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Chapter 1
Introduction

1.1 The Queueing Problem

Consider a group of agents who must be served in a facility. The facility can handle
only one agent at a time and agents incur waiting costs. The queueing problem
is concerned with finding the order in which to serve agents and the (positive or
negative) monetary transfers they should receive. We assume that an agent’s waiting
cost is constant per unit of time, but that agents differ in their waiting costs. Each
agent’s utility is equal to the amount of her monetary transfer minus her total waiting
cost. An allocation consists of each agent’s position in the queue and the monetary
transfer to her. An allocation is feasible if no two agents are assigned to the same
position and the sum of transfers is not positive. An allocation rule, or simply a rule,
associates with each problem a nonempty subset of feasible allocations.

A queueing problem arises when agents cannot coordinate on the time when they
want to have a service (long queues at the grocery store, ATM machines, etc). Even
if they can coordinate, all of them might have the same preferences, that is, all wants
to have earlier service than later. The examples can easily be found in real life. Due
to an ice storm, many business firms want to repair their electrical systems at the
same time. All faculty members in the economics department want to move a new
building at the same time. Many consumers want to implement a new computer
program in their computers. Many researchers want to use a supercomputer or an
expensive research facility.'

This problem can be solved by taking various approaches. First, the problem can
be solved by applying solutions developed in the cooperative game theory (Chap. 3).
Secondly, we can take an axiomatic approach. We propose a set of axioms which a
desirable rule should satisfy and characterize all rules satisfying the set of axioms.

IFor other interesting examples of the queueing problem, see Maniquet (2003), Mukherjee (2013),
and Kayi and Ramaekers (2010).
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2 1 Introduction

In addition to basic axioms, the main axiom can be motivated from a normative
point of view as in Chaps. 4 and 5 or from a strategic point of view as in Chap. 6. In
the latter chapter, we investigate the existence of rules satisfying strategyproofness
which requires that an agent should not have an incentive to misrepresent her waiting
cost no matter what she believes other agents. If strategyproof rules exist, then
we can impose additional normative properties and check whether it is possible
to satisfy all the properties as in Chaps. 6 and 7. Also, we can characterize the rules
by imposing axioms relating the problem involving all agents to its subproblems
with a smaller number of agents together with some normative or strategic axioms
(Chap. 8). Finally, the problem can be solved by adopting a noncooperative approach
which builds up a natural and intuitive bargaining protocol such that players can
negotiate among themselves to resolve the queueing conflicts (Chap. 9).

The queueing problem can be generalized in many directions. However, we
discuss only one possibility in Chap. 10. After generalizing the queueing problem by
assuming that the facility has two parallel servers so that two agents can be served
at the same time, we investigate whether the rules for the queueing problem with
one server can be extended to this case and discuss their properties.

An earlier literature on the problem goes back to Dolan (1978) who provides
a strategyproof, but not budget-balanced, rule for the problem. Later, Suijs (1996)
and Mitra (2001, 2002) provide a strategyproof and budget-balanced rule for the
problem. This rule is characterized by Kayi and Ramaekers (2010, in press),
Hashimoto and Saitoh (2012), and Chun et al. (in press). On the other hand,
Maniquet (2003) tries to solve the problem by applying a solution developed in
the cooperative game theory and obtains the minimal transfer rule. He also shows
that the same rule can be characterized by imposing axioms indicating how a rule
should respond to changes in the queueing problem. This approach is further studied
by Chun (2006a,b). Recently, there have been many papers which combine the
strategic and the normative points of view. They characterize all rules satisfying
strategyproofness together with some normative axioms (Kayi and Ramaekers 2010;
Hashimoto and Saitoh 2012; Chun et al. 2014a,b, in press; Chun and Yengin 2014).
Also, a noncooperative approach can be taken for the problem (Ju et al. 2014a,b). In
this book, we study recent developments on the queueing problem.

1.2 Overview

Now we provide an overview of the content of each chapter. In Chap. 2, we introduce
the basic concepts. First, we formally introduce the queueing problem and present
basic axioms which a desirable rule should satisfy. Then, we define prominent rules
for the problem and give a brief discussion on their properties.

In Chap.3, we show that the queueing problem can be solved by applying
solutions developed in cooperative game theory. To do so, queueing problems
should be mapped into queueing games by defining a worth of coalition. We
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can define the worth of each coalition to be the minimum waiting cost incurred
by its members under the optimistic assumption that they are served before the
non-coalitional members. By applying the Shapley value (Shapley 1953) to the
optimistic queueing game, we obtain the minimal transfer rule (Maniquet 2003).
Alternatively, we can define the worth of each coalition to be the minimum total
waiting cost incurred by its members under the pessimistic assumption that they
are served after the non-coalitional members. If we apply the Shapley value to
the pessimistic queueing game, we end up with a different rule, the maximal
transfer rule (Chun 2006a). Next, we investigate what recommendations we have
if other cooperative game theoretic solutions are applied to the queueing games.
Surprisingly, we end up with the same recommendation: the Shapley value, the
nucleolus (or the prenucleolus), and the t-value coincide for queueing games (Chun
and Hokari 2007).

In Chap. 4, we present characterizations of the minimal and the maximal transfer
rules by imposing various axioms specifying how a rule should respond to changes
in the waiting cost or population. Together with basic axioms, the minimal transfer
rule is the only rule satisfying independence of preceding costs, or negative cost
monotonicity and last-agent equal responsibility (Maniquet 2003), or balanced
consistency, or balanced cost reduction (van den Brink and Chun 2012). On the
other hand, the maximal transfer rule is the only rule satisfying independence of
following costs, or positive cost monotonicity and first-agent equal responsibility
(Chun 2006a), or balanced consistency under constant completion time (van den
Brink and Chun 2012).

In Chap. 5, we explore the implications of no-envy (Foley 1967) in the context
of queueing problems. No-envy requires that no agent should end up with a higher
utility by consuming what any other agent consumes. First, it is not difficult to show
that no-envy implies queue-efficiency. Then, we identify an easy way of checking
whether a rule satisfies no-envy. The existence of such a rule can easily be estab-
lished. We also ask whether there is a rule satisfying efficiency and no-envy together
with either one of two cost monotonicity axioms, negative cost monotonicity and
positive cost monotonicity. However, there is no rule satisfying efficiency, no-envy,
and either one of two cost monotonicity axioms. To remedy the situation, we propose
modifications of no-envy, adjusted no-envy, and backward/forward no-envy. Finally,
we discuss whether three fairness requirements, no-envy, the identical preferences
lower bound, and egalitarian equivalence, are compatible in this context. Chapter 5
is based mainly on Chun (2006b).

In Chap. 6, we study the implications of strategyproofness which requires that
an agent should not have an incentive to misrepresent her waiting cost no matter
what she believes other agents to be doing. We begin with the classic result of
Holmstrom (1979) which implies in our context that a rule satisfies queue-efficiency
and strategyproofuess if and only if it is a VCG rule.> By additionally imposing
equal treatment of equals, we characterize the complete family of anonymous VCG

2The family of VCG rules is due to Vickrey (1961), Clarke (1971), and Groves (1973).
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rules. The symmetrically balanced VCG rule is the only member of this family
satisfying budget balance. On the other hand, by imposing independence axioms,
the pivotal and the reward-based pivotal rules (Mitra and Mutuswami 2011) can be
characterized. We also characterize the class of k-pivotal rules by generalizing the
independence axioms. Chapter 6 is based mainly on Chun et al. (2011, 2014b).

In Chap.7, we investigate the implications of egalitarian equivalence (Pazner
and Schmeidler 1978) together with queue-efficiency and strategyproofness. Egali-
tarian equivalence requires that for each problem, there should be a reference bundle
such that each agent is indifferent between her bundle and the reference bundle.
First, we provide a complete characterization of the family of rules satisfying
the three axioms together. Although there is no rule in this family satisfying
budget balance, feasible rules exist and we characterize the family of all such
rules. We also show that it is impossible to find a rule satisfying queue-efficiency,
egalitarian equivalence, and a stronger notion of strategyproofness, called weak
group strategyproofness. This chapter is based mainly on Chun et al. (2014a).

In Chap. 8, we study the implications of subgroup additivity which requires that
a rule assigns the same expected relative utility to each agent whether an agent’s
expected relative utility is calculated from the problem involving all agents or
from its subproblems with a smaller number of agents. As a result, we present
characterizations of five important rules: the minimal transfer rule, the maximal
transfer rule, the pivotal rule, the reward-based pivotal rule, and the symmetrically
balanced VCG rule. In addition to some basic axioms and subgroup additivity, the
characterization results can be obtained by additionally imposing either a strategic
axiom or an equity axiom. Chapter 8 is based mainly on Chun and Mitra (2014).

In Chap.9, we investigate a strategic bargaining approach to resolve queueing
conflicts. Given a situation where players with different waiting costs have to form
a queue in order to be served, they firstly compete with each other for a specific
position in the queue. The winner can decide to take up the position or sell it
to the others. In the former case, the rest of the players proceed to compete for
the remaining positions in the same manner, whereas in the latter case, the seller
proposes a queue with corresponding payments to the others which can be accepted
or rejected. Depending on which position players are going to compete for, the
subgame perfect equilibrium outcome of the corresponding mechanism coincides
with the payoff vector assigned by one of the two well-known rules for the queueing
problem, either the maximal transfer rule or the minimal transfer rule, while an
efficient queue is always formed in equilibrium. Chapter 9 is based mainly on Ju
et al. (2014a,b).

Finally, in Chap. 10, we generalize the queueing problem by assuming that the
facility has two parallel servers so that two agents can be served at the same time.
Once again, we are interested in finding the order in which to serve agents and
the monetary transfers they should receive. Similarly to the queueing problem with
one server, we introduce the minimal transfer rule and the maximal transfer rule
for the queueing problem with two parallel servers and show that they correspond
to the Shapley (1953) value of queueing games with two parallel servers, for two
alternative definitions of the worth of a coalition. If the worth of a coalition is
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defined by assuming the coalitional members are served before the non-coalitional
members, then the minimal transfer rule is obtained. If it is defined by assuming the
coalitional members are served after the non-coalitional members, then the maximal
transfer rule is obtained. This chapter is based mainly on Chun and Heo (2008).
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Chapter 2
Basic Concepts

2.1 Introduction

In this chapter, we introduce basic concepts which will be useful throughout the
discussion. We begin with introducing the queueing problem which can be defined
as the vector of unit waiting costs of agents. We are interested in finding the order
in which to serve agents and the monetary transfers they should receive. We assume
that an agent’s waiting cost is constant per unit of time, but that agents differ in their
waiting costs. An allocation consists of each agent’s position in the queue and the
monetary transfer to her. An allocation is feasible if no two agents are assigned to
the same position and the sum of transfers is not positive. A rule associates with
each problem a nonempty subset of feasible allocations.

To identify a well-behaved rule, we impose axioms which specify how a rule
should make a recommendation in each queueing problem or how it should respond
to certain changes in the queueing problem.! Our basic axioms can be divided into
three efficiency and three fairness requirements. Queue-efficiency requires that the
rule should choose queues which minimize the total waiting costs, budget balance
requires that the sum of all transfers should be equal to zero, and efficiency (or Pareto
efficiency) requires that the rule should satisfy both queue-efficiency and budget
balance. On the other hand, Pareto indifference requires that a rule should choose
all feasible allocations which give the same utilities to each agent, equal treatment
of equals requires that two agents with the same waiting cost should end up with the
same utilities, and the identical preferences lower bound (Moulin 1990) requires
that each agent should be at least as well off as she would be, under efficiency and
equal treatment of equals, if all other agents had the same preferences as her.

! As explained in Thomson (2010), the axioms can be organized into two main categories, punctual
axioms and relational axioms. Punctual axioms specify how a rule should make a recommendation
in each queueing problem whereas relational axioms specify how a rule should respond to certain
changes in the queueing problem.

© Springer International Publishing Switzerland 2016 7
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8 2 Basic Concepts

For the queueing problem, many rules are proposed. Among them, most promi-
nent ones are: the minimal transfer rule (Maniquet 2003), the maximal transfer rule
(Chun 20006), the symmetrically balanced VCG rule, the pivotal rule, and the reward-
based pivotal rule (Mitra and Mutuswami 2011). Both the minimum transfer and the
maximum transfer rules are obtained by applying the Shapley value (Shapley 1953),
one of the most widely discussed solution in cooperative games, to appropriately
defined cooperative games of the queueing problem. For the minimal transfer rule,
the worth of a coalition is defined to be the minimal waiting cost incurred by
its members under the optimistic assumption that they are served before the non-
coalitional members. For the maximal transfer rule, the worth of a coalition is
defined to be the minimal waiting cost incurred by its members under the pessimistic
assumption that they are served after the non-coalitional members. The next three
rules satisfy strategyproofness, which requires truth telling to be a dominant strategy
for each agent and for each (announced) state. The symmetrically balanced VCG
rule is introduced by Suijs (1996) and Mitra (2001) and later characterized in the
context of queueing problems by Kayi and Ramaekers (2010, in press) and Chun
et al. (in press). The pivotal and the reward-based pivotal rules are introduced by
Mitra and Mutuswami (2011) as two members of the family of k-pivotal rules which
satisfy weak group strategyproofness requiring that any subgroup of agents cannot
be made strictly better off by deviating.

This chapter is organized as follows. In Sect.2.2, we formally introduce the
queueing problem, and in Sect. 2.3, we present basic axioms which a desirable rule
should satisfy. In Sect. 2.4, we define prominent rules for the problem and briefly
discuss their properties.

2.2 The Model

Let I = {1,2,...} be an (infinite) universe of “potential” agents and .4 be the
family of nonempty finite subsets of I. Each agent i € [ is characterized by her
unit waiting cost, §; > 0. Given N € .4, each agent i € N is assigned a position
o; € {1,...,|N|} in a queue® and a (positive or negative) transfer #; € R. If the
monetary transfer of an agent is positive, then this agent receives a compensation
from other agents. If it is negative, she has to pay that amount as compensation
to other agents. The agent who is served first incurs no waiting cost. Each agent
has one job to process and the machine can process only one job at a time. Each
job takes the same amount of processing time and without loss of generality, this
processing time is normalized to one. If agent i € N is served in the o;th position,
her waiting cost is (0; — 1)6;.> An agent’s net utility depends on her waiting costs

2For any set A, |A| denotes the cardinality of A.

3This assumes that no waiting cost is incurred while the job is being processed. Alternatively, we
can assume that if agent i € N is served in the o;th position, then her waiting cost is o; - 6;. These
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and the transfer she receives. Since we assume that each agent has a quasi-linear
utility function, the utility of agent i from the bundle (o3, t;) is given by

u(o;, t;0;) = —(0;, — 1)6; + 1.

Forall N € A4 ,let 0 = (6,)ien € Rﬁ'_ be the profile of waiting costs of all
agents.* For all profiles 6 and all i € N, let On\¢iy be the profile of waiting costs of
all agents except i. A queueing problem is defined as a profile 6 € Rﬁ'_ where 0 is
the vector of unit waiting costs. Let 2" be the class of all problems for N and 2 =
U2N. An allocation for § € 2V is a pair (o, t), where for each i € N, o; denotes
agent i’s position in the queue and ¢; the monetary transfer to her. An allocation is
feasible if no two agents are assigned to the same position and the sum of transfers
is not positive. Thus, the set of feasible allocations Z(6) consists of all pairs (o, )
such that for all i, j € N, i # jimplies 0; # o;and ) ;. t; < 0.

Given 6 € 2", an allocation (0,t) € Z(0) is queue-efficient if it minimizes the
total waiting costs, that is, for all (o/,7) € Z(0), Y en(0i — )G < > .cn(0] —
1)6;. It is straightforward to check that an efficient queue serves agents in the
non-increasing order of their waiting costs and that any queue with this property
is also efficient. The efficient queue of a problem does not depend on the transfers.
Moreover, it is unique except for agents with equal waiting costs. These agents
have to be served consecutively but in any order. The set of efficient queues for
0 € 2V is denoted Eff(9). An allocation (0,f) € Z(0) is budget balanced if
> .enti = 0. An allocation rule, or simply a rule, is a mapping ¢ defined on 2
which associates with every N € .4 and every 6 € 2" a nonempty subset ¢(6)
of feasible allocations. The pair ¢;(6) = (0}, t;) represents the position of agent i in
the queue and her transfer in 6, which is a bundle assigned to agent i by ¢. Given
6 € 2N, (0,1) € Z(6) and i € N, let Pi(o) = {j € N | 0; < 0;} be the set of
agents preceding agent i in the queue o and Fi(0) = {j € N | 0; > 0;} the set of
agents following her in the queue 0. When the context is clear, we abuse notation
slightly by dropping the dependence on o and simply referring to P; and F;. The set
of all possible queues for N is X'(N). Similarly, for all S C N, the set of all possible
queues for Sis X (S).

Remark 2.1 In Chaps. 6 and 7, to use the classic result of Holmstrom (1979), a rule
is assumed to be single-valued and denoted by  which associates to each N € A4
and each 0 € 2V, atuple u(0) = (0,t) € X (N) x R". In these chapters, to choose
a unique queue for each problem, we implicitly assume that there is an order of the
agents which is used to break ties.

two definitions are equivalent in the following sense. Interchanging agents i and j in the queue
leads to a saving of waiting cost in one definition if and only if it leads to a saving of waiting cost
in the other definition. Formally, 0;6; + 0;6; < 0/6; + Gj’Gj if and only if (0; — 1)6; + (0; — 1)6; <
(6! = 1)6; + (Gj' —1)0;.

“Here, Rt denotes the nonnegative orthant of the real line.
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Remark 2.2 A queueing problem can be generalized to a sequencing problem,
which is a list (r, ), where r = (r;);ey is the vector representing the processing
time of agents and 6 = (6;);ey is the vector of unit waiting costs. For a sequencing
problem, each agent is characterized by the processing time and the unit waiting
cost. A queueing problem is obtained by assuming that agents need the same amount
of processing time, that is, for eachi € N, r; = 1, but differ in the unit waiting cost.
On the other hand, a scheduling problem is obtained by assuming that agents have
the same unit waiting cost, that is, for each i € N, 6; = 1, but differ in the amount
of processing time. The sequencing problems® have been studied by Suijs (1996),
van den Brink and Chun (2012), and others and the scheduling problem by Cres and
Moulin (2001), Juarez (2008), Moulin (2007), and others.

2.3 Basic Axioms

Now we introduce basic axioms which we will impose on rules. Queue-efficiency
requires that the rule should choose queues which minimize the total waiting costs. It
is straightforward to check that an efficient queue serves agents in the nonincreasing
order of their waiting costs, and any queue with this property is also efficient.
Budget balance requires that the sum of all transfers should be equal to zero. It
is a strengthening of feasibility which requires that the sum of all transfers should
not be positive. Efficiency (or Pareto efficiency) requires that the rule should choose
allocations that are queue-efficient and budget balanced.

Queue-efficiency: ForallN € .4, all0 € 2V andall (0,1) € ¢(0), o € Eff(6).
Budget balance: ForallN € .4, all§ € 2V, andall (0,1) € p(0), Y ;cnti = 0.
Efficiency: Forall N € 4, all § € 2V, and all (0,1) € ¢(0), o € Eff(#) and

Yienti = 0.

Pareto indifference requires that if an allocation is chosen by a rule, then all other
feasible allocations which assign the same utilities to each agent should be chosen
by the rule. It requires for a rule to choose all feasible allocations which give the
same utilities to each agent. Equal treatment of equals requires that two agents with
the same waiting cost should end up with the same utilities.

Pareto indifference: ForallN € .4, all§ € 2V, all (0,1) € ¢(f), and (¢/,¢) €
Z(9),ifforalli e N, u(o],t.;0;) = u(o;,1;;6;), then (¢/,7) € ¢(0).

Equal treatment of equals: Forall N € 4, all § € 2V, all (0,1) € ¢(#), and
alli, j € N, if 6; = 0;, then u(o;, 1;; 6;) = u(oj, t; 0;).

Finally, the identical preferences lower bound (Moulin 1990) requires that each
agent should be at least as well off as she would be, under efficiency and equal

3 Also, see Curiel et al. (1989) for a sequencing problem with an initial queue and Chun (2011) for
a sequencing problem with bilateral transfers.
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treatment of equals, if all other agents had the same preferences as her. Note that if
a rule satisfies efficiency and equal treatment of equals and all agents have the same
waiting costs as agent i, then all agents end up with the same utilities of —IN‘T_IQ,-.
The identical preferences lower bound requires that all agents should be better off
by not having the same waiting cost.

Identical preferences lower bound: Forall N € .4, all 8 € 2V, all (0,1) €
¢(0), andalli € N, u(o;,1;; 6) > —N=Lg,.

2.4 Rules

In this section, we introduce important rules for the queueing problem. We first
consider a two-agent queueing problem. Suppose that there are two agents denoted
by agents 1 and 2 and that 0, < o,. If agent 2 moves up, then her utility gains are 6,.
She enjoys the same utility whether she receives 9—22 at o, or pays the same amount
at o1. On the other hand, if agent 1 is served later, then her utility losses are 6. She
enjoys the same utility whether she pays % at o) or receives the same amount at
07. Therefore, it is natural to expect the actual transfer will be determined by these
two bounds. The following two rules select an efficient queue and transfer either the
minimum or the maximum of these two bounds for two-agent problems.

The minimal transfer rule (Maniquet 2003), which chooses the minimum of the
two bounds for two-agent problems, selects an efficient queue and transfers to each
agent a half of her unit waiting cost multiplied by the number of her predecessors
minus a half of the sum of the unit waiting costs of her followers.

Minimal transfer rule, ¢™: ForallN € .4 andall § € 2",
o"(0) = {(6M, M) € Z(6)| o™ € Eff(6) and Vi€ N,
0; 0:
M ol _ b,
P=0 -5 - X S}
JEFi(o™)

On the other hand, the maximal transfer rule (Chun 2006), which chooses the
maximum of the two bounds for two-agent problems, selects an efficient queue and
transfers to each agent a half of the sum of the unit waiting costs of her predecessors
minus a half of her unit waiting cost multiplied by the number of her followers.

Maximal transfer rule, 9¢: Forall N € .4 and all § € 2V,
0€(0) = {(0°,1°) € Z(0)| 0€ € Eff(A) and Vie N,

0; 0;
=3 5 —(Nl-a)7}

J€Pi(6€)
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Both the minimum and the maximum transfer rules satisfy queue-efficiency, budget
balance, efficiency, Pareto indifference, equal treatment of equals, and the identical
preferences lower bound. Moreover, these two rules are obtained by applying
the Shapley value (Shapley 1953), one of the most widely discussed solution
in cooperative games, to appropriately define cooperative games of the queueing
problem. For the minimal transfer rule, the worth of a coalition is defined to be
the minimal waiting cost incurred by its members under the optimistic assumption
that they are served before the non-coalitional members. For the maximal transfer
rule, the worth of a coalition is defined to be the minimal waiting cost incurred by
its members under the pessimistic assumption that they are served after the non-
coalitional members (see Chap. 3 for details).

We note that the minimal and the maximal transfer rules assign a unique
allocation if and only if all agents have different waiting costs. If two agents have
the same waiting cost, then the efficient queue is not unique, and consequently the
allocations chosen by the rule are not unique either. However, agents’ utilities do
not depend on the choice of efficient queues if the transfer is determined according
to the minimal or the maximal transfer rule. Thus, both rules are essentially single-
valued, in the sense that for a given problem, each agent’s utility is the same at
all allocations that the rule chooses. As a consequence, any efficient queue can be
chosen to calculate the utilities assigned by the two rules. To be specific, for all
N € 4 and all 8 € 2V, for the minimal transfer rule, the utility of agent i is
given by

ui(o™. M) = —(o — 1), + 1

0; 0;
= —(cM - 1)6; M_ )L A
R e e D D

2
JEFi(oM)

—(oiM—l)@— Z b

2 2’
JEFi(aM)
and for the maximal transfer rule,
(o€, 1) = —(0f = 1) +1f

0; 0;
= —(0f =16 + Z 31 —(n— Uic)a
JEPi(0€)

0; 0;
=-(m—D6+ Y 5’+(n_gic)?

Jj€Pi(0€)

The next three rules satisfy strategyproofness, which requires truth telling to be
a dominant strategy for each agent and for each (announced) state. The first rule,
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which can be called the symmetrically balanced VCG rule,® was introduced by Suijs
(1996) and Mitra (2001) and later characterized in the context of queueing problems
by Kayi and Ramaekers (2010, in press) and Chun et al. (in press).

Symmetrically balanced VCG rule, ¢%:  For all N € .4 with [N| > 3 and all
0 e 9V,

02(0) = {(6®,1%) € Z(9)| 68 € Eff(H), and VieN,

of —1 IN| - o

jEP,‘((TB) kEF,'((IB)

The symmetrically balanced VCG rule satisfies queue-efficiency, budget balance,
efficiency, Pareto indifference, equal treatment of equals, and the identical prefer-
ences lower bound. Moreover, it is the only rule satisfying queue-efficiency, budget
balance, Pareto indifference, equal treatment of equals, and strategyproofness (see
Sect. 6.3.1 for details). The queueing problem is one of rare problems in which the
five requirements can be satisfied together.

Mitra and Mutuswami (2011) introduce and characterize the family of k-pivotal
rules on the basis of pairwise strategyproofness, which requires that as long as there
is no further side payments across agents, there does not exist any pair of agents
that can benefit by deviating from truth telling. Moreover, all k-pivotal rules satisfy
weak group strategyproofness, which requires that any subgroup of agents cannot
be made strictly better off by deviating. The pivotal and the reward-based pivotal
rules belong to the family of k-pivotal rules (see Sect. 6.3.2 for details).

Pivotal rule, o”: Forall N € .4 and all § € 2V,

o) = {(o".") € Z(0)| 6" € Eff(6) and VieN, =~ > 6.

JEFi(a?)
Reward-based pivotal rule, o®: Forall N € 4 and all § € 2V,
o"(0) = {(c".1") € Z(6)| 6" € Eff(6) and VieN, ff= > 6}
JEPi(aR)

Both the pivotal and the reward-based pivotal rules satisfy queue-efficiency, Pareto
indifference, and equal treatment of equals, but fail to satisfy budget balance and
efficiency. The pivotal rule does not satisfy the identical preferences lower bound,
but the reward-based pivotal rule does.

6The family of VCG rules is due to Vickrey (1961), Clarke (1971), and Groves (1973).
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Chapter 3
Cooperative Game Theoretic Approach

3.1 Introduction

The queueing problem can be solved by applying solutions developed in cooperative
game theory. To do this, queueing problems should be mapped into queueing games
by defining a worth of coalition. We can define the worth of a coalition to be the
minimum waiting cost incurred by its members under the optimistic assumption that
they are served before the non-coalitional members (Maniquet 2003). By applying
what is probably the best-known cooperative game theoretic solution, the Shapley
value (Shapley 1953), to the optimistic queueing game, we obtain the minimal
transfer rule which selects an efficient queue and transfers to each agent a half of
her unit waiting cost multiplied by the number of her predecessors minus a half of
the sum of the unit waiting costs of her followers.

Alternatively, we can take a pessimistic approach and define the worth of each
coalition to be the minimum waiting cost incurred by its members when they are
served after the non-coalitional members (Chun 2006). By applying the Shapley
value to the pessimistic queueing game, we obtain a different rule, the maximal
transfer rule, which selects an efficient queue and transfers to each agent a half of
the sum of the unit waiting costs of her predecessors minus a half of her unit waiting
cost multiplied by the number of her followers.

These results show the importance of the definition of the worth of a coalition in
queueing problems. For some classes of problems,' it makes no difference whether
the coalitional members have priority over the non-coalitional members or the non-
coalitional members have priority over the coalitional members. If the Shapley value
is applied, we obtain the same recommendation. However, for queueing problems,
this is not the case: Depending upon who has priority, the resulting rule has very
different properties.

!For example, the bankruptcy problem discussed in Remark 3.1.

© Springer International Publishing Switzerland 2016 15
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Next, we apply another well-known solution of cooperative games, the nucleolus
(Schmeidler 1969) (or the prenucleolus) to queueing games, and identify the
resulting rule. Surprisingly, we obtain the same rule: The Shapley value and the
nucleolus (or the prenucleolus) coincide for queueing games. Also, we investigate
the relation between the minimal and the maximal transfer rules and other rules
discussed in the literature, the core, the r-value (Tijs 1987), and the serial cost
sharing rule (Moulin and Shenker 1992).

The chapter is organized as follows.? In Sect. 3.2, we introduce the basic concepts
in cooperative game theory. In Sect. 3.3, we introduce the optimistic queueing game
and show that the Shapley value applied to the resulting game corresponds to the
minimal transfer rule. In Sect. 3.4, we introduce the pessimistic queueing game
and show that the Shapley value applied to the resulting game corresponds to
the maximal transfer rule. In Sect. 3.5, we establish the coincidence between the
Shapley value and the nucleolus (or the prenucleolus) in the queueing games. In
Sect. 3.6, we investigate the relation between the minimal and the maximal transfer
rules and other rules discussed in the literature, the core, the t-value, and the serial
cost sharing rule. Concluding remarks are in Sect. 3.7.

3.2 Cooperative Games

We formally describe cooperative games with transferable utility or games. Let N =
{1,2,...,n} be the set of players. A set S C N is a coalition. A game is a real-
valued function v defined on all coalitions S C N satisfying v(@) = 0. The number
v(S) is the worth of S. Let IV be the class of games with player set N. A solution
is a function ¢: I'N — RY, which associates with every game v € I'V a vector
d(v) = (¢i(v))iev € RY. The number ¢;(v) represents the payoff to player i in
game v.

Now we introduce two well-known solutions for games, the Shapley value
(Shapley 1953) and the nucleolus (Schmeidler 1969). The Shapley value assigns
to each player a payoff equal to a weighted average of her marginal contributions to
all possible coalitions, with weights being determined by the sizes of coalitions.
The nucleolus chooses the unique allocation from the set of imputations which
minimizes the excess of coalitions in the lexicographic way. On the other hand,
the prenucleolus chooses the unique allocation from the set of efficient allocations
which minimizes the excess of the coalitions in the lexicographic way.

2The results of this chapter are collected from Maniquet (2003), Chun (2006), and Chun and Hokari
(2007). Excerpts from Chun (2006) are reprinted with kind permission of Elsevier. Excerpts from
Chun and Hokari (2007) are reprinted with kind permission of Institute of Economic Research,
Seoul National University.
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Shapley value, Sh: Forallv € 'V andalli € N,

Shi(v) =

3 (IS] — DN\S]! UST= DINASTE ()~ ugs\ 4],

N
SCN.$3i

For all v € I'", let X(v) = {x € R"| Y_,cy xi = v(N)} be the set of efficient
allocations for v and I(v) = {x € RV| >,y x; = v(N) and forall i € N, x; >
v ({i})} be the set of imputations for v. For all x € I(v), its excess vector e(v, x) €
R?" is defined by setting for all S € N, es(v,x) = v(S) — Y ;e ¢ Xi. Its S-coordinate
es(v,x) measures the amount by which the worth of the coalition S exceeds its

payoff at x. Forall y € R?", let ye R2"™ be obtained by rearranging the coordinates
of y in nonincreasing order. For all y, z € R?", y is lexicographically smaller than
z if either (1) y; < Z; or (2) there exists £ > 1 such that y; < zy and for all k < £,

Yk = Zk-

Nucleolus, Nu:  For all v € I'V such that I(v) # @,

Nu(v) = %x e I(v)

for all X' € I(v)\{x}, e(v, x) is
lexicographically smaller than e(v, x’)

Prenucleolus, PN: Forallv € I'V,

PN(v) = {x € X(v)

for all x' € X(v)\{x}, e(v, x) is
lexicographically smaller than e(v, x’)

For all v € I'V, the core is the set of imputations at which no excess is greater
than zero, that is, Core(v) = {x € I(v)| forall S C N, D ,coxi = v(S)}. A game is
convexifforall S, T C N, v(S)+v(T) < v(SUT)+v(SNT). Itis well-known that
a convex game has a nonempty core. Moreover, the Shapley value and the nucleolus
select allocations in the core.

3.3 An Optimistic Approach and the Minimal Transfer Rule

We analyze queueing problems by applying solutions of games after defining a
worth of coalition. We can define the worth of each coalition S € N to be the
minimum waiting cost incurred by its members under the optimistic assumption
that they are served before the non-coalitional members. That is, for all S C N, its
worth vo(S) of the optimistic queueing game is defined by setting:

vo(S) ==Y (o} —1)f

i€S
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where 05 = (0)ies and 0* € Eff(6s). By applying the Shapley value to the
optimistic queueing game vpo = (vo(S))scn, we show that the resulting payoff
to each player is equal to the utility assigned by the minimal transfer rule.

Theorem 3.1 (Maniquet 2003) Let 6 € 2V, Let 7 = (0,t) € Z(0) be such that
agents’ utilities at z are equal to the payoff vector obtained by applying the Shapley
value to vo. Then, o € Eff(0) and for alli € N,

6; 6;
= (o= 1)5 - > 5’

J€Fi(0)

Proof Ttis well-known that a game can be expressed as a sum of unanimity games,

thatis, v = D ;cy Ay (T)ur, where the unanimity game uy is defined by ur(S) = 1

if T C S, and ur(S) = 0 otherwise. For all § C N, the dividend 1, (S) is defined as

follows: if [S| = 1, 1,(S) = v(S), and if |S| > 1, 1,(S) = v(S) — ZTCS,T#S Ao (7).
We claim that for all § € 2N,

0 if § = {il,
Aup () = { —min;es 6; if |S| = 2. 3.1
0 if S| > 3.

Indeed, if § = {i}, then A,,(S) = vo(S) = 0. For |S| = 2, we assume without
loss of generality that S = {i,j} and 6; > 6. Then, 1,,(S) = vo(S) — A, ({i}) —
Avo({J}) = —0;, as desired. For |S| = 3, we assume without loss of generality that
S = {i.j,k} and 6; = 6 = 6. Then, ,0(S) = V0 (S) — g ({i,j}) — Au ({j.K}) —
Do (.13 = A (1) = Ao (1) — Ao (1h) = —6) — 265 + 6, + O + 6 = 0, as
desired. Let S € N be such that |S| > 3. We assume without loss of generality that
S =1{1,2,...,s} and §; > 6; for each i < j. As induction hypothesis, suppose that
Avo(S") = 0 forall 3 < [S'| < [S]. Then, Ay, (S) = v0(S) = D rcs ri=a Avo(T) =
—> =i (on =16, — 3", _ (=(04n — 1))6, = 0, as desired.

On the other hand, the Shapley value of player i € N in game v is given by
Shi(v) = 3 senies % By substituting Eq. (3.1) into this expression, we obtain

0; 0,
Shivo) = —(oi = 1) = > 5’

JEFi(o)
where o € Eff (). Using t; = u(o;,t;; 6;) + (0; — 1)6;, we have

0; b,
h=—(oi—)5 = Y S +@—1b

JEFi(0)

0; 0:

=(0;— )= — e

(01 = 1)5 ’Z 5
JEFi(0)

the desired conclusion. ]
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3.4 A Pessimistic Approach and the Maximal Transfer Rule

We propose an alternative definition of the worth of a coalition which results in a
very different rule, even if the same Shapley value is applied. By taking a pessimistic
approach, we assume that for each S € N, the members of § are served after the
members of N\S. Since the members of S need to wait |N| — |S| time periods to be
served, its worth, vp(S), is defined by setting:

vp(S) = =Y (N =S| + o — )6,

i€s

where 65 = (6;)ies and o* € Eff(fs). Now, we apply the Shapley value to the
pessimistic queueing game vp = (vp(S))scy, and show that the resulting payoff to
each player is equal to the utility assigned by the maximal transfer rule.

Theorem 3.2 (Chun 2006) Lett € 2V. Letz = (0,t) € Z(0) be such that agents’
utilities at 7 are equal to the payoff vector obtained by applying the Shapley value
to vp. Then, o € Eff(6) and for alli € N,

0; 0;
i = Z Ej — (INI —CT[)E.

J€Pi(0)

Proof As in the beginning of the proof of Theorem 3.1, a game can be expressed as
a sum of unanimity games and the dividend is defined in the same way. We claim
that for all § € 2V,

—(IN| = 1)6; if S = {3},
AUP(S) = maX;es Qi if |S| = 2, (32)
0 if S| > 3.

Indeed, if § = {i}, then 1,,(S) = vp(S) = —(|N| — 1)6,. For |S| = 2, we assume
without loss of generality that S = {i,j} and 6; > 6;. Then, A,,(S) = vp(S) —
Aop({8}) — A0, (1) = =(IN| =2)6; — (IN| — DO + (IN| = 1)6; + (IN| — 1D 6; = 6,
as desired. For |S| = 3, we assume without loss of generality that S = {i,j, k} and
0; = 6; = O Then, 1,,(S) = vp(S) — A, ({i.j}) — Aup (1. K}) — A ({i kD) —
Aop({i}) — Ao, (1) — Aup ((K}) = —(IN| =3)6; — (IN[=2)6; — (IN| = 1) 6 — 6; — 6, —
0;+ (IN|—1)6; + (IN| — 1)8; + (IN| — 1)6; = 0, as desired. Let S € N be such that
|S| > 3. We assume without loss of generality that S = {1,2,...,s} and 6; > ; for
each i <j. As induction hypothesis, suppose that A,,(S") = 0 forall 3 < |S'| < |S].
Then, Ay, (S) = vp(S) = X resri=12 Ao (T) = = 34— (IN] = IS| + 04 — 1)6) —
S (IS = 01)0n + Y5 — (IN| = 1)6), = 0, as desired.
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On the other hand, the Shapley value of player i € N in game v is given by
Shi(v) = Y scnies % By substituting Eq. (3.2) into this expression, we obtain

0; 0;
Shi(we) = —(INI =)0 +{ 3 5 + (NI =07}
J€Pi(0)

where o € Eff (). Using t; = u(oy,t;; 6;) + (0; — 1)6;, we have

L

0; 0;
—(NI =D+ 1{ D 5+ (N0} + (0= Db,

JEPi(0)

0; 0;
—(NI =i +4 D 5+ (Nl —0)5}

JEPi(0)
0; 0;
= - N —0;)—,
2 53— (N=o)3
JEPi(0)
the desired conclusion. O

Remark 3.1 There is an interesting class of problems for which two parallel
perspectives can be taken. Let N € .4 be given. A bankruptcy problem consists
of a pair (¢, E) where ¢ € Rﬁ’_ is a claims vector and E € Ry is an amount to divide.
The amount to divide E is not sufficient to honor all claims. Once again, we can take
two different approaches. If we take the optimistic approach, then the coalitional
members have priority over the non-coalitional members, and the worth of each
coalition is defined by setting, for all § € N, vo(S) = min{)_,cc;. E}. However,
if we take the pessimistic approach, then the non-coalitional members have priority
over the coalitional members, and the worth of each coalition is defined by setting,
forall § € N, vp(S) = max{E — ZieN\S ¢i, 0}. Since these two formulations are
dual to each other, they give the same allocation when the Shapley value is applied.
However, this is not the case for the queueing problems considered here.?

3.5 Coincidence of the Shapley Value and the Nucleolus

We apply another well-known solution for cooperative games, the nucleolus
(Schmeidler 1969), to pessimistic queueing games, and identify the resulting
rule. Surprisingly, we end up with the same rule: The Shapley value and the
nucleolus coincide for pessimistic queueing games (Chun and Hokari 2007). First,
we introduce an auxiliary pessimistic queueing game vp, in which the worth of

3See Aumann and Maschler (1985), Driessen (1998), and Thomson (2003) for details.
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coalition § is obtained by adding Zies(” — 1)6; to vp(S), that is, for all S € N,
Up(S) = vp(S)+ Y ,c5(n—1)6;. Obviously, Tp is a game in IV and satisfies the zero-
normalized condition, that is, for all i € N, vp({i}) = 0. Moreover, Up is convex and
its nucleolus is well-defined. If we show the coincidence of the Shapley value and
the nucleolus for auxiliary pessimistic queueing games, then the coincidence for
the pessimistic queueing games follows from the fact that both the Shapley value
and the nucleolus satisfy zero-independence, requiring that adding a constant to the
worth of coalitions containing player i should affect her payoff by the constant.

Before we apply the nucleolus to auxiliary pessimistic queueing games and
investigate what recommendation it makes, we show that the worth of a coalition
with more than two members can be expressed as a sum of worths of two-person
coalitions. It can easily be proven from the facts that (1) for alli € N, vp({i}) = 0
and (2) forall i, j € N, vp({i,j}) = max{0;, 6;}.

Lemma 3.1 Forall 0 € 2V, its auxiliary pessimistic queueing game Up satisfies

(i) foralli € N, vp({i}) = 0,
(ii) forall S € N with |S| = 2, 5p(S) = Y ©p(T) and 5p(S) > 0.
TCS.|T|=2

Now we present an example showing how the worth of a coalition is calculated.

Example 3.1 LetN = {1,2,3,4} and 6 € RY with 6, > 6, > 63 > 6. Then,

vp({1,2,3}) = 261 + 6, = vp({1,2}) + vp({1,3}) + 0p({2,3}),
Up({1,2,4}) = 26, + 6, = vp({1,2}) + vp({1,4}) + Up({2,4}),
Up({1,3,4}) = 201 + 63 = Up({1,3}) + vp({1,4}) + Up({3.4}),
0p({2,3,4}) = 26, + 63 = 0p({2,3}) + 0p({2.4}) + 0p({3.4}),
9p({1,2,3,4}) = 30, + 20, + 6, = 5p({1,2}) + Tp({1,3})
+0p({1,4}) + 0p({2,3}) + 0p({2. 4}) + Up({3.4}).

Let I'VN be the class of games satisfying the two conditions of Lemma 3.1. That
is, v € 'V if and only if for all i € N, v({i}) = 0, and for all § € N with
IS| > 2, v(S) = D s rj=2 v(T) and v(S) > 0. This class includes, in particular,
our auxiliary pessimistic queueing games and more. From Deng and Papadimitriou
(1994) and van den Nouweland et al. (1996), the coincidence between the Shapley
value and the nucleolus can be established.

Here, we present a proof using the Kohlberg’s lemma (Kohlberg 1971). First,
we show that the Shapley value of the auxiliary pessimistic queueing game can
be calculated by using only the worths of the two-person coalitions: It assigns to
each agent a half of the sum of her contributions on all two-person coalitions. We
note that its computational burden is significantly reduced since we need to know
n(n — 1)/2 numbers instead of 2" — 1 numbers.
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Lemma 3.2 Forallv e I'Vandallie N, Shi(v) =% > v(S).
SCN,S3i,|5|=2

Proof Letv € I'N, S C N be such that |S| > 2, and i € S. Note that

Yoovum- > v®

v(S) —v(S\ {i})

TCS.|T|=2 RES\{i}.IRI=2
= Z v(T).
TCS,T3i|T|=2

Thus, foralli € N,

oy = 30 BLZDINZISN s~

N|!
SCN.S3i NI TCS.Ti,|T|=2

- 3 (ISI—l)!(INI—ISI)!‘v(T)

N|!
SCN.$3i TCS.T3i,|T|=2 V]

= Y 3 (81 = DN = ISD! o(T)

N|!
TCN.,T3i|T|=2 SCN.S2T | |

IN|—2
B (IN|=2)!  (k+ DI(IN| =k —2)!
= 2 KN —2—k)! IN|! (@)

TCN.T3i,|T|=2 k=0

IN|—2

~ k+ 1
= 2 Xurawmen'?®

TCN,T3i,|T|=2 k=0

14+24--- N|—1
= 2 +|NT|-(|N+|91|> v
TCN.Ti,|T|=2
_ Z v(T)
, 2
TCN.Ti,|T|=2
the desired conclusion. ]

Now we show that at the Shapley value allocation, the excess of a coalition equals
to the excess of its complementary coalition.

Lemma 3.3 Forallve I'Nandalli € N, if x; = % Z v(S), then for all
SCN.$3i|S|=2
SCN,

() =Y x=v(N\S— > x.

i€S iEN\S
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Proof Letv € I'Nand S C N.If 1 < |S| < |N|, then

v =D x= Y v(T)—Z% > u)

i€s TCS,|T|=2 i€S © TCN.T>i,|T|=2

)

{ij}CN,i€S jEN\S

and

v(N\S) = Y x; > U(T)—Z% > uD

JEN\S TCN\S.|T|=2 JEN\S © TCN.T3j.|T|=2

=5 X

{ij}CN.i€SFjeN\S

If S =N\ {J}, then

v =Y xi= > U(T)—Z% >

i€s TCS.|T|=2 i€S ~ TCN,T3i,|T|=2
1 ..
D MR
{ijyCN.ies
=v({j}) —xj,
the desired conclusion. ]

For all v:2V — R, all x € RY with },., x; = v(N), and all « € R, let

S#Q)andv(S)—inzoz .

i€S

S (v,x) = {S eV

A collection Z C 2V of coalitions is strictly balanced on N if there exists a list
(8s)se Of positive weights such that for all i € N,

> ss=1.

NSZET]
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Lemma 3.4 (Kohlberg 1971) Forallv € I'N and all x € 1(v),

Sforall @ € Rwith S, (v,x) # 0,
x = Nu(v) & | there exists ¥ C {{l} | ieNandv({i}) —x;i = O}
such that Sy (v, x) U .7 is strictly balanced on N.

We are ready to state and prove our coincidence result.
Theorem 3.3 (Chun and Hokari 2007) Forall v € I'V, Sh(v) = Nu(v).
Proof By Lemma 3.2, forallv € 'V and all i € N,

Shi(v)zé > ).

SCN.$3i,|5|=2

Let « € R be such that ., (v, Sh(v)) # 0. Let S € (v, Sh(v)). Since by
Lemma 3.3,

V(N \S) = ) Shi(v) = v(S) = ) Shi(v).

ieN\S i€S

N\ S € % (v,Sh(v)). Thus, 4 (v, Sh(v)) is strictly balanced on N. The desired
conclusion follows from Lemma 3.4. ]

We can obtain a similar conclusion for the optimistic queueing game. Since for
all § € N, vp(S) < 0, this game does not satisfy the conditions of Lemma 3.1
and moreover, its core is empty. However, it is not difficult to show that this game
satisfies other two conditions, that is,

(i) foralli e N, vo({i}) =0,
(ii) forall S C N with |S| > 2, vo(S) = Z vo(T).
7CS,|T|=2

As shown in Kar et al. (2009), these two conditions are sufficient to guarantee the
coincidence of the Shapley value and the prenucleolus.

3.6 Other Rules Applied to Queueing Games

We discuss the relation between the minimal and the maximal transfer rules and
other rules discussed in the literature, the core, the t-value, and the serial cost
sharing rule.
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3.6.1 The Core

For a convex game, both the Shapley value and the nucleolus select an allocation in
the core. It is natural to ask about the structure of the core for auxiliary pessimistic
queueing games. In particular, one might conjecture that the coincidence between
the two solutions comes from the fact that the core is a singleton. As shown in
Fig. 3.1 for a three-agent problem with N = {1,2,3} and 6; > 6, > 0, this is not
the case. Its core is pretty large. However, it has a rather symmetric structure. This
is the central reason why we obtain the coincidence of the two solutions.

X2

X1

0] . 91 291

6

0 + 0,

X3

Fig. 3.1 The core of an auxiliary pessimistic queueing game may not be completely symmetric,
but it is sufficiently symmetric to guarantee Sh(vp) = Nu(Vp). In the figure, the core is the interior
(including the boundary) of ABCDEF
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3.6.2 The t-value

Forallv € I'Vandalli € N, let M;(v) = v(N) — v(N \ {i}) and m;(v) = v({i}).
Then, the t-value (Tijs 1987) selects the maximal feasible allocation on the line
connecting M(v) = (M;(v));ey and m(v) = (m;(v))jen.

t-value, t: For each convex game v,
t(v) = AM(v) + (1 = M)m(v),

where A € [0, 1] is chosen so as to satisfy

Y@ — v\ D)) + (= Do iD] = v(N).

jEN

The auxiliary pessimistic queueing game vp is convex and m(vp) = 0. Moreover,
it is easy to see that for allj € N, Up(N) — Up(N \ {j}) = Zsaj,\s\=2 vp(S) and that
A= % By using the fact that the t-value satisfies zero-independence, we can
establish the coincidence of the t-value, the Shapley value, and the nucleolus for
pessimistic queueing games.

3.6.3 The Serial Cost Sharing Rule

The minimal transfer rule coincides with the serial cost sharing rule for queueing
problems.* Since the optimistic queueing game v, satisfies all conditions of
Lemma 3.1 except that for all S € N, vo(S) > 0, its Shapley value can be expressed
in the simple form of Lemma 3.2. Therefore, the proof can be easily obtained by
checking the simple formula for the Shapley value. To further simplify the argument,
letN € .4 and @ € 2N besuchthat N = {1,...,n}and 6; > 6, > --- > 6,. From
Lemma 3.2, Sh,(vg) = —%Hn, Sh,—1(vo) = —”;zzé?n_l — %9,,, and so on.

To calculate the payoff assigned by the serial cost sharing rule, we need to assume
that all agents have 6,. Then, the total cost —{1 +- - - + (n — 1)}, is divided equally
among all agents, and in particular agent n receives — ’%1 6,,. Now suppose that agent
n leaves and the remaining agents have the unit waiting cost 6,—;. Then, the total
cost goes down by —{1 + --- + (n — 2)}(6,—1 — 6,), and this decrease is shared
equally among the remaining (n — 1) agents, and in particular agent n — 1 receives
—%(Qn_l — 6,). Since she was originally assigned —%9,,, her final assignment
is —%9,1_1 — %9,[. And so on. It is easy to check that this is exactly the amount
assigned by the simple formula of the Shapley value. In the queueing problem, the
serial cost sharing and the minimal transfer rules make the same recommendation.

“Moulin (2007) makes the same observation for the scheduling problem.
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On the other hand, the maximal transfer rule coincides with the decreasing
serial cost sharing rule (de Frutos 1998) for queueing problems. Once again, by
Lemma 3.2, the Shapley value can be expressed in the simple form and the proof can
be easily obtained by checking the simple formula for the Shapley value. To simplify
the argument, let N € .4/ and 6 € 9N besuchthat N = {1,...,n}and 6, > 6, >
-++ > 6,. From Lemma 3.2, Sh;(vp) = —%91, Shy(vp) = —%91 — ”;2292, and so
on.

To calculate the payoff assigned by the decreasing serial cost sharing rule, we
need to assume that all agents have ;. Then, the total cost —{1 +--- 4+ (n—1)}6; is
divided equally among all agents, and in particular agent 1 receives —%91. Now
suppose that agent 1 leaves and the remaining agents have the unit waiting cost 6,.
Then, the total cost goes up by {1+-- -+ (n—2)}(6; —6,), and this increase is shared
equally among the remaining (n — 1) agents, and in particular agent n — 1 receives
%(91 — 6,). Since she was originally assigned —”2;191, her final assignment is
—%91 - %92. And so on. It is easy to check that this is exactly the amount assigned
by the simple formula of the Shapley value. In the queueing problem, the decreasing
serial cost sharing and the minimal transfer rules make the same recommendation.

3.7 Concluding Remarks

In this chapter, we pointed out the importance of the way in which the worth
of a coalition is defined when problems are mapped into cooperative games. In
particular, depending upon who will be served first, two different definitions of the
worth of a coalition can be obtained, and these definitions lead to very different
rules. For other classes of problems such as bankruptcy, the two perspectives give
the same recommendation. It would be interesting to develop a general theory to
explain the relation.
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Chapter 4
Independence, Monotonicity, and Balanced
Consistency

4.1 Introduction

In this chapter, we present characterizations of the minimal and the maximal transfer
rules on the basis of various axioms specifying how a rule should respond to changes
in the waiting cost or population. We begin with two independence axioms which
require that a change in an agent’s waiting cost should not affect the agents following
her or preceding her. More precisely, suppose that an agent’s waiting cost changes.
One could take two different perspectives with regard to how the allocation should
be affected by this change: (1) an increase in an agent’s waiting cost would affect
her predecessors, but not her followers, or (2) a decrease in an agent’s waiting cost
would affect her followers, but not her predecessors. Independence of preceding
costs (Maniquet 2003) requires that an increase in an agent’s waiting cost should
not affect the agents following her. On the other hand, independence of following
costs (Chun 2006) requires that a decrease in an agent’s waiting cost should not
affect the agents preceding her. The minimal transfer rule satisfies independence of
preceding costs, but the maximal transfer rule satisfies independence of following
costs. Moreover, together with basic axioms, the minimal transfer rule is the only
rule satisfying independence of preceding costs, whereas the maximal transfer rule
is the only rule satisfying independence of following costs.

Next are two solidarity and two equal responsibility requirements. Solidarity
axioms require that all agents should gain together or lose together as a consequence
of changes in their external environment. More precisely, if there is an increase in the
waiting cost of an agent, then one could take two different perspectives with regard
to how the allocation should be affected by this increase: (1) one may feel that she
deserves greater compensation for her waiting, which will affect other agents in a
negative direction, or (2) one may feel that she should be required to pay more for
having the service, which will affect other agents in a positive direction. Negative
cost monotonicity (Maniquet 2003) requires that an increase in an agent’s waiting
cost should cause all other agents to weakly lose. On the other hand, positive cost
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monotonicity (Chun 2006) requires that an increase in an agent’s waiting cost should
cause all other agents to weakly gain.

Equal responsibility axioms are concerned with changes in the population. If
some agent in the queue leaves, then under gueue-efficiency, the queue is affected
minimally, that is, her precedents remain at the same position, but her followers
move forward by one position. However, the monetary compensations may need to
be adjusted. Last-agent equal responsibility (Maniquet 2003) requires that upon the
departure of the agent served last, all other agents should remain at the same position
and their transfers should be affected by the same amount. On the other hand, firsz-
agent equal responsibility (Chun 2006) requires that upon the departure of the agent
served first, all other agents should move forward by one position and their transfers
should be affected by the same amount. The minimal transfer rule satisfies negative
cost monotonicity and last-agent equal responsibility, but the maximal transfer rule
satisfies positive cost monotonicity and first-agent equal responsibility. Moreover,
together with basic axioms, each rule is the only rule satisfying the axioms.

We also investigate the implications of balanced consistency and balanced cost
reduction (van den Brink and Chun 2012). Balanced consistency requires that the
effect on the payoff from the departure of one agent to another agent should be equal
between any two agents. On the other hand, balanced cost reduction requires that if
one agent leaves a problem, then the total payoffs of the remaining agents should be
affected by the amount previously assigned to the leaving agent. We show that the
minimal transfer rule is the only rule satisfying efficiency and Pareto indifference
together with either one of the two axioms, balanced consistency and balanced cost
reduction. Upon the departure of an agent, if we assume that all of his predecessors
are moving back by one position to keep the same completion time, an alternative
axiom of balanced consistency under constant completion time can be formulated.
The maximal transfer rule is the only rule satisfying efficiency, Pareto indifference,
and balanced consistency under constant completion time.

This chapter is organized as follows.! In Sect. 4.2, we present characterizations
of the minimal and the maximal transfer rules on the basis of independence and
in Sect. 4.3 on the basis of monotonicity and equal responsibility. In Sect. 4.4, the
two rules are characterized by balanced consistency or balanced cost reduction.
Concluding remarks follow in Sect. 4.5.

4.2 Independence

We begin with two independence axioms which require that a change in an agent’s
waiting cost should not affect the agents following her or preceding her. More
precisely, suppose that an agent’s waiting cost changes. One could take two different

I'The results of this chapter are collected from Maniquet (2003), Chun (2006), and van den Brink
and Chun (2012). Excerpts from Chun (2006) are reprinted with kind permission of Elsevier.
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perspectives with regard to how the allocation should be affected by this change: (1)
an increase in an agent’s waiting cost would affect her predecessors, but not her
followers, or (2) a decrease in an agent’s waiting cost would affect her followers,
but not her predecessors. Independence of preceding costs requires that an increase
in an agent’s waiting cost should not affect the agents following her. On the other
hand, independence of following costs requires that a decrease in an agent’s waiting
cost should not affect the agents preceding her.

Independence of preceding costs: Forall N € 4, all 4, 8’ € 2V, all (0,1) €
(0), all (o’,1) € p(0"),and all k € N, if foralli € N\{k} 6; = 6! and 6, < 6/,
then for all j € N such that 0; > oy, u;(0}, 13 0;) = u;(0;, 1 60;).

Independence of following costs: Forall N € .4, all §, ' € 2V, all (0,1) €

@(0),all (o/,7) € p(0'),and allk € N, if foralli € N\{k} 0; = 0/ and 6, > 0],
then for all j € N such that o; < oy, u;(0j, t; 0)) = uj(cr ], ])

We are ready to state and prove our characterization results on the basis of
independence requirements.

Theorem 4.1

(1) (Maniquet 2003) The minimal transfer rule is the only rule satisfying efficiency,
Pareto indifference, equal treatment of equals, and independence of preceding
costs.”

(2) (Chun 2006) The maximal transfer rule is the only rule satisfying efficiency,
Pareto indifference, equal treatment of equals, and independence of following
costs.

Proof

(1) Tt is clear that the minimal transfer rule ¢ satisfies efficiency, Pareto indiffer-
ence, and equal treatment of equals. The fact that ¢ satisfies independence of
preceding costs comes from the definition of #, which does not depend on the
waiting costs of the precedents.

Conversely, let ¢ be a rule satisfying the four axioms. Let N € .4 be such
that N = {1,....n}, 0 € 2", and (0,1) € ¢(0). We may assume without
loss of generality that 6; > 6, > --- > 6,. Let ' € 2" be such that for all
ieN, 0 = 9,,, and (o', 1') € @(#"). By efficiency and equal treatment of
equals, u,(o},11;6,) = WIT_IQ,,. By Pareto indifference, we may assume that

ol =nandt! = |N‘ W=Lg  Forj=2,...,n,let 0 € 2" be defined by setting

n

foralli € N, ¢ = 9 ifi < j, and 0’ = 9 otherwise. Let (o7, 1/) e ().
¢) = wi(o! ", 27" 017" for all

By independence of preceding costs, ul(o

i’ l’

2Instead of Pareto indifference, Maniquet (2003) imposes anonymity, which requires that relabeling
of agents should not affect the allocation chosen by a rule. Since the same result can be obtained
by imposing Pareto indifference (with the same proof), we impose Pareto indifference here.
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i > j. By efficiency and equal treatment of equals, for all i < j, we have

T/
ui(a’, 1} 6) ——(J—l)———
J
where 7/ = Zz>/ i By Pareto mdlﬁference we may assume that o* = j
Applying this formulatoj =n—1,..., 1, we obtain
9 O—1 0
1 1 n 1 n n
n— _,t_;@n_ - — - — |, t_, = — - —,
On—1 + 6,
Mn—Z(O—y}_zs t:,_z; 97!—2) - |:(n - IT} s
911 2 en—l + en
=0n-3 =
n 2 (n ) 2
0; 6; 0; o;
ey =—i-D2=-Y"Z|, d=i-nD=2 - 2,
ui(o}, 36 = = | (i= D 22 == ]Zz

the desired conclusion.

It is clear that the maximal transfer rule ¢€ satisfies efficiency, Pareto indiffer-
ence, and equal treatment of equals. The fact that € satisfies independence of
following costs comes from the definition of tl.C, which does not depend on the
waiting costs of the followers.

Conversely, let ¢ be a rule satisfying the four axioms. Let N € .4 be such
that N = {1,....n}, 0 € 2", and (0,1) € ¢(0). We may assume without
loss of generality that 6; > 6, > --- > 6,. Let ' € 2" be such that for all
i €N,0' =6, and (c',1') € p(8"). By efficiency and equal treatment of
equals, uy (o}, 11;6;) = —WIT_IGI. By Pareto indifference, we may assume that
ol =landit} = —W‘T_léh. Forj=2,...,n let & € 2" be defined by setting
foralli € N, #/ = 6;ifi > j, and &/ = 6, otherwise. Let (o/,1/) € ¢(¢/).
By independence of following costs, ul(crjl, tjl, 0’) = ui(o{_l , tf_l; 0{_1) for all

i < j. By efficiency and equal treatment of equals, for all i > j, we have

CINI+j-2 T
2 TN =+ 1

w0l 1,00 =
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where 7/ = 37,1}, 1. By Pareto zndzﬁerence we may assume that oJ = j
Applying this formulatoj = 2,...,n, we obtain

N N[ -2 1
ur(0y, 1y; 602) = —uez + 91, = _ |2 6, + —91,
N +1 N
wod i) =~ g v d= 200 L),
N N
Mi((fil,lil;ei)— HL ZQ, lil: | l Z@,
/<l j<l
the desired conclusion. O

4.3 Monotonicity and Equal Responsibility

Now we introduce two solidarity requirements that all agents should gain together
or lose together as a consequence of changes in their external environment. Axioms
in this spirit have been discussed in the context of a wide range of problems,
under various names: resource monotonicity requires that a change in the resources
should affect all agents in the same direction (Chun and Thomson 1988; Moulin and
Thomson 1988; Roemer 1986, and others) and welfare domination under preference
replacement requires that a change in an agent’s preference should affect all the
others in the same direction (Moulin 1987; Thomson 1999, and others).

Returning to our current model, suppose that the waiting cost of one agent
increases. One could take two different perspectives with regard to how the
allocation should be affected by this change: (1) one may feel that she deserves
greater compensation for her waiting, which will affect other agents in a negative
direction, or (2) one may feel that she should be required to pay more for having the
service, which will affect other agents in a positive direction.

Negative cost monotonicity requires that an increase in an agent’s waiting cost
should cause all other agents to weakly lose. On the other hand, positive cost
monotonicity requires that an increase in an agent’s waiting cost should cause all
other agents to weakly gain.

Negative cost monotonicity: Forall N € .4, all 0, 0’ € 2V, all (0,1) € ¢(0),
all (6’,7) € p(6'), and all k € N, if for all i € N\{k}, 6; = 0/ and 6, < 6/, then
for all i € N\{k}, ui(o;, 1;; 6;) = u;(o], 15 0)).

Positive cost monotonicity: Forall N € 4, all 0, 0’ € 2V, all (0,1) € ¢(0), all
(o',¢) € p(9), and all k € N, if for all i € N\{k}, 0; = 6/ and 6, < 6, then for
alli e N\{k}, I/li(CTi, ti; 91) < I/ll(O' l‘;, 91)
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Next two axioms are concerned with changes in the population. If some agent
in the queue leaves, then under queue-efficiency, the queue is affected minimally,
that is, her precedents remain at the same position, but her followers move forward
by one position. However, the monetary compensations may need to be adjusted.
Last-agent equal responsibility requires that upon the departure of the agent served
last, all other agents should remain at the same position and their transfers should
be affected by the same amount. On the other hand, first-agent equal responsibility
requires that upon the departure of the agent served first, all other agents should
move forward by one position and their transfers should be affected by the same
amount. Forall N € ./, all 6 € 2V, and all k € N, let Op\ i3 = (0)ien\ (13- Note
that QN\{k} e 9N\,

Last-agent equal responsibility: Forall N € .4, all § € 2V, and all (0,1) €
@(0), if agent k € N is such that o = |N|, then there exists (0/,7) € @(Ony)
such that for all i € N\{k}, o/ = o; and ¢, = t; + \NI T
First-agent equal responsibility: Forall N € /4, all § € 2V, and all (0,7) €
@(0), if agent k € N is such that o = 1, then there exists (0'.7) € p(Ongy)
such that forall i € N\{k}, 0/ = 0; —landt. =t; + IN\ T

Our second characterizations of the two rules are based on monotonicity and
equal responsibility axioms.

Theorem 4.2

(1) (Maniquet 2003) The minimal transfer rule is the only rule satisfying Pareto
indifference, the identical preferences lower bound, negative cost monotonicity,
and last-agent equal responsibility.

(2) (Chun 2006) The maximal transfer rule is the only rule satisfying Pareto
indifference, the identical preferences lower bound, positive cost monotonicity,
and first-agent equal responsibility.

Proof

(1) To simplify notation, we do not attach the superscript M to o and t. First, we
show that M satisfies the identical preferences lower bound. Let N € A,
0 € 2N and (0,1) € (pM(Q). Since @Y satisfies efficiency, for all i € N,
— Y jeFio) Z > —(|N| — al ", which implies u;(a;, ;; 6;) > —(|N| — 1)%.
Next we show that ¢ satisfies negative cost monotonicity. Let N € 4, 0,
0" € 9N, (0,1) € pM(8), (¢',¥) € M (0’), and k € N be such that for all
i € N\{k}, 0; = 6] and 6, < 6. By efficiency, ox > o] and for all i € N\{k},
o0; > oy implies o] > o;. We partition N\{k} into Ny, N>, N3 defined by

N, = {l € N|O'k < O','},
N> = {i € N|o; < oy, 0; < 0]}, and
N; = {i € N|o] < 0}}.

We need to show that for all i € N\{k}, u;(0;, 15 0;) > ui(0/,;0)).
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(i) If i € Ny, the desired conclusion comes from the fact that ¢ satisfies
independence of preceding costs.

(ii) If i € N,, then by efficiency, 6; > 6. Note that for all j € F;(0)\F;(c’) or
J € Fi(6")\Fi(0) such that j # k, 6; = 6;. Therefore,

0; 0;
(0], 1:0) —ui(01,1::0) = | —(0] — )= — =
(0] 1:0) —u011:6) = | —(0] = D5 = Y 3
JEFi(a”)
0; 0;
—| =(o; = )= — el
(01 = 1) _Zz
JEFi(0)
_ 0; 6
2 2
505

the desired conclusion.
(iii) If i € N3, then by efficiency, 6; > 6,. Therefore, u;(0/,t;0;) —
ui(0;, ;5 0;) = —0—2" + % < 0, the desired conclusion.

Now we show that o™ satisfies last-agent equal responsibility. Let N € ¥,
0 € 2V, and (0.1) € p™(0). Suppose, without loss of generality, that 0, = n.
Then, u,(0y, tn; 6,) = —(N| — 1)%. Consider O\, € 2V, By efficiency,
for all i € N\{n}, there is (0/,7) € ¢ () such that o] = o0;. Moreover,
tl’. -t = %, the desired conclusion.

Conversely, let ¢ be a rule satisfying the four axioms. Let N € .4, § € 2V
and (o,1) € ¢(0).

Step M-1:  For k € N such that for all i € N, 6, < 0;, w(ox, t4;0r) =
—MT_IGk. By the identical preferences lower bound, u(oy,t;0))

A%

—IN‘T_IH;(. Suppose, by way of contradiction, that the claim does not hold,
that is, ug(oy, ty; 6¢) > —W‘T_l@k. Let 6/ € 2N be such that for all i € N,
0! = 6, and (0'.7) € @(0'). By repeated application of negative cost
monotonicity, ug(o], t;; k) > —MT_IGk. By the identical preferences lower
bound, for all i € N\{k}, u;(0/,t,;60]) > —IN‘T_IGI(. Altogether,

i

N —1
Zui(oi/’t:'; ei/) ~ _I |(|1\;| )

iEN

Ok.

On the other hand, feasibility of a rule requires that

o= o] £:0) + {1+ + (IN| = D} <0,

iEN iEN
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or equivalently,

IERY

(0, 1:0)) < —
> uilo], 1:6)) < 5

iEN

)

a contradiction.

Step M-2: If there are k, £ € N such that for all i € N\{kﬁ, 0; > 6, and
o¢ = |NJ|, then 6y = 6. From Step M-1, uy (o, t; 6x) = —WT_IQk. Suppose,
by way of contradiction, that 8; > 6;. By last-agent equal responsibility,
there is (0, 7') € ¢(On\(e3) such that ug(o}, 1,5 6) = —IN‘T_l@k + \Ntll—l . Note

that for all i € N\{£}, 6; > 6. From Step M-1, u(o}, 1;; 6) = —WIT_ZOk,
which implies t; = IN‘T_IOk. Taken together, u;(o¢, t¢; 6¢) = —(|N| — 1) +

MT_IQk < —IN‘T_IQZ, in violation of the identical preferences lower bound.
Therefore, if 0, = |N|, then 6; = 6 and t; = W‘T_l@g.

Step M-3:  Now we show that all agents should end up with the utilities
assigned by the minimal transfer rule, beginning with the agent in the last
position in the queue. Let £ € N be such that o, = |N|. From Step M-2,
te = 216, and for all i € N\{k}, 6; > 6. Let L = N\{¢} and k € L be
such that for all i € L\{k}, 6; > 6. By last-agent equal responsibility, there
is (0/,7) € @(0.) such that o] = o}. From Step M-1 applied to L and &,
ur(oy, ;0 = |L‘T—l9k. Moreover, by last-agent equal responsibility,

¢
ug (0, 1 ) = ui (o, 1 Ok) + >

so that

O 6
w (0%, ti; k) = —(oy — I)Ek - 3‘5

By repeating the argument, we obtain that for all i € N,

0; 6;
(00, 1:0;) = —(0; — )= — 2,
w0 1:6) =~ =3 = > 5
J€Fi(0)
which implies that 7; = (0; — 1)% =D ieFi(0) %.
Step M-4: By Pareto indifference, we obtain the desired conclusion.

(2) To simplify notation, we do not attach the superscript C to o and ¢. First, we

show that ¢ satisfies the identical preferences lower bound. Let N € A, 0 €
9N and (0, 1) € p©(0). Since ¢C satisfies efficiency, for all i EQN, > iepia) % >

9[- . . . . _ i 9[-
(0i—1)5, whichimplies u;(0;, t;; 0;) = —(0i—=1)0i+3_jep.(o) 7 —(IN|—0:) 3

—(IN| - D4.

\Y
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Next we show that ¢ satisfies positive cost monotonicity. Let N € A, 0,
0 € 9V, (0,1) € ¢€(0), (06',1) € ¢°(0'), and k € N be such that for all
i € N\{k}, 6; = 0] and 6, < 6,. By efficiency, ox > o} and for all i € N\{k},
o0; > oy implies o] > o;. We partition N\{k} into Ny, N>, N5 defined by

Ny = {i € N|oy < a;},
N, = {i € N|o; < 0y, 0} < 0]}, and
N; = {i € N|o] < o}}.

We need to show that for all i € N\{k}, u;(0;,1;;6;) < u(o!,t;;0)).

1050 i

(i) If i € N, then by efficiency, 6, > 6;. Therefore, u;j(o],1;6;) —
ui(o;, t;; 0;) = %k — G—Zk > 0, the desired conclusion.
(ii) If i € N, then by efficiency, 6, > 6;. Note that for all j € P;(0)\Pi(c”) or

J € Pi(0")\P;(0) such that j # k, 6; = 6;. Therefore,

0; 0;
ui(0], 15 0) — w0, 17.0) = —(IN| = DO +{ 37 5+ (NI =)}

it
J€Pi(0”)

0; 0;
HINI =10 = 3 5 + (N[ =017}

JEPi(0)
66
T2 2
> 0,

the desired conclusion.
(iii) If i € N3, the desired conclusion comes from the fact that € satisfies
independence of following costs.

Now we show that ¢ satisfies first-agent equal responsibility. Let N € A,
0 € 2V, and (0,1) € ¢€(0). Suppose, without loss of generality, that o7 = 1.
Then, u; (0, t1;601) = —(|N| — 1)%. Consider Oy\(1y € 2N\ By efficiency,
foralli € N\{1}, thereis (0", ) € ¢“(Oy\(13) such that o] = 0; — 1. Moreover,
tf -t = —9—2‘, the desired conclusion.

Conversely, let ¢ be a rule satisfying the four axioms. Let N € .4/, § € 2V,
and (o,1) € ¢(0).

Step C-1:  For k € N such that for all i € N, 6y > 6;, w(op, t;60r) =
—MT_lek. By the identical preferences lower bound, ui(oy,t;0r) >
—IN‘T_IOI(. Suppose, by way of contradiction, that the claim does not hold,
that is, u (o, t; ) > —IN‘T_IQk. Let ' € 2% be such that for all i € N,
6] = Ok and (0/,) € @(0'). By repeated application of positive cost

N1
2

monotonicity, ux(o[, t;; 6x) > — ). By the identical preferences lower
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bound, for all i € N\{k}, u;(o],1;6]) > —'N‘T—lek. Altogether,
N|(|N|—1
> ol 0 > - ML= D 2' Yo
iEN

On the other hand, feasibility of a rule requires that

S t= Y o] £:6)) + {1+ -+ (N - D}, <0,

ieN ieN
or equivalently,

iEN

a contradiction.

Step C-2:  Ifthere are k, £ € N such that foralli € N\{k}, 6; < Oy and oy = 1,

then 6y = 6. From Step C-1, u(oy, t; 6x) = ——|N‘2_l 0. Suppose, by way
of contradiction, that 6, < 6. By first-agent equal responsibility, there is
(0'.7) € @(Bn\(ry) such that ug (o], 1;: 0) = —‘Nl M1, + \NI  + Ok. Note
that for all i € N\{{}, 6; < 6. From Step C-1, uk((rk,tk, 0, = —WITZHk,
which implies #t, = —WIT_IHk. Taken together, uy (0, t; 0¢) = —WIT_IHk <
—IN‘T_IHg, in violation of the identical preferences lower bound. Therefore,
ifop = 1,then6; = 6y and t;, = —‘NlT_lég.

Step C-3: Now we show that all agents should end up with the utilities

assigned by the maximal transfer rule, beginning with the agent in the first
position in the queue. Let £ € N be such that oy = 1. From Step C-2,
t = —Y=16, and for all i € N\{k}, 6; < 6. Let L = N\{{} and k € L be
such that for all i € L\{k}, 6; < 6. By first-agent equal responsibility, there
is (0/,1") € ¢(O.) such that o, = oy — 1. From Step C-1 applied to L and ,
u(oy, t: 0k) = —WT_IG/(. Moreover, by first-agent equal responsibility,

0,
up (0, 1 ) = ux (o, 1x; Ox) — > + 6,

so that

0 N
u(Ox, t; O) = O _| |

> Gk Ok.
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By repeating the argument, we obtain that for all i € N,

0; N =2
ui(0i, ;3 0;) = Z Ej - ||++9i,
JEPi(0)

S 6 9,
which implies that t; = 3 cp. ;) 3 — (IN| —01) 3.
Step C-4: By Pareto indifference, we obtain the desired conclusion. O

Remark 4.1 The minimal transfer rule minimizes the sum of the absolute value of
transfers among all rules satisfying Pareto indifference, the identical preferences
lower bound, and last-agent equal responsibility (Maniquet 2003). On the other
hand, the maximal transfer rule maximizes the sum of the absolute value of
transfers among all rules satisfying Pareto indifference, the identical preferences
lower bound, and first-agent equal responsibility (Chun 2006). We note that a small
aggregate transfer in general is good news for the agents served earlier (the one
receiving negative transfers), but bad news for the agents served later (the ones
receiving positive transfers).

4.4 Balanced Consistency and Balanced Cost Reduction

In this section, we investigate how the minimal and the maximal transfer rules
respond to changes in the set of agents. Balanced consistency requires that the
effect on the payoff from the departure of one agent to another agent should be
equal between any two agents. On the other hand, balanced cost reduction requires
that if one agent leaves a problem, then the total payoffs of the remaining agents
should be affected by the amount previously assigned to the leaving agent. The
minimal transfer rule is the only rule satisfying efficiency and Pareto indifference
together with either one of the two axioms, balanced consistency and balanced
cost reduction. On the other hand, the maximal transfer rule satisfies an alternative
formulation of balanced consistency under constant completion time: upon the
departure of an agent, all of her predecessors are assumed to move back by one
position to keep the completion time constant. Under this alternative formulation,
the maximal transfer rule becomes the only rule satisfying efficiency, Pareto
indifference, and balanced consistency under constant completion time.

We note that the minimal and the maximal transfer rules assign a unique
allocation if and only if all agents have different waiting costs. However, even
when some agents have the same waiting cost, agents’ utilities do not depend on
the choice of efficient queues if the compensation is determined according to the
minimal or the maximal transfer rule. Thus, both rules are essentially single-valued,
in the sense that for a given problem, each agent’s utility is the same at all allocations
that the rule chooses. As a consequence, any efficient queue can be chosen to
calculate the utilities assigned by the two rules. In the formulation of our next two
axioms, balanced consistency and balanced cost reduction, we assume that a rule is
essentially single-valued.
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If an agent leaves a queueing problem, then it will affect the payoffs of other
remaining agents. Balanced consistency requires that the effect of agent i leaving
a queueing problem on the payoff of another agent j # i should be the same as the
effect of agent j leaving a queueing problem on the payoff of agent i. It is similar to
“preservation of differences” of solutions for games (Hart and Mas-Colell 1989).’
To stress the fact that the axiom concerns situations in which an agent leaves a
queueing problem similar as players leave a game in consistency properties, this
property is referred to as balanced consistency.*

Balanced consistency: ForallN € 4, all 0 € 2V, alli,j € N, all (0,1) € (),
all (07,17) € p(Ow\y), and all (677, 17) € p(On\(3)s

M[(O’, t) — I/li(O'_j, l_j) = Mj(CT, t) — Mj(CT_i, l‘_i).

Now we investigate the implications of balanced consistency in the context
of queueing problems. First, we show that the minimal transfer rule satisfies the

property.

Lemma 4.1 The minimal transfer rule satisfies balanced consistency.

Proof Let N € 4 and § € 2V. From the essential single-valuedness of ™, we
may choose any (0.7) € ¢¥(0). Let i, j € N be such that j € P;(c) (and thus
i € Fj(0)). To simplity the notation, we do not attach the superscript M to ¢ and ¢.
Then, for all (07, 177) € M (Oy\(3) and all (677, 17) € M (O,

Mi(Us t) - Ml'(o—_js t_])

= @1l > b (-2 > %

2 2 2
kEF;(0) k€Fi(o)
0;
=, 4.1
5 4.1
and
ui(o,1) —uj(oc™", 1)
. 0 6; O
) D T (I B SR
kEF;(0) keF;(o)\{i}
__ b (4.2)
= 2_ .

3This property states that the effect of player i leaving the game on the payoff of player j # i is
equal to the effect of player j leaving the game on the payoff of player i.

“Note that in the balanced contributions property introduced by Myerson (1980) for cooperative
games with a restricted set of feasible coalitions, the player set is fixed.
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Altogether, we conclude that the minimal transfer rule satisfies balanced consis-
tency. 0

We ask whether there is any other rule satisfying efficiency and Pareto indiffer-
ence together with balanced consistency. As it turns out, the minimal transfer rule
is the only one satisfying the three axioms together. Before proceeding to our first
main result, we state the following lemma.

Lemma 4.2 If a rule ¢ is efficient, then for all N € A, all 0 € 2N, all (0,1) €
@(0),alli € N, and all (67", 17") € (On\giy),

duoy— D uoT ) =—(oi— Dbi— Y by (4.3)

JEN JEN\{i} keFi(o)

Proof For all (0,1) € ¢(f). alli € N, and all (6",1") € @(Owy). efficiency
implies that

Y uie.) ==Y (05— 1)

jEN jEN

and

Z uilo ™ 1) = — Z (0j — 16 — Z Z 6.

JEN\{i} JEPi(0) JEFi(0) kePj(o)\{i}

Since, by efficiency, all agents are served in the nonincreasing order with respect
to their waiting costs, subtracting these two equations from each other, we obtain
Eq. (4.3). O

Now we are ready to show our characterization result based on balanced
consistency. We note that if o; € {1,...,|N|} is determined and u;(o, t) is known,
then also ¢; is determined.

Theorem 4.3 (van den Brink and Chun 2012) The minimal transfer rule is the
only rule satisfying efficiency, Pareto indifference, and balanced consistency.

Proof 1t is well-known that the minimal transfer rule satisfies efficiency and Pareto
indifference, and from Lemma 4.1, it satisfies balanced consistency. Conversely, let
@ be a rule satisfying the three axioms. Let N € .4 and § € 2" be given. If
|N| = 1, then efficiency implies that 0; = 1 and t;, = 0 for i € N.

Let N be such that |N| = 2. Without loss of generality, we may assume that
N = {i.j}and that 6; > 0. Let (0,1) € (). (07", 17") € p(6i\(3), and (077, 17) €
©(On\(jy)- By balanced consistency, ui(o,t) —u;(07,t7) = uj(o, 1) — uj(c™, 7).
Since u;(c™/,t7) = uj(oc™',t7") = 0, we have u;(0,1) = uj(o,1). By efficiency,
ui(o,1) + uj(o,t) = —0;. Altogether, we obtain u;(0,1) = u;(o,1) = —% By
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efficiency and Pareto indifference, we may assume that o; = 1 and 0; = 2. Then,
t = —% = —1;, as desired.

We will establish the claim for an arbitrary number of agents by an induction
argument. Let N = {1,2,...,n}, 0 € 2V and (0,1) € ¢(0). By efficiency and
Pareto indifference, we may assume without loss of generality that 6; > 6, > --- >
0., and that o; = i for all i € N. As induction hypothesis, suppose that for all
N' € 4 such that [N'| < |[N| — 1 and all 9/ € 2V, ¢(0") = ¢™(#’). For all
i € N, let (67, 17") € ¢(Oy\(1y)- By balanced consistency, for all i, j € N, u;(0, 1) —
ui(0,t7) = uj(0,1) —uj(c™",¢7"). Now fix i, change j # i from 1 to n, and add
up the (n — 1) equations obtained in this way. We have:

(=D = > w07 r7) = ) (o) —uo".17).

JEN\{i} JEN\{i}

Adding ui(0, 1) + 3 jen ui(c~, ) to both sides gives

nouon) =Y wo.)— Y wo T )+ Y wleT. ). (44)

JEN JEN\Li} JEN\i}

From the induction hypothesis, it follows that

i 0; 0
owel==3 | 3 535

JEN\{} JEPi(0) \keP;i(0)\{j} keFi(o)
6; Ok
+2 X3 X 3
JEFi(0) \k€Pi(0) keFi(o)\{j}
. 0 . Ok
= (== D5 (=1 > >
kEFi(0)
. 0; . Ok
—(n=i)oi= D5 —(r—i—1) > >
kEF;i(0)
9,' ek
=—(n=2)(0i—1)5 —(n—2) > 5 (4.5)
kEF;i(0)

Using Lemma 4.2, substituting Egs. (4.3) and (4.5) into Eq. (4.4) yields

n-ui(o,1) = =2(0; — 1)% -2 ) %

kEFi(0)
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0; 0
~( =i ~D5 =2 Y

kE€Fi(0)
9,‘ 9/(
= —n(cri — 1)5 —n Z E,
kEF(0)
or equivalently,
ui(0,1) = —(0; — 1)ﬁ - > % _ ui(o™, M) (4.6)
1 ’ 1 2 2 1 ) . .
kEFi(0)

By efficiency, o € Eff(0), and thus Eq. (4.6) fixes the transfers

6, »
l‘i:(Ui—l)E— Z %:t{u’

J€Fi(0)

as desired. O

Remark 4.2 Although “preservation of differences” is typical for the Shapley value,
it is not obvious for queueing problems that balanced consistency characterizes the
minimal transfer rule since the maximal transfer rule is also obtained as the Shapley
value of a pessimistic queueing game (for details, see Sect. 3.4).

Remark 4.3 Upon the departure of an agent, if we assume that all of her prede-
cessors are moving back by one position to keep the same completion time, an
alternative balanced consistency under constant completion time property can be
formulated. The maximal transfer rule is the only rule satisfying efficiency, Pareto
indifference, and balanced consistency under constant completion time.

Now suppose that an agent leaves a queueing problem. Since the agent is not
in the queue anymore, the total waiting cost of all the remaining agents will be
decreased. In other words, the presence of an agent generates a negative externality
to any other agent. Balanced cost reduction requires that the total (overall remaining
agents) decrease in this negative externality as a result of the departure of an agent
be equal to the negative of the payoff of the departing agent when she is still present.

Balanced cost reduction: Forall N € 4, all 0 € 2V, allj € N, all (0,1) €
@(0), and all (677,17) € p(On\()-

Z (M,'(O', 1) — M,'(O'_j, t_j)) = uj(o, 1).
iEeN\{j}

We explore the implications of balanced cost reduction in the context of queueing
problems. First, we show that the minimal transfer rule satisfies the property.

Lemma 4.3 The minimal transfer rule satisfies balanced cost reduction.
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Proof LetN € 4,0 € 2V andj € N. From the essential single-valuedness of o™,
we may choose any (0,7) € 9" (0) and any (677, 17) € M (Oy\(3). To simplify the
notation, we do not attach the superscript M to ¢ and ¢. From Eqgs. (4.1) and (4.2) in
Lemma 4.1, we can derive that

3 w00 —uto ") = o~ g~ 3 &

iEN\{} i€F;(0)

= uj(o, 1),

showing that the minimal transfer rule satisfies balanced cost reduction. O
Next we present our second characterization.

Theorem 4.4 (van den Brink and Chun 2012) The minimal transfer rule is the
only rule satisfying efficiency, Pareto indifference, and balanced cost reduction.

Proof 1t is well-known that the minimal transfer rule satisfies efficiency and Pareto
indifference, and from Lemma 4.3, it satisfies balanced cost reduction.

Conversely, let ¢ be a rule satisfying the three axioms. Let N € .4  and § € 2V
be given. If |N| = 1, then efficiency implies that 0; = 1 and t; = 0 for i € N. Now
let N be such that [N| > 2, j € N be a leaving agent, and (677, 17) € ¢(6\¢1)- By
balanced cost reduction,

Z (M,'(O', ) —ui(o77, t_j)) = uj(o, 1).
ieN\{j}

Adding u;(0, 1) to both sides gives

Zui(o,t)— Z w0, 17) = 2ui(0, 1). 4.7

ieN ieN\{j}

Using Lemma 4.2 and substituting Eq. (4.3) into Eq. (4.7) yield

2ui(0,1) = —(g;— 16— Y _ 6,

i€Fj(0)

which implies that

0; 0;
w(0.0) = (=5 = Y 5 =u".M. 4.8)

iEF/'((I)
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By efficiency and Pareto indifference, we choose all efficient queues in Eff (¢), and
for any o € Eff(6), Eq. (4.8) fixes the transfers

0; 0;
h==D5— Y 5 =1"

) 2
i€Fj(0)

the desired expression.’ O

Remark 4.4 We note that our two characterizations of the minimal transfer rule on
the basis of balanced consistency or balanced cost reduction in addition to efficiency
and Pareto indifference carry over to either sequencing problems or scheduling
problems. In fact, van den Brink and Chun (2012) present their characterizations
in the context of sequencing problems.

4.5 Concluding Remarks

In this chapter, we present characterizations of the minimal and the maximal
transfer rules on the basis of various axioms. Another axiom widely discussed in
the literature specifying how a rule should respond to changes in the population is
population solidarity (Chun 1986; Thomson 1983a,b; and others®): it requires that
upon the departure of an agent, all the remaining agents should be affected in the
same direction, all gain or all lose. The minimal transfer rule satisfies population
solidarity, but the maximal transfer rule does not satisfy it (Chun 2006). On the
other hand, as in Remark 4.3, upon the departure of an agent, if we assume that all
of her predecessors are moving back by one position to keep the completion time
constant, then both the minimal and the maximal transfer rules satisfy the alternative
population solidarity under constant completion time property. It remains an open
question whether the minimal or the maximal transfer rules can be characterized on
the basis of population solidarity.

Another question for future research is to investigate axioms concerning changes
in the parameters of the queueing problem without changing the set of agents,
such as the before mentioned balanced contributions property (Myerson 1980) or
fairness (Myerson 1977; van den Brink 2001).

>Note the difference with the end of the proof of Theorem 4.3. In the proof of Theorem 4.4, we
need to make sure to choose all efficient queues, and for any efficient queue, we have the desired
formula. In the induction proof of Theorem 4.3, one efficient queue is chosen already from the
beginning.

6See Thomson (1995) for a survey.



46 4 Independence, Monotonicity, and Balanced Consistency

References

Chun, Y. (1986). The solidarity axiom for quasi-linear social choice problems. Social Choice and
Welfare, 3, 297-310.

Chun, Y. (2006). A pessimistic approach to the queueing problem. Mathematical Social Sciences,
51,171-181.

Chun, Y., & Thomson, W. (1988). Monotonicity properties of bargaining solutions when applied
to economies. Mathematical Social Sciences, 15, 11-27.

Hart, S., & Mas-Colell, A. (1989). Potential, value and consistency. Econometrica, 57, 589—-614.

Maniquet, F. (2003). A characterization of the Shapley value in queueing problems. Journal of
Economic Theory, 109, 90-103.

Moulin, H. (1987). The pure compensation problem: Egalitarianism versus laissez-fairism.
Quarterly Journal of Economics, 102, 769-783.

Moulin, H., & Thomson, W. (1988). Can everyone benefit from growth? Two difficulties. Journal
of Mathematical Economics, 17, 339-345.

Myerson, R. B. (1977). Graphs and cooperation in games. Mathematics of Operations Research,
2,225-229.

Myerson, R. B. (1980). Conference structures and fair allocation rules. International Journal of
Game Theory, 9, 169-182.

Roemer, J. (1986). Equality of resources implies equality of welfare. Quarterly Journal of
Economics, 101, 751-784.

Thomson, W. (1983a). The fair division of a fixed supply among a growing population. Mathemat-
ics of Operations Research, 8, 319-326.

Thomson, W. (1983b). Problems of fair division and the Egalitarian solution. Journal of Economic
Theory, 31,211-226.

Thomson, W. (1995). Population monotonic allocation rules. In W. A. Barnett, H. Moulin, M.
Salles & N. J. Schofield (Eds.), Social choice, welfare, and ethics (pp. 79—124). Cambridge:
Cambridge University Press.

Thomson, W. (1999). Welfare-domination under preference-replacement: A survey and open
questions. Social Choice and Welfare, 16, 373-394.

van den Brink, R. (2001). An axiomatization of the Shapley value using a fairness property.
International Journal of Game Theory, 30, 309-319.

van den Brink, R., & Chun, Y. (2012). Balanced consistency and balanced cost reduction for
sequencing problems. Social Choice and Welfare, 38, 519-529.



Chapter 5
No-Envy

5.1 Introduction

No-envy, introduced by Foley (1967), requires that no agent should end up with a
higher utility by consuming what any other agent consumes, and its implications
have been studied for a wide class of problems. In this chapter, we investigate the
implications of no-envy in the context of queueing problems.

First, it is not difficult to show that no-envy implies queue-efficiency. Then, we
identify an easy way of checking whether a rule satisfies no-envy. It can be described
in a simple way: choose any efficient queue, and then check the difference of
transfers between any two neighboring agents. If the difference is not greater than
the higher waiting cost of the two agents and is not smaller than the lower waiting
cost of the two agents, then it passes the no-envy test. Of course, it is an immediate
consequence of no-envy that an agent served earlier should receive a smaller transfer
than an agent served later. The existence of such a rule can easily be established.

We also investigate whether there is a rule satisfying efficiency and no-envy
together with either one of two cost monotonicity axioms, negative cost mono-
tonicity and positive cost monotonicity (see Sect. 4.3 for more explanation on these
axioms). We show that if the society consists of more than two agents, then there
is no rule satisfying efficiency, no-envy, and either negative cost monotonicity or
positive cost monotonicity.!

Faced with the impossibility results, we propose modifications of no-envy. To
apply no-envy, each agent is supposed to reevaluate what any other agents consume.
In the queueing problem, an allocation consists of agents’ positions in the queue
and their transfers, and a rule determines the transfers by agents’ positions and

'As we show later, if the society consists of only two agents, then the minimal transfer rule
satisfies efficiency, no-envy, and negative cost monotonicity, and the maximal transfer rule satisfies
efficiency, no-envy, and positive cost monotonicity. Moreover, the rules can be characterized by
these axioms if Pareto indifference is additionally imposed. See Remark 5.2 for details.
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waiting costs. If two agents interchange their positions in the queue, then their
transfers would not be the same as before because their waiting costs are different.
Adjusted no-envy requires that an agent should not envy the other agents after
making the adjustment in transfers. Our second modification of no-envy requires that
an agent should not envy the other agents at least in one direction. More specifically,
backward no-envy requires that an agent should not envy the agents with lower
waiting costs, whereas forward no-envy requires that an agent should not envy the
agents with higher waiting costs. For each of these modifications, we show that the
impossibility results do not hold any more. In fact, the minimal transfer rule satisfies
efficiency, negative cost monotonicity, adjusted no-envy, and backward no-envy, and
the maximal transfer rule satisfies efficiency, positive cost monotonicity, adjusted
no-envy, and forward no-envy.

Other fairness requirements widely discussed in the literature are the identical
preferences lower bound which requires that each agent should be at least as well off
as she would be, under efficiency and equal treatment of equals, if all other agents
had the same preferences, and egalitarian equivalence which requires that there
should be a reference bundle such that each agent enjoys the same welfare between
her bundle and that reference bundle. We investigate whether the three requirements
are compatible in the current context. First, it is easy to show that efficiency and
no-envy together imply the identical preferences lower bound. Also, we can show
an existence of a rule satisfying efficiency, egalitarian equivalence, and the identical
preferences lower bound. However, if we have more than three agents, then there is
no rule satisfying no-envy and egalitarian equivalence together.

The chapter is organized as follows.? Section 5.2 explores the implications of no-
envy, and Sect. 5.3 shows that the incompatibility of efficiency, no-envy, and either
one of two cost monotonicity axioms. Section 5.4 introduces two modifications of
no-envy, adjusted no-envy and backward/forward no-envy, and investigates their
implications. Section 5.5 discusses whether three fairness requirements, no-envy,
the identical preferences lower bound, and egalitarian equivalence, are compatible
in this context. Concluding remarks follow in Sect. 5.6.

5.2 Efficiency and No-Envy

No-envy requires that no agent should end up with a higher utility by consuming
what any other agent consumes. It is a standard requirement in the studies of fairness
for a wide class of problems (Thomson 2005; Thomson and Varian 1985). Given
N € .4 and § € 2V, an allocation (0, ) € Z(0) satisfies no-envy if for all i, j € N,
ui(0y, t;; 0;) > ui(oy, t;; 0;). Let F(0) be the set of all no-envy allocations for 6 € 9N,

No-envy: Forall N € .4/, all 0 € 2V, and all (0, 1) € ¢(9), (0,1) € F(0).

2This chapter is based mainly on Chun (2006). Propositions 5.1 and 5.4 are based on Chun et al.
(2014).
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It is not difficult to show that no-envy implies queue-efficiency, which requires
that agents should be served in the non-increasing order with respect to their unit
waiting costs.

Proposition 5.1 (Chun et al. 2014) No-envy implies queue-efficiency.

Proof Let ¢ be a rule satisfying no-envy. Let N € A, 0 € 9N i, j € N, and
(0,1) € p(0). For agent i not to envy j at (o, 1), we have

—(i =Dl +t=—(0;— Db+ or ti—1;>(0;—0))b;
On the other hand, for agent j not to envy agent i, we have
—(o; =10+t > —(0;—1)0;+1t; or t—1;> (05 —0;)0;
Combining these two inequalities together, we obtain
(01 —0)b; = t; — 1; < (0; — 0)) ;. (5.1

The two conditions on the transfers are compatible only when (0; —0;)(6; — 6;) < 0.
Hence, if 6; > 6;, then 0; < crj,3 which is the condition for queue-efficiency. O

Now we present a simple way of checking whether a rule satisfies no-envy.

Theorem 5.1 A rule ¢ satisfies no-envy if and only if for all N € A such that
N ={l,....n},all 0 € 2" and all (0,1) € ¢(0), o € Eff(9) and for all o; =
1, BRI 1, 9(7,- = t(r,-+l - t(r,- = 9(7,-+1-

Proof Let ¢ be a rule satisfying no-envy. Let N = {1,...,n},0 € 2", and (0,1) €
©(60). By Proposition 5.1, since no-envy implies queue-efficiency, o € Eff(0). To
simplify notation, we assume that 6, > 6, > --- > 6,, and foralli € N, 0; = i. Let
i,j € N. We may also assume, without loss of generality, thatj = i 4 k for k € N.

First, for i not to envy j, u;(0;, t;; 0;) > u;(0;, t;; 6;), which is equivalent to #; —
(i—106; > tj— (j— 1)6; or k6; > t; — t;. In particular, if j = i + 1, this inequality
becomes 0; > t;41 — t;, the desired expression. Applying this inequality recursively,
forall ¢ =i,...,i+ k— 1, we have 6y > ;41 — t;. Summing these inequalities,

;;l;_l 0y > tiyr — 1. Since queue-efficiency (implied by no-envy) implies that
kO; > Zf:j_l ¢, we have kf; > t; — t;. Therefore, it is sufficient to check the
inequality between neighboring agents.

Similarly, for j not to envy i, t; — #; > k6;11. In particular, if j = i + 1, this
inequality becomes t;+1 — #; > 6;+1. Once again, by the same reasoning, we obtain

the desired conclusion. O

Example 5.1 (The Minimal and the Maximal Transfer Rules Do Not Satisfy No-
Envy) Let N € A besuchthat N = {1,2,3},0 € 2", and 6 = (6,4,2). Then,

3Since this is a queue on a single machine, o; # o;.
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eM(0) = (oM,M) is obtained by setting 0¥ = (1,2,3) and M = (-3,1,2).

Note that agent 3 envies agent 2 since u(02!, 215 6;) = —1 > u(o}, & 0;) = —2.
On the other hand, p€(0) = (0¢,) is obtained by setting 6¢ = (1,2,3) and
1€ = (—6,1,5). Note that agent 1 envies agent 2 since u(of,15;6;) = =5 >
u(alc,tlc; 91) = —6.

Example 5.2 (Rules Satisfying Efficiency and No-Envy) Let N € .4 be such that
N ={l...,n}and § € 2V. To simplify our notation, we suppose that 6; > --- > 6,
and o; = i. First, let f; = «;. We will determine «; after considering the budget
constraint. Now, for i = 2,...,n, we choose o; € [6;,0;—1] and t; = Z;’:l ;.
Finally, we choose «; such that ) ,.y % = 0. An alternative rule can be given
starting from n. Once again, let £, = —f,. We will determine B, after considering
the budget constraint. Now, for i = n —1,...,1, we choose B; € [0;+1,6;] and
t; = —>_i_; Bj- Once again, we choose B, such that 3 .oy #; = 0. Clearly, these
processes lead to rules satisfying efficiency and no-envy. Moreover, it is interesting
to note that the symmetrically balanced VCG rule satisfies efficiency and no-envy in
the current context (Chun 2005).

Remark 5.1 As shown in Svensson (1983), in economies with indivisible goods, no-
envy implies object-efficiency.* Also, no-envy is equivalent to group no-envy,> and
the set of envy-free allocations coincides with the set of equal income Walrasian
allocations.® Similar observations can be made for queueing problems.’

5.3 No-Envy and Cost Monotonicity

We investigate whether there is a rule satisfying efficiency and no-envy together with
either one of two cost monotonicity axioms (Sect. 4.3): negative cost monotonicity
requires that an increase in an agent’s waiting cost should cause all other agents
to weakly lose, whereas positive cost monotonicity requires that an increase in an
agent’s waiting cost should cause all other agents to weakly gain. The answer is no.

Theorem 5.2 Let |N| > 3. Then, there is no rule satisfying efficiency, no-envy, and
either negative or positive cost monotonicity.

4Object-efficiency requires that there is no feasible allocation which makes every agent better off

and at least one agent strictly better off.

SGiven two groups of the same size, suppose that a group redistributes among its members what

is available to the other group. If a rule selects an allocation which is impossible to make every

agent in the group better off, with at least one agent strictly better off, even after considering the
ossibility of redistribution, then the rule satisfies group no-envy.

p y group .

6 Allocations that can be supported as Walrasian equilibrium with an equal implicit income.

7For this, a position in a queue is considered as an indivisible good.
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Proof

(1) Let ¢ be a rule satisfying efficiency, no-envy, and negative cost monotonicity.
LetN e 4,0 € 2V and (0,t) € p(f) besuchthat N = {1,...,n} withn > 3
and 0 > 6, > --- > 0,. By queue-efficiency, forall i € N, o (i) = i. Moreover,
from Theorem 5.1, foralli =1,...,n—1,6; > ti+1 — t; > Bi41.

Case 1-1: There exists i € N\{n} such that 6; > ;41 — 0;+. Let @ €]0, 1] be
suchthatfi+; — t; = ab; + (1 —a)(1 —)0iy; = 041 + @ (6; — 6;41). Let
& > 0 be such that e < a(6; — 6;11) and 6] = 04 + &. Let 6’ be the waiting
cost vector obtained from 6 by replacing 6; with 6] and (¢”,7) € ¢(0’).

By negative cost monotonicity, all agents except i weakly gain. Since the
decrease of 6; to Hi’ does not change the efficient queue, that is, for alli € N,
o'(i) = i, this is possible only if for all j # i, f; > t;. By budget balance,
tz/‘ < t;. Altogether, tz/'+l — tz/‘ >tip1—t = 0ip1 + (0, — 0i41) > i1 + 6 =
0! > 0,41, which contradicts the conclusion of Theorem 5.1.

Case 1-2: Foralli=1,...,n—1,t;41 — t; = 6;41. Leti € N\{1,n} and 6/
be such that §; > 6/ > 6,1,. Let 6’ be the waiting cost vector obtained from
6 by replacing 6; with 6/ and (¢’ 7') € @(8’). By negative cost monotonicity,
all agents except i weakly gain. Since the decrease of 6; to 6/ does not change
the efficient queue, this is possible only if for all j # i, tj’ > t;. By budget
balance, t; < t;. Altogether, £, | —t; > tiy) —t; = O If £, — 1] >
0i+1 = 0/, ,, then we go back to Case 1-1 and obtain the desired conclusion.
If £, | —t; = 0,41, by budget balance, we deduce that for all j € N, tj’. =1
In particular, 7, — f,_, = 6;. Since 6,_; = 6/_, > 1, —1._, > 6/, we go back
to Case 1-1 and obtain the desired conclusion.

(i) Let ¢ be a rule satisfying efficiency, no-envy, and positive cost monotonicity.
LetN € 4,0 € 2V, and (0,t) € p(9) besuchthat N = {1,...,n} withn > 3
and 0; > 0 > --- > 0,. By queue-efficiency, forall i € N, o (i) = i. Moreover,
from Theorem 5.1, foralli=1,...,.n—1,60; > ti+1 — t; > Oi41.

Case 2-1:  There exists i € N\{n} such that 6; > t;4; —t; > 0;4,. Leta €
[0, 1[ be such that f;; —t; = ab; + (1 — O{)QH_l =0y + 06(95 —6i41). Let
&> 0besuchthat6; > 0,41 +¢& > 0;4; +Oé(95 —95+1) and 9{+1 =01 t+e.
Let 6’ be the waiting cost vector obtained from 6 by replacing ;1 with 6/
and (o/,7) € ¢(0).

By positive cost monotonicity, all agents except i + 1 weakly gain. Since
the increase of 0;4; to 9{ 1 does not change the efficient queue, that is, for
alli € N, ¢’ (i) = i, this is possible only if forall j # i+ 1, tj’ > t;. By budget
balance, l‘:»+1 < tit1. Altogether, l‘:»+1 _tz/‘ <tiy1—ti = 9,‘+1 +O[(95 — QH—I) <
Oi+1 + & = 0., < 0;, which contradicts the conclusion of Theorem 5.1.

Case 2-2:  Foralli = N\{n}, ti11 —t; = 0;. Leti = N\{1, n}, and 6/ be such
that ;_; > 6] > 0,. Let 6’ be the waiting cost vector obtained from 6 by
replacing 6; with 8] and (0/, 1) € @(8’). By positive cost monotonicity, all
agents except i weakly gain. Since the increase of 6; to 8] does not change
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the efficient queue, this is possible only if for all j # i, tl’ > t;. By budget
balance, t, < t;. Altogether, /,—#,_, < ti—ti-) = 0;—1. If f,—#/_; < 0;—, then
we go back to Case 2-1 and obtain the desired conclusion. On the other hand,
ifr; —1i_, = 6] = 0,1, by budget balance, we deduce that for all j € N,
t; = t;. In particular, | —#; = ti+1 — t; = ;. Since 6] >t} — 1, > Oiy1,
we go back to Case 2-1 and obtain the desired conclusion. O

Remark 5.2 For |[N| = 2, it is clear from the proof that there is only one rule
satisfying efficiency, Pareto indifference, no-envy, and negative cost monotonicity.®
It is obtained by setting ¢, = —0—22 and 1, = %, which is the allocation chosen by
the minimal transfer rule. The conclusion follows by noting that for |[N| = 2, the
minimal transfer rule satisfies the four axioms. A parallel observation can be made
for the maximal transfer rule: for |[N| = 2, the maximal transfer rule is the only rule

satisfying efficiency, Pareto indifference, no-envy, and positive cost monotonicity.

Next, we ask whether there is a rule satisfying efficiency and no-envy together
with either one of two independence requirements (Sect.4.2): independence of
preceding costs requires that an increase in an agent’s waiting cost should not affect
the agents following her, whereas independence of following costs requires that a
decrease in an agent’s waiting cost should not affect the agents preceding her. Once
again, we obtain negative results.

Theorem 5.3 Let [N| > 3. Then, there is no rule satisfying efficiency, no-envy, and
either independence of preceding costs or independence of following costs.

Proof

(i) Let ¢ be a rule satistying efficiency, no-envy, and independence of preceding
costs. LetN € A, 0 € 2V, and (0,1) € p(#) be such that N = {1, ...,n} with
n>3and 0y > 0, > --- > 0,. By queue-efficiency, foralli € N, o(i) = i.
From Theorem 5.1, foralli =1,...,n—1,6; > t;y1 — t; > 6;y1.

Now let 6" be such that 6] = 6] and that for all i = 3,...,n, 0] = 6,.
Let (o/,7) € ¢(0’). Furthermore, we assume that 6, > max{6s,2(t3 — 03) —
(t1 + 12)}. By independence of preceding costs, for all i = 3,...,n, t; = .
First, we consider the case 0y = 1 and 0» = 2. By no-envy, t, — |, = 0,.
Therefore, t, — ] = 6} > 2(t3 — 63) — (1 + t»). Since budget balance requires
that#} + ¢, = 1 + t,, we have 6} = 03 > 13 — 1, = t; — 1}, contradicting the
conclusion of Theorem 5.1. The case 07 = 2 and 0, = 1 can be handled in a
similar way.

(i) Let ¢ be a rule satisfying efficiency, no-envy, and independence of following
costs. Let N € A, 0 € 2V, and (0,f) € ¢(f) be such that N = {1,...,n}
withn > 3,0, = 6, > 63 > --- > 0, and 65 > 0. By queue-efficiency, for
all i € N\{1,2}, a(i) = i. First, we consider the case 0y = 1 and 0, = 2.

8Tf Pareto indifference is not imposed, then it is possible to choose only one efficient queue when
two agents have equal waiting costs.
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From Theorem 5.1, foralli = 1,...,n— 1, 6; > t;+1 — t; > 0;11. In particular,
Hh—t =0iandt, > --->13 > 1.

Now let 0" be such that 6] = 6 and ) = --- = 0, = 0. By independence
of following costs, t| = t|. By budget balance and no-envy, foralli =2, ... ,n,
= ﬁ Z};z t;, which implies that 7, > 1,. Altogether, t, — ¢} >, — 1) =
0, = 91’, which contradicts the conclusion of Theorem 5.1. The case o7 = 2
and 02 = 1 can be handled in a similar way. O

Remark 5.3 As in Remark 5.2, these impossibility results do not hold if |[N| = 2.
Then, the minimal transfer rule satisfies efficiency, no-envy, and independence
of preceding costs, and the maximal transfer rule satisfies efficiency, no-envy,
and independence of following costs. Moreover, by imposing Pareto indifference
additionally, the rules can be characterized.

5.4 Adjusted No-Envy and Backward/Forward No-Envy

Given the negative results presented in Sect. 5.3, we propose modifications of no-
envy, which can be imposed in the context of queueing problems. As we show here,
these modifications have a significant effect since we can recover positive results.

To apply no-envy, each agent is supposed to reevaluate what any other agents
consume. In the queueing problem, an allocation consists of agents’ positions in the
queue and their transfers, and a rule determines the transfers by agents’ positions
and waiting costs. If two agents interchange their positions in the queue, then their
transfers would not be the same as before because their waiting costs are different.
After this adjustment, if an agent does not envy the other agents, we say that the
rule satisfies adjusted no-envy. To state the requirement formally, we introduce some
notation. Given N € A, 0 € 2V, (0,1) € ¢(0), and i,j € N, let 6/ be the queue
obtained from o by interchanging o; and o; and ¢/ be the transfer vector obtained
when the rule is applied to o¥. Since this queue is not efficient in general, strictly
speaking, we need to generalize our notion of a rule so that it be applicable to any,
not necessarily efficient, queue. For simplicity, we abuse our definition and apply
the rule to any queue.

Adjusted no-envy: ForallN € .4, all 0 € 9N all (0,1) € p(0),and alli,j € N,
ui(0i, 1 6;) = wi(o? 1] 0;).
It is interesting to note that both the minimal and the maximal transfer rules satisfy

this requirement.

Proposition 5.2 The minimal and the maximal transfer rules satisfy adjusted no-
envy.

Proof

(i) We show that the minimal transfer rule satisfies adjusted no-envy. Let N €
N, 0 € 2V and (6™, ™M) € ¢M(f) be such that N = {1,...,n} and
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0, > 6, > --- > 6,. To simplify notation, for all i € N, we set alM = . Also,
we do not attach the superscript M to o and ¢. Let i, j € N. We may assume,
without loss of generality, that j = i 4 k for some k € N.

First, we show that i does not envy j = i + k if the adjustment is made. Note

that
) 0; "6
ui(0i, 150 = (i = )5 = Z -~ =1b,
{=i+1
and
(cr” t‘/ 9)—(z+k—1)—— 2”: %—(z+k—1)9
i 2 , 2
(=i+k+1
Therefore,
0. i+k 0,
LatHQ — U lj’tlj’e Zk_L_ _>09
u;(0; ) —ui(o;, 175 0;) > 4=,Z+12_

as desired. Similarly, we can show thatj = i4-k does not envy i if the adjustment
is made.
(ii)) Now we show that the maximal transfer rule satisfies adjusted no-envy. Let
N e #,0 e 2V and (6€,1°) € ¢C(0) be such that N = {1,...,n} and
0, > 0, > --- > 6,. To simplify notation, for all i € N, we set aic = i. Also, we
do not attach the superscript C to o and ¢. Let i, j € N. We may assume, without
loss of generality, that j = i 4 k for some k € N.
First, we show that i does not envy j = i + k if the adjustment is made. Note

that
0y
ui (0. 1i: 6;) = Z —— (- ,)_ —(i—1)6,
(=1
and
i+k—1
0, 6, 6 0;
ij 119 _ =2+ _m—i—k= =G+ k=1)6.
ui(o7, ) = L > 2+2 (n—i )2 i+ )
Therefore,

9 i+k—1 9[ 9
ui(o, 11:0) — ui(a? 17 6;) = -2 — Z 2kl >o,
2 =2 2
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as desired. Similarly, we can show thatj = i+k does not envy i if the adjustment
is made. O

Now we propose two weakenings of no-envy, which require that an agent should
not envy other agents at least in one direction. Backward no-envy requires that an
agent should not envy the agents with lower waiting costs (therefore, following
her in the efficient queue with the possible exception of agents with the same
waiting cost), whereas forward no-envy requires that an agent should not envy the
agents with higher waiting costs (therefore, preceding her in the efficient queue
with the possible exception of agents with the same waiting cost). In the language
of Theorem 5.1, backward no-envy, together with efficiency, requires that for all
oi =1,...,n—1, 05 > t541 — t5. On the other hand, forward no-envy, together
with efficiency, requires that 75,11 — t5, > 05,41. The minimal transfer rule satisfies
backward no-envy, while the maximal transfer rule satisfies forward no-envy.

Backward no-envy: Forall N € .4, all § € 2V, all (0,¢) € ¢(0), and all i,
Jj €N, if 6; > Qj, then Lti(O',', ti; 9,) > M,(O'], 1 9,)

Forward no-envy: ForallN € 4, all 8 € 2V, all (0,1) € ¢(0),and all i,j € N,
if 6; < 9]‘, then M,'(O',', ti; 9,) > uj(aj, N 9,)

Proposition 5.3 The minimal transfer rule satisfies backward no-envy and the
maximal transfer rule satisfies forward no-envy.

Proof Let N € 4,0 € 2V, and (0,1) € ¢(#) be such that N = {1,...,n} and
0, > 6, > --- > 0,. First, we show that the minimal transfer rule satisfies backward
no-envy. To simplify notation, for all i € N, we set O'I-M = i. Also, we do not attach
the superscript M to o and . Since the minimal transfer rule satisfies efficiency and
equal treatment of equals, it is enough to show thatfori = 1,...,n—1,if 6; > 0,41,
i does not envy i + 1. From the definition of the minimal transfer rule,

. " 0.
i(0n.1:0) = —(0; — D0+ 1, = —(— D)0 + (i — )= — =,
ui(0315:0) = —(0i = Db + 1 = —( = Db+ (= D5 = D 3

j=i+1
and
Ui(Oit1, tig 13 0) = —(0ip1 — 1)6; + tig1 = —ib; —i—i% — zn: b
i\Oi+1, Li+1, Yj i+1 i i+1 i ) pA 2
j=i+2
Therefore,
0 6
ui(0i, 15 0;) — ui(0i1, tiv1; 0) = (i + 1)(5 - %) >0,
as desired.

Next, we show that the maximal transfer rule satisfies forward no-envy. To
simplify notation, foralli € N, we seto" = i. Also, we do not attach the superscript
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C to o and t. Since the maximal transfer rule satisfies efficiency and equal treatment
of equals, it is enough to show that fori = 1,...,n—1,if ,_; > 6;, i does not envy
i — 1. From the definition of the maximal transfer rule,

i—1

0; 0;
i(0i 13 0;) = —(0i — DO +1; = —(i — 1)6; F—(n—0)=,
ui(01, 15 0) = —(01 = 1)O; + ti = (i )+j=Z12 (n =)
and
22 p
. j i1
ui(oi—1, ti—1;0;)) = —(0i—1 — 1)0; + ti-y = —(i —2)0; + ; 5/ —(n— Ui—l)T-
Therefore,
. 01 6
ui(0y, t;; 0;) — ui(oi—1,ti-1;0) = (n—i + 2)(7 - E) >0,

as desired. O

5.5 Other Fairness Requirements

Although no-envy plays an important role in the literature on the fairness, there
are other interesting concepts. The main ones are the identical preferences lower
bound and egalitarian equivalence. The identical preferences lower bound (Moulin
1990) requires that each agent should be at least as well off as she would be, under
efficiency and equal treatment of equals, if all other agents had the same preferences.
Egalitarian equivalence (Pazner and Schmeidler 1978) requires that there should be
a reference bundle such that each agent enjoys the same utility between her bundle
and that reference bundle. Now we formally introduce these axioms. Given N € .4
and § € 2V, an allocation (0,7) € Z(0) satisfies the identical preferences lower
bound if for all i € N, u(o;,t;;6;) > —WlT_IQ,-. It is egalitarian equivalent if there
is a reference bundle (oy, fp) such that for all i € N, u;(0;, t;; 6;) = u;i(0o, to; 6;). Let
B;4(6) be the set of all allocations meeting the identical preferences lower bound
and EE(0) be the set of all egalitarian equivalent allocations for § € 2V,

Identical preferences lower bound: ForallN € .4, all 9 € 2V, and all (0,1) €
@(9), (O—s t) € Bld(e)

Egalitarian equivalence: Forall N € .4, all § € 2V, and all (0,1) € ¢(6),
(0,t) € EE(0).
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Remark 5.4 In economies with indivisible goods,” when there are as many objects
as agents, budget balance and no-envy together imply the identical preferences
lower bound (Bevia 1996). Moreover, if there are only two agents, then budget
balance and identical preferences lower bound together imply no-envy. A similar
observation can be made for queueing problems.

Now we investigate whether a rule can satisfy no-envy and egalitarian equiv-
alence together. If there are only two agents, then any rule satisfying efficiency
and egalitarian equivalence satisfies no-envy. Moreover, if there are only three
agents, then by choosing the middle position as a part of the reference bundle, we
can establish the existence of a rule satisfying efficiency, no-envy, and egalitarian
equivalence. However, the positive result does not generalize to problems with more
than three agents.

Proposition 5.4 (Chun et al. 2014) Let |N| > 4. Then, there is no rule satisfying
no-envy and egalitarian equivalence together.

Proof Let ¢ be a rule satisfying no-envy and egalitarian equivalence. Let N € A
and 0 € 2" be such that N = {1,...,n} and 6, > --- > 6,. By egalitarian
equivalence, there exists (ay, o) such that for alli € N, —(o; — 1)6; + t; = —(0p —
1)6; + to. Rewriting this, we have for alli € N,

t; = (0; — 09)0; + 1o. 5.2)

Choose two agents i and i 4 1. As shown in Proposition 5.1, no-envy implies queue-
efficiency, and hence, 0,41 = 0;+1. From Eq. (5.1), it follows that 6;+| < f;41—t; <
6;. From Eq. (5.2), 0,41 < (0i+1 — 00)0i+1 — (0; — 00)0; < 6;, which implies that

0< (0'0 — O',')(@,' — 9i+l) <6;— 9,’+1. (5.3)

Since ; > 0;41, it follows that 0 < oy —0; < 1. Note that the selection of i and i + 1
has been arbitrary. By choosing i = 1, we obtain 0 < 09 — 1 < 1 which implies that
0o € {1,2}. By choosing i = n — 1, we obtain oy € {n — 1, n}. The two restrictions
on oy are incompatible when n > 4. O

In economies with indivisible goods, there is no rule satisfying object-efficiency,
egalitarian equivalence, and the identical preferences lower bound (Thomson
2003). However, in queueing problems, we can construct a rule satisfying efficiency,
egalitarian equivalence, and the identical preferences lower bound.

Proposition 5.5 [f there is an odd number of agents, then there is at least one
efficient and egalitarian equivalent allocation meeting the identical preferences
lower bound. If there is an even number of agents, then there are at least two

Note that budget balance is imposed as a part of the feasibility requirement in Bevia (1996).
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efficient and egalitarian equivalent allocations meeting the identical preferences
lower bound.

Proof Let N = {1,...,n} be such that n is an odd number and 8 = (6;);ey be such

that 6; > 6, > --. > 6,. To simplify notation, for all i € N, we set 0; = i. Let
i = # and z; = (oy, 1;). We will determine the value of ¢#; later after considering

the budget constraint.

For each j € N, let z; = (0j,1; + (j — i)6;). Now we calculate #; by solving
nt; + 3 ien(j —)0; = 0, which gives 1; = ~1 > jen(j — 0)0;. Since 6, > 6, >
.-+ > @,, then t; > 0. It is obvious that z = (z;)jen 1s efficient. Since for all j € N,
u;j(z; 0;) = uj(z;; 0)), it is also egalitarian equivalent.

To prove that z satisfies the identical preferences lower bound, we need to show
that for each j € N, u(zj; 0;) > —%Qj. Foreachj € N, uj(zj;6;)) = —(j — 1)6; +
i+ (=8 = —(— Db =—("H — 1§ = —2516;, as desired.

On the other hand, if n is an even number, then we choose either % or % +1

as reference positions. If i = zi, we can show that ¢; > —%9,1. Therefore, for each

i€N,u(z:6) = —(— DO+t +(j—)0; > —(i—1)0,— 160, > —(i—1)0;— 36, =
—(g -1+ %)0]- = —%HJ-, as desired. If n = % + 1, we can show that foreachj € N,
t; > %91 > %Gj. From a similar calculation, we obtain the desired conclusion. O

5.6 Concluding Remarks

By investigating the implications of no-envy in queueing problems, we establish
various results. Our main negative results are there is no rule satisfying efficiency,
no-envy, and either one of two cost monotonicities. These results should be
compared with the impossibility result in Moulin and Thomson (1988): in the
classical economies, there is no rule satisfying Pareto optimality,'® no-envy, and
resource monotonicity.!! Since our problem is very different from theirs, there is no
direct logical implications between two results. However, at least conceptually, we
are faced with the same difficulties: axioms of efficiency, no-envy, and monotonicity
are not compatible.'?

To remedy this situation, modifications of no-envy are proposed as fairness
requirements in queueing problems. Although the implications of backward and
forward no-envy are clear, it is an open question what the implications of adjusted
no-envy in queueing problems are. In particular, its relation to no-envy needs to be
analyzed.

10pareto optimality requires that there is no feasible allocation which makes every agent better off
and at least one agent strictly better off.

" Resource monotonicity requires that an increase in resources should not hurt any agent.
12For a possibility result, see Alkan et al. (1991).
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Chapter 6
Strategyproofness

6.1 Introduction

Strategyproofness requires that an agent should not have an incentive to misrepre-
sent her waiting cost no matter what she believes other agents to be doing. Therefore,
truthful reporting of the waiting cost is a weakly dominant strategy for all agents.
This condition has been studied extensively in the literature.' In this chapter, we
investigate its implications in the context of queueing problems.

The classic result of Holmstrom (1979) implies in the context of queueing
problems that a rule satisfies queue-efficiency and strategyproofness if and only if it
is a VCG rule.? Queue-efficiency requires that the selected queue should minimize
the aggregate waiting cost. Imposing additional axioms gives us a subfamily of rules
from the class of VCG rules.

By additionally imposing equal treatment of equals, which requires that two
agents with the same waiting costs should end up with the same utilities, we
characterize anonymous members of the VCG rules. This subfamily includes the
symmetrically balanced VCG rule (Kayi and Ramaekers 2010; Mitra 2001; Suijs
1996) and the pivotal and the reward-based pivotal rules (Mitra and Mutuswami
2011). The symmetrically balanced VCG rule can be singled out from the family
by requiring a rule to be budget balanced. On the other hand, the pivotal and
the reward-based pivotal rules can be characterized by imposing independence
axioms introduced by Maniquet (2003) and Chun (2006a) (see Sect. 4.2 for more
explanation on these axioms). Finally, by generalizing the independence axioms,
we can characterize the entire class of k-pivotal rules.

IThe literature on strategyproofness is too large to give a comprehensive list of references. A
recent review of this literature, along with a list of references, can be found in Barbera (2011) and
Thomson (2013).

2The family of VCG rules is due to Vickrey (1961), Clarke (1971), and Groves (1973).
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This chapter is organized as follows. In Sect. 6.2, we characterize anonymous
VCG rules by additionally imposing equal treatment of equals. From this subfamily
of VCG rules, we single out the symmetrically balanced VCG rule, the pivotal
and the reward-based pivotal rules, and then the entire class of k-pivotal rules in
Sect. 6.3. Concluding remarks are given in Sect. 6.4.

6.2 Strategyproofness and the VCG Rules

To use Holmstrom’s result, we need to assume a rule to be single-valued. Note that
so far a rule is assumed to be multi-valued. To distinguish between a multi-valued
rule and a single-valued rule, we continue to use ¢ for a multi-valued rule and newly
introduce pu to denote a single-valued rule.

A (single-valued) rule is a function p which associates to each problem 6, a tuple
(@) = (0,1) € ¥(N) x R" where o is the selected queue and t = (;);ey is the
vector of transfers. In this chapter, we fix the set of agents and change the profile of
waiting costs. To indicate the dependence on the profile 6, we denote the allocation
as u(0) = (0(6),1(0)).* For each agent i € N, let 1u;(6) = (0:(9),1:(9)) be agent
i’s allocation for the problem 6 and u;(1;(9); 6)) = —(0:(8) — 1)6! + 1;(0) be agent
i’s utility when the profile of announced waiting costs is 6 and her true waiting cost
is 6.

Now we introduce two axioms which play an important role in this chapter. Our
first axiom is queue-efficiency, which requires that a rule should choose an efficient
queue for all problems (see Sect. 2.3 for definition). Since we assume a rule to be
single-valued, queue-efficiency can be rewritten as follows.

Queue-efficiency: Forall N € .4 and all § € 2V, 6(0) € Eff(9).

Remark 6.1 The efficient queue is unique at all profiles where no two agents have
identical waiting costs. However, if there are some agents with the same waiting
cost, then the efficient queue is not unique. Since queue-efficiency is the only axiom
that we impose on the queue, it is not clear which queue we should choose for
the profile. In Chaps. 6 and 7, we implicitly assume the existence of a tie-breaking
rule, which selects an efficient queue whenever there is more than one such queue.
We assume that there is an order of the agents which is used to break ties. The
same order is used to break ties when a queue involving subsets of agents has to be
selected. Let .7 be the set of all possible tie-breaking rules for N and t be a typical
element of .7. We note that our result applies for any choice of tie-breaking rule.

3This chapter is based mainly on Chun et al. (2011, 2014). Excerpts from Chun et al. (2014) are
reprinted with kind permission of Elsevier.

4Since ¢ depends on the choice of the queue, we should denote the transfers by #(c(6)) instead
of #(6). Note that our (single-valued) rule chooses a unique queue which in turn determines the
unique transfers. Therefore, we abuse the notation and write #(6).
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Our second axiom is strategyproofness, which requires that an agent cannot
strictly gain by misrepresenting her waiting cost no matter what she believes other
agents to be doing.

Strategyproofness: Forall N € .4, all 8,0 € 2V, alli € N, all (0,1) € ¢(6),
and (0, 1') € ¢(0"), if forall j € N\ {i}, 6; = 0/, then u;(0y, ;3 0;) > ui(0}, 1;: 6;).

Once again, since we assume the single-valuedness of a rule, strategyproofness can
be rewritten in the following simple way.

Strategyproofness: Forall N € .4, allf € 2V alli € N, and all ] € Ry,
ui(i(0); 6;) = ui(i(0!, On\giy): 67)-

Remark 6.2 Holmstrom (1979) shows that when preferences are quasi-linear and
the domain of types is convex, the VCG rules are the only ones satisfying
queue-efficiency and strategyproofness. For queueing problems, the preferences are
completely specified by the profile of waiting costs. Since this is R”, , it follows that
arule satisfies queue-efficiency and strategyproofness if and only if it is a VCG rule.

We use the following notation. For all N € .4 and all § € 2", suppose there
is an initial queue o () and agent i € N leaves the queue. We define the “induced”
queue o (Oy\¢;) (of length n — 1) for the agents in N \ {i} as follows:

0i(0)  ifje PiO).

0;(0) — 1 if j € Fi(0). @1

0;(Omgiy) =

In words, o (8y\(;3) is the queue formed by removing agent i and moving all agents
behind her up by one position. It is easy to see that o' (Oy\(;) is efficient in N \ {i}
for the profile Oy\(;; if o (8) is efficient for the profile 6.

We now formally define the VCG rules.

VCG rule associated with g;, u%: Forall N € 4 and all § € 2N, usi(0) =
(0(0),1(9)) is defined as o (0) € Eff (), and forall i € N,

60) == > 0+ giOwn)- (6.2)

JEFi(0)

Remark 6.3 The standard way of specifying the VCG transfers is

VO.VieN:6:(0) == (05(0) — D6; + hi(Oyi)-
J#i

Since we can write without loss of generality that

V6.Vie N : hi(Bw) = ) (07(6nw) — DO + 8i(Bna)-
J#i
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we have
1(0) = =) _(0;(0) = Db + hi(Oniiy)
J#
== (050) = Db + Y _(05(6wi) — D + g:i(bwgay)
J#i J#i
== > 6+&Onw).
JEFi(o(9))

the desired expression.

Remark 6.4 For a VCG rule, an agent’s utility is independent of the tie-breaking
rule. Suppose that o, ¢’ € Eff(6) with 0, # o]. By queue-efficiency, all agents
whose waiting cost is 6; occupy the same set of consecutive queue positions in
both queues. Therefore, by Eq. (6.2), the utility of agent i in the two queues can
differ only through differences in g;(6y\ () across tie-breaking rules, but since g; is
independent of 6;, it cannot depend on the tie-breaking rule for 6 either.

Equal treatment of equals requires that two agents with the same waiting cost
should end up with the same utilities. We investigate the implications of imposing
equal treatment of equals together with queue-efficiency and strategyproofness and
characterize the family of anonymous VCG rules.

Anonymous VCG rule associated with g, u8: For all N € .4 and all 6 €
9N,
(1) u8isa VCG rule.
(2) For alli € N, g; is symmetric, i.e., g/(x) = g;(y) whenever x and y are
permutations of one another.
(3) Foralli,j € N such that 6; = 0;, gi(Own(iy) = &(Ongj3)-

Remark 6.5 Given (2) and (3), we can write g; = g foralli € N.
Our characterization result follows.

Proposition 6.1 A rule satisfies queue-efficiency, equal treatment of equals, and
strategyproofness if and only if it is an anonymous VCG rule.

Proof 1t is easy to show that an anonymous VCG rule satisfies queue-efficiency,
equal treatment of equals, and strategyproofness. Conversely, let 1 be a rule
satisfying the three axioms. From Remark 6.2, if a rule satisfies queue-efficiency
and strategyproofness, then it is a VCG rule. Hence, the transfers are given by

VO, VieN: 1(0)=— Z 0 + gi(Own(iy)-
JEFi(0(0))
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Let Oy\3 € R, Consider (6;, Oy\(;) € R% where i and j announce 6; and the
others announce Oy\y; ;;. Using equal treatment of equals between i and j, it follows
that®

&ilOnwi) = &0, Ongijy)- (6.3)

Next, consider (6;, 0, Oy\(;;3) where i announces ¢;, j and k announce ¢; and the
others announce Oy\;;«3- By equal treatment of equals, it follows that

&i(0;. Ontijy) = &x(0;, Ok, O\ (i) - (6.4)

It follows from Eqgs. (6.3) and (6.4) that

81 (0;, Ok, On\ijy) = &i(Oniy)- (6.5)

Now, consider (6, Oy\(y) where i and k announce ¢, and the rest announce
On\(ixy- Using equal treatment of equals between i and k, we obtain

&i(Oniy) = &0k, Oniiny)- (6.6)

It follows from Eqgs. (6.5) and (6.6) that

8k(0;, Ok, Ontijay) = &k (Ok, 6, On\ijiay)-

Observe that the choice of i, j, and k is arbitrary. Since g; does not depend on 6, the
above equation effectively shows that a permutation of the announcements of two
agents in N \ {k} while leaving others unchanged does not change g. Since we can
get from a profile Oy\ iy to an arbitrary permutation through a sequence of pairwise
permutations, this proves that g;, i = 1, ..., n, is symmetric.

Finally, equal treatment of equals implies that for all i, j € N, i # j, if ; = 0,
then g;(0;, On\(i3) = &i(0;, Ongijy)- This along with symmetry of g; implies that all
the g; functions are the same, so that we can put foralli e N, g; = g. O

Remark 6.6 In the context of a related but different model of allocating heteroge-
neous goods, Papai (2003) (see Observation 3, p. 376 of her paper) shows that the
family of anonymous VCG rules can be characterized using the property of no-envy
(Foley 1967) which requires that no agent should end up with a higher utility by
consuming what any other agent consumes (see Chap. 5 for its implications in the
context of queueing problems).

SThis step is essentially a minor modification of the argument in Remark 6.4. In particular, by
queue-efficiency, all agents occupying queue positions between o; and o; have waiting cost 6; and
by equal treatment of equals, they receive the same utilities implying Eq. (6.3).
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Remark 6.7 All the axioms are necessary for the result to hold.

(i) Dropping queue-efficiency: Let N = {1,2}. Let u* be a rule such that for all
0 € 2V, 0;(0) = i and the transfers are given by

—6,/2ifi=1,
WO =\ g niti=2.
It is easy to check this rule satisfies equal treatment of equals and strate-
gyproofness.

(i) Dropping equal treatment of equals: The entire class of VCG rules become
admissible. Equal treatment of equals will be violated by choosing the g; in an
asymmetric manner. For example, with N = {1, 2}, we can choose g;(6,) = 6,
and 82(91) = 291.

(iii)) Dropping strategyproofness: The minimal and the maximal transfer rules
(Chun 2006a; Maniquet 2003) satisfy queue-efficiency and equal treatment of
equals.

Remark 6.8 Anonymity in welfare requires that a permutation of waiting costs
implies a permutation of welfare also. Hashimoto and Saitoh (2012) show that
anonymity in welfare and strategyproofness together imply queue-efficiency. It is
natural to ask whether anonymity in welfare can be weakened to equal treatment of
equals. However, the rule u* in Remark 6.7 (i) shows that equal treatment of equals
and strategyproofness together do not imply queue-efficiency.

6.3 Further Characterization Results

We discuss how to single out some interesting rules from the class of anonymous
VCG rules characterized in Proposition 6.1.

6.3.1 The Symmetrically Balanced VCG Rule

The symmetrically balanced VCG rule defined in Sect.2.4 is the VCG rule
satisfying budget balance, which requires that there is no net transfers into or out of
the problem. Since we assume in this chapter that a rule is single-valued, we need
to modify the definition of the symmetrically balanced VCG rule accordingly.
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Symmetrically balanced VCG rule, 5: For all N € .4 with |[N| > 3 and all
0 € 2V, uB(0) = (08(0),15(0)) is defined as o?(0) € Eff(0), and for alli € N,

af6) -1 IN| — ()
g

Jj€Pi(08(6)) keFi(a®(9))

This rule is obtained by setting for alli € N,

08(9 i ) -1
g@my) = Z (%) 0;. (6.7)

JEN\{i}

The symmetrically balanced VCG rule has many nice properties. It is queue-
efficient, strategyproof and budget balanced, and hence “first-best” implementable
(Mitra 2001; Suijs 1996). It also satisfies no-envy (Chun 2006b). Recently, Kayi
and Ramaekers (2010, in press) characterize the symmetrically balanced VCG rule
by imposing the axioms of queue-efficiency, Pareto indifference, equal treatment
of equals, strategyproofness, and budget balance. Pareto indifference requires that
for all profiles, if an allocation is chosen by a rule and there is another feasible
allocation which gives the same utility to each agent, then this allocation should be
chosen by the rule. Chun et al. (in press) provide an alternative simple proof for the
characterization. Since we assume the single-valuedness of a rule in this chapter,
we can characterize the symmetrically balanced VCG rule without imposing Pareto
indifference.

Theorem 6.1 Letn > 3. A rule satisfies queue-efficiency, equal treatment of equals,
strategyproofness, and budget balance if and only if it is the symmetrically balanced
VCG rule.

Proof 1t is obvious that the symmetrically balanced VCG rule satisfies queue-
efficiency, equal treatment of equals, strategyproofness, and budget balance. To
prove the converse statement, let 1 be a rule satisfying the four axioms. Let
N e ¥ be such that [N| > 3, 8’ = (6])iey be such that ] > --- > 6/, and
(@) = (o(6),1(0")). We show that

n—1 i1
g0.) =" (; — 2) 6. (6.8)

i=1

By queue-efficiency, for all i € N, 0;(8") = i. By Proposition 6.1 and budget
balance,

Zg(ell\/\{i}) = Z(i— 1)6;.

iEN iEN
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Let® = {6],---,0/}.Fork = 1,...,n,let O be the set of profiles § such that
(1) 6; € ® foralli € N,
Q) i<j<k=0;>6>0,
3) 6, =06 ifi>k.

We will prove the following hypothesis by induction. For all k = 1,...,n, and
all § € &%,

-t (n+k=3)n—k
g(9—n)=Z(n_2) T T (6.9)

r=1

Step1:  When k = 1, the set ©' is a singleton and 6 = (0/,...,0)). By budget
balance,

Y sy = "Dy

4 2
iEN

Since g is symmetric, we can write the above as

n—

nin—1) 1,
5 0,.

2

ng(6—,) = er/l or g(0-,) =
It is easily verified that the above expression for g(6_,) is identical to the one
given by Eq. (6.9).

Induction Step:  Suppose that the hypothesis is true for all &k < K — 1. Let
0 = (0y,---,0k_1,0,,---,0,) € O Observe that any efficient queue o for
this profile must be such that 0; = i,i = 1,...,K — 1. Budget balance implies
that

K—1
—-K+1 K—-2
Y g0y =) (-1 + =K+ Dt )9,;. (6.10)
‘ , 2
iEN i=1
Leti € {l,...,K — 1}. Define 6 by
9/ lfJ <1,
9;2 9]'4_1 ifn >j>1,

0! otherwise.

Thus, the first i — 1 elements of 6’ are the same as 6; for the next n — i elements,
the jth element of €' is the (j + 1)th element of 6; and the last element of 6 is
6,. Observe that 6] = 6, for all j > K — 1 and hence 6’ € ©¥~".

Fori = 1,...,K — 1, Qin is a permutation of 6_;. Hence the symmetry of
g implies that g(6—;) = g(f.,). Symmetry also implies that for any i,j €
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{K,...,n}, g(0—;) = g(6—;). Hence, for i = K,...,n, we can write g(6_;) =
2(0_,). Therefore, we can write Eq. (6.10) as

K-1 K—1

0. )+ (n—K+ 1)g(6-,) = i—19,-+(”_K+1)(”+K_2)9/
> 8(6L,) +( )g(6-n) =Y (i—1) )
= i=1

2
Using the induction hypothesis on the profiles 7, we have
-1 n+K—4(n—K+1)
o) = — ) 0! 0.
8(6,) ;(n—2) P 2(n—2) "

Hence,

K—1K—2
(n—K+1>g<6_n)—Z(z—l)e—ZZ( )

i=1 r=1

[(n—K+1)(n+K—z) (K—l)(n+K—4)(n—K+l)] ,
+ - 9.
2 2(n—2) n

This simplifies to

K—1K-2
<n—1<+1)g(9_n)—2<z—1>9—ZZ( ;)¢

i=1 r=1

+(n—K+l)(n—K)(n+K 3)
2(n—2)
Recallthat@}:@,j:1,...,i—1and9]f: iv1,J = i,...,K —2. Note,

however, that the order in the efficient queue is the same fori = 1,..., K — 2 in
the profiles 6 and 6'. Using these observations,

K-2

(=)o B (e B ()

r=1 r=1 r=i

Note that 6, appears in exactly K — 2 of the profiles of the type 6. In particular,
6, appears in all profiles except for 8”. For i = 1,...,r — 1, 6, is the waiting
cost of agent r — 1 (in the profile 67); in the other profiles, it is the waiting cost of
agent r. It thus follows that the coefficient of 6, in the expression

ES N =3

i=1 j=1
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is

=21 K-r=DHr-1 _ r—Dmn—-—K+1)

—1
n—2 n—2 n—2
We thus have
K—1
r—Dn—K+1) mn—K+1)(n—K)(n+K-3) ,
—K+1)g(6—,) = 0, ;.
(n—K+1)g(6-) Zl — + ) )

r=

Dividing across by (n — K + 1) establishes the induction step.

We can now establish Eq. (6.8) by considering the case k = n. In this case, the
second term drops out of Eq. (6.9), and the expression is exactly what we want to
establish. Since g(6”,,) does not depend on 6/, it follows that Eq. (6.8) also applies
to any profile where the waiting costs of agents in N \ {n} have the same ordinal
ranking. Observe that Eq. (6.7) reduces to Eq. (6.8).

Now let i # n. Rename the agents so that agents i and n interchange names
with the others retaining their original names. We can do the same argument, and at
the end interchange names again, to conclude that g(6”,) is given by Eq.(6.7). To
complete the proof, we need to consider the case when 9{ > ... > 0! In this case,
the same proof goes through except that we have to use a tie-breaking rule to select
an efficient queue. It can be verified that no matter what tie-breaking rule is used,
g(6”,) will still be given by Eq. (6.7). O

Remark 6.9 Holmstrom’s result can only be applied to single-valued rules, which
requires that at each problem, a rule should choose a unique allocation from the
feasible set of allocations. On the other hand, Kayi and Ramaekers (2010, in press)
work with multi-valued rules (or correspondences), which allows the possibility
of choosing a subset of allocations at each problem. Thus, they cannot use
Holmstrdom’s result and the proof becomes complicated.

One might ask naturally how much generality is lost in our approach. In this
regard, we note here that the multi-valued rule which selects the set of efficient
queues at each profile is “essentially” single-valued. The efficient queue is unique
at all profiles where no two agents have identical waiting costs. We can show that
the set of all such profiles is an open and dense set in R” , and thus the efficient
queue is generically unique. Hence, imposing a tie-breaking rule on profiles where
the efficient queue is not unique does not amount to a significant loss of generality.
Moreover, we emphasize that our result applies for any choice of tie-breaking rule
and agents with the same waiting cost end up with the same utility, no matter which
tie-breaking rule is used to select the efficient queue.
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6.3.2 Pivotal Rules

By generalizing the idea of the pivotal rule, Mitra and Mutuswami (2011) introduce
the k-pivotal rules in the context of queueing problems.

k-Pivotal rules, u*: Forallk € {1,...,n},allN € .4 ,andall & € 2V, u*(0) =
(0%(9),1%(9)) is defined as 0*(0) € Eff(0), and for all i € N,

- Zj:a,.k(e)mf(o)gk 0; if C’i]((g) <k,
*(0) = 0 if of(0) =k,
Zj:kgaf(e)m,k(e) 6 if of(0) > k.

The significance of the k-pivotal rules lies in the fact that they are immune to a
particular form of group deviation. In fact, the k-pivotal rules are weak group strate-
gyproof which requires that no coalition deviate in a manner benefiting all deviating
members strictly.® Pairwise strategyproofness is weak group strategyproofness
restricted to coalitions of size at most two. Moreover, Mitra and Mutuswami (2011)
characterize the k-pivotal rules by imposing the axioms of queue-efficiency, equal
treatment of equals, pairwise strategyproofness, and weak linearity, which is a
technical condition requiring that transfers vary in a linear fashion whenever an
agent changes her announcement in a manner which does not change the efficient
queue. In addition, it can be shown that the k-pivotal rules also satisfy the normative
criterion of no-envy.

First, we provide axiomatic characterization of two pivotal rules (see Sect. 2.4 for
their definitions) from the class of anonymous VCG rules by additionally imposing
the independence axioms introduced in Sect.4.2. Once again, since we assume
in this chapter that a rule is single-valued, we need to modify their definitions
accordingly.

Pivotal rule, u”: Forall N € 4 and all § € 2V, uf(0) = (67(8),1°(0)) is
defined as 67 (0) € Eff(0), and for all i € N,

fO)=— Y 0. (6.11)

JEFi(a?(0))

Reward-based pivotal rule, u®: For all N € .4 and all 8 € 2V, uk(H) =
(oR(0),tR(0)) is defined as o®(8) € Eff(0), and forall i € N,

®O)= > 6 (6.12)

JjEPi(a®(0))

SFormally, weak group strategyproofness requires that for all S C N and all 6, 8’ € 2V such that
0; = 6/ for all i € N\S, it is not the case that u;(11;(0"); 6;) > u;(wi(9); 6;) for all i € S. We have
pairwise strategyproofness if we also require |S| < 2.
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Remark 6.10 The pivotal rule is the n-pivotal rule while the reward-based pivotal
rule is the 1-pivotal rule.

We use two independence axioms introduced in Sect.4.2 to characterize the
pivotal and the reward-based pivotal mechanisms, which are based on the idea that
if an agent’s waiting cost changes, then some agents should remain unaffected.
Independence of preceding costs (Maniquet 2003) requires that an increase in an
agent’s waiting cost should not affect her followers. This reflects the idea that when
an agent’s waiting cost increases, while the aggregate waiting cost increases, this
cannot be attributed to the agent’s followers. On the other hand, independence of
following costs (Chun 2006a) requires that a decrease in an agent’s waiting cost
should not affect the predecessors. This reflects a similar idea that when an agent’s
cost decreases, while the aggregate waiting cost decreases, this cannot be attributed
to the agent’s predecessors.

Remark 6.11 Tt is obvious that the pivotal rule satisfies independence of preceding
costs and the reward-based pivotal rule satisfies independence of following costs.
Our characterization results still hold even if independence of preceding costs
and independence of following costs are weakened by imposing an additional
assumption that the efficient queue remains the same before and after a change in
an agent’s waiting cost.

Our last axiom is a mild regularity condition on the transfers saying that if all
agents have zero waiting costs, then their transfers must add up to zero.

Weak budget balance: Forall N € .4 andall§ € 2V, if § = (0,...,0), then
D enti(6) = 0.

The following theorem characterizes the pivotal and the reward-based pivotal
rules.

Theorem 6.2

1. The pivotal rule is the only rule satisfying queue-efficiency, equal treatment of
equals, strategyproofness, independence of preceding costs, and weak budget
balance.

2. The reward-based pivotal rule is the only rule satisfying queue-efficiency, equal
treatment of equals, strategyproofuness, independence of following costs, and
weak budget balance.

Proof 1t is obvious that the pivotal rule satisfies queue-efficiency, equal treatment
of equals, strategyproofness, independence of preceding costs, and weak budget
balance, whereas the reward-based pivotal rule satisfies queue-efficiency, equal
treatment of equals, strategyproofness, independence of following costs, and weak
budget balance. Hence, it remains to show the converse statement.

Let N € 4 and & € 2V. Suppose without loss of generality that
0, >6,>.--> 06, and that for each i € N, o; = i. By Proposition 6.1, the



6.3 Further Characterization Results 73
transfer can be expressed as, foralli € N,

HO) == Y 6+g0nm) (6.13)

J€Fi(0(0))

Let u be a rule satisfying queue-efficiency, equal treatment of equals, strate-
gyproofness, independence of preceding costs, and weak budget balance, and for all
6 € 2V, u() = (06(0),1(9)). By Eq.(6.13), 1,(0) = g(6n\(n})- By independence
of preceding costs, for all 0, 8’ € 2N such that 6/ > 6; for all i # n, and
0 = O, t,(0) = t,(0"). This implies that there exists ¢ € R such that for
all Op\gny» 8(OM\(n}) = c. By weak budget balance, ) o 1:(0) = nc = 0 at
6 = (0,...,0) and hence ¢ = 0. Altogether, we conclude that for all i € N,
(0) = = ek b = t£(0), as desired.

Now let u be a rule satisfying queue-efficiency, equal treatment of equals,
strategyproofness, independence of following costs, and weak budget balance, and
forall @ € 2V, 1(0) = (9(0),1(0)). Then, 11(6) = — 3 icr oy O + &OM})-
By independence of following costs, for all 6, 6/ € 2V such that 6] < 6; for
all i # 1, and 6] = 6y, 1;(6) = 1,(0’). This implies that there exists ¢ € R
such that for all Oy\13, (On\(1}) = X jer, 00y 0 + ¢- By weak budget balance,
Denti(0) = nc = 0atd = (0,...,0) and hence ¢ = 0. Altogether, we again
conclude that foralli € N,

H0)=— Y 0+g0nw)

JEFi(0(0))

=— > 6+ > 6

jEF@®)  jeN\ii}
= > 6
JEPi(o(6))

= 1(0),

as desired. ]

In the following two remarks, we check the independence of our axioms used to
characterize the pivotal and the reward-based pivotal rules.

Remark 6.12 The pivotal rule (o, *):

1. Dropping queue-efficiency: Let N = {1, 2}. Suppose that for all § € 2" and all
i € N, 0;(0) = i and the transfers are given by

—6,ifi =1,

O =1 Gii=a.
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This rule satisfies equal treatment of equals, strategyproofness, independence of
preceding costs, and weak budget balance.

. Dropping equal treatment of equals: Consider the rule (o, ") where for all § €

2N and alli € N, 0(0) € Eff(0), i (0) = t£(0) + ai, Y ey @ = 0, and there
exists at least a pair i, j € N such that a; # a;. This rule satisfies queue-efficiency,
strategyproofness, independence of preceding costs, and weak budget balance.

. Dropping strategyproofness: The minimal transfer rule (Maniquet 2003) satisfies

queue-efficiency, equal treatment of equals, independence of preceding costs, and
weak budget balance.

. Dropping independence of preceding costs: The reward-based pivotal rule

satisfies queue-efficiency, equal treatment of equals, strategyproofness, and weak
budget balance.

. Dropping weak budget balance: Consider the rule (o, ") where for all § € 2V

and alli € N, o(0) € Eff(0),7(0) = 1£(0) + ¢, and ¢ # 0. This rule satisfies
queue-efficiency, equal treatment of equals, strategyproofness, and independence
of preceding costs.

Remark 6.13 The reward-based pivotal rule (o, £%):

1.

Dropping queue-efficiency: Let N = {1,2}. Suppose that for all § € 2" and all
i € N, 0;(0) = i and the transfers are given by

0 ifi=1,
O =6 iti=2.

This rule satisfies equal treatment of equals, strategyproofness, independence of
following costs, and weak budget balance.

. Dropping equal treatment of equals: Consider the rule (o, %) where for all 6 €

2N and alli € N, 0(0) € Eff(0), () = tR(0) + bi, Y;cn bi = 0, and there
exists at least a pair i, j € N such that b; # b;. This rule satisfies queue-efficiency,
strategyproofness, independence of following costs, and weak budget balance.

. Dropping strategyproofness: The maximal transfer rule (Chun 2006a) satisfies

queue-efficiency, equal treatment of equals, independence of following costs, and
weak budget balance.

. Dropping independence of following costs: The pivotal rule satisfies queue-

efficiency, equal treatment of equals, strategyproofness, and weak budget bal-
ance.

. Dropping weak budget balance: Consider the rule (o, 7X) where for all § € 2V

and all i € N, o(0) € Eff(0), 18(8) = 1R(0) + ¢, and ¢ # 0. This rule satisfies
queue-efficiency, equal treatment of equals, strategyproofness, and independence
of following costs.

Remark 6.14 Equal treatment of equals and weak budget balance together imply
the following regularity condition on the transfers. A rule p satisfies the zero
transfer condition if u;(u;(0); 6;) = 0 for all i € N whenever 8 = (0, ...,0). Both
the pivotal and the reward-based pivotal rules satisfy the zero transfer condition. In



6.3 Further Characterization Results 75

the characterization of the pivotal rule, we can replace weak budget balance by the
zero transfer condition, that is, the pivotal rule is the only rule that satisfies queue-
efficiency, equal treatment of equals, strategyproofness, independence of preceding
costs, and the zero transfer condition. However, if we use the zero transfer condition
to characterize the reward-based pivotal rule, then we can eliminate both weak
budget balance and equal treatment of equals. Hence we can show that the reward-
based pivotal rule is the only rule that satisfies queue-efficiency, strategyproofness,
independence of following costs, and the zero transfer condition.

Now we generalize independence axioms to characterize all k-pivotal rules.
Given k = 1,...,n, k-independence of preceding costs requires that if a waiting
cost of an agent whose position is no later than k increases, then her followers
whose position is also no later than k should not be affected. On the other hand,
k-independence of following costs requires that if a waiting cost of an agent whose
position is no earlier than k decreases, then her predecessors whose position is
also no earlier than k should not be affected. In other words, given a profile, k-
independence of preceding costs applies to all agents whose queue position is no
later than k and k-independence of following costs applies to all agents whose queue
position is no earlier than k. We define the axioms formally now.

k-independence of preceding costs: For all N € .4, all 0, ' € 2V, and all
i € N,ifforallj € N\ {i}, 9].’ = 6;, 0] > 6;, and 0;(§) < k, then for all
€ € Fi(o(0)) such that o¢(8) < k, ug(pee(0); 6)) = ue(pee(6); 6r).

k-independence of following costs: For all N € .4, all , 8/ € 2V, and all
i € N,ifforallj € N\ {i}, 9].’ = 6;, 0] < 6;, and 0;(6) > k, then for all
€ € Pi(0(0)) such that o¢(8) > k, ug(pee(0); ;) = ue(1ee(6); 6r).

Observe that n-independence of preceding costs is identical to independence of
preceding costs, while 1-independence of following costs is the same as indepen-
dence of following costs. Also, note that both n-independence of following costs and
1-independence of preceding costs are redundant. The characterization result for
k-pivotal rule is as follows.

Theorem 6.3 A rule satisfies queue-efficiency, equal treatment of equals, strate-
gyproofness, k-independence of preceding costs, k-independence of following costs,
and weak budget balance if and only if it is a k-pivotal rule.

Proof 1t is easy to verify that the k-pivotal rules satisfy queue-efficiency, equal
treatment of equals, strategyproofness, k-independence of preceding costs, k-
independence of following costs, and weak budget balance. To prove the converse
statement, let & = (o, 1) be a rule satisfying the six axioms. By Proposition 6.1, we
know that p is anonymous, and hence, we can write the transfers as

HO)=— Y 6+ ) (6.14)

JEFi(0(0))
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Without loss of generality, suppose that 8; > --- > 6,. By equal treatment of equals,
we may assume that ox(6) = k. By k-independence of preceding costs, it follows
that #,(0) cannot depend on (6, ..., 6,—;) and we have

FOn) = F(Ors1,. .., 00). (6.15)

On the other hand, by k-independence of following costs, it follows that

FOnww) = Z 0+ g1, ..., 0—1). (6.16)
j=k+1
Hence, it follows that g(8, ..., 6k—) is a constant and
fOnw) = Z 0; + cx (6.17)
j=k+1

where ¢y, is a player-specific constant.
Since the f function is the same for all agents, it follows that for all 6 € 2N and
allie N,

fOnw@) = Z 0 + ci

Jio(On\giy) =k

By weak budget balance and equal treatment of equals, for alli € N, ¢; = 0 and
the result follows by substituting for f(Oy\:3)- |

Remark 6.15 We now show that all axioms are necessary for the characterization.

1. Dropping queue-efficiency: Let N = {1,2}. For k = 1, the example in
Remark 6.12 (1) and for k = 2, the example in Remark 6.13(1) satisfy equal
treatment of equals, strategyproofness, k-independence of preceding costs, k-
independence of following costs, and weak budget balance.

2. Dropping equal treatment of equals: Let N = {1,2}. For k = 1, the example in
Remark 6.12 (2) and for k = 2, the example in Remark 6.13(2) satisfy queue-
efficiency, strategyproofness, k-independence of preceding costs, k-independence
of following costs, and weak budget balance.

3. Dropping strategyproofness: Let k = 1,...,n be given. Assume that ; > 6, >

-+ > 0, and also assume that o; = i for all i € N. The transfers are:

, Zj‘ i1 50— zkekifizl,

5o, — Z, l+1;9 G if 1 <i <k,

“ek+2 —i41 36 "—"9 ifk+1<i<n,
lé’k—}—z k_Héelfl—l’l

1(0) =
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This rule satisfies queue-efficiency, equal treatment of equals, k-independence of
preceding costs, k-independence of following costs, and weak budget balance.

4. Dropping k-independence of preceding costs: The rule (o,f) where o(0) €
Eff(0) and for all i € N, 1;,(0) = £(6) + %maxj#i 0; satisfies queue-efficiency,
equal treatment of equals, strategyproofness, k-independence of following costs,
and weak budget balance.

5. Dropping k-independence of following costs: The rule (o, t) where o (60) € Eff (0)
and for all i € N, 1;,(0) = tl’.‘(é?) — %minj# 0; satisfies queue-efficiency, equal
treatment of equals, strategyproofness, k-independence of preceding costs, and
weak budget balance.

6. Dropping weak budget balance: The rule (o,t) where o(6) € Eff(6) and for
alli € N, () = tf(@) + ¢ where ¢ # 0 satisfies queue-efficiency, equal
treatment of equals, strategyproofness, k-independence of preceding costs, and
k-independence of following costs.

Remark 6.16 When k = n, note that we can dispense with n-independence of
following costs because Eq.(6.15) directly implies that the f function must be a
constant. Similarly, when k = 1, we can dispense with 1-independence of preceding
costs, because we get the result directly from Eq. (6.16). However, we need both k-
independence of preceding costs and k-independence of following costs for other
values of k.

Remark 6.17 We can also characterize the k-pivotal rules by imposing a “normal-
ization” axiom. Specifically, a rule satisfies k-normalization if for all § € 2" and all
i € N, 0;(0) = k implies t;(8) = 0. It is not difficult to show that queue-efficiency,
equal treatment of equals, strategyproofness, and k-normalization characterize the
k-pivotal rules.

6.4 Concluding Remarks

A natural question that arises is whether the characterizations can be extended
to scheduling problems where agents have different processing times (which are
known) and different waiting costs (which are private information). This is not
easy because our characterizations rely on Proposition 6.1 which characterize the
set of queue-efficient and strategyproof rules satisfying equal treatment of equals.
When agents have different processing times as well as different waiting costs, it
is not clear what equal treatment of equals means and whether an equivalent to
Proposition 6.1 can be obtained. This is an undoubtedly interesting open question.
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Chapter 7
Strategyproofness and Egalitarian Equivalence

7.1 Introduction

Egalitarian equivalence (Pazner and Schmeidler 1978) requires that for each
preference profile, there should be a reference bundle such that each agent is
indifferent between her bundle and the reference bundle. Like no-envy, an attractive
feature of egalitarian equivalence is that it is an ordinal concept and makes no
interpersonal utility comparisons. Since the reference bundle is common, it is easy
to see that it satisfies equal treatment of equals or horizontal equity. It has also been
studied in many contexts (Demange 1984; Dutta and Vohra 1993; Thomson 1990;
Yengin 2011, 2012). In this chapter, we investigate the implications of egalitarian
equivalence in the context of queueing problems.

As in Chap. 6, our starting point is the classic result of Holmstrom (1979) which
implies that in our context, a rule satisfies queue-efficiency and strategyproofness
if and only if it is a VCG rule.! Queue-efficiency requires that the selected queue
should minimize the aggregate waiting cost, and strategyproofness requires that an
agent should not have an incentive to misrepresent her waiting cost no matter what
she believes other agents to be doing. It follows that imposing an additional axiom
of egalitarian equivalence gives us a subset of VCG rules.

First, we present a complete characterization of the family of rules satisfying
queue-efficiency, strategyproofness, and egalitarian equivalence.> To understand
our characterization, note that a reference bundle for a (preference) profile is a queue
position along with a corresponding transfer. The reference bundle can change
across profiles. We show that if we impose queue-efficiency and strategyproofness
along with egalitarian equivalence, then there is effectively only one degree of

'The family of VCG rules are due to Vickrey (1961), Clarke (1971), and Groves (1973).

>The same issue was addressed for the problem of allocating heterogeneous objects by Yengin
(2011, 2012).
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freedom in choosing the reference bundle. In particular, once a queue position
is selected for a profile, then we must select the same position for all profiles.
Furthermore, the transfers are determined for all profiles up to a type-independent
constant.

We go on to show that none of these rules satisfies budget balance. However,
we obtain a possibility result with the weaker notion of feasibility which allows a
rule to run budget surpluses but not deficits. We characterize all rules satisfying
queue-efficiency, strategyproofness, egalitarian equivalence, and feasibility. This
class restricts the reference bundle to choose only the first queue position. However,
there cannot be an upper bound that can be placed on the resulting budget surplus.

Another desirable property of a rule is immunity to manipulations by groups of
agents. Weak group strategyproofness requires that it is not possible for a group of
agents to manipulate their reports in a manner which makes all of them strictly
better off. We show that if there are three or more agents, then we cannot find
rules satisfying queue-efficiency, weak group strategyproofness, and egalitarian
equivalence.

The contrast between the results obtained here and the results obtained using no-
envy is striking. With regard to budget balance, it is shown in Sect. 6.3.1 that the
symmetrically balanced VCG rule satisfies no-envy, strategyproofness, and budget
balance.> With regard to weak group strategyproofness, as shown in Sect. 6.3.2, the
k-pivotal rules satisfy no-envy and weak group strategyproofness. The rather sharp
contrast leads us to the incompatibility between no-envy and egalitarian equivalence
in Sect.5.5.

The chapter is organized as follows.* Section 7.2 presents the characteri-
zation result on queue-efficient, strategyproof, and egalitarian equivalent rules.
Section 7.3 discusses the consequence of additionally imposing budget balance
or the weaker requirement of feasibility. Section 7.4 shows that strategyproofness
cannot be strengthened to weak group strategyproofness and discusses the relation-
ship between no-envy and egalitarian equivalence together with strategyproofness.
Concluding remarks follow in Sect. 7.5.

7.2 Strategyproofness and Egalitarian Equivalence

As in Chap. 6, we begin with the classic result of Holmstrom (1979) which implies
that in the context of queueing problems, a rule satisfies queue-efficiency and
strategyproofness if and only if it is a VCG rule. Queue-efficiency requires that the
selected queue should minimize the aggregate waiting cost so that agents receive
their service in the non-increasing order of their waiting costs. Strategyproofness, as
studied in Chap. 6, requires that an agent cannot strictly gain by misrepresenting her

3 As shown in Proposition 5.1, no-envy implies gueue-efficiency.
“This chapter is based mainly on Chun et al. (2014).
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waiting cost, no matter what she believes other agents to be doing. By imposing an
additional axiom, we have a subset of VCG rules.

Also, as in Chap. 6, to use Holmstrom’s result, we assume that a rule is single-
valued and therefore, denoted by w. It implicitly assumes the existence of a tie-
breaking rule as explained in Remark 6.1. Forall N € .4 and all § € 2", we abuse
the notation and write ©(60) = (0(6),1(8)). First, we recall the definition of the
VCG rules given in Eq. (6.2).

VCG rule associated with g;, u%: Forall N € 4 and all § € 2N, usi(0) =
(0(0),1(9)) is defined as: a(0) € Eff(0) and forall i € N,

4(0) = — Z 0; + gi(On\iiy)-

JEFi(0)

Egalitarian equivalence (Pazner and Schmeidler 1978) is based on the idea that
at some allocation, if each agent enjoys the same utility between her bundle and
the common reference bundle, then the allocation can be evaluated as reasonable.
A rule satisfies egalitarian equivalence if for each profile there exists a reference
bundle such that each agent is indifferent between her bundle (for the profile) and
the reference bundle (for the profile).

Egalitarian equivalence: Forall N € .4 andall § € 2V, there exists a reference
bundle (09, tp) such that for all i € N, u;(u;(0); 6;) = u;(00, to; 6;).

We use the following lemma to prove our main theorem. It shows that for a VCG
rule to be egalitarian equivalent, g;(Oy\¢;y) must be affine with the coefficients of 6;,
J # i, being pinned down by the choice of 0.

Lemma 7.1 A rule u satisfies queue-efficiency, strategyproofness, and egalitarian
equivalence only if it is a VCG rule and there exists oy € {1,...,n} and c € R such
that for all i € N and all O\ g1,

gilfnw@w) = Z(UO —0;(Oni))0; + ¢ (7.1)
JFEi

where u(0) = (o(9), 1(9)).

Proof Let N € 4, 0 € 2V, and (00(0),1(0)) the corresponding reference
bundle. Suppose that the efficient queue (for the profile 6) is such that for all
i € N, 0;(0) = i. By queue-efficiency, this implies that 6, > 6, > --- > 0,.
To satisfy queue-efficiency, strategyproofness, and egalitarian equivalence together,
the following condition must hold: for all i € N,

—(0:(0) — 1)0; — Z 0; + gi(Owngiy) = —(00(0) — 1)0; + 1(0).

JEFi(0)
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The left-hand side of the above expression is the utility from a VCG mechanism,
and the right-hand side is the utility from the egalitarian equivalence requirement.
We can rewrite as

10(6) = (00(6) — 0i(0)6: — Y 6 + gi(Bwei)- (7.2)

JEFi(o)

Choose two agents i and i + 1. Noting that 0;(f) = i for all i, we have, using
Eq.(7.2),

(00(0) — )6 — > _ 6 + giBwn)

j>i
= (00(6) —i— Dbix1— Y 6 + gix1 (Onygirny)-
=i+l
Hence,
(00(0) —)0; + gi(Owm\gy) = (00(8) — )Oit1 + git1(On\fit1y)- (7.3)

Since g; does not depend on 6; and g;+; does not depend on 6;4, we can write the
two functions as follows:

gi(Owgiy) = (00(0) — D)0ir1 + fiit1 (On\iir1y)s (7.4)
gi+1(Ongi+1y) = (00(8) — D)0; + friv1(Ongiit13)- (7.5)

Note that Eq.(7.3) implies that the same function f;;11(6n\(ii+13) appears in
Egs. (7.4) and (7.5).° Before proceeding further, we note one important observation:
Eqgs. (7.4) and (7.5) together imply that o((6) must be independent of 6; and 6,4
since the left-hand side of Egs.(7.4) and (7.5) is independent of 6; and 64,
respectively. Since this applies for all i = 1,...,n — 1, it follows that oy(0) is
independent of 0, in effect, a constant. We thus drop the dependence on 6 from now
on.

Choosing the agents i + 1 and i 4- 2 (note that these are also “adjacent” agents in
the efficient queue) and doing the same analysis, we obtain the analogue of Eq. (7.4):

git1Omti+13) = (00 — i — 1)0i12 + fir it2(On\ (it 1.i42})- (7.6)

SIf n = 2, then Sii+1(Onii+13) = c. Therefore, we have the desired expression directly from
Egs. (7.4) and (7.5).
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Equating Egs. (7.5) and (7.6) gives us a recursive relationship between f;;+; and
Sitrita:

Sirtir2(Ongi+1,i4+20) = (00 — )0 — (00 —i — 1)0i42 + fiit1Ongiir1y).  (1.7)

There are n — 1 functions of the type f;;+; (fori = 1,...,n —1)and n — 2
recursion relations. We will use the recursion relations to obtain an expression for
Sa—1.n- We start by observing that f;;11(0y\,i+1}) cannot depend on 6; or 0;4.
Similarly, fi11,42(On\{i+1,+2}) cannot depend on 611 or 8;1,. However, the term
—(00p — i — 1)6;4, appears on the right-hand side of Eq.(7.7). This implies that
Siir1(On\(ii+1y) must have (09(0) — i — 1)8;4, as an additive term. In other words,
we can write

Fiit1 Ongiiry) = (00 — i — 1)0ign + B (O gii41.423)-
Substituting in Eq. (7.7), we get
Firtit2(Ongit1i+23) = (00 — D)6; + B (O gi.i41.42)- (7.8)

Next, put i 4 1 instead of i in Eq. (7.7) and substitute for f 1 j+2(On\(i+1,i+2}) using
Eq. (7.8). We have
Sir2i03Onfit2,43y) = (00 — i — 1)1 — (00 — i —2)0iy3
+(00 — D)0; + h (On\giit1.i42})- (7.9

Observe that fi 5 i13(0n\(i+2,i+3}) cannot depend on 8; 3 but there is a term — (o —
i — 2)0;43 on the right-hand side. It follows that

R (O gii+1.42)) = W O giit1.42.0433) + (00 — i — 2)B;43. (7.10)
Substituting Eq. (7.10) back in Eq. (7.9) gives us
Jir2,i+3(Onit2,i431) = (00 —)0; + (00 — i — 1)0;1
+h T O it 1i42.43})-

It is clear that this argument applies recursively. Starting with i = 1 and applying
the above argument repeatedly, we can conclude that for ¢ € R,

n—2

Jo—10(On\n—1.1}) = Z(Uo — )6 + B (Opw)

i=1

n—2
=Y (00— i)b; +c. (7.11)

i=1
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Note that c is a type-independent arbitrary constant. We can now use the recursion

relations equation (7.7) to conclude that fori = 1,...,n — 16:
i—1 n—1
Fir1Ongirn) = > (00 =8 + Y (00— )1 +c. (7.12)
j=1 j=i+1

Hence, using Eq. (7.4),fori=1,...,n—1,

i—1 n—1

gibwy) = (00— D0it1 + Y (60— + D (60— )61 + ¢

j=1 j=it+1

i—1 n—1
=D (00 =) + D (00 = js1 +e. (7.13)

j=1 =
Since for all i € N,
i ifj<i,
A 9 i = .
0; (On\(3) %j_11szi+l,

we can rewrite Eq. (7.13) as: forall i € N,

80w = Z(UO —0j(On3))b; + c. (7.14)
J#i

Observe that Eq. (7.14) holds no matter what the order of the efficient queue. This
completes the proof. O

Our next theorem characterizes the complete family of rules satisfying queue-
efficiency, strategyproofness, and egalitarian equivalence. It shows that the queue
position in the reference bundle must be the same for all profiles. Furthermore, the
choice of the queue position determines the transfers at all profiles up to a type-
independent constant.

Theorem 7.1 A rule ju satisfies queue-efficiency, strategyproofness, and egalitarian
equivalence if and only if it is a VCG rule and there exists oy € {1,...,n}andc € R
such that for all § € 2N and all i € N,

1(0) = Y (00— 0y(6))6; + ¢ (7.15)

JEN\{i}

where u(0) = (0(0), 1(9)).

SWe can show Eq.(7.12) formally by induction. Note that Eq. (7.12) is true for i = n — 1 by
Eq. (7.11). The induction step—showing that Eq. (7.12) is true for i — 1 if it is true for i—is easily
established and is omitted.
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Proof Lemma 7.1 has an immediate useful implication which we will use. By
substituting Eq. (7.1) in Eq. (7.2) and simplifying, it follows that

0(8) = ) (00 = 0i(6))6; + c. (7.16)

iEN

We first show the necessity of Eq.(7.15). By egalitarian equivalence, —(0;(0) —
1)6; + 1,(0) = —(00(0) — 1)8; + 19(8). Using Eq. (7.16) and Lemma 7.1, it follows
that

t(0) =Y (00— 0;(6))6; + c. (7.17)
i

This establishes the necessity of Eq. (7.15). That oy is any arbitrary queue position
and c is an arbitrary constant follows from Lemma 7.1.

For sufficiency, consider a VCG mechanism p such that the transfer satisfies
Eq. (7.15), oy is an arbitrary queue position, and ¢ an arbitrary real constant. Queue-
efficiency and strategyproofness are satisfied since p is a VCG mechanism. We only
need to show that it satisfies egalitarian equivalence. Let i € N. Using Eq. (7.17),
we obtain

ui(pi(0); 0;) = —(0:(0) — 1)0; — (00 — 0i(0))0; + 10(6)
= —(o0 — D + 10(0)
= u;(09,120(0); 0;).
Since the selection of i is arbitrary, egalitarian equivalence follows. O

Remark 7.1 In this remark, we discuss what additional rules would be made
possible by dropping one axiom at a time from the list appeared in Theorem 7.1.

(i) Dropping queue-efficiency:Let oy € {1,...,n} be any choice of queue position
and ¢’ € X (N) be any queue. Let ' = (o,¢) be a rule such that for all
0 € 2V, 0() =o', andforalli € N, £;(8) = 3 jcp (00 — 07)6;. Since
o(0) = o' for all 0, queue-efficiency is violated. It satisfies strategyproofness
because, by misreporting, no agent can change her queue position or her own
transfer. To show that egalitarian equivalence is satisfied, choose the reference

bundle (09, 10(0)) where to(6) = 3_ ey (00 — 07)8;. Then, for alli € N,

—(0] = )6 + £(0) = —(0] — 16 + Z (00 — )8
JEN\Li}

—(00 — D6; + Y (00 — 5))6;.

jEN

Therefore, u’ satisfies egalitarian equivalence.
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(ii) Dropping strategyproofness: Let i = (o, 1) be a rule satisfying the following
properties:

(1) Forall € 2V, 0(0) € Eff(0), 00(0) € {1,...,n},and for all i € N,

1i(0) = ZjeN\{,-}(UO(Q) —0j(0))0;.
(2) There exist profiles 8, 8’ € 2V such that 6¢(0) # 0o(6").

Due to (2) and Theorem 7.1, . must violate queue-efficiency, strategyproof-
ness, or egalitarian equivalence. By (1), i satisfies queue-efficiency. To show
that egalitarian equivalence is satisfied, choose the reference bundle for a
profile as (00(0), to(6)) where #(0) = ZiEN(GO(Q) — 0j(0))6;. Then, for all
i €N,

—(0i(0) = )6 +7(6) = —(0:(0) — DO + Y (00(6) — 0;(0))6);
JEN\{i}

—(00(8) — )6; + Y _(00(8) — 6;(6))6;.

jEN

The last expression is the utility from the reference bundle and shows that
egalitarian equivalence is satisfied.” Hence i must violate strategyproofness.

(iii)) Dropping egalitarian equivalence: By Holmstrom (1979), the family of all
VCG rules become admissible. As shown in Theorem 7.1, not all VCG rules
satisfy egalitarian equivalence.

7.3 Additionally Imposing Budget Balance or Feasibility

We now examine whether the rules characterized in Theorem 7.1 satisfy additional
desirable properties. One such property is budget balance which requires that there
be no net transfer into or out of the problem.

Budget balance: Forall N € .4 andall § € 2V, Y7 #(6) = 0.

i=1

A weakening of budget balance is feasibility which allows a rule to accumulate a
budget surplus but not a deficit. So long as the accumulated surplus can be disposed
of elsewhere, this can be justified. Otherwise, it is an efficiency loss.

It is worth noting that there are rules satisfying queue-efficiency and strate-
gyproofness which run a budget surplus, an example of which is the well-known
pivotal rule. This rule serves everyone in the nonincreasing order of their waiting
costs. Each agent pays the sum of waiting costs of those served behind her. This rule
runs a budget surplus at all profiles.

7As a matter of fact, our construction of transfers shows that any choice of queue position in the
reference bundle can be made consistent with egalitarian equivalence provided we have unlimited
freedom in selecting transfers.
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Feasibility: Forall N € .4 andall 6 € 2V, """ 1,(6) <O0.

We begin with investigating the implications of additionally imposing budget
balance. As it turns out, none of the rules characterized in Theorem 7.1 satisfies
budget balance.

Proposition 7.1 There is no rule satisfying queue-efficiency, strategyproofness,
egalitarian equivalence, and budget balance.

Proof From Theorem 7.1, it follows that a rule satisfies queue-efficiency, strate-
gyproofness, and egalitarian equivalence only if the transfers ¢ satisfy Eq. (7.15).
Applying budget balance and then simplifying it, we obtain that for all § € 2V,

> (0(6) — 006 = . (7.18)

n—1
jeN

We now have an impossibility since the left-hand side of Eq. (7.18) is dependent on
6 (no matter how we choose ay), while the right-hand side is a constant. |

While budget balanced rules are not possible, it turns out—rather unexpectedly—
that there are rules satisfying feasibility together with queue-efficiency,
strategyproofness, and egalitarian equivalence. The following theorem charac-
terizes all such rules. In particular, we show that 6y = 1 and ¢ < 0.

Theorem 7.2 A rule | satisfies queue-efficiency, strategyproofness, egalitarian
equivalence, and feasibility if and only if it is a VCG rule such that the transfers
satisfy Eq. (7.15) with oo = 1 and ¢ < 0.

Proof By Theorem 7.1, a rule satisfies queue-efficiency, strategyproofness, and
egalitarian equivalence if and only if it is a VCG mechanism with the transfers given
by Eq.(7.15).If 6p = 1 and ¢ < 0, then for alli € N, 1;,(f) = — ZjeN\{i}(crj(O) —
1)60; + ¢ < 0 and hence feasibility holds. This establishes sufficiency.

To establish necessity, first note that given Eq.(7.15), a rule satisfies queue-

efficiency, strategyproofness, egalitarian equivalence, and feasibility only if for each

0 e 9V,

> 4(0) = (n—1) Y (00 — 6:(6))6; + nc < 0. (7.19)

iEN iEN

Therefore, we only need to show that for Eq. (7.19) to be true, it is necessary that
c<0andoy = 1.

Suppose first that ¢ < 0 is not true, that is, ¢ > 0. Consider a profile 6 such that
foralli € N, 6; = 2c/n(n— 1). Then,

Y uO)=mn-1)_ % + nc = (200 — 1e. (7.20)
iEN k=1
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Observe that in Eq. (7.20), for any oy € {1,...,n}, (200 — 1)c > 0 and we have a
violation of Eq. (7.19). Therefore, ¢ < 0.

Next, suppose that oy = 1 is not true, that is, assume that oy = k where k €
{2,...,n}.Consider aprofile # € 2V suchthat, =--- =0, =a> Gy =--- =
6, = b > 0. For this profile,

k n
o) =@m-1) [Z(k—r)a— > (r—k)b:| + ne
r=1

iEN r=k+1

(1) [k(k—l)a_ (n—k)(n—k+1)b:| e

5 5 (7.21)

Since k € {2,...,n} and ¢ < 0, we can choose

_ 1 3 2nc b 2
= k(k—l)[ _n—1:|’ T an—1)

It is easy to verify that @ > b > 0. Substituting these values in Eq.(7.21) and
simplifying, we obtain

3 —kn—k+1
S = -3 - CEEED o
P 2 nin—1)
This violates Eq. (7.19) and proves that oy = 1 is necessary. O

Remark 7.2 Let I' be the family of rules that satisfies queue-efficiency, strate-
gyproofness, egalitarian equivalence, and feasibility. From Theorem 7.2, it follows
that if u, u' € I', then for each profile 0, the difference between the transfer of
any agent i € N across the two rules . and p' is calculated by using the (agent
and profile independent common) constant c. Since this constant c is restricted to be
nonpositive, it follows that the rule u € I' that minimizes the budget surplus is the
one for which ¢ = 0. It is also clear from Eq. (7.19) that even when ¢ = 0, unlike
Yengin (2012), one cannot place any upper bound on the budget surplus.

We conclude this section with a technical remark.

Remark 7.3 If we replace the feasibility requirement by the no surplus condition
(that is, for all § € 2V, > ien ti(8) = 0), then we can show the following result. A
rule u satisfies queue-efficiency, strategyproofness, egalitarian equivalence, and no
surplus condition if and only if it is a VCG rule such that for all § € 2" and all
i €N, (0) = ZjeN\{i}(UO —0;(0))8; + ¢, 00 > (n+ 1)/2 and ¢ > 0. Interestingly,
this is not exactly the dual of Theorem 7.2 since we have 6y > (n+ 1)/2. Moreover,
it can also be shown that one cannot place any bound on the budget deficit.
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7.4 Impossibility Results

Theorem 7.1 shows that there is a family of rules satisfying queue-efficiency,
strategyproofness, and egalitarian equivalence. We now ask what happens if we
impose two additional desirable properties: weak group strategyproofness and no-
envy. Unfortunately, we obtain negative results.

7.4.1 Weak Group Strategyproofness and Egalitarian
Equivalence

Weak group strategyproofness requires that there is no deviation by a group making
all deviating members strictly better off.

Weak group strategyproofness: Forall N € 4, all 0,0’ € 2V, andall S C
N,if forall j € N\ S, §; = 6, then for at least one i € S, u;(u;(6);6;) >
ui(1i(0'); 6;).

This axiom has been used by Bogomolnaia and Moulin (2004), Moulin and Shenker
(2001), Mutuswami (2005), Mitra and Mutuswami (2011), and others. It is obvious
that weak group strategyproofness implies strategyproofness.®

Proposition 7.2 For n > 3, there is no rule satisfying queue-efficiency, weak group
strategyproofness, and egalitarian equivalence.

Proof Let N € 4 be such that N = {1,...,n} and n > 3, j be a rule satisfying
queue-efficiency, weak group strategyproofness, and egalitarian equivalence, and
forall 0 € 2V, u(0) = (0(0),1(0). Since weak group strategyproofness implies
strategyproofness, we can use Theorem 7.1 to infer that the reference bundle for any
6 € 2V is (09, 10(6)) where 19(8) = >_ (00 — 0;(8))6; + c. The allocation of agent
jEN
iis (0i(0),1:(0)) where 1;(8) = Y (00— 0;(0))6; + c.
JEN\Li}

Consider profiles 6 and 6’ such that 6; > --- > 6, and, foralli € N, 6/ = 6; +x,
x> 0,6 € (6,0,-) foralli € {2,...,n}. For these profiles, we show that there is
a violation of weak group strategyproofness for all choices of oy.

1. op = 1: Let (05, 65, Oy\(2.3}) be the true profile. We can check that agents 2 and
3 can profitably manipulate via the misreports 6, and 6;.

2. 0p = n: Let 0 be the true profile. Here, agents n — 2 and n — 1 can profitably
manipulate via the misreports 6/ _, and 6/_,.

80ne can formulate a stronger notion of group strategyproofness which requires that there does not
exist a group deviation making all deviating members weakly better off and at least one member
strictly better off. Unfortunately, in the context of queueing, this notion is incompatible with queue-
efficiency as shown in Mitra and Mutuswami (2011).
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3. 00 # {l,n}: Let (9(’704_1, 9N\{ag+1}) be the true profile. In this case agents oy — 1
and 0p + 1 can manipulate profitably via the misreports 9(/70_1 and O 41. O

Remark 7.4 When n = 2, all rules satistfying queue-efficiency, strategyproofness,
and egalitarian equivalence are also weakly group strategyproof. In particular,
putting ¢ = 0 and 0g = k, k = 1, 2, gives us the k-pivotal mechanisms identified in
Mitra and Mutuswami (2011) and shown to be weakly group strategyproof. Clearly,
adding a constant to all transfers preserves the weakly group strategyproof property.
It follows from the earlier discussion that putting 6p = 1 and ¢ < 0 gives us
feasibility as well in this case.

7.4.2 Strategyproofness, Egalitarian Equivalence,
and No-Envy

We begin with a comparison between our results obtained using egalitarian equiv-
alence and the results using no-envy (Foley 1967), which requires that no agent
should end up with a higher utility by consuming what any other agent consumes
(see Chap.5 for details). The idea of this comparison is to see the differing
implications of the two equity criteria in the context of queueing problems.

In contrast to no-envy, which implies queue-efficiency, egalitarian equivalence
imposes no restriction on the choice of the queue provided we have freedom in
choosing transfers. To see this, let § € 2V and (0¢(6).2(0)) be the reference
bundle. Suppose the rule chooses the queue o (6). It is easy to show that egalitarian
equivalence requires the transfers to satisfy the following restrictions: for all 8 €
9N and alli € N,

1:(0) = (0:(6) — 00(0))0; + 10(6).

As a matter of fact, the difference between no-envy and egalitarian equivalence
extends beyond their implications for queue-efficiency. As shown in Proposition 5.4,
these two concepts are incompatible when there are at least four agents. No
additional assumption is needed for this result. On the other hand, as discussed in
Sect. 5.5, when there are two or three agents, no-envy and egalitarian equivalence
are compatible even if budget balance is additionally required. We note that the
incompatibility of budget balance, no-envy, and egalitarian equivalence for the
problem of assignment of objects in a general quasi-linear framework with three
agents was established by Thomson (1990).

Here, we ask another question: Are no-envy, egalitarian equivalence, and
strategyproofness compatible when n < 3? The answer is yes. When n = 2, the
k-pivotal mechanisms are an example. We have already observed that when there
are just two agents, these mechanisms satisfy queue-efficiency, strategyproofness,
and egalitarian equivalence. From the discussion in Sect. 6.3.2, they also satisfy
no-envy.



7.5 Conclusions 91

When n = 3, the proof of Proposition 5.4 shows that we must have oy = 2.
Using Eq. (7.15), we can compute the transfers easily.” Assuming that the constant
is zero, the transfers for a profile 8 such that 6, > 6, > 0; are

1(0) = =03, (0) = 0, — 03, 13 = 0.
The corresponding utilities are
u1(9) = —93, Mz(@) = 91 - 92 - 93, u3(9) = 91 - 293.

It is straightforward to check that no agent envies any other agent. Not surprisingly,
this rule does not satisfy budget balance.

In a heterogenous object assignment problem with the option that each agent
may be assigned more than one object or the null object, Yengin (2011) shows
that assignment efficiency,'" strategyproofness, egalitarian equivalence, and no-
envy are compatible. Hence, the fact that in the queueing problem each agent is
assigned only one queue position (one object) along with queue-efficiency imposes
significant structure to drive this incompatibility in comparison to the general model
of assigning objects.!!

7.5 Conclusions

We show that the family of rules satisfying queue-efficiency, strategyproofness, and
egalitarian equivalence is nonempty and provides a complete characterization of
this family. However, none of these rules satisfies additional desirable properties
such as budget balance or immunity to group deviations. This is hardly surprising.

From a more general mechanism design perspective, asking for egalitarian
equivalent VCG rules to satisfy budget balance or weak group strategyproofness
is indeed asking for too much. In particular, if we want egalitarian equivalence,
then strategyproofness reduces the degrees of freedom of the reference bundle
substantially by making the queue position fixed for all profiles. Therefore, one
should not be disheartened to find a negative result with such strong properties. One
rather surprising result is that there are egalitarian equivalent VCG rules that satisfy
feasibility.

9Since no-envy implies queue-efficiency, the queue is determined to satisfy gueue-efficiency.
10Assignment efficiency requires that there should be no feasible allocation at which all agents are
weakly better off and at least one agent is strictly better off.

"'The possibility of assigning the null object is important for the possibility result. Indeed, Yengin
(2011) chooses the combination of the null object and money as the reference bundle.
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Chapter 8
Subgroup Additivity

8.1 Introduction

Subgroup additivity requires that a rule assigns the same expected relative utility
to each agent whether an agent’s expected relative utility is calculated from the
problem involving all agents or from its subproblems with smaller numbers of
agents where the subproblems are formed from the original problem. The relative
utility of an agent from a rule is the utility of the agent in a given problem relative to
her identical expected utility (that is, the utility that she expects to derive when
all others have the same waiting cost as her and each of the queue position is
assigned with equal probability). In this chapter, we investigate its implications for
the queueing problem. As a result, we present characterizations of five important
rules in the queueing problem: the minimal transfer rule (Maniquet 2003), the
maximal transfer rule (Chun 2006), the pivotal rule, the reward-based pivotal rule
(Mitra and Mutuswami 2011), and the symmetrically balanced VCG rule (Kayi and
Ramaekers 2010; Mitra 2001; Suijs 1996).

Our notion of subgroup additivity can be compared with converse consistency,
which requires that if there is a feasible allocation with the property that for all
proper subgroups of agents the rule chooses the restriction of the allocation to the
subgroup for the associated reduced problem this subgroup faces, then the allocation
should be chosen for the problem. Converse consistency is appealing from both
practical and computational point of views as it tells us that to evaluate an allocation
for some possibly large group, it is enough to do so at the two-agent level (Peleg
1986; Thomson 2004). We ask a related question: Is it possible to solve the n-agent
problem by solving its subproblems with a smaller number of agents? Instead of
introducing a reduced problem, we try to find an answer by solving subproblems
directly obtained from the original problem. Also, we note that subgroup additivity
is an important issue in other contexts such as poverty measures and has been studied
extensively under the name of decomposability (Foster et al. 1984).
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We first show that, given any set of n agents, for each s € {2,...,n — 2}, if a
rule satisfies queue-efficiency, Pareto indifference, equal treatment of equals, and
s-subgroup additivity, then it also satisfies (s + 1)-subgroup additivity implying
that 2-subgroup additivity is the strongest requirement among the class of rules
satisfying queue-efficiency, Pareto indifference, and equal treatment of equals.
Using 2-subgroup additivity, we provide characterizations of the minimal transfer
rule, the maximal transfer rule, the pivotal rule, and the reward-based pivotal rule.
Using 3-subgroup additivity, we provide characterizations of the symmetrically
balanced VCG rule.

Given the subgroup additivity axiom and some basic axioms like queue-
efficiency, Pareto indifference, and equal treatment of equals, we impose
additionally two types of axioms to characterize the five rules. The first type
of axioms is strategic where we weaken the notion of strategyproofness.
Strategyproofness, discussed in Chap. 6, requires that an agent should not have
an incentive to misrepresent her waiting cost no matter what she believes other
agents to be doing. The second type of axioms is equity based where we modify
the notion of egalitarian equivalence (Pazner and Schmeidler 1978). Egalitarian
equivalence, discussed in Chap. 7, requires that there should be a reference bundle
for each problem such that each agent is indifferent between her bundle and the
reference bundle. We modity egalitarian equivalence by imposing a restriction on
the reference bundle and requiring the axiom to be satisfied only for two-agent
problems. What comes out of our analysis is that each strategic axiom in our
characterization results can be replaced by an appropriate equity axiom for the four
rules that are 2-additive. This type of substitutability between strategic and equity
axioms also works for the symmetrically balanced VCG rule.!

This chapter is organized as follows.” In Sect.8.2, we briefly discuss the
importance of the five rules in the context of queueing and provide the preliminaries
useful for this chapter. In Sect.8.3, we present our main axiom of subgroup
additivity and show that all five rules satisfy some version of this property. In
Sect. 8.4, we provide our characterization result of the four 2-subgroup additive
rules using strategic properties, and in Sect. 8.5, using equity properties. In Sect. 8.6,
we characterize the symmetrically balanced VCG rule using 3-subgroup additivity
along with either a strategic axiom or an equity axiom. In Sect. 8.7, we conclude our
analysis.

A similar analysis can be done for scheduling problems in which agents have the same waiting
costs, but the processing time for jobs can differ. For studies on the scheduling problem, see, for
example, Cres and Moulin (2001) and Moulin (2007).

2This chapter is based mainly on Chun and Mitra (2014). Excerpts from that article are reprinted
with kind permission of Elsevier.
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8.2 Some Properties of Five Important Rules

We characterize five rules formally defined in Chap.2. The minimal transfer rule
(Maniquet 2003) selects an efficient queue and transfers to each agent a half of
her unit waiting cost multiplied by the number of her predecessors minus a half
of the sum of the unit waiting cost of her followers. The maximal transfer rule
(Chun 2006) selects an efficient queue and transfers to each agent a half of the sum
of the unit waiting cost of her predecessors minus a half of her unit waiting cost
multiplied by the number of her followers. These two rules are obtained by applying
the Shapley value (Shapley 1953), one of the most widely discussed solution in
cooperative games, to appropriately designed cooperative games of the queueing
problem. For the minimal transfer rule, the worth of a coalition is defined to be
the minimal waiting cost incurred by its members under the assumption that they
are served before the non-coalitional members. For the maximal transfer rule, the
members of the coalition are served after the non-coalitional members. Both the
minimum and the maximum transfer rules satisfy queue-efficiency, budget balance,
Pareto indifference, and equal treatment of equals.’

The next three rules satisfy strategyproofness, that is, an agent should not have an
incentive to misrepresent her waiting cost no matter what she believes other agents
to be doing. The symmetrically balanced VCG rule is introduced by Suijs (1996)
and Mitra (2001) and later characterized in the context of queueing by Kayi and
Ramaekers (2010, in press) and Chun et al. (in press). It is the only rule satisfying
queue-efficiency, budget balance, Pareto indifference, equal treatment of equals, and
strategyproofness.

The pivotal and the reward-based pivotal rules fail to satisfy budget balance
but are nevertheless important primarily because these rules satisfy weak group
strategyproof, which requires that any subgroup of agents cannot be made strictly
better off by deviating. They belong to the family of k-pivotal rules characterized
by Mitra and Mutuswami (2011) by imposing the axioms of queue-efficiency, equal
treatment of equals, pairwise strategyproofness, and weak linearity.* While weak
linearity is a technical requirement, pairwise strategyproofness requires that, as long
as there is no further side payments across agents, there does not exist any pair of
agents that can benefit by deviating from truth telling. Moreover, all k-pivotal rules
are weakly group strategyproof. We leave out other k-pivotal rules simply because
they fail to satisfy subgroup additivity.

3Queue-efficiency requires that the rule should choose queues which minimize the total waiting
costs. Budget balance requires that the sum of all transfers should be equal to zero. Pareto
indifference requires that if an allocation is chosen by a rule, then all other feasible allocations
which assign the same utilities to each agent should be chosen by the rule. Finally, equal treatment
of equals requires that two agents with the same waiting cost should end up with the same utilities.
“As in Chaps. 6 and 7, since Mitra and Mutuswami (2011) assume the existence of a tie-breaking
rule, which selects an efficient queue whenever there is more than one such queue, they do not
impose Pareto indifference.
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We note once again that the reward-based pivotal rule does not satisfy budget
balance. Moreover, it does not satisfy no budget deficit either. Therefore, in this
chapter, we weaken the definition of feasibility and modify the axiom of Pareto
indifference to accommodate the reward-based pivotal rule. An allocation is feasible
if no two agents are assigned the same position.’ Forall N € .4  and all § € 2V, let
Z(0) be the set of all feasible allocations. Pareto indifference, which requires that if
an allocation is chosen by a rule, then all other feasible allocations which assign the
same utilities to each agent should be chosen by the rule, is modified as follows.

Pareto indifference: Forall N € .4, all 8 € 2V, all (0,¢1) € ¢(9), and (¢/,¢) €
Z(0),if o’ € Eff(0) and for all i € N, u;(0/,1;6;) = ui(0:,1;:6;), then (0'.7) €
@(0).

In the next section, we introduce subgroup additivity and we also study certain
properties of subgroup additive rules by restricting our analysis to the class of all
rules satisfying the three basic axioms of queue-efficiency, Pareto indifference, and
equal treatment of equals. This class is not that restrictive in this context since all
five rules satisfy the three axioms.

Remark 8.1 One advantage of having a rule ¢ satisfying queue-efficiency, Pareto
indifference, and equal treatment of equals is that we can, without loss of generality,
select any queue-efficient allocation from the set of all feasible allocations in a given
problem. In particular, suppose that for some N € .4 and § € 2V, there exists i,
J € N such that 6; = 6;. If 0 € Eff(6), then the queue ¢’ obtained by interchanging
the queue positions of agents i and j, ceteris paribus, also belongs to Eff(6). By
equal treatment of equals, if (0,1) € ¢(0), then u;(0;, t;; 6;) = u;(0;, t;; 0;). Consider
the transfer ¢ obtained from ¢ by interchanging the transfers of agents i and j, ceteris
paribus. Given 6; = 6;, by Pareto indifference, (0’,1) € ¢(8). Hence we have
ui(oy, t;; 0;) = (03,4 6;) and u;(0y, t;; ;) = wu;(0;, 4 6;) implying that, given any
problem, each agent receives the same utility at any queue-efficient allocation of the
problem.

From Remark 8.1, for simplicity of exposition, we use the following notation.
For any given rule ¢ satisfying the three basic axioms of queue-efficiency, Pareto
indifference, and equal treatment of equals, any 6 € 2V and any (0.1) € ¢(0),
ui(0;, 1:;0;) = Ui(0) = Ui(0;, On\(iy)-

Finally, when the requirement of some axiom is restricted to problems involving
exactly s agents, we prefix s. For example, s-equal treatment of equal is a weakening
of equal treatment of equals which requires a rule to satisfy equal treatment of
equals for all problems with exactly s-agents.

SNote that there is no restriction on the budget.
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8.3 Subgroup Additivity

In general, it is more difficult to solve a problem involving all agents than solving
several problems with smaller numbers of agents, and hence it is always helpful to
look for rules that are subgroup additive. Before going into the formal definition of
subgroup additivity, we introduce some relevant definitions and concepts. For any
nonempty coalition S of agents and any agent k € {1,...,|S|}, let T(S;k) = {§' C
S||S’| = k}, where T(S; k) is the collection of all possible subgroups of S of size k
and |T(S; k)| = (lil). Given any agent i € N and any coalition S € N \ {i} with
|S| = k, let the identical expected utility of an agent i with waiting cost §; > 0
be IEU(6;,k + 1) = %@. In a problem with k 4 1 agents that includes agent i, if
all other agents had the same waiting cost as agent i, then the identical expected
utility of agent i is the cost that she incurs when she gets each of the k 4+ 1 queue
positions with equal probability ﬁ Define the relative utility of agent i in problem
Osugiy = (6;, Os) as

Ui(6;, 6s)

Uit 9) = 50 su D

where U;(0;, 0s) is the ratio of the actual utility and the identical expected utility.
Forany N, anyi € Nandany s € {2,...,|N\ {i}|},

1 _
Ei(0|s) = - Ui(Osugy)-
TN\ {5 — 1) S,ET(NX\{;};S_U St

Therefore, E;(6 | s) is the expected relative utility of agent i from all possible
allocations with subgroups of size s (which always includes agent i) where the
probability of selection of each subgroup of size s — 1 from the set of N \ {i} agents
is equally likely. A rule ¢ is s-subgroup additive if for all N € .4 such that |[N| > s,
all@ € 2V, and alli € N,

Ei(0 | IN]) = Ei(0 | 5). 8.1

Using the definition of relative utility, we can simplify each term in Eq. (8.1) to
obtain

_ 1 Ui(@[, 95’)
Ez(e | S) - (lN\—l) Z —(S— 1)&
s=1 ) §eTN\{i};s—1) 2
1
= TN > Ui6i.6y) (8.2)
2 s—2 ) §'eT(N\{i}s—1)
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and

, 1 u®) U0
Ei(0 | IN]) = G%IZD “V - )G = IN—DE (8.3)

Equating Eqs. (8.2) and (8.3) and then simplifying it, we obtain

1
Ui) = == 2, Uib,6y). (8.4)

(")
s—2 ) §’eT(N\{i};s—1)
Using Eq. (8.4), we can rewrite the definition of s-subgroup additivity as follows.

s-subgroup additivity: Given any positive integer s, forall N € .4 with |[N| > s,
all® € 2N, andalli € N,

1
U) = e D, Uiy (8.5)
( =2 ) SCN\{i}.|S|=s—1

Remark 8.2 One can make a comparison between subgroup additivity and converse
consistency. Suppose that we want to assign utilities to each agent by solving
s(< n)-agent problems instead of solving an n-agent problem. If a rule satisfies
s-subgroup additivity, then each agent ends up with the same utility whether an n-
agent problem is solved or whether we take an appropriately weighted sum of all
the utilities assigned to this agent in all s-agent problems that includes her. As in
the case of converse consistency, subgroup additivity provides a way of finding an
allocation for the n-agent problem by focusing on problems with a smaller number
of agents. However, the difference between converse consistency and subgroup
additivity comes from the difference in the initial situation and in the nature of
aggregation. For converse consistency, we start with the n-agent problem, and we
look at the desirability of a feasible alternative simply by looking at the restriction
on s-agent problem that results when all but these s agents have left with their
components. This is different from subgroup additivity where the starting point
is the s-agent problems and the weighted additivity aspect takes us to the n-agent
problem.

We first investigate the relation between subgroup additivity axioms with differ-
ent sizes of subgroups.

Proposition 8.1 Let ¢ be a rule satisfying queue-efficiency, Pareto indifference, and
s-equal treatment of equals. If the rule ¢ satisfies s-subgroup additivity with s €
{2,...,IN| =2}, then it also satisfies (s + 1)-subgroup additivity.

Proof 1f arule ¢ satisfies queue-efficiency, Pareto indifference, s-equal treatment of
equals, and s-subgroup additivity, then for any given N € .4 with [N| = n > s, all
0 e 2N andalli e N,

Ui(0) =

Z Ui(0;, Os).

(?:5) SCN\{i},IS|=s—1
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Ifs € {2,...,n— 2}, then we have

Z Ui(6:, 0s)

(5—2) SCN\{i},|S|=s—1

- (?12) 2 {(: _D UiB: QS)}

—1) SCN\{i}.|S|=s—1 -

1 Ui(6;, 05\¢ )
= (n—Z) Z Z S_Sl\{j}

S'CN\{i}.|8 |=s jES’

Ui(0) =

_ 1 > (0 (61 O57e3) = 1) 6 + 1 (6 O51\1)

n—2
(2D semimisios jes s—1

_ ! ti (0. O5\(3)
= D (03 (6. 05) = 1) 6, + ) ——

(20 s ims jes’ -1

S Z Ui(6;, 0y).

(?:f) S'CN\{i}.|S |=s

Therefore, (s + 1)-subgroup additivity is also satisfied. The last step follows by
defining the transfer #;(6;. 6y) = = 3" 5 i (61, 657(3) for each §' C N \ {i} with
|S’| = s. Finally, the penultimate step follows by noting that for any &' C N\ {i}
with |§'| = s,

3 (01 (0. O57\33) — 1) 6

s s—1

_ Z (07 (6, 09) —2) 6; n Z (07 (6, 09) — 1) 6;

) s—1 ) s—1
JEPi(0(0:,05)) JEFi(0(0:,05))
595,9/ -2 Qi 595,9/ _191'
= (Ui (91‘7 fy) —1) (G ( . i)l ) + (S —o; (6;, 95/) + 1) (G ( B i)l )
i (6;,05) —2)0;
= (07 (6;,09) — 1) AL )1 )6
5 —

(07 (6, 09) — 1) 6;
s

+{(s—1) = (0i (8;,05) — 2)} _

= (0 (6;,05) — 1) 0.

O

Proposition 8.1 ensures that if a rule satisfies queue-efficiency, Pareto indiffer-
ence, and s-equal treatment of equals, then 2-subgroup additivity is the strongest,
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which implies 3-subgroup additivity, and so on. The next proposition shows that if a
rule satisfies queue-efficiency, Pareto indifference, and s-equal treatment of equals,
then it is s-subgroup additive if and only if its transfer is s-subgroup additive.

Proposition 8.2 Let ¢ be a rule satisfying queue-efficiency, Pareto indifference,
and s-equal treatment of equals. The rule is s-subgroup additive if and only if the
transfers are s-subgroup additive, that is, for all N € A such that |N| > s, all
029V andalli €N,

1
00 = D, 6i6s). (8.6)

( s—2 ) SCN\{i},|S|=s—1

Proof If arule ¢ is s-subgroup additive, then for all N € .4 such that [N| = n > s,
alld € 2N andalli € N,

Ui(6i, Own) = Y. U6 bs). (8.7)

(?:5) SCN\{i}%|S|=5—1

Since U;(0;, On\(iy) = — (0: (0) — 1) 0; +1:(0) and U;(6;, Os) = (0i (6;, 05) — 1) 0; +
1;(6;, 0s), Eq. (8.7) can be rewritten as

— (i (0) = )b + 1:(0) = ;12 > {(0i(61.65) — 1) 6; + 1(6:. 65)} .

(522) SCN\{i},IS|=s—1

or equivalently,

t,-(e)—% > 4(6:.65)
(s—Z)

SCN\{i}.|S|=s—1

=(gi(9)—1)9i—,i—2 Yo (0i(6i.65) = 1)6i.

(s—Z) SCN\{i}.|S|=s—1

Given the last step, it is enough to show that if the rule ¢ satisfies queue-
efficiency, Pareto indifference, s-equal treatment of equals, and s-subgroup addi-
tivity, then

(A) (05(9)—1)@:% > (0i(6ibs5) — 1)

(n—Z) SCN\{i}.|S|=5s—1

If 6,(0) = 1, then by queue-efficiency, Pareto indifference, and s-equal treat-
ment of equals, we can find an allocation under the rule such that P;(c(6)) =
Pi(0(6;,05)) = @ forall S € N\ {i} and we have 0;(6;,0s) = 1 forall S € N\ {i}



8.3  Subgroup Additivity 101

implying that condition (A) holds. If |P; (0 (0)) | = 0:(8) —1 € {1, ... ,n—1}, then

: Y (0i(6i.65) — 1)b;

(Z:g) SCN\{i}.|S|=s—1

! ai(6)—1 0:i(0) — 1 —0;(0)
=1 IR P e | B | D

s—2 r=max{0,s—1—(n—0;(0))}

1 e 0:(0) =2\ (n— 0:(6)
=L N SR Gty | e £

s—2 r=max{0,s—1—(n—o;(0))}+1

1 n—2
= @(@(9) -1 { (s B 2) 91‘}

= (0:(6) — 1)6;

Therefore, condition (A) holds. O

Now we show that the five rules satisfy some version of subgroup additivity. The
minimal transfer rule, the maximal transfer rule, the pivotal rule, and the reward-
based pivotal rule satisfy 2-subgroup additivity, whereas the symmetrically balanced
rule satisfies 3-subgroup additivity.

Proposition 8.3 The minimal transfer rule, the maximal transfer rule, the pivotal
rule, and the reward-based pivotal rule are all 2-subgroup additive. On the other
hand, the symmetrically balanced rule is 3-subgroup additive.

Proof 1t is easy to show that all five rules satisfy queue-efficiency, Pareto indiffer-
ence, and equal treatment of equals. Hence to verify subgroup additivity of these
five rules, all we need do is to check the restriction on transfer given in Eq. (8.6) of
Proposition 8.2. In particular, to verify 2-subgroup additivity of the four rules, we
need to check whether for all N € .4 such that |[N| > 2, all € 2V and alli € N,
50) =" jem\giy 1i(6:, 0)). To prove 2-subgroup additivity, we assume, without loss
of generality, that if j € P;(0(0)), thenj € Pi(c(6;,6;)), and if j € F;(c(8)), then
J € Fi(o(6;,0;)) (see Remark 8.1). Similarly, to verify 3-subgroup additivity of the
symmetrically balanced VCG rule, we need to check whether for all N € .4” such
that [N| > 3,all 6§ € 2V, andalli € N, 1;(8) = W|+2 G 6 0gia).
Again to prove 3-subgroup additivity, we assume, without loss of generality, that if
Jj € Pi(o(0)), thenj € Pi(c(0;,6;,6;)) forallk € N\ {i,j}, and if j € F;(c(0)), then
J € Fi(0(6;,0;,0¢)) forall k € N \ {i,j} (see Remark 8.1).

First, we begin with the minimum transfer rule (pM .Let N € 4 be such that

N = {i.j}. X 0:(6:.6) = 1, then " (¢;.6) = —% and £(6;. 6;) = %. Therefore, for
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all N € 4 suchthat |[N| > 2,all § € 2V, and all i € N, it follows that

poy= @O0 5

2
JEF{(0(0))

Yoo Mo+ D 126.6)

J€Pi(a(6)) J€Fi(a(6))

Z M0, 0)).

JEN\{i}

Hence @M satisfies 2-subgroup additivity.

Next is the maximum transfer rule €. Let N € .4 be such that N = {i,j}. If
0i(6;,6;) = 1, then tf(ei, 9) = —% and tf(ej, 0;) = %. Therefore, for all N € A
such that [N| > 2, all § € 2V, and all i € N, it follows that

€(6) = Z 0 (IN|—0i(0))0;

JEPi(0(9)) 2

= Y f£On+ > £6.6)
JEPi(0(9)) JEFi(0(9))

= Y 1£(6.6).

JEN\{i}

Hence ¢ satisfies 2-subgroup additivity.

Now we consider the pivotal rule . Let N € .4 be such that N = {i,j}. If
cri(Gi, Qj) = 1, then l‘f(@i, 91) = —Qj, and if cri(Gi, Qj) = 2, then l‘f(@i, 91) = 0.
Therefore, for all N € .4 such that |[N| > 2,all § € 2V, and all i € N, it can be
shown that

fO =~ > 6
J€EFi(0(0))
= Y 6.0+ Y £6.60)
JEPi(0(0)) JEFi(a(0))
= Y (6.6
JEN\{i}

Hence ¢ satisfies 2-subgroup additivity.

Next is the reward-based pivotal rule pR. Let N € .4 be such that N = {i,}.
If 0;(6;,6;) = 1, then £(6;,6;) = 0, and if 0;(6;,6;) = 2, then tX(6;,6) = 6,
Therefore, for all N € .4 such that |[N| > 2, all § € 2", and all i € N, it can be



8.3  Subgroup Additivity 103

shown that

@)= Y 6

J€Pi(a(6))

= Y f6.H+ Y. 6.6
Jj€Pi(0(8)) JEFi(a(8))

= Y 6.6

JEN\{}

Hence X satisfies 2-subgroup additivity.

Finally, we consider the symmetrically balanced VCG rule ¢®. To prove
3-subgroup additivity of ¢®, we have to show that for all N € 4" such that |N| > 3,
alld € 2N andalli € N,

1
IN| =2

HOE Y 66k

{ikyCN\{i}

Consider any N € .4 such that [N| > 3,any § € 2", anyi € N, and any § =
{i,j, k} C N. From the definition of ¢®, we have

min{6;, O¢} if {j, k} < Pi (0(0)),
17 (0. 0m) = § —max{6;, 6} if {j, k} € Fi(0(6)), (8.8)
0 otherwise.

Consider any £ € P;(0(6y)) and all {j,k} < N\ {i} such that £ € {j, k} and
8 (Gi, G{j,k}) = 6. Given Eq.(8.8), this can happen for those {j, k} such that
£ € {j, k} and the other agent £’ € {j, k} is a predecessor of agent £, that is,
0" € Py (0(0)). The total number of cases such that t? (Gi, G{j,k}) = 6, is equal to
(‘P‘("lw))‘) = 0y(0)— 1. Similarly, consider any £ € F; (o(0)) and all {j, k} C N\ {i}
such that £ € {j,k} and ¢, (Hi, 9{‘,;;(}) = —0;. Given Eq. (8.8), this can happen for
those {J, k} such that £ € {j, k} and the other agent £’ € {j, k} is a follower of agent
¢, thatis, £’ € Fy (0(6)). The total number of cases for which % (6;, 6¢;.3) = —b;
is (‘F ‘("1(9)) ‘) = |N| — 0¢(0). Combining all these observations, it follows that for all
Ne A, allf € QN andalli €N,

3 i (6 609) _ y a0l oy Woa®),

{jKyCN\{i} NI =2 LePi(0(9) NI =2 LeFi(0(6)) NI =2
=17(6).

Hence ¢? satisfies 3-subgroup additivity. O
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8.4 2-Subgroup Additivity and Strategic Considerations

Strategyproofness discussed in Chap. 6 requires that an agent cannot strictly gain
by misrepresenting her waiting cost no matter what she believes other agents to be
doing. Here we introduce two weakenings of strategyproofness by requiring that
it is applied separately to agents with extreme waiting costs and characterize the
four 2-subgroup additive rules. Strategyproofness for the highest cost agent requires
that an upward misrepresentation of the waiting cost by the agent with the highest
waiting cost should not affect her utility. On the other hand, strategyproofness for
the lowest cost agent requires that a downward misrepresentation of the waiting cost
by the agent with lowest waiting cost should not affect her utility.

Strategyproofness for the highest cost agent: Forall N € 4, all §, 0" € 2V,
all (0,1) € p(0),all (6'.7) € p(8’),and all i € N, if 0; = 1, 8] > 6;, and for all
JeN\{i}, 9]-/ = 0, then u;(0;, 1;; 6;) = u;i(0!.1; 6;).

Strategyproofness for the lowest cost agent: For all N € ./, all 0, 6’ € 2V,
all (0.1) € ¢(0), all (¢',7) € p(0'),and all i € N, if 0; = |N|, 6] < 6;, and for
aHJ eN \ {l}, 9]/ = Qj, then Mi(CTi, ti; 91) = Mi(CT-/, l’l/-; 91)

1

The minimal and the maximal transfer rules satisfy 2-subgroup additivity, but
they are not strategyproof. However, it is interesting to note that the minimal transfer
rule does not give an agent with the highest waiting cost an incentive to misrepresent
her true waiting cost upward and the maximal transfer rule does not give an agent
with the lowest waiting cost an incentive to misrepresent her true waiting cost
downward.

Next we ask whether it is possible to find rules that satisfy both 2-subgroup
additivity along with strategyproofness or something stronger like weak group
strategyproofness? If we are willing to sacrifice the requirement of budget balance,
the answer is yes. The pivotal and the reward-based pivotal rules are such examples.
Moreover, these two rules can be characterized by replacing budget balance with
exactly one of the two following axioms.

Last-agent zero transfer: Forall N € .4, all 8 € 2V, all (0,1) € ¢(), and all
ieN,ifo; = |N|, thent;, = 0.

First-agent zero transfer: ForallN € 4, all € 2V, all (0,1) € ¢(0), and all
ieN,ifo; =1,thent; = 0.

Now we present our first characterization of the four 2-subgroup additive rules
based on the strategic axioms.

Theorem 8.1

(i) The minimal transfer rule o™ is the only rule satisfying queue-efficiency, bud-
get balance, Pareto indifference, 2-equal treatment of equals, strategyproofness
for the highest cost agent, and 2-subgroup additivity.
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(ii)

(iii)

(iv)
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The maximal transfer rule € is the only rule satisfying queue-efficiency, bud-
get balance, Pareto indifference, 2-equal treatment of equals, strategyproofness
for the lowest cost agent, and 2-subgroup additivity.

The pivotal rule ¢* is the only rule satisfying queue-efficiency, last-agent zero
transfer, Pareto indifference, 2-equal treatment of equals, strategyproofness for
the highest cost agent, and 2-subgroup additivity.

The reward-based pivotal rule ¢® is the only rule satisfying queue-efficiency,
first-agent zero transfer, Pareto indifference, 2-equal treatment of equals,
strategyproofness for the lowest cost agent, and 2-subgroup additivity.

Proof

(i)

(it)

(iii)

It is easy to show that the minimal transfer rule ¢ satisfies queue-efficiency,
budget balance, Pareto indifference, 2-equal treatment of equals, strate-
gyproofness for the highest cost agent, and 2-subgroup additivity. To prove
the converse statement, let ¢ be a rule satisfying the six axioms. We begin
with a two-agent problem. To simplify the notation, we assume without loss
of generality that N € .4 and 0 € 9V be such that N = {1,2} and 6, > 6.
Let 8’ € 2V be such that 8’ = (6,,6,) and (0’.¢) € @(0’). By queue-
efficiency and Pareto indifference, we may assume that for all i € N, o] = i.
By budget balance and 2-equal treatment of equals, 1|, = —% and 7, = %.
Now suppose that the first agent makes an upward misrepresentation of her
waiting cost, so that the resulting problem becomes 6. Let (o, 1) € ¢(6). By
queue-efficiency and Pareto indifference, we may assume that for all i € N,
o; = i. By strategyprooﬁess for the highest cost agent, t| = 0 , and by
budget balance, t, = 2 , which shows that on the class of two-agent problems
@ = oM. By 2-subgroup additivity, it follows that ¢ = ¢™ for all problems.
It is easy to show that the maximal transfer rule @€ satisfies queue-efficiency,
budget balance, Pareto indifference, 2-equal treatment of equals, strate-
gyproofness for the lowest cost agent, and 2-subgroup additivity. To prove
the converse statement, let ¢ be a rule satisfying the six axioms. We begin
with a two-agent problem. To simplify the notation, we assume without loss
of generality that N € .4 and 6 € 2" be such that N = {1,2} and 6, > 6,.
Let 0’ € 2" be such that ' = (6;,6;) and (0/,7) € ¢(8’). By queue-
efficiency and Pareto indifference, we may assume that for all ie€N,o = z
By budget balance and 2-equal treatment of equals, 1, = —7 and 7, =
Now suppose that the last agent makes a downward misrepresentation of her
waiting cost, so that the resulting problem becomes 6. Let (o, 1) € ¢(6). By
queue-efficiency and Pareto indifference, we may assume that for all i € N,
o; = i. By strategyproofness for the lowest cost agent, t; = ﬂ , and by budget

balance, t; = 92 , which shows that on the class of two- agent problems,
¢ = ¢C. By 2-subgroup additivity, it follows that ¢ = ¢ for all problems.
It is easy to show that the pivotal rule ¢ satisfies queue-efficiency, last-agent

zero transfer, Pareto indifference, 2-equal treatment of equals, strategyproof-
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ness for the highest cost agent, and 2-subgroup additivity. To prove the
converse statement, let ¢ be a rule satisfying the six axioms. We begin with
a two-agent problem. To simplify the notation, we assume without loss of
generality that N € .4 and 0 € 2N be such that N = {1,2} and 6, > 6,. Let
0" € 2N be such that 0’ = (6,,6,) and (0’,7) € ¢(0'). By queue-efficiency
and Pareto indifference, we may assume that for all i € N, O'i/ = i. By last-
agent zero transfer and 2-equal treatment of equals, t; = —6, and t, = 0.
Now suppose that the first agent makes an upward misrepresentation of her
waiting cost, so that the resulting problem becomes 6. Let (o, 1) € ¢(6). By
queue-efficiency and Pareto indifference, we may assume that for all i € N,
0; = i. By strategyproofuness for the highest cost agent, t; = —6, and by
last-agent zero transfer, t;, = 0, which shows that on the class of two-agent
problems, ¢ = . By 2-subgroup additivity, it follows that ¢ = ¢ for all
problems.

(iv) It is easy to show that the reward-based pivotal rule ¢f satisfies queue-
efficiency, first-agent zero transfer, Pareto indifference, 2-equal treatment of
equals, strategyproofness for the lowest cost agent, and 2-subgroup additivity.
To prove the converse statement, let ¢ be a rule satisfying the six axioms. We
begin with a two-agent problem. To simplify the notation, we assume without
loss of generality that N € .# and # € 2" be such that N = {1,2} and
0 > 6. Let 0 € 2" be such that 8’ = (6;,0,) and (¢',7) € ¢(8'). By
queue-efficiency and Pareto indifference, we may assume that for all i € N,
o! = i. By first-agent zero transfer and 2-equal treatment of equals, t; = 0 and
t, = 6;. Now suppose that the last agent makes a downward misrepresentation
of her waiting cost, so that the resulting problem becomes 6. Let (0, 1) € ¢(8).
By queue-efficiency and Pareto indifference, we may assume that foralli € N,
o; = i. By strategyproofness for the lowest cost agent, t, = 0, and by
first-agent zero transfer, t; = 0, which shows that on the class of two-agent
problems, ¢ = @R. By 2-subgroup additivity, it follows that ¢ = @R for all
problems. O

8.5 2-Subgroup Additivity and Equity Considerations

Egalitarian equivalence (Pazner and Schmeidler 1978) requires that there should be
a reference bundle for each problem such that each agent is indifferent between her
bundle and the reference bundle. As shown in Chap. 7, there is a restricted family
of rules satisfying queue-efficiency, strategyproofness, and egalitarian equivalence
together. Moreover, none of these rules satisfy 2- or 3-subgroup additivity. In this
section, by requiring egalitarian equivalence to hold only for two-agent problems,
we characterize the four 2-subgroup additive rules.
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2-egalitarian equivalence: For all N € .4 such that [N| = 2, all § € 2V, all
(0,1) € p(0), and all i € N, there exists a queue position gy(6) and a transfer
to(0) such that u;(0;, t;; 0;) = ui(0p(0),1(0); 6;).

It is obvious that 2-egalitarian equivalence implies 2-equal treatment of equals.

For our next result, we use two stronger versions of 2-egalitarian equivalence
where, in the first version, the queue position in the reference bundle is fixed for all
two-agent problems and, in the second version, the queue position in the reference
bundle is fixed for all two-agent problems, and it is additionally required that there
exists at least one profile for the two-agent problem for which the reference transfer
is nonzero.

2-egalitarian equivalence with fixed queue position: For all N € .4 such that
IN| = 2,all0 € 2V, all (0,1) € p(#),and all i € N, there exists a queue position
oo € {1, 2} and a transfer 75(#) € RY such that u;(0;, t;; 0;) = ui(00, t0(6); 6;).°

2-strong egalitarian equivalence with fixed queue position: For all N € .4
such that [N| = 2, all 8 € 2%, all (0,) € @(@), and all i € N, there
exists a queue position oy € {1,2} and a transfer f,(9) € RY such that
ui(oi, 13 6;) = ui (09, to(0); 6;), and for at least one 8’ € 2V, 1,(6") # 0.

It is obvious that 2-strong egalitarian equivalence with fixed queue position
implies 2-egalitarian equivalence with fixed queue position, which in turn implies
2-egalitarian equivalence and 2-equal treatment of equals.

Now we are ready to present our second characterization of the four 2-subgroup
additive rules based on the equity axioms.

Theorem 8.2

(i) A rule satisfies queue-efficiency, budget balance, Pareto indifference,
2-egalitarian equivalence with fixed queue position, and 2-subgroup additivity
if and only if it is either the minimal transfer rule or the maximal transfer rule.

(ii) A rule satisfies queue-efficiency, last-agent zero transfer, Pareto indifference,
2-strong egalitarian equivalence with fixed queue position, and 2-subgroup
additivity if and only if it is the pivotal rule.

(iii) A rule satisfies queue-efficiency, first-agent zero transfer, Pareto indifference,
2-strong egalitarian equivalence with fixed queue position, and 2-subgroup
additivity if and only if it is the reward-based pivotal rule.

Proof

(i) It is easy to show that the minimal transfer rule ¢ and the maximal
transfer rule @€ satisfy queue-efficiency, budget balance, Pareto indifference,
2-egalitarian equivalence with fixed queue position, (hence, 2-equal treatment
of equals,) and 2-subgroup additivity. To prove the converse statement, let ¢

SStrictly speaking, we should write # (o (6)) instead of #,(6) since #, depends on which o is chosen
for each 6. However, to simplify the notation, we use #,(6) when there is no danger of confusion.
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(it)

(iii)
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be a rule satisfying the five axioms. We begin with a two-agent problem. To
simplify the notation, we assume without loss of generality that N € .4 and
0 € 2N be such that N = {1,2} and 6, > 6,. Let (0.1) € ¢(0). By queue-
efficiency and Pareto indifference, we may assume that for alli € N, 0; = i.
By budget balance and 2-egalitarian equivalence with fixed queue position,
we can have only the following two possibilities:

(i.1) 00(0) = 1,10(0) = =%, and 1 = M.

(i2) 00(0) = 2,10(0) = &, and 1 = .

By 2-egalitarian equivalence with fixed queue position, if (i.1) is chosen for
6 € 2V, then (i.1) should be chosen for all problems 6’ € 2V with |[N| = 2
and hence by 2-subgroup additivity, we obtain ¢ = @M for all problems.
Similarly, from 2-egalitarian equivalence with fixed queue position, if (1.2) is
chosen for € 2V, then (i.2) should also be chosen for all problems 6’ € 9N
with |[N| = 2 and hence by 2-subgroup additivity, we obtain ¢ = ¢¢ for all
problems. Hence if a rule ¢ satisfies the five axioms, then we conclude that
¢ € {p" 9

It is easy to show that the pivotal rule ¢ satisfies queue-efficiency, last-
agent zero transfer, Pareto indifference, 2-strong egalitarian equivalence with
fixed queue position, (hence, 2-equal treatment of equals,) and 2-subgroup
additivity. To prove the converse statement, let ¢ be a rule satisfying the five
axioms. We begin with a two-agent problem. To simplify the notation, we
assume without loss of generality that N € .4 and 6 € 2" be such that
N = {1,2} and 6; > 6,. Let (0,t) € ¢(0). By queue-efficiency and Pareto
indifference, we may assume that for all i € N, o; = i. By last-agent zero
transfer and 2-strong egalitarian equivalence with fixed queue position, we
can have only the following two possibilities:

(ii.1) 09(8) =1, 15(8) = =6, 1, = —B>, and 1, = 0. Therefore, t = *.
(ii.2) 0'0(9) =2, l‘o(@) =0,f; = —6;,and t, = 0.

Note that (ii.2) fails to satisfy 2-strong egalitarian equivalence with fixed
queue position since 0p(6) = 2 and hence 7(#) = 0 for all profiles. We
are left with (ii.1) which satisfies 2-strong egalitarian equivalence with fixed
queue position. Therefore, if a rule ¢ satisfies the five axioms, then it coincides
with the pivotal rule on the class of two-agent problems, and by 2-subgroup
additivity, we conclude that ¢ = ¢ for all problems.

It is easy to show that the reward-based pivotal rule @R satisfies queue-
efficiency, first-agent zero transfer, Pareto indifference, 2-strong egalitarian
equivalence with fixed queue position, (hence, 2-equal treatment of equals),
and 2-subgroup additivity. To prove the converse statement, let ¢ be a rule
satisfying the five axioms. We begin with a two-agent problem. To simplify
the notation, we assume without loss of generality that N € .4 and 6 € 2" be
such that N = {1,2} and 6, > 6. Let (0,1) € ¢(6). By queue-efficiency and
Pareto indifference, we may assume that for all i € N, 0; = i. By first-agent
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zero transfer and 2-strong egalitarian equivalence with fixed queue position,
we can have only the following two possibilities:

(>iii.1) 0'0(9) =1, l()(@) =0,1; =0,and r, = 6,.
(iii.2) 00(9) = 2,1(0) = 01, = 0, and 1, = 0,. Therefore, t = ¢,

In this case, (iii.1) fails to satisfy 2-strong egalitarian equivalence with fixed
queue position since 0p(6) = 1 and hence #,(6) = 0 for all profiles, and (iii.2)
satisfies 2-strong egalitarian equivalence with fixed queue position. Therefore,
if a rule ¢ satisfies the five axioms, then it coincides with the reward-based
pivotal rule on the class of two-agent problems, and by 2-subgroup additivity,
we conclude that ¢ = ¢ for all problems.

8.6 3-Subgroup Additivity and Strategic/Equity
Considerations

Of the five important rules only the symmetrically balanced VCG rule fails to satisfy
2-subgroup additivity since it is defined for all problems with more than two agents.
However, as shown in Proposition 8.3, it satisfies 3-subgroup additivity. In this
section, we present two characterization results of the symmetrically balanced VCG
rule. The first characterization imposes a strategic axiom and the second an equity
axiom. Strategyproofness for extreme cost agents requires that either an upward
manipulation of the waiting cost by the agent with the highest waiting cost or a
downward manipulation by the agent with the lowest waiting cost should not affect
the utility of the agent involved. Clearly, it is weaker than strategyproofness but
stronger than both strategyproofness for the highest cost agent and strategyproofness
for the lowest cost agent.

Strategyproofness for extreme cost agents: ForallN € 4/, all 0, 0’ € 2V, all
(0,1) € (), all (¢,1) € ¢(8'), and all i € N, if either [0; = 1, 8] > 6;, and
forallj € N\ {i}] or [0; = |N|, 0] < 6;, and forallj € N\ {i}, 9/.’ = 6], then
I/li(O'i, ti; 9,) = I/li(O'i/, tz/‘; 9,)

Our second characterization of the symmetric balanced VCG rule uses the
following axiom which requires that for all three-agent problems, there is a fixed
queue position such that an agent in the fixed position is indifferent among all three
bundles. It is an equity requirement saying that the allocation should not favor one
agent at the expense of another from the perspective of at least one agent in the fixed
position.

3-positional equivalence: For all N € .4 such that |[N| = 3, all § € 2V, all
(0,1) € p(0), and all i € N, there exists a queue position oy € {1, 2, 3} such that
if 0; = 09, then for all j € N, u; (0, 1;; 0;) = ui(0j, 4;; 0;).
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It is not difficult to show that the symmetrically balanced VCG rule satisfies
3-positional equivalence since the agent in the middle position is indifferent among
the three bundles, (0, #;);en, for all three-agent problems.

Now we are ready to present our two characterizations of the symmetrically
balanced VCG rule.

Theorem 8.3

(i) The symmetrically balanced VCG rule is the only rule satisfying queue-
efficiency, budget balance, Pareto indifference, 3-equal treatment of equals,
strategyproofness for extreme cost agents, and 3-subgroup additivity.

(ii) The symmetrically balanced VCG rule is the only rule satisfying queue-
efficiency, budget balance, Pareto indifference, 3-equal treatment of equals,
3-positional equivalence, and 3-subgroup additivity.

Proof

(i) It is obvious that the symmetrically balanced VCG rule ¢? satisfies queue-
efficiency, budget balance, Pareto indifference, 3-equal treatment of equals,
strategyproofness for extreme cost agents, and 3-subgroup additivity. To prove
the converse statement, let ¢ be a rule satisfying the six axioms. We begin with
a three-agent problem. To simplify the notation, we assume without loss of
generality that N € .4 and 0 € 2" be such that N = {1,2,3} and 0; >
0, > 65. Let 8! € 2N be such that 8! = (6,,6,,6,) and (o',1') € @(6").
By queue-efficiency and Pareto indifference, we may assume that for all i € N,
cril = i. By budget balance and 3-equal treatment of equals, t% =—6,1 =0,

and 1} = 6,.

Suppose that the first agent makes an upward misrepresentation of her
waiting cost from what it was in 6!, so that the resulting problem becomes
0% € 2N where 02 = (01, 6,,6,). Let (6%,12) € ¢(6%). By queue-efficiency
and Pareto indifference, we may assume that for all i € N, criz = i. By
strategyproofness for extreme cost agents, t% = —0,. By budget balance and
3-equal treatment of equals, t% = 0and t% = 0, implying that > = ¢'.

Next suppose that the last agent makes a downward misrepresentation of
her waiting cost from what it was in 6!, so that the resulting problem becomes
03 € 2N where 03 = (65, 60,,63). Let (03,7) € ¢(6°). By queue-efficiency

and Pareto indifference, we may assume that for all i € N, cri3 = i. By
strategyproofness for extreme cost agents, tg = 0,. By budget balance and
3-equal treatment of equals, t? = —6, and tg = 0 implying that £ = ¢'.

Now, consider the initial problem 8 € 2V such that 8, > 6, > 0;. Let
(0,1) € ¢(0). By queue-efficiency and Pareto indifference, we may assume
that for all i € N, o; = i. First, 6 can be obtained by misrepresenting
the waiting cost of the last agent downward from 62. By strategyproofness
for extreme cost agents, t3 = 0,. Alternatively, 6 can be obtained by
misrepresenting the waiting cost of the first agent upward from 6. Once again,
by strategyproofness for extreme cost agents, t, = —0,. Finally, by budget
balance, t, = 0. Altogether, we have t = (—6,,0,6,) = ¢, implying that
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(ii)

on the class of three-agent problems, ¢ = 5. By 3-subgroup additivity, we
conclude that ¢ = ¢ for all problems.

It is obvious that the symmetrically balanced VCG rule ¢? satisfies queue-
efficiency, budget balance, Pareto indifference, 3-equal treatment of equals,
3-positional equivalence, and 3-subgroup additivity. To prove the converse
statement, let ¢ a rule satisfying the six axioms. We begin with a three-agent
problem. To simplify the notation, we assume without loss of generality that
N e # and 0 € 2V be such that N = {1,2,3} and 6; > 6, > 0;. Let
(0,1) € ¢(0). By queue-efficiency and Pareto indifference, we may assume
that for all i € N, 0; = i. By 3-positional equivalence, one of the three agents
should be chosen to satisfy the indifference requirements. Together with budget
balance, we obtain the following three possibilities:

(1) og=1,t = —91, t =0,and 13 = 91.
2) 0o =2,t; = =05, 1, =0, and t; = 6,. (Therefore, t = 15.)
3) og =3, = —65, 1, = 0, and 13 = 6;.

First, consider 6’ € 2V such that 6] > 65 = 6}. Let (¢/,7) € ¢(¢). By
queue-efficiency and Pareto indifference, we may assume that for all i € N,
O'i/ = i. If the transfer is chosen to satisfy condition (1), then

ur (05, 15 0) = =05 < =05 + (0] — 03) = =205 + 0] = us(03,13; 65),

which violates 3-equal treatment of equals between agents 2 and 3. Therefore,
condition (1) is ruled out. Similarly, consider §” € 2V such that 6] = 65 >
07. Let (0”,1") € ¢(68"). By queue-efficiency and Pareto indifference, we may
assume that for all i € N, O'i” = i. If the transfer is chosen to satisfy condition
(3), then

1. nll 1 1 . 0l
ui(o),1;00) = =05 > =0 = us(05,1,:6;).

which violates 3-equal treatment of equals between agents 1 and 2. Therefore,
condition (3) is also ruled out. On the other hand, it is easy to check that
condition (2) is compatible with 3-equal treatment of equals. Therefore, on
the class of three-agent problems, if a rule ¢ satisfies queue-efficiency, budget
balance, Pareto indifference, 3-equal treatment of equals, and 3-positional
equivalence, then ¢ = ¢®. By 3-subgroup additivity, we conclude that ¢ = ¢?
for all problems. O

Comparing the two characterizations of the symmetrically balanced VCG rule in
Theorem 8.3, it is obvious that given queue-efficiency, budget balance, Pareto indif-
ference, 3-equal treatment of equals, and 3-subgroup additivity, strategyproofness
for extreme cost agents and 3-positional equivalence are substitutes. Also, it is easy
to show that in our Theorem 8.2(i), we can impose 2-positional equivalence instead
of 2-egalitarian equivalence with fixed queue position.
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8.7 Concluding Remarks

In this chapter, we investigate the implications of subgroup additivity together with
queue-efficiency, equal treatment of equals, and Pareto indifference to characterize
five important rules widely discussed in the queueing literature. These five rules
are characterized in the context of queueing problems from different strategic
and/or normative considerations. This chapter shows that these rules satisfy a
common axiom of subgroup additivity. Given subgroup additivity of these rules,
the characterizations become simpler since what matters now is the set of axioms
only on two- or three-agent problems. What our analysis shows is that under
subgroup additivity, strategic axioms (like weaker versions of strategyproofness)
and equity axioms (like stronger versions of 2-egalitarian equivalence) can act
as substitutes. It must be noted that if we try to identify rules that satisfy queue-
efficiency, strategyproofness, and egalitarian equivalence, then we do obtain a
nonempty family of rules (see Theorem 7.1). However, none of the five rules
characterized in this chapter is included in this nonempty family of rules. Therefore,
for substitutability between strategic and equity axioms, subgroup additivity plays a
significant role.
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Chapter 9
A Noncooperative Approach

9.1 Introduction

The queueing problem can be solved by adopting a strategic approach which builds
up a natural and intuitive bargaining protocol such that players can negotiate among
themselves to resolve the queueing conflicts. Exploring the bargaining approach
for queueing problems is not only important in its own right as providing a new
toolbox and contributing to an open area of the problem, but has more significant
implications: First, it helps understand the strategic features of the rules and
makes a fresh review of their plausibility. Next, we can make a better comparison
between different rules and associate axiomatic properties with individuals’ rational
behavior. Furthermore, new insights on fundamental and methodological issues can
be developed.

Two well-known rules for the queueing problem are introduced by applying
solutions developed for TU (transferable utility) games (see Chap. 3 for details). The
minimal transfer rule (Maniquet 2003) corresponds to the Shapley value (Shapley
1953) of TU games when the worth of a coalition is defined to be the minimum
waiting cost incurred by its members under the optimistic assumption that they are
served before non-coalitional members. On the other hand, the maximal transfer
rule (Chun 2006) corresponds to the Shapley value when the worth of a coalition
is defined to be the minimum waiting cost incurred by its members under the
pessimistic assumption that they are served after non-coalitional members. Given
the connection between the Shapley value for TU games and the minimal and
the maximal transfer rules for queueing problems, various bargaining protocols
implementing the Shapley value in the literature (Gul 1989; Hart and Mas-Colell
1996; Ju 2013; Ju and Wettstein 2009; Pérez-Castrillo and Wettstein 2001) offer a
venue enabling us to construct noncooperative mechanisms to implement rules for
queueing problems.

However, this task is not straightforward, especially when considering that
the potential mechanism needs to match the underlying context of the queueing

© Springer International Publishing Switzerland 2016 115
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problem. Unlike in a TU game where a player’s stand-alone value is fixed, a player’s
stand-alone value is not well defined in the queueing context. It is conventional in
the implementation literature on TU games that when the proposal of a player is
rejected in multilateral bargaining, she is left with her stand-alone value, which
is not affected by the other players’ coalitional behavior and does not affect the
other players’ payoffs. However, for queueing games, a player’s utility is necessarily
affected by how the others queue, and where to position this player also affects the
utility of other players. Take, for example, the queueing game of Maniquet (2003)
which is defined in the optimistic perspective. In this game, a player’s stand-alone
value is defined by having this player be served first before anyone else. However,
it is impossible to make every player be served first simultaneously in order to
apply this stand-alone value in any bargaining protocol that could be associated
with queuing problems. Similar arguments carry over to the pessimistic queueing
games introduced by Chun (2006). Moreover, if we directly follow the protocol of
Pérez-Castrillo and Wettstein (2001) implementing the Shapley value, it would fail
to implement the minimal transfer rule since the underlying queueing game violates
zero monotonicity.! Hence, the bargaining protocol for the Shapley value cannot be
directly applied to the queueing context.

The other challenge lies in the incentive design for players to form an efficient
queue while accepting to make transfers as directed by the two transfer rules. Given
the queueing context, it should be endogenously designed into the mechanism such
that players find themselves being better off by building up an efficient queue, rather
than imposing conditions like super-additivity? or zero monotonicity.

In this chapter, we introduce two noncooperative mechanisms that naturally fit
into the context of queueing problems and retain the main feature for TU games,
but well overcome the challenges mentioned above. Players can resolve queueing
conflicts by themselves in a decentralized way and guarantee an efficient queue
to be formed in equilibrium. These mechanisms have a unique subgame perfect
equilibrium (SPE) outcome, which coincides with the payoff vector assigned by one
of the two well-known rules for the queueing problem, either the maximal transfer
rule or the minimal transfer rule. By keeping the basic construct and adjusting
certain details of the bargaining protocols, we can construct other mechanisms that
offer strategic foundations for alternative rules of queueing problems. This provides
a common platform to study and compare solution concepts for queueing problems
and may help investigate new rules.

This chapter is organized as follows.? In Sects.9.2 and 9.3, we construct two
noncooperative mechanisms and show that each mechanism has a unique subgame

'A game v satisfies zero monotonicity if there are no negative externalities when a single player
joins a coalition. That is, for all § C N and all i ¢ S, v(S U {i}) > v(S) + v({i}).

2A game v satisfies super-additivity if there are no negative externalities when two disjoint
coalitions are merged together. That is, for all S, 7 C N such that SNT = @, v(SUT) >
v(S) + v(T).

3This chapter is based mainly on Ju et al. (2014a,b). Excerpts from Ju et al. (2014b) are reprinted
with kind permission of Elsevier.
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perfect equilibrium outcome which is the allocation assigned by the maximal
transfer rule and the minimal transfer rule, respectively. In Sect. 9.4, we provide
a mechanism to implement the average of the maximal and the minimal transfer
rules. Finally, in Sect. 9.5, we offer a robustness study of the results, which shows
that to a great extent the ordering of rejected players does not affect the equilibrium
outcome.

9.2 The First-Served Mechanism and the Maximal
Transfer Rule

In Sects.9.2 and 9.3, we implement the maximal and the minimal transfer rules
by constructing two bargaining games that well fit into the context of queueing
problems. We thus hope to provide a strategic perspective to evaluate and compare
the two rules. Here players are assumed to be risk neutral and expected utility
maximizers.

The first game, called the first-served mechanism, which implements the maximal
transfer rule, can be described informally as follows. At stage F-1, all players
participate in a multi-bidding auction to compete for the first position of a queue. In
this auction, each player bids by submitting an (n — 1)-tuple of numbers (positive
or negative), one number for each player (excluding herself). A positive number
means a payment she makes to another player and a negative number means a
compensation she asks for from another player. The player whose net bid (the
difference between the sum of bids made by the player and the sum of bids the other
players made to her) is the highest wins the first position while making the payment
or receiving the compensation, as per the corresponding bid she makes. At stage F-
2, the winner has two options. She can either take up the first position by herself or
sell it to other players. If she decides to take up the position by herself, then the rest
of the players play the game again from the first stage to bargain over the positions
after her. If she decides to sell the position, then this sale cannot be a bilateral one
because where to locate the winner after the sale affects other players’ positions.
Therefore, selling the first position is naturally an all-party negotiation process.
That is, the winner makes an overall proposal that consists of a queue assigning
positions to all players and a vector of transfers specifying the amount each player
is supposed to pay or receive. Stage F-3 is to approve or disapprove the proposal.
The proposal is accepted if all the other players agree. In case of acceptance, the
proposal is implemented so that the queue is formed with transfers in effect to all
players. In case of rejection, the proposer loses any say about the queue, but she
retains the first position,4 although she incurs no additional transfers, i.e., neither
pay to others nor receive any compensation from others (except for the bids made at

“Indeed this option makes the choice of taking up the first position at stage F-2 strategically
redundant. Yet it seems natural and logical for the winner to have the right to take up the position
without proceeding to the next stage.
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stage F-1). Meanwhile, all players except for the rejected proposer start new round
of negotiation using the same rule.
Now we formally describe the first-served mechanism.

First-Served Mechanism If there is only one player, N = {i}, she simply is served
first (also last), and the default queue is trivially efficient while no transfer is made.
So this player’s utility is u;(0,t) = —(0; — 1)6; + t; = —06; + 0 = 0, which is
independent of ;. When the player set N = {1,...,n} consists of two or more
players, the mechanism is defined for any set of (active) players S C N, recursively
starting with S = N.

Stage F-1. Bidding for the first position: ~ Each playeri € S makes s—1 (wheres =
|S| is the cardinality of coalition S) bids bj € R, one to every playerj € S\{i}. For

each player i € S, define the net bid of player i by B =Y cqm b — Ve bl
Let player iy = argmax,¢B'. In case of a nonunique maximizer, we choose with
equal probability any of these maximal bidders to be the “winner.” Once the
winner i is chosen, she pays every player j € S\{i} her bid bj’:‘*.

Stage F-2. Taking up or selling the position: ~The winner i, decides to either take
up the first position by herself or sell it to the others. If winner i; takes up the
position by herself, then she is located before all players of $\{i;} but after N\S,
i.e., at position |[N| — |S| + 1. Her final utility is —(|N| — |S])6; — Z/es\{zj} b +
)R bi , where (|N| — |S|)6; is her waiting cost at this position, b’* is the bid

she pays to playerj € S\ {i,}, and bi’, re{s+1,...,n} are the bids she
received from the previously rejected proposers i,, r € {s + 1, ..., n}. Moreover,
stage F-3 is not evoked, but all players in S other than player i; proceed again
from stage F-1 where the set of active players is S\{i}. If the winner i, decides
to sell the position, then she makes a proposal (o (S), (#)jes) consisting of a queue
o(S) € X(S) and a vector of transfers (#})jes € R’ such that ZjeS ti < 0. (This
offer is additional to the bids paid at stage F-1.) The game continues to stage F-3.
Stage F-3. Approving or disapproving a proposal: ~The players in S other than
player i, sequentially, either accept or reject the proposal. If at least one player

rejects the proposal, then it is rejected. Otherwise, it is accepted.

(i) If the proposal is rejected, all players in S other than player i; go back to
stage F-1 where the set of active players is S\{i;}. Meanwhile, player i
simply falls back to her default position: the position in front of the queue
of S\{i;} but after N\S. Consequently, player is receives her final utility
—(NT = ISDO;: = Y jesviin b} + 2ormit bir Note that she would receive
the same utility if she decided in stage F-2 to take up her position.

(ii) If the proposal is accepted, then we have to distinguish between two cases,
S=Nand S # N.If § = N, all players agree with the proposer i, on
her proposal (o (N), (#)jen), and the game ENDS. Each player j € N\{i,}
receives —(o;(N) — 1)6; + b’” + t;, and player i, receives —(0;,(N) — 1)8;, —

D jeN\tiy} b] +1,, where #;, = — 3 ey 17- If S # N, all players in S agree
with the proposer i; on her proposal (o(S), ()jes), and the game ENDS.
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We

Each player j € S\{i,} receives —(|N| — [S| + 0j(S) — 1)6; + ¢;, and with the
bids made by player i; and all other previously rejected proposers, player j’s
final utility is —(|N| — |S| 4+ 0;(S) — 1)Qj +30, b;k + t;. Player i, receives
—(IN|=[8]+03,(S) = D)0, = 3 jes\ (i3 b} +1i,, Where i, = =3~ ;1 4j> and
adding the bids player i; received from the previously rejected proposers, her

final utility is —(|N| — S| + 05, (S) = )0, — > jeqviiy D} + Dimst1 D + 1.

show that for any N € .4 and any § € 2", the first-served mechanism

has a unique subgame perfect equilibrium (SPE) outcome, which coincides with the
payoff vector assigned by the maximal transfer rule. For all N € .4/, all i € N, and
all S € N\{i}, consider an efficient queue o* for S U {i}, i.e., 0* € Eff (Osu¢), and
an efficient queue o** for S, i.e., 6** € Eff (6s). Then, the marginal contribution of
player i € N to coalition S € N\{i} in the pessimistic queueing game vp equals

vp(S U {i}) —vp(S)

— Y (NI= S| =1+ 0f =D — [ =Y (NI = IS| + 0 — 1)6

keSU{i} JjES
D UNI=1SI+ 06— Y (NI =S| =1+ 070 + 6,
JES kesu{i}

Y UNI=ISI+06+ D (NI—IS|+0/ - 1), ©.1)
JEP;(0*) JEFi(0*)

—| D (NI=ISI=1+0)6 + (IN| = IS| = 1 + 07)6;
JEPi(0*)

Y M= ISl 1406 | + 6
JEFi(0™)

Q—INI+ISI=00:+ Y 6

J€EPi(0¥)

where the first equality follows by definition of vp, and the third equality follows
from the fact that 0;** = 0/ + 1forallj € P;(c) and 6/ = o* forall j € F;(0™).
That is, with the joining of player i to coalition S, construction of the efficient queue
requires those who have higher waiting costs than 6; to be served before player i
and those who have lower waiting costs than 6; to be served after player i. Hence,
compared to the total cost within S, player i’s marginal contribution (in terms of

cost) is

(NI =S|+ D) + (@ =D+ D 6=C—IN|+IS|—0"6i+ > 6

JEPi(0™) JEPi(0™)
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We begin with the following lemma.

Lemma 9.1 ForallN € ¥, all0 € 2N alli € N, and all S € N\{i},
vp(S U {i}) — vp(S) = —(IN| = [S| = Db

Proof LetN € 4,0 € 2V, i € N,and S C N\{i}. Also, let T C S be the set of
players whose unit waiting costs are greater than 6; and S\T be the set of players
whose unit waiting costs are less than or equal to 6;. That is, §; > 6; > 6, for all
Jj € T andall k € S\T. In an efficient queue o* for S U {i}, player i will be served
after players in T but before anyone else in the queue 6*, so that 0¥ = |T| + 1.7
Thus,

vp(S U {i}) —vp(S) = 2= IN| + S| —0/)6i + D 6

JEPi(c*)
= Q=N +IS|-(T|+ 1) 6+ > 6
JjET
= —(N| = IS| +|T| = D&+ ) _ ¢
JjET
> —(IN| = IS + IT| = 1)6; + |T16;

—(N1 = 1] = D)6

O

The inequality in Lemma 9.1 is strict if 6; < §; for at least one j € S\ {i}. The
implication of this lemma is rather intuitive: it pays for player i to join coalition S and
form an efficient queue rather than taking up a position in front of coalition S since
the cost for the coalition S U {i} is not more than the cost of coalition S plus the cost
of player i when she is served in the position before coalition S. The right-hand side
of the inequality of the lemma is the utility of player i when she takes up the position
0; = |[N|—|S|. Although this result shares a similar feature as the zero-monotonicity
property for TU games, there is an important difference which lies in the fact that the
zero-monotonicity property makes a comparison between the marginal contribution
of a player and her stand-alone worth. Note that the stand-alone worth of player i in
this game is —(|N| — 1)6;. Moreover, the cost —(|N| — |S| — 1)6; depends on the size
of coalition S, while the stand-alone worth vp({i}) = —(|N| — 1)6; does not.

SNote that the position of player i may not be |T| 4 1 if there is a player j € S with §; = 6,. Since
the choice of an efficient queue has no effect on vp(SU {i}) — vp(S), we can take an efficient queue
o* witho = |T| + 1.
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Theorem 9.1 Forall N € 4 and all 0 € 2V, the first-served mechanism has a
unique subgame perfect equilibrium (SPE) outcome, which coincides with the payoff
vector assigned by the maximal transfer rule ¢ (0).

Proof Let N € .4 besuchthat N = {1,...,n} and § € 2. The proof proceeds
by induction on the number of players n. The induction assumption is that whenever
the mechanism is used by n players with a given vector of unit waiting costs, it
implements the maximal transfer rule of this queueing problem. It is easy to see that
the theorem holds for n = 1. We assume that it holds for all m < n — 1 and show
that it is satisfied for n.

First we show that the allocation ¢€(6) assigned by the maximal transfer rule
is an SPE outcome. We explicitly construct an SPE that yields ¢€(6) as the SPE
outcome. Consider the following strategies, which the players would follow in any
(sub)game they participate in (we describe it for the whole set of players, N, but
similar strategies are followed by any player in § C N that is called upon to play the
game, with § replacing N):

At stage F-1, each player i € N announces

: . 6 N
= |- =Dg+ Y T -(N-0)7

2
kEPj(0*)

Ok 0;

k% *%x\ 7/

o R A LD DR el U et
kEPj(0**)

where 0* € Eff(0) and 0** € Eff (Oy\y;,}) for all j € N\{i}.

At stage F-2, the proposer i, (“winner” of the bidding in stage F-1) adopts the
option of selling the position instead of taking it up by herself and makes a proposal
(o*,1) such that 0* € Eff(0) and for all j € N\{i,},

6= = DG+ [+ =D+ 3 T~ (N -1-0/)F

kEPj(0**)

where 0** € Eff (On\,3)-
At stage F-3, any player j € N\{i,} accepts any proposal (o, ?) if 0 € Eff(N) and

O 0
G2 =D+ | =0+ =D+ 3 S —(N-1-0")7
kEPj(0**)

where 0** € Eff (6y\;,3), and rejects it otherwise. (Note that the right-hand side is
the same for any o** € Eff (On\;,3)-)
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To verify that the above strategies indeed constitute an SPE and yield the
allocation assigned by the maximal transfer rule, we first look at stage F-3. Suppose
the proposal of player i, is rejected. From the induction hypothesis, we know that
for the remaining players in N\{i,}, a corresponding efficient queue is formed
in the unique SPE outcome of that subgame and the resulting utility to every
player j € N\{in} is —(1 + 0" — 1)§; + Zkepj(a**) %k — (N - 1= crj**)%,
where 0** € Eff(6y\;,3), which is the reservation utility for player j when she
considers any proposal made by player i,. If player j accepts the proposal made
by player i,, then she is located at position o; with transfer #; so that she receives
the utility —(o; — 1)6; + ;. Apparently, only when this utility is no less than
her reservation utility, she accepts the proposal, which gives rise to t; > (0; —

16, + (—(1 + 0/ —1)6; + Zkepj(a**) G—Zk —(IN|-1- crj**)%). Note that with ;
as specified above, at this stage, player j’s utility is guaranteed to be no less than her
reservation utility regardless of the queue proposed by player i,,.

Now consider stage F-2. Obviously, for any proposed o, player i, does not
make any player j € N\{i,} an offer # that is strictly higher than (o; — 1)6; +
(—(1 +0™ =10 + Zkepj(a**) 02—k —(N|-1- crj**)%). In the meantime, player
i, would not lower the offer #; for any player j € N\{i,} to be strictly less
than (o; — 1)6; + (—(1 +o =D+ Zkepj(a**) %k —(NI-1- Uj**)%i) since
it would lead her proposal to be rejected and then to be served at first. Being served
first implies O waiting cost for player i, at this stage, but there is an incentive for

player i, to make an acceptable proposal as presented at stage F-2 since her payoff
from an accepted proposal is

—(of =D, — > g

JEN\{in}
=—(o7 =1, — > (o =1
JEN\{in}
- Y -0+ -+ Y @—(|N|—1— **)@
% i 2 %7
JEN\{in} kePj(o™**)
== (of =Dbi— Y {-(+0™ -1}
iEN JEN\{in}

9.
DRI DI (R
JEN\{in} \ kKEP;(0**)
— up(N) — vp(V\fir})
> (NI~ (NI = 1)~ 8,

=0,
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where the third equality follows from the definition of vp and the fact that by defini-
tion of an efficient allocation, } ey (i 1 (ZkEP_,-(a**) 9—2" —(IN|=1- oj**)%) =0,
and the inequality follows from Lemma 9.1.

To verify that the strategies restricted to stage F-1 constitute an SPE, note that all
net bids equal zero, which follows from the fact that b; = ¢;(vp)—j(vp|n\(;y) Where
vplmi (S) = vp(S) for all S € N\{i} and by the balanced contributions property
of the Shapley value (Myerson 1980; van den Brink and Chun 2012).° To show
that a change in the bids made by player i cannot increase that player’s payoff, we
consider the following two cases: First, if player i changes the vector of her bids so
that another player becomes the proposer, this does not change her resulting utility,
which would still equal that given by the maximal transfer rule (i.e., her allocation
assigned by the Shapley value of the pessimistic queueing game vp). Second, if she
changes the vector of her bids and following it she is still the proposer with positive
probability, it must be that her total bid (Zje N b;) does not decline, which again
means her payoff cannot improve. That is, any deviation of the bidding strategy of
player i specified at stage F-1 cannot improve her payoff. Hence, no player has an
incentive to change her bid, showing that the given strategy profile is an SPE.

The proof that any SPE yields the allocation specified by the maximal transfer
rule proceeds by a series of claims.

Claim F-1 At stage F-3, in any SPE, any player j € N\{i,} accepts any proposal
(0,¢) such that 0 € X (N) if

0 0;
l‘jZ(O}—l)ej"i‘ —(1+qi**—1)9j+ Z 3k—(|N|—l—o']**)_j ,

2
kEPj(a**)

and rejects it if

Ok 6;
<(@—D8+|-(+o™ =D+ > 5 —(NI=1- q,.**)Ef
kEP;(a**)
where 0** € Eff (On\¢,3)-
Proof This claim follows directly from the induction assumption. O
Claim F-2

(1) If vp(N) — vp(N\{in}) > —(IN| — (]N| — 1) — 1)6;, = 0, the only SPE of the
game that starts at stage F-2 is the following. At stage F-2, player i, chooses
the option of selling the position instead of taking it up by herself and makes a

6 A value ¢ satisfies the balanced contributions property if ¢;(v)—¢; (v |y 3) = ¢;(V)—¢; (VI3
forallv € I'V and all i, j € N. Section 4.4 investigates the implication of this property in the
context of queueing.



124 9 A Noncooperative Approach

proposal (¢*, f) such that 6* € Eff(6) and

0 0
6= (0 =D+ -+ =D+ 3 T~ (N=1-0")7
kEPj(0**)

where 0** € Eff (0y\(;,}) to each player j € N\{i,}. At stage F-3, each player
J € N\{i,} accepts any proposal (0, t) such that 0 € X'(N) if

0, 0;
G2 =D+ | =+ =D+ 5 = (N=1-0/)7 .

kEP;(0**) 2

where 0** € Eff (6n\(;,)), and rejects it otherwise.

(ii) If vp(N) — vp(N\{in}) = O, there exist other SPEs in addition to the one
described above. In fact, any set of the following strategies also constitutes an
SPE: at stage F-2, player i, either takes up the first position by herself or sells
the position by making a proposal (o, ¢) such that 0 € X'(N) and to some player

J# ln,

Ok )
Y@=V F |~ =08+ 2, 5 -(NM-1-af);
jlo

where 0** € Eff (On\(;,)); and at stage F-3, player j rejects any proposal

O 0
G @-DO+ | =0+ =D+ Y S —(N-1-0")7
kePj(0**)

In any SPE of this subgame, the final payoffs to players i, and j # i, are —(cr;; -
D0, = iemginy b — 2 jenii,y i and — (0" —1)0;+ b} +1;, respectively, where
0:

Proof For the case of vp(N) — vp(N\{i,}) > 0, one can verify the argument by the
induction assumption and Lemma 9.1. For the case of vp(N) — vp(N\{iy}) = O,
one can obviously see that player i, would be indifferent between taking up the first
position and making an acceptable proposal, with the first option being equivalent
to making an unacceptable proposal and then having it be rejected, which would all
yield the same payoff to player i,. Note that in this case ¢;, > 6; for all j € N\{i,}
due to Lemma 9.1, and by the induction hypothesis, taking up the first position by
player i, still yields an efficient queue. O

Claim F-3 Inany SPE, B' = B/ forall i, j € N and hence B' = 0 foralli € N.
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Claim F-4 In any SPE, each player’s payoff is the same regardless of who is chosen
as the winner at stage F-1.

Proof The proofs of Claims F-3 and F-4 are the same as in Pérez-Castrillo and
Wettstein (2001). ]

Claim F-5 In any SPE, the final payoff of each player coincides with her payoff
assigned by the maximal transfer rule.

Proof Note that if player i is the proposer, her final payoff is

—(ai*—l)Gi— Z bjl— Z L,

JEN\{i} JEN\Li}

where f; = (0¥ —1)6,+ (—(1 + 0% = D6+ Yyepgeey &~ (IN] =1 - q,.**)%).
And if player j # i is the proposer, the final payoff of player i is

—(0—1)6+b+ ((a,.* — 16+ (—(1 +o Do+ Y. % — (N =1 —a,.**)%)) .

kEP;(0**)

Therefore, the sum of payoffs to player i over all possible choices of the proposer is

—(oF =i~ Y b

JEN\{}
*_1)6 1+0** —1)f O _Nj— 1oy
= > @ =Do+ | =+ =D+ 3 S = (N = 1-0)
JEN\{i} kEPj(o**)
£ 3 (-t - 00 +1)
i
+y ((0-* - 16 + (—(1 +o =D+ Y S _ (IN| -1 —a.**)@))
L i i i 1 2 i 2
i kEPi(c**)
= —n(o;" — 1)6;
*_1)6 1+ 0/ —1)0 O _(Nj— 1oy
=2 @ =0+ =AU+ =Dg+ 3 S (N1
JEN\{} kEPj(o**)

|

)
+(n—1)(0; — 1)6; + Z (—(1 +o -0+ Y 7’( — (Nl =1-0") )
i kEPi(07*)



126 9 A Noncooperative Approach

= —(0"=Dbi— > (=16~ Y (-0/*6)

JEN\{i} JEN\L}
+ Y |-+ Y N
) . P 2 tr2
JEN\{i} kEP;(0**)
= - -6+ > b+ Y. —(|N|—1)@—a,**@+ > %
i i KL 2 2 2
kEP;i(c*) JEN\{i} kEP;(0**)
0" 0; (n— 1)2 9](
_ * . _ i o . Kk
= —(@ - Do+ > 6 AZ‘ 5 5 9”52, > >
kEP;i(0*) JEN\{i} JEN\{i} kEP;i(0**)
* 1 * * * * (n_l)z
=~ =10+ Y =5 (PO =1 +|Fi0™)|o™0h) = =0,

kEP;i(0*)

0 0
HE@H D T HAPENI=1) Y S

kEP;(0*) kEP;(0*)

* 1 * * (n— 1)2 nb
= — ~—19,'—— —1 ei—P,‘ 9,'— 9,‘ —_
@ =005 (0= Vo6 i) - 0 3

_1)2
= —(O'l.* — 1)0, — % ((I’l — 1)0'*9,‘ - (Ui* - 1)9,) — (n 21) 9,‘ + Z n_ek

kEP;(c*)
= Zor—24m0+ > s
= 30 )
kEPi(0*)
0; Oy
= n|—(cf =18 —-n—0")= —
(( ol 3 )
kePi(0*)

= ng{(6).

Together with Claim F-4, we conclude that in any SPE, for any player i € N, her
final payoff is ¢ (6). O

9.3 The Last-Served Mechanism and the Minimal
Transfer Rule

Next we introduce our second game, called the last-served mechanism, which
implements the minimal transfer rule. Differently from the first-served mechanism,
players compete for the right of being served last in the queue. Alternatively, one
can think that players are now demanding compensations for them to be served last,
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which is in the same light as the ALDB (auctioning the leadership with differentiated
bids) mechanism (Moulin 1981). The one with the highest net bid (or lowest net
compensation if the bids are negative) is selected as the winner. The winner can
decide to take up the last position by herself or sell it to the others. For the latter
option, she makes a proposal of a queue and a vector of transfers. If the proposal
is rejected, she remains at the last position to be served after all the participating
players.

Now we provide a formal description of the last-served mechanism, again based
on any set of (active) players S C N.

Last-Served Mechanism If there is only one player, N = {i}, she simply is served
last (also first), and the default queue is trivially efficient while no transfer is made.
So this player’s utility is u;(0,t) = —(0; — 1)6; + t; = —06; + 0 = 0, which is
independent of ;. When the player set N = {1,...,n} consists of two or more
players, the mechanism is defined for any set of (active) players S C N, recursively
starting with S = N.

Stage L-1. Bidding for the last position: It is the same as stage F-1 of the first-
served mechanism, except that the right at the winner’s disposal in this mecha-
nism is to be served after, instead of before, the rest of the active players.

Stage L-2. Taking up or selling the position: ~The winner i; decides to either take
up the last position by herself or sell it to the others. If winner i; takes up
the position by herself, she is indeed located at the sth position, i.e., after all
players of S\{i;} but before N\S, and receives her final utility of —(s — 1)6; —
Yies\iin b+ 2o by, where (s — 1)6; is her waiting cost, Y icq gy ;' is
the sum of the bids she paid at stage L-1, and ) /_ bj; is the sum of the bids
she received from previously rejected proposers is+1, . . . , i. Moreover, stage L-
3 is not evoked, but all players in S other than player i; proceed again from
stage L-1 where the set of active players is S\{i;}. If the winner i, decides to
sell the position, then she makes a proposal (o(S), (#})jes) consisting of a queue
o(S) € X(S) and a vector of transfers (#;)jes € R such that Zjes tji < 0. (This
offer is additional to the bids paid at stage L-1.) The game continues to stage L-3.

Stage L-3. Approving or disapproving a proposal: ~ The players in S other than
player i;, sequentially, either accept or reject the proposal. If at least one player
rejects the proposal, then it is rejected. Otherwise, it is accepted.

(1) Ifthe proposalis rejected, all players in S other than player i; go back to stage
L-1 where the set of active players is S\{i;}. Meanwhile, player i, falls back
to her default position: the position after the queue of S\{i;} but before N\S.

Consequently, player i; receives her final utility —(s — 1)6; — > ieS\{i} b}x +

I bZ Note that she would receive the same utility if she decided in
stage L-2 to take up her position.

(ii) If the proposal is accepted, we have to distinguish between two cases,
S=Nand S # N.If S = N, all players agree with the proposer i, on
her proposal (o(N), (¢j)jen) and the game ENDS. Each player j € N\{i,}
receives —(0;(N) — 1)6; + b;” + t;, and player i, receives —(0;, (N) — 1)6;, —
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ZieN\{i”}b]’:” + t;, where #;, = —3 .\t If S # N, all players in
S agree with the proposer i; on her proposal (o(S), (#)jes), and the game
ENDS. Each player j € S\{is} receives —(0;(S) — 1)0; + 1, and with
the bids made by player i; and all other previously rejected proposers,
player j’s final utility is —(0;(S) — 1)6; + > b/ + #;. Player i receives
—(03,(S) = DO, =D ieq\qiy b} + i, Where ti, = = 3.\ ;1 4, and by adding
the bids player i received from the previously rejected proposers, her final
utility is —(03,(S) — DO, — X ieq\iy b} + 2kmsr D + 10,

We show that for any N € .4 and any 6 € 2V, the last-served mechanism
has a unique SPE outcome, which coincides with the payoff vector assigned by the
minimal transfer rule. For all N € .4/, all i € N, and all § € N\{i}, consider an
efficient queue o* for S U {i}, i.e., 0* € Eff (Osugy), and an efficient queue o** for
S,i.e., 0™* € Eff(0s). Then, the marginal contribution of player i € N to coalition
S € N\{i} in the optimistic queueing game v equals

vo (S U {i}) —vo(S)

- > (ak*—l)ek—(—Z(a,**—l)@)

keSU{i} jes
=30 - Y or+ 6, 9.2)
JE€S kesu{i}
= D o+ > =06 || D oft+0 6+ Y o6 |+6
Jtia) JEFi() JEPi(0*) JEFi(0*)
=(1=0"8i= > 6
JEFi(0*)

where the first equality follows by definition of vy and the third equality follows
from the fact that 0" = 0" forallj € Pi(0*) and 0/ = o — 1 forall j € Fi(c™).
That is, with the joining of player i to coalition S, construction of the efficient queue
requires those who have higher waiting costs than 6; to be served before player i
and those who have lower waiting costs than 6; to be served after player i. Hence,
compared to the total cost within coalition S, player i’s marginal contribution (in
terms of cost) is —(0;" — 1)0; = >_icr, (%) ;-
We begin with the following lemma.

Lemma 9.2 ForallN € A, all® € 2, alli € N, and all S € N\{i},

vo(S U {i}) — vo(S) = —IS]6;.

Proof LetN € 4,0 € 2V, i e N,and S € N\{i}. Also, let T < S be the set of
players whose unit waiting costs are greater than 6; and S\T be the set of players
whose unit waiting costs are less than or equal to 6;. That is, §; > 6; > 6, for all
Jj € T and all k € S\T. In an efficient queue o* for S U {i}, player i is served after



9.3 The Last-Served Mechanism and the Minimal Transfer Rule 129

players in T but before anyone else in the queue 6*, so that o = |T| + 1.7 Thus,

Vo(SULi) —vo(S) = (1 =)= ) 6

kEFi(0*)

=TI+ 16— > 6

keS\T
=—|T|6i— Y 6k
keS\T
> —|T16; — (S| = |T))6;

= —|5]6.

O

The inequality in Lemma 9.2 is strict if 8; > 6, for at least one player k € S\ {i}.
This lemma also offers a desirable implication: it pays for player i to join coalition
S and form an efficient queue rather than taking up a position after coalition S since
the cost for the coalition S U {i} is not more than the cost of coalition S plus the
cost of player i when she is served in the position after coalition S. Note that the
right-hand side of the inequality of lemma is the utility of player i when she takes
up the position o; = |S| + 1.

Now we are ready to present our second main result.

Theorem 9.2 For all N € A and all 0 € 9V, the last-served mechanism has
a unique SPE outcome, which coincides with the payoff vector assigned by the
minimal transfer rule o™ ().

Proof Let N € 4 be such that N = {1,...,n} and § € 2". The proof proceeds
by induction on the number of players n. The induction assumption is that whenever
the mechanism is used by n players with a given vector of unit waiting costs, it
implements the minimal transfer rule to this queueing problem. It is easy to see that
the theorem holds for n = 1. We assume that it holds for all m < n — 1 and show
that it is satisfied for n.

First we show that the allocation ¢ () assigned by the minimal transfer rule
is an SPE outcome. We explicitly construct an SPE that yields ¢ () as the SPE
outcome. Consider the following strategies, which the players would follow in any
(sub)game they participate in (we describe it for the whole set of players, N, but
similar strategies are followed by any player in S C N that is called upon to play the
game, with S replacing N):

"Note that the position of player i may not be |T| + 1 if there is a player j € S with §; = 6,. Since
the choice of an efficient queue has no effect on vo (SU{i}) —vo(S), we can take an efficient queue
o* witho = |T| + 1.
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At stage L-1, each player i € N announces

) " " 0; 0,
b= |7 =D+ D5 — > 5"

keF;(0*)

o A U A Ve B

kEF;(0**)

where 0* € Eff(0) and 0** € Eff (Oy\(;,)) for all j € N\{i}.

At stage L-2, the proposer i, (“winner” of the bidding in stage L-1) adopts the
option of selling the position instead of taking it up by herself and makes a proposal
(0*, 1) such that 0* € Eff(0) and j € N\{i,},

§= (0 =D+ |~ =D+ (" =T~ 3 =

kEF;(0**)

where 0** € Eff (On\i,})-
At stage L-3, any player j € N\{i,} accepts any proposal (o, ) if 0 € X'(N) and

52 0= D6+ [~ = Do+ -7~ 3 =

kEF;(0**)

where 0** € Eff (6y\(;,}), and rejects it otherwise.

To verify that the above strategies indeed constitute an SPE and yield the
allocation assigned by the minimal transfer rule, we first look at stage L-3. Suppose
the proposal of player i, is rejected. From the induction hypothesis, we know that
for the remaining players N\{i,}, a corresponding efficient queue is formed in the
unique SPE outcome of that game and the resulting utility to every playerj € N\{i,}
is —(07* — )6 + (07" — D — Y iep,on) %, Where 6** € Eff (). which
is the reservation utility for player j when she considers any proposal made by
player i,. If player j accepts the proposal made by player i,, then she receives
the utility —(o; — 1)6; + ;. Apparently, only when this utility is no less than
her reservation utility, she accepts the proposal, which gives rise to t; > (0; —
l)ei‘*‘(_(q,'** — 1)+ (07" — 1)% = 2 keFy0**) %) Note that with ; as specified
above, at this stage, player j’s utility is guaranteed to be no less than her reservation
utility regardless of the queue proposed by player i,.

Now consider stage L-2. Obviously, for any proposed o, player i, does not
make any player j € N\{i,} an offer # that is strictly higher than (0; — 1)6; +
(_(Uj** —1)6; + (Uj** - 1)% — ZkeFJ,(G**) 9—;) In the meantime, player i, would
not lower the offer ¢ for any player j € N\{i,} to be strictly less than (o; — 1)6; +
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(—(O'j** — Db+ (0] — 1)% = D keF (0" 9—2") since it would lead her proposal to
be rejected and then served at last with the waiting cost of —(|N| — 1)6,,. We
show that player i, does have an incentive to make such an acceptable proposal.
By making this proposal at stage L-2, player i, receives

_(Gi,, — 1)9,‘n — Z tj

JEN\{in}

= —(0;, — DO

in

ok kok o; 0
- > ((crj—l)ejJr(—(crj — D + (o] _1)51_ 3 5))

JEN\Lin} kEFj(0**)

0;
= —Z(Oi - 1)f; — Z (_(Uj** - l)gj) - Z ((Uj** - 1)5] - Z %)

iEN JEN\Lin} JEN\Hin} kEFj(0™**)

= — Z(O’,‘ - 1)91 - UO(N\{in})’

iEN

where the last equality follows from the definition of vy and the fact that
D jeN\tiy} ((oj** - 1)% = D keFy(0**) %) = 0. Moreover, in order for the proposer
i, to maximize what she can achieve, it is obvious that she chooses 6* € Eff(6)
because — Y (0 —1)0; > —>"..y(0; — 1)6; for all 0 € X (N)\Eff(6). Hence,
player i, receives vo(N) —vo(N\{i,}) > —(|N|—1)8;,, where the inequality follows
from Lemma 9.2.

To verify the strategies restricted to stage L-1 constitute an SPE, note that all net
bids equal zero, which follows from the fact that bj‘: = ¢j(vo) — ¢j(volm\yiy) where
volwi(S) = vo(S) for all S € N\{i} and by the balanced contributions property
of the Shapley value (Myerson 1980; van den Brink and Chun 2012). To show
that a change in the bids made by player i cannot increase that player’s payoff, we
consider the following two cases: First, if player i changes the vector of her bids so
that another player becomes the proposer, this does not change her resulting utility,
which would still equal that given by the minimal transfer rule (i.e., her allocation
assigned by the Shapley value of the optimistic queueing game vp). Second, if she
changes the vector of her bids and following it she is still the proposer with positive
probability, it must be that her total bid (3;cn (3 bj) does not decline, which again
means her payoff cannot improve. That is, any deviation of the bidding strategy of
player i specified at stage L-1 cannot improve her payoff. Hence, no player has an
incentive to change her bid, showing that the given strategy profile is an SPE.

The proof that any SPE yields the allocation assigned by the minimal transfer
rule proceeds by a series of claims.
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Claim L-1 At stage L-3, in any SPE, any player j € N\{i,} accepts any proposal
(0,1) such that 0 € X (N) if

Ok
i
52 =D+ | =" =D+ (" =D = > ],
kEF;(0*%)
and rejects it if
sk *% 9,1’ O
G<©@=DO+| =@ =D+ =17 = 3 =
kEF;(0**)
where 0** € Eff (On\i,})-
Proof This claim follows directly from the induction assumption. O
Claim L-2
(i) Ifvo(N) —vo(N\{in}) > —(IN| — 1)6,,, the only SPE of the game that starts at

(i1)

stage L-2 is the following. At stage L-2, player i, chooses the option of selling
the position instead of taking it up by herself and makes a proposal (¢*, f) such
that o* € Eff(0) and

6= (0 = Do+ [~ =D+ (7 =7~ 3

kEF;(0**)

where 0** € Eff(Oy\(;,}) to each player j € N\{i,}. At stage L-3, each player
J € N\{i,} accepts any proposal (0, t) such that 0 € X'(N) if

62 (0= DG+ [ =07 =D+ =D~ > =

kEF;(0**)

where 0** € Eff (6y\(;,)) and rejects it otherwise.

If vo(N)—vo(N\{in}) = —(|N|—1)0;,, there exist other SPEs in addition to the
one described above. In fact, any set of the following strategies also constitutes
an SPE: at stage L-2, player i, either takes up the last position by herself or
sells the position by making a proposal (o, #) such that 0 € X' (N) and to some

playerj # i,,

R R I R D D

kEF;(0**)
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where 0** € Eff (Oy\;,}); and at stage L-3, player j rejects any proposal

R R G N e VD D

kEFj(0**)

In any SPE of this subgame, the final payoffs to players i, and j # i, are
=0 =10, = jeni} b;” —>_jem\(iy i and —(0;* —1)6; —|—b}” +1;, respectively,

where t; = (0] — 1)6; + (—(ij** — Db+ (0] — 1)% - ZkeFj(a**) G_Zk)

Proof For the case of vo(N) — vo(N\{in}) > —(|N| — 1)6;,, one can verify the
argument by the induction assumption and Lemma 9.2. For the case of vo(N) —
vo(N\{in}) = —(IN| — 1)8;,, one can obviously see that player i, would be
indifferent between taking up the last position and making an acceptable proposal,
with the first option being equivalent to making an unacceptable proposal and then
having it be rejected, which would all yield the same payoff to player i,. O

Claim L-3 In any SPE, B’ = B/ forall i, j € N and hence B' = 0 forall i € N.

Claim L-4 Inany SPE, each player’s payoff is the same regardless of who is chosen
as the winner at stage L-1.

Proof The proofs of Claims L-3 and L-4 are the same as in Pérez-Castrillo and
Wettstein (2001). O

Claim L-5 In any SPE, the final payoff of each player coincides with her payoff
assigned by the minimal transfer rule.

Proof Note that if player i is the proposer, her final payoff is

—(of == > b= > 1.

JEN\{i} JEN\Li}

where ; = (0] — 1)6; + (—(Uj** -1+ (0" — 1)% - Zkepj(a**) %) And if
playerj # i is the proposer, the final payoff of player i is

* j * *k *k 9,‘ 91(
—@7 =0tb+{ 0 = DO+ | (07" = Db+ (7" =D = Y o

kEF;(0**)
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Therefore, the sum of payoffs to player i over all possible choices of the proposer is

—(@ =18~ Y. b

JEN\{}
* sk sk 9] 01{
DI (G U B G R G V) Dl
JEN\LY rehroen)
+3 (= =16+ 1)
JFEi
+Z((o-*—1)9-+(—(o-**—l)ﬁ--l—(o.**—l)@— > @))
Vial kEF;(0**)
= —n(o —1)6;
* sk sk 9] 01{
DI [ U G R C e VD D
JEN\L kEFj(0**)
+ =D =D+ (—(o.** — 1) + (07" — 1)@ -y %)
i i L i i i 2
Viall kEFi(0**)
SR SRR S GOSN
JEN\L} JEN\LI}
+ ) (—(a.’**—1)9-+(a.**—1)@— > %)
Neve? ' R 2
JEN\{i} kEFi(o**)

= —(U,-*—l)e,-— Z O + Z (_(Ui** _1)%_ Z %)

keFi(o™) JEN\{} kEFi(a™**)

= —66;+ 6, — Z O — Z U,-*2*9i+(n—1)%— Z Z %

kEF;(c*) JEN\{} JEN\L} kEFi(a**)

o.¥*6; 0; O

LR SN LSRRI S S
kEF;(0*) JEN\{} JEN\L} kEFi(a**)

1 b:
= —0/0i— Y 6= 5 (F@")of 6 +1Pio™)lo" = 1)6) + (1 + )7
kEF;(0*)
-y oy &
JEN\{i} kEF;(c**) 2
n+1 1 1 * *
= — O =D+ SIPEM— Y b= (PO +IFED -1 Y b

kEFi(0*) kEF;(0™)
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n+1 1 n
= — 3 (O'l->I< — 1)9, + E(O'I-* - 1)6, - 5 Z 6’k
kEFi(c*)
= _f(o* - 16 — Z 1k
o2 ’ 2

kEF;(0*)

9,‘ ek
= —(* =1+ (6F—1)= — =
n | —(o; ) (0 )2 E

kEF;(0™)
= ng"(9).

Together with Claim L-4, we conclude that in any SPE, for any player i € N, her
final payoff is ¢ (0). O

Remark 9.1 As shown in Sect. 3.5, the Shapley value and the nucleolus (or the
prenucleolus) coincide in queueing problems. Together with Theorems 9.1 and 9.2,
our games can implement the nucleolus (or the prenucleolus) of the corresponding
games.

Here we discuss implications of the two mechanisms implementing the maximal
and the minimal transfer rules, respectively. In both mechanisms, the players have
the same strategies. However, the two mechanisms assign different positions to a
winner who decides to take up the position in stage 2, or whose proposal is rejected
in stage 3, of a certain round.® In the first-served mechanism, this player gets the first
position (after the already rejected players), while in the last-served mechanism, this
player gets the last position (in front of the already rejected players). At first sight,
the first-served mechanism seems to be advantageous for the proposer since she
takes up the best available position (either in stage F-2 or if her proposal is rejected
in stage F-3). Moreover, the proposer seems to have an incentive of making her
proposal be rejected since it gets the best position if her proposal is accepted. On the
other hand, in the last-served mechanism, the proposer seems to have an incentive
of making her proposal be accepted since it gets the worst position if her proposal
is rejected.

The “value” of being the proposer, and therefore the bids made in stage 1,
depends on the position that is at stake for the proposer. As it turns out, in SPE, being
the proposer in the first-served mechanism is so attractive that the bids to become
the proposer are so high that it eventually leads to a combination of bids (in stage
F-1) and offers (in stage F-2) such that the SPE outcome yields the utility payoffs
assigned by the maximal transfer rule which asks relatively large compensations
from the players served earlier to the players served later. On the other hand, in
SPE, being the proposer in the last-served mechanism is so unattractive that the bids
to become the proposer are so low (in fact, the players want to be paid to become the

8Note that the possibility of taking up the position and leaving the game is not a part of the Pérez-
Castrillo and Wettstein’s (2001) mechanism which implements the Shapley value for TU games.
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proposer) that it eventually leads to a combination of bids (in stage L-1) and offers
(in stage L-2) such that the SPE outcome yields the utility payoffs assigned by the
minimal transfer rule which asks relatively small compensations from the players
served earlier to the players served later. Requiring a rejected player to be served
last leads to an equilibrium outcome corresponding to a rule that yields smaller
transfers that agents with higher waiting costs have to make to agents with lower
waiting costs in compensation for taking up a position in front of the queue.

Our result provides a link between a pessimistic treatment of a proposer and
an optimistic treatment of a coalition aligning together for the minimal transfer rule.
The minimal transfer rule can be obtained by the last-served mechanism that assigns
the last position to the proposer, a pessimistic treatment of a proposer. This rule can
also be obtained under the optimistic assumption that a coalition is served before
the rest of players (see Sect. 3.3 for details). Similarly, the first-served mechanism
provides a link between an optimistic treatment of a proposer and a pessimistic
treatment of a coalition, which in either way leads to the same maximal transfer
rule.

9.4 The Hybrid Mechanism and the Average Transfer Rule

The axiomatic foundations of the maximal and the minimal transfer rules indicate
that the two rules have desirable properties and are complementary to each other.
Next we introduce an average transfer rule that takes the average of these two
rules, which can be seen as a compromised choice between the optimistic and
the pessimistic perspectives. To construct a strategic mechanism for the average
transfer rule, one may combine the two mechanisms by setting up a lottery device
in the beginning such that there will be an equal probability to play the first-served
and the last-served mechanisms. Each player’s expected payoff from playing this
mega-game equals the average of the allocations generated by the maximal and the
minimal transfer rules. However, this is not a natural implementation mechanism
because players’ payoffs are generated exogenously and the coincidence only
happens in expectation rather than in actual terms. To deal with this difficulty, we
offer another mechanism implementing the average transfer rule.

Hybrid Mechanism The mechanism is the same as the previous two mechanisms,
except when the set of active players is N.

Stage H-1. Bidding for the proposer: It is the same as stage 1 of the previous two
mechanisms, except that the winner in this mechanism has an equal chance to be
served in the first and the last positions (e.g., by a fair lottery device like flipping
a coin), instead of being served for sure either in the first position or in the last
position.

Stage H-2. Taking the chance or making a proposal: ~The winner i, decides to
either take the chance by herself or make a proposal. If player i, takes the chance
by herself, a lottery device generates the actual state for player i, to be located
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first or last. Then, the mechanism proceeds along this realized position for all
the other players, with no lottery device anymore. If player i, is located first by
the lottery device, then the mechanism proceeds as in the first-served mechanism
for the other players, and if she is located last by the lottery device, then the
mechanism proceeds as in the last-served mechanism for the other players. On
the other hand, if player i, decides to make a proposal, then the proposal consists
of a queue o(N) € X(N) and a vector of transfers (f;)jev € R such that
> jen ti < 0. The game continues to stage H-3.

Stage H-3. Approving or disapproving a proposal: ~ The players in N other than
player i,, sequentially, either accept or reject the proposal. If at least one player
rejects the proposal, then it is rejected. Otherwise, it is accepted. If the proposal
is rejected, then the lottery device reveals which position, the first or the last,
the rejected proposer i, actually takes. For all the other players N\{i,}, the
mechanism will proceed according to the realized position on player i,, and there
will be no lottery device anymore. That is, if player i, takes up the first position,
then the other players will play the first-served mechanism. On the contrary, if
player i, takes up the last position, then the other players will play the last-served
mechanism.

To sum up, the only difference takes place when the active set of players is N,
where a proposer has an equal probability to be served in the first position and the
last position. Once the position is revealed, then the mechanism proceeds along this
line for the remaining players.

Proposition 9.1 For any N € A and any 0 € 2V, the hybrid mechanism has a
unique SPE outcome, which coincides with the payoffvector assigned by the average
transfer rule, i.e., % (@M(H) + (pC(H)).

Proof Since the proof can be constructed along the same line as in Theorems 9.1
and 9.2, we only provide the sketch. From Theorem 9.1, if the first-served
mechanism is played by N\{i}, then the unique SPE outcome for this subgame is
(pC(GN\{ i,})- Similarly, if the last-served mechanism will be played, then the outcome
is M (Om\(i,3)- Therefore, in SPE, player i, will make a proposal such that each

playerj € N\{j} obtains 3 (QDJ-C(QN\{in}) + (,0,M (QN\{,-”})), which is player j’s expected
payoft if the proposal by player i, is rejected. Due to Lemmas 9.1 and 9.2, one can

obviously see that player i, has an incentive to make such an acceptable proposal
instead of being rejected and receiving the expected payoff % O—(n-16,). O

9.5 Independence of the Ordering of the Rejected Players

Now we discuss a robustness property of the two mechanisms implementing the
minimal and the maximal transfer rules. Recall that the last-served mechanism
requires a rejected proposer to be served after the others. If the proposal of player i,
as the proposer for the set of active players N, is rejected, then she is placed at the
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last position of the entire queue of N, no matter how players in N\{i,} are arranged.
If the proposal of player i,—1, as the proposer for the set of active players N\{i,}, is
rejected, then she takes up the (|N|—1)th position but before player i,, and so on. The
most recently rejected player will be served after the remaining set of active players,
but before the previously rejected players. One may consider an alternative design
of the mechanism which assigns to the first rejected proposer the first position of
all the rejected players and to the most recently rejected player the last position of
all the rejected players. The following proposition confirms that such a mechanism
would still implement the minimal transfer rule.

Proposition 9.2 The ordering of the rejected players in the last-served mechanism,
so long as they are served after the set of active players S, plays no role in
implementing the minimal transfer rule of the queueing problem in SPE.

Proof Any alternative ordering different from the one specified in the original last-
served mechanism would mean that the most recently rejected player cannot do
better. That is, player iy, if rejected, takes the sth position or after. Taking the sth
position, the same as in the original last-served mechanism, gives her no incentive
to make an unacceptable offer when she makes a proposal. Since a later position can
only make her worse off when being rejected, she makes an acceptable offer in SPE.
Therefore, even if a rejected player is placed at the end of all the rejected players,
she would see that all others have no incentive to make their offers be rejected and
this ordering gives the same result as in the original last-served mechanism. O

Similarly, we can construct an alternative mechanism to implement the maximal
transfer rule. In this mechanism, when a proposer is rejected, her final position in
the queue of N is pending, up to the moment when the finally rejected proposer
is settled. Suppose that coalition S\{i;} have made an agreement. The last rejected
proposer i, takes up the position immediately before S\{i;} but after N\ S, whereas
all players in N\ S can form any ordering.

Proposition 9.3 The ordering of the rejected players in the first-served mechanism,
so long as they are served before the set of active players S and the last rejected
player takes the position immediately before S, plays no role in implementing the
maximal transfer rule of a queueing problem in SPE.

Proof A player may wish her followers to become rejected players so that she might
be better offered by being placed at an earlier position. However, in a two-player
subgame, the proposer would not make an unacceptable offer. So the previous
proposer, for a three-player subgame, can foresee this and realize that she would
have to be the finally rejected proposer, if she were to make a proposal being
rejected, which implies that she is placed immediately before the other two players,
but not further front. Therefore, she would not make an unacceptable offer, either.
Backward induction leads the first proposer to make an acceptable offer, too. O
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Chapter 10
Queueing Problems with Two Parallel Servers

10.1 Introduction

In this chapter, we generalize the queueing problem with one server (or one-server
queueing problem) by assuming the facility has two parallel servers so that two
agents can be served at the same time. We introduce two rules for the queueing
problem with two parallel servers (or two-server queueing problem), which we
also call the minimal transfer rule and the maximal transfer rule, and discuss their
properties. The minimal transfer rule is proposed by Maniquet (2003) for the one-
server queueing problem in which the facility serves one agent at a time. For each
queueing problem, this rule assigns the same payoff as the Shapley value (Shapley
1953) of a TU (transferable utility) game associated with the one-server queueing
problem which is obtained by defining the worth of each coalition to be the minimal
total waiting cost incurred by its members, assuming optimistically that they are
served before the non-coalitional members. On the other hand, the maximal transfer
rule is proposed by Chun (2006) for the one-server queueing problem. For each
problem, the rule also assigns the same payoff as the Shapley value of a TU game
associated with the one-server queueing problem, but this time the worth of each
coalition is pessimistically defined; the coalitional members are served after the
non-coalitional members (see Chap. 3 for details).

For the two-server queueing problem, the two rules also correspond to the
Shapley value of TU games obtained by making two different assumptions on the
worth of a coalition. What complicates the analysis is that we need to allow transfers
between two agents served at the same time. Thus, our results cannot be obtained by
a simple adaptation of the results for the one-server queueing problem. Even though
two agents are served at the same time, their compensations may be different: the
difference in the transfers can be interpreted as being due to the agent with the
smaller unit waiting cost having to receive a compensation from the agent with the
larger unit waiting cost. If an agent in a preceding position leaves, then the one with
the larger unit waiting cost moves up by one position, saving one unit of her waiting
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cost. This possibility requires that a monetary transfer be imposed on agents in the
same position as well as on agents in different positions.

The chapter is organized as follows.! In Sect. 10.2, we introduces the two-server
queueing problem and presents basic concepts. In Sect. 10.3, we introduce the
optimistic two-server queueing game and show that the Shapley value applied to
this game gives the same payoff as the minimal transfer rule. In Sect. 10.4, we
introduce the pessimistic two-server queueing game and show that the Shapley value
applied to this game gives the same payoff as the maximal transfer rule. Finally,
in Sect. 10.5, we investigate the consequences of applying other cooperative game
theoretic solutions to the two-server queueing games and the existence of rules
satisfying strategyproofness. Also, we discuss a possible extension of the two-server
queueing problem to the multiple-server queueing problem.

10.2 Two-Server Queueing Problems

We generalize the one-server queueing problem to accommodate two servers. Let
I = {1,2,---} be an (infinite) universe of “potential” agents and .4~ be the family
of nonempty finite subsets of /. Each agent i € I is characterized by her unit waiting
cost, 6; > 0. The facility can serve two agents at a time and each agent needs
one unit of time for her job to be processed. Given N € .4/, each agent i € N is
assigned a position g; € N in the queue and a positive or negative transfer #; € R. An
agent who is served first incurs no waiting cost. If agent i € N is served in the g;th
position, his total waiting cost is (g; — 1)6;. Each agent i € N has a preference over
assignments that can be represented by a quasi-linear utility function: her utility
from the assignment (g;, ;) is given by u(g;, t;; 0;) = —(g; — 1)0; + ;.

Given N € ./, a queueing problem with { parallel servers or an {-server
queueing problem is defined as a list ¢ = (6;{) where 6 € Rﬁ'_ is the vector of
their unit waiting costs and £ is the number of servers. From now on, since we
only analyze the two-server case in this chapter, we drop £ from the notation and
denote the two-server queueing problem by 6. Let .7 be the class of all two-server
queueing problems for N and .7 = | J 7V. An allocation for 0 € 7V is a pair (g, 1),
where for each i € N, g; is the position assigned to agent i and #; is her monetary
transfer. An allocation is feasible if at most two agents are assigned to each position
and the sum of transfers is not positive. Thus, the set of feasible allocations Z(8)
consists of all pairs (g, 7) such that foreach i € N, [{j € N|g; = gi.j # i}| < 1 and
Zje vt <0.

As in the one-server queueing problem, an allocation is (Pareto) efficient if it is
feasible, and there is no other feasible allocation that each agent finds at least as
desirable and at least one agent finds more desirable. An efficient queue is obtained

I'This chapter is based mainly on Chun and Heo (2008). Excerpts from that article are reprinted
with kind permission of Wiley.
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by minimizing total waiting cost. That is, given N € .4 and § € 7V, a queue g is
queue-efficient if forall g', Y "y (gi—1)0; < Y .cn(g: — 1)6;. The efficient queue of
a problem does not depend on the transfers. Moreover, it is unique except for agents
with equal waiting costs. These agents have to be served consecutively but in any
order. Let Eff (0) be the set of all efficient queues for § € TV,

For all N € 4 and all & € 7V, an allocation (g,f) € Z(0) is budget
balanced if ) ,cyt; = 0. An allocation rule, or simply a rule, is a mapping
¢ T = X ye Z(0), which associates with all N € .4 and all § € IV a
nonempty subset ¢(6) of feasible allocations. The pair ¢;(8) = (g;, #;) represents
the position of agent i in the queue and her transfer in 6 under ¢.

To facilitate our analysis, we assume that agents are indexed by the non-
increasing order of their waiting costs; the agent indexed 1 has the largest cost,
the agent indexed 2 has the second largest cost, and so on. This indexing is uniquely
defined except when agents have equal waiting costs. Agents with equal unit waiting
costs have to be indexed consecutively. For all N € .4 and all § € TV, let D(9)
be the set of all possible index assignments. For all d € D(6) and all i € N, the
efficient queue g is defined as

o [é] _ % if d; is even,
81T 1 4 ifd; is odd,
Forall N € 4, all§ € IV, alld € D(9), and all i € N, let Pi(d) be the set
of agents with smaller indices than agent i and F;(d) the set of agents with larger
indices than agent .

10.3 An Optimistic Approach and the Minimal Transfer Rule

As in Chap. 3, we solve the two-server queueing problem by using cooperative game
theoretic approach. First, we define the worth of each coalition S € N to be the
minimal waiting cost incurred by its members under the optimistic assumption that
they are served before the non-coalitional members (Maniquet 2003). That is, for
all § € N, its worth v (S) is defined by setting

vo(8) ==Y (& — b,

i€S

where s = (0))ics and g5 € Eff(6s).

Now we define the minimal transfer rule. This name is justified in Remarks 10.2
and 10.3. First, this rule chooses an efficient queue. Second, it assigns to agent i a
two-part transfer. One part can be interpreted as a compensation to agent i, the other
is a contribution from her. The compensation to agent i is the sum of the position
number of all preceding agents divided by her index and multiplied by her unit cost.
This compensation to agent i is collected equally from agents with smaller indices.
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Thus, the contribution from an agent is the sum of all the amounts contributed by
her to all the other agents with larger indices.

Minimal transfer rule, ¢™: Forall N € .4 andall § € IV,

oM(6) = {(g", ™M) € Z(A) | ¥d € D(A) and Vi € N, g = [%] and

ZgM<gM 2 ZgM<g j'
M= T Y (gl e,
KEFi(d)

Remark 10.1 Alternatively, the transfer can be expressed as follows. For all i € N,

MM _ | 1 MM _
t?” _ 8i (g, )Gi _ Z 8k (gk )Gk-
d,’ dk_l dk
kEFi(d)

Since this expression is somewhat easier to manipulate, we will use it in the proofs.

Remark 10.2 If there is only one server, agent i’s position g; can be replaced by
index d;, and 2 in the numerator of the compensation term changed to 1. Altogether,
the definition becomes

1 Zdj<dk dj-l
(k- g

kEN:dy>d;

2dj<d; 41
N
1

di—1 1
= =0i = D kendd; 30k

which coincides with the minimal transfer rule for the one-server queueing problem.
Moreover, as discussed in Remark 10.3, the minimal transfer rule for the two-server
queueing problem can be characterized by imposing the same axioms as in the one-
server queueing problem.

Here is an example showing how the minimal transfer rule of the two-server
queueing problem is calculated.

Example 10.1 (The Minimal Transfer Rule) Let N = {1,2,3,4,5,6} and 6 =
(91,92,93, 94,95,96) be such that 8 > 6, > 63 > 6, > 05 > 6. By queue-
efficiency, g = (1,1,2,2,3,3)andd = (1,2,3.4,5, 6). The transfers assigned by
the minimal transfer rule are

I )
Y= 330 — 530 — 3565 — 56
Vo el it -l
R A
oo s o,
¥ - 122g,
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Agents 3 and 4 occupy the same position, but the minimal transfer rule assigns
different amounts of transfers to them. Agent 3’s transfer contains the term —é04,
which can be regarded as a contribution from agent 3 to agent 4. If either agent
1 or agent 2 leaves the queue without being served, then one agent in the second
position moves up to the first position. By queue-efficiency of the minimal transfer
rule, it has to be an agent with the larger unit waiting cost, agent 3. This possibility
explains why the transfers of agents 3 and 4 are different even though they occupy
the same position.

Next is an example showing that the Shapely value applied to the optimistic two-
server queueing game results in the same payoff vector as the minimal transfer rule.

Example 10.2 (Example 10.1 Continued) Let N and 6 be defined as in Exam-
ple 10.1. The Shapley value assigns each agent the following payoff: Sh(vp) =
(—305— 04— 3505 — 105, — 303 — 1 04— 1505 — 106, — 5 03— £ 04— 75,05 — £ 05, — 3 04—
205 — 105, —265 — 165, —0).

Since for all i € N, t; = u; + (g; — 1)6;, the corresponding transfer is t =
(—3603— 10, — 205 — 10, — 1603 — 104 — 2605 — 106, 203 — 10, — 265 — 106, 164 —
13—095 — % Os, %95 — % 0, Bs), which coincides with the transfer assigned by the minimal
transfer rule in Example 10.1.

To show the relation between the minimal transfer rule and the Shapley value, we
first discuss how the dividend can be calculated for optimistic two-server queueing
games. It is well-known that a TU-game v can be written as a linear combination
of unanimity games, that is, v = ZTCN Ay (T)ur, where the unanimity game ur
on N is given by uy(S) = 1if T C S and ur = 0 otherwise. For all S C N, its
dividend A, (S) is defined as follows: if |S| = 1, then A,(S) = v(S), and if |S| > 1,
(8) = v(S) = Xy, 125 2T

Lemma 10.1 Forall N € A and 0 € TV, the unanimity coefficient of S C N is

defined as
0 if |S| =1 or 2,
Ay (S) =
0 =1 ()99 mines 6, i |5 3.
Proof If |S| = 1 or 2, the conclusion is obtained trivially from vo(S) = 0.
If S| = 3, 45(S) = v0(S) — Xorcs 15200 (T) = vo(S) = —minest; =

—(—2)373 min,cs 6;, as desired. Now we proceed by induction.

Suppose that the conclusion holds for all S € N such that S| < s — 1. (In
particular, we have shown that the conclusion holds for |S| — 1 < 2.) We need to
show that the conclusion holds for |S| = s. Without loss of generality, we assume
that S = {1,2,...,s},60; > 6, > --- > 0, and, for all i € S, d; = i. Thus, for all
ie S, ifiisodd, g; = %, and if i is even, g; = % We use the binomial theorem
(a+b)" =", (})a'b"" after replacing a with —2 and b with 1. First, we rewrite



146 10 Queueing Problems with Two Parallel Servers
Ao (S):

Mo =vo(S) = Y hup(D)

TCS, T#S

v+ Y (—2)'7‘—%%1;1@

TCS, T#S, |T|>3

i s—1
= vo() + Z Z (l. i)(—z)H 0+ (j ~ 11>(—2)f—3ex.
J=3

i=3 | j=3

By the binomial theorem and the definition of g;, the second term is rewritten as

s—1 i . s—1 | i—1 /.
Z(l-_i)(—w* oi=3 Z(’_.l)(—2>f—2 6
i=3 |j=3 V i= =2\ /
s—1 i—1
= ( )( 2y (1)~
3 j=2
1 i—1 i—1 . ) )
= Z( ; )(-2)/(1)'—1—-/ —1+2G—1) |6
i=3 j=0

=Y Loyt S 26—,
3

o

n~ %~
i i
L

R

=

s—1 i— .
_ D)t —1423G—1)
= ; 7 6;

=3 (@i — 16 (10.1)

Similarly, the third term is rewritten as

s—1 s—1 . s—2 s—1 .
-2y 739, = —2Y 724,
Z(}._J( Y6 Z(}.)( Y26

j=3 =2

s—1

= (s ; 1) (=2Y726, — (=276,

=2

s—1
(s )( 26, — (=2)° 36,

J=2

.

1
4
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s—1

Z (s; 1) (=2Y —14+2(s— 1)} 6, — (=2)* 36,

j=0

F-

= % {(_2 + l)x_l -1+ 2(3 — 1)} 0, — (_Z)X—?)QY

DT =14 2(s - 1)
B 4

= (gx - 1)93 - (_2)S_39s-

95 - (_2)S_3 93‘

Since vp(S) = — Z;Lg(gi - 1o,

71 i / s—1
b =09+ TS (2 ear e X (17 )eora
Jj=3

i=3 | j=3

S s—1
==Y (@—DOi+ Y (g — Db+ {(gs — Db, — (-2)"6,}

i=3 i=3
— _(_2)S—3 e‘v

= —(-2)*> min6,,
i€s

the desired conclusion. O

Now we prove that for each two-server queueing problem, the minimal transfer
rule selects the same payoff vector as the Shapley value applied to the two-server
queueing game when the worth of a coalition is optimistically defined.

Theorem 10.1 The Shapley value applied to vo assigns each agent the same payoff
as the minimal transfer rule.

Proof Let N = {1,2,...,n}. Without loss of generality, we may assume that 8; >
6y > --- > 0, and that for all i € N, d; = i. Note that foralli € N, g; = f%].
By Lemma 10.1, for all i € N, the payoff assigned by the Shapley value can be
calculated as follows:

Aoy (S
Shi(vo) = ) ics.sen ﬁvf )
. —(=2)k3 i j —(=2)k3 (j—2
= Yy T ()0 + Y Yy —2— (236

Let i € N. By the binomial theorem and the definition of g;, the first term in
Shi(vp) can be rewritten as

i

—(2 i1\, (=) (1)
2. k (k—l)ei_z k (i—k)!(k—l)!ei

k=3 k=3
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_ % {Z(—z)k(;;) C(1—2i+ 4(i_21)i)} 0

k=0

{( 1)!-(1—21+4( _zl)i)} 6;
{(=1)'— 14 2i—2i(i — 1)} §

—(gi—1)+

1
8i
1
8i
{ (10.2)

i(gi—1
8i(g . ) } o,
i
Similarly, by Egs. (10.1) and (10.2), the second term in S%;(vo) can be rewritten as

>y ()

Jj=i+1 k=3

ZZ (2)’<3k—1 =1\,
_/z+lk3 j=1\k=1J"7

j—1

L)

n J J k—3 _
) £
]1+l k=3 k=

=— Z {(g,—1>—<g,—1)+

j= 1+l

(j—j)gg;— 1)} 6
J

— _ Z 1 g](g] )ej

j= 1+l
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Altogether, for all i € N,

k=3 k=3
smo)—z -2 (k )9+ZZ 2 (;{_22)9,

j=i+1k=3
i\&i “ 1 i(gi—1
:{_(gi_) gilsi— 1) — > — —g,(g,‘ )9j
i j=i+l]_1 J

gilgi—1) Zn: 1 gi(g—1
— ST gt

=—@—-DO+ | ——0— — .
! =it T J

which is the desired expression as noted in Remark 10.1. O

Remark 10.3 The minimal transfer rule for the two-server queueing problem can
be characterized by imposing axioms used in Chap.4, but appropriately adapted
for the two-server queueing problem. First, it is the only rule satisfying efficiency,
Pareto indifference, equal treatment of equals, and independence of preceding costs.
Second, it is the only rule satisfying Pareto indifference, the identical preferences
lower bound, negative cost monotonicity, and last-agent equal responsibility. Third,
it minimizes the sum of the absolute value of transfers among agents among all rules
satisfying Pareto indifference, the identical preferences lower bound, and last-agent
equal responsibility.

10.4 A Pessimistic Approach and the Maximal Transfer Rule

Now we investigate a pessimistic definition for the worth of a coalition as in Chun
(2006), which is based on the assumption that the members in a coalition are served
after the non-coalitional members. Let S C N. We need to take into consideration
the cardinality of N\S because this coalition is served before S. If |[N\S| is even,
then agents in S will be served from the (M + 1)th position. If |[N\S] is odd,
the last position for N\S is composed of one agent from N\S and one agent from S.
Therefore, the waiting cost of agent i € S, C;(S), can be calculated as follows. For
alli € S,

M +(gl.s—l)} 0; if |N| —|S| is even,
Ci(S) = | | IM=B=1 4 (g8 — 1)} 0; if N| — |S] is odd and d is odd,
(NESIEL 4 o8, if [N| — |S] is odd and d? is even.
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where 05 = (0))ies, &8 € Eff(6s), and d> € D(fs). Now, the worth of coalition S,
vP(S), is defined as

vp(S) = — Z Ci(9).

i€S

Next we introduce the maximal transfer rule for the two-server queueing
problem. First, this rule chooses an efficient queue. Once again, the transfer to agent
i has two parts, a compensation to her and a contribution from her. Assuming an
even number of agents, the contribution from agent i is the sum of the distances
in the queue between her and each of the following agents times 2 (which is the
number of agents in the position) divided by the number of her followers plus one.
Once the contribution from agent i is determined, it is divided equally among the
agents with larger indices as a compensation. Thus, the compensation to agent i is
the sum of all shares of contributions from agents with smaller indices than hers.

Note that there is a symmetry between the minimal transfer rule and the
maximal transfer rule. The preceding positions are considered in calculating the
compensation for the minimal transfer rule, and then the preceding agents divide
the amount equally and make the contribution. On the other hand, the following
positions are considered in calculating the contribution for the maximal transfer
rule, and then the following agents share the contribution equally.

ForallN € 4,0 € IV, alld € D(0), and all i € N, let m; be the contribution
from agent i, defined as

T (682

o el if n is even,

m; = > n7(gi—gi)2 n
gj>gigj<l 518~ &i i [51—gi ¥ .

—d, T 0; + 2710 if nis odd.

Maximal transfer rule, 9¢: ForallN € 4 and § € IV,
9C(0) = {(g€.1°) € Z(9) | Vd e D(P) and Vi € N, g€ = [£] and
1= Yiera ,%1] — mjj.

The next example illustrates the definition of the maximal transfer rule.

Example 10.3 (The Shapley Value in the Pessimistic Approach) Let N =
{1,2,3,4,5,6} and 0 = (91,92,93,94,95,96) be such that 8; > 6, > 6; >
0y > 05 > 6Os. Now we apply the Shapley value and calculate the corresponding
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transfers.
= - 12222
£= do - 1222,
£= oo+ it -
£= o+ 1% +te -
O N
€ = 1o, + 186, + 116+ 126,

It can easily be checked that these transfers coincide with the transfers assigned by
the maximal transfer rule.

We note that m; = {(2—+(j_?l)}~2

by her followers, 2, 3, 4, 5, and 6, each of them receiving %91. Similarly, m, =
{e=D+6-D}25 _
6—2+1 2 =

0, = 6, and this amount is shared equally

292 is shared equally by her followers 3, 4, 5, and 6, each of
them receiving %292 and so on.
Now we relate the maximal transfer rule of two-server queueing problems with

the Shapley value of the pessimistic two-server queueing game. First, we derive the
unanimity coefficient A,,.

Lemma 10.2 ForallN € .4 and 0 € TV, the unanimity coefficient of S € N is
defined as follows: if |N| is even, then

—([%1 - 1)6; if S = {i},
Aop() =10 if1S] =2,
(=2)1173 max;es 6; if S| = 3,

and if |N| is odd, then

—([%1 - )b, if S = {i},
Ayp(S) = { maxes 6; if1S| =2,
—(=2)173 maxes 6; if |S] > 3.

Proof LetN = {1,2,...,n}. We will only treat the case when |N| is even. For each
i € N,if § = {i}, then 4,,(S) = vp(S) = —([3] — 0. For all i,j € N such that
i #j,if § = {i,j}, then

Lp($) = vp(S) = Y Ay (T)

TCS, T#S
~([51= D +6) + (151 = Db+ (151 = DY,
=0.



152 10 Queueing Problems with Two Parallel Servers
For all i,j, k € N such that k > max{i,j}, if S = {i,J, k}, then

Mop(S) = vp(S) = Y Aup(T)

TCS, T#S
~([51= D +6) = (151 = b+ (5] = D(E: + 6 + )
= b,

as desired.

Now, as induction hypothesis, suppose that the conclusion holds for all § C N
such that |S| < s — 1. (In particular, we have shown that the conclusion holds for
|S] — 1 < 2.) We need to show that the conclusion holds for |S| = s. We assume
without loss of generality that S = {1,2,...,s} and that 6; < 6, < --- < 6. First,
we consider the case when || is even.

Mop(S) = vp(S) = Y Aup(T)

TCS, T#S

= ~(151= D6 + 0)=(3] =D + )=+ =151 = 5) (b +6)

s—1

i . s—1 .
- Z(—zy‘—?’(’.:i) ei—Z(—z)i—?’(’.:i)es
i=3 | j=3 J i=3 J

+(I51 = DO + b2+ + 6)

= {G=DOA+0) + G =D Oz +6) +--+ (6 + 0]

s—1
_n)i—3 i—1 0.
()

By the binomial theorem, these terms can be rewritten as

s—1

Lo i1
— 22122 3(j_l) b -

i=3 | j=3

s—1 i i—1
> (—2>f—3(. ) 6
i=3 | j=3 J=1
1

s

2i — _1)i—1
i—34+ (-1 9
4

1

i=3

(

|«

)6, + (g —2)(Byz + Ou3) + -+ (B4 + 65)
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and

s—1
3 (2) (‘. B 1) 6,
i=3 J =

% 25— 3 4 (—1)!

i (—2)&*} 6,

S s—3
{G-D-27) 6.
Altogether,

Avp (S)

= {G=DOA+ )+ G =D Oz +63) + -+ (6 + 0]

s—1
_n)i—3 i—1 0.
s (e

= {G=DOA0-) + G =D Oz +62) + -+ (0 + 60)]

s—1 i

_ oy3fi] 0. | —
Z 3( Y (j_l) l

i=3 | j=3

[

—{G = Dbt + G = DO+ 60) + -+ (64 + 0)]

AN

—{C-n-(27}e,

[\

_ E _ _ E _ (D)3
= G-D6—{G-D- 276
= (-2)"%,
= (=2)* > max6,,
i€s
the desired conclusion.

The case when |S| is odd can be handled in a similar way. O

Now we show that the maximal transfer rule selects the same payoff vector as the
Shapley value of the two-server queueing game in which the worth of a coalition is
pessimistically defined.

Theorem 10.2 The Shapley value applied to vp assigns each agent the same payoff
as the maximal transfer rule.

Proof Let N = {1,2,...,n}. Without loss of generality, we may assume that 6, >
6, > --- > 0, and that for all i € N, d; = i. Note that foreachi € N, g; = [%]
First, we consider the case when |N| is even. By Lemma 10.2, for each i € N, the
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transfer assigned to agent i by the Shapley value can be expressed as

_7)s—3
(L RN . L e

s
§5i,SCN.|S|>3

where |S| = s. For all i € N, t; can be rewritten as
R Y ()| EO P Gy 1
By the binomial theorem, the terms in the first half can be rewritten as
1) +an+1 e (”__f)

n—i+1 .
= (o —T" _ 93 (n—i+1)! 1

= (gi f21)+ ;( 2) B
= (g —[27])

n—i+1 —l+1
27 8(n—i+1) z+1) Z(z)( s )

n 1 & (n—i+1
=(gi—f§1)—m{§(—2)( E )—1

2(n—i+1)=2(n—i+ 1)(n—1i)}

n 2—i+Dn—i—1) +1—(=1)*!
=@—-I5D+ :
2 8m—i+1)
_ —%, if i is even,
o if i is odd,

k—gi)-2
= Zk g’“(, 89 . (10.3)
n—i+1

Also, by the binomial theorem and Eq. (10.3), the terms in the second half can be

rewritten as
i 2)S S fn—j—1
s—2
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n—j+1
(2)Y3 n—j—1
e S ()
iy s—1 n—j
— s—3
-5l peremm ()
n—j+1
_ s—3 S —
-l n e m( )

n—j+1 s—3 n—j+1 s—3

(2) n—j (2) n—j

(s ) > (o)

1 (& 1 [(n—j
=n—j§;(2) { s+1<s)

1{n—j nd! (=2) 3 (n—j

A m )

n—j+1 afn— ] n1+l( 2)33 n—j

S e ()5 = ()

1 . nj+l(2)v3nj
= { (D™ =14+ 20— )} = Z <s_1)§

n—j

1 nj+1(2)33n]
R

1 Zk—g+l(k gj) -2
n—j n—j+1 '

Altogether, for all i € N,

n—i+1 —3 i—1 [ n—j+1 s—3 _
e B EE )

r4l sl
_ _Zk;g,.f_l(k —8)-2 ‘ Z 1 Zk;gj+1(k —g)-2
- j ! n—j n—j+1

ti

_ i
n—i+l )

which coincides with the transfer for the maximal transfer rule.
The case when |N| is odd can be proved in a similar way. O
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Remark 10.4 As mentioned in Remark 10.3 for the minimal transfer rule, the
maximal transfer rule for the two-server queueing problem can be characterized
by imposing axioms in Chap.4 appropriately adapted to the two-server queueing
problem. First, it is the only rule satisfying efficiency, Pareto indifference, equal
treatment of equals, and independence of following costs. Second, it is the only
rule satisfying Pareto indifference, the identical preferences lower bound, positive
cost monotonicity, and first-agent equal responsibility. Third, it maximizes the
sum of the absolute value of transfers among agents among all rules satisfying
Pareto indifference, the identical preferences lower bound, and first-agent equal
responsibility.

10.5 Concluding Remarks

In this section, we investigate other properties of rules in the current context and
also discuss a possible generalization of two-server queueing problems.

10.5.1 The Core, the Prenucleolus, and the Shapley Value

As shown in Chap. 3 for one-server case, it can easily be shown that the optimistic
two-server queueing game v is concave. Thus, the allocation assigned by the
minimal transfer rule belongs to the anti-core of the game.

Also, as discussed in Chap.3, the prenucleolus (Schmeidler 1969) and the
Shapley value coincide on the class of optimistic one-server queueing games.
Similarly, we can ask whether these two rules coincide for optimistic two-server
queueing games. As it turns out, in the optimistic approach, they coincide on the
class of two-server queueing games with four or fewer agents, but not for two-server
queueing games with more than four agents. Moreover, the two-server queueing
games with four agents do not satisfy the sufficient conditions of Kar et al. (2009)
for the coincidence of the Shapley value and the prenucleolus, either.

10.5.2 Strategic Approach

As in the case of the one-server queueing problem (see Chap. 6 for details), the
domain of two-server queueing problems is convex. Therefore, the classic result
of Holmstrom (1979) implies that in the context of two-server queueing problems,
a rule satisfies queue-efficiency and strategyproofness if and only if it is a VCG
rule.? Strategyproofness requires that an agent should not have an incentive to
misrepresent her waiting cost no matter what she believes other agents to be doing.

2The family of VCG rules is due to Vickrey (1961), Clarke (1971), and Groves (1973).
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On the other hand, as shown in Mitra (2005), there is no VCG rule satisfying budget
balance for two-server queueing problems.

10.5.3 Queueing Problems with Multiple Servers

Our analysis of the two-server queueing problem can be generalized to the queueing
problem with an arbitrary number of parallel servers. The minimal transfer rule for
an {-server problem assigns to each agent the utility in the following way: for all
Ne A, ,allqg=(0;f),alld € D(g),and all i € N,

Z <gl! M g <g g/ L
u(gf', 1" 0) = —(gl' = 1)0) +T > (7 — 0.
k
kEF,(d)
where gV = [ 17 is the smallest integer larger than or equal to . However, due to

computational d1fﬁcult1es, it remains an open question to show the coincidence of
this rule with the Shapley value.
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