


Probability and
Statistics

Third Edition

Murray R. Spiegel, PhD
Former Professor and Chairman of Mathematics

Rensselaer Polytechnic Institute
Hartford Graduate Center

John J. Schiller, PhD
Associate Professor of Mathematics 

Temple University

R. Alu Srinivasan, PhD
Professor of Mathematics 

Temple University

Schaum’s Outline Series

New York   Chicago   San Francisco  
Lisbon   London   Madrid   Mexico City

Milan   New Delhi   San Juan  
Seoul   Singapore   Sydney   Toronto



Copyright © 2009, 2000, 1975 by The McGraw-Hill Companies Inc. All rights reserved. Except as permitted under the United States Copyright Act of 1976,
no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written
permission of the publisher.

ISBN: 978-0-07-154426-9

MHID: 0-07-154426-7

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-154425-2, MHID: 0-07-154425-9.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names
in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in
this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. To 
contact a representative please e-mail us at bulksales@mcgraw-hill.com.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use of this work is
subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile,
disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or
any part of it without McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strict-
ly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY,
ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN
BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be
uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of
cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work.
Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that
result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall
apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.



iii

Preface to the
Third Edition

In the second edition of Probability and Statistics, which appeared in 2000, the guiding principle was to make
changes in the first edition only where necessary to bring the work in line with the emphasis on topics in con-
temporary texts. In addition to refinements throughout the text, a chapter on nonparametric statistics was added
to extend the applicability of the text without raising its level. This theme is continued in the third edition in which
the book has been reformatted and a chapter on Bayesian methods has been added. In recent years, the Bayesian
paradigm has come to enjoy increased popularity and impact in such areas as economics, environmental science,
medicine, and finance. Since Bayesian statistical analysis is highly computational, it is gaining even wider ac-
ceptance with advances in computer technology. We feel that an introduction to the basic principles of Bayesian
data analysis is therefore in order and is consistent with Professor Murray R. Spiegel’s main purpose in writing
the original text—to present a modern introduction to probability and statistics using a background of calculus.

J. SCHILLER

R. A. SRINIVASAN

Preface to the
Second Edition

The first edition of Schaum’s Probability and Statistics by Murray R. Spiegel appeared in 1975, and it has gone
through 21 printings since then. Its close cousin, Schaum’s Statistics by the same author, was described as the
clearest introduction to statistics in print by Gian-Carlo Rota in his book Indiscrete Thoughts. So it was with a
degree of reverence and some caution that we undertook this revision. Our guiding principle was to make changes
only where necessary to bring the text in line with the emphasis of topics in contemporary texts. The extensive
treatment of sets, standard introductory material in texts of the 1960s and early 1970s, is considerably reduced.
The definition of a continuous random variable is now the standard one, and more emphasis is placed on the cu-
mulative distribution function since it is a more fundamental concept than the probability density function. Also,
more emphasis is placed on the P values of hypotheses tests, since technology has made it possible to easily de-
termine these values, which provide more specific information than whether or not tests meet a prespecified
level of significance. Technology has also made it possible to eliminate logarithmic tables. A chapter on nonpara-
metric statistics has been added to extend the applicability of the text without raising its level. Some problem sets
have been trimmed, but mostly in cases that called for proofs of theorems for which no hints or help of any kind
was given. Overall we believe that the main purpose of the first edition—to present a modern introduction to prob-
ability and statistics using a background of calculus—and the features that made the first edition such a great suc-
cess have been preserved, and we hope that this edition can serve an even broader range of students.

J. SCHILLER

R. A. SRINIVASAN



Preface to the
First Edition

The important and fascinating subject of probability began in the seventeenth century through efforts of such math-
ematicians as Fermat and Pascal to answer questions concerning games of chance. It was not until the twentieth
century that a rigorous mathematical theory based on axioms, definitions, and theorems was developed. As time
progressed, probability theory found its way into many applications, not only in engineering, science, and math-
ematics but in fields ranging from actuarial science, agriculture, and business to medicine and psychology. In
many instances the applications themselves contributed to the further development of the theory.

The subject of statistics originated much earlier than probability and dealt mainly with the collection, organ-
ization, and presentation of data in tables and charts. With the advent of probability it was realized that statistics
could be used in drawing valid conclusions and making reasonable decisions on the basis of analysis of data, such
as in sampling theory and prediction or forecasting.

The purpose of this book is to present a modern introduction to probability and statistics using a background
of calculus. For convenience the book is divided into two parts. The first deals with probability (and by itself can
be used to provide an introduction to the subject), while the second deals with statistics.

The book is designed to be used either as a textbook for a formal course in probability and statistics or as a
comprehensive supplement to all current standard texts. It should also be of considerable value as a book of ref-
erence for research workers or to those interested in the field for self-study. The book can be used for a one-year
course, or by a judicious choice of topics, a one-semester course.

I am grateful to the Literary Executor of the late Sir Ronald A. Fisher, F.R.S., to Dr. Frank Yates, F.R.S., and to
Longman Group Ltd., London, for permission to use Table III from their book Statistical Tables for Biological, Agri-
cultural and Medical Research (6th edition, 1974). I also wish to take this opportunity to thank David Beckwith
for his outstanding editing and Nicola Monti for his able artwork.

M. R. SPIEGEL
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CHAPTER 12

3

Basic Probability

Random Experiments
We are all familiar with the importance of experiments in science and engineering. Experimentation is useful to
us because we can assume that if we perform certain experiments under very nearly identical conditions, we
will arrive at results that are essentially the same. In these circumstances, we are able to control the value of the
variables that affect the outcome of the experiment.

However, in some experiments, we are not able to ascertain or control the value of certain variables so that
the results will vary from one performance of the experiment to the next even though most of the conditions are
the same. These experiments are described as random. The following are some examples.

EXAMPLE 1.1 If we toss a coin, the result of the experiment is that it will either come up “tails,” symbolized by T (or 0),
or “heads,” symbolized by H (or 1), i.e., one of the elements of the set {H, T} (or {0, 1}).

EXAMPLE 1.2 If we toss a die, the result of the experiment is that it will come up with one of the numbers in the set
{1, 2, 3, 4, 5, 6}.

EXAMPLE 1.3 If we toss a coin twice, there are four results possible, as indicated by {HH, HT, TH, TT}, i.e., both
heads, heads on first and tails on second, etc.

EXAMPLE 1.4 If we are making bolts with a machine, the result of the experiment is that some may be defective.
Thus when a bolt is made, it will be a member of the set {defective, nondefective}.

EXAMPLE 1.5 If an experiment consists of measuring “lifetimes” of electric light bulbs produced by a company, then
the result of the experiment is a time t in hours that lies in some interval—say, 0 t 4000—where we assume that
no bulb lasts more than 4000 hours.

Sample Spaces
A set S that consists of all possible outcomes of a random experiment is called a sample space, and each outcome
is called a sample point. Often there will be more than one sample space that can describe outcomes of an 
experiment, but there is usually only one that will provide the most information.

EXAMPLE 1.6 If we toss a die, one sample space, or set of all possible outcomes, is given by {1, 2, 3, 4, 5, 6} while
another is {odd, even}. It is clear, however, that the latter would not be adequate to determine, for example, whether an
outcome is divisible by 3.

It is often useful to portray a sample space graphically. In such cases it is desirable to use numbers in place
of letters whenever possible.

EXAMPLE 1.7 If we toss a coin twice and use 0 to represent tails and 1 to represent heads, the sample space (see 
Example 1.3) can be portrayed by points as in Fig. 1-1 where, for example, (0, 1) represents tails on first toss and heads
on second toss, i.e., TH.
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If a sample space has a finite number of points, as in Example 1.7, it is called a finite sample space. If it has
as many points as there are natural numbers 1, 2, 3, . . . , it is called a countably infinite sample space. If it has
as many points as there are in some interval on the x axis, such as 0 x 1, it is called a noncountably infinite
sample space. A sample space that is finite or countably infinite is often called a discrete sample space, while
one that is noncountably infinite is called a nondiscrete sample space.

Events
An event is a subset A of the sample space S, i.e., it is a set of possible outcomes. If the outcome of an experi-
ment is an element of A, we say that the event A has occurred. An event consisting of a single point of S is often
called a simple or elementary event.

EXAMPLE 1.8 If we toss a coin twice, the event that only one head comes up is the subset of the sample space that
consists of points (0, 1) and (1, 0), as indicated in Fig. 1-2.

��
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Fig. 1-1

Fig. 1-2

As particular events, we have S itself, which is the sure or certain event since an element of S must occur, and
the empty set , which is called the impossible event because an element of cannot occur.

By using set operations on events in S, we can obtain other events in S. For example, if A and B are events, then

1. A B is the event “either A or B or both.” A B is called the union of A and B.
2. A B is the event “both A and B.” A B is called the intersection of A and B.
3. A is the event “not A.” A is called the complement of A.
4. A � B � A B is the event “A but not B.” In particular, A � S � A.

If the sets corresponding to events A and B are disjoint, i.e., A B � , we often say that the events are mu-
tually exclusive. This means that they cannot both occur. We say that a collection of events A1, A2, , An is mu-
tually exclusive if every pair in the collection is mutually exclusive.

EXAMPLE 1.9 Referring to the experiment of tossing a coin twice, let A be the event “at least one head occurs” and
B the event “the second toss results in a tail.” Then A � {HT, TH, HH}, B � {HT, TT }, and so we have

A � B � 5TH, HH 6Ar � 5TT 6
A > B � 5HT 6A < B � 5HT, TH, HH, TT 6 � S
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CHAPTER 1 Basic Probability 5

The Concept of Probability
In any random experiment there is always uncertainty as to whether a particular event will or will not occur. As
a measure of the chance, or probability, with which we can expect the event to occur, it is convenient to assign
a number between 0 and 1. If we are sure or certain that the event will occur, we say that its probability is 100%
or 1, but if we are sure that the event will not occur, we say that its probability is zero. If, for example, the prob-
ability is we would say that there is a 25% chance it will occur and a 75% chance that it will not occur. Equiv-
alently, we can say that the odds against its occurrence are 75% to 25%, or 3 to 1.

There are two important procedures by means of which we can estimate the probability of an event.

1. CLASSICAL APPROACH. If an event can occur in h different ways out of a total number of n possible
ways, all of which are equally likely, then the probability of the event is h n.

EXAMPLE 1.10 Suppose we want to know the probability that a head will turn up in a single toss of a coin. Since there
are two equally likely ways in which the coin can come up—namely, heads and tails (assuming it does not roll away or
stand on its edge)—and of these two ways a head can arise in only one way, we reason that the required probability is
1 2. In arriving at this, we assume that the coin is fair, i.e., not loaded in any way.

2. FREQUENCY APPROACH. If after n repetitions of an experiment, where n is very large, an event is
observed to occur in h of these, then the probability of the event is h n. This is also called the empirical
probability of the event.

EXAMPLE 1.11 If we toss a coin 1000 times and find that it comes up heads 532 times, we estimate the probability
of a head coming up to be 532 1000 � 0.532.

Both the classical and frequency approaches have serious drawbacks, the first because the words “equally
likely” are vague and the second because the “large number” involved is vague. Because of these difficulties,
mathematicians have been led to an axiomatic approach to probability.

The Axioms of Probability
Suppose we have a sample space S. If S is discrete, all subsets correspond to events and conversely, but if S is
nondiscrete, only special subsets (called measurable) correspond to events. To each event A in the class C of
events, we associate a real number P(A). Then P is called a probability function, and P(A) the probability of the
event A, if the following axioms are satisfied.

Axiom 1 For every event A in the class C,

P(A) 0 (1)

Axiom 2 For the sure or certain event S in the class C,

P(S) � 1 (2)

Axiom 3 For any number of mutually exclusive events A1, A2, , in the class C,

P(A1 A2 ) � P(A1) � P(A2) � (3)

In particular, for two mutually exclusive events A1, A2,

P(A1 A2) � P(A1) � P(A2) (4)

Some Important Theorems on Probability
From the above axioms we can now prove various theorems on probability that are important in further work.

Theorem 1-1 If A1 A2, then P(A1) P(A2) and P(A2 – A1) � P(A2) � P(A1).

Theorem 1-2 For every event A,

(5)

i.e., a probability is between 0 and 1.

Theorem 1-3 P( ) � 0 (6)

i.e., the impossible event has probability zero.

\

0 � P(A) � 1,
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Theorem 1-4 If A is the complement of A, then

P(A ) � 1 � P(A) (7)

Theorem 1-5 If A � A1 A2 An, where A1, A2, . . . , An are mutually exclusive events, then

P(A) � P(A1) � P(A2) � � P(An) (8)

In particular, if A � S, the sample space, then

P(A1) � P(A2) P(An) � 1 (9)

Theorem 1-6 If A and B are any two events, then

P(A B) � P(A) � P(B) � P(A B) (10)

More generally, if A1, A2, A3 are any three events, then

P(A1 A2 A3) � P(A1) � P(A2) � P(A3)

� P(A1 A2) �P(A2 A3) �P(A3 A1)

� P(A1 A2 A3) (11)

Generalizations to n events can also be made.

Theorem 1-7 For any events A and B,

P(A) � P(A B) � P(A B ) (12)

Theorem 1-8 If an event A must result in the occurrence of one of the mutually exclusive events 
A1, A2, . . . , An, then

P(A) � P(A A1) � P(A A2) � � P(A An) (13)

Assignment of Probabilities
If a sample space S consists of a finite number of outcomes a1, a2, , an, then by Theorem 1-5,

P(A1) � P(A2) � � P(An) � 1 (14)

where A1, A2, , An are elementary events given by Ai � {ai}.
It follows that we can arbitrarily choose any nonnegative numbers for the probabilities of these simple events

as long as (14) is satisfied. In particular, if we assume equal probabilities for all simple events, then

(15)

and if A is any event made up of h such simple events, we have

(16)

This is equivalent to the classical approach to probability given on page 5. We could of course use other pro-
cedures for assigning probabilities, such as the frequency approach of page 5.

Assigning probabilities provides a mathematical model, the success of which must be tested by experiment
in much the same manner that theories in physics or other sciences must be tested by experiment.

EXAMPLE 1.12 A single die is tossed once. Find the probability of a 2 or 5 turning up.

The sample space is S � {1, 2, 3, 4, 5, 6}. If we assign equal probabilities to the sample points, i.e., if we assume that
the die is fair, then

The event that either 2 or 5 turns up is indicated by 2 5. Therefore,

P(2 < 5) � P(2) � P(5) �
1
6

�
1
6

�
1
3

<

P(1) � P(2) � c� P(6) �
1
6

P(A) �
h
n

P(Ak) �
1
n, k � 1,  2, c, n
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Conditional Probability
Let A and B be two events (Fig. 1-3) such that P(A) 0. Denote by P the probability of B given that A
has occurred. Since A is known to have occurred, it becomes the new sample space replacing the original S.
From this we are led to the definition

(17)

or P(A B) P(A) P (18)(B u A);>

P(B u A) ;
P(A> B)

P(A)

(B u A)�

CHAPTER 1 Basic Probability 7

Fig. 1-3

In words, (18) says that the probability that both A and B occur is equal to the probability that A occurs times
the probability that B occurs given that A has occurred. We call P the conditional probability of B given
A, i.e., the probability that B will occur given that A has occurred. It is easy to show that conditional probability
satisfies the axioms on page 5.

EXAMPLE 1.13 Find the probability that a single toss of a die will result in a number less than 4 if (a) no other infor-
mation is given and (b) it is given that the toss resulted in an odd number.

(a) Let B denote the event {less than 4}. Since B is the union of the events 1, 2, or 3 turning up, we see by Theorem 1-5 that

assuming equal probabilities for the sample points.

(b) Letting A be the event {odd number}, we see that Then

Hence, the added knowledge that the toss results in an odd number raises the probability from 1 2 to 2 3.

Theorems on Conditional Probability
Theorem 1-9 For any three events A1, A2, A3, we have

P(A1 A2 A3) � P(A1) P(A2 A1) P(A3 A1 A2) (19)

In words, the probability that A1 and A2 and A3 all occur is equal to the probability that A1 occurs times the
probability that A2 occurs given that A1 has occurred times the probability that A3 occurs given that both A1 and A2

have occurred. The result is easily generalized to n events.

Theorem 1-10 If an event A must result in one of the mutually exclusive events A1, A2, , An, then

P(A) � P(A1) P(A A1) � P(A2) P(A A2) P(An ) P(A An ) (20)

Independent Events
If P(B A) � P(B), i.e., the probability of B occurring is not affected by the occurrence or non-occurrence of A,
then we say that A and B are independent events. This is equivalent to

P(A B) � P(A)P(B) (21)

as seen from (18). Conversely, if (21) holds, then A and B are independent.

>

u

u� c�uu

c

>uu>>

>>
P(B u A) �

P(A > B)
P(A) �

1>3
1>2 �

2
3

P(A) �
3
6 �

1
2.  Also  P(A >  B) �

2
6 �

1
3.

P(B) � P(1) � P(2) � P(3) �
1
6 �

1
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We say that three events A1, A2, A3 are independent if they are pairwise independent:

P(Aj Ak ) � P(Aj)P(Ak) j k where j, k � 1, 2, 3 (22)

and P(A1 A2 A3) � P(A1)P(A2 )P(A3) (23)

Note that neither (22) nor (23) is by itself sufficient. Independence of more than three events is easily defined.

Bayes’ Theorem or Rule
Suppose that A1, A2, , An are mutually exclusive events whose union is the sample space S, i.e., one of the
events must occur. Then if A is any event, we have the following important theorem:

Theorem 1-11 (Bayes’ Rule):

(24)

This enables us to find the probabilities of the various events A1, A2, , An that can cause A to occur. For this
reason Bayes’ theorem is often referred to as a theorem on the probability of causes.

Combinatorial Analysis
In many cases the number of sample points in a sample space is not very large, and so direct enumeration or
counting of sample points needed to obtain probabilities is not difficult. However, problems arise where direct
counting becomes a practical impossibility. In such cases use is made of combinatorial analysis, which could also
be called a sophisticated way of counting.

Fundamental Principle of Counting: Tree Diagrams
If one thing can be accomplished in n1 different ways and after this a second thing can be accomplished in n2 dif-
ferent ways, . . . , and finally a kth thing can be accomplished in nk different ways, then all k things can be ac-
complished in the specified order in n1n2 nk different ways.

EXAMPLE 1.14 If a man has 2 shirts and 4 ties, then he has 2 4 � 8 ways of choosing a shirt and then a tie.

A diagram, called a tree diagram because of its appearance (Fig. 1-4), is often used in connection with the
above principle.

EXAMPLE 1.15 Letting the shirts be represented by S1, S2 and the ties by T1, T2, T3, T4, the various ways of choosing
a shirt and then a tie are indicated in the tree diagram of Fig. 1-4.

?

c

c

P(Ak u A) �
P(Ak) P(A u Ak)

a
n

j�1
P(Aj) P(A u Aj)

c

>>

2>
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Permutations
Suppose that we are given n distinct objects and wish to arrange r of these objects in a line. Since there are n
ways of choosing the 1st object, and after this is done, n � 1 ways of choosing the 2nd object, . . . , and finally
n � r � 1 ways of choosing the rth object, it follows by the fundamental principle of counting that the number
of different arrangements, or permutations as they are often called, is given by

nPr � n(n � 1)(n � 2) (n � r � 1) (25)

where it is noted that the product has r factors. We call nPr the number of permutations of n objects taken r at a time.
In the particular case where r � n, (25) becomes

nPn � n(n �1)(n �2) 1 � n! (26)

which is called n factorial. We can write (25) in terms of factorials as

(27)

If r � n, we see that (27) and (26) agree only if we have 0! � 1, and we shall actually take this as the definition of 0!.

EXAMPLE 1.16 The number of different arrangements, or permutations, consisting of 3 letters each that can be formed
from the 7 letters A, B, C, D, E, F, G is

Suppose that a set consists of n objects of which n1 are of one type (i.e., indistinguishable from each other),
n2 are of a second type, . . . , nk are of a kth type. Here, of course, n � n1 � n2 nk. Then the number of
different permutations of the objects is

(28)

See Problem 1.25.

EXAMPLE 1.17 The number of different permutations of the 11 letters of the word M I S S I S S I P P I, which con-
sists of 1 M, 4 I’s, 4 S’s, and 2 P’s, is

Combinations
In a permutation we are interested in the order of arrangement of the objects. For example, abc is a different per-
mutation from bca. In many problems, however, we are interested only in selecting or choosing objects without
regard to order. Such selections are called combinations. For example, abc and bca are the same combination.

The total number of combinations of r objects selected from n (also called the combinations of n things taken

r at a time) is denoted by nCr or We have (see Problem 1.27)

(29)

It can also be written

(30)

It is easy to show that

(31)¢n

r
≤ � ¢ n

n � r
≤  or  nCr � nCn�r

¢n

r
≤ �

n(n � 1) c (n � r � 1)
r!

�
nPr

r!

¢n

r
≤ � nCr �

n!
r!(n � r)!

an
r
b .

11!
1!4!4!2! � 34,650

nPn1, n2,  c , nk
�

n!
n1!n2! c nk!

� c�

7P3 �
7!
4! � 7 ? 6 ? 5 � 210

nPr �
n!

(n � r)!

c

c
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EXAMPLE 1.18 The number of ways in which 3 cards can be chosen or selected from a total of 8 different cards is

Binomial Coefficient
The numbers (29) are often called binomial coefficients because they arise in the binomial expansion

(32)

They have many interesting properties.

EXAMPLE 1.19

Stirling’s Approximation to n!
When n is large, a direct evaluation of n! may be impractical. In such cases use can be made of the approximate
formula

(33)

where e � 2.71828 . . . , which is the base of natural logarithms. The symbol in (33) means that the ratio of
the left side to the right side approaches 1 as n .

Computing technology has largely eclipsed the value of Stirling’s formula for numerical computations, but
the approximation remains valuable for theoretical estimates (see Appendix A).

SOLVED PROBLEMS

Random experiments, sample spaces, and events
1.1. A card is drawn at random from an ordinary deck of 52 playing cards. Describe the sample space if consid-

eration of suits (a) is not, (b) is, taken into account.

(a) If we do not take into account the suits, the sample space consists of ace, two, . . . , ten, jack, queen, king,
and it can be indicated as {1, 2, . . . , 13}.

(b) If we do take into account the suits, the sample space consists of ace of hearts, spades, diamonds, and clubs; . . . ;
king of hearts, spades, diamonds, and clubs. Denoting hearts, spades, diamonds, and clubs, respectively, by
1, 2, 3, 4, for example, we can indicate a jack of spades by (11, 2). The sample space then consists of the 52
points shown in Fig. 1-5.

`S
,

n! , 22pn  nne�n

� x4 � 4x3 y � 6x2 y2 � 4xy3 � y4

(x � y)4 � x4 � ¢4

1
≤x3 y � ¢4

2
≤x2 y2 � ¢4

3
≤xy3 � ¢4

4
≤y4

(x � y)n � xn � ¢n

1
≤xn�1y � ¢n

2
≤xn�2 y2 � c� ¢n

n
≤yn

8C3 � ¢8

3
≤ �

8 ? 7 ? 6
3! � 56
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1.2. Referring to the experiment of Problem 1.1, let A be the event {king is drawn} or simply {king} and B the
event {club is drawn} or simply {club}. Describe the events (a) A B, (b) A B, (c) A B , (d) A B ,
(e) A � B, (f ) A � B , (g) (A B) (A B ).

(a) A B � {either king or club (or both, i.e., king of clubs)}.

(b) A B � {both king and club} � {king of clubs}.

(c) Since B � {club}, B � {not club} � {heart, diamond, spade}.

Then A B � {king or heart or diamond or spade}.

(d ) A B � {not king or not club} � {not king of clubs} � {any card but king of clubs}.

This can also be seen by noting that A B � (A B) and using (b).

(e) A � B � {king but not club}.

This is the same as A B � {king and not club}.

(f) A � B � {not king and not “not club”} � {not king and club} � {any club except king}.

This can also be seen by noting that A � B � A (B ) � A B.

(g) (A B) (A B ) � {(king and club) or (king and not club)} � {king}.

This can also be seen by noting that (A B) (A B ) � A.

1.3. Use Fig. 1-5 to describe the events (a) A B, (b) A B .

The required events are indicated in Fig. 1-6. In a similar manner, all the events of Problem 1.2 can also be indi-
cated by such diagrams. It should be observed from Fig. 1-6 that A B is the complement of A B.<r>r

r>r<

r><>

r><>

>rrr>rrr

rr

r>

r>r<r

r<r

r<

r

>

<

r><>rr
r<rr<><
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Theorems on probability
1.4. Prove (a) Theorem 1-1, (b) Theorem 1-2, (c) Theorem 1-3, page 5.

(a) We have A2 � A1 (A2 � A1) where A1 and A2 � A1 are mutually exclusive. Then by Axiom 3, page 5:

P(A2) � P(A1) � P(A2 � A1)

so that P(A2 � A1) � P(A2) � P(A1)

Since P(A2 � A1) 0 by Axiom 1, page 5, it also follows that P(A2) P(A1).

(b) We already know that P(A) 0 by Axiom 1. To prove that P(A) 1, we first note that A S. Therefore,
by Theorem 1-1 [part (a)] and Axiom 2,

P(A) P(S) � 1

(c) We have S � S . Since S � , it follows from Axiom 3 that

P(S) � P(S) � P( ) or P( ) � 0\\

\> \\<

�

(��

��

<



1.5. Prove (a) Theorem 1-4, (b) Theorem 1-6.

(a) We have A A � S. Then since A A � , we have

P(A A ) � P(S) or P(A) � P(A ) � 1

i.e., P(A ) � 1 �P(A)

(b) We have from the Venn diagram of Fig. 1-7,

(1) A B � A [B � (A B)]

Then since the sets A and B � (A B) are mutually exclusive, we have, using Axiom 3 and Theorem 1-1,

P(A B) � P(A) � P[B � (A B)]

� P(A) � P(B) � P(A B)>

><

>

><<

r

rr<

\r>r<
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Calculation of probabilities
1.6. A card is drawn at random from an ordinary deck of 52 playing cards. Find the probability that it is (a) an

ace, (b) a jack of hearts, (c) a three of clubs or a six of diamonds, (d) a heart, (e) any suit except hearts,
(f) a ten or a spade, (g) neither a four nor a club.

Let us use for brevity H, S, D, C to indicate heart, spade, diamond, club, respectively, and 1, 2 13 for 
ace, two, , king. Then 3 H means three of hearts, while 3 H means three or heart. Let us use the
sample space of Problem 1.1(b), assigning equal probabilities of 1 52 to each sample point. For example,
P(6 C) � 1 52.

(a)

This could also have been achieved from the sample space of Problem 1.1(a) where each sample point, in
particular ace, has probability 1 13. It could also have been arrived at by simply reasoning that there are 13
numbers and so each has probability 1 13 of being drawn.

(b)

(c)

(d)

This could also have been arrived at by noting that there are four suits and each has equal probability of
being drawn.

(e) using part (d) and Theorem 1-4, page 6.

(f) Since 10 and S are not mutually exclusive, we have, from Theorem 1-6,

(g) The probability of neither four nor club can be denoted by P(4 C ). But 4 C � (4 C) .r<r>rr>r

P(10 <  S) � P(10) � P(S) � P(10  >   S) �
1

13 �
1
4 �

1
52 �

4
13

P(Hr) � 1 � P(H) � 1 �
1
4 �

3
4

1>2
P(H) � P(1 >  H or 2  >  H  or c13  >  H) �

1
52 �

1
52 � c�

1
52 �

13
52 �

1
4

P(3 > C    or    6  >   D) � P(3 >  C ) � P(6  >  D) �
1

52 �
1

52 �
1

26

P(11 >  H) �
1

52

>
>

�
1
52 �

1
52 �

1
52 �

1
52 �

1
13

� P(1 > H) � P(1 > S) � P(1 > D) � P(1 > C  )

P(1) � P(1 > H or 1 > S or 1 > D or 1 > C  )

>>
><>c

,c,



Therefore,

We could also get this by noting that the diagram favorable to this event is the complement of the event
shown circled in Fig. 1-8. Since this complement has 52 �16 � 36 sample points in it and each sample point
is assigned probability 1 52, the required probability is 36 52 � 9 13.>>>

� 1 � B 1
13

�
1
4

�
1

52
R �

9
13

� 1 � [P(4) � P(C) � P(4> C)]

P(4r > Cr) � P[(4 < C)r] � 1 � P(4 < C)
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1.7. A ball is drawn at random from a box containing 6 red balls, 4 white balls, and 5 blue balls. Determine the
probability that it is (a) red, (b) white, (c) blue, (d) not red, (e) red or white.

(a) Method 1
Let R, W, and B denote the events of drawing a red ball, white ball, and blue ball, respectively. Then

Method 2
Our sample space consists of 6 � 4 � 5 � 15 sample points. Then if we assign equal probabilities 1 15 to>

P(R) �
ways of choosing a red ball

total ways of choosing a ball �
6

6 � 4 � 5 �
6

15 �
2
5

each sample point, we see that P(R) � 6 15 � 2 5, since there are 6 sample points corresponding to “red ball.”

(b)

(c)

(d) by part (a).

(e) Method 1

This can also be worked using the sample space as in part (a).

Method 2

by part (c).

Method 3
Since events R and W are mutually exclusive, it follows from (4), page 5, that

P(R < W) � P(R) � P(W) �
2
5 �

4
15 �

2
3

P(R < W) � P(Br) � 1 � P(B) � 1 �
1
3 �

2
3

�
6 � 4

6 � 4 � 5 �
10
15 �

2
3

P(red or white) � P(R < W  ) �
ways of choosing a red or white ball

total ways of choosing a ball

P(not red) � P(Rr) � 1 � P(R) � 1 �
2
5 �

3
5

P(B) �
5

6 � 4 � 5 �
5

15 �
1
3

P(W) �
4

6 � 4 � 5 �
4

15

>>



Conditional probability and independent events
1.8. A fair die is tossed twice. Find the probability of getting a 4, 5, or 6 on the first toss and a 1, 2, 3, or 4 on

the second toss.

Let A1 be the event “4, 5, or 6 on first toss,” and A2 be the event “1, 2, 3, or 4 on second toss.” Then we are
looking for P(A1 A2).

Method 1

We have used here the fact that the result of the second toss is independent of the first so that P(A2 u A1) � P(A2).

P(A1  > A2) � P(A1) P(A2 u A1) � P(A1) P(A2) � ¢ 3
6 ≤ ¢ 4

6 ≤ �
1
3

>
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If we let A be the event “7 or 11,” then A is indicated by the circled portion in Fig. 1-9. Since 8 points are
included, we have P(A) � 8 36 � 2 9. It follows that the probability of no 7 or 11 is given by

P(Ar) � 1 � P(A) � 1 �
2
9 �

7
9

>>

Also we have used P(A1) � 3 6 (since 4, 5, or 6 are 3 out of 6 equally likely possibilities) and P(A2) � 4 6 (since
1, 2, 3, or 4 are 4 out of 6 equally likely possibilities).

Method 2
Each of the 6 ways in which a die can fall on the first toss can be associated with each of the 6 ways in which it
can fall on the second toss, a total of 6 6 � 36 ways, all equally likely.

Each of the 3 ways in which A1 can occur can be associated with each of the 4 ways in which A2 can occur to
give 3 4 � 12 ways in which both A1 and A2 can occur. Then

This shows directly that A1 and A2 are independent since

1.9. Find the probability of not getting a 7 or 11 total on either of two tosses of a pair of fair dice.

The sample space for each toss of the dice is shown in Fig. 1-9. For example, (5, 2) means that 5 comes up on
the first die and 2 on the second. Since the dice are fair and there are 36 sample points, we assign probability 
1 36 to each.>

P(A1 > A2) �
1
3 � ¢ 3

6 ≤ ¢ 4
6 ≤ � P(A1) P(A2)

P(A1>  A2) �
12
36 �

1
3

?

?

>>



Using subscripts 1, 2 to denote 1st and 2nd tosses of the dice, we see that the probability of no 7 or 11 on
either the first or second tosses is given by

using the fact that the tosses are independent.

1.10. Two cards are drawn from a well-shuffled ordinary deck of 52 cards. Find the probability that they are both
aces if the first card is (a) replaced, (b) not replaced.

Method 1
Let A1 � event “ace on first draw” and A2 � event “ace on second draw.” Then we are looking for P(A1 A2) �

P(A1) P(A2 A1).

(a) Since for the first drawing there are 4 aces in 52 cards, P(A1) � 4 52. Also, if the card is replaced for the>
u

>

P(Ar1 ) P(Ar2 u Ar1) � P(Ar1) P(Ar2 ) � ¢ 7
9 ≤ ¢ 7

9 ≤ �
49
81,
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second drawing, then P(A2 A1) � 4 52, since there are also 4 aces out of 52 cards for the second drawing.
Then

(b) As in part (a), P(A1) � 4 52. However, if an ace occurs on the first drawing, there will be only 3 aces left in>
P(A1>  A2) � P(A1) P(A2 u A1) � ¢ 4

52 ≤ ¢ 4
52 ≤ �

1
169

>u

the remaining 51 cards, so that P(A2 A1) � 3 51. Then

Method 2
(a) The first card can be drawn in any one of 52 ways, and since there is replacement, the second card can also

be drawn in any one of 52 ways. Then both cards can be drawn in (52)(52) ways, all equally likely.
In such a case there are 4 ways of choosing an ace on the first draw and 4 ways of choosing an ace on the

second draw so that the number of ways of choosing aces on the first and second draws is (4)(4). Then the
required probability is

(b) The first card can be drawn in any one of 52 ways, and since there is no replacement, the second card can
be drawn in any one of 51 ways. Then both cards can be drawn in (52)(51) ways, all equally likely.

In such a case there are 4 ways of choosing an ace on the first draw and 3 ways of choosing an ace on the
second draw so that the number of ways of choosing aces on the first and second draws is (4)(3). Then the
required probability is

1.11. Three balls are drawn successively from the box of Problem 1.7. Find the probability that they are drawn
in the order red, white, and blue if each ball is (a) replaced, (b) not replaced.

Let R1 � event “red on first draw,” W2 � event “white on second draw,” B3 � event “blue on third draw.” We
require P(R1 W2 B3).

(a) If each ball is replaced, then the events are independent and

� ¢ 6
6 � 4 � 5 ≤ ¢ 4

6 � 4 � 5 ≤ ¢ 5
6 � 4 � 5 ≤ �

8
225

� P(R1) P(W2) P(B3)

P(R1 > W2 > B3) � P(R1) P(W2 u R1) P(B3 u R2 >W2)

>>

(4)(3)
(52)(51) �

1
221

(4)(4)
(52)(52) �

1
169

P(A1 > A2) � P(A1) P(A2 Z A1) � ¢ 4
52 ≤ ¢ 3

51 ≤ �
1

221

>u



(b) If each ball is not replaced, then the events are dependent and

1.12. Find the probability of a 4 turning up at least once in two tosses of a fair die.

Let A1 � event “4 on first toss” and A2 � event “4 on second toss.” Then

A1 A2 � event “4 on first toss or 4 on second toss or both”

� event “at least one 4 turns up,”

and we require P(A1 A2).

Method 1
Events A1 and A2 are not mutually exclusive, but they are independent. Hence, by (10) and (21),

Method 2
P(at least one 4 comes up) � P(no 4 comes up) � 1

Then P(at least one 4 comes up) � 1 � P(no 4 comes up)

� 1 � P(no 4 on 1st toss and no 4 on 2nd toss)

Method 3
Total number of equally likely ways in which both dice can fall � 6 6 � 36.

Also Number of ways in which A1 occurs but not A2 � 5
Number of ways in which A2 occurs but not A1 � 5
Number of ways in which both A1 and A2 occur � 1

Then the number of ways in which at least one of the events A1 or A2 occurs � 5 � 5 � 1 � 11. Therefore,
P(A1 A2) � 11 36.

1.13. One bag contains 4 white balls and 2 black balls; another contains 3 white balls and 5 black balls. If one
ball is drawn from each bag, find the probability that (a) both are white, (b) both are black, (c) one is white
and one is black.

Let W1 � event “white ball from first bag,” W2 � event “white ball from second bag.”

(a)

(b)

(c) The required probability is

1.14. Prove Theorem 1-10, page 7.

We prove the theorem for the case n � 2. Extensions to larger values of n are easily made. If event A must
result in one of the two mutually exclusive events A1, A2, then

A � (A A1) (A A2)><>

1 � P(W1 > W2) � P(Wr1  >Wr2 ) � 1 �
1
4 �

5
24 �

13
24

P(Wr1  > Wr2 ) � P(Wr1 ) P(Wr2 uWr1 ) � P(Wr1 ) P(Wr2 ) � ¢ 2
4 � 2 ≤ ¢ 5

3 � 5 ≤ �
5

24

P(W1 > W2) � P(W1) P(W2 uW1) � P(W1) P(W2) � ¢ 4
4 � 2 ≤ ¢ 3

3 � 5 ≤ �
1
4

><

?

� 1 � ¢ 5
6 ≤ ¢5

6 ≤ �
11
36

� 1 � P(Ar1 > Ar2 ) � 1 � P(Ar1 ) P(Ar2)

�
1
6 �

1
6 � ¢ 1

6 ≤ ¢ 1
6 ≤ �

11
36

� P(A1) � P(A2) � P(A1) P(A2)

P(A1 <  A2) � P(A1) � P(A2) � P(A1 > A2)

<

<

� ¢ 6
6 � 4 � 5 ≤ ¢ 4

5 � 4 � 5 ≤ ¢ 5
5 � 3 � 5 ≤ �

4
91

P(R1 > W2>  B3) � P(R1) P(W2 u R1) P(B3 u R1 >W2)
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But A A1 and A A2 are mutually exclusive since A1 and A2 are. Therefore, by Axiom 3,

P(A) � P(A A1) � P(A A2)

� P(A1) P(A A1) � P(A2) P(A A2)

using (18), page 7.

1.15. Box I contains 3 red and 2 blue marbles while Box II contains 2 red and 8 blue marbles. A fair coin is
tossed. If the coin turns up heads, a marble is chosen from Box I; if it turns up tails, a marble is chosen
from Box II. Find the probability that a red marble is chosen.

Let R denote the event “a red marble is chosen” while I and II denote the events that Box I and Box II are
chosen, respectively. Since a red marble can result by choosing either Box I or II, we can use the results of
Problem 1.14 with A � R, A1 � I, A2 � II. Therefore, the probability of choosing a red marble is

Bayes’ theorem
1.16. Prove Bayes’ theorem (Theorem 1-11, page 8).

Since A results in one of the mutually exclusive events A1, A2, , An, we have by Theorem 1-10 
(Problem 1.14),

Therefore,

1.17. Suppose in Problem 1.15 that the one who tosses the coin does not reveal whether it has turned up heads
or tails (so that the box from which a marble was chosen is not revealed) but does reveal that a red mar-
ble was chosen. What is the probability that Box I was chosen (i.e., the coin turned up heads)?

Let us use the same terminology as in Problem 1.15, i.e., A � R, A1 � I, A2 � II. We seek the probability that Box
I was chosen given that a red marble is known to have been chosen. Using Bayes’ rule with n � 2, this probability
is given by

Combinational analysis, counting, and tree diagrams
1.18. A committee of 3 members is to be formed consisting of one representative each from labor, management,

and the public. If there are 3 possible representatives from labor, 2 from management, and 4 from the pub-
lic, determine how many different committees can be formed using (a) the fundamental principle of count-
ing and (b) a tree diagram.

(a) We can choose a labor representative in 3 different ways, and after this a management representative in 2
different ways. Then there are 3 2 � 6 different ways of choosing a labor and management representative.
With each of these ways we can choose a public representative in 4 different ways. Therefore, the number
of different committees that can be formed is 3 2 4 � 24.??

?

P(I uR) �
P(I ) P(R u I )

P(I ) P(R u I ) � P(II ) P(R u II )
�

¢ 1
2 ≤ ¢ 3

3 � 2 ≤¢ 1
2 ≤ ¢ 3

3 � 2 ≤ � ¢ 1
2 ≤ ¢ 2

2 � 8 ≤ �
3
4

P(Ak u A) �
P(Ak > A)

P(A) �
P(Ak) P(A u Ak )

a
n

j�1
P(Aj) P(A u Aj )

P(A) � P(A1) P(A u A1) � c� P(An) P(A u An) � a
n

j�1
P(Aj) P(A u Aj)

c

P(R) � P(I) P(R u I) � P(II) P(R u II) � ¢ 1
2 ≤ ¢ 3

3 � 2 ≤ � ¢ 1
2 ≤ ¢ 2

2 � 8 ≤ �
2
5

uu

>>

>>
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(b) Denote the 3 labor representatives by L1, L2, L3; the management representatives by M1, M2; and the public
representatives by P1, P2, P3, P4. Then the tree diagram of Fig. 1-10 shows that there are 24 different
committees in all. From this tree diagram we can list all these different committees, e.g., L1M1P1, L1 M1P2, etc.
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Fig. 1-10

Permutations
1.19. In how many ways can 5 differently colored marbles be arranged in a row?

We must arrange the 5 marbles in 5 positions thus: �����. The first position can be occupied by any one of
5 marbles, i.e., there are 5 ways of filling the first position. When this has been done, there are 4 ways of filling
the second position. Then there are 3 ways of filling the third position, 2 ways of filling the fourth position, and
finally only 1 way of filling the last position. Therefore:

Number of arrangements of 5 marbles in a row � 5 4 3 2 l � 5! � 120

In general,

Number of arrangements of n different objects in a row � n(n � l)(n � 2) 1 � n!

This is also called the number of permutations of n different objects taken n at a time and is denoted by n Pn.

1.20. In how many ways can 10 people be seated on a bench if only 4 seats are available?

The first seat can be filled in any one of 10 ways, and when this has been done, there are 9 ways of filling the
second seat, 8 ways of filling the third seat, and 7 ways of filling the fourth seat. Therefore:

Number of arrangements of 10 people taken 4 at a time � 10 9 8 7 � 5040

In general,

Number of arrangements of n different objects taken r at a time � n(n � 1) (n � r � 1)

This is also called the number of permutations of n different objects taken r at a time and is denoted by nPr.
Note that when r � n, n Pn � n! as in Problem 1.19.

c

???

c

????



1.21. Evaluate (a) 8P3, (b) 6P4, (c) l5P1, (d) 3P3.

(a) 8P3 � 8 7 6 � 336 (b) 6P4 � 6 5 4 3 � 360 (c) 15P1 � 15 (d) 3P3 � 3 2 1 � 6

1.22. It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many
such arrangements are possible?

The men may be seated in 5 P5 ways, and the women in 4P4 ways. Each arrangement of the men may be
associated with each arrangement of the women. Hence,

Number of arrangements � 5P5 4P4 � 5! 4! � (120)(24) � 2880

1.23. How many 4-digit numbers can be formed with the 10 digits 0, 1, 2, 3, . . . , 9 if (a) repetitions are allowed,
(b) repetitions are not allowed, (c) the last digit must be zero and repetitions are not allowed?

(a) The first digit can be any one of 9 (since 0 is not allowed). The second, third, and fourth digits can be any
one of 10. Then 9 10 10 10 � 9000 numbers can be formed.

(b) The first digit can be any one of 9 (any one but 0).

The second digit can be any one of 9 (any but that used for the first digit).

The third digit can be any one of 8 (any but those used for the first two digits).

The fourth digit can be any one of 7 (any but those used for the first three digits).

Then 9 9 8 7 � 4536 numbers can be formed.

Another method
The first digit can be any one of 9, and the remaining three can be chosen in 9P3 ways. Then 9 9P3 �

9 9 8 7 � 4536 numbers can be formed.

(c) The first digit can be chosen in 9 ways, the second in 8 ways, and the third in 7 ways. Then 9 8 7 � 504
numbers can be formed.

Another method
The first digit can be chosen in 9 ways, and the next two digits in 8P2 ways. Then 9 8P2 � 9 8 7 �
504 numbers can be formed.

1.24. Four different mathematics books, six different physics books, and two different chemistry books are to
be arranged on a shelf. How many different arrangements are possible if (a) the books in each particular
subject must all stand together, (b) only the mathematics books must stand together?

(a) The mathematics books can be arranged among themselves in 4P4 � 4! ways, the physics books in 6P6 � 6!
ways, the chemistry books in 2P2 � 2! ways, and the three groups in 3P3 � 3! ways. Therefore,

Number of arrangements � 4!6!2!3! � 207,360.

(b) Consider the four mathematics books as one big book. Then we have 9 books which can be arranged in 

9P9 � 9! ways. In all of these ways the mathematics books are together. But the mathematics books can be
arranged among themselves in 4P4 � 4! ways. Hence,

Number of arrangements � 9!4! � 8,709,120

1.25. Five red marbles, two white marbles, and three blue marbles are arranged in a row. If all the marbles of
the same color are not distinguishable from each other, how many different arrangements are possible?

Assume that there are N different arrangements. Multiplying N by the numbers of ways of arranging (a) the five
red marbles among themselves, (b) the two white marbles among themselves, and (c) the three blue marbles
among themselves (i.e., multiplying N by 5!2!3!), we obtain the number of ways of arranging the 10 marbles if
they were all distinguishable, i.e., 10!.

Then (5!2!3!)N � 10! and N � 10! (5!2!3!)

In general, the number of different arrangements of n objects of which n1 are alike, n2 are alike, . . . , nk are

alike is where n1 � n2 nk � n.� c�
n!

n 1!n 2! c nk!

>

???

??

???

?

???

???

?

???????
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1.26. In how many ways can 7 people be seated at a round table if (a) they can sit anywhere, (b) 2 particular peo-
ple must not sit next to each other?

(a) Let 1 of them be seated anywhere. Then the remaining 6 people can be seated in 6! � 720 ways, which is
the total number of ways of arranging the 7 people in a circle.

(b) Consider the 2 particular people as 1 person. Then there are 6 people altogether and they can be arranged in
5! ways. But the 2 people considered as 1 can be arranged in 2! ways. Therefore, the number of ways of
arranging 7 people at a round table with 2 particular people sitting together � 5!2! � 240.

Then using (a), the total number of ways in which 7 people can be seated at a round table so that the 2
particular people do not sit together � 730 �240 � 480 ways.

Combinations
1.27. In how many ways can 10 objects be split into two groups containing 4 and 6 objects, respectively?

This is the same as the number of arrangements of 10 objects of which 4 objects are alike and 6 other objects

are alike. By Problem 1.25, this is 

The problem is equivalent to finding the number of selections of 4 out of 10 objects (or 6 out of 10 objects), the
order of selection being immaterial. In general, the number of selections of r out of n objects, called the number

10!
4!6! �

10 ? 9 ? 8 ? 7
4! � 210.
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of combinations of n things taken r at a time, is denoted by nCr or and is given by

1.28. Evaluate (a) 7C4, (b) 6C5, (c) 4C4.

(a)

(b)

(c) 4C4 is the number of selections of 4 objects taken 4 at a time, and there is only one such selection. Then 4C4 � 1.
Note that formally

if we define 0! � 1.

1.29. In how many ways can a committee of 5 people be chosen out of 9 people?

1.30. Out of 5 mathematicians and 7 physicists, a committee consisting of 2 mathematicians and  3 physicists
is to be formed. In how many ways can this be done if (a) any mathematician and any physicist can be in-
cluded, (b) one particular physicist must be on the committee, (c) two particular mathematicians cannot
be on the committee?

(a) 2 mathematicians out of 5 can be selected in 5C2 ways.
3 physicists out of 7 can be selected in 7C3 ways.

Total number of possible selections � 5C2 7C3 � 10 35 � 350

(b) 2 mathematicians out of 5 can be selected in 5C2 ways.
2 physicists out of 6 can be selected in 6C2 ways.

Total number of possible selections � 5C2 6C2 � 10 15 � 150

(c) 2 mathematicians out of 3 can be selected in 3C2 ways.
3 physicists out of 7 can be selected in 7C3 ways.

Total number of possible selections � 3C2 7C3 � 3 35 � 105??

??

??

¢9

5
≤ � 9C5 �

9!
5!4!

�
9 ? 8 ? 7 ? 6 ? 5

5!
� 126

4C4 �
4!

4!0! � 1

6C5 �
6!

5!1! �
6 ? 5 ? 4 ? 3 ? 2

5! � 6, or 6C5 � 6C1 � 6.

7 C4 �
7!

4!3! �
7 ? 6 ? 5 ? 4

4! �
7 ? 6 ? 5
3 ? 2 ? 1 � 35.

nCr � ¢n

r
≤ �

n!
r!(n � r)! �

n(n � 1) c (n � r � 1)
r! �

n Pr

r!

an
r
b



1.31. How many different salads can be made from lettuce, escarole, endive, watercress, and chicory?

Each green can be dealt with in 2 ways, as it can be chosen or not chosen. Since each of the 2 ways of dealing
with a green is associated with 2 ways of dealing with each of the other greens, the number of ways of dealing
with the 5 greens � 25 ways. But 25 ways includes the case in which no greens is chosen. Hence,

Number of salads � 25 �1 � 31

Another method
One can select either 1 out of 5 greens, 2 out of 5 greens, . . . , 5 out of 5 greens. Then the required number of
salads is

5C1 � 5C2 � 5C3 � 5C4 � 5C5 � 5 � 10 � 10 � 5 � 1 � 31

In general, for any positive integer n, nC1 � nC2 � nC3 � � nCn � 2n � 1.

1.32. From 7 consonants and 5 vowels, how many words can be formed consisting of 4 different consonants and
3 different vowels? The words need not have meaning.

The 4 different consonants can be selected in 7C4 ways, the 3 different vowels can be selected in 5C3 ways, and
the resulting 7 different letters (4 consonants, 3 vowels) can then be arranged among themselves in 7P7 � 7!
ways. Then

Number of words � 7C4 5C3 7! � 35 10 5040 � 1,764,000

The Binomial Coefficients

1.33. Prove that 

We have

The result has the following interesting application. If we write out the coefficients in the binomial
expansion of (x � y)n for n � 0, 1, 2, . . . , we obtain the following arrangement, called Pascal’s triangle:

1
1 1

1 2       1
1 3 3 1

1 4 6  4 1
1 5 10 10 5 1

1 6 15  20 15 6 1

An entry in any line can be obtained by adding the two entries in the preceding line that are to its immediate left
and right. Therefore, 10 � 4 � 6, 15 � 10 � 5, etc.

� ¢n � 1

r
≤ � ¢n � 1

r � 1
≤�

(n � 1)!
r!(n � r � 1)! �

(n � 1)!
(r � 1)!(n � r)!

�
(n � r)(n � 1)!

r!(n � r)! �
r(n � 1)!
r!(n � r)!

¢n

r
≤ �

n!
r!(n � r)! �

n(n � 1)!
r!(n � r)! �

(n � r � r)(n � 1)!
r!(n � r)!

¢n

r
≤ � ¢n � 1

r
≤ � ¢n � 1

r � 1
≤ .

????

c
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n � 0
n � 1
n � 2
n � 3
n � 4
n � 5
n � 6
etc.



1.34. Find the constant term in the expansion of 

According to the binomial theorem,

The constant term corresponds to the one for which 3k �12 � 0, i.e., k � 4, and is therefore given by

Probability using combinational analysis

1.35. A box contains 8 red, 3 white, and 9 blue balls. If 3 balls are drawn at random without replacement, de-
termine the probability that (a) all 3 are red, (b) all 3 are white, (c) 2 are red and 1 is white, (d) at least 1
is white, (e) 1 of each color is drawn, (f) the balls are drawn in the order red, white, blue.

(a) Method 1
Let R1, R2, R3 denote the events, “red ball on 1st draw,” “red ball on 2nd draw,” “red ball on 3rd draw,”
respectively. Then R1 R2 R3 denotes the event “all 3 balls drawn are red.” We therefore have

Method 2

(b) Using the second method indicated in part (a),

The first method indicated in part (a) can also be used.

(c) P(2 are red and 1 is white)

(d) P(none is white) Then

(e) P(l of each color is drawn)

(f) P(balls drawn in order red, white, blue) P(l of each color is drawn)

using (e)

Another method

� ¢ 8
20 ≤ ¢ 3

19 ≤ ¢ 9
18 ≤ �

3
95

P(R1 > W2 >B3) � P(R1) P(W2 u R1) P(B3 u R1 >W2)

�
1
6 ¢ 18

95 ≤ �
3

95,

�
1
3!

�
(8C1)(3C1)(9C1)

20C3
�

18
95

P(at least 1 is white) � 1 �
34
57 �

23
57

�
17C3

20C3
�

34
57.

�
(8C2)(3C1)

20C3
�

7
95

�
(selections of 2 out of 8 red balls)(selections of 1 out of 3 white balls)

number of selections of 3 out of 20 balls

P(all 3 are white) �
3C3

20C3
�

1
1140

Required probability �
number of selections of 3 out of 8 red balls

number of selections of 3 out of 20 balls �
8C3

20C3
�

14
285

� ¢ 8
20 ≤ ¢ 7

19 ≤ ¢ 6
18 ≤ �

14
285

P(R1 > R2 >R3) � P(R1) P(R2 u R1) P(R3 u R1 > R2)

>>

¢12

4
≤ �

12 ? 11 ? 10 ? 9
4 ? 3 ? 2 ? 1 � 495

¢x 2 �
1
x ≤ 12

� a
12

k�0
¢12

k
≤ (x 2)k¢ 1

x ≤ 12�k

� a
12

k�0
¢12

k
≤x 3k�12.

¢x 2 �
1
x ≤12

.
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1.36. In the game of poker 5 cards are drawn from a pack of 52 well-shuffled cards. Find the probability that (a)
4 are aces, (b) 4 are aces and 1 is a king, (c) 3 are tens and 2 are jacks, (d) a nine, ten, jack, queen, king
are obtained in any order, (e) 3 are of any one suit and 2 are of another, (f) at least 1 ace is obtained.

(a)

(b) P(4 aces and 1 king)

(c) P(3 are tens and 2 are jacks)

(d) P(nine, ten, jack, queen, king in any order)

(e) P(3 of any one suit, 2 of another)

since there are 4 ways of choosing the first suit and 3 ways of choosing the second suit.

(f ) P(no ace) Then P(at least one ace)

1.37. Determine the probability of three 6s in 5 tosses of a fair die.

Let the tosses of the die be represented by the 5 spaces �����. In each space we will have the events 6 or
not 6 (6 ). For example, three 6s and two not 6s can occur as 6 6 6 6 6 or 6 6 6 6 6, etc.

Now the probability of the outcome 6 6 6 6 6 is

P(6 6 6 6 6 ) � P(6) P(6) P(6 ) P(6) P(6 )

since we assume independence. Similarly,

for all other outcomes in which three 6s and two not 6s occur. But there are 5C3 � 10 such outcomes, and these
are mutually exclusive. Hence, the required probability is

In general, if p � P(A) and q � 1 �p � P(A ), then by using the same reasoning as given above, the
probability of getting exactly x A’s in n independent trials is

1.38. A shelf has 6 mathematics books and 4 physics books. Find the probability that 3 particular mathematics
books will be together.

All the books can be arranged among themselves in 10P10 � 10! ways. Let us assume that the 3 particular
mathematics books actually are replaced by 1 book. Then we have a total of 8 books that can be arranged
among themselves in 8P8 � 8! ways. But the 3 mathematics books themselves can be arranged in 3P3 � 3!
ways. The required probability is thus given by

Miscellaneous problems
1.39. A and B play 12 games of chess of which 6 are won by A, 4 are won by B, and 2 end in a draw. They agree

to play a tournament consisting of 3 games. Find the probability that (a) A wins all 3 games, (b) 2 games
end in a draw, (c) A and B win alternately, (d ) B wins at least 1 game.

Let A1, A2, A3 denote the events “A wins” in 1st, 2nd, and 3rd games, respectively, B1, B2, B3 denote the events 
“B wins” in 1st, 2nd, and 3rd games, respectively. On the basis of their past performance (empirical probability),

8!3!
10! �

1
15

nCx px qn�x � ¢n

x
≤ px qn�x

r

P(6 6 6r6 6r or  6 6r6 6r6 or c) � 5C3¢ 1
6 ≤ 3¢ 5

6 ≤ 2

�
5!

3!2! ¢ 1
6 ≤ 3¢ 5

6 ≤ 2

�
125

3888

P � ¢ 1
6 ≤ 3¢ 5

6 ≤ 2

�
1
6 ?

1
6 ?

5
6 ?

1
6 ?

5
6 � ¢ 1

6 ≤ 3¢ 5
6 ≤ 2

rrrr

rr
rrrrr

� 1 �
35,673
54,145 �

18,472
54,145.�

48C5

52C5
�

35,673
54,145.

�
(4 ? 13C3)(3 ? 13C2)

52C5
�

429
4165,

�
(4C1)(4C1)(4C1)(4C1)(4C1)

52C5
�

64
162,435.

�
(4C3)(4C2)

52C5
�

1
108,290.

�
(4C4)(4C1)

52C5
�

1
649,740.

P(4 aces) �
(4C4)(48C1)

52C5
�

1
54,145.
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we shall assume that

P(A wins any one game) P(B wins any one game)

(a) P(A wins all 3 games) � P(A1 A2 A3) � P(A1) P(A2) P(A3)

assuming that the results of each game are independent of the results of any others. (This assumption would
not be justifiable if either player were psychologically influenced by the other one’s winning or losing.)

(b) In any one game the probability of a nondraw (i.e., either A or B wins) is and the
probability of a draw is Then the probability of 2 draws in 3 trials is (see Problem 1.37)

(c) P(A and B win alternately) � P(A wins then B wins then A wins

or B wins then A wins then B wins)

� P(A1 B2 A3) � P(B1 A2 B3)

� P(A1)P(B2)P(A3) � P(B1)P(A2)P(B3)

�

(d) P(B wins at least one game) � 1 � P(B wins no game)

1.40. A and B play a game in which they alternately toss a pair of dice. The one who is first to get a total of 
7 wins the game. Find the probability that (a) the one who tosses first will win the game, (b) the one who
tosses second will win the game.

(a) The probability of getting a 7 on a single toss of a pair of dice, assumed fair, is 1 6 as seen from Problem 1.9
and Fig. 1-9. If we suppose that A is the first to toss, then A will win in any of the following mutually
exclusive cases with indicated associated probabilities:

(1) A wins on 1st toss. Probability � .

(2) A loses on 1st toss, B then loses, A then wins. Probability �

(3) A loses on 1st toss, B loses, A loses, B loses, A wins. Probability �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Then the probability that A wins is

where we have used the result 6 of Appendix A with x � (5 6)2.

(b) The probability that B wins the game is similarly

�
5>36

1 � (5>6)2
�

5
11

a5
6b a1

6b � a5
6b a5

6b a5
6b a1

6b � c� a5
6b a1

6b c1 � a5
6b

2

� a5
6b

4

� cd

>
�

1
6 B1 � ¢ 5

6 ≤ 2

� ¢ 5
6 ≤ 4

� cR �
1>6

1 � (5>6)2 �
6

11

¢1
6 ≤ � ¢5

6 ≤ ¢5
6 ≤ ¢ 1

6 ≤ � ¢ 5
6 ≤ ¢5

6 ≤ ¢ 5
6 ≤ ¢5

6 ≤ ¢ 1
6 ≤ � c

¢ 5
6 ≤ ¢ 5

6 ≤ ¢5
6 ≤ ¢ 5

6 ≤ ¢1
6 ≤ .

¢ 5
6 ≤ ¢ 5

6 ≤ ¢ 1
6 ≤ .

1
6

>

� 1 � ¢ 2
3 ≤ ¢ 2

3 ≤ ¢ 2
3 ≤ �

19
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� 1 � P(Br1) P(Br2) P(Br3)

� 1 � P(Br1> Br2> Br3 )

¢ 1
2 ≤ ¢ 1

3 ≤ ¢ 1
2 ≤ � ¢ 1

3 ≤ ¢ 1
2 ≤ ¢ 1

3 ≤ �
5
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>>>>

¢3

2
≤ p2q3�2 � 3 ¢ 1

6 ≤ 2 ¢ 5
6 ≤ �

5
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p � 1 � q �
1
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1
2 �

1
3 �

5
6
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2 ≤ �

1
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Therefore, we would give 6 to 5 odds that the first one to toss will win. Note that since

the probability of a tie is zero. This would not be true if the game was limited. See Problem 1.100.

1.41. A machine produces a total of 12,000 bolts a day, which are on the average 3% defective. Find the prob-
ability that out of 600 bolts chosen at random, 12 will be defective.

Of the 12,000 bolts, 3%, or 360, are defective and 11,640 are not. Then:

Required probability

1.42. A box contains 5 red and 4 white marbles. Two marbles are drawn successively from the box without re-
placement, and it is noted that the second one is white. What is the probability that the first is also white?

Method 1
If W1, W2 are the events “white on 1st draw,” “white on 2nd draw,” respectivley, we are looking for P(W1 W2).
This is given by

Method 2
Since the second is known to be white, there are only 3 ways out of the remaining 8 in which the first can be
white, so that the probability is 3 8.

1.43. The probabilities that a husband and wife will be alive 20 years from now are given by 0.8 and 0.9, respec-
tively. Find the probability that in 20 years (a) both, (b) neither, (c) at least one, will be alive.

Let H, W be the events that the husband and wife, respectively, will be alive in 20 years. Then P(H) � 0.8,
P(W) � 0.9. We suppose that H and W are independent events, which may or may not be reasonable.

(a) P(both will be alive) � P(H W ) � P(H)P(W ) � (0.8)(0.9) � 0.72.

(b) P(neither will be alive) � P(H W ) � P(H ) P(W ) � (0.2)(0.1) � 0.02.

(c) P(at least one will be alive) � 1 �P(neither will be alive) � 1 �0.02 � 0.98.

1.44. An inefficient secretary places n different letters into n differently addressed envelopes at random. Find the
probability that at least one of the letters will arrive at the proper destination.

Let A1, A2, . . . An denote the events that the 1st, 2nd, . . . , nth letter is in the correct envelope. Then the event that
at least one letter is in the correct envelope is A1 A2 An, and we want to find P(A1 A2 An).
From a generalization of the results (10) and (11), page 6, we have

(1)

where P(Ak) the sum of the probabilities of Ak from 1 to n, P(Aj Ak) is the sum of the probabilities of Aj>>aa
� c � (�1)n�1P(A1 > A2 >c>  An)

P(A1 <  A2 <c <  An) � aP(Ak) � a P(Aj > Ak ) � a P(Ai > Aj > Ak)

< c <<< c<<

rrr>r

>

>

P(W1 uW2) �
P(W1 > W2)

P(W2)
�

(4>9)(3>8)

4>9 �
3
8

u

�
360C12 11,640C588

12,000C600

6
11 �

5
11 � 1
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Ak with j and k from 1 to n and k j, etc. We have, for example, the following:

(2) and similarly

since, of the n envelopes, only 1 will have the proper address. Also

(3)

since, if the 1st letter is in the proper envelope, then only 1 of the remaining n �1 envelopes will be proper. In a
similar way we find

(4) P(A1 > A2 >A3) � P(A1) P(A2 u A1) P(A3 u A1 > A2) � a1
nb a 1

n � 1b a 1
n � 2b

P(A1 > A2) � P(A1) P(A2 u A1) � a1
nb a 1

n � 1b

P(Ak) �
1
nP(A1) �

1
n

�



probability is

From calculus we know that (see Appendix A)

so that for x � –1

or

It follows that if n is large, the required probability is very nearly . This means that there
is a good chance of at least 1 letter arriving at the proper destination. The result is remarkable in that the
probability remains practically constant for all n 10. Therefore, the probability that at least 1 letter will arrive
at its proper destination is practically the same whether n is 10 or 10,000.

1.45. Find the probability that n people (n 365) selected at random will have n different birthdays.

We assume that there are only 365 days in a year and that all birthdays are equally probable, assumptions which
are not quite met in reality.

The first of the n people has of course some birthday with probability 365 365 � 1. Then, if the second is to
have a different birthday, it must occur on one of the other 364 days. Therefore, the probability that the second
person has a birthday different from the first is 364 365. Similarly the probability that the third person has a
birthday different from the first two is 363 365. Finally, the probability that the nth person has a birthday>

>
>

�

�

1 � e�1 � 0.6321

1 �
1
2! �

1
3! � c � 1 � e�1

e�1 � 1 � a1 �
1
2! �

1
3! � cb

ex � 1 � x �
x2

2! �
x3

3! � c

� 1 �
1
2! �

1
3! � c� (�1)n�1 1

n!

� c � (�1)n�1an
n
b a 1

n!b

P(A1 < A2<  c<  An) � an
1
b a1

nb � an
2
b a1

nb a 1
n � 1b � an

3
b a1

nb a 1
n � 1b a 1

n � 2b
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different from the others is (365 � n � l) 365. We therefore have

P(all n birthdays are different) 

1.46. Determine how many people are required in Problem 1.45 to make the probability of distinct birthdays less
than 1 2.

Denoting the given probability by p and taking natural logarithms, we find

(1)

But we know from calculus (Appendix A, formula 7) that

(2) ln (1 � x) � �x �
x 2

2 �
x 3

3 � c

ln p � ln a1 �
1

365b � ln a1 �
2

365b � c� ln a1 �
n � 1
365 b

>

� a1 �
1

365b a1 �
2

365b c a1 �
n � 1
365 b

�
365
365 ?

364
365 ?

363
365

c

365 � n � 1
365

>

etc., and finally

(5)

Now in the sum there are terms all having the value given by (3). Similarly in

, there are terms all having the value given by (4). Therefore, the requiredan
3
b � nC3a P(Ai > Aj> Ak)

an
2
b � nC2a P(Aj > Ak)

P(A1>  A2 >c  > An) � a1
nb a 1

n � 1bc a1
1b �

1
n!



so that (1) can be written

(3)

Using the facts that for n � 2, 3, . . . (Appendix A, formulas 1 and 2)

(4)

we obtain for (3)

(5)

For n small compared to 365, say, n 30, the second and higher terms on the right of (5) are negligible
compared to the first term, so that a good approximation in this case is

(6) In 

(6) [&!ln!p�*frac*{n(n-1)}{730}&]
For Therefore, we have

(7) or n2 � n � 506 � 0 or (n �23)(n � 22) � 0

so that n � 23. Our conclusion therefore is that, if n is larger than 23, we can give better than even odds that at
least 2 people will have the same birthday.

SUPPLEMENTARY PROBLEMS

Calculation of probabilities
1.47. Determine the probability p, or an estimate of it, for each of the following events:

(a) A king, ace, jack of clubs, or queen of diamonds appears in drawing a single card from a well-shuffled
ordinary deck of cards.

(b) The sum 8 appears in a single toss of a pair of fair dice.

(c) A nondefective bolt will be found next if out of 600 bolts already examined, 12 were defective.

(d ) A 7 or 11 comes up in a single toss of a pair of fair dice.

(e) At least 1 head appears in 3 tosses of a fair coin.

1.48. An experiment consists of drawing 3 cards in succession from a well-shuffled ordinary deck of cards. Let A1 be
the event “king on first draw,” A2 the event “king on second draw,” and A3 the event “king on third draw.” State
in words the meaning of each of the following:

(a) (b) (c) (d) (e)

1.49. A marble is drawn at random from a box containing 10 red, 30 white, 20 blue, and 15 orange marbles. Find the
probability that it is (a) orange or red, (b) not red or blue, (c) not blue, (d) white, (e) red, white, or blue.

1.50. Two marbles are drawn in succession from the box of Problem 1.49, replacement being made after each
drawing. Find the probability that (a) both are white, (b) the first is red and the second is white, (c) neither is
orange, (d) they are either red or white or both (red and white), (e) the second is not blue, (f) the first is orange,
(g) at least one is blue, (h) at most one is red, (i) the first is white but the second is not, ( j) only one is red.

P[(A1 > A2)<  (Ar2  > A3)].P(Ar1>  Ar2 > Ar3),P(Ar1  < Ar2),P(A1 < A2),P(A1>  Ar2 ),

n(n � 1)
730 � 0.693

p �
1
2, ln p � �ln  2 � �0.693.

p �
n(n � 1)

730

�

ln p � �
n(n � 1)

730 �
n(n � 1)(2n � 1)

12(365)2 � c

1 � 2 � c � (n � 1) �
n(n � 1)

2 ,    12 � 22 � c � (n � 1)2 �
n(n � 1)(2n � 1)

6

ln p � � c1 � 2 � c� (n � 1)
365 d �

1
2 c

12 � 22 � c� (n � 1)2

(365)2 d �c
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1.51. Work Problem 1.50 with no replacement after each drawing.

Conditional probability and independent events
1.52. A box contains 2 red and 3 blue marbles. Find the probability that if two marbles are drawn at random (without

replacement), (a) both are blue, (b) both are red, (c) one is red and one is blue.

1.53. Find the probability of drawing 3 aces at random from a deck of 52 ordinary cards if the cards are 
(a) replaced, (b) not replaced.

1.54. If at least one child in a family with 2 children is a boy, what is the probability that both children are boys?

1.55. Box I contains 3 red and 5 white balls, while Box II contains 4 red and 2 white balls. A ball is chosen at random
from the first box and placed in the second box without observing its color. Then a ball is drawn from the
second box. Find the probability that it is white.

Bayes’ theorem or rule
1.56. A box contains 3 blue and 2 red marbles while another box contains 2 blue and 5 red marbles. A marble

drawn at random from one of the boxes turns out to be blue. What is the probability that it came from the
first box?

1.57. Each of three identical jewelry boxes has two drawers. In each drawer of the first box there is a gold watch. In
each drawer of the second box there is a silver watch. In one drawer of the third box there is a gold watch while
in the other there is a silver watch. If we select a box at random, open one of the drawers and find it to contain a
silver watch, what is the probability that the other drawer has the gold watch?

1.58. Urn I has 2 white and 3 black balls; Urn II, 4 white and 1 black; and Urn III, 3 white and 4 black. An urn is
selected at random and a ball drawn at random is found to be white. Find the probability that Urn I was
selected.

Combinatorial analysis, counting, and tree diagrams
1.59. A coin is tossed 3 times. Use a tree diagram to determine the various possibilities that can arise.

1.60. Three cards are drawn at random (without replacement) from an ordinary deck of 52 cards. Find the number of
ways in which one can draw (a) a diamond and a club and a heart in succession, (b) two hearts and then a club
or a spade.

1.61. In how many ways can 3 different coins be placed in 2 different purses?

Permutations
1.62. Evaluate (a) 4P2, (b) 7P5, (c) 10 P3.

1.63. For what value of n is n�1P3 � nP4?

1.64. In how many ways can 5 people be seated on a sofa if there are only 3 seats available?

1.65. In how many ways can 7 books be arranged on a shelf if (a) any arrangement is possible, (b) 3 particular books
must always stand together, (c) two particular books must occupy the ends?

CHAPTER 1 Basic Probability28



1.66. How many numbers consisting of five different digits each can be made from the digits 1, 2, 3, . . . , 9 if 
(a) the numbers must be odd, (b) the first two digits of each number are even?

1.67. Solve Problem 1.66 if repetitions of the digits are allowed.

1.68. How many different three-digit numbers can be made with 3 fours, 4 twos, and 2 threes?

1.69. In how many ways can 3 men and 3 women be seated at a round table if (a) no restriction is imposed,
(b) 2 particular women must not sit together, (c) each woman is to be between 2 men?

Combinations
1.70. Evaluate (a) 5C3, (b) 8C4, (c) 10C8.

1.71. For what value of n is 3 n�1C3 � 7 nC2?

1.72. In how many ways can 6 questions be selected out of 10?

1.73. How many different committees of 3 men and 4 women can be formed from 8 men and 6 women?

1.74. In how many ways can 2 men, 4 women, 3 boys, and 3 girls be selected from 6 men, 8 women, 4 boys and 5
girls if (a) no restrictions are imposed, (b) a particular man and woman must be selected?

1.75. In how many ways can a group of 10 people be divided into (a) two groups consisting of 7 and 3 people,
(b) three groups consisting of 5, 3, and 2 people?

1.76. From 5 statisticians and 6 economists, a committee consisting of 3 statisticians and 2 economists is to be
formed. How many different committees can be formed if (a) no restrictions are imposed, (b) 2 particular
statisticians must be on the committee, (c) 1 particular economist cannot be on the committee?

1.77. Find the number of (a) combinations and (b) permutations of 4 letters each that can be made from the letters of
the word Tennessee.

Binomial coefficients

1.78. Calculate (a) 6C3, (b) (c) (8C2)(4C3) 12C5.

1.79. Expand (a) (x � y)6, (b) (x � y)4, (c) (x � x –1) 5, (d) (x2 � 2)4.

1.80. Find the coefficient of x in

Probability using combinatorial analysis
1.81. Find the probability of scoring a total of 7 points (a) once, (b) at least once, (c) twice, in 2 tosses of a pair of 

fair dice.

ax �
2
xb

9

.

>a11

4
b,

??
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1.82. Two cards are drawn successively from an ordinary deck of 52 well-shuffled cards. Find the probability that
(a) the first card is not a ten of clubs or an ace; (b) the first card is an ace but the second is not; (c) at least one
card is a diamond; (d) the cards are not of the same suit; (e) not more than 1 card is a picture card ( jack, queen,
king); (f ) the second card is not a picture card; (g) the second card is not a picture card given that the first was a
picture card; (h) the cards are picture cards or spades or both.

1.83. A box contains 9 tickets numbered from 1 to 9, inclusive. If 3 tickets are drawn from the box 1 at a time, find
the probability that they are alternately either odd, even, odd or even, odd, even.

1.84. The odds in favor of A winning a game of chess against B are 3:2. If 3 games are to be played, what are 
the odds (a) in favor of A winning at least 2 games out of the 3, (b) against A losing the first 2 games
to B?

1.85. In the game of bridge, each of 4 players is dealt 13 cards from an ordinary well-shuffled deck of 52 cards. 
Find the probability that one of the players (say, the eldest) gets (a) 7 diamonds, 2 clubs, 3 hearts, and 1 spade;
(b) a complete suit.

1.86. An urn contains 6 red and 8 blue marbles. Five marbles are drawn at random from it without replacement. Find
the probability that 3 are red and 2 are blue.

1.87. (a) Find the probability of getting the sum 7 on at least 1 of 3 tosses of a pair of fair dice, (b) How many tosses
are needed in order that the probability in (a) be greater than 0.95?

1.88. Three cards are drawn from an ordinary deck of 52 cards. Find the probability that (a) all cards are of one suit,
(b) at least 2 aces are drawn.

1.89. Find the probability that a bridge player is given 13 cards of which 9 cards are of one suit.

Miscellaneous problems
1.90. A sample space consists of 3 sample points with associated probabilities given by 2p, p2, and 4p �1. Find the

value of p.

1.91. How many words can be made from 5 letters if (a) all letters are different, (b) 2 letters are identical, (c) all
letters are different but 2 particular letters cannot be adjacent?

1.92. Four integers are chosen at random between 0 and 9, inclusive. Find the probability that (a) they are all
different, (b) not more than 2 are the same.

1.93. A pair of dice is tossed repeatedly. Find the probability that an 11 occurs for the first time on the 
6th toss.

1.94. What is the least number of tosses needed in Problem 1.93 so that the probability of getting an 11 will be
greater than (a) 0.5, (b) 0.95?

1.95. In a game of poker find the probability of getting (a) a royal flush, which consists of the ten, jack, queen, king,
and ace of a single suit; (b) a full house, which consists of 3 cards of one face value and 2 of another (such as 3
tens and 2 jacks); (c) all different cards; (d) 4 aces.

CHAPTER 1 Basic Probability30



1.96. The probability that a man will hit a target is If he shoots at the target until he hits it for the first time, find
the probability that it will take him 5 shots to hit the target.

1.97. (a) A shelf contains 6 separate compartments. In how many ways can 4 indistinguishable marbles be placed in
the compartments? (b) Work the problem if there are n compartments and r marbles. This type of problem
arises in physics in connection with Bose-Einstein statistics.

1.98. (a) A shelf contains 6 separate compartments. In how many ways can 12 indistinguishable marbles be
placed in the compartments so that no compartment is empty? (b) Work the problem if there are n
compartments and r marbles where r n. This type of problem arises in physics in connection with 
Fermi-Dirac statistics.

1.99. A poker player has cards 2, 3, 4, 6, 8. He wishes to discard the 8 and replace it by another card which he hopes
will be a 5 (in which case he gets an “inside straight”). What is the probability that he will succeed assuming
that the other three players together have (a) one 5, (b) two 5s, (c) three 5s, (d) no 5? Can the problem be
worked if the number of 5s in the other players’ hands is unknown? Explain.

1.100. Work Problem 1.40 if the game is limited to 3 tosses.

1.101. Find the probability that in a game of bridge (a) 2, (b) 3, (c) all 4 players have a complete suit.

ANSWERS TO SUPPLEMENTARY PROBLEMS

1.47. (a) 5 26 (b) 5 36 (c) 0.98 (d) 2 9 (e) 7 8

1.48. (a) Probability of king on first draw and no king on second draw.

(b) Probability of either a king on first draw or a king on second draw or both.

(c) No king on first draw or no king on second draw or both (no king on first and second draws).

(d) No king on first, second, and third draws.

(e) Probability of either king on first draw and king on second draw or no king on second draw and king on
third draw.

1.49. (a) 1 3 (b) 3 5 (c) 11 15 (d) 2 5 (e) 4 5

1.50. (a) 4 25 (c) 16 25 (e) 11 15 (g) 104 225 (i) 6 25
(b) 4 75 (d) 64 225 (f) 1 5 (h) 221 225 ( j) 52 225

1.51. (a) 29 185 (c) 118 185 (e) 11 15 (g) 86 185 (i) 9 37
(b) 2 37 (d) 52 185 (f) 1 5 (h) 182 185 ( j) 26 111

1.52. (a) 3 10 (b) 1 10 (c) 3 5 1.53. (a) 1 2197 (b) 1 17,576

1.54. 1 3 1.55. 21 56 1.56. 21 31 1.57. 1 3 1.58. 14 57>>>>>
>>>>>

>>>>>
>>>>>

>>>>>
>>>>>

>>>>>

>>>>

�

2
3.
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1.59.

1.60. (a) 13 	 13 	 13 (b) 13 	 12 	 26 1.61. 8 1.62. (a) 12 (b) 2520 (c) 720

1.63. n � 5 1.64. 60 1.65. (a) 5040 (b) 720 (c) 240 1.66. (a) 8400 (b) 2520

1.67. (a) 32,805 (b) 11,664 1.68. 26 1.69. (a) 120 (b) 72 (c) 12

1.70. (a) 10 (b) 70 (c) 45 1.71. n � 6 1.72. 210 1.73. 840

1.74. (a) 42,000 (b) 7000 1.75. (a) 120 (b) 2520 1.76. (a) 150 (b) 45 (c) 100

1.77. (a) 17 (b) 163 1.78. (a) 20 (b) 330 (c) 14 99

1.79. (a) x 6 � 6x 5y � 15x 4y 2 � 20x 3y 3 � 15x 2y 3 � 6xy 5 � y 6

(b) x 4 � 4x 3y � 6x 2y 2 � 4xy3 � y 4

(c) x 5 � 5x 3 � 10x � 10x –1 � 5x –3 � x –5

(d) x 8 � 8x 6 � 24x 4 � 32x 2 � 16

1.80. 2016 1.81. (a) 5 18 (b) 11 36 (c) 1 36

1.82. (a) 47 52 (b) 16 221 (c) 15 34 (d) 13 17 (e) 210 221 (f) 10 13 (g) 40 51 (h) 77 442

1.83. 5 18 1.84. (a) 81 : 44 (b) 21 : 4

1.85. (a) (13C7)(13C2)(13C3)(13C1) 52C13 (b) 4 52C13 1.86. (6C3)(8C2) 14C5

1.87. (a) 91 216 (b) at least 17 1.88. (a) 4 13C3 /52C3 (b) (4C2 48C1�4C3) 52C3

1.89. 4(13C9)(39C4) 52C13 1.90. 1.91. (a) 120 (b) 60 (c) 72211 � 3>

>?>?>

>>>

>

>>>>>>>>

>>>

>



1.92. (a) 63 125 (b) 963 1000 1.93. 1,419,857 34,012,224 1.94. (a) 13 (b) 53

1.95. (a) 4 52C5 (b) (13)(2)(4)(6) 52C5 (c) 45 (13C5) 52C5 (d) (5)(4)(3)(2) (52)(51)(50)(49)

1.96. 2 243 1.97. (a) 126 (b) n � r�1Cn–1 1.98. (a) 462 (b) r �1Cn �1

1.99. (a) 3 32 (b) 1 16 (c) 1 32 (d) 1 8

1.100. prob. A wins � 61 216, prob. B wins � 5 36, prob. of tie � 125 216

1.101. (a) 12 (52C13)(39C13) (b) 24 (52C13)(39C13)(26C13)>>

>>>

>>>>

>

>>>>

>>>
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CHAPTER 12

Random Variables and
Probability Distributions

Random Variables
Suppose that to each point of a sample space we assign a number. We then have a function defined on the sam-
ple space. This function is called a random variable (or stochastic variable) or more precisely a random func-
tion (stochastic function). It is usually denoted by a capital letter such as X or Y. In general, a random variable
has some specified physical, geometrical, or other significance.

EXAMPLE 2.1 Suppose that a coin is tossed twice so that the sample space is S � {HH, HT, TH, TT}. Let X represent
the number of heads that can come up. With each sample point we can associate a number for X as shown in Table 2-1.
Thus, for example, in the case of HH (i.e., 2 heads), X � 2 while for TH (1 head), X � 1. It follows that X is a random
variable.

CHAPTER 2

Sample Point HH HT TH TT

X 2 1 1 0

Table 2-1

It should be noted that many other random variables could also be defined on this sample space, for example, the
square of the number of heads or the number of heads minus the number of tails.

A random variable that takes on a finite or countably infinite number of values (see page 4) is called a dis-
crete random variable while one which takes on a noncountably infinite number of values is called a nondiscrete
random variable.

Discrete Probability Distributions
Let X be a discrete random variable, and suppose that the possible values that it can assume are given by x1, x2,
x3, . . . , arranged in some order. Suppose also that these values are assumed with probabilities given by

P(X � xk) � f (xk) k � 1, 2, . . . (1)

It is convenient to introduce the probability function, also referred to as probability distribution, given by 

P(X � x) � f (x) (2)

For x � xk, this reduces to (1) while for other values of x, f (x) � 0.
In general, f (x) is a probability function if

1. f (x) � 0

2.

where the sum in 2 is taken over all possible values of x.

a
x

f (x) � 1
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EXAMPLE 2.2 Find the probability function corresponding to the random variable X of Example 2.1. Assuming that
the coin is fair, we have

Then

The probability function is thus given by Table 2-2.

P(X � 0) � P(TT) �
1
4

P(X � 1) � P(HT < TH ) � P(HT ) � P(TH ) �
1
4 �

1
4 �

1
2

P(X � 2) � P(HH) �
1
4

P(HH ) �
1
4  P(HT ) �

1
4  P(TH ) �

1
4  P(T T ) �

1
4

Distribution Functions for Random Variables
The cumulative distribution function, or briefly the distribution function, for a random variable X is defined by

F(x) � P(X � x) (3)

where x is any real number, i.e., � � x � .
The distribution function F(x) has the following properties:

1. F(x) is nondecreasing [i.e., F(x) � F(y) if x � y].
2.

3. F(x) is continuous from the right [i.e., for all x].

Distribution Functions for Discrete Random Variables
The distribution function for a discrete random variable X can be obtained from its probability function by noting
that, for all x in (� , ),

(4)

where the sum is taken over all values u taken on by X for which u � x.
If X takes on only a finite number of values x1, x2, . . . , xn, then the distribution function is given by

(5)

EXAMPLE 2.3 (a) Find the distribution function for the random variable X of Example 2.2. (b) Obtain its graph.

(a) The distribution function is

F(x) � d0 �` � x � 0
1
4 0 �  x � 1
3
4 1 � x � 2

1 2 � x � `

F(x) � e0 �` � x � x1

f (x1) x1 � x � x2

f (x1) � f (x2) x2 � x � x3

(  (
f (x1) � c� f (xn) xn � x � `

F(x) � P(X � x) � a
u�x

f (u)

``

lim
hS0�

F(x � h) � F(x)

lim
xS�`

F(x) � 0;  lim
xS`

F(x) � 1.

``

x 0 1 2

f (x) 1 4 1 2 1 4>>>

Table 2-2
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(b) The graph of F(x) is shown in Fig. 2-1.

The following things about the above distribution function, which are true in general, should be noted.

1. The magnitudes of the jumps at 0, 1, 2 are which are precisely the probabilities in Table 2-2. This fact
enables one to obtain the probability function from the distribution function.

2. Because of the appearance of the graph of Fig. 2-1, it is often called a staircase function or step function.
The value of the function at an integer is obtained from the higher step; thus the value at 1 is and not . This
is expressed mathematically by stating that the distribution function is continuous from the right at 0, 1, 2.

3. As we proceed from left to right (i.e. going upstairs), the distribution function either remains the same or
increases, taking on values from 0 to 1. Because of this, it is said to be a monotonically increasing function.

It is clear from the above remarks and the properties of distribution functions that the probability function of
a discrete random variable can be obtained from the distribution function by noting that

(6)

Continuous Random Variables
A nondiscrete random variable X is said to be absolutely continuous, or simply continuous, if its distribution func-
tion may be represented as

(7)

where the function f (x) has the properties

1. f (x) � 0

2.

It follows from the above that if X is a continuous random variable, then the probability that X takes on any
one particular value is zero, whereas the interval probability that X lies between two different values, say, a and b,
is given by

(8)P(a � X � b) � 3
b

a
f (x) dx

3
`

�`
f (x) dx � 1

F(x) � P(X � x) � 3
x

�`
f (u) du  (�` � x � `)

f (x) � F(x) � lim
uSx�

F(u).

1
4

3
4

1
4,

1
2,

1
4

Fig. 2-1



EXAMPLE 2.4 If an individual is selected at random from a large group of adult males, the probability that his height
X is precisely 68 inches (i.e., 68.000 . . . inches) would be zero. However, there is a probability greater than zero than X
is between 67.000 . . . inches and 68.500 . . . inches, for example.

A function f (x) that satisfies the above requirements is called a probability function or probability distribu-
tion for a continuous random variable, but it is more often called a probability density function or simply den-
sity function. Any function f (x) satisfying Properties 1 and 2 above will automatically be a density function, and
required probabilities can then be obtained from (8).

EXAMPLE 2.5 (a) Find the constant c such that the function

is a density function, and (b) compute P(1 � X � 2).

(a) Since f (x) satisfies Property 1 if c � 0, it must satisfy Property 2 in order to be a density function. Now

and since this must equal 1, we have c � 1 9.

(b)

In case f (x) is continuous, which we shall assume unless otherwise stated, the probability that X is equal
to any particular value is zero. In such case we can replace either or both of the signs � in (8) by �. Thus, in
Example 2.5,

EXAMPLE 2.6 (a) Find the distribution function for the random variable of Example 2.5. (b) Use the result of (a) to
find P(1 � x � 2).

(a) We have

If x � 0, then F(x) � 0. If 0 � x � 3, then 

If x � 3, then

Thus the required distribution function is

Note that F(x) increases monotonically from 0 to 1 as is required for a distribution function. It should also be noted
that F(x) in this case is continuous.

F(x) � •
0  x � 0

x3>27 0 � x � 3

1  x � 3

F(x) � 3
3

0
f (u) du � 3

x

3
f (u) du � 3

3

0

1
9

u2 du � 3
x

3
 0 du � 1

F(x) � 3
x

0
f  (u)  du � 3

x

0

1
9

u2 du �
x3

27

F(x) � P(X � x) � 3
x

�`
f  (u) du

P(1 � X � 2) � P(1 � X � 2) � P(1 � X � 2) � P(1 � X � 2) �
7

27

P(1 � X � 2) � 3
2

1

1
9  x2 dx �

x3

27  2  2
1

�
8

27 �
1

27 �
7

27

>

3
`

�`
f (x) dx � 3

3

0
cx2 dx �

cx3

3
 2  3

0
� 9c

f (x) � bcx2  0 � x � 3

0   otherwise
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(b) We have

as in Example 2.5.

The probability that X is between x and is given by

(9)

so that if is small, we have approximately

(10)

We also see from (7) on differentiating both sides that

(11)

at all points where f (x) is continuous; i.e., the derivative of the distribution function is the density function.
It should be pointed out that random variables exist that are neither discrete nor continuous. It can be shown

that the random variable X with the following distribution function is an example.

In order to obtain (11), we used the basic property

(12)

which is one version of the Fundamental Theorem of Calculus.

Graphical Interpretations
If f (x) is the density function for a random variable X, then we can represent y � f (x) graphically by a curve as
in Fig. 2-2. Since f (x) � 0, the curve cannot fall below the x axis. The entire area bounded by the curve and the
x axis must be 1 because of Property 2 on page 36. Geometrically the probability that X is between a and b, i.e.,
P(a � X � b), is then represented by the area shown shaded, in Fig. 2-2.

The distribution function F(x) � P(X � x) is a monotonically increasing function which increases from 0 to
1 and is represented by a curve as in Fig. 2-3.

d
dx3

x

a
f (u) du � f  (x)

F(x) � μ
0 x � 1

x
2
 1 � x � 2

1 x � 2

dF(x)
dx

� f (x)

P(x � X � x � 
x) � f (x)
x


x

P(x � X � x � 
x) � 3
x�
x

x
f  (u) du

x � 
x

P(1 � X � 2) 5 P(X � 2) � P(X � 1)

5 F(2) � F(1)

5
23

27
�

13

27
�

7
27

Fig. 2-2 Fig. 2-3



Joint Distributions 
The above ideas are easily generalized to two or more random variables. We consider the typical case of two ran-
dom variables that are either both discrete or both continuous. In cases where one variable is discrete and the other
continuous, appropriate modifications are easily made. Generalizations to more than two variables can also be
made.

1. DISCRETE CASE. If X and Y are two discrete random variables, we define the joint probability func-
tion of X and Y by

P(X � x, Y � y) � f (x, y) (13)

where 1. f (x, y) � 0

2.

i.e., the sum over all values of x and y is 1.
Suppose that X can assume any one of m values x1, x2, . . . , xm and Y can assume any one of n values y1, y2, . . . , yn.

Then the probability of the event that X � xj and Y � yk is given by 

P(X � xj, Y � yk) � f (xj, yk) (14)

A joint probability function for X and Y can be represented by a joint probability table as in Table 2-3. The
probability that X � xj is obtained by adding all entries in the row corresponding to xi and is given by

(15)P(X � xj) � f1(xj) � a
n

k�1
f (xj, yk)

a
x
a

y
f (x, y) � 1
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X

Y
y1 y2 yn Totals

x1 f (x1, y1) f (x1, y2) f (x1, yn) f1 (x1)

x2 f (x2, y1) f (x2, y2) f (x2, yn) f1 (x2)

xm f (xm, y1 ) f (xm, y2 ) f (xm, yn) f1 (xm)

Totals f2 (y1 ) f2 (y2 ) f2 (yn) 1 Grand Totaldc
S

c

(((((

c

c

c

Table 2-3

T

For j � 1, 2, . . . , m, these are indicated by the entry totals in the extreme right-hand column or margin of Table 2-3.
Similarly the probability that Y � yk is obtained by adding all entries in the column corresponding to yk and is
given by

(16)

For k � 1, 2, . . . , n, these are indicated by the entry totals in the bottom row or margin of Table 2-3.
Because the probabilities (15) and (16) are obtained from the margins of the table, we often refer to 

f1(xj) and f2(yk) [or simply f1(x) and f2(y)] as the marginal probability functions of X and Y, respectively. 

P(Y � yk) � f2(yk) � a
m

j�1
f (xj, yk)
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It should also be noted that

(17)

which can be written

(18)

This is simply the statement that the total probability of all entries is 1. The grand total of 1 is indicated in the
lower right-hand corner of the table.

The joint distribution function of X and Y is defined by

(19)

In Table 2-3, F(x, y) is the sum of all entries for which xj � x and yk � y.

2. CONTINUOUS CASE. The case where both variables are continuous is obtained easily by analogy with
the discrete case on replacing sums by integrals. Thus the joint probability function for the random vari-
ables X and Y (or, as it is more commonly called, the joint density function of X and Y ) is defined by

1. f (x, y) � 0

2.

Graphically z � f(x, y) represents a surface, called the probability surface, as indicated in Fig. 2-4. The total vol-
ume bounded by this surface and the xy plane is equal to 1 in accordance with Property 2 above. The probability
that X lies between a and b while Y lies between c and d is given graphically by the shaded volume of Fig. 2-4 and
mathematically by

(20)P(a � X � b,  c � Y � d ) � 3
b

x�a
3

d

y�c
f (x, y) dx dy

3
`

�`
3
`

�`
f (x, y) dx dy � 1

F(x, y) � P(X �  x,  Y �  y) � a  
u� x 

a
v� y

f (u, v)

a
m

j�1
 a

n

k�1
f (xj, yk) � 1

a
m

j�1
f1 (xj) � 1 a

n

k�1
f2 (yk) � 1

More generally, if A represents any event, there will be a region A of the xy plane that corresponds to it. In such
case we can find the probability of A by performing the integration over A, i.e.,

(21)

The joint distribution function of X and Y in this case is defined by

(22)F(x, y) � P(X �  x,  Y � y) � 3
x

u��`
3

y

v��`
f (u, v) du dv

P(A) � 33
5A

f (x, y) dx dy

5
5

Fig. 2-4



It follows in analogy with (11), page 38, that

(23)

i.e., the density function is obtained by differentiating the distribution function with respect to x and y.
From (22) we obtain

(24)

(25)

We call (24) and (25) the marginal distribution functions, or simply the distribution functions, of X and Y, respec-
tively. The derivatives of (24) and (25) with respect to x and y are then called the marginal density functions, or
simply the density functions, of X and Y and are given by

(26)

Independent Random Variables
Suppose that X and Y are discrete random variables. If the events X � x and Y � y are independent events for all
x and y, then we say that X and Y are independent random variables. In such case,

(27)

or equivalently

f (x, y) � f1(x) f2(y) (28)

Conversely, if for all x and y the joint probability function f (x, y) can be expressed as the product of a function
of x alone and a function of y alone (which are then the marginal probability functions of X and Y), X and Y are
independent. If, however, f (x, y) cannot be so expressed, then X and Y are dependent.

If X and Y are continuous random variables, we say that they are independent random variables if the events
X � x and Y � y are independent events for all x and y. In such case we can write

P(X � x, Y � y) � P(X � x)P(Y � y) (29)

or equivalently

F(x, y) � F1(x)F2(y) (30)

where F1(z) and F2(y) are the (marginal) distribution functions of X and Y, respectively. Conversely, X and Y are
independent random variables if for all x and y, their joint distribution function F(x, y) can be expressed as a prod-
uct of a function of x alone and a function of y alone (which are the marginal distributions of X and Y, respec-
tively). If, however, F(x, y) cannot be so expressed, then X and Y are dependent.

For continuous independent random variables, it is also true that the joint density function f (x, y) is the prod-
uct of a function of x alone, f1(x), and a function of y alone, f2(y), and these are the (marginal) density functions
of X and Y, respectively.

Change of Variables
Given the probability distributions of one or more random variables, we are often interested in finding distribu-
tions of other random variables that depend on them in some specified manner. Procedures for obtaining these
distributions are presented in the following theorems for the case of discrete and continuous variables.

P(X � x,  Y � y) � P(X � x)P(Y � y)

f1(x) � 3
`

v��`
f (x, v) dv  f2( y) � 3

`

u��`
f (u, y) du

P(Y �  y) � F2( y) � 3
`

u��`
3

y

v��`
f (u, v) du dv

P(X �  x) � F1(x) � 3
x

u��`
3
`

v��`
f (u, v) du dv

'2F
'x'y � f (x, y)
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1. DISCRETE VARIABLES
Theorem 2-1 Let X be a discrete random variable whose probability function is f (x). Suppose that a discrete

random variable U is defined in terms of X by U � �(X), where to each value of X there corre-
sponds one and only one value of U and conversely, so that X � �(U). Then the probability func-
tion for U is given by

g(u) � f [�(u)] (31)

Theorem 2-2 Let X and Y be discrete random variables having joint probability function f (x, y). Suppose that
two discrete random variables U and V are defined in terms of X and Y by U � �1(X, Y), V �
�2 (X, Y), where to each pair of values of X and Y there corresponds one and only one pair of val-
ues of U and V and conversely, so that X � �1(U, V ), Y � �2(U, V). Then the joint probability
function of U and V is given by

g(u, v) � f [�1(u, v), �2(u, v)] (32)

2. CONTINUOUS VARIABLES
Theorem 2-3 Let X be a continuous random variable with probability density f (x). Let us define U � �(X)

where X � � (U ) as in Theorem 2-1. Then the probability density of U is given by g(u) where

g(u)|du | � f (x) |dx | (33)

or (34)

Theorem 2-4 Let X and Y be continuous random variables having joint density function f (x, y). Let us define
U � �1(X, Y ), V � �2(X, Y ) where X � �1(U, V ), Y � �2(U, V ) as in Theorem 2-2. Then the
joint density function of U and V is given by g(u, v) where

g(u, v)|du dv | � f (x, y)|dx dy | (35)

or (36)

In (36) the Jacobian determinant, or briefly Jacobian, is given by

(37)

Probability Distributions of Functions of Random Variables
Theorems 2-2 and 2-4 specifically involve joint probability functions of two random variables. In practice one
often needs to find the probability distribution of some specified function of several random variables. Either of
the following theorems is often useful for this purpose.

Theorem 2-5 Let X and Y be continuous random variables and let U � �1(X, Y ), V � X (the second choice is
arbitrary). Then the density function for U is the marginal density obtained from the joint den-
sity of U and V as found in Theorem 2-4. A similar result holds for probability functions of dis-
crete variables.

Theorem 2-6 Let f (x, y) be the joint density function of X and Y. Then the density function g(u) of the 
random variable U � �1(X, Y ) is found by differentiating with respect to u the distribution 

∞J �
'(x, y)
'(u, v)

�

'x
'u   

'x
'v

'y
'u   

'y
'v

∞

g(u, v) �  f (x, y) 2  '(x, y)
'(u, v) 

2 � f [ c1 (u, v), c2(u, v)]ZJZ

g(u) � f (x) 2  dx
du

 2 � f [c (u)]Z  cr(u)Z



function given by

(38)

Where is the region for which �1(x, y) � u.

Convolutions
As a particular consequence of the above theorems, we can show (see Problem 2.23) that the density function of
the sum of two continuous random variables X and Y, i.e., of U � X � Y, having joint density function f (x, y) is
given by

(39)

In the special case where X and Y are independent, f (x, y) � f1 (x) f2 (y), and (39) reduces to

(40)

which is called the convolution of f1 and f2, abbreviated, f1 * f2.
The following are some important properties of the convolution:

1. f1 * f2 � f2 * f1

2. f1 *( f2 * f3) � ( f1 * f2) * f3

3. f1 *( f2 � f3) � f1 * f2 � f1 * f3

These results show that f1, f2, f3 obey the commutative, associative, and distributive laws of algebra with respect
to the operation of convolution.

Conditional Distributions
We already know that if P(A) � 0,

(41)

If X and Y are discrete random variables and we have the events (A: X � x), (B: Y � y), then (41) becomes

(42)

where f (x, y) � P(X � x, Y � y) is the joint probability function and f1 (x) is the marginal probability function
for X. We define

(43)

and call it the conditional probability function of  Y given X. Similarly, the conditional probability function of X
given Y is

(44)

We shall sometimes denote f (x y) and f( y x) by f1 (x y) and f2 ( y x), respectively.
These ideas are easily extended to the case where X, Y are continuous random variables. For example, the con-

ditional density function of Y given X is

(45)f (y u x) ;
f (x, y)
f1(x)

uuuu

f  (x u  y) ;   
f (x, y)
f2(y)

f (y u  x) ;   
f (x, y)
f1(x)

P(Y � y u  X �  x) �  
f (x, y)
f1(x)

P(B uA) �  
P(A ¨  B)

P(A)

g(u) � 3
`

�`
f1(x) f2 (u � x) dx

g(u) �  3
`

�`
f (x, u � x) dx

5

G(u) � P[f1 (X, Y ) � u] � 6
5

 

 f (x, y) dx dy
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where f (x, y) is the joint density function of X and Y, and f1 (x) is the marginal density function of X. Using (45)
we can, for example, find that the probability of Y being between c and d given that x � X � x � dx is

(46)

Generalizations of these results are also available.

Applications to Geometric Probability
Various problems in probability arise from geometric considerations or have geometric interpretations. For ex-
ample, suppose that we have a target in the form of a plane region of area K and a portion of it with area K1, as
in Fig. 2-5. Then it is reasonable to suppose that the probability of hitting the region of area K1 is proportional
to K1. We thus define

P(c � Y � d u x � X � x � dx) � 3
d

c
f ( y u x) dy

Fig. 2-5

(47)

where it is assumed that the probability of hitting the target is 1. Other assumptions can of course be made. For
example, there could be less probability of hitting outer areas. The type of assumption used defines the proba-
bility distribution function.

SOLVED PROBLEMS

Discrete random variables and probability distributions
2.1. Suppose that a pair of fair dice are to be tossed, and let the random variable X denote the sum of the points.

Obtain the probability distribution for X.

The sample points for tosses of a pair of dice are given in Fig. 1-9, page 14. The random variable X is the sum of
the coordinates for each point. Thus for (3, 2) we have X � 5. Using the fact that all 36 sample points are equally
probable, so that each sample point has probability 1 36, we obtain Table 2-4. For example, corresponding to X � 5,
we have the sample points (1, 4), (2, 3), (3, 2), (4, 1), so that the associated probability is 4 36.>

>

P(hitting region of area K1) �  
K1

K

x 2 3 4 5 6 7 8 9 10 11 12

f (x) 1 36 2 36 3 36 4 36 5 36 6 36 5 36 4 36 3 36 2 36 1 36>>>>>>>>>>>

Table 2-4



2.2. Find the probability distribution of boys and girls in families with 3 children, assuming equal probabilities
for boys and girls.

Problem 1.37 treated the case of n mutually independent trials, where each trial had just two possible outcomes,
A and A�, with respective probabilities p and q � 1 � p. It was found that the probability of getting exactly x A’s
in the n trials is nCx px qn�x. This result applies to the present problem, under the assumption that successive births
(the “trials”) are independent as far as the sex of the child is concerned. Thus, with A being the event “a boy,” n � 3,
and , we have

where the random variable X represents the number of boys in the family. (Note that X is defined on the
sample space of 3 trials.) The probability function for X,

is displayed in Table 2-5.

f (x) � 3Cx Q12R
3

P(exactly x  boys) � P(X �  x) � 3Cx Q12R
xQ1

2
R3�x

 �  3Cx Q12R
3

p � q �
1
2
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x 0 1 2 3

f (x) 1 8 3 8 3 8 1 8>>>>

Table 2-5

Discrete distribution functions
2.3. (a) Find the distribution function F(x) for the random variable X of Problem 2.1, and (b) graph this distri-

bution function.

(a) We have Then from the results of Problem 2.1, we find

(b) See Fig. 2-6.

F(x)  �   g0  �`  �  x �  2

1>36  2 �   x �  3

3>36  3 �   x �  4

6>36  4 �   x �  5

(   (
35>36 11 �   x �  12

1  12 �   x �  `

F(x) � P(X � x) � gu� x f (u).

Fig. 2-6

2.4. (a) Find the distribution function F(x) for the random variable X of Problem 2.2, and (b) graph this distri-
bution function.
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(a) Using Table 2-5 from Problem 2.2, we obtain

(b) The graph of the distribution function of (a) is shown in Fig. 2-7.

F(x)  �   e0  �`  �  x � 0

1>8 0 �   x �  1

1>2 1 �   x �  2

7>8 2 �   x �  3

1  3 �  x �  `

Fig. 2-7

Continuous random variables and probability distributions
2.5. A random variable X has the density function f (x) � c (x2 � 1), where � � x � . (a) Find the value of

the constant c. (b) Find the probability that X2 lies between 1 3 and 1.

(a) We must have i.e.,

so that c � 1 �.

(b) If then either or Thus the required probability is

2.6. Find the distribution function corresponding to the density function of Problem 2.5.

�
1
2

  �   
1
p  tan �1 x

�
1
p  [tan �1 x � tan �1(�`)]  �   

1
p  B tan �1 x �  

p
2
RF(x)  � 3

x

�`
f (u) du �

1
p3

x

�`
  

du
u2 � 1

�
1
p  B tan�1 uZx

�`
R

�
2
p ¢p4 �

p
6
≤ �  

1
6

�
2
p  Btan �1(1) � tan �1¢23

3
≤ R1

p3
�!3>3

�1

 
dx

x2 � 1
�

1
p3

1

!3>3
dx

x2 � 1
�

2
p3

1

!3>3
dx

x2 � 1

�1 � X � �
23
3 .

23
3  �   X �   1

1
3 � X2 � 1,

>
3
`

�`

c dx
x2 � 1

� c tan �1 x P`
�`

� cBp
2

 �  ¢�
p
2
≤ R � 1

3
`

�`
f (x) dx � 1,

>
``>



2.7. The distribution function for a random variable X is

Find (a) the density function, (b) the probability that X � 2, and (c) the probability that �3 � X � 4.

(a)

(b)

Another method
By definition, P(X � 2) � F(2) � 1 � e�4. Hence,

P(X � 2) � 1 � (1 � e�4) � e�4

(c)

Another method

P(�3 � X � 4) � P(X � 4) � P(X � �3)

� F(4) � F(�3)

� (1 � e�8) � (0) � 1 � e�8

Joint distributions and independent variables
2.8. The joint probability function of two discrete random variables X and Y is given by f(x, y) � c(2x � y), where

x and y can assume all integers such that 0 � x � 2, 0 � y � 3, and f (x, y) � 0 otherwise.

(a) Find the value of the constant c. (c) Find P(X � 1, Y � 2).
(b) Find P(X � 2, Y � 1).

(a) The sample points (x, y) for which probabilities are different from zero are indicated in Fig. 2-8. The
probabilities associated with these points, given by c(2x � y), are shown in Table 2-6. Since the grand total,
42c, must equal 1, we have c � 1 42.>

P(�3 �  X �   4) � 3
4

�3
f (u) du � 3

0

�3
 0 du � 3

4

0
 2e�2u du

� �e�2u Z 4
0

� 1 � e�8

P(X � 2) � 3
`

2
 2e�2u du � �e�2u P `

2 � e�4

f (x)  �   
d
dx

 F(x) � e2e�2x x  �  0

0  x �  0

F(x) � e1 � e�2x x  �   0

0  x  �  0
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X
Y 0 1 2 3 Totals

0 0 c 2c 3c 6c

1 2c 3c 4c 5c 14c

2 4c 5c 6c 7c 22c

Totals 6c 9c 12c 15c 42cS

T

Fig. 2-8

Table 2-6

(b) From Table 2-6 we see that

P(X �  2,  Y �  1)  �  5c �  
5
42
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(c) From Table 2-6 we see that

as indicated by the entries shown shaded in the table.

2.9. Find the marginal probability functions (a) of X and (b) of Y for the random variables of Problem 2.8.

(a) The marginal probability function for X is given by P(X � x) � f1(x) and can be obtained from the margin
totals in the right-hand column of Table 2-6. From these we see that

Check:

(b) The marginal probability function for Y is given by P(Y � y) � f2(y) and can be obtained from the margin
totals in the last row of Table 2-6. From these we see that

Check:

2.10. Show that the random variables X and Y of Problem 2.8 are dependent.

If the random variables X and Y are independent, then we must have, for all x and y,

But, as seen from Problems 2.8(b) and 2.9,

so that

The result also follows from the fact that the joint probability function (2x � y) 42 cannot be expressed as a
function of x alone times a function of y alone.

2.11. The joint density function of two continuous random variables X and Y is

(a) Find the value of the constant c. (c) Find P(X � 3, Y � 2).

(b) Find P(1 � X � 2, 2 � Y � 3).

(a) We must have the total probability equal to 1, i.e.,

3
`

�`
3
`

�`
f (x, y) dx dy � 1

f (x, y) �  e cxy 0 � x � 4,  1 � y � 5

0 otherwise

>
P(X � 2, Y � 1) 2 P(X � 2)P(Y � 1)

P(Y �  1) �  
3
14P(X �  2) �  

11
21P(X �  2, Y �  1) �  

5
42

P(X � x, Y � y) � P(X � x)P(Y � y)

1
7 �

3
14 �

2
7 �

5
14 � 1

P(Y �  y) �  f2(y) �  μ
6c �  1>7 y �  0

9c �  3>14 y �  1

12c �  2>7 y �  2

15c �  5>14 y �  3

1
7

 �  
1
3

 �  
11
21

 �  1

P(X � x) � f1 (x) �  •
6c � 1>7 x � 0

14c � 1>3 x � 1

22c � 11>21 x � 2

� 24c �
24
42

�
4
7

� (2c � 3c � 4c)(4c � 5c � 6c)

P(X � 1, Y � 2) � a
x�1

 a
y�2

f (x, y)



Using the definition of f (x, y), the integral has the value

Then 96c � 1 and c � 1 96.

(b) Using the value of c found in (a), we have

(c)

2.12. Find the marginal distribution functions (a) of X and (b) of Y for Problem 2.11.

(a) The marginal distribution function for X if 0 � x � 4 is

For x � 4, F1(x) � 1; for x � 0, F1(x) � 0. Thus

As F1 (x) is continuous at x � 0 and x � 4, we could replace � by � in the above expression.

F1(x) � •
0 x � 0

x2>16 0 � x � 4

1 x � 4

�
1

963
x

u�0
B 35

v�1
uvdvR  du �

x2

16

� 3
x

u�0
3

5

v�1
 
uv
96

dudv

F1(x) � P(X � x) � 3
x

u��`
3
`

v��`
f (u, v) dudv

�
1

963
4

x�3

3x
2

 dx �
7

128

�
1

963
4

x�3
B32

y�1
xydyR  dx �

1
963

4

x�3

xy2

2
2 2
y�1

dx

P(X � 3, Y � 2) � 3
4

x�3
3

2

y�1

xy
96

dx dy

�
1

963
2

x�1
 
5x
2

 dx �
5

192
ax2

2
b 2 2

1

�
5

128

�
1
963

2

x�1
B33

y�2
xy dyR  dx �

1
963

2

x�1

xy2

2
2 3
y�2

 dx

P(1 �  X �  2, 2 �  Y � 3)  �   3
2

x�1
3

3

y�2 

 
xy
96

  dx dy

>

� c3
4

x�0
 12x dx � c(6x2) 2 4

x�0

� 96c

�  c3
4

z�0
 
xy2

2
 2 5

y�1

dx � c3
4

x�0
¢25x

2
�

x
2
≤  dx

3
4

x�0
3

5

y�1
cxy dxdy � c3

4

x�0 

B35

y�1
xydyR  dx
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(b) The marginal distribution function for Y if 1 � y � 5 is

For y � 5, F2( y) � 1. For y � 1, F2(y) � 0. Thus

As F2(y) is continuous at y � 1 and y � 5, we could replace � by � in the above expression.

2.13. Find the joint distribution function for the random variables X, Y of Problem 2.11.

From Problem 2.11 it is seen that the joint density function for X and Y can be written as the product of a
function of x alone and a function of y alone. In fact, f (x, y) � f1(x) f2(y), where

and c1c2 � c � 1 96. It follows that X and Y are independent, so that their joint distribution function is given by>
f2(y) �  e c2y 1 �  y �  5

0 otherwise
f1 (x) � e c1x 0 �  x � 4

0 otherwise

F2(y) � •
0 y � 1

(y2 � 1)>24 1 � y � 5

1 y � 5

� 3
4

u�0
 3

y

v�1
  
uv
96

dudv �
y2 � 1

24

F2( y) � P(Y � y) � 3
`

u��`
 3

y

v�1
f (u, v) dudv

Fig. 2-9

In Fig. 2-10 we have indicated the square region 0 � x � 4, 1 � y � 5 within which the joint density
function of X and Y is different from zero. The required probability is given by

P(X �  Y � 3)  �   6
5

 

 f (x, y) dx dy

F(x, y) � F1(x)F2(y). The marginal distributions F1(x) and F2(y) were determined in Problem 2.12, and Fig. 2-9
shows the resulting piecewise definition of F(x, y).

2.14. In Problem 2.11 find P(X � Y � 3).



where is the part of the square over which x � y � 3, shown shaded in Fig. 2-10. Since f (x, y) � xy 96
over , this probability is given by

�
1
963

2

x�0
 
xy2

2
 2 3�x

y�1

 dx �  
1

1923
2

x�0
[x(3 � x)2 � x] �  

1
48

�
1

963
2

x�0
B 33�x

y�1
 xy dyR  dx

3
2

x�0
 3

3�x

y�1
 
xy
96

dxdy

5
>5
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Fig. 2-10

Change of variables
2.15. Prove Theorem 2-1, page 42.

The probability function for U is given by

In a similar manner Theorem 2-2, page 42, can be proved.

2.16. Prove Theorem 2-3, page 42.

Consider first the case where u � �(x) or x � �(u) is an increasing function, i.e., u increases as x increases
(Fig. 2-11). There, as is clear from the figure, we have

(1) P(u1 � U � u2) � P(x1 � X � x2)

or

(2) 3
u2

u1

g(u) du � 3
x2

x1

f (x) dx

g(u) � P(U � u) � P[f(X) � u] � P[X � c(u)] � f [c(u)]

Fig. 2-11
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Letting x � �(u) in the integral on the right, (2) can be written

This can hold for all u1 and u2 only if the integrands are identical, i.e.,

This is a special case of (34), page 42, where (i.e., the slope is positive). For the case where
i.e., u is a decreasing function of x, we can also show that (34) holds (see Problem 2.67). The

theorem can also be proved if or .

2.17. Prove Theorem 2-4, page 42.

We suppose first that as x and y increase, u and v also increase. As in Problem 2.16 we can then show that

P(u1 � U � u2, v1 � V � v2) � P(x1 � X � x2, y1 � Y � y2)

or

Letting x � �1 (u, v), y � �2(u, v) in the integral on the right, we have, by a theorem of advanced calculus,

where

is the Jacobian. Thus

which is (36), page 42, in the case where J � 0. Similarly, we can prove (36) for the case where J � 0.

2.18. The probability function of a random variable X is

Find the probability function for the random variable .

Since the relationship between the values u and x of the random variables U and X is given by 

u � x4 � 1 or where u � 2, 17, 82, . . . and the real positive root is taken. Then the required

probability function for U is given by

using Theorem 2-1, page 42, or Problem 2.15.

2.19. The probability function of a random variable X is given by

Find the probability density for the random variable U �
1
3  (12 � X ).

f (x) � e x2>81 �3 � x � 6

0 otherwise

g(u) � e2�24 u�1 u � 2, 17, 82, . . .

0 otherwise

x � 24 u � 1,

U � X4 � 1,

U � X4 � 1

f (x) � e2�x x � 1, 2, 3, c

0 otherwise

g(u, v) � f [c1(u, v), c2(u, v)]J

J �
'(x, y)
'(u, v)

3
u2

v1

3
v2

v1

g(u, v) du dv � 3
u2

u1

3
v2

v1

f [c1 (u, v), c2(u, v)]J du dv

3
u2

v1

3
v2

v1

g(u, v) du dv � 3
x2

x1

3
y2

y1

f (x, y) dx dy

cr(u) � 0cr(u) � 0
cr(u) � 0,

cr(u) � 0

g(u) � f [c(u)]cr(u)

3
u2

u1

g(u) du � 3
u2

u1

f [c (u)] cr(u) du



We have or x � 12 � 3u. Thus to each value of x there is one and only one value of u andu �
1
3   (12 � x)
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Fig. 2-12

But if 9 � u � 36, we have

G(u)  �   P(U �   u)  �   P(�3 �  X � !u) � 32u

�3
f (x) dx

conversely. The values of u corresponding to x � �3 and x � 6 are u � 5 and u � 2, respectively. Since
, it follows by Theorem 2-3, page 42, or Problem 2.16 that the density function for U is

Check:

2.20. Find the probability density of the random variable U � X2 where X is the random variable of
Problem 2.19.

We have or Thus to each value of x there corresponds one and only one value of u, but to
each value of there correspond two values of x. The values of x for which �3 � x � 6 correspond to
values of u for which 0 � u � 36 as shown in Fig. 2-12.

As seen in this figure, the interval �3 � x � 3 corresponds to 0 � u � 9 while 3 � x � 6 corresponds to 
9 � u � 36. In this case we cannot use Theorem 2-3 directly but can proceed as follows. The distribution
function for U is

G(u) � P(U � u)

Now if 0 � u � 9, we have

� 3
1u

�1u
f (x) dx

G(u) � P(U � u) � P(X2 � u) � P(�!u � X � !u)

u 2 0
x � 
!u.u � x2

3
5

2
 
(12 � 3u)2

27
du � �

(12 � 3u)3

243
 2 5

2

� 1

g(u) � e (12 � 3u)2>27 2 � u � 5

0 otherwise

cr(u) � dx>du � �3
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Since the density function g(u) is the derivative of G(u), we have, using (12),

Using the given definition of f (x), this becomes

Check:

2.21. If the random variables X and Y have joint density function

(see Problem 2.11), find the density function of U � X � 2Y.

Method 1
Let u � x � 2y, v � x, the second relation being chosen arbitrarily. Then simultaneous solution 
yields Thus the region 0 � x � 4, 1 � y � 5 corresponds to the region 0 � v � 4,x � v, y �

1
2 (u � v).

f (x, y) � e xy>96 0 � x � 4,  1 � y � 5

0 otherwise

3
9

0
 
!u
81

 du � 3
36

9
 
!u
162

  du �
2u3>2
243

 2 9
0

�
u3>2
243

  2 36

9

� 1

g(u) � •
!u>81   0 �   u �   9

!u>162    9 � u � 36

0 otherwise

g(u) � e f (!u) � f (�!u)

2!u
0 � u � 9

f (!u)

2!u
9 � u � 36

0 otherwise

Fig. 2-13

The Jacobian is given by

J � 4  'x'u 'x
'v

'y
'u

'y
'v

 4
0 1

1
2 �

1
2

�

� �
1
2

2 � u � v � 10 shown shaded in Fig. 2-13.
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Then by Theorem 2-4 the joint density function of U and V is

The marginal density function of U is given by

as seen by referring to the shaded regions I, II, III of Fig. 2-13. Carrying out the integrations, we find

A check can be achieved by showing that the integral of g1 (u) is equal to 1.

Method 2
The distribution function of the random variable X � 2Y is given by

For 2 � u � 6, we see by referring to Fig. 2-14, that the last integral equals

The derivative of this with respect to u is found to be (u � 2)2(u � 4) 2304. In a similar manner we can obtain
the result of Method 1 for 6 � u � 10, etc.

>
3

u�2

x�0
3

(u�x)>2
y�1

 
xy
96  dx dy � 3

u�2

x�0
B x(u � x)2

768 �
x

192 R dx

P(X � 2Y �   u) � 6
x�2y�  u

f (x, y)dx  dy � 6
x�2y�u
0�x�4
1�y�5

 
xy
96 dx  dy

g1(u) � d (u � 2)2(u � 4)>2304 2 � u � 6

(3u � 8)>144 6 � u � 10

(348u � u3 � 2128)>2304  10 � u � 14

0 otherwise

g1(u) � g3u�2

v�0
 
v(u � v)

384 dv 2 �  u �  6

3
4

v�0
 
v(u � v)

384 dv 6 � u � 10

3
4

v�u�10

v(u � v)
384 dv 10 � u � 14

0  otherwise

g(u, v) � ev(u � v)>384 2 � u � v � 10, 0 � v � 4

0 otherwise

Fig. 2-14 Fig. 2-15
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2.22. If the random variables X and Y have joint density function

(see Problem 2.11), find the joint density function of U � XY 2, V � X2Y.

Consider u � xy2, v � x2y. Dividing these equations, we obtain y x � u v so that y � ux v. This leads to>>>

f (x,  y) � e xy>96 0 � x � 4,  1 � y � 5

0 otherwise

the simultaneous solution x � v2 3 u �1 3, y � u2 3 v �1 3. The image of 0 � x � 4, 1 � y � 5 in the uv-plane is
given by

which are equivalent to

This region is shown shaded in Fig. 2-15.
The Jacobian is given by

Thus the joint density function of U and V is, by Theorem 2-4,

or

Convolutions
2.23. Let X and Y be random variables having joint density function f (x, y). Prove that the density function of

U � X � Y is

Method 1
Let U � X � Y, V � X, where we have arbitrarily added the second equation. Corresponding to these we have 
u � x � y, v � x or x � v, y � u � v. The Jacobian of the transformation is given by

Thus by Theorem 2-4, page 42, the joint density function of U and V is

g(u, v) � f (v, u � v)

It follows from (26), page 41, that the marginal density function of U is

g(u) � 3
`

�`
 f (v, u � v)dv

J � 4 'x'u 'x
'v

'y
'u 

'y
'v

4 � 2  0 1

1 �1
 2 � �1

g(u) � 3
`

�`
 f (v, u � v)dv

g(u, v) � eu�1>3 v�1>3>288 v2 � 64u,  v � u2 � 125v

0 otherwise

g(u, v) � c(v2> 3u�1>3)(u2>3v�1>3)
96 (1

3  u�2>3 v�2>3)  v2 � 64u, v � u2 � 125v

0 otherwise

J � 4�1
3v

2>3 u�4>3 2
3 v

�1>3u�1>3

2
3 u�1>3 v�1>3 �

1
3 u2>3v�4>3

4 � �
1
3  u�2>3 v�2>3

v2 � 64u  v � u2 � 125v

0 � v2>3u�1>3 � 4  1 � u2>3v�1>3 � 5

>>>>
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Method 2
The distribution function of U � X � Y is equal to the double integral of f (x, y) taken over the region defined
by x � y u, i.e.,

Since the region is below the line x � y � u, as indicated by the shading in Fig. 2-16, we see that

G(u) � 3
`

x��`
B 3u�x

y��`  

f (x, y) dyR  dx

G(u) � 6
x�y�  u

f (x, y) dx dy

�

Fig. 2-16

The density function of U is the derivative of G (u) with respect to u and is given by

using (12) first on the x integral and then on the y integral.

2.24. Work Problem 2.23 if X and Y are independent random variables having density functions f1(x), f2(y),
respectively.

In this case the joint density function is f (x, y) � f 1(x) f2(y), so that by Problem 2.23 the density function 
of U � X � Y is

which is the convolution of f1 and f2.

2.25. If X and Y are independent random variables having density functions

find the density function of their sum, U � X � Y.

By Problem 2.24 the required density function is the convolution of f1 and f2 and is given by

In the integrand f1 vanishes when v � 0 and f2 vanishes when v � u. Hence

�  6e�3u 3
u

0 

ev dv � 6e�3u (eu � 1) � 6(e�2u � e3u)

g(u) � 3
u

0
(2e�2v)(3e�3(u�v)) dv

g(u) � f1 * f2 � 3
`

�`
f1(v) f2(u � v) dv

f2(y) � e3e�3y y � 0

0 y � 0
f1(x) � e2e�2x x � 0

0 x � 0

g(u) � 3
`

�`
f1(v) f2(u � v)dv � f1 * f2

g(u) � 3
`

�`
f (x, u � x)dx
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if u � 0 and g(u) � 0 if u � 0.

Check:

2.26. Prove that f1 * f2 � f2 * f1 (Property 1, page 43).
We have

Letting w � u � v so that v� u � w, dv � �dw, we obtain

Conditional distributions
2.27. Find (a) f (y 2), (b) P(Y � 1 X � 2) for the distribution of Problem 2.8.

(a) Using the results in Problems 2.8 and 2.9, we have

so that with x � 2

(b)

2.28. If X and Y have the joint density function

find (a) f ( y x), (b) 

(a) For 0 � x � 1,

and

For other values of x, f ( y x) is not defined.

(b)

2.29. The joint density function of the random variables X and Y is given by

Find (a) the marginal density of X, (b) the marginal density of Y, (c) the conditional density of X, (d) the
conditional density of Y.

The region over which f (x, y) is different from zero is shown shaded in Fig. 2-17.

f (x, y) � e8xy 0 �  x � 1, 0 � y �  x

0 otherwise

P(Y �  
1
2 u  

1
2 �  X �  

1
2 �  dx) � 3

`

1>2 f (y u 1
2) dy � 3

1

1> 2
 
3 � 2y

4  dy �
9

16

u

f (y u x) �
f (x, y)
f1(x) � •

3 � 4xy
3 � 2x 0 �  y �  1

0 other y

f1(x) � 3
1

0
¢ 3

4 � xy≤ dy �
3
4 �

x
2

P(Y �
1
2 u  

1
2 � X �  

1
2 � dx).u

f (x, y) � e 3
4 � xy  0 �  x � 1,  0 � y � 1

0 otherwise

P(Y � 1 u  X � 2) � f (1 u 2) �
5

22

f (y u 2) �
(4 � y)>42

11>21
�

4 �  y
22

f (y u x) �
f (x, y)
f1(x) �

(2x �  y)>42
f1(x)

uu

f1 * f2 � 3
�`

w�` 

 f1(u � w) f2(w)(�dw) � 3
`

w��`
 
 

f2(w)f1(u � w) dw � f2 * f1

f1 * f2 � 3
`

v��` 

f1(v) f2(u � v) dv

3
`

�`
 g(u) du �  63

`

0
(e�2u � e�3u) du � 6¢ 1

2 �
1
3 ≤ � 1
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(a) To obtain the marginal density of X, we fix x and integrate with respect to y from 0 to x as indicated by the
vertical strip in Fig. 2-17. The result is

for 0 � x � 1. For all other values of x, f1 (x) � 0.

(b) Similarly, the marginal density of Y is obtained by fixing y and integrating with respect to x from x � y to x � 1,
as indicated by the horizontal strip in Fig. 2-17. The result is, for 0 � y � 1,

For all other values of y, f2 ( y) � 0.

(c) The conditional density function of X is, for 0 � y � 1,

The conditional density function is not defined when f2( y) � 0.

(d) The conditional density function of Y is, for 0 � x � 1,

The conditional density function is not defined when f1(x) � 0.

Check:

2.30. Determine whether the random variables of Problem 2.29 are independent.

In the shaded region of Fig. 2-17, f (x, y) � 8xy, f1(x) � 4x3, f2( y) � 4y (1 � y2). Hence f (x, y) f1(x) f2( y),
and thus X and Y are dependent.

It should be noted that it does not follow from f (x, y) � 8xy that f (x, y) can be expressed as a function of x
alone times a function of y alone. This is because the restriction 0 y x occurs. If this were replaced by
some restriction on y not depending on x (as in Problem 2.21), such a conclusion would be valid.

��

2

3
x

0
f2( y u x) dy � 3

x

0
 
2y
x 2 dy � 1

3
1

y
 f1(x u y) dx � 3

1

y
 

2x
1 � y2  dx � 1

3
1

0
f1(x) dx � 3

1

0 

4x 3 dx � 1, 3
1

0
f2(y) dy � 3

1

0
 4y(1 � y2) dy � 1

f2(y u x) �
f (x, y)
f1(x) � e2y>x 2 0 � y �  x

0  other y

f1(x u y) �
f (x, y)
f2 (y) � e2x>(1 � y2) y �   x �   1

0 other x

f2 (y) � 3
1

x�y
 8xy dx �  4y(1 � y2)

f1(x) � 3
x

y�0
8xy dy �  4x 3

Fig. 2-17
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Applications to geometric probability
2.31. A person playing darts finds that the probability of the dart striking between r and r � dr is

Here, R is the distance of the hit from the center of the target, c is a constant, and a is the radius of the tar-
get (see Fig. 2-18). Find the probability of hitting the bull’s-eye, which is assumed to have radius b. As-
sume that the target is always hit.

The density function is given by

Since the target is always hit, we have

c3
a

0 

B1 � ¢ r
a ≤ 2R  dr � 1

f (r) � c B1 � ¢ r
a ≤ 2R

P(r �  R �  r � dr) � c B1 � ¢ r
a ≤ 2R dr

Fig. 2-18

from which c � 3 2a. Then the probability of hitting the bull’s-eye is

2.32. Two points are selected at random in the interval 0 x 1. Determine the probability that the sum of their
squares is less than 1.

Let X and Y denote the random variables associated with the given points. Since equal intervals are assumed to
have equal probabilities, the density functions of X and Y are given, respectively, by

(1)

Then since X and Y are independent, the joint density function is given by

(2)

It follows that the required probability is given by

(3)

where is the region defined by x2 � y2 1, x 0, y 0, which is a quarter of a circle of radius 1 (Fig. 2-19).
Now since (3) represents the area of , we see that the required probability is 4.>pr

���r

P(X2 � Y2 � 1) � 6
r

 

dx dy

f (x, y) � f1(x) f2(y) � e1 0 �  x � 1, 0 �  y � 1

0  otherwise

f2 ( y) � e1 0 �  y � 1

0  otherwise
f1(x) � e1 0 �  x � 1

0  otherwise

��

3
b

0 

f (r) dr �
3

2a 3
b

0 

B1 � ¢ r
a ≤ 2R  dr �

b (3a2 � b2)

2a3

>
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Miscellaneous problems
2.33. Suppose that the random variables X and Y have a joint density function given by

Find (a) the constant c, (b) the marginal distribution functions for X and Y, (c) the marginal density func-
tions for X and Y, (d) P(3 � X � 4, Y � 2), (e) P(X � 3), (f) P(X � Y � 4), (g) the joint distribution func-
tion, (h) whether X and Y are independent.

(a) The total probability is given by

For this to equal 1, we must have c � 1 210.

(b) The marginal distribution function for X is

The marginal distribution function for Y is

� g3`u��`
3

y

v��8
 0 du dv � 0   y � 0

3
6

u�0
3

y

v�0

2u � v
210   du dv �

y2 �  16y
105   0 �   y �  5

3
6

u�2
3

5

v�0

2u � v
210  du dv � 1  y �   5

F2(y) � P(Y �   y) � 3
`

u��`
3

y

v��`
 f (u, v) du dv

� g3x

u��`
3
`

v��`
0 du dv �  0  x � 2

3
x

u�2
3

5

v�0

2u � v
210 du dv �  

2x 2 � 5x � 18
84    2 �   x � 6

3
6

u�2
3

5

v�0

2u � v
210 du dv � 1   x �  6

F1(x) � P(X �  x) � 3
x

u��`
3
`

v��`
f (u, v) du dv

>

53
6

x�2
c¢10x �

25
2 ≤ dx � 210c

3
6

x�2
3

5

y�0
c(2x � y) dx dy � 3

6

x�2
c¢2xy �

y2

2 ≤ 2 50 dx

f (x, y) � e c (2x � y) 2 � x � 6, 0 � y � 5

0 otherwise

Fig. 2-19
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(c) The marginal density function for X is, from part (b),

The marginal density function for Y is, from part (b),

(d)

(e)

(f )

where is the shaded region of Fig. 2-20. Although this can be found, it is easier to use the fact that

where is the cross-hatched region of Fig. 2-20. We have

Thus P(X � Y � 4) � 33 35.>
P(X � Y �  4) �

1
2103

4

x�2
3

4�x

y�0 

(2x � y) dx dy �
2

35

rr

P(X � Y � 4) � 1 � P(X � Y �  4) � 1 � 6
r

 

f (x, y) dx dy

r

P(X � Y � 4) � 6
r

 

f (x, y) dx dy

P(X � 3) �  
1

2103
6

x�3
3

5

y�0
(2x � y) dx dy �

23
28

P(3 � X � 4, Y � 2) �
1

2103
4

x�3
3

5

y�2
(2x �  y) dx dy �

3
20

f2( y) �
d
dy F2(y) � e (2y �  16)>105 0 � y � 5

0  otherwise

f1(x) �
d
dx F1(x) � e (4x � 5)>84 2 � x � 6

0 otherwise

Fig. 2-20 Fig. 2-21

(g) The joint distribution function is

In the uv plane (Fig. 2-21) the region of integration is the intersection of the quarter plane u x, v y and
the rectangle 2 � u � 6, 0 � v� 5 [over which f (u, v) is nonzero]. For (x, y) located as in the figure, we have

F(x, y) � 3
6

u�2
3

y

v�0

2u � v
210 du dv �  

16y � y2

105

��

F(x, y) � P(X �  x, Y � y) � 3
x

u��`
3

y

v��` 

f (u, v) du dv
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When (x, y) lies inside the rectangle, we obtain another expression, etc. The complete results are shown in 
Fig. 2-22.

(h) The random variables are dependent since

f (x, y) f1(x) f2(y)

or equivalently, F(x, y) F1(x)F2(y).

2.34. Let X have the density function

Find a function Y � h(X) which has the density function

g(y) � e12y3(1 � y2) 0 � y � 1

0 otherwise

f (x) � e6x (1 � x) 0 � x � 1

0  otherwise

2

2

Fig. 2-22

We assume that the unknown function h is such that the intervals X x and Y y � h(x) correspond in a
one-one, continuous fashion. Then P(X x) � P(Y y), i.e., the distribution functions of X and Y must be
equal. Thus, for 0 � x, y � 1,

or 3x2 � 2x3 � 3y4 � 2y6

By inspection, x � y2 or is a solution, and this solution has the desired properties. Thus
.

2.35. Find the density function of U � XY if the joint density function of X and Y is f (x, y).

Method 1
Let U � XY and V � X, corresponding to which u � xy, v� x or x � v, y � u v. Then the Jacobian is given by

J � 4 'x'u 'x
'v

'y
'u 

'y
'v

4 � 2 0    1

v�1  �uv�2
2 � �v�1

>

Y � �!X
y � h(x) � �!x

3
x

0
6u(1 � u) du � 3

y

0
12v3 (1 � v2) dv

��

��
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Thus the joint density function of U and V is

from which the marginal density function of U is obtained as

Method 2
The distribution function of U is

For u � 0, the region of integration is shown shaded in Fig. 2-23. We see that

G(u) � 3
0

�`

 B 3`
u>x  

f (x, y) dyR  dx � 3
`

0 

B 3u>x
�`

f (x, y) dyR    dx

G(u) �  6
xy�  u

f (x, y) dx dy

g(u) �  3
`

�`
g(u, v) dv �  3

`

�`

1
u v u

 f ¢v, u
v ≤ dv

g(u,v) �
1
u v u

  f ¢v, u
v ≤

Fig. 2-23 Fig. 2-24

Differentiating with respect to u, we obtain

The same result is obtained for u � 0, when the region of integration is bounded by the dashed hyperbola in
Fig. 2-24.

2.36. A floor has parallel lines on it at equal distances l from each other. A needle of length a � l is dropped at
random onto the floor. Find the probability that the needle will intersect a line. (This problem is known as
Buffon’s needle problem.)

Let X be a random variable that gives the distance of the midpoint of the needle to the nearest line (Fig. 2-24). Let 
be a random variable that gives the acute angle between the needle (or its extension) and the line. We denote by
x and any particular values of X and . It is seen that X can take on any value between 0 and l 2, so that 0
x l 2. Also can take on any value between 0 and 2. It follows that

i.e., the density functions of X and are given by f1(x) � 2 l, f2( ) � 2 . As a check, we note that

3
l>2
0

2
l dx � 1 3

p>2
0

2
p du � 1

p>u>�

P(u �   � � du) �
2
p duP(x � X �   x � dx) �

2
l dx

>p�>�

�>�u

�

g(u) � 3
0

�`
¢�1

x ≤  f ¢x,
u
x ≤     dx � 3

`

0

1
x f ¢x, 

u
x ≤ dx � 3

`

�`
 

1
u x u

 f ¢x,  
u
x ≤ dx
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Since X and are independent the joint density function is

From Fig. 2-24 it is seen that the needle actually hits a line when X (a 2) sin . The probability of this
event is given by

When the above expression is equated to the frequency of hits observed in actual experiments, accurate
values of are obtained. This indicates that the probability model described above is appropriate.

2.37. Two people agree to meet between 2:00 P.M. and 3:00 P.M., with the understanding that each will wait no
longer than 15 minutes for the other. What is the probability that they will meet?

Let X and Y be random variables representing the times of arrival, measured in fractions of an hour after 
2:00 P.M., of the two people. Assuming that equal intervals of time have equal probabilities of arrival, the
density functions of X and Y are given respectively by

Then, since X and Y are independent, the joint density function is

(1)

Since 15 minutes hour, the required probability is

(2)

where 5 is the region shown shaded in Fig. 2-25. The right side of (2) is the area of this region, which is equal
to since the square has area 1, while the two corner triangles have areas each. Thus the
required probability is 7 16.>

1
2  (3

4)(
3
4)1 � (3

4)(3
4) �

7
16,

P¢ uX � Y u  �   
1
4 ≤ � 6

r 

dx dy

�
1
4

f (x, y) � f1(x) f2(y) � e1 0 �  x � 1,  0 �  y � 1

0 otherwise

f2( y) � e1 0 � y � 1

0  otherwise

f1(x) � e1 0 �  x � 1

0 otherwise

p

4
lp 3

p>2
u�0

 3
(a>2) sin  u

x�0
dx du �  

2a
lp

�>�

f (x, u) �
2
l ?

2
p �

4
lp

�

Fig. 2-25
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SUPPLEMENTARY PROBLEMS

Discrete random variables and probability distributions
2.38. A coin is tossed three times. If X is a random variable giving the number of heads that arise, construct a table

showing the probability distribution of X.

2.39. An urn holds 5 white and 3 black marbles. If 2 marbles are to be drawn at random without replacement and X
denotes the number of white marbles, find the probability distribution for X.

2.40. Work Problem 2.39 if the marbles are to be drawn with replacement.

2.41. Let Z be a random variable giving the number of heads minus the number of tails in 2 tosses of a fair coin. Find
the probability distribution of Z. Compare with the results of Examples 2.1 and 2.2.

2.42. Let X be a random variable giving the number of aces in a random draw of 4 cards from an ordinary deck of 52
cards. Construct a table showing the probability distribution of X.

Discrete distribution functions
2.43. The probability function of a random variable X is shown in Table 2-7. Construct a table giving the distribution

function of X.

x 1 2 3

f (x) 1 2 1 3 1 6>>>

Table 2-7

x 1 2 3 4

F(x) 1 8 3 8 3 4 1>>>

Table 2-8

2.44. Obtain the distribution function for (a) Problem 2.38, (b) Problem 2.39, (c) Problem 2.40.

2.45. Obtain the distribution function for (a) Problem 2.41, (b) Problem 2.42.

2.46. Table 2-8 shows the distribution function of a random variable X. Determine (a) the probability function,
(b) P(1 X 3), (c) P(X 2), (d) P(X � 3), (e) P(X � 1.4).

Continuous random variables and probability distributions
2.47. A random variable X has density function

Find (a) the constant c, (b) P(l � X � 2), (c) P(X � 3), (d) P(X � 1).

2.48. Find the distribution function for the random variable of Problem 2.47. Graph the density and distribution
functions, describing the relationship between them.

2.49. A random variable X has density function

Find (a) the constant c, (b) P(X � 2), (c) P(1 2 � X � 3 2).>>

f (x) � •
cx 2 1 � x � 2

cx 2 � x � 3

0 otherwise

f (x) � e ce�3x x � 0

0 x � 0

���
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2.50. Find the distribution function for the random variable X of Problem 2.49.

2.51. The distribution function of a random variable X is given by

If P(X � 3) � 0, find (a) the constant c, (b) the density function, (c) P(X � 1), (d) P(1 � X � 2).

2.52. Can the function

be a distribution function? Explain.

2.53. Let X be a random variable having density function

Find (a) the value of the constant c, (b) (c) P(X � 1), (d) the distribution function.

Joint distributions and independent variables
2.54. The joint probability function of two discrete random variables X and Y is given by f (x, y) � cxy for x � 1, 2, 3

and y � 1, 2, 3, and equals zero otherwise. Find (a) the constant c, (b) P(X � 2, Y � 3), (c) P(l X 2, Y 2),
(d) P(X � 2), (e) P(Y � 2), (f) P(X � 1), (g) P(Y � 3).

2.55. Find the marginal probability functions of (a) X and (b) Y for the random variables of Problem 2.54. 
(c) Determine whether X and Y are independent.

2.56. Let X and Y be continuous random variables having joint density function

Determine (a) the constant c, (b) (c) (d) (e) whether X and Y are
independent.

2.57. Find the marginal distribution functions (a) of X and (b) of Y for the density function of Problem 2.56.

Conditional distributions and density functions
2.58. Find the conditional probability function (a) of X given Y, (b) of Y given X, for the distribution of Problem 2.54.

2.59. Let

Find the conditional density function of (a) X given Y, (b) Y given X.

2.60. Find the conditional density of (a) X given Y, (b) Y given X, for the distribution of Problem 2.56.

2.61. Let

be the joint density function of X and Y. Find the conditional density function of (a) X given Y, (b) Y given X.

f (x, y) � e e�(x�y) x � 0, y � 0

0 otherwise

f (x, y) � e x � y 0 �  x � 1, 0 �  y � 1

0 otherwise

P(Y �
1
2),P (1

4 � X �
3
4),P(X �  

1
2, Y �

1
2),

f (x, y) � e c(x 2 � y2) 0 �  x � 1, 0 � y � 1

0 otherwise

���

P(1
2 � X �

3
2),

f (x) � e cx 0 �  x �  2

0 otherwise

F(x) � e c(1 � x2) 0 �  x � 1

0 otherwise

F(x) � •
cx3 0 � x � 3

1  x � 3

0 x � 0
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Change of variables
2.62. Let X have density function

Find the density function of Y � X2.

2.63. (a) If the density function of X is f (x) find the density function of X3. (b) Illustrate the result in part (a) by
choosing

and check the answer.

2.64. If X has density function find the density function of Y � X2.

2.65. Verify that the integral of g1(u) in Method 1 of Problem 2.21 is equal to 1.

2.66. If the density of X is f (x) � 1 (x2 � 1), , find the density of Y � tan�1 X.

2.67. Complete the work needed to find g1(u) in Method 2 of Problem 2.21 and check your answer.

2.68. Let the density of X be

Find the density of (a) 3X � 2, (b) X3 � 1.

2.69. Check by direct integration the joint density function found in Problem 2.22.

2.70. Let X and Y have joint density function

If U � X Y, V � X � Y, find the joint density function of U and V.

2.71. Use Problem 2.22 to find the density function of (a) U � XY2, (b) V � X 2Y.

2.72. Let X and Y be random variables having joint density function f (x, y) � (2 )�1 , ,
. If R and are new random variables such that X � R cos , Y � R sin , show that the density

function of R is

g(r) � e re�r2>2 r � 0

0 r � 0

����` � y � `

�` � x � `e�(x2�y2)p

>
f (x, y) � e e�(x�y) x �  0, y �  0

0 otherwise

f (x) � e1>2 �1 � x � 1

0 otherwise

�` � x � `p>

f (x) � 2(p)�1> 2e�x2> 2, �`  � x � `,

f (x) � e2e�2x x � 0

0 x � 0

f (x) � e e�x x � 0

0 x �  0
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2.73. Let

be the joint density function of X and Y. Find the density function of Z � XY.

Convolutions
2.74. Let X and Y be identically distributed independent random variables with density function

Find the density function of X � Y and check your answer.

2.75. Let X and Y be identically distributed independent random variables with density function

Find the density function of X � Y and check your answer.

2.76. Work Problem 2.21 by first making the transformation 2Y � Z and then using convolutions to find the density
function of U � X � Z.

2.77. If the independent random variables X1 and X2 are identically distributed with density function

find the density function of X1 � X2.

Applications to geometric probability
2.78. Two points are to be chosen at random on a line segment whose length is a � 0. Find the probability that the

three line segments thus formed will be the sides of a triangle.

2.79. It is known that a bus will arrive at random at a certain location sometime between 3:00 P.M. and 3:30 P.M. A
man decides that he will go at random to this location between these two times and will wait at most 5 minutes
for the bus. If he misses it, he will take the subway. What is the probability that he will take the subway?

2.80. Two line segments, AB and CD, have lengths 8 and 6 units, respectively. Two points P and Q are to be chosen at
random on AB and CD, respectively. Show that the probability that the area of a triangle will have height AP
and that the base CQ will be greater than 12 square units is equal to (1 � ln 2) 2.

Miscellaneous problems
2.81. Suppose that f (x) � c 3x, x � 1, 2 is the probability function for a random variable X. (a) Determine c.

(b) Find the distribution function. (c) Graph the probability function and the distribution function. (d) Find 
P(2 X 5). (e) Find P(X � 3).

2.82. Suppose that

is the density function for a random variable X. (a) Determine c. (b) Find the distribution function. (c) Graph the
density function and the distribution function. (d) Find P(X � 1). (e) Find P(2 X � 3).�

f (x) � e cxe�2x x �  0

0 otherwise

��

,c,>

>

f (t) � e te�t t � 0

0 t � 0

f (t) � e e�t t �  0

0 otherwise

f (t) � e1 0 �  t � 1

0 otherwise

f (x, y) � e1 0 �  x � 1, 0 � y � 1

0 otherwise
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2.83. The probability function of a random variable X is given by

where p is a constant. Find (a) P(0 X � 3), (b) P(X � 1).

2.84. (a) Prove that for a suitable constant c,

is the distribution function for a random variable X, and find this c. (b) Determine P(l � X � 2).

2.85. A random variable X has density function

Find the density function of the random variable Y � X2 and check your answer.

2.86. Two independent random variables, X and Y, have respective density functions

Find (a) c1 and c2, (b) P(X � Y � 1), (c) P(l � X � 2, Y 1), (d) P(1 � X � 2), (e) P(Y l).

2.87. In Problem 2.86 what is the relationship between the answers to (c), (d), and (e)? Justify your answer.

2.88. Let X and Y be random variables having joint density function

Find (a) the constant c, (b) (c) the (marginal) density function of X, (d) the (marginal) density
function of Y.

2.89. In Problem 2.88 is ? Why?

2.90. In Problem 2.86 find the density function (a) of X2, (b) of X � Y.

2.91. Let X and Y have joint density function

(a) Determine whether X and Y are independent, (b) Find (c) Find (d) Find

2.92. Generalize (a) Problem 2.74 and (b) Problem 2.75 to three or more variables.

P(X � Y �
1
2).

P(X �
1
2, Y �

1
3).P(X �

1
2).

f (x, y) � e1>y 0 � x � y, 0 � y � 1

0 otherwise

P(X �
1
2, Y �

3
2) � P(X �

1
2)P(Y �

3
2)

P(X �
1
2, Y �

3
2),

f (x, y) � e c(2x � y) 0 � x � 1, 0 � y � 2

0 otherwise

��

g( y) � e c2 ye�3y  y � 0

0 y �  0
f (x) � e c1e�2x  x � 0

0 x �  0

f (x) � e 3
2(1 � x2) 0 �  x � 1

0 otherwise

F(x) � e0 x � 0

c(1 � e�x)2 x � 0

�

f (x) � μ
2p x � 1

p x � 2

4p x � 3

0 otherwise
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2.93. Let X and Y be identically distributed independent random variables having density function
Find the density function of Z � X2 � Y 2.

2.94. The joint probability function for the random variables X and Y is given in Table 2-9. (a) Find the marginal
probability functions of X and Y. (b) Find P(l X � 3, Y 1). (c) Determine whether X and Y are
independent.

��

f (u) � (2p)�1> 2e�u2> 2, �` � u � `.

Y
X 0 1 2

0 1 18 1 9 1 6

1 1 9 1 18 1 9

2 1 6 1 6 1 18>>>
>>>
>>>

Table 2-9

2.95. Suppose that the joint probability function of random variables X and Y is given by

(a) Determine whether X and Y are independent. (b) Find (c) Find P(Y 1). (d) Find

2.96. Let X and Y be independent random variables each having density function

where . Prove that the density function of X � Y is

2.97. A stick of length L is to be broken into two parts. What is the probability that one part will have a length of
more than double the other? State clearly what assumptions would you have made. Discuss whether you
believe these assumptions are realistic and how you might improve them if they are not.

2.98. A floor is made up of squares of side l. A needle of length a � l is to be tossed onto the floor. Prove that the
probability of the needle intersecting at least one side is equal to .

2.99. For a needle of given length, what should be the side of a square in Problem 2.98 so that the probability of
intersection is a maximum? Explain your answer.

2.100. Let

be the joint density function of three random variables X, Y, and Z. Find (a) 
(b) P(Z � X � Y ).

2.101. A cylindrical stream of particles, of radius a, is directed toward a hemispherical target ABC with center at O as
indicated in Fig. 2-26. Assume that the distribution of particles is given by

f (r) � e1>a 0 � r � a

0 otherwise

P(X �
1
2, Y �

1
2, Z �

1
2),

f (x, y, z) � e24xy2z3 0 � x � 1, 0 � y � 1, 0 � z � 1

0 otherwise 

a(4l � a)>pl2

g(u) �
(2l)ue�2l

u!   u � 0, 1, 2,c

l � 0

f (u) �
lue�l

u   u � 0, 1, 2,c

P(1
2 � X � 1, Y �  1).

�P(1
2 � X � 1).

f (x, y) � e cxy 0 � x � 2, 0 � y � x

0 otherwise
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where r is the distance from the axis OB. Show that the distribution of particles along the target is given by

where is the angle that line OP (from O to any point P on the target) makes with the axis.u

g(u) � e cos  u 0 � u � p>2
0 otherwise

Fig. 2-26

2.102. In Problem 2.101 find the probability that a particle will hit the target between � 0 and � .

2.103. Suppose that random variables X, Y, and Z have joint density function

Show that although any two of these random variables are independent, i.e., their marginal density function
factors, all three are not independent.

ANSWERS TO SUPPLEMENTARY PROBLEMS

2.38. 2.39.

f (x, y, z) � e1�cospx cospy cospz 0 � x � 1, 0 � y � 1, 0 � z � 1

0 otherwise

p>4uu

x 0 1 2 3

f (x) 1 8 3 8 3 8 1 8>>>>
x 0 1 2

f (x) 3 28 15 28 5 14>>>
2.40.

2.42.

2.43.

2.46. (a) (b) 3 4 (c) 7 8 (d) 3 8 (e) 7 8 >>>>

x 0 1 2

f (x) 9 64 15 32 25 64>>>

x 0 1 2 3 4

f (x)
1

270,725
192

270,725
6768

270,725
69,184

270,725
194,580
270,725

x 0 1 2 3

f (x) 1 8 1 2 7 8 1>>>

x 1 2 3 4

f (x) 1 8 1 4 3 8 1 4>>>>
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2.47. (a) 3 (b) (c) (d) 2.48.

2.49. (a) 6 29 (b) 15 29 (c) 19 116 2.50.

2.51. (a) 1/27 (b) (c) 26 27 (d) 7 27

2.53. (a) 1 2 (b) 1 2 (c) 3 4 (d) 

2.54. (a) 1 36 (b) 1 6 (c) 1 4 (d) 5 6 (e) 1 6 (f) 1 6 (g) 1 2

2.55. (a) (b)

2.56. (a) 3 2 (b) 1 4 (c) 29 64 (d) 5 16

2.57. (a) (b)

2.58. (a) for y � 1, 2, 3 (see Problem 2.55)

(b) for x � 1, 2, 3 (see Problem 2.55)

2.59. (a)

(b)

2.60. (a)

(b)

2.61. (a) (b) 

2.62. 2.64. for y 0; 0 otherwise

2.66. for otherwise

2.68. (a) (b) 

2.70. for otherwiseu � 0, v � 0; 0ve�v>(1 � u)2

g( y) � •
1
6 (1 � y)�2>3 0 � y � 1
1
6 ( y � 1)�2>3 1 � y � 2

0 otherwise

g( y) � e
1
6 �5 � y � 1

0 otherwise

�p>2 � y � p>2; 01>p

�(2p)�1> 2y�1> 2 e�y> 2e�1y>2!y for y � 0; 0 otherwise

f (y u  x) � e e�y x � 0, y � 0

0 x � 0, y � 0
f (x uy) � e e�x x � 0, y � 0

0 x � 0, y � 0

f (y ux) � e (x 2 � y2)>(x 2 �
1
3) 0 � x � 1, 0 � y � 1

0 0 � x � 1, other y

f (x uy) � e (x2 � y2)>(y2 �
1
3) 0 � x � 1, 0 � y � 1

0 other x, 0 � y � 1

f (y ux) � e (x � y)>(x �
1
2) 0 � x � 1, 0 � y � 1

0 0 � x � 1, other y

f (x uy) � e (x � y)>( y �
1
2) 0 � x � 1, 0 � y � 1

0 other x, 0 � y � 1

f ( y u x) � f2(y)

f (x u y) � f1(x)

F2( y) � •
0 y � 0
1
2 (y3 � y) 0 � y � 1

1 y � 1

F1(x) � •
0 x � 0
1
2 (x 3 � x) 0 � x � 1

1 x � 1

>>>>

f2( y) � e y>6 y � 1, 2, 3

0 other y
f1(x) � e x>6 x � 1, 2, 3

0 other x

>>>>>>>

F(x) � •
0 x � 0

x 2>4 0 � x � 2

1 x � 2

>>>

>>f (x) � e x 2/9 0 �  x � 3

0  otherwise

F (x) � μ
0 x � 1

(2x 3 � 2)>29 1 � x � 2

(3x 2 � 2)>29 2 � x � 3

1 x � 3

>>>

F (x) � e1 � e�3x x �  0

0 x �  0
1 � e�3e�9e�3 � e�6
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2.73. 2.77.

2.74. 2.78. 1 4

2.75. 2.79. 61 72

2.81. (a) 2 (b) (d) 26 81 (e) 1 9

2.82. (a) 4 (b) (d) (e) 

2.83. (a) 3 7 (b) 5 7 2.84. (a) c � 1 (b) 

2.86. (a) c1 � 2, c2 � 9 (b) (c) (d) (e) 

2.88. (a) 1 4 (b) 27 64 (c) (d) 

2.90. (a) (b)

2.91. (b) (c) (d) 2.95. (b) 15 256 (c) 9 16 (d) 0

2.93. 2.100. (a) 45 512 (b) 1 14

2.94. (b) 7 18 2.102. !2>2>

>>g(z) � e 1
2 e�z> 2 z � 0

0 z � 0

>>1
2 ln 2

1
6 �

1
2 ln 2

1
2  (1 � ln 2)

e18e�2u u � 0

0 otherwise
e e�2y/!y y � 0

0 otherwise

f2(y) � e 1
4  (y � 1) 0 � y � 2

0 otherwise
f1(x) � e x �

1
2 0 � x � 1

0 otherwise
>>

4e�3e�2 � e�44e�5 � 4e�79e�2 � 14e�3

e�4 � 3e�2 � 2e�1>>
5e�4 � 7e�63e�2F(x) � e1 � e�2x (2x � 1) x � 0

0 x � 0

>>F(x) � e0 x � 1

1 � 3�y y � x � y � 1; y � 1, 2, 3,c

>g(u) � eue�u u � 0

0 u � 0

>g(u) � •
u 0 � u � 1

2 � u 1 � u � 2

0 otherwise

g(x) � e x 3e�x/6 x � 0

0 x � 0
g(z) � e�ln z 0 � z � 1

0 otherwise
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Mathematical Expectation

Definition of Mathematical Expectation
A very important concept in probability and statistics is that of the mathematical expectation, expected value, or
briefly the expectation, of a random variable. For a discrete random variable X having the possible values x1, , xn,
the expectation of X is defined as

(1)

or equivalently, if P(X � xj) � f (xj),

(2)

where the last summation is taken over all appropriate values of x. As a special case of (2), where the probabil-
ities are all equal, we have

(3)

which is called the arithmetic mean, or simply the mean, of x1, x2, , xn.
If X takes on an infinite number of values x1, x2, , then provided that the infinite se-

ries converges absolutely.
For a continuous random variable X having density function f (x), the expectation of X is defined as

(4)

provided that the integral converges absolutely.
The expectation of X is very often called the mean of X and is denoted by X, or simply , when the partic-

ular random variable is understood.
The mean, or expectation, of X gives a single value that acts as a representative or average of the values of X,

and for this reason it is often called a measure of central tendency. Other measures are considered on page 83.

EXAMPLE 3.1 Suppose that a game is to be played with a single die assumed fair. In this game a player wins $20 if
a 2 turns up, $40 if a 4 turns up; loses $30 if a 6 turns up; while the player neither wins nor loses if any other face turns
up. Find the expected sum of money to be won.

Let X be the random variable giving the amount of money won on any toss. The possible amounts won when the die
turns up 1, 2 6 are x1, x2 x6, respectively, while the probabilities of these are f(x1), f (x2), . . . , f (x6). The prob-
ability function for X is displayed in Table 3-1. Therefore, the expected value or expectation is

E(X) � (0)¢1
6 ≤ � (20)¢1

6 ≤ � (0)¢ 1
6 ≤ � (40)¢ 1

6 ≤ � (0)¢ 1
6 ≤ � (�30)¢ 1

6 ≤ � 5

,c,,c,

mm

E(X) � 3
`

�`
x f (x) dx

E(X) � g`
j�1 xj f (xj)c

c

E(X) �
x1 � x2 � c� xn

n

E(X) � x1 f (x1) � c� xn f (xn) � a
n

j�1
 xj f (xj) � ax f (x)

E(X) � x1P(X � x1) � c� xnP(X � xn ) � a
n

j�1
 xj P(X � xj)

c

CHAPTER 12CHAPTER 3



It follows that the player can expect to win $5. In a fair game, therefore, the player should be expected to pay $5 in order
to play the game.

EXAMPLE 3.2 The density function of a random variable X is given by

The expected value of X is then

Functions of Random Variables
Let X be a discrete random variable with probability function f (x). Then Y � g(X) is also a discrete random vari-
able, and the probability function of Y is

If X takes on the values x1, x2, , xn, and Y the values  y1, y2, , ym (m n), then 
Therefore,

(5)

Similarly, if X is a continuous random variable having probability density f (x), then it can be shown that

(6)

Note that (5) and (6) do not involve, respectively, the probability function and the probability density function
of Y � g(X).

Generalizations are easily made to functions of two or more random variables. For example, if X and Y are two
continuous random variables having joint density function f(x, y), then the expectation of g(X, Y) is given by

(7)

EXAMPLE 3.3 If X is the random variable of Example 3.2,

Some Theorems on Expectation

Theorem 3-1 If c is any constant, then

E(cX) � cE(X) (8)

E(3X2 � 2X) � 3
`

�`
(3x2 � 2x) f (x) dx � 3

2

0 

(3x2 � 2x)¢ 1
2  x≤  dx �

10
3

E[g(X, Y)] � 3
`

�`
3
`

�`
g(x, y) f (x, y) dx dy

E[g(X)] � 3
`

�`
g(x) f (x) dx

� a
n

j�1
 g(xj) f (xj) � a  g(x) f (x)

E[g(X)] � g(x1) f (x1) � g(x2) f (x2) � c� g(xn)f (xn)

ymh(ym) � g(x1)f (x1) � g(x2) f (x2) � c� g(xn) f (xn).
y1h(y1) � y2h(y2) � c��cc

h(y) � P(Y � y) � a5xZg(x)�y6
P(X � x) � a5xZg(x)�y6 

 f (x)

E(X) � 3
`

�`
xf (x) dx � 3

2

0
x ¢ 1

2  x≤  dx � 3
2

0
  
x2

2   dx �
x3

6  2 2
0

�
4
3

f (x) � e
1
2x  0 � x � 2

0 otherwise
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xj 0 �20 0 �40 0 �30

f (xj) 1 6 1 6 1 6 1 6 1 6 1 6>>>>>>

Table 3-1



Theorem 3-2 If X and Y are any random variables, then

E(X � Y) � E(X) � E(Y) (9)

Theorem 3-3 If X and Y are independent random variables, then

E(XY) � E(X)E(Y ) (10)

Generalizations of these theorems are easily made.

The Variance and Standard Deviation
We have already noted on page 75 that the expectation of a random variable X is often called the mean and
is denoted by . Another quantity of great importance in probability and statistics is called the variance and is
defined by

Var(X) � E[(X � )2] (11)

The variance is a nonnegative number. The positive square root of the variance is called the standard deviation
and is given by

(12)

Where no confusion can result, the standard deviation is often denoted by instead of X, and the variance in
such case is 2.

If X is a discrete random variable taking the values x1, x2, . . . , xn and having probability function f (x), then
the variance is given by

(13)

In the special case of (13) where the probabilities are all equal, we have

(14)

which is the variance for a set of n numbers x1, . . . , xn.
If X takes on an infinite number of values x1, x2, . . . , then provided that the series

converges.
If X is a continuous random variable having density function f (x), then the variance is given by

(15)

provided that the integral converges.
The variance (or the standard deviation) is a measure of the dispersion, or scatter, of the values of the ran-

dom variable about the mean . If the values tend to be concentrated near the mean, the variance is small; while
if the values tend to be distributed far from the mean, the variance is large. The situation is indicated graphically
in Fig. 3-1 for the case of two continuous distributions having the same mean .m

m

s2
X � E[(X � m)2] � 3

`

�`
(x � m)2 f (x) dx

s2
X � g`

j�1 (xj � m)2f (xj),

s2 � [(x1 � m)2 � (x2 � m)2 � c� (xn � m)2]>n

s2
X � E[(X � m)2] � a

n

j�1
(xj � m)2f (xj) � a(x � m)2 f (x)

s

ss

sX � 2Var (X) � 2E[(X � m)2]

m

m
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EXAMPLE 3.4 Find the variance and standard deviation of the random variable of Example 3.2. As found in Example 3.2,
the mean is � E(X) � 4 3. Then the variance is given by

and so the standard deviation is 

Note that if X has certain dimensions or units, such as centimeters (cm), then the variance of X has units cm2

while the standard deviation has the same unit as X, i.e., cm. It is for this reason that the standard deviation is
often used.

Some Theorems on Variance

Theorem 3-4 2 � E[(X � )2] � E(X2) � 2 � E(X2) � [E(X)]2 (16)

where � E(X).

Theorem 3-5 If c is any constant,

Var(cX) � c2 Var(X) (17)

Theorem 3-6 The quantity E[(X � a)2] is a minimum when a � � E(X).

Theorem 3-7 If X and Y are independent random variables,

(18)

(19)

Generalizations of Theorem 3-7 to more than two independent variables are easily made. In words, the vari-
ance of a sum of independent variables equals the sum of their variances.

Standardized Random Variables
Let X be a random variable with mean and standard deviation ( � 0). Then we can define an associated stan-
dardized random variable given by

(20)

An important property of X* is that it has a mean of zero and a variance of 1, which accounts for the name stan-
dardized, i.e.,

E(X*) � 0, Var(X*) � 1 (21)

The values of a standardized variable are sometimes called standard scores, and X is then said to be expressed
in standard units (i.e., is taken as the unit in measuring X – ).

Standardized variables are useful for comparing different distributions.

Moments
The rth moment of a random variable X about the mean , also called the rth central moment, is defined as

r � E [(X � )r] (22)mm

m

ms

X* �
X � m
s

ssm

Var (X � Y) � Var (X) � Var (Y)  or  s2
X�Y � s2

X � s2
Y

Var (X � Y) � Var (X) � Var (Y)  or  s2
X�Y � s2

X � s2
Y 

m

m

mms

s � A2
9 �

22
3

s2 � E B ¢X �
4
3 ≤ 2R � 3

`

�`
¢x �

4
3 ≤ 2

 f (x) dx � 3
2

0
¢x �

4
3 ≤ 2¢ 1

2  x≤  dx �
2
9

>m

CHAPTER 3 Mathematical Expectation78



where r � 0, 1, 2, . . . . It follows that 0 � 1, 1 � 0, and 2 � 2, i.e., the second central moment or second
moment about the mean is the variance. We have, assuming absolute convergence,

(23)

(24)

The rth moment of X about the origin, also called the rth raw moment, is defined as

(25)

where r � 0, 1, 2, . . . , and in this case there are formulas analogous to (23) and (24) in which � 0.
The relationship between these moments is given by

(26)

As special cases we have, using and 

(27)

Moment Generating Functions
The moment generating function of X is defined by

MX(t) � E(etX) (28)

that is, assuming convergence,

(29)

(30)

We can show that the Taylor series expansion is [Problem 3.15(a)]

(31)

Since the coefficients in this expansion enable us to find the moments, the reason for the name moment gener-
ating function is apparent. From the expansion we can show that [Problem 3.15(b)]

(32)

i.e., is the rth derivative of MX(t) evaluated at t � 0. Where no confusion can result, we often write M(t) in-
stead of MX(t).

Some Theorems on Moment Generating Functions
Theorem 3-8 If MX(t) is the moment generating function of the random variable X and a and b (b 0) are con-

stants, then the moment generating function of (X � a) b is

(33)M(X�a)>b(t) � eat>bMX ¢ t
b
≤ > 2

mrr

mrr �
dr

dtr  MX(t) 2
t�0

MX(t) � 1 � mt � mr2 
t2

2!
� c� mrr  

tr

r!
� c

MX(t) � 3
`

�`
etx  f (x) dx   (continuous variable)

MX(t) � a  etx  f (x)  (discrete variable)

m2 � mr2 � m2

m3 � mr3 � 3mr2 m � 2m3

m4 � mr4 � 4mr3 m � 6mr2 m
2 � 3m4

mr0 � 1,mr1 � m

mr � mrr � ¢ r

1
≤mrr�1 m � c� (�1) j¢ r

j
≤mrr�j  m

j � c� (�1)rmr0mr

m

mrr � E(Xr)

mr � 3
`

�`
(x � m)r f (x) dx   (continuous variable)

mr � a(x � m)r f (x)  (discrete variable)

smmm
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Theorem 3-9 If X and Y are independent random variables having moment generating functions MX(t) and
MY(t), respectively, then

MX � Y (t) � MX (t) MY (t) (34)

Generalizations of Theorem 3-9 to more than two independent random variables are easily made. In words, the
moment generating function of a sum of independent random variables is equal to the product of their moment
generating functions.

Theorem 3-10 (Uniqueness Theorem) Suppose that X and Y are random variables having moment generat-
ing functions MX (t) and MY (t), respectively. Then X and Y have the same probability distribu-
tion if and only if MX (t) � MY (t) identically.

Characteristic Functions
If we let t � i , where i is the imaginary unit, in the moment generating function we obtain an important func-
tion called the characteristic function. We denote this by

(35)

It follows that

(36)

(37)

Since the series and the integral always converge absolutely.
The corresponding results (31) and (32) become

(38)

where (39)

When no confusion can result, we often write ( ) instead of X( ).
Theorems for characteristic functions corresponding to Theorems 3-8, 3-9, and 3-10 are as follows.

Theorem 3-11 If X( ) is the characteristic function of the random variable X and a and b (b 0) are con-2vf

vfvf

mrr � (�1)rir 
dr

dvr  fX(v) 2
v�0

fX(v) � 1 � imv � mr2 
v2

2!
� c� irmrr 

vr

r!
� c

ueivx u � 1,

fX(v) � 3
`

�`
eivx  f (x) dx   (continuous variable)

fX(v) � aeivx  f (x)  (discrete variable)

fX(v) � MX(iv) � E(eivX)

v
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only if X ( ) � Y ( ) identically.vfvf

stants, then the characteristic function of (X � a) b is

(40)

Theorem 3-12 If X and Y are independent random variables having characteristic functions X( ) and Y ( ),
respectively, then

(41)

More generally, the characteristic function of a sum of independent random variables is equal to the product
of their characteristic functions.

Theorem 3-13 (Uniqueness Theorem) Suppose that X and Y are random variables having characteristic func-
tions X( ) and Y( ), respectively. Then X and Y have the same probability distribution if andvfvf

fX�Y (v) � fX (v) fY (v)

vfvf

f(X�a)>b(v) � eaiv>bfX¢vb ≤>



An important reason for introducing the characteristic function is that (37) represents the Fourier transform
of the density function f (x). From the theory of Fourier transforms, we can easily determine the density function
from the characteristic function. In fact,

(42)

which is often called an inversion formula, or inverse Fourier transform. In a similar manner we can show in the
discrete case that the probability function f(x) can be obtained from (36) by use of Fourier series, which is the
analog of the Fourier integral for the discrete case. See Problem 3.39.

Another reason for using the characteristic function is that it always exists whereas the moment generating
function may not exist.

Variance for Joint Distributions. Covariance
The results given above for one variable can be extended to two or more variables. For example, if X and Y are
two continuous random variables having joint density function f (x, y), the means, or expectations, of X and Y are

(43)

and the variances are

(44)

Note that the marginal density functions of X and Y are not directly involved in (43) and (44).
Another quantity that arises in the case of two variables X and Y is the covariance defined by

(45)

In terms of the joint density function f (x, y), we have

(46)

Similar remarks can be made for two discrete random variables. In such cases (43) and (46) are replaced by

(47)

(48)

where the sums are taken over all the discrete values of X and Y. 
The following are some important theorems on covariance.

Theorem 3-14 (49)

Theorem 3-15 If X and Y are independent random variables, then

(50)

Theorem 3-16 (51)

or (52)

Theorem 3-17 (53)ZsXY Z � sX sY

s2
X
Y � s2

X � s2
Y 
 2sXY

Var (X 
 Y ) � Var (X) � Var (Y ) 
 2 Cov (X, Y )

sXY � Cov (X, Y ) � 0

sXY � E(XY ) � E(X)E(Y ) � E(XY ) � mXmY

sXY � a
x
a
y

 (x � mX)(y � mY) f (x, y)

mX � a
x
a
y

 xf (x, y)   mY � a
x
a
y

yf(x, y)

sXY � 3
`

�`
3
`

�`
(x � mX)(y � mY) f (x, y) dx dy

sXY � Cov (X, Y ) � E[(X � mX)(Y � mY)]

s2
X � E[(X � mX)2] � 3

`

�`
3
`

�`
(x � mX)2  f (x, y) dx dy

s2
Y � E[(Y � mY)2] � 3

`

�`
3
`

�`
( y � mY)2  f (x, y) dx dy

mX � E(X) � 3
`

�`
3
`

�`
xf (x, y) dx dy,  mY � E(Y) � 3

`

�`
3
`

�`
yf (x, y) dx dy

f (x) �
1

2p3
`

�`
e�ivx fX (v) dv
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The converse of Theorem 3-15 is not necessarily true. If X and Y are independent, Theorem 3-16 reduces to
Theorem 3-7.

Correlation Coefficient
If X and Y are independent, then Cov(X, Y) � XY � 0. On the other hand, if X and Y are completely dependent,
for example, when X � Y, then Cov(X, Y) � XY � . From this we are led to a measure of the dependence
of the variables X and Y given by

(54)

We call the correlation coefficient, or coefficient of correlation. From Theorem 3-17 we see that .�1 � r � 1r

r �
sXY

sX sY

sX sYs

s

CHAPTER 3 Mathematical Expectation82

In the case where � 0 (i.e., the covariance is zero), we call the variables X and Y uncorrelated. In such cases,
however, the variables may or may not be independent. Further discussion of correlation cases will be given in
Chapter 8.

Conditional Expectation, Variance, and Moments
If X and Y have joint density function f (x, y), then as we have seen in Chapter 2, the conditional density function
of Y given X is � f (x, y) f1 (x) where f1 (x) is the marginal density function of X. We can define the con-
ditional expectation, or conditional mean, of Y given X by

(55)

where “X � x” is to be interpreted as x � X x � dx in the continuous case. Theorems 3-1 and 3-2 also hold
for conditional expectation.

We note the following properties:

1. E(Y X � x) � E(Y) when X and Y are independent.

2.

It is often convenient to calculate expectations by use of Property 2, rather than directly.

EXAMPLE 3.5 The average travel time to a distant city is c hours by car or b hours by bus. A woman cannot decide
whether to drive or take the bus, so she tosses a coin. What is her expected travel time?

Here we are dealing with the joint distribution of the outcome of the toss, X, and the travel time, Y, where Y � Ycar if
X � 0 and Y � Ybus if X � 1. Presumably, both Ycar and Ybus are independent of X, so that by Property 1 above

E(Y X � 0) � E(Ycar X � 0) � E(Ycar) � c

and E(Y X � l) � E(Ybus X � 1) � E(Ybus) � b

Then Property 2 (with the integral replaced by a sum) gives, for a fair coin,

In a similar manner we can define the conditional variance of Y given X as

(56)

where 2 � E(Y X � x). Also we can define the rth conditional moment of Y about any value a given X as

(57)

The usual theorems for variance and moments extend to conditional variance and moments.

E[(Y � a)r uX � x] � 3
`

�`
(y � a)r f (y u x) dy

um

E[(Y � m2)2 uX � x] � 3
`

�`
(y � m2)2 f (y ux) dy

E(Y) � E(Y uX � 0)P(X � 0) � E(Y uX � 1)P(X � 1) �
c � b

2

uu

uu

E(Y) � 3
`

�`
E(Y uX � x) f1(x) dx.

u

�

E(Y uX � x) � 3
`

�`
y f (y ux) dy

>f (y u x)

r



Chebyshev’s Inequality
An important theorem in probability and statistics that reveals a general property of discrete or continuous ran-
dom variables having finite mean and variance is known under the name of Chebyshev’s inequality.

Theorem 3-18 (Chebyshev’s Inequality) Suppose that X is a random variable (discrete or continuous) having
mean and variance 2, which are finite. Then if P is any positive number,

(58)

or, with P � k ,

(59)

EXAMPLE 3.6 Letting k � 2 in Chebyshev’s inequality (59), we see that

P ( X � 2 ) 0.25 or P( X � � 2 ) 0.75

In words, the probability of X differing from its mean by more than 2 standard deviations is less than or equal to 0.25;
equivalently, the probability that X will lie within 2 standard deviations of its mean is greater than or equal to 0.75. This
is quite remarkable in view of the fact that we have not even specified the probability distribution of X.

Law of Large Numbers
The following theorem, called the law of large numbers, is an interesting consequence of Chebyshev’s inequality.

Theorem 3-19 (Law of Large Numbers): Let X1, X2, . . . , Xn be mutually independent random variables (dis-
crete or continuous), each having finite mean and variance 2. Then if

(60)

Since Sn n is the arithmetic mean of X1, . . . , Xn, this theorem states that the probability of the arithmetic
mean Sn n differing from its expected value by more than P approaches zero as . A stronger result,
which we might expect to be true, is that but this is actually false. However, we can prove thatlim S

nS` n>n � m,
n S `m> >

lim
nS`

P¢ 2 Sn

n � m 2  � P≤ � 0

Xn(n � 1, 2, c),
Sn � X1 � X2 � c�sm

�sumu�s�umu

P(uX � m u �  ks) �
1
k2

s

P( uX � m u � P) �  
s2

P2

sm
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with probability one. This result is often called the strong law of large numbers, and, by contrast,lim S
nS` n>n � m

that of Theorem 3-19 is called the weak law of large numbers. When the “law of large numbers” is referred to
without qualification, the weak law is implied.

Other Measures of Central Tendency
As we have already seen, the mean, or expectation, of a random variable X provides a measure of central ten-
dency for the values of a distribution. Although the mean is used most, two other measures of central tendency
are also employed. These are the mode and the median.

1. MODE. The mode of a discrete random variable is that value which occurs most often or, in other words,
has the greatest probability of occurring. Sometimes we have two, three, or more values that have relatively
large probabilities of occurrence. In such cases, we say that the distribution is bimodal, trimodal, or multi-
modal, respectively. The mode of a continuous random variable X is the value (or values) of X where the
probability density function has a relative maximum.

2. MEDIAN. The median is that value x for which and In the case of a con-P(X � x) �
1
2.P(X � x) �

1
2

tinuous distribution we have and the median separates the density curve into
two parts having equal areas of 1 2 each. In the case of a discrete distribution a unique median may not
exist (see Problem 3.34).

>P(X � x) �
1
2 � P(X � x),



Percentiles
It is often convenient to subdivide the area under a density curve by use of ordinates so that the area to the left
of the ordinate is some percentage of the total unit area. The values corresponding to such areas are called per-
centile values, or briefly percentiles. Thus, for example, the area to the left of the ordinate at in Fig. 3-2 is .
For instance, the area to the left of x0.10 would be 0.10, or 10%, and x0.10 would be called the 10th percentile
(also called the first decile). The median would be the 50th percentile (or fifth decile).

axa
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Fig. 3-2

Other Measures of Dispersion
Just as there are various measures of central tendency besides the mean, there are various measures of disper-
sion or scatter of a random variable besides the variance or standard deviation. Some of the most common are
the following.

1. SEMI-INTERQUARTILE RANGE. If x0.25 and x0.75 represent the 25th and 75th percentile values, the
difference x0.75 � x0.25 is called the interquartile range and is the semi-interquartile range.

2. MEAN DEVIATION. The mean deviation (M.D.) of a random variable X is defined as the expectation
of i.e., assuming convergence,

(discrete variable) (61)

(continuous variable) (62)

Skewness and Kurtosis
1. SKEWNESS. Often a distribution is not symmetric about any value but instead has one of its tails longer

than the other. If the longer tail occurs to the right, as in Fig. 3-3, the distribution is said to be skewed to the right,
while if the longer tail occurs to the left, as in Fig. 3-4, it is said to be skewed to the left. Measures describing
this asymmetry are called coefficients of skewness, or briefly skewness. One such measure is given by

(63)

The measure 3 will be positive or negative according to whether the distribution is skewed to the right or left,
respectively. For a symmetric distribution, 3 � 0.s

s

a3 �
E[(X � m)3]

s3
�
m3

s3

M.D.(X) � E [uX � mu] � 3
`

�`
u x � m u f (x) dx

M.D.(X) � E [uX � mu] � a ux � mu f (x)

uX � m u ,

1
2  (x0.75 � x0.25)

Fig. 3-3 Fig. 3-4 Fig. 3-5

2. KURTOSIS. In some cases a distribution may have its values concentrated near the mean so that the dis-
tribution has a large peak as indicated by the solid curve of Fig. 3-5. In other cases the distribution may be



relatively flat as in the dashed curve of Fig. 3-5. Measures of the degree of peakedness of a distribution are
called coefficients of kurtosis, or briefly kurtosis. A measure often used is given by

(64)

This is usually compared with the normal curve (see Chapter 4), which has a coefficient of kurtosis equal to 3.
See also Problem 3.41.

SOLVED PROBLEMS

Expectation of random variables
3.1. In a lottery there are 200 prizes of $5, 20 prizes of $25, and 5 prizes of $100. Assuming that 10,000 tickets

are to be issued and sold, what is a fair price to pay for a ticket?

Let X be a random variable denoting the amount of money to be won on a ticket. The various values of X together
with their probabilities are shown in Table 3-2. For example, the probability of getting one of the 20 tickets
giving a $25 prize is 20 10,000 � 0.002. The expectation of X in dollars is thus

E(X) � (5)(0.02) � (25)(0.002) � (100)(0.0005) � (0)(0.9775) � 0.2

or 20 cents. Thus the fair price to pay for a ticket is 20 cents. However, since a lottery is usually designed to raise
money, the price per ticket would be higher.

>

a4 �
E[(X � m)4]

s4 �
m4

s4

CHAPTER 3 Mathematical Expectation 85

Table 3-2

x (dollars) 5 25 100 0

P(X � x) 0.02 0.002 0.0005 0.9775

3.2. Find the expectation of the sum of points in tossing a pair of fair dice.

Let X and Y be the points showing on the two dice. We have

Then, by Theorem 3-2,

E(X � Y) � E(X) � E(Y) � 7

3.3. Find the expectation of a discrete random variable X whose probability function is given by

We have

To find this sum, let

Then

Subtracting,

Therefore, S � 2.

1
2  S �

1
2 �  1

4 �
1
8 �  1

16 � c� 1

1
2  S �    1

4 � 2¢1
8 ≤ � 3¢ 1

16≤ � c

S �
1
2 � 2¢ 1

4 ≤ � 3¢ 1
8 ≤ � 4¢ 1

16 ≤ � c

E(X) � a
`

x�1
 x ¢1

2 ≤ x

�
1
2 � 2¢ 1

4 ≤ � 3¢ 1
8 ≤ � c

f (x) � ¢1
2
≤ x

   (x � 1, 2, 3, c)

E(X) � E(Y) � 1¢ 1
6 ≤ � 2¢ 1

6 ≤ � c� 6¢ 1
6 ≤ �

7
2



3.4. A continuous random variable X has probability density given by

Find (a) E(X), (b) E(X2).

(a)

(b)

3.5. The joint density function of two random variables X and Y is given by

Find (a) E(X), (b) E(Y), (c) E(XY), (d) E(2X � 3Y).

(a)

(b)

(c)

(d)

Another method
(c) Since X and Y are independent, we have, using parts (a) and (b),

(d) By Theorems 3-1 and 3-2, pages 76–77, together with (a) and (b),

3.6. Prove Theorem 3-2, page 77.

Let f (x, y) be the joint probability function of X and Y, assumed discrete. Then

If either variable is continuous, the proof goes through as before, with the appropriate summations replaced by
integrations. Note that the theorem is true whether or not X and Y are independent.

� E(X) � E(Y)

� a
x
a
y

xf (x, y) � a
x
a
y

yf (x, y)

E(X � Y) � a
x
a
y

(x � y) f (x, y)

E(2X � 3Y) � 2E(X) � 3E(Y) � 2¢ 8
3 ≤ � 3¢ 31

9 ≤ �
47
3

E(XY) � E(X)E(Y) � ¢ 8
3 ≤ ¢ 31

9 ≤ �
248
27

E(2X � 3Y) � 3
`

�`
3
`

�`
(2x � 3y) f (x, y) dx dy � 3

4

x�0
3

5

y�1
(2x � 3y)¢ xy

96 ≤  dx dy �
47
3

E(XY) � 3
`

�`
3
`

�`
(xy) f (x, y) dx dy � 3

4

x�0
3

5

y�1
(xy)¢ xy

96 ≤  dx dy �
248
27

E(Y) � 3
`

�`
3
`

�`
yf (x, y) dx dy � 3

4

x�0
3

5

y�1
y¢ xy

96 ≤  dx dy �
31
9

E(X) � 3
`

�`
3
`

�`
xf (x, y) dx dy � 3

4

x�0
3

5

y�1
x¢ xy

96 ≤  dx dy �
8
3

f (x, y) � e xy>96 0 � x � 4, 1 � y � 5

0 otherwise

� 2B (x2)¢ e�2x

�2 ≤ � (2x)¢ e�2x

4 ≤ � (2)¢ e�2x

�8 ≤ R  2 `
0

�
1
2

E(X2) � 3
`

�`
x2f (x) dx � 23

`

0 

x2e�2x dx

� 2B (x)¢ e�2x

�2 ≤ � (1)¢ e�2x

4 ≤ R  2 `
0

�
1
2

E(X) � 3
`

�`
xf (x) dx � 3

`

0
x(2e�2x) dx � 23

`

0
xe�2x dx

f (x) � e2e�2x  x � 0

0 x � 0
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3.7. Prove Theorem 3-3, page 77.

Let f (x, y) be the joint probability function of X and Y, assumed discrete. If the variables X and Y are independent,
we have f (x, y) � f1 (x) f2 (y). Therefore,

If either variable is continuous, the proof goes through as before, with the appropriate summations replaced by
integrations. Note that the validity of this theorem hinges on whether f (x, y) can be expressed as a function of x
multiplied by a function of y, for all x and y, i.e., on whether X and Y are independent. For dependent variables it
is not true in general.

Variance and standard deviation
3.8. Find (a) the variance, (b) the standard deviation of the sum obtained in tossing a pair of fair dice.

(a) Referring to Problem 3.2, we have E(X) � E(Y) � 1 2. Moreover,

Then, by Theorem 3-4,

and, since X and Y are independent, Theorem 3-7 gives

(b)

3.9. Find (a) the variance, (b) the standard deviation for the random variable of Problem 3.4. 

(a) As in Problem 3.4, the mean of X is Then the variance is

Another method
By Theorem 3-4,

(b) s � 2Var (X) � A1
4 �

1
2

Var (X) � E[(X � m)2] � E(X2) � [E(X)]2 �
1
2 � ¢ 1

2 ≤ 2

�
1
4

Var (X) � E[(X � m)2] � E B¢X �
1
2 ≤ 2R � 3

`

�`
¢x �

1
2 ≤ 2

 f (x) dx

� 3
`

0
¢x �

1
2 ≤ 2

(2e�2x) dx �
1
4

m � E(X) �
1
2.

sX�Y � 2Var (X � Y) � A35
6

Var (X � Y) � Var (X) � Var (Y) �
35
6

Var (X) � Var (Y) �
91
6 � ¢ 7

2 ≤ 2

�
35
12

E(X2) � E(Y2) � 12¢ 1
6 ≤ � 22¢ 1

6 ≤ � c� 62¢ 1
6 ≤ �

91
6

>

E(XY) � a
x
a
y

 xyf (x, y) � a
x
a
y

 xyf1(x) f2 (y)

� a
x
Bxf1(x)a

y
yf2(y)R

� a
x

[(xf1(x)E(y)]

� E(X)E(Y)
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3.10. Prove Theorem 3-4, page 78.

We have

3.11. Prove Theorem 3-6, page 78.

since E(X � ) � E(X ) � � 0. From this we see that the minimum value of E[(X � a)2] occurs when mm

� E [(X � m)2] � (m � a)2

� E [(X � m)2] � 2(m � a)E(X � m) � (m � a)2

� E [(X � m)2 � 2(X � m)(m � a) � (m � a)2]

E [(X � a)2] � E [5(X � m) � (m � a)62]

� E(X2) � [E(X)]2

� E(X2) � 2m2 � m2 � E(X2) � m2

E[(X � m)2] � E(X2 � 2mX � m2) � E(X2) � 2mE(X ) � m2
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( � a)2 � 0, i.e., when a � .

3.12. If X* � (X � ) is a standardized random variable, prove that (a) E(X*) � 0, (b) Var(X*) � 1.

(a)

since E(X) � .

(b)

using Theorem 3-5, page 78, and the fact that E[(X � )2] � 2.

3.13. Prove Theorem 3-7, page 78.

using the fact that

since X and Y, and therefore X � X and Y � Y, are independent. The proof of (19), page 78, follows onmm

E[(X � mX)(Y � mY)] � E(X � mX)E(Y � mY) � 0

� Var (X ) � Var(Y )

� E [(X � mX)2] � 2E[(X � mX)(Y � mY)] � E[(Y � mY)2]

� E [(X � mX)2 � 2(X � mX)(Y � mY) � (Y � mY)2]

� E [5(X � mX) � (Y � mY)62]

Var (X � Y ) � E [5(X � Y ) � (mX � mY)62]

sm

Var (X*) � Var ¢X � m
s ≤ �

1
s2  E[(X � m)2] � 1

m

E(X*) � E ¢X � m
s ≤ �

1
s  [E(X � m)] �

1
s  [E(X) � m] � 0

s>m
mm

replacing Y by �Y and using Theorem 3-5.

Moments and moment generating functions
3.14. Prove the result (26), page 79.

� c� (�1)r�1 ¢ r

r � 1
≤Xmr�1 � (�1)rmrR� E BXr � ¢ r

1
≤Xr�1m � c� (�1) j ¢ r

j
≤Xr�j m j

mr � E[(X � m)r]



where the last two terms can be combined to give (�l)r�1(r � 1) r.

3.15. Prove (a) result (31), (b) result (32), page 79.

(a) Using the power series expansion for eu (3., Appendix A), we have

(b) This follows immediately from the fact known from calculus that if the Taylor series of f (t) about t � a is

then

3.16. Prove Theorem 3-9, page 80.

Since X and Y are independent, any function of X and any function of Y are independent. Hence,

3.17. The random variable X can assume the values 1 and �1 with probability each. Find (a) the moment gen-
erating function, (b) the first four moments about the origin.

(a)

(b) We have

Then (1)

But (2)

Then, comparing (1) and (2), we have

The odd moments are all zero, and the even moments are all one.

m � 0,  mr2 � 1,   mr3 � 0,   mr4 � 1,c

MX(t) � 1 � mt � mr2  
t2

2! � mr3  
t3

3! � mr4  
t4

4! � c

1
2  (et � e�t) � 1 �

t2

2! �
t4

4! � c

e�t � 1 � t �
t2

2! �
t3

3! �
t4

4! � c

et � 1 � t �
t2

2! �
t3

3! �
t4

4! � c

E(etX) � et(1)¢1
2 ≤ � et(�1)¢ 1

2 ≤ �
1
2  (et � e�t)

1
2

MX�Y (t) � E[et(X�Y )] � E(etXetY ) � E(etX )E(etY ) � MX(t)MY (t)

cn �
1
n!

dn

dtn   f (t) 2
t�a

f (t) � a
`

n�0
 cn(t � a)n

� 1 � mt � mr2 
t2

2! � mr3 
t3

3! � c

� 1 � tE(X ) �
t2

2!  E(X2) �
t3

3!  E(X3) � c

MX(t) � E(etX) � E ¢1 � tX �
t2X2

2! �
t3X3

3! � c≤
m

� c� (�1)r�1rmr � (�1)�rmr

� mrr � ¢ r

1
≤mrr�1m � c� (�1) j¢r

j
≤mrr�j m   

j

� c� (�1)r�1¢ r

r � 1
≤E(X )mr�1 � (�1)rmr

� E(Xr) � ¢ r

1
≤E(Xr�1)m � c� (�1) j ¢r

j
≤E(Xr�j)m j
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3.18. A random variable X has density function given by

Find (a) the moment generating function, (b) the first four moments about the origin.

(a)

(b) If | t | � 2 we have

But

Therefore, on comparing terms,

3.19. Find the first four moments (a) about the origin, (b) about the mean, for a random variable X having den-
sity function

(a)

(b) Using the result (27), page 79, we have

Characteristic functions
3.20. Find the characteristic function of the random variable X of Problem 3.17.

The characteristic function is given by

E(eivX ) � eiv(1)¢1
2 ≤ � eiv(�1)¢ 1

2 ≤ �
1
2  (eiv � e�iv) � cosv

m4 �
27
2 � 4¢216

35 ≤ ¢ 8
5 ≤ � 6(3)¢ 8

5 ≤ 2

� 3¢ 8
5 ≤ 4

�
3693
8750

m3 �
216
35 � 3(3)¢ 8

5 ≤ � 2¢ 8
5 ≤ 3

� �
32

875

m2 � 3 � ¢8
5 ≤ 2

�
11
25 � s2

m1 � 0

mr4 � E(X4) �
4

813
3

0 

x5(9 � x2) dx �
27
2

mr3 � E(X3) �
4

813
3

0 

x4(9 � x2) dx �
216
35

mr2 � E(X2) �
4

813
3

0 

x3(9 � x2) dx � 3

mr1 � E(X) �
4

813
3

0 

x2(9 � x2) dx �
8
5 � m

f (x) � e4x(9 � x2)>81 0 � x �  3

0 otherwise

m �
1
2, mr2 �

1
2, mr3 �

3
4, mr4 �

3
2.

M(t) � 1 � mt � mr2  
t2

2! � mr3  
t3

3! � mr4  
t4

4! � c

2
2 � t �

1
1 � t>2 � 1 �

t
2 �

t2

4 �
t3

8 �
t4

16 � c

�
2e(t�2)x

t � 2  2 `
0

�
2

2 � t,  assuming t � 2

� 3
`

0
etx(2e�2x) dx � 23

`

0
e(t�2)x dx

M(t) � E(etX ) � 3
`

�`
etx f (x) dx

f (x) � e2e�2x x � 0

0 x � 0
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using Euler’s formulas,

with . The result can also be obtained from Problem 3.17(a) on putting t � i .

3.21. Find the characteristic function of the random variable X having density function given by

The characteristic function is given by

using Euler’s formulas (see Problem 3.20) with .

3.22. Find the characteristic function of the random variable X having density function f (x) � ce–a|x|,
, where a � 0, and c is a suitable constant.

Since f (x) is a density function, we must have

so that

Then c � a 2. The characteristic function is therefore given by

Covariance and correlation coefficient
3.23. Prove Theorem 3-14, page 81.

By definition the covariance of X and Y is

� E(XY ) � E(X )E(Y )

� E(XY ) � mXmY

� E(XY ) � mXmY � mYmX � mXmY

� E(XY ) � mXE(Y ) � mYE(X ) � E(mXmY)

� E[XY � mXY � mYX � mXmY]

sXY � Cov (X, Y ) � E[(X � mX)(Y � mY)]

�
a

2(a � iv) �
a

2(a � iv) �
a2

a2 � v2

�
a
2

e(a�iv)x

a � iv
2 0
�`

� a 
e�(a�iv)x

�(a � iv)  2 `
0

�
a
2  B 30

�`
e(a�iv)x dx � 3

`

0
e�(a�iv)x dxR�

a
2  B 30

�`
eivxe�a(�x) dx � 3

`

0
eivxe�a(x) dxRE(eivX) � 3

`

�`
eivx  f (x) dx

>
� c 

eax

a  2 0
�`

� c 
e�ax

�a  2 `
0

�
2c
a � 1

c3
`

�`
e�aZxZ dx � c B 30

�`
e�a(�x) dx � 3

`

0
e�a(x) dxR

3
`

�`
 f (x) dx � 1

�` � x � `

u � av

�
1

2a
eivx

iv  2 a
�a

�
eiav � e�iav

2iav �
sin av

av

E(eivX) � 3
`

�`
eivx f (x) dx �

1
2a3

a

�a
eivx dx

f (x) � e1>2a Z x Z � a

0 otherwise

vu � v

eiu � cos u � i sin u  e�iu � cos u � i sin u
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3.24. Prove Theorem 3-15, page 81.

If X and Y are independent, then E(XY) � E(X )E(Y). Therefore, by Problem 3.23,

3.25. Find (a) E(X), (b) E(Y), (c) E(XY), (d) E(X2), (e) E(Y2), (f ) Var (X), (g) Var (Y), (h) Cov (X, Y), (i) , if the
random variables X and Y are defined as in Problem 2.8, pages 47–48.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

3.26. Work Problem 3.25 if the random variables X and Y are defined as in Problem 2.33, pages 61–63.

Using c � 1 210, we have:

(a)

(b)

(c) E(XY ) �
1

2103
6

x�2
3

5

y�0
(xy)(2x � y) dx dy �

80
7

E(Y ) �
1

2103
6

x�2
3

5

y�0
(y)(2x � y) dx dy �

170
63

E(X ) �
1

2103
6

x�2
3

5

y�0
(x)(2x � y) dx dy �

268
63

>

r �
sXY

sXsY
�

�20>147

2230>441255>49
�

�20

2230255
� �0.2103 approx.

sXY � Cov (X, Y ) � E(XY ) � E(X )E(Y ) �
17
7 � ¢ 29

21 ≤ ¢ 13
7 ≤ � �

20
147

s2
Y � Var (Y ) � E(Y2) � [E(Y )]2 �

32
7 � ¢ 13

7 ≤ 2

�
55
49

s2
X � Var (X) � E(X2) � [E(X)]2 �

17
7 � ¢ 29

21 ≤ 2

�
230
441

� (0)2(6c) � (1)2(9c) � (2)2(12c) � (3)2(15c) � 192c �
192
42 �

32
7

E(Y2) � a
x
a
y

 y2 f (x, y) � a
y

y2Ba
x

 f (x, y)R� (0)2(6c) � (1)2(14c) � (2)2(22c) � 102c �
102
42 �

17
7

E(X2) � a
x
a
y

 x2 f(x, y) � a
x

 x2Ba
y

  f (x, y)R� 102c �
102
42 �

17
7

� (2)(0)(4c) � (2)(1)(5c) � (2)(2)(6c) � (2)(3)(7c)

� (1)(0)(2c) � (1)(1)(3c) � (1)(2)(4c) � (1)(3)(5c)

� (0)(0)(0) � (0)(1)(c) � (0)(2)(2c) � (0)(3)(3c)

E(XY ) � a
x
a
y

 xy f (x, y)

� (0)(6c) � (1)(9c) � (2)(12c) � (3)(15c) � 78c �
78
42 �

13
7

E(Y ) � a
x
a
y

 yf (x, y) � a
y

 yBa
x

  f (x, y)R� (0)(6c) � (1)(14c) � (2)(22c) � 58c �
58
42 �

29
21

E(X ) � a
x
a
y

xf (x, y) � a
x

xBa
y

  f (x, y)R r

sXY � Cov (X, Y ) � E(XY ) � E(X )E(Y ) � 0
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(d)

(e)

(f)

(g)

(h)

(i)

Conditional expectation, variance, and moments
3.27. Find the conditional expectation of Y given X � 2 in Problem 2.8, pages 47–48.

As in Problem 2.27, page 58, the conditional probability function of Y given X � 2 is

Then the conditional expectation of Y given X � 2 is

where the sum is taken over all y corresponding to X � 2. This is given by

3.28. Find the conditional expectation of (a) Y given X, (b) X given Y in Problem 2.29, pages 58–59.

(a)

(b)

3.29. Find the conditional variance of Y given X for Problem 2.29, pages 58–59.

The required variance (second moment about the mean) is given by

where we have used the fact that from Problem 3.28(a).

Chebyshev’s inequality
3.30. Prove Chebyshev’s inequality.

We shall present the proof for continuous random variables. A proof for discrete variables is similar if integrals
are replaced by sums. If f(x) is the density function of X, then

s2 � E[(X � m)2] � 3
`

�`
(x � m)2f (x) dx

m2 � E(Y uX � x) � 2x>3
E[(Y � m2)2 uX � x] � 3

`

�`
(y � m2)2f2(y u x)dy � 3

x

0 

¢y �
2x
3 ≤ 2¢ 2y

x2 ≤  dy �
x2

18

�
2(1 � y3)

3(1 � y2)
�

2(1 � y � y2)
3(1 � y)

E(X uY � y) � 3
`

�`
xf1(x u y) dx � 3

1

y 

x¢ 2x
1 � y2 ≤  dx

E(Y uX � x)3
`

�`
 yf2(y u x) dy � 3

x

0  

y¢ 2y

x2 ≤  dy �
2x
3

E(Y uX � 2) � (0)¢ 4
22 ≤ � 1¢ 5

22 ≤ � 2¢ 6
22 ≤ � 3¢ 7

22 ≤ �
19
11

E(Y uX � 2) � a
y

 y¢ 4 � y
22 ≤

f (y u2) �
4 � y

22

r �
sXY

sXsY
�

�200>3969

25036>3969216,225>7938
�

�200

22518216,225
� �0.03129 approx.

sXY � Cov(X, Y ) � E(XY ) � E(X )E(Y) �
80
7 � ¢ 268

63 ≤ ¢170
63 ≤ � �

200
3969

s2
Y � Var (Y) � E(Y2) � [E(Y )]2 �

1175
126 � ¢ 170

63 ≤ 2

�
16,225
7938

s2
X � Var (X ) � E(X2) � [E(X )]2 �

1220
63 � ¢ 268

63 ≤ 2

�
5036
3969

E(Y2) �
1

2103
6

x�2
3

5

y�0
(y2)(2x � y) dx dy �

1175
126

E(X2) �
1

2103
6

x�2
3

5

y�0
(x2)(2x � y) dx dy �

1220
63
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Since the integrand is nonnegative, the value of the integral can only decrease when the range of integration is
diminished. Therefore,

But the last integral is equal to . Hence,

3.31. For the random variable of Problem 3.18, (a) find . (b) Use Chebyshev’s inequality to ob-
tain an upper bound on and compare with the result in (a).

(a) From Problem 3.18, � 1 2. Then

Therefore

(b) From Problem 3.18, . Chebyshev’s inequality with P � 1 then gives

Comparing with (a), we see that the bound furnished by Chebyshev’s inequality is here quite crude. In practice,
Chebyshev’s inequality is used to provide estimates when it is inconvenient or impossible to obtain exact values.

Law of large numbers
3.32. Prove the law of large numbers stated in Theorem 3-19, page 83.

We have

Then

so that

where we have used Theorem 3-5 and an extension of Theorem 3-7.
Therefore, by Chebyshev’s inequality with X � Sn n, we have

Taking the limit as , this becomes, as required,

Other measures of central tendency
3.33. The density function of a continuous random variable X is

(a) Find the mode. (b) Find the median. (c) Compare mode, median, and mean.

f (x) � e4x(9 � x2)>81 0 �  x � 3

0 otherwise

lim
nS`  P¢ 2  Sn

n � m 2 � P ≤ � 0

n S `

P¢ 2  Sn

n � m 2 � P≤  �
s2

nP 2

>

Var ¢ Sn

n ≤ �
1
n2   Var (Sn) �

s2

n

Var (Sn) � Var (X1 � c� Xn) � Var (X1) � c� Var (Xn) � ns2

E ¢Sn

n ≤ � E ¢X1 � c� Xn

n ≤ �
1
n  [E(X1) � c� E(Xn)] �

1
n  (nm) � m

Var (X1) � Var (X2) � c � Var (Xn) � s2

E(X1) � E(X2) � c � E(Xn) � m

P( uX � m u � 1) � s2 � 0.25

s2 � mr2 � m2 � 1>4
P¢ 2  X �

1
2  2 � 1≤ � 1 � (1 � e�3) � e�3 � 0.04979

� 3
3>2
0

2e�2x dx � 1 � e�3

P( uX � m u � 1) � P¢ 2  X �
1
2  2 � 1≤ � P¢�

1
2 � X �

3
2 ≤>m

P( uX � m u � 1)
P( uX � m u � 1)

P( uX � m u � P) �  
s2

P2

P( uX � m u � P)

s2 � 3
ux�mu �P

(x � m)2f (x) dx � 3
ux�mu �P

P2f (x) dx � P23
ux�mu �P

f (x) dx
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(a) The mode is obtained by finding where the density f (x) has a relative maximum. The relative maxima of
f (x) occur where the derivative is zero, i.e.,

Then approx., which is the required mode. Note that this does give the maximum since
the second derivative, �24x 81, is negative for 

(b) The median is that value a for which . Now, for ,

Setting this equal to 1 2, we find that

2a4 � 36a2 � 81 � 0

from which

Therefore, the required median, which must lie between 0 and 3, is given by

from which a � 1.62 approx.

(c)

which is practically equal to the median. The mode, median, and mean are shown in Fig. 3-6.

E(X ) �
4

813
3

0
x2(9 � x2) dx �

4
81  ¢3x3 �

x5

5 ≤ 2
0

3

� 1.60

a2 � 9 �
9
222

a2 �
36 
 2(36)2 � 4(2)(81)

2(2) �
36 
 2648

4 � 9 

9
222

>

P(X � a) �
4

813
a

0 

x(9 � x2) dx �
4

81  ¢ 9a2

2 �
a4

4 ≤0 � a � 3P(X � a) � 1>2
x � !3.>

x � !3 � 1.73

d
dx  B4x(9 � x2)

81 R �
36 � 12x2

81 � 0
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Fig. 3-6

3.34. A discrete random variable has probability function f(x) � 1 2x where x � 1, 2, . . . . Find (a) the mode,
(b) the median, and (c) compare them with the mean.

(a) The mode is the value x having largest associated probability. In this case it is x � 1, for which the
probability is 1 2.

(b) If x is any value between 1 and 2, and Therefore, any number between 1 and
2 could represent the median. For convenience, we choose the midpoint of the interval, i.e., 3 2.

(c) As found in Problem 3.3, � 2. Therefore, the ordering of the three measures is just the reverse of that in
Problem 3.33.

m

>
P(X � x) �

1
2.P(X � x) �

1
2

>

>



Percentiles
3.35. Determine the (a) 10th, (b) 25th, (c) 75th percentile values for the distribution of Problem 3.33.

From Problem 3.33(b) we have

(a) The 10th percentile is the value of a for which P(X a) � 0.10, i.e., the solution of (18a2 � a4) 81 � 0.10.
Using the method of Problem 3.33, we find a � 0.68 approx.

(b) The 25th percentile is the value of a such that (18a2 � a4) 81 � 0.25, and we find a � 1.098 approx.

(c) The 75th percentile is the value of a such that (18a2 � a4) 81 � 0.75, and we find a � 2.121 approx.

Other measures of dispersion
3.36. Determine, (a) the semi-interquartile range, (b) the mean deviation for the distribution of Problem 3.33.

(a) By Problem 3.35 the 25th and 75th percentile values are 1.098 and 2.121, respectively. Therefore,

(b) From Problem 3.33 the mean is . Then

Skewness and kurtosis
3.37. Find the coefficient of (a) skewness, (b) kurtosis for the distribution of Problem 3.19.

From Problem 3.19(b) we have

(a) Coefficient of skewness 

(b) Coefficient of kurtosis 

It follows that there is a moderate skewness to the left, as is indicated in Fig. 3-6. Also the distribution is
somewhat less peaked than the normal distribution, which has a kurtosis of 3.

Miscellaneous problems
3.38. If M(t) is the moment generating function for a random variable X, prove that the mean is � M (0) and

the variance is 2 � M (0) � [M (0)]2.

From (32), page 79, we have on letting r � 1 and r � 2,

Then from (27)

m2 � s2 � Ms(0) � [Mr(0)]2m � Mr(0)

mr2 � Ms(0)mr1 � Mr(0)

rss

rm

� a4 �
m4

s4 � 2.172

� a3 �
m3

s3 � �0.1253

m4 �
3693
8750m3 � �

32
875s2 �

11
25

� 0.555 approx.

� 3
8>5
0
¢8

5 � x≤ B 4x
81  (9 � x2)R  dx � 3

3

8>5¢x �
8
5 ≤ B 4x

81  (9 � x2)R  dx

� 3
3

0 

2  x �
8
5   2 B 4x

81  (9 � x2)R  dx

Mean deviation � M.D.5E(uX � m u) � 3
`

�`
u x � mu f (x) dx

m � 1.60 � 8>5
Semi-interquartile range �

2.121 � 1.098
2 � 0.51 approx.

>
>

>�

P(X � a) �
4

81  ¢ 9a2

2 �
a4

4 ≤ �
18a2 � a4

81
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3.39. Let X be a random variable that takes on the values xk � k with probabilities pk where k � 
1, . . . , 
 n.
(a) Find the characteristic function ( ) of X, (b) obtain pk in terms of ( ).

(a) The characteristic function is

(b) Multiply both sides of the expression in (a) by and integrate with respect to from 0 to 2 . Then

since

Therefore,

or, replacing j by k,

We often call (where n can theoretically be infinite) the Fourier series of ( ) and pk the
Fourier coefficients. For a continuous random variable, the Fourier series is replaced by the Fourier integral
(see page 81).

3.40. Use Problem 3.39 to obtain the probability distribution of a random variable X whose characteristic func-
tion is .

From Problem 3.39

If k � 1, we find if k � �1, we find For all other values of k, we have pk � 0. Therefore, the
random variable is given by

As a check, see Problem 3.20.

3.41. Find the coefficient of (a) skewness, (b) kurtosis of the distribution defined by the normal curve, having
density

(a) The distribution has the appearance of Fig. 3-7. By symmetry, and . Therefore the
coefficient of skewness is zero.

mr3 � 0mr1 � m � 0

f (x) �
1

22p
 e�x2>2  �` � x � `

X � e 1 probability 1>2
�1 probability 1>2

p�1 �
1
2.p1 �

1
2;

�
1

4p3
2p

v�0
ei(1�k)v dv �

1
4p3

2p

v�0 

e�i(1�k)v dv

�
1

2p3
2p

v�0
e�ikv B eiv � e�iv

2 R  dv

pk �
1

2p3
2p

v�0
e�ikv cosv dv

f(v) � cos v

vfgn
k��n  pkeikv

pk �
1

2p3
2p

v�0
e�ikvf(v) dv

pj �
1

2p3
2p

v�0
e�ijvf(v) dv

3
2p

v�0
ei(k�j)v dv � •

ei(k�j)v

i(k � j)  2 2p
0

� 0 k 2 j

2p k � j

3
2p

v�0
e�ijvf(v) dv � a

n

k��n
 pk3

2p

v�0 

ei(k�j)v dv � 2ppj

pve�ijv

f(v) � E(eivX) � a
n

k��n
eivxk pk � a

n

k��n
pkeikv

vfvf
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(b) We have

where we have made the transformation x2 2 � v and used properties of the gamma function given in (2) and
(5) of Appendix A. Similarly we obtain

Now

Thus the coefficient of kurtosis is

3.42. Prove that �1 1 (see page 82).

For any real constant c, we have

E[{Y � Y � c(X � )}2] 0

Now the left side can be written

�
s2

Xs
2
Y � s2

XY

s2
X

� s2
X¢c �

sXY

s2
X

≤ 2

� s2
Y � s2

X¢c2 �
sXY

s2
X

≤ 2

�
s2

XY

s2
X

� s2
Y � s2

X¢c2 �
2csXY

s2
X

≤E[(Y � mY)2] � c2E[(X � mX)2] � 2cE[(X � mX)(Y � mY)] � s2
Y � c2s2

X � 2csXY

�mm

�r�

m4

s4 � 3

m4 � E[(X � m)4] � E(X4) � mr4 � 3

s2 � E[(X � m)2] � E(X )2 � mr2 � 1

�
4

2p
 � ¢ 5

2 ≤ �
4

2p
?

3
2 ?

1
2  � ¢ 1

2 ≤ � 3

�
4

2p
3
`

0
v3>2e�v  dv

mr4 � E(X4) �
1

22p
3
`

�`
x4e�x2>2  dx �

2

22p
3
`

0
x4e�x2>2  dx

>
�

2

2p
 �¢ 3

2 ≤ �
2

2p
?

1
2  �¢ 1

2 ≤ � 1

�
2

2p
3
`

0
v1>2e�v  dv

mr2 � E(X2) �
1

22p
3
`

�`
x2e�x2>2  dx �

2

22p
3
`

0
x2e�x2>2  dx
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In order for this last quantity to be greater than or equal to zero for every value of c, we must have

which is equivalent to or .

SUPPLEMENTARY PROBLEMS

Expectation of random variables

3.43. A random variable X is defined by 

3.44. Let X be a random variable defined by the density function 

Find (a) E(X ), (b) E(3X � 2), (c) E(X2).

3.45. The density function of a random variable X is

Find (a) E(X ), (b) E(X2), (c) E[(X � 1)2].

3.46. What is the expected number of points that will come up in 3 successive tosses of a fair die? Does your answer
seem reasonable? Explain.

3.47. A random variable X has the density function . Find E(e2X 3).

3.48. Let X and Y be independent random variables each having density function

Find (a) E(X � Y ), (b) E(X2 � Y2), (c) E(XY ).

3.49. Does (a) E(X � Y ) � E(X ) � E(Y), (b) E(XY ) � E(X)E(Y), in Problem 3.48? Explain.

3.50. Let X and Y be random variables having joint density function

Find (a) E(X), (b) E(Y ), (c) E(X � Y ), (d) E(XY ).

3.51. Does (a) E(X � Y ) � E(X ) � E(Y), (b) E(XY ) � E(X)E(Y), in Problem 3.50? Explain.

3.52. Let X and Y be random variables having joint density

Find (a) E(X), (b) E(Y ), (c) E(X � Y ), (d) E(XY ).

f (x, y) � e4xy 0 � x � 1, 0 � y � 1

0 otherwise

f (x, y) � e 3
5 x(x � y) 0 � x � 1, 0 � y � 2

0 otherwise

f (u) � e2e�2u u � 0

0 otherwise

>f (x) � e e�x x � 0

0 x � 0

f (x) � e e�x x � 0

0 otherwise
.

f (x) � e3x2 0 � x � 1

0 otherwise
.

X � •
�2 prob. 1>3
 3 prob. 1>2. Find (a) E(X ), (b) E(2X � 5), (c) E(X2).

1 prob. 1>6

�1 � r � 1r2 � 1

s2
Xs

2
Y � s2

XY � 0 or 
s2

XY

s2
X s

2
Y

 � 1
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3.53. Does (a) E(X � Y ) � E(X ) � E(Y), (b) E(XY ) � E(X )E(Y ), in Problem 3.52? Explain.

3.54. Let . Find (a) E(X ), (b) E(Y ), (c) E(X2), (d) E(Y2),

(e) E(X � Y ), (f ) E(XY).

3.55. Let X and Y be independent random variables such that

Find (a) E(3X � 2Y ), (b) E(2X2 � Y2), (c) E(XY ), (d) E(X2Y ).

3.56. Let X1, X2, . . . , Xn be n random variables which are identically distributed such that

Find (a) E(Xl � X2 � � Xn), (b) 

Variance and standard deviation
3.57. Find (a) the variance, (b) the standard deviation of the number of points that will come up on a single toss of a

fair die.

3.58. Let X be a random variable having density function

Find (a) Var(X ), (b) X.

3.59. Let X be a random variable having density function

Find (a) Var(X ), (b) X.

3.60. Find the variance and standard deviation for the random variable X of (a) Problem 3.43, (b) Problem 3.44.

3.61. A random variable X has E(X ) � 2, E(X2) � 8. Find (a) Var(X ), (b) X.

3.62. If a random variable X is such that E[(X � 1)2] � 10, E[(X � 2)2] � 6 find (a) E(X ), (b) Var(X ), (c) X.

Moments and moment generating functions
3.63. Find (a) the moment generating function of the random variable

and (b) the first four moments about the origin.

X � e 1>2 prob. 1>2
�1>2 prob. 1>2

s

s

s

f (x) � e e�x x � 0

0 otherwise

s

f (x) � e1>4 �2 � x � 2

0 otherwise

E(X2
1 � X2

2 � c� X2
n).c

Xk � •
1 prob. 1>2
2 prob. 1>3

�1 prob. 1>6

X � e1 prob. 1>3
0 prob. 2>3  Y � e 2 prob. 3>4

�3 prob. 1>4

f (x, y) � e 1
4  (2x � y) 0 �  x � 1, 0 � y � 2

0 otherwise
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3.64. (a) Find the moment generating function of a random variable X having density function

(b) Use the generating function of (a) to find the first four moments about the origin.

3.65. Find the first four moments about the mean in (a) Problem 3.43, (b) Problem 3.44.

3.66. (a) Find the moment generating function of a random variable having density function

and (b) determine the first four moments about the origin.

3.67. In Problem 3.66 find the first four moments about the mean.

3.68. Let X have density function . Find the kth moment about (a) the origin,

(b) the mean.

3.69. If M(t) is the moment generating function of the random variable X, prove that the 3rd and 4th moments about
the mean are given by

Characteristic functions

3.70. Find the characteristic function of the random variable .

3.71. Find the characteristic function of a random variable X that has density function

3.72. Find the characteristic function of a random variable with density function

3.73. Let be independent random variables (k � 1, 2, . . . , n). Prove that the characteristic

function of the random variable

is

3.74. Prove that as the characteristic function of Problem 3.73 approaches (Hint: Take the logarithm of
the characteristic function and use L’Hospital’s rule.)

e�v2>2.n S `

[cos (v>!n)]n.

X1 � X2 � c � Xn

2n

Xk � e 1 prob. 1>2
�1 prob. 1>2

f (x) � e x>2 0 � x � 2

0 otherwise

f (x) � e1>2a u x u �  a

0 otherwise

X � ea prob. p

b prob. q � 1 � p

m3 � M-(0) � 3Ms(0)Mr(0) � 2[Mr(0)]3

m4 � M(iv)(0) � 4M-(0)Mr(0) � 6Ms(0)[Mr(0)]2 � 3[Mr(0)]4

f (x) � e1>(b � a) a � x �  b

0 otherwise

f (x) � e e�x x � 0

0 otherwise

f (x) � e x>2 0 �  x � 2

0 otherwise
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Covariance and correlation coefficient
3.75. Let X and Y be random variables having joint density function

Find (a) Var(X ), (b) Var(Y ), (c) X, (d) Y, (e) XY, (f ) .

3.76. Work Problem 3.75 if the joint density function is .

3.77. Find (a) Var(X), (b) Var(Y ), (c) X, (d) Y, (e) XY, (f ) , for the random variables of Problem 2.56.

3.78. Work Problem 3.77 for the random variables of Problem 2.94.

3.79. Find (a) the covariance, (b) the correlation coefficient of two random variables X and Y if E(X ) � 2, E(Y ) � 3,
E(XY) � 10, E(X2) � 9, E(Y2) � 16.

3.80. The correlation coefficient of two random variables X and Y is while their variances are 3 and 5. Find the
covariance.

Conditional expectation, variance, and moments
3.81. Let X and Y have joint density function

Find the conditional expectation of (a) Y given X, (b) X given Y.

3.82. Work Problem 3.81 if 

3.83. Let X and Y have the joint probability function given in Table 2-9, page 71. Find the conditional expectation of
(a) Y given X, (b) X given Y.

3.84. Find the conditional variance of (a) Y given X, (b) X given Y for the distribution of Problem 3.81.

3.85. Work Problem 3.84 for the distribution of Problem 3.82.

3.86. Work Problem 3.84 for the distribution of Problem 2.94.

Chebyshev’s inequality
3.87. A random variable X has mean 3 and variance 2. Use Chebyshev’s inequality to obtain an upper bound for 

(a) P( X �3 2), (b) P( X � 3 1).

3.88. Prove Chebyshev’s inequality for a discrete variable X. (Hint: See Problem 3.30.)

3.89. A random variable X has the density function (a) Find P( X � � 2). (b) Useumuf (x) �
1
2  e�|x|, �` � x � `.

�uu�uu

f (x, y) � e2e�(x�2y) x � 0, y �  0

0 otherwise

f (x, y) � e x � y 0 � x � 1,  0 �  y � 1

0 otherwise

�
1
4

rsss

f (x, y) � e e�(x�y) x � 0, y �  0

0 otherwise

rsss

f (x, y) � e x � y 0 � x � 1,  0 � y �  1

0 otherwise
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Law of large numbers
3.90. Show that the (weak) law of large numbers can be stated as

and interpret.

3.91. Let Xk (k = 1, . . . , n) be n independent random variables such that

(a) If we interpret Xk to be the number of heads on the kth toss of a coin, what interpretation can be given to 
Sn � X1 � � Xn?

(b) Show that the law of large numbers in this case reduces to

and interpret this result.

Other measures of central tendency
3.92. Find (a) the mode, (b) the median of a random variable X having density function

and (c) compare with the mean.

3.93. Work Problem 3.100 if the density function is

3.94. Find (a) the median, (b) the mode for a random variable X defined by

and (c) compare with the mean.

3.95. Find (a) the median, (b) the mode of the set of numbers 1, 3, 2, 1, 5, 6, 3, 3, and (c) compare with the mean.

Percentiles
3.96. Find the (a) 25th, (b) 75th percentile values for the random variable having density function

3.97. Find the (a) 10th, (b) 25th, (c) 75th, (d) 90th percentile values for the random variable having density function

where c is an appropriate constant.

Other measures of dispersion
3.98. Find (a) the semi-interquartile range, (b) the mean deviation for the random variable of Problem 3.96.

3.99. Work Problem 3.98 for the random variable of Problem 3.97.

f (x) � e c(x � x3) 0 � x � 1

0 otherwise

f (x) � e2(1 � x) 0 � x � 1

0 otherwise

X � e 2 prob. 1>3
�1 prob. 2>3

f (x) � e4x(1 � x2) 0 � x � 1

0 otherwise

f (x) � e e�x x � 0

0 otherwise

lim
nS`

 P¢ 2  Sn

n � p 2  � P≤ � 0

c

Xk � e1 prob. p

0 prob. q � 1 � p

lim
nS`

P¢ 2  Sn

n � m 2 �  P≤ � 1
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3.100. Find the mean deviation of the random variable X in each of the following cases.

(a) (b) 

3.101. Obtain the probability that the random variable X differs from its mean by more than the semi-interquartile
range in the case of (a) Problem 3.96, (b) Problem 3.100(a).

Skewness and kurtosis
3.102. Find the coefficient of (a) skewness, (b) kurtosis for the distribution of Problem 3.100(a).

3.103. If

where c is an appropriate constant, is the density function of X, find the coefficient of (a) skewness,
(b) kurtosis.

3.104. Find the coefficient of (a) skewness, (b) kurtosis, for the distribution with density function

Miscellaneous problems
3.105. Let X be a random variable that can take on the values 2, 1, and 3 with respective probabilities 1 3, 1 6, and

1 2. Find (a) the mean, (b) the variance, (c) the moment generating function, (d) the characteristic function,
(e) the third moment about the mean.

3.106. Work Problem 3.105 if X has density function

where c is an appropriate constant.

3.107. Three dice, assumed fair, are tossed successively. Find (a) the mean, (b) the variance of the sum.

3.108. Let X be a random variable having density function

where c is an appropriate constant. Find (a) the mean, (b) the variance, (c) the moment generating function,
(d) the characteristic function, (e) the coefficient of skewness, (f ) the coefficient of kurtosis.

3.109. Let X and Y have joint density function

Find (a) E(X2 � Y2), (b) 

3.110. Work Problem 3.109 if X and Y are independent identically distributed random variables having density
function f (u) � (2p)�1>2e�u2>2, �` � u � `.

E(!X2 � Y2).

f (x, y) � e cxy 0 � x � 1, 0 � y � 1

0 otherwise

f (x) � e cx 0 � x �  2

0 otherwise

f (x) � e c(1 � x) 0 � x � 1

0 otherwise

>
>>

f (x) � e  le� lx x � 0

0 x � 0

f (x) � • c Q1 �
ux u
a R ux u  � a

0 ux u � a

f (x) �
1

p(1 � x2)
, �` � x � `.f (x) � e e�x x � 0

0 otherwise
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3.111. Let X be a random variable having density function

and let Y � X2. Find (a) E(X), (b) E(Y), (c) E(XY).

ANSWERS TO SUPPLEMENTARY PROBLEMS

3.43. (a) 1 (b) 7 (c) 6 3.44. (a) 3 4 (b) 1 4 (c) 3 5

3.45. (a) 1 (b) 2 (c) 1 3.46. 10.5 3.47. 3

3.48. (a) 1 (b) 1 (c) 1 4

3.50. (a) 7 10 (b) 6 5 (c) 19 10 (d) 5 6

3.52. (a) 2 3 (b) 2 3 (c) 4 3 (d) 4 9

3.54. (a) 7 12 (b) 7 6 (c) 5 12 (d) 5 3 (e) 7 4 (f) 2 3

3.55. (a) 5 2 (b) –55 12 (c) 1 4 (d) 1 4

3.56. (a) n (b) 2n 3.57. (a) 35 12 (b) 

3.58. (a) 4 3 (b) 3.59. (a) 1 (b) 1

3.60. (a) Var(X) = 5, (b) Var(X) = 3 80,

3.61. (a) 4 (b) 2 3.62. (a) 7 2 (b) 15 4 (c) 

3.63. (a) (b) 

3.64. (a) (1 � 2te2t – e2t) 2t2 (b)

3.65. (a) 1 � 0, 2 � 5, 3 � �5, 4 � 35 (b) 1 � 0, 2 � 3 80, 3 � �121 160, 4 � 2307 8960

3.66. (a) 1 (1 � t), | t | � 1 (b) 

3.67.

3.68. (a) (bk�1 – ak�1) (k � 1)(b � a) (b) [1 � (�1)k](b � a)k 2k � 1(k � 1)

3.70. 3.71. 3.72. (e2iv � 2ive2iv � 1)>2v2( sin av)>avpeiva � qeivb

>>

m1 � 0, m2 � 1, m3 � 2, m4 � 33

m � 1, mr2 � 2, mr3 � 6, mr4 � 24>

>m>m>mmmmmm

m � 4>3, mr2 � 2, mr3 � 16>5, mr4 � 16>3>

m � 0, mr2 � 1, mr3 � 0, mr4 � 11
2(e

t>2 � e�t>2) � cosh(t>2)

!15>2>>

sX � 215>20>sX � !5

!4>3>

!35>12>

>>>>

>>>>>>

>>>>

>>>>

>

>>>

f (x) � e 1
2 �1 � x � 1

0 otherwise
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3.75. (a) 11 144 (b) 11 144 (c) (d) (e) –1 144 (f) –1 11

3.76. (a) 1 (b) 1 (c) 1 (d) 1 (e) 0 (f) 0

3.77. (a) 73 960 (b) 73 960 (c) (d) (e) –1 64 (f) –15 73

3.78. (a) 233 324 (b) 233 324 (c) (d) (e) –91 324 (f) –91 233

3.79. (a) 4 (b) 3.80.

3.81. (a) (3x � 2) (6x � 3) for 0 x 1 (b) (3y � 2) (6y � 3) for 0 y 1

3.82. (a) 1 2 for x 0 (b) 1 for y 0

3.83. (a) (b)

��>

��>��>

�!15>44>!35

>>!233>18!233>18>>

>>!73>960!73>960>>

>>!11>12!11>12>>
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X 0 1 2

E(Y X) 4 3 1 5 7>>u

Y 0 1 2

E(X Y) 4 3 7 6 1 2>>>u

3.84. (a) for 0 x 1 (b) for 0 y 1

3.85. (a) 1 9 (b) 1

3.86. (a) (b)

>

��
6y2 � 6y �1

18(2y � 1)2��
6x2 � 6x � 1
18(2x � 1)2

X 0 1 2

Var(Y X) 5 9 4 5 24 49>>>u

Y 0 1 2

Var(X Y) 5 9 29 36 7 12>>>u

3.87. (a) 1 2 (b) 2 (useless) 3.89. (a) e–2 (b) 0.5

3.92. (a) � 0 (b) ln 2 (c) 1 3.93. (a) (b) (c) 8 15

3.94. (a) does not exist (b) –1 (c) 0 3.95. (a) 3 (b) 3 (c) 3

3.96. (a) (b) 1 2

3.97. (a) (b) (c) (d) 

3.98. (a) 1 (b) (c) 16 81

3.99. (a) 1 (b) 0.17 (c) 0.051 3.100. (a) 1 � 2e–1 (b) does not exist

3.101. (a) (b) 

3.102. (a) 2 (b) 9 3.103. (a) 0 (b) 24 5a 3.104. (a) 2 (b) 9>

(3 � 2e�1!3)>3(5 � 2!3)>3

>(!3 � 1)>4

#1 � (1>!10)!1>2#1 � (23>2)#1 � (3>!10)

>1 �
1
2!3

>#1 � (1>!2)1>!3

>



3.105. (a) 7 3 (b) 5 9 (c) (et � 2e2t � 3e3t) 6 (d) (e) �7 27

3.106. (a) 1 3 (b) 1 18 (c) 2(et � 1 � t) t2 (d) (e) 1 135

3.107. (a) 21 2 (b) 35 4

3.108. (a) 4 3 (b) 2 9 (c) (1 � 2te2t � e2t) 2t2 (d)
(e) (f ) 12 5

3.109. (a) 1 (b) 

3.110. (a) 2 (b) 

3.111. (a) 0 (b) 1 3 (c) 0>

!2p>2

8(2!2 � 1)>15

>�2!18>15
�(1 � 2ive2iv � e2iv)>2v2>>>

>>

>�2(eiv � 1 � iv)>v2>>>

>(eiv � 2e2iv � 3e3iv)>6>>>
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CHAPTER 4

Special Probability 
Distributions

The Binomial Distribution
Suppose that we have an experiment such as tossing a coin or die repeatedly or choosing a marble from an urn
repeatedly. Each toss or selection is called a trial. In any single trial there will be a probability associated with
a particular event such as head on the coin, 4 on the die, or selection of a red marble. In some cases this proba-
bility will not change from one trial to the next (as in tossing a coin or die). Such trials are then said to be inde-
pendent and are often called Bernoulli trials after James Bernoulli who investigated them at the end of the
seventeenth century.

Let p be the probability that an event will happen in any single Bernoulli trial (called the probability of success).
Then q � 1 � p is the probability that the event will fail to happen in any single trial (called the probability of
failure). The probability that the event will happen exactly x times in n trials (i.e., successes and n � x failures
will occur) is given by the probability function

(1)

where the random variable X denotes the number of successes in n trials and x � 0, 1, . . . , n.

EXAMPLE 4.1 The probability of getting exactly 2 heads in 6 tosses of a fair coin is

The discrete probability function (1) is often called the binomial distribution since for x � 0, 1, 2, . . . , n, it
corresponds to successive terms in the binomial expansion

(2)

The special case of a binomial distribution with n � 1 is also called the Bernoulli distribution.

Some Properties of the Binomial Distribution
Some of the important properties of the binomial distribution are listed in Table 4-1.

(q � p)n � qn � an
1
bqn�1p � an

2
bqn�2p2 � c� pn � a an

x
b

n

x�0

 pxqn�x

P(X � 2) � a6
2b a1

2b
2

a1
2b

6�2

�
6!

2!4! a1
2b

2

a1
2b

6�2

�
15
64

f (x) � P(X � x) � an
x
b  pxqn�x �

n!
x!(n � x)! pxqn�x

108
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EXAMPLE 4.2 In 100 tosses of a fair coin, the expected or mean number of heads is while the

standard deviation is . 

The Law of Large Numbers for Bernoulli Trials
The law of large numbers, page 83, has an interesting interpretation in the case of Bernoulli trials and is presented
in the following theorem.

Theorem 4-1 (Law of Large Numbers for Bernoulli Trials): Let X be the random variable giving the num-
ber of successes in n Bernoulli trials, so that is the proportion of successes. Then if p is the
probability of success and � is any positive number,

(3)

In other words, in the long run it becomes extremely likely that the proportion of successes, , will be as
close as you like to the probability of success in a single trial, p. This law in a sense justifies use of the empirical
definition of probability on page 5. A stronger result is provided by the strong law of large numbers (page 83),
which states that with probability one, , i.e., actually converges to p except in a negligible 
number of cases.

The Normal Distribution
One of the most important examples of a continuous probability distribution is the normal distribution, some-
times called the Gaussian distribution. The density function for this distribution is given by

(4)

where � and � are the mean and standard deviation, respectively. The corresponding distribution function is
given by

(5)

If X has the distribution function given by (5), we say that the random variable X is normally distributed with mean
� and variance � 2.

If we let Z be the standardized variable corresponding to X, i.e., if we let

(6)Z �
X � m
s

F(x) � P(X � x) �
1

s!2p3
x

�`
 e�(v�m)2/2s2 dv

f (x) �
1

s22p
e�(x�m)2/2s2 �`  �  x �  `

X>nlim
nS`

 X>n � p

X>n
lim

nS`
Pa 2  Xn � p 2 � Pb � 0

X>n

s � 2(100)A12B A12B � 5
m � (100)A12B � 50

Mean � � np

Variance �2 � npq

Standard deviation

Coefficient of skewness

Coefficient of kurtosis

Moment generating function

Characteristic function f(v) � (q � peiv)n

M(t) � (q � pet)n

a4 � 3 �
1 � 6pq

npq

a3 �
q � p

!npq

s � !npq

Table 4-1
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then the mean or expected value of Z is 0 and the variance is 1. In such cases the density function for Z can be
obtained from (4) by formally placing � � 0 and � � 1, yielding

(7)

This is often referred to as the standard normal density function. The corresponding distribution function is given by

(8)

We sometimes call the value z of the standardized variable Z the standard score. The function F(z) is related to
the extensively tabulated error function, erf(z). We have

(9)

A graph of the density function (7), sometimes called the standard normal curve, is shown in Fig. 4-1. In this
graph we have indicated the areas within 1, 2, and 3 standard deviations of the mean (i.e., between z � �1
and �1, z � �2 and �2, z � �3 and �3) as equal, respectively, to 68.27%, 95.45% and 99.73% of the total
area, which is one. This means that

P(�1 � Z � 1) � 0.6827, P(�2 � Z � 2) � 0.9545, P(�3 � Z � 3) � 0.9973 (10)

erf(z) �
2
!p3

z

0
 e�u2 du and F(z) �

1
2

 c1 � erf a z

!2
b d

F(z) � P(Z � z) �
1

!2p3
z

�`
 e�u2>2 du �

1
2

�
1

!2p3
z

0
 e�u2>2  du

f (z) �
1

22p
e�z2>2

A table giving the areas under this curve bounded by the ordinates at z � 0 and any positive value of z is given
in Appendix C. From this table the areas between any two ordinates can be found by using the symmetry of the
curve about z � 0.

Some Properties of the Normal Distribution
In Table 4-2 we list some important properties of the general normal distribution.

Mean �

Variance � 2

Standard deviation �

Coefficient of skewness �3 � 0

Coefficient of kurtosis �4 � 3

Moment generating function

Characteristic function f(v) � eimv�(s2v2>2)

M(t) � eut�(s2t2>2)

Table 4-2

Fig. 4-1
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Relation Between Binomial and Normal Distributions
If n is large and if neither p nor q is too close to zero, the binomial distribution can be closely approximated by
a normal distribution with standardized random variable given by

(11)

Here X is the random variable giving the number of successes in n Bernoulli trials and p is the probability of suc-
cess. The approximation becomes better with increasing n and is exact in the limiting case. (See Problem 4.17.)
In practice, the approximation is very good if both np and nq are greater than 5. The fact that the binomial dis-
tribution approaches the normal distribution can be described by writing

(12)

In words, we say that the standardized random variable is asymptotically normal.

The Poisson Distribution
Let X be a discrete random variable that can take on the values 0, 1, 2, . . . such that the probability function of
X is given by

(13)

where � is a given positive constant. This distribution is called the Poisson distribution (after S. D. Poisson, who
discovered it in the early part of the nineteenth century), and a random variable having this distribution is said
to be Poisson distributed.

The values of f (x) in (13) can be obtained by using Appendix G, which gives values of e�� for various values
of �.

Some Properties of the Poisson Distribution
Some important properties of the Poisson distribution are listed in Table 4-3.

f (x) � P(X � x) �
lxe�l

x!
 x � 0, 1, 2, c

(X � np)>!npq

lim
nS`

P aa �  
X � np

!npq
� bb �

1
!2p3

b

a
e�u2>2 du

Z �
X � np

!npq

Mean � � �

Variance �2 � �

Standard deviation

Coefficient of skewness

Coefficient of kurtosis

Moment generating function

Characteristic function f(v) � el(eiv�1)

M(t) � el(et�1)

a4 � 3 � (1>l)
a3 � 1>!l
s � !l

Table 4-3

Relation Between the Binomial and Poisson Distributions
In the binomial distribution (1), if n is large while the probability p of occurrence of an event is close to
zero, so that q � 1 � p is close to 1, the event is called a rare event. In practice we shall consider an event
as rare if the number of trials is at least 50 (n � 50) while np is less than 5. For such cases the binomial dis-
tribution is very closely approximated by the Poisson distribution (13) with � � np. This is to be expected
on comparing Tables 4-1 and 4-3, since by placing � � np, q 1, and p 0 in Table 4-1, we get the results
in Table 4-3.

<<
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Relation Between the Poisson and Normal Distributions
Since there is a relation between the binomial and normal distributions and between the binomial and Poisson
distributions, we would expect that there should also be a relation between the Poisson and normal distributions.
This is in fact the case. We can show that if X is the Poisson random variable of (13) and is the cor-
responding standardized random variable, then

(14)

i.e., the Poisson distribution approaches the normal distribution as or is asymptotically
normal.

The Central Limit Theorem
The similarity between (12) and (14) naturally leads us to ask whether there are any other distributions besides
the binomial and Poisson that have the normal distribution as the limiting case. The following remarkable theo-
rem reveals that actually a large class of distributions have this property.

Theorem 4-2 (Central Limit Theorem) Let X1, X2, . . . , Xn be independent random variables that are iden-
tically distributed (i.e., all have the same probability function in the discrete case or density
function in the continuous case) and have finite mean � and variance � 2. Then if Sn � X1 �
X2 � . . . � Xn (n � l, 2 . . .),

(15)

that is, the random variable , which is the standardized variable corresponding
to Sn, is asymptotically normal.

The theorem is also true under more general conditions; for example, it holds when X1, X2, . . . , Xn are independ-
ent random variables with the same mean and the same variance but not necessarily identically distributed.

The Multinomial Distribution
Suppose that events A1, A2, . . . , Ak are mutually exclusive, and can occur with respective probabilities p1, p2, . . . ,
pk where If X1, X2, . . . , Xk are the random variables respectively giving the number
of times that A1, A2, . . . , Ak occur in a total of n trials, so that then

(16)

where , is the joint probability function for the random variables 
This distribution, which is a generalization of the binomial distribution, is called the multinomial distribution

since (16) is the general term in the multinomial expansion of 

EXAMPLE 4.3 If a fair die is to be tossed 12 times, the probability of getting 1, 2, 3, 4, 5 and 6 points exactly twice
each is

The expected number of times that A1, A2, . . . , Ak will occur in n trials are np1, np2, . . . , npk respectively, i.e.,

E(X1) � np1, E(X2) � np2, . . . , E(Xk) � npk (17)

The Hypergeometric Distribution
Suppose that a box contains b blue marbles and r red marbles. Let us perform n trials of an experiment in which
a marble is chosen at random, its color is observed, and then the marble is put back in the box. This type of ex-
periment is often referred to as sampling with replacement. In such a case, if X is the random variable denoting

P(X1 � 2, X2 �  2, c, X6 � 2) �
12!

2!2!2!2!2!2! a1
6b

2a1
6b

2a1
6b

2a1
6b

2a1
6b

2a1
6b

2

�
1925

559,872 � 0.00344

( p1 � p2 � c� pk)n.

X1, c, Xk.n1 � n2 � c� nk � n

P(X1 � n1, X2 � n2, c, Xk � nk) �
n

n1!n2! cnk!
pn11 pn2k

cpnkk

X1 � X2 � c� Xk �  n,
p1 � p2 � c� pk � 1.

(Sn � nm)>s!n

lim
nS`

Paa �   
Sn � nm

s!n
� bb �

1
!2p3

b

a
e�u2>2 du

(X � l)>!ll S `

lim
lS`

P aa �
X � l

!l � bb �
1

!2p3
b

a
e�u2>2 du

(X � l)>!l
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the number of blue marbles chosen (successes) in n trials, then using the binomial distribution (1) we see that
the probability of exactly x successes is

(18)

since p � b (b � r), q � 1 � p � r (b � r).
If we modify the above so that sampling is without replacement, i.e., the marbles are not replaced after being

chosen, then

(19)

This is the hypergeometric distribution. The mean and variance for this distribution are

(20)

If we let the total number of blue and red marbles be N, while the proportions of blue and red marbles are p and
q � 1 � p, respectively, then

(21)

so that (19) and (20) become, respectively,

(22)

(23)

Note that as (or N is large compared with n), (22) reduces to (18), which can be written

(24)

and (23) reduces to

� � np, � 2 � npq (25)

in agreement with the first two entries in Table 4-1, page 109. The results are just what we would expect, since
for large N, sampling without replacement is practically identical to sampling with replacement.

The Uniform Distribution
A random variable X is said to be uniformly distributed in a � x � b if its density function is

(26)

and the distribution is called a uniform distribution.
The distribution function is given by

(27)F(x) � P(X � x) � u0   x � a

(x � a)>(b � a)   a � x � b

1   x  �  b

f (x) � e1>(b � a) a � x � b

0 otherwise

P(X � x) � an
x
b   p xqn�x

N S `

m � np,  s2 �
npq(N � n)

N � 1

P(X � x) �

aNp

x
b a Nq

n � x
b

aN
n
b

p �
b

b � r
 �  

b
N

,  q �
r

b � r
 �

r
N
  or  b � Np,  r � Nq

m �
nb

b � r
 ,                 s2 �

nbr(b � r � n)
(b � r)2 (b � r � 1)

P(X � x) �

ab
x
b a r

n � x
b

    ab � r

n
b

, x � max (0, n � r), c,
min (n, b)

>>
P(X � x) � an

x
b bxrn�x

(b � r)n
, x � 0,  1, c, n
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The mean and variance are, respectively,

(28)

The Cauchy Distribution
A random variable X is said to be Cauchy distributed, or to have the Cauchy distribution, if the density function
of X is

(29)

This density function is symmetrical about x � 0 so that its median is zero. However, the mean, variance, and
higher moments do not exist. Similarly, the moment generating function does not exist. However, the character-
istic function does exist and is given by

�(�) � e�a� (30)

The Gamma Distribution
A random variable X is said to have the gamma distribution, or to be gamma distributed, if the density func-
tion is

(31)

where �(�) is the gamma function (see Appendix A). The mean and variance are given by

� � ��, � 2 � ��2 (32)

The moment generating function and characteristic function are given, respectively, by

M(t) � (1 � �t) ��, �(�) � (1 � �i�)�� (33)

The Beta Distribution
A random variable is said to have the beta distribution, or to be beta distributed, if the density function is

(34)

where B(�, �) is the beta function (see Appendix A). In view of the relation (9), Appendix A, between the beta
and gamma functions, the beta distribution can also be defined by the density function

(35)

where �, � are positive. The mean and variance are

(36)

For � � 1, � � 1 there is a unique mode at the value

(37)xmode �
a � 1

a � b � 2

m �
a

a � b
,  s2 �

ab

(a � b)2 (a � b � 1)

f (x) � u �(a � b)
�(a)�(b)

xa�1(1 � x)b�1 0 � x � 1

0 otherwise

(a,  b � 0)u
xa�1(1 � x)b�1

B(a, b)
     0 � x � 1

0      otherwise
f (x) �

(a,  b � 0)u xa�1e�x>b
ba�(a)

 x � 0

0  x � 0
f (x) �

f (x) �
a

p(x2 � a2)
  a � 0,�`  �  x �  `

m �
1
2

 (a � b),  s2 �
1

12
 (b � a)2
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The Chi-Square Distribution
Let X1, X2, . . . , Xv be v independent normally distributed random variables with mean zero and variance 1. Con-
sider the random variable

(38)

where �2 is called chi square. Then we can show that for x � 0,

(39)

and P(�2 � x) � 0 for x � 0.
The distribution defined by (39) is called the chi-square distribution, and v is called the number of degrees of

freedom. The distribution defined by (39) has corresponding density function given by

(40)

It is seen that the chi-square distribution is a special case of the gamma distribution with � � v 2 � � 2.
Therefore,

� � v, �2 � 2v, M(t) � (1 �2t)�v 2, �(�) � (1 � 2i�)�v 2 (41)

For large v(v � 30), we can show that is very nearly normally distributed with mean 0 and
variance 1.

Three theorems that will be useful in later work are as follows:

Theorem 4-3 Let X1, X2, . . . , Xv be independent normally distributed random variables with mean 0 and vari-
ance 1. Then is chi-square distributed with v degrees of freedom.

Theorem 4-4 Let U1, U2, . . . , Uk be independent random variables that are chi-square distributed with v1,
v2, . . . , vk degrees of freedom, respectively. Then their sum is chi-
square distributed with degrees of freedom.

Theorem 4-5 Let V1 and V2 be independent random variables. Suppose that V1 is chi-square distributed with
v1 degrees of freedom while V � V1 � V2 is chi-square distributed with v degrees of freedom,
where v � v1. Then V2 is chi-square distributed with v � v1 degrees of freedom.

In connection with the chi-square distribution, the t distribution (below), the F distribution (page 116),
and others, it is common in statistical work to use the same symbol for both the random variable and a value
of that random variable. Therefore, percentile values of the chi-square distribution for v degrees of freedom
are denoted by or briefly if v is understood, and not by xp,v or xp. (See Appendix E.) This is an am-
biguous notation, and the reader should use care with it, especially when changing variables in density
functions.

Student’s t Distribution
If a random variable has the density function

(42)

it is said to have Student’s t distribution, briefly the t distribution, with v degrees of freedom. If v is large 
(v � 30), the graph of f (t) closely approximates the standard normal curve as indicated in Fig. 4-2. Percentile

f (t) �

�av � 1
2
b

2vp  �av
2
b
a1 �

t2

v b
�(v�1)>2

�`  �  t �  `

x2
px2

p,v,

v1 � v2 � c � vk

W � U1 � U2 � c � Uk

x2 � X2
1 � X2

2 � c� X2
v

!2x2 � !2v � 1

>>

>

f (x) � u
1

2v>2�(v>2)
x(v>2)�1 e�x>2 x � 0

0 x � 0

P(x2 � x) �
1

2v>2�(v>2)3
x

0
  u(v>2)�1 e�u>2 du

x2 � X2
1 � X2

2 � c� X2
v
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Fig. 4-2

values of the t distribution for v degrees of freedom are denoted by tp,v or briefly tp if v is understood. For a
table giving such values, see Appendix D. Since the t distribution is symmetrical, t1�p � �tp; for example,
t0.5 � �t0.95.

For the t distribution we have

� � 0 and (v � 2). (43)

The following theorem is important in later work.

Theorem 4-6 Let Y and Z be independent random variables, where Y is normally distributed with mean 0 and
variance 1 while Z is chi-square distributed with v degrees of freedom. Then the random variable

(44)

has the t distribution with v degrees of freedom.

The F Distribution
A random variable is said to have the F distribution (named after R. A. Fisher) with v1 and v2 degrees of freedom
if its density function is given by

(45)

Percentile values of the F distribution for v1, v2 degrees of freedom are denoted by , or briefly Fp if v1, v2Fp,v1,v2

f

 

(u) � e �av1 � v2

2 b
�av1

2 b  � av2

2 b
v1

v1>2 v2
v2>2u(v1>2)�1(v2 � v1u)�(v1 � v2)>2 u � 0

0 u � 0

T  �   
Y

2Z>v

s2 �
v

v � 2

are understood. For a table giving such values in the case where p � 0.95 and p � 0.99, see Appendix F.
The mean and variance are given, respectively, by

(46)

The distribution has a unique mode at the value

(47)umode � av1 � 2
v1
b a v2

v2 � 2
b (v1 � 2)

m �
v2

v2 � 2
  (v2 �  2) and s2 �

2v2
2(v1 �  v2 � 2)

v1(v2 � 4)(v2 � 2)2
 (v2 � 4)
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The following theorems are important in later work.

Theorem 4-7 Let V1 and V2 be independent random variables that are chi-square distributed with v1 and v2

degrees of freedom, respectively. Then the random variable

(48)

has the F distribution with v1 and v2 degrees of freedom.

Theorem 4-8

Relationships Among Chi-Square, t, and F Distributions

Theorem 4-9

Theorem 4-10

The Bivariate Normal Distribution
A generalization of the normal distribution to two continuous random variables X and Y is given by the joint den-
sity function

(49)

where � � x � , � � y � ; �1, �2 are the means of X and Y; �1, �2 are the standard deviations of X
and Y; and � is the correlation coefficient between X and Y. We often refer to (49) as the bivariate normal
distribution.

For any joint distribution the condition � � 0 is necessary for independence of the random variables (see
Theorem 3-15). In the case of (49) this condition is also sufficient (see Problem 4.51).

Miscellaneous Distributions
In the distributions listed below, the constants �, �, a, b, . . . are taken as positive unless otherwise stated. The
characteristic function �(�) is obtained from the moment generating function, where given, by letting t � i�.

1. GEOMETRIC DISTRIBUTION.

f (x) � P(X � x) � pqx�1 x � l, 2, . . .

The random variable X represents the number of Bernoulli trials up to and including that in which the first suc-
cess occurs. Here p is the probability of success in a single trial.

2. PASCAL’S OR NEGATIVE BINOMIAL DISTRIBUTION.

The random variable X represents the number of Bernoulli trials up to and including that in which the rth suc-
cess occurs. The special case r � 1 gives the geometric distribution.

M(t) � a pet

1 � qet
br

s2 �
rq

p2
m �

r
P

f (x) � P(X � x) � ax � 1

r � 1
b  prqx�r  x � r, r � 1, …

M(t) �
pet

1 � qet
s 2 �

q

p2
m �

1
p

````

f2̂(1 � r2)f (x,  y) �
1

2ps1s221 � r2
 exp e� c ax � m1

s1
b2

� 2rax � m1

s1
b ay � m2

s2
b � ay � m2

s2
b2 d

Fp,v,` �
x2

p,v

v

F1�p,1,v � t2
1�(p>2), v

F1�p,v2,v1
�

1
Fp,v1,v2

V �
V1>v1

V2>v2



CHAPTER 4 Special Probability Distributions118

3. EXPONENTIAL DISTRIBUTION.

4. WEIBULL DISTRIBUTION.

5. MAXWELL DISTRIBUTION.

SOLVED PROBLEMS

The binomial distribution
4.1. Find the probability that in tossing a fair coin three times, there will appear (a) 3 heads, (b) 2 tails and 1 head,

(c) at least 1 head, (d) not more than 1 tail.

Method 1
Let H denote heads and T denote tails, and suppose that we designate HTH, for example, to mean head on first
toss, tail on second toss, and then head on third toss.

Since 2 possibilities (head or tail) can occur on each toss, there are a total of (2)(2)(2) � 8 possible outcomes,
i.e., sample points, in the sample space. These are

HHH, HHT, HTH, HTT, TTH, THH, THT, TTT

For a fair coin these are assigned equal probabilities of 1 8 each. Therefore,

(a) P(3 heads) � P(HHH) �

(b) P(2 tails and 1 head) � P(HTT TTH THT)

(c)

Alternatively,

(d) P(not more than 1 tail) � P(0 tails or 1 tail)

� P(0 tails) � P(1 tail)

� P(HHH) � P(HHT HTH THH)

� P(HHH) � P(HHT ) � P(HTH) � P(THH)

�
4
8 �

1
2

<<

P (at least 1 head) � 1 � P(no head) � 1 � P(TTT ) � 1 �
1
8 �

7
8

� P(HTT ) � P(THT ) � P(TTH ) � P(HHT ) � P(HTH ) � P(THH ) � P(HHH ) �
7
8

� P(HTT < THT < TTH ) � P(HHT < HTH < THH ) � P(HHH )

� P(1 head) � P(2 heads) � P(3 heads)

� P(1, 2, or 3 heads)

P(at least 1 head)

� P(HTT ) � P(TTH ) � P(THT ) �
1
8 �  

1
8 �

1
8 �

3
8

<<

1
8

>

s2 � a3 �
8
pb  a�1m � 2A 2

pa

f (x) � e22>pa3>2x2e�ax2>2 x � 0

0 x � 0

s2 � a�2>b c� a1 �
2
b
b � �2  a1 �

1
b
b dm � a�1>b�a1 �

1
b
b

f (x) � eabxb�1e�axb x � 0

0 x � 0

M(t) �
a
a � ts2 �

1
a2

m �
1
a

f (x) � eae�ax x � 0

0 x � 0
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Method 2 (using formula)

(a)

(b)

(c)

Alternatively, ,

(d)

It should be mentioned that the notation of random variables can also be used. For example, if we let X be the
random variable denoting the number of heads in 3 tosses, (c) can be written

We shall use both approaches interchangeably.

4.2. Find the probability that in five tosses of a fair die, a 3 will appear (a) twice, (b) at most once, (c) at least
two times.

Let the random variable X be the number of times a 3 appears in five tosses of a fair die. We have

Probability of 3 in a single toss

Probability of no 3 in a single toss

(a)

(b)

(c)

�
625

3888 �
125

3888 �
25

7776 �
1

7776  �
763

3888

� a5
2
b a1

6b
2a5

6b
3

� a5
3
b a1

6b
3a5

6b
2

�    a5
4
b a1

6b
4a5

6b
1

 �  a5
5
b a1

6b
5a5

6b
0

 

� P(X � 2) � P(X � 3) � P(X � 4) � P(X � 5)

� P(X � 2)

P(3 occurs at least 2 times)

�
3125
7776 �

3125
7776 �

3125
3888

� a5
0
b a1

6b
0a5

6b
5

� a5
1
b a1

6b
1a5

6b
4

P(3 occurs at most once) � P(X � 1) � P(X � 0) � P(X � 1)

P(3 occurs twice) � P(X � 2) � a5
2
b a1

6b
2a5

6b
3

�
625

3888

�  q �  1 � p �  
5
6

� p �
1
6

P(at least 1 head) � P(X � 1) � P(X � 1) � P(X � 2) � P(X � 3) �
7
8

� a3
3
b a1

2b
3a1

2b
0

� a3
2
b a1

2b
2a1

2b �
1
2

� P(0 tails) � P(1 tail)

� P(0  tails or 1 tail)P(not more than 1 tail)

� 1 � a3
0
b a1

2b
0a1

2b
3

�
7
8

P(at least 1 head) � 1 � P(no head)

� a3
1
b a1

2b
1a1

2b
2

� a3
2
b a1

2b
2a1

2b
1

� a3
3
b a1

2b
3a1

2b
0

�   
7
8

� P(1 head) � P(2 heads) � P(3 heads)

P(at least 1 head) � P(1, 2, or 3 heads)

P(2  tails and 1 head) � a3
2
b a1

2b
2a1

2b
1

�
3
8

P(3  heads) � a3
3
b a1

2b
3a1

2b
0

�
1
8
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4.3. Find the probability that in a family of 4 children there will be (a) at least 1 boy, (b) at least 1 boy and at
least 1 girl. Assume that the probability of a male birth is 1 2.

(a) ,

,

Then

Another method

(b)

We could also have solved this problem by letting X be a random variable denoting the number of boys in
families with 4 children. Then, for example, (a) becomes

4.4. Out of 2000 families with 4 children each, how many would you expect to have (a) at least 1 boy,
(b) 2 boys, (c) 1 or 2 girls, (d) no girls?

Referring to Problem 4.3, we see that

(a) Expected number of families with at least 1 boy

(b) Expected number of families with 2 boys � 2000 P(2 boys)

(c)

Expected number of families with 1 or 2 girls

(d) Expected number of families with no girls

4.5. If 20% of the bolts produced by a machine are defective, determine the probability that out of 4 bolts cho-
sen at random, (a) 1, (b) 0, (c) less than 2, bolts will be defective.

The probability of a defective bolt is p � 0.2, of a nondefective bolt is q � 1 � p � 0.8. Let the random variable
X be the number of defective bolts. Then

(a)

(b)

(c) P(X � 2) � P(X � 0) � P(X � 1)

� 0.4096 � 0.4096 � 0.8192

P(X � 0) � a4
0
b(0.2)0(0.8)4 � 0.4096

P(X � 1) � a4
1
b(0.2)1(0.8)3 � 0.4096

� (2000)a 1
16b  � 125

� (2000)a5
8b  � 1250

� P(1  boy)  �   P(2 boys) �   
1
4 �

3
8   �   

5
8

P(1 or 2 girls) � P(1 girl) � P(2 girls)

� 2000a3
8b  � 750?

� 2000a15
16b  � 1875

P(X � 1) � P(X � 1) � P(X � 2) � P(X � 3) � P(X � 4) �
15
16

�   1 �
1

16 �
1

16   �   
7
8

P(at least 1 boy and at least 1 girl)  �   1 � P(no boy) � P(no girl)

P(at least 1 boy) � 1 � P(no boy) �  1 � a1
2b

4

 �   1 �
1

16  �
15
16

�
1
4 �

3
8 �

1
4 �

1
16  �   

15
16

P(at least 1 boy) � P(1 boy) � P(2 boys) � P(3 boys) � P(4 boys)

P(4  boys) �  a4
4
b a1

2b
4a1

2b
0

�
1

16P(3  boys) � a4
3
b a1

2b
3a1

2b
1

�
1
4

P(2  boys) � a4
2
b a1

2b
2a1

2b
2

�
3
8P(1  boy) � a4

1
b a1

2b
1a1

2b
3

�
1
4

>
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4.6. Find the probability of getting a total of 7 at least once in three tosses of a pair of fair dice.

In a single toss of a pair of fair dice the probability of a 7 is p � 1 6 (see Problem 2.1, page 44), so that the
probability of no 7 in a single toss is q � 1 � p � 5 6. Then

and

4.7. Find the moment generating function of a random variable X that is binomially distributed.

Method 1
If X is binomially distributed,

Then the moment generating function is given by

Method 2
For a sequence of n Bernoulli trials, define

( j � 1, 2, . . . , n)

Then the Xj are independent and For the moment generating function of Xj, we have

Mj(t) � et0q � et1p � q � pet ( j � 1, 2, . . . , n)

Then by Theorem 3-9, page 80,

4.8. Prove that the mean and variance of a binomially distributed random variable are, respectively, � � np and
�2 � npq.

Proceeding as in Method 2 of Problem 4.7, we have for j � 1, 2, . . . , n,

Then

where we have used Theorem 3-7 for �2.
The above results can also be obtained (but with more difficulty) by differentiating the moment generating

function (see Problem 3.38) or directly from the probability function.

4.9. If the probability of a defective bolt is 0.1, find (a) the mean, (b) the standard deviation, for the number of
defective bolts in a total of 400 bolts.

(a) Mean � � np � (400) (0.1) � 40, i.e., we can expect 40 bolts to be defective.

(b) Variance �2 � npq � (400)(0.1)(0.9) � 36. Hence, the standard deviation s � !36 � 6.

s2 � Var (X ) � Var ( X1) � Var ( X2) � c� Var ( Xn) � npq

m � E(X ) � E( X1) � E( X2) � c� E(Xn) � np

� p2q � q2p � pq( p � q) � pq

Var (Xj) � E[(Xj � p)2] � (0 � p)2q � (1 � p)2p

E(Xj) � 0q � 1p � p

M(t) � M1(t)M2(t)cMn(t) � (q � pet)n

X � X1 � X2 � c� Xn.

Xj � e 0        if failure in jth trial

1        if success in jth trial

� (q � pet)n

� a
n

x�0
an

x
b( pet)xqn�x

� a
n

x�0
etx an

x
b pxqn�x

M(t) � E(etx) � a etxf (x)

f (x) � P(X �  x) � an
x
bpxqn�x

P(at least one 7 in three tosses) � 1 �
125
216  �

91
216

P(no 7 in three tosses) � a3
0
b a1

6b
0a5

6b
3

�
125
216

>
>
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The law of large numbers for Bernoulli trials
4.10. Prove Theorem 4-1, the (weak) law of large numbers for Bernoulli trials.

By Chebyshev’s inequality, page 83, if X is any random variable with finite mean � and variance �2, then

(1)

In particular, if X is binomially or Bernoulli distributed, then and (1) becomes

(2)

or

(3)

If we let (3) becomes

and taking the limit as we have, as required,

The result also follows directly from Theorem 3-19, page 83, with 

4.11. Give an interpretation of the (weak) law of large numbers for the appearances of a 3 in successive tosses
of a fair die.

The law of large numbers states in this case that the probability of the proportion of 3s in n tosses differing
from 1 6 by more than any value P � 0 approaches zero as .

The normal distribution
4.12. Find the area under the standard normal curve shown in Fig. 4-3 (a) between z � 0 and z � 1.2,

(b) between z � �0.68 and z � 0, (c) between z � �0.46 and z � 2.21, (d) between z � 0.81 and z � 1.94,
(e) to the right of z � �1.28.

(a) Using the table in Appendix C, proceed down the column marked z until entry 1.2 is reached. Then proceed
right to column marked 0. The result, 0.3849, is the required area and represents the probability that Z is
between 0 and 1.2 (Fig. 4-3). Therefore,

P(0 � Z � 1.2) �
1

22p
3

1.2

0
e�u2/2 du � 0.3849

n S `>

Sn � X, m � np, s � !npq.

lim
nS`

P a 2   Xn � p 2 � Pb � 0

n S `

Pa 2   Xn � p 2 � Pb �
pq

nP 2

P � kA
pq
n ,

Pa 2  Xn � p 2 � kA
pq
n b �

1
k2

P( uX � np u �  k!npq ) �  
1
k2

m � np,  s � !npq

P( uX � m u � ks) �
1
k2

Fig. 4-3

(b) Required area � area between z � 0 and z � �0.68 (by symmetry). Therefore, proceed downward under
column marked z until entry 0.6 is reached. Then proceed right to column marked 8.
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The result, 0.2517, is the required area and represents the probability that Z is between �0.68 and 0
(Fig. 4-4). Therefore,

�
1

!2p3
0.68

0
e�u2>2 du � 0.2517

P(�0.68 � Z � 0) �  
1

!2p3
0

�0.68
e�u2>2 du

Fig. 4-5

Fig. 4-6 Fig. 4-7

(c) Required area � (area between z ��0.46 and z � 0)

� (area between z � 0 and z � 2.21)

� (area between z � 0 and z � 0.46)

� (area between z � 0 and z � 2.21)

� 0.1772 � 0.4864 � 0.6636

The area, 0.6636, represents the probability that Z is between �0.46 and 2.21 (Fig. 4-5). Therefore,

(d) Required area (Fig. 4-6) � (area between z � 0 and z � 1.94)

� (area between z � 0 and z � 0.81)

� 0.4738 � 0.2910 � 0.1828

This is the same as P(0.81 � Z � 1.94).

(e) Required area (Fig. 4-7) � (area between z � �1.28 and z � 0)

� (area to right of z � 0)

� 0.3997 � 0.5 � 0.8997

This is the same as P(Z � �1.28).

� 0.6636

�
1

22p
3

0.46

0
e�u2/2  du �

1

22p
3

2.21

0
e�u2/2  du � 0.1772 � 0.4864

�
1

22p
3

0

�0.46
e�u2/2  du �

1

22p
3

2.21

0
e�u2>2  du

P(�0.46 �  Z � 2.21) �
1

22p
3

2.21

�0.46
e�u2> 2  du

4.13. If “area” refers to that under the standard normal curve, find the value or values of z such that (a) area
between 0 and z is 0.3770, (b) area to left of z is 0.8621, (c) area between �1.5 and z is 0.0217.

Fig. 4-4
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(a) In the table in Appendix C the entry 0.3770 is located to the right of the row marked 1.1 and under the
column marked 6. Then the required z � 1.16.

By symmetry, z � �1.16 is another value of z. Therefore, z � 
1.16 (Fig. 4-8). The problem is
equivalent to solving for z the equation

(b) Since the area is greater than 0.5, z must be positive.
Area between 0 and z is 0.8621 � 0.5 � 0.3621, from which z � 1.09 (Fig. 4-9).

1
!2p3

z

0
 e�u2>2 du � 0.3770

Fig. 4-8 Fig. 4-9

Fig. 4.10 Fig. 4.11

(c) If z were positive, the area would be greater than the area between �1.5 and 0, which is 0.4332; hence z
must be negative.

Case 1 z is negative but to the right of �1.5 (Fig. 4-10).

Area between �1.5 and z � (area between �1.5 and 0)

� (area between 0 and z)

0.0217 � 0.4332 � (area between 0 and z)

Then the area between 0 and z is 0.4332 � 0.0217 � 0.4115 from which z � �1.35.

Case 2 z is negative but to the left of �1.5 (Fig. 4-11).

Area between z and �1.5 � (area between z and 0)

� (area between �1.5 and 0)

0.0217 � (area between 0 and z) � 0.4332

Then the area between 0 and z is 0.0217 � 0.4332 � 0.4549 and z � �1.694 by using linear interpolation;
or, with slightly less precision, z � �1.69.

4.14. The mean weight of 500 male students at a certain college is 151 lb and the standard deviation is 15 lb.
Assuming that the weights are normally distributed, find how many students weigh (a) between 120 and
155 lb, (b) more than 185 lb.

(a) Weights recorded as being between 120 and 155 lb can actually have any value from 119.5 to 155.5 lb,
assuming they are recorded to the nearest pound (Fig. 4-12).

119.5 lb in standard units � (119.5 � 151) 15

� �2.10

155.5 lb in standard units � (155.5 � 151) 15

� 0.30

>

>
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Required proportion of students � (area between z � �2.10 and z � 0.30)

� (area between z � �2.10 and z � 0)

� (area between z � 0 and z � 0.30)

� 0.4821 � 0.1179 � 0.6000

Then the number of students weighing between 120 and 155 lb is 500(0.6000) � 300

Fig. 4-14

(b) Students weighing more than 185 lb must weigh at least 185.5 lb (Fig. 4-13).

185.5 lb in standard units � (185.5 � 151) 15 � 2.30

Required proportion of students

� (area to right of z � 2.30)

� (area to right of z � 0)

� (area between z � 0 and z � 2.30)

� 0.5 � 0.4893 � 0.0107

Then the number of students weighing more than 185 lb is 500(0.0107) � 5.
If W denotes the weight of a student chosen at random, we can summarize the above results in terms of

probability by writing

P(119.5 � W � 155.5) � 0.6000 P(W � 185.5) � 0.0107

4.15. The mean inside diameter of a sample of 200 washers produced by a machine is 0.502 inches and the stan-
dard deviation is 0.005 inches. The purpose for which these washers are intended allows a maximum tol-
erance in the diameter of 0.496 to 0.508 inches, otherwise the washers are considered defective.
Determine the percentage of defective washers produced by the machine, assuming the diameters are
normally distributed.

0.496 in standard units � (0.496 � 0.502) 0.005 � �1.2

0.508 in standard units � (0.508 � 0.502) 0.005 � 1.2

Proportion of nondefective washers

� (area under normal curve between z � �1.2 and z � 1.2)

� (twice the area between z � 0 and z � 1.2)

� 2(0.3849) � 0.7698, or 77%

Therefore, the percentage of defective washers is 100% � 77% � 23% (Fig. 4-14).

>
>

>

Fig. 4-12 Fig. 4-13

Note that if we think of the interval 0.496 to 0.508 inches as actually representing diameters of from 0.4955
to 0.5085 inches, the above result is modified slightly. To two significant figures, however, the results are the
same.
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4.16. Find the moment generating function for the general normal distribution. 

We have

Letting (x � �) � � v in the integral so that x � � � �v, dx � � dv, we have

Now letting v � �t � w, we find that

Normal approximation to binomial distribution
4.17. Find the probability of getting between 3 and 6 heads inclusive in 10 tosses of a fair coin by using (a) the

binomial distribution, (b) the normal approximation to the binomial distribution.

(a) Let X be the random variable giving the number of heads that will turn up in 10 tosses (Fig. 4-15). Then

Then the required probability is

P(3 � X � 6) �
15

128 �
105
512 �

63
256 �

105
512 �

99
128 � 0.7734

P(X � 6) � a10

6
b a1

2b
6a1

2b
4

�
105
512P(X � 5) � a10

5
b a1

2b
5a1

2b
5

�
63

256

P(X � 4) � a10

4
b a1

2b
4a1

2b
6

�
105
512P(X � 3) � a10

3
b a1

2b
3a1

2b
7

�
15

128

M(t) � emt�(s2t2>2) a 1

22p
3
`

�`
e�w2>2 dwb � eut�(s2t2>2)

M(t) �
1

22p
3
`

�`
eut�svt�(v2>2)   dv �

emt�(s2t2/2)

22p
3
`

�`
e�(v�st)2>2  dv

>
M(t) � E(etX ) �

1
s!2p3

`

�`
 etxe�(x�m)2>2s2 dx

Fig. 4-15 Fig. 4-16

(b) The probability distribution for the number of heads that will turn up in 10 tosses of the coin is shown
graphically in Figures 4-15 and 4-16, where Fig. 4-16 treats the data as if they were continuous. The
required probability is the sum of the areas of the shaded rectangles in Fig. 4-16 and can be approximated
by the area under the corresponding normal curve, shown dashed. Treating the data as continuous, it
follows that 3 to 6 heads can be considered as 2.5 to 6.5 heads. Also, the mean and variance for the

binomial distribution are given by and 

Now

2.5 in standard units 

6.5 in standard units �
6.5 � 5

1.58 � 0.95

�
2.5 � 5

1.58 � �1.58

s � !npq � #(10)A12B A12B � 1.58.m � np � 10A12B � 5
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Required probability (Fig. 4-17) � (area between z � �1.58 and z � 0.95)

� (area between z � �1.58 and z � 0)

� (area between z � 0 and z � 0.95)

� 0.4429 � 0.3289 � 0.7718

which compares very well with the true value 0.7734 obtained in part (a). The accuracy is even better for larger
values of n.

4.18. A fair coin is tossed 500 times. Find the probability that the number of heads will not differ from 250 by
(a) more than 10, (b) more than 30.

(a) We require the probability that the number of heads will lie between 240 and 260, or considering the data
as continuous, between 239.5 and 260.5.

239.5 in standard units 260.5 in standard units � 0.94

Required probability � (area under normal curve between z � �0.94 and z � 0.94)

� (twice area between z � 0 and z � 0.94) � 2(0.3264) � 0.6528

(b) We require the probability that the number of heads will lie between 220 and 280 or, considering the data
as continuous, between 219.5 and 280.5.

219.5 in standard units 280.5 in standard units � 2.73

Required probability � (twice area under normal curve between z � 0 and z � 2.73)

� 2(0.4968) � 0.9936

It follows that we can be very confident that the number of heads will not differ from that expected
(250) by more than 30. Therefore, if it turned out that the actual number of heads was 280, we would
strongly believe that the coin was not fair, i.e., it was loaded.

4.19. A die is tossed 120 times. Find the probability that the face 4 will turn up (a) 18 times or less, (b) 14 times
or less, assuming the die is fair.

The face 4 has probability of turning up and probability of not turning up.

(a) We want the probability of the number of 4s being between 0 and 18. This is given exactly by

but since the labor involved in the computation is overwhelming, we use the normal approximation.
Considering the data as continuous, it follows that 0 to 18 4s can be treated as �0.5 to 18.5 4s. 

Also,

and s � !npq � A(120)a1
6b a5

6b � 4.08m � np � 120a1
6b � 20

a120

18
b a1

2b
18a5

6b
102

� a120

17
b a1

6b
17a5

6b
103

� c� a120

0
b a1

6b
0a5

6b
120

q �
5
6p �

1
6

�
219.5 � 250

11.18 � �2.73

�
239.5 � 250

11.18 � �0.94

s � !npq � A(500)Q12R Q12R � 11.18m � np � (500)a1
2b � 250

Fig. 4-17
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Then

�0.5 in standard units 18.5 in standard units � �0.37

Required probability � (area under normal curve between z � �5.02 and z � �0.37)

� (area between z � 0 and z � �5.02)

� (area between z � 0 and z � �0.37)

� 0.5 � 0.1443 � 0.3557

(b) We proceed as in part (a), replacing 18 by 14. Then

�0.5 in standard units � �5.02 14.5 in standard units

Required probability � (area under normal curve between z � �5.02 and z � �1.35)

� (area between z � 0 and z � �5.02)

� (area between z � 0 and z � �1.35)

� 0.5 � 0.4115 � 0.0885

It follows that if we were to take repeated samples of 120 tosses of a die, a 4 should turn up 14 times or
less in about one-tenth of these samples.

The Poisson distribution
4.20. Establish the validity of the Poisson approximation to the binomial distribution.

If X is binomially distributed, then

(1)

where E(X) � np. Let � � np so that p � � n. Then (1) becomes

Now as ,

while

using the well-known result from calculus that

It follows that when but � stays fixed (i.e., ),

(2)

which is the Poisson distribution.

P(X � x) S l
xe�l

x!

p S 0n S `

lim
nS`
a1 �

u
nb

n

� eu

a1 �
l
nb

n�x

� a1 �
l
nb

na1 �
l
nb

�x
S (e�l)(1) � e�l

a1 �
1
nb a1 �

2
nbc a1 �

x � 1
n b S 1

n S `

�

a1 �
1
nb a1 �

2
nbca1 �

x � 1
n b

x! lx a1 �
l
nb

n�x

�
n(n � 1)(n � 2) c (n � x � 1)

x!nx lx a1 �
l
nb

n�x

P(X � x) � an
x
b alnb

xa1 �
l
nb

n�x

>
P(X � x) � an

x
b p xqn�x

�
14.5 � 20

4.08 � �1.35

�
�0.5 � 20

4.08 � �5.02.
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Another method
The moment generating function for the binomial distribution is

(3) (q � pet)n � (1 � p � pet)n � [1 � p(et � 1)]n

If � � np so that p � � n, this becomes

(4)

As this approaches

(5)

which is the moment generating function of the Poisson distribution. The required result then follows on using
Theorem 3-10, page 77.

4.21. Verify that the limiting function (2) of Problem 4.20 is actually a probability function.

First, we see that P(X � x) � 0 for x � 0, 1, . . . , given that � � 0. Second, we have

and the verification is complete.

4.22. Ten percent of the tools produced in a certain manufacturing process turn out to be defective. Find the
probability that in a sample of 10 tools chosen at random, exactly 2 will be defective, by using (a) the
binomial distribution, (b) the Poisson approximation to the binomial distribution.

(a) The probability of a defective tool is p � 0.1. Let X denote the number of defective tools out of 10 chosen.
Then, according to the binomial distribution,

(b) We have � � np � (10)(0.1) � 1. Then, according to the Poisson distribution,

or

In general, the approximation is good if p � 0.1 and � � np � 5.

4.23. If the probability that an individual will suffer a bad reaction from injection of a given serum is 0.001,
determine the probability that out of 2000 individuals, (a) exactly 3, (b) more than 2, individuals will suffer
a bad reaction.

Let X denote the number of individuals suffering a bad reaction. X is Bernoulli distributed, but since bad
reactions are assumed to be rare events, we can suppose that X is Poisson distributed, i.e.,

where � � np � (2000)(0.001) � 2

(a)

(b)

An exact evaluation of the probabilities using the binomial distribution would require much more labor.

The central limit theorem
4.24. Verify the central limit theorem for a random variable X that is binomially distributed, and thereby estab-

lish the validity of the normal approximation to the binomial distribution.

� 1 � 5e�2 � 0.323

� 1 � c 20e�2

0! �
21e�2

1! �
22e�2

2! d
P(X � 2) � 1 � [P(X � 0) � P(X � 1) � P(X � 2)]

P(X � 3) �
23e�2

3! � 0.180

P(X � x) �
lxe�l

x!

P(X � 2) �
(1)2e�1

2! � 0.1839 or 0.18P(X � x) �
lxe�l

x!

P(X � 2) � a10

2
b(0.1)2(0.9)8 � 0.1937  or  0.19

a
`

x�0
 P(X � x) � a

`

x�0
 
lxe�l

x! � e�la
`

x�0
 
lx

x! � e�l ? el � 1

el(et�1)

n S `

c1 �
l(et � 1)

n d n
>
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The standardized variable for X is , and the moment generating function for X* is

Using the expansion

we find

Therefore,

But as , the right-hand side approaches which is the moment generating function for the standard
normal distribution. Therefore, the required result follows by Theorem 3-10, page 77.

4.25. Prove the central limit theorem (Theorem 4-2, page 112).

For n � 1, 2, . . . , we have Now X1, X2, . . . , Xn each have mean μ and variance .
Thus

and, because the Xk are independent,

It follows that the standardized random variable corresponding to Sn is

The moment generating function for is

� 5E[et(X1�m)>s1n]6n

� E[et(X1�m)>s1n] ? E[et(X2�m)>s1n]cE[et(Xn�m)>s1n]

� E[et(X1�m)>s1net(X2�m)>s1n cet(Xn�m)>s1n]

E(etS*
n) � E[et(Sn�nm)>s1n]

S*
n

S*
n �

Sn � nm

s2n

Var (Sn) � Var (X1) � Var (X2) � c� Var (Xn) � ns2

E(Sn) � E(X1) � E(X2) � c� E(Xn) � nm

s2Sn � X1 � X2 � c� Xn.

et2/2,n S `

E(etX*) � a1 �
t2

2n � cbn

� 1 �
t2

2n � c

� q � p �
pq(p � q)t2

2npq � c

� pa1 �
tq

!npq
�

t2q2

2npq � cb

qe�tp>1npq � petq>1npq � qa1 �
tp

!npq
�

t2p2

2npq � cb

eu � 1 � u �
u2

2! �
u3

3! � c

� (qe�tp>1npq � petq>1npq)n

� [e�tp>1npq(q � pet>1npq)]n

� e�tnp>1npq(q � pet>1npq)n

� e�tnp>1npq a
n

x�0
an

x
b( pet>1npq)x qn�x

� e�tnp>1npq a
n

x�0
etx>1npq an

x
bpx qn�x

� e�tnp>1npq E(etX>1npq )

E(etX*) � E(et(X�np)>1npq)

X* � (X � np)>!npq
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where, in the last two steps, we have respectively used the facts that the Xk are independent and are identically
distributed. Now, by a Taylor series expansion,

so that

But the limit of this as is which is the moment generating function of the standardized normal
distribution. Hence, by Theorem 3-10, page 80, the required result follows.

Multinomial distribution
4.26. A box contains 5 red balls, 4 white balls, and 3 blue balls. A ball is selected at random from the box, its

color is noted, and then the ball is replaced. Find the probability that out of 6 balls selected in this manner,
3 are red, 2 are white, and 1 is blue.

Method 1 (by formula)

P(red at any drawing) P(white at any drawing)

P(blue at any drawing)

Then

Method 2
The probability of choosing any red ball is 5 12. Then the probability of choosing 3 red balls is (5 12)3.
Similarly, the probability of choosing 2 white balls is (4 12)2, and of choosing 1 blue ball, (3 12)1. Therefore,
the probability of choosing 3 red, 2 white, and 1 blue in that order is

But the same selection can be achieved in various other orders, and the number of these different ways is

as shown in Chapter 1. Then the required probability is

Method 3
The required probability is the term in the multinomial expansion of (pr � pw � pb)6 where pr � 5 12,
pw � 4 12, pb � 3 12. By actual expansion, the above result is obtained.

The hypergeometric distribution
4.27. A box contains 6 blue marbles and 4 red marbles. An experiment is performed in which a marble is chosen

at random and its color observed, but the marble is not replaced. Find the probability that after 5 trials of
the experiment, 3 blue marbles will have been chosen.

Method 1
The number of different ways of selecting 3 blue marbles out of 6 blue marbles is . The number of differenta6

3
b

>>
>p3

r  p2
w  pb

6!
3!2!1! a 5

12b
3 a 4

12b
2 a 3

12b
1

6!
3!2!1!

a 5
12b

3a 4
12b

2a 3
12b

1

>>
>>

P(3 red, 2 white, 1 blue) �
6!

3!2!1! a 5
12b

3a 4
12b

2a 3
12b

1

�
625

5184

�
3

12

�
4
12�  

5
12

et2>2,n S `

E(etS*
n) � a1 �

t2

2n �cbn

� 1 �
t
s!n

 (0) �
t2

2s2n
(s2) � c� 1 �

t2

2n � c

� E(1) �
t
s!n

  E(X1 � m) �
t2

2s2n
  E[(X1 � m)2] � c

E[et(X1�m)>s1n] � E c1 �
t(X1 � m)

s!n
�

t2(X1 � m)2

2s2n
� cd

ways of selecting the remaining 2 marbles out of the 4 red marbles is . Therefore, the number of differenta4
2
b

samples containing 3 blue marbles and 2 red marbles is .a4
2
ba6

3
b
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is . Therefore, the required probability is given by

Method 2 (using formula)
We have b � 6, r � 4, n � 5, x � 3. Then by (19), page 113, the required probability is

The uniform distribution
4.28. Show that the mean and variance of the uniform distribution (page 113) are given respectively by 

(a) (b) .

(a)

(b) We have

Then the variance is given by

The Cauchy distribution
4.29. Show that (a) the moment generating function for a Cauchy distributed random variable X does not exist

but that (b) the characteristic function does exist.

(a) The moment generating function of X is

which does not exist if t is real. This can be seen by noting, for example, that if x � 0, t � 0,

so that

and the integral on the right diverges.

(b) The characteristic function of X is
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where we have used the fact that the integrands in the next to last line are even and odd functions, respectively.
The last integral can be shown to exist and to equal .

4.30. Let be a uniformly distributed random variable in the interval . Prove that X � a tan ,
a � 0, is Cauchy distributed in � � x � .

The density function of is

Considering the transformation x � a tan , we have

and

Then by Theorem 2-3, page 42, the density function of X is given by

which is the Cauchy distribution.

The gamma distribution
4.31. Show that the mean and variance of the gamma distribution are given by (a) , (b) .

(a)

Letting , we have

(b)

Letting , we have

since . Therefore,

The beta distribution
4.32. Find the mean of the beta distribution.
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4.33. Find the variance of the beta distribution.

The second moment about the origin is

Then using Problem 4.32, the variance is

The chi-square distribution
4.34. Show that the moment generating function of a random variable X, which is chi-square distributed with 

v degrees of freedom, is M(t) � (1 � 2t)�v 2.

Letting (1 � 2t)x 2 � u in the last integral, we find

4.35. Let X1 and X2 be independent random variables that are chi-square distributed with v1 and v2 degrees of free-
dom, respectively, (a) Show that the moment generating function of Z � X1 � X2 is ,
thereby (b) show that Z is chi-square distributed with v1 � v2 degrees of freedom.

(a) The moment generating function of Z � X1 � X2 is

using Problem 4.34.

(b) It is seen from Problem 4.34 that a distribution whose moment generating function is is the
chi-square distribution with v1 � v2 degrees of freedom. This must be the distribution of
Z, by Theorem 3-10, page 77.

By generalizing the above results, we obtain a proof of Theorem 4-4, page 115.

4.36. Let X be a normally distributed random variable having mean 0 and variance 1. Show that X2 is chi-square
distributed with 1 degree of freedom.

We want to find the distribution of Y � X2 given a standard normal distribution for X. Since the correspondence
between X and Y is not one-one, we cannot apply Theorem 2-3 as it stands but must proceed as follows.
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For y � 0, it is clear that P(Y � y) � 0. For y � 0, we have

where the last step uses the fact that the standard normal density function is even. Making the change of
variable in the final integral, we obtain

But this is a chi-square distribution with 1 degree of freedom, as is seen by putting v � 1 in (39), page 115, and
using the fact that .

4.37. Prove Theorem 4-3, page 115, for v � 2.

By Problem 4.36 we see that if X1 and X2 are normally distributed with mean 0 and variance 1, then and 

are chi square distributed with 1 degree of freedom each. Then, from Problem 4.35(b), we see that 

is chi square distributed with 1 � 1 � 2 degrees of freedom if X1 and X2 are independent. The
general result for all positive integers v follows in the same manner.

4.38. The graph of the chi-square distribution with 5 degrees of freedom is shown in Fig. 4-18. (See the remarks
on notation on page 115.) Find the values for which

(a) the shaded area on the right � 0.05,

(b) the total shaded area � 0.05,

(c) the shaded area on the left � 0.10,

(d) the shaded area on the right � 0.01.
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2
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2
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y
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1
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�1y

�1y
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!2p3

�1y

0
e�x2>2 dx

P(Y � y) � P(X 2 � y) � P(�!y � X � � !y)

(a) If the shaded area on the right is 0.05, then the area to the left of is (1 � 0.05) � 0.95, and represents
the 95th percentile, .

Referring to the table in Appendix E, proceed downward under column headed v until entry 5 is
reached. Then proceed right to the column headed . The result, 11.1, is the required value of .

(b) Since the distribution is not symmetric, there are many values for which the total shaded area � 0.05. For
example, the right-hand shaded area could be 0.04 while the left-hand shaded area is 0.01. It is customary,
however, unless otherwise specified, to choose the two areas equal. In this case, then, each area � 0.025.

If the shaded area on the right is 0.025, the area to the left of is 1 � 0.025 � 0.975 and represents
the 97.5th percentile, , which from Appendix E is 12.8.

Similarly, if the shaded area on the left is 0.025, the area to the left of is 0.025 and represents the
2.5th percentile, , which equals 0.831.

Therefore, the values are 0.831 and 12.8.

(c) If the shaded area on the left is 0.10, represents the 10th percentile, , which equals 1.61.

(d) If the shaded area on the right is 0.01, the area to the left of is 0.99, and represents the 99th
percentile, , which equals 15.1.x2
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Fig. 4-18
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4.39. Find the values of for which the area of the right-hand tail of the distribution is 0.05, if the number
of degrees of freedom v is equal to (a) 15, (b) 21, (c) 50.

Using the table in Appendix E, we find in the column headed the values: (a) 25.0 corresponding to 

v � 15; (b) 32.7 corresponding to v � 21; (c) 67.5 corresponding to v � 50.

4.40. Find the median value of corresponding to (a) 9, (b) 28, (c) 40 degrees of freedom.

Using the table in Appendix E, we find in the column headed (since the median is the 50th percentile) 
the values: (a) 8.34 corresponding to v � 9; (b) 27.3 corresponding to v � 28; (c) 39.3 corresponding to 
v � 40.

It is of interest to note that the median values are very nearly equal to the number of degrees of freedom. In
fact, for v � 10 the median values are equal to v � 0.7, as can be seen from the table.

4.41. Find for (a) v � 50, (b) v � 100 degrees of freedom.

For v greater than 30, we can use the fact that is very closely normally distributed with
mean zero and variance one. Then if zp is the (100p)th percentile of the standardized normal distribution, we
can write, to a high degree of approximation,

or

from which

(a) If v � 50, , which agrees very well with the
value 67.5 given in Appendix E.

(b) If v � 100, (actual value � 124.3).

Student’s t distribution
4.42. Prove Theorem 4-6, page 116.

Since Y is normally distributed with mean 0 and variance 1, its density function is

(1)

Since Z is chi-square distributed with v degrees of freedom, its density function is

(2)

Because Y and Z are independent, their joint density function is the product of (1) and (2), i.e.,

for

The distribution function of is

where the integral is taken over the region of the yz plane for which . We first fix z and integrate
with respect to y from to . Then we integrate with respect to z from 0 to . We therefore have
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Letting in the bracketed integral, we find

Letting , this can then be written

as required.

4.43. The graph of Student’s t distribution with 9 degrees of freedom is shown in Fig. 4-19. Find the value of t1

for which

(a) the shaded area on the right � 0.05,

(b) the total shaded area � 0.05,

(c) the total unshaded area � 0.99,

(d) the shaded area on the left � 0.01,

(e) the area to the left of t1 is 0.90.
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(a) If the shaded area on the right is 0.05, then the area to the left of t1 is (1 � 0.05) � 0.95, and t1 represents
the 95th percentile, t0.95.

Referring to the table in Appendix D, proceed downward under the column headed v until entry 9 is
reached. Then proceed right to the column headed t0.95. The result 1.83 is the required value of t.

(b) If the total shaded area is 0.05, then the shaded area on the right is 0.025 by symmetry. Therefore, the area
to the left of t1 is (1 � 0.025) � 0.975, and t1 represents the 97.5th percentile, t0.975. From Appendix D, we
find 2.26 as the required value of t.

(c) If the total unshaded area is 0.99, then the total shaded area is (1 � 0.99) � 0.01, and the shaded area to the
right is 0.01 2 � 0.005. From the table we find t0.995 � 3.25.

(d) If the shaded area on the left is 0.01, then by symmetry the shaded area on the right is 0.01. From the table,
t0.99 � 2.82. Therefore, the value of t for which the shaded area on the left is 0.01 is �2.82.

(e) If the area to the left of t1 is 0.90, then t1 corresponds to the 90th percentile, t0.90, which from the table
equals 1.38.

>

Fig. 4-19
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4.44. Find the values of t for which the area of the right-hand tail of the t distribution is 0.05 if the number of
degrees of freedom v is equal to (a) 16, (b) 27, (c) 200.

Referring to Appendix D, we find in the column headed t0.95 the values: (a) 1.75 corresponding to v � 16;
(b) 1.70 corresponding to v � 27; (c) 1.645 corresponding to v � 200. (The latter is the value that would be
obtained by using the normal curve. In Appendix D this value corresponds to the entry in the last row marked �.)

The F distribution
4.45. Prove Theorem 4-7.

The joint density function of V1 and V2 is given by

if v1 � 0, v2 � 0 and 0 otherwise. Make the transformation

Then the Jacobian is

Denoting the density as a function of u and w by g(u, w), we thus have

if u � 0, w � 0 and 0 otherwise.
The (marginal) density function of U can now be found by integrating with respect to w from 0 to , i.e.,

if u � 0 and 0 if u � 0. But from 15, Appendix A,

Therefore, we have

if u � 0 and 0 if u � 0, which is the required result.
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4.46. Prove that the F distribution is unimodal at the value if v1 � 2.

The mode locates the maximum value of the density function. Apart from a constant, the density function of the
F distribution is

If this has a relative maximum, it will occur where the derivative is zero, i.e.,

Dividing by we find

Using the second-derivative test, we can show that this actually gives the maximum.

4.47. Using the table for the F distribution in Appendix F, find (a) F0.95,10,15, (b) F0.99,15,9, (c) F0.05,8,30, (d) F0.01,15,9.

(a) From Appendix F, where v1 � 10, v2 � 15, we find F0.95,10,15 � 2.54.

(b) From Appendix F, where v1 � 15, v2 � 9, we find F0.99,15,9 � 4.96.

(c) By Theorem 4-8, page 117,

(d) By Theorem 4-8, page 117,

Relationships among F, , and t distributions
4.48. Verify that (a) (b) .

(a) Compare the entries in the first column of the F0.95 table in Appendix F with those in the t distribution
under t0.975. We see that

161 � (12.71)2, 18.5 � (4.30)2, 10.1 � (3.18)2, 7.71 � (2.78)2, etc.

(b) Compare the entries in the first column of the F0.99 table in Appendix F with those in the t distribution
under t0.995. We see that

4050 � (63.66)2, 98.5 � (9.92)2, 34.1 � (5.84)2, 21.2 � (4.60)2, etc.

4.49. Prove Theorem 4-9, page 117, which can be briefly stated as

and therefore generalize the results of Problem 4.48.

Let v1 � 1, v2 � v in the density function for the F distribution [(45), page 116]. Then
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for u � 0, and f (u) � 0 for u � 0. Now, by the definition of a percentile value, F1�p is the number such that
P(U � F1�p) � 1 � p. Therefore,

In the integral make the change of variable 

Comparing with (42), page 115, we see that the left-hand side of the last equation equals

where T is a random variable having Student’s t distribution with v degrees of freedom. Therefore,

where we have used the symmetry of the t distribution. Solving, we have

But, by definition, t1�(p 2) is the number such that

and this number is uniquely determined, since the density function of the t distribution is strictly positive.
Therefore,

which was to be proved.

4.50. Verify Theorem 4-10, page 117, for (a) p � 0.95, (b) p � 0.99.

(a) Compare the entries in the last row of the F0.95 table in Appendix F (corresponding to v2 � ) with the
entries under in Appendix E. Then we see that

.

which provides the required verification.

(b) Compare the entries in the last row of the F0.99 table in Appendix F (corresponding to v2 � ) with the 
entries under in Appendix E. Then we see that

.

which provides the required verification.
The general proof of Theorem 4-10 follows by letting v2 in the F distribution on page 116.

The bivariate normal distribution
4.51. Suppose that X and Y are random variables whose joint density function is the bivariate normal distribu-

tion. Show that X and Y are independent if and only if their correlation coefficient is zero.

S `

6.63 �
6.63

1 ,    4.61 �
9.21

2 ,    3.78 �
11.3

3 ,    3.32 �
13.3

4 ,    3.02 �
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5 ,    etc

x2
0.99

`

3.84 �
3.84

1 ,    3.00 �
5.99

2 ,    2.60 �
7.81

3 ,    2.37 �
9.49

4 ,    2.21 �
11.1

5 ,    etc

x2
0.95

`

�!F1�p � t1�(p>2)    or    F1�p � t2
1�(p>2)

P(T � t1�(p>2)) � 1 �
p
2
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� P(T � � !F1�p) �
1
2

� P(T � � !F1�p) � P(T � 0)

1 � p
2 � P(0 � T � � !F1�p)

2 ? P(0 � T � � !F1�p)

2
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�1F1�p

0  
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v b
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If the correlation coefficient � 0, then the bivariate normal density function (49), page 117, becomes

and since this is a product of a function of x alone and a function of y alone for all values of x and y, it follows
that X and Y are independent.

Conversely, if X and Y are independent, f (x, y) given by (49) must for all values of x and y be the product of
a function of x alone and a function of y alone. This is possible only if � 0.

Miscellaneous distributions
4.52. Find the probability that in successive tosses of a fair die, a 3 will come up for the first time on the 

fifth toss.

Method 1
The probability of not getting a 3 on the first toss is 5 6. Similarly, the probability of not getting a 3 on the second

toss is 5 6, etc. Then the probability of not getting a 3 on the first 4 tosses is (5 6) (5 6) (5 6) (5 6) � (5 6)4.

Therefore, since the probability of getting a 3 on the fifth toss is 1 6, the required probability is

Method 2 (using formula)
Using the geometric distribution, page 117, with p � 1 6, q � 5 6, x � 5, we see that the required proba-
bility is

4.53. Verify the expressions given for (a) the mean, (b) the variance, of the Weibull distribution, page 118.

(a)

where we have used the substitution u � axb to evaluate the integral.

(b)

Then

� a�2>b c� a1 �
2
bb � �2 a1 �

1
bb d

s2 � E[(X � m)2] � E(X2) � m2

� a�2>b�a1 �
2
bb

� a�2>b3
`

0
u2>b e�u du

�
ab
a1>b3

`

0
au

ab
1�(1>b)

e�u 1
b u(1>b)�1 du

E(X2) � 3
`

0
abxb�1 e�axb dx

� a�1>b�a1 �
1
bb

� a�1>b3
`

0
u1>be�u du

�
ab
a1>b3

`

0
au

abe�u 1
b u(1>b)�1 du

m � E(X) � 3
`

0
abxb e�axb  dx

a1
6b a5

6b
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�
625
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Miscellaneous problems
4.54. The probability that an entering college student will graduate is 0.4. Determine the probability that out of

5 students (a) none, (b) 1, (c) at least 1, will graduate.

(a) P(none will graduate) � 5C0(0.4)0(0.6)5 � 0.07776, or about 0.08

(b) P(l will graduate) � 5C1(0.4)1(0.6)4 � 0.2592, or about 0.26

(c) P(at least 1 will graduate) � 1 � P(none will graduate) � 0.92224, or about 0.92

4.55. What is the probability of getting a total of 9 (a) twice, (b) at least twice in 6 tosses of a pair of dice?

Each of the 6 ways in which the first die can fall can be associated with each of the 6 ways in which the second
die can fall, so there are 6 6 � 36 ways in which both dice can fall. These are: 1 on the first die and 1 on the
second die, 1 on the first die and 2 on the second die, etc., denoted by (1, 1), (1, 2), etc.

Of these 36 ways, all equally likely if the dice are fair, a total of 9 occurs in 4 cases: (3, 6), (4, 5), (5, 4),
(6, 3). Then the probability of a total of 9 in a single toss of a pair of dice is p � 4 36 � 1 9, and the probability
of not getting a total of 9 in a single toss of a pair of dice is q � 1 � p � 8 9.

(a) P(two 9s in 6 tosses)

(b) P(at least two 9s) � P(two 9s) � P(three 9s) � P(four 9s) � P(five 9s) � P(six 9s)

Another method

4.56. If the probability of a defective bolt is 0.1, find (a) the mean, (b) the standard deviation for the distribu-
tion of defective bolts in a total of 400.

(a) Mean � np � 400(0.1) � 40, i.e., we can expect 40 bolts to be defective.

(b) Variance � npq � 400(0.l)(0.9) � 36. Hence the standard deviation .

4.57. Find the coefficients of (a) skewness, (b) kurtosis of the distribution in Problem 4.56.

(a) Coefficient of skewness

Since this is positive, the distribution is skewed to the right.

(b) Coefficient of kurtosis

The distribution is slightly more peaked than the normal distribution.

4.58. The grades on a short quiz in biology were 0, 1, 2, . . . , 10 points, depending on the number answered cor-
rectly out of 10 questions. The mean grade was 6.7, and the standard deviation was 1.2. Assuming the
grades to be normally distributed, determine (a) the percentage of students scoring 6 points, (b) the max-
imum grade of the lowest 10% of the class, (c) the minimum grade of the highest 10% of the class.

(a) To apply the normal distribution to discrete data, it is necessary to treat the data as if they were continuous.
Thus a score of 6 points is considered as 5.5 to 6.5 points. See Fig. 4-20.

5.5 in standard units � (5.5 � 6.7) 1.2 � �1.0

6.5 in standard units � (6.5 � 6.7) 1.2 � �0.17>
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Required proportion � area between z � �1 and z � �0.17

� (area between z � �1 and z � 0)

� (area between z � �0.17 and z � 0)

� 0.3413 � 0.0675 � 0.2738 � 27%

(b) Let x1 be the required maximum grade and z1 its equivalent in standard units. From Fig. 4-21 the area to the
left of z1 is 10% � 0.10; hence,

Area between z1 and 0 � 0.40
and z1 � �1.28 (very closely).

Then z1 � (x1 � 6.7) 1.2 � �1.28 and x1 � 5.2 or 5 to the nearest integer.

(c) Let x2 be the required minimum grade and z2 the same grade in standard units. From (b), by symmetry,
z2 � 1.28. Then (x2 � 6.7) 1.2 � 1.28, and x2 � 8.2 or 8 to the nearest integer.

4.59. A Geiger counter is used to count the arrivals of radioactive particles. Find the probability that in time t
no particles will be counted.

Let Fig. 4-22 represent the time axis with O as the origin. The probability that a particle is counted in a small
time 
t is proportional to 
t and so can be written as �
t. Therefore, the probability of no count in time 
t is
1 � �
t. More precisely, there will be additional terms involving (
t)2 and higher orders, but these are
negligible if 
t is small.

>

>

Fig. 4-20 Fig. 4-21

Fig. 4-22

Let P0(t) be the probability of no count in time t. Then P0(t � 
t) is the probability of no count in time 
t � 
t. If the arrivals of the particles are assumed to be independent events, the probability of no count in
time t � 
t is the product of the probability of no count in time t and the probability of no count in time 
t.
Therefore, neglecting terms involving (
t)2 and higher, we have

(1) P0(t � 
t) � P0(t)[l � �
t]

From (1) we obtain

(2)

i.e.,

(3)

Solving (3) by integration we obtain

ln P0 � ��t � c1 or P0(t) � ce��t

To determine c, note that if t � 0, P0(0) � c is the probability of no counts in time zero, which is of course 1.
Thus c � 1 and the required probability is

(4) P0(t) � e��t

dP0

dt � �lP0  or  
dP0

P0
� �l dt

lim

tS0

P0(t � 
t) � P0(t)

t � �lP0(t)
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4.60. Referring to Problem 4.59, find the probability of exactly one count in time t.

Let P1(t) be the probability of 1 count in time t, so that P1(t � 
t) is the probability of 1 count in time t � 
t.
Now we will have 1 count in time t � 
t in the following two mutually exclusive cases:

(i) 1 count in time t and 0 counts in time 
t

(ii) 0 counts in time t and 1 count in time 
t

The probability of (i) is P1(t)(1 � �
t).
The probability of (ii) is P0(t) �
t.
Thus, apart from terms involving (
t)2 and higher,

(1) P1(t � 
t) � P1(t)(1 � �
t) � P0(t)�
t

This can be written

(2)

Taking the limit as and using the expression for P0(t) obtained in Problem 4.59, this becomes

(3)

or

(4)

Multiplying by e�t, this can be written

(5)

which yields on integrating

(6) P1(t) � �te��t � c2e��t

If t � 0, P1 (0) is the probability of 1 count in time 0, which is zero. Using this in (6), we find c2 � 0.
Therefore,

(7) P1(t) � �te��t

By continuing in this manner, we can show that the probability of exactly n counts in time t is given by

(8)

which is the Poisson distribution.

SUPPLEMENTARY PROBLEMS

The binomial distribution
4.61. Find the probability that in tossing a fair coin 6 times, there will appear (a) 0, (b) 1, (c) 2, (d) 3, (e) 4, (f) 5,

(g) 6 heads.

4.62. Find the probability of (a) 2 or more heads, (b) fewer than 4 heads, in a single toss of 6 fair coins.

4.63. If X denotes the number of heads in a single toss of 4 fair coins, find (a) P(X � 3), (b) P(X � 2),
(c) P(X � 2), (d) P(1 � X � 3).

4.64. Out of 800 families with 5 children each, how many would you expect to have (a) 3 boys, (b) 5 girls,
(c) either 2 or 3 boys? Assume equal probabilities for boys and girls.

4.65. Find the probability of getting a total of 11 (a) once, (b) twice, in two tosses of a pair of fair dice.

Pn(t) �
(lt)n e�lt

n!

d
dt (e

ltP1) � l

dP1

dt � lP1 � le�lt

dP1

dt � le�lt � lP1


t S 0

P1(t � 
t) � P1(t)

t � lP0(t) � lP1(t)
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4.66. What is the probability of getting a 9 exactly once in 3 throws with a pair of dice?

4.67. Find the probability of guessing correctly at least 6 of the 10 answers on a true-false examination.

4.68. An insurance sales representative sells policies to 5 men, all of identical age and in good health. According to
the actuarial tables, the probability that a man of this particular age will be alive 30 years hence is . Find the
probability that in 30 years (a) all 5 men, (b) at least 3 men, (c) only 2 men, (d) at least 1 man will be alive.

4.69. Compute the (a) mean, (b) standard deviation, (c) coefficient of skewness, (d) coefficient of kurtosis for a
binomial distribution in which p � 0.7 and n � 60. Interpret the results.

4.70. Show that if a binomial distribution with n � 100 is symmetric; its coefficient of kurtosis is 2.9.

4.71. Evaluate (a) (x � μ)3 f(x), (b) (x � μ)4f(x) the binomial distribution.

The normal distribution
4.72. On a statistics examination the mean was 78 and the standard deviation was 10. (a) Determine the standard

scores of two students whose grades were 93 and 62, respectively, (b) Determine the grades of two students
whose standard scores were �0.6 and 1.2, respectively.

4.73. Find (a) the mean, (b) the standard deviation on an examination in which grades of 70 and 88 correspond to
standard scores of �0.6 and 1.4, respectively.

4.74. Find the area under the normal curve between (a) z � �1.20 and z � 2.40, (b) z � 1.23 and z � 1.87,
(c) z � �2.35 and z � �0.50.

4.75. Find the area under the normal curve (a) to the left of z � �1.78, (b) to the left of z � 0.56, (c) to the right 
of z � �1.45, (d) corresponding to z � 2.16, (e) corresponding to �0.80 � z � 1.53, (f ) to the left of z � �2.52
and to the right of z � 1.83.

4.76. If Z is normally distributed with mean 0 and variance 1, find: (a) P(Z � �1.64), (b) P(�1.96 � Z � 1.96),
(c) P( Z � 1).

4.77. Find the values of z such that (a) the area to the right of z is 0.2266, (b) the area to the left of z is 0.0314, (c) the
area between �0.23 and z is 0.5722, (d) the area between 1.15 and z is 0.0730, (e) the area between �z and z is
0.9000.

4.78. Find z1 if P(Z � z1) � 0.84, where z is normally distributed with mean 0 and variance 1.

4.79. If X is normally distributed with mean 5 and standard deviation 2, find P(X � 8).

4.80. If the heights of 300 students are normally distributed with mean 68.0 inches and standard deviation 3.0 inches,
how many students have heights (a) greater than 72 inches, (b) less than or equal to 64 inches, (c) between 65
and 71 inches inclusive, (d) equal to 68 inches? Assume the measurements to be recorded to the nearest inch.

4.81. If the diameters of ball bearings are normally distributed with mean 0.6140 inches and standard deviation
0.0025 inches, determine the percentage of ball bearings with diameters (a) between 0.610 and 0.618 inches
inclusive, (b) greater than 0.617 inches, (c) less than 0.608 inches, (d) equal to 0.615 inches.

ZZ
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4.82. The mean grade on a final examination was 72, and the standard deviation was 9. The top 10% of the students
are to receive A’s. What is the minimum grade a student must get in order to receive an A?

4.83. If a set of measurements are normally distributed, what percentage of these differ from the mean by (a) more
than half the standard deviation, (b) less than three quarters of the standard deviation?

4.84. If μ is the mean and � is the standard deviation of a set of measurements that are normally distributed, what
percentage of the measurements are (a) within the range μ 
 2� (b) outside the range μ 
 1.2� (c) greater than
μ � 1.5�?

4.85. In Problem 4.84 find the constant a such that the percentage of the cases (a) within the range μ 
 a� is 75%,
(b) less than μ � a� is 22%.

Normal approximation to binomial distribution
4.86. Find the probability that 200 tosses of a coin will result in (a) between 80 and 120 heads inclusive, (b) less than

90 heads, (c) less than 85 or more than 115 heads, (d) exactly 100 heads.

4.87. Find the probability that a student can guess correctly the answers to (a) 12 or more out of 20, (b) 24 or more
out of 40, questions on a true-false examination.

4.88. A machine produces bolts which are 10% defective. Find the probability that in a random sample of 400 bolts
produced by this machine, (a) at most 30, (b) between 30 and 50, (c) between 35 and 45, (d) 65 or more, of the
bolts will be defective.

4.89. Find the probability of getting more than 25 “sevens” in 100 tosses of a pair of fair dice.

The Poisson distribution
4.90. If 3% of the electric bulbs manufactured by a company are defective, find the probability that in a sample of 

100 bulbs, (a) 0, (b) 1, (c) 2, (d) 3, (e) 4, (f) 5 bulbs will be defective.

4.91. In Problem 4.90, find the probability that (a) more than 5, (b) between 1 and 3, (c) less than or equal to 2, bulbs
will be defective.

4.92. A bag contains 1 red and 7 white marbles. A marble is drawn from the bag, and its color is observed. Then the
marble is put back into the bag and the contents are thoroughly mixed. Using (a) the binomial distribution,
(b) the Poisson approximation to the binomial distribution, find the probability that in 8 such drawings, a red
ball is selected exactly 3 times.

4.93. According to the National Office of Vital Statistics of the U.S. Department of Health and Human Services, the
average number of accidental drownings per year in the United States is 3.0 per 100,000 population. Find the
probability that in a city of population 200,000 there will be (a) 0, (b) 2, (c) 6, (d) 8, (e) between 4 and 8,
(f) fewer than 3, accidental drownings per year.

4.94. Prove that if X1 and X2 are independent Poisson variables with respective parameters �1 and �2, then X1 � X2

has a Poisson distribution with parameter �1 � �2. (Hint: Use the moment generating function.) Generalize the
result to n variables.

Multinomial distribution
4.95. A fair die is tossed 6 times. Find the probability that (a) 1 “one”, 2 “twos” and 3 “threes” will turn up,

(b) each side will turn up once.
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4.96. A box contains a very large number of red, white, blue, and yellow marbles in the ratio 4:3:2:1. Find the
probability that in 10 drawings (a) 4 red, 3 white, 2 blue, and 1 yellow marble will be drawn, (b) 8 red and 2
yellow marbles will be drawn.

4.97. Find the probability of not getting a 1, 2, or 3 in 4 tosses of a fair die.

The hypergeometric distribution
4.98. A box contains 5 red and 10 white marbles. If 8 marbles are to be chosen at random (without replacement),

determine the probability that (a) 4 will be red, (b) all will be white, (c) at least one will be red.

4.99. If 13 cards are to be chosen at random (without replacement) from an ordinary deck of 52 cards, find the
probability that (a) 6 will be picture cards, (b) none will be picture cards.

4.100. Out of 60 applicants to a university, 40 are from the East. If 20 applicants are to be selected at random, find the
probability that (a) 10, (b) not more than 2, will be from the East.

The uniform distribution
4.101. Let X be uniformly distributed in �2 � x � 2 Find (a) P(X � 1), (b) P( X � 1 � ).

4.102. Find (a) the third, (b) the fourth moment about the mean of a uniform distribution.

4.103. Determine the coefficient of (a) skewness, (b) kurtosis of a uniform distribution.

4.104. If X and Y are independent and both uniformly distributed in the interval from 0 to 1, find P( X � Y � ).

The Cauchy distribution
4.105. Suppose that X is Cauchy distributed according to (29), page 114, with a � 2. Find (a) P(X � 2),

(b) P(X2 � 12).

4.106. Prove that if X1 and X2 are independent and have the same Cauchy distribution, then their arithmetic mean also
has this distribution.

4.107. Let X1 and X2 be independent and normally distributed with mean 0 and variance 1. Prove that Y � X1 X2 is
Cauchy distributed.

The gamma distribution
4.108. A random variable X is gamma distributed with � � 3, � � 2. Find (a) P(X � 1), (b) P(l � X � 2).

The chi-square distribution
4.109. For a chi-square distribution with 12 degrees of freedom, find the value of such that (a) the area to the right

of is 0.05, (b) the area to the left of is 0.99, (c) the area to the right of is 0.025.

4.110. Find the values of for which the area of the right-hand tail of the distribution is 0.05, if the number of
degrees of freedom v is equal to (a) 8, (b) 19, (c) 28, (d) 40.

4.111. Work Problem 4.110 if the area of the right-hand tail is 0.01.
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cx2
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c
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4.112. (a) Find and such that the area under the distribution corresponding to v � 20 between and is
0.95, assuming equal areas to the right of and left of . (b) Show that if the assumption of equal areas in
part (a) is not made, the values and are not unique.

4.113. If the variable U is chi-square distributed with v � 7, find and such that (a) P(U � ) � 0.025,
(b) P(U � ) � 0.50, (c) .

4.114. Find (a) and (b) for v � 150.

4.115. Find (a) and (b) for v � 250.

Student’s t distribution
4.116. For a Student’s distribution with 15 degrees of freedom, find the value of t1 such that (a) the area to the right of

t1 is 0.01, (b) the area to the left of t1 is 0.95, (c) the area to the right of t1 is 0.10, (d) the combined area to the
right of t1 and to the left of �t1 is 0.01, (e) the area between �t1 and t1 is 0.95.

4.117. Find the values of t for which the area of the right-hand tail of the t distribution is 0.01, if the number of
degrees of freedom v is equal to (a) 4, (b) 12, (c) 25, (d) 60, (e) 150.

4.118. Find the values of t1 for Student’s distribution that satisfy each of the following conditions: (a) the area
between �t1 and t1 is 0.90 and v � 25, (b) the area to the left of �t1 is 0.025 and v � 20, (c) the combined
area to the right of t1 and left of �t1 is 0.01 and v � 5, (d) the area to the right of t1 is 0.55 and v � 16.

4.119. If a variable U has a Student’s distribution with v � 10, find the constant c such that (a) P(U � c) � 0.05,
(b) P(�c � U � c) � 0.98, (c) P(U � c) � 0.20, (d) P(U � c) � 0.90.

The F distribution
4.120. Evaluate each of the following:

(a) F0.95,15,12; (b) F0.99,120,60; (c) F0.99,60,24; (d) F0.01,30,12; (e) F0.05,9,20; (f) F0.01,8,8.

ANSWERS TO SUPPLEMENTARY PROBLEMS

4.61. (a) 1 64 (b) 3 32 (c) 15 64 (d) 5 16 (e) 15 64 (f) 3 32 (g) 1 64

4.62. (a) 57 64 (b) 21 32 4.63. (a) 1 4 (b) 5 16 (c) 11 16 (d) 5 8

4.64. (a) 250 (b) 25 (c) 500 4.65. (a) 17 162 (b) 1 324 4.66. 64 243

4.67. 193 512 4.68. (a) 32 243 (b) 192 243 (c) 40 243 (d) 242 243

4.69. (a) 42 (b) 3.550 (c) �0.1127 (d) 2.927

4.71. (a) npq(q � p) (b) npq(1 � 6pq) � 3n2p2q2 4.72. (a) 1.5, �1.6 (b) 72, 90

4.73. (a) 75.4 (b) 9 4.74. (a) 0.8767 (b) 0.0786 (c) 0.2991

>>>>>
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>>>>>>

>>>>>>>
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4.75. (a) 0.0375 (b) 0.7123 (c) 0.9265 (d) 0.0154 (e) 0.7251 (f) 0.0395

4.76. (a) 0.9495 (b) 0.9500 (c) 0.6826

4.77. (a) 0.75 (b) �1.86 (c) 2.08 (d) 1.625 or 0.849 (e) 
1.645

4.78. �0.995 4.79. 0.0668

4.80. (a) 20 (b) 36 (c) 227 (d) 40

4.81. (a) 93% (b) 8.1% (c) 0.47% (d) 15% 4.82. 84

4.83. (a) 61.7% (b) 54.7% 4.84. (a) 95.4% (b) 23.0% (c) 93.3%

4.85. (a) 1.15 (b) 0.77 4.86. (a) 0.9962 (b) 0.0687 (c) 0.0286 (d) 0.0558

4.87. (a) 0.2511 (b) 0.1342 4.88. (a) 0.0567 (b) 0.9198 (c) 0.6404 (d) 0.0079

4.89. 0.0089 4.90. (a) 0.04979 (b) 0.1494 (c) 0.2241 (d) 0.2241 (e) 0.1680 (f) 0.1008

4.91. (a) 0.0838 (b) 0.5976 (c) 0.4232 4.92. (a) 0.05610 (b) 0.06131

4.93. (a) 0.00248 (b) 0.04462 (c) 0.1607 (d) 0.1033 (e) 0.6964 (f) 0.0620

4.95. (a) 5 3888 (b) 5 324 4.96. (a) 0.0348 (b) 0.000295

4.97. 1 16 4.98. (a) 70 429 (b) 1 143 (c) 142 143

4.99. (a) (b) 

4.100. (a) (b) [(40C0)(20C20) � (40C1)(20C19) � (40C2)(20C18)] 60C20

4.101. (a) 3 4 (b) 3 4 4.102. (a) 0 (b) (b � a)4 80

4.103. (a) 0 (b) 9 5 4.104. 1 4

4.105. (a) 3 4 (b) 1 3 4.108. (a) (b) 

4.109. (a) 21.0 (b) 26.2 (c) 23.3 4.110. (a) 15.5 (b) 30.1 (c) 41.3 (d) 55.8

4.111. (a) 20.1 (b) 36.2 (c) 48.3 (d) 63.7 4.112. (a) 9.59 and 34.2

13
8 e�1>2 �

5
2e�11 �

13
8!e
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>>
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4.113. (a) 16.0 (b) 6.35 (c) assuming equal areas in the two tails, and 

4.114. (a) 122.5 (b) 179.2 4.115. (a) 207.7 (b) 295.2

4.116. (a) 2.60 (b) 1.75 (c) 1.34 (d) 2.95 (e) 2.13

4.117. (a) 3.75 (b) 2.68 (c) 2.48 (d) 2.39 (e) 2.33

4.118. (a) 1.71 (b) 2.09 (c) 4.03 (d) �0.128

4.119. (a) 1.81 (b) 2.76 (c) �0.879 (d) �1.37

4.120. (a) 2.62 (b) 1.73 (c) 2.40 (d) 0.352 (e) 0.340 (f) 0.166

x2
2 � 14.1x2

1 � 2.17
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CHAPTER 12
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Sampling Theory

Population and Sample. Statistical Inference
Often in practice we are interested in drawing valid conclusions about a large group of individuals or objects.
Instead of examining the entire group, called the population, which may be difficult or impossible to do, we
may examine only a small part of this population, which is called a sample. We do this with the aim of inferring
certain facts about the population from results found in the sample, a process known as statistical inference. The
process of obtaining samples is called sampling.

EXAMPLE 5.1 We may wish to draw conclusions about the heights (or weights) of 12,000 adult students (the popu-
lation) by examining only 100 students (a sample) selected from this population.

EXAMPLE 5.2 We may wish to draw conclusions about the percentage of defective bolts produced in a factory dur-
ing a given 6-day week by examining 20 bolts each day produced at various times during the day. In this case all bolts
produced during the week comprise the population, while the 120 selected bolts constitute a sample.

EXAMPLE 5.3 We may wish to draw conclusions about the fairness of a particular coin by tossing it repeatedly. The
population consists of all possible tosses of the coin. A sample could be obtained by examining, say, the first 60 tosses
of the coin and noting the percentages of heads and tails.

EXAMPLE 5.4 We may wish to draw conclusions about the colors of 200 marbles (the population) in an urn by select-
ing a sample of 20 marbles from the urn, where each marble selected is returned after its color is observed.

Several things should be noted. First, the word population does not necessarily have the same meaning as in
everyday language, such as “the population of Shreveport is 180,000.” Second, the word population is often
used to denote the observations or measurements rather than the individuals or objects. In Example 5.1 we can
speak of the population of 12,000 heights (or weights) while in Example 5.4 we can speak of the population of
all 200 colors in the urn (some of which may be the same). Third, the population can be finite or infinite, the num-
ber being called the population size, usually denoted by N. Similarly the number in the sample is called the
sample size, denoted by n, and is generally finite. In Example 5.1, while in Example 5.3,
N is infinite,

Sampling With and Without Replacement
If we draw an object from an urn, we have the choice of replacing or not replacing the object into the urn before
we draw again. In the first case a particular object can come up again and again, whereas in the second it can come
up only once. Sampling where each member of a population may be chosen more than once is called sampling
with replacement, while sampling where each member cannot be chosen more than once is called sampling with-
out replacement.

A finite population that is sampled with replacement can theoretically be considered infinite since samples
of any size can be drawn without exhausting the population. For most practical purposes, sampling from a finite
population that is very large can be considered as sampling from an infinite population. 

n � 60.
N � 12,000, n � 100,
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Random Samples. Random Numbers 
Clearly, the reliability of conclusions drawn concerning a population depends on whether the sample is properly
chosen so as to represent the population sufficiently well, and one of the important problems of statistical infer-
ence is just how to choose a sample. 

One way to do this for finite populations is to make sure that each member of the population has the same
chance of being in the sample, which is then often called a random sample. Random sampling can be accom-
plished for relatively small populations by drawing lots or, equivalently, by using a table of random numbers
(Appendix H) specially constructed for such purposes. See Problem 5.43. 

Because inference from sample to population cannot be certain, we must use the language of probability in
any statement of conclusions. 

Population Parameters 
A population is considered to be known when we know the probability distribution f (x) (probability function or
density function) of the associated random variable X. For instance, in Example 5.1 if X is a random variable
whose values are the heights (or weights) of the 12,000 students, then X has a probability distribution f (x).

If, for example, X is normally distributed, we say that the population is normally distributed or that we have
a normal population. Similarly, if X is binomially distributed, we say that the population is binomially distrib-
uted or that we have a binomial population.

There will be certain quantities that appear in f (x), such as � and � in the case of the normal distribution or
p in the case of the binomial distribution. Other quantities such as the median, moments, and skewness can then
be determined in terms of these. All such quantities are often called population parameters. When we are given
the population so that we know f (x), then the population parameters are also known. 

An important problem arises when the probability distribution f (x) of the population is not known precisely,
although we may have some idea of, or at least be able to make some hypothesis concerning, the general behav-
ior of f(x). For example, we may have some reason to suppose that a particular population is normally distrib-
uted. In that case we may not know one or both of the values � and � and so we might wish to draw statistical
inferences about them. 

Sample Statistics 
We can take random samples from the population and then use these samples to obtain values that serve to esti-
mate and test hypotheses about the population parameters. 

By way of illustration, let us consider Example 5.1 where X is a random variable whose values are the var-
ious heights. To obtain a sample of size 100, we must first choose one individual at random from the popula-
tion. This individual can have any one value, say, x1, of the various possible heights, and we can call x1 the
value of a random variable X1, where the subscript 1 is used since it corresponds to the first individual chosen.
Similarly, we choose the second individual for the sample, who can have any one of the values x2 of the possi-
ble heights, and x2 can be taken as the value of a random variable X2. We can continue this process up to X100

since the sample size is 100. For simplicity let us assume that the sampling is with replacement so that the same
individual could conceivably be chosen more than once. In this case, since the sample size is much smaller
than the population size, sampling without replacement would give practically the same results as sampling with
replacement.

In the general case a sample of size n would be described by the values x1, x2, . . . , xn of the random variables
X1, X2, . . . , Xn. In the case of sampling with replacement, X1, X2, . . . , Xn would be independent, identically dis-
tributed random variables having probability distribution f (x). Their joint distribution would then be 

(1)

Any quantity obtained from a sample for the purpose of estimating a population parameter is called a sample
statistic, or briefly statistic. Mathematically, a sample statistic for a sample of size n can be defined as a function
of the random variables X1, . . . , Xn, i.e., g(X1, . . . , Xn). The function g(X1, . . . , Xn) is another random variable,

P(X1 � x1, X2 � x2, c, Xn � xn) � f  (x1) f (x2) c f (xn)
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whose values can be represented by g(x1, . . . , xn). The word statistic is often used for the random variable or for
its values, the particular sense being clear from the context. 

In general, corresponding to each population parameter there will be a statistic to be computed from the sam-
ple. Usually the method for obtaining this statistic from the sample is similar to that for obtaining the parameter
from a finite population, since a sample consists of a finite set of values. As we shall see, however, this may not
always produce the “best estimate,” and one of the important problems of sampling theory is to decide how to
form the proper sample statistic that will best estimate a given population parameter. Such problems are consid-
ered in later chapters. 

Where possible we shall try to use Greek letters, such as � and �, for values of population parameters, and
Roman letters, m, s, etc., for values of corresponding sample statistics. 

Sampling Distributions 
As we have seen, a sample statistic that is computed from X1, . . . , Xn is a function of these random variables and
is therefore itself a random variable. The probability distribution of a sample statistic is often called the sampling
distribution of the statistic. 

Alternatively we can consider all possible samples of size n that can be drawn from the population, and for
each sample we compute the statistic. In this manner we obtain the distribution of the statistic, which is its sam-
pling distribution. 

For a sampling distribution, we can of course compute a mean, variance, standard deviation, moments, etc.
The standard deviation is sometimes also called the standard error.

The Sample Mean 
Let X1, X2, . . . , Xn denote the independent, identically distributed, random variables for a random sample of size
n as described above. Then the mean of the sample or sample mean is a random variable defined by 

(2)

in analogy with (3), page 75. If x1, x2, . . . , xn denote values obtained in a particular sample of size n, then the
mean for that sample is denoted by 

(3)

EXAMPLE 5.5 If a sample of size 5 results in the sample values 7, 9, 1, 6, 2, then the sample mean is 

Sampling Distribution of Means 
Let f (x) be the probability distribution of some given population from which we draw a sample of size n. Then
it is natural to look for the probability distribution of the sample statistic which is called the sampling distri-
bution for the sample mean, or the sampling distribution of means. The following theorems are important in this
connection.

Theorem 5-1 The mean of the sampling distribution of means, denoted by is given by 

(4)

where � is the mean of the population. 

E(X# ) � mX � m

mX,

X# ,

x# �
7 � 9 � 1 � 6 � 2

5 � 5

x# �
x1 � x2 � c� xn

n

X# �
X1 � X2 � c� Xn

n
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Theorem 5-1 states that the expected value of the sample mean is the population mean. 

Theorem 5-2 If a population is infinite and the sampling is random or if the population is finite and sampling
is with replacement, then the variance of the sampling distribution of means, denoted by is
given by 

(5)

where � 2 is the variance of the population. 

Theorem 5-3 If the population is of size N, if sampling is without replacement, and if the sample size is 
then (5) is replaced by 

(6)

while is still given by (4). 

Note that (6) reduces to (5) as 

Theorem 5-4 If the population from which samples are taken is normally distributed with mean and variance
then the sample mean is normally distributed with mean and variance 

Theorem 5-5 Suppose that the population from which samples are taken has a probability distribution with
mean and variance that is not necessarily a normal distribution. Then the standardized vari-
able associated with given by 

(7) 

is asymptotically normal, i.e.,

(8)

Theorem 5-5 is a consequence of the central limit theorem, page 112. It is assumed here that the population
is infinite or that sampling is with replacement. Otherwise, the above is correct if we replace in (7) by

as given by (6). 

Sampling Distribution of Proportions 
Suppose that a population is infinite and binomially distributed, with p and being the respective prob-
abilities that any given member exhibits or does not exhibit a certain property. For example, the population may
be all possible tosses of a fair coin, in which the probability of the event heads is 

Consider all possible samples of size n drawn from this population, and for each sample determine the statis-
tic that is the proportion P of successes. In the case of the coin, P would be the proportion of heads turning up
in n tosses. Then we obtain a sampling distribution of proportions whose mean �p and standard deviation �p are
given by 

(9)

which can be obtained from (4) and (5) on placing 
For large values of the sampling distribution is very nearly a normal distribution, as is seen from

Theorem 5-5. 
For finite populations in which sampling is without replacement, the second equation in (9) is replaced by 

as given by (6) with s � !pq.
sx

n  (n � 30),
m � p,  s � !pq.

mp � p  sp � A
pq
n � A

p(1 � p)
n

p �
1
2.

q � 1 � p

sX

s>!n

lim
nS`

P(Z � z) �
1

!2p3
z

�`
e�u2>2 du

Z �
X# � m

s>!n

X# ,
s2m

s2>n.ms2,
m

N S `.

mX

sX
2 �
s2

n aN � n
N � 1

b

n � N,

E [(X# � m)2] � sX
2 �
s2

n

sX
2,
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Note that equations (9) are obtained most easily on dividing by n the mean and standard deviation (np and
) of the binomial distribution. 

Sampling Distribution of Differences and Sums 
Suppose that we are given two populations. For each sample of size n1 drawn from the first population, let us com-
pute a statistic S1. This yields a sampling distribution for S1 whose mean and standard deviation we denote by

and respectively. Similarly for each sample of size n2 drawn from the second population, let us compute
a statistic S2 whose mean and standard deviation are and respectively. 

Taking all possible combinations of these samples from the two populations, we can obtain a distribution of
the differences, which is called the sampling distribution of differences of the statistics. The mean and
standard deviation of this sampling distribution, denoted respectively by and are given by 

(10)

provided that the samples chosen do not in any way depend on each other, i.e., the samples are independent (in
other words, the random variables S1 and S2 are independent). 

If, for example, S1 and S2 are the sample means from two populations, denoted by respectively, then
the sampling distribution of the differences of means is given for infinite populations with mean and standard de-
viation and respectively by 

(11)

using (4) and (5). This result also holds for finite populations if sampling is with replacement. The standardized
variable 

(12)

in that case is very nearly normally distributed if n1 and n2 are large Similar results can be obtained
for finite populations in which sampling is without replacement by using (4) and (6). 

Corresponding results can be obtained for sampling distributions of differences of proportions from two bi-
nomially distributed populations with parameters p1, q1 and p2, q2, respectively. In this case S1, and S2 corre-
spond to the proportions of successes P1 and P2, and equations (11) yield 

(13)

Instead of taking differences of statistics, we sometimes are interested in the sum of statistics. In that case the
sampling distribution of the sum of statistics S1 and S2 has mean and standard deviation given by 

(14)

assuming the samples are independent. Results similar to (11) can then be obtained. 

The Sample Variance 
If X1, X2, . . . , Xn denote the random variables for a random sample of size n, then the random variable giving
the variance of the sample or the sample variance is defined in analogy with (14), page 77, by 

(15)S2 �
(X1 � X# )2 � (X2 � X# )2 � c� (Xn � X# )2

n

mS1�S2
� mS1

� mS2
  sS1�S2

� !s2
S1

� s2
S2

mP1�P2
� mP1

� mP2
� p1 � p2,  sP1�P2

� !s2
P1

� s2
P2

� A
p1q1

n1
�

p2q2

n2

(n1, n2 � 30).

Z �
(X# 1 � X# 2) � (m1 � m2)

A
s2

1

n1
�
s2

2

n2

mX1�X2
� mX1

� mX2
� m1 � m2,  sX1�X2

� 2sX1

2 � sX2
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1
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�
s2

2

n2

m2, s2,m1, s1

X# 1, X# 2,

mS1�S2
� mS1

� mS2
  sS1�S2

� !s2
S1

� s2
S2

,

sS1�S2
,mS1�S2

S1 � S2,

sS2
,mS2

sS1
,mS1

!npq
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Now in Theorem 5-1 we found that and it would be nice if we could also have Whenever
the expected value of a statistic is equal to the corresponding population parameter, we call the statistic an unbi-
ased estimator, and the value an unbiased estimate, of this parameter. It turns out, however (see Problem 5.20),
that

(16)

which is very nearly � 2 only for large values of n (say, ). The desired unbiased estimator is defined by 

(17)

so that (18)

Because of this, some statisticians choose to define the sample variance by rather than S 2 and they simply re-
place n by in the denominator of (15). We shall, however, continue to define the sample variance by (15)
because by doing this, many later results are simplified. 

EXAMPLE 5.6 Referring to Example 5.5, page 155, the sample variance has the value 

while an unbiased estimate is given by 

The above results hold if sampling is from an infinite population or with replacement from a finite popula-
tion. If sampling is without replacement from a finite population of size N, then the mean of the sampling dis-
tribution of variances is given by 

(19)

As this reduces to (16). 

Sampling Distribution of Variances 
By taking all possible random samples of size n drawn from a population and then computing the variance for
each sample, we can obtain the sampling distribution of variances. Instead of finding the sampling distribution
of S2 or itself, it is convenient to find the sampling distribution of the related random variable 

(20)

The distribution of this random variable is described in the following theorem. 

Theorem 5-6 If random samples of size n are taken from a population having a normal distribution, then the
sampling variable (20) has a chi-square distribution with degrees of freedom. n � 1

nS2

s2
�

(n � 1)S
^2

s2
�

(X1 � X# )2 � (X2 � X# )2 � c� (Xn � X# )2

s2

S
^2

N S `,

E(S2) � mS2 � a N
N � 1

b an � 1
n bs2

s^2 �
5
4  s2 �

(4 � 6)2 � (7 � 6)2 � (5 � 6)2 � (8 � 6)2 � (6 � 6)2

4 � 2.5

s2 �
(4 � 6)2 � (7 � 6)2 � (5 � 6)2 � (8 � 6)2 � (6 � 6)2

5 � 2

n � 1
S
^2

E(S
^2) � s2

S
^2 �

n
n � 1

S2 �
(X1 � X# )2 � (X2 � X# )2 � c� (Xn � X# )2

n � 1

n � 30

E(S2) � mS2 �
n � 1

n  s2

E(S2) � s2.E(X# ) � m,
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Because of Theorem 5-6, the variable in (20) is often denoted by For a proof of this theorem see 
Problem 5.22. 

Case Where Population Variance Is Unknown
In Theorems 5-4 and 5-5 we found that the standardized variable 

(21)

is normally distributed if the population from which samples of size n are taken is normally distributed, while it
is asymptotically normal if the population is not normal provided that In (21) we have, of course,
assumed that the population variance is known. 

It is natural to ask what would happen if we do not know the population variance. One possibility is to esti-
mate the population variance by using the sample variance and then put the corresponding standard deviation in
(21). A better idea is to replace the in (21) by the random variable giving the sample standard deviation and
to seek the distribution of the corresponding statistic, which we designate by 

(22)

We can then show by using Theorem 4-6, page 116, that T has Student’s t distribution with degrees of free-
dom whenever the population random variable is normally distributed. We state this in the following theorem,
which is proved in Problem 5.24. 

Theorem 5-7 If random samples of size n are taken from a normally distributed population, then the statistic
(22) has Student’s distribution with degrees of freedom. 

Sampling Distribution of Ratios of Variances 
On page 157, we indicated how sampling distributions of differences, in particular differences of means, can be
obtained. Using the same idea, we could arrive at the sampling distribution of differences of variances, say,

It turns out, however, that this sampling distribution is rather complicated. Instead, we may consider
the statistic since a large or small ratio would indicate a large difference while a ratio nearly equal to 1
would indicate a small difference.

Theorem 5-8 Let two independent random samples of sizes m and n, respectively, be drawn from two nor-
mal populations with variances respectively. Then if the variances of the random sam-
ples are given by respectively, the statistic 

(23)

has the F distribution with degrees of freedom. 

Other Statistics 
Many other statistics besides the mean and variance or standard deviation can be defined for samples. Examples
are the median, mode, moments, skewness, and kurtosis. Their definitions are analogous to those given for pop-
ulations in Chapter 3. Sampling distributions for these statistics, or at least their means and standard deviations
(standard errors), can often be found. Some of these, together with ones already given, are shown in Table 5-1. 
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Standard Errors for Some Sample Statistics

CHAPTER 5 Sampling Theory160

Frequency Distributions 
If a sample (or even a population) is large, it is difficult to observe the various characteristics or to compute sta-
tistics such as mean or standard deviation. For this reason it is useful to organize or group the raw data. As an
illustration, suppose that a sample consists of the heights of 100 male students at XYZ University. We arrange
the data into classes or categories and determine the number of individuals belonging to each class, called the
class frequency. The resulting arrangement, Table 5-2, is called a frequency distribution or frequency table.

The first class or category, for example, consists of heights from 60 to 62 inches, indicated by 60–62, which
is called a class interval. Since 5 students have heights belonging to this class, the corresponding class frequency
is 5. Since a height that is recorded as 60 inches is actually between 59.5 and 60.5 inches while one recorded as
62 inches is actually between 61.5 and 62.5 inches, we could just as well have recorded the class interval as
59.5–62.5. The next class interval would then be 62.5–65.5, etc. In the class interval 59.5–62.5 the numbers 59.5
and 62.5 are often called class boundaries. The width of the jth class interval, denoted by cj, which is usually the
same for all classes (in which case it is denoted by c), is the difference between the upper and lower class bound-
aries. In this case 

The midpoint of the class interval, which can be taken as representative of the class, is called the class mark.
In the above table the class mark corresponding to the class interval 60–62 is 61. 

A graph for the frequency distribution can be supplied by a histogram, as shown shaded in Fig. 5-1, or by a
polygon graph (often called a frequency polygon) connecting the midpoints of the tops in the histogram. It is of

c � 62.5 � 59.5 � 3.

Sample Statistic Standard Error Remarks

Means sX �
s

!n

This is true for large or small samples where the
population is infinite or sampling is with replacement.
The sampling distribution of means is very nearly normal
(asymptotically normal) for even when the
population is nonnormal.

the population mean in all cases.mX � m,

n � 30

Proportions sP � A
p(1 � p)

n � A
pq
n

The remarks made for means apply here as well.

in all casesmP � p

Medians
�

1.2533s
!n

smed � sA
p
2n

For the sampling distribution of the
medians is very nearly normal. The given result holds
only if the population is normal or approximately
normal.

mmed � m

n � 30,

Standard deviations

(1)

(2) sS � A
m4 � s4

4ns2

sS �
s

22n

For the sampling distribution of S is very
nearly normal. 

is given by (1) only if the population is normal
(or approximately normal). If the population is
nonnormal, (2) can be used. 

Note that (2) reduces to (1) when which
is true for normal populations. 

For very nearly.n � 100, mS � s

m4 � 3s4,

sS

n � 100,

Variances
(1)

(2) sS2 � A
m4 � s2

n

sS2 � s2A2
n

The remarks made for standard deviations apply here
as well. Note that (2) yields (1) in case the population is
normal.

which is very nearly for large n (n � 30).s2

mS2 � (n � 1)s2>n

Table 5-1



interest that the shape of the graph seems to indicate that the sample is drawn from a population of heights that
is normally distributed. 

Relative Frequency Distributions 
If in Table 5-2 we recorded the relative frequency or percentage rather than the number of students in each class,
the result would be a relative, or percentage, frequency distribution. For example, the relative or percentage fre-
quency corresponding to the class 63–65 is or 18%. The corresponding histogram is then similar to that
in Fig. 5-1 except that the vertical axis is relative frequency instead of frequency. The sum of the rectangular areas
is then 1, or 100%. 

We can consider a relative frequency distribution as a probability distribution in which probabilities are re-
placed by relative frequencies. Since relative frequencies can be thought of as empirical probabilities (see
page 5), relative frequency distributions are known as empirical probability distributions.

Computation of Mean, Variance, and Moments for Grouped Data 
We can represent a frequency distribution as in Table 5-3 by giving each class mark and the corresponding class
frequency. The total frequency is n, i.e.,

n � f1 � f2 � c� fk � a f

18>100,
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Heights of 100 Male Students 
at XYZ University 

Height Number of 
(inches) Students

60–62 5

63–65 18

66–68 42

69–71 27

72–74 8

TOTAL 100 
Fig. 5-1 

Table 5-3

Class Mark Class Frequency

TOTAL n

f1

f2

(
fk

x 1

x 2

(
xk

Since there are f1 numbers equal to x1, f2 numbers equal to x2, . . . , fk numbers equal to xk, the mean is given by 

(24)x# �
f1x1 � f2x2 � c� fk xk

n �
a  fx

n

Table 5-2



Similarly the variance is given by 

(25)

Note the analogy of (24) and (25) with the results (2), page 75, and (13), page 77, if correspond to empiri-
cal probabilities. 

In the case where class intervals all have equal size c, there are available short methods for computing the mean
and variance. These are called coding methods and make use of the transformation from the class mark x to a cor-
responding integer u given by 

(26)

where a is an arbitrarily chosen class mark corresponding to The coding formulas for the mean and vari-
ance are then given by 

(27)

(28)

Similar formulas are available for higher moments. The r th moments about the mean and the origin, respec-
tively, are given by 

(29)

(30)

The two kinds of moments are related by 

(31)

etc. If we write 

where u is given by (26), then the relations (31) also hold between the M’s. But 

so that we obtain from (31) the coding formulas 

(32)

etc. The second equation of (32) is, of course, the same as (28). 
In a similar manner other statistics, such as skewness and kurtosis, can be found for grouped samples. 

m1 � 0

m2 � c2(Mr2 � Mr21 )

m3 � c3(Mr3 � 3Mr1Mr2 � 2Mr31 )

m4 � c4(Mr4 � 4Mr1Mr3 � 6Mr21 Mr2 � 3Mr41 )

mr �
a  f (x � x#)r

n �
a  f  [(a � cu) � (a � cu#)]r

n �
a  fcr(u � u#)r

n � crMr

Mr �
a  f (u � u#)r

n   Mrr �
a  f ur

n

m1 � 0

m2 � mr2 � mr21

m3 � mr3 � 3mr1mr2 � 2mr31

m4 � mr4 � 4mr1mr3 � 6mr21 mr2 � 3mr41

mrr �
f1xr

1 � c� fk xr
k

n �
a  fxr

n

mr �
f1(x1 � x#)r � c� fk(xk � x#)r

n �
a  f (x � x#)r

n

s2 � c2Ba  fu2

n � ¢a  fu
n ≤2 R � c2(u#2 � u#2)

x# � a �
c
na  fu � a � cu#

u � 0.

x � a � cu

fj>n
s2 �

f1(x1 � x#)2 � f2(x2 � x#)2 � c� fk(xk � x#)2

n �
a  f (x � x#)2

n
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SOLVED PROBLEMS 

Sampling distribution of means 
5.1. A population consists of the five numbers 2, 3, 6, 8, 11. Consider all possible samples of size two which can

be drawn with replacement from this population. Find (a) the mean of the population, (b) the standard de-
viation of the population, (c) the mean of the sampling distribution of means, (d) the standard deviation of
the sampling distribution of means, i.e., the standard error of means. 

(a)

(b)

and

(c) There are samples of size two which can be drawn with replacement (since any one of five
numbers on the first draw can be associated with any one of the five numbers on the second draw). These are 

(2, 2) (2, 3) (2, 6) (2, 8) (2, 11)

(3, 2) (3, 3) (3, 6) (3, 8) (3, 11)

(6, 2) (6, 3) (6, 6) (6, 8) (6, 11)

(8, 2) (8, 3) (8, 6) (8, 8) (8, 11)

(11, 2) (11, 3) (11, 6) (11, 8) (11, 11) 

The corresponding sample means are 

2.0 2.5 4.0 5.0 6.5

2.5 3.0 4.5 5.5 7.0

(1) 4.0 4.5 6.0 7.0 8.5

5.0 5.5 7.0 8.0 9.5

6.5 7.0 8.5 9.5 11.0 

and the mean of the sampling distribution of means is 

illustrating the fact that For a general proof of this, see Problem 5.6. 

(d) The variance of the sampling distribution of means is obtained by subtracting the mean 6 from each
number in (1), squaring the result, adding all 25 numbers obtained, and dividing by 25. The final result is 

This illustrates the fact that for finite populations involving sampling with replacement (or infinite
populations), since the right-hand side is agreeing with the above value. For a
general proof of this, see Problem 5.7. 

5.2. Solve Problem 5.1 in case sampling is without replacement. 

As in (a) and (b) of Problem 5.1, and 

(c) There are samples of size two which can be drawn without replacement (this means that we draw
one number and then another number different from the first) from the population, namely,

(2, 3), (2, 6), (2, 8), (2, 11), (3, 6), (3, 8), (3, 11), (6, 8), (6, 11), (8, 11). 

The selection (2, 3), for example, is considered the same as (3, 2). 

5C2 � 10

s2 � 10.8, s � 3.29.m � 6

10.8>2 � 5.40,sX
2 � s2>n

sX
2 �

135
25 � 5.40 so that sX � !5.40 � 2.32

sX
2

mX � m.

mX �
sum of all sample means in (1) above

25 �
150
25 � 6.0

5(5) � 25

s � 3.29.

s2 �
(2 � 6)2 � (3 � 6)2 � (6 � 6)2 � (8 � 6)2 � (11 � 6)2

5 �
16 � 9 � 0 � 4 � 25

5 � 10.8

m �
2 � 3 � 6 � 8 � 11

5 �
30
5 � 6.0
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The corresponding sample means are 

2.5, 4.0, 5.0, 6.5, 4.5, 5.5, 7.0, 7.0, 8.5, 9.5 

and the mean of sampling distribution of means is 

illustrating the fact that 

(d) The variance of the sampling distribution of means is 

and

This illustrates since the right side equals as obtained above.

For a general proof of this result, see Problem 5.47. 

5.3. Assume that the heights of 3000 male students at a university are normally distributed with mean 68.0 inches
and standard deviation 3.0 inches. If 80 samples consisting of 25 students each are obtained, what would be
the mean and standard deviation of the resulting sample of means if sampling were done (a) with replace-
ment, (b) without replacement? 

The numbers of samples of size 25 that could be obtained theoretically from a group of 3000 students with 
and without replacement are (3000)25 and 3000C25, which are much larger than 80. Hence, we do not get a true
sampling distribution of means but only an experimental sampling distribution. Nevertheless, since the number
of samples is large, there should be close agreement between the two sampling distributions. Hence, the mean
and standard deviation of the 80 sample means would be close to those of the theoretical distribution. Therefore,
we have 

(a) and

(b) and

which is only very slightly less than 0.6 inches and can for all practical purposes be considered the same as in
sampling with replacement. 

Thus we would expect the experimental sampling distribution of means to be approximately normally distributed
with mean 68.0 inches and standard deviation 0.6 inches. 

5.4. In how many samples of Problem 5.3 would you expect to find the mean (a) between 66.8 and 68.3 inches,
(b) less than 66.4 inches? 

The mean of a sample in standard units is here given by 

(a) 66.8 in standard units

68.3 in standard units

Proportion of samples with means between 66.8 and 68.3 inches 

Then the expected number of samples (80) (0.6687) or 53 (Fig. 5-2). �

� 0.4772 � 0.1915 � 0.6687

� (area between z � 0 and z � 0.5)

� (area between z � �2 and z � 0)

� (area under normal curve between z � �2.0 and z � 0.5)

� (68.3 � 68.0)>0.6 � 0.5

� (66.8 � 68.0)>0.6 � �2.0

Z �
X# � mX

sX
�

X# � 68.0
0.6 .X#

sX �
s

!nA
N � n
N � 1 �

3
!25A

3000 � 25
3000 � 1

mX � m � 68.0 inches

sX �
s

!n
�

3
!25

� 0.6 inchesmX � m � 68.0 inches

10.8
2  a5 � 2

5 � 1b � 4.05,sX
2

�
s2

n  aN � n
N � 1b,

sX � 2.01.

sX
2

�
(2.5 � 6.0)2 � (4.0 � 6.0)2 � (5.0 � 6.0)2 � c� (9.5 � 6.0)2

10 � 4.05

mX � m.

m X �
2.5 � 4.0 � 5.0 � 6.5 � 4.5 � 5.5 � 7.0 � 7.0 � 8.5 � 9.5

10 � 6.0
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(b) 66.4 in standard units

Proportion of samples with means less than 66.4 inches 

Then the expected number of samples (80)(0.0038) 0.304 or zero (Fig. 5-3). ��

� 0.5 � 0.4962 � 0.0038

� (area between z � �2.67 and z � 0)

� (area to left of z � 0)

� (area under normal curve to left of z � �2.67)

� (66.4 � 68.0)>0.6 � �2.67
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Fig. 5-2 

Fig. 5-3 

5.5. Five hundred ball bearings have a mean weight of 5.02 oz and a standard deviation of 0.30 oz. Find the
probability that a random sample of 100 ball bearings chosen from this group will have a combined weight,
(a) between 496 and 500 oz, (b) more than 510 oz. 

For the sampling distribution of means,

(a) The combined weight will lie between 496 and 500 oz if the mean weight of the 100 ball bearings lies
between 4.96 and 5.00 oz (Fig. 5-4). 

4.96 in standard units

5.00 in standard units

Required probability 

� 0.4868 � 0.2704 � 0.2164

� (area between z � �0.74 and z � 0)

� (area between z � �2.22 and z � 0)

� (area between z � �2.22 and z � �0.74)

�
5.00 � 5.02

0.027 � �0.74

�
4.96 � 5.02

0.027 � �2.22

sX �
s

2nA
N � n
N � 1 �

0.30

2100A
500 � 100
500 � 1 � 0.027

mX � m � 5.02  oz.

Fig. 5-4 



(b) The combined weight will exceed 510 oz if the mean weight of the 100 bearings exceeds 5.10 oz (Fig. 5-5). 

5.10 in standard units

Required probability 

Therefore, there are only 3 chances in 2000 of picking a sample of 100 ball bearings with a combined weight
exceeding 510 oz. 

5.6. Theorem 5-1, page 155. 

Since X1, X2, . . . , Xn are random variables having the same distribution as the population, which has mean �, we have 

Then since the sample mean is defined as 

we have as required 

5.7. Prove Theorem 5-2, page 156. 

We have 

Then since X1, . . . , Xn are independent and have variance �2, we have by Theorems 3-5 and 3-7:

Sampling distribution of proportions 
5.8. Find the probability that in 120 tosses of a fair coin (a) between 40% and 60% will be heads, (b) or more

will be heads. 

We consider the 120 tosses of the coin as a sample from the infinite population of all possible tosses of the coin. In
this population the probability of heads is and the probability of tails is 

(a) We require the probability that the number of heads in 120 tosses will be between 40% of 120, or 48, and
60% of 120, or 72. We proceed as in Chapter 4, using the normal approximation to the binomial distribution.
Since the number of heads is a discrete variable, we ask for the probability that the number of heads lies
between 47.5 and 72.5. (See Fig. 5-6.) 

and s � !npq � B(120)a1
2b a1

2b � 5.48

m � expected number of heads � np � 120a1
2b � 60

q � 1 � p �
1
2.p �

1
2,

5
8

Var (X# ) �
1
n2  Var (X1) � c�

1
n2  Var (Xn) � na 1

n2  s2b �
s2

n

X# �
X1
n �

X2
n � c�

Xn

n

E(X# ) �
1
n[E(X1) � c� E(Xn)] �

1
n(nm) � m

X# �
X1 � c� Xn

n

E(Xk) � m  k � 1, 2, c, n

� 0.5 � 0.4985 � 0.0015

� (area between z � 0 and z � 2.96)

� (area to right of z � 0)

� (area to right of z � 2.96)

�
5.10 � 5.02

0.027 � 2.96
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47.5 in standard units 

72.5 in standard units

Required probability 

Another method 

40% in standard units 

60% in standard units 

Therefore, the required probability is the area under the normal curve between and i.e.,

Although this result is accurate to two significant figures, it does not agree exactly since we have not used

the fact that the proportion is actually a discrete variable. To account for this, we subtract from

0.40 and add to 0.60. Therefore, the required proportions in standard units are, since

and

so that agreement with the first method is obtained. 
Note that and correspond to the proportions and in

the first method above. 

(b) Using the second method of (a), we find that since 

in standard units

5.9. Each person of a group of 500 people tosses a fair coin 120 times. How many people should be expected to
report that (a) between 40% and 60% of their tosses resulted in heads, (b) or more of their tosses resulted
in heads? 

5
8

� 0.5 � 0.4960 � 0.0040

� (area between z � 0 and z � 2.65)

� (area to right of z � 0)

 Required probability � (area under normal curve to right of z � 2.65)

�
0.6250 � 0.00417 � 0.50

0.0456 � 2.65(0.6250 � 0.00417)

5
8 � 0.6250,

72.5>12047.5>120(0.60 � 0.00417)(0.40 � 0.00417)

0.60 � 0.00417 � 0.50
0.0456 � 2.28

0.40 � 0.00417 � 0.50
0.0456 � �2.28

1>240 � 0.00417,

1
2n �

1
2(120)

1
2n �

1
2(120)

2(0.4857) � 0.9714.
z � 2.19,z � �2.19

�
0.60 � 0.50

0.0456 � 2.19

�
0.40 � 0.50

0.0456 � �2.19

mP � p �
1
2 � 0.50  sP � A

pq
n � B

1
2 A12B
120

� 0.0456

� 2(0.4887) � 0.9774

� 2(area between z � 0 and z � 2.28)

between z � �2.28 and z � 2.28)

� (area under normal curve

�
72.5 � 60

5.48 � 2.28

�
47.5 � 60

5.48 � �2.28
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This problem is closely related to Problem 5.8. Here we consider 500 samples, of size 120 each, from the infinite
population of all possible tosses of a coin. 

(a) Part (a) of Problem 5.8 states that of all possible samples, each consisting of 120 tosses of a coin, we can
expect to find 97.74% with a percentage of heads between 40% and 60%. In 500 samples we can expect
to find about 97.74% of 500, or 489, samples with this property. It follows that about 489 people would
be expected to report that their experiment resulted in between 40% and 60% heads. 

It is interesting to note that people would be expected to report that the percentage
of heads was not between 40% and 60%. These people might reasonably conclude that their coins were
loaded, even though they were fair. This type of error is a risk that is always present whenever we deal
with probability. 

(b) By reasoning as in (a), we conclude that about persons would report that or more of
their tosses resulted in heads. 

5.10. It has been found that 2% of the tools produced by a certain machine are defective. What is the probabil-
ity that in a shipment of 400 such tools, (a) 3% or more, (b) 2% or less will prove defective? 

(a) Using the correction for discrete variables, we have 

in standard units

Required probability (area under normal curve to right 

If we had not used the correction we would have obtained 0.0764. 

Another method
(3% of 400) defective tools. On a continuous basis, 12 or more tools means 11.5 or more. 

Then, 11.5 in standard units and as before the required probability is 0.1056. 

(b)

If we had not used the correction, we would have obtained 0.5000. The second method of part (a) can also
be used. 

5.11. The election returns showed that a certain candidate received 46% of the votes. Determine the probabil-
ity that a poll of (a) 200, (b) 1000 people selected at random from the voting population would have shown
a majority of votes in favor of the candidate. 

(a)

Since a majority is indicated in the sample if the proportion in favor of 
the candidate is or more. (This proportion can also be obtained by realizing 
that 101 or more indicates a majority, but this as a continuous variable is 100.5; and so the proportion 
is

Then, 0.5025 in standard units and 

Required probability (area under normal curve to right of )

� 0.5000 � 0.3869 � 0.1131

z � 1.21�

� (0.5025 � 0.46)>0.0352 � 1.21
100.5>200 � 0.5025.)

0.50 � 0.0025 � 0.5025
1>2n � 1>400 � 0.0025,

mP � p � 0.46  and  sP � A
pq
n � B

0.46(0.54)
200 � 0.0352

� 0.5000 � 0.0714 � 0.5714

Required probability � (area under normal curve to left of z � 0.18)

(0.02 � 0.00125) in standard units �
0.02 � 0.00125 � 0.02

0.007 � 0.18

� (11.5 � 8)>2.8 � 1.25,

m � (2% of 400) � 8  s � !npq � !(400)(0.02)(0.98) � 2.8

� 12

z � 1.25) � 0.1056�

�
0.03 � 0.00125 � 0.02

0.007 � 1.25(0.03 � 0.00125)

1>2n � 1>800 � 0.00125,

mP � p � 0.02  and  sP � A
pq
n � A

0.02(0.98)
400

�
0.14
20 � 0.007

5
8(500)(0.0040) � 2

500 � 489 � 11
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(b)

0.5025 in standard units

Required probability (area under normal curve to right of )

Sampling distributions of differences and sums 
5.12. Let U1 be a variable that stands for any of the elements of the population 3, 7, 8 and U2 a variable that stands

for any of the elements of the population 2, 4. Compute (a) (b) (c) (d) (e) 
(f ) . 

(a) mean of population 

(b) mean of population 

(c) The population consisting of the differences of any member of U1 and any member of U2 is

or

Then

which illustrates the general result as is seen from (a) and (b).

(d)

or

(e)

or

(f)        variance of population 

or

This illustrates the general result for independent samples, as is seen from (d)
and (e). The proof of the general result follows from Theorem 3-7, page 78. 

5.13. The electric light bulbs of manufacturer A have a mean lifetime of 1400 hours with a standard devia-
tion of 200 hours, while those of manufacturer B have a mean lifetime of 1200 hours with a standard
deviation of 100 hours. If random samples of 125 bulbs of each brand are tested, what is the probabil-
ity that the brand A bulbs will have a mean lifetime that is at least (a) 160 hours, (b) 250 hours more than
the brand B bulbs? 

sU1�U2
� 2s2

U1
� s2

U2
,

sU1�U2
� A17

3 .

�
(1 � 3)2 � (5 � 3)2 � (6 � 3)2 � (�1 � 3)2 � (3 � 3)2 � (4 � 3)2

6 �
17
3

(U1 � U2)s2
U1�U2

�

sU2
� 1.

s2
U2

� variance of population U2 �
(2 � 3)2 � (4 � 3)2

2 � 1

sU1
� A14

3 .

s2
U1

� variance of population  U1 �
(3 � 6)2 � (7 � 6)2 � (8 � 6)2

3 �
14
3

mU1�U2
� mU1�U2

,

mU1�U2
� mean of (U1 � U2) �

1 � 5 � 6 � (�1) � 3 � 4
6 � 3

1 5 6

�1 3 4

3 � 2 7 � 2 8 � 2

3 � 4 7 � 4 8 � 4

U2 �
1
2  (2 � 4) � 3mU2

�

U1 �
1
3  (3 � 7 � 8) � 6mU1

�

sU1�U2

sU2
,sU1

,mU1�U2
,mU2

,mU1
,

� 0.5000 � 0.4964 � 0.0036

z � 2.69�

�
0.5025 � 0.46

0.0158 � 2.69

mP � p � 0.46, sP � !pq>n � !0.46(0.54)1000 � 0.0158,  and
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Let and denote the mean lifetimes of samples A and B, respectively. Then 

and

The standardized variable for the difference in means that 

and is very nearly normally distributed. 

(a) The difference 160 hours in standard units

Required probability (area under normal curve to right of 

(b) The difference 250 hours in standard units

Required probability (area under normal curve to right of 

5.14. Ball bearings of a given brand weigh 0.50 oz with a standard deviation of 0.02 oz. What is the probabil-
ity that two lots, of 1000 ball bearings each, will differ in weight by more than 2 oz? 

Let and denote the mean weights of ball bearings in the two lots. Then 

The standardized variable for the difference in means is and is very nearly normally 
distributed. 

A difference of 2 oz in the lots is equivalent to a difference of oz in the means. This can
occur either if or i.e.,

Then

5.15. A and B play a game of heads and tails, each tossing 50 coins. A will win the game if he tosses 5 or more
heads than B, otherwise B wins. Determine the odds against A winning any particular game. 

Let PA and PB denote the proportion of heads obtained by A and B. If we assume the coins are all fair, the
probability p of heads is . Then

and

The standardized variable for the difference in proportions is 
On a continuous-variable basis, 5 or more heads means 4.5 or more heads, so that the difference in

proportions should be or more, i.e., Z is greater than or equal to (0.09 � 0)>0.10 � 0.94.5>50 � 0.09

Z � (PA � PB � 0)>0.10.

sPA�PB
� 2s2

PA
� s2

PB
� A

pq
nA

�
pq
nB

� B
2A12B A12B

50
� 0.10

mPA�PB
� mPA

� mPB
� 0

1
2

P(Z � 2.23 or Z � �2.23) � P(Z � 2.23) � P(Z � 2.23) � 2(0.5000 � 0.4871) � 0.0258

Z �
0.002 � 0
0.000895 � 2.23  or  Z �

�0.002 � 0
0.000895 � �2.23

X# 1 � X# 2 � �0.002,X# 1 � X# 2 � 0.002
2>1000 � 0.002

Z �
(X# 1 � X# 2) � 0

0.000895

sX1�X2
� B

s2
1

n1
�
s2

2
n2

� B
(0.02)2

1000 �
(0.02)2

1000 � 0.000895

mX1�X2
� mX1

� mX2
� 0.50 � 0.50 � 0

X# 2X# 1

� 0.5000 � 0.4938 � 0.0062

z � 2.50)�

� (250 � 200)>20 � 2.50.

� 0.5000 � 0.4772 � 0.9772

z � �2)�

� (160 � 200)>20 � �2.

Z �
(X# A � X# B) � (mXA�XB

)
sXA�XB

�
(X# A � X# B) � 200

20

sXA�XB
� B

s2
A

nA
�
s2

B

nB
� B

(100)2

125 �
(200)2

125 � 20  hours

mXA�XB
� mXA

� mXB
� 1400 � 1200 � 200  hours

X# BX# A
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(or The probability of this is the area under the normal curve to the right of which is

Therefore, the odds against A winning are or 4.43 to 1. 

5.16. Two distances are measured as 27.3 inches and 15.6 inches, with standard deviations (standard errors) of
0.16 inches and 0.08 inches, respectively. Determine the mean and standard deviation of (a) the sum, (b)
the difference of the distances. 

If the distances are denoted by D1 and D2, then 

(a)

(b)

5.17. A certain type of electric light bulb has a mean lifetime of 1500 hours and a standard deviation of 150 hours.
Three bulbs are connected so that when one burns out, another will go on. Assuming the lifetimes are nor-
mally distributed, what is the probability that lighting will take place for (a) at least 5000 hours, (b) at
most 4200 hours? 

Denote the lifetimes as L1, L2, and L3. Then 

(a) 5000 hours in standard units

Required probability (area under normal curve to right of 

(b) 4200 hours in standard units

Required probability (area under normal curve to left of 

Sampling distribution of variances 
5.18. With reference to Problem 5.1, find (a) the mean of the sampling distribution of variances, (b) the stan-

dard deviation of the sampling distribution of variances, i.e., the standard error of variances. 

(a) The sample variances corresponding to each of the 25 samples in Problem 5.1 are 

0 0.25 4.00 9.00 20.25

0.25 0 2.25 6.25 16.00

4.00 2.25 0 1.00 6.25

9.00 6.25 1.00 0 2.25

20.25 16.00 6.25 2.25 0 

The mean of sampling distribution of variances is 

This illustrates the fact that since for and [see Problem 5.1(b)], the
right-hand side is 12  (10.8) � 5.4.

s2 � 10.8n � 2mS2 � (n � 1)(s2)>n,

mS2 �
sum of all variances in the table above

25 �
135
25 � 5.40

�  0.5000 � 0.3749 � 0.1251

z � �1.15)�

� (4200 � 4500)>260 � �1.15.

� 0.5000 � 0.4726 � 0.0274

z � 1.92)�

� (5000 � 4500)>260 � 1.92.

mL1�L2�L3
� mL1

� mL2
� mL3

� 1500 � 1500 � 1500 � 4500 hours

sL1�L2�L3
� 2s2

L1
� s2

L2
� s2

L3
� 23(150)2 � 260 hours

sD1�D2
� 2s2

D1
� s2

D2
� 2(0.16)2 � (0.08)2 � 0.18 inches

mD1�D2
� mD1

� mD2
� 27.3 � 15.6 � 11.7 inches

sD1�D2
� 2s2

D1
� s2

D2
� 2(0.16)2 � (0.08)2 � 0.18 inches

mD1�D2
� mD1

� mD2
� 27.3 � 15.6 � 42.9 inches

(1 � 0.1841) : 0.1841 � 0.8159 : 0.1841,
0.5000 � 0.3159 � 0.1841.

Z � 0.9,Z � 0.9).
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The result indicates why a corrected variance for samples is often defined as since it 
then follows that (see also remarks on page 158). 

(b) The variance of the sampling distribution of variances is obtained by subtracting the mean 5.40 from
each of the 25 numbers in the above table, squaring these numbers, adding them, and then dividing the
result by 25. Therefore,

5.19. Work the previous problem if sampling is without replacement. 

(a) There are 10 samples whose variances are given by the numbers above (or below) the diagonal of zeros in
the table of Problem 5.18(a). Then 

This is a special case of the general result [equation (19), page 158] as is 

verified by putting and on the right-hand side to obtain 

(b) Subtracting 6.75 from each of the 10 numbers above the diagonal of zeros in the table of Problem 5.18(a),
squaring these numbers, adding them, and dividing by 10, we find or 

5.20. Prove that 

where S2 is the sample variance for a random sample of size n, as defined on pages 157–158, and is the
variance of the population. 

Method 1
We have 

Then

Since the X’s are independent, the expectation of each cross-product term is zero, and we have  

Similarly, for Therefore,

�
1
n cn � 1

n s2 � c�
n � 1

n s2 d �
n � 1

n s2

E(S2) �
1
n  E[(X1 � X# )2 � c� (Xn � X# )2]

k � 2, c, n.E[(Xk � X# )2] � (n � 1)s2>n
�

1
n2  5(n � 1)2s2 � (n � 1)s26 �

n � 1
n s2

�
1
n2  5(n � 1)2s2 � s2 � c� s26

E[(X1 � X# )2] �
1
n2  5(n � 1)2E[(X1 � m)2] � E[(X2 � m)2] � c� E[(Xn � m)2]6

(X1 � X# )2 �
1
n2  [(n � 1)2(X1 � m)2 � (X2 � m)2 � c� (Xn � m)2 � cross-product terms]

�
1
n  [(n � 1)(X1 � m) � (X2 � m) � c� (Xn � m)]

X1 � X# � X1 �
1
n  (X1 � c� Xn) �

1
n  [(n � 1)X1 � X2 � c� Xn]

s2

E(S 2) �
n � 1

n s2

sS2 � 6.30.s2
S2 � 39.675,

mS2 � A54B A12B(10.8) � 6.75.s2 � 10.8N � 5, n � 2,

mS2 � a N
N � 1b an � 1

n bs2

mS2 �
0.25 � 4.00 � 9.00 � 20.25 � 2.25 � 6.25 � 16.00 � 1.00 � 6.25 � 2.25

10 � 6.75

s2
S2 � 575.75>25 � 23.03 or sS2 � 4.80.

s2
S2

m^

S2 � s2

S2^

�
n

n � 1  S2,
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Method 2
We have Then 

and

(1)

where the sum is from to n. This can be written 

(2)

since Taking the expectation of both sides of (2) and using Problem 5.7,
we find 

from which

5.21. Prove Theorem 5-4, page 156.

If is normally distributed with mean � and variance �2, then its characteristic function is
(see Table 4-2, page 110)

The characteristic function of is then, by Theorem 3-12,

since the Xj are independent. Then, by Theorem 3-11, the characteristic function of

is

But this is the characteristic function for a normal distribution with mean � and variance and the desired
result follows from Theorem 3-13.

5.22. Prove Theorem 5-6, page 158.

By definition, It then follows from (2) of Method 2 in Problem 5.20 that 
where

Now by Theorem 4-3, page 115, V is chi-square distributed with n degrees of freedom [as is seen on replacing
Xj by Also, by Problem 5.21, is normally distributed with mean and variance 

Therefore, from Theorem 4-3 with and X1 replaced by we see that V2 is chi-
square distributed with 1 degree of freedom. It follows from Theorem 4-5, page 115, that if V1 and V2 are
independent, then Vl, is chi-square distributed with degrees of freedom. Since it can be shown that V1 and
V2 are indeed independent, the required result follows.

5.23. (a) Use Theorem 5-6 to determine the expected number of samples in Problem 5.1 for which sample vari-
ances are greater than 7.2. (b) Check the result in (a) with the actual result.

n � 1

(X# � m)>2s2>n,n � 1s2>n.

mX#(Xj � m)>s].

V � a
 n

j�1

(Xj � m)2

s2 ,  V1 �
(n � 1)S

^2

s2 ,  V2 �
(X# � m)2

s2>n

V � V1 � V2,
(n � 1) S

^2 � gn 
j�1(Xj � X# )2.

s2>n,

f X (v) � favn b � eimv�[(s2>n)v2]>2

X# �
X1 � X2 � c� Xn

n

f(v) � f1(v)f2(v) cfn(v) � einmv�(ns2v2)>2
X1 � X2 � cXn

fj(v) � eimv�(s2v2)>2

Xj, j � 1, 2, c, n,

� ns2 � nas2

n b � (n � 1) s2

E Sa(Xj � X# )2T � E Sa(Xj � m)2T � nE [(X# � m)2]

g(Xj � m) � gXj � nm � n(X# � m).

� a(Xj � m)2 � n(X# � m)2

a(Xj � X# )2 � a(Xj � m)2 � 2n(X# � m)2 � n(X# � m)2

j � 1

a(Xj � X# )2 � a(Xj � m)2 � 2(X# � m)a(Xj � m) � a(X# � m)2

(Xj � X# )2 � (Xj � m)2 � 2(Xj � m)(X# � m) � (X# � m)2

Xj � X# � (Xj � m) � (X# � m).
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(a) We have [from Problem 5.1(b)]. For we have

According to Theorem 5-6, has the chi-square distribution with 1 degree of
freedom. From the table in Appendix E it follows that

Therefore, we would expect about 25% of the samples, or 6, to have variances greater than 7.2.

(b) From Problem 5.18 we find by counting that there are actually 6 variances greater than 7.2, so that there is
agreement.

Case where population variance is unknown
5.24. Prove Theorem 5-7, page 159.

Let Then since the Xj are normally distributed with mean and

variance we know (Problem 5.21) that is normally distributed with mean and variance so that y is
normally distributed with mean 0 and variance 1. Also, from Theorem 5-6, page 158, or Problem 5.22, Z is chi
square distributed with degrees of freedom. Furthermore, it can be shown that Y and Z are
independent.

It follows from Theorem 4-6, page 116, that

has the t distribution with degrees of freedom.

5.25. According to the table of Student’s t distribution for 1 degree of freedom (Appendix D), we have
Check whether this is confirmed by the results obtained in 

Problem 5.1.

From the values of in (1) on page 155, and the values of S2 in Problem 5.18(a), we obtain the following
values for 

7.0 1.0 0.33 0.11

7.0 1.0 0.20 0.25

1.0 1.0 1.0 1.0

0.33 0.20 1.0 2.33

0.11 0.25 1.0 2.33

There are actually 16 values for which whereas we would expect This
is not too bad considering the small amount of data involved. This method of sampling was in fact the way
“Student” originally obtained the t distribution.

Sampling distribution of ratios of variances
5.26. Prove Theorem 5-8, page 159.

Denote the samples of sizes m and n by X1, . . . , Xm and Y1, . . . ,Yn, respectively. Then the sample variances are
given by

where are the sample means.X# , Y#

S2
1 �

1
ma

m

j�1
(Xj � X# )2,  S2

2 �
1
na

n

j�1
(Yj � Y# )2

(0.60) (25) � 15.�1.376 � T � 1.376

`

`��

c��

���`�

����`

T � (X# � m)>(S>!1):
X#

P(�1.376 � T � 1.376) � 0.60.

n � 1

T �
Y

!Z>n �
X# � m

S>!n � 1
�

X# � m

S
^>!n

n � n � 1

s2>n,mX#s2,

mY �
X# � m

s>!n
, Z �

nS2

s2 , n � n � 1.

P(S2 � s2
1) � P(x2 � 1.33) � 0.25

x2 � nS2>s2 � 2S2>10.8

ns2
1

s2 �
(2)(7.2)

10.8 � 1.33

s2
1 � 7.2,n � 2, s2 � 10.8
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Now from Theorem 5-6, page 158, we know that and are chi-square distributed with 
and degrees of freedom, respectively. Therefore, from Theorem 4-7, page 117, it follows that

has the F distribution with degrees of freedom.

5.27. Two samples of sizes 8 and 10 are drawn from two normally distributed populations having variances 20
and 36, respectively. Find the probability that the variance of the first sample is more than twice the vari-
ance of the second.

We have Therefore,

The number of degrees of freedom for numerator and denominator are Now
if is more than twice then Referring to the tables in Appendix F, we see that the
probability is less than 0.05 but more than 0.01. For exact values we need a more extensive tabulation of the F
distribution.

Frequency distributions
5.28. In Table 5-4 the weights of 40 male students at State University are recorded to the nearest pound. Con-

struct a frequency distribution.

F � 3.70.S2
2,  i.e.,  S2

1 � 2S2
2,S2

1

n1 � m � 1 � 7, n2 � n � 1 � 9.

F �
8S2

1>(7)(20)

10S2
2>(9)(36)

� 1.85
S2

1

S2
2

m � 8, n � 10, s2
1 � 20, s2

2 � 36.

m � 1, n � 1

F �
mS2

1>(m � 1)s2
1

nS2
2>(n � 1)s2

2
�

S
^2

1>s2
1

S
^2

2>s2
2

n � 1
m � 1nS2

2>s2
2mS2

1>s2
1
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138 164 150 132 144 125 149 157

146 158 140 147 136 148 152 144

168 126 138 176 163 119 154 165

146 173 142 147 135 153 140 135

161 145 135 142 150 156 145 128

Table 5-4

The largest weight is 176 lb, and the smallest weight is 119 lb, so that the range is lb.

If 5 class intervals are used, the class interval size is approximately.

If 20 class intervals are used, the class interval size is approximately.

One convenient choice for the class interval size is 5 lb. Also, it is convenient to choose the class marks as 120,
125, 130, 135, . . . pounds. Therefore, the class intervals can be taken as 118–122, 123–127, 128–
132, . . . . With this choice the class boundaries are 117.5, 122.5, 127.5, . . . , which do not coincide with observed
data.

The required frequency distribution is shown in Table 5-5. The center column, called a tally, or score, sheet,
is used to tabulate the class frequencies from the raw data and is usually omitted in the final presentation of the
frequency distribution.

Another possibility
Of course, other possible frequency distributions exist. Table 5-6, for example, shows a frequency distribution with
only 7 classes, in which the class interval is 9 lb.

57>20 � 3

57>5 � 11

176 � 119 � 57



5.29. Construct a histogram and a frequency polygon for the weight distribution in Problem 5.28.

The histogram and frequency polygon for each of the two cases considered in Problem 5.28 are given in 
Figs. 5-7 and 5-8. Note that the centers of the bases of the rectangles are located at the class marks.
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Weight (lb) Tally Frequency

118–122 1

123–127 2

128–132 2

133–137 4

138–142 6

143–147 8

148–152 5

153–157 4

158–162 2

163–167 3

168–172 1

173–177 2>>
>
>>>
>>
>>>>
>>>>
>>>> >>>
>>>> >
>>>>
>>
>>
>

Table 5-5

TOTAL 40

Weight (lb) Tally Frequency

118–126 3

127–135 5

136–144 9

145–153 12

154–162 5

163–171 4

172–180 2>>
>>>>
>>>>

>>>>>>>>>>
>>>>>>>>

>>>>
>>>

Table 5-6

TOTAL 40

Fig. 5-7 Fig. 5-8

5.30. Five pennies were simultaneously tossed 1000 times and at each toss the number of heads was observed.
The numbers of tosses during which 0, 1, 2, 3, 4, and 5 heads were obtained are shown in Table 5-7. Graph
the data.

The data can be shown graphically either as in Fig. 5-9 or Fig. 5-10.
Figure 5-9 seems to be a more natural graph to use. One reason is that the number of heads cannot be 1.5 or

3.2. This graph is a form of bar graph where the bars have zero width, and it is sometimes called a rod graph. It
is especially useful when the data are discrete.

Figure 5-10 shows a histogram of the data. Note that the total area of the histogram is the total frequency 1000,
as it should be.
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Computation of mean, variance, and moments for samples
5.31. Find the arithmetic mean of the numbers 5, 3, 6, 5, 4, 5, 2, 8, 6, 5, 4, 8, 3, 4, 5, 4, 8, 2, 5, 4.

Method 1

Method 2
There are six 5s, two 3s, two 6s, five 4s, two 2s, and three 8s. Then

5.32. Four groups of students, consisting of 15, 20, 10, and 18 individuals, reported mean weights of 162, 148,
153, and 140 lb, respectively. Find the mean weight of all the students.

5.33. Use the frequency distribution of heights in Table 5-2, page 161, to find the mean height of the 100 male
students at XYZ University.

x# �
a  fx

n �
(15)(162) � (20)(148) � (10)(153) � (18)(140)

15 � 20 � 10 � 18 � 150  lb

x# �
a  fx

n �
(6)(5) � (2)(3) � (2)(6) � (5)(4) � (2)(2) � (3)(8)

6 � 2 � 2 � 5 � 2 � 3 �
96
20 � 4.8

�
96
20 � 4.8

x# �
a  x

n �
5 � 3 � 6 � 5 � 4 � 5 � 2 � 8 � 6 � 5 � 4 � 8 � 3 � 4 � 5 � 4 � 8 � 2 � 5 � 4

20

Number of
Heads

Number of
Tosses

(frequency)

0 38

1 144

2 342

3 287

4 164

5 25

TOTAL 1000

Table 5-7

Fig. 5-9 Fig. 5-10
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The work is outlined in Table 5-8. Note that all students having heights 60–62 inches, 63–65 inches, etc., are
considered as having heights 61, 64, etc., inches. The problem then reduces to finding the mean height of 100
students if 5 students have height 61 inches, 18 have height 64 inches, etc.

x# �
a  fx

a  f
�
a  fx

n �
6745
100 � 67.45  inches

Height (inches) Class Mark (x) Frequency ( f ) fx

60–62 61 5 305

63–65 64 18 1152

66–68 67 42 2814

69–71 70 27 1890

72–74 73 8 584

Table 5-8

g  fx � 6745n � g  f � 100

The computations involved can become tedious, especially for cases in which the numbers are large and
many classes are present. Short techniques are available for lessening the labor in such cases. See Problem 5.35,
for example.

5.34. Derive the coding formula (27), page 162, for the arithmetic mean.

Let the j th class mark be xj. Then the deviation of xj, from some specified class mark a, which is will be
equal to the class interval size c multiplied by some integer (also written
briefly as ).

The mean is then given by

since

5.35. Use the coding formula of Problem 5.34 to find the mean height of the 100 male students at XYZ 
University (see Problem 5.33).

The work may be arranged as in Table 5-9. The method is called the coding method and should be employed
whenever possible.

x# � a � ¢a  fu
n ≤  c � 67 � a 15

100b(3) � 67.45 inches

n � g  fj.

� a � c 
a  fjuj

n � a � cu

x# �
a  fj xj

n �
a  fj(a � cuj)

n �
aa  fj

n � c 
a  fjuj

n

x � a � cu
uj, i.e., xj � a � cuj or xj � a � cuj

xj � a,

x u f fu

61 2 5 10

64 1 18 18

67 0 42 0

70 1 27 27

73 2 8 16

��

��

Table 5-9

g  fu � 15n � 100

a S
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5.36. Find (a) the variance, (b) the standard deviation for the numbers in Problem 5.31.

(a) Method 1
As in Problem 5.31, we have Then

Method 2

(b) From (a), and 

5.37. Find the standard deviation of the weights of students in Problem 5.32.

Then lb, where we have used the fact that units follow the usual laws of
algebra.

5.38. Find the standard deviation of the heights of the 100 male students at XYZ University. See Problem 5.33.

From Problem inches. The work can be arranged as in Table 5-10.

s � Baf (x � x#)2

n � A852.7500
100 � 28.5275 � 2.92  inches

5.33,  X# � 67.45

s � !65.6 (lb)2 � !65.6  lb � 8.10

�
4130
63 � 65.6 in units pounds square or (pounds)2

s2 �
a  f (x � x#)2

n �
15(162 � 150)2 � 20(148 � 150)2 � 10(153 � 150)2 � 18(140 � 150)2

15 � 20 � 10 � 18

s � !2.96 � 1.72.s2 � 2.96

�
59.20

20 � 2.96

s2 �
a  f (x � x#)2

n �
6(5 � 4.8)2 � 2(3 � 4.8)2 � 2(6 � 4.8)2 � 5(4 � 4.8)2 � 3(8 � 4.8)2

20

�
59.20

20 � 2.96

s2 �
a(x � x#)2

n �
(5 � 4.8)2 � (3 � 4.8)2 � (6 � 4.8)2 � (5 � 4.8)2 � c� (4 � 4.8)2

20

x# � 4.8.

Height Class 
(inches) Mark (x) Frequency ( f )

60–62 61 6.45 41.6025 5 208.0125

63–65 64 3.45 11.9025 18 214.2450

66–68 67 0.45 0.2025 42 8.5050

69–71 70 2.55 6.5025 27 175.5675

72–74 73 5.55 30.8025 8 246.4200

�

�

�

f (x � x#)2(x � x#)2x � 67.45
x � x# �

Table 5-10

g  f (x � x#)2 �
852.7500

n � g  f � 100

5.39. Derive the coding formula (28), page 162, for the variance.

As in Problem 5.34, we have and

x# � a � c 
a  fjuj

n � a � cu#

xj � a � cuj
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Then

5.40. Use the coding formula of Problem 5.39 to find the standard deviation of heights in Problem 5.33.

The work may be arranged as in Table 5-11. This enables us to find as in Problem 5.35. From the last column
we then have

and so inches.s � 2.92

� (3)2 c 97
100 � a 15

100b
2 d � 8.5275

s2 � c2Ba  fu2

n � ¢a  fu
n ≤2 R � c2(u2# � u#2)

x#

� c2[u#2 � u#2]

� c2 Ba  fu2

n � ¢a  fu
n ≤2 R� c2

a  fju2
j

n � c2 ¢a  fjuj

n ≤ 2

� c2
a  fju2

j

n � 2u#2c2 � c2u#2

�
c2

n a  fju2
j �

2u#c2

n a  fjuj �
c2

n a  fju#2

�
c2

n a  fj(u2
j � 2uju# � u#2)

�
c2

n a  fj(uj � u#)2

s2 �
1
na  fj(xj � x#)2 �

1
na  fj(cuj � cu#)2

x u f fu fu2

61 2 5 10 20

64 1 18 18 18

67 0 42 0 0

70 1 27 27 27

73 2 8 8 32

��

��

Table 5-11

g fu2 � 97g fu � 15n � g f � 100

5.41. Find the first four moments about the mean for the height distribution of Problem 5.33.

Continuing the method of Problem 5.40, we obtain Table 5-12. Then, using the notation of page 162, we have

Mr1 �
a  fu

n � 0.15  Mr3 �
a  fu3

n � 0.33

Mr2 �
a  fu2

n � 0.97  Mr4 �
a  fu4

n � 2.53

a S
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and from (32),

5.42. Find the coefficients of (a) skewness, (b) kurtosis for the height distribution of Problem 5.33.

(a) From Problem 5.41,

Then

(b) From Problem 5.41,

Then

From (a) we see that the distribution is moderately skewed to the left. From (b) we see that it is slightly less
peaked than the normal distribution (which has coefficient of kurtosis ).

Miscellaneous problems
5.43. (a) Show how to select 30 random samples of 4 students each (with replacement) from the table of

heights on page 161 by using random numbers, (b) Find the mean and standard deviation of the sam-
pling distribution of means in (a). (c) Compare the results of (b) with theoretical values, explaining any
discrepancies.

(a) Use two digits to number each of the 100 students: 00, 01, 02, . . . , 99 (see Table 5-13). Therefore, the 5
students with heights 60–62 inches are numbered 00–04, the 18 students with heights 63–65 inches are
numbered 05–22, etc. Each student number is called a sampling number.

� 3

�
199.3759
(8.5275)2 � 2.74

 Coefficient of kurtosis � a4 �
m4

s4

m4 � 199.3759  m2 � s2 � 8.5275

�
�2.6932

2(8.5275)3
� �0.14

Coefficient of skewness � a3 �
m3

s3

m2 � s2 � 8.5275  m3 � �2.6932

� 81[2.53 � 4(0.15)(0.33) � 6(0.15)2(0.97) � 3(0.15)4] � 199.3759

m4 � c4AMr4 � 4Mr1 Mr3 � 6Mr21 Mr2 � 3Mr41 B
m3 � c3AMr3 � 3Mr1 Mr2 � 2Mr31 B � 27[0.33 � 3(0.15)(0.97) � 2(0.15)3] � �2.6932

m2 � c2AMr2 � Mr21 B � 9[0.97 � (0.15)2] � 8.5275

m1 � 0

x u f fu fu2 fu3 fu4

61 2 5 10 20 40 80

64 1 18 18 18 18 18

67 0 42 0 0 0 0

70 1 27 27 27 27 27

73 2 8 16 32 64 128

���

���

Table 5-12

g fu4 � 253g fu3 � 33g fu2 � 97g fu � 15n � g f � 100
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We now draw sampling numbers from the random number table (Appendix H). From the first line we find
the sequence 51, 77, 27, 46, 40, etc., which we take as random sampling numbers, each of which yields the
height of a particular student. Therefore, 51 corresponds to a student having height 66–68 inches, which we
take as 67 inches (the class mark). Similarly 77, 27, 46 yield heights of 70, 67, 67 inches, respectively.

By this process we obtain Table 5-14, which shows the sampling numbers drawn, the corresponding
heights, and the mean height for each of 30 samples. It should be mentioned that although we have entered
the random number table on the first line, we could have started anywhere and chosen any specified pattern.

Height Sampling
(inches) Frequency Number

60–62 5 00–04

63–65 18 05–22

66–68 42 23–64

69–71 27 65–91

72–74 8 92–99

Table 5-13

Sampling Numbers Corresponding Mean
Drawn Heights Height

1. 51, 77, 27, 46 67, 70, 67, 67 67.75

2. 40, 42, 33, 12 67, 67, 67, 64 66.25

3. 90, 44, 46, 62 70, 67, 67, 67 67.75

4. 16, 28, 98, 93 64, 67, 73, 73 69.25

5. 58, 20, 41, 86 67, 64, 67, 70 67.00

6. 19, 64, 08, 70 64, 67, 64, 70 66.25

7. 56, 24, 03, 32 67, 67, 61, 67 65.50

8. 34, 91, 83, 58 67, 70, 70, 67 68.50

9. 70, 65, 68, 21 70, 70, 70, 64 68.50

10. 96, 02, 13, 87 73, 61, 64, 70 67.00

11. 76, 10, 51, 08 70, 64, 67, 64 66.25

12. 63, 97, 45, 39 67, 73, 67, 67 68.50

13. 05, 81, 45, 93 64, 70, 67, 73 68.50

14. 96, 01, 73, 52 73, 61, 70, 67 67.75

15. 07, 82, 54, 24 64, 70, 67, 67 67.00

Sampling Numbers Corresponding Mean
Drawn Heights Height

16. 11, 64, 55, 58 64, 67, 67, 67 66.25

17. 70, 56, 97, 43 70, 67, 73, 67 69.25

18. 74, 28, 93, 50 70, 67, 73, 67 69.25

19. 79, 42, 71, 30 70, 67, 70, 67 68.50

20. 58, 60, 21, 33 67, 67, 64, 67 66.25

21. 75, 79, 74, 54 70, 70, 70, 67 69.25

22. 06, 31, 04, 18 64, 67, 61, 64 64.00

23. 67, 07, 12, 97 70, 64, 64, 73 67.75

24. 31, 71, 69, 88 67, 70, 70, 70 69.25

25. 11, 64, 21, 87 64, 67, 64, 70 66.25

26. 03, 58, 57, 93 61, 67, 67, 73 67.00

27. 53, 81, 93, 88 67, 70, 73, 70 70.00

28. 23, 22, 96, 79 67, 64, 73, 70 68.50

29. 98, 56, 59, 36 73, 67, 67, 67 68.50

30. 08, 15, 08, 84 64, 64, 64, 70 65.50

Table 5-14

(b) Table 5-15 gives the frequency distribution of sample mean heights obtained in (a). This is a sampling
distribution of means. The mean and the standard deviation are obtained as usual by the coding methods
already described.

� (0.75)B123
30 � a23

30b
2

� 1.41 inches

 Standard deviation � c2u#2 � u#2 � c Ba
 fu2

n � ¢a  fu
n ≤2

Mean �  a �  cu# � a �
ca  fu

n � 67.00 �
(0.75)(23)

30 � 67.58 inches
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(c) The theoretical mean of the sampling distribution of means, given by equals the population mean �,
which is 67.45 inches (see Problem 5.33), in close agreement with the value 67.58 inches of part (b).

The theoretical standard deviation (standard error) of the sampling distribution of means, given by equals
where the population standard deviation inches (see Problem 5.40) and the sample size 

Since inches, we have close agreement with the value 1.41 inches of part (b).
Discrepancies are due to the fact that only 30 samples were selected and the sample size was small.

5.44. The standard deviation of the weights of a very large population of students is 10.0 lb. Samples of 200 stu-
dents each are drawn from this population, and the standard deviations of the weights in each sample are
computed. Find (a) the mean, (b) the standard deviation of the sampling distribution of standard deviations.

We can consider that sampling is either from an infinite population or with replacement from a finite population.
From Table 5-1, page 160, we have:

(a)

(b)

5.45. What percentage of the samples in Problem 5.44 would have standard deviations (a) greater than 11.0 lb,
(b) less than 8.8 lb?

The sampling distribution of standard deviations is approximately normal with mean 10.0 lb and standard deviation
0.50 lb.

(a) 11.0 lb in standard units Area under normal curve to right of is
hence, the required percentage is 2.3%.

(b) 8.8 lb in standard units Area under normal curve to left of is
hence, the required percentage is 0.8%.

5.46. A sample of 6 observations is drawn at random from a continuous population. What is the probability that
the last 2 observations are less than the first 4?

Assume that the population has density function f (x). The probability that 3 of the first 4 observations are greater
than u while the 4th observation lies between u and is given by

(1) 4C3B 3`
u 

f (x) dxR 3

f (u) du

u � du

(0.5 � 0.4918) � 0.0082;
z � �2.4� (8.8 � 10.0)>0.50 � �2.4.

(0.5 � 0.4772) � 0.0228;
z � 2.0� (11.0 � 10.0)>0.50 � 2.0.

sS �
s

22n
�

10

2400
� 0.50  lb

mS � s � 10.0 lb

s>!n � 2.92>!4 � 1.46
n � 4.s � 2.92s>!n,

sX,

mX,

Sample Mean Tally f u fu fu2

64.00 1 4 4 16

64.75 0 3 0 0

65.50 2 2 4 8

66.25 6 1 6 6

67.00 4 0 0 0

67.75 4 1 4 4

68.50 7 2 14 28

69.25 5 3 15 45

70.00 1 4 4 16>
>>>>
>>>> >>
>>>>
>>>>a S

��>>>> >
��>>

�

��>

Table 5-15

g  fu2 � 123g  fu � 23g  f � n � 30
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The probability that the last 2 observations are less than u (and thus less than the first 4) is given by

(2)

Then the probability that the first 4 are greater than u and the last 2 are less than u is the product of (1) and 
(2), i.e.,

(3)

Since u can take on values between and the total probability of the last 2 observations being less than the
first 4 is the integral of (3) from to i.e.,

(4)

To evaluate this, let

(5)

Then

(6)

When and when Therefore, (4) becomes

which is the required probability. It is of interest to note that the probability does not depend on the probability
distribution f(x). This is an example of nonparametric statistics since no population parameters have to be known.

Another method

Denote the observations by x1, x2, . . . , x6. Since the population is continuous, we may assume that the xi’s are
distinct. There are 6! ways of arranging the subscripts 1, 2, . . . , 6, and any one of these is as likely as any other
one to result in arranging the corresponding xi’s in increasing order. Out of the 6!, exactly arrangements
would have x1, x2, x3, x4 as the smallest 4 observations and x5, x6 as the largest 2 observations. The required
probability is, therefore,

5.47. Let {X1, X2, . . . , Xn} be a random sample of size n drawn without replacement from a finite population
of size N. Prove that if the population mean and variance are and then (a) 
(b)

Assume that the population consists of the set of numbers where the ’s are not necessarily
distinct. A random sampling procedure is one under which each selection of n out of N ’s has the same probability
(i.e., ). This means that the Xj are identically distributed:

Xj � da1 prob. 1>N
a2 prob. 1>N
(  (  j � 1, 2, c, n)

aN prob. 1>N

1>N Cn

a

a(a1, a2, c, aN),

Cov(Xj, Xk) � �s2>(N � 1).
E(Xj) � m,s2,m

4! 	 2!
6! �

1
15

4! 	 2!

4C33
1

0
v2(1 �  v)3dv � 4 

�(3)�(4)
�(7) �

1
15

u � �`, v � 0.u � `, v � 1,

1 � v � 3
`

u
f (x) dxdv � f (u) du

v � 3
u

�`
f(x) dx

4C33
`

�`
B 3`

u
f (x) dxR 3 B 3u

�`
f (x) dxR 2

f (u) du

`,�`

`,�`

4C3B 3`
u
f  (x) dxR 3

f (u) duB 3u

�`
f  (x) dxR 2

B 3u

�`
f (x) dxR 2
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They are not, however, mutually independent. Indeed, when the joint distribution of Xj and Xk is given by

where and range from 1 to N.

(a)

(b)

where the last sum contains a total of terms, corresponding to all possible pairs of unequal 
and .

Now, by elementary algebra,

In this equation, the left-hand side is zero, since by definition

and the first sum on the right-hand side equals, by definition, Hence,

and

5.48. Prove that (a) the mean, (b) the variance of the sample mean in Problem 5.47 are given, respectively, by

(a)

where we have used Problem 5.47(a).

�
1
n  ( m � c� m) � m

E(X# ) � E aX1 � c� Xn

n b �
1
n  [E(X1) � c� E(Xn)]

mX � m   sX
2

�
s2

n aN � n
N � 1b

Cov (Xj, Xk) �
1
Na 1

N � 1b(�Ns2) � �
s2

N � 1

a
N

l2n�1
(al � m)(an � m) �   �Ns2

Ns2.

a1 � a2 � c� aN � Nm

[(a1 � m) � (a2 � m) � c� (aN � m)]2 � a
N

l�1
(al � m)2 � a

N

l2n�1
(al � m)(an � m)

n

lN(N � 1)

�  
1
N  a 1

N �  1b a
N

l2n�1
(al �  m)(an �  m)

�  a
N

l�1
a
N

n�1
(al �  m)(an � m)P(Xj � al,  Xk � an)

 Cov(Xj,  Xk) � E[Xj � m)(Xk �  m)]

E(Xj) � a
N

l�1
alP(Xj � al) �

1
N  a

N

l�1
al � m

nl

� c 1
N a 1

N � 1b l 2 n

0 l � n

�
1
N P(Xk � anZXj � al)

P(Xj � al, Xk � an) � P(Xj � al)P(Xk � anZXj � al)

j 2 k,
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(b) Using Theorems 3-5 and 3-16 (generalized), and Problem 5.47, we obtain

SUPPLEMENTARY PROBLEMS

Sampling distribution of means
5.49. A population consists of the four numbers 3, 7, 11, 15. Consider all possible samples of size two that can be

drawn with replacement from this population. Find (a) the population mean, (b) the population standard
deviation, (c) the mean of the sampling distribution of means, (d) the standard deviation of the sampling
distribution of means. Verify (c) and (d) directly from (a) and (b) by use of suitable formulas.

5.50. Solve Problem 5.49 if sampling is without replacement.

5.51. The weights of 1500 ball bearings are normally distributed with a mean of 22.40 oz and a standard deviation of
0.048 oz. If 300 random samples of size 36 are drawn from this population, determine the expected mean and
standard deviation of the sampling distribution of means if sampling is done (a) with replacement, (b) without
replacement.

5.52. Solve Problem 5.51 if the population consists of 72 ball bearings.

5.53. In Problem 5.51, how many of the random samples would have their means (a) between 22.39 and 22.41 oz,
(b) greater than 22.42 oz, (c) less than 22.37 oz, (d) less than 22.38 or more than 22.41 oz?

5.54. Certain tubes manufactured by a company have a mean lifetime of 800 hours and a standard deviation of 60
hours. Find the probability that a random sample of 16 tubes taken from the group will have a mean lifetime 
(a) between 790 and 810 hours, (b) less than 785 hours, (c) more than 820 hours, (d) between 770 and 830 hours.

5.55. Work Problem 5.54 if a random sample of 64 tubes is taken. Explain the difference.

5.56. The weights of packages received by a department store have a mean of 300 lb and a standard deviation of 50 lb.
What is the probability that 25 packages received at random and loaded on an elevator will exceed the safety
limit of the elevator, listed as 8200 lb?

Sampling distribution of proportions
5.57. Find the probability that of the next 200 children born, (a) less than 40% will be boys, (b) between 43% and

57% will be girls, (c) more than 54% will be boys. Assume equal probabilities for births of boys and girls.

5.58. Out of 1000 samples of 200 children each, in how many would you expect to find that (a) less than 40% are
boys, (b) between 40% and 60% are girls, (c) 53% or more are girls?

5.59. Work Problem 5.57 if 100 instead of 200 children are considered, and explain the differences in results.

�
s2

n c1 �
n � 1
N � 1 d �

s2

n a N � n
N � 1 b

�
1
n2 cns2 � n(n � 1)a� s2

N � 1b d

 Var (X# ) �
1
n2  Var aa

n

j�1
Xjb �

1
n2 ca

n

j�1
Var (Xj) �  a

n

j2k�1
Cov (Xj, Xk) d
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5.60. An urn contains 80 marbles of which 60% are red and 40% are white. Out of 50 samples of 20 marbles, each
selected with replacement from the urn, how many samples can be expected to consist of (a) equal numbers of
red and white marbles, (b) 12 red and 8 white marbles, (c) 8 red and 12 white marbles, (d) 10 or more white
marbles?

5.61. Design an experiment intended to illustrate the results of Problem 5.60. Instead of red and white marbles, you
may use slips of paper on which R or W are written in the correct proportions. What errors might you introduce
by using two different sets of marbles?

5.62. A manufacturer sends out 1000 lots, each consisting of 100 electric bulbs. If 5% of the bulbs are normally
defective, in how many of the lots should we expect (a) fewer than 90 good bulbs, (b) 98 or more good bulbs?

Sampling distributions of differences and sums
5.63. A and B manufacture two types of cables, having mean breaking strengths of 4000 and 4500 lb and standard

deviations of 300 and 200 lb, respectively. If 100 cables of brand A and 50 cables of brand B are tested, what is
the probability that the mean breaking strength of B will be (a) at least 600 lb more than A, (b) at least 450 lb
more than A?

5.64. What are the probabilities in Problem 5.63 if 100 cables of both brands are tested? Account for the differences.

5.65. The mean score of students on an aptitude test is 72 points with a standard deviation of 8 points. What is the
probability that two groups of students, consisting of 28 and 36 students, respectively, will differ in their mean
scores by (a) 3 or more points, (b) 6 or more points, (c) between 2 and 5 points?

5.66. An urn holds 60 red marbles and 40 white marbles. Two sets of 30 marbles each are drawn with replacement
from the urn, and their colors are noted. What is the probability that the two sets differ by 8 or more red
marbles?

5.67. Solve Problem 5.66 if sampling is without replacement in obtaining each set.

5.68. The election returns showed that a certain candidate received 65% of the votes. Find the probability that two
random samples, each consisting of 200 voters, indicated a greater than 10% difference in the proportions that
voted for the candidate.

5.69. If U1 and U2 are the sets of numbers in Problem 5.12, verify that (a) 
(b)

5.70. Three weights are measured as 20.48, 35.97, and 62.34 lb with standard deviations of 0.21, 0.46, and 0.54 1b,
respectively. Find the (a) mean, (b) standard deviation of the sum of the weights.

5.71. The voltage of a battery is very nearly normal with mean 15.0 volts and standard deviation 0.2 volts. What is the
probability that four such batteries connected in series will have a combined voltage of 60.8 or more volts?

Sampling distribution of variances
5.72. With reference to Problem 5.49, find (a) the mean of the sampling distribution of variances, (b) the standard

error of variances.

5.73. Work Problem 5.72 if sampling is without replacement.

sU1�U2
� !s2

U1
� s2

U2
 .

mU1�U2
� mU1

� mU2
,
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5.74. A normal population has a variance of 15. If samples of size 5 are drawn from this population, what percentage
can be expected to have variances (a) less than 10, (b) more than 20, (c) between 5 and 10?

5.75. It is found that the lifetimes of television tubes manufactured by a company have a normal distribution with a
mean of 2000 hours and a standard deviation of 60 hours. If 10 tubes are selected at random, find the
probability that the sample standard deviation will (a) not exceed 50 hours, (b) lie between 50 and 70 hours.

Case where population variance is unknown
5.76. According to the table of Student’s t distribution for 1 degree of freedom (Appendix D), we have

Check whether the results of Problem 5.1 are confirmed by this value, and 
explain any difference.

5.77. Check whether the results of Problem 5.49 are confirmed by using (a)
(b) where T has Student’s t distribution with 

5.78. Explain how you could use Theorem 5-7, page 159, to design a table of Student’s t distribution such as that in
Appendix D.

Sampling distribution of ratios of variances
5.79. Two samples of sizes 4 and 8 are drawn from a normally distributed population. Is the probability that one

variance is greater than 1.5 times the other greater than 0.05, between 0.05 and 0.01, or less than 0.01?

5.80. Two companies, A and B, manufacture light bulbs. The lifetimes of both are normally distributed. Those for A
have a standard deviation of 40 hours while the lifetimes for B have a standard deviation of 50 hours. A sample
of 8 bulbs is taken from A and 16 bulbs from B. Determine the probability that the variance of the first sample is
more than (a) twice, (b) 1.2 times, that of the second.

5.81. Work Problem 5.80 if the standard deviations of lifetimes are (a) both 40 hours, (b) both 50 hours.

Frequency distribution
5.82. Table 5-16 shows a frequency distribution of the lifetimes of 400 radio tubes tested at the L & M Tube

Company. With reference to this table, determine the

(a) upper limit of the fifth class

(b) lower limit of the eighth class

(c) class mark of the seventh class

n � 1.P(�1.376 � T � 1.376) � 0.60,
P(�1 � T � 1) � 0.50,

P(�1 � T � 1) � 0.50.

Table 5-16

Lifetime Number of
(hours) Tubes

300–399 14

400–499 46

500–599 58

600–699 76

700–799 68

800–899 62

900–999 48

1000–1099 22

1100–1199 6

TOTAL 400
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(d) class boundaries of the last class

(e) class interval size

(f ) frequency of the fourth class

(g) relative frequency of the sixth class

(h) percentage of tubes whose lifetimes do not exceed 600 hours

(i) percentage of tubes with lifetimes greater than or equal to 900 hours

( j) percentage of tubes whose lifetimes are at least 500 but less than 1000 hours

5.83. Construct (a) a histogram, (b) a frequency polygon corresponding to the frequency distribution of Problem 5.82.

5.84. For the data of Problem 5.82, construct (a) a relative, or percentage, frequency distribution, (b) a relative
frequency histogram, (c) a relative frequency polygon.

5.85. Estimate the percentage of tubes of Problem 5.82 with lifetimes of (a) less than 560 hours, (b) 970 or more
hours, (c) between 620 and 890 hours.

5.86. The inner diameters of washers produced by a company can be measured to the nearest thousandth of an inch. If
the class marks of a frequency distribution of these diameters are given in inches by 0.321, 0.324, 0.327, 0.330,
0.333, and 0.336, find (a) the class interval size, (b) the class boundaries, (c) the class limits.

5.87. Table 5-17 shows the diameters in inches of a sample of 60 ball bearings manufactured by a company.
Construct a frequency distribution of the diameters using appropriate class intervals.

Table 5-17

0.738 0.729 0.743 0.740 0.736 0.741 0.735 0.731 0.726 0.737

0.728 0.737 0.736 0.735 0.724 0.733 0.742 0.736 0.739 0.735

0.745 0.736 0.742 0.740 0728 0.738 0.725 0.733 0.734 0.732

0.733 0.730 0.732 0.730 0.739 0.734 0.738 0.739 0.727 0.735

0.735 0.732 0.735 0.727 0.734 0.732 0.736 0.741 0.736 0.744

0.732 0.737 0.731 0.746 0.735 0.735 0.729 0.734 0.730 0.740

5.88. For the data of Problem 5.87, construct (a) a histogram, (b) a frequency polygon, (c) a relative frequency
distribution, (d) a relative frequency histogram, (e) a relative frequency polygon.

5.89. From the results in Problem 5-88, determine the percentage of ball bearings having diameters (a) exceeding
0.732 inch, (b) no more than 0.736 inch, (c) between 0.730 and 0.738 inch. Compare your results with those
obtained directly from the raw data of Table 5-17.

5.90. Work Problem 5.88 for the data of Problem 5.82.

Computation of mean, standard deviation, and moments for samples
5.91. A student received grades of 85, 76, 93, 82, and 96 in five subjects. Determine the arithmetic mean of the

grades.

5.92. The reaction times of an individual to certain stimuli were measured by a psychologist to be 0.53, 0.46, 0.50,
0.49, 0.52, 0.53, 0.44, and 0.55 seconds. Determine the mean reaction time of the individual to the stimuli.

5.93. A set of numbers consists of six 6s, seven 7s, eight 8s, nine 9s, and ten 10s. What is the arithmetic mean of the
numbers?
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5.94. A student’s grades in the laboratory, lecture, and recitation parts of a physics course were 71, 78, and 89,
respectively, (a) If the weights accorded these grades are 2, 4, and 5, respectively, what is an appropriate
average grade? (b) What is the average grade if equal weights are used?

5.95. Three teachers of economics reported mean examination grades of 79, 74, and 82 in their classes, which
consisted of 32, 25, and 17 students, respectively. Determine the mean grade for all the classes.

5.96. The mean annual salary paid to all employees in a company was $5000. The mean annual salaries paid to male
and female employees of the company were $5200 and $4200, respectively. Determine the percentages of males
and females employed by the company.

5.97. Table 5-18 shows the distribution of the maximum loads in short tons (1 short ton lb) supported by
certain cables produced by a company. Determine the mean maximum loading using (a) the “long method,”
(b) the coding method.

� 2000

Maximum Load Number of
(short tons) Cables

9–9.7 2

9.8–10.2 5

10.3–10.7 12

10.8–11.2 17

11.3–11.7 14

11.8–12.2 6

12.3–12.7 3

12.8–13.2 1

Table 5-18

TOTAL 60

x 462 480 498 516 534 552 570 588 606 624

f 98 75 56 42 30 21 15 11 6 2

Table 5-19

5.98. Find for the data in Table 5-19 using (a) the long method (b) the coding method.

5.99. Table 5-20 shows the distribution of the diameters of the heads of rivets manufactured by a company. Compute
the mean diameter.

x#

Diameter (inches) Frequency

0.7247–0.7249 2

0.7250–0.7252 6

0.7253–0.7255 8

0.7256–0.7258 15

0.7259–0.7261 42

0.7262–0.7264 68

0.7265–0.7267 49

0.7268–0.7270 25

0.7271–0.7273 18

0.7274–0.7276 12

0.7277–0.7279 4

0.7280–0.7282 1

Table 5-20

TOTAL 250
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5.100. Compute the mean for the data in Table 5-21.

Class Frequency

10–under 15 3

15–under 20 7

20–under 25 16

25–under 30 12

30–under 35 9

35–under 40 5

40–under 45 2

Table 5-21

TOTAL 54

5.101. Find the standard deviation of the numbers:
(a) 3, 6, 2, 1, 7, 5; (b) 3.2, 4.6, 2.8, 5.2, 4.4; (c) 0, 0, 0, 0, 0, 1, 1, 1.

5.102. (a) By adding 5 to each of the numbers in the set 3, 6, 2, 1, 7, 5, we obtain the set 8, 11, 7, 6, 12, 10. Show
that the two sets have the same standard deviation but different means. How are the means related?

(b) By multiplying each of the numbers 3, 6, 2, 1, 7, 5 by 2 and then adding 5, we obtain the set 11, 17, 9, 7,
19, 15. What is the relationship between the standard deviations and between the means for the two sets?

(c) What properties of the mean and standard deviation are illustrated by the particular sets of numbers in
(a) and (b)?

5.103. Find the standard deviation of the set of numbers in the arithmetic progression 4, 10, 16, 22, . . . , 154.

5.104. Find the standard deviations for the distributions of: (a) Problem 5-97, (b) Problem 5.98.

5.105. Find (a) the mean, (b) the standard deviation for the distribution of Problem 5.30, explaining the significance
of the results obtained.

5.106. (a) Find the standard deviation s of the rivet diameters in Problem 5.99 (b) What percentage of rivet diameters
lie in (c) Compare the percentages in (b) with those that would theoretically be
expected if the distribution were normal, and account for any observed differences.

5.107. (a) Find the mean and standard deviation for the data of Problem 5.28.

(b) Construct a frequency distribution for the data, and find the standard deviation.

(c) Compare the result of (b) with that of (a).

5.108. Work Problem 5.107 for the data of Problem 5.87.

5.109. (a) Of a total of n numbers, the fraction p are ones while the fraction are zeros. Prove that the
standard deviation of the set of numbers is (b) Apply the result of (a) to Problem 5.101(c).

5.110. Find the (a) first, (b) second, (c) third, (d) fourth moment about the origin for the set of numbers 
4, 7, 5, 9, 8, 3, 6.

5.111. Find the (a) first, (b) second, (c) third, (d) fourth moment about the mean for the set of numbers in 
Problem 5.110.

!pq.
q � 1 � p

(x# 
 s), (x# 
 2s), (x# 
 3s)?
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5.112. Find the (a) first, (b) second, (c) third, (d) fourth moment about the number 7 for the set of numbers in
Problem 5.110.

5.113. Using the results of Problems 5.110 and 5.111, verify the following relations between the moments:
(a) (b) (c) 

5.114. Find the first four moments about the mean of the set of numbers in the arithmetic progression 
2, 5, 8, 11, 14, 17.

5.115. If the first moment about the number 2 is equal to 5, what is the mean?

5.116. If the first four moments of a set of numbers about the number 3 are equal to and 50, determine
the corresponding moments (a) about the mean, (b) about the number 5, (c) about zero.

5.117. Find the first four moments about the mean of the numbers 0, 0, 0, 1, 1, 1, 1, 1.

5.118. (a) Prove that (b) Derive a similar formula for m6.

5.119. Of a total of n numbers, the fraction p are ones while the fraction are zeros. Find (a) m1, (b) m2,
(c) m3, (d) m4 for the set of numbers. Compare with Problem 5.117.

5.120. Calculate the first four moments about the mean for the distribution of Table 5-22.

q � 1 � p

m5 � mr5 � 5mr1mr4 � 10mr21 mr3 � 10mr31 mr2 � 4mr51 .

�2, 10, �25,

m4 � mr4 � 4mr1mr3 � 6mr12mr2 � 3mr41 .m3 �  mr3 � 3mr1mr2 � 2mr31 ,m2 �  mr2  �  mr21 ,

x f

12 1

14 4

16 6

18 10

20 7

22 2

Table 5-22

TOTAL 30

5.121. Calculate the first four moments about the mean for the distribution of Problem 5.97.

5.122. Find (a) m1, (b) m2, (c) m3, (d) m4, (e) (f ) s, (g) (h) (i) ( j) for the distribution of 
Problem 5.100.

5.123. Find the coefficient of (a) skewness, (b) kurtosis for the distribution Problem 5.120.

5.124. Find the coefficient of (a) skewness, (b) kurtosis for the distribution of Problem 5.97. See Problem 5.121.

5.125. The second moments about the mean of two distributions are 9 and 16, while the third moments about the
mean are and respectively. Which distribution is more skewed to the left?

5.126. The fourth moments about the mean of the two distributions of Problem 5.125 are 230 and 780, respectively.
Which distribution more nearly approximates the normal distribution from the viewpoint of (a) peakedness,
(b) skewness?

�12.8,�8.1

(x � 1)3x4,x3,x2x#,
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Miscellaneous problems
5.127. A population of 7 numbers has a mean of 40 and a standard deviation of 3. If samples of size 5 are drawn from

this population and the variance of each sample is computed, find the mean of the sampling distribution of
variances if sampling is (a) with replacement, (b) without replacement.

5.128. Certain tubes produced by a company have a mean lifetime of 900 hours and a standard deviation of 80 hours.
The company sends out 1000 lots of 100 tubes each. In how many lots can we expect (a) the mean lifetimes to
exceed 910 hours, (b) the standard deviations of the lifetimes to exceed 95 hours? What assumptions must be
made?

5.129. In Problem 5.128 if the median lifetime is 900 hours, in how many lots can we expect the median lifetimes to
exceed 910 hours? Compare your answer with Problem 5.128(a) and explain the results.

5.130. On a citywide examination the grades were normally distributed with mean 72 and standard deviation 8.
(a) Find the minimum grade of the top 20% of the students. (b) Find the probability that in a random sample of
100 students, the minimum grade of the top 20% will be less than 76.

5.131. (a) Prove that the variance of the set of n numbers a, (i.e., an arithmetic
progression with first term a and common difference d) is given by [Hint: Use

(b) Use (a) in Problem 5.103.

5.132. Prove that the first four moments about the mean of the arithmetic progression a,
are

Compare with Problem 5.114. [Hint: .]

ANSWERS TO SUPPLEMENTARY PROBLEMS

5.49. (a) 9.0 (b) 4.47 (c) 9.0 (d) 3.16 5.50. (a) 9.0 (b) 4.47 (c) 9.0 (d) 2.58

5.51. (a) (b) oz, is slightly less than 0.008 oz

5.52. (a) (b)

5.53. (a) 237 (b) 2 (c) none (d) 24 5.54. (a) 0.4972 (b) 0.1587 (c) 0.0918 (d) 0.9544

5.55. (a) 0.8164 (b) 0.0228 (c) 0.0038 (d) 1.0000 5.56. 0.0026

5.57. (a) 0.0029 (b) 0.9596 (c) 0.1446 5.58. (a) 2 (b) 996 (c) 218

5.59. (a) 0.0179 (b) 0.8664 (c) 0.1841 5.60. (a) 6 (b) 9 (c) 2 (d) 12

5.62. (a) 19 (b) 125 5.63. (a) 0.0077 (b) 0.8869 5.64. (a) 0.0028 (b) 0.9172

mX � 22.40  oz,  sX � 0.0057 ozmX � 22.40 oz,  sX � 0.008 oz

sXmX � 22.40mX � 22.40 oz,  sX � 0.008 oz

(3n2 � 3n � 1)14 � 24 � 34 � c� (n � 1)4 �
1
30n(n � 1)(2n � 1)

m4 �
1

240  (n2 � 1)(3n2 � 7)d4m3 � 0,m2 �
1

12  (n2 � 1)d2,m1 � 0,

a � (n � 1)d
a � d, a � 2d, c,

12 � 22 � 32 � c� (n � 1)2 �
1
6   n (n � 1)(2n � 1).]3 � c� (n � 1) �

1
2   n(n � 1),

1 � 2 �
1
12(n

2 � 1)d2.
a � d, a � 2d, c, a � (n � 1) d



5.65. (a) 0.2150 (b) 0.0064 (c) 0.4504 5.66. 0.0482 5.67. 0.0188 5.68. 0.0410

5.70. (a) 118.79 lb (b) 0.74 lb 5.71. 0.0228 5.72. (a) 10.00 (b) 11.49

5.73. (a) 40/3 (b) 28.10 5.74. (a) 0.50 (b) 0.17 (c) 0.28 5.75. (a) 0.36 (b) 0.49

5.80. (a) between 0.01 and 0.05 (b) greater than 0.05 5.81. (a) greater than 0.05 (b) greater than 0.05

5.82. (a) 799 (c) 949.5 (e) 100 (hours) (g) or 15.5% (i) 19.0%
(b) 1000 (d) 1099.5, 1199.5 (f ) 76 (h) 29.5% ( j) 78.0%

5.85. (a) 24% (b) 11% (c) 46%

5.86. (a) 0.003 inch (b) 0.3195, 0.3225, 0.3255, . . . ,0.3375 inch
(c) 0.320–0.322, 0.323–0.325, 0.326–0.328, . . . ,0.335–0.337

5.91. 86 5.92. 0.50 s 5.93. 8.25 5.94. (a) 82 (b) 79 5.95. 78 5.96. 80%, 20%

5.97. 11.09 tons 5.98. 501.0 5.99. 0.72642 inch 5.100. 26.2

5.101. (a) 2.16 (b) 0.90 (c) 0.484 5.103. 45 5.104. (a) 0.733 ton (b) 38.60

5.105. (a) (b) 5.106. (a) 0.000576 inch (b) 72.1%, 93.3%, 99.76%

5.107. (a) 146.8 lb, 12.9 lb 5.108. (a) 0.7349 inch, 0.00495 inch

5.110. (a) 6 (b) 40 (c) 288 (d) 2188 5.111. (a) 0 (b) 4 (c) 0 (d) 25.86

5.112. (a) (b) 5 (c) (d) 53 5.114. 0, 26.25, 0, 1193.1 5.115. 7

5.116. (a) 0, 6, 19, 42 (b) 4, 22, 117, 560 (c) 1, 7, 38, 155

5.117. 0, 0.2344, 0.0586, 0.0696 5.120.

5.121.

5.122. (a) 0 (c) 92.35 (e) 26.2 (g) 739.38 (i) 706,428
(b) 52.95 (d) 7158.20 (f) 7.28 (h) 22,247 (j) 24,545

5.123. (a) (b) 2.62 5.124. (a) 0.9190 (b) 2.94

5.125. first distribution 5.126. (a) second (b) first 5.127. (a) 7.2 (b) 8.4

5.128. (a) 106 (b) 4 5.129. 159 5.130. (a) 78.7 (b) 0.0090

�0.2464

m1 � 0, m2 � 0.53743, m3 � 0.36206, m4 � 0.84914

m1 � 0, m2 � 5.97, m3 � �3.97, m4 � 89.22�

��

�91�1

s � 1.11x# � 2.47

62>400 � 0.155
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Estimation Theory

Unbiased Estimates and Efficient Estimates
As we remarked in Chapter 5 (see page 158), a statistic is called an unbiased estimator of a population param-
eter if the mean or expectation of the statistic is equal to the parameter. The corresponding value of the statistic
is then called an unbiased estimate of the parameter.

EXAMPLE 6.1 The mean and variance as defined on pages 155 and 158 are unbiased estimators of the popula-
tion mean and variance , since E( ) The values and are then called unbiased estimates. How-s^2x#� m, E(S

^2) � s2.X#s2m

S
^2X#

CHAPTER 12CHAPTER 6

ever, is actually a biased estimator of , since in general 

If the sampling distributions of two statistics have the same mean, the statistic with the smaller variance is
called a more efficient estimator of the mean. The corresponding value of the efficient statistic is then called an
efficient estimate. Clearly one would in practice prefer to have estimates that are both efficient and unbiased, but
this is not always possible.

EXAMPLE 6.2 For a normal population, the sampling distribution of the mean and median both have the same mean,
namely, the population mean. However, the variance of the sampling distribution of means is smaller than that of the sampling
distribution of medians. Therefore, the mean provides a more efficient estimate than the median. See Table 5-1, page 160.

Point Estimates and Interval Estimates. Reliability
An estimate of a population parameter given by a single number is called a point estimate of the parameter. An
estimate of a population parameter given by two numbers between which the parameter may be considered to
lie is called an interval estimate of the parameter.

EXAMPLE 6.3 If we say that a distance is 5.28 feet, we are giving a point estimate. If, on the other hand, we say that
the distance is 5.28 0.03 feet, i.e., the distance lies between 5.25 and 5.31 feet, we are giving an interval estimate.

A statement of the error or precision of an estimate is often called its reliability.

Confidence Interval Estimates of Population Parameters
Let and be the mean and standard deviation (standard error) of the sampling distribution of a statistic S.
Then, if the sampling distribution of S is approximately normal (which as we have seen is true for many statis-
tics if the sample size ), we can expect to find S lying in the intervals to , to

or to about 68.27%, 95.45%, and 99.73% of the time, respectively.
Equivalently we can expect to find, or we can be confident of finding, in the intervals to ,

to or to about 68.27%, 95.45%, and 99.73% of the time, respectively. Be-
cause of this, we call these respective intervals the 68.27%, 95.45%, and 99.73% confidence intervals for esti-
mating (i.e., for estimating the population parameter, in the case of an unbiased S). The end numbers of these
intervals ( ) are then called the 68.27%, 95.45%, and 99.73% confidence limits.

Similarly, and are 95% and 99% (or 0.95 and 0.99) confidence limits for . The per-
centage confidence is often called the confidence level. The numbers 1.96, 2.58, etc., in the confidence limits are
called critical values, and are denoted by zc. From confidence levels we can find critical values, and conversely.

mSS 
 2.58sSS 
 1.96sS

S 
 sS, S 
 2sS, S 
 3sS

mS

S � 3sSS � 3sSS � 2sSS � 2sS

S � sSS � sSmS

mS � 3sSmS � 3sSmS � 2sS

mS � 2sSmS � sSmS � sSn � 30

sSmS




E(S
^

) 2 s.sS
^



In Table 6-1 we give values of zc corresponding to various confidence levels used in practice. For confidence
levels not presented in the table, the values of zc can be found from the normal curve area table in Appendix C.
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Confidence Level 99.73% 99% 98% 96% 95.45% 95% 90% 80% 68.27% 50%

zc 3.00 2.58 2.33 2.05 2.00 1.96 1.645 1.28 1.00 0.6745

Table 6-1

In cases where a statistic has a sampling distribution that is different from the normal distribution (such as chi
square, t, or F), appropriate modifications to obtain confidence intervals have to be made.

Confidence Intervals for Means
1. LARGE SAMPLES (nı30). If the statistic S is the sample mean , then 95% and 99% confidence

limits  for  estimation  of the  population mean are given  by  and respectively.
More generally, the confidence limits are given by where zc, which depends on the particular
level of confidence desired, can be read from the above table. Using the values of obtained in Chapter 5,
we see that the confidence limits for the population mean are given by

(1)

in case sampling is from an infinite population or if sampling is with replacement from a finite population,
and by

(2)

if sampling is without replacement from a population of finite size N.
In general, the population standard deviation is unknown, so that to obtain the above confidence limits,

we use the estimator or S.

2. SMALL SAMPLES (n , 30) AND POPULATION NORMAL. In this case we use the t distribution to

S
^

s

X# 
 zc 
s

!nA
N � n
N � 1

X# 
 zc 
s

!n

s X

X# 
 zcs X

X# 
 2.58s X,X# 
 1.96s Xm

X#

used for large samples as well, i.e., it is exact) is that appears in (5) so that the sample standard deviationS
^

can be used instead of the population standard deviation (which is usually unknown) as in (1).

obtain confidence levels. For example, if �t0.975 and t0.975 are the values of T for which 2.5% of the area lies
in each tail of the t distribution, then a 95% confidence interval for T is given by (see page 159)

(3)

from which we see that can be estimated to lie in the interval

(4)

with 95% confidence. In general the confidence limits for population means are given by

(5)

where the value tc can be read from Appendix D.
A comparison of (5) with (1) shows that for small samples we replace zc by tc. For zc and tc are

practically equal. It should be noted that an advantage of the small sampling theory (which can of course be
n � 30,

X# 
 tc
S
^

!n

X# � t0.975 
S
^

!n
� m � X# � t0.975 

S
^

!n

m

�t0.975 �
(X# � m)!n

S
^ � t0.975



Confidence Intervals for Proportions
Suppose that the statistic S is the proportion of “successes” in a sample of size drawn from a binomial
population in which p is the proportion of successes (i.e., the probability of success). Then the confidence lim-
its for p are given by , where P denotes the proportion of successes in the sample of size n. Using the
values of P obtained in Chapter 5, we see that the confidence limits for the population proportion are given by

(6)

in case sampling is from an infinite population or if sampling is with replacement from a finite population. Sim-
ilarly, the confidence limits are

(7)

if sampling is without replacement from a population of finite size N. Note that these results are obtained from
(1) and (2) on replacing by P and by 

To compute the above confidence limits, we use the sample estimate P for p. A more exact method is given
in Problem 6.27.

Confidence Intervals for Differences and Sums
If S1 and S2 are two sample statistics with approximately normal sampling distributions, confidence limits for the
differences of the population parameters corresponding to S1 and S2 are given by

(8)

while confidence limits for the sum of the population parameters are given by

(9)

provided that the samples are independent.
For example, confidence limits for the difference of two population means, in the case where the populations

are infinite and have known standard deviations , , are given by

(10)

where n1 and n2 are the respective means and sizes of the two samples drawn from the populations.
Similarly, confidence limits for the difference of two population proportions, where the populations are infi-

nite, are given by

(11)

where P1 and P2 are the two sample proportions and n1 and n2 are the sizes of the two samples drawn from the
populations.

Confidence Intervals for the Variance of a Normal Distribution
The fact that has a chi-square distribution with n � 1 degrees of freedom enables us to
obtain confidence limits for or . For example, if and  are the values of for which 2.5% of the
area lies in each tail of the distribution, then a 95% confidence interval is

(12)x2
0.025 �

nS2

s2
� x2

0.975

x2x2
0.975x2

0.025ss2
nS2>s2 � (n � 1)S

^2>s2

P1 � P2 
 zcA
P1(1 � P1)

n1
�

P2(1 � P2)
n2

X# 2,X# 1,

X# 1 � X# 2 
 zcs X2� X2
� X# 1 � X# 2 
 zcA

s2
1

n1
�
s2

2

n2

s2s1

S1 � S2 
 zcsS1�S2
� S1 � S2 
 zc2s2

S1
� s2

S2

S1 � S2 
 zcsS1�S2
� S1 � S2 
 zc2s2

S1
� s2

S2

!pq.sX#

P 
 zcA
pq
n AN � n

N � 1

P 
 zcA
pq
n � P 
 zcA

p(1 � p)
n

s

P 
 zcsP

n � 30
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or equivalently

(13)

From these we see that can be estimated to lie in the interval

(14)

or equivalently

(15)

with 95% confidence. Similarly, other confidence intervals can be found.
It is in general desirable that the expected width of a confidence interval be as small as possible. For statis-

tics with symmetric sampling distributions, such as the normal and t distributions, this is achieved by using tails
of equal areas. However, for nonsymmetric distributions, such as the chi-square distribution, it may be desirable
to adjust the areas in the tails so as to obtain the smallest interval. The process is illustrated in Problem 6.28.

Confidence Intervals for Variance Ratios
In Chapter 5, page 159, we saw that if two independent random samples of sizes m and n having variances 
are drawn from two normally distributed populations of variances respectively, then the random variable

has an F distribution with m � 1, n � 1, degrees of freedom. For example, if we denote by F0.01 and F0.99

the values of F for which 1% of the area lies in each tail of the F distribution, then with 98% confidence we have

(16)

From this we can see that a 98% confidence interval for the variance ratio of the two populations is given by

(17)

Note that F0.99 is read from one of the tables in Appendix F. The value F0.01 is the reciprocal of F0.99 with the de-
grees of freedom for numerator and denominator reversed, in accordance with Theorem 4-8, page 117.

In a similar manner we could find a 90% confidence interval by use of the appropriate table in Appendix F.
This would be given by

(18)

Maximum Likelihood Estimates
Although confidence limits are valuable for estimating a population parameter, it is still often convenient to have
a single or point estimate. To obtain a “best” such estimate, we employ a technique known as the maximum like-
lihood method due to Fisher.

To illustrate the method, we assume that the population has a density function that contains a population
parameter, say, , which is to be estimated by a certain statistic. Then the density function can be denoted by
f (x, ). Assuming that there are n independent observations, X1 Xn, the joint density function for these ob-
servations is

(19)

which is called the likelihood. The maximum likelihood can then be obtained by taking the derivative of L with
respect to and setting it equal to zero. For this purpose it is convenient to first take logarithms and then takeu

L � f (x1, u) f (x2, u) c f (xn, u)

, c,u

u
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the derivative. In this way we find

(20)

The solution of this equation, for in terms of the xk, is known as the maximum likelihood estimator of . 
The method is capable of generalization. In case there are several parameters, we take the partial derivatives

with respect to each parameter, set them equal to zero, and solve the resulting equations simultaneously.

SOLVED PROBLEMS

Unbiased and efficient estimates
6.1. Give examples of estimators (or estimates) which are (a) unbiased and efficient, (b) unbiased and ineffi-

cient, (c) biased and inefficient.

Assume that the population is normal. Then

(a) The sample mean and the modified sample variance are two such examples.

(b) The sample median and the sample statistic where Q1 and Q3 are the lower and upper sample
quartiles, are two such examples. Both statistics are unbiased estimates of the population mean, since the
mean of their sampling distributions can be shown to be the population mean. However, they are both
inefficient compared with .

(c) The sample standard deviation S, the modified standard deviation the mean deviation, and the semi-
interquartile range are four such examples for evaluating the population standard deviation, .

6.2. A sample of five measurements of the diameter of a sphere were recorded by a scientist as 6.33, 6.37, 6.36,
6.32, and 6.37 cm. Determine unbiased and efficient estimates of (a) the true mean, (b) the true variance. As-
sume that the measured diameter is normally distributed.

(a) An unbiased and efficient estimate of the true mean (i.e., the population mean) is

(b) An unbiased and efficient estimate of the true variance (i.e., the population variance) is

Note that is an estimate of the true standard deviation, but this estimate is
neither unbiased nor efficient.

6.3. Suppose that the heights of 100 male students at XYZ University represent a random sample of the heights
of all 1546 male students at the university. Determine unbiased and efficient estimates of (a) the true mean,
(b) the true variance.

(a) From Problem 5.33:

Unbiased and efficient estimate of true mean height � � 67.45 inch

(b) From Problem 5.38:

Unbiased and efficient estimate of true variance � s^2 �
n

n � 1  s2 �
100
99  (8.5275) � 8.6136

x#

s^ � 20.00055 � 0.023

� 0.00055 cm2

�
(6.33 � 6.35)2 � (6.37 � 6.35)2 � (6.36 � 6.35)2 � (6.32 � 6.35)2 � (6.37 � 6.35)2

5 � 1

s^2 �
n

n � 1  s2 �
a(x � x#)2

n � 1

x# �
ax
n �

6.33 � 6.37 � 6.36 � 6.32 � 6.37
5 � 6.35 cm

s

S
^

,

X#

1
2  (Q1 � Q3),

S
^2 �

n
n � 1  S2X#

uu

1
f (x1, u)

'f (x1, u)
'u � c�

1
f (xn, u)

'f (xn, u)
'u � 0
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Therefore, Note that since n is large there is essentially no difference between s2

and or between s and

6.4. Give an unbiased and inefficient estimate of the true (mean) diameter of the sphere of Problem 6.2.

The median is one example of an unbiased and inefficient estimate of the population mean. For the five
measurements arranged in order of magnitude, the median is 6.36 cm.

Confidence interval estimates for means (large samples)
6.5. Find (a) 95%, (b) 99% confidence intervals for estimating the mean height of the XYZ University students

in Problem 6.3.

(a) The 95% confidence limits are 
Using inches and inches as an estimate of (see Problem 6.3), the confidence limits

are or , inches. Then the 95% confidence interval for the population
mean is 66.88 to 68.02 inches, which can be denoted by .

We can therefore say that the probability that the population mean height lies between 66.88 and 68.02
inches is about 95%, or 0.95. In symbols we write P( . This is equivalent to
saying that we are 95% confident that the population mean (or true mean) lies between 66.88 and 68.02 inches.

(b) The 99% confidence limits are For the given sample,

Therefore, the 99% confidence interval for the population mean is 66.69 to 68.21 inches, which can be
denoted by .

In obtaining the above confidence intervals, we assumed that the population was infinite or so large that we
could consider conditions to be the same as sampling with replacement. For finite populations where sampling is

66.69 � m � 68.21
m

x# 
 2.58 
s^

!n
� 67.45 
 2.58 

2.93
!100

� 67.45 
 0.76 inches

X# 
 2.58s>!n.

66.88 � m � 68.02) �  0.95

66.88 � m � 68.02m

67.45 
 0.5767.45 
 1.96(2.93>!100),
ss^ � 2.93x � 67.45

X# 
 1.96s>!n.

s^.s^2
s^ � !8.6136 � 2.93.
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without replacement, we should use in place of However, we can consider the factor 
s

!n
.

s

!nA
N � n
N � 1

as essentially 1.0, so that it need not be used. If it is used, the above confidence

limits become and inches, respectively.

6.6. Measurements of the diameters of a random sample of 200 ball bearings made by a certain machine during
one week showed a mean of 0.824 inch and a standard  deviation of 0.042 inch. Find (a) 95%, (b) 99% con-
fidence limits for the mean diameter of all the ball bearings.

Since n � 200 is large, we can assume that is very nearly normal.

(a) The 95% confidence limits are

or inch.

(b) The 99% confidence limits are

or inches.
Note that we have assumed the reported standard deviation to be the modified standard deviation If the

standard deviation had been s, we would have used which can be taken as
s for all practical purposes. In general, for , we may take s and as practically equal.

6.7. Find (a) 98%, (b) 90%, (c) 99.73% confidence limits for the mean diameter of the ball bearings in
Problem 6.6.

s^n � 30
s^ � !n>(n � 1)s � !200>199 s

s^.
0.824 
 0.008

X# 
 2.58 
s

!n
� x 
 2.58 

s^

!n
� 0.824 
 2.58 

0.042
!200

� 0.824 
 0.0077 inch

0.824 
 0.006

X# 
 1.96 
s

!n
� x# 
 1.96 

s^

!n
� 0.824 
 1.96 

0.042
!200

� 0.824 
 0.0058 inch

X#

67.45 
 0.7367.45 
 0.56
AN � n

N � 1 � A1546 � 100
1546 � 1 � 0.967



(a) Let zc be such that the area under the normal curve to the right of z � zc is 1%. Then by symmetry the area to
the left of is also 1%, so that the shaded area is 98% of the total area (Fig. 6-1).

Since the total area under the curve is one, the area from is is 0.49; hence, .
Therefore, 98% confidence limits are

x# 
 2.33 
s

2n
� 0.824 
 2.33  

0.042

2200
� 0.824 
 0.0069 inch

zc � 2.33z � zcz � 0
z � �zc
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Fig. 6-1 Fig. 6-2

(b) We require zc such that the area from to is 0.45; then (Fig. 6-2). 
Therefore, 90% confidence limits are

(c) The 99.73% confidence limits are

6.8. In measuring reaction time, a psychologist estimates that the standard deviation is 0.05 second. How large
a sample of measurements must he take in order to be (a) 95%, (b) 99% confident that the error in his esti-
mate of mean reaction time will not exceed 0.01 second?

(a) The 95% confidence limits are the error of the estimate being Taking
second, we see that this error will be equal to 0.01 second if 

i.e., , or . Therefore, we can be 95% confident that the error in the
estimate will be less than 0.01 if n is 97 or larger.

(b) The 99% confidence limits are Then (2.58)(0.05) , or . Therefore,
we can be 99% confident that the error in the estimate will be less than 0.01 only if n if 167 or larger.

Note that the above solution assumes a nearly normal distribution for which is justified since the n
obtained is large.

6.9. A random sample of 50 mathematics grades out of a total of 200 showed a mean of 75 and a standard devi-
ation of 10. (a) What are the 95% confidence limits for the mean of the 200 grades? (b) With what degree
of confidence could we say that the mean of all 200 grades is 

(a) Since the population size is not very large compared with the sample size, we must adjust for sampling
without replacement. Then the 95% confidence limits are

(b) The confidence limits can be represented by

Since this must equal , we have or . The area under the normal curve from z � 0
to is 0.2910; hence, the required degree of confidence is or 58.2%.2(0.2919) � 0.582z � 0.81

zc � 0.811.23zc � 175 
 1

X# 
 zcs X � X# 
 zc  
s

!n
 AN � n

N � 1 � 75 
 zc  
(10)

!50
 A200 � 50

200 � 1 � 75 
 1.23zc

X# 
 1.96sX � X# 
 1.96  
s

!n
 AN � n

N � 1 � 75 
 1.96  
10
!50

 A200 � 50
200 � 1 � 75 
 2.4

75 
 1?

X,

n �  166.4!n � 0.01>X# 
 2.58s>!n.

n � 96.04(1.96)(0.05)>0.01 � 9.8!n �

(1.96)(0.05)>!n � 0.01,s � s � 0.05
1.96s>!n.X# 
 1.96s>!n,

x# 
 3 
s

!n
� 0.824 
 3 

0.042
!200

� 0.824 
 0.0089 inch

x# 
 1.645 
s

2n
� 0.824 
 1.645  

0.042

2200
� 0.824 
 0.0049 inch

zc �  1.645z � zcz �  0



Confidence interval estimates for means (small samples)
6.10. The 95% critical values (two-tailed) for the normal distribution are given by . What are the corre-

sponding values for the t distribution if the number of degrees of freedom is (a) , (b) ,
(c) , (d) ?

For 95% critical values (two-tailed) the total shaded area in Fig. 6-3 must be 0.05. Therefore, the shaded area in
the right tail is 0.025, and the corresponding critical value is t0.975. Then the required critical values are .
For the given values of these are (a) 2.26, (b) 2.09, (c) 2.04, (d) 2.00.



n


t0.975

n � 60n � 30
n � 20n � 9


1.96
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Fig. 6-3

6.11. A sample of 10 measurements of the diameter of a sphere gave a mean inches and a standard 
deviation inch. Find (a) 95%, (b) 99% confidence limits for the actual diameter.

(a) The 95% confidence limits are given by 
Since  , we find [see also Problem 6.10(a)]. Then using

and , the required 95% confidence limits are

Therefore, we can be 95% confident that the true mean lies between 4.38 � 0.045 � 4.335 inches and 
4.38 � 0.045 � 4.425 inches.

(b) For , t0.995 � 3.25. Then the 99% confidence limits are

and the 99% confidence interval is 4.315 to 4.445 inches.

6.12. (a) Work Problem 6.11 assuming that the methods of large sampling theory are valid.
(b) Compare the results of the two methods.

(a) Using large sampling theory, the 95% confidence limits are

where we have used the sample standard deviation 0.06 as estimate of . Similarly, the 99% confidence
limits are inch.

(b) In each case the confidence intervals using the small or exact sampling methods are wider than those
obtained by using large sampling methods. This is to be expected since less precision is available with
small samples than with large samples.

Confidence interval estimates for proportions
6.13. A sample poll of 100 voters chosen at random from all voters in a given district indicated that 55% of

them were in favor of a particular candidate. Find (a) 95%, (b) 99%, (c) 99.73% confidence limits for the
proportion of all the voters in favor of this candidate.

(a) The 95% confidence limits for the population p are

where we have used the sample proportion 0.55 to estimate p.

(b) The 99% confidence limits for p are 0.55 
 2.58!(0.55)(0.45)>100 � 0.55 
 0.13.

P 
 1.96sP � P 
 1.96A
p(1 � p)

n � 0.55 
 1.96A
(0.55)(0.45)

100
� 0.55 
 0.10

4.38 
 (2.58)(0.06)>!10 � 4.38 
 0.049
s

X# 
 1.96  
s

!n
� 4.38 
 1.96  

0.06
!10

� 4.38 
 0.037 inch

X# 
 t0.995(S>!n � 1) � 4.38 
 3.25(0.06>!10 � 1) � 4.38 
 0.0650 inch

n � 9

4.38 
 2.26  
0.06

!10 � 1
� 4.38 
 0.0452 inch

s � 0.06x# � 4.38
t0.975 � 2.26n � n � 1 � 10 � 1 � 9

X# 
 t0.975(S>!n � 1).

s � 0.06
x � 4.38



(c) The 99.73% confidence limits for p are

For a more exact method of working this problem, see Problem 6.27.

6.14. How large a sample of voters should we take in Problem 6.13 in order to be 95% confident that the can-
didate will be elected?

The candidate is elected if , and to be 95% confident of his being elected, we require that 
Prob. ( . Since is asymptotically normal,

or

Comparison with Prob.( ) � 0.95, using Appendix C, shows that

where

Then, using and the estimate from Problem 6.13, we have

or n � 271

6.15. In 40 tosses of a coin, 24 heads were obtained. Find (a) 95%, (b) 99.73% confidence limits for the propor-
tion of heads that would be obtained in an unlimited number of tosses of the coin.

(a) At the 95% level, zc � 1.96. Substituting the values P � 24 40 � 0.6 and n � 40 in the formula
we find , yielding the interval 0.45 to 0.75.

(b) At the 99.73% level, zc � 3. Using the formula we find ,
yielding the interval 0.37 to 0.83.

The more exact formula of Problem 6.27 gives the 95% confidence interval as 0.45 to 0.74 and the
99.73% confidence interval as 0.37 to 0.79.

Confidence intervals for differences and sums
6.16. A sample of 150 brand A light bulbs showed a mean lifetime of 1400 hours and a standard deviation of

120 hours. A sample of 200 brand B light bulbs showed a mean lifetime of 1200 hours and a standard
deviation of 80 hours. Find (a) 95%, (b) 99% confidence limits for the difference of the mean lifetimes of
the populations of brands A and B.

Confidence limits for the difference in means of brands A and B are given by

(a) The 95% confidence limits are 

Therefore, we can be 95% confident that the difference of population means lies between 175 and 
225 hours.

(b) The 99% confidence limits are 

Therefore, we can be 99% confident that the difference of population means lies between 167 and 
233 hours.

6.17. In a random sample of 400 adults and 600 teenagers who watched a certain television program, 100 adults
and 300 teenagers indicated that they liked it. Construct (a) 95%, (b) 99% confidence limits for the differ-
ence in proportions of all adults and all teenagers who watched the program and liked it.

1400 � 1200 
 2.58!(120)2>150 � (80)2>100 � 200 
 32.6.

1400 � 1200 
 1.96!(120)2>150 � (80)2>100 � 200 
 24.8.

X# A � X# B 
 zcA
s2

A

nA
�
s2

B

nB

p � 0.60 
 0.23p � P 
 zc!P(1 � P)>n,

p � 0.60 
 0.15p � P 
 zc!P(1 � P)>n,
>

0.55 � 1.645!(0.55)(0.45)>n � 0.50

p � 0.55P � 0.55

b � 1.645P � b!p(1 � p)>n � 0.50

p � 0.50

Prob. ( p � P � b!p(1 � p)>n) �
1

!2p3
b

�`
 e�u2>2 du

Prob. ¢ P � p

!p(1 � p)>n � b≤ �
1

!2p3
b

�`
 e�u2>2 du

(P � p)>!p(1 � p)>np � 0.50) � 0.95
p � 0.50

0.55 
 3!(0.55)(0.45)>100 � 0.55 
 0.15.
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Confidence limits for the difference in proportions of the two groups are given by

where subscripts 1 and 2 refer to teenagers and adults, respectively, and . Here
and are, respectively, the proportion of teenagers and adults who

liked the program.

(a) 95% confidence limits:

Therefore we can be 95% confident that the true difference in proportions lies between 0.19 and 0.31.

(b) 99% confidence limits:

Therefore, we can be 99% confident that the true difference in proportions lies between 0.17 and 0.33.

6.18. The electromotive force (emf) of batteries produced by a company is normally distributed with mean 45.1
volts and standard deviation 0.04 volt. If four such batteries are connected in series, find (a) 95%, (b) 99%,
(c) 99.73%, (d) 50% confidence limits for the total electromotive force.

If E1, E2, E3, and E4 represent the emfs of the four batteries, we have

and

Then, since volts and volt,

and

(a) 95% confidence limits are volts.

(b) 99% confidence limits are volts.

(c) 99.73% confidence limits are volts.

(d) 50% confidence limits are volts.

The value 0.054 volts is called the probable error.

Confidence intervals for variances
6.19. The standard deviation of the lifetimes of a sample of 200 electric light bulbs was computed to be 100

hours. Find (a) 95%, (b) 99% confidence limits for the standard deviation of all such electric light bulbs.

In this case large sampling theory applies. Therefore (see Table 5-1, page 160) confidence limits for the
population standard deviation are given by where zc indicates the level of confidence. We use
the sample standard deviation to estimate .

(a) The 95% confidence limits are 

Therefore, we can be 95% confident that the population standard deviation will lie between 90.2 and
109.8 hours.

(b) The 99% confidence limits are 

Therefore, we can be 99% confident that the population standard deviation will lie between 87.1 and
112.9 hours.

6.20. How large a sample of the light bulbs in Problem 6.19 must we take in order to be 99.73% confident that
the true population standard deviation will not differ from the sample standard deviation by more than 
(a) 5%, (b) 10%?

As in Problem 6.19, 99.73% confidence limits for are using s as an estimate
of . Then the percentage error in the standard deviation is

3s>!2n
s �

300
!2n

  %

s

S 
 3s>!2n � s 
 3s>!2n,s

100 
 2.58(100)>!400 � 100 
 12.9.

100 
 1.96(100)>!400 � 100 
 9.8.

s

S 
 zcs>!2n,s

180.4 
 0.6745(0.08) � 180.4 
 0.054

180.4 
 3(0.08) � 180.4 
 0.24

180.4 
 2.58(0.08) � 180.4 
 0.21

180.4 
 1.96(0.08) � 180.4 
 0.16

sE1�E2�E3�E4
� 24(0.04)2 � 0.08mE1�E2�E3�E4

� 4(45.1) � 180.4

sE1
� sE2

� sE3
� sE4

� 0.04mE1
� mE2

� mE3
� mE4

� 45.1

sE1�E2�E3�E4
� 2s2

E1
� s2

E2
� s2

E3
� s2

E4
mE1�E2�E3�E4

� mE1
� mE2

� mE3
� mE4

0.50 � 0.25 
 2.58!(0.50)(0.50)>600 � (0.25)(0.75)>400 � 0.25 
 0.08.

0.50 � 0.25 
 1.96!(0.50)(0.50)>600 � (0.25)(0.75)>400 � 0.25 
 0.06.

P2 � 100>400 � 0.25P1 � 300>600 � 0.50
Q1 � 1 – P1, Q2 � 1 – P2

P1 � P2 
 zcA
P1Q1

n1
�

P2Q2
n2
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(a) If then . Therefore, the sample size should be 1800 or more.

(b) If then . Therefore, the sample size should be 450 or more.

6.21. The standard deviation of the heights of 16 male students chosen at random in a school of 1000 male stu-
dents is 2.40 inches. Find (a) 95%, (b) 99% confidence limits of the standard deviation for all male stu-
dents at the school. Assume that height is normally distributed.

(a) 95% confidence limits are given by 

For degrees of freedom, or and or

Then the 95% confidence limits are and i.e., 1.83 and 3.84 inches.
Therefore, we can be 95% confident that the population standard deviation lies between 1.83 and 3.84
inches.

(b) 99% confidence limits are given by and 

For degrees of freedom, or and or

Then the 99% confidence limits are and i.e., 1.68 and 4.49 inches.
Therefore, we can be 99% confident that the population standard deviation lies between 1.68 and 
4.49 inches.

6.22. Work Problem 6.19 using small or exact sampling theory.

(a) 95% confidence limits are given by and 

For degrees of freedom, we find as in Problem 4.41, page 136,

from which and 
Then the 95% confidence limits are and hours

respectively. Therefore, we can be 95% confident that the population standard deviation will lie between
91.2 and 111.3 hours.

This should be compared with the result of Problem 6.19(a).

(b) 99% confidence limits are given by and 

For degrees of freedom,

from which and 
Then the 99% confidence limits are and hours

respectively. Therefore, we can be 99% confident that the population standard deviation will lie between
88.9 and 115.9 hours.

This should be compared with the result of Problem 6.19(b).

Confidence intervals for variance ratios
6.23. Two samples of sizes 16 and 10, respectively, are drawn at random from two normal populations. If their

variances are found to be 24 and 18, respectively, find (a) 98%, (b) 90% confidence limits for the ratio of
the variances.

100!200>12.2 � 115.9100!200>15.9 � 88.9
x0.005 � 12.2.x0.995 � 15.9

x2
0.005 �

1
2  (z0.005 � !2(199) � 1)2 �

1
2  (�2.58 � 19.92)2 � 150

x2
0.995 �

1
2  (z0.995 � !2(199) � 1)2 �

1
2  (2.58 � 19.92)2 � 253

n � 200 � 1 � 199

S!n>x0.005.S!n>x0.995

100!200>12.7 � 111.3100!200>15.5 � 91.2
x0.025 � 12.7.x0.975 � 15.5

x2
0.025 �

1
2  (z0.025 � !2(199) � 1)2 �

1
2  (�1.96 � 19.92)2 � 161

x2
0.975 �

1
2  (z0.975 � !2(199) � 1)2 �

1
2  (1.96 � 19.92)2 � 239

n � 200 � 1 � 199

S!n>x0.025.S!n>x0.975

2.40!16>2.14,2.40!16>5.73
x0.005 � 21.4.

x2
0.005 � 4.60x0.995 � 5.73x2

0.995 � 32.8n � 16 – 1 � 15

S!n>x0.005.S!n>x0.995

2.40!16>2.50,2.40!16>5.24
x0.025 � 2.50.

x2
0.025 � 6.26x0.975 � 5.24x2

0.975 � 27.5n � 16 – 1 � 15

S!n>x0.975 and S!n>x0.025.

n � 450300>!2n � 10,

n � 1800300>!2n � 5,
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(a) We have , so that

From Problem 4.47(b), page 139, we have F0.99 � 4.96 for 1 � 16 � 1 � 15 and 2 � 10 � 1 � 9 degrees
of freedom. Also, from Problem 4.47(d), we have for 1 � 15 and 2 � 9 degrees of freedom F0.01 � 1 3.89
so that 1 F0.01 � 3.89. Then using (17), page 198, we find for the 98% confidence interval

or

(b) As in (a) we find from Appendix F that F0.95 � 3.01 and F0.05 � 1 2.59. Therefore, the 90% confidence
interval is

or

Note that the 90% confidence interval is much smaller than the 98% confidence interval, as we would of
course expect.

6.24. Find the (a) 98%, (b) 90% confidence limits for the ratio of the standard deviations in Problem 6.23.

By taking square roots of the inequalities in Problem 6.23, we find for the 98% and 90% confidence limits

(a)

(b)

Maximum likelihood estimates
6.25. Suppose that n observations, X1 Xn, are made from a normally distributed population of which the

mean is unknown and the variance is known. Find the maximum likelihood estimate of the mean.

Since

we have

(1)

Therefore,

(2)

Taking the partial derivative with respect to yields

(3)

Setting gives'L>'m � 0

1
L
'L
'm �

1
s2a(xk � m)

m

ln L � �
n
2   ln (2ps2) �

1
2s2a(xk � m)2

L � f (x1, m) c f (xn, m) � (2ps2)�n>2e�a(xk�m)2>2s2

f (xk, m) �
1

22ps2
 e�(xk�m)2>2s2

, c,

0.65 �
s1
s2

� 1.81

0.53 �
s1
s2

� 2.21

0.4186 �
s2

1

s2
2

� 3.263

1
3.01  ¢ 25.2

20.0 ≤  �
s2

1

s2
2

� (2.59)¢ 25.2
20.0 ≤>

0.283 �
s2

1

s2
2

� 4.90

¢ 1
4.96 ≤ ¢ 25.2

20.0 ≤ �
s2

1

s2
2

 � (3.89)¢ 25.2
20.0 ≤>

>nn

nn

s^2
2 �

n
n � 1  s2

2 � ¢ 10
9 ≤ (18) � 20.0

s^2
1 �

m
m � 1  s2

1 � ¢ 16
15 ≤ (24) � 25.2

s2
1 � 20, s2

2 � 18m � 16, n � 10
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(4) i.e.

or

(5)

Therefore, the maximum likelihood estimate is the sample mean.

6.26. If in Problem 6.25 the mean is known but the variance is unknown, find the maximum likelihood estimate
of the variance.

If we write f (xk , 2) instead of f (xk, ), everything done in Problem 6.25 through equation (2) still applies.
Then, taking the partial derivative with respect to 2, we have

Setting , we find

Miscellaneous problems
6.27. (a) If P is the observed proportion of successes in a sample of size n, show that the confidence limits for

estimating the population proportion of successes p at the level of confidence determined by zc are
given by

(b) Use the formula derived in (a) to obtain the 99.73% confidence limits of Problem 6.13. (c) Show that
for large n the formula in (a) reduces to as used in Problem 6.13.

(a) The sample proportion P in standard units is 

The largest and smallest values of this standardized variable are , where zc determines the level of
confidence. At these extreme values we must therefore have

Squaring both sides,

Multiplying both sides by n and simplifying, we find

If and , this equation becomes , whose solution
for p is given by the quadratic formula as
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Dividing the numerator and denominator by 2n, this becomes

(b) For 99.73% confidence limits, zc � 3. Then using P � 0.55 and n � 100 in the formula derived in (a), we
find p � 0.40 and 0.69, agreeing with Problem 6.13(c).

(c) If n is large, then and are all negligibly small and can essentially be replaced by zero, so
that the required result is obtained.

6.28. Is it possible to obtain a 95% confidence interval for the population standard deviation whose expected
width is smaller than that found in Problem 6.22(a)?

The 95% confidence limits for the population standard deviation as found in Problem 6.22(a) were obtained by
choosing critical values of such that the area in each tail was 2.5%. It is possible to find other 95%
confidence limits by choosing critical values of for which the sum of the areas in the tails is 5%, or 0.05, but
such that the areas in each tail are not equal.

In Table 6-2 several such critical values have been obtained and the corresponding 95% confidence intervals
shown.
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Critical Values 95% Confidence Interval Width

92.3 to 113.7 21.4

91.7 to 111.9 20.2

91.0 to 110.8 19.8

89.9 to 110.0 20.1x0.04 � 12.85, x0.99 � 15.73

x0.03 � 12.76, x0.98 � 15.54

x0.02 � 12.64, x0.97 � 15.42

x0.01 � 12.44, x0.96 � 15.32

Table 6-2

From this table it is seen that a 95% interval of width only 19.8 is 91.0 to 110.8.
An interval with even smaller width can be found by continuing the same method of approach, using critical

values such as 0.031 and 0.981, 0.032 and 0.982, etc.
In general, however, the decrease in the interval that is thereby obtained is usually negligible and is not

worth the labor involved.

SUPPLEMENTARY PROBLEMS

Unbiased and efficient estimates
6.29. Measurements of a sample of weights were determined as 8.3, 10.6, 9.7, 8.8, 10.2, and 9.4 lb, respectively.

Determine unbiased and efficient estimates of (a) the population mean, and (b) the population variance. (c)
Compare the sample standard deviation with the estimated population standard deviation.

6.30. A sample of 10 television tubes produced by a company showed a mean lifetime of 1200 hours and a standard
deviation of 100 hours. Estimate (a) the mean, (b) the standard deviation of the population of all television tubes
produced by this company.

6.31. (a) Work Problem 6.30 if the same results are obtained for 30, 50, and 100 television tubes, (b) What can you
conclude about the relation between sample standard deviations and estimates of population standard deviations
for different sample sizes?

xxxx



Confidence interval estimates for means (large samples)
6.32. The mean and standard deviation of the maximum loads supported by 60 cables (see Problem 5.98) are 11.09

tons and 0.73 tons, respectively. Find (a) 95%, (b) 99% confidence limits for the mean of the maximum loads of
all cables produced by the company.

6.33. The mean and standard deviation of the diameters of a sample of 250 rivet heads manufactured by a company
are 0.72642 inch and 0.00058 inch, respectively (see Problem 5.99). Find (a) 99%, (b) 98%, (c) 95%,
(d) 90% confidence limits for the mean diameter of all the rivet heads manufactured by the company.

6.34. Find (a) the 50% confidence limits, (b) the probable error for the mean diameter in Problem 6.33.

6.35. If the standard deviation of the lifetimes of television tubes is estimated as 100 hours, how large a sample must
we take in order to be (a) 95%, (b) 90%, (c) 99%, (d) 99.73% confident that the error in the estimated mean
lifetime will not exceed 20 hours.

6.36. What are the sample sizes in Problem 6.35 if the error in the estimated mean lifetime must not exceed
10 hours?

Confidence interval estimates for means (small samples)
6.37. A sample of 12 measurements of the breaking strengths of cotton threads gave a mean of 7.38 oz and a standard

deviation of 1.24 oz. Find (a) 95%, (b) 99% confidence limits for the actual mean breaking strength.

6.38. Work Problem 6.37 assuming that the methods of large sampling theory are applicable, and compare the results
obtained.

6.39. Five measurements of the reaction time of an individual to certain stimuli were recorded as 0.28, 0.30, 0.27,
0.33, 0.31 second. Find (a) 95%, (b) 99% confidence limits for the actual mean reaction time.

Confidence interval estimates for proportions
6.40. An urn contains red and white marbles in an unknown proportion. A random sample of 60 marbles selected

with replacement from the urn showed that 70% were red. Find (a) 95%, (b) 99%, (c) 99.73% confidence limits
for the actual proportion of red marbles in the urn. Present the results using both the approximate formula and
the more exact formula of Problem 6.27.

6.41. How large a sample of marbles should one take in Problem 6.40 in order to be (a) 95%, (b) 99%,
(c) 99.73% confident that the true and sample proportions do not differ more than 5%?

6.42. It is believed that an election will result in a very close vote between two candidates. Explain by means of an
example, stating all assumptions, how you would determine the least number of voters to poll in order to be
(a) 80%, (b) 95%, (c) 99% confident of a decision in favor of either one of the candidates.

Confidence intervals for differences and sums
6.43. Of two similar groups of patients, A and B, consisting of 50 and 100 individuals, respectively, the first was

given a new type of sleeping pill and the second was given a conventional type. For patients in group A the
mean number of hours of sleep was 7.82 with a standard deviation of 0.24 hour. For patients in group B the
mean number of hours of sleep was 6.75 with a standard deviation of 0.30 hour. Find (a) 95% and (b) 99%
confidence limits for the difference in the mean number of hours of sleep induced by the two types of
sleeping pills.
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6.44. A sample of 200 bolts from one machine showed that 15 were defective, while a sample of 100 bolts from
another machine showed that 12 were defective. Find (a) 95%, (b) 99%, (c) 99.73% confidence limits for the
difference in proportions of defective bolts from the two machines. Discuss the results obtained.

6.45. A company manufactures ball bearings having a mean weight of 0.638 oz and a standard deviation of 0.012 oz.
Find (a) 95%, (b) 99% confidence limits for the weights of lots consisting of 100 ball bearings each.

Confidence intervals for variances or standard deviations
6.46. The standard deviation of the breaking strengths of 100 cables tested by a company was 1800 lb. Find

(a) 95%, (b) 99%, (c) 99.73% confidence limits for the standard deviation of all cables produced by the
company.

6.47. How large a sample should one take in order to be (a) 95%, (b) 99%, (c) 99.73% confident that a population
standard deviation will not differ from a sample standard deviation by more than 2%?

6.48. The standard deviation of the lifetimes of 10 electric light bulbs manufactured by a company is 120 hours.
Find (a) 95%, (b) 99% confidence limits for the standard deviation of all bulbs manufactured by the 
company.

6.49. Work Problem 6.48 if 25 electric light bulbs show the same standard deviation of 120 hours.

6.50. Work Problem 6.48 by using the distribution if a sample of 100 electric bulbs shows the same standard
deviation of 120 hours.

Confidence intervals for variance ratios
6.51. The standard deviations of the diameters of ball bearings produced by two machines were found to be 0.042 cm

and 0.035 cm, respectively, based on samples of sizes 10 each. Find (a) 98%, (b) 90% confidence intervals for
the ratio of the variances.

6.52. Determine the (a) 98%, (b) 90% confidence intervals for the ratio of the standard deviations in Problem 6.51.

6.53. Two samples of sizes 6 and 8, respectively, turn out to have the same variance. Find (a) 98%, (b) 90%
confidence intervals for the ratio of the variances of the populations from which they were drawn.

6.54. Work (a) Problem 6.51, (b) Problem 6.53 if the samples have sizes 120 each.

Maximum likelihood estimates
6.55. Suppose that n observations, X1 Xn, are made from a Poisson distribution with unknown parameter . Find

the maximum likelihood estimate of .

6.56. A population has a density function given by For n observations,
X1 Xn, made from this population, find the maximum likelihood estimate of .

6.57. A population has a density function given by

For n observations X1 Xn made from this population, find the maximum likelihood estimate of k., c,

f (x) � e (k � 1)xk 0 � x � 1

0 otherwise

n, c,
f (x) � 2n!n>px2e�nx2,�` � x � `.

l

l, c,

x2
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Miscellaneous problems
6.58. The 99% confidence coefficients (two-tailed) for the normal distribution are given by . What are the

corresponding coefficients for the t distribution if (a) , (b) , (c) , (d) , (e) ? 

6.59. A company has 500 cables. A test of 40 cables selected at random showed a mean breaking strength of 2400 lb
and a standard deviation of 150 lb. (a) What are the 95% and 99% confidence limits for estimating the mean
breaking strength of the remaining 460 cables? (b) With what degree of confidence could we say that the mean
breaking strength of the remaining 460 cables is lb?

ANSWERS TO SUPPLEMENTARY PROBLEMS

6.29. (a) 9.5 lb (b) 0.74 lb2 (c) 0.78 and 0.86 lb, respectively.

6.30. (a) 1200 hours (b) 105.4 hours

6.31. (a) Estimates of population standard deviations for sample sizes 30, 50, and 100 tubes are, respectively, 101.7,
101.0, and 100.5 hours. Estimates of population means are 1200 hours in all cases.

6.32. (a) 11.09 0.18 tons (b) 11.09 0.24 tons

6.33. (a) 0.72642 0.000095 inch (c) 0.72642 0.000072 inch
(b) 0.72642 0.000085 inch (d) 0.72642 0.000060 inch

6.34. (a) 0.72642 0.000025 inch (b) 0.000025 inch

6.35. (a) at least 97 (b) at least 68 (c) at least 167 (d) at least 225

6.36. (a) at least 385 (b) at least 271 (c) at least 666 (d) at least 900

6.37. (a) 7.38 0.82 oz (b) 7.38 1.16 oz 6.38. (a) 7.38 0.70 oz (b) 7.38 0.96 oz

6.39. (a) 0.298 0.030 second (b) 0.298 0.049 second

6.40. (a) 0.70 0.12, 0.69 0.11 (b) 0.70 0.15, 0.68 0.15 (c) 0.70 0.18, 0.67 0.17

6.41. (a) at least 323 (b) at least 560 (c) at least 756

6.43. (a) 1.07 0.09 hours (b) 1.07 0.12 hours

6.44. (a) 0.045 0.073 (b) 0.045 0.097 (c) 0.045 0.112

6.45. (a) 63.8 0.24 oz (b) 63.8 0.31 oz

6.46. (a) 1800 249 lb (b) 1800 328 lb (c) 1800 382 lb
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n � 40n � 30n � 25n � 12n � 4
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6.47. (a) at least 4802 (b) at least 8321 (c) at least 11,250

6.48. (a) 87.0 to 230.9 hours (b) 78.1 to 288.5 hours

6.49. (a) 95.6 to 170.4 hours (b) 88.9 to 190.8 hours

6.50. (a) 106.1 to 140.5 hours (b) 102.1 to 148.1 hours

6.51. (a) 0.269 to 7.70 (b) 0.453 to 4.58 6.52. (a) 0.519 to 2.78 (b) 0.673 to 2.14

6.53. (a) 0.140 to 11.025 (b) 0.264 to 5.124

6.54. (a) 0.941 to 2.20, 1.067 to 1.944 (b) 0.654 to 1.53, 0.741 to 1.35

6.55. 6.56.

6.57.

6.58. (a) 4.60 (b) 3.06 (c) 2.79 (d) 2.75 (e) 2.70

6.59. (a) 2400 45 lb, 2400 59 lb (b) 87.6%
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n
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Tests of Hypotheses 
and Significance

Statistical Decisions
Very often in practice we are called upon to make decisions about populations on the basis of sample informa-
tion. Such decisions are called statistical decisions. For example, we may wish to decide on the basis of sample
data whether a new serum is really effective in curing a disease, whether one educational procedure is better
than another, or whether a given coin is loaded.

Statistical Hypotheses. Null Hypotheses
In attempting to reach decisions, it is useful to make assumptions or guesses about the populations involved.
Such assumptions, which may or may not be true, are called statistical hypotheses and in general are statements
about the probability distributions of the populations.

For example, if we want to decide whether a given coin is loaded, we formulate the hypothesis that the coin
is fair, i.e., p � 0.5, where p is the probability of heads. Similarly, if we want to decide whether one procedure
is better than another, we formulate the hypothesis that there is no difference between the procedures (i.e., any
observed differences are merely due to fluctuations in sampling from the same population). Such hypotheses are
often called null hypotheses or simply hypotheses, are denoted by H0.

Any hypothesis that differs from a given null hypothesis is called an alternative hypothesis. For example, if
the null hypothesis is p � 0.5, possible alternative hypotheses are p � 0.7, , or p � 0.5. A hypothesis 
alternative to the null hypothesis is denoted by H1.

Tests of Hypotheses and Significance
If on the supposition that a particular hypothesis is true we find that results observed in a random sample differ
markedly from those expected under the hypothesis on the basis of pure chance using sampling theory, we would
say that the observed differences are significant and we would be inclined to reject the hypothesis (or at least not
accept it on the basis of the evidence obtained). For example, if 20 tosses of a coin yield 16 heads, we would be
inclined to reject the hypothesis that the coin is fair, although it is conceivable that we might be wrong.

Procedures that enable us to decide whether to accept or reject hypotheses or to determine whether observed sam-
ples differ significantly from expected results are called tests of hypotheses, tests of significance, or decision rules.

Type I and Type II Errors
If we reject a hypothesis when it happens to be true, we say that a Type I error has been made. If, on the other
hand, we accept a hypothesis when it should be rejected, we say that a Type II error has been made. In either case
a wrong decision or error in judgment has occurred.

In order for any tests of hypotheses or decision rules to be good, they must be designed so as to minimize er-
rors of decision. This is not a simple matter since, for a given sample size, an attempt to decrease one type of error
is accompanied in general by an increase in the other type of error. In practice one type of error may be more se-
rious than the other, and so a compromise should be reached in favor of a limitation of the more serious error. The
only way to reduce both types of error is to increase the sample size, which may or may not be possible.

p 2 0.5
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Level of Significance
In testing a given hypothesis, the maximum probability with which we would be willing to risk a Type I error is
called the level of significance of the test. This probability is often specified before any samples are drawn, so
that results obtained will not influence our decision.

In practice a level of significance of 0.05 or 0.01 is customary, although other values are used. If for example
a 0.05 or 5% level of significance is chosen in designing a test of a hypothesis, then there are about 5 chances in
100 that we would reject the hypothesis when it should be accepted, i.e., whenever the null hypotheses is true,
we are about 95% confident that we would make the right decision. In such cases we say that the hypothesis has
been rejected at a 0.05 level of significance, which means that we could be wrong with probability 0.05.

Tests Involving the Normal Distribution
To illustrate the ideas presented above, suppose that under a given hypothesis the sampling distribution of a sta-
tistic S is a normal distribution with mean S and standard deviation S. Also, suppose we decide to reject the
hypothesis if S is either too small or too large. The distribution of the standardized variable is
the standard normal distribution (mean 0, variance 1) shown in Fig. 7-1, and extreme values of Z would lead to
the rejection of the hypothesis.

Z � (S � mS)>sS

sm
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Fig. 7-1

As indicated in the figure, we can be 95% confident that, if the hypothesis is true, the z score of an actual sam-
ple statistic S will lie between �1.96 and 1.96 (since the area under the normal curve between these values is 0.95).

However, if on choosing a single sample at random we find that the z score of its statistic lies outside the
range �1.96 to 1.96, we would conclude that such an event could happen with the probability of only 0.05 (total
shaded area in the figure) if the given hypothesis were true. We would then say that this z score differed signifi-
cantly from what would be expected under the hypothesis, and we would be inclined to reject the hypothesis.

The total shaded area 0.05 is the level of significance of the test. It represents the probability of our being
wrong in rejecting the hypothesis, i.e., the probability of making a Type I error. Therefore, we say that the
hypothesis is rejected at a 0.05 level of significance or that the z score of the given sample statistic is significant
at a 0.05 level of significance.

The set of z scores outside the range �1.96 to 1.96 constitutes what is called the critical region or region of
rejection of the hypothesis or the region of significance. The set of z scores inside the range �1.96 to 1.96 could
then be called the region of acceptance of the hypothesis or the region of nonsignificance.

On the basis of the above remarks, we can formulate the following decision rule:

(a) Reject the hypothesis at a 0.05 level of significance if the z score of the statistic S lies outside the range 
�1.96 to 1.96 (i.e., either z � 1.96 or z � �1.96). This is equivalent to saying that the observed sample
statistic is significant at the 0.05 level.

(b) Accept the hypothesis (or, if desired, make no decision at all) otherwise.

It should be noted that other levels of significance could have been used. For example, if a 0.01 level were
used we would replace 1.96 everywhere above by 2.58 (see Table 7-1). Table 6-1, page 196, can also be used since
the sum of the level of significance and level of confidence is 100%.

One-Tailed and Two-Tailed Tests
In the above test we displayed interest in extreme values of the statistic S or its corresponding z score on both
sides of the mean, i.e., in both tails of the distribution. For this reason such tests are called two-tailed tests or
two-sided tests.



Often, however, we may be interested only in extreme values to one side of the mean, i.e., in one tail of the
distribution, as, for example, when we are testing the hypothesis that one process is better than another (which
is different from testing whether one process is better or worse than the other). Such tests are called one-tailed
tests or one-sided tests. In such cases the critical region is a region to one side of the distribution, with area equal
to the level of significance.

Table 7-1, which gives critical values of z for both one-tailed and two-tailed tests at various levels of signifi-
cance, will be useful for reference purposes. Critical values of z for other levels of significance are found by use
of the table of normal curve areas.
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P Value
In most of the tests we will consider, the null hypothesis H0 will be an assertion that a population parameter has
a specific value, and the alternative hypothesis H1 will be one of the following assertions:

(i) The parameter is greater than the stated value (right-tailed test).

(ii) The parameter is less than the stated value (left-tailed test).

(iii) The parameter is either greater than or less than the stated value (two-tailed test).

In cases (i) and (ii), H1 has a single direction with respect to the parameter, and in case (iii), H1 is bidirectional.
After the test has been performed and the test statistic S computed, the P value of the test is the probability that
a value of S in the direction(s) of H1 and as extreme as the one that actually did occur would occur if H0 were
true.

For example, suppose the standard deviation of a normal population is known to be 3, and H0 asserts that
the mean is equal to 12. A random sample of size 36 drawn from the population yields a sample mean

The test statistic is chosen to be

which, if H0 is true, is the standard normal random variable. The test value of Z is ( The 
P value for the test then depends on the alternative hypothesis H1 as follows:

(i) For H1: [case (i) above], the P value is the probability that a random sample of size 36 would
yield a sample mean of 12.95 or more if the true mean were 12, i.e., P(Z 1.9) 0.029. In other words,
the chances are about 3 in 100 that if .

(ii) For H1: [case (ii) above], the P value of the test is the probability that a random sample of size 36
would yield a sample mean of 12.95 or less if the true mean were 12, i.e., P(Z 1.9) 0.97, or the
chances are about 97 in 100 that if .

(iii) For H1: [case (iii) above], the P value is the probability that a random sample of size 36 would
yield a sample mean 0.95 or more units away from 12, i.e., or if the true mean
were 12. Here the P value is P(Z 1.9) P(Z ) 0.057, which says the chances are about 6 in
100 that if .

Small P values provide evidence for rejecting the null hypothesis in favor of the alternative hypothesis, and large
P values provide evidence for not rejecting the null hypothesis in favor of the alternative hypothesis. In case (i)
of the above example, the small P value 0.029 is a fairly strong indicator that the population mean is greater than
12, whereas in case (ii), the large P value 0.97 strongly suggests that H0: should not be rejected in favorm � 12
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x# � 12.95.
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s

Level of Significance  0.10 0.05 0.01 0.005 0.002

Critical Values of z for �1.28 �1.645 –2.33 �2.58 �2.88
One-Tailed Tests or 1.28 or 1.645 or 2.33 or 2.58 or 2.88

Critical Values of z for �1.645 �1.96 –2.58 �2.81 �3.08
Two-Tailed Tests and 1.645 and 1.96 and 2.58 and 2.81 and 3.08

a

Table 7-1



of H1: . In case (iii), the P value 0.057 provides evidence for rejecting H0 in favor of H1: but not
as much evidence as is provided for rejecting H0 in favor of H1: .

It should be kept in mind that the P value and the level of significance do not provide criteria for rejecting or
not rejecting the null hypothesis by itself, but for rejecting or not rejecting the null hypothesis in favor of the al-
ternative hypothesis. As the previous example illustrates, identical test results and significance levels can lead to
different conclusions regarding the same null hypothesis in relation to different alternative hypotheses.

When the test statistic S is the standard normal random variable, the table in Appendix C is sufficient to com-
pute the P value, but when S is one of the t, F, or chi-square random variables, all of which have different dis-
tributions depending on their degrees of freedom, either computer software or more extensive tables than those
in Appendices D, E, and F will be needed to compute the P value.

Special Tests of Significance for Large Samples
For large samples, many statistics S have nearly normal distributions with mean S and standard deviation S.
In such cases we can use the above results to formulate decision rules or tests of hypotheses and significance.
The following special cases are just a few of the statistics of practical interest. In each case the results hold for
infinite populations or for sampling with replacement. For sampling without replacement from finite popula-
tions, the results must be modified. See pages 156 and 158.

1. MEANS. Here the sample mean; the population mean; where
is the population standard deviation and n is the sample size. The standardized variable is given by

(1)

When necessary the observed sample standard deviation, s (or ), is used to estimate .
To test the null hypothesis H0 that the population mean is , we would use the statistic (1). Then, if

the alternative hypothesis is , using a two-tailed test, we would accept H0 (or at least not reject it) at the
0.05 level if for a particular sample of size n having mean 

(2)

and would reject it otherwise. For other significance levels we would change (2) appropriately. To test H0

against the alternative hypothesis that the population mean is greater than a, we would use a one-tailed test
and accept H0 (or at least not reject it) at the 0.05 level if

(3)

(see Table 7-1) and reject it otherwise. To test H0 against the alternative hypothesis that the population mean
is less than a, we would accept H0 at the 0.05 level if

(4)

2. PROPORTIONS. Here S � P, the proportion of “successes” in a sample; , where p is the
population proportion of successes and n is the sample size; where . The
standardized variable is given by

(5)

In case P � X n, where X is the actual number of successes in a sample, (5) becomes

(6)

Remarks similar to those made above about one- and two-tailed tests for means can be made.
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3. DIFFERENCES OF MEANS. Let and be the sample means obtained in large samples of sizes n1

and n2 drawn from respective populations having means 1 and 2 and standard deviations 1 and 2. Con-
sider the null hypothesis that there is no difference between the population means, i.e., . From (11),
page 157, on placing we see that the sampling distribution of differences in means is approxi-
mately normal with mean and standard deviation given by

(7)

where we can, if necessary, use the observed sample standard deviations s1 and s2 (or and ) as estimates
of 1 and 2.

By using the standardized variable given by

(8)

in a manner similar to that described in Part 1 above, we can test the null hypothesis against alternative hy-
potheses (or the significance of an observed difference) at an appropriate level of significance.

4. DIFFERENCES OF PROPORTIONS. Let P1 and P2 be the sample proportions obtained in large sam-
ples of sizes n1 and n2 drawn from respective populations having proportions p1 and p2. Consider the null
hypothesis that there is no difference between the population proportions, i.e., p1 � p2, and thus that the
samples are really drawn from the same population.

From (13), page 157, on placing p1 � p2 � p, we see that the sampling distribution of differences in pro-
portions is approximately normal with mean and standard deviation given by

(9)

where is used as an estimate of the population proportion p.

By using the standardized variable

(10)

we can test observed differences at an appropriate level of significance and thereby test the null hypothesis.
Tests involving other statistics (see Table 5-1, page 160) can similarly be designed.

Special Tests of Significance for Small Samples
In case samples are small (n � 30), we can formulate tests of hypotheses and significance using other distribu-
tions besides the normal, such as Student’s t, chi-square, and F. These involve exact sampling theory and so, of
course, hold even when samples are large, in which case they reduce to those given above. The following are some
examples.

1. MEANS. To test the hypothesis H0 that a normal population has mean, , we use

(11)

where is the mean of a sample of size n. This is analogous to using the standardized variable Z �
X# � m
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for large n except that S is used in place of . The difference is that while Z is normally
distributed, T has Student’s t distribution. As n increases, these tend toward agreement. Tests of hypotheses
similar to those for means on page 216, can be made using critical t values in place of critical z values.

sS
^

� !n>(n � 1)



2. DIFFERENCES OF MEANS. Suppose that two random samples of sizes n1 and n2 are drawn from nor-
mal (or approximately normal) populations whose standard deviations are equal, i.e., . Suppose
further that these two samples have means and standard deviations given by and S1, S2, respectively. To
test the hypothesis H0 that the samples come from the same population (i.e., as well as ),
we use the variable given by

(12)

The distribution of T is Student’s t distribution with � n1 � n2 � 2 degrees of freedom. Use of (12) is made plau-
sible on placing in (12), page 157, and then using as an estimator of 2 the weighted average

where and are the unbiased estimators of and This is the pooled variance obtained by combin-
ing the data.

3. VARIANCES. To test the hypothesis H0 that a normal population has variance , we consider the ran-
dom variables

(13)

which (see pages 158–159) has the chi-square distribution with n � 1 degrees of freedom. Then if a random
sample of size n turns out to have variance s2, we would, on the basis of a two-tailed test, accept H0 (or at least
not reject it) at the 0.05 level if

(14)

and reject it otherwise. A similar result can be obtained for the 0.01 or other level.
To test the hypothesis H1 that the population variance is greater than 2, we would still use the null hypoth-

esis H0 but would now employ a one-tailed test. Thus we would reject H0 at the 0.05 level (and thereby con-
clude that H1 is correct) if the particular sample variance s2 were such that

(15)

and would accept H0 (or at least not reject it) otherwise.

4. RATIOS OF VARIANCES. In some problems we wish to decide whether two samples of sizes m and n,
respectively, whose measured variances are and do or do not come from normal populations with the
same variance. In such cases, we use the statistic (see page 159).

(16)

where are the variances of the two normal populations from which the samples are drawn. Suppose that
H0 denotes the null hypothesis that there is no difference between population variances, i.e., Then
under this hypothesis (16) becomes
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To test this hypothesis at the 0.10 level, for example, we first note that F in (16) has the F distribution with 
m � 1, n � 1 degrees of freedom. Then, using a two-tailed test, we would accept H0 (or not reject it) at the
0.10 level if

(18)

and reject it otherwise.
Similar approaches using one-tailed tests can be formulated in case we wish to test the hypothesis that one

particular population variance is in fact greater than the other.

Relationship Between Estimation Theory and Hypothesis Testing
From the above remarks one cannot help but notice that there is a relationship between estimation theory involv-
ing confidence intervals and the theory of hypothesis testing. For example, we note that the result (2) for accept-
ing H0 at the 0.05 level is equivalent to the result (1) on page 196, leading to the 95% confidence interval

(19)

Thus, at least in the case of two-tailed tests, we could actually employ the confidence intervals of Chapter 6 to test
hypotheses. A similar result for one-tailed tests would require one-sided confidence intervals (see Problem 6.14).

Operating Characteristic Curves. Power of a Test
We have seen how the Type I error can be limited by properly choosing a level of significance. It is possible to
avoid risking Type II errors altogether by simply not making them, which amounts to never accepting hypothe-
ses. In many practical cases, however, this cannot be done. In such cases use is often made of operating charac-
teristic curves, or OC curves, which are graphs showing the probabilities of Type II errors under various
hypotheses. These provide indications of how well given tests will enable us to minimize Type II errors, i.e., they
indicate the power of a test to avoid making wrong decisions. They are useful in designing experiments by show-
ing, for instance, what sample sizes to use.

Quality Control Charts
It is often important in practice to know if a process has changed sufficiently to make remedial steps necessary.
Such problems arise, for example, in quality control where one must, often quickly, decide whether observed
changes are due simply to chance fluctuations or to actual changes in a manufacturing process because of dete-
rioration of machine parts, or mistakes of employees. Control charts provide a useful and simple method for deal-
ing with such problems (see Problem 7.29).

Fitting Theoretical Distributions to Sample Frequency Distributions
When one has some indication of the distribution of a population by probabilistic reasoning or otherwise, it is
often possible to fit such theoretical distributions (also called “model” or “expected” distributions) to frequency
distributions obtained from a sample of the population. The method used in general consists of employing the
mean and standard deviation of the sample to estimate the mean and standard deviation of the population. See
Problems 7.30, 7.32, and 7.33.

The problem of testing the goodness of fit of theoretical distributions to sample distributions is essentially the
same as that of deciding whether there are significant differences between population and sample values. An im-
portant significance test for the goodness of fit of theoretical distributions, the chi-square test, is described below.

In attempting to determine whether a normal distribution represents a good fit for given data, it is convenient
to use normal curve graph paper, or probability graph paper as it is sometimes called (see Problem 7.31).

The Chi-Square Test for Goodness of Fit
To determine whether the proportion P of “successes” in a sample of size n drawn from a binomial population
differs significantly from the population proportion p of successes, we have used the statistic given by (5) or (6)
on page 216. In this simple case only two possible events A1, A2 can occur, which we have called “success” and
“failure” and which have probabilities p and q � 1 � p, respectively. A particular sample value of the random vari-
able X � nP is often called the observed frequency for the event A1, while np is called the expected frequency.

x# �
1.96s
!n

 � m � x# �
1.96s
!n

F0.05 �
s^2

1

s^2
2

� F0.95
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EXAMPLE 7.1 If we obtain a sample of 100 tosses of a fair coin, so that , then the expected frequencyp �
1
2,n � 100
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of heads (successes) is The observed frequency in the sample could of course be different.

A natural generalization is to the case where k possible events A1, A2 Ak can occur, the respective prob-
abilities being p1, p2 pk. In such cases, we have a multinomial population (see page 112). If we draw a sam-
ple of size n from this population, the observed frequencies for the events A1 Ak can be described by random
variables X1 Xk (whose specific values x1, x2 xk would be the observed frequencies for the sample),
while the expected frequencies would be given by np1 npk, respectively. The results can be indicated as in
Table 7-2.

, c,
, c,, c,

, c,
, c,

, c,

np � (100)(1
2) � 50.

EXAMPLE 7.2 If we obtain a sample of 120 tosses of a fair die, so that , then the probabilities of the faces 1,
2 6 are denoted by p1, p2 p6, respectively, and are all equal to The corresponding expected frequencies are1

6., c,, c,
n � 120

Event A1 A2 Ak

Observed 
Frequency

x1 x2 xk

Expected
Frequency

np1 np2 npk
c

c

? ? ?

Table 7-2

np1, np2 np6 and are all equal to (120) The observed frequencies of the various faces that come up in the
sample can of course be different.

A clue as to the possible generalization of the statistic (6) which could measure the discrepancies existing be-
tween observed and expected frequencies in Table 7-2 is obtained by squaring the statistic (6) and writing it as

(20)

where X1 � X is the random variable associated with “success” and X2 � n � X1 is the random variable associ-
ated with “failure.” Note that nq in (20) is the expected frequency of failures.

The form of the result (20) suggests that a measure of the discrepancy between observed and expected fre-
quencies for the general case is supplied by the statistic

(21)

where the total frequency (i.e., the sample size) is n, so that

X1 � X2 � � Xk � n (22)

An expression equivalent to (21) is

(23)

If , the observed and expected frequencies agree exactly while if , they do not agree exactly.
The larger the value of , the greater is the discrepancy between observed and expected frequencies.

As is shown in Problem 7.62, the sampling distribution of as defined by (21) is approximated very closely
by the chi-square distribution [hence the choice of symbol in (21)] if the expected frequencies npj are at least equal
to 5, the approximation improving for larger values. The number of degrees of freedom for this chi-square dis-
tribution is given by:

(a) � k � 1 if expected frequencies can be computed without having to estimate population parameters
from sample statistics. Note that we subtract 1 from k because of the constraint condition (22), which
states that if we know k � 1 of the expected frequencies, the remaining frequency can be determined.

(b) � k � 1 � m if the expected frequencies can be computed only by estimating m population parameters
from sample statistics.
n
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In practice, expected frequencies are computed on the basis of a hypothesis H0. If under this hypothesis the
computed value of given by (21) or (23) is greater than some critical value (such as or which are
the critical values at the 0.05 and 0.01 significance levels, respectively), we would conclude that observed fre-
quencies differ significantly from expected frequencies and would reject H0 at the corresponding level of signif-
icance. Otherwise, we would accept it or at least not reject it. This procedure is called the chi-square test of
hypotheses or significance.

Besides applying to the multinomial distribution, the chi-square test can be used to determine how well other
theoretical distributions, such as the normal or Poisson, fit empirical distributions, i.e., those obtained from sam-
ple data. See Problem 7.44.

Contingency Tables
Table 7-2 above, in which observed frequencies occupy a single row, is called a one-way classification table.
Since the number of columns is k, this is also called a 1 	 k (read “1 by k”) table. By extending these ideas, we
can arrive at two-way classification tables or h 	 k tables in which the observed frequencies occupy h rows and
k columns. Such tables are often called contingency tables.

Corresponding to each observed frequency in an h 	 k contingency table, there is an expected or theoretical
frequency, which is computed subject to some hypothesis according to rules of probability. These frequencies that
occupy the cells of a contingency table are called cell frequencies. The total frequency in each row or each col-
umn is called the marginal frequency.

To investigate agreement between observed and expected frequencies, we compute the statistic

(24)

where the sum is taken over all cells in the contingency table, the symbols Xj and npj representing, respectively,
the observed and expected frequencies in the jth cell. This sum, which is analogous to (21), contains hk terms.
The sum of all observed frequencies is denoted n and is equal to the sum of all expected frequencies [compare
with equation (22)].

As before, the statistic (24) has a sampling distribution given very closely by the chi-square distribution pro-
vided expected frequencies are not too small. The number of degrees of freedom of this chi-square distribu-
tion is given for h � 1, k � 1 by

(a) � (h � 1)(k � 1) if the expected frequencies can be computed without having to estimate population
parameters from sample statistics. For a proof of this see Problem 7.48.

(b) � (h � 1)(k � 1) � m if the expected frequencies can be computed only by estimating m population pa-
rameters from sample statistics.

Significance tests for h 	 k tables are similar to those for 1 	 k tables. Expected frequencies are found sub-
ject to a particular hypothesis H0. A hypothesis commonly tested is that the two classifications are independent
of each other.

Contingency tables can be extended to higher dimensions. For example, we can have h 	 k 	 l tables where
3 classifications are present.

Yates’ Correction for Continuity
When results for continuous distributions are applied to discrete data, certain corrections for continuity can be
made as we have seen in previous chapters. A similar correction is available when the chi-square distribution is
used. The correction consists in rewriting (21) as

(25)

and is often referred to as Yates’ correction. An analogous modification of (24) also exists.
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In general, the correction is made only when the number of degrees of freedom is . For large samples
this yields practically the same results as the uncorrected , but difficulties can arise near critical values (see
Problem 7.41). For small samples where each expected frequency is between 5 and 10, it is perhaps best to com-
pare both the corrected and uncorrected values of . If both values lead to the same conclusion regarding a hy-
pothesis, such as rejection at the 0.05 level, difficulties are rarely encountered. If they lead to different
conclusions, one can either resort to increasing sample sizes or, if this proves impractical, one can employ exact
methods of probability involving the multinomial distribution.

Coefficient of Contingency
A measure of the degree of relationship, association, or dependence of the classifications in a contingency table
is given by

(26)

which is called the coefficient of contingency. The larger the value of C, the greater is the degree of association.
The number of rows and columns in the contingency table determines the maximum value of C, which is never
greater than one. For a k 	 k table the maximum value of C is given by See Problems 7.52 and 7.53.

SOLVED PROBLEMS

Tests of means and proportions using normal distributions
7.1. Find the probability of getting between 40 and 60 heads inclusive in 100 tosses of a fair coin. 

According to the binomial distribution the required probability is

The mean and standard deviation of the number of heads in 100 tosses are given by

Since np and nq are both greater than 5, the normal approximation to the binomial distribution can be used in
evaluating the above sum.

On a continuous scale, between 40 and 60 heads inclusive is the same as between 39.5 and 60.5 heads.

39.5 in standard units 60.5 in standard units

Required probability � area under normal curve between z � �2.10 and z � 2.10

� 2(area between z � 0 and z � 2.10) � 2(0.4821) � 0.9642

7.2. To test the hypothesis that a coin is fair, the following decision rules are adopted: (1) Accept the hypothesis
if the number of heads in a single sample of 100 tosses is between 40 and 60 inclusive, (2) reject the hypoth-
esis otherwise.

(a) Find the probability of rejecting the hypothesis when it is actually correct.

(b) Interpret graphically the decision rule and the result of part (a).

(c) What conclusions would you draw if the sample of 100 tosses yielded 53 heads? 60 heads?

(d) Could you be wrong in your conclusions to (c)? Explain.

(a) By Problem 7.1, the probability of not getting between 40 and 60 heads inclusive if the coin is fair equals 
1 � 0.9642 � 0.0358. Then the probability of rejecting the hypothesis when it is correct equals 0.0358.

�
60.5 � 50

5 � 2.10�
39.5 � 50

5 � �2.10

m � np � 100¢1
2 ≤ � 50  s � !npq � A(100)Q12R Q12R � 5
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(b) The decision rule is illustrated by Fig. 7-2, which shows the probability distribution of heads in 100 tosses of
a fair coin.
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Fig. 7-2

If a single sample of 100 tosses yields a z score between �2.10 and 2.10, we accept the hypothesis;
otherwise we reject the hypothesis and decide that the coin is not fair.

The error made in rejecting the hypothesis when it should be accepted is the Type I error of the decision
rule; and the probability of making this error, equal to 0.0358 from part (a), is represented by the total shaded
area of the figure.

If a single sample of 100 tosses yields a number of heads whose z score lies in the shaded regions, we
could say that this z score differed significantly from what would be expected if the hypothesis were true. For
this reason the total shaded area (i.e., probability of a Type I error) is called the level of significance of the
decision rule; it equals 0.0358 in this case. We therefore speak of rejecting the hypothesis at a 0.0358, or
3.58%, level of significance.

(c) According to the decision rule, we would have to accept the hypothesis that the coin is fair in both cases. One
might argue that if only one more head had been obtained, we would have rejected the hypothesis. This is
what one must face when any sharp line of division is used in making decisions.

(d) Yes. We could accept the hypothesis when it actually should be rejected, as would be the case, for example,
when the probability of heads is really 0.7 instead of 0.5.

The error made in accepting the hypothesis when it should be rejected is the Type II error of the decision.
For further discussion see Problems 7.23–7.25.

7.3. Design a decision rule to test the hypothesis that a coin is fair if a sample of 64 tosses of the coin is taken
and if a level of significance of (a) 0.05, (b) 0.01 is used.

(a) First method
If the level of significance is 0.05, each shaded area in Fig. 7-3 is 0.025 by symmetry. Then the area between 0
and z1 is 0.5000 � 0.0250 � 0.4750, and z1 � 1.96.

Thus a possible decision rule is:

(1) Accept the hypothesis that the coin is fair if Z is between �1.96 and 1.96.

(2) Reject the hypothesis otherwise.

Fig. 7-3

The critical values �1.96 and 1.96 can also be read from Table 7-1.
To express this decision rule in terms of the number of heads to be obtained in 64 tosses of the coin,

note that the mean and standard deviation of the exact binomial distribution of heads are given by

under the hypothesis that the coin is fair. Then Z � (X � ) � (X � 32) 4.>s>m
m � np � 64(0.5) � 32  and  s � !npq � !64(0.5)(0.5) � 4



If Z � 1.96, (X � 32) 4 � 1.96 or X � 39.84. If Z � �l.96, (X � 32) 4 � �1.96 or X � 24.16.
Therefore, the decision rule becomes:

(1) Accept the hypothesis that the coin is fair if the number of heads is between 24.16 and 39.84, i.e.,
between 25 and 39 inclusive.

(2) Reject the hypothesis otherwise.

Second method
With probability 0.95, the number of heads will lie between � 1.96 and � 1.96 , i.e.,

or between and , which leads to the
above decision rule.

Third method
is equivalent to . Consequently 

or , i.e., , which also leads to the above
decision rule.

(b) If the level of significance is 0.01, each shaded area in Fig. 7-3 is 0.005. Then the area between 0 
and z1 is 0.5000 � 0.0050 � 0.4950, and z1 � 2.58 (more exactly, 2.575). This can also be read from
Table 7-1.

Following the procedure in the second method of part (a), we see that with probability 0.99 the
number of heads will lie between � 2.58 and � 2.58 , i.e., 32 � 2.58(4) � 21.68 and

.
Therefore, the decision rule becomes:

(1) Accept the hypothesis if the number of heads is between 22 and 42 inclusive.

(2) Reject the hypothesis otherwise.

7.4. How could you design a decision rule in Problem 7.3 so as to avoid a Type II error?

A Type II error is made by accepting a hypothesis when it should be rejected. To avoid this error, instead of
accepting the hypothesis we simply do not reject it, which could mean that we are withholding any decision in
this case. For example, we could word the decision rule of Problem 7.3(b) as:

(1) Do not reject the hypothesis if the number of heads is between 22 and 42 inclusive.

(2) Reject the hypothesis otherwise.

In many practical instances, however, it is important to decide whether a hypothesis should be accepted or
rejected. A complete discussion of such cases requires consideration of Type II errors (see Problems 7.23 
to 7.25).

7.5. In an experiment on extrasensory perception (ESP) a subject in one room is asked to state the color (red or
blue) of a card chosen from a deck of 50 well-shuffled cards by an individual in another room. It is un-
known to the subject how many red or blue cards are in the deck. If the subject identifies 32 cards correctly,
determine whether the results are significant at the (a) 0.05, (b) 0.01 level of significance. (c) Find and in-
terpret the P value of the test.

If p is the probability of the subject stating the color of a card correctly, then we have to decide between the
following two hypotheses:

H0: p � 0.5, and the subject is simply guessing, i.e., results are due to chance

H1: p � 0.5, and the subject has powers of ESP.

We choose a one-tailed test, since we are not interested in ability to obtain extremely low scores but rather in
ability to obtain high scores.

If the hypothesis H0 is true, the mean and standard deviation of the number of cards identified correctly is
given by

m � np � 50(0.5) � 25  and  s � !npq � !50(0.5)(0.5) � !12.5 � 3.54

32 � 2.58(4) � 42.32
smsm

24.16 � X � 39.8432 � 1.96(4) � X � 32 � 1.96(4)1.96(4)
�1.96(4) � (X � 32) ��1.96 � (X � 32)>4 � 1.96�1.96 � Z � 1.96

32 � 1.96(4) � 39.8432 � 1.96(4) � 24.16and np � 1.96!npq
np � 1.96!npqsmsm

>>
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(a) For a one-tailed test at a level of significance of 0.05, we must choose z1 in Fig. 7-4 so that the shaded area in
the critical region of high scores is 0.05. Then the area between 0 and z1 is 0.4500, and z1 � 1.645. This can
also be read from Table 7-1.
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Fig. 7-4

Therefore, our decision rule or test of significance is:

(1) If the z score observed is greater than 1.645, the results are significant at the 0.05 level and the individual
has powers of ESP.

(2) If the z score is less than 1.645, the results are due to chance, i.e., not significant at the 0.05 level.

Since 32 in standard units is (32 � 25) 3.54 � 1.98, which is greater than 1.645, decision (1) holds, i.e.,
we conclude at the 0.05 level that the individual has powers of ESP.

Note that we should really apply a continuity correction, since 32 on a continuous scale is between 31.5 and
32.5. However, 31.5 has a standard score of (31.5 � 25) 3.54 � 1.84, and so the same conclusion is reached.

(b) If the level of significance is 0.01, then the area between 0 and z1 is 0.4900, and z1 � 2.33. Since 32 (or 31.5)
in standard units is 1.98 (or 1.84), which is less than 2.33, we conclude that the results are not significant at
the 0.01 level.

Some statisticians adopt the terminology that results significant at the 0.01 level are highly significant,
results significant at the 0.05 level but not at the 0.01 level are probably significant, while results significant
at levels larger than 0.05 are not significant.

According to this terminology, we would conclude that the above experimental results are probably
significant, so that further investigations of the phenomena are probably warranted.

(c) The P value of the test is the probability that the colors of 32 or more cards would, in a random selection, be
identified correctly. The standard score of 32, taking into account the continuity correction is z � 1.84.
Therefore the P value is P( ) � 0.032. The statistician could say that on the basis of the experiment,
the chances of being wrong in concluding that the individual has powers of ESP are about 3 in 100.

7.6. The manufacturer of a patent medicine claimed that it was 90% effective in relieving an allergy for a period
of 8 hours. In a sample of 200 people who had the allergy, the medicine provided relief for 160 people. 
(a) Determine whether the manufacturer’s claim is legitimate by using 0.01 as the level of significance. 
(b) Find the P value of the test.

(a) Let p denote the probability of obtaining relief from the allergy by using the medicine. Then we must decide
between the two hypotheses:

H0: p � 0.9, and the claim is correct

H1: p � 0.9, and the claim is false

We choose a one-tailed test, since we are interested in determining whether the proportion of people
relieved by the medicine is too low.

If the level of significance is taken as 0.01, i.e., if the shaded area in Fig. 7-5 is 0.01, then z1 � �2.33 as
can be seen from Problem 7.5(b) using the symmetry of the curve, or from Table 7-1.

Z � 1.84

>

>

Fig. 7-5



We take as our decision rule:

(1) The claim is not legitimate if Z is less than �2.33 (in which case we reject H0).

(2) Otherwise, the claim is legitimate, and the observed results are due to chance (in which case we 
accept H0).

If H0 is true, � np � 200(0.9) � 180 and s � !npq � !(200)(0.9)(0.1) � 4.23.m
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Now 160 in standard units is (160 � 180) 4.23 � �4.73, which is much less than �2.33. Thus by our
decision rule we conclude that the claim is not legitimate and that the sample results are highly significant
(see end of Problem 7.5).

(b) The P value of the test is P , which shows that the claim is almost certainly false. That is, if
H0 were true, it is almost certain that a random sample of 200 allergy sufferers who used the medicine would
include more than 160 people who found relief.

7.7. The mean lifetime of a sample of 100 fluorescent light bulbs produced by a company is computed to be
1570 hours with a standard deviation of 120 hours. If is the mean lifetime of all the bulbs produced by the
company, test the hypothesis hours against the alternative hypothesis hours, using a
level of significance of (a) 0.05 and (b) 0.01. (c) Find the P value of the test.

We must decide between the two hypotheses

H0: hours H1: hours

A two-tailed test should be used here since includes values both larger and smaller than 1600.

(a) For a two-tailed test at a level of significance of 0.05, we have the following decision rule:

(1) Reject H0 if the z score of the sample mean is outside the range to 1.96.

(2) Accept H0 (or withhold any decision) otherwise.

The statistic under consideration is the sample mean . The sampling distribution of X has a mean
and standard deviation where and are the mean and standard deviation of the

population of all bulbs produced by the company.
Under the hypothesis H0, we have � 1600 and using the sample

standard deviation as an estimate of . Since ( lies
outside the range to 1.96, we reject H0 at a 0.05 level of significance.

(b) If the level of significance is 0.01, the range to 1.96 in the decision rule of part (a) is replaced by 
to 2.58. Then since the z score of lies inside this range, we accept H0 (or withhold any

decision) at a 0.01 level of significance.

(c) The P value of the two-tailed test is , which is the probability that
a mean lifetime of less than 1570 hours or more than 1630 hours would occur by chance if H0 were true.

7.8. In Problem 7.7 test the hypothesis hours against the alternative hypothesis hours, using
a level of significance of (a) 0.05, (b) 0.01. (c) Find the P value of the test.

We must decide between the two hypotheses

H0: hours H1: hours

A one-tailed test should be used here (see Fig. 7-5).

(a) If the level of significance is 0.05, the shaded region of Fig. 7-5 has an area of 0.05, and we find that 
z1 � �1.645. We therefore adopt the decision rule:

(1) Reject H0 if Z is less than �1.645.

(2) Accept H0 (or withhold any decision) otherwise.

Since, as in Problem 7.7(a), the z score is �2.50, which is less than �1.645, we reject H0 at a 0.05 level of
significance. Note that this decision is identical with that reached in Problem 7.7(a) using a two-tailed test.

m � 1600m � 1600

m � 1600m � 1600

P(Z � �2.50) � P(Z � 2.50) � 0.0124

�2.50�2.58
�1.96

�1.96
� 1600)>12 � (1570 � 1600)>12 � �2.50X#Z �s

s X � s>!n � 120>!100 � 12,m

sms X � s>!n,m X � m

X#

�1.96

m 2 1600

m 2 1600m � 1600

m 2 1600m � 1600
m

(Z � �4.73) < 0

>



(b) If the level of significance is 0.01, the z1 value in Fig. 7-5 is �2.33. Hence we adopt the decision rule:

(1) Reject H0 if Z is less than �2.33.

(2) Accept H0 (or withhold any decision) otherwise.

Since, as in Problem 7.7(a), the z score is �2.50, which is less than �2.33, we reject H0 at a 0.01 level of
significance. Note that this decision is not the same as that reached in Problem 7.7(b) using a two-tailed test.

It follows that decisions concerning a given hypothesis H0 based on one-tailed and two-tailed tests are not
always in agreement. This is, of course, to be expected since we are testing H0 against a different alternative
in each case.

(c) The P value of the test is P(Z � 1570) � 0.0062, which is the probability that a mean lifetime of less than
1570 hours would occur by chance if H0 were true.

7.9. The breaking strengths of cables produced by a manufacturer have mean 1800 lb and standard deviation 100 lb.
By a new technique in the manufacturing process it is claimed that the breaking strength can be increased.
To test this claim, a sample of 50 cables is tested, and it is found that the mean breaking strength is 1850 lb.
(a) Can we support the claim at a 0.01 level of significance? (b) What is the P value of the test?

(a) We have to decide between the two hypotheses

H0: � 1800 lb, and there is really no change in breaking strength

H1: u � 1800 lb, and there is a change in breaking strength

A one-tailed test should be used here (see Fig. 7-4). At a 0.01 level of significance the decision rule is:

(1) If the z score observed is greater than 2.33, the results are significant at the 0.01 level and H0 is rejected.

(2) Otherwise H0 is accepted (or the decision is withheld).

Under the hypothesis that H0 is true, we find

which is greater than 2.33. Hence we conclude that the results are highly significant and the claim should be
supported.

(b) The P value of the test is P(Z 3.55) � 0.0002, which is the probability that a mean breaking strength of
1850 lb or more would occur by chance if H0 were true.

Tests involving differences of means and proportions
7.10. An examination was given to two classes consisting of 40 and 50 students, respectively. In the first class

the mean grade was 74 with a standard deviation of 8, while in the second class the mean grade was 78
with a standard deviation of 7. Is there a significant difference between the performance of the two classes
at a level of significance of (a) 0.05, (b) 0.01? (c) What is the P value of the test?

Suppose the two classes come from two populations having the respective means 1 and 2. Then we have to
decide between the hypotheses

H0: , and the difference is merely due to chance

H1: , and there is a significant difference between classes

Under the hypothesis H0, both classes come from the same population. The mean and standard deviation of
the difference in means are given by

where we have used the sample standard deviations as estimates of 1 and 2.ss
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Then

(a) For a two-tailed test, the results are significant at a 0.05 level if Z lies outside the range �1.96 to 1.96.
Hence we conclude that at a 0.05 level there is a significant difference in performance of the two classes
and that the second class is probably better.

(b) For a two-tailed test the results are significant at a 0.01 level if Z lies outside the range �2.58 and 2.58.
Hence we conclude that at a 0.01 level there is no significant difference between the classes.

Since the results are significant at the 0.05 level but not at the 0.01 level, we conclude that the results are
probably significant, according to the terminology used at the end of Problem 7.5.

(c) The P value of the two-tailed test is , which is the probability
that the observed statistics would occur in the same population.

7.11. The mean height of 50 male students who showed above-average participation in college athletics was 68.2
inches with a standard deviation of 2.5 inches, while 50 male students who showed no interest in such par-
ticipation had a mean height of 67.5 inches with a standard deviation of 2.8 inches. (a) Test the hypothesis
that male students who participate in college athletics are taller than other male students. (b) What is the 
P value of the test?

(a) We must decide between the hypotheses

H0: , and there is no difference between the mean heights

H1: , and mean height of first group is greater than that of second group

Under the hypothesis H0,

where we have used the sample standard deviations as estimates of 1 and 2.

Then

On the basis of a one-tailed test at a level of significance of 0.05, we would reject the hypothesis H0 if
the z score were greater than 1.645. We therefore cannot reject the hypothesis at this level of significance.

It should be noted, however, that the hypothesis can be rejected at a level of 0.10 if we are willing to
take the risk of being wrong with a probability of 0.10, i.e., 1 chance in 10.

(b) The P value of the test is , which is the probability that the observed positive
difference between mean heights of male athletes and other male students would occur by chance if H0

were true.

7.12. By how much should the sample size of each of the two groups in Problem 7.11 be increased in order that
the observed difference of 0.7 inch in the mean heights be significant at the level of significance (a) 0.05,
(b) 0.01?

Suppose the sample size of each group is n and that the standard deviations for the two groups remain the same.
Then under the hypothesis H0 we have and

For an observed difference in mean heights of 0.7 inch,
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X# 1 � X# 2
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(a) The observed difference will be significant at a 0.05 level if

Therefore, we must increase the sample size in each group by at least 78 � 50 � 28.

(b) The observed difference will be significant at a 0.01 level if

Hence, we must increase the sample size in each group by at least 157 � 50 � 107.

7.13. Two groups, A and B, each consist of 100 people who have a disease. A serum is given to Group A but not
to Group B (which is called the control group); otherwise, the two groups are treated identically. It is found
that in Groups A and B, 75 and 65 people, respectively, recover from the disease. Test the hypothesis that
the serum helps to cure the disease using a level of significance of (a) 0.01, (b) 0.05, (c) 0.10. (d) Find the
P value of the test.

Let p1 and p2 denote, respectively, the population proportions cured by (1) using the serum, (2) not using the
serum. We must decide between the two hypotheses

H0: p1 � p2, and observed differences are due to chance, i.e., the serum is ineffective

H1: p1 � p2, and the serum is effective

Under the hypothesis H0,

where we have used as an estimate of p the average proportion of cures in the two sample groups, given by
(75 � 65) 200 � 0.70, and where q � 1 � p � 0.30. Then

(a) On the basis of a one-tailed test at a 0.01 level of significance, we would reject the hypothesis H0 only if the
z score were greater than 2.33. Since the z score is only 1.54, we must conclude that the results are due to
chance at this level of significance.

(b) On the basis of a one-tailed test at a 0.05 level of significance, we would reject H0 only if the z score were
greater than 1.645. Hence, we must conclude that the results are due to chance at this level also.

(c) If a one-tailed test at a 0.10 level of significance were used, we would reject H0 only if the z score were
greater than 1.28. Since this condition is satisfied, we would conclude that the serum is effective at a 0.10
level of significance.

(d) The P value of the test is , which is the probability that a z score of 1.54 or higher in
favor of the user group would occur by chance if H0 were true.

Note that our conclusions above depended on how much we were willing to risk being wrong. If results are
actually due to chance and we conclude that they are due to the serum (Type I error), we might proceed to give
the serum to large groups of people, only to find then that it is actually ineffective. This is a risk that we are not
always willing to assume.

On the other hand, we could conclude that the serum does not help when it actually does help (Type II
error). Such a conclusion is very dangerous, especially if human lives are at stake.

7.14. Work Problem 7.13 if each group consists of 300 people and if 225 people in Group A and 195 people in
Group B are cured.

P(Z � 1.54) � 0.0618
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sP1�P2

�
0.750 � 0.650

0.0648 � 1.54

>

mP1�P2
� 0  sP1�P2

� ApqQ 1
n1

�
1
n2
R � A(0.70)(0.30)Q 1

100 �
1

100R � 0.0648

0.7!n
3.75  � 2.33 or !n � 12.5 or n � 157

0.7!n
3.75  � 1.645 or !n � 8.8 or n � 78

CHAPTER 7 Tests of Hypotheses and Significance 229



In this case the proportions of people cured in the two groups are, respectively, 225 300 � 0.750 and 195 300 �
0.650, which are the same as in Problem 7.13. Under the hypothesis H0,

where (225 � 195) 600 � 0.70 is used as an estimate of p. Then

Since this value of z is greater than 2.33, we can reject the hypothesis at a 0.01 level of significance, i.e., we
can conclude that the serum is effective with only a 0.01 probability of being wrong. Here the P value of the
test is .

This shows how increasing the sample size can increase the reliability of decisions. In many cases, however,
it may be impractical to increase sample sizes. In such cases we are forced to make decisions on the basis of
available information and so must contend with greater risks of incorrect decisions.

7.15. A sample poll of 300 voters from district A and 200 voters from district B showed that 56% and 48%,
respectively, were in favor of a given candidate. At a level of significance of 0.05, test the hypothesis that
(a) there is a difference between the districts, (b) the candidate is preferred in district A. (c) Find the
respective P values of the test.

Let p1 and p2 denote the proportions of all voters of districts A and B, respectively, who are in favor of the
candidate.

Under the hypothesis H0: p1 � p2, we have

where we have used as estimates of p and q the values and
. Then

(a) If we wish to determine only whether there is a difference between the districts, we must decide between
the hypotheses H0: p1 � p2 and H1: p1 p2, which involves a two-tailed test.

On the basis of a two-tailed test at a 0.05 level of significance, we would reject H0 if Z were outside the
interval �1.96 to 1.96. Since Z � 1.75 lies inside this interval, we cannot reject H0 at this level, i.e., there is
no significant difference between the districts.

(b) If we wish to determine whether the candidate is preferred in district A, we must decide between the
hypotheses H0: p1 � p2 and H0: p1 � p2, which involves a one-tailed test.

On the basis of a one-tailed test at a 0.05 level of significance, we would reject H0 if Z were greater than
1.645. Since this is the case, we can reject H0 at this level and conclude that the candidate is preferred in
district A.

(c) In part (a), the P value is , and the P value in part (b) is
.

Tests involving student’s t distribution
7.16. In the past a machine has produced washers having a mean thickness of 0.050 inch. To determine whether

the machine is in proper working order a sample of 10 washers is chosen for which the mean thickness is
0.053 inch and the standard deviation is 0.003 inch. Test the hypothesis that the machine is in proper work-
ing order using a level of significance of (a) 0.05, (b) 0.01. (c) Find the P value of the test.
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We wish to decide between the hypotheses

H0: , and the machine is in proper working order

H1: , and the machine is not in proper working order

so that a two-tailed test is required.

Under the hypothesis H0, we have 

(a) For a two-tailed test at a 0.05 level of significance, we adopt the decision rule:

(1) Accept H0 if T lies inside the interval �t0.975 to t0.975, which for 10 � 1 � 9 degrees of freedom is the
interval �2.26 to 2.26.

(2) Reject H0 otherwise.

Since T � 3.00, we reject H0 at the 0.05 level.

(b) For a two-tailed test at a 0.01 level of significance, we adopt the decision rule:

(1) Accept H0 if T lies inside the interval �t0.995 to t0.995, which for 10 � 1 � 9 degrees of freedom is the
interval �3.25 to 3.25.

(2) Reject H0 otherwise.

Since T � 3.00, we accept H0 at the 0.01 level.
Because we can reject H0 at the 0.05 level but not at the 0.01 level, we can say that the sample result is

probably significant (see terminology at the end of Problem 7.5). It would therefore be advisable to check
the machine or at least to take another sample.

(c) The P value is . The table in Appendix D shows that 0.01 � P � 0.02. Using
computer software, we find .

7.17. A test of the breaking strengths of 6 ropes manufactured by a company showed a mean breaking strength
of 7750 lb and a standard deviation of 145 lb, whereas the manufacturer claimed a mean breaking strength
of 8000 lb. Can we support the manufacturér’s claim at a level of significance of (a) 0.05, (b) 0.01? (c) What
is the P value of the test?

We must decide between the hypotheses

H0: lb, and the manufacturer’s claim is justified

H1: lb, and the manufacturer’s claim is not justified

so that a one-tailed test is required.
Under the hypothesis H0, we have

(a) For a one-tailed test at a 0.05 level of significance, we adopt the decision rule:

(1) Accept H0 if T is greater than �t0.95, which for 6 � 1 � 5 degrees of freedom means T � �2.01.

(2) Reject H0 otherwise.

Since T � �3.86, we reject H0.

(b) For a one-tailed test at a 0.01 level of significance, we adopt the decision rule:

(1) Accept H0 if T is greater than �t0.99, which for 5 degrees of freedom means T � �3.36.

(2) Reject H0 otherwise.

Since T � �3.86, we reject H0.
We conclude that it is extremely unlikely that the manufacturer’s claim is justified.

(c) The P value is . The table in Appendix D shows 0.005 � P � 0.01. By computer software,
.P � 0.006

P(T � �3.86)

T �
X# � m

S !n � 1 �
7750 � 8000

145 !6 � 1 � �3.86.

m � 8000

m � 8000

P � 0.015
P(T � 3) � P(T � �3)

T �
X# � m

S !n � 1 �
0.053 � 0.050

0.003 !10 � 1 � 3.00.

m 2 0.050

m � 0.050

CHAPTER 7 Tests of Hypotheses and Significance 231



7.18. The IQs (intelligence quotients) of 16 students from one area of a city showed a mean of 107 with a stan-
dard deviation of 10, while the IQs of 14 students from another area of the city showed a mean of 112 with
a standard deviation of 8. Is there a significant difference between the IQs of the two groups at a (a) 0.01,
(b) 0.05 level of significance? (c) What is the P value of the test?

If 1 and 2 denote population mean IQs of students from the two areas, we have to decide between the
hypotheses

H0: , and there is essentially no difference between the groups

H1: , and there is a significant difference between the groups

Under the hypothesis H0,

Then

(a) On the basis of a two-tailed test at a 0.01 level of significance, we would reject H0 if T were outside the
range �t0.995 to t0.995, which, for n1 � n2 � 2 � 16 � 14 � 2 � 28 degrees of freedom, is the range �2.76
to 2.76.

Therefore, we cannot reject H0 at a 0.01 level of significance.

(b) On the basis of a two-tailed rest at a 0.05 level of significance, we would reject H0 if T were outside the
range �t0.975 to t0.975, which for 28 degrees of freedom is the range �2.05 to 2.05.

Therefore, we cannot reject H0 at a 0.05 level of significance. We conclude that there is no significant
difference between the IQs of the two groups.

(c) The P value is . The table in Appendix D shows 0.1 � P � 0.2. By computer
software, .

7.19. At an agricultural station it was desired to test the effect of a given fertilizer on wheat production. To
accomplish this, 24 plots of land having equal areas were chosen; half of these were treated with the fertilizer
and the other half were untreated (control group). Otherwise the conditions were the same. The mean yield
of wheat on the untreated plots was 4.8 bushels with a standard deviation of 0.40 bushels, while the mean
yield on the treated plots was 5.1 bushels with a standard deviation of 0.36 bushels. Can we conclude that
there is a significant improvement in wheat production because of the fertilizer if a significance level of
(a) 1%, (b) 5% is used? (c) What is the P value of the test?

If 1 and 2 denote population mean yields of wheat on treated and untreated land, respectively, we have to
decide between the hypotheses

H0: , and the difference is due to chance

H1: , and the fertilizer improves the yield

Under the hypothesis H0,

Then
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(a) On the basis of a one-tailed test at a 0.01 level of significance, we would reject H0 if T were greater than
t0.99, which, for n1 � n2 � 2 � 12 � 12 � 2 � 22 degrees of freedom, is 2.51.

Therefore, we cannot reject H0 at a 0.01 level of significance.

(b) On the basis of one-tailed test at a 0.05 level of significance, we would reject H0 if T were greater than t0.95,
which for 22 degrees of freedom is 1.72.

Therefore, we can reject H0 at a 0.05 level of significance.
We conclude that the improvement in yield of wheat by use of the fertilizer is probably significant.

However before definite conclusions are drawn concerning the usefulness of the fertilizer, it may be
desirable to have some further evidence.

(c) The P value is . The table in Appendix D shows 0.025 � P � 0.05. By computer software,
.

Tests involving the chi-square distribution
7.20. In the past the standard deviation of weights of certain 40.0 oz packages filled by a machine was 0.25 oz.

A random sample of 20 packages showed a standard deviation of 0.32 oz. Is the apparent increase in vari-
ability significant at the (a) 0.05, (b) 0.01 level of significance? (c) What is the P value of the test?

We have to decide between the hypotheses

H0: oz and the observed result is due to chance

H1: oz and the variability has increased

The value of for the sample is .

(a) Using a one-tailed test, we would reject H0 at a 0.05 level of significance if the sample value of were
greater than which equals 30.1 for degrees of freedom. Therefore, we would reject
H0 at a 0.05 level of significance.

(b) Using a one-tailed test, we would reject H0 at a 0.01 level of significance if the sample value of were
greater than which equals 36.2 for 19 degrees of freedom. Therefore, we would not reject H0 at a 0.01
level of significance.

We conclude that the variability has probably increased. An examination of the machine should be made.

(c) The P value is . The table in Appendix E shows 0.025 � P � 0.05. By computer software,
.

Tests involving the F distribution
7.21. An instructor has two classes, A and B, in a particular subject. Class A has 16 students while class B has

25 students. On the same examination, although there was no significant difference in mean grades, class
A had a standard deviation of 9 while class B had a standard deviation of 12. Can we conclude at the 
(a) 0.01, (b) 0.05 level of significance that the variability of class B is greater than that of A? (c) What is
the P value of the test?

(a) We have, on using subscripts 1 and 2 for classes A and B, respectively, s1 � 9, s2 � 12 so that

We have to decide between the hypotheses

H0: , and any observed variability is due to chance

H1: , and the variability of class B is greater than that of A

The decision must therefore be based on a one-tailed test of the F distribution. For the samples in question,

F �
s^2

2

s^2
1

�
150
86.4 � 1.74

s2 � s1

s1 � s2

s^2
2 �

n2

n2 �  1   s2
2 �

25
24  (12)2 � 150s^2

1 �  
n1

n1 �  1   s2
1 �  

16
15  (9)2 � 86.4,

P � 0.0253
P(x2 � 32.8)

x2
0.99,

x2

n � 20 � 1 � 19x2
0.95,

x2

x2 � ns2>s2 � 20(0.32)2>(0.25)2 � 32.8x2

s � 0.25

s � 0.25

P � 0.039
P(T � 1.85)
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The number of degrees of freedom associated with the numerator is ; for the denominator,r2 � 25 � 1 � 24
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Fig. 7-6

If the probability of heads is p � 0.7, then the distribution of heads in 100 tosses is represented by the
normal curve to the right in Fig. 7-6. The probability of accepting H0 when actually (i.e., the probability
of a Type II error) is given by the cross-hatched area . To compute this area, we observe that the distribution
under the hypothesis has mean and standard deviation given by

� np � (100)(0.7) � 70

60.5 in standard units

39.5 in standard units

Then � area under the standard normal curve between z � �6.66 and z � �2.07 � 0.0192.
Therefore, with the given decision rule there is very little chance of accepting the hypothesis that the coin is

fair when actually p � 0.7.
Note that in this problem we were given the decision rule from which we computed and . In practice two

other possibilities may arise:
ba

b

�
39.5 �  70

4.58 � �6.66

�  
60.5 �  70

4.58 � �2.07

s � !npq � !(100)(0.7)(0.3) � 4.58m

p � 0.7
b

p � 0.7

r1 � 16 � 1 � 15. At the 0.01 level for 24, 15 degrees of freedom we have from Appendix F, F0.99 � 3.29.
Then, since F � F0.99, we cannot reject H0 at the 0.01 level.

(b) Since F0.95 � 2.29 for 24, 15 degrees of freedom (see Appendix F), we see that F � F0.95. Thus we cannot
reject H0 at the 0.05 level either.

(c) The P value of the test is . The tables in Appendix F show that P � 0.05. By computerP(F � 1.74)
software, P � 0.134.

7.22. In Problem 7.21 would your conclusions be changed if it turned out that there was a significant difference
in the mean grades of the classes? Explain your answer.

Since the actual mean grades were not used at all in Problem 7.21, it makes no difference what they are. This is
to be expected in view of the fact that we are not attempting to decide whether there is a difference in mean
grades, but only whether there is a difference in variability of the grades.

Operating characteristic curves
7.23. Referring to Problem 7.2, what is the probability of accepting the hypothesis that the coin is fair when the

actual probability of heads is p � 0.7?

The hypothesis H0 that the coin is fair, i.e., p � 0.5, is accepted when the number of heads in 100 tosses lies
between 39.5 and 60.5. The probability of rejecting H0 when it should be accepted (i.e., the probability of a
Type I error) is represented by the total area of the shaded region under the normal curve to the left in Fig. 7-6.
As computed in Problem 7.2(a), this area , which represents the level of significance of the test of H0, is equal
to 0.0358.

a

a



(1) We decide on (such as 0.05 or 0.01), arrive at a decision rule, and then compute .

(2) We decide on and and then arrive at a decision rule.

7.24. Work Problem 7.23 if (a) p � 0.6, (b) p � 0.8, (c) p � 0.9, (d) p � 0.4.

(a) If p � 0.6, the distribution of heads has mean and standard deviation given by

� np � (100)(0.6) � 60

60.5 in standard units

39.5 in standard units

Then � area under the standard normal curve between z � �4.18 and z � 0.102 � 0.5405
Therefore, with the given decision rule there is a large chance of accepting the hypothesis that the coin

is fair when actually p � 0.6.

(b) If p � 0.8, then � np � (100)(0.8) � 80 and 

60.5 in standard units

39.5 in standard units

Then � area under the standard curve between z � �10.12 and z � �4.88 � 0.0000, very closely.

(c) From comparison with (b) or by calculation, we see that if p � 0.9, � 0 for all practical purposes.

(d) By symmetry, p � 0.4 yields the same value of as p � 0.6, i.e., � 0.5405.

7.25. Represent the results of Problems 7.23 and 7.24 by constructing a graph of (a) vs. p, (b) (1 � ) vs. p.
Interpret the graphs obtained.

Table 7-3 shows the values of corresponding to given values of p as obtained in Problems 7.23 and 7.24.
Note that represents the probability of accepting the hypothesis when actually p is a value 

other than 0.5. However, if it is actually true that , we can interpret as the probability of accepting
when it should be accepted. This probability equals and has been entered into

Table 7-3.
1 � 0.0358 � 0.9642p � 0.5

bp � 0.5
p � 0.5b

b

bb

bb

b

b

�  
39.5 �  80

4 � �10.12

�  
60.5 �  80

4 � �4.88

s �  !npq � !(100)(0.08)(0.2) � 4.m

b

�  
39.5 �  60

4.90 � �4.18

�  
60.5 �  60

4.90 � 0.102

s � !npq �  !(100)(0.6)(0.4) � 4.90m

ba

ba
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p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0000 0.0000 0.0192 0.5405 0.9642 0.5405 0.0192 0.0000 0.0000b

(a) The graph of vs. p, shown in Fig. 7-7(a), is called the operating characteristic curve, or OC curve, of the
decision rule or test of hypotheses.

The distance from the maximum point of the OC curve to the line is equal to , the
level of significance of the test.

In general, the sharper the peak of the OC curve the better is the decision rule for rejecting hypotheses
that are not valid.

(b) The graph of (1 � ) vs. p, shown in Fig. 7-7(b), is called the power curve of the decision rule or test of
hypotheses. This curve is obtained simply by inverting the OC curve, so that actually both graphs are
equivalent.

The quantity 1 � is often called a power function since it indicates the ability or power of a test to
reject hypotheses which are false, i.e., should be rejected. The quantity is also called the operating
characteristic function of a test.

b

b

b

a � 0.0358b � 1

b

Table 7-3



7.26. A company manufactures rope whose breaking strengths have a mean of 300 lb and standard deviation 24 lb.
It is believed that by a newly developed process the mean breaking strength can be increased, (a) Design a de-
cision rule for rejecting the old process at a 0.01 level of significance if it is agreed to test 64 ropes, (b) Under
the decision rule adopted in (a), what is the probability of accepting the old process when in fact the new
process has increased the mean breaking strength to 310 lb? Assume that the standard deviation is still 24 lb.

(a) If is the mean breaking strength, we wish to decide between the hypotheses

H0: lb, and the new process is equivalent to the old one

H1: lb, and the new process is better than the old one

For a one-tailed test at a 0.01 level of significance, we have the following decision rule (refer to Fig. 7-8):

(1) Reject H0 if the z score of the sample mean breaking strength is greater than 2.33.

(2) Accept H0 otherwise.

Since Then if 

Therefore, the above decision rule becomes:

(1) Reject H0 if the mean breaking strength of 64 ropes exceeds 307.0 lb.

(2) Accept H0 otherwise.

Z � 2.33, X# � 300 � 3(2.33) �  307.0 lb.Z �
X#  �  m

s>!n
�

X#  �  300
24>!64

, X# � 300 � 3z.

m � 300

m � 300

m
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Fig. 7-8 Fig. 7-9

(b) Consider the two hypotheses (H0: lb) and (H1: lb). The distributions of breaking
strengths corresponding to these two hypotheses are represented respectively by the left and right normal
distributions of Fig. 7-9.

The probability of accepting the old process when the new mean breaking strength is actually 310 lb is
represented by the region of area in Fig. 7-9. To find this, note that 307.0 lb in standard units is 

; hence

� area under right-hand normal curve to left of z � �1.00 � 0.1587b

3 � �1.00>(307.0 � 310)
b

m � 310m � 300

Fig. 7-7



This is the probability of accepting (H0: lb) when actually (H1: 1b) is true, i.e., it is the
probability of making a Type II error.

7.27. Construct (a) an OC curve, (b) a power curve for Problem 7.26, assuming that the standard deviation of
breaking strengths remains at 24 lb.

By reasoning similar to that used in Problem 7.26(b), we can find for the cases where the new process yields
mean breaking strengths equal to 305 lb, 315 lb, etc. For example, if lb, then 307.0 lb in standard
units is , and hence

� area under right hand normal curve to left of z � 0.67 � 0.7486

In this manner Table 7-4 is obtained.

b

(307.0 � 305)>3 � 0.67
m � 305m

b

m � 310m � 300
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290 295 300 305 310 315 320

1.0000 1.0000 0.9900 0.7486 0.1587 0.0038 0.0000b

m

(a) The OC curve is shown in Fig. 7-10(a). From this curve we see that the probability of keeping the old
process if the new breaking strength is less than 300 lb is practically 1 (except for the level of significance
of 0.01 when the new process gives a mean of 300 lb). It then drops rather sharply to zero so that there is
practically no chance of keeping the old process when the mean breaking strength is greater than 315 lb.

(b) The power curve shown in Fig. 7-10(b) is capable of exactly the same interpretation as that for the OC
curve. In fact the two curves are essentially equivalent.

Table 7-4

Fig. 7-10

7.28. To test the hypothesis that a coin is fair (i.e., p � 0.5) by a number of tosses of the coin, we wish to im-
pose the following restrictions: (A) the probability of rejecting the hypothesis when it is actually correct
must be 0.05 at most; (B) the probability of accepting the hypothesis when actually p differs from 0.5 by
0.1 or more (i.e., or ) must be 0.05 at most. Determine the minimum sample size that is
necessary and state the resulting decision rule.

Here we have placed limits on the risks of Type I and Type II errors. For example, the imposed restriction (A)
requires that the probability of a Type I error is at most, while restriction (B) requires that the
probability of a Type II error is at most. The situation is illustrated graphically in Fig. 7-11.b � 0.05

a � 0.05

p � 0.4p � 0.6

Fig. 7-11



Let n denote the required sample size and x the number of heads in n tosses above which we reject the
hypothesis p � 0.5. From Fig. 7-11,

(1) Area under normal curve for p � 0.5 to right of is 0.025.

(2) Area under normal curve for p � 0.6 to left of is 0.05.

Actually, we should have equated the area between 

and

to 0.05; however (2) is a close approximation. Notice that by making the acceptance probability 0.05 in the
“worst case,” p � 0.6, we automatically make it 0.05 or less when p has any other value outside the range 0.4 to
0.6. Hence, a weighted average of all these probabilities, which represents the probability of a Type II error,
will also be 0.05 or less.

From (1), or (3)

From (2), or (4) 

Then from (3) and (4), n � 318.98. It follows that the sample size must be at least 319, i.e., we must toss the
coin at least 319 times. Putting n � 319 in (3) or (4), x � 177.

For p � 0.5, x � np � 177 � 159.5 � 17.5. Therefore, we adopt the following decision rule:

(a) Accept the hypothesis p � 0.5 if the number of heads in 319 tosses is in the range 159.5 17.5, i.e.,
between 142 and 177.

(b) Reject the hypothesis otherwise.

Quality control charts
7.29. A machine is constructed to produce ball bearings having a mean diameter of 0.574 inch and a standard

deviation of 0.008 inch. To determine whether the machine is in proper working order, a sample of 6 ball
bearings is taken every 2 hours and the mean diameter is computed from this sample, (a) Design a deci-
sion rule whereby one can be fairly certain that the quality of the products is conforming to required stan-
dards, (b) Show how to represent graphically the decision rule in (a).

(a) With 99.73% confidence we can say that the sample mean must lie in the range to
or to Since , and , it follows that

with 99.73% confidence the sample mean should lie between and
or between 0.564 and 0.584 inches.

Hence, our decision rule is as follows:

(1) If a sample mean falls inside the range 0.564 to 0.584 inches, assume the machine is in proper working
order.

(2) Otherwise conclude that the machine is not in proper working order and seek to determine the reason.

(b) A record of the sample means can be kept by means of a chart such as shown in Fig. 7-12, called a quality
control chart. Each time a sample mean is computed, it is represented by a point. As long as the points lie
between the lower limit 0.564 inch and upper limit 0.584 inch, the process is under control. When a point
goes outside of these control limits (such as in the third sample taken on Thursday), there is a possibility
that something is wrong and investigation is warranted.

The control limits specified above are called the 99.73% confidence limits, or briefly the 3 limits.
However, other confidence limits, such as 99% or 95% limits, can be determined as well. The choice in
each case depends on particular circumstances.

s

(0.574 � 0.024>!6)
(0.574 � 0.024>!6)

n � 6s � 0.008m � 0.574(m � 3s>!n).(m � 3s>!n)(m X �  3s X)
(m X � 3s X)X#




x � 0.6n � 0.806!n.
x � 0.6n
0.49!n

� �1.645

x � 0.5n �  0.980!n.
x � 0.5n
0.5!n

� 1.96

x �  0.6n
0.49!n

(n �  x) � 0.6n

0.49!n

x �  np

!npq
�

x �  0.6n
0.49!n

x � np

!npq
�

x � 0.5n
0.5!n
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Fitting of data by theoretical distributions
7.30. Fit a binomial distribution to the data of Problem 5.30, page 176.

We have P(x heads in a toss of 5 pennies) � f (x) � 5Cxpxq5–x, where p and q are the respective probabilities of a
head and tail on a single toss of a penny. The mean or expected number of heads is � np � 5p.

For the actual or observed frequency distribution, the mean number of heads is

Equating the theoretical and actual means, 5p � 2.47 or p � 0.494. Therefore, the fitted binomial distribution
is given by f (x) � 5Cx � (0.494)x(0.506)5�x.

In Table 7-5 these probabilities have been listed as well as the expected (theoretical) and actual frequencies.
The fit is seen to be fair. The goodness of fit is investigated in Problem 7.43.

a   fx

a   f
�

(38)(0) � (144)(1) � (342)(2) � (287)(3) � (164)(4) � (25)(5)
1000  �  

2470
1000  � 2.47

m
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Fig. 7-12

Number of Heads Expected Observed
(x) P(x heads) Frequency Frequency

0 0.0332 33.2 or   33 38
1 0.1619 161.9 or 162 144
2 0.3162 316.2 or 316 342
3 0.3087 308.7 or 309 287
4 0.1507 150.7 or 151 164
5 0.0294 29.4 or   29 25

7.31. Use probability graph paper to determine whether the frequency distribution of Table 5-2, page 161, can be
closely approximated by a normal distribution.

First the given frequency distribution is converted into a cumulative relative frequency distribution, as shown in
Table 7-6. Then the cumulative relative frequencies expressed as percentages are plotted against upper class
boundaries on special probability graph paper as shown in Fig. 7-13. The degree to which all plotted points lie
on a straight line determines the closeness of fit of the given distribution to a normal distribution. It is seen that
there is a normal distribution which fits the data closely. See Problem 7.32.

Table 7-5



7.32. Fit a normal curve to the data of Table 5-2, page 161.

s � 2.92 inches

The work may be organized as in Table 7-7. In calculating z for the class boundaries, we use 
where the mean and standard deviations s have been obtained respectively in Problems 5.35 and 5.40.x#

z � (x � x#)>s
x# � 67.45 inches,
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Cumulative
Relative

Height (inches) Frequency (%)

Less than 61.5 5.0

Less than 64.5 23.0

Less than 67.5 65.0

Less than 70.5 92.0

Less than 73.5 100.0

Table 7-6

Fig. 7-13

Class Area under
Heights Boundaries z for Class Normal Curve Area for Expected Observed
(inches) (x) Boundaries from 0 to z Each Class Frequency Frequency

59.5 �2.72 0.4967

62.5 �1.70 0.4554

65.5 �0.67 0.2486

68.5 0.36 0.1406

71.5 1.39 0.4177

74.5 2.41 0.4920

0.0413 4.13 or   4 5

0.2086 20.68 or 21 18

0.3892 38.92 or 39 42

0.2771 27.71 or 28 27

0.0743 7.43 or   7 8

60–62

63–65

66–68

69–71

72–74

s Add S

Table 7-7

In the fourth column, the areas under the normal curve from 0 to z have been obtained by using the table in
Appendix C. From this we find the areas under the normal curve between successive values of z as in the fifth
column. These are obtained by subtracting the successive areas in the fourth column when the corresponding 



z s have the same sign, and adding them when the z s have opposite signs (which occurs only once in the table).
The reason for this is at once clear from a diagram.

Multiplying the entries in the fifth column (which represent relative frequencies) by the total frequency n (in
this case n � 100) yields the theoretical or expected frequencies as in the sixth column. It is seen that they
agree well with the actual or observed frequencies of the last column.

The goodness of fit of the distribution is considered in Problem 7.44.

7.33. Table 7-8 shows the number of days f in a 50-day period during which x automobile accidents occurred in
a city. Fit a Poisson distribution to the data.
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Number of Number of
Accidents (x) Days ( f )

0 21

1 18

2 7

3 3

4 1

Table 7-8

The mean number of accidents is

Then, according to the Poisson distribution,

P(x accidents)

In Table 7-9 are listed the probabilities for 0, 1, 2, 3, and 4 accidents as obtained from this Poisson
distribution, as well as the theoretical number of days during which z accidents take place (obtained by
multiplying the respective probabilities by 50). For convenience of comparison, the fourth column giving the
actual number of days has been repeated.

�
(0.90)xe�0.90

x!

�
45
50 � 0.90

l �
a  fx

a  f
�

(21)(0) � (18)(1) � (7)(2) � (3)(3) � (1)(4)
50

TOTAL             50

Number of Expected Number Actual Number
Accidents (x) P (x accidents) of Days of Days

0 0.4066 20.33 or 20 21

1 0.3659 18.30 or 18 18

2 0.1647 8.24 or 8 7

3 0.0494 2.47 or 2 3

4 0.0111 0.56 or 1 1

Table 7-9

Note that the fit of the Poisson distribution to the data is good.
For a true Poisson distribution, . Computation of the variance of the given distribution gives 0.97.

This compares favorably with the value 0.90 for , which can be taken as further evidence for the suitability of
the Poisson distribution in approximating the sample data.

l

s2 � l



The chi-square test
7.34. In 200 tosses of a coin, 115 heads and 85 tails were observed. Test the hypothesis that the coin is fair using

a level of significance of (a) 0.05, (b) 0.01. (c) Find the P value of the test.

Observed frequencies of heads and tails are, respectively, x1 � 115, x2 � 85.
Expected frequencies of heads and tails if the coin is fair are np1 � 100, np2 � 100, respectively. Then

Since the number of categories or classes (heads, tails) is k � 2, � k � 1 � 2 � 1 � 1.

(a) The critical value for 1 degree of freedom is 3.84. Then since 4.50 � 3.84, we reject the hypothesis
that the coin is fair at a 0.05 level of significance.

(b) The critical value for 1 degree of freedom is 6.63. Then since 4.50 � 6.63, we cannot reject the
hypothesis that the coin is fair at a 0.01 level of significance.

We conclude that the observed results are probably significant and the coin is probably not fair. For a
comparison of this method with previous methods used, see Method 1 of Problem 7.36.

(c) The P value is . The table in Appendix E shows 0.025 � P � 0.05. By computer software,
.

7.35. Work Problem 7.34 using Yates’ correction.

The corrected P value is 0.04
Since 4.205 � 3.84 and 4.205 � 6.63, the conclusions arrived at in Problem 7.34 are valid. For a

comparison with previous methods, see Method 2 of Problem 7.36.

7.36. Work Problem 7.34 by using the normal approximation to the binomial distribution.

Under the hypothesis that the coin is fair, the mean and standard deviation of the number of heads in 200 tosses
of a coin are and 

Method 1

115 heads in standard units � (115 � 100) 7.07 � 2.12.

Using a 0.05 significance level and a two-tailed test, we would reject the hypothesis that the coin is fair if the z
score were outside the interval �1.96 to 1.96. With a 0.01 level the corresponding interval would be �2.58 to
2.58. It follows as in Problem 7.34 that we can reject the hypothesis at a 0.05 level but cannot reject it at a 0.01
level. The P value of the test is 0.034.

Note that the square of the above standard score, (2.12)2 � 4.50, is the same as the value of 2 obtained in
Problem 7.34. This is always the case for a chi-square test involving two categories. See Problem 7.60.

Method 2
Using the correction for continuity, 115 or more heads is equivalent to 114.5 or more heads. Then 114.5 in
standard units � (114.5 � 100) 7.07 � 2.05. This leads to the same conclusions as in the first method. The
corrected P value is 0.04.

Note that the square of this standard score is (2.05)2 � 4.20, agreeing with the value of 2 corrected for
continuity using Yates’ correction of Problem 7.35. This is always the case for a chi-square test involving two
categories in which Yates’ correction is applied, again in consequence of Problem 7.60.

7.37. Table 7-10 shows the observed and expected frequencies in tossing a die 120 times. (a) Test the hypothe-
sis that the die is fair, using a significance level of 0.05. (b) Find the P value of the test.

x

>

x

>

s � !npq � !(200)(0.5)(0.5) � 7.07.m � np � (200)(0.5) � 100

�
( u115 � 100 u � 0.5)2

100 �
( u85 � 100 u � 0.5)2

100 �
(14.5)2

100 �
(14.5)2

100 � 4.205

x2 (corrected) �
(u x � 1 � np1u � 0.5)2

np1
�

(u x2 � np2u � 0.5)2

np2

P � 0.039
P(x2 � 4.50)

x2
0.99

x2
0.95

n

x2 �
(x1 � np1)2

np1
 �  

(x2 � np2)2

np2
�

(115 � 100)2

100  �  
(85 � 100)2

100 � 4.50
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Since the number of categories or classes (faces 1, 2, 3, 4, 5, 6) is k � 6, � k � 1 � 6 � 1 � 5.
The critical value for 5 degrees of freedom is 11.1. Then since 5.00 � 11.1, we cannot reject the

hypothesis that the die is fair.
For 5 degrees of freedom so that � 5.00 � 1.15. It follows that the agreement is not so

exceptionally good that we would look upon it with suspicion.

(b) The P value of the test is . The table in Appendix E shows 0.25 � P � 0.5. By computer
software, .

7.38. A random number table of 250 digits had the distribution of the digits 0, 1, 2, . . . , 9 shown in Table 7-11.
(a) Does the observed distribution differ significantly from the expected distribution? (b) What is the P
value of the observation?

P � 0.42
P(x2 � 5.00)

x2x2
0.05 � 1.15,

x2
0.95

n

�
(25 � 20)2

20 �
(17 � 20)2

20 �
(15 � 20)2

20 �
(23 � 20)2

20 �
(24 � 20)2

20 �
(16 � 20)2

20 � 5.00

x2 �
(x1 � np1)2

np1
�

(x2 � np2)2

np2
�

(x3 � np3)2

np3
�

(x4 � np4)2

np4
�

(x5 � np5)2

np5
�

(x6 � np6)2

np6
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Face 1 2 3 4 5 6

25 17 15 23 24 16

20 20 20 20 20 20

Observed
Frequency

Expected
Frequency

Observed
Frequency

Expected
Frequency

Table 7-10(a)

Digit 0 1 2 3 4 5 6 7 8 9

17 31 29 18 14 20 35 30 20 36

25 25 25 25 25 25 25 25 25 25

Table 7-11

The critical value for � k � 1 � 9 degrees of freedom is 21.7, and 23.3 � 21.7. Hence we
conclude that the observed distribution differs significantly from the expected distribution at the 0.01 level
of significance. Some suspicion is therefore upon the table.

(b) The P value is . The table in Appendix E shows that 0.005 � P � 0.01. By computer
software, .

7.39. In Mendel’s experiments with peas he observed 315 round and yellow, 108 round and green, 101 wrinkled
and yellow, and 32 wrinkled and green. According to his theory of heredity the numbers should be in the
proportion 9:3:3:1. Is there any evidence to doubt his theory at the (a) 0.01, (b) 0.05 level of significance?
(c) What is the P value of the observation?

The total number of peas is 315 � 108 � 101 � 32 � 556. Since the expected numbers are in the proportion 
9:3:3:1 (and 9 � 3 � 3 � 1 � 16), we would expect

round and yellow wrinkled and yellow

round and green wrinkled and green
1

16  (556) � 34.75
3

16  (556) � 104.25

3
16  (556) � 104.25

9
16  (556) � 312.75

P � 0.0056
P(x2 � 23.3)

nx2
0.99

x2 �
(17 � 25)2

25 �
(31 � 25)2

25 �
(29 � 25)2

25 �
(18 � 25)2

25 � c�
(36 � 25)2

25 � 23.3

(a)



Then

Since there are four categories, k � 4 and the number of degrees of freedom is � 4 � 1 � 3.

(a) For so that we cannot reject the theory at the 0.01 level.

(b) For so that we cannot reject the theory at the 0.05 level.

We conclude that the theory and experiment are in agreement.
Note that for 3 degrees of freedom, and . Therefore, although the

agreement is good, the results obtained are subject to a reasonable amount of sampling error.

(c) The P value is . The table in Appendix E shows that 0.9 � P � 0.95. By computer software,
.

7.40. An urn consists of a very large number of marbles of four different colors: red, orange, yellow, and green.
A sample of 12 marbles drawn at random from the urn revealed 2 red, 5 orange, 4 yellow, and 1 green mar-
ble. Test the hypothesis that the urn contains equal proportions of the differently colored marbles, and find
the P value of the sample results.

Under the hypothesis that the urn contains equal proportions of the differently colored marbles, we would
expect 3 of each kind in a sample of 12 marbles.

Since these expected numbers are less than 5, the chi-square approximation will be in error. To avoid this,
we combine categories so that the expected number in each category is at least 5.

If we wish to reject the hypothesis, we should combine categories in such a way that the evidence against
the hypothesis shows up best. This is achieved in our case by considering the categories “red or green” and
“orange or yellow,” for which the sample revealed 3 and 9 marbles, respectively. Since the expected number in
each category under the hypothesis of equal proportions is 6, we have

For � 2 � 1 � 1, Therefore, we cannot reject the hypothesis at the 0.05 level of significance
(although we can at the 0.10 level). Conceivably the observed results could arise on the basis of chance even
when equal proportions of the colors are present. The P value is .

Another method
Using Yates’ correction, we find

which leads to the same conclusion given above. This is of course to be expected, since Yates’ correction
always reduces the value of . Here the P value is .

It should be noted that if the approximation is used despite the fact that the frequencies are too small, we
would obtain

with a P value of 0.34.
Since for we would arrive at the same conclusions as above. Unfortunately

the approximation for small frequencies is poor; hence when it is not advisable to combine frequencies we
must resort to exact probability methods involving the multinomial distribution.

7.41. In 360 tosses of a pair of dice, 74 “sevens” and 24 “elevens” are observed. Using a 0.05 level of signifi-
cance, test the hypothesis that the dice are fair, and find the P value of the observed results.

A pair of dice can fall in 36 ways. A seven can occur in 6 ways, an eleven in 2 ways.

x2

n � 4 � 1 � 3, x2
0.95 � 7.81,

x2 �
(2 � 3)2

3 �
(5 � 3)2

3 �
(4 � 3)2

3 �
(1 � 3)2

3 � 3.33

x2

P(x2 � 2.1) � 0.15x2

x2 �
(u 3 � 6u � 0.5)2

6 �
(u 9 � 6u � 0.5)2

6 �
(2.5)2

6 �
(2.5)2

6 � 2.1

P(x2 � 3) � 0.083

x2
0.95 � 3.84.n

x2 �
(3 � 6)2

6 �
(9 � 6)2

6 � 3

P � 0.93
P(x2 � 0.470)

x2 � 0.470 � 0.352x2
0.05 � 0.352

n � 3, x2
0.95 � 7.81

n � 3, x2
0.99 � 11.3

n

x2 �
(315 � 312.75)2

312.75 �
(108 � 104.25)2

104.25 �
(101 � 104.25)2

104.25 �
(32 � 34.75)2

37.75 � 0.470
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Then P(seven) and P(eleven) Therefore, in 360 tosses we would expect 
sevens and elevens, so that

with a P value of 0.044.
For Then since 4.07 � 3.84, we would be inclined to reject the hypothesis

that the dice are fair. Using Yates’ correction, however, we find

with a P value of 0.056.
Therefore, on the basis of the corrected , we could not reject the hypothesis at the 0.05 level.
In general, for large samples such as we have here, results using Yates’ correction prove to be more reliable

than uncorrected results. However, since even the corrected value of lies so close to the critical value, we are
hesitant about making decisions one way or the other. In such cases it is perhaps best to increase the sample
size by taking more observations if we are interested especially in the 0.05 level. Otherwise, we could reject the
hypothesis at some other level (such as 0.10).

7.42. A survey of 320 families with 5 children each revealed the distribution of boys and girls shown in 
Table 7-12. (a) Is the result consistent with the hypothesis that male and female births are equally probable?
(b) What is the P value of the sample results?

x2

x2

x2 (corrected) �
(u74 � 60u � 0.5)2

60 �
(u 24 � 20u � 0.5)2

20 �
(13.5)2

60 �
(3.5)2

20 � 3.65

n � 2 � 1 � 1, x2
0.95 � 3.84.

x2 �
(74 � 60)2

60 �
(24 � 20)2

20 � 4.07

1
18  (360) � 20

1
6  (360) � 60�

2
36 �

1
18.�

6
36 �

1
6
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Number of 5 boys 4 boys 3 boys 2 boys 1 boy 0 boys
Boys and Girls 0 girls 1 girl 2 girls 3 girls 4 girls 5 girls

Number of
18 56 110 88 40 8Families 320

TOTAL

Table 7-12

Let p � probability of a male birth, and q � 1 � p � probability of a female birth. Then the
probabilities of (5 boys), (4 boys and 1 girl), . . . , (5 girls) are given by the terms in the binomial expansion

If we have

P(5 boys and 0 girls) P(2 boys and 3 girls)

P(4 boys and 1 girl) P(l boy and 4 girls)

P(3 boys and 2 girls) P(0 boys and 5 girls)

Then the expected number of families with 5, 4, 3, 2, 1, and 0 boys are obtained, respectively, by
multiplying the above probabilities by 320, and the results are 10, 50, 100, 100, 50, 10. Hence,

Since and for � 6 � 1 � 5 degrees of freedom, we can reject the
hypothesis at the 0.05 but not at the 0.01 significance level. Therefore, we conclude that the results are
probably significant, and male and female births are not equally probable.

(b) The P value is � 0.035.P(x2 � 12.0)

nx2
0.99 � 15.1x2

0.95 � 11.1

x2 �
(18 � 10)2

10 �
(56 � 50)2

50 �
(100 � 100)2

100 �
(88 � 100)2

100 �
(40 � 50)2

50 �
(8 � 10)2

10 � 12.0

� ¢ 1
2 ≤ 5

�
1

32� 10¢1
2 ≤ 3¢1

2 ≤ 2
�

10
32

� 5¢ 1
2 ≤ ¢ 1

2 ≤ 4

�
5

32� 5¢1
2 ≤ 4¢1

2 ≤ �
5

32

� 10¢ 1
2 ≤ 2¢ 1

2 ≤ 3

�
10
32� ¢1

2 ≤ 5
�

1
32

p � q �
1
2,

( p � q)5 � p5 � 5p4q � 10p3q2 � 10p2q3 � 5pq4 � q5

(a)



Goodness of fit
7.43. Use the chi-square test to determine the goodness of fit of the data in Problem 7.30.

Since the number of parameters used in estimating the expected frequencies is m � 1 (namely, the
parameter p of the binomial distribution), � k � 1� m � 6 � 1 � 1 � 4.

For Hence the fit of the data is good.
For Therefore, since , the fit is not so good as to be incredible.
The P value is .

7.44. Determine the goodness of fit of the data in Problem 7.32.

Since the number of parameters used in estimating the expected frequencies is m � 2 (namely, the mean 
and the standard deviation of the normal distribution), � k � 1� m � 5 � 1� 2 � 2.

For Therefore, we conclude that the fit of the data is very good.
For Then, since , the fit is not “too good.”
The P value is .

Contingency tables
7.45. Work Problem 7.13 by using the chi-square test.

The conditions of the problem are presented in Table 7-13. Under the null hypothesis H0 that the serum has no
effect, we would expect 70 people in each of the groups to recover and 30 in each group not to recover, as
indicated in Table 7-14. Note that H0 is equivalent to the statement that recovery is independent of the use of
the serum, i.e., the classifications are independent.

P(x2 � 0.959) � 0.62
x2 � 0.959 � 0.103n � 2, x2

0.05 � 0.103.
n � 2, x2

0.95 � 5.99.
ns

m

x2 �
(5 � 4.13)2

4.13 �
(18 � 20.68)2

20.68 �
(42 � 38.92)2

38.92 �
(27 � 27.71)2

27.71 �
(8 � 7.43)2

7.43 � 0.959

P(x2 � 7.45) � 0.11
x2 � 7.54 � 0.711n � 4, x2

0.05 � 0.711.
n � 4, x2

0.95 � 9.49.
n

� 7.45

�
(25 � 29.4)2

29.4x2 �
(38 � 33.2)2

33.2 �
(144 � 161.9)2

161.9 �
(342 � 316.2)2

316.2 �
(287 � 308.7)2

308.7 �
(164 � 150.7)2

150.7
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Group A
(using serum)

75 25 100

Group B
(not using serum)

65 35 100

Do Not
Recover Recover

140 60 200

TOTAL

TOTAL

Frequencies Observed
Table 7-13

Group A
(using serum)

70 30 100

Group B
(not using serum)

70 30 100

Do Not
Recover Recover

140 60 200

TOTAL

TOTAL

Frequencies Expected under H0

Table 7-14

x2 �
(75 � 70)2

70 �
(65 � 70)2

70 �
(25 � 30)2

30 �
(35 � 30)2

30 � 2.38



To determine the number of degrees of freedom, consider Table 7-15, which is the same as Tables 7-13 and
7-14 except that only totals are shown. It is clear that we have the freedom of placing only one number in any
of the four empty cells, since once this is done the numbers in the remaining cells are uniquely determined
from the indicated totals. Therefore, there is 1 degree of freedom.
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Since for 1 degree of freedom, and since , we conclude that the results are
not significant at a 0.05 level. We are therefore unable to reject H0 at this level, and we conclude either that the
serum is not effective or else withhold decision pending further tests. The P value of the observed frequencies
is .P(x2 � 2.38) � 0.12

x2 � 2.38 � 3.84x2
0.95 � 3.84

Group A 100

Group B 100

Do Not
Recover Recover

140 60 200

TOTAL

TOTAL

Table 7-15

Note that is the square of the z score, z � 1.54, obtained in Problem 7.13. In general, the chi-x2 � 2.38

. Since for 2 	 2 tables 2 is the square of the z score, is the same as z for this case. Therefore, a
rejection of a hypothesis at the 0.05 level using 2 is equivalent to a rejection in a two-tailed test at the 0.10
level using z.

7.46. Work Problem 7.45 by using Yates’ correction.

with a P value of 0.16.
Therefore, the conclusions given in Problem 7.45 are valid. This could have been realized at once by noting

Yates’ correction always decreases the value of 2 and increases the P value.

7.47. In Table 7-16 are indicated the numbers of students passed and failed by three instructors: Mr. X, Mr. Y,
and Mr. Z. Test the hypothesis that the proportions of students failed by the three instructors are equal.

x

�
(u35 � 30u � 0.5)2

30 � 1.93x2(corrected) �
(u75 � 70u � 0.5)2

70 �
(u65 � 70u � 0.5)2

70 �
(u 25 � 30u � 0.5)2

30

x

xxx � �x0.95

Passed 50 47 56 153

Failed 5 14 8 27

Mr. X Mr. Y Mr. Z

55 61 64 180

TOTAL

TOTAL

Frequencies Observed
Table 7-16

Under the hypothesis H0 that the proportions of students failed by the three instructors are the same, they
would have failed 27 180 � 15% of the students and passed 85% of the students. The frequencies expected
under H0 are shown in Table 7-17.

>

square test involving sample proportions in a 2 	 2 contingency table is equivalent to a test of significance of
differences in proportions using the normal approximation as on page 217.

Note also that the P value 0.12 here is twice the P value 0.0618 in Problem 7.13. In general a one-tailed test
using 2 is equivalent to a two-tailed test using since, for example, corresponds to orx � x0.95x2 � x2

0.95xx



Then

�
(14 � 9.15)2

9.15 �
(8 � 9.60)2

9.60 � 4.84x2 �
(50 � 46.75)2

46.75 �
(47 � 51.85)2

51.85 �
(56 � 54.40)2

54.40 �
(5 � 8.25)2

8.25
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Mr. X Mr. Y Mr. Z TOTAL

Passed 85% of 55 � 46.75 85% of 61 � 51.85 85% of 64 � 54.40 153

Failed 15% of 55 � 8.25 15% of 61 � 9.15 15% of 64 � 9.60 27

TOTAL 55 61 64 180

To determine the number of degrees of freedom, consider Table 7-18, which is the same as Tables 7-16 and
7-17 except that only totals are shown. It is clear that we have the freedom of placing only one number into an
empty cell of the first column and one number into an empty cell of the second or third column, after which all
numbers in the remaining cells will be uniquely determined from the indicated totals. Therefore, there are 2
degrees of freedom in this case.

Mr. X Mr. Y Mr. Z TOTAL

Passed 153

Failed 27

TOTAL 55 61 64 180

Frequencies Expected under H0

Table 7-17

Table 7-18

Since we cannot reject H0 at the 0.05 level. Note, however, that since we can
reject H0 at the 0.10 level if we are willing to take the risk of 1 chance in 10 of being wrong. The P value of the
observed frequencies is .

7.48. Show that for an h 	 k contingency table , the number of degrees of freedom is given by
.

There are independent totals of the hk entries. It follows that the number of degrees of freedom is

hk � (h � k � 1) � (h � 1)(k � 1)

as required. The result holds if the population parameters needed in obtaining theoretical frequencies are
known; otherwise adjustment is needed as described in (b), page 220.

7.49. Table 7-19 represents a general 2 	 2 contingency table. Show that

x2 �
n(a1b2 � a2b1)2

n1n2nAnB

h � k � 1

(h � 1)(k � 1)
(h � 1, k � 1)

P(x2 � 4.84) � 0.089

x2
0.90 � 4.61,x2

0.95 � 5.99,

I II TOTAL

A a1 a2 nA

B b1 b2 nB

TOTAL n1 n2 n

Results Observed

Table 7-19



As in Problem 7.45, the results expected under a null hypothesis are shown in Table 7-20. Then

But

Similarly

We can therefore write

which simplifies to

(1)

where � a1b2 � a2b1, n � a1 � a2 � b1 � b2, n1 � a1 � b1, n2 � a2 � b2, nA � a1 � a2, nB � b1 � b2. If
Yates’ correction is applied, (1) is replaced by

(2)

7.50. Illustrate the result of Problem 7.49 for the data of Problem 7.45.

In Problem 7.45, a1 � 75, a2 � 25, b1 � 65, b2 � 35, n1 � 140, n2 � 60, nA � 100, nB � 100, and n � 200;
then (1) of Problem 7.49 gives

Using Yates’ correction, the result is the same as in Problem 7.46:

7.51. Show that a chi-square test involving two sample proportions is equivalent to a significance test of differ-
ences in proportions using the normal approximation (see page 217).

Let P1 and P2 denote the two sample proportions and p the population proportion. With reference to Problem
7.49, we have

(1)

(2) 1 � p � q �
nB

np �
nA

n ,

1 � P2 �
b2
n2

1 � P1 �
b1
n1

,P2 �
a2
n2

,P1 �
a1
n1

,

x2(corrected) �
nA u a1b2 � a2b1 u �

1
2nB2

n1n2nAnB
�

200[u (75)(35) � (25)(65) u � 100]2

(140)(60)(100)(100) � 1.93

x2 �
200[(75)(35) � (25)(65)]2

(140)(60)(100)(100) � 2.38

x2(corrected) �
nA u
 u �

1
2nB2

n1n2nAnB




x2 �
n(a1b2 � a2b1)2

n1n2nAnB
�

n
2

n1n2nAnB

x2 �
n

n1nA
¢a1b2 � a2b1

n ≤ 2

�
n

n2nA
¢a1b2 � a2b1

n ≤ 2

�
n

n1nB
¢ a1b2 � a2b1

n ≤ 2

�
n

n2nB
¢ a1b2 � a2b1

n ≤ 2

a2 �
n2nA

n � b1 �
n1nB

n � b2 �
n2nB

n �
a1b2 � a2b1

n

a1 �
n1nA

n � a1 �
(a1 � b1)(a1 � a2)
a1 � b1 � a2 � b2

�
a1b2 � a2b1

n

x2 �
(a1 � n1nA>n)2

n1nA>n �
(a2 � n2nA>n)2

n2nA>n �
(b1 � n1nB>n)2

n1nB>n �
(b2 � n2nB>n)2

n2nB>n
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I II TOTAL

A n1nA n n2nA n

B n1nB n n2nB n

TOTAL n1 n2 n

nB>>
nA>>

Results Expected

Table 7-20



so that

(3)

(4) nA � np, nB � nq

Using (3) and (4), we have from Problem 7.49

which is the square of the Z statistic given in (10) on page 217.

Coefficient of contingency
7.52. Find the coefficient of contingency for the data in the contingency table of Problem 7.45.

7.53. Find the maximum value of C for all 2 	 2 tables that could arise in Problem 7.13.

The maximum value of C occurs when the two classifications are perfectly dependent or associated. In such
cases, all those who take the serum will recover and all those who do not take the serum will not recover. The
contingency table then appears as in Table 7-21.

C � A
x2

x2 � n
� A 2.38

2.38 � 200 � !0.01176 � 0.1084

�
n1n2(P1 � P2)2

npq �
(P1 � P2)2

pq(1>n1 � 1>n2)
   (since n � n1 � n2)

x2 �
n(a1b2 � a2b1)2

n1n2nAnB
�

n[n1P1n2(1 � P2) � n2P2n1(1 � P1)]2

n1n2npnq

b2 � n2(1 � P2)b1 � n1(1 � P1),a2 � n2P2,a1 � n1P1,
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Since the expected cell frequencies, assuming complete independence, are all equal to 50,

Then the maximum value of C is
In general, for perfect dependence in a contingency table where the numbers of rows and columns are both

equal to k, the only nonzero cell frequencies occur in the diagonal from upper left to lower right. For such 
cases,

Miscellaneous problems
7.54. An instructor gives a short quiz involving 10 true-false questions. To test the hypothesis that the student

is guessing, the following decision rule is adopted: (i) If 7 or more are correct, the student is not guessing;
(ii) if fewer than 7 are correct, the student is guessing. Find the probability of rejecting the hypothesis
when it is correct.

Let p � probability that a question is answered correctly.
The probability of getting x questions out of 10 correct is where q � 1 � p.
Then under the hypothesis (i.e., the student is guessing),p � 0.5

10Cx  pxq10�x,

Cmax � 2(k � 1)>k.

2x2>(x2 � n) � 2200>(200 � 200) � 0.7071.

x2 �
(100 � 50)2

50 �
(0 � 50)2

50 �
(0 � 50)2

50 �
(100 � 50)2

50 � 200

Group A
(using serum) 100 0 100

Group B
(not using serum)

0 100 100

Do Not
Recover Recover

100 100 200

TOTAL

TOTAL

Table 7-21



P(7 or more correct) � P(7 correct) � P(8 correct) � P(9 correct) � P(10 correct)

Therefore, the probability of concluding that the student is not guessing when in fact he is guessing is
0.1719. Note that this is the probability of a Type I error.

7.55. In Problem 7.54, find the probability of accepting the hypothesis p � 0.5 when actually p � 0.7.

Under the hypothesis p � 0.7,

P(less than 7 correct) � 1 � P(7 or more correct)

� 1 � [10C7(0.7)7(0.3)3 � 10C8(0.7)8(0.3)2 � 10C9(0.7)9(0.3) � 10C10(0.7)10] � 0.3504

7.56. In Problem 7.54, find the probability of accepting the hypothesis p � 0.5 when actually (a) p � 0.6,
(b) p � 0.8, (c) p � 0.9, (d) p � 0.4, (e) p � 0.3, (f) p � 0.2, (g) p � 0.1.

(a) If p � 0.6, the required probability is given by

1 � [P(7 correct) � P(8 correct) � P(9 correct) � P(10 correct)]

� 1 � [10C7(0.6)7(0.4)3 � 10C8(0.6)8(0.4)2 � 10C9(0.6)9(0.4) � 10C10(0.6)10] � 0.618

The results for (b), (c), . . . , (g) can be similarly found and are indicated in Table 7-22 together with the value
corresponding to p � 0.7 found in Problem 7.55. Note that the probability is denoted by (probability of a Type IIb

� 10C7¢1
2 ≤ 7¢1

2 ≤ 3

� 10C8¢ 1
2 ≤ 8¢ 1

2 ≤ 2
� 10C9¢ 1

2 ≤ 9¢ 1
2 ≤ � 10C10¢ 1

2 ≤ 10

� 0.1719
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p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.000 0.999 0.989 0.945 0.828 0.618 0.350 0.121 0.013b

Table 7-22 

7.57. Use Problem 7.56 to construct the graph of vs. p, the operating characteristic curve of the decision rule
in Problem 7.54.

The required graph is shown in Fig. 7-14. Note the similarity with the OC curve of Problem 7.27.

b

Fig. 7-14

If we had plotted (1 � ) vs. p, the power curve of the decision rule would have been obtained.
The graph indicates that the given decision rule is powerful for rejecting when actually .

7.58. A coin that is tossed 6 times comes up heads 6 times. Can we conclude at (a) 0.05, (b) 0.01 significance
level that the coin is not fair? Consider both a one-tailed and a two-tailed test.

p � 0.8p � 0.5
b

error). We have also included the entry for p � 0.5, given by � 1 � 0.1719 � 0.828 from Problem 7.54.b



Let p � probability of heads in a single toss of the coin.
Under the hypothesis (H0: p � 0.5) (i.e., the coin is fair),

Then the probabilities of 0, 1, 2, 3, 4, 5, and 6 heads are given, respectively, by and 

One-tailed test
Here we wish to decide between the hypotheses (H0: p � 0.5) and (H1: p � 0.5). Since P(6 heads) �

and P(5 or 6 heads) we can reject H0 at a 0.05 but not a 0.01 level 
(i.e., the result observed is significant at a 0.05 but not a 0.01 level).

Two-tailed test
Here we wish to decide between the hypotheses (H0: p � 0.5) and (H1: ). Since P(0 or 6 heads) �

we can reject H0 at a 0.05 but not a 0.01 level.

7.59. Work Problem 7.58 if the coin comes up heads 5 times.

One-tailed test
Since P(5 or 6 heads) we cannot reject H0 at a level of 0.05 or 0.01.

Two-tailed test
Since P(0 or 1 or 5 or 6 heads) we cannot reject H0 at a level of 0.05 or 0.01.

7.60. Show that a chi-square test involving only two categories is equivalent to the significance test for propor-
tions (page 216).

If P is the sample proportion for category I, p is the population proportion, and n is the total frequency, we can
describe the situation by means of Table 7-23. Then by definition,

which is the square of the Z statistic (5) on page 216.

�
n2(P � p)2

np �
n2(P � p)2

nq � n(P � p)2¢ 1
p �

1
q ≤ �

n(P � p)2

pq �
(P � p)2

pq>n

x2 �
 (nP � np)2

np �
[n(1 � P) � n(1 � p)]2

nq

� 2A 7
64B � 0.2188,

�
6
64 �

1
64 �

7
64 � 0.1094,

1
64 �

1
64 � 0.03125,

p 2 0.5

�
6
64 �

1
64 � 0.1094,1

64 � 0.01562

1
64.

1
64,

6
64,

15
64,

20
64,

15
64,

6
64,

f (x) � P(x heads in 6 tosses) � 6Cx¢ 1
2 ≤ x¢ 1

2 ≤ 6�x

�
6Cx

64
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I II TOTAL

Observed Frequency nP n(l � P) n

Expected Frequency np n(1 � p) � nq n

Table 7-23

7.61. Suppose X1, X2 Xk have a multinomial distribution, with expected frequencies np1, np2 npk,
respectively. Let Y1, Y2 Yk be mutually independent, Poisson-distributed variables, with parameters , c,

, c,, c,

1 � np1, 2 � np2 k � npk, respectively. Prove that the conditional distribution of the Y’s given that

is precisely the multinomial distribution of the X’s.

For the joint probability function of the Y’s, we have

(1)

�
ny1�y2�

c�ykpy1
1 py2 c pyk

k

y1!y2! c yk!
 e�n

P(Y1 � y1, Y2 � y2, c, Yk � yk) � B (np1)y1e�np1

y1!
R B (np2)y2e�np2

y2!
R c B (npk)yke�npk

yk!
R

Y1 � Y2 � c� Yk � n

l, c,ll



where we have used the fact that The conditional distribution we are looking for is
given by

(2)

Now, the numerator in (2) has, from (1), the value

As for the denominator, we know from Problem 4.94, page 146, that is itself a Poisson
variable with parameter Hence, the denominator has the value

Therefore, (2) becomes

which is just the multinomial distribution of the X’s [compare (16), page 112].

7.62. Use the result of Problem 7.61 to show that 2, as defined by (21), page 220, is approximately chi-square
distributed.

As it stands, (21) is difficult to deal with because the multinomially distributed X’s are dependent, in view of
the restriction (22). However, Problem 7.61 shows that we can replace the X’s by the independent, Poisson-
distributed Y’s if it is given that .Therefore, we rewrite (21) as

(1)

As , all the ’s approach , and the central limit theorem for the Poisson distribution [(14), page 112]
gives

(2)

where the Z’s are independent normal variables having mean 0 and variance 1 whose distribution is conditional
upon the event

(3) or

or, since the random variables are continuous,

(4)

Let us denote by (x) the cumulative distribution function for a chi-square variable with degrees of freedom.
Then what we want to prove is

(5)

for a suitable value of .
It is easy to establish (5) if we use our geometrical intuition. First of all, Theorem 4-3 shows that the

unconditional distribution of is chi-square with k degrees of freedom. Hence, since the
density function for each Zj is (2p)�1>2e�z2>2,

Z 2
1 � Z 2

2 � c� Z 2
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p1 � p2 � c� pk � 1.

CHAPTER 7 Tests of Hypotheses and Significance 253



(6)

Furthermore, we have for the numerator in (5):

(7)                      Numerator

We recall from analytic geometry that in three-dimensional space, represents a sphericalx2
1 � x2

2 � x2
3 � a2

z2
1 � z2

2 �c� z2
k � x,

u!p1z1�!p2z2�c�!pkzk u� P

� (2p)�k>2    3c 3 e�(z2
1�z2

2�c�z2
k)>2 dz1dz2

c dzk

z2
1�z2

2�
c�z2

k � x

Fk(x) � (2p)�k>2  3c 3 e�(z2
1�z2

2�c�z2
k)>2 dz1dz2

c dzk
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Fig. 7-15

By analogy we conclude that in (7), where is integrated over the intersection of a hypersphere about
the origin and a hyperplane through the origin, the p’s may be given any convenient values. We choose

and obtain

(8)                      Numerator

using (6). The factor 2P is the thickness of the slab.
To evaluate the denominator in (5), we note that the random variable

is normal (because it is a linear combination of the independent, normal Z’s), and that

Therefore, the density function for W is and

(9) Denominator

Dividing (8) by (9), we obtain the desired result, where � k � 1.n

� P( uW u � P) � f(0)(2P) � (2p)�1>2(2P)

f(w) � (2p)�1>2e�w2>2,

E(W ) � !p1(0) � !p2(0) � c� !pk(0) � 0

 Var (W ) � p1(1) � p2(1) � c� pk(1) � 1

W � !p1Z1 � !p2Z2 � c� !pkZk

� (2p)�1>2Fk�1(x)(2P)

z2
1�z2

2�
c�z2

k�1
� x

� (2p)�k>2  3c 3 e�(z2
1�z2

2�c�z2
k�1)>2 dz1dz2

c dzk�1(2P)

p1 � p2 � c� pk�1 � 0,  pk � 1

e�r2>2

solid of radius a centered at the origin, while 1x1 � 2x2 � 3x3 � 0 is a plane through the origin whose
normal is the unit vector ( 1, 2, 3). Figure 7-15 shows the intersection of the two bodies. It is obvious that
when a function which depends only on distance from the origin, i.e.,

f(r) where

is integrated over the circular area—or throughout a thin slab lying on that area—the value of the integral is
completely independent of the direction-cosines 1, 2, 3. In other words, all cutting planes through the origin
give the same integral.

aaa

r � 2x2
1 � x2

2 � x2
3

aaa

aaa



The above “proof” (which can be made rigorous) shows incidentally that every linear constraint placed on
the Z’s, and hence on the Y’s or X’s, reduces the number of degrees of freedom in 2 by 1. This provides the
basis for the rules given on page 221.

SUPPLEMENTARY PROBLEMS

Tests of means and proportions using normal distributions
7.63. An urn contains marbles that are either red or blue. To test the hypothesis of equal proportions of these colors,

we agree to sample 64 marbles with replacement, noting the colors drawn and adopt the following decision rule:
(1) accept the hypothesis if between 28 and 36 red marbles are drawn; (2) reject the hypothesis otherwise. (a)
Find the probability of rejecting the hypothesis when it is actually correct. (b) Interpret graphically the decision
rule and the result obtained in (a).

7.64. (a) What decision rule would you adopt in Problem 7.63 if you require the probability of rejecting the
hypothesis when it is actually correct to be at most 0.01, i.e., you want a 0.01 level of significance? (b) At what
level of confidence would you accept the hypothesis? (c) What would be the decision rule if a 0.05 level of
significance were adopted?

7.65. Suppose that in Problem 7.63 you wish to test the hypothesis that there is a greater proportion of red than blue
marbles. (a) What would you take as the null hypothesis and what would be the alternative? (b) Should you use
a one- or two-tailed test? Why? (c) What decision rule should you adopt if the level of significance is 0.05? 
(d) What is the decision rule if the level of significance is 0.01?

7.66. A pair of dice is tossed 100 times, and it is observed that sevens appear 23 times. Test the hypothesis that the
dice are fair, i.e., not loaded, using (a) a two-tailed test and (b) a one-tailed test, both with a significance level of
0.05. Discuss your reasons, if any, for preferring one of these tests over the other.

7.67. Work Problem 7.66 if the level of significance is 0.01.

7.68. A manufacturer claimed that at least 95% of the equipment which he supplied to a factory conformed to
specifications. An examination of a sample of 200 pieces of equipment revealed that 18 were faulty. Test his
claim at a significance level of (a) 0.01, (b) 0.05.

7.69. It has been found from experience that the mean breaking strength of a particular brand of thread is 9.72 oz with
a standard deviation of 1.4 oz. Recently a sample of 36 pieces of thread showed a mean breaking strength of
8.93 oz. Can one conclude at a significance level of (a) 0.05, (b) 0.01 that the thread has become inferior?

7.70. On an examination given to students at a large number of different schools, the mean grade was 74.5 and the
standard deviation was 8.0. At one particular school where 200 students took the examination, the mean grade
was 75.9. Discuss the significance of this result at a 0.05 level from the viewpoint of (a) a one-tailed test, (b) a
two-tailed test, explaining carefully your conclusions on the basis of these tests.

7.71. Answer Problem 7.70 if the significance level is 0.01.

Tests involving differences of means and proportions
7.72. A sample of 100 electric light bulbs produced by manufacturer A showed a mean lifetime of 1190 hours and a

standard deviation of 90 hours. A sample of 75 bulbs produced by manufacturer B showed a mean lifetime of
1230 hours with a standard deviation of 120 hours. Is there a difference between the mean lifetimes of the two
brands of bulbs at a significance level of (a) 0.05, (b) 0.01?

x
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7.73. In Problem 7.72 test the hypothesis that the bulbs of manufacturer B are superior to those of manufacturer A
using a significance level of (a) 0.05, (b) 0.01. Explain the differences between this and what was asked in
Problem 7.72. Do the results contradict those of Problem 7.72?

7.74. On an elementary school examination in spelling, the mean grade of 32 boys was 72 with a standard deviation
of 8, while the mean grade of 36 girls was 75 with a standard deviation of 6. Test the hypothesis at a (a) 0.05,
(b) 0.01 level of significance that the girls are better in spelling than the boys.

7.75. To test the effects of a new fertilizer on wheat production, a tract of land was divided into 60 squares of equal
areas, all portions having identical qualities as to soil, exposure to sunlight, etc. The new fertilizer was applied
to 30 squares, and the old fertilizer was applied to the remaining squares. The mean number of bushels of wheat
harvested per square of land using the new fertilizer was 18.2, with a standard deviation of 0.63 bushels. The
corresponding mean and standard deviation for the squares using the old fertilizer were 17.8 and 0.54 bushels,
respectively. Using a significance level of (a) 0.05, (b) 0.01, test the hypothesis that the new fertilizer is better
than the old one.

7.76. Random samples of 200 bolts manufactured by machine A and 100 bolts manufactured by machine B showed
19 and 5 defective bolts, respectively. Test the hypothesis that (a) the two machines are showing different
qualities of performance, (b) machine B is performing better than A. Use a 0.05 level of significance.

Tests involving student’s t distribution
7.77. The mean lifetime of electric light bulbs produced by a company has in the past been 1120 hours with a

standard deviation of 125 hours. A sample of 8 electric light bulbs recently chosen from a supply of newly
produced bulbs showed a mean lifetime of 1070 hours. Test the hypothesis that the mean lifetime of the bulbs
has not changed, using a level of significance of (a) 0.05, (b) 0.01.

7.78. In Problem 7.77 test the hypothesis � 1120 hours against the alternative hypothesis � 1120 hours, using a
significance level of (a) 0.05, (b) 0.01.

7.79. The specifications for the production of a certain alloy call for 23.2% copper. A sample of 10 analyses of the
product showed a mean copper content of 23.5% and a standard deviation of 0.24%. Can we conclude at a 
(a) 0.01, (b) 0.05 significance level that the product meets the required specifications?

7.80. In Problem 7.79 test the hypothesis that the mean copper content is higher than in required specifications, using
a significance level of (a) 0.01, (b) 0.05.

7.81. An efficiency expert claims that by introducing a new type of machinery into a production process, he can
decrease substantially the time required for production. Because of the expense involved in maintenance of the
machines, management feels that unless the production time can be decreased by at least 8.0%, they cannot
afford to introduce the process. Six resulting experiments show that the time for production is decreased by
8.4% with standard deviation of 0.32%. Using a level of significance of (a) 0.01, (b) 0.05, test the hypothesis
that the process should be introduced.

7.82. Two types of chemical solutions, A and B, were tested for their pH (degree of acidity of the solution). Analysis
of 6 samples of A showed a mean pH of 7.52 with a standard deviation of 0.024. Analysis of 5 samples of B
showed a mean pH of 7.49 with a standard deviation of 0.032. Using a 0.05 significance level, determine
whether the two types of solutions have different pH values.

7.83. On an examination in psychology 12 students in one class had a mean grade of 78 with a standard deviation of 6,
while 15 students in another class had a mean grade of 74 with a standard deviation of 8. Using a significance
level of 0.05, determine whether the first group is superior to the second group.

mm
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Tests involving the chi-square distribution
7.84. The standard deviation of the breaking strengths of certain cables produced by a company is given as 240 lb.

After a change was introduced in the process of manufacture of these cables, the breaking strengths of a sample
of 8 cables showed a standard deviation of 300 lb. Investigate the significance of the apparent increase in
variability, using a significance level of (a) 0.05, (b) 0.01.

7.85. The annual temperature of a city is obtained by finding the mean of the mean temperatures on the 15th day of
each month. The standard deviation of the annual temperatures of the city over a period of 100 years was 16°
Fahrenheit. During the last 15 years a standard deviation of annual temperatures was computed as 10°
Fahrenheit. Test the hypothesis that the temperatures in the city have become less variable than in the past,
using a significance level of (a) 0.05, (b) 0.01.

7.86. In Problem 7.77 a sample of 20 electric light bulbs revealed a standard deviation in the lifetimes of 150 hours.
Would you conclude that this is unusual? Explain.

Tests involving the F distribution
7.87. Two samples consisting of 21 and 9 observations have variances given by and respectively. Test the

hypothesis that the first population variance is greater than the second at a (a) 0.05, (b) 0.01 level of significance.

7.88. Work Problem 7.87 if the two samples consist of 60 and 120 observations, respectively.

7.89. In Problem 7.82 can we conclude that there is a significant difference in the variability of the pH values for the
two solutions at a 0.10 level of significance?

Operating characteristic curves
7.90. Referring to Problem 7.63, determine the probability of accepting the hypothesis that there are equal

proportions of red and blue marbles when the actual proportion p of red marbles is (a) 0.6, (b) 0.7, (c) 0.8,
(d) 0.9, (e) 0.3.

7.91. Represent the results of Problem 7.90 by constructing a graph of (a) vs. p, (b) (1 � ) vs. p. Compare these
graphs with those of Problem 7.25 by considering the analogy of red and blue marbles to heads and tails,
respectively.

Quality control charts
7.92. In the past a certain type of thread produced by a manufacturer has had a mean breaking strength of 8.64 oz and

a standard deviation of 1.28 oz. To determine whether the product is conforming to standards, a sample of 16
pieces of thread is taken every 3 hours and the mean breaking strength is determined. Find the (a) 99.73% or 3
(b) 99% and (c) 95% control limits on a quality control chart and explain their applications.

7.93. On the average about 3% of the bolts produced by a company are defective. To maintain this quality of
performance, a sample of 200 bolts produced is examined every 4 hours. Determine (a) 99%, (b) 95% control
limits for the number of defective bolts in each sample. Note that only upper control limits are needed in this case.

Fitting of data by theoretical distributions
7.94. Fit a binomial distribution to the data of Table 7-24.

s

bb

s2
2 � 8,s2

1 � 16
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x 0 1 2 3 4

f 30 62 46 10 2

Table 7-24



7.95. Fit a normal distribution to the data of Problem 5.98.

7.96. Fit a normal distribution to the data of Problem 5.100.

7.97. Fit a Poisson distribution to the data of Problem 7.44, and compare with the fit obtained by using the binomial
distribution.

7.98. In 10 Prussian army corps over a period of 20 years from 1875 throughout 1894, the number of deaths per army
corps per year resulting from the kick of a horse are given in Table 7-25. Fit a Poisson distribution to the data.
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x 0 1 2 3 4

f 109 65 22 3 1

Table 7-25

The chi-square test
7.99. In 60 tosses of a coin, 37 heads and 23 tails were observed. Test the hypothesis that the coin is fair using a

significance level of (a) 0.05, (b) 0.01.

7.100. Work Problem 7.99 using Yates’ correction.

7.101. Over a long period of time the grades given by a group of instructors in a particular course have averaged 12%
A’s, 18% B’s, 40% C’s, 18% D’s, and 12% F’s. A new instructor gives 22 A’s, 34 B’s, 66 C’s, 16 D’s, and 
12 F’s during two semesters. Determine at a 0.05 significance level whether the new instructor is following the
grade pattern set by the others.

7.102. Three coins were tossed together a total of 240 times, and each time the number of heads turning up was
observed. The results are shown in Table 7-26 together with results expected under the hypothesis that the
coins are fair. Test this hypothesis at a significance level of 0.05.

0 heads 1 head 2 heads 3 heads

Observed 
24 108 95 23

Frequency

Expected
30 90 90 30Frequency

Table 7-26

7.103. The number of books borrowed from a public library during a particular week is given in Table 7-27. Test the
hypothesis that the number of books borrowed does not depend on the day of the week, using a significance
level of (a) 0.05, (b) 0.01.

Mon. Tues. Wed. Thurs. Fri.

Number of 
135 108 120 114 146Books Borrowed

Table 7-27

7.104. An urn consists of 6 red marbles and 3 white ones. Two marbles are selected at random from the urn, their
colors are noted, and then the marbles are replaced in the urn. This process is performed a total of 120 times,
and the results obtained are shown in Table 7-28. (a) Determine the expected frequencies. (b) Determine at a
level of significance of 0.05 whether the results obtained are consistent with those expected.



7.105. Two hundred bolts were selected at random from the production of each of 4 machines. The numbers of
defective bolts found were 2, 9, 10, 3. Determine whether there is a significant difference between the
machines using a significance level of 0.05.

Goodness of fit
7.106. (a) Use the chi-square test to determine the goodness of fit of the data of Problem 7.94. (b) Is the fit “too

good”? Use a 0.05 level of significance.

7.107. Use the chi-square test to determine the goodness of fit of the data referred to in (a) Problem 7.95,
(b) Problem 7.96. Use a level of significance of 0.05 and in each case determine whether the fit is “too good.”

7.108. Use the chi-square test to determine the goodness of fit of the data referred to in (a) Problem 7.97,
(b) Problem 7.98. Is your result in (a) consistent with that of Problem 7.106?

Contingency tables
7.109. Table 7-29 shows the result of an experiment to investigate the effect of vaccination of laboratory animals

against a particular disease. Using an (a) 0.01, (b) 0.05 significance level, test the hypothesis that there is no
difference between the vaccinated and unvaccinated groups, i.e., vaccination and this disease are
independent.
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0 red, 1 red, 2 red,
2 white 1 white 0 white

Number of
6 53 61

Drawings

Table 7-28

Got Did Not Get 
Disease Disease

Vaccinated 9 42

Not 17 28
Vaccinated

Table 7-29

7.110. Work Problem 7.109 using Yates’ correction.

7.111. Table 7-30 shows the numbers of students in each of two classes, A and B, who passed and failed an
examination given to both groups. Using an (a) 0.05, (b) 0.01 significance level, test the hypothesis that there
is no difference between the two classes. Work the problem with and without Yates’ correction.

Passed Failed

Class A 72 17

Class B 64 23

Table 7-30

7.112. Of a group of patients who complained that they did not sleep well, some were given sleeping pills while
others were given sugar pills (although they all thought they were getting sleeping pills). They were later asked
whether the pills helped them or not. The results of their responses are shown in Table 7-31. Assuming that all
patients told the truth, test the hypothesis that there is no difference between sleeping pills and sugar pills at a
significance level of 0.05.



7.113. On a particular proposal of national importance, Democrats and Republicans cast votes as indicated in 
Table 7-32. At a level of significance of (a) 0.01, (b) 0.05, test the hypothesis that there is no difference
between the two parties insofar as this proposal is concerned.
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Slept Did Not
Well Sleep Well

Took Sleeping 
44 10

Pills

Took Sugar 
81 35Pills

Table 7-31

In Favor Opposed Undecided

Democrats 85 78 37

Republicans 118 61 25

Table 7-32

7.114. Table 7-33 shows the relation between the performances of students in mathematics and physics. Test the
hypothesis that performance in physics is independent of performance in mathematics, using (a) 0.05, (b) 0.01
significance level.

MATHEMATICS

High Medium Low 
Grades Grades Grades

High Grades 56 71 12

Medium Grades 47 163 38

Low Grades 14 42 85

Table 7-33

PH
Y

SI
C

S

AGE OF DRIVER

21–30 31–40 41–50 51–60 61–70

0 748 821 786 720 672

1 74 60 51 66 50

2 31 25 22 16 15

More than 2 9 10 6 5 7N
U

M
B

E
R

 O
F

A
C

C
ID

E
N

T
S

Table 7-34

7.115. The results of a survey made to determine whether the age of a driver 21 years of age or older has any effect
on the number of automobile accidents in which he is involved (including all minor accidents) are indicated in
Table 7-34. At a level of significance of (a) 0.05, (b) 0.01, test the hypothesis that the number of accidents is
independent of the age of the driver. What possible sources of difficulty in sampling techniques, as well as
other considerations, could affect your conclusions?



Coefficient of contingency
7.116. Table 7-35 shows the relationship between hair and eye color of a sample of 200 women. (a) Find the

coefficient of contingency without and with Yates’ correction. (b) Compare the result of (a) with the maximum
coefficient of contingency.
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HAIR COLOR

Blonde Not Blonde

Blue 49 25

Not Blue 30 96E
Y

E
C

O
L

O
R

Table 7-35

7.117. Find the coefficient of contingency for the data of (a) Problem 7.109, (b) Problem 7.111 without and with
Yates’ correction.

7.118. Find the coefficient of contingency for the data of Problem 7.114.

Miscellaneous problems
7.119. Two urns, A and B, contain equal numbers of marbles, but the proportions of red and white marbles in each of

the urns is unknown. A sample of 50 marbles selected with replacement from each of the urns revealed 32 red
marbles from A and 23 red marbles from B. Using a significance level of 0.05, test the hypothesis that (a) the
two urns have equal proportions of marbles and (b) A has a greater proportion of red marbles than B.

7.120. Referring to Problem 7.54, find the least number of questions a student must answer correctly before the
instructor is sure at a significance level of (a) 0.05, (b) 0.01, (c) 0.001, (d) 0.06 that the student is not merely
guessing. Discuss the results.

7.121. A coin that is tossed 8 times comes up heads 7 times. Can we reject the hypothesis that the coin is fair at a
significance level of (a) 0.05? (b) 0.10? (c) 0.01? Use a two-tailed test.

7.122. The percentage of A’s given in a physics course at a certain university over a long period of time was 10%.
During one particular term there were 40 A’s in a group of 300 students. Test the significance of this result at a
level of (a) 0.05, (b) 0.01.

7.123. Using brand A gasoline, the mean number of miles per gallon traveled by 5 similar automobiles under
identical conditions was 22.6 with a standard deviation of 0.48. Using brand B, the mean number was 21.4
with a standard deviation of 0.54. Choosing a significance level of 0.05, investigate whether brand A is really
better than brand B in providing more mileage to the gallon.

7.124. In Problem 7.123 is there greater variability in miles per gallon using brand B than there is using brand A?
Explain.

ANSWERS TO SUPPLEMENTARY PROBLEMS

7.63. (a) 0.2606.

7.64. (a) Accept the hypothesis if between 22 and 42 red marbles are drawn; reject it otherwise. (b) 0.99. (c) Accept
the hypothesis if between 24 and 40 red marbles are drawn; reject it otherwise.



7.65. (a) (H0: , (H1: . (b) One-tailed test. (c) Reject H0 if more than 39 red marbles are drawn, and
accept it otherwise (or withhold decision). (d) Reject H0 if more than 41 red marbles are drawn, and accept it
otherwise (or withhold decision).

7.66. (a) We cannot reject the hypothesis at a 0.05 level.
(b) We can reject the hypothesis at a 0.05 level.

7.67. We cannot reject the hypothesis at a 0.01 level in either (a) or (b).

7.68. We can reject the claim at both levels using a one-tailed test.

7.69. Yes, at both levels, using a one-tailed test in each case.

7.70. The result is significant at a 0.05 level in both a one-tailed and two-tailed test.

7.71. The result is significant at a 0.01 level in a one-tailed test but not in a two-tailed test.

7.72. (a) Yes. (b) No.

7.73. A one-tailed test at both levels of significance shows that brand B is superior to brand A.

7.74. A one-tailed test shows that the difference is significant at a 0.05 level but not a 0.01 level.

7.75. A one-tailed test shows that the new fertilizer is superior at both levels of significance.

7.76. (a) A two-tailed test shows no difference in quality of performance at a 0.05 level.
(b) A one-tailed test shows that B is not performing better than A at a 0.05 level.

7.77. A two-tailed test shows that there is no evidence at either level that the mean lifetime has changed.

7.78. A one-tailed test indicates no decrease in the mean at either the 0.05 or 0.01 level.

7.79. A two-tailed test at both levels shows that the product does not meet specifications.

7.80. A one-tailed test at both levels shows that the mean copper content is higher than specifications require.

7.81. A one-tailed test shows that the process should not be introduced if the significance level adopted is 0.01 but
should be introduced if the significance level adopted is 0.05.

7.82. Using a two-tailed test at a 0.05 level of significance, we would not conclude that there is a difference in 
acidity.

7.83. Using a one-tailed test at a 0.05 level of significance, we would conclude that the first group is not superior to
the second.

7.84. The apparent increase in variability is not significant at either level.

p � 0.5)p � 0.5)
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7.85. The apparent decrease is significant at the 0.05 level but not at the 0.01 level.

7.86. We would conclude that the result is unusual at the 0.05 level but not at the 0.01 level.

7.87. We cannot conclude that the first variance is greater than the second at either level.

7.88. We can conclude that the first variance is greater than the second at both levels.

7.89. No. 7.90. (a) 0.3112 (b) 0.0118 (c) 0 (d) 0 (e) 0.0118.

7.92. (a) 8.64 0.96 oz (b) 8.64 0.83 oz (c) 8.64 0.63 oz 7.93. (a) 6 (b) 4

7.94. f (x) � 4Cx(0.32)x (0.68)4�x; expected frequencies are 32, 60, 43, 13, and 2, respectively.

7.95. Expected frequencies are 1.7, 5.5, 12.0, 15.9, 13.7, 7.6, 2.7, and 0.6, respectively.

7.96. Expected frequencies are 1.1, 4.0, 11.1, 23.9, 39.5, 50.2, 49.0, 36.6, 21.1, 9.4, 3.1, and 1.0, respectively.

7.97. Expected frequencies are 41.7, 53.4, 34.2, 14.6, and 4.7, respectively.

7.98. expected frequencies are 108.7, 66.3, 20.2, 4.1, and 0.7, respectively.

7.99. The hypothesis cannot be rejected at either level.

7.100. The conclusion is the same as before.

7.101. The new instructor is not following the grade pattern of the others. (The fact that the grades happen to be better
than average may be due to better teaching ability or lower standards or both.)

7.102. There is no reason to reject the hypothesis that the coins are fair.

7.103. There is no reason to reject the hypothesis at either level.

7.104. (a) 10, 60, 50, respectively (b) The hypothesis that the results are the same as those expected cannot be
rejected at a 0.05 level of significance.

7.105. The difference is significant at the 0.05 level. 7.106. (a) The fit is good. (b) No.

7.107. (a) The fit is “too good.” (b) The fit is poor at the 0.05 level.

7.108. (a) The fit is very poor at the 0.05 level. Since the binomial distribution gives a good fit of the data, this is
consistent with Problem 7.109. (b) The fit is good but not “too good.”

7.109. The hypothesis can be rejected at the 0.05 level but not at the 0.01 level.

f (x) �
(0.61)xe�0.61

x! ;
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7.110. Same conclusion. 7.111. The hypothesis cannot be rejected at either level.

7.112. The hypothesis cannot be rejected at the 0.05 level.

7.113. The hypothesis can be rejected at both levels.

7.114. The hypothesis can be rejected at both levels.

7.115. The hypothesis cannot be rejected at either level.

7.116. (a) 0.3863, 0.3779 (with Yates’ correction)

7.117. (a) 0.2205, 0.1985 (corrected) (b) 0.0872, 0.0738 (corrected) 7.118. 0.4651

7.119. (a) A two-tailed test at a 0.05 level fails to reject the hypothesis of equal proportions.
(b) A one-tailed test at a 0.05 level indicates that A has a greater proportion of red marbles than B.

7.120. (a) 9 (b) 10 (c) 10 (d) 8 7.121. (a) No. (b) Yes. (c) No.

7.122. Using a one-tailed test, the result is significant at the 0.05 level but is not significant at the 0.01 level.

7.123. We can conclude that brand A is better than brand B at the 0.05 level.

7.124. Not at the 0.05 level.
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265

Curve Fitting, 
Regression, and 

Correlation

Curve Fitting
Very often in practice a relationship is found to exist between two (or more) variables, and one wishes to express
this relationship in mathematical form by determining an equation connecting the variables.

A first step is the collection of data showing corresponding values of the variables. For example, suppose x
and y denote, respectively, the height and weight of an adult male. Then a sample of n individuals would reveal
the heights x1, x2, . . . , xn and the corresponding weights y1, y2, . . . , yn.

A next step is to plot the points (x1, y1), (x2, y2), . . . , (xn, yn) on a rectangular coordinate system. The result-
ing set of points is sometimes called a scatter diagram.

From the scatter diagram it is often possible to visualize a smooth curve approximating the data. Such a
curve is called an approximating curve. In Fig. 8-1, for example, the data appear to be approximated well by a
straight line, and we say that a linear relationship exists between the variables. In Fig. 8-2, however, although
a relationship exists between the variables, it is not a linear relationship and so we call it a nonlinear relationship.
In Fig. 8-3 there appears to be no relationship between the variables.

The general problem of finding equations of approximating curves that fit given sets of data is called curve
fitting. In practice the type of equation is often suggested from the scatter diagram. For Fig. 8-1 we could use a
straight line

(1)

while for Fig. 8-2 we could try a parabola or quadratic curve:

(2)

Sometimes it helps to plot scatter diagrams in terms of transformed variables. For example, if log y vs. x leads
to a straight line, we would try log as an equation for the approximating curve.

Regression
One of the main purposes of curve fitting is to estimate one of the variables (the dependent variable) from the
other (the independent variable). The process of estimation is often referred to as regression. If y is to be esti-
mated from x by means of some equation, we call the equation a regression equation of y on x and the correspon-
ding curve a regression curve of y on x.

y � a � bx

y � a � bx � cx2

y � a � bx
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The Method of Least Squares
Generally, more than one curve of a given type will appear to fit a set of data. To avoid individual judgment in
constructing lines, parabolas, or other approximating curves, it is necessary to agree on a definition of a “best-
fitting line,” “best-fitting parabola,” etc.

To motivate a possible definition, consider Fig. 8-4 in which the data points are (x1, y1), . . . , (xn, yn). For a
given value of x, say, x1, there will be a difference between the value y1 and the corresponding value as determined
from the curve C. We denote this difference by d1, which is sometimes referred to as a deviation, error, or resid-
ual and may be positive, negative, or zero. Similarly, corresponding to the values x2, . . . , xn, we obtain the
deviations d2, . . . , dn.
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Fig. 8-4

A measure of the goodness of fit of the curve C to the set of data is provided by the quantity
If this is small, the fit is good, if it is large, the fit is bad. We therefore make the follow-

ing definition.

Definition Of all curves in a given family of curves approximating a set of n data points, a curve having the
property that

a minimum

is called a best-fitting curve in the family.

A curve having this property is said to fit the data in the least-squares sense and is called a least-squares regres-
sion curve, or simply a least-squares curve. A line having this property is called a least-squares line; a parabola
with this property is called a least-squares parabola, etc.

It is customary to employ the above definition when x is the independent variable and y is the dependent vari-
able. If x is the dependent variable, the definition is modified by considering horizontal instead of vertical devi-
ations, which amounts to interchanging the x and y axes. These two definitions lead in general to two different
least-squares curves. Unless otherwise specified, we shall consider y as the dependent and x as the independent
variable.

d 21 � d 22 � c� d 2n �

d 21 � d 22 � c� d 2n.



It is possible to define another least-squares curve by considering perpendicular distances from the data points
to the curve instead of either vertical or horizontal distances. However, this is not used very often.

The Least-Squares Line
By using the above definition, we can show (see Problem 8.3) that the least-squares line approximating the set
of points (x1, y1), . . . , (xn, yn) has the equation

(3)

where the constants a and b are determined by solving simultaneously the equations

(4)

which are called the normal equations for the least-squares line. Note that we have for brevity used 
instead of The normal equations (4) are easily remembered by observing that the first equation
can be obtained formally by summing on both sides of (3), while the second equation is obtained formally by
first multiplying both sides of (3) by x and then summing. Of course, this is not a derivation of the normal equa-
tions but only a means for remembering them.

The values of a and b obtained from (4) are given by

(5)

The result for b in (5) can also be written

(6)

Here, as usual, a bar indicates mean, e.g., Division of both sides of the first normal equation in (4)
by n yields

(7)

If desired, we can first find b from (5) or (6) and then use (7) to find This is equivalent to writing
the least-squares line as

(8)

The result (8) shows that the constant b, which is the slope of the line (3), is the fundamental constant in deter-
mining the line. From (8) it is also seen that the least-squares line passes through the point which is called
the centroid or center of gravity of the data.

The slope b of the regression line is independent of the origin of coordinates. This means that if we make the
transformation (often called a translation of axes) given by

(9)

where h and k are any constants, then b is also given by

(10)b �
na  xryr � QaxrR QayrR

n axr2 � QaxrR2 �
a(xr � xr)( yr � yr)

a(xr � xr)2

x � xr � h  y � yr � k

(x#, y#),

y � y# � b(x � x#)  or  y � y# �
a(x � x#)( y � y#)

a(x � x#)2
 (x � x#)

a � y# � bx#.

y# � a � bx#

x# � (gx)>n.

b �
a(x � x#)( y � y#) 

a(x � x#)2

a �
QayR Qax2R � QaxR QaxyR

nax2 � QaxR2   b �
naxy � QaxR QayR

nax2 � QaxR2

gn
j�1 yj, gn

j�1xj yj.
gy, gxy

axy � aax � bax2

ay � an � bax

y � a � bx
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where x, y have simply been replaced by [for this reason we say that b is invariant under the transforma-
tion (9)]. It should be noted, however, that a, which determines the intercept on the x axis, does depend on the
origin (and so is not invariant).

In the particular case where (10) simplifies to

(11)

The results (10) or (11) are often useful in simplifying the labor involved in obtaining the least-squares line.
The above remarks also hold for the regression line of x on y. The results are formally obtained by simply

interchanging x and y. For example, the least-squares regression line of x on y is

(12)

It should be noted that in general (12) is not the same line as (8).

The Least-Squares Line in Terms of Sample Variances and Covariance
The sample variances and covariance of x and y are given by

(13)

In terms of these, the least-squares regression lines of y on x and of x on y can be written, respectively, as

(14)

if we formally define the sample correlation coefficient by [compare (54), page 82]

(15)

then (14) can be written

(16)

In view of the fact that and are standardized sample values or standard scores, the 
results in (16) provide a very simple way of remembering the regression lines. It is clear that the two lines in (16)
are different unless in which case all sample points lie on a line [this will be shown in (26)] and there
is perfect linear correlation and regression.

It is also of interest to note that if the two regression lines (16) are written as 
respectively, then

(17)

Up to now we have not considered the precise significance of the correlation coefficient but have only defined
it formally in terms of the variances and covariance. On page 270, the significance will be given.

The Least-Squares Parabola
The above ideas are easily extended. For example, the least-squares parabola that fits a set of sample points is
given by

(18)y � a � bx � cx2

bd � r2

y � a � bx, x � c � dy,

r � 
1,

(y � y#)>sy(x � x#)>sx

y � y#
sy

� r ax � x#
sx
b  and  x � x#

sx
� r ay � y#

sy
b

r �
sxy

sxsy

y � y# �
sxy

s2
x

 (x � x#)  and  x � x# �
sxy

s2
y

 ( y � y#)

s2
x �

a(x � x#)2

n ,  s2
y �

a( y � y#)2

n ,  sxy �
a(x � x#)( y � y#)

n

x � x# �
a(x � x#)( y � y#)

a( y � y#)2
 ( y � y#)

b �
axryr

axr2

h � x#, k � y#,

xr, yr
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where a, b, c are determined from the normal equations

(19)

These are obtained formally by summing both sides of (18) after multiplying successively by 1, x and x2,
respectively.

Multiple Regression
The above ideas can also be generalized to more variables. For example, if we feel that there is a linear relation-
ship between a dependent variable z and two independent variables x and y, then we would seek an equation con-
necting the variables that has the form

(20)

This is called a regression equation of z on x and y. If x is the dependent variable, a similar equation would be
called a regression equation of x on y and z.

Because (20) represents a plane in a three-dimensional rectangular coordinate system, it is often called a 
regression plane. To find the least-squares regression plane, we determine a, b, c in (20) so that

(21)

These equations, called the normal equations corresponding to (20), are obtained as a result of applying a defi-
nition similar to that on page 266. Note that they can be obtained formally from (20) on multiplying by 1, x, y,
respectively, and summing.

Generalizations to more variables, involving linear or nonlinear equations leading to regression surfaces in
three- or higher-dimensional spaces, are easily made.

Standard Error of Estimate
If we let yest denote the estimated value of y for a given value of x, as obtained from the regression curve of y
on x, then a measure of the scatter about the regression curve is supplied by the quantity

(22)

which is called the standard error of estimate of y on x. Since as used in the Definition on
page 266, we see that out of all possible regression curves the least-squares curve has the smallest standard error
of estimate.

In the case of a regression line with a and b given by (4), we have

(23)

or (24)

We can also express for the least-squares line in terms of the variance and correlation coefficient as

(25)

from which it incidentally follows as a corollary that r2 � 1, i.e.,�1 � r � 1.

s2
y.x � s2

y(1 � r2)

s2
y.x

s2
y.x �

a( y � y#)2 � ba(x � x#)( y � y#)
n

s2
y.x �

ay2 � aay � baxy
n

yest � a � bx,

g(y � yest)2 � gd2,

sy.x � Ba
( y � yest)2

n

ayz � aay � baxy � cay2

axz � aax � bax2 � caxy

az � na � bax � cay

z � a � bx � cy

ax2y � aax2 � bax3 � cax4

axy � aax � bax2 � cax3

ay � na � bax � cax2
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The standard error of estimate has properties analogous to those of standard deviation. For example, if we con-
struct pairs of lines parallel to the regression line of y on x at respective vertical distances and and 
from it, we should find if n is large enough that there would be included between these pairs of lines about 68%,
95%, and 99.7% of the sample points, respectively. See Problem 8.23.

Just as there is an unbiased estimate of population variance given by so there is an unbi-
ased estimate of the square of the standard error of estimate. This is given by For this rea-
son some statisticians prefer to give (22) with instead of n in the denominator.

The above remarks are easily modified for the regression line of x on y (in which case the standard error of
estimate is denoted by ) or for nonlinear or multiple regression.

The Linear Correlation Coefficient
Up to now we have defined the correlation coefficient formally by (15) but have not examined its significance.
In attempting to do this, let us note that from (25) and the definitions of and sy, we have

(26)

Now we can show that (see Problem 8.24)

(27)

The quantity on the left of (27) is called the total variation. The first sum on the right of (27) is then called the
unexplained variation, while the second sum is called the explained variation. This terminology arises because
the deviations behave in a random or unpredictable manner while the deviations are explained
by the least-squares regression line and so tend to follow a definite pattern. It follows from (26) and (27) that

(28)

Therefore, r2 can be interpreted as the fraction of the total variation that is explained by the least-squares regres-
sion line. In other words, r measures how well the least-squares regression line fits the sample data. If the total
variation is all explained by the regression line, i.e., if we say that there is perfect linear cor-
relation (and in such case also perfect linear regression). On the other hand, if the total variation is all unex-
plained, then the explained variation is zero and so In practice the quantity r2, sometimes called the
coefficient of determination, lies between 0 and 1.

The correlation coefficient can be computed from either of the results

(29)

or (30)

which for linear regression are equivalent. The formula (29) is often referred to as the product-moment formula
for linear correlation.

Formulas equivalent to those above, which are often used in practice, are

(31)

and (32)r �
xy � x#y#

2(x#2 � x#2)( y#2 � y#2)

r �
naxy � QaxR QayR

B Snax2 � QaxR2 T Snay2 � QayR2 T

r2 �
explained variation

total variation
�
a( yest � y#)2

a( y � y#)2

r �
sxy

sx sy
�

a(x � x#)( y � y#)

$a(x � x#)2$a( y � y#)2

r � 0.

r2 � 1 or r � 
1,

r2 �
a( yest � y#)2

a( y � y#)2
�

explained variation
total variation

yest � y#y � yest

a( y � y#)2 � a( y � yest)2 � a( yest � y#)2

r2 � 1 �
a( y � yest)2

a( y � y#)2

sy.x

sx.y

n � 2
s^2

y.x � ns2
y.x>(n � 2).

s^2 � ns2>(n � 1),

3sy.x2sy.x,sy.x,
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If we use the transformation (9), page 267, we find

(33)

which shows that r is invariant under a translation of axes. In particular, if (33) becomes

(34)

which is often useful in computation.
The linear correlation coefficient may be positive or negative. If r is positive, y tends to increase with x (the

slope of the least-squares line is positive) while if r is negative, y tends to decrease with x (the slope is negative).
The sign is automatically taken into account if we use the result (29), (31), (32), (33), or (34). However, if we
use (30) to obtain r, we must apply the proper sign.

Generalized Correlation Coefficient
The definition (29) [or any of the equivalent forms (31) through (34)] for the correlation coefficient involves
only sample values x, y. Consequently, it yields the same number for all forms of regression curves and is use-
less as a measure of fit, except in the case of linear regression, where it happens to coincide with (30). However,
the latter definition, i.e.,

(35)

does reflect the form of the regression curve (via the yest) and so is suitable as the definition of a generalized cor-
relation coefficient r. We use (35) to obtain nonlinear correlation coefficients (which measure how well a non-
linear regression curve fits the data) or, by appropriate generalization, multiple correlation coefficients. The
connection (25) between the correlation coefficient and the standard error of estimate holds as well for nonlin-
ear correlation.

Since a correlation coefficient merely measures how well a given regression curve (or surface) fits sample data,
it is clearly senseless to use a linear correlation coefficient where the data are nonlinear. Suppose, however, that
one does apply (29) to nonlinear data and obtains a value that is numerically considerably less than 1. Then the
conclusion to be drawn is not that there is little correlation (a conclusion sometimes reached by those unfamil-
iar with the fundamentals of correlation theory) but that there is little linear correlation. There may in fact be a
large nonlinear correlation.

Rank Correlation
Instead of using precise sample values, or when precision is unattainable, the data may be ranked in order of size,
importance, etc., using the numbers 1, 2, . . . , n. If two corresponding sets of values x and y are ranked in such
manner, the coefficient of rank correlation, denoted by rrank, or briefly r, is given by (see Problem 8.36)

(36)

where d differences between ranks of corresponding x and y

n number of pairs of values (x, y) in the data

The quantity rrank in (36) is known as Spearman’s rank correlation coefficient.

�

�

rrank � 1 �
6a  d2

n(n2 � 1)

r2 �
explained variation

total variation
�
a( yest � y#)2

a( y � y#)2

r �
axryr

BQaxr2R Qayr2R

h � x#, k � y#,

r �
naxryr � QaxrR QayrR

B Snaxr2 � QaxrR2 T Snayr2 � QayrR2 T
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Probability Interpretation of Regression
A scatter diagram, such as that in Fig. 8-1, is a graphical representation of data points for a particular sample.
By choosing a different sample, or enlarging the original one, a somewhat different scatter diagram would in gen-
eral be obtained. Each scatter diagram would then result in a different regression line or curve, although we
would expect that these would not differ significantly from each other if the samples are drawn from the same
population.

From the concept of curve fitting in samples, we are led to curve fitting for the population from which sam-
ples are drawn. The scatter of points around a regression line or curve indicates that for a particular value of x,
there are actually various values of y distributed about the line or curve. This idea of distribution leads us natu-
rally to the realization that there is a connection between curve fitting and probability.

The connection is supplied by introducing the random variables X and Y, which can take on the various sam-
ple values x and y, respectively. For example, X and Y may represent heights and weights of adult males in a pop-
ulation from which samples are drawn. It is then assumed that X and Y have a joint probability function or density
function, f (x, y), according to whether they are considered discrete or continuous.

Given the joint density function or probability function, f (x, y), of two random variables X and Y, it is natu-
ral from the above remarks to ask whether there is a function g(X) such that

(37)

A curve with equation having property (37) is called a least-squares regression curve of Y on X. We have
the following theorem:

Theorem 8-1 If X and Y are random variables having joint density function or probability function f (x, y), then
there exists a least-squares regression curve of Y on X, having property (37), given by

(38)

provided that X and Y each have a variance that is finite.

Note that is the conditional expectation of Y given as defined on page 82.
Similar remarks can be made for a least-squares regression curve of X on Y. In that case, (37) is replaced by

and (38) is replaced by The two regression curves and are differ-
ent in general.

An interesting case arises when the joint distribution is the bivariate normal distribution given by (49),
page 117. We then have the following theorem:

Theorem 8-2 If X and Y are random variables having the bivariate normal distribution, then the least-squares
regression curve of Y on X is a regression line given by

(39)

where (40)

represents the population correlation coefficient.

We can also write (39) as

(41)

where (42)

Similar remarks can be made for the least-squares regression curve of X on Y, which also turns out to be a line
[given by (39) with X and Y, x and y, interchanged]. These results should be compared with corresponding ones
on page 268.

b �
sXY

s2
X

y � mY � b(x � mX)

r �
sXY

sX sY

y � mY

sY
� rax � mX

sX
b

x � h( y)y � g(x)x � h( y) � E(X Z  Y � y).

E5[X � h(Y)]26 � a minimum

X � x,E(Y Z  X � x)

y � g(x) � E(Y Z  X � x)

y � g(x)

E5[Y � g(X)]26 � a minimum
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In case f (x, y) is not known, we can still use the criterion (37) to obtain approximating regression curves for
the population. For example, if we assume we obtain the least-squares regression line (39),
where are given in terms of the (unknown) parameters Similarly if 
we can obtain a least-squares regression parabola, etc. See Problem 8.39.

In general, all of the remarks made on pages 266 to 271 for samples are easily extended to the population. For
example, the standard error of estimate in the case of the population is given in terms of the variance and corre-
lation coefficient by

(43)

which should be compared with (25), page 269.

Probability Interpretation of Correlation
From the above remarks it is clear that a population correlation coefficient should provide a measure of how
well a given population regression curve fits the population data. All the remarks previously made for correla-
tion in a sample apply as well to the population. For example, if g(x) is determined by (37), then

(44)

where and The three quantities in (44) are called the total, unexplained, and explained
variations, respectively. This leads to the definition of the population correlation coefficient , where

(45)

For the linear case this reduces to (40). Results similar to (31) through (34) can also be written for the case of a
population and linear regression. The result (45) is also used to define , in the nonlinear case.

Sampling Theory of Regression
The regression equation is obtained on the basis of sample data. We are often interested in the cor-
responding regression equation for the population from which the sample was drawn. The follow-
ing are some tests concerning a normal population. To keep the notation simple, we shall follow the common
convention of indicating values of sampling random variables rather than the random variables themselves.

1. TEST OF HYPOTHESIS . To test the hypothesis that the regression coefficient is equal to
some specified value b, we use the fact that the statistic

(46)

has Student’s distribution with degrees of freedom. This can also be used to find confidence intervals
for population regression coefficients from sample values. See Problems 8.43 and 8.44.

2. TEST OF HYPOTHESES FOR PREDICTED VALUES. Let y0 denote the predicted value of y corre-
sponding to as estimated from the sample regression equation, i.e., . Let yp denote the
predicted value of y corresponding to for the population. Then the statistic

(47)

has Student’s distribution with degrees of freedom. From this, confidence limits for predicted popula-
tion values can be found. See Problem 8.45.

3. TEST OF HYPOTHESES FOR PREDICTED MEAN VALUES. Let y0 denote the predicted value of
y corresponding to as estimated from the sample regression equation, i.e., . Let y#py0 � a � bx0x � x0

n � 2

t �
( y0 � yp)!n � 2

sy.x2n � 1 � [n(x0 � x#)2>s2
x]

x � x0

y0 � a � bx0x � x0

n � 2

t �
b � b
sy.x>sx

!n � 2

bB 5 b

y � a � bx
y � a � bx

r

r2 �
explained variation

total variation
�

E[(Yest � Y#
 
)2]

E[(Y � Y#
 
)2]

r

Y# � E(Y ).Yest � g(X )

E[(Y � Y#
 
)2] � E[(Y � Yest)2] � E[(Yest � Y # )2]

s2
Y.X � s2

Y(1 � r2)

g(x) � a � bx � gx2,mX, mY, sX, sY, r.a, b
g(x) � a � bx,

CHAPTER 8 Curve Fitting, Regression, and Correlation 273



denote the predicted mean value of y corresponding to for the population 
Then the statistic

(48)

has Student’s distribution with degrees of freedom. From this, confidence limits for predicted mean pop-
ulation values can be found. See Problem 8.46.

Sampling Theory of Correlation
We often have to estimate the population correlation coefficient from the sampling correlation coefficient r or
to test hypotheses concerning . For this purpose we must know the sampling distribution of r. In case 
this distribution is symmetric and a statistic having Student’s distribution can be used. For , the distribu-
tion is skewed. In that case a transformation due to Fisher produces a statistic which is approximately normally
distributed. The following tests summarize the procedures involved.

1. TEST OF HYPOTHESIS . Here we use the fact that the statistic

(49)

has Student’s distribution with degrees of freedom. See Problems 8.47 and 8.48.

2. TEST OF HYPOTHESIS . Here we use the fact that the statistic

(50)

is approximately normally distributed with mean and standard deviation given by

(51)

These facts can also be used to find confidence limits for correlation coefficients. See Problems 8.49 and
8.50. The transformation (50) is called Fisher’s Z transformation.

3. SIGNIFICANCE OF A DIFFERENCE BETWEEN CORRELATION COEFFICIENTS. To deter-
mine whether two correlation coefficients r1 and r2, drawn from samples of sizes n1 and n2, respectively,
differ significantly from each other, we compute Z1 and Z2 corresponding to r1 and r2 using (50). We then
use the fact that the test statistic

(52)

where (53)

is normally distributed. See Problem 8.51.

Correlation and Dependence
Whenever two random variables X and Y have a nonzero correlation coefficient , we know (Theorem 3-15,
page 81) that they are dependent in the probability sense (i.e., their joint distribution does not factor into their
marginal distributions). Furthermore, when we can use an equation of the form (39) to predict the value
of Y from the value of X.

It is important to realize that “correlation” and “dependence” in the above sense do not necessarily imply a
direct causal interdependence of X and Y. This is shown in the following examples.

r 2 0,

r

mZ1�Z2
� mZ1

� mZ2
,  sZ1�Z2

� 2s2
Z1

� s2
Z2

� A 1
n1 � 3

�
1

n2 � 3

z �
Z1 � Z2 � mZ1�Z2

sZ1�Z2

mz �
1
2

  ln a1 � r0

1 � r0
b � 1.1513  log10 a1 � r0

1 � r0
b,  sZ �

1
!n � 3

Z �
1
2

  ln a1 � r
1 � r

b � 1.1513  log10 a1 � r
1 � r

b
r 5 r0 u 0

n � 2

t �
r!n � 2
!1 � r2

r 5 0

r 2 0
r � 0,r

r

n � 2

t �
( y0 � y#p)!n � 2

sy.x21 � [(x0 � x#)2>s2
x]

[i.e.,  y#p � E(Y Z  X � x0)].x � x0
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EXAMPLE 8.1 Let X and Y be random variables representing heights and weights of individuals. Here there is a 
direct interdependence between X and Y.

EXAMPLE 8.2 If X represents teachers’ salaries over the years while Y represents the amount of crime, the correlation
coefficient may be different from zero and we may be able to find a regression equation predicting one variable from the
other. But we would hardly be willing to say that there is a direct interdependence between X and Y.

SOLVED PROBLEMS

The least-squares line
8.1. A straight line passes through the points (x1, y1) and (x2, y2). Show that the equation of the line is

The equation of a line is Then since (x1, y1) and (x2, y2) are points on the line, we have

Therefore,

(1)

(2)

Obtaining from (2) and substituting in (1), the required result follows.
The graph of the line PQ is shown in Fig. 8-5. The constant is the slope of the line.b � ( y2 � y1)>(x2 � x1)

b � (y2 � y1)>(x2 � x1)

y2 � y1 � (a � bx2) � (a � bx1) � b(x2 � x1)

y � y1 � (a � bx) � (a � bx1) � b(x � x1)

y1 � a � bx1,  y2 � a � bx2

y � a � bx.

y � y1 � ay2 � y1

x2 � x1
b(x � x1)
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Fig. 8-5

8.2. (a) Construct a straight line that approximates the data of Table 8-1. (b) Find an equation for this line.

x 1 3 4 6 8 9 11 14

y 1 2 4 4 5 7 8 9

Table 8-1

Fig. 8-6



(a) Plot the points (1, 1), (3, 2), (4, 4), (6, 4), (8, 5), (9, 7), (11, 8), and (14, 9) on a rectangular coordinate system
as shown in Fig. 8-6.

A straight line approximating the data is drawn freehand in the figure. For a method eliminating the need
for individual judgment, see Problem 8.4, which uses the method of least squares.

(b) To obtain the equation of the line constructed in (a), choose any two points on the line, such as P and Q.
The coordinates of these points as read from the graph are approximately (0, 1) and (12, 7.5). Then from
Problem 8.1,

or

8.3. Derive the normal equations (4), page 267, for the least-squares line.

Refer to Fig. 8-7. The values of y on the least-squares line corresponding to x1, x2, . . . , xn are

a � bx1,  a � bx2,  c,  a � bxn

y � 1 � 0.542x or y � 1 � 0.542x.

y � 1 �
7.5 � 1
12 � 0  (x � 0)
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Fig. 8-7

The corresponding vertical deviations are

Then the sum of the squares of the deviations is

or

This is a function of a and b, i.e., A necessary condition for this to be a minimum 
(or a maximum) is that Since

we obtain

i.e.,

as required. It can be shown that these actually yield a minimum.

8.4. Fit a least-squares line to the data of Problem 8.2 using (a) x as independent variable, (b) x as dependent
variable.

(a) The equation of the line is The normal equations are

axy � aax � bax2

ay � an � bax

y � a � bx.

ay � an � bax  axy � aax � bax2

a(a � bx � y) � 0  ax(a � bx � y) � 0

'F
'b � a '

'b  (a � bx � y)2 � a2x(a � bx � y)

'F
'a � a '

'a  (a � bx � y)2 � a2(a � bx � y)

'F>'a � 0, 'F>'b � 0.
F(a, b) � g(a � bx � y)2.

ad 2 � a(a � bx � y)2

d 21 � d 22 � c� d 2n � (a � bx1 � y1)2 � (a � bx2 � y2)2 � c� (a � bxn � yn)2

d1 � a � bx1 � y1,  d2 � a � bx2 � y2,  c,  dn � a � bxn � yn



The work involved in computing the sums can be arranged as in Table 8-2. Although the last column is not
needed for this part of the problem, it has been added to the table for use in part (b).

Since there are 8 pairs of values of x and y, and the normal equations become

Solving simultaneously, or 0.545, or 0.636; and the required least-squares line is or
Note that this is not the line obtained in Problem 8.2 using the freehand method.y � 0.545 � 0.636x.

y �
6

11 �
7
11 xb �

7
11a �

6
11

 56a � 524b � 364

 8a � 56b � 40

n � 8
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x y x2 xy y2

1 1 1 1 1

3 2 9 6 4

4 4 16 16 16

6 4 36 24 16

8 5 64 40 25

9 7 81 63 49

11 8 121 88 64

14 9 196 126 81

gy2 � 256g  xy � 364g  x2 � 524gy � 40g  x � 56

Table 8-2

Another method

(b) If x is considered as the dependent variable and y as the independent variable, the equation of the least-
squares line is and the normal equations are

Then using Table 8-2, the normal equations become

from which or �0.50, or 1.50.
These values can also be obtained from

d �
naxy � QaxR QayR

nay2 � QayR2 �
(8)(364) � (56)(40)

(8)(256) � (40)2 � 1.50

c �
QaxR Qay2R � QayR QaxyR

nay2 � QayR2 �
(56)(256) � (40)(364)

(8)(256) � (40)2 � �0.50

d �
3
2c � �

1
2

 40c � 256d � 364

 8c � 40d � 56

axy � cay � day2

ax � cn � day

x � c � dy

b �
naxy � QaxR QayR

nax2 � QaxR2 �
(8)(364) � (56)(40)

(8)(524) � (56)2 �
7

11 or 0.636

a �
QayR Qax2R � QaxR QaxyR

nax2 � QaxR2 �
(40)(524) � (56)(364)

(8)(524) � (56)2 �
6

11 or 0.545



Therefore, the required equation of the least-squares line is 
Note that by solving this equation for y, we obtain which is not the same as the line

obtained in part (a).

8.5. Graph the two lines obtained in Problem 8.4.

The graphs of the two lines, and are shown in Fig. 8-8. Note that the
two lines in this case are practically coincident, which is an indication that the data are very well described by a
linear relationship.

The line obtained in part (a) is often called the regression line of y on x and is used for estimating y for given
values of x. The line obtained in part (b) is called the regression line of x on y and is used for estimating x for
given values of y.

x � �0.500 � 1.50y,y � 0.545 � 0.636x

y � 0.333 � 0.667x,
x � �0.50 � 1.50y.
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Fig. 8-8

8.6. (a) Show that the two least-squares lines obtained in Problem 8.4 intersect at point (b) Estimate the
value of y when (c) Estimate the value of x when

Then point called the centroid, is (7, 5).

(a) Point (7, 5) lies on line or, more exactly, since 
Point (7, 5) lies on line since 

Another method
The equations of the two lines are and Solving simultaneously, we find

Therefore, the lines intersect in point (7, 5).

(b) Putting into the regression line of y on x,

(c) Putting into the regression line of x on y,

8.7. Prove that a least-squares line always passes through the point 

Case 1
x is the independent variable.

The equation of the least-squares line is (1)

A normal equation for the least-squares line is (2)

Dividing both sides of (2) by n gives (3)

Subtracting (3) from (1), the least-squares line can be written

(4)

which shows that the line passes through the point (x#, y#).

y � y# � b(x � x#)

y# � a � bx#

ay � an � bax

y � a � bx

(x#, y#).

x � �0.50 � 1.50(3) � 4.0.y � 3

y � 0.545 � 0.636(12) � 8.2.x � 12

x � 7, y � 5.
x � �

1
2 �

3
2  y.y �

6
11 �

7
11  x

7 � �
1
2 �

3
2  (5).x � �

1
2 �

3
2  y,

5 �
6
11 �

7
11  (7).y �

6
11 �

7
11  x,y � 0.545 � 0.636x

(x#, y#),

x# �
ax
n �

56
8

� 7,  y# �
ay
n �

40
8

� 5

y � 3.x � 12.
(x#, y#).



Case 2
y is the independent variable.

Proceeding as in Case 1 with x and y interchanged and the constants a, b, replaced by c, d, respectively, we
find that the least-squares line can be written

(5)

which indicates that the line passes through the point 
Note that, in general, lines (4) and (5) are not coincident, but they intersect in 

8.8. Prove that the least-squares regression line of y on x can be written in the form (8), page 267.

We have from (4) of Problem 8.7, From the second equation in (5), page 267, we have

(1)

Now

Also

Therefore, (1) becomes

from which the result (8) is obtained. Proof of (12), page 268, follows on interchanging x and y.

8.9. Let where h and k are any constants. Prove that

From Problem 8.8 we have

b �
naxy � QaxR QayR

nax2 � QaxR2 �
a(x � x#)(y � y#)

a(x � x#)2

b �
naxy � QaxR QayR

nax2 � QaxR2 �
naxryr � QaxrR QayrR

naxr2 � QaxrR2

x � xr � h, y � yr � k,

b �
a(x � x#)(y � y#)

a(x � x#)2

�
1
n  Snaxy � QaxR QayR T

� axy �
QaxR QayR

n

� axy � nx#  y#

� axy � nx#  y# � ny#  x# � nx#  y#

� axy � x#ay � y#ax � ax#  y#

a(x � x#)( y � y#) � a(xy � x#y � y#x � x#  y#)

�
1
n  Snax2 � QaxR2 T

� ax2 �
1
n  QaxR2

� ax2 � nx#2

� ax2 � 2nx#2 � nx#2

� ax2 � 2x#   ax � ax#2

a(x � x#)2 � a(x2 � 2x#x � x#2)

b �
naxy � QaxR QayR

nax2 � QaxR2

y � y# � b(x � x#).

(x#, y#).
(x#, y#).

x � x# � d(y � y#)
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Now if we have

Thus

The result is useful in developing a shortcut for obtaining least-squares lines by subtracting suitable
constants from the given values of x and y (see Problem 8.12).

8.10. If, in particular, in Problem 8.9, show that

This follows at once from Problem 8.9 since

and similarly 

8.11. Table 8-3 shows the respective heights x and y of a sample of 12 fathers and their oldest sons. (a) Construct
a scatter diagram. (b) Find the least-squares regression line of y on x. (c) Find the least-squares regression
line of x on y.

gyr � 0.

axr � a(x � x#) � ax � nx# � 0

b �
axryr

axr2

h � x#, k � y#

�
naxryr � QaxrR QayrR

naxr2 � QaxrR2

a(x � x#)(y � y#)

a(x � x#)2
�
a(xr � xr)(yr � yr)

a(xr � xr)2

x# � x# r � h, y# � x# r � k

x � xr � h, y � yr � k,
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Height x of Father (inches) 65 63 67 64 68 62 70 66 68 67 69 71

Height y of Son (inches) 68 66 68 65 69 66 68 65 71 67 68 70

Table 8-3

(a) The scatter diagram is obtained by plotting the points (x, y) on a rectangular coordinate system as shown in
Fig. 8-9.

Fig. 8-9



(b) The regression line of y on x is given by where a and b are obtained by solving the normal
equations

The sums are shown in Table 8-4, and so the normal equations become

from which we find and so that The graph of this equation is
shown in Fig. 8-9.

Another method

a �
QayR Qax2R � QaxR QaxyR

nax2 � QaxR2 � 35.82,  b �
naxy � QaxR QayR

nax2 � QaxR2 � 0.476

y � 35.82 � 0.476x.b � 0.476,a � 35.82

800a � 53,418b � 54,107

12a � 800b � 811

axy � aax � bax2

ay � an � bax

y � a � bx,
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Table 8-4

x y x2 xy y2

65 68 4225 4420 4624

63 66 3969 4158 4356

67 68 4489 4556 4624

64 65 4096 4160 4225

68 69 4624 4692 4761

62 66 3844 4092 4356

70 68 4900 4760 4624

66 65 4356 4290 4225

68 71 4624 4828 5041

67 67 4489 4489 4489

69 68 4761 4692 4624

71 70 5041 4970 4900

gx � 800 gy � 811 gx2 � 53,418 g � 54,107 gy2 � 54,849

(c) The regression line of x on y is given by where c and d are obtained by solving the normal
equations

Using the sums in Table 8-4, these become

from which we find and so that The graph of this equation is
shown in Fig. 8-9.

Another method

c �
QaxR Qay2R � QayR QaxyR

nay2 � QayR2 � �3.38,  d �
naxy � QayR QaxR

nay2 � QayR2 � 1.036

x � �3.38 � 1.036y.d � 1.036,c � �3.38

 811c � 54,849d � 54,107

 12c � 811d � 800

axy � cay � day2

ax � cn � day

x � c � dy,



8.12. Work Problem 8.11 by using the method of Problem 8.9.

Subtract an appropriate value, say, 68, from x and y (the numbers subtracted from x and from y could be
different). This leads to Table 8-5.

From the table we find

Also since we have Thus

The required regression equation of y on x is i.e.,

or

in agreement with Problem 8.11, apart from rounding errors. In a similar manner we can obtain the regression
equation of x on y.

y � 35.85 � 0.476xy � 67.58 � 0.476(x � 66.07)

y � y# � b(x � x#),

x# � x# r � 68 � �
16
12 � 68 � 66.67,  y# � y# r � 68 � �

5
12 � 68 � 67.58

x# r � x# � 68, y# r � y# � 68.xr � x � 68, yr � y � 68,

b �
naxryr � QaxrR QayrR

naxr2 � QaxrR2 �
(12)(47) � (�16)(�5)

(12)(106) � (16)2 � 0.476
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Table 8-5

xr yr xr2 xryr yr2

3� 0 9 0 0

5� 2� 25 10 4

1� 0 1 0 0

4� 3� 16 12 9

0 1 0 0 1

6� 2� 36 12 4

2 0 4 0 0

2� 3� 4 6 9

0 3 0 0 9

1� 1� 1 1 1

1 0 1 0 0

3 2 9 6 4

gxr � �16 gyr � �5 gxr2 � 106 gxryr � 47 gyr2 � 41

Nonlinear equations reducible to linear form
8.13. Table 8-6 gives experimental values of the pressure P of a given mass of gas corresponding to various val-

ues of the volume V. According to thermodynamic principles, a relationship having the form 
where and C are constants, should exist between the variables. (a) Find the values of and

C. (b) Write the equation connecting P and V. (c) Estimate P when in3.V � 100.0
ggPVg � C,

Table 8-6

Volume V (in3) 54.3 61.8 72.4 88.7 118.6 194.0

Pressure P (lb in2)> 61.2 49.5 37.6 28.4 19.2 10.1

Since we have upon taking logarithms to base 10,

log P � g log V � log C  or  log P � log C � g log V

PVg� C,



Setting log and log the last equation can be written

(1)

where C and
Table 8-7 gives the values of x and y corresponding to the values of V and P in Table 8-6 and also indicates

the calculations involved in computing the least-squares line (1).

b � �g.a � log

y � a � bx

P � y,V � x
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Table 8-7

x � log V y � log P x2 xy

1.7348 1.7868 3.0095 3.0997

1.7910 1.6946 3.2077 3.0350

1.8597 1.5752 3.4585 2.9294

1.9479 1.4533 3.7943 2.8309

2.0741 1.2833 4.3019 2.6617

2.2878 1.0043 5.2340 2.2976

gx � 11.6953 gy � 8.7975 gx2 � 23.0059 gxy � 16.8543

The normal equations corresponding to the least-squares line (1) are

from which

Then

(a) Since 

(b)

(c) When Then 

8.14. Solve Problem 8.13 by plotting the data on log-log graph paper.

For each pair of values of the pressure P and volume V in Table 8-6, we obtain a point that is plotted on the
specially constructed log-log graph paper shown in Fig. 8-10.

A line (drawn freehand) approximating these points is also indicated. The resulting graph shows that there is
a linear relationship between log P and log V, which can be represented by the equation

The slope b, which is negative in this case, is given numerically by the ratio of the length of AB to the length
of AC. Measurement in this case yields 

To obtain a, one point on the line is needed. For example, when from the graph. Then

so that

log P � 1.4 log V � 4.2,  log  PV1.4 � 4.2,  and  PV1.4 � 16,000

a � log P � b log  V � log 25 � 1.4  log 100 � 1.4 � (1.4)(2) � 4.2

V � 100, P � 25
b � �1.4.

log P � a � b  log V  or  y � a � bx

25.1 lb>in2.
P � antilog 1.40 �V � 100, x � log V � 2 and y � log P � 4.20 � 1.40(2) � 1.40.

PV1.40 � 16,000.

a � 4.20 � log C and b � �1.40 � �g, C � 1.60 	 104 and g � 1.40.

y � 4.20 � 1.40x.

a �
QayR Qax2R � QaxR QaxyR

nax2 � QaxR2 � 4.20,  b �
naxy � QaxR QayR

nax2 � QaxR2 � �1.40

ay � an � bax  axy � aax � bax2



The least-squares parabola
8.15. Derive the normal equations (19), page 269, for the least-squares parabola.

Let the sample points be (x1, y1), (x2, y2), . . . , (xn, yn). Then the values of y on the least-squares parabola
corresponding to x1, x2, . . . , xn are

Therefore, the deviations from y1, y2, . . . , yn are given by

and the sum of the squares of the deviations is given by

This is a function of a, b, and c, i.e.,

To minimize this function, we must have

Now

Simplifying each of these summations and setting them equal to zero yields the equations (19), page 269.

'F
'c � a '

'c  (a � bx � cx2 � y)2 � a2x2(a � bx � cx2 � y)

'F
'b � a '

'b  (a � bx � cx2 � y)2 � a2x(a � bx � cx2 � y)

'F
'a � a '

'a  (a � bx � cx2 � y)2 � a2(a � bx � cx2 � y)

'F
'a � 0,  'F'b � 0,  'F'c � 0

F(a, b, c) � a(a � bx � cx2 � y)2

ad 2 � a(a � bx � cx2 � y)2

d1 � a � bx1 � cx2
1 � y1,  d2 � a � bx2 � cx2

2 � y2,  c,  dn � a � bxn � cx2
n � yn

a � bx1 � cx2
1,  a � bx2 � cx2

2,  c,  a � bxn � cx2
n

y � a � bx � cx2
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Fig. 8-10



8.16. Fit a least-squares parabola having the form to the data in Table 8-8.y � a � bx � cx2
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Table 8-8

x 1.2 1.8 3.1 4.9 5.7 7.1 8.6 9.8

y 4.5 5.9 7.0 7.8 7.2 6.8 4.5 2.7

Then normal equations are

(1)

The work involved in computing the sums can be arranged as in Table 8-9.

ax2y � aax2 � bax3 � cax4

axy � aax � bax2 � cax3

ay � an � bax � cax2

Table 8-9

x y x2 x3 x4 xy x2y

1.2 4.5 1.44 1.73 2.08 5.40 6.48

1.8 5.9 3.24 5.83 10.49 10.62 19.12

3.1 7.0 9.61 29.79 92.35 21.70 67.27

4.9 7.8 24.01 117.65 576.48 38.22 187.28

5.7 7.2 32.49 185.19 1055.58 41.04 233.93

7.1 6.8 50.41 357.91 2541.16 48.28 342.79

8.6 4.5 73.96 636.06 5470.12 38.70 332.82

9.8 2.7 96.04 941.19 9223.66 26.46 259.31

gx �
42.2

gy �
46.4

gx2 �
291.20

gx3 �
2275.35

gx4 �
18,971.92

gxy �
230.42

gx2y �
1449.00

Then the normal equations (1) become, since 

(2)

Solving, hence the required least-squares parabola has the equation

8.17. Use the least-squares parabola of Problem 8.16 to estimate the values of y from the given values of x.

For Similarly, other estimated values are
obtained. The results are shown in Table 8-10 together with the actual values of y.

x � 1.2, yest � 2.588 � 2.065(1.2) � 0.2110(1.2)2 � 4.762.

y � 2.588 � 2.065x � 0.2110x2

a � 2.588, b � 2.065, c � �0.2110;

291.20a � 2275.35b � 18971.92c � 1449.00

42.2a � 291.20b � 2275.35c � 230.42

8a � 42.2b � 291.20c � 46.4

n � 8,

Table 8-10

yest 4.762 5.621 6.962 7.640 7.503 6.613 4.741 2.561

y 4.5 5.9 7.0 7.8 7.2 6.8 4.5 2.7

Multiple regression
8.18. A variable z is to be estimated from variables x and y by means of a regression equation having the form

Show that the least-squares regression equation is obtained by determining a, b, and c
so that they satisfy (21), page 269.
z � a � bx � cy.



Let the sample points be (x1, y1, z1), . . . , (xn, yn, zn). Then the values of z on the least-squares regression plane
corresponding to (x1, y1), . . . , (xn, yn) are, respectively,

Therefore, the deviations from z1, . . . , zn are given by

and the sum of the squares of the deviations is given by

Considering this as a function of a, b, c and setting the partial derivatives with respect to a, b, and c equal to
zero, the required normal equations (21) on page 269, are obtained.

8.19. Table 8-11 shows the weights z to the nearest pound, heights x to the nearest inch, and ages y to the near-
est year, of 12 boys, (a) Find the least-squares regression equation of z on x and y. (b) Determine the esti-
mated values of z from the given values of x and y. (c) Estimate the weight of a boy who is 9 years old and
54 inches tall.

ad 2 � a(a � bx � cy � z)2

d1 � a � bx1 � cy1 � z1,  c,  dn � a � bxn � cyn � zn

a � bx1 � cy1,  c,  a � bxn � cyn
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Table 8-11

Weight (z) 64 71 53 67 55 58 77 57 56 51 76 68

Height (x) 57 59 49 62 51 50 55 48 52 42 61 57

Age (y) 8 10 6 11 8 7 10 9 10 6 12 9

(a) The linear regression equation of z on x and y can be written

The normal equations (21), page 269, are given by

(1)

The work involved in computing the sums can be arranged as in Table 8-12.

ayz � aay � baxy � cay2

axz � aax � bax2 � caxy

az � na � bax � cay

z � a � bx � cy

Table 8-12

z x y z2 x2 y2 xz yx xy

64 57 8 4096 3249 64 3648 512 456

71 59 10 5041 3481 100 4189 710 590

53 49 6 2809 2401 36 2597 318 294

67 62 11 4489 3844 121 4154 737 682

55 51 8 3025 2601 64 2805 440 408

58 50 7 3364 2500 49 2900 406 350

77 55 10 5929 3025 100 4235 770 550

57 48 9 3249 2304 81 2736 513 432

56 52 10 3136 2704 100 2912 560 520

51 42 6 2601 1764 36 2142 306 252

76 61 12 5776 3721 144 4636 912 732

68 57 9 4624 3249 81 3876 612 513

gz �
  753

gx �
 643

gy �
  106

gz2 �
 48,139

gx2 �
  34,843

gy2 �
  976

gxz �
40,830

gyz �
 6796

gxy �
5779



Using this table, the normal equations (1) become

(2)

Solving, and the required regression equation is

(3)

(b) Using the regression equation (3), we obtain the estimated values of z, denoted by zest, by substituting the
corresponding values of x and y. The results are given in Table 8-13 together with the sample values of z.

z � 3.65 � 0.855x � 1.506y

a � 3.6512, b � 0.8546, c � 1.5063,

 106a � 5779b � 976c � 6796

 643a � 34,843b � 5779c � 40,830

 12a � 643b � 106c � 753
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Table 8-13

zest 64.414 69.136 54.564 73.206 59.286 56.925 65.717 58.229 63.153 48.582 73.857 65.920

z 64 71 53 67 55 58 77 57 56 51 76 68

(c) Putting and in (3), the estimated weight is or about 63 lb.

Standard error of estimate
8.20. If the least-squares regression line of y on x is given by prove that the standard error of esti-

mate is given by

The values of y as estimated from the regression line are given by Then

But

since from the normal equations

Then

This result can be extended to nonlinear regression equations.

8.21. Prove that the result in Problem 8.20 can be written

Method 1
Let Then from Problem 8.20

� a(yr2 � 2yr y# � y#2) � aQayr � ny#R � ba(xryr � x#yr � xr y# � x#  y#)

� a(yr � y#)2 � aa(yr � y#) � ba(xr � x#)(yr � y#)

ns2
y.x � ay2 � aay � baxy

x � xr � x#, y � yr � y#.

s2
y.x �

a(y � y#)2 � ba(x � x#)(y � y#)
n

s2
y.x �

ay(y � a � bx)
n �

ay2 � aay � baxy
n

ay � an � bax  axy � aax � bax2

ax(y � a � bx) � axy � aax � bax2 � 0

a(y � a � bx) � ay � an � bax � 0

�
ay(y � a � bx) � aa(y � a � bx) � bax(y � a � bx)

n

s2
y.x �

a(y � yest)2

n �
a(y � a � bx)2

n

yest � a � bx.

s2
y.x �

ay2 � aay � baxy
n

sy.x

y � a � bx,

zest � 63.356,y � 9x � 54



where we have used the results (which follows on dividing both sides of
the normal equation by n). This proves the required result.

Method 2
We know that the regression line can be written as which corresponds to starting with

and then replacing a by zero, x by and y by When these replacements are made in
Problem 8.20, the required result is obtained.

8.22. Compute the standard error of estimate, for the data of Problem 8.11.

From Problem 8.11(b) the regression line of y on x is In Table 8-14 are listed the actual
values of y (from Table 8-3) and the estimated values of y, denoted by yest, as obtained from the regression line.
For example, corresponding to we have yest � 35.82 � 0.476(65) � 66.76.x � 65,

y � 35.82 � 0.476x.

sy.x,

y � y#.x � x#y � a � bx
y � y# � b(x � x#),

gy � an � bg  x
g  xr � 0, gyr � 0  and y# � a � bx#

� a( y � y#)2 � ba(x � x#)( y � y#)

� ayr2 � baxryr

� ayr2 � baxryr � ny#(y# � a � bx#)

� ayr2 � ny#2 � any# � baxryr � bnx#  y#

� ayr2 � 2y#ayr � ny#2 � any# � baxryr � bx#ayr � by#axr � bnx#  y#
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Table 8-14

x 65 63 67 64 68 62 70 66 68 67 69 71

y 68 66 68 65 69 66 68 65 71 67 68 70

yest 66.76 65.81 67.71 66.28 68.19 65.33 69.14 67.24 68.19 67.71 68.66 69.62

y yest� 1.24 0.19 0.29 1.28� 0.81 0.67 1.14� 2.24� 2.81 0.71� 0.66� 0.38

Also listed are the values which are needed in computing 

and inches.

8.23. (a) Construct two lines parallel to the regression line of Problem 8.11 and having vertical distance from
it. (b) Determine the percentage of data points falling between these two lines.

(a) The regression line as obtained in Problem 8.11 is shown solid in Fig. 8-11. The two
parallel lines, each having vertical distance (see Problem 8.22) from it, are shown dashed in
Fig. 8-11.

sy?x � 1.28
y � 35.82 � 0.476x

sy?x

sy.x � !1.642 � 1.28

s2
y.x �

a(y � yest)2

n �
(1.24)2 � (0.19) � c� (0.38)2

12 � 1.642

sy?x.y � yest,

Fig. 8-11



(b) From the figure it is seen that of the 12 data points, 7 fall between the lines while 3 appear to lie on the
lines. Further examination using the last line in Table 8-14 reveals that 2 of these 3 points lie between the
lines. Then the required percentage is .

Another method
From the last line in Table 8-14, lies between and 1.28 (i.e., ) for 9 points (x, y). Then the
required percentage is 

If the points are normally distributed about the regression line, theory predicts that about 68% of the points
lie between the lines. This would have been more nearly the case if the sample size were large.

NOTE: A better estimate of the standard error of estimate of the population from which the sample heights
were taken is given by inches.

The linear correlation coefficient
8.24. Prove that 

Squaring both side of and then summing, we have

The required result follows at once if we can show that the last sum is zero. In the case of linear regression this
is so, since

because of the normal equations 
The result can similarly be shown valid for nonlinear regression using a least-squares curve given by

8.25. Compute (a) the explained variation, (b) the unexplained variation, (c) the total variation for the data of
Problem 8.11.

We have from Problem 8.12 (or from Table 8-4, since Using the values yest

from Table 8-14 we can construct Table 8-15.
y# � 811>12 � 67.58).y# � 67.58

yest � a0 � a1x � a2x2 � c� anxn.

g(y � a � bx) � 0, gx(y � a � bx) � 0.

�  0

�  a a(y � a � bx) � bax(y � a � bx) � y#  a(y � a � bx)

a(y � yest)(yest � y#) � a(y � a � bx)(a � bx � y#)

a( y � y#)2 � a( y � yest)2 � a( yest � y#)2 � 2a( y � yest)( yest � y#)

y � y# � ( y � yest) � ( yest �  y#)

g( y � y#)2 � g( y �  yest)2 � g( yest �  y#)2.

s^y.x � !n>(n � 2)sy.x � !12>10(1.28) � 1.40

9>12 � 75%.

sy.x�1.28y � yest

9>12 � 75%
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Table 8-15

yest � y# 0.82� 1.77� 0.13 1.30� 0.61 2.25� 1.56 0.34� 0.61 0.13 1.08 2.04

(a) Explained variation 

(b) Unexplained variation from Problem 8.22.

(c) Total variation from Problem 8.24.
The results in (b) and (c) can also be obtained by direct calculation of the sum of squares.

8.26. Find (a) the coefficient of determination, (b) the coefficient of correlation for the data of Problem 8.11. Use
the results of Problem 8.25.

(a) Coefficient of determination

(b) Coefficient of correlation 

Since the variable yest increases as x increases, the correlation is positive, and we therefore write
or 0.70 to two significant figures.r � 0.7027,

� r � 
!0.4938 � 
0.7027.

� r2 �
explained variation

total variation �
19.22
38.92 � 0.4938.

� g(y � y#)2 � 19.22 � 19.70 � 38.92,

� g(y � yest)2 � ns2
y.x � 19.70,

� g(yest � y#)2 � (�0.82)2 � c� (2.04)2 � 19.22.



8.27. Starting from the general result (30), page 270, for the correlation coefficient, derive the result (34),
page 271 (the product-moment formula), in the case of linear regression.

The least-squares regression line of y on x can be written or where
and Then, using we have

and so

However, since is positive when yest increases as x increases, but negative when yest decreases as x
increases, the expression for r automatically has the correct sign associated with it. Therefore, the required
result follows.

8.28. By using the product-moment formula, obtain the linear correlation coefficient for the data of Problem 8.11.

The work involved in the computation can be organized as in Table 8-16. Then

agreeing with Problem 8.26(b).

r �
axryr

BQaxr2R Qayr2R
�

40.34
!(84.68)(38.92)

� 0.7027

gxryr

r � 

axryr

$axr2ayr2

�
ab2xr2

ayr2
�

b2axr2

ayr2
� £axryr

axr2
≥2£axr2

ayr2
≥ �

QaxryrR2
axr2ayr2

r2 �
explained variation

total variation �
a( yest � y#)2

a( y � y#)2
 �

ayr2est

ayr2

yr � y � y#,yrest � yest � y#.b � gxryr>gxr2, xr � x � x#,
yrest � bxr,yest � a � bx
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Table 8-16

x y xr �
x � x#

yr �
y � y#

xr2 xryr yr2

65 68 1.7� 0.4 2.89 0.68� 0.16

63 66 3.7� 1.6� 13.69 5.92 2.56

67 68 0.3 0.4 0.09 0.12 0.16

64 65 2.7� 2.6� 7.29 7.02 6.76

68 69 1.3 1.4 1.69 1.82 1.96

62 66 4.7� 1.6� 22.09 7.52 2.56

70 68 3.3 0.4 10.89 1.32 0.16

66 65 0.07� 2.6� 0.49 1.82 6.76

68 71 1.3 3.4 1.69 4.42 11.56

67 67 0.3 0.6� 0.09 0.18� 0.36

69 68 2.3 0.4 5.29 0.92 0.16

71 70 4.3 2.4 18.49 10.32 5.76

gx � 800
x# � 800>12

� 66.7

gy � 811
y# � 811>12

� 67.6

gxr2 �
84.68

gxryr �
40.34

gyr2 �
38.92



8.29. Prove the result (17), page 268.

The regression line of y on x is

Similarly, the regression line of x on y is

Then

8.30. Use the result of Problem 8.29 to find the linear correlation coefficient for the data of Problem 8.11.

From Problem 8.11(b) and 8.11(c), respectively,

Then

agreeing with Problems 8.26(b) and 8.28.

8.31. Show that the linear correlation coefficient is given by

In Problem 8.27 it was shown that

(1)

But

since and 

Similarly,

and

Then (1) becomes

r �
axy � QaxR QayR >n

B Sax2 � QaxR2>nT Say2 � QayR2>nT
�

naxy � QaxR QayR

B Snax2 � QaxR2 T Snay2 � QayR2 T

a(y � y#)2 � ay2 �
QayR2

n

� ax2 �
2QaxR2

n �
QaxR2

n � ax2 �
QaxR2

n

a(x � x#)2 � a(x2 � 2xx# � x#2) � ax2 � 2x#ax � nx#2

y# � (gy)>n.x# � (gx)>n
� axy �

QaxR QayR
n

� axy � nx#  y# � ny#  x# � nx#  y# � axy � nx#  y#

a(x � x#)(y � y#) � a(xy � x#y � xy# � x#  y#) � axy � x#ay � y#ax � nx#  y#

r �
axryr

BQaxr2R Qayr2R
�

a(x � x#)(y � y#)

B Sa(x � x#)2T Sa(y � y#)2T

r �
naxy � QaxR QayR

B Snax2 � QaxR2 T Snay2 � QayR2 T

r2 � bd � a 484
1016b a484

467b or r � 0.7027

b �
484
1016 � 0.476  d �

484
467 � 1.036

bd � arsy

sx
b arsx

sy
b � r2

x � c � dy where d �
rsx

sy

y � a � bx where b �
rsy

sx
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8.32. Use the formula of Problem 8.31 to obtain the linear correlation coefficient for the data of Problem 8.11.

From Table 8-4,

as in Problems 8.26(b), 8.28, and 8.30.

Generalized correlation coefficient
8.33. (a) Find the linear correlation coefficient between the variables x and y of Problem 8.16. (b) Find a non-

linear correlation coefficient between these variables, assuming the parabolic relationship obtained in
Problem 8.16. (c) Explain the difference between the correlation coefficients obtained in (a) and (b). 
(d) What percentage of the total variation remains unexplained by the assumption of parabolic relationship
between x and y?

(a) Using the calculations in Table 8-9 and the added fact that we find

(b) From Table 8-9, Then

Total variation

From Table 8-10,

Explained variation

Therefore,

(c) The fact that part (a) shows a linear correlation coefficient of only indicates practically no linear
relationship between x and y. However, there is a very good nonlinear relationship supplied by the parabola
of Problem 8.16, as is indicated by the fact that the correlation coefficient in (b) is very nearly 1.

(d)

Therefore, 1.78% of the total variation remains unexplained. This could be due to random fluctuations
or to an additional variable that has not been considered.

8.34. Find (a) sy and (b) for the data of Problem 8.16.

(a) From Problem 8.33(b), Then the standard deviation of y is

(b) First method
Using (a) and Problem 8.33(b), the standard error of estimate of y on x is

sy.x � sy!1 � r2 � 1.636!1 � (0.9911)2 � 0.218  or  0.22

sy � Ba(y � y#)2

n � A21.40
8 � 1.636 or 1.64

g( y � y#)2 � 21.40.

sy.x

Unexplained variation
Total variation � 1 � r2 � 1 � 0.9822 � 0.0178

�0.3743

r2 �
explained variation

total variation �
21.02
21.40 � 0.9822 and r � 0.9911

� a(yest � y#)2 � 21.02

� a(y � y#)2 � 21.40

y# � (gy)>n � (46.4)>8 � 5.80.

�
(8)(230.42) � (42.2)(46.4)

![(8)(291.20) � (42.2)2][(8)(290.52) � (46.4)2]
 � �0.3743

r �
naxy � QaxR QayR

B Snax2 � QaxR2 T Snay2 � QayR2 T

gy2 � 290.52,

�
(12)(54,107) � (800)(811)

![(12)(53,418) � (800)2][(12)(54,849) � (811)2]
� 0.7027

r �
naxy � QaxR QayR

B Snax2 � QaxR2 T Snay2 � QayR2 T
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Second method
Using Problem 8.33,

Third method
Using Problem 8.16 and the additional calculation we have

8.35. Explain how you would determine a multiple correlation coefficient for the variables in Problem 8.19.

Since z is determined from x and y, we are interested in the multiple correlation coefficient of z on x and y.
To obtain this, we see from Problem 8.19 that

Then

Multiple correlation coefficient of z on x and y

It should be mentioned that if we were to consider the regression of x on y and z, the multiple correlation
coefficient of x on y and z would in general be different from the above value.

Rank correlation
8.36. Derive Spearman’s rank correlation formula (36), page 271.

Here we are considering nx values (e.g., weights) and n corresponding y values (e.g., heights). Let xj be the rank
given to the jth x value, and yj the rank given to the jth y value. The ranks are the integers 1 through n. The
mean of the xj is then

while the variance is

using the results 1 and 2 of Appendix A. Similarly, the mean and variance are equal to and
respectively.

Now if are the deviations between the ranks, the variance of the deviations, is given in terms
of and the correlation coefficient between ranks by

s2
d � s2

x � s2
y � 2rranksx sy

s2
x, s2

y

s2
d,dj � xj � yj

(n2 � 1)>12,
(n � 1)>2s2

yy#

�
n2 � 1

12

�
n(n � 1)(2n � 1)>6

n � an � 1
2 b2

s2
x � x#2 � x#2 �

12 � 22 � c� n2

n  � an � 1
2 b2

x# �
1 � 2 � c� n

n �
n(n � 1)>2

n �
n � 1

2

� B
explained variation

total variation � A
629.37
888.25 � 0.8418

 Explained variation � 888.25 � 258.88 � 629.37

� 48,139 � 12(62.75)2 � 888.25

 Total variation � a(z � z#)2 � az2 � nz#2

� (64 � 64.414)2 � c� (68 � 65.920)2 � 258.88

 Unexplained variation � a(z � zest)2

sy.x � Ba
y2 � aay � baxy � cax2y

n � 0.218 or 0.22

gy2 � 290.52,

sy.x � Ba
( y � yest)2

n � B
unexplained variation

n � A21.40 � 21.02
8 � 0.218  or  0.22
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Then

(1)

Since and (1) becomes

(2)

8.37. Table 8-17 shows how 10 students were ranked according to their achievements in both the laboratory and
lecture portions of a biology course. Find the coefficient of rank correlation.

rrank �
(n2 � 1)>12 � (n2 � 1)>12 � Qad 2R >n

(n2 � 1)>6 � 1 �
6ad 2

n(n2 � 1)

d# � 0, s2
d � (gd2)>n

rrank �
s2

x � s2
y � s2

d

2sx sy
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Table 8-17

Laboratory 8 3 9 2 7 10 4 6 1 5

Lecture 9 5 10 1 8 7 3 4 2 6

The difference of ranks d in laboratory and lecture for each student is given in Table 8-18. Also given in the
table are d 2 and gd 2.

Table 8-18

Difference of Ranks (d ) 1� 2� 1� 1 1� 3 1 2 1� 1�

d 2 1 4 1 1 1 9 1 4 1 1 gd 2 � 24

Then

indicating that there is a marked relationship between achievements in laboratory and lecture.

8.38. Calculate the coefficient of rank correlation for the data of Problem 8.11, and compare your result with the
correlation coefficient obtained by other methods.

Arranged in ascending order of magnitude, the fathers’ heights are

(1) 62, 63, 64, 65, 66, 67, 67, 68, 68, 69, 70, 71

Since the 6th and 7th places in this array represent the same height (67 inches), we assign a mean rank 6.5 to
both these places. Similarly, the 8th and 9th places are assigned the rank 8.5. Therefore, the fathers’ heights are
assigned the ranks

(2) 1, 2, 3, 4, 5, 6.5, 6.5, 8.5, 8.5, 10, 11, 12

Similarly, the sons’ heights arranged in ascending order of magnitude are

(3) 65, 65, 66, 66, 67, 68, 68, 68, 68, 69, 70, 71

and since the 6th, 7th, 8th, and 9th places represent the same height (68 inches), we assign the mean rank 7.5
to these places. Therefore, the sons’ heights are assigned the ranks

(4) 1.5, 1.5, 3.5, 3.5, 5, 7.5, 7.5, 7.5, 7.5, 10, 11, 12

Using the correspondences (1) and (2), (3) and (4), Table 8-3 becomes Table 8-19.

(6 � 7 � 8 � 9)>4

rrank � 1 �
6ad 2

n(n2 � 1)
� 1 �

6(24)

10(102 � 1)
� 0.8545

Table 8-19

Rank of Father 4 2 6.5 3 8.5 1 11 5 8.5 6.5 10 12

Rank of Son 7.5 3.5 7.5 1.5 10 3.5 7.5 1.5 12 5 7.5 11



The differences in ranks d, and the computations of d2 and are shown in Table 8-20.gd2
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Table 8-20

d 3.5� 1.5� 1.0� 1.5 1.5� 2.5� 3.5 3.5 3.5� 1.5 2.5 1.0

d2 12.25 2.25 1.00 2.25 2.25 6.25 12.25 12.25 12.25 2.25 6.25 1.00 gd 2 � 72.50

Then

which agrees well with the value obtained in Problem 8.26(b).

Probability interpretation of regression and correlation
8.39. Derive (39) from (37).

Assume that the regression equation is

For the least-squares regression line we must consider

where we have used 
Denoting the last expression by we have

Setting these equal to zero, which is a necessary condition for to be a minimum, we find

Therefore, if then or

or

The similarity of the above proof for populations, using expectations, to the corresponding proof for
samples, using summations, should be noted. In general, results for samples have analogous results for
populations and conversely.

8.40. The joint density function of the random variables X and Y is

Find the least-squares regression curve of (a) Y on X, (b) X on Y.

(a) The marginal density function of X is

f1(x) � 3
1

0

2
3  (x � 2y) dy �

2
3  (x � 1)

f (x, y) � b 2
3(x � 2y) 0 � x � 1, 0 � y � 1

0 otherwise

y � mY

sY
� rax � mX

sX
b

y � mY �
sXY

s2
X

(x � mX)

y � mY � b(x � mX)y � a � bx,

mY � a � bmX  bs2
X � sXY

F(a, b)

'F
'a  � �2(mY � bmX � a),  'F'b � 2bs2

X � 2sXY � 2mX(mY � bmX � a)

F(a, b),
E(X � mX) � 0, E(Y � mY) � 0.

� s2
Y � b2s2

X � 2bsXY � (mY � bmX � a)2

�  E[(Y � mY)2] � b2E[(X � mX)2] � 2bE[(X � mX)(Y � mY)] � (mY � bmX � a)2

E5[Y � (a � bX)]26 � E5[(Y � mY) � b(X � mX) � (mY � bmX � a)]26

y � E(Y Z  X � x) � a � bx

r � 0.7027

rrank � 1 �
6ad2

n(n2 � 1)
� 1 �

6(72.50)

12(122 � 1)
� 0.7465

User
Highlight

User
Pencil

User
Pencil

User
Pencil

User
Pencil



for and otherwise. Hence, for the conditional density of Y given X is

and the least-squares regression curve of Y on X is given by

Neither nor the least-squares regression curve is defined when or 

(b) For the marginal density function of Y is

Hence, for the conditional density of X given Y is

and the least-squares regression curve of X on Y is given by

Neither nor the least-squares regression curve is defined when or 
Note that the two regression curves and are 

different.

8.41. Find (a) (b) (c) (d) (e) (f ) for the distribution in Problem 8.40.

(a)

(b)

(c)

Then

(d)

Then

(e) X#Y# � 3
1

x�0
3

1

y�0
xy c 23  (x � 2y) d dx dy �

1
3

s2
Y � Y# 2 � Y# 2 �

4
9 � a11

18b
2

�
23

324

Y# 2 � 3
1

x�0
3

1

y�0
y2 c 23  (x � 2y) d dx dy �

4
9

s2
X � X# 2 � X# 2 �

7
18 � a5

9b
2

�
13

162

X# 2 � 3
1

x�0
3

1

y�0
x2 c 23  (x � 2y) d dx dy �

7
18

Y# � 3
1

x�0
3

1

y�0
 y c 23  (x � 2y) d dx dy �

11
18

X# � 3
1

x�0
3

1

y�0
x c 23  (x � 2y) d dx dy �

5
9

rsXY,s2
Y,s2

X,Y# ,X# ,

x � (2 � 6y)>(3 � 12y)y � (3x � 4)>(6x � 6)
y � 1.y � 0f1(x Z  y)

� 3
1

0
xa2x � 4y

1 � 4y b  dx �
2 � 6y

3 � 12y

x � E(X Z  Y � y) � 3
`

�`
 xf1(x Z  y) dx

f1(x Z  y) �
f (x, y)
f2( y) � c2x � 4y

1 � 4y 0 � x � 1

0 x � 0 or x � 1

0 � y � 1,

f2( y) � 3
1

0

2
3  (x � 2y) dx �

1
3  (1 � 4y)

0 � y � 1,

x � 1.x � 0f2( y Z  x)

� 3
1

0
yax � 2y

x � 1 b  dy �
3x � 4
6x � 6

y � E(Y Z  X � x) � 3
`

�`
 yf2(y Z  x) dy

f2( y Z  x) �
f (x, y)
f1(x) � cx � 2y

x � 1 0 � y � 1

0 y � 0 or y � 1

0 � x � 1,f1(x) � 00 � x � 1,

CHAPTER 8 Curve Fitting, Regression, and Correlation296



Then

(f)

Note that the linear correlation coefficient is small. This is to be expected from observation of the least-
squares regression lines obtained in Problem 8.42.

8.42. Write the least-squares regression lines of (a) Y on X, (b) X on Y for Problem 8.40.

(a) The regression line of Y on X is

(b) The regression line of X on Y is

Sampling theory of regression
8.43. In Problem 8.11 we found the regression equation of y on x to be Test the hypothe-

sis at a 0.05 significance level that the regression coefficient of the population regression equation is as low
as 0.180.

since (computed in Problem 8.22) and from Problem 8.11.
On the basis of a one-tailed test of Student’s distribution at a 0.05 level, we would reject the hypothesis that

the regression coefficient is as low as 0.180 if for degrees of freedom. Therefore,
we can reject the hypothesis.

8.44. Find 95% confidence limits for the regression coefficient of Problem 8.43.

Then 95% confidence limits for (obtained by putting for degrees of
freedom) are given by

i.e., we are 95% confident that lies between 0.136 and 0.816.

8.45. In Problem 8.11, find 95% confidence limits for the heights of sons whose fathers’ heights are (a) 65.0,
(b) 70.0 inches.

Since for degrees of freedom, the 95% confidence limits for yp are

where (Problem 8.11), (Problem 8.43), and n � 12.sy.x � 1.28, sx � 2.66y0 � 35.82 � 0.476x0

y0 

2.23

2n � 2
 sy.xAn � 1 �

n(x0 � x#)2

s2
x

12 � 2 � 10t0.975 � 2.23

b

b 

2.23

!12 � 2
 asy.x

sx
b � 0.476 


2.23
!10

 a1.28
2.66b � 0.476 
 0.340

12 � 2 � 10t � 
t0.975 � 
2.23b

b � b �
t

!n � 2
asy.x

sx
b

12 � 2 � 10t � t0.95 � 1.81

sx � !x#2 � x#2 � 2.66sy.x � 1.28

t �
b � b

sy.x>sx
!n � 2 �

0.476 � 0.180
1.28>2.66

!12 � 2 � 1.95

y � 35.82 � 0.476x.

x � X# �
sXY

s2
Y

 ( y � Y# ) or x �
5
9 �

�1>162

23>324
 ay �

11
18b

x � X#
sX

  � ray � Y#
sY
b or

y � Y# �
sXY

s2
X

 (x � X# ) or y �
11
18 �

�1>162

13>162
 ax �

5
9b

y � Y#
sY

� rax � X#
sX
b or

r �
sXY

sXsY
�

�1>162

!13>162!23>324
� �0.0818

sXY � XY � X#Y# �
1
3 � a5

9b a11
18b � �

1
162
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(a) If inches. Also, Then 95% confidence limits
are

i.e., we can be about 95% confident that the sons’ heights are between 63.0 and 70.6 inches.

(b) If inches. Also, . Then the 95% confidence
limits are computed to be 69.14 5.09 inches, i.e., we can be about 95% confident that the sons’ heights
are between 64.1 and 74.2 inches.

Note that for large values of n, 95% confidence limits are given approximately by or
provided that is not too large. This agrees with the approximate results mentioned on 

page 269. The methods of this problem hold regardless of the size of n or i.e., the sampling methods 
are exact for a normal population.

8.46. In Problem 8.11, find 95% confidence limits for the mean heights of sons whose fathers’ heights are 
(a) 65.0, (b) 70.0 inches.

Since for 10 degrees of freedom, the 95% confidence limits for are

where (Problem 8.11), (Problem 8.43).

(a) If we find [compare Problem 8.45(a)] the 95% confidence limits 66.76 1.07 inches, i.e., we
can be about 95% confident that the mean height of all sons whose fathers’ heights are 65.0 inches will lie
between 65.7 and 67.8 inches.

(b) If we find [compare Problem 8.45(b)] the 95% confidence limits 69.14 1.45 inches, i.e., we
can be about 95% confident that the mean height of all sons whose fathers’ heights are 70.0 inches will lie
between 67.7 and 70.6 inches.

Sampling theory of correlation
8.47. A correlation coefficient based on a sample of size 18 was computed to be 0.32. Can we conclude at a sig-

nificance level of (a) 0.05, (b) 0.01 that the corresponding population correlation coefficient is signifi-
cantly greater than zero?

We wish to decide between the hypotheses and 

(a) On the basis of a one-tailed test of Student’s distribution at a 0.05 level, we would reject H0 if
for degrees of freedom. Therefore, we cannot reject H0 at a 0.05 level.

(b) Since we cannot reject H0 at a 0.05 level, we certainly cannot reject it at a 0.01 level.

8.48. What is the minimum sample size necessary in order that we may conclude that a correlation coefficient
of 0.32 is significantly greater than zero at a 0.05 level?

At a 0.05 level using a one-tailed test of Student’s distribution, the minimum value of n must be such that

For 

For 

For 

Then the minimum sample size is n � 28.

t � 0.32!26>!1 � (0.32)2 � 1.72.n � 28, n � 26, t0.95 � 1.71,

t � 0.32!25>!1 � (0.32)2 � 1.69.n � 27, n � 25, t0.95 � 1.71,

t � 0.32!24>!1 � (0.32)2 � 1.65.n � 26, n � 24, t0.95 � 1.71,

0.32!n � 2
!1 � (0.32)2

� t0.95  for n � 2 degrees of freedom

18 � 2 � 16t � t0.95 � 1.75

t �
r!n � 2
!1 � r2

�
0.32!18 � 2
!1 � (0.32)2

� 1.35

(H1: r � 0).(H0: r � 0)


x0 � 70.0,


x0 � 65.0,

sy.x � 1.28y0 � 35.82 � 0.476x0

y0 

2.23
!20

 sy.xA1 �
(x0 � x#)2

s2
x

y#pt0.975 � 2.23

x0 � x#,
x0 � x#y0 
 2sy.x

y0 
 1.96 sy.x




(x0 � x#)2 � (70.0 � 800>12)2 � 11.11x0 � 70.0, y0 � 69.14

66.76 

2.23
!10

 (1.28)A12 � 1 �
12(2.78)

(2.66)2 � 66.76 
  3.80 inches

(x0 � x#)2 � (65.0 � 800>12)2 � 2.78.x0 � 65.0, y0 � 66.76
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8.49. A correlation coefficient based on a sample of size 24 was computed to be Can we reject the
hypothesis that the population correlation coefficient is as small as (a) (b) at a 0.05
significance level?

(a)

The standardized variable is then

At a 0.05 level of significance using a one-tailed test of the normal distribution, we would reject the
hypothesis only if z were greater than 1.64. Therefore, we cannot reject the hypothesis that the population
correlation coefficient is as small as 0.60.

(b) If and Therefore, we can
reject the hypothesis that the population correlation coefficient is as small as at a 0.05 level of
significance.

8.50. The correlation coefficient between physics and mathematics final grades for a group of 21 students was
computed to be 0.80. Find 95% confidence limits for this coefficient.

Since and 95% confidence limits for are given by

Then has the 95% confidence interval 0.5366 to 1.5606.

If

If

Therefore, the 95% confidence limits for are 0.49 and 0.92.

8.51. Two correlation coefficients obtained from samples of size and were computed to be
and respectively. Is there a significant difference between the two coefficients at a

0.05 level?

and

We wish to decide between the hypotheses and 
Under the hypothesis H0,

Using a two-tailed test of the normal distribution, we would reject H0 only if or 
Therefore, we cannot reject H0, and we conclude that the results are not significantly different at a 0.05 
level.

z � �1.96.z � 1.96

z �
Z1 � Z2 � (mZ1

� mZ2 )

sZ1�Z2

�
0.5493 � 0.3095 � 0

0.2669 � 0.8985

(H1: mZ1
2  mZ2 ).(H0: mZ1

� mZ2 )

sZ1�Z2
� A 1

n1 � 3 �
1

n2 � 3 � 0.2669

Z1 � 1.1513 log a1 � r1

1 � r1
b � 0.5493,  Z2 � 1.1513 log a1 � r2

1 � r2
b � 0.3095

r2 � 0.30,r1 � 0.50
n2 � 35n1 � 28

r

mZ � 1.1513 log a1 � r

1 � r
b � 1.5606,  r � 0.9155.

mZ � 1.1513 log a1 � r

1 � r
b � 0.5366,   r � 0.4904.

mZ

Z 
 1.96sZ � 1.1513 log a1 � r
1 � rb 
 1.96a 1

2n � 3
b � 1.0986 
 0.4620

m2n � 21,r � 0.80

r � 0.50
z � (0.9730 � 0.5493)>0.2182 � 1.94.r � 0.50, mZ � 1.1513 log 3 � 0.5493

z �
Z � mZ

sZ
   �   

0.9730 � 0.6932
0.2182 � 1.28

sZ �
1

!n � 3
�

1
!21

� 0.2182

Z � 1.1513 log a1 � 0.75
1 � 0.75b � 0.9730,  mZ � 1.1513  log a1 � 0.60

1 � 0.60b � 0.6932,

r � 0.50,r � 0.60,
r � 0.75.
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Miscellaneous problems
8.52. Prove formula (25), page 269.

For the least-squares line we have, from Problems 8.20 and 8.21,

But by definition,

and, by (6) on page 267,

Hence,

An analogous formula holds for the population (see Problem 8.54).

8.53. Prove that for the case of (a) a least-squares line,
(b) a least-squares parabola.

We have

Then

and so

The required result follows if we can show that the last term is zero.

(a) For linear regression, Then

because of the normal equations

(Compare Problem 8.3.)

(b) For parabolic regression, Then

because of the normal equations

Compare equations (19), page 269.
The result can be extended to higher-order least-squares curves.

E(Y � a � bX � gX 2) � 0, E[X(Y � a �  bX � gX 2)] � 0, E[X 2(Y � a � bX � gX 2)] � 0

� 0

� gE[X 2(Y � a � bX � gX 2)]

� (a � Y#
 
)E(Y � a � bX � gX 2) � bE[X(Y � a � bX � gX 2)]

E[(Y � Yest)(Yest � Y#
 
)] � E[(Y � a � bX � gX2 )(a � bX � gX2 � Y # )]

Yest � a � bX � gX2.

E(Y � a � bX) � 0,  E(XY � aX � bX2) � 0

� 0

� (a � Y# )E(Y � a � bX) � bE(XY � aX � bX2)

E[(Y � Yest)(Yest � Y# )] � E[(Y � a � bX)(a � bX � Y#
 
)]

Yest � a � bX.

E[(Y � Y# )2 � E[(Y � Yest)2] � E[(Yest � Y# )2] � 2E[(Y � Yest)(Yest � Y# )]

(Y � Y# )2 � (Y � Yest)2 � (Yest � Y# )2 � 2 (Y � Yest)(Yest � Y# )

Y � Y# � (Y � Yest) � (Yest � Y# )

E[(Y � Y#
 
)2] � E[(Y � Yest)2] � [(Yest � Y# )2]

s2
y.x � s2

y �
s2

xy

s2
x

� s2
y c1 � a sxy

sxsy
b2 d � s2

y (1 � r2)

b �
a(x � x#)( y � y#)

a(x � x#)2
�

sxy

s2
x

a( y � y#)2

n � s2
y  a(x � x#)( y � y#)

n � sxy

s2
y.x �

a( y � y#)2

n � b 
a(x � x#)( y � y#)

n
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8.54. Prove that for least-squares regression.

By definition of the generalized correlation coefficient , together with Problem 8.53, we have for either the
linear or parabolic case

and the result follows at once.
The relation also holds for higher-order least-squares curves.

8.55. Show that for the case of linear regression the correlation coefficient as defined by (45) reduces to that 
defined by (40).

The square of the correlation coefficient, i.e., the coefficient of determination, as given by (45) is in the case of
linear regression given by

(1)

But since 

(2)

Then (1) becomes

(3) or

as we were required to show. (The correct sign for is included in XY.)

8.56. Refer to Table 8-21. (a) Find a least-squares regression parabola fitting the data. (b) Compute the regres-
sion values (commonly called trend values) for the given years and compare with the actual values. 
(c) Estimate the population in 1945. (d) Estimate the population in 1960 and compare with the actual
value, 179.3. (e) Estimate the population in 1840 and compare with the actual value, 17.1.

sr

r �
sXY

sX sY
r2 �

s2
XY

s2
X s

2
Y

�
s2

XY

s4
X

 s2
X �
s2

XY

s2
X

E[(a � bX � Y# )2] � E[b2(X � X# )2] � b2E[(X � X# )2]

Y# � a � bX# ,

r2 �
E[(Yest � Y# )2]

E[(Y � Y# )2]
�

E[(a � bX � Y#  )2]

s2
Y

r2 �
E[(Yest � Y# )2]

E[(Y � Y# )2]
� 1 �

E[(Y � Yest)2]

E[(Y � Y# )2]
� 1 �

s2
Y.X

s2
Y

r

s2
Y.X � s2

Y (1 � r2)
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Table 8-21

Source: Bureau of the Census.

Year 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950

U.S. Population
(millions)

23.2 31.4 39.8 50.2 62.9 76.0 92.0 105.7 122.8 131.7 151.1

(a) Let the variables x and y denote, respectively, the year and the population during that year. The equation of
a least-squares parabola fitting the data is

(1)

where a, b, and c are found from the normal equations

(2)

It is convenient to locate the origin so that the middle year, 1900, corresponds to and to choose 
a unit that makes the years 1910, 1920, 1930, 1940, 1950 and 1890, 1880, 1870, 1860, 1850 correspond 

x � 0,

ax2y � aax2 � bax3 � cax4

axy � aax � bax2 � cax3

ay � an � bax � cax2

y � a � bx � cx2



to 1, 2, 3, 4, 5 and respectively. With this choice and are zero and equations
(2) are simplified.

The work involved in computation can be arranged as in Table 8-22. The normal equations (2) become

(3)

From the second equation in (3), from the first and third equations,
Then the required equation is

(4)

where the origin, is July 1, 1900, and the unit of x is 10 years.

(b) The trend values, obtained by substituting 0, 1, 2, 3, 4, 5 in (4), are shown in
Table 8-23 together with the actual values. It is seen that the agreement is good.

x � �5, �4, �3, �2, �1,

x � 0,

y � 76.64 � 13.00x � 0.3974x2

a � 76.64, c � 0.3974.b � 13.00;

 110a � 1958c � 9209.0

 110b � 1429.8

 11a � 110c � 886.8

gx3gx�1, �2, �3, �4, �5,

CHAPTER 8 Curve Fitting, Regression, and Correlation302

Table 8-22

Year x y x2 x3 x4 xy x2y

1850 5� 23.2 25 125� 625 116.0� 580.0

1860 4� 31.4 16 64� 256 125.6� 502.4

1870 3� 39.8 9 27� 81 119.4� 358.2

1880 2� 50.2 4 8� 16 100.4� 200.8

1890 1� 62.9 1 1� 1 62.9� 62.9

1900 0 76.0 0 0 0 0 0

1910 1 92.0 1 1 1 92.0 92.0

1920 2 105.7 4 8 16 211.4 422.8

1930 3 122.8 9 27 81 368.4 1105.2

1940 4 131.7 16 64 256 526.8 2107.2

1950 5 151.1 25 125 625 755.5 3777.5

gx � 0 gy �
886.8

gx2 �
110

gx3 � 0 gx4 �
1958

gxy �
1429.8

gx2y �
9209.0

Table 8-23

Year x � �5 x � �4 x � �3 x � �2 x � �1 x � 0 x � 1 x � 2 x � 3 x � 4 x � 5
1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950

Trend Value 21.6 31.0 41.2 52.2 64.0 76.6 90.0 104.2 119.2 135.0 151.6

Actual Value 23.2 31.4 39.8 50.2 62.9 76.0 92.0 105.7 122.8 131.7 151.1

(c) 1945 corresponds to for which 

(d) 1960 corresponds to for which This does not agree
too well with the actual value, 179.3.

(e) 1840 corresponds to for which This does not
agree with the actual value, 17.1.

This example illustrates the fact that a relationship which is found to be satisfactory for a range of
values need not be satisfactory for an extended range of values.

y � 76.64 � 13.00(�6) � 0.3974(�6)2 � 12.9.x � �6,

y � 76.64 � 13.00(6) � 0.3974(6)2 � 168.9.x � 6,

y � 76.64 � 13.00(4.5) � 0.3974(4.5)2 � 143.2.x � 4.5,



8.57. The average prices of stocks and bonds listed on the New York Stock Exchange during the years 1950
through 1959 are given in Table 8-24. (a) Find the correlation coefficient, (b) interpret the results.
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Table 8-24

Source: New York Stock Exchange.

Year 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959

Average Price of
Stocks (dollars)

35.22 39.87 41.85 43.23 40.06 53.29 54.14 49.12 40.71 55.15

Average Price of
Bond (dollars)

102.43 100.93 97.43 97.81 98.32 100.07 97.08 91.59 94.85 94.65

Table 8-25

x y
x � x#

xr �

y � y#

yr � xr2 xryr yr2

35.22 102.43 10.04� 4.91 100.80 49.30� 24.11

39.87 100.93 5.39� 3.41 29.05 18.38� 11.63

41.85 97.43 3.41� 0.09� 11.63 0.31 0.01

43.23 97.81 2.03� 0.29 4.12 0.59� 0.08

40.06 98.32 5.20� 0.80 27.04 4.16� 0.64

53.29 100.07 8.03 2.55 64.48 20.48 6.50

54.14 97.08 8.88 0.44� 78.85 3.91� 0.19

49.12 91.59 3.86 5.93� 14.90 22.89� 35.16

40.71 94.85 4.55� 2.67� 20.70 12.15 7.13

55.15 94.65 9.89 2.87� 97.81 28.38� 8.24

45.26
x# �

452.64
gx �

97.52
y# �

975.16
gx �

449.38
gxr2 �

�94.67
gxryr �

93.69
gyr2 �

Then by the product-moment formula,

(b) We conclude that there is some negative correlation between stock and bond prices (i.e., a tendency 
for stock prices to go down when bond prices go up, and vice versa), although this relationship is not
marked.

Another method
Table 8-26 shows the ranks of the average prices of stocks and bonds for the years 1950 through 1959 in order
of increasing prices. Also shown in the table are the differences in rank d and gd 2.

r �
axryr

BQaxr2R Qayr2R
�

�94.67

!(449.38)(93.69)
� �0.4614

(a) Denoting by x and y the average prices of stocks and bonds, the calculation of the correlation coefficient
can be organized as in Table 8-25. Note that the year is used only to specify the corresponding values of 
x and y.



Then

This compares favorably with the result of the first method.

8.58. Table 8-27 shows the frequency distributions of the final grades of 100 students in mathematics and
physics. With reference to this table determine (a) the number of students who received grades 70 through
79 in mathematics and 80 through 89 in physics, (b) the percentage of students with mathematics grades
below 70, (c) the number of students who received a grade of 70 or more in physics and less than 80 in
mathematics, (d) the percentage of students who passed at least one of the subjects assuming 60 to be the
minimum passing grade.

rrank � 1 �
6ad 2

n(n2 � 1)
� 1 �

6(272)

10(102 � 1)
� �0.6485
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Table 8-26

Year 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959

Stock Prices in
Order of Rank

1 2 5 6 3 8 9 7 4 10

Bond Prices in
Order of Rank

10 9 5 6 7 8 4 1 3 2

Differences in
Rank (d )

9� 7� 0 0 4� 0 5 6 1 8

d 2 81 49 0 0 16 0 25 36 1 64
272
g  d 2 �

Table 8-27
MATHEMATICS GRADES

P
H

Y
SI

C
S 

G
R

A
D

E
S

40–49 50–59 60–69 70–79 80–89 90–99 TOTALS

90–99 2 4 4 10

80–89 1 4 6 5 16

70–79 5 10 8 1 24

60–69 1 4 9 5 2 21

50–59 3 6 6 2 17

40–49 3 5 4 12

TOTALS 7 15 25 23 20 10 100

(a) Proceed down the column headed 70–79 (mathematics grade) to the row marked 80–89 (physics grade).
The entry 4 gives the required number of students.

(b) Total number of students with mathematics grades below 70

Percentage of students with mathematics grades below 

(c) The required number of students in the total of the entries in Table 8-28, which represents part of 
Table 8-27.

Required number of students � 1 � 5 � 2 � 4 � 10 � 22.

70 � 47>100 � 47%.

� 7 � 15 � 25 � 47

� (number with grades 40–49) � (number with grades 50–59) � (number with grades 60–69)



(d) Referring to Table 8-29, which is taken from Table 8-27, it is seen that the number of students with grades
below 60 in both mathematics and physics is Then the number of students with
grades 60 or over in either physics or mathematics or both is and the required percentage
is

Table 8-27 is sometimes called a bivariate frequency table or bivariate frequency distribution. Each square
in the table is called a cell and corresponds to a pair of classes or class intervals. The number indicated in the
cell is called the cell frequency. For example, in part (a) the number 4 is the frequency of the cell corresponding
to the pair of class intervals 70–79 in mathematics and 80–89 in physics.

The totals indicated in the last row and last column are called marginal totals or marginal frequencies. They
correspond, respectively, to the class frequencies of the separate frequency distributions of mathematics and
physics grades.

8.59. Show how to modify the formula of Problem 8.31 for the case of data grouped as in Table 8-27.

For grouped data, we can consider the various values of the variables x and y as coinciding with the 
class marks, while fx and fy are the corresponding class frequencies or marginal frequencies indicated in 
the last row and column of the bivariate frequency table. If we let f represent the various cell 
frequencies corresponding to the pairs of class marks (x, y), then we can replace the formula of 
Problem 8.31 by

(1)

If we let and where cx and cy are the class interval widths (assumed constant)
and x0 and y0 are arbitrary class marks corresponding to the variables, the above formula becomes

(2)

This is the coding method used in Chapter 5 as a short method for computing means, standard deviations,
and higher moments.

8.60. Find the coefficient of linear correlation of the mathematics and physics grades of Problem 8.58.

We use formula (2) of Problem 8.59. The work can be arranged as in Table 8-30, which is called a correlation
table.

r �
na  fux uy � Qa  fx uxR Qa  fy uyR

B Sna  fx u2
x � Qa  fx uxR2 T Sna  fy u2

y � Qa  fy uyR2 T

y � y0 � cyuy,x � x0 � cxux

r �
na  fxy � Qa  fx xR Qa  fy yR

B Sna  fxx2 � Qa  fxxR2 T Sna  fy y2 � Qa  fy yR2 T

83>100 � 83%.
100 � 17 � 83,

3 � 3 � 6 � 5 � 17.
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P
H

Y
SI

C
S

G
R

A
D

E
S

MATHEMATICS
GRADES

60–69 70–79

90–99 2

80–89 1 4

70–79 5 10

Table 8-28
MATHEMATICS

GRADES

P
H

Y
SI

C
S

G
R

A
D

E
S

40–49 50–59

50–59 3 6

40–49 3 5

Table 8-29



The number in the corner of each cell represents the product fuxuy, where f is the cell frequency. The sum of
these corner numbers in each row is indicated in the corresponding row of the last column. The sum of these
corner numbers in each column is indicated in the corresponding column of the last row. The final totals of the
last row and last column are equal and represent 

From Table 8-30 we have

�
(100)(125) � (64)(�55)

2[(100)(236) � (64)2][(100)(253) � (�55)2]
�

16,020

2(19,504)(22,275)
� 0.7686

r �
na  fuxuy � Qa  fxuxR Qa  fyuyR

B Sna  fx u2
x � Qa  fx uxR2 T Sna  fy u2

y � Qa  fy uyR2 T

g  fuxuy.
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8.61. Use the correlation table of Problem 8.60 to compute (a) sx, (b) sy, (c) sxy, and verify the formula 

(a)

(b)

(c) sxy � cxcBa  fuxuy

n � ¢a  fxux

n
≤ ¢a  fyuy

n
≤ R � (10) (10) c 125

100
� a 64

100b a�55
100 b d � 160.20

sy � cyBa
 fyu2

y

n � aa  fyuy

n
b2

� 10A253
100 � Q�55

100 R
2

� 14.925

sx � cxBa
 fxu2

x

n � aa  fxux

n b2

� 10A236
100 � Q 64

100R
2

� 13.966

r � sxy>sxsy.

Table 8-30



Therefore, the standard deviations of mathematics grades and physics grades are 14.0 and 14.9, respectively,
while their covariance is 160.2. We have

agreeing with r as found in Problem 8.60.

8.62. Write the equations of the regression lines of (a) y on x, (b) x on y for the data of Problem 8.60.

From Table 8-30 we have

From the results of Problem 8.61, and 
We now use (16), page 268, to obtain the equations of the regression lines.

(a)

or

(b)

or

8.63. Compute the standard errors of estimate (a) (b) for the data of Problem 8.60. Use the results of 
Problem 8.61.

(a)

(b)

SUPPLEMENTARY PROBLEMS

The least-squares line
8.64. Fit a least-squares line to the data in Table 8-31 using (a) x as the independent variable, (b) x as the dependent

variable. Graph the data and the least-squares lines using the same set of coordinate axes.

sx.y � sx!1 � r2 � 13.966!1 � (0.7686)2 � 8.934

sy.x � sy!1 � r2 � 14.925!1 � (0.7686)2 � 9.548

sy.xsy.x,

x � 70.9 � 0.719(y � 69.0)

x � x# �
rsx

sy
 ( y � y#),  y � 70.0 �

(0.7686) (13.966)
14.925  ( y � 69.0),

y � 69.0 � 0.821(x � 70.9)

y � y# �
rsy

sx
 (x � x#), y � 69.0 �

(0.7686)(14.925)
13.966  (x � 70.9),

r � 0.7686.sx � 13.966, sy � 14.925

y# � y0 � cy

a  fyuy

n � 74.5 �
(10)(�55)

100 � 69.0

x# � x0 � cx
a  fxux

n � 64.5 �
(10)(64)

100 � 70.9

sxy

sxsy
�

160.20
(13.966)(14.925) � 0.7686
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Table 8-31

x 3 5 6 8 9 11

y 2 3 4 6 5 8

8.65. For the data of Problem 8.64, find (a) the values of y when and (b) the value of x when

8.66. Table 8-32 shows the final grades in algebra and physics obtained by 10 students selected at random from a
large group of students. (a) Graph the data. (b) Find the least-squares line fitting the data, using x as the

y � 7.x � 12,x � 5



independent variable. (c) Find the least-squares line fitting the data, using y as independent variable. (d) If a
student receives a grade of 75 in algebra, what is her expected grade in physics? (e) If a student receives a grade
of 95 in physics, what is her expected grade in algebra?
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Table 8-35

Speed, (miles per hour)v 20 30 40 50 60 70

Stopping Distance, d (feet) 54 90 138 206 292 396

8.67. Refer to Table 8-33. (a) Construct a scatter diagram. (b) Find the least-squares regression line of y on x. (c) Find
the least-squares regression line of x on y. (d) Graph the two regression lines of (b) and (c) on the scatter
diagram of (a).

Table 8-36

Number of Hours (x) 0 1 2 3 4 5 6

Number of Bacteria per Unit Volume (y) 32 47 65 92 132 190 275

Least-squares regression curves
8.68. Fit a least-squares parabola, to the data in Table 8-34.y � a � bx � cx2,

8.69. Table 8-35 gives the stopping distance d (feet) of an automobile traveling at speed (miles per hour) at the
instant danger is sighted. (a) Graph d against . (b) Fit a least-squares parabola of the form 
to the data. (c) Estimate d when miles per hour and 80 miles per hour.v � 45

d � a � bv � cv2v
v

Table 8-32

Algebra (x) 75 80 93 65 87 71 98 68 84 77

Physics (y) 82 78 86 72 91 80 95 72 89 74

Table 8-33

Grade on First Quiz (x) 6 5 8 8 7 6 10 4 9 7

Grade on Second Quiz (y) 8 7 7 10 5 8 10 6 8 6

Table 8-34

x 0 1 2 3 4 5 6

y 2.4 2.1 3.2 5.6 9.3 14.6 21.9

8.70. The number y of bacteria per unit volume present in a culture after x hours is given in Table 8-36. (a) Graph the
data on semilogarithmic graph paper, with the logarithmic scale used for y and the arithmetic scale for x. (b) Fit
a least-squares curve having the form to the data, and explain why this particular equation should yield
good results, (c) Compare the values of y obtained from this equation with the actual values. (d) Estimate the
value of y when x � 7.

y � abx

Multiple regression
8.71. Table 8-37 shows the corresponding values of three variables x, y, and z. (a) Find the linear least-squares

regression equation of z on x and y. (b) Estimate z when and y � 6.x � 10



Standard error of estimate and linear correlation coefficient
8.72. Find (a) (b) for the data in Problem 8.67.

8.73. Compute (a) the total variation in y, (b) the unexplained variation in y, (c) the explained variation in y for the
data of Problem 8.67.

8.74. Use the results of Problem 8.73 to find the correlation coefficient between the two sets of quiz grades of
Problem 8.67.

8.75. Find the covariance for the data of Problem 8.67 (a) directly, (b) by using the formula and the result
of Problem 8.74.

8.76. Table 8-38 shows the ages x and systolic blood pressures y of 12 women. (a) Find the correlation coefficient
between x and y. (b) Determine the least-squares regression line of y on x. (c) Estimate the blood pressure of a
woman whose age is 45 years.

sxy � rsxsy

sx.ysy.x,
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Table 8-37

x 3 5 6 8 12 14

y 16 10 7 4 3 2

z 90 72 54 42 30 12

Table 8-38

Age (x) 56 42 72 36 63 47 55 49 38 42 68 60

Blood Pressure (y) 147 125 160 118 149 128 150 145 115 140 152 155

Table 8-39

x 2 4 5 6 8 11

y 18 12 10 8 7 5

8.77. Find the correlation coefficients for the data of (a) Problem 8.64, (b) Problem 8.66.

8.78. The correlation coefficient between two variables x and y is, If and
find the equations of the regression lines of (a) y on x, (b) x on y.

8.79. Compute (a) (b) for the data of Problem 8.78.

8.80. If and find r.

8.81. If the correlation coefficient between x and y is 0.50, what percentage of the total variation remains unexplained
by the regression equation?

8.82. (a) Compute the correlation coefficient between the corresponding values of x and y given in Table 8-39. 
(b) Multiply each x value in the table by 2 and add 6. Multiply each y value in the table by 3 and subtract 15.
Find the correlation coefficient between the two new sets of values, explaining why you do or do not obtain the
same result as in part (a).

sy � 5,sy.x � 3

sx.ysy.x,

y# � 20,
x# � 10sx � 1.50, sy � 2.00,r � 0.60.



Generalized correlation coefficient
8.83. Find the standard error of estimate of z on x and y for the data of Problem 8.71.

8.84. Compute the coefficient of multiple correlation for the data of Problem 8.71.

Rank correlation
8.85. Two judges in a contest, who were asked to rank 8 candidates, A, B, C, D, E, F, G, and H, in order of their

preference, submitted the choice shown in Table 8-40. Find the coefficient of rank correlation and decide how
well the judges agreed in their choices.
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Table 8-40

Candidate A B C D E F G H

First Judge 5 2 8 1 4 6 3 7

Second Judge 4 5 7 3 2 8 1 6

8.86. Find the coefficient of rank correlation for the data of (a) Problem 8.67, (b) Problem 8.76.

8.87. Find the coefficient of rank correlation for the data of Problem 8.82.

Sampling theory of regression
8.88. On the basis of a sample of size 27 a regression equation y on x was found to be If

and find (a) 95%, (b) 99%, confidence limits for the regression coefficient.

8.89. In Problem 8.88 test the hypothesis that the population regression coefficient is (a) as low as 1.70, (b) as high as
2.20, at a 0.01 level of significance.

8.90. In Problem 8.88 find (a) 95%, (b) 99%, confidence limits for y when

8.91. In Problem 8.88 find (a) 95%, (b) 99%, confidence limits for the mean of all values of y corresponding to

8.92. Referring to Problem 8.76, find 95% confidence limits for (a) the regression coefficient of y on x, (b) the blood
pressures of all women who are 45 years old, (c) the mean of the blood pressures of all women who are 45
years old.

Sampling theory of correlation
8.93. A correlation coefficient based on a sample of size 27 was computed to be 0.40. Can we conclude at a

significance level of (a) 0.05, (b) 0.01, that the corresponding population correlation coefficient is significantly
greater than zero?

8.94. A correlation coefficient based on a sample of size 35 was computed to be 0.50. Can we reject the hypothesis
that the population correlation coefficient is (a) as small as (b) as large as using a 0.05
significance level?

8.95. Find (a) 95%, (b) 99%, confidence limits for a correlation coefficient that is computed to be 0.60 from a sample
of size 28.

r � 0.70,r � 0.30,

x � 6.00.

x � 6.00.

x# � 7.50,sx � 3.00,sy.x � 1.50,
y � 25.0 � 2.00x.



8.96. Work Problem 8.95 if the sample size is 52.

8.97. Find 95% confidence limits for the correlation coefficient computed in Problem 8.76.

8.98. Two correlation coefficients obtained from samples of sizes 23 and 28 were computed to be 0.80 and 0.95,
respectively. Can we conclude at a level of (a) 0.05, (b) 0.01, that there is a significant difference between the
two coefficients?

Miscellaneous results
8.99. The sample least-squares regression lines for a set of data involving X and Y are given by 

Find the linear correlation coefficient.

8.100. Find the correlation coefficient between the heights and weights of 300 adult males in the United States as
given in the Table 8-41.

5x � 8y � 2.
2x � 5y � 3,
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W
E

IG
H

T
S

y
(p

ou
nd

s)

59–62 63–66 67–70 71–74 75–78

90–109 2 1

110–129 7 8 4 2

130–149 5 15 22 7 1

150–169 2 12 63 19 5

170–189 7 28 32 12

190–209 2 10 20 7

210–229 1 4 2

Table 8-41
HEIGHTS x (inches)

8.101. (a) Find the least-squares regression line of y on x for the data of Problem 8.100. (b) Estimate the weights of
two men whose heights are 64 and 72 inches, respectively.

8.102. Find (a) (b) for the data of Problem 8.100.

8.103. Find 95% confidence limits for the correlation coefficient computed in Problem 8.100.

8.104. Find the correlation coefficient between U.S. consumer price indexes and wholesale price indexes for all
commodities as shown in Table 8-42. The base period 1947–1949 � 100.

sx.ysy.x,

Table 8-42

Source: Bureau of Labor Statistics.

Year 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958

Consumer
Price Index

101.8 102.8 111.0 113.5 114.4 114.8 114.5 116.2 120.2 123.5

Wholesale
Price Index

99.2 103.1 114.8 111.6 110.1 110.3 110.7 114.3 117.6 119.2



8.105. Refer to Table 8-43. (a) Graph the data. (b) Find a least-squares line fitting the data and construct its graph. 
(c) Compute the trend values and compare with the actual values. (d) Predict the price index for medical care
during 1958 and compare with the true value (144.4). (e) In what year can we expect the index of medical
costs to be double that of 1947 through 1949, assuming present trends continue?
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Table 8-43

Source: Bureau of Labor Statistics.

Year 1950 1951 1952 1953 1954 1955 1956 1957

Consumer Price Index
for Medical Care
(1947–1949 � 100)

106.0 111.1 117.2 121.3 125.2 128.0 132.6 138.0

8.106. Refer to Table 8-44. (a) Graph the data. (b) Find a least-squares parabola fitting the data. (c) Compute the trend
values and compare with the actual values. (d) Explain why the equation obtained in (b) is not useful for
extrapolation purposes.

Table 8-44

Source: Department of Health and Human Services.

Year 1915 1920 1925 1930 1935 1940 1945 1950 1955

Birth Rate per
1000 Population

25.0 23.7 21.3 18.9 16.9 17.9 19.5 23.6 24.6

ANSWERS TO SUPPLEMENTARY PROBLEMS

8.64. (a) or (b)

8.65. (a) 3.24, 8.24 (b) 10.00 8.66. (b) y (c) (d) 79 (e) 95

8.67. (b) (c)

8.68.

8.69. (b) (c) 170 ft, 516 feet

8.70. (b) (d) 387

8.71. (a) z � 61.40 � 3.65x � 2.54y (b) 40 8.72. (a) 1.304 (b) 1.443

8.73. (a) 24.50 (b) 17.00 (c) 7.50 8.74. 0.5533 8.75. 1.5

8.76. (a) 0.8961 (b) y � 80.78 � 1.138x (c) 132

8.77. (a) 0.958 (b) 0.872 8.78. (a) y � 0.8x � 12 (b) x � 0.45y � 1

y � 32.14(1.427)x or y � 32.14(10)0.1544x or y � 32.14e0.3556x

d � 41.77 � 1.096v � 0.08786v2

y � 5.51 � 3.20(x � 3) � 0.733(x � 3)2 or y � 2.51 � 1.20x � 0.733x2

x � 2.408 � 0.612yy � 4.000 � 0.500x

x � �14.39 � 1.15y� 29.13 � 0.661x

x � 1 �
9
7y or x � 1.00 � 1.29yy � �0.333 � 0.714xy � �

1
3 �

5
7x



8.79. (a) 1.60 (b) 1.20 8.80. 8.81. 75% 8.82. (a) �0.9203

8.83. 3.12 8.84. 0.9927 8.85. 8.86. (a) 0.5182 (b) 0.9318

8.87. �1.0000 8.88. (a) (b)

8.89. (a) Using a one-tailed test, we can reject the hypothesis.
(b) Using a one-tailed test, we cannot reject the hypothesis.

8.90. (a) 37.0 3.6 (b) 37.0 4.9 8.91. (a) 37.0 1.5 (b) 37.0 2.1

8.92. (a) 1.138 0.398 (b) 132.0 19.2 (c) 132.0 5.4

8.93. (a) Yes. (b) No. 8.94. (a) No. (b) Yes.

8.95. (a) 0.2923 and 0.7951 (b) 0.1763 and 0.8361

8.96. (a) 0.3912 and 0.7500 (b) 0.3146 and 0.7861

8.97. 0.7096 and 0.9653 8.98. (a) yes (b) no 8.99. 0.8

8.100. 0.5440 8.101. (a) y � 4.44x � 142.22 (b) 141.9 and 177.5 pounds

8.102. (a) 16.92 1b (b) 2.07 in 8.103. 0.4961 and 0.7235 8.104. 0.9263

8.105. (b) y � 122.42 � 2.19x if x-unit is year and origin is at Jan. 1, 1954; or y � 107.1 � 4.38x if x-unit is 1 year
and origin is at July 1, 1950
(d) 142.1 (e) 1971

8.106. (b) y � 18.16 � 0.1083x � 0.4653x2, where y is the birth rate per 1000 population and x-unit is 5 years with
origin at July 1, 1935

1
2












2.00 
 0.282.00 
 0.21

rrank �
2
3


0.80
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Analysis of Variance

The Purpose of Analysis of Variance
In Chapter 7 we used sampling theory to test the significance of differences between two sampling means. We
assumed that the two populations from which the samples were drawn had the same variance. In many situations
there is a need to test the significance of differences among three or more sampling means, or equivalently to test
the null hypothesis that the sample means are all equal.

EXAMPLE 9.1 Suppose that in an agricultural experiment, four different chemical treatments of soil produced mean
wheat yields of 28, 22, 18, and 24 bushels per acre, respectively. Is there a significant difference in these means, or is
the observed spread simply due to chance?

Problems such as these can be solved by using an important technique known as the analysis of variance, de-
veloped by Fisher. It makes use of the F distribution already considered in previous chapters.

One-Way Classification or One-Factor Experiments
In a one-factor experiment measurements or observations are obtained for a independent groups of samples,
where the number of measurements in each group is b. We speak of a treatments, each of which has b repetitions
or replications. In Example 9.1, .

The results of a one-factor experiment can be presented in a table having a rows and b columns (Table 9-1).
Here xjk denotes the measurement in the jth row and kth column, where a and . For
example, x35 refers to the fifth measurement for the third treatment.

k � 1, 2, . . . , bj � 1, 2, . . . ,

a � 4

CHAPTER 12CHAPTER 9

Treatment 1

Treatment 2

Treatment a x#a.xa1 xa2 
c xab

((

x#2.x21 x22 
c x2b

x#1.x11 x12 c x1b

Table 9-1

We shall denote by the mean of the measurements in the jth row. We have

(1)

The dot in is used to show that the index k has been summed out. The values are called group means, treat-
ment means, or row means. The grand mean, or overall mean, is the mean of all the measurements in all the
groups and is denoted by i.e.,

(2)x# �
1
abaj,k  xjk �

1
aba

a

j�1
a
b

k�1
 xjk

x#,

x# j.x# j.

x# j. �
1
ba

b

k�1
xjk  j � 1, 2, c, a

x#j.

314
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Total Variation. Variation Within Treatments. Variation Between Treatments
We define the total variation, denoted by v, as the sum of the squares of the deviations of each measurement from
the grand mean i.e.,

Total variation (3)

By writing the identity,

(4)

and then squaring and summing over j and k, we can show (see Problem 9.1) that

(5)

or

(6)

We call the first summation on the right of (5) or (6) the variation within treatments (since it involves the squares
of the deviations of xjk from the treatment means and denote it by vw. Therefore,

(7)

The second summation on the right of (5) or (6) is called the variation between treatments (since it involves the
squares of the deviations of the various treatment means from the grand mean and is denoted by vb. Therefore,

(8)

Equations (5) or (6) can thus be written

v � vw � vb (9)

Shortcut Methods for Obtaining Variations
To minimize the labor in computing the above variations, the following forms are convenient:

(10)

(11)

vw � v � vb (12)

where is the total of all values xjk and j. is the total of all values in the jth treatment, i.e.,

(13)

In practice it is convenient to subtract some fixed value from all the data in the table; this has no effect on the
final results.

Linear Mathematical Model for Analysis of Variance
We can consider each row of Table 9-1 as representing a random sample of size b from the population for that
particular treatment. Therefore, for treatment j we have the independent, identically distributed random vari-
ables Xj1, Xj2, . . . , Xjb, which, respectively, take on the values xj1, xj2, . . . , xjb. Each of the Xjk (k � 1, 2, . . . , b)

t � a
j,k

 xjk  tj. � a  
k

xjk

tt

vb �
1
baj t

2
j. �
t2

ab

v � a
j,k

x2
jk �

t2

ab

vb � a
j,k

(xj. � x)2 � ba
j

(xj. � x)2

x#)x# j.

vw � a
j,k

(xjk � x# j.)2

x# j.)

a
j,k

(xjk � x#)2 � a
j,k

(xjk � x# j.)2 � ba
j

(x# j. � x#)2

a
j,k

(xjk � x#)2 � a
j,k

(xjk � x# j.)2 � a
j,k

(x# j. � x#)2

xjk � x# � (xjk � x# j.) � (x# j. � x#)

� v � a
j,k

(xjk � x#)2

x#,
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can be expressed as the sum of its expected value and a “chance” or “error” term:

(14)

The jk can be taken as independent (relative to j as well as to k), normally distributed random variables with
mean zero and variance . This is  equivalent to assuming that the Xjk ( j � 1, 2, . . . , a; k � l, 2, . . . , b) are
mutually independent, normal variables with means j and common variance .

Let us define the constant by

We can think of as the mean for a sort of grand population comprising all the treatment populations. Then (14)
can be rewritten as (see Problem 9.18)

(15)

The constant j can be viewed as the special effect of the jth treatment.
The null hypothesis that all treatment means are equal is given by (H0: ) or equiva-

lently by (H0: ). If H0 is true, the treatment populations, which by assumption are nor-
mal, have a common mean as well as a common variance. Then there is just one treatment population, and all
treatments are statistically identical.

Expected Values of the Variations
The between-treatments variation Vb, the within-treatments variation Vw, and the total variation V are random
variables that, respectively, assume the values vb, vw, and v as defined in (8), (7), and (3). We can show 
(Problem 9.19) that

(16)

(17)

(18)

From (17) it follows that

(19)

so that

(20)

is always a best (unbiased) estimate of regardless of whether H0 is true or not. On the other hand, from (16)
and (18) we see that only if H0 is true will we have

(21)

so that only in such case will

(22)S
^2

b �
Vb

a � 1
  S

^2 �
V

ab � 1

E ¢ Vb

a � 1
≤ � s2  E ¢ V

ab � 1
≤ � s2

s2

S
^2

w �
Vw

a(b � 1)

EB Vw

a(b � 1)
R � s2

E(V) � (ab � 1)s2 � baa2
j

E(Vw) � a(b � 1)s2

E(Vb) � (a � 1)s2 � ba
j
a2

j

mj � m; j � 1, 2, . . . , a
aj � 0; j � 1, 2, . . . , a

a

Xjk � m � aj � 
jk  where  a
j
aj � 0

m

m �
1
aa

j
mj

m

s2m

s2



Xjk � mj � 
jk



provide unbiased estimates of . If H0 is not true, however, then we have from (16)

(23)

Distributions of the Variations
Using Theorem 4-4, page 115, we can prove the following fundamental theorems concerning the distributions
of the variations Vw, Vb, and V.

Theorem 9-1 is chi-square distributed with a(b � 1) degrees of freedom.

Theorem 9-2 Under the null hypothesis H0, and are chi-square distributed with a � 1 and ab � 1
degrees of freedom, respectively.

It is important to emphasize that Theorem 9-1 is valid whether or not we assume H0, while Theorem 9-2 is valid
only if H0 is assumed.

The F Test for the Null Hypothesis of Equal Means
If the null hypothesis H0 is not true, i.e., if the treatment means are not equal, we see from (23) that we can ex-
pect to be greater than , with the effect becoming more pronounced as the discrepancy between means in-
creases. On the other hand, from (19) and (20) we can expect to be equal to regardless of whether the
means are equal or not. It follows that a good statistic for testing the hypothesis H0 is provided by If this
is significantly large, we can conclude that there is a significant difference between treatment means and thus re-
ject H0. Otherwise we can either accept H0 or reserve judgment pending further analysis.

In order to use this statistic, we must know its distribution. This is provided in the following theorem, which
is a consequence of Theorem 5-8, page 159.

Theorem 9-3 The statistic has the F distribution with a � 1 and a(b � 1) degrees of freedom.

Theorem 9-3 enables us to test the null hypothesis at some specified significance level using a one-tailed test
of the F distribution.

Analysis of Variance Tables
The calculations required for the above test are summarized in Table 9-2, which is called an analysis of variance
table. In practice we would compute v and vb using either the long method, (3) and (8), or the short method, (10)
and (11), and then compute vw � v � vb. It should be noted that the degrees of freedom for the total variation,
i.e., ab � 1, is equal to the sum of the degrees of freedom for the between-treatments and within-treatments
variations.

F � S
^2

b > S
^2

w

S
^2

b > S
^2

w.
s2S

^2
w

s2S
^2

b

V>s2Vb>s2

Vw>s2

E(S
^2

b) � s2 �
b

a � 1aj a
2
j

s2
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Variation Degrees of Freedom Mean Square F

Between Treatments,

vb � ba
j

(x# j. � x#)2 a � 1 s^2
b �

vb

a � 1 with
a – 1, a(b – 1)

degrees of 
freedom

s^2
b

s^2
w

Within Treatments,
vw � v � vb

Total,

� a
j,k

(xjk � x#)2

v � vb � vw

a(b � 1)

ab � 1

s^2
w �

vw

a(b � 1)

Table 9-2
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Modifications for Unequal Numbers of Observations
In case the treatments 1, . . . , a have different numbers of observations equal to n1, . . . , na, respectively, the above
results are easily modified. We therefore obtain

(24)

(25)

(26)

where denotes the summation over k from 1 to nj and then over j from 1 to a, is the total number
of observations in all treatments, is the sum of all observations, j. is the sum of all values in the jth treatment,
and is the sum from j � 1 to a.

The analysis of variance table for this case is given in Table 9-3.
gj

tt

n � gj njgj,k

vw � v � vb

vb � a
j,k

(x# j. � x#)2 � a
j

nj (x# j. � x#)2 � a
j

t2
j.

nj
�
t2

n

v � a
j,k

(xjk � x#)2 � a
j,k

x2
jk �

t2

n

Variation Degrees of Freedom Mean Square F

Between Treatments,

vb � a
j

nj (x# j. � x#)2 a � 1 s^2
b �

vb

a � 1 with
a � 1, n � a

degrees of 
freedom

s^2
b

s^2
w

Within Treatments,
vw � v � vb

Total,

� a
j,k

(xjk � x#)2

v � vb � vw

n � a

n � 1

s^2
w �

vw

n � a

Table 9-3

Two-Way Classification or Two-Factor Experiments
The ideas of analysis of variance for one-way classification or one-factor experiments can be generalized. We
illustrate the procedure for two-way classification or two-factor experiments.

EXAMPLE 9.2 Suppose that an agricultural experiment consists of examining the yields per acre of 4 different vari-
eties of wheat, where each variety is grown on 5 different plots of land. Then a total of (4)(5) � 20 plots are needed. It
is convenient in such case to combine plots into blocks, say, 4 plots to a block, with a different variety of wheat grown
on each plot within a block. Therefore, 5 blocks would be required here.

In this case there are two classifications or factors, since there may be differences in yield per acre due to (i) the par-
ticular type of wheat grown or (ii) the particular block used (which may involve different soil fertility, etc.).

By analogy with the agricultural experiment of Example 9.2, we often refer to the two classifications or factors
in an experiment as treatments and blocks, but of course we could simply refer to them as Factor 1 and Factor 2, etc.

Notation for Two-Factor Experiments
Assuming that we have a treatments and b blocks, we construct Table 9-4, where it is supposed that there is one
experimental value (for example, yield per acre) corresponding to each treatment and block. For treatment j and
block k we denote this value by xjk. The mean of the entries in the jth row is denoted by where j � 1, . . . , a,x# j.,



while the mean of the entries in the kth column is denoted by where k � 1, . . . , b. The overall, or grand, mean
is denoted by In symbols,

(27)x#j. �
1
ba

b

k�1
 xjk,  x# .k �

1
aa

a

j�1
 xjk,  x# �

1
abaj,k  xjk

x#.
x# .k,

CHAPTER 9 Analysis of Variance 319

1 2 b

1

2

a

x# .bcx# .2x# .1

x#a.xab
cxa2xa1

( ( ((((
x#2.x2b

cx22x21

x#1.x1b
cx12x11

c

Table 9-4
Blocks

Variations for Two-Factor Experiments
As in the case of one-factor experiments, we can define variations for two-factor experiments. We first define the
total variation, as in (3), to be

(28)

By writing the identity

(29)

and then squaring and summing over j and k, we can show that

(30)

where ve � variation due to error or chance 

vr � variation between rows (treatments)

vc � variation between columns (blocks)

The variation due to error or chance is also known as the residual variation.
The following are short formulas for computation, analogous to (10), (11), and (12).

(31)

(32)

(33)

(34)

where . is the total of entries of the jth row, is the total of entries in the kth column, and is the total of all
entries.

tt. ktj

ve � v � vr � vc

vc �
1
aa

b

k�1
 t

2
.k �

t2

ab

vr �
1
ba

a

j�1
 t

2
j. �
t2

ab

v � a
j,k

 x2
jk �

t2

ab

� aa
b

k�1
(x# .k � x#)2

� ba
a

j�1
(x# j. � x#)2

� a
j,k

(xjk � x# j. � x# .k � x#)2

v � ve � vr � vc

xjk � x# � (xjk � x# j. � x# .k � x#) � (x# j. � x#) � (x# .k � x#)

v � a
j,k

(xjk � x#)2

T
re

at
m

en
ts
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Analysis of Variance for Two-Factor Experiments
For the mathematical model of two-factor experiments, let us assume that the random variables Xjk whose val-
ues are the xjk can be written as

(35)

Here is the population grand mean, j is that part of Xjk due to the different treatments (sometimes called the
treatment effects), k is that part of Xjk due to the different blocks (sometimes called the block effects), and jk is
that part of Xjk due to chance or error. As before, we can take the jk as independent normally distributed ran-
dom variables with mean zero and variance , so that the Xjk are also independent normally distributed variables
with variance . Under suitable assumptions on the means of the Xjk, we have

(36)

which makes

Corresponding to the results (16) through (18), we can prove that

(37)

(38)

(39)

(40)

There are two null hypotheses that we would want to test:

All treatment (row) means are equal, i.e., j � 0, j � 1, . . . , a

All block (column) means are equal, i.e., k � 0, k � 1, . . . , b

We see from (39) that, without regard to or a best (unbiased) estimate of is provided by

(41)

Also, if the hypotheses and are true, then

(42)

will be unbiased estimates of . If and are not true, however, we have from (37) and (38), respectively,

(43)

(44)

The following theorems are similar to Theorems 9-1 and 9-2.

Theorem 9-4 is chi-square distributed with (a � 1)(b � 1) degrees of freedom, without regard to 
or H(2)

0 .
H(1)

0Ve>s2
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j
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a
j
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am

Xjk � m � aj � bk � 
jk



Theorem 9-5 Under the hypothesis is chi-square distributed with a �1 degrees of freedom. Under
the hypothesis is chi-square distributed with degrees of freedom. Under both
hypotheses and is chi-square distributed with degrees of freedom.

To test the hypothesis it is natural to consider the statistic since we can see from (43) that is ex-
pected to differ significantly from 2 if the row (treatment) means are significantly different. Similarly, to test
the hypothesis we consider the statistic The distributions of and are given in the follow-
ing analog to Theorem 9-3.

Theorem 9-6 Under the hypothesis the statistic has the F distribution with a � 1 and (a � 1)(b � 1)
degrees of freedom. Under the hypothesis the statistic has the F distribution with 
and (a � 1)(b � 1) degrees of freedom.

The theorem enables us to accept or reject and at specified significance levels. For convenience, as in
the one-factor case, an analysis of variance table can be constructed as shown in Table 9-5.
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0H(1)
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b � 1S
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rS
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H(1)
0 , Vr>s2
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Degrees of 
Variation Freedom Mean Square F

Between Treatments,

vr � ba
j

(x# j. � x#)2 a � 1 s^2
r �

vr

a � 1
with

degrees of freedom
(a � 1)(b � 1)

a � 1
s^2

r >s^2
e

with

degrees of freedom
(a � 1)(b � 1)

b � 1
s^2

c>s^2
eBetween Blocks,

vc � aa
k

(x# .k � x#)2

Residual or Random,
ve � v � vr � vc

Total,

� a
j,k

(xjk � x#)2

v � vr � vc � ve

b � 1

(a � 1)(b � 1)

s^2
c �

vr

b � 1

s^2
e �

ve

(a � 1)(b � 1)

Table 9-5

ab � 1

Two-Factor Experiments with Replication
In Table 9-4 there is only one entry corresponding to a given treatment and a given block. More information re-
garding the factors can often be obtained by repeating the experiment, a process called replication. In that case
there will be more than one entry corresponding to a given treatment and a given block. We shall suppose that there
are c entries for every position; appropriate changes can be made when the replication numbers are not all equal.

Because of replication an appropriate model must be used to replace that given by (35), page 320. To obtain
this, we let Xjkl denote the random variable corresponding to the jth row or treatment, the kth column or block,
and the lth repetition or replication. The model is then given by

where , j, k are defined as before, jkl are independent normally distributed random variables with mean
zero and variance , while jk denote row-column or treatment-block interaction effects (often simply called
interactions). Corresponding to (36) we have

(45)a
j

 aj � 0,  a
k

 bk � 0,  a
j

 gjk � 0,  a  
k
gjk � 0

gs2

bam

Xjkl � m � aj � bk � gjk � 
jkl
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As before, the total variation v of all the data can be broken up into variations due to rows vr, columns vc, and
random or residual error ve:

(46)

where (47)

(48)

(49)

(50)

(51)

In these results the dots in subscripts have meanings analogous to those given before (page 319). For example,

(52)

Using the appropriate number of degrees of freedom (df) for each source of variation, we can set up the analy-
sis of variation table, Table 9-6.
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v � a
j,k,l

(xjkl � x#)2

v � vr � vc � vi � ve

Degrees of 
Variation Freedom Mean Square F

Between Treatments,
vr a � 1 s^2

r �
vr

a � 1
with

degrees of freedom
ab(c � 1)

a � 1,
s^2

r >s^2
e

with

degrees of freedom
ab(c � 1)

b � 1,
s^2

c>s^2
e

Between Blocks,
vc b � 1 s^2

e �
vc

b � 1

s^2
i �

vi

(a � 1)(b � 1)

Table 9-6

with ,

degrees of freedom
ab(c � 1)
(a � 1)(b � 1)

s^2
i >s^2

e

(a � 1)(b � 1)
Interaction,
vi

Residual or Random,
ve ab(c � 1) s^2

e �
ve

ab(c � 1)

Total,
v abc � 1



The F ratios in the last column of Table 9-6 can be used to test the null hypotheses

All treatment (row) means are equal, i.e., j � 0

All block (column) means are equal, i.e., k � 0

There are no interactions between treatments and blocks, i.e., jk � 0

From a practical point of view we should first decide whether or not can be rejected at an appropriate level
of significance using the F ratio of Table 9-6. Two possible cases then arise.

Case I Cannot Be Rejected: In this case we can conclude that the interactions are not too large. We can then
test and by using the F ratios and respectively, as shown in Table 9-6. Some stat-
isticians recommend pooling the variations in this case by taking the total and dividing it by the
total corresponding degrees of freedom, , and using this value to replace
the denominator in the F test.

Case II Can Be Rejected: In this case we can conclude that the interactions are significantly large. Differ-
ences in factors would then be of importance only if they were large compared with such interactions.
For this reason many statisticians recommend that and be tested using the F ratios and

rather than those given in Table 9-6. We shall use this alternate procedure also.

The analysis of variance with replication is most easily performed by first totaling replication values that cor-
respond to particular treatments (rows) and blocks (columns). This produces a two-factor table with single en-
tries, which can be analyzed as in Table 9-5. The procedure is illustrated in Problem 9.13.

Experimental Design
The techniques of analysis of variance discussed above are employed after the results of an experiment have
been obtained. However, in order to gain as much information as possible, the details of an experiment must be
carefully planned in advance. This is often referred to as the design of the experiment. In the following we give
some important examples of experimental design.

1. COMPLETE RANDOMIZATION. Suppose that we have an agricultural experiment as in Example 9.1,
page 314. To design such an experiment, we could divide the land into plots (indicated in Fig.
9-1 by squares, although physically any shape can be used) and assign each treatment, indicated by A, B, C,
D, to four blocks chosen completely at random. The purpose of the randomization is to eliminate various
sources of error such as soil fertility.

4 	 4 � 16

s^2
c>s^2

i

s^2
r >s^2

iH(2)
0H(1)

0

H(3)
0

s^2
e

(a � 1)(b � 1) � ab(c � 1)
vi � ve

s^2
c>s^2

e,s^2
r >s^2

eH(2)
0H(1)

0

H(3)
0

s^2
i >s^2

e

H(3)
0

gH(3)
0 :

bH(2)
0 :

aH(1)
0 :
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Fig. 9-1 Fig. 9-2 Fig. 9-3 Fig. 9-4

2. RANDOMIZED BLOCKS. When, as in Example 9.2, it is necessary to have a complete set of treat-
ments for each block, the treatments A, B, C, D are introduced in random order within each block I, I, III,
IV (see Fig. 9-2) and for this reason the blocks are referred to as randomized blocks. This type of design is
used when it is desired to control one source of error or variability, namely, the difference in blocks (rows
in Fig. 9-2).

3. LATIN SQUARES. For some purposes it is necessary to control two sources of error or variability at the
same time, such as the difference in rows and the difference in columns. In the experiment of Example 9.1, for
instance, errors in different rows and columns could be due to changes in soil fertility in different parts of the
land. In that case it is desirable that each treatment should occur once in each row and once in each column, as
in Fig. 9-3. The arrangement is called a Latin square from the fact that Latin letters A, B, C, D are used.
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4. GRAECO-LATIN SQUARES. If it is necessary to control three sources of error or variability, a
Graeco-Latin square is used, as indicated in Fig. 9-4. Such a square is essentially two Latin squares super-
imposed on each other, with Latin letters A, B, C, D used for one square while Greek letters, , , , are
used for the other squares. The additional requirement that must be met is that each Latin letter must be used
once and only once with each Greek letter. When this property is met the square is said to be orthogonal.

SOLVED PROBLEMS

One-way classification or one-factor experiments
9.1. Prove that

We have Then squaring and summing over j and k, we find

To prove the required result, we must show that the last summation is zero. In order to do this, we proceed as
follows.

since

9.2. Verify that (a) (b) (c) using the notation on page 315.

(a)

(b)

(c) Since we have

by part (a).

9.3. Verify the shortcut formulas (10) through (12), page 315.

We have

v � a
j,k

(xjk � x#)2 � a
j,k
Ax2

jk � 2x#x# jk � x#2B
� a

j,k
x2

jk � 2x#a
j,k

xjk � abx#2

� a
j,k

x2
jk � 2x#(abx#) � abx#2

� a
j,k

x2
jk � abx#2

� a
j,k

x2
jk �

t2

ab

a
j
tj. � a

j
a
k

xjk � t � abx#

tj. � gk xjk,

tj. � a
k

xjk � b¢ 1
bak xjk≤ � bx# j.

t � a
j,k

xjk � ab¢ 1
abaj,k xjk≤ � abx#

gj tj. � abx#,tj. � bx# j.,t � abx#,

x# j. �
1
b gb

k�1xjk.

� a
a

j�1
(x# j. � x#)B ¢ab

k�1
xjk≤ � bx# j.R � 0

a
j,k

(xjk � x# j.)(x# j. � x#) � a
a

j�1
(x# j. � x#)Bab

k�1
(xjk � x# j.)R

a
j,k

(xjk � x#)2 � a
j,k

(xjk � x# j.)2 � a
j,k

(x# j. � x#)2 � 2a
j,k

(xjk � x# j.)(x# j. � x#)

xjk � x# � (xjk � x# j.) � (x# j. � x#).

a
j,k

(xjk � x#)2 � a
j,k

(xjk � x# j.)2 � a
j,k

(x# j. � x#)2

dgba



using Problem 9.2(a) in the third and last lines above. Similarly

using Problem 9.2(b) in the third line and Problem 9.2(a) in the last line.
Finally, (12) follows from the fact that or .

9.4. Table 9-7 shows the yields in bushels per acre of a certain variety of wheat grown in a particular type of soil
treated with chemicals A, B, or C. Find (a) the mean yields for the different treatments, (b) the grand mean
for all treatments, (c) the total variation, (d) the variation between treatments, (e) the variation within treat-
ments. Use the long method.

vw � v � vbv � vb � vw

vb � a
j,k

(x# j. � x#)2 � a
j,k
Ax#2j. � 2x#x# j. � x#2B

� a
j,k

x#2j. � 2x#a
j,k

x# j. � abx#2

� a
j,k
¢ tj.

b ≤ 2
� 2x#a

j,k

tj.

b � abx#2

�
1
b2a

a

j�1
a
b

k�1
t2

j. � 2x#(abx#) � abx#2

�
1
ba

a

j�1
t2

j. � abx#2

�
1
ba

a

j�1
t2

j. �
t2

ab

3 4 5 4

2 4 3 3

4 6 5 5

A 48 49 50 49

B 47 49 48 48

C 49 51 50 50
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Table 9-7 Table 9-8

To simplify the arithmetic, we may subtract some suitable number, say, 45, from all the data without affecting the
values of the variations. We then obtain the data of Table 9-8.

(a) The treatment (row) means for Table 9-8 are given, respectively, by

Therefore, the mean yields, obtained by adding 45 to these, are 49, 48, and 50 bushels per acre for A, B, and
C, respectively.

(b)

Therefore, the grand mean for the original set of data is 45 � 4 � 49 bushels per acre.

(c) Total variation

(d) Variation between treatments

(e) Variation within treatments � vw � v � vb � 14 � 8 � 6

� 4[(4 � 4)2 � (3 � 4)2 � (5 � 4)2] � 8

� vb � ba
j

(x# j. � x#)2

� 14

� (4 � 4)2 � (6 � 4)2 � (5 � 4)2 � (5 � 4)2

� (2 � 4)2 � (4 � 4)2 � (3 � 4)2 � (3 � 4)2

� (3 � 4)2 � (4 � 4)2 � (5 � 4)2 � (4 � 4)2

� v � a
j,k

(xjk � x#)2

x# �
1

12  (3 � 4 � 5 � 4 � 2 � 4 � 3 � 3 � 4 � 6 � 5 � 5) � 4

x#1. �
1
4  (3 � 4 � 5 � 4) � 4,  x#2. �

1
4  (2 � 4 � 3 � 3) � 3,  x#3. �

1
4  (4 � 6 � 5 � 5) � 5
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Another method

9.5. Referring to Problem 9.4, find an unbiased estimate of the population variance from (a) the variation be-
tween treatments under the null hypothesis of equal treatment means, (b) the variation within treatments.

(a)

(b)

9.6. Referring to Problem 9.4, can we reject the null hypothesis of equal means at (a) the 0.05 significance level?
(b) the 0.01 significance level?

We have

with and degrees of freedom.

(a) Referring to Appendix F, with 1 � 2 and 2 � 9, we see that F0.95 � 4.26. Since F � 6 � F0.95, we can reject
the null hypothesis of equal means at the 0.05 level.

(b) Referring to Appendix F, with 1 � 2 and 2 � 9, we see that F0.99 � 8.02. Since F � 6 � F0.99, we cannot
reject the null hypothesis of equal means at the 0.01 level.

The analysis of variance table for Problems 9.4 through 9.6 is shown in Table 9-9.

nn

nn

a(b � 1) � 3(4 � 1) � 9a � 1 � 3 � 1 � 2

F �
s^2

b

s^2
w

�
4

2>3 � 6

s^2
w �

vw

a(b � 1) �
6

3(4 � 1) �
2
3

s^2
b �

vb

a � 1 �
8

3 � 1 � 4

s2

� 6

� (4 � 5)2 � (6 � 5)2 � (5 � 5)2 � (5 � 5)2

� (2 � 3)2 � (4 � 3)2 � (3 � 3)2 � (3 � 3)2

� (3 � 4)2 � (4 � 4)2 � (5 � 4)2 � (4 � 4)2

vw � a
j,k

(xjk � x# j.)2

Variation
Degrees of 
Freedom Mean Square F

Between Treatments,
vb � 8 a � 1 � 2 s^2

b �
8
2 � 4

with 2, 9
degrees of
freedom

� 6

F �
s^2

b

s^2
w

�
4

2>3
Within Treatments,

� 14 � 8 � 6

vw � v � vb a(b � 1) � (3)(3) � 9 s^2
w �

6
9 �

2
3

Total,
v � 14 � 11

ab � 1 � (3)(4) � 1

Table 9-9

9.7. Use the shortcut formulas (10) through (12) to obtain the results of Problem 9.4.

(a) We have

Also

� 48� 4 � 6 � 5 � 5� 2 � 4 � 3 � 3t � 3 � 4 � 5 � 4

� 206� 16 � 36 � 25 � 25� 4 � 16 � 9 � 9a
j,k

x2
jk � 9 � 16 � 25 � 16



Therefore,

(b) The totals of the rows are

Also

Then

(c)

It is convenient to arrange the data as in Table 9-10.

vw � v � vb � 14 � 8 � 6

vb �
1
baj t

2
j. �
t2

ab

�
1
4  (162 � 122 � 202) �

(48)2

(3)(4) � 200 � 192 � 8

t � 16 � 12 � 20 � 48

t1. � 3 � 4 � 5 � 4 � 16

t2. � 2 � 4 � 3 � 3 � 12

t3. � 4 � 6 � 5 � 5 � 20

� 206 �
(48)2

(3)(4) � 206 � 192 � 14

v � a
j,k

x2
jk �

t2

ab
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A 3 4 5 4 16 256

B 2 4 3 3 12 144

C 4 6 5 5 20 400

t2
j.tj.

a
j,k

x2
jk � 206

� 48

t � a
j
tj.

� 800

a
j
t2

j.

Table 9-10

The results agree with those obtained in Problem 9.4 and from this point the analysis proceeds as before.

9.8. A company wishes to purchase one of five different machines A, B, C, D, E. In an experiment designed to
decide whether there is a difference in performance of the machines, five experienced operators each work
on the machines for equal times. Table 9-11 shows the number of units produced. Test the hypothesis that
there is no difference among the machines at the (a) 0.05, (b) 0.01 level of significance.

vb �
1
4  (800) �

(48)2

(3)(4) � 8

v � 206 �
(48)2

(3)(4) � 14

A 68 72 75 42 53

B 72 52 63 55 48

C 60 82 65 77 75

D 48 61 57 64 50

E 64 65 70 68 53

Table 9-11
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Subtract a suitable number, say, 60, from all the data to obtain Table 9-12.

Then

We now form Table 9-13.

vb �
1
5(4500) �

(70)2

(5)(4) � 900 � 245 � 655

v � 2356 �
(70)2

(5)(4) � 2356 � 245 � 2111

A 8 12 15 �18 �7 10 100

B 12 –8 3 �5 �2 0 0

C 0 22 6 17 15 60 3600

D �12 1 �3 4 �10 –20 400

E 4 5 10 8 �7 20 400

70 4500ax2
jk � 2356

t2
j.tj.

Table 9-12

Variation
Degrees of 
Freedom Mean Square F

Between Treatments,
vc � 655 a � 1 � 4 s^2

b �
655
4 � 163.75 F �

s^2
b

s^2
w

� 2.25

Within Treatments,
vw � 1456

a(b � 1) � 5(4)
� 20 s^2

w �
1456
(5)(4) � 72.8

Total,
v � 2111

ab � 1 � 24

Table 9-13

For 4, 20 degrees of freedom we have F0.95 � 2.87. Therefore, we cannot reject the null hypothesis at a 0.05 level
and therefore certainly cannot reject it at a 0.01 level.

Modifications for unequal numbers of observations
9.9. Table 9-14 shows the lifetimes in hours of samples from three different types of television tubes manufac-

tured by a company. Using the long method, test at (a) the 0.05, (b) the 0.01 significance level whether there
is a difference in the three types.

Sample 1 407 411 409

Sample 2 404 406 408 405 402

Sample 3 410 408 406 408

Table 9-14



It is convenient to subtract a suitable number, say, 400, obtaining Table 9-15.
In this table we have indicated the row totals, the sample or group means, and the grand mean. We then have

We can also obtain vw directly by observing that it is equal to

The data can be summarized in the analysis of variance table, Table 9-16.

� (2 � 5)2 � (10 � 8)2 � (8 � 8)2 � (6 � 8)2 � (8 � 8)2

(7 � 9)2 � (11 � 9)2 � (9 � 9)2 � (4 � 5)2 � (6 � 5)2 � (8 � 5)2 � (5 � 5)2

vw � v � vb � 72 � 36 � 36

� 3(9 � 7)2 � 5(7 � 5)2 � 4(8 � 7)2 � 36

vb � a
j,k

(x# j. � x#)2 � a
j

nj(x# j. � x#)2

v � a
j,k

(xjk � x#)2 � (7 � 7)2 � (11 � 7)2 � c� (8 � 7)2 � 72
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Total Mean

Sample 1 7 11 9 27 9

Sample 2 4 6 8 5 2 25 5

Sample 3 10 8 6 8 32 8

x# � grand mean �
84
12 � 7

Table 9-15

Variation
Degrees of 
Freedom Mean Square F

vb � 36 a � 1 � 2 s^2
b �

36
2 � 18

� 4.5

s^2
b

s^2
w

�
18
4

vw � 36 n � a � 9 s^2
w �

36
9 � 4

Table 9-16

Now for 2 and 9 degrees of freedom we find from Appendix F that F0.95 � 4.26, F0.99 � 8.02. Therefore, we
can reject the hypothesis of equal means (i.e., there is no difference in the three types of tubes) at the 0.05 level
but not at the 0.01 level.

9.10. Work Problem 9.9 by using the shortcut formulas included in (24), (25), and (26).

From Table 9-15,

n1 � 3, n2 � 5, n3 � 4, n � 12, 1. � 27, 2.� 25, 3. � 32, � 84

We therefore have

Using these, the analysis of variance then proceeds as in Problem 9.9.

v � a
j,k

x2
jk �

t2

n � 72 � 112 � c� 62 � 82 �
(84)2

12 � 72

vb � a
j

t2
j.

nj
�
t2

n �
(27)2

3 �
(25)2

5 �
(32)2

4 �
(84)2

12 � 36

vw � v � vb � 36

tttt
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Two-way classification or two-factor experiments
9.11. Table 9-17 shows the yields per acre of four different plant crops grown on lots treated with three differ-

ent types of fertilizer. Using the long method, test at the 0.01 level of significance whether (a) there is a
significant difference in yield per acre due to fertilizers, (b) there is a significant difference in yield per acre
due to crops.

Crop I Crop II Crop III Crop IV

Fertilizer A 4.5 6.4 7.2 6.7

Fertilizer B 8.8 7.8 9.6 7.0

Fertilizer C 5.9 6.8 5.7 5.2

Table 9-17

Row Row 
Crop I Crop II Crop III Crop IV Totals Means

Fertilizer A 4.5 6.4 7.2 6.7 24.8 6.2

Fertilizer B 8.8 7.8 9.6 7.0 33.2 8.3

Fertilizer C 5.9 6.8 5.7 5.2 23.6 5.9

Column
Totals 19.2 21.0 22.5 18.9

Column
6.4 7.0 7.5 6.3Means

Grand total 
� 81.6

Grand mean 
� 6.8

Table 9-18

Compute the row totals and row means, as well as the column totals and column means and grand mean, as
shown in Table 9-18.

vr � variation of row means from grand mean

� 4[(6.2 � 6.8)2 � (8.3 � 6.8)2 � (5.9 � 6.8)2] � 13.68

vc � variation of column means from grand mean

� 3[(6.4 � 6.8)2 � (7.0 � 6.8)2 (7.5 � 6.8)2 � (6.3 � 6.8)2] � 2.82

v � total variation

� (4.5 � 6.8)2 � (6.4 � 6.8)2 � (7.2 � 6.8)2 � (6.7 � 6.8)2

� (8.8 � 6.8)2 � (7.8 � 6.8)2 � (9.6 � 6.8)2 � (7.0 � 6.8)2

� (5.9 � 6.8)2 � (6.8 � 6.8)2 � (5.7 � 6.8)2 � (5.2 � 6.8)2

� 23.08

ve � random variation � v �vr � vc � 6.58

This leads to the analysis of variance in Table 9-19.
At the 0.05 level of significance with 2, 6 degrees of freedom, F0.95 � 5.14. Then, since 6.24 � 5.14, we can

reject the hypothesis that the row means are equal and conclude that at the 0.05 level there is a significant
difference in yield due to fertilizers.

Since the F value corresponding to differences in column means is less than 1, we can conclude that there is
no significant difference in yield due to crops.



9.12. Use the short computational formulas to obtain the results of Problem 9.11.

We have from Table 9-18:

Then

in agreement with Problem 9.11.

Two-factor experiments with replication
9.13. A manufacturer wishes to determine the effectiveness of four types of machines, A, B, C, D, in the pro-

duction of bolts. To accomplish this, the number of defective bolts produced by each machine on the days
of a given week are obtained for each of two shifts. The results are indicated in Table 9-20. Perform an
analysis of variance to test at the 0.05 level of significance whether there is (a) a difference in machines,
(b) a difference in shifts.

v � a
j,k

x2
jk �

t2

ab � 577.96 � 554.88 � 23.08

vr �
1
bat2

j. �
t2

ab �
1
4(2274.24) � 554.88 � 13.68

vc �
1
aat2

.k �
t2

ab �
1
3(1673.10) � 554.88 � 2.82

ve � v � vr � vc � 23.08 � 13.68 � 2.82 � 6.58

at2
.k � (19.2)2 � (21.0)2 � (22.5)2 � (18.9)2 � 1673.10

at2
j. � (24.8)2 � (33.2)2 � (23.6)2 � 2274.24

t � 24.8 � 33.2 � 23.6 � 8.16

a
j,k

x2
jk � (4.5)2 � (6.4)2 � c� (5.2)2 � 577.96
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Variation
Degrees of 
Freedom Mean Square F

vr � 13.68 2 s^2
r � 6.84

F � s^2
r >s^2

e � 6.24

df: 2, 6

vc � 2.82 3 s^2
c � 0.94

ve � 6.58 6 s^2
e � 1.097

Table 9-19

v � 23.08 11

F � s^2
c>s^2

e � 0.86

df: 3, 6

Mon Tues Wed Thurs Fri Mon Tues Wed Thurs Fri

A 6 4 5 5 4 5 7 4 6 8

B 10 8 7 7 9 7 9 12 8 8

C 7 5 6 5 9 9 7 5 4 6

D 8 4 6 5 5 5 7 9 7 10

FIRST SHIFT SECOND SHIFT

Table 9-20
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The data can be equivalently organized as in Table 9-21. In this table the two main factors, namely, Machine
and Shift, are indicated. Note that for each machine two shifts have been indicated. The days of the week can be
considered as replicates or repetitions of performance of each machine for the two shifts.

Machine Shift Mon Tues Wed Thurs Fri TOTALS

A 1 6 4 5 5 4 24
2 5 7 4 6 8 30

B 1 10 8 7 7 9 41
2 7 9 12 8 8 44

C 1 7 5 6 5 9 32
2 9 7 5 4 6 31

D 1 8 4 6 5 5 28
2 5 7 9 7 10 38

TOTALS 57 51 54 47 59 268

bbbb

FACTOR I FACTOR II REPLICATES

Table 9-21

The total variation for all data of Table 9-21 is

In order to consider the two main factors, Machine and Shift, we limit our attention to the total of replication
values corresponding to each combination of factors. These are arranged in Table 9-22, which thus is a two-
factor table with single entries.

v � 62 � 42 � 52 � c� 72 � 102 �
(268)2

40 � 1946 � 1795.6 � 150.4

First Shift Second Shift TOTALS

A 24 30 54
B 41 44 85
C 32 31 63
D 28 38 66

TOTALS 125 143 268

Table 9-22

The total variation for Table 9-22, which we shall call the subtotal variation vs, is given by

The variation between rows is given by

The variation between columns is given by

vc �
(125)2

20 �
(143)2

20 �
(268)2

40 � 1803.7 � 1795.6 � 8.1

vr �
(54)2

10 �
(85)2

10 �
(63)2

10 �
(66)2

10 �
(268)2

40 � 1846.6 � 1795.6 � 51.0

vs �
(24)2

5 �
(41)2

5 �
(32)2

5 �
(28)2

5 �
(30)2

5 �
(44)2

5 �
(31)2

5 �
(38)2

5 �
(268)2

40

� 1861.2 � 1795.6 � 65.6



If we now subtract from the subtotal variation vs the sum of the variations between rows and columns (vr � vc),
we obtain the variation due to interaction between rows and columns. This is given by

vi � vs � vr � vc � 65.6 � 51.0 � 8.1 � 6.5

Finally, the residual variation, which we can think of as the random or error variation ve (provided that we
believe that the various days of the week do not provide any important differences), is found by subtracting the
sum of the row, column, and interaction variations (i.e., the subtotal variation) from the total variation v. This
yields

ve � v � (vr � vc � vi) � v � vs � 150.4 � 65.6 � 84.8

These variations are indicated in the analysis of variance, Table 9-23. The table also gives the number of
degrees of freedom corresponding to each type of variation. Therefore, since there are 4 rows in Table 9-22, the
variation due to rows has 4 � 1 � 3 degrees of freedom, while the variation due to the 2 columns has 2 � 1 � 1
degrees of freedom. To find the degrees of freedom due to interaction, we note that there are 8 entries in Table
9-22. Therefore, the total degrees of freedom is 8 � 1 � 7. Since 3 of these are due to rows and 1 to columns,
the remainder, 7 � (3 � 1) � 3, is due to interaction. Since there are 40 entries in the original Table 9-21, the
total degrees of freedom is 40 � 1 � 39. Therefore, the degrees of freedom due to random or residual variation
is 39 � 7 � 32.
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Degrees of 
Variation Freedom Mean Square F

Rows (Machines),
vr � 51.0

Column (Shifts),
vc � 8.1

Interaction,
vi � 6.5

Subtotal,
vs � 65.6

Random or Residual,
ve � 84.8

Total,
v � 150.4

3

1

3

7

32

39

s^2
r � 17.0

s^2
c � 8.1

s^2
i � 2.167

s^2
e � 2.65

17.0
2.65 � 6.42

8.1
2.65 � 3.06

2.167
2.65 � 0.817

Table 9-23

To proceed further, we must first determine if there is any significant interaction between the basic factors
(i.e., rows and columns of Table 9-22). From Table 9-23 we see that for interaction , which shows
that interaction is not significant, i.e., we cannot reject hypothesis of page 323. Following the rules on 
page 323, we see that the computed F for rows is 6.42. Since F0.95 for 3, 32 degrees of freedom we can
reject the hypothesis that the rows have equal means. This is equivalent to saying that at the 0.05 level, we
can conclude that the machines are not equally effective.

For 1, 32 degrees of freedom F0.95 . Then since the computed F for columns is 3.06, we cannot reject
the hypothesis that the columns have equal means. This is equivalent to saying that at the 0.05 level there is
no significant difference between shifts.

If we choose to analyze the results by pooling the interaction and residual variations as recommended by
some statisticians, we find for the pooled variation and pooled degrees of freedom (df) vi � ve � 6.5 � 84.8 � 91.3
and 3 � 32 � 35, respectively, which lead to a pooled variance of . Use of this value instead of
2.65 for the denominator of F in Table 9-23 does not affect the conclusions reached above.

9.14. Work Problem 9.13 if the 0.01 level is used.

At this level there is still no appreciable interaction, so we can proceed further.

91.3>35 � 2.61

H(2)
0

� 4.15

H(1)
0

� 2.90
H(3)

0

F � 0.817
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Since F0.99 � 4.47 for 3, 32 df, and since the computed F for rows is 6.42, we can conclude that even at the
0.01 level the machines are not equally effective.

Since F0.99 � 7.51 for 1, 32 df, and since the computed F for columns is 3.06, we can conclude that at the 0.01
level there is no significant difference in shifts

Latin squares
9.15. A farmer wishes to test the effects of four different fertilizers, A, B, C, D, on the yield of wheat. In order

to eliminate sources of error due to variability in soil fertility, he uses the fertilizers in a Latin square
arrangement as indicated in Table 9-24, where the numbers indicate yields in bushels per unit area. Per-
form an analysis of variance to determine if there is a significant difference between the fertilizers at the
(a) 0.05, (b) 0.01 levels of significance.

A 18 C 21 D 25 B 11

D 22 B 12 A 15 C 19

B 15 A 20 C 23 D 24

C 22 D 21 B 10 A 17

Table 9-24

TOTALS

A 18 C 21 D 25 B 11 75

D 22 B 12 A 15 C 19 68

B 15 A 20 C 23 D 24 82

C 22 D 21 B 10 A 17 70

TOTALS 77 74 73 71 295

Table 9-25

A B C D

70 48 85 92 295

Table 9-26

TOTAL

We first obtain totals for rows and columns as indicated in Table 9-25. We also obtain total yields for each of
the fertilizers as shown in Table 9-26. The total variation and the variations for rows, columns, and treatments
are then obtained as usual. We find

Total variation

Variation between rows

Variation between columns

Variation between treatments

The analysis of variance is now shown in Table 9-27.

(a) Since F0.95,3,6 � 4.76, we can reject at the 0.05 level the hypothesis that there are equal row means. It
follows that at the 0.05 level there is a difference in the fertility of the soil from one row to another.

Since the F value for columns is less than 1, we conclude that there is no difference in soil fertility in the
columns.

Since the F value for treatments is 47.9 � 4.76, we can conclude that there is a difference between
fertilizers.

� 5723.25 � 5439.06 � 284.19

� vt �
(70)2

4 �
(48)2

4 �
(85)2

4 �
(92)2

4 �
(295)2

16

� 5443.75 � 5439.06 � 4.69

� vc �
(77)2

4 �
(74)2

4 �
(73)2

4 �
(71)2

4 �
(295)2

16

� 5468.25 � 5439.06 � 29.19

� vr �
(75)2

4 �
(68)2

4 �
(82)2

4 �
(70)2

4 �
(295)2

16

� 5769 � 5439.06 � 329.94

� v � (18)2 � (21)2 � (25)2 � c� (10)2 � (17)2 �
(295)2

16



(b) Since F0.99,3,6 � 9.78, we can accept the hypothesis that there is no difference in soil fertility in the rows (or
the columns) at a 0.01 level of significance. However, we must still conclude that there is a difference
between fertilizers at the 0.01 level.

Graeco-Latin squares
9.16. It is of interest to determine if there is any difference in mileage per gallon between gasolines A, B, C, D.

Design an experiment using four different drivers, four different cars, and four different roads.

Since the same number (four) of gasolines, drivers, cars, and roads are involved, we can use a Graeco-Latin
square. Suppose that the different cars are represented by the rows and the different drivers by the columns, as
indicated in Table 9-28. We now assign the different gasolines A, B, C, D to rows and columns at random,
subject only to the requirement that each letter appear just once in each row and just once in each column.
Therefore, each driver will have an opportunity to drive each car and use each type of gasoline (and no car will
be driven twice with the same gasoline).

We now assign at random the four roads to be used, denoted by , , , , subjecting them to the same
requirement imposed on the Latin letters. Therefore, each driver will have the opportunity to drive along each
of the roads also. One possible arrangement is that given in Table 9-28.

dgba
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Degrees of
Variation Freedom Mean Square F

Rows, 29.19

Columns, 4.69

Treatments, 284.19

Residuals, 11.87

Total, 329.94

3

3

3

6

15

9.73

1.563

94.73

1.978

4.92

0.79

47.9

Table 9-27

1 2 3 4

1

2

3

4 BdAaDgCb

AgBbCdDa

DbCgBaAa

CaDdAbBg

C
A

R
S

DRIVERS

Table 9-28

9.17. Suppose that, in carrying out the experiment of Problem 9.16, the numbers of miles per gallon are as given
in Table 9-29. Use analysis of variance to determine if there are any significant differences at the 0.05 level.

We first obtain row and column totals as shown in Table 9-30.

1 2 3 4

1 B 19 A 16 D 16 C 14

2 A 15 B 18 C 11 D 15

3 D 14 C 11 B 21 A 16

4 C 16 D 16 A 15 B 23dagb

gbda

bgad

adbg

C
A

R
S

DRIVERS
Table 9-29

B 19 A 16 D 16 C 14 65

A 15 B 18 C 11 D 15 59

D 14 C 11 B 21 A 16 62

C 16 D 16 A 15 B 23 70

64 61 63 68 256

dagb

gbda

bgad

adbg

TOTALS
Table 9-30

TOTALS
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Then we obtain totals for each Latin letter and for each Greek letter, as follows:

A total: 15 � 16 � 15 � 16 � 62

B total: 19 � 18 � 21 � 23 � 81

C total: 16 � 11 � 11 � 14 � 52

D total: 14 � 16 � 16 � 15 � 61

total: 14 � 18 � 15 � 14 � 61

total: 16 � 16 � 21 � 15 � 68

total: 19 � 16 � 11 � 16 � 62

total: 15 � 11 � 16 � 23 � 65

We now compute the variations corresponding to all of these, using the shortcut method.

Rows:

Columns:

Gasolines:
(A, B, C, D)

Roads:
( , , , )

The total variation is

so that the variation due to error is

148.00 � 16.50 � 6.50 � 111.50 � 7.50 � 6.00

The results are shown in the analysis of variance, Table 9-31. The total number of degrees of freedom is 
n2 � 1 for an n 	 n square. Rows, columns, Latin letters, and Greek letters each have n � 1 degrees of
freedom. Therefore, the degrees of freedom for error is n2 � 1 � 4(n � 1) � (n � 1)(n � 3). In our case n � 4.

(19)2 � (16)2 � (16)2 � c� (15)2 � (23)2 �
(256)

16 � 4244 � 4096 � 148.00

dgba

(61)2

4 �
(68)2

4 �
(62)2

4 �
(65)2

4 �
(256)2

16 � 4103.50 � 4096 � 7.50

(62)2

4 �
(81)2

4 �
(52)2

4 �
(61)2

4 �
(256)2

16 � 4207.50 � 4096 � 111.50

(64)2

4 �
(61)2

4 �
(63)2

4 �
(68)2

4 �
(256)2

16 � 4102.50 � 4096 � 6.50

(65)2

4 �
(59)2

4 �
(62)2

4 �
(70)2

4 �
(256)2

16 � 4112.50 � 4096 � 16.50

d

g

b

a

Variation
Degrees of
Freedom Mean Square F

Rows (Cars),
16.50

3 5.500 5.500
2.000 � 2.75

Columns (Drivers),
6.50

3 2.167 2.167
2.000 � 1.08

Gasolines (A, B, C, D),
111.50

3 37.167 37.167
2.000 � 18.6

Roads ( ),
7.50
a, b, g, d

3 2.500 2.500
2.000 � 12.5

Error,
6.00

3 2.000

Total,
148.00

15

Table 9-31



We have F0.95,3,3 � 9.28 and F0.99,3,3 � 29.5. Therefore, we can reject the hypothesis that the gasolines are
the same at the 0.05 level but not at the 0.1 level.

Miscellaneous problems
9.18. Prove that page 316].

The treatment population means are given by . Hence,

where we have used the definition It follows that 

9.19. Derive (a) equation (17), (b) equation (16), on page 316.

(a) By definition we have

where is the sample variance for the jth treatment, as defined by (15), Chapter 5. Then, since the sample
size is b,

using (16) of Chapter 5.

(b) By definition,

since

Then, omitting the summation index, we have

(1) E(Vb) � baE(X# 2
j.) � abE(X# )2

X# �

a
j

X# 2
j.

a

� ba
a

j�1
X# 2

j. � abX# 2

� ba
a

j�1
X# 2

j. � 2bX#a
a

j�1
X# j. � abX# 2

Vb � ba
a

j�1
(X# j. � X# )2

� a(b � 1)s2

� ba
a

j�1
¢ b � 1

b  s2≤E(Vw) � ba
a

j�1
E(S2

j )

S2
j

� ba
a

j�1
S2

j

� ba
a

j�1
B 1

ba
b

k�1
(Xjk � X# j.)2RVw � a

j,k
(Xjk � X# j.)2

gaj � 0.m � (gmj)>a.

a
a

j�1
mj � a

a

j�1
m � a

a

j�1
aj � am � a

a

j�1
aj � a

a

j�1
mj � a

a

j�1
aj

mj � m � aj

aaj � 0 [(15),
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Now for any random variable U, E(U2) � Var(U) � [E(U)]2. Therefore,

(2)

(3)

But since the treatment populations are normal, with means j and common variance 2, we have from
Theorem 5-4, page 156:

(4)

(5)

(6)

(7)

Using the results (2) through (7), plus the result of Problem 9.18, in (1) we have

9.20. Prove Theorem 9-1, page 317.

As shown in Problem 9.19(a),

where is the sample variance for samples of size b drawn from the population of treatment j. By Theorem 5-6,
page 158, has a chi-square distribution with degrees of freedom. Then, since the variances are
independent, we conclude from Theorem 4-4, page 121, that is chi square distributed with a(b – 1)
degrees of freedom.

9.21. In Problem 9.13 we assumed that there were no significant differences in replications, i.e., the different days
of the week. Can we support this conclusion at a (a) 0.05, (b) 0.01 significance level?

If there is any variation due to the replications, it is included in what was called the “residual” or “random,
error,” ve � 84.8, in Table 9-23. To find the variation due to replication, we use the column totals in Table 9-21,
obtaining

Since there are 5 replications, the number of degrees of freedom associated with this variation is 5 � 1 � 4.
The residual variation after subtracting variation due to replication is The other
variations are the same as in Table 9-23. The final analysis of variance table, taking into account replications,
is Table 9-32.

From the table we see that the computed F for replication is 1.09. But since F0.95 for 4, 28 degrees of
freedom, we can conclude that there is no significant variation at the 0.05 level (and therefore at the 0.01 level)
due to replications, i.e., the days of the week are not significant. The conclusions concerning Machines and
Shifts are the same as those obtained in Problem 9.13.

� 2.71

vre � 84.8 � 11.4 � 73.4.

vrep �
(57)2

8 �
(51)2

8 �
(54)2

8 �
(47)2

8 �
(59)2

8 �
(268)2

40

� 1807 � 1795.6 � 11.4

Vw>s2

S2
jb � 1bS2

j >s2

S2
j

Vw � ba
a

j�1
S2

j  or  
Vw

s2 � a
a

j�1

bS2
j

s2

� (a � 1)s2 � baa2
j

� (a � 1)s2 � abm2 � 2bmaaj � baa2
j � abm2

� as2 � ba(m � aj)2 � s2 � abm2

E(Vb) � ba Bs2

b � (m � aj)2R � abBs2

ab � m2R
E(X# ) � m

E(X# j.) � mj � m � aj

Var (X# ) �
s2

ab

Var (X# j.) �
s2

b

sm

E(X# 2) � Var (X# ) � [E(X# )]2

E(X# 2
j.) � Var (X# j.) � [E(X# j.)]2
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9.22. Describe how analysis of variance techniques can be used for three-way classification or three-factor
experiments (with single entries). Display the analysis of variance table to be used in such case.

We assume that classification is made into A groups, denoted by A1, . . . , A ; B groups, denoted by B1, . . . , Bb;
and C groups, denoted by C1, . . . , Cc. The value which is in Aj, Bk, and Cl is denoted by xjkl. The value for
example, denotes the mean of values in the C class when Aj and Bk are kept fixed. Similar meanings are given
to and The value is the mean of values for the B and C classes when Aj is fixed. Finally denotes the
grand mean.

There will be a total variation given by

(1)

which can be broken into seven variations, as indicated in Table 9-33. These variations are between classes of
the same type and between classes of different types (interactions). The interaction between all classes is as
before called the residual, or random, variation.

The seven variations into which (1) can be broken are given by

v � vA � vB � vC � vAB � vBC � vCA � vABC

where

vABC � a
j,k,l

(xjkl � x# jk. � x# j.l � x# .kl � x# j.. � x# .k. � x# ..l � x#)2

vCA � ba
j,l

(x# j.l � x# ..l � x# j.. � x#)2

vBC � aa
k,l

(x# .kl � x# .k � x# ..l � x#)2

vAB � ca
j,k

(x# jk. � x# j.. � x# .k. � x#)2

vC � aba
l

(x# ..l � x#)2vB � caa
k

(x# .k. � x#)2,vA � bca
j

(x# j.. � x#)2,

v � a
j,k,l

(xjkl � x#)2

x#x#j..x# .kl.x# j.l

x# jk.,
a
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Variation
Degrees of
Freedom Mean Square F

Rows (Machines),
vr � 51.0

3 17.0 17.0
2.621 � 6.49

Columns (Shifts),
vc � 8.1

1 8.1 8.1
2.621 � 3.05

Replications
(Days of Week),
vrep � 11.4

4 2.85 2.85
2.621 � 1.09

Interaction,
vi � 6.5

3 2.167 2.167
2.621 � 0.827

Random or Residual,
vre � 73.4

28 2.621

Total,
v � 150.4

39

Table 9-32



SUPPLEMENTARY PROBLEMS

One-way classification or one-factor experiments
9.23. An experiment is performed to determine the yields of 5 different varieties of wheat, A, B, C, D, E. Four plots of

land are assigned to each variety, and the yields (in bushels per acre) are as shown in Table 9-34. Assuming the
plots to be of similar fertility and that varieties are assigned at random to plots, determine if there is a significant
difference in yields at levels of significance (a) 0.05, (b) 0.01.
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Variation Degrees of Freedom Mean Square F

vA (Between
A Groups) a � 1 s^2

A �
vA

a � 1

s^2
A>s^2

ABC

a � 1,

(a � 1)(b � 1)(c � 1) df

vB (Between
B Groups) b � 1 s^2

B �
vB

b � 1

s^2
B>s^2

ABC

b � 1,

(a � 1)(b � 1)(c � 1) df

vc (Between
C Groups) c � 1 s^2

C �
vC

c � 1

s^2
C>s^2

ABC

c � 1,

(a � 1)(b � 1)(c � 1) df

vAB (Between A
and B Groups) (a � 1)(b � 1) s^2

AB �
vAB

(a � 1)(b � 1)

s^2
AB>s^2

ABC

(a � 1)(b � 1),

(a � 1)(b � 1)(c � 1) df

vBC (Between B
and C Groups) (b � 1)(c � 1) s^2

BC �
vBC

(b � 1)(c � 1)

s^2
BC>s^2

ABC

(b � 1)(c � 1),

(a � 1)(b � 1)(c � 1) df

vCA (Between C
and A Groups) (c � 1)(a � 1) s^2

CA �
vCA

(c � 1)(a � 1)

s^2
CA>s^2

ABC

(c � 1)(a � 1),

(a � 1)(b � 1)(c � 1) df

vABC (Between A, B,
and C Groups) (a � 1)(b � 1)(c �1) s^2

ABC �
vABC

(a � 1)(b � 1)(c � 1)

v (Total) abc � 1

Table 9-33

A 20 12 15 19

B 17 14 12 15

C 23 16 18 14

D 15 17 20 12

E 21 14 17 18

Table 9-34

A 33 38 36 40 31 35

B 32 40 42 38 30 34

C 31 37 35 33 34 30

D 29 34 32 30 33 31

Table 9-35



9.24. A company wishes to test 4 different types of tires, A, B, C, D. The lifetimes of the tires, as determined from
their treads, are given (in thousands of miles) in Table 9-35, where each type has been tried on 6 similar
automobiles assigned at random to tires. Test at the (a) 0.05, (b) 0.01 levels whether there is a difference in tires.

9.25. A teacher wishes to test three different teaching methods, I, II, III. To do this, three groups of 5 students each
are chosen at random, and each group is taught by a different method. The same examination is then given to all
the students, and the grades in Table 9-36 are obtained. Determine at (a) the 0.05, (b) the 0.01 level whether
there is a significant difference in the teaching methods.
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Brand A 12 15 14 11 15

Brand B 14 12 15

Brand C 11 12 10 14

Brand D 15 18 16 17 14

Brand E 10 12 14 12

Method I 75 62 71 58 73

Method II 81 85 68 92 90

Method III 73 79 60 75 81

Table 9-36

Table 9-37

Modifications for unequal numbers of observations
9.26. Table 9-37 gives the numbers of miles to the gallon obtained by similar automobiles using 5 different brands of

gasoline. Test at the (a) 0.05, (b) 0.01 level of significance whether there is any significant difference in brands.

9.27. During one semester a student received grades in various subjects as shown in Table 9-38. Test at the (a) 0.05,
(b) 0.01 levels whether there is any significant difference in his grades in these subjects.

Two-way classification or two-factor experiments
9.28. Articles manufactured by a company are produced by 3 operators using 3 different machines. The manufacturer

wishes to determine whether there is a difference (a) between operators, (b) between machines. An experiment
is performed to determine the number of articles per day produced by each operator using each machine; the
results are given in Table 9-39. Provide the desired information using a level of significance of 0.05.

Operator 1 Operator 2 Operator 3

Machine A 23 27 24

Machine B 34 30 28

Machine C 28 25 27

Table 9-39

Mathematics 72 80 83 75

Science 81 74 77

English 88 82 90 87 80

Economics 74 71 77 70

Table 9-38



9.29. Work Problem 9.28 using a 0.01 level of significance.

9.30. Seeds of 4 different types of corn are planted in 5 blocks. Each block is divided into 4 plots, which are then
randomly assigned to the 4 types. Test at a 0.05 level whether the yields in bushels per acre, as shown in 
Table 9-40, vary significantly with (a) soil differences (i.e., the 5 blocks), (b) differences in type of corn.
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TYPES OF CORN
I II III IV

A 12 15 10 14
B 15 19 12 11
C 14 18 15 12
D 11 16 12 16
E 16 17 11 14

BLOCKS

Table 9-40

9.31. Work Problem 9.30 using a 0.01 level of significance.

9.32. Suppose that in Problem 9.24 the first observation for each type of tire is made using one particular kind of
automobile, the second observation using a second particular kind, and so on. Test at the 0.05 level if there is a
difference in (a) the types of tires, (b) the kinds of automobiles.

9.33. Work Problem 9.32 using a 0.01 level of significance.

9.34. Suppose that in Problem 9.25 the first entry for each teaching method corresponds to a student at one particular
school, the second to a student at another school, and so on. Test the hypothesis at the 0.05 level that there is a
difference in (a) teaching methods, (b) schools.

9.35. An experiment is performed to test whether color of hair and heights of adult female students in the United
States have any bearing on scholastic achievement. The results are given in Table 9-41, where the numbers
indicate individuals in the top 10% of those graduating. Analyze the experiment at a 0.05 level.

Redhead Blonde Brunette

Tall 75 78 80

Medium 81 76 79

Short 73 75 77

Table 9-41

9.36. Work Problem 9.35 at a 0.01 level.

Two-factor experiments with replication
9.37. Suppose that the experiment of Problem 9.23 was carried out in the southern part of the United States and that

the columns of Table 9-34 now indicate 4 different types of fertilizer, while a similar experiment performed in
the western part yields the results in Table 9-42. Test at the 0.05 level whether there is a difference in 
(a) fertilizers, (b) locations.



9.38. Work Problem 9.37 using a 0.01 level.

9.39. Table 9-43 gives the number of articles produced by 4 different operators working on two different types of
machines, I and II, on different days of the week. Determine at the 0.05 level whether there are significant
differences in (a) the operators, (b) the machines.
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A 16 18 20 23

B 15 17 16 19

C 21 19 18 21

D 18 22 21 23

E 17 18 24 20

Table 9-42

Machine I Machine II

Mon Tues Wed Thurs Fri Mon Tues Wed Thurs Fri
Operator A 15 18 17 20 12 14 16 18 17 15
Operator B 12 16 14 18 11 11 15 12 16 12
Operator C 14 17 18 16 13 12 14 16 14 11
Operator D 19 16 21 23 18 17 15 18 20 17

Table 9-43

Latin square
9.40. An experiment is performed to test the effect on corn yield of 4 different fertilizer treatments, A, B, C, D, and of

soil variations in two perpendicular directions. The Latin square Table 9-44 is obtained, where the numbers
indicate corn yield per unit area. Test at a 0.01 level the hypothesis that there is no difference in (a) fertilizers,
(b) soil variations.

C 8 A 10 D 12 B 11

A 14 C 12 B 11 D 15

D 10 B 14 C 16 A 10

B 7 D 16 A 14 C 12

Table 9-44

9.41. Work Problem 9.40 using a 0.05 level.

9.42. Referring to Problem 9.35 suppose that we introduce an additional factor giving the section E, M, or W of the
United States in which a student was born, as shown in Table 9-45. Determine at a 0.05 level whether there is a
significant difference in scholastic achievement of female students due to differences in (a) height, (b) hair
color, (c) birthplace.

E 75 W 78 M 80

M 81 E 76 W 79

W 73 M 75 E 77

Table 9-45



Graeco-Latin squares
9.43. In order to produce a superior type of chicken feed, 4 different quantities of each of two chemicals are added to

the basic ingredients. The different quantities of the first chemical are indicated by A, B, C, D while those of the
second chemical are indicated by , , , . The feed is given to baby chicks arranged in groups according to 4
different initial weights, W1, W2, W3, W4, and 4 different species, S1, S2, S3, S4. The increases in weight per unit
time are given in the Graeco-Latin square of Table 9-46. Perform an analysis of variance of the experiment at a
0.05 level of significance, stating any conclusions that can be drawn.

dgba
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W W2 W3 W4

S1 C 8 B 6 A 5 D 6

S2 A 4 D 3 C 7 B 3

S3 D 5 A 6 B 5 C 6

S4 B 6 C 10 D 10 A 8bgda

adgb

gbad

dabg

Table 9-46

9.44. Four different types of cables, T1, T2, T3, T4, are manufactured by each of 4 companies, C1, C2, C3, C4. Four
operators, A, B, C, D, using four different machines, , , , , measure the cable strengths. The average
strengths obtained are given in the Graeco-Latin square of Table 9-47. Perform an analysis of variance at the
0.05 level, stating any conclusions that can be drawn.

dgba

C1 C2 C3 C4

T1 A 164b B 181g C 193a D 160d

T2 C 171d D 162a A 183g B 145b

T3 D 198g C 221b B 207d A 188a

T4 B 157a A 172d D 166b C 136g

Table 9-47

Miscellaneous problems
9.45. Table 9-48 gives data on the accumulated rust on iron treated with chemical A, B, or C, respectively. Determine

at the (a) 0.05, (b) 0.01 level whether there is a significant difference in the treatments.

A 3 5 4 4

B 4 2 3 3

C 6 4 5 5

Table 9-48

Tall 110 105 118 112 90

Short 95 103 115 107

Medium 108 112 93 104 96 102

Table 9-49

9.46. An experiment measures the IQs of adult male students of tall, short, and medium stature. The results are
indicated in Table 9-49. Determine at the (a) 0.05, (b) 0.01 level whether there is any significant difference in
the IQ scores relative to height differences.

9.47. An examination is given to determine whether veterans or nonveterans of different IQs performed better. The
scores obtained are shown in Table 9-50. Determine at the 0.05 level whether there is a difference in scores due
to differences in (a) veteran status, (b) IQ.



9.48. Work Problem 9.47 using a 0.01 level.

9.49. Table 9-51 shows test scores for a sample of college students from different parts of the country having different
IQs. Analyze the table at a 0.05 level of significance and state your conclusions.
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90 81 74

85 78 70

High IQ Medium IQ Low IQ

Veteran

Nonveteran

Table 9-50

88 80 72

84 78 75

86 82 70

80 75 79

High Medium Low

East

West

South

North
& Central

Table 9-51

9.50. Work Problem 9.49 at a 0.01 level.

9.51. Suppose that the results in Table 9-48 of Problem 9.48 hold for the northeastern part of the United States, while
corresponding results for the western part are given in Table 9-52. Determine at the 0.05 level whether there are
differences due to (a) chemicals, (b) location.

A 5 4 6 3

B 3 4 2 3

C 5 7 4 6

Table 9-52

9.52. Referring to Problems 9.23 and 9.37, suppose that an additional experiment performed in the northeastern part
of the United States produced the results in Table 9-53. Test at the 0.05 level whether there is a difference in 
(a) fertilizers, (b) the three locations.

A 17 14 18 12

B 20 10 20 15

C 18 15 16 17

D 12 11 14 11

E 15 12 19 14

Table 9-53

9.53. Work Problem 9.52 using a 0.01 level.

9.54. Perform an analysis of variance on the Latin square of Table 9-54 at a 0.05 level and state conclusions.



9.55. Perform an analysis of variance on the Graeco-Latin square of Table 9-55 at a 0.05 level, and state conclusions.
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B 16 C 21 A 15

A 18 B 23 C 14

C 15 A 18 B 12

FACTOR 1

FACTOR 2

Table 9-54

A 6g B 12b C 4d D 18a

B 3d A 8a D 15g C 14b

D 15b C 20g B 9a A 5d

C 16a D 6d A 17b B 7g

FACTOR 1

FACTOR 2

Table 9-55

ANSWERS TO SUPPLEMENTARY PROBLEMS

9.23. There is a significant difference in yield at both levels.

9.24. There is no significant difference in tires at either level.

9.25. There is a significant difference in teaching methods at the 0.05 level but not the 0.01 level.

9.26. There is a significant difference in brands at the 0.05 level but not the 0.01 level.

9.27. There is a significant difference in his grades at both levels.

9.28. There is no significant difference in operators or machines.

9.29. There is no significant difference in operators or machines.

9.30. There is a significant difference in types of corn but not in soils at the 0.05 level.

9.31. There is no significant difference in type of corn or soils at the 0.01 level.

9.32. There is a significant difference in both tires and automobiles at the 0.05 level.

9.33. There is no significant difference in either tires or automobiles at the 0.01 level.

9.34. There is a significant difference in teaching methods but no significant difference in schools at the 0.05 level.



9.35. There is no significant difference in either hair color or height.

9.36. Same answer as Problem 9.35.

9.37. There is a significant difference in locations at the 0.05 level but not in fertilizers.

9.38. There is no significant difference in locations of fertilizers at the 0.01 level.

9.39. There is a significant difference in operators but not in machines.

9.40. There is no significant difference in either fertilizers or soils.

9.41. Same answer as Problem 9.40.

9.42. There is no significant difference in scholastic achievement due to differences in height, hair color, or birthplace.

9.43. There are significant differences in species and quantities of the first chemical but no other significant differences.

9.44. There are significant differences in types of cables but no significant differences in cable strengths due to
operators, machines, or companies.

9.45. There is no significant difference in treatments at either level.

9.46. There is no significant difference in IQ scores at either level.

9.47. There are significant differences in examination scores due to both veteran status and IQ at the 0.05 level.

9.48. At the 0.01 level the differences in examination scores due to veteran status are not significant, but those due to
IQ are significant.

9.49. There are no significant differences in test scores of students from different parts of the country, but there are
significant differences in test scores due to IQ.

9.50. Same answer as Problem 9.49.

9.51. There is a significant difference due to chemicals or locations at the 0.05 level.

9.52. There are significant differences due to locations but not to fertilizers.

9.53. There are no significant differences due to locations or fertilizers.

9.54. There are no significant differences due to factor 1, factor 2, or treatments A, B, C.

9.55. There are no significant differences due to factors or treatments.

CHAPTER 9 Analysis of Variance 347



CHAPTER 12

348

Nonparametric 
Tests

Introduction
Most tests of hypotheses and significance (or decision rules) considered in previous chapters require various
assumptions about the distribution of the population from which the samples are drawn. For example, in Chapter 5
the population distributions often are required to be normal or nearly normal.

Situations arise in practice in which such assumptions may not be justified or in which there is doubt that they
apply, as in the case where a population may be highly skewed. Because of this, statisticians have devised vari-
ous tests and methods that are independent of population distributions and associated parameters. These are
called nonparametric tests.

Nonparametric tests can be used as shortcut replacements for more complicated tests. They are especially
valuable in dealing with nonnumerical data, such as arise when consumers rank cereals or other products in
order of preference.

The Sign Test
Consider Table 10-1, which shows the numbers of defective bolts produced by two different types of machines
(I and II) on 12 consecutive days and which assumes that the machines have the same total output per day. We
wish to test the hypothesis H0 that there is no difference between the machines: that the observed differences
between the machines in terms of the numbers of defective bolts they produce are merely the result of chance,
which is to say that the samples come from the same population.

A simple nonparametric test in the case of such paired samples is provided by the sign test. This test consists
of taking the difference between the numbers of defective bolts for each day and writing only the sign of the dif-
ference; for instance, for day 1 we have 47–71, which is negative. In this way we obtain from Table 10-1 the
sequence of signs

(1)

(i.e., 3 pluses and 9 minuses). Now if it is just as likely to get a as a , we would expect to get 6 of each. The
test of H0 is thus equivalent to that of whether a coin is fair if 12 tosses result in 3 heads ( ) and 9 tails ( ). This
involves the binomial distribution of Chapter 4. Problem 10.1 shows that by using a two-tailed test of this dis-
tribution at the 0.05 significance level, we cannot reject H0; that is, there is no difference between the machines
at this level.

Remark 1 If on some day the machines produced the same number of defective bolts, a difference of zero
would appear in sequence (1). In that case we can omit these sample values and use 11 instead of
12 observations.

Remark 2 A normal approximation to the binomial distribution, using a correction for continuity, can also be
used (see Problem 10.2).

��
��

�  �  �  �  �  �  �  �  �  �  �  �
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Although the sign test is particularly useful for paired samples, as in Table 10-1, it can also be used for prob-
lems involving single samples (see Problems 10.3 and 10.4).

The Mann–Whitney U Test
Consider Table 10-2, which shows the strengths of cables made from two different alloys, I and II. In this
table we have two samples: 8 cables of alloy I and 10 cables of alloy II. We would like to decide whether or
not there is a difference between the samples or, equivalently, whether or not they come from the same pop-
ulation. Although this problem can be worked by using the t test of Chapter 7, a nonparametric test called the
Mann–Whitney U test, or briefly the U test, is useful. This test consists of the following steps:

Table 10-1

Day 1 2 3 4 5 6 7 8 9 10 11 12

Machine I 47 56 54 49 36 48 51 38 61 49 56 52

Machine II 71 63 45 64 50 55 42 46 53 57 75 60

Table 10-2

Alloy I Alloy II

18.3 16.4 22.7 17.8 12.6 14.1 20.5 10.7 15.9

18.9 25.3 16.1 24.2 19.6 12.9 15.2 11.8 14.7

Step 1. Combine all sample values in an array from the smallest to the largest, and assign ranks (in this case
from 1 to 18) to all these values. If two or more sample values are identical (i.e., there are tie scores, or briefly ties),
the sample values are each assigned a rank equal to the mean of the ranks that would otherwise be assigned. If the
entry 18.9 in Table 10-2 were 18.3, two identical values 18.3 would occupy ranks 12 and 13 in the array so that
the rank assigned to each would be 

Step 2. Find the sum of the ranks for each of the samples. Denote these sums by R1 and R2, where N1 and
N2 are the respective sample sizes. For convenience, choose N1 as the smaller size if they are unequal, so that

A significant difference between the rank sums R1 and R2 implies a significant difference between the
samples.

Step 3. To test the difference between the rank sums, use the statistic

(2)

corresponding to sample 1. The sampling distribution of U is symmetrical and has a mean and variance given,
respectively, by the formulas

(3)

If N1 and N2 are both at least equal to 8, it turns out that the distribution of U is nearly normal, so that

(4)

is normally distributed with mean 0 and variance 1. Using Appendix C, we can then decide whether the sam-
ples are significantly different. Problem 10.5 shows that there is a significant difference between the cables at
the 0.05 level.

Z �
U � mU

sU

mU �
N1N2

2
  s2

U �
N1N2(N1 � N2 � 1)

12

U � N1N2 �
N1(N1 � 1)

2
� R1

N1 � N2.

1
2(12 � 13) � 12.5.
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Remark 3 A value corresponding to sample 2 is given by the statistic

(5)

and has the same sampling distribution as statistic (2), with the mean and variance of formulas (3).
Statistic (5) is related to statistic (2), for if U1 and U2 are the values corresponding to statistics (2)
and (5), respectively, then we have the result

(6)

We also have

(7)

where Result (7) can provide a check for calculations.

Remark 4 The statistic U in equation (2) is the total number of times that sample 1 values precede sample 2
values when all sample values are arranged in increasing order of magnitude. This provides an
alternative counting method for finding U.

The Kruskal–Wallis H Test
The U test is a nonparametric test for deciding whether or not two samples come from the same population. A
generalization of this for k samples is provided by the Kruskal–Wallis H test, or briefly the H test.

This test may be described thus: Suppose that we have k samples of sizes N1, N2, . . . , Nk, with the total size
of all samples taken together being given by Suppose further that the data from all
the samples taken together are ranked and that the sums of the ranks for the k samples are R1, R2, . . . , Rk,
respectively. If we define the statistic

(8)

then it can be shown that the sampling distribution of H is very nearly a chi-square distribution with
degrees of freedom, provided that N1, N2, . . . , Nk are all at least 5.

The H test provides a nonparametric method in the analysis of variance for one-way classification, or one-
factor experiments, and generalizations can be made.

The H Test Corrected for Ties
In case there are too many ties among the observations in the sample data, the value of H given by statistic (8)
is smaller than it should be. The corrected value of H, denoted by Hc, is obtained by dividing the value given in
statistic (8) by the correction factor

(9)

where T is the number of ties corresponding to each observation and where the sum is taken over all the obser-
vations. If there are no ties, then and factor (9) reduces to 1, so that no correction is needed. In practice,
the correction is usually negligible (i.e., it is not enough to warrant a change in the decision).

The Runs Test for Randomness
Although the word random has been used many times in this book (such as in “random sampling” and “tossing
a coin at random”), no previous chapter has given any test for randomness. A non-parametric test for random-
ness is provided by the theory of runs.

To understand what a run is, consider a sequence made up of two symbols, a and b, such as

(10)a a Z b b b Z a Z b b Z a a a a a Z b b b Z a a a a Z

T � 0

1 �
a(T 3 � T )

N 3 � N

k � 1

H �
12

N(N � 1)a
k

j�1

R2
j

Nj
� 3(N � 1)

N � N1 � N2 � c� Nk.

N � N1 � N2.

R1 � R2 �
N(N � 1)

2

U1 � U2 � N1N2

U � N1N2 �
N2(N2 � 1)

2
� R2



In tossing a coin, for example, a could represent heads and b could represent tails. Or in sampling the bolts pro-
duced by a machine, a could represent defective and b could represent nondefective.

A run is defined as a set of identical (or related) symbols contained between two different symbols or no
symbol (such as at the beginning or end of the sequence). Proceeding from left to right in sequence (10), the first
run, indicated by a vertical bar, consists of two a’s; similarly, the second run consists of three b’s, the third run
consists of one a, etc. There are seven runs in all.

It seems clear that some relationship exists between randomness and the number of runs. Thus for the 
sequence

(11)

there is a cyclic pattern, in which we go from a to b, back to a again, etc., which we could hardly believe to be
random. In that case we have too many runs (in fact, we have the maximum number possible for the given num-
ber of a’s and b’s).

On the other hand, for the sequence

(12)

there seems to be a trend pattern, in which the a’s and b’s are grouped (or clustered) together. In such case there
are too few runs, and we could not consider the sequence to be random.

Thus a sequence would be considered nonrandom if there are either too many or too few runs, and random
otherwise. To quantify this idea, suppose that we form all possible sequences consisting of N1 a’s and N2 b’s, for
a total of N symbols in all ( ). The collection of all these sequences provides us with a sampling
distribution. Each sequence has an associated number of runs, denoted by V. In this way we are led to the sam-
pling distribution of the statistic V. It can be shown that this sampling distribution has a mean and variance given,
respectively, by the formulas

(13)

By using formulas (13), we can test the hypothesis of randomness at appropriate levels of significance. It turns
out that if both N1 and N2 are at least equal to 8, then the sampling distribution of V is very nearly a normal dis-
tribution. Thus

(14)

is normally distributed with mean 0 and variance 1, and thus Appendix C can be used.

Further Applications of the Runs Test
The following are other applications of the runs test to statistical problems:

1. ABOVE- AND BELOW-MEDIAN TEST FOR RANDOMNESS OF NUMERICAL DATA. To deter-
mine whether numerical data (such as collected in a sample) are random, first place the data in the same
order in which they were collected. Then find the median of the data and replace each entry with the letter
a or b according to whether its value is above or below the median. If a value is the same as the median,
omit it from the sample. The sample is random or not according to whether the sequence of a’s and b’s is
random or not. (See Problem 10.20.)

2. DIFFERENCES IN POPULATIONS FROM WHICH SAMPLES ARE DRAWN. Suppose that 
two samples of sizes m and n are denoted by a1, a2, . . . , am and b1, b2, . . . , bn, respectively. To decide
whether the samples do or do not come from the same population, first arrange all sample values
in a sequence of increasing values. If some values are the same, they should be ordered by a random
process (such as by using random numbers). If the resulting sequence is random, we can conclude that
the samples are not really different and thus come from the same population; if the sequence is not ran-
dom, no such conclusion can be drawn. This test can provide an alternative to the Mann–Whitney U test.
(See Problem 10.21.)

m � n

Z �
V � mV

sV

mV �
2N1N2

N1 � N2
� 1  s2

V �
2N1N2(2N1N2 � N1 � N2)

(N1 � N2)2(N1 � N2 � 1)

N1 � N2 � N

a a a a a a Z b b b b Z a a a a a Z b b b Z

a Z b Z a Z b Z a Z b Z a Z b Z a Z b Z a Z b
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Spearman’s Rank Correlation
Nonparametric methods can also be used to measure the correlation of two variables, X and Y. Instead of using
precise values of the variables, or when such precision is unavailable, the data may be ranked from 1 to N in order
of size, importance, etc. If X and Y are ranked in such a manner, the coefficient of rank correlation, or Spearman’s
formula for rank correlation (as it is often called), is given by

(15)

where D denotes the differences between the ranks of corresponding values of X and Y, and where N is the num-
ber of pairs of values (X, Y) in the data.

SOLVED PROBLEMS

The sign test
10.1. Referring to Table 10-1, test the hypothesis H0 that there is no difference between machines I and II against

the alternative hypothesis H1 that there is a difference at the 0.05 significance level.

Figure 10-1 is a graph of the binomial distribution (and a normal approximation to it) that gives the
probabilities of x heads in 12 tosses of a fair coin, where From Chapter 4 the probability
of x heads is

whereby Pr{0} � 0.00024, Pr{l} � 0.00293, Pr{2} � 0.01611, and Pr{3} � 0.05371.

Pr5x6 � a12

x
b a1

2b
xa1

2b
12�x

� a12

x
b a1

2b
12

x � 0, 1, 2, c, 12.

rS � 1 �
6aD2

N(N 2 � 1)

Fig. 10-1

Since H1 is the hypothesis that there is a difference between the machines, rather than the hypothesis that
machine I is better than machine II, we use a two-tailed test. For the 0.05 significance level, each tail has the
associated probability We now add the probabilities in the left-hand tail until the sum exceeds
0.025. Thus

Pr{0, 1, or 2 heads} � 0.00024 � 0.00293 � 0.01611 � 0.01928

Pr{0, 1, 2, or 3 heads} � 0.00024 � 0.00293 � 0.01611 � 0.05371 � 0.07299

Since 0.025 is greater than 0.01928 but less than 0.07299, we can reject hypothesis H0 if the number of heads is
2 or less (or, by symmetry, if the number of heads is 10 or more); however, the number of heads [the � signs in
sequence (1) of this chapter] is 3. Thus we cannot reject H0 at the 0.05 level and must conclude that there is no
difference between the machines at this level.

1
2(0.05) � 0.025.



10.2. Work Problem 10.1 by using a normal approximation to the binomial distribution.

For a normal approximation to the binomial distribution, we use the fact that the z score corresponding to the
number of heads is

Because the variable X for the binomial distribution is discrete while that for a normal distribution is
continuous, we make a correction for continuity (for example, 3 heads are really a value between 2.5 and 3.5
heads). This amounts to decreasing X by 0.5 if and to increasing X by 0.5 if Now

and so that

Since this is greater than �1.96 (the value of z for which the area in the left-hand tail is 0.025), we arrive at the
same conclusion in Problem 10.1.

Note that which agrees very well with the of
Problem 10.1.

10.3. The PQR Company claims that the lifetime of a type of battery that it manufactures is more than 250
hours. A consumer advocate wishing to determine whether the claim is justified measures the lifetimes of
24 of the company’s batteries; the results are listed in Table 10-3. Assuming the sample to be random,
determine whether the company’s claim is justified at the 0.05 significance level.

Pr5X � 3 heads6 � 0.07299Pr5Z � �1.456 � 0.0735,

z �
(3 � 0.5) � 6

1.73 � �1.45

s � !Npq � !(12)(0.5)(0.5) � 1.73,N � 12, m � Np � (12)(0.5) � 6,
X � Np.X � Np

Z �
X � m
s �

X � Np

!Npq
.

Table 10-3

271 230 198 275 282 225 284 219

253 216 262 288 236 291 253 224

264 295 211 252 294 243 272 268

Let H0 be the hypothesis that the company’s batteries have a lifetime equal to 250 hours, and let H1 be the
hypothesis that they have a lifetime greater than 250 hours. To test H0 against H1, we can use the sign test. To
do this, we subtract 250 from each entry in Table 10-3 and record the signs of the differences, as shown in
Table 10-4. We see that there are 15 plus signs and 9 minus signs.

Table 10-4

� � � � � � � �

� � � � � � � �

� � � � � � � �

Fig. 10-2

Using a one-tailed test at the 0.05 significance level, we would reject H0 if the z score were greater than
1.645 (Fig. 10-2). Since the z score, using a correction for continuity, is

the company’s claim cannot be justified at the 0.05 level.

10.4. A sample of 40 grades from a statewide examination is shown in Table 10-5. Test the hypothesis at the 0.05
significance level that the median grade for all participants is (a) 66, (b) 75.

z �
(15 � 0.5) � (24)(0.5)

!(24)(0.5)(0.5)
� 1.02

CHAPTER 10 Nonparametric Tests 353



CHAPTER 10 Nonparametric Tests354

(a) Subtracting 66 from all the entries of Table 10-5 and retaining only the associated signs gives us Table 10-6,
in which we see that there are 23 pluses, 15 minuses, and 2 zeros. Discarding the 2 zeros, our sample consists
of 38 signs: 23 pluses and 15 minuses. Using a two-tailed test of the normal distribution with probabilities

in each tail (Fig. 10-3), we adopt the following decision rule:

Accept the hypothesis if 
Reject the hypothesis otherwise.

�1.96 � z � 1.96.

1
2(0.05) � 0.025

Table 10-5

71 67 55 64 82 66 74 58 79 61

78 46 84 93 72 54 78 86 48 52

67 95 70 43 70 73 57 64 60 83

73 40 78 70 64 86 76 62 95 66

Table 10-6

� � � � � 0 � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � 0
Fig. 10-3

Since

we accept the hypothesis that the median is 66 at the 0.05 level.
Note that we could also have used 15, the number of minus signs. In this case

with the same conclusion.

(b) Subtracting 75 from all the entries in Table 10-5 gives us Table 10-7, in which there are 13 pluses and 27
minuses. Since

we reject the hypothesis that the median is 75 at the 0.05 level.

z �
(13 � 0.5) � (40)(0.5)

!(40)(0.5)(0.5)
� �2.06

z �
(15 � 0.5) � (38)(0.5)

!(38)(0.5)(0.5)
� �1.14

Z �
X � Np

!Npq
�

(23 � 0.5) � (38)(0.5)

!(38)(0.5)(0.5)
� 1.14

Table 10-7

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

Using this method, we can arrive at a 95% confidence interval for the median grade on the examination.
(see Problem 10.30.)

The Mann–Whitney U test
10.5. Referring to Table 10-2, determine whether there is a difference at the 0.05 significance level between

cables made of alloy I and alloy II.

We organize the work in accordance with steps 1, 2, and 3 (described earlier in this chapter):



Step 1. Combining all 18 sample values in an array from the smallest to the largest gives us the first line of
Table 10-8. These values are numbered 1 to 18 in the second line, which gives us the ranks.

Step 2. To find the sum of the ranks for each sample, rewrite Table 10-2 by using the associated ranks
from Table 10-8; this gives us Table 10-9. The sum of the ranks is 106 for alloy I and 65 for alloy II.

Table 10-8

10.7 11.8 12.6 12.9 14.1 14.7 15.2 15.9 16.1 16.4 17.8 18.3 18.9 19.6 20.5 22.7 24.2 25.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Step 3. Since the alloy I sample has the smaller size, and The corresponding sums of the
ranks are and Then

Thus and

Z �
U � mU

sU
�

10 � 40
11.25 � �2.67

sU � 11.25

mU �
N1N2

2 �
(8)(10)

2 � 40  s2
U �

N1N2(N1 � N2 � 1)
12 �

(8)(10)(19)
12 � 126.67

U � N1N2 �
N1(N1 � 1)

2 � R1 � (8)(10) �
(8)(9)

2 � 106 � 10

R2 � 65.R1 � 106
N2 � 10.N1 � 8

Table 10-9

Alloy I Alloy II

Cable
Strength Rank

Cable
Strength Rank

18.3 12 12.6 3

16.4 10 14.1 5

22.7 16 20.5 15

17.8 11 10.7 1

18.9 13 15.9 8

25.3 18 19.6 14

16.1 9 12.9 4

24.2 17 15.2 7
Sum 106 11.8 2

14.7 6
Sum 65

Since the hypothesis H0 that we are testing is whether there is no difference between the alloys, a two-tailed test
is required. For the 0.05 significance level, we have the decision rule:

Accept H0 if
Reject H0 otherwise.

Because we reject H0 and conclude that there is a difference between the alloys at the 0.05 level.

10.6. Verify results (6) and (7) of this chapter for the data of Problem 10.5.

(a) Since samples 1 and 2 yield values for U given by

U2 � N1N2 �
N2(N2 � 1)

2 � R2 � (8)(10) �
(10)(11)

2 � 65 � 70

U1 � N1N2 �
N1(N1 � 1)

2 � R1 � (8)(10) �
(8)(9)

2 � 106 � 10

z � �2.67,

�1.96 � z � 1.96.

CHAPTER 10 Nonparametric Tests 355



CHAPTER 10 Nonparametric Tests356

we have and and

10.7. Work Problem 10.5 by using the statistic U for the alloy II sample.

For the alloy II sample,

so that

This value of z is the negative of the z in Problem 10.5, and the right-hand tail of the normal distribution is used
instead of the left-hand tail. Since this value of z also lies outside the conclusion is the
same as that for Problem 10.5.

10.8. A professor has two classes in psychology: a morning class of 9 students, and an afternoon class of 12 stu-
dents. On a final examination scheduled at the same time for all students, the classes received the grades
shown in Table 10-10. Can one conclude at the 0.05 significance level that the morning class performed
worse than the afternoon class?

�1.96 � z � 1.96,

Z �
U � mU

sU
�

70 � 40
11.25 � 2.67

U � N1N2 �
N2(N2 � 1)

2 � R2 � (8)(10) �
(10)(11)

2 � 65 � 70

N(N � 1)
2 �

(N1 � N2)(N1 � N2 � 1)
2 �

(18)(19)
2 � 171

N1N2 � 106 � 65 � 171U1 � U2 � 10 � 70 � 80,

Table 10-10

Morning class 73 87 79 75 82 66 95 75 70

Afternoon class 86 81 84 88 90 85 84 92 83 91 53 84

Step I. Table 10-11 shows the array of grades and ranks. Note that the rank for the two grades of 75 is
while the rank for the three grades of 84 is 

Step 2. Rewriting Table 10-10 in terms of ranks gives us Table 10-12.

Check: and thus and

N(N � 1)
2 �

(21)(22)
2 � 231 � R1 � R2

R1 � R2 � 73 � 158 � 231N � N1 � N2 � 9 � 12 � 21;R1 � 73, R2 � 158,

1
3(11 � 12 � 13) � 12.1

2(5 � 6) � 5.5,

Table 10-11

53 66 70 73 75 75 79 81 82 83 84 84 84 85 86 87 88 90 91 92 95

1 2 3 4 5.5 7 8 9 10 12 14 15 16 17 18 19 20 21

Table 10-12

Sum of
Ranks

Morning class 4 16 7 5.5 9 2 21 5.5 3 73

Afternoon class 15 8 12 17 18 14 12 20 10 19 1 12 158



Step 3.

Therefore,

Since we wish to test the hypothesis H1 that the morning class performs worse than the afternoon class against
the hypothesis H0 that there is no difference at the 0.05 level, a one-tailed test is needed. Referring to Fig. 10-2,
which applies here, we have the decision rule:

Accept H0 if
Reject H0 if

Since the actual value of we reject H0 and conclude that the morning class performed worse
than the afternoon class at the 0.05 level. This conclusion cannot be reached, however, for the 0.01 level (see
Problem 10.33).

10.9. Find U for the data of Table 10-13 by using (a) formula (2) of this chapter, (b) the counting method 
(as described in Remark 4 of this chapter).

(a) Arranging the data from both samples in an array in increasing order of magnitude and assigning ranks
from 1 to 5 gives us Table 10-14. Replacing the data of Table 10-13 with the corresponding ranks gives us
Table 10-15, from which the sums of the ranks are and Since and the
value of U for sample 1 is

The value U for sample 2 can be found similarly to be U � 2.

U � N1N2 �
N1(N1 � 1)

2 � R1 � (2)(3) �
(2)(3)

2 � 5 � 4

N2 � 3,N1 � 2R2 � 10.R1 � 5

z � 1.85 � 1.645,

z � 1.645.
z � 1.645.

Z �
U � mU

sU
�

80 � 54
14.07 � �1.85

mU �
N1N2

2 �
(9)(12)

2 � 54  s2
U �

N1N2(N1 � N2 � 1)
12 �

(9)(12)(22)
12 � 198

U � N1N2 �
N1(N1 � 1)

2 � R1 � (9)(12) �
(9)(10)

2 � 73 � 80

Sum of
Ranks

Sample 1 4 1 5

Sample 2 3 5 2 10

Data 10 14 17 22 25

Rank 1 2 3 4 5

Sample 1 22 10

Sample 2 17 25 14

Table 10-13 Table 10-14

Table 10-15

Data I II II I II

(b) Let us replace the sample values in Table 10-14 with I or II, depending on whether the value belongs to
sample 1 or 2. Then the first line of Table 10-14 becomes

From this we see that

Number of sample 1 values preceding first sample 2 value     � 1

Number of sample 1 values preceding second sample 2 value � 1

Number of sample 1 values preceding third sample 2 value   � 2

Total � 4
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Thus the value of U corresponding to the first sample is 4.
Similarly, we have

Number of sample 2 values preceding first sample 1 value     � 0

Number of sample 2 values preceding second sample 1 value � 2

Total � 2

Thus the value of U corresponding to the second sample is 2.
Note that since N1 � 2 and N2 � 3, these values satisfy U1 � U2 � N1N2; that is, 4 � 2 � (2)(3) � 6.

10.10. A population consists of the values 7, 12, and 15. Two samples are drawn without replacement from this
population; sample 1, consisting of one value, and sample 2, consisting of two values. (Between them,
the two samples exhaust the population.)

(a) Find the sampling distribution of U.

(b) Find the mean and variance of the distribution in part (a).

(c) Verify the results found in part (b) by using formulas (3) of this chapter.

(a) We choose sampling without replacement to avoid ties—which would occur if, for example, the value 12
were to appear in both samples.

There are possibilities for choosing the samples, as shown in Table 10-16. It should be noted
that we could just as easily use ranks 1, 2, and 3 instead of 7, 12, and 15. The value U in Table 10-16 is
that found for sample 1, but if U for sample 2 were used, the distribution would be the same.

3 ? 2 � 6

(b) The mean and variance found from Table 10-15 are given by

(c) By formulas (3),

showing agreement with part (a).

10.11. (a) Find the sampling distribution of U in Problem 10.9 and graph it.

(b) Obtain the mean and variance of U directly from the results of part (a).

(c) Verify part (b) by using formulas (3) of this chapter.

s2
U �

N1N2(N1 � N2 � 1)
12 �

(1)(2)(1 � 2 � 1)
12 �

2
3

mU �
N1N2

2 �
(1)(2)

2 � 1

s2
U �

(2 � 1)2 � (2 � 1)2 � (1 � 1)2 � (1 � 1)2 � (0 � 1)2 � (0 � 1)2

6 �
2
3

mU �
2 � 2 � 1 � 1 � 0 � 0

6 � 1

Table 10-16

Sample 1 Sample 2 U

7 12 15 2

7 15 12 2

12 7 15 1

12 15 7 1

15 7 12 0

15 12 7 0



(a) In this case there are possibilities for choosing values for the two samples and the
method of Problem 10.9 is too laborious. To simplify the procedure, let us concentrate on the smaller
sample (of size ) and the possible sums of the ranks, R1. The sum of the ranks for sample 1 is the
smallest when the sample consists of the two lowest-ranking numbers (1, 2): then 
Similarly, the sum of the ranks for sample 1 is the largest when the sample consists of the two highest-
ranking numbers (4, 5); then Thus R1 varies from 3 to 9.

Column 1 of Table 10-17 lists these values of R1 (from 3 to 9), and column 2 shows the corresponding
sample 1 values, whose sum is R1. Column 3 gives the frequency (or number) of samples with sum R1; for
example, there are samples with Since and we have

The probability that (i.e., Pr{ }) is shown in column 5 of Table 10-17 and is obtained by
finding the relative frequency. The relative frequency is found by dividing each frequency f by the sum of
all the frequencies, or 10; for example, Pr5U � 56 �

2
10 � 0.2.

U � R1U � R1

U � N1N2 �
N1(N1 � 1)

2 � R1 � (2)(3) �
(2)(3)

2 � R1 � 9 � R1

N2 � 3,N1 � 2R1 � 5.f � 2

R1 � 4 � 5 � 9.

R1 � 1 � 2 � 3.
N1 � 2

5 ? 4 ? 3 ? 2 � 120

R1 Sample 1 Values f U Pr{U � R1}

3 (1, 2) 1 6 0.1

4 (1, 3) 1 5 0.1

5 (1, 4), (2, 3) 2 4 0.2

6 (1, 5), (2, 4) 2 3 0.2

7 (2, 5), (3, 4) 2 2 0.2

8 (3, 5) 1 1 0.1

9 (4, 5) 1 0 0.1

Table 10-17

(b) From columns 3 and 4 of Table 10-17 we have

Another method

(c) By formulas (3), using and we have

10.12. If N numbers in a set are ranked from 1 to N, prove that the sum of the ranks is 

Let R be the sum of the ranks. Then we have

(16)

(17)R � N � (N � 1) � (N � 2) � c� 2 � 1

R � 1 � 2 � 3 � c� (N � 1) � N

[N(N � 1)]>2.

mU �
N1N2

2 �
(2)(3)

2 � 3  s2
U �

N1N2(N1 � N2 � 1)
12 �

(2)(3)(6)
12 � 3

N2 � 3,N1 � 2

s2
U � U 2 � U# 2 �

(1)(6)2 � (1)(5)2 � (2)(4)2 � (2)(3)2 � (2)(2)2 � (1)(1)2 � (1)(0)2

10 � (3)2 � 3

� 3

�
(1)(6  � 3)2   �   (1)(5  � 3)2   �   (2)(4  � 3)2   �   (2)(3  � 3)2   �   (2)(2  � 3)2   �   (1)(1  � 3)2   �   (1)(0  � 3)2

10

s2
U �

a  f (U � U# )2

a  f

mU � U# �
a  f U

a  f
�

(1)(6) � (1)(5) � (2)(4) � (2)(3) � (2)(2) � (1)(1) � (1)(0)
1 � 1 � 2 � 2 � 2 � 1 � 1 � 3

CHAPTER 10 Nonparametric Tests 359



where the sum in equation (17) is obtained by writing the sum in (16) backward. Adding equations (16) and
(17) gives

since ( ) occurs N times in the sum; thus . This can also be obtained by using a result
from elementary algebra on arithmetic progressions and series.

10.13. If R1 and R2 are the respective sums of the ranks for samples 1 and 2 in the U test, prove that 
.

We assume that there are no ties in the sample data. Then R1 must be the sum of some of the ranks (numbers)
in the set 1, 2, 3, . . . , N, while R2 must be the sum of the remaining ranks in the set. Thus the sum 
must be the sum of all the ranks in the set; that is, by
Problem 10.12.

The Kruskal–Wallis H test
10.14. A company wishes to purchase one of five different machines: A, B, C, D, or E. In an experiment designed

to determine whether there is a performance difference between the machines, five experienced opera-
tors each work on the machines for equal times. Table 10-18 shows the number of units produced by
each machine. Test the hypothesis that there is no difference between the machines at the (a) 0.05, (b) 0.01
significance levels.

R1 � R2 � 1 � 2 � 3 � c� N � [N(N � 1)]>2
R1 � R2

R1 � R2 � [N(N � 1)]>2

R � [N(N � 1)]>2N � 1

2R � (N � 1) � (N � 1) � (N � 1) � c� (N � 1) � (N � 1) � N(N � 1)
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Table 10-19

Sum of
Ranks

A 17.5 21 24 1 6.5 70

B 21 6.5 12 6.5 2.5 48.5

C 10 25 14 23 21 93

D 2.5 11 9 14 4 40.5

E 14 16 19 17.5 6.5 73

A 68 72 77 42 53

B 72 53 63 53 48

C 60 82 64 75 72

D 48 61 57 64 50

E 64 65 70 68 53

Table 10-18

Since there are five samples (A, B, C, D, and E ), k � 5. And since each sample consists of five values, we 
have N1 � N2 � N3 � N4 � N5 � 5, and N � N1 � N2 � N3 � N4 � N5 � 25. By arranging all the values in
increasing order of magnitude and assigning appropriate ranks to the ties, we replace Table 10-18 with 
Table 10-19, the right-hand column of which shows the sum of the ranks. We see from Table 10-19 that 
R1 � 70, R2 � 48.5, R3 � 93, R4 � 40.5, and R5 � 73. Thus

For k � 1 � 4 degrees of freedom at the 0.05 significance level, from Appendix E we have 
Since we cannot reject the hypothesis of no difference between the machines at the 0.05 level
and therefore certainly cannot reject it at the 0.01 level. In other words, we can accept the hypothesis (or
reserve judgment) that there is no difference between the machines at both levels.

Note that we have already worked this problem by using analysis of variance (see Problem 9.8) and have
arrived at the same conclusion.

6.44 � 9.49,
x2

0.95 � 9.49.

�
12

(25)(26)  B (70)2

5 �
(48.5)2

5 �
(93)2

5 �
(40.5)2

5 �
(73)2

5 R � 3(26) � 6.44

H �
12

N(N � 1)a
k

j�1

R2
j

Nj
� 3(N � 1)



10.15. Work Problem 10.14 if a correction for ties is made.

Table 10-20 shows the number of ties corresponding to each of the tied observations. For example, 48 occurs
two times, whereby and 53 occurs four times, whereby By calculating for each of these
values of T and adding, we find that as shown in Table 10-20.
Then, since the correction factor is

1 �
a(T 3 � T )

N 3 � N
� 1 �

120
(25)3 � 25

� 0.9923

N � 25,
g(T 3 � T ) � 6 � 60 � 24 � 6 � 24 � 120,

T3 � TT � 4.T � 2,
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Table 10-20

Observation 48 53 64 68 72

Number of ties (T ) 2 4 3 2 3

T 3 � T 6 60 24 6 24 g(T 3 � T ) � 120

and the corrected value of H is

This correction is not sufficient to change the decision made in Problem 10.14.

10.16. Three samples are chosen at random from a population. Arranging the data according to rank gives us
Table 10-21. Determine whether there is any difference between the samples at the (a) 0.05, (b) 0.01 sig-
nificance levels.

Hc �
6.44

0.9923 � 6.49

Table 10-21

Sample 1 7 4 6 10

Sample 2 11 9 12

Sample 3 5 1 3 8 2

Here k � 3, N1 � 4, N2 �3, N3 � 5, N � N1 � N2 � N3 � 12, R1 � 7 � 4 � 6 � 10 � 27,
R2 � 11 � 9 � 12 � 32, and R3 � 5 � 1 � 3 � 8 � 2 � 19. Thus

(a) For degrees of freedom, Thus, since we can conclude
that there is a significant difference between the samples at the 0.05 level.

(b) For 2 degrees of freedom, Thus, since we cannot conclude that there is a
difference between the samples at the 0.01 level.

The runs test for randomness
10.17. In 30 tosses of a coin, the following sequence of heads (H) and tails (T) is obtained:

H T T H T H H H T H H T T H T

H T H H T H T T H T H H T H T

(a) Determine the number of runs, V.

(b) Test at the 0.05 significance level whether the sequence is random.

6.83 � 9.21,x2
0.95 � 9.21.

6.83 � 5.99,x2
0.95 � 5.99.k � 1 � 3 � 1 � 2

H �
12

N(N � 1)a
k

j�1

R2
j

Nj
� 3(N � 1) �

12
(12)(13)  c (27)2

4 �
(32)2

3 �
(19)2

5 d � 3(13) � 6.83



(a) Using a vertical bar to indicate a run, we see from

H T T H T H H H T H H T T H T

H T H H T H T T H T H H T H T

that the number of runs is 

(b) There are N1 � 16 heads and N2 � 14 tails in the given sample of tosses, and from part (a), the number of
runs is V � 22. Thus from formulas (13) of this chapter we have

or The z score corresponding to runs is therefore

Now for a two-tailed test at the 0.05 significance level, we would accept the hypothesis H0 of randomness
if and would reject it otherwise (see Fig. 10-4). Since the calculated value of z is

we conclude that the tosses are not random at the 0.05 level. The test shows that there are
too many runs, indicating a cyclic pattern in the tosses.
2.27 � 1.96,

�1.96 � z � 1.96

Z �
V � mV

sV
�

22 � 15.93
2.679 � 2.27

V � 22sV � 2.679.

mV �
2(16)(14)
16 � 14 � 1 � 15.93  s2

V �
2(16)(14)[2(16)(14) � 16 � 14]

(16 � 14)2(16 � 14 � 1)
� 7.175

V � 22.

uuuuuuuuuuuu

uuuuuuuuuu
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Fig. 10-4

If a correction for continuity is used, the above z score is replaced by

and the same conclusion is reached.

10.18. A sample of 48 tools produced by a machine shows the following sequence of good (G) and defective
(D) tools:

G G G G G G D D G G G G G G G G

G G D D D D G G G G G G D G G G

G G G G G    G D D G G G G G D G G

Test the randomness of the sequence at the 0.05 significance level.

The numbers of D’s and G’s are N1 � 10 and N2 � 38, respectively, and the number of runs is V � 11. Thus
the mean and variance are given by

so that 
For a two-tailed test at the 0.05 level, we would accept the hypothesis H0 of randomness if 

(see Fig. 10-4) and would reject if otherwise. Since the z score corresponding to is

and we can reject H0 at the 0.05 level.�2.61 � �1.96,

Z �
V � mV

sV
�

11 � 16.83
2.235 � �2.61

V � 11
�1.96 � z � 1.96

sV � 2.235.

mV �
2(10)(38)
10 � 38 � 1 � 16.83  s2

V �
2(10)(38)[2(10)(38) � 10 � 38]

(10 � 38)2(10 � 38 � 1)
� 4.997

z �
(22 � 0.5) � 15.93

2.679 � 2.08



The test shows that there are too few runs, indicating a clustering (or bunching) of defective tools. In other
words, there seems to be a trend pattern in the production of defective tools. Further examination of the
production process is warranted.

10.19. (a) Form all possible sequences consisting of three a’s and two b’s, and give the numbers of runs, V,
corresponding to each sequence.

(b) Obtain the sampling distribution of V.

(c) Obtain the probability distribution of V.

(a) The number of possible sequences consisting of three a’s and two b’s is

These sequences are shown in Table 10-22, along with the number of runs corresponding to each
sequence.

a5
2
b �

5!
2!3! � 10
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Table 10-22

Sequence Runs (V )

a a a b b 2

a a b a b 4

a a b b a 3

a b a b a 5

a b b a a 3

a b a a b 4

b b a a a 2

b a b a a 4

b a a a b 3

b a a b a 4

Table 10-23

V f

2 2

3 3

4 4

5 1

(b) The sampling distribution of V is given in Table 10-23 (obtained from Table 10-21), where V denotes the
number of runs and f denotes the frequency. For example, Table 10-23 shows that there is one 5, four 4s, etc.

(c) The probability distribution of V is obtained from Table 10-23 by dividing each frequency by the total
frequency For example,

10.20. Find (a) the mean, (b) the variance of the number of runs in Problem 10.19 directly from the results ob-
tained there.

(a) From Table 10-22 we have

Another method
From Table 10-22 the grouped-data method gives

(b) Using the grouped-data method for computing the variance, from Table 10-23 we have

s2
V �

a  f (V � V#  )2

a  f
�

1
10  c (2)a2 �

17
5 b

2

� (3)a3 �
17
5 b

2

� (4)a4 �
17
5 b

2

� (1)a5 �
17
2 b

2 d �
21
25

mV �
a  f V

a  f
�

(2)(2) � (3)(3) � (4)(4) � (1)(5)
2 � 3 � 4 � 1 �

17
5

mV �
2 � 4 � 3 � 5 � 3 � 4 � 2 � 4 � 3 � 4

10 �
17
5

Pr5V � 56 �
1

10 � 0.1.2 � 3 � 4 � 1 � 10.



Another method
As in Chapter 5, the variance is given by

10.21. Work Problem 10.20 by using formulas (13) of this chapter.

Since there are three a’s and two b’s, we have N1 � 3 and N2 � 2. Thus

(a)

(b)

Further applications of the runs test
10.22. Referring to Problem 10.3, and assuming a significance level of 0.05, determine whether the sample life-

times of the batteries produced by the PQR Company are random.

Table 10-24 shows the batteries’ lifetimes in increasing order of magnitude. Since there are 24 entries in the
table, the median is obtained from the middle two entries, 253 and 262, as Rewriting
the data of Table 10-23 by using an a if the entry is above the median and a b if it is below the median, we
obtain Table 10-25, in which we have 12 a’s, 12 b’s, and 15 runs. Thus 
and we have

so that

Using a two-tailed test at the 0.05 significance level, we would accept the hypothesis of randomness if
Since 0.835 falls within this range, we conclude that the sample is random.�1.96 � z � 1.96.

Z �
V � mV

sV
�

15 � 13
2.396 � 0.835

mV �
2N1N2

N1 � N2
� 1 �

2(12)(12)
12 � 12 � 1 � 13  s2

V �
2(12)(12)(264)

(24)2(23)
� 5.739

N � 24, V � 15,N1 � 12, N2 � 12,

1
2(253 � 262) � 257.5.

s2
V �

2N1N2(2N1N2 � N1 � N2)

(N1 � N2)2  (N1 � N2 � 1)
�

2(3)(2)[2(3)(2) � 3 � 2]

(3 � 2)2(3 � 2 � 1)
�

21
25

mV �
2N1N2

N1 � N2
� 1 �

2(3)(2)
3 � 2 � 1 �

17
5

s2
V � V# 2 � V# 2 �

(2)(2)2 � (3)(3)2 � (4)(4)2 � (1)(5)2

10 � ¢ 17
5 ≤ 2

�
21
25
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Table 10-24

a b b a a b a b

b b a a b a b b

a a b b a b a a

198 211 216 219 224 225 230 236

243 252 253 253 262 264 268 271

272 275 282 284 288 291 294 295

Table 10-25

10.23. Work Problem 10.5 by using the runs test for randomness.

The arrangement of all values from both samples already appears in line 1 of Table 10-8. Using the symbols a
and b for the data from samples I and II, respectively, the arrangement becomes

b b b b b b b b a a a a a b b a a a

Since there are four runs, we have V � 4, N1 � 8, and N2 � 10. Then

so that Z �
V � mV

sV
�

4 � 9.889
2.031 � �2.90

s2
V �

2N1N2(2N1N2 � N1 � N2)

(N1 � N2)2(N1 � N2 � 1)
�

2(8)(10)(142)

(18)2(17)
� 4.125

mV �
2N1N2

N1 � N2
� 1 �

2(8)(10)
18 � 1 � 9.889



If H0 is the hypothesis that there is no difference between the alloys, it is also the hypothesis that the above
sequence is random. We would accept this hypothesis if and would reject it otherwise.
Since lies outside this interval, we reject H0 and reach the same conclusion as for Problem 10.5.

Note that if a correction is made for continuity,

and we reach the same conclusion.

Rank correlation
10.24. Table 10-26 shows how 10 students, arranged in alphabetical order, were ranked according to their

achievements in both the laboratory and lecture sections of a biology course. Find the coefficient of rank
correlation.

Z �
V � mV

sV
�

(4 � 0.5) � 9.889
2.031 � �2.65

� �2.90
�1.96 � z � 1.96
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Table 10-26

Laboratory 8 3 9 2 7 10 4 6 1 5

Lecture 9 5 10 1 8 7 3 4 2 6

The difference in ranks, D, in the laboratory and lecture sections for each student is given in Table 10-27,
which also gives D2 and Thus

indicating that there is a marked relationship between the achievements in the course’s laboratory and lecture
sections.

rs � 1 �
6aD2

N(N 2 � 1)
� 1 �

6(24)

10(102 � 1)
� 0.8545

gD2.

Table 10-27

Difference of ranks (D) �1 �2 �1 1 �1 3 1 2 �1 �1

D2 1 4 1 1 1 9 1 4 1 1 gD2 � 24

10.25. Table 10-28 shows the heights of a sample of 12 fathers and their oldest adult sons. Find the coefficient
of rank correlation.

Table 10-28

Height of father (inches) 65 63 67 64 68 62 70 66 68 67 69 71

Height of son (inches) 68 66 68 65 69 66 68 65 71 67 68 70

Arranged in ascending order of magnitude, the fathers’ heights are

62 63 64 65 66 67 67 68 68 69 71 (18)

Since the sixth and seventh places in this array represent the same height (67 inches), we assign a mean rank
to these places. Similarly, the eighth and ninth places are assigned the rank 

Thus the fathers’ heights are assigned the ranks

1 2 3 4 5 6.5 6.5 8.5 8.5 10 11 12 (19)

Similarly, arranged in ascending order of magnitude, the sons’ heights are

65 65 66 66 67 68 68 68 68 69 70 71 (20)

1
2(8 � 9) � 8.5.1

2(6 � 7) � 6.5



and since the sixth, seventh, eighth, and ninth places represent the same height (68 inches), we assign the
mean rank to these places. Thus the sons’ heights are assigned the ranks

1.5 1.5 3.5 3.5 5 7.5 7.5 7.5 7.5 10 11 12 (21)

Using the correspondences (18) and (19), and (20) and (21), we can replace Table 10-28 with Table 10-29.
Table 10-30 shows the difference in ranks, D, and the computations of D2 and whereby

The result agrees well with the correlation coefficient obtained by other methods (see Problems 8.26, 8.28,
8.30, and 8.32).

rs � 1 �
6aD2

N(N 2 � 1)
� 1 �

6(72.50)

12(122 � 1)
� 0.7465

gD2,

1
4(6 � 7 � 8 � 9) � 7.5

CHAPTER 10 Nonparametric Tests366

Table 10-30

D �3.5 �1.5 �1.0 1.5 �1.5 �2.5 3.5 3.5 �3.5 1.5 2.5 1.0

D2 12.25 2.25 1.00 2.25 2.25 6.25 12.25 12.25 12.25 2.25 6.25 1.00 gD2 � 72.50

Rank of father 4 2 6.5 3 8.5 1 11 5 8.5 6.5 10 12

Rank of son 7.5 3.5 7.5 1.5 10 3.5 7.5 1.5 12 5 7.5 11

Table 10-29

SUPPLEMENTARY PROBLEMS

The sign test
10.26. A company claims that if its product is added to an automobile’s gasoline tank, the mileage per gallon will

improve. To test the claim, 15 different automobiles are chosen and the mileage per gallon with and without
the additive is measured; the results are shown in Table 10-31. Assuming that the driving conditions are the
same, determine whether there is a difference due to the additive at significance levels of (a) 0.05, (b) 0.01.

Table 10-31

With additive 34.7 28.3 19.6 25.1 15.7 24.5 28.7 23.5 27.7 32.1 29.6 22.4 25.7 28.1 24.3

Without additive 31.4 27.2 20.4 24.6 14.9 22.3 26.8 24.1 26.2 31.4 28.8 23.1 24.0 27.3 22.9

10.27. Can one conclude at the 0.05 significance level that the mileage per gallon achieved in Problem 10.26 is better
with the additive than without it?

10.28. A weight-loss club advertises that a special program that it has designed will produce a weight loss of at least
6% in 1 month if followed precisely. To test the club’s claim, 36 adults undertake the program. Of these,
25 realize the desired loss, 6 gain weight, and the rest remain essentially unchanged. Determine at the 0.05
significance level whether the program is effective.

10.29. A training manager claims that by giving a special course to company sales personnel, the company’s annual
sales will increase. To test this claim, the course is given to 24 people. Of these 24, the sales of 16 increase,
those of 6 decrease, and those of 2 remain unchanged. Test at the 0.05 significance level the hypothesis that the
course increased the company’s sales.



10.30. The MW Soda Company sets up “taste tests” in 27 locations around the country in order to determine the
public’s relative preference for two brands of cola, A and B. In eight locations brand A is preferred over brand B,
in 17 locations brand B is preferred over brand A, and in the remaining locations there is indifference. Can one
conclude at the 0.05 significance level that brand B is preferred over brand A?

10.31. The breaking strengths of a random sample of 25 ropes made by a manufacturer are given in Table 10-32. On
the basis of this sample, test at the 0.05 significance level the manufacturer’s claim that the breaking strength
of a rope is (a) 25, (b) 30, (c) 35, (d) 40.
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Table 10-32

41 28 35 38 23

37 32 24 46 30

25 36 22 41 37

43 27 34 27 36

42 33 28 31 24

10.32. Show how to obtain 95% confidence limits for the data in Problem 10.4.

10.33. Make up and solve a problem involving the sign test.

The Mann–Whitney U test
10.34. Instructors A and B both teach a first course in chemistry at XYZ University. On a common final examination,

their students received the grades shown in Table 10-33. Test at the 0.05 significance level the hypothesis that
there is no difference between the two instructors’ grades.

Table 10-33

A 88 75 92 71 63 84 55 64 82 96

B 72 65 84 53 76 80 51 60 57 85 94 87 73 61

10.35. Referring to Problem 10.34, can one conclude at the 0.01 significance level that the students’ grades in the
morning class are worse than those in the afternoon class?

10.36. A farmer wishes to determine whether there is a difference in yields between two different varieties of wheat,
I and II. Table 10-34 shows the production of wheat per unit area using the two varieties. Can the farmer
conclude at significance levels of (a) 0.05, (b) 0.01 that a difference exists?

Table 10-34

Wheat I 15.9 15.3 16.4 14.9 15.3 16.0 14.6 15.3 14.5 16.6 16.0

Wheat II 16.4 16.8 17.1 16.9 18.0 15.6 18.1 17.2 15.4

10.37. Can the farmer of Problem 10.36 conclude at the 0.05 level that wheat II produces a larger yield than wheat I?

10.38. A company wishes to determine whether there is a difference between two brands of gasoline, A and B.
Table 10-35 shows the distances traveled per gallon for each brand. Can we conclude at the 0.05 significance
level (a) that there is a difference between the brands, (b) that brand B is better than brand A?



10.39. Can the U test be used to determine whether there is a difference between machines I and II of Table 10-1?

10.40. Make up and solve a problem using the U test.

10.41. Find U for the data of Table 10-36, using (a) the formula method, (b) the counting method.
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Table 10-35

A 30.4 28.7 29.2 32.5 31.7 29.5 30.8 31.1 30.7 31.8

B 33.5 29.8 30.1 31.4 33.8 30.9 31.3 29.6 32.8 33.0

Table 10-36

Sample 1 40 27 30 56

Sample 2 10 35

Sample 1 15 25

Sample 2 20 32

Table 10-37

10.42. Work Problem 10.41 for the data of Table 10-37.

10.43. A population consists of the values 2, 5, 9, and 12. Two samples are drawn from this population, the first
consisting of one of these values and the second consisting of the other three values.

(a) Obtain the sampling distribution of U and its graph.

(b) Obtain the mean and variance of this distribution, both directly and by formula.

10.44. Prove that U1 � U2 � N1N2.

10.45. Prove that R1 � R2 � [N(N � l)] 2 for the case where the number of ties is (a) 1, (b) 2, (c) any number.

10.46. If N1 � 14, N2 � 12, and R1 � 105, find (a) R2, (b) U1, (c) U2.

10.47. If N1 � 10, N2 � 16, and U2 � 60, find (a) R1, (b) R2, (c) U1.

10.48. What is the largest number of the values N1, N2, R1, R2, U1, and U2 that can be determined from the remaining
ones? Prove your answer.

The Kruskal–Wallis H test
10.49. An experiment is performed to determine the yields of five different varieties of wheat: A, B, C, D, and E. Four

plots of land are assigned to each variety. The yields (in bushels per acre) are shown in Table 10-38. Assuming
that the plots have similar fertility and that the varieties are assigned to the plots at random, determine whether
there is a significant difference between the yields at the (a) 0.05, (b) 0.01 levels.

>

Table 10-38

A 20 12 15 19

B 17 14 12 15

C 23 16 18 14

D 15 17 20 12

E 21 14 17 18

Table 10-39

A 33 38 36 40 31 35

B 32 40 42 38 30 34

C 31 37 35 33 34 30

D 27 33 32 29 31 28



10.50. A company wishes to test four different types of tires: A, B, C, and D. The lifetimes of the tires, as determined
from their treads, are given (in thousands of miles) in Table 10-39; each type has been tried on six similar
automobiles assigned to the tires at random. Determine whether there is a significant difference between the
tires at the (a) 0.05, (b) 0.01 levels.

10.51. A teacher wishes to test three different teaching methods: I, II, and III. To do this, the teacher chooses at
random three groups of five students each and teaches each group by a different method. The same
examination is then given to all the students, and the grades in Table 10-40 are obtained. Determine at the 
(a) 0.05, (b) 0.01 significance levels whether there is a difference between the teaching methods.
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Table 10-40

Method I 78 62 71 58 73

Method II 76 85 77 90 87

Method III 74 79 60 75 80

Table 10-41

Mathematics 72 80 83 75

Science 81 74 77

English 88 82 90 87 80

Economics 74 71 77 70

10.52. During one semester a student received in various subjects the grades shown in Table 10-41. Test at the 
(a) 0.05, (b) 0.01 significance levels whether there is a difference between the grades in these subjects.

10.53. Using the H test, work (a) Problem 9.14, (b) Problem 9.23, (c) Problem 9.24.

10.54. Using the H test, work (a) Problem 9.25, (b) Problem 9.26, (c) Problem 9.27.

The runs test for randomness
10.55. Determine the number of runs, V, for each of these sequences:

(a) A B A B B A A A B B A B

(b) H H T H H H T T T T H H T H H T H T

10.56. Twenty-five individuals were sampled as to whether they liked or did not like a product (indicated by Y and N,
respectively). The resulting sample is shown by the following sequence:

Y Y N N N N Y Y Y N Y N N Y N N N N N Y Y Y Y N N

(a) Determine the number of runs, V.

(b) Test at the 0.05 significance level whether the responses are random.

10.57. Use the runs test on sequences (10) and (11) in this chapter, and state any conclusions about randomness.

10.58. (a) Form all possible sequences consisting of two a’s and one b, and give the number of runs, V,
corresponding to each sequence.

(b) Obtain the sampling distribution of V.

(c) Obtain the probability distribution of V.

10.59. In Problem 10.58, find the mean and variance of V (a) directly from the sampling distribution, (b) by formula.

10.60. Work Problems 10.58 and 10.59 for the cases in which there are (a) two a’s and two b’s, (b) one a and three
b’s, (c) one a and four b’s.



10.61. Work Problems 10.58 and 10.59 for the cases in which there are (a) two a’s and four b’s, (b) three a’s and 
three b’s.

Further applications of the runs test
10.62. Assuming a significance level of 0.05, determine whether the sample of 40 grades in Table 10-5 is random.

10.63. The closing prices of a stock on 25 successive days are given in Table 10-42. Determine at the 0.05
significance level whether the prices are random.
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Table 10-42

10.375 11.125 10.875 10.625 11.500

11.625 11.250 11.375 10.750 11.000

10.875 10.750 11.500 11.250 12.125

11.875 11.375 11.875 11.125 11.750

11.375 12.125 11.750 11.500 12.250

10.64. The first digits of are What conclusions can you draw concerning the
randomness of the digits?

10.65. What conclusions can you draw concerning the randomness of the following digits?

(a)

(b)

10.66. Work Problem 10.30 by using the runs test for randomness.

10.67. Work Problem 10.32 by using the runs test for randomness.

10.68. Work Problem 10.34 by using the runs test for randomness.

Rank correlation
10.69. In a contest, two judges were asked to rank eight candidates (numbered 1 through 8) in order of preference.

The judges submitted the choices shown in Table 10-43.

(a) Find the coefficient of rank correlation.

(b) Decide how closely the judges agreed in their choices.

p � 3.14159 26535 89793 2643 c

!3 � 1.73205 08075 68877 2935 c

1.41421 35623 73095 0488c.!2

Table 10-43

First judge 5 2 8 1 4 6 3 7

Second judge 4 5 7 3 2 8 1 6

10.70. The rank correlation coefficient is derived by using the ranked data in the product-moment formula of Chapter 8.
Illustrate this by using both methods to work a problem.

10.71. Can the rank correlation coefficient be found for grouped data? Explain this, and illustrate your answer with an
example.



ANSWERS TO SUPPLEMENTARY PROBLEMS

10.26. There is a difference at the 0.05 level, but not at the 0.01 level. 10.27. Yes.

10.28. The program is effective at the 0.05 level.

10.29. We can reject the hypothesis of increased sales at the 0.05 level. 10.30. No.

10.31. (a) Reject. (b) Accept. (c) Accept. (d) Reject.

10.34. There is no difference at the 0.05 level. 10.35. No.

10.36. (a) Yes. (b) Yes. 10.37. Yes. 10.38. (a) Yes. (b) Yes.

10.41. 3 10.42. 6 10.49. There is no significant difference at either level.

10.50. The difference is significant at the 0.05 level, but not at the 0.01 level.

10.51. The difference is significant at the 0.05 level, but not at the 0.01 level.

10.52. There is a significant difference between the grades at both levels.

10.55. (a) 8. (b) 10. 10.56. (a) 10. (b) The responses are random at the 0.05 level.

10.62. The sample is not random at the 0.05 level. There are too many runs, indicating a cyclic pattern.

10.63. The sample is not random at the 0.05 level. There are too few runs, indicating a trend pattern.

10.64. The digits are random at the 0.05 level.

10.65. (a) The digits are random at the 0.05 level. (b) The digits are random at the 0.05 level.

10.69. (a) 0.67. (b) The judges did not agree too closely in their choices.
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Bayesian Methods

Subjective Probability
The statistical methods developed thus far in this book are based entirely on the classical and frequency ap-
proaches to probability (see page 5). Bayesian methods, on the other hand, rely also on a third—the so-called
subjective or personal—view of probability.

Central to Bayesian methods is the process of assigning probabilities to parameters, hypotheses, and models
and updating these probabilities on the basis of observed data. For example, Bayesians do not treat the mean 
of a normal population as an unknown constant; they regard it as the realized value of a random variable, say ,
with a probability density function over the real line. Similarly, the hypothesis that a coin is fair may be assigned
a probability of 0.3 of being true, reflecting our degree of belief in the coin being fair.

In the Bayesian approach, the property of randomness thus appertains to hypotheses, models, and fixed quan-
tities such as parameters as well as to variable and observable quantities such as conventional random variables.
Probabilities that describe the extent of our knowledge and ignorance of such nonvariable entities are usually re-
ferred to as subjective probabilities and are usually determined using one’s intuition and past experience, prior
to and independently of any current or future observations. In this book, we shall not discuss the controversial
yet pivotal issue of the meaning and measurement of subjective probabilities. Rather, our focus will be on how
prior probabilities are utilized in the Bayesian treatment of some of the statistical problems covered earlier.

EXAMPLE 11.1 Statements involving classical probabilities: (a) the chances of rolling a 3 or a 5 with a fair die are one
in three; (b) the probability of picking a red chip out of a box containing two red and three green chips is two in five.
Examples of the frequency approach to probability: (a) based on official statistics, the chances are practically zero that
specific person in the U.S. will die from food poisoning next year; (b) I toss a coin 100 times and estimate the probabil-
ity of a head coming up to be . Statements involving subjective probabilities: (a) he is 80% sure that he will
get an A in this course; (b) I believe the chances are only 1 in 10 that there is life on Mars; (c) the mean of this Poisson
distribution is equally likely to be 1, 1.5, or 2. 

Prior and Posterior Distributions
The following example is helpful for introducing some of the common terminology of Bayesian statistics.

EXAMPLE 11.2 A box contains two fair coins and a biased coin with probability for heads . A coin is
chosen at random from the box and tossed three times. If two heads and a tail are obtained, what is the probability of the
event F, that the chosen coin is fair, and what is the probability of the event B, that the coin is biased?

Let D denote the event (data) that two heads and a tail are obtained in three tosses. The conditional probability 
of observing the data under the hypothesis that a fair coin is tossed is a binomial probability and may be obtained from
(1), (see Chapter 4). The conditional probability of observing D when a biased coin is tossed may be obtained
similarly. Bayes’ theorem (page 8) then gives us

Also, P(B uD) � 1 � P(F uD) < 0.11.

P(F uD) �
P(D uF )P(F )

P(D uF )P(F ) � P(D uB)P(B)
�

[3(0.5)3] ? ¢ 2
3 ≤

[3(0.5)3] ? ¢ 2
3 ≤ � [3(0.2)2(0.8)] ? ¢ 1

3 ≤ �
250
282 < 0.89

P(D uB)

P(D uF )

P(H) � 0.2

37>100 � 0.37

�
u
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In the Bayesian context, the unconditional probability in the preceding example is usually referred to
as the prior probability (before any observations are collected) of the hypothesis F, that a fair coin was tossed,
and the conditional probability is called and the posterior probability of the hypothesis F (after the fact
that D was observed). Analogously, , and are the respective prior and posterior probabilities that the
biased coin was tossed. The prior probabilities used here are classical probabilities. 

The following example involves a simple modification of Example 11.2 that necessitates an extension of the
concept of randomness and brings into play the notion of a subjective probability.

EXAMPLE 11.3 A box contains an unknown number of fair coins and biased coins (with each). A coin is
chosen at random from the box and tossed three times. If two heads and a tail are obtained, what is the probability that
the chosen coin is biased?

In Example 11.2, the prior probability for choosing a fair coin could be determined using combinatorial reason-
ing. Since the proportion of fair coins in the box is now unknown, we cannot access as a classical probability with-
out resorting to repeated independent drawings from the box and approximating it as a frequency ratio. We cannot
therefore apply Bayes’ theorem to determine the posterior probability for F.

Bayesians, nonetheless, would provide a solution to this by first positing that the unknown prior probability
is a random quantity, say , by virtue of our uncertainty as to its exact value and then reasoning that it is

possible to arrive at a probability or density function for that reflects our degree of belief in various
propositions concerning . For example, one could argue that in the absence of any evidence to the contrary
before the coin is tossed, it is reasonable to assume that the box contains an equal number of fair and biased
coins. Since for a biased coin and 0.5 for a fair coin, the unknown parameter then would have the
subjective prior probability function shown in Table 11-1.

�P(H) � 0.2

P(F )
�p(u)

�P(F )

P(F )
P(F )

P(H) � 0.2

P(B uD)P(B)
P(F uD)

P(F )

u 0.2 0.5

p(u) 1>2 1>2

Table 11-1

Table 11-2

Prior distributions that give equal weight to all possible values of a parameter are examples of diffuse,
vague, or noninformative priors which are often recommended when virtually no prior information about the
parameter is available. When a parameter can take on any value in a finite interval, the diffuse prior would
usually be the uniform density on that interval. We will also encounter situations where uniform prior den-
sities over the entire real line are used; such densities will be called improper since the total area under them
is infinite. 

Starting from the prior probability function in Table 11-1, the posterior probability function for after observ-
ing D (two heads and a tail in three tosses), , may be obtained using Bayes’ theorem as in Example 11.2,
and is given in Table 11-2 (see Problem 11.3).

p(u uD)
�

u 0.2 0.5

p(u uD) 32>157 125>157

It is convenient at this point to introduce some notation that is particularly helpful for presenting Bayesian
methods. Suppose that X is a random variable with probability or density function that depends on an un-
known parameter . We assume that our uncertainty as to the value of may be represented by the probability
or density function of a random variable . The function may then be thought of as the conditional
probability or density function of X given ; we shall therefore denote by throughout this
chapter. Also, we shall denote the joint probability or density function of X and by and
the posterior (or conditional) probability or density function of given by . If is a
random sample of values of X, then the joint density function of the sample (also known as the likelihood

x1, x2, c, xnp(u u x)X � x�
p(u)f (x Zu)f (x; u) ��

f (x Zu)f (x)� � u
f (x)�p(u)

uu

f (x)



function, see (19), Chapter 6) will be written using the vector notation as 
; similarly, the posterior probability or density function of given the sample will

be denoted by .
The following version of Bayes’ theorem for random variables is a direct consequence of (26) and (43),

Chapter 2:

(1)

where the integral is over the range of values of and is replaced with a sum if is discrete. 
In our applications of Bayes’ theorem, we seldom have to perform the integration (or summation) appearing

in the denominator of (1) since its value is independent of . We can therefore write (1) in the form

(2)

meaning that , where C is a proportionality constant that is free of . Once the func-
tional form of the posterior density is known, the “normalizing” constant C can be determined so as to make

a probability density function. (See Example 11.4.)

Remark 1 The convention of using upper case letters for random variables is often ignored in Bayesian pre-
sentations when dealing with parameters, and we shall follow this practice in the sequel. For in-
stance, in the next example, we use to denote both the random parameter (rather than ) and its
possible values.  

EXAMPLE 11.4 The random variable X has a Poisson distribution with an unknown parameter . It has been deter-
mined that has the subjective prior probability function given in Table 11-3. A random sample of size 3 yields the
X-values 2, 0, and 3. We wish to find the posterior distribution of . l

l

l

�l

p(u u x)

up(u u x) � C ? f (x uu)p(u)

p(u ux) ~ f (x u u)p(u)

u

��

p(u ux) �
f (x; u)

f (x)
�

f (x uu)p(u)

3
�

 f (x uu)p(u) du

p(u u x)
uf (x1 u u) ? f (x2 u u) c f (xn u u)

f (x Zu) �x �  (x1, x2, c, xn)
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l 0.5 1.0 1.5

p(l) 1>2 1>3 1>6

Table 11-3

The likelihood of the data is . From (1) and (2), we have the posterior density 

�

The constant of proportionality in the preceding is simply the reciprocal of the sum over the three possi-
ble values of . By substituting , 1.0, 1.5, respectively, and from Table 11-3 into the preceding sum, and
then normalizing so that the sum of the probabilities is equal to 1, we obtain the values in Table 11-4.p(l ux)

p(l)� 0.5ll
gl e�3ll5p(l)

e�3llx1�x2�x3p(l)
x1!x2!x3!

1
x1!x2!x3!

a
l

 e�3llx1�x2�x3p(l)
 ~ e�3ll5p(l)  l � 0.5, 1, 1.5p(l u x)

f (x ul) � e�3l 
lx1�x2�x3

x1!x2!x3!

l 0.5 1.0 1.5

p(l u x) 0.10 0.49 0.41

Table 11-4

EXAMPLE 11.5 The random variable X has a binomial distribution with probability function given by 

f (x Zu) � ¢n

x
≤ux(1 � u)n�x  x � 1, 2, c, n



Suppose that nothing is known about the parameter so that a uniform (vague) prior distribution on the interval [0, 1]
is chosen for . If a sample of size 4 yielded 3 successes, then the posterior probability density function of may be
obtained using (2):

The last expression may be recognized as a beta density (see (34), Chapter 4) with and . Since the normal-b � 2a � 4

p(u u x) �
f (x u u)p(u)

3
�

 f (x u u)p(u) du
�

¢4

3
≤u3(1 � u) ? 1

3
1

0

¢4

3
≤u3(1 � u) du

 ~ u3(1 � u)

uu

u
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Sampling From a Binomial Population
The result obtained in Example 11.5 may be generalized in a straightforward manner. Suppose that X has a
binomial distribution with parameters n and (see (1), Chapter 4) and that the prior probability distribution of

is beta with density function (see (34), Chapter 4):

(3)

where is the beta function (see Appendix A). (Note that if , then is the uniform density
on [0, 1]—the situation discussed in Example 11.5.) Then the posterior density corresponding to any
observed value x is given by

(4)p(u ux) �
f (x uu)p(u)

3
�

 f (x uu)p(u) dp
 ~ ux(1 � u)n�x ? ua�1(1 � u)b�1 �

ux�a�1(1 � u)n�x�b�1

B(x � a, n � x � b)
 0 � u � 1

p(u ux)
p(u)a � b � 1B(a, b)

p(u) �
ua�1(1 � u)b�1

B(a, b)
  0 � u � 1  (a, b � 0)

u

u

izing constant here should be (see Appendix A), we deduce that the constant of proportionality is 20 and
1

B(4, 2) �
5!

3!1!
. The graphs of the prior (uniform) and posterior densities are shown in Fig. 11-1.

The mean and variance are, respectively, 0.5 and 1 12 0.08 for the prior density whereas they are 2 3 0.67 and
8 252 0.03 for the posterior density. The shift to the right and the increased concentration about the mean as we move
from the prior to the posterior density are evident in Fig. 11-1.

<>
<><>

p(u ux) � 20u3(1 � u), 0 � u � 1



This may be recognized as a beta density with parameters and . We thus have the following:

Theorem 11-1 If X is a binomial random variable with parameters n and , and the prior density of is beta
with parameters and , then the posterior density of after observing is beta with pa-
rameters and .   

EXAMPLE 11.6 Suppose that X is binomial with parameters and unknown and that is beta with
parameters 2. If an observation on X yielded , then the posterior density may be determined
as follows.

From Theorem 11-1 we see that is beta with parameters 4 and 10. The prior (symmetric about 0.5) and pos-
terior densities are shown in Fig. 11-2. It is clear that the effect of the observation on the prior density of is to shift its
mean from 0.5 down to and to shrink the variance from 0.05 down to 0.014 (see (36), Chapter 4). 4>14 < 0.29

u

p(u u x)

p(u u x)x � 2a � b �
p(u)un � 10

n � x � bx � a
X � xuba

uu

n � x � bx � a
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Sampling From a Poisson Population
Theorem 11-2 If X is a Poisson random variable with parameter and the prior density of is gamma with

parameters and (as in (31), Chapter 4), then the posterior density of , given the sample
, is gamma with parameters and , where is the sample mean.   

If is a sample of n observations on X, then the likelihood of � may be written as

. We are given the prior density of :

(5)

It follows that the posterior density of is 

(6)

The last expression may be recognized as a gamma density, thus proving Theorem 11-2.

EXAMPLE 11.7 The number of defects in a 1000-foot spool of yarn manufactured by a machine has a Poisson distri-
bution with unknown mean . The prior distribution of is gamma with parameters and . A total of eight
defects were found in a sample of five spools that were examined. The posterior distribution of is gamma with param-
eters and . The prior mean and variance are both 3 while the posterior mean and variance are
respectively 1.87 and 0.32. The two densities are shown in Fig. 11-3. 

b � 1>6 < 0.17a � 11
l

b � 1a � 3ll

p(lux) �
f (xul)p(l)

3
�

 f (xul)p(l) dl
 ~ 

e�nlln  x
? la�1e�l>b

3
`

0

e�lln  x
? la�1e�l>bdl

�
(1 � nb)n  x�al(n  x�a)�1e�l(nb�1)>b

bn   x�a�(nx# � a)
 l � 0

l

p(l) �
la�1e�l>b
ba�(a)

  l � 0

lf (x Zu) � e�nl 
ln  x

x1!x2!cxn!

(x1, x2, c, xn)xx1, x2, c, xn

x#b>(1 � nb)nx# � ax1, x2, c, xn

lba

ll



Sampling From a Normal Population with Known Variance
Theorem 11-3 Suppose that a random sample of size n is drawn from a normal distribution with unknown

mean and known variance . Also suppose that the prior distribution of is normal with
mean and variance . Then the posterior distribution of is also normal, with mean  and
variance given by

(7)

The likelihood of the observations is given by

We know from Problem 5.20 (see Method 2) that . Using this, and ignor-
ing multiplicative constants not involving , we can write the likelihood as

Using (2) and the fact that , we get the posterior density of as 

Completing the square in the expression in brackets, we get

This proves that the posterior density of is normal with mean and variance given in (7).
A comparison of the prior and posterior variances of in Theorem 11-3 brings out some important facts. It is

convenient to do the comparison in terms of the reciprocal of the variance, which is known as the precision of the
distribution or random variable. Clearly, the smaller the variance of a distribution, the larger would be its precision.
Precision is thus a measure of how concentrated a random variable is or how well we know it. In Theorem 11-3, if
we denote the precision of the prior and posterior distributions of , respectively, by and , then we have 

and (8)jpost �
s2 � ny2

s2y2
�

1
y2

�
n
s2

jprior �
1
y2

jpostjprioru

u

u

p(u u x) ~ exp e�[u � (x#y2 � ms2>n)>(y2 � s2>n)]2

[2(s2>n)y2]>[y2 � (s2>n)]
f   �` � u � `

p(u u x) ~ exp e�1
2

 B n
s2

 (u � x#)2 �
1
y2

 (u � m)2R f up(u) �
1

y22p
 exp e�

1
2y2

 (u � m)2 f

f (x u u) ~ exp e� n
2s2

 (u � x#)2 f
u

g(xi � u)2 � g(xi � x#)2 � n(x# � u)2

f (x u u) �
1

(2p)n>2sn
 exp e� 1

2s2a
n

i�1
(xi � u)2 f

mpost �
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The quantity may be thought of as the precision of the data (sample mean). If we denote this by , we have

the result � � . That is, the precision of the posterior distribution is the sum of the precisions of
the prior and of the data. We can also write the posterior mean, given in (7), in the form

(9)

This says that the posterior mean is a weighted sum of the prior mean and the data, with weights proportional to
the respective precisions. 

Now suppose that is much less than . Then would be very close to , and would be close
to . In other words, the data would then dominate the prior information, and the posterior distribution would es-
sentially be proportional to the likelihood. In any event, as can be seen from (8) and (9), the data would domi-
nate the prior for very large n.

EXAMPLE 11.8 Suppose X is normally distributed with unknown mean and variance 4 and that is standard nor-
mal. If a sample of size yields a mean of 0.5, then by Theorem 11-3, is normal with mean 0.36 and vari-
ance 0.29. The posterior precision is more than three times the prior precision , which is evident from the
densities shown in Fig. 11-4. The precision of the data is , which is reasonably larger than the prior preci-
sion of 1; and this is reflected in the posterior mean of 0.36 being closer to than to the prior mean, 0. x# � 0.5

10>4 � 2.5
(51)(53.5)

p(u u x)n � 10
p(u)u

x#
mpostjdatajpostjdatajprior

mpost �
s2m � ny2x#
s2 � ny2

�
jprior m � jdatax#

jprior � jdata

jdatajpriorjpost

jdata
n
s2
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Improper Prior Distributions
The prior probability density functions we have seen until now are all proper in the sense that (i) 

and (ii) (see page 37). Prior densities that satisfy the first condition but violate the second due

to the integral being divergent have, however, been employed within the Bayesian framework and are referred
to as improper priors. They often arise as natural choices for representing vague prior information about param-
eters with infinite range. 

For example, when sampling from a normal population with known mean, say 0, but unknown variance , we
may assume that the prior density for is given by . Given a sample of observations�

1
u

, u � 0p(u)u

u

3
`

�`
p(u) du � 1

p(u) � 0p(u)



, if we overlook the fact that the prior is improper and apply formula (1), we get the poste-
rior density

(10)

This is a proper density, known as an inverse gamma, with parameters and (see Problem
11.99). We have thus arrived at a proper posterior density starting with an improper prior. Indeed, this will be true
in all of the situations with improper priors that we encounter here, although this is not always the case.

EXAMPLE 11.9 Suppose that X is binomial with known n and unknown success probability . The prior density for

given by is improper and is known as Haldane’s prior. Let us overlook the fact that 

is improper, and proceed formally to derive the posterior density corresponding to an observed value x of X:

We see that the posterior is a proper beta density with parameters x and n – x.

EXAMPLE 11.10 Suppose X is normally distributed with unknown mean and known variance . An improper prior
distribution for in this case is given by . This density may be thought of as representing prior
ignorance in that intervals of the same length have the same weight regardless of their location on the real line. Given
the observation vector  , the posterior distribution of under this prior is given by

which is normal with mean and variance .

Conjugate Prior Distributions
Note that Theorems 11-1, 11-2, and 11-3 share an important characteristic in that the prior and posterior densi-
ties in each belong to the same family of distributions. Whenever this happens, we say that the family of prior
distributions used is conjugate (or closed) with respect to the population density . Thus the beta family is
conjugate with respect to the binomial distribution (Theorem 11-1), the gamma family is conjugate with respect
to the Poisson distribution (Theorem 11-2), and the normal family is conjugate with respect to the normal dis-
tribution with known variance (Theorem 11-3).

Since whenever x and y are two independent samples from , conjugate fam-
ilies make it easier to update prior densities in a sequential manner by just changing the parameters of the fam-
ily (see Example 11.11). Conjugate families are thus desirable in Bayesian analysis and they exist for most of
the commonly encountered distributions. In practice, however, prior distributions are to be chosen on the basis
of how well they represent one’s prior knowledge and beliefs rather than on mathematical convenience. If, how-
ever, a conjugate prior distribution closely approximates an appropriate but otherwise unwieldy prior distribu-
tion, then the former naturally is a prudent choice.

We now show that the gamma family is conjugate with respect to the exponential distribution. Suppose that
X has the exponential density, , with unknown , and that the prior density of is gamma
with parameters and . The posterior density of is then given by

(11)p(u u x) ~ f (x u u) ? p(u) �
une�un  xua�1e�u>b
ba�(a)

�
(1 � nbx#)n�a un�a�1e�u A 1b�n  xB

bn�a�(n � a)
  u � 0

uba

uuf (x uu) � ue�ux, x � 0

f (x uu)p(u ux, y) ~ f ( y uu)p(u ux)

f (x uu)

s2>nx#

p(u u x) ~ f (x u u)p(u) ~ exp•�

a
i

(xi � u)2

2s2 ¶ ? 1~ exp e�n(u � x#)2
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ux � (x1, x2, c, xn)

p(u) � 1, �` � u � `u

s2u

p(u ux) �
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  f (x uu)p(u)du
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This establishes the following theorem.

Theorem 11-4 If X has the exponential density, , with unknown and the prior density
of is gamma with parameters and , then the posterior density of is gamma with param-
eters  and .  

EXAMPLE 11.11 In Example 11.6, suppose an additional, independent observation on the same binomial population
yields the sample value . The posterior density may then be found either (a) directly from the prior den-
sity given in Example 11.6 or (b) using the posterior density derived there. 

(a) We assume that the prior density is beta with parameters and and that a sample value of 5 is observed
on a binomial random variable with . Theorem 11-1 then gives us the posterior beta density with parameters

and .

(b) We assume that the prior density is the posterior density obtained in Example 11.6, namely a beta with parameters
and , and that a sample value of 3 is observed on a binomial random variable with . Theorem 11-1
gives a posterior beta density with parameters and .

EXAMPLE 11.12 A random sample of size n is drawn from a geometric distribution with parameter (see page 123):
Suppose that the prior density of is beta with parameters and . Then the pos-

terior density of is  

which is also a beta, with parameters and , where is the sample mean. In other words, the beta fam-
ily is conjugate with respect to the geometric distribution.

Bayesian Point Estimation
A central tenet in Bayesian statistics is that everything one needs to know about an unknown parameter is to be
found in its posterior distribution. Accordingly, Bayesian point estimation of a parameter essentially amounts to
finding appropriate single-number summaries of the posterior distribution of the parameter. We shall now pres-
ent some summary measures employed for this purpose and their relative merits as to how well they represent
the parameter.

EXAMPLE 11.13 We saw in Example 11.5 that when sampling from a binomial distribution with a uniform prior, the
posterior density of is beta with parameters and 2. The graph of this density is shown in Fig. 11-1. A nat-
ural candidate for single-number summary status here would be the mean of the posterior density. We know from (36),
Chapter 4 that the posterior mean is given by . 

The median and mode (see page 83) of the posterior density are two other possible choices as point estimates for .
The mode is given by (see (37), Chapter 4) . Note that the mode coincides with the max-
imum likelihood estimate (see pages 198–199) of , namely the sample proportion of successes. As a corollary to Theorem
11-5, we see that this is true in general of the binomial distribution with a uniform prior. 

The median in this case is not attractive from a practical standpoint since it has to be numerically determined due to
the lack of a closed form expression for the median of a beta distribution. Nevertheless, as we shall see later, the median
in general is an optimal summary measure in a certain sense.

The following theorem generalizes some of the results from Example 11.13. 

Theorem 11-5 If X is a binomial random variable with parameters n and and the prior density of is beta with
parameters and , then the respective estimates of provided by the posterior mean and mode
are and . 

Remark 2 A special case of this theorem, when and both equal 1, is of some interest. The posterior mean
estimate of is then . Accordingly, if all n trials result in successes (i.e., if ),
then the probability that the next trial will also be a success is given by . This re-
sult has a venerable history and is known as Laplace’s law of succession.
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0
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u
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When in Theorem 11-5, the posterior mode estimate of reduces to the maximum likelihood
estimate . This was also pointed out in Example 11.13 but the result is obviously not true for general and .
But, regardless of the values of and , when the sample size is large enough, both and will be close
to the sample proportion . Furthermore, for all n, is a convex combination of the prior mean of and the
sample proportion. (See Problem 11.38.) 

EXAMPLE 11.14 Suppose that a random sample of size n is drawn from a normal distribution with unknown mean 
and variance 1. Also suppose that the prior distribution of is normal with mean 0 and variance 1. From Theorem 11-3,
we see that the posterior distribution of is normal with mean .

Clearly, the posterior mean, median, and mode are identical here and would therefore lead to the same point estimate,
, of . It was shown in Problem 6.25, page 206, that the maximum likelihood estimate for in this case is the

sample mean , which is known to be unbiased (Theorem 5-1). On the other hand, the Bayesian estimates derived here
are biased, although they are asymptotically unbiased.

A general result along these lines follows easily from Theorem 11-3 and is as follows.

Theorem 11-6 Suppose that a random sample of size n is drawn from a normal distribution with unknown
mean and known variance . Also suppose that the prior distribution of is normal with
mean and variance . Then the posterior mean, median, and mode all provide the same es-
timate of , namely , where is the sample mean.

As we saw in the binomial case, the posterior mean estimate just obtained lies between the prior
mean and the maximum likelihood estimate of . This may be seen by writing in the formmpostux#m

mpost

x#(s2m � ny2x#)>(s2 � ny2)u

y2m

us2u

x#
uunx#>(1 � n)

nx#>(1 � n)u

u

u

umpostx>n gpostmpostba

bax>n ugposta � b � 1
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, as a convex combination of the two. We can also see from this ex-
pression that for large n, will be close to and will not be appreciably influenced by the prior mean .

An optimality property of as an estimate of directly follows from Theorem 3-6. Indeed, we can prove
a more general result along these lines using this theorem. Suppose we are interested in estimating a function of ,
say . For any set of observations from , if we define the statistic as the posterior expectation of

, namely

then it follows from Theorem 3-6 that

is a minimum when . In other words, satisfies the property

for each (12)  

since is the mean of with respect to the posterior density . 
In the general theory of Bayesian estimation, we typically start with a loss function that measures

the distance between the parameter and an estimate. We then seek an estimator, say , with the property that 

for each value of (13)

where the expectation is over the parameter space endowed with the posterior density. An estimator satisfying
equation (13) is called a Bayes estimator of with respect to the loss function . The following theorem
then is just a restatement of (12):

Theorem 11-7 The mean of with respect to the posterior distribution is the Bayes estimator of 
for the squared error loss function .

Another common loss function is the absolute error loss function It is shown in Problem
11.100 that the median of the posterior density is the Bayes estimator for this loss function. 
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Theorem 11-8 The median of with respect to the posterior distribution is the Bayes estimator of
for the absolute error loss function .

When , these two theorems reduce to the optimality results mentioned earlier for the posterior mean and
median as estimates of . 

EXAMPLE 11.15 Suppose X is a binomial random variable with parameters n and , and the prior density of is beta
with parameters . Theorems 11-7 and 11-8 may then be used to obtain the Bayes estimates of for
the (a) squared error and (b) absolute error loss functions. 

(a) We obtain the posterior mean of from Theorem 11-1. We have

(b) The median of the posterior distribution of may be obtained numerically from the posterior distribution of
using computer software. To show the work involved, let us assume that and . The posterior distri-

bution of is beta with parameters 5 and 7. The median of , say m, satisfies the condition

, which is equivalent to the requirement that 

under the beta distribution with parameters 5 and 7. The solution is . (The posterior mean of in
this case is 0.224.)

Bayesian Interval Estimation
Given the posterior density function for a parameter , any interval with the property

(14)

is called a Bayesian credibility interval for . Of the various possible intervals that satisfy this
property, two deserve special mention: the equal tail area interval and the highest posterior density (HPD) interval. 

The equal tail area interval has the property that the area under the posterior density to the
left of equals the area to the right of :

The requirement for the HPD interval is that, in addition to (14), we have if and
. Clearly if does not have a unique mode, then the set of values satisfying the last con-

dition may not be an interval. To avoid this possibility, we shall assume here that the posterior density is unimodal.
It follows directly from this assumption that � and that for any the HPD interval is the short-
est of all possible credibility intervals. But equal tail area intervals are much easier to construct
from the readily available percentiles of most common distributions. The two intervals coincide when the pos-
terior density is symmetric and unimodal.

EXAMPLE 11.16 Suppose that a random sample of size 9 from a normal distribution with unknown mean and vari-
ance 1 yields a sample mean of 2.5. Also suppose that the prior distribution of is normal with mean 0 and variance 1.
From Theorem 11-3, we see that the posterior distribution of is normal with mean 2.25 and variance 0.1. A 95% equal
tail credibility interval for is given by with and equal, respectively, to the 2.5th percentile and 97.5th
percentile of the normal density with mean 2.25 and variance 0.1. From Appendix C, we then have

and . The 95% Bayesian equal tail credibility
interval (and the HPD interval, because of the symmetry of the normal density) is thus given by [1.49, 3.01]. 

EXAMPLE 11.17 In Problem 6.6, we obtained traditional confidence intervals for a normal mean based on a sam-
ple of size assuming that the population standard deviation was . The 95% confidence interval fors � 0.042n � 200
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the population mean came out to be [0.82, 0.83]. It is instructive now to obtain the actual posterior probability for this
interval obtained assuming normal prior distribution for with mean and standard deviation .

From Theorem 11-3, we see that the posterior density has mean and standard deviation .
The area under this density over the interval [0.82, 0.83] is 0.9449. 

A basic conceptual difference between conventional confidence intervals and Bayesian credibility intervals
should be pointed out. The confidence statement associated with a 100 % confidence interval for a parameter

is the probability statement in the sample space of observations, with the fre-
quency interpretation that in repeated sampling the random interval will enclose the constant 
100 % of the times. But, given a random sample x of observations on X, the statement

(in words, “we are 100 % sure that lies between ”) is devoid of any
sense simply because are all constants. 

The credibility statement associated with a Bayesian 100 % credibility interval is the probability statement
in the parameter space endowed with the probability density . Although this

statement may not have a frequency interpretation, it nonetheless is a valid and useful summary description of
the distribution of the parameter to the effect that the interval carries a probability of under the pos-
terior density .

Bayesian Hypothesis Tests
Suppose we wish to test the null hypothesis against the alternative hypothesis . Then a rea-
sonable rule for rejecting in favor of could be based on the posterior probability of the null hypothesis given
the data,

(15)

For instance, we could specify an � 0 and decide to reject whenever is such that . A test based
on this rejection criterion is known as a Bayes test.

Remark 3 The Bayesian posterior probability of the null hypothesis shown in (15) is quite different from the
P value of a test (see page 215) although the two are frequently confused for each other, and the lat-
ter is often loosely referred to as the probability of the null hypothesis. 

We now show an optimality property enjoyed by Bayes tests. We saw in Chapter 7 that the quantities of primary
interest in assessing the performance of a test are the probabilities of Type I error and Type II error for each .
If C is the critical region for a test, then these two probabilities are given by

and

For any specified , the following weighted mean of these two probabilities is known as the Bayes risk of the
test.

(16)

For each fixed x, the quantity on the right may be written as

where denotes the indicator function of the set E. The term inside brackets is minimized when the critical
region C is defined so that 

IC (x) � e1 if (1 � a)P(u � u0 ux) � aP(u � u0 ux)

0 otherwise

IE (x)
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This shows that is minimized when C consists of those data points x for which .
We have thus established that the Bayes test minimizes the Bayes risk defined by (16). In general, we have

the following theorem.

Theorem 11-9 For any subset of the parameter space, among all tests of the null hypothesis
against the alternative , the Bayes test, which rejects if min-
imizes the Bayes risk defined by

EXAMPLE 11.18 Suppose that the reaction time (in seconds) of an individual to certain stimuli is known to be nor-
mally distributed with unknown mean but a known standard deviation of 0.30 sec. The prior density of is normal with

sec and . A sample of 20 observations yielded a mean reaction time of 0.35 sec. We wish to test the
null hypothesis against the alternative using a Bayes 0.05 test. 

By Theorem 11-3, the posterior density is normal with mean 0.352 and variance 0.004. The posterior probability of
is therefore given by . Since this probability is greater than 0.05, we can-

not reject . 

EXAMPLE 11.19 X is a Bernoulli random variable with success probability , which is known to be either 0.3 or 0.6.
It is desired to test the null hypothesis against the alternative using a Bayes 0.05 test assuming
the vague prior probability distribution for : . A sample of 30 trials on X yields 16 suc-
cesses. To check the rejection criterion of the Bayes 0.05 test, we need the posterior probability of the null hypothesis:

Since this probability is less than 0.05, we reject the null hypothesis. 

Bayes Factors
When the prior distribution involved is proper, Bayesian statistical inference can be formulated in the language
of odds (see page 5) using what are known as Bayes factors. Bayes factors may be regarded as the Bayesian
analogues of likelihood ratios on which most of the classical tests in Chapter 7 are based. 

Consider the hypothesis testing problem discussed in the previous section. We are interested in testing the null
hypothesis against the alternative hypothesis . The quantities

and (17)

are known respectively as the prior and posterior odds ratios of relative to . The Bayes factor (BF for
short) is defined as the posterior odds ratio over the prior odds ratio. Using the fact that , we
can write the Bayes factor in the following form:

BF � (18)Posterior odds ratio
Prior odds ratio

� ¢P(H0 u x)

P(H1 u x)
≤^¢P(H0)

P(H1)
≤ �

1
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�0
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f (x uu)p(u) du

p(u u x)~f (x u u)p(u)
H1H0
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P(H1 u x)
�

3
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p(u ux) du

3
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3
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(0.0042)(0.5) � (0.1101)(0.5) < 0.037

P(u � 0.3 u x � 16) �
P(x � 16 u u � 0.3) ? P(u � 0.3)

P(x � 16 u u � 0.3) ? P(u � 0.3) � P(x � 16 u u � 0.6) ? P(u � 0.6)
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u
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The Bayes factor is thus the ratio of the marginals (or the averages) of the likelihood under the two hypotheses. It
can also be seen from (18) that when the hypotheses are both simple, say and , the Bayes

factor becomes the familiar likelihood ratio of classical inference: .

EXAMPLE 11.20 In Example 11.18, let us calculate the Bayes factor for the null hypothesis against the
alternative, , using (18). We need , where is a normal random variable with mean 0.4

and variance 0.13. This equals . The posterior probability of the null hypothesis, available

from Example 11.18, is 0.20. The Bayes factor is 

EXAMPLE 11.21 A box contains a fair coin and two biased coins (each with P(“heads”) � 0.2). A coin is randomly
chosen from the box and tossed 10 times. If 4 heads are obtained, what is the Bayes factor for the null hypothesis that
the chosen coin is fair relative to the alternative that it is biased? The prior probabilities are 1 3 and

, so the prior odds ratio is 0.5. The posterior probabilities are 

and , so the posterior odds ratio is 0.54 0.56 1.16. The Bayes factor is

therefore . We can also get the same result directly as the ratio of the likelihoods under the two hy-

potheses and .

It can be seen from (18) that the Bayes factor quantifies the strength of evidence afforded by the data for or
against the null hypothesis relative to the alternative hypothesis. Generally speaking, we could say that if the
Bayes factor is larger than 1, the observed data adds confirmation to the null hypothesis and if it is less than 1, then
the data disconfirms the null hypothesis. Furthermore, the larger the Bayes factor, the stronger the evidence in favor
of the null hypothesis. The calibration of the Bayes factor to reflect the actual strength of evidence for or against
the null hypothesis is a topic that will not be discussed here. We can, however, prove the following theorem:

Theorem 11-10 The Bayes test is equivalent to the test that rejects the null hypothesis if 

.

To see this, note that the rejection criterion of a Bayes test, namely , is equivalent to the con-

dition and that this inequality is equivalent to the condition BF .

Remark 4 An ad hoc rule sometimes used is to reject the null hypothesis if BF � 1. It can be shown that this
is equivalent to the Bayes test with � : Reject if .

EXAMPLE 11.22 Let us determine the rejection criterion in terms of the Bayes factor for the test used in Example 11.19.
We have � 0.05, and . Therefore, by Theorem 11-10, the test criterion is to reject

if BF . The Bayes factor corresponding to 16 successes out of 30 trials is

0.038. Since this is less than 0.053, we reject the null hypothesis. 

EXAMPLE 11.23 In Example 11.18, suppose we wish to employ the decision rule to reject if the Bayes  
factor is less than 1. We already know that the probability of the null hypothesis under the posterior density of is 0.20.u
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The posterior odds for are therefore . The prior probability for is given by P(u � 0.3) �H0
0.20
0.80 �

1
4H0

, so the prior odds for are . The Bayes factor for is . Our(1>4)>(39>61) < 0.39 � 1H0
0.39
0.61H0P¢Z �

0.3 � 0.4
0.36 b < 0.39

decision therefore is to reject .H0



Bayesian Predictive Distributions 
The Bayesian framework makes it possible to obtain the conditional distribution of future observations on the
basis of a currently available prior or posterior distribution for the population parameter. These are known as pre-
dictive distributions and the basic process involved in their derivation is straightforward marginalization of the
joint distribution of the future observations and the parameter (see pages 40–41).

Suppose that n Bernoulli trials with unknown success probability result in x successes and that the prior den-
sity of is beta with parameters and . If m further trials are contemplated on the same Bernoulli population,
what can we say about the number of successes obtained? We know from Theorem 11-1 that the posterior dis-
tribution of , given x, is beta with parameters and . If is the probability function of the
number Y of successes in the m future trials, the joint density of Y and is

The predictive probability function of Y, denoted by , is the marginal density of Y obtained from the above
joint density by integrating out :

(19)

(20)

We thus have the following theorem.

Theorem 11-11 If n Bernoulli trials with unknown success probability result in x successes, and the prior den-
sity of is beta with parameters and , then the predictive density of the number of successes
Y in m future trials on the same Bernoulli population is given by (20).  

Remark 5 It is evident from (19) that may also be regarded as the expectation, , of the prob-
ability function of Y with respect to the posterior density of . 

EXAMPLE 11.24 Suppose that 7 successes were obtained in 10 Bernoulli trials with success probability . An inde-
pendent set of 8 more Bernoulli trials with the same success probability is being contemplated. What could be said about
the number of future successes if has a uniform prior density in the interval [0, 1]? 

The predictive distribution of the number of future successes may be obtained from (20) with ,
, and :

Table 11-5 summarizes the numerical results.
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y 0 1 2 3 4 5 6 7 8

f *( y) 0.002 0.012 0.040 0.089 0.153 0.210 0.227 0.182 0.085

Table 11-5

Remark 6 In an earlier remark, following Theorem 11-5, on Laplace’s law of succession, it was pointed out
that if all n trials of a binomial experiment resulted in successes, then the probability that a future
trial will also result in success may be estimated by the posterior mean of the success parameter ,
namely . The same result can be obtained as a special case of (20) with

, and . The predictive distribution of a future observation turns out to be
binomial with success probability . The two approaches, however, do not lead to
the same results beyond . For instance, if we take the posterior mean as the
success probability for the m future trials, then the probability that all of them are successes would
be , but (20) gives us . (n � 1)>(m � n � 1)[(n � 1)>(n � 2)]m

(n � 1)>(n � 2)n � 1
(n � 1)>(n � 2)

x � na � b � 1, m � 1
(n � 1)>(n � 2)

u



EXAMPLE 11.25 In Example 11.24, suppose that we are interested in predicting the outcome of the first 10 Bernoulli
trials before they are performed. Determine the predictive distribution of the number of successes, say X, in the 10 trials,
again assuming that has a uniform prior density in the interval [0, 1].

The joint distribution of X and is given by

The marginal density of x may be obtained from this by integrating out :

Remark 7 The predictive distributions obtained in Examples 11.24 and 11.25 are different in that they are
based, respectively, on a posterior and a prior distribution of the parameter. A distinction between
prior predictive distributions and posterior predictive distributions is sometimes made to indicate
the nature of the parameter distribution used.

Predictive distributions for future normal samples may be derived analogously. We saw in Theorem 11-3 that
if we have a sample of size n from a normal distribution with unknown mean and known variance and if 
is normal with mean and variance , then the posterior distribution of is also normal, with mean andmpostuy2m

us2u
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¢10
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u

u
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variance given by (7). Suppose that another observation, say Y, is made on the original population. We nowy2
post

show that the predictive distribution of Y is normal with mean and variance . 
The predictive density of Y is given by

After some simplification we get

The exponent in the second factor may be further simplified to yield

The second factor here is free from . The first factor is a normal density in and integrates out to an expression
free from and y. Therefore, the preceding integral becomes

This may be recognized as a normal density with mean and variance . We thus see that predic-
tive density of the future observation Y is normal with mean equal to the posterior mean of and variance equal
to the sum of the population variance and the posterior variance of . 

The following theorem is a straightforward generalization of this result (see Problem 11.96).

Theorem 11-12 Suppose that a random sample of size n is drawn from a normal distribution with unknown
mean and known variance and that the prior distribution of is normal with mean and
variance . If a second independent sample of size m is drawn from the same  population, then
the predictive distribution of the sample mean is normal with  mean and variancempost
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EXAMPLE 11.26 The shipping weight of packages handled by a company is normally distributed with mean lb and
variance 8. If the first 25 packages handled on a given day have an average weight of 15 lb what are the chances the next
25 packages to be handled will have an average in excess of 16 lb? Assume that has a prior normal distribution with
mean 12 and variance 9. 

From Theorem 11-12, the mean and variance of the predictive density of the average weight of the future sample are
given by 14.90 and 0.31. The probability we need is , so the chances are about 2%
that the future average weight would exceed 16 lbs.

Point and interval summaries of the predictive density may be obtained as for the posterior density of a pa-
rameter, and they serve similar purposes. For example, given the predictive density function of the sample
mean of a future sample from a population, the expectation, median, or mode of may be used as a pre-
dictive point estimate of . Also, intervals satisfying the property

(21)

may be used as Bayesian predictive intervals for ; and equal tail area and HPD predictive in-
tervals may be defined as in the case of credibility intervals for a parameter.  

EXAMPLE 11.27 In Example 11.24, find the predictive (a) mean, (b) median, and (c) mode of the number of future
successes.

(a) The predictive distribution of Y is given in Table 11-5. The predictive mean number of future successes is the expec-
tation of Y, which is 5.34.

(b) The predictive median is between 5 and 6, and we may take it to be 5.5.

(c) The predictive mode is 6.

EXAMPLE 11.28 In Example 11.26, find a 95% equal tail area predictive interval for the average weight of the 25 future
packages.

The predictive distribution is normal with mean 14.90 and variance 0.31. The 95% equal tail interval is given by
.

SOLVED PROBLEMS

Subjective probability
11.1. Identify the type of probability used: (a) The probability that my daughter will attend college is 0.9. 

(b) The chances of getting three heads out of three tosses of a fair coin are 1 in 8. (c) I am 40% sure it will rain
on the 4th of July this year because it did in 12 out of the past 30 years. (d) We are 70% sure that the vari-
ance of this distribution does not exceed 3.5. (e) Some economists believe there is a better than even chance
that the economy will go into recession next year. (f ) The chances are just 2% that she will miss both of
her free throws. (g) I am 90% sure this coin is not fair. (h) The probability that all three children are boys
in a three-child family  is about 0.11. (i) The odds are 3 to 1 the Badgers will not make it to the Super Bowl
this year. ( j) You have one chance in a million of winning this lottery. (k) You have a better than even
chance of finding a store that carries this item.

(a), (d), (e), (g), (i): subjective; (b), ( j), (k): classical; (c), (f ), (h): frequency 

Prior and posterior distributions
11.2. A box contains two fair coins and two biased coins (each with . A coin is chosen at ran-

dom from the box and tossed four times. If two heads and two tails are obtained, find the posterior prob-
abilities of the event F that the chosen coin is fair and the event B that the coin is biased.

P(“heads”) � 0.3)

14.90 
 (1.96 	 0.56) � [13.8, 16.0]

Y#(1 � a) 	 100%

f *(y#) dy# � 1 � a3
 yU

 yL

[yL, yU]Y#
f *(y#)Y#

f *(y#)

P(Y# � 16) � P(Z � 1.98) � 0.0234

u

u
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Let D denote the event (data) that two heads and two tails are obtained in four tosses. We then have, from
Bayes theorem,

11.3. Verify the posterior probability values given in Table 11-2.

11.4. The random variable X has a Poisson distribution with an unknown parameter . It has been determined
that has the subjective prior probability function given in Table 11-6. A random sample of size 2 yields
the X-values 2 and 0. Find the posterior distribution of . l
l

l
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≤ (0.5)4R ? ¢ 1

2 ≤ � B ¢4

2
≤ (0.3)2(0.7)2R ? ¢ 1

2 ≤ �
625

1066 < 0.59
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l 0.5 1.0 1.5

p(l u x) 0.42 0.41 0.17

l 0.5 1.0 1.5

p(l) 1>2 1>3 1>6

Table 11-6

The likelihood of the data is . The posterior density is (up to factors free from ) 

The results are summarized in Table 11.7.

~ e�2llx1�x2p(l) ~ e�2ll2p(l)  for  l � 0.5, 1, 1.5p(l u x)

lf (x ul) � e�2l 
lx1�x2

x1!x2!

Table 11-7

11.5. In a lot of n bolts produced by a machine, an unknown number are defective. Assume that has a prior
binomial distribution with parameter p. Find the posterior distribution of if a bolt chosen at random from
the lot is (a) defective; (b) not defective.

(a) We are given the prior probability function . The posteriorp(r) � ¢n

r
≤pr(1� p)n�r, r � 0, 1, c, n

r

rr

probability function of , given the event D � “defective,” is

Since , the constant of proportionality in the preceding probabilitya
n

r�1
¢n � 1

r � 1
≤pr�1(1 � p)n�r � 1

� ¢n � 1

r � 1
≤pr(1 � p)n�r, r � 1, c, n

p(r uD) ~
r
n ? ¢n

r
≤pr(1� p)n�r, r � 0,1, c, nr

function must be . Therefore, .p(r uD) � ¢n � 1

r � 1
≤pr�1(1 � p)n�r, r � 1, c, n

1
p



(b)

Since , the constant of proportionality in the preceding probabilitya
n�1

r�0
¢n � 1

r
≤pr(1 � p)n�1�r � 1

� ¢n � 1

r
≤pr(1 � p)n�r, r � 0, c, n � 1

p(r uDr) ~
n � r

n ? ¢n

r
≤pr(1 � p)n�r, r � 0, 1, c, n � 1
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function must be . Therefore, .

11.6. X is a binomial random variable with known n and unknown success probability . Find the posterior density
of assuming a prior density equal to (a) ; (b) ; (c) .

(a) . 

Since this is a beta density with parameters and , the normalizing constant is

and we get .

(b) The posterior is the beta density: .

(c) The posterior is the beta density: .

11.7. A random sample x � of size n is taken from a population with density function
. has a prior gamma density with parameters and . Find the posterior den-

sity of .

. This may be recognized as a gamma density with parametersp(u u x) ~ une�uax3
? ua�1e�u>b ~ un�a�1e�u Qax3�

1
b
R

u

bauf (x uu) � 3ux2 e�ux3, x � 0
(x1, x2, c, xn)

p(u u x) �
1

B(x � 4, n � x � 1)  ux�3(1 � u)n�x, 0 � u � 1

p(u u x) �
1

B(x � 3, n � x � 1)  ux�2(1 � u)n�x, 0 � u � 1

p(u u x) �
1

B(x � 2, n � x � 1)  ux�1(1 � u)n�x, 0 � u � 11>B(x � 2, n � x � 1)

n � x � 1x � 2

p(u u x) ~ ux(1 � u)n�x ? u � ux�1(1 � u)n�x, 0 � u � 1

4u3, 0 � u � 13u2, 0 � u � 12u, 0 � u � 1p(u)u

u

p(r uDr) � ¢n � 1

r
≤pr(1 � p)n�1�r, r � 0, c, n � 1

1
1 � p

and . The normalizing constant should therefore be and the¢ 1 � bax3

b
≤ n�a

?
1

�(n � a)

b

1 � bax3
n � a

posterior density is .

11.8. X is normal with mean 0 and unknown precision which has prior gamma density with parameters and 
. Find the posterior distribution of based on a random sample x from X.

Therefore, has a gamma distribution with parameters and .

Sampling from a binomial population
11.9. A poll of 100 voters chosen at random from all voters in a given district indicated that 55% of them were

in favor of a particular candidate. Suppose that prior to the poll we believe that the true proportion of
voters in that district favoring that candidate has a uniform density over the interval [0, 1]. Find the poste-
rior density of .

Applying Theorem 11-1 with and , the posterior density of is beta with parameters 
and . 

11.10. In 40 tosses of a coin, 24 heads were obtained. Find the posterior distribution of the proportion of heads
that would be obtained in an unlimited number of tosses of the coin. Use a uniform prior for . 

By Theorem 11-1, the posterior density of is beta with and . 

11.11. A poll to predict the fate of a forthcoming referendum found that 480 out of 1000 people surveyed were
in favor of the referendum. What are the chances that the referendum would be lost?

b � 17a � 25u

u

u

b � 46
a � 56ux � 55n � 100

u

u

2b

bax2 � 2

n
2 � aj

p(j ux) ~ jn>2 e�
j

2ax2
? ja�1 e�j>b ~ jn

2
�a�1 e�jQax2

2  �
1

b
R, j � 0

� (x1, x2, c, xn)j

baj

p(u u x) �
1

�(n � a)
 ¢1 � bax3

b
≤ n�a

un�a�1e�u  Qax3�
1

b
R, u � 0



Assume a vague prior distribution (uniform on [0, 1]) for the proportion of people in the population who
favor the referendum. The posterior distribution of , given the poll result, is beta with parameters 481, 521.
We need the probability that . Computer software gives 0.90 for this probability, so we can be 90%
sure that the referendum would lose.

11.12. In the previous problem, suppose an additional 1000 people were surveyed and 530 were found to be in
favor of the referendum. What can we conclude now?

We take the prior now to be beta with parameters 481 and 521. The posterior becomes beta with parameters
1011 and 991. The probability for is 0.33. This means there is only a 33% chance now of the
referendum losing.

Sampling from a Poisson population
11.13. The number of accidents during a six-month period at an intersection has a Poisson distribution with

mean .  It is believed that has a gamma prior density with parameters and . If eight ac-
cidents were observed  during the first six months of the year, find the (a) posterior density, (b) posterior
mean, and (c) posterior variance. 

(a) We know from Theorem 11-2 that the posterior density is gamma with parameters and
.

(b) From (32), Chapter 4, the posterior mean 8.33 and (c) the posterior variance 6.94.

11.14. The number of defects in a 1000-foot spool of yarn manufactured by a machine has a Poisson distribution
with unknown mean . The prior distribution of is gamma with parameters and . A total of
23 defects were found in a sample of 10 spools that were examined. Determine the posterior density of .

By Theorem 11-2, the posterior density is gamma with parameters and
.

Sampling from a normal population
11.15. A sample of 100 measurements of the diameter of a sphere gave a mean inch. Based on prior

experience, we know that the diameter is normally distributed with unknown mean and variance 0.36.
Determine the posterior density of assuming a normal prior density with mean 4.5 inch and variance 0.4.

From Theorem 11-3, we see that the posterior density is normal with mean 4.381 and variance 0.004. 

11.16. The reaction time of an individual to certain stimuli is known to be normally distributed with unknown
mean but a known standard deviation of 0.35 sec. A sample of 20 observations yielded a mean reaction
time of 1.18 sec. Assume that the prior density of is normal with mean 1 sec and variance

. Find the posterior density of .

By Theorem 11-3, the posterior density is normal with mean 1.17 and variance 0.006.

11.17. A random sample of 25 observations is taken from a normal population with unknown mean and vari-
ance 16. The prior distribution of is standard normal. Find (a) the posterior mean and (b) its precision.
(c) Find the precision of the maximum likelihood estimator.

(a) By Theorem 11-3, the posterior mean of is . 

(b) The precision of the estimate is the reciprocal of its variance. The variance of � , so
the precision is roughly 4.2. 

(c) The maximum likelihood estimate of is . Its variance is 16 25, so the precision is about 1.6. 

11.17. X is normal with mean 0 and unknown precision , which has prior gamma distribution with parameters
and . Find the posterior distribution of based on a random sample x from X.

Therefore is gamma distributed with parameters and .
b

bax2 � 1

n
2 � aj

p(j u x) ~ jn>2e�
j

2
ax2

? ja�1e�j>b � j
n

2
�a�1e�j Qa x2�

1
b
R

� (x1, x2, c, xn)jba

j

>x#u

¢ 25
41 ≤ 216

25 � 0.24
25x#
41

¢ 25
25 � 16 ≤x# �

25x#
41u

u

u

uy2 � 0.13
m �u

u

u

u

x# � 4.38

b>(1 � nb) � 1>11 < 0.091
23 � 2 � 25nx# � a �

l

b � 1a � 2ll

<� 250>36� 50>6 <
b>(1 � nb) � 5>6

nx# � a � 10

b � 5a � 2ll

u � 0.5

u � 0.5
u

u
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Improper prior distributions
11.19. An improper prior density for a Poisson mean is defined by . Show that the posteriorp(l) � 1, l � 0l
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density in this case is gamma with parameters and . 

Given the observation vector x, the posterior density of is . The result follows since thisp(l u x) ~ e�nlln  xl

1
nnx# � 1

density is of the gamma form with parameters and .

11.20. Another improper prior density for Poisson mean is . Show that the posterior den-
sity in this case is gamma. 

We have . The posterior is therefore gamma with parameters and .

11.21. An improper prior density for the Poisson mean, known as Jeffreys’ prior for the Poisson, is given by
. Find the posterior density under this prior.

Given the observation vector x, the posterior density of is .

This is a gamma density with parameters and .

11.22. X is binomial with known n and unknown success probability . An improper prior density for , known

as Haldane’s prior, is given by . Find the posterior density of based onup(u) �
1

u(1 � u)
, 0 � u � 1

uu

1
nnx# �

1
2

p(l u x) ~ e�nlln  x
? ¢ 1

!l ≤~ e�nlln  x�
1
2, l � 0l

p(l) � 1>!l, l � 0

1
nnx#p(l u x) ~ e�nlln  x

?
1
l

 ~ e�nlln  x�1

p(l) � 1>l, l � 0l

1
nnx# � 1

the observation x.

. This is a beta density with

and , so we get . 

11.23. Do Problem 11.22 assuming Jeffreys’ prior for the binomial, given by . 

. This is a beta density withp(u u x) � ¢n

x
≤ux(1 � u)n�x ?

1
u1>2(1 � u)1>2 � ¢n

x
≤ux�

1
2

 (1 � u)n�x�
1
2, 0 � u � 1

p(u) �
1

2u(1 � u)
, 0 � u � 1

p(u u x) �
ux�1(1 � u)n�x�1

B(x, n � x) , 0 � u � 1b � n � xa � x

p(u u x) � ¢n

x
≤ux(1 � u)n�x ?

1
u(1 � u) � ¢n

x
≤ux�1(1 � u)n�x�1, 0 � u � 1

and . 

11.24. Suppose we are sampling from an exponential distribution (page 118) with unknown parameter , which
has the improper prior density . Find the posterior density .

. The posterior density for is therefore gamma with parameters 

� n and .

11.25. X is normal with unknown mean and known variance . The prior distribution of is improper and is
given by . Determine the posterior density .

. The posterior distribution is thus normal with mean and variance . 

11.26. X is normal with mean 0 and unknown variance . The variance has the improper prior density
. Find the posterior distribution of . 

This is an inverse gamma density (see Problem 11.99) with and . b �
ax2

2a �
n � 1

2

~ u�Qn�1
2
R�1e�ax2>2u,  u � 0

~ u�Qn�1
2
Re�ax2>2u, u � 0

p(u u x) ~  
1
u n>2  e�ax2>2u ? 1

2u
, u � 0

up(u) � 1>!u, u � 0
u

s2>nx#p(u u x)~ e�
1

2s2  a
i

(xi�u)2
? 1~ e�

n

2s2
 (u�  x)2

p(u u x)p(u) � 1, � ` � u � `
us2u

b � 1>a
i

xia

up(u u x) ~ un e�ug
i

xi ?
1
u

 ~ un�1e�ug
i

xi, u � 0

p(u u x)p(u) � 1>u, u � 0
u

b � n � x �
1
2a � x �

1
2



Conjugate prior distributions
11.27. A poll to predict the fate of a forthcoming referendum found that 1010 out of 2000 people surveyed were

in favor of the referendum. Assuming a prior uniform density for the unknown population proportion ,
find the chances that the referendum would lose. Comment on your result with reference to Problems
11.11 and 11.12.

The posterior distribution of , given the poll result, is beta with parameters 1011, 991. We need the
probability that  . This comes out to be 0.33, so we can be 33% sure that the referendum would lose.
This is the same result that we obtained in Problem 11.12 using for prior the posterior beta distribution
derived in Problem 11.11. Since the beta family is conjugate with respect to the binomial distribution, we are
able to update the posterior sequentially in Problem 11.12.

11.28. A random sample of size 10 drawn from a geometric distribution with success probability (see page 117)
yields a mean of 4.2. The prior density of is uniform in the interval [0, 1]. Determine the posterior dis-
tribution of . 

The prior distribution is beta with parameters . We know from Example 11.12 that the posterior
distribution is also beta. The parameters are given by and . 

11.29. A random sample of size n is drawn from a negative binomial distribution with parameter (see pageu

b � nx# � n � 33a � n � 11
a � b � 1

u

u

u

u � 0.5
u

u
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117): . Suppose that the prior density of is beta withuf (x; u) � ¢x � 1

r � 1
≤ur(1 � u)x�r, x � r, r � 1, c

parameters and . 

11.33. Show that the inverse gamma family (see Problem 11.99) is conjugate with respect to the normal distri-
bution with known mean but unknown variance .u

2b

2 � bax2
a � n

parameters and . Show that the posterior density of is also a beta, with parameters and
, where is the sample mean. In other words, show that the beta family is conjugate with

respect to the negative binomial distribution.

, which is a beta density with parame-
ters and . 

11.30. The interarrival time of customers at a bank is exponentially distributed with mean , where has a gamma
distribution with parameters and . Twelve customers were observed over a period of time
and were found to have an average interarrival time of 6 minutes. Find the posterior distribution of .

Applying Theorem 11-4 with and , (12 customers 11 interarrival times), ,
we see that the posterior density is gamma with parameters 12 and 0.014. 

11.31. In the previous problem, suppose that a second, independent sample of 10 customers was observed and was
found to have an average interarrival time of 6.5 minutes. Find the posterior distribution of .

Since the gamma family is conjugate for the exponential distribution, this problem can be done in two ways:
(i) by starting with the prior gamma distribution with parameters 1 and 0.2 and applying Theorem 11-4 with

and  or (ii) by starting with the prior gamma
distribution with parameters 12 and 0.014 and applying Theorem 11-4 with . Both ways lead to the
result that the posterior density is gamma with parameters 21 and 0.0077. 

11.32. The following density is known as a Rayleigh density: . It is a special case of the
Weibull density (see page 118), with and . Show that the gamma family is conjugate with re-
spect to the Rayleigh distribution. Specifically, show that if X has a Rayleigh density and has a gamma
prior density with parameters and , then the posterior density of given a random sample

of observations from X is also a gamma. 

. This is a gamma density with? ua�1e�u>b ~ u(a�n)�1 e�uQ1
b

�a
i

x2
i >2R, u � 0p(u u x) ~ f (x u u) ? p(u) ~ une�ua

i
x2

i >2
x � (x1, x2, c, xn)

uba

u

a � ub � 2
f (x) � uxe�(ux2>2), x � 0

n � 9
x# � ((11 	 6) � (9 	 6.5))>20 < 6.225n � 11 � 9 � 20

u

x# � 61n � 11b � 0.2a � 1

u

b � 0.2a � 1
u1>u

b � nx# � nra � nr
~ unr(1 � u)n(  x�r) ? ua�1(1 � u)b�1~ unr�a�1(1 � u)n(  x�r)�b�1p(u u x)

x#b � nx# � nr
a � nruba



Assume that the mean of the normal density is 0. We have 

and

The posterior density is given by 

This is also an inverse gamma, with parameters and .

11.34. A random sample of n observations is taken from the exponential density with mean :
. Assume that has an inverse gamma prior distribution (see Problem

11.99) and show that its posterior distribution is also in the inverse gamma family.

p(u) �
bau�a�1e�b>u

�(a)
, u � 0

f (x u u) � (1>u)n exp e�a
i

xi>u f , x � 0

uf (x u u) � (1>u) exp5�x>u6, x � 0
u

b �

a
i

x2
i

2
n
2 � a

, u � 0? u�a�1e�b>u~u(�
n

2
�a)�1e�

1
u

  Qb�
a

i
x2

i

2
Rp(u u x) � f (x u u) ? p(u) ~ u�n>2 e�

1

2u  ai
x2

i

p(u) �
bau�a�1e�b>u

�(a)
, u � 0

f (x u u) �
1

(2p)n>2un>2  exp e� 1
2ua

n

i�1
x2

i f
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The posterior density, given by ,

is inverse gamma with parameters and .

11.35. In the previous problem, suppose that a second sample of m observations from the same population yields
the observations . Find the posterior density incorporating the result from both samples.

Since the inverse gamma family is conjugate with respect to the exponential distribution, we can update the

y1, y2, c, ym

b � a
i

xin � a

p(u u x) ~ f (x u u) ? p(u) ~ u�ne�
a

i
xi

u ? u�a�1e�b>u ~ u�(n�a)�1e�
1
u

  Qb�aixiR, u � 0

posterior parameters obtained in Problem 11.34 to and . The posteriorQb � a
i

xiR � a
j

yjm � (n � a)

and show that its posterior distribution is also in the inverse gamma family.

p(u) �
bgu�g�1e�b>u

�(g)
, u � 0

f (x u u) ~ (1>ua)n exp e�a
i

xi>u f , x � 0

The posterior density, given by

is inverse gamma with parameters and .

Bayesian point estimation
11.37. In Problem 11.5, find the Bayes estimate of with squared error loss function.

(a) The Bayes estimate is the mean of the posterior distribution, which is

(b) The posterior mean is .a
n�1

r�0
r ? ¢n � 1

r
≤pr(1 � p)n�1�r � (n � 1)p

a
n

r�1
r ? ¢n � 1

r � 1
≤pr�1(1 � p)n�r � 1 � a

n

r�1
(r � 1) ? ¢n � 1

r � 1
≤pr�1(1 � p)n�r � 1 � (n � 1)p

r

b � a
i

xina � g

p(u u x)~f (x u u) ? p(u)~u�nae�

�a
i

xi

u ? u�g�1e�b>u ~ u�(na�g)�1e�
1

u
 Qb�a

i
xiR, u � 0

density is thus inverse gamma with parameters and .

11.36. A random sample of n observations is taken from the gamma density:

. Assume that has an inverse gamma prior distribution with parameters and bguf (x u u) �
xa�1e�x>u
ua�(a)

, x � 0

b � a
i

xi � a
j

yjm � n � a



11.38. Show that the Bayes estimate for obtained in Theorem 11-5 is a convex combination of the max-
imum likelihood estimate of and the prior mean of .

11.39. In Problem 11.10, find the Bayes estimate with squared error loss function for (a) (b) .

(a) The posterior distribution is beta with parameters 25 and 17. The Bayes estimate, which equals the
posterior mean, is . 

(b) The Bayes estimate of is the posterior mean of , given by 

11.40. In Problem 11.15, find the Bayes estimate with squared error loss function for .

The Bayes estimate is the posterior mean, which we know from Problem 11.15 to be 4.38. 

11.41. In Problem 11.33, assume that � 1 and find the Bayes estimate for the variance with squared error loss.

The posterior distribution is inverse gamma (see Problem 11.99) with parameters and . The1 �

a
i

x2
i

2
n
2 � 1

b �a

u

1
B(25,17)3

1
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1
u
? u24(1 � u)16 du �

B(24, 17)
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Bayes estimate is the posterior mean, given by .

11.42. Find the Bayes estimate of with squared error loss function in Problem 11.24 and compare it to the  max-
imum likelihood estimate.

The parameters of the posterior are n and . Therefore, the Bayes estimate, which is the posterior mean,1^a
i

xi

u

2 � a
i

x2
i

n

is . This is the same as the maximum likelihood estimate for (see Problem 11.98).  

11.43. In Example 11.10, determine the Bayes estimate for under the squared error loss function.

The posterior distribution of is normal with mean and variance . The Bayes estimate of under the
squared error loss, which is the posterior mean, is given by .

11.44. In Problem 11.30, find the Bayes estimate for with squared error loss function. Find the squared error loss
of the estimate for each x ) and compare it to the loss of the maximum likelihood estimate.

The Bayes estimate under squared error loss is the posterior mean . The squared error
loss for each x is the posterior variance . With and and ,
this comes to 0.00238. The maximum likelihood estimate for is and its squared error loss is1>x#u

x# � 6b � 0.2, n � 11a � 1b2(a � n)>(1 � nbx#)2

� b(a � n)>(1 � nbx#)

� (x1, x2, c, xn

u

x#

us2>nx#u

u

u1>x#

. With and and , this comesx# � 6b � 0.2, n � 11a � 1EB ¢1
x# � u≤ 2 2   xR � ¢1

x# ≤ 2

�
2
x#   E(u u x) � E(u2 u x)

to 0.00239.

11.45. If X is a Poisson random variable with parameter and the prior density of is gamma with parameters
and , then show that the Bayes estimate for is a weighted average of its maximum likelihood esti-

mate and the prior mean.

By Theorem 11-2, the posterior distribution is gamma with parameters and . The posterior

mean is .

11.46. In Problem 11.16, find the Bayes estimate of with (a) squared error loss and (b) absolute error loss.

(a) The Bayes estimate with squared error loss is the posterior mean of , which is 1.17.

(b) The Bayes estimate with absolute error loss is the posterior median, which is the same as the posterior
mean in this case since the posterior distribution is normal.

u

u

b(nx# � a)
(1 � nb) �

nb
1 � nb ? x# �

1
1 � nb ? ab

b>(1 � nb)nx# � a

lba

ll



11.47. In Problem 11.32, find the Bayes estimate for with squared error loss function.

The posterior distribution of is gamma with parameters and . Therefore, the posterior

mean is  . 

11.48. The time (in minutes) that a bank customer has to wait in line to be served is exponentially distributed
with mean . The prior distribution of is gamma with mean 0.4 and standard deviation 1. The follow-
ing waiting times were recorded for a random sample of 10 customers: 2, 3.5, 1, 5, 4.5, 3, 2.5, 1, 1.5, 1.
Find the Bayes estimate for with (a) squared error and (b) absolute error loss function.

The gamma distribution with parameters and has mean and variance . Therefore, the parameters
for our gamma prior must be and The posterior distribution is (see Theorem 11-4) gamma
with parameters and ). 

(a) The posterior mean is . 

(b) The median of the posterior density, obtained using computer software, is 0.393.  

11.49. In Problem 11.6, find the Bayes estimate with squared error loss for in each case and evaluate it assum-
ing and . 

(a) From Theorem 11-6 we know that the Bayes estimate here is the posterior mean. The mean of the beta
density with parameters and is .

(b) Similar to the preceding. The Bayes estimate is . 

(c) The Bayes estimate is .

11.50. In Problem 11.6, part (a), find the Bayes estimate with squared error loss for the population standard de-

viation, .

The required estimate is the posterior expectation of , which equals  

11.51. In Problem 11.6, find the Bayes estimate with absolute error loss for in each case assuming 
and .

By Theorem 11-6, the Bayes estimate of with absolute error loss is the median of the posterior distribution
of . Since there is no closed form expression for the median of a beta density, we have obtained the following
median values using computer software: (a) 0.4015; (b) 0.4027; (c) 0.4038.

11.52. In Problem 11.14, estimate using a Bayes estimate (a) with squared error loss and (b) with absolute error
loss.

The posterior density was obtained in Problem 11.14 as a gamma with parameters 25 and 0.091. 

(a) The Bayes estimate with squared error loss is the posterior mean, which in this case is .

(b) The Bayes estimate with absolute error loss is the posterior median. Using computer software to calculate
the median of the gamma posterior distribution, we get the estimate 2.245.

11.53. A random sample x of size n is taken from a population with density function
, where has a prior gamma density with parameters and . Find the

Bayes estimate for with squared error loss.

, which is a gamma density with parameters anda � np(u ux) ~ une�uax3
? ua�1e�u>b ~ u(n�a)�1e�uQax3�

1
b
R

u

bauf (x uu) � 3ux2e�ux3, 0 � x � `
� (x1, x2, c, xn)

ab � 2.275

l

u

u

x � 200
n � 500u

!n
B(x � 2, n � x � 1)3

1

0

u

1

2  (1 � u)
1

2 ? ux�1(1 � u)n�x du � !n 	

B¢x �
5
2, n � x �

3
2 ≤

B(x � 2, n � x � 1)

!nu(1 � u)

2nu(1 � u)

(x � 4)>(n � 5) � 0.4040

(x � 3)>(n � 4) � 0.4028

(x � 2)>(n � 3) � 0.4016n � x � 1x � 2

x � 200n � 500
u

10.16 	 0.04 � 0.41

x# � 0.04b>(1 � nba � n � 10.16
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u1>u
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.

The posterior mean estimate of is therefore .
b(a � n)

1 � bax3
u

b

1 � bax3



11.54. In Problem 11.24, find the Bayes estimate of with respect to the squared error loss function.

The Bayes estimate is 

11.55. The random variable X is normally distributed with mean and variance . The prior distribution of 
is standard normal. (a) Find the Bayes estimator of with squared error loss function based on a random
sample of size n. (b) Is the resulting estimator unbiased (see page 195)? (c) Compare the Bayes estimate
to the maximum likelihood estimate in terms of the squared error loss.

(a) By Theorem 11-3, the Bayes estimate is . With , the squared error loss for this

estimate is .

(b) Since , the estimator is biased. It is, however, asymptotically unbiased. 

(c) The maximum likelihood estimate of is . The squared error loss for this estimate is . Clearly, since
, the loss is less for the Bayes estimate. For large values of n, the losses are approximately equal.

11.56. In Problem 11.22, show that the Bayes estimate of is the same as the maximum likelihood estimate.

The Bayes estimate is the posterior mean of , given by . The maximum likelihood estimate is
a

a � b
�

x
nu

u

c � 1
x#2 � 1x#u

E¢ nX#
n � s2 ≤ �

nu
n � s2

E[(cx# � u)2 u x] � c2x#2 � 2cx# ? 0 � 1 � c2x#2 � 1

c � ¢ n
n � s2 ≤¢ nx#

n � s2 ≤
u

us2u

�(n)
(t � nx#)nE(e�tu u x) � 3

`

0

e�tup(u u x) du � 3
`

0

e�tu un�1 e�ua
t

xt du � 3
`

0

u  
n�1e�u(t�a

t
xt) du �

e�tu
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found by maximizing the likelihood with respect to (see page 198). Solving the equationuL ~ ux(1 � u)n�x

for , we get the maximum likelihood estimate .

11.57. In Problem 11.48, find the Bayes estimate for with squared error loss function. 

The Bayes estimate is the expectation of with respect to the posterior distribution of :

Bayesian interval estimation
11.58. Measurements of the diameters of a random sample of 200 ball bearings made by a certain machine dur-

ing one week showed a mean of 0.824 inch and a standard deviation of 0.042 inch. The diameters are nor-
mally distributed. Find a (a) 90%, (b) 95%, and (c) 98% Bayesian HPD credibility interval for the mean
diameter of all ball bearings made by the machine. Assume that the prior distribution of is normal with
mean 0.8 inch and standard deviation 0.05. 

The posterior mean and standard deviation are respectively 0.824 and 0.0030.

(a) The 90% HPD interval is given by or [0.819, 0.829].

(b) The 95% HPD interval is given by or [0.818, 0.830].

(c) The 98% HPD interval is given by or [0.817, 0.831].

11.59. A sample poll of 100 voters chosen at random from all voters in a given district indicated that 55% of them
were in favor of a particular candidate. Suppose that, prior to the poll, we believe that the true proportion

of voters in that district favoring that candidate has Jeffreys’ prior (see Problem 11.23) given byu

0.824 
 (2.33 	 0.003)

0.824 
 (1.96 	 0.003)

0.824 
 (1.645 	 0.003)

uu

E¢1
u
u x≤ �

1
(0.04)10.16 �(10.16) 3

`

0

1
u
? u9.16 e�u>0.04 du �

(0.04)9.16 �(9.16)

(0.04)10.16 �(10.16)
< 2.73

u1>u
1>u

x>nu
dL
du � xux�1(1 � u)n�x � (n � x)ux(1 � u)n�x�1 � 0

. Find 95% and 99% equal tail area Bayesian credibility intervals forp(u) �
1

!u(1 � u)
, 0 � u � 1

the  proportion of all voters in favor of this candidate.

We have and . From Problem 11.23, the posterior density of is beta with parameters
and . This density has the following percentiles:

. This gives us the 95% Bayesian equal tail credibility interval [0.452, 0.645] and the
99% Bayesian equal tail credibility interval [0.423, 0.673]. (It is instructive to compare these with the
traditional intervals we obtained in Problem 6.13.) 

0.645, x0.995 � 0.673
x0.005 � 0.423, x0.025 � 0.452, x0.975 �b � 45.5a � 55.5

ux � 55n � 100

u



11.60. In the previous problem, assume that has a uniform prior distribution on [0, 1] and find (a) 95% and
(b) 99% equal tail area credibility intervals for .

The posterior distribution of is beta with parameters 56 and 46 (see Theorem 11-1). 

(a) We need the percentiles of the preceding beta distribution. These are respectively 0.452 and
0.644. The 95% interval is [0.452, 0.644]. 

(b) We need the percentiles of the preceding beta distribution. These are respectively 0.422 and
0.644. The 99% interval is [0.422, 0.672]. 

11.60. In 40 tosses of a coin, 24 heads were obtained. Find a 90% and 99.73% credibility interval for the pro-
portion of heads that would be obtained in an unlimited number of tosses of the coin. Use a uniform
prior for . 

By Theorem 11-1, the posterior density of is beta with and . This density has the following
percentiles: . The 90% and 99.73% Bayesian
equal tail area credibility intervals are, respectively, [0.469, 0.716] and [0.367, 0.800]. (The traditional
confidence intervals are given in Problem 6.15.)

11.62. A sample of 100 measurements of the diameter of a sphere gave a mean inch. Based on prior
experience, we know that the diameter is normally distributed with unknown mean and variance 0.36.
(a) Find 95% and 99% equal tail area credibility intervals for the actual diameter assuming a normal
prior density with mean 4.5 inches and variance 0.4. (b) With what degree of credibility could we say that
the true diameter is ?

(a) From Theorem 11-3, we see that the posterior mean and variance for are 4.381 and 0.004. The 95%
credibility interval is . Similarly, the
90% credibility interval is . 

(b) We need the area under the posterior density from 4.37 to 4.39. This equals the area under the standard
normal density between and . This equals
0.1232, so the required degree of credibility is roughly 12%.

11.63. In Problem 11.16, construct a 95% credibility interval for .

From Problem 11.16, we see that the posterior mean and variance for are 1.17 and 0.006. The 95%
credibility interval is .

11.64. In Problem 11.25, what can you say about the HPD Bayesian credibility interval for compared to the
conventional interval shown in (1), Chapter 6?

The posterior distribution of is normal with mean and variance . The HPD credibility intervals we
obtain would be identical to the conventional confidence intervals centered at . 

11.65. The number of individuals in a year who will suffer a bad reaction from injection of a given serum has a
Poisson distribution with unknown mean . Assume that has Jeffreys’ improper prior density

(see Problem 11.21). Table 11-8 gives the number of such cases that occurred in
each of the past 10 years.

(a) Derive a 98% equal tail credibility interval for . (b) With what degree of credibility can you assert
that does not exceed 3?l

l

p(l) � 1>!l, l � 0
ll

x#

s2>nx#u

u

[1.17 � (1.96 	 0.077), 1.17 � (1.96 	 0.077)] � [1.02, 1.32]
u

u

(4.39 � 4.381)>0.063 � 0.14(4.37 � 4.381)>0.063 � �0.17

[4.381 � (1.645 	 0.063), 4.381 � (1.645 	 0.063)] � [4.28, 4.48]
[4.381 � (1.96 	 0.063), 4.381 � (1.96 	 0.063)] � [4.26, 4.50]

u

4.38 
 0.01

u

u

x# � 4.38

x0.05 � 0.469, x0.95 � 0.716, x0.99865 � 0.800x0.00135 � 0.367,
b � 17a � 25u

u

u

x0.005 and x0.995

x0.025 and x0.975

u

u

u
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Year 1 2 3 4 5 6 7 8 9 10

Number 2 4 1 2 2 1 2 3 3 0

Table 11-8

(a) We know from Problem 11.21 that the posterior distribution for is gamma with parameters andnx# �
1
2l

, which in our case are 20.5 and 0.1. We thus need the 1st and 99th percentiles of the gamma distribution
1
n
with these parameters. Using computer software, we get � 1.146 and . The 98%
credibility interval is [1.146, 3.248].

x0.99 � 3.248x0.01



(b) We need the posterior probability that does not exceed 3. This is the area to the left of 3 under the
gamma density with parameters 20.5 and 0.1. Since this area is 0.972, we can be about 97% certain that 
does not exceed 3.

11.66. In Problem 11.14, obtain the 95% Bayesian equal tail area credibility interval for .

The posterior density was obtained in Problem 11.14 as a gamma with parameters 25 and 0.091. The
percentiles of this density relevant for our credibility interval are and . The 95%
Bayesian credibility interval is [1.47, 3.25].

11.67. Obtain an equal tail 95% credibility interval for in Problem 11.22 assuming . 

The posterior is beta with parameters 3 and 7. The percentiles are and . The
interval is [0.075, 0.600].

11.68. Obtain an equal tail area 95% credibility interval for in Problem 11.23 assuming .

The posterior is beta with parameters 3.5 and 7.5. The percentiles are and . The
interval is [0.093, 0.606].

11.69. In Problem 11.48, obtain a 99% equal tail area credibility interval for (a) and (b) .

(a) The posterior distribution of is gamma with parameters 10.16 and 0.04. We obtain the following
percentiles of this distribution using computer software: and . The credibility
interval is [0.15, 0.81].

(b) Since and , the equal tail area interval for is
.

Bayesian hypothesis tests
11.70. The mean lifetime (in hours) of fluorescent light bulbs produced by a company is known to be normally

distributed with an unknown mean but a known standard deviation of 120 hours. The prior density of
is normal with hours and . A mean lifetime of a sample of 100 light bulbs is com-

puted to be 1630 hours. Test the null hypothesis against the alternative hypothesis
using a Bayes (a) 0.05 test and (b) 0.01 test.

(a) By Theorem 11.3, the posterior density is normal with mean 1629.58 and standard deviation 11.95. The

posterior probability of is . Since this

probability is less than 0.05, we can reject .

(b) Since the posterior probability of the null hypothesis, obtained in (a), is less than 0.01, we can reject .

11.71. Suppose that in Example 11.18 a second sample of 100 observations yielded a mean reaction time of 
0.25 sec. Test the null hypothesis against the alternative using a Bayes 0.05 test.

We take the prior distribution of to be the posterior distribution obtained in Example 11.18: Normal with
mean 0.352 and variance 0.004. Applying Theorem 11-3 with this prior and the new data, we get a posterior
mean 0.269 and variance 0.0007. The posterior probability of the null hypothesis is 0.88. Since this is not less
than 0.05, we cannot reject the null hypothesis.

11.72. In Problem 11.21, suppose a sample of size 10 yielded the values 2, 0, 1, 1, 3, 0, 2, 4, 2, 2. Test 
against using a Bayes 0.05 test.

We need the posterior probability of . From Problem 11.21, it is the area from 0 to 1 under a gamma densityH0

H1:l � 1
H0:l � 1

u

H1:u � 0.3H0:u � 0.3

H0

H0

P(u � 1600 ux) � P¢Z �
1600 � 1629.58

11.95 ≤ < 0.007H0

H1:u � 1600
H0:u � 1600

y2 � 16900m � 1580u

u

[1>0.81, 1>0.15] � [1.23, 6.67]
1>uu � 0.813 1>u � 1>0.81u � 0.153 1>u � 1>0.15

x0.995 � 0.81x0.005 � 0.15
u

1>uu

x0.975 � 0.606x0.025 � 0.093

n � 10, x � 3u

x0.975 � 0.600x0.025 � 0.075

n � 10, x � 3u

x0.025 � 1.47x0.975 � 3.25

l

l
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with parameters and . Using computer software, we see this probability is 0.02. Since
this is less than the specified threshold of 0.05, we reject the null hypothesis. 

11.73. In Problem 11.65, test the null hypothesis against the alternative hypothesis using a
Bayes 0.05 test.

H1:l � 1H0:l � 1

1
n � 0.1nx# �

1
2 � 17.5



The Bayes 0.05 test would reject the null hypothesis if the posterior probability of the hypothesis is less
than 0.05. In our case, this probability is given by the area to the left of 1 under a gamma distribution with
parameters 20.5 and 0.1 and is 0.002. Since this is less than 0.05, we reject the null hypothesis.

11.74. In Problem 11.6, assume that and and test the null hypothesis against the
alternative using a Bayes 0.05 test.

(a) The posterior probability of the null hypothesis is given by the area from 0 to 0.2 under a beta density
with parameters 12 and 31, which is determined to be 0.12 using computer software. Since this is not less
than 0.05, we cannot reject the null hypothesis.

(b) The posterior probability is the area from 0 to 0.2 under a beta density with parameters 13 and 31, which
is 0.07. Since this is not less than 0.05, we cannot reject the null hypothesis.

(c) The posterior probability is the area from 0 to 0.2 under a beta density with parameters 14 and 31, which
is 0.04. Since this is less than 0.05, we reject the null hypothesis.

11.75. In Problem 11.48, test the null hypothesis against using a Bayes 0.025 test.

The posterior distribution of is gamma with parameters 10.16 and 0.04. Therefore, the posterior probability
of the null hypothesis is 0.022. Since this is less than 0.025, we reject the null hypothesis.

11.76. The life-length X of a computer component has the exponential density given by (see page 118)
with unknown mean . Suppose that the prior density of is gamma with

parameters and . If a random sample of 10 observations on X yielded an average life-
length of 7 years, use a Bayes 0.05 test to test the null hypothesis that the expected life-length is at least
12 years against the alternative hypothesis that it is under 12 years. 

The null and alternative hypothesis are respectively equivalent to and .
From Theorem 11-4, the posterior distribution of is gamma with parameters 10.2 and 0.013. The posterior
probability of the null hypothesis is 0.10. Since this is larger than 0.05, we cannot reject the null hypothesis. 

Bayes factor
11.77. In Example 11.4, find the Bayes factor of relative to .

11.78. It is desired to test the null hypothesis against the alternative , where is the probabil-
ity of success for a Bernoulli trial. Assume that has a uniform prior distribution on [0, 1] and that in 40 trials
there were 24 successes. What is your conclusion if you decide to reject the null hypothesis if BF � 1?

The posterior density of is beta with and . The posterior probability of the null hypothesis isb � 17a � 25u

u

uu � 0.6u � 0.6

(0.49>0.51) � ((1>3)>(2>3)) < 1.92BF � 5P(H0 u x)>[1 � P(H0 u x)]6 � 5P(H0)>[1 � P(H0)]6 �

H1 : l 2 1H0 : l � 1

u

H1 : u � 0.083H0 : u � 1>12 � 0.083

b � 0.15a � 0.2
u1>uf (x uu) � ue�ux, x � 0

u

H1:u � 0.7H0:u � 0.7

H1:u � 0.2
H0:u � 0.2x � 10n � 40

l � 1
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0.52. Posterior odds ratio is and prior odds ratio is . BF � 0.72. We reject the
null hypothesis.

11.79. Prove that the ad hoc rule (see the Remark following Theorem 11-10) to reject if BF 1 is equiva-
lent to the Bayes test with .

11.80. In the preceding problem, find c such that the Bayes factor criterion to reject the null hypothesis if BF � c
is equivalent to the Bayes 0.05 rule. 

By Theorem 11-10, .  

11.81. Work Problem 11.71 using the decision to reject the null hypothesis if the Bayes factor is less than 1. We
know from Problem 11.79 that the rule to reject if is equivalent to rejecting the null hypoth-
esis if . We know from Problem 11.71 that . From Example 11.18,P(H0 ux) � 0.88P(H0 ux) � P(H0)

BF � 1H0

c �
a[1 � P(H0)]
(1 � a)P(H0)

�
(0.05)(1 � 0.6)
(1 � 0.05)(0.6) < 0.035

¢P(H0 ux)

P(H1 ux)
≤^¢P(H0)

P(H1)
≤ � 13 P(H0 ux)[1 � P(H0)] � [1 � P(H0 ux)]P(H0)3 P(H0 u x) � P(H0)BF � 13

a � P(H0)a

�H0

6>4 � 1.50.52>0.48 � 1.0833



we know that the prior distribution of is normal with mean 0.4 and variance 0.13; therefore,u
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. We cannot reject the null hypothesis.

11.82. In Problem 11.74, perform the test in each case using the Bayes factor rule to reject the null hypothesis
if BF 4.

(a) . We
reject the null hypothesis. 

(b) . We
cannot reject the null hypothesis. 

(c) . We
cannot reject the null hypothesis. 

11.83. In Problem 11.21, determine what can be concluded using the Bayes factor criterion: Reject if .

Since the prior distribution in this problem is improper, the prior odds ratio is not defined. Therefore, the
Bayes factor criterion cannot be employed here. 

11.84. Suppose that in Example 11.18 a second sample of 100 observations yielded a mean reaction time of
0.25 sec. Test the null hypothesis against the alternative using the Bayes factor
criterion to reject the null hypothesis if .

We take the prior distribution of to be the posterior distribution obtained in Example 11.18: Normal with
mean 0.352 and variance 0.004. Applying Theorem 11-3 with this prior and the new data, we get a posterior
mean 0.269 and variance 0.0007. Using this, we obtain the posterior probability of the null hypothesis as 0.12. 

Note that the prior probability of the null hypothesis that is needed for calculating the Bayes factor in this
problem should be based on the prior distribution given in Example 11.18: Normal with mean 0.4 and
variance 0.13. Using this, we get the prior probability of the null hypothesis as 0.61. The Bayes factor is 0.087.
Since this is larger than 0.05, we cannot reject the null hypothesis. 

11.85. In Problem 11.48, test the null hypothesis against using the Bayes factor rule
to reject the null hypothesis if .

The prior distribution of is gamma with parameters 0.16 and 2.5. The posterior distribution of is gamma
with  parameters 10.16 and 0.04. The prior and posterior probabilities of the null hypothesis are respectively
0.154 and 0.022. Since , we reject the null hypothesis (see Problem 11.79).

Bayesian predictive distributions
11.86. The random variable X has a Bernoulli distribution with success probability , which has a prior beta dis-

tribution with parameters . A sample of n trials on X yielded n successes. A future sample of
two trials is being contemplated. Find (a) the predictive distribution of the number of future successes and
(b) the predictive mean.  

(a) and by Theorem11-1, is beta with parameters

and . 

. This is tabulated

as follows:
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Table 11-9

(b) The predictive mean is .(2n2 � 14n � 20)>[(n � 4)(n � 5)]



11.87. X is a Poisson random variable with parameter . An initial sample of size n gives a gamma posterior
distribution with parameters and . It is planned to make one further observation on
the original population. (a) Find the predictive distribution of this observation. (b) Show that the predic-
tive mean is the same as the posterior mean. 

(a) Let Y denote the future observation. The predictive density of Y is given by

With the right hand side above may be written as  

which is a negative binomial probability function with parameters and . 

(b) The mean of this distribution is . The predictive mean of Y is therefore 

which is the same as the posterior mean of . 

11.88. In Problem 11.21, find the distribution of the mean of a future sample of size m.

. Normalizing this gamma density, we get  

11.89. The number of accidents per month on a particular stretch of a highway is known to follow the Poisson
distribution with mean . A total of 24 accidents occurred on that stretch during the past 10 months. What
are the chances that there would be more than 3 accidents there next month? Assume Jeffreys’ prior for

: . 

The predictive distribution of the number of accidents Y during the next month may be obtained from Problem
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(nb � b � 1)n  x�y�a

~ 3
`

0

(1 � nb)n  x�al(n  x�y�a)�1e�l(nb�b�1)>b
y!bn  x�a�(nx# � a)

 dl

f *(y) ~ 3
`

0

e�lly

y! ?
(1 � nb)n  x�al(n  x�a)�1e�l(nb�1)>b

bn  x�a�(nx � a)
 dl

b>(1 � nb)nx# � a
ll
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11.88 with , , :

The probability we need is 1 � [0.097 � 0.216 � 0.250 � 0.201] �1 � [ f *(0) � f *(1) � f *(2) � f *(3)] �

f *(y) �

1024�
1
2

 �¢24 � y �
1
2≤

y!�¢24 �
1
2≤1124�y�

1
2

, y � 0, 1, 2, c.

m � 1nx# � 24n � 10

.0.236



11.90. In Problem 11.65, what are the chances that the number of bad reactions next year would not exceed 1?

We need the predictive distribution for one future observation. We have the posterior in Problem 11.65 as
gamma with parameters 20.5 and 0.1. Combining this with the probability function of Y, we get  
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, y � 0, 1, 2, . . . . ; � 0.

The marginal probability function for Y, obtained by integrating out , is  

The probabilities corresponding to y-values 0 through 7 are given in Table 11-10. The probability that the
number of bad reactions would be 0 or 1 is 0.4058.

f *(y) � 3
`

0

1020.5ly�19.5e�11l

y!�(20.5)
dl �

1020.5�(y � 20.5)

y!�(20.5)11y�20.5

l

l
e�lly

y! ?
1020.5l19.5e�10l

�(20.5)
f (y; l) � f (y ul)p(l ux) �

y 0 1 2 3 4 5 6 7

f *(y) 0.1417 0.2641 0.2581 0.1760 0.0940 0.0419 0.0162 0.0056

Table 11-10

11.91. In Theorem 11-4, suppose that another, independent sample of size 1 is drawn from the exponential pop-
ulation. (a) Determine its predictive distribution. (b) Estimate the result of the future observation using
the predictive mean.

(a) Denote the future observation by Y. We then have the following joint distribution of Y and the posterior
density of .  

.

Integrating out ,

(b) The mean of this predictive distribution is .

11.92. In Problem 11.29, find the predictive density and predictive mean of a future observation.

11.93. A couple has two children and they are both autistic. Find the probability that their next child will also be
autistic assuming that the incidence of autism is independent from child to child and has the same proba-
bility . Assume that the prior distribution of is (a) uniform, (b) beta with parameters . 

(a) Applying Theorem 11-11 with , and , we see that the predictivea � b � 1n � 2, x � 2, m � 1

a � 2, b � 3uu

� ¢y � 1

r � 1
≤  

B(a � nr � r, b � nx# � y � nr � r)
B(a � nr, b � nx# � nr) , y � r, r � 1, c

f *( y) � ¢y � 1

r � 1
≤ 1

B(a � nr, b � nx# � nr)3
1

0

ua�nr�r�1(1 � u)b�n  x�y�nr�r�1 du, y � r, r � 1, . . . 

3
`

0

y(1 � nbx#)n�ab(n � a)

(1 � nbx# � by)n�a�1  dy �
1 � nbx#

b(n � a � 1)

�
(1 � nbx#)n�a b(n � a)

(1 � nbx# � by)n�a�1 , y � 0

f *(y) � 3
`

0

(1 � nbx#)n�a un�a e�u A1b�n  x�yB
bn�a�(n � a)

 du �
(1 � nbx#)n�abn�a�1�(n � a � 1)

(1 � nbx# � by)n�a�1bn�a�(n � a)

u

f (y; u) � f (y uu)p(uu x) �
ue�uy(1 � nbx#)n�a un�a�1e�u A1b�n  xB

bn�a�(n � a)
�

(1 � nbx#)n�a un�ae�u A1b�n  x�yB
b n�a�(n � a)

,  u � 0

u

distribution of Y is . The probability that the nextf *(y) �
B(3 � y, 2 � y)

B(3, 1) �
(2 � y)!(1 � y)!

8 , y � 0, 1

child will be autistic is 3 4.>



(b) Applying Theorem 11-11 with , and , we see that the predictive

distribution of Y is . The probability that the next

child will be autistic is .

11.94. A random sample of size 20 from a normal population with unknown mean and variance 4 yields a sam-
ple mean of 37.5. The prior distribution of is normal with mean 30 and variance 5. Suppose that an inde-
pendent  observation is subsequently made from the same population. Find (a) the predictive probability that
this observation would not exceed 37.5 and (b) the equal tail area 95% predictive interval for the observa-
tion. From Theorem 11-12, the predictive density is normal with mean 37.21 and standard deviation 2.05.

(a) Equals the area to the left of 0.14 under the predictive density: 0.56

(b)

11.95. All 10 tosses of a coin resulted in heads. Assume that the prior density for the probability for heads is
and find (a) the predictive distribution of the number of heads in four future

tosses, (b) the predictive mean, and (c) the predictive mode.

(a) Note that the prior density is beta with parameters and . From (19), with ,

, , and , we get . The numerical

values are shown in Table 11-11.

f *(y) � ¢4

y
≤  

B(16 � y, 5 � y)
B(16, 1) , y � 0, 1, 2, 3, 4x � 10b � 1a � 6

m � 10, n � 4b � 1a � 6

p(u) � 6u5, 0 � u � 1

37.21 
 (1.96 	 2.05) � [33.19, 41.23]

u

u

4>7
f *(y) �

B(4 � y, 4 � y)
B(4, 3) �

(3 � y)!(3 � y)!
84 , y � 0, 1

a � 2, b � 3n � 2, x � 2, m � 1

CHAPTER 11 Bayesian Methods404

y 0 1 2 3 4

f *(y) 0.0002 0.0033 0.0281 0.1684 0.8000

Table 11-11

(b) the predictive mean is 3.76

(c) the predictive mode is 4

11.96. Prove Theorem 11-12. 

Since is normal with mean and variance , the proof is essentially the same as for the case with
replaced with . This is shown as follows.

The predictive density of is given by

After some simplification, we get

The exponent in the second factor may be further simplified to yield

The second factor here is free from . The first factor is a normal density in and integrates out to an
expression free from and . Therefore, we have the following normal predictive density for :

f *(y#) ~ e�
m

2(s2�my2
post)

 (  y�mpost)2

Y#y#u

uu

f *(y) ~ 3
`

�`

e�
1

2(s2y2
post)>(s2�uy2

post)
 Su(uy2

post  y�s2mpost)

s2�my2
post

T 2
	 e�

m

2(s2�my2
post)

 (  y�mpost)2
 du

f *(y)# � 3
`

�`

e�
1

2(s2y2
post)>(s2�my2

post)
  Su�(my2

post  y�a2mpost)

s2�my2
post

T 2

	 e�
1

2(s2y2
post)>(s2�my2

post)
  S�Qmy

2
post  y�s2mpost

s2�my2
post

R2� 

my2
post  y�s2mpost

s2�my2
post

T  du

~ 3
`

�`

e�
m

2s2  (  y�u)2 e�
1

2ypost
  (u�mpost)2duf *(y#) � f (y# ux) � 3f (y#, u ux) du � 3f (y# uu) ? p(u ux) du

Y#f *(y#)

s2>ms2

m � 1s2>muY#



11.97. The random variable X has a binomial distribution with and unknown success probability whichun � 6
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has the Haldane prior . An observation on X results in three successes. Ifp(u) �
1

u(1 � u)
, 0 � u � 1

another observation is made on X, how many successes could be expected? 

The predictive distribution of the number of successes in the second observation may be obtained from
Theorem 11-11 (with , ) as 

y � 0, 1, . . . , 6 

This is shown in Table 11-12.

f *(y) � ¢6

y
≤  

B(3 � y, 9 � y)
B(3, 3)

a � b � 0m � n � 6, x � 3

y 0 1 2 3 4 5 6

f *(y) 0.0606 0.1364 0.1948 0.2165 0.1948 0.1364 0.0606

Table 11-12

The expectation of this distribution is 3. We could therefore expect to see three successes in the six future trials.

Miscellaneous problems
11.98. Show that the maximum likelihood estimate of in the exponential distribution (see page 124) is .

We have . Therefore, . Differentiating with respect to and setting it

equal to 0 gives . 

11.99. The random variable X has a gamma distribution with parameters and . Show that has the
inverse gamma density with parameters and , defined by

From (33), Chapter 2, we have

The mean, mode, and variance are:

Mean � for � 1, Mode � , Variance � for .

11.100. Show that the Bayes estimate with absolute error loss function is the posterior median. Assume that the
posterior distribution is continuous (see page 83).

We have to show that if m is the median of the posterior density , then  

for all a.

Assume a m.

(since, in the middle integral, )

The proof when m is similar.a �

� (m � a)c 3m
�`

p(u u x) du � 3
`

m

p(u u x) dus � 0

m � a � 2x � (m � x) � (x � a) � m � x � m � a

� 3
a

�`

(m � a)p(u u x) du � 3
m

a

(m � a)p(u u x) du � 3
`

m

(a � m)p(u u x) du

3
`

�`

( u x � m u� u x � a u)f (x) dx � 3
a

�`

(m � a)p(u ux) du � 3
m

a

(m � a � 2x)p(u ux) du � 3
`

m

(a � m)p(u ux) du

�

3
`

�`

u u � m up(u ux) du � 3
`

�`

u u � a up(u ux) du

p(u ux)

a � 2
b2

(a � 1)2(a � 2)

b

a � 1a
b

a � 1

g(y) �
(1>y)a�1e�1>(by)

ba�(a) ?
1
y2 �

y�a�1e�
1
by

ba�(a)  y � 0

g(y) � •
bay�a�1e�b>y

�(a) y � 0

0, y � 0 
(a, b � 0)

ba

Y � 1>Xba

n
a � axk � 0 or a �

n

axk

�
1
x#

aln L � n ln a � aaxkL � ane�aaxk

1>x#a



11.101. Generalize the results in Problem 11.91 to the sample mean of m future observations.

(a) Denote the mean of the future sample of size m by . We then have the following joint distribution of 
and the posterior density of . 

Integrating out , we have 

(b) The mean of this distribution is 

SUPPLEMENTARY PROBLEMS

Subjective probability
11.102. Identify the type of probability used: (a) I have no idea whether I will or will not pass this exam, so I would  

say I am 50% sure of passing. (b) The chances are two in five that I will come up with a dime because I know
the box has two dimes and three nickels. (c) Based on her record, there is an 80% chance that she will score
over 40 baskets in tomorrow’s game. (d) There is a 50-50 chance that you would run into an economist who
thinks we are headed for a recession this year. (e) My investment banker believes the odds are five to three
that this stock will double in price in the next two months. 

Prior and posterior probabilities
11.103. A box contains a biased coin with and a fair coin. A coin is chosen at random from the box and

tossed once. If it comes up heads, what is the probability of the event B that the chosen coin is biased?

11.104. The random variable X has a Poisson distribution with an unknown parameter . As shown in Table 11-13,
the parameter has the subjective prior probability function, indicating prior ignorance. A random sample of
size 2 yields the X-values 2 and 0. Find the posterior distribution of . l

l

l

P(H) � 0.2

3
`

0

y# ?
(1 � nbx#)n�abm�(m � n � a)

(1 � nbx# � mby)m�n�a�(n � a)
 dy# �

�(m � n � a � 2)

m2�(n � a)
 ¢ b

1 � nbx#
≤m�2

�
(1 � nbx#)n�abm�(m � n � a)

(1 � nbx# � mby)m�n�a�(n � a)
  y � 0

f *(y#) � 3
`

0

  
(1 � nbx#)n�aum�n�ae�u Q 1

b
�n  x�m  yR

bn�a�(n � a)
 du �

(1 � nbx#)n�abm�n�a�(m � n � a)

(1 � nbx# � mby#)m�n�abn�a�(n � a)

u

f ( y# ; u) � f (y# uu)p(u ux) �
ume�um  y(1 � nbx#)n�aun�a�1e�u Q1

b
�n  xR

bn�a�(n � a)
�

(1 � nbx#)n�aum�n�ae�u Q1
b
�n  x�m  yR

bn�a�(n � a)
 u � 0

u

Y#Y#
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l 0.5 1.0 1.5

p(l) 1>3 1>3 1>3

Table 11-13

11.105. X is a binomial random variable with known n and unknown success probability . Find the posterior density
of assuming a prior density .

Sampling from a binomial distribution  
11.106. The number of defective tools in each lot of 10 produced by a manufacturing process has a binomial distribution

with parameter . Assume a vague prior density for (uniform on (0, 1)) and determine its posterior density
based on the information that two defective tools were found in the last lot that was inspected.

11.107. In 50 tosses of a coin, 32 heads were obtained. Find the posterior distribution of the proportion of heads 
that would be obtained in an unlimited number of tosses of the coin. Use a noninformative prior (uniform on
(0, 1)) for the unknown probability. 

u

uu

p(u) � 4u3, 0 � u � 1u

u



11.108. Continuing the previous problem, suppose an additional 50 tosses of the coin were made and 35 heads were
obtained. Find the latest posterior density.

Sampling from a Poisson distribution 
11.109. The number of accidents during a six-month period at an intersection has a Poisson distribution with mean .

It is believed that has a gamma prior density with parameters and . If a total of 14 accidents
were observed during the first six months of the year, find the (a) posterior density, (b) posterior mean, and
(c) posterior variance. 

11.110. The number of defects in a 2000-foot spool of yarn manufactured by a machine has a Poisson distribution
with unknown mean . The prior distribution of is gamma with parameters and . A total of 42
defects were found in a sample of 10 spools that were examined. Determine the posterior density of .

Sampling from a normal distribution
11.111. A random sample of 16 observations is taken from a normal population with unknown mean and variance 9.

The prior distribution of is standard normal. Find (a) the posterior mean, (b) its precision, and (c) the
precision of the maximum likelihood estimator.

11.112. The reaction time of an individual to certain stimuli is known to be normally distributed with unknown mean
but a known standard deviation of 0.30 sec. A sample of 20 observations yielded a mean reaction time of 

2 sec. Assume that the prior density of is normal with mean 1.5 sec. and variance . Find the
posterior density of .

Improper prior distributions
11.113. The random variable X has the Poisson distribution with parameter . The prior distribution of is given

. A random sample of 10 observations on X yielded a sample mean of 3.5. Find the
posterior density of .

11.114. A population is known to be normal with mean 0 and unknown variance . The variance has the improper
prior density . If a random sample of size 5 from the population consists of 2.5, 3.2,
1.8, 2.1, 3.1, find the posterior distribution of .

Conjugate prior distributions
11.115. A random sample of size 20 drawn from a geometric distribution with parameter (see page 117) yields a

mean of 5. The prior density of is uniform in the interval [0, 1]. Determine the posterior distribution of .

11.116. The interarrival time of customers at a bank is exponentially distributed with mean , where has a gamma
distribution with parameters and . Ten customers were observed over a period of time and were
found to have an average interarrival time of 5 minutes. Find the posterior distribution of .

11.117. A population is known to be normal with mean 0 and unknown variance . The variance has the inverse
gamma prior density with parameters and (see Problem 11.99). Find the posterior distribution
of based on the following random sample from the population: 2, 1.5, 2.5, 1.

Bayesian point estimation
11.118. The waiting time to be seated at a restaurant is exponentially distributed with mean . The prior distribution

of is gamma with mean 0.1 and variance 0.1. A random sample of six customers had an average waiting time
of 9 minutes. Find the Bayes estimate for with (a) squared error (b) absolute error loss function.

11.119. The life-length X of a computer component has the exponential density given by (see page 118)
with unknown mean . Suppose that the prior density of is gamma with

parameters and . Based on a random sample of n observations on X, find the Bayes estimate of (a) and
(b) with respect to the squared error loss function.1>u

uba

u1>uf (x uu) � ue�ux, x � 0

u

u

1>u

u

b � 1a � 1
u

u

b � 2a � 1
u1>u

uu

u

u

p(u) � 1>!u, u � 0
u

l

p(l) � 1>!l, l � 0
ll

u

y2 � 0.10u

u

u

u

l

b � 2a � 4ll

b � 5a � 2l

l
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11.120. In Problem 11.29, find the Bayes estimate of (a) and (b) with squared error loss function.

11.121. In Problem 11.33, find the Bayes estimate of with squared error loss.

11.122. In Problem 11.26, find the Bayes estimate of with squared error loss.

11.123. In Problem 11.6, part (a), find the Bayes estimate with squared error loss for the variance of the population,
.

Bayesian interval estimation
11.124. Ten Bernoulli trials with probability of success result in five successes. has the prior density given byuu

nu(1 � u)

u

u

u(1 � u)u
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. Find the 90% Bayes equal tail area credibility interval for .

11.125. A random sample of size 10 drawn from a geometric distribution with success probability yields a mean of 5.
The prior density of is uniform in the interval [0, 1]. Find the 88% equal tail area credibility interval for .

11.126. In Problem 11.30, find the 85% Bayesian equal tail area credibility interval for .

11.127. In Problem 11.119, suppose that the prior density of is gamma with parameters and . A
random sample of 10 observations on X yielded an average life-length of seven years. Find the 85% equal tail
area Bayes credibility interval for (a) and (b) . 

Bayesian tests of hypotheses
11.128. In Problem 11.21, suppose a sample of size 10 yielded the values 2, 0, 1, 1, 3, 0, 2, 4, 2, 2. Test 

against using a Bayes 0.05 test.  

11.129. In Problem 11.6, assume that and and test the null hypothesis against the
alternative using a Bayes 0.025 test.  

11.130. Suppose that in Example 11.18 a second sample of 100 observations yielded a mean reaction time of 0.35 sec.
Test the null hypothesis against the alternative using the Bayes 0.05 test.

Bayes factor
11.131. It is desired to test the null hypothesis against the alternative , where is the probability of

success for a Bernoulli trial. Assume that has a uniform prior distribution on [0, 1] and that in 30 trials there
were 17 successes. What is your conclusion if you decide to reject the null hypothesis if ? 

11.132. The time (in minutes) that a bank customer has to wait in line to be served is exponentially distributed with
mean . The prior distribution of is gamma with parameters and . A random sample of 
10 customers waited an average of 3 minutes. Test the null hypothesis against using
the Bayes factor rule to reject the null hypothesis if .  

Bayesian predictive distributions
11.133. In Problem 11.13, find the predictive distribution and predictive mean of the number of accidents during the

last six months of the year.

11.134. Suppose that 4 successes were obtained in 10 Bernoulli trials with success probability . An independent set
of 5 more Bernoulli trials with the same success probability is being contemplated. Find the predictive
distribution of the number of future successes. Assume a prior uniform density for . u

u

BF � 1
H1 : u � 0.7H0 : u � 0.7

b � 3a � 0.2u1>u

BF � 1
u

uu � 0.6u � 0.6

H1 : u � 0.3H0 : u � 0.3

H1 : u � 0.2
H0 : u � 0.2x � 14n � 50

H1 : l � 1
H0 : l � 1

1>uu

b � 0.15a � 0.2u

u

uu

u

up(u) �
1

u(1 � u), 0 � u � 1



11.135. The number of accidents per month on a particular stretch of a highway is known to follow the Poisson
distribution with parameter . A total of 24 accidents occurred on that stretch during the past 10 months.
What are the chances that there would be fewer than four accidents there next month? Assume Jeffreys’ prior
for : .

11.136. Suppose that all 10 out of 10 Bernoulli trials were successes. What are the chances that all five out of five
future Bernoulli trials would be successes? Assume a uniform prior density for the probability of success. 

11.137. A sample of size 20 from a normal population with unknown mean and variance 4 yields a sample mean of
37.5. The prior distribution of is normal with mean 30 and variance 3. Suppose that an independent
observation from the same population is subsequently made. Find the predictive probability that this
observation would not exceed 37.5. 

ANSWERS TO SUPPLEMENTARY PROBLEMS

11.102. (a) subjective; (b) classical; (c) frequency; (d) insufficient information: an equally convincing case could be
made for this being a classical, frequency, or subjective probability; (e) subjective  

11.103. 2 7 11.104. The posterior distribution is given in Table 11-14.>

u

u

p(l) � 1>!l, l � 0l

l
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l 0.5 1.0 1.5

p(l u x) 0.42 0.41 0.17

Table 11-14

11.105.

11.106. The posterior density is beta with parameters 3 and 9.

11.107. The posterior density of is beta with and . 

11.108. The posterior density of is beta with and .

11.109. (a) The posterior density is gamma with parameters and ;
(b) the posterior mean 13.33; (c) the posterior variance 11.11

11.110. The posterior density is gamma with parameters and . 

11.111. (a) The posterior mean of is ; (b) the precision is roughly 4.34;

(c) the precision is about 1.78 

11.112. The posterior density is normal with mean 1.98 and variance 0.0043. 

11.113. The posterior density of is gamma with parameters 35.5 and 0.1 (see Problem 11.25).

11.114. The posterior density is inverse gamma with and (see Problem 11.26).b � 16.875a � 2

l

¢ 16
16 � 9 ≤x# �

16x#
25u

b>(1 � nb) � 2>21 < 0.10nx# � a � 42 � 4 � 46

� 400>36 <� 80>6 <
b>(1 � nb) � 5>6 < 0.83nx# � a � 14 � 2 � 16

b � 34a � 68u

b � 19a � 33u

p(u ux) �
1

B(x � 4, n � x � 1)  ux�3(1 � u)n�x, 0 � u � 1



11.115. The posterior density is beta with parameters 21 and 81 (see Example 11.12).

11.116. The posterior density is gamma with parameters 11 and 0.02.

11.117. The posterior density is inverse gamma with parameters 3 and 7.75.

11.118. (a) 0.11; (b) 0.11 11.119. (a) ; (b)

11.120. (a) ; (b) 11.121.

11.122. 11.123. 

11.124. [0.25, 0.75] 11.125. [0.13, 0.30] 11.126. [0.10, 0.28] 11.127. (a) [0.078, 0.196]; (b) [5.10, 12.82] 

11.128. The posterior probability of the null hypothesis is 0.02. Since this is less than 0.05, we reject the null hypothesis.

11.129. (a) The posterior probability of the null hypothesis is 0.04. Since this is not less than 0.025, we cannot reject
the null hypothesis.

(b) The posterior probability of the null hypothesis is 0.026. Since this is not less than 0.025, we cannot
reject the null hypothesis.

(c) The posterior probability of the null hypothesis is 0.015. Since this is less than 0.025, we reject the null
hypothesis.

11.130. The posterior probability of the null hypothesis is 0.03. Since this is less than 0.05, we reject the null hypothesis.

11.131. The posterior odds ratio is and the prior odds ratio is . . We cannot
reject the null hypothesis. 

11.132. Reject the null hypothesis since the posterior probability of the null hypothesis is 0.033 while the prior
probability of the null hypothesis is 0.216.

11.133. Predictive mean .

11.134.

�  50>6f *( y) � ¢y � 9

9
≤ ¢ 6

11 ≤ 10¢ 5
11 ≤ y

, y � 0, 1, 2, c.

BF � 1.296>4 � 1.50.66/0.34 � 1.94

n 	
B(x � 3, n � x � 2)
B(x � 2, n � x � 1) �

n(x � 2)(n � x � 1)
(n � 4)(n � 3)

ax2

n � 3

¢ax2

2 � b≤^¢ n
2 � a � 1≤(a � nr)(b � nx# � nr)

(a � b � nx# � 1)(a � b � nx#)
a � nr

a � b � nx#

E¢ 1
u
u x≤ �

1 � nbx#
b(n � a � 1)E(u ux) �

b(a � n)
1 � nbx#
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y 0 1 2 3 4 5

f *(y) 0.106 0.240 0.288 0.224 0.112 0.029

Table 11-15

11.135. 0.764 11.136. 11 16 11.137. 0.59>
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Special Sums
The following are some sums of series that arise in practice. By definition, 0! � l. Where the series is infinite,
the range of convergence is indicated.

1.

2.

3.

4.

5.

6.

7.

Euler’s Formulas
8.

9.

The Gamma Function
The gamma function, denoted by (n), is defined by

(1)

A recurrence formula is given by

(2)

where (l) � 1. An extension of the gamma function to n � 0 can be obtained by the use of (2).
If n is a positive integer, then

(3)

For this reason (n) is sometimes called the factorial function. An important property of the gamma function is
that

(4)�(p)�(1 � p) �
p

sin pp

�

�(n � 1) � n!

�

�(n � 1) � n�(n)

�(n) � 3
`

0
t n�1e�t dt  n � 0

�

 cos u �
eiu � e�iu

2
,  sin u �

eiu � e�iu

2i

eiu � cos u � i sin u,  e�iu � cos u � i sin u

ln (1 � x) � �x �
x2

2
�

x3

3
�

x4

4
� c � �a

`

j�1

xj

j
  �1 �  x � 1

1
1 � x

� 1 � x � x2 � x3 � c� a
`

j�0
 x j  ux u � 1

 cos x � 1 �
x2

2!
�

x4

4!
�

x6

6!
� c � a

`

j�0

(�1) jx2j

(2j)!
  all  x

 sin x � x �
x3

3!
�

x5

5!
�

x7

7!
� c � a

`

j�0

(�1) jx2 j�1

(2j � 1)!
  all  x

ex � 1 � x �
x2

2!
�

x3

3!
� c� a   

`

j�0

x j

j!
  all  x

a  

m

j�1
j2 � 12 � 22 � 32 � c� m2 �

m(m � 1)(2m � 1)
6

a  

m

j�1
j � 1 � 2 � 3 � c� m �

m(m � 1)
2
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For (4) gives

(5)

For large values of n we have Stirling’s asymptotic formula:

(6)

where the sign indicates that the ratio of the two sides approaches 1 as . In particular, if n is a large pos-
itive integer, a good approximation for n! is given by

(7)

The Beta Function
The beta function, denoted by B(m, n), is defined as

(8)

It is related to the gamma function by

(9)

Special Integrals
The following are some integrals which arise in probability and statistics.

10.

11.

12.

13.

14.

15.

16.

17.

where

is called the complementary error function.

18.

19. 3
p>2
0

sin2m�1u cos 2n�1u  du �
�(m)�(n)

2�(m � n)
  m � 0,  n � 0

3
`

0

cosvx
x2 � a2

 dx �
p
2a

 e�av  a � 0,  v � 0

erfc(u) � 1 � erf(u) � 1 �
2
!p3

u

0
e�x2 dx �

2
!p3

`

u
e�x2 dx

3
`

0
e�(ax2�bx�c) dx �

1
2Apa  e(b2�4ac)>4a  erfc¢ b

2!a
≤  a � 0

3
`

�`
e�(ax2�bx�c) dx � Apa  e(b2�4ac)>4a  a � 0

3
`

0
x p�1e�ax dx �

�(p)
ap   a � 0,  p � 0

3
`

0 

e�ax sin bx dx �
b

a2 � b2
  a � 0

3
`

0 

e�ax cos bx dx �
a

a2 �  b2
  a � 0

3
`

0
e�ax2 cos bx dx �

1
2Apa  e�b2>4a  a � 0

3
`

0 

xme�ax2 dx �

�¢m � 1
2

≤
2a(m�1)>2   a � 0,  m � �1

3
`

0
e�ax2 dx �

1
2Apa  a � 0

B(m, n) �
�(m)�(n)
�(m � n)

B(m,  n) � 3
1

0 

um�1(1 � u)n�1 du  m � 0,  n � 0

n! , !2pn nn e�n

n S `,

�(n � 1) , !2pn nn e�n

�¢1
2
≤ � !p

p �
1
2,
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z 0 1 2 3 4 5 6 7 8 9

0.0 .3989 .3989 .3989 .3988 .3986 .3984 .3982 .3980 .3977 .3973
0.1 .3970 .3965 .3961 .3956 .3951 .3945 .3939 .3932 .3925 .3918
0.2 .3910 .3902 .3894 .3885 .3876 .3867 .3857 .3847 .3836 .3825
0.3 .3814 .3802 .3790 .3778 .3765 .3752 .3739 .3725 .3712 .3697
0.4 .3683 .3668 .3653 .3637 .3621 .3605 .3589 .3572 .3555 .3538

0.5 .3521 .3503 .3485 .3467 .3448 .3429 .3410 .3391 .3372 .3352
0.6 .3332 .3312 .3292 .3271 .3251 .3230 .3209 .3187 .3166 .3144
0.7 .3123 .3101 .3079 .3056 .3034 .3011 .2989 .2966 .2943 .2920
0.8 .2897 .2874 .2850 .2827 .2803 .2780 .2756 .2732 .2709 .2685
0.9 .2661 .2637 .2613 .2589 .2565 .2541 .2516 .2492 .2468 .2444

1.0 .2420 .2396 .2371 .2347 .2323 .2299 .2275 .2251 .2227 .2203
1.1 .2179 .2155 .2131 .2107 .2083 .2059 .2036 .2012 .1989 .1965
1.2 .1942 .1919 .1895 .1872 .1849 .1826 .1804 .1781 .1758 .1736
1.3 .1714 .1691 .1669 .1647 .1626 .1604 .1582 .1561 .1539 .1518
1.4 .1497 .1476 .1456 .1435 .1415 .1394 .1374 .1354 .1334 .1315

1.5 .1295 .1276 .1257 .1238 .1219 .1200 .1182 .1163 .1145 .1127
1.6 .1109 .1092 .1074 .1057 .1040 .1023 .1006 .0989 .0973 .0957
1.7 .0940 .0925 .0909 .0893 .0878 .0863 .0848 .0833 .0818 .0804
1.8 .0790 .0775 .0761 .0748 .0734 .0721 .0707 .0694 .0681 .0669
1.9 .0656 .0644 .0632 .0620 .0608 .0596 .0584 .0573 .0562 .0551

2.0 .0540 .0529 .0519 .0508 .0498 .0488 .0478 .0468 .0459 .0449
2.1 .0440 .0431 .0422 .0413 .0404 .0396 .0387 .0379 .0371 .0363
2.2 .0355 .0347 .0339 .0332 .0325 .0317 .0310 .0303 .0297 .0290
2.3 .0283 .0277 .0270 .0264 .0258 .0252 .0246 .0241 .0235 .0229
2.4 .0224 .0219 .0213 .0208 .0203 .0198 .0194 .0189 .0184 .0180

2.5 .0175 .0171 .0167 .0163 .0158 .0154 .0151 .0147 .0143 .0139
2.6 .0136 .0132 .0129 .0126 .0122 .0119 .0116 .0113 .0110 .0107
2.7 .0104 .0101 .0099 .0096 .0093 .0091 .0088 .0086 .0084 .0081
2.8 .0079 .0077 .0075 .0073 .0071 .0069 .0067 .0065 .0063 .0061
2.9 .0060 .0058 .0056 .0055 .0053 .0051 .0050 .0048 .0047 .0046

3.0 .0044 .0043 .0042 .0040 .0039 .0038 .0037 .0036 .0035 .0034
3.1 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026 .0025 .0025
3.2 .0024 .0023 .0022 .0022 .0021 .0020 .0020 .0019 .0018 .0018
3.3 .0017 .0017 .0016 .0016 .0015 .0015 .0014 .0014 .0013 .0013
3.4 .0012 .0012 .0012 .0011 .0011 .0010 .0010 .0010 .0009 .0009

3.5 .0009 .0008 .0008 .0008 .0008 .0007 .0007 .0007 .0007 .0006
3.6 .0006 .0006 .0006 .0005 .0005 .0005 .0005 .0005 .0005 .0004
3.7 .0004 .0004 .0004 .0004 .0004 .0004 .0003 .0003 .0003 .0003
3.8 .0003 .0003 .0003 .0003 .0003 .0002 .0002 .0002 .0002 .0002
3.9 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0001 .0001

Ordinates y of the Standard 
Normal Curve at z
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z 0 1 2 3 4 5 6 7 8 9

0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359
0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0754
0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141
0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517
0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879

0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224
0.6 .2258 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2518 .2549
0.7 .2580 .2612 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852
0.8 .2881 .2910 .2939 .2967 .2996 .3023 .3051 .3078 .3106 .3133
0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389

1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621
1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830
1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015
1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177
1.4 .4192 .4207 4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319

1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441
1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545
1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633
1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706
1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767

2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817
2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857
2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890
2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916
2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936

2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952
2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964
2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974
2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981
2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4986

3.0 .4987 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990
3.1 .4990 .4991 .4991 .4991 .4992 .4992 .4992 .4992 .4993 .4993
3.2 .4993 .4993 .4994 .4994 .4994 .4994 .4994 .4995 .4995 .4995
3.3 .4995 .4995 .4995 .4996 .4996 .4996 .4996 .4996 .4996 .4997
3.4 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4998

3.5 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998
3.6 .4998 .4998 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999
3.7 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999
3.8 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999
3.9 .5000 .5000 .5000 .5000 .5000 .5000 .5000 .5000 .5000 .5000

Areas under the Standard
Normal Curve from 0 to z
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Source: R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and Medical Research, published by Longman Group Ltd.,
London (previously published by Oliver and Boyd, Edinburgh), and by permission of the authors and publishers.

n t.55 t.60 t.70 t.75 t.80 t.90 t.95 t.975 t.99 t.995

1 .158 .325 .727 1.000 1.376 3.08 6.31 12.71 31.82 63.66

2 .142 .289 .617 .816 1.061 1.89 2.92 4.30 6.96 9.92

3 .137 .277 .584 .765 .978 1.64 2.35 3.18 4.54 5.84

4 .134 .271 .569 .741 .941 1.53 2.13 2.78 3.75 4.60

5 .132 .267 .559 .727 .920 1.48 2.02 2.57 3.36 4.03

6 .131 .265 .553 .718 .906 1.44 1.94 2.45 3.14 3.71

7 .130 .263 .549 .711 .896 1.42 1.90 2.36 3.00 3.50

8 .130 .262 .546 .706 .889 1.40 1.86 2.31 2.90 3.36

9 .129 .261 .543 .703 .883 1.38 1.83 2.26 2.82 3.25

10 .129 .260 .542 .700 .879 1.37 1.81 2.23 2.76 3.17

11 .129 .260 .540 .697 .876 1.36 1.80 2.20 2.72 3.11

12 .128 .259 .539 .695 .873 1.36 1.78 2.18 2.68 3.06

13 .128 .259 .538 .694 .870 1.35 1.77 2.16 2.65 3.01

14 .128 .258 .537 .692 .868 1.34 1.76 2.14 2.62 2.98

15 .128 .258 .536 .691 .866 1.34 1.75 2.13 2.60 2.95

16 .128 .258 .535 .690 .865 1.34 1.75 2.12 2.58 2.92

17 .128 .257 .534 .689 .863 1.33 1.74 2.11 2.57 2.90

18 .127 .257 .534 .688 .862 1.33 1.73 2.10 2.55 2.88

19 .127 .257 .533 .688 .861 1.33 1.73 2.09 2.54 2.86

20 .127 .257 .533 .687 .860 1.32 1.72 2.09 2.53 2.84

21 .127 .257 .532 .686 .859 1.32 1.72 2.08 2.52 2.83

22 .127 .256 .532 .686 .858 1.32 1.72 2.07 2.51 2.82

23 .127 .256 .532 .685 .858 1.32 1.71 2.07 2.50 2.81

24 .127 .256 .531 .685 .857 1.32 1.71 2.06 2.49 2.80

25 .127 .256 .531 .684 .856 1.32 1.71 2.06 2.48 2.79

26 .127 .256 .531 .684 .856 1.32 1.71 2.06 2.48 2.78

27 .127 .256 .531 .684 .855 1.31 1.70 2.05 2.47 2.77

28 .127 .256 .530 .683 .855 1.31 1.70 2.05 2.47 2.76

29 .127 .256 .530 .683 .854 1.31 1.70 2.04 2.46 2.76

30 .127 .256 .530 .683 .854 1.31 1.70 2.04 2.46 2.75

40 .126 .255 .529 .681 .851 1.30 1.68 2.02 2.42 2.70

60 .126 .254 .527 .679 .848 1.30 1.67 2.00 2.39 2.66

120 .126 .254 .526 .677 .845 1.29 1.66 1.98 2.36 2.62

` .126 .253 .524 .674 .842 1.28 1.645 1.96 2.33 2.58

Percentile Values tp for 
Student’s t Distribution 

with Degrees of Freedomn
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n x2
.005 x2

.01 x2
.025 x2

.05 x2
.10 x2

.25 x2
.50 x2

.75 x2
.90 x2

.95 x2
.975 x2

.99 x2
.995 x2

.999

1 .0000 .0002 .0010 .0039 .0158 .102 .455 1.32 2.71 3.84 5.02 6.63 7.88 10.8
2 .0100 .0201 .0506 .103 .211 .575 1.39 2.77 4.61 5.99 7.38 9.21 10.6 13.8
3 .0717 .115 .216 .352 .584 1.21 2.37 4.11 6.25 7.81 9.35 11.3 12.8 16.3
4 .207 .297 .484 .711 1.06 1.92 3.36 5.39 7.78 9.49 11.1 13.3 14.9 18.5
5 .412 .554 .831 1.15 1.61 2.67 4.35 6.63 9.24 11.1 12.8 15.1 16.7 20.5
6 .676 .872 1.24 1.64 2.20 3.45 5.35 7.84 10.6 12.6 14.4 16.8 18.5 22.5
7 .989 1.24 1.69 2.17 2.83 4.25 6.35 9.04 12.0 14.1 16.0 18.5 20.3 24.3
8 1.34 1.65 2.18 2.73 3.49 5.07 7.34 10.2 13.4 15.5 17.5 20.1 22.0 26.1
9 1.73 2.09 2.70 3.33 4.17 5.90 8.34 11.4 14.7 16.9 19.0 21.7 23.6 27.9

10 2.16 2.56 3.25 3.94 4.87 6.74 9.34 12.5 16.0 18.3 20.5 23.2 25.2 29.6
11 2.60 3.05 3.82 4.57 5.58 7.58 10.3 13.7 17.3 19.7 21.9 24.7 26.8 31.3
12 3.07 3.57 4.40 5.23 6.30 8.44 11.3 14.8 18.5 21.0 23.3 26.2 28.3 32.9
13 3.57 4.11 5.01 5.89 7.04 9.30 12.3 16.0 19.8 22.4 24.7 27.7 29.8 34.5
14 4.07 4.66 5.63 6.57 7.79 10.2 13.3 17.1 21.1 23.7 26.1 29.1 31.3 36.1
15 4.60 5.23 6.26 7.26 8.55 11.0 14.3 18.2 22.3 25.0 27.5 30.6 32.8 37.7
16 5.14 5.81 6.91 7.96 9.31 11.9 15.3 19.4 23.5 26.3 28.8 32.0 34.3 39.3
17 5.70 6.41 7.56 8.67 10.1 12.8 16.3 20.5 24.8 27.6 30.2 33.4 35.7 40.8
18 6.26 7.01 8.23 9.39 10.9 13.7 17.3 21.6 26.0 28.9 31.5 34.8 37.2 42.3
19 6.84 7.63 8.91 10.1 11.7 14.6 18.3 22.7 27.2 30.1 32.9 36.2 38.6 43.8
20 7.43 8.26 9.59 10.9 12.4 15.5 19.3 23.8 28.4 31.4 34.2 37.6 40.0 45.3
21 8.03 8.90 10.3 11.6 13.2 16.3 20.3 24.9 29.6 32.7 35.5 38.9 41.4 46.8
22 8.64 9.54 11.0 12.3 14.0 17.2 21.3 26.0 30.8 33.9 36.8 40.3 42.8 48.3
23 9.26 10.2 11.7 13.1 14.8 18.1 22.3 27.1 32.0 35.2 38.1 41.6 44.2 49.7
24 9.89 10.9 12.4 13.8 15.7 19.0 23.3 28.2 33.2 36.4 39.4 43.0 45.6 51.2
25 10.5 11.5 13.1 14.6 16.5 19.9 24.3 29.3 34.4 37.7 40.6 44.3 46.9 52.6
26 11.2 12.2 13.8 15.4 17.3 20.8 25.3 30.4 35.6 38.9 41.9 45.6 48.3 54.1
27 11.8 12.9 14.6 16.2 18.1 21.7 26.3 31.5 36.7 40.1 43.2 47.0 49.6 55.5
28 12.5 13.6 15.3 16.9 18.9 22.7 27.3 32.6 37.9 41.3 44.5 48.3 51.0 56.9
29 13.1 14.3 16.0 17.7 19.8 23.6 28.3 33.7 39.1 42.6 45.7 49.6 52.3 58.3
30 13.8 15.0 16.8 18.5 20.6 24.5 29.3 34.8 40.3 43.8 47.0 50.9 53.7 59.7
40 20.7 22.2 24.4 26.5 29.1 33.7 39.3 45.6 51.8 55.8 59.3 63.7 66.8 73.4
50 28.0 29.7 32.4 34.8 37.7 42.9 49.3 56.3 63.2 67.5 71.4 76.2 79.5 86.7
60 35.5 37.5 40.5 43.2 46.5 52.3 59.3 67.0 74.4 79.1 83.3 88.4 92.0 99.6
70 43.3 45.4 48.8 51.7 55.3 61.7 69.3 77.6 85.5 90.5 95.0 100 104 112
80 51.2 53.5 57.2 60.4 64.3 71.1 79.3 88.1 96.6 102 107 112 116 125
90 59.2 61.8 65.6 69.1 73.3 80.6 89.3 98.6 108 113 118 124 128 137

100 67.3 70.1 74.2 77.9 82.4 90.1 99.3 109 118 124 130 136 140 149

Source: E. S. Pearson and H. O. Hartley, Biometrika Tables for Statisticians, Vol. 1 (1966), Table 8, pages 137 and 138, by permission.

Percentile Values for the x2
p

CHAPTER 12APPENDIX E

Chi-Square Distribution 
with Degrees of Freedomn

416



CHAPTER 12

417

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 `

1 161 200 216 225 230 234 237 239 241 242 244 246 248 249 250 251 252 253 254

2 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.5 19.5 19.5 19.5 19.5 19.5

3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.37

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78

23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76

24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75 1.69

27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.67

28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65

29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.64

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39

120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25
` 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00

Source: E. S. Pearson and H. O. Hartley, Biometrika Tables for Statisticians, Vol. 2 (1972), Table 5, page 178, by permission.

1

2n

n

1 degrees of freedom in numerator

2 degrees of freedom in denominatorn

n

95th Percentile Values (0.05 Levels), 
F0.95, for the F Distribution
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99th Percentile Values (0.01 Levels),
F0.99, for the F Distribution

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 `

1 4052 5000 5403 5625 5764 5859 5928 5981 6023 6056 6106 6157 6209 6235 6261 6287 6313 6339 6366

2 98.5 99.0 99.2 99.2 99.3 99.3 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.5 99.5 99.5 99.5 99.5 99.5

3 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.3 27.2 27.1 26.9 26.7 26.6 26.5 26.4 26.3 26.2 26.1

4 21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.7 14.5 14.4 14.2 14.0 13.9 13.8 13.7 13.7 13.6 13.5

5 16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.2 10.1 9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11 9.02

6 13.7 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.31 7.23 7.14 7.06 6.97 6.88

7 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74 5.65

8 11.3 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4.95 4.86

9 10.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40 4.31

10 10.0 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00 3.91

11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.40 4.25 4.10 4.02 3.94 3.86 3.78 3.69 3.60

12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.36

13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25 3.17

14 8.86 6.51 5.56 5.04 4.70 4.46 4.28 4.14 4.03 3.94 3.80 3.66 3.51 3.43 3.35 3.27 3.18 3.09 3.00

15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96 2.87

16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.84 2.75

17 8.40 6.11 5.19 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.75 2.65

18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.66 2.57

19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.30 3.15 3.00 2.92 2.84 2.76 2.67 2.58 2.49

20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.42

21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.17 3.03 2.88 2.80 2.72 2.64 2.55 2.46 2.36

22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40 2.31

23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35 2.26

24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31 2.21

25 7.77 5.57 4.68 4.18 3.86 3.63 3.46 3.32 3.22 3.13 2.99 2.85 2.70 2.62 2.54 2.45 2.36 2.27 2.17

26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 2.96 2.82 2.66 2.58 2.50 2.42 2.33 2.23 2.13

27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06 2.93 2.78 2.63 2.55 2.47 2.38 2.29 2.20 2.10

28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.90 2.75 2.60 2.52 2.44 2.35 2.26 2.17 2.06

29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00 2.87 2.73 2.57 2.49 2.41 2.33 2.23 2.14 2.03

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70 2.55 2.47 2.39 2.30 2.21 2.11 2.01

40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92 1.80

60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73 1.60

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.34 2.19 2.03 1.95 1.86 1.76 1.66 1.53 1.38

` 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.18 2.04 1.88 1.79 1.70 1.59 1.47 1.32 1.00

Source: E. S. Pearson and H. O. Hartley, Biometrika Tables for Statisticians, Vol. 2 (1972), Table 5, page 180, by permission.
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NOTE: TO obtain values of for other values of , use the laws of exponents.

Example: .e�3.48 � (e�3.00)(e�0.48) � (.04979)(.6188) � .03081

le�l

l 1 2 3 4 5 6 7 8 9 10

e�l .36788 .13534 .04979 .01832 .006738 .002479 .000912 .000335 .000123 .000045

l 0 1 2 3 4 5 6 7 8 9

0.0 1.0000 .9900 .9802 .9704 .9608 .9512 .9418 .9324 .9231 .9139
0.1 .9048 .8958 .8869 .8781 .8694 .8607 .8521 .8437 .8353 .8270
0.2 .8187 .8106 .8025 .7945 .7866 .7788 .7711 .7634 .7558 .7483
0.3 .7408 .7334 .7261 .7189 .7118 .7047 .6977 .6907 .6839 .6771
0.4 .6703 .6636 .6570 .6505 .6440 .6376 .6313 .6250 .6188 .6126

0.5 .6065 .6005 .5945 .5886 .5827 .5770 .5712 .5655 .5599 .5543
0.6 .5488 .5434 .5379 .5326 .5273 .5220 .5169 .5117 .5066 .5016
0.7 .4966 .4916 .4868 .4819 .4771 .4724 .4677 .4630 .4584 .4538
0.8 .4493 .4449 .4404 .4360 .4317 .4274 .4232 .4190 .4148 .4107
0.9 .4066 .4025 .3985 .3946 .3906 .3867 .3829 .3791 .3753 .3716

( )0 � l � 1

( )l � 1, 2, 3, c, 10

51772 74640 42331 29044 46621 62898 93582 04186 19640 87056
24033 23491 83587 06568 21960 21387 76105 10863 97453 90581

45939 60173 52078 25424 11645 55870 56974 37428 93507 94271

30586 02133 75797 45406 31041 86707 12973 17169 88116 42187
03585 79353 81938 82322 96799 85659 36081 50884 14070 74950

64937 03355 95863 20790 65304 55189 00745 65253 11822 15804

15630 64759 51135 98527 62586 41889 25439 88036 24034 67283

09448 56301 57683 30277 94623 85418 68829 06652 41982 49159

21631 91157 77331 60710 52290 16835 48653 71590 16159 14676
91097 17480 29414 06829 87843 28195 27279 47152 35683 47280

Values of e2l
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Above-and-below median test, 351
Absolutely continuous random variable, 36
Alternative hypothesis, 213
Analysis of variance, 314–347 

for one-factor experiments, 314, 324
for three-factor experiments, 329, 339
for two-factor experiments, 320, 330, 331
for unequal numbers of observations,

318, 328
linear mathematical model for, 315
nonparametric, 350
tables for, 317, 318

Approximating curve, 265
Arithmetic mean, 75 
Assigning probabilities, 6
Asymptotically normal random variable,

111, 112, 156
Axioms of probability, 5

Bayes factor, 384, 400
Bayes’s theorem (rule), 8, 17
Bayesian:

test, 383–384 
hypothesis tests, 383–384, 399
interval estimation, 382, 397
point estimation, 380, 394
predictive distributions, 386, 401

Bayesian methods, 372–410 
Bernoulli:

distribution, 108
trials, 108

Best-fitting curve, 266
Beta distribution, 114, 133
Beta function, 114, 412
Biased estimator, 158
Bimodal distribution, 83 
Binomial coefficients, 10, 21
Binomial distribution, 108, 118

properties of, 109
relation to normal distribution, 111
relation to Poisson distribution, 111
Normal approximation of, 126, 129 
Poisson approximation of, 128

Binomial expansion, 108
Binomial population, 154 
Birthday problem, 26
Bivariate normal distribution, 117, 140
Block effects, 320
Blocks, randomized, 318, 323 
Blocks in two-factor experiments, 318, 322
Bose-Einstein statistics, 31
Buffon’s needle problem, 64

Categories, 160
Cauchy distribution, 114, 132, 133
Cell frequency, 221
Cells, 221, 305
Center of gravity of data, 267
Central limit theorem 112, 129, 156, 253

for binomial random variables, 129
proof of, 130

Central moments, 78
Centroid of data, 267
Certain event, 4
Change of variables, 41, 42, 51, 63 
Characteristic function, 80, 90, 97 

of Binomial distribution, 109
of normal distribution, 110
of Poisson distribution, 110
of Cauchy distribution, 132

Chebyshev’s inequality, 83, 93, 102
Chi-square distribution, 115 

moment generating function of, 134
relationship to F and t distributions, 139
relationship to normal distribution, 134 
theorems related to, 115

Chi-square test, 219–222, 233, 242, 246,
252, 258

Class:
boundaries, 160, 175
frequency, 160, 176
interval, 160, 176, 304, 305
mark, 160, 176

Classes and class frequencies, 160, 305
Classical approach to probability, 5
Closed prior distribution, 379
Coding methods, 162, 178–180, 305
Coefficient of:

contingency, 222, 250, 261
determination, 270, 301
linear correlation, 289
rank correlation, 271, 352
kurtosis, 85 
skewness, 84

Combinations, 9, 20, 29
Combinatorial analysis, 8, 17, 22, 28, 29
Conditional:

density function, 43, 58
distributions, 43, 58
expectation, 82, 93, 102
moments, 82, 93, 102
probability function, 43
probability 7, 14, 28
variance, 82, 93, 102

Confidence interval, 195
Confidence intervals for:

differences and sums, 197, 202, 203
means, 196, 200, 202
proportions, 197, 202, 207
variance, 197, 204 
variance ratios, 198, 205

Confidence level, 195, 214
Confidence limits, 195
Conjugate prior distribution, 379, 393
Contingency tables, 221, 246
Continuous random variable, 36, 46
Control charts, 219, 238
Convolutions, 43, 56, 57
Correlation, 265–313

coefficient, 82, 91, 102
coefficient of linear, 270, 289 
coefficient of multiple, 293 

generalized, 271, 292
for grouped data, 305
and dependence, 274
perfect linear, 268, 270
population, 273
probability interpretation, 295
product-moment formula for, 270, 290
rank, 271, 293 
sample, 270
sampling theory of, 274, 298
table, 305
test of hypothesis for, 274

Countably infinite sample space, 4
Counting, 8, 17, 28

fundamental principle of, 8
Covariance, 81, 91, 184
Credibility interval, 382
Critical region, 214
Critical values, 195
Cumulative distribution function:

properties of, 35 
graphical representation, 36, 38

Curve fitting, 265
Cyclic pattern, 351, 361

Deciles, 84
Decision rules, 213
Degrees of freedom:

for chi-square distribution 115, 321
for t distribution, 115 
for F distribution, 116, 321

Density function, 37, 38
conditional, 43
from characteristic function, 81
marginal, 41
of a sum of random variables, 43
of standard normal random variable, 110 

Dependent random variables, 41
Design of experiment, 323
Deviation (in regression), 266
Differences in populations test, 351
Diffuse prior distribution, 373
Discrete distribution, 34, 44, 45
Distribution function:

for continuous random variable, 36, 46
for discrete random variable, 35, 45
graphical representation, 36, 38
joint, 40
marginal, 41, 48, 49 
properties of, 35

Distributions of:
means, 163
proportions, 166
variances, 171
variance ratios, 174
variations, 317

Effects:
block, 320
interaction, 321
residual, 321
treatment, 320

Subject Index
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Efficient estimate, 195, 199
Elementary event, 4
Empirical probability, 5
Empirical probability distributions, 161
Envelope problem, 25
Equally likely outcomes, 6 
Error:

in regression, 266
variation due to, 319, 321, 322

Error function [erf(z)], 110 
Event, 4, 10

certain or sure, 4
elementary, 4
impossible, 4

Expected frequency, 219
Expected value, 75, 85

some theorems on, 76–77, 85
Expected values of variations, 316
Experiment, random, 3, 10
Experimental design, 323
Explained variation, 270, 273, 289, 292
Exponential distribution, 118

F distribution, 116, 138, 233
F test for null hypothesis of equal means,

317
Fermi-Dirac statistics, 31 
Finite population, 153, 156
Finite sample apace, 4
Fisher, R. A., 116, 198, 314
Fisher’s transformation:

in analysis of variance, 314
in correlation, 274

Fisher’s Z transformation, 274
Fitting data by theoretical distributions,

239–241
Fourier series, 81, 97
Fourier transform, 81
Frequency:

approach to probability, 5
classes, 160
distribution, 160, 175
histogram, 176
polygon, 160

Functions of random variables, 76
Fundamental principle of counting, 8

Gamma distribution, 114, 133, 147
Gamma function, 114, 411

Stirling’s asymptotic formula for, 412
Gaussian distribution, 109
Generalized correlation coefficient, 271, 292
Geometric distribution, 117
Geometric probability, 44, 60
Goodness of fit, 219, 242, 246
Graeco-Latin squares, 324, 335
Grand mean, 314, 319
Group means, 314

H test corrected for ties, 350
Haldane’s prior density, 379
Hypergeometric distribution, 113, 131
Hypothesis test (see Tests of hypotheses

and significance) 

Impossible event, 4
Improper density, 373
Improper prior distributions, 378, 392
Independent:

events, 7, 8, 14
random variables, 41, 47, 59
samples, 157, 169, 197
trials, 108
variable, 265

Infinite population, 153, 156

Interaction effects, 321
Interquartile range, 84
Interval estimate, 195
Interval probability, 36
Invariant under transformation, 268, 271
Inverse Fourier transform, 81

Jacobian, 42, 52, 54  
Joint:

density function, 40, 48–51
distribution function, 40, 47, 51
distributions, 39, 47–51
probability function, 39, 47, 48
probability table, 39

Kruskal-Wallis H test, 283, 350, 360
corrected for ties, 350

Kurtosis, 84, 85, 96–98

Large samples, 196, 216
Laplace’s law of succession, 380, 386   
Latin squares, 323, 334
Law of large numbers, 83, 94, 103

for Bernoulli trials, 109, 122
Least-squares:

curve, 266
line, 266–268, 275
method, 266
parabola, 266, 268, 269, 284
regression curve, 266, 272

Level of significance, 214
Likelihood function, 373–374
Likelihood, 198
Linear:

correlation coefficient, 270, 289
model for analysis of variance, 315
regression, 265, 266, 275
relationship, 265, 292

Mann-Whitney U test, 349, 354, 358
Marginal:

density functions, 41, 58
distributions functions, 41, 48, 49, 61
frequency, 221
probability functions, 39

Mathematical expectation, 75 
some theorems on, 76, 77

Maximum likelihood:
estimate, 198, 206
likelihood estimator, 199, 206
likelihood method, 198

Maxwell distribution, 118
Mean:

arithmetic, 75
deviation, 84
for group data, 161, 162
of functions of random variables, 76

Means:
grand, 314
group, 314
overall, 314
row, 314
treatment, 314 

Measurable subsets, 5
Measure of central tendency, 75, 94, 103
Measure of dispersion about the mean, 77,

96, 103
Median, 83, 94, 95, 103
Mendel’s experiments, 243
Method of least squares, 266
Mode, 83, 94, 103
Moment generating function 79, 80, 88,

96, 100
of Binomial distribution, 121
of Cauchy distribution, 132

of Poisson distribution, 129
of a sum of independent random 

variables, 89
Moments (See also rth moments), 78, 88,

93, 100, 177
Moments for grouped data, 161, 162
More efficient estimator, 195
Multinomial distribution, 112, 131, 146
Multinomial population, 220
Multiple correlation coefficients, 271, 293
Multiple regression, 269, 285
Mutually exclusive events, 4, 13 

Negative binomial distribution, 117
Noninformative prior distribution, 373
Nonlinear equations reducible to linear

form, 282
Nonlinear regression curve, 271
Nonlinear relationship, 265, 292
Nonparametric analysis of variance, 350
Nonparametric statistics, 184, 349–351
Nonparametric tests, 348–371
Normal curve graph paper, 219
Normal distribution, 109, 122 

properties of, 110
Normal approximation to binomial, 126,

129
Normal equations, 267, 269
Normal population, 154
Normally distributed random variable,

109, 122
Null hypothesis, 213

Observed frequency, 219
OC curves, 219
Odds, 5
One-factor experiments, 314, 324

tables for, 317, 318
One-sided tests, 215
One-tailed tests, 215
One-way classification, 314
Operating characteristic curves, 219, 234,

251
Operating characteristic function, 235
Overall mean, 314, 319

P value, 215
Paired samples, sign test for, 348
Parabolic curve, 265
Pascal’s distribution, 117
Percentage (relative) frequency distribu-

tions, 161
Percentiles, 84, 96, 103
Perfect linear correlation and regression,

268, 270
Permutations, 9, 18, 28
Point estimate, 195
Poisson distribution, 111, 128, 129, 146
Pooled variance, 218
Population, 153

correlation coefficient, 273
parameters, 154
size, 153

Posterior probability, 373
Power of a test, 219, 235
Precision of a distribution, 377
Predictive intervals, 388
Predictive point estimate, 388
Prior and posterior distributions, 372, 388 

when sampling from a binomial popula-
tion, 375, 390 

when sampling from a Poisson popula-
tion, 376, 391

when sampling from a normal population,
377, 391
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Prior and posterior odds ratios, 384
Prior probability, 373
Probability, 5 

axioms of, 5
calculation, 12, 22, 23
classical approach, 5 
concept of, 5
density function, 37 
discrete, 34
distribution, 34, 37, 44
distributions of functions of random

variables, 42
frequency approach, 5 
function, 34 
graph paper, 219
interpretation of correlation,

273, 295
interpretation of regression, 271, 295 
joint, 39, 47, 48
of an event, 5
of failure, 108
of success, 108 
surface, 40 
using combinatorial analysis, 22 

Product-moment formula, 270, 290

Quadratic curve, 265
Quality control charts, 219, 238

Random experiments, 3, 10
Random numbers, 154
Random sample, 154
Random variable, 34

continuous, 36
discrete, 34, 44 
nondiscrete, 34 

Randomized blocks, 323
Rank correlation, 271, 293, 365
Region of:

acceptance, 214
nonsignificance, 214
rejection, 214
significance, 214

Regression, 265
equation, 265, 269
line, 272
plane, 269
surface, 269

Relationship:
among, chi-square, F, and t distributions,

117, 139
between binomial and normal distribu-

tions, 111 
between binomial and Poisson distribu-

tions, 111
between Poisson and normal distributions,

112
between estimation theory and hypothesis

testing, 219
Relative (percentage) frequency distribu-

tion, 161
Reliability, 195
Repetitions, 314
Replications, 314, 321
Residual (in regression), 266
Residual variation, 319
Row means, 314
rth moment:

about the mean, 78–79
about the origin, 82
central, 78–79
conditional, 82
raw, 79

Run, 351
Runs test for randomness, 350, 361, 364

Sample, 153
Sample correlation coefficient, 268
Sample mean, 155, 163, 177, 178
Sample moments, 177
Sample point, 3
Sample size, 153
Sample space, 3, 10

countably infinite, 4 
discrete, 4
finite, 4

Sample statistic, 154
Sample variance, 157, 177 
Sampling, 153
Sampling distribution of means, 155, 163,

181
related theorems when population vari-

ance is known, 155–156 
when population variance is not known,

159, 174
Sampling distribution, 155, 163, 166, 169,

171
of differences and sums, 157, 169
of proportions, 156, 166
of ratios of variances, 159, 174
of variances, 158, 169, 171

Sampling theory of correlation, 274, 298
Sampling theory of regression, 297
Sampling with replacement, 112, 153
Sampling without replacement, 113, 153
Scatter diagram, 265, 280
Semi-interquartile range, 84
Sign test, 348, 352
Significance of a difference between corre-

lation coefficients, 274
Skewness, 84, 96, 97, 181
Spearman’s formula for rank correlation, 352
Spearman’s rank correlation coefficient, 271
Standard deviation, 77, 87
Standard error, 155 

table for, 160 
Standard error of estimates, 269, 287
Standard normal curve, 110
Standard normal density function, 110
Standard score, 78, 110
Standard units, 78
Standardized random variable, 78
Statistic, 154, 155
Statistical decisions, 213
Statistical hypotheses, 213
Statistical inference, 153
Statistical significance, 214
Stirling’s formula, 10
Strong law of large numbers, 83
Student’s t distribution, 115, 136

tests involving, 236
Subjective probability, 372, 388

t distribution, 115
tests involving, 236

Tests of hypothesis and significance,
213–264

for correlation coefficient, 274
for differences between correlation 

coefficients, 274 
for differences of means, 217, 218,

227, 255
for differences of proportions, 217,

227, 253  
involving chi-square distribution, 217,

233, 242, 257

involving F distribution, 217, 233, 257
involving the normal distribution, 214,

222, 255
involving Student’s t distribution, 218, 230
for large samples, 216, 217
for means, 216, 217, 222, 255
for predicted values in linear regression,

273
for proportions, 216, 222, 255
for ratios of variances, 218
for regression coefficient in linear 

regression, 273
for small samples, 217
for variances, 218  

Theoretical frequency, 221
Theory of runs, 350
Three-factor experiments, 329
Three-way classification, 329
Total variation, 270, 273, 315, 319
Transformed variables, 265
Translation of axes, 267
Treatment effects, 320
Treatment means, 314
Treatments, 314
Treatments and blocks, 318
Tree diagram, 8, 17
Trend pattern, 351, 362
Trend values, 301
Two-factor experiments with replications,

321, 331
Two-factor experiments, 318, 330
Two-sided tests, 214
Two-tailed tests, 214
Two-way classification, 318, 330
Type I error, 213
Type II error, 213

Unbiased estimate, 158, 195, 199
Unbiased estimator, 158, 195, 199
Unequal numbers of observations, 318
Unexplained variation, 270, 273
Uniform distribution, 113–114,

132, 133

Vague prior distribution, 373
Variance, 77, 78, 81, 87, 100

for grouped data, 161, 162
for samples, 177
of binomial distribution, 109
conditional, 82, 93, 102
of F distribution, 116
of normal distribution, 110
of Student’s t distribution, 116
pooled, 218
sampling distribution of, 171

Variation:
between treatments, 315
expected value, 316
explained, 289
distribution, 317
for two-factor experiments, 319
residual, 319
shortcut methods for obtaining, 315
total, 289, 315
unexplained, 292
within treatments, 315

Weak law of large numbers, 83
Weibull distribution, 118, 141 

Yates’s correction for continuity, 221, 242,
244, 247

Z transformation, Fischer’s, 274 
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Bayes factor, 400
Bayesian:

hypothesis tests, 399
interval estimation, 397
point estimation, 394
predictive distributions, 401

Bayes’s theorem, 17
Beta distribution, 133
Binomial coefficients, 21
Binomial distribution, 118

moment generating function of, 121
normal approximation to, 126, 129
Poisson approximation to, 128

Bivariate normal distribution, 140
Buffon’s needle problem, 64

Calculation of probabilities, 12
Cauchy distribution, 132, 133

characteristic function of, 132
moment generating function of, 132
relation to uniform distribution, 133

Central limit theorem, 129
for binomial random variables, 129
proof of, 130

Central tendency, measures of, 94
Change of variables, 51, 63
Characteristic function, 90, 97

of Cauchy distribution, 132
Chebyshev’s inequality, 93
Chi-square distribution:

moment generating function of, 134
relationship to F and t distributions,

139
relationship to normal distribution,

134
tests involving, 233, 242

Chi-square test of goodness of fit, 242,
246, 252

Coefficient of:
contingency, 250
correlation, 91
determination, 301
linear correlation, 289

Combinations, 20
Combinatorial analysis, 17

probability using, 22
Conditional:

density, 58
distribution, 58
expectation, 93
moments, 93
probability, 14
variance, 93

Confidence interval estimates for:
differences of means, 203
differences of proportions, 202
means in large samples, 200
means in small samples, 202
mean when population variance is 

unknown, 174 

proportions, 202, 207
standard deviation, 208
variances, 204
variance ratios, 205

Conjugate prior distributions, 393
Contingency, coefficient of, 250
Contingency tables, 246
Continuous distribution function, 46
Convolutions, 56
Correlation:

coefficient, 91, 140
generalized, 292
linear, 289
multiple, 293
probability interpretation of, 295
product-moment formula for, 290
rank, 293
sampling theory of, 298
table, 305

Counting, 17
Covariance, 91, 184
Cyclic pattern, in runs test, 361

Determination, coefficient of, 301
Discrete distribution function, 45
Discrete random variable, 44
Dispersion, measures of, 96
Distribution:

Bayesian predictive, 401
beta, 133
binomial, 118
bivariate normal, 140
Cauchy, 132
chi-square, 134
conditional, 58
conjugate prior, 393
continuous, 46
of differences and sums, 169
discrete, 4
Fisher’s F, 138
frequency, 175
gamma, 133
hypergeometric, 131 
improper prior, 392
joint, 47
marginal, 48
multinomial, 131
normal, 122
of means, 163
of proportions, 166
of ratios of variances, 174
Poisson, 128
prior and posterior, 388
relationships among, F, chi-square,

and t, 139
sampling, 163, 166, 169, 171, 174
Student’s t, 136
uniform, 132
of variances, 171
Weibull, 141

Distribution functions:
continuous, 46
discrete, 45
Marginal, 48, 49 

Efficient estimates, 199
Estimates:

confidence interval, 200, 202
efficient, 199
maximum likelihood, 206
unbiased, 199

Events, 10
independent, 14
mutually exclusive, 13

Expectation of random variables, 85
conditional, 93 

F distribution, 138
relationship to chi-square and t

distributions, 139
tests involving, 233

Fitting of data by theoretical distributions,
239

Fourier coefficients, 97
Fourier series, 97
Frequency:

distributions, 175
histograms, 176
polygons, 176

Gamma distribution, 133
Generalized correlation coefficient, 292 
Geometric probability, applications

to, 60
Goodness of fit, 242, 246
Graeco-Latin squares, 335 

Hypergeometric distribution, 131
Hypotheses tests (see Tests)

Improper distributions, 392
Independent events, 14
Independent random variables, 47, 59

Joint density functions, 48
Joint distributions, 47

Kruskal-Wallis H test, 283
Kurtosis, 96, 97, 98

Latin squares, 334
Law of large numbers, 93

for Bernoulli trials, 122
Least squares:

line, 275
parabola, 284

Linear correlation coefficient (see
Correlation)

Linear relationship, 292
Log-log graph paper, 283
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Mann-Whitney U test, 354
sampling distribution of, 358

Marginal density function, 58
Marginal distribution function, 48, 61
Maximum likelihood estimates, 206

for mean of normal distribution, 206
for variance of normal distribution, 207

Means:
computation of, for samples, 177
sampling distribution of, 163

Measures of central tendency, 94
Measures of dispersion, 96
Median, 94
Mode, 94
Modifications for unequal number of 

observations, 328
Moment generating function, 88, 96

of binomial distribution, 121
of Cauchy distribution, 132
of Poisson distribution, 129
of sums of independent random 

variables, 89
Moments, 88

computation of, 93
conditional, 93
for samples, 177

Multinomial distribution, 131
Multiple correlation coefficient, 293
Mutually exclusive events, 13

Nonlinear equations reducible to linear
equations, 282

Nonlinear relationship, 292
Normal approximation to binomial 

distribution, 126, 129
Normal distribution, 122

bivariate, 140

One-factor experiments, 324
One-way classification, 324
Operating characteristic curve, 234, 251
Operating characteristic function, 235

Percentiles, 96
Permutations, 18
Poisson distribution, 128

moment generating function of, 129
Power function, 235
Prior and posterior distributions, 388

when sampling from a binomial 
population, 390

when sampling from a normal 
population, 391

when sampling from a Poisson 
population, 391

Probability:
calculation of, 12
calculating using combinatorial analysis,

22, 23
conditional, 14
distributions, 44
geometric, 60
subjective, 388
theorems on, 11

Probability distributions:
continuous, 46
discrete, 44

Probability interpretation of correlation
and regression, 295

Product-moment formula, 290
Proportions, sampling distribution of , 166

Quality control charts, 238

Random experiments, 10
Random variables:

conditional expectation of, 93
continuous, 46
discrete, 44
expectation of, 85
independent, 47

Randomness runs test, 361
Rank correlation, 293, 365    
Regression:

least-squares line of, 275
multiple, 285
probability interpretation of, 295
sampling theory of, 297

Runs test for randomness, 361
applications of, 364

Sample mean:
coding formula for, 178
computation of, 177

Sample moments, computation of, 177
Sample spaces, 10
Sample variance:

coding formula for, 179
computation of, 177

Sampling distribution of:
difference of means, 169
mean when population variance is 

unknown, 174
means, 163, 181
proportions, 166
ratios of variances, 174

sum of variances, 169
variances, 171

Sampling theory of:
correlation, 298
regression, 297

Scatter diagram, 280
Sign test, 352
Skewness, 96, 97, 181
Standard deviation, 87
Standard error of estimate, 287
Student’s t distribution, 136

relationship to F and chi-square 
distributions, 139

tests involving, 236
Subjective probability, 388

Tests:
of difference of means, 227
of differences of proportions, 227
involving the chi-square distribution,

233, 242
involving the F distribution, 233
involving the Student’s t distribution,

230
of means using normal distributions, 222
of proportions using normal distribu-

tions, 222
Theoretical distributions, fitting of data 

by, 239
Three-factor experiments, 329
Three-way classification, 329
Tree diagrams, 17
Trend pattern, in runs test, 362
Trend values, 301
Two-factor experiments, 330

with replication, 331
Two-way classification, 330

Unbiased estimates, 199
Uniform distribution, 132

Variables, change of, 51, 63
Variables, random (see Random variables)
Variance, 87

computation of, for samples, 177
conditional, 93
sampling distribution of, 171

Variation:
explained, 289
total, 289
unexplained, 292

Weibull distribution, 141
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