressed in terms of a scalar function
b(x Y,z 1) as

a d¢ a

u=-— V= W= — (6.64)
aX ay 0z
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where ¢ is called the velocity potential. Direct substitution of these expressions for the velocity
components into Egs. 6.59, 6.60, and 6.61 will verify that a velocity field defined by Egs. 6.64 is
indeed irrotational. In vector form, Egs. 6.64 can be written as

V = V¢ (6.65)

so that for an irrotational flow the velocity is expressible as the gradient of a scalar function ¢.
The velocity potential is a consequence of the irrotationality of the flow field, whereas the
stream function is a consequence of conservation of mass (see Section 6.2.3). It is to be noted,
however, that the velocity potential can be defined for a general three-dimensional flow, whereas
the stream function is restricted to two-dimensional flows.
For an incompressible fluid we know from conservation of mass that

V-Vv=0
and therefore for incompressible, irrotational flow (with V = V¢) it follows that
Vi =0 (6.66)
where V¥ ) = V - V() is the Laplacian operator. In Cartesian coordinates
’p %P A
¢ TP TP

e oy a7

This differential equation arises in many different areas of engineering and physics and is called
Laplace's equation. Thus, inviscid, incompressible, irrotational flow fields are governed by
Laplace's equation. This type of flow is commonly called a potential flow. To complete the
mathematical formulation of a given problem, boundary conditions have to be specified. These are
usualy velocities specified on the boundaries of the flow field of interest. It follows that if
the potential function can be determined, then the velocity at all points in the flow field can be
determined from Eq. 6.64, and the pressure at al points can be determined from the Bernoulli
equation (Eq. 6.63). Although the concept of the velocity potential is applicable to both steady and
unsteady flow, we will confine our attention to steady flow.

Potential flows, governed by Egs. 6.64 and 6.66, are irrotational flows. That is, the vorticity
is zero throughout. If vorticity is present (e.g., boundary layer, wake), then the flow cannot be
described by Laplace’s equation. The figure in the margin illustrates a flow in which the vorticity
is not zero in two regions—the separated region behind the bump and the boundary layer next to
the solid surface. This is discussed in detail in Chapter 9.

For some problems it will be convenient to use cylindrical coordinates, r, 0, and z In this
coordinate system the gradient operator is

), 1a0), a0),

0

V()=—"8&+>—"¢&+ 6.67
=& 1 &, & (6.67)
so that
ad 19 ap
=—6&+-—8&+— .
vé ar & r aoe" azez (668)

where ¢ = ¢(r, 6, Z). Since

V =0v8é + 18 + v (6.69)

it follows for an irrotational flow (withV = V¢)

o 19¢ o
_ _1 - 6.70
ar YT e Y2 = 7 (6.70)

v

Also, Laplace's equation in cylindrical coordinatesis

1 (20), 159

— =0 6.71
ror\ or r2 90> o7 (6.71)



—EXAMPLE 6.4

GIVEN The two-dimensiona flow of a nonviscous, incom-
pressible fluid in the vicinity of the 90° corner of Fig. E6.4a is
described by the stream function

Y =2r2sin 20

where ¢ has units of m?/s when r is in meters. Assume the
fluid density is 10° kg/m® and the x—y plane is horizontal —

-— _ (@
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(@)

(c)
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Velocity Potential and Inviscid Flow Pressure

that is, there is no difference in elevation between points (1)
and (2).

FIND

() Determine, if possible, the corresponding velocity potential.
(b) If the pressure at point (1) on the wall is 30 kPa, what is the
pressure at point (2)?

y Streamline (y = constant)

Equipotential
line
(¢ = constant)

(b)

B FIGURE E6.4

(@) The radia and tangential velocity components can be ob-
tained from the stream function as(see Eq. 6.42)

19
o = 14 = 4r cos 26
r ao
and
il
Vy = 7 —4r sin 29
ar
Since
d
v = —
ar
it follows that
J
—d) = 4r cos 26
ar

and therefore by integration
¢ = 2r2cos20 + fy(0) @
where f1(0) is an arbitrary function of 6. Similarly

_ Lo

vy =——-= —4rsin20
r a0

and integration yields
¢ = 2r2cos 29 + f,(r) 2

where f,(r) isan arbitrary function of r. To satisfy both Egs. 1 and
2, the velocity potential must have the form

¢ = 2r?cos29 + C (Ans)

where Cisan arbitrary constant. Asisthe casefor stream functions,
the specific value of C is not important, and it is customary to let
C = 0 sothat the velocity potential for this corner flow is

¢ = 2r%cos 29 (Ans)
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COMMENT In the statement of this problem it was implied
by the wording “if possible”’ that we might not be able to find a
corresponding velocity potential. The reason for this concern is

This result indicates that the square of the velocity at any point
depends only on the radial distance, r, to the point. Note that the
constant, 16, has units of s 2. Thus,

that we can always define a stream function for two-dimensional
flow, but the flow must beirrotational if there is a corresponding
velocity potential. Thus, the fact that we were able to determine a
velocity potential means that the flow is irrotational. Several
streamlines and lines of constant ¢ are plotted in Fig. E6.4b.
These two sets of lines are orthogonal. The reason why stream-
linesand lines of constant ¢ are always orthogonal isexplainedin
Section 6.5.

V3= (16 s7?)(1 m)*> = 16 m?/s*
and

V3 = (16 s7%)(0.5 m)? = 4 m?/s>
Substitution of these velocities into Eq. 3 gives

10°kg/m?®

p, = 30 X 10°N/m? + (16 m%/s* — 4 m%/S%)

(b) Since we have an irrotational flow of a nonviscous, incom- — 36 kPa (Ans)
pressiblefluid, the Bernoulli equation can be applied between any
two points. Thus, between points (1) and (2) with no devation =6\ MENT  The stream function used in this example could
EIEER a so be expressed in Cartesian coordinates as
2 2
P ﬁ=&+ﬁ Y =2r2sin20 = 4r2sin cosh
Yy 29 v & or
or Y= 4xy
B P, s 2 sincex = r cosf andy = r sin 6. However, in the cylindrica po-
P2 =Pt E(Vl — V) () jar form the resuilts can be generalized to describe flow in the vicin-
ity of acorner of angle a (see Fig. E6.4c) with the equations
Since

.l
V2 =92 + 032 ([/=Ar”/“sm7

it follows that for any point within the flow field and

V2 = (4r cos 20) + (—4r sin 26)?
= 16r%(cos*20 + sin? 26)
= 16r2

0
b= A"/ cos 2
o

where A is a constant.

6.5 Some Basic, Plane Potential Flows

A major advantage of Laplace’s equation is that it is alinear partial differential equation. Since it
is linear, various solutions can be added to obtain other solutions—that is, if ¢4(x, Yy, z) and
bo(X, Y, 2) are two solutions to Laplace's equation, then ¢ = ¢, + ¢, is aso a solution. The
practical implication of this result is that if we have certain basic solutions we can combine them
to obtain more complicated and interesting solutions. In this section several basic velocity potentials,
which describe some relatively simple flows, will be determined. In the next section these basic
potentials will be combined to represent complicated flows.

For simplicity, only plane (two-dimensional) flows will be considered. In this case, by using
Cartesian coordinates

For potential flow,
basic solutions can
be simply added to
obtain more com-
plicated solutions.

d d
=2, % (6.72)
X ay
or by using cylindrical coordinates
o 19¢
=— =—— 6.73
Uy or Vy r 96 ( )

as shown by the figure in the margin. Since we can define a stream function for plane flow, we
can aso let
-

oy
u=— o= —- (6.74)
ay X
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or

_19 -
T T T

where the stream function was previously defined in Egs. 6.37 and 6.42. We know that by defining

the velocities in terms of the stream function, conservation of mass is identically satisfied. If we
now impose the condition of irrotationality, it follows from Eq. 6.59 that

(6.75)

u_w
ay  ox
and in terms of the stream function
8(6'!’) _ 6(_0‘#)
ay\ay/ ox\ ax
or
92 92
R,
e oyl

Thus, for aplaneirrotational flow we can use either the vel ocity potential or the stream function—
both must satisfy Laplace’sequationin two dimensions. It is apparent from these resultsthat the vel ocity
potential and the stream function are somehow related. We have previously shown that lines of constant
Y are streamlines; that is,

%

(%
=— (6.76)
dx along i = constant u

The change in ¢ as we move from one point (X, y) to a nearby point (x + dx, y + dy) is given by
the relationship

Gl ¢
do = —Gxdx + —aydy =udx + vdy

Along aline of constant ¢ we have d¢ = 0 so that

d
& =4 6.77)

dx along ¢ = constant v

A comparison of Egs. 6.76 and 6.77 shows that lines of constant ¢ (called equipotential lines)
are orthogonal to lines of constant ¢ (streamlines) at all points where they intersect. (Recall that
two lines are orthogonal if the product of their slopesis —1, as illustrated by the figure in the
margin.) For any potential flow field a “flow net” can be drawn that consists of a family of
streamlines and equipotential lines. The flow net is useful in visualizing flow patterns and can
be used to obtain graphical solutions by sketching in streamlines and equipotential lines and
adjusting the lines until the lines are approximately orthogonal at al points where they intersect.
An example of aflow net is shown in Fig. 6.15. Velocities can be estimated from the flow net,
since the velocity is inversely proportional to the streamline spacing, as shown by the figure in
the margin. Thus, for example, from Fig. 6.15 we can see that the velocity near the inside corner
will be higher than the velocity along the outer part of the bend. (See the photographs at the
beginning of Chapters 3 and 6.)

6.5.1 Uniform Flow

The simplest plane flow is one for which the streamlines are al straight and parallel, and the
magnitude of the velocity is constant. This type of flow is called a uniform flow. For example,
consider a uniform flow in the positive x direction as is illustrated in Fig. 6.16a. In this instance,
u=Uandwv = 0, and in terms of the velocity potential

w_

ax ay
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Equipotential line
(¢ = constant)

>V

>V|/

Streamline
(v = constant)

B FIGURE 6.15 Flow net for a 90° bend.
(From Ref. 3, used by permission.)

These two equations can be integrated to yield
¢ =Ux+ C

where C is an arbitrary constant, which can be set equal to zero. Thus, for a uniform flow in the
positive x direction

¢ = Ux (6.78)
The corresponding stream function can be obtained in a similar manner, since
d d
6‘5 —u 2o
and, therefore,
¢ = Uy (6.79)

These results can be generalized to provide the velocity potential and stream function for a
uniform flow at an angle « with the x axis, asin Fig. 6.16b. For this case

¢ = U(xcosa + ysina) (6.80)
and
¢ = U(ycosa — xsina) (6.81)

6.5.2 Source and Sink

Consider a fluid flowing radially outward from a line through the origin perpendicular to the x—y
plane asis shown in Fig. 6.17. Let m be the volume rate of flow emanating from the line (per unit
length), and therefore to satisfy conservation of mass

(2mr)v, = m
or
m
v = ——
" 2ar
y y \ ¢:w1
L Loy=yy . LT
— : : ¢:¢2 V] \\ \\ w:f?}
_— Y=y / N \ 4

B FIGURE 6.16
Uniform flow: (a) in the x direction;
(b) in an arbitrary direction, a.

(a) (b)
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B FIGURE 6.17 The streamline pattern for a
source.
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Also, since the flow is a purely radial flow, v, = 0, the corresponding velocity potential can be
obtained by integrating the equations
9 _m 10 _

ar 2mr r oo
It follows that

b=inr (6.82)

21
If mis positive, the flow is radially outward, and the flow is considered to be a source flow. If m
is negative, the flow is toward the origin, and the flow is considered to be asink flow. The flowrate,
m, is the strength of the source or sink.

As shown by the figure in the margin, at the origin where r = 0 the velocity becomes infinite,
which is of course physically impossible. Thus, sources and sinks do not really exist in real flow
fields, and the line representing the source or sink is a mathematical singularity in the flow field.
However, some rea flows can be approximated at points away from the origin by using sources or
sinks. Also, the velocity potentia representing this hypothetical flow can be combined with other
basic velocity potentialsto approximately describe somereal flow fields. Thisideaisfurther discussed
in Section 6.6.

The stream function for the source can be obtained by integrating the relationships

_1ldp_ m _ 9
Y0 T 2mr Ye ar
to yield
m
y=—0 (6.83)
2

It is apparent from Eq. 6.83 that the streamlines (lines of » = constant) are radid lines, and from Eq.
6.82 the equipotential lines (lines of ¢ = constant) are concentric circles centered at the origin.

Exampie 6. > I

thisflow is

the opening.

GIVEN A nonviscous, incompressible fluid flows between
wedge-shaped walls into a small opening as shown in Fig. E6.5.
The velocity potential (in ft?/s), which approximately describes

FIND Determine the volume rate of flow (per unit length) into

¢ = —-2Inr

B FIGURE E6.5
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SoLuTiON
The components of velocity are COMMENT Note that the radius R is arbitrary since the
3 5 flowrate crossing any curve between the two walls must be the
v, = e __Z vy = 13 = same. The negative sign indicates that the flow istoward the open-
ar r r oo ing, that is, in the negative radial direction.

which indicates we have a purely radia flow. The flowrate per
unit width, g, crossing the arc of length Rw/6 can thus be ob-
tained by integrating the expression

/6 /6 2
J v, Rdo = —J <—)Rdo
0 0 R

Vo

q =
a
e —1.05ft¥/s (Ans)

6.5.3 Vortex

We next consider aflow field in which the streamlines are concentric circles—that is, we interchange

the velocity potential and stream function for the source. Thus, let

¢ = K6 (6.84)

Avortexrepresents  and
aflow in which the W= —Kinr (6.85)

streamlines are con-
centric circles.

where K is a constant. In this case the streamlines are concentric circles as are illustrated in Fig.
6.18, with v, = 0 and
Vy = 13 = 4 _K (6.86)
r oo ar r
This result indicates that the tangential velocity varies inversely with the distance from the origin,
as shown by the figure in the margin, with a singularity occurring at r = 0 (where the velocity
becomes infinite).

It may seem strange that this vortex motion is irrotational (and it is since the flow field
is described by a velocity potential). However, it must be recalled that rotation refers to the
orientation of afluid element and not the path followed by the element. Thus, for an irrotational
vortex, if apair of small sticks were placed in the flow field at location A, as indicated in Fig.
6.19a, the sticks would rotate as they move to location B. One of the sticks, the one that is
aligned along the streamline, would follow a circular path and rotate in a counterclockwise

/ w = constant

B FIGURE 6.18 Thestreamline
pattern for a vortex.

¢ = constant



(a)
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A 1)9~r

(b)

B FIGURE 6.19 Motion of fluid element from A to B: (a) for
irrotational (free) vortex; (b) for rotational (forced) vortex.

\ortex motion can
be either rotational

or irrotational.

direction. The other stick would rotate in a clockwise direction due to the nature of the flow
field—that is, the part of the stick nearest the origin moves faster than the opposite end. Although
both sticks are rotating, the average angular velocity of the two sticks is zero since the flow is
irrotational.

If the fluid were rotating as a rigid body, such that v, = K;r where K; is a constant, then
sticks similarly placed in the flow field would rotate as is illustrated in Fig. 6.19b. This type of
vortex motion is rotational and cannot be described with avelocity potential. The rotational vortex
is commonly called a forced vortex, whereas the irrotational vortex is usually called a free vortex.
The swirling motion of the water as it drains from a bathtub is similar to that of a free vortex,
whereas the motion of aliquid contained in atank that is rotated about its axis with angular vel ocity
w corresponds to a forced vortex.

A combined vortex is one with a forced vortex as a central core and a velocity distribution

corresponding to that of a free vortex outside the core. Thus, for a combined vortex
'Ug = wl r = ro

(6.87)

and

Vo= r>rg (6.88)

where K and w are constants and r, corresponds to the radius of the central core. The pressure
distribution in both the free and forced vortex was previously considered in Example 3.3. (See Fig.

E6.6a for an approximation of this type of flow.)

F | u i d s i n

t h e N e w s

Some hurricane facts One of the most interesting, yet potentially
devastating, naturally occurring fluid flow phenomenan is a hurri-
cane. Broadly speaking ahurricaneisarotating mass of air circulat-
ing around alow pressure centra core. In some respects the motion
issimilar to that of afree vortex. The Caribbean and Gulf of Mexico
experience the most hurricanes, with the official hurricane season
being from June 1 to November 30. Hurricanes are usually 300 to
400 miles wide and are structured around a central eye in which
the air is relatively calm. The eye is surrounded by an eye wall
which is the region of strongest winds and precipitation. As one
goesfrom the eye wall to the eye the wind speeds decrease sharply
and within the eye the air is relatively calm and clear of clouds.

However, in the eye the pressureis at aminimum and may be 10%
less than standard atmospheric pressure. Thislow pressure creates
strong downdrafts of dry air from above. Hurricanes are classified
into five categories based on their wind speeds:

Category one—74-95 mph

Category two—96-110 mph
Category three—111-130 mph
Category four—131-155 mph
Category five—greater than 155 mph.

(See Problem 6.58.)
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The numerical value
of thecirculation
may depend on the
particular closed
path considered.

V6.4 Vortexina
beaker

Arbitrary

curve C BEFIGURE 6.20 Thenotation

for determining circulation around closed
curve C.

A mathematical concept commonly associated with vortex motion is that of circulation. The
circulation, T, is defined as the line integral of the tangential component of the velocity taken
around a closed curve in the flow field. In equation form, I' can be expressed as

r= <ﬁc V - ds (6.89)

where the integral sign means that the integration is taken around a closed curve, C, in the
counterclockwise direction, and dsisadifferential length along the curve asisillustrated in Fig. 6.20.
For an irrotational flow, V = V¢ sothat V - ds = V¢ - ds = d¢ and, therefore,

r=<}ﬁ dp =0
C

This result indicates that for an irrotational flow the circulation will generally be zero. (Chapter 9
has further discussion of circulation in rea flows.) However, if there are singularities enclosed
within the curve the circulation may not be zero. For example, for the free vortex with v, = K/
the circulation around the circular path of radius r shown in Fig. 6.21 is

2
= J 5(r do) = 27K
o T
which shows that the circulation is nonzero and the constant K = I'/27r. However, for irrotational
flows the circulation around any path that does not include a singular point will be zero. This can
be easily confirmed for the closed path ABCD of Fig. 6.21 by evaluating the circulation around
that path.

The velocity potential and stream function for the free vortex are commonly expressed in
terms of the circulation as

r
¢ = 50 (6.90)
and
g = —Llnr (6.91)
2

The concept of circulation is often useful when evaluating the forces devel oped on bodiesimmersed
in moving fluids. This application will be considered in Section 6.6.3.

B FIGURE 6.21 Circulation around various paths
in a free vortex.
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Exampie 6. © I T

GIVEN A liquid drains from a large tank through a small
opening asillustrated in Fig. E6.6a. A vortex forms whose veloc-
ity distribution away from the tank opening can be approximated
asthat of afreevortex having a velocity potential

r

¢ = 277'0

FIND Determine an expression relating the surface shape to
the strength of the vortex as specified by the circulation I

SoLuTION

Since the free vortex represents an irrotational flow field, the
Bernoulli equation

P1
—+—+ —+—+
29 4 29 2

can be written between any two points. If the points are selected

P2

at the free surface, p, = p, = 0, so that
V2 V3
o =%t 50 @)
29 29

where the free surface elevation, z, is measured relative to a da-
tum passing through point (1) as shown in Fig. E6.6b.

The velocity is given by the equation
1o I'
r ao

27rr
We note that far from the origin at point (1), V; = v, = 0 so that
Eq. 1 becomes

Vy =

1'*2

%= “gag (1

which is the desired equation for the surface profile.

[I——

B FIGURE E6.6a

B FIGURE E6.6b

COMMENT The negative sign indicates that the surface falls
astheorigin is approached as shown in Fig. E6.6. Thissolutionis
not valid very near the origin since the predicted velocity be-
comes excessively large as the origin is approached.

6.5.4 Doublet

A doublet isformed
by an appropriate

The final, basic potentia flow to be considered is one that is formed by combining a source and
sink in a special way. Consider the equal strength, source-sink pair of Fig. 6.22. The combined

source-sink pair. stream function for the pair is
m
p == (6. - 0))
i
Y P
T2
r rn
0
6, 0 \J 1
O X
Source 7N sink B FIGURE 6.22 Thecombination of

aka

a source and sink of equal strength located along
the x axis.
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A doublet is formed
by letting a source
and sink approach
one another.

which can be rewritten as

tan( — | =tan(6, — 0, = ——F— — 6.92
( m) (61 = 62) 1+ tanf, tan 6, (6.92)

From Fig. 6.22 it follows that

tan 6 __rsnf
Y rcosh — a
and
rsing
tanf, = —
rcosé + a

These results substituted into Eq. 6.92 give
2 2ar sinf
()

m r’—a?
so that
m 2ar sin6
= ———tan' 5—— .
1 o an ( 7 a2> (6.93)
The figure in the margin shows typical streamlines for this flow. For small values of the distance a
m 2ar sin6 mar sin 0
= = - 6.94
4 2 12 - @ m(r? — a) (699

since the tangent of an angle approaches the value of the angle for small angles.

The so-called doublet is formed by letting the source and sink approach one another (a — 0)
while increasing the strength m (m— o) so that the product ma/# remains constant. In this case,
since r/(r? — a — Vr, Eq. 6.94 reduces to

Ksno
r

y=— (6.95)

where K, a constant equal to ma/r, is called the strength of the doublet. The corresponding velocity
potential for the doublet is

K cos 6
r

¢ = (6.96)
Plots of lines of constant ¢ reveal that the streamlines for a doublet are circles through the origin
tangent to the x axis as shown in Fig. 6.23. Just as sources and sinks are not physicaly realistic
entities, neither are doublets. However, the doublet when combined with other basic potential flows

B FIGURE 6.23 Streamlinesfor a
doublet.
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6.6 Superposition of Basic, Plane Potential Flows

B TABLE 6.1
Summary of Basic, Plane Potential Flows

Description of Velocity
Flow Field Velocity Potential Stream Function Components®
Uniform flow at ¢ = U(xcosa + ysina) ¢ = U(ycosa — Xxsina) u=Ucosa
angle a with the x v=Usna
axis (see Fig.
6.16h)
Source or sink qs—mlnr _m _ m
(see Fig. 6.17) 2m V= om -
m > 0 source v, =0
m < 0 sink o
Free vortex r r
(see Fig. 6.18) =50 = Inr v, =0
r>o r
counterclockwise Vy = onr
motion T
r<o
clockwise motion
Doubl et .
K 0 Ksné K
(see Fig. 6.23) b= = 0 v = - (;239
Ksno
Vg = — >

a/elocity components are related to the velocity potential and stream function through the relationships:
M _w e W s 1w 10w

u=—= = = v = = Vp=— = ——
ax oy ay ax a r o r oo ar

provides a useful representation of some flow fields of practical interest. For example, we will
determine in Section 6.6.3 that the combination of a uniform flow and a doublet can be used to
represent the flow around a circular cylinder. Table 6.1 provides a summary of the pertinent
equations for the basic, plane potential flows considered in the preceding sections.

6.6 Superposition of Basic, Plane Potential Flows

Flow around a
half-body is
obtained by the
addition of a source
to a uniform flow.

Aswas discussed in the previous section, potential flows are governed by Laplace's equation, which
isalinear partial differential equation. It therefore follows that the various basic velocity potentials
and stream functions can be combined to form new potentials and stream functions. (Why is this
true?) Whether such combinations yield useful results remains to be seen. It is to be noted that any
streamline in an inviscid flow field can be considered as a solid boundary, since the conditions
along asolid boundary and a streamline are the sasme—that is, there is no flow through the boundary
or the streamline. Thus, if we can combine some of the basic velocity potentials or stream functions
to yield a streamline that corresponds to a particular body shape of interest, that combination can
be used to describe in detail the flow around that body. This method of solving some interesting
flow problems, commonly called the method of superposition, isillustrated in the following three
sections.

6.6.1 Sourcein a Uniform Stream—Half-Body

Consider the superposition of a source and a uniform flow as shown in Fig. 6.24a. The resulting
stream function is

U = Yunitomilow T Ysource

. m
=Ursnf + —6 (6.97)
21T
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AN

V6.5 Half-body

For inviscid flow, a
streamline can be
replaced by a solid
boundary.

U y y = nbU
— ) .
Stagnation point
> Stagnation /°

— point 9’ f b
. . ] —
- Jul R
—_—

(a) (b)

B FIGURE 6.24 Theflow around a half-body: (a) superposition of a source and a uniform
flow; (b) replacement of streamline ¢ = «rbU with solid boundary to form half-body.

and the corresponding velocity potential is

é = Ur cose+£lnr (6.98)

It isclear that at some point along the negative x axis the velocity due to the source will just cancel
that due to the uniform flow and a stagnation point will be created. For the source alone

m

'I) = —
" 27

so that the stagnation point will occur at x = —b where

U = m
~ 2mb
or
m
b= U (6.99)

The value of the stream function at the stagnation point can be obtained by evaluating s at
r = band 6 = 7, which yields from Eq. 6.97

m

(»[lslagnation - 2

Since m/2 = 7bU (from Eq. 6.99) it follows that the equation of the streamline passing through
the stagnation point is

abU = Ur sinf + bUg
or

b(m — 0)
r=———— (6.100)
sing

where 6 can vary between 0 and 27r. A plot of this streamline is shown in Fig. 6.24b. If we replace
this streamline with a solid boundary, as indicated in the figure, then it is clear that this combination
of auniform flow and a source can be used to describe the flow around a streamlined body placed
in auniform stream. The body is open at the downstream end, and thus is called a half-body. Other
streamlines in the flow field can be obtained by setting » = constant in Eq. 6.97 and plotting the
resulting equation. A number of these streamlines are shown in Fig. 6.24b. Although the streamlines
inside the body are shown, they are actualy of no interest in this case, since we are concerned with
the flow field outside the body. It should be noted that the singularity in the flow field (the source)
occurs inside the body, and there are no singularities in the flow field of interest (outside the body).
The width of the half-body asymptotically approaches 27b. This follows from Eq. 6.100,

which can be written as

y = b(m — 6)



For a potential flow
thefluid is allowed
to dlip past a fixed
solid boundary.
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so that as § — 0 or 6 — 27 the half-width approaches=bzr. With the stream function (or velocity
potential) known, the velocity components at any point can be obtained. For the half-body, using
the stream function given by Eq. 6.97,

10y

m
v =—-——=UcosO + —
rao 2y

and

d
vy = —Tf: —-Usno

Thus, the square of the magnitude of the velocity, V, at any point is

Umcos 6 m \?
ooy Ut ()
ar 2mr

and since b = m/27U
5 5 b b?
Ve=U?(1+ 2?coso + 7z (6.101)

With the velocity known, the pressure at any point can be determined from the Bernoulli
equation, which can be written between any two pointsin the flow field since the flow isirrotational .
Thus, applying the Bernoulli equation between a point far from the body, where the pressure is p,
and the velocity is U, and some arbitrary point with pressure p and velocity V, it follows that

Po + 3pU% = p + 1pV? (6.102)

where elevation changes have been neglected. Equation 6.101 can now be substituted into Eq. 6.102 to
obtain the pressure at any point in terms of the reference pressure, p,, and the upstream velocity, U.
Thisrelatively simple potential flow provides some useful information about the flow around
the front part of a streamlined body, such as a bridge pier or strut placed in a uniform stream. An
important point to be noted is that the velocity tangent to the surface of the body is not zero; that
is, the fluid “dlips’ by the boundary. This result is a consequence of neglecting viscosity, the fluid
property that causes real fluids to stick to the boundary, thus creating a “no-slip” condition. All
potential flows differ from the flow of real fluids in this respect and do not accurately represent
the velocity very near the boundary. However, outside this very thin boundary layer the velocity
distribution will generally correspond to that predicted by potential flow theory if flow separation
does not occur. (See Section 9.2.6.) Also, the pressure distribution along the surface will closely
approximate that predicted from the potential flow theory, since the boundary layer is thin and
there is little opportunity for the pressure to vary through the thin layer. In fact, as discussed in
more detail in Chapter 9, the pressure distribution obtained from potential flow theory is used in
conjunction with viscous flow theory to determine the nature of flow within the boundary layer.

L ITUTICHHD Foteniial Flow—Halfbody

FIND

GIVEN A 40 mi/hr wind blows toward a hill arising from a 40_m>i/hr
plain that can be approximated with the top section of ahalf-body — —
asillustrated in Fig. E6.7a. The height of the hill approaches200ft  —>
as shown. Assume an air density of 0.00238 dugg/ft®.

(@) What is the magnitude of the air velocity at a point on the L bJ *
hill directly above the origin [point (2)]?

(b) What is the elevation of point (2) above the plain and what
is the difference in pressure between point (1) on the plain far
from the hill and point (2)?

— (2)
200 ft

y
Lo B

B FIGURE E6.7a
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SOLUTION

(@) Thevelocity isgiven by Eq. 6.101 as
2
vz = U2(1 + 2?0050 + %)

At point (2), 6 = /2, and since this point is on the surface
(Eg. 6.100)

. b(m — 6) B Lb .
sin @ 2 @
Thus,
b2
V3 = Uz{l + 7}
2 (mb/2)2

= U2(1 4 iz)
T

and the magnitude of the velocity at (2) for a40 mi/hr approach-
ingwind is

4 1/2
V, = (1 I —2) (40 mi/hr) = 47.4mi/hr  (Ans)
w

(b) Theé€levation at (2) above the plainis given by Eq. 1 as
7h
2

Since the height of the hill approaches 200 ft and this height is
equal to b, it follows that

Yo = %Oft = 100 ft

Yo =

(Ans)

From the Bernoulli equation (with they axis the vertical axis)

pp Vi p, V3
=+ 4y =—+ =+
vy 29 Y1 y " 2g Y2
so that
p
Pr = P2 = E(Vg - V%) + ¥(Y2 — Y1)
and with
_ . 5280 ft/mi\
V; = (40 mi/hr) (73600 s/hr) = 58.7 ft/s

and
. . 5280 ft/mi\
V, = (47.4 mi/hr) (73600 s/hr) = 69.5ft/s
it follows that
0.00238 slugs/ft®
pr— P = ﬁ[(GQS ft/s)> — (58.7 ft/s)?]

2
+ (0.00238 slugs/ft%)(32.2 ft/s9)(100 ft — O ft)
= 9.31 Ib/ft2 = 0.0647 ps (Ans)

COMMENTS This result indicates that the pressure on the
hill at point (2) is slightly lower than the pressure on the plain at
some distance from the base of the hill with a 0.0533 psi differ-
ence due to the elevation increase and a0.0114 psi difference due
to the velocity increase.

By repeating the calculations for various values of the upstream
wind speed, U, the results shown in Fig. E6.7b are obtained. Note
that as the wind speed increases, the pressure difference increases
from the calm conditions of p; — p, = 0.0533 psi.

The maximum velocity along the hill surface does not occur at
point (2) but farther up the hill at 6 = 63°. At this point
Vauface = 1.26U. The minimum velocity (V = 0) and maximum
pressure occur at point (3), the stagnation point.

0.14

(40 mph, 0.0647 psi)

0 20 40 60 80
U, mph

100

B FIGURE E6.7b

6.6.2 Rankine Ovals

The half-body described in the previous section is a body that is “open” at one end. To study the
flow around a closed body, a source and a sink of equal strength can be combined with a uniform
flow as shown in Fig. 6.25a. The stream function for this combination is

(//:

and the velocity potential is

m
¢ = Urcosf — E(Inr1 —Inry,)

Ursing — -2 (6, — 6,) (6.103)
2

(6.104)




Rankine ovals are
formed by combin-
ing a source and
sink with a uniform
flow.

Large Ua/m
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U Yy Stagnation Stagnation
point y=0 point
r,ron
—_—
AN
—_ 0,
6, | Ao \{/ \ +m -m h
—_— —> -

-0 O—
X
—>  Source /¢\ Sink W jh

(a) (b)

B FIGURE 6.25 Theflow around a Rankine oval: (a) superposition of source-sink pair
and a uniform flow; (b) replacement of streamline s = 0 with solid boundary to form Rankine oval.

As discussed in Section 6.5.4, the stream function for the source-sink pair can be expressed as in
Eq. 6.93 and, therefore, Eq. 6.103 can also be written as

¢ =Ursing — mtanl(zar sin0>
2 r’—a?
or
= Uy — mtanl<22ay> (6.105)
2w X+ y —a

The corresponding streamlines for this flow field are obtained by setting ¢ = constant. If several
of these streamlines are plotted, it will be discovered that the streamline ¢y = 0 forms a closed body
asisillustrated in Fig. 6.25b. We can think of this streamline as forming the surface of a body of
length 2¢ and width 2h placed in auniform stream. The streamlinesinside the body are of no practical
interest and are not shown. Note that since the body is closed, all of the flow emanating from the
source flows into the sink. These bodies have an oval shape and are termed Rankine ovals.

Stagnation points occur at the upstream and downstream ends of the body as are indicated
in Fig. 6.25b. These points can be located by determining where along the x axis the velocity is
zero. The stagnation points correspond to the points where the uniform vel ocity, the source vel ocity,
and the sink velocity all combine to give a zero velocity. The locations of the stagnation points
depend on the value of a, m, and U. The body half-length, ¢ (the value of |x| that givesV = 0
when y = 0), can be expressed as

12
- (mS + a2> (6.106)
ar
or
¢ 1/2
== (7:8& + 1) (6.107)

The body half-width, h, can be obtained by determining the value of y where the y axis intersects
the y = 0 streamline. Thus, from Eq. 6.105 with s = 0, x = 0, and y = h, it follows that
h? —a  2wxUh
an

h= t
2a m

] e

Equations 6.107 and 6.109 show that both €/a and h/a are functions of the dimensionless parameter,
wUa/Mm. Although for a given value of Ua/m the corresponding value of ¢/a can be determined
directly from Eq. 6.107, h/a must be determined by a trial and error solution of Eq. 6.109.

A large variety of body shapes with different length to width ratios can be obtained by using
different values of Ua/m, as shown by the figure in the margin. As this parameter becomes large, flow

(6.108)

or
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around a long dender body is described, whereas for small values of the parameter, flow around a
more blunt shapeis obtained. Downstream from the point of maximum body width the surface pressure
increases with distance along the surface. This condition (called an adverse pressure gradient) typically
/—-' leadsto separation of theflow from the surface, resultingin alargelow pressure wake on the downstream
M/’ side of the body. Separation is not predicted by potentia theory (which smply indicates a symmetrical
_— flow). Thisisillustrated by the figure in the margin for an extreme blunt shape. Therefore, the potential
solution for the Rankine ovals will give a reasonable approximation of the velocity outside the thin,
viscous boundary layer and the pressure distribution on the front part of the body only.

Potential Flow

6.6.3 Flow around a Circular Cylinder

Aswas noted in the previous section, when the distance between the source-sink pair approaches zero,
= the shape of the Rankine oval becomes more blunt and in fact approaches a circular shape. Since the
Viscous Flow doublet described in Section 6.5.4 was developed by letting a source-sink pair approach one another,
it might be expected that a uniform flow in the positive x direction combined with a doublet could be
used to represent flow around a circular cylinder. This combination gives for the stream function

A doublet combined Ksno
with a uniform flow ¢ =Ursnf — (6.110)
can be used to rep-
resent flow around and for the velocity potential
acircular cylinder.
K cos 6
¢ = Ur cosb + (6.111)

In order for the stream function to represent flow around a circular cylinder it is necessary that

w yy = constant for r = a, where a is the radius of the cylinder. Since Eq. 6.110 can be written as
V6.6 Circular K :
cylinder l/f=<U —rz)rsne
it followsthat 4 = Oforr = aif
K
U-—=0
a2

which indicates that the doublet strength, K, must be equal to Ua?. Thus, the stream function for
flow around a circular cylinder can be expressed as

2
w ¥ = Ur (1 - ?2>sin0 (6.112)
V6.7 Ellipse and the corresponding velocity potentia is
2
¢ = Ur <1 + ;) cos 6 (6.113)

A sketch of the streamlines for this flow field is shown in Fig. 6.26.
The velocity components can be obtained from either Eq. 6.112 or 6.113 as

o= 010 <1 - ff)cose (6.114)
and
2 vf,:%%: —%ﬁl= —U<1+?§)sin0 (6.115)
% 1 On the surface of the cylinder (r = a) it follows from Eq. 6.114 and 6.115 that », = 0 and
Vs = —2U sin6
As shown by the figure in the margin, the maximum velocity occurs at the top and bottom of

o
I+

tr  the cylinder (# = *=/2) and has a magnitude of twice the upstream velocity, U. As we move
away from the cylinder along the ray 6 = /2 the velocity varies, as isillustrated in Fig. 6.26.

SSINE]



The pressure dis-
tribution on the
cylinder surfaceis
obtained from the

Bernoulli equation.

V6.8 Circular

cylinder with sepa-
ration
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2U

B FIGURE 6.26 Theflowaround a
circular cylinder.

The pressure distribution on the cylinder surface is obtained from the Bernoulli equation
written from a point far from the cylinder where the pressure is p, and the velocity is U so that

Po + %pUZ =pst %pvgs

where p, is the surface pressure. Elevation changes are neglected. Since v, = —2U sin 6, the
surface pressure can be expressed as

Ps = Po + 3pUH(1 — 4sin?0) (6.116)

A comparison of thistheoretical, symmetrical pressure distribution expressed in dimensionlessform
with atypical measured distribution is shown in Fig. 6.27. This figure clearly reveals that only on
the upstream part of the cylinder is there approximate agreement between the potential flow and
the experimental results. Because of the viscous boundary layer that develops on the cylinder, the
main flow separates from the surface of the cylinder, leading to the large difference between
the theoretical, frictionless fluid solution and the experimental results on the downstream side of
the cylinder (see Chapter 9).

Theresultant force(per unit length) devel oped on the cylinder can be determined by integrating
the pressure over the surface. From Fig. 6.28 it can be seen that

2m
F,=— J pscosd adeo (6.117)
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B FIGURE 6.28 Thenotation for determining lift and drag
on a circular cylinder.

2
fe |
0
whereF, isthedrag (force parallél to direction of the uniform flow) and F isthelift (force perpendicular
to the direction of the uniform flow). Substitution for pg from Eqg. 6.116 into these two equations, and
subsequent integration, revedsthat F, = 0 and F, = 0 (Problem 6.73). These resultsindicate that both
the drag and lift as predicted by potential theory for a fixed cylinder in a uniform stream are zero.
Since the pressure distribution is symmetrical around the cylinder, thisis not really a surprising result.
However, we know from experience that there is a significant drag developed on a cylinder wheniit is
placed in a moving fluid. This discrepancy is known as d’ Alembert’s paradox. The paradox is named
after Jean le Rond d' Alembert (1717-1783), a French mathemeatician and philosopher, who first showed
that the drag on bodiesimmersed in inviscid fluidsis zero. It was not until thelatter part of the nineteenth
century and the early part of the twentieth century that the role viscosity plays in the steady fluid
motion was understood and d' Alembert’s paradox explained (see Section 9.1).

pssinf adi (6.118)

—EXAMPLE 6.8

Potential Flow—Cylinder

pressure, Py.;, Can be measured and used to determine the ap-
proach velocity, U.

(b)

GIVEN When a circular cylinder is placed in a uniform FIND
Is:t_reargé %sxaﬁnatior;l pl)o'in'lr is_crleated egn thﬁ_cylir_lder ahsisshowp in (a) Show how py,; and U are related.
'g. £6.8a. 1T a small hole s located at tis point, the stagnation ¢ 0 o linder is misaligned by an angle « (Figure E6.8b),

but the measured pressure is still interpreted as the stagnation
pressure, determine an expression for the ratio of the true
velocity, U, to the predicted velocity, U’. Plot thisratio as a func-
tion of « for therange —20° = o = 20°.

ke

(d)

B

1.5
1.4
1.3

-|C

1.1

-20° -10° 0°

(©)

20°

B FIGURE E6.8
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(@) Thevelocity at the stagnation point is zero so the Bernoulli
equation written between a point on the stagnation streamline up-
stream from the cylinder and the stagnation point gives

Po U _ Paxg
Yy 2 b
Thus,

2 1/2
U= |2 (bum = 0| (Ang
COMMENT A measurement of the difference between the
pressure at the stagnation point and the upstream pressure can
be used to measure the approach velocity. This s, of course, the
same result that was obtained in Section 3.5 for Pitot-static tubes.

(b) If the direction of the fluid approaching the cylinder is not
known precisely, it is possible that the cylinder is misaligned by
some angle, «. In this instance the pressure actually measured,
P., Will be different from the stagnation pressure, but if the mis-
alignment is not recognized the predicted approach velocity, U’,
would still be calculated as

Thus,

U(true) _ (pstag - Po)lf2 "

U’(predicted)  \ p, — Po

The velocity on the surface of the cylinder, vy, wherer = a, isob-
tained from Eq. 6.115 as

v, = —2Usin6

If we now write the Bernoulli equation between a point upstream
of the cylinder and the point on the cylinder wherer = a, 6 = «,
it follows that

1 1
P + E'DUZ =p, + Ep(—ZU sin a)2

and, therefore,
P = Po = 3pU(1 — 4sira) @
Since pga — Po = 3pU2 it follows from Egs. 1 and 2 that

U(true)
U’ (predicted)

Thisvelocity ratio is plotted as afunction of the misalignment an-
glea in Fig. E6.8c.

= (1 — 4sin’a) 2 (Ans)

COMMENT It is clear from these results that significant er-
rors can arise if the stagnation pressure tap is not aligned with the
stagnation streamline. Asis discussed in Section 3.5, if two addi-
tional, symmetrically located holes are drilled on the cylinder, as
areillustrated in Fig. E6.8d, the correct orientation of the cylinder
can be determined. The cylinder is rotated until the pressuresin
the two symmetrically placed holes are equal, thus indicating that
the center hole coincides with the stagnation streamline. For
B = 30° the pressure at the two holestheoretically correspondsto
the upstream pressure, po. With this orientation a measurement of
the difference in pressure between the center hole and the side
holes can be used to determine U.

An additional, interesting potential flow can be developed by adding a free vortex to the
stream function or velocity potential for the flow around a cylinder. In this case

and

2
r
¢=Ur<l—?2>sin0—zlnr (6.119)
ar
2
r
b = Ur (1 + ‘:‘2> 080 + 50 (6.120)
ar

where I is the circulation. We note that the circle r = a will till be a streamline (and thus can be
replaced with asolid cylinder), since the streamlinesfor the added free vortex areall circular. However,
the tangential velocity, v,, on the surface of the cylinder (r = a) now becomes

ves -
Flow around a ro-
tating cylinder is
approximated by
the addition of a
free vortex.

i

r
= -2Usnf + —
2

r=a Ta

- (6.121)

This type of flow field could be approximately created by placing a rotating cylinder in a uniform
stream. Because of the presence of viscosity in any real fluid, the fluid in contact with the rotating
cylinder would rotate with the same vel ocity asthe cylinder, and the resulting flow field would resemble

that developed by the combination of a uniform flow past a cylinder and a free vortex.
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Potential flow past
a cylinder with cir-
culation gives zero
drag but non-zero
lift.
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B FIGURE 6.29
The location of stagnation

o4

e = >1 points on a circular cylinder:
47U 47U ; ; .
hes e (a) without circulation; (b, c, d)
(c) (d) with circulation.

A variety of streamline patterns can be developed, depending on the vortex strength, I'. For
example, from Eq. 6.121 we can determine the location of stagnation points on the surface of the
cylinder. These points will occur at 6 = 64,y Where v, = 0 and therefore from Eq. 6.121

r

—_— 6.122
477Ua ( )

SiNOgog =
IfI" = O, then 4, = 0 or m—that is, the stagnation points occur at the front and rear of the cylinder
as are shown in Fig. 6.29a. However, for —1 < I'/47Ua < 1, the stagnation points will occur at
some other location on the surface as illustrated in Figs. 6.29b,c. If the absolute value of the
parameter I'/4mUa exceeds 1, Eq. 6.122 cannot be satisfied, and the stagnation point is located
away from the cylinder as shown in Fig. 6.29d.

The force per unit length developed on the cylinder can again be obtained by integrating the
differential pressure forces around the circumference asin Egs. 6.117 and 6.118. For the cylinder
with circulation, the surface pressure, p,, is obtained from the Bernoulli equation (with the surface
velocity given by Eq. 6.121)

1 1 r \?
+-pU=p;+ Spl—-2Usng + - —
Pot 5P Ps Zp( 0 27ra)

or

2lsing  TI? )
mal 4mr%a?U?
Equation 6.123 substituted into Eq. 6.117 for the drag, and integrated, again yields (Problem 6.74)
F,=0

1
ps = p0+2pU2<1—4sin26+ (6.123)

That is, even for the rotating cylinder no force in the direction of the uniform flow is developed.
However, use of Eq. 6.123 with the equation for the lift, F, (Eq. 6.118), yields (Problem 6.74)

F, = —pUr (6.124)

Thus, for the cylinder with circulation, lift is developed equal to the product of the fluid density,
the upstream velocity, and the circulation. The negative sign means that if U is positive (in the
positive x direction) and I is positive (a free vortex with counterclockwise rotation), the direction
of the F, is downward.

Of coursg, if the cylinder is rotated in the clockwise direction (I' < 0) the direction of F, would
be upward. This can be seen by studying the surface pressure distribution (Eqg. 6.123), which is plotted
in Fig. 6.30 for two situations. One hasI'/47Ua = 0, which corresponds to no rotation of the cylinder.
The other has I'/4wUa = —0.25, which corresponds to clockwise rotation of the cylinder. With no
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B FIGURE 6.30 Pressuredistribution on a circular cylinder with and without rotation.

rotation the flow is symmetrical both top to bottom and front to back on the cylinder. With rotation
the flow is symmetrical front to back, but not top to bottom. In this case the two stagnation points
[i.e, (ps — Po)/(pU?%/2) = 1] are located on the bottom of the cylinder and the average pressure on
the top half of the cylinder is less than that on the bottom half. The result is an upward lift force. It
is this force acting in a direction perpendicular to the direction of the approach velocity that causes
baseballs and golf ballsto curve when they spin asthey are propelled through the air. The devel opment
of thislift on rotating bodies is called the Magnus effect. (See Section 9.4 for further comments.)
Although Eq. 6.124 was developed for a cylinder with circulation, it gives the lift per unit
length for any two-dimensional object of any cross-sectional shape placed in a uniform, inviscid
stream. The circulation is determined around any closed curve containing the body. The general-
ized equation relating lift to fluid density, velocity, and circulation is called the Kutta—Joukowski
law, and is commonly used to determine the lift on airfoils (see Section 9.4.2 and Refs. 2-6).

F | u i d s i n

t h e N e w s

A sailing ship without sailsA sphere or cylinder spinning about
its axis when placed in an airstream develops a force at right an-
gles to the direction of the airstream. This phenomenon is com-
monly referred to as the Magnus effect and is responsible for the
curved paths of baseballs and golf balls. Another lesser-known
application of the Magnus effect was proposed by a German
physicist and engineer, Anton Flettner, in the 1920s. Flettner’s
idea was to use the Magnus effect to make a ship move. To
demonstrate the practicality of the “rotor-ship” he purchased a
sailing schooner and replaced the ship’s masts and rigging with

two vertical cylinders that were 50 feet high and 9 feet in diame-
ter. The cylinderslooked like smokestacks on the ship. Their spin-
ning motion was developed by 45-hp motors. The combination of
awind and the rotating cylinders created a force (Magnus effect)
to push the ship forward. The ship, named the Baden Baden,
made a successful voyage across the Atlantic, arriving in New
York Harbor on May 9, 1926. Although the feasibility of the
rotor-ship was clearly demonstrated, it proved to be less efficient
and practical than more conventional vessels and the ideawas not
pursued. (See Problem 6.72.)

6.7

Other Aspects of Potential Flow Analysis

In the preceding section the method of superposition of basic potentials has been used to obtain
detailed descriptions of irrotational flow around certain body shapesimmersed in auniform stream.
For the cases considered, two or more of the basic potentials were combined and the question is
asked: What kind of flow does this combination represent? This approach is relatively simple and
does not require the use of advanced mathematical techniques. It is, however, restrictive in its
general applicability. It does not allow us to specify a priori the body shape and then determine
the velocity potential or stream function that describes the flow around the particular body.
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Determining the velocity potential or stream function for a given body shape is a much more
complicated problem.

It is possible to extend the idea of superposition by considering a distribution of sources and
sinks, or doublets, which when combined with a uniform flow can describe the flow around bodies
of arbitrary shape. Techniques are available to determine the required distribution to give a
prescribed body shape. Also, for plane potential flow problems it can be shown that complex
variable theory (the use of real and imaginary numbers) can be effectively used to obtain solutions
to a great variety of important flow problems. There are, of course, numerical techniques that can
be used to solve not only plane two-dimensional problems, but the more general three-dimensional
problems. Since potential flow is governed by Laplace's equation, any procedure that is available
for solving this equation can be applied to the analysis of irrotational flow of frictionless fluids.
Potential flow theory is an old and well-established discipline within the general field of fluid
mechanics. The interested reader can find many detailed references on this subject, including Refs.
2, 3,4, 5, and 6 given at the end of this chapter.

An important point to remember is that regardless of the particular technique used to obtain
a solution to a potential flow problem, the solution remains approximate because of the
fundamental assumption of a frictionless fluid. Thus, “exact” solutions based on potential flow
theory represent, at best, only approximate solutions to real fluid problems. The applicability of
potential flow theory to real fluid problems has been alluded to in anumber of examples considered
in the previous section. As arule of thumb, potential flow theory will usually provide areasonable
approximation in those circumstances when we are dealing with a low viscosity fluid moving at
a relatively high velocity, in regions of the flow field in which the flow is accelerating. Under
these circumstances we generally find that the effect of viscosity is confined to the thin boundary
layer that develops at a solid boundary. Outside the boundary layer the velocity distribution and
the pressure distribution are closely approximated by the potential flow solution. However, in
those regions of the flow field in which the flow is decelerating (for example, in the rearward
portion of abluff body or in the expanding region of a conduit), the pressure near a solid boundary
will increase in the direction of flow. This so-called adverse pressure gradient can lead to flow
separation, a phenomenon that causes dramatic changes in the flow field which are generally not
accounted for by potential theory. However, as discussed in Chapter 9, in which boundary layer
theory is developed, it isfound that potential flow theory is used to obtain the appropriate pressure
distribution that can then be combined with the viscous flow equations to obtain solutions near
the boundary (and aso to predict separation). The general differential equations that describe
viscous fluid behavior and some simple solutionsto these equations are considered in the remaining
sections of this chapter.

6.8 Viscous Flow

To incorporate viscous effects into the differential analysis of fluid motion we must return to the
previously derived general eguations of motion, Egs. 6.50. Since these equations include both
stresses and velocities, there are more unknowns than equations, and therefore before proceeding
it is necessary to establish a relationship between the stresses and velocities.

6.8.1 Stress-Deformation Relationships

For incompressible Newtonian fluids it is known that the stresses are linearly related to the rates
of deformation and can be expressed in Cartesian coordinates as (for normal stresses)

- p+ 2 12
Txx p L ax (6.1259)
v
= pt+2u® 6.125b
Oyy p+cu ay ( )
J
o= —p+ 2Ma—vzv (6.125¢)
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au  Jv

Ty = Tyx = /_,L(ay + 6)() (6.125d)
w  IW

Ty = Ty = W <GZ + 3y> (6.125¢)
ow  du

TZX:TXZ:M((')X—’—GZ) (6125f)

where p is the pressure, the negative of the average of the three norma stresses; that is,
—p = (3)(ox + oy + o). For viscous fluids in motion the normal stresses are not necessarily the
same in different directions, thus, the need to define the pressure as the average of the three normal
stresses. For fluids at rest, or frictionless fluids, the normal stresses are equal in all directions. (We
have made use of thisfact in the chapter on fluid statics and in devel oping the equations for inviscid
flow.) Detailed discussions of the development of these stress—velocity gradient relationships can
be found in Refs. 3, 7, and 8. An important point to note is that whereas for elastic solids the
stresses are linearly related to the deformation (or strain), for Newtonian fluids the stresses are
linearly related to the rate of deformation (or rate of strain).

Incylindrical polar coordinatesthe stresses for incompressible Newtonian fluids are expressed
as (for normal stresses)

o= —p+ ZM% (6.126a)
To = —p + 2u (:‘Z’;" + 1;) (6.126b)
o,=—p+2u e (6.126¢)
0z
(for shearing stresses)
T = Tor = M{r ;(?) + :iﬂ (6.126d)
vy  10v,
Toy = Ty = W (dz + rae) (6.126¢€)
v, 0,
Ty = Tz = U (az + 8r> (6.126f)

The double subscript has a meaning similar to that of stresses expressed in Cartesian coordinates—
that is, the first subscript indicates the plane on which the stress acts, and the second subscript the
direction. Thus, for example, o, refersto astress acting on aplane perpendicular to theradial direction
and in the radid direction (thus a normal stress). Similarly, 7, refers to a stress acting on a plane
perpendicular to theradial direction but in the tangential (0 direction) and istherefore a shearing stress.

6.8.2 The Navier—Stokes Equations

The stresses as defined in the preceding section can be substituted into the differential equations
of motion (Egs. 6.50) and simplified by using the continuity equation (Eg. 6.31) to obtain:

(x direction)

au  du  au au ap
pl=+u—+ovo—+w—)=——+pg, +
ot ax ay 0z

’u 9 azu)

—+t— +— 6.127a
H (ax2 o T az) )
(y direction)
2 82

9 B] 9 9 9 9 02
p<” +ul 0%y w”) — P g+ M(” + 205 ”) (6.127b)
ot X ay 0z ay X2 oy 97
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<

(z direction)

(f’W+uaW+v8W+WaW)—_"p+ (8ZW+32W+32W)
at o Coax oy oz oz PETHE e T T2
where u, v, and w are the x, y, and z components of velocity as shown in the figure in the margin
of the previous page. We have rearranged the equations so the acceleration terms are on the |eft
side and the force terms are on the right. These equations are commonly called the Navier —Stokes
equations, named in honor of the French mathematician L. M. H. Navier (1785-1836) and the
English mechanician Sir G. G. Stokes (1819-1903), who were responsible for their formulation.
These three equations of motion, when combined with the conservation of mass equation (Eq. 6.31),
provide a complete mathematical description of the flow of incompressible Newtonian fluids. We
have four equations and four unknowns (u, v, w, and p), and therefore the problem is “well-posed”
in mathematical terms. Unfortunately, because of the genera complexity of the Navier—Stokes
equations (they are nonlinear, second-order, partial differential equations), they are not amenable
to exact mathematical solutions except in afew instances. However, in those few instances in which
solutions have been obtained and compared with experimental results, the results have beenin close
agreement. Thus, the Navier—Stokes equations are considered to be the governing differential
equations of motion for incompressible Newtonian fluids.

In terms of cylindrical polar coordinates (see the figure in the margin), the Navier—Stokes
equations can be written as

(6.127¢)

(r direction)
kY v, v, v, V2 v
p<r+ vrirJrJir_ijL vzr)
Jat ar r 90 r 0z
p 19 av,) v, 107, 20y, azv,}
= — + +ul-—lr— |- —w+=—5 - =—+ 6.128a
or PO “[mr( ar r>2 r290> r290 92 ( )
(6 direction)
v v Dy OV, (X)) v
p<”+v,"+"”+ ] vz”>
ot ar r o6 r 0z
10p 19 av9> vy, 10%, 2 v, azve}
= —=— 4+ +ul-——r—-—=+=—+=—+— 6.128b
rog PP ”{rar( o) e T e T Tz ¢ )
(z direction)

v, v, v, v, avz)
Yt vt t v,
p( at - ar T rae ez

op 10 avz) 1 0%, azvz}
=——+pg+tul-—r—)+S—= + 6.128c
oz P4 '“[r ar( o) e Tz | )

To provide a brief introduction to the use of the Navier—Stokes equations, a few of the
simplest exact solutions are developed in the next section. Although these solutions will prove to
be relatively simple, thisis not the case in general. In fact, only afew other exact solutions have
been obtained.

Some Simple Solutions for Laminar, Viscous, Incompressible Fluids

A principal difficulty in solving the Navier—Stokes equations is because of their nonlinearity arising
from the convective acceleration terms (i.e., U du/9x, w 9v/dz, etc.). There are no general analytical
schemes for solving nonlinear partial differential equations (e.g., superposition of solutions cannot
be used), and each problem must be considered individually. For most practical flow problems, fluid
particles do have accelerated motion as they move from one location to another in the flow field.
Thus, the convective acceleration terms are usually important. However, there are afew specia cases
for which the convective acceleration vanishes because of the nature of the geometry of the flow
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system. In these cases exact solutions are often possible. The Navier—Stokes equations apply to both
laminar and turbulent flow, but for turbulent flow each velocity component fluctuates randomly with
respect to time and this added complication makes an analytical solution intractable. Thus, the exact
solutions referred to are for laminar flows in which the velocity is either independent of time (steady
flow) or dependent on time (unsteady flow) in a well-defined manner.

6.9.1 Steady, Laminar Flow between Fixed Parallel Plates

We first consider flow between the two horizontal, infinite parallel plates of Fig. 6.31a. For this
geometry the fluid particles move in the x direction parallel to the plates, and there is no velocity
inthey or zdirection—that is,» = 0 and w = 0. Inthiscaseit follows from the continuity equation
(Eq. 6.31) that du/ox = 0. Furthermore, there would be no variation of u in the z direction for
infinite plates, and for steady flow du/ot = 0 so that u = u(y). If these conditions are used in the
Navier—Stokes equations (Egs. 6.127), they reduce to

op 82u)
L 12
0 X ,u.(ayz (6.129)
_
0= oy P9 (6.130)
_
0= (6.131)

where we have set g, = 0,9, = —g, and g, = 0. That is, the y axis points up. We see that for this
particular problem the Navier—Stokes equations reduce to some rather simple equations.
Equations 6.130 and 6.131 can be integrated to yield

p = —pgy + fi(x) (6.132)

which shows that the pressure varies hydrostatically in the y direction. Equation 6.129, rewritten
as

du_1ip
dy>  m ox

o _1(m),
dy mlax)? @

J
1(p)y2 tCy+¢C

u:
2u \ 9X

Note that for this simple flow the pressure gradient, op/dx, is treated as constant as far as the
integration is concerned, since (as shown in Eq. 6.132) it is not a function of y. The two constants
¢, and ¢, must be determined from the boundary conditions. For example, if the two plates are

{
Y —_—u =
Unax
X 1g I

can be integrated to give

and integrated again to yield

(6.133)
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B FIGURE 6.31 Theviscous flow between parallel plates:
(a) coordinate system and notation used in analysis; (b) parabolic velocity
distribution for flow between parallel fixed plates.
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fixed, then u = 0 for y = = h (because of the no-slip condition for viscous fluids). To satisfy this
condition ¢; = 0 and
1 /op
= —(—=|nr?
“ 2u <GX>
Thus, the velocity distribution becomes
1/0
(p) (¥ — ?) (6134)

u:
2\ 90X

Equation 6.134 shows that the vel ocity profile between thetwo fixed platesis parabolic asillustrated
in Fig. 6.31hb.

The volume rate of flow, g, passing between the plates (for a unit width in the z direction) is
obtained from the relationship

h h
_ _ [ ()2 2
4- Jhudy— thl/«(aX)(yz r)dy
or
o ap)
9= 5 (ax (6.135)

The pressure gradient op/ox is negative, since the pressure decreases in the direction of flow. If
we let Ap represent the pressure drop between two points a distance ¢ apart, then

Ap_ _p
¢ aX
and Eq. 6.135 can be expressed as
_ 2ap (6.136)
3ul

Theflow isproportional to the pressure gradient, inversely proportional to the viscosity, and strongly
dependent (~h?) on the gap width. In terms of the mean velocity, V, where V = g/2h, Eqg. 6.136
becomes

v = rap (6.137)

3wl '

Equations 6.136 and 6.137 provide convenient relationships for relating the pressure drop along a
parallel-plate channel and the rate of flow or mean velocity. The maximum velocity, Uy, Occurs
midway (y = 0) between the two plates, as shown in Fig. 6.31b, so that from Eq. 6.134

= ()
max 21\ 90X

Unax = 3V (6.138)

The details of the steady laminar flow between infinite parallel plates are completely predicted
by this solution to the Navier—Stokes equations. For example, if the pressure gradient, viscosity, and
plate spacing are specified, then from Eq. 6.134 the velocity profile can be determined, and from
Egs. 6.136 and 6.137 the corresponding flowrate and mean velocity determined. In addition, from

Eq. 6.132 it follows that
ap
fi(x) = (ax) X+ Po

where p, is areference pressure at X = y = 0, and the pressure variation throughout the fluid can
be obtained from

or

d
p=—pgy + <a§) X + Po (6.139)
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For agiven fluid and reference pressure, p,, the pressure at any point can be predicted. Thisrelatively
simple example of an exact solution illustrates the detailed information about the flow field which
can be obtained. The flow will be laminar if the Reynolds number, Re = pV(2h)/u, remains below
about 1400. For flow with larger Reynolds numbers the flow becomes turbulent and the preceding

analysis is not valid since the flow field is complex, three-dimensional, and unsteady.
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10 tons on 8 psi Place a golf ball on the end of a garden hose
and then slowly turn the water on a small amount until the ball
just barely lifts off the end of the hose, leaving a small gap be-
tween the ball and the hose. The ball isfreeto rotate. Thisisthe
idea behind the new “floating ball water fountains” developed
in Finland. Massive, 10-ton, 6-ft-diameter stone spheres are
supported by the pressure force of the water on the curved sur-
face within a pedestal and rotate so easily that even a small
child can change their direction of rotation. The key to the

fountain design is the ability to grind and polish stone to an ac-
curacy of afew thousandths of an inch. This allows the gap be-
tween the ball and its pedestal to be very small (on the order of
5/1000 in.) and the water flowrate correspondingly small (on
the order of 5 gallons per minute). Due to the small gap, the
flow in the gap is essentially that of flow between parallel
plates. Although the sphere is very heavy, the pressure under
the sphere within the pedestal needsto be only about 8 psi. (See
Problem 6.88.)

For a given flow
geometry, the char-
acter and details of
the flow are
strongly dependent
on the boundary
conditions.

6.9.2 Couette Flow

Another simple parallel-plate flow can be devel oped by fixing one plate and letting the other plate
move with a constant velocity, U, as is illustrated in Fig. 6.32a. The Navier—Stokes equations
reduce to the same form as those in the preceding section, and the solution for the pressure and
velocity distribution are still given by Egs. 6.132 and 6.133, respectively. However, for the moving
plate problem the boundary conditions for the velocity are different. For this case we locate the
origin of the coordinate system at the bottom plate and designate the distance between the two
plates as b (see Fig. 6.32a). The two constants ¢, and ¢, in Eq. 6.133 can be determined from the
boundary conditions,u=0aty=0andu = U aty = b. It follows that

y 1 /dp
=U=+—(— — )
u Ub 2 (ax> (y> — by) (6.140)
or, in dimensionless form,
AR
U b 2uU\ax/\b b (6.141)

Moving
plate

Fixed
plate

(a)

B FIGURE 6.32 Theviscous flow between parallel plates with bottom plate fixed and
upper plate moving (Couette flow): (a) coordinate system and notation used in analysis; (b) velocity
distribution as a function of parameter, P, where P = —(b%/2uU) dp/dx. (From Ref. 8, used by
permission.)
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Flow between par-
allel plates with one
plate fixed and the
other moving is
called Couette flow.
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Lubricating
oil

Rotating shaft

Housing
/

B FIGURE 6.33
journal bearing.

Flow in the narrow gap of a

The actual velocity profile will depend on the dimensionless parameter

2 (9
(3
2uU \ 9x

Several profiles are shown in Fig. 6.32b. This type of flow is called Couette flow.

The simplest type of Couette flow is one for which the pressure gradient is zero; that is, the
fluid motion is caused by the fluid being dragged along by the moving boundary. In this case, with
ap/ox = 0, Eq. 6.140 simply reduces to

u= u% (6.142)
which indicates that the velocity varies linearly between the two plates as shown in Fig. 6.31b for
P = 0. This situation would be approximated by the flow between closely spaced concentric cylinders
in which one cylinder is fixed and the other cylinder rotates with a constant angular velocity, w. As
illustrated in Fig. 6.33, the flow in an unloaded journa bearing might be approximated by this smple
Couette flow if the gap width isvery small (i.e., r, — r; < ;). InthiscaseU = r,w, b = r, — r;, and
the shearing stress resisting the rotation of the shaft can be simply calculated as 7 = ur; w/(r, — ;).
When the bearing is loaded (i.e., aforce gpplied normal to the axis of rotetion), the shaft will no longer
remain concentric with the housing and the flow cannot be treated as flow between parallel boundaries.
Such problems are dedlt with in lubrication theory (see, for example, Ref. 9).

[EXAWPLE 6.9

GIVEN A wide moving belt passes through a container of a
viscous liquid. The belt moves vertically upward with a constant
velocity, V,, asillustrated in Fig. E6.9a. Because of viscousforces
the belt picks up a film of fluid of thickness h. Gravity tends to
make the fluid drain down the belt. Assume that the flow is lami-
nar, steady, and fully developed.

FIND Use the Navier—Stokes equations to determine an ex-
pression for the average velocity of the fluid film as it is dragged
up the belt.

SoLuTION

Since the flow is assumed to be fully developed, the only velocity
component is in the y direction (the » component) so that
u=w=0. It follows from the continuity equation that
dv/dy = 0, andfor steady flow dv/ot = 0, sothat v = v(x). Under
these conditions the Navier—Stokes equations for the x direction
(Eg. 6.127a) and the z direction (perpendicular to the paper)
(Eq. 6.127c) simply reduce to

p p
ax az

0

"

/Fluid layer
Vo

B FIGURE E6.9a

This result indicates that the pressure does not vary over a hori-
zontal plane, and since the pressure on the surface of the film
(x = h) is atmospheric, the pressure throughout the film must be
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atmospheric (or zero gage pressure). The equation of motion in
the y direction (Eq. 6.127b) thus reduces to

2
v
0= —pg+pu—7p
P9t B e
or
d vy
= =9 1
e @
Integration of Eq. 1 yields
dv vy
- =1L +
o MX C1 (2

On the film surface (x = h) we assume the shearing stress is
zero—that is, the drag of the air on the film is negligible. The
shearing stress at the free surface (or any interior parallel surface)
is designated as 7,,, where from Eq. 6.125d

(v
Txy_M &

Thus, if 7, = O at x = h, it follows from Eq. 2 that

pull
o

le

A second integration of Eq. 2 givesthe velocity distribution in
thefilm as
h
Y- Tyt
2u M
Atthebelt (x = 0) the fluid velocity must match the belt velocity,
V,, SO that

V=

c; =V
and the velocity distribution is therefore
h
v=2¢ - Dyt v, ©)]
2u o

With the velocity distribution known we can determine the
flowrate per unit width, g, from the relationship

h h h
q= J vdx = J (lxz—y—x+vo)dx
o b \2u 0
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and thus
yh®
qg=Voh———
0 3
The average film velocity, V (where g = Vh), istherefore
h2
=V, — 7 (Ans)
3u

COMMENT Equation (3) can be written in dimensionless

form as

v x\? X

Vo = C(h) ZC(h> +1
where ¢ = yh%2uV,. This velocity profile is shown in Fig. E6.9b.
Note that even though the belt is moving upward, for ¢ > 1 (e.g.,
for fluids with small enough viscosity or with asmall enough belt
speed) there are portions of the fluid that flow downward (asin-
dicated by v/V, < 0).

It isinteresting to note from this result that there will be a net

upward flow of liquid (positive V) only if Vo > yh?/3u. It takesa
relatively large belt speed to lift asmall viscosity fluid.

B FIGURE E6.9b

6.9.3 Steady, Laminar Flow in Circular Tubes

Probably the best known exact solution to the Navier—Stokes equationsis for steady, incompressible,

An exact solution
can be obtained for
steady, incompress-
ible, laminar flow in
circular tubes.

laminar flow through a straight circular tube of constant cross section. This type of flow is commonly
called Hagen—Poiseuille flow, or smply Poiseuilleflow. It isnamed in honor of J. L. Poiseuille(1799—
1869), a French physician, and G. H. L. Hagen (1797—-1884), a German hydraulic engineer. Poiseuille
was interested in blood flow through capillaries and deduced experimentally the resistance laws

for laminar flow through circular tubes. Hagen's investigation of flow in tubes was aso
experimental. It was actually after the work of Hagen and Poiseuille that the theoretical results
presented in this section were determined, but their names are commonly associated with the

solution of this problem.

Consider the flow through a horizonta circular tube of radius R as is shown in Fig. 6.34a.
Because of the cylindrical geometry it is convenient to use cylindrical coordinates. We assume that
the flow is paralel to the walls so that v, = 0 and v, = 0, and from the continuity equation (6.34)
dv,/dz = 0. Also, for steady, axisymmetric flow, v, is not a function of t or 6 so the velocity, v,
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BEFIGURE 6.34
The viscous flow in a horizon-
dr tal, circular tube: (a) coordi-
nate system and notation used
in analysis; (b) flow through
(a) (b) differential annular ring.

isonly afunction of theradial position within the tube—that is, v, = v,(r). Under these conditions
the Navier—Stokes equations (Egs. 6.128) reduce to

. ap
0= —pgsing T (6.143)
1adp
= — - 144
0 pg cos b r 30 (6.144)
ap 10/ ov,
0= %1 2(c 2 (6.145

where we have used the relationshipsg, = —gsin6 and g, = —g cos 6 (with § measured from the
horizontal plane).
Equations 6.143 and 6.144 can be integrated to give
p=—py(rsind) + f,(2)
or
p=—pgy + fi(2) (6.146)

Equation 6.146 indicates that the pressure is hydrostatically distributed at any particular cross
section, and the z component of the pressure gradient, dp/dz, is not a function of r or 6.

' * The equation of motion in the z direction (Eqg. 6.145) can be written in the form
V6.13 Laminar 1a(r avz> _1dp
flow ror ar Moz

and integrated (using the fact that dp/dz = constant) to give
v 1/0
r—= = <p>r2 + ¢,
ar 2u\ a9z
Integrating again we obtain

1/dp\ ,
=— + + .
v, 2 (az>r cInr + ¢, (6.147)

Since we wish v, to be finite at the center of the tube (r = 0), it follows that ¢, = O [since
In (0) = —x]. At thewall (r = R) the velocity must be zero so that

__ 1 fop
“= 4M<8Z>R2

and the velocity distribution becomes

The velocity distri- 1 /dp), ,

bution is parabolic v, = 4,u<az>(r - R) (6.148)
for steady, laminar . T ]

flowin circular Thus, at any cross section the velocity distribution is parabolic.

tubes. To obtain arelationship between the volume rate of flow, Q, passing through the tube and the

pressure gradient, we consider the flow through the differential, washer-shaped ring of Fig. 6.34b.
Since v, is congtant on this ring, the volume rate of flow through the differential areadA = (27rr) dr is

dQ = v(27r) dr
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V6.14 Complex
pipe flow

Poiseuille's law re-
lates pressure drop

and flowrate for
steady, laminar flow

in circular tubes.

F

u
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and therefore

R
Q= 217J vx dr

0

(6.149)

Equation 6.148 for v, can be substituted into Eq. 6.149, and the resulting equation integrated to
yield

(6.150)

This relationship can be expressed in terms of the pressure drop, Ap, which occurs over a length,
¢, dong the tube, since

Ap_ 9p
¢ oz
and therefore
_ mR%p 6.151
8l (6.151)

For a given pressure drop per unit length, the volume rate of flow is inversely proportional to the
viscosity and proportional to the tube radius to the fourth power. A doubling of the tube radius
produces a 16-fold increase in flow! Equation 6.151 is commonly called Poiseuille's law.
In terms of the mean velocity, V, where V = Q/7R?, Eq. 6.151 becomes
— @ (6 152)
 8ut '

The maximum velocity v, occurs at the center of the tube, where from Eq. 6.148
¥ () _Rap
4u \ 0z

B Aut
Vmax = 2V

(6.153)

vmax

S0 that

The velocity distribution, as shown by the figure in the margin, can be written in terms of v, as

(7]

As was true for the similar case of flow between parallel plates (sometimes referred to as
plane Poiseuille flow), a very detailed description of the pressure and velocity distribution in
tube flow results from this solution to the Navier—Stokes equations. Numerous experiments
performed to substantiate the theoretical results show that the theory and experiment are in
agreement for the laminar flow of Newtonian fluids in circular tubes or pipes. In general, the
flow remains laminar for Reynolds numbers, Re = pV(2R)/u, below 2100. Turbulent flow in
tubes is considered in Chapter 8.

U,

(6.154)

vmax

i d s i n t h e N e w s

Poiseuille’s law revisited Poiseuille’s law governing laminar
flow of fluidsin tubes has an unusual history. It was developed in
1842 by a French physician, J. L. M. Poiseuille, who was inter-
ested in the flow of blood in capillaries. Poiseuille, through a
series of carefully conducted experiments using water flowing
through very small tubes, arrived at the formula, Q = KAp D*/¢.
InthisformulaQ isthe flowrate, K an empirical constant, Ap the
pressure drop over thelength ¢, and D the tube diameter. Another

formula was given for the value of K as a function of the water
temperature. It was not until the concept of viscosity was intro-
duced at a later date that Poiseuille’s law was derived mathe-
matically and the constant K found to be equal to 7/8u, where
w isthefluid viscosity. The experiments by Poiseuille have long
been admired for their accuracy and completeness considering
the laboratory instrumentation available in the mid nineteenth
century.
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e, T

) §
—>

B FIGURE 6.35 Theviscous flow through an annulus.

6.9.4 Steady, Axial, Laminar Flow in an Annulus

An exact solution The differential equations (Egs. 6.143, 6.144, 6.145) used in the preceding section for flow in
B T atube also apply to the axial flow in the annular space between two fixed, concentric cylinders
axial flowinthean-  (Fig. 6.35). Equation 6.147 for the velocity distribution still applies, but for the stationary

nular space be- annulus the boundary conditions become v, = 0 at r = r, and v, = 0 for r = r;. With these
tween two fixed, two conditions the constants ¢, and ¢, in Eq. 6.147 can be determined and the velocity
concentric cylin- distribution becomes
ders. 5 ) 5
vZ=1<p>{r2—r§+ il roInr} (6.155)
4\ 9z In(ro/ri) Yo

The corresponding volume rate of flow is
. 7 <6p>[ PR (e r?)z}
Q= Jr v (2mr)dr = 8 \ oz Fg —rj In(r/r)

or in terms of the pressure drop, Ap, in length € of the annulus

wAp[ N riﬂ

T in(ry/)

The velocity at any radial location within the annular space can be obtained from Eq. 6.155.
The maximum velocity occurs at the radiusr = r,, where dv,/ar = 0. Thus,

Q=—-—|r

1
Bt (6.156)

rg—ré |v2
M= |:2|n(ro/r|)] (6157)

An inspection of this result shows that the maximum velocity does not occur at the midpoint of
the annular space, but rather it occurs nearer the inner cylinder. The specific location depends on
r, and r;.

These results for flow through an annulus are valid only if the flow is laminar. A criterion
based on the conventional Reynolds number (which is defined in terms of the tube diameter) cannot
be directly applied to the annulus, since there are really “two” diameters involved. For tube cross
sections other than simple circular tubes it is common practice to use an “effective” diameter,
termed the hydraulic diameter, Dy, which is defined as

D, — 4 X cross-sectional area
" wetted perimeter

The wetted perimeter is the perimeter in contact with the fluid. For an annulus

A (r2 — r?)

N m(r, ) 2o = 1)

In terms of the hydraulic diameter, the Reynolds number is Re = pD,V/u (where V = Q/
cross-sectional area), and it is commonly assumed that if this Reynolds number remains below
2100 the flow will be laminar. A further discussion of the concept of the hydraulic diameter as it
applies to other noncircular cross sections is given in Section 8.4.3.
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GIVEN A viscous liquid (p= 118X 10°kg/m? u =
0.0045 N - s/m?) flows at a rate of 12 ml/s through a horizontal,
4-mm-diameter tube.

FIND (a) Determine the pressure drop aong al-m length of the
tube which isfar from the tube entrance so that the only component

SoLUTION
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L ITUITCECRTY cominar Fow in an Annuius

of velocity is parallel to the tube axis. (b) If a2-mm-diameter rod is
placed in the 4-mm-diameter tube to form a symmetric annulus,
what is the pressure drop along al-m length if the flowrate remains
the same asin part (a)?

(@) We first calculate the Reynolds number, Re, to determine
whether or not the flow is laminar. With the diameter
D = 4 mm = 0.004 m, the mean velocity is

Q  (12ml/s)(20°° m*/ml)
(m/4)D?  (/4)(0.004 m)>?

= 0.955m/s

and, therefore,

_ pVD (118 X 10%kg/m°)(0.955 m/s)(0.004 m)
T 0.0045 N - s/m?
= 1000

Re

Since the Reynolds number is well below the critical value of
2100 we can safely assume that the flow islaminar. Thus, we can
apply Eqg. 6.151, which gives for the pressure drop

8ul
~ 8(0.0045N - /m?)(1 m)(12 X 10"°m%/s)
a 7(0.002 m)*
= 8.59 kPa (Ans)

(b) For flow in the annulus with an outer radiusr, = 0.002 m
and an inner radiusr; = 0.001 m, the mean velocity is
V= Q B 12 X 10 *m%/s
(7)[(0.002 m)? — (0.001 m)?]

m(ré —rd)

= 1.27m/s

and the Reynolds number [based on the hydraulic diameter,
Dy, = 2(r, — r;) = 2(0.002m — 0.001 m) = 0.002 m] is

D,V
Re = PRV
M
(118 X 10%kg/m®) (0.002 m) (1.27 m/s)
a 0.0045 N - 5/m?
= 666

This value is aso well below 2100 so the flow in the annulus
should also be laminar. From Eqg. 6.156,

ap BHQ[ e _ o (B rEP]
m ° I |n(ro/ri)

so that
8(0.0045 N - s/m?)(1 m)(12 X 10~ ® m%/s)

T

X {(0.002 m)* — (0.001 m)*

[(0.002 m)? — (0.001 m)2]2}71
~ In(0.002 m/0.001 m)
= 68.2kPa (Ans)

COMMENTS Thepressuredropinthe annulusis much larger
than that of the tube. Thisis not a surprising result, since to main-
tain the same flow in the annulus as that in the open tube, the aver-
age velocity must be larger (the cross-sectional areais smaller) and
the pressure difference al ong the annulus must overcome the shear-
ing stresses that develop along both an inner and an outer wall.

By repeating the calculations for various radius ratios, r;f,
the results shown in Fig. E6.10 are obtained. It is seen that the
pressure drop ratio, ApPanuus/APruse (i-€., the pressure drop in the
annulus compared to that in a tube with aradius equal to the outer
radius of the annulus, r), is a strong function of the radius ratio.
Even an annuluswith avery small inner radiuswill have apressure
drop significantly larger than that of atube. For example, if the in-
ner radiusisonly 1/100 of the outer radius, A P.nuius/APrube = 1-28.
As shown in the figure, for larger inner radii, the pressure drop ra-
tioismuch larger [i.e., APauus/APupe = 7-94for rif, = 0.50asin
part (b) of thisexample].

8
(0.50, 7.94)
| o1s (0.01, 1.28)
ol 12
o 11
= 1
= 0 0.005 0.0l
2— <
3
2
10
0 0.1 0.2 03 0.4 0.5

ri/rg

B FIGURE E6.10
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6.10 Other Aspects of Differential Analysis

Very few practical
fluid flow problems
can be solved using
an exact analytical
approach.

/N

V6.15 CFD example

In this chapter the basic differential equations that govern the flow of fluids have been devel oped.
The Navier—Stokes equations, which can be compactly expressed in vector notation as

v
p(at +V- VV) = —Vp+ pg + uV¥V (6.158)

along with the continuity equation
V-V=0 (6.159)

are the general equations of motion for incompressible Newtonian fluids. Although we have
restricted our attention to incompressible fluids, these equations can be readily extended to include
compressible fluids. It is well beyond the scope of this introductory text to consider in depth
the variety of analytical and numerical techniques that can be used to obtain both exact and
approximate solutions to the Navier—Stokes equations. Students, however, should be aware of the
existence of these very general equations, which are frequently used asthe basisfor many advanced
analyses of fluid motion. A few relatively simple solutions have been obtained and discussed in
this chapter to indicate the type of detailed flow information that can be obtained by using
differential analysis. However, it is hoped that the relative ease with which these solutions were
obtained does not give the false impression that solutions to the Navier—Stokes equations are
readily available. This is certainly not true, and as previously mentioned there are actualy very
few practical fluid flow problems that can be solved by using an exact analytical approach. In
fact, there are no known analytical solutionsto Eg. 6.158 for flow past any object such as a sphere,
cube, or airplane.

Because of the difficulty in solving the Navier—Stokes equations, much attention has been
given to various types of approximate solutions. For example, if the viscosity is set equal to zero,
the Navier—Stokes equations reduce to Euler's equations. Thus, the frictionless fluid solutions
discussed previously are actually approximate solutions to the Navier—Stokes equations. At the other
extreme, for problems involving slowly moving fluids, viscous effects may be dominant and
the nonlinear (convective) acceleration terms can be neglected. This assumption greatly simplifies
the analysis, since the equations now become linear. There are numerous analytical solutionsto these
“dow flow” or “creeping flow” problems. Another broad class of approximate solutionsis concerned
with flow in the very thin boundary layer. L. Prandtl showed in 1904 how the Navier—Stokes
equations could be simplified to study flow in boundary layers. Such “boundary layer solutions’
play avery important role in the study of fluid mechanics. A further discussion of boundary layers
is given in Chapter 9.

6.10.1 Numerical Methods

Numerical methods using digital computers are, of course, commonly utilized to solve a wide
variety of flow problems. As discussed previously, although the differential equations that govern
the flow of Newtonian fluids [the Navier—Stokes equations (6.158)] were derived many years ago,
there are few known analytical solutions to them. With the advent of high-speed digital computers
it has become possible to obtain numerical solutions to these (and other fluid mechanics) equations
for many different types of problems. A brief introduction to computational fluid dynamics (CFD)
is given in Appendix A.

Access to a program called FlowLab is available with this textbook. FlowLab is an
educational version of a commercial CFD program. The backbone of FlowLab is the Fluent
CFD package, which was used to create the numerical animations of flow past a spinning football
referenced at the beginning of the chapter (V6.1 and V6.2). FlowLab provides a virtual
laboratory for fluids experiments that makes use of the power of CFD, but with a student-
friendly interface. Chapters 7-9 contain fluids problems that require the use of FlowLab to
obtain the solutions.
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t h e N e w s

Fluidsin the Academy Awards A computer science professor at
Stanford University and his colleagues were awarded a Scientific
and Technical Academy Award for applying the Navier—Stokes
equations for use in Hollywood movies. These researchers make
use of computational agorithms to numerically solve the
Navier—Stokes equations (al so termed computational fluid dynam-

ics, or CFD) and simulate complex liquid flows. Therealism of the
simulations has found application in the entertainment industry.
Movie producers have used the power of these numerical tools to
simulate flows from ocean waves in “Pirates of the Caribbean” to
lava flows in the final duel in “Star Wars. Revenge of the Sith.”
Therefore, even Hollywood has recognized the useful ness of CFD.

6.11 Chapter Summary and Study Guide

volumetric dilatation

rate
vorticity
irrotational flow

continuity equation

stream function

Euler’s equations of

motion
ideal fluid

Bernoulli equation

velocity potential
potential flow

equipotential lines

flow net
uniform flow
source and sink
vortex
circulation
doublet
method of
superposition
half-body
Rankine oval
Navier —Stokes
equations
Couette flow
Poiseuille's law

Differential analysis of fluid flow is concerned with the development of concepts and techniques that
can be used to provide a detailed, point by point, description of aflow field. Concepts related to the
motion and deformation of afluid element areintroduced, including the Eulerian method for describing
the velocity and acceleration of fluid particles. Linear deformation and angular deformation of afluid
element are described through the use of flow characteristics such as the volumetric dilatation rate,
rate of angular deformation, and vorticity. The differential form of the conservation of mass equation
(continuity equation) is derived in both rectangular and cylindrical polar coordinates.

Use of the stream function for the study of steady, incompressible, plane, two-dimensional
flow is introduced. The general equations of motion are developed, and for inviscid flow these
equations are reduced to the simpler Euler equations of motion. The Euler equations are integrated
to give the Bernoulli equation, and the concept of irrotational flow isintroduced. Use of the velocity
potential for describing irrotational flow is considered in detail, and several basic velocity potentials
are described, including those for a uniform flow, source or sink, vortex, and doublet. The technique
of using various combinations of these basic velocity potentials, by superposition, to form new
potentials is described. Flows around a half-body, a Rankine oval, and around a circular cylinder
are obtained using this superposition technique.

Basic differential equations describing incompressible, viscous flow (the Navier—Stokes
equations) are introduced. Several relatively simple solutions for steady, viscous, laminar flow
between parallel plates and through circular tubes are included.

Thefollowing checklist provides a study guide for this chapter. When your study of the entire
chapter and end-of-chapter exercises has been completed you should be able to

m write out meanings of the terms listed here in the margin and understand each of the related
concepts. These terms are particularly important and are set in italic bold, and color type
in the text.

m determine the acceleration of a fluid particle, given the equation for the velocity field.

determine the volumetric dilatation rate, vorticity, and rate of angular deformation for a fluid
element, given the equation for the velocity field.

show that a given velocity field satisfies the continuity equation.

use the concept of the stream function to describe a flow field.

use the concept of the velocity potential to describe a flow field.

use superposition of basic velocity potentials to describe simple potentia flow fields.

use the Navier—Stokes equations to determine the detailed flow characteristics of in-
compressible, steady, laminar, viscous flow between parallel plates and through circular tubes.

Some of the important equations in this chapter are:
. . . Vv Vv oV oV
Acceleration of fluid particle a=—+U—+v—+W— (6.2)
at ax ay 9z
Vorticity (=20=V XV (6.17)
9 Jd(pu J J(pw
Conservation of mass 9 dew) | 3pv)  ApW) _ 0 (6.27)
o ox ay 0z
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Stream function u= v=—— (6.37)
ay 0X
. . J Ju Ju ou Jau
Euler's equations of mation POy — P p ( +tu—+ov—+ w> (6.51a)
X ot X ay 0z
J av v av v
ng_p:P( +u+v+w> (6.51b)
ay Jat X ay 0z
ap oW ow oW ow
S — — 6.51c
P9 ™, p(at ax oy az> (6:510)
Velocity potential V = V¢ (6.65)
Laplace's equation Vip =0 (6.66)
Uniform potential flow ¢ = U(xcosa + ysina) ¢ = U(ycosa — xsina) u= Ucosa
v=UsSna
m m
Source and sink =—1Inr 0 V= ——
¢ 2w v = 2w " 27
1)9 = 0
r r
Vortex b=_-—0 Y =——Inr v, =0
2 2
r
v, =
O omr
K cos6 Ksn6 K cos6
Doublet ¢ = = — v = -
r r r
_ Kcos#
The Navier—Stokes equations
(x direction)
au au au au 0 ®u  u du
p<+u+v+W)=—p+ng+,u,< +7+7 (6.127a)
at X ay 0z X X2 ay?
(y direction)
v v v v ] %y 0% 32
p< Tul 2y w) — P g+ u<2 5+ 27 e12m)
ot aX ay 0z ay Xz ay?
(z direction)
oW oW oW oW 0 Pw 0w o°w
( +u+v+w)= ——er,ogZ ,u( > —+— (6.127c¢)
ot X ay 0z 0z xe oy
References
1. White, F. M., Fluid Mechanics, 5th Ed., McGraw-Hill, New York, 2003.
2. Streeter, V. L., Fluid Dynamics, McGraw-Hill, New York, 1948.
3. Rouse, H., Advanced Mechanics of Fluids, Wiley, New York, 1959.
4. Milne-Thomson, L. M., Theoretical Hydrodynamics, 4th Ed., Macmillan, New York, 1960.
5. Rabertson, J. M., Hydrodynamics in Theory and Application, Prentice-Hall, Englewood Cliffs, N.J., 1965.
6. Panton, R. L., Incompressible Flow, 3rd Ed., Wiley, New York, 2005.
7. Li, W. H., and Lam, S. H., Principles of Fluid Mechanics, Addison-Wesley, Reading, Mass., 1964.
8. Schlichting, H., Boundary-Layer Theory, 8th Ed., McGraw-Hill, New York, 2000.
9. Fuller, D. D., Theory and Practice of Lubrication for Engineers, Wiley, New York, 1984.

Review Problems
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Note: Unless otherwise indicated, use the values of fluid
propertiesfound in the tables on the inside of the front cover.
Problemsdesignated with an (*) areintended to be solved with
the aid of a programmable calculator or a computer. Prob-
lems designated with a (1) are “ open-ended” problemsand re-
quire critical thinking in that to work them one must make
various assumptions and provide the necessary data. Thereis
not a unique answer to these problems.

Answers to the even-numbered problems are listed at the
end of the book. Access to the videos that accompany problems
can be obtained through the book’s web site, www.wiley.com/
college/munson. The lab-type problems can also be accessed on
thisweb site.

Section 6.1 Fluid Element Kinematics

6.1 Obtain a photograph/image of a situation in which a fluid is
undergoing angular deformation. Print this photo and write a brief
paragraph that describes the situation involved.

6.2 The velocity in a certain two-dimensional flow field is given
by the equation

V=2t - 2yt

wherethevelocity isin ft/swhen x, y, and t arein feet and seconds,
respectively. Determine expressions for the local and convective
components of acceleration in the x and y directions. What is the
magnitude and direction of the velocity and the acceleration at the
pointx =y = 2ftatthetimet = 0?

6.3 Thevelocity in acertain flow field is given by the equation
V =X + x% + yzk

Determine the expressions for the three rectangular components of
acceleration.

6.4 The three components of velocity in aflow field are given by
u=x2+y*+ 7
v=xy+yz+2
W= -3xz—-27°/2+4

(a) Determine the volumetric dilatation rate and interpret the
results. (b) Determine an expression for the rotation vector. Is this
anirrotational flow field?

6.5 Determinethe vorticity field for the following velocity vector:
V=02 -y — 2

6.6 Determine an expression for the vorticity of the flow field
described by

V= x4+ y4
Isthe flow irrotational ?
6.7 A one-dimensional flow is described by the velocity field
u=ay + by?
v=w=0

wherea and b are constants. Isthe flow irrotational ? For what com-
bination of constants(if any) will the rate of angular deformation as
given by Eq. 6.18 be zero?

6.8 For a certain incompressible, two-dimensional flow field the
velocity component in they direction is given by the equation

v = 3xy + X

Determine the velocity component in the x direction so that the vol-
umetric dilatation rate is zero

6.9 An incompressible viscous fluid is placed between two large
paralel plates as shown in Fig. P6.9. The bottom plateis fixed and
the upper plate moves with a constant velocity, U. For these condi-
tions the velocity distribution between the plates is linear and can

be expressed as
y
=U-=
"= b

Determine: (a) the volumetric dilatation rate, (b) the rotation vec-
tor, (c) the vorticity, and (d) the rate of angular deformation.

u
—— .
Y 7 Moving

plate

s

b
y

y Fixed
plate

B FIGURE P6.9

6.10 A viscous fluid is contained in the space between concentric
cylinders. The inner wall isfixed, and the outer wall rotates with an
angular velocity w. (See Fig. P6.10a and Video V6.3.) Assume that
the velocity distribution in the gap is linear as illustrated in Fig.
P6.10b. For the small rectangular element shown in Fig. P6.10b,
determine the rate of change of the right angle y due to the fluid
motion. Express your answer in terms of r, r;, and w.

- TN
4 \
S
@, \ (N0)
e S—

(a) (b)
B FIGURE P6.10

Section 6.2 Conservation of Mass

6.11 Obtain a photograph/image of a situation in which stream-
lines indicate a feature of the flow field. Print this photo and write
abrief paragraph that describes the situation involved.

6.12 Verify that the stream function in cylindrical coordinates sat-
isfies the continuity equation.

6.13 For acertainincompressible flow field it is suggested that the
velocity components are given by the equations

u=2xy v=-xy w=0
Isthisaphysically possible flow field? Explain.

6.14 The velocity components of an incompressible, two-
dimensional velocity field are given by the equations

u=y*—x(1+x)
v=y2x+ 1)

Show that the flow isirrotational and satisfies conservation of mass.
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6.15 For each of the following stream functions, with units of
m?s, determine the magnitude and the angle the velocity vector
makes with thex axisat x = 1 m, y = 2 m. Locate any stagnation
pointsin the flow field.

@y =xy
b)y=-2+y

6.16 The stream function for an incompressible, two-dimensional
flow fieldis

¥ =ay - by’
where a and b are constants. Isthisan irrotationa flow? Explain.

6.17 The stream function for an incompressible, two-dimensiona
flow field is

Y = ay? — bx
where a and b are constants. Isthis an irrotational flow? Explain.
6.18 Thevelocity componentsfor anincompressible, planeflow are
v, = Ar 't + Br 2cos@
v, = Br2sing

where A and B are constants. Determine the corresponding stream
function.

6.19 For acertain two-dimensional flow field
u=20
v=V

(a) What are the corresponding radial and tangentia velocity compo-
nents? (b) Determine the corresponding stream function expressed in
Cartesian coordinates and in cylindrical polar coordinates.

6.20 Make use of the control volume shown in Fig. P6.20 to derive
the continuity equation in cylindrical coordinates (Eq. 6.33 in text).

Volume element
has thickness d z

X

z
B FIGURE P6.20

6.21 A two-dimensional, incompressible flow isgivenby u = —y
and v = x. Show that the streamline passing through the point
x = 10andy = QOisacircle centered at the origin.

6.22 Inacertain steady, two-dimensional flow field the fluid den-
sity varies linearly with respect to the coordinate x; that is, p = Ax
where A is a constant. If the x component of velocity u is given by
the equation u =y, determine an expression for v.

6.23 In atwo-dimensional, incompressible flow field, the x com-
ponent of velocity is given by the equation u = 2x. (a) Determine
the corresponding equation for the y component of velocity if
v = 0 dong the x axis. (b) For this flow field, what is the magni-
tude of the average velocity of the fluid crossing the surface OA of
Fig. P6.23? Assume that the velocities are in feet per second when
xandy arein feet.

y, ft
10fF———————— |A

I

I

I

|

I

I

I

!
(0] 10 xft HBFIGURE P6.23

6.24 The radia velocity component in an incompressible, two-
dimensional flow field (v, = 0) is
v, =2r + 3r?sing

Determine the corresponding tangential velocity component, v,
required to satisfy conservation of mass.
6.25 The stream function for an incompressible flow field is given
by the equation

¥ =3y -y
where the stream function hasthe units of m?/swith x and y in meters.

(a) Sketch the streamling(s) passing through the origin. (b) Determine
therate of flow across the straight path AB shown in Fig. P6.25.

y, m
1.048
A
0 10 xm BFIGURE P6.25

6.26 The streamlinesin a certain incompressible, two-dimensional
flow field are al concentric circles so that v, = 0. Determine the
stream function for (a) v, = Ar and for (b) v, = Ar %, where Aisa
constant.

*6.27 The stream function for an two-

dimensional flow field is
¥ =3y +y
For thisflow field, plot several streamlines.

incompressible,

6.28 Consider theincompressible, two-dimensional flow of anon-
viscous fluid between the boundaries shown in Fig. P6.28. The ve-
locity potential for thisflow fieldis

b=xX -y

B FIGURE P6.28



(a) Determine the corresponding stream function. (b) What isthe
relationship between the discharge, g, (per unit width normal to
plane of paper) passing between the walls and the coordinates x;, i
of any point on the curved wall? Neglect body forces.

Section 6.3 Conservation of Linear Momentum

6.29 Obtain a photograph/image of a situation in which a fluid
flow produces a force. Print this photo and write a brief paragraph
that describes the situation involved.

Section 6.4 Inviscid Flow

6.30 Obtain a photograph/image of a situation in which all or part
of aflow field could be approximated by assuming inviscid flow.
Print this photo and write a brief paragraph that describes the situ-
ation involved.

6.31 Given the streamfunction for aflow asy = 4x? — 4y?, show
that the Bernoulli equation can be applied between any two points
in the flow field.

6.32 A two-dimensional flow field for a nonviscous, incompress-
iblefluid is described by the velocity components

u==Uy+ 2y

v=0
where U, isaconstant. If the pressure at the origin (Fig. P6.32) is
po. determine an expression for the pressure at (a) point A, and
(b) point B. Explain clearly how you obtained your answer.

Assume that the units are consistent and body forces may be
neglected.

B(0, 1)

A1, 0)
Po X
B FIGURE P6.32

6.33 In a certain two-dimensional flow field, the velocity is con-
stant with components u = —4ft/s and v = —2 ft/s. Determine
the corresponding stream function and velocity potential for this
flow field. Sketch the equipotential line ¢ = 0 which passes
through the origin of the coordinate system.

6.34 The stream function for agiven two-dimensional flow fieldis
¥ = 5y — (5/3)y°
Determine the corresponding velocity potential.

6.35 Determine the stream function corresponding to the velocity
potential

=X -

Sketch the streamline ¢ = 0, which passes through the origin.

6.36 A certain flow field is described by the stream function
¢ =A0+Brsne

where A and B are positive constants. Determine the correspond-
ing velocity potential and locate any stagnation pointsin this flow
field.
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6.37 It isknown that the velocity distribution for two-dimensional
flow of aviscous fluid between wide parallel plates (Fig. P6.37) is

parabalic; that is,
_uli_ xz}
u=uj1-(2)

withv = 0. Determine, if possible, the corresponding stream func-
tion and velocity potential.

]

Ty

|
T X
a4

( )

B FIGURE P6.37

6.38 The velocity potential for acertain inviscid flow field is
b=~y —y)

where ¢ has the units of ft2/s when x and y are in feet. Determine

the pressure difference (in psi) between the points (1, 2) and (4, 4),

where the coordinates are in feet, if the fluid is water and elevation
changes are negligible.

6.39 The velocity potential for aflow is given by
¢ = g(x2 - Y

where aisaconstant. Determine the corresponding stream function
and sketch the flow pattern.

6.40 The stream function for a two-dimensional, nonviscous, in-
compressible flow field is given by the expression

g=-2x-Yy)

where the stream function has the units of ft?/swith x and y in feet.
(a) Is the continuity equation satisfied? (b) Is the flow field irrota-
tional? If so, determine the corresponding velocity potential.
(c) Determine the pressure gradient in the horizontal x direction at
thepoint x = 2 ft,y = 2ft.

6.41 The velocity potential for a certain inviscid, incompressible
flow field is given by the equation

b =2¢ = Q)
where ¢ has the units of m?/s when x and y are in meters. Deter-
mine the pressure at the point x = 2m, y = 2 mif the pressure at

x = 1m,y = 1 mis 200 kPa. Elevation changes can be neglected,
and the fluid is water.

6.42 A steady, uniform, incompressible, inviscid, two-dimensional
flow makes an angle of 30° with the horizontal x axis. (a) Deter-
mine the velocity potential and the stream function for this flow.
(b) Determine an expression for the pressure gradient in the vertical
y direction. What is the physical interpretation of this result?

6.43 The streamlines for an incompressible, inviscid, two-
dimensional flow field are al concentric circles, and the velocity
varies directly with the distance from the common center of the
streamlines; that is

vy = Kr

where K is a constant. (a) For this rotational flow, determine, if
possible, the stream function. (b) Can the pressure difference
between the origin and any other point be determined from the
Bernoulli equation? Explain.
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6.44 The velocity potential
¢ =—k¥—vy) (k= constant)

may be used to represent the flow against an infinite plane bound-
ary, asillustrated in Fig. P6.44. For flow in the vicinity of a stagna-
tion point, it is frequently assumed that the pressure gradient along
the surface is of the form

ap_
X

where Ais a constant. Use the given velocity potential to show that
thisis true.

B FIGURE P6.44

6.45 Water is flowing between wedge-shaped walls into a small
opening as shown in Fig. P6.45. The velocity potential with units
m?/sfor thisflow is¢ = —2 Inr with r in meters. Determine the
pressure differential between points A and B.

\

/ \

0 |

A |
L«O.5m—\‘ 1.0m

HFIGURE P6.45

6.46 Anideal fluid flows between the inclined walls of a two-
dimensional channel into asink located at the origin (Fig. P6.46).
The velocity potential for thisflow field is

d)—mlnr
21

where m is a constant. (a) Determine the corresponding stream
function. Note that the value of the stream function along the wall
OA is zero. (b) Determine the equation of the streamline passing
through the point B, located at x = 1,y = 4.

B FIGURE P6.46

6.47 It issuggested that the velocity potential for the incompress-
ible, nonviscous, two-dimensional flow aong the wall shown in
Fig. P6.47is

¢ =r"®cos36

Isthisasuitable velocity potentia for flow along the wall? Explain.

N

r
3n/4

B FIGURE P6.47

Section 6.5 Some Basic, Plane Potential Flows

6.48 Obtain a photograph/image of a situation which approxi-
mates one of the basic, plane potentia flows. Print this photo and
write abrief paragraph that describes the situation involved.

6.49 Asillustrated in Fig. P6.49, a tornado can be approximated
by afree vortex of strength I" for r > R, where R; is the radius of
the core. Velocity measurements at points A and B indicate that
V, = 125 ft/sand Vg = 60 ft/s. Determine the distance from point
Ato the center of the tornado. Why can the free vortex model not be
used to approximate the tornado throughout the flow field (r = 0)?

y
///__4—\\\\
7 Ny \
/ AN
/ _r \
/ < N \ T
/ \
,I [ R \
T = X
\\ \ ) /A B
\ AN // /
\ —-- /
N /
N /" =100 ft-=
~ P4
\\\— _—//

B FIGURE P6.49

6.50 If thevelocity field isgiven by V = axi — ayj, and aisacon-
stant, find the circulation around the closed curve shownin Fig. P6.50.

(1,2) (2,2

1,1 @0

X
B FIGURE P6.50

6.51 The streamlines in a particular two-dimensional flow field are
all concentriccircles, asshown in Fig. P6.51. Thevelocity isgiven by
the equation v, = wr where w isthe angular velocity of the rotating
mass of fluid. Determine the circulation around the path ABCD.



B FIGURE P6.51

6.52 The motion of aliquid in an open tank is that of a combined
vortex consisting of aforced vortex for 0 = r = 2 ft and afree vor-
tex forr > 2 ft. The velocity profile and the corresponding shape of
the free surface are shown in Fig. P6.52. The free surface at the cen-
ter of the tank is a depth h below the free surface at r = co. Deter-
mine the value of h. Note that h = hyyeeg + Nieer Where hegeeq
and h;, are the corresponding depths for the forced vortex and the
free vortex, respectively. (See Section 2.12.2 for further discussion
regarding the forced vortex.)

0F———-—
vy, ft/s

Nf————— =

N

B

B FIGURE P6.52

6.53 When water discharges from atank through an opening inits
bottom, a vortex may form with a curved surface profile, as shown
in Fig. P6.53 and VVideo VV6.4. Assume that the velocity distribution
in the vortex is the same as that for a free vortex. At the sametime
the water is being discharged from the tank at point A, it is desired
to discharge a small quantity of water through the pipe B. As the
discharge through A isincreased, the strength of the vortex, asindi-
cated by its circulation, is increased. Determine the maximum
strength that the vortex can have in order that no air is sucked in at
B. Express your answer in terms of the circulation. Assume that the
fluid level in the tank at a large distance from the opening at A re-
mains constant and viscous effects are negligible.

B FIGURE P6.53
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6.54 Water flows over a flat surface at 4ft/s, as shown in
Fig. P6.54. A pump draws off water through a narrow slit at a vol-
ume rate of 0.1 ft3/s per foot length of the slit. Assume that the fluid
isincompressible and inviscid and can be represented by the com-
bination of a uniform flow and a sink. Locate the stagnation point
on the wall (point A) and determine the equation for the stagnation
streamline. How far above the surface, H, must the fluid be so that
it does not get sucked into the dlit?

4 ft/s
——

|

—W :

Y

0.1 s
(per foot of length of slit)

B FIGURE P6.54

6.55 Two sources, one of strength mand the other with strength 3m,
arelocated on the x axis as shown in Fig. P6.55. Determine the loca-
tion of the stagnation point in the flow produced by these sources.

y
—2¢ 3¢ 1

#5‘( . .

+m +3m

B FIGURE P6.55

6.56 The velocity potential for a spiral vortex flow is given by
¢ = (I'/2m) 0 — (m/27) Inr, where I" and m are constants. Show
that the angle, «, between the velocity vector and theradial direction
is constant throughout the flow field (see Fig. P6.56).

<

U=s

B FIGURE P6.56

6.57 For afree vortex (see Video V6.4) determine an expression
for the pressure gradient (a) along a streamline, and (b) normal to a
streamline. Assume that the streamline isin a horizontal plane, and
express your answer in terms of the circulation.

6.58 (See Fluids in the News article titled “Some hurricanes
facts” Section 6.5.3.) Consider a category five hurricane that has a
maximum wind speed of 160 mph at the eyewall, 10 milesfrom the
center of the hurricane. If the flow in the hurricane outside of
the hurricane's eye is approximated as a free vortex, determine the
wind speeds at locations 20 mi, 30 mi, and 40 mi from the center of
the storm.
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Section 6.6 Superposition of Basic, Plane
Potential Flows

6.59 Obtain a photograph/image of a situation that mimics the su-
perposition of potential flows (see Ex. 6.7). Print this photo and
write abrief paragraph that describes the situation involved.

6.60 Potential flow against a flat plate (Fig. P6.60a) can be de-
scribed with the stream function

= Axy
where A isaconstant. This type of flow iscommonly called a“stag-
nation point” flow since it can be used to describe the flow in the
vicinity of the stagnation point at O. By adding a source of strength
mat O, stagnation point flow against aflat plate with a“bump” isob-

tained as illustrated in Fig. P6.60b. Determine the relationship be-
tween the bump height, h, the constant, A, and the source strength, m.

(@

/\

Source

=

(b)
B FIGURE P6.60

6.61 The combination of a uniform flow and a source can be used
to describe flow around a streamlined body called a half-body. (See
Video V6.5.) Assume that a certain body has the shape of a half-
body with athickness of 0.5 m. If thisbody isplaced in an airstream
moving at 15 m/s, what source strength is required to simulate flow
around the body?

6.62 A vehicle windshield is to be shaped as a portion of a half-
body with the dimensions shown in Fig. P6.62. (a) Make a scale
drawing of the windshield shape. (b) For a free stream velocity of
55 mph, determine the velocity of the air at points A and B.

Windshield

AT 2.0ft
B FIGURE P6.62

6.63 Oneend of apond has a shoreline that resembles a half-body
as shown in Fig. P6.63. A vertical porous pipe is located near the
end of the pond so that water can be pumped out. When water is
pumped at the rate of 0.08 m%s through a 3-m-long pipe, what will
be the velocity at point A? Hint: Consider the flow inside a half-
body. (See Video V6.5.)

Pipe

5m
f i 15m |

B FIGURE P6.63

6.64 Two free vortices of equal strength, but opposite direction
of rotation, are superimposed with a uniform flow as shown in
Fig. P6.64. The stream functions for these two vorticies are
¢ = —[£I/(2m)] Inr. (a) Develop an equation for the x-component
of velocity, u, at point P(x,y) in terms of Cartesian coordinates x
and y. (b) Compute the x-component of velocity at point A and
show that it depends on theratio I'/H.

o P(x,y)

>
j¢e—T—>«—T—>
b3

Ly b

B FIGURE P6.64

6.65 A Rankine ova is formed by combining a source—sink pair,
each having a strength of 36 ft¥s and separated by a distance of 12 ft
along the x axis, with auniform velocity of 10 ft/s(in the positive x di-
rection). Determine the length and thickness of the oval.

*6.66 Makeuse of Egs. 6.107 and 6.109 to construct atable show-
ing how €/, h/a, and ¢/h for Rankine ovals depend on the parame-
ter rUa/m. Plot €/h versus wUa/m and describe how this plot could
be used to obtain the required values of mand a for a Rankine oval
having a specific value of ¢ and h when placed in a uniform fluid
stream of velocity, U.

6.67 An ideal fluid flows past an infinitely long, semicircular
“hump” located along a plane boundary, as shown in Fig. P6.67.
Far from the hump the velocity field is uniform, and the pressure is
Po- (2) Determine expressions for the maximum and minimum val-
ues of the pressure along the hump, and indicate where these points
are located. Express your answer in terms of p, U, and p,. (b) If
the solid surfaceistheys = 0 streamline, determine the equation of
the streamline passing through the point 6 = 7/2,r = 2a.



B FIGURE P6.67

6.68 Water flows around a 6-ft-diameter bridge pier with a velocity
of 12 ft/s. Estimate theforce (per unit length) that the water exertson
the pier. Assume that the flow can be approximated as an ideal fluid
flow around the front half of the cylinder, but due to flow separation
(see Video V6.8), the average pressure on the rear half is constant
and approximately equal to ¥ the pressure at point A (see Fig. P6.68).

/A\—/—\

————

U=12 f/s _ —
—_—

\ ~~—

Nv

\—N

B FIGURE P6.68

*6.69 Consider the steady potential flow around the circular cylin-
der shown in Fig. 6.26. On a plot show the variation of the magni-
tude of the dimensionless fluid velocity, V/U, along the positive
y axis. At what distance, y/a(along they axis), isthe velocity within
1% of the free-stream velocity?

6.70 Thevelocity potential for acylinder (Fig. P6.70) rotating in a
uniform stream of fluid is
2

a r
= 1+ — +
¢ Ur( r2)cos(u? 2770

whereI" isthe circulation. For what value of the circulation will the
stagnation point be located at: (a) point A, (b) point B?

B FIGURE P6.70

6.71 Show that for arotating cylinder in a uniform flow, the fol-
lowing pressure ratio equation is true.

ptop ~ Poottom _ @
pslagnalion u

Here U isthe velocity of the uniform flow and q isthe surface speed
of the rotating cylinder.

6.72 (SeeFluidsin the News article titled “A sailing ship without
sails” Section 6.6.3.) Determine the magnitude of the total force
devel oped by the two rotating cylinders on the Flettner “rotor-ship”
due to the Magnus effect. Assume awind speed relative to the ship
of (a) 10 mph and (b) 30 mph. Each cylinder has a diameter of 9 ft,
a length of 50 ft, and rotates at 750 rev/min. Use Eq. 6.124 and
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calculate the circulation by assuming the air sticks to the rotating
cylinders. Note: This calculated force is at right angles to the direc-
tion of thewind and it is the component of thisforcein the direction
of motion of the ship that gives the propulsive thrust. Also, due to
viscous effects, the actual propulsive thrust will be smaller than that
caculated from Eq. 6.124 which is based on inviscid flow theory.

6.73 A fixed circular cylinder of infinite length is placed in a
steady, uniform stream of an incompressible, nonviscous fluid. As-
sume that the flow isirrotational. Prove that the drag on the cylinder
is zero. Neglect body forces.

6.74 Repeat Problem 6.73 for a rotating cylinder for which the
stream function and velocity potential are given by Eqgs. 6.119 and
6.120, respectively. Verify that the lift is not zero and can be ex-
pressed by Eq. 6.124.

6.75 At acertain point at the beach, the coast line makes a right-
angle bend, as shown in Fig. P6.75a. The flow of salt water in this
bend can be approximated by the potential flow of an incompress-
iblefluid in aright-angle corner. (a) Show that the stream function
for this flow is ¢ = Ar?sin 26, where A is a positive constant.
(b) A fresh-water reservoir islocated in the corner. The salt water is
to be kept away from the reservoir to avoid any possible seepage of
salt water into the fresh water (Fig. P6.75b). The fresh-water source
can be approximated as aline source having a strength m, where m
is the volume rate of flow (per unit length) emanating from the
source. Determine mif the salt water is not to get closer than adis-
tance L to the corner. Hint: Find the value of m (in terms of A and
L) so that a stagnation point occurs a y = L. (c) The streamline
passing through the stagnation point would represent the line dividing
the fresh water from the salt water. Plot this streamline.

Wter

Dividing
streamline

y y

. i
L
‘ »
Fresh water

Fresh water
source

(@ (b)
HFIGURE P6.75

6.76 Typica inviscid flow solutions for flow around bodies indi-
cate that the fluid flows smoothly around the body, even for blunt
bodies as shown in Video V6.10. However, experience reveals that
dueto the presence of viscosity, the main flow may actually separate
from the body creating a wake behind the body. As discussed in a
later section (Section 9.2.6), whether or not separation takes place
depends on the pressure gradient along the surface of the body, as
calculated by inviscid flow theory. If the pressure decreases in the
direction of flow (afavorable pressure gradient), no separation will
occur. However, if the pressureincreasesin the direction of flow (an
adverse pressure gradient), separation may occur. For the circular
cylinder of Fig. P6.76 placed in a uniform stream with velocity, U,

U

B FIGURE P6.76
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determine an expression for the pressure gradient in the direction of
flow on the surface of the cylinder. For what range of values for the
angle 6 will an adverse pressure gradient occur?

Section 6.8 Viscous Flow

6.77 Obtain a photograph/image of a situation in which the cylin-
drica form of the Navier—Stokes equations would be appropriate
for the solution. Print this photo and write a brief paragraph that de-
scribes the situation involved.

6.78 For a steady, two-dimensional, incompressible flow, the ve-
locity isgivenby V = (ax — cy)i + (—ay + cx)j, wherea and ¢
are constants. Show that this flow can be considered inviscid.

6.79 Determinethe shearing stressfor an incompressible Newtonian
fluid with a velocity distribution of V = (3xy* — &%) +
(12¢y = y?);.

6.80 The two-dimensional velocity field for an incompressible
Newtonian fluid is described by the relationship

V = (1202 — 65) + (18 — 4y%)]
where the velocity has units of m/s when x and y are in me-
ters. Determine the stresses o, oy, and 7,, at the point x =

0.5m,y = 1.0m if pressure at this point is 6 kPa and the fluid is
glycerin at 20 °C. Show these stresses on a sketch.

6.81 For atwo-dimensional incompressible flow inthex — y plane
show that the z component of the vorticity, £,, variesin accordance
with the equation
DZ,
Dt

= V%,

What isthe physical interpretation of this equation for anonviscous
fluid? Hint: This vorticity transport equation can be derived from
the Navier—Stokes equations by differentiating and eliminating the
pressure between Egs. 6.127aand 6.127b.

6.82 The velocity of a fluid particle moving along a horizontal
streamline that coincides with the x axisin a plane, two-dimensiond,
incompressible flow field was experimentally found to be described
by the equation u = x2. Along this streamline determine an expres-
sion for (a) therate of change of the v component of velocity with re-
spect to y, (b) the acceleration of the particle, and (c) the pressure
gradient in the x direction. The fluid is Newtonian.

Section 6.9.1 Steady, Laminar Flow between Fixed
Parallel Plates

6.83 Obtain a photograph/image of a situation which can be approx-
imated by one of the simple cases covered in Sec. 6.9. Print this photo
and write abrief paragraph that describes the situation involved.

6.84 Qil (u = 04N - s/m?) flows between two fixed horizontal
infinite parallel plates with a spacing of 5 mm. The flow islaminar
and steady with a pressure gradient of —900 (N/m?) per unit meter.
Determine the volume flowrate per unit width and the shear stress
on the upper plate.

6.85 Two fixed, horizontal, parallel plates are spaced 0.4 in. apart.
A viscous liquid (u = 8 X 103 Ib- s/ft?, SG = 0.9) flows be-
tween the plates with a mean velocity of 0.5 ft/s. The flow islami-
nar. Determine the pressure drop per unit length in the direction of
flow. What is the maximum velocity in the channel ?

6.86 A viscous, incompressible fluid flows between the two infi-
nite, vertical, parallel plates of Fig. P6.86. Determine, by use of the
Navier—Stokes equations, an expression for the pressure gradient in
the direction of flow. Express your answer in terms of the mean ve-
locity. Assume that the flow is laminar, steady, and uniform.

Direction of flow

A

~hrf<h-+]

B FIGURE P6.86

6.87 A fluid is initialy at rest between two horizontal, infinite,
parallel plates. A constant pressure gradient in a direction parallel
tothe platesis suddenly applied and the fluid starts to move. Deter-
mine the appropriate differential equation(s), initial condition, and
boundary conditions that govern this type of flow. You need not
solve the equation(s).

6.88 (SeeFluidsinthe Newsarticletitled “10tonson 8 psi,” Section
6.9.1.) A massive, precisely machined, 6-ft-diameter granite sphere
rests upon a 4-ft-diameter cylindrical pedestal as shown in Fig.
P6.88. When the pump is turned on and the water pressure within
the pedestal reaches 8 psi, the sphererises off the pedestal, creating
a0.005-in. gap through which the water flows. The sphere can then
be rotated about any axis with minimal friction. (a) Estimate the
pump flowrate, Q,, required to accomplish this. Assumetheflow in
the gap between the sphere and the pedestal is essentialy viscous
flow between fixed, parallel plates. (b) Describe what would hap-
pen if the pump flowrate were increased to 2Q,.

B FIGURE P6.88

Section 6.9.2 Couette Flow

6.89 Two horizontal, infinite, parallel plates are spaced adistance
b apart. A viscous liquid is contained between the plates. The bot-
tom plateisfixed, and the upper plate moves parallel to the bottom
plate with avelocity U. Because of the no-slip boundary condition



(see Video V6.11), the liquid motion is caused by the liquid being
dragged along by the moving boundary. There is no pressure gra-
dient in the direction of flow. Note that thisis a so-called simple
Couette flow discussed in Section 6.9.2. (a) Start with the
Navier—Stokes equations and determine the velocity distribution
between the plates. (b) Determine an expression for the flowrate
passing between the plates (for aunit width). Express your answer
intermsof b and U.

6.90 A layer of viscous liquid of constant thickness (no velocity
perpendicular to plate) flows steadily down an infinite, inclined
plane. Determine, by means of the Navier—Stokes equations, the re-
lationship between the thickness of the layer and the discharge per
unit width. The flow is laminar, and assume air resistance is negli-
gible so that the shearing stress at the free surfaceis zero.

6.91 Due to the no-dlip condition, asasolid is pulled out of avis-
cous liquid some of the liquid is also pulled along as described in
Example 6.9 and shown in Video V6.11. Based on the results given
in Example 6.9, show on a dimensionless plot the vel ocity distribu-
tion in the fluid film (v/V, vs. x/h) when the average film velocity,
V, is 10% of the belt velocity, V.

6.92 An incompressible, viscous fluid is placed between hori-
zontal, infinite, parallel plates asis shown in Fig. P6.92. The two
plates move in opposite directions with constant velocities, U,
and U,, as shown. The pressure gradient in the x direction is zero,
and the only body force is due to the fluid weight. Use the Navier—
Stokes equations to derive an expression for the velocity distribu-
tion between the plates. Assume laminar flow.

U,

B FIGURE P6.92

6.93 Two immiscible, incompressible, viscous fluids having the
same densities but different viscosities are contained between two
infinite, horizontal, parallel plates (Fig. P6.93). The bottom plateis
fixed and the upper plate moves with a constant velocity U. Deter-
mine the velocity at the interface. Express your answer in terms of
U, uq, and u,. The motion of the fluid is caused entirely by the
movement of the upper plate; that is, there is no pressure gradient
in the x direction. Thefluid velocity and shearing stress are contin-
uous across the interface between the two fluids. Assume laminar
flow.

L

B FIGURE P6.93

6.94 The viscous, incompressible flow between the parallel plates
shown in Fig. P6.94 is caused by both the motion of the bottom
plate and a pressure gradient, op/ox. As noted in Section 6.9.2, an
important dimensionless parameter for this type of problem is
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P = —(b%2 pU) (9p/x) where w isthe fluid viscosity. Make aplot
of the dimensionless velocity distribution (similar to that shown in
Fig. 6.32b) for P = 3. For this case where does the maximum ve-
locity occur?

Fixed
plate

—
U

B FIGURE P6.94

6.95 A viscous fluid (specific weight = 80 Iyft®; viscosity =
0.03 Ib - s/ft?) is contained between two infinite, horizontal parallel
plates as shown in Fig. P6.95. The fluid moves between the plates
under the action of a pressure gradient, and the upper plate moves
with a velocity U while the bottom plate is fixed. A U-tube
manometer connected between two points along the bottom indi-
cates a differential reading of 0.1 in. If the upper plate moves with
avelocity of 0.02 ft/s, at what distance from the bottom plate does
the maximum velocity in the gap between the two plates occur?As-
sume laminar flow.

U =0.02 ft/s

1.0in.

‘<—/F6 in.ﬂ y|
p % Fixed
plate

y =100 Ib/ft3

B FIGURE P6.95

6.96 A vertical shaft passes through a bearing and is lubricated
with an oil having a viscosity of 0.2N-s/m? as shown in Fig.
P6.96. Assume that the flow characteristics in the gap between the
shaft and bearing are the same as those for laminar flow between
infinite parallel plates with zero pressure gradient in the direction
of flow. Estimate the torque required to overcome viscous resis-
tance when the shaft is turning at 80 rev/min.

Shaft
33

— <— 75 mm

Bearing

160 mm

Oil/ HFO.ZS mm

O
B FIGURE P6.96

6.97 A viscous fluid is contained between two long concentric
cylinders. The geometry of the system is such that the flow between
the cylindersis approximately the same as the laminar flow between
two infinite parallel plates. (a) Determine an expression for the
torque required to rotate the outer cylinder with an angular velocity w.
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The inner cylinder is fixed. Express your answer in terms of the
geometry of the system, the viscosity of thefluid, and the angular ve-
locity. (b) For asmall, rectangular element located at the fixed wall
determine an expression for the rate of angular deformation of this
element. (See Video V6.3 and Fig. P6.9.)

*6.98 Oil (SAE 30) flowsbetween parallel plates spaced 5 mm apart.
The bottom plateisfixed, but the upper plate moveswith avelocity of
0.2 m/sinthe positive x direction. The pressure gradient is 60 kPa/m,
and it is negative. Compute the velocity at various points across the
channel and show the results on a plot. Assume laminar flow.

Section 6.9.3 Steady, Laminar Flow in Circular Tubes

6.99 Consider a steady, laminar flow through a straight horizontal
tube having the constant elliptical cross section given by the equation

X2y
2@
The streamlines are all straight and parallel. Investigate the possibil-
ity of using an equation for the zcomponent of velocity of the form

=1

as an exact solution to this problem. With this vel ocity distribution,
what is the relationship between the pressure gradient along the
tube and the volume flowrate through the tube?

6.100 A simple flow system to be used for steady flow tests con-
sists of a constant head tank connected to a length of 4-mm-
diameter tubing as shown in Fig. P6.100. The liquid has a viscosity
of 0.015 N - s/m?, adensity of 1200 kg/m?®, and discharges into the
atmosphere with a mean velocity of 2 m/s. (a) Verify that the flow
will belaminar. (b) Theflow isfully developed in the last 3 m of the
tube. What isthe pressure at the pressure gage? (c) What is the mag-
nitude of the wall shearing stress, 7,,, inthefully developed region?

Pressure
gage

L@

I 3m |

Diameter = 4 mm

B FIGURE P6.100

6.101 (&) Show that for Poiseuille flow in a tube of radius R the
magnitude of the wall shearing stress, 7,,, can be obtained from the
relationship

_ 4
|(Trz)wall| - 7TR3

for aNewtonian fluid of viscosity w. The volume rate of flow is Q.
(b) Determine the magnitude of the wall shearing stress for afluid
having aviscosity of 0.004 N - s/m? flowing with an average vel oc-
ity of 130 mm/sin a 2-mm-diameter tube.

6.102 Aninfinitely long, solid, vertical cylinder of radius Rislo-
cated in an infinite mass of an incompressible fluid. Start with the
Navier—Stokes equation in the 6 direction and derive an expression
for the velocity distribution for the steady flow case in which the
cylinder is rotating about a fixed axis with a constant angular
velocity w. You need not consider body forces. Assume that the
flow is axisymmetric and the fluid is at rest at infinity.

*6.103 Asis shown by Eq. 6.150 the pressure gradient for laminar
flow through a tube of constant radiusis given by the expression

p_ _&Q

Jz R
For atube whose radius is changing very gradually, such asthe one
illustrated in Fig. P6.103, it is expected that this equation can be
used to approximate the pressure change along the tube if the actual

radius, R(2), is used at each cross section. The following measure-
ments were obtained along a particular tube.

7/t |0
R(2)/R, |l.00 |0.73 |O.67 |0.65 |O.67 |O.80 |0.80 |O.7l |0.73 |O.77 |1.00

|0.l |0.2 |0.3 |0.4 |O.5 |0.6 |0.7 |0.8 |O.9 |1.0

Compare the pressure drop over the length ¢ for this nonuniform
tube with one having the constant radius R,. Hint: To solve this
problem you will need to numerically integrate the equation for the
pressure gradient given above.

Q_.

%j& - 1ra

| ¢ |
B FIGURE P6.103

6.104 A liquid (viscosity = 0.002 N-s/m? density = 1000 kg/m®)
isforced through the circular tube shown in Fig. P6.104. A differ-
ential manometer is connected to the tube as shown to measure the
pressure drop along the tube. When the differential reading, Ah, is
9 mm, what is the mean velocity in the tube?

2
Ja 3

4 mm

— 0

Density of i
gage fluid = 2000 kg/m®

B FIGURE P6.104

Section 6.9.4 Steady, Axial, Laminar Flow in an Annulus

6.105 An incompressible Newtonian fluid flows steadily between
two infinitely long, concentric cylinders as shown in Fig. P6.105.
The outer cylinder isfixed, but the inner cylinder moveswith alon-
gitudinal velocity V, as shown. The pressure gradient in the axial
direction is —Ap/¢. For what value of V, will the drag on the inner
cylinder be zero? Assume that the flow is laminar, axisymmetric,
and fully developed.

Fixed wall

\ e N\
— r
99 — &%

B FIGURE P6.105




6.106 A viscous fluid is contained between two infinitely long,
vertical, concentric cylinders. The outer cylinder hasaradiusr, and
rotates with an angular velocity w. The inner cylinder is fixed and
has aradius r;. Make use of the Navier—Stokes equations to obtain
an exact solution for the velocity distribution in the gap. Assume
that the flow in the gap is axisymmetric (neither velocity nor pres-
sure are functions of angular position # within the gap) and that
there are no velocity components other than the tangential compo-
nent. The only body force is the weight.

6.107 For flow between concentric cylinders, with the outer cylinder
rotating at an angular velocity w and the inner cylinder fixed, it is
commonly assumed that the tangential velocity (v,) distributioninthe
gap between the cylindersislinear. Based on the exact solution to this
problem (see Problem 6.106) the velocity distribution in the gap is not
linear. For an outer cylinder with radius r, = 2.00in. and an inner
cylinder with radiusr; = 1.801in., show, with the aid of aplot, how the
dimensionless velocity distribution, v,/r,, varies with the dimen-
sionlessradial position, r/r, for the exact and approximate solutions.

6.108 A viscous liquid (u = 0.0121b - s/ft?, p = 1.79 slugs/ft®)
flows through the annular space between two horizontal, fixed, con-
centric cylinders. If theradiusof theinner cylinder is1.5in. andthera
dius of the outer cylinder is2.5in., what isthe pressure drop along the
axis of the annulus per foot when the volume flowrate is 0.14 ft3/s?

6.109 Show how Eq. 6.155 is obtained.

6.110 A wire of diameter d is stretched aong the centerline of a
pipe of diameter D. For a given pressure drop per unit length of
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pipe, by how much does the presence of the wire reduce the
flowrateif (a) d/D = 0.1; (b) d/D = 0.01?

Section 6.10 Other Aspects of Differential Analysis

6.111 Obtain aphotograph/image of asituation in which CFD has
been used to solve a fluid flow problem. Print this photo and write
abrief paragraph that describes the situation involved.

B LifeLongLearning Problems

6.112 What sometimes appear at first glance to be simple fluid
flows can contain subtle, complex fluid mechanics. One such ex-
ample is the stirring of tea leaves in a teacup. Obtain information
about “Einstein’s tea leaves’ and investigate some of the complex
fluid motions interacting with the leaves. Summarize your findings
in abrief report.

6.113 Computational fluid dynamics (CFD) has moved from are-
search tool to a design tool for engineering. Initially, much of the
work in CFD was focused in the aerospace industry, but now has
expanded into other areas. Obtain information on what other indus-
tries (e.g., automotive) make use of CFD in their engineering de-
sign. Summarize your findings in a brief report.

B FE Exam Problems

Sample FE (Fundamentals of Engineering) exam questions for
fluid mechanics are provided on the book’s web site, www.wiley.
com/college/munson.


http://www.wiley.com/college/munson

CHAPTER OPENING PHoTO: Flow past a circular cylinder with Re = pVD/w = 2000: The pathlines of flow
past any circular cylinder (regardless of size, velocity, or fluid) are as shown provided that the dimension-
less parameter called the Reynolds number, Re, is equal to 2000. For other values of Re, the flow pattern
will be different (air bubbles in water). (Photograph courtesy of ONERA, France.)

Learning Objectives

After completing this chapter, you should be able to:

apply the Buckingham pi theorem.

develop a set of dimensionless variables for a given flow situation.

discuss the use of dimensionless variables in data analysis.

apply the concepts of modeling and similitude to develop prediction equations.

Although many practical engineering problems involving fluid mechanics can be solved by us-
ing the equations and analytical procedures described in the preceding chapters, there remain a
large number of problems that rely on experimentally obtained data for their solution. In fact, it
is probably fair to say that very few problems involving real fluids can be solved by analysis
alone. The solution to many problems is achieved through the use of a combination of theoret-
ical and numerical analysis and experimental data. Thus, engineers working on fluid mechanics
problems should be familiar with the experimental approach to these problems so that they can
interpret and make use of data obtained by others, such as might appear in handbooks, or be
able to plan and execute the necessary experiments in their own laboratories. In this chapter we
consider some techniques and ideas that are important in the planning and execution of experi-
ments, as well as in understanding and correlating data that may have been obtained by other
experimenters.

An obvious goa of any experiment is to make the results as widely applicable as possible.
To achieve this end, the concept of similitude is often used so that measurements made on one
system (for example, in the laboratory) can be used to describe the behavior of other similar sys-
tems (outside the laboratory). The laboratory systems are usually thought of as models and are used
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to study the phenomenon of interest under carefully controlled conditions. From these model studies,
empirical formulations can be developed, or specific predictions of one or more characteristics of
some other similar system can be made. To do this, it is necessary to establish the relationship be-
tween the laboratory model and the “other” system. In the following sections, we find out how this

can be accomplished in a systematic manner.

F | u i d s i n

t h e N e w s

Model study of New Orleans levee breach caused by
HurricaneKatrina Much of the devastation to New Orleansfrom
Hurricane Katrinain 2005 was a result of flood waters that surged
through a breach of the 17th Street Outfall Canal. To better under-
stand why this occurred and to determine what can be doneto pre-
vent future occurrences, the U.S. Army Engineer Research and
Development Center Coastal and Hydraulics Laboratory is con-
ducting tests on alarge (1:50 length scale) 15,000 square foot hy-
draulic model that replicates 0.5 mile of the canal surrounding the

breach and more than a mile of the adjacent Lake Pontchartrain
front. The objective of the study isto obtain information regarding
the effect that waves had on the breaching of the canal and to in-
vestigate the surging water currents within the canals. The waves
are generated by computer-controlled wave generators that can
produce waves of varying heights, periods, and directionssimilar to
the storm conditions that occurred during the hurricane. Datafrom
the study will be used to calibrate and validate information that
will be fed into various numerical model studies of the disaster.

7.1 Dimensional Analysis

It is important to
develop a meaning-
ful and systematic
way to perform an
experiment.

To illustrate atypical fluid mechanics problem in which experimentation is required, consider the
steady flow of an incompressible Newtonian fluid through a long, smooth-walled, horizontal, cir-
cular pipe. An important characteristic of this system, which would be of interest to an engineer
designing a pipeline, is the pressure drop per unit length that develops along the pipe as a result
of friction. Although this would appear to be a relatively simple flow problem, it cannot gener-
ally be solved analytically (even with the aid of large computers) without the use of experimen-
tal data.

The first step in the planning of an experiment to study this problem would be to decide on
the factors, or variables, that will have an effect on the pressure drop per unit length,
Ap, [(Ib/ft3)/ft = Ib/ft3 or N/m?]. We expect the list to include the pipe diameter, D, the fluid den-
sity, p, fluid viscosity, u, and the mean velocity, V, at which the fluid is flowing through the pipe.
Thus, we can express this relationship as

Ap, = (D, p, u, V)

which simply indicates mathematically that we expect the pressure drop per unit length to be some
function of the factors contained within the parentheses. At this point the nature of the function is
unknown and the objective of the experiments to be performed is to determine the nature of this
function.

To perform the experiments in a meaningful and systematic manner, it would be necessary
to change one of the variables, such as the velocity, while holding all others constant, and mea-
sure the corresponding pressure drop. This series of tests would yield data that could be repre-
sented graphically asisillustrated in Fig. 7.1a. It is to be noted that this plot would only be valid
for the specific pipe and for the specific fluid used in the tests; this certainly does not give us the
general formulation we are looking for. We could repeat the process by varying each of the other
variables in turn, as is illustrated in Figs. 7.1b, 7.1c, and 7.1d. This approach to determining the
functional relationship between the pressure drop and the various factors that influence it, although
logical in concept, is fraught with difficulties. Some of the experiments would be hard to carry
out—for example, to obtain the dataiillustrated in Fig. 7.1c it would be necessary to vary fluid den-
sity while holding viscosity constant. How would you do this? Finally, once we obtained the var-
ious curves shown in Figs. 7.1a, 7.1b, 7.1c, and 7.1d, how could we combine these data to obtain
the desired general functional relationship between Ap,, D, p, ., and V which would be valid for
any similar pipe system?

Fortunately, there is a much simpler approach to this problem that will eliminate the diffi-
culties described above. In the following sections we will show that rather than working with the

(7.2)
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Dimensionless
products are impor-
tant and useful in
the planning,
execution, and
interpretation of
experiments.

Ap, Ap,
Pe D, p, u— constant Pe V, p, u- constant
\Y, D
(a) (b)
Ap, Ap,
D, p, V- constant
D, V, u- constant
BEFIGURE 71 |llus
trative plots showing how the pres-
P K suredrop in a pipe may be affected
(© (d) by several different factors.

original list of variables, as described in Eq. 7.1, we can collect these into two nondimensional
combinations of variables (called dimensionless products or dimensionless groups) so that

D Ap, <pVD>
pV? I
Thus, instead of having to work with five variables, we now have only two. The necessary
experiment would simply consist of varying the dimensionless product pVD/u and determining
the corresponding value of D Ap,/pV2. The results of the experiment could then be represented
by a single, universal curve asisillustrated in Fig. 7.2. This curve would be valid for any com-
bination of smooth-walled pipe and incompressible Newtonian fluid. To obtain this curve we
could choose a pipe of convenient size and afluid that is easy to work with. Note that we would-
n't have to use different pipe sizes or even different fluids. It is clear that the experiment would
be much simpler, easier to do, and less expensive (which would certainly make an impression
on your boss).

The basis for this simplification lies in a consideration of the dimensions of the variables
involved. As was discussed in Chapter 1, a qualitative description of physical quantities can be given
in terms of basic dimensions such as mass, M, length, L, and time, T.> Alternatively, we could use
force, F, L, and T as basic dimensions, since from Newton’s second law

F=MLT 2

(7.2)

DAp,
pv?

oD B FIGURE 7.2 Anillustrative plot of pressure drop

u data using dimensionless parameters.

As noted in Chapter 1, we will use T to represent the basic dimension of time, although T is also used for temperature in thermodynamic

relationships (such as the idea gas law).
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(Recall from Chapter 1 that the notation = is used to indicate dimensional equality.) The dimen-
sions of the variablesin the pipe flow exampleare Ap, = FL™3,D =L, p = FL™*T 2, u = FL 7T,
andV = LT ~.[Notethat the pressure drop per unit length hasthe dimensions of (F/L?)/L = FL™3.]
A quick check of the dimensions of the two groups that appear in Eq. 7.2 shows that they are in
fact dimensionless products; that is,

D Ap, . L(FA3)

= = FOLoTO
pVZ  (FLTH(LT 12

and

pVD _ (FLTTHLT W) | g oro
" (FL™?T)

Not only have we reduced the number of variables from five to two, but the new groups are
dimensionless combinations of variables, which means that the results presented in the form of
Fig. 7.2 will be independent of the system of units we choose to use. Thistype of analysisiscalled
dimensional analysis, and the basis for its application to a wide variety of problems is found in
the Buckingham pi theorem described in the following section.

7.2 Buckingham Pi Theorem

Dimensional analy-
sisis based on the
Buckingham pi
theorem.

A fundamental question we must answer is how many dimensionless products are required to re-
place the original list of variables? The answer to this question is supplied by the basic theorem
of dimensiona analysis that states the following:

If an equation involving k variables is dimensionally homogeneous, it can be reduced
to a relationship among k — r independent dimensionless products, wherer is the
minimum number of reference dimensions required to describe the variables.

The dimensionless products are frequently referred to as “pi terms,” and the theorem is called the
Buckingham pi theorem.? Edgar Buckingham used the symbol IT to represent a dimensionless
product, and this notation is commonly used. Although the pi theorem is a simple one, its proof is
not so simple and we will not include it here. Many entire books have been devoted to the subject
of similitude and dimensional analysis, and a number of these are listed at the end of this chapter
(Refs. 1-15). Students interested in pursuing the subject in more depth (including the proof of the
pi theorem) can refer to one of these books.

The pi theorem is based on the idea of dimensional homogeneity which was introduced in
Chapter 1. Essentially we assume that for any physically meaningful equation involving k vari-
ables, such as

u; = f(uy Ug, ..., Uy)

the dimensions of the variable on the left side of the equal sign must be equal to the dimensions
of any term that stands by itself on the right side of the equal sign. It then follows that we can
rearrange the equation into a set of dimensionless products (pi terms) so that

I1, = ¢(H21 I, ..., kar)

where ¢(I1,, 15, ..., I1,_,) isafunction of II, through IT,_,.

The required number of pi termsis fewer than the number of original variables by r, where
r is determined by the minimum number of reference dimensions required to describe the origi-
nal list of variables. Usually the reference dimensions required to describe the variables will be
the basic dimensions M, L, and T or F, L, and T. However, in some instances perhaps only two
dimensions, such asL and T, are required, or maybe just one, such as L. Also, in afew rare cases

2Although severd early investigators, including Lord Rayleigh (1842-1919) in the nineteenth century, contributed to the development of
dimensiona analysis, Edgar Buckingham's (1867—1940) name is usually associated with the basic theorem. He stimulated interest in the sub-
ject in the United States through his publications during the early part of the twentieth century. See, for example, E. Buckingham, On Physi-
cally Similar Systems: Illustrations of the Use of Dimensional Equations, Phys. Rev., 4 (1914), 345-376.
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the variables may be described by some combination of basic dimensions, such as M/T 2 and L,
and in this case r would be egual to two rather than three. Although the use of the pi theorem
may appear to be alittle mysterious and complicated, we will actually develop a simple, system-
atic procedure for developing the pi terms for a given problem.

7.3 Determination of Pi Terms

A dimensional
analysis can be
performed using a
series of distinct
steps.

Several methods can be used to form the dimensionless products, or pi terms, that arise in a dimen-
sional analysis. Essentially we arelooking for amethod that will allow usto systematically form the pi
terms so that we are sure that they are dimensionless and independent, and that we have the right num-
ber. The method we will describe in detail in this section is called the method of repeating variables.

It will be helpful to break the repeating variable method down into a series of distinct steps
that can be followed for any given problem. With a little practice you will be able to readily com-
plete a dimensional analysis for your problem.

Step 1 List all the variables that are involved in the problem. This step is the most difficult
one and it is, of course, vitally important that all pertinent variables be included. Other-
wise the dimensional analysis will not be correct! We are using the term “variable” to
include any quantity, including dimensional and nondimensional constants, which play a
role in the phenomenon under investigation. All such quantities should be included in
the list of “variables’ to be considered for the dimensional analysis. The determination
of the variables must be accomplished by the experimenter’s knowledge of the problem
and the physical laws that govern the phenomenon. Typicaly the variables will include
those that are necessary to describe the geometry of the system (such as a pipe diame-
ter), to define any fluid properties (such as a fluid viscosity), and to indicate external
effects that influence the system (such as a driving pressure drop per unit length). These
general classes of variables are intended as broad categories that should be helpful in
identifying variables. It is likely, however, that there will be variables that do not fit eas-
ily into one of these categories, and each problem needs to be carefully analyzed.

Since we wish to keep the number of variables to a minimum, so that we can mini-
mize the amount of laboratory work, it is important that all variables be independent. For
example, if in a certain problem the cross-sectional area of a pipe is an important variable,
either the area or the pipe diameter could be used, but not both, since they are obviously
not independent. Similarly, if both fluid density, p, and specific weight, vy, are important
variables, we could list p and y, or p and g (acceleration of gravity), or y and g. However,
it would be incorrect to use all three sincey = pg; that is, p, vy, and g are not independent.
Note that although g would normally be constant in a given experiment, that fact is irrel-
evant as far as a dimensional analysis is concerned.

Step 2 Express each of the variables in terms of basic dimensions. For the typical fluid me-
chanics problem the basic dimensions will be either M, L, and T or F, L, and T. Dimension-
aly these two sets are related through Newton's second law (F = ma) so that F = MLT 2,
For example, p = ML or p = FL™*T2. Thus, either set can be used. The basic dimensions
for typical variables found in fluid mechanics problems are listed in Table 1.1 in Chapter 1.

Step 3 Determine the required number of pi terms. This can be accomplished by means of the
Buckingham pi theorem, which indicates that the number of pi termsis equal to k — r,
where k is the number of variables in the problem (which is determined from Step 1) and
r isthe number of reference dimensions required to describe these variables (which is deter-
mined from Step 2). The reference dimensions usually correspond to the basic dimensions
and can be determined by an inspection of the dimensions of the variables obtained in Step
2. As previoudy noted, there may be occasions (usudly rare) in which the basic dimen-
sions appear in combinations so that the number of reference dimensions is less than the
number of basic dimensions. This possibility is illustrated in Example 7.2.

Step 4 Select a number of repeating variables, where the number required is equal to the
number of reference dimensions. Essentially what we are doing here is selecting from
the original list of variables severa of which can be combined with each of the remaining
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variables to form a pi term. All of the required reference dimensions must be included
within the group of repeating variables, and each repeating variable must be dimension-
ally independent of the others (i.e., the dimensions of one repeating variable cannot be
reproduced by some combination of products of powers of the remaining repeating vari-
ables). This means that the repeating variables cannot themselves be combined to form
a dimensionless product.

For any given problem we usually are interested in determining how one partic-
ular variable is influenced by the other variables. We would consider this variable to be
the dependent variable, and we would want this to appear in only one pi term. Thus, do
not choose the dependent variable as one of the repeating variables, since the repeating
variables will generally appear in more than one pi term.

Form a pi term by multiplying one of the nonrepeating variables by the product of
the repeating variables, each raised to an exponent that will make the combination
dimensionless. Essentially each pi term will be of the form uudugu where u; is one of
the nonrepesting variables, uy, u,, and u; are the repeating variables, and the exponents
a, by, and ¢; are determined so that the combination is dimensionless.

Repeat Step 5 for each of the remaining nonrepeating variables. The resulting set of
pi terms will correspond to the required number obtained from Step 3. If not, check your
work—you ha