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Preface

In these notes, we consider two kinds of nonlinear evolution problems of von
Karman type on R?", m > 2. Each of these problems consists of a system that
results from the coupling of two highly nonlinear partial differential equations, one
hyperbolic or parabolic, and the other elliptic. These systems are called “of von
Karman type” because of a formal analogy with the well-known equations of the
same name in the theory of elasticity in R?.

1 The Classical Equations

1. To describe the classical hyperbolic von Karman system in R?, we introduce
the nonlinear coupling of the second order derivatives of two sufficiently smooth
functions g = g(x,y) and h = h(x,y), defined by

. 8xx gxy
hyx Dy
and then we set
N(g. h):=[g. h] + [h, 8] = gy + Gyy Tax — 2 8y Py - 2)

The classical von Karman equations in R? consist of the system
Uy + A%u = N(f.u) + N(p.u) 3)
N’f = =N(u.u). )
where A the usual Laplace operator in R?, and ¢ = ¢(t,x,y) is a given external
source. Equations (3) and (4) model the dynamics of the vertical oscillations

(buckling) of an elastic two-dimensional thin plate, represented by a bounded

vii
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domain Q C R?, due to both internal and external stresses. More precisely, in this
model the unknown function u = u(t, x, y) is a measure of the vertical displacement
of the plate; Eq. (4) formally defines a map u + f(u), where f(u) represents the
so-called Airy stress function, which is related to the internal elastic forces acting
on the plate, and depends on its deformation u; finally, ¢ represents the action of
the external stress forces. Typically, Eqs. (3)4(4) are supplemented by the initial
conditions

u(0) = up, u(0) = uy 5)

where ug and u; are a given initial configuration of the displacement and its velocity,
and by appropriate constraints on u at the boundary of 2.

2. A detailed and precise description of the modeling issues related to the classical
von Karman equations, and a discussion of their physical motivations, can be found
in, e.g., Ciarlet and Rabier [12], or in Ciarlet [10, 11]; in addition, we refer to the
recent, exhaustive study by Chuesov and Lasiecka [9] of a large class of initial-
boundary value problems of von Karman type on domains of R?, with a multitude
of different boundary conditions, including nonlinear ones. The stationary state of
the classical von Karman equations, described by the nonlinear elliptic system

A*u = N(f,u) + N(p,u), (6)
AY = —N(u,u) , (N

has been investigated by several authors; in particular, Berger [3], devised a
remarkable variational method to establish the existence of suitably regular solu-
tions to the stationary system (6)4(7) in a bounded domain of R?, subject to
appropriate boundary conditions. Weak solutions of the corresponding system of
evolution (3)+(4)+(5), again under appropriate boundary conditions, have been
established, among others, by Lions [21, Chap. 1, Sect. 4], and Favini et al. [15, 16],
and Chuesov and Lasiecka [9].

2 The Generalized Equations

1. To introduce the generalization of the von Karman system (3)+(4) we wish to
consider, we now let m € Nx,, and, given m + 1 smooth functions uy, ..., u,, u
defined on R?", we set

N(Mla . ,Mm) = 8” i le up - %4 Um (8)

Jugm im

M(u) = N(u, ... ,u) =m0, (Vu), 9)
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where we adopt the usual summation convention for repeated indices, and use the

following notations. For iy, ... ,im, j1, ... »jm € {1, ... 2m}, 8]’1‘ fff]:;;“ denotes the
Kronecker tensor; for 1 < i, j < 2m, V{ := 0;0;, and 0,, is the m-th elementary

symmetric function of the eigenvalues Ay = A,(9;0;u), 1 < k < 2m, of the Hessian
matrix H(u) := [0;0;u], that is,

om(V2u) 1= > Ay - A, - (10)

1<ki<ky<...<ky<2m

We also introduce the convention

(k1) k) .
N(ul ,...,Mpp .=N(u1,...,141,---up,---,up)s 11
N—— N———
k1 factors kp factors

with kj + -+ + k, = m, and set A := — Vu.
In Lemma 1.3.1 of Chap. 1, we shall show that the elliptic equation

A"f = —M(u) (12)

can be uniquely solved, in a suitable functional frame, for f in terms of u, thereby
defining a map u +— f := f(u). Let T > 0. Given a source term ¢ defined on
[0, T] x R?", we consider the Cauchy problem, of hyperbolic type, in which we
wish to determine a function u on [0, 7] x R>", satisfying the equation

uy + A"u = N(f(u), u™ V) + NV, u) , (13)

and subject to the initial conditions (5), where, now, 1y and u; are given functions
defined on R?". We refer to this Cauchy problem, that is, explicitly, to (13) 4+ (12) +
(5), as “problem (VKH)”.

Problem (VKH) appears to be analogous to the original von Karman system (3)
and (4) on R?, but this analogy is only formal, in the following sense. Let d denote
the space dimension. In the linear part at the left side of Egs. (3) and (4) of the
original system, the order of the differential operator A2 is twice the dimension
of space (i.e., 4 = 2d, d = 2), and the nonlinear operators of Monge-Ampere
type at the right side of the equations are defined in terms of the complete Hessian
of functions depending on u, f, and ¢. In contrast, at the left side of Egs. (13)
and (12) the order of the differential operator A™ equals the dimension of space (i.e.,
2m = d), while the Monge-Ampere operators at the right side of these equations
are defined in terms of elementary symmetric functions of order m = ‘5’ of Hessian
matrices of functions depending on u, f, and ¢. To illustrate this difference explicitly,
in the original equation (4) the term N(u, u) is twice the determinant of the Hessian
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matrix

H) = (“” ”xy) (14)

Uye Uyy

of u; since this matrix has two eigenvalues A;(09;0;u) and A,(9;0;u), whose product
equals the determinant uy, iy, — 1., of H(u), we obtain that

N(u,u) = 2det H(u) = 2 Ay (3;0u) Ao (0:0u0) . (15)

In contrast, when m = 1 the condition 1 < j; < 2m = 2 in the sum of (10) reduces
toj; = 1 orj; = 2, so that definitions (9) and (10) yield a completely different
expression for N (u, u), namely

N(u,u) = 2101(V?u) = 2 (21(3;0u) + A2(0;9,u)) . (16)

The difference between (15) and (16) shows that, indeed, the analogy between the
original von Karman system and the equations we consider here is only formal.
For completeness’ sake, we mention that the extension of the original von Karman
equations (3) and (4) to even space dimension d = 2m would consist of the system

ug + A"y = N(F (), u® =) + NV u), (17)
A" = _N(u, ... ,u), (18)
——
2m factors

where now, instead of (8),

N, ... oug) =870V g e Vi (19)
Even though we do not consider system (17)4(18) in these notes, we point out that,
from an analytical point of view, its study turns out to be much simpler than that
of (13)+(12).

2. Our main emphasis in these notes is on the hyperbolic version of the generalized
von Karman equations in R?", for which we have a rather complete well-posedness
theory for solutions with different types of regularity, from weak to smooth;
however, we shall also briefly consider the parabolic version of these equations,
for which, in contrast, we only have a well-posedness theory for strong solutions. In
this system, Eq. (13) is replaced by its parabolic counterpart

ur+ A" = N(f ). u™ ) + N, u), (20)
with f(u) still defined by (12), and u is subject to the single initial condition

u(0) = up . 1)
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We refer to the Cauchy problem (20) + (12) + (21) as “problem (VKP)”.

3. We started our investigation of the generalized von Karman equations in [4],
where we considered an elliptic system formally similar to (6) 4+ (7) on a compact
Kihler manifold, with boundary, and arbitrary complex dimension m > 2. This
generalization involved a number of analytic difficulties, due to the rather drastic
role played by the limit case of the Sobolev imbedding theorem. We then considered,
in [7], the corresponding hyperbolic evolution problem, and gave some partial
results on the so-called strong solutions (see Definition 1.4.1 of Chap. 1) of these
equations, again on a compact Kihler manifold of arbitrary complex dimension
m > 2 (this explains in part why we only consider an even number 2m of real
variables). In [5, 6], we also gave some qualitatively similar results on strong
solutions to the parabolic problem (VKP) on compact Kédhler manifolds. Most of
these results on strong solutions for both problems (VKH) and (VKP) have been
extended to the whole space case (i.e., on all of R?") in the last chapter of our
textbook [8], where we presented these results as an application of a general theory
of quasi-linear evolution equations of hyperbolic and parabolic type. In these works,
we were able to establish the existence and uniqueness of strong solutions in a
suitable function space framework, by applying the linearization and fixed-point
technique developed by Kato and others (see, e.g., Kato [18, 19]). Evolution systems
of von Karman type can also be studied in the context of Riemannian manifolds with
boundary, with a number of extra difficulties due to the curvature of the metric of
the manifold, and the presence of boundary conditions.

3 Overview of Results

1. Our first and main goal in these notes is to present a comprehensive study of the
initial value problem for the generalized model of the hyperbolic equations of von
Karman type (13) + (12), in the whole space R>", with arbitrary integer m > 2. We
seek solutions to problem (VKH) with different degrees of smoothness in the space
variables, as described by the index k in the chain of anisotropic Sobolev spaces

X i(T) := C([0, T); H™TF) 0 ([0, T]; HY) (22)

where for r € N, H" is the usual Sobolev space on R>" (that is, H" = W"2(R>")).
We obtain different results, depending on whether k = O or k > 0. If k = 0, we
are able to establish the existence of solutions in a space ), 0(7T) which is larger
than (22); more precisely, such that

Xno(T) € Yino(T)

(23)
C{ueL>®0.T:H") | u, € L>°(0,T: L} ;
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(see (1.131) of Chap. 1). These solutions are called WEAK, and are defined globally
in time; that is, for all values of 7 in the same interval [0, T] where the given source
¢ is defined. In contrast, when k > 0 we can establish the existence of solutions that
are defined only on a smaller interval [0, ] C [0, T]; that is, solutions in X}, x (), for
some 7 € ]0, T]. We call these STRONG, LOCAL solutions. Remarkably, the value of
T is independent of k; in fact, it only depends, in a generally decreasing fashion,
on the size of the data up in H™*!, u; in H', and ¢ in the space S, 1(T) defined
in (1.137) of Chap. 1. In addition, these strong solutions depend continuously on the
data ug, u;, and @, in a sense described precisely at the end of Chap. 1.

2. A similar kind of results holds for the initial value problem for the generalized
model of the parabolic equations of von Karman type (20) + (12), again in the whole
space R m > 2. Here too, we seek solutions to problem (VKP) with different
degrees of smoothness in the space variables, described by the index 4 in the chain
of isotropic Sobolev spaces

Pun(T) := {u € L0, T; H"™") | u, € L*(0,T;: H" ™)} . (24)

When & > m, these solutions are called STRONG, and as in the hyperbolic case we
are able to establish the existence of strong, local solutions in P, 5(7), for some t €
10, T]. Again, 7 is independent of &, and its size depends, in a generally decreasing
fashion, on the size of the data up in H" and ¢ in the space S, 0(7T) defined in (1.137)
of Chap. I. In addition, these strong solutions depend continuously on the data
up and ¢, in a sense described precisely at the end of Chap.1. Weak solutions
correspond to the case 0 < h < m in (24); however, in contrast to the hyperbolic
case, we are not able to even give a meaningful definition of weak solutions to
problem (VKP) in the context of the spaces P, x(T), except when m = 2.

3. These notes are organized as follows. In Chap. 1 we prepare the analytic and
functional space framework in which we study the hyperbolic equations of von
Karman type (3) + (4), and state the results we seek to establish. In Chap.2, we
prove the existence of global weak solutions to problem (VKH), extending the
above-cited result of Lions [21], to arbitrary even space dimension 2m. In Chap. 3,
we prove the local well-posedness of the equations in a suitable strong sense, when
m + k > 4, and in Chap.4, we prove a weaker well-posedness result for the
exceptional case m = 2, k = 1. In Chap.5, we briefly consider the parabolic
version (20) + (12) of the von Karman equations, and establish a result on the
local existence and uniqueness of strong solutions of problem (VKP), and one on
the existence of weak solutions when m = 2. In contrast to our earlier work (as
summarized, e.g., in [8, Chap. 7, Sect. 2]), all existence results here are established
via suitable Galerkin approximation schemes. Finally, in Chap. 6, we report some
technical results on the Hardy space H! on RY, which we then use to show the
well-posedness of weak solutions of problem (VKH) for the classical von Karman
equations (3) + (4) in R2.

4. While the physical significance of the von Karman system we consider may not be
evident, the interest of this problem resides chiefly in a number of specific analytical
features, which make the study of these equations a rich subject of investigation. The
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two major difficulties we encounter are the lack of compactness, which characterizes
the study of evolution equations in the whole space (and which is, obviously, not
present in the case of a compact manifold, or other types of bounded domains with
appropriate boundary conditions), and a lack of regularity of the second order space
derivatives of the function 92 f defined by (12). This difficulty is related to the limit
case of the Sobolev imbedding theorem. More precisely, we encounter a drastic
difference between the situation where the derivatives 9 f(z,-) are in L™, or not.
Interestingly enough, in the hyperbolic case that is of most interest to us it turns out
that we are not able to determine whether this condition holds or not, only when
either m > 2 and k = 0 (case of the weak solutions), or whenm = 2 and k = 1,
which is a somewhat exceptional case; in all others, including the case m = 1,k > 0
of the classical von Karman equations, the condition 92 f(z, ) € L* does hold.
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Chapter 1
Operators, Spaces, and Main Results

In this chapter we introduce the function spaces in which we build our solution
theory for problems (VKH) and (VKP), and study the main properties of the
operator N defined in (8) in these spaces.

1.1 Functional Framework

1. For 1 < p < oo, we denote by L” the usual Lebesgue space of all the
(equivalence classes of) Lebesgue measurable functions f on R?" which are
Lebesgue p-integrable on R>” if p < oo, or essentially bounded if p = oo, endowed

by the usual norms
1/p
= ([ ror ar) (LD

|floo := supess | f(x)] (1.2)

xER2ZmM

if 1 <p < oo, and

if p = oo. The space L? is a Hilbert space, with inner product

(f.g) == / F0) g(x) dx. (13)

in accord with (1.1) for p = 2. More generally, for k € N and p € [1, +00], we
denote by W*” the usual Sobolev space of all functions in I whose distributional
derivatives of order up to k included are also in L?; these are Banach spaces with

© Springer International Publishing Switzerland 2015 1
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respect to the norm

1/p

W s |7 |osuf . (1.4)

|| <k

We identify WO = 7, and when p = 2 we abbreviate W*? =: H*. The spaces H
are Hilbert spaces, and the corresponding norm (1.4) (i.e., with p = 2) is equivalent
to the one defined by

#ou e (fas |s|2)k|a(s)|2ds)l/2, (1.9
where u denotes the Fourier transform of u. We recall that the continuous imbedding
Wk s L9 (1.6)

holds, with k, p and g related by
%z}jz%—ﬁ>0 (1.7)

(keep in mind that the dimension of space is N = 2m). If kp = 2m, the
imbedding (1.7) holds for all ¢ € [p,oo[; the value ¢ = oo is admissible if
p = 1, thatis, if k = 2m (see, e.g., Adams and Fournier [1]). The proof of these
imbeddings is based on the following well-known result by Gagliardo and Nirenberg
(see Nirenberg [24]):

Proposition 1.1.1 Letk € N, and p, r € [1,00]. Let u € L" be such that 8fu e’
for all multi-indices B such that |B| = k. For integer j such that 0 < j < k and for

0 e [f—(, 1[, define q € [1, co] by

l=#+%+9(l_i_l) (1.8)

q p 2m r

(recall that 2m is the dimension of space). Let a be a multi-index with |«| = j. Then,
0%u € L1, and

0%uly, < C Y (0Pulf |ul} 7. (1.9)
|Bl=k

The limit value 0 = 1 is admissible if p = 1, or if k — j — m is a negative integer.
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In particular, taking p = 2 and j = 0, if 0 < k < m we can choose § = 1 in (1.8),
and obtain from (1.12) that

lu 20 < C|Vtul, . (1.10)

NOTATIONAL CONVENTION. In (1.10), and in the sequel, for k € N, we denote by
V¥u the set of all the derivatives 3%u of order |a| = k; often, we shall abuse notation
and write 0*u to indicate generic derivatives 3°u with |a| = k. In this context, then,
|0%u|, denotes the L” norm of a generic derivative of u of order k, while |V¥ul,
stands for the abbreviation

IVl o= > (0%l - (1.11)

la|=k
Thus, for example, we write the Gagliardo-Nirenberg inequality (1.9) as
0uly < C|VFulf |ul} ™ (1.12)

2. We shall determine solutions u of problem (VKH) such that u(z,-) € H"™ ", for
h > 0. In contrast, solutions of the elliptic equation (12) can only be established in
spaces that are larger than H”". This is due to the lack of control of the norm of
f(t,-) in L?; note that, a priori, f is determined only up to a constant. Consequently,
for k > 0 we introduce the space H*, defined as the completion of H* with respect
to the norm

|A¥2y|, if kiseven,
ur|lullz = (1.13)
[V A®K=D2y|, if  kisodd.

H* is a Hilbert space, with corresponding scalar product

(1.14)

(AM 2y, AK2y) if kiseven,
(u, v)g =
(VA®=D2y Y A®=D/2p) if  kis odd.

The space Ci° (R*") is dense in H¥, because it is dense in H* and, obviously, H* is
dense in H*.

In the sequel, to avoid unnecessary distinctions between the cases k even and odd,
we formally rewrite (1.14) and (1.13) as

(u,v)r =: (VFu, V¥v) | ||u||% = (Vku, VFu) . (1.15)
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Note that H° = L2, and that H* can be endowed with the norm
k 2 n1/2 .
H > urs (uld+ ul3) ™ = ul, (1.16)

which is equivalent to the norm defined in (1.4); the corresponding scalar product is
then given by

(u, V)i i= (u, v) + (VFu, Vo) . (1.17)

When k& = 0, we omit the index 0 from the norm in (1.16); that is, we set || - || =
I llo=1"1l.

We note explicitly that an element f € H* is a sequence ( S")n>1 of functions of HF,
such that the sequence (V¥ f") _  is a Cauchy sequence in L?. We abbreviate this
by writing

n>1

f= ("1 € H". (1.18)
For such f, we define
Vi = 1im V5" in L7, (1.19)

the limit being independent of the particular approximating sequence (f"),>1. From
this, it follows that

flle = lim [[" [l = lim [Vf"]> = [V¥l2 (1.20)
which explains the notation of (1.15).

Identity (1.19) can be generalized, in the following sense.

Proposition 1.1.2 Letf = (f"),5, € HF. Given r € N such thatm+r > k > r > 0,
define g = q(k,r) € [2, +00[ by 611 = % - kzlmr The sequence (a;f”)pl is a Cauchy

sequence in L1, and, setting
0 f :==1lima, f" in L%, (1.21)
the estimate
|0fly = CIVifl2 = ClIfl (122)

holds, with C independent of u. In particular, if 0 < k < m, f can be identified to a
function in L*"/ (=)

Proof The claim is a direct consequence of (1.10), with u replaced by 0%.(f” — f9)
and k by k — r; note that the requirement 0 < k — r < m is satisfied, and that the

corresponding value of g is ¢ = m_z(Z’_r). 0
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For future reference, we note that changing k into m — k in Proposition 1.1.2 yields
that H" % < [2"/k if 0 < k < m, and, in accord with (1.10),

[flampe = CIV" 2 = Cllfll= (1.23)
3. We now proceed to characterize the topological dual of H*, which we denote by
H~*. We recall that if X and Y are Banach spaces, with X < Y, andj : X — Y

is the corresponding canonical injection, the transpose injection j* : Y’ — X' is
defined by the identities

G0 x)xxx = (0@ vy VxeX. (1.24)
Both j and j* are continuous injective maps with dense images; the latter allows

us to identify Y’ with a subspace of X', with ¥’ < X', and in this sense we
rewrite (1.24) as

0 Xxrxx = (0 X)yrxy (1.25)

forxe X < Yandy’ € Y’ < X'.In the present situation, the injection H* < H*
implies that H~* < H™*; identity (1.25) reads

(f u)g—rscgre = (f 1) ik (1.26)

forf € H* < H™* and u € H* < H*, and a distribution f € H~* will be in H~*
(more precisely, f € j*(H¥)), if for all v € HF,

[(f2 0t | < G V02 (1.27)

where Cy is a constant depending on f. For example, if h € H*, then A*h € H7,
because for all v € H¥,

(A R, V) gt | = [(VER, VF0)| < [VER|> VRV, (1.28)
in addition, (1.28) implies that
1A R g < |V*hl> = |IA]z . (1.29)

We now claim:

Proposition 1.1.3 Letf € H* and v = (v"),>, € H*. Then,

(f, U)kaxgk = lim (f, Un)H—kak . (1.30)

Proof We first note that f € H™* < H™¥, so that each of the terms (f, V") y—ixpt
makes sense. The limit at the right side of (1.30) exists, because the sequence
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({f, V") g—kxpt),>1 is a Cauchy sequence in R: this follows from (1.27), which
yields the estimate

[(fo 0" = 0 ) it | < G [VEQ@" = "), = 0. (1.31)

Analogously, using (1.26) and (1.20) we can see that the limit at the right side
of (1.30) is independent of the particular sequence that approximates v [in the sense
of (1.18)], and is a continuous function of v; thus, the right side of (1.30) defines an
element f € H=. But f = f in H™*, because if v € H¥, we can take v" = v for all
n > 1, and, by (1.26),

(o) a—ixre = (V) gt (1.32)

= lim (f, V") g—xmt = ([, V) g—kxcpt -

In conclusion, f = f € H*, and (1.30) follows. O

Proposition 1.1.4 Let f = (f"),~, € H". Then:
a) The sequence (Akf")n>1 is a Cauchy sequence in the dual space H™*; thus, it
defines an elemem‘f e HX, by

fi=lmAY"  in H*. (1.33)
b) Forall v € H,
(F.0) e = (V. V) (1.34)

where V*f is defined in (1.19).
) Iff € H*, then

f=AY in H*. (1.35)

Proof
a) As noted in (1.28), the fact that f* € H* implies that A*f" € H*, for eachn > 1.
Then, by (1.29),

1A% = A s < V5" = V2 =0, (1.36)

which proves the first claim of the proposition.
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b) Let v = (v7),>1 € H*. By (1.33) and (1.30),

{f,v) gt = (lim A" 0) i

= li;n(A"f", V) ki

= lim li;n(Akf”, VP) it (1.37)
= lim 1i[£n(v’<f", VEuP)

= li;n(ka”, Vi) = (Vi Vi) |

from which (1.34) follows.
c) Finally, (1.35) follows from (1.33), taking /" = f for alln > 1. O

Givenf = (f")u>1 € H*, Proposition 1.1.4 allows us to define a distribution A*f €
H™*, by

AYf :=Tlim A*f*  in H* (1.38)

[compare to (1.33) and (1.35)].

Proposition 1.1.5 The operator A* defined in (1.38) is an isometry between H* and
H™*

Proof Givenf = (f"),=1 € HX, let AKf € H™* be defined by (1.38). Then, (1.29)
implies that

A = < ("I - (1.39)

from which we deduce that

1A Nl < Ifll - (1.40)

To show that A* can be inverted, let g € H™*. We define f € H* as the unique
solution of the variational problem

(fr0)r = (& ®) g—rxit » Vo eH". (1.41)

Since the scalar product at the left side of (1.41) is (obviously) continuous and
coercive, that is,

(f.o)il < flellelle  and  {f.f)x=IFIZ. (1.42)
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problem (1.41) does have a unique solution f € H¥, by the Riesz representation
theorem. Hence, A*f € H~*. Letnow € H* < H*. Then, by (1.34) withf = A*f
in accord with (1.33) and definition (1.38),

(A ) e = (o ¥)Es (1.43)

comparing this to (1.41), we deduce that A¥f = g, as desired. Finally, the inequality

1AMl = (A, o) e | = I I (1.44)
together with (1.40), implies that

1A Nl = If Iz - (1.45)

|

CONVENTION. From now on, we adopt the convention that when we refer to an
element of H*, or to any of its derivatives, as a function, we have in mind the
definition given in (1.21).

4. Taking k = m in (1.22) yields that if f € H", its derivatives 0% f are in L2/ for
0 < r < m, and, by (1.22),

10 f lomsr = CIV"fl2 = Cf - (1.46)
In particular, if f € H™, then Vf € L*" and V*f € L™, with
IV lom = CIV"fl2, [Vl < CIV"f]s . (1.47)

We note explicitly that if k = m, the value r = 0 cannot be taken in (1.46) (this
is related to the so-called “limit case” of the Sobolev imbedding H" — L?, which
holds for all p € [2,+o0[ but, in general, not for p = o0). Still, by means of
Lemma 1.1.1 below, we can extend the previous results to the limit case r = 0,
provided that f satisfies an additional regularity condition. On the other hand, the
imbedding H™*! < L* does hold; the corresponding imbedding for the spaces
H* is (fi”’“ N I_ir) < L*®,0 < r < m— 1. This follows from the Gagliardo-
Nirenberg inequality

ltloo < CIV"™ 1 ulf Jul, ™ < CIV™Fulf VU3~ (1.48)
with 11) = % — 3, and 6 = #”_ﬁp €]0, 1[. In particular, we shall often use

inequality (1.48) with r = m — 2 (thus, p = m and 6 = %) and u replaced by
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afu; that is, explicitly,
IV2uloo < C V" F2uld? |V2ulll? < €|V H3uld (vmull? . (1.49)

We now prove

Lemma 1.1.1 Lerm > 2, and f € H™ be such that V¥'f € L'. Then f € L, and
there is C > 0 independent of f such that

[floc < C(IV"fl2 + [V>"f11) - (1.50)

Proof By the density of C°(R*") in H™, it is sufficient to prove (1.50) for f €
CS°(R*™). Fix x € R*", and denote by A, a cone with vertex x, height p = 1 and
opening Kk = % From Lemma 4.15 of Adams and Fournier, [1] (withr = p = 1),
we deduce the estimate

IFOI<K D 10|y - (1.51)

la]<2m

with K depending only on p and «, and thus independent of x itself. For 0 < |a| <
2m, we use the Gagliardo-Nirenberg inequality (1.12) to interpolate

13 m 2m 1— 2m
105 1y < CIVAIS 112" 4+ C 1 flpa, 52

< C(IV*fluny + 1flnny)

where the additional term at the end of the first line of (1.52) is required because A,
is bounded. Thus, we obtain from (1.51) that

LFO < K (1flay + IV loay) - (1.53)

We estimate the norm of f in L' (A,) by means of Holder’s inequality, the Sobolev
imbedding (1.10) with k = 1, and the first imbedding of (1.47). Setting g := %
and V, := vol(A,), we obtain
[floay < Vil [fleaay < cvia IV 2y
< CVi VSl < CVe V™I, -

(1.54)
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Inserting (1.54) into (1.53) and noting that V, is independent of x, we finally arrive
at the estimate

lfF)] < C (V™2 + IV"flh) . (1.55)

from which we deduce (1.50) by taking the supremum in x. a

Corollary 1.1.1 In the same assumptions of Lemma 1.1.1, 0 f € L*"/" for 0 < r <
2m, and

0 flomr < C(IV"™fl2 + [V*"f11) . (1.56)
with C independent of f.
Proof If r = 0, (1.56) follows from (1.50). If 0 < r < m, (1.56) follows from (1.46).
If m < r < 2m, (1.56) follows from the Gagliardo-Nirenberg inequality
|0 flamyr < CIV"FIT VA5 (1.57)
with arbitrary 6 € [Z — 1, 1[. If r = 2m, (1.56) is obvious. Note thatif m < r < 2m,
then L>"/" < L> N L' (in the sense of interpolation). O

Remarks Lemma 1.1.1 does not hold if f € H', because the imbedding H'(A,) <
Li(A,) used in (1.54) fails for ¢ = oco. In Lemma 6.1.4 of Chap. 6 we shall see
that the assumptions of Corollary 1.1.1 are satisfied if f € H” and A”f is in the
Hardy space H! := H'(R>"). This will be the case for weak solutions of (12), with
ue H". o

5. We conclude this section with an interpolation result for the spaces H.

Proposition 1.1.6 Letky > k > ky > 0, and f € H* N H*. Then f € H*, and
satisfies the interpolation inequality

Vil < CIVRASIVRA . 6= (1.58)

Proof Again, it is sufficient to prove (1.58) for f € CS°(R*"). This is done in the
same way as the corresponding interpolation inequality for the usual Sobolev spaces
H*; more precisely, by means of the estimate

VAR = / EPRE)P de

= / &2 |7 (©)] |61k f () 200 ag (1.59)

0 1-6
< (/ |s|2klms)|2ds) ( / |s|2k2u?(s>|2ds) .
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Remark 1t is usual to choose on H*' N H* the topology induced by the norm
Y nH2 50 ullg, + llullg, - (1.60)

Then, Proposition 1.1.6 shows, via Holder’s inequality, that the injection HA N
H* — HF is continuous. o

1.2 Properties of N

In this section we investigate the dependence of the regularity of the function
N(uy, ... ,u,) on the regularity of its variables uy, ..., u,, and present the main
results we need in the sequel. We set Uy, := (uy, ... , Up).

1. From (8), we deduce that the function N is completely symmetric in all its
arguments. The same is true for the scalar quantity / defined by

I(Ltl, ey Uy, I/tm.H) = (N(ul, ,um), I/tm.H); (161)

indeed, we claim:

Lemma 1.2.1 Assume uy, ..., Uy, Uyt € H™. The scalar I defined in (1.61) is
completely symmetric in all its arguments. In addition, I satisfies the estimate

[I(uy, ..., U, Ups1)|
m—1
< C[ [T IV?wln | IVttmlam | Vitms1 |2 (1.62)
Jj=1
m+1 m—+1
=

I IvVrula = T sl
j=1 Jj=1

with C independent of the functions u,.

Proof 1t is sufficient to prove (1.62) when all the functions u; € C{°(R*"). Fix

ke {l, ... ,m} and, recalling (8), consider the vector field
YE = Yy, ...ty Uit 1)
o | | (163)
= 5;11 ,,,;;”1 Vfll uy - an”:ll Up—1 V" Uy Uyt 1
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Then,
/Vkkax =0. (1.64)
On the other hand, forallr =1, ... ,m—1,
SV g e V3, Vi e VI Viruy, =0, (1.65)

because, by the antisymmetry of Kronecker’s tensor,

g = _§itim (1.66)

J1- Jr /m U gm

and, by Schwarz’s theorem on the symmetry of third order partial derivatives,

Vi i Viu, =V, Viru, . (1.67)

im iy

Consequently, since the covariant derivative of Kronecker’s tensor is zero,

VkYk N(Um) Um+1

. ' (1.68)
+ 5;11 ;: V{ll up --- Vl]:::ll Up—1 Vim Uy Vimum+1 .
Integrating this identity and recalling (1.64), we obtain
I(M], ey Uy, um+l) = /N(Um) Um+1 dx
= / 5;11 ;”’ V“ .. V{::ll Un—1 V" Uy Vi 1 dx (1.69)
=: J(Vzul, oo V21, Vi, Vum+1) .
Since also
/ VE (8t i VI s VI et Vit ) d =0, (1.70)

=:7
developing Z; and taking (1.69) into account, we deduce that
I(I/tl, e, Uy, I/tm.H) = J(Vzul, ey Vzum_l, Vum, VMW,.H)

(1.71)
—/N(ul, ,um+1)umdx: I(I/tl, e s U4, um)
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This means that / is symmetric in u,, and u,,+; since [ is clearly symmetric in its first
m arguments, we conclude that 7 is completely symmetric in all of its arguments,
as claimed. Finally, (1.62) follows from (1.69), applying Holder’s inequality and
using (1.47). O

2. We now establish estimates on N(U,,) in the Sobolev spaces H" k> 0. Note
that when 0 < k < m, these are spaces of distributions. As observed earlier, in the
proof of these estimates it is sufficient to assume that all the functions u; which occur
in these estimates are in C3°(R>™). In the sequel, whenever a constant C appears in
an estimate, as in (1.62), unless explicitly stated otherwise it is understood that C
is independent of each of the functions that appear in that estimate. The proof of
the following result uses extensively the imbeddings (1.47) and the interpolation
inequality (1.58).

Lemma 1.2.2 Letk > 0, uy, ... .ty € H™ N H" ™ and set U,, = (uy, ..., uy).
Then, N(U,,) € H™ and

INUm e = € TT (IV"uil2 + V" us12)
=1 (1.72)

m
= [T lujll fim n mte
=1

(recall (1.60)).

Proof 1) The second of (1.47) implies that Bfuj € [Mforallj =1, ...,m,so that
N(U,) € L', and, by (1.47),

INWU1 < CT[IV?uilm < CT ]IV =: Cu, - (1.73)

Jj=1 Jj=1
In particular, N(U,,) € D’(R*"); but if ¢ € D(R*"), by (1.62) we can estimate

(N(Un), @)p'xp| = [[(Un, 9)| = Cu, [[@]l - (1.74)

Hence, N(U,,) € H™™. Moreover, recalling the definition of the norm in a dual
space, from (1.74) it follows that

INUD g-n < CTTIV"ui2 - (1.75)
j=1

Thus, (1.72) holds for k = 0. B
2. Assume next that 1 < k < m. Then, by interpolatio_n, each u; € H™!: thus, by
Proposition 1.1.2, Bﬁuj € L*". Hence, NWU,) € ! =HC D’(]RZ'”), and

INWUm o < € []IVlem < CTTIV" w2 - (1.76)

J=1 Jj=1
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Next, we let p := 2?sz— and note that, by the Gagliardo-Nirenberg inequality,

together with the inclusion H" 2 s [

|a M;|p < C|Vm+ku |1/m |V2 1 1/m
X - (1.77)
< CV g™ V|,

Noting also that :—f + ﬁ = 1, and recalling also (1.23), we obtain that for all
¥ € DR™),

i(N(Um)v 1p)D/><D| = II(Unw Ir/f)|

< TTIVulo | 1 lom (1.78)
j=1
< C l_llvm 1— l/mlvm+k 1/m ”w”ﬂ

j=1

Hence, we can conclude that N(U,,) € H*"_ Furthermore, from (1.78) we deduce
that

||N(Um)||1:1k—m Cl_[(lvm 1—1/m Vm+k |1/m) 7 (1.79)

from which (1.72) follows, via Holder’s inequality.
3) Finally, let k > m, so that V&"N(U,,) is a function, and we need to estimate its
L*-norm. To this end, we note that for r > 0 and @ € N such that || = r, we can

decompose 0N (uy, ua, ... ,uy) as a sum of the type
Ny, uy, -+ ) = Z C,N(V9uy, ..., Viu,), (1.80)
lql=r
for suitable multi-indices ¢ = (g1, ... ,g») € N and corresponding constants C,.

Setting then, for |g| = k —m,

Ny(Up) := N(V'uy, ..., Viu,) (1.81)
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by the Gagliardo-Nirenberg inequality and (1.47) we obtain
INy U2 < CT ]IV 9|20
j=1
< - V" 1-6; Vm+k . 6; 82
= Cl_[| il 7| ujl; (1.82)
Jj=1
< C[TUV"uil2 + V")
j=1
with 6, = H,;qj € [%, 1 - %] (because 0 < ¢; < |g| = k—m < k —2). From this we
obtain that
|Vk_mN(Um)|2 =C Z INq(Um)|2
=k (1.83)
< C 1 (IV"ujl> + V™ ruyl2)
j=1
from which (1.72) follows. O
Remark If uj = uforallj =1, ... ,m, we can deduce from (1.82) that
IN(Un) |2 < CIV"ul3 ™" [V ul | (1.84)
with 6 := ) 6,. Now,
j=1
6 =1 <m+ ;q,-) = mhem = (1.85)
j=
hence, we obtain from (1.84) that
N m, (m—1 m-+k
IN(Un)|2 = CIV"uly™ V" uly . (1.86)
As we see from (1.79), this result also holds if 1 < k < m. <o

3. We proceed to establish more refined estimates on the function N(U,,) in H¥,
k > 0. The estimate of N(U,,) in L? (i.e. k = 0) has already been given in (1.76) of

the proof of Lemma 1.2.2; for convenience, we report it explicitly as

Lemma 1.2.3 Let uy, ... ,u, € H"t'. Then N(U,) € L? and satisfies esti-

mate (1.76).
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Remark The regularity requirement that each u; € H"*!in Lemma 1.2.3, in order
that N(U,,) € L?, seems to be essential. In contrast, if we only know that each
uj € H"™, we can only deduce, as shown in Lemma 1.2.2, that N(U,,) € L' NH™ C

L' N H™™. On the other hand, Lemma 6.1.3 of Chap. 6 implies that N(U,,) belongs
to the Hardy space H'. o

We next establish an estimate of N(U,,) in H¥, k > 1. As it turns out, the cases
m > 2 and m = 2 require different kinds of assumptions on the functions u;, due to
the restrictions imposed by the limit case of the Sobolev imbeddings. We start with
a result valid when m > 2.

Lemma 1.2.4 Letm > 2, k > 1, and assume thatu, € H* N H™ % wy, ... u, €
H"™2 N H"* Then N(U,,) € H*, and

IVEN(Ua)l2 < € M) T | g llmee - (1.87)
j=2

where k := max{2, k}, and

A1 () := max{|V"u |y, |V" o} (1.88)

Proof Since each u; € H™ N H"* < ™1 Lemma 1.2.3 implies that N(U,,) €
L?*. We refer then to the decomposition (1.80), and recall (1.81). If g; < k— 1 for all

j=1,...,m, we can proceed as in (1.82) and obtain
INgUn)la < Av ) T T gl (1.89)
j=2
in accord with (1.87). Ifq1 = k,sothatg; = Ofor2 <j <m,wesetp := %

+ooand A := 1 — 5= €]0, 1[. Noting that ; ’"T_l = 3, recalling (1.47) and
proceeding as in (1.77), we estimate

IN((Un)|2 < CIV 21| T TIV?u,
j=2

< CIV" |y [TIV" 2wl 19" w15 (1.90)
Jj=2

< CAv@) [T lwllmea

=2



1.2 Properties of N 17

again in accord with (1.87). Assume next thatg,, = kandg; = Ofor0 <j <m—1.
If kK > 2, we can proceed as in (1.90), with the same value of p, but with A; :=
ﬁ €]0, 1[: we obtain

m—1

INgUw)2 < C | [T1V?uilo | IVt

Jj=1

m—1
< | [TVl IV ™ | IVl (1.91)
=1

< CAvr) [T Il -
Jj=2

Ifinstead k = 1,

m—1

INgUm2 < C [ TTIVwlom | 1Vt
j=1

m—1
<c| [TV wls | V" s (1.92)
j=1

m
< CIV"™ i, l_[ i llm+2 -

j=2
An analogous estimate holds if ¢; = k for some i # 1. Adding all the
estimates (1.89), (1.90) and (1.91) or (1.92) finally yields (1.87). O

4. We now observe that the regularity u; € H™*? required of all but one of the
terms u; (which is essential only if & = 1) can be replaced by a stronger regularity
requirement on only one of these terms.

Lemma 1.2.5 Letm > 2 and k > 1. Assume that u; € H" N H™t3 N gtk
and that u,, ... ,uy, € H"7* Then N(U,,) € H¥, and

IVEN(Un)l2 < € AgCu) [ llgillme (1.93)
j=2
with (compare to (1.88))

As(ur) == max {|V"ui|o, [V"Fuyfo, [V )5} (1.94)
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Proof

1) By interpolation (Proposition 1.1.6), u; € H™*+!; since also u; € H"! — H™+!
for2 < j < m, Lemma 1.2.3 implies that N(U,,) € L?.

2) We refer to the decomposition (1.80), and distinguish three cases. If g; = &, so
that g; = 0 for 2 < j < m, we estimate

IN((Un) |2 < CIV* o [ IV
=2

< CIV"H L [TIV ula (1.95)
=2

< CAzx(m) l—[ llullm+-x »

j=2

in accord with (1.93). If g; = k for some i # 1, we can again assume without loss
of generality that i = 2, so that g; = 0 for j # 2, and, recalling (1.49),

INg(Un) |2 < C V1 |oo V> ua] [ [ IV2t512m
j=3

< OV BP9 [V 10, TT IV gl (196)
j=2

< CAs () [T lgllmc
j=2

again in accord with (1.93). Finally, if k > 2andg; < k—1forallj =1, ... ,m,

then, with § = 2t €]o, 1],

IN(Un)l2 < CT IV 2ujlom < CTTIV"H 9051,
j=1 J=1

< CIV"ur 57 (V" [T T el 144 (1.97)
j=2

< CAsx(m) l_[ llullm+-x »
=2

again in accord with (1.93). Summing all the inequalities (1.95)—(1.97) we can
conclude the proof of Lemma 1.2.5. |
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Remarks In relation to the regularity assumptions on #; in Lemma 1.2.5, we note
that m~+k+1 > m+3 iff k > 2. In this case, the interpolation imbedding H”T**! N
H™ <> H™T3 holds, and it is sufficient to assume that u; € H™T1 n g™
Conversely, if k = 1, it is sufficient to assume that u; € H"+> N H™, since this
space is imbedded into H”T!T! = H”*2_ In the sequel, we shall use Lemma 1.2.5
with uy = --+ = u,, =: u € H"* and u; = f(u), the corresponding solution
of the elliptic equation (12). In Lemma 1.3.2 below, we shall show that f(u) €
H¥=1 A gmif u € H", k > 1; thus, we need that (H*"T*~' n H") —
(H™5+1 g3 NH™). These requirements are satisfied if 2m+k—1 > m+k+1
and 2m + k — 1 > m + 3; of these, the first is automatic, because m > 2, but the
second translates into the condition m + k > 4. This means that we can apply
Lemma 1.2.5 to estimate VKN (f (), u" "), for all k > 1, only if m > 3, while if
m = 2 we must restrict ourselves to k > 2. We consider the solutions corresponding
to these cases in Chap. 3, while in Chap.4 we concentrate on the exceptional case
m = 2 and k = 1. To further realize the importance of the condition m + k > 4,
we note explicitly that in this case f(u) € (H*"**' N H™) — H"3; thus,
V2f(u) € (H"t' N H™) < L*®. On the contrary, when m = 2 and k = 1, the
corresponding condition f(x) € H* N H? implies that Vf(u) € H> N L?; but
while this space is imbedded in every L” with p > 2, it is not imbedded in L>*. ¢

Lemma 1.2.6 Letm > 2, k> 1, andu € H"t' 0 H"* Then, M(u) € H*', and
IVEIMu)], < €|V =t (v thy), (1.98)

Proof If k = 1, the result follows from (1.76) of Lemma 1.2.3. If k > 2, we refer to
the decomposition (1.80) and write

VEIM@) = Y CuN(Yu, ... Vi)
lal=k=1 (1.99)
= Y CN,w).

lql=k—1
Then,
Nyl < C[TIV*uly, < CTT 19"+l
jfnl - (1.100)
= Cl_[ |Vm+ku|gj Ivm+lu|;—9j ’

Jj=1

with 0; := k‘i—’l € [0, 1]. Noting that ) 6; = 1, we conclude, via (1.99), that
j=1

IN,(u)|2 < C|V"uy=H V|, (1.101)

from which (1.98) follows. O
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5. We conclude this section with an estimate on the difference N(U,,) — N(V,,) in
L?, where U,, = (uy, ... ,up) and V,, = (vy, ... ,vy); similar estimates of such
difference in the spaces H* for k > 0 can be established with similar techniques.

Lemma 1.2.7 Let U, = (uy, ... ,up), Vip = (v, ... ,0p) € (I:I”H'l)m, and set
R:= max IV uila, V™)) (1.102)
i,j=1,....m
Then,
IN(Un) = NVl < CR™™ Y IV (= v,) 2 (1.103)
r=1
Proof Subtracting and adding the m — 1 terms N(vy, ..., Up, Upt1, ... lUy), 1 <7 <

m — 1, we decompose

N(Um) _N(Vm)

=N —vi,uz, ..., Uy)

m—1
—I—ZN(vl,...,vi_l,u,-—vi,u,-H,...,um) (1.104)
(=2

+NL, V2, ey Vel Uiy — V)
if m > 3, and
N(ur,uz) — N(vi,v2) = N(uy — v1,u2) + N(vi, u2 — v2) (1.105)
if m = 2. We set
N(V,) =N(V,,) = Zm:N(w"l,...,wjn), (1.106)
i=1
where, fori, j=1, ... ,m,

v if j<i,

wii= g —vif j=1, (1.107)
w if  j>i.

For example, if m = 3,

N(uy, uz, u3) — N(v1, v2,v3) = N(u1 — vi, Uz, u3)
(1.108)
+ N(vi,ua — v2,u3) + N(v1, 02, u3 — v3) .
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1.2 Properties of N
Then, as in (1.76),

IN(Uw) = N(Vi)l2 < Y INOWE. .. owih)l
(1.109)

i=1

m m
= [TV *wik.
i=1 j=1

from which (1.103) follows, recalling (1.107). O
Corollary 1.2.1 Letk > 0, and uy, ... ,u, € C([0,T]; H"* 0 H™). Then,
N(Un) € ([0, T;; ™), (1.110)
and
(1.111)

m
INWUm) o zs—my < C [ T 19ill oy iam+xniam, -
Jj=1

Proof Lettand 1, € [0, T]. By Lemma 1.2.2 it follows that Dy (2, o) := N(Un (1)) —
N(U,(ty)) € H™. We set

Rk = llg}as)in ||uj||C([O,T];I:Im+k ﬂI:Im) B (1.112)
and, referring to the decomposition (1.104), we start with
1Dy (. to)ll—n < Y INOWL. . W) [ - (1.113)
i=1
where each w; equals one of the terms u;(1), u;(ty) or u;(t)—u;(to). Fori =1, ... ,m,
set v; = v;(t, ty) 1= u;(t) — u;(ty). Let first 0 < k < m. Then, by (1.79), and since

Ry < Ry, we obtain then that

INOWS, o )| e
Ymo(1.114)

< CR(()m_l)(l_l/m) |vai|é_l/m Rl((m_l)/m |Vm+kvi|2

CRY™ urt) = uito) gy ™ Nug(e) = i) |1

IA

This implies that N(U,,) € C([0, T7; H*). Recalling then the definition (1.60) of
the norm in A% N H™, (1.111) follows from (1.72), written for U,, = U, (¢), and

taking the maximum with respect to # € [0,7] on both sides. If instead k > m,
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recalling (1.72) and proceeding as in (1.113) we estimate

IVE"Dy (1) < Y [VE"NOL o)

i=1

< Y [TVl + 1V wil2)
i=1 j=1

<CY (Ro+R)"™ (IV"0il2 + [V"Huily)  (1L115)

i=1
<CRy! Z ([leei(r) — ui(to) I

i=1

+ ui(t) — wit0) gz -

We can then proceed as in the previous case, and conclude the proof of Corol-
lary 1.2.1. |

1.3 Elliptic Estimates on f

1. We now turn to Eq. (12), which defines f(«) in problem (VKH), and study the
regularity of its solution in terms of u. At first, we claim:

Lemma 1.3.1 Let u € H™. There exists a unique f € H™, which is a weak solution
of (12), in the sense that for all ¢ € H™,

(f @) = (= M@). @) g-mxjin - (1.116)
The function f satisfies the estimate
V7l < C[V"uly, (1.117)

with C independent of u.

Proof The result follows from Proposition 1.1.5, noting that, by the first part of
Lemma 1.2.2, M(u) € H™™, and satisfies the estimate

M) g—n < CIV"uly . (1.118)
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This also implies that

IV7fl2 = Ifllm = IM@) | g—n = CIV"uly'. (1.119)

which s (1.117). O

Remark Asmentioned at the end of the remark following the proof of Lemma 1.2.3,
we know from Lemma 6.1.3 of Chap. 6 that if u € H" and f = f(u) is the solution
of (12), then A"™f = —M(u) € H'. Then, Lemma 6.1.4 implies that V>"f € L';
hence, by Lemma 1.1.1, f € L*. Note that this conclusion does not follow from the
mere fact that f € H™; in fact, it would not even follow if f € H"™, as this space is
not imbedded in L*°. o

2. We now establish further regularity results for f.
Lemma 1.3.2 Letm > 2, k > 1, and u € H" N H"*. Let f = f(u) € H" be the
weak solution of (12), as per Lemma 1.3.1. Then, f € H*" =1 and

|V2m+k_lf|2 < Clvm-}—lulgn—l |Vm+ku|2 ) (1120)

In addition, if 1 <k <m,

VHf L < C IVl [Vl
(1.121)
< C |Vm'4|§"_1 |Vm+ku|2 ,

while if k > m,

[Vthfy < C IVl Ve Y|,
(1.122)
<C |V”’u|'2”_1 [V tky|,

Remark The importance of (1.120) lies in the fact that its right side is linear in the
highest order norm | V" y|,. o

Proof
1) Since u € H"™** Lemma 1.2.6 implies that A”f = — M(u) € H*'; in addition,

V2"l < CIVEI A = €IV M@l (1.123)

so that (1.120) follows from (1.98).

2) The second inequalities in (1.121) and (1.122) follow from the first, by the
interpolation imbeddings (H” % N H™) < H"*! and (H"** N H"T!) — H**!,
Thus, it is sufficient to prove only the first inequality of (1.121) and of (1.122).
Taking k = 1 in (1.120) yields

|V21fly < C |Vl (1.124)
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which implies (1.121) for k = m. If 1 < k < m — 1, we obtain the first inequality
of (1.121) by interpolation between (1.117) and (1.124):

|Vntkfl, < C (VAT A

(1.125)
< C|V’”u|'2”_k |V’”+1u|’§ .

3) If k = m, the first inequality of (1.122) follows from (1.124). If k > m, we deduce
from
V"SR = (VE AT V) = (V"M (). V) (1.126)
that
[V e < CIVE" M) (1.127)
Thus, from (1.98) with k replaced by k —m + 1 > 1, we conclude that
V"l < €V Hufy =t [yt iy, (1.128)

from which the first inequality in (1.122) follows. This concludes the proof of
Lemma 1.3.2. |

3. For future reference, we explicitly record the following consequence of Lem-
mas 1.3.1 and 1.3.2.

Corollary 1.3.1 Let u € H™, and let f = f(u) be the corresponding solution
of (12). Then 3*f € L™, and

02l < CIV"fl2 < C|V"uly . (1.129)

Likewise, ifu € H"V!, then 3>f € L*™, and
107 flam < CIV"Ffla < CIV"uly™ V" ul, . (1.130)
Proof 1f u € H™, the claim follows by Lemma 1.3.1, which implies that f € H™,
and (1.129) follows from (1.22) and (1.117). Likewise, if u € H™t! N H™, the

second claim of Lemma 1.3.2, with k = 1, implies that f € H”+!, and (1.130) is a
consequence of (1.22) and (1.121). O
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1.4 Statement of Results

In this section we introduce the time-dependent anisotropic Sobolev spaces in which
we seek to establish the existence of solutions for problems (VKH) and (VKP), and
state the results we propose to prove.
1. Given T > 0 and a Banach space X, we denote by:

(a) L? (0, T; X): the space of (equivalence classes of) functions from [0, 7] into X,

which are square integrable, with norm u ( fOT llu(t)||% dt) l/2;

(b) L*(0, T; X): the space of (equivalence classes of) functions from [0, 7] into
X, which are essentially bounded, with norm u +— supess .,r||u(?)| x;

(¢) C([0,T];X): the space of the continuous functions from [0, 7] into X,
endowed with the uniform convergence topology;

(d) Cow([0,T];X): the space of those functions u : [0,7] — X which are
everywhere defined, bounded and weakly continuous; that is: (i) u(t) is well-defined
in X for all t € [0,T] (as opposed to only for almost all 7); (ii) there is K > 0
such that ||u(?)||x < K for all ¢ € [0, T]; (iii) for all ¥ € X', the scalar function
[0,T] > t — (u(r), ¥)xxx’ , where the brackets denote the duality pairing between
X and its dual X', is continuous. When there is no chance of confusion, we shall
drop the reference to X x X’ in duality pairings.

Finally, for k € N and T > 0 we introduce, as in (23), the anisotropic Sobolev
spaces

Vuk(T) 1= {u € Cow([0. T H™*) | uy € Cow ([0, T]; H} (1.131)
and
Xk (T) := {u € C([0, T]; H"™) | u, € C([0, T]; H*)} , (1.132)

endowed with their natural norms

1/2
lully ey = sup (u@ |2k + @) " (1.133)
0<i<T
<t=<
1/2
lull 2,y := max ([u(I2 4 + llu(0)2) " (1.134)

0<t<T

We shall need the following results on the spaces introduced above; for a proof, see
e.g. Lions—Magenes, [22, Chap. 1], and Lions, [21, Chap. 1].
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Proposition 1.4.1 Let X and Y be reflexive Banach spaces, with X — Y. Then:
1) [WEAK CONTINUITY.]

L=(0,T;X) N C([0,T];Y) < Cpu ([0, T]; X). (1.135)

2) [STRONG CONTINUITY.] If X is a Hilbert space, u € L*°(0,T; X) N C([0,T); Y),
andd% lu(-)||2 € L(0,T), then u € C([0, T}; X).

3) [TRACE THEOREM.] Let Z := [X,Y]1,» (the interpolation space between X and
YY). The injections

W(X.Y) = {ueI2(0,T;:X) | u € L*(0.T;Y)}
(1.136)
— ([0, T]; Z) = C([0,T]; Y)

are Continuous.
4) [COMPACTNESS.] If the injection X < Y is compact, then the injection
W(X,Y) < L*(0,T;Y) is also compact.

2. To define the type of solutions to problem (VKH) we wish to consider, we
note that Corollary 1.2.1 implies that if ¢ € C([0,T]; H""*), u € X, ,(r), and
f € C([0,]; H™*) for some t €]0,T], then the right side of Eq.(13) is in
C([0, t]; H*™)). Thus, if u € X,,+(7) and satisfies (13) in the distributional sense on
[0, 7], then u,, € C([0, T]; H*~™). Analogous conclusions hold if u € ), x(t). Thus,
it makes sense to seek solutions of problem (VKH) either in V,,x(7) or in &, x(7),
the difference being related to the weak or strong continuity of # with respect to the
time variable. We can also distinguish between various degrees of regularity of the
solution with respect to the space variables, as described by the value of k; indeed,
as we have previously noted, each term of Eq. (13) is, for almost all # € [0, 7] (in
fact, for all ¢, as we will see later), in the space H" and if 0 < k < m, this is a
space of distributions on R>”. To avoid an unnecessary multiplication of the listing
of all possible situations, we limit ourselves to the following definition. For k > 0
and T > 0 we set

C(0,T;H*** n H®) if m=2,
Sma(T) = (1.137)
C(0,T); H" ™ n H™2)if m>2.

Definition 1.4.1 Letk > 0,7 > 0, and t €]0, 7]. A function u € ), (7) is a local
solution to problem (VKH), corresponding to data

up € H™* | uy e H*, ¢ € Sui(T), (1.138)

ISee, e.g., Lions—Magenes, [22, Definition 2.1, Sect. 2, Chap. 1].
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if u satisfies the initial conditions (12), if the function ¢ — f(u(¢)) defined by (12)
is in Cyy ([0, T]; H" %), and if Eq. (13) is satisfied in H*~", pointwise in ¢ € [0, T].
If t = T, we call u a global solution. We distinguish between WEAK solutions,
if k = 0, and STRONG solutions, if k > 0; among the latter, we occasionally
further distinguish between SEMI-STRONG solutions, if 1 < k < m, and REGULAR
solutions, if k > m.

Remarks If up = u; = 0, the function u = 0 is a regular solution of problem
(VKH); thus, we assume that ug # 0, or u; # 0. We also note that if k > 2m,
regular solutions in X}, x(7) are actually classical ones, as a consequence of the
following general result, whose proof we report for convenience. o

Proposition 1.4.2 Letk > 2m, and u € X, (7). The functions uy, 95 u, 0 < r < m,
and & u, 0 < s < 2m, are continuous on [0, t] x R¥".

Proof The result follows from the imbeddings H*™" < C)(R*"), H* — C"(R>™),
and H"tk s C2"(R>"), which hold precisely when k > 2m. We prove the
continuity of u,. Fix (t5,x9) € [0, 7] x R*", and ¢ > 0. Since u,(ty) € H™ —
Cg (Rzm), there is 8; > 0 such that
|un(to, X) — un(to, X0)| < & if |x—x| =<d. (1.139)
Since u,, € C([0, t]; H*™), there also is §, > 0 such that
[l () = w(t0) [lx-m < € if |r—1to] <8;. (1.140)
Consequently, if
|t —1o]* + |x — x0[* < (min{8;, 62})?, (1.141)

we deduce that

|1z (2, X) — uy (2o, X0)|

IA

et (2, X) — i (t0, X)| + |us(to, X) — un(to, x0)|

IA

sup [uq(t, x) — uy(t0, X)| + [un(to, X) — uu(to, xo)| (1.142)

xeR2m

IA

Cu i (t) — i (20) lk—m + |10 (to, x) — w4 (20, X0)|
< Cye+e,

where Cy is the norm of the imbedding H*™™ < C(IR*"). This shows that u, is
continuous at (f, xp); a similar argument holds for the functions 0" u, and o u. O
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3. In the following chapters, we propose to prove the following results.

Theorem 1.4.1 (Weak Solutions) Lerm > 2, T > 0, uy € H", u; € L? and
¢ € Spo(T). Then:

(1) There exists at least one global weak solution u € Y, o(T) to problem (VKH).
(2) Any weak solution u € Y,,0(T) to problem (VKH) obtained in step (1) is
continuous at t = 0, in the sense that

liné lu(t) — uollm = 0, 1in(1) |t () — urllo = 0. (1.143)
—> 11—

() If for each choice of data uy € H", u; € L* and ¢ € S,,0(T), there is only one
weak solution u € Y,,0(T) to problem (VKH), then u € X,,o(T).

Note that the initial conditions (12) make sense, because if u € ), 0(T), then u €
Cow([0, T); H™) and u; € Cypw ([0, T]; L?), so that 1(0) and u,(0) are well-defined
elements of, respectively, H" and 2.

Theorem 1.4.2 (Strong Solutions, m +k > 4) LetT > 0, m > 2 and k > 1,
with m + k > 4. Let ug € H"™*, uy € H*, and ¢ € S,,(T). There is t €]0,T),
independent of k, and there is a unique local strong solution u € X, (t) to problem
(VKH). Strong solutions of problem (VKH) depend continuously on the data uy,
uy and @, in the sense that if u € X,,x(t) is the solution to problem (VKH)
corresponding to data ity € H™ "X, ity € H* and § € S,,4(T), then

lloe = &l 2, o)

(1.144)
< C(lluo = ollmsx + llur — @i llk + o = @lls,e)

where C depends on the norms of u and u in X, (7).

Remarks Theorem 1.4.2 is a uniformly local existence result, in the following two
senses.

1) As we discuss in paragraph 4 below, the value of 7 depends on the data u, 1,
and ¢ only in the sense that for each R > 0 there is t €]0, 7] such that for all data
uo, uy, and ¢ in the ball B(0,R) of H™* x H* x S,,;(T), problem (VKH) has a
unique solution in X,, ¢ (7). Then, the constant C in (1.144) depends only on R.

2) Increasing the regularity of the data does not decrease the life span of the solution.
Also, (1.144) implies that if m + k > 4, problem (VKH) is well-posed in the sense
of Hadamard. 3

Theorem 1.4.3 (Semi-strong Solutions, m = 2,k = 1) Let T > 0, m = 2, and
k=1.Letuy € H? u; € H', and ¢ € S»1(T) = C([0, T]; H). There is T, €]0,T],
and a unique local strong solution u € X, (1) to problem (VKH). In addition,
problem (VKH) is well-posed in X, 1 (1), in the following sense. For all ¢ > 0 there



1.4 Statement of Results 29

is § > 0, depending on & and u, such that, if ity € H>, it; € H' and $ € C([0, T]; H)
satisfy the inequality

T
luto — o2 + 1wy — | +/ lo—¢l2dr < 8. (1.145)
0

and if u € X, 1(T1) is the solution of problem (VKH) corresponding to uy, ) and
@, then

lu—llx w0 = €, (1.146)

where Ty := min{ty, 71 }.

4. In the course of the proof of Theorems 1.4.2 and 1.4.3, we shall see that the values
of  and 7| depend in a generally decreasing way on the quantities

lleollm1 . lluerl1 lells,.a (1.147)
except when m = k = 2, in which case they depend on
luolla, Murllz, llellspac - (1.148)
This dependence is uniform, in the following sense. Setting
D(uo, ur, ) := |luollp 1 + luall} + @5, , ) (1.149)
if mork # 2, and
D(uo. w1, ¢) = lluol3 + llwrll3 + I3, oy (1.150)

if m = k = 2, we have that for all R > 0 there exist 7z €]0, 7] and Kz > 0 with the
property that for all uy € H"™* y, € H* and ¢ € Sy x(T) such that

D(uo,u1,9) < R*, (1.151)
problem (VKH) has a unique solution u € X, x(tg), verifying the bound
lleell 2, (00) < Kr - (1.152)

In fact, we find that

C

TR = RIEn/2 (1.153)
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for suitable constant C independent of R. This allows us to define, foreach R > 0, a
solution operator Sg from the set

Bui(R) := {(uo, ur, ¢) € H"* x H* x 8,y (T) | D(uo.u1.9) <R*}  (1.154)
into &, x(tr), by
Sg(uo, ur,9) =u, (1.155)

where u is the unique solution to problem (VKH) corresponding to the data uy,
u; and @. Then, the well-posedness estimate (1.144) implies that Sk is Lipschitz
continuous on B, x(R) if m + k > 4, while if m = 2 and k = 1 we can only prove
that Sg is continuous on B; 1 (R). When m = 2 and k = 1, we can prove that Sg is
Lipschitz continuous on 5, ; (R) with respect to the lower order norm of X ¢(tg).
In fact, the break-down of the Lipschitz continuity of Sk for solutions in A ; (zz) in
passing from the weak norm of &5 ¢(zz) to that of X, (tg) is illustrated by the fact
that Sg is actually Holder continuous from B, 1 (R) into X, . (tr), for all ¢ € [0, 1[.
More precisely, with the notations of (1.144),

ll = &l 2, . )

. (1.156)
< C(lluo —oll2 + llur — itrllo + ¢ = @lls,om)

where C depends on R but not on &. Note the presence of the weaker norms of H>,
L?* and S».0(T) for the data at the right side of (1.156). When ¢ = 1, all information
on the dependence of the solutions in the norm of &3 ;(zg) is lost, and (1.156) only
confirms the already known boundedness of u — i in X5 1 (r).

5. We further remark that (1.153) implies that as the size of the data u, u; and ¢, as
measured by R, increases, the interval [0, tg] on which the corresponding solution u
is guaranteed to exist becomes shorter. This yields a lower bound on the life-span T
of u, in the sense that T > tg, although it may be possible that u could be extended
to the whole interval [0, T]. Conversely, assume that the source term ¢ is defined
and bounded on all of [0, 400, in the sense that if H” denotes any one of the spaces
in the definition (1.137) of S,,x(T), there is M, > 0 such that

sup @, ), =M, . (1.157)
>0

Then, (1.153) implies that

lim g = +o0. (1.158)
R—0T
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This means that the smaller the size of the data ug, u; and ¢ is, the longer the
corresponding solution u is guaranteed to exist. This yields a so-called “almost
global” existence result, in the sense that for any given 7 > 0, it is possible
to determine a solution u € A, x(T) (that is, explicitly, defined on all of [0, T]),
provided the data are sufficiently small.

6. We now turn to the parabolic problem (VKP); that is, (20) + (12) + (21). We
slightly modify the definition of the space P, »(T) given in (24); more precisely, for
m=>2,k>0and T > 0 we set

Pui(T) := {u € L0, T: H"**) | u, € (0, T; HY)} ; (1.159)

[this corresponds to a change of index i = m+k in (24)]. P, x(T) is a Banach space
with respect to its natural norm, defined by

T
ll3, = /0 (s + ) di (1.160)

in addition, we note that from the interpolation identity [H*"** H*] = H"**
(see, e.g., Lions—Magenes, [22, Theorem 9.6, Sect.9.3, Chap.1]), together
with (1.136) of Proposition 1.4.1, it follows that

Pui(T) — C(0, T): H"+) . (1.161)

6.1. We can then give

Definition 1.4.2 Letm > 2,k > 0,and 7 €]0, T]. A function u € P, x(7) is a local
STRONG solution of problem (VKP), corresponding to data

uy € H™k, @ € Spi(T) , (1.162)

if u satisfies the initial condition (21), if the function f = f(u) defined by (12) is
such that

f € Gow([0, T]; H™) N L*(0, T; H*"t) (1.163)

and if Eq.(20) is satisfied in L>(0, 7; H*). If t = T, we call u a global strong
solution.

Theorem 1.4.4 Letm > 2 andk > 0, and assume (1.162) holds. There is T €10, T],
independent of k, and there is a unique local strong solution u € Py, ;(t) to problem
(VKP). Strong solutions of problem (VKP) depend continuously on the data uy and
@, in the sense that if u € Py, x(t) is the solution to problem (VKP) corresponding
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to data iy € H"* and ¢ € S,,4(T), then

llu = @il p, ey < € (o = tollm+i + ¢ = @lis,e) » (1.164)

where C depends on the norms of u and it in Py, (7).

Remarks In the course of the proof of Theorem 1.4.4 we will implicitly verify that
Definition 1.4.2 is indeed well-given; in particular, the initial condition (21) makes
sense, because of (1.161). In addition, we shall see that the value of r depends in
a generally decreasing fashion on the quantities |uo||,, and ||¢|s,, o). Just as for
problem (VKH), this dependence is uniform, in the sense that for all R > 0 there
exist g €]0, 7] and Kz > 0 such that for all uy € H"* and ¢ € S,,4(T) satisfying

luollz, + @ lls,or) < R, (1.165)

problem (VKP) has a unique solution u € P, «(tr), verifying the bound
lll 2, xer) < Kr - (1.166)

Thus, we can define, for each R > 0, a solution operator Sk from the set
Bui(R) := {(uo, ¢) € H" ™ x S, (T) | lluoly, + NlI5, ) < R?y  (1.167)

into Py, x(tr), by Sg(uo, ¢) = u, where u is the unique solution to problem (VKP)
corresponding to the data up and ¢. In addition, the constant C in (1.164) depends
only on R, via the constant K of (1.166); thus, the well-posedness estimate (1.164)
implies that Sg is Lipschitz continuous on B,, x(R). Furthermore, we can deduce an
almost global existence result similar to the one mentioned for problem (VKH); we
refer to [5] for further details. Finally, we point out that the assumption ¢ € S, x(T)
in Theorem 1.4.4 can be somewhat relaxed, as will be clear in the course of the
proof of this theorem; however, we prefer to keep this assumption for the sake of
simplicity. o

6.2. At the beginning of Sect. 5.4 of Chap. 5, we shall briefly comment on the fact
that we cannot give a meaningful definition of weak or even semi-strong solutions
to problem (VKP), except in the case m = 2, for which we have

Theorem 1.4.5 Let m = 2, uy € L and ¢ € L4(O_, T:H?). There exists u €
Ra.0(T) (the space defined in (5.95)), with f € L*(0, T; H*), which is a weak global
solution to problem (VKP), in the sense that u(0) = uo, and the identities

u+ A%u = N(f + ¢, u) (1.168)
AYf = —N(u,u) (1.169)

hold in H™2 for almost all t € [0,T). In addition, u; € L*(0,T;H™) and u €
Cow ([0, T]; L?).
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1.5 Friedrichs’ Mollifiers

In this section we briefly recall the definition and report some well-known properties
of the so-called Friedrichs’ regularizations of a locally integrable function. Let p €
CS°(RM) be the nonnegative function defined by

Cco exp (ﬁ) if x| <1,

plx) = (1.170)
it =1,
with ¢ chosen so that [ p(x) dx = 1. For § > 0, set
P =05 (1L171)
=rls)- .

Each function p®, which is supported in the closed ball {|x| < &}, is called a
Friedrichs’ mollifier, and, if u is a locally integrable function on RY, the function

X () = (0 * () 2/8%,()()68;))) u(y) dy (1.172)

is called a Friedrichs regularization of u. This terminology is motivated by the
following well-known properties of the family (u?)s-.

Proposition 1.5.1 1) Let 1 < p < oo, u € I”, § > 0, and define u® by (1.172).
Then, u® € C*® N WP for all k € N, with

|07, < 5—6;|u|1, for 0<r=<k, (1.173)
with C depending only on p; in particular,
], < |ul, . (1.174)
In addition, if 1 <p < oo,
§

W —uinl? as §—0. (1.175)

2)Let1 <p <oo, T>0,uc C(0,T);L7), § > 0, and define u® by

1 —
Wt x) = [pf * ult, )](x) = / P (’“Ty) u(t,y) dy . (1.176)
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Then, u® € C([0, T]; C® N W*P) forall k € N, and
W —u in C([0,T];L). (1.177)

A proof of the first part of Proposition 1.5.1 can be found in Adams and Fournier
[1, Sect.2.28]; for the second part, see, e.g., [8, Theorem 1.7.1]. We shall refer
to the functions u’ defined in (1.176) as the “Friedrichs’ regularizations of u
with respect to the space variables”. In one instance, we shall also consider the
analogous Friedrichs’ regularizations of u with respect to the time variable; that is,
the functions

+o00 _
W (1, %) :=/ ép(%) u(6,x)do (1.178)

where we understand that the function # — u(¢, x) has been extended to all of R by
a function with a compact support containing the interval [0, 7]. In this case, p® is
the Friedrichs’ mollifier with respect to .



Chapter 2
Weak Solutions

In this chapter we prove Theorem 1.4.1 on the global existence of weak solutions
of problem (VKH) in the space ), 0(T), for m > 2 and given T > 0. To the best
of our knowledge, uniqueness of weak solutions to problem (VKH) is open, and
presumably not to be expected; in contrast, uniqueness does hold in the physically
relevant case of the von Karman equations (3) and (4) in R2, that is, when m = 1;
we briefly comment of this result, due to Favini et al., [16], in Chap. 6. In addition,
it turns out that the cases m > 2 and m = 2 require a slightly different regularity
assumption on the source term ¢, as described by the fact that, as per (1.137),

C(0,T); H" ) if m>2,
Sm,O(T) = X (21)
c(o,T;H>) if m=2.

As remarked just before the statement of Lemma 1.2.4 of the previous chapter,
this seems to be due to the restrictions imposed by the limit case of the Sobolev
imbeddings, as we can see in (2.29) and (2.31) below; we do not know if the
additional regularity of ¢ required when m = 2 is actually necessary. On the
other hand, we point out that weak solutions of problem (VKH) are global in time;
that is, they are defined on the whole time interval [0, 7] on which the source
term ¢ is given. In particular, when T = +o00 and ¢(f) — 0 in an appropriate
norm as t — 400, one could study the asymptotic stability properties of the
corresponding weak solutions of problem (VKH), as done for example by Chuesov
and Lasiecka, [9], for various types of initial-boundary value problems for the von
Karman equations in R
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2.1 Existence of Weak Solutions

In accord with Theorem 1.4.1, we first prove

Theorem 2.1.1 Letm > 2, T > 0, and assume that uy € H™, u, € L?, and that
@ € Spo(T) [see (2.1)]. There exists u € Yuo(T), which is a weak solution of
problem (VKH).

Proof

1) We construct a weak solution u of problem (VKH) by means of a Galerkin
approximation algorithm. Following Lions, [21, Chap. 1, Sect.4], we consider a
total basis W = (wj);>1 of H™, orthonormal with respect to the scalar product
induced by the norm (1.16), that is

(, v) = (u,v) + (V"u, V"0) . 2.2)
(For the existence of such a basis, see, e.g., Cherrier and Milani, [8, Chap. 1,
Sect. 6].) For eachn > 1 we set W, := span{wy, ... ,w,}, and
up = Z(MOvWﬁij ; (2.3)
j=1
thus,
uy — uo in H". (24)

Note that ug is the orthogonal projection, in the sense of (2.2), of up onto W,. Since
H"™ is dense in L2, the span of W is dense in [?; thus, there is a strictly increasing
sequence (ax)i>1 S N, as well as a sequence (ﬁ’{)kzl C H™, such that, for each
k>1,

1
i €Wa  and i —wllo < o (2.5)

For n > 1 we define

R ljt]l(lf ay =n < dag41 ,
W= (2.6)
0if 1<m<a.

Then, u| € W, for each n, and

T in L%. 2.7)



2.1 Existence of Weak Solutions 37

We denote by P, the orthogonal projection, with respect to the scalar product of L?,
of L? onto W,; that is, for u € L*, v = P,(u) € W, is defined as the (unique)
solution of the n x n algebraic system

(vowj) = (u,wj), j=1,...,n. (2.8)

Note that if % = (h"),> is a total orthonormal basis of L? derived from W by the
Gram-Schmidt procedure, then

Pou) = ) (u, )y 2.9)

J=1

for all u € L?. We can then project Eq. (13) onto W),; that is, we look for a solution
of the form

u' =u"(t,x) = Zanj(t) wj(x) (2.10)

J=1
to the equation

uy + A" = PN (", ")) + PuN(9™ D, u")

2.11
=: P,(A,+B,), ( )
where f" := f(u") is defined in analogy to (12), that is by the equation
A" = —M®W"); (2.12)

we remark explicitly that, in general, f"(f) ¢ W,. We attach to (2.11) the initial
conditions

u"(0) = ug, u (0) = uff , (2.13)

with ugj and v/ defined, respectively, in (2.3) and (2.6). Equation (2.11) is equivalent
to the system

(i + A", wj) = (A + Bo, wj)

P . (2.14)

which is in fact a system of second order ODEs in the coefficients o, =
(ctn1y .. s 0un) of 4" in its expansion (2.10). We clarify this point by considering
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the case m = 2 and ¢ = 0 for simplicity. By (2.12),

ff=—-A"N (Z Ol Wiy ) Olnkwk)
h=1 k=1 (2.15)

=— 3 o Ok AN (Wi wy) ;
hk=1
thus, recalling (2.11),
Ay = NG, @) )

==Y amoauN (A‘zN(wh,wk), > o wz) (2.16)
hk=1 (=1

n
= - Z Opp Opk Ong N(A_zN(Wh,Wk),W[) .
h ok, =1

= Wpke

From this, it follows that (2.14) reads

n

Z (a;L/k (Wk’ w]) + ank(AWk, AW]>)
- 2.17)

n
= — E Oy Otk e (Whe, wy) -
ok (=1

Now, recalling the definition (2.2) of the scalar product in H?, and that W is
orthonormal in H2,

(Awg, Awj) = (Wi, wi)a — (Wi, i) = 81 — (Wi, wj) (2.18)

where 8y is the Kronecker delta. From this, it follows that (2.17) reads

Z(Oé;llk — i) Wy, Wj) + oy
k=1 (2.19)

n
+ Z Oty O Ol (Whie, wj) = 0.
hok t=1

Since W is a linearly independent system, the Gram matrix G = [(w;, wi)]/;—; is
invertible, and (2.19) has the form ‘

2

% af —af + G ((an + B(ay)*) =0, (2.20)
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where the apex * means transposition, and B(w;,,) is the vector whose components
are

B(a,); == Z iy ke e (Wt Wj) l<j<n. (2.21)
hok (=1

Equation (2.20) is the explicit form of the second order system of ODEs (2.14)
when m = 2 and ¢ = 0. In accord with (2.13), the initial conditions on «,, attached
to (2.20) are

o (0) = (ug, wy) , a,;(0) = (uf, w;) . (2.22)

We now return to the general system (2.14), which can be translated into a system
analogous to (2.20) in a similar way. By Carathéodory’s theorem, this system admits
a local solution u” € C([0, t,]; W,), with u! € AC([0, t,]; W,), for some ¢, € [0, T].
2) We establish an a priori estimate on " which allows us to extend each " to all
of [0, T].

Proposition 2.1.1 There exists Ry > 1, independent of n and t,, such that for all
t € [0,1,],

I} DG + IO + LI Ol < RS- (2.23)

Proof Multiplying (2.14) by 0‘,/1,' and then summing the resulting identities for 1 <
Jj < n, we obtain

d
5 (lu?3 + |V™u"3) = 2(A, + By, ul)) . (2.24)
Recalling (2.12), we compute that
2(An, uy = 2{N(f", (u") ™= D), ut
= 2AN ()" ), "
(D MWM).f1) = 2= A" ")
—_ _ % (v, me,n) — _% d%|vmfn|%

)
) (2.25)

Replacing (2.25) into (2.24) and adding the identity

d
5 |3 = 2(u" uf) (2.26)
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we obtain that

d n n men n n
3 5+ a5, + 5 IVF"IG) = 2(Bo + ) (227)

=: W)

To estimate the term with B, let first m > 3. Then, V2<p e H" — [I7? for all
p € [2, +o0[; hence, choosing p such that

SSIEN .
and recalling that H" =2 < L™, we can proceed with
(B )| < CIV2QIy ™ V2" |uf]2
= Cllglla "l |12 (2.29)
= Cy (I I§ + 1"113) -
where
Cy == C max{L. [l[l§ )} - (2.30)
If instead m = 2, V2@ € H? — L™, so that, again,
|(Ba )] < C V0 loo [V2"]2 (112 < C, (I 1+ [1a"13) - (231)
Replacing (2.29) or (2.31) into (2.27) yields
d
d—t‘l'(u") <2C,¥(u"), (2.32)
from which we deduce, via Gronwall’s inequality, that for all ¢ € [0, 1,],
W(u"(1) < W(u"(0))e* . (2.33)
By (2.12) and (1.117) at t = 0,
V7" O)llo = Cllu" ()5 = C lluglly, : (2.34)

thus, keeping in mind that, by (2.4) and (2.7), the sequences (u(}),>1 and (u}),>1 are
bounded in, respectively, H" and [?, it follows that there is Dy > 1, independent of
n and t,, such that («"(0)) < D. Consequently, we deduce from (2.33) that for
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all 7 € [0, 1,],
U (u"(t)) < Die*c!, (2.35)

from which (2.23) follows, with Ry = Dy e 7. O

3) Since Ry is independent of 7,, the function #" can be extended to all of
[0, T], with estimate (2.23) valid for all ¢+ € [0, T]. Since Ry is also independent
of n, the sequences (u"),>1, (#))n>1, and (f"),>; are bounded, respectively, in
C([0, T]; H™), C([0,T); L?), and C([0, T]; H™). Consequently, there are functions
u e L*®0,T;H") and f € L*°(0,T; fi”’), with u, € L>(0, T; L?), such that, up to
subsequences,'

U = u in L0, T;H™) weak™, (2.36)
u' — u in L*®(0,T;L?) weak*, (2.37)
" f in L0, T;H™) weak* . (2.38)

In particular, (2.36) and (2.37) imply that u € L*>(0,T; H") and u, € L*(0,T;L?);
thus, by the trace theorem [(1.136) of Proposition 1.4.1], u € C([0, T]; L?). But then,
by (1.135) of the same proposition it follows that u € Cyy ([0, T]; H"), and the map
t + |lu(t)||g= is bounded. In fact, by (2.23), for all ¢ € [0, T7,

(@)l < liminf[|u" (@)l < Ro . (2.39)
In addition, using the interpolation inequality

Uillmes < C RN ™ IRIY™, 8 €l0,m] (2.40)

for h = u(t) — u(ty), 0 < t, ty < T, the bound of (2.39), and the fact that u €
C([0, T); L?*), we deduce that

ue C([0,T);H" ). (2.41)

We proceed then to show that the function u defined in (2.36) is a solution of
problem (VKH).

"Here and in the sequel, by this expression we understand that, for example, there is in fact a
subsequence (4™ );~; of (u"),~;, such that (2.36) and (2.37) hold with «" replaced u"*. When
there is no danger of ambiguity, we adopt this convention in order to avoid, later on, to keep a
cumbersome track of subsequences of subsequences. Furthermore, we will often not repeat the
statement “up to subsequences”.
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4) Our first step is to prove that the functions « and f introduced in (2.36) and (2.38)
are such that f = f(u); that s, that f solves (12). To this end, we first recall thatif v €
H™, then, by Lemma 1.2.2, M(v) € L' N H™™, and that, if w € H", Lemma 1.2.2
yields the estimate

(M), W) g | = C VI Wl - (2.42)

If in addition w € L, so that the function M(v) w is integrable, then
(M), W) g—mym = /M(v)wdx =Iv, ...,v,w). (2.43)

With abuse of notation, we shall abbreviate
(M), W) f—mym =2 (M), W), (2.44)

even though neither of the terms M(v) and w is in L?. In the sequel, for s > 0 we

. . . ¢ o / . .
set, again with some abuse of notation, H, ] := (Hfoc) ; more precisely, H_? is the

dual of the Fréchet space H} ., and is not to be confused with the space (H™*)ioc of
the localized distributions in H™5.
We claim:

Proposition 2.1.2 Let u" and u be as in (2.36). Then, up to subsequences,
M@") — M(u) in L®°(0,T;H™) weak* . (2.45)

Proof From (1.72) of Lemma 1.2.2, with k = 0, it follows that the sequence
(M(u")),> is bounded in L>°(0, T; H™™), and, by (2.23),

MW" O)l|g-n < Cld" D23 < CRY (2.46)

Thus, up to subsequences, there is 1 € L% (0, T; H™™) such that
M@") - in L*(0,T;H™™) weak™ . (2.47)

We now show that

M@") — M(u)  in L*0,T; H" %) ; (2.48)
then, comparing (2.48) to (2.47) yields (2.45). To show (2.48), let 2 C R?" be an
arbitrary bounded domain, and ¢ € L*(0, T; H"2), with supp(¢(z,-)) C K for a.a.
t € [0,T]. LetRq : u — u, denote the corresponding restriction operator. Since Rq

is linear and continuous from H” = H™(R?") to H"(2) and from L> = L*(R*")
to L?(2), and since the inclusion H™(2) <> L?*(R2) is compact, (2.36) and (2.37)
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imply, by part (4) of Proposition 1.4.1, that, again up to subsequences,
Rou" — Rqu in L*(0,T;H"%(Q)),  §€]0,m]. (2.49)

As in (1.104) we decompose (omitting the reference to the variable ¢, as well as to
Rq)

M@W") — M(u) = Z N(W") "D 0Dy — ) . (2.50)

J=1

=:N;(u",u)

Thus, by (1.62), (2.23) and (2.39),

T
/0 (N, ). 2)| i

IA

T
—j i—1
C [ 1P 1Vl 19 = )y €1

IA

T
C/ e ™ Nalby ™ e = ull 1@y 1VE a1 e (2.51)
0

IA

T
CRy! / 1" = ll sy € s i
0

Hence, by (2.49) with § = 1,

T
/0 (M(u") — M(u), ) dt — 0. (2.52)

This allows us to deduce (2.48). O

For future reference, we note that, by (2.37) and (2.23), we also have that for a.a.
te[0,7T],

IRui (D)ll12() < llu:(@)lo < liminf [/ (1) [lo < Ro (2.53)

as well as, of course,
IR (Dlr2(0) =< Nl @]lo < Ro; (2.54)
thus, the already cited trace theorem allows us to deduce from (2.49) and (2.53) that

Rqu" — Rqu  in C([0,T];:L?). (2.55)
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Using the interpolation inequality (2.40) with § = 1 for & = Rq (/' (t) — u()), as
well as the bound

IR (" (1) — u(@)|am@) < 4" () = u@llm < 2Ro (2.56)

which follows from (2.23) and (2.39), we deduce from (2.40) and (2.55) that
Rou" — Rou  in C([0,T]; H" ' (Q)) . (2.57)
5) Recalling the definitions (2.12) of /" and (12) of f(«), we deduce from (2.45) that
A"f" — A"f(u)  in L*®(0,T;H™™) weak™ . (2.58)

On the other hand, (2.38) implies that

A™f" — A™f  in L®(0,T;H™) weak™ ; (2.59)
comparing (2.58) and (2.59) yields, via (1.45), that f = f(u), as claimed. This is an

identity in L= (0, T; H"™); however, since u € GCow([0, T]; H™), the map 1 = f(u(7))
is well-defined and bounded from [0, 7] into H™. In fact, by (2.38) and (2.23),

lf @)l < liminf [[f" () |m < v/m Ro (2.60)

forall ¢t € [0, T].

6) We proceed to show that f € Cy ([0, T]: H"). To this end, we recall that A”f €
L*0,T; I_i_”‘) s L®(0,T; H™) — L*®(0, T; H"%). We first show that, in fact,
A™f € C([0, T); H~™2). Similarly to (2.50), we decompose

M(u(1)) — M(u(t))

DN (@), (w(10)) V7, u(@) — u()) (2.61)
j=1

Ni(t, 10) -

1
-

1

J

Fix ¥ € H"? with |[{|lmse2 = 1, and denote by ((-, -)) the duality pairing
between H""2 and H"*2. Then, for0 <1, to < T,

m

(A" (F(1) = f(10)). 1)) = = Y (Nt 10), 1)) - (2.62)

Jj=1
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Since Vi € H™T! < L>, we obtain from (2.62) that
(N (2. 10). ¥))]|

< CIVu@ I 1V2ulto) i, |V () — u(to)) | V¥ oo
(2.63)

IA

CRy™H V" @) = ul@)) 2 1V |1

IA

CRY™ [lu(t) — u(to) 1
By (2.41), the right side of (2.63) vanishes as t — #j; thus, (2.63) implies that

A™f € C([0,T]; H?), as claimed. Since also A™f € L®(0,T; H™™), by (1.135)
it follows that A™'f € Cyy ([0, T]; H™™); thus, for each & € H™, the map

t = (A"f (@), h)a=mxim = (V"f (1), V"h)o = (f(1). h)m (2.64)
is continuous. By the density of H™ into H", it follows that the map ¢ — (£ (), h)sm

is also continuous foE each h € H™. To see this, given h € H™, let (hn)n>1 C H™ be
such that 4, — hin H™. Then, for0 <¢, 1, < T,

(f(@) —f(t0). hyw = {f(1) —f(t0). h — hn)m

(2.65)
+ () = f(10). hn)m =2 An(t,10) + Bu(t,10) .
Let ¢ > 0. By (2.60), there is no > 1 such that
|An(t, 10)| <2 v/mRo |lh — hyllz < e (2.66)
Fix n = ny. By (2.64), there is § > 0 such that
|Buy (2. 10)| < € (2.67)

if [t — 70| < 4. Replacing (2.66) and (2.67) into (2.65) shows the asserted continuity
of the map 1 — (f(¢), h)m; hence, f € Coy ([0, T]; H™), as claimed.
7) We now set

F(u) := N(f(u),u"), (2.68)

and prove

Proposition 2.1.3 Let u and f be as in (2.36) and (2.38). Then, up to subsequences,

Fu") — F() in L%°(0,T;H™) weak* . (2.69)
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Proof Asin (2.46), the sequence (N(f", (u")™"~")) _, is boundedin L(0,T: H™™),
with -

ING", @) D)=z < ClIf" I " 27" < CRY (2.70)

as follow§ from (2.60) and (2.39). Thus, up to subsequences, there is v €
L*°(0, T; H™™) such that

N, @)™ V) > v in L®(0,T;H™) weak™ . (2.71)
On the other hand, we also have that
Fu") — F(u)  in L*(0,T;H ). (2.72)

Indeed, with the same 2 and ¢ as in the proof of Proposition 2.1.2, we can
decompose, as in (2.50),

T
/0 (F(u) — FGu). 2)]

T
< / (NG =", u™ ), 2| di 2.73)
0

moaT
+ Z/ NG u™ @) u—u), §)] dr
j=270

= Wi+ wr.
j=2
At first,

T
Wi = [ 1@ =l o (2.74)

by (2.38). As for the other terms W}, acting as in (2.51) of the proof of Proposi-
tion 2.1.2 and recalling (2.60) and (2.39), we estimate

T
PR
Wil < C/ ™l Wl ™ Mo 15 e = "] 1) [V E oo
0

T (2.75)
< CRy™! /o llu — " | gm=1(@2) 1|l m+2 dt .
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Thus, by (2.49), also Wf — 0, and (2.72) follows. Comparison of (2.71) and (2.72)
yields (2.69). ‘ |

8) We now consider the equation of (2.14) for fixed j and n > j, multiply it by an
arbitrary ¥ € Cé (10, T|), and integrate by parts, to obtain

T
/ ((—ufs ¥ 'wj) + (V™" V™)) de
0 (2.76)

T
= / (Ay + By, Y wj)dt .
0

Letting then n — oo (along the last of the sub-subsequences determined in all the
previous steps), by (2.37), (2.36) and (2.69) we deduce that

T
/ ((— U, w/wj) + (V"'u, ¥ Vmwj)) det
0 (2.77)

T
- / (N(f,u™ D) + NV w), yw;) dr .
0

Since W is a total basis in H", we can replace w; in (2.77) by an arbitrary w € H".
Recalling that N(f, u""~V) and N(¢™V,u) € H™ < H™™, by Fubini’s theorem
we can rewrite the resulting identities as

(B, W)Hfmme =0 s (278)

where B € H™ is defined as the Bochner integral

T
B:= / (=¥ + Y (A™"u— N, u™ V) =NV, u)))dt . (2.79)
0

The arbitrarity of w € H™ in (2.78) implies that B = 0 in H™"; in turn, this means
that the identity

Uy = —A"u+ N, u" V) + NV u) = A (2.80)

holds in D'(J0, T[;H™™) = L(D(0,T[); H™). Now, (2.36) and (2.38) imply
that A € L*®(0,T;H™™); in fact, since u € Cu([0,T];H™) and f €
Cow ([0, T]; H™), (1.75) implies that the map r +— A(r) € H™™ is well-defined
and bounded on [0, 7]. Thus, Eq. (13) holds in H™™ for all ¢ € [0, T], as desired. In
addition, by the trace theorem, u, € C([0, T]; H™™). Arguing then as we did for u,
we conclude that u; € Cpy ([0, T]; L?), and that the map ¢ +> ||u,(#)|o is bounded.
In fact, as in (2.53),

llu ()0 < liminf |uf (@) [lo < Ro (2.81)

and this bound is now valid for all ¢ € [0, T.
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9) To conclude the proof of Theorem 2.1.1, we still need to show that u takes on the
correct initial values (5). By (2.57), «"(0) — u(0) in H""!. On the other hand, (2.4)

loc
implies that u"(0) = ug — uo in H™; thus, u(0) = uo. Next, we proceed as in part

(8) of this proof, but now take ¢ € D(] — T, T[) with y(0) = 1, so that, by (2.7),
the identity corresponding to (2.78) reads
(B, w)g—mxgm = (ug, w) . (2.82)

On the other hand, multiplying Eq. (13) by ¥ w and integrating by parts we obtain
that

(B, W)H—mme = (M[(O), W) . (283)

Comparing this with (2.82) we conclude that u,(0) = u, as desired. This ends the
proof of Theorem 2.1.1. O

2.2 Continuity atz =0

We now prove the second claim of Theorem 1.4.1; that is,

Theorem 2.2.1 Letm > 2, T > 0, and u € YV, o(T) be one of the weak solution
of problem (VKH), corresponding to data uy € H", u; € L?, and ¢ € S, (T),
obtained by means of Theorem 2.1.1. Then, u, u, and f are continuous at t = 0, in
the sense that

}i_l;[(l) llu(t) — ugll, =0, }1_{% |l (£) — urllo = 0, (2.84)
and
lim [V (1) = £(O)) o = 0. (2.85)

Proof
1) We recall from (2.41) that u € C([0, T]; L?); thus, we can replace claim (2.84) by

lim |V (u(?) —uo)|lo =0,  lim ||u:(t) — w10 = 0. (2.86)
t—0 t—0

Next, we note that since u, u, and f are weakly continuous from [0, 7] into H", r?
and H™ respectively, in order to prove (2.86) and (2.85) it is sufficient to show that
the function

t e o) = lu @+ IV"u@ 5+ L IV"F@)3 (2.87)
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satisfies the inequality
D (u(r) < ®u(0)) +2 / (N(@™ ™V u), u,) d6 =: G(1) (2.88)
0

for all ¢ € [0, T]. Indeed, the weak continuity of u, u, and f with respect to ¢ implies
that

®(u(0)) < lim inf D(u(r)) (2.89)
t—0

On the other hand, from (2.88) it would follow that

lim sup ®(u(7)) < limsup G(r) = lin}r G(t) = ©(u(0)), (2.90)
t—0

t—0t t—0t

which, together with (2.89), implies that

lim ®(u(n) = ®u(0)) . (2.91)
t—0

and (2.86), (2.85) would follow.
2) Our first step towards establishing (2.88) is to integrate (2.27), which yields that
forall z € [0, T],

O (1)) = P(u"(0)) + 2 /0 t(N((p(m_l), u"), u) do ; (2.92)

that is, (2.88) is satisfied, as an equality, by each of the Galerkin approximants of u.
Next, we note that (2.4) implies that

IV (0) =f(O)l2 -0 as n—o0: (2.93)
indeed, this is a consequence of the fact that
[A™((0) = f(OD | g—n = 1M (ug) — M(uo)ll = — O (2.94)
which in turn follows from the estimate (compare to (2.50) of Proposition 2.1.2)

1M () — M (o) || —n

< CY N ™ w0 uly — uo) [ (2.95)

Jj=1

m
< IVl IV ol IV g — o)z
j=1
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via (2.4). Since (2.4), (2.7) and (2.93) imply that
®u"(0)) — Pu(0)) as n— 0o, (2.96)
and since for each ¢ € [0, T,
D(u(r) < lirggf (u'(1) . (2.97)

in order to prove (2.88) it is sufficient to show that, for all 7 € [0, T7,

lim J,(1) = 0, (2.98)
n—>oo
where, forn > 1,
t
Ju(0) == / (N u™), !y — (N D, ), uy)) dO . (2.99)
0

We shall prove (2.98) separately form > 3 and m = 2.
3) We consider first the case m > 3. We recall the following density result, a proof
of which is reported for convenience at the end of this section.

Lemma 2.2.1 Let T > 0 and r € Rx(. The space D (] -T, 2T[XRN) is dense in
Co(] — T.2T[; H").

Assuming this, we extend the source term ¢ to a function, still denoted ¢, such
that ¢ € Co(] — T,2T[; H"*?). Given any n > 0, by Lemma 2.2.1 we determine
€D (] -T, 2T[XR2'”) such that

max_|[|¢(t) —@(O)[lmt+2 <71, (2.100)

—T<t<2T

and rewrite

t
Ja(t) = / (N2, 0 — @, u"),u") df
0
t
+ / (N((p(m—Z)’é’un)’u:t>d9
0
t
- /(N(cﬂ(”’_z),w—@,u},ur)dé’ (2.101)
0

t
- / (N, 3.1, ) d6
0

=T + T2(t) = T'() - T?(r) .
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2m(m—1)
m—2

Acting as in (2.29), with p = as in (2.28), and using (2.100), we estimate

t
Tl < ¢ /0 V201772 [V2(g — )], V2| 1] 46

t
< C/O @l e = @llmra [l 12 110 A6 (2.102)

< CynR§T =:Ci7.
The same exact estimate holds for I'! (¢); thus, from (2.101) we obtain that
Wa(d] < 2Cin+ |T5(0) = T2(@0)] . (2.103)

We further decompose

t
r2() - () = / (N@™™ G, ul" — u). ) d6
0

t
+/(N(fp('”‘z’,@u),u;’—ut)de (2.104)
0

=T} +THr) .

Next, we note that N(¢ "2, ¢, u) € L*(0,1;L?) for each ¢t €]0, T]; thus, (2.37)
implies that

Tt — 0. (2.105)

Finally, let Q C R?" be a domain such that supp(¢) C | — T,2T[xSQ. Then,
identifying functions with their restriction on €2,

t
() = / / N(p™2, g, u" — u) u" dxdt . (2.106)
0 JQ

By (2.49), u" — u in L*(0,T; H"%(Q)); in addition, H"*~2(Q) — L(Q) for

8 €]0,1[and g = 52% Thus, taking r such that

(2.107)
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(compare to (2.28); note that r > 2), we estimate

t
D) < ¢ /0 V20172 V2 o0 [V2(" — )15 1] 6

t
_2 ~
<c /0 D13 16 s 1 — sy o 6

(2.108)
T 1/2 T 1/2
<06 ([ e -ulgar) ([ i)
< C(p C(z ||Mn — M|IL2(O,T;H’”78(Q)) R() ﬁ .
From this it follows that
@ — 0 as n—o0. (2.109)
Inserting (2.105) and (2.109) into (2.104), we conclude that
I2()—T*@ — 0. (2.110)

Together with (2.103), this implies (2.98), when m > 3 (under the stipulation that
Lemma 2.2.1 holds).
4) We now consider the case m = 2, in which case (2.98) reads

t

lim [ (N(p,u"),u;)dd = /I(N((p, u), u;) do . (2.111)
0

n—>o0o 0

We recall that when m = 2 we assume that ¢ € C([0, T]; H>). Proceeding as we did
after the statement of Lemma 2.2.1, given > 0 we choose ¢ € D(] — T, 2T[xR*)
such that, as in (2.100),

N —o@)|s < 2.112
_max @ —¢@ls =n. (2.112)

and decompose

/0 (N(g.a), i) 6

==/W@—@wmww+/w@ﬂmmw (2.113)
0 0

C T2 +T8) .
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Asin (2.102),

t
D) < ¢ /0 V26 — @)oo V2|2 |} d6

t
< c/ lo — @15 "l 1o d6 (2.114)
0

§C77R%T.

Next, recalling (2.12) and (1.25),

o) = / NG). ) o = % / (0, M. 5) a6

01 r 10 r (2.115)

=- 5/ (A%, ¢)df = —5/ (A, 6)5 0,
0 0

where for r € N>, we denote by (-, -) (- the duality pairing between H~" and H".
Assume for the moment the validity of the following

Lemma 2.2.2 The distributional derivative A*f, is in L (0, T; H™), with

T T
/ (A%, 8)s) di = —2 / (N w). ) di 2.116)
0 0

forall & € L'(0, T; H?); in addition,
AT A%, in L®(0,T;H™) weak* . 2.117)

Then, we deduce from (2.115) and (2.116) that, as n — oo,

t t

e ——1 /0 (A, @) (5 d0 = /0 (N(@, u), u;) d6 . (2.118)
Together with (2.114), (2.118) implies (2.111); thus, (2.98) holds also for m = 2.
As seen in the first part of this proof, this is sufficient to conclude the proof of
inequality (2.88).
5) We now prove Lemma 2.2.2. To this end, we recall that f € Cuy ([0, T]; H?);
hence, by (1.45) of Proposition 1.1.2, A’f € L®(0,T; H?) < L*®(0,T; H™?);
hence, we can define A%, € D'(0, T[; H?) = L (D(]0, T[: H~?)) as usual, by

(A*fi[y] W) = (=AY . w)e) . (2.119)
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where w € H? and for ¥ € D (]0, T[) we denote by L[] its image in H~2 by
a distribution L € D’(]0, T[; H~2). Recalling (2.38), we deduce from (2.119), via
Fubini’s theorem, that, up to subsequences,

(Nfily]w)e) = (=AY 1.w)e

T
- / v A i)
0

T
—/0 Y (A, W)y dt

T
= lim (— / (A W) dt) (2.120)
0

n—>oo

T
= lim (— / Y A AL w) o)
0

n—>o00o

= lim (= A%"[y . whe)

lim (A Y] w) e
n—oo
that is,
A" — A%, in D'(J0,T[H?). (2.121)

On the other hand, the sequence (Azﬁ”)n>1 is bounded in L*®(0, T; H™). Indeed,
let ¢ € L'(0, T; H). Then, as in (2.115),

T T
/ (A2 E) s di = —2 / (NG, ), €) dr
0 0 (2.122)
— -2 [ WGy
0
and since
[N, u"), u")| < C Voo |V2u"|2 [ul]2 < CRE L]l (2.123)

it follows that

| A%f] || oo .75y < 2 CRG . (2.124)
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Thus, again up to subsequences, there is A € L>®(0, T; H™) such that
A’f" — A in L®(0,T;H°) weak*. (2.125)

Comparing this to (2.121), we conclude that A%f, = A € L®(0, T; H™>), and (2.117)
follows from (2.125). This ends the proof of Lemma 2.2.2. O
6) We conclude the proof of Theorem 2.2.1 by giving a sketch of the proof
of Lemma 2.2.1. We recall that we wish to show the density of the space
D(]—T.2T[xR") in Co(] — T,2T[;H"). Thus, let u € Co(] — T,2T[;H"), and
extend it to a function & € Cy(R; H") by setting u(f) = 0ift < —T ort > 2T. We
approximate u by mollification and truncation. We first set

8t x) 1= [p% * (-, 0)](0) (2.126)

where p® is the Friedrichs’ mollifier with respect to ¢ [see (1.178)]. Then,
u* € DMR;H"), and u* — u in Cyo(] — T,2T[; H"), which implies that
D( — T,2T[; H") is dense in Co(] — T,2T[; H"). Consequently, it is sufficient
to show that D (] — 7, 2T[xR") is dense in D(] — T, 2T[; H") with respect to the
topology of Cy(] — T,2T[; H"). To this end, given v € D(] — T,2T[; H"), we set
[compare to (2.126)]

Vit x) =) [pf * v, )] (x), §>0, (2.127)

where now ¢% € C°(RY), with 0 < ¢%(x) < 1forallx € RY, £3(x) = 1 for x| < 1,
and £%(x) = 0 for |x| > %, and, now, p’ is the Friedrichs’ mollifier with respect to
x. Then, v* € D (] -T, 2T[XRN), and v* — v in C([ty,;]; H") for any compact
interval [to, ;] C] — T, 2T[.? This ends the proof of Lemma 2.2.1; consequently, the
proof of Theorem 2.2.1 is now complete. O

Remark We explicitly point out that the proof of Theorem 2.2.1 shows that u and u,
would be continuous at any #, such that either

®(u(to)) = P(u(0)) +2 /0 (N, u),u;) d6 (2.128)

that is, at any point where (2.88) holds as an equality, or

P(u(t)) = lim P(u" (1)) (2.129)

20ne way to see this is to argue exactly as in the proof of the claim u* — u in C([0, T]; H™) of
Theorem 1.7.1 of Cherrier and Milani, [8, Chap. 1].
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[compare to (2.92)]. Indeed, if (2.128) holds, using (2.88) we can repeat the
estimates (2.89) and (2.90), with £, instead of 0, to deduce that

D(u(ty)) < lim iff D (u(r)) < limsup ®(u(r))

=1, r—>r:' (2 130)
< limsup G(r) = G(ty) = D(u(ty)) , .
+
=1

where (2.128) is used for the last step. Hence, the function r +— ®(u(z)) is
continuous at fy; together with the weak continuity of u, u, and f from [0, 7] into
H™, [? and H", respectively, this is enough to deduce the continuity of x and u, at
to. Alternately, (2.129) would be the analogous of (2.96) at #y. In particular, both
conditions (2.128) and (2.129) hold at 7y = 0. o

2.3 Uniqueness Implies Continuity

We conclude by proving the third claim of Theorem 1.4.1; that is,

Theorem 2.3.1 Letm > 2andT > 0. Assume that for each choice of data uy € H™,
u; € L* and @ € Smo(T), there is only one weak solution u € Y,,o(T) to problem
(VKH). Then u € X,,o(T).

Proof We argue as in Majda, [23, Chap. 2, Sect. 1]. Because of Theorem 2.2.1, it is
sufficient to prove the continuity of u and u, [in the sense of (2.86) and (2.85)], at
any t €]0, T1.

a) To show the left continuity of u and u, at fy, we note that the function v(¢) :=
u(to — t) solves problem (VKH) on the interval [0, #y], with initial data v(0) =
u(tp) and v,(0) = —u,(ty) (recall that if u € YV, 0(T), then u(ty) and u,(t) are, for
each fy € [0, T], well-defined elements of, respectively, H" and L?). The assumed
uniqueness of weak solutions in V,, o(T) implies that v coincides with the solution
provided by Theorem 2.1.1, which by Theorem 2.2.1 is right continuous at t = 0.
Thus,

lim u(r) = lim v(6) = v(0) = u(t) in H". (2.131)
1=t 9—0t
Analogously,
lim u,(r) = — lim v,(0) = —v,(0) = u,(tp)  in L>. (2.132)
=1, 6—0t

This shows that u and u, are left continuous at ¢t = 1.
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b) To show the right continuity of u and u, at #y, with 0 < #y < T, we note that
the function w(f) := u(ty + t) solves problem (VKH) on the interval [0, T — fo],
with initial data w(0) = u(#) and w,(0) = u,(ty). Again, the assumed uniqueness
of weak solutions in ), o(7) implies that w coincides with the solution provided by
Theorem 2.1.1, which by Theorem 2.2.1 is right continuous at = 0. Thus,

lim u(r) = lim w(6) = w(0) = u(ty) in H™. (2.133)
— 6—0+
Analogously,
lim w,(r) = lim w;(#) = wi(0) = u,(try) in L>. (2.134)
t—>t6"' 6—0+
This shows that u and u, are right continuous at t = fy. Hence, u and u, are

continuous at ¢ = fy. This concludes the proof of Theorem 2.3.1 (which in fact is
really a corollary of Theorem 2.2.1), and Theorem 1.4.1 is now completely proven
as well. a

Remark By part (2) of Proposition 1.4.1, the strong continuity of u, u, and f from
[0, T] into, respectively, H", [* and H™, would follow if u satisfied the same
identity (2.27) satisfied by its Galerkin approximants u"; that is, if

d -
3 Ullg + Nulls, + 52 IV7F1G) = 20N (@™ w) + wor) (2.135)

which yields (2.128). However, (2.135) is formally obtained from Eq.(13) via
multiplication by 2 u, in L?, and none of the individual terms of (13) need be in
L? if u € Y, 0(T) only. In fact, the usual procedure of obtaining (2.135) by means
of regularization via Friedrichs’ mollifiers fails, precisely because we are not able
to determine whether N(f, u"~") € L2, or not [in general, we can only prove that
this nonlinear term is bounded from [0, T] into L!, as we see from the estimate

INCE, u™ )|y < C |V [Vl
< CIV"f|y [lu|m!

< Clulz", (2.136)

which follows from (1.73) and (1.117)]. Thus, we do not know whether (2.135)
holds or not, and the problem of the continuity (as well as, of course, that of
uniqueness) of weak solutions u € Y, 0(T) to problem (VKH) remains open. <o



Chapter 3
Strong Solutions, m + k > 4

In this chapter we assume that m > 2, k > 1, with m + k > 4, and prove
Theorem 1.4.2 on the uniformly local strong well-posedness of problem (VKH)
in the space X}, x(t), for some 7 €]0, T| independent of k. This means that, under
the assumption (1.138), that is, again, recalling (1.137), ug € H"**, u; € H*, ¢ €
Smi(T), we show that there is 7 € ]0, T], independent of k, and a unique u € &, x(7),
solution of problem (VKH). In addition, this solution depends continuously on the
data up, u;, and ¢, in the sense of (1.144). We first establish a technical lemma
on the regularity of the right side of (13) (Sect. 3.1); then, we prove the continuity
estimate (1.144) for arbitrary 7 €]0,7] and k > 1 (Sect. 3.2). Finally, in Sect. 3.3
we construct strong solutions u € X, (t), defined on an interval [0, 7] C [0, T],
whose size only depends on the weakest norm of the data ug, u; and ¢, as described
in (1.147) and (1.148) (that is, explicitly, fork = 1 if m > 3,and k = 2 it m = 2).
This means that increasing the regularity of the data does not decrease the life-
span of the solution. These local strong solutions of problem (VKH) are constructed
as the limit of the Galerkin approximants considered in the previous Chap.2; in
essence, this amounts to proving a regularity result on the weak solutions established
there, in the sense that the higher regularity (1.138) of the data is sufficient to prove
the convergence of the approximants in the stronger norm of X, x (7).

3.1 Regularity of N(f,u™"D)

Putting together the results of Lemmas 1.3.2 on f and 1.2.6 on u, we deduce a
crucial regularity estimate on the function F(u) = N(f,u™ V) [recall (2.68)],
which appears at the right side of Eq. (13).

Lemma 3.1.1 Letm > 3 and_k > 1, orm = 2and k > 2 (thus, m + k > 4), and
letu € H" . Let f = f(u) € H*"*=1 0 H™ be the weak solution of (12), as per
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Lemmas 1.3.1 and 1.3.2. Then, F(u) € H, and
IVEF(u)]y < CIV™uly =2 V" g [V, | 3.1)
ifm>3, or
IVEF@)]a < C|VZula [VHuly V2 uly (3.2)

ifm=2.

Remarks Just as for (1.120), the importance of (3.1) lies in the fact that if k > 2, its
right side is linear in the highest order norm | V" ¥/, [as opposed to (1.93), which
would yield the estimate

IVEFW)]2 < C Ao(f) [l : (3.3)
although we did not do this, it is possible to show, with some extra work, that we
could replace the factor ||ul|,n+x with |V Ku|, in (1.93) and, therefore, in (3.3)].
Likewise, (3.2) is linear in |V>*u|, if k > 3. Note that (3.2) is a weaker version
of (3.1) for m = 2, in the sense that the latter, which would read

IVEF ()] < C|V3ul3 |V ul,, (3.4)

implies (3.2), by interpolation. o

Proof

1) By the second part of Corollary 1.3.1, 3>f € L*™. Since also d*u € H"*2 —
H"! < [?" it follows that F(u) € L.

2) Let first k = 1. We can write

VF@u) = N(Vf,u™ D) + (m — 1) N(f, u"?, Vu)

(3.5)
=G +m—-1)G,.
By the first inequality of (1.121), withk =2 < m,
Gil2 < C|Vflam [V2ul5!
< CIV" o [V uly ™! (3.6)

< Clvmulrzn—2 |Vm+1u|r2n+l )

Next, we note that, when k = 1, sz € H*2 N [ < [ because 2m — 2 >
m since m > 3 (see the last remark after the proof of Lemma 1.2.5). By (1.117)
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and (1.124),
IV2floo < C V21" V272"
(3.7)
< CV™H Ul V|2
thus,
Gal2 < C Voo V2l V3l
(3.8)

< C|V™ulyp 2 [Vmtly g+t

Together with (3.6), this implies (3.1) when k = 1.
3) Assume now that k& > 2. The proof of (3.3) is similar to that of (1.93) of
Lemma 1.2.5. We refer again to the decomposition (1.80), that is,

VEF) = Y CN(VIF.Veu, . Vi) = Y CyNy(u) . (3.9)
lgl=k lgl=k
and distinguish the following four cases:

Case l:q1 =k, qj=0for2 <j <m;

Case2:0=¢q1 = --- =g, 1 <gj <k, forsome r withr +1 <j <m;
Case3:1<qg<m—-1,0=<¢g; <k—1,for2 <j=<m;

Cased:q1 >m,0<qg; <k—m,for2 <j<m.

We remark that cases 3 and 4 require, respectively, that k > m and k > m;
furthermore, when m = 2, cases 1, 3 and 4 can be conflated into 1 < ¢; < k&,
0<¢g»=k—q <k—1,andcase 2 becomes simply r = 1,91 =0, q> = k.

4) CASE 1. In this case,

Ny(u) = N(V¥,u, ... u), (3.10)
and

IN,()]> < C|VF2f o, |V2uli!

(3.11)
< C |Vm+k+1f|2 |Vm+lu|5”_l .
If k + 1 < m, by the first inequality of (1.121),
|Vm+k+lf|2 < Clvmulrzn—k—l |Vm+lu|/§+l : (312)

thus, recalling (1.78),

[Ny ()], < C|V™uly=h=t vty |yt
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k
< C|V™ulp =+t vty (|vmu|;‘1/" |vm+ku|;/") (3.13)

= CIV"uly ™ [V g 9"l
as desired in (3.1). If instead k + 1 > m, by the first inequality of (1.122),
(V"L < OVl [VE ), (3.14)
thus,
IN,(W)]> < C V" |32 |VE+2y), | (3.15)

If m = 2, this yields (3.4); if m > 2, we interpolate
m—2
Vg < ¢ (1v7aly” o) (3.16)

[VE2uly < € [Vl 372K [wmtky =02k (3.17)
inserting these into (3.15) we obtain
INy@)la < CIV™ul3 V" uly [V Houl (3.18)
with
e = BN L om22 o e =m2gom2 o (3.19)

Thus, (3.1) follows.
5) CASE 2. In this case,

Ny(u) = N(f,u"™D, Virtiy, . Viny) . (3.20)
5.1) If m = 2, (3.20) reduces to
N,(u) = N(f, V¥u) ; (3.21)

again, we note that V2f € H*" 12 0 {3 = g*+*3 n B3 = (H*' N BP) —
L, because k > 2, with
1/2 1/2
IV loo < CIV3F1Y2 V1Y
12 12 (3.22)
< CIVf, VLY.
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By (1.121) with k = 1,

|V3fla < C|V2uly [V3uls ; (3.23)
by (1.122) with k = 3,

[Vfl2 < CIV3ul2 |V¥ul,. (3.24)
Thus, by interpolation,

1/2 1/2
IV loo < C|V2ul3? |V3uly |[V*uly

(3.25)
< C|V2ul;|Vtul,

and we deduce from (3.21) that

IN, ()] < C|V?foo |V Hul,

(3.26)
< C|V2uly |[Viuly |V*uly

in accord with (3.2). We explicitly point out that it is in this step that we cannot use
estimate (3.7) on | V?f|so, which does not hold if m = 2, and must resort to (3.22)
instead.

5.2) If instead m > 3, we further distinguish two subcases, according to whether
gm = k,orl < g < k—1forr+1 < j < m. In the first subcase, g; = 0 for
1 <j < m—1; hence, recalling (3.7),

INq(“)IZ =C |V2f|oo |V2“|g’ryjzlvz+k"‘|m
< C V™ uly=2 |V [Vt o2 vty (3.27)
=C |Vmu|£n—2 |Vm+lu|£n |Vm+ku|2 ,

in accord with (3.1). In the second subcase, we let s = 2’7’:’1—':':_? > 2, and estimate

IN,)|2 < CIV?loo |V2ul5,t TT |V2H9ul,
j=r+1

m
< C |Vm'4|§"_2 |Vm+lu|£+l 1—[ |V2+qj'u|s .
Jj=r+1

(3.28)
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We estimate
. 1-6; 8;
|V2+qju|s < C |V2“|2m J |Vm+ku|zf
s . (3.29)
< C|V’”+1u|2 i |Vm+ku|21 ,

with

8= (4= ) (3.30)

note that §; > 0 because ¢; > 1 > —L- and §; < 1 because g;— ml_r <k—1--L <
ki—l. Inserting (3.29) into (3.28) we obtain

IN, ()] < C|V™uly=2 V" u|3 [V Tyt (3.31)
with
es=+1)+m—r)—eq, eq:= > 6. (3.32)
j=r+l

Recalling (3.27) and (3.30), we compute that

es =5 (k—2=5) =1; (3.33)

1 m—r

hence, (3.31) implies that (3.1) holds in case 2 as well.
6) CASE 3. Recalling (3.9),

m

INg)|2 < CIV2FOf o [T IVl
=2 (3.34)
< C Ivm+l+q1f|2 ]—[ Ivm+l+qju|2 .
j=2
By the first inequality of (1.121), withk =1 4+ gq; < m,
|Vm+l+q1f|2 < C|vmu|;’l—l—41 |Vm+lu|;+511 : (3.35)

in addition,

|Vm+1+qju|2 < Clvm+lu|;_9j |Vm+ku|§j , (336)
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with 6, = 2 € [0, 1]. Thus, from (3.34),

INy@)]o < C[V™uly™ =0 W00 |ymthy|g (3.37)
with
o::%@;%gl. (3.38)
=

If m = 2, then ¢q; = o0 = 1, and (3.37) reduces to

INg()]2 < CIV3uly V> ulz (3.39)
in accord with (3.4). If m > 2, then g, — 0 = % > 0, and we can interpolate,
asin (3.16),

-0 m - m an-e
Ivm+lu|‘211 <cC (lV Mlé 1/k v +ku|§/k)
(3.40)
mo 11— 1om —1)/(k—1
=C|V "‘Igl |V +ku|2511 )/ (k—=1) ]
Inserting this into (3.37) yields
|Nq(u)|2 < C|V"u|? |Vt m |V’”+ku|§6 , (3.41)
with
es=m—1—q)+(q—-1)=m—-2, (3.42)
ee=0+ 95 =40 4 adl = (3.43)
k=1 k=1 k=1 : :
Consequently, (3.41) implies that (3.1) also follows in case 3.
7) CASE 4. We start again from (3.34), but replace (3.35) with
[VrEFafl, < vl VAL, (3.44)
obtained from the first of (1.122). By interpolation, it further follows that
Vi, < OVl VR (3.45)

with A = % €]0, 1[. Thus, recalling also (3.36),

|]"\'7 (M)|2 < Clvm+lu|2m—l—k—a |Vm+kulk+a ) (346)
q 2 2
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We compute that u :=m—1—-A—0 = k(]:"__lz). Ifm =2, u =0, and (3.46) reduces

to (3.39). If m > 2, we interpolate, as in (3.40),

_ 123
|Vm+lu|121 < C(lvmulé 1/k|vm+ku|é/k)

(3.47)
= C V™ uly= |9y "D/ ED
Inserting this into (3.46) yields
INy@)]2 < C[V"uly 7 V"l |V |7 (3.48)
with
er=Ato+i S =F@-m+l+k—qg+m-2)=1. (3.49)

Consequently, (3.48) implies that (3.1) also follows in case 4. This concludes the
proof of Lemma 3.1.1. |

3.2 Well-Posedness

In this section we prove the continuity estimate (1.144). Thus, form > 2 and k > 1,
with m+k > 4, we assume that u, u € ), x(7) are two solutions of problem (VKH),
corresponding to data ug, ity € H" K u,, iy € HY, ¢, ¢ € Spx(T), defined on a
common interval [0, 7], for some t €]0, T]. Given w € Y,,x(t) and ¢ € [0, 7], we
set

E(w(0) := w0 + Vw5 + w®3 + V" w @) : (3.50)

recalling (1.131), we observe that the right side of (3.50) is well-defined for all
t € [0, 7], and a bounded function of #; in addition, the map

w > sup (Ex(w(r)))"/? (3.51)

0<r<rt

defines a norm in V,, x(7), equivalent to the one of (1.133). We claim:

Theorem 3.2.1 Under the above stated assumptions, there is K > 0, depending on
T and on the quantities

Ky = max {[lully, .- @y} - (3.52)

Ky := max {{l¢|ls,cn)- 16]s..n} - (3.53)
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such that, for all t € [0, 1],

EL(u(t) — 5(0) = K (E@(©) = 50) + lp = 915 1)) - (3549

In particular, solutions of problem (VKH) in Y, x(t) (and, therefore, also solutions
in X,,1(7)), corresponding to the same data as in (1.138), are unique.

Proof
1) The function z := u — u solves the equation

4+ Az = (N(f, u(m—l)) —N(}?, ;{(m—l)))

+ (N ™D u) = N@" D, @) (3.55)
=G +G;.
Asin (1.104), we decompose
G =N(f —f.u" D)+ Y NFE. /™ u" ) ; (3.56)
j=2

furthermore, denoting for simplicity by u either one of the functions u or i, we
formally rewrite (3.56) as

G =N —f.u™ )+ INF, 0" ) =F +F,. (3.57)

With analogous meaning of ¢, we also write

G, =N@" V. 2) + SN, ¢" 2, 9p—¢) = & + D, . (3.58)
Similarly,
A"(f —f) ==Y N@" P @™ z) = =5 N@GE" . 2). (3.59)
j=1

2) Since k > 1, by Lemma 1.2.3 it follows that F, F, ®; and ®; are at least in 12,
for all r € [0, t]; thus, the formal a priori estimates that we are going to establish
can be justified in a standard way by means of (e.g.) Friedrichs’ mollifiers (as we do
in part (4) of the proof of Theorem 3.3.1 below, to which we refer). We explicitly
point out that this was not the case for weak solutions, where these functions are, in
general, only in L' (see the remark at the end of Sect.2.3). We multiply (3.55) in L?
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by 2(z; + AFz,), to obtain
d 2 m_2 k2 m+k_|2
g Uals +1V72ls + [Vialy + 1977])
= 2(G1 + G2, z) + 2(VX(G1 + Gy). Viz) .

adding the identity

d
a |Z|§ = Z(Zs ZI‘) b

and recalling (3.50), we deduce that

d
5 (B + 1V"23)

= 2(Gi + Gy + z,z) + 2(VK(G) + G,), V7).

We proceed then to patiently estimate the right side of (3.62).
3) At first, recalling (3.57) and (3.52),

|Gil2 < [Fil2 + |F2l2
< (V" =Pl (V" uly™!
+ [V [V 2] [V )
< CKP2 (Ki [V =)o+ V12|V e)
By (1.121),
V"l < CIVral ! vl < CKY
similarly, from (3.59), by interpolation,

V" =Dl

IA

CIV"(f =PI V(= Pls~ "

Alm— 1 A — 1—-1
C(|vm+1u|r2n 1 |Vm+lz|2) /m (|Vmu12n 1 Ivmz|2) /m

IA

IA

CKIn_l llzllm1 -

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)
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Acting analogously for G, and recalling (3.53), we arrive at

|G|z < [Pz + | D22

) ) (3.66)
< CKy (K zllmt1 + Kl — @llm+1) -

In conclusion, setting K3 := max{1, K, K;}, we obtain that

2(Gy + Gy + 2, 2)]

IA

2(m—1 ~
2CK" Y (zlmtt + 1@ = @llmtr + lzllo) |2l (3.67)

IA

K, (“Z||3n+k + [lo — ¢||fn+k + |Zt|%) ,
for suitable constant K4 depending on K; and K.
4) We next estimate | V¥G|,, by means of Lemma 1.2.5. Recalling (3.55) and (3.57),
we first have
IVEFil2 < CAL(f =) llullik < CKT™ Aa(f = 1) (3.68)
where A, is as in (1.94). As in (3.65),
IV"(f =Dl2 < CKP ™ izl - (3.69)
Analogously, if m > 3,
V"¢ =Pl = CIV G =PRIV =P
(3.70)
< CKP " lzllmtr «
while if m = 2, so that k > 2, we compute directly from (3.59), which reads
A(f—f)=—N@u+i,z), (3.71)
that
V3¢ =Pl < CIVN@u + t.2)]
<CIN(V(u+),2)|]2+ C|N(u+u, Vz)|2
S CIVu+ s [Viela + CIV2 @+ )4 [Viels  (372)
< CIVHu+ )2 |Vzla + CIV(u + it)|2 | V2]

< Cllu+alla llzlls + Cllue + a3 flzl4 -
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Finally, with § = A1 €10, 1],

V" — Pl < IV =PI IV =D (3.73)
and from (3.59) again, as in (1.98) and by Lemma 1.2.4,
IV =Pl < CIVEING™ D, 9 < Cllallpi Izl (374
Consequently, from (3.69) and (3.74),
V"N = Fla = CEP izl - (3.75)
and, therefore, from (3.69), (3.70), (3.72) and (3.75), also
Ao(f =) = CKI ™zl - (3.76)
Inserting this into (3.68) yields
IVEF1 < CRY™ ™ 2l - (3.77)
The estimate of |V"F 2|2 is analogous, and actually simpler; in conclusion,
IVEGil2 = CKP"™ izl - (3.78)

5) The estimate |V*G,|, is also similar. If m > 2, we can use Lemma 1.2.4:
recalling (3.58) and (1.88), and setting k := max{2, k}, we obtain
[VE@1|, < C A1) llgllnT < CKT ™ 12l (3.79)

and
VE@a]2 < C A1) 19 = Pl 1911775
< Cllaln+x 191535 19 = @l (3.80)
< CKY ™ @ — @l -
In conclusion,
VEGala < CKF™ (lellmtt + Nl = @llmtac) - (3.81)
The same result holds if m = 2 (with the modification k = max{3, k}); however,

to establish it we proceed as in the proof of Lemma 3.1.1, recalling that &k > 2
and that, as per (1.137), ¢ € C([0, T]; H*** N H®); thus, in particular, V2¢(z) €
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H3 < L™ for all ¢ € [0, T]. The only difficulty is in the estimate of the L? norms of
N(V¥(¢ — @), u) and N(V*@, z), for which we proceed as follow. If k > 3,

IN(VE(@ = @) w)la < CIVT (9 = §)]2 |VPuloo
= Cllo = @2 llulls (3.82)
= Clle = 9llsyum Ki -
Acting similarly,
IN(V'G. D)2 < Cl1@lla4k Izlls < Kz llzllok - (3.83)
If instead k = 2, we estimate
IN(VZ(¢ — @), w2 < C Ve — @) [Vuls
= Cllg —@lls llulls (3.84)
= Clle = @llsyon K1,
and, similarly,
IN(V2G.2)|2 < C V@ |V2ls < Ko |l2]ls - (3.85)
The procedure for the other cases is straightforward (and simpler); we omit the
remaining steps of this part.

6) Putting (3.67), (3.78) and (3.81) into (3.62), we obtain that, for suitable constant
K5 depending on K and K>,

d -
= (B@ + 19"23) < Ks (12l + Dl + o = 615, (3.86)

from which, for all ¢ € [0, 7],
Ec(z(0) + |V"2(0)3

< Ez(0) + [V"2(0)3 + K5 T llo — 115, ,r) (3.87)

t
+ K5/ Ex(z)do .
0
By Gronwall’s inequality, we deduce from (3.87) that

Ei(e(0) = (2Ei@O0) + Ks Tllg = @l ) €7 (3:88)
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from which (3.54) follows, with (e.g.) K := 2e?!57. This ends the proof of
Theorem 3.2.1. O

3.3 Ecxistence

In this section we prove the existence part of Theorem 1.4.2; that is, explicitly,

Theorem 3.3.1 Letm > 2 andk > 1, withm + k > 4. Let up € H"**, u, € HY,
and ¢ € S, 1(T). There is T €]0,T), independent of k, and a (unique) solution
u € X,ui(t) of problem (VKH) on [0, t]. The value of T depends in a generally
decreasing way on the size of ||ug||m+1, ||u1l1, and ||¢||s,, ) if m > 3, and on that
of luolla, lull2, and |l@ s,y if m = 2 (recall that S,,1(T) = C([0,T]; H"*?) if
m >3, and S»,(T) = C([0, T]; H>), as per (1.137)).

Proof

1) The uniqueness claim follows from Theorem 3.2.1. For the existence part, we
start from the weak solutions to problem (VKH) provided by Theorem 2.1.1. These
solutions were determined as limits, in the sense of (2.36) and (2.37), of a sequence
of Galerkin approximants, which were linear combinations of elements of a total
basis W of H". Now, we consider instead a total basis W of H" % which allows us
to choose sequences (u(),>1 and (#}),>1 C W such that, instead of (2.4) and (2.7),

ut — up in H"k, (3.89)
wl = u in H*. (3.90)

Together with (2.34), (3.89) and (3.90) imply that the quantity ¥ (x"(0)) in (2.33)
remains bounded as n — oo; consequently, the a priori estimate (2.23) still holds.
Since this was the crucial step in the proof of Theorem 2.1.1, it follows that problem
(VKH) has at least a solution u € ), 0(T), corresponding to the given data ug, u;
and ¢. Our goal is now to show that there is t € ]0, T] such that the restriction of u
to [0, 7], which we still denote by u, is in fact in &, x(z), with f € C([0, T]; H"*%).
To this end, we slightly modify the definition of the norms E; given in (3.50): for
k>0,we Y,x(T)andt € [0, T], we now set

Exw() = Vw05 + V" w3 (3.91)
We proceed in three steps. At first, we show that there is r €]0, 7], independent of
k, such that (again without distinguishing explicitly between functions defined on

[0, T] and their restrictions to [0, t]),

W' — u in L0, t; H"™) weak* , (3.92)
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u' — u in L0, 7;H*) weak*; (3.93)

note that the whole sequences converge, because of uniqueness. Thus, we deduce
that, on the interval [0, t], the weak solution u enjoys a stronger regularity; namely,
u € Vyui(r). We then show that this implies that f € C([0, t]; H"+¥). Next, we show
that u satisfies, on [0, 7], the identities

di, Ej(u) = 2{V/(N(f,u"™") + N(¢" ™", w)), Vuy) , (3.94)

for 0 < j < k; since the right side of (3.94) is in L'(0, 1), it follows that the maps
t — Ej(u(1)) are continuous on [0, T]. Together with the weak continuity in ¢ implied
by the fact that u € YV, x(7), this is sufficient to conclude that u € &, x (7).

2) We start by proving the convergence claims (3.92) and (3.93). These are a
consequence of

Proposition 3.3.1 In the same assumptions of Theorem 3.3.1, there is T €]0, T,
independent of k, and there is Ry > Ry, such that, for alln > 1 and all t € [0, 7],

E(u"(t)) < R?. (3.95)
Proof 2.1) We first recall that, by (2.23),

Eo(u(t)) < liminf Eo(u"(f)) < R (3.96)
n—>oo
Next, we multiply the approximate equation (2.11) in L? by ZAku;‘, to obtain

d
T E (u") = 2(V*(A, + B,), V*u) (3.97)

where, recalling (2.68), A, = F(«") and B, = N(¢"V,u"). If m > 3, by (3.1) of
Lemma 3.1.1 and (3.96) we obtain

|VkAn|2 < C Ivmunlrzn—Z |Vm+1un|r2n |Vm+ku"|2

(3.98)
< CRE’)V!—Z |Vm+lun|3” |Vm+ku"|2 :
if instead m = 2, we use (3.2) to obtain
[VFAL|2 < IV [V [V |
(3.99)

< CRo [V |V*Hhur], .
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Likewise, acting as in (3.81),

IVEBu|2 < Cllolny (Il + V"))

(3.100)
< Cyx (Ro + [V™thur|y)
where [compare to (2.30)]
Cox = Cllols r - (3.101)
Inserting (3.98)—(3.100) into (3.97) yields
d
T Ex") < CRY2 V" |3 Ex(u") + 2 Cy i (RG + Ex(u™)) (3.102)
if m > 3, and
d
T E (") < CRy |V*u"| E(u") + 2 Cy i (R + Ex(u")) (3.103)
ifm=2.

2.2) We now assume that k = 1; thus, m > 3. In this case, we obtain from (3.102)
that

d —_ n m
B = CRYZ (@)™ +2Cp1 Ry

+2Cp (14 (Er@")' ) (3.104)

:MO +M1(E1(Mn))l+m/2 ,

with M, and M, depending only on Ry and C,, ;. Because of (3.89) and (3.90), there
is D1 > 0, independent of 7, such that

E (" (0)) = |Vl + | V"t )3 < D} (3.105)

consequently, we obtain from (3.104) that, for all # € [0, T,

EVW@) = EVO) + Mot + My [ (B as
0
= (DM + M) / (Exu")"*"* 46 (3.106)
0

t
:m+m/@MwW%w
0
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where now M, depends also on 7. From (3.106) we deduce, via a straightfor-
ward generalization of the proof of Gronwall’s inequality, that for 0 < r <
min{T,2/(m M, My"*)},

E\(u"(1) < 2 Mo — (3.107)
2—mM; M;"" 1)>/m
Thus, defining for example
7= min%T,W} , (3.108)
we conclude from (3.107) that u” satisfies, on [0, 7], the uniform bound
E (u"(t)) <2M,. (3.109)

Thus, (3.95) follows for k = 1, with R := max{Ry, /2 M,}.
2.3) Still with m > 3, let k > 2. By (3.109), we deduce from (3.102) that for all
t € [0, 7], T as in (3.108),

d
— E (") < 2C,x R} + (CRY 2Ry +2Cp ) Exlu”)

dr (3.110)

=: M3z + My E (u") ,

with M3 and M, independent of n. Because of (3.89) and (3.90), there is Dy > 0,
independent of n, such that, as in (3.105),

Exu"(0)) = [Vl 5 + |V"Hhus)3 < DY ; (3.111)
thus, we deduce from (3.110), via Gronwall’s inequality, that for all ¢ € [0, 7],

E'() < (Dp + M5 T) ™7 =:M; . (3.112)
Thus, (3.95) also follows for k > 2, with R; := max{Ry, Ms}. This ends the proof
of Proposition 3.3.1. Note that, by (3.108), 7 is a decreasing function of M, and
M,; hence, recalling the definition of these constants in (3.106), 7 is a decreasing

function of [|uo [|m+1, lurll1. and ([ || (o, 7;mm+2)-
2.4) Letnow m = 2 and k = 2. From (3.103) we deduce that

d
3 B(") < CRy(Ex")’ +2Cpa RS

+2Cyo (1 + (E2("))?) (3.113)

=: Moy + M, (Ex(u"))*;
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that is, the same inequality (3.104), with E| replaced by E,. Consequently, we can
proceed in exactly the same way, and obtain the uniform bound (3.109) on E, (u" (%)),

with, now, M, := D%—}—Mo T, fort € [0, 7], with T = min {T, m}, as per (3.108)

with m = 2. The rest of the proof of (3.95) when m = 2 and k > 3 follows as in
part (2.3) above, using the estimate

|VEF(u™)]2 < CRo R [V (3.114)

which is linear in |V2T*"|,, obtained from (3.99) and the bound E,(u" (1)) < R%
previously established. Note that (3.95) implies, as in (3.96), that for all » > 1 and
allr € [0, 7],

Ey(u(n) < liminf Ex(u"(1)) < R (3.115)

|

3) We next show that f € C([0, z]; H"*%). From (1.120) of Lemma 1.3.2 and (3.95),
we deduce that for all 7 € [0, 7],

V)] < C IV u@ T IV Rl < CRYTVRe. (3.116)
Next, for 0 <1, tp < t, recalling the decomposition (2.61):
V(@) = ft)]2 = 1A (@) —f (@) |-m
= M (u(®)) = M(u(t0))[|-m (3.117)
< CY N, 10) |-
j=1
By (1.75) of Lemma 1.2.2, we deduce from (3.117) that

IV"(f (1) = f(20))]2

m B N (3.118)
< CY IV U@y V" uto)fh IV () — u(to)) 2 :
j=1

consequently, by (3.96), interpolation, and (3.115) fork =1,

[V (F (1) = f(10))|2 < CRG™" V™ (u(r) — u(t0)) 2

IA

CRE™H V"™ ule) = u(to) |y 19" (e) = u(w))|y* (3.119)

IA

2CRI R IV ) — ulto)) ]y
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By (2.41) it follows that f € C([0, t]; H"). But then, by a second interpolation

involving (3.116), with § = —%— €]0, 1[:

[V (@0 — (1))
CIV"HN ) = F)IS IV (@) —fao)ly™" (3.120)

CQRCRIMRYY V™ (F (1) — ft0)) |57,

IA

IA

from which we conclude that f € C([0, t]; H" %), as claimed.
4) We now prove the identities (3.94); it is sufficient to consider the most difficult
case j = k. Thus, we claim that

d% Ei(u) = 2(VE(N(f, u™ V) + N(@™ Y, w)), VFu,) . (3.121)

= A

The procedure is standard, and is based on regularizing (13) by means of the
usual Friedrichs” mollifiers (p%),>0 with respect to the space variables, introduced
in (1.176). More precisely, from (13) we obtain that u®* = u®(t, x) := [p* *u(t, -)](x)
solves the equation

up + A"u" = A% (=:p*x A). (3.122)

We can multiply (3.122) in L? by Aku‘;‘, to obtain (compare to (3.97))
d o kAo k. o
d_tEk(u ) =2(VEAY, Vil . (3.123)

We further multiply (3.123) by an arbitrary ¢ € D(]0, t[) to obtain, after integration
by parts,

—/Ofé"Ek(u“)dtz Zfofé(va“,V"uf‘)dt. (3.124)
Since u € V,,x(7), we have that for all 7 € [0, 7], as &« — 0,
Ve (1) — V"R u@)  in L2, (3.125)
VA (1) — Viu,(r) in L?; (3.126)
hence, E;(u*(t)) — Ex(u(?)). In addition, (3.115) implies that

Ev(u® (1)) < Ex(u(t)) < R} ; (3.127)
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thus, by the Lebesgue’s dominated convergence theorem we conclude that

—/tg’Ek(u“)dt N —/IQ’Ek(u)dt, (3.128)
0 0

as @ — 0. Again because u € ), (1), the same exact estimates (3.98) and (3.100)
hold for u; from this, it follows that A(f) € Hforallt e [0, 7], so that, again by the
Lebesgue’s dominated convergence theorem,

2/0 C(VEAY VR )dt — 2/0 E(VEA, VEu,)dr . (3.129)
From (3.128) and (3.129) we deduce that
—/ z’Ek(u)dtzzf E(VEA, VEu,)dr (3.130)
0 0

which means that (3.121) holds, first in D’(]0, t[) and then, in fact, in L'(0, ),
where the right side of (3.121) is.

5) Since the right side of (3.94) is in L' (0, 7), the maps 7 — E;(u()), 0 < j < k, are
absolutely continuous on [0, t]; hence, so are the maps

t V"3 and  t e V(0] (3.131)

The continuity of the norm |V”**u(-)|,, together with (2.41) and the weak
continuity u € Cyy ([0, T]; H" ), implies that u € C([0, T]; H"*¥). Likewise, from
the second of (3.131) and the weak continuity u, € Cpy([0,T]; H*) we deduce
that u, € C([0, T); H*). Consequently, u € X,,;(t). The proof of Theorem 3.3.1
is now complete; together with Theorem 3.2.1, this also completes the proof of
Theorem 1.4.2. a



Chapter 4
Semi-strong Solutions,m = 2,k =1

In this chapter we prove Theorem 1.4.3 on the existence and uniqueness of semi-
strong solutions of problem (VKH) when m = 2 (recall that, by Definition 1.4.1,
if m = 2 there is only one kind of semi-strong solution, corresponding to k = 1).
Accordingly, we assume that

up € H*,  weH', ¢S (T)=C(0,T];H) “.1)

[recall (1.137)], and look for solutions of problem (VKH) in the space X5 ;(7), for
some 7 €]0,T]. Since m + k = 3 < 4, we can no longer use the techniques we
used in Chap. 3, because these were based on Lemma 1.2.5, and we remarked at the
end of its proof that the applicability of this lemma requires that either m + k > 4,
or that 92(f(u(t,-))) € L°, pointwise in ¢, and the latter condition need not hold if
m = 2 and k = 1. This case does in fact stand out as a somewhat exceptional one.
Another instance where the limitation m 4+ k < 4 makes a tangible difference is in
the proof of the well-posedness of problem (VKH) in the space X, (7); indeed, as
we have mentioned in part (4) of Sect. 1.4, in the present case we can only prove the
continuity of the solution operator Sg defined in (1.155), as opposed to its Lipschitz
continuity in the case m 4+ k > 4. We return to this point in the remarks at the end
of the proof of Theorem 4.2.1 below.

4.1 Two Technical Lemmas

In this section we report two results that we need in the sequel. The first is an
adaptation of a well-known general functional analysis result, for a proof of which
we refer, for instance, to Temam [29, Lemma 4.1].
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Lemma4.1.1 LetT > 0, and u € Lz(O, T; HZ) be such that u, € LZ(O, T; L2) and
uy + A%u € L*(0, T; L?). Then, the identity

d
T (w3 + |VZul3) = 2(uy + A%u, u;) (4.2)

holds for almost all t € [0, T); consequently, u € C([0, T]; H*) N C'([0, T]; L?).

Lemma4.1.2 Let T > 0, u € X, 1(T), and f = f(u) be defined by (12). Then,
feL®O,T;H* N H?) andf, € L®(0, T; H*), with

”f”LOO(o,T;}E]4 NH2) + ”fr”LOO(o,T;HZ) =C ||u||%yz.1(T) : (4.3)

Proof

1) From (3.119) for m = 2 we know that f € C([0, T]; H?); the boundedness of f
into H* follows from (1.120) of Lemma 1.3.2, again for m = 2, and k = 1. This
also implies that

2
W ll oo o314 n iy < C llullys, oy - 4.4

2) To prove the claim on f;, we first note that the linear map

T
L', T;H)>h — 2 / (N(u, h), ) =15 dt =: Py, (h) (4.5)
0
is continuous, since

T
®.()| < 2C / IV2ul |Vl | Vit dr
0

T
<2 [ 1Vl 1Vl Valor (4.6)
0
<2CT @) hllporim)
where
Cu) = ||’4||c([o,7'];i13) ||’4t||c([o,T];i11) . 4.7)

Thus, &, € (Ll((_), T; H?))'; since this space is isomorphic to L>(0, T H™?), there
is A € L*°(0, T; H~?) such that for all h € L' (0, T; H?),

T
D, (h) = / (A, h)gsxige dt . 4.8)
0
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In addition,
Al o0 0.758-2) = 1Pull 10,732y = CT (). (4.9)
Next, we show that
A, =—A (4.10)
in D'(J0, T H?) = L(D(]o, T[); H?). Proceeding as in Lemma 2.2.2, let ¥ €
D(0,7T[) and w € H?. With analogous notations, and recalling that A%f €

L>(0,T; L*), we compute that

(Al w)o) = (— Ay 1w

T
e /0 YA drw) )
T
= (—/O v/ A drw) 4.11)
T
- /0 V(=A% o di

T
= /(; ¥ (N(u, u), w)odt,

where, now, the index () refers to the duality pairing between H~? and H. Since
u € C([0,T]; H?) and u, € C([0,T]; H"), by part (2) of Proposition 1.5.1 we know
that the Friedrichs mollifiers u® with respect to the space variables are such that

u* —u in C(0,T;H*) n C'([0,T);H") 4.12)
(it is at this point that we need the assumption u € &5 1(T), as opposed to just u €

V>.1(T)); hence, by the Lebesgue dominated convergence theorem we can proceed
from (4.11) with

T
(A’ f[y], w)e) = 1imO/ U (N, u®), w)odr =: lim Ay . (4.13)
a—> 0 a—>
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We then see that

T
Ay = —2/ Y(Nu®, u’), w)odt
0
T
= —2/ YN, w),uy)odt
0
T
= —2/ YN, w), u] ) =15 dt (4.14)
0
T
— —2/ YN, w), u;) g—15pn dt
0

T
— d>u(ww>=/0 (¥ W)y dr

Comparing this with (4.11), we obtain that

T
A¥y] = /0 W Ade in H?, (4.15)

which means that A%, = A in D'(J0,T[;H?). It follows that A% is in
L>®(0,T; H™?); thus, by Proposition 1.1.5, f; € L>®(0,T;H?), as claimed. In
addition, by (4.9),

Wfill oo 0.752) = Moo 0,732y = CT () (4.16)

Together with (4.4), this yields (4.3). O

4.2 Lipschitz Estimates

In this section we prove a locally Lipschitz estimate on the difference of two
solutions u, u € A, (t) of problem (VKH), in the lower order norm of A5 ¢(7).
More precisely, we assume that, for some v €]0,7], u, u € ), (r) are two
solutions of problem (VKH), corresponding to data ug, ity € H>, uy, ity € H',
¢, € C([0, T]; H’), and claim:

Theorem 4.2.1 There is K > 0, depending on T and on the quantities
Ky := max {{|ully, o). Nitlly,, o} - (.17

K> := max {ll¢llcqo.mms)s 190llcqorns)) - (4.18)
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such that, for all t € [0, 1],

T
Eou(t) — () < K (EO(M(O) o) + /0 lo — 312 dr) , (4.19)

with Ey as in (3.91). In particular, solutions of problem (VKH) in X, 1 (t) are unique.

Proof The difference z := u — # solves the system
e+ Nz=N{f—f.u)+ NF.2) + Ne —¢.u) + N(@.2) . (4.20)
A(f—f)=—N@u—+iz). 4.21)

By Lemma 1.2.3, the right side of (4.20) is in L? for all ¢+ € [0, t]; hence, we can
multiply (4.20) in L? by z, and obtain, by Lemma 4.1.1, that

d ~ ~
5 Bo@ = 2(N(F —f.u) + N(f.2)
+ N@ = @.u) + N($.2). 21) -

(4.22)

Recalling (4.17),
(NG =F.uw).z)| < CIVP(F = Dla |V2ula |zl
< CIV(f =Dl IVuls |zl (4.23)
< CK IV*(F=Dl2lzl -
From (4.21) we obtain that
IV3(F =D)I3 = (A(F =), A = 1))
= —(N(u+1ii,2), A = 1))

CIVHu+ )4 |Vl |V2(f = F)la
< CIV3u+ ) |V V3=l

(4.24)

IA

thus,
IV3(f =Pl <2CK; V2], (4.25)
and, therefore, from (4.23),

UN(f —F.u).z)| < CK?|VZ2h |zl < CKPEo(2) . (4.26)
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Next,
[(N(¢ = @,1),2)| < CIV (¢ = @)la [VZula|zl2
< Cllo = lls 1V2ulz |zl (4.27)
< CKi (lp = I3 + [l3) -
Similarly, recalling (4.18), and that H < [®ifm=2,
[(N(@,2), )| < C|V?Bloo V22 |zl
< ClIV?ol3 V222 fzl2 (4.28)
< CKyEy(2).

Finally, resorting again to the Friedrichs’ mollifiers with respect to the space
variables, we rewrite

2<N(}?’ Z)v Zt) = Z(N(f _ia’ Z)v Zt) + 2<N(fav Z)v Zt)

=2(N(z.2).f —f*) + 2(N(F*.2). z1) (4.29)
= =+ 2N G 20,2
where
Ao = (N 2).f —F%), (4.30)
and
e = (N(z.2).f; —F%) ; 4.31)

note that u, is well defined, by Lemma 4.1.2. In fact, by (4.3),
el < CIVZ22 V2|3 IV — F)4
< CIV’ 23|IV (i =/ (4.32)

<2C|V*23|V*ila <2CKIEy(2) .
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Since also, by (4.3) forf,

NG, 2), 2] < C V00 V2] |2
< C|\V3 Y2 V27 Eol(z)

< € 7 [V, 19371, Eol) -
< C K E(@).
we deduce from (4.22), ..., (4.33), that, if & €]0, 1],
L (B = 20) = CKs L Eo(@ + CK1 o — 12, (434)
dt Ve

for suitable constant K3 depending on K; and K> of (4.17) and (4.18). Integration
of (4.34) yields that for all r € [0, 7],

Eo(z(D) = Eo(2(0)) + Aa (1) — Aa(0)

T ' (4.35)
+ c1<1/ o — @3 dr + CK3L/ Ey(z)do .
0 ﬁ 0
As in (4.32),
Ao| < C|V%2)2 V24 [V(F = F*)]4
(4.36)

< CIVZBIVA(F =F*)2

and, arguing as in Racke [25, Lemma 4.1] (see also the proof of Lemma 4.3.1
below),

IV2(F —F)2 < Ca |V,
< Ca|AY, A7 (4.37)
< Ca|Viil, |V?il, < Ca K} .
Thus, by (4.36),

[Ae| < Ca K} Eo(2). (4.38)



86 4 Semi-strong Solutions, m = 2, k = 1

Choosing then « so that 2 C Kl2 = 1, we obtain from (4.35) and (4.38) that

0 < Eo(z() < 3 Eo(z(0)) + 1 Eo(z(2))
T
+CK{/H¢—¢Mm (4.39)
0

t
+ CK3K1V2C/ E()(Z)de
0

Thus, (4.19) follows, by Gronwall’s inequality. This ends the proof of Theo-
rem4.2.1. a

Remark We explicitly point out that the step where the failing of the condition m +
k > 4 creates difficulties is in the estimate of the term (N(f,z), z;) at the right side
of (4.22). As we have mentioned earlier, this is related to the fact that, if m = 2 and
k = 1, we cannot guarantee that 8)26 f (t,-) € L*™. Indeed, if this were the case, we
could simply estimate

N, 2), 20| < CIVloo V22l [l2 < C 1V loo Eo(2) (4.40)

and we would not need to resort to the decomposition (4.29). o

4.3 Well-Posedness

In this section, we prove the well-posedness claim of Theorem 1.4.3. To this end,
keeping the same notations of the previous section it is sufficient to prove

Theorem 4.3.1 Let R > 0. Assume that there are t €10, T| and K« > 1 with the
property that for each uy € H*, u; € H' and ¢ € C([0, T); H) such that

o3 + NealF + I 1Zg0.17.5) < R - (4.41)
problem (VKH) admits a unique solution u € X, 1(t), with
lleell 2,7y < K- (4.42)

Under these assumptions, it follows that for all ¢ > 0 there exists § > 0 such that, if
ug, uy, ¢ and iy, uy, ¢ satisfy (4.41) and

T
luto — ol + s — | + / lo— 2 < 8. 4.43)
0
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then forall t € [0, 1],
Ei(u(t) — (1)) < €*. (4.44)

Proof We adapt a method first proposed by Beirdo da Veiga [2], and then extended
in [8, Chap. 3, Sect.3.3.4], to show the well-posedness of general second order
quasilinear hyperbolic equations.

1) We set again z : u — u. With § > 0 to be chosen later, we know from the lower
order estimate (4.19) that if (4.43) holds, then for all ¢ € [0, 7],

Eo(z(7)) < K 8%, (4.45)

with K depending on K, (hence, on R). Since u and u € X 1(7), by (1.177) of part
(2) of Proposition 1.5.1 it follows that

[max Ey(u(t) — u(1))

. _ (4.46)
+ [nax Ei(u(t) —u*(t)) =: w1(@) — 0

as @ — 0, where, as usual, u* and u* denote the Friedrichs regularizations of u and
u in the space variables. We note that the convergence in (4.46) is uniform in # and
u, as long as u and u satisfy (4.42). The function z* = u® — u* solves the equation

&+ A = NU(f —f.u) + N“(f.2)

(4.47)

+ N*(¢p — @, u) + N*(@,2) =:Rq.
Since R, € H', we can multiply (4.47) in L* by Az%, to obtain

%El (z%) = 2(VRy, V) . (4.48)
We decompose

VRy = N*(V(f —f).u) + N*(f —f, Vu)
+ N*(Vf,z) + N*(f, Vz)
+ N*(V(p — @), u) + N*(¢p — ¢, Vu) (4.49)

+ N¥(V@,z) + N*(@, Vz)

4 4
=: ZF“J + ZCDW' ,
=1 =1

and patiently estimate all these terms in L.
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2) The estimate of the terms ®,; is straightforward. Recalling (1.174) and (4.17),
we first obtain

|Pe1l2 < IN(V(@ —@).u)|2 < CIV3(p — @)|a|Vuls

~ ~ (4.50)
<Clo—@lsllulls < CKillo —@llas
then
|Po2l2 < IN(9 — @, V)| < CIVH(p — @)oo |Vul2
~ _ 4.51)
<Cle—2olsluls = CKill¢ —¢lls;
note that K; < K. Next, by (4.18),
|Po3l2 < IN(V@,2)|2 < CIV3@|4 | V2|4 s
< Cllglls V322 < CKy [V2)s
and, finally,
|Po4lz < IN@. V)2 < CIV*G|oo V322
(4.53)

< C|¢l5|1V3z < CK2 | V325 .

In conclusion, for suitable constant K3, depending on K; and K, but not on ¢,

4
D (P V) < llo — 63 + K3 Ei () - (4.54)
j=1

3) The estimate of the terms F, ; and F, 3 of (4.49) is similar. Letting g := f — f
and proceeding as in (4.50), we first obtain

|Faal2 < IN(Vg.w)l2 = C|Vigl [Viuly < CKy [Vigla. (4.55)
From the equation
A (f—f) = —N(u+it,2) (4.56)
we deduce that
IVigla < CIV2(u+ )4 |V?2ls < CKy |V2]p; (4.57)
thus, from (4.55),

|Faila < CK} V32, (4.58)
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Similarly,

|Fusla < IN(VE,2)|2 < CIV¥2 VP2 < CKE VP2, .

89

(4.59)

4) To estimate Fy,» and F, 4, we shall use the following result, which we prove at

the end of this section.

Lemma 4.3.1 Leth € H*, w € H?, and set
W, := N%h,Vw) — N(h, Vw%) .
Then,
[Welo < C V4|2 |[VPWla,

with C depending on p, but not on h, w, or «.

Assuming this to be true, we decompose

Fyo = [N%(g, Vu) —N(g, Vu®)] + N(g, Vu®)
=i Fyp1 +Fyn.

By (4.61)withh = gand w = u,
|Fuzilz < C|V¥%g[2|Viuly
< CK{ |V*(u+ )]s |V?2l4
< CK?|V3z,.
By (4.25), (4.45) and (1.173) with r = 1,

|Fanls < C|V2g|4|V3u®ly < C|V3g|2 V4|2
]

1
< CK; |V, — |V3u|, <CK}K —.
o o

(4.60)

4.61)

(4.62)

(4.63)

(4.64)

Putting (4.63) and (4.64) into (4.62), and recalling (4.58) and (4.59), we deduce that

3
82
(Fujs V&) < CK? (El(z) N _2) ,
= o

j=1

(4.65)
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As in (4.62), we decompose

Fos = [N“(f,V2) = N(f, Vz*)] + N(f, V%)

(4.66)
= Fym +Fou .
By Lemma 4.3.1 with i = f and w = z,
[Faails < CIVH2 V2 < CKT VY22 . (4.67)

Putting (4.54), (4.65), (4.67) into (4.48), and recalling (4.66), we obtain that, for
suitable constant K4 depending only on K and K>,

d N s >
—E) <2le—¢l2+Ks &

dr ) (4.68)
+ K4 Ei(z) + 2(N(f, Vz*), Vz¥) .

5) To estimate the last term of (4.68), we proceed as in (4.29), rewriting
2N, V), VZ)

= 2(N(f —f", VZ%), V%) + 2(N(f", Vz%), V)

2AN(VZ*, V). f —fT) + 2(N(f", V), VZ¥) (4.69)

NV, 2, F = 1) — (N(V2, V29,7~ )

d
— Aap — Hay + 2 Vg -

+ 2(N(f", V%), VZ®) =: pn

By (1.174), and Lemma 4.1.2,

[lan] < CIV3B IV~

- 4.70)
<2C|V¥2|V*2); < CKIE(2) .

Next, by (1.173), as in (4.33),

Vay| < C Voo V322 V2]
< C|V5J?7]|;/2|V2fﬂ|1/zlv3z|zlvzr|2 (471)
< €= VL2 IV 1992 [ 92 ‘

< CKlzﬁEl(Z) .
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From (4.68), ..., (4.71) we obtain that, for all n €]0, 1] and suitable K3,

2

d _ 1 8
@ (El(Za) - km]) <llg - <p||§ + K5 % E\(z) + Ks Pl (4.72)

from which, integrating,

T
Ei(2°(1) = Ei(z*(0)) + Aoy (1) — Aoy (0) + /0 llp — I3 dr

. (4.73)
2
+KsT 5 +Ks ﬁ/o Ei(z)do,
forall # € [0, ]. Arguing as in (4.37), we deduce that
ay| < CIVPZEBVAF =2 < CnKTEi() ; (4.74)

thus, choosing 1 such that 6 C n Kf = 1, we further deduce that, if (4.43) holds,

T
B\ () < 1E0) + L E(z0) + /0 lo — @12 dr

82 t
+KsT— + V6 CK, KS/ Ei(z)df 4.75)
0

t
<K&(1+ L)+ 1E® +i</ Ei(z)do ,
0

for suitable constant K depending on K., K> and T, but not on & nor on §.
6) We are now ready to conclude. By (4.46) and (4.75), it follows that for all ¢ €
[0, 7],
Ei(z(1)) < 3E1(u(?) — u® (1)) + 3 E1(a(r) — u” (1) + 3E1(2(1)
t
<3wi(@) +3K8 (14 %) + FEG0) + 3K/ Ei(z)do .
0
(4.76)

Thus, given ¢ > 0, we first choose « €]0, 1] such that

2

1 ~
6w () < 3¢ e OKT . 4.77)
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and then, with this value of & now fixed, we choose § > 0 such that
7 o2 1 L 5 _ekr
6K 1+—2 < —-¢ge . (4.78)
o 2

With this choice of §, we deduce from (4.76) that, if (4.43) holds, then for all ¢ €
[0, 7],

t
Ei(z(1) < 6wi(a) + 6K82 (1 + L) + 6K / Ei(z)do
. ¢ 0 4.79)
< g2e OKT 4 6k/ Ei(2)do,
0

from which (4.44) follows, by Gronwall’s inequality. This concludes the proof of
Theorem 4.3.1, under the stipulation that Lemma 4.3.1 holds.
T) Proof of Lemma 4.3.1. From (8) with m = 2, we formally write

1 X— 1t
) = — /|y _x‘<ap( ) 12 () V2 dw(y) dy

(4.80)
i 1 x— i
Vi o [ p(3) VEowe) 0.
&7 Jly—x|<a
Integrating by parts once,
Vo) = g5 / _, 0] (532 812 (VI h(y) = VI A(x) V2 w(y) dy
y—x|<a
_ L —y) g2 VJI oh ij d 481
# ) P& Va0 Viw o) dy (4.81)
y—x|<a
=: Wy (x) — Yy (x) .
By (1.174),
[Waalz = % * N(3h,w)|> < [N(9h, W)l
(4.82)

<C |V3h|4 |V2W|4 <C |V4h|2 |V3W|2 s
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in accord with (4.61). Next, we write

‘pal (x)

o Jij2

=1 /g | 1ap(g) 812 (VI'h(x — af) — VI'h(x)) VEw(x — af) d&

1 . .
é/ ap(§) / 81’1‘]‘5 V{ll Vh(x — Aag) - (@ §)dA V‘};w(x —af)dE,
5l=<1 (U 4.83)
from which, applying Holder’s inequality twice,
1/4
| W ()]

IA

C(/551 IV;O(E)I/O1 IV3h(x — raf)|* dA dé‘)

3/4
( /E ZOISTErI ds) (4.84)

=1 (A () (Ba ()"

By Cauchy’s inequality, then,

/ W2 dx < € / (Aa () 2(Ba () dx

1
(/ / Vp(®) / |v3h(x—xas>|“dxdsdx)
£l<1 0
1/2

’ (/ (/msl IVo(E)| |V?w(x — af)|*/> dg)3 dx) (4.85)

=H,J,.

1/2

IA

Setting C,, := f\é\ <1 1Vp(§)| d&, by Fubini’s theorem we proceed with

1
H? — \Y, V3h(x — daf)|* dxdE dA
2 /0 /|§|§1| p(©)] [ Vh(x — Aad)|* drdé o

= G, |V?h|; = G, |V*hl3 .
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Similarly, using Holder’s inequality once more,

i=fq (/551 V(6 V20— el d )

ye L Vo) / IV w(x — )| dude 4.87)

= C|V2wl} < C V.
Consequently, from (4.85)—(4.87),

(Warlo < VVHoJo < C2[V*h|2 | VW, . (4.88)

Inserting this, together with (4.82), into (4.81), we obtain (4.61). This ends the proof
of Lemma 4.3.1 and, therefore, that of Theorem 4.3.1. O
We conclude this section by mentioning that the Holder estimate (1.156), that is,
again,

| — il 2, . (o)
(4.89)

~ ~ ~ 1—.
< Cu (lluo — dioll2 + llus — @i llo + llo — Gllssom) s

where C, depends on K, follows simply by interpolation. Indeed, recalling (4.17)
we obtain that, for ¢ € [0, 1] and ¢ € [0, 7],

(@) = a@®ll24e < C llu(t) — @@ llu() — a@oll;

5 (4.90)
< 2K [lu() — a5~ ;
analogously,
(1) = w(D)||e < Cllui(e) — w5 lJu(r) — @)~
4.91)
< 2K [lu(r) — (1) ][ -
Thus, by (4.19), (4.89) follows if ¢ € [0, 1]. O

Remark As we said, we ignore if a locally Lipschitz estimate similar to (1.144)
holds in &5 1 (7). The difficulty is the same as the one pointed out in the remark at
the end of Sect.4.2. Indeed, (1.144) would be formally obtained by multiplication
of Eq.(4.20) in L? by Az, and successive integration by parts. To justify this by
regularization, we need the right side of (4.20) to be in H I in particular, we need
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VN(f,z) = N(Vf.z) + N(f, Vz) € L*. Now, we can estimate the first of these terms
as

IN(VF.2)2 < CIV 14| Vi2ls < CIVH2 V2 s (4.92)

but if we try to estimate the second term N (f ,Vz)in [? as in (4.40), we run into the
same difficulty. Indeed, we only know that V3z(t,-) € L?; thus, we do not know how
to proceed if we do not know that 3> f(t,-) € L. o

4.4 Existence

In this section we prove the existence part of Theorem 1.4.3; namely,

Theorem 4.4.1 Assume (4.1). There is 1y €]0,T], and a (unique) local strong
solution u € X, 1(t1) to problem (VKH), corresponding to the data (4.1). The
value of T\ depends in a generally decreasing way on the quantities ||uo||3, ||u1||1,

lells, -

Proof

1) The uniqueness claim follows from Theorem 4.2.1. For the existence part, we
proceed as in the proof of Theorem 3.3.1, starting from a weak solution to problem
(VKH) provided by Theorem 2.1.1, determined as the limit, in the sense of (2.36)
and (2.37), of a sequence of Galerkin approximants constructed by means of a total
basis W of H>. Thus, we choose sequences (u),> and (#}),>1 C W such that,
instead of (2.4) and (2.7),

up — o in H, (4.93)
w = in H'. (4.94)

Again, the quantity W(x"(0)) in (2.33) remains bounded as n — oo; thus, problem
(VKH) has at least a solution u € )5 ¢(T), and we proceed to show that there is 7; €
10, T] such that, identifying as before u with its restriction to [0, 7], u € X5 1(71),
and f(u) € C([0, 7;]; H?). To this end, it is sufficient to prove

Proposition 4.4.1 In the same assumptions of Theorem 4.4.1, there are 1| €]0, T),
and Ry > Ry, such that, foralln > 1 and all t € [0, ty],

E\(u'(1)) <R . (4.95)
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Indeed, assume this to hold for the moment. Then, we deduce that the Galerkin
approximants (#"),> are such that,

U = u in  L®(0,1,; H®) weak™ , (4.96)
u' — u in L®(0,t;;H'") weak* (4.97)

(again, the whole sequences converge, because of uniqueness). Thus, u € )5 1 (7).
The rest of the proof proceed exactly as that of Theorem 3.3.1, with m = 2 and
k = 1 [indeed, the distinction between the cases m + k > 4 and m = 2, k = 1 only
intervenes in the proof of the estimates (3.95) and (4.95)]. In particular:

a) The continuity of f into H? follows from (3.119) and (3.120), which taken
together yield the estimate

IV3(F(2) = f(t0))]2 < CRY* R [V (u(e) — (o)) |y * (4.98)

recalling that, by (2.41), u € C([0, 7;];: H").

b) The claim that u € &> ; (t1) follows from the fact that the sequence (u"),> of the
Galerkin approximants converges strongly to u in X, ; (7). This is a consequence of
the fact that (#"),> is a Cauchy sequence in A ;(7;); in turn, this is a consequence
of the well-posedness estimates of Theorems 4.2.1 and 4.3.1, which also hold for the
finite-dimensional version (2.11) and (2.12) of the von Karman equations satisfied
by u". Indeed, recalling the choice of Dy in (2.35), and of D; in (4.101) below,
we can set R := max{Dy, D} in (4.41). Then, (2.23) and (4.95) imply that we
can choose Kx = {Ry,R;} in (4.42). Let ¢ > 0, and determine § > O as per
Theorem 4.3.1. Since (uf),>1 and (u}),>; are Cauchy sequences in H> and H',
there is ng > 1 such that for all p, g > ny,

g = u§ I3 + Il — uflIT < 8% (4.99)

that is, (4.43) is satisfied by uy = ul, ity = ufh, uy = uf, 4y = uf, and ¢ = ¢.
Consequently, (4.44) implies that for all p, ¢ > ng, and all 7 € [0, 7y],

E (1’ (1) — ul(r)) < &*. (4.100)

An analogous argument holds for Eo(u”(f) — u?(t)); hence, (#"),>1 is a Cauchy
sequence in X, 1(71), as claimed.

2) We proceed to prove Proposition 4.4.1. At first, we note that the strong
convergences (4.93) and (4.94) imply that, as in (3.105), the quantity

sup E;(u"(0)) =: D? (4.101)

n>1
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is finite. Since each solution u#" of the approximate equation (2.11) is in
C'([0, t,]; W,.), for some ¢, €0, T], it follows that for each n > 1 there is 7, €]0, #,]
such that for all 7 € [0, 7,],
E1(u"(1)) < 4E\(u"(0)) < 4D7. (4.102)
In fact, by extending u" if necessary, we can redefine ¢, as
t,:=sup{t€[0,T] | Ei(u"(t) <4D}} . (4.103)

Thus, it is sufficient to show that

infr, =11, >0, (4.104)
n>1

because this means that each solution is defined on the common interval [0, 71];
then, (4.95) follows from (4.102), with R; := 2 D;.

3) To prove (4.104), we start as in (3.97). Multiplying (2.11) in L* by Au”, and
recalling the definition of A, and B, in (2.11), we obtain

d
” E(u") = 2(VIN({",u") + N(p,u")), Vuy) . (4.105)

Recalling that ¢ € C([0, T]; H’) and that H> < L, we estimate

|(N(p, Vu")|» < C|V2¢|oo VU]

(4.106)
< CIIVls |VPu's < Cy [V 2,
where C,, := C|¢||¢(jo,13;15)- Likewise,
{N(Vo,u")|, < C|V30ls V"4
(4.107)
< C[V¥l2 [V?u"]s < Cy V0|5 .
Thus,
(VN(.u"). Vuy)| < CCy Ey(u") . (4.108)
Next, recalling (2.12),
IN(VI™, u") |2 < C |V 5[V,
(4.109)

S CIN@" )2 |Vl < CIVu']5
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so that, recalling (4.102),
[(N(VF", u"), Vu)| < C(E\("))* < 4CDTE (") . (4.110)
Finally, acting as in (4.29) and abbreviating (f")* = p* % f" =: f"*, we decompose
2(N(f", Vu"), Vu})

= 2N —f™ Vi), Vi) + 2(N(™, Vi), Vi)

d% (N(VU' Vul') f* =) = N(Vd", Vi) f — ) (4.111)

+ 2(N(f", Vu"), Vu?)
=: %Aﬁ—,ug+2vg.
As in (4.32) and (4.33), and recalling (4.16),
1] < CIV" L V2 [V (£
= CIVA" IV = £ 4.112)
<2C|IVU IV 2

Since u" and /" are smooth, we can differentiate Eq. (2.12), with m = 2, with respect
to ¢, and obtain

A’f" = —2N@u",ul") . (4.113)
From this, we deduce that
V3 = 2N ", uf). f1)]
= 2|(N(f]", u"), uf)|
S 2C |V [V 4 [l 4
< 2C|VH2 |Viuly [Vulls

(4.114)

from which

V(] < C|V3u"|, VU], . (4.115)
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Replacing this into (4.112), we proceed with
lwal <2CIVU'3 V)], < 2C (B (u")* <8 CDTE (") . (4.116)
Similarly,
el < CIVf™ oo Vil |2 |V |2

no 1 2 no 2 n
CIVi |y VY2 By ()

IA

E %|V4fn|;/2|v3fn|;/2El(un) (4117)
C 3 n 2. n 3.n 1/2 n

5ﬁ|vu|2(|vu|2|vM|z) E(u")

< %R(l)/Z (El(btn))7/4 S%Ré/2(4D%)3/4E1(Mn),

with R as in (3.96).
4) Putting (4.108), ..., (4.117) into (4.105) yields that, if « €]0, 1] and 7 € [0, t,,],

By - an) <

a (4.118)

[compare to (4.34)], where C; depends on the data ug, u; and ¢ via the constants
Ry, D1 and C,,. Integrating (4.118) and recalling (4.101) we deduce that

E\('(1)) < D} 4+ A2(5) — AL(0) + & / Ei(u")df . (4.119)
0

Recalling the definition of A}, in (4.111),

1Al = HN(VU", Vi) f* = f*)]

IA

CIVU' | VU4V (" = ") (4.120)

IA

CIVA "B IV = )]s .
Proceeding as in (4.37), we obtain that

V(" = f")|2 < CaRo [VPu"]2; (4.121)
thus, by (4.120),

IAZ| < CaRy |Vu"|3 <2CaRyDy Ei(u"). (4.122)
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For t = 0, (4.101) yields
|AZ(0)| < Ca Ry D3 ; (4.123)
thus, we deduce from (4.119) and (4.122) that for all ¢ € [0, t,],
Ei(u"(1)) = D} (1 + Ca Ry D1)

C t
1 2CaRy Dy E (1) + —I/El(u") do
@ Jo

4.124
<D}(1+CaRyD) ( )
3, O '
+8CaRyDi+ — | Ei(u")df.
@ Jo
5) Choosing then « such that
9CaRyD, =1, (4.125)
we obtain from (4.124) that for all ¢ € [0, 1],
t
Ei(u'(r) < 2D} + %/ Ei(u")dé
0
t (4.126)
<2D?+9C; CRyD; / Ei(u")dé ,
D 0
=:(
from which in turn, by Gronwall’s inequality,
E (" (1) <2D}e“ =: h(1) . (4.127)
Since 7(0) = 2 D3, if we set (e.g.)
1
7:=—1In2, (4.128)
2
recalling the definition of #, in (4.103) we deduce from (4.127) that
E\(u"(1) < 4D7 (4.129)

for all ¢ € [0, t]. Hence, t, > t. Consequently, (4.104) follows, with t; > 7. This
ends the proof of Proposition 4.4.1; therefore, also the proof of Theorem 4.4.1 is
complete. Note that (4.128) shows that t is inversely proportional to the size of
the data ug, u; and ¢, as measured by Ry and D;. However, t is independent of
the particular choice of the data, as long as they remain in a ball of H> x H! x
C([0, T]; HY) of radius R = min{Ry, D\ }. O



Chapter 5
The Parabolic Case

In this chapter we assume that m > 2 and k > 0, and first prove Theorem 1.4.4 on
the uniformly local strong well-posedness of problem (VKP) in the space Py, x(7),
for some t €0, T] independent of k. This means that, under the assumption (1.162)
(that is, again, uy € H*"™* and ¢ € §,,4(T)), we show that there is T €]0, T],
independent of k, and a unique u € P, x(7), solution of problem (VKP). In addition,
this solution depends continuously on the data uy and ¢, in the sense of (1.164).
We first prove the continuity estimate (1.164) for arbitrary t €]0,7] and £k > 0
(Sect.5.1), using the results on the right side of (20) established in Lemma 3.1.1.
In Sect.5.2, we assume that k > 1, and construct strong solutions u € P, (7),
defined on an interval [0, t] C [0, T], whose size only depends on the weakest norm
of the data up in H" and ¢ in S,,0(T). This means that increasing the regularity
of the data does not decrease the life-span of the solution. As in the hyperbolic
case, these local strong solutions of problem (VKP) are constructed as the limit of
a Galerkin approximation scheme. In Sect. 5.3 we extend the local existence result
to the case k = 0, by means of a different approximation argument. Finally, in
Sect. 5.4 we briefly comment on the problems we encounter when dealing with weak
solutions of problem (VKP). In the sequel, we only establish the necessary estimates
formally, understanding that the procedure we follow can in fact be justified by
the use of Friedrichs’ mollifiers, as we did for example in part (4) of the proof of
Theorem 3.3.1.

5.1 Well-Posedness

In this section we prove the continuity estimate (1.164). Thus, form > 2 and k > 0
we assume that u, it € P,,x(7) are two solutions of problem (VKP), corresponding
to data ug, ity € H™* and ¢, ¢ € S,,4(T), defined on a common interval [0, ],
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for some © €]0, T]. We recall that we consider in H* the equivalent norm defined
in (1.16). We claim:

Theorem 5.1.1 Let k > 0. Under the above stated assumptions, there is K > 0,
depending on T and on the quantities

Ki == max {ullp,,. o) N@lp,u0} - G-
Ky := max {||l¢lls,,r)» 18]} - (5.2)

such that, for all t € [0, ], (1.164) holds; that is,
e — @l 0 < K (o = fio lti + @ = @lls,.m) - (5.3)

In particular, solutions of problem (VKP) in P, 1 (t) corresponding to the same data
as in (1.162), are unique.

Proof The function z := u — u solves the equation
z+A"72=G+ G, (5.4)

with G and G; defined in (3.57) and (3.58). We multiply both sides of this equation
(formally) in I? by z, A¥z, and A"t* 7, and add the resulting identities to (3.61), to
obtain

d
5 (1213 + [V™"z]* + 2|V The]3)
+ 2 (1} + [VEzl} + [VEA™Z3) (5.5)

= 2(G1 4+ G2+ z,2) + 2 (VKNG + Go), VE(z + A™2)) .

1)If £k > 1 and m + k > 4, we proceed almost exactly as in the proof of
Theorem 3.2.1, to obtain (3.67), (3.78) and (3.81); the only modification is the use
of a weighted Cauchy inequality in (3.67). Thus, in this case we deduce from (5.5)
that

d m m m
7 (el + V723 + 1V"2l) + 2 (Izl1F + [V*A"2)

_ . 56
< K (122 + o — @2) + (2 + 19FAm2) OO

where K3 depends on K| and K>, and x = max{2,k} if m > 3, and « = max{3, k}
if m = 2. Integrating (5.6) yields, via Gronwall’s inequality, that for all 7 € [0, ],
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t
12012, + / (22 + [V2"+2[2) s
0

r 5.7
< (3 2(0)[|2,4. + K3/0 e — @l2te dt) T |
from which (5.3) follows.
2) If k = 0, (5.5) reduces to
L3+ 19722) +2 (12 + |A"2[2)
dr (5.8)

= 2(G1+Gy+ 272,z + A"z) .
Proceeding as in (3.67) and using interpolation, we estimate

|G1 + Ga + 22 = K3 (|zllmt1 + @ — @llm+1 + |z]2)
<K 1—=1/m A 1/m _ 5.9
< K3 (lzll,, "™ 1A"zlly"™ + Nl = @llm+e + 12l2 (5.9)

< K3 (Izlln + 9 = @llmte + 12l2) + § [A"2]> .

Consequently, we deduce from (5.8) that

d
& (123 + 1V"2l3) + 2 (lzl3 + |A"23)

i . 5.10
< Ko (I3 + o = #12es) + (B + 1872y . GO

which is the analogous of (5.6) when k = 0 (and m = 2 or m = 3).
3) Finally, if m = 2 and k = 1, we proceed as in part (1) above, but estimate
|V(G1 4 G»)|, as follows. Keeping in mind that

VG, = N(V(f —f),u) + N(f — . Vu)

- - 4 (5.11)
+ N(Vf,2) + N(f,Vz) =: > Fj,
=

we proceed to estimate the first three terms of this sum in a way similar to part (3)
of the proof of Theorem 4.3.1. At first,

IFil < CIV3(f = Pla |V2uls < CIVHE = )2 |V3ul2 512
< C|V3(u+ )|y V322 |V3ul, < CK? 2|5 ;
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next, using (4.24) and interpolation,
|Fal2 < CIV(f = )l2 [Vl
< C|V3u+ )] [Vl |Vouly? V2l (5.13)
< CK? [Voul,? |zl -
Analogously,
|F3l2 < CIV12 V322 < CIV3al3 |lzlls < CK7 25 - (5.14)
Finally,
IFaly < C|V¥loo V322 < CIV3FL? V27 V32,
< C|V2il, |V3aly* |V3aly? V32l (5.15)
< CK? Vol |25
having used (1.122) with k = 1 and k = 3 to estimate
IV Fla < Vo < CIVZit)2 [V (5.16)
[Vl < C|VZily |Vl . (5.17)
Thus,

(VG1, V(A2 + )|

IA

IVGi[3 + 1 |V(A%2 + 213 (5.18)

IA

CK{ (1+Voul2 + [V7al2) [l2l13 + § [V(A%z +2)[3 -

The estimate of |VGa|, is similar to that of part (2) of the proof of Theorem 4.3.1;
recalling that S 1 (T) = C([0, T]; H’), we obtain, as in (4.54),
VG2, V(A%z + 2))]

(5.19)
< CKI+KDIzlE + llp —@lI2 + 3 IV(AZz+2)13.
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Consequently, recalling also (5.9), we conclude that

d
3 1203 + (lzlf + 1V3213) (5.20)

< K (1+ |Vouly + V3l Iz3 + lle — @112 .

which is the replacement of (5.6) when m = 2 and k = 1. By Gronwall’s inequality,
then, for all ¢ € [0, 7],

t
12012 + /0 (]2 + [V512) do

T
< (||z<o>||§ 4 /0 o —¢||§d9) (5.21)

T
exp ( [ K+ s+ dr) .
0

Since

T
/ (U + ulls + lls) dr
0

IA

T 1/2
v+ (21 [t + it o) (5:22)
0

IA

T +2JTK, ,

we readily conclude that (5.3) also holds for m = 2 and k = 1. This concludes the
proof of Theorem 5.1.1. |

Remark We explicitly point out that, in contrast to the proof of the hyperbolic well-
posedness when m = 2, k = 1 (part (5) of the proof of Theorem 4.3.1; see also the
remark at the end of Sect.4.3), in the present situation we do have that 92 f(t,) €
L%, at least for almost all 7 € [0, 7] (because f € L2(0,7;H) N C([0, 7]; H?));
indeed, we take full advantage of this fact in (5.15). o

5.2 Existence,k > 1

In this section we prove the existence part of Theorem 1.4.4 when k > 1; that is,
explicitly,

Theorem 5.2.1 Letm > 2 andk > 1, and assume that ug € H"* and ¢ € Sy (7).
There is T €]0,T], independent of k, and a unique u € Py (1), which is a local
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strong solution of problem (VKP). The value of T depends in a generally decreasing
way on the size of ||uollm+1 and ||@|ls,, r)-

Sketch of Proof

1) The uniqueness claim follows from Theorem 5.1.1. For the existence part, we
would resort to a Galerkin approximation scheme, related to a total basis W of
H"™*k and proceed to establish suitable a priori estimates on the approximants ",
which allows us to identify their weak limit, with respect to the norm of P, (7), as
the required solution of problem (VKP). Since we have already seen the details of
this procedure in the hyperbolic case (e.g., in the proof of Theorem 3.3.1), we only
establish these estimates formally, with the understanding that we have verified that
the estimates can be justified by means of a suitable regularization process. Thus,
we limit ourselves to show that it is possible to find t €]0, 7] with the property that
the norm of any solution u of problem (VKP) in P, «(7) can be bounded only in
terms of [|uo -t 1, l¢@ls,., (17> and T

2) We start by establishing lower order a priori estimates on u, u, and f. We first
multiply Eq. (20), that is, again,

uy+ A"u = N, u™ D) + NV, u), (5.23)
in L2 by 2u, to obtain
d o m,12 _ (m—1) (m—1)
d—t|u|2+2|V ul; =2(N(f,u )+ N(p JU), u) . (5.24)
Recalling (12), we see that

(N D) u) = (M(u).f) = (— A"f.f) = —|V"f]3: (5.25)

thus, we proceed from (5.24) with

d -
pr Jul3 +2[V"ul3 + 2|V"f3 < 2[{N (9" ™V, ). u)|

IA

CIV2pl3, " [Vulow [Vuls

IA

CIV" o3~ V" ul2 | Vuly (5.26)

IA

—1 1+1 1-1
Cllllmd 19" uly ™" ™

IA

2 2 2
Cliolli lulz + 1V"uls .

Consequently,

d
3 [+ IV ulz + V1 < Cllpl luls (527)
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and we conclude, via Gronwall’s inequality, that

uel®0,T;L%) N L2, T;H™), feL*0,T;H™). (5.28)
We recall that estimate (5.27) would actually be established for the Galerkin approx-
imants #", so that (5.28) has to be understood in the sense that these approximants
would be in a bounded set of the spaces in (5.28). Similar considerations apply in

the sequel, and we do not return to this point. Next, we multiply (5.23) in L? by 2u,,
to obtain

d
2 g} + 5 IV™ul2 = 2(N(f, u™ V) + NV u), u,) . (5.29)
Acting as in (2.25), we see that

(m—1) 1d me(2 .

2(N(f,u ) us) = —— — |V"f] (5.30)
m dr

thus, recalling (2.29) and (2.31), we deduce from (5.29) that
2 i v 2 1 A\ 2 <C 2(m—1) A\ 2 531
lurl3 + dr (| ul; + m| f|2) = ||§0||m+,( |V™ul . (5.3

Since uy € H"t* < H™ and, by (2.34), f(0) € H", we conclude from (5.31), via
Gronwall’s inequality again, that

u € L2(0,T;L%), uel®0,T;H"), feL®0,T;:H"). (5.32)

3) We proceed with the higher order a priori estimates when k = 1. We
multiply (5.23) in L2 by A(u; + A™u), to obtain

d
SV} + Vil + VA"
(5.33)
= (VIN( . u"™ D) + N(@" V. w), V(u, + A"u)) .
By Lemma 3.1.1, if m > 3 we can estimate
[VN(f ™ D)5 < C[V™ulg=2 |V +!
(5.34)

< CO Ivm+lu|3n+l ,
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where, here and in the sequel, Cy denotes different constants depending only on the
bound on | V"u|, implicit in (5.32). If instead m = 2, by (3.2)

|[VN(f,u)|> < C|V?uly |[V*uly |V3ul,

i ' (5.35)
< Go|VPuly? |Vouly
In either case, we obtain that
VNG u™D), V(u, + A™w))|
(5.36)
< Co |V ul" Y 4+ L (IVu 3 + [VA™uf3) .
In addition, by (3.100),
VNV w2 < Cllolngy lullntr - (5.37)
Inserting (5.36) and (5.37) into (5.33), and adding (5.27), we obtain that
d 2 1 \V/ 2 VA" 2
d_t ||“||m+1 +3 (| “t|2 + “|2) (5.38)

2(m+1
< Colul2 Y + Coi ull2y,

where C,; = C(II(leé’Zl(T) + 1) (compare to (3.101)). Inequality (5.38) is of
Bernoulli type for the function

t
g = u@)|2 4 + %/0 (Va3 + [VA™ul3) db ; (5.39)

thus, acting as in part (2.2) of the proof of Theorem 3.3.1, we can deduce from (5.38)
that

ue L0, t; H"Y N L20, r; H* Y, u; € L*(0,7; HY (5.40)

for some t €]0, T] depending only on g(0) = ||uo||fn+1 and Cy ;.
4) We now consider the general case k > 2. As in (5.33), we multiply (5.23) in L?
by A*(u; + A™u), to obtain
d Cmir 2 k, |2 kam, (2
&W uly + [Viuly + [VEA™ul3

(5.41)
= (VKN u D) + N(™ Y u)), VEu, + A™u)) .
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Since m + k > 4, by Lemma 3.1.1 we can estimate

IVEN(f D)o < C V" uly ™2 [V uly [Vl
(5.42)
< Cr [Vl

where C; depends on Cy and on the bound on | V" *!u|, implicit in (5.40). Likewise,
as in (5.37),

IVEN(@™ D, )]s < C ok Nullms - (5.43)
with k = max{2,k} if m > 3, and k = max{3,k} if m = 2. Thus, we deduce
from (5.41), added to (5.27), that

d
3 1l + 5 (95l + [VEA™UE) < (€1 + Co) g (5.:44)

with, now, Cy = C ||<p||§l’:‘k(T). Integration of (5.44) allows us to conclude, via
Gronwall’s inequality, that

ue L0, t; H"™) 0 L0, r; H") . u, € L*(0, 7; HY) (5.45)

with 7 as in (5.40) (and, thus, depending only on ||ug||,n+1 and C ).

5) As remarked in (1.161), (5.45) implies, by the trace theorem, that u €
C([0, t]; H™**); moreover, by Lemma 1.3.2, we deduce that f € L>®(0, t; H"t¥) n
L2(0, 7; H*"**). In addition, from (3.118) we see that f € C([0, t]; H"); hence,
f € Cpw ([0, T]; H™F), so that the requirements of (1.163) hold. This allows us to
conclude the (formal) proof of Theorem 5.2.1. O

5.3 Existence,k =0

In this section we prove the existence part of Theorem 1.4.4 when k = 0; that is,
explicitly,

Theorem 5.3.1 Let m > 2, and assume that uy € H™ and ¢ € Spo(T) =
C([0, T]; H™), i := max{5,m + 2}. There is t €0, T], and a unique u € Py, (1),
which is a local strong solution of problem (VKP). The value of t depends in a
generally decreasing way on the size of ||ug||m and ||@|ls,,o(r)-

Proof
1) Before starting the proof of Theorem 5.3.1, we remark that when k£ = 0 the
argument presented in the previous section can be followed only in part, to construct
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a solution u of problem (VKP) in the space
{u € Cow([0.T; H™) | u, € L*(0,T; L)} . (5.46)

Note that this space is larger than P, o(T); however, we will see in a moment that u
will be in P, o(T) if the data up and ¢ are sufficiently small. To clarify these claims,
we first note that (5.32) still holds; as a consequence, u € C([0, T]; L?), as follows
from the Lipschitz estimate

t
/ |us| 2 dO
to

Hence, by part (1) of Proposition 1.4.1, u € Cuw ([0, T]; H™), as stated in (5.46).
The difficulty we encounter when £ = 0 is that we are not able to establish
estimate (5.44), unless the size of the data is sufficiently small. Indeed, we see
from (5.41) for k = 0 that the issue is the estimate of the product

lu(t) — u(to)]2 < < |t =10l Nl 2oirz) - (5.47)

(N(F, u™ D), u, + A™u) . (5.48)

While we were able to deal with the first term (N(f, u""~), u;) in (5.30), as far as
we can tell we can only estimate the second term (N(f, u™ "), A™u) in terms of
|A™ul3 as follows. For p and g € [2, oo such that 5 + '”T_l = %, Holder’s inequality

yields
IN(F ™ D)5 < IV, [V2ulr " (5.49)

By the Gagliardo-Nirenberg inequality, and (1.120) or (1.121) for k = m, we can
further estimate

IV2fl, < CIV"FIS IV"f137% < C IV uly ™ |V ul§ (5.50)
with 117 = % - %a. Analogously,
IV2ul, < C|V"uly " |V¥u)f (5.51)
with }1 = L _ 1 B. Putting (5.50) and (5.51) into (5.49) yields the estimate

INCE, u™ D), < C V" ul" 7 |V (5.52)

with y := o + (m — 1) 8. But the relations between p, ¢, & and § imply that y = 1;
hence, (5.52) only allows us to deduce that

(NG, ™ D), Amu)| < CRE™ ™V | A™u)? (5.53)
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and we can only absorb this term into the left side of (5.41) for k = 0if C Rg(m_l) <
1. As we know from (5.31), the size of Ry is determined by the norm of uy in H”
and of ¢ in S, (7); this explains why u € P,,o(T) if the data are sufficiently small.
2) For data ug and ¢ of arbitrary size, we follow a different method, outlined in [6,
Theorem 2.1]. We shall need the following result, which we prove at the end of this
section.

Lemma 5.3.1 Assume that problem (VKP) has a solution u € P, o(t), for some
T €10, T), corresponding to data uy € H" and ¢ € S,,o(T). If uy € H"*', then
u € Pp.1(t) (that is, explicitly, u is defined on the same interval [0, t]). In addition,
there is a constant Ky, depending only on the norms of u in P, 0(t) and ¢ in S, o(T),
such that for all t € [0, 7],

t
(D) 171 +/0 (IVA™ul3 + |Vuyl3) d6 < Ko [luoll7 4, - (5.54)

Our procedure is based on an approximation argument involving smoother solu-
tions, whose convergence on a common interval [0, ] is controlled by the well-
posedness estimate (5.3) for k = 0. More precisely, we note that the constant K
appearing in the estimate

lu =il p,, o) < K (luo = itollm + Il = @lls,.01)) (5.55)

depends continuously on the quantities K; and K, defined in (5.1) and (5.2) with
k = 0. In fact, recalling the proof of Theorem 5.1.1, we can write

K =T ([ullpocy N@l e, 1€lsmom: 181smom) - (5.56)

for a suitable continuous function I' : (Rx¢)* — Rx, separately increasing with
respect to each of its four variables.

3) If up = 0, the function u = 0 is in Pp,0(7) and is the only solution to problem
(VKP); thus, there is nothing more to prove. Thus, we assume that uy # 0, set
R := 4| |up||,m, and define

h(R) :=T (3R, 2R, [¢lls,0s €l500(m) - (5.57)
with T" as in (5.56). We fix then y €]0, 1] such that

o]l m if ¢=0,
0<y<? ' (5.58)
min {{|uolln. ¢]ls,on} if @ #0.

as well as

2yh(R) <R(1-y), (5.59)
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and choose a sequence (u),>0 C H™*! such that
lug — uollm < yrH (5.60)

for all n > 0. Note that (5.58) and (5.60) imply that u; # O for all n > 0. Keeping in
mind that, by (1.137), S;,,.0(T) = Sp.1(T) for all m > 2, we resort to Theorem 5.2.1,
with k = 1, to determine local solutions u" € P,, 1(t,) of problem (VKP), for some
7, €10, T], corresponding to the data uj and ¢. Since [|ugj|u+1 — 400 asn — oo,
it follows that, in general, t, — 0; however, we will show that each u" can be
extended to a common interval [0, 7] € [0, 7], with u" € P,,1(r). Denoting this
extension again by u", we also show that " satisfies the uniform bound

417,00y < 2R = 8 [luo]lm - (5.61)
By Lemma 5.3.1, (5.61) implies that u" € P,, 1 () (that is, again, each " is defined
on the same interval [0, 7]); then, we will obtain the desired local solution of problem
(VKP), corresponding to the original data 1, and ¢, as the weak limit, in P,,(7), of
a subsequence of (¢"),>0.
4) We proceed to determine 7. Given the first initial value ug € H™!, satisfy-
ing (5.60) for n = 0, consider the corresponding local solution #° € P, ;(zo) of
problem (VKP). Since the function
[0, 7] 3¢ = [lu’llp,00 (5.62)
is continuous and non-decreasing, there is 7 € ]0, o] such that
”uO”Pm.o(r) <2 ||M0||Pm.()(0) =2 ””8”m . (5.63)
By (5.58) and (5.60),
lugllm < 11 — wollm + Nttollm < ¥ + lttollm < 2 [0l : (5.64)
thus, from (5.63) and (5.64),

40P, 0c) < 4 llu0llm = R . (5.65)

Note that v depends on [|u)|n+1; however, this value of t will remain fixed
throughout the rest of our argument.
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5) We now show that, if 7, < 7, then «" can be extended to [0, 7], with " € P, ()
and satisfying (5.61). To this end, we first deduce from (5.58) and (5.60) that, for all
j 2 07

16Ol = Nt} Il < 11y = tto L + [0 ]l
<Y+ ol < v + lluollm (5.66)

< 2 |luollm = 5 R.

1
2

We proceed then by induction on n, repeatedly using the continuity estimate (5.55).
For n = 0, we already know that u° € P,,;(7), and (5.61) follows from (5.65). We
fix then n > 0, assume that foreachj = 0, ... ,n, W can be extended to [0, 7],
with & € P,,.1(t) and satisfying (5.61), and proceed to prove the same for u"*!. If
it were not possible to extend u" ! to a solution x"*! € P, |(r) satisfying (5.61),
there would be 7).+ €]t,+1, 7] such that u"*! € P, (¢) for all t € [0, T,,+1[, but

lim [|u" | p,, 00 = +00. (5.67)

t_)Tn-‘rl
But then, (5.66) for j = n + 1 implies that there is 8 € ]0, T,,+[ such that
"M 1,000 = 3R (5.68)

On the other hand, since 8 < T,+; < 7, the induction assumption (5.61) implies
that, for0 < k <n,

I (17,06 < 1P, 000 < 2R (5.69)

We now refer to estimate (5.55), on the interval [0, 8], with ¢ = ¢ and u, i, ug and
iio replaced, respectively, by u¥, u*~!, uf and u8™!. For 1 <k <n + 1, we set

Cr:= T (1l po@)s 16 1Poo@)s €150 1€lls,0m) - (5.70)

with I as in (5.56). Because of (5.68) and (5.69), it follows that C; < h(R); thus,
we deduce from (5.55) and (5.60) that, for 1 <k <n+1,

[ — " p, 00 < hR) ([l — ug " lm)
< h(R) (|l — ollm + lluf™" — uollm) (5.71)

<R + 5 <2n(R) y*.
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Since 6 < t, by (5.65) it follows that

||M0||7>m_0(9) =< ||MO||7>,”,0(T) <R; (5.72)
thus, by (5.59),
n+1
1" 1,000 < D N = w00 + 141,000
k=1
n+1
<2h@®R) Y _v* + 116,00 (5.73)
k=1

gzh(R)ILJrR <2R,
—y

thereby obtaining a contradiction with (5.68). Consequently, also #"t! can be

extended to [0, 7], with "*! € P, 1(r) by Lemma 5.3.1. In addition, replacing
0 with 7 in (5.73) shows that i *! satisfies (5.61).

6) As we have seen, all the functions u" are defined on the common interval
[0, 7], with u" € P,.1(t), and satisfy the uniform estimate (5.61). In particular,
the sequence (u"),>o is bounded in P, (7). The rest of the argument proceeds in
a way analogous to the proof of Theorem 2.1.1 on the weak solutions of problem
(VKH); for convenience, we recall the main steps of the argument. By Lemma 1.3.2,
it follows that the sequence (f"),>o is bounded in L*°(0, r;I:I’") N L?(0, r;I:Izm);
thus, there are u € P,,o(7) and f € L>(0, t;I:Im) N L*(0, r;I:Izm) such that

W' —>u weakly in  L*(0, t; H*™) , (5.74)
ur — weakly in L2(O, r;LZ) , (5.75)
" >f weakly in ~ L*(0, 7; H*™) . (5.76)

By compactness (part (4) of Proposition 1.4.1), it follows from (5.74) and (5.75)
that

W' —u strongly in LZ(O,I;HZ”H); 5.77)

loc

in turn, by the trace theorem (part (3) of Proposition 1.4.1),

W' —u in C([0,7]; H"T1). (5.78)

loc



5.3 Existence, k =0 115

One shows then that, as a consequence of (5.74), ..., (5.78),
M@u") — M(u) in L*0,7t;LD), (5.79)
with p := 2’721—’21 Indeed, recalling the decomposition (2.50),
T m T
/O IM(u") —M@)pdt < C ) /O IN; (", )] dr . (5.80)
j=1

Let Q C R?" be an arbitrary bounded domain. Recalling that P, o(t) <>
C([0, t]; H™), by (5.61) we can estimate

IN;" )|y < CIV2U [0 V2ull VA" — )| 2nq)
< IV IVl VT U — W)l ) (5.81)
< C (ZR)m_l ||Mn — M||Hm+1(Q) .

From this it follows that
/ IM(u") — M(u)|}p ) dt < CRY / " = w7 @4 (5.82)
0 0

so that the convergence claim (5.79) follows from (5.77). Together with (5.76), (5.79)
implies that f solves (12) (as an identity in LZ(O, T; L?)). By Lemma 1.3.2, (5.77)
and (5.78) also imply that

= f  in LX0.T:Hp; (5.83)

loc

together with (5.77) and (5.78), (5.83) allows us to proceed as in the proof of (5.79),
and show that

N, @)Dy — N(f,u™ D)y in 20,700 . (5.84)
In turn, since 1 < p < 2, (5.74) implies that
A"" — A™u  weaklyin L*(0,7;L)), (5.85)
so that, by (5.84),

W' — — A"u+ N u™ ) + N™ ™V, u) (5.86)

weakly in L*(0, t;LfOC) as well. Comparing this to (5.75), we conclude that u
satisfies Eq.(20) (again as an identity in L?(0, T; L?)). In addition, u satisfies the
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initial condition (21), because by (5.60), u"(0) = uy — up in H™, and, by (5.78),

u"(0) — u(0) in Hl’gc_l. This ends the proof of Theorem 5.3.1, under the reservation

that Lemma 5.3.1 holds.
7) To prove Lemma 5.3.1, we refer to (5.33). Using interpolation, it follows
from (5.34) that, if m > 3,
[VN(Fu™ D)2 < CIV"uly 2 V"t
< CIV™uly IV uly (IV™uly [V*"uly)  (5.87)

= CIV"ul3"= [Vl |Vl

From the first inequality of (5.35), we see that (5.87) also holds if m = 2.
Consequently, we obtain from (5.33) and (5.37) that

d m m
— V" uly + 3 (IVuil3 + [VA™u]3)

dr (5.88)

< (Co |V*ul} + Cy ) |ull?; -

Adding this to (5.27) and (5.31), and keeping in mind that C,; = C, 0 because
Sma(T) = Spo(T), we deduce that

d
3 el + 5 (lallf + 1V A™ul3) 5.89)
= (Co|V*"ul3 + Coo)lullsy, -

By Gronwall’s inequality, and recalling that u € P,o(zr) C L*(0,7; H*"), we
further obtain that, for all 7 € [0, ],

1 t
O+ 5 [l + 17 473 06
< |luoll 4, exp (co / V¥ ul3d6 + Cpo T) (5.90)
0
< ||M0||,2,,+1 exp (C% + Cy0 T) .

Thus, (5.54) follows. This concludes the proof of Lemma 5.3.1 and, therefore, that
of Theorem 5.3.1. O

5.4 Weak Solutions

Weak solutions to problem (VKP) in a scale of spaces analogous to the one we
considered for problem (VKH) would correspond to negative values of k in (1.159),
more precisely to —m < k < 0. That is, renaming the index k in (1.159) by changing
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itinto m + k, for 0 < k < m, we would look for solutions in the space
Qui(r) :={u e L*(0, t; H"*) | u, € L*(0,1; H™)} | (5.91)

for some 7 €]0, T], corresponding to data uy € H* (which makes sense because
Qux(T) < C([0,T); H*)), and ¢ € C([0, T]; H"*3). But if problem (VKP) did
have a solution u € Q,,x(7), then from Eq. (5.23) it would follow that, necessarily,

NG, u™ V) = u, + A"u— N(p™ ™V u) e L*(0, r; H*™), (5.92)

so that Eq. (5.23) would hold in H*~™ for almost all ¢ € [0, z]. However, the nature
of the nonlinearity u +— N(f(u), u""~") is such that it is not possible to guarantee
that N(f, u"=D) € L*(0, t; H*™) if u € Q(t) only. Indeed, as far as we can tell, the
best we can do is to use (1.79) of Lemma 1.2.2, together with (1.117) and (1.121),
to obtain the estimate

”N(fv M(m_l)) ”k—m

IA

mpe1—1/m m 1/m
CIvfs i vmtke Y

. |Vmu|(2m—1)(l_l/m) |Vm+ku|(2m_1)/m

C IV uly =" |V ul i~ v 3 (5.93)

IA

. |Vmu|;n—2+l/m |Vm+ku|é—l/m

= C|V"ul3" " V"),
Since k < m, we still need to interpolate, and proceed with

”N(fv Mm_l)”k—m
< C Ivkulg(m_l)k/m Ivm+ku|é+2(m_l)(l_k/m) (5.94)

= C |Vku|§k(1_l/m) |Vm+ku|§m—l—2k(l_l/m)

(note that for k = m, (5.94) coincides with the previously obtained estimate (5.52)).
But since the exponent of |V *u|, in (5.94) is larger than 1, we can proceed no
further.

55 TheCasem =2,k=0

As we have mentioned in part 6.2 of sct. 1.4 of Chap. 1, whenm = 2 and k = 0 we
can establish the existence of a weak solution of problem (VKP) in a space which is
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larger than Q; o(7'); more precisely, in the space
Rao(T) :={ueL*(0,T;H*) | u, € L'(0,.T;H?)} . (5.95)

On the other hand, the question of the existence of weak solutions of this kind, i.e.
in the space

Rouo(T) :={u € L*(0.T;H") | u, € L'(0,T;H™)} (5.96)

for m > 2, as well as their uniqueness for m > 2, remains open.
We proceed to prove Theorem 1.4.5; for simplicity, we assume that ¢ = 0. Thus,
we claim:

Theorem 5.5.1 Let m = 2, and uy € L?. There exists u € Ryo(T), with f €
L*(0, T; H?), which is a weak global solution to problem (VKP), in the sense that
u(0) = uy, and the identities

u, + A%u = N(f, u) (5.97)
A*f = —N(u,u) (5.98)

hold in H™2 for almost all t € [0,T). In addition, u; € L*(0,T;H™) and u €
Cow ([0, T]; L?).

Sketch of Proof
1) We first note that the right sides of (5.97) and (5.98) make sense in L' (0, T; H™?).
This follows from (1.75) of Lemma 1.2.2, which yields that

T T
/uMﬁmumsc/|mewwu (5.99)
0 0

T T
[ Welza=c [ pugar (5.100)
0 0

In addition, the initial condition #(0) = uy makes sense, because the fact that u €
Cow ([0, T]; L?) implies that u(0) is well-defined in L.

2) If up = 0, then u = 0 is a weak solution of problem (VKP), and there is nothing
more to prove. Thus, we assume that uy # 0. We choose a sequence (u}),>1 C H>,
such that

uy —uy  in L*, (5.101)
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and for each r > 1 we consider problem (VKP) with initial data uj; that is, we seek
a function u” € R, ¢(T), solution of the problem

u, + A" =N "), (5.102)
NfT=—-N@' ), (5.103)
u'(0) = uy . (5.104)

The existence of such solution can be established by means of a Galerkin approxi-
mation scheme, as in the proof of Theorem 2.1.1, based on a total basis W = (w})j>1
of H?. Thus, we look for solutions u™ : [0,7] — W, := span (w, ... ,w,) of the
approximated system

u" + A*u™ = P, N(f™,u™), (5.105)
AY™ = —N@W™, u™), (5.106)
u™(0) = uf', (5.107)

where P, : [ — W, is the orthogonal projection defined in (2.8), and uy’ € W,,
with ug’ — ug in H?. The existence of such an approximating sequence (#'™),>1
can be established along the same lines presented in part (1) of the proof of
Theorem 2.1.1; we refer to Sect.2.1 for all details, and limit ourselves here to
proceed from the a priori estimate (5.27), which in the case m = 2 reads

d
5 ™3 4+ 2| Au™3 + 2 |Af™3 = 0. (5.108)

Because of (5.101), there is a constant M, > 0, independent of ¢,, n, and, crucially,
of r, such that forall r,n > 1,and ¢ € [0, t,],

t
lu™(t)|3 + 2/ (I1Au™5 + |Af™3) dt < Mj . (5.109)
0

We remark that a similar estimate would hold for arbitrary m > 2.
3) Next, we multiply (5.105) in L? by 2u!". Proceeding as in (2.27), we obtain

d
2|3 + 5 (1au™)3 + L 1Af™3) =0, (5.110)
from which, for all ¢ € [0, 1,],

t
2/0 lu" 1546 + [Au™ ()3 + 5 |AF™ (D13
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|AU™(0)[3 + 3 1Af™(0)]3 (5.111)

IA

|Au™(0)]3 + C|Au™(0)|5 < M?*,

where, by (5.101), the constant M, is independent of #, and n, but may diverge as
r — 00. From (5.109) and (5.111) we deduce that there are functions «” and f” such
that, up to subsequences,

Ut > in  L%(0,T;H*) weak*, (5.112)
U — ul in  L*(0,T;L%) weak, (5.113)
™ —fr in  L®(0,T:H*) weak* . (5.114)

Proceeding as in the proof of Theorem 2.1.1, we can show that «” is the desired
solution of problem (5.102)+(5.103)+(5.104). We omit the details, but mention
explicitly that Propositions 2.1.2 and 2.1.3 can be repeated verbatim (for m = 2),
with #" and f” replaced by «” and f™.

4) Taking liminf in (5.109) as n — oo, we deduce that there exist functions u and f,
such that, up to subsequences,

W —u in L*0,T;H?) weak, (5.115)
W —u in  L®(0,T;L* weak*, (5.116)
=i in L*0,T;H?) weak. (5.117)

We now show that the sequences (N(u", u")),>1 and (N(f", u")),>1 are bounded in
L?(0, T; H™>). To this end, let ¢ € L?>(0, T; H’). Then, recalling (2.43) and (5.109),

T T
[ (NG ). £ di = / (N ). ) dr
0 0

IA

T
c / IV oo [V20 ]2 || (5.118)
0

IA

T
CMo/ 1E1s 1w llzde < € MG 820,715 -
0

This proves the asserted boundedness of (N(u", u")),>1, with

IN@", u")l 2 0,7:0-5) < cM;. (5.119)
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The same argument applies to the sequence (N(f", u")),>1. From this, it follows that
there are distributions 4 and v € L?(0, T; H~) such that, up to subsequences,

NW ' u') — i in L®0,T;H°) weak*, (5.120)
N u') — v in L®0,T;H>) weak*. (5.121)

Moreover, (5.115) implies that sequence (Au”),> is a bounded in L*(0, T; H™?);
hence, from Eq.(5.102) we deduce that also the sequence (u]),>; is bounded in
L*(0,T; H™), so that

u —u, in L*(0,T;H°) weak. (5.122)

Since u € L*(0, T; H?) and u, € L>(0, T; H>), part (3) of Proposition 1.4.1 implies
that u € C([0,T];H3/?)"; since also u € L>(0,T;L?), part (1) of the same
proposition implies that u € Cpy ([0, T]; L?), as claimed. In particular, the map
t — |u(?)|lo is bounded. By the compactness and trace theorems, then, (5.115)
and (5.122) imply that

W —u in L0, T;H>®) and C([0,T);H.?), (5.123)

loc loc

for0 < & < 1 (84 3) < 5 (recall our notation for the spaces H,.?, introduced before
the statement of Proposition 2.1.2).
5) We now show that

N, u") — N(u,u) and N, u") — N(f,u) (5.124)

in the larger space L*/%(0,T; H;2). Let @ C R* be a bounded domain, and ¢ €
L3(0, T; H®) such that supp(z(t,-)) C 2 for almost all # € [0, T]. Then, at first,

T
A, = / (M) — M), £)] di
0
T
=/0 (N + u,u” —u), 5)|dt (5.125)

T
:/ N, u" 4+ u),u” —u)|dr.
0

IBecause [HZ,H_S]I/Z = H3/2; see, e.g., Lions-Magenes, [22, Theorem 9.6, Sect. 9.3, Chap. 1].
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Hence,

T
A/ < C/ V2 loo llu” + ull2 1" — ull 20 dt
0

T 3 T 3
sc(/ ||z||§dr) (/ ||u’+u||%dt)
0 0
. )
(/ IIM’—MIIEZ(Q)dt) (5.126)
0

< Cl¢llporms) v+ ull20.7:m2)

r 2/3 r 1/3
) ”M - u||L°°(0,T;L2) ”M - u”LZ(O’T;leoc)
<M —u)'?? -0,

L2(0.T3L2 )

because of the first of (5.123), with § = 2. This shows the first claim of (5.124). To
show the second, we start by decomposing

T T
[ (NG i) — N(F ). €) di = / NG — ). 2) dr
0 0

T (5.127)
+ [ g -5y =B, 4D,
0
For B,, acting as in (5.126) we can estimate
1B/ < Cl¢ll30,m:m5 W l20.m:02)
r 2/3 r 1/3
=l g gy 1 =l oy e (5128
5/3 \(.r 1/3 .
< CM = ull gy o
hence, B, — 0. For D,, we note that the linear functional
B T
L*(0,T;H) > h — / (N(h,u), ) dt (5.129)
0

is continuous, because

T T
/ (N (o). £ di = / (N ). ) di
0 0
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T
= C/ |V2¢|oo |V2hI5 |ul> dt (5.130)
0

T
< M, /0 els Al dr

Thus, also D, — 0, because of (5.117). In conclusion, comparing (5.124)
with (5.120) and (5.121) yields that

N@W  u") — N@u,u) in L%®°0,T;H) weak*, (5.131)
N(f",u") = N(f,u) in L%°0,T;H°) weak™*. (5.132)
6) From (5.131) and (5.132) we can then deduce in the usual way that
A’ =—N@u,u) in LY 0, T:H?), (5.133)
as well as
w=—Au+N(,u) in L'(O0,T;H?). (5.134)

To conclude, we note that the second of (5.123) implies that u"(0) = u; — u(0) in
H_!; comparing this to (5.101), we obtain that u(0) = u. We can thus complete the

loc *

proof of Theorem 5.5.1. a



Chapter 6
The Hardy Space H' and the Case m = 1

In this chapter we first review a number of results on the regularity of the functions
N = N(uy, ... ,u,) and f = f(u) in the framework of the Hardy space #!, and
then use these results to prove the well-posedness of the von Karman equations (3)
and (4) in R?.

6.1 The Space #!

There are several equivalent definitions of the Hardy space 7' on R" (see, e.g.,
Fefferman and Stein, [17], or Coifman and Meyer, [13]); for our purposes, we report
the following two. The first one refers to the Friedrichs’ regularizations f* := p* xf
of a function f, introduced in (1.172). Given f € L' we set

fT@ = swp ") = sup [0 xf1)|.  xeRY, 6.1)
a>0 a>0
and define

H':={felL' | frelL'}. (6.2)

Then, ! is a Banach space with respect to the norm
Fllze = Uf1 + L (6.3)
The second definition of ! refers to the so-called Riesz potentials, defined by
means of the Fourier transform F. Given f € L' and j € {1, ... ,N} (N being
© Springer International Publishing Switzerland 2015 125
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the dimension of space), the j-th Riesz transform of f is defined by the identity

&
€]

(see Stein, [26, Chap. 3, Sect. 1]). We define

Rf®) =1L, £#0, 12=-1 (6.4)

Hl::{fELl |R]fELl V‘]:L’N}’ (65)
and this is again a Banach space with respect to the norm
N
Ifllgr = Ifl1 + Z IR f]1 - (6.6)
Jj=1

The definitions (6.2) and (6.5) of H! are topologically equivalent; H' N L? is dense
in#H!, andforallj=1, ... N,

R € L(H' H") — L(H'. L") (6.7)

(see, e.g., Stein and Weiss, [28], or Fefferman and Stein, [17, Theorems 3 and 4],
with K = K; and (e.g.) y = 3, recalling that R; can be defined via convolution with
the kernel

Ki(x) := Cy % . x#£0, (6.8)

Cy a suitable constant depending only on N, to conclude that the operator '

Ri(f) = K; *f is bounded from ' into H'). O
1. We start with the case m = 1; thus, the space dimension is 2.

Lemma 6.1.1 Letm = 1, and uy, u» € H. Then, N(uy, us) € H', and
IN(u1, uz) |10 < C|V2uyl2 |Vuals (6.9)

with C independent of u; and u.

Proof
1) Since 0?u; and 8%u, € L2, it follows that N(u;, uy) € L!, with

IN(ui, u2)[1 < C|V:ui]2 |VZua . (6.10)
When m = 1, definition (8) reads

N(uy,up) = 8 2 Viluy V2uy ; (6.11)
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abbreviating v/! := V/'u; and v? := V/2u,, we rewrite (6.11) as
N(uy,up) = 5;1‘]’22 Vi, v/ V,-zvi2 . (6.12)

We follow Chuesov and Lasiecka [9, Appendix A]. For x € R2, o >0andv € L',
we denote by

* 1
dy = ——— d 6.13
/B(x,a)v(y) Y |B(x,c)l B(x,a)v(y) Y ©19)

the average of v over the ball B(x, o) of center x and radius &, and define
*

U(x, a;y) == v(y) —/ v(z)dz. (6.14)

B(x,«)

We abbreviate J := N(uy, us), v(x,a;y) = 0(y), and & = vf\’fr; note that 0,0 = d,v.
2) Integrating by parts once, we compute that

7 = «%/m POZ) 813 Vv 0) ek ) dy
X0

(6.15)
= / Viup (53°) 8113 91 0) Vi 92 () dy
B(x,«)
By Holder’s inequality,
7% ()]
_ 1/4 . 3/4
SZD%(/ Ifﬂ‘l“dy) (/ IVﬁ’2|4/3dy) (6.16)
i BE Bxa)
* . 1/4 * ' 3/4
<Y o([ wra) ([ weere)
i e ()

By the Poincaré-Sobolev inequality on balls, relative to the imbedding
W1,4/3 s L4

‘ 1/4 ' 3/4
(/ ba |4dy) <cC (/ Vi |+3 dy) , (6.17)
B(x,«) B(x,«)

with C independent of « (as follows by homogeneity; for an explicit argument, see,
e.g. the proofs of the Sobolev and Poincaré inequalities from Lieb and Loss, [20,
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Theorem 8.12] and Evans, [14, Theorem 2, Sect.5.8.1]). From (6.17) we deduce

that
* ' 1/4 * . 3/4
(/ |f)“|4dy) §Ca(/ |V17‘|4/3dy) : (6.18)
B(x,a) B(x,a)

replacing this into (6.16), we obtain that

2 * ) 3/4
=Y T ( [ (V[ dy)

i r=1 (r.a)

) * 3/4
<CTl ( / V2,43 dy) :
r=1 B(x,«)

3) We now recall from Stein, [26, Chap. 1, Sect. 1] the definition of the maximal
function M(f) of an integrable function f, that is

(6.19)

*

[M(f)](x) := sup : [F»)Idy. (6.20)

a>0 JB(x,a

If p €]1, 00], the operator f — M(f) defined in (6.20) is continuous from [? into
itself; that is, M(f) € L if f € [P, and

M)l < Colflp - (6.21)
with C, independent of f. Setting then, for r = 1, 2,
M, (x) == M (|V?u,*?) x), xeR?, (6.22)
we deduce from (6.19) that
()] < € (M1 ()Y (M ()Y (6.23)
Keeping (6.1) in mind, we deduce from (6.23) that

J*(x) = sup [J*(x)| < C (M1 (%)) *(Ma(x))*/* . (6.24)
a>0

Now, V, ¥t = Vvl = V{llul € L2, because u; € H?; thus, |VZu|*? e L3/
By (6.21), it follows that also M; € [*/2, so that (M1)3/4 € [?. The same is true
for (M2)3/ 4. hence, we deduce from (6.24) that J* € L', as desired. In addition,
from (6.24),

3/4

V< C|M; 3/4

M2 3/4

3/2

‘2‘ |2 = C‘Ml ‘Ml :721
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(6.25)

3/4 3/4
_ C‘ |V2u1|4/3 ‘ ‘ |V2u2|4/3 ‘
3/2

3/2
= C|Vu|2|Vuaa
having used (6.21). Together with (6.10), and recalling (6.3), (6.25) yields that

IN(ur, u2)ll3r < C(IN(ui,uz)|1 + [N (1, u2)|1)

(6.26)
< CIVui|; |Vusls,

which is (6.9). This concludes the proof of Lemma 6.1.1. O
2. We next prove

Lemma 6.1.2 Let m = 1, and f € H? be such that A*f € H'. Then, 3*f € H',
92f € L, and

182 fllz + 182 floo < C 1A 301 (6.27)

with C independent of f.

Proof Let B € N? with || = 4, thus, 85 = 0, 0; 0, 05, with h, k, r, s € {1,2}. By
means of the Fourier transform, we see that

Pf = Ry Ry R, R, (A%f) . (6.28)
Indeed, recalling (6.4) and proceeding as in Stein, [26, Chap. 3, Sect. 1.3],

[FOEOIE) = & & & & F(E)

Y
1€l 151 151 1€]
vEp 1§16 1

= — —— — — 2
= Tel Tel el e AN (6.29)

E1*F (&)

L RL Nl 2
= % Tl o T RATIE)

= ... = [F(RyRc R R(AY))](E) .

from which (6.28) follows. Since A%f € H!, (6.7) implies that 3°f € H' < L!,
with

108F11 < 10811300 < C LA |31 - (6.30)
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This proves part of (6.27). Next, by the Gagliardo-Nirenberg inequality (1.9), with
p = 1 and, therefore, the exponent § = 1 admissible,

102floo < CIVHIT V2370 < CIVH . (6.31)

Combining (6.30) and (6.31) yields (6.27). O

3. Lemmas 6.1.1 and 6.1.2 admit the following generalization to the case m > 2;
that is, to the space dimension 2m.

Lemma 6.1.3 Letm > 2, and u,, ... ,u, € H™. Then, N(ui, ..., uy) € H and
INGar, - un)llze < CTT IV w2 (6.32)
j=1
with C independent of uy, ... , uy.

Lemma 6.1.4 Letm > 2, andf € L", orf € H™, be such that A"f € H". Then,
for0 <k <2m, o“f € L** (with the understanding that f € L if k = 0). In
addition,

108 flamp < C | A"F |30 (6.33)
iff € L™, and
10 Flampe < C (Iflls + A" Fll341) (6.34)

if f € H™, with C independent of f.

The proofs of these lemmas follow along the same lines of the proofs of Lem-
mas 6.1.1 and 6.1.2; thus, we only give a sketch of their main steps.

Proof of Lemma 6.1.3 As in (6.12), we rewrite (8) as

Ny, ... o) =81 Vot LV o =2 (6.35)
with v/ := Wy, With the same notations as in the proof of Lemma 6.1.1, as

in (6.15) we obtain

T (x) = it / Vip (52) 81 m ' V,, 2 ..V, B dy (6.36)
¢ B(x.a) o
Define numbers p, ¢, r > 1 by
1 m+1 I C2m+1D(m—1) 1 2m+1

(6.37)

3

p 2m?’ q 2m? r 2m?
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Then, 5 + é = 1, so that, from (6.36), as in (6.16),

7% ()]

IA

1 1
C / y b ) (6.38)
= |v“|”dy) / Vi dy) .
Z ( B(x,a) ( B(x,a) | l—[ |

o
NFERFEFEfm k=2

Since % = 117 + ﬁ, the imbedding W' < L holds; thus, by the Poincaré-Sobolev
inequality on balls, as in (6.17),

. 1/p . 1/r
(/ |[o/t [P dy) <C (/ |V |rdy) , (6.39)
B(x,a) B(x.0)

with C independent of «. We deduce from (6.39) that

* . 1/p * . 1/r
(/ |51 P dy) <Ca (/ |V |’dy) : (6.40)
B(x,a) B(x,a)

thus, from (6.38), since |Vt | < |V,

@ < IVl lesean | T TV s - (6.41)
k=2
Since 611 = ’”T_l, Holder’s inequality yields
@] = C TNVl ey - (6.42)
k=1

which is the analogous of (6.19). The rest of the proof of Lemma 6.1.3 follows now
exactly as the proof of Lemma 6.1.1. Introducing the maximal functions

M =M (V). k=1,....m, (6.43)

we verify that |[V2u|" € L™/"; hence, M, € L™/" for each k (note that m > r), and

7@ < ] M) . (6.44)
k=1
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Thus, J* € L', and
< [ [1V2uidn < CTTIV"t4l2 (6.45)
k=1 k=1

as desired in (6.32). O
Proof of Lemma 6.1.4 1t is sufficient to prove (6.33) and (6.34) for k = 0 (i.e.,

f € L) and k = 2m (i.e., 3*"f € L'); the other cases follow by the Gagliardo-
Nirenberg inequality. Let first k = 2m, and consider B € N?" with k = |B| = 2m.
Since k is even, as in (6.28) it follows that
3f =R - R (A"). (6.46)
Then, by (6.7), &f € H! < L', and
00f 1 < 180f s < CIA"Fll3 - (6.47)
Let next k = 0, and f € L™. Then, the Gagliardo-Nirenberg inequality
floo < CIVfIi [fly ! = CIV*"fly (6.48)

holds, and (6.33) follows, via (6.47). If instead f € H", we deduce from
Lemma 1.1.1 that f € L®°, and, by (1.50) and (6.47),

floo = C(IV"fl2 + IV?"f11)
= C(Fllm + I1A"F ll3r)

(6.49)

as claimed in (6.34). O

Remarks The terms in (6.33) and (6.34) corresponding to 1 < k < m are already
estimated in (1.46), and do not require that A”f € H'. As we have noted after the
proof of Lemma 1.3.1, Lemmas 6.1.3 and 6.1.4 imply that if f solves Eq. (12), with
u € H", then f € L*. Indeed, we know that f € H™ and A"f € L'; in addition,
Lemma 6.1.3 implies that A™f € H! as well. Hence, 0?"f € L!, and f € L™,
Finally, we report the following generalization of Lemma 1.1.1 to arbitrary space
dimension N > 1 (for a proof, see, e.g., Adams and Fournier, [1, Lemma 4.15]).

Lemma 6.1.5 Let p € [1,00[, and v € I?(RN) be such that VNv € L'(RY). Then,
v e C(RY), and

sup [v@)| < C(Jv], + [VVoh) . (6.50)

xERN

with C independent of v. <&
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6.2 The Classical von Karman Equations

This concluding section is dedicated to the proof of the well-posedness of weak
solutions of the von Karman equations (3) and (4), i.e.

g + A%u = N(f(u), u) + N(¢, u) (6.51)
A*f = —N(u,u), (6.52)

in the physically relevant case m = 1; that is, when the space dimension is
d = 2. Many authors have considered Egs. (6.51) and (6.52) in a bounded domain
of R? (usually with ¢ = 0), and have established existence and uniqueness
results for weak, semi-strong and strong solutions, corresponding to different
kinds of boundary conditions, including non-linear and time-dependent ones. For
a comprehensive presentation of many of these remarkable results, we refer to
Chuesov and Lasiecka’s treatise [9], and to the literature therein. An early result
on the existence of weak solutions for an initial-boundary value problem of von
Karman type was given by Lions in [21, Chap. 1, Sect. 4]; a corresponding result on
the uniqueness and strong continuity in ¢ was later given by Favini et al., [15, 16],
who were also able to consider various kinds of nonlinear boundary conditions. We
refer to the literature cited in these papers for more results on the well-posedness of
different kinds of initial-boundary value problems.

We now return to problem (VKH) on the whole space R%. We claim:

Theorem 6.2.1 Let m = 1 and uy € H? u, € L2, ¢ € C([0,T]; H*). There is
a unique weak solution u € X,o(T) of problem (VKH). This solution depends
continuously on the data uy, u; and @, in the sense of Theorem 3.2.1; that is, if
it € Xo0(T) is the solution of problem (VKH) corresponding to data ity € H?,
ity € L* and ¢ € C([0, T); H*), there is K > 0, depending on T and on the quantities

Ki = max {||ullxy o0y il 20 ) (6.53)
K> := max {{l¢llcqorans 18lcqorus) - (6.54)
such that for all t € [0, T),
Eo(u(t) = a(n) + |u(r) — a(n)3
< K(Eo(u(0) — @(0)) + [u(0) — &(0) 3 (6.55)
+ e = 6120 110))

with Ey as in (3.91).
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Proof

1) The existence of a solution u € ), o(7T) to problem (VKH), with f €

Cow ([0, T]; H?), can be established exactly as in Theorem 2.1.1. In particular,

estimates (2.81), (2.39) and (2.60) hold, so that there is Ry > 0, depending only

on the norms of ug in H?, u; in L2, and ¢ in C([0, T); H*), such that for all ¢ € [0, T,
()3 + [V2u() 3 + V@3 < RS (6.56)

The key point of the proof of Theorem 6.2.1 lies in the fact that if m = 1, f does

enjoy the additional regularity 82 f(r) € L°°, for all € [0, T]. This is a consequence
of

Lemma 6.2.1 Letm = 1, v and w € H?, and let h be such that A%h = N, w).
Then, 3)2(h eL? N L and

18212 + 193hloo < C[l0ll2 W]z - (6.57)
2) Assuming this for now, we can proceed to show the continuity estimate (6.55),
acting as in the proof of Theorem 4.2.1. The difference z := u — u satisfies a system
similar to (4.20)+(4.21), namely
2+ A% = N(f —f.u) + N(f.z)
+ N(p —¢,u) + N(@,2) (6.58)
=Fi+F+ o + o,
having adopted the notations of (3.57) and (3.58), and
AN f—f)=—Nu+i,z). (6.59)

We wish to establish an identity analogous to (3.60), that is,

d
3 (Bo@ + [23) = 2Fi + Fa + @1 + &2 +2.3) (6.60)

and this requires the right side of (6.58) to be in [?, at least for almost all ¢ € [0,T].
By Lemma 6.2.1, (6.59) and (6.53),

IFila < C|V*(f —Floo |V?ul2
< Cllu+ il |zll2 [V?ul2 (6.61)

< CKi|z])2 -
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Analogously,
[F2l2 < C|V¥loo [V?2]2 < C a3 |V2l2 < CK7 V222, (6.62)
and, recalling that H? < [®ifd =2,
[@1]> = CIVZ(¢ = D)oo [VZul2 < CKi llg — 4., (6.63)
|®2]2 < C|V?§loo |VP2l2 < CK2 |V2ls. (6.64)

Estimates (6.61), ..., (6.64) confirm that the right side of (6.58) is indeed in L?;
thus, (6.60) holds. From this, we obtain that for all ¢ € [0, 77,

d ~

5 (Bo@ +1212) = CO + K} + K3) (Eo(@) + [215) + ¢ —@ll: (665
thus, (6.55) follows after integration of (6.65), via Gronwall’s inequality.

3) Because of (6.55), solutions in )% o(7T) are unique; thus, proceeding as in
Theorem 2.3.1 we can prove that these solutions are in &5 (7). Alternately, the
strong continuity in ¢ follows from the analogous of (6.60), that is,

d
5 (Bo) + [ul2) = 2(N(f,u) + N(p,u) + 1), (6.66)

as in part (3) of the proof of Theorem 3.3.1. Again, the fact that 32f € L% is
essential to ensure that N(f, u) € L?.

4) It remains to prove Lemma 6.2.1. Recalling that H' < L” for all p € [2, oo[, we
derive in the usual way that

|V2h|5 = (A*h,h) = (N(v,w), h) = (N(h,v),w)
< C|V?h|s |Vols [Vwla (6.67)
< C|Vh|a vz [Iwl2
from which we see that >4 € L* and
|02k, < Cllolla [Iwll2 - (6.68)

In addition, A%4 = N(v,w) € L'. By Lemma 6.1.1, A’k € H' as well; thus, by
Lemma 6.1.2, aﬁh € L°°. Then, from (6.68), and (6.27), (6.9),

031> + 182hloo < C (IV2Al2 + [[A%]5p1)

(6.69)
= Clolzlwll

which yields (6.57). This ends the proof of Lemma 6.2.1 and, therefore, that of
Theorem 6.2.1. O
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