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Preface

This monograph fits in the intersection of two long and intertwined stories. The
first part of our story starts in the mid-twentieth century, when it became clear that
a new conceptual framework was necessary for the study of higher homotopical
structures arising in algebraic topology. Some better known examples of these
higher homotopical structures appear in work of J.F. Adams and S. Mac Lane
[Mac65] on the coproduct in the bar construction and work of J. Stasheff [Sta63],
J.M. Boardman and R.M. Vogt [BV68, BV73], and J.P. May [May72] on recognition
principles for (ordinary, n-fold, or infinite) loop spaces. The notions of ‘operad’
and ‘prop’ were precisely formulated for the purpose of this work; the former is
suitable for modeling algebraic or coalgebraic structures, while the latter is also
capable of modeling bialgebraic structures, such as Hopf algebras. Operads came to
prominence in other areas of mathematics beginning in the 1990s (but see, e.g.,
[Kad79, Smi81] for earlier examples) through the work of V. Ginzburg and M.
Kapranov on Koszul duality [GK95], E. Getzler and J. Jones on two-dimensional
topological field theories [GJ94, Get94], and M. Kontsevich on deformation quanti-
zation [Kon99].

This renaissance in the world of operads [Lod96, LSV97] and the popularity of
quantum groups [Dri83, Dri87] in the 1990s lead to a resurgence of interest in props,
which had long been in the shadow of their little single-output nephew. Properads
were invented around this time, during an effort of B. Vallette to formulate a Koszul
duality for props [Val07]. Properads and props both model algebraic structures with
several inputs and outputs, but properads govern a smaller class of such structures,
those whose generating operations and relations among operations can be taken
to be connected. This class includes most types of bialgebras that arise in nature,
such as biassociative bialgebras, (co)module bialgebras, Lie bialgebras, Frobenius
algebras, and Hopf algebras.

Wheeled variants of operads, properads, and props were introduced by M. Markl,
S. Merkulov, and S. Shadrin [MMS09] to model algebraic structures with traces.
For instance, one of the simplest examples of a wheeled properad controls

vii
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finite-dimensional associative algebras. There are numerous applications of wheeled
properads in geometry, deformation theory, and mathematical physics [Mer10b].

Ope@ﬁ Colored — oo-operads
Operads

Properads Colored ———=>| co-properads |
Properads
N \
Wheeled Colored co-wheeled
Properads Wheeled roperads
P \l/ Properads PTop
Colored
P
@2" = Props
\ N
Colored
V\gfl:d Wheeled
P Props

The use of ‘colored’ or ‘multisorted’ variants of operads or props [Bri00, BV73],
where composition is only partially defined, allows one to address many other
situations of interest. It allows one, for instance, to model morphisms of algebras
associated with a given operad. There is a two-colored operad, which encodes
the data of two associative algebras as well as a map from one to the other; a
resolution of this operad precisely gives the correct notion of morphism of Ao-
algebras [Mar04, Mar02]. It also provides a unified way to treat operads, cyclic
operads, modular operads, properads, and so on: for each, there is a colored operad,
which controls the structure in question.

The second part of our story is an extension of the theory of categories.
Categories are pervasive in pure mathematics and, for our purposes, can be loosely
described as tools for studying collections of objects up to isomorphism and
comparisons between collections of objects up to isomorphism. When the objects
we want to study have a homotopy theory, we need to generalize category theory
to identify two objects which are, while possibly not isomorphic in the categorical
sense, equivalent up to homotopy. For example, when discussing topological spaces
we might replace ‘homeomorphism’ with ‘homotopy equivalence.” This leads to
the theory of oo-categories (or restricted Kan complexes [BV73], quasi-categories,
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and so on); A. Joyal (Notes on Quasi-categories, 2007, unpublished manuscript),
[Joy08] and J. Lurie [Lur09] have extended many tools from traditional category
theory to oco-category theory. This extension of category theory has led to new
applications in various subjects ranging from a convenient framework for the
study of Ax, and E-ring spectra in stable homotopy theory [ABGHR], derived
algebraic geometry [Lur04, Tog05, TV05, TVOS8] and geometric representation
theory [To€06, BZN12, BZN13].

I. Moerdijk and I. Weiss [MWO7] realized that the connection between colored
operads and weakly composable maps was worth further exploration, and intro-
duced a way to think about the notion of oco-operad. They introduced a category
of trees €2, the ‘dendroidal category,” which contains the simplicial category A.
Dendroidal sets, or presheaves on €2, are an extension of simplicial sets, and
this extension allows us to consider ‘quasi-operads’ in the category of dendroidal
sets, which are analogs of quasi-categories. Moerdijk and Weiss proposed a
model for weak n-categories based on this formalism, which has been partially
validated [Luk13]. There are also relations to connective spectra [BN14], E-spaces
[Heul1b], algebraic K-theory [Nik13], and group actions on operads [BH14].

This book is a thorough initial investigation into the theory of co-properads and
oo-wheeled properads. We here lay the foundation for our aim of exploring the
homotopy theory of properads in depth. This work also serves as a complete guide
to the generalized graphs, which are pervasive in the study of operads and properads.
In the final chapter, we include a preliminary list of potential applications ranging
from string topology to category theory.

This monograph is written for mathematicians in the fields of topology, algebra,
category theory, and related areas. It is written roughly at the second year graduate
level. We assume some very basic knowledge of category theory, as discussed in the
standard references [Bor94a, Bor94b, Mac98]. Topics such as monads, simplicial
objects, generalized PROPs, and so forth will be reviewed in the text.

The first two authors would like to thank the third author for his considerable
patience and role as a mentor in the preparation of this monograph. They would
also like to thank Tom Fiore for planting the seeds of this project during his talk at
the Graduate Student Geometry and Topology Conference in 2010.

The authors would like to thank Alexander Berglund, Julie Bergner, Benoit
Fresse, David Gepner, Mark W. Johnson, André Joyal, Peter May, Sergei Merkulov,
Ieke Moerdijk, Bruno Vallette, Rainer Vogt, and Ben Ward for their interest and
encouragement while completing this project. We would particularly like to thank
Joachim Kock for sharing his point of view on the definition of generalized graph
[Koc14]. Finally, much credit goes to all five anonymous referees who each provided
insightful comments and suggestions.

Stockholm, Sweden Philip Hackney
Los Angeles, CA, USA Marcy Robertson
Newark, OH, USA Donald Yau
January 2014

February 2015
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Chapter 1
Introduction

Let us first recall the notions of a properad and of a wheeled properad.

1.1 (Wheeled) Properads as Generalized Categories

f
In an ordinary category, a morphism x —— y has one input and one output.

g
If y —— z is another morphism, then the composition gf is uniquely defined.

Moreover, the identity and associativity axioms hold in the strict sense. There are
two natural ways in which the notion of a category can be extended.

The first natural way to extend the notion of a category is to allow morphisms
with finite lists of objects as inputs and outputs, together with appropriately
chosen axioms that hold in the strict sense. For example, an operad [May72] is a
generalization of a category in which a morphism has one output and finitely many
inputs, say

(xlv'--v-xn) —_— )

with n > 0. We often call such a morphism an operation and denote it by the
following decorated graph.

T Tn,

© Springer International Publishing Switzerland 2015 1
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2 1 Introduction

Composition in a category is represented linearly. With multiple inputs, composition
in an operad takes on the shape of a tree. Explicitly, if there are operations

. . 8i
(w’l,...,wj(i) — X;
for each i, then the operadic composition y(f;gi,...,g,) is represented by the

following decorated 2-level tree.

In particular, its inputs are the concatenation of the lists (w’i, e, qu) as i runs from
1 to n. Associativity of the operadic composition takes the form of a 3-level tree.
There are also unity and equivariance axioms, which come from permutations of the
inputs. We should point out that what we call an operad here is sometimes called a
colored operad or a multicategory in the literature.

A properad [Val07] allows even more general operations, where both inputs and
outputs are finite lists of objects, say

f
(-xlv'--v-xm) — (yls---syn)

with m, n > 0. Such an operation is visualized as the following decorated corolla.
U1 . Yn
m; ' : ' jxm

Since both the inputs and the outputs can be permuted, there are bi-equivariance
axioms. The properadic composition is represented by the following graph, called a
partially grafted corollas.
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For this properadic composition to be defined, a non-empty sub-list of the outputs
of f must match a non-empty sub-list of the inputs of g. Associativity says that if a
3-vertex connected wheel-free graph has its vertices decorated by operations, then
there is a well-defined operation.

One particular instance of the properadic composition is when the partially
grafted corollas has only one edge connecting the two vertices, as in the following

simply connected graph.

It is called a dioperadic graph and represents the dioperadic composition in a
dioperad [Gan04], which is sometimes called a polycategory in the literature.

Thus, a category is a special case of an operad, which in turn is a special case
of a dioperad. Moreover, properads contain dioperads. These generalizations of
categories are very powerful tools that encode operations. For example, the little
n-cube operads introduced by May [May72] provide a recognition principle for con-
nected n-fold loop spaces. Dioperads can model algebraic structures with multiple
inputs and multiple outputs, whose axioms are represented by simply connected
graphs, such as Lie bialgebras. Going even further, properads can model algebraic
structures with multiple inputs and multiple outputs, whose axioms are represented
by connected wheel-free graphs, such as biassociative bialgebras and (co)module
bialgebras. There are numerous other applications of these generalized categories
in homotopy theory, string topology, deformation theory, and mathematical physics,
among many other subjects. See, for example, [Mar08, MSS02], and the references
therein.

A wheeled properad takes this line of thought one step further by allowing a
contraction operation. To motivate this structure, recall from above that a dioperadic
composition is a special case of a properadic composition. It is natural to ask if
properadic compositions can be generated by dioperadic compositions in some way,
since the latter are much simpler than the former. A dioperadic graph has only
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one internal edge, while a partially grafted corollas can have finitely many internal
edges. Starting with a dioperadic graph, to create a general partially grafted corollas
with the same vertices and containing the given internal edge, one needs to connect
some output legs of the bottom vertex with some input legs of the top vertex. So
we need a contraction operation that connects an output d; of an operation /& with
an input ¢; of the same color (i.e., d; = ¢;) of the same operation. The following
picture, called a contracted corolla, represents such a contraction.

d;

@)

Cj

A general properadic composition is a composition of a dioperadic composition and
finitely many contractions.

A wheeled properad is an object that has a bi-equivariant structure, units, a
dioperadic composition, and a contraction, satisfying suitable axioms. Wheeled
properads in the linear setting are heavily used in applications [KWZ12, MMS09,
Mer09, Mer10a, Mer10b]. Foundational discussion of wheeled properads can be
found in [YJ15, JY]. As the picture above indicates, when working with wheeled
properads, one must allow graphs to have loops and directed cycles in general.

1.2 Infinity Categories and Infinity Operads

Another natural way to extend the notion of a category comes from relaxing the
axioms, so they do not need to hold in the strict sense, resulting in what is called
a weak category. There are quite a few variations of this concept; see, for example,
[Lei04, Sim12]. We concentrate only on co-categories in the sense of Joyal [Joy02]
and Lurie [Lur09]. These objects were actually first defined by Boardman and Vogt
[BV73] as simplicial sets satisfying the restricted Kan condition.

The basic idea of an oco-category is very similar to that of the path space of a
topological space X. Given two composable paths f and g in X, there are many ways
to form their composition, but any two such compositions are homotopic. Moreover,
any two such homotopies are themselves homotopic, and so forth. Composition of
paths is not associative in the strict sense, but it holds up to homotopy again.

Similarly, in an oco-category, one asks that there be a composition of two given
morphisms.
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There may be many such compositions, but any two compositions are homotopic.
Associativity of such composition holds up to homotopy, and there are also higher
coherence conditions. To make these ideas precise, observe that the above triangle
can be phrased in a simplicial set X. Namely, f and g are two 1-simplices in X that
determine a unique inner horn A'[2] — X, with g as the 0-face and f as the 2-face.
To say that a composition exists, one can say that this inner horn has an extension
to A[2] — X, soits 1-face is such a composition. In fact, an co-category is defined
as a simplicial set in which every inner horn

with 0 < k < n has a filler. There are several other models of co-categories, which
are discussed in [BerO7, Ber10, JT06, RezO1].

Similarly, an co-operad captures the idea of an up-to-homotopy operad. It was
first developed by Moerdijk and Weiss [MWO07, MW09], and more recently in
[BN14, CM13a, CM11, CM13b, Heulla, Heullb, HHM13, Luk13, Nik13]. To
define oco-operads, recall that co-categories are simplicial sets satisfying an inner
horn extension property. The finite ordinal category A can be represented using
linear graphs. In fact, the object

M={0<l<---<n}eA

is the category generated by the following linear graph with n vertices.

-1
0 L2 .. >@ n_,

~

Here each vertex v; is the generating morphism i — 1 — 1.

Likewise, each unital tree freely generates an operad. The resulting full subcate-
gory €2 of operads generated by unital trees is called the dendroidal category. Using
the dendroidal category €2 instead of the finite ordinal category A, one can define
analogs of coface and codegeneracy maps. Objects in the presheaf category Set %"
are called dendroidal sets, which are tree-like analogs of simplicial sets. An oo-
operad is then defined as a dendroidal set in which every dendroidal inner horn has
a filler.

The objects discussed above are summarized in the following table. Starting in
the upper left corner, moving downward represents the first type of generalized
categories discussed above, while moving to the right yields co-categories. In view
of this table, a natural question is this:

What are co-properads and co-wheeled properads?
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Categories set®” | co-categories
Operads set®” | co-operads
Properads ? ?

Wheeled properads | ? ?

The answer should simultaneously capture the notion of an up-to-homotopy
(wheeled) properad and also extend oo-category and co-operad.

1.3 Infinity (Wheeled) Properads

The purpose of this monograph is to initiate the study of oco-properads and oco-
wheeled properads. Let us very briefly describe how oco-properads are defined.

Both oo-categories and oco-operads are objects in some presheaf categories
satisfying some inner horn extension property. In each case, the presheaf category is
induced by graphs that parametrize composition of operations and their axioms. For
categories (resp., operads), one uses linear graphs (resp., unital trees), which freely
generate categories (resp., operads) that form the finite ordinal category A (resp.,
dendroidal category 2).

Properadic compositions and their axioms are parametrized by connected graphs
without directed cycles, which we call connected wheel-free graphs. Each connected
wheel-free graph freely generates a properad, called a graphical properad. With
carefully defined morphisms called graphical maps, such graphical properads form
anon-full subcategory I', called the graphical category, of the category of properads.
There are graphical analogs of coface and codegeneracy maps in the graphical
category. Objects in the presheaf category Set”™ are called graphical sets. Infinity
properads are defined as graphical sets that satisfy an inner horn extension property.

The graphical category I' contains a full subcategory ® corresponding to simply
connected graphs, which as mentioned above parametrize the dioperadic compo-
sition. Likewise, by restricting to linear graphs and unital trees, the finite ordinal
category A and the dendroidal category 2 may be regarded as full subcategories of
the graphical category. The full subcategory inclusions

A Q ® r

induce restriction functors i* and fully faithful left adjoints i,

iy iy iy
Set®” —— get®” —— get®” —— set!™,

* i* *
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on presheaf categories. Moreover, we have i*i; = Id in each case. In particular, the
graphical set generated by an oo-category or an co-operad is an oo-properad.

One difficulty in studying oco-properads is that working with connected wheel-
free graphs requires a lot more care than working with simply connected graphs,
such as linear graphs and unital trees. For example, even the graphical analogs of the
cosimplicial identities are not entirely straightforward to prove. Likewise, whereas
every object in the finite ordinal category A and the dendroidal category €2 has a
finite set of elements, most objects in the graphical category I' have infinite sets
of elements. In fact, a graphical properad is finite if and only if it is generated
by a simply connected graph. Furthermore, since graphical properads are often
very large, general properad maps between them may exhibit bad behavior that
would never happen in A and 2. To obtain graphical analogs of, say, the epi-
mono factorization, we will need to impose suitable restrictions on the maps in the
graphical category I'.

To explain such differences in graph theoretical terms, note that in a simply
connected graph, any two vertices are connected by a unique internal path. In
particular, any finite subset of edges can be shrunk away in any order. This is far
from the case in a connected wheel-free graph, where there may be finitely many
edges adjacent to two given vertices. Thus, one cannot in general shrink away an
edge in a connected wheel-free graph, or else one may end up with a directed loop.
Therefore, in the development of the graphical category I', one must be extremely
careful about the various graph operations.

Infinity wheeled properads are defined similarly, using all connected graphs,
where loops and directed cycles are allowed, instead of connected wheel-free
graphs. One major difference between co-wheeled properads and co-properads is
that, when working with all connected graphs, there are more types of coface maps.
This is due to the fact that a properad has only one generating operation, namely
the properadic composition, besides the bi-equivariant structure and the units. In
a wheeled properad, there are two generating operations, namely the dioperadic
composition and the contraction, each with its own corresponding coface maps.

1.4 Chapter Summaries

This monograph is divided into two parts. In Part I we set up the graph theoretic
foundation and discuss co-properads. Part II has the parallel theory of co-wheeled
properads.

In Chap.2 we recall the definition of a graph and the operation of graph
substitution developed in detail in the monograph [YJ15]. This discussion is needed
because graphical properads (resp., graphical wheeled properads) are generated by
connected wheel-free graphs (resp., all connected graphs). Also, many properties
of the graphical category are proved using the associativity and unity of graph
substitution. The first four sections of this chapter are adapted from that monograph.
In the remaining sections, we develop graph theoretical concepts that will be
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needed later to define coface and codegeneracy maps in the graphical categories
for connected (wheeled-free) graphs. We give graph substitution characterization of
each of these concepts.

A major advantage of using graph substitution to define coface and codegeneracy
maps is that the resulting definition is very formal. From the graph substitution
point of view, regardless of the graphs one uses (linear graphs, unital trees, simply
connected graphs, or connected (wheel-free) graphs), all the coface maps have
almost the same definition. What changes in these definitions of coface maps, from
one type of graphs to another, is the set of minimal generating graphs. For linear
graphs, a minimal generating graph is the linear graph with two vertices. For unital
trees (resp., simply connected graphs), one takes as minimal generating graphs
the unital trees with one ordinary edge (resp., dioperadic graphs). For connected
wheel-free graphs, the partially grafted corollas form the set of minimal generating
graphs. For all connected graphs, the set of minimal generating graphs consists of
the dioperadic graphs and the contracted corollas.

In Chap. 3 we recall both the biased and the unbiased definitions of a properad.
The former describes a properad in terms of generating operations, namely, units,
Y -bimodule structure, and properadic composition. The unbiased definition of a
properad describes it as an algebra over a monad induced by connected wheel-free
graphs. The equivalence of the two definitions of a properad are proved in detail in
[YJ15] as an example of a general theory of generating sets for graphs.

In Chap. 4 we equip the category of properads with a symmetric monoidal closed
structure. For topological operads, a symmetric monoidal product was already
defined by Boardman and Vogt [BV73]. One main result of this chapter gives a
simple description of the tensor product of two free properads in terms of the
two generating sets. In particular, when the free properads are finitely generated,
their tensor product is finitely presented. This is not immediately obvious from
the definition because free properads are often infinite sets. In future work we will
compare our symmetric monoidal tensor product with the Dwyer-Hess box product
of operadic bimodules [DH13] and show they agree in the special case when our
properads come from operads.

In Chap.5 we define graphical properads as the free properads generated by
connected wheel-free graphs. We observe that a graphical properad has an infinite
set of elements precisely when the generating graph is not simply connected. The
discussion of the tensor product of free properads in Chap. 4 applies in particular
to graphical properads. Then we illustrate with several examples that a general
properad map between graphical properads may exhibit bad behavior that would
never happen when working with simply connected graphs. These examples serve
as the motivation of the restriction on the morphisms in the graphical category.

In Chap.6 we define the properadic graphical category I', whose objects are
graphical properads. Its morphisms are called properadic graphical maps. To define
such graphical maps, we first discuss coface and codegeneracy maps between
graphical properads. We establish graphical analogs of the cosimplicial identities.
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The most interesting case is the graphical analog of the cosimplicial identity
dd =dd™!

for i < j because it involves iterating the operations of deleting an almost isolated
vertex and of smashing two closest neighbors together. Graphical maps do not have
the bad behavior discussed in the examples in Chap. 5. In particular, it is observed
that each graphical map has a factorization into codegeneracy maps followed by
coface maps. Such factorizations do not exist for general properad maps between
graphical properads. Finally, we show that the properadic graphical category admits
the structure of a (dualizable) generalized Reedy category, in the sense of [BM11].

In Chap.7 we first define the category Set”” of graphical sets. There is an
adjoint pair

L
Set™ ——— Properad,
N

in which the right adjoint N is called the properadic nerve. The symmetric monoidal
product of properads in Chap.4 induces, via the properadic nerve, a symmetric
monoidal closed structure on Set"”. Then we define an co-properad as a graphical
set in which every inner horn has a filler. If, furthermore, every inner horn filler is
unique, then it is called a strict co-properad. The rest of this chapter contains two
alternative descriptions of a strict co-properad. One description is in terms of the
graphical analogs of the Segal maps, and the other is in terms of the properadic
nerve.

In Chap. 8 we give an explicit description of the fundamental properad LK of an
oo-properad K. The fundamental properad of an co-properad consists of homotopy
classes of 1-dimensional elements. It takes a bit of work to prove that there is a
well-defined homotopy relation among 1-dimensional elements and that a properad
structure can be defined on homotopy classes. This finishes Part I on co-properads.

Part II begins with Chap.9. We first recall from [YJ15] the biased and the
unbiased definitions of a wheeled properad. There is a symmetric monoidal structure
on the category of wheeled properads. Then we define graphical wheeled properads
as free wheeled properads generated by connected graphs, possibly with loops
and directed cycles. With the exception of the exceptional wheel, a graphical
wheeled properad has a finite set of elements precisely when the generating graph
is simply connected. So most graphical wheeled properads are infinite. In the rest
of this chapter, we discuss wheeled versions of coface maps, codegeneracy maps,
and graphical maps, which are used to define the wheeled properadic graphical
category I'r,. Every wheeled properadic graphical map has a decomposition into
codegeneracy maps followed by coface maps.
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In Chap. 10 we define the adjunction

L
op
setlo b — Properadb
N

between wheeled properads and wheeled properadic graphical sets. Then we define
oo-wheeled properads as wheeled properadic graphical sets that satisfy an inner
horn extension property. Next we give two alternative characterizations of strict
oo-wheeled properads, one in terms of the wheeled properadic Segal maps, and
the other in terms of the wheeled properadic nerve. In the last section, we give
an explicit description of the fundamental wheeled properad LK of an co-wheeled
properad K in terms of homotopy classes of 1-dimensional elements.

In the final chapter, we mention some potential future applications and extensions
of this work. These include applications to string topology and deformation theory.
We also discuss other models for co-properads and the categorical machinery of M.
Weber which produces categories like A and 2.



Part I
Infinity Properads



Chapter 2
Graphs

The purpose of this chapter is to discuss graphs and graph operations that are
suitable for the study of co-properads and oco-wheeled properads. We will need
connected (wheel-free) graphs for two reasons. First, the free (wheeled) properad
monad is a coproduct parametrized by suitable subsets of connected wheel-free
(connected) graphs. Second, each connected wheel-free (resp., connected) graph
generates a free properad (resp., wheeled properad), called a graphical (wheeled)
properad. The graphical (wheeled) properads form the graphical category, which in
turn yields graphical sets and co-(wheeled) properads.

In Sect. 2.1 we discuss graphs in general. In Sect. 2.2 we provide some examples
of graphs, most of which are important later. In Sect. 2.3 we discuss connected
(wheel-free) graphs as well as some important subsets of graphs, including simply
connected graphs, unital trees, and linear graphs. In Sect. 2.4 we discuss the
operation of graph substitution, which induces the multiplication of the free
(wheeled) properad monad. Graph substitution will also be used in the second half of
this chapter to characterize some graph theoretic concepts that will be used to define
coface maps in the graphical category in Sect. 6.1. The reference for Sects. 2.1-2.4
on graphs and graph substitution is [YJ15].

In Sects. 2.5 and 2.6 we discuss closest neighbors and almost isolated vertices
in connected wheel-free graphs. These concepts are needed when we define inner
and outer coface maps in the graphical category for connected wheel-free graphs. In
Sects. 2.7 and 2.8 we discuss analogous graph theoretic concepts that will be used in
Part IT to define inner and outer coface maps in the graphical category for connected
graphs.

© Springer International Publishing Switzerland 2015 13
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2.1 Wheeled Graphs

The intuitive idea of a graph is quite simple, but the precise definition is slightly
abstract. We first give the more general definition of a wheeled graph before
restricting to the connected (wheel-free) ones.

2.1.1 Profiles of Colors

We begin by describing profiles of colors, which provide a way to parametrize lists
of inputs and outputs. This discussion of profiles of colors can be found in [JY09,
YJ15].

Fix a set €.

Definition 2.1 Let ¥, denote the symmetric group on n letters.

1. An element in € will be called a color.
2. A ¢-profile of length 7 is a finite sequence

Cc = (Cl, e ,Cn) = C[1,1]
of colors. We write |c| = n for the length. The empty profile, with n = 0, is

denoted by &.
3. Given a €-profile ¢ = ¢[1 5y and 0 < k < n, a k-segment of ¢ is a sub-&-profile

¢ = (i Cirm1)
of length k forsome 1 <i<n+1—k.
4. Given two C-profiles ¢ and d = dj; ) and a k-segment ¢’ C ¢ as above, define
the €-profile

cogd=1(c1,....Cic1,d1, ..., dn, Citks-...Cn).

If ¢’ happens to be the 1-segment (c;), we also write ¢ o; d for ¢ o, d.
5. For a C-profile c of length n and o € X, define the left and right actions

oc = (Ca(l), ey C(]'(n)) and co = (6071(1)7 ey C(T*l(n)) .
6. The groupoid of all €-profiles with left (resp., right) symmetric group actions as
morphisms is denoted by P (&) (resp., P(€)°P).

7. Define the product category

S(€) = P(O)? x P(Q),
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which will be abbreviated to S if € is clear from the context. Its elements are
pairs of €-profiles and are written either horizontally as (c; d) or vertically as (4).

C

2.1.2 Generalized Graphs

Fix an infinite set § once and for all.
Definition 2.2 A generalized graph G is a finite set Flag(G) C § with

* apartition Flag(G) = | [, Fo With A finite,
 adistinguished partition subset F¢ called the exceptional cell,
e an involution ¢ satisfying tF, C F, and

* afree involution  on the set of :-fixed points in F.

Next we introduce some intuitive terminology associated to a generalized graph.
Definition 2.3 Suppose G is a generalized graph.

1. The elements in Flag(G) are called flags. Flags in a non-exceptional cell are
called ordinary flags. Flags in the exceptional cell F, are called exceptional
flags.

2. Call G an ordinary graph if its exceptional cell is empty.

3. Each non-exceptional partition subset F,, # F, is a vertex. The set of vertices is
denoted by Vt(G). An empty vertex is an isolated vertex, which is often written
as C(z;). A flag in a vertex is said to be adjacent to or attached to that vertex.

4. An i-fixed point is a leg of G. The set of legs of G is denoted by Leg(G). An
ordinary leg (resp., exceptional leg) is an ordinary (resp., exceptional) flag that
is also a leg. For an (-fixed point x € F,, the pair {x, wx} is an exceptional edge.

5. A 2-cycle of ¢ consisting of ordinary flags is an ordinary edge. A 2-cycle of ¢
contained in a vertex v is a loop at v. A vertex that does not contain any loop is
loop-free. A 2-cycle of ¢ in the exceptional cell is an exceptional loop.

6. An internal edge is a 2-cycle of ¢, i.e., either an ordinary edge or an exceptional
loop. An edge means an internal edge, an exceptional edge, or an ordinary leg.
The set of edges (resp., internal edges) in G is denoted by Edge(G) (resp.,
Edgei(G)).

7. An ordinary edge e = {e_, e} is said to be adjacent to or attached to a vertex
v if either (or both) ¢; € v.

Remark 2.4 In plain language, flags are half-edges. The elements in a vertex are
the flags attached to it. On the other hand, exceptional flags are not attached to any
vertex. So an exceptional edge (resp., exceptional loop) is an edge (resp., a loop)
not attached to any vertex. A leg has at most one end attached to a vertex. Also note
that an exceptional edge is not an internal edge.
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2.1.3 Structures on Generalized Graphs

To describe free (wheeled) properads as well as certain maps in the graphical
category later, we need some extra structures on a generalized graph, which we now
discuss. Intuitively, we need an orientation for each edge, a color for each edge, and
a labeling of the incoming/outgoing flags of each vertex as well as the generalized
graph. Fix a set of colors €.

Definition 2.5 Suppose G is a generalized graph.

1. A coloring for G is a function

Flag(G) —— ¢

that is constant on orbits of both involutions ¢ and 7.
2. A direction for G is a function

Flag(G) L {-1,1}

such that

* if ix # x, then §(1x) = —6(x), and
o ifx € F, then §(wx) = —3(x).

3. For G with direction, an input (resp., output) of a vertex v is a flag x € v such
that §(x) = 1 (resp., §(x) = —1). An input (resp., output) of the graph G is a leg
x such that §(x) = 1 (resp., §(x) = —1). For u € {G} U Vt(G), the set of inputs
(resp., outputs) of u is written as in(u) (resp., out(u)).

4. A listing for G with direction is a choice for each u € {G} U Vt(G) of a bijection
of pairs of sets

by
(in(u), out(w)) —— ({1,...,]in(w)|},{1,..., | out(u)|}),

where for a finite set 7 the symbol |T'| denotes its cardinality.
5. A C-colored wheeled graph, or just a wheeled graph, is a generalized graph
together with a choice of a coloring, a direction, and a listing.

Definition 2.6 Suppose G is a wheeled graph.

1. Its input profile (resp., output profile) is the C-profile «(in(u)) (resp.,
k (out(u))), where in(«) and out(u) are regarded as ordered sets using the listing.
A (c;d)-wheeled graph is a wheeled graph with input profile ¢ and output
profile d.

2. Suppose e = {ej, e} is an ordinary edge attached to a vertex v with §(e;) = i.
If ey € v (resp., e; € v), then v is called the initial vertex (resp., terminal
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vertex) of e. If ¢ has initial vertex u and terminal vertex v, then it is also denoted
e
by u — v .

Remark 2.7 1t is possible that a vertex v is both the initial vertex and the terminal
vertex of an ordinary edge e, which is then a loop at the vertex v, as in the following

picture.
: e

Definition 2.8 A strict isomorphism between two wheeled graphs is a bijection of
partitioned sets preserving the exceptional cells, both involutions, the colorings, the
directions, and the listings.

Convention 1 In what follows, we will mostly be talking about strict isomorphism
classes of wheeled graphs, and we will lazily call them graphs. Furthermore,
we will sometimes ignore the listings, since they can always be dealt with using
input/output relabeling permutations, but writing all of them down explicitly tends
to obscure the simplicity of the ideas and constructions involved.

2.2 Examples of Graphs

Example 2.9 The empty graph & has

Flag(@) = @ = ]_[@,

whose exceptional cell is &, and it has no non-exceptional partition subsets. In
particular, it has no vertices and no flags.

Example 2.10 Suppose n is a positive integer. The union of n isolated vertices is
the graph V,, with

n+1
Flag(V,) = @ = ]_[ .

i=1

It has an empty set of flags, an empty exceptional cell, and n empty non-exceptional
partition subsets, each of which is an isolated vertex. For example, we can represent
V3 pictorially as

with each e representing an isolated vertex.
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Example 2.11 Pick a color ¢ € €. The c-colored exceptional edge is the graph G
whose only partition subset is the exceptional cell

Flag(G) = Fe = {fi,f-1},

with
() =fi, «(f)=c, and () =1i.

It can be represented pictorially as
I

in which the top (resp., bottom) half is f_; (resp., fi). Note that this graph has
no vertices and has one exceptional edge. The c-colored exceptional edge will be
referred to in Remark 3.10.

Example 2.12 The c-colored exceptional loop is defined exactly like the excep-
tional edge 1., except for

i) = f-i.
It can be represented pictorially as
O

in which the left (resp., right) half is f_; (resp., f1). This graph has no vertices and
has one exceptional loop.

Example 2.13 Suppose ¢ = c[1,m, and d = dj; , are C-profiles. The (c; d)-corolla
Cic.a) 1s the (c; d)-wheeled graph with

Flag (Ci:a)) = {its- -+ ims 01, ..., 0n}.

Its only non-exceptional partition subset is v = Flag(G), which is its only vertex,
and its exceptional cell is empty. The structure maps are defined as:

* (i) = iy and t(0;) = o; forall k and .

° K(ik) = ¢ and K(Oj) = d,

* 8(ix) = land 8(0j) = —1.

e {,(ix) = kand £,(0j) = o] foru € {C(za), v}.
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The (c; d)-corolla can be represented pictorially as the following graph.
dl dn

o m

This corolla will be referred to in Remark 3.2. In particular, when ¢ = d = &, the
corolla C(g; ) consists of a single isolated vertex. Notice that we omit some of the
structure of a wheeled graph in its pictorial representation in order not to overload
it with too many symbols.

In the 1-colored case with € = {x}, we also write C(c;4) as C(m;y). In other words,
Cn;n) s the 1-colored corolla with m inputs and n outputs.

Example 2.14 Suppose ¢ = c[1,, and d = d|; , are C-profiles, 0 € X, and t €
Y. Define the permuted corolla 0C(,s)T, which is a (ct;0d)-wheeled graph,
with

Flag (0Cc.q)7) = Flag (Ce:a)) -

All the structure maps are the same as for the corolla C,q), except for the listing of
the full graph, which in this case is

lo(iy) = t(k) and {g(o;) = o' ().

The (c; d)-corolla is also a permuted corolla with ¢ and 7 the identity permutations.
In the unbiased formulation of a properad, permuted corollas give rise to the bi-
equivariant structure. Moreover, permuted corollas can be used to change the listing
of a graph via graph substitution. Substituting a graph into a suitable permuted
corolla changes the listing of the full graph. On the other hand, substituting a suitable
permuted corolla into a vertex changes the listing of that vertex. The permuted
corollas generate the X'-bimodule structures in all variants of generalized PROPs
[YJ15].

Example 2.15 Suppose ¢ = cjim, d = djia, 1 <j < m,and 1 < i < n. The
contracted corolla ¢ ; Ci(c,q) is defined exactly like the (c; d)-corolla (Example 2.13)
with the following two exceptions.

1. The involution ¢ is given by
L(l,) = 0y, L(O,’) = ij,

and is the identity on other flags.
2. The listing for the full graph is given by

k ifk <,

(i) =
oW=1, itk >
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and

k ifk<i,
Lo(or) = ) )
k—1 1ifk>1.

This contracted corolla can be represented pictorially as follows.

Its input/output profiles are

(e \{cj}:d\{di})

and has 1 internal edge. On the other hand, the incoming/outgoing profiles of the
vertex v are still (c; d). If the internal edge is named e, then we also write

£Ceo = §Clea)-
The contracted corollas generate the contraction in wheeled properads (Defini-
tion 9.1).
Example 2.16 Suppose a = ajiu, b = by, ¢ = cim, d = dj1 5 are E-profiles,
¢ D ¢ = b’ C b are equal a-segments for some o > 0 with
b= (bi,....bixa—1) and ¢ = (¢, ..., Cjra—1).
Then the partially grafted corollas

G = Ci) By Ciapy

is defined as follows.

* Flag(G) = {fu, So,fe oy With1 < p <k, 1 < g <11 <r <m, and
1<s<n.

* The exceptional cell is empty.

¢ There are two vertices,

- v={f,.faywithl <r<mandl <s <n,and
— u={fy,.fo,y withl <p <kandl1 <g <L
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* | fixes the flags with subscriptsina, d, b\ b’ = (b1, ...,bi—1,bitq....,b;), and

e\ =(cl. . Cim1,Cjtar---+Cm)-
° L(bi+t) = Cj+1 and ¢ (Cj+t) =bjy, for0 <t <a-—1.
* The coloring is defined as

Kk (fe,) = ex

for each possible subscript e,.

* Flags with subscripts in @ and ¢ have § = 1, while flags with subscripts in b and
dhave § = —1.

e Ateach vertex w € {u, v}, the listing is given by

L (fet) =X
fore € {a, b, c,d}.
* The listing for the full graph G at its inputs is given by
y ife, =c,withl <y <j,
Lo (fe) = y+j—1 ife, =a,forl <y <k,
y—a+k ife,=c,withj+a <y=<m.
* The listing for the full graph G at its outputs is given by
y ife, =b,withl <y </,
Lo (fe,) = y+i—1 ife, =d, withl <y <n,
y—a+n ife,=b,withi+a<y=<lL

This partially grafted corollas can be represented pictorially as the following graph.

This is the same graph as the one in Remark 3.10, which explains why we use
the same symbol &i, for both the properadic composition and the partially grafted
corollas. Note that the input and output profiles are

in(G) =cora and out(G) =bhoyd

Y,
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which form the input/output profiles of the target of the properadic composition.
There are « internal edges. If these internal edges are names e = (e, ..., ¢,), then
we also write

Ciet) Be Capy = Cea) By Clapy-
The partially grafted corollas generate the properadic composition (Definition 3.5).
Example 2.17 Using the same symbols as in Example 2.16, suppose that ¢ = 1,
e, b’ = (b)) = (¢;) = ¢ are equal 1-segments. Define the dioperadic graph
(¢j)
Cei®iClap) = Cc) By Ciap)

as a special case of a partially grafted corollas. This dioperadic graph can be
represented pictorially as follows.

d

a

(coja;bo;d)

It has input/output profiles

and 1 internal edge. If this internal edge is named e, then we also write
Cit) % Cap) = CieiojClaip)

The dioperadic graphs generate the dioperadic composition in a dioperad [Gan04]
and in a wheeled properad (Definition 9.1).

2.3 Connected Graphs

In this section, we discuss connected graphs and connected wheel-free graphs. They
will be used to define free (wheeled) properads and the graphical category later. We
will also define simply connected graphs, unital trees, and linear graphs. To discuss
connectivity and wheels, we need the concept of a path.
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2.3.1 Paths

Definition 2.18 Suppose G is a graph.
1. A pathin G is a pair

P=((¢)_, . (o)

with r > 0, in which

* the v; are distinct vertices except possibly for vy = v,,
* the ¢ are distinct ordinary edges, and
 each ¢ is adjacent to both v;—; and v;.

Such a path is said to have length r.

2. A path of length O is called a trivial path. A path of length > 1 is called an
internal path.

3. Given a path P as above, call vy (resp., v,) its initial vertex (resp., terminal
vertex). An end vertex means either an initial vertex or a terminal vertex.

4. An internal path whose initial vertex is equal to its terminal vertex is called a
cycle. Otherwise, it is called a trail.

5. A directed path in G is an internal path P as above such that each ¢/ has initial
vertex v;— and terminal vertex v;.

6. A wheel in G is a directed path that is also a cycle.

Remark 2.19 If P is a wheel, then a cyclic permutation of its edges and vertices is
also a wheel. In what follows, we will not distinguish between a wheel and its cyclic
permutations.

Remark 2.20 When we specify a path, we will sometimes just specify the vertices
v; or just the edges ¢

Example 2.21 Given an internal path P as above, by reversing the labels of the
¢/ and the v;, we obtain an internal path P°P, called the opposite internal path. It
contains the same sets of ordinary edges and vertices as P. Its initial (resp., terminal)
vertex is the terminal (resp., initial) vertex of P.

Example 2.22 Suppose v; for 0 < i < 4 are distinct vertices in a graph G. Suppose
¢l is an ordinary edge adjacent to both v;—; and v; as in the following picture.

Then this is an internal path of length 4 that is also a trail. Likewise, the picture

depicts a directed path of length 2, but it is not a wheel.
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Example 2.23 Suppose v; for 0 < i < 3 are distinct vertices in a graph G. Suppose
e is an ordinary edge adjacent to both v;—; and v; as in the following picture.

Then this is a cycle of length 4, but it is not a wheel.

Example 2.24 1f the orientation of e, is reversed in Example 2.23, then we have

which is a wheel of length 4.

2.3.2 Connected Graphs

First we define the concept of connected graphs.

Definition 2.25 Suppose G is a graph. Then G is called a connected graph if one
of the following three statements is true.

1. G is a single exceptional edge (Example 2.11).
2. G is a single exceptional loop (Example 2.12).
3. G satisfies all of the following conditions.

* G is ordinary (i.e., has no exceptional flags).

* G is not the empty graph (Example 2.9).

* For any two distinct vertices u and v in G, there exists an internal path in G
with u as its initial vertex and v as its terminal vertex.

Example 2.26 The following are examples of connected graphs.

» A single isolated vertex V; (Example 2.10).
¢ The c-colored exceptional edge 1. (Example 2.11).
* The c-colored exceptional loop O, (Example 2.12).
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* The (c; d)-corolla C(;4) (Example 2.13).
* The permuted corolla 0 C(..q)t (Example 2.14).
* The contracted corolla Ej’ C(c:q) (Example 2.15).

* The partially grafted corollas Cq) &ii C(a;p) (Example 2.16).
* The dioperadic graph C(c;4)i9;C(a;p) (Example 2.17).

Example 2.27 On the other hand, the following graphs are not connected.

e The empty graph @ (Example 2.9).
* The union of n isolated vertices V,, with n > 2 (Example 2.10).

2.3.3 Wheel-Free Graphs

Next we define some related classes of graphs.
Definition 2.28 Suppose G is a graph.

1. We say G is wheel-free if it contains neither exceptional loops nor wheels.

2. We say G is simply connected if it is connected, is not an exceptional loop, and
contains no cycles.

3. We call G a unital tree if it is simply connected in which each vertex has exactly
one output flag.

4. We call G a linear graph if it is a unital tree in which each vertex has exactly
one input flag.

5. We say G has non-empty inputs (resp., non-empty outputs) if in(v) (resp.,
out(v)) is non-empty for each vertex v in G.

6. We say G is special if it has non-empty inputs and non-empty outputs.

Definition 2.29 Define the following sets of graphs.

1. Grg) is the set of connected graphs.

2. GrcT

. GrcTi (resp., GrCTO) is the set of connected wheel-free graphs with non-empty
inputs (resp., outputs).

. G]’_‘CTS is the set of special connected wheel-free graphs.

. Grgi is the set of simply connected graphs.
. UTree is the set of unital trees.

. ULin is the set of linear graphs.

is the set of connected wheel-free graphs.

(O8]

RN N, RN

Remark 2.30 In view of Convention 1, the sets in Definition 2.29 are really sets
of strict isomorphism classes of €-colored wheeled graphs with the indicated
properties for a fixed color set €. In particular, if we wish to emphasize the color set

¢, we will write GrcT (€) and so forth.
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Remark 2.31 In each of ULin, UTree, Grgi, GrcTi, GrCTO, GrCTS, and GrcT, the only
graphs without any vertex are the exceptional edges 1. of a single color ¢. On the

other hand, the set Grg) also contains the exceptional loops O, of a single color.

Remark 2.32 We have the following strict inclusions:

Grl, —— GrIi

NN

ULin rT S GrT S Gr

N

UTree —— Grdl

T

Moreover, GrcTS is the intersection of Gr; ) !

and Gr¢, within Grg .
Remark 2.33 If G € Gr . (resp., G € Grco) then in(G) (resp., out(G)) is non-
empty. Indeed, an except10nal edge has both an input leg and an output leg. If G €
Gr:i (resp., GrcTo) is ordinary, then the initial (resp., terminal) vertex of any maximal
directed path in G has an incoming (resp., outgoing) flag that must be an input (resp.,
output) leg of G. On the other hand, even if G € GrcT has in(G) (resp., out(G)) non-
empty, it does not follow that each vertex in G has non-empty inputs (resp., outputs).
For example, the connected graph

has in(G) non-empty, but in(v) = @. So G does not have non-empty inputs.

Remark 2.34 A linear graph is precisely a simply connected graph in which each
vertex has exactly one input flag and one output flag. There is a canonical bijection
between the set of linear graphs and the set [ [, €". Indeed, the linear graphs with
0 vertex are the c-colored exceptional edges 1. with ¢ € €. For k > 1 the linear
graphs with & vertices all have the form
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The k — 1 internal edges, the single input leg, and the single output leg can be
arbitrary colors.

Remark 2.35 In a simply connected graph, given any two distinct vertices u# and
v, there is a unique internal path P with initial vertex # and terminal vertex v. The
opposite internal path PP (Example 2.21) has initial vertex v and terminal vertex
u. The internal paths P and PP are the only ones that have u and v as end vertices.
Therefore, with a slight abuse of terminology, we say that in a simply connected
graph, there is a unique path between any two distinct vertices.

Remark 2.36 A simply connected graph is both connected and wheel-free. On the
other hand, a wheel-free graph may contain cycles, such as the one in Example 2.23,
although it cannot contain exceptional loops or wheels.

Remark 2.37 A graph G is connected wheel-free if and only if one of the following
two statements is true.

1. G is a single exceptional edge (Example 2.11).
2. G satisfies all of the following conditions.

* G is ordinary (i.e., has no exceptional flags).

* G is not the empty graph (Example 2.9).

* G has no wheels.

* For any two distinct vertices u and v in G, there exists an internal path in G
with u as its initial vertex and v as its terminal vertex.

Example 2.38 The exceptional edge 1. and the permuted corolla 0 CqT With
|d| = 1 are unital trees.

Example 2.39 Examples of simply connected graphs that are not unital trees
include:

* asingle isolated vertex V| and
* apermuted corolla 0 C.q T With |d| # 1.
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Example 2.40 The partially grafted corollas Ciq) @f}: C;p) (Example 2.16) is
connected wheel-free. -

1. Moreover, such a partially grafted corollas is simply connected if and only if it is
a dioperadic graph (Example 2.17).

2. A dioperadic graph is a unital tree if and only if |[d| = 1 = |b|. In this case, it
looks like

dy

b1:Cj

a

and is called a simple tree. It generates the operadic o; operation [Ger63,
May97].

2.4 Graph Substitution

The free (wheeled) properad monad is induced by the operation of graph sub-
stitution. The reader is referred to [YJ15] for the detailed construction of graph
substitution and proof of its associativity and unity properties. Intuitively, at each
vertex v in a given graph G, we drill a small hole containing v and replace v with a
scaled down version of another graph H, whose profiles are the same as those of v.

2.4.1 Properties of Graph Substitution

Definition 2.41 Suppose G is a graph with profiles (%), and H, is a graph with
) for each v € Vt(G). Define the graph substitution

out(v)
in(v)

profiles (

G ({HU}UEVI(G)) ’

or just G({H,}), as the graph obtained from G by

1. replacing each vertex v € Vt(G) with the graph H,,, and
2. identifying the legs of H, with the incoming/outgoing flags of v.

We say that H,, is substituted into v.
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Remark 2.42 Let us make a few observations.

1. The graph substitution G({H,}) has the same input/output profiles as G. More-
over, there is a canonical identification

VEGUH) = [ Vi)

vEVLH(G)

All the internal edges in the H, become internal edges in G({H,}).
2. Corollas are units for graph substitution, in the sense that

C(G) = G =G({G)),

where on the left C denotes the corolla whose unique vertex has the same profiles
as G. On the right, C, is the corolla with the same profiles as v.

3. Graph substitution is associative in the following sense. Suppose I, is a graph
with the same profiles as u for each u € Vt(G{H,}). If u is a vertex in H,, we
write 1, as I;) as well. Then

[GAH D] (L) = G ({H({1;D}) -
4. Each of the sets of graphs in Definition 2.29 is closed under graph substitution.

For example, if G and all the H, are connected (wheel-free) graphs, then so is the
graph substitution G({H,}).

Notation 1 If H,, is a graph with the profiles of a vertex w € Vt(G), then we use
the abbreviation

G(Hy) = G({H,}).

where for vertices u # w, H, is the corolla with the profiles of u. There are a
canonical bijection

Vt(G(H,)) = Vi(H,) | [ [VHG) \ {w}].
a canonical injection
Edgei(H,) ——— Edgei(G(H,)),
and a canonical map
Leg(H,) — Edge (G(H.))

that identifies each leg of H,, with an element in in(w) U out(w). Note that for a
vertex v € Vt(G), the sets in(v) and out(v), regarded as subsets of Edge(G), may



30 2 Graphs

have non-empty intersection. In fact, ¢ € Edge(G) lies in both in(v) and out(v)
precisely when e is a loop at v. So if G does not have loops, then there is an injection

Edge(H,) —— Edge(G(H,)).

2.4.2 Examples

Example 2.43 The exceptional loop can be obtained by substituting an exceptional
edge into a contracted corolla, i.e.,

(Sll C(C;c)) (Tc) = Oc

for any color c.
Example 2.44 Substituting an exceptional wheel into an isolated vertex yields the
same exceptional wheel, i.e.,

(0) (Oc) = O

for any color c.

Example 2.45 A partially grafted corollas can be obtained from a dioperadic graph
by repeated contractions. To be precise, we use the notations in Examples 2.15-2.17.
Then we have a graph substitution decomposition

Ciea) Me Capy = ey Co) **+ (£, C2) (Ciesa) 0y Clapy) -

Here the C; are corollas with appropriate profiles such that the graph substitutions
make sense. There are many other such decompositions of the partially grafted
corollas. For example, we can start with a dioperadic graph whose internal edge
is some e,. Then we use o — 1 contractions to create the other internal edges in any
order.

Example 2.46 Suppose G is the graph
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with three vertices, three internal edges, one input, and two outputs, where a and b
are colors. The legs can be given arbitrary colors. Suppose H, = 1, the b-colored
exceptional edge. Suppose H, is the contracted corolla

e

with two inputs with colors a and b, respectively, two outputs, and a loop of arbitrary
color. Suppose H, is the graph

with three vertices, three internal edges, one input, and two outputs of colors a and
b, respectively. The input and the internal edges can have arbitrary colors. Then the
graph substitution G({H;, H,, H,}) is the graph

with four vertices, six internal edges (one of which is a loop at z), one input, and
two outputs.
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2.5 Closest Neighbors

In this section, we discuss a connected wheel-free analog of two vertices in a
simply connected graph connected by an ordinary edge. This concept will be useful
for various purposes later, for example, in the definition of inner coface maps in
the graphical category for connected wheel-free graphs and in studying the tensor
product of two free properads.

All the assertions in this section concerning connected wheel-free graphs have
obvious analogs for connected wheel-free graphs with non-empty inputs or non-
empty outputs. Since the proofs are the same in all three cases, we will not state the
non-empty input/output cases separately.

2.5.1 Motivating Examples

In a simply connected graph (e.g., a unital tree or a linear graph), if two vertices u
and v are connected by an ordinary edge e, then there is only one such ordinary edge.
Moreover, the two vertices can be combined into a single vertex with e deleted, and
the resulting graph is still simply connected. Such combination of two vertices into
one is how inner coface maps are defined in the finite ordinal category A and the
Moerdijk-Weiss dendroidal category 2.

The obvious analog is not true for connected wheel-free graphs in general.

Example 2.47 For example, in a partially grafted corollas (Example 2.16) with at
least two ordinary edges, if the two vertices are combined with some but not all
of the ordinary edges deleted, then the resulting graph has a directed loop at the
combined vertex. Here is an example with two internal edges, in which e is deleted
when the two vertices are combined.

e f — @X)f

In particular, it would not be wheel-free any more.

Example 2.48 Even if all the ordinary edges between such vertices are deleted when
the vertices are combined, it still does not guarantee that the result is wheel-free. For
example, when u and v are combined with e deleted in the graph on the left
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g g
: — O
f f

the resulting graph on the right has a wheel.

2.5.2 Closest Neighbors

In order to smash two vertices together and keep the resulting graph connected
wheel-free, we need the following analog of two vertices connected by an ordinary
edge.

Definition 2.49 Suppose G is a connected wheel-free graph, and u and v are two
distinct vertices in G. Call u and v closest neighbors if:

1. there is at least one ordinary edge adjacent to both of them, and
2. there are no directed paths with initial vertex u and terminal vertex v that involve
a third vertex.

In this case, we also say v is a closest neighbor of u.

Remark 2.50 In [Val07, Sect.4] the author defined a very similar and probably
equivalent concept called adjacent vertices.

Example 2.51 Consider the following connected wheel-free graph K.

Then u and v are closest neighbors, as are v and w. The vertices u and w are not
closest neighbors.

Example 2.52 The two vertices in a partially grafted corollas (Example 2.16) are
closest neighbors.

Example 2.53 For G € GrcT with at least two vertices, every vertex u has a closest
neighbor. Indeed, either in(u) or out(u) is not empty, so let us assume out(u) is not
empty. Among all the directed paths with initial vertex u, pick one, say P, with
maximal length. Then the vertex v in P right after u must be a closer neighbor of u,
since otherwise P would not be maximal.
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2.5.3 Inner Properadic Factorization

Closest neighbors are intimately related to graph substitution in GrcT involving

partially grafted corollas. To make this precise, we need the following definition,
where we use the notation in 1.

Definition 2.54 Suppose K is a connected wheel-free graph. An inner properadic
factorization of K is a graph substitution decomposition

K = G({H,}) = G(H,)
in which

¢ G is connected wheel-free,
* achosen H,, is a partially grafted corollas, and
e all other H, are corollas.

In this case, H,, is called the distinguished subgraph.

Remark 2.55 The “inner” in Definition 2.54 refers to the assumption that the
distinguished partially grafted corollas H,, is an inner graph in the graph substitution

G({Hy}).

Example 2.56 Suppose K is a partially grafted corollas with profiles (¢; d). Then
there is an inner properadic factorization

K = Cio)(K),

where K itself is the distinguished subgraph.

Example 2.57 The graph K in Example 2.51 admits an inner properadic factoriza-

tion in which G is

and H, is the corolla C,, with the same profiles as u. The distinguished subgraph H,

X
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which has two inputs and empty output. This inner properadic factorization
corresponds to the closest neighbors v and w, in the sense that H, is defined by
the flags in v and w as well as the ordinary edges adjacent to both of them.

Example 2.58 The only other inner properadic factorization of K in Example 2.51

is the one in which G’ is

and H,, is the corolla C,, with the same profiles as w. The distinguished subgraph

H;is

which has three outputs and empty input. This inner properadic factorization
corresponds to the closest neighbors u and v.

Example 2.57 suggests a close relationship between inner properadic factoriza-
tion and closest neighbors. In fact, the two notions are equivalent.

Theorem 2.59 Suppose K is a connected wheel-free graph, and x and y are distinct
vertices in K. Then the following statements are equivalent.

1. The vertices x and y are closest neighbors in K.
2. K admits an inner properadic factorization G(H,,) in which the two vertices in
the distinguished subgraph H,, are x and y.

Proof First suppose x and y are closest neighbors. Define G as the graph obtained
from K by:

* combining the closest neighbors x and y into one vertex w, and
 deleting all the ordinary edges adjacent to both x and y in K.

The distinguished subgraph H,, is defined using all the flags in the vertices x and
y in K, with ordinary edges the ones adjacent to both x and y in K. Then we have
K = G({H,}), H,, is a partially grafted corollas, and G is still connected.

It remains to see that G is wheel-free. Suppose to the contrary that G has a wheel
Q. Then Q must contain w, since all other H, are just corollas and K is wheel-
free. Moreover, Q must contain some other vertex z because all the ordinary edges
between x and y in K have already been deleted during the passage to G. As a vertex
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in K, z is different from x and y. Suppose e is an ordinary edge in K adjacent to both
xand y, and Q' is the internal path in K consisting of Q and e. Then the directed path
Qo within @’ consisting of the ordinary edges from Q has x and y as end vertices.
Graphically, we have either one of the following two scenarios in K:

The scenario on the right cannot happen because K is wheel-free. The scenario
on the left cannot happen either because Qp contains z, and x and y are closest
neighbors. So G is connected wheel-free.

For the converse, note that any ordinary edge in H,, is still one in K, and hence
adjacent to both x and y. If x and y are not closest neighbors in K, then there is a
directed path in K that has x and y as end vertices and that contains a third vertex z.
But this implies that G has a wheel containing w and z, contradicting the wheel-free
assumption on G.

2.6 Almost Isolated Vertices

In a linear graph with at least two vertices, the top or bottom vertex can be deleted,
and the resulting graph is still a linear graph. Such deletions correspond to top and
bottom coface maps in the finite ordinal category A. Likewise, in a simply connected
graph (resp., unital tree), if a vertex that is adjacent to only one ordinary edge is
deleted, then the resulting graph is still simply connected (resp., a unital tree). This
is how outer coface maps are defined in the Moerdijk-Weiss dendroidal category €2.

Here we develop an analogous concept of a vertex in a connected wheel-free
graph that is extreme in some sense and whose deletion yields a connected wheel-
free graph. We will need this later to define outer coface maps in the graphical
category for connected wheel-free graphs and also to study the tensor product of
two free properads.

As in Sect. 2.5, all the assertions in this section concerning connected wheel-
free graphs also hold for connected wheel-free graphs with non-empty inputs or
non-empty outputs. The arguments for the three cases are again the same.

2.6.1 Definition and Examples

Definition 2.60 Let v be a vertex in a connected wheel-free graph G.



2.6 Almost Isolated Vertices 37

1. Call v weakly initial (resp., weakly terminal) if all the ordinary edges adjacent
to v have v as the initial (resp., terminal) vertex. Call v extremal if it is either
weakly initial or weakly terminal.

2. Call v an almost isolated vertex if either:

a. | Vt(G)| = 1 (i.e., G is a permuted corolla), or

VG 22,
e v isextremal, and
* deleting v from G yields a connected wheel-free graph G,,.

Remark 2.61 To be precise, in the previous definition, the graph G, is obtained
from G by deleting the non-exceptional cell v. If {e_, e; } is an ordinary edge in G
(i.e., 2-cycle of ¢ within the non-exceptional cells) with one ¢; € v and e_; & v, then
we redefine t(e—;) = e—; in G,. In other words, the flag e_; is a leg in G,.

Remark 2.62 If |Vt(G)|] > 2 and v € Vt(G) is almost isolated, then we can
visualize G as follows.

On the left (resp., right), v is weakly terminal (resp., weakly initial). There are
canonical bijections

Vi(G) = Vi(G,) | [{v}.
Edge(G) = Edge(G,) | [ (Edge(C)) \ {e}).
Edgei(G) = Edgei(G,) | [{e}.
Here C, is the corolla with the same profiles as the vertex v, and e is the non-empty

set of internal edges between G, and v.

Example 2.63 In a partially grafted corollas (Example 2.16), both vertices are
almost isolated, with the top (resp., bottom) vertex weakly terminal (resp., weakly
initial).

Example 2.64 For the graph K in Example 2.51, the vertices u and w are almost
isolated, but v is not because it is not extremal.

Example 2.65 The vertex u in the graph
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is weakly initial, and hence extremal. However, it is not almost isolated because
deleting it would yield a graph that is not connected.

The following observation gives another characterization of a vertex, extremal or
not, that can be deleted from a connected wheel-free graph.

Lemma 2.66 Let v be a vertex in a connected wheel-free graph G with at least two
vertices. Then the following statements are equivalent.

1. Deleting v from G yields a connected wheel-free graph.
2. Given any pair of vertices x and y in G different from v, there is an internal path
with end vertices x and y that does not contain v.

Proof Since G is connected wheel-free and contains a vertex, it is also ordinary. An
ordinary wheeled graph is connected if and only if:

1. it is not empty, and
2. any two distinct vertices are connected by an internal path.

The lemma follows from this characterization of connectivity in an ordinary
wheeled graph.

The following observation provides a simple sufficient, but not necessary,
condition that guarantees that a vertex is almost isolated.

Lemma 2.67 Suppose G € GrI, and v € Vt(G) is adjacent to only one ordinary
edge. Then v is almost isolated.

Proof By definition v is extremal. It remains to show that deleting v from G yields
a connected wheel-free graph. So pick two vertices x and y different from v. By
connectivity there is an internal path P with end vertices x and y. The internal path P
does not contain v, since otherwise P contains two different ordinary edges adjacent
to v. Therefore, by Lemma 2.66, deleting v from G yields a connected wheel-free
graph.

Remark 2.68 The converse of Lemma 2.67 is not true. For example, in a partially
grafted corollas with at least two ordinary edges, both vertices are almost isolated
and adjacent to multiple ordinary edges. However, the converse holds for simply
connected graphs, as we now observe.

Proposition 2.69 Suppose v is a vertex in a simply connected graph G. Then the
following statements are equivalent.

1. v is almost isolated.
2. There is only one ordinary edge adjacent to v.
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Proof Lemma 2.67 says that the second statement implies the first. For the converse,
suppose v is almost isolated. Then G has at least two vertices. Suppose to the
contrary that there are at least two ordinary edges adjacent to v, which we depict

as follows.
O——0O——0O

Since G is simply connected, the concatenation of e and f is the unique internal path
with end vertices u and w. Therefore, once v is deleted, the resulting graph cannot
be connected. This contradicts the assumption on v, so there is only one ordinary
edge adjacent to v.

2.6.2 Extremal Paths

Later we will need to know that a connected wheel-free graph with at least two
vertices always has at least two almost isolated vertices. For a partially grafted
corollas (Example 2.16), both vertices are almost isolated. When there are more
than two vertices in a connected wheel-free graph, we need the following concept
to show the existence of almost isolated vertices. To simplify the notation, when we
write down an internal path below, we sometimes omit the ordinary edges and only
exhibit the vertices involved.

Definition 2.70 Suppose G is a connected wheel-free graph.

1. An extremal path in G is an internal path
P = (vg,v1,...,0;)

such that:

* vy # v, and
¢ both vy and v, are extremal vertices.

2. An extremal path is maximal if there are no extremal paths that properly contain
it.
Remark 2.71

1. There can be many extremal paths involving exactly the same vertices because
there may be multiple ordinary edges between v; and v;y.

2. An extremal path is a trail, i.e., the vertices in it are all different from each other.

3. An end vertex of an extremal path need not be almost isolated. For example, in
the V-shape graph in Example 2.65, (u, v) is an extremal path, but « is not almost
isolated. On the other hand, we will show that the end vertices of a maximal
extremal path are both almost isolated.
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First we want to establish the existence of a maximal extremal path, for which
we need the following preliminary observation.

Lemma 2.72 Suppose G is a connected wheel-free graph with at least two vertices.
Then there exist:

1. a weakly initial vertex u and a weakly terminal vertex v # u, and
2. an extremal directed path P with end vertices u and v.

Proof Let P be a maximal directed path in G. Call its initial vertex u# and terminal
vertex v # u. Such a maximal directed path exists because there must be an ordinary
edge in G. Simply take P as the longest directed path containing such an ordinary
edge. Then u is weakly initial, and v is weakly terminal. Indeed, if u is not weakly
initial, then there exists a vertex w and an ordinary edge e from w to u. Since G is
wheel-free, w is different from all the vertices in P. The current situation is depicted
in the following picture.

The concatenation of e and P is a directed path in G that properly contains P,
contradicting the maximality of P. Therefore, # must be weakly initial. A similar
argument shows that v must be weakly terminal. Since # and v are both extremal, P
is an extremal directed path.

Example 2.73 Even an extremal directed path P as in Lemma 2.72 is not necessarily
maximal. For example, in the connected wheel-free graph

0‘@ )

u is weakly initial, and v is weakly terminal. So
P = (u,v)

is an extremal directed path. However, it is not maximal because it is properly
contained in the maximal extremal path

0= (u,v,w,x),

where x is weakly terminal.

Proposition 2.74 Suppose G is a connected wheel-free graph with at least two
vertices. Then G has a maximal extremal path.
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Proof Take an extremal directed path P as in Lemma 2.72. If it is a maximal
extremal path, then we are done. If P is not maximal, then take the longest extremal
path Q containing P. By construction the extremal path Q must be maximal.

2.6.3 Existence of Almost Isolated Vertices

Next we observe that, in a maximal extremal path, both end vertices are almost
isolated.

Theorem 2.75 Suppose G is a connected wheel-free graph with at least two
vertices, and

P = (vy,...,v;)

is a maximal extremal path in G. Then both end vertices vy and v, are almost
isolated.

Proof By symmetry it suffices to show that vy is almost isolated. We assume that
the extremal vertex vy is weakly initial. There is a similar argument if vy is weakly
terminal. We must show that, if vy is deleted from G, then the resulting graph is still
connected. We will use the characterization in Lemma 2.66. First, any two vertices
in P different from vy can be connected by an internal sub-path of P that does not
contain vy.

Next suppose w € Vt(G) \ P. It suffices to show that there exists an internal path
from w to v, that does not contain vy. Indeed, if this is true, then w can be connected
to any v; with i > 0 via an internal path that does not contain vy. Similarly, if z is
another vertex not in P, then there is an internal path connecting each of w and z to
v,, which does not contain vy. Splicing these internal paths at v, and taking only a
subset of the ordinary edges if necessarily, we obtain an internal path from w to z
not containing vo.

To show the existence of the desired internal path from w to v,, we argue by
contradiction. So suppose every internal path from w to v, must contain vy. Then
every internal path from w to any v; with i > 0 must also contain vy. In fact, an
internal path from w to v; not containing vy together with the internal sub-path
(vi, ..., v,) of P would give an internal path from w to v, not containing vy.

Among all the internal paths from vy to w, pick the longest one, and call it 0. By
maximality of Q, the first vertex x in Q after vy must be a closest neighbor of vy,
and x # v; for i > 0. Extend any ordinary edge vo —> x to a maximal directed path
R. The maximal directed path R begins at the weakly initial vertex vy and ends at
some weakly terminal vertex y, which may be equal to x. Here is a diagram of the
constructions so far, where a dashed line (resp., dashed arrow) represents an internal
path (resp., directed path):
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The internal paths P and R are disjoint except at the vertex vy, since otherwise
there would be an internal path from w to some v; with i > 0 not containing vy.
Splicing P and R together at vy, we obtain an extremal path that properly contains
P, contradicting the maximality of P. Therefore, there must exist an internal path
from w to v, not containing vy.

Corollary 2.76 Suppose G is a connected wheel-free graph with at least two
vertices. Then G has at least two almost isolated vertices.

Proof By Proposition 2.74 G has a maximal extremal path P. By Theorem 2.75 the
end vertices of P are both almost isolated.

2.6.4 Outer Properadic Factorization

Just like closest neighbors, the existence of almost isolated vertices is closely related
to graph substitution involving partially grafted corollas (Example 2.16). To make
this relationship precise, we need the following definition, where we use the notation
in 1.

Definition 2.77 Suppose K is an ordinary connected wheel-free graph. An outer
properadic factorization of K is a graph substitution decomposition

K = G({C,, H,}) = G(H,)

in which

e G is apartially grafted corollas,
* achosen H,, is a connected wheel-free graph, and
e (C,isacorolla.

In this case, H,, is called the distinguished subgraph.
Remark 2.78

1. The “outer” in Definition 2.77 refers to the assumption that the outer graph G in
the graph substitution is a partially grafted corollas.
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2. Outer properadic factorization is in some sense dual to inner properadic fac-
torization. In the latter, a partially grafted corollas along with a finite set of
corollas are substituted into a connected wheel-free graph. In an outer properadic
factorization, a connected wheel-free graph and a corolla are substituted into the
two vertices of a partially grafted corollas.

Remark 2.79 Recall the notion of a dioperadic graph from Example 2.40.

1. A connected wheel-free graph is ordinary if and only if it has at least one
vertex. In particular, if K has at least two vertices, then in any outer properadic
factorization of K, the distinguished subgraph H,, is ordinary, hence not an
exceptional edge.

2. In Definition 2.77, the distinguished subgraph H,, is an exceptional edge 1 if and
only if

e K = H, is acorolla, and
* Gis adioperadic graph in which one vertex, corresponding to w, has one input
and one output.

When K is a corolla, there is one outer properadic factorization G(1) for each leg
of K, to which the vertex w in G is attached.

Example 2.80 This example refers to the graph K in Example 2.51

1. The inner properadic factorization
K = G({C,, Hy})

in Example 2.57 is also an outer properadic factorization because G is a partially
grafted corollas, and C,, is a corolla.
2. Likewise, the inner properadic factorization

K= Gl({Cws H.})
in Example 2.58 is also an outer properadic factorization because G’ is a partially

grafted corollas, and C,, is a corolla.

Example 2.81 1f
K =G({C,,Hy,})

is an outer properadic factorization with | Vt(H,,)| # 2, then it is not an inner prop-
eradic factorization. Likewise, if K = G(H,,) is an inner properadic factorization
with | Vt(G)| # 2, then it is not an outer properadic factorization.

We now observe that outer properadic factorizations are equivalent to almost
isolated vertices.
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Theorem 2.82 Suppose K is a connected wheel-free graph, and x € Vt(K). Then
the following two statements are equivalent.

1. x is an almost isolated vertex.
2. There is an outer properadic factorization K = G({Cy, H,,}).

Proof We may assume | Vt(K)| > 2. Indeed, if | Vt(K)| = 1, then x is by definition
almost isolated. Moreover, in this case, K is a permuted corolla, so there is an outer
properadic factorization

K =G({K. 1)

for some dioperadic graph G (Remark 2.79).
With | Vt(K)| > 2, first suppose the vertex x is almost isolated. Define

* K, as the connected wheel-free graph obtained from K by deleting x, and
* C, as the corolla with the same profiles as x.

Then there is an outer properadic factorization
K = G({Cy. K.},

in which G is the partially grafted corollas whose two vertices have the profiles of
K, and C,, and whose ordinary edges are those in K between K, and x. This graph
substitution decomposition of K is the required outer properadic factorization.

Conversely, suppose K has an outer properadic factorization as stated. Since
| VEt(K)| > 2, the distinguished subgraph H,, has at least one vertex. Since G is
a partially grafted corollas with C, a corolla, the connected wheel-free graph H,, is
obtained from K by deleting x. It remains to see that x is extremal in K. However,
since Cy is a corolla and since both vertices in the partially grafted corollas G are
extremal, it follows that x is extremal in K.

2.7 Deletable Vertices and Internal Edges

In this section we describe a concept about vertices that we will use in Part 2 to
define one of two types of outer coface maps in the graphical category for connected
graphs. We also discuss a closely related concept that describes an internal edge
connecting two distinct vertices. This concept will be used to define one of two types
of inner coface maps in the graphical category for connected graphs. Throughout
this section we work with the collection Grg) of all connected graphs.
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2.7.1 Deletable Vertices

Intuitively, we want to describe a vertex that can be deleted from a connected graph
such that the resulting graph is still connected.

Definition 2.83 Suppose G is a connected graph, and v is a vertex in G. Then we
say v is deletable if one of the following two conditions holds.

1. G is a permuted corolla with either in(G) or out(G) (or both) non-empty.
2. The vertex v is loop-free, and there is exactly one internal edge in G that is
adjacent to v.

In the second case, write G,, for the graph obtained from G by deleting v.

Remark 2.84 The two conditions in the above definition are mutually exclusive
because a permuted corolla has no internal edges. In the second case, G has at least
two vertices, so by connectivity G is ordinary. To simplify the presentation, as in
previous sections, in the discussion that follows we will mostly ignore input/output
relabelings. So we will treat the first condition in the above definition as saying v is
the unique vertex in a corolla.

The following observation will justify our terminology.

Lemma 2.85 Suppose G is a connected graph that is not a corolla, and v is a
deletable vertex in G. Then G, is connected.

Proof First note that G has at least two vertices and is ordinary. So G, has at least
one vertex and is also ordinary. If G, has only one vertex, then it is connected. So
suppose G, has at least two vertices. Suppose e is the unique internal edge in G
that is adjacent to v. Pick two distinct vertices w and x in G, . Since they are already
vertices in G, there is an internal path P in G with w and x as end vertices. Moreover,
since there are no other internal edges in G that are adjacent to v besides e, the path
P cannot contain e. So P is a path in G,,, which shows that G, is connected.

Remark 2.86 1In the setting of Lemma 2.85, we may visualize G in one of two ways.
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On the left (resp., right), the unique internal edge adjacent to v is incoming (resp.,
outgoing). The flag in G, corresponding to e is a leg. There are canonical bijections

VH(G) = Vi(Gy) | [},
Edge(G) = Edge(G,) | [ (Bdge(C)) \ {e}).
Edgei(G) = Edgei(G,) ]_[{e}’

where as usual C, is the corolla with the same profiles as the vertex v.

The following observation guarantees the existence of deletable vertices in
ordinary simply connected graphs.

Lemma 2.87 Suppose G is a simply connected graph with at least two vertices.
Then it has at least two deletable vertices.

Proof Suppose P = (v;)/_, is a maximal path in G. In other words, it is a path
(Definition 2.18) that is not properly contained in any other path. Since G has at least
two vertices, we have r > 1. Moreover, since G has no cycles, we have vy # v,.
Then both end vertices vy and v, are deletable. Indeed, if vy is not deletable, then
since it is loop-free, there is an internal edge e ¢ P connecting vy and some vertex u.
By simple connectivity u # v; for any i. But then the concatenation of P and e, with
the new initial vertex u replacing vy, is a path that properly contains P. This cannot
happen by the maximality assumption on P. Therefore, vy is deletable, and similarly
the terminal vertex v, is also deletable.

Remark 2.88 The conclusion of Lemma 2.87 does not hold in general if G is not
assumed to be simply connected. For example, the non-simply connected graph

has two vertices, neither of which is deletable.

As in the previous two sections, we want to describe deletable vertices more
systematically in terms of graph substitution. For this purpose, we will use
dioperadic graphs (Example 2.17).

Definition 2.89 Suppose G is a connected graph. An outer dioperadic factoriza-
tion of G is a graph substitution decomposition

G = D({Cy,H})



2.7 Deletable Vertices and Internal Edges 47

in which

* D is adioperadic graph with vertices u and v,
¢ achosen H substituted into u is connected, and
* (, is the corolla with the same profiles as v.

Call H the distinguished subgraph.

Remark 2.90 In an outer dioperadic factorization, the distinguished subgraph H has
the same profiles as a vertex in a dioperadic graph. It follows that H must have a leg.
In particular, H cannot be an exceptional loop or the empty graph.

Theorem 2.91 Suppose G is a connected graph, and v is a vertex in G. Then the
following two statements are equivalent.

1. v is deletable.
2. There is an outer dioperadic factorization G = D({Cy, H}).

Proof First suppose v is deletable. If G is a corolla with in(G) non-empty, then
define D, as the dioperadic graph in which

* the top vertex has the same profiles as v,

* the bottom vertex u has exactly one incoming flag and one outgoing flag, both
with the same color c as the first incoming flag f of v, and

 the unique internal edge e is adjacent to v via f.

We may visualize D; as follows.

Then there is an outer dioperadic factorization

G= Dl({Cva TC})

with distinguished subgraph 1. There is a similar argument for the case out(G) #
a.

Next suppose v is loop-free, and there is exactly one internal edge e in G that is
adjacent to v. We assume that e is an incoming flag of v. By Lemma 2.85 the graph
G, obtained from G by deleting v is connected. Define D, as the dioperadic graph
in which

* the top vertex has the same profiles as v,
 the bottom vertex u as the same profiles as G, and
* the unique internal edge connects the flags in u and v corresponding to e in G.
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Then there is an outer dioperadic factorization
G = D.({Cy,Gy})

with distinguished subgraph G, . There is a similar argument if e is an outgoing flag
of v. This proves that (1) = (2).
For the other direction, suppose there is an outer dioperadic factorization

G = D({C,, HY).

If H is an exceptional edge, then G = C,, so v is deletable. Next assume that H is
ordinary. Since D is a dioperadic graph, we may visualize G as in Remark 2.86. As
a vertex in G, v is loop-free, and the unique internal edge in D is the only internal
edge in G that is adjacent to v. This shows that v is deletable.

Remark 2.92 1In the proof of (1) = (2) in Theorem 2.91, in the construction of
the dioperadic graph D, instead of the first incoming flag of v, we could also have
used any other incoming or outgoing flag of v. In other words, if G is a corolla with
vertex v and either in(G) or out(G) non-empty, then there is an outer dioperadic
factorization

G = D({Cy. 1))

for each leg e of G, where 1, is the exceptional edge with the same color as the
chosen leg e.

2.7.2 Internal Edges

Now we discuss an inner analog of outer dioperadic factorization. We will use this
concept to define one of two types of inner coface maps in the graphical category
for connected graphs.

Definition 2.93 Suppose K is a connected graph. An inner dioperadic factoriza-
tion of K is a graph substitution decomposition

K = G(H,)

in which

e G is connected,
* H, is a dioperadic graph with the same profiles as a chosen vertex w in G, and
 for each vertex u # v in G, a corolla C, is substituted into u.

Call H,, the distinguished subgraph.
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Remark 2.94 1f K = G(H,,) is an inner dioperadic factorization, then both K and
G are ordinary. Indeed, G is connected and has at least one vertex w, while K is
connected and has at least two vertices (namely, the two vertices in H,,).

Remark 2.95 Suppose K = G(H,,) is an inner dioperadic factorization of K. Then
there are canonical bijections

Vi(K) = Vi(H,) | [ (ViG) \ {w) ,
Edgei(K) = Edgei(G) [ [{e},
Edge(K) = Edge(G) | [{e}.

where e is the unique internal edge in the dioperadic graph H,,.

We now observe that inner dioperadic factorizations correspond to internal edges
connecting distinct vertices.

Theorem 2.96 Suppose K is a connected graph. Then there is a canonical bijection
between the following two sets.

1. The set of internal edges in K that connect two distinct vertices.
2. The set of inner dioperadic factorizations of K.

Moreover, such an internal edge in K corresponds to the unique internal edge in the
distinguished subgraph in an inner dioperadic factorization of K.

Proof Let us first describe the desired maps between the two sets. Suppose

e
u —— v is an internal edge in K connecting distinct vertices # and v. Define

G as the graph obtained from K by shrinking away e and combining the vertices
u and v into a single vertex w. To be more precise, e is a 2-cycle {e_;, e;} of the
involution ¢ of the graph K, with e_; € u and e; € v. From the non-exceptional
cells # and v in K, we form the new non-exceptional cell

w= (u]_[v) \{e—1.e1}

in G. All other non-exceptional cells and structure maps in G are the same as those
in K, except that the vertex w is given the dioperadic listing.

Define H,, as the dioperadic graph whose bottom and top vertices have the same
profiles as u and v, respectively, and whose unique internal edge corresponds to e in
K. Then there is an inner dioperadic factorization K = G(H,,).

Conversely, suppose K = G(H,,) is an inner dioperadic factorization, and

e
u —— v istheinternal edge in H,,. Under the graph substitution, e is identified

with an internal edge in K connecting the two distinct vertices # and v.
By inspection the two maps described above are mutual inverses.
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2.8 Disconnectable Edges and Loops

In this section, we discuss two concepts about internal edges that we will later use
to define the other types of inner and outer coface maps in the graphical category
for connected graphs. As in the previous section, here we work with the collection
GrgD of all connected graphs.

2.8.1 Disconnectable Edges

First we discuss the concept that corresponds to a type of outer coface maps in
the graphical category for connected graphs. Intuitively, we want to describe an
internal edge in a connected graph that can be disconnected (not deleted) such that
the resulting graph is still connected.

Definition 2.97 Suppose e is an internal edge in a connected graph G. We say e is
disconnectable if one of the following statements holds.

1. G is an exceptional loop.

e
2. u —— v is an ordinary edge, in which v may be equal to u, such that

there exists a path P in G

¢ with end vertices u and v, and
¢ that does not contain e.

In such cases, write G, for the graph obtained from G by disconnecting e.
Remark 2.98 1In the previous definition, by disconnecting e, we mean if e is the 2-
cycle {e_1, e} of ¢ in G, then we redefine ¢ such that both e; are (-fixed points in G,.
In particular, in G, both flags e; are legs. Moreover, there are canonical bijections
Vi(G) = Vi(G.),
Edge(G) \ {e} = Edge(G,) \ {e-1.e1},

Edgei(G) = Edgei(Ge) | [le}-

in which the middle bijection requires G # ©. Indeed, if G = O, then G, =1,
which means that the two flags {e_, ¢} in G, form a single exceptional edge. The
middle bijection can also be rephrased as

Edge(G,)

Edge(G) = e ~e)

where on the right-hand side the quotient identifies the legs e+; in G, to form the
internal edge e in G.
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Remark 2.99 A loop at a vertex v is always disconnectable because we can use the
trivial path containing only v in Definition 2.97. If e is an ordinary disconnectable
edge that is not a loop, then we have a picture like

inside G, in which P is an internal path that does not contain e.
The following observation justifies our terminology.

Lemma 2.100 Suppose e is a disconnectable edge in a connected graph G. Then
G, is connected.

Proof If G = O, then G, = %, which is connected. So suppose G is ordinary,
which implies that G, is also ordinary. If e is a loop at v, then G, is connected.

So suppose P is a path in G not containing u ; v with distinct end
vertices u and v. To see that G, is connected, it is enough to observe that for any two
distinct vertices x and y in G, there is a path Q in G with end vertices x and y and
that does not contain e. Since G is connected, there must be a path Q in G with end
vertices x and y. If O contains e, then we may replace e in Q with P, removing some
redundant edges and vertices if necessary, to obtain a path Q' with end vertices x
and y and that does not contain e.

Remark 2.101 1In the context of Lemma 2.100, we may visualize G as follows.

@4

Note that e is an internal edge in G but not in G,, in which the flags e+ are both
legs.

€_1

€1

The following observation gives an alternative characterization of an ordinary
disconnectable edge as an edge in a cycle.

e

Lemma 2.102 Suppose u —— v is an ordinary edge in a connected graph

G, in which v may be equal to u. Then the following statements are equivalent.

1. e is disconnectable.
2. There exists a cycle in G that contains e.

Proof First suppose e is disconnectable. If e is a loop at v, then e is the desired
cycle P. So suppose e is not a loop. Since G, is connected (Lemma 2.100), there is
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a path Q in G, with u and v as end vertices. Since e is not an ordinary edge in G,
it is not contained in Q. Therefore, the concatenation of Q and e is a cycle in G that
contains e.

Conversely, suppose there exists a cycle P in G that contains e. If P contains
only e, then e is a loop at v, which means it is disconnectable. On the other hand,
if P contains at least two ordinary edges, then removing e from P and cyclically
relabeling the other edges in P if necessary, the resulting internal path P’ has end
vertices u and v and does not contain e. Therefore, e is disconnectable.

As usual, we want to describe disconnectable edges in terms of graph substitu-
tion.

Definition 2.103 Suppose G is a connected graph. An outer contracting factor-
ization of G is a graph substitution decomposition

G = (§.C0)(H)

in which

* £,C is acontracted corolla with internal edge ¢ (Example 2.15), and
* H is connected.

Call H the distinguished subgraph.

Theorem 2.104 Suppose e is an internal edge in a connected graph G. Then the
following two statements are equivalent.

1. e is disconnectable.
2. There exists an outer contracting factorization G = (§€,C)(H).

Proof Suppose e is disconnectable. If G = O, then there is an outer contracting
factorization

Oc = (Eec(c;c)) (Tc)

e

with distinguished subgraph 1.. On the other hand, suppose u —— v is

ordinary as in Definition 2.97. If C is the corolla with the same profiles as G,, then
there is an outer contracting factorization

G= (Eec)(Ge)

with distinguished subgraph G,.
Conversely, suppose there exists an outer contracting factorization

G = (§&O)(H).

The vertex v in the corolla C must have non-empty inputs and non-empty outputs.
Since H has the same profiles as v, H cannot be an exceptional loop or the empty
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graph. If H is an exceptional edge, then G is an exceptional loop, which means e
is disconnectable. Next suppose H is ordinary. By connectivity of H, there is an
internal path P in H with end vertices u and v. Since e is not an internal edge in H,
e is not in P. Thus, P is an internal path in G with end vertices # and v that does not
contain e. Therefore, e is disconnectable.

2.8.2 Loops

Now we discuss an inner analog of outer contracting factorization. We will use this
concept to define the other type of inner coface maps in the graphical category for
connected graphs.

Definition 2.105 Suppose K is a connected graph. An inner contracting factor-
ization of K is a graph substitution decomposition

K = G(H,)

in which

¢ G is connected,

* H, = §,C, is a contracted corolla with the same profiles as a chosen vertex w in
G, and

 for each vertex u # v in G, a corolla C, is substituted into u.

Call H,, the distinguished subgraph.

Remark 2.106 1f K = G(H,,) is an inner contracting factorization, then both K and
G are ordinary because each of them has at least one vertex.

Remark 2.107 Suppose K = G(H,) with H, = £,C, is an inner contracting
factorization of K. Then there are canonical bijections

Vi(K) = (o} [ J(VHG) \ (w}) |
Edgei(K) = Edgei(G) [ [{e},
Edge(K) = Edge(G) | [{e}.

Here e is the unique internal edge in the contracted corolla H,, = £,C,, and v is the
unique vertex in H,,.

We now observe that inner contracting factorizations correspond to loops.

Theorem 2.108 Suppose K is a connected graph. Then there is a canonical
bijection between the following two sets.
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1. The set of loops in K.
2. The set of inner contracting factorizations of K.

Moreover, such a loop in K corresponds to the unique internal edge in the
distinguished subgraph in an inner contracting factorization of K.

Proof Let us first describe the desired maps between the two sets. First suppose
e = {e_y,e;}isaloop at v in K. Define G as the graph obtained from K by deleting
the loop e. In other words, from the ordinary cell v in K, we form a new ordinary
cell

w=uv)\{e_1,e}

in G, which is still connected. Define H as the contracted corolla &, C, whose unique
vertex has the same profiles as v in K and whose unique internal edge corresponds
to e in K. Then there is an inner contracting factorization

K = G(H)

with distinguished subgraph H.
Conversely, suppose given an inner contracting factorization

K = G(5Cy).

Then the internal edge e in the distinguished subgraph &,C, becomes a loop at v
in K.
Finally, observe that the two maps defined above are mutual inverses.

The following table provides a summary of the four types of graph substitution
factorizations discussed in this and the previous sections.

Graph substitution Gis
Outer K = D({C,,G})
dioperadic D dioperadic K with a deletable
factorization Theorem 2.91 vertex v deleted
Inner K = G(D) K with an internal edge
dioperadic D dioperadic connecting two distinct
factorization Theorem 2.96 vertices shrunk away
Outer K = (£,0)(G)
contracting &,C contracted corolla K with a disconnectable
factorization Theorem 2.104 edge e disconnected
Inner K = G(.0)
contracting &,C contracted corollas K with aloop e at a

factorization Theorem 2.108 vertex deleted



Chapter 3
Properads

This chapter is a brief introduction to properads. We recall both the biased (Sect. 3.1)
and the unbiased (Sect. 3.2) descriptions of a properad. These are two equivalent
ways to define a properad. We emphasize that what we call a properad here is
sometimes called a colored properad in the literature.

Properads are objects that effectively parametrize operations with multiple
inputs, multiple outputs, symmetric group actions, units, and associativity axioms
along connected wheel-free graphs. One-colored properads were first introduced by
Vallette [Val07] in the linear setting. These objects are general enough to describe,
for example, biassociative bialgebras, Lie bialgebras, and (co)module bialgebras as
algebras over suitable properads. Properads are more general than operads [May72]
in the sense that the latter are properads whose operations have only one output.
Also, properads are more general than dioperads [Gan04] in the sense that the
dioperadic composition is also a properadic operation, but the converse is not true.

The biased version of a properad describes it as a suitably parametrized set of
objects with some extra structures, namely, units, symmetric group actions, and
a properadic composition, satisfying suitable axioms. This is similar in spirit to
the original definition of an operad given by May [May72]. In even more familiar
terms, a biased properad is similar to the usual definition of a category, where the
properadic composition generalizes the categorical composition of two morphisms.

The unbiased version of a properad is more formal and describes it as an algebra
over a monad associated to connected wheel-free graphs GrcT . This is the free
properad monad. Free properads are needed not only to define the graphical category
of connected wheel-free graphs, but also to define the symmetric monoidal closed
structure on the category of properads.
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One main difference between our free properads and those in, for example,
[Val07] is that we take as our underlying object a suitably parametrized set of objects
without symmetric group actions. The symmetric group actions on a properad are
generated by certain structures on connected wheel-free graphs called a /isting. This
approach to the free properads and other variants is developed in [YJ15]. Also,
the proof of the equivalence between the biased and the unbiased descriptions of
properads is not trivial. The full detail is given in [YJ15], along with many other
variants of operads and properads.

Eventually we will work over the category of sets. However, throughout this
chapter, we work more generally over a symmetric monoidal category (C, ®, ) with
all small colimits and initial object & such that ® commutes with colimits on both
sides. Unless otherwise specified, the reference for this chapter is [YJ15], where all
the details can be found.

Everything in this chapter about properads has obvious analogs for properads
with non-empty inputs or non-empty outputs. Instead of restating everything for
these close variants, we point out the simple modifications in Remarks 3.6 and 3.27.

3.1 Biased Properads

In this section, we recall the definition of a properad in biased form, algebras over a
properad, and a few examples. A properad is a mechanism for organizing operations
with multiple inputs and multiple outputs. We can think of each input/output as a
color. The reader may wish to review Definition 2.1 on colors and profiles, which
we will use below.

3.1.1 X-Bimodules and Colored Objects

Definition 3.1 Fix a set € of colors.

1. The category of Xg(¢)-bimodules is the diagram category S,

2. The discrete category associated to S(€) is written as dis(S(€)) or dis(S) if € is
clear from the context.

3. An S(C)-colored object, or simply a colored object, is an object in the diagram
category CH(5(®) — [Is(e) C-

4. A colored object P is said to be special if the components P(?) and P(%) are all
equal to the initial object & for all €-profiles ¢ and d. B
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5. Suppose P is an S(€)-colored object and Q is an S(®)-colored object. Then a
f
map P —— Q of colored objects consists of:

Jo

e afunction € —— © on color sets, and

* amap
P ", Qi
(g) (fog)’

where foc = (fo(c1), ..., folcwm)).

Remark 3.2 A colored object P € CH(5(®) consists of a set of objects P(f) e,

one for each pair of ¢-profiles (c;d) € S(€). We call ¢ (resp., d) the input profile
(resp., output profile) of the component P(%). We think of P(Y) as consisting of

operations with inputs ¢ = (ci....,c,) and outputs d = (di, ..., d,). When P(%)
has an underlying set, we can visualize an element p in it as a decorated corolla

dl dn

Clﬂcm
with one vertex decorated by p, |c| input legs colored by the ¢;, and n output legs
colored by the d|.

Remark 3.3 On the other hand, a Yg(¢)-bimodule is a colored object P together
with isomorphisms

(v30)
P — P()

witho € X and T € X such that

* (id;id) is the identity map, and

e (t;0')o(r;0) = (r7';070).

A map f:P — Q of Yg(¢)-bimodules is a map of the underlying S(&)-colored
objects with fy = Id such that all the squares
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are commutative.

Example 3.4 Consider the 1-colored case with € = {x}. Then P (&) is the groupoid
N whose objects are non-negative integers {0, 1,2, ...} and whose only morphisms
are the symmetric groups N(n,n) = X, for n > 0. A colored object is a double
sequence of objects P = {P(m;n)}n.>0. A Xs-bimodule is a colored object P
together with isomorphisms

()~ P()

n
m m.

satisfying the two conditions stated in Remark 3.3.

3.1.2 Biased Definition of a Properad

The following definition of a properad will be used in most of the later chapters in
Part I.

Definition 3.5 Let ¢ be a set of colors.
1. A €-colored properad (P, 1, X) consists of:

a. a Yg(¢)-bimodule P,
b. a c-colored unit

foreach ¢ € €, and
c. a properadic composition

)@ P() — P

coa

whenever ¢ C ¢ and b’ C b are equal k-segments for some k > 0.
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These structures are required to satisfy suitable bi-equivariant, unity, and asso-
ciativity axioms.

f
2. A morphism P —— Q from a €-colored properad P to a ®-colored

properad Q is a map of the underlying colored objects that respects the bi-
equivariant structure, colored units, and properadic compositions.

3. A properad is a €-colored properad for some color set €.

4. Denote by Properad the category of all properads and morphisms.

Definition 3.6 Properads with non-empty inputs (resp., properads with non-
empty outputs and special properads) are defined just like properads, except that
in a Yg(¢)-bimodule we replace S(€) by the full subcategory S(€); (resp., S(€),
and S(€);) consisting of pairs of profiles (c;d) with ¢ # @ (resp., d # & and
¢ # @ # d). The category of properads with non-empty inputs (resp., properads
with non-empty outputs and special properads) is denoted by Properad; (resp.,
Properad, and Properady).

Remark 3.7 The category Properad; (resp., Properad, and Properady)
is canonically isomorphic to the full subcategory of Properad consisting of
properads P with P(%) = & whenever ¢ = @ (resp., d = O, and eitherc = @
ord = @). -

Remark 3.8 When the color set € is clear from the context, we will omit mentioning
J
it. In what follows, we usually abbreviate the properadic composition &;, to just X.

Remark 3.9 In Definition 3.5 if we insist that b’ = ¢’ are equal 1-segments, then the
resulting object is exactly a dioperad. In the linear setting, a 1-colored dioperad was
introduced in [Gan04]. Moreover, if we further insist that P(f) = G unless |d| = 1,
then the resulting structure is equivalent to an operad. A 1-colored operad in the
topological setting was introduced in [May72].

Remark 3.10 Following Remark 3.2 we visualize the c-colored unit in a properad
as the c-colored exceptional edge
I

/
that contains no vertices. The properadic composition IZi, is visualized as the
assignment
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a

forp € P(f) and g € P(;’Z) with ¢ D ¢ = b’ C b, although the components of P
need not have underlying sets.

Remark 3.11 We refer to the above definition of a properad as biased, in the sense
that only some of the generating structure maps and generating axioms are involved.
This biased definition is similar to the usual definition of an associative algebra,

where one states that there is a binary operation A ® A —> A, satisfying one
associativity axiom

(maz) a3 = ay (aza3) .
However, in an associativie algebra there are actually many more operations, such as
(a1, a2, a3, as) —> a [(axa3)aa] .

An unbiased definition of an associative algebra should involve all such n-ary
operations, together with all the relations among them.

3.1.3 Algebras over a Properad

If a properad is regarded as an object that parametrizes operations with multiple
inputs and multiple outputs, then the objects on which these operations act are called
algebras. For the following definition, we also require the symmetric monoidal
category C to be closed with internal hom Hom(—, —). The endomorphism properad
below is the canonical example of a properad.

Definition 3.12 Fix a set € of colors.

1. Regard € as a discrete category with only identity morphisms. Objects in the
diagram category C% = [ C are called C-colored objects.
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2. For a €-colored object X = {X_}.c¢ with each X, € C and a €-profile ¢ = c[1,u,
define the object

X=X, ® - ®X,,

with Xg = 1.
3. The endomorphism properad End(X) of a €-colored object X is defined as the
C-colored properad with components

End(X) (f) = Hom (Xg, Xi) .

The bi-equivariant structure is induced by permutations of tensor factors and
the symmetric monoidal structure, while the colored units are adjoints to the
identity maps on the X.. The properadic composition is induced by categorical
composition, the colored units, the bi-equivariant structure, and tensor products
of maps.

4. Suppose P is a €-colored properad, and X is a €-colored object. Then a P-
algebra structure on X is a morphism

A
P " End(X)

of properads, called the structure map, such that Ao = Id.

Remark 3.13 The adjoints of the components of the structure map take the form
y A
P(z) X, — Xa.

This is the reason why P(%) is regarded as parametrizing operations with inputs ¢
and outputs d. -

3.2 Unbiased Properads

In this section, we discuss the unbiased definition of a properad. This requires a
discussion of the free properad monad, which in turn uses the notion of connected
wheel-free graphs from Sect. 2.3.
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3.2.1 Monads and Their Algebras

Before we discuss the free properad monad, let us first recall the definitions of a
monad and of an algebra over a monad [Mac98].

Definition 3.14 A monad (7, i, v) on a category C consists of

T
e afunctor ¢ —— C and

I v
 natural transformations 72 —— T and Id —— T , called the multi-
plication and the unit, respectively,

such that the following associativity and unity diagrams are commutative.

T3 Ty 3 T2 T Tv T2 vT

T ——— T

3.1

Definition 3.15 Suppose (T, i, v) is a monad on C.
1. A T-algebra (X, y) consists of
* anobject X € C and
Y
* amorphism 7X —— X € C , called the structure map,

such that the following associativity and unity diagrams are commutative.

2x s rx X" ,Tx

uxl l’y \ Jv
Id

TX ———— X X

2. If (Y, yY) is another T-algebra, then a morphism of T-algebras

f
X, y*) — (.y")
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f
isamorphism X —— Y inC such that the square

T(f)
T7X —TY

S

XﬁY

commutes. The category of algebras over T will be denoted Alg(T).

Example 3.16 An adjoint pair L:C z=—= D:R, with L the left adjoint, defines
a monad on C, whose underlying functor is RL.

3.2.2 Decorated Graphs

The free properad monad is made up of components that appear in the following
definition. Intuitively, we want to decorate the vertices of a graph with appropriate
components of a colored object.

Fix a set € of colors, s0 S = S(€) and C¥) = C4is(S(O),

Definition 3.17 Given P € C%® and a graph G, define the P-decorated graph as
the unordered tensor product

PGl = ® P(‘iﬁt((vv))) (3.2)
vEVL(G)

If Vt(G) is empty, then P[G] = I, the unit of the tensor product.

Remark 3.18 Note that the P-decorated graph (3.2) is an unordered tensor product.
This makes sense because the set of vertices in a graph is not ordered.

Example 3.19 For the c-colored exceptional edge 1., we have

Pt =1.

For the permuted corolla 0 C;4) T, we have

1

I3}

PloCiat] = P(

).
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).

For the partially grafted corollas Cic.q) IZ,{, Ca;p)> We have

P [C(Q@ ‘Zg’ C(g;k)] ~ P(f) ® p(

12 IS

3.2.3 Free Properad Monad

Recall from Definition 2.29 that GrcT is the set of connected wheel-free graphs.

Definition 3.20 For a pair of ¢-profiles (%), let GrcT (fl) be the subset of GrcT

consisting of those connected wheel-free graphs G that satisfy (‘ig‘(g)) = (9.

Remark 3.21 There is a disjoint union decomposition

d
or! =[] or! (;)

(g) €S

Moreover, the subset GrcT (fl) contains at least the permuted corollas

UC(QI—I ;0 1d) T,

and in particular the (c; d)-corolla C(c.q).
Now we define the free properad monad.
Definition 3.22 Suppose P € 459,

1. Define the functor

F=F T:Cdis(S) N Cdis(S)
Gre

by
d
ell)= 11 ma- 1 @e(n) e
7 Geer! (9 Geax! () vEVHO)
for (c;d) € S.

i
2. Define the natural transformation F?> —— F as the one induced by graph
substitution.
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v
3. Define the natural transformation Id —— F as the one induced by the
(c; d)-corollas as (c; d) runs through S.

The associativity and unity properties of graph substitution imply the following
observation.

Theorem 3.23 For each non-empty set &, there is a monad (FGrT S, U) on CYs®).

Remark 3.24 Recall that each monad, such as F = F ol has associated algebras.

v .
An F-algebra P has a structure map FP —— P e C%® | which consists of
component maps

YG
PIG] = ®,evie) P(hey) — P(ae)

for G € GrcT . For example:

1. For the permuted corolla, we have the component structure map

YocCt

PloCeat] =P() — P(%).

T

2. For the c-colored exceptional edge, we have the component structure map

2
Plt] =1 — P(9.

3. For the partially grafted corollas, we have the component structure map

7 y .
P [C(g;@ x@ C(g;@] ~ P(i{) ® P(Z’Z) N p(é b 4)_

cova

These component structure maps correspond to the Y's-bimodule structure, the c-
colored unit, and the properadic composition, respectively, of a €-colored properad.
The required bi-equivariant, unity, and associativity axioms are implied by the F-
algebra axioms. The converse is also true. Namely, a €-colored properad uniquely
determines an F-algebra structure on the underlying S-colored object. So we have
the following observation.

Corollary 3.25 There is a natural bijection between C-colored properads and
F . -algebras.
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By general category theory, for a colored object P, the free F-algebra FP is
precisely the free properad of P.

Remark 3.26 Following Markl [Mar08], we refer to the F-algebra description of a
properad as unbiased in the sense that all connected wheel-free graphs are used in
the monad F.

Remark 3.27 With similar definitions, Theorem 3.23 and Corollary 3.25 also hold
for the other sets of graphs in Definition 2.29. In fact, Theorem 3.23 holds for any
pasting scheme as defined in [YJ15], while Corollary 3.25 holds for most variants
of operads and PROPs. For a fixed set € of colors and suitable subcategories of
S(€), the following table provides the objects associated to each set of graphs in
Definition 2.29.

¢-colored Fy-algebras Types of graphs

Categories ULin Linear graphs

Operads UTree Unital trees

Dioperads GrdTi Simply connected graphs

Properads GrcT Connected wheel-free graphs

Special properads GrCTS Special connected
wheel-free graphs

Properads with GrCTi Connected wheel-free graphs

non-empty inputs with non-empty inputs

Properads with Grf0 Connected wheel-free graphs

non-empty outputs with non-empty outputs

Wheeled properads GrS) Connected graphs

Wheeled properads will be discussed in Part II. Note that an Fyy,;,-algebra is
exactly a small C-enriched category with object set €.

3.2.4 Maps from Free Properads

We will be dealing with free properads and maps between them very often. Here we
record what constitutes a map out of a free properad.

Lemma 3.28 Suppose P is an S(€)-colored object, and Q is a D-colored properad.
Then a map of properads

!
FP —— Q
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is equivalent to a pair of functions:

Jo
1. A function € —— 9 between color sets.
. o ) fod . d
2. A function P(;) — Q(f‘é;) for each pair of C-profiles (;)

Proof Since FP is the free properad generated by P, a properad map f: FP — Q
is equivalent to a map P — Q of colored objects (Definition 3.1), which consists
of a pair of functions as stated.



Chapter 4
Symmetric Monoidal Closed Structure
on Properads

In this chapter, we construct a symmetric monoidal structure on the category of
properads. For special properads, there is also an internal hom, giving the category
of special properads a symmetric monoidal closed structure. In Sect. 7.1.4 we will
show that this symmetric monoidal structure induces a symmetric monoidal closed
structure on the category of graphical sets for connected wheel-free graphs. Our
symmetric monoidal product of properads extends the one on operads defined by
Boardman and Vogt [BV73] in the topological setting.

The symmetric monoidal product of properads is constructed in Sect.4.1. One
slight complication of the properadic context comes from the fact that a vertex in a
connected wheel-free graph may have multiple inputs/outputs or zero input/output.
Therefore, we need to be careful when we define the so-called distributivity relation,
which tells us how two elements from the two component properads commute in the
tensor product.

The symmetric monoidal product of two free properads with special generating
sets is given a much simpler description in Sects. 4.2 and 4.3. The main observation
here is Theorem 4.14. It says that the tensor product of two free properads can
be directly generated from the original special generating sets with a much shorter
and simplified lists of relations, called generating distributivity. This is important
because, as we will see later, a graphical properad, which is by definition freely
generated, is an infinite set precisely when the graph is not simply connected. So
for these infinite graphical properads generated by special connected wheel-free
graphs (Definition 2.28), Theorem 4.14 will tell us that the tensor product is finitely
presented, which is not obvious from the definition of the tensor product.

The internal hom on special properads is constructed in Sect. 4.4. The generating
distributivity mentioned above is very closely related to the naturality condition on
internal hom. In fact, as we will see in Lemma 4.27, the way generating distributivity
generates all distributivity is the same as the way natural transformations extend
along connected wheel-free graphs. This is, of course, no accident. Indeed, in a

© Springer International Publishing Switzerland 2015 69
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Lecture Notes in Mathematics 2147, DOI 10.1007/978-3-319-20547-2_4
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symmetric monoidal closed category there is a natural isomorphism with the tensor
product on one side and the internal hom on the other side (4.8).

Throughout this chapter, we work over the symmetric monoidal closed category
Set of sets, so Properad is the category of all colored properads in sets. As in
the previous chapter, with suitable restrictions everything in this chapter has obvious
analogs for properads with non-empty inputs or non-empty outputs.

4.1 Symmetric Monoidal Product

In this section, we define a symmetric monoidal product on properads that extends
the Boardman-Vogt tensor product of operads [BV73]. The symmetric monoidal
product of two properads will be defined as a quotient of some free properad
generated by the following colored object.

4.1.1 Smash Product

Definition 4.1 Suppose P is an S(€)-colored object and Q is an S(®D)-colored
object. Define their smash product P A Q as the S(€ x ®)-colored object with
two types of elements:

2
1. For each color ¢ € € and element g € Q(il), there is an element

2
c®q€(P/\Q)(cx41),

cxd
where
cxd = ((c.d}).....(c.d))

ifd' = (d}.....d).

2. For each element p € P(ﬁ?) and color d € D, there is an element

2xd
p®de(P/\Q)<£1X )
cl'xd
where
glxdz((c},d),...,(cl,d))

: _ (il 1
if ¢ —(cl,...,cp.
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Remark 4.2 Asin Remark 3.2, we visualize the elements in the smash product PAQ
as the following decorated corollas.

cx d? 2 xd
cxd cxd

Also, we may write the element set of the smash product as
PAQ=[PxD]][lexQq].

with the understanding that the profiles of an element are those of an element in P
(resp., Q) paired with a color in ® (resp., €).

Remark 4.3 Smash product is associative in the sense that, if R is an S(&)-colored
object, then there is a canonical isomorphism

PAQAR=PAQAR)

of S(€ x D x &)-colored objects. The elements of this iterated smash product are of
the forms

pPR®IdR®e, cQ®qRe, cRAQr

withe € Candr € R.

4.1.2 Tensor Product

Definition 4.4 Suppose P is a €-colored properad and Q is a ®-colored properad.
Define the quotient € x ®-colored properad

FPAQ)

PeQ < :
® 3 types of relations

“.1)

where F(P A Q) is the free properad of the colored object P A Q (Definition 3.22).
The relations are of the following three types.

1. For each color d € 9, the functions

¢3cr— (c,d),

Poapr—pRd

are required to define a map of properads P — P ® Q.
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2. For each color ¢ € €, the functions

D >dr— (c,d),
Q3¢g+—c®gq
are required to define a map of properads Q — P ® Q.

3. Suppose p € P (a;b) and ¢ € Q(c;d) with |a| =k, |b] = 1, |c| = m, |d| = n,
(k,I) # (0,0), and (m,n) # (0,0). The relation is then the equality

PRV, x {ai ® g},

n 1 m m (42)
=0 [{bj ® q}j=1 x{p® Ci}i:l] Ok

in P ® Q, called distributivity, which we will explain in detail below.

4.1.3 Distributivity

Explicitly, the distributivity relation (4.2) can be graphically represented as follows.
The left side of distributivity is the following decorated graph in F(P A Q):

(b1,di), (b, dv) (b1,dn), (bi,dn)

(al,d1) (akvdn)

(CLl, Cl) o (ala CnL) (Clk, Cl) (Clk, Cm)

In the top (resp., bottom) row, the ith vertex from the left is decorated by p ® d;
(resp., a; ® g). The rth output of the vertex a; ® ¢ is connected to the ith input of
p ® d,. This internal edge has color (a;, d,).

The right side of the distributivity relation, before applying the input and output
relabeling permutations o;" and ¢}, is the following decorated graph in F(P A Q):
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(bladl) (bladn) (bladl) (blvdn)

(b17cl) (bhcm)

(alvcl) (akvcl) (ahan) (akvcm)

In the top (resp., bottom) row, the jth vertex from the left is decorated by b; ® g
(resp., p ® c;). The sth output of the vertex p ® ¢; is connected to the jth input of
bs ® q. This internal edge has color (by, ;).

The above two (P A Q)-decorated graphs have the same input and output color
sets, but the orders are not the same. For example, in the first decorated graph above
the output profile is

(l_pxdl,...,l_yxdn),
while in the second decorated graph above the output profile is
(b1 XC_Z,...,b]Xi).

The output relabeling o}' is the permutation that yields the first output profile when
it is applied to the second output profile from the left, i.e.,

o' (b1 xd,...,byxd)y=(bxd,....bxd,).

Likewise, the input relabeling o;" is the permutation that yields the input profile
of the first decorated graph when it is applied to the input profile of the second
decorated graph from the right, i.e.,

(a1 x¢,....;axxc) =(axcy,...,axcy) o]

If some of the parameters k, [, m, n are 0, then the distributivity relation requires
special interpretation to keep the decorated graphs connected. Explicitly, the
additional restrictions for distributivity are as follows:

1. If |a] = k = 0, then it is required that |d| = n = 1. Conversely, if n = 0, then it
is required that k = 1.

2. If |b] = [ = 0, then it is required that |c| = m = 1. Conversely, if m = 0, then
I=1.
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Graphically, these exceptional distributivity relations can be represented as fol-
lows.

1. Suppose |a| =k = 0,s0/ > 0and d = (d).
a. Suppose |c| = m > 0. Then distributivity identifies the decorated corolla
(blad) (blad)
ped

with the decorated graph:

(blv d) (blv d)

(bla Cl) (bla Cm)

The decorated corolla has no inputs. In this case, input and output relabeling
are not needed.

b. Suppose further that |c|] = m = 0, so b = (b). Then distributivity identifies
the following two decorated corollas:

(b,d) (b,d)

p®d ~ b®q

Each decorated corolla has no inputs.

[\S]

. Suppose |d| =n =0,so0m > 0and a = (a).

a. Suppose |b| = [ > 0. Then distributivity identifies the decorated corolla

a®q

(a,c1) (a,cm)
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with the decorated graph:

(blv Cl) (bla Cm)

(a,c1) (a,cm)

The decorated corolla has no outputs. Input and output relabeling are not
needed.

b. Suppose further that |b| = [ = 0, so ¢ = (c). Then distributivity identifies the
following two decorated corollas:

p®c ~ a®q
(a,c) (a,c)

Remark 4.5 The tensor product P®Q above can be similarly defined if P and Q are
both in Properad;, Properad,, or Properadg (Definition 3.6). Simply insert
the phrase with non-empty inputs, with non-empty outputs, or special in suitable
places throughout the definition. The functor F in F(P A Q) means FGr:i, FGrJO’

or F 1. In particular, in defining the tensor product in Properady, distributivity
requires no extra interpretation because the parameters k, [, m, n are all positive.

4.1.4 Symmetric Monoidal Structure

Theorem 4.6 With respect to ®, the categories Properad, Properad;,
Properad,, and Properadg are symmetric monoidal.

Proof We verify the various axioms for a symmetric monoidal structure.

1. The symmetry is induced by the isomorphism of smash products
PAQ=QAP

that switches the two entries in both colors and elements.
2. The unit element is the 1-colored properad 1 whose only element is the identity
1 € 1(x; *).
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3. The associativity of ® follows from the fact that both (P®Q)®R and P® (Q®R)
are isomorphic to the quotient (€ x ® x &)-colored properad

_FPAQAR)

"~ relations
There are two types of relations in this quotient, similar to the ones in Defi-
nition 4.4. The first type of relations ensures that there are properad maps from
each of P, Q, and R to O if we fix two colors in two different color sets €, ®, and

€. The second type of relations is the three-component version of distributivity,
which equates the element

PRdRe}x{cRqRe}x{cRIQr},

with suitable subscripts and superscripts in the colors, with the element

{cRqRe}x{pRdRe} x{cRdQRQr},

and so forth.

Remark 4.7 The unit element 1 above is the free 1-colored properad generated by
the 1-colored object with all empty components.

Remark 4.8 For colored PROPs, a similar symmetric monoidal product is con-
structed in [HR12].

4.2 Symmetric Monoidal Product of Free Properads

In this and the next sections, we give a simple description of the tensor product
of two free properads generated by special colored objects (Definition 3.1). Later
we will use this description on graphical properads, which are freely generated by
construction. This in turn yields a description of the tensor product of two graphical
sets.

4.2.1 Motivation

Let us provide some motivation for the theorems we are about to prove. Suppose
now that P=F (P) andQ=F (Q) are both free properads with colored generating
sets P and Q respectively. Then their tensor product is defined as the quotient

F(F() nF(0)

PQ= .
® 3 types of relations

(4.3)
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Note that this construction of the tensor product seems somewhat redundant for two
reasons.

L. There are two layers of the free properad construction. Indeed, F (P) consists
of P-decorated graphs, and similarly for the free properad F (Q) So the free

properad F (F (P)AF (Q)) consists of connected wheel-free graphs in which

each vertex is itself a decorated graph. It is therefore desirable to have a more
direct description of the tensor product in terms of the generating sets Pand O
that has a single free construction.

2. Moreover, even if P has a finite set of colors and a finite set of elements, the
free properad F (f’) is usually an infinite set. This is the case, for example, for the
graphical properad of a graph that is not simply connected (Lemma 5.13). There-

fore, each of the three relations imposed on the free properad F/ (F (f’) AF (Q))

is usually an infinite list of relations. We would like to simplify the relations, and
hence the construction of the tensor product, using the generating sets.

Our plan to understanding the tensor product of two free properads (4.3) then
consists of two stages.

1. The first part is a Poincaré-Birkhoff-Witt type theorem. We consider the quotient
of the free properad F (F (ﬁ) AF (Q)) by the first two relations. We will provide

a very direct description of this quotient using the generating sets P and Q.
Indeed, we will show that this quotient is canonically isomorphic to the free
properad F' P A Q).

2. Once this is done, we consider the last relation, namely, distributivity. We will
show that imposing the distributivity relations on the quotient of the previous
step is equivalent to imposing a very small subset of distributivity relations, called
generating distributivity, on F' (f’ A Q). Each generating distributivity corresponds
to an element in the Cartesian product PxQ.In particular, not only are we greatly
reducing the number of relations, but the remaining relations are all relatively
simple.

4.2.2 The First Two Relations

We first give a simpler description of the part of the tensor product (4.3) about the
first two relations, corresponding to the first stage discussed above. First we need a
preliminary observation.

Lemma 4.9 Suppose P = F (ﬁ) and QA: F (Q) are C-colored and D-colored free
properads with colored generating sets P and Q, respectively. Then the natural map

A N

PAO —— F(P) AF())
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of colored sets induces a surjection

F(v)

PAO b A 7 F(F(P)AF(Q def
F (P N Q) F (F(P) A F(Q)> relagioim)(/]\) ;mj%z) =W (44)

of properads, where 1 is the quotient map.

To be precise, relations (1) and (2) in (4.4) mean that

. ()®d
1. F(P) —— W is a map of properads for each d € ©, and

L ®)
2. F(Q) —— W is amap of properads for each ¢ € €.

Proof This is mostly about unraveling the definitions of the objects involved. A
general element in F(P) is a P-decorated graph

Pohvevior € PG = ] ﬁ(‘;ﬁt((vv)))
vEVLH(G)

for some €-colored connected wheel-free graph G. An entry p, is called a vertex
decoration. Similar descriptions hold for the free properads F(Q), F(P A Q), and

F (F (13) AF (Q)) In particular, an element

R= {RU}UEVI(G) EF (F(ﬁ) /\F(Q))

is a (€ x ®)-colored decorated connected wheel-free graph with each vertex
decoration

R, € [F(ﬁ) x @] 11 [c x F(Q)] .

In other words, R, is itself either

« a ¢-colored P-decorated graph paired with a colorin ®, i.e.,
Rv = {P;}MGHU ® dm

or
e acolorin € paired with a ®-colored Q-decorated graph, i.e.,

Ry=¢,® {QZ}MGHU-

Here we abbreviated u € Vt(H,) to u € H,. Each generator p € P (resp., g € Q)
is regarded as a decorated corolla in F(P) (resp., F(Q)), which defines the injection
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t. The map F(¢) sends a (P A Q)-decorated graph to the same decorated graph, but
with each vertex decoration regarded as a decorated corolla.

Recall that the free properad structure comes from graph substitution. Therefore,
the unity property of corollas with respect to graph substitution and relation (1)
imply that for each P-decorated graph {p,}uen € F (P) and color d € D, there is an
equality

{Pu}ueH &® d= {pu ® d}uEH

in W, where on the right-hand side p, ® d is a decorated corolla. Likewise, we have

c® {qu}ueH = {C &® qu}ueH

in W for each O-decorated graph {q,},ey € F (Q) and color c € €.

For an element R = {R,} as above, apply these equalities to its image in W.
Using the associativity of the free properad structure map (i.e., associativity of graph
substitution), it follows that the image of R in W takes the form

R={rwhvecimy -

in which each r,, is a decorated corolla of the form
ro®d, or ¢, ®q,

with u a vertex in some H,. Here G({H,}) is the graph substitution of the H, into
G. Now the decorated graph {r,} is in the image of F(¢), which shows that 7 o F(¢)
is surjective.

Remark 4.10 Lemma 4.9 says that the image of PA Q generates the quotient W.
However, P A Q does not generate the free properad F (F (ﬁ) AF (Q)), which is

much bigger than W. For example, for a P-decorated graph {p}, € F (P) with at
least two vertices and a color d € 3, the element

Ph®deF (F(I3) A F(Q))

does not belong to the properad generated by the image of PA Q In other words,
taking the quotient W is necessary to make the map from F(P A Q) surjective.

Theorem 4.11 Suppose P = F (13) andQ=F (Q) are free properads with colored
generating sets P and Q, respectively. Then the properad map

5 0) YL E(EBAFD)
F (P A Q) relations (1) and (2) w 4.5)

in Lemma 4.9 is an isomorphism.
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Proof We will use the notations in the proof of Lemma 4.9.
It suffices to observe that W has the same universal property that characterizes the

free properad F' (f’ A Q) So suppose R is an &-colored properad, and f: PAO —

R is a map of colored objects. We must show that f extends uniquely to a map
f:W — R of properads. First note that, since the composition 1 o F(1) is surjective
by Lemma 4.9, if such an extension f exists, then it must be unique.

To see that an extension f exists, first note that f has a properad map extension

to the intermediate free properad F (F (ﬁ) AF (Q)) Indeed, since this properad is
freely generated, such a properad map is equivalent to a map

F(P) AF(Q) — R

of colored objects. Each element in F (ﬁ) AF (Q) is an element in either

1. P[G] x d for some €-colored graph G € GrcT and colord € ®, or
2. ¢ x Q[H] for some D-colored graph H € GrcT and color ¢ € €.

In the first case with G € GrcT (x:y), we can send it to R using the following
composition:

> f flyxd)
P[G] x d R(fézd))
Moevie PEEG)] < d !

|

Moevier [PO) x d] —H=RIF(G @ d).

in(v)

Here G ® d is the (€ x ©)-colored graph obtained from G by pairing each flag with
d. Likewise, f(G ® d) is the E-colored graph obtained from G ® d by applying f
to each flag color. The map y is a properad structure map of R, using the unbiased
description of a properad (Remark 3.24). There is a similar composition for the
second case.

This composition f extends f because:

« anelementin P is regarded as a decorated corolla in F (ﬁ), and
* the properad structure map y corresponding to a corolla is the identity map.

Next observe that this map f factors through the quotient W by construction. This is
true because:

* the free properad structure is given by graph substitution,
* y is associative with respect to graph substitution, and
» f of adecorated graph is defined at each vertex.
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Therefore, an extension f of f to W exists. The map f:W — R is a map of
properads (i.e., of F ! -algebras) because the properad structure on W is given by
graph substitution, and the properad structure map y on R is associative with respect
to graph substitution. As noted earlier, this suffices to finish the proof.

4.2.3 Generating Distributivity

Next we give a simpler description of the tensor product of two free properads
regarding distributivity, for which we need the following special case.

Definition 4.12 Suppose P = F (P) and Q = F(Q) are free properads with colored
generating sets P and Q, respectively. By generating distributivity we mean the
distributivity relation on F(P A Q), as in Sect.4.1.3, withp € Pand g € Q.

Remark 4.13

1. In other words, generating distributivity is the distributivity relation for the
generators only. In particular, if P and Q both have finite sets of elements, then
there are only finitely many generating distributivity relations.

2. By Theorem 4.11, generating distributivity may be interpreted in either the free
properad F' (P A Q) or the isomorphic properad W (4.4).

3. In Theorem 4.11 we already described the first two relations involved in
constructing the properadic tensor product F (f’) QF (Q). To describe the tensor
product itself, it remains to describe the distributivity relation, which is the next
observation.

Recall that a colored object X is special if X (%) = @ whenever either ¢ = & or
d=g. -

Theorem 4.14 Suppose P = F(ﬁ) and Q = F(Q) are free properads with special
colored generating sets P and Q, respectively. Then there is an isomorphism

F(P A Q)
generating distributivity

P®RQx~

of properads.

Remark 4.15 The point of this theorem is that both the colored generating set and
the relations are much simpler than in the definition of the tensor product (4.3).
More explicitly, this description uses the colored generating set PA Q, as opposed
to F (13) AF (Q) as in the original definition. Moreover, instead of three types of
relations, there is only one here. Furthermore, here we only need a very special kind
of distributivity relations, namely, those involving the generators (i.e., elements in P
and Q), as opposed to elements in F (P) and F (Q)
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4.2.4 Consequences of Theorem 4.14

The proof of Theorem 4.14 will be given in the next section. Before that let us
first discuss a few consequences. The first consequence of Theorem 4.14 is that
the properadic tensor product of two finitely generated free properads is finitely
presented.

Definition 4.16 Suppose P is a properad.

1. We say that P is finitely generated if there is an isomorphism

po_ F®

~ some relations

for some finite colored object P on finitely many colors and for some relations.
We call such an isomorphism a finite generation presentation of P.

2. We say that P is finitely presented if it admits a finite generation presentation in
which there are only finitely many relations in the quotient. In this case, we call
the quotient a finite presentation of P.

Corollary 4.17 Suppose P and Q are finite special colored objects on finitely many
colors. Then the properad F(P) ® F(Q) is finitely presented.

Proof Theorem 4.14 exhibits the generating set
I3AQ: [ﬁx@]U[QXQ],

in which € and D are the sets of colors of P and Q, respectively. The hypotheses
imply that this coproduct is a finite set. Moreover, there are only finitely many
generating distributivity relations because both P and Q are finite.

Another consequence of the theorem is that it yields a simple description of maps
out of F(P) ® F(Q).

Corollary 4.18 Suppose P = F (P) and Q = F(Q) are free properads with special
colored generating sets P and Q, respectively. Suppose R is a properad. Then a map
P ® Q — R of properads is equivalent to a map

A 0

PAQ —— R

of colored objects such that the following condition holds: For any p € ﬁ@; b) and
q € QO(c; d), the equality

(100 @ d)}, x @ e 9L,
= o7 [y ({0t @ @)}, x 0@ & )}, |of
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holds in R, where y is the properad structure map of R, and the elements are as in
the distributivity relation (4.2).

Proof By Theorem 4.14 a properad map P ® Q —> R is equivalent to a properad
map F (ﬁAQ) — R such that, for each generating distributivity relation, the images
of the two decorated graphs are equal in R. A properad map out of the free properad
F (P A Q) is equivalent to a colored object map out of PA Q The condition about
respecting the generating distributivity relations is the stated equality.

4.3 Proof of Theorem 4.14

This section contains the proof of Theorem 4.14. One point to keep in mind is that,
although it looks like the proof is quite long, there is really only one main point in
the proof. It consists of several pictures in the proof of Lemma 4.19.

4.3.1 Reduction of Proof

By definition the tensor product F (ﬁ) QF (Q) is obtained from the quotient W (4.4)
by imposing the distributivity relations (4.2). Moreover, by Theorem 4.11 there is a
canonical isomorphism between the free properad F (P A Q) and W. Thus, it suffices
to show that in W every distributivity relation (Sect. 4.1.3) decomposes into a finite
string of generating distributivity relations (Definition 4.12).

Recall that an element in F (13) is a P-decorated connected wheel-free graph, i.e.,
an element in the Cartesian product

—_— A [out(v)
Ple = l—[ P(in(v))

veEVH(G)

for some ¢-colored G € GrcT , where € is the color set of P. Likewise, an element in

F (Q) is an element in
A A [out(u)
T
ueVt(H)

for some ®-colored H € GrcT , where D is the color set of Q

Pick a P-decorated graph

pP = {pU}UEVt(G) € IS[G]
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out(v)

with each p, € 13( in(v)) and a Q-decorated graph

q= {qu}uEVl(H) € Q[H]

with each g, € Q(‘i‘:((;‘))) Suppose | Vt(G)| = m and | Vt(H)| = n. We will show
by induction on m + n that the distributivity relation involving p and g decomposes
into a finite string of generating distributivity relations. We will safely suppress the
permutations in what follows. This is possible because if the distributivity involving
p and g decomposes into a finite string of generating distributivity, then the same is
true for permuted versions of p and g.

Note that if either one of these decorated graphs has O vertex (i.e., it is an
exceptional edge), then distributivity is trivially true because it is a consequence
of the unity axiom in a properad. Therefore, in what follows we may assume
without loss of generality that m,n > 0. Moreover, if m = n = 1, then the
distributivity relation is a generating distributivity relation. This is true because the
only connected wheel-free graphs with exactly one vertex are the permuted corollas.
Therefore, we may further assume that m + n > 3. To improve readability, we will
split the rest of the proof into several steps.

4.3.2 Induction Step

First we consider a special case. Its proof will be reused several times below for
more general cases.

Lemma 4.19 Suppose n = |Vt(H)| = 1 and m = |VU(G)| = 2. Then the
distributivity relation involving p = {p,} and q = {q,} decomposes into a finite
string of generating distributivity relations.

Proof Since n = 1, H is a corolla, and there is only one g,.. So we will simply write
qu as g and draw it as a decorated corolla:

Since G € GrCT has 2 vertices, it is a partially grafted corollas. Write p; (resp., p2)

for the entry in p corresponding to the lower (resp., upper) vertex in G. We will draw
p as a decorated partially grafted corollas:
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The assumption that Pand Q are special ensures that, in these decorated graphs, each
vertex has both incoming flags and outgoing flags. This point will be important in
the proof below.

For ease of drawing the decorated graphs below, we assume that g has two inputs
and two outputs. Likewise, we assume that p, has two outputs and four inputs, two
of which are ordinary edges connected to p;, and that p; has two inputs and four
outputs, two of which are ordinary edges connected to p,. In other words, remove
the - - in the two decorated graphs above. Note that in this case G has four inputs
(resp., outputs), two of which are connected to each p;. The general case will be
obtained as a minor modification of this special case.

We now show that the distributivity involving p and g decomposes into two
generating distributivity. One side of distributivity is the decorated graph:

The top left (resp., right) copy of p is paired with the first (resp., second) output
color of g. Likewise, along the bottom row from left to right, the ith copy of ¢ is
paired with the ith input color of p. We will use such conventions below to simplify
the notations in such decorated graphs. Furthermore, we will not draw permutations
for input and output relabeling.

In the above decorated graph, consider the two copies of p; and the two copies of
q directly connected to them, i.e., the middle two copies of g. Using the generating
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distributivity involving p; and ¢, the above decorated graph is identified with the
following decorated graph:

There is another generating distributivity that can be applied to this latest decorated
graph. To clarify how this is applied, we will redraw the above decorated graph by
swapping the positions of the first two copies of g and also the last two copies of g:

In the above decorated graph, consider the two copies of p, and the four copies
of g that are directly connected to them, i.e., the middle four copies of g. The
generating distributivity involving p, and ¢ now implies that the above decorated
graph is identified with the following decorated graph:
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Up to input and output relabeling, this is the other side of distributivity involving p
and g. Therefore, we have shown that the distributivity relation involving p and ¢
decomposes into two generating distributivity relations.

Finally, the general case of (n, m) = (1, 2) can be proved by a slight modification
of the above four decorated graphs. For example, if ¢ has 3 outputs instead of 2, then
in the first decorated graph for distributivity we begin with three copies of p:

The two generating distributivity are very similar to the ones presented above. For
instance, the first generating distributivity involves the three copies of p; and the
two middle copies of ¢. In other words, in the general case the two generating
distributivity steps are essentially identical to the ones above, but the horizontal
sizes of the decorated graphs may change.
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We next extend the previous lemma by allowing G to have more than two
vertices.

Lemma 4.20 Suppose n = |Vt(H)| = 1 and m = |VU(G)| > 2. Then the
distributivity relation involving p = {p,} and q = {q,} decomposes into a finite
string of generating distributivity relations.

Proof The proof is an induction on m > 2. The initial case m = 2 is Lemma 4.19.
For the induction step, suppose | Vt(G)| > 2. Suppose v is an almost isolated vertex
in G, which exists by Corollary 2.76. We assume that v is weakly terminal. The case
where v is weakly initial has a similar proof.

Since v is weakly terminal, it has only incoming but not outgoing ordinary edges.
Moreover, deleting it from G yields a connected wheel-free graph K. Therefore, G
has the following form:

As in the proof of Lemma 4.19, for ease of drawing the decorated graphs, we assume
that v has two outputs and four inputs, two of which are ordinary edges connected
to K, and that K has two inputs, two outputs, and two ordinary edges connected to
v. We will therefore draw p as the following decorated graph:

Here the decorated graph
PK = {Pwiwevik) € ﬁ[K]

is the restriction of p to K.
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One side of distributivity involving p and g is the decorated graph:

The rest of the proof is similar to that of Lemma 4.19, with p, and pg playing the
roles of p, and pj, respectively.

Since | Vt(K)| = | Vt(G)| — 1, the induction hypothesis applies to px and g. In
other words, the distributivity relation involving px and g decomposes into a finite
string of generating distributivity relations. Using these generating distributivity, the
above decorated graph is identified with the following decorated graph:

Next we apply the generating distributivity relation involving p, and g. In the
previous decorated graph, this is applied to the two copies of p, and the four copies
of g directly connected to them. It is then identified with the following decorated
graph:
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This last decorated graph is the other side of the distributivity relation involving p
and ¢, except for the input and output relabeling.

If the almost isolated vertex v is weakly initial, then the roles of px and p, are
reversed. In this case, starting at one side of the distributivity relation for p and ¢,
we first apply the generating distributivity for p, and g. Next we apply the induction
hypothesis to px and gq.

Finally, for the general case of n = 1 and m > 2, we appropriately adjust the
numbers of copies of p and ¢ in the first decorated graph for distributivity. The
next two steps, using the induction hypothesis and a generating distributivity, are
essentially identical to the ones given above with minor adjustment in the horizontal
sizes of the decorated graphs.

Next we consider the dual case.

Lemma 4.21 Suppose n = |Vt(H)| = 2 and m = |Vt(G)| = 1. Then the
distributivity relation involving p = {p,} and q = {q,} decomposes into a finite
string of generating distributivity relations.

Proof The proof is a minor modification of those of Lemmas 4.19 and 4.20. More
precisely, the first step is to establish the special case (n,m) = (2, 1), which is
similar to Lemma 4.19. This time p is a decorated corolla

o
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while g is a decorated partially grafted corollas:

The distributivity relation involving p and g then decomposes into two generating
distributivity relations. In fact, one may simply reuse the proof of Lemma 4.19 with
the roles of p and g reversed, and with the orientations of all the edges reversed.

The general case of n > 2 and m = 1 is proved by induction on n, with the
initial case n = 2 as in the previous paragraph. For the induction step, one first
decomposes H into a partial grafting of an almost isolated vertex u and a connected
wheel-free graph J, which must have one fewer vertex than H. For example, if the
almost isolated vertex u is weakly terminal, then H decomposes as follows:

Next, as in the proof of Lemma 4.20, one reuses essentially the same argument
as in the special case (n,m) = (2,1), using the induction hypothesis once and a
generating distributivity.

We now consider the general case.

Lemma 4.22 The distributivity relation involving p = {p,} and q = {qu}
decomposes into a finite string of generating distributivity relations.

Proof We consider the induction step for the induction on m + n started just before
Lemma 4.19. Because of Lemmas 4.20 and 4.21, we may further assume that both
n > 2 and m > 2. By Corollary 2.76 and Theorem 2.82, G has an outer properadic
factorization

G= P({vaK}),
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so P is a partially grafted corollas, C, is a corolla, and K is an ordinary connected
wheel-free graph. In particular, | Vt(K)| = | Vt(G)| — 1, and v is an almost isolated
vertex. Then we recycle the proof of Lemma 4.20 essentially verbatim. More
precisely, the distributivity relation involving pgx and g decomposes into finitely
many generating distributivity relations by the induction hypothesis. Next, the
distributivity relation involving p, and g decomposes into finitely many generating
distributivity relations by the induction hypothesis again. (Alternatively, one may
also use Lemmas 4.20 and 4.21 for this last step because v is a single vertex.) This
finishes the induction step.

The proof of Theorem 4.14 is now complete.

Remark 4.23 The above proof of Theorem 4.14 reveals a bit more than the
assertion. Namely, the distributivity relation involving p and g decomposes into mn
generating distributivity relations.

4.4 Internal Hom of Special Properads

In this section, we observe that the category Properadg of special properads
(Definition 3.6) is symmetric monoidal closed by constructing an internal hom of
special properads.

4.4.1 Natural Transformation

Recall that a properad is a generalization of a category in which morphisms have
finite lists of objects as source and target. For ordinary categories, functors and
natural transformations provide the internal hom. For properads, the analogs of
functors are maps between properads. So to define the internal hom of special
properads, we still need a properadic analog of natural transformations, which we
now define.

Definition 4.24 Suppose P is a €-colored special properad, and Q is a ®-colored
special properad.

1. Suppose fi, g; € Properadg(P,Q) with1 <i <k 1 <j <l andkI > 1.
A transformation ¢ with profiles (f:g) is a function that assigns to each color

¢ € ¢ an element
g(c) gi1(c), ..., gl(c)
.€Ql= =Q .
vee (f(c)) (fl(c),...,fk(c))
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2. Suppose p € P(E[l,m]§ d}; ,;)- and ¥ is a transformation with profiles (f; g). Then
we say ¥ is natural with respect to p if the equality

yr ({&/(P) =y X (Ve i)
/ n k k (4.6)
= yr (0, [{(Va}i=y X HiP)}izi] o))

holds in

gl(c_l)s---sgl(d)
f(cl)v s vf(cm) .

Here yr and yy are properad structure maps of Q, and T is the following Q-
decorated graph.

91(d)

(V) (4)
1) I(em)

In the top (resp., bottom) row, the ith vertex from the left is decorated by g;(p)
(resp., ¥,). The rth output of the vertex /,, is connected to the ith input of g.(p).
This internal edge has color g,(c;).

Likewise, before applying the input and output relabeling permutations o’

,, and
ok, T’ is the following Q-decorated graph.
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fi(c) fr(o)

In the top (resp., bottom) row, the jth vertex from the left is decorated by ¥,
(resp., fj(p)). The sth output of the vertex f;(p) is connected to the jth input of
Yq,. This internal edge has color f;(d).

3. A natural transformation is a transformation that is natural with respect to all
elements in P for which (4.6) is defined.

Remark 4.25

1.If k =1 = m = n = 1, then the naturality condition (4.6) is the usual
commutative square that defines a natural transformation in a category.

2. If I = n = 1, then the naturality condition (4.6) becomes the one for operads

[Weil1].

. Natural transformations of PROPs are defined in [HR12].

4. The naturality condition (4.6) is very similar to the distributivity relation
(Sect. 4.1.3). In fact, the two graphs T and T’ (but of course not their decorations)
are the same as in the distributivity relation. Likewise, the restrictions are
introduced to make sure that the graphs T and T’ are connected. A consequence
of this close resemblance between distributivity and naturality is that we will be
able to extend naturality, just like the way we extended generating distributivity
to distributivity in Sect. 4.3.

W

The following observation about extending natural transformations along con-
nected wheel-free graphs is needed to define the properad structure on the internal
hom that we will define shortly. Roughly speaking, it says that any coherent
composition of natural transformations is again a natural transformation. In the very
special case of natural transformations of categories, the following observation is
the simple fact that natural transformations are closed under vertical composition.

To extend naturality along connected wheel-free graphs, we will need the
following definition.

Definition 4.26 Suppose P is a €-colored special properad, Q is a ©-colored
special properad, G is a Properadg (P, Q)-colored connected wheel-free graph,
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and ¢ € €. Define the ®-colored connected wheel-free graph G. as the one obtained
from G by applying its coloring to c.

Lemma 4.27 Suppose

e Pisa €-colored special properad,

* Qs a ®-colored special properad,

* G is a Properadg (P, Q)-colored connected wheel-free graph with profiles
(f; ) in which each vertex v has non-empty in(v) and out(v), and

e YV is a natural transformation with the same profiles as the vertex v for each
v € Vt(G).

Then the transformation ¥° defined by

G a4

Y, Ze ({wf}) force € 4.7

is a natural transformation, where yg, is a properad structure map in Q.

Proof This is proved by induction on | Vt(G)|. First note that if | Vt(G)| < 1 (i.e.,
G is an exceptional edge or a corolla), then the assertion is trivially true.
So we may assume | Vt(G)| > 2. Pick an element p € P, which is as usual

depicted as a decorated corolla.

To show that ¥¢ is natural, we must show that the two decorated graphs in
Definition 4.24, with ¥ in place of ¥, become equal after applying the properad
structure map y in Q. To prove this, take an outer properadic factorization

G=P({C,.K}),
in which P is a partially grafted corolla, K is ordinary connected wheel-free with
one fewer vertex than G, C, is a corolla, and v is almost isolated in G. Such
a factorization exists by Corollary 2.76 and Theorem 2.82. Thus, assuming v

is weakly terminal, we may graphically represent the transformation ¥ as the
following decorated graph.

m
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If v is weakly initial, then ¥* decorates the bottom vertex, and X decorates the top
vertex. We know ¥ is natural, and ¥X is natural by the induction hypothesis.

Recall that the graphs (but not the decorations) in the distributivity relation (4.2)
and naturality (4.6) are the same. Therefore, using the associativity of the properad
structure map y in Q, we may recycle the proof of Lemma 4.20 to show that ¢
is natural. Indeed, all we really have to do is to replace (¢, py, px) in the proof of
Lemma 4.20 by (p, VARVES ) here, using the associativity of y every time naturality
is used to replace one decorated graph by another.

4.4.2 Internal Hom

Definition 4.28 Suppose P and Q are special properads. Define the internal
hom Hom(P, Q) as the S(Properad, (P, Q))-colored object whose elements are
natural transformations in the sense of Definition 4.24.

First we observe that the internal hom has a canonical properad structure.

Lemma 4.29 Suppose P and Q are special properads. Then the internal hom
Hom(P, Q) is a Properadg (P, Q)-colored special properad with structure map

def

ve (V" hewiay) = V¢

asin (4.7).

Proof Lemma 4.27 guarantees that, if each ¢V for v € Vt(G) is a natural
transformation, then so is ¥¢. Associativity and unity of the structure maps y on
Hom(P, Q) are implied by those of the properad Q because

[v6 (V" hvewa)], = ¥ = va. ({¥}) .

in which the right-hand side is an operation in Q.

4.4.3 Symmetric Monoidal Closed Structure

Theorem 4.30 The category Properady is symmetric monoidal closed with
monoidal product ® and internal hom Hom.

Proof Use Theorem 4.6 and Lemma 4.29. The required natural bijection

Properadg (P ® Q,R) =~ Properad, (P, Hom(Q, R)) (4.8)
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follows by unwrapping the constructions of ® (4.1) and Hom (Definition 4.24
and (4.7)). To be more explicit, the correspondence goes as follows.
Suppose P, Q, and R have color sets €, ©, and €, respectively. Given a properad

¢ o
map P®Q —— R, the corresponding map P —— Hom(Q,R) of

properads is defined as follows:

* For a color ¢ € €, the color qoou(c) of the internal hom is the properad map
composition

c®(—) (%
Q— P®Q — R.

 Foran element p € P, the element ¢”(p) of the internal hom is the transformation
ep®—-)={®>3d+— o(p®d) cR}.

The naturality of this transformation is a consequence of the distributivity relation
inP®AQ.

¢
Conversely, suppose given a properad map P —— Hom(Q, R) . The corre-

¢b
sponding properad map P ® Q —— R is defined as follows:

* For a pair of colors (¢, d) € € x ®, define the color

do(c, d) = [po(c)], (d) € €.

Here ¢(c) is a color of Hom(Q, R), i.e., a properad map Q — R. So it has a
map [¢o(c)],:® —> € on color sets.
 For a generatorp ® d € P A Q, define

P’ (p®d) = ¢(p)acR.

where ¢ (p) € Hom(Q, R), i.e., a natural transformation.
» For a generatorc ® g € P A Q, define

¢"(c ® q) = [$o(0)] (9) € R.

It is now a simple exercise to check that the above constructions define mutually
inverse maps.

In fact, the bijection (4.8) is part of an enriched isomorphism.
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Corollary 4.31 Suppose P, Q, and R are special properads. Then there is a natural
isomorphism

Hom (P ® Q, R) =~ Hom (P, Hom(Q, R))

of special properads.
Proof We need to check several things.

1. The bijection between color sets, i.e.,
Properads(P ® Q,R) =~ Properad, (P, Hom(Q, R)),

is (4.8).

2. That the underlying sets of the two internal hom objects are in bijection with each
other follows from a simple adjoint exercise. Indeed, suppose given an element
¢ € Hom(P ® Q, R), i.e., a natural transformation

{Q:X@ > (C,d) > @(c.d) € R} .

The corresponding element ¢ € Hom(P, Hom(Q, R)) is the natural transforma-
tion that sends ¢ € € to the natural transformation

{@ >5d+r— P(c.d) € R}

The map going backward is similar.

3. Finally, the two internal hom properad structures are also isomorphic. Indeed,
as defined in (4.7) and Lemma 4.29, the properad structure of the internal hom
object is induced by that of the target. Therefore, the two internal hom objects
under consideration both have their properad structures induced by that of R.

Remark 4.32

1. The symmetric monoidal closed structure on operads is [Weil 1] (Theorem 2.22).

2. The symmetric monoidal closed structure on PROPs is [HR12] (Theorem 35).
In this setting, the enriched isomorphism in Corollary 4.31 is [HR12] (Proposi-
tion 34).



Chapter 5
Graphical Properads

In this chapter, we define and study the objects, called graphical properads, in
the graphical category for connected wheel-free graphs. The graphical category is
defined in Chap. 6. Graphical properads are freely generated by connected wheel-
free graphs. The construction of these graphical properads is analogous to the way
linear graphs generate the finite ordinal category A. In fact, the graphical category
I' for connected wheel-free graphs contains a full subcategory isomorphic to A, and
another full subcategory equivalent to the Moerdijk-Weiss dendroidal category €2.

Although graphical properads have similar construction as the objects in finite
ordinal category and the dendroidal category, they have very different properties.
In Sect. 5.1, after defining a graphical properad, it is observed that the graphical
properad I'(G) is a finite set precisely when G is simply connected. Thus, most
graphical properads are infinite sets. This is very different from the finite ordinal
category and the dendroidal category, in which every object is finite.

In Sect. 5.2 we discuss the tensor product of two graphical properads, using the
results in Sect.4.2. We then consider an explicit example of the tensor product of
two graphical properads.

In Sect.5.3 we discuss some important properties that does not extend from
the finite ordinal category and the dendroidal category to general properad maps
between graphical properads. A general graphical properad is quite large, so a
general properad map between graphical properads can have strange behavior
that would never happen in the dendroidal category or the finite ordinal category.
Therefore, unlike the finite ordinal category or the dendroidal category, when we
work with all connected wheel-free graphs, we should not take the full subcategory
generated by the graphical properads. As we will discuss in Chap. 6, to have a well-
behaved graphical category for connected wheel-free graphs, we will have to impose
certain restrictions on the maps.

In Sect.5.4 it is observed that the bad behavior of general properad maps
between graphical properads in Sect. 5.3 does not happen when the target is simply
connected. In other words, for graphical properads generated by simply connected
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graphs, general properad maps among them have good properties, as in the finite
ordinal category and the dendroidal category.

As in the previous chapter, the underlying category here is Set. With suitable
restrictions (i.e., using GrCTi or GrCTO instead of GrcT ), everything in Sects. 5.1 and 5.2
has obvious analogs for properads with non-empty inputs or non-empty outputs.

5.1 Properads Generated by Connected Wheel-Free Graphs

In this section, we define free properads generated by connected wheel-free graphs.
They will form the objects in the graphical category for connected wheel-free
graphs.

5.1.1 1-Colored Graphs

Convention 2 Unless otherwise specified, we use the one-colored set {*} to define

the set GrcT of connected wheel-free graphs, i.e., GrcT = GrcT ({*}). We will call

them 1-colored connected wheel-free graphs, or just 1-colored graphs.

One could think of a 1-colored graph as one in which every flag has the same
color. However, eventually we will give every edge a separate color, so it is
psychologically easier to think of the flags as not having any colors to begin with.
The current objective is to define the free properad generated by a 1-colored graph
Ge GrcT . The set of colors used in the free properad construction will be the set of
edges of G defined below.

The intuitive idea is that the edges of G € GrCT can all be given different colors,
so we can color each edge using its own name. Each vertex is then a generating
operation with inputs and outputs parametrized by the incoming and outgoing flags.
This defines a colored object, where the set of colors is the set of edges. Then we
take the free properads generated by this colored object.

Remark 5.1 Suppose G € GrCT is a 1-colored graph.

1. The set Edge(G) of edges is finite, since a graph can only have finitely many flags
to begin with. It is empty precisely when G consists of a single isolated vertex.

2. An edge that is actually an ordinary leg consists of one flag. On the other hand,
an edge that is actually an ordinary edge consists of two flags.

3. Using the set Edge(G) as colors, each vertex v € Vt(G) determines a correspond-
ing pair of Edge(G)-profiles

(?Et(iv))) € S(Edge(G)) = P(Edge(G))” x P(Edge(G))
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In other words, the incoming flags of v determines a profile (i.e., finite ordered
sequence) of edges, each of which is either an input of G or an ordinary edge of
G, and similarly for the outgoing flags of v. Moreover, for two distinct vertices in
G, their corresponding pairs of Edge(G)-profiles are different because G cannot
have two isolated vertices. For an isolated vertex, the pair of Edge(G)-profiles
is (2).
Remark 5.2 1If G is a €-colored connected graph, then we may also regard it as a 1-
colored graph by forgetting about the coloring, i.e., by reassigning to every edge the
same color *. This is true even if € = @& because this implies Edge(G) = @. The
only connected graph with an empty set of edges is the isolated vertex o. But then
we can also regard e as a 1-colored graph, where there is no edge to color. In what
follows, wherever necessary this switch from a €-colored graph to its associated
1-colored graph will be done automatically without further comment.

5.1.2 Generating Set

Next we define the colored object associated to a 1-colored graph, consisting of
essentially its vertices with the input/output Edge(G)-profiles. It will serve as the
generating set for the associated graphical properad.

Definition 5.3 Suppose G € GrcT . Define an S(Edge(G))-colored object G as

follows:
: (d)
Gl =
c

Remark 5.4 Each component of the S(Edge(AG))-colored object G is either empty
or consists of a single element. In particular, G has only finitely many elements.

Example 5.5 Consider the 1-colored graph G € GrcT

vy if (¢) = (%) forv € VH(G),

in(v)

%] otherwise.

with profiles (J; @), vertices {u, v}, and Edge(G) = {e,f}. Then

~lef _ Al 9\
() f2)-v

and all other components of G are empty.
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Example 5.6 Consider the 1-colored graph K

19 13

with profiles ( , three vertices {u, v, w}, and

nis)
i1,i2,i3,03

Edge(K) = {il, iz, i3, i4, o, e,f, 8, h}

ktf)zm,kﬁajzwhk(‘z)zaw
i, 13 fia i1,e g, h

and all other components of K are empty.

Then

Recall the underlying functor F = F_ 1 of the free properad monad (3.3).

Definition 5.7 Suppose G € GrcT . Define the free Edge(G)-colored properad
L(G) = F(G).

called the graphical properad generated by G.

Remark 5.8 To explain what I'(G) means intuitively, recall from (3.3) that the
free properad FP of an S(€)-colored object P consists of P-decorated €-colored
connected wheel-free graphs, whose properad structure maps y are given by graph
substitution. For a vertex v in G, the corresponding element in G can only decorate
a vertex with equal profiles in an Edge(G)-colored connected wheel-free graph. So
an element in I'(G) is an Edge(G)-colored G-decored connected wheel-free graph.

Notation 2 If there is no danger of confusion, we sometimes abbreviate:

* a graphical properad I'(G) as G, and
e amorphism ['(G) — I'(H) € Properadas G — H.
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5.1.3 Size of Graphical Properads

Next we characterize the finiteness of a graphical properad I'(G) using a graph
theoretic property of G. The upshot is that there is a big jump in the size of I'(G)
once G is not simply connected.

Theorem 5.9 Suppose G € Grj_. Then the graphical properad I'(G) is a finite set
if and only if G is simply connected.

Theorem 5.9 is a combination of two observations, the first of which requires the
following preliminary fact.

Lemma 5.10 Suppose G € GrcT is simply connected. Then each vertex v in G can
appear in each element in T'(G) at most once.

Proof Suppose to the contrary that there exists a vertex v in G that appears in some
K € I'(G) at least twice. Since K is connected, there is an internal path P in K from
one copy of v, say vy, to another copy of v, say v,. Since G has no loops, P must
contain another vertex u # v of G. We may visualize P as follows.

The two ordinary edges of P adjacent to u must be distinct ordinary edges of
G. Taking an internal sub-path of P if necessary, it follows that G has a cycle
containing u, contradicting the simple connectivity assumption on G. Therefore,
each v € Vt(G) can appear at most once in each Edge(G)-colored G-decorated
graph K € I'(G).

The next observation should be of some interest on its own.

Lemma 5.11 Suppose G € GrCT is simply connected. Then each element in the
graphical properad T'(G), regarded as an Edge(G)-colored G-decorated connected
wheel-free graph, is also simply connected.

Proof Suppose K € I'(G) and u, v € Vt(K) are distinct vertices. We must show that
there exists a unique internal path in K with end vertices u and v. Since u and v are
distinct vertices in K, they are also distinct vertices in G by Lemma 5.10. Moreover,
since K is connected, there is an internal path P in K with end vertices u and v. To
see that P is unique, note that the vertices in P are distinct vertices in K by definition,
so they are also distinct vertices in G by Lemma 5.10 again. It follows that P is also
an internal path in G with end vertices « and v. Since G is simply connected, such
an internal path is uniquely determined by its end vertices.

The next observation gives half of Theorem 5.9.

Lemma 5.12 Suppose G € GrLT. is simply connected. Then the graphical properad
I'(G) is a finite set.
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Proof If G is an exceptional edge 1, then I'(G) consists of only the unit colored by
1. So suppose G has at least one vertex. Each K € I'(G) is either an exceptional
edge colored by some edge in G, or else it is, up to listing, uniquely determined by
its set of vertices Vt(K) € Vt(G) by Lemma 5.11. Since Edge(G) and Vt(G) are
both finite, it follows that I'(G) is finite as well.

The next observation is the other half of Theorem 5.9.

Lemma 5.13 Suppose G < GrcT is not simply connected. Then the graphical
properad I' (G) is an infinite set.

Proof We will exhibit an infinite sequence of distinct elements in I'(G). Since G is
not simply connected, it contains a cycle. So there exist

e two distinct vertices u and v in G, and
* two internal paths P and Q with end vertices « and v that do not have any common
ordinary edges or common vertices besides « and v.

We represent this situation as in the following picture.

Each of u and v may have flags that are not part of P and Q, which for simplicity we
are not drawing in the above picture. For each integer n > 1, consider the following
Edge(G)-colored G-decorated graph K.

Each v; (resp., u;) is a copy of v (resp., u). There are n copies of P, each represented
by a vertical dashed line. There are n copies of Q, including the slanted dashed line
and the smooth dashed curve from v, to u;. Since the K,, are all different elements
in the free properad I'(G), the latter is infinite.

Lemmas 5.12 and 5.13 now combine to yield Theorem 5.9.
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Example 5.14 Consider the connected wheel-free graph G

with vertices {u,v,w}, ordinary edges {e,f, g}, and profiles (&; @). Using the
constructjon in the proof of Lemma 5.13, for each n > 1 there is an Edge(G)-
colored G-decorated graph

with profiles (&; @). There are n copies of each of u, v, and w. This gives an infinite
list of distinct elements in I'(G).

We can also twist the above construction as follows. There is an Edge(G)-colored
G-decorated graph

with profiles (g;f), n copies of v, n copies of u, and n — 1 copies of w. This gives
another infinite family of distinct elements in I'(G).
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5.2 Symmetric Monoidal Product

Recall that Properad is a symmetric monoidal category (Theorem 4.6). In this
section, we consider the tensor product of two graphical properads along with one
elaborate example.

5.2.1 Symmetric Monoidal Product of Graphical Properads

In Theorem 4.14 it was shown that the tensor product of two free properads, F (13)
and F(Q) with P and O special, is the quotient of the free properad F (P A Q) by
the generating distributivity relations. Moreover, in Corollary 4.17 it was observed
that, when the special generating sets P and Q are finite on finitely many colors, the
tensor product F (P) ® F(Q) is finitely presented.

A graphical properad I'(G) with G € GrcT is the free properad F (G). The
generating set G is finite, whose elements are the vertices in G. Its color set is
the edge set Edge(G). Therefore, Theorem 4.14 and Corollary 4.17 both apply to
graphical properads generated by special graphs (Definition 2.28).

Corollary 5.15 Suppose G,H € Grj.s. Then there is an isomorphism
F(G A H)

I'G)®I'H) =
(G & I'(H) generating distributivity

of properads. In particular, this tensor product is finitely presented.

Remark 5.16 In the context of Corollary 5.15, using the original definition of the
tensor product, the generating set is I'(G) A I'(H). Suppose either G or H is not
simply connected. Then this generating set is infinite by Theorem 5.9. There are
infinitely many distributivity relations, one for each element in I'(G) x I'(H), with
a few exceptions. The previous corollary says that the original description of the
tensor product for graphical properads is redundant. The tensor product of two
graphical properads is always finitely generated with finitely many relations.

Example 5.17 Corollary 4.18 also applies to any two graphical properads I'(G) =
F (G) and'(H) = F (I:I) with G,H € GrCTS. In this case, the colored object GAH
has

* color set Edge(G) x Edge(H), and
* clement set the coproduct

[V(G) x Edge(H)] | [ [Edge(G) x Vi(H)].
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The equality in Corollary 4.18 corresponds to generating distributivity. In particular,
there are only finitely many such equalities to check because both Vt(G) and Vt(H)
are finite.

The rest of this section contains an explicit example of the tensor product of two
graphical properads.

5.2.2 The Connected Wheel-Free Graphs

In the rest of this section, we consider the following two connected wheel-free
graphs.

1. Suppose G is the connected wheel-free graph:

There are three vertices {u, v, w}, two inputs {e}, e;}, three outputs {e3, e4, €5},
and four internal edges {e¢, €7, es, e9}. The set of edges is

Edge(G) = {el, ey 69},
and G is the Edge(G)-colored set with three elements
ue é<e6’e7), v E é<€8,€9,€5)’ and we é( 3. )
4 e7, e €6, €8, €9

As before, we will draw these elements as decorated corollas:
e e €9
6&@) 7 egj f es €3 ey
e e €6 €9
e1 7 2 es

Note that G is not simply connected. In particular, the graphical properad I'(G)
is an infinite set by Theorem 5.9.
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2. Suppose H is the connected wheel-free graph:

Ja
1
fe f7
fs
fa f3

There are two vertices {x, y}, three inputs {f1, >, f3}, two outputs {fs, f5}, and two
internal edges {fs, f7}. The set of edges is

Edge(H) = {f], e ,f7},

and H is the Edge(H)-colored set with two elements

xeH Jo:t1.J5 and yeH fi )
f2 7.}% fl 7f6 sf7
They will be drawn as the decorated corollas:

fo Iz : Ja
fa I3 bil g

Note that H is also not simply connected, so the graphical properad I'(H) is
infinite by Theorem 5.9.

5.2.3 The Smash Product

Recall from Corollary 5.15 that there is an isomorphism

F(G A H)

I'G I'(H) =~
(@ eTIH) generating distributivity
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of properads. To provide a description of the tensor product I'(G) ® I'(H), let us
first describe the smash product of the generating sets G and H.

1. The set of colors of G A H is the Cartesian product
Edge(G) x Edge(H) = {(ei.f):1 <i<9,1<j<7}.
2. The element set of G A H is the coproduct
GAH= [é x Edge(H)] 11 [Edge(G) x H]
= {u Qfi,v ®f,w®ﬁ}lsjs7]_[{ei ® x, e; ®y}1§i§9.

In particular, the colored object G A H has 16 elements on 63 colors.

5.2.4 Generating Distributivity

The generating distributivity relations correspond to the elements in the Cartesian
product G x H, so there are six generating distributivity relations. We will list them
explicitly. For this purpose, we will use the same conventions for drawing decorated
graphs as in the proof of Theorem 4.14. In particular, input and output relabeling
permutations will not be drawn.

1. The generating distributivity relation for u € G andx € H identifies the following
two decorated graphs, i.e., elements in F(G A H):

For the decorated graph on the left, the three copies of u from left to right are
u® fo, u ® f7, and u ® f5. The bottom copy of x is e; ® x. The input and output
profiles are

(6. f6), (e7.f6). (e6.f7), (€7.f7), (€6.f5). (e7.f5)
(e1./2), (e1,/3) '
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The three internal edges from left to right have colors (ey,fs), (e1,f7), and
(e1.f5)-

For the decorated graph on the right, the two copies of x from left to right are
e6 ® x and e7 ® x. The two copies of u from left to right are ¥ ® f> and u ® f;.
The input and output profiles are

(e6:f6). (€6./7), (e6.15). (e7.f6). (e7.f1). (e7.[5)
(e1.f2), (e1.f3)

The two internal edges from the left copy of u have colors (eg, f2) and (e7, f>). The
two internal edges from the right copy of u have colors (eg, f3) and (e7, f3). The
decorated graph on the right requires an output relabeling. Similar descriptions
will apply to the decorated graphs in the next five generating distributivity
relations, and we will therefore omit them.

2. The generating distributivity relation for u € G and ye€ H identifies the following
two decorated graphs:

Neither input nor output relabeling is needed in this case.
3. The generating distributivity relation for v € G and x € H identifies the following
two decorated graphs:

Both input and output relabeling are needed on the right-hand side.
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4. The generating distributivity relation for v € G and y € H identifies the following
two decorated graphs:

An input relabeling is needed on the right-hand side. .
5. The generating distributivity relation for w € G and x € H identifies the
following two decorated graphs:

Both input and output relabeling are needed on the right-hand side.
6. The generating distributivity relation for w € G and y € H identifies the
following two decorated graphs:

An input relabeling is needed on the right-hand side.
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5.2.5 Generating Distributivity in Action

Let us provide an explicit example of how generating distributivity applies to
decorated graphs. Consider the following element K in F (G A H)

Let us describe the vertices in each row from top to bottom. The top w is w ® fa.
On the next row, both copies of v are v ® f4. On the third row, the two copies of y
are e; ® y and e; ® y, while the right-most u is u & f4. The remaining bottom right
vertices are e; @ y and e; ® x. Observe that there are two copies of v ® f4 and three
copies of y, each paired with a different e;.

Next we list the colors of the internal edges from top to bottom and from left
to right. The two internal edges from the two copies of v to the top w have colors
(es,f1) and (eo, f1). On the next row, the two internal edges from e; ® yand e; ® y
to the left copy of v have colors (e7,f1) and (ez, f3). The internal edge from u to the
right copy of v has color (e7, f3). The internal edge from the right copy of y to u has
color (ey,f1). The two internal edges out of the bottom right x have colors (ey, f5)
and (e1, f7).

The decorated graph K has 11 inputs and 8 outputs. More precisely, its input and
output profiles are

(e9.f2) (e5.f2), (e3.f2), (es.fa), (e6. ). (es.fa). (e5,f4), (1. f5)
(67,f1), (e7vf6)7 (67,f7), (e29f1)9 (629‘)(.6)’ (629‘)(.7)9 (66,](;&), (el ﬁfl)v (el ﬁf2)v (el 9f3)9 (629‘)(;‘) ’
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Similar descriptions apply to the next decorated graph, so we will once again omit
them.

The generating distributivity relation involving v and y can be applied on the
left side of K, while the generating distributivity relation involving # and y can
be applied on the right side of K. Therefore, as an element in the tensor product
I'(G) ® I'(H), the image of K is equal to the following decorated graph:

Both input and output relabeling are needed for this decorated graph. Note that here
there are five copies of y, four copies of v, and three copies of u.

5.3 Maps of Graphical Properads

The graphical category I' for connected wheel-free graphs will be defined as a
certain non-full subcategory of Properad with objects the graphical properads.
In this section, we give some examples of maps between graphical properads to
illustrate that, without suitable restrictions, such maps can have very wild behavior
compared to the finite ordinal category and the dendroidal category. These examples
will serve as motivation for the restrictions on the maps in I" that will be defined in
Definition 6.46.
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5.3.1 Maps Between Graphical Properads
First let us make it explicit what a properad map out of a graphical properad

constitutes.

Lemma 5.18 Suppose G € GrI, and Q is a D-colored properad. Then a map

r'(G) . a

of properads is equivalent to a pair of functions:

fo
1. A function Edge(G) —— D.

2. A function fi that assigns to each vertex v € Vt(G) an element fi (v) € Q(f;io(iﬁt((vv)))

Proof This is a special case of Lemma 3.28, since ['(G) = F (é) has color set
Edge(G), and its elements are the vertices in G with their S(Edge(G))-profiles.

If we apply Lemma 5.18 when Q is a graphical properad as well, then we obtain
the following observation.

Lemma 5.19 Suppose G,H € Grj.. Then a map
!
r'G) —— T'(H)

of properads is equivalent to a pair of functions:

fo
1. A function Edge(G) —— Edge(H).

2. A function fi that assigns to each vertex v € Vt(G) an Edge(H)-colored H-
decorated connected wheel-free graph

out(v
A eren (o).
foin(v)
Example 5.20 Suppose G = 1, which has no vertices, and Q is a ®-colored
properad. Then a map
f
rey) — Q

of properads is equivalent to a choice of a color d € ®, since Edge(G) = {1}.
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Example 5.21 Suppose there is a graph substitution decomposition K = H(G) in

GrcT, in which:

CH#E A,
¢ G is substituted into a vertex w in H, and
* acorolla is substituted into every other vertex in H.

As discussed in Notation 1, there are canonical injections
Edge(G) ——— Edge(K) and Vi(G) —— Vi(K).

These injections induce a map G —> K, which simply sends each edge/vertex in G
to its corresponding image in K.

Convention 3 In what follows, we will often write down a properad map

¢
I'(G) —— T'(H) for specific graphs G and H by drawing the graphs and

specifying the functions ¢y and ¢; .

5.3.2 Non-determination by Edge Sets

An important fact in the finite ordinal category A and the Moerdijk-Weiss den-
droidal category 2 is the following statement.

f
Everymap § —— T in A and Q is uniquely determined by what it does on edges,

Jo
i.e., the function between color sets Edge(S) —— Edge(7).

The reason this statement is true is that, for a simply connected graph T, each
vertex in T can appear in each element in I'(7) at most once by Lemma 5.10, and
that in a simply connected graph any two vertices are connected by a unique internal
path. This fact is used, for example, in the proof of [MT10] Lemma 2.3.2 (= epi-
mono factorization in €2). The following example illustrates that a general properad
map between graphical properads is not determined by its action on edge sets.

¢
Example 5.22 Consider the properad map I'(G) —— T'(H),

01 02
14
— € Y
11 19
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defined as follows:

* @o(i1) = @o(01) = e, and go(i2) = ¢o(02) = g.
e ¢1(u) is the following Edge(H)-colored H-decorated connected wheel-free

graph.

This is well-defined because ¢; (#) should be an element in " (H) with profiles
go(01),90(02) | _ [e.8
Po(i1), ¢o(i2) e.g)
¢
There is another properad map I'(G) —— I'(H) defined as follows:

* $o = go.
e ¢1(u) is the following graph.

This example shows that a general properad map between two graphical properads
is not determined by its function on edge sets.
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Example 5.23 Here is an even more dramatic example that illustrates that a
properad map between two graphical properads is not determined by its function
on edge sets. Suppose G is the following connected wheel-free graph.

¢
Define the properad map I'(G) —— TI'(G) as follows:

* @9 = Id on Edge(G). A
¢ ¢i(v) = Cy, the corolla at v, i.e., the Edge(G)-colored G-decorated corolla

with two inputs. .
e ¢1(u) is the following Edge(G)-colored G-decorated connected wheel-free
graph.

This is well-defined because the vertex u in G has two outputs with colors e and
f, and no inputs.

Notice that ¢9 = Id, but ¢ is not the identity map on I'(G). Moreover, G is
simplest connected wheel-free graph that is not simply connected. So this sort of
non-determination behavior can happen even for very simple connected wheel-free
graphs.

5.3.3 Non-injections

We need the following definition of a linear branch to discuss the next cosim-
plicial/dendroidal fact that does not extend to a general properad map between
graphical properads.
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Definition 5.24 Suppose G is a connected wheel-free graph.

1. Alane in G is a pair

P= (@), )2))

with r > 2 such that all the conditions of an internal path (Definition 2.18) not
involving the end vertices are satisfied, except that e' and ¢ may be ordinary
legs.

2. A branch in G is a lane such that every vertex v; has one incoming flag and one
outgoing flag.

3. Alinear branch in G is a branch in which

* ¢! has terminal vertex v,
* ¢ has initial vertex v;—; and terminal vertex v; for 1 <j < r, and
e ¢ has initial vertex v,_i.

Another important fact in the finite ordinal category A and the dendroidal
category €2 is the following statement.
p
Suppose amap § —— in A or Q satisfies fy(a) = fo(b) for two distinct edges a
and b in S. Then

* aand b belong to the same linear branch of S, and
« f sends all the vertices between a and b to the fy(a)-colored exceptional edge.

The above fact in the dendroidal category is used in the proof of [MT10]
Lemma 2.3.2 (= epi-mono factorization in €2). It is a consequence of the fact
that every map in €2 is uniquely determined by the function on edges, which was
discussed above. This fact does not extend to general properad maps between
graphical properads. In fact, it fails in several different ways, as we illustrate in
the following three examples.

Example 5.25 In this example, we exhibit a properad map between graphical
properads such that there exist two edges with the same image that do not belong to

v
the same linear branch. Consider the following properad map H —— G |

€1

that is defined as follows.
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* H has two vertices {u/, v'}, one internal edge f’ from ' to v/, one input leg e_;
attached to v/, and one output leg e; attached to u’'.

e Gis asin Example 5.23.

* Yole:) = eand Yo(f) =f.

* Y (u') = C, (the corolla at u) and v, (v') = C, (the corolla at v).

Now observe that ¥ (e;) = e = Y¥o(e—1), but the edges e; and e—; do not belong to
the same linear branch in H.

Example 5.26 From Example 5.25, one might think that for the dendroidal fact
under discussion to fail for graphical properads, the two offending edges should not
lie on the same linear branch. This is not the case. In this example, we exhibit a
properad map between graphical properads such that there exist two edges on the
same linear branch with the same image such that a vertex in between is not sent to
the identity.

¢
Consider the following properad map J —— G in T,

€_1
é — . f
el
(W)

that is defined as follows.

» Jis the corolla with one input e; and one output e_;.
e Gis asin Example 5.23.

s pole)) =e. A

e ¢1(w) is the Edge(G)-colored G-decorated graph

with two vertices {u, v}, one internal edge f from u to v, one e-colored input leg
attached to v, and one e-colored output leg attached to u.

Now observe that ¢o(e1) = e = ¢o(e—), that e; and e_; belong to the same linear
branch in J, and that the vertex w in J is not sent to the e-colored identity.
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Example 5.27 Examples 5.25 and 5.26 may lead the reader to think that for the
dendroidal fact under discussion to fail for graphical properads, any two offending
edges should not be both input (or both output) flags of the same vertex. This is once
again not the case. In this example, we exhibit a properad map between graphical
properads that sends two input flags of a vertex to the same image.

0
Consider the following properad map K —— L inT,

o .,
Q. = )

€1 €92

that is defined as follows.

* K is the corolla with two inputs e; and e;, and no outputs.

* L has two vertices {v, w}, two internal edges {f, g} from v to w, one input leg e
attached to v, and no outputs.

s Oole) =e. .

e 0;(u) is the Edge(L)-colored L-decorated graph

with two copies of v, two copies of w, two e-colored input legs, and no outputs.

Now observe that both e; and e; are incoming flags of the vertex u, and they both
have image e.

5.4 Maps with Simply Connected Targets

In this section we make several observations concerning maps between graphical
properads with simply connected targets. The upshot is that the bad behavior of
general properad maps between graphical properads, as exhibited in Sect. 5.3, does
not occur when the graphs are simply connected.
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5.4.1 Simply Connected Targets

The following observation says that a simply connected target guarantees a simply
connected source.

¢
Proposition 5.28 Suppose G —— H is a properad map between graphical
properads with H simply connected. Then G is also simply connected.

Proof Suppose to the contrary that G is not simply connected. Since G is connected
wheel-free to begin with, this means that there exists a cycle P (Definition 2.18) in G.
We may regard P as an element in I' (G) by using the vertices and ordinary edges in P

as well as all the flags attached to these vertices. By definition, the Edge(H)-colored
H-decorated graph ¢(P) € I'(H) is obtained as the following graph substitution:

¢(P) = lpo(P)] ({o1()}uevip)) -

Since each ¢;(u) € T'(H) is connected and since P has a cycle, it follows that
@(P) € I'(H) also has a cycle. But this cannot happen by Lemma 5.11. Therefore,
G must be simply connected.

5.4.2 Injectivity on Inputs and Outputs

In Example 5.27 we exhibited a properad map between graphical properads in which
two input edges of a vertex are sent to the same image. The next observation says
that for this to happen, the target cannot be simply connected.

¢
Proposition 5.29 Suppose G —— H is a properad map between graphical

properads with H simply connected, and u € Vt(G). Then the restrictions of the
function

2
Edge(G) —— Edge(H)

to in(u) and to out(u) are both injective.

Proof Suppose to the contrary that there are two distinct input edges a,b € in(u)
with

po(a) = e = ¢o(b) € Edge(H).

Recall that ¢;(#) € T'(H) has input/output profiles the ¢y-images of those of u.
Since a and b are input edges of u, the color e appears at least twice in the input



122 5 Graphical Properads

profile of ¢;(u). In particular, e is an input edge of a unique vertex w € Vt(H),
which appears in ¢; () at least twice. But this cannot happen by Lemma 5.10. The
proof for the case a, b € out(u) is nearly identical.

5.4.3 Non-injections

As discussed above, in the dendroidal category, when two edges are sent to the
same image, the two edges must lie in the same linear branch (Definition 5.24) of
the source. Moreover, the map must send all the vertices between these two edges
to identities. The following observation is an extension of this dendroidal fact to
graphical properads generated by simply connected graphs.

¢
Proposition 5.30 Suppose G —— H is a properad map between graphical

properads with H simply connected. Suppose a and b are distinct edges in G with
@o(a) = ¢o(b). Then:

1. There is a unique linear branch

P= (), 0)2))

in G with {e', e’} = {a, b} as sets.
2. The map @, sends all the vertices in P to the ¢y(a)-colored identity.

Proof By Proposition 5.28 G is simply connected. If H = 1, then I'(H) contains
only the unit element. This forces every vertex in G to have one incoming flag
and one outgoing flag, i.e., G is a linear graph. In this case, the two assertions are
immediate. So now we assume that H # 1. In particular, every edge in H is
adjacent to at least one vertex.

By Proposition 5.29, there does not exist u € Vt(G) such that a,b € in(u) or
a,b € out(u). So there exists a unique lane P in G (Definition 5.24) whose end
edges are a and b. Regard P as an element in I'(G) by using its ordinary edges and
vertices as well as all the flags attached to these vertices in G. Suppose

po(a) = ¢o(b) = e € Edge(H).
By definition ¢ (P) € I'(H) is the graph substitution
@(P) = [po(P)] ({@11}uevip)) -
The edges a and b cannot be both input legs of P because otherwise the terminal

vertex of e would appear in ¢(P) € I'(H) at least twice. By the simple connectivity
of H and Lemma 5.10, this cannot happen. Likewise, a and b cannot be both output
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legs of P. Switching names if necessary, we may assume without loss of generality
that a is an input leg of P, and b is an output leg of P.

To prove the two stated assertions, it suffices to show that ¢(P) is the e-colored
exceptional edge 7. € I'(H). Indeed, the only way to get such an exceptional edge
as a graph substitution of connected wheel-free graphs is to substitute exceptional
edges into a linear graph. To show that ¢(P) is the e-colored exceptional edge, it
in turn suffices to show that ¢(P) contains no vertices. Indeed, ¢(P) € I'(H) is
simply connected by Lemma 5.11 and has the color e among its input legs and
also among its output legs. The only simply connected graph with no vertices is
the exceptional edge 1. So if ¢(P) has no vertices, then it must be the e-colored
exceptional edge.

Since ¢(P) has ¢ € Edge(H) among its input legs and among its output legs, e
must have both an initial vertex v € Vt(H) and a terminal vertex w € Vt(H), as in
the following picture.

Suppose @(P) has at least one vertex. Then the vertex w appears in ¢(P) and
contributes an e-colored input leg. Likewise, the vertex v appears in ¢(P) and
contributes an e-colored output leg. This is, however, impossible because in the
simply connected graph ¢(P) (Lemma 5.11), the only way to connect w with v is
through the e-colored ordinary edge. This means that ¢ (P) contains no vertices.

5.4.4 Unique Determination by Edge Sets

In Examples 5.22 and 5.23, we showed that a general properad map between two
graphical properads is not necessarily determined by its action on edges. We now
observe that such non-determination by edge sets can only happen when the target
is not simply connected. The following preliminary observation is needed.

Lemma 5.31 Suppose H € G]’:CT is simply connected such that the component
I'(H) (g) is non-empty. Then the following statements hold.

1. H has input/output profiles (3; &).
2. T'(H) (g) is the singleton consisting of H.

Proof Suppose K € I'(H) (g). We first claim that K contains all the vertices in H. If
this is not true, then we can pick w € Vt(H) that does not appear in K and u € Vt(H)
that does appear in K. Since H is simply connected, there exists a unique internal
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path in H with end vertices # and w. Choosing closer vertices if necessary, we may
assume without loss of generality that there is an internal edge e in H that is adjacent
to both w and u. On the other hand, since K has empty input and output profiles,
every vertex adjacent to u in H must also be in K. This contradicts the existence of
w. Therefore, K must contain all the vertices in H. By Lemma 5.10 each vertex in
H can appear in K at most once, and hence exactly once by the previous sentence.
By the simple connectivity of H and K (Lemma 5.11), we must have K = H.

¢
Proposition 5.32 Suppose G —— H is a properad map between graphical
properads with H simply connected. Then ¢ is uniquely determined by the function

%0
Edge(G) —— Edge(H) .

Proof Suppose u € Vt(G). Then ¢; (u) is an Edge(H)-colored H-decorated graph
with input/output profiles the ¢p-images of those of i, i.e.,
out(u
OTINC)] i)
@o in(u)

The input (resp., output) profile ¢ in(u) (resp., go out(u)) is a subset of Edge(H). If
it is non-empty, then it corresponds to a unigue subset of Vt(H) by Lemma 5.10.
In other words, the vertices in ¢ («) that contribute to the profiles ¢ in(x) and
@o out(u) are uniquely determined by the function ¢y. But then the other vertices
in ¢ (u)—namely, those that do not contribute to either the input or the output
profiles of ¢; (u)—are also determined because, in a simply connected graph, any
two vertices are connected by a unique internal path.

The only remaining case is when both in(u) and out(u«) are empty, which can only
happen if G itself is a single isolated vertex u. In this case, we have Edge(G) = &,
and ¢ is the trivial function. Since ¢;(u) € I'(H)(Z), by Lemma 5.31 we have

¢1(u) = H.



Chapter 6
Properadic Graphical Category

The main purpose of this chapter is to define the maps in the graphical category
I for connected wheel-free graphs, whose objects are graphical properads (Defini-
tion 5.7).

As the examples in Sect. 5.3 illustrate, in order to avoid bad behavior for maps
between graphical properads, we should not take the full subcategory of Properad
generated by graphical properads. Some restrictions on the maps are necessary. In
particular, in each of the offending examples in Sect. 5.3, the source is not sent to a
subgraph, which we will define precisely in this chapter, of the target. In contrast, as
a consequence of simple connectivity, every category (resp., operad) map between
linear graphs (resp., unital trees) automatically sends the source to a subgraph of the
target. It turns out that this condition is sufficient to yield graphical analog of the epi-
mono factorization and other good properties. So we will use this condition—that
the image of the source is a subgraph of the target—to define maps in the graphical
category.

There are several equivalent ways to define the concept of a subgraph of
a connected wheel-free graph. We will define it using outer coface maps and
relabelings. In Sect.6.1 we define inner coface maps, outer coface maps, and
codegeneracy maps between graphical properads. In addition to the definition of
a subgraph, coface maps will be used in Sect.7.1 to define co-properads. When
restricted to linear graphs and unital trees, our coface and codegeneracy maps
restrict to those in the finite ordinal category A and the Moerdijk-Weiss dendroidal
category 2 [MWO7].

In Sect. 6.2 we show that the cosimplicial identities in A have precise analogs for
connected wheel-free graphs. The graphical analog of the cosimplicial identity

dd = dd™" fori<j

is more involved than in either A or 2. The reason is that graphical coface maps,
just like in A and €2, are defined by either deleting an almost isolated vertex or by
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smashing two closest neighbors together. These concepts were discussed in Chap. 2.
For general connected wheel-free graphs, mixing these operations requires a lot of
care. This is why the graphical analog of the above cosimplicial identity needs more
work.

In Sect. 6.3 we define relabelings, subgraphs, and maps in the graphical cate-
gory I' for connected wheel-free graphs, called properadic graphical maps. All
inner/outer coface maps, codegeneracy maps, subgraphs, and changes of listings are
in I'. Subgraphs are characterized in terms of graph substitution decompositions.
A properadic graphical map is defined as a map between graphical properads such
that the image is a subgraph of the target. This condition is shown to be equivalent
to the requirement that every subgraph of the source is sent to a subgraph of the
target. Then we establish the graphical analog of the epi-mono factorization in A
and €2 for properadic graphical maps. We show that each properadic graphical map
has a unique decomposition, up to isomorphism, into codegeneracy maps followed
by coface maps. Furthermore, a properadic graphical map is uniquely determined
by its action on edge sets.

In Sect. 6.4 we recall the definition of generalized Reedy category due to Berger
and Moerdijk. This generalization is needed to deal with categories which have
non-identity isomorphisms. We use results from previous sections to show that the
graphical category I" and its opposite I'” admit such generalized Reedy structures.

As in previous chapters, all the definitions and results about properads in this
chapter have obvious analogs for properads with non-empty inputs or non-empty
outputs.

6.1 Coface and Codegeneracy Maps

In this section, we define coface and codegeneracy maps between graphical
properads, which will be used to define maps in the graphical category and the
notion of an co-properad. These maps extend the coface and codegeneracy maps in
the finite ordinal category A and the dendroidal category 2.

6.1.1 Inner Coface Maps

To motivate our construction below, consider the finite ordinal category A. In A a
coface map is inner if it is neither the top coface map nor the bottom coface map.
In terms of linear graphs, an inner coface map d': [n] —> [n + 1]in A (0 < i < n)
corresponds to substituting the 1-colored linear graph L, depicted as
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1+ 1

1—1

into the vertex

of the 1-colored linear graph L, with n vertices. In other words, the inner coface map
d': [n] —> [n+1] corresponds to the inner properadic factorization (Definition 2.54)

Lyy1 =L, (Ly)

of L, +1, with distinguished subgraph L, substituted into the vertex v;.

Generalizing the setting of linear graphs, for connected wheel-free graphs an
inner coface map corresponds to an inner properadic factorization, with the outer
graph as the source.

Definition 6.1 Suppose G,K € GrcT . An inner coface map

w

rGy — Ik

is a properad map, corresponding to an inner properadic factorization K = G(H,,)
of K (Definition 2.54), defined by

” H, ifw=uv,
dy(v) = .
C, otherwise,
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where C, is the corolla with the same profiles as v € Vt(G). The map

dy
Edge(G) —0> Edge(K)

sends
(in(w); out(w)) — (in(H,,); out(Hy))

and all other edges in G to the corresponding ones in K = G(H,,).

Remark 6.2 Recall from Theorem 2.59 that K admits an inner properadic factoriza-
tion G(H,,) precisely when the vertices u and v in H,, are closest neighbors in K. In
this case, G is obtained from K by smashing these closest neighbors together and
deleting all the ordinary edges adjacent to both of them. Therefore, we say that an
inner coface map I'(G) — I'(K) as in Definition 6.1 corresponds to the closest
neighbors « and v.

Example 6.3 When restricted to linear graphs, an inner coface map as above is the
same as one in A. Indeed, in an inner properadic factorization

K= G(Hw)y

the distinguished subgraph H,, is assumed to be a partially grafted corollas. The
only partially grafted corollas in ULin is the linear graph L, with two vertices. So
Definition 6.1 restricts to the usual definition of an inner coface map in A.

Example 6.4 Similarly, when restricted to unital trees, Definition 6.1 restricts to the
Moerdijk-Weiss inner coface map in the dendroidal category [MWO7]. Note that
those authors actually call these inner face maps.

Example 6.5 Suppose G is a partially grafted corollas with profiles (c;d). Then
there is an inner coface map

Ceay — G

corresponding to the inner properadic factorization G = C¢q)(G).

Example 6.6 For the graph K in Example 2.51, its only two inner properadic
factorizations are in Examples 2.57 and 2.58. Using the notation in those examples,
the diagram

Cloye) — G

Tk

o —< K
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contains all the iterated inner coface maps ending at K. Here C(g) is an isolated
vertex, and the two unnamed inner coface maps are as in Example 6.5.

As we will see later, inner coface maps can be used to factor maps in the
properadic graphical category. The following observation is a preliminary version
of such a factorization. We will use Notation 1.

Lemma 6.7 Suppose K = G(H,) in Grj with H,, # 1. Then the map

¢
G —— K determined by

C, ifu#w,

@1(u) =
H, lf u=w,

has a decomposition into inner coface maps and isomorphisms induced by changes
of vertex listings.

Proof Write H for H,,. We prove the assertion by induction on n = | Vt(H)| > 0.
If n = 1, then H is a permuted corolla, and K is obtained from G by changing the
listing at the vertex w. There is a canonical properad isomorphism

K

|

G
because there are canonical bijections
Edge(G) = Edge(K) and Vt(G) = Vt(K)

induced by the change of listing at w.
Suppose n > 1. Then H must have a pair of closest neighbors u and v
(Example 2.53). So there is a graph substitution decomposition
H=J(P)
in which P is a partially grafted corollas with vertices u and v (Theorem 2.59). We

have | Vt(J)| = n— 1 because P has two vertices. Thus, by induction hypothesis the
map

G — G(J))

decomposes into inner coface maps and isomorphisms induced by changes of vertex
listings. Now we have

K = GlJ/(P)] = [G()](P).
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so the map ¢ factors as follows.

—— K = [G(])|(P)

b

The slanted map is by definition an inner coface map because P is a partially grafted
corollas. So ¢ is also a composition of inner coface maps and isomorphisms induced
by changes of vertex listings.

6.1.2 OQuter Coface Maps

To motivate our definition below, we once again consider the finite ordinal category
A. A bottom coface map d°: [n] —> [n+ 1]in A corresponds to deleting the bottom
corolla L, depicted as

from the linear graph L, +; with n + 1 vertices. In other words, it corresponds to the
outer properadic factorization (Definition 2.77)

Ln+1 =L (Ln)

of L+, with distinguished subgraph L, substituted into the top vertex of L,.
Likewise, a top coface map d"!: [n] —> [n+ 1] in A corresponds to deleting the
top corolla L in L,4. This in turn corresponds to the outer properadic factorization

Ln+l =L (Ln)s

in which the distinguished subgraph L, is substituted into the bottom vertex of L,.
So the essence of a top or bottom coface map is about deleting a top or bottom vertex
in a linear graph.

The analog of such a deletable vertex in a connected wheel-free graph is an
almost isolated vertex (Definition 2.60). Moreover, by Theorem 2.82, an almost
isolated vertex corresponds to the vertex of the non-distinguished subgraph in an
outer properadic factorization. Generalizing the setting of linear graphs, for con-
nected wheel-free graphs an outer coface map corresponds to an outer properadic
factorization, with the distinguished subgraph as the source.
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Definition 6.8 Suppose H,,, K € GrcT . An outer coface map

U

['(H,) — I'(K)

is a properad map, corresponding to an outer properadic factorization
K = G({Cy. Hy}) = G(Hy)
of K (Definition 2.77), defined by
di(v) = Cy

for all v € Vt(H,,), where C, denotes the corolla with the same profiles as v. The
map

dy
Edge(H,) —— Edge(K)

sends every edge in H,, to the corresponding one in K = G(H,,).

Definition 6.9 A coface map means either an inner coface map or an outer coface
map.
Notation 3 In later chapters, we sometimes denote a coface map with a subscript,

dU
e.g, G —— H , instead of a superscript to improve typography. In any case,

the context should make it clear that we are talking about coface maps.
Remark 6.10 Recall from Theorem 2.82 that a vertex u in K is almost isolated
precisely when there is an outer properadic factorization

K = G({Cuv Hw})

in which u is the non-distinguished vertex in the partially grafted corollas G. There
is a canonical bijection

VU(K) = Vi(H,) | Jiu}.

Therefore, we say that an outer coface map I'(H,,) —> I['(K) as in Definition 6.8
corresponds to the almost isolated vertex u in K.

Example 6.11 As before, when restricted to linear graphs and unital trees, we
recover an outer coface map in the finite ordinal category A and the dendroidal
category 2. Note that Moerdijk and Weiss [MWO07] called it an outer face map.
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Example 6.12 Suppose C is a corolla but not an isolated vertex, and e is one of its
legs. There is an outer properadic factorization

C=G({C. 1),

in which G is the dioperadic graph (Example 2.40) with one vertex having the same
profiles as C and the other vertex having one input and one output. The latter is
adjacent to the unique ordinary edge corresponding to e. Therefore, there is an outer
coface map

+ —C,

one for each leg of the corolla C. This map simply sends the unique element on the
left to the unit on the right whose color is the chosen leg of C.

Example 6.13 Suppose G is a partially grafted corollas (Example 2.16) with top
vertex v and bottom vertex u. Using the corollas C,, and C, with the profiles of u
and v, there is an outer properadic factorization

G =G{Cy,C,}).
Therefore, there are two outer coface maps
C,— G and C, — G,

corresponding to the almost isolated vertices v and u, respectively.

Example 6.14 For the graph K in Example 2.51, its only almost isolated vertices
are u and w. Using the notations in Examples 2.57 and 2.58, the diagram

T——=H

H - K

,—
contains all the iterated outer coface maps ending at K. The outer coface maps from
the exceptional edge 1 correspond to the legs of H, and H..

<

6.1.3 Codegeneracy Maps

Before we define a codegeneracy map between graphical properads, let us motivate
the definition using the familiar finite ordinal category A. A codegeneracy map
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s':[n] — [n — 1] in A corresponds to substituting the exceptional edge 1 into
the corolla

i+1

1

of the linear graph L, with n vertices. In other words, a codegeneracy map in A
corresponds to the graph substitution decomposition

L, = LH(T)’

in which the exceptional edge is substituted into a chosen vertex of L,, and a corolla
is substituted into every other vertex of L,,.

For graphical properads, the intuitive idea of a codegeneracy map G —> K is that
K is obtained from G by substituting an exceptional edge into a chosen vertex with
one input and one output. To formalize this idea, we make the following definition.

Definition 6.15 Suppose G € GrcT ,and v € Vt(G) has exactly one incoming flag
and one outgoing flag. The degenerate reduction of G at v is the graph

Gy = G(1)

obtained from G by substituting the exceptional edge into v and a corolla into every
other vertex of G. The edge in G, corresponding to the two edges adjacent to v is
denoted by e,.

Remark 6.16 Given a degenerate reduction G, = G(1), there are canonical
bijections
Vi(G) = Vi(G,) | [{v}.
Edge(G) \ {vin, vou} = Edge(Gy) \ {ey},

where vj, and v,y are the incoming and outgoing flags of v.

Remark 6.17 The notation G, was also used in Definition 2.60 when v is almost
isolated and in Definition 2.83 when v is deletable. The context should make it clear
what G, denotes.

Definition 6.18 Suppose G € GrcT . A codegeneracy map

r(G) —— T(Gy)
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is a properad map, corresponding to a degenerate reduction G, = G(1) of G at
some vertex v with one incoming flag and one outgoing flag, defined as follows:

* For an edge ¢ € Edge(G), set

e, if eisadjacentto v,

so(e) = .
e otherwise.

¢ For a vertex u € Vt(G), set

€y f = ’
& () = e, Hfu=v

C, otherwise.

Example 6.19 As before, when restricted to linear graphs and unital trees, we
recover a codegeneracy map in the finite ordinal category and the dendroidal
category. Note that Moerdijk and Weiss [MWO7] called it a degeneracy map.

Remark 6.20 A codegeneracy map is much simpler than inner and outer coface
maps because we do not need to worry about closest neighbors or almost isolated
vertices. All we need to define a codegeneracy map is a vertex with exactly one
incoming flag and one outgoing flag.

6.2 Graphical Identities

The purpose of this section is to prove analogs of the cosimplicial identities for
coface and codegeneracy maps between graphical properads, as defined in Sect. 6.1.
The dendroidal analogs of the cosimplicial identities are discussed in [MT10]
(Sect.2.2.3). As usual, we recover both the cosimplicial and the dendroidal cases
when we restrict to linear graphs and unital trees.

6.2.1 Identities of Codegeneracy Maps

First we consider a graphical analog of the cosimplicial identity
st = syt for i <.

Recall from Definition 6.15 the notation G, = G(?) for a degenerate reduction of
G at a vertex v with one incoming flag and one outgoing flag.

Lemma 6.21 Suppose u and v are vertices in G € GrI, each having one incoming
flag and one outgoing flag. Suppose G, is obtained from G by substituting an
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exceptional edge into each of u and v, and a corolla into every other vertex. Then
there is a commutative diagram

of codegeneracy maps.

Proof This follows from the fact that

G,y = Gu(T) = (Gu)v
= GU(T) = (Gv)u-

In other words, v is still a vertex in the degenerate reduction G, of G at u, and
substituting an exceptional edge into this v yields

(Gu)v = Gu,v-

A similar comment applies to (Gy),,.

6.2.2 Identities Involving Both Codegeneracy and Coface Maps

Next we consider graphical analogs of the cosimplicial identities

dis™! ifi <j,
sd'=1d = ddit!  ifi =,
di=y ifi>j+ 1.

There are two cases. First we consider an inner coface map followed by a
codegeneracy map.

Lemma 6.22 Suppose K = G(H,,) is an inner properadic factorization, and v €
Vt(K) has one incoming flag and one outgoing flag.

1. If v € Vt(H,,), then the diagram

AN e
Al
G, — K,

is commutative.
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2. Ifv € Vt(H,,), then the diagram

is commutative.

Proof Here we use the decomposition

Vi(K) = Vi(H,)) [ [ V(@) \ {w}].
The first commutative diagram follows from the computation:

K, = K(1) = [G(H)] (1)
=G({Hy. 1))
= [G(D] (Hy)
= G,(Hy).

The second commutative diagram follows from the computation:

K, = [G(Hw)] (T)
= G[Hu(1)]
— G(C) = G.

Here we used the fact that H,, is a partially grafted corollas and v € Vt(H,,) to infer
that H,, is a dioperadic graph (Example 2.40). This implies that

H,(1) =C,

the corolla with the same profiles as the other vertex in H,,.
Next we consider an outer coface map followed by a codegeneracy map.

Lemma 6.23 Suppose K = G ({C,, H,,}) is an outer properadic factorization, and
v € VU(K) has one incoming flag and one outgoing flag.
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1. If v € VW(Hy), then the diagram

H,———
w

a*
(H

K
J J

)o — K,

is commutative.
2. If v = u, then the diagram

is commutative.

Proof Here we use the decomposition

VU(K) = Vi(H,) | Jtu}.
The first commutative diagram follows from the computation:
K, = [G(H,)] (1)

=G[H,(1)]
= G[(Hy)o].

The second commutative diagram follows from the computation:

K, = [G(H\)] (1)
=G ({Hw. 1})
= [G(D)] (H.)
= C(H,) = H,.

Here we used the fact that G is a partially grafted corollas and v = u to infer that G
is a dioperadic graph. This implies

G =¢C,

the corolla with the same profiles as w.
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6.2.3 Identities of Coface Maps

Here we consider a graphical analog of the cosimplicial identity
dd =d'd™" for i<j.

This is the most interesting case because each of the coface maps can be either inner
or outer. In other words, each coface map may be associated with either a pair of
closest neighbors (Theorem 2.59) or an almost isolated vertex (Theorem 2.82). The
result of mixing closest neighbors with almost isolated vertices is not immediately
obvious. Therefore, the interaction of such coface maps takes on a much more
complicated form than in either the finite ordinal category A or the dendroidal
category 2.

The graphical analog of the above cosimplicial identity will take the following
form.

Definition 6.24 We say that GrcT has the codimension 2 property if the following
statement holds: Given any two composable coface maps

v dav

I'(K) ' (H) I'(G)

in Properad, there exists a commutative square

I'(K)—“T(H)

dyl ldu

I'(J) -2 T(G)

of coface maps such that d* is not obtainable from d“ by changing the listing.

Remark 6.25 The codimension 2 property says that for each coface of codimension
2, there are at least two different ways, even up to listing, to obtain K from G using
iterated inner or outer properadic factorizations. In what follows, when we say that
d"d" has another decomposition into two coface maps d*d”, we automatically mean
that d* is not obtainable from d* by changing the listing.

Theorem 6.26 GrLT has the codimension 2 property.

Proof Suppose

v u

I'(K) T'(H) T'(G) (6.1)
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are two coface maps. We must show that the composition d“d” has another
decomposition into two coface maps. Each of 4" and d” can be either an inner coface
map or an outer coface map. To improve readability, we will check these four cases
in the next four lemmas.

First we consider the case when d“ and d are both inner coface map.

Lemma 6.27 If both d" and d° are inner coface maps, then the composition d“d’
in (6.1) has another decomposition into two coface maps.

Proof Here H is obtained from G by smashing together two closest neighbors u;
and u, to form u, or equivalently there is an inner properadic factorization

G=H(H,),
where H), is a partially grafted corollas with vertices the u;. Likewise, K is obtained
from H by smashing together two closest neighbors v; and v, to form v, or
equivalently there is an inner properadic factorization

H = K(Ky,),
where K, is a partially grafted corollas with vertices the v;. In particular, we have

G =H(H,) = [K(Ky)] (H,).

There are two cases.

1. First suppose both v; are different from u. We will show that d” and d“ commute
in a suitable sense. We have

G = K({vaHu}) = [K(Hu)](Kv)

by associativity and unity of graph substitution. Since both H, and K, are
partially grafted corollas, there is a commutative diagram

K
d?!l
K( d”

K,) ——

d’
— H

Jdu
G
of inner coface maps.
2. Next suppose one v; is u. Switching indices if necessary, we may assume
that vy = wu and that there is an ordinary edge from u, to u; in G.

(6.2)
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There are six possibilities regarding these vertices in G, depicted locally as
follows.

/

e

N\

5

4

Here the double arrow = means there is at least one ordinary edge in that
direction between the indicated vertices. The top left case says there is an
ordinary edge from v, to u, but not to u;. The top middle case says there is
an ordinary edge from v, to u; but not to u,. The top right case says there are
ordinary edges from v, to both u; and u,. The three cases in the bottom row are
interpreted similarly. Going left to right along the top row and then along the
bottom row, we will refer to them as case 1 through case 6 below.
In all six cases, we have

G = [K(K))|(H,) = K[Ky(H,)] (6.3)

by associativity of graph substitution, where H,, is substituted into v; € Vt(K,).
The three cases in the top (resp., bottom) row correspond to the case where v is
the top (resp., bottom) vertex in K. The graph K,,(H,) is a connected wheel-free
graph with three vertices. It is always possible to rewrite it using a different graph
substitution involving partially grafted corollas as

Ky (H,) = Ky (J). (6.4)

Here J, is the partially grafted corollas defined by v, and u (resp., u») in cases 2,
4,and 6 (resp., 1, 3, and 5), while K, is the partially grafted corollas containing u,
(resp., u1) and the combined vertex from J,. Using (6.4) in (6.3) and associativity
of graph substitution, we obtain

G = K[K,(J))] = [K(K)](J).
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This in turn yields the commutative diagram

K
d?!l
K( d”

K,) ——

d’
— H

g
G

of inner coface maps.

Next we consider the case where we begin with two outer coface maps. The
graph-drawing convention in the proof of the previous lemma will be used below.

Lemma 6.28 If both d* and d' are outer coface maps, then the composition d*d"
in (6.1) has another decomposition into two coface maps.

Proof In this case, H is obtained from G by deleting an almost isolated vertex v;.
Equivalently, there is an outer properadic factorization

G = Pi({Cy, . H}) = P(H)
for some partially grafted corollas P; with vertices {v;, u; }, where C,, is a corolla,

and H is substituted into u,. Likewise, K is obtained from H by deleting an almost
isolated vertex v,. Equivalently, there is an outer properadic factorization

H = P,({Cy,. K}) = P2(K)

for some partially grafted corollas P, with vertices {v,, u,}, where C,, is a corolla,
and K is substituted into u,. In particular, we have

G = Pi(H) = Pi[P2(K)] = [P1(P2)](K)
by associativity of graph substitution.
There are four cases, depending on whether each u; is the top or the bottom vertex

in P;. Since the four cases have very similar proofs, we only consider in detail the
case where each u; is the bottom vertex in P;. So we may visualize G and H as

. 5
@) @
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The composition d“d" corresponds to the construction of K from G by first deleting
v; and then deleting v,. The desired alternative factorization will come from a
different construction of K from G.

To obtain this alternative construction, note that the graph substitution Py (P;) is
a connected wheel-free graph with three vertices with each P; having two vertices.
There are three possible shapes for P;(P5):

From left to right, we call them cases 1-3. In cases 1 and 2, the vertices v; are
closest neighbors in G. When they are smashed together, the combined vertex is
almost isolated, whose deletion yields K. In case 3, v, is already almost isolated in
G, so it can be deleted first, followed by the deletion of v;.

More formally, in each of the three cases we can rewrite P (P,) using a different
graph substitution involving partially grafted corollas as

Py(P2) = P|(P)).

just like we did in (6.4). In cases 1 and 2 (resp., case 3), P, is the partially grafted
corollas defined by the v; (resp., v; and u,), and P is the partially grafted corollas
defined by u, (resp., v;) and the combined vertex from P’2. Recall that in all cases K
is supposed to be substituted into u,.

1. In cases 1 and 2, we have
G = [P{(PYI(K) = P\({P3,K}) = [P (K)](P})

by associativity and unity of graph substitution. This yields the alternative
factorization

outer mner
K — P{(K) —— G (6.5)

of d“d" into an outer coface map followed by an inner coface map.
2. Similarly, in case 3 we have

G = [Pi(PYI(K) = P[Py (K)].
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This yields the alternative factorization

outer outer

K —— Py(K) —— G

of d"d" into two outer coface maps.
We now consider the third case of the proof of Theorem 6.26.

Lemma 6.29 Suppose d" is an inner coface map, and d° is an outer coface map.
Then the composition d"d" in (6.1) has another decomposition into two coface maps.

Proof In this case, H is obtained from G by smashing together two closest neighbors
u; and u; to form u. Equivalently, there is an inner properadic factorization

G=H(H,),
in which H,, is a partially grafted corollas with vertices the u;, and H, is substituted
into u € Vt(H). Likewise, K is obtained from H by deleting an almost isolated
vertex w, or equivalently there is an outer properadic factorization

H = P({Cy, K}) = P(K)

in which P is a partially grafted corollas, and C,, is a corolla. In particular, we have
the decomposition

Vi(H) = Vi(K) | J{w}
and the graph substitution decomposition
G = [P(K)](H.,).

There are two sub-cases.

1. If u € Vt(H) is actually in K, then we have
G = [P(K)]|(Hy) = P[K(H,)]

by associativity of graph substitution. This yields the alternative decomposition

inner outer

K—— KH,) —— G

of d"d" into an inner coface map followed by an outer coface map.
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2. If u = w, then we have
G = P({Hy, K}) = [P(H,)](K).

Note that P(H,) is a connected wheel-free graph with three vertices. Thus, as
before (6.4) there is another graph substitution decomposition

P(H,) = P/(H/)
involving two other partially grafted corollas. Then we have
G = [P(H))(K) = [P'(H)](K) = P'[H'(K)].

Since both H' and P’ are partially grafted corollas, there is an alternative
decomposition

outer outer

K—— HK) —— G

of d“d" into two outer coface maps.
The final case of the proof of Theorem 6.26 is considered next.

Lemma 6.30 Suppose d* is an outer coface map, and d* is an inner coface map.
Then the composition d“d" in (6.1) has another decomposition into two coface maps.

Proof As before, we will obtain an alternative construction relating K and G. Here
H is obtained from G by deleting an almost isolated vertex u. Equivalently, we have

G =P({C,, H}) = P(H),

in which P is a partially grafted corollas, and C, is a corolla. Likewise, K is
obtained from H by smashing together two closest neighbors v; and v, to form
v, or equivalently

H = K(Ky,),
in which K, is a partially grafted corollas with vertices the v;. In particular, we have
G = PIK(K,)] = [P(K)](K,)

by associativity of graph substitution. Since P and K, are partially grafted corollas,
this yields the alternative decomposition

outer inner

K P(K) G

of d“d" into an outer coface map followed by an inner coface map.
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With Lemmas 6.27-6.30, the proof of Theorem 6.26 is complete.

Remark 6.31 1If one goes through the proof of Theorem 6.26 carefully, one can
see that the given composition d"d” of coface maps has a unique alternative
decomposition d*d” into coface maps. Here uniqueness is understood to be up to
listing.

6.3 Graphical Category

The main purpose of this section is to define the maps in the graphical category
I" for connected wheel-free graphs via the concept of subgraphs. The point of
using subgraphs is to avoid some bad behavior for general properad maps between
graphical properads, as exhibited in Sect. 5.3. At the end of this section, we establish
a graphical analog of the epi-mono factorization.

6.3.1 Input and Output Relabeling

The concept of a subgraph is defined via outer coface maps, which were discussed
in Sect. 6.1, and input/output relabeling, which we now discuss.

Suppose G € GrcT has input/output profiles (c; d). Recall from Chap.2 that G
has a listing, which consists of a labeling of the inputs and outputs of each vertex as

well as of the whole graph G. Suppose 0 € X4 and © € Y. Then there is a graph

r(od
oGt € Grg
cT

with profiles (ct; 0d) obtained from G by permuting the input/output profiles (c; d)
using o and 7. Since only the listing of the whole graph has changed, there are
canonical bijections

Vi(G) = Vt(oGr),
Edge(G) = Edge(oGr),
Edge;i(G) = Edge;(0G1).
The first two bijections induce a canonical isomorphism

(r50)
G —— oGt € Properad
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of graphical properads, called input/output relabeling, or simply relabeling. Note
that the identity map is a relabeling, with both ¢ and t the respective identity
permutations.

6.3.2 Subgraphs

In the following definition, we will make use of the concepts of relabeling just
discussed and of outer coface maps in Definition 6.8.

Definition 6.32 Suppose G, K € GrcT . A map

f
G — K
of graphical properads is called a subgraph if f admits a decomposition into outer
coface maps and relabelings. In this case, we also call G a subgraph of K.

Remark 6.33 Subgraphs are closed under compositions. The identity map is a
relabeling, hence a subgraph.

Remark 6.34 Since a relabeling is a fairly simple canonical isomorphism of
graphical properads induced by input/output relabeling permutations, we will often
not mention it in discussing subgraphs.

Remark 6.35 To say that f is a subgraph is not the same thing as saying that f
cannot be factored by inner coface maps. In fact, by the proof of Lemma 6.28, in
particular (6.5), a composition of outer coface maps may have other factorizations
that involve inner coface maps. The requirement to being a subgraph is that there
exists one factorization of the map into outer coface maps up to relabeling.

We will use Notation 1 below.

Remark 6.36 Let us explain the geometric meaning of a subgraph. Recall that an
outer coface map H —> K corresponds to an outer properadic factorization K =
P(H) (Definition 2.77), where P is a partially grafted corollas with vertices {u, w},
and H is substituted into one of its two vertices, say w. By Theorem 2.82 this is
equivalent to saying that u is an almost isolated vertex in K and that H is obtained

from K by deleting u. If G ;> K is a subgraph, then it has a decomposition
into outer coface maps. Therefore, G is obtained from K by repeatedly deleting
almost isolated vertices.

Furthermore, given an outer properadic factorization K = P(H) as above, there
are canonical injections

Vt(H) —— Vt(K) and Edge(H) “—— Edge(K).
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These injections induce the outer coface map H —> K. If f as above is a subgraph,
then there are injections

Vi(G) “—— Vit(K) and Edge(G) “—— Edge(K).

So we can think of the graph G as sitting inside the graph K. The map f records the
part of K outside of G, or equivalently the part of K that gets deleted to obtain G.
We formalize this idea in the following observation.

In the next result, we characterize subgraphs in terms of graph substitution. This
result will be used many times in what follows.

f
Theorem 6.37 Suppose G —— K is a map of graphical properads. Then the

following statements are equivalent.

1. f is a subgraph.
2. There exists a graph substitution decomposition

K = H(G)

in Grj. such that f sends the edges and vertices in G to their corresponding
images in H(G).

Proof First suppose f is a subgraph. If f consists of a single relabeling, then
K = oGt for some suitable permutations ¢ and t. So there is a graph substitution
decomposition

K = (0C1)(G),

where C is the corolla with the same profiles as G. In the rest of this proof, we will
omit mentioning relabelings.
Next suppose

f=d,---d

in which each d; is an outer coface map. We show by induction on n that K admits a
graph substitution decomposition as stated. If n = 1, then f = d, is an outer coface
map, and K = P(G) for some partially grafted corollas P.

Suppose n > 1. Then there is a factorization

4 dy
G H,_, K
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of f in which
g =dy—1---d.
Since d,, is an outer coface map, there is a graph substitution decomposition
K = P(H,-1)

for some partially grafted corollas P. Moreover, g is by definition a subgraph. By
induction hypothesis, there is a graph substitution decomposition

H,—| = H/(G)
in GrcT . Therefore, we have the desired decomposition
K = PH'(G)] = [P(H)](G)

by associativity of graph substitution.

Conversely, suppose K = H(G) as stated. We show that f is a subgraph by
induction on m = | Vt(H)|. If m = 1, then H is a corolla, and f is the identity map,
which is a subgraph.

Suppose m > 1, and G is substituted into w € Vt(H). There must exist an
almost isolated vertex v # w in H (Theorem 2.75). So there is an outer properadic
factorization

H = P(H,),

in which P is a partially grafted corollas and H, is obtained from H by deleting the
almost isolated vertex v. There is a corresponding outer coface map

H, — H.
Since w € Vt(H,), the graph substitution H, (G) makes sense. So we have
K = [P(H,)](G) = P[H,(G)].

and f factors into
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We have | Vt(H,,)| = m—1, so the first map G — H,(G) is a subgraph by induction
hypothesis. The second map H,(G) —> K is an outer coface map because P is a
partially grafted corollas. Therefore, f is the composition of a subgraph and an outer
coface map, so it is a subgraph.

The following observation provides some small examples of subgraphs.
Corollary 6.38 Suppose K is a connected wheel-free graph.

1. Suppose x andy are closest neighbors in K, and G is the partially grafted corolla
defined by them. Then the map G — K is a subgraph.

2. For each vertex v in K, the corolla inclusion C, —> K is a subgraph.

3. For each edge e in K, the edge inclusion ©, — K is a subgraph.

Proof For the first assertion, by Theorem 2.59 there is a graph substitution
decomposition K = H(G). So by Theorem 6.37 the map G — K is a subgraph.
For the second assertion, use the graph substitution decomposition

K= K(Cv)y

in which a corolla is substituted into each vertex, and Theorem 6.37.

For the last assertion, if K itself is an exceptional edge, then 1,— K is the
identity map. If K is ordinary, then e is adjacent to some vertex v in K. The map
?e —> K factors into

e — C, —— K.

The first map is an outer coface map that identifies the edge e as a leg of the
corolla C, with the same profiles as v (Example 6.12). The second map is a corolla
inclusion, which is a subgraph by the previous part. Therefore, their composition is
also a subgraph.

The following observation says that a subgraph is uniquely determined by its
input/output profiles.

Lemma 6.39 Suppose G € Gr!, and (e; f) is a pair of Edge(G)-profiles. Then

c’

there exists at most one subgraph
H— G

in which H, when regarded as an element in I (G), has profiles (e f).

Proof A subgraphJ — G is by definition a composition of outer coface maps, so J
is obtained from G by repeatedly deleting almost isolated vertices. If two subgraphs
have the same Edge(G)-profiles, then they are obtained from G by deleting the same
subset of vertices. So they have the same sets of vertices. Finally, note that if x and
y are vertices in a subgraph J, then all the internal edges between x and y in G are
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also in J. Therefore, two subgraphs with the same Edge(G)-profiles have the same
sets of internal edges as well.

6.3.3 Images

Before we can define a map in the properadic graphical category, we need to define
the image of a properad map between graphical properads.

Recall from Lemma 5.19 that a properad map f between two graphical properads
is determined by a pair of functions (fy, f1). The function f goes between the sets of
edges (i.e., colors), and f; sends each vertex in the source to an element in the target
with the correct profiles.

f
Definition 6.40 Suppose G —— K is a properad map of graphical properads.

The image of G is defined as the graph substitution

F(G) =[G ({1 () }uevic)) € T(K).

in which f,G is the graph obtained from G by applying f; to its edges.

Example 6.41 Here we describe the images of codegeneracy maps, coface maps,
subgraphs, and changes of vertex listings.

1. For a codegeneracy map

s

G — Gy, ,

by definition we have G, = G(1). So the image s(G) is G,.
2. For an inner coface map

din
G — K,

by definition we have K = G(P) for some partially grafted corollas P. So once
again the image di,(G) is K.
3. For an outer coface map
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by definition we have K = P(G) for some partially grafted corollas P. So the
image do,(G) is G € T'(K), where G is regarded as an Edge(K)-colored K-
decorated graph via the inclusions

Edge(G) “——— Edge(K) and Vt(G) —— Vi(K).

4. For a subgraph

G — K ,

by Theorem 2.59 we have K = H(G) for some H € GrCT. So the image f(G) is
G e I'(K).

5. Suppose K is obtained from G by changing the listings at a subset of vertices,
and

f
G — K

is the corresponding properad isomorphism. Then the image f(G) is K.

Just as one would expect from an image, the original map factors through it.

f
Lemma 6.42 Suppose G —— K is a properad map of graphical properads.
Then there is a canonical commutative diagram

G—2 5 f(@)

K

-

of properad maps between graphical properads.

Proof First we define the maps g and 4. Note that the image f(G) € I'(K) is by
definition an Edge(K)-colored K-decorated graph. So each of its edges/vertices has
a canonical image in K. This defines the properad map 4, which sends every vertex
w in f(G) to the corolla C,, € T'(K).

The map g is defined by sending each edge ¢ in G to the edge fy(e) in fo(G),
which in turn yields an edge in f(G). For a vertex u in G, g1 () is fi (1) in T'(f(G)).

To see that f = hg, observe that for an edge ¢ in G, & sends fy(e) in f(G) to the
edge in K with the same name. For a vertex u in G, h sends f (1) in I'(f(G)) to fi («)
in I'(K) because & sends each vertex to the corresponding corolla.
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f
Example 6.43 If G —— K is acodegeneracy map, a coface map, a subgraph,

or a change of vertex listings, then the map f(G) — K is a subgraph. Indeed, if
f is a codegeneracy map, an inner coface map, or a change of vertex listings, then
f(G) = K. If f is an outer coface map or, more generally, a subgraph, then f(G) is
G.

¢
Example 6.44 Forthe map G —— H in Example 5.22, the image ¢(G) is

€ 9i

€o 9o
such that the map G —> ¢(G) satisfies
(i1,02) —> (ei,8) and  (01,02) > (€0, 8o)-
The map ¢(G) —> H sends the edges ex (resp., g« and f) to e (resp., g and f) in H,
and sends the vertices v and w to the corresponding corollas. Note that ¢(G) — H

is not a subgraph because each outer coface map (and inner coface map as well)
must increase the number of vertices by 1.

¢
Example 6.45 Forthemap G —— G in Example 5.23, the image ¢(G) is

The map G —> ¢(G) sends the edges e and f in G to the edges e, and f, in ¢(G).
The map ¢(G) —> G sends the edges e, (resp., fx) in ¢(G) to the edge e (resp., f)
in G, and sends the vertices v4 (resp., ux) to the corolla C, (resp., C,). Note that,
once again, ¢(G) —> G is not a subgraph.
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One can similarly check that for each of the maps in Examples 5.25-5.27, the
map from the image to the target is not a subgraph.

6.3.4 Graphical Maps

We will use the factorization in Lemma 6.42 in the next definition.

Definition 6.46 A properadic graphical map, or simply a graphical map, is
defined as a properad map

f
G — K

between graphical properads such that the map f(G) — K is a subgraph.

Example 6.47 Codegeneracy maps, coface maps, subgraphs, and changes of vertex
listings are all graphical maps by Example 6.43. On the other hand, the properad
maps in Examples 5.22, 5.23, 5.25, 5.26, and 5.27 are not graphical maps.

f
Example 6.48 Suppose G —— K is a properad map between graphical prop-

erads. If both G and K are linear graphs (resp., unital trees or simply connected
graphs), then the map f(G) —> K is a subgraph, so f is a graphical map. This is a
consequence of Lemma 5.11.

We will need the following observation, which says that graphical maps are
closed under compositions.

f g
Lemma 6.49 Suppose G —— K and K —— M are graphical maps.

&
Then the composition G —— M is also a graphical map.

Proof Both f(G) —> K and g(K) —> M are subgraphs by definition. By
Theorem 6.37 there are graph substitution decompositions

K = H\(f(G)) and M = H>(g(K)).
Therefore, by associativity of graph substitution we have

M = H, [g(H\(f(G)))]
= H, [(goH1)(gf(G))]
= [Ha(goH1)] (gf(G)).

Therefore, by Theorem 6.37 again, we conclude that gf(G) —> M is a subgraph.
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Next we give another characterization of a graphical map. By definition a graphi-
cal map sends the source to a subgraph of the target. The following observation says
that a graphical map also sends every subgraph of the source to a subgraph of the
target.

!

Theorem 6.50 Suppose G —— K is a properad map between graphical
properads. Then the following statements are equivalent.

1. fis a graphical map.
¢
2. Foreach subgraph H —— G ,themap f(H) —— K isasubgraph.

Proof The direction (2) = (1) holds because the identity map on G is a subgraph.
To prove (1) = (2), suppose f is a graphical map, so f(G) —> K is a subgraph.
If G = 1, then its only subgraph is itself. So we may assume that G # 1.

¢
Pick a subgraph H —— G . We show by downward induction on m =

| Vt(H)| that f(H) is a subgraph of K. First suppose m = | Vt(G)|. In this case
H has all the vertices of G. But it is also true that for vertices x and y in H, all the
internal edges between them in G are also in H because H is obtained from G by
repeatedly deleting almost isolated vertices. Therefore, we conclude that H = G,
and by assumption f(G) —> K is a subgraph.

Next suppose m < | Vt(G)|. Since H is a subgraph of G, by Theorem 6.37 there
is a graph substitution decomposition

G = J(H)

for some J € GrcT , which has at least two vertices because m < | Vt(G)|. The
vertex v € Vt(J) into which H is substituted must have a closest neighbor u
(Example 2.53). By Theorem 2.59, there is an inner properadic factorization

J = N(P),
in which P is a partially grafted corollas with vertices # and v. Therefore, we have
G = [N(P)](H) = N [P(H)].
so by Theorem 6.37 P(H) is a subgraph of G. Since P has two vertices, P(H) has m+
1 vertices. By induction hypothesis f(P(H)) is a subgraph of K. By Theorem 6.37

we have a graph substitution decomposition

K = M[f(P(H))]
= [M(foP)] (f(H))
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for some M € GrcT . Therefore, by Theorem 6.37 once again, f(H) is a subgraph
of K.

f
Corollary 6.51 Suppose G —— K is a graphical map. Then for each vertex
vinG, fi(v) is a subgraph of K.

Proof Use Theorem 6.50 and the fact that the corolla inclusion C, — G is a
subgraph (Corollary 6.38).

6.3.5 Graphical Category

Lemma 6.49 is used in the next definition to ensure that I" is really a category.

Definition 6.52 The properadic graphical category, or simply the graphical
category, is the category I" with

* objects the graphical properads I'(G) for G € GrcT , and

e morphisms I'(G) — I'(H) € Properad the properadic graphical maps.
Denote by

L
I' —— Properad

the non-full subcategory inclusion.

Remark 6.53 The graphical category I" is small because there is only a set of 1-
colored graphs.

Remark 6.54 The graphical category contains a full subcategory that is isomorphic
to the finite ordinal category. Indeed, there is a full subcategory I'(ULin) of I
consisting of the objects I'(L,) forn > 0, where L, is the 1-colored linear graph with
n vertices (Definition 2.28 and Remark 2.34). There is an isomorphism of categories

I'(ULin) = A,

sending I'(L,) to the finite ordered set [n] = {0 < 1 < --- < n} € A.

Remark 6.55 The graphical category also contains a full subcategory that is
equivalent to the Moerdijk-Weiss dendroidal category 2 [MWO07]. Indeed, there
is a full subcategory I'(UTree) of I consisting of the objects I'(T'), where T is any
unital tree (Definition 2.28). There is an equivalence of categories

['(UTree) ~ Q.
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This is true because the free properad I'(T') is obtained from its underlying operad,

which is the free operad generated by 7, by adding empty components.
There are similar full subcategories of I'" defined by the indicated subsets of

graphs:

c 0= F(Grgi), where GrcT1i is the set of simply connected graphs,

e I = I‘(GrcTi), where GrCTi is the set of connected wheel-free graphs with non-
empty inputs, and

e I, = F(GrCTO), where GrCTO is the set of connected wheel-free graphs with non-
empty outputs.

Using the above isomorphism ['(ULin) = A and equivalence ['(UTree) ~ Q of
categories, there is a commutative diagram of subcategory inclusions:

\F

0 (6.6)

Remark 6.56 By Theorem 5.9, every element in © is a finite set. In particular, every
element in the Moerdijk-Weiss dendroidal category €2 is a finite set. On the other
hand, every graphical properad not in ® is an infinite set.

6.3.6 Factorization of Graphical Maps

Now we observe that properadic graphical maps have an analog of the epi-mono
factorization in the finite ordinal category A and the dendroidal category 2 [MT10]
(Lemma 2.3.2). We will use the factorization and notations in Lemma 6.42. We will
often omit mentioning isomorphisms induced by changes of listings.

f
Theorem 6.57 Suppose G —— K is a graphical map. Then there is a

factorization

G ! K

Gy Gy — f(G)

>

1

= 1R
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in which:

* 0 is a composition of codegeneracy maps,

e iis an isomorphism,

e § is a composition of inner coface maps, and
e his a composition of outer coface maps.

h
Proof By assumption f(G) —— K is a subgraph, i.e., a composition of outer

coface maps. So it suffices to show that g decomposes as §o up to isomorphism as
stated. If G = 1, then g is an isomorphism. So we may assume that | Vt(G)| > 1.
Suppose T' C Vt(G) is the subset of vertices w with

» precisely one incoming flag and one outgoing flag, and
¢ filw) = 1. for some e € Edge(K).

Define

G = G ({1}wer),

in which an exceptional edge is substituted into each w € T, and a corolla is
substituted into each vertex not in 7. There is a composition of codegeneracy maps

G — Gy.

The number of codegeneracy maps in o is equal to |T|.
Next define

G2 = fo(G1).
which is obtained from G, by applying fj to its edges. This is well-defined because

for w € T, its incoming flag and outgoing flag have the same fy-image. There is an
isomorphism

G i> Gy
given by changing the names of edges using fy. There is a canonical bijection
Vi(Gy) = VH(G) \ T.
The image of G can now be constructed from G, as the graph substitution

F(G) = G (i (W) huevionT) -
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where each fi(u) # 1 (i.e., fi(u) has at least one vertex) by the construction of 7.
The map

Gy —— £(6)

is determined by sending each u € Vt(G) \ T to fi (u). It remains to show that § is a
composition of inner coface maps.

Order Vt(G) \ T arbitrarily as {uy, ..., ux}. Using the associativity and unity of
graph substitution, we can construct f(G) from G, in k steps as follows:

Hy = G,
Hiyy = H; (fi(uiy1))
for0 <i <k — 1. Then we have
Hy = Hi—1 (fi(w)) = f(G).

The map & now factors as follows.

G2 = H() % Hk = f(G)

| T

Hy Hy 1 6.7)

Each map H; — H;4 in this diagram is a composition of inner coface maps by
Lemma 6.7. Therefore, § itself is a composition of inner coface maps.

Remark 6.58 In Theorem 6.57 we could also have factored f as hdoi, so the
isomorphism i is the first map. To do this, we instead define

Gi = fo(G)
with i the isomorphism induced by applying fy. Then we define

G2 = G1 ({1} wer)

o
with G; —— G, the corresponding composition of codegeneracy maps.

Remark 6.59 In what follows, to simplify the presentation we will often omit
mentioning the isomorphism i in a factorization f = héio as above.

Next we observe that the codegeneracies-cofaces factorization above is unique.
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f
Lemma 6.60 Suppose G —— K is a properad map between graphical prop-

erads. Up to isomorphism, there exists at most one factorization

G——K

of f, in which

* 0 a composition of codegeneracy maps,
* iis an isomorphism, and
* 0 is a composition of coface maps.

Proof Suppose dic = d'i'c’ are two such factorizations of f. On the sets of edges
(i.e., colors), oy is surjective, while dyiy is injective. Therefore, the decomposition

Jo = (doio)0o
is the unique factorization of the function
Jo
Edge(G) —— Edge(K)

into a surjection followed by an injection. By uniqueness there is a bijection
i":Edge(G1) —> Edge(G)) such that the diagram

Edge(G1) % Edge(Gs)

Edge(G)

IR

i Edge(K)

Edge(G) — Edge(Gh)

is commutative. Since both ¢ and ¢’ are compositions of codegeneracy maps, the
left commutative triangle implies that ¢’ = o¢. In particular, the maps 9i and 9’/
have the same source G, and dpip = .
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For each vertex u € Vt(G;), we have

dir(u) = fi(u) = 0y (u).
So the maps di and d'i’ coincide on colors (i.e., edges) and generators (i.e., vertices).
Therefore, we have 9i = 9'i’ as well.
Corollary 6.61 Each graphical map f admits a decomposition dio in which:

* 0 is a composition of codegeneracy maps,
e iis an isomorphism, and
e 0 is a composition of coface maps.

Moreover, this decomposition is unique up to isomorphism.

Proof Use Theorem 6.57 for the existence of a factorization, and use Lemma 6.60
for the uniqueness.

The next observation says that a graphical map is uniquely determined by its
action on edge sets.

Corollary 6.62 Suppose f,f':G —> K are graphical maps such that fy = fé as
functions Edge(G) —> Edge(K). Then f = .

Proof Suppose f = dio and f* = 9’0’ are codegeneracies-cofaces decomposi-
tions, which exist by Theorem 6.57. Then we have

(doi0)ao = fo = fy = (3,i)0g

on Edge(G). As in the proof of Lemma 6.60, we have ¢ = ¢, that the maps di and
0'i’ have the same source Gy, and doip = di. Pick a vertex u € Vt(G;). We have

01i1(u) = fi(w) and 9} (u) = fi(u).

These are subgraphs of K (Corollary 6.51), and they have the same input/output

Edge(K)-profiles
foout(u)\ _ (f5out(u)
foin() )\ fyin() J°

By Lemma 6.39 these subgraphs are equal. Therefore, we have di = 9'i’ as well.

6.4 A Generalized Reedy Structure on I

The simplicial category A and its opposite A% are both Reedy categories, which
allows us to work inductively on diagrams of these shapes. If M is any Quillen
model category, there is an associated model structure on the categories of diagrams
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M2 and M2” [Ree73]. A generalization of this structure was introduced by
Berger and Moerdijk in [BM11] in order to describe the inductive structure of the
dendroidal category €2. In this section, we observe that the graphical category I’
also possesses a generalized Reedy structure, implying the existence of a Berger-
Moerdijk-Reedy model structure on M and M

Recall that a wide subcategory of a category C is a subcategory which contains
all objects of C. We will write Iso(C) for the maximal sub-groupoid of a category C.
The following definition appears in [BM11].

Definition 6.63 A generalized Reedy structure on a small category R con-
sists of

* wide subcategories R and R, and
e adegree function deg : Ob(R) — N

satisfying the following four axioms.

(i) Non-invertible morphisms in Rt (resp., R™) raise (resp., lower) the degree.
Isomorphisms in R preserve the degree.
(i) Rt NR™ =TIso(R).
(iii) Every morphism f of R factors as f = gh with g € R* and h € R, and this
factorization is unique up to isomorphism.
(iv) If 8f = f for 6 € Iso(R) and f € R, then 6 is an identity.

If, moreover, the condition
(iv’) Iff0 = f for 6 € Iso(R) and f € R, then 6 is an identity
holds, then we call this a generalized dualizable Reedy structure.

We now turn to the generalized Reedy structure on I'.
Definition 6.64 Define the degree of a graph G € GrcT to be
deg(G) = | VH(G)|.

Define two wide subcategories of I" as follows, using the fact that graphical maps
send vertices to subgraphs (Corollary 6.51):

» T'" consists of those maps f : H —> G which are injective on edge sets.

e I'” consists of those maps f : H —> G which are surjective on edge sets and,
for every vertex v € Vt(G), there is a vertex v € Vt(H) so that f(?) is a corolla
containing v.

The following observation gives a characterization of 't and I' ™.
Lemma 6.65 Supposef:G — K € T'. Then:

1. fisin T'F ifand only if f is a composition of isomorphisms and coface maps.
2. fisin '™ if and only if f is a composition of isomorphisms and codegeneracy
maps.
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Proof For the first statement, the “if” direction is true because each coface map
is injective on edge sets. For the other direction, suppose f € I't. Consider the
decomposition

G G, K

of f from Theorem 6.57, where ¢ is a composition of codegeneracy maps, 4§ is a
composition of coface maps, and i is an isomorphism. Since o is a composition of
codegeneracy maps, it is surjective on edges. But o is also injective on edges since
£ is, so o is bijective on edges and is then an identity. Hence f = hdi.

For the second statement, the “if” direction is true because each codegeneracy
map is in I'". For the other direction, suppose f € I'~. Consider the same
decomposition of f from Theorem 6.57,

G G> K,

where h is a composition of outer face maps and § is a composition of inner face
maps. We wish to show that both / and § are identities. If 4 is not an identity, then
there exists an almost isolated vertex v of K such that f factors as

dU
G — G —— K,

where d¥ is an outer coface map. Then there is no v such that fj(v) is C,,
contradicting the fact that f is in I'". Hence /% is an identity.
If § is not an identity, then f factors as

dU
G — G —— K,

where d” is an inner coface map. But then d" is not surjective on edges, so neither
is f, contradicting the fact that f € I'". Thus § is an identity as well, and f = io is
a composition of codegeneracy maps followed by an isomorphism.

Proposition 6.66 The graphical category U satisfies condition (i) in Defini-
tion 6.63.

Proof 1t is clear that isomorphisms preserve the degree. Suppose f € I'T is not an
isomorphism. By Lemma 6.65 f is a composition of isomorphisms and at least one
coface map, which must raise the degree. Therefore, f raises the degree as well.
Likewise, suppose that f € I'” is not an isomorphism. By Lemma 6.65 f is a
composition of isomorphisms and at least one codegeneracy map, which must lower
the degree. Therefore, f also lowers the degree.
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Proposition 6.67 The graphical category T satisfies condition (ii) in Defini-
tion 6.63, namely

' Nr- =Iso(I).

Proof Inclusion from right to left is obvious. For the reverse, suppose thatf : G —
K isin It N T'". In Lemma 6.65 we showed that, since f € I't, f admits a
factorization

f=ai

where 0 is a composition of coface maps and i is an isomorphism. In particular, we
have

deg(G) < deg(K).
Since f € I'", this same lemma also gives a factorization
f=io,
where o is a composition of codegeneracies and i’ is an isomorphism. So we have
deg(G) = deg(K).
Together with the previous inequality, we have
deg(G) = deg(K).

This equality implies that 9 is the identity, so f = i is an isomorphism.

Proposition 6.68 The graphical category T satisfies condition (iii) in Defini-
tion 6.63. In other words, every map in f € T factors as

f=gh

where h € T~ and g € T'", and this factorization is unique up to isomorphism.
Proof This follows from Lemma 6.65 and Corollary 6.61.

Proposition 6.69 The graphical category T satisfies conditions (iv) and (iv’) in
Definition 6.63. In other words:

1. Iff eT', 0 € Iso(I'), and 6f = f, then 6 = 1d.
2. Iff eTT, 0 elIso(T"), and fO = f, then 6 = 1d.

Proof Since graphical maps are determined by their actions on edge sets (Corol-
lary 6.62), it is enough to show that 6, is an identity. But now this comes down to
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the same fact in Set: If f; is surjective and 6yfy = fo, then 8y = Id. Similarly, if f; is
injective and 6y = fy, then 6y = Id.

Theorem 6.70 The graphical category U is a dualizable generalized Reedy cate-
gory.

Proof Combine the previous four propositions.



Chapter 7
Properadic Graphical Sets and Infinity
Properads

The main purposes of this chapter are to define co-properads and to characterize
strict co-properads.

Infinity properads and strict co-properads are defined in Sect.7.1. Joyal-Lurie
oo-categories (resp., Moerdijk-Weiss oco-operads) are simplicial sets (resp., den-
droidal sets) that satisfy a weaker version of the Kan extension property that only
involves inner horns. To define co-properads, first we define the category Set!™
of properadic graphical sets, which is the presheaf category of the properadic
graphical category I' (Definition 6.52). This makes sense because simplicial sets and
dendroidal sets are presheaf categories corresponding to the graphical subcategories
A =~ I'(ULin) and 2 ~ I'(UTree) (Remarks 6.54 and 6.55).

Similar to the nerve of a small category, there is a properadic nerve N, which is
part of an adjunction

L
set™ ——— properad.
N

The symmetric monoidal product in Properad (Theorem 4.6) induces, via the
properadic nerve, a symmetric monoidal closed structure on Set'™. Once the
graphical analogs of horns are defined, we define an co-properad as a properadic
graphical set in which every inner horn has a filler. A strict co-properad has the
further property that all the inner horn fillers are unique.

In Sects. 7.2 and 7.3, we provide two alternative characterizations of strict oco-
properads. Within the category of simplicial sets, it is known that a strict co-category
is isomorphic to the nerve of a category, which in turn is equivalent to a simplicial
set whose Segal maps are bijections. The dendroidal analogs of these statements are
also known to be true. We will prove the graphical analogs of these statements.

In Sect. 7.2 we define the properadic Segal maps of a properadic graphical set.
Then we observe that for the properadic nerve of a properad, the properadic Segal
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maps are all bijections. Furthermore, a properadic graphical set whose properadic
Segal maps are bijections must be a strict co-properad. In Sect. 7.3, we show that
every strict co-properad is, up to isomorphism, a properadic nerve. Therefore, a
strict co-properad is precisely a properadic graphical set whose properadic Segal
maps are bijections, which is, up to isomorphism, equivalent to the properadic nerve
of a properad.

As in previous chapters, all the properadic concepts in this chapter have obvious
analogs for properads with non-empty inputs or non-empty outputs. Instead of the
properadic graphical category I', one uses the full subcategories I'; or I, generated
by GrCTi or GrCTO (Remark 6.55). To form the adjunction involving the nerve, instead
of the category Properad, one uses the categories of properads with non-empty
inputs Properad; or non-empty outputs Properad,.

7.1 oo-Properads

In this section, we define properadic graphical sets, the properadic nerve functor
from properads to properadic graphical sets, the symmetric monoidal closed
structure on properadic graphical sets, and (strict) co-properads.

7.1.1 Graphical Sets

Recall from Chap. 6 that I' is the properadic graphical category. It is the non-full
subcategory of Properad with objects the graphical properads I'(G) = F (G) for
connected wheel-free graphs G. Its morphisms are properadic graphical maps. Also
recall that we often abbreviate I"(G) to just G and drop the adjective properadic.

The usual category of simplicial sets is the presheaf category of the finite
ordinal category A. Likewise, the Moerdijk-Weiss category of dendroidal sets is
the presheaf category of the dendroidal category 2. Now if we use the graphical
category I" instead, then the presheaf category is the desired category of graphical
sets.

Definition 7.1 The diagram category Set!™

graphical sets, or simply graphical sets.

is called the category of properadic

1. An object X € Set'™ is called a properadic graphical set, or simply a
graphical set.

2. ForG € GrCT , an element in the set X(G) is called a graphex with shape G. The
plural form of graphex is graphices.

3. A graphical set X is reduced if the set X(C(z.g)) is a singleton, where C(g,g) is
the single isolated vertex.
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Remark 7.2 1If we use the full subcategories I'(ULin) = A or ['(UTree) >~ Q
instead of I' itself, then the definition above gives the categories of simplicial sets
or of dendroidal sets [MWO07]. Indeed, the full subcategory inclusions

i i
AN—— Q@ — T
induce adjoint pairs
iy iy

Set®” —— get®” —— sget!™.

Ix Ix

The right adjoints i, are given by restrictions, while the left adjoints i, are left Kan
extensions. In particular, for W € set®” we have

W(G) ifG e Q,

HW)(G) =
otherwise,

and similarly for the first left adjoint. Since the left adjoints i, are full and faithful,
we may regard Set®” as a full subcategory of Set®”, which in turn is regarded as
a full subcategory of Set”™. There are similar adjoint pairs

i iy
op : o] op i 0]
Setlim ——= set™ and setl™ ——= get™ (7.1

Ix Ix

for the full subcategories I'; = F(GrCTi) and ', = F(GrcTo).
Remark 7.3 To be more explicit, a graphical set X € Set"” consists of

* aset X(G) of graphices of shape G for each connected wheel-free graph G, and
* afunction

K

X(H) —— X(G)

f
foreachmap G —— H € I' such that

Id*=1d and (gf)* =f"g".
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¢ . %G
Amap X —— Y eset’™ consists of a function X(G) —— Y(G) for

each G € GrcT such that the diagram

f
is commutative foreachmap G —— Hel .

f
Definition 7.4 Suppose X € Set™ and G —— Hel .

1. If f is an inner/outer coface (resp., codegeneracy) map, then f* is called an
inner/outer face (resp., degeneracy) map.
2. A face map means either an inner face map or an outer face map.

7.1.2 Why a Graphical Set Resembles a Properad

Here explain why a graphical set X € Set”" looks somewhat like a properad,
an idea that will eventually lead to our notion of an oo-properad. The point of
the discussion below is to convince the reader that a graphical set is a reasonable
candidate for the underlying set of an co-properad.

We will refer to the biased definition of a properad (Definition 3.5) below. Let us
consider connected wheel-free graphs with few vertices.

1. The only 1-colored connected wheel-free graph with O vertex is the exceptional
edge 1, so there is a set X (1), whose elements will be called colors of X.

2. The only 1-colored connected wheel-free graphs with 1 vertex are the corollas
and their input/output relabeling (Example 2.14), which must induce an isomor-
phism of component sets of X.

Define a 1-dimensional element in X as an element in X(0Ct) for some
corolla C and permutations o and t. A 1-dimensional element f € X(cC7), in
which C = C,, is the corolla with m inputs and 7 outputs, is said to have m
inputs and » outputs.

From Example 6.12, we know that each leg of a permuted corolla ¢Ct has a
corresponding outer coface map 1 — o Ct. This yields an outer face map

X(0Cr) — X(1)
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corresponding to this leg of 0 Ct. Assembling these maps, we then obtain a map

X(0Cr) (7.2)

l b
[nin(ac:) X(T)] X I:l_[oul(aCT) X(T)]

For a 1-dimensional element x, we call the image p(x) the profiles of x.

We may reorganize the 1-dimensional elements in X according to their profiles
as follows. Suppose (c; d) is an element in S(X(1)), i.e., a pair of X(1)-profiles.
Define the component set

X((f) = {x e[ [x@Cr):px) = (g;c_l)} (7.3)

where C is the 1-colored corolla with |c| inputs and |d| outputs, o € Xy, and
T € X)y. In other words, X (fl) is the set of 1-dimensional elements in X with

profiles (4) Input and output relabeling among corollas yields isomorphisms

C

(r30)

X — s X,

C

In particular, the collection of sets

d d
X (‘)2 (‘) € S(X(1)
4 [4
is a X5(x(4))-bimodule.

3. For the 1-colored corolla C(;;1y with 1 input and 1 output, there is a codegeneracy

map Cq;) —Y> 1 . This yields a degeneracy map

X(1) — X (Cam) - (7.4)
For a color ¢ € X(1), the image

def
1. = s"(c) € X(Cu;1y)
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is called the c-colored unit of X. Note that 1. has profiles (c;c) because the
compositions

either s
P —— Cuyy —

coface

are both equal to the identity.

4. The only connected wheel-free graphs with two vertices are, up to listing, the
partially grafted corollas (Example 2.16). Consider a partially grafted corollas P.
There is an inner coface map C —> P (Example 6.5) corresponding to smashing
together the two vertices in P, which are closest neighbors. This yields an inner
face map

X(P) -, X(C), (7.5)

which we would like to think of as a properadic composition. But of course this
is not in general a properadic composition.

Indeed, 1 need not be a binary product. To obtain the two underlying elements
of an element in X(P), the most natural thing to do is to use the two outer coface
maps

C,— P and C,— P

for the two vertices in P (Example 6.13), which are both almost isolated. They
yield the map

X(P) —— X(C) x X(C)). (1.6)

If p € X(P) and d(p) = (x,y), then we want to think of u(p) € X(C) as the
properadic composition of x and y.

This picture fails to give a binary product because d goes in the wrong direction.

For a properad, the properadic composition is uniquely defined, and the axioms
hold strictly. In particular, we would need the map d to be an isomorphism.

On the other hand, for co-properads, in which the properadic composition and the
axioms hold only up to homotopy, we do not need to insist that d be an isomorphism.
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Just like different choices of compositions of paths in a topological space, we only
ask that a composition exists without insisting on its uniqueness. In other words,
we ask that d be surjective. So any d-preimage followed by u, the inner face map,
will yield such a weak properadic composition. The surjectivity of d will be phrased
as part of an extension property that resembles the inner Kan extension property
(Example 7.25 below). In particular, for a partially grafted corollas, this extension
property corresponds to the surjectivity of d. For connected wheel-free graphs with
more than two vertices, this extension property corresponds to the weak properad
axioms.

7.1.3 Properadic Nerve

The properadic nerve is a way to associate a graphical set to a properad. Before we
give the precise definition, let us provide some motivation for the properadic nerve
functor.

Recall that for a category C, its nerve NC is a simplicial set that encodes the
categorical information of C. More precisely, the set of n-simplices is

(NC), = Category([n],C).

So a 0-simplex is just an object of C, while an n-simplex for n > 1 is a sequence

X0 X1 tee Xn—1 Xn

of n composable maps in C. The top and bottom face maps are given by deletion
of the last and the first maps, while the other face maps are given by categorical
composition. The degeneracy maps are given by insertion of identity maps. The
nerve construction gives a functor

N 0]
Category —— SetAp,

which by general non-sense has a left adjoint.

Now the category [n] can be represented as the linear graph L, € I'(ULin)
with n vertices. So to define the nerve of a properad, we only need to change
Category(—,(C) to Properad(—, P).

Definition 7.5 The properadic nerve is the functor

N 0]
Properad —— set!™
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defined by
(NP)(G) = Properad(G,P)

for P € Properad and G € T'. In the context of the unique factorization of a
graphical map G — K € I" (Corollary 6.61), the map

(NP)(K) = Properad(K,P) —— Properad(G,P) = (NP)(G)

is a composition of maps of the following form:

* deletion of an entry (for an outer coface map);
 properad structure map of P (for an inner coface map);
* isomorphism;

 colored units of P (for a codegeneracy map).

Remark 7.6 To see that NP is indeed in Set!™, recall that maps in I' are
compositions of coface maps, codegeneracy maps, and isomorphisms. Coface and
codegeneracy maps correspond to graph substitutions. The properad structure maps
of a properad P are associative and unital with respect to graph substitutions.

Lemma 7.7 The properadic nerve admits a left adjoint

o L
set’™ —— Properad

such that the diagram

I —“ s Properad

Yoncdal /
L

Set!™

is commutative up to natural isomorphism.

Proof By standard category theory, the left adjoint of the properadic nerve is the left
Kan extension of the subcategory inclusion ¢ along the Yoneda embedding [Mac98]
(Ch. X). It exists because the graphical category I" is small, and Properad has all
small colimits. The left Kan extension makes the diagram commutative up to natural
isomorphism because the Yoneda embedding is full and faithful.

The following observation says that a graphex in (NP)(G) is really a P-
decoration of G, which consists of a coloring of the edges in G by the colors of
P and a decoration of each vertex in G by an element in P with the corresponding
profiles.
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Lemma 7.8 Suppose P is a €-colored properad, and G € T'. Then an element in
(NP)(G) consists of:

%0
e afunction Edge(G) —— € , and

() Out(v))'

* afunction @) that assigns to each v € Vt(G) an element ¢,(v) € P( 0 in()

Proof This is a special case of Lemma 3.28, since I'(G) is the free properad F (G),
where G has color set Edge(G) and element set Vt(G).

Next we define the graphical analog of the representable simplicial set A[n].

Definition 7.9 Suppose G € T'. The representable graphical set I'[G] € Set"™

is defined, for H € ', by
[[Gl(H) = T'(H,G),

i.e., the set of graphical maps H — G (Definition 6.46).

Remark 7.10 By Yoneda’s Lemma a map I'[G] —> X of graphical sets is
equivalent to a graphex in the set X(G).

7.1.4 Symmetric Monoidal Closed Structure on Graphical Sets

Here we observe that the symmetric monoidal product of properads and the
properadic nerve induce a symmetric monoidal closed structure on the category of
graphical sets.

First note that each graphical set X € Set!™ can be expressed up to isomorphism
as a colimit of representable graphical sets,

X = colim I'[G],
T[Gl—X
where the colimit is indexed by maps of graphical sets I'[G] — X, i.e., graphices
in X.
Definition 7.11 Suppose X and Y are graphical sets.
1. Define the graphical set

Xy ¥ colim  (T[G]®T[G]).
I[Gl—X.T[G/|—Y

where

TGl ® TG € N(I'(G) & T(G))
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with N the properadic nerve and ® the symmetric monoidal product in
Properad (Definition 4.4).
2. Define the graphical set Hom(X, Y) by

Hom(X, ¥)(G) & set™ (X ® I'[G], Y)

forGeT.

Remark 7.12 Tensor products of graphical properads I'(G) ® I'(G’) are described
in Corollary 5.15.

Theorem 7.13 The category Set"™ of graphical sets is symmetric monoidal
closed with monoidal product ® and internal hom Hom.

Proof That ® gives a symmetric monoidal product follows from the fact that
Properad is symmetric monoidal. Suppose X, Y, and Z are graphical sets. To
prove the required adjunction

set™ (X ®Y.Z) =~ set"™ (X,Hom(Y. 2))

it suffices to consider the case when X is a representable graphical set I'[G]. Then
we have natural isomorphisms:

set™ (TG ® Y, Z2) =~ set™ (Y ® T'[G), 2)
= Hom(Y, Z)(G)
~ set"™ (I'[G], Hom(Y, 2)) .

Remark 7.14 The symmetric monoidal closed structure of dendroidal sets is in
[MWO07, Weil1].

7.1.5 Faces and Horns

Here we define the graphical analogs of the horns A*[n] C A[n], which we will
soon use to define an co-properad. The formalism here is almost exactly the same
as in the category of simplicial sets.

Definition 7.15 Suppose G € I'. A face of G is a coface map in I" whose target is
G. An inner/outer face of G is an inner/outer coface map whose target is G.

Definition 7.16 Suppose X is a graphical set. A graphical subset of X is a
graphical set W that is equipped with a map W — X of graphical sets such that
each component map

W(G) — X(G)

for G € T is a subset inclusion.
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d
Definition 7.17 Suppose G € I',and K —— G isaface of G.

1. The d-face of T'[G] € Set!™ is the graphical subset I'?[G] defined by

r[G]()
f d
= J compositionof J —— K —— G withf € I'[K](J)

forJ eT.
2. The d-horn of T'[G] is the graphical subset A¢[G] defined by

A6 = |J riaw,

facesd’ # d

where the union is indexed by all the faces of G except d. Write

AG] —— T[G]

for the graphical subset inclusion.

3. A horn of I'[G] is a d-horn for some coface map d. An inner horn is a d-horn in
which d is an inner coface map.

4. Given X € Set™, ahorn of X is a map

AlGl — X

of graphical sets. It is an inner horn of X if A¢[G] is an inner horn.

Example 7.18 Restricted to the full subcategories ['(ULin) =~ A and

I'(UTree) >~ Q (Remarks 6.54 and 6.55), the above definitions become the
ones in simplicial sets and in dendroidal sets.

Notation 4 If there is a face K —— G of G denoted by d“ or d,, we will

sometimes abbreviate the face I'*[G] or I'%[G] to I'*[G]. The same goes for horns.

Remark 7.19

d
1. If K —— G isafaceof G, then the d-face I'*[G] is the image of the induced

do(—)
map I'[K] —— T'[G] of graphical sets.
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2. In the definition of the d-horn A¢[G], we used the same convention as before
about ignoring listings (Convention 1). In other words, when we say d is
excluded, we mean d and every coface map K’ —> G obtainable from d by
changing the listing are all excluded.

d
3. If there is an inner horn A?[G] for some inner coface map K —— G , then
G has at least two vertices because there is an inner properadic factorization
(Definition 2.54) of G,
G =K(H,),

in which the distinguished subgraph H,, is a partially grafted corollas (Exam-
ple 2.16).

The following observation gives a more explicit description of a horn of a
graphical set.

d
Lemma 7.20 Suppose X € Set™, and K —— G isaface of G € T. Then
a horn

f
AGl —— X
of X is equivalent to a collection of maps

Ju 4

d
I'NHl —— X : H —— G face#d

such that, if

is a commutative diagram of coface maps with each d' # d, then the diagram

T[J] —“ T[HY

lf,ﬁ

is also commutative.
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f fu
Proof Given a horn AY[G] —— X of X, the map T'[H] —— X corre-
sponding to a face H —— G not equal to d is the image of Idy under the
composition

'’ [Gl(H) —— A“[G](H) # X(H).

The last diagram in the statement of the lemma is commutative because the d-horn
A?[G] is the union of the d’-faces inside I'[G].

Remark 7.21 The collection of maps {fy} in Lemma 7.20 is equivalent to a
collection of graphices {fy € X(H)} such that, if the coface square is commutative,
then

@)* (fm) = @)* (fir,) € X().

In other words, a horn of X is really a collection of graphices in X, one for each face
not equal to the given one, that agree on common faces.

Example 7.22 Suppose X € Set!™, Pis a partially grafted corollas with top (resp.,

d
bottom) vertex v (resp., u), and C —— P is the unique inner coface map

corresponding to the closest neighbors u and v in P. There are only two other faces
of P:

dv
* the outer cofacemap C, —— P corresponding to the almost isolated vertex

v, and

dll
» the outer cofacemap C, —— P corresponding to the almost isolated vertex

u.

The common faces of the corollas C,, and C, are exactly the ordinary edges in P,
since the only coface maps into a corolla are the outer coface maps corresponding
to its legs.

f
Therefore, an inner horn  A9[P] —— X is equivalent to a pair of elements

(fusfo) € X(Cu) X X(Cy), (1.7)
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such that if

are the outer coface maps corresponding to an ordinary edge e in P, then
(d2)" () = ()" (1) € X(1).

In other words, such an inner horn of X is a pair of 1-dimensional elements, one
for each vertex in P, whose profiles match along ordinary edges in P. We may,
therefore, visualize such an inner horn of X as the following X (1)-colored partially
grafted corollas

decorated by 1-dimensional elements in X.

7.1.6 oo-Properads

We now define oo-properads as graphical sets satisfying an inner horn extension
property.
Definition 7.23 Suppose X € Set!™.

1. We call X an oco-properad if for each inner horn f of X,

te) %’ X

|

G (7.8)

a dotted arrow, called an inner horn filler, exists and makes the triangle
commutative.
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2. A strict co-properad is an co-properad for which each inner horn filler in (7.8)
is unique.

Remark 7.24 For an oco-properad, we only ask that inner horns have fillers. Also,
uniqueness of an inner horn filler is not required, unless we are dealing with a strict
oo-properad.

Example 7.25 Suppose P is a partially grafted corollas. Recall from (7.7) that an
inner horn

f
APl —— X

is exactly a pair of 1-dimensional elements (f;, f, ), one for each vertex in P, with
matching profiles along ordinary edges in P. Then an inner horn filler for f is exactly
a d-preimage of (f,,, f,), where d is the map in (7.6).

Recall from Remark 6.55 that I (resp., I',) is the full subcategory of the
properadic graphical category I with objects in GrcTi (resp., GrCTO), i.e., connected
wheel-free graphs with non-empty inputs (resp., non-empty outputs).

Definition 7.26 A graphical set X € Setl P (resp., Setrsp) is an oco-properad
with non-empty inputs (resp., non-empty outputs) if it satisfies the inner horn
extension property (7.8) for each G € GrCTi (resp., G € GrCTO).

7.2 Properadic Segal Maps

The purpose of this section is to study the graphical analogs of the Segal maps. We
observe that the properadic nerve of a properad satisfies the graphical version of the
Segal condition. Moreover, a graphical set that satisfies the Segal condition must be
a strict co-properad. In Sect. 7.3 we will use these observations to characterize strict
oo-properads as properadic nerves of properads up to isomorphisms, which in turn
are equivalent to graphical sets that satisfy the Segal condition.

7.2.1 Motivation of the Properadic Segal Maps

To motivate the construction, first consider the simplicial Segal maps.

Fix a simplicial set X. For each n > 2, there are maps X,, —> X\, each one being
a composition of top and bottom face maps. These maps are coming from the maps
in the finite ordinal category A =~ Q(UL1in),
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[1] ={0,1} 0

;] ]

[n] ={0,1,...,n} i+1

.

for 0 <i < n— 1. The maps X,, —> X fit together to form the Segal maps

0 n—1
X ? Xl XXo " XXo Xl s

n factors of X

where each Xi is a copy of X;. The right-hand side is the limit of the diagram
consisting of the top and bottom face maps

41
Xl

|

. d
Xi— X,

as i runs through {0, ..., n — 1}. The Segal maps are well-defined because, in A, the
diagram
dO
[0] ——[1]
dll in
it
[1] —— [n] (7.9)

is commutative, as 0 € [0] is sent to i + 1 in both cases.
Now think about the square (7.9) in terms of linear graphs. The linear graph L,
with n vertices looks like:

3
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Of course, Ly is the exceptional edge 1. In A =~ T'(ULin) the top and bottom
coface maps are exactly our outer coface maps, which delete either the top vertex
or the bottom vertex together with the attached leg. By repeatedly deleting top and
bottom vertices from L, (i.e., iterating outer coface maps), one obtains the copy

1+ 1

of the corolla L;. There are many ways to get to this L, but their compositions are
all equal.

&
In other words, the map L; —— L, above is the composition of outer

coface maps, starting at some corolla corresponding to a vertex in L,, ending at
L, itself. The commutative diagram (7.9) says that the unique ordinary edge in

1+ 2

1+1

7

is both the output leg of v;4 and the input leg of v;y;.

The plan for the graphical case is now as follows. The analog of L, € A with
n > 2 is a connected wheel-free graph G with n > 2 vertices. Each copy of L; € A
within L, corresponds to a corolla C,, with the same profiles as a vertex v € Vt(G).

&
The map &; corresponds to a composition of outer coface maps C, —— G .

There are many such compositions of outer coface maps, but their compositions
should all be equal.

e
Suppose there is an internal edge ¥ —— v in G. The commutative diagram
(7.9) corresponds to the commutative square

T —C,

|,k

Cy, — G
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in I'. The top map is the outer coface map corresponding to the output leg e €
Edge(C,), while the left vertical map is the outer coface map corresponding to the
input leg e € Edge(C,). Observe two things:

1. There may be finitely many ordinary edges from u to v in G, since G may not
be simply connected. So there is one commutative square as above for each
ordinary edge from u to v. This phenomenon does not occur for simplicial sets
and dendroidal sets, since these objects correspond to linear graphs and unital
trees, which are simply connected.

2. A given vertex u € G can have ordinary edges to finitely many different vertices.
Again this phenomenon does not occur for simplicial or dendroidal sets, since in
a unital tree each vertex has precisely one output.

What these two observations mean is that the targets of the properadic Segal maps
are more complicated limits than in the cases of small categories and operads.

7.2.2 Outer Coface Maps from Corollas

Before we can define the properadic Segal maps, first we need to know that it is
possible to connect each corolla in each graph to the graph itself using outer coface

£
maps. This is the graphical analog of the maps L, —— L, above.

For a vertex v in a graph G, recall that the notation C, denotes the corolla with
the same profiles as those of v € Vt(G).

Lemma 7.27 Suppose G € GrcT has n > 2 vertices with v € Vt(G). Then there are
n — 1 composable outer coface maps

G G e Gi G,

whose composition sends:

* the legs of C, to the corresponding edges adjacent to v € G, and
* the unique vertex of C, to the G-decorated corolla C,.

Moreover, the composition of such outer coface maps is unique.

Proof This follows from the second part of Corollary 6.38, since a subgraph
decomposes into outer coface maps, each one increasing the number of vertices
by one.

Definition 7.28 Suppose G € crl withv € Vt(G). Define

&
C, —— GeT
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to be:

1. the unique composition of outer coface maps in Lemma 7.27 if | Vt(G)| > 2, and
2. the isomorphism induced by input/output relabeling C, — oC,t if G has 1
vertex (so G is a permuted corolla 0 C, 7).

Example 7.29 Consider the connected wheel-free graph G

with four vertices and four ordinary edges. Then there are exactly two decom-

&
positions of C, —— G into outer coface maps, which yield the following

commutative diagram.

/
\ .

\
/

For the top half of this diagram, the outer coface map H, —— G means H, is

obtained from G by deleting the almost isolated vertex x. So H, is
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dv

which has w as an almost isolated vertex. Likewise, H, —— H, is the

corresponding outer coface maps. This H,, is

dll
which has u as an almost isolated vertex. The map C, —— H,, is the
corresponding outer coface map. The lower half of the above commutative diagram
is interpreted similarly, starting with the deletion of the almost isolated vertex u € G.

7.2.3 Compatibility over Ordinary Edges

To define the properadic Segal maps, we need to describe how two corollas C,, and
C,inG e GrcT are compatible over an ordinary edge adjacent to them. This is about
outer coface maps into corollas of the form ¥ — C, one for each leg of C. If a
leg of a corolla C already has a name, say e, then we also write in, (resp., out,) for
this outer coface map when e is an input (resp., output) leg of C. Furthermore, if e

is clear from the context, we will omit the subscript e.

e

Lemma 7.30 Suppose u —— v is an ordinary edge in G € Grj.. Then the
square

oute

— O,

T
inel &u
C 3%

W —— G

in I is commutative.

Proof Both compositions in the square send the unique element in 1 to the Edge(G)-
colored exceptional edge 1..
7.2.4 Properadic Segal Maps

Lemma 7.30 ensures that the properadic Segal maps below are well-defined. The
properadic Segal maps are basically comparison maps from each component of a
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graphical set to the limit determined by its 1-dimensional components. As we will
show below, a graphical set is a strict co-properad precisely when the properadic
Segal maps are all bijections.

Definition 7.31 Suppose K € set!™ and G e GrcT has at least two vertices.

1. Define the set

KGen = [ T ke

vEVH(G) K(1)

as the limit of the diagram consisting of the maps

K(Cu)
JK(outﬁ)
K(ine)
K(Cp) ———— K(1) (7.10)

as u —— v runs through all the ordinary edges in G. Call K(G), the corolla

ribbon of K(G).
2. Define the properadic Segal map

K(G) —— s K(G) (7.11)

as the unique map induced by the maps

K(&)
K(G) —— K(C)

as v runs through all the vertices in G. The properadic Segal map is well-defined
by Lemma 7.30.
3. We say K satisfies the properadic Segal condition if the properadic Segal map

X¢ 1s a bijection for every G € GrcT with at least two vertices.

As usual we will often drop the adjective properadic if there is no danger of
confusion.

Remark 7.32 As long as we are working with connected wheel-free graphs, there is
no need to consider the properadic Segal map for G with exactly one vertex. Indeed,
such a G must be a permuted corolla 6C, 7, so the corolla ribbon is K(C,). The
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Segal map is the isomorphism

K(v)
K(oCyr) — K(Cy)

induced by input/output relabeling. Therefore, whenever we mention the properadic
Segal map, we automatically assume that G has at least two vertices.

Remark 7.33 Let us explain the geometric meaning of the corolla ribbon K(G),. An
element 8 € K(G); is equivalent to the data:

6
¢ afunction Edge(G) —0> K(1) ,and

* a function 6, that assigns to each vertex v € Vt(G) a 1-dimensional element
01 (v) € K(C,) with profiles corresponding to those of v under 6.

In other words, 6 is a K(1)-colored decoration of G, in which vertices are decorated
by 1-dimensional elements in K.

Example 7.34 Consider the following connected wheel-free graph G.

There are three vertices and four ordinary edges. Each vertex may have input and
output legs of G, which are not depicted in the picture. Then there is a commutative
diagram

Cﬂ)
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in I" by Lemma 7.30. In this case, for a graphical set K, the corolla ribbon K(G); is
the limit of the part of this diagram above G, after applying K. The properadic Segal
map y¢ is induced by the three maps £,.

7.2.5 Alternative Description of the Properadic Segal Maps

There is another way to define the properadic Segal maps. Using the graphical set
defined below, we will see that each properadic Segal map is represented by the
corresponding properadic Segal core inclusion.

Definition 7.35 For ¥ # G € GrCT , define its properadic Segal core Sc[G] €
Set!™ as the graphical subset

&
el = | J Im| r[c,] — T[G] | cT[q].
vEVH(G)
€G
Denoteby Sc[G] —— TI'[G] the inclusion, and call it the Segal core inclusion.

Lemma 7.36 Suppose K € set™, and G € GrI. Then there is a commutative
diagram

K(@) = K(G)
Set™ (TG, K) ——S 4 5etI™ (Sc[@], K)

that is natural in G.

Proof The two vertical bijections are by Yoneda’s Lemma. The commutativity of
the diagram is by the definition of the Segal map y.

Remark 7.37 Using Lemma 7.36, one can also think of the properadic Segal map
X as the map €.
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7.2.6 Properadic Nerves Satisfy the Segal Condition

In the rest of this section, we connect the Segal condition with the properadic nerve
(Definition 7.5)

N 0]
Properad —— Setl™

and strict co-properads. Recall that for a properad P, the value of NP at G € T is
the set

(NP)(G) = Properad(G, P).

The elements in (NP)(G) are described in Lemma 7.8. Briefly, each element in
(NP)(G) is a P-decoration of the edges and vertices in G.

The following observation says that the properadic nerve always yields a
graphical set that satisfies the Segal condition.

Lemma 7.38 The properadic nerve of every properad satisfies the Segal condition.

Proof Suppose G € GrCT has at least two vertices, and P is a €-colored properad.
Since G is ordinary connected wheel-free, we have

Edge(G) = | J Edge(C,) and ViG)= [] Vt(C).
vEVLH(G) veEVH(G)

In the union on the left, we have
e € Edge(C,) ﬂ Edge(C,)
precisely when e is an ordinary edge adjacent to the vertices u and v. In particular, a

fo
function Edge(G) —— € of color sets is equivalent to a collection of functions

of color sets

£
Edge(C,) —— €

vEVH(G)

such that

0(e) =1y (e)
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whenever e is an ordinary edge in G adjacent to # and v. Therefore, the assertion
follows from the description of graphices in (NP)(G) in Lemma 7.8 and of the
corolla ribbon in Remark 7.33.

7.2.7 Properadic Nerve Is Fully Faithful

Before showing that the Segal condition implies a strict co-properad, we briefly
digress here to observe that the properadic nerve is fully faithful.

Proposition 7.39 The properadic nerve

N 0]
Properad —— Set!™”

is fully faithful.

Proof Suppose P is a €-colored properad and Q is a D-colored properad.

To show that the properadic nerve N is faithful, suppose f,g : P — Q are
properad maps such that Nf = Ng in Set"”. We must show that f = g. The map f
is completely determined by what it does to the color set € and the components of
P. Since (NP)(1) = €, the equality

(NA(T) = (Ne)(1)

implies that f and g are the same function on €.

To see that f and g are equal on the components of P, suppose C is an arbitrary
corolla. Elements in (NP)(C) are elements in P. As C runs through all the corollas,
the elements in (NP)(C) run through all the elements in all the components of P.
Since C is arbitrary, the equality

(NAI(C) = (Ng)(C)

implies that f and g are equal on all the components of P.

To show that the properadic nerve N is full, suppose ¢ : NP — NQ is a map
of graphical sets. We must show that ¢ = N¢ for some properad map ¢ : P — Q.
On color sets, ¢ is defined as the map

¢
¢=NP)(1) — N =2 .
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On elements in P, ¢ is defined as the map

9
(NP)(C) —— (NQ)(O)

as C runs through all the corollas. As soon as we know that ¢ is a map of properads,
we will know that N¢ = ¢ because the properadic nerve of a properad satisfies the
Segal condition (Lemma 7.38), hence is completely determined by what it does to
corollas and 1.

Now we show that ¢ is a map of properads. The map ¢ respects colored units
and the bi-equivariant structures because ¢ is a map of graphical sets, hence is
compatible with codegeneracy maps C(;;;y —> 1 and input/output relabeling
of corollas. To see that ¢ respects the properadic compositions, suppose C —> D is
the unique inner coface map of a partially grafted corollas D (Example 6.5). Then
the map

(NP)(D) —— (NP)(O)

is given by the properadic composition of P. So the fact that ¢ is compatible with
C — D implies that ¢ respects the properadic compositions.

7.2.8 The Segal Condition Implies Strict oo-Properad

Next we want to show that a graphical set that satisfies the Segal condition must be
a strict oo-properad. To prove this, we first eliminate the possibility of an inner horn
having multiple fillers.

Lemma 7.40 Suppose K € Set!™ satisfies the Segal condition. Then each inner
horn

AT (G —F— K

el

of K has at most one filler.

Proof First note that G has at least two vertices, and if J —— G is a face of

G, then J has at least one vertex. Moreover, J has exactly one vertex if and only if it
is a corolla.
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The inner horn ¢ is uniquely determined by the elements
p; e K(J)| J —— G facenotequal to d"

that agree on common faces (Remark 7.21). By the assumed Segal condition of K,
each element ¢y is uniquely determined by the elements

{0l = & (92) € K(Cy) | w € V()]

Ew
where C,, —— J 1is the composition of outer coface maps in Definition 7.28.

Moreover, these ¢!, are compatible over K(1) for each ordinary edge in J in the
sense of the diagram (7.10). For v € Vt(G) that lies in two such faces J; and J;, the
diagram

CUL>J1

I

Jy—— G
in I" is commutative. The compatibility of the elements ¢; € K(J) now implies
& (01) = & (p1,) € K(Cy).
So we can unambiguously write ¢, € K(C,) for such elements whenever v €
Vi(J1) (M Vi(J2).

Pick two distinct almost isolated vertices, say x and y, in G, which exist by
Corollary 2.76. The two corresponding outer cofaces

dy dy
Jy — G and J, —— G

together cover Edge(G) [ | VH(G), i.e.,
Edge(G) = Edge(J,) U Edge(J,),
VH(G) = Vi) | Vidy).
So ¢, € K(Jy) and ¢, € K(J,) yield a collection of 1-dimensional elements

@ = {p, € K(C,) | v € VI(G)}. (7.12)
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By the assumed Segal condition of K again, this collection @ corresponds to a
unique element in K(G), i.e., a map I'[G] — K.

The element @ € K(G) is the only possible candidate for a filler of the inner horn
¢. Indeed, any such filler must restrict, via the respective outer coface maps, to both
¢, and ¢;,, and hence also to the ¢, for v € Vt(G) determined by them. So if @ is
a filler of ¢, then it is the only one.

Lemma 7.41 Suppose K € set!™ satisfies the Segal condition. Then K is a strict
oo-properad.

Proof 1t suffices to show that, in the context of Lemma 7.40, the element @ € K(G)
in (7.12) is the unique filler of the inner horn ¢. We already showed in Lemma 7.40
that @ is the only possible candidate for a filler of ¢. Thus, it remains to show that
@ restricts to the ¢; for faces J of G not equal to the given d“. We consider outer
and inner cofaces separately.

d;
1. For an outer face J, —— G , each vertex in J, is also a vertex in G.

Therefore, @ restricts to ¢;, € K(J,), i.e.,
@5, = {ov v eV} = d;@

dy
2. Suppose J, —— G is an inner coface map not equal to the given d“. In

particular, there is an inner properadic factorization
G =J,(H),

where H is a partially grafted corollas with vertices the v; and is substituted into
v € Vt(Jy). We need to show the equality

Pw = %‘;:d:@ € K(Cw)

for every w € Vt(J,). First we consider vertices in J, not equal to v.

a. A vertex x € Vt(J,) \ {v} is already in G. So x is also a vertex in some outer
face J,. The diagram

o J.

d:

EFREN

*>G
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in I' is commutative. The first part about outer cofaces and the commutativity
of this diagram now imply:

o= Elq,
=§&d o
= £7d7® e K(Cy).
b. It remains to prove the equality
oy =Ed)D.

We first claim that there exist outer coface maps

§v1 ,U9
4 0
H e Jw Ga
N

13

whose unique composition £,, ,, sends the edges and vertices in H to the
corresponding ones in G. The composition £ is possibly the identity map and
depends on the choice of J,,.

Indeed, since G has two distinct inner cofaces, it has at least three vertices.
There must exist an almost isolated vertex w in G that is not equal to either v;,
since otherwise the v; would not be closest neighbors in G (Theorem 2.59).

dy
Suppose J, —— G is the corresponding outer coface obtained by

deleting the almost isolated vertex w. The v; are still closest neighbors in
Jyw. If J,, has at least one other vertex, then we proceed by a finite induction
to obtain the desired outer coface maps. The uniqueness of the composition
&y, .v, follows from Lemma 3.28. This proves the claim.

We now have a commutative diagram

in I'. The top horizontal map d, is the unique inner coface of the partially
grafted corollas H. Graphically, this commutative diagram says that, to obtain
the corolla C, from G, we can first smash the closest neighbors v; together,
and then delete all the other vertices. Alternatively, we may also first delete
all the vertices in G not equal to either v;, and then smash the v; together.
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Recall that the ¢; satisfy some compatibility conditions and that J,, — G
is an outer face. Therefore, the above commutative square now implies:

o =& 9,
= (&dv)* ¢y,
= d**d*D
= £'d" .

This proves that @ € K(G) restricts to ¢, € K(C,) as well.
We have shown that @ € K(G) is a filler of the inner horn ¢.

7.3 Characterization of Strict co-Properads

The purpose of this section is to prove the following characterization of strict co-
properads. It says that a strict co-properad is precisely a graphical set that satisfies
the Segal condition, which in turn is equivalent to being a properadic nerve up to
isomorphism.

Theorem 7.42 Suppose K € Set!™. Then the following statements are equiva-
lent.

1. There exist a properad P and an isomorphism K = NP.
2. K satisfies the Segal condition.
3. Kiis a strict co-properad.

Note that the implications (1) = (2) and (2) = (3) have already been
established in Lemmas 7.38 and 7.41. Thus, it remains to prove (3) = (1).

Remark 7.43 The A =~ I"(ULin) version of Theorem 7.42 is of course well-known.
For example, for a simplicial set, the equivalence of being the nerve of a small
category and of being a strict oco-category is proved in [Lur09] (Proposition 1.1.2.2).
The Segal condition goes back much further [Seg74].

Remark 7.44 The operadic version of this theorem, using the dendroidal category
Q ~ I'(UTree), is also true. The analogous equivalence of (1) and (3) for the
dendroidal category 2 is in [MWO09] (Proposition 5.3 and Theorem 6.1). The
analogous equivalence of (1) and (2) is in [CM11] (Corollary 2.7). In fact, the
operadic version of our corolla ribbon K(G); is what Cisinski and Moerdijk call
Hom(Sc[T], X), where X is a dendroidal set, T is a unital tree, and Sc[T] € Q[T]
is their Segal core. The last object is defined as the union of the images of the
compositions of outer dendroidal coface maps Q2[C,] —> Q[T] as v runs through
the vertices in 7.



7.3 Characterization of Strict co-Properads 195

Remark 7.45 The equivalence of (1) and (3) in Theorem 7.42 can be interpreted
as saying that our definition of an oco-properad correctly expresses the notion of
an up-to-homotopy properad. Indeed, the properadic nerve functor is fully faithful,
so we may identify a properad with its properadic nerve. In a properad, the
properadic composition is uniquely defined, and the axioms (associativity, unity, and
bi-equivariance) hold in the strict sense. Just like an co-category, an oco-properad
should capture the notion of an up-to-homotopy properad. So the properadic
composition exists, but it is not required to be unique. Moreover, the axioms should
only be required to hold up to homotopy, and any two such homotopies of the
same axiom should be homotopic, and so forth. Part of the theorem says that
properadic nerves are exactly the strict oco-properads. The uniqueness of the inner
horn extensions are expressing the ideas that properadic compositions are uniquely
defined and that axioms hold on the nose. With the uniqueness condition removed,
an oo-properad is then expressing the notion of an up-to-homotopy properad.

7.3.1 Properad Associated to a Strict oo-Properad

To prove (3) = (1) in Theorem 7.42, we first need some preliminary definitions
and constructions.

Definition 7.46 Fix a strict co-properad K. We define a K(1)-colored properad Pk
as follows.

1. The Zgk(t)-bimodule structure of Py is that of K € Set"™ as in Sect. 7.1.2. In
particular, its elements are the 1-dimensional elements in K, with

* input/output profiles induced by the outer coface maps ¥ — C into corollas,
* colored units induced by the codegeneracy map C(i;;y —> 1, and
* bi-equivariant structure induced by input/output relabeling.

2. For the properadic composition, suppose

* 8 € K(C)) has profiles (x;y),

* ¢ € K(C,) has profiles (v; w), and

w2 w =X C xare some equal k-segments in w and x for some k > 0.
There exists a unique K(1)-colored partially grafted corollas D:

» whose top (resp., bottom) vertex has the input/output profiles of C; (resp., C»),
and
» whose ordinary edges correspond to the equal k-segments w' = x'.

This partially grafted corollas D has:

dll
* a single inner face H —— D , corresponding to smashing the two

vertices together, and
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e twoouter faces C; —— D .

By Example 7.22, the elements 6 and ¢ determine a unique inner horn ¢

A“[D] —F— K
= 3‘!45

D]

of K. Since K is assumed to be a strict co-properad, there is a unique filler @ €
K(D) of ¢. We now define the properadic composition

def

AR, ¢ £ di (@) € KH). (7.13)

That d} (@) has the correct profiles, that is,

ORS¢ e PK(EOW'X),

X0y U

is a consequence of the construction of the partially grafted corollas D. We will
usually abbreviate the properadic composition Xl’fv, to just X.

This finishes the definition of Pk.

Lemma 7.47 For each strict co-properad K, the above definitions give a K(1)-
colored properad Pk.

Proof We need to check the two bi-equivariance axioms, the unity axiom, and the
various associativity axioms of a properad in biased form. They are all proved in
the same manner using the unity and associativity of graph substitution, which
are proved with full details and generality in [YJ15]. So we will prove only one
properadic associativity axiom in detail to illustrate the method.

Consider a K(1)-colored connected wheel-free graph B with three vertices,

(V)
@/

in which each double arrow = means there is at least one ordinary edge in that
direction between the indicated vertices. Each vertex may have input and output legs
of B, which are not depicted in the picture.
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Suppose w, 6, and ¢ are elements in Pk with the profiles of these three vertices,
so the decorated graph

makes sense. In particular, there are properadic compositions w X 6, 6 X ¢, w K
(0 K ¢), and (v K 0) K ¢. We want to prove the properadic associativity axiom
oROXRp)=(wXKI) K¢

in Pk. To do this, first note that B has four faces:

1. There is an outer face

dy
Cy — B

corresponding to deleting the almost isolated vertex w.

By Example 7.22, the elements 6 and ¢ determine a unique inner horn ¢y

in K. Since K is a strict co-properad, the inner horn ¢, has a unique filler

Py
I'[C,,] —— K . This defines the properadic composition

X ¢ =d Dy € K(Cy).
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Here

d;
Cuv E— Cu,v

is the unique inner face of the partially grafted corollas C,, .
2. There is an outer face

Cyw — B

corresponding to deleting the almost isolated vertex u.

By Example 7.22 again, the elements w and 6 determine a unique inner horn

AT [C'U,’w] L% K

l =T

TCy,w]-

[}
Its unique filler I'[C,,] —— K then gives the properadic composition

wXR6= d;k®l € K(va),
where

dr
va — Cv,w

is the unique inner face of the partially grafted corollas C,, ,,.
3. There is an inner face

dyy
Cuyyw — B
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corresponding to smashing together the closest neighbors «# and v in B.

Once again, the elements w and 6 X ¢ determine a unique inner horn

A4 [C(uv),w] L K

l I

1—\[C(uxu),w]'

2}
Its unique filler T'[Ci),w] — K then gives the properadic composition

w X (9 X ¢)) = d:;¢2 e K (C(,w)w) N
where

dq
C(uv)w — C(uv),w

is the unique inner face of the partially grafted corollas C,y),.
4. Lastly, there is an inner face

de
Cu,(vw) —— B

corresponding to smashing together the closest neighbors v and w in B.

d'UU}
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Consider this last inner face of B. The above elements @; for 0 < i < 2 in K
determine a unique inner horn

| s

which has a unique filler ¥ € K(B). We claim that

(RO R =d*d, ¥ eK(Cuom) (7.14)

p “ow

where

dp
Cu(vw) — Cu,(vw)

is the unique inner face of the partially grafted corollas C, (). To keep the flow of
the proof, we will show (7.14) immediately after this proof.
On the other hand, the diagram

dp
C(uv)w = Cyow) — Cu,(vw)

d{ Jd

Ay
C(’zw),w —F B

in I' is commutative by the associativity of graph substitution. Graphically, this
commutative diagram says that, to compose B down to a corolla, one can first smash
together the closest neighbors « and v, and then smash w into it. Alternatively, one
can also first smash together the closest neighbors v and w, and then smash u into
it. The commutativity of this diagram now implies:

o R (0K ¢) =did,
=didiW
=d*d* W

p “ow

= (X)X .

This proves the desired associativity axiom.
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Sublemma 1 The equality (7.14) holds, i.e.,
(a) X 9) X ¢ = d;d:wlp e K (Cu(vw)) .

Proof As before, the partially grafted corollas C, () has:

dp
* asingle inner face Cywy — Cyw) and

dll d
* two outer faces C,, —— Cyw) and C, —— C,@w) -

By Example 7.22, the elements w X 6 € K(C,,,) and ¢ € K(C,) determine a unique
inner horn

Ap[Cuy(W)] — K

J =3

r [Cu,(ww)] .

Since K is assumed to be a strict co-properad, there is a unique filler. From the
definition of the properadic composition in P, the desired equality is equivalent to
dy, ¥ € K(Cy,w)) being the unique filler. In other words, we need to show that the
two outer faces of d;, ¥ are exactly w X 6 and ¢.

To prove this, first observe that there is a commutative diagram

d

Cu,(vw) — B

4 ]
d

Cu _— Cu,v

in I". Graphically, the top commutative rectangle says that to obtain the corolla C,,,
from B, one can first delete the almost isolated vertex u, and then smash the closest
neighbors v and w together. Alternatively, one can first smash v and w together, and
then delete the almost isolated vertex u. The bottom commutative rectangle says that
to obtain the corolla C, from B, one can first delete the almost isolated vertex w, and
then delete the almost isolated vertex v. Alternatively, one can first smash together
the closest neighbors v and w, and then delete the combined vertex, which is almost
isolated.
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The two outer faces of the partially grafted corollas C,, () are the two left vertical
maps. Therefore, the top commutative rectangle yields:
=d'd;¥
=d*d* W

u-ow T

This shows that @ X 6 is the expected outer face of &7, (¥). Similarly, the bottom
commutative rectangle yields:
¢ =d; P
=d dW
=d*d; .

vw

Therefore, ¢ is the other expected outer face of d, V.

7.3.2 Strict co-Properads Are Properadic Nerves

We now proceed to prove (3) = (1) in Theorem 7.42 by showing that Pk is the
desired properad. First we show that there is an object-wise isomorphism.

Lemma 7.48 Suppose K is a strict co-properad, and G € Grj_. Then there is a
canonical bijection

K(G) —— (PG,

where Py is the properad in Lemma 7.47.

Proof The map n is constructed according to the number of vertices in G as
follows.

1. The only graph in GrcT with O vertex is the exceptional edge 1. By definition

there is a bijection

(NPk)(1) = Properad(f, Pk)
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because by Lemma 7.8 amap 1 — Pk is simply an element in the color set of
Pk, which is K(1).

2. The only graphs in GrcT with 1 vertex are the corollas and their input/output
relabelings. For a permuted corolla o Ct, the bijection

K(aC'T)

'r/llg

(NPk)(cCT) = Properad(cC', Pk)

comes from the definition of the elements in Pk as the 1-dimensional elements
in K.
3. Suppose G € GrcT has n > 2 vertices. The map " is defined as the composition

n

K(G) —— (NPk)(G)

XGJ §TH nt

K(G)1 == [[TK(C)]ky - (7.15)

Here xg is the Segal map (7.11), and [ n' is the bijection defined by the previous
case and the fact that NPy satisfies the Segal condition (Lemma 7.38).

Next we show that 1" is a bijection by induction. We already observed that n°
and n' are bijections.

IfG e GrcT has n > 2 vertices, then it must have at least one inner face, say d,,.
The diagram

Set"™ (I[G], K) — Set™™ (I'[G], NP)

QJ
n—1

Set"™ (4"[G], K) ——— Set"™ (4"[G], NPx) (7.16)

1R

is commutative by the construction of the maps 7. We want to show that " is a
bijection. The left vertical map is a bijection by the strict co-properad assumption
on K. The right vertical map is a bijection because NPk is also a strict co-properad
(Lemmas 7.38, 7.40, and 7.41). The bottom horizontal map is determined by the
maps

n—1

n
set™ (T'J],K) —— set™(I'[J], NPk)
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for faces J of G not equal to d,, (Lemma 7.20). Each such face J has n — 1 vertices.
So by induction hypothesis, the bottom horizontal map in (7.16) is a bijection.
Therefore, the top horizontal map 7" is also a bijection.

Next we show that the map 7 has the same universal property as the unit of the
adjunction object-wise.

¢
Lemma 7.49 Suppose K is a strict co-properad, and K —— NQ is a map

in set™ for some ®-colored properad Q. Then there exists a unique map

Pk —— Q of properads such that the diagram

K(G) —— (NQ)(G)

nlg
N¢!

(NPk)(G) (7.17)

is commutative for each G € GrCT.
Proof First we construct the properad map ¢’.

1. Recall that the color set of Pk is K(1). The map ¢’ on color sets is defined as the
map

K1)

K

(NQ)(1) = Properad(1,Q) = 2.

2. The component maps

!

Pel) — Q)

are defined using Lemma 7.8 and the fact that elements in Pk are 1-dimensional
elements in K.

3. That ¢’ preserves the bi-equivariant structures follows from the fact that the bi-
equivariant structure in Pk is induced by input/output relabelings on permuted
corollas. These relabelings induce maps in the graphical category I', which are
preserved by C.
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4. To see that ¢’ preserves the colored units, recall that for ¢ € K(?), the ¢-colored
unit in Pk is defined as

1. = s*c,

where s* is induced by the unique codegeneracy map C;) ;> 1 . That

¢’'(1,) is the corresponding colored unit of Q is then a consequence of the fact
that ¢ is a map of graphical sets, and hence respects codegeneracy maps.
5. To see that ¢’ preserves the properadic compositions, simply note that:

a. the properadic composition in Pk is induced by coface maps in K (7.13),
which are preserved by ¢, and

b. the properadic nerve NQ is also a strict co-properad (Lemmas 7.38, 7.40,
and 7.41).

Next, to see that the composition N¢" o i in (7.17) is equal to £, first observe that

they agree on the exceptional edge 1 and permuted corollas. Suppose G € GrcT has
n > 2 vertices. The map (¢ is the composition

K(G)1 L5 (NQ)(G)y

because the properadic nerve NQ satisfies the Segal condition (Lemma 7.38). By
the definition of the corolla ribbon, the bottom horizontal map is determined by ¢
on corollas, where it agrees with the composition N’ o 5. The agreement between
¢ and N¢’ o n on G now follows from the definition of 7" (7.15).

Finally, we observe the uniqueness of the properad map ¢’ for which N¢' on = ¢.
Indeed, this equality already determines what the map ¢’ does on color sets and
elements in Pk.

Lemma 7.50 Suppose K is a strict co-properad. Then the object-wise bijections in
Lemma 7.48 assemble to give an isomorphism

n
K—)NPK

o op
in setT™.



7 Properadic Graphical Sets and Infinity Properads

206
Proof Pick amap G — H € I'. We need to show that the square

K(H) —— K(G)
nlg %n

(NPk)(H) —— (NPx)(G) (7.18)

is commutative.
é‘ 0]
Suppose K ——— NQ is an arbitrary map in Set"™ for some properad Q.

Consider the following diagram.

K(H) %;NQ)(H)

(NPk)(G)

é-/
Here Pk —— Q is the unique properad map determined by ¢ in Lemma 7.49.

Both ¢ and N¢’ are maps in Set"™ . Therefore, the two compositions in the diagram

K(G) —— (NQ)(G)

nl: :Jn
N¢!

(NPk)(H) —— (NPx)(G)

from K(H) to (NQ)(G) are equal. Since this is true for a fixed map G — H and
for all maps from K to an arbitrary properadic nerve NQ, the square (7.18) must be

commutative.
Theorem 7.42 is now a consequence of Lemmas 7.38, 7.40, 7.41, 7.47, and 7.50.
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7.3.3 Fundamental Properad

Recall the adjoint pair

L
set™ ——— properad.
N

The following definition is the properadic analog of the fundamental category of a
simplicial set.

Definition 7.51 For K € Set!”, the image LK is called the fundamental
properad of K.

Corollary 7.52 Suppose K is a strict oco-properad. Then the following statements
hold.

1. The K(?1)-colored properad Py is canonically isomorphic to the fundamental
properad of K.
2. The map

n
K—)NPK

is the unit of the adjunction (L, N).

Proof Lemma 7.50 says that 1 is a map of graphical sets, while Lemma 7.49 says
that it has the required universal property of the unit of the adjunction.

Corollary 7.52 gives an explicit description of the fundamental properad of a
strict oco-properad. The fundamental properad of a general co-properad is consid-
ered in Chap. 8.



Chapter 8
Fundamental Properads of Infinity Properads

The purpose of this chapter is to give an explicit description of the fundamental
properad (Definition 7.51) of an co-properad with non-empty inputs, with non-
empty outputs, or that is reduced. This description is directly inspired by the
construction of the fundamental category of an oco-category in [BV73] (4.11 and
4.12). For a strict oo-properad, this description reduces to the one in Corollary 7.52.

Briefly, for an oco-properad K with some mild restriction, its fundamental
properad Qg is a K(1)-colored properad and has as elements homotopy classes of
1-dimensional elements in K. The assignment

(co-properad K) ———— (fundamental properad Q)
is similar in spirit to the assignment
(path space of X) ———— (fundamental groupoid 7, (X))

for a topological space X. Indeed, the left-hand side has objects that contain all
higher homotopy information. There is no unique way to compose two composable
paths g and f in X. A composition g o f exists, and any two such compositions are
homotopic. Any two such homotopies are themselves homotopic, and so forth. The
fundamental groupoid I7; (X) makes all the axioms—composition, associativity, and
unity—hold in the strict sense.

Likewise, in an co-properad K with some mild restriction, there is no unique
way to properadically compose two composable operations g and f. A properadic
composition g X f exists by the existence of inner horn fillers. Any two such
properadic compositions are homotopic, as we will show below. The fundamental
properad Qk makes all the properad axioms—composition, associativity, unity, and
bi-equivariance—hold in the strict sense.
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The homotopy relation among 1-dimensional elements is defined in Sect.8.1.
Roughly speaking, two 1-dimensional elements f and g are homotopic along the ith
input (or output) if there is an ith input (or output) extension of f by a degenerate
element, whose inner face is g. We need to show that each such relation is an
equivalence relation and that these equivalence relations are all equal to each other.

The properad Qg associated to an co-properad K with some mild restriction is
constructed in Sect. 8.2. The elements in Qg are homotopy classes of 1-dimensional
elements in K. We need to show that there is a well-defined properad structure on
Qx and that Qg has the desired universal property.

8.1 Homotopy in a Graphical Set

The purpose of this section is to define the homotopy relation among the 1-
dimensional elements in an oo-properad. The first task is to show that homotopy
defined using each leg is actually an equivalence relation. The second task is to
show that these relations are all equal to each other. In other words, homotopy of
1-dimensional elements is independent of the choice of an input or an output leg in
its definition. In the next section, we will use homotopy classes of 1-dimensional
elements to define the fundamental properad of an co-properad with some mild
restriction.

Everything in this section has obvious analogs for co-properads with non-empty
inputs or non-empty outputs (Definition 7.26).

8.1.1 Motivation from Fundamental Categories

Our description and proof of the fundamental properad of an co-properad, as well
as the fundamental operad of an co-operad in [MWO09], are directly inspired by the
construction of the fundamental category of an oco-category in [BV73] (4.11 and
4.12). So let us briefly review that construction as motivation for our construction
later.

Fix a simplicial set X. Two 1-simplices f and g in X are said to be homotopic,
written f ~ g, if there exists a 2-simplex H € X, such that

dH=f, dH=g, and doH = sodyf.

In this case, write H:f ~ g, and call H a homotopy from f to g. This situation can
be visualized as the following diagram.
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1

/H\\deienerate

0—m—2
g

When f and g are homotopic, the simplicial identities ensure that f and g have the
same faces.

When X is an oco-category, Boardman and Vogt [BV73] (4.11) showed that
homotopy is an equivalence relation. Moreover, there is a genuine category [BV73]
(4.12), called the fundamental category, whose objects are the O-simplices of X
and whose morphisms from x to y are the homotopy classes of 1-simplices f with
dif =xanddyf =y.

Furthermore, when X is a strict co-category (i.e., isomorphic to the nerve of a
small category), the homotopy relation is the identity relation. Indeed, given a 1-
simplex f, the elements f and sodyf determine a unique inner 1-horn in X.

1
/ xegenerate
0 > 2
3!

So there is a unique filler H € X, whose 2-face is f and whose 0-face is sodof. By
uniqueness its 1-face is necessarily f again. In particular, the fundamental category
of the nerve of a small category is canonically isomorphic to the given category.

Before we consider the homotopy relation for a graphical set K, let us first
interpret the homotopy relation for a simplicial set in graph theoretic terms. When
we regard A as the graphical subcategory I'(UL1in), the object [0] € A corresponds
to the exceptional edge. So O-simplices in a simplicial set X are exactly the elements
in X(1). In GrcT the only graph with O vertex is also the exceptional edge 1. So for
a graphical set K, the graphical analogue of the object set X(1) is the set K(1).

The element [1] € A =~ T'(ULin) corresponds to the linear graph L; with 1
vertex. The only graphs in GrcT with 1 vertex are the corollas and their input/output
relabelings. So the graphical analog of L, is a permuted corolla 6 Ct. The graphical
analog of a 1-simplex is a 1-dimensional element f € K(oCt) for some permuted
corolla, which may be depicted as follows.

For the linear graph L, with 2 vertices, d? and d° are its outer faces, while d' is
its only inner face. The GrcT -analogue of L, is a connected wheel-free graph with

2 vertices, i.e., a partially grafted corollas. Given f and g in a graphical set K, a
homotopy H should then be an element in K corresponding to a partially grafted
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corollas whose outer faces are f and a degenerate element, while its unique inner
face is g. In this case, a degenerate element has the shape of a corolla C(j;1y. So the
partially grafted corolla is actually a basic dioperadic graph with a corolla C;1) as
one of its vertices, as in the following picture.

}X inner
E—

In this picture, the right-hand side depicts the shape of H as well as its two outer
faces, while the left-hand side depicts its unique inner face.

One complication here is that f and g in general have m > 0O inputs and n > 0
outputs. For example, in the picture above, i can be anywhere within the interval
[1, n]. There should also be an analogous picture where f decorates the top vertex,
while the degenerate element 1 decorates the bottom vertex and is connected to the
Jjth input of the top vertex, as in the following picture.

}%}i inner
—

In this case, j can be anywhere within the interval [1, m]. Each one of these m + n
scenarios can reasonably be called a homotopy from f to g. Therefore, part of the
work is to show that the choice of an input or an output is irrelevant because they
should all lead to the same homotopy relation.

8.1.2 Homotopy of 1-Dimensional Elements

We will use the terminology introduced in Sect. 7.1.2 for a graphical set. We begin
by defining homotopy of 1-dimensional elements along an input or an output.
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Definition 8.1 Suppose K € Set"™, f and g are 1-dimensional elements in K with
m inputs and n outputs, and C = Cy) is the corolla with m inputs and n outputs.

1. Foreach 1 <i < m, say f is homotopic to g along the ith input, written /' ~; g,
if there exists an element

H e K(CR) Cay)
such that
dep(H) =f, di(H) =g, and d;(H) = 1.
These elements are defined as follows.
* v and u are, respectively, the top and bottom vertices in the dioperadic graph

D; def C&i Ca;

dv dll
with € —— D; and Cq;;y —— D; the corresponding outer face

maps.
* The map dp, is the composition

oCTt = C D;, 8.1)

where (t7!;07") is the isomorphism that sends:

— the kth input/output leg of 0 C to that of C, and
— the unique vertex v € 6 Ct to the C-decorated graph 6 Cr.

* x; € K(1) is the ith input profile of f.
* 1, = s(x;) € K(C(1;1y) is the x;-colored unit.
* The map dj, is the composition

S N

5 inner
o'Ct’ C D; .
= face

In this case, we also write H:f ~; g, and call H a homotopy from f to g along
the ith input.

2. Foreach 1 <j < n, say f is homotopic to g along the jth output, written f ~/ g,
if there exists an element

H e K(Ca,y ®; C)
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such that
d;(H) = 1, dw(H)y=g, and d;,(H)=f.
These elements are defined as follows.
* uand v are, respectively, the top and bottom vertices in the dioperadic graph

D = cu Rl C

du . dv .
with Cq;;) —— D) and C —— D’ the corresponding outer face

maps.
* The map dy is the composition

oCt : C Di .

* y; € K(1) is the jth output profile of f.
* 1, = s(y) € K(Cq;1y) is the y;-colored unit.
* The map dj, is the composition

o' Cr' (G ) C inner Di

=1 face

In this case, we write also H:f ~/ g, and call H a homotopy from f to g along
the jth output.

Remark 8.2 We may represent the dioperadic graphs D; and D’ as follows.

Therefore, one way to interpret the relation f ~; g is that there exists an ith input
extension H of f by degeneracy, whose inner face is g. Likewise, one can say that
the relation f ~/ g means that there exists a jth output extension of f by degeneracy,
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whose inner face is g. In particular, the ~; (resp., ~/) are defined if and only if m > 0
(resp., n > 0).

Remark 8.3 Let us explain more explicitly the isomorphism

(@ he™h
coCt ———— C

in (8.1). Write i; (resp., o;) for the Ith input (resp., jth output) leg in C. This flag has
the same label at the vertex v € C, since C is an unpermuted corolla. The edge sets
Edge(C) and Edge(o Cr) are, by definition, equal. At the vertex v € 0 Ct, the flag i;
(resp., o)) is still labeled [ (resp., j), while as an input (resp., output) flag of 0 C7 it is
labeled 77! (I) (resp., o(j)). So sending the kth output leg of ¢ Ct to the kth output
leg of C for all k£ means the assignment

%0
Edge(cCt) 3 0j —— 04 € Edge(C).

Likewise, sending the kth input leg of oCt to the kth input leg of C for all k means
the assignment

%0
Edge(0Ct) 2 iy —— i—1(; € Edge(C).

The profiles of v € 6 Ct are the same as those of v € C, i.e.,

outv 01,...,0p
inv il,...,im '

The C-decorated graph o Ct has profiles

Og(1)s + - +500(n) __[®¥ooutv
l..[fl(l),...,l.tfl(m) (poinv ’

which is as expected for a map in the graphical category T'.

Remark 8.4 1In the above definition, K can be any graphical set. However, we will
restrict to an oco-properad below when we show that the relations are equivalence
relations.

First we observe that every relation in the definition above preserves profiles.
This observation will be important below when we define a properad associated to
an oo-properad using homotopy classes of 1-dimensional elements.
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Lemma 8.5 Suppose K € set"™, and f and g are 1-dimensional elements in K
with m inputs and n outputs. Suppose either

o f~igforsomel <i<m,or
o ~ o for some 1 <j<n.
f~g J

Then the profiles of f and g are equal.

Proof We will use the notations in Definition 8.1. First suppose we are given a
homotopy H:f ~; g along the ith input for some i. By construction the map
(7 ';07") preserves inputs and outputs. Therefore, we may safely suppress the
permutations associated to f and g in the following discussion.

1. We first consider a leg of C = Cj,;,) that is not the ith input, and suppose

n
1 —— C isthe corresponding outer face map. Then there is a commutative

c
d
T

where dj, and d, are the inner and outer coface maps associated to g and f. The
commutativity of this square says that in D;, each of its n + m — 1 legs attached
to the top vertex can be obtained in two different ways. In the following picture
of D;, they are depicted as the dotted arrows.

square

din
.

D
-
C

) (8.2)

N

n
—

Starting with H € K(D;) and pulling back to K(1) using the commutative
square (8.2), it follows that f and g have the same output profiles and kth input
profile, provided k # i.
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2. It remains to observe that f and g have the same ith input profile. There is a
commutative square

C— D,

ini] Tdout

T (mjl Casys

where d, is the outer coface map associated to the degenerate element. The map
s is the codegeneracy map, which is a section of in;. The commutativity of this
square says that the ith input leg of D; is both:

* the unique input leg of its lower vertex, and
* the ith input leg after the two closest neighbors in D; have been smashed
together.

In the following picture of D;, this input leg is depicted as the dotted arrow.

Therefore, we have

K(1) 2 x; = in? 5" (x)
= inj(Ly)
= inj dg, (H)
= in dj,(H)
= in/(g).
This means that the ith input profiles of f and g are the same.

There is a dual proof for the case when f ~/ g.

0
Remark 8.6 Suppose 1t —— C is the outer face map that identifies 1 with the

ith input leg of C. Then the square (8.2) is not commutative. Indeed, on the one
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hand, the composition

n din
P —— C — D,

identifies 1 with the ith input leg of D;. On the other hand, the composition

identifies 1 with the unique ordinary edge in D;.

8.1.3 Homotopy Relations Are Equivalence Relations

Our next objective is to show that all the ~; and ~/ are equivalence relations.
Lemma 8.7 Suppose K is an co-properad, and m,n > 0. Then the relations

e ~iforl <i<m, and
o «Jforlfjfn

are all equivalence relations.

Proof The proof for ~/ is dual to that for ~;, so we only provide the proof for
the latter. We assume m > 1, since otherwise there is nothing to prove. We check
the three required conditions for ~; to be an equivalence relation. To improve
readability, we separate the three parts into several sublemmas.

Sublemma 2 The relation ~; is reflexive.

Proof Pick a 1-dimensional element f € K(oCt), where C = Cy;,). We want to
show that f ~; f. There is a codegeneracy map

D, —— C

given by substituting the exceptional edge into the bottom vertex of D;. The
composition

yields a degeneracy element

¢ (f) € K(Dy) (8.3)
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that is a homotopy from f to f along the ith input. The reason is that the diagram

Id

(o4 R
C— =D, —>—C

din
Tdu outer

Capgy ——1

is commutative by the unity property of graph substitution. Here dj, is the unique
inner coface map to D;, while the right outer coface map identifies 1 with the ith
input leg of C.

Remark 8.8 The above sublemma does not use the assumption that the graphical
set K is an co-properad.

Remark 8.9 Given any 1-dimensional element f € K(oCt), there always exists a
1-dimensional element o ~'fz~! € K(C) such that

f~io ol
In fact, using the proof of Sublemma 2, we have maps

din (750)

C D; SEENYg) oCT,

We can then use the element d{*f € K(C) as our o~ 'ft~!. This implies that
in most discussion and computation that follows, we may safely suppress the
permutations o and t associated to a 1-dimensional element f € K(oCt). This
will greatly simplify the presentation.

Sublemma 3 The relation ~; is symmetric.
Proof Suppose there is a homotopy
(H:f ~i g) € K(Dy)
from f to g along the ith input. We want to show g ~; f. Consider the 3-vertex graph
E; = D; %} Cayy
= [Comm gﬁ Ca:n] 8 Caany 84)

= Clmm B [Cainy B Caaay .

—_———

L
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which may be depicted as follows.

In the following discussion, we suppress the permutations associated to f and g to
simplify the presentation. We want to define an inner horn in K corresponding to the
closest neighbors u and v, so first note that E; has four faces.

1. There is an outer face

dy
L, —— E;

corresponding to deleting the almost isolated vertex v.

Moreover, there are two codegeneracy maps

s s
L, —— C( Ly — 1,
so there is a double degeneracy

s*1,, = s%s%x € K(Ly).
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2. There is another outer face

For this outer face, we use the given homotopy
(H:f ~i g) € K(Dy)

from f to g along the ith input.
3. There is an inner face

dy

e

D; — E

corresponding to smashing together the closest neighbors # and u.

v
3
7
&
der
3~
e/

221
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For this inner face, we use the self-homotopy
(& ():f ~if) € K(Dy)

from f to f along the ith input (8.3).
4. Finally, there is an inner face

D —— E;

corresponding to smashing together the closest neighbors u and v.

v
%
(&
de
— ®
e/

By Lemma 7.20, the double degeneracy s*(1,,) and the homotopies H and {(f)
define an inner horn

in K. Since K is assumed to be an co-properad, there exists a filler @ € K(E;). We
claim that the inner face filled by it,

H € o e KDy,

is a homotopy from g to f along the ith input. In other words, we need to show
that

* its outer faces are g and a degenerate element, and
e its inner face is f.
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1. The reason H' has g as an outer face is that the square
D;

1

is commutative, which in turn holds because deleting ¢ and smashing together the
closest neighbors u and v are commuting operations. Therefore, we have

l

I'H = d'd*®
=dd'®
=d'H
=g
2. The other outer face of H’ is degenerate because the square

duyv dy

d.
Coy ——— Lo

is commutative, while the codegeneracy s is a section of d,. Here d,, is the outer
coface map corresponding to deleting the combined vertex of u and v, which is
almost isolated in D;. The commutativity of the above square is simply saying
that the corolla C(y;1) with vertex ¢ can be obtained:

* by first deleting the almost isolated vertex v and then deleting the almost
isolated vertex u, or

* by first smashing the closest neighbors 1 and v together and then deleting that
combined vertex.

Therefore, we have

dyH' = d;,d;®
= d'd*P
=ds*1,

=1,
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3. For the inner face of H’', we have a commutative diagram

delT Tdel
d

The commutativity of this square says that, to compose E; down to a corolla, the
order in which e and ¢’ are shrunk is irrelevant. Therefore, we have

YH = d5d*®
= d*d5D
=d;(f
:f'

We have shown that H': g ~; f, so the relation ~; is symmetric.
Sublemma 4 The relation ~; is transitive.

Proof Suppose given homotopies H;:f ~; g and H: g ~; h along the ith input. We
want to show f ~; h. We will use the notations in Sublemma 3.
Consider once again the graph E; in (8.4). Define an inner horn

Ae

|

[B] ——— K
=
I'[E;

E;] (8.5)

using Lemma 7.20 and the following elements.

dy
1. Forthe outerface L, —— E; , we again use the double degeneracy s*(1,,) €

K(L>).

4
2. For the outer face D; —— E; , we use the given homotopy

(Hi:f ~i g) € K(Dy)

from f to g along the ith input.

de
3. For the inner face D; —— E; , we use the other homotopy

(Hy: g ~i h) € K(D;)

from g to 4 along the ith input.
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The double degeneracy s*(1,,) and the two homotopies H; and H, define the
desired inner horn in (8.5). Suppose ¥ € K(E);) is a filler of that inner horn. Recall

dy
the inner face D; —— E; . We claim that the inner face filled by ¥,

H' < 5w e KD)).
is a homotopy from f to & along the ith input. In other words, we need to show
that

* its outer faces are f and a degenerate element, and
* its inner face is h.

The computation is almost the same as in Sublemma 3.

1. The left commutative square and the computation in K on the right-hand side,

dgr

Di%Ei H' +——v
SR
C%Di f+—— Hy,

outer

show that the outer face d\,H” is f. Here d,, corresponds to deleting the combined
vertex of ¢ and u, which is almost isolated in D;.
2. The left commutative square and the computation in K on the right-hand side,

d,s
D,—~~—FE; H «— v
do dy
dys .
Cany ——= L2 1+—is%(1),

show that the other outer face d; H” is 1,,. Here s is a codegeneracy map and is a
section of d,-.
3. The left commutative square and the computation in K on the right-hand side,

dgr

D7;>Ez H' +—— v

J ]
d,

C—-D, h +— Ho,

inner

show that the inner face dXH” is h.
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We have shown that H”: f ~; h, so the relation ~; is transitive.

The proof of Lemma 8.7 is complete.

8.1.4 Same Equivalence Relation

We now proceed to show that the above equivalence relations are all equal to each
other. We will use the same notations as above. The following proof is quite similar
to that of Lemma 8.7. As before we will suppress permutations in computation to
simplify the presentation.

Lemma 8.10 Suppose K is an oo-properad, and m,n > 0. Then the equivalence
relations ~; for 1 <i < m are all equal to each other.

Proof We assume m > 2, since otherwise there is nothing to prove. To show that ~;
is equal to ~¢ for 1 < i < k < m, suppose given a homotopy H:f ~; g along the ith
input. To show that f ~; g, consider the 3-vertex graph
Dy = D; ®: Ca;
= [C R} Cau] ?’I Casn 8.6)
= [C &} Caan ] B Caany.
~—————

Dy

where C = C;n). The graph D;; may be depicted as follows.

First note that D;; has four faces.

1. There is an outer face

dr
D, —— D,"k

corresponding to deleting the almost isolated vertex .
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In particular, there is a self-homotopy

(& ~if) € KDy

from f to f along the kth input (8.3).
2. There is another outer face

dﬂ
Dl‘ e Di,k

corresponding to deleting the almost isolated vertex u.

There is a self-homotopy
(&5 (:f ~if) € KDy)

from f to f along the ith input.
3. There is an inner face

dy

e

Di e Di,k

corresponding to smashing together the closest neighbors « and v.
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By assumption there is a homotopy
(H:f ~i g) € K(Dy)

from f to g along the ith input.
4. There is another inner face

de
Dk —_— Di,k

corresponding to smashing together the closest neighbors ¢ and v.

By Lemma 7.20, the homotopies £ (f), {*(f), and H define an inner horn

ADy] ——— K

|

I'[D; k]
in K. So there exists a dotted filler @ € K(D; ). We claim that the inner face filled
by it,

H, déf d:@ (S] K(Dk),

is a homotopy from f to g along the kth input. In other words, we need to show
that

* its outer faces are f and a degenerate element, and
* its inner face is g.
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1. To see that Hy has f as an outer face, consider the left commutative square and
compute in K as indicated.

Dy, L Di,k Hy¢—®
R
de *
C——D; fe——¢ ()

inner

2. To see that the other outer face of Hy is degenerate, consider the left commutative
square and compute in K as indicated.

Dk L D@k Hk —P
dnw\ Tdt I I
dy *
C(l;l) ka I%Ck(f)

Here d,, is the outer face corresponding to deleting the combined vertex of # and
v, which is almost isolated in Dy.

3. Finally, to see that the inner face of Hy is g, consider the left commutative square
and compute in K as indicated.

Dy —% 5 Dy Hy ¢
dcﬂ Td I
C de D; g+—H

inner

Here the left d. is the inner face of Dy.

We have shown that Hy:f ~; g. A symmetric argument shows that, if f ~; g,
then f ~; g.

Lemma 8.11 Suppose K is an co-properad, and m,n > 0. Then the equivalence
relations ~/ for 1 < j < n are all equal to each other.

Proof This is dual to the proof of Lemma 8.10.

Lemma 8.12 Suppose K is an co-properad, and m,n > 0. Then the equivalence
relations

e ~iforl <i<m,and
e ~forl<j<n

are all equal to each other.
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Proof We assume that m,n > 1, since otherwise there is nothing to prove. By
Lemmas 8.10 and 8.11, it suffices to show that ~; and ~! are equal. Suppose given a
homotopy H:f ~ g along the 1st input. To show that f ~! g, consider the 3-vertex
graph

D} = D' R Cqyy
= [Casn B} C] Ry Cay
= Can B} [CR®) Caa .
~————
D

where C = C(;n). The graph D] may be depicted as follows.

It has the following four faces.

1. There is an outer face

dv
Dy —— Dj

corresponding to deleting the almost isolated vertex v.

There is a self-homotopy

(& (N):f ~1 f) € K(Dy)

from f to f along the first input.
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2. There is an outer face
d
D' —— D]

corresponding to deleting the almost isolated vertex .

There is a self-homotopy
() ~' ) e KDY

from f to f along the first output.
3. There is an inner face

dy

e

Dy, —— D]

corresponding to smashing together the closest neighbors « and v.

By assumption there is a homotopy
(H:f ~1 g) € K(Dy)

from f to g along the first input.
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4. There is an inner face

e

d,
D' —— D]

corresponding to smashing together the closest neighbors # and u.

By Lemma 7.20, the homotopies ¢} (f), {'*(f), and H define an inner horn

KDY K

l w

L[Di]
in K. So there is a dotted filler ¥ € K(D}). We claim that the inner face filled by it,
H € a*w e KDY,
is a homotopy from f to g along the first output. In other words, we need to show

that

* its outer faces are f and a degenerate element, and
 its inner face is g.

The argument is similar to that in the previous few lemmas.
1. To see that the outer face d*H' is f, use the left commutative square and compute

in K as indicated.

D' %, p! 7 —

AT
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2. To see that the other outer face d,H ! is degenerate, use the left commutative
square and compute in K as indicated.

p' %, pl 7 —
T
du *
C(l;l)le 1——¢™(f)

3. To see that the inner face d, H lis g, use the left commutative square and compute
in K as indicated.

D' %, pi H' W
‘NN
CLDl g+—1H

inner

This shows that f ~; g implies f ~' g. The converse is proved by a symmetric
argument. Therefore, the equivalence relations ~; and ~' are equal.

Definition 8.13 Suppose K is an co-properad. Denote by ~ the common equiv-
alence relation, called homotopy, defined by ~; and ~/ as in Lemma 8.12. If
m = n = 0, then homotopy is defined as the equality relation. Two elements in
the same homotopy class are said to be homotopic. The homotopy class of a 1-
dimensional element f will be written as [f].

Remark 8.14 For a strict oo-properad K, homotopy is the identity relation.

8.2 Properad Associated to an oco-Properad

In this section, we define a properad Qg associated to an co-properad K with non-
empty inputs, with non-empty outputs, or that is reduced. The elements in Qg
are homotopy classes of 1-dimensional elements in K. First we establish that the
properadic composition is well-defined using homotopy classes. Then we show that
the properad Qg has the required universal property for the fundamental properad
of an oco-properad.

8.2.1 Properadic Composition of 1-Dimensional Elements

For an oco-properad K, we now define a properadic composition of 1-dimensional
elements. Its existence is guaranteed by the inner horn extension property, but it is
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not unique. We will show that, with suitable restriction on K, it is well-defined on
homotopy classes and yields the fundamental properad of K.

Definition 8.15 Suppose:

K'is an co-properad (possibly with non-empty inputs or non-empty outputs),
f € K(6Cpumy7) is a 1-dimensional element with profiles (a; b),

g € K(o'Cpy ') is a 1-dimensional element with profiles (c; d), and

b2 b = ¢ C care equal k-segments for k > 0.

. Define the partially grafted corollas
B = Cps) My Comm-

where m = |a|,n = |b|, p = |c|, and ¢ = |d|. Write v and u for its top and
bottom vertices, respectively. Suppose

din
C = Cptm—kigtn—ky — B

is the inner face of B corresponding to smashing together the closest neighbors v
and u.

. A properadic composition of g and f is a 1-dimensional element 4 € K(C) such
that the following four statements hold.

a. There exists an element 8 € K(B).
b. The composition

diop
4 , (TThe'Th o R
o'Clpg)T = Clpig) B
satisfies d, (0) = g.
c. The composition
dpot
;- 1 Y
(r7 0™ du
O'C(m;n)T T> C(m;n) — B

satisfies dj (0) = f.

0

d. The inner face satisfies 42 (6) = h.

In this case, we write

4

0:h~gR, f,
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and call 6 a witness of / as a properadic composition of g and f. As before, we
often abbreviate IZi, to just X.

Remark 8.16 Properadic composition can be defined for a general graphical set,
since the above definition does not actually use the inner horn extension property
of an oco-properad. However, the description of the fundamental properad in terms
of homotopy classes is only valid for co-properads with suitable restriction. So we
restrict to co-properads right from the beginning.

Remark 8.17 A witness 6, even if it exists, is not required to be unique. That is
why we call & a properadic composition of g and f. When K is an co-properad, the
existence of a witness 6, and hence also £, is guaranteed. We want to show that
properadic composition is well-defined using homotopy classes. The oco-category
and oo-operad analogs are [BV73] (4.12) and [MW09] (6.6). To accomplish our
task, we need the following preliminary observation. It says that, given f and g,
any two properadic compositions of g and f are homotopic. In any case, one would
expect this to hold if properadic composition really is well-defined using homotopy
classes. The argument is similar to what we used above when we were showing that
the relations ~; are equivalence relations.

Recall from Definition 7.1 that a graphical set X is reduced if the set X(C(g:))
is a singleton, where C(g;g) is the single isolated vertex.

Lemma 8.18 Suppose K is

* a reduced co-properad,
e an oo-properad with non-empty inputs, or
e an oo-properad with non-empty outputs.

Suppose f and g are 1-dimensional elements in K as in Definition 8.15. Suppose
there are properadic compositions

h~gRf and W ~gKf.

Then h and ' are homotopic.

Proof We will use the notations in Definition 8.15. First we assume that K is an oco-
properad with non-empty outputs. In particular, we have g > 0. We will construct
a homotopy from % to &’ as an inner face of some inner horn filler. Suppose b’ =
by jyi—1p, 1.€., b’ begins at the /th entry in b. Consider the 3-vertex graph

B
PR

A= Can B [C@;m X, C(m;m]

Dl
—N——
1 <
= [Cany) B} Copigy ] By Comn»
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which may be depicted as follows.

Observe that A has k 4 1 ordinary edges. The k internal edges from u to v will be
collectively denoted by e.

The rest of the proof follows a familiar pattern. First note that the graph A has
four faces.

1. There is an outer face

du
D' —— A

corresponding to deleting the almost isolated vertex u.

There is a self-homotopy
(¢*(9):8 ~ g) e KDY

from g to g along the first output, similar to (8.3).
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2. There is an outer face

By assumption there is a witness
(0:h ~ gXf) e K(B).

3. There is an inner face

d,
B—— A

corresponding to smashing together the closest neighbors v and w.
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By assumption there is a witness
(0":h ~ g K f) € K(B).

4. There is an inner face

de
D' —— A

corresponding to smashing together the closest neighbors « and v.

By Lemma 7.20, the elements £*(g), 6, and 0’ define an inner horn

A°[A] — K
=

I[A]

in K. Since K is an co-properad, there exists a dotted filler @ € K(A). We claim that
the inner face filled by it,

HYE ¢to e KD,

is a homotopy from # to /’. In other words, we must show that

* its outer faces are & and a degenerate element, and
* its inner face is /.

1. To see that & is an outer face of H, we use the left commutative square and
compute in K as indicated.
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1 de

—5 A H+——
SR
o —dn, h+—0

2. To see that the other outer face of H is degenerate, we use the left commutative
square and compute in K as indicated.
P

(¢ (9)

Dl % 4

g T

Clay —s D!

outer

i

3. To see that the inner face of H is /', we use the left commutative square and
compute in K as indicated.

Dl 4 H+——®
o e D]
ORI B o——0

We have shown that H is a homotopy from 4 to /, assuming K is an co-properad
with non-empty outputs.

If K is an oco-properad with non-empty inputs, then m > 0. Suppose ¢’ =
C[jj+k—1]- 1.€., ¢’ begins at the jth entry in c. In this case, we use instead the 3-vertex
graph

B
— ————

A= [C(p;q) X C(m;n)] =) Casny

Dy
—

= Cg) By [Comn) B} Cai .

which may be depicted as follows.
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Using the four faces of A’, we then argue as above to obtain a homotopy from % to
K as an inner face of an inner horn filler.

Observe that in the above two cases, we could also have used any variation of A
in which the vertex w is attached to any leg of the partially grafted corollas B. Such
a leg is guaranteed to exist because both Cy;) and C,;,) have non-empty outputs,
or both of them have non-empty inputs.

Finally, suppose K is a reduced oco-properad. The profiles of 7 and /’ are the same,
say (x;y), which is also the pair of profiles of the partially grafted corollas B.

1. If (x;y) = (@; @), then h, i/ € K(C(g.2)). By the reduced assumption on K, this
setis a singleton, so we have h = /.

2. If (x;y) # (@;9), then the partially grafted corollas B has at least one leg.
Therefore, we may reuse the above argument, in which the vertex w is attached
to such a leg, to obtain a homotopy from 4 to /'.

The following observation will allow us to define properadic composition using
homotopy classes of 1-dimensional elements.

Lemma 8.19 Suppose K, f, and g are as in Lemma 8.18. Suppose there are:
* homotopiesf ~ f and g ~ g, and
* properadic compositions

h~gRf and W ~g Xf.

Then h and h' are homotopic.

Proof By Lemma 8.18 it suffices to show that & >~ g’ X f’. As in the proof of that
lemma, this witness will be constructed as an inner face of an inner horn filler.
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Suppose b’ = by +x—1) and ¢’ = ¢}j;44_y)» i€, b and ¢’ begin at, respectively,
the /th entry in b and the jth entry in c. Consider the 3-vertex graph

Dl
, r——
G = Cpig ﬁz/ [C(l;l) Xlzl C(m;n)]
= [ Coro B Carany | B Con
—_—

Dj

which may be depicted as follows.

The dotted arrow named e represents the collection of ordinary edges corresponding
to the equal segments

(Bists - b)) = (g1 oo i)

which is empty if and only if k = 1. In particular, if £ > 1, then e is not empty, and
G is not simply-connected.

The rest of this proof follows the same pattern as in the proofs of the previous
few lemmas. The graph G has the following four faces.

1. There is an outer face

dy
D—— G

corresponding to deleting the almost isolated vertex v.
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|
S NON

By assumption, there is a homotopy
(H:f ~f) e K(D)

from f to f’ along the Ith output.
2. There is an outer face

Dj—>G

corresponding to deleting the almost isolated vertex u.

€j €j
Ol
el

By assumption, there is a homotopy
(Hi:g' ~ g) € K(D))

from g’ to g along the jth input.
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3. There is an inner face

By assumption, there is a witness
(0:h ~ gXf) e K(B)

of h as a properadic composition of g and f.
4. There is an inner face

de,
B—— G

corresponding to smashing together the closest neighbors ¢ and u.

€] e —J) <t> e

243
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By Lemma 7.20, the elements H' ! Hj, and 0 define an inner horn

NG ——— K

|
I[G]

in K. Since K is an co-properad, there exists a dotted filler ¥ € K(G). We claim that
the inner face filled by it,

v = dEw e K®B),

is a witness of h ~ g’ X f”. In other words, we must show that

* its outer faces are g’ and /7, and
* its inner face is A.

1. To see that g’ is an outer face of ¥, we use the following left commutative square
and compute in K as indicated.

B—>G YV
C(z)(z)m> j g «—H;

2. To see that f” is the other outer face of v, we use the following left commutative
square and compute in K as indicated.

B—> P +—U
C(m n) T f/ 1 H!

inner

3. To see that £ is the inner face of i, we use the following left commutative square
and compute in K as indicated.

a
Q——3
&
m*y Q
>
/S
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We have shown that
Yih~g Xf.

As discussed near the beginning of this proof, this suffices to finish the proof.

8.2.2 Properad of Homotopy Classes

We now define the object that will be shown to be the fundamental properad of
an oo-properad with suitable restriction. We will use the terminology introduced in
Sect.7.1.2 for a graphical set.

Definition 8.20 Suppose K is as in Lemma 8.18. Define a X'g(k(¢)-bimodule Qk as

follows.

1. For a pair (x;y) of K(1)-profiles, denote by Qk(x;y), or Qk(2), the set of
homotopy classes of 1-dimensional elements in K with profiles (x; y). This is
well-defined by Lemma 8.5.

2. For a color ¢ € K(1), define the c-colored unit of Qg as the homotopy class of
the degenerate element

1. = 5*(c) € K(Cuyp)

where C(;;y —— 1 is the codegeneracy map.
3. Define the X -bimodule structure on Q,

(m32)
Qk(®) — Qk(2).

XTI

using the isomorphisms in K induced by input/output relabelings
o0Ct —— MoCt)mr = (Ao)C(tm)

of permuted corollas.
4. Define a properadic composition on Qg using representatives of homotopy
classes, i.e.,

def

8] = 1] < [a).

where h >~ g &f}:f is as in Definition 8.15. This is well-defined by Lemma 8.19.
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Remark 8.21 Tf, furthermore, K is strict, then homotopy is the identity relation.
In this case, the object Qg with its structure maps is equal to the properad Pk in
Definition 7.46.

We first observe that Qg forms a properad.

Lemma 8.22 Suppose K is as in Lemma 8.18. Then Qg in Definition 8.20 is a
K(1)-colored properad.

Proof We need to check the bi-equivariance, unity, and associativity axioms of
a properad in biased form. They are all proved in the same manner using the
unity and associativity of graph substitution. So we will prove only one properadic
associativity axiom to illustrate the method.

To this end, we will reuse much of the proof of Lemma 7.47. Suppose w, 8, and
¢ are representatives of homotopy classes of 1-dimensional elements for which the

decorated graph
()
Po
(@)

makes sense. We want to prove the properadic associativity axiom

[w] W ([0] X [¢]) = ([0] W [6]) X [p]
in Qk. We follow the proof and notations in Lemma 7.47.
1. The elements 6 and ¢ determine an inner horn in K, whose filler @ is a witness

Bo:ix E PPy~ 0R

of x as a properadic composition of 6 and ¢.
2. The elements w and 6 determine an inner horn in K, whose filler @, is a witness

Oy E o xR0

of y as a properadic composition of w and 6.
3. The elements w and x determine an inner horn in K, whose filler @, is a witness

Dz E P~ wRx (8.7)

of z as a properadic composition of @ and x.
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Note that, unlike the proof of Lemma 7.47, these three witnesses are not unique
because K here does not need to be strict. Nonetheless, their existence is guaranteed
by the assumption on K, and that is all we need.

The witnesses @; for 0 < i < 2 determine an inner horn in K, which has a filler
¥ € K(B). The inner face filled by it,

d:wllf S K(Cu’(vw)),
has outer faces y and ¢. So it is a witness

dr v d;d:wllf =zxyX¢ (8.8)
of z as a properadic composition of y and ¢. Equations (8.7) and (8.8) and
Lemma 8.19 now imply the desired properadic associativity axiom.

Here is the main observation of this chapter. It says that the fundamental properad
of an co-properad with suitable restriction can be described using homotopy classes
of 1-dimensional elements.

Theorem 8.23 Suppose K is as in Lemma 8.18. Then the K(1)-colored properad
Qx is canonically isomorphic to the fundamental properad of K.

Proof 1f K is an oco-properad with non-empty inputs or non-empty outputs, then it
is regarded as a properadic graphical set, which is actually an co-properad, via the
left adjoint 7y (7.1).

We will recycle most of the proofs of Lemmas 7.48-7.50.

1. Following the proof of Lemma 7.48, we obtain a map

K(G) —— (NQK)(G)

for each G € GrCT. The map 1 is still a bijection because Qg is K(1)-colored.

The map ' sends a 1-dimensional element in K to its homotopy class.

2. The object-wise map 71 has the same universal property as the unit of the
adjunction (L, N) object-wise. Here we follow the proof of Lemma 7.49. The
main point is that, given a properad Q and a map

¢
K — NQ
of graphical sets, the map

g-/
QK—>Q
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is well-defined. Indeed, homotopic 1-dimensional elements in K are sent to
homotopic 1-dimensional elements in NQ. But since the nerve NQ is a strict
oo-properad, homotopy is the identity relation.

3. The object-wise map 7 is actually a map

n
K—>NQK

of graphical sets. Here we reuse the proof of Lemma 7.50 by simply replacing
Pk with Qg and using the previous step instead of Lemma 7.49.

0
The last two steps imply that the map K —— NQg of graphical sets has

the same universal property as the unit of the adjunction. So, up to a canonical
isomorphism, Qx is the fundamental properad of K.



Part 11
Infinity Wheeled Properads



Chapter 9
Wheeled Properads and Graphical Wheeled

Properads

In this chapter we define the graphical category I'r, generated by connected graphs.

In Sect.9.1 we recall the biased and the unbiased definitions of a wheeled
properad. A wheeled properad is a properad that also has a contraction operation.
Due to the presence of the contraction, in writing down the generating operations
of a wheeled properad (i.e., the biased definition), one does not need a general
properadic composition. Instead, a dioperadic composition, which is a very special
case of a properadic composition, together with the contraction are sufficient. The
unbiased definition of a wheeled properad describes it as an algebra over a monad
defined by the set Gr? of connected graphs. The detailed proof of the equivalence
of the two definitions of a wheeled properad is in [YJ15]. We also observe that the
category Properad® of wheeled properads is symmetric monoidal.

In Sect.9.2 we discuss graphical wheeled properads. They are free wheeled
properads generated by connected graphs. We observe that, with the exception of
the exceptional wheel O, a graphical wheeled properad has a finite set of elements
precisely when it is simply connected (Theorem 9.20).

In Sect.9.3 we discuss coface and codegeneracy maps between graphical
wheeled properads. Since there are two generating operations in a wheeled properad
besides the bi-equivariant structure and the colored units, there are two types of
each of inner coface and outer coface. Each of these four types of coface maps
corresponds to a graph substitution factorization discussed in Sects.2.7 and 2.8.
Furthermore, due to the presence of the exceptional wheel, there is an exceptional
inner coface map ¢ —> O from a single isolated vertex. We will prove the wheeled
analogs of the graphical identities for these coface and codegeneracy maps. As in
the case of graphical properads, most of these identities are fairly simple, except
when two coface maps are composed.

In Sect.9.4 we define the wheeled analogs of graphical maps. They are the
morphisms in the wheeled properadic graphical category I'r,, whose objects are
graphical wheeled properads. A wheeled properadic graphical map is defined as
a map between graphical wheeled properads in which the map from the image to
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the target is a subgraph. Therefore, before we can define a wheeled properadic
graphical map, we need to discuss subgraphs and images. The graphical category I"
is embedded as a non-full subcategory of the wheeled properadic graphical category
Ity (Theorem 9.66). Also, each map in I't, has a factorization into codegeneracy
maps followed by coface maps (Theorem 9.69). The section ends with various
lemmas approaching the uniqueness of such decompositions, which is more subtle
than in the wheel-free case.

9.1 Biased and Unbiased Wheeled Properads

In this section we first recall both the biased and the unbiased definitions of a
wheeled properad. Then we construct a symmetric monoidal structure on the cate-
gory of all wheeled properads. Later this symmetric monoidal structure will induce
a symmetric monoidal closed structure on the category of wheeled properadic
graphical sets.

9.1.1 Biased Wheeled Properads

Let us first recall the biased definition of a wheeled properad. In the linear setting,
1-colored wheeled properads in biased form were introduced in [MMSO09]. The
explicit biased axioms can be found in [YJ15]. The following definition makes sense
in any symmetric monoidal category (C, ®, /) with all small colimits and initial
object @ such that ® commutes with colimits on both sides.

Fix a set € of colors, so S means S(€). We will use some definitions about
profiles and graphs discussed in Chap. 2.

Definition 9.1 A ¢-colored wheeled properad (P, 1, g;' , joi) consists of:

¢ a XYg-bimodule P,
e a c-colored unit

I;P()

¢
C

foreachc € €,
e a contraction

P() — P

c c\¢j

whenever ¢; = d;, and
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¢ adioperadic composition

.0

P ®PE) — P

coia

whenever b; = ¢;,

such that suitable axioms are satisfied.

f
A morphism P —— Q from a €-colored wheeled properad P to a ©-

colored wheeled properad Q is a map of the underlying colored objects that
respects the bi-equivariant structure, colored units, contractions, and dioperadic
compositions. The category of all wheeled properads and morphisms is denoted
by Properad®.

Remark 9.2 The colored units and the dioperadic composition can be visualized, in
terms of elements, as in Remark 3.10. In fact, graphically a dioperadic composition
is a properadic composition with only one internal edge. The contraction can be
visualized as follows.

d; gi g\di

& j
) —
c\es

Remark 9.3 There are three sets of biased axioms in a wheeled properad.

1. First, the c-colored unit and the dioperadic composition jo; are generated by
the c-colored exceptional edge 1. (Example 2.11) and the dioperadic graph
C(c;a) joi Cia;p) (Example 2.17), respectively. Together they make P into a diop-
erad.

2. Second, the contraction Ej’ is generated by the contracted corolla Ej’ C(c:a) (Exam-
ple 2.15). The contractions are bi-equivariant and commute with each other with
suitable shifts of indices.

3. Finally, the dioperadic composition and the contraction are compatible with each
other. Each such compatibility axiom can be interpreted as saying that a certain
connected graph with two vertices and two internal edges can be constructed in
two different ways using a dioperadic graph, a contraction, and a relabeling.

Remark 9.4 Each wheeled properad has an underlying properad (Definition 3.5).
The properadic composition is generated by the partially grafted corollas (Exam-
ple 2.16). The graph substitution decomposition of the partially grafted corollas in
Example 2.45 shows that each properadic composition is generated by a dioperadic
composition followed by several contractions. Moreover, the compatibility of the
dioperadic composition and the contraction implies that a general properadic
composition can be expressed as in the previous sentence in multiple ways.
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Example 9.5 As discussed in [MMSO09] (Example 2.1.1), a typical example of a
1-colored wheeled properad is the endomorphism object (Definition 3.12) End(X)
of a finite-dimensional vector space X. The contraction on End(X) is induced by the
trace, which is where finite-dimensionality is needed. The dioperadic composition
is induced by composition of maps.

Example 9.6 Over the category of sets, a typical example of a €-colored wheeled
properad is given by the set of €-colored connected graphs Grg) (Definition 2.29).

1. The (c; d)-component is given by the set GrO(c;d) of connected graphs with
input/output profiles (c; d).

2. The colored units are given by the exceptional edges 1. of a single color.

3. The dioperadic composition is given by grafting an input leg of one connected
graph with an output leg with the same color of another connected graph. So for
G € GrED (a;b) and G, € GrED (c: d) with b; = ¢;, their dioperadic composition
(G2) jo; (G1) can be visualized as the connected graph in the following picture.

d

4. The contraction is given by connecting an output leg with an input leg of the
same color of a given connected graph. So for G € GrcO (c;d) with d; = ¢j, the
contraction & ; G can be visualized as the connected graph in the following picture.

d;

Cj

All the biased axioms of a wheeled properad can be read off from this wheeled
properad.
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9.1.2 Unbiased Wheeled Properads

As for operads, properads, and other variants, there is a more conceptual, unbiased

way to define a wheeled properad using a monad generated by connected graphs.

The following definition is obtained from Definition 3.22 by replacing GrcT with

Grcb. The notation Grcb (f) denotes the subset of Grcb consisting of connected
graphs with profiles (c; d).

Definition 9.7 Suppose P € C%59,

1. Define the functor

F= FGrD:Cdis(S) _, cdis®

by
d
FP (;) = 1] Pa= 1] & P((Iit((vv))) 9.1)
- GearP (%) Gear? (f) VEVH(G)
for (¢c;d) € S.

i
2. Define the natural transformation F?> —— F as the one induced by graph
substitution.

3. Define the natural transformation Id ; F as the one induced by the
(c; d)-corollas as (c; d) runs through S.

As in the properad case, the associativity and unity properties of graph substitu-
tion imply the following observation.

Theorem 9.8 For each non-empty set €, there is a monad (F 5 00 M v) on C9is®),

Using the correspondence between the generating operations and the generating
graphs in Remark 9.3, we have the following equivalence between the biased and
the unbiased definitions of a wheeled properad. Its detailed proof can be found in
[YJ15].

Corollary 9.9 There is a natural bijection between €-colored wheeled properads
and F a0 -algebras.

By general category theory, for a colored object P, the free F-algebra FP is
precisely the free wheeled properad of P.
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9.1.3 Symmetric Monoidal Structure

The symmetric monoidal product on wheeled properads is defined just like the one
on properads (Definition 4.4).

Definition 9.10 Suppose P is a €-colored wheeled properad and Q is a ®-colored
wheeled properad. Define the quotient € x ©-colored wheeled properad

P2Q def FGrg)(P/\Q)

—, 9.2)
3 types of relations

where F, 0 (P A Q) is the free wheeled properad of the colored object P AQ (9.1).
The relatlons are of the following three types.

1. For each color d € D, the functions
C3cr— (c,d),
Poapr—pRd

are required to define a map of wheeled properads P — P ® Q.
2. For each color ¢ € €, the functions

D >dr— (c,d),
Q3¢g—c®gq
are required to define a map of wheeled properads Q — P ® Q.
3. Suppose p € P (a;b) and ¢ € Q(c;d) with |a| =k, |b] = 1, |c| = m, |d| = n,
(k, 1) # (0,0), and (m,n) # (0,0). The relation is then the equality
P ®di}i_) x {a: ® g},

9.3)
=al”[{bj®q} i x{p@ali, o

in P ® Q, called distributivity.

Remark 9.11 The distributivity relation is discussed in Sect.4.1.3. Each such
relation says that two decorated graphs are equal. As in the properadic tensor
product, if some of the parameters k, /, m,n are 0, then the distributivity relation
requires extra interpretation to keep the decorated graphs connected.

Theorem 9.12 The category Properad® is symmetric monoidal with respect
o Q.

Proof 1t is essentially the same as in the properad case (Theorem 4.6) with Grcb

in place of GrcT . The only difference is that the unit element here is the 1-colored
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wheeled properad 1° with components

; {1} if mon) = (%, %),
10<m)= {0} if (m,n) = (2;9),

1] otherwise.

Its only dioperadic composition is

Tt = 1.

Its only contractionis & 1 = 0.

Remark 9.13 The unit 12 of the symmetric monoidal product is the free 1-colored
wheeled properad generated by the 1-colored object i with components

i(;;) _

for all (m, n).

9.2 Graphical Wheeled Properads

In this section we define the graphical wheeled properad generated by a 1-colored
connected graph. As for graphical properads, most graphical wheeled properads are
infinite. In fact, we observe that, with the exception of the exceptional wheel O, the
graphical wheeled properad is finite if and only if the generating connected graph is
simply connected.

9.2.1 Wheeled Properads Generated by Connected Graphs

Here we define the graphical wheeled properad generated by a connected graph.
The definition is similar to the graphical properad generated by a connected wheel-
free graph in Sect.5.1. The colors are the edges. The generating elements are the
vertices.

Remark 9.14 Suppose G € Grg).

1. Recall from Definition 2.3 that Edge(G) is the set of edges in G. An edge in G
means an exceptional edge 1, an exceptional loop O, an ordinary leg, an edge
connecting two vertices, or a loop at a vertex.
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2. Using the set Edge(G) as colors, each vertex v € Vt(G) (if one exists) determines
a corresponding pair of Edge(G)-profiles

(?‘;t((v”))) € S(Edge(G)) = P(Edge(G))” x P(Edge(G))

Since wheels are now allowed, a loop at a vertex contributes both an incoming
flag and an outgoing flag at that vertex. In this case, in(v) and out(v) have a non-
empty intersection. Moreover, for two distinct vertices in G, their corresponding
pairs of Edge(G)-profiles are different because G cannot have two isolated
vertices.

We now define a graphical wheeled properad.
Definition 9.15 Suppose G € Grcb is a 1-colored connected graph.
1. Define an S(Edge(G))-colored object G as follows:

(;(4) _

2. Define the free Edge(G)-colored wheeled properad

vy if (4) = () forv € Vi(G),

in(v)

(%] otherwise.

To(G) = F oo (G) ,

called the graphical wheeled properad generated by G.

Remark 9.16 From the definition of the free wheeled properad functor F, L0> We
can interpret an element in the graphical wheeled properad I'y (G) as an Edge(G)
colored G-decorated connected graph. So each edge is colored by an edge in G, and
each vertex is a vertex in G.

Example 9.17 Suppose
G= 1 o G=0,

i.e., an exceptional edge (Example 2.11) or an exceptional loop (Example 2.12)
Then

Edge(G) = {e} and Vt(G) =

So G is canonically isomorphic to the 1-colored object i with empty components
discussed in Remark 9.13 above. Therefore, there are canonical isomorphisms

To(h) = 1° = Ty (V)
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of 1-colored wheeled properads, where 1% is the free 1-colored wheeled properad
generated by i in the proof of Theorem 9.12.

Example 9.18 Consider a single isolated vertex C(g;z) = o (Example 2.10). Then
Edge(e) = @ and Vt(e) = {v},

in which the unique vertex v has profiles (&; @). Therefore, the graphical wheeled
properad 'ty (e) is the free @-colored wheeled properad with components

ey (o) (g) =

Since the set Edge(e) of colors is empty, there are no colored units. There are no
non-identity operations in the graphical wheeled properad I't,(e).

o) if(cd) = (2:;9),

%] otherwise.

Example 9.19 Consider the contracted corolla G = E}C(l;l) (Example 2.15) with
one vertex v, one loop e at v, and no other flags. It can be visualized as follows.

OS]
Then

Edge(G) = {¢} and Vt(G) = {v},

in which the unique vertex v has profiles (e; ¢). So the graphical wheeled properad
I't,(G) has the following components:

= {ElL} ., if(cd = (2:9),
[0} otherwise.

d {Ln}nZO if (gv 4,) = (67 6‘),
I'n(G) (;)

Here L, is the linear graph

O
!

e
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with n copies of v, in which each edge is colored by e. In particular, Ly is the
e-colored exceptional edge 1., which serves as the e-colored unit.
The G-decorated graph £| L, is the contraction of L,,, which is depicted as follows.

In particular, & Ly is the e-colored exceptional loop O,. The dioperadic composition
on I't,(G) is given by grafting of the linear graphs. The only contraction that exists
in 'y (G) is

Sl

Fo(6)() — ToG)(2),

which takes L, to &/ L,. Note that both non-empty components of I't,(G) are infinite
sets.

9.2.2 Size of Graphical Wheeled Properads

The following observation is the Grcb analog of Theorem 5.9. It says that most
graphical wheeled properads are infinite.

Theorem 9.20 Suppose O # G € Gr?. Then the graphical wheeled properad
Ity (G) is a finite set if and only if G is simply connected.

Proof We reuse much of the proof of Theorem 5.9.

1. Using Example 9.17 and most of the proof of Lemma 5.12, we observe that if
G is simply connected, then the graphical wheeled properad I't,(G) is a finite
set. The only real change in the argument is that, even if G is simply connected,
'ty (G) can still have exceptional loops, which are not simply connected, colored
by edges of G. However, since Edge(G) is finite in any case, there can only be
finitely many such exceptional loops in I't, (G). Once these exceptional loops are
taken into account, the proof of Lemma 5.12 works here as well.

2. Next suppose G is not simply connected. We need to exhibit an infinite set of
elements in 'ty (G). Since we are assuming that G # O, G must have either a
loop at some vertex or a cycle involving at least two vertices.
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a. First suppose G has a cycle involving at least two vertices. In this case, we
reuse the proof of Lemma 5.13, which exhibits an infinite list of Edge(G)-
colored G-decorated connected graphs, i.e., an infinite list of elements in
I'n, (G).

b. Next, if G does not have a cycle involving at least two vertices, then G must
have a loop e at some vertex v, which we depict as follows.

The dotted loop / denotes the possibly-empty collection of loops at v other
than e. Since e € in(v) N out(v), for each positive integer n, the following
picture depicts an Edge(G)-colored G-decorated connected graph H,, i.e., an
element in 'ty (G).

In H, there are:

* ncopies of v,
* n—1 internal e-colored edges, each connecting two consecutive copies of v,
* loops [ at each copy of v if / is non-empty.

Therefore, {H,} is an infinite list of elements in ['t,(G).

Remark 9.21 The exclusion of the non-simply connected graph G = O in
Theorem 9.20 is due to Example 9.17, where we observed that the graphical wheeled
properad [z, (O) is finite.

9.2.3 Maps Between Graphical Wheeled Properads

Here we describe a wheeled properad map from a graphical wheeled properad or
between two graphical wheeled properads.
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Lemma 9.22 Suppose G € Grg), and Q is a ©-colored wheeled properad. Then a
map

f
I'n(G) — Q

of wheeled properads is equivalent to a pair of functions:

fo
1. A function Edge(G) —— D.

2. A function fi that assigns to each vertex v € Vt(G) an element f; (v) € Q(f%oiﬁt((v")) )

Proof Since ', (G) = F (G) is the free wheeled properad generated by G, a
wheeled properad map f is equivalent to a map G —> Q of colored objects, which
consists of a pair of functions as stated.

If we apply Lemma 9.22 when Q is a graphical wheeled properad as well, then
we obtain the following observation.

Lemma 9.23 Suppose G,H € Grg). Then a map

f
Fo(G) —— To(H)

of wheeled properads is equivalent to a pair of functions:

fo
1. A function Edge(G) —— Edge(H).

2. A function fi that assigns to each vertex v € Vt(G) an Edge(H)-colored
H-decorated connected graph

foout(v)
fikv) € FO(H)(foin(v) )

9.3 Wheeled Properadic Coface Maps

In this section we discuss coface and codegeneracy maps between graphical
wheeled properads. There are two types of inner (resp., outer) coface maps, one for
dioperadic graphs and one for contracted corollas. Each of these four types of coface
maps corresponds to an inner or outer graph substitution factorization involving a
dioperadic graph or a contracted corolla. There is also an exceptional inner coface
map ¢ —> O (Definition 9.30).
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Among the wheeled analogs of the graphical identities, the most interesting one
is once again about the composition of two coface maps. We refer to this as the
codimension 2 property (Theorem 9.44).

9.3.1 Motivation for Coface Maps

Recall from Sect. 6.1 that for graphical properads, coface and codegeneracy maps
are induced by inner or outer properadic factorizations and degenerate reductions
of connected wheel-free graphs. Both inner and outer coface maps among graphical
properads involve graph substitution decompositions involving a partially grafted
corollas. The reason partially grafted corollas play such a crucial role is that a
general connected wheel-free graph can always be constructed, via iterated graph
substitutions, using partially grafted corollas, permuted corollas, and exceptional
edges of a single color. This is the properadic analog of constructing a unital tree
one internal edge at a time.

For graphical wheeled properads, the basic principle for coface maps is the same
as before, but the actual maps look quite different. A general connected graph can
always be constructed, via iterated graph substitutions, using exceptional edges of a
single color, permuted corollas, dioperadic graphs, and contracted corollas [YJ15].
In other words, besides 1 (which corresponds to codegeneracy maps) and permuted
corollas (which correspond to change of listings), there are two sets of generating
graphs: dioperadic graphs and contracted corollas. Each set leads to one type of
inner coface maps and one type of outer coface maps. So for graphical wheeled
properads, there are two types of inner coface maps, one for dioperadic graphs and
one for contracted corollas. Likewise, there are two types of corresponding outer
coface maps.

Inner and outer factorizations corresponding to dioperadic graphs were discussed
in Sect.2.7. Recall from Theorem 2.91 that, for a connected graph G, there is an
outer dioperadic factorization G = D({C,, H}) (Definition 2.89) if and only if v is a
deletable vertex in G (Definition 2.83). Likewise, inner dioperadic factorizations
(Definition 2.93) correspond to internal edges connecting two distinct vertices
(Theorem 2.96).

Inner and outer factorizations corresponding to contracted corollas were dis-
cussed in Sect. 2.8. Theorem 2.104 says that an internal edge e in a connected graph
G is disconnectable (Definition 2.97) if and only if there is an outer contracting
factorization G = (£,C)(H) (Definition 2.103). Likewise, Theorem 2.108 says that
inner contracting factorizations (Definition 2.105) correspond to loops at vertices.
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9.3.2 Coface and Codegeneracy Maps

We first define the inner and outer coface maps corresponding to dioperadic graphs.
Then we define inner and outer coface maps corresponding to contracted corollas.
After that we define codegeneracy maps. All the graphs under discussion are
connected. The reader may wish to review notation 1 and Sects. 2.7 and 2.8 before
reading the following definitions.

Definition 9.24 Suppose G, K € Gr?. An inner dioperadic coface map

d
G — K

is a wheeled properad map between graphical wheeled properads corresponding to
an inner dioperadic factorization K = G(D) defined as follows.

1. On color sets, the map

Edge(G)

J{do

Edge(G) [[{e} = Edge(K)

is the canonical inclusion, where e is the unique internal edge in the dioperadic
graph D.
2. For a vertex v € Vt(G),

D ifv=w,

di(v) =
C, otherwise,

where w € Vt(G) is the vertex into which D is substituted, and C, is the corolla
with the same profiles as v.

Remark 9.25 For an inner dioperadic coface map as above, K has one more vertex
and one more internal edge than G. In fact, G is obtained from K by shrinking away
an internal edge connecting two distinct vertices, namely, the ones in the dioperadic
graph D. The two vertices in K corresponding to the ones in D become a single
vertex in G.

Definition 9.26 Suppose G, K € Grg). An outer dioperadic coface map
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is a wheeled properad map between graphical wheeled properads corresponding to
an outer dioperadic factorization K = D({C,, G}) defined as follows.

1. On color sets, the map

Edge(G)

|

Edge(G) [T [Edge(Cy) \ {e}] = Edge(K)

is the canonical inclusion. Here e is the unique internal edge in the dioperadic
graph D, which is also identified with a leg of the corolla C,,.
2. For each vertex v € Vt(G), d;(v) = C,.

Remark 9.27 For an outer dioperadic coface map as above, if G = 1, then K =
C,. The outer dioperadic coface map ¥ — C, identifies G with a leg named e in
K. So K has one more vertex than G, but neither G nor K has an internal edge.

On the other hand, suppose G # 1. Then G # O because it must have an input
or an output, which in turn is true because it is substituted into D. In this case, G
is an ordinary connected graph, and K has one more vertex and one more internal
edge than G. In fact, G is obtained from K by deleting a deletable vertex v.

Definition 9.28 Suppose G, K € Grg). An inner contracting coface map

d
G — K

is a wheeled properad map between graphical wheeled properads corresponding to
an inner contracting factorization K = G(&,C) defined as follows.

1. On color sets, the map

Edge(G)

|«

Edge(G) [[{e} = Edge(K)

is the canonical inclusion, where e is the unique internal edge in the contracted
corolla &,C.
2. For a vertex v € Vt(G),

£.C ifv=w,

di(v) =
Cy otherwise,

where w € Vt(G) is the vertex into which &,C is substituted.



266 9 Wheeled Properads and Graphical Wheeled Properads

Remark 9.29 For an inner contracting coface map as above, K has one more internal
edge (namely e) than G. However, since the contracted corolla £,C has only one
vertex, G and K have the same numbers of vertices. In fact, G is obtained from K
by deleting the loop e.

For some purposes later, we also need the following exceptional inner coface
map.

Definition 9.30 The exceptional inner coface map is the wheeled properad map
I'y(e) — I'p(0)
defined by sending the unique element in I'y,(e)(J; @) = {e} to the unique element

in ', (0)(@; @) = {O}.

Remark 9.31 The graphical wheeled properads ['t,(O) and I't,(e) were discussed
in Examples 9.17 and 9.18, respectively. The exceptional wheel O has one internal
edge, while the isolated vertex has none. Neither one of them has a non-isolated
vertex.

Definition 9.32 Suppose G, K € Gr?. An outer contracting coface map

d
G — K

is a wheeled properad map between graphical wheeled properads corresponding to
an outer contracting factorization K = (£,C)(G) defined as follows.

1. On color sets, the map is either the bijection
Edge(1) = {1} — {O} = Edge(0)
if G = 1 and K = O, or the quotient map

do Edge(G)

Edge(G) e ~e)

= Edge(K)

if G # 1, in which the legs e+, in G are identified to form the internal edge e
in K.

2. For each vertex v € Vt(G), di(v) = C,.

Remark 9.33 With the exception of the isomorphism 1 —> O, an outer

contracting coface map as above is surjective but not injective on edges, since the
two legs e+ in G are both sent to e € Edge(K). In either case, G is obtained from
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K by disconnecting the disconnectable edge e, the numbers of vertices in G and K
are the same, and K has one more internal edge (namely e) than G.

d
Definition 9.34 Suppose G —— K is a wheeled properad map between

graphical wheeled properads.

1. Call d a dioperadic coface map (resp., contracting coface map) if it is an inner
or an outer dioperadic (resp., contracting) coface map.

2. Call d an inner coface map if it is an inner dioperadic coface map, an inner
contracting coface map, or the exceptional inner coface map.

3. Call d an outer coface map if it is an outer dioperadic coface map or an outer
contracting coface map.

4. Call d a coface map if it is an inner coface map or an outer coface map.

Example 9.35 Consider the connected graph K:

Then there are four coface maps with target K.

1. There is an inner dioperadic coface map G — K in which G“ is the graph

o

obtained from K by shrinking the internal edge a.
2. There is an inner contracting coface G;’ —> K in which Gﬁ’ is the graph

obtained from K by deleting the loop b at v.
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3. There is an outer dioperadic coface map G* — K in which G* is the graph

o

obtained from K by deleting the deletable vertex u.
4. There is an outer contracting coface map G2 —> K in which G is the graph

obtained from K by disconnecting the disconnectable edge b.
Next we define a codegeneracy map.

Definition 9.36 Suppose G € Gr0 is a 1-colored graph, and v € Vt(G) has exactly
one incoming flag and one outgoing flag. The degenerate reduction of G at v is the
graph

Gy = G(1)

obtained from G by substituting the exceptional edge into v and a corolla into every
other vertex of G. The edge in G, corresponding to the two flags adjacent to v is
denoted by e,.

Example 9.37 Suppose G = &/ C(1;1) is the contracted corolla with one vertex v,
one loop at v, and no other flags, as depicted in Example 9.19. Then there is a
degenerate reduction

O = (§/Ca) (M
of G.
Remark 9.38 Given a degenerate reduction G, = G(1), there are canonical
bijections
Vi(G) = Vi(Gy) | J{v}.
Edge(G)

Edge(GU) = (Uin ~ vout)
Edge(G) otherwise,

if vjy 7é Uout ©.4)
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where v, and v,y are the incoming and outgoing flags of v, regarded as edges in G.
The case Edge(G,) = Edge(G) can only happen if the flags vj, and vey form a loop
at v. Since v is assumed to have one incoming flag and one outgoing flag, these are
the only flags of v. By connectivity G must be the contracted corolla &/ C(1;) and
G, the exceptional loop, as in Example 9.37.

Definition 9.39 Suppose G € Grg). A codegeneracy map
G — G,

is a wheeled properad map between graphical wheeled properads corresponding to
a degenerate reduction G, = G(1) defined as follows.

K
1. The map Edge(G) —— Edge(G,) is either the quotient map

Edge(G) Edze@)  _ pyge(G,)

(Uin ~ Uout)

if vin # Vou, or the identity map if (G,G,) = (g}c(l;l),o), using the
bijections (9.4).

2. For u € Vt(G),

C, ifuz#v,

s = 0 ifu=wv,

where 1 is the e,-colored exceptional edge.

Example 9.40 The exceptional inner coface map ¢ — O (Definition 9.30) is the
composition

d s
o — £ Cuyy — O,

in which d is the inner contracting coface map corresponding to the unique loop in
the contracted corolla &/ C(1;1), and s is a codegeneracy map.

9.3.3 Graphical Identities

Here we discuss some wheeled graphical analogs of the cosimplicial identities.
Some of the graphical identities for graphical properads (Sect.6.2) can be reused
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here. In particular, noting that a dioperadic graph is an example of a partially grafted
corollas, we have the following Grg) analogs of the graphical identities for graphical
properads.

1. The obvious Grg) analog of Lemma 6.21, involving two codegeneracy maps, still
holds.

2. The inner/outer dioperadic analogs of Lemmas 6.22 and 6.23, which involve an
inner/outer properadic coface map and a codegeneracy map, still hold, and the
proofs are essentially the same.

The following observation is the inner contracting analog of Lemma 6.22.

Lemma 9.41 Suppose:

de
1. G —— K is an inner contracting coface map corresponding to the inner

contracting factorization K = G(§,C,,), and
2. v € VU(K) has one incoming flag and one outgoing flag.

Then the following statements hold.
1. If v # w, then the diagram

1.

v

Reg—=

LN
&
—

is commutative.
2. Ifv=w, then K = 511 Ca;1), G = e, and the composition

d°¢ s
o — £ Cuy — O
is the exceptional inner coface map.

Proof The first commutative square follows from the graph substitution calculation:

K, = [G(EO](1)
=G({&C. 1)
= [G(MI]EC)
= Gy (50).

For the second assertion, the assumption v = w implies that C,, = C(y;1). Since
&/ C(1;1) has input/output profiles (&; @), by connectivity G itself is an isolated
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vertex. So we have

K = (o) (§/Cany) = £/ Cayy.

The unique element in I'ty (e)(Q; &) is sent by the inner contracting coface map d°
to &/ C(1;1) in Ty (K)(&; @), which in turn is sent by the codegeneracy map s to the
unique element in 'ty (O)(; &). This composition is by definition the exceptional
inner coface map.

The following observation is the outer contracting analog of Lemma 6.23.

Lemma 9.42 Suppose:

d8
1. G —— K is an outer contracting coface map corresponding to the outer

contracting factorization K = (£,C)(G), and
2. v € VU(K) has one incoming flag and one outgoing flag.

Then the diagram

L}K

G
s”l sv
e
Gv E— K’z)

is commutative.

Proof This follows from the calculation:

K, = [(£.O(G)](1)
= (£O[G()]
= (£.0)(G).

9.3.4 Codimensional 2 Property

As in the case of graphical properads, the most difficult wheeled graphical analog
of the cosimplicial identities involves composition of two coface maps.

Definition 9.43 We say that Gr® has the codimension 2 property if the following

statement holds: Given any two composable coface maps

u

Fo(G) —— To(H) —— To(K)
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in Properadb, there exists a commutative square

o (G) —% T (H)

d{ ” Jdu

o, (J) —5— T (K)

of coface maps such that d* is not obtainable from d“ by changing the listing.
Theorem 9.44 Grg) has the codimension 2 property.

Proof Suppose

u

I'n, (G) d—L> I';(H) —— T'n(K) 9.5)

are two coface maps. We must show that the composition d“d” has another
decomposition into two coface maps. Neither d“ nor d¥ can be the exceptional inner
coface map ¢ —> @ because there are no coface maps with target e or source
O. Therefore, there are 16 cases because each of d" and d* can be an inner/outer
dioperadic/contracting coface map. To improve readability, we will check these
cases in the next four lemmas.

Lemma 9.45 [f d" is an outer coface map and d° is an inner coface map in (9.5),
then d"d" factors as an outer coface map followed by an inner coface map.

Proof We have graph substitution factorizations
K =I(H) and H = G(J),

in which each of I and J can be either a dioperadic graph or a contracted corolla. In
any case, we have the following decomposition of K:

K =1[GW)] = [1(G)]()).
Therefore, there is a commutative diagram

dv
G——H
outer d*

I(G) inner K

of coface maps.
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Lemma 9.46 If d" is an inner coface map and d° is an outer coface map in (9.5),
then d"d® factors into either

1. an inner coface map followed by an outer coface map, or
2. two outer coface maps.

Proof We have graph substitution factorizations
K=H(J) and H =I(G)

in which each of I and J can be either a dioperadic graph or a contracted corolla.
Note that there is a canonical inclusion Vt(G) € Vt(H). Suppose J is substituted
into u € Vt(H). We have

K = [1(G)]().

which can be rewritten in one of two ways.

1. If u € Vt(G), then we have
K = I[G(J))].

Therefore, there is a commutative diagram
d’U
— H

G
innerl J/d“’

G(J) outer K

of coface maps.
2. If u € Vt(G), then

K=1(G.J})).

and / must be a dioperadic graph because G and J are substituted into different
vertices in /.

a. Suppose J is also a dioperadic graph. Noting that a dioperadic graph is also
a partially grafted corollas, we may therefore reuse case (2) of the proof of
Lemma 6.29 here to conclude that d“d" factors into two outer coface maps.

b. Next suppose J is a contracted corolla £ C,,. Then K is obtained from the
dioperadic graph / by substituting the contracted corolla & C,, into one vertex,
say x, and G into the other vertex. For example, if G is substituted into the
bottom vertex of I, then K can be visualized as follows.
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At the vertex x in /, there are no incoming/outgoing flags corresponding to f
because the latter is an internal edge in the contracted corolla £-C,,. Define the
dioperadic graph D as the graph obtained from / by adding the legs f4; to x
corresponding to the loop f at w. Then we have

K = (&C)ID(G)].

where C’ is the corolla with the same profiles as D(G). Therefore, there is a
commutative diagram

H

Jdu

K

dU
—

outer diop.l
outer

D(G)———

contract.

of coface maps.

Lemma 9.47 If d" and d° are both outer coface maps in (9.5), then d"d" factors
into either

1. two other outer coface maps, or
2. an outer coface map followed by an inner coface map.

Proof We have graph substitution factorizations
K=1I1H) and H=J(G)

in which each of I and J can be either a dioperadic graph or a contracted corolla. In
any case, we have

K = IJ(G)].

There are four cases.

1. Suppose both I and J are dioperadic graphs. Noting that dioperadic graphs are
partially grafted corollas, we may therefore reuse the proof of Lemma 6.28 here
to obtain an alternative factorization of d“d" into two coface maps.
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2. Suppose both I and J are contracted corollas, say
I = Eecl and J = Esz.

We can visualize K as follows.

@D

In a doubly-contracted corolla, the two loops can be created by contraction in
either order. So we can rewrite

K = (£CDI(EC)(0)]
= ECDIEC) (O]

Therefore, there is a commutative diagram

dv
G——

L

(5602) (G) B

of outer contracting coface maps.

3. Suppose [ is a dioperadic graph, and J = £C is a contracted corolla. For
example, if (§,C)(G) is substituted into the bottom vertex of /, then K can be
visualized as follows.

Let x € Vt(I) be the vertex into which (§,C)(G) is substituted. There are no
incoming/outgoing flags at x corresponding to the internal edge f of G. Define
D as the dioperadic graph obtained from / by adding the legs f; at x. Then we
have

K = (§C)ID(G)].
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where C’ is the corolla with the profiles of D(G). Therefore, there is a commuta-
tive diagram

dv

G——H
outer diop. Jd”
D(G outer K

contract.

of outer coface maps.

4. Suppose I = &,C is a contracted corolla, and J is a dioperadic graph with unique
internal edge f. We assume that G is substituted into the bottom vertex x in J;
there is a similar argument if G is substituted into the top vertex in J. There are
four possible shapes for K, depicted as follows.

For simplicity we did not draw the legs at the vertex w. From left to right, we will
refer to them as case 1 through case 4.

a. For case 1, suppose D is the dioperadic graph obtained from J by deleting the
legs e+ at w. Then we have

K= [D(G)] (%‘e CW)s

so there is a commutative diagram
dU

G——H
outer diop. Jd”

inner K

D(G)————

contract.

of coface maps.
b. For case 2, suppose D is the dioperadic graph obtained from J by deleting the
legs e+ at x. Then we have

K = D[(£.C\)(G)],
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so there is a commutative diagram

o
=1
-
e}
=
o
o
=
=
3¢
o
Q
=
—
&

of coface maps.
c. For cases 3 and 4, suppose D is the dioperadic graph with vertices w and x,
and unique internal edge e. Then we have

K = (&C)ID(G)].

where C’ is the corolla with the profiles of D(G). Therefore, there is a
commutative diagram

H

ldu

K

dv
G———
outer diop.

D(G) outer

contract.

of coface maps.

Lemma 9.48 If d" and d° are both inner coface maps in (9.5), then d"d" factors
into two other inner coface maps.

Proof We have graph substitution factorizations
K=H() and H=G(J)

in which each of I and J can be either a dioperadic graph or a contracted corolla.
Then we have

K = [GWDIW).

So G is obtained from K in two steps, each involving either shrinking away an
internal edge connecting two distinct vertices, or deleting a loop at some vertex. In
any case, this involves a choice of two distinct internal edges in K and shrinking
them away. The order in which these two internal edges are shrunk away is
irrelevant, and either order yields G. Therefore, there is an alternative factorization
of d"d" into two other inner coface maps.

With Lemmas 9.45-9.48, the proof of Theorem 9.44 is complete.
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Remark 9.49 A careful inspection of the proof of Theorem 9.44 reveals that a given
composition d"d” of coface maps has a unique alternative decomposition d*d” into
coface maps. Here uniqueness is understood to be up to listing.

9.4 Wheeled Properadic Graphical Category

In this section we define the wheeled properadic graphical category I't,, whose
objects are graphical wheeled properads. Its morphisms are wheeled properadic
graphical maps, which are once again defined using the concepts of subgraphs and
images. While the graphical category I' can be regarded as a subcategory of Iy,
it is not a full subcategory (Theorem 9.66). Nevertheless, each wheeled properadic
graphical map has a codegeneracies-cofaces decomposition (Theorem 9.69).

9.4.1 Subgraphs

Here we define subgraphs in the wheeled graphical setting. Input/output relabeling
of connected graphs and the induced isomorphism on graphical wheeled properads
are defined exactly as in Sect. 6.3.1. The identity map is by definition a relabeling.
Recall that there are two types of outer coface maps, namely, dioperadic and
contracting.

f
Definition 9.50 Suppose G,K € Grg). A map G —— K of graphical

wheeled properads is called a subgraph if f admits a decomposition into outer
coface maps and relabelings. In this case, we also call G a subgraph of K.

Remark 9.51 As in the case of graphical properads, when we discuss subgraphs,
to simplify the presentation we will sometimes omit mentioning relabeling isomor-
phisms.

The next observation is the wheeled analog of Theorem 6.37. It gives a
characterization of subgraphs in terms of graph substitution.

f
Theorem 9.52 Suppose G —— K is a map of graphical wheeled properads.

Then the following statements are equivalent.

1. fis a subgraph.
2. There exists a graph substitution decomposition

K =H(G)
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in Grg) such that f sends the edges and vertices in G to their corresponding
images in H(G).

Proof First suppose
f=d, --d

in which each d; is an outer coface map. We show by induction on # that K admits a
graph substitution decomposition as stated. If n = 1, then f = d, is an outer coface
map, and K = I(G) for some dioperadic graph or contracted corolla /.

Suppose n > 1. Then there is a factorization

of f in which
g =dp1---dr.
Since d,, is an outer coface map, there is a graph substitution decomposition
K = I(Hy—1)

for some dioperadic graph or contracted corolla /. Moreover, g is by definition a
subgraph. By induction hypothesis, there is a graph substitution decomposition

H, | = H/(G)
in Gr?. Therefore, we have the desired decomposition
K = IH'(G)] = [I(H)](G)

by associativity of graph substitution.

Conversely, suppose K = H(G) as stated. We show that f is a subgraph by
induction on m = | Edgei(H)|. If m = 0, then since H is ordinary (because it has a
vertex), it is actually a corolla C. So

K = C(G) = G,

and f is the identity map, which is a subgraph.
Suppose m > 0, so H has at least one internal edge. Suppose G is substituted into
w € Vt(H). There are two cases.

1. If H is simply connected, then since m > 0 it has at least two vertices. Pick a
deletable vertex v # w in H, which must exist by Corollary 2.76. The graph
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H, obtained from H by deleting v is still connected (Lemma 2.85). Since w €
Vt(H,), the graph substitution H,(G) makes sense. Moreover, there is an outer
dioperadic factorization

H = D(H,) = D({Cy. H,})
for some dioperadic graph D. So we have
K = [D(H,)|(G) = D[H,(G)].

and f factors as
G —— H,(G) —— D[H,(G)] =K.

Since | Edgei(H,)| < m, by induction hypothesis the first map is a subgraph.
The second map is by definition an outer dioperadic coface map. Therefore, the
composition f is also a subgraph.

2. Next suppose H is not simply connected, so H has a cycle. Pick an internal edge

e

u —— v inacyclein H.Itis possible that e is a loop at u. By Lemma 2.102

e is disconnectable, so the graph H, obtained from H by disconnecting e is
connected. The graph substitution H,(G) still makes sense. Furthermore, there
is an outer contracting factorization

H = (§.C)(H.)

by Theorem 2.104. So we have

K = [(6.C)(H)(G) = (§.0)[H.(G)],

and f factors as
G —— H.(G) — (EO)[H(G)] =K.

Since | Edgei(H.)| < m, by induction hypothesis the first map is a subgraph.
The second map is by definition an outer contracting coface map. Therefore, the
composition f is also a subgraph.

The following observation provides some small examples of subgraphs.
Corollary 9.53 Suppose K is a connected graph.

1. For eachvertex v in K, the corolla inclusion C,, — K is a subgraph.
2. For each edge e in K, the edge inclusion ©, — K is a subgraph.
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Proof For the first assertion, use the graph substitution decomposition
K = K(Cy),

in which a corolla is substituted into each vertex, and Theorem 9.52.
Consider the second assertion.

. If K is an exceptional edge, then 1, — K is the identity map.

. If K is an exceptional wheel, then 1 — O is an outer contracting coface map,
and hence a subgraph.

3. If K € {1, O}, then it is ordinary, so e is adjacent to some vertex v in K. The map

te —> K factors into

DN =

e — C, —— K.

The first map is an outer dioperadic coface map that identifies the edge ¢ as a leg
of the corolla C, (Remark 9.27). The second map is a corolla inclusion, which is
a subgraph by the previous part. Therefore, their composition is also a subgraph.

Remark 9.54 The wheeled-analogue of Lemma 6.39 is false: subgraphs are not
uniquely determined by their input/output profiles. As an example, consider the
contracted corolla G = 511 Cq;1) (Example 2.15) with one vertex v, one loop e at

v, and no other flags.
O

Since e is disconnectable in G, the corolla C.) is a subgraph of G with profiles
(e; ). On the other hand, the exceptional edge 1, is also a subgraph of G with
profiles (e; ¢), so G has two distinct subgraphs with the same profiles.

9.4.2 Images

Here we define image in the setting of graphical wheeled properads.

f
Definition 9.55 Suppose G —— K is a wheeled properad map of graphical

wheeled properads. The image of G is defined as the graph substitution

£(G) = [0G] ({fi W) }uevie)) € T (K),

in which fyG is the graph obtained from G by applying f; to its edges.
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Example 9.56 Here we describe the images of codegeneracy maps, coface maps,
subgraphs, and changes of vertex listings.

1. For a codegeneracy map

G — G, .

by definition we have G, = G(1). So the image s(G) is G,.
2. For the exceptional inner coface map ¢ —> O, the image is O.
3. For a non-exceptional inner coface map

G — K ,

by definition we have K = G(I) for some dioperadic graph or contracted corolla
I. So the image d;,(G) is K.
4. For an outer coface map

by definition we have K = I(G) for some dioperadic graph or contracted corolla
1. Each vertex v in G is sent to a corolla Cy, so the image dow (G) is G € 'y (K),
where G is regarded as an Edge(K)-colored K-decorated graph via the maps

Edge(G) —> Edge(K) and Vi(G) —— Vi(K).

5. For a subgraph

G — K ,

by Theorem 9.52 we have K = H(G) for some H € Grcb. So the image f(G) is
G € I'p(K).

6. Suppose K is obtained from G by changing the listings at a subset of vertices,
and

f
G — K

is the corresponding wheeled properad isomorphism. Then the image f(G) is K.

The following observation is the wheeled analog of Lemma 6.42. It says that a
maps between graphical wheeled properads factors through the image.
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f
Lemma 9.57 Suppose G —— K is a wheeled properad map of graphical

wheeled properads. Then there is a canonical commutative diagram

G ; f(G)

N

K

of wheeled properad maps between graphical wheeled properads.
Proof The proof is the same as that of Lemma 6.42 with I'ry(—) in place of I'(—).

f
Example 9.58 If G —— K isacodegeneracy map, a coface map, a subgraph,

or a change of vertex listings, then the map f(G) — K is a subgraph. Indeed, if f is
a codegeneracy map, an inner coface map (exceptional or not), or a change of vertex
listings, then f(G) = K. If f is an outer coface map or, more generally, a subgraph,
then f(G) is G.

9.4.3 Graphical Maps

Now we define the wheeled analog of properadic graphical maps.

Definition 9.59 A wheeled properadic graphical map, or simply a graphical

f
map, is defined as a wheeled properad map G —— K between graphical
wheeled properads such that the map f(G) — K is a subgraph.

Example 9.60 Codegeneracy maps, coface maps, subgraphs, and changes of vertex
listings are all graphical maps by Example 9.58.

The following observation says that graphical maps are closed under composi-
tions.

f g
Lemma 9.61 Suppose G —— K and K —— M are wheeled prop-

&
eradic graphical maps. Then the composition G —— M s also a wheeled
properadic graphical map.
Proof The proof is the same as that of Lemma 6.49, except that the graph
substitution characterization Theorem 9.52 of subgraphs is used.
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Next we give another characterization of a wheeled properadic graphical map. It
says that a graphical map sends every subgraph of the source to a subgraph of the
target.

f
Theorem 9.62 Suppose G —— K is a wheeled properad map between
graphical wheeled properads. Then the following statements are equivalent.

1. fis a wheeled properadic graphical map.
¢
2. For each subgraph H —— G ,themap f(H) —— K isasubgraph.

Proof The direction (2) = (1) holds because the identity map on G is a subgraph.

For (1) = (2), suppose | Edgei(G)| = n and | Edgei(H)| = m. Since H is
a subgraph of G, we have m < n. We prove that f(H) —> K is a subgraph by
downward induction on m.

1. If m = n, then H = G, so f(H) = f(G) is a subgraph of K by assumption.
2. If m = n—1, then

G = J(H)

for some dioperadic graph or contracted corolla J. Since f(G) is a subgraph of
K, by Theorem 9.52 there is a graph substitution decomposition

K = MIf(G)]
= M[f(J(H))]
= M[(fo])(f (H))]
= [M({fo))](f (H)).

So by Theorem 9.52 again f(H) is a subgraph of K.
3. Suppose m < n — 1. Since H is a subgraph of G, by Theorem 9.52 there is a
graph substitution decomposition

G =J(H).
The assumption m < n — 1 implies that J has at least two internal edges. Exactly
as in the proof of Theorem 9.52, there is an outer dioperadic or contracting
factorization

J=1M)

such that the graph substitution M(H) makes sense. We have

G = [I[(M)|(H) = I[M(H))],
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so M(H) — G is an outer coface map, hence a subgraph of G. Note that M is
ordinary with at least one internal edge, so | Edge;(M(H))| > m. By induction
hypothesis f(M(H)) is a subgraph of K. By Theorem 9.52 there is a graph
substitution decomposition
K = P[f(M(H))]
= [P(foM)](f(H)).
So by Theorem 9.52 again f(H) is a subgraph of K.

f
Corollary 9.63 Suppose G —— K is a wheeled properadic graphical map.

Then for each vertex v in G, fi(v) is a subgraph of K.

Proof Use Theorem 9.62 and the fact that the corolla inclusion C, — G is a
subgraph (Corollary 9.53).

9.4.4 Graphical Category

Here we define the graphical category for connected graphs.

Definition 9.64 The wheeled properadic graphical category, or simply the
graphical category, is the category I'r, with

* objects the graphical wheeled properads I't, (G) for G € Gr?, and
+ morphisms I't,(G) —> Tg(H) € Properad® the wheeled properadic
graphical maps.

Denote by

L
'y, —— Properad®

the non-full subcategory inclusion.

Remark 9.65 The graphical category I'y, is small because there is only a set of 1-
colored graphs.

The properadic graphical category I' (Definition 6.52) is related to the wheeled
properadic graphical category I't, as follows.

Theorem 9.66 There is a non-full embedding T° ;> I'yy .
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Proof The functor ¢ sends the object I'(G) for G € GrcT - Gr? to I't,(G). By
Lemmas 5.19 and 9.23, we have a canonical injection

Properad(l'(G), I'(K)) (9.6)

[

pProperad® (I't,(G), Ty (K))

for any G, K € GrCT . Suppose f € TI'(G,K), i.e., f is a properadic graphical
map. Then the above injection says that f also defines a map of graphical wheeled
properads. For the functor ¢ to be defined, we need to show that f € I't,(G, K), i.e.,
f is a wheeled properadic graphical map. Since f is a properadic graphical map, by
Theorem 6.37 there is a graph substitution decomposition

K = H[f(G)]

in GrcT, and hence also in Grcb. By Theorem 9.52 f(G) — K is a subgraph in
Properad?®, so the map induced by f is a wheeled properadic graphical map. This
shows that there is an embedding ¢.

12
To see that ¢ is not full, consider the properad map H —— G in Exam-

ple 5.25. The map ¥ does not belong to the subcategory I because ¥ (H) is not a
subgraph of G in Properad. On the other hand,

Y(H) — G e Properad®

is an outer contracting coface map corresponding to the disconnectable edge e. So
it is a subgraph, and ¥ € I'y,.

Remark 9.67 The injection (9.6) is strict in general. For example, since I'(1)
(2; @) = &, we have

Properad(e, 1) = J.

On the other hand, there is a composition

L TN

in Properad®, in which ¢ — 0 is the exceptional inner coface map
(Definition 9.30), and the isomorphism is the one in Example 9.17. So

Properad®(e, 1) # @,

which means (9.6) is strict in this case.
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9.4.5 Factorization of Graphical Maps

To establish the wheeled analog of the codegeneracies-cofaces factorization, we
need the following wheeled analog of Lemma 6.7.

Lemma 9.68 Suppose K = G(H,) in Gr® with H,, ¢ {1,0}. Then the map

¢
G —— K determined by

C, ifusw,

@1(u) =
H, if“ =W,

has a decomposition into inner coface maps and isomorphisms induced by changes
of vertex listings.

Proof Write H for H,,. We prove the assertion by induction on n = |Edge;(H)]|.
If n = 0, then H is a permuted corolla, and K is obtained from G by changing the

listing at the vertex w. It induces a canonical isomorphism G — K .
Suppose n > 0. Pick e € Edge;(H), which may connect two distinct vertices or

maybe a loop. Define J as the graph obtained from H by shrinking away e (which
means deleting e in case it is a loop). By Theorems 2.96 and 2.108, there is a graph
substitution factorization

H=J({)
for some dioperadic graph or contracted corolla /. We have

K = GlJ(D] = [GWD]WD).

so ¢ factors as

1
G G(J) K.

Since | Edge;(J)| = n— 1, by induction hypothesis the map 1! has a decomposition
into inner coface maps and isomorphisms induced by changes of vertex listings. The
map ¥ is by definition an inner dioperadic or contracting coface map. This proves
the lemma.
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The following factorization result is the wheeled analog of Theorem 6.57. It uses
the factorization in Lemma 9.57

f
Theorem 9.69 Suppose G —— K is a wheeled properadic graphical map.

Then there is a factorization

!

G K
J \
o h
Gi——— G ——> f(G)

in which:

* 0 is a composition of codegeneracy maps,

* iis an isomorphism,

* § is a composition of inner coface maps, and
* his a composition of outer coface maps.

Proof If ¢ is the exceptional inner coface map ¢ —> O (Definition 9.30), then there
is nothing to prove. So we assume ¢ is not the exceptional inner coface map.

h
By assumption f(G) —— K is a subgraph, i.e., a composition of outer

coface maps. So it suffices to show that g decomposes as §o up to isomorphism
as stated. If G € {1, O}, then g is an isomorphism. So we may assume that G is
ordinary.

We now proceed as in the proof of Theorem 6.57, defining

G G —— G, i f(G)

in exactly the same way. In the factorization (6.7) of the current §, each map
H; — H;4; is a composition of inner coface maps by Lemma 9.68. Therefore,
§ is a composition of inner coface maps.

We now address the question of uniqueness of decomposition of maps in I'z,. We
begin by defining several wide subcategories of I'r,. Let

1. 1"5 denote the subcategory of 'z, consisting of all maps f: G —> K such that
f(G) =K,

2. 1"%‘“ denote the subcategory of 'ty generated by outer coface maps and isomor-
phisms,

3. Fibn denote the subcategory of I'ty generated by inner coface maps and isomor-
phisms, and

4. Fﬁ;- denote the subcategory of I'r, generated by codegeneracies and isomor-
phisms.
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Lemma 9.70 Suppose that G L) H-S Kisin T Iff € TR then (gf)(G) =
g(H).

Lemma 9.71 The categories I'y; and Fibn are subcategories of 1"5.

Proof It is enough to note that if f : G — K is a codegeneracy, an inner coface
map, or an isomorphism, then f(G) = K.

Lemma 9.72 Suppose that f : G — K is a map in Fg. If f has two
decompositions f = §ioc = 8'i'c’, where 0,0’ are compositions of codegeneracies,
i, are isomorphisms, and 8,8 are compositions of inner cofaces, then there is an
isomorphism i’ : G\ —> G’ making the diagram

G1*i>G2

commute.

Proof Inner coface maps are injective on edges and codegeneracy maps are
surjective on edges, so by uniqueness of epi-monic factorizations for maps in Set,
there is a bijection i; making the diagram

Edge(Gy) SELLEN Edge(Gs)
Edge(G) fo Edge(K)

-1

\ iq
’ ’
90 %

Edge(G}) —— Edge(G%)
20

commute. Injectivity of 8oip and &), imply that ¢ and ¢’ identify the same set of
edges, so i gives the isomorphism i’ : G; — G.

The following lemma is a special case of Proposition 9.75 below.
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Lemma 9.73 Suppose that

G

=

e

AN
N

commutes, with f, h € F%‘“ and g € Fibn. Then g is an isomorphism.

=

Proof Outer coface maps and isomorphisms send each vertex to a corolla. If g is
not an isomorphism, then sg must send at least one vertex of G to a non-corolla,
contradicting hg = f € Tg)".

Lemma 9.74 Suppose that f and g are composable, and that f is a composition
of coface maps and isomorphisms. If g is a nontrivial composition of codegeneracy
maps, then fg cannot be written as a composition of coface maps and isomorphisms.

Proof Suppose that fg is a composition of coface maps and isomorphisms and g is
a nontrivial composition of codegeneracy maps. Since no coface map has target e,
if one of the coface maps in the decomposition of fg is the exceptional inner coface
map ¢ —> O from Definition 9.30, then the source of fg is e. On the other hand, no
codegeneracy map has source e, so all coface maps in the decomposition of fg must
be non-exceptional.

All non-exceptional coface maps take a vertex v to a subgraph with at least one
vertex, hence so does fg. Since g is a nontrivial composition of codegeneracy maps,
then there is a vertex v so that fg(v) =1., which has zero vertices.

Proposition 9.75 Every map in Ty, factors uniquely (up to isomorphism) as a map
in FE.) followed by a map in Tg)".

Proof The existence of such a factorization is given in 9.57. Specifically, if f :

G —> K is a map, then we have that f is equal to G LN f(G) LN K with h a
composition of outer coface maps.
Suppose that

G5 d6) Sk

is a factorization of f : G —> K, where g’ € Fg and 1" € T'g)". Apply 9.57 to the
maps /' : g'(G) — K

9(G) ———=1(g'(G))

K
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so that #/ = ba with b a composition of outer coface maps. By Lemma 9.70,
W (g'(G)) = f(G), hence b = h.

Factor a as in Lemma 9.72, so that a = ce with ¢ € Fion and e a composition of
codegeneracies. Since i’ = ba = (bc)e is a composition of coface maps, e is trivial
by Lemma 9.74. Thus a = cis in Fion. But then 2’ = ha and h are both compositions
of outer coface maps, hence a is an isomorphism by Lemma 9.73. The diagram

G —— f(G)

| o<

9(G) —— K

=

I

commutes, which shows uniqueness.



Chapter 10
Infinity Wheeled Properads

In this chapter, we discuss (strict) co-wheeled properads.
In Sect. 10.1 we define an adjunction

L
op
set'o ——— Properad®
N

between the category set™® of wheeled properadic graphical sets and the category
Properad® of wheeled properads. The right adjoint N is the wheeled version
of the properadic nerve. Using the wheeled properadic nerve and representables, the
symmetric monoidal product in Properad® induces a symmetric monoidal closed

op
structure on Set'O. The coface maps in the graphical category I't, induce faces and

horns of representables in Set"®. An co-wheeled properad is a wheeled properadic
graphical set that has an inner horn extension property. Strict co-wheeled properads
are the ones with unique inner horn extensions.

In Sect. 10.2 we give two characterizations of strict co-wheeled properads. First,
a wheeled properadic graphical set is a strict co-wheeled properad if and only if it is
isomorphic to the wheeled properadic nerve of some wheeled properad. Second, a
strict co-wheeled properad is equivalent to a wheeled properadic graphical set that
satisfies the wheeled properadic Segal condition. These characterizations are the
wheeled versions of those in Theorem 7.42 for strict co-properads.

In Sect. 10.3 we characterize the fundamental wheeled properad (i.e., the image
under L) of a reduced oo-wheeled properad in terms of homotopy classes of 1-

dimensional elements. The reduced condition on K € set! ) means that K(C(z;z))
consists of a single element, where C(g;) is a single isolated vertex. The definition
of homotopy in the properadic case (Definition 8.1) is used here without change.
Much of the work in this section involves showing that the dioperadic composition
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and the contraction are well-defined on homotopy classes, and that the object with
these operations is actually a wheeled properad.

10.1 oo-Wheeled Properads

The main purpose of this section is to define (strict) co-wheeled properads. Along
the way, we define wheeled versions of graphical sets, the nerve, representables,
faces, horns, and the symmetric monoidal closed structure on graphical sets.

10.1.1 Wheeled Properadic Graphical Sets and Nerve

Here we define the wheeled analog of the category of graphical sets, the correspond-
ing nerve functor, and representables.

Definition 10.1 The diagram category set™ is called the category of wheeled
properadic graphical sets, or simply graphical sets.

1. An object X € set' is called a wheeled properadic graphical set, or simply
a graphical set.

2. ForG € Grg) , an element in the set X(G) is called a graphex with shape G. The
plural form of graphex is graphices.

3. A graphical set X is reduced if the set X(C(z.g)) is a singleton, where C(g,g) is
the single isolated vertex.

Definition 10.2 For a graphical set X € Setrg, the set X(1) of colors of X, the
1-dimensional elements in X, their profiles, the associated X'g(x(4)-bimodule, and
colored units of X are defined as in Sect.7.1.2.

Definition 10.3 The wheeled properadic nerve is the functor

N 0]
ProperadO e Setrls
defined by
(NP)(G) = Properad®(G, P)

for P € Properad® and G € T'y,. In the context of the factorization of a wheeled
graphical map G — K € I'yy (Theorem 9.69), the map

(NP)(K) = Properad®(K,P) —— Properad®(G,P) = (NP)(G)
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is a composition of maps of the following form:

 deletion of an entry (for an outer dioperadic coface map);
 dioperad composition of P (for an inner dioperadic coface map);
 contraction of P (for an inner contracting coface map);

* isomorphism (for an outer contracting coface map);

 colored units of P (for a codegeneracy map).

Remark 10.4 To see that NP is indeed in Setrg, recall that maps in I'yy are
compositions of coface maps, codegeneracy maps, and isomorphisms. Coface
and codegeneracy maps correspond to graph substitutions. The wheeled properad
structure maps of a wheeled properad P are associative and unital with respect to
graph substitutions.

Lemma 10.5 The wheeled properadic nerve admits a left adjoint

op L o
Set' U —— Properad
such that the diagram

Iy, —— Properad®

Yonedal /
L

op
Set!o

is commutative up to natural isomorphism.

Proof 1t is the same as the proof of Lemma 7.7, with I" and Properad replaced
by I't, and Properad®.

Definition 10.6 ForK e Setrgg, the image LK is called the fundamental wheeled
properad of K.

The following observation says that a graphex in (NP)(G) is really a P-
decoration of G, which consists of a coloring of the edges in G by the colors of
P and a decoration of each vertex in G by an element in P with the corresponding
profiles.

Lemma 10.7 Suppose P is a €-colored wheeled properad, and G € T'ry. Then an
element in (NP)(G) consists of:

(44
e afunction Edge(G) —— € , and

©o Out(v)).

* a function ¢, that assigns to each v € Vt(G) an element ¢,(v) € P(wo in(v)

Proof This is a special case of Lemma 9.22.
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Next we define the wheeled analog of the representable graphical set.
Definition 10.8 Suppose G € TI%,. The representable wheeled graphical set
I'n[G] € set™ is defined, for H € I'ty, by

I'y[Gl(H) =Ty (H. G),

i.e., the set of wheeled properadic graphical maps H —> G (Definition 9.59).

Remark 10.9 By Yoneda’s Lemma a map I',[G] —> X of wheeled properadic
graphical sets is equivalent to a graphex in the set X(G).

10.1.2 Symmetric Monoidal Closed Structure

Here we observe that the symmetric monoidal product of wheeled properads and
the wheeled properadic nerve induce a symmetric monoidal closed structure on the
category of wheeled properadic graphlcal sets

Note that each graphical set X € Set T3 can be expressed up to isomorphism as
a colimit of representable graphical sets,

X~ li I'p[G
ropm, Tol6l

where the colimit is indexed by maps of graphical sets I'r,[G] — X, i.e., graphices
in X.

Definition 10.10 Suppose X and Y are wheeled properadic graphical sets.

1. Define the wheeled properadic graphical set

Xey & colim  (T[G]®T[G]).
I'[Gl—X.I'[G']—Y

where

TGl ® TG € N(I'(G) & T(G))
with N the wheeled properadic nerve and ® the symmetric monoidal product in

Properadb (Definition 9.10).
2. Define the wheeled properadic graphical set Hom(X, Y) by

Hom(X, Y)(G) & set™ (X ® Tp[G], Y)

for G € I'yy.
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Theorem 10.11 The category set’ i symmetric monoidal closed with monoidal
product @ and internal hom Hom.

Proof It is the same as the proof of Theorem 7.13, with I and Properad replaced
by I't, and Properad®.

10.1.3 Faces and Horns

Here we define the wheeled analogs of the horns A[G] C T'[G], which we will
soon use to define an co-wheeled properad.

Definition 10.12 Suppose G € I'y,. A face of G is a coface map in I't, whose target
is G. An inner/outer face of G is an inner/outer coface map whose target is G.

Definition 10.13 Suppose X is a wheeled properadic graphical set. A graphical
subset of X is a wheeled properadic graphical set W that is equipped with a map
W — X of wheeled properadic graphical sets such that each component map

W(G) — X(G)
for G € I'y is a subset inclusion.
Definition 10.14 Suppose G € ['ry, and K L) G isaface of G.
1. The d-face of I'y,[G] € Set’ U is the graphical subset Fg) [G] defined by

ry[GIY)

f d
= q compositionof J —— K —— G withf € I'y)[K](J)

forJ € I'yy.
2. The d-horn of I'y;[G] is the graphical subset A‘g,) [G] defined by

ALl = | TrEiGo).
faces d’ # d

where the union is indexed by all the faces of G except d. Write
AL[Gl —— TolG)

for the graphical subset inclusion.
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3. A horn of I'ty[G] is a d-horn for some coface map d. An inner horn is a d-horn
in which 4 is an inner coface map.

4. Given X € Setrg, a horn of X is a map
AL[G] — X

of graphical sets. It is an inner horn of X if A‘é) [G] is an inner horn.

Remark 10.15

d
1.If K —— G is a face of G, then the d-face Fg) [G] is the image of the
induced map

do(-)
Ip[K] —— TolG]

of graphical sets. However, unlike the properadic analog, this induced map may
not be injective. Indeed, when d is an outer contracting coface map corresponding
to a disconnectable edge e, it sends two legs e+; € Edge(K) to e € Edge(G).
When applied to 1 and using the identification

Iy [K](1) = Edge(K),

dy
the induced map of d is then the map Edge(K) —— Edge(G) , which is

surjective but not injective.

2. In the definition of the d-horn A‘z,i) [G], we used the same convention as before
about ignoring listings (Convention 1). In other words, when we say d is
excluded, we mean d and every coface map K’ —> G obtainable from d by
changing the listing are all excluded.

d
3. If there is an inner horn A‘z,i) [G] for some inner coface map K —— G ,

then G is ordinary and has at least one internal edge because there is an inner
dioperadic or contracting factorization (Definitions 2.93 and 2.105) of G,

G= K(Hw)v

in which the distinguished subgraph H,, is a dioperadic graph or a contracted
corolla.

The following observation gives a more explicit description of a horn of a
graphical set.



10.1 oo-Wheeled Properads

299

0] d
Lemma 10.16 Suppose X € Setrls, and K —— G s a face of G € I'y,.

Then a horn

f
ALIG] —— X

of X is equivalent to a collection of maps

4

fu d
I'n[HH —— X : H —— G face#d

such that, if

is a commutative diagram of coface maps with each d' # d, then the diagram

T [J] —s Ty [H]

lf,ﬁ

is also commutative.

Proof 1t is the same as the proof of Lemma 7.20, with I and Properad replaced

by I'ty and Properad®.

Remark 10.17 The collection of maps {fy} in Lemma 10.16 is equivalent to a
collection of graphices {fy € X(H)} such that, if the coface square is commutative,

then

@)* (fim) = @) (fm) € X().

In other words, a horn of X is really a collection of graphices in X, one for each face

not equal to the given one, that agree on common faces.

In the following examples, we describe explicitly an inner horn for the two types

of generating graphs of Grg).
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Example 10.18 Suppose X € Seth 8, D is a dioperadic graph (Example 2.17) with
top (resp., bottom) vertex v (resp., u), and

d
C —— D

is the unique inner dioperadic coface map corresponding to the only internal edge e
in D. There are only two other faces of D:

* the outer dioperadic coface map

dv
C, —— D

corresponding to the deletable vertex v, and
* the outer dioperadic coface map

¢, —— D

corresponding to the deletable vertex u.

The only common face of the corollas C, and C, is the internal edge e in D.
Therefore, an inner horn

f
AYID] — X

is equivalent to a pair of 1-dimensional elements

(furfo) € X(Cu) X X(Cy),

such that if

are the outer dioperadic coface maps corresponding to the internal edge e in D, then

(@) (f) = ()" (f,) € X(1).
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In other words, such an inner horn of X is a pair of 1-dimensional elements, one
for each vertex in D, whose profiles match along the internal edge e in D. We
may, therefore, visualize such an inner horn of X as the following X(1)-colored
dioperadic graph

decorated by 1-dimensional elements in X.

Example 10.19 Suppose X € Setrg, and é}C(m;n) is a contracted corolla (Exam-
ple 2.15) with unique vertex v and loop e. The contracted corolla has two faces.

1. There is an inner contracting coface

d .
Cin—1;n-1y — 5} Comsny

corresponding to deleting the loop e at v.
2. There is an outer contracting coface

dout .
Commy — §Comn)

corresponding to disconnecting the disconnectable edge e.

Therefore, an inner horn

. f
A4 [Cumm | — X

is equivalent to a 1-dimensional element

X € X(C(m;n)) = X(Cv)
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that satisfies the following condition: If

d¢

out

P —=C,

e
din

are the outer dioperadic coface maps corresponding to the two legs (one input and
one output) of C, named e, then

(dg,)" (x) = (d5)* (x) € X(1).

We may, therefore, visualize such an inner horn of X as the following X (1)-colored
contracted corolla

decorated by a 1-dimensional element in X.

10.1.4 oo-Wheeled Properads

We now define wheeled versions of (strict) co-properads.

Definition 10.20 Suppose X € set®.

1. We call X an co-wheeled properad if for each inner horn f of X,

3

A6 —— x

L' [G] (10.1)

a dotted arrow, called an inner horn filler, exists and makes the triangle
commutative.

2. A strict co-wheeled properad is an co-wheeled properad for which each inner
horn filler in (10.1) is unique.

Remark 10.21 For an oo-wheeled properad, we only ask that inner horns have
fillers. Also, uniqueness of an inner horn filler is not required, unless we are dealing
with a strict oo-wheeled properad.
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Example 10.22 Suppose D is a dioperadic graph. Recall from Example 10.18 that
an inner horn

f
AYD] — X

is exactly a pair of 1-dimensional elements (f,,f,), one for each vertex in D, with
matching profiles along the unique internal edge e in D. Then an inner horn filler
for f is a graphex y € X(D) such that

@) () =fu and (d)*Q)=fo.

In other words, it has f;, and f; as its outer dioperadic faces.

Example 10.23 Suppose Ej’ C(m:n) 1s a contracted corolla as in Example 10.19. Recall
that an inner horn

, h
Ad [g; c(m;n)] X

is a 1-dimensional element x € X(Cj,,;,)) Whose output profile corresponding to the
internal edge e in &‘]? Cn:n) matches with its input profile corresponding to e. Then an

inner horn filler for f is a graphex y € X (S} C(m;n)) such that

5 () =x.

In other words, it has x as its outer contracting face.

10.2 Characterization of Strict co-Wheeled Properads

In this section we provide two alternative descriptions of strict co-wheeled proper-
ads. This is the wheeled version of Theorem 7.42. We first define wheeled analogs
of the corolla ribbon, the Segal maps, and the Segal condition. Then we prove the
main Theorem 10.33 using the same strategy as in the proof of Theorem 7.42. The
main theorem says that strict co-wheeled properads are precisely the images of the
nerve up to isomorphism. Equivalently, strict co-wheeled properads are precisely
the wheeled properadic graphical sets that satisfy the wheeled properadic Segal
condition.
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10.2.1 Outer Coface Maps from Corollas

The definition of the wheeled properadic Segal map involves the map in the
following observation, which is the wheeled analog of Lemma 7.27.

Lemma 10.24 Suppose G € Grg) is ordinary with n internal edges, and v € Vt(G).
Then there exist outer coface maps

v g & &
Cy Gt o Gi G,

whose composition is the corolla inclusion C, —— G .

Proof This follows from the first part of Corollary 9.53, since each subgraph
decomposes into outer coface maps, each increasing the number of internal edges by
one. The only exception is the outer dioperadic coface map ¥ — C to a corolla,
but the corolla inclusion starts at C,,. So a decomposition of £ into outer coface maps
does not involve the map  — C.

The following observation is the wheeled analog of Lemma 7.30. It ensures
that the wheeled analog of the Segal map is well defined. Recall that the graphical
wheeled properad I't, (1) was discussed in Example 9.17.

e

Lemma 10.25 Suppose u —— v is an ordinary edge in G € Gr®

~, where

u = v is allowed. Then the square

oute

— O,

T
inel Eu
C 3%

W —— G

in T'yy is commutative, where in, (resp., out,) is the outer dioperadic coface map
that identifies e as an input (resp., output) leg of C,, (resp., C,).

Proof Both compositions send the unique element in I'ty(1)(e;e) (resp., I't,(1)
(2; @)) to the e-colored exceptional edge 1, (resp., exceptional wheel O,).

10.2.2 Wheeled Properadic Segal Maps

Here we define the wheeled analog of the properadic Segal maps.
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op
Definition 10.26 Suppose K € Set'0, and G € Grg) is ordinary with at least one

internal edge.

1. Define the set

KGen = [ T ke

vEVLH(G) K(t)
as the limit of the diagram consisting of the maps
K(Cy)
J{K(oute)
K(ine)
K(Cyp) ———— K(1) (10.2)

as u ; v runs through Edge;(G). Call K(G); the corolla ribbon of K(G).
2. Define the wheeled properadic Segal map

K(G) ——— K(G), (10.3)

as the unique map induced by the maps

K(&)
K(G) —— K(Cy)

as v runs through Vt(G). The wheeled properadic Segal map is well-defined by
Lemma 10.25.

3. We say K satisfies the wheeled properadic Segal condition if the wheeled
properadic Segal map x¢ is a bijection for every ordinary G € GrcO with at
least one internal edge.

We will often drop the phrase wheeled properadic if there is no danger of
confusion.

Remark 10.27 There is no need to consider the wheeled properadic Segal map for
ordinary G € Gr®? with Edge;(G) = @. Indeed, such a G must be a permuted
corolla 0 C, 7, so the corolla ribbon is K(C,). The Segal map is the isomorphism

K(&v)
K(oCyr) — K(Cy)
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induced by input/output relabeling. Therefore, whenever we mention the wheeled
properadic Segal map, we automatically assume that G has at least one internal
edge.

Remark 10.28 For an ordinary G € Gr2, an element § € K(G); is equivalent to
the data:

é
¢ afunction Edge(G) —0> K(1) ,and

» a function 6, that assigns to each vertex v € Vt(G) a 1-dimensional element
01 (v) € K(C,) with profiles corresponding to those of v under 6.

In other words, 6 is a K(?1)-colored decoration of G, in which vertices are decorated
by 1-dimensional elements in K.

Example 10.29 Consider the following connected graph G.

fgi

There are two vertices and three ordinary edges, one of which is a loop. Each vertex
may have input and output legs of G, which for simplicity are not depicted in the
picture. There is a commutative diagram

Te Tf
out QH\L / N
Cu out Tg in Cu
G

in ['ry by Lemma 10.25. For a graphical set K, the corolla ribbon K(G); is the limit
of the part of this diagram above G, after applying K. The wheeled properadic Segal
map y¢ is induced by the two maps &..

As in the properadic case, there is another description of the Segal map in terms
of the Segal core, which we now define.

Definition 10.30 Suppose G € Iy, is ordinary with at least one internal edge.

1. Define the wheeled properadic Segal core Sc[G] € Set® as the colimit of
the diagram consisting of the maps
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out,

Io[t] —— TolCll

in, l

I'n [Cv]

as u ;> v runs through Edge;(G).
2. Denote by

Se[G] — To[G]

the map induced by the corolla inclusions

c,—sa

for v € Vt(G), and call it the wheeled properadic Segal core map.

op
Lemma 10.31 Suppose K € Set', and G € GrCD is ordinary with at least one
internal edge. Then there is a commutative diagram

XG

K(G)

K(G)

IR
IR

set"™ (T[G], K) — % set™ (Sc[G], K)
that is natural in G.

Proof The two vertical bijections are by Yoneda’s Lemma. The commutativity of
the diagram is by the definition of the Segal map y¢.

Remark 10.32 Using Lemma 10.31, one can also think of the wheeled properadic
Segal map y¢ as the map €.

With the above definition of the Segal maps, we can now state the main result of
this section. It is the wheeled version of Theorem 7.42.
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Theorem 10.33 Suppose K € set™. Then the following statements are equiva-
lent.

1. There exist a wheeled properad P and an isomorphism K = NP.
2. K satisfies the wheeled properadic Segal condition.
3. Kis a strict co-wheeled properad.

The rest of this section is devoted to the proof of this theorem.

10.2.3 Wheeled Properadic Nerves Satisfy the Segal Condition

The following observation says that the wheeled properadic nerve always yields a
graphical set that satisfies the wheeled properadic Segal condition.

Lemma 10.34 The wheeled properadic nerve of every wheeled properad satisfies
the Segal condition.

Proof We reuse the proof of Lemma 7.38, applied to ordinary G € Grg) with at
least one internal edge. For the descriptions of graphices in the nerve and of the
corolla ribbon, instead of Lemma 7.8 and Remark 7.33, here we use Lemma 10.7
and Remark 10.28.

10.2.4 Wheeled Properadic Nerve Is Fully Faithful

Before showing that the Segal condition implies a strict co-wheeled properad, we
briefly digress here to observe that the wheeled properadic nerve is fully faithful.

Proposition 10.35 The wheeled properadic nerve

o) N FOP
Properad~¥ —— Set O

is fully faithful.

Proof We reuse most of the proof of Proposition 7.39, which establishes the fully
faithfulness of the properadic nerve. Suppose P is a €-colored wheeled properad
and Q is a ®-colored wheeled properad.

The proof that the wheeled properadic nerve is faithful is exactly the same as the
properad case.

To show that the wheeled properadic nerve N is full, suppose given a map

¢ : NP — NQ € Set"™. We must show that ¢ = Ng for some wheeled
properad map ¢ : P — Q. Using 1 and corollas and proceeding as in the properad
case, we obtain a map ¢ : P —> Q (of color sets and components) whose image



10.2 Characterization of Strict co-Wheeled Properads 309

under the wheeled properadic nerve agrees with ¢ on 1 and corollas. As soon as we
know that ¢ is a map of wheeled properads, we will know that N¢o = ¢ because
the wheeled properadic nerve of a wheeled properad satisfies the Segal condition
(Lemma 10.34), hence is completely determined by what it does to corollas and 1.

Now we show that ¢ is a map of wheeled properads. Again as in the properad
case, we know that ¢ respects the colored units and the bi-equivariant structures. To
see that ¢ respects the dioperadic compositions and the contractions, we use:

* the inner dioperadic coface maps C —> D € I't, with D a dioperadic graph and
C obtained from D by shrinking away the internal edge;

* the inner contracting coface maps C — K € Iz, with K a contracted corolla
and C obtained from K by deleting the loop.

Then the maps
(NP)(D) —— (NP)(C) and (NP)(K) —— (NP)(O)

are given by the dioperadic composition of P and the contraction of P. So the fact
that ¢ is compatible with C — D and C — K implies that ¢ respects the
dioperadic compositions and the contractions.

10.2.5 The Segal Condition Implies Strict oo-Wheeled
Properad

Next we observe that a graphical set that satisfies the wheeled properadic Segal
condition must be a strict co-wheeled properad. As in the properad case, we first
eliminate the possibility of an inner horn having multiple fillers.

Lemma 10.36 Suppose K € set’® satisfies the wheeled properadic Segal
condition. Then each inner horn

4
AL[G] —— K
3

l

rolGl

of K has at most one filler.
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Proof We adapt the proof of Lemma 7.40. Suppose G € GrcO is ordinary with at
least one internal edge. By Remark 10.17 the inner horn ¢ is uniquely determined
by the graphices

s eK(l)| J —— G facenotequal tod"

that agree on common faces. By the assumed Segal condition of K, each graphex ¢,
is uniquely determined by the graphices

{ow = &1 (91) € K(Cy) | w e VU],

£
where C,, —— J is the corolla inclusion, which decomposes into outer coface

maps (Lemma 10.24). Furthermore, the compatibility condition of the ¢; implies
that ¢,, is well-defined if w is a vertex in two such faces of G. There are now two
cases.

1. If G is simply connected, then since Edgei(G) # @, G has at least two vertices,
and hence at least two deletable vertices by Lemma 2.87. Now we reuse the last
two paragraphs of the proof of Lemma 7.40 to conclude that the inner horn ¢ can
have at most one filler

P = {p, € K(Cy) | v € V(G)} € K(G).

2. Next suppose G is not simply connected, so it has a cycle. By Lemma 2.102
there exists a disconnectable edge e in G. By Lemma 2.100 there is an outer
contracting factorization

G = [£.C|(G.),
where G, is the connected graph obtained from G by disconnecting e, and C is

the corolla with the same profiles as G,. See the picture in Remark 2.101. Since
there is an outer contracting coface map

G, — G,

by the assumed Segal condition we have a graphex

96, = {po = §l¢c, € K(Cy) [ v € VUG,)} € K(Ge).
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Since Vt(G,) = Vt(G), by the Segal condition again, ¢, = {¢,} actually
determines a unique graphex

® = {g, | v € VI(G)} € K(G).

This graphex @ is the only possible candidate for a filler of the inner horn ¢
because any such filler must restrict to the graphex ¢g,, and hence also to the ¢,
for v € Vt(G).

Lemma 10.37 Suppose K € Setrg satisfies the wheeled properadic Segal
condition. Then K is a strict co-wheeled properad.

Proof We need to show that, in the context of Lemma 10.36, the graphex
@ = {p,} € K(G)

is a filler of the inner horn ¢. It remains to show that @ restricts to the ¢, for faces
J —> G not equal to the given inner face d“. We consider outer and inner coface
maps separately.

d;
1. For an outer coface map J, —— G , J; is obtained from G by either deleting

a deletable vertex or disconnecting a disconnectable edge. In either case, each
vertex in J, is also a vertex in G. Therefore, @ restricts to ¢;, € K(J;), i.e.,

¢, ={gy | v € VU)} = dZ (D).

dy
2. Suppose J, —— G is an inner coface map not equal to the given d"“. Since

G has at least two inner faces, it has at least two internal edges, and J,, has at least
one internal edge. There is a graph substitution factorization

G= Jv(H)s

where H is either a dioperadic graph or a contracted corolla. Suppose H is
substituted into v € Vt(J,). We need to show the equality

o = End; @ € K(Cy)

for every w € Vt(J,). First we consider vertices in J, not equal to v.



312

10 Infinity Wheeled Properads

a. A vertex x € Vt(J,) \ {v} is already in G. By Lemma 10.24 there is an outer

d;
cofacemap J, —— G withx € Vt(J;). The diagram

o J.

dz

DR

*>G

in I'ry is commutative because either composition is the corolla inclusion
C, —> G. The first part about outer coface map and the commutativity of
this diagram now imply:

(pX = S:(pjz

=gldo
= §d; @ € K(CY).

. It remains to prove the equality

Py :i::d:¢

By the given graph substitution G = J,(H) and the characterization Theo-
rem 9.52 of subgraphs, the map H —> G is a subgraph. Therefore, there is a
commutative diagram

in I'yy. Here each composition is the corolla inclusion C, — G, d is the
unique inner dioperadic or contracting coface map into H, £ is a composition
of outer coface maps, and d,, is an outer coface map. The above commutative
square now implies:

oo = &9,
= (d)* ¢y,
= d*E*d* P
=§&;d;®

This proves that @ € K(G) restricts to ¢, € K(C,) as well.
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10.2.6 Wheeled Properad Associated to a Strict oo-Wheeled

Properad

Here we observe that each strict co-wheeled properad has a canonically associated
wheeled properad. We will use the biased form of a wheeled properad, which was
defined in Definition 9.1.

Definition 10.38 Fix a strict co-wheeled properad K. We define a K(1)-colored
wheeled properad Pk as follows.

1. The Xg(k4y)-bimodule structure of Pk is that of K € Set™® asin Sect. 7.1.2. In
particular, its elements are the 1-dimensional elements in K, with

* input/output profiles induced by the outer dioperadic coface maps 1 — C
into corollas,

* colored units 1. = s*(c) induced by the codegeneracy map C1;1) ;> 1,

and
* bi-equivariant structure induced by input/output relabeling.

2. For the dioperadic composition, suppose

* 8 € K(C)) has profiles (x;y),
* ¢ € K(C,) has profiles (v; w), and
. x = w e K1)

Define D as the dioperadic graph (Example 2.17) whose top (resp., bottom)
vertex v (resp., vp) has the same profiles as C; (resp., C,), and whose unique
internal edge connects the jth outgoing flag of v, and the ith incoming flag of v;.
By Example 10.18 the 1-dimensional elements 6 and ¢ determine a unique inner
horn

d ¥
A4 (D) —*—5 K
J S

of K, where

is the unique inner dioperadic coface map into D. Since K is assumed to be a
strict co-wheeled properad, there is a unique filler @ € K(D). Now we define the
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dioperadic composition

9j0i¢ =d*® ¢ K(C)

By construction the dioperadic composition 8 jo; ¢ has profiles (%:%)

3. For the contraction, suppose 6 € K(C) has profiles (x; y) such that x =y €K
(1). Define &,C as the contracted corollas (Example 2.15) whose unique vertex v
has the same profiles as the corolla C, and whose loop e connects the ith outgoing
flag of v with the jth incoming flag of v. By Example 10.19 the 1-dimensional

element 6 determines a unique inner horn

A [e.0] —F— K

of K, where
d
c —— &C

is the unique inner contracting coface map into &,C. Here C’ is the corolla
obtained from the contracted corolla £ C by deleting the loop e. Since K is
assumed to be a strict co-wheeled properad, there is a unique filler @ € K(§,.C).
Now we define the contraction

£(0) =d* @ e K(C).

By construction the contraction EJ’ (0) has profiles (Xty i).
X\

This finishes the definition of Pk.

Lemma 10.39 For each strict oo-wheeled properad K, the above definitions give a
K(1)-colored wheeled properad Pk.

Proof We need to check the various biased axioms of a wheeled properad. They are
all proved in the same manner using the unity and associativity of graph substitution,
which are proved with full details and generality in [YJ15]. So we will prove only
one compatibility axiom between the dioperadic composition and the contraction in
detail to illustrate the method.
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Suppose B is the K(1)-colored connected graph

in which:

e v (resp., vy) has profiles (x; X) (resp., (v;w)),
* e connects the sth outgoing flag of v, with the rth incoming flag of v}, and
* f connects the ith outgoing flag of v; with the jth incoming flag of v,.

Suppose 6 € K(Cy) with profiles (x;y) and ¢ € K(C;) with profiles (v;w) are
1-dimensional elements such that w, = x, and y; = v;. So the decorated graph

makes sense. We want to prove the compatibility axiom

§(00cd) =0 [E(por0)]z. (10.4)

in which
— — 5140 — —
ge - Sf - ;_1+;3 O¢ = s%r, Oof = i9j,

and o and t are suitable block permutations that align the input/output profiles of
&.(¢ oy 0) with the left-hand side.

As in previous chapters, we will ignore the isomorphisms induced by relabelings
to simplify the presentation. To prove (10.4) we use the same strategy as in the proof
of Lemma 7.47. In other words, we will show that both sides of (10.4) are equal to
a certain codimension 2 face of some inner horn filler for B.

To do this, first observe that B has four faces.

1. There is an outer contracting coface map

dy
Bf—>B
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corresponding to disconnecting the disconnectable edge f.

foa
(1)
e
df
(v2) -
f1

The dioperadic graph By has a unique inner face, namely, the inner dioperadic
coface map

e

do
(Bf)i2 —— Br ,

where (By) > is the corolla obtained from By by shrinking away the internal edge
e. By Example 10.18 the elements 6 and ¢ determine an inner horn

AB1B) —— K

l ElN

To[By]
of K, which has a unique filler @, € K(By). By construction
0 o, ¢ = dg@p() e K ((Bf)lz) .

2. There is an outer contracting coface map

B, —— B

corresponding to disconnecting the disconnectable edge e.
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€e_1

()

f

O
el

The dioperadic graph B, has a unique inner face, namely, the inner dioperadic
coface map

d;
(Be)Zl — Be s

where (B, ), is the corolla obtained from B, by shrinking away the internal edge
f. By Example 10.18 the elements ¢ and 6 determine an inner horn

of K, which has a unique filler @; € K(B,). By construction
¢or 0 =di® € K((Bo)a)-
3. There is an inner dioperadic coface map

diz
B, — B

corresponding to shrinking away the internal edge e.

@'
e f

¥ d12 @
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The contracted corolla B}, has a unique inner face, namely, the inner contracting
coface map

dy
B/12 — By ,

where B, is the corolla obtained from Bj, by deleting the loop f. By Exam-
ple 10.19 the graphex 6 o, ¢ determines an inner horn

A%z [Blg] —\{> K

l 3,

Loy [Bio]
of K, which has a unique filler @, € K(B},). By construction
£ (0o, ¢) =dsPr € K(B),).
4. Finally, there is an inner dioperadic coface map

dyy
le — B

corresponding to shrinking away the internal edge f.

(&
Z@@—> )

The contracted corolla B,; has a unique inner face, namely, the inner contracting
coface map

d3
B/21 — By,

where B), is the corolla obtained from Bs; by deleting the loop e.
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By Lemma 10.16 the graphices @; for 0 < i < 2 determine an inner horn

ABB] ——— K

|

L', [B]

of K, which has a unique filler ¥ € K(B). Note that B}, = B}, which is the corolla
obtained from B by shrinking away both internal edges. So the diagram

ds
! _ !
Biy = Byy ——— Bay

q ldm

dy
By ————B (10.5)

is commutative. Pulling ¥ back along one composition yields

£r(0 0. ¢) = d5 P,
= &I d,W.

So to finish the proof it suffices to show that
& ((;S of 9) = d;d5W. (10.6)
To prove (10.6), observe that by Example 10.19 ¢ oy 6 determines an inner horn

L', [Bai]

of K, which has a unique filler " € K(B,;). By definition the contraction & (¢ or 0)
is the unique inner face of 7. Therefore, to prove (10.6), it suffices to show that

W ="T.
By uniqueness of 7, this is equivalent to
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Here

d,
(B21)e — B

is the unique outer coface map into Bj;, so (Bj). is obtained from B;; by
disconnecting the disconnectable edge e. Note that

(Be)2t = (B21)es

which is the corolla obtained from B by disconnecting e and shrinking away f in
either order. Therefore, the diagram

de
(Be)21 = (B21)e —— Bas

de
B.———— B (10.7)

is commutative. So we have
d:d;lllf = de:lI/
= dT ¢1
= (,25 Of 9

As discussed above, this suffices to prove (10.6).

10.2.7 Strict oo-Wheeled Properads Are Nerves

We now show that each strict co-wheeled properad K is canonically isomorphic to
the nerve of the wheeled properad Pk in Lemma 10.39. The strategy is the same
as in Sect. 7.3 for strict co-properads. First we observe that there is an object-wise
bijection.

Lemma 10.40 Suppose K is a strict co-wheeled properad, and G € Gr?. Then
there is a canonical bijection

K(G) —— (NP)(G).

where Px is the wheeled properad in Lemma 10.39.
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Proof We adapt the proof of Lemma 7.48 as follows. The map 5 is constructed
according to the number of internal edges in G.

1. For the exceptional edge 1, by definition there is a bijection

K(1)

mlz

(NPk)(1) = Properad® (1, Pk)

because by Lemma 10.7 amap ¥ — Pk is simply an element in the color set
of Pk, which is K(1).
2. For a permuted corolla 0 Ct, the bijection

K(eCT)

(NPk)(cCT) = Properad®(cCT, Pk)

comes from the definition of the elements in Pk as the 1-dimensional elements
in K.

3. The previous two cases take care of the case Edge;(G) = &. The only exceptional
connected graph with Edge;(G) # @ is the exceptional wheel. The bijection 77,
is defined as the composition of isomorphisms

~

() —= 5 NP (D)

}

(1) —=— NPk (1).

R

x

IR

The two vertical isomorphisms are induced by the isomorphism I'ty (D) = I'ty (1)
in I'yy (Example 9.17).

4. Suppose G € Grcb is ordinary with Edge;(G) # @. The map 7 is defined as the
composition

K(G) (NPW)(G)

TTK(C)]kry ——= TIINVP)(Co)] yp, 1) (10.8)
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Here the yg are the Segal maps (10.3), and [] nc is induced by the bijections
defined previously for corollas and the exceptional edge. The Segal map for the
nerve NPk is a bijection by Lemma 10.34.

Next we show that 7¢ is a bijection by induction on n = | Edge;(G)|. We already
observed that 1 are bijections for G € {1, 0,0Ct}. So we now assume G is
ordinary with n > 1. Then there must be at least one inner dioperadic or contracting

dﬂ
cofacemap K —— G . Using the inner horn Ay [G] —> T'p[G] defined by d,,
the diagram

Set'™ (I'n[G], K) — 2% 8et"™ (T, [G], NPk)

”J J*

Seut™ (4201, K) " sexl? (A42(0], NPy 109

is commutative by the construction of the maps n. We want to show that ng is
a bijection. The left vertical map is a bijection by the strict co-wheeled properad
assumption on K. The right vertical map is a bijection because NPx is also a strict
oo-wheeled properad (Lemmas 10.34, 10.36, and 10.37). The bottom horizontal
map is determined by the maps

0] n 0]
set™ (Mp ], K) —— set’™® (T /], NPx)

for coface maps / —> G not equal to d, (Lemma 10.16). Each such J is ordinary
and has n — 1 internal edges. So by induction hypothesis, the bottom horizontal map
in (10.9) is a bijection. Therefore, the top horizontal map 7 is also a bijection.

Next we observe that the maps 7 in the previous lemma have the same universal
property as the unit of the adjunction object-wise.

Lemma 10.41 Suppose K is a strict oo-wheeled properad, and K —— NQ

op
is a map in set'o for some ©-colored wheeled properad Q. Then there exists a

/

unique map Px —— Q of wheeled properads such that the diagram

K(G) — 5 (NQ)(Q)

Wclz
N¢!

(NPk)(G)

is commutative for each G € Grg).
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/

Proof We reuse the proof of Lemma 7.49 as follows. The map Px —— Q on

color sets is the map

¢
K(®) — N1 =2.

The map ¢’ on elements of Pk is given by the maps

K(oCr7) ;> (NQ)(cC1)

on permuted corollas, using Lemma 10.7 to interpret graphices in (NQ)(cCzt) as
elements in Q. To see that {’ preserves the wheeled properad structure—namely, the
bi-equivariant structure, colored units, dioperadic compositions, and contractions—
note that the structure maps in Pk are all induced by maps in I'r, and that NQ is a
strict co-wheeled properad (Lemmas 10.34, 10.36, and 10.37).

To see that the composition N’ o 7 is equal to ¢, first observe that they agree on
G € {1,0,0Ct}. Suppose G € GrP is ordinary with Edge;(G) # @. The map (s
is the composition

K(G) —L s (NQ)(G)s

because the nerve NQ satisfies the Segal condition (Lemma 10.34). By the definition
of the corolla ribbon, the bottom horizontal map is determined by ¢ on corollas and
the exceptional edge, where it agrees with the composition N’ o . The agreement
between ¢ and N¢' o n on G now follows from the definition of ng (10.8).

Finally, we observe the uniqueness of the wheeled properad map ¢’ for which
N{' on = ¢. Indeed, this equality already determines what the map ¢’ does on color
sets and elements in Pk.

Lemma 10.42 Suppose K is a strict oo-wheeled properad. Then the object-wise
bijections in Lemma 10.40 assemble to give an isomorphism

n
K—)NPK

op
in set'o.
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Proof We reuse the proof of Lemma 7.50 essentially verbatim, with I', Properad,
and Lemma 7.49 replaced by I'ry, Properad®, and Lemma 10.41, respectively.

With Lemmas 10.34, 10.36, 10.37, 10.39, and 10.42, the proof of Theorem 10.33
is complete.

Corollary 10.43 Suppose K is a strict oco-wheeled properad. Then the following
statements hold.

1. The K(1)-colored wheeled properad P is canonically isomorphic to the funda-
mental wheeled properad of K.
2. The map

n
K—)NPK

is the unit of the adjunction (L, N).

Proof Lemma 10.42 says that n is a map of wheeled properadic graphical sets,
while Lemma 10.41 says that it has the required universal property of the unit of the
adjunction.

10.3 Fundamental Wheeled Properads of co-Wheeled
Properads

In this section, we observe that for a reduced co-wheeled properad, its fundamental
wheeled properad can be described using homotopy classes of 1-dimensional
elements. This is the wheeled analog of Theorem 8.23. First we define the homotopy
relation of 1-dimensional elements. Then we show that a dioperadic composition
and a contraction can be defined on homotopy classes of 1-dimensional elements.
Next we show that the object with these operations is a wheeled properad. Finally,
we put the pieces together and prove the main Theorem 10.57.

10.3.1 Homotopy of 1-Dimensional Elements

Recall the definitions in Sect. 7.1.2, which also apply in set™. SoforK e Setrg,
a 1-dimensional element with m inputs and n outputs means a graphex in K (6 Ct)
for some permuted corolla 0 Ct, where C = Cuy, is the corolla with m inputs
and n outputs. The input/output profiles of a 1-dimensional element is the pair of
K(?)-profiles given by the images under the maps

K (cCt) — K(1)
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induced by the outer dioperadic coface maps 1 — o Ct corresponding to the legs
of oCr.

Definition 10.44 Suppose K € set’ 8,f and g are 1-dimensional elements in K
with m inputs and # outputs. For 1 <i < m (resp., | <j < n), define

H:f ~i g (resp..H:f ~ g),
exactly as in Definition 8.1. If H:f ~; g (resp., H:f ~/ g), then we say f is
homotopic to g along the ith input (resp., jth output).

Remark 10.45 As explained in Remark 8.2, graphically the relation f ~; g (resp.,
f ~7 g) means that there is an ith input (resp., jth output) extension H of f by a
degenerate element 1, as in the pictures

whose inner dioperadic face is g. To say that H is an input or output extension of f
by 1 means that the two outer dioperadic faces of H are f and 1.

Lemma 10.46 Suppose K € Setrg, and f and g are 1-dimensional elements in K
with m inputs and n outputs.

1. Suppose either

o f~;gforsomel <i<m,or
o f~Jgforsomel <j<n.

Then the profiles of f and g are equal.
2. Suppose K is an co-wheeled properad. Then:

a. The relations ~; for 1 < i < m and ~J for 1 < j < n are all equivalence
relations.
b. The equivalence relations ~; and ~’ are all equal to each other.

Proof Simply reuse the proofs of Lemmas 8.5, 8.7, and 8.12.

Definition 10.47 Suppose K is an co-wheeled properad. Denote by ~ the common
equivalence relation, called homotopy, defined by ~; and ~/ as in Lemma 10.46.
If m = n = 0, then homotopy is defined as the equality relation. Two elements
in the same homotopy class are said to be homotopic. The homotopy class of a
1-dimensional element f will be written as [f].
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As in previous chapters, in what follows we often omit isomorphisms induced

by change of listings to simplify the presentation. It is understood that such
isomorphisms are applied wherever necessary.

10.3.2 Dioperadic Compositions of 1-Dimensional Elements

The following definition is the dioperadic version of Definition 8.15.

Definition 10.48 Suppose:

K'is an co-wheeled properad,

f € K(Cnypy) is a 1-dimensional element with profiles (a; b),

8 € K(Cpyq)) is a 1-dimensional element with profiles(c; d), and
bj=ciforsomel <j<nandl <i=<p.

. Define the dioperadic graph
D = Cisa joi Casp)

with top vertex v, bottom vertex u, and unique internal edge e (Example 2.17).
Suppose

din
C = Cieozpogy — D

is the inner dioperadic coface map corresponding to shrinking away the unique
internal edge e.
. By Example 10.18 g and f define an inner horn

A1) K

I'o[D]

of K. Since K is an co-wheeled properad, there exists a filler 6 € K(D). If
h=d;0 € K(),

then we write

0:h ~ g]Olf

Call /2 a dioperadic composition of g and f, and call 6 a witness.
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Remark 10.49 In the context of Definition 10.48, a witness is guaranteed to exist,
but it is not necessarily unique because K may not be strict. The two outer dioperadic
faces of a witness are g and f, and its inner dioperadic face is a dioperadic
composition of g and f.

Since a witness is not unique, neither is a dioperadic composition. Next we will
observe that the homotopy class of a dioperadic composition is well-defined. First
we observe that, given g and f, any two dioperadic compositions are homotopic.

Recall that K € Set"™® is reduced if K(C(g:g)) = {*}.
Lemma 10.50 Suppose:

o Kis a reduced oco-wheeled properad,

e g € K(Cypy) and f € K(Cinyy) are 1-dimensional elements in K as in
Definition 10.48, and

e there exist witnesses

O:h>~gjoif and O:h ~gjof.

Then h and h' are homotopic.

Proof The graphices h and /' have the same profiles, say (x;y). If (x;y) = (2; @),
then there is nothing to prove because K(C(,2)) is a singleton. N

So suppose (x;y) # (F; D). Then at least one of four things must happen: ¢ > 1,
m=>1,p=>2, orn > 2. Assume q > 1; similar proofs exist for the other cases.
Since g > 1, the 3-vertex graph A, depicted as

is defined. More precisely, A is the simply connected graph

A= Cunjo1 D

= Ca;nyjo1 [Ciigp joi Commy | -
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We now reuse the proof of Lemma 8.18, with (X, e) replaced by (joi , oc), to see that
there exist an inner horn filler @ € K(A) and an inner dioperadic face H of @ that
is a homotopy from A to /'

If m > 1 (resp.,p > 2, or n > 2), then we modify A above by grafting the corolla
Cq;1y with vertex w to the dioperadic graph D via an input leg of u (resp., input leg
of v, or output leg of u).

The following observation will ensure that, for a reduced co-wheeled properad,
dioperadic compositions can be defined on homotopy classes.

Lemma 10.51 Suppose:

* K g € K(Cpiy) and f € K(Ciu;ny) are as in Lemma 10.50,
* there exist homotopies f ~ ' and g ~ g', and
* there exist witnesses

O:h~gjoif and 6:h ~g jo;f.

Then h and I are homotopic.

Proof By Lemma 10.50 it suffices to show that & ~ g’ jo; . Consider the 3-vertex
graph

G = Cpig) joi [Caisny jo1 Comm ]
= [C(p;q) 10 C(l;l)] % Clmsnys

which may be depicted as follows.

We now reuse the proof of Lemma 8.19, ignoring e and replacing X with ;o;, to see
that there exist an inner horn filler ¥ € K(G) and an inner dioperadic face ¥ of ¥
that is a witness of i >~ g’ jo; f’.
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10.3.3 Contractions of 1-Dimensional Elements

The following definition is the contraction analog of Definition 10.48.
Definition 10.52 Suppose:

» Kis an co-wheeled properad,
* g € K(C(py) is a 1-dimensional element with profiles (c; d), and
* ¢j=d;forsomel <j<pandl <i=<gq.

1. Define the contracted corolla
£Cy = £Cia

with vertex v and loop e (Example 2.15). Suppose

din
C= C(Q\Cjéd\di) — Eecv

is the inner contracting coface map corresponding to deleting the loop e.
2. By Example 10.19 g defines an inner horn

ABECy) ——— K

Lo [fecv]
of K. Since K is an co-wheeled properad, there exists a filler 6 € K(§,C,). If

h=d0 € K(C).

n

then we write
0:h ~ &g

Call & a contraction of g, and call 6 a witness.

Remark 10.53 1In the context of Definition 10.52, the contracted corolla &,C), has a
unique inner face dj, and a unique outer face

d&)ut
Ceay — §Cy
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corresponding to disconnecting the disconnectable edge e. For a witness 6, we have
doy = g

Now we observe that, for a reduced oo-wheeled properad, contraction can be
defined on homotopy classes.

Lemma 10.54 Suppose:

o Kis a reduced oco-wheeled properad,

* g € K(Cpyg)) is a 1-dimensional element in K as in Definition 10.52,
* there exists a homotopy g ~ g', and

e there exist witnesses

0:h~Eg and 01 ~&g.

Then h and h' are homotopic.

Proof The contractions h and /' have the same profiles (x;y). If (x;y) = (; 9),
then the reduced assumption on K implies # = /’. So we assume (x;y) # (2: D).
This means that ¢ > 2, p > 2, or both. We assume ¢ > 2 and i # 1; similar proofs
exist in the other cases.

Consider the graph B

o

with two vertices and two internal edges, in which e is a loop at v. More precisely,

B = (§Cyig) [Caty 101 Cirigp] -

We will construct the desired homotopy &2 ~ k' as an inner face of an inner horn
filler of K with respect to B. First observe that B has 4 faces.

1. There is an outer contracting coface map

B, —— B

corresponding to the disconnectable edge e.
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So B, is obtained from B by disconnecting e. By hypothesis there is a homotopy
(Ho:g ~ &) € K(B)

along the first output. This means that the outer dioperadic faces (resp., inner
dioperadic face) of H are g and a degenerate element 1 (resp., is g’).
2. There is an outer dioperadic coface map

dy
B, —— B

corresponding to the deletable vertex w.

-
s

So B,, is obtained from B by deleting the deletable vertex w. There is a witness
(6:h~ s;g) € K(By).

This means that 6 has outer (resp., inner) contracting face g (resp., h).
3. There is an inner dioperadic coface map

y
B —— B

corresponding to the internal edge f.
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eL

So B/ is obtained from B by shrinking away the internal edge f. There is a witness
(0":h ~ Elg') € KB).

This means that 6’ has outer (resp., inner) contracting face g’ (resp., ).
4. There is an inner contracting coface map

d
B —— B

corresponding to the loop e.

-

So B¢ is obtained from B by deleting the loop e.
By Lemma 10.16 the graphices Hy, 0, and 6’ define an inner horn

AL [B] ——— K
T [B] |

of K. So there is an inner horn filler ¥ € K(B). Consider the inner contracting face

H Y v c K®B).
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We claim that H is a homotopy & ~ &’ along the first output. In other words, we
need to show that H has

 outer dioperadic faces & and a degenerate element, and
* inner dioperadic face '

1. There is a commutative diagram

d ’
Ow = 0(1;1) #} B

4
B

@

de
B ——

in I'yy, in which the left vertical (resp., top horizontal) map is the outer dioperadic
coface map corresponding to deleting the deletable vertex v in B, (resp., v’ in B°).
Therefore, we have

1=d*H,
= d'd'w
= d5d* W
= dH.

This shows that an outer dioperadic face of H is a degenerate element.
2. There is a commutative diagram

du .
C(p—l:,q—l) » B

B, —" B
in Iy, in which the left vertical (resp., top horizontal) map is the inner

contracting (resp., outer dioperadic) coface map corresponding to deleting the
loop e in B,, (resp., deleting the deletable vertex w in B¢). Therefore, we have

h = (d°)*0
= (d)*d* ¥
= d*d*¥
— dH.

This shows that the other outer dioperadic face of H is A.
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3. There is a commutative diagram

af )
C(pfl;qfl) — B°

| |
in I'yy, in which the left vertical (resp., top horizontal) map is the inner
contracting (resp., inner dioperadic) coface map corresponding to deleting the
loop e in B/ (resp., shrinking away the internal edge f in B¢). Therefore, we have
W =do
=d*(d)*w
= (d)y*d*w
= (d)*H.

This shows that the inner dioperadic face of H is /.

We have shown that H is a homotopy H: h ~ K.
Still assuming g > 2, if i = 1, then we use the modification

(§i1 C(p;q)) [C(l;l) k1 C(p;q)]

of B above in which the edge f is connected to the kth outgoing flag of v for some
1<k=<gqg.

Finally, if ¢ = 1, theni = 1 and p > 2. Then we use a modification of B in
which the corolla C,, = C(y;y) is grafted to the contracted corolla & jl C, via any input
leg. In other words, in any case, since (x;y) # (; @), the vertex v must have an
incoming flag or an outgoing flag a that is not part of the loop e. Form a variation of
B by grafting C,, = C(i;1 to £,C, via this flag a, and then argue as above.

10.3.4 Wheeled Properad of Homotopy Classes

We now define the object that will be shown to be the fundamental wheeled properad
of a reduced co-wheeled properad.

Definition 10.55 Suppose K is a reduced co-wheeled properad. Define a X5k (4))-
bimodule Q as follows.
1. For a pair (x;y) of K(1)-profiles, denote by Qx(x;y), or Qk(2), the set of

homotopy classes of 1-dimensional elements in K with profiles (x; y). This is
well-defined by Lemma 10.46.
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2. For a color ¢ € K(1), define the c-colored unit of Qg as the homotopy class of
the degenerate element

1. = S*(C) eK (C(l;l)) s

s
where C(;;y — 1 is the codegeneracy map.

3. Define the ¥ -bimodule structure on Qg,

(732)
Qk(®) — Qk(2).

XTT

using the isomorphisms in K induced by input/output relabelings
o0Ct —— MoCt)mr = (Ao)C(tm)

of permuted corollas.
4. Define a dioperadic composition on Qk using representatives of homotopy
classes, i.e.,

def

[g]jei [f] = [A].

where h >~ g jo; f is as in Definition 10.48. This is well-defined by Lemma 10.51.
5. Define a contraction on Qg using representatives of homotopy classes, i.e.,

def

§lgl = [nl.

where h ~ Sj’ g is as in Definition 10.52. This is well-defined by Lemma 10.54.

We first observe that Qg forms a wheeled properad. The following observation
is the wheeled analog of Lemma 8.22.

Lemma 10.56 Suppose K is a reduced co-wheeled properad. Then Qg in Defini-
tion 10.55 is a K(1)-colored wheeled properad.

Proof We need to check the various biased axioms of a wheeled properad. They are
all proved in the same manner using the unity and associativity of graph substitution,
which are proved with full details and generality in [YJ15]. So we will prove only
one compatibility axiom between the dioperadic composition and the contraction in
detail to illustrate the method.
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For this purpose, we will reuse much of the proof of Lemma 10.39 as well as the
notations therein. Suppose B, 6 € K(C1), and ¢ € K(C,) are as in that proof. So the
decorated graph

makes sense. We want to prove the compatibility axiom

& ([0] oc [9]) = o [&([¢] o [OD)] .

We proceed as in the proof of Lemma 10.39, in particular suppressing the permuta-
tions o and t.

1. The elements 6 and ¢ determine an inner horn
AQ[B] —— K,
which has a filler @y € K(By). By definition it is a witness
B di Py~ 00, b,
where
do
(Bf)12 — By

is the inner dioperadic coface map corresponding to shrinking away the internal
edge e in By.
2. The elements ¢ and 6 determine an inner horn

AZ[B] — K,

which has a filler @, € K(B,). By definition it is a witness

D, Zdrfpl ~ ¢)Of 0,
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where

d;
(Be)Zl — Be

is the inner dioperadic coface map corresponding to shrinking away the internal
edge f in B,.
3. The element dj &, determines an inner horn

AZ[B] — K.

which has a filler @, € K(By;). By definition it is a witness
@y d3 Py = & (dF D),
where

dy
B\, —— Bn

is the inner contracting coface map corresponding to deleting the loop f in Bj;.

These three witnesses are not unique, but their existence is all that we need.
By Lemma 10.16 the graphices @; for 0 < i < 2 above determine an inner horn

AZ'B] — K

of K, which has a filler ¥ € K(B). Consider the two commutative diagrams (10.5)
and (10.7). Pulling back ¥ along the first commutative diagram yields:

dydy\¥ = dyd,¥
=d; P,
~ & (dy Po).
Pulling back ¥ along the second commutative diagram yields:
&\ =didv
=&,
>~ ¢ of 6.
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Note that djd5, ¥ is the inner contracting face of d3, ¥, while d; d, ¥ is the outer
contracting face of d;‘l V. Therefore, combining the above calculation, we now have:

& ([0] o [9]) = &fldg Po]
= [d5 @]
= [d] P1]
=& ([#] o7 16]) -

This proves the desired compatibility axiom in Q.

10.3.5 Fundamental Wheeled Properad

Below is the main observation of this section. It says that the fundamental wheeled
properad of a reduced oo-wheeled properad can be described using homotopy
classes of 1-dimensional elements. It is the wheeled analog of Theorem 8.23.

Theorem 10.57 Suppose K is a reduced oo-wheeled properad. Then the wheeled
properad Q is canonically isomorphic to the fundamental wheeled properad of K.

Proof We will reuse most of the proofs of Lemmas 10.40-10.42.

1. Following the proof of Lemma 10.40, we obtain a map

K(G) —— (NQK)(G)

foreach G € Grg). The map 74 is a bijection because Qk is K(1)-colored, and so
Nt is also a bijection. The map 7, ¢, for a permuted corolla 0 C7 is a surjection
because it sends a 1-dimensional element in K to its homotopy class.

2. The object-wise map {ng} has the same universal property as the unit of the
adjunction (L, N) object-wise. Here we follow the proof of Lemma 10.41. The
main point is that, given a wheeled properad Q and a map

¢
K — NQ
of wheeled properadic graphical sets, the map

/

QK—>Q
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is well-defined. Indeed, homotopic 1-dimensional elements in K are sent to
homotopic 1-dimensional elements in NQ. But since the nerve NQ is a strict
oo-wheeled properad, homotopy is the identity relation.

3. The object-wise map {n¢} yields a map

n
K —— NQk

of wheeled properadic graphical sets. Here we reuse the proof of Lemma 10.42
by simply replacing Pk with Qg and using the previous step instead of
Lemma 10.41.

n
The last two steps imply that the map K —— NQg of graphical sets has

the same universal property as the unit of the adjunction. So, up to a canonical
isomorphism, Qx is the fundamental wheeled properad of K.



Chapter 11
What’s Next?

In this brief chapter, we mention several problems related to infinity properads that
we find interesting. These cover applications as well as conceptual understanding of
infinity properads.

11.1 Homotopy Theory of Infinity Properads

In a future paper, we will show that the category of graphical sets admits a
Quillen model structure [Qui67] so that the fibrant objects are precisely the infinity-
properads. This is an extension of the Joyal model structure on simplicial sets
[Joy08, Lur09] and the Cisinski-Moerdijk model structure on dendroidal sets
[CMI11].

The first two authors constructed simplicial models of oco-props in [HR12],
which one can show induces a simplicial model for co-properads. More generally,
one can show that for any wheel-free pasting scheme G, the category of all
simplicial G-props admits a cofibrantly generated model category structure. This
model structure is right proper and, we suspect, satisfies a type of relative left
properness such as that in our paper [HRY 14].

It remains to show that these two models of co-properads are closely related.
In future work, we will construct a homotopy coherent graphical nerve as part of
an adjoint pair between graphical sets and simplicial properads. The homotopy
coherent graphical nerve takes an entrywise fibrant simplicial properad to an
oo-properad, and we expect that the adjunction is a Quillen equivalence.
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11.2 String Topology Infinity Properad

In [PR11], Poirier and Rounds initiate a study of chain-level string topology
operations, which uses short geodesic arcs to define the operations, rather than the
usual transversality arguments. A string diagram of type (g, k, £) is a “fat graph”
which determines a Riemann surface of genus g with k 4+ £ boundary components.
There is a compactified moduli space of string diagrams SD(g.k, £) so that the
following hold.

* The chains on SD(g, k, £) act on the chains of a free loop space of a manifold M,
i.e. there is a chain map

Cx(SD(g, k, £)) ® Cs«(LM) —> Cst(2—2g—k—0)a(LM). (11.1)
» There is an equivalence relation on the cells of SD(g, k, £) so that

@(g,k, £)/ ~) ~ Sull(g, k, )

where the latter is the moduli space of Sullivan chord diagrams.
* In homology, the diagram

H.(SD(g, k. 0)) ® H.(LM) —— H.1(22g4—pa(LM)

l cae

H,(Sull(g,k,0)) @ H.(LM),

commutes, where the map CGC gives the string topology operations defined by
Cohen and Godin [CG04] and Chataur [Cha05].

Poirier and Rounds point out that {C«(SD(g.k,£)/ ~)} is not a properad, as the
composition (given by gluing of string diagrams) is only associative up to homotopy.
A question, then, is if this object is an infinity properad. One possible approach is to
show that the collection C«(SD(g. k, £)/ ~) constitutes a strong homotopy properad
in the sense of Granaker [Gra0O7] and complete the problem described in Sect. 11.4.
Another possibility is that the moduli spaces SD(g, k, £)/ ~ themselves form an
infinity properad.

11.3 Operadic Approach

When working with a fixed set of colors, properads are algebras over an operad.
More precisely, suppose that € is a set of colors. Then there is an S(€)-colored
operad Og whose category of algebras is equivalent to the category of properads
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with color set € and color-preserving maps. The operad Og is generated in arity 2,
and the generators are in bijection with the set of partially-grafted corollas in €.

Look at algebras (in the sense of [Heulla]) over the infinity operad N(Og).
Each such algebra is then an up-to-homotopy €-colored properad, and it should
be possible to produce a graphical set from such an algebra. We expect that this
graphical set is an infinity properad.

A related approach is as follows. Resolve the operad O¢ using the Boardman-
Vogt W-construction to get an operad WO, . An algebra over this operad is an up-to-
homotopy €-colored properad, which in analogy with the operad case in [Bri00] we
can call a lax properad. Lax properads should give examples of infinity properads.
For simplicity, suppose that € = x* is a single point. There is an operad O} *
whose algebras are morphisms of monochrome properads. Taking the Boardman-
Vogt W construction, we obtain an operad W(O37~*), whose algebras are homotopy
homomorphisms of monochrome lax properads (compare to [Bri00, §19]). A graph
G determines a free monochrome operad F(G) with operations generated by the
vertices, and this functor F : ' — Properad induces a nerve functor N, from
lax properads to graphical sets. For a lax properad P, define Ny,,(P)g to be the set
of homotopy homomorphisms F(G) ~> P. We expect that this graphical set Ny, (P)
is an infinity properad.

11.4 Strong Homotopy Properads

Lurie defined a nerve functor [Lurl4, §1.3.1] which takes a differential graded
category C and produces a quasi-category. This was extended by Faonte [Faol3]
in a conceptual way, so that the input C can be an Ax-category instead. In brief,
this nerve is described by defining the simplicial set whose n-simplices are the A -
category functors from K] to C.

On the other hand, Pepijn van der Laan [vdL04] defined an operadic analogue of
Aso-algebras, dubbed strong homotopy operads or sh operads. A natural question
is whether these sh operads provide examples of infinity operads. An affirmative
answer was recently given by Le Grignou [LeG14]. In this paper, a colored version
of Van der Laan’s sh operads is constructed, called “strict unital homotopy colored
operads”, which are to sh operads as Ao-categories are to Ao-algebras. Le Grignou
defines the nerve functor on this expanded category, and shows that it produces
infinity operads.

Granéker [Gra07] defines a strong homotopy (sh) properad to be a ¥-bimodule
& together with a codifferential d¢ on the cofree coproperad F¢(£[1]). A morphism
(£,3g) —> (£',9¢) is a map of dg coproperads F¢(E[1]) — F¢(E'[1]). The
present authors suggest that there should be a nerve functor from the category of
sh properads to infinity properads, perhaps by pursuing a properadic version of
[LeG14].
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11.5 Deformation Theory

At least over a field of characteristic zero, every deformation problem [Ger64] is
governed by a deformation complex, i.e. a differential graded (dg) Lie algebra via
solutions (modulo gauge action) of the Maurer-Cartan equation. By governed we
mean that one can use the dg Lie algebra to functorially construct a deformation
functor. Although the interpretation of deformation problems in terms of solutions
of the Maurer-Cartan equation is very useful, in many situations this is too rigid for
a complete theory. The appropriate way of extending this category is to associate to
each deformation problem a homotopy Lie algebra or Lo,-algebras.

Operads and, more recently properads, have proven extremely useful in defor-
mation theory, since, among other things, operadic methods consolidate the con-
struction of the deformation complexes mentioned above. The basic idea is that
morphism complexes of (pr)operads have canonical Ly-structures. In their papers
[MV09a, MV09b], Merkulov and Vallette define the deformation theory of a
morphism of prop(erad)s by showing that the vector space of morphisms between dg
properads has a canonical filtered Lo-structure, where the Maurer-Cartan elements
are morphisms of dg properads. They show that if one fixes a Maurer-Cartan
element, y, and let Q¥ be the associated twisting of the canonical Ly-algebra by
y then the deformation complex of y is defined by this twisted Lo-algebra.

Several authors [GK95, Gan04, Val07] have explicitly computed deformation
complexes by exploiting Koszul duality. Traditionally, the deformation complex is
given by the canonical cofibrant resolution of a properad. Since a general cofibrant
resolution is often quite large, Merkulov and Vallette construct minimal models
using “homotopy” Koszul duality of properads [MV09a, MV09b]. A homotopy
Koszul properad has a space of generators equal to the Koszul dual of a quadratic
properad associated to it. Merkulov and Vallette compute the differentials of
homotopy Koszul properads by appealing to the (dual) of Granédker [Gra0O7] strong
homotopy properad construction. Given that we expect Granaker’s construction to
give rise to examples of infinity properads, we think it would be worth considering
how this homotopy Koszul duality compares with Koszul duality of infinity
properads.

11.6 Weber Theory

There is a well known and often exploited relationship between categories and
simplicial sets via the nerve functor. In the classical example, the functor N :
Category — Set®” takes a small category C to the simplicial set N(C) with
N(C), the set of all composable chains of morphisms in C

Co—>Cl—> ...y
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of length n. The nerve functor is full and faithful, so it determines C up to isomor-
phism. Conversely, we may view the notion of a simplicial set as a generalization
of the notion of a category. We can tell if a simplicial set arises as the nerve of a
category via very explicit conditions (e.g. Segal conditions or unique filling of inner
horns). This implies that a category is a simplicial set that falls into this essential
image and a functor is a map between simplicial sets of this form.

Recent work of M. Weber [Web07, LeiO8] generalizes this relationship to
construct nerves of objects more general than categories. One can think of the
category of all small categories as the category of algebras of the free category
monad on the category of directed graphs. The generalized nerve construction
says that in favorable cases, a monad 7 induces a category ®(7T), consisting of
certain “linear” free T-algebras. This category ©(T) is a small full subcategory of
Alg(T). Furthermore, there is an induced generalized nerve functor Ny : Alg(T) —
5et®™” which is full and faithful. The essential image of Ny consists of the
presheaves preserving certain limits.

Weber’s machinery works on many known extensions of Category, including
operads. In particular, Weber’s nerve recovers the dendroidal nerve. Joyal and Kock
[JK11] have also applied this machinery to colored modular operads. Weber’s
construction applied to properads leads to a graphical category that is different than
I' in this text. Our graphical category I' is Reedy, and we do not expect this to be
true of Weber’s ®(T). Further exploration of this idea could be quite interesting.



Notation

Notation Page Description

¢ 14 Set of colors

€ OT C[1m] 14 Profile of colors

corsd 14 Substitution of profiles

P(©) 14 The groupoid of €-profiles

S(¢) 14 The category of pairs of €-profiles

(c:d) or (9 15 A pair of profiles

Flag : 15 The set of flags of a graph

Vit 15 The set of vertices of a graph

Leg 15 The set of legs of a graph

Edge 15 The set of edges of a graph

Edge; 15 The set of internal edges of a graph

in(u) 16 The set of inputs

out(u) 16 The set of outputs

. 17 An isolated vertex

e 18 An exceptional edge

O 18 An exceptional wheel

Cic:a) 18 The (c; d)-corolla

oCt 19 A permuted corolla

E; Coré&C 19 A contracted corolla

Ca) &iﬁ Cap 20 A partially grafted corollas

Cie:)i%Clab) 22 A dioperadic graph

Grg) 25 The set of connected graphs

GrcT 25 The set of connected wheel-free graphs

Gr:i 25 The set of connected wheel-free graphs
with non-empty inputs

GrcTO 25 The set of connected wheel-free graphs
with non-empty outputs
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GrcTS

T
Gry;

UTree
ULin
G({H.})
G(Hw)
dis(S(¢))

1.

X
Properad
Properad;

Properad,

Properadg
PGl

FGrLT
PAQ
P®Q

Hom(P, Q)
out(v
(Ain((v)))

G

I'G)

oGt

f(G)

@0 D>

g

Iso(C)
deg(G)

-
setl”

I'[G]
r[G]
AYG]
&

25
25
25
25
28

56
58
58
59
59

59

64

70
71

100

101
102
145
150
155
155
155
156

156

156

161
161
161
161
166
171
173
175
175
182

Notation

The set of special connected wheel-free graphs

The set of simply connected graphs

The set of unital trees

The set of linear graphs

Graph substitution

A special kind of graph substitution

The discrete category of S(€)

The c-colored unit

A properadic composition

The category of properads

The category of properads with
non-empty inputs

The category of properads with
non-empty outputs

The category of special properads

P-decorated graph

The free properad monad

Smash product of colored objects

Tensor product of properads

Internal Hom

The profiles of a vertex

The colored object of vertices in G

The graphical properad generated by G

Relabeling of a graph

The image of G under f

The properadic graphical category

The finite ordinal category

The dendroidal category

The graphical subcategory of
simply connected graphs

The graphical subcategory of connected
wheel-free graphs with non-empty inputs

The graphical subcategory of connected
wheel-free graphs with non-empty outputs

Maximal sub-groupoid

Degree of a graph

A wide subcategory of I'

A wide subcategory of I'

The category of properadic graphical sets

The properadic nerve

Representable graphical set

A face of I'[G]

A horn of T'[G]

Corolla inclusion
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K(G)
XG
Sc[G]
€G

~i

~

i
§
Joi
ProperadD

185
185
187
187
213
213
233
252
253
253
255
256
257
258
281
285
288
288

288

288
294

294
296
297
297
305
305
306
307
325
325
325

Corolla ribbon
The properadic Segal map
The properadic Segal core
The Segal core inclusion
Homotopy along the ith input
Homotopy along the jth output
Homotopy
Contraction
Dioperadic composition
The category of wheeled properads
The free wheeled properad monad
Tensor product of wheeled properads
The unit of ®
Graphical wheeled properad
The image of G under f
The wheeled properadic graphical category
Maps whose target and image coincide
Subcategory generated by

outer cofaces and isomorphisms
Subcategory generated by

inner cofaces and isomorphisms
A wide subcategory of I'r,

The category of wheeled properadic
graphical sets

The wheeled properadic graphical nerve

Representable wheeled graphical set

A face of ') [G]

A horn of 'y [G]

Corolla ribbon

The wheeled properadic Segal map

The wheeled properadic Segal core

The wheeled properadic Segal core map

Homotopy along the ith input

Homotopy along the jth output

Homotopy
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